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Résumé

Bien que théorisés il y a une quinzaine d’années, l’intérêt de la communauté
scientifique pour les réseaux de neurones sur graphes n’a connu un réel
essor que très récemment. De tels modèles visent à transposer les capacités
d’apprentissage de représentation inhérentes aux réseaux de neurones profonds
sur des données de type graphes, via l’apprentissage d’états cachés associés aux
nœuds du graphe. Ces états cachés sont calculés et mis à jour en fonction des
informations contenues dans le voisinage de chacun des nœuds.

Ce récent intérêt pour les réseaux de neurones sur graphes (GNN) a
conduit à une "jungle" de modèles et de méthodes, rendant le domaine de
recherche parfois confus. Historiquement, deux principales stratégies ont été
explorées : les réseaux spatiaux et les réseaux spectraux. Les réseaux spatiaux,
parfois appelés "message passing neural network", sont basés sur le calcul d’un
message agrégeant l’information contenue dans le voisinage de chacun des
nœuds. Ce message est ensuite utilisé afin de mettre à jour les états cachés des
différents nœuds du graphe. Les réseaux spectraux quant à eux sont basés sur
la théorie spectrale des graphes et reposent donc sur le Laplacien du graphe. La
décomposition en valeurs/vecteurs propres du Laplacien permet notamment de
définir une transformée de Fourier sur graphe ainsi qu’une transformée inverse.
À partir de ces transformées, différents filtrages peuvent être appliqués sur le
graphe, obtenant des résultats similaires au filtrage sur une image ou sur un
signal.

Dans cette thèse, nous commençons par introduire une troisième catégorie,
appelée spectral-rooted spatial convolution. En effet, certaines méthodes
récentes prennent racine dans le domaine spectral tout en évitant le calcul de la
décomposition en vecteurs propres du Laplacien. Cette troisième catégorie nous
amène à nous poser la question de la différence fondamentale entre les réseaux
de neurones spatiaux et réseaux de neurones spectraux. Nous répondons à cette
question par la proposition d’un modèle général unifiant les deux stratégies,
montrant notamment que les modèles spectraux sont un cas particulier des
modèles spatiaux. Ce cadre unifié nous a par ailleurs permis de proposer une
analyse spectrale de plusieurs modèles de GNN populaires dans la communauté
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scientifique, à savoir GCN, GIN, GAT, Chebnet et CayleyNet. Cette analyse
montre que les modèles spatiaux sont limités aux filtrages passe-bas et passe-
haut, tandis que les modèles spectraux sont capables de réaliser n’importe quel
type de filtres. Ces résultats sont ensuite retrouvés avec la présentation d’un
problème jouet, montrant dans un premier temps la limitation des modèles
spatiaux à définir des filtres passe-bande et l’importance que peut revêtir
l’utilisation de tels filtres.

Ces résultats nous ont amenés à proposer une méthode capable de réaliser
n’importe quel type de filtrage, tout en limitant le nombre de paramètres du
réseau. En effet, bien que les modèles spectraux soient capables de réaliser
tout type de filtrage, l’ajout d’un nouveau filtre requiert l’ajout d’une nouvelle
matrice de poids dans le réseau de neurones. Afin de réduire le nombre de
paramètres, nous proposons l’adaptation des Depthwise Separable Convolution
aux graphes via une méthode intitulée Depthwise Separable Graph Convolution
Network. Cette méthode a été évaluée à la fois en apprentissage transductif et
en apprentissage inductif, et obtient des résultats supérieurs à l’état de l’art
sur les datasets testés.

Enfin, nous proposons une méthode définie dans le domaine spatial afin de
prendre en compte les attributs d’arcs. En effet, cette problématique a été peu
étudiée par la communauté scientifique, et le nombre de méthodes proposant
d’inclure ces informations est très réduit. La nôtre, intitulée Edge Embedding
Graph Neural Network, propose de projeter les attributs d’arcs dans un nouvel
espace via un premier réseau de neurones, avant d’utiliser les caractéristiques
extraites dans un GNN. Cette méthode est évaluée dans une problématique
particulière de détection de symboles dans un graphe.
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Abstract

Although theorised about fifteen years ago, the scientific community’s interest
for graph neural networks has only really taken off recently. Those models
aim to transpose the representation learning capacity inherent in deep neural
network onto graph data, via the learning of hidden states associated with the
graph nodes. These hidden states are computed and updated according to the
information contained in the neighborhoud of each node.

This recent interest for graph neural networks (GNNs) has led to a "jungle"
of models and frameworks, making this field of research sometimes confusing.
Historically, two main strategies have been explored : the spatial GNNs on
one side and the spectral GNNs on the other side. Spatial GNNs, sometimes
also called Message Passing Neural Network, are based on the computation
of a message which agregates the information contained in the neighborhoud
of each node. On the other side, spectral GNNs are based on the spectral
graph theory and thus on the graph Laplacian. The eigendecomposition of the
graph Laplacian allows to define a graph Fourier transform and its inverse.
From these transforms, different filters can be applied on the graph, leading to
similar result than filtering on images or signals.

In this thesis, we begin by introducing a third category, called spectral
rooted spatial convolution. Indeed, some recent methods are taking root in
the spectral domain while avoiding to compute the eigendecomposition of the
graph Laplacian. This third category leads to question about the fundamental
difference between spectral and spatial GNNs. We answer this question by
proposing a general model unifying both strategies, showing notably that
spectral GNNs are a particular case of spatial GNNs. This unified model also
allowed us to propose a spectral analysis of some popular GNNs in the scientific
communitic, namely GCN, GIN, GAT, ChebNet and CayleyNet. This analysis
shows that spatial models are limited to low-pass and high-pass filtering, while
spectral models can produce any kind of filters. Those results are then found
with the presentation of a toy problem, showing in the first instance the
limitation of spatial models to define pass-band filters, and the importance
of designing such filters.

7



Those results have led us to propose a method allowing any kind of
filter, while limiting the network’s number of parameters. Indeed, even though
spectral models are able to design any kind of filtering, each new filter
require the add of a new weight matrix in the neural network. In order to
reduce the number of parameters, we propose to adapt Depthwise Separable
Convolution to graphs through a method called Depthwise Separable Graph
Convolution Network. This method is evaluated on both transductive and
inductive learning, outperforming state-of-the-arts results.

Finally, we propose a method defined in the spatial domain in order to
take into account edge attributes. Indeed, this issue has been little studied by
the scientific community, and the number of methods allowing to include edge
attributes is very small. Our proposal, called Edge Embedding Graph Neural
Network, consists in embedding edge attributes into a new space through a first
neural network, before using the extracted features in a GNN. This method is
evaluated on a particular problem of symbol detection in a graph.
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Chapter 1

Introduction

1.1 Context of the thesis

Working with data containing structural information has always been a com-
plex task. Yet, structural information exists in many cases, from microscopic to
macroscopic through more abstract cases. It can be the structure of a molecule
which expresses how different atoms are bonded together to form the molecule.
But it can also represent a planetary system or an electricity network. In
fact, one could argue that most of the concepts that human can think of can
be described as a structure, or at least own a structural information. This
document for example, has a structure. It is made of different chapters, each
of them divided into multiple sections. The set of chapters, sections and their
hierarchy forms the logical structure of the document. This structure can then
be presented as a table of contents.

The structural and relational information also directs our thoughts. We
don’t simply think about a person, an object, an action or a feeling, we associate
them through relational structures to make a more complex concept. We don’t
simply think about an image containing a cat and a mug, we think about a cat
pushing a mug to make it fall.

In order to be used in computer science, those data need to be encoded.
The most common way to represent data is to use matrices or vectors. Those
encoded data can implicitly include structural information. For example, when
an image is encoded as a 2 or 3-dimension matrix, this matrix includes a
proximity relation between 2 neighboring pixels. For a signal encoded as
a vector, the temporal relation between two moments is encoded by their
proximity in the vector. Both matrices and vectors allow to encode multiple
kinds of structural relations. However, those structural relations are never
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Molecules Social networksMeshes

Figure 1.1: Graph structured data

explicitly encoded, which forbids more complex structure. One representation
way that can be used is through graphs.

A graph is a data structure that represents a set of objects called nodes,
where each object can be related to other ones from the set through a relational
information called an edge. Each node and each edge is an object, and can thus
carry information. Figure 1.1 presents few data represented as graphs.

This thesis dives into this fascinating area of analyzing data represented
as graphs. More particularly, it concerns machine learning on graphs. Machine
learning is one of the most studied field of Artificial Intelligence (AI). It consists
in designing algorithms that aim to learn from data. The way data are designed
is thus especially important for Machine Learning algorithms.

The interest for Machine Learning has recently exploded with the emergence
of Deep Learning algorithms. This emergence has been allowed thanks to the
improved computing capacity and the availability of huge datasets. Unlike
most of Machine Learning algorithms, Deep Learning aims at learning new
representations of information. Those new representations are obtained through
a succession of non-linear functions and can be used to predict some properties.
Deep learning architectures are based on neural network models and some
notable ones will be presented in section 2.4.

Unfortunately, most of machine learning algorithms have been designed
to work with vectors or matrices, due to their rich mathematical properties,
especially the fact that they evolve in a Euclidean space. Less machine learning
models have been dedicated to graphs, and it has also been the case with Deep
Learning. Proposing efficient Deep Learning algorithms dedicated to graphs
can thus be considered as an important step to improve AI performance and
possibilities.

In this thesis, we consider this design of machine learning algorithms which
can be applied on structured data represented as graphs. In this context, Graph
Neural Networks (GNNs) [28, 72] have recently been proposed. GNNs are
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Research questions and main contributions

models of deep learning that are able to capture the structural information
contained in graphs. In this thesis, we focus on the analysis of Graph Neural
Networks and we propose some contributions to develop this concept.

1.2 Research questions and main contribu-
tions

The contributions of this thesis are guided by the following research questions:

Research question 1: In the last years, Graph Neural Networks have became
one of the hottest topics in machine learning. This has led to a "jungle" of
models and frameworks. Our first question is thus: how to classify existing
approaches ?

Our first contribution consists in deepening the classical GNN taxonomy
which classifies GNNs into two different categories: spectral and spatial GNNs.
Since some models are not easily classified following this taxonomy, we propose
to add a third category which contains the models based on spectral-rooted
convolution.

Research question 2: Given this taxonomy, can we merge all these
approaches into one single framework ?

As a second contribution of this thesis, we provide a proof that spectral
GNNs are a special case of spatial GNNs. This result allows to present a general
framework that bridges the gap between spectral and spatial GNN.

Research question 3: Since all existing models can be merged into a single
framework, one can wonder what is the spectral behavior of models initially
defined as spatial ones compared to models defined as spectral ?

The third contribution of this manuscript consists in a spectral comparative
analysis of some notable GNNs, namely: ChebNet, CayleyNet, GCN, GIN
and GAT. This analysis highlights the fact that most of popular models and
particularly spatially defined models are limited to low-pass filtering.

Research question 4: Since most of existing models are limited to low-pass
filtering while obtaining good results on reference datasets, one can wonder if
low-pass filters are sufficient for all problems ?

In our fourth contribution, two toy problems are designed and used to show
that some problems may require band-pass filtering. Those image-based toy
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problems have been handcrafted in order to require band-pass filters. Results
confirm the limits of existing models on those datasets.

Research question 5: Following previous results, most of GNNs appear
to be limited to low-pass filtering. Models that are able to propose band-pass
filtering require a huge number of parameters. Are GNNs able to produce band-
pass filtering at low-cost ?

As our fifth contribution, a new model allowing band-pass filtering at low
parameter cost is presented. This method adapts a popular CNN method
named Depthwise Separable Convolution to graphs.

Research question 6: One of the strength of graphs is the versatility of
their attributes. Both nodes and edges can carry information. Yet, most of
GNN models only use node attributes. Are GNN limited to use the information
carried by node attributes ?

Our final contribution proposes a general model that is able to use edge
attributes. This model is then evaluated on a problem of symbol detection in
floorplan images.

1.3 Outline of this thesis

This manuscript is divided into 7 chapters. After this general introduction,
chapter 2 presents a set of notations and background that are going to be used
all along this manuscript. Background notably includes general graph notations
and definitions, a presentation of the different kinds of tasks that can occur in
machine learning on graphs, and a general introduction about Deep Learning.

Chapter 3 presents a general introduction to Graph Neural Networks.
GNNs are a very recent and active field of research. But this activity has
led to many different definitions of GNNs, leading to a confusing field. After a
presentation of the first use of the "GNN" term, the two different main theories
that has led to the actual GNNs are explained. By answering research question
1, a third category called spectral rooted spatial convolution is added. This
chapter concludes by presenting the comparison with the Weisfeiler-Lehman
isomorphism test, which is commonly used as an evaluation tool of GNNs.

In chapter 4 the dichotomy made between the two approaches that led to
GNNs, namely spectral and spatial GNNs is questioned. A proof that spectral
GNNs are a special case of spatial GNNs is firstly given. This allows to present
a general model that bridges the gap between spectral and spatial GNN and to
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Outline of this thesis

thus answer research question 2. Using this result, research question 3 is tackled
through a spectral analysis of most popular GNNs that shows that most GNN
models are limited to low-pass filtering. This chapter is concluded by proposing
an answer to research question 4, highlighting the need of band-pass filtering.

Using conclusions from chapter 3 as well as the general model proposed in
chapter 4, a new model allowing band-pass filtering at low parameter cost is
presented in chapter 5 to answer research question 5. This method is based on a
popular CNN method named Depthwise Separable Convolution, and proposes
its adaptation to graphs.

Using both conclusions from chapter 3 and the general model presented
in chapter 4, chapter 6 proposes to answer to research question 6 through a
general model that is able to use edge attributes. This model is then evaluated
on a problem of symbol detection in floorplan images.

Chapter 7 concludes this manuscript and attempts to synthesize the
research questions previously asked.

Finally, in appendix A, our first work on deep learning and graph is
presented. This work is mainly presented to show how traditional deep learning
algorithms such as CNN are limited to work with graphs.

17



18



Chapter 2

Background

In this chapter, we briefly introduce several background topics and notations.
More background will be added over the document when required. In 2.1, we
present definitions and notations related to graphs. Section 2.2 tries to quickly
present how machine learning is used with graphs. In section 2.3, we present a
set of applications for graphs that can be solved with machine learning.

2.1 Graph definitions and notations
A graph is a pair G = (V , E) where V is the set of nodes or vertices of G and
E ∈ V × V is the set of edges linking those nodes. An edge e is called incident
to a node v if there is a node u such as e = (u, v) or e = (v, u). A node v is
adjacent to a node u if there is an edge e = (u, v) or e = (v, u) ∈ E . The set
of nodes adjacent to a node v is called the neighborhood of v and is written
N (v).

(a) An undirected graph (b) A directed graph

Figure 2.1: Undirected vs directed graph.

Edges in a graph can have a direction associated or not. In the undirected
case, we have e = (v, u) ⇔ e = (u, v) while in the directed case e = (v, u) is
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the edge from v to u, and is different from e = (u, v). Such a graph is called a
directed graph. In the case of directed graphs, the neighborhood definition can
be extended to oriented neighborhood.

A graph is said to be simple if it has no loop. A loop is an edge linking a
node to himself, e.g. e = (v, v).

In this document, graphs are considered as simple and undirected.

In a graph, both nodes and edges can be attributed to carry information.
For example, considering molecules, each node representing an atom can
be attributed by the name of the chemical element, and each edge can be
attributed by its type of bond. In such a case, the graph definition can be
extended with two functions µ : V → LV and ξ : E → LE , where LV and LE are
two sets of attributes. µ (resp. ξ) is a function that associates one attribute
from LV (resp. LE) to a node (resp. an edge). The graph definition thus becomes
G = (V , E , µ, ξ).

In this document, we work with both attributed and non attributed graphs.

When working with non attributed graphs, one way to represent the graph
is to use the adjacency matrix A ∈ R|V |×|V |. In this matrix, nodes are ordered
and each row and column correspond to a node. This matrix is build so that,
if i corresponds to node u, j corresponds to node v, then Ai,j = 1 if (u, v) ∈ E
and 0 otherwise. When working with attributed graphs, this representation has
to be extended. In order to integrate edge attributes, the adjacency matrix can
be extended to A ∈ R|V|×|V|×dim(LE). A matrix H ∈ R|V|×dim(LV ) can be added
to carry node attributes.

A set is basically an unordered data structure. When a graph is encoded
with matrices or tensors (adjacency matrix/tensor, node labeling matrix), it
implicitly defines an empirical ordering of the node set by assigning each node
to a matrix row or column. However, any other ordering would result in different
but valid encoding matrices.

Thus, any function applied over the graph should produce the same output,
independently of the arbitrary selected ordering. Specifically, it means that for
any permutation matrixP, we want permutation invariance f(PAPT ) = f(A).
When applying a function to nodes, we should have a consistent output for each
node, independently of its ordering. In this case, we seek for a permutation
equivariant function f : f(PAPT ) = Pf(A). Intuitively, the permutation
applied to the node is applied to the output of the function. This is an
important point when designing algorithms for graphs, including machine
learning models.
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Machine Learning and Graphs

2.2 Machine Learning and Graphs
Artificial intelligence is a field of research that seeks to produce models
that perform tasks that would normally require human intelligence. Machine
learning is one of the most studied branch of artificial intelligence. It is based
on mathematical and statistical approaches to compute models that learn from
data.

There are basically 3 types of machine learning frameworks: supervised
learning, semi or self supervised learning and unsupervised learning. Supervised
learning refers to an algorithm which makes use of labeled data unlike
unsupervised learning where each data is not labeled. Semi or self supervised
algorithms are the in-between: a generally small part of data are labeled, while
the rest is not. In this document, we mainly focus on supervised learning.

Supervised learning is commonly used in two steps, the training and test
step. The training step consists in computing a model using statistical or
mathematical approaches. The model is fit over a subset of available data, called
training set. Once the model is trained, the test step consists in evaluating the
computed model over the other subset of data, called test set. A third set, called
validation set, is often used to tune models that require hyperparameters or
to avoid overfitting. Hyperparameters are parameters that can not be learned
during fitting, such as the number of layers in neural networks for example.
Overfitting happens when a model stops generalizing and starts to fit too close
to the training data.

Historically, most of machine learning models work with handcrafted feature
extracted from raw data. Those features were generally defined by an expert of
the application domain. Some models also use feature selection to select most
interesting features over the data.

This feature extraction process and the mathematical models used have
constrained the direct use of machine learning over vectors and matrices for a
long time. The graph structure made of variable number of nodes and edges
can not be easily taken into account by traditional machine learning models.

In order to exploit the representative power of graphs, the machine learning
community has developed different tools. One of them is the graph edit distance
(GED) whose definition will be deepen in appendix A. Basically, GED is a
distance between two graphs, quantifying the amount of edit operations such
as removing, deleting and substituting nodes and edges required to transform
one graph into another. This distance can then be used by traditional distance
based machine learning algorithms to compute a model.

Another developed tool is graph embedding. Graph embedding aims at
casting graphs with different sizes (variable number of nodes and edges) into
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fixed size single vectors. It can be seen as some kind of feature extraction on
the graph object. Once these features are extracted, usual machine learning
methods can be applied. While opening the use of graphs with vector based
machine learning algorithms, the embedding operation induces a loss of
information which may be hard to control.

To limit this loss information, graph kernels [11] have been proposed since
a couple of decades. The strategy here is to apply the kernel trick to the graph
space, and thus allow the use of kernel based methods such as SVM to graphs.
The kernel trick [4] consists in replacing the access to the data trough scalar
products by the output of a similarity measure function k : G2 → R which
is semi definite positive [57]. Given this property, one can show that k(G,G′)
corresponds to a scalar product in the space H associated to the kernel :

k(G,G′) = 〈Φ(G),Φ(G′)〉H

, with Φ : G → H. Note that Φ may be not known explicitly, hence allowing
infinite dimension for H. Alleviating the need of an explicit embedding of
graphs into a finite space while keeping the connection to high level machine
learning algorithms put graph kernel methods to the state of the art during
2010’s. However, the definition of k must be done a priori and is application
dependant. In addition, its computation is generally high, hence limiting the
scalability of this approach.

As we can see, most of approaches of machine learning over graphs consist
in transforming data to obtain a suitable data design, in order to subsequently
apply machine learning methods over those data. But those transformations
can not be achieved without a loss of information, especially on the structural
information.

2.3 Different kind of tasks
The representation flexibility of graphs makes this data structure suited for the
representation of a huge number of data from different kinds. Thus, they can
be used for different tasks.

The first task is node classification or regression. In this task, nodes are seen
as data themselves, and edges are additional information representing links
between those data. To this extent, edges are not mandatory to apprehend
the task. This is the case for example for citation datasets (Cora [40], Citeseer
[26] or Pubmed [1]). In those datasets, an article is represented as a node, and
articles are linked together with edges if they cite or are cited by each other.
From those citation graphs, we want to predict one or multiple categories the

22



Different kind of tasks

article belongs to. The category prediction can be taken by only examining the
intrinsic information given by article information. However, taking into account
that an article cites or is cited by another brings interesting information that
can be used to the prediction.

Two cases can be distinguished for node classification tasks. In a first case,
the training dataset is a set of graphs where the class of each node is known,
and we want to induce rules to predict the class of nodes in other graphs (test
dataset). This first case is called inductive learning and is similar to what
is done with supervised learning in Euclidean space. Examples of inductive
learning datasets are Reddit and protein-protein interaction [94].

In the second case, we only have one graph or a set of graphs, where only
the class of a few nodes is known. Since we can’t split the set into a training
and a test set, we want to use the features of the known nodes to propagate
information to predict the class of nodes whose class is previously unknown.
Classification problem associated to Cora, Citeseer and Pubmed datasets are
examples of transductive task. It may be important to notice that transductive
learning is data specific, meaning that simply adding a single test node may
require a complete new training from scratch.

Neither inductive nor transductive learning is specific to graphs or nodes
classification, but if inductive learning is the most common in Euclidean spaces,
graph structure compels some problems to transductive learning. Figure 2.2
presents the difference between transductive and inductive learning.

(a) Transductive learning (b) Inductive learning

Figure 2.2: Transductive versus inductive learning. Colored nodes are nodes
whose class is known while white nodes are nodes whose class has to be
predicted.
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A second task is graph classification or regression. Unlike node classification,
it is the couple of set of nodes and set of edges forming the graph which is the
data as a whole and both are inseparable. For example, atoms in a molecule
are as important than the bonds between those atoms. Molecules datasets are
thus common examples of graph prediction tasks, such as QM9 [27], TOX21
or HIV [85, 5].

Even though those two first tasks are the most common, other tasks exist,
such as graph generation, link prediction, or community detection. For example,
a task can consist in the creation of a graph representing a set of short sentences,
such as the tasks associated to the bAbI[84] dataset. Figure 2.3 shows different
examples of tasks with graphs.

Thus, graphs can bring many information and can be the subject of many
kind of different tasks. But as we saw previously, working with graphs and
machine learning is a tough task.

2.4 Deep Neural Networks

Deep Neural Network can be seen as the succession of multiple neural network
layers, where each layer is generally the composition of a parameterized
function with a non-linearity function.

Unlike other machine learning methods, Deep Learning computes new
representations, which are then used to predict properties of the object.

One of the first definition of a neural network layer is the multi-layer
perceptron (MLP) [70]. This model is defined following 2.1.

f(h) = σ(hW + b) (2.1)

where h ∈ R1×fl is a line feature vector of size fl, W ∈ Rfl×fl+1 is the matrix of
parameters (also called the weight matrix), and b ∈ R1×fl+1 is the bias vector.
σ is a non linear function and was originally defined as the sigmoid function
S(x) = 1

1+exp−x , but the ReLU(x) = max(0, x) is commonly preferred. Other non
linear functions can be found, such as the tanh, the eLU or the LeakyReLU.

Multiple neural network models have since been proposed. Most notable
ones are the Convolutional Neural Network (CNN) and the Recurrent Neural
Network (RNN). Each of them is dedicated to particular cases.

On one side, RNNs are defined to work with sequences, such as speech or
handwriting. RNNs aim to compute new representations, called hidden states,
for each moment of the sequence. Each moment hidden state is computed
consecutively by taking into account the hidden states of the previous moment.
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Node Classification

Graph Classification

Link Prediction

Community Prediction

John is in the kitchen...
...The cat is near John

Graph Generation

Figure 2.3: Tasks examples with graphs. One can note that node classification
and community detection are close, but in practice, node classification refers to
supervised learning while community detection refers to unsupervised learning.

Some models, called Bi-directional, also compute hidden states from the
following moment.

On the other side, CNNs are defined in order to work with matrices
encoding images. CNNs are interesting due to their proximity with Graph
Neural Networks. It thus might be interesting to quickly presents them.
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A layer of CNN is constituted of a fixed number of convolution filters, where
each filter is defined by a fixed size set of learnable weights. Each filter is then
applied equivalently on each pixel of the image, computing a new representation
for each of those pixels.

One important point with CNN is the context used to compute the new
pixel representation. This context is firstly defined by the shape of the filter.
A large filter will take more distant context than a tight one.

Another way to take into account a large context is through an accumulation
of CNN layers. Indeed, the new pixel representation computed by a CNN
depends on the previous representation of its neighborhood, which has itself
been obtained depending on a neighborhood. The neighborhood of the
neighborhood is thus indirectly used to update each pixel by the second
CNN layer. Increasing the number of CNN layers indirectly increases the
neighborhood used to update each pixel. The set of neighbors used to update
a pixel is called its receptive field.

A third way to increase the shape of receptive fields is through pooling.
Pooling consists in the agglomeration of local information represented by a
small set of pixels into a single one, through simple operations, such as max or
min.

Deep Learning has been largely used and studied due to its impressive
performances on images or sequences encoded as matrices. This success is
partially based on the fact that these matrices are designed using a known
and invariant topological relationships between its elements, which induces an
implicit order on these elements and fixed topological relationships for each
pair of element. For instance, a pixel can be defined on the top over a second
one without ambiguity. However, graphs does not include such topological
information since no order on neighborhood of a given node can be defined
in general. Therefore, we can not directly apply CNN and RNN to graphs
since they rely on fixed topological relationships. Being able to transpose CNN
and/or RNN schemes to graphs will combine the representation learning ability
of Deep Learning with the structural information endowed by graphs. This
combination may lead to a significant improvement of machine learning in
general.
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Chapter 3

What is a Graph Neural
Network ?

3.1 Introduction

As stated in the introduction chapter, most of machine learning algorithms are
designed to work on Euclidean data and are not directly applicable in the graph
space because of the lack or regular grid. This statement is particularly true
for Deep Learning methods which strongly rely on linear algebra. Yet, Deep
Learning has had, over the past decade, a strong impact in various machine
learning applications relying on sequences or images such as scene recognition
[45] and speech analysis [29].

This explains the recent challenge tackled by the machine learning commu-
nity which consists in extending the Deep Learning paradigm into the world of
graphs. The objective is to revisit Neural Networks to operate on graph data, in
order to mix the benefits of representation power of graphs and representation
learning ability offered by deep models across layers (see 2.4).

In this context, a large number of Graph Neural Networks (GNNs) have
been recently proposed in the literature [72, 27, 14, 13, 30, 15, 79, 23, 87, 43, 51].
GNNs are Neural Networks that rely on the computation of successive hidden
representations of nodes using both structure and attributes information
carried by the whole graph.

In contrast to conventional Neural Networks, where the architecture of the
network is related to the known and invariant topology of the data (e.g. MLPs
for feature vectors, RNNs for data sequences, CNNs for images, see Figure
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Information used to update

Information used to update

Figure 3.1: Figure showing the topology used by (upper left) a MLP, (upper
right) a RNN, (down left) a CNN and (down right) a GNN. Topology is known
and invariant for MLP, RNN and CNN, but not for GNN.

3.1), the node states1 of GNNs must be propagated according to the graph
structural information which is a priori unknown.

Figure 3.2 presents a typical GNN architecture. The figure highlights that
in our point of view, a GNN layer "only" produces a new feature vector for each
node. Tasks such as node classification can thus be naturally tackled through a
particular GNN decision layer. In the case of tasks such as graph classification,
a function that produces a fixed size embedding of the graph is required after
GNN layers, before a decision layer applied on this embedding. This function
is generally called the readout function, and must be permutation invariant
(see section 2.1), as well to the number of nodes considered. Typical readout
function are the sum or the mean function, but other solutions exist, such as
pooling for example. The readout function is out of the scope of this chapter
which focuses on GNNs.

In this chapter, our objective is to review the GNN literature. The study
of GNN is a very recent but extremely active field of research. Hence, by the
time you read this manuscript, new papers concerning GNNs will probably
have been uploaded on arXiv2. This is why proposing an exhaustive and up

1It might be important to note the difference between features and states. Features are
properties of nodes while states are a set of value computed by GNNs across layers. However,
node states are generally initialized with node features, which might lead to a confusion. In
this manuscript, both terms are used similarly.

2One hundred submissions at ICLR’21 concern GNNs
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Input

GNN 
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Hidden 
Representation
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Decision 
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Readout Decision 
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Figure 3.2: Example of GNN architecture for node or graph classification.

to date state of the art of the field is difficult, even if some surveys have
already been proposed [93, 47, 86, 92]. In this chapter, rather than being
exhaustive, we present the main families of approaches used in reference GNNs.
The presentation relies on the classical dichotomy which distinguishes spatial
GNNs and spectral GNNs [86]. Beyond, we propose for this review a third
category called Spectral-Rooted Spatial Convolutions which gathers recent and
efficient methods that take their foundations in the spectral domain, but are
applied in the spatial one, without computing the graph Fourier transform.
This review is the first contribution of this manuscript. Finally, in section 3.7,
we discuss the relation between GNNs and the Weisfeiler-Lehman Isomorphism
test (WL test). Indeed, the comparison with the WL test is a commonly used
method to evaluate the expressive power of the different GNNs.

3.2 Review of reference GNNs
As shown in figure 3.2, a GNN can be defined as a neural network that com-
putes node embeddings through hidden representations obtained by gathering
information from node features, edge features and the graph structure.

As said before, a huge number of contributions have been proposed in this
field during the very recent years. Most of them concern new GNN models but
one can also find some contributions which describe generalization frameworks
(e.g. GN, MPNN, NLNN and MoNet).

GNNs are generally classified into two categories in the literature. The first
one concerns methods that rely on the spectral graph theory and that are
designed or analyzed in a spectral way. They are called Spectral ConvGNN,
Spectral CNN or Graph Convolutional Neural Networks (GCNN) in the
literature. Methods such as [15, 43, 51, 53, 23] belong to this category. The
second category concerns methods that are designed in a spatial way, trying
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to mimic Convolutional Neural Network (CNN) applied on images. Those
methods are called Spatial ConvGNN or Spatial GNN in the literature.

Concerning general frameworks, Message Passing Neural Networks (MPNN)
[27] is one of the first attempt to propose a general model. Their model notably
generalizes [54, 43, 9, 15], and [87, 30, 63] could naturally fit in this model. On
the other side [6, 79, 43] are generalized by Mixture Model Network (MoNet)
[60] model. Non-Local Neural Network [82] is another general model which
is not dedicated to the graph space, but unifies attention models, as GAT.
Finally, in [10], the authors propose to generalize MPNN and NLNN into a
Graph Network (GN) model.

Figure 3.3 illustrates together the main state of the art GNNs and
these frameworks. It shows that the distinction between spectral and spatial
approaches is not always clearly defined since some spectral models fit into
spatial frameworks. As an example, GCN which is defined by their authors as
a spectral model, fits into the MPNN framework, which is a spatial framework.
That is why we propose for our review a third category called "spectral-rooted
spatial GNN".

In the following, before describing the principles of each category, we first
focus on the first Graph Neural Network model proposed in [28] and extended
in [72] since it is historically important. Then, we successively describe reference
models that operate (i) in the spatial way, (ii) in the spectral way and (iii) at
the intersection of both categories.

3.3 The "pioneer" Graph Neural Network Model
Graph Neural Networks (GNN) have been firstly theorized by [28] and then
extended by [72]. In those papers, the authors propose to update a hidden
representation of each node by aggregating information contained in its own
labeling, its neighborhood labeling and the labeling of its incident edges. This
defines Graph Neural Networks. More specifically, each node in the graph is
updated according to :

h(l+1)
v = f(lv, lN (v),h(l)

v , eN (v)), (3.1)

where h(l)
v is the hidden state of the node v at iteration l, lv encodes the

attributes of node v, N (v) corresponds to the neighborhood of v, and thus
lN (v) and eN (v) encode respectively the sets of nodes and edges attributes of v’s
neighborhood. Finally, a decision ov (classification or regression) is taken for
each node v as follows:

ov = g(hfinal
v , lv), (3.2)
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GNN
Spatial

GCN

CayleyNet

Spectral
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ChebNet

GCNN,
Spectral ConvGNN,

Spectral CNN

MPNN

GG-NN

Interaction
Networks

GraphSage

MoNet

GAT

DCNN

NLNN

GN

Spectral

GIN

AGCN

PATCHY
-SAN

Spatial GNN,
Spatial ConvGNN

Figure 3.3: Overview of some state of the art GNNs and general models
that have been proposed. In black are methods from the literature. In blue
are general frameworks that operate in a spatial way. Spectral-rooted spatial
methods are those that are classified as both spatial and spectral on this figure.

where g is an arbitrary function of the final node state hfinal
v and the original

node attribute lv. Figure 3.4 shows an example of how a node is updated
depending on its neighborhood. In GNNs, both functions f and g are generally
defined as perceptrons [70].

This GNN in [28] and [72] was designed as a Recurrent Neural Network
learned with the backpropagation through time algorithm [59]. The conver-
gence is ensured by constraining f to be a contraction mapping. This first
definition has built the foundations of GNNs, especially for the ones in the
spatial domain. In the next subsection, we propose a review of this family
denoted spatial GNN.
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hv2
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hv2

hv1

hv4 hv3
hv5

Figure 3.4: Example of how the hidden state of a node is updated depending
on its neighborhood. On the left is the original graph. On the right, the hidden
state of node v2 is updated depending on its neighborhood v1, v3, v4, v5, and
the edges between v2 and its neighbor (in bold).

3.4 Spatial GNNs or Message Passing Neural
Networks

Even though we will see in section 4.2 that spatial and spectral methods are
closely related, we believe that Message Passing Neural Network (MPNN) [27]
is the framework that best describes what is a Graph Neural Network.

An MPNN operates in the spatial domain and can be defined as a two
step method. If we focus on one node in particular, denoted as central node,
MPNN starts by computing a message corresponding to an aggregation of
the central node’s neighborhood states. The central node is then updated
depending on this computed message and his own state. Formally, if we assume
that aggregate and update are two functions (generally neural networks), and
h(l)
u the state of node u at layer l, then we can define an MPNN as equation

3.3.

h(l+1)
u = update(h(l)

u , aggregate({h(l)
v ,∀v ∈ N (u)})) (3.3)

Equation 3.3 defines a general way to compute a MPNN. One can notice
that this equation does not take into account possible features on edges so the
definition is extended by equation 3.4, where heuv is the feature vector of edge
euv.

h(l+1)
u = update(h(l)

u , aggregate({h(l)
v ,heuv ,∀v ∈ N (u)})) (3.4)

A single computation of equation 3.3 or 3.4 only takes into account the
direct neighborhood of each node. By iterating this process, a larger structural
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information can be included. This is illustrated in figure 3.5. Each iteration
can be done either by the same aggregate and update functions, or different
ones. In analogy to deep neural network, each iteration is often referred as a
layer while the structural information used to update a node can be seen as
the receptive field.
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Figure 3.5: Structural information used depending on the number of layers
used. (a) an initial graph, (b) structural information used to update hv2 with
one layer. (c) structural information used to update each of the neighbor of v2.
(d) structural information used to update v2 with two layers.

In this general definition of MPNN, aggregate and update functions have
to be defined. The simplest way is to define the aggregate function as the sum
function, and the update function as a neural network (Eq. 3.53).

h(l+1)
u = σ((h(l)

u +
∑

∀v∈N (u)
h(l)
v )W(l) + b) (3.5)

The benefit of this simple definition is the way it can be easily implemented
by matrix multiplication. By defining C = A + I, where A is the adjacency
matrix and I is the identity matrix, equation 3.5 can be written as equation
3.6. By adding the identity matrix to the adjacency, a virtual loop on each
node is added. The same weights are shared between the central node and its
neighborhood.

H(l+1) = σ((CH(l)W(l)) + 1b) (3.6)

Where H(l) ∈ R|V|×fl , fl being the dimension of the state vector in layer l,
W ∈ Rfl×fl+1 , C ∈ N|V|×|V| and b ∈ Rfl+1 . Note that each line of H(l) encodes
the state of a node for the layer l : H(l)(i, :) = h(l)

i .
3Note that in this equation, the aggregate function takes hu as input in addition to u

neighborhood.
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The drawback of such MPNN formulation is that it applies the same
coefficients to all neighbors and to the node itself for each feature. By analogy
with a convolution on images, it is equivalent to compute the value of a pixel
using the same coefficient for the pixel itself and its neighbors (see figure 3.6(a)).
Thus, such an MPNN has an effect of smoothing (low-pass filtering). We refer
to this model as "Vanilla GNN" later in the manuscript. One improvement that
can be made is to apply different coefficients to the neighborhood on one side
and to the node on the other side (see figure 3.6(b)). In this context one can
define C0 = I and C1 = A (Eq. 3.7) and apply different parameter matrices
W(l,i) to each Ci matrix. This improvement allows the MPNN to behave either
as a high-pass filter or as a low-pass filter depending on the weights applied to
the node (matrix C0) and its neighborhood (matrix C1).

(a) (b)

Case 1 Case 2

hv2

hv1

hv4 hv3

hv5

hv2

hv1

hv4 hv3

hv5

(c)

Figure 3.6: Analogy of a MPNN with a convolution on images. (a) shows a
filter that would be designed by C = A+ I while (b) shows a filter designed by
C0 = I and C1 = A. Finally, (c) is a simple example presenting the importance
of applying different coefficients to the neighborhood and to the node. Indeed,
a filter designed as (a) applied on hv2 would not distinguish case 1 and case 2
while a filter designed as (b) would distinguish them.
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H(l+1) = σ((
1∑
i=0

C(i)H(l)W(l,i)) + b) (3.7)

Eq. 3.7 can be extended to consider discrete edge features. Using the
extended definition of the adjacency matrixA ∈ R|V|×|V|×dim(LE), one can define
C0 = I and C1:LE = A. The equation thus becomes Equation 3.8. This way,
different weight matrices are applied according to edge’s label:

H(l+1) = σ((
|LE |∑
i=0

C(i)H(l)W(l,i)) + b) (3.8)

A notable GNN is the Graph Isomorphism Network (GIN) [87] defined by
Equation 3.9 :

h(l+1)
u = MLP((1 + ε(l)).h(l)

u +
∑

v∈N (u)
h(l)
v ), (3.9)

where ε ∈ R may be a trainable parameter. As one can see, the GIN definition
is a slight improvement from the GNN defined in Equations 3.5 and 3.6. Indeed,
instead of defining C = A+I, the GIN model defines C as C = A+(I+ε). The
authors proves that a GNN defined as a GIN model is at least as powerful as
the Weisfeiler-Lehman Isomorphism Test [83]. The relation between GNNs and
Weisfeiler-Lehman Isomorphism Test will be presented in details in subsection
3.7.

To go one step further, some solutions propose to use the attention
mechanism [79, 81, 80] in order to assign different weights on the neighborhood
depending on each pair of nodes. The rationale is to compute the matrix C in
such a way that Ci,j is an attention factor representing the importance of node
vj when computing a message for node vi.

Ci,j = f (hi,hj,WAT ) , (3.10)

where WAT encodes the trainable parameters of a neural network and f is a
function to be defined.For example, the Graph Attention Network (GAT) [79]
defines the C matrix by first computing a scalar for each pair of node
(Equation 3.12), and then apply an element wise function (Equation 3.12)
to these values:

eij = σ([h(l)
i W(l)||h(l)

j W(l)])a (3.11)

where eij ∈ R, W(l) ∈ Rfl×fl+1 is the weight matrix in layer l, h(l)
i ∈ R1×fl

and h(l)
j ∈ R1×fl are the states of nodes vi and vj in layer l, σ is a non-linear
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function such as the LeakyReLU function, || is the concatenation operator
and a ∈ R2fl is an attention mechanism defined as a weight vector of a neural
network. In order to keep the graph structure information, eij is only computed
if vj ∈ N (vi) and is equal to 0 otherwise. This masked attention mechanism
allows to keep the structure of the graph, and do not consider non existing
edges in the graph.

Each eij is then normalized according to Equation 3.12 :

Cij = softmaxj(eij) = exp(eij)∑
k∈N (vi)

exp(eik)
(3.12)

where softmaxj is the normalized exponential function that uses all neighbors
of i-th node to normalize edge attention factor of i-th to j-th node.

Multiple attentions can be computed for a single layer which correspond
to the multi-head attention framework. In this case, the matrix C becomes
C ∈ R|V|×|V|×nh where nh is the number of attention heads used.

If nodes have discrete labels, weights can be shared by the neighbors whose
labels are the same [24]. Another method consists in defining an ordering
on nodes included within the receptive field of convolution, and sharing the
coefficients according to this reordering [63]. The reordering process is called
canonical node reordering. A similar sharing approach, based on reordered
neighbors, was presented in [35]. The difference is that the reordering is
computed according to the absolute correlation of features to the central node.
A different spatial-designed method proposed in [6] considers a diffusion process
on the graph using random walks. This allows to introduce variability on output
signal by applying random walks of different lengths to the different features. A
study of different aggregate functions has also been proposed in [30] through
their GraphSAGE method. The aggregate functions studied are the mean
aggregator, a LSTM aggregator and a pooling aggregator.

Many other methods fall in the paradigm of spatial GNNs. Once again
having an exhaustive look at them is not possible but this subsection
has presented the notable ones. In the next subsection, we review notable
approaches that rely on the spectral point of view.

3.5 Spectral ConvGNN

Spectral ConvGNNs rely on the spectral graph theory [22]. In this framework,
signals on graphs are filtered using the eigendecomposition of graph Laplacian
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Figure 3.7: Example on filtering applied on the eigenvalues of the graph
Laplacian. On the left, the graph before filtering. Each node in the graph
has one single feature, which is 0 for each node except the first one which is
1. On the middle, the same graph after a low-pass filtering. On the right, the
same graph after a high-pass filtering.

[74]. Graph Laplacian is defined by L = D−A (or L = I−D−1/2AD−1/2 for the
normalized version), where A ∈ R|V|×|V| is the adjacency matrix, D ∈ R|V|×|V|
is the diagonal degree matrix with entries Di,i = ∑

jAj,i and I is the identity
matrix. Since the Laplacian is positive semidefinite, it can be decomposed into
L = UΣUT where U is a matrix which gathers eigenvectors of L and Σ =
diag(λ) where λ denotes the vector of the eigenvalues. Note that the Graph
Laplacian is a semi positive definite matrix [22], and thus all its eigenvalues
are positive.

The graph Fourier transform of any unidimensional signal on graph is
defined by xft = U>x and its inverse is given by x = Uxft [22]. By transposing
the convolution theorem to graphs, the spectral filtering in the frequency
domain can be defined by

xfiltered = U diag(z(λ))U>x, (3.13)

where z(λ) is the desired filter function applied to the eigenvalues λ. Figure
3.7 shows the effect of two filterings applied over a graph. One can notice that
those effects are similar to the ones that can be obtained on images. As a
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consequence, a graph convolution layer in spectral domain can be written by
a sum of filtered signals followed by an activation function as in [15], namely

H(l+1)
j = σ

 fl∑
i=1

U diag(Fi,j,l)U>H(l)
i

 , (3.14)

for all j ∈ {1, . . . , fl+1}. Here, σ is an activation function such as ReLU (Rectified
Linear Unit), H(l)

i = H(l)(:, i) is the column vector of i-th feature of the l-th
layer, Fi,j,l ∈ Rn is the corresponding weight vector whose size is the number
of eigenvectors (also n, the number of nodes). A spectral ConvGNN based on
(3.14) seeks to tune the trainable parameters Fi,j,l, as proposed in [36] for the
single-graph problem.

A first drawback is the necessity of Fourier and inverse Fourier transform
by matrix multiplication of U and UT on one side, and the computation of
the eigen decomposition of the graph Laplacian on the other side. Another
drawback occurs when generalizing the approach to multi-graph learning
problems. Indeed, the k-th element of the vector Fi,j,l weights the contribution
of the k-th eigenvector to the output. Those weights are not shareable between
graphs of different sizes, which means a different length of Fi,j,l is needed.
Moreover, even though the graphs have the same number of nodes, their
eigenvalues will be different if their structures differ. As a consequence, a given
weight Fi,j,l may correspond to different eigenvalues in different graphs.

This means one weight is associated to different eigenvalues in different
graphs. In the Euclidean signal analogy, it means one weight corresponds to
different frequency components for different samples. As expected, the number
of eigenvalues and their values are different. Since eigenvalues of each graph
are different and not aligned, sharing eigenvectors relative to each eigenvalue is
not relevant. For instance in Fig. 3.8, bigger graph’s 7th eigenvalue is around
4.2 while smaller graph’s 7th eigenvalue is around 1.2.

To overcome these issues, a few spatially-localized filters have been defined
such as cubic B-spline parameterization [15] and polynomial parameterization
[23]. With such approaches, trainable parameters are defined by:

Fi,j,l = B
[
W(l,1)

i,j , . . . ,W(l,S)
i,j

]>
, (3.15)

where B ∈ Rn×S is an initially designed matrix and W(l,s) is the trainable
matrix for the l-th layer’s s-th convolution kernel, W(l,s)

i,j is the (i, j)-th entry
of W(l,s) and S is the desired number of convolution kernels. Each column in
B is designed as a function of eigenvalues, namely Bi,j = (zj(λi)).

In the polynomial case, each column of B encodes powers of eigenvalues,
starting at 0 (Bi,0 = λ0

i ) and ending at (S − 1)-th power, eg. Bi,S = λS−1
i . In
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Figure 3.8: Filter Transferability Problem. The respective eigenvalues of a 13-
node graph (bottom graph, eigenvalues in blue) versus a 28-node graph (top
graph, eigenvalues in red). The number and values of eigenvalues are different.
Since the eigenvalue of each graph are different, sharing eigenvectors relative to
each eigenvalue is not relevant. Respective eigenvalues are shown in the middle,
in red for the former and in blue for the latter. As expected, the number
of eigenvalues and their values are different. Since the frequency profiles of
each graph are different and not aligned, sharing eigenvectors relative to each
eigenvalue is not relevant. For instance, bigger graph’s 7th eigenvalue is around
4.2 while smaller graph’s 7th is around 1.2.

the cubic B-spline case, the B matrix encodes the cubic B-spline coefficients
[15].

A very recent ConvGNN named CayleyNet proposes to parameterize
trainable coefficients by Fi,j,l = [gi,j,l(λ1, h), ..., gi,j,l(λn, h)]>, where h is a scale
parameter to be learned, λn is the n-th eigenvalue, and g is a spectral filter
function defined as follows in [51]:

g(λ, h) = c0 + 2Re
 r∑
k=1

ck

(
hλ− i
hλ+ i

)k (3.16)

where i2 = −1, Re(·) is the function returning the real part, c0 is a real trainable
coefficient, and for k = 1, . . . , r, ck are the complex trainable coefficients.
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The CayleyNet parameterization can also be formulated as in Equation (3.15).
CayleyNet model will be used later in this manuscript.

3.6 Spectral-rooted Spatial Convolutions
As said before, some methods have recently been proposed to get rid of the
computation burden of graph Fourier and inverse graph Fourier transforms,
while still taking their foundations in the spectral domain. These solutions
rely on the approximation of a spectral graph convolution proposed in [32],
based on the Chebyshev polynomial expansion of the scaled graph Laplacian.
Accordingly, the first two Chebyshev kernels areC(1) = I andC(2) = 2L/λmax−
I and the remaining kernels are defined by

C(k) = 2C(2)C(k−1) −C(k−2). (3.17)

Researchers have shown that any desired filter can be written as a linear
combination of these kernels [32]. ChebNet is the first method that used these
kernels in ConvGNN [23].

One major extension and simplification of the Chebyshev polynomial
expansion method is Graph Convolution Network (GCN) [43]. GCN uses the
subtraction of the second Chebyshev kernels from the first one under the
assumption of λmax = 2 and L is the normalized graph Laplacian. The fact
that λmax = 2 for the normalized graph Laplacian has been proven in [22].

However, instead of using this subtracted kernel, they used re-normalization
trick and defined the final single kernel by:

C = D̃
−1/2

ÃD̃
−1/2

, (3.18)
with D̃i,i = ∑

j Ãi,j and Ã = (A + I) the adjacency matrix with added self-
connections.

This approach influenced many other contributions. The method described
in [91] directly uses this convolution but changes the network architecture by
adding a fully connected layer as the last layer. The MixHop algorithm [3] uses
the 2nd or 3rd powers of the same convolution.

The methods described in this section are quite different from pure
spatial and pure spectral convolutions. They are not designed by using
eigenvalues, but are implicitly designed as a function of structural information
(adjacency, Laplacian) and perform convolution in spatial domain as any
spatial convolution. However, their frequency profiles are stable for different
arbitrary graphs as any spectral convolution. This aspect will be theoretically
and experimentally illustrated in the next chapter.
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3.7 Assessing the expressive power of GNNs
A last interesting point of view about the GNNs is their relation with the
Weisfeiler-Lehman (WL) isomorphism test [83]. This has been studied in [87,
56, 62, 25], and to a lesser extent in [30]. The WL isomorphism test starts
by assigning to each node the same label (or a label according to the node
attributes). Then, iteratively, each node is assigned to a tuple containing the
aggregation of node’s old compressed label and its neighborhood compressed
labels. Then, a new label is assigned to each node depending on the tuple
previously computed. The new label is generally computed with a hash function
in order to have unique labels. The algorithm says that if after |V| iterations
or after convergence the nodes of two graphs do not have the same labeling,
then they are not isomorphic. It has however been proven through counter-
examples that 2 graphs with the same labeling are not necessarily isomorphic.
An iteration of WL test can be represented by Equation 3.19 and one can easily
notice the similarity with MPNN formulation (Eq.3.5).

h(l+1)
u = hash(h(l)

u , aggregate({h(l)
v ,∀v ∈ N (u)})) (3.19)

It is possible to extend the previous algorithm to tuples of nodes, by
computing a new label for each tuple of k nodes instead of each node. We
then talk about k-WL test, and the WL test becomes the 1-WL test. Apart
from the 1-WL and 2-WL case, it has been proven that the (k+ 1)-WL test is
strictly stronger than the k-WL test [16], in the way that k+ 1-WL test is able
to distinguish two non-isomorphic graphs where the k-WL test fails to detect
the difference.

To get rid of the limitation induced by the fact the 2-WL test is not more
powerful than 1-WL test, some variations of this test have been proposed. One
commonly used is the Folklore WL (FWL) test, which is defined such as 1-WL
= 1-FWL, but for k ≥ 2, there is (k + 1)-WL ≈ k-FWL.

Notable GNNs has thus been directly designed in order to be as powerful
as some WL test. For example, GIN [87], which have already been presented
in this chapter, has been designed in order to be as powerful as 1-WL test. In
[62] and [56], GNNs as powerful as 3-WL test have been designed. However,
this representation power comes with an exponentially growing memory and
computational complexity.

The equivalence to k-WL test or k-FWL has thus become a way to assess
the expressive power of GNNs. A GNN proven to be as powerful than the 3-WL
test would be stronger than a GNN proven to be as powerful than the 2-WL
test. However, this does not allows a comparison between two GNNs that are
as powerful to the same k-WL test. Also, and probably more important, this
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only compares how the structural information is used. Features on edges are
not taken into account in those comparisons.

3.8 Conclusion
This chapter has presented the Graph Neural Network paradigm. GNNs are
a class of neural networks dedicated to graphs. It consists in computing node
embeddings through hidden representations obtained by gathering information
from node features, edge features and the graph structure. This embedding is
then used either directly to produce an output for each node, or in combination
with a readout function to produce an output for the whole graph. Firstly
presented in [28, 72], GNNs have recently been the center of a huge interest
by the machine learning community, as shown by the number of submissions
concerning GNNs in different conferences such as ICLR.

The development of GNNs has then been made following two different ways
in parallel. On one side, spectral graph theory has lead to graph neural networks
that operate in the spectral domain, such as CayleyNet. On the other side,
GNNs that rely on spatial domain have also been proposed, with methods
such as MPNN. Those developments have lead to two distinct categories of
GNNs: the spatial and the spectral approaches.

We also introduced a third category of GNNs, the Spectral-Rooted Spatial
Convolutions. This category corresponds to GNNs that are based on the
spectral domain, but applied in a spatial way. This third category led us to
question ourselves on what is the fundamental difference between Spectral and
Spatial approaches.

We propose one answer to this question in the following chapter, where we
claim and prove that most of spectral and spatial GNNs can be written as
one general model, and that there is thus no fundamental differences between
Spectral and Spatial GNNs.

42



Chapter 4

Graph Neural Networks: Are
they Spectral or Spatial ?

4.1 Introduction

In previous chapter, we presented a general introduction on Graph Neural
Networks (GNN). This introduction has presented a major dichotomy made
between two different kind of GNNs: Spectral GNN and Spatial GNN. This
chapter was concluded by asking what was the fundamental difference between
Spectral and Spatial, and we claimed that the dichotomy generally made had
in fact no reason to be made. This chapter aim to prove this fact.

Thus, in section 4.2, we present our second contribution in this manuscript
that consists in bridging the gap between spectral and spatial domains for
GNNs. Through a new general framework, we demonstrate in this section
the equivalence of convolution processes regardless if they are designed in the
spatial or the spectral domain.

Taking advantage of this result, we present in section 4.3 our third
contribution which consists in a spectral analysis of existing graph convolutions
for five popular GNNs, known as GCN [43], ChebNet [23], CayleyNet [51], GIN
[87] and Graph Attention Networks (GAT) [79].

This analysis shows that most of influential GNNs are in fact limited to
low-pass filtering. To measure the generalization capability of the GNN model,
we present in section 4.4 two toy problems that illustrate once again the fact
that most of GNNs models are not able to produce band-pass filtering.
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4.2 Bridging the gap between Spatial and
Spectral GNN

In this section, we firstly provide a theoretical analysis demonstrating that
parameterized spectral ConvGNNs can be implemented as spatial ConvGNNs
when they use a fixed frequency profile matrix B.

4.2.1 Theoretical analysis

Theorem 1. Spectral ConvGNN parameterized with fixed frequency profiles
matrix B of entries Bi,j = zj(λi), defined as

H(l+1)
j =σ

( fl∑
i=1

U diag
(
B
[
W(l,1)

i,j , . . . ,W(l,S)
i,j

]>)
U>H(l)

i

)
, (4.1)

is a particular case of spatial ConvGNN, defined as

H(l+1) = σ
(∑

s

C(s)H(l)W(l,s)
)
, (4.2)

with the convolution kernel set to

C(s) = U diag(zs(λ))U>, (4.3)

where the columns of U are the eigenvectors of the studied graph, σ is the
activation function, H(l) ∈ Rn×fl is the l-th layer’s feature matrix with fl
features, H(l)

i is the i-th column of H(l), B ∈ Rn×S is an apriori designed
matrix for each graph’s eigenvalues, and zs(λ) is the s-th column of B. W(l,s)

and S are defined in (3.15).

Proof. First, let us expand the matrix B and rewrite it as the sum of its
columns, denoted z1(λ), . . . ,zS(λ) ∈ Rn:

H(l+1)
j = σ

 fl∑
i=1

U diag
( S∑
s=1

W(l,s)
i,j zs(λ)

)
U>H(l)

i

 . (4.4)

Now, we distribute U and U> over the inner summation:

H(l+1)
j = σ

 S∑
s=1

fl∑
i=1

U diag
(
W(l,s)

i,j zs(λ)
)
U>H(l)

i

 . (4.5)
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Then, we take out the scalars W(l,s)
i,j of the diag operator:

H(l+1)
j = σ

 S∑
s=1

fl∑
i=1

W(l,s)
i,j U diag(zs(λ))U>H(l)

i

 . (4.6)

Let us define a convolution operator C(s) ∈ Rn×n as:

C(s) = U diag(zs(λ))U>. (4.7)

Using (4.6) and (4.7), we have thus:

H(l+1)
j = σ

 fl∑
i=1

S∑
s=1

W(l,s)
i,j C(s)H(l)

i

 . (4.8)

Then, each term of the sum over s corresponds to a matrix H(l+1) ∈ Rn×fl+1

with

H(l+1) = σ
(
C(1)H(l)W(l,1) + · · ·+ C(S)H(l)W(l,S)

)
, (4.9)

with H(l) = [H(l)
1 , . . . ,H

(l)
fl

]. We get by grouping the terms:

H(l+1) = σ

(
S∑
s=1

C(s)H(l)W(l,s)
)
, (4.10)

which corresponds to (4.2). Therefore, (4.1) corresponds to (4.2) with C(s)

defined as (4.7).

This theorem is general, since it covers many well-known spectral Con-
vGNNs, such as non-parametric spectral graph convolution [36], polynomial
parameterization [23], cubic B-spline parameterization [15] and CayleyNet [51].

From Theorem 1, designing a graph convolution either in spatial or in
spectral domain is equivalent. Therefore, Fourier calculations are not necessary
when convolutions are parameterized by an initially designed matrix B. Using
that relation, it is not difficult to show the spatial equivalence of non-parametric
spectral graph convolution defined in (3.14). It can be written in spatial domain
with B = I in (3.15). It thus corresponds to (4.2) where each convolution kernel
is defined by C(s) = UsU>s , where Us is the s-th eigenvector.
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Figure 4.1: Example of a circular graph made of 7 nodes.

4.3 Spectral Analysis of Existing Graph Con-
volutions

Using the results of the preceding section, this section aims at providing a
deeper understanding of the graph convolution process through an analysis of
existing GNNs in the spectral domain. To the best of our knowledge, no one
has led such an analysis concerning graph convolutions in the literature. In this
section, we show how it can be done on four well-known graph convolutions:
ChebNet [23], CayleyNet [51], GCN [43] and GAT [79]. This analysis is led
using the following corollary of Theorem 1.

Corollary 1.1. The frequency profile of any given graph convolution kernel
C(s) can be defined in spectral domain by the vector

zs(λ) = diag−1(U>C(s)U). (4.11)

Proof. By using (4.3) from Theorem 1, we can obtain a spatial convolution
kernel C(s) whose frequency profile is zs(λ). Since the eigenvector matrix is
orthogonal (i.e., U−1 = U>), we can extract zs(λ), which yields (4.11).

We denote the matrix zs = U>C(s)U as the full frequency profile of the
convolution kernel C(s), and zs(λ) = diag(zs) as the standard frequency
profile of the convolution kernel. The full frequency profile includes all
eigenvector-to-eigenvector pairs contributions. Standard frequency profile just
includes each eigenvector’s self-contribution.

To show the frequency profiles of some well-known graph convolutions, we
used three graphs. The first one corresponds to a 1D signal encoded as a regular
circular line graph with 1001 nodes. A circular graph can be seen as a signal
whose last moment is followed by the first moment. Figure 4.1 presents an
example of a circular graph. The second and third ones are the Cora and
Citeseer reference datasets, which consist of one single graph with respectively
2708 and 3327 nodes [88]. Basically, each node of these graphs is labeled by
a vector, and edges are unlabeled and undirected. These two graphs will be
described in details in Chapter 5.
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Figure 4.2: Standard frequency profiles of first 5 Chebyshev convolutions.

ChebNet
After computing the kernels of ChebNet by (3.17), Corollary 1.1 can be used
to obtain their frequency profiles.
Theorem 2. The frequency profile of the first Chebyshev convolution kernel
for any undirected arbitrary graph defined by C(1) = I can be defined by :

z1(λ) = 1, (4.12)

Proof. It is needless to say that if the identity matrix is used as convolution
kernel, it just directly transmits the inputs to the outputs without any
modification. This process is called all-pass filter. Mathematically, we can
calculate the full frequency profile for kernel I by using Corollary 1.1

z1 = U>IU = U>U = I, (4.13)

Hence, U contains the eigenvectors which are orthogonal to each other,
U>U = I. In the full frequency profile, all the elements out of the diagonal must
be zero and all the elements on the diagonal must be 1. So we can parameterize
diagonal of the full frequency profile by λ and reach the standard frequency
profile as follows:

z1(λ) = diag(I) = 1, (4.14)
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Theorem 3. The frequency profile of the second Chebyshev convolution kernel
for any undirected arbitrary graph given by C(2) = 2L/λmax − I can be defined
by:

z2(λ) = 2λ
λmax

− 1, (4.15)

Proof. We can calculate the C(2) kernel full frequency profile using Corol-
lary 1.1:

z2 = U>
( 2
λmax

L− I
)
U, (4.16)

Since U>IU = I, (4.16) can be rearranged as:

z2 = 2
λmax

U>LU− I, (4.17)

Since λ = [λ1, . . . , λn] are the eigenvalues of the graph laplacian L, they must
conform to the following condition:

LU = U diag(λ) (4.18)
U>LU = diag(λ) (4.19)

Replacing (4.19) into (4.17), we get:

z2 = 2
λmax

diag(λ)− I, (4.20)

This full frequency profile consists of two parts. One is the negative identity
matrix. The second part is also a diagonal matrix whose values are the
eigenvalues. So we can parameterize the full frequency matrix diagonal to show
the standard frequency profile as follows:

z2(λ) = diag(z2) = 2λ
λmax

− 1, (4.21)

Theorem 4. The frequency profile of third and following Chebyshev convolu-
tion kernels for any undirected arbitrary graph can be defined by :

zk = 2z2zk−1 −zk−2, (4.22)
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Proof. Given the third and following Chebyshev kernel defined by C(k) =
2C(2)C(k−1) −C(k−2) and using Corollary 1.1, its frequency profile is:

zk = U>
(
2C(2)C(k−1) −C(k−2)

)
U, (4.23)

Expanding (4.23), we get:

zk = 2U>C(2)C(k−1)U−U>C(k−2)U, (4.24)

Since UU> = I, we can insert the product UU> into (4.24). We have thus:

zk = 2U>C(2)UU>C(k−1)U−U>C(k−2)U (4.25)
zk = 2

(
U>C(2)U

) (
U>C(k−1)U

)
−U>C(k−2)U (4.26)

(4.27)

Since zn = U>C(n)U, it follows that (4.25) and (4.22) are identical.

Hencez1 andz2 are diagonal matrices, rest of the kernels frequency profiles
become diagonal matrices in (4.22). So we can write standard frequency profiles
of third and following Chebyshev convolution kernels as follows;

zk(λ) = 2z2(λ)zk−1(λ)−zk−2(λ), (4.28)

In summary, the first two kernel frequency profiles of ChebNet are z1(λ) =
1 and z2(λ) = 2λ/λmax−1. Since λmax = 2 for any normalized graph Laplacian
[22], we getz2(λ) = λ−1. The third one and following kernel frequency profiles
can also be computed using zk(λ) = 2z2(λ)zk−1(λ) − zk−2(λ), leading to
z3(λ) = λ2−4λ+1 for example for the third kernel. The resulting 5 frequency
profiles are shown in Figure 4.2 (in absolute value). Since the full frequency
profiles consist of zeros outside the diagonal, they are not illustrated.

Analyzing the frequency profile of ChebNet, one can argue that the
convolutions mostly cover the spectrum. However, none of the kernels focuses
on some certain parts of the spectrum. As an example, the second kernel is
mostly a low-pass and high-pass filter and stops the middle band, while the
third one passes very high, very low and middle bands, but stops almost first
and third quarter of the spectrum. Therefore, if the relation between input-
output pairs can be figured out by just a low-pass, high-pass or some specific
band-pass filter, a high number of convolution kernels is needed. However, in
the literature, only 2 or 3 kernels are generally used for experiments [23, 43].
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Figure 4.3: Standard frequency profiles of first 7 CayleyNet convolutions.

CayleyNet

CayleyNet uses spectral graph convolutions whose frequency profiles can be
changed by scaling eigenvalues [51]. The frequency profile is defined by a
complex rational function of eigenvalues, scaled by a trainable parameter h
in (3.16).

CayleyNet uses Fi,j,l = [gi,j,l(λ1, h), ..., gi,j,l(λn, h)]> in (3.14) where function
g was defined in [51] by:

g(λ, h) = c0 + 2Re
 r∑
k=1

ck

(
hλ− i
hλ+ i

)k (4.29)

where i2 = −1, Re(·) is the function that returns the real part of a given
complex number, c0 is a trainable real coefficient, and for k = 1..r, cks
are the complex trainable coefficients. We can write hλ − i in Euler form
by
√
h2λ2 + 1.ei. atan2(−1,hλ) and for hλ + i by

√
h2λ2 + 1.ei. atan2(1,hλ). By this

substitution, (4.29) becomes:

g(λ, h) = c0 + 2Re
(

r∑
k=1

cke
i.k.(atan2(−1,hλ)−atan2(1,hλ))

)
(4.30)
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where atan2(y, x) is the inverse tangent function which finds the angle (in range
of [−π, π]) of a point given its y and x coordinates. For further simplification,
let’s introduce the θ(·) function defined by:

θ(x) = atan2(−1, x)− atan2(1, x) (4.31)

Since ck are complex numbers, we can write them as a sum of real and imaginary
part ck = ak + ibk. Then (4.30) can be rewritten as follows:

g(λ, h) = c0 + 2Re
(

r∑
k=1

(ak + ibk)ei.k.θ(hλ)
)

(4.32)

We can replace ei.k.θ(hλ) with its polar coordinate equivalence form cos(k.θ(hλ))+
i. sin(k.θ(hλ)). When we remove the imaginary components because of Re(.)
function, (4.32) becomes:

g(λ, h) = c0 + 2
(

r∑
k=1

ak. cos(k.θ(hλ))− bk. sin(k.θ(hλ))
)

(4.33)

In this definition, there is no complex coefficient. There are c0 and ak, bk, ∀k =
1 . . . r) that are real coefficients to be tuned by training. Because they are
coefficients, we can write ak = ak/2 and bk = bk/2. So the coefficient 2 in
front of the summation has no meaning. By using the form in (4.33), we can
parametrize CayleyNet by the parametrization matrix B ∈ Rn×2r+1, as in
(3.15), by:

[g(λ0, h), . . . , g(λn, h)]> = B[c0, a1, b1, . . . , ar, br]> (4.34)

where Bs is the s-th column vector of matrix B, and must fulfill the following
conditions:

Bs = zs(λ) =


1 s = 1
cos( s2 .θ(hλ)) s ∈ {2, 4, . . . , 2r}
− sin( s−1

2 .θ(hλ)) s ∈ {3, 5, . . . , 2r + 1}
(4.35)

We can see CayleyNet as a spectral graph convolution which uses 2r + 1
convolution kernels. First kernel is an all-pass filter, and the frequency profiles
of remaining kernels (zs(λ)) are created using sine and cosine functions, with
a parameter h used to scale the eigenvalues in (4.35). Considering (4.3) in
Theorem 1, we can write CayleyNet’s convolutions (C(s)) in spatial domain.
CayleyNet includes the tuning of this scaling parameter in the training pipeline.
Note that because of the function definition in (4.31), θ(hλ) is not linear w.r.t.
λ. Therefore, zs cannot be a perfect sinusoidal w.r.t. λs.
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CayleyNet can be defined through the frequency profile matrixB. Using this
representation, CayletNet can be seen as multi-kernel convolutions with real-
valued trainable coefficients. According to this analysis, CayleyNet uses 2r+ 1
graph convolution kernels, with r being the number of complex coefficients [51].
The first 7 kernel’s frequency profiles are illustrated in Figure 4.3. The scale
parameter h affects the x-axis scaling but does not change the global shape.
When h = 1, frequency profiles can be defined within the range [0, 2] (because
λmax = 2 in all three test graphs). If h = 1.5, the frequency profile can be
defined till 1.5λmax = 3 in Fig. 4.3 and rescale axis label from [0, 3] to [0, 2] in
original range.

Learning the scaling of eigenvalues may seem advantageous. However, it
induces extra computational cost in order to calculate the new convolution
kernel. To limit this cost, an approximation is computed using a fixed number
of Jacobi iterations [51]. In addition, similarly to ChebNet, CayleyNet does not
have any band specific convolutions, even when considering different scaling
factors.

GCN

Theorem 5. The frequency profile of GCN convolution kernel is defined by:

CGCN = D̃
−1/2

ÃD̃
−1/2

, (4.36)

and can be written as:

zGCN(λ) = 1− p

p+ 1λ (4.37)

where λ is the eigenvalues of the normalized graph laplacian and the given
graph is an undirected regular graph whose node degrees are all equal to p.

Proof. Since D̃i,i = ∑
j Ãi,j and Ã = (A + I), we can rewrite (4.36) as:

CGCN = (D + I)−1/2(A + I)(D + I)−1/2, (4.38)

Under the assumption that all node degrees are equal to p, we can write the
diagonal degree matrix by D = pI. Then, (4.38) can be rewritten as follows:

CGCN = ((p+ 1)I)−1/2(A + I)((p+ 1)I)−1/2, (4.39)

which is equivalent to:
CGCN = A + I

p+ 1 , (4.40)
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(a) Standard frequency profiles (b) Full frequency profile on 1D regular
line graph

(c) Full frequency profile on Cora (d) Full frequency profile on Citeseer

Figure 4.4: Frequency profiles of GCN on different graphs.

Using Corollary 1.1, one can express the frequency profile of CGCN in matrix
form by:

zGCN = 1
p+ 1U

>AU + 1
p+ 1I (4.41)

Since λ = [λ1, . . . , λn] are the eigenvalues of the normalized graph Laplacian
L = I−D−1/2AD−1/2, those must conform to the following condition:(

I−D−1/2AD−1/2
)
U = U diag(λ), (4.42)

According to the assumption D = pI, it conforms to D−1/2AD−1/2 = A
p
, so

(4.42) can be written as:

U− AU
p

= U diag(λ), (4.43)

Then AU is expressed as:

AU = pU− pU diag(λ), (4.44)
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Replacing AU in (4.41), we obtain:

zGCN = 1
p+ 1U

> (pU− pU diag(λ)) + 1
p+ 1I (4.45)

Since U>U = I, we have then:

zGCN = pI− p diag(λ) + I
p+ 1 (4.46)

(4.46) can be simplified to:

zGCN = I− p

p+ 1 diag(λ) (4.47)

which is equal to the matrix form defined in (4.37).

This demonstration shows that the GCN frequency profile acts as a low-pass
filter. When the given graph is a circular undirected graph, all node degrees
are equal to p = 2, leading to a frequency profile defined by 1 − 2λ/3. Since
the normalized graph laplacian eigenvalues are in the range [0..2], the filter
magnitude linearly decreases until the third quarter of the spectrum (cut-off
frequency) where it reaches zero. Then it linearly increases until the end of the
spectrum. This explains the shape of the frequency profile of GCN convolutions
for 1D regular graph observed on Figure 4.4.

However, this conclusion cannot explain the perturbations on the GCN
frequency profile. To analyse that point, let’s neglect the assumption of D = pI
and rewrite (4.38) by expanding left and right (D + I)−1/2 terms:

CGCN = (D + I)−1 + (D + I)−1/2A(D + I)−1/2, (4.48)

Given (4.48), we can see that the GCN kernel consists of two parts,CGCN =
C(1) +C2, where first part is given by C(1) = (D+ I)−1 and the second one is
C(2) = (D+I)−1/2A(D+I)−1/2. With the element wise multiplication operator
�, we can write the C(2) part as:

C(2) = A�
√

1/(d + 1).
√

1/(d + 1)
>
, (4.49)

where d is the column degree vector d = diag(D).
With the same notation, we can rewrite the Chebyshev second kernel

assuming that λmax = 2:

C(2)
CHEB = −A�

√
1/d.

√
1/d

>
, (4.50)
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(4.49) and (4.50) show that negative C(2)
GCN is an approximation of the

second Chebyshev kernel if vector d consists of same values, as it was assumed
in Theorem 5. When d vector is composed of different values,

√
1/d.

√
1/d

>

matrix and
√

1/(d + 1).
√

1/(d + 1)
>

matrix are not proportional for each
coordinate. To obtain C(2)

GCN from C(2)
CHEB, we need to use different coefficients

for each coordinate of the kernel. If the difference between node degrees is
important, these coefficients have a strong influence, and C(2)

GCN may be very
different from C(2)

CHEB. Conversely, if the node degrees are quite uniform,
these coefficients may be neglected. This phenomenon is the first cause of
perturbation on GCN frequency profile.

The first part (C1) of the GCN kernel is more interesting. Actually, it is just
a diagonal matrix which shows the contribution of each node in the convolution
process. Instead of looking for some approximations of known frequency profiles
such as those of Chebyshev kernels, we can write its frequency profile directly.
Using Corollary 1.1, we can express the frequency profile of C1 in matrix form
by:

zC1 = (U>C1U), (4.51)

where U consists of eigenvectors. By taking advantage of having a diagonal
kernel C1, we can express each component of full frequency profile as:

zC1(i, j) =
n∑
k=1

( 1
1 + dk

Ui,kUj,k

)
, (4.52)

where n is the number of nodes in the graph, dk is degree of k-th node, Ui,k is
the k-th element of i-th eigenvector. As eigenvectors Ui and Uj are orthogonal
for i 6= j, their dot product is 0. However, in (4.52), the weighting coefficient

1
1+dk

is not constant over all the dimensions the eigenvectors. There is no
guarantee that zC1(i, j) is null. This is an other reason which explains that
the GCN frequency profile has many non-zero elements out of the diagonal.

In addition, it is also clear that the standard frequency profile of C1
(diagonal ofzC1 where i = j in (4.52)) is not smooth. Indeed, diagonal elements
of zC1 can be written as a weighted sum of squared eigenvalues, which again is
weighted by 1/(1 +dk). The L2-norm of an eigenvector is 1, so sum of squared
eigenvectors elements has to be 1 as well. But in this case, since 1/(1 +dk) are
not necessarily constant over all the dimensions of eigenvectors, the diagonal
of the matrix may have some perturbations. This point constitutes another
explanation on the fact that the GCN standard frequency profile is not smooth.
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On the other hand, under the assumption that node degrees distribution is
uniform, we can derive the following approximation:

p ≈ d = 1
n

n∑
k=1

dk (4.53)

We can then write an approximation of the GCN frequency profile as a
function of the average node degree by replacing p with d in (4.47) and obtain
the final approximation:

zGCN(λ) ≈ 1− d

d+ 1
λ (4.54)

We can theoretically show the cut-off frequency where GCN kernel’s
frequency profile reach 0 by:

λcut ≈
d+ 1
d

(4.55)

Theoretically, if all nodes degree are different, standard frequency profile
will not be smooth and will include some perturbations. In addition, full
frequency profile will be composed of non-zero components.

Analyzing experimentally the behavior of GCN [43] in the spectral domain
first implies to compute the convolution kernel as given in (3.18). Then,
the spectral representation of the obtained convolution matrix can be back-
calculated using Corollary 1.1. This result leads to the frequency profiles
illustrated in Figure 4.4 for the three different graphs. The three standard
frequency profiles have almost the same low-pass filter shape corresponding
to a function composed of a decreasing part on the three first quarters of the
eigenvalues range, followed by an increasing part on the remaining range. This
observation is coherent with the theoretical analysis. Hence, kernels used in
GCN are transferable across the three graphs at hand. In Figure 4.4, the cut-
off frequency of the 1-D linear circular graph is exactly 1.5, while it is about
1.35 for Citeseer. This observation can be explained by the fact that when
considering a 1-D linear circular graph, all nodes have a degree equal to 2,
hence λcut = 1.5. Since the average node degree in Citeseer is 2.77, therefore
λcut ≈ 1.36.

Concerning the full frequency profiles, there is no contribution outside the
diagonal for the regular line graph (Figure 4.4 b). Conversely, some off-diagonal
values are not null for Citeseer and Cora. Again, this observation confirms the
theoretical analysis.
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(a) GIN on 1D (b) GIN on CiteSeer

Figure 4.5: Frequency profiles of GIN on 1D and CiteSeer graph with ε =
1, 0,−1,−2

Since GCN frequency profile does not cover the whole spectrum, such an
approach is not able to learn relations that can be represented by high-pass
or band-pass filtering. Hence, even though it gives very good results on a
single graph node classification problem in [43], it may fail for problems where
discriminant information lies in particular frequency bands. Therefore, such an
approach can be considered as problem specific.

GIN

Graph Isomorphism Network (GIN) defined in [87] has single convolution
support defined as follows;

CGIN = A+ (1 + ε)I (4.56)

where ε is trainable parameter which makes the support trainable (GIN-ε) and
classified as spatial-designed trainable-support graph convolution. However,
another version named GIN-0 also defined in the same paper where they
assigned ε = 0 as fixed value in [87], makes CGIN = A+I, thus the convolution
becomes fixed-support and identical with Vanilla GNN defined in Section 3.4.

Proposition 1. CGIN = A+(1+ε)I frequency response is ΦGIN(λ) = p(1+ε
p

+
1− λ) for regular graphs, whose node degrees are p.

GIN has attracted a lot of interests from the community, mostly because
of its simple convolution mechanism. It has a single convolution support and
its theoretical frequency response is given in the following theorem :
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Theorem 6. The theoretical frequency response of GIN support can be
approximated as

Φ(λ) ≈ p

(
1 + ε

p
+ 1− λ

)
(4.57)

where ε is a trainable scalar. In addition to its simple convolution mechanism,
another interesting point with GIN is the fact that it has been proven to be as
discriminative as the WL-test.

Proof. When all node degrees are p, it yields D = pI, L = I − A/p or A =
pI − pL. When we substitute new equations of A and D into CGIN , we get

CGIN = (p+ 1 + ε)I − pL. (4.58)

It should meet the following condition if the given frequency response is true.

(p+ 1 + ε)I − pL = Udiag(p+ ε+ 1− pλ)U> (4.59)

We can obtain the following equation by p+ ε+ 1 = (p+ 1 + ε)I substitution.

(p+ 1 + ε)I − pL = (p+ 1 + ε)UIU> − pUdiag(λ)U> (4.60)

Since UIU> = I and Udiag(λ)U> = L, the condition in (4.59) is satisfied.

Proof. Even in regular graph, the theoretical frequency response of GIN is
not identical and it depends on the node degree, thus it is not spectral-
designed. In addition, we can see the GIN convolution support as the sum
of two matrices where the second one (1 + ε)I is diagonalizable by eigenvectors
U of graph Laplacian by Φ = 1 + ε. Thus the second part of GIN support is
spectral. However, the first part, which is adjacency A, cannot be diagonalizable
by U . Since the convolution support is not diagonalizable, we cannot write
exact frequency response of GIN convolution but just an approximation of
Proposition 1, assuming by the average node degree of the graph is p in (4.61).

ΦGIN(λ) ≈ p

(
1 + ε

p
+ 1− λ

)
(4.61)

When the given graph is a regular graph where each node degree is the same
(2 for 1D graph case), theoretical frequency responses become certain as seen
in Figure 4.5(a). When ε = 2, 1D graph’s (p = 2) frequency responses of GIN
the same than GCN within a scaling factor. However in realistic graphs, both
GIN and GCN are not spectral-designed, their frequency responses differ for
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Figure 4.6: Frequency profiles of randomly generated 250 GAT convolutions
using Cora graph.

different graphs. As Theorem 5 and Theorem 6 say, GCN’s and GIN’s frequency
responses depend on the average node degree. In opposite to GCN, p acts here
as scaling factor on GIN’s frequency response.

In order to create some variations between low-pass to high-pass, having
trainable parameter in GIN’s convolution support seems advantageous. But,
since it is not spectral-designed, there is no guaranty that it works the same
way for extremely diverse graph datasets. Besides, its low-pass shape (where
ε is high) is a linearly decreasing function, so it is not strong low-pass where
generally natural graph problems needs. Using more stacked layer may be a
solution. In addition, this convolution cannot focus on some certain bands if
the problem needs.

GAT

Graph Attention Networks (GATs) rely on trainable convolutions kernels [79]
(See chapter 3.4). For this reason, frequency profiles cannot be directly
computed similarly to GCN or ChebNet ones. Thus, instead of back-calculating
the kernels, we perform simulations and evaluate the potential kernels of
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attention mechanism for given graphs. Hence, we show the frequency profiles
of those simulated potential kernels.

In [79], 8 different attention heads are used. Assuming that each attention
head matrix is a convolution kernel, multi-attention systems can be seen
as multi-kernel convolutions. The difference is that convolution kernels are
not a priori defined but are functions of node feature vectors and trainable
parameters a and W; see (3.11). To show the potential output of GATs on
the Cora graph (1433 features for each node), we produce 250 random pairs
of W ∈ R1433×8 and a ∈ R16×1, which correspond to the convolution kernels
trained by GATs. The σ function in (3.11) is a LeakyReLU activation with a
0.2 negative slope as in [79].

The mean and standard deviation of the frequency profiles for these
simulated GAT kernels are shown in Figure 4.6. As one can see, the mean
standard frequency profile has a similar shape as those of GCN (Figure 4.4).
However, variations on the frequency profile induce more variations on output
signal when compared to GCN.

The full frequency profile is not symmetric. According to Figure 4.6,
variations are mostly on the right side of the diagonal in the full frequency
profile. This is related to the fact that these convolution kernels are not
symmetric. However, the variation on frequency profile might not be sufficient
in problems that need some specific band-pass filters.

In this section, we proved that most of state-of-the-art GNN models are
limited to low-pass filtering, despite presenting great results in many applicative
problems. In order to support our point, we provide in following section 4.4 an
experimental setup that proves this fact.

4.4 Why Spectral properties of GNNs are
important ?

In this chapter, the fact that most of models of GNNs are limited to low pass
filtering has been claimed multiple times. In this section, we aim to show the
reader the importance of spectral properties. To this end, we firstly wonder
what kind of filters the different GNNs are able to learn. In a second part, we
propose an analysis of the GNNs ability to classify graph according to their
signal.
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4.4.1 Which Filters Can the GNN Models Learn?

In this section, we seek to measure of the ability of GNN models to learn some
specific filtering process. This study is very important in order to understand
the learning capability of existing GNN models. Since the problem may need
various types of filtering, the best GNN model has to be able to learn any kind
of filtering.

For this purpose, we conduct an empirical analysis on a real image with
resolution of 100×100 and its corresponding 2D regular 4-neighborhood grid
graph. The input of the GNN is the adjacency matrix of size 10000×10000 and
the pixel intensities given in a 10000-length vector. We create three different
spectral filters that correspond to low-pass, band-pass and high-pass effects and
apply these filters to the given input image. Our selection of spectral filters are
defined by Φ1(ρ) = exp(−100ρ2), Φ2(ρ) = exp(−1000(ρ − 0.5)2) and Φ3(ρ) =
1−exp(−10ρ2) for low-pass, band-pass and high-pass filters respectively, where
ρ2 = u2 + v2 and u and v are the normalized frequencies on each direction for a
given image resolution. Used input image and its filtering results can be found
in Figure 4.7.

Since we do not use pixel positions, neither as node feature nor as edge
feature, we create these spectral filters to be learned in a directional agnostic
way. Therefore, the problem can be viewed as a single graph node regression
problem, where we train the GNN models to minimize the square error between
its output and targeted filtered image.

Figure 4.7: Input image, and its filtering results by Φ1, Φ2 and Φ3 respectively

In order to assess ChebNet, GCN, GIN and GAT, we use a 3-layer GNN
architecture whose input is a one-length feature (intensity of the pixel) and the
number of neurons in hidden layers is respectively 32, 64 and 64; the output
layer is an MLP that projects the final node representation onto the single
output for each node. We used roughly 30k trainable parameter in ChebNet
with 5 supports. For the other methods, we tuned the hidden neuron numbers
in order to be sure that they have a similar number of trainable parameters.
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Figure 4.8: The output of GNNs trained with band-pass task. Images are taken
from ChebNet, GIN, GAT and GCN respectively.

Table 4.1: Sum of squared errors. All models have roughly 30k trainable
parameters.

Prediction Target GCN GIN GAT ChebNet
Low-pass filter (Φ1) 15.55 11.01 10.50 3.44
Band-pass filter (Φ2) 79.72 63.24 79.68 17.30
High-pass filter (Φ3) 29.51 14.27 29.10 2.04

Since the aim is not assessing the generalization performance, we do not use
any regularization or dropout to address overfitting, but simply force the GNN
to learn the input-output relation. We keep the iterations till there is no
improvement for consecutive 100 iterations or maximum 3000 iterations.

Table 4.1 gives the sum of squared errors between target and the output of
the trained model. One can see that ChebNet constantly outperformed GCN,
GIN and GAT for all tasks. For learning low-pass filtering, the rest of the
models did better compared to the high-pass and band-pass tasks. That is the
fact that GCN, GIN and GAT have the ability to act as low-pass filters. In
addition to do better on the low-pass task, GIN also did relatively better on
the high-pass task as well. It is obvious that GIN can work as high pass if the
ε parameter is selected negative (see Theorem 6). It turns out that the trained
values of ε in GIN for each layer are −5.27, −2.21 and −0.47 for the high-pass
task.

Thanks to the spectral-designed convolution supports in ChebNet, it could
learn high-pass and low-pass tasks very well. However for band-pass tasks, even
though it is the best in this category too, it still has large errors compared to
the high-pass and low-pass tasks. This is due to the fact that the selected band-
pass filter is very narrow, because the coefficient −1000 in the formulation of
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Table 4.2: ChebNet’s sum of squared errors on band-pass tasks with respect
to S kernels and L stacked layers. All models have roughly 30k trainable
parameters.

S=2 S=3 S=5 S=7 S=10
L=1 65.06 56.25 47.12 39.59 28.15
L=2 55.85 45.96 26.81 18.92 13.33
L=3 50.13 36.60 17.30 9.84 7.32
L=4 44.88 24.89 11.90 8.91 6.96

Φ2 makes the used ChebNet (with 5 convolution supports and 3 layers) unable
to adapt this stiff (not smooth) filter function. Moreover, since ChebNet has no
band specific convolutions, band specific output can be produced if the number
of kernels increases (going wider) and/or the model goes deeper. To clarify this
point, we conducted another test for band-pass task on ChebNet to show the
effect of going deeper in the model and going wider (increase the convolution
support) while keeping the trainable parameters fixed. These results are given
in Table 4.2.

According to Table 4.2, the ability of ChebNet to learn the given frequency
response becomes better with respect to the number of convolution supports
and number of layers. However, this result is not surprising where it is proved
that any frequency response can be written by a weighed sum of enough number
of Chebyshev polynomials ([32]). When we train the ChebNet, it just finds
these coefficients to create the target frequency response by minimizing the
error. However, the interesting point is the incapability of GCN, GIN and
GAT methods to even create reasonable approximations of these targeted filter
effects. For instance, it can be seen in Figure 4.8 that ChebNet performed well
to produce the desired band-pass output. However, GAT and GCN produce
just a different kind of low-pass filtering result instead of band-pass, while GIN
at least can find edges (high-pass component) thank to its trainable parameter
ε. We also tested the deeper network for GCN, GAT and GIN as well and have
not seen any significant improvement when we use deeper network.

4.4.2 Can GNN classify graphs according to its signal ?

In this section, we measure the generalization ability of GNN for graph
classification problem where graph classes depend on the signal that the
graphs carry. We generate 5000 images of 100×100 pixels composed of
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random generated frequency patterns obtained by a sinusoidal function with a
frequency in the range [1-5]. We labelled the image as negative if the pattern’s
frequency is in the ranges [2-2.5] or [4-4.5]. The rest of the frequency patterns
are labeled as belonging to the positive class. Then, we randomly rotate and
translate the image pattern, add white noise (with std=0.2) and normalize
each image independently. From each image, we randomly sample 200 points
in the 100×100 image plane and we divide the image into 200 regions by
watershed algorithm [58], where each sampled point is the marker. From this
preprocessing, we generate 5000 graphs, each graph having 200 nodes. Each
node corresponds to a watershed region in the image, and if the two regions
have intersection on the image plane, we assume these two nodes are connected
by an edge in the graph. We set the average intensity value in each region as
a 1-length node feature. Even though we know the region center position, we
do not use it in order to make the problem harder. Sampled generated image,
randomly selected points and their watershed regions, and the graph can be
found in Figure 4.9 for a 30-node illustration.

Figure 4.9: Sample graph in Band-Pass graph dataset. Random rotated and
translated image pattern with frequency of 1, random sampled points and their
watershed regions, and graph represent the connected region and average region
intensity value respectively.

We divided the dataset into train/valid/test subsets, with respectively
3000, 1000 and 1000 graphs. We resampled the same number of positive and
negative examples, such that the dataset is balanced. We used 3 layers of
GNN followed by a mean readout layer and finally two fully connected layers
which have 10 and 1 neuron respectively. Since the problem is a binary graph
classification problem, we used binary cross entropy loss and no regularization.
We roughly use 30K parameters in each model. The dropout ratio has been
applied to all GNN layer’s inputs and optimized with respect to the validation
set performance.
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Table 4.3: Test set accuracy and binary cross entropy loss.

MLP GCN GIN GAT ChebNet
Accuracy 50 77.90 87.60 85.30 98.2
Loss 0.69 0.454 0.273 0.324 0.062

The results are found on Table 4.3. Since the node distributions are all the
same in the graphs (because the graph nodes were independently normalized),
MLP cannot do better than a random classifier. GCN does not perform well,
probably because of its low-pass nature. Since GAT and GIN are better than
GCN according to the spectral ability, they got a better accuracy than GCN.
Finally, ChebNet with 5 convolution supports clearly outperforms the rest of
them with a huge margin. These results show that models able to catch a
particular band of frequencies obtain the best results, whereas only low-pass
based methods like GCN perform only slightly better than MLP. Therefore,
this toy example confirms our theoretical analysis.

To conclude, we have shown that if the model is able to perform different
filtering operation, it can classify the graphs according to frequency of its signal.

4.5 Conclusion

This chapter has claimed and proved in section 4.2 that spectral GNN are a
special case of spatial GNNs. Even though this fact is commonly accepted, no
proof has formally been proposed in our knowledge. This chapter thus fills this
gap.

This proof has enabled us to provide a spectral analysis of some of the most
influential methods, namely : ChebNet, CayleyNet, GCN, GIN and GAT. This
analysis as highlighted one common limitation of GNNs : they are not able
to produce specific band-pass filters, and most of them are generally limited
to low-pass filters. Another limitation that can be pointed out is the fact
that, despite few propositions in the spatial domain, edge attributes are rarely
mentioned.

We also provided an analysis to show the importance of spectral properties.
This was done by firstly presenting the type of filters that GNNs can learn.
Table 4.4 present a summary of the analyzed models. In a second time, we
presented a toy problem that requires band-pass filtering, highlighting once
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Table 4.4: Summary of the studied GNN models.
Design Support Type Convolution Matrix Frequency Response

MLP Spectral Fixed C = I Φ(λ) = 1
GCN Spatial Fixed C = D̃−0.5ÃD̃−0.5 Φ(λ) ≈ 1− λp/(p+ 1)
GIN Spatial Trainable C = A+ (1 + ε)I Φ(λ) ≈ p

(
1+ε
p

+ 1− λ
)

GAT Spatial Trainable C
(s)
v,u = ev,u/

∑
k∈Ñ (v) ev,k NA

CayleyNeta Spectral Trainable
C(1) = I

C(2r) = Re(ρ(hL)r)
C(2r+1) = Re(iρ(hL)r)

Φ1(λ) = 1
Φ2r(λ) = cos(rθ(hλ))
Φ2r+1(λ) = − sin(rθ(hλ))

ChebNet Spectral Fixed
C(1) = I

C(2) = 2L/λmax − I
C(s) = 2C(2)C(s−1) − C(s−2)

Φ1(λ) = 1
Φ2(λ) = 2λ/λmax − 1
Φs(λ) = 2Φ2(λ)Φs−1(λ)− Φs−2(λ)

a ρ(x) = (x− iI)/(x+ iI)

again the unability of most GNNs to produce band-pass filtering. This gives
us an hint on the direction to take in order to improve GNNs.

In the next chapters, we will propose two methods to tackle on one hand
the filtering limitation, and on the other hand the edge attribute limitation.
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Chapter 5

Depthwise Separable Graph
Convolution Network

5.1 Introduction

Having defined and explored the Graph Neural Network paradigm in chapter
3, the chapter ended 4 with two limitations for Graph Neural Network. The
first is that most existing GNNs are limited to loss-pass filtering.

Indeed, either our theoretical or experimental analysis concluded that the
frequency responses of GIN, GAT and GCN were limited to low-pass filtering.
On the other side, spectral designed methods such as ChebNet and CayleyNet
produce convolutions filters that, once combined, are able to cover the whole
spectrum. They are however unable to produce specific band-pass filters.
Another drawback of those methods is that they require a large amount of
convolution filters to cover the whole spectrum. The increase of convolution
filters thus also increases the number of parameters required by the model.

In this chapter, we propose a method that allows to design enough
convolution kernels to cover as much as possible the frequency spectrum,
while containing the number of parameters thanks to the Depthwise Separable
Convolution framework. The resulting method is called Depthwise Separable
Graph Convolutional Network (DSGCN).

This DSGCN method is presented in 5.2, and is then evaluated in 5.3. The
evaluation is conducted on both transductive and inductive task, obtaining
state-of-the-art results. Moreover, a limited version of the proposed approach
is also evaluated on the transductive task. This version is limited to low-pass
filtering, and obtain equivalent results to popular GNNs, proving once again
that those GNNs are limited to low-pass filtering.
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Figure 5.1: Three designed convolution kernel frequency profiles as a function
of graph eigenvalues (λ) of two sample graphs G(i) and G(j) by z1(λ) =
λ
6 ,z2(λ) = 1 − |λ−3|

3 and z3(λ) = 1 − λ
6 . There are three shared coefficients.

Each coefficient encodes the contribution of corresponding frequency profiles.
First row refers mostly to high frequencies, middle row to middle frequencies
and last row to low frequencies.

5.2 Depthwise Separable Graph Convolutions

Instead of designing the spatial convolution kernels C(s) of Eq. (4.2) by
functions of graph adjacency and/or graph Laplacian, we propose in this section
to use S convolution kernels that have custom-designed standard frequency
profiles. These designed frequency profiles are functions of eigenvalues, such
as [z1(λ), . . . ,zS(λ)] where zs : R|V|+ → R|V|+ . In this proposal, the number
of kernels and their frequency profiles are hyperparameters, and should be
defined initially, which is a drawback of the method. Given these frequency
profiles, we can back-calculate corresponding spatial convolution matrices C(s)

for s = 1 . . . S using Eq. (4.3) in Theorem 1. Then these spatial convolution
matrices can be used in any GNN following the scheme defined in equation 3.7.

To obtain problem-agnostic graph convolutions, the set of all designed
convolution’s frequency profiles has to cover most of the spectrum range and
each kernel frequency profile must focus on some particular frequency range.
As a didactic example, we show in Figure 5.1 an example of desired spectral
convolutions frequency profile for S = 3 and its application on two different
graphs.

In order to figure out arbitrary relations of input-output pairs, multiple
convolution kernels have to be efficiently designed. However, increasing the
number S of convolution kernels increases the number of trainable parameters
linearly. Hence, the total number of multi-support ConvGNN parameters is
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given by∑L
l=0 flfl+1 where L is the number of layers and fl is the feature length

of the l-th layer. To overcome this issue, we propose Depthwise Separable Graph
Convolution Network (DSGCN).

5.2.1 Depthwise Separable Convolution

Our method is an adaptation of Depthwise Separable Convolution (DSC)
applied on graphs. In this section, we present the original DSC method applied
on images. Color images are generally encoded by L×H×3 tensors. Convolution
operator aggregates the information of neighborhood pixels. Therefore, 3
dimension (3D) convolution kernels computing a N × N output are generally
used. In order to produce multiple output channels, multiple 3D convolution
kernels have to be designed. The number of parameters thus depends on the
number of input channels (fi) and the number of output channels (fo). For
example, the number of parameters for a 3× 3 convolution kernel is equals to
fo ∗ (3 ∗ 3 ∗ fi) as presented in Figure 5.2. In this figure, 3 filters of shape 3× 3
are applied on an image with 3 input channels. This leads to 3∗ (3∗ 3∗ 3) = 81
parameters. Traditional CNN architectures such as VGG16 [75] use layers with
a number of output channels between 64 and 256. Such an architecture leads to
a number of parameters between 36 864 and 589 824 for each layer. Multiplying
layers of convolutions and the number of output channels will thus increase
substantially the number of parameters.

In order to reduce the number of parameters, the Depthwise Separable
Convolution (DSC) framework has already been used in computer vision
problems ([20, 71]). DSC consists in two steps. First is the separation step
which consists in considering each of the channel as an independent image.
Then, 2D convolution kernel can be applied over each of those independent
images to produce different outputs. However, the hypothesis that each channel
is independent is generally not true considering colored images. Indeed, it’s the
combination of the three RGB features of each pixel which constitutes the color
information. Second, to overcome this drawback, the depthwise step consists
in applying convolution kernel along the channel dimension which can be seen
as the depth dimension of an image. This step allows to combine the different
channels for each pixel.

Formally, in this framework, a different 2D convolution kernel is applied
over each input channel independently. Thus, fi 2D convolution kernels are
computed, where fi is the number of input channels, which produces fi
intermediate channels. This step requires to apply each convolution kernel fi
times, and thus lead to fi ∗ 3 ∗ 3 parameters, for a 3 × 3 convolution kernel.
Then, a 1 × 1 × fi convolution kernel is applied on the concatenation of the
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Figure 5.2: Standard convolution applied on a 3 channel image to produce a 3
channel output. This requires 3 ∗ (3 ∗ 3 ∗ 3) = 81 parameters.

intermediate channels to produce one output channel. This step corresponds to
the depthwise convolution as described before. To produce fo output channels,
fo depthwise convolution kernels applied over the intermediate channels have
to be designed. Since each depthwise convolution kernel requires fi parameters,
this step leads to fo∗fi parameters. The combination of this two steps leads to a
number of parameters of fi∗(3∗3)+fo∗fi. On condition that fo > 1, the number
of parameters is thus reduced with Depthwise Separable Convolution compared
to standard convolution. Transposing Depthwise Separable Convolution to
VGG16 leads to a number of parameters between 4672 and 67 840

5.2.2 Depthwise Separable Convolution on Graph

We propose to apply the principle of Depthwise Separable Convolution to
Graph Neural Networks in order to produce multiple convolution kernels whose
frequency profiles cover most of the spectrum range with a lower number of
parameters than usually required. To the best of our knowledge, applying
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Figure 5.3: Depthwise Separable convolution applied to a 3 channel image to
produce a 3 channel output. This require 3 ∗ 3 + 3 ∗ 9 = 36 parameters

Depthwise Separable Convolution to graph neural networks has never been
proposed in the literature.

One way to make the analogy between graph and images is to consider
pixel as nodes in a graph. In this case, RGB values of a node are considered
as its features and pixels convoluted together are considered as neighbors
(central pixel of the convolution is a neighbor of each other pixel). From
this point of view, separable convolutions consist in considering independently
each feature of the node. One way to apply separable convolution and thus to
reduce the number of parameters would be to filter each feature independently.
Mathematically, this can be applied by designing one vector of parameters
following Equation 5.1 :

71



Depthwise Separable Graph Convolution Network

H(l+1) = σ(
S∑
s=1

(1w(s,l)) ◦ (C(s)H(l)) + b), (5.1)

here H(l) ∈ R|V|×fl , fl being the dimension of the hidden state vector in layer
l, w(s,l) ∈ R1×fl is the parameters vector, C ∈ R|V|×|V| and b ∈ Rfl+1 . In this
equation, ◦ is the Hadamard product. The Separable Graph Convolution thus
requires S ∗ fl parameters per layer. This is an important reduction of the
number of parameters compared to standard GNN, of which we remind the
definition with Equation 5.2 and that would require S ∗ fl ∗ fl+1 parameters.

H(l+1) = σ((
1∑
i=0

C(i)H(l)W(l,i)) + b), (5.2)

where H(l) ∈ R|V|×fl , fl being the dimension of the state vector in layer l,
W ∈ Rfl×fl+1 , C ∈ R|V|×|V| and b ∈ Rfl+1 .

However, once again, the hypothesis that features are independent doesn’t
hold. In order to take this into account, we propose to also add a Depthwise
step. This step consists in computing a new feature depending on the features
independently computed. We can then compute fl+1 features which leads to a
single matrix of parameters of shape fl×fl+1. Applying both steps of Separable
and Depthwise thus leads to Equation 5.3 :

H(l+1) = σ

(( S∑
s=1

(1w(s,l)) ◦ (C(s)H(l))
)
W(l)

)
. (5.3)

In this formula, note that there is only one trainable matrix W(l) in each
layer. Other trainable variables w(s,l) ∈ R1×fl encode feature contributions
for each convolution kernel and layer. The number of trainable parameters
for this case becomes S ∗ fl + fl ∗ fl+1 per layer. Compared to standard
GNNs, whose number of parameters per layer was S ∗ fl ∗ fl+1, this is still
an important reduction of the number of parameters, on the condition that
S + fl+1 < S ∗ fl+1. Previously, adding a new kernel increases the number of
parameters by ∑L

l=0 flfl+1. Using separable convolutions, this number is only
increased by ∑L

l=0 fl. This modification is particularly interesting when the
number of features in hidden layers is high. On the other hand, the variability of
the model also decreases. If the data has a smaller number of features, using this
approach might not be optimal. Detailed illustration of the proposed Depthwise
Separable Graph Convolution process is presented in Figure 5.4. The following
section presents the experimental evaluation of our method DSGCN.
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Figure 5.4: Detailed schematic of Depthwise Separable Graph Convolution
Layer. Each input feature is computed independently in the Separable step.
Then, 4 new features are computed through the Depthwise step.
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Table 5.1: Summary of the transductive datasets used in our experiments.
Each dataset consists of one single graph

Cora Citeseer PubMed

# Nodes 2708 3327 19717
# Edges 5429 4732 44338
# Features 1433 3703 500
# Classes 7 6 3
# Training Nodes 140 120 60
# Validation Nodes 500 500 500
# Test Nodes 1000 1000 1000

5.3 Experimental evaluation of DSGCN
In this section, we describe the experiments carried out to evaluate the proposed
approach on both transductive and inductive problems. In the first case, we
target a single graph node classification task while in the second case, both
multi-graph node classification task and entire graph classification task are
considered. For all the experiments, we compare our algorithm to state-of-the-
art approaches.

5.3.1 Transductive Learning Problem
Datasets Experiments on transductive problems were led on the three
datasets summarized in Table 5.1. These datasets are well-known paper citation
graphs. Each node corresponds to a paper. If one paper cites another one,
there is an unlabeled and undirected edge between the corresponding nodes.
Binary features on the nodes indicate the presence of specific keywords in the
corresponding paper. The task is to attribute a class to each node (i.e., paper)
of the graph using for training the graph itself and a very limited number of
labeled nodes. Labeled data ratio is 5.1%, 3.6% and 0.3% for Cora, Citeseer
and PubMed respectively. We use predefined train, validation and test sets as
defined in [88] and follow the test procedure of [43, 79] for fair comparisons.

Models To evaluate the performance of convolutions designed in the spectral
domain independently from the architecture design, a single hidden layer is
used for all models, as in [43] for GCN. This choice, even sub-optimal, enables
a deep understanding of the convolution kernels. For these evaluations, a set
of convolution kernels is experimented:

• A low-pass filter defined by z1(λ) = (1− λ/λmax)η where η impacts the
cut-off frequency
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Figure 5.5: Visualization of the set of convolution kernels used in
experimentation. For z1, η is fixed to 3. For z3,z4,z5, γ is fixed to 0.25.

• A high-pass filter defined by z2(λ) = λ/λmax

• Three band-pass filters defined by:

– z3(λ) = exp(−γ(0.25λmax − λ)2)
– z4(λ) = exp(−γ(0.5λmax − λ)2)
– z5(λ) = exp(−γ(0.75λmax − λ)2)

• An all-pass filter defined by z6(λ) = 1

Figure 5.5 presents the different filters used in our experimentations.
We firstly consider a model composed of only z1. This choice comes from

the fact that state-of-the-art GNNs are sort of low-pass filters (see Section
4.3) and perform well on the datasets of Table 5.1. Hence, it is interesting
to evaluate our framework with z1. For the experiments, the value of η are
tuned for each dataset, using the validation loss value and accuracy, yielding
η = 5 for Cora and Citeseer, and η = 3 for PubMed. Since there is only one
convolution kernel, depthwise separable convolutions are not necessary for this
model. Therefore, this model can be seen as similar to those from [23, 43] but
using a different convolution kernel. This approach is denoted as LowPassConv
in the results section (Section 5.3.1).

Beyond this low-pass model, we also evaluate different combinations of
the zi(λ) through the depthwise separable schema defined in Section 5.2.
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Table 5.2: Used kernels frequency profiles and architecture of models for each
transductive dataset. DSG refers to Depthwise Separable Graph convolution
layer, G to Graph convolution layer, D to Dense layer

Dataset Architecture
z1(λ) = (1− λ/λmax)5

z3(λ) = exp(−0.25(0.25λmax − λ)2)
Cora z4(λ) = exp(−0.25(0.5λmax − λ)2)

z5(λ) = exp(−0.25(0.75λmax − λ)2)
DSG160-DSG7

Citeseer z1(λ) = (1− λ/λmax)5, z6(λ) = 1
DSG160-DSG6

Pubmed z1(λ) = (1− λ/λmax)3, z2(λ) = λ/λmax

DSG16-DSG3

Figure 5.6: Designed convolution’s frequency profiles for Cora dataset.

For experiments involving {z3(λ),z4(λ),z5(λ)}, the bandwidth parameter
γ was tuned using train and validation sets. Table 5.2 details the best models
found on the validation set. As an example, for Cora dataset, 4 kernels are
used by a DSGCN with 160 neurons: z1(λ), z3(λ), z4(λ), z5(λ). As an
illustration, Figure 5.6 provides the standard frequency profiles of this designed
convolution on Cora dataset. The models of Table 5.2 are denoted as DSGCN
in the following.

Results Obtained results on transductive learning are given in Table 5.3.
We compare the performance of the proposed LowPassConv and DSGCN to
state-of-the-art methods. We first can see that our low-pass convolution kernel
(LowPassConv) obtains comparative performance with existing methods. This
result confirms our theoretical analysis which states that GCN and GAT mostly
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Table 5.3: Comparison of methods on the transductive learning problems using
publicly defined train, validation and test sets classification. Accuracies on test
set are reported with their standard deviations on 20 random runs.

Method Cora Citeseer Pubmed

MLP 0.551 0.465 0.714
Planetoid [88] 0.757 0.647 0.744
MoNet [60] 0.817 ± 0.005 - 0.788 ± 0.003
ChebNet [23] 0.812 0.698 0.744
CayleyNet [51] 0.819 ± 0.007 - -
DPGCNN [61] 0.833 ± 0.005 0.726 ± 0.008 -
GCN [43] 0.819 ± 0.005 0.707 ± 0.004 0.789 ± 0.003
GAT [79] 0.830 ± 0.007 0.725 ± 0.007 0.790 ± 0.007

LowPassConv 0.827 ± 0.006 0.717 ± 0.005 0.794 ± 0.005
DSGCN 0.842 ± 0.005 0.733 ± 0.008 0.819 ± 0.003

correspond to low-pass filters (Section 4.3). Second, DSGCN outperforms state-
of-the-art methods thanks to the flexibility provided by the different filters.
Moreover, the depthwise separable strategy allows to limit the number of
parameters, hence controlling the overfitting. These results show the potential
of not being restricted to low-pass filters.

It is worth noting that the good results obtained by low-pass approaches
show that these three classification tasks are mainly low-pass specific problems.
Hence the flexibility provided by DSGCN has only a limited effect on the final
performance when applied to this kind of problems. However, some problems
may not be low pass specific, but properties to predict may be associated
to high frequencies. On one hand, traditionnal GNNs may fail since they are
limited to only low pass filtering, and thus can not predict correctly these
properties. On the other hand, using DSGCN approach allows to use different
filters, each one covering a particular range of the spectrum. Then, DSGCN
may lead to a significative different performance compared to the ones obtained
by traditionnal GNNs.

5.3.2 Inductive Learning Problem

Inductive Learning problems are common in chemoinformatics and bioinfor-
matics. In an inductive setting, a given instance is represented by a single
graph. Thus, models are trained and tested on different graph sets.

In the graph neural networks literature, there is a controversy concerning
the transferability of spectral designed convolutions from learning graphs to
unseen graphs. Some authors consider that convolutions cannot be transferred
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Table 5.4: Summary of inductive learning datasets used in this paper.
PPI PROTEINS ENZYMES

Type Node Class. Graph Class. Graph Class.
# Graph 24 1113 600
# Avg.Nodes 2360.8 39.06 32.63
# Avg.Edges 33584.4 72.82 62.14
# Features 50 3 label 3 label + 18 cont.
# Classes 2 (121 criterias) 2 6
# Training 20 graphs 9-fold 9-fold
# Validation 2 graphs 1-fold 1-fold
# Test 2 graphs None None

[60], while very recent theoretical [52] and empirical [44] works show the
contrary. In this subsection, we target to bring an answer to this controversy
by experimenting our proposal on inductive learning problems.

Datasets Inductive experiments are led on 3 datasets: a multi-graph node
classification dataset called Protein-to-Protein Interaction (PPI) [94] and on
two graph classification datasets called PROTEINS and ENZYMES [41]. The
protocols used for the evaluations are those defined in [79] for PPI and [89, 17,
78, 87] for PROTEINS and ENZYMES datasets.

The PPI dataset is a multi-label node classification problem on multi-
graphs. Each node has to be classified either True or False for 121 different
criteria. Each node is described by a 50-length continuous feature vector. The
PPI dataset includes 24 graphs, with a train/validation/test standard splitting.

The PROTEINS and ENZYMES datasets are graph classification datasets.
There are 2 classes in PROTEINS and 6 classes in ENZYMES. In PROTEINS
dataset, there are three different types of nodes and one continuous feature.
But we do not use this continuous feature on nodes. In ENZYMES dataset,
there are 18 continuous node features and three different kinds of node types.
In the literature, some methods use all provided continuous node features while
others use only node label. This is why ENZYMES results are given using either
all features (denoted by ENZYMES-allfeat) or only node labels (denoted by
ENZYMES-label).

Since there is no standard train, validation and test sets split for PRO-
TEINS and ENZYME, the results are given using a 10-fold cross-validation
(CV) strategy under a fixed predefined epoch number. The CV only uses
training and validation set. Specifically, after obtaining 10 validation curves
corresponding to 10 folds, we first take average of validation curves across the
10 folds and then select the single epoch that achieved the maximum averaged
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validation accuracy. This procedure is repeated 20 times with random seeds
and random division of dataset. Mean accuracy and standard deviation are
reported. This is the same protocol than [89, 78, 87, 17].

A summary of these three datasets is given in Table 5.4.

Models For PPI, 7 depthwise graph convolution layers compose the model.
Each layer has 800 neurons, except the output layer which has 121 neurons,
each one classifying the node either True or False. All layers use a ReLU
activation except the output layer, which is linear. No dropout or regularization
of the binary cross-entropy loss function is used. All graph convolutions use
three spectral designed convolutions: a low-pass convolution given by z1(λ) =
exp(−λ/10), a high-pass one given by z2(λ) = λ/λmax and an all-pass filter
given by z3(λ) = 1.

For graph classification problems (PROTEINS, ENZYMES-label and ENZYMES-
allfeat), depthwise graph convolution layers are not needed since these datasets
have a reduced number of features. Thus, it is tractable to use all multi-support
graph convolution layers instead of the depthwise schema. In these cases, our
models firstly consist of a series of graph convolution layers. Then, a global
pooling (i.e., graph readout) is applied in order to aggregate extracted features
at graph level. For this pooling, we use a concatenation of mean and max global
pooling operator, as used in [17]. Finally, a dense layer (except for ENZYMES-
label) is applied, before the output layer as in [87].

All details about the architecture and designed convolutions can be found
in Table 5.5.

Results

Table 5.6 compares the results obtained by the models described above and
state-of-the-art methods. A comparison with the same models but without
graph information, a Multi-Layer Perceptron (MLP) that corresponds to C(1) =
I is also provided to discuss if structural data includes some information or
not. To the best of our knowledge, such an analysis is not provided in the
literature. Finally, results obtained by the same architecture with GCN kernel
is also provided.

As one can see in Table 5.6, the proposed method obtains competitive
results on inductive datasets. For PPI, DSGCN clearly outperforms state-of-
the-art methods with the same protocol, reaching a micro-F1 percentage of
99.09% and an accuracy of 99.45%. For this dataset, MLP accuracy is low since
the percentage of micro-F1 is 46.2 (random classifier’s micro-F1 being 39.6%).
This means that the problem includes significant structural information. Using
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Table 5.5: Kernels frequency profiles and model architecture for each inductive
dataset. meanmax refers to global mean and max pooling layer.
Same legend as Table 5.2.

Dataset Architecture
z1(λ) = exp(−λ/10)

PPI z2(λ) = λ/λmax, z3(λ) = 1
DSG800-DSG800-DSG800-DSG800-

DSG800-DSG800-DSG121
PROTEINS z1(λ) = 1− λ/λmax, z2(λ) = λ/λmax

G200-G200-meanmax-D100-D2
z1(λ) = 1, z2(λ) = λs − 1

ENZYMES-label z3(λ) = 2λ2
s − 4λs + 1, λs = 2λ/λmax

G200-G200-G200-G200-meanmax-D6
z1(λ) = 1, z2(λ) = exp(−λ2)

ENZYMES-allfeat z3(λ) = exp(−(λ− 0.5λmax)2)
z4(λ) = exp(−(λ− λmax)2)

G200-G200-meanmax-D100-D6

the GCN kernel, which operates as a low-pass convolution (see Section 4.3),
the accuracy increases to 0.592, but again not comparable with state-of-the-art
accuracy.

For the PROTEINS dataset, one can see that MLP (C(1) = I) reaches
an accuracy that is quite comparable with state-of-the-art GNN methods.
Hence, MLP reaches a 74.03% validation accuracy while the proposed DSGCN
reaches 77.28%, which is the best performance among GNNs. This means that
PROTEINS problem includes very few structural information to be exploited
by GNNs.

ENZYMES dataset results are very interesting in order to understand
the importance of continuous features and their processing through different
convolutions. As one can see in Table 5.6, there are important differences of
performance between the results on ENZYMES-label and ENZYMES-allfeat.
When node labels are used alone, without features, MLP accuracy is very
poor and nearly acts as a random classifier. When using all features, MLP
outperforms GCN and even some state-of-the-art methods. A first explanation
is that methods are generally optimized for just node label but not for
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Table 5.6: Comparison of methods on inductive learning problems using
publicly defined data split for PPI dataset and 10-fold CV for PROTEINS and
ENZYMES datasets. PPI results are the test set results reported by micro-
F1 metric percentage. Others are CV results reported by accuracy percentage.
Results denoted by ∗ were reproduced from original source codes but denoted
feature set.

Method PPI PROTEINS ENZYMES
All Features Node Label Node Label All Features

GraphSAGE [31] 76.8 - - -
GAT [79] 97.3 ± 0.20 - - -
GaAN [90] 98.7 ± 0.20 - - -
Hierarchical [17] - 75.46 64.17 -
Diffpool [89] - 76.30 62.50 66.66∗

ChebNet [44] - 75.50 ± 0.40 58.00 ± 1.40 -
Multigraph [44] - 76.50 ± 0.40 61.70 ± 1.30 68.00 ± 0.83
GIN [87] - 76.20 ± 0.86 - -
GFN [78] - 76.56 ± 0.30∗ 60.23 ± 0.92∗ 70.17 ± 0.86

MLP (C(1) = I) 46.2 ± 0.56 74.03 ± 0.92 27.83 ± 2.51 76.11 ± 0.87
GCN (3.18) 59.2 ± 0.52 75.12 ± 0.82 51.33 ± 1.23 75.16 ± 0.65
DSGCN 99.09 ± 0.03 77.28 ± 0.38 65.13 ± 0.65 78.39 ± 0.63

continuous features. Another one is that the continuous features already
include information related to the graph structure since they are experimentally
measured. Hence, their values are characteristic of the node when it is included
in the given graph. Since GCN is just a low-pass filter, it removes some
important information on higher frequency and decreases the accuracy. Thanks
to the multiple convolutions proposed in this paper, our GNN DSGCN clearly
outperforms other methods on the ENZYMES dataset.

5.4 Conclusion
In this chapter, we proposed DSGCN, a method that uses the Depthwise
Separable Convolution framework in order to compute multiple convolution
kernels while limiting the increase of parameters. On the other hand, we
proposed to use handcrafted convolution kernels in order to cover most of
the spectrum range.

We evaluated our method on both transductive and inductive tasks. Our
method obtained state of the art results for each dataset on both categories.
Moreover, results obtained with low-pass filtering on transductive datasets
confirmed our theoretical analysis in Chapter 3 that most of GNNs are limited
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to low-pass filtering. Indeed, when our method is limited to low-pass filtering,
results obtained are similar to other GNNs methods. Globally good results also
induce the fact that those tasks are principally low-pass specific.

Nevertheless, the proposed approach has some drawbacks. First, it needs
eigenvalues and eigenvectors of the graph Laplacian. If the graph has more than
20k nodes, computing these values is not tractable. Second, we did not propose
yet any automatic procedure to select the best frequency profile of convolution.
Hence, the proposed approach needs expertise to find the appropriate graph
kernels. Third, although our theoretic complexity is the same than GCN
or ChebNet, in practice our convolutions are more dense than GCN, which
makes it slower in practice since it cannot take advantage of sparse matrix
multiplications. Last, if edge type can be handled by designing convolution for
each type, the proposed method does not handle continuous edge features and
directed edges.

In conclusion, even though spectral and spatial GNNs are closely related,
there is still an interest to separate them. Indeed, each of them has its
advantages and drawbacks, and some applications will be more suited to
spectral GNNs while other will take advantage of spatial GNNs. Our DSGCN
method is part of the spectral GNNs, and still share some of their drawbacks
while improving their advantage.

In introduction, we reminded two major limitations of GNNs. This chapter
has proposed a solution to the first one, and next chapter aim to tackle the
second limitation, which is the use of edge features.
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Chapter 6

Edge Embedding Graph Neural
Network

6.1 Introduction

Chapter 4 was concluded by pointing out two major limitations of GNNs: the
fact that most GNNs are limited to low-pass filtering, and their inability to
exploit edge attributes. A solution to tackle the first limitation was proposed
in chapter 5. This chapter proposes a solution to the second limitation : the
use of edge attributes.

Such a problem is important since many real-world problems rely on graphs
that include edge features. One can cite bond type for molecules, type of
relationship in social networks or quantified adjacency relations in Region
Adjacency Graphs.

Paradoxically, few existing GNN methods are able to efficiently take
into account edge features. Hence, if discrete edge attributes can be easily
incorporated into general frameworks of GNNs as it will be presented in section
6.2, it becomes much more difficult when those attributes are multiple and
continuous. Being able to effectively take into account edge attributes can thus
be an interesting point in order to gather more information about the graphs
which may lead to increase the performance of GNNs.

In this chapter we present the Edge Embedding Graph Neural Network
(EEGNN) model, a general GNN model that is able to exploit any type and
any number of edge attributes, independently of the node attributes, while
keeping a reasonable size of the model.

This contribution has been guided by a real-world application which
consists in detecting symbols in floorplan images. This problematic consists
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Figure 6.1: Example of a floorplan image

in processing floorplan images as depicted in Fig 6.1 to automatically detect
symbols used by architects to define a particular piece of furniture such as a
table, chair, bed. . . This processing may add an high level information to the
floorplan compared to the hardly exploitable information encoded by pixels
themselves. To implement this detection, we strongly believe that using a graph
approach constitutes an advantage with respect to classical CNN approaches.
Indeed, floorplan images are not natural images and are mostly formed
of binary pixels composing geometric shapes. Therefore, using a structural
approach may be more adapted to this problematic. In the proposed framework,
and floorplan images are firstly converted into graphs (see Figure 6.2) where
nodes represent symbol parts while edges represent neighborhood relationships
between these symbol parts. Each node can be attributed by a vector
describing the area associated to this symbol, and each edge is labeled by
a continuous value quantifying the strength of each neighborhood relationship.
See section 6.4.1 for more details about this transformation of floorplan images
to graphs.

Using such a representation, detecting a given symbol consists in finding
a set of nodes, where each node is a part of the symbol. This problem can
be described in less or more complex ways. First, it can be seen as a node
classification problem, where each node of a same symbol must be associated
to the same class. However, such an approach may neglect the fact that it is the
set of nodes which forms the symbol. Therefore, some irregularities may appear,
such as a disconnected set of nodes belonging to the same class. To overcome
this problem, we can formulate it as a link prediction problem where the tasks
consists in deciding if two nodes belongs to the same symbol instance or not.
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Figure 6.2: Example of a floorplan image converted into a graph

Then, a mix of this two approaches leads to a third problem formulation where
the two tasks are combined together. We can note that this hierarchy of tasks
leads us very close to the subgraph isomorphism problem, where the task now
is to identify a subgraph, ie. a symbol, within a target graph, ie. the floorplan.
More details about these different tasks are presented in section 6.4.2, together
with an analysis of their results in section 6.5 Considering this problem of
symbol detection in floorplan images, one can note that the information carried
by edge label is essential to solve the problem. Therefore, we first propose in this
chapter to explore state of the art GNNs methods dealing with edge attributes,
section 6.2. This review leads to the observation that most of methods limit
the use of edge attributes to discrete ones or to a fixed latent dimension size.

Therefore, we propose in section 6.3 the EEGNN model which alleviates
drawbacks identified in SOTA methods. The symbol detection problem is
presented in section 6.4. This method is then evaluated on our symbol detection
tasks together with SOTA methods in section 6.5.

Obtained results show the importance of structure on one side through the
comparison with a baseline model, and the importance of edge attributes with
our method on the other side.

6.2 Graph Neural Networks and edges

Given the previous definition of GNNs : H(l+1) = σ(∑S
s=1(C(s)H(l))W(l,s)), we

can note that the matrix Ae encoding the edge attributes is not explicitly
included. Thus, edge attributes are not taken into account within this
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Figure 6.3: A graph (on the left) and its associated line graph (on the right)

formulation and in general in the GNN framework. However, edge attributes
can bring relevant information about the data encoded by the graph. Therefore,
it can be interesting to take into account this data in order to build more
expressive and more general predictive models.

Multiple solutions have been proposed to use edge attributes. First, if only
edges are attributed, one solution would be to use the line-graph, also called
edge-dual graph or conjugate graph L(G) = (L(V), L(E)) of the graph G =
(V , E). The line-graph is a transformation of graph G where each edge e ∈ E
is a node in graph L(G), and for each pair of edges in G that have a node
in common there is a vertex in L(G) linking the corresponding nodes. Edge
features in G are then transformed into node features in L(G), which makes
GNNs able to take into account the edge features as node features. Figure 6.3
presents an example of a graph and its associated line graph.

However this solution is not satisfying, because the node features in G are
transposed in the edge features of L(G), leading to the same problem than
before. This solution is thus usable if only edges are attributed.

As presented in section 3.4, in the discrete case, one solution commonly used
is to apply one convolution kernel with one weight matrix per edge attribute
(Equation 6.1 which was previously defined as Equation 3.8). It consists in
splitting the adjacency matrix A into a tensor C ∈ R|V |×|V |×|LE | where C(i) =
C(:, :, i) encodes the adjacency matrix of edges labeled by the ith value of edge
attribute. An example of such a transformation is presented in Figure 6.4.

H(l+1) = σ((
|LE |∑
i=1

C(i)H(l)W(l,i)) + b(l)) (6.1)

The limitation of this method lies in the fact that it is restricted to discrete
edge attributes. In addition, in the case where |LE | is too high, it will require
a huge number of parameters hence increasing the complexity of the model.
Finally, in this model, each edge attribute is computed independently.
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Figure 6.4: Example on how edges represented on the adjacency matrix A can
be used to produce a C tensor.
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Figure 6.5: Example on how edges are embedded into a fl× fl matrix with the
edge network method.

To take into account continuous edge attributes, [27] proposes to define
a neural network which learns a fl × fl matrix representation for each edge
attribute vector of size dim(LE), where fl is the dimension of each node’s
hidden representation of layer l. This neural network consists in learning the
matrix WA ∈ Rdim(LE)×fl×fl which is applied to the extended adjacency matrix
Ae ∈ R|V |×|V |×dim(LE). AeWA ∈ R|V |×|V |×fl×fl thus represents the learned edge
embedding. Figure 6.5 shows an example of the matrix representation that can
be learned.

This new edge representation can then be used to compute an enhanced
representation of each node’s hidden representation :
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ĥ
(l+1)
i =

∑
j∈N (i)

h(l)
j AeWA(l)(i, j),∀i ∈ |V | (6.2)

Compared to vanilla GNN, Equation 6.2 extends the convolution operator
by learning coefficients which allows to weight the contribution of each neighbor
feature according to the embedding of ei,j computed by AeWA. This thus leads
to a better expressiveness of the neural network. Once applied over each node,
the new hidden representation Ĥ

(l), where Ĥ(l)(i, :) = ĥ
(l)
i , can be multiplied

by the classical matrix W(l) to compute layer l + 1 as in Equation 6.3

Ĥ
(l+1) = σ(Ĥ(l)

W(l)), (6.3)

where Ĥ(l)
∈ R|V |×fl is the result of the extended convolution operator.

This proposition is very interesting in the way it redefines the convolution
operator to enhance the capability and the expressiveness of GNNs. However,
this improvement comes with a cost. The number of parameters which compose
the WA weight matrix is fl ∗ fl, which is really expensive, considering that fl
is generally included between 100 and 200.

In [73], authors focus on molecular graphs with their method Edge
Attention-based multi-relational Graph Convolutional Networks (EAGCN).
Designing edge based graph neural network operating on molecular graphs
is interesting due to the fact that the chemical bonds linking atoms hold an
important information about the molecule. Molecular graph edges are generally
attributed by at least the kind of chemical bond, also denoted as bond order,
linking two atoms together (simple, double, triple, aromatic...), but other
attributes may also be encoded. In [73], 5 different edge attributes are used: the
bond order, the atom pair types, the aromaticity, the conjugation and if the
edge belongs to a ring or not. Each attribute indexed by k can be represented
by a matrixAk ∈ R|V |×|V |×fek , where fek is the dimension of kth edge attribute.
However, in [73], all edge attributes are defined as discrete values (there is no
continuous value), and are thus encoded by one hot vectors.

Instead of embedding directly the edges as in Edge Network, EAGCN
propose to compute an attention matrix for each attribute. These attention
matrices will learn a weight for each combination of edge and attribute. This
weight quantifies the contribution of incident node of each edge for the update
of node hidden states, and this independently for each attribute. This method
computes one attention matrix Aatt,k for each edge attribute k. Each attention
matrix is built depending on two informations: the different values of each edge
attribute which are encoded by Ak and a learned weight matrix WE

k ∈ Rfek×1

(Equation 6.4). The mask function is used to ensure that no entry in the
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attention matrix is added if there is no edge between the corresponding nodes.
The softmaxj operator simply applies a softmax function to each line j of
the matrix given as input. This operation acts as a normalization step to avoid
order of magnitude differences between attention weights of the different edges.

Aatt,k = softmaxj(mask(AkWE
k )) (6.4)

Then this attention matrix is used as a convolution kernel in a classical
message passing framework as in Equation 6.5. Since there are K attention
matrices, each one defined independently for each edge attribute k, the different
embedding must be combined into an unique node hidden representation. The
authors of [73] propose either to concatenate (Equation 6.5) or to compute a
weighted sum (Equation 6.6) of the K representations.

H(l+1) = ||σ(Aatt,kH(l)W(l)
k )|1 ≤ k ≤ K|| (6.5)

H(l+1) =
K∑
k=1

βkσ(Aatt,kH(l)W(l)
k ) (6.6)

The edge attention method allows to weight each edge and to select the most
relevant ones. This is done without hugely increasing the number of parameters
hence limiting the complexity of the model. However, the experiment in [73]
only consider edges having discrete attributes. The method is not tested on
edges having continuous attributes despite the fact that there is no restriction
on processing those kind of attributes. In addition, the architecture of EAGCN
depends on K, which may vary with the graph. Hence, a particular EAGCN
architecture has to be designed explicitly for each kind of graphs, making this
approach problem specific.

6.3 Proposed model
To circumvent the explosion of parameters of Edge Network and the specificity
of EAGCN architecture, we propose to learn hidden representations where the
dimension is controlled.

For this purpose, we extend [27] by embedding edge features into a new
vector of size fe, where fe is the size of the edge hidden representation. Each
edge e ∈ Rdim(LE) is thus embedded into a new space Rfe . As a result, the
adjacency matrix Ae ∈ R|V |×|V |×dim(LE) is also embedded into a new space
R|V |×|V |×fe . This embedding then becomes our convolution support C. This
embedding is computed by a neural network WA ∈ Rdim(LE)×fe following
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Figure 6.6: Example on how edges are embedded by our EEGNN method to
learn new convolution kernels depending on the edge attributes.

Equation 6.7. To summarize, our method aims to learn fe new convolution
kernels according to the embedding of each edge eij. Example of our method
is presented on Figure 6.6.

In order to keep the graph topology, it is important that the application of
a neural network to Ae does not include new edges. Thus, 0 values in Ae must
remain 0 after applying a neural network or a non null value will correspond to
the creation of an non-existing edge. With the aim of applying a neural network
f(Ae(i, j)) = σ(Ae(i, j)WA + b), we have to ensure that f(Ae(i, j)) = 0 if
Ae(i, j) = 0. A neural network includes 3 operations: the matrix multiplication,
the bias add and the activation function. The matrix multiplication is not a
problem, since Ae(i, j)WA = 0 if Ae(i, j) = 0. However, the use of bias is not
compatible with our requirement, since 0 + b = b. We then decide to remove
biases to our model. The activation function used is ReLU = max(0, x), which
ensures that f(0) = 0. Finally, the neural network for learning edge hidden
representation is defined by Equation 6.7.

C = ReLU(Ae(i, j)WA) (6.7)

This learned edge hidden representation can then be used as multiple
convolution kernels in a classical GNN framework as in Equation 6.8.

H(l+1) = σ((
fe∑
i=0

C(i)HlW(l,i)) + b(l)) (6.8)

This proposition has multiple advantages. Firstly, it doesn’t require a huge
number of parameters. Compared to Edge Network that requires dim(LE)∗fl∗fl
parameters, our method only requires dim(LE) ∗ fe parameters. EEGNN thus
requires fewer parameters as long as fe < fl ∗ fl. Another advantage of our
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method is that it is not specific to discrete edge attributes and do not depend
on those edge attributes. This allows our method to be used in a more general
way than EAGCN. The last advantage of our method is that it is able to learn
new convolution kernels.

The major drawback of our method is the fact that fe is an hyperparameter
that has to be defined a priori. The second drawback is that even though
the number of parameters added is inferior to Edge Network, dim(LE) ∗ fe
parameters are still added, increasing the complexity of the model. However,
to contain this complexity, our model can be computed as it was done with
DSGCN. Instead of having fe weight matrices W, we only have one, and edge
attributes are used to compute a weight that will correspond to a contribution
coefficient, similarly to DSGCN.

H(l+1) = σ(((
fe∑
i=0

(AeWA)(:, :, i)H(l))W(l)) + b) (6.9)

Next section presents the applicative problem used to evaluate the EEGNN
model.

6.4 Symbol detection in floorplan images
As stated in introduction, the work described in this chapter has been led in
the context of an application targeting symbol detection in document images.
In this section, the different problematic of this application, and the proposed
solutions, are presented. In a first part, the conversion of floorplan images
into Region Adjacency Graphs (RAGs) is presented. Within those graphs,
each node corresponds to a white region in the original image, and each edge
indicates an adjacency relationship between two regions encoded by incident
nodes. Nodes are attributed using Zernike moments shape descriptors [76],
and edges are characterized using the distance between centers of gravity of
connected components. Figure 6.2 presents an example of the floorplan image
converted into a graph.

In a second part, we focus on the symbol detection problem [50] in such a
graph which consists in detecting each occurrence of a set of symbols (see Figure
6.8) called pattern graphs in a graph called target graph. Figure 6.7 presents
the problem of symbol detection in a graph. One could see the similarity with
the subgraph isomorphism problem, and this similarity will be discussed in
conclusion. Main difference being that, in the case of symbol detection, there
is a dataset with localized symbols, while in the subgraph isomorphism case,
the subgraph is a second input with the target graph. To tackle the symbol
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(a) Target graph (b) Pattern graphs (c) Output graph

Figure 6.7: Inputs and outputs of symbol detection problem. (a) shows an
example target graph while (b) present different pattern graph to be detected.
The excepted detection is obtained on (c).

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p)

Figure 6.8: Symbol models to be detected

detection problematic, two strategies are studied: as a node classification task
and as a link prediction task. However, as it will be presented, neither of the
strategies solve the problem alone. It is thus the combination of both steps,
either computed independently or computed simultaneously through a multi
task model, that allows to tackle the symbol detection problem.

6.4.1 From images to graphs

Before presenting our strategies for detecting symbols, we present in this
subsection the graph generation method. Region Adjacency Graphs (RAGs) are
well suited to encode symbols and technical drawings since they allow to model
the adjacency relationships between the regions extracted by a segmentation
process. Working on technical documents, the digital images are mainly binary
images where white components correspond to the background and black
components to drawings. Segmenting such kind of images can be achieved
using component labeling [18]. However, aiming at finely modeling adjacency
relationship between two regions, a binary image can be firstly thinned [8].
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The obtained image is then morphologically the same than the initial image
of the document but the thickness of the drawing components is reduced to
a single pixel. Using this image, each white component is mapped to a node
of the graph. Then, the skeleton branches represent frontiers and adjacency
relationships between two regions. An edge is then built between two nodes
representing regions separated by a skeleton branch. Figure 6.9 illustrates the
overall process of transforming a binary image to a RAG.

To enrich such a description, attributes have to be assigned to each node
and edge. Many features have been proposed to characterize shapes and spatial
relations [77]. Among them, Zernike Moments (ZM) [76] yield interesting
results for pattern recognition tasks when invariance to affine transforms and
robustness to degradations are required. Hence, a feature vector corresponding
to a set of ZM is assigned to each vertex in order to characterize shapes.
A continuous attribute for each edge connecting nodes representing adjacent
regions (source and target) is defined by the relative distance between their
gravity centers, computed with respect to the overall area of the two regions:

esource,target = de(gsource, gtarget)√
Area(source) + Area(target)

(6.10)

where de denotes the Euclidean distance between gravity centers.
A Graph-based representation G = (V , E , µ, ξ) of a document is finally

defined where V encodes the white connex regions and E corresponds to
adjacency relationships between regions. Labeling function on nodes µ : V →
R24 encodes the morphology of each region according to its ZM and labeling
function ξ : E → R expresses the geometrical properties of an adjacency
relationship, as defined in Eq. 6.10.

6.4.2 Learning to detect symbols

In this section, two different ways to learn to detect symbols in a graph are
presented. Indeed, from the graph point of view, this particular task can be
divided into two distinct parts: a first node classification part, that allows to
detect different class of symbols, and a link prediction part, that allows to
detect different occurrences of the same symbol.

Symbol detection as node classification task

A first idea would be to consider this problem through a node classification
problem. In the target graph, nodes belonging to a symbol occurrence would
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(a) Initial image (b) Skeleton image of (a)

(c) Components labels of (b) (d) Corresponding RAG

Figure 6.9: From initial image to Region Adjacency Graph.

be activated while the rest would be unactivated. However, this kind of
representation might not be strong enough to detect or distinguish multiple
instances of the pattern graph in the target graph. Indeed, in the case where
multiple instances of the symbol exist, the node classification solution is not
able to detect if two nodes belong to two different instances or if they belong
to the same instance. The kind of result obtained by node classification is
illustrated in figure 6.10.

Symbol detection as link prediction task

On the other hand, in order to detect different occurrences of the same symbol,
a way is to consider link prediction. The idea is to differentiate two occurrences
of the same pattern by predicting if two nodes belong to the same occurrence.
This prediction is made by activating the edge between the two nodes if they
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(a) Target graph (b) Output graph (c) Output graph

Figure 6.10: Inputs and outputs of symbol detection problem. (a) shows
an example target graph where the symbols to detect are surrounded. The
detection in node classification is obtained on (b).

belong to the same occurrence, and unactivating it if they don’t. Theoretically,
a clique made of nodes and activated edges is obtained, which correspond to an
occurrence of the searched pattern. By relaxing the constraint of the occurrence
being a clique, an occurrence can then be a connected component in the graph.
A connected component made of nodes and activated edges then correspond to
an occurrence of the searched pattern. Ultimately, this connected component
is a clique in which activated edges mean all nodes belong to the same symbol
occurrence. We study the use of pairwise classification [7] to produce a n × n
binary matrix M for a graph having n nodes. M is a symmetric matrix, with
M(i, j) equals to 1 if vi and vj represent parts belonging to the same symbol
occurrence, and 0 otherwise. Such a matrix can be seen as the adjacency matrix
of a non connected graph, composed of all the nodes describing the connected
components of the original image. The symbols are then represented by the
different connected parts of the whole graph, each of them being a clique. In
Figure 6.11, we take back our example in Figure 6.7 to show an example of a
desired output.

Finally, one can see that the ability of detecting multiple occurrences of
the same symbols has been obtained at the cost of detecting different symbols.
In order to obtain a complete model, one solution would be to combine both
tasks into a multi-task model. Next section presents the experimental result
obtained for each task.
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(a) Target graph (b) Output graph

(c) Output Matrix

Figure 6.11: Inputs and outputs of our proposition. (a) shows an example
target graph where the symbols to detect are surrounded. The output graph is
obtained on (b) and (c) is the corresponding matrix to be predicted.

6.5 Experimental Results

In this section, the results obtained by the different approaches introduced in
6.4.2 are presented. Three different cases are evaluated: the symbol detection
as a node classification task, the symbol detection as a link prediction task, and
the symbol detection as a combination of node classification and link prediction
tasks. The different evaluated models and the protocols for each case are firstly
presented. Results obtained for each case are then presented.
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6.5.1 Evaluated models and protocols

For each task, we evaluated 4 different models. The first model is a neural
network that aims at classifying each node using only its own features, and
then discarding all information encoded within the graph representation. This
model serves as a baseline in order to measure the information brought by the
structural information. It is made of three dense layers, with the third one used
for decision.

The second model is a Graph Neural Network (GNN) made of three layers.
Similarly to the baseline, the third layer is used for decision. With this model,
we are only able to use the existence of an edge between a pair of nodes, but
not the label associated to this edge.

The third and fourth experimented models use respectively the Edge
Network (EN) and the Edge Embedding (EE) defined in Section 6.3. Those
models use both the existence of an edge and its label.

In order to make a fair comparison of the four models, we make them as
similar as possible. Thus, both the neural networks of the baseline and the three
GNN produce 200 features for each node. For our edge embedding model, we
studied 4 different values for fe: 2, 4, 8 and 16. Since fe = 8 obtained the best
results on validation and test, in each experiment, we only show results for this
value.

For the protocol, the 200 graphs are firstly randomly divided into 3 sets.
160 graphs are used for training, 20 for validation and 20 for test. Node and
edge attributes are normalized to have a value either between 0 and 1 or -1
and 1, depending on the minimum value of the attribute. Each model is then
trained using the Adam optimizer with an initial learning rate of 5.10−3.

The node classification task is trained for 100 epochs using the crossentropy
loss (see Eq.6.11) and the best model in validation is used for test. The
evaluated metric in the node classification task is the node classification
accuracy.

Lnode = −
∑
pi

pilog(pi) (6.11)

In the link prediction task, classes are hugely imbalanced. To tackle this
imbalance, the focal loss [55] is used (see Eq. 6.12) in the link prediction
problem.

Llink = −
∑
pi

αi(1− pi)γlog(pi) (6.12)
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Hyperparameter of focal loss used are γ = 2 and α = 0.3, where α weights
both classes (class 0 is weighted by α and class 1 is weighted by (1 − α))
and γ is an hyperparameter that controls the contribution of each sample in
the loss computation depending on how hard is the sample to be classified.
A hard sample correctly classified will thus have more importance than an
easy sample correctly classified. α = 0.3 allows to weight the class 0, which is
over-represented, with a lower contribution than the class 1, which is under-
represented. γ = 2 is a standard value for focal loss. In the link prediction task,
the evaluated metric is the ratio of detected symbols. A symbol is defined as
detected as a connected component of the graph consisting of all the nodes
describing a symbol occurrence and that does not contain any extra node.

In the last case, the combination of both node classifcation and link
predicton tasks is studied. The network is trained for 300 epochs, with a
combination of both standard crossentropy and focal loss (see Eq.6.13). The
computed loss is thus the mean of both losses. The computed metric is the ratio
of detected symbols, where a symbol is considered as detected as a connected
component of the graph consisting of all the nodes correctly classified describing
a symbol occurrence and that does not contain any extra node. This task is
thus harder than before, due to the node classification condition.

Lcombine = Lnode + Llink
2 (6.13)

In order to evaluate the robustness of each model, a Gaussian noise is added
on the node features for the test dataset. We ran those experiments using a 10-
fold cross-validation in order to limit split bias. Mean and standard deviation
of accuracy for each model are reported for each experiment

6.5.2 Results in node classification task

Results in node classification are firstly tested. Results obtained following the
protocol previously presented in section 6.5.1 are reported in Table 6.1.

As one can see, results for GNN, EN and EE are pretty similar and close to
100%, widely increasing results obtained by the base model. However, adding
noise allows to show disparities between the different models. Indeed, EN and
EE models perform better than GNN when noise is added. Moreover, when
Gaussian noise variance is set to 0.2, our model EE obtains better results than
EN.
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Table 6.1: Results obtained (in percentage of accuracy of nodes classification)
by the different experimented models.

Model
Gaussian Noise Variance

0.0 0.05 0.1 0.2

MLP 95.57 ± 0.83 60.37 ± 1.82 39.99 ± 0.98 23.54 ± 0.79
GNN 99.54 ± 0.17 99.27 ± 0.30 96.36 ± 0.82 79.67 ± 3.03
EN 99.67 ± 0.12 99.54 ± 0.18 98.19 ± 0.36 85.77 ± 1.94
EE 99.64 ± 0.12 99.53 ± 0.17 98.08 ± 0.57 88.33± 2.16

6.5.3 Results in link prediction task

In a second step, results obtained in link prediction are given in Table 6.2.

Results show that integrating edge features definitively improves the symbol
detection when no noise is added. However, in the case of EN, those results
drop quickly and obtain worst results with Gaussian noise variance above 0.1.
The poor results obtained by the different models can be explained with two
arguments. First, the edge prediction task is a very imbalanced task. Most of
pairs of nodes are made of nodes that do not belong to the same symbol, leading
to more than 96% of pairs that are labeled as 0. Second, the importance of the
noise. Since each feature is normalized, adding a Gaussian noise of variance 0.2
leads to an important noising.

Table 6.2: Results obtained following the previous metric by the different
experimented models.

Model
Gaussian Noise Variance

0.0 0.05 0.1 0.2

MLP 45.65 ± 4.51 0.46 ± 0.32 0.0 ± 0.0 0.0 ± 0.0
GNN 90.13 ± 1.28 75.12 ± 4.37 44.22 ± 4.57 17.18 ± 3.62
EN 92.59 ± 1.02 76.54 ± 2.00 39.88 ± 3.25 12.31 ± 1.81
EE 92.22 ± 1.11 79.63 ± 3.03 49.72 ± 5.15 21.21 ± 2.71
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Figure 6.12: General model used for multi task prediction

6.5.4 Results in both node classification and link pre-
diction

In this last experiment, we examine the effect of combining both link prediction
and node classification in a multi task model. A single model is thus used to
predict both links and classes. In addition, the node classification result is used
to improve the link prediction task by concatenating the class prediction to the
hidden feature vector. Figure 6.12 presents the general model used. Apart from
this, the same four models that were presented in Section 6.4 are compared.

Results are shown in Table 6.3.

Table 6.3: Results obtained by the different experimented models using the
symbol detection accuracy.

Model
Gaussian Noise Variance

0.0 0.05 0.1 0.2

MLP 40.69 ± 3.19 1.04 ± 0.46 0.08 ± 0.10 0.0 ± 0.0
GNN 86.30 ± 2.31 66.09 ± 3.12 37.51 ± 2.55 12.42 ± 1.48
EN 90.99 ± 0.64 75.29 ± 2.65 37.64 ± 4.29 12.10 ± 1.66
EE 87.22 ± 1.74 70.88 ± 2.53 41.00 ± 3.37 14.22 ± 3.02
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Conclusions drawn from these results are similar to the previous ones: EN
obtained best results but are less robust to noise. Conversely, our method
performs below EN with unnoised data, but performs slightly better with noised
data, the gap increasing with the noise intensity.

6.6 Conclusion
In this chapter introduction and in chapter 4, the lack of method using
efficiently edge attributes was pointed out. This chapter has proposed to fill
this gap with a new GNN method called EEGNN, which has been evaluated
through a symbol detection problem.

Floorplan images are firstly transformed into Region Adjacency Graph by
the approach. In order to achieve the symbol detection problem, the approach
divide the problem in two parts: a node classification task that allows to detect
different classes of symbols, and a link prediction part that allows to detect
different occurrences of the same symbol.

Three different models of graph neural network have been compared with
a baseline that does not use any structural information. The experimental
evaluation is then divided into 3 parts: a first part which only considers node
classification, a second that only considers link prediction, and a third that
considers a model that combines both node classification and link prediction.
Each GNN models presents good results largely improving result obtained with
the baseline model.

Even imperfect, we argue that the obtained results provide a first empirical
evidence that machine learning can be used to solve a subgraph isomorphism
problem when learning data are available.

In future works, it could be interesting to consider using graph pooling
strategy to compute a new graph where a node corresponds to a whole symbol.
Another perspective would be to use Siamese networks to detect a single symbol
specified in input, as presented in figure 6.13.
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Figure 6.13: Example on how Siamese networks could be used to detect a single
symbol.
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Chapter 7

Conclusion

7.1 Review of the contributions

The main subject of this thesis has been the analysis of Neural Networks
dedicated to graphs, called Graph Neural Networks (GNN), and how we
can improve those methods. Having introduced and defined the different
backgrounds and notations in chapter 2, chapters 3 to 6 have proposed a set
of contributions to answer the research questions raised in chapter 1. We can
now conclude this manuscript by giving a synthesis of these contributions.

Research question 1: In the last years, Graph Neural Networks have became
one the hottest topics in machine learning. This has led to a "jungle" of models
and frameworks. Our first question is thus: how to classify existing approaches
?

The answer of this question has been given in chapter 3. After a presentation
of the first use of the "GNN" term, the two different main theories that have
led to the actual GNNs have been explained. However, this taxonomy was
not sufficient to classify every models. We thus added a third category, which
contains models based on spectral-rooted spatial convolution.

Research question 2: Given this taxonomy, can we merge all these
approaches into one single model ?

This question has been addressed in chapter 4, where we proved that
Spectral GNNs are a special case of Spatial GNNs, leading to GNNs being
defined as Spatial. This result allowed us to provide a general model of GNNs,
based on the definition of convolution supports. Those convolution supports
can either be defined in a spatial way, with the adjacency matrix or the graph
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Laplacian for example, or in a spectral way with the eigen decomposition of
the graph Laplacian, or an approximation of this eigen decomposition.

Research question 3: Since all existing models can be merged into a single
framework, one can wonder what is the spectral behavior of models defined as
spatial compared to models defined as spectral ?

One interesting point of the general model previously defined is the fact
that it allowed to answer this research question by analyzing the frequency
profile of convolution supports, whether they are originally defined in a spatial
way or a spectral way. This analysis has been done in second part of chapter 4

Five notable GNNs have been compared, namely ChebNet, CayleyNet,
GCN, GIN and GAT. In those analysis, the main result obtained is the fact
that GCN, GIN and GAT are limited to low-pass filtering. Some models such
as ChebNet or CayleyNet are able to generate high-pass and band-pass filters,
however they are not able to produce specific band-pass filters.

Research question 4: Since most of existing models are limited to low-pass
filtering while obtaining good results on reference datasets, one can wonder if
low-pass filters are sufficient for all problems ?

We addressed this question in the last part of chapter 4. In this section, two
toy problems inspired from image analysis have been proposed. This allowed
to easily propose problems that require band-pass filtering. Results showed the
limits of GNNs to design some kind of filters, and the importance for GNNs to
be able to design those filters. In order to obtain efficient models, GNNs should
be able to produce any kind of filtering, as a CNN would.

Research question 5: Following previous results, most of GNNs appear
to be limited to low-pass filtering. Models that are able to propose band-pass
filtering require a huge number of parameters. Are GNNs able to produce band-
pass filtering at low-cost ?

We proposed in chapter 5 to adapt the Depthwise Separable Convolution
to GNNs. Depthwise Separable Convolution was originally used with CNNs,
in order to produce filters at lower parameter costs. The adaptation has led to
our method DSGCN.

Our DSGCN method has been tested on both transductive and inductive
tasks, and has presented very good results on both tasks. Moreover, the global
good results obtained by popular GNN are comparable to our DSGCN method
limited to low-pass filtering, proving that those methods are also limited to low-
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pass filtering on one hand, and once again that applicative problems generally
require only low-pass filtering.

The proposed approach has however some drawbacks. First is that it still
needs to compute eigenvalues and eigenvectors of the graph Laplacian, which
is untractable when the graph has too much nodes. The second drawback is
that convolution filters are handcrafted, which means that efficient convolution
filters on one applicative problem may totally fail on another one. It thus
require to design filters according to the problem, which is antinomic with
deep learning, where convolution filters are learned. Finally, the last drawback
is that continuous edge features are not taken into account by our method.

Research question 6: One of the strength of graphs is the versatility of
their attributes. Both nodes and edges can carry information. Yet, most of
GNN models only use node attributes. Are GNN limited to use the information
carried by node attributes ?

In chapter 6 a new model called EEGNN has been proposed. In our
proposed approach, edge attributes are embedded into a new feature space
in a general way. The Depthwise Separable architecture presented previously is
also applicable, allowing to reduce the number of parameters. Our model has
then been evaluated on a problem of symbol detection in floorplan images and
obtained promising results.

7.2 Perspectives

Being able to efficiently take into account more information carried by a graph
has been the main subject of this thesis. Recently, a set of benchmark datasets
called Open Graph Benchmark [38] has been proposed. Comparing the GNN
models proposed in this thesis on unified datasets to add new analysis capacity
is one of our shot-term perspective.

In order to improve GNNs, one important point might be to learn to
produce any kind of filtering. Indeed, we saw that one major limitation of
most of notable GNNs was that they were limited to low-pass filtering. In
addition to an expressive power being limited, another problematic induced by
low-pass filtering is the limitation in terms of number of GNN layers. Indeed,
accumulating layers limited to low-pass filtering causes oversmoothing. Since
each layer smoothe the signal, each node hidden representation tends to be
more and more similar to its neighborhood with the addition of layer, leading
to the same representation for each node in the graph. Being able to learn
any kind of filtering might thus allow to accumulate more layers, leading to
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deeper architectures. Deeper architecture would then allow to take into account
information carried by distant nodes, which might be interesting depending on
the problem. Deep architecture and learnable convolution filters are some of
CNNs strengths, and applying them to GNNs could then be a path to follow.

Another way to keep improving GNNs is through the edge representation.
Our proposed method only consider edge attributes to update the edge
representation, in a MLP way. However, one could consider updating the
edge representation in the same way node representations are updated in
GNNs, meaning updating the edge representation through the actual edge
representation on one side, and the connected nodes on the other side.

In our last contribution, we proposed a model that implicitly solve
the subgraph isomorphism problem. This NP-hard problem is one of the
classical combinatorial optimization challenge, but there are other ones. We
are convinced that in the future, machine learning will be used combinatorial
optimization problems. Using machine learning to solve such problems is an
exciting idea and even though some traditional combinatorial optimization
problems such as the traveling salesman problem (TSP) are studied by the
machine learning community, this has not been the case for most of NP-hard
problems.
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Appendix A

Deep Learning for Graph Edit
Distance Approximation

A.1 Introduction

As seen previously, graphs are a powerful tool to represent data. However,
in machine learning, most of approaches in literature take as input numerical
data, and use mathematical properties of euclidean spaces to build models.
This is the case for deep learning for example.

Because graph space does not have a scalar product, a dissimilarity measure
between graph is necessary to use machine learning common methods. The
graph edit distance is one approach commonly used to answer this problem.

But the computation of the graph edit distance is an NP-complete problem,
and is thus untractable when the size of graphs increase. In this chapter, we
present a method to efficiently compute an approximation of the graph edit
distance using a deep learning approach.

A.1.1 Graph Edit Distance

The Graph Edit Distance is a metric between two graphs G1 = (V1, E1) and
G2 = (V2, E2), where V1 (resp. V2) is the set of nodes in G1 (resp. G2) and
E1 (resp. E2) is the set of edges in G1 (resp. G2). This measure is computed
by evaluating the cost of transforming G1 into G2. This transformation is
obtained by a sequence of elementary operations which can have 3 different
types: substitution, insertion and deletion. Each of these operation types can
be applied over nodes or edges, reaching a total of 6 elementary operations.
To each of those elementary operations is associated a cost, quantifying the
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Figure A.1: Partial tree representing the set of edit paths between G1 and G2.
A∗ algorithm allows to browse this tree to find the edit path with the minimal
cost.

transformation made on the graph. There is an infinite number of operation
sequences transforming a graph G1 into a graph G2, each of them defining an
edit path. The optimal edit path is the edit path whose cost is minimal among
the set of edit paths. The edit distance is the cost associated to the optimal
edit path.

The use of A∗ algorithm is one of the first approach used to compute Graph
Edit Distance [33]. This method builds and browses the solution tree to get one
optimal edit path as well as the corresponding cost. More recently, the GED
as also been computed as a binary linear programming problem, including
[39, 48, 49]. However, getting an optimal edit path is an NP-complete problem,
and induces a high complexity. For example, this complexity is in O(nm) for
A∗, where n is the number of nodes in G1 and m the number of nodes in G2.
This complexity limits the use of those methods to small graphs [2]. To tackle
this problem, algorithms of lower complexity computing an approximation of
the graph edit distance have been proposed. One of the first approximation
approach has been proposed in [69]. In this method, authors transform the
computation of the graph edit distance in a linear affectation problem, which
can be solved in polynomial time. It is thus possible to process larger graphs.

Obviously, reducing the complexity is made at the expense of the precision
of value obtained. The problem of a search of a compromise between approxi-
mation quality and complexity then arises, as shown in [2].

In this section, we propose a new method to approximate the graph edit
distance, based on the use of recent deep learning methods to get a better
accuracy with a low complexity. Section A.1.2 presents different methods used
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in our approach. Section A.2 describes our approach. Finally, section A.3
presents the experimental evaluation.

A.1.2 GED approximation

One of the first proposed method for graph edit distance approximation is
the Bipartite Graph Matching [69]. This method brings together graph edit
distance and a node matching problem. The search for an optimal edit path
is a quadratic assignment problem, simplified by [69] into a linear assignment
problem to get an approximation.

We are looking for an optimal matching, in the meaning of a minimal cost
matching between nodes. Formally, we are looking for a function ϕ : V1 → V2,
which, for a node uk, matches it to a node vϕ(k) and which minimizes the global
cost of those matchings. For this, a matching cost has to be defined. Here, it
is defined as the cost of transforming a node ui into a node vj. To simulate
node suppression and insertion, empty nodes called ε-nodes are added. Thus,
suppressing the node ui is defined as a matching between node ui and ε-node.
On the other hand, insertion of node vj is defined as a matching between ε-
node and node vj. Thus, m ε-nodes are added to G1 and n ε-nodes are added
to G2, increasing both sizes of V1 and V2 to n+m.

It may be important to notice that both nodes and edges can have features,
and that the cost computation must take into account those features. The
substitution cost between two nodes can for example be the euclidean distance
between the two feature vectors of the nodes.

To take into account structural information in graphs, the minimal cost of
matching incident edges of both nodes is also computed.

In equation A.1, ui, uk ∈ V1, vj, vϕk ∈ V2, aik is the edge between ui and
uk, bjϕk is the edge between node vj and vϕk and ϕk is the matching function.
Finally, S (n+m) is the set of (n+m)! possible permutations.

C(i, j) = c(ui → vj) + min
(ϕ1,...,ϕn+m)
∈S (n+m)

n+m∑
k=1

c(aik → bjϕk) (A.1)

Finally, a matrix C is computed, of size (n+m)× (n+m) (cf Figure A.2),
so we can take into account each cost for each node. The shape of the matrix
allows to match each node ui to a unique node vj, with ui and vj which can
possibly be ε-nodes. To ensure that each ε-node can only be associated to one
unique node, the computed cost between this node and any other ε-node is fixed
to∞. In a pretty natural way, the cost of matching two ε-nodes together is set
to 0, this matching inducing no graph transformation. Figure A.2 presents a C
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u3 1

2u1 1
u2

1v1 3
v2

Figure A.2: C matrix example for two graphs. Nodes of the graph are
attributed. The matching cost of two nodes is the difference between their
attributes. The cost of matching two edges is 0. Cost of inserting/deleting
nodes/edges is 1.

matrix example for two graphs. We can see that this matrix can be divided into
4 parts: a substitution part (up left), a deletion part (up right), an insertion
part (down left) and an empty part (down right).

C =

v1 v2 v3 ε1 ε2 ε3 ε4



u1 1 0 1 3 ∞ ∞ ∞

u2 1 0 1 ∞ 3 ∞ ∞

u3 2 1 2 ∞ ∞ 4 ∞

u4 0 1 0 ∞ ∞ ∞ 2
ε1 2 ∞ ∞ 0 0 0 0
ε2 ∞ 3 ∞ 0 0 0 0
ε3 ∞ ∞ 2 0 0 0 0

The problem of node matching is thus a linear matching problem, where the
costs of matching one node to another are encoded in the C matrix (Eq. A.1).
This problem can be solved with the Hungarian algorithm (also called Munkres
algorithm) [46]. With the obtained matching, it is possible to deduce an edit
path which transforms G1 into G2 . From this edit path, we can easily compute
its associated cost, which corresponds to the approximation made by the
algorithm. Many propositions have been made to improve the algorithm, with
greedy methods to reduce computation times as in [66], or iterative methods
to increase accuracy as in [12].
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It may be important to notice that the edit path obtained is not necessary
optimal, and thus the obtained cost is not necessary optimal. Indeed, the way
the matrix is built does only take into account partial structural information of
the graph. The matching and the edit path are thus optimal only for the linear
assignment problem. The cost associated to the edit path obtained is thus an
upper bound of the graph edit distance.

[67] also proposes to compute a lower bound, by dividing by two the costs
of edit operations over edges. [68] use this lower bound with the upper bound
as a feature vector, which is used as input of an SVR to learn to predict a graph
edit distance more accurately, getting encouraging results. But this prediction
is limited by two points. First, having only two features to predict an accurate
value might no be enough. Second, the approximation obtained with BP-GED
is sometimes very inaccurate.

Even though those works are encouraging, there is, on our knowledge, no
work using machine learning to approximate the graph edit distance.

In the next section, we present our new approach to approximate the graph
edit distance with deep learning, by the use of the C matrix.

A.2 Deep Learning based method for GED
approximation

We can suppose that learning with only two features does not allow to efficiently
generalize. Our idea here is to directly extract features from the matrix C.
However, using this matrix induces two problems when using learning methods
with it.

First of all, graphs are, by definition, variable in size. The matrix C is thus
also variable in size. This particularity prevents the use of most of learning
methods, which requires the use of fixed size vectors.

Second comes from the fact that there is no order in the set of nodes of
a graph. Thus, there are multiple C matrices for any pair of graphs. Each of
those matrices corresponds to one permutation of node. In such a case, we need
the prediction to be identical for a pair of graphs, independently of the node
permutation.

To solve the first problem, we use tools from convolutional neural networks.
Indeed, some frameworks require to work on varying size images. In those cases,
one proposed way is to use Spatial Pyramid Pooling [34] for example.

A solution for the second problem is explained in next section.
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Figure A.3: Permutation matrix example

A.2.1 Network Input

Nodes ordering in a graph is not fixed, and many different node orders can
express the same graph. Thus different C matrices can be computed for the
same pair of graphs. Those matrices contain the same information, apart from
one permutation. To be less sensitive to those permutations, we permute the
matrix C. This permutation is made in a way that matches made by Munkres
algorithm. Matrix C is thus permuted following permutation matrix P defined
by equation A.2. This solves only partially the permutation problem, and a
more efficient method could be used in future works.

P (i, j) =
1 si ϕ(i) = j

0 sinon
(A.2)

Figure A.3 shows an example of permuted matrix, following example in
figure A.2. Matrices thus built and permuted are then used by our learning
method to estimate the graph edit distance between two graphs. This matrix
being of variable size, convolutional layers are used, those layers being not
limited to a fixed size input.
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Figure A.4: Visual example of dilated convolutions.

A.2.2 Convolutional Network

Convolutional networks do use convolutional filters with learned weights. Those
filters are generally of fixed size (3×3, 5×5) to limit the number of parameters
to learn. Those filters are combined with pooling operations to artificially
increase the context taken into account by those filters. This context is called
receptive fields. To increase this receptive fields, in small windows (2 × 2),
pooling aggregates the set of values in the windows and computes one value,
which can be the max value of the window, or the minimum, the mean... The
obtained matrix is thus a shorter version of the original matrix, where the
reduction ratio depends on the window size.

The reduction of the matrix size is not the only way to increase the size
of the receptive field. Another way is to use dilated convolutions. The idea of
dilated convolution is to use sparse filters, that are bigger but with same amount
of free parameters to learn. A dilation rate is used for this. This method is based
on the "à trou" algorithm [37], and has been used for example in semantic
segmentation [19]. Figure A.4 shows an example of dilated convolutions.

Furthermore, cost matrices have very variable sizes, and can be very small.
Using the dilated convolution seems more judicious than pooling, to prevent
to reduce the size of an already small matrix.

Finally, the architecture of our model uses the same configuration than the
first layers of VGG-16 [75]. This architecture has shown a good capacity of
feature extraction. Our networks thus use the 6 first convolutional layers of
VGG-16, where we replace the pooling by dilation. The network thus has 2
first layers of 64 filters of size 3× 3 and dilation 1. 2 layers with 128 filters of
size 3× 3 and dilation 2 follows. Finally, 2 layers with 256 filters of size 3× 3
and dilation 4 finalize the features extraction part.

The purpose of our work is in a first time to evaluate the ability to
extract relevant features from the cost matrix. The network architecture is
not optimized to solve the problem, which could be an interesting perspective.

Our model architecture thus does not change the shape of the matrix. If
the input matrix has a shape of (n + m) × (n + m), then the output of the
feature extraction part is a tensor of shape (n+m)×(n+m)×256. However, in
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Figure A.5: Spatial Pyramid Pooling applied on a 4 × 4 matrix with N = 1
and N = 2

order to achieve regression, we have to obtain a fixed-size matrix. The solution
adopted here is the Spatial Pyramid Pooling

A.2.3 Spatial Pyramid Pooling

The principle of the Spatial Pyramid Pooling is to apply pooling not on a
fixed size windows but on multiple windows of variable sizes. For this purpose,
the input matrix is divided into N2 parts. Thus, the shape of each window is
a ratio of the shape of the input matrix. For each of these windows, a value
is extracted. As for traditional pooling, this value can be the maximum, the
minimum, the mean or any feature of the window. Here, we are looking for a
minimal cost, we then used the minimum value.

This operation is made for multiple values of N , to extract features for
each filter. We decided to use 2 different values for N in our experiments: 1
and 2, corresponding to 5 values per filter. The last layer having 256 filters,
1280 features are extracted by the Spatial Pyramid Pooling. Figure A.5 shows
an example of SPP.

A regression step is finally performed by dense layers applied on the features
extracted by Spatial Pyramid Pooling. Two dense layers of 21 neurons are used
followed by one dense layer of one neuron, corresponding to the predicted value.
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8.3
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Figure A.6: Complete process of our method.

The network is trained using the Adam optimizer [42]. Figure A.6 shows the
complete process of our method and its global architecture.

The complete network, including dilated convolutions, Spatial Pyramid
Pooling and dense layers, has 1,172,217 parameters and has been developed
with Keras [21]. The next section presents the experiments that were conducted
to evaluate the performance of the proposed model.

A.3 Experiments

This section presents the different experiments made to evaluate the perfor-
mances of the proposed approach. The experimental protocol with the metrics
are firstly presented. We then evaluate the results obtained on 2 graph datasets
(Letter and Fingerprint [64]). The results are compared to those obtained by
BP-GED [69] and SVR [68], a method that is also based on machine learning.

A.3.1 Experimental protocol and metrics

The experimental protocol is the following. 1000 graphs are randomly extracted
from the initial dataset. For each pair of graphs, the exact graph edit distance
is computed, using the A∗ algorithm. The cost matrix C is also computed
and permuted, following the strategy defined in A.2.1. The set of 5.105 pairs
of graphs is then splitted into 3 sets: a training set with 40% of the data, a
validation set with 10% of the data, and a test set with 50% of the data. The
validation set is used to ensure that our model does not overfit during training.
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Figure A.7: Letter A with different noises.

In the literature, two metrics are used to evaluate the results: the mean
relative error, expressed as a percentage in equation A.3, and the mean squared
error, defined in equation A.4. In both equations, dai is the approximate
distance of the ith pair of graphs, and dei is the exact distance of the ith pair
of graphs.

MRE = 100 ∗ 1
N

N∑
i=1

|dai − dei |
dei

(A.3)

MSE = 1
N

N∑
i=1

(dai − dei)2 (A.4)

A.3.2 Letter

Letter [64] is a graph dataset representing capital letters made of line segments.
Each letter is noised. Figure A.7 shows multiple examples of noised letters.
Each node corresponds to one vertex of the letter, attributed with x and
y coordinates. Edges represent the existence of a line segment between two
vertices and are not attributed.

The cost to substitute two nodes is computed as the euclidean distance
of the coordinate of each node, while the cost to substitute two edges is 0.
Following [65], the cost to delete or insert nodes is fixed to 0.9 while the cost
to delete or insert an edge is fixed to 1.7.

Table A.1 shows the obtained results on the Letter dataset with MRE and
MSE for 3 methods : BP-GED, SVR and our approach. Figure A.8 shows those
results graphically. For a better readability, the log10 of the results is used.

BP-GED SVR Proposed approach
MRE 13.11 7.76 4.2
MSE 3.07 0.86 0.32

Table A.1: Comparison of BP-GED, SVR and our approach on LETTER
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Figure A.8: Obtained results by BP-GED, SVR and our approach on LETTER.
log10 of MRE and MSE is computed for a better readability

Figure A.9: Finger print used to generate the dataset

As one can see, our approach is clearly better, in MRE as in MSE. The use
of matrix C thus have helpful information that are correctly extracted by our
approach, leading to a better accuracy.

A.3.3 Fingerprint

Fingerprint [64] is a dataset made of graphs representing finger prints (Figure
A.9). It has been obtained by a skeletonization of finger print images. Each
branch and vertex of the obtained skeleton is a node, and edges represent the
links between the nodes.

Nodes have no attributes. The matching of two nodes is thus only penalized
by the cost for matching their respective edges. Edges are characterized by their
angle. Thus, the cost of matching two edges depend on the distance between
both angles, to the nearest 2π. Insertion and deletion costs are fixed to 0.525
for nodes and 0.125 for edge, following [65].
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BP GED SVR Proposed approach
MRE 68.39 7.56 1.15
MSE 16.15 0.10 0.006

Table A.2: Comparison between BP-GED, SVR and our approach on
Fingerprint.

Figure A.10: Obtained results by BP-GED, SVR and our approach on
Fingerprint. log10 of MRE and MSE is computed for a better readability.

Table A.2 presents the results obtained with MRE and MSE for 3 methods:
BP-GED, SVR and our approach. Figure A.10 shows those results in a
graphical way. For better readability, log10 of the results is shown.

We can see that both learning methods allows a clear increase of accuracy
compared to BP-GED on this dataset. This might be explained by the fact
that most of the features are contained into edges, which is not easily taken
into account by BP-GED. Our approach also obtain better results than SVR.
As for the Letter dataset, this might be explained by the fact the matrix C
embed more information than the couple made of upper and lower bounds.

A.4 Conclusion

In this chapter, we presented a new approach to approximate the grapĥ edit
distance. Our method is based on the use of convolutional networks and Spatial
Pyramid Pooling. The use of both methods allows the feature extraction from
the cost matrix, despite its variable size.
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Conclusion

Our approach is evaluated on two different datasets. It presents good
performance on both datasets, with better results than the only other method
based on machine learning. Those results could be improved, by a network
optimization for example. However, the proposed approach does not provide
an edit path, which could be interesting for some applications.
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