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Titre: Équations modulaires en dimension supérieure, applications au cal-
cul d’isogénies et au comptage de points

Résumé: L’objectif de cette thèse est de généraliser la méthode d’Elkies,
un ingrédient fondamental de l’algorithme SEA pour le comptage de points
d’une courbe elliptique sur un corps fini, au cas des variétés abéliennes
polarisées de dimension supérieure. Les équations modulaires jouent un
rôle central dans cette étude. Premièrement, nous donnons un algorithme
de calcul d’isogénies entre surfaces abéliennes à partir d’équations modu-
laires. Deuxièmement, nous obtenons des bornes de degré et de hauteur
pour les équations modulaires en fonction de leur niveau. Troisièmement,
nous décrivons un algorithme rigoureux permettant d’évaluer des équations
modulaires pour les surfaces abéliennes via des approximations complexes.
Combiner ces résultats permet d’obtenir un algorithme de comptage de
points de meilleure complexité pour les surfaces abéliennes principalement
polarisées avec multiplication réelle.

Mots-clés: Variétés abéliennes; isogénies; équations modulaires; algo-
rithmes.

Title: Higher-dimensional modular equations, applications to isogeny com-
putations and point counting

Abstract: This thesis aims to generalize Elkies’s method, a fundamen-
tal ingredient in the SEA algorithm for counting points on elliptic curves
over finite fields, to the case of polarized abelian varieties of higher di-
mensions. Modular equations play a central role in this study. First, we
design an algorithm using these modular equations to compute isogenies
between abelian surfaces. Second, we give degree and height bounds for
modular equations in terms of their level. Third, we describe a rigorous
algorithm to evaluate modular equations for abelian surfaces via complex
approximations. Combining these results yields an asymptotically faster
point counting algorithm for principally polarized abelian surfaces with
fixed real multiplication.
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Résumé étendu en français

Le problème du comptage de points pour les courbes elliptiques consiste,
étant donnée une courbe elliptique E sur un corps fini Fq, à calculer le
nombre de points de E définis sur Fq. Ses analogues en dimension supé-
rieure demandent, étant donnée une variété abélienne polarisée A sur Fq, de
calculer le polynôme caractéristique de l’endomorphisme de Frobenius πA
de A. Une des motivations principales pour étudier le problème du comp-
tage de points provient de la cryptographie à clés publiques, qui utilise des
courbe elliptiques et des Jacobiennes de dimension 2 dont le nombre de
points est (quasiment) premier [Mil85, Kob87, Kob89]. Au-delà de cette
application, le problème du comptage a un intérêt intrinsèque en théorie
algorithmique des nombres.

L’algorithme de Schoof [Sch85, Sch95] pour les courbes elliptiques, et
ses généralisations en dimensions supérieures [Pil90, GH00, GKS11, GS12,
Abe18], permettent de résoudre le problème du comptage de points en
temps polynomial en log(q). Pour une série de petits premiers `, cet algo-
rithme calcule le polynôme caractéristique de πA modulo ` en étudiant l’ac-
tion de πA sur le sous-groupe de `-torsion A[`]. On conclut ensuite à l’aide
du théorème chinois et des bornes de Hasse–Weil [Sil09, §V.1, Thm. 1.1],
[Mil86a, Thm. 19.1]. La méthode de Schoof est l’état de l’art pour le comp-
tage de points en grande caractéristique, sauf dans le cas des courbes el-
liptiques où une amélioration importante existe.

Pour calculer le nombre de points d’une courbe elliptique E sur Fq mo-
dulo `, Elkies [Elk98] montre que l’on peut, environ une fois sur deux, rem-
placer E[`], noyau de l’endomorphisme [`], par le noyau d’une `-isogénie de
source E. Celle-ci est calculée à l’aide du polynôme modulaire elliptique Φ`

de niveau `, une équation bivariée qui relie les j-invariants de courbes el-
liptiques `-isogènes [Cox13, §11.C]. On peut résumer les prérequis de la
méthode d’Elkies en trois points :

• Un algorithme de calcul d’isogénies permettant, à partir de Φ` et
de deux courbes elliptiques `-isogènes E,E ′, de calculer le noyau de
l’isogénie correspondante [Elk98, BMSS08] ;
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• Des bornes de complexité (degré et taille des coefficients) pour le
polynôme Φ`, fournies par un résultat de Cohen [Coh84] explicité par
la suite [BS10, Paz19] ;

• Un moyen d’évaluer efficacement le polynôme Φ` et ses dérivées, soit
en précalculant ces polynômes [Eng09b, BLS12], soit de manière di-
recte [Sut13].

La méthode d’Elkies permet de réduire le degré des polynômes mani-
pulés au cours de l’algorithme de comptage. L’algorithme obtenu est de
meilleure complexité asymptotique en moyenne que la méthode de Schoof
[SS14, SS15], et le gain en pratique pour des données de taille crypto-
graphique est clair. La méthode d’Elkies entre, avec d’autres idées dues
à Atkin, dans la composition de l’algorithme SEA pour le comptage de
points des courbes elliptiques [Sch95], implanté dans de nombreux logiciels
de calcul formel et théorie des nombres comme Pari/GP ou Magma. Les
polynômes modulaires elliptiques et l’algorithme d’Elkies apparaissent éga-
lement dans les algorithmes fondés sur les graphes d’isogénies de courbes
elliptiques [Koh96].

Le but de cette thèse est de généraliser la méthode d’Elkies aux variétés
abéliennes de dimension supérieure, notamment dans deux cas où la mé-
thode de Schoof est bien étudiée : les surfaces abéliennes principalement
polarisées, avec ou sans multiplication réelle. Le rôle du polynôme modu-
laire elliptique Φ` est alors joué par les équations modulaires de Hilbert
et de Siegel, respectivement, dont des exemples sont connus [BL09, Mil15,
Mar20, MR20]. D’un point de vue géométrique, ces équations modulaires
définissent le lieu, dans les espaces de modules correspondants, des surfaces
abéliennes liées par une isogénie de type fixé. Le langage des variétés de
Shimura PEL [Mil05] permet à la fois d’unifier ces deux exemples et d’en
considérer de vastes généralisations.

Les contributions de cette thèse remplissent les trois prérequis de la
méthode d’Elkies évoqués précédemment :

• Le chapitre 3 présente un algorithme de calcul d’isogénies entre sur-
faces abéliennes principalement polarisées, à partir des équations mo-
dulaires de Hilbert ou Siegel ;

• Le chapitre 5 présente des bornes de degré et de hauteur (i.e. de taille
de coefficients) pour les équations modulaires dans le cadre général
des variétés de Shimura PEL ;

• Le chapitre 6 présente un algorithme d’évaluation des équations mo-
dulaires de Hilbert et de Siegel pour les surfaces abéliennes via des
approximations complexes.
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Les chapitre 2 présente les espaces de modules de variétés abéliennes
et les équations modulaires, et est nécessaire pour la suite de la thèse. Le
chapitre 4 donne des résultats reliant la hauteur d’une fraction rationnelle
à celles de ses évaluations, et est nécessaire pour le chapitre 5.

Enfin, le chapitre 7 combine les résultats précédents et les applique
au problème du comptage de points. Nous obtenons en particulier un al-
gorithme de comptage pour les surfaces abéliennes principalement polari-
sées à multiplication réelle (fixée) qui est, sous heuristiques et à facteurs
constants près, de même complexité asymptotique que l’algorithme SEA
pour les courbes elliptiques.

Ces résultats ont donné lieu à des prépublications : [KPR19, Kie20c,
Kie20a] et [Kie20b] correspondent approximativement aux chapitres 3, 4,
5 et 6 respectivement. Le chapitre 6 reprend également une partie des
résultats l’article [Kie21] à paraître. La suite de ce résumé présente les
résultats principaux des différents chapitres.

Chapitre 3 : Calcul d’isogénies entre surfaces abéliennes

Ce chapitre étend l’algorithme de calcul d’isogénies à partir des poly-
nômes modulaires, connu dans le cas des courbes elliptiques, au cas des
surfaces abéliennes principalement polarisées avec ou sans multiplication
réelle. Présentons ici le second cas : on s’intéresse, pour un premier `,
à calculer une `-isogénie ϕ (de degré `2) entre deux surfaces abéliennes
principalement polarisées A et A′. Soit A2 l’espace de modules corres-
pondant ; il est birationnel à P3, et son corps des fonctions est engendré
par les trois invariants d’Igusa notés j1, j2, j3. L’application de Kodaira–
Spencer relie les déformations possibles de l’isogénie ϕ, qui se calculent à
l’aide des équations modulaires de Siegel et de leurs dérivées, à l’applica-
tion dϕ : T0(A) → T0(A′) induite par ϕ sur les espaces tangents à A et A′
en zéro.

Nous explicitons cette application de Kodaira–Spencer dans le cas des
Jacobiennes de courbes de genre 2 : concrètement, une formule explicite
permet d’évaluer certaines fonctions modulaires de Siegel vectorielles, les
dérivées des invariants d’Igusa, en termes des coefficients d’une équation
de courbe hyperelliptique de genre 2. Le résultat suivant en découle.

Théorème 1. Soit ` un nombre premier, et soit k un corps de caractéris-
tique 0 ou > 8`+ 7. Soit U l’ouvert de A2 formé des surfaces abéliennes A
sans automorphismes supplémentaires et telles que j3(A) 6= 0. On suppose
qu’il existe un algorithme permettant d’évaluer les dérivées des équations
modulaires de Siegel de niveau ` en un point de U × U sur k où elles sont
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définies, utilisant Ceval(`) opérations dans k. Soit ϕ : A→ A′ une `-isogénie
définie sur k telle que A,A′ soient dans U et telle que la sous-variété
de A2 × A2 définie par les équations modulaires soit normale en (A,A′).
Alors, étant donnés les invariants d’Igusa de A et A′, on peut calculer une
représentation explicite de l’isogénie ϕ en utilisant O(Ceval(`)) + Õ(`) opé-
rations dans k.

Chapitre 4 : Hauteurs de fractions rationnelles et inter-
polation

Ce chapitre présente tout d’abord la notion de hauteur pour les poly-
nômes et fractions rationnelles à coefficients dans un corps de nombres L.
Cette quantité positive reflète la taille des coefficients. Par exemple, lorsque
L = Q et F ∈ Q(X), on écrit F = P/Q avec P,Q ∈ Z[X] premiers entre
eux ; alors la hauteur h(F ) de F est donnée par le maximum des log |c|,
lorsque c parcourt les coefficients non nuls de P et Q.

Ce chapitre présente ensuite des résultats, nécessaires au chapitre 5,
reliant la hauteur d’un polynôme ou d’une fraction rationnelle à la hauteur
de ses évaluations en certains points ; cela permet de borner h(F ) lorsque F
est une fraction rationnelle obtenue par interpolation, comme les équations
modulaires. On considère ici des points d’évaluation xi entiers et (presque)
consécutifs, on se donne H telle que h(F (xi)) ≤ H pour tout i, et l’on
recherche en particulier des énoncés où h(F ) est bornée en O(H).

Théorème 2. Soit L un corps de nombres de degré dL sur Q, soit JA,BK un
intervalle de Z, et notons D = B−A etM = max {|A| , |B|}. Soit F ∈ L(X)
une fraction rationnelle de degré au plus d ≥ 1. Soit S ⊂ JA,BK ne conte-
nant pas de pôle de F , soit η ≥ 1, et soit H ≥ max {4, log(2M)}. Supposons
de plus que

1. h(F (x)) ≤ H pour tout x ∈ S.

2. S contient au moins D/η éléments.

3. D ≥ max {ηd3H, 4ηddL}.

Alors

h(F ) ≤ H + CLηd log(ηdH) + d log(2M) + log(d+ 1)

où CL désigne une constante qui dépend uniquement du corps de nombres L.
On peut prendre CQ = 960.
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Chapitre 5 : Bornes de degré et de hauteur pour les
équations modulaires

Ce chapitre fournit des bornes de degré et de hauteur pour les équa-
tions modulaires dans le cadre général des variétés de Shimura PEL. On
considère la variété de Shimura associée à un certain groupe réductif G et
un choix de niveau, des composantes connexes S, T de cette variété, et un
choix d’invariants sur ces composantes connexes. Les variétés algébriques S
et T sont des espaces de modules pour les variétés abéliennes complexes
munies d’une polarisation, d’endomorphismes, et d’une structure de niveau
de types fixés.

Pour un élément adélique δ de G, les équations modulaires de niveau δ
sont des fractions rationnelles multivariées définissant la correspondance de
Hecke de niveau δ dans le produit S × T . Cette correspondance de Hecke
décrit, au niveau des variétés abéliennes, un certain nombre d(δ) d’isogénies
de degré noté l(δ). Nous montrons que le degré et la hauteur des équations
modulaires de niveau δ est bornée en termes de d(δ) et l(δ).

Théorème 3. Avec les notations ci-dessus, il existe des constantes C1

et C2 (indépendantes de δ) vérifiant la propriété suivante. Soit δ un élément
adélique de G, et F une fraction rationnelle obtenue comme coefficient de
l’une des équations modulaires de niveau δ. Alors le degré total de F est
borné par C1 d(δ), et la hauteur de F est bornée par C2 d(δ) log l(δ).

Dans le cas des équations modulaires de Siegel de niveau `, nous avons
d(δ) = `3 + `2 + `+ 1 et l(δ) = `2. Ainsi, le degré des équations modulaires
de Siegel de niveau ` est O(`3), et leur hauteur est O(`3 log `). Dans le cas
du polynôme modulaire elliptique Φ`, on retrouve, aux constantes près, les
bornes de degré et de hauteur précédemment connues.

Chapitre 6 : Évaluation des équations modulaires pour
les surfaces abéliennes

Ce chapitre présente un algorithme d’évaluation des équations modu-
laires de Siegel et de Hilbert pour les surfaces abéliennes, ainsi que de leurs
dérivées, en un point défini sur un corps de nombres (ou un corps fini, par
relèvement). Cet algorithme est fondé sur des approximations complexes, et
fait notamment intervenir le calcul rapide de certaines formes modulaires,
les thêta-constantes en dimension deux.

Le calcul rapide de ces thêta-constantes repose classiquement sur deux
heuristiques, à savoir la correction de certains choix de signes dans les
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formules de duplication, et la bonne convergence d’itérations de Newton. Un
résultat auxiliaire de ce chapitre permet de lever la première heuristique :
les choix de signes habitullement utilisés dans l’algorithme de calcul de
thêta-constantes en dimension deux sont en effet corrects. La seconde ne
pose pas de problèmes expérimentalement.

En dehors de ces heuristiques, l’utilisation de l’arithmétique d’inter-
valles permet de certifier les résultats obtenus par l’algorithme d’évaluation
des équations modulaires. Un cas particulier s’énonce comme suit.

Théorème 4 (Sous heuristiques relatives au calcul rapide de thêta-cons-
tantes en dimension deux). Soit ` un nombre premier, et (j1, j2, j3) ∈ Q3

un triplet de hauteur O(1) où les dénominateurs des équations modulaires
de Siegel de niveau ` ne s’annulent pas. Alors on peut évaluer ces équations
modulaires et leurs dérivées en (j1, j2, j3) en utilisant Õ(`6) opérations bi-
naires.

Ce coût est à comparer au coût de stockage des équations modulaires
sous forme de fractions rationnelles, que l’on estime de Θ(`15 log `) au vu
des résultats du chapitre 5 : lorsque la dimension de l’espace de modules
associé est au moins deux, le précalcul des équations modulaires ne semble
pas la stratégie à adopter.

Dans le cas des équations modulaires de Hilbert, le coût de l’algorithme
d’évaluation peut décroître jusqu’à Õ(`2) opérations binaires seulement.
Dans ce cas, la manipulation des équations modulaires devient asymptoti-
quement négligeable devant le reste de l’algorithme de comptage de points.
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Notation and conventions

Here we gather notations appearing in the thesis. When appropriate,
we indicate the page where a more precise definition can be found.

We also adopt the following conventions concerning the words variety,
degree, and lattice. Let k be a field.

• An algebraic variety over k is an integral (i.e. reduced and irreducible)
separated scheme of finite type over k.

• The degree of a rational fraction F ∈ k(X) is max{deg(P ), deg(Q)},
where P,Q ∈ k(X) are coprime and F = P/Q. The degree of a
polynomial P ∈ k[X1, . . . , Xn] is its total degree. The degree of a
rational fraction F ∈ k(X1, . . . , Xn) is the maximum of the total
degrees of its numerator and denominator.

• Let V be a finite-dimensional vector space over Q. A lattice in V is a
subgroup of V (Q) generated by a basis of V over Q; a lattice in V (R)
is a subgroup of V (R) generated by a basis of V (R) over R; if p is a
prime number, a lattice in V (Qp) is a subgroup of the form

⊕
i∈I Zpei

where (ei)i∈I is a basis of V (Qp) overQp; and finally, a lattice in V (Af )
(see notation below) is a product of lattices in V (Qp) for each p that
are equal to V (Zp) for all p but finitely many.

General notation
JA,BK Integer interval {n ∈ Z : A ≤ n ≤ B}
#S Cardinality of S
1P Function with value 1 when property P holds,

and 0 otherwise
Matn×m(A) Module of n×m matrices over the ring A
Sp2g Symplectic group of order 2g (p. 66)
GSp2g General symplectic group of order 2g
mt Transpose of the matrix m
m−t Inverse of mt

In Identity matrix of size n× n
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Diag(a1, . . . , an) Diagonal n× n matrix with entries a1, . . . , an
(A B) Concatenation of matrices A and B
Pn Projective space of dimension n ≥ 1
An Affine space of dimension n ≥ 1
Gm Multiplicative group
ZF Ring of integers of the number field F
∂−1
F Inverse different of the number field F (p. 76)

(x) Ideal generated by x
TrF/Q, NF/Q Trace and norm in the finite extension F/Q
PF Set of finite primes in the number field F
k Algebraic closure of the field k
V (k) Set of k-points of the algebraic variety V
Ω1(V ) Vector space of global differential forms on V
log+(x) log(max {1, x}), where x ∈ R
f = OX

(
g(n1, n2, . . .)

)
There exists C > 0 depending on X such that

f(n1, n2, . . .) ≤ C max {1, g(n1, n2, . . .)}
for all values of n1, n2, . . . ≥ 0

f = ÕX

(
g(n1, n2, . . .)

)
There exist C, k > 0 depending on X such that

f ≤ C max
{

1, g(n1, . . .) log+(g(n1, . . .))
k
}

for all values of n1, n2, . . . ≥ 0

Chapter 1
Φ` Elliptic modular polynomial of level ` (p. 24)
H1 Poincaré upper half plane (p. 22)
j (E), j (τ) j-invariant (p. 23)
Λ(τ), where τ ∈ H1 Lattice Z⊕ τZ ⊂ C
E(τ), where τ ∈ H1 Complex elliptic curve C/Λ(τ)
X(1) Modular curve of level one (p. 22)
θ0(τ), θ1(τ) for τ ∈ H1 Theta constants on H1 (p. 22)
E[n] n-torsion subgroup of the elliptic curve E
T`(E) `-adic Tate module of the elliptic curve E (p. 27)
T0(E) Tangent space of E at the neutral point
E4, E6 Normalized Eisenstein series on H1

G(`,Fq) and others Isogeny graphs of elliptic curves (p. 30)
Ell(O, k) Set of elliptic curves with endomorphism ring O

over k up to isomorphism (p. 31)
A2 Siegel moduli space for abelian surfaces (p. 36)
A2,F Hilbert moduli space for abelian surfaces with

real multiplication by ZF , where F is a real
quadratic field (p. 36)
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j1, j2, j3 Igusa invariants on A2

Ψ`,1,Ψ`,2,Ψ`,3 Siegel modular equations of level ` for principally
polarized abelian surfaces

Chapter 2

Â Dual of the abelian variety A (p. 44)
tx Translation by x (p. 43)
A[n] n-torsion subgroup of the abelian variety A
Pic0(A) Group of line bundles algebraically equivalent to

zero on A, up to linear equivalence (p. 44)
NS(A) Néron–Severi group of A (p. 44)
Jac(C) Jacobian of the smooth curve C (p. 45)
ηP Embedding C ↪→ Jac(C), Q 7→ [Q− P ]
Endk(A) Ring of endomorphisms of A defined over k
End0(A) Endomorphism algebra of A over k (p. 47)
† Rosati involution (p. 47)
End(A)† Set of real endomorphisms of A (p. 47)
End0(A)† Subspace of invariants under † in End0(A)
Af Ring of finite adeles of Q (p. 50)
Ẑ Profinite completion of Z (p. 51)
Gder, Z, Gad, T , ν,
G(R)+, G(Q)+ See p. 53
(G,X+) PEL datum (p. 55)
ShK(G,X+) (or ShK) PEL Shimura variety of level K attached to the

PEL datum (G,X+) (p. 55)
C ⊂ G(Af ) Set of representatives for connected components

of ShK(C) (p. 56)
Sc = Γc\X+ Connected component of ShK(C) associated with

c ∈ C (p. 56)
E(G,X+) Reflex field of the PEL datum (G,X+) (p. 56)
(Λc, ψc) Standard lattice attached to c ∈ C (p. 58)
Tp(A) p-adic Tate module of A (p. 60)
T̂ (A) Global Tate module of A (p. 60)
an(f) Fourier coefficient of f (p. 70)
q1, q2, q3 Variables in Fourier expansions on H2 (p. 70)
θa,b for a, b ∈ {0, 1}g Theta constants on Hg (p. 71)
θj for 0 ≤ j ≤ 15 Theta constants on H2 (p. 71)
h4, h6, h10, h12, ψ4, ψ6,
χ10, χ12 Siegel modular forms on H2 (p. 72)
j1, j2, j3 Igusa invariants on H2 (p. 73)
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detk Symn Irreducible representations of GL2(C) (p. 73)
df
dτ

Vector-valued derivative of a Siegel modular
form f on H2 (p. 74)

f8,6 Siegel modular form of weight det8 Sym6 (p. 75)
HR Hilbert embedding (p. 77)
G2, F6, F10 Hilbert modular forms for F = Q(

√
5) (p. 80)

g1, g2 Gundlach invariants for F = Q(
√

5) (p. 81)
bj for 0 ≤ j ≤ 6 Coefficients of the pullback of f8,6 on H2

1 (p. 81)
Hδ Hecke correspondence of level δ ∈ G(Af ) (p. 84)
d(δ) Degree of the Hecke correspondence Hδ (p. 85)
l(δ) Degree of the isogenies described by Hδ (p. 86)
Ψδ,m Modular equations of level δ (p. 89)

Chapter 3
Ag Moduli space of principally polarized (p.p.)

abelian varieties of dimension g
Ag,` Moduli space of p.p. abelian varieties of dimen-

sion g endowed with the kernel of an `-isogeny
H` = (H`,1, H`,2) Map Ag,` → Ag×Ag, (A,K) 7→ (A,A/K) (p. 96)
dϕ Tangent map of the isogeny ϕ (p. 96)
ω(C) Basis of differential forms on Jac(C) associated

with the hyperelliptic equation C (p. 98)
A(τ) P.p. abelian surface C2/Λ(τ) attached to τ ∈ H2

(p. 99)
AF (τ) P.p. abelian surface C2/ΛF (τ) with real multipli-

cation by ZF attached to τ ∈ H2
1 (p. 100)

ω(τ) Standard basis of differential forms on A(τ)
or AF (τ) (p. 99)

C(τ), CF (τ) Standard genus 2 hyperelliptic equations at-
tached to τ ∈ H2 (resp. τ ∈ H2

1) (p. 100)
Cov(f) Covariant attached to the Siegel modular form f

(p. 101)
I2, I4, I6, I

′
6, I10, R Scalar-valued covariants (p. 103)

y1, y2, y3, X Vector-valued covariants (p. 103)
∂j(τ) 3 × 3 matrix of derivatives of Igusa invariants

at τ ∈ H2 (p. 108)
DΨ`,L, DΨ`,R 3 × 3 matrices of derivatives of Siegel modular

equations of level ` (p. 109)
∂j(F )(τ) 3 × 2 matrix of derivatives of Igusa invatiants

at τ ∈ H2
1 (p. 111)
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DΨβ,L, DΨβ,R 3 × 3 matrices of derivatives of Hilbert modular
equations of level β (p. 111)

W (k) Witt ring of the field k
Xg → Ag Moduli stack of abelian varieties of dimension g

with its universal family (p. 115)
Ag(`),Ag,`,Ag,F ,Ag,β Moduli stacks of abelian varieties of dimension g

with suitable structure (pp. 116 and 117)
C<2> Symmetric square of the curve C
ϕ∗ Pullback by the isogeny ϕ on line bundles or dif-

ferential forms
Θ Theta divisor (p. 126)
LαA Line bundle on A (up to algebraic equivalence)

associated with α ∈ End(A)† (p. 127)(
L · L′

)
Intersection pairing for line bundles on a smooth
algebraic surface

Ceval(`), Ceval(β) Cost of evaluation for modular equations of Siegel
type and level ` (resp. Hilbert type and level β)
(p. 130)

Chapter 4
h(F ) Height of F (p. 139)
dL Degree of the number field L over Q
VL,V0

L,V∞L Set of all (resp. all non-archimedean, resp. all
archimedean) places of L

vp p-adic valuation, where p ∈ PL (p. 139)
|·|v Normalized absolute value associated with the

place v (p. 139)
D! Factorial of D ≥ 1
h̃(x) 1

dL
logNL/Q(x) (p. 146)

Chapter 5
j1, . . . , jn+1 Modular functions on S, T (p. 158)
J1, . . . , Jn+1, Y1, . . . Indeterminates
E Equation satisfied by j1, . . . , jn+1 on S (p. 158)
Σ, K0, K

′, K ′′ See p. 159
gδ,m Denominator of Ψδ,m (p. 160)
SGC(j1, . . . , jn+1) Symmetric geometric complexity (p. 161)
e Degree of E in Jn+1

dE Total degree of E in J1, . . . , Jn
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ResX(P,Q) Resultant of P,Q with respect to the variable X
GC(j1, . . . , jn+1) Geometric complexity (p. 167)
Γ0(`) Congruence subgroup of Sp4(Z) (p. 168)
C` Set of representatives for Γ0(`)\ Sp4(Z) (p. 168)
g` Classical Siegel modular form; denominator of

Siegel modular equations of level ` (p. 168)
w` Weight of g`
f

(i)
`,m(τ) Coefficient of Y i in g`(τ)Ψ`,m

(
j1(τ), j2(τ), j3(τ)

)
D` Complete denominator of Siegel modular equa-

tions of level ` (p. 170)
Γ0
F (β) Congruence subgroup of SL(ZF ⊕ ∂−1

F ) (p. 171)
∆ Discriminant of F
Cβ, C

σ
β Set of representatives modulo Γ0

F (β) (p. 171)
gβ Classical Hilbert modular form; denominator of

Hilbert modular equations of level β (p. 171)
wβ Weight of gβ
f

(i)
β,m(τ) Coefficient of Y i in gβ(τ)Ψβ,m

(
g1(τ), g2(τ)

)
Dβ Complete denominator of Hilbert modular equa-

tions of level β (p. 172)
hF (A) Faltings height of the abelian variety A
hΘ,r(A,L) Theta height of level r of the principally polarized

abelian variety (A,L)
hj(A) j-height of A (p. 175)
hF , hΘ,r, hj max{1, hF}, etc.
C(g, r) See p. 176
AΘ,r Moduli space of principally polarized abelian va-

rieties of dimension g with level r theta structure
(p. 176)

U Zariski open set of S (p. 179)
Vδ Zariski open set of S; in particular the modular

equations Ψδ,m have no poles on Vδ (p. 180)
CX.Y.Z Constant ≥ 1 so that prop. X.Y.Z holds with this

value of C
Clog We have log d(δ) ≤ Clog max {1, log l(δ)} (p. 182)
Ik(T ) Evaluation set of the tree T (p. 182)

Chapter 6
log+

2 (x) log2 max {1, x}
|P | Largest absolute value among the coefficient of P

(p. 194)
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αd Hermite’s constant (p. 198)
mF Generating matrix of ZF in the complex embed-

dings of F (p. 129)
B(τ) Borchardt sequence of theta constants at 2nτ

for n ≥ 0 (pp. 200 and 202)
γk for 0 ≤ k ≤ 3 Matrices in Sp4(Z) (p. 202)
F2 Fundamental domain in H2 (p. 203)
S ⊂ Sp4(Z) Finite set defining the boundary of F2 (p. 203)
zj(τ) = xj(τ) + iyj(τ)
for 1 ≤ j ≤ 3 Entries of τ ∈ H2 (p. 204)
qj(τ), λ1(τ), r(τ) See p. 204
F ′2 Subset of H2 containing F2 (p. 204)
F ε2 Neighborhood of F2 (p. 216)
Λ(τ) log max {2, |τ | , det(Im τ)−1} (p. 217)
m1(τ),m2(τ) Successive minima of Im(τ) on Z2 (p. 217)
Θ Finite recipe of algebraic extensions (p. 223)
BΘ,µ Upper bound on the absolute values of the al-

gebraic numbers in Θ(j1, j2, j3) in the complex
embedding µ of L (p. 223)

Chapter 7
πA Frobenius endomorphism of A
χA Characteristic polynomial of πA (p. 234)
ξA Real endomorphism πA + π†A (p. 234)
λ1, λ2, r1, r2, s1, s2 See p. 234
〈·, ·〉 Weil pairing on A[`] (p. 235)
P̃ q-reciprocal of the polynomial P (p. 235).
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Chapter 1

Introduction

This thesis is about higher-dimensional modular equations. These equa-
tions encode isogenies between polarized abelian varieties; from a geomet-
rical point of view, they define subvarieties of certain moduli spaces con-
sisting of pairs of isogenous abelian varieties.

The first examples of modular equations are the elliptic modular poly-
nomials, which encode isogenies between abelian varieties of dimension 1,
i.e. elliptic curves. Let ` ≥ 1 be a prime number. The elliptic modu-
lar polynomial of level `, denoted by Φ` ∈ Z[X, Y ], satisfies the following
property: if k is an algebraically closed field of characteristic distinct from `,
and E,E ′ are elliptic curves over k, then there exists an isogeny ϕ : E → E ′

of degree ` if and only if the equality

Φ`(j (E), j (E ′)) = 0

holds, where j denotes the usual j-invariant.
This introductory chapter presents the construction of elliptic modu-

lar polynomials (§1.1) before reviewing existing applications in algorith-
mic number theory and cryptography (§1.2), in particular Elkies’s method
for counting points on elliptic curves over finite fields. Other examples
of modular equations in dimension 2, i.e. for abelian surfaces, have also
been computed, and we give an overview of the state of the art on this
subject (§1.3). Finally we present the plan of the thesis (§1.4). Our con-
tributions aim to generalize properties and algorithms from the case of
elliptic modular polynomials to higher dimensions. Combining our results
yields an asymptotically faster point-counting algorithm based on Elkies’s
method for principally polarized abelian surfaces with real multiplication.
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1.1 Elliptic modular polynomials

Throughout this introduction, we assume familiarity with elementary
properties of elliptic curves, as presented in Silverman’s book [Sil09]. In
particular, elliptic curves are algebraic curves, and can be defined over any
field, such as finite fields. Over C, elliptic curves are identified with their
sets of C-points, which are complex tori. We also assume familiarity with
classical modular forms; see for instance [DS05, §1–2].

Perhaps the easiest way to define elliptic modular polynomials is to work
over C. We recall the necessary facts about the moduli space of complex
elliptic curves in §1.1.1. Then we define the elliptic modular polynomials
and list some of their properties in §1.1.2.

1.1.1 The moduli space of complex elliptic curves

Denote by H1 the Poincaré upper half plane,

H1 = {z ∈ C : Im(z) > 0} .

The elliptic modular group Γ(1) = SL2(Z) acts on H1 on the left in the
following way: if γ = ( a bc d ) ∈ Γ(1) and τ ∈ H1, then

γτ =
aτ + b

cτ + d
. (1.1)

With every τ ∈ H1, one associates the lattice Λ(τ) = Z⊕ τZ ⊂ C and
the complex elliptic curve E(τ) = C/Λ(τ). The map τ 7→ E(τ) induces a
bijection between the quotient Γ(1)\H1 and the set of isomorphism classes
of complex elliptic curves. We say that Γ(1)\H1 is a moduli space for
complex elliptic curves.

The quotient Γ(1)\H1 can be compactified by adding one point called
the cusp. The resulting compactification, denoted by X(1), is the modular
curve of level one over C. As every compact Riemann surface, X(1) is an
algebraic curve over C. Rational functions X(1) → C are identified with
modular functions of weight zero and level Γ(1) on H1.

An isomorphism X(1) ' P1 is given by the j-invariant τ 7→ j (τ).
Consider the theta constants θ0, θ1 : H1 → C defined as follows:

θ0(τ) =
∑
n∈Z

exp(πiτn2),

θ1(τ) =
∑
n∈Z

(−1)n exp(πiτn2).
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Then the j-invariant is defined by

j = 256
(θ8

0 − θ4
0θ

4
1 + θ8

1)3

θ8
0θ

8
1(θ4

0 − θ4
1)2

. (1.2)

In particular, the j-invariant generates the function field ofX(1) over C.
Therefore every modular function of weight zero and level Γ(1) can be
expressed as a rational function in j with coefficients in C. On X(1), the
j-invariant has only one pole located at the cusp; therefore one can consider
the j-invariant as a quantity attached to elliptic curves, with the property
that two complex elliptic curves have equal j-invariants if and only if they
are isomorphic.

Far-reaching generalizations of the modular curve X(1) are given by
the PEL Shimura varieties of finite level (see chapter 2). PEL Shimura
varieties are moduli spaces for abelian varieties with certain polarization,
endomorphism, and level structures. They provide a convenient unified
language to study higher-dimensional modular equations.

1.1.2 Elliptic modular polynomials

Recall that an isogeny ϕ : E → E ′ between complex elliptic curves is
a surjective morphism with finite kernel. The degree of ϕ is its degree as
a rational map; and the kernel of ϕ is its kernel as a group morphism
from E(C) to E ′(C), which has cardinality deg(ϕ).

Let us restrict to isogenies of prime degree; every isogeny is a compo-
sition of these. If an isogeny ϕ has prime degree `, then the kernel of ϕ
is a cyclic group isomorphic to Z/`Z; we say that ϕ is an `-isogeny. For
every τ ∈ H1, the identity map on C induces an `-isogeny E(τ)→ E(τ/`).
Moreover every `-isogeny over C is isomorphic to an isogeny of this form.

One can check that the function τ 7→ j (τ/`) is a modular function of
weight zero for the congruence subgroup

Γ0(`) = {( a bc d ) ∈ SL2(Z) : b = 0 mod `} (1.3)

of Γ(1). Therefore, for every τ ∈ H1, the polynomial

P`(τ) =
∏

γ∈Γ0(`)\Γ(1)

(
Y − j

(
1
`
γτ
))

∈ C[Y ]

is well-defined. The roots of P`(τ) are the j-invariants of all elliptic curves
that are `-isogenous to E(τ); more precisely, the roots of P`(τ) counted with
multiplicities are the j-invariants of the elliptic curves of the form E(τ)/K,
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where K runs through the ` + 1 cyclic subgroups of the `-torsion sub-
group E(τ)[`].

One checks that the coefficients of P` are modular functions of weight
zero and level Γ(1) with poles at the cusp only. Therefore, there exists a
polynomial Φ` ∈ C[X, Y ] such that for every τ ∈ H1, we have

Φ`(j (τ), Y ) = P`(τ) =
∏

γ∈Γ0(`)\Γ(1)

(
Y − j

(
1
`
γτ
))
. (1.4)

This bivariate polynomial Φ` is the elliptic modular polynomial of level `.
Let us list some of its properties.

1. The coefficients of Φ` lie in fact in Z: one way to see this is to
show that the Fourier expansions of the coefficients of P` have integer
coefficients [Cox13, Thm. 11.18 (i)].

2. The polynomial Φ` is symmetric in X and Y . This comes from the
existence of the dual isogeny : for every `-isogeny ϕ : E → E ′, the
dual of ϕ is an `-isogeny E ′ → E [Cox13, Thm. 11.18 (iii)].

3. The degree of Φ` is `+ 1 in both variables. Indeed, its degree in Y is
[Γ(1) : Γ0(`)] = `+ 1, and Φ` is symmetric.

4. Define the height of Φ`, denoted by h(Φ`), as follows: h(Φ`) is the
maximum value of log |c|, where c runs through the nonzero coeffi-
cients of Φ`. Then, as ` grows to infinity, we have

h(Φ`) ∼ 6` log `.

This asymptotic result was first proved by Cohen [Coh84], and ex-
plicit bounds from above for h(Φ`) are also known [BS10, Paz19].

5. Let k be an algebraically closed field of characteristic distinct from `,
and let E,E ′ be two elliptic curves over k. Then the equality

Φ`(j (E), j (E ′)) = 0

holds if and only if E and E ′ are `-isogenous over k. By construction,
this property holds true over C, and extends to every characteris-
tic zero field by Lefschetz’s principle (every field k that is finitely
generated over Q embeds in C) [Sil09, §VI.6]. The general argu-
ment uses the language of moduli schemes: one invokes the smooth-
ness of the moduli space of elliptic curves with level ` structure
over Z[1/`] [DR73, §IV, Thm. 2.5] to lift `-isogenies from k to char-
acteristic zero.
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Given the above bounds on the degree and height of Φ`, the cost of
storing Φ` on a computer is O(`3 log `). This becomes quickly too large to
fit Φ` on a page, but is reasonable enough to store large databases of these
polynomials: for instance, Sutherland [Sut] has a database of all elliptic
modular polynomials of prime levels up to 1000. As an example, we have

Φ2(X, Y ) = X3 −X2Y 2 + 1488X2Y − 162000X2 + 1488XY 2

+ 40773375XY + 8748000000X + Y 3 − 162000Y 2

+ 8748000000Y − 157464000000000.

Several methods are available to compute elliptic modular polynomials
in quasi-linear time in their size. One method consists in computing com-
plex approximations of its coefficients using eq. (1.4) [Eng09b]. An essential
subroutine of this algorithm is to compute theta constants, and hence the
j-invariant by eq. (1.2), in quasi-linear time: for every precision N ≥ 1
and every τ ∈ H1 lying in a certain fundamental domain for SL2(Z), the
theta-constants θ0(τ), θ1(τ) can be computed up to an error of 2−N in quasi-
linear time in N [Dup11]. Another method to compute Φ` consists in using
the Chinese remainder theorem (CRT), and computing Φ` modulo several
prime numbers p by generating sufficiently many pairs of `-isogenous curves
over Fp [BLS12]. Both methods are suitable to evaluate Φ`(x0, Y ), for a
given x0 in a finite field or number field; the CRT method even achieves
memory improvements in this case [Sut13].

Other kinds of modular polynomials for elliptic curves can be defined,
using other modular functions than the j-invariant, for example the We-
ber f -function, whose congruence subgroup has index 24 in SL2(Z). Their
heights are smaller by a constant factor (see [EM02] for an explanation of
this phenomenon in the case of class polynomials of imaginary quadratic
fields), but the asymptotic complexity of manipulating them is similar.

1.2 Algorithmic applications

This section presents several algorithms using elliptic modular polyno-
mials. We focus on elliptic curves over finite fields, although some of the
algorithms also apply to other base fields or rings. Let p be a prime number,
and let q = pr be a power of p.

Let E be an elliptic curve over the finite field Fq, and let ` 6= p be
a prime. A direct use of the elliptic modular polynomial of level ` is to
compute all elliptic curves (up to isomorphism) that are `-isogenous to E:
one computes the roots of Φ`(j(E), Y ) ∈ Fq[Y ], using for instance the
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Cantor–Zassenhaus algorithm [vG13, §14]. The polynomial Φ` can also
be used to compute isogenies: given two `-isogenous elliptic curves E,E ′
over Fq, an algorithm of Elkies [Elk98] recovers an `-isogeny ϕ : E → E ′ as
an explicit rational map, at least when p is large with respect to ` and E,E ′
are sufficiently generic. Elkies’s algorithm is an essential part of the SEA
point counting algorithm for elliptic curves over finite fields [Sch95]. Note
that Elkies’s algorithm has a converse: given a cyclic subgroup K ⊂ E(Fq)
of order `, one can compute an equation for the elliptic curve E/K as
well as rational fractions describing the `-isogeny E → E/K using Vélu’s
formulæ [Vé71].

The first part of this section presents the point counting problem and
the SEA algorithm, starting with Schoof’s algorithm (§1.2.1), then pre-
senting Elkies’s improvement (§1.2.2). The second part discusses other
applications of modular polynomials in algorithmic number theory (§1.2.3)
and cryptography (§1.2.4).

1.2.1 Schoof’s point counting algorithm

The point counting problem for elliptic curves is the following: given an
elliptic curve E over Fq, compute #E(Fq). Counting points has applica-
tions in cryptography (see §1.2.4), and also in algorithmic number theory,
for instance to compute Euler factors of L-functions attached to elliptic
curves. Schoof’s algorithm solves the point counting problem in polyno-
mial time in log(q).

Let πE be the Frobenius endomorphism of E, and consider its charac-
teristic polynomial [Sil09, §V, Thm. 2.3.1]:

χE = X2 − tEX + q ∈ Z[X],

where tE ∈ Z is the trace of Frobenius. If we consider Z as a subset
of End(E), the polynomial χE is equal to (X − πE)(X − π̂E) where π̂E
denotes the dual of Frobenius; hence χE(πE) = 0. Computing χE is equiv-
alent to computing #E(Fq) since

#E(Fq) = q + 1− tE.

The Weil conjectures, in this case Hasse’s theorem [Sil09, §V, Thm. 2.4],
state that the roots of χE in C all have absolute value √q. Therefore the
Hasse bound holds:

|tE| ≤ 2
√
q. (1.5)

Schoof’s algorithm [Sch85] computes tE mod ` for a series of distinct
prime numbers ` 6= p, then recovers tE ∈ Z using the Chinese remainder
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theorem and eq. (1.5). The trace tE is recovered uniquely as soon as the
product of `’s is greater than 4

√
q. By the prime number theorem, this

bound can be reached using O(log q) prime numbers ` ∈ O(log q).
Let us now turn to the computation of tE mod `, where ` 6= p is a prime

number. Let
T`(E) = lim←−

n→∞
E[`n]

be the `-adic Tate module of E, which is a free Z`-module of rank 2.
Then χE, seen as a polynomial with coefficients in Z`, is the characteristic
polynomial of πE seen as an automorphism of T`(E) [Sil09, §III, Prop. 8.6].
In particular, tE mod ` is the unique element t ∈ Z/`Z satisfying the
relation

t πE(P ) = π2
E(P ) + qP (1.6)

for every `-torsion point P ∈ E[`](Fq).
One usually avoids computing all `-torsion points on E, and rather

tests eq. (1.6) on the formal `-torsion point P0 with coefficients in the
coordinate ring of E[`]\{0}. One computes πE(P0), π2

E(P0) and qP0 using
square-and-multiply algorithms, the latter using the addition law on E,
for instance [Sil09, §II, Alg. 2.3]. Using asymptotically fast algorithms for
polynomial multiplication [vG13, §8–9], the cost of finding tE mod ` is
then Õ(`2 log q) operations in Fq. The `2 factor comes from the degree of
defining equations for E[`]\{0}; in other words this `2 stands for the order
of the subgroup of E used to compute tE mod `. Overall, the complexity
of Schoof’s algorithm is Õ(log5(q)) binary operations.

1.2.2 Elkies’s method and the SEA algorithm

Let ` 6= p be an odd prime number. Given Weierstrass models of two `-
isogenous elliptic curves E,E ′ over Fq,

E : x2 = y3 + ax+ b, E ′ : y2 = x3 + a′x+ b′,

Elkies’s algorithm [Elk98] attemps to compute an `-isogeny ϕ : E → E ′

as an explicit rational map. For simplicity, assume that the polynomial
Φ`(j (E), Y ) has simple roots over Fq, and that E and E ′ have no extra
automorphisms. Then Elkies’s algorithm succeeds as soon as p > 4` − 1.
The result yields an equation for the subgroup ker(ϕ) of E[`], which is
defined over Fq and cyclic of order `.

In the context of Schoof’s algorithm, assume that the discriminant of χE
is a nonzero square modulo `. Then the endomorphism πE restricted to E[`]
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diagonalizes over Z/`Z: in some basis of E[`], the matrix of πE is of the
form (

λ 0
0 µ

)
for some distinct eigenvalues λ, µ ∈ (Z/`Z)× such that λµ = q. There are
exactly two cyclic subgroups of E[`] which are stable under πE, i.e. defined
over Fq. Assume, as above, that Φ`(j (E), Y ) has only simple roots over Fq.
Then Elkies’s method to compute tE mod ` is the following:

1. Compute the two roots α, β of Φ`(j (E), Y ) belonging to Fq;

2. Construct an elliptic curve E ′ over Fq such that j (E ′) = α;

3. Compute the kernel of an `-isogeny ϕ : E → E ′ using Elkies’s algo-
rithm;

4. Compute the eigenvalue of πE on ker(ϕ), say λ;

5. Output tE = λ+ q/λ mod `.

Step 4 uses the formal point of ker(ϕ)\{0} in a similar way to Schoof’s
algorithm; it costs Õ(` log q) operations in Fq since ker(ϕ) has order `, and
dominates the rest of the algorithm.

Heuristically, Elkies’s method applies for about half of the auxiliary
primes `, called Elkies primes. If enough Elkies primes can be found, then
the resulting point-counting algorithm has a complexity of Õ(log4(q)) bi-
nary operations. It is known that enough Elkies primes can be found on
average, when considering either all elliptic curves over Fq [SS14], or (un-
der the generalized Riemann hypothesis) the reductions of a given elliptic
curve E defined over Q modulo primes [SS15].

The Schoof–Elkies–Atkin (SEA) point counting algorithm [Sch95] adds
a number of practical improvements to Elkies’s method, and has the same
asymptotic complexity. In particular, Atkin’s method consists in study-
ing the factorization patterns of Φ`(j (E), Y ) to obtain partial information
about tE mod `. This information is used in an exponential-time sieve which
reduces the number of Elkies primes to consider. Other improvements con-
sist in using chains of `-isogenies [FM02], or even Schoof’s method, to
compute tE modulo powers of ` when ` is small.

Let us now describe Elkies’s isogeny algorithm. Fixing Weierstrass mod-
els specifies differential forms ω, ω′ on E,E ′ respectively, defined by the
formula dx/2y [Sil09, §III.1]. By duality, the Weierstrass models define
bases of the tangent spaces T0(E), T0(E ′) of E and E ′ at the neutral point.
The tangent map

dϕ : T0(E)→ T0(E ′),
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when written in these bases, is a scalar c ∈ F×q called the normalization
factor of ϕ. We have ϕ∗ω′ = cω.

If c is known, then one can write differential equations satisfied by the
rational functions defining ϕ [BMSS08]. These equations can be solved in
power series using Newton iterations: computing n terms of the solutions
costs Õ(n) operations in Fq. Elkies’s algorithm concludes with a rational
reconstruction step using the extended Euclidean algorithm [vG13, §12.3].
The degrees of the rational fractions describing ϕ are in O(`), hence the
cost of Elkies’s algorithm once c is determined is Õ(`) operations in Fq.
The assumption that p > 4`− 1 appears since one has to perform divisions
by 2, 3, . . . , 4`− 1 during the Newton iterations.

Computing the normalization factor c involves explicit formulæ about
modular functions, in particular the derivative

j′ :=
1

2iπ

dj

dτ

of the j-invariant, which is a modular function of weight 2. Assume, for the
moment, that E,E ′ are defined over C. Then, given a modular function f
of weight k, the quantity f(E,ω) is well-defined: choose τ ∈ H1 and an
isomorphism η : E

∼−→ E(τ), let ω(τ) be the differential form given by 2πi dz
on E(τ) = C/Λ(τ), let r ∈ C× be such that η∗ω(τ) = rω, and set

f(E,ω) = rkf(τ),

which is indeed independent of τ and η. The classical theory of complex
elliptic curves [Sil09, §VI.1] gives the equalities

E4(E,ω) = −48a, E6(E,ω) = 864b,

where E4 and E6 denote the normalized Eisenstein series of weights 4 and 6
respectively. Moreover

j′(E,ω) = −E6(E,ω)

E4(E,ω)
j(E) =

2935a2b

4a3 + 27b2
. (1.7)

Since E,E ′ are `-isogenous over C, there exists a τ ∈ H1 and a commu-
tative diagram

E E ′

E(τ) E(τ/`).

ϕ

η η′

z 7→z

where η, η′ are isomorphisms. Let r, r′ ∈ C× such that

η∗ω(τ) = rω, η′∗ω(τ/`) = r′ω(τ).
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Then the normalization factor of ϕ is c = r′r−1. The crucial equality comes
from differentiating the relation Φ`

(
j (τ), j (τ/`)

)
= 0 with respect to τ :

∂XΦ`

(
j (E), j (E ′)

)
j ′(τ) +

1

`
∂Y Φ`

(
j (E), j (E ′)

)
j ′(τ/`) = 0,

where ∂X and ∂Y denote derivation with respect to X and Y in Z[X, Y ],
respectively. Hence

c2∂XΦ`

(
j (E), j (E ′)

)
j ′(E,ω) +

1

`
∂Y Φ`

(
j (E), j (E ′)

)
j ′(E ′, ω′) = 0. (1.8)

Equation (1.8) is entirely algebraic, using eq. (1.7) to evaluate the mod-
ular function j ′. It is also valid when E,E ′ are defined over Fq; a simple
way to see this is to lift the isogeny ϕ to characteristic zero. Under our
assumptions, the derivative of Φ` with respect to Y does not vanish; more-
over j′(E ′, ω′) 6= 0 because E ′ has no extra automorphisms. Therefore
eq. (1.8) allows us to compute the normalization factor of ϕ up to sign,
which is enough for the rest of Elkies’s algorithm.

Recall that the modular polynomial Φ` has degree O(`) in both vari-
ables X and Y , and height O(` log `). Recall also that ` ∈ O(log q). There-
fore, assuming that Φ` has been precomputed, evaluating the derivatives
of Φ` at (j (E), j (E ′)) costs Õ(`2) operations in Fq; it is the most costly
step in Elkies’s isogeny algorithm, but is still dominated by root finding
and Frobenius computations in the context of the SEA algorithm.

1.2.3 Other applications of modular polynomials

Besides Elkies’s algorithm, elliptic modular polynomials have other al-
gorithmic applications. To present them, it is convenient to introduce the `-
isogeny graph G(`,Fq), where ` 6= p is a prime. The vertices of G(`,Fq) are
elliptic curves defined over Fq up to Fq-isomorphism, and can be labeled
by j-invariants in Fq. Two vertices v1, v2 are linked by an edge if and only
if there exists an `-isogeny between them. The graph G(`,Fq) is undirected
and without multiple edges. More generally, if L is a list of primes not
containing p, we define G(L,Fq) as the superposition of the graphs G(`,Fq)
for ` ∈ L. A subscript E denotes the connected components of these graphs
containing the elliptic curve E.

Kohel’s thesis [Koh96] shows that isogeny graphs of elliptic curves have
a very particular shape. Let E be an elliptic curve over Fq, and denote by
O = EndFq(E) the ring of endomorphisms of E defined over Fq. There are
two possibilities, depending on the trace of Frobenius tE [Wat69, Thm. 4.1]:
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1. If |tE| < 2
√
q, then O is isomorphic to an order in an imaginary

quadratic field F ; this case includes all ordinary elliptic curves (for
which tE is prime to p), and also all supersingular elliptic curves
over Fq when q is not a square.

2. If |tE| = 2
√
q, then O is isomorphic to a maximal order in a certain

quaternion algebra.

In case 1, let ∆ be the discriminant of F = O ⊗Q, and let
(

∆
`

)
be the

Legendre symbol. Denote by ZF the ring of integers in F . Each vertex
of G(`,Fq)E can be given a depth, which is an integer between 0 and dmax,
the `-adic valuation of [ZF : Z[πE]]. Each vertex of depth d is connected to

• 1 vertex of depth d− 1 and ` vertices of depth d+ 1, if 0 < d < dmax;

• 1 vertex of depth d− 1, if 0 < d = dmax;

• 1 +
(

∆
`

)
vertices of depth 0, if 0 = d = dmax;

• 1 +
(

∆
`

)
vertices of depth 0 and `−

(
∆
`

)
of depth 1, if 0 = d < dmax.

We say that G(`,Fq)E is an `-volcano; the vertices of depth zero form the
crater or surface of the volcano, and vertices of depth dmax form the floor.
A typical example is depicted on fig. 1.1.

depth 0

depth 1

•

• •

•

• •

•

• •

•

• •

Fig. 1.1. An `-volcano with ` = 3, dmax = 1, and
(

∆
`

)
= 1.

In case 2, the graphs G(`,Fq)E do not have a volcano structure. Instead,
they have the Ramanujan property [Piz90]: they are “optimal” expander
graphs, therefore random walks in these graphs mix rapidly. Under the
generalized Riemann hypothesis, one can also obtain expander graphs out
of isogeny volcanoes, by considering the surface of G(L,Fq)E when L is
sufficiently large [JMV09].

The elliptic modular polynomial Φ` allows us to navigate `-isogeny
graphs by computing all vertices adjacent to a given one. Various number-
theoretic algorithms rely on this fact. From now on, when k is a field
and O is an imaginary quadratic order, we denote by Ell(O, k) the set of k-
isomorphism classes of elliptic curves over k whose ring of endomorphisms
over k is isomorphic to O.
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1. Computing depths [Koh96]. Given the rigid structure of `-volcanoes,
one can compute the depth of a given vertex v in G(`,Fq) by following
three paths from v and stopping when one of them reaches the floor.
If E is an elliptic curve over Fq representing v, this depth equals
the `-adic valuation of

[
ZF : EndFq(E)

]
.

2. Finding isogeny chains [FM02]. In the SEA algorithm, if ` is a very
small Elkies prime (say ` = 2 or 3), it is interesting to use a chain of `-
isogenies to compute the trace of Frobenius modulo `r, where r is the
length of the chain. Walking along the surface of the corresponding
isogeny volcano allows us to compute chains of arbitrary lengths.

3. Explicit CM theory. Let O be an imaginary quadratic order, and as-
sume that Ell(O,Fq) is nonempty. The theory of complex multiplica-
tion (CM) defines a simply transitive action of the class group Cl(O)
on Ell(O,Fq) [Wat69, Thm. 4.5]. Let ` 6= p be a prime that splits
in two distinct invertible O-ideals, ` = l1l2. Then, for every elliptic
curve E ∈ Ell(O,Fq), the elliptic curves [l1] · E and [l2] · E are the
images of two `-isogenies with domain E; all three elliptic curves E,
[l1] · E and [l2] · E lie on the surface of G(`,Fq)E. Moreover, the ac-
tions of [l1] and [l2] can be distinguished by computing the Frobenius
eigenvalue on the kernel of the corresponding `-isogeny. Therefore the
action of Cl(O) on Ell(O,Fq) can be computed explicitly, by walking
along the surface of `-isogeny volcanoes (using depth computations)
and using Elkies’s algorithm described in §1.2.2.

4. Computing Hilbert class polynomials [Sut11]. Let O be an imaginary
quadratic order. The Hilbert class polynomial of O, denoted by HO,
is a monic polynomial with coefficients in Z whose complex roots
are the j-invariants of all the elements of Ell(O,C). It is a defining
polynomial for the ring class field of O over F = O ⊗Q. A possible
strategy to compute HO is to compute it modulo several primes p
and using the Chinese remainder theorem. The roots of HO mod p
are given by the j-invariants of elements in Ell(O,Fp), and can be
enumerated using the explicit CM action.

5. Computing elliptic modular polynomials [BLS12, Sut13]. Isogeny vol-
canoes can also be used to compute modular polynomials via interpo-
lation and Chinese remainders, as mentioned in §1.1.2. For instance,
knowing all the vertices of a graph G(3,Fq)E of the shape given in
fig. 1.1 would allow us to reconstruct Φ3(X, Y ) mod p, by interpo-
lating Φ3(x, Y ) for each j-invariant x on the surface, then Φ3(X, Y ).
In this algorithm, the vertices of G(`,Fq)E are enumerated using the
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explicit CM action of ideals of small norms.

6. Computing endomorphism rings of elliptic curves. Let E be an ordi-
nary elliptic curve over Fq. Computing #E(Fq) determines the endo-
morphism algebra of E; afterwards, walking in isogeny graphs gives
additional information about the precise endomorphism ring of E
over Fq. For instance, if ` is a small prime, computing the depth of E
in G(`,Fq)E is an efficient way of determining the `-adic valuation of
the conductor of EndFq(E). For larger primes, one can use the ex-
plicit CM theory to rule out candidates for EndFq(E). Kohel [Koh96]
uses these observations to design an exponential-time algorithm (un-
der the generalized Riemann hypothesis) for computing EndFq(E). A
probabilistic subexponential time algorithm (under heuristics), using
so-called smooth relations in ideal class groups, also exists [BS11].

1.2.4 Relevance to cryptography

The number-theoretic algorithms involving elliptic modular polynomi-
als have applications in two areas of public-key cryptography. The first
area is elliptic curve cryptography, which relies on the hardness of the dis-
crete logarithm problem in the group E(Fq), where E is an elliptic curve
over Fq. The second area is isogeny-based cryptography, which relies on the
hardness of finding paths in isogeny graphs. Elliptic curve cryptography
is widespread in real life; isogeny-based cryptography is younger and less
used in industry, but attracts interest because of its conjectured resistance
to quantum attacks.

Elliptic curve cryptography. Let G be a finite group of order n which
is effective, in the sense that its elements can be encoded in a computer
and the basic operations (multiplication, equality tests) can be performed
algorithmically. Let g ∈ G and 0 ≤ a ≤ n − 1. Then computing ga is
easy: using a square-and-multiply algorithm, it can be done in O(log n)
operations in G. Conversely, the discrete logarithm problem asks, given
g ∈ G and h ∈ 〈g〉, to compute a such that ga = h. For a generic group G,
the best known classical algorithms to do so have complexity O(

√
n), which

is exponential in log n [Pol75]. This exponential complexity gap makes the
discrete logarithm problem suitable for use in public-key cryptography.

Another computational problem closely related to discrete logarithms
is the Diffie–Hellman problem: given g, ga, gb ∈ G, compute gab. For a
generic G, the best known classical algorithms to solve the Diffie–Hellman
problem also are in O(

√
n); but the problem becomes easy if one can com-
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pute discrete logarithms in G. The well-known Diffie–Hellman key ex-
change protocol [DH76], the first published example of a public-key cryp-
tographic protocol, relies on the hardness of the Diffie–Hellman problem.

In concrete implementations, one has to choose a group G. In gen-
eral, one should choose n = #G to be either prime or “almost” prime,
in order to avoid generic attacks based on Chinese remainders [PH78].
The idea of elliptic curve cryptography, introduced by Koblitz [Kob87] and
Miller [Mil85], is to take G = E(Fq) where E is an elliptic curve over Fq.
For a generic E, the best known classical algorithms to compute discrete
logarithms in E(Fq) are in O(

√
q). This compares favorably with the case

of multiplicative groups of finite fields, where subexponential attacks are
known [Pom87]. We refer to [GM17] for a review of the discrete logarithm
problem, both in the generic and finite field cases.

Several algorithms are available to generate suitable elliptic curves, say
of prime order. One can run the SEA algorithm (recall §1.2.2) on a family
of candidates, for instance chosen at random, until finding one of prime
order. Since the SEA algorithm computes #E(Fq) modulo small primes,
one can abort the algorithm early if a small factor of #E(Fq) is detected.
Another strategy is to use the CM method, first described in [AM93], which
constructs elliptic curves such that #E(Fq) is completely determined, at
the cost of some loss of control on q: if O is an imaginary quadratic order
whose Hilbert class polynomial HO is known, and E is an elliptic curve
over Fq such that j (E) is a root of HO, then the trace of Frobenius of E is
determined up to sign.

On the destructive side, isogenies can be used to attack the discrete
logarithm problem on a given elliptic curve E: one tries to find an isogeny
chain from E to another elliptic curve where the discrete logarithm problem
is easier to solve [GHS02].

The discrete logarithm problem, even in generic groups, can be solved
in polynomial time on a quantum computer by Shor’s algorithm [Sho94].
Therefore elliptic curve cryptography may become insecure as quantum
computers develop.

Isogeny-based cryptography. Let G be a finite connected graph, let v0

be a vertex of G, and assume that there exists an algorithm to compute the
neighbors of a given vertex of G. If G has good expansion properties, then
one can efficiently sample vertices in G with a close to uniform distribution
by following random walks from v0. Conversely, given a random vertex v
of G, finding a path from v0 to v is a hard problem in general. Informally,
isogeny-based cryptography relies on the hardness of this problem when G
is an isogeny graph over a finite field: G can be either a supersingular
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graph of `-isogenies for some fixed `, or a superposition of isogeny cycles
of different prime degrees. Isogeny-based primitives are one of the families
of cryptographic proposals (along with, for instance, lattice-based or code-
based primitives) that are conjectured to be quantum-resistant.

Examples of isogeny-based protocols are given by the Charles–Goren–
Lauter hash function [CLG09], which uses a supersingular graph of 2-
isogenies; the SIDH key exchange protocol [dJP11], which uses supersin-
gular graphs of 2- and 3-isogenies; and the CSIDH key exchange proto-
col [dKS18, CLM+18], which uses a superposition of isogeny cycles for
supersingular curves over a prime field Fp. Isogeny-based cryptography is
a very active research area, with recent cryptographic proposals such as
verifiable delay functions [dMPS19] and digital signatures [dG19].

For performance reasons, these protocols rely on computing isogenies
from their kernels using Vélu’s formulæ to navigate isogeny graphs, instead
of finding roots of modular polynomials.

1.3 State of the art in higher dimensions

After elliptic curves, it is natural to study abelian varieties, which are by
definition complete group varieties over a field; elliptic curves correspond to
abelian varieties of dimension one. Abelian varieties are fundamental ob-
jects in algebraic geometry and number theory. They appear for instance in
the study of algebraic curves: much information about a smooth algebraic
curve of genus g can be obtained from its Jacobian, which is an abelian
variety of dimension g. Abelian varieties have a very rich theory, that we
do not develop here: we refer to [Mum70, Mil86a, Mil86b], and [BL04] for
the complex theory.

1.3.1 Modular equations of Siegel and Hibert type

Just as elliptic modular polynomials encode `-isogenies between elliptic
curves for a fixed prime `, higher-dimensional modular equations encode
isogenies of a fixed type between abelian varieties. To define these modular
equations, one works with moduli spaces of abelian varieties, for instance
over C, as we did for elliptic curves in §1.1. In order to obtain well-behaved
moduli spaces, one considers isomorphism classes of abelian varieties en-
dowed with an additional structure called a polarization. A polarization
on an abelian variety A is a certain equivalence class of ample line bundles
on A; it can also be seen as an isogeny from A to its dual abelian variety Â,
and the polarization is called principal if this isogeny is an isomorphism.
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In the dimension 2 case, i.e. for abelian surfaces, two moduli spaces are
of particular interest.

1. The Siegel moduli space A2 classifies principally polarized abelian
surfaces. As an algebraic variety, A2 can be defined over Q, and is
birational to P3, by results of Igusa [Igu62]: in other words, isomor-
phism classes of principally polarized abelian surfaces are generically
classified by three invariants. For each prime `, the Siegel modular
equations of level ` encode the presence of `-isogenies between prin-
cipally polarized abelian surfaces [BL09, Mil15]; the degree of these
isogenies is `2.

2. Let F be a fixed quadratic field. The Hilbert moduli space A2,F clas-
sifies principally polarized abelian surfaces with real multiplication
by ZF , the ring of integers of F . As an algebraic variety, A2,F has
dimension 2. For each totally positive prime β ∈ ZF , the Hilbert mod-
ular equations of level β encode the presence of β-isogenies [Mar20,
MR20]; the degree of these isogenies is NF/Q(β).

In practice, one makes a choice of invariants on A2 or A2,F ; then the
modular equations can be seen as explicit multivariate rational fractions.
For instance, a standard choice of invariants on the Siegel moduli space A2

is given by the three Igusa invariants, denoted by j1, j2, j3. The modular
equations of Siegel type and level ` are given by three polynomials Ψ`,m ∈
Q(j1, j2, j3)[Y ] for 1 ≤ m ≤ 3, with the following property: there exist an
open subvariety U of A2 such that for every two points z, z′ of U(C), the
equalities

Ψ`,1

(
j 1(z), j 2(z), j 3(z), j 1(z′)

)
= 0

∂XΨ`,1

(
j 1(z), j 2(z), j 3(z), j 1(z′)

)
· j 2(z′) = Ψ`,2

(
j 1(z), j 2(z), j 3(z), j 1(z′)

)
∂XΨ`,1

(
j 1(z), j 2(z), j 3(z), j 1(z′)

)
· j 3(z′) = Ψ`,3

(
j 1(z), j 2(z), j 3(z), j 1(z′)

)
hold if and only if the principally polarized abelian surfaces associated
with z and z′ are `-isogenous.

Several examples of modular equations for abelian surfaces have already
been computed, but they tend to have frightening sizes due to their large
number of variables, degrees, and heights. Writing down the Siegel mod-
ular equations uses approximately 1 MB for ` = 2, and approximately
410 MB for ` = 3; the computations for ` = 5 have not been carried out
to our knowledge. As in the case of elliptic modular polynomials, one can
consider variants of modular equations using invariants of abelian surfaces
with level structure. For instance, Siegel modular equations in terms of
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theta constants in dimension 2 (instead of Igusa invariants) have smaller
coefficients, and have been computed up to ` = 7 [Mil].

The most efficient algorithms to compute Siegel or Hilbert modular
equations currently use complex approximations [Mil15, MR20]. As in the
elliptic case, an essential subroutine in these algorithms is to compute theta
constants in quasi-linear time in the precision [Dup06, LT16].

1.3.2 Applications

In terms of applications, the literature on modular polynomials for
abelian surfaces is much less developed than for their elliptic counterparts.

The point counting problem. Prior to this thesis, no generalization
of Elkies’s isogeny algorithm was known for abelian surfaces. In the lit-
erature, the asymptotically fastest point counting algorithms for abelian
surfaces over finite fields are based on Schoof’s method, which admits gen-
eralizations to abelian varieties of any dimension [Pil90]. Schoof’s method
uses the action of Frobenius on kernels of endomorphisms of abelian va-
rieties: multiplication by ` in the generic case [GH00, GS12], and real
multiplication if available [GKS11].

Atkin’s point counting method, which studies the factorization patterns
of modular equations, has also been generalized to dimension 2 [BGLG+16],
but this result does not affect the asymptotic complexity of point counting
algorithms. Moreover, the complexity of this method has not been worked
out, as no bounds from above for the degree and heights of modular equa-
tions for abelian surfaces appear in the literature.

Isogeny graphs. The structure of isogeny graphs of `-isogenies between
principally polarized abelian surfaces over Fq can be quite intricate, but
isogeny graphs of β-isogenies between ordinary principally polarized abelian
surfaces with real multiplication are still volcanoes [BJW17, Mar18]. How-
ever, the chosen method to navigate isogeny graphs in dimension 2 is often
to compute isogenies from their kernels using higher-dimensional analogues
of Vélu’s formulæ instead of using modular equations; these formulæ are
available both for `- and β-isogenies [LR12, CR15, CE15, DJRV17].

Given the current state of knowledge, there are several reasons for pre-
ferring to compute isogenies from their kernels: the complexity of manipu-
lating modular equations is unclear, finding directions in isogeny graphs is
hard due to the lack of explicit kernels, and the databases of precomputed
modular equations are small. The drawback is that the kernel has to be
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computed in the first place, and computing the full `-torsion subgroup of
an abelian surface is costly.

1.4 Results and plan of the thesis

The contributions of this thesis aim to better understand modular equa-
tions in higher dimensions and algorithms using them. A particular focus
is placed on modular equations of Hilbert and Siegel type for principally
polarized abelian surfaces. In short, this thesis provides the three neces-
sary ingredients to generalize Elkies’s point counting method to the case of
abelian surfaces:

1. An isogeny algorithm which, given isogenous abelian surfaces, com-
putes an isogeny between them as an explicit rational map;

2. General complexity bounds for modular equations, i.e. height and de-
gree bounds, in terms of their level;

3. An evaluation algorithm for modular equations and their derivatives.

Combining these results also shows that one can efficiently navigate isogeny
graphs for abelian surfaces using modular equations. Let us now detail the
contents of each chapter.

Chapter 2. We give an introduction to PEL Shimura varieties, which
are moduli spaces for complex abelian varieties with specified polarization,
endomorphism, and level structures. This formalism encompasses the dif-
ferent moduli spaces mentioned in chapter 1, and we detail its connection
with the classical language of Siegel half spaces and modular forms. Adopt-
ing the language of Shimura varieties allows us to give a unified definition
of modular equations, of which elliptic modular polynomials, and Siegel or
Hilbert modular equations for abelian surfaces are special cases.

Chapter 3. This chapter presents an analogue of Elkies’s isogeny algo-
rithm in dimension 2 using modular equations of either Hilbert or Siegel
type, and corresponds to the preprint [KPR19]. Let us present the Siegel
case here: we want to compute an `-isogeny ϕ between principally polarized
abelian surfaces A and A′. The Kodaira–Spencer map relates the possible
deformations of ϕ, which can be computed from derivatives of Siegel mod-
ular equations, with the tangent map dϕ : T0(A)→ T0(A′) induced by ϕ on
the tangent spaces of A and A′ at zero. We make the Kodaira–Spencer map
explicit in the case of Jacobians of genus 2 curves: concretely, an explicit
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formula yields the value of certain vector-valued Siegel modular functions,
namely derivatives of Igusa invariants, in terms of the coefficients of a
hyperelliptic curve equation. This explicit formula is the dimension 2 ana-
logue of eq. (1.7) for the derivative of the j-invariant in the case of elliptic
curves. The result is the following.

Theorem 1.4.1. Let ` be a prime, and let k be a field of characteristic
zero or p > 8`+ 7. Let U be the open subvariety of A2 consisting of abelian
surfaces A without extra automorphisms and such that j3(A) 6= 0. Assume
that there exists an algorithm to evaluate derivatives of Siegel modular equa-
tions of level ` at a given point of U × U over k, using Ceval(`) operations
in k. Let ϕ : A → A′ be an `-isogeny defined over k such that A,A′ lie
in U and such that the subvariety of A2×A2 cut out by the Siegel modular
equations of level ` is normal at (A,A′). Then, given the Igusa invariants
of A and A′, one can compute an explicit representation of the isogeny ϕ
using O(Ceval(`)) + Õ(`) operations in k.

Chapter 4. This chapters contains prerequisites to the results of chap-
ter 5, and corresponds to the preprint [Kie20c]. The first part presents the
notion of heights of polynomials and rational fractions over a number field.
This nonnegative quantity reflects the size of the coefficients. For instance,
if F ∈ Q(X), one can write F = P/Q where P,Q ∈ Z[X] are coprime; then
the height h(F ) of F is the maximum of log |c|, where c runs through the
nonzero coefficients of P and Q.

The second part presents results relating the height of a polynomial or
rational fraction with the heights of its evaluations at certain points; this
allows us to bound h(F ) from above when F is a rational fraction obtained
from an interpolation process, and will be applied to modular equations in
chapter 5. We take evaluation points to be (almost) consecutive integers xi,
we are given H ≥ 0 such that h(F (xi)) ≤ H for every i, and we are
particularly looking for results where h(F ) is in O(H).

Theorem 1.4.2. Let L be a number field of degree dL over Q, let JA,BK be
an interval in Z, and write D = B −A and M = max {|A| , |B|}. Let F ∈
L(X) be a rational fraction of degree at most d ≥ 1. Let S be a subset
of JA,BK containing no pole of F , let η ≥ 1, and let H ≥ max {4, log(2M)}.
Moreover, assume that

1. h(F (x)) ≤ H for every x ∈ S.

2. S contains at least D/η elements.

3. D ≥ max {ηd3H, 4ηddL}.
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Then
h(F ) ≤ H + CLηd log(ηdH) + d log(2M) + log(d+ 1),

where CL is a constant depending only on L. One can take CQ = 960.

Chapter 5. This chapter gives degree and height bounds for modular
equations in the general setting of PEL Shimura varieties in terms of their
level. The associated preprint is [Kie20a]. Let us use the notation of
chapter 2: we consider the PEL Shimura variety associated with a certain
reductive group G and a choice of level, connected components S, T of this
Shimura variety, and a choice of invariants on these connected components.
The algebraic varieties S and T are moduli spaces for complex abelian
varieties with PEL structure.

Let δ be an adelic element of G. The modular equations of level δ are
multivariate rational fractions defining the Hecke correspondence of level δ
in the product S × T . In the modular interpretation, this Hecke corre-
spondence describes a certain number d(δ) of isogenies of degree denoted
by l(δ) between abelian varieties with PEL structure. We show that the
degrees and heights of modular equations of level δ are bounded above in
terms of d(δ) and l(δ).

Theorem 1.4.3. With the notation above, there exist constants C1 and C2

(independent of δ) with the following property. Let δ be an adelic element
of G, and let F be a rational fraction obtained as a coefficient of one of the
modular equations of level δ. Then the total degree of F is bounded above
by C1 d(δ), and the height of F is bounded above by C2 d(δ) log l(δ).

In the case of Siegel modular equations of level ` for principally polarized
abelian surfaces, we have d(δ) = `3 + `2 + ` + 1 and l(δ) = `2. Thus the
degree of Siegel modular equations of level ` is O(`3), and their height
is O(`3 log `). In the case of elliptic modular polynomials, theorem 1.4.3
recovers Cohen’s bounds [Coh84] up to constant factors.

Chapter 6. This chapter corresponds to the preprint [Kie20b]. We
present an evaluation algorithm for Siegel and Hilbert modular equations
in dimension 2 and their derivatives at a given point defined over a num-
ber field. The algorithm also applies to finite fields, by considering lifts
to characteristic zero. We use complex approximations, and rely on fast
algorithms to compute theta constants in dimension 2.

Computing theta constants in dimension 2 in quasi-linear time in the
demanded precision relies on two heuristics, namely the correctness of cer-
tain sign choices in duplication formulæ, and the convergence of certain

40



Newton iterations. An auxiliary result of this chapter removes the first
heuristic: the sign choices usually made in the algorithm to compute theta
constants are indeed correct. The complete proof appears in the accepted
paper [Kie21]. The second heuristic is valid in practice.

Apart from the computation of theta constants, our evaluation algo-
rithm for modular equations is made provably correct by a rigorous analysis
of precision losses. In particular we obtain the following result.

Theorem 1.4.4 (Under heuristics relative to the computation of theta
constants in dimension 2). Let ` be a prime, and let (j1, j2, j3) ∈ Q3 be a
tuple of height O(1) where the denominators of Siegel modular equations of
level ` do not vanish. Then one can evaluate these modular equations and
their derivatives at (j1, j2, j3) using Õ(`6) binary operations.

One should compare this cost to the cost of storing Siegel modular
equations in full, which we estimate to be Θ(`15 log `) given the results of
chapter 5: when the dimension of the associated moduli space is greater
than one, evaluating modular equations on the fly seems superior to pre-
computing them.

In the case of Hilbert modular equations encoding β-isogenies where β
has norm ` over Q, the cost of the evaluation algorithm can decrease
to Õ(`2) binary operations only. If this happens in the context of Elkies’s
method, then manipulating modular equations becomes asymptotically
negligible when compared to the rest of the point counting algorithm.

Chapter 7. We conclude this thesis by applying the results of all pre-
ceding chapters to the point counting problem for abelian surfaces. In
particular, we obtain a heuristic point counting algorithm for principally
polarized abelian surfaces over finite fields with real multiplication by a
fixed real quadratic field F which, under heuristics and up to constant
factors depending on F , has the same asymptotic complexity as the SEA
algorithm for elliptic curves.
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Chapter 2

Moduli spaces of abelian
varieties and modular equations

Modular equations, such as the elliptic modular polynomials presented
in §1.1, can be defined as equations relating certain modular functions
defined on moduli spaces of abelian varieties. This chapter starts with
reminders on abelian varieties (§2.1), then presents the language of PEL
Shimura varieties, which are moduli spaces for abelian varieties with cer-
tain polarization, endomorphism, and level structures (§2.2). The moduli
spaces that are used to define modular equations of Siegel and Hilbert type
for abelian surfaces, namely the Siegel threefold and Hilbert surfaces, are
special cases of PEL Shimura varieties (§2.3). Using this language, we de-
fine modular equations in the general setting of PEL Shimura varieties as
equations defining Hecke correspondences (§2.4). The modular polynomials
mentioned in chapter 1 are all special cases of this definition. This unified
language will be useful in chapter 5, where we prove size bounds for all
modular equations in terms of their level.

2.1 Reminders on abelian varieties

By definition, an abelian variety over a field k is a complete group
variety over k. In order to study abelian varieties, we endow them with
polarizations. Depending on the context, a polarization on A can be seen
either as an isogeny from A to its dual abelian variety Â, or as an equiva-
lence class of ample line bundles on A. An important special case is that of
principal polarizations, when the isogeny A→ Â is an isomorphism. Ellip-
tic curves, as well as Jacobians of smooth curves in general, are canonically
endowed with a principal polarization.
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When k = C, it is possible to describe abelian varieties as complex tori
of the form Cg/Λ, where g ≥ 1 is the dimension and Λ ⊂ Cg is a lattice.
In this case we have an additional way of describing polarizations, namely
as a symplectic form taking integer values on Λ.

Endowing an abelian variety A with a polarization yields a “positivity
structure” on its endomorphism algebra, given by the Rosati involution. For
instance, it makes sense to talk about real endomorphisms of A, i.e. en-
domorphisms that are invariant under the Rosati involution. Polarizations
also allow us to classify isogenies: the notion of `-isogenies between po-
larized abelian varieties is defined in terms of pullbacks of polarizations.
Similarly, if O is an order in a totally real field F of degree g over Q,
and β ∈ O is totally positive, then we can define the notion of β-isogenies
between abelian varieties of dimension g with real multiplication by O.

References for this section are [Mum70, Mil86a, Mil86b], and also [BL04]
for abelian varieties over C.

2.1.1 Abelian varieties and polarizations

Let g ≥ 1 be an integer, let k be a field, and let k be an algebraic closure
of k. Let A,B be abelian varieties of the same dimension g over k.

Recall that a group variety over k is, by definition, an algebraic variety
over k endowed with a k-rational neutral point and suitable morphisms
defined over k encoding the group operations. Abelian varieties are smooth
varieties [Mil86a, §1], and also abelian groups [Mil86a, Cor. 2.4]; we will
use the additive notation. If x ∈ A(k), we denote by tx the translation
by x:

tx : A→ A, y 7→ y + x.

If x ∈ A(k), then this morphism is defined over k.
An isogeny A → B is a group morphism that has finite kernel (or

equivalently, is surjective [Mil86a, Prop. 8.1]). For every integer n 6= 0,
the multiplication-by-n map on A, denoted by [n]A, is an isogeny of de-
gree n2g [Mil86a, Thm. 8.2]. If n is prime to the characteristic of k, then
the n-torsion subgroup A[n] := ker([n]A) of A is an étale group scheme, and
the group of its k-points is isomorphic to (Z/nZ)2g.

Since A is smooth, there is a correspondence between line bundles and
divisors on A. One can define three different notions of equivalence for line
bundles on A defined over k.

1. Two line bundles L1 and L2 on A, corresponding to divisors D1

and D2, are linearly equivalent if D1−D2 is the divisor of a function;
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equivalently, if L1 ⊗ L−1
2 is globally trivial. We often identify line

bundles with their linear equivalence classes.

2. The line bundles L1 and L2 are algebraically equivalent if there exists
a smooth variety T , a line bundleM on A×T , and closed points t1, t2
of T such that L1 'M|A×{t1} and L2 'M|A×{t2}. We say that L1 is
algebraically equivalent to zero if it is algebraically equivalent to the
trivial line bundle; the group of line bundles algebraically equivalent
to zero on A is denoted by Pic0(A). Linearly equivalent line bundles
are algebraically equivalent. Line bundles up to algebraic equivalence
on A form a group under the tensor product, called the Néron–Severi
group NS(A) of A.

3. Two algebraically equivalent line bundles on A are always numeri-
cally equivalent, meaning that one can be replaced by the other in
intersection pairings.

Recall that a line bundle L on A is very ample if the global sections of L
define a projective embedding of A, and that L is ample if some positive
power of L is very ample. Lefschetz’s theorem [Mum70, §III.17] states that
for every ample line bundle L on A, its third power L⊗3 is very ample.

The dual of A, denoted by Â, is also an abelian variety of dimen-
sion g over k [Mil86a, §9]. There is a canonical bijection between Â(k)
and Pic0(A). For every line bundle L on A, the map

φL : A→ Â, x 7→ (t∗xL)⊗ L−1

is a group morphism by the theorem of the square [Mil86a, §6]. Two line
bundles on A are algebraically equivalent if and only if they give rise to
the same map φL. The map φL is zero if and only if L is algebraically
equivalent to zero, and φL is an isogeny if and only L is ample [Mil86a,
Prop. 10.1].

For every isogeny ϕ : A→ B, we have a dual isogeny ϕ̂ : B̂ → Â; and the
double dual of A is identified with A. Under this identification, isogenies
of the form φL are self-dual.

A polarization on A is an isogeny ϕ : A → Â such that there exists an
ample line bundle L over A defined over k such that ϕ = φL. A polarization
is called principal if it is an isomorphism. In other words, a polarization
on A is an algebraic equivalence class of ample line bundles on A, and we
often make a choice of such a line bundle. Yet another way of looking at
polarizations is to view ϕ as a symmetric correspondence on A× A.
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2.1.2 Jacobians

If C is a smooth curve of genus g over k, then its Jacobian, denoted
by Jac(C), is an abelian variety of dimension g defined over k [Mil86b].
The k-points of Jac(C) are identified with linear equivalence classes of de-
gree zero divisors on C. Let K be a divisor of degree g on C (for instance
the canonical divisor, when g = 2). Then a generic divisor of degree zero
on C can be written as

[P1 + · · ·+ Pg −K]

where P1, . . . , Pg ∈ C(k) are uniquely determined up to permutation. This
defines a birational map between the g-th symmetric power C<g> of C,
which is also a smooth variety of dimension g, and the Jacobian vari-
ety Jac(C) [Mil86b, Thm. 5.1].

If P ∈ C(k), then we have an embedding

ηP : C ↪→ Jac(C), Q 7→ [Q− P ]. (2.1)

The morphism ηP induces an isomorphism

η∗P : Ω1(Jac(C))→ Ω1(C)

between the spaces of global differential forms on C and Jac(C). The iso-
morphism η∗P does not depend on the choice of P , hence η∗P is defined
over k [Mil86b, Prop. 2.2]. The image ηP (C) is a divisor on Jac(C), called
the theta divisor ; its algebraic equivalence class does not depend on P . The
associated line bundle is ample, and defines a canonical principal polariza-
tion on Jac(C) [Mil86b, Thm. 6.6].

Example 2.1.1. Recall that an elliptic curve over k is a smooth curve
of genus 1 endowed with a base point. An elliptic curve E is canoni-
cally isomorphic to its Jacobian, and therefore E is a principally polar-
ized abelian variety of dimension 1. If 0E denotes the neutral point of E,
then L := L([0E]) (in the usual Riemann–Roch notation) is an ample line
bundle such that φL is the principal polarization of E. Since L⊗3 is very
ample, its global sections induce a projective embedding of E; we obtain
the existence of Weierstrass models of E in this way.

In the case g = 2, every principally polarized abelian surface A over k is
either isomorphic to the product of two elliptic curves with their canonical
principal polarizations, or isomorphic to the Jacobian of a smooth genus 2
hyperelliptic curve over k [OU73]. A hyperelliptic curve of genus g over k
is the normalization of a plane curve with equation

y2 = P (x)
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where P is a polynomial of degree 2g + 1 or 2g + 2 with simple roots.
If g = 3, then the threefold A is either the Jacobian of a plane quartic curve,
the Jacobian of a genus 3 hyperelliptic curve, or a product of principally
polarized abelian varieties of lower dimensions.

2.1.3 Abelian varieties over C
Every abelian variety A of dimension g over C is isomorphic to a com-

plex torus of the form Cg/Λ, where Λ ⊂ Cg is a lattice, i.e. a discrete free
abelian group of rank 2g [Mum70, §I.1]. A matrix whose columns generate
such a lattice Λ is called a period matrix of A.

Conversely, every algebraizable complex torus is an abelian variety; this
condition is not automatic, and holds if and only if the generating ma-
trix of Λ satisfies certain symmetry and positivity conditions called the
Riemann relations [BL04, §4.2]. One can deduce from these relations
that every abelian variety of dimension g over C admits a period ma-
trix of the form (Ig τ) where τ belongs to the Siegel upper half space Hg,
i.e. τ ∈ Matg×g(C) is symmetric and Im(τ) is positive definite.

Let A = Cg/Λ be a complex abelian variety, and let L be a line bundle
on A. Since the pullback of L to Cg is trivial, the line bundle L can be
described in terms of factors of automorphy for the lattice Λ; we refer
to [BL04, §2.1–2.2] for the precise definition. Starting from any factor of
automorphy of L, one can construct a real-valued alternating form ψL on Cg

taking integer values on Λ. In fact, the alternating form ψL can be identified
with the first Chern class of L [BL04, Thm. 2.1.2], so that two line bundles
on A are algebraically equivalent if and only if their associated alternating
forms are equal. The form ψL has the property that ψL(iu, iv) = ψL(u, v)
for every u, v ∈ Cg, and the line bundle L is a polarization if and only
if the form (u, v) 7→ ψL(u, iv) is symmetric and positive definite [BL04,
§4.1]. Conversely, if ψ is an alternating form on Cg such that ψ(Λ,Λ) ⊂ Z
and ψ(iu, iv) = ψ(u, v) for every u, v ∈ Cg, then ψ is the first Chern class
of a line bundle on A.

Let ψ be a polarization on A, seen as an alternating form. Then there
exists a Z-basis of Λ in which the matrix of ψ takes the form

(0)
D1

...
Dg

−D1

...
−Dg

(0)


for some positive integers D1| · · · |Dg, uniquely determined by ψ. The tu-
ple (D1, . . . , Dg) is called the type of the polarization ψ. The type of ψ can
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also be seen as the isomorphism class of the finite group Λ⊥/Λ, where

Λ⊥ = {u ∈ Cg : ∀v ∈ Λ, ψ(u, v) ∈ Z} .

The notion of polarization type can be extended to abelian varieties over
any field k, at least when the degree of the polarization is prime to the
characteristic of k.

2.1.4 Endomorphisms and isogenies

Let A be an abelian variety of dimension g over a field k endowed with a
polarization φ : A→ Â. We denote by End(A) (resp. Endk(A)) the ring of
endomorphisms of A defined over k (resp. k). Scalar multiplications define
an embedding Z ↪→ Endk(A), and the ring End(A) is torsion-free. The
endomorphism algebra of A is End0(A) := End(A)⊗Z Q.

The Rosati involution. The polarization φ defines a Rosati involution
on the algebra End0(A) [Mil86a, §17], defined formally as

f 7→ f † := φ−1 ◦ f̂ ◦ φ.

An endomorphism f of A is called real if f † = f . The map

L 7→ φ−1 ◦ φL (2.2)

is a bijection between NS(A)⊗Q and the subspace End0(A)† of real endo-
morphisms of A [Mil86a, Prop. 17.2], carrying tensor product to addition.
If φ is a principal polarization, then the Rosati involution leaves End(A)
stable, and the map (2.2) is a bijection between NS(A) and End(A)†.

In the case k = C, if we write A = Cg/Λ, then endomorphisms of A
are identified with endomorphisms of Cg as a C-vector space (i.e. g × g
matrices) leaving Λ stable; and the Rosati involution is adjunction with
respect to the symplectic form ψ attached to the polarization [BL04, §5].

The Rosati involution can be used to classify the possible endomorphism
algebras of abelian varieties. The involution † is always a positive involu-
tion [Mum70, §21, Thm. 1]. Recall that if B is a finite-dimensional Q-
algebra, a positive involution on B is an “anti-involution” ∗ : B → B
(i.e. b∗∗ = b and (bb′)∗ = b′∗b∗ for all b, b′ ∈ B) such that the bilinear
form (b, b′) 7→ TrB/Q(bb′∗) is symmetric and positive definite. If A is simple
(i.e. A is not isogenous to products of abelian varieties of smaller dimen-
sions), then End0(A) is a division algebra [Mum70, §19, Cor. 2]. Further
restrictions on End0(A) are given in [Mum70, §21, Thm. 2].

47



Isogeny types. Let (A,L) and (A′,L′) be polarized abelian varieties;
here we consider polarizations as line bundles. Let ` ≥ 1. We say that
an isogeny ϕ : A → A′ is an `-isogeny if ϕ∗L′ is algebraically equivalent
to L⊗`; equivalently, ϕ is an `-isogeny if ϕ∗L′ ∈ NS(A) corresponds to the
real endomorphism ` ∈ End0(A)† under the bijection (2.2). An `-isogeny
has degree `2g. If A and A′ have dimension 1, we recover the usual notion
of `-isogenies between elliptic curves.

When more endomorphisms are present, there are other isogeny types
to consider. Let F be a totally real field of degree g over Q, and let O
be an order in F . Let (A,L) and (A′,L′) be principally polarized abelian
varieties of dimension g, and assume that we are given real multiplication
embeddings

ι : O ↪→ End(A)†, ι′ : O ↪→ End(A′)†.

We say that A,A′ have real multiplication by O. Let β ∈ O. We say that
an isogeny ϕ : A→ A′ is a β-isogeny if

• the line bundle ϕ∗L′ ∈ NS(A) corresponds to the real endomor-
phism ι(β) ∈ End(A)†, and

• the isogeny ϕ is compatible with the real multiplication embeddings,
in other words we have ϕ ◦ ι(α) = ι′(α) ◦ ϕ for every α ∈ O.

A necessary condition for a β-isogeny to exist is that β ∈ O is totally
positive [DJRV17, Thm. 1.1].

2.2 The theory of PEL Shimura varieties

2.2.1 Motivating the definition

Consider the modular curve X(1), introduced in §1.1.1. It is a com-
pactification of the quotient SL2(Z)\H1, where the modular group SL2(Z)
acts on the upper half plane H1 as in eq. (1.1). More generally, modular
curves of higher level are obtained as compactifications of quotients of the
form Γ\H1, where Γ ⊂ SL2(Z) is a congruence subgroup. Recall that a
subgroup Γ ⊂ SL2(Z) is congruence if it contains a subgroup of the form

Γ(N) = {γ ∈ SL2(Z) : γ = ( 1 0
0 1 ) mod N} , (2.3)

for some N ≥ 1. An example is given by the group Γ = Γ0(`) where ` is a
prime, defined by eq. (1.3).

A drawback of this classical definition is that it is not immediately
clear what the generalizations of H1 and SL2(Z) should be in order to
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obtain moduli spaces of abelian varieties of higher dimensions. The goal
of this section is to present another way of defining modular curves which
is better suited for generalization. Our presentation is heavily inspired by
Milne [Mil05, §4-7].

Another interpretation of H1. The action of SL2(Z) on H1 is the re-
striction of a “larger” action by the group GL2(R)+ consisting of all real
2× 2 matrices with positive determinant. The action of GL2(R)+ on H1 is
transitive. Let us fix i ∈ H1 as a base point. The stabilizer of i in GL2(R)+

is the subgroup

K∞ =
{(

a b
−b a

)
: a, b ∈ R, (a, b) 6= (0, 0)

}
,

and we have a bijection

GL2(R)+/K∞ ' H1, γ 7→ γi.

As a quotient of Lie groups, GL2(R)+/K∞ has a natural structure of a real
differentiable manifold which corresponds to that of H1.

In turn, we can give an “intrinsic” definition of the subgroup K∞. By
definition, the group GL2(R)+ acts on the real vector space V (R) = R2 (we
think of V as the algebraic variety A2 over Q, hence the notation). More-
over V (R) has a natural complex structure, meaning an endomorphism x0

of V (R) such that x0 ◦ x0 = −1: take

x0 = ( 0 1
−1 0 )

in the canonical basis (e1, e2) of V (R). We check the following facts.

1. The group GL2(R)+ acts on the set of complex structures on V (R)
by conjugation: if x is a complex structure on V (R) and γ ∈ G(R)+,
we set γx := γ ◦ x ◦ γ−1.

2. The stabilizer of x0 under this action is K∞; this is the intrisic defi-
nition of K∞ we were looking for.

3. The orbit of x0 under the action of GL2(R)+ consists of all complex
structures x = ( s t

u v ) such that t > 0.

To explain point 3, we define a symplectic form ψ on V by setting

ψ(e1, e2) = −1.

Then the complex structure x0 is positive for ψ, meaning that the bilinear
form defined by (u, v) 7→ ψ(u, x0(v)) on V (R) × V (R) is symmetric and
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positive definite; indeed, its matrix in the canonical basis is the identity.
The action of GL2(R) on V is compatible with ψ, in the sense that for
every γ ∈ GL2(R), there exists λ ∈ R× such that

∀u, v ∈ V (R), ψ(γu, γv) = λψ(u, v).

Therefore, if we set x = γx0, the bilinear form (u, v) 7→ ψ(u, x(v)) is still
symmetric. Moreover, GL2(R)+ is connected: therefore, if γ ∈ GL2(R)+,
we have λ > 0 and hence the symmetric bilinear form ψ(u, x(v)) is positive
definite. The point 3 above states that the orbit of x0 under GL2(R)+

consists of all complex structures on V (R) that are positive for ψ.
Turning things around, we start from the vector space V endowed with

the symplectic form ψ; we define G = GL2 as the algebraic group of auto-
morphisms of V that are compatible with ψ; and we fix a complex struc-
ture x0 on V (R) that is positive for ψ. Then the upper half plane H1, with
its usual action of GL2(R)+, is identified with the orbit of x0 under the
action of GL2(R)+ by conjugation.

Another interpretation of congruence subgroups. The definition
of congruence subgroups of SL2(Z) also seems rather arbitrary: why con-
sider the subgroups Γ(N) in the first place? In fact, these subgroups arise
naturally when working with adeles.

Let PQ denote the set of prime numbers. Recall that the ring of finite
adeles Af of Q is defined as a restricted product over PQ:

Af =
∏′

p∈PQ

(Qp ;Zp), (2.4)

where Qp and Zp denote the field of p-adic numbers and the ring of p-
adic integers, respectively. The elements of Af are tuples (xp)p∈PQ such
that xp ∈ Qp for all p, and xp ∈ Zp for all p but finitely many. The ring Af

is endowed with the adelic topology: a basis of neighborhoods of 0 ∈ Af

consists of open sets of the form
∏

p Up, where Up ⊂ Qp is an open set
containing 0, and Up = Zp for every p but finitely many.

If G is any affine algebraic group over Q (for instance G = GL2), we can
define G(Af ) as a topological group. To do so, choose a closed immersion η
of G in an affine space An

Q, for some n ≥ 1. This choice allows us to
define G(Z)η and G(Zp)η for every prime p, as the sets of solutions in Z
(resp. Zp) of the equations defining G; these sets depend on η, hence the
subscript. Then we form the restricted product

G(Af )η =
∏′

p∈PQ

(
G(Qp) ;G(Zp)η

)
.
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and we declare that a basis of neigborhoods of 1 ∈ G(Af )η consists of
products of the form

∏
p Up, where Up ⊂ G(Qp) is an open set containing 1,

and Up = G(Zp)η for every p but finitely many.
If η′ is another choice of closed immersion of G into an affine space,

then η(G) and η′(G) are isomorphic over Q. Therefore they are isomorphic
over Z[1/D], for some D ≥ 1. The subsets G(Zp)η and G(Zp)η′ of G(Qp)
are the same for every prime p not dividing D, therefore G(Af )η = G(Af )η′
as topological spaces. Thus G(Af ) is well defined.

We return to the special case G = GL2, and denote by GL2(Q)+ the
subset of GL2(Q) consisting of matrices with positive determinant. Recall
the usual notation

Ẑ =
∏
p∈PQ

Zp = lim←−
n→∞

Z/nZ.

Proposition 2.2.1. For every congruence subgroup Γ ⊂ SL2(Z), there
exists a compact open subgroup K of GL2(Af ) contained in GL2(Ẑ) such
that Γ = GL2(Q)+ ∩ K. Conversely, for every compact open subgroup K
of GL2(Af ) that is contained in GL2(Ẑ), the intersection GL2(Q)+ ∩K is
a congruence subgroup of SL2(Z).

Proof. This is [Mil05, Prop. 4.1], with the additional remark that

GL2(Z) ∩GL2(Q)+ = SL2(Z).

In particular, we have SL2(Z) = GL2(Q)+∩K0, with K0 = GL2(Ẑ). We
already know that the quotient SL2(Z)\H1 can be rewritten as the double
quotient SL2(Z)\GL2(R)+/K∞, where K∞ is the stabilizer of the complex
structure x0 on V (R).

Proposition 2.2.2. The map

SL2(Z)\GL2(R)+/K∞ → GL2(Q)+\
(
GL2(R)+ ×GL2(Af )

)
/
(
K∞ ×K0

)
γ 7→

(
γ, ( 1 0

0 1 )
)

is a bijection.

Proof. First, we have to explain how the double quotient on the right is
formed: K∞ acts on GL2(R)+ by multiplication on the right, K0 acts
on GL2(Af ) by multiplication on the right, and GL2(Q)+ acts by mul-
tiplication on the left simultaneously on GL2(R)+ and GL2(Af ).

By [Mil05, Thm. 5.17 and Lem. 5.20] (the assumption that K is suffi-
ciently small is not actually needed there; moreover SL2 is simply connected
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as an algebraic group [Mil17, Ex. 18.20]), the determinant induces a bijec-
tion

GL2(Q)+\GL2(Af )/K0 → det
(
GL2(Q)+)

)
\ det

(
GL2(Af )

)
/ det(K0)

= Q×+\A×f /Ẑ
×.

From description of Af given in eq. (2.4), we see that A×f = Q×+ Ẑ×.
Therefore the double quotient Q×+\A×f /Ẑ× is trivial, and every element
of GL2(R)+ × GL2(Af ) has a representative of the form

(
γ, ( 1 0

0 1 )
)

for
some γ ∈ GL2(R)+ modulo the action of GL2(Q)+ and K0.

To conclude, we only have to show that for every γ, γ′ ∈ GL2(R)+,
the pairs

(
γ, ( 1 0

0 1 )
)
and

(
γ′, ( 1 0

0 1 )
)
are equal in the double quotient if and

only if γ and γ′ are equal modulo SL2(Z). This is straightforward given
that SL2(Z) = GL2(Q)+ ∩K0.

Note that the double quotient on the right hand side of proposition 2.2.2
would make sense for algebraic groups other than GL2: we have succeeded
in finding another definition of the quotient SL2(Z)\H1 that is suitable for
generalization. It remains to find out which algebraic groups give rise to
moduli spaces of polarized abelian varieties.

The modular interpretation of SL2(Z)\H1. Finally, we take another
look at the well-known fact that SL2(Z)\H1 parametrizes isomorphism
classes of elliptic curves over C. The elliptic curve associated with τ ∈ H1

is E(τ) = C/Λ(τ), where Λ(τ) = Z⊕ τZ. Consider the bijection

ητ : V (R)/Z2 → C/Λ(τ), e1 7→ 1, e2 7→ −τ.

Then, after simple computations with 2× 2 matrices, we obtain:

Proposition 2.2.3. Let γ ∈ GL2(R)+, and let τ = γi ∈ H1. Then the
pullback under ητ of the multiplication-by-i map on C is the complex struc-
ture γx0 on V (R).

In other words, we have a distiguished lattice Λ0 = Z2 ⊂ V (R); and for
every complex structure x ∈ GL2(R)+/K∞, the elliptic curve associated
with x is the quotient V (R)/Λ0, with x as a complex structure.

We can also describe the natural principal polarization of E(τ). Recall
that V is endowed with the symplectic form ψ such that ψ(e1, e2) = −1.
When restricted to Λ0×Λ0, the form ψ takes values in Z, and corresponds
via ητ to the polarization of E(τ).
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In order to construct moduli spaces of polarized abelian varieties of
higher dimensions, it is promising to start from a Q-vector space V of
higher dimension, endowed with a symplectic form ψ and a complex struc-
ture x0 that is positive for ψ, and to consider the algebraic group G of
automorphisms of V compatible with this data (and possibly additional
endomorphisms of V , if we want to classify abelian varieties with an endo-
morphism structure). Then we construct double quotients of the form

G(Q)+\
(
G(R)+ ×G(Af )

)
/
(
K∞ ×K

)
where K∞ is the stabiliser of x0, the subgroup K ⊂ G(Af ) is compact and
open, and the “plus” subscripts encode some connectedness condition. We
arrive at the definition of a PEL Shimura variety.

2.2.2 Simple PEL Shimura varieties of type (A) or (C)

We continue to follow Milne’s exposition of the theory of Shimura
varieties [Mil05], which is itself inspired from Deligne’s presentation of
Shimura’s works [Del70].

Notation. If G is a connected affine algebraic group over Q, then

• Gder is the derived group of G,

• Z is the center of G,

• Gad = G/Z is the adjoint group of G,

• T = G/Gder is the largest abelian quotient of G,

• ν : G→ T is the natural quotient map,

• Gad(R)+ is the connected component of the identity in Gad(R) for the
real topology,

• G(R)+ is the preimage of Gad(R)+ in G(R), and finally

• G(Q)+ = G(Q) ∩G(R)+.

Note that Z, Gder, T and Gad are algebraic groups, i.e. exist as schemes.
Defining them is not as direct as in the case of “abstract” groups. First,
there exists a subgroup Z of G such that for every Q-algebra R, the
group Z(R) is the center of the group G(R) [Mil17, Prop. 1.92]. Then
the quotient Gad exists by [Mil17, Thm. 5.14], and has following property:
if k is an algebraically closed field containing Q, then Gad(k) = G(k)/Z(k)
[Mil17, Prop. 5.47]. The group Gder is defined as the smallest normal sub-
group N of G such that G/N is commutative; Gder can also be characterized
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as the subgroup of G generated by commutators [Mil17, Prop. 6.18]. Fi-
nally, T is also defined as a scheme-theoretic quotient.

For instance, if G = GL2, we have Gder = SL2; Z = Gm; Gad = PGL2;
T = Gm; ν = det; and G(R)+, G(Q)+ are the sets of real (resp. rational)
2× 2 matrices with positive determinant. This coincides with the notation
used in §2.2.1.

PEL data. Let us introduce the data necessary to define a PEL Shimura
variety. As indicated in §2.2.1, it consists of a Q-vector space V equipped
with a symplectic form, certain endomorphisms, and a class of complex
structures, that are “compatible” in a way. Following Milne [Mil05, §8],
we start with the endomorphism algebra of V ; it is a finite-dimensional Q-
algebra B endowed with a positive involution denoted by ∗. We also assume
that B is simple, meaning that its only two-sided ideals are 0 and B.

The center F of B is a number field; let F0 ⊂ F be the subfield of
invariants under ∗. We make the technical assumption that B is either
of type (A) or (C) [Mil05, Prop. 8.3]: this means that for every embed-
ding θ of F0 in an algebraic closure Q of Q, the algebra with positive
involution (B ⊗F0,θ Q, ∗) is isomorphic to a product of factors of the form,
respectively,

(A) Matn×n(Q)×Matn×n(Q) with (a, b)∗ = (bt, at), or

(C) Matn×n(Q) with a∗ = at.

Let (V, ψ) be a faithful symplectic (B, ∗)-module. In other words, V
is a finite-dimensional Q-vector space equipped with a faithful B-module
structure and a nondegenerate alternating Q-bilinear form ψ such that for
all b ∈ B and for all u, v ∈ V ,

ψ(b∗u, v) = ψ(u, bv). (2.5)

Let GLB(V ) denote the group of automorphisms of V respecting the action
of B, and let G be its (reduced) algebraic subgroup defined by

G(Q) =
{
g ∈ GLB(V ) : ψ(gx, gy) = ψ(µ(g)x, y) for some µ(g) ∈ F×0

}
.

The group G is affine, connected, and reductive, and its derived group is
Gder = ker(µ)∩ker(det) [Mil05, Prop. 8.7]. We warn the reader that our G
is denoted by G1 in [Mil05, §8 of the 2017 version]. In Milne’s terminology,
our G will define a Shimura variety (so that the results of [Mil05, §5] apply),
but not strictly speaking a PEL Shimura variety. This choice of reductive
group will allow us to consider more Hecke correspondences later on.
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Let x be a complex structure on V (R), meaning an endomorphism
of V (R) such that x2 = −1. We say that x is positive for ψ if it commutes
with the action of B and if the bilinear form (u, v) 7→ ψ

(
u, x(v)

)
on V (R)

is symmetric and positive definite. In particular, x ∈ G(R) and µ(x) = 1.
Such a complex structure x0 exists [Mil05, Prop. 8.14]. Define X+ to be
the orbit of x0 under the action of G(R)+ by conjugation. We call the
tuple (B, ∗, V, ψ,G,X+) a simple PEL Shimura datum of type (A) or (C),
or simply a PEL datum. To simplify notations, we abbreviate PEL data as
pairs (G,X+), the underlying data (V, ψ) and (B, ∗) being implicit.

Example 2.2.4. In the example V = Q2 studied in §2.2.1, there were
no endomorphisms of V to consider. This corresponds to taking B = Q
with the involution ∗ being the identity map; in this case (B, ∗) is indeed a
simple Q-algebra with positive involution of type (C). The bilinear form ψ
satisfies eq. (2.5) by Q-linearity. All automorphisms of V respect the ac-
tion of B, and the space of symplectic forms on Q2 is one-dimensional,
hence G = GL2. The rest of the definitions coincide with those of §2.2.1.

Remark 2.2.5. Let (G,X+) be a PEL datum. One can show that the
space X+ is a hermitian symmetric domain [Mil05, Cor. 5.8]. By definition,
a connected hermitian manifold Y is a hermitian symmetric domain if

• The group of holomorphic isometries of Y acts transitively on Y ,

• For each y ∈ Y , there exists an involution of Y having y as an isolated
fixed point.

If one gives H1 the usual hermitian metric, then the group GL2(R)+ acts
on H1 by holomorphic isometries, and z 7→ −1/z is the required symmetry
at i ∈ H1 [Mil05, Ex. 1.1]. This shows that H1 is indeed a hermitian
symmetric domain.

PEL Shimura varieties. Let (G,X+) be a PEL datum as above, let K
be a compact open subgroup of G(Af ), and let K∞ be the stabilizer of x0

in G(R)+. The PEL Shimura variety associated with (G,X+) of level K is
the double quotient

ShK(G,X+)(C) = G(Q)+\(X+ ×G(Af ))/K

= G(Q)+\(G(R)+ ×G(Af ))/K∞ ×K.
(2.6)

Actually, this quotient will be the set of C-points of the Shimura variety,
hence the notation. In the first line of (2.6), the group G(Q)+ acts on X+

and G(Af ) by conjugation and left multiplication respectively, and K
acts on G(Af ) by right multiplication. When the context is clear, we

55



omit (G,X+) from the notation. The set ShK(C) is given the quotient
topology obtained from the real topology on G(R)+ and the adelic topol-
ogy on G(Af ).

In order to describe ShK(C) more explicitly, we study its connected
components. The projection to the second factor induces a map with con-
nected fibers from ShK(C) to the double quotient G(Q)+\G(Af )/K, which
is finite [Mil05, Lem. 5.12]. Let C be a set of representatives in G(Af )
for this double quotient. The connected component Sc of ShK(C) indexed
by c ∈ C can be identified with Γc\X+, where Γc = G(Q)+ ∩ cKc−1 is an
arithmetic subgroup of Aut(X+) [Mil05, Lem. 5.13]. Thus, the Shimura
variety ShK(C) has a natural structure of a complex analytic space, and is
an algebraic variety by the theorem of Baily and Borel [Mil05, Thm. 3.12].

Since Gder is simply connected, by [Mil05, Thm. 5.17 and Lem. 5.20]
(as above, the assumption that K is sufficiently small is not necessary), the
map ν induces an isomorphism

G(Q)+\G(Af )/K ' ν(G(Q)+)\T (Af )/ν(K).

Therefore the set of connected components of ShK(C) is a finite abelian
group. Moreover, each connected component is itself a Shimura variety
with underlying group Gder [Mil05, Rem. 5.23].

A fundamental theorem states that the Shimura variety ShK(G,X+)
exists as an algebraic variety defined over the reflex field E(G,X+), which
is a number field contained in C, depending only on the PEL datum [Mil05,
§12-14]. The field of definition of the individual connected components
of ShK(C) depends on K, and is a finite abelian extension of E(G,X+).

Example 2.2.6. By §2.2.1, the modular curve X(1) = SL2(Z)\H1 is the
PEL Shimura variety associated with (G,X+) = (GL2,H1) and congruence
subgroupK0 = GL2(Ẑ), choosing the identity matrix as the unique element
of C. Let us also recover the classical modular curves of higher level as
special cases of PEL Shimura varieties.

Choose an integer N ≥ 1, and for every p ∈ PQ, denote by vp(N) the
p-adic valuation of N . Let KN be the compact open subgroup of GL2(Af )
defined by

KN =
{
γ ∈ G(Af ) : ∀ p ∈ PQ, γp ∈ GL2(Zp) and γp = ( 1 0

0 1 ) mod pvp(N)
}
.

It is a subgroup of GL2(Ẑ) defined by congruence conditions modulo the
prime divisors of N .

If N > 1, then the group of connected components of ShKN (C) is not
trivial. Still, choosing the identity matrix as an element of C identifies one of
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the connected components of ShKN (C) with the quotient Γ(N)\H1: indeed,
by (2.3), we have Γ(N) = GL2(Q)+ ∩ KN . This quotient is the classical
modular curve X(N) of level N ; one can check that X(N) is defined over
the cyclotomic field Q(ζN).

2.2.3 Modular interpretation of PEL Shimura varieties

Our motivation in constructing PEL Shimura varieties is to obtain mod-
uli spaces of complex abelian varieties with polarization, endomorphism,
and level structures. This modular interpretation of PEL Shimura varieties
is usually formulated in terms of isogeny classes of abelian varieties (see for
instance [Mil05, Thm. 8.17]). In order to obtain a modular intepretation
in terms of isomorphism classes of abelian varieties in the spirit of [Car86,
§2.6], as in the case of elliptic curves, we fix

• A PEL datum (G,X+),

• A lattice Λ0 ⊂ V (see p. 14 for our conventions on lattices),

• A compact open subgroup K ⊂ G(Af ) which is assumed to stabilize
the adelic lattice Λ̂0 = Λ0 ⊗ Ẑ ⊂ V (Af ),

• A set C ⊂ G(Af ) of representatives for the finite double quotient
G(Q)+\G(Af )/K.

Finally, let O be the largest order in B stabilizing Λ0. As in §2.2.2, for
every c ∈ C, we write Γc = G(Q)+∩cKc−1. We also denote by Sc = Γc\X+

the connected component of ShK(G,X+)(C) associated with c.
The local-global principle for lattices holds: the map Λ 7→ Λ̂ = Λ ⊗ Ẑ

is a bijection between lattices in V and lattices in V (Af ), and its inverse
is intersection with V (Q). The assumption that K stabilizes Λ̂0 does not
imply a loss of generality, because every compact open subgroup of G(Af )
stabilizes some lattice in V (Af ).

We define a polarized lattice to be a pair (Λ, φ) where Λ is a free Z-
module of finite rank and φ : Λ × Λ → Z is a nondegenerate alternating
form. Given a polarized lattice (Λ, φ), we can extend φ to the Q-vector
space Λ⊗Q, and we define

Λ⊥ = {v ∈ Λ⊗Q : ∀w ∈ Λ, φ(v, w) ∈ Z}.

Then Λ⊥/Λ is a finite abelian group called the polarization type of (Λ, φ).
We say that φ is a principal polarization on Λ if Λ⊥ = Λ.
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Amodular interpretation in terms of lattices. Using the data above,
we define a standard polarized lattice for each connected component of the
Shimura variety ShK(C), as follows.

Definition 2.2.7. For each c ∈ C, we define

Λ̂c = c(Λ̂0), and Λc = Λ̂c ∩ V (Q).

The action of c, or any other element of G(Af ), on adelic lattices is easily
defined locally at each prime. Since c respects the action of B on V (Af ),
the order O is again the stabilizer of Λ̂c, and thus of Λc. Let λc ∈ Q×+ be
such that ψc := λcψ satisfies ψc(Λc × Λc) = Z. We call (Λc, ψc) with its
structure of O-module the standard polarized lattice associated with (Λ0, c).

Choose c ∈ C, and let (Λc, ψc) be the standard polarized lattice associ-
ated with (Λ0, c). We consider tuples (Λ, x, ι, φ, ηK) where

• Λ is a free Z-module of rank dimV ,

• x ∈ End(Λ⊗ R) is a complex structure on Λ⊗ R,

• ι is an embedding O ↪→ EndZ(Λ),

• φ : Λ× Λ→ Z is a nondegenerate alternating Z-bilinear form on Λ,

• ηK is a K-orbit of Ẑ-linear isomorphisms of O-modules Λ̂0 → Λ⊗ Ẑ,

satisfying the following condition of compatibility with (Λc, ψc):

(?) There exists an isomorphism of O-modules a : Λ → Λc, carrying ηK
to cK and x to an element of X+, such that

∃ζ ∈ µ(Γc), ∀u, v ∈ Λ, φ(u, v) = ψc
(
ζa(u), a(v)

)
.

For short, we call such a tuple a lattice with PEL structure defined by (Λ0, c),
or simply a lattice with PEL structure when the dependency on (Λ0, c) is
understood.

By definition, an isomorphism between two lattices with PEL structure
denoted by (Λ, x, ι, φ, ηK) and (Λ′, x′, ι′, φ′, η′K) is an isomorphism of O-
modules f : Λ → Λ′ that sends x to x′, sends ηK to η′K, and such that
φ(u, v) = φ′

(
ζf(u), f(v)

)
for some ζ ∈ µ(Γc).

For every lattice with PEL structure (Λ, x, ι, φ, ηK), the compatibility
condition (?) implies in particular that the complex structure x is positive
for φ, the adjunction involution defined by φ coincides with ∗ on B, the
action of B on Λ ⊗ Q leaves the complex structure x invariant, and the
polarized lattices (Λ, φ) and (Λc, ψc) have the same polarization type.
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Proposition 2.2.8. Let c ∈ C, and let Zc be the set of isomorphism classes
of lattices with PEL structure defined by (Λ0, c). Then the map

Zc −→ Sc
(Λ, x, ι, φ, ηK) 7−→ [axa−1, c] where a is as in (?)

(2.7)

is well-defined and bijective. The inverse map is

[x, c] 7→ (Λc, x, ι, ψc, cK).

where ι is the natural action of O on Λc.

Proof. We check that

1. The map (2.7) is well defined. The complex structure axa−1 belongs
to X+ because of condition (?). We show that, up to action of Γc
by conjugation, it does not depend on the choice of a. Indeed, if a′
is another choice of isomorphism, then a′ = qa where q is an auto-
morphism of Λc leaving ψc invariant (modulo multiplication by some
ζ ∈ µ(Γc)) and respecting the action of B; so q is an element of G(Q).
Also, the automorphism q sends cK to cK, and carries X+ to X+,
hence q ∈ G(Q)+ ∩ cKc−1 = Γc by [Mil05, Prop. 5.7].

2. Isomorphic lattices with PEL structure map to the same point. Let
(Λ, x, ι, φ, ηK) and (Λ′, x′, ι′, φ′, η′K) be two such lattices, and let f
be an isomorphism between them. If a : Λ → Λc is as in (?), then
af : Λ′ → Λc is also a valid isomorphism. The complex structures
on V (R) constructed from (Λ, x, a) and (Λ′, x′, af) are the same.

3. If two lattices with PEL structure map to the same class, then they are
isomorphic. Let (Λ, x, ι, φ, ηK) and (Λ′, x′, ι′, φ′, η′K) be two lattices
with PEL structure, and choose isomorphisms a, a′ as in (?). By
assumption, the complex structures axa−1 and a′x′a′−1 on V (R) differ
by conjugation by an element q ∈ Γc. Then a−1qa′ : Λ′ → Λ is the
required isomorphism.

4. The map (2.7) is surjective. Let [x, c] ∈ Sc. Then [x, c] is the image
of the lattice with PEL structure given by (Λc, x, ι, ψc, cK) where ι is
given by the natural action of O on Λc: indeed, the identity Λc → Λc

satisfies condition (?).

A modular interpretation in terms of abelian varieties. Recall
from §2.1.3 that every complex abelian variety is isomorphic to a complex
torus of the form Cg/Λ for some lattice Λ ⊂ Cg; in fact Λ = H1(A,Z). The
inclusion Λ ⊂ Cg defines a natural complex structure on Λ ⊗ R. Under
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this identification, endomorphisms of A correspond to endomorphisms of
Λ that respect the complex structure, and we have seen that a polarization
of A can be seen as a certain symplectic form taking integer values on Λ.

Let A be a complex abelian variety, and let Λ = H1(A,Z) be the lattice
attached to A under the above equivalence of categories. Recall that for
every prime number p, the Tate module Tp(A) is defined as the projective
limit of the torsion subgroups A[pn] as n tends to infinity:

Tp(A) = lim←−
n→∞

A[pn] = lim←−
n→∞

Λ/pnΛ = Λ⊗ Zp.

Therefore Λ⊗ Ẑ is canonically isomorphic to the global Tate module T̂ (A)
of A, defined as

T̂ (A) =
∏

p prime

Tp(A).

Fix c ∈ C, and let (Λc, ψc) be the standard polarized lattice associated
with (Λ0, c). We define a complex abelian variety with PEL structure defined
by (Λ0, c) to be a tuple (A, φ, ι, ηK) where

• (A, φ) is a complex polarized abelian variety of dimension dimV ,

• ι is an embedding O ↪→ End(A),

• ηK is a K-orbit of Ẑ-linear isomorphisms of O-modules Λ̂0 → T̂ (A),

satisfying the following condition of compatibility with (Λc, ψc):

(??) There exists an isomorphism of O-modules a : H1(A,Z)→ Λc, carry-
ing φ to ψc, carrying ηK to cK, and such that the complex structure
induced by a on V (R) belongs to X+.

If (A, φ, ι, ηK) is a complex abelian variety with PEL structure defined
by (Λ0, c), then condition (??) implies that A and (Λc, ψc) have the same
polarization type, and that the Rosati involution on End(A) ⊗ Q (which
is adjunction with respect to φ) restricts to ∗ on B. In particular, ι takes
values in End(A)†.

An isomorphism between complex abelian varieties with PEL structure
(A, φ, ι, ηK) and (A′, φ′, ι′, η′K) is an isomorphism of complex polarized
abelian varieties f : (A, φ)→ (A,′ φ′) respecting the action of O and send-
ing ηK to η′K.

The difference with the setting of proposition 2.2.8 is that isomor-
phisms of complex abelian varieties with PEL structure must respect the
polarizations exactly, rather than up to an element of µ(Γc). In gen-
eral, µ(Γc) 6= {1}, but there is the following workaround. If ε ∈ F× lies in
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the center of B, then multiplication by ε defines an element in the center
of G(Q). Therefore it makes sense to define

EK = {ε ∈ F× : ε ∈ K} = {ε ∈ F× : ε ∈ Γc}, for every c ∈ G(Af ).

Proposition 2.2.9. Let c ∈ C, and let (Λc, ψc) be the standard polarized
lattice associated with (Λ0, c). If µ(EK) = µ(Γc), then the map

[x, c] 7→
(
V (R)/Λc, ψc, ι, cK

)
,

where V (R) is seen as a complex vector space via x, and ι is the action of O
on V (R)/Λc induced by the action of B on V (R), is a bijection between Sc
and the set of isomorphism classes of complex abelian varieties with PEL
structure defined by (Λ0, c).

Proof. When defining Zc as in proposition 2.2.8, we can impose ζ = 1 in
condition (?) and strengthen the notion of isomorphism between lattices
with PEL structure to respect the polarizations exactly. Indeed, multiply-
ing the isomorphism a of (?) by ε ∈ EK leaves everything invariant except
the alternating form, which is multiplied by µ(ε). The result follows then
from the equivalence of categories between lattices and complex abelian
varieties outlined above.

Remark 2.2.10. The group µ(EK) always has finite index in µ(Γc). In-
deed, if Z×F0

denotes the unit group of F0, then we have

µ(EK) ⊂ µ(Γc) ⊂ Z×F0

and µ(EK) contains a subgroup of finite index in Z×F0
, namely all the squares

of elements in Z×F0
∩K. By [Che51, Thm. 1], there exists a compact open

subgroupM of µ(K) such that Z×F0
∩M = µ(EK). DefineK ′ = K∩µ−1(M).

Then EK′ = EK , and for every c ∈ G(Af ) we have

G(Q)+ ∩ cK ′c−1 = {γ ∈ Γc : µ(γ) ∈ µ(EK)}.

Therefore the hypothesis of proposition 2.2.9 will be satisfied for the smaller
congruence subgroup K ′.

Example 2.2.11. Let us detail the modular interpretation of the classical
modular curve of level N ≥ 1 introduced in example 2.2.6, keeping the
notation used there. We take Λ0 = Z2, so that O = Z, and KN ⊂ GL2(Ẑ)

indeed stabilizes Λ̂0.
We focus on the connected component associated with c = I2. Then

the standard polarized lattice defined by (Λ0, c) is (Λc, ψc) = (Λ0, ψ), and
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the polarization ψ on Λ0 is principal. Since Γc = Γ(N) ⊂ SL2(Z), we have
µ(Γc) = {1}, so proposition 2.2.9 applies.

In the definition of a complex abelian variety with PEL structure, we
can ignore the action of O = Z which is always present. Giving a Ẑ-linear
isomorphism Λ̂0 → T̂ is the same as specifying a Zp-basis of Tp(A) for
every prime p, and two such isomorphisms differ by an element of KN if
and only if the induced maps (Z/NZ)2 → A[N ] are equal. Therefore, a
level structure for KN is simply an isomorphism η : (Z/NZ)2 → A[N ].

Finally, let (A, φ) be a principally polarized abelian variety of dimen-
sion 1 over C (i.e. a complex elliptic curve) endowed with an isomorphism
η : (Z/NZ)2 → A[N ], and let Λ = H1(A,Z). Let u1, u2 ∈ A[N ] = Λ/NΛ be
the images of e1 = (1, 0) and e2 = (0, 1) by η. We claim that condition (??)
holds if and only if

φ(u1, u2) = −1 mod N (2.8)

Since (??) imples ψ(e1, e2) = −1, eq. (2.8) is indeed satisfied. Con-
versely, if (2.8) holds, then the isomorphism a : Λ → Λ0 that we want to
construct will be given by a Z-basis (u1, u2) of Λ such that φ(u1, u2) = −1
and (u1, u2) reduces to u1, u2 mod N . Such a basis exists because φ is
principal and the reduction map SL2(Z) → SL2(Z/NZ) is surjective. The
complex structure induced by a on Λ0 ⊗ R belongs to X+ because X+ is
the set of all complex structures on Λ0 ⊗ R that are positive for ψ, as we
computed in §2.2.1.

Therefore, by proposition 2.2.9, the connected component Sc = Γ(N)\H1

of ShKN (C) classifies isomorphism classes of elliptic curves (A, φ) over C
endowed with an isomorphism η : (Z/NZ)2 → A[N ] such that

φ
(
η(0, 1), η(1, 0)

)
= 1 mod N.

This is indeed the usual modular interpretation of the classical modular
curve of level N .

2.2.4 Modular forms on PEL Shimura varieties

The definition of elliptic modular polynomials given in §1.1.2 uses a par-
ticular function, the j-invariant, on the modular curve X(1) = SL2(Z)\H1.
This invariant has an expression in terms of modular forms: we have

j = 1728
E3

4

E3
4 − E2

6

where E4, E6 are the normalized Eisenstein series of weight 4 and 6 on H1,
respectively. The fact that j is an isomorphism between X(1) and P1(C)
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is intimately related with the fact that the graded C-algebra of modular
forms for SL2(Z) is C[E4, E6].

The notion of modular forms can be generalized to PEL Shimura vari-
eties, and this section attempts to present this generalization without going
into technical details. Modular forms can be used to construct coordinate
functions: by the fundamental theorem of Baily and Borel [BB66], modular
forms on a given PEL Shimura variety realize projective embeddings of its
connected components.

Let (G,X+) be a PEL datum, and let K∞ ⊂ G(R)+ be the stabilizer
of a fixed complex structure x0 ∈ X+. Attached to this data is a certain
canonical character of K∞ [BB66, §1.8], denoted by ρ : K∞ → C×. Let K
be a compact open subgroup of G(Af ). A modular form of weight w ∈ Z
on ShK(G,X+)(C) is a function

f : G(Q)+\
(
G(R)+ ×G(Af )

)
/K → C

that satisfies suitable growth and holomorphy conditions [Mil90, Prop. 3.2],
and such that

∀x ∈ G(R)+, ∀g ∈ G(Af ), ∀k∞ ∈ K∞, f([xk∞, g]) = ρ(k∞)wf([x, g]).

The weight of f is denoted by wt(f). We also say that f is of level K.
Let S be a connected component of ShK(C), or a union of these, and

let L be its field of definition. A modular form of weight w on S is the
restriction of a modular form of weight w on ShK(C) to the preimage of S in
G(Q)+\

(
G(R+)×G(Af )

)
/K by the natural projection. There is a canonical

notion of modular forms on S being defined over L [Mil90, Chap. III]. A
modular function on S is the quotient of two modular forms of the same
weight, the denominator being nonzero on each connected component of S.

The following result is well-known; as we could not find a precise refer-
ence, we present a short proof.

Theorem 2.2.12. Let S be a connected component of ShK(G,X+)(C),
and let L be its field of definition. Then the graded L-algebra of modular
forms on S defined over L is finitely generated. Moreover there exists a
weight w ≥ 1 such that modular forms of weight w defined over L realize
a projective embedding of S. Every element of the function field L(S) is a
quotient of two modular forms of the same weight defined over L.

Proof. Choose an element c ∈ C ⊂ G(Af ) defining the connected compo-
nent S, so that S = Γc\X+ where Γc = G(Q)+ ∩ cKc−1. Assume first that
the congruence subgroup K of G(Af ) is sufficiently small, so that Γc is
torsion free. By the Baily–Borel theorem [BB66, Thm. 10.11], there exists
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an ample line bundle MC on S such that for every w ≥ 1, the algebraic
sections ofM⊗w

C are exactly the modular forms of weight w on S.
In fact, MC is the inverse determinant of the tangent bundle on S

[BB66, §7.3]. Since S has a model over L, there exists a line bundle M
on S defined over L such that M⊗L C = MC. This is a special case of
a general result on the rationality of automorphic vector bundles [Mil90,
Chap. III, Thm. 4.3]. For every w ≥ 1, the L-vector space of modular
forms of weight w on S defined over L is H0(S,M⊗w). SinceM⊗L C is
ample,M is ample too, and this implies the conclusions of the theorem.

In general, we can always find a congruence subgroup K ′ of finite index
in K such that the arithmetic subgroups G(Q)+∩cK ′c−1 for c ∈ G(Af ) are
torsion free [Mil05, Prop. 3.5], and we can assume that K ′ is normal in K.
Let S ′ be a connected component of ShK′(C) lying over S, and let L′ be its
field of definition. Then the conclusions of the theorem hold for S ′. We can
identify the modular forms on S defined over L with the modular forms
on S ′ defined over L′ that are invariant under the action of a subgroup
of K/K ′ (we refer to §2.4.3 for the definition of this action). Therefore the
conclusions of the theorem also hold for S by Noether’s theorem [Noe15]
on invariants under finite groups.

We can also consider modular forms that are symmetric under certain
automorphisms of ShK . Let Σ be a finite group of automorphisms of V as
a Q-vector space that leaves the symplectic form ψ invariant, and also acts
on B in such a way that

∀u ∈ V, ∀b ∈ B, ∀σ ∈ Σ, σ(bu) = σ(b)σ(u).

This implies that the elements of Σ commute with the involution ∗, and
hence leave F0 stable. Under these assumptions, each element σ ∈ Σ
induces an automorphism of G defined over Q, also denoted by σ. As-
sume further that these automorphisms leave G(R)+, X+, K, K∞, ν and
the character ρ invariant. Then Σ can be seen as a finite group of auto-
morphisms of S, and one can check as in [Mil05, Thm. 13.6] that these
automorphisms are defined over L. For every modular form f of weight w
on S defined over L, and every σ ∈ Σ, the function

σ · f : [x, g] 7→ f
(
[σ−1(x), σ−1(g)]

)
is a modular form of weight w on S defined over L. We say that f is
symmetric under Σ if σ · f = f for every σ ∈ Σ.

Proposition 2.2.13. Let Σ be a finite group of automorphisms of G as
above. Then the graded L-algebra of symmetric modular forms on S defined
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over L is finitely generated, and every symmetric modular function on S
defined over L is the quotient of two symmetric modular forms of the same
weight defined over L.

Proof. This results from theorem 2.2.12 and Noether’s theorem.

Example 2.2.14. When S is the classical modular curve of level N ≥ 1,
we can identify the modular forms on S with the classical modular forms
of level N . Our PEL datum is (G,X+) = (GL2,H1), and we fix i ∈ H1 as
a base point, so that K∞ = R× · SO2(R). Recall that a classical modular
form of level N and weight w on H1 is a holomorphic function g : H1 → C
that is holomorphic at infinity and such that for every τ ∈ H1 and every
matrix γ = ( a bc d ) ∈ Γ(N), we have

g(γτ) = (γ∗τ)wg(τ)

where

γτ :=
aτ + b

cτ + d
and γ∗τ := cτ + d.

We have seen in example 2.2.6 that S is the connected component
of ShKN (G,X+)(C) associated with the identity matrix I2 ∈ G(Af ). Every
element of G(Q)+\G(R)+ ×G(Af )/K above S has a representative of the
form [γ, I2] where γ ∈ G(R)+.

Given a classical modular form g of level Γ(N), we can check that the
function

f : [γ, I2] 7→ (γ∗i)−wg(γi)

is a modular form of weight w on S; here the character ρ : K∞ → C× is
given by

ρ
(
λ
(

cos θ sin θ
− sin θ cos θ

))
= λ−1eiθ

for every λ ∈ R× and θ ∈ R. Conversely, let f be a modular form on S.
Let τ ∈ H1, and choose a matrix γ ∈ G(R)+ such that τ = γi. Then the
quantity

g(τ) = (γ∗i)wf([γ, I2])

does not depend on the choice of γ, and g is a classical modular form of
levelN . Under this identification, the modular form f is defined overQ(ζN)
if and only if the Fourier coefficients of g belong to this number field; this is a
special case of very general results relating different notions of “rationality”
for modular forms [Mil05, Chap. III, §2], [Har85, Har86].

65



2.3 Examples of PEL Shimura varieties

In this section, we present two examples of PEL Shimura varieties play-
ing a central role in the rest of this thesis, namely the Siegel and Hilbert
moduli spaces. For correct choices of congruence subgroups and connected
components, Siegel moduli spaces classify isomorphism classes of princi-
pally polarized abelian varieties over C; and the Hilbert moduli space asso-
ciated with a totally real number field F of degree g classifies isomorphism
classes of principally polarized abelian varieties of dimension g over C with
real multiplication by ZF . Both types of moduli spaces admit classical
descriptions as quotients of hermitian symmetric domains. We link these
classical descriptions to their definitions as Shimura varieties as we did
in §2.2.1 in the case of modular curves.

In the special case of moduli spaces for abelian varieties of dimen-
sion g = 2 (i.e. abelian surfaces), explicit generators for the graded algebra
of Siegel modular forms are known by works of Igusa [Igu60, Igu79]. Similar
results are available for a few examples of Hilbert surfaces.

References for this section are [van08], [Mil05, §6], [BL04, §8] for Siegel
moduli spaces, and [van88, Bru08], [BL04, §9] for Hilbert moduli spaces.

2.3.1 Siegel moduli spaces

Let g ≥ 1 be an integer. We want to build a moduli space for principally
polarized abelian varieties of dimension g over C. We start from the vector
space V = Q2g endowed with the symplectic form ψ defined by

∀u, v ∈ V, ψ(u, v) = ut
(

0 −Ig
Ig 0

)
v.

The symplectic form ψ is a principal polarization on the lattice Λ0 = Z2g.
The endomorphism algebra is chosen to be B = Q, with ∗ being the trivial
involution; (B, ∗) is simple of type (C). Finally, the complex structure

x0 =
(

0 Ig
−Ig 0

)
is positive for ψ.

The algebraic group associated with this data is the general symplectic
group G = GSp2g. Let µ : G→ Gm be the morphism such that

∀g ∈ GSp2g(Q), ∀u, v ∈ V, ψ(gu, gv) = µ(g)ψ(u, v).

The symplectic group Sp2g is, by definition, the kernel of µ. Since Sp2g(R)
is connected [Mil05, Thm. 5.2 and Prop. 8.7], the group GSp2g(R)+ consists
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of all elements g ∈ GSp2g(R) such that µ(g) > 0. The orbit X+ of x0 under
the action of GSp2g(R) by conjugation consists of all complex structures
on V (R) that are positive for ψ [Mil05, §6]. Finally, one can show that the
reflex field of Siegel spaces is Q [Mil05, §14]. When g = 1, we recover the
PEL data from §2.2.1 associated with classical modular curves.

The classical description of Siegel spaces. Reasoning as in the case
of elliptic curves (§2.2.1), we attach to each complex structure x ∈ X+ the
unique matrix τ(x) ∈ Matg×g(C) with invertible imaginary part satisfying
the following property: under the isomorphism ηx : V (R) → Cg whose
matrix in the canonical bases is (Ig − τ(x)), the pullback of the natural
complex structure on Cg is x. In particular, the matrix attached to x0

is τ(x0) = iIg.

Lemma 2.3.1. For each x ∈ X+, the matrix τ(x) is symmetric and its
imaginary part is positive definite; in other words τ(x) belongs to the Siegel
upper half space Hg.

Proof. Let ηx,∗ψ denote the pushforward of ψ under ηx; it is an R-bilinear
form on Cg. Let (e1, . . . , eg) be the canonical basis of Cg. Then the matrix
of ηx,∗ψ in the R-basis of Cg given by (e1, . . . , eg, ie1, . . . , ieg) is (in g × g
blocks) (

0 Im(τ)−1

Im(τ)−t − Im(τ)−t(Re(τ)− Re(τ)t) Im(τ)−1

)
.

The relation ηx,∗ψ(iu, iv) = ηx,∗ψ(u, v) implies that Re(τ) is symmetric, and
the fact that the bilinear form ψ(u, iv) is symmetric and positive definite
implies that Im(τ) is symmetric and positive definite.

Lemma 2.3.2. Let γ = ( a bc d ) ∈ GSp2g(R)+ (written in g × g blocks), and
let x ∈ X+. Then we have

τ(γx) = (aτ(x) + b)(cτ(x) + d)−1.

Proof. We have a commutative diagram

V (R) V (R) Cg

V (R) V (R) Cg.

γ−1

γx

ηx

x i

γ−1 ηx

Therefore, γx is the pullback of the multiplication by i under the isomor-
phism V (R) → Cg whose matrix is (Ig − τ(x)) γ−1. Since γ ∈ GSp2g(R),
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this matrix is, up to a scalar in R×, equal to

(Ig − τ(x))
(

dt −ct
−bt at

)
= (τ(x)tct + dt,−τ(x)tat − bt). (2.9)

By lemma 2.3.1, we know that τ(x) ∈ Hg. By [BL04, Prop. 8.2.2] the
matrix cτ(x) + d is invertible, and moreover (aτ(x) + b)(cτ(x) + d)−1 ∈ Hg

is also symmetric. Starting from eq. (2.9), we act on Cg by (τ(x)tct+dt)−1,
and we obtain:

∀γ ∈ GSp2g(R)+, τ(γx) = (aτ(x) + b)(cτ(x) + d)−1.

The modular interpretation of Siegel spaces. The maximal compact
open subgroup of G(Af ) leaving the lattice Λ0⊗Ẑ stable is K0 = GSp2g(Ẑ).
The PEL Shimura variety ShK0(C) has only one connected component iden-
tified with Γ\Hg, where

Γ = GSp2g(Q)+ ∩K0 = Sp2g(Z).

The action of Γ on Hg is given by the formula from lemma 2.3.2. By propo-
sition 2.2.9, the quotient Sp2g(Z)\Hg is a moduli space for principally po-
larized abelian varieties of dimension g over C. This modular interpretation
coincides with the classical one [BL04, §8.1].

More generally, choose positive integers D1| · · · |Dg such that D1 = 1,
and let Λ ⊂ V (Q) be the lattice generated by the vectors

e1, . . . , eg, D1eg+1, . . . , Dge2g,

where e1, . . . , e2g denote the canonical basis of Q2g. Then the polarization ψ
has type (D1, . . . , Dg) on Λ. Let K be a compact open subgroup of G(Af )

that stabilizes Λ⊗ Ẑ, and let S denote the connected component of ShK(C)
defined by the identity matrix in G(Af ). Then S is identified with Γ\Hg,
where

Γ = GSp2g(Q)+ ∩K = Sp2g(Q) ∩K.
By proposition 2.2.9, the variety S is a moduli space for polarized abelian
varieties A of dimension g over C with polarization type (D1, . . . , Dg) and
level K structure, such that H1(A,Z) is isomorphic to the standard polar-
ized lattice (Λ0, ψ) with its natural level K structure.

2.3.2 Siegel modular forms in dimension 2

Given the classical description of Siegel spaces from §2.3.1, modular
forms on Siegel spaces can be identified with certain holomorphic functions
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on the Siegel half space Hg. This identification is the higher-dimensional
analogue of example 2.2.14.

Let us focus on the case of the modular group Sp2g(Z), where g ≥ 2 is
an integer. For every γ = ( a bc d ) ∈ GSp2g(R)+ and every τ ∈ Hg, we write

γτ = (aτ + b)(cτ + d)−1 and γ∗τ = cτ + d.

Let W be a finite-dimensional vector space over C, and let

ρ : GLg(C)→ GL(W )

be an irreducible holomorphic representation of GLg(C) on W . A Siegel
modular form of dimension g and weight ρ is a holomorphic function
f : Hg → W satisfying the transformation rule

∀γ ∈ Sp2g(Z), ∀τ ∈ Hg, f(γτ) = ρ(γ∗τ)f(τ).

We say that f is scalar-valued if dimW = 1, and vector-valued otherwise.
A Siegel modular function is only required to be meromorphic instead of
holomorphic. Since g ≥ 2, there is no need to enforce a holomorphy con-
dition at the cusps: Koecher’s principle [van08, Thm. 4.4] asserts that it is
automatically satisfied.

If w ≥ 0 is an integer, W = C, and ρ = detw, then the Siegel modular
forms of weight ρ can be identified with the modular forms on Sp2g(Z)\Hg of
weight w in the sense of §2.2.4. We also call these functions (scalar-valued)
Siegel modular forms of weight w. More precisely, we fix τ0 = iIg ∈ Hg

as a base point. Then, if h is a classical Siegel modular form of weight w
for Sp2g(Z), the function

f : [γ, I2g] 7→ (γ∗τ0)−wh(γτ0)

is a modular form in the sense of Shimura varieties. Conversely, given
a modular form f of weight w on Sp2g(Z)\Hg in the sense of §2.2.4, the
function h : Hg → C given by

∀γ ∈ GSp2g(R)+, h(γτ0) = (γ∗τ0)wf([γ, I2g])

is well defined, and is a classical Siegel modular form of weight w for Sp2g(Z).
By theorem 2.2.12, scalar-valued Siegel modular forms realize a projec-

tive embedding of the quotient Sp2g(Z)\Hg.

Remark 2.3.3. We have seen in the proof of theorem 2.2.12 that modular
forms on a PEL Shimura variety S, at least when the congruence subgroup
is small enough, have a geometric interpretation as the algebraic sections of
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a certain line bundle, namely the inverse determinant of the tangent bun-
dle of S. Siegel modular forms, scalar-valued or not, also have a geometric
interpretation as sections of vector bundles constructed from the Hodge
bundle E on Sp2g(Z)\Hg [van08, §10 and §13] (strictly speaking, E should
be considered as a vector bundle on Γ\Hg for some suitable normal sub-
group Γ of Sp2g(Z) of finite index, endowed with an action of Sp2g(Z)/Γ).
The fiber of E at τ ∈ Hg is identified with the vector space Ω1(A(τ)) of
global differential forms on A(τ), where A(τ) = Cg/(Zg⊕ τZg) denotes the
principally polarized abelian variety of dimension g attached to τ in the
modular interpretation.

Concretely, if A is a principally polarized abelian variety of dimension g
over C, if ω is a basis of Ω1(A), and if f is a Siegel modular form of
weight ρ on Hg, then the quantity f(A, ω) makes sense. This fact will play
an important role in chapter 3.

A convenient way to manipulate Siegel modular forms is to write down
Fourier expansions [van08, §4]. Let f be a Siegel modular form on Hg of any
weight ρ, with underlying vector space W . If s ∈ Matg×g(Z) is symmetric,
then f(τ +s) = f(τ) for every τ ∈ Hg. Hence f(τ) has a Fourier expansion
in terms of the quantities exp(2πiτk,l) where τk,l is an entry of the matrix τ .
This Fourier expansion is often written in the form

f(τ) =
∑

n∈Matg×g(Q)
symmetric

exp
(
2πiTr(nτ)

)
an(f).

The Fourier coefficient an(f) ∈ W can be nonzero only when n is half-
integral (meaning that the coefficients of n lie in 1

2
Z, and its diagonal

coefficients lie in Z), and moreover n is positive as a symmetric matrix.
In the special case W = C, the modular form f is defined over Q if

and only if all its Fourier coefficients an(f) are rational numbers; see for
instance [Har86, Thm. 6.4]. We say that f is defined over Z if its Fourier
coefficients are all integers.

In the special case g = 2, we write for τ ∈ H2:

τ =

(
z1(τ) z3(τ)
z3(τ) z2(τ)

)
, and qj = exp

(
2πizj(τ)

)
for 1 ≤ j ≤ 3.

The terms appearing in Fourier expansions of Siegel modular forms in
dimension 2 are of the form a qn1

1 qn2
2 qn3

3 with a ∈ C, n1 ≥ 0, n2 ≥ 0,
and n2

3 ≤ 4n1n2 (note that n3 can still be negative). Hence the Fourier
expansion of a Siegel modular form in dimension 2 is an element of the
power series ring C[q3, q

−1
3 ][[q1, q2]].
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Explicit generators for g = 2. We start by defining the theta constants
on Hg for any g ≥ 1 [van08, §7]. Given a, b ∈ {0, 1}g, we write

θa,b(τ) =
∑
m∈Zg

exp
(
πi
((
m+ a

2

)t
τ
(
m+ a

2

)
+
(
m+ a

2

)t b
2

))
. (2.10)

The pair (a, b) is called the theta characteristic of the theta constant θa,b.
Theta constants are holomorphic functions on Hg, and are identically zero
unless they are even, i.e. atb ∈ Z is even.

Even theta constants are not modular forms for the full Siegel modu-
lar group Sp2g(Z), but they satisfy certain transformation properties un-
der Sp2g(Z) which make them convenient building blocks. Every scalar-
valued Siegel modular function of any weight on Hg has an expression in
terms of quotients of theta constants [Igu72, Thm. 9 p. 222]. Moreover, for
each 1 ≤ g ≤ 3, the stronger result that every scalar-valued Siegel modular
form is a polynomial in the theta constants holds [Igu64, Igu66, FSM19]. In
the case g = 1, we recover the “genus 1” theta constants θ0 and θ1 defined
in §1.1.1 as the theta constants with characteristics (0, 0) and (0, 1).

In the case g = 2, we introduce the following indexation of theta con-
stants [Dup06, §6.2]: write a = (a1, a2) ∈ {0, 1}2 and b = (b1, b2) ∈ {0, 1}2.
Then we define

θ8a2+4a1+2b2+b1 := θa,b.

There are ten even genus 2 theta constants, denoted with this convention
by τ 7→ θj(τ) for j ∈ {0, 1, 2, 3, 4, 6, 8, 9, 12, 15}. Let us present the con-
struction of explicit generators of the graded algebra of scalar-valued Siegel
modular forms for g = 2 in terms of theta constants.

Definition 2.3.4 ([Str10, §II.7.1]). Let T ⊂ {0, 1}4 be the set of ten even
theta characteristics for g = 2.

• A Göpel quadruple is a subset C ⊂ T of four characteristics such
that

∑
c∈C c ∈ 2Z4; there are 15 Göpel quadruples.

• A syzygous triple is a set of three theta characteristics {b, c, d} ⊂ T
that is a subset of a Göpel quadruple; there are 60 syzygous triples.

• If {b, c, d} is a syzygous triple, we write b = (b1, b2, b3, b4) and similarly
for c, d; then we define ε(b, c, d) ∈ {±1} as −1 to the power

b1 + b2 + c1 + c2 + d1 + d2 + b1c1 + b2c2 + b4c2 + b1c3 − b2c4

+ b1d1 − b3d1 + c1d1 + b2d2 + c2d2 + c4d2 + c1d3 − b2b3c1

− b2b4c2 − b1b2c3 − b2b3d1 − b3c1d1 − b1c3d1 − b2c3d1 − b2b4d2

− b4c2d2 − b1b2d3 − b1c1d3 − b2c1d3.
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Finally, we define the holomorphic functions hj on H2 for j ∈ {4, 6, 10, 12}
as follows:

h4 =
∑
c∈T

θ8
c ,

h6 =
∑
{b,c,d}
syzygous

ε(b, c, d)(θbθcθd)
4,

h10 =
∏
c∈T

θ2
c , and

h12 =
∑

C Göpel
quadruple

∏
c∈T\C

θ4
c .

For each j ∈ {4, 6, 10, 12}, the function hj is a Siegel modular form of
weight j for Sp4(Z), and is defined over Q.

Theorem 2.3.5 ([Igu60]). The modular forms h4, h6, h10, h12 are alge-
braically independent, and generate the graded Q-algebra of scalar-valued
Siegel modular forms of even weight in dimension 2.

We refer to [Bol87] for the correspondence between Igusa’s language
in [Igu60] and the modular functions hj from definition 2.3.4.

Remark 2.3.6. Other normalizations of these generators are present in
the literature. For instance, in order to normalize Fourier expansions, one
defines

ψ4 := 2−2h4, ψ6 := 2−2h6, χ10 := −2−12h10, and χ12 := 2−15h12. (2.11)

We warn the reader that different definitions appear in the literature:
our χ10 is−4 times the modular form χ10 appearing in Igusa’s paper [Igu79],
and our χ12 is 12 times Igusa’s χ12. The Fourier expansions of the modular
forms ψ4, ψ6, χ10 and χ12 are

ψ4(τ) = 1 + 240(q1 + q2)

+
(
240q2

3 + 13440q3 + 30240 + 13340q−1
3 + 240q−2

3

)
q1q2

+O
(
q2

1, q
2
2

)
,

ψ6(τ) = 1− 504(q1 + q2)

+
(
−504q2

3 + 44352q3 + 166320 + 44352q−1
3 − 504q−2

3

)
q1q2

+O
(
q2

1, q
2
2

)
,

χ10(τ) =
(
q3 − 2 + q−1

3

)
q1q2 +O(q2

1, q
2
2), and

χ12(τ) =
(
q3 + 10 + q−1

3

)
q1q2 +O

(
q2

1, q
2
2

)
.
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The absence of constant terms in the Fourier expansions of χ10 and χ12

indicates that they are cusp forms, hence the different notation.

The Siegel modular form χ10 satisfies the following important property:
the abelian surface A(τ) = C2/(Z2⊕τZ2) attached to τ ∈ H2 is the product
of two elliptic curves over C if and only if χ10(τ) = 0 [Igu62]. Otherwise,
this abelian surface is isomorphic to the Jacobian of a genus 2 hyperelliptic
curve over C.

The Igusa invariants, defined in [Str10, §II.2.1] as

j1 :=
h4h6

h10

= −2−8ψ4ψ6

χ10

,

j2 :=
h12h

2
4

h2
10

= 2−5ψ
2
4χ12

χ2
10

, and

j3 :=
h5

4

h2
10

= 2−14 ψ
5
4

χ2
10

are Siegel modular functions of weight zero. By theorems 2.2.12 and 2.3.5,
they realize a birational morphism defined over Q from the Siegel three-
fold Sp4(Z)\H2, viewed as an algebraic variety, to the projective space P3.
Igusa invariants are well-defined for all Jacobians of genus 2 curves over C.

A stronger result than theorem 2.3.5 is to describe the structure of the
graded ring of Siegel modular forms in dimension 2 that are defined over Z.
This is also done by Igusa [Igu79], who gives a set of fourteen generators,
the first ones being ψ4, ψ6, χ10 and χ12. We will not need the explicit list
in this thesis, only the following consequence of Igusa’s result.

Proposition 2.3.7. Let f be a scalar-valued Siegel modular form of even
weight k defined over Z. Then 12kf ∈ Z[h4, h6, h10, h12].

Vector-valued Siegel modular forms in dimension 2. In order to
describe vector-valued modular forms explicitly in dimension 2, we recall
the usual classification of irreducible representations of GL2(C).

Let n ≥ 0 be an integer. We denote by Symn the n-th symmetric
power of the standard representation of GL2(C) on C2. Explicitly, Symn

is a representation on the vector space Cn[x] of polynomials of degree at
most n, with

Symn
(
( a bc d )

)
P (x) = (bx+ d)nP

(ax+ c

bx+ d

)
.
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We take (xn, . . . , x, 1) as the standard basis of Cn[x]. Then we can write
endomorphisms of Cn[x] as matrices, and we have

Sym2
(
( a bc d )

)
=

 a2 ab b2

2ac ad+ bc 2bd
c2 cd d2

 .

Proposition 2.3.8. The irreducible finite-dimensional holomorphic repre-
sentations of the group GL2(C) are exactly the representations detk Symn,
for k ∈ Z and n ∈ N.

Proof. Since SL2(C) is a simply connected Lie group, there is an equiv-
alence between holomorphic finite-dimensional representations of SL2(C)
and representations of its Lie algebra sl2(C) [Bou72, Ch. III, §6.1, Th. 1].
By [Bou75, Ch. VIII, §1.3, Th. 1], irreducible representations of sl2(C) are
classified by their higher weight; on the Lie group side, this shows that the
holomorphic finite-dimensional irreducible representations of SL2(C) are
exactly the representations Symn for n ∈ N. The case of GL2(C) follows
easily.

Writing Symn as a representation on Cn[x] allows us to multiply Siegel
modular forms; hence, they naturally generate a graded C-algebra. In
contrast with the case of scalar-valued modular forms, this graded algebra
is not finitely generated [van08, §25].

We conclude this section with two examples of vector-valued Siegel mod-
ular forms in dimension 2. The first example is given by the derivatives of
modular functions of weight zero, for instance Igusa invariants.

Proposition 2.3.9. Let f be a Siegel modular function on H2 of weight zero.
Then the meromorphic function

df

dτ
:=

1

2πi

(
∂f

∂z1

x2 +
∂f

∂z3

x+
∂f

∂z2

)
is a Siegel modular function of weight Sym2.

This result can be proved by differentiating the relation f(γτ) = f(τ)
with respect to τ , for every γ ∈ Sp4(Z); but the proof is not very en-
lighening. We refer to chapter 3 for a geometric interpretation of proposi-
tion 2.3.9, which is fundamental in the isogeny algorithm.

The second example is that of a Siegel modular form of weight det8 Sym6

which will also play a fundamental role in chapter 3.
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Example 2.3.10. Following Ibukiyama [Ibu12], let E8 ⊂ R8 denote the
lattice of half-integer vectors v = (v1, . . . , v8) subject to the conditions

8∑
k=1

vk ∈ 2Z and ∀ 1 ≤ k, l ≤ 8, vk − vl ∈ Z.

Set a = (2, 1, i, i, i, i, i, 0) and b = (1,−1, i, i, 1,−1,−i, i) ∈ C8. Using the
notation

〈v, w〉 :=
8∑

k=1

vkwk,

we write for 0 ≤ j ≤ 6 and τ ∈ H2:

Θj(τ) :=
∑

v,v′∈E8

〈v, a〉j · 〈v′, a〉6−j ·
∣∣∣∣〈v, a〉 〈v′, a〉〈v, b〉 〈v′, b〉

∣∣∣∣4
· exp

(
πi
(
〈v, v〉 z1(τ) + 2 〈v, v′〉 z3(τ) + 〈v′, v′〉 z2(τ)

))
.

Finally, we define

f8,6(τ) :=
1

111456000

6∑
j=0

(
6
j

)
Θj(τ)xj.

Then f8,6 is a nonzero Siegel modular form of weight det8 Sym6. This defini-
tion provides an explicit, but slow, method to compute the first coefficients
of the q-expansion; using the expression of f8,6 in terms of theta series as
in [CFv17] would be faster. We have

f8,6(τ) =
(
(4q2

3 − 16q3 + 24− 16q−1
3 + 4q−2

3 )q2
1q2 + · · ·

)
x6

+
(
(12q2

3 − 24q3 + 24q−1
3 − 12q−2

3 )q2
1q2 + · · ·

)
x5

+
(
(−q3 + 2− q−1

3 )q1q2 + · · ·
)
x4

+
(
(−2q3 + 2q−1

3 )q1q2 + · · ·
)
x3

+
(
(−q3 + 2− q−1

3 )q1q2 + · · ·
)
x2

+
(
(12q2

3 − 24q3 + 24q−1
3 − 12q−2

3 )q1q
2
2 + · · ·

)
x

+
(
(4q2

3 − 16q3 + 24− 16q−1
3 + 4q−2

3 )q1q
2
2 + · · ·

)
.

2.3.3 Hilbert moduli spaces

Let F be a fixed totally real number field of degree g over Q, and let O
be an order in the ring of integers ZF . Recall that a principally polarized
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abelian variety A of dimension g has real multiplication by O if A is endowed
with an embedding η : O → End(A)†.

Our goal is to construct a moduli space of principally polarized abelian
varieties of dimension g with real multiplication by ZF . Let ∂−1

F denote the
inverse different of F , i.e. the dual of ZF for the trace form:

∂−1
F =

{
x ∈ F : ∀y ∈ ZF , TrF/Q(xy) ∈ Z

}
.

Consider the lattice
Λ0 = ZF ⊕ ∂−1

F ⊂ F 2.

The symplectic form ψ on F 2 defined by

∀a, b, c, d ∈ F, ψ
(
(a, b), (c, d)

)
= TrF/Q(ad− bc)

is a principal polarization on Λ0; the fractional ideal ∂−1
F was chosen to

ensure precisely this. We let B = F , with ∗ the trivial involution (which
is indeed positive since F is totally real), act on F 2 by multiplication.
The Q-algebra (B, ∗) is simple of type (C). Let V = F 2; then (V, ψ) is a
symplectic (B, ∗)-module, and the order of B fixing Λ0 is precisely ZF .

The algebraic group associated with this data is G = GL2(F ). The g
real embeddings σ1, . . . , σg of F induce an identification

G(R) =

g∏
i=1

GL2(R),

and the subgroup G(R)+ consists of matrices with totally positive deter-
minant; in other words G(R)+ =

∏g
i=1 GL2(R)+.

Finally, we consider the complex structure x0 ∈ G(R) on V (R) ' (R2)g

given by
x0 =

(
( 0 1
−1 0 )

)
1≤i≤g,

which is positive for ψ. Let X+ be the G(R)+-conjugacy class of x0. The
pair (G,X+) is called a Hilbert Shimura datum. Its reflex field is Q: see
[van88, §X.4] in the case g = 2, and [Mil05, Ex. 12.4] in general.

The classical description of Hilbert moduli spaces. Given the de-
scription of G(R)+ above, and the identification of the orbit of ( 0 1

−1 0 ) un-
der GL2(R)+ with the upper half plane H1 (recall §2.2.1), the domain X+

can be identified with Hg
1 endowed with the action of GL2(R)+ on each

coordinate. Explicitly, the action of GL2(F ) on Hg
1 is the following: for

every γ = ( a bc d ) ∈ GL2(F ) and (τ1, . . . , τg) ∈ Hg
1, we have

γ · (τ1, . . . , τg) =

(
σj(a)τj + σj(b)

σj(c)τj + σj(d)

)
1≤j≤g

.
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In the notation of §2.2.2, the morphism µ in the case of the algebraic
group GL2(F ) is the determinant. As in remark 2.2.10, we can make a
choice of compact open subgroupK ⊂ G(Af ) such that G(Q)+∩K contains
exactly those matrices γ ∈ GL(ZF ⊕∂−1

F ) (i.e. automorphisms of Λ0, whose
determinant is a priori a unit of ZF ) whose determinant is a square. Let S
be the connected component of ShK(G,X+)(C) associated with the identity
matrix in G(Af ). Then we have a natural bijection

S ' SL(ZF ⊕ ∂−1
F )\Hg

1.

The group Γ(1)F := SL(ZF ⊕ ∂−1
F ) is called the Hilbert modular group. By

proposition 2.2.9, the connected component S classifies isomorphism classes
of principally polarized abelian varieties A of dimension g over C, with real
multiplication by ZF , satisfying the compatibility condition (??). In this
case, the compatibility condition is the following: there exists an isomor-
phism of ZF -modules H1(A,Z) → Λ0 carrying the principal polarization
to ψ [van88, §IX.1].

The Hilbert embedding. Given the modular interpretation of Hilbert
moduli spaces, there should exist a forgetful map, called the Hilbert em-
bedding, from SL(ZF ⊕ ∂−1

F )\Hg
1 to the Siegel moduli space Sp2g(Z)\Hg.

This map is constructed by choosing an isomorphism between the lat-
tices ZF ⊕ δ−1

F ⊂ F 2 and Z2g ⊂ Q2g that respects the symplectic forms, or
in other words a symplectic basis of ZF ⊕∂−1

F . The map Hg
1 → Hg between

the sets of acceptable complex structures depends on this choice of basis,
but the induced map on the moduli spaces does not.

The concrete matrix calculations are as follows. Choose a Z-basis
(e1, . . . , eg) of ZF , and embed F in Rg via (σ1, . . . , σg). Let R ∈ GLg(R) be
the matrix whose (k, l)-th entry is σk(el); then we have ZF = RZg, and

ZF ⊕ ∂−1
F =

(
R 0
0 R−t

)
Z2g.

Moreover, the map
(
R 0
0 R−t

)
: Z2g → ZF⊕∂−1

F respects the symplectic forms.
The associated Hilbert embedding is

HR : Hg
1 → Hg

(τ1, . . . , τg) 7→ Rt Diag(τ1, . . . , τg)R,
(2.12)

and the associated map on modular groups, also denoted by HR, is

HR : SL(ZF ⊕ ∂−1
F ) → Sp2g(Z)(

a b
c d

)
7→

(
Rt 0
0 R−1

)(
aσ bσ

cσ dσ

)(
R−t 0

0 R−1

)
.
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with the notation yσ = Diag
(
σ1(y), . . . , σg(y)

)
∈ Matg×g(R) when y ∈ F .

Remark 2.3.11. The Hilbert embedding is not always a true embedding.
For instance, when g = 2 (so that F is a real quadratic field), the induced
map between moduli spaces is generically 2-1: if (A, η) is a principally
polarized abelian surface with real multiplication by ZF , and η := η ◦ σ
where σ denotes real conjugation in F , then (A, η) and (A, η) are not
isomorphic in general but map to the same point in the Siegel threefold.

If g = 2, the image of the Hilbert embedding is a surface contained in
the Siegel threefold, called the Humbert surface associated with the real
quadratic field F (or rather ZF ). Examples of equations of Humbert sur-
faces in terms of Igusa invariants can be computed when the discriminant
of F is small [Gru10].

2.3.4 Hilbert modular forms in dimension 2

Keep the notation of §2.3.3. For all γ ∈ ( a bc d ) ∈ Γ(1)F and τ =
(τ1, . . . , τg) ∈ Hg, we write

γτ :=

(
σj(a)τj + σj(b)

σj(c)τj + σj(d)

)
1≤j≤g

and γ∗τ :=

g∏
i=1

(
σj(c)τj + σj(d)

)
.

Let w1, . . . , wg be integers. A Hilbert modular form of weight (w1, . . . , wg)
for F is a holomorphic function f : Hg

1 → C such that for every γ ∈ Γ(1)F
and every τ ∈ Hg

1, we have

f(γτ) =

g∏
j=1

(
σj(c)τj + σj(d)

)wjf(τ).

As in the case of Siegel modular forms of degree g ≥ 2, Koecher’s principle
makes enforcing holomorphy conditions at the cusps unnecessary [Bru08,
Thm. 1.20]. Since every irreducible (finite-dimensional, holomorphic) rep-
resentation of GL1(C)g has dimension one, there is no need to consider
vector-valued modular forms in the Hilbert case.

For every w ≥ 1, Hilbert modular forms for F of parallel weight w,
i.e. weight (w, . . . , w), are identified with modular forms of weight w on
the Shimura component S = Γ(1)F\Hg

1 described in §2.3.3. Explicitly,
we choose τ0 = (i, . . . , i) ∈ Hg

1 as a base point; if h is a classical Hilbert
modular form of weight (w, . . . , w) for F , then the function

f : [γ, (I2)g] 7→ (γ∗τ0)−wh(γτ0)
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is a modular function of weight w on S in the sense of §2.2.4.
The goal of this section is to describe certain generators of graded rings

of Hilbert modular forms explicitly, as we did in §2.3.2 in the case of Siegel
modular forms. Such generators depend on F , and they are known for a
few examples of real quadratic fields F of small discriminants; we focus
on the example of F = Q(

√
5). Explicitly, Hilbert modular forms can be

described in terms of Fourier expansions, and also through their relations
to Siegel modular forms via the Hilbert embedding.

For the moment, let F be a general real quadratic field. We fix an
embedding of F in R, so that the real embeddings σ1 and σ2 are the iden-
tity and the real conjugation (denoted by σ), respectively. Let Σ = {1, σ}
be the Galois group of F . Then Σ acts on the Q-vector space V = F 2,
and satisfies the hypotheses listed in §2.2.4; hence it makes sense to con-
sider Hilbert modular forms that are symmetric under Σ. We check that a
Hilbert modular form f is symmetric if and only if f(τ1, τ2) = f(τ2, τ1) for
every τ1, τ2 ∈ H1.

Let (e1, e2) be a Z-basis of ZF and let R = ( e1 e2e1 e2 ) be the matrix defining
the associated Hilbert embedding HR, as in §2.3.3.

Proposition 2.3.12. Let k ∈ Z, n ∈ N, and let f : H2 → Cn[x] be a Siegel
modular form of weight ρ = detk Symn. Define the functions gi : H2

1 → C
for 0 ≤ i ≤ n by the following equality:

∀t ∈ H2
1,

n∑
i=0

gi(t)x
i = ρ(R)f

(
HR(t)

)
.

Then each gi is a Hilbert modular form of weight (k+i, k+n−i). Moreover,
if n = 0, then the Hilbert modular form g0 = det(R)kH∗Rf is symmetric.

Proof. It is straightforward to check the transformation rule using the for-
mula for HR given in §2.3.3. The heart of the computation is that on
diagonal matrices

(
r1 0
0 r2

)
, the representation detk Symn splits: the coeffi-

cient before xi is multiplied by (r1r2)k ri1 r
n−i
2 .

In the case n = 0, we observe that real conjugation in F induces a
symplectic automorphism of the lattice ZF ⊕ ∂−1

F ; this implies that there
exists a matrix γσ ∈ Sp4(Z) such that HR(τ2, τ1) = γσHR(τ1, τ2) for ev-
ery τ1, τ2 ∈ H1. Symmetry follows from the fact that det(γσ) = 1.

As a consequence, the pullbacks of Igusa invariants to H2
1 under HR

are symmetric Hilbert modular functions of weight (0, 0). They define a
birational map from the Humbert surface to the subvariety of C3 cut out
by the Humbert equation.
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Remark 2.3.13. If h is a Siegel modular form of weight Sym2 obtained as
the derivative of a Siegel modular form of weight zero as in proposition 2.3.9,
say f(τ), we can check that for every (τ1, τ2) ∈ H2

1,

ρ(R)h
(
HR(τ1, τ2)

)
=

1

2πi

(
∂

∂τ1

f
(
HR(τ1, τ2)

)
x2 +

∂

∂τ2

f
(
HR(τ1, τ2)

))
.

In general, if f is a Hilbert modular form of weight (0, 0), then its par-
tial derivatives with respect to τ1 and τ2 are Hilbert modular forms of
weight (2, 0) and (0, 2) respectively; this is consistent with the result of
proposition 2.3.12.

In the special case F = Q(
√

5), we take e1 = 1 and e2 = (1 −
√

5)/2,
and we still take

R =

(
e1 e2

e1 e2

)
∈ GL2(R). (2.13)

Hilbert modular forms for F have Fourier expansions in terms of

w1 = exp
(
2πi(e1τ1 + e1τ2)

)
and w2 = exp

(
2πi(e2τ1 + e2τ2)

)
.

We use this notation and the term w-expansions to avoid confusion with
q-expansions of Siegel modular forms. A Hilbert modular form is defined
over Z if its Fourier coefficients are all integers.

If (a, b) ∈ Z2 \ {(0, 0)}, a nonzero coefficient before wa1wb2 can appear
in the w-expansion of a Hilbert modular form only when ae1 + be2 is a
totally positive element of ZF . Since e1 = 1 and e2 has negative norm, for
a given a, only finitely many b’s can appear. Therefore we can consider
of w-expansions as elements of the power series ring C[w2, w

−1
2 ][[w1]].

Theorem 2.3.14 ([Nag83]). The graded C-algebra of symmetric Hilbert
modular forms of even parallel weight for F = Q(

√
5) is generated by three

elements G2, F6, F10 of respective weights 2, 6 and 10, with w-expansions

G2(τ1, τ2) = 1 + (120w2 + 120)w1

+
(
120w3

2 + 600w2
2 + 720w2 + 600 + 120w−1

2

)
w2

1 +O(w3
1),

F6(τ1, τ2) = (w2 + 1)w1 +
(
w3

2 + 20w2
2 − 90w2 + 20 + w−1

2

)
w2

1 +O(w3
1),

F10(τ1, τ2) = (w2
2 − 2w2 + 1)w2

1 +O(w3
1).

The ring of Hilbert modular forms of even parallel weight defined over Z is
generated by G2, F6, F10, and

F12 =
1

4
(F 2

6 −G2F10).
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As a consequence, we can give an analogue of proposition 2.3.7 in the
case of Hilbert modular forms for Q(

√
5), whose proof is immediate given

theorem 2.3.14.

Proposition 2.3.15. Let f be a symmetric Hilbert modular form of even
weight k for the real quadratic field Q(

√
5). Then 2kf ∈ Z[G2, G6, F10].

The Gundlach invariants for F = Q(
√

5) are

g1 =
G5

2

F10

and g2 =
G2

2F6

F10

.

They define a birational map from the associated Humbert surface to C2.
By proposition 2.3.12, the pullbacks of the Siegel modular forms ψ4, ψ6,

χ10 and χ12 via the Hilbert embedding HR are symmetric Hilbert modular
forms of even weight. Their expressions in terms of G2, F6, F10 can be
computed using linear algebra on Fourier expansions [LY11, Prop. 3.2]: in
our case we have

q1 = w1, q2 = w1w2, q3 = w2.

In the following result, we take into account the fact that our choice
of normalization for the Siegel modular forms χ10 and χ12 (recall §2.3.2)
differs from that of [LY11].

Proposition 2.3.16 ([LY11, Thm. 4.4]). In the case F = Q(
√

5), with R
as in (2.13), we have

H∗R ψ4 = G2
2,

H∗R ψ6 = G3
2 − 864F6,

H∗R χ10 = −F10,

H∗R χ12 = −12(3F 2
6 − 2G2F10),

As another example, we study the pullback of the modular form f8,6

from example 2.3.10 via HR.

Proposition 2.3.17. Let R be as in eq. (2.13), and define the functions bi(t)
on H2

1 for 0 ≤ i ≤ 6 by

∀t ∈ H2
1, det8 Sym6(R)f8,6

(
HR(t)

)
=

6∑
i=0

bi(t)x
i.
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Then b2 and b4 are identically zero, and

b2
3 = 4F10F

2
6 ,

b1b5 =
36

25
F10F

2
6 −

4

5
F 2

10G2,

b0b6 =
−4

25
F10F

2
6 +

1

5
F 2

10G2,

b3

(
b2

0b
3
5 + b3

1b
2
6

)
= 123F 3

10F6 −
32

25
F 2

10F
2
6G

2
2 +

288

125
F10F

4
6G2 −

3456

3125
F 6

6 .

Proof. By proposition 2.3.12, each coefficient bi is a Hilbert modular form of
weight (8+i, 14−i). We can check that σ exchanges bi and b6−i. From the q-
expansion of f8,6, we can compute the w-expansions of the bi’s; then, we
use linear algebra to identify symmetric combinations of the bi’s of parallel
even weight in terms of the generators G2, F6, F10 from theorem 2.3.14. In
particular we find that b2b4 = 0; since b2 and b4 are exchanged by σ, both
are identically zero.

2.4 Modular equations

In this section, we define modular equations in the setting of PEL
Shimura varieties as equations describing Hecke correspondences. All the
types of modular equations described in chapter 1, namely elliptic modular
polynomials and modular equations of Siegel and Hilbert type for abelian
surfaces, can be recovered as special cases of the general definition.

2.4.1 The example of elliptic modular polynomials

In chapter 1, we defined the classical modular polynomial Φ`, where ` is
a prime, as follows. We start with the modular invariant j , which generates
the function field of the moduli space S = SL2(Z)\H1 over Q. Then, we
look at the function

τ 7→ j (τ/`),

which is invariant under the action of the congruence subgroup

Γ0(`) = {( a bc d ) ∈ SL2(Z) : b = 0 mod `} .

Then the coefficients of the polynomial

P`(τ) =
∏

γ∈Γ0(`)\SL2(Z)

(
Y − j

(
1
`
γτ
))

∈ C[Y ]
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are modular functions for SL2(Z). The polynomial Φ` is the unique polyno-
mial in C[X, Y ] satisfying the relation Φ`(j (τ), Y ) = P`(τ) for every τ ∈ H1.

In order to introduce the definition of modular equations in a broader
sense, we translate the definition of Φ` in the language of PEL Shimura
varieties. Recall that the underlying algebraic group in the case of modular
curves is G = GL2. Note that for every τ ∈ H1, we have

τ/` = δτ with δ = ( 1 0
0 ` ) ∈ G(Q)+,

and moreover
Γ0(`) = SL2(Z) ∩

(
δ−1 SL2(Z)δ

)
.

Geometrically, we consider the diagram

Γ0(`)\H1 Γ0(`)\H1

S S

τ 7→δτ

(2.14)

where Γ0(`) =
(
δ SL2(Z)δ−1

)
∩ SL2(Z). It gives a morphism

Γ0(`)\H1 → S × S, τ 7→ (τ, δτ).

The product S × S is then birational to P1 × P1 via (j, j). The modular
curve Γ0(`)\H1 is birational to its image in P1×P1, and the elliptic modular
polynomial of level ` is as an equation for this image.

In the modular interpretation, the lattice Z ⊕ δτZ contains the lat-
tice Z ⊕ τZ as a sublattice of index `, so the elliptic curves attached to τ
and δτ are indeed `-isogenous.

Recall from example 2.2.14 that if g is a classical modular form, then
the function

f : [γ, I2] 7→ (γ∗i)−wg(γi)

is a modular form on S in the sense of §2.2.4: the function f is left-invariant
under G(Q)+, right-invariant under a compact subgroup K of G(Af ) (with
K = K0 = GL2(Ẑ) if g was modular for SL2(Z)), and satisfies a certain
transformation rule under right action by the subgroup K∞ ⊂ G(R)+.
Under this correspondence, we can consider j as a modular form on S in
the sense of §2.2.4. Then, if τ = γi ∈ H1, we have

j (δτ) = j
(
[δγ, I2]

)
= j
(
[γ, δ−1]

)
.

Therefore, the classical modular function τ 7→ j (δτ) for Γ0(`) corresponds
to the modular function

jδ−1 : G(Q)+\
(
G(Af )×G(R)+

)
→ C

[x, g] 7→ j
(
[x, gδ−1]

)
.
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The function jδ−1 is right-invariant under Kδ−1 := δ−1K0δ. Define K ′ as
the compact open subgroup K0 ∩Kδ−1 of G(Af ). The diagram (2.14) can
be rewritten as

ShK′(GL2,H1)(C) ShδK′δ−1(GL2,H1)(C)

S S.

[x,g]7→[x,gδ−1]

(2.15)

Let K ′′ be a normal subgroup of finite index in K0 contained in K ′. We
let K0 act (on the left) on the set of modular functions for K ′′ as follows:
if k ∈ K0 and f is such a function, we define

k · f : [x, g] 7→ f([x, gk]).

The subgroup K ′ of K0 is contained in the stabilizer of j δ−1 . Therefore the
coefficients of the polynomial

Q` :=
∏

γ∈K0/K′

(
Y − γ · j δ−1

)
are modular functions of level K0. In the world of classical modular
forms, Q` corresponds exactly to P`, as inversion induces a bijection be-
tween right cosets of Γ0(`) in SL2(Z) and left cosets of K ′ in K0. The
general definition of modular equations uses analogues of diagram (2.15),
which make sense for a general Shimura variety and any δ ∈ G(Af ); these
diagrams are called Hecke correspondences.

2.4.2 Hecke correspondences

Let us fix a PEL datum (B, ∗, V, ψ,G,X+) as in §2.2.2, as well as a
compact open subgroup K ⊂ G(Af ). Following §2.4.1, we look at the
diagram

ShK′(G,X+)(C) Shδ−1K′δ(G,X+)(C)

ShK(G,X+)(C) ShK(G,X+)(C)

[x,g]7→[x,gδ]

(2.16)

where δ ∈ G(Af ), and K ′ := K ∩ δKδ−1. The induced map

Hδ : ShK′(C)→ ShK(C)× ShK(C)
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is called the Hecke correspondence of level δ on ShK(C). Alternatively, Hδ

can be seen as a correspondence on ShK(C)×ShK(C) consisting of all pairs
of the form

(
[x, g], [x, gδ]

)
for [x, g] ∈ ShK′(C). Hecke correspondences are

algebraic: the diagram (2.16) is the analytification of a diagram existing
at the level of algebraic varieties. Moreover, Hecke correspondences are
defined over the reflex field E(G,X+) [Mil05, Thm. 13.6].

We define the degree of Hδ to be the index

d(δ) = [K : K ′] = [K : K ∩ δKδ−1].

This index is finite as bothK andK ′ are compact open subgroups ofG(Af ),
and is the degree of the projection map ShK′ → ShK . One can also
consider Hδ as a map from ShK to its d(δ)-th symmetric power, send-
ing z ∈ ShK to the set {z′ ∈ ShK : (z, z′) ∈ Hδ}.

It is easy to see how Hδ behaves with respect to connected components
of ShK(C): if z lies in the connected component indexed by t ∈ T (Af ) (in
the notation of §2.2.2), then its images under Hδ all lie in the connected
component indexed by t ν(δ).

We call the Hecke correspondence Hδ absolutely irreducible if for every
connected component S of ShK(C) with field of definition L, the preimage
of S in ShK′ is absolutely irreducible as a variety defined over L (or equiv-
alently, connected as a variety over C). A sufficient condition for Hδ to be
absolutely irreducible is that ν(K ′) = ν(K).

Modular interpretation of Hecke correspondences. In the modular
interpretation, Hecke correspondences describe isogenies of a certain type
between polarized abelian varieties. Let Λ0, C, and O be as in §2.2.3, and
write

K =

d(δ)⊔
i=1

κiK
′,

where κi ∈ G(Af ) for 1 ≤ i ≤ d(δ). Let c ∈ C, denote by Sc the connected
component of ShK(C) indexed by c, and consider the lattice with PEL
structure (Λc, x, ι, ψc, cK) associated with a point [x, c] ∈ Sc by proposi-
tion 2.2.8.

In order to construct the lattices associated with [x, c] via the Hecke
correspondence Hδ, we partition the orbit cK into the K ′-orbits cκiK ′
for 1 ≤ i ≤ d(δ). Each cκiδ ∈ G(Af ) is then a Ẑ-linear embedding
of O-modules Λ̂0 ↪→ V (Af ); it is well defined up to right multiplication
by δ−1K ′δ, hence by K. Let Λi ⊂ V (Q) be the lattice such that Λi ⊗ Ẑ
is the image of this embedding. There is still a natural action of O on Λi.
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The decomposition cκiδK = qic
′K, with qi ∈ G(Q)+ and c′ ∈ C, is well

defined, and the element c′ does not depend on i.

Proposition 2.4.1. Let δ ∈ G(Af ), let z = [x, c] ∈ Sc, and construct
Λi, qi, c

′ as above. Then the image of z under the Hecke correspondence Hδ

in the modular interpretation of proposition 2.2.9 is given by the d(δ) iso-
morphism classes of tuples with representatives(

Λi, x,
λc′

λc
ψc
(
µ(q−1

i ) · , ·
)
, cκiδK

)
for 1 ≤ i ≤ d(δ).

Proof. By construction, the images of [x, c] under the Hecke correspondence
are the points [q−1

i x, c′] of ShK(C). The relation cκiδK = qic
′K shows that

the map q−1
i sends the lattice Λi to Λc′ . This map also respects the action

of O, and sends the complex structure x to q−1
i x. Finally, it sends the

polarization (u, v) 7→ ψc(u, v) on Λi to (u, v) 7→ ψc
(
µ(qi)u, v

)
on Λc′ .

After multiplying δ by a unique suitable element in Q×+, which does not
change Hδ, we can assume that δ(Λ̂0) ⊂ Λ̂0 and δ(Λ̂0) 6⊂ pΛ̂0 for every
prime p; we say that δ is normalized with respect to Λ0. In this case,
we define the isogeny degree of Hδ as the unique integer l(δ) ≥ 1 such
that l(δ)−1 det(δ) is a unit in Ẑ. In other words,

l(δ) = #
(
Λ̂0/δ(Λ̂0)

)
.

For a general δ ∈ G(Af ), we set l(δ) = l(λδ) where λ ∈ Q×+ is chosen such
that λδ is normalized with respect to Λ0.

Corollary 2.4.2. Let δ ∈ G(Af ). Then, in the modular interpretation of
proposition 2.2.9, the Hecke correspondence Hδ sends an abelian variety A
with PEL structure to d(δ) abelian varieties A1, . . . , Ad(δ) such that for
every 1 ≤ i ≤ d(δ), there exists an isogeny Ai → A of degree l(δ).

Proof. We can assume that δ is normalized with respect to Λ0. Then, in
proposition 2.4.1, each Λi for 1 ≤ i ≤ d(δ) is a sublattice of Λc endowed
with the same complex structure x. Moreover, for every 1 ≤ i ≤ d(δ), we
have Λc/Λi ' Λ̂0/δ(Λ̂0), so the index of each Λi in Λc is l(δ).

Example 2.4.3. In the case of the classical modular curve of level one, we
have G = GL2 and K = K0 = GL2(Ẑ). Consider the Hecke correspondence
of level δ = ( ` 0

0 1 ) ∈ GL2(Af ), where ` is a prime. In this case

K ′ = K ∩ δKδ−1 = {( a bc d ) ∈ GL2(Ẑ) : b = 0 mod `};
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this is the Hecke correspondence considered in §2.4.1. The Hecke corre-
spondence Hδ is absolutely irreducible since ν(K0) = ν(K ′) = Ẑ×. We
have d(δ) = `+ 1 and l(δ) = `. In the classical modular interpretation, Hδ

sends an elliptic curve E to the quotients of E by the ` + 1 cyclic sub-
groups of E[`]; these quotient isogenies are dual to the isogenies given in
corollary 2.4.2.

A relation between degrees. For later purposes, we state an inequality
relating d(δ) with a power of l(δ). Since K ⊂ G(Af ) is open, there exists
a smallest integer N ≥ 1 such that{

g ∈ G(Af ) ∩GL(Λ̂0) : g = 1 mod N Λ̂0

}
⊂ K,

which we call the level of K with respect to Λ̂0.

Proposition 2.4.4. There exists a constant C depending on K and Λ0

such that for every δ ∈ G(Af ), we have d(δ) ≤ C l(δ)(dimV )2. We can take
C = N (dimV )2, where N is the level of K with respect to Λ̂0.

Proof. We can assume that δ is normalized with respect to Λ̂0. Then the
subgroup K ∩ δKδ−1 contains all the elements g ∈ G(Af ) ∩ GL(Λ̂0) that
are the identity modulo Λ̂ = l(δ)N Λ̂0. In other words we have a morphism
of groups K → GL(Λ0/N l(δ)Λ0) whose kernel is contained in K ∩ δKδ−1.
This yields the result since # GL(Λ0/N l(δ)Λ0) ≤ (N l(δ))(dimV )2 .

Remark 2.4.5. The upper bound on d(δ) given in proposition 2.4.4 is far
from optimal in many cases: for instance, if δ is normalized with respect
to Λ̂0, if l(δ) is prime to N , and if moreover δ normalizes the image of K
in GL(Λ0/NΛ0), then d(δ) ≤ l(δ)(dimV )2 . But in general, the level of K
does enter into account. As an example, take G = GL2, δ = ( 0 1

1 0 ), and

K =
{

( a bc d ) ∈ GL2(Ẑ) : a = d = 1 mod N and c = 0 mod N
}
.

Then d(δ) = N even though l(δ) = 1. In the modular interpretation, the
Hecke correspondence Hδ has the effect of forgetting the initial K-level
structure entirely.

2.4.3 Modular equations on PEL Shimura varieties

When defining the elliptic modular polynomial Φ`, besides choosing the
Hecke correspondence, one uses a particular generator of the function field
of the modular curve, namely the j-invariant. In the general case, we also
fix a choice of invariants on Shimura varieties.

87



Fix a PEL datum (B, ∗, V, ψ,G,X+) as above, let K ⊂ G(Af ) be a
compact open subgroup, and let Σ be a finite group of automorphisms
of V as in §2.2.4. Let n be the complex dimension of X+; we assume
that n ≥ 1. Let S, T be connected components of ShK(G,X+)(C), and
let L be their field of definition.

Since the field L(S) of modular functions on S has transcendence de-
gree n over L, the field L(S)Σ of modular functions on S that are symmetric
under Σ also has transcendence degree n over L. Choose a transcendence
basis (j1, . . . , jn) of L(S)Σ over L, and another symmetric function jn+1

that generates the remaining finite extension, whose degree is denoted by e.
On S, the function jn+1 satisfies a minimal relation of the form

E(j1, . . . , jn+1) = 0 (2.17)

where

E =
e∑

k=0

Ek(J1, . . . , Jn) J k
n+1 ∈ L[J1, . . . , Jn+1]

and E is irreducible. If L(S)Σ is purely transcendental over L (if Σ = {1},
this means that S is birational to Pn), then we can take jn+1 = 1, ignore
eq. (2.17), and work with n invariants only. This simplification will happen
for our three main examples of PEL Shimura varieties, namely the modular
curve X(1), the Siegel threefold, and the Hilbert surface for F = Q(

√
5).

We proceed similarly to define coordinates on T : no confusion will arise
if we also denote them by j1, . . . , jn+1. We refer to the data defined up to
now as a choice of PEL setting.

Given a PEL setting, let δ ∈ G(Af ) define an absolutely irreducible
Hecke correspondence Hδ that intersects S × T nontrivially. We want to
define explicit polynomials with coefficients in L(S), called the modular
equations of level δ, describing Hδ in the product S × T . To do this, we
mimic the definition of elliptic modular polynomials in the language of PEL
Shimura varieties given in §2.4.1. As in §2.4.2, we write

K ′ = K ∩ δKδ−1.

Let K ′′ be a normal subgroup of finite index in K, contained in K ′, and
stabilized by Σ. Let S ′′ be the preimage of S in ShK′′(C) (which is possibly
not connected). There is a left action of K o Σ on the space of modular
functions on S ′′, given by

(k, σ) · f : [x, g] 7→ σ · f([x, gk]).
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The modular functions that are invariant under K ′o{1} (resp. KoΣ) are
exactly the functions on Hδ ∩ (S × T ) defined over C (resp. the functions
on S defined over C and invariant under Σ). The modular functions

ji,δ : [x, g] 7→ ji([x, gδ])

for 1 ≤ i ≤ n + 1 are defined over L and generate the function field
of Hδ ∩ (S × T ). We define the decreasing chain of subgroups

K o Σ = K0 ⊃ K1 ⊃ · · · ⊃ Kn+1 ⊃ K ′

as follows: for each 1 ≤ i ≤ n+ 1, the subgroup Ki is the stabilizer of the
modular functions j1,δ, . . . , ji,δ.

Galois theory applied to the Galois covering S ′′ → S tells us that for
every 1 ≤ i ≤ n + 1, the field L(j1, . . . , jn+1, j1,δ, . . . , ji,δ) is the function
field of the preimage of S in the Shimura variety ShKi , and consists of all
modular functions on S ′′ defined over L that are invariant under Ki. In
other words, we have a tower of function fields:

L(j1, . . . , jn+1, j1,δ, . . . , jn+1,δ) = L(Hδ ∩ (S × T ))

...

L(j1, . . . , jn+1, j1,δ)

L(S)Σ,

degree dn+1

degree d2

degree d1

where di = [Ki−1 : Ki] for 1 ≤ i ≤ n+ 1. The modular equations of level δ
are defining equations for the successive extensions in the tower.

Definition 2.4.6. The modular equations of level δ on S×T are the tuple
(Ψδ,1, . . . ,Ψδ,n+1) defined as follows: for each 1 ≤ m ≤ n + 1, Ψδ,m is the
multivariate polynomial in the m variables Y1, . . . , Ym defined by

Ψδ,m =
∑

γ∈K0/Km−1

((m−1∏
i=1

∏
γi

(
Yi− γi · ji,δ

)) ∏
γm∈Km−1/Km

(
Ym− γγm · jm,δ

))
,

where the middle product is over all γi ∈ K0/Ki such that γi = γ mod-
ulo Ki−1, but γi 6= γ modulo Ki. The expression for Ψδ,m makes sense,
because multiplying γ on the right by an element in Km−1 only permutes
the factors in the last product.
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Definition 2.4.6 generalizes the definition of elliptic modular polynomi-
als; the precise formula is inspired from preexisting definitions of modular
equations for abelian surfaces [BL09, Mil15, Mar20, MR20]. We will return
to these examples in §2.4.4.

Let us give elementary properties of modular equations. We need a
technical lemma.

Lemma 2.4.7. Let γ, γ′ ∈ K0 and 1 ≤ i ≤ n + 1. Assume that the
equality γ · ji,δ = γ′ · ji,δ holds on one connected component of S ′′. Then it
holds on all connected components of S ′′.

Proof. Write γ = (k, σ) and γ′ = (k′, σ′) where k, k′ ∈ K and σ, σ′ ∈ Σ.
Let c ∈ C ⊂ G(Af ) be an element defining the connected component S
in ShK(C), so that S = Γc\X+ with Γc = G(Q)+∩ cKc−1. By assumption,
there exists an element g ∈ G(Af ) such that g = c in the double quotient
space G(Q)+\G(Af )/K, and

∀x ∈ X+, ji,δ
(
[σ−1(x), σ−1(gk)]

)
= ji,δ

(
[σ′−1(x), σ′−1(gk′)]

)
. (2.18)

Since Hδ is absolutely irreducible, we have

G(Q)+\G(Af )/K = G(Q)+\G(Af )/K
′.

Using the description of connected components of a PEL Shimura variety
in §2.2.2, and the fact that the action of Σ leaves ν invariant, we find
that there exist γ1, γ2 ∈ G(Q)+ such that gk = γ1σ(c) mod σ(K ′) and
gk′ = γ2σ

′(c) mod σ′(K ′). Then eq. (2.18) is equivalent to the following:

∀x ∈ X+, ji,δ
(
[x, c]

)
= ji,δ

(
[σ′−1(γ−1

2 γ1σ(x)), c]
)
. (2.19)

Note that γ−1
2 γ1 is well-defined and independent of g, up to multiplication

on the left by an element of G(Q)+∩σ′(cK ′c−1), and multiplication on the
right by an element of G(Q)+ ∩ σ(cK ′c−1). Therefore eq. (2.19) holds for
each g ∈ G(Af ) such that g = c in G(Q)+\G(Af )/K. In other words, the
equality γ · ji,δ = γ′ · ji,δ holds on every connected component of S ′′.

Proposition 2.4.8. Let 1 ≤ m ≤ n + 1, and let γ ∈ K0/Km−1. Then, up
to multiplication by an element in L(j1, . . . , jn+1, γ ·j1,δ, . . . , γ ·jm−1,δ)

×, we
have

Ψδ,m(γ · j1,δ , . . . , γ · jm−1,δ , Ym) =
∏

γm∈Km−1/Km

(
Ym − γγm · jm,δ

)
.

90



Proof. By definition 2.4.6, the above equality holds true after multiplying
the right hand side by

f =
m−1∏
i=1

∏
γi∈K0/Ki
γi 6=γ

γi=γ mod Ki−1

(
γ · ji,δ − γi · ji,δ

)
.

The function f a product of nonzero modular functions on S ′′ defined
over L. In order to show that f ∈ L(j1, . . . , jn+1, γ · j1,δ, . . . , γ · jm−1,δ), we
check that f is invariant under the action of γKm−1γ

−1. By definition of
the subgroups Ki, no factor of f is identically zero on S ′′. Therefore f is
invertible by lemma 2.4.7.

Let 1 ≤ m ≤ n + 1. Proposition 2.4.8 implies that up to scaling,
the univariate polynomial Ψδ,m(j1,δ, . . . , jm−1,δ, Ym) is the minimal polyno-
mial of jm,δ over the field L(j1, . . . , jn+1, j1,δ, . . . , jm−1,δ). In other words,
when the multiplicative coefficient does not vanish, which is generically the
case, Ψδ,m provides all the possible values for jm,δ once j1, . . . , jn+1 and
j1,δ, . . . , jm−1,δ are known. In particular, modular equations vanish on Hδ

as promised.
We could also define other modular equations Φδ,m for which there is

true equality in proposition 2.4.8, as in the case of elliptic modular poly-
nomials, but they have a more complicated expression. In practice, using
the polynomials Ψδ,m is more convenient as they are typically smaller.

Proposition 2.4.9. Let 1 ≤ m ≤ n + 1. The coefficients of Ψδ,m lie
in L(j1, . . . , jn+1). The degree of Ψδ,m in Ym is [Km : Km−1], and for
each 1 ≤ i < m, the degree of Ψδ,m in Yi is at most [Ki : Ki−1]− 1.

Proof. It is clear from definition 2.4.6 that the action of K0 leaves Ψδ,m

invariant. Hence the coefficients of Ψδ,m are functions on S invariant un-
der Σ and defined over L, so the first statement holds. The second part is
obvious.

In general, using a nontrivial Σ increases the degree of modular equa-
tions. This has a geometric interpretation: modular equations describe the
Hecke correspondence Hδ and its conjugates under Σ simultaneously.

Let J1, . . . , Jn+1 be indeterminates, and let 1 ≤ m ≤ n + 1. By the
equation (2.17) satisfied by jn+1 on S, there exists a unique element of the
ring L(J1, . . . , Jn)[Jn+1, Y1, . . . , Ym] of degree at most e− 1 in Jn+1 which,
when evaluated at Ji = ji for 1 ≤ i ≤ n + 1, yields Ψδ,m. In the sequel,
we also denote it by Ψδ,m. Therefore the coefficients of Ψδ,m will be either

91



functions on S, i.e. elements of L(j1, . . . , jn+1), or multivariate rational
fractions in the indeterminates J1, . . . , Jn+1 that are polynomial in Jn+1 of
degree at most e− 1, depending on the context.

Remark 2.4.10. In several cases, the function j1,δ already generates the
whole extension of function fields, so that K1 = · · · = Kn+1 = K ′,

Ψδ,1 =
∏

γ1∈K0/K′

(
Y1 − γ1 · j1,δ

)
,

and for every 2 ≤ m ≤ n+ 1,

Ψδ,m =
∑

γ∈K0/K′

((∏
γ1 6=γ

(
Y1 − γ1 · j1,δ

))(
Ym − γ · jm,δ

))
. (2.20)

In this case, for each 2 ≤ m ≤ n+ 1, we have

Ψδ,m(j1,δ) = ∂Y1Ψδ,1(j1,δ) · (Ym − jm,δ),

where ∂Y1 denotes derivative with respect to Y1. Therefore Ψδ,m is just the
expression of jm,δ as an element of L(S)Σ[ j1,δ] in a compact representation
inspired from [GHK+06].

In this case, we will often keep only the (negative of the) constant term
in (2.20), and consider the modular equations Ψδ,m for 2 ≤ m ≤ n + 1 as
“univariate” polynomials, i.e. elements of the ring L(J1, . . . , Jn)[Jn+1, Y ] of
degree at most e− 1 in Jn+1, defined by the relations

Ψδ,m(j1, . . . , jn+1) =
∑

γ∈K0/K′

(
γ · jm,δ

) ∏
γ1 6=γ

(
Y − γ1 · j1,δ

)
. (2.21)

Then, we simply have jm,δ = Ψδ,m(j1,δ)/∂Y1Ψδ,1(j1,δ).

2.4.4 Modular equations for abelian surfaces

To conclude chapter 2, we show that modular equations of Siegel and
Hilbert type in dimension 2 [BL09, Mil15, Mar20, MR20] are special cases
of modular equations as defined above.

Modular equations of Siegel type. We saw in §2.3.1 that the Siegel
threefold Sp4(Z)\H2 is the PEL Shimura variety associated with the alge-
braic group G = GSp4(Q), with compact open subgroup K = GSp4(Ẑ).
The Shimura variety ShK is connected, defined over Q, and its function field
is generated by the three algebraically independent Igusa invariants j1, j2, j3.
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Let ` be a prime, and consider the Hecke correspondence of level

δ =

(
` I2 0
0 I2

)
as a 4× 4 matrix in 2× 2 blocks.

The subgroup K ∩ δKδ−1 ∩G(Q)+ of Sp4(Z) is usually denoted by Γ0(`),
and the degree of Hδ is

d(δ) = `3 + `2 + `+ 1.

The Hecke correspondence Hδ is absolutely irreducible, and describes all
principally polarized abelian surfaces `-isogenous to a given one; the degree
of these isogenies is l(δ) = `2. In this case, the function j1,δ generates the
function field on the Hecke correspondence [BL09, Lem. 4.2], so that d1 =
d(δ) and d2 = d3 = 1, in the notation of §2.4.3. The modular equations from
definition 2.4.6 (or rather remark 2.4.10) are the usual modular equations
of Siegel type and level `, denoted by Ψ`,m ∈ Q(J1, J2, J3)[Y ] for 1 ≤ m ≤ 3.
They have been computed for ` = 2 and ` = 3 [Mil15].

By the dictionary between modular forms in the sense of PEL Shimura
varieties and classical modular forms, we have the following formulæ be-
tween meromorphic functions on Sp4(Z)\H1 [BL09, Mil15]:

Ψ`,1

(
j1(τ), j2(τ), j3(τ)

)
=

∏
γ∈Γ0(`)\ Sp4(Z)

(
Y − j1

(
1
`
γτ
))
,

and for m ∈ {2, 3},

Ψ`,m

(
j1(τ), j2(τ), j3(τ)

)
=

∑
γ∈Γ0(`)\ Sp4(Z)

jm
(

1
`
γτ
) ∏
γ′ 6=γ

(
Y − j1

(
1
`
γ′τ
))
.

Modular equations of Hilbert type. As we saw in §2.3.3, the Hilbert
surface ΓF (1)\H2

1 for the quadratic field F = Q(
√

5) is identified with a
connected component S of the PEL Shimura variety associated with the
algebraic group G = GL2(F ) and a well-chosen congruence subgroup K

of GL(Λ0 ⊗ Ẑ), where Λ0 = ZF ⊕ ∂−1
F .

Let Σ be the group of order two generated by the real conjugation σ
in F . The algebraic variety S is defined over Q, and the field of symmetric
modular functions on S is generated by the two algebraically independent
Gundlach invariants g1, g2.

Let β ∈ ZF be totally positive and prime, and let

δ =

(
β 0
0 1

)
∈ G(Af ).
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The Hecke correspondence Hδ is absolutely irreducible, and has degree
d(δ) = NF/Q(β) + 1. In the modular interpretation, Hδ parametrizes
β-isogenies between abelian surfaces with real multiplication by ZF ; the
degree of these isogenies is l(δ) = NF/Q(β). One can check that Hδ inter-
sects S × S nontrivially. Being able to consider this Hecke correspondence
is the reason for our choice of G in §2.2.2.

The associated modular equations are called the Hilbert modular poly-
nomials of level β in Gundlach invariants, denoted by Ψβ,m ∈ Q(J1, J2)[Y ]
for m ∈ {1, 2} [MR20]. They have been computed up to NF/Q(β) = 59
[Mil]; since the Gundlach invariants are symmetric, they describe both β-
and σ(β)-isogenies. In order to write out Hilbert modular equations of
level β in terms of classical Hilbert modular forms, we define

Γ0(β) = {( a bc d ) ∈ ΓF (1) : β|b} ,

and for all λ ∈ F and τ = (τ1, τ2) ∈ H2
1, we write

λτ := (λτ1, λτ2).

Then we have the following equalities of meromorphic functions on H2
1:

Ψβ,1

(
g1(τ), g2(τ)

)
=

∏
γ∈Γ0(β)\(ΓF (1)oΣ)

(
Y − g1

(
1
β
γτ
))
, and

Ψβ,2

(
g1(τ), g2(τ)

)
=

∏
γ∈Γ0(β)\(ΓF (1)oΣ)

g2

(
1
β
γτ
) ∏
γ′ 6=γ

(
Y − g1

(
1
β
γ′τ
))
.

Other types of Hilbert modular equations for Q(
√

5) using nonsymmet-
ric invariants have also been defined and computed [Mar20].

Finally, we can also consider modular equations of Hilbert type using
pullbacks of the three Igusa invariants under the Hilbert embedding as
invariants on S. The equation (2.17) satisfied by j1, j2, j3 on S is the
Humbert equation attached to F . When F = Q(

√
5), there is no reason to

use Hilbert modular equations in Igusa invariants in practice, as they have
a larger number of variables and larger degrees compared to the modular
equations in Gundlach invariants; their only advantage is that they can be
defined for every real quadratic field F .
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Chapter 3

Computing isogenies between
abelian surfaces

This chapter corresponds to the preprint [KPR19]. We present an algo-
rithm solving the following problem: given two principally polarized abelian
surfaces A and A′ over a field k which are isogenous, compute such an
isogeny explicitly. More precisely, we assume that either

1. A and A′ are `-isogenous, where ` is a prime (the Siegel case); or

2. A and A′ have real multiplication by ZF , where F is a fixed real
quadratic field, and are β-isogenous where β ∈ ZF is a totally positive
prime (the Hilbert case).

We refer to §2.1.4 for the definition of `- and β-isogenies. During the algo-
rithm, we make several genericity assumptions on A and A′; in particular
we assume that A and A′ are Jacobians of genus 2 hyperelliptic curves
over k. We also assume that the characteristic of k is sufficiently large with
respect to ` or β. We give precise statements in theorems 3.5.2 and 3.5.3.

While the Siegel and Hilbert cases do not cover all possible isogenies
between principally polarized abelian surfaces, they “almost” do so, and
the isogeny algorithm can be adapted to the cases when End(A)† is not
maximal or when β ∈ ZF is totally positive but not prime; see [DJRV17,
Thm. 1.1] for the full classification.

Our algorithm is the generalization of the isogeny algorithm for elliptic
curves described in §1.2.2 to the case of modular equations of Siegel and
Hilbert type for abelian surfaces: the crucial step is to compute the action
of the isogeny on differential forms using derivatives of modular equations.
This computation has a geometric interpretation in terms of the Kodaira–
Spencer isomorphism, and this formulation yields a clear roadmap to gen-
eralize the isogeny algorithm to higher dimensions.
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Using the results of this chapter, one can already implement toy ex-
amples of Elkies’s point counting method on abelian surfaces using pre-
computed modular equations of small levels. However, the key issue of
the complexity of manipulating modular equations is left aside for the mo-
ment. We return to this question in chapter 5, where we present general
size bounds for modular equations in terms of their level, and in chapter 6,
where we investigate the complexity of evaluating modular equations of
Siegel and Hilbert type, i.e. providing the input to the isogeny algorithm.

3.1 Principle of the algorithm

Let us describe the outline of our algorithm in the case of `-isogenies
from a geometric point of view, in any dimension g. The central object is
the Hecke correspondence

H` = (H`,1, H`,2) : Ag,` → Ag ×Ag

where Ag,` denotes the moduli space of principally polarized abelian vari-
eties of dimension g endowed with the kernel of an `-isogeny, andAg denotes
the moduli space of principally polarized abelian varieties of dimension g.
In the modular interpretation, the map H` is given by (A,K) 7→ (A,A/K).
Over C, the map H` takes the form

Γ0(`)\Hg → Sp2g(Z)\Hg × Sp2g(Z)\Hg

τ 7→ (τ, τ/`),

where the subgroup Γ0(`) ⊂ Sp2g(Z) is defined by

Γ0(`) =
{

( a bc d ) ∈ Sp2g(Z) : b = 0 mod `
}
. (3.1)

If g = 2, then H` is exactly the Hecke correspondence used in §2.4.4 to
construct the Siegel modular equations of level `.

Let ϕ : A→ A′ be an `-isogeny, so that (A,A′) lies in the image of H`.
Assume further that (A,A′) are sufficiently generic, so that H`,1 and H`,2

are étale at (A,A′). Denote by TA(Ag) the tangent space of Ag at A, and
denote by T0(A) the tangent space of A at its neutral point. Then there is
a close relation between two maps:

• the deformation map D(ϕ) : TA(Ag)→ TA′(Ag) defined as

D(ϕ) := dH`,2 ◦ (dH`,1)−1, and

• the tangent map dϕ : T0(A)→ T0(A′).
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This relation stems from a canonical isomorphism, called the Kodaira–
Spencer map, between TA(Ag) and the vector space Sym2 T0(A) [And17].
Therefore, in any dimension g, an isogeny algorithm could run as follows.

1. Compute the deformation map at (A,A′) by differentiating certain
modular equations giving a local model of Ag,` and Ag.

2. Compute dϕ from the deformation map using an explicit version
of the Kodaira–Spencer isomorphism, i.e. an explicit way to map
a pair (A,w) where w ∈ Sym2 T0(A) to the corresponding point
of TA(Ag) in the local model of Ag.

3. Reconstruct ϕ as a rational map by solving a differential system in
power series and performing a multivariate rational reconstruction.

In step 3, the characteristic p of k should be large with respect to `. If p
is too small, then a standard solution [JL06] is to lift the isogeny to the ring
of Witt vectors of k, which has characteristic zero, and to control the p-
adic precision losses in step 3. This outline follows the steps of the isogeny
algorithm for elliptic curves (§1.2.2), albeit in a very abstract formulation.

We mention that the genericity assumption on (A,A′) can be removed
if one is willing to work with Ag as a Deligne–Mumford stack, rather than
a scheme over k; then the maps H`,1 and H`,2 are étale everywhere. We
refer to [KPR19, §4] for an account on this formalism. In practice, working
with stacks would involve adding a level structure of level n ≥ 3 prime to `
and keeping track of automorphisms. For simplicity, we choose to keep the
genericity hypothesis.

In the case g = 2, we consider the local model of Ag given by the
Igusa invariants, defined in §2.3.2; the local model of Ag,` in step 1 is given
by the Siegel modular equations of level ` (recall §1.3.1 and §2.4.4). This
choice introduces further singularities, which can be avoided by choosing
other models of Ag; this would be necessary for instance if A or A′ is a
product of elliptic curves, so that its Igusa invariants are not defined. In
order to compute the deformation map, it is enough to evaluate the Siegel
modular equations of level ` and their derivatives at (A,A′). In step 2,
we choose to encode a basis of T0(A) as the choice of a hyperelliptic curve
equation C such that A = Jac(C). Then, the explicit Kodaira–Spencer iso-
morphism is simply an expression for certain Siegel modular forms, namely
derivatives of Igusa invariants, in terms of the coefficients of the curve (see
theorem 3.2.15). Since the curve C embeds in its Jacobian, we are able to
compute with power series in only one variable in step 3.
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3.2 An explicit Kodaira–Spencer map

Let C be a genus 2 hyperelliptic curve over C. Then a choice of hy-
perelliptic equation for C defines a basis ω of the space of global differen-
tial forms on C, hence on Jac(C). As we saw in remark 2.3.3, any Siegel
modular form f with values in a vector space W can be evaluated on the
pair (Jac(C), ω). This gives rise to a map, denoted by Cov(f), from an open
subset of C6[x] to W . We show that Cov(f) is a covariant of the hyper-
elliptic equation; the main result of this section is an algorithm to obtain
this covariant explicitly given the q-expansion of f . These calculations have
also been done in [CFv17].

The existence of the Kodaira–Spencer isomorphism translates into the
fact that derivatives of Igusa invariants are modular forms of weight Sym2

(recall proposition 2.3.9). The explicit Kodaira–Spencer isomorphism that
we are looking for is the expression of their associated covariants in terms
of the coefficients of the curve.

We use the following notation. Ifm is a matrix, we denote the transpose
of m by mt, and we denote the inverse of mt by m−t. We denote the
diagonal n×n matrix with diagonal entries x1, . . . , xn by Diag(x1, . . . , xn).

3.2.1 Hyperelliptic equations

Let C be a smooth hyperelliptic equation of genus 2 over C:

C : v2 = EC(u),

with degEC ∈ {5, 6}. Then C is naturally endowed with the basis of differ-
ential forms

ω(C) =
(u du

v
,
du

v

)
. (3.2)

Recall from §2.1.2 that the Jacobian Jac(C) is a principally polarized
abelian surface over C. Choosing a base point P on C gives an embedding

ηP : C ↪→ Jac(C), Q 7→ [Q− P ].

The pullback map η∗P on the spaces of differential forms is an isomorphism
which is independent of P . Therefore we can see ω(C) as a basis of differ-
ential forms on Jac(C). This basis depends on the particular hyperelliptic
equation chosen.

Lemma 3.2.1. Let C be a genus 2 hyperelliptic equation over C, and let
r = ( a bc d ) ∈ GL2(C). Let EC′ be the image of EC by det−2 Sym6(r), and
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let C ′ be the genus 2 hyperelliptic curve defined by the equation y′ 2 = EC′(x
′).

Let η : C ′ → C be the isomorphism defined by

η(x′, y′) =

(
ax′ + c

bx′ + d
,

(det r) y′

(bx′ + d)3

)
.

Then the matrix of η∗ : Ω1(C)→ Ω1(C ′) in the bases ω(C) and ω(C ′) is r.

Proof. Write (x, y) = η(x′, y′). Then direct calculation shows that

dx

y
= (bx′ + d)

dx′

y′
and

x dx

y
= (ax′ + c)

dx′

y′
.

Proposition 3.2.2. Let A be a principally polarized abelian surface over C
that is not a product of two elliptic curves, and let ω be a basis of Ω1(A).
Then there exists a unique hyperelliptic curve equation C of genus 2 over C
such that

(
Jac(C), ω(C)

)
is isomorphic to (A, ω).

Proof. Since A is not a product of elliptic curves, there exists a genus 2
curve equation C0 over C such that A is isomorphic to Jac(C0). Then ω
differs from ω(C0) by a linear transformation in GL2(C). By lemma 3.2.1,
we can make a suitable change of variables on C0 to find the correct C. The
curve C is unique because every isomorphism between hyperelliptic curves
comes from a matrix r as in lemma 3.2.1.

Let g ≥ 1. Recall that the complex abelian variety of dimension g
attached to τ ∈ Hg is A(τ) = Cg/Λ(τ), where Λ(τ) = Zg ⊕ τZg. Recall
also that for every τ ∈ Hg and every γ = ( a bc d ) ∈ Sp2g(Z) in g × g blocks,
we write

γτ = (aτ + b)(cτ + d)−1 and γ∗τ = cτ + d.

There is a natural basis of differential forms on A(τ) given by

ω(τ) = (2πi dz1, . . . , 2πi dzg), (3.3)

where z1, . . . , zg are the coordinates of Cg. This basis of differential forms
satisfies a simple transformation rule under the action of Sp2g(Z).

Proposition 3.2.3 ([BL04, Rem. 8.1.4]). Let τ ∈ Hg, and let γ ∈ Sp2g(Z).
Then there exists an isomorphism

ηγ,τ : A(τ)→ A(γτ), z 7→ (γ∗τ)−tz.
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Similarly, let F be a totally real number field of degree g, seen as a subset
of Rg via its g real embeddings. By §2.3.3, for every τ = (τ1, . . . , τg) ∈ Hg

1,
the abelian variety of dimension g with real multiplication by ZF attached
to τ is AF (τ) = Cg/ΛF (τ), where ΛF (τ) = ZF ⊕ Diag(τ1, . . . , τg)∂

−1
F . The

tuple of differential forms ω(τ) defined as in eq. (3.3) also defines a basis
of differential forms on AF (τ).

Definition 3.2.4. Let us return to the case g = 2. The bases of differential
forms defined above allow us to define particular curve equations attached
to a point of H2 or H2

1.

1. Let τ ∈ H2, and assume that χ10(τ) 6= 0. Then, by proposition 3.2.2,
there exists a unique hyperelliptic equation C(τ) over C such that(

Jac(C(τ)), ω(C(τ))
)
'
(
A(τ), ω(τ)

)
.

We call C(τ) the standard curve attached to τ . We define the func-
tions ai(τ) on H2 for 0 ≤ i ≤ 6 as the coefficients of C(τ):

C(τ) : y2 =
6∑
i=0

ai(τ)xi.

2. Let F be a real quadratic field, and let R ∈ GL2(R) be a matrix
defining a Hilbert embedding (§2.3.3). Let τ ∈ H2

1, and assume that
χ10(HR(τ)) 6= 0. Then, by proposition 3.2.2, there exists a unique
hyperelliptic equation CF (τ) over C such that(

Jac(CF (τ)), ω(CF (τ))
)
'
(
AF (τ), ω(τ)

)
.

We call CF (τ) the standard curve with real multiplication by ZF at-
tached to τ ; this is an abuse of language, since the Jacobian of CF (τ)
has real multiplication by ZF , not the curve itself.

Proposition 3.2.5. The function τ 7→ C(τ) is a Siegel modular function of
weight det−2 Sym6 which has no poles on the open set V = {χ10 6= 0} ⊂ H2.

Proof. Let Z be the set of isomorphism classes of pairs (Jac(C), ω) where C
is a genus 2 hyperelliptic curve over C and ω is a basis of Ω1(C). By
proposition 3.2.3, Z is the quotient of V ×GL2(C) by the action of Sp4(Z)
given by

γ · (τ, r) =
(
γτ, (γ∗τ)t r

)
,

and thus inherits a natural complex structure. Let U ⊂ C6[x] be the open
set consisting of polynomials with simple roots. Then the Torelli map
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from U to Z sending C to (Jac(C), ω(C)), which is bijective by proposi-
tion 3.2.2, is actually biholomorphic. The map V → Z sending τ to (τ, I2)
is holomorphic, therefore τ 7→ C(τ) is holomorphic on V . Combining propo-
sition 3.2.3 and lemma 3.2.1 shows the transformation rule.

Finally, one can relate the curves CF (τ) and C(HR(τ)) for every τ ∈ H2
1.

Proposition 3.2.6. Let F,R be as above. Then for every τ ∈ H2
1, left

multiplication by Rt on C2 induces an isomorphism AF (τ)→ A(HR(τ)).

Proof. As above, we view F as a subset of R2 via its two real embeddings.
By definition of R, we have ZF = RZ2 and ∂−1

F = R−t Z2. Then a direct
computation shows that

∀t ∈ H2
1, Λ(HR(τ)) = Rt ΛF (τ).

Proposition 3.2.7. Let F,R be as above. Then for every τ ∈ H2
1, we have

CF (τ) = det−2 Sym6(R) C(HR(τ)).

Proof. Combine proposition 3.2.6 and lemma 3.2.1.

3.2.2 Covariants

As indicated in remark 2.3.3, if f is a Siegel modular form of weight ρ in
dimension g, if A is a principally polarized abelian variety of dimension g
over C, and if ω is a basis of Ω1(A), then f(A, ω) is well defined. To
compute this quantity, choose τ ∈ Hg and an isomorphism η : A → A(τ).
Let r ∈ GLg(C) be the matrix of the pullback η∗ : Ω1(A(τ)) → Ω1(A) in
the bases ω(τ) and ω. Then

f(A, ω) = ρ(r)f(τ).

We can check using proposition 3.2.3 that f(A, ω) does not depend on the
choice of τ and η. As a consequence, for every Siegel modular form f in
dimension 2, we have a map

Cov(f) : C 7→ f
(
Jac(C), ω(C)

)
.

We apply the results of §3.2.1 to show that Cov(f) is a covariant of the
curve equation. A recent reference on covariants is [Mes91].
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Definition 3.2.8. Let ρ : GL2(C)→ GL(V ) be a finite-dimensional holo-
morphic representation of GL2(C). A covariant, or polynomial covariant,
of weight ρ is a map

C : C6[x]→ V

which is polynomial in the coefficients, and such that the following trans-
formation rule holds: for every r ∈ GL2(C) and P ∈ C6[x],

C
(
det−2 Sym6(r)P

)
= ρ(r)C(P ). (3.4)

If dimV ≥ 2, then C is said to be vector-valued, and otherwise scalar-
valued. A fractional covariant is a map satisfying (3.4) which is only re-
quired to have a fractional expression in terms of the coefficients.

As for Siegel modular forms, it is enough to consider covariants of
weight detk Symn for k ∈ Z and n ∈ N. What we call a vector-valued
covariant of weight detk Symn is called in [Mes91] a covariant of order n
and degree k + n/2; what we call a scalar-valued covariant of weight detk

is called in [Mes91] an invariant of degree k. The reason for this change of
terminology is the following.

Proposition 3.2.9. Let ρ be a representation of GL2(C) as above. If f is a
Siegel modular function of weight ρ, then Cov(f) is a fractional covariant
of weight ρ. Conversely, if F is a fractional covariant of weight ρ, then
the meromorphic function τ 7→ F (C(τ)) is a Siegel modular function of
weight ρ. These operations are inverse of each other.

Proof. If f is a Siegel modular function, then Cov(f) is well defined on a
Zariski open set of C6[x] and is algebraic. Therefore Cov(f) has a fractional
expression in terms of the coefficients. It is easy to check the transformation
rules using lemma 3.2.1 and proposition 3.2.5.

Proposition 3.2.9 gives a bijection between Siegel modular functions and
fractional covariants, but we need more. The following theorem establishes
a relation between Siegel modular forms and polynomial covariants, and
was first proved in [CFv17, §4].

Theorem 3.2.10. Let f be a Siegel modular form. Then Cov(f) is a
polynomial covariant. Moreover, if f is a cusp form, then Cov(f/χ10) is
also a polynomial covariant.

Sketch of proof. The main difficulty is that singular hyperelliptic equa-
tions form a codimension 1 subset of all degree 6 polynomials: therefore,
if f is a Siegel modular form, then the proof of proposition 3.2.9 only
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shows that Cov(f) is a polynomial divided by some power of the discrimi-
nant. However, one can show that f extends to a certain compactification
of A2(C) called the toroidal compactification, and this implies that Cov(f)
is well defined on all curve equations with at most one node. Since the
complementary of this set has codimension 2, the result follows.

Unlike the graded algebra of vector-valued Siegel modular forms, the
graded C-algebra generated by polynomial covariants is finitely generated.

Theorem 3.2.11 ([Cle72, p. 296]). The graded C-algebra of covariants is
generated by 26 elements defined over Q. The number of generators of
weight detk Symn is indicated in the following table:

n \ k -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 15
0 1 1 1 1 1
2 1 1 1 1 1 1
4 1 1 1 1 1
6 1 1 1 2
8 1 1 1
10 1
12 1

We only need to manipulate a small subset of these generators. Take
our scalar generators of even weight to be the Igusa–Clebsch covariants
I2, I4, I6, I10, in Mestre’s notation A′, B′, C ′, D′ [Mes91], and set

I ′6 := (I2I4 − 3I6)/2.

Denote the generator of weight det15 by R, and denote by y1, y2, y3 the
generators of weights det2 Sym2, det4 Sym2, and det6 Sym2 respectively;
they are constructed explicitly in [Mes91, §1]. Note that the integers m
and n on page 315 of [Mes91] should be the orders of f and g, and not
their degrees. As a sanity check, we mention that the coefficient of a5

1a
10
4

in R is 2−23−65−10. Finally, the generator of weight det−2 Sym6, denoted
by X, is the degree 6 polynomial itself.

3.2.3 From q-expansions to covariants

We now explain how to compute the polynomial covariant associated
with a Siegel modular form whose q-expansion is known up to a certain
precision. The works of Igusa already provide the answer in the case of
scalar-valued covariants. Let ψ4, ψ6, χ10 and χ12 be the Siegel modular
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forms defined in §2.3.2, and let χ35 be the unique Siegel modular form of
weight 35 [Igu62] whose q-expansion starts as follows:

χ35(τ) = q2
1q

2
2(q1 − q2)(q3 − q−1

3 ) +O(q4
1, q

4
2).

The modular form χ35 also has an explicit expression in terms of genus 2
theta constants.

Theorem 3.2.12. We have

4 Cov(ψ4) = I4,

4 Cov(ψ6) = I ′6,

212 Cov(χ10) = I10,

215 Cov(χ12) = I2I10, and
2373−95−10 Cov(χ35) = I2

10R.

Proof. By [Igu62, p. 848], there exists a constant λ ∈ C× such that these
relations hold up to a factor of λk, for k ∈ {4, 6, 10, 12, 35} respectively.
Note that Igusa’s covariant E is −2539510R. In order to find λ, we ap-
ply Thomae’s formulæ [Mum84, Thm. IIIa.8.1], [Tho70, pp. 216–217] on a
hyperelliptic curve C0 with real roots; for instance

C0 : y2 = x(x− 1)(x− 2)(x− 3)(x− 4)(x− 5).

This yields the values of both the left and right hand sides of theorem 3.2.12
for the curve C0. We obtain that λ = 1.

In particular, the Igusa invariants satisfy

Cov(j1) =
I4I
′
6

I10

, Cov(j2) =
I2I

2
4

I10

, Cov(j3) =
I5

4

I2
10

. (3.5)

In order to give an analogue of theorem 3.2.12 for vector-valued modular
forms, we compute the q-expansion of the standard curve C(τ). Recall the
Siegel modular form f8,6 of weight det8 Sym6 introduced in example 2.3.10.

Proposition 3.2.13. In the notation of §3.2.2, we have Cov(f8,6/χ10) = X.
In other words, for every τ ∈ H2 such that χ10(τ) 6= 0, we have

C(τ) =
f8,6(τ)

χ10(τ)
.
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Proof. Since f8,6 is a cusp form, by theorem 3.2.10, Cov(f8,6/χ10) is a
nonzero polynomial covariant of weight det−2 Sym6. By theorem 3.2.11,
this space of covariants has dimension 1 and is generated by X, so the
relation holds up to a factor λ ∈ C×. This yields q-expansions for the
coefficients ai(τ) of C(τ) up to a factor λ. Then, the relations from theo-
rem 3.2.12 imply λ4 = λ6 = λ35 = 1, hence λ = 1.

Given a Siegel modular form f of weight ρ defined over Q whose q-
expansion can be computed, the following algorithm recovers the expression
of Cov(f) as a polynomial.

Algorithm 3.2.14. 1. Compute a basis B of the vector space of poly-
nomial covariants of weight ρ using theorem 3.2.11.

2. Choose a precision n ≥ 1 and compute the q-expansion of f modulo
the ideal (qn1 , q

n
2 ) in Q(q3)[[q1, q2]].

3. For every B ∈ B, compute the q-expansion of the Siegel modular
function τ 7→ B(C(τ)) using proposition 3.2.13.

4. Do linear algebra; if the matrix does not have full rank, go back to
step 2 with a larger n.

Sturm-type bounds [BGP17] provide a theoretical limit for the preci-
sion n that we need to consider; for the examples given in this thesis, taking
n = 3 is sufficient.

We now apply algorithm 3.2.14 to derivatives of Igusa invariants. Recall
from proposition 2.3.9 that for each 1 ≤ k ≤ 3, the derivative

djk
dτ

:=
1

2πi

(∂jk
∂z1

x2 +
∂jk
∂z3

x+
∂jk
∂z2

)
,

where we write τ =

(
z1(τ) z3(τ)
z3(τ) z2(τ)

)
, is a modular function of weight Sym2.

Theorem 3.2.15. In the notation of §3.2.2, we have

Cov
(dj1

dτ

)
=

1

I10

(153

8
I2

2I4y1 −
135

2
I2I6y1 +

135

2
I2

4y1 +
46575

4
I2I4y2

− 30375 I6y2 + 1366875 I4y3

)
,

Cov
(dj2

dτ

)
=

1

I10

(
90 I2

2I4y1 + 900 I2
2y1 + 40500 I2I4y2

)
, and

Cov
(dj3

dτ

)
=

1

I2
10

(
225 I2I

4
4y1 + 101250 I4

4y2

)
.
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Proof. Let 1 ≤ k ≤ 3. The function χ2
10jk has no poles on A2(C). There-

fore, the Siegel modular function

fk = χ3
10

djk
dτ

is holomorphic on A2(C). Its q-expansion can be computed from the q-
expansion of χ2

10jk by formal differentiation. Since

1

2πi

∂

∂zj
= qj

∂

∂qj

for each 1 ≤ j ≤ 3, we check that fk is a cusp form defined over Q. By
theorem 3.2.10, Cov(fk/χ10) is a polynomial covariant of weight det20 Sym2.
By theorem 3.2.11, a basis of this space of covariants is given by covariants
of the form Iy where y ∈ {y1, y2, y3} and I is a scalar-valued covariant of
the appropriate even weight. Algorithm 3.2.14 succeeds with n = 3; the
computations were done using Pari/GP [The19].

Remark 3.2.16. Theorems 3.2.12 and 3.2.15 can be checked numerically.
Computing big period matrices of hyperelliptic curves using the algorithm
of [MN19] provides pairs (τ, C(τ)) with τ ∈ H2. We can evaluate Igusa
invariants and their derivatives at a given τ to high precision using their ex-
pression in terms of theta constants (see chapter 6); from this data, we iden-
tify the associated covariants to high precision using numerical linear alge-
bra. The computations were done using the libraries hcperiods [Mol18]
and cmh [ET14].

Remark 3.2.17. From theorem 3.2.15, we can compute the covariants as-
sociated with derivatives of other modular functions, or even invariants for
abelian surfaces with extra structure such as theta constants. For instance,
consider the invariants

h1 =
ψ2

6

ψ3
4

, h2 =
χ12

ψ3
4

, h3 =
χ10ψ6

ψ4
4

which are generically well-defined on products of elliptic curves. Then we
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obtain

Cov
(dh1

dτ

)
=

1

I4
4

(
−297

8
y1I

2
4I

3
2 +−54675

4
y2I

2
4I

2
2 +

1701

8
y1I6I4I

2
2 +

135

2
y1I

3
4I2

+ 1366875y3I
2
4I2 +

346275

4
y2I6I4I2 −

1215

4
y1I

2
6I2 +−

405

2
y1I6I

2
4

− 4100625y3I6I4 −
273375

2
y2I

2
6

)
,

Cov
(dh2

dτ

)
=

1

I4
4

(
−135y1I10I

2
2 − 60750y2I10I2 + 900y1I10I4

)
,

Cov
(dh3

dτ

)
=

1

I5
4

(
−747

8
y1I10I4I

2
2 −

155925

4
y2I10I4I2 + 270y1I10I6I2

+
135

2
y1I10I

2
4 + 1366875y3I10I4 + 121500y2I10I6

)
.

3.3 Computing the action on tangent spaces

Let ϕ : Jac(C) → Jac(C ′) be an `-isogeny over C, where ` is a prime.
Using the explicit formula for the Kodaira–Spencer isomorphism provided
by theorem 3.2.15, we relate the deformation map of ϕ, computed from
derivatives of Siegel modular equations of level `, to the tangent map of ϕ.
Then we adapt the computations to the Hilbert case, and explain why the
results remains valid over any field.

We use an explicit and well-known description of `- and β-isogenies
over C: namely, they are all described by the Hecke correspondences intro-
duced in §2.4.4.

Proposition 3.3.1. Let ` be a prime number, let F be a real quadratic
field, and let β ∈ ZF be a totally positive prime.

1. For every τ ∈ H2, the identity map on C2 induces an `-isogeny

A(τ)→ A(τ/`).

Let A,A′ be principally polarized abelian surfaces over C, and let
ϕ : A→ A′ be an `-isogeny. Then there exists τ ∈ H2 such that there
is a commutative diagram

A A′

A(τ) A(τ/`).

ϕ

∼ ∼

z 7→z

where the vertical arrows are isomorphisms.
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2. For every τ = (τ1, τ2) ∈ H2
1, write τ/β := (τ1/β, τ2/β). The identity

map on C2 induces a β-isogeny

AF (τ)→ AF (τ/β).

Let A,A′ be principally polarized abelian surfaces over C with real
multiplication by ZF , and let ϕ : A → A′ be a β-isogeny. Then there
exists τ ∈ H2

1 such that there is a commutative diagram

A A′

AF (τ) AF (τ/β)

ϕ

∼ ∼

z 7→z

where the vertical arrows are isomorphisms of principally polarized
abelian surfaces with real multiplication.

We used the analogous statement for `-isogenies between elliptic curves
in chapter 1.

Proof. Let ϕ : A→ A′ be an `-isogeny over C. Then there exists a τ ∈ H2

such that A(τ) is isomorphic to A. The kernel of ϕ, seen as a subgroup
of A(τ)[`], is maximal isotropic for the symplectic form induced by the
polarization; this property characterizes `-isogenies [BL09, §3]. If kerϕ is
equal to Λ(τ/`), then we obtain the required diagram. Otherwise, we use
the facts that Sp4(Z/`Z) acts transitively on maximal isotropic subgroups
of A[`], and that the reduction map Sp4(Z) → Sp4(Z/`Z) is surjective, to
replace τ by a suitable Sp4(Z)-conjugate.

The proof in the Hilbert case is similar: if A has real multiplication
by ZF , then β-isogenies ϕ with domain A are characterized by the property
that kerϕ is a maximal isotropic subgroup of A[β] ' (Z/`Z)2.

3.3.1 The Siegel case

Let C, C ′ be equations of genus 2 hyperelliptic curves over C, let A,A′
be their Jacobians, and let ϕ : A→ A′ be an `-isogeny. The choice of curve
equations encodes a choice of bases of Ω1(A) and Ω1(A′), or equivalently, by
taking dual bases, a choice of bases of the tangent spaces T0(A) and T0(A′).
By an abuse of notation, we identify the tangent map dϕ : T0(A)→ T0(A′)
with its matrix written in these bases.

Definition 3.3.2. It is convenient to introduce matrix notations.
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• For τ ∈ H2, we define

∂j(τ) :=

(
1

2πi

∂jk
∂τl

(τ)

)
1≤k,l≤3

·

2 0 0
0 1 0
0 0 2

 ,

where we write τ =

(
τ1 τ2

τ2 τ3

)
. In other words, if we set

v1 =

(
2 0
0 0

)
, v2 =

(
0 1
1 0

)
, v3 =

(
0 0
0 2

)
,

then the l-th column of ∂j(τ) contains (up to 2πi) the derivatives of
the three Igusa invariants at τ in the direction vl. More generally,
for each r ∈ GL2(C), the l-th column of ∂j(τ) Sym2(r) contains the
derivatives of Igusa invariants at τ in the direction r vl rt.

Let (A, ω) be a principally polarized abelian surface over C with a
basis of differential forms, let η : A → A(τ) be an isomorphism for
some τ ∈ H2, and let r be the matrix of η∗ in the bases ω(τ) and ω.
Since derivatives of Igusa invariants have weight Sym2, we have

∂j(A, ω) = ∂j(τ) Sym2(rt).

We denote by
C 7→ ∂j(C)

the associated fractional covariant; theorem 3.2.15 expresses the en-
tries of this matrix in terms of the coefficients of C.

• Consider the Siegel modular equations Ψ`,1,Ψ`,2,Ψ`,3 of level ` as
elements of the ring Q[J1, J2, J3, J

′
1, J

′
2, J

′
3], after multiplying by their

denominators. We define

DΨ`,L =

(
∂Ψ`,n

∂Jk

)
1≤n,k≤3

and DΨ`,R =

(
∂Ψ`,n

∂J ′k

)
1≤n,k≤3

.

Definition 3.3.3. Let ϕ be an `-isogeny as above, and write j (resp. j′) as
a shorthand for the Igusa invariants (j1, j2, j3) of A (resp. (j′1, j

′
2, j
′
3) of A′).

We say that the isogeny ϕ is generic if the 3 × 3 matrices DΨ`,L(j, j′),
DΨ`,R(j, j′), ∂j(C) and ∂j(C ′) are invertible. In this case, we define the
deformation matrix D(ϕ) of ϕ as

D(ϕ) = −∂j(C ′)−1 ·DΨ`,R(j, j′)−1 ·DΨ`,L(j, j′) · ∂j(C).
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The matrix D(ϕ) is the matrix of the deformation map of ϕ in the bases
of TA(A2) and TA′(A2) associated with ω(C) and ω(C ′) via the Kodaira–
Spencer isomorphism.

Proposition 3.3.4. If ϕ is generic in the sense of definition 3.3.3, then
we have

Sym2(dϕ) = `D(ϕ).

Proof. By proposition 3.3.1, there exist τ ∈ H2 and isomorphisms η, η′ such
that there is a commutative diagram

A A′

A(τ) A(τ/`).

ϕ

η η′

z 7→z

Let r be the matrix of η∗ in the bases ω(τ) and ω(C), and define r′ similarly.
Then we have dϕ = r′tr−t. By the definition of modular equations, we have

Ψ`,n

(
j1(τ), j2(τ), j3(τ), j1(τ/`), j2(τ/`), j3(τ/`)

)
= 0 for 1 ≤ n ≤ 3.

We differentiate with respect to the entries of τ and obtain

DΨ`,L(j, j′) · ∂j(τ) +
1

`
DΨ`,R(j, j′) · ∂j(τ/`) = 0.

We can rewrite this relation as

−`DΨ`,L(j, j′) · ∂j(C) · Sym2(rt) = DΨ`,R(j, j′) · ∂j(C ′) · Sym2(r′t).

Once we compute the deformation matrix D(ϕ), the matrix dϕ can be
computed up to sign using proposition 3.3.4. This sign indeterminacy is
not an issue in the context of the isogeny algorithm, as the input does not
distinguish ϕ from −ϕ.

3.3.2 The Hilbert case

The methods of §3.3.1 can be adapted to modular equations of Hilbert
type and level β. In this case, the Kodaira–Spencer isomorphism takes a
different form. If A is a principally polarized abelian surface over C with
real multiplication by ZF , then T0(A) is a ZF ⊗Z C-module, and we have a
canonical isomorphism [Rap78, Prop. 1.6 and 1.9]

TA(A2,F ) ' HomZF⊗ZC
(
T0(A), T0(A)

)
.

Concretely, this means that we can evaluate Hilbert modular forms on
a basis ω of Ω1(A) only if ω is Hilbert-normalized.
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Definition 3.3.5. Let A be a principally polarized abelian surface over C
endowed with a real multiplication embedding ι : ZF ↪→ End(A)†, and let ω
be a basis of Ω1(A). We say that (A, ι, ω) is Hilbert-normalized if for every
α ∈ ZF , the matrix of ι(α)∗ : Ω1(A)→ Ω1(A) in the basis ω is ( α 0

0 α ).
In more technical terms, we have an isomorphism F ⊗Q C = F × F via

the identity and real conjugation; and ω is Hilbert-normalized if and only
if it induces a trivialization of Ω1(A) as a F ⊗Q C-module.

If (A, ι, ω) is Hilbert-normalized and if f is a Hilbert modular form
of weight (w1, w2), then the quantity f(A, ι, ω) is computed as follows.
Choose τ ∈ H2

1, and choose an isomorphism η : (A, ι) →
(
AF (τ), ιF (τ)

)
,

where ιF (τ) denotes the canonical real multiplication embedding on AF (τ).
Let r be matrix of η∗ in the bases ω(τ) and ω. Then r is diagonal; if we
write r =

(
r1 0
0 r2

)
, then

f(A, ι, ω) = rw1
1 rw2

2 f(τ).

Given a genus 2 curve C and a real multiplication embedding ι on Jac(C),
we say that the equation of C is Hilbert-normalized if (Jac(C), ι, ω(C)) is.
Not all curve equations are Hilbert-normalized: the degree of freedom in
choosing a Hilbert-normalized curve equation is GL1×GL1, not GL2.

Computing the tangent matrix. For the moment, assume that there
exists a β-isogeny ϕ : (A, ι) → (A′, ι′) between complex abelian surfaces
with real multiplication by ZF , and that we are given curve equations C
and C ′ that are Hilbert-normalized with respect to these real multiplication
embeddings. We address the question of constructing C and C ′ at the end
of this section.

Definition 3.3.6. As in the Siegel case, we introduce matrix notations.

• Denote by j1, j2, j3 the pullbacks of Igusa invariants to H2
1 via the

Hilbert embedding. For τ ∈ H2
1, we define

∂j(F )(τ) =

(
1

πi

∂jk
∂τl

(τ)

)
1≤k≤3,1≤l≤2

, where τ = (τ1, τ2).

If C is a curve equation such that ω(C) is Hilbert-normalized, then
we denote by ∂j(F )(C) the value of this modular form on C.

• We define the 3× 3 matrices DΨβ,L and DΨβ,R in the case of Hilbert
modular equations of level β in Igusa invariants as in definition 3.3.2.
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• Write j as a shorthand for the Igusa invariants (j1, j2, j3) of A, and j′
for the invariants (j′1, j

′
2, j
′
3) of A′. We say that the isogeny ϕ is generic

if the 3× 2 matrices

DΨβ,L(j, j′) · ∂j(F )(C) and DΨβ,R(j, j′) · ∂j(F )(C ′)

have rank 2.

Since derivatives of Igusa invariants with respect to τ1 and τ2 on H2
1

are Hilbert modular functions of weight (2, 0) and (0, 2) respectively, the
weight of the modular function ∂j(F ) is the following.

Lemma 3.3.7. Let (A, ι, ω) be a Hilbert-normalized abelian surface, and
let τ ∈ H2

1 such that there is an isomorphism η : (A, ι) → (AF (τ), ιF (τ)).
Let r be the matrix of η∗ in the bases ω(τ) and ω. Then

∂j(F )(A, ι, ω) = ∂j(F )(τ) · r2.

In order to compute the value of ∂j(F ) on a curve equation, we relate it
with its Siegel analogue ∂j.

Proposition 3.3.8. Let (A, ι, ω) be a Hilbert-normalized abelian surface.
Then

∂j(F )(A, ι, ω) = ∂j(A, ω) · T where T =
(

1 0
0 0
0 1

)
.

Proof. Let τ, η, r be as in lemma 3.3.7, and let R ∈ GL2(R) be a ma-
trix defining a Hilbert embedding for F . By the expression (2.12) of the
Hilbert embedding, the columns of ∂j(F )(τ) contain the derivatives of Igusa
invariants at HR(τ) in the directions

1

πi
Rt

(
1 0
0 0

)
R and

1

πi
Rt

(
0 0
0 1

)
R.

Hence we have

∂j(F )(τ) = ∂j
(
HR(τ)

)
· Sym2(Rt) · T.

By proposition 3.2.6, we have an isomorphism ζ : AF (τ)→ A
(
HR(τ)

)
such

that the matrix of ζ∗ in the bases ω(τ) and ω
(
HR(τ)

)
is R. Therefore

∂j(F )(A, ι, ω) = ∂j(F )(τ) · r2 and ∂j(A, ω) = ∂j(τ) Sym2
(
(rR)t

)
.

It is natural that R does not appear in the result of proposition 3.3.8:
the Kodaira–Spencer isomorphisms are intrinsic and independent of the
choice of Hilbert embedding.
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Proposition 3.3.9. Let ϕ : A → A′ be a β-isogeny, and let C and C ′ be
Hilbert-normalized curve equations as above. Then the tangent matrix dϕ
is diagonal, and

DΨβ,L(j, j′) · ∂j(F )(C) = −DΨβ,R(j, j′) · ∂j(F )(C ′) ·
(

1/β 0

0 1/β

)
· (dϕ)2.

Proof. By proposition 3.3.1, we can find τ ∈ H2
1 as well as isomorphisms η

and η′ such that there is a commutative diagram

(A, ι) (A′, ι′)

(AF (τ), ιF (τ)) (AF (τ/β), ιF (τ/β)).

ϕ

η η′

z 7→z

Let r be the matrix of η∗ in the bases ω(τ) and ω(C), and define r′ simi-
larly; they are diagonal by definition 3.3.5. We have dϕ = r′tr−t = r′r−1.
Differentiating the modular equations, we obtain

DΨβ,L(j, j′) · ∂j(F )(τ) +DΨβ,R(j, j′) · ∂j(F )(τ/β) ·Diag(1/β, 1/β) = 0.

The result follows by lemma 3.3.7 since

∂j(F )(τ) = ∂j(F )(C) · r2 and ∂j(F )(τ/β) = ∂j(F )(C ′) · r′2.

Proposition 3.3.9 allows us to compute (dϕ)2 from derivatives of mod-
ular equations of level β when ϕ is generic. However, in contrast with the
Siegel case, the knowledge of (dϕ)2 does not allow us to recover the diago-
nal matrix dϕ up to sign, as we have to perform two a priori uncorrelated
root extractions: we obtain two possible candidates for ±dϕ.

Constructing Hilbert-normalized curves. Let (A, ι) be a principally
polarized abelian surface over C with real multiplication by ZF . Given the
Igusa invariants (j1, j2, j3) of A, we want to construct a curve equation C
such that A ' Jac(C) and

(
A, ι, ω(C)

)
is Hilbert-normalized. First, we

compute any curve equation using Mestre’s algorithm [Mes91]; then we
look for a suitable change of variables.

However, we are missing some information, as the two pairs (A, ι)
and (A, ι), where ι denotes the real conjugate of ι, have the same Igusa
invariants. The best we can hope for is to compute an equation C such
that either

(
A, ι, ω(C)

)
or
(
A, ι, ω(C)

)
is Hilbert-normalized. In this case,

we say that C is potentially Hilbert-normalized. This ambiguity is a direct
consequence of using symmetric invariants on the Hilbert surface.
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Proposition 3.3.10. Let C be a hyperelliptic curve equation of genus 2
over C whose Jacobian Jac(C) has real multiplication by ZF . Denote the
Igusa invariants of Jac(C) by (j1, j2, j3), and assume that j3 6= 0. Then C
is potentially Hilbert-normalized if and only if the two columns of the 3× 2
matrix

∂j(C) · T where T =
(

1 0
0 0
0 1

)
define tangent vectors to the Humbert surface at (j1, j2, j3).

Proof. Let R ∈ GL2(R) be a matrix defining a Hilbert embedding for F ,
and choose τ ∈ H2

1 such that there is an isomorphism η : Jac(C)→ AF (τ).
Let r be the matrix of η∗ in the bases ω(τ) and ω(C). Then the columns
of ∂j(C) · T contain, up to πi, the derivatives of Igusa invariants at HR(τ)
in the directions

Rtr

(
1 0
0 0

)
rtR and Rtr

(
0 0
0 1

)
rtR.

These directions are tangent to the Humbert surface if and only if r is is
either diagonal or anti-diagonal. Moreover, the condition j3 6= 0 ensures
that Igusa invariants are local coordinates at HR(τ) ∈ A2(C).

Assume that the equation of the Humbert surface for F in terms of
Igusa invariants is given: this precomputation depends only on F . Given
Igusa invariants (j1, j2, j3) on the Humbert surface such that j3 6= 0, the
algorithm to reconstruct a potentially Hilbert-normalized curve equation
runs as follows.

Algorithm 3.3.11. 1. Construct any curve equation C0 with Igusa in-
variants (j1, j2, j3) using Mestre’s algorithm.

2. Compute r ∈ GL2(C) such that the two columns of the matrix

∂j(C0) · Sym2(rt) · T

are tangent to the Humbert surface at (j1, j2, j3).

3. Output det−2 Sym6(r) C0.

In step 2, if a, b, c, d denote the entries of r, we only have to solve a
quadratic equation in a, c, and a quadratic equation in b, d. Therefore
algorithm 3.3.11 involves OF (1) square roots and elementary operations
(i.e. a constant number of operations, when F is fixed).

In practice, when computing a β-isogeny ϕ : A→ A′ in the Hilbert case,
we are only given the Igusa invariants of A and A′. Constructing potentially
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Hilbert-normalized curves is then equivalent to making a choice of real
multiplication embedding for each abelian surface. If these embeddings are
incompatible via ϕ, we obtain antidiagonal matrices when computing the
tangent matrix using proposition 3.3.9; in this case, we apply the change of
variables x 7→ 1/x on one of the curve equations to make them compatible.
Even if they are compatible, ϕ will be either a β- or a β-isogeny depending
on the choices of real multiplication embeddings. Therefore we really obtain
four candidates for the tangent matrix of ϕ up to sign, among which only
one is usually correct.

3.3.3 Extension to arbitrary fields

The statements of propositions 3.3.4 and 3.3.9, which we proved over C,
make sense over an arbitrary field k, at least if the degree of the isogeny ϕ
is prime to the characteristic of k. In fact, they continue to hold in this
generalized setting, along with the fundamental property of modular equa-
tions: if A and A′ are abelian surfaces over k with suitable PEL struc-
ture satisfying a certain genericity hypothesis, then modular equations
of Siegel or Hilbert type vanish at (A,A′) if and only if there exists an
isogeny ϕ : A→ A′ of the corresponding type over k.

These extended statements are easily proved if k has characteristic zero
using Lefschetz’s principle. We can restrict to the case where k is finitely
generated over Q; then k embeds in C, so that the complex theory applies.

If k has positive characteristic, then the proof uses more advanced alge-
braic geometry, namely the notion of moduli stacks that we already men-
tioned in §3.1. We do not define these objects here, and refer to [LM00]
for the theory; instead, we only look at examples and apply some of their
properties in the context of the isogeny algorithm.

Moduli stacks of abelian varieties. The moduli space of abelian va-
rieties of dimension g ≥ 1, denoted by Ag, is an algebraic object endowed
with a universal family Xg → Ag such that the following property holds:
if S is any scheme, and if X → S is an abelian scheme of dimension g
(if S = Spec k, this just means that X is an abelian variety of dimension g
over k), then there exists a unique morphism f : S → Ag such that X is the
pullback of Xg via f . In particular we have a bijection between k-points
of Ag and isomorphism classes of abelian varieties of dimension g over k.

We stress that Ag is not a scheme, but its associated coarse moduli
scheme Ag is; it is even a quasi-projective scheme by geometric invariant
theory [MFK94]. The k-points of Ag still classify isomorphism classes of
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principally polarized abelian varieties of dimension g over k, but the cor-
respondence may fail to hold over non algebraically closed fields. As an
example, take g = 1; the j-invariant realizes an isomorphism from A1 to
the affine space A1. Two elliptic curves having the same j-invariant over k
are not necessarily isomorphic over k, but they are isomorphic over k.

The set of C-points of Ag is identified with the quotient Sp2g(Z)\Hg.
Informally, we view Ag as the scheme Ag endowed with an additional struc-
ture of inertia, i.e. the data of a finite group of automorphisms of x, also
called stabilizers of x, for each point x of Ag. For instance the C-points
of Ag are identified with the quotient Sp2g(Z)\Hg seen as an orbifold, the
same kind of object in the world of complex varieties.

Other examples of moduli stacks are given by the moduli stacks of
principally polarized abelian varieties of dimension g endowed with

• a level ` structure for some fixed ` ≥ 1,

• the kernel of an `-isogeny,

• a real multiplication structure by ZF , where F is a fixed totally real
number field of degree g over Q,

denoted by Ag(`), Ag,`, and Ag,F respectively.
Not all these moduli problems are well defined over Z. For instance the

stacks Ag(`) and Ag,` classify isomorphism classes of abelian schemes with
suitable structure over S when S is a scheme over Z[1/`], i.e. when S has
“characteristic prime to `”. Both Ag(`) and Ag,` can be extended to the
whole of SpecZ as algebraic stacks, but giving a modular interpretation
becomes more difficult: this is done in [DR73] in the case of moduli stacks
of elliptic curves.

Smoothness and étaleness. In many aspects, moduli stacks of abelian
varieties satisfy nicer properties than their coarse moduli schemes. For
instance Ag is smooth over Z [FC90], and similarly Ag(`) and Ag,` are
smooth over Z[1/`]. As smoothness implies formal smoothness [The18,
Tag 02GZ], we have the following lifting property.

Proposition 3.3.12. Let k be a field of characteristic prime to `, and
denote by W (k) the Witt ring of k. Let A and A′ be principally polarized
abelian varieties of dimension g ≥ 1 over k, and let ϕ : A → A′ be an `-
isogeny defined over k. Then there exists an `-isogeny ϕ̃ : Ã → Ã′ defined
over W (k) between principally polarized abelian varieties Ã, Ã′ over W (k)

such that Ã, Ã′ and ϕ̃ have good reduction, and which reduces to the initial `-
isogeny ϕ over k.
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As a consequence, the algorithm to compute the tangent matrix dϕ
in the Siegel case, presented in §3.3.1, is universally valid over fields of
characteristic prime to `.

Besides proving the existence of lifts to characteristic zero, moduli
stacks help to better understand the geometric situation behind the isogeny
algorithm [KPR19, §4]. Indeed, the two maps

H`,1 and H`,2 : Ag,` → Ag,

that we used to define the deformation map in §3.1, are well-defined and
étale everywhere at the level of stacks [KPR19, §4.2.1]. If A is a principally
polarized abelian variety of dimension g over k with generic automorphisms,
i.e. such that Autk(A) = {±1}, then the scheme Ag and the stack Ag are
essentially isomorphic locally around A; we refer to [KPR19, §4.1] for more
details, notably the statement of Luna’s fundamental lemma. From this,
we obtain a sufficient condition for an `-isogeny to be generic in the sense
of definition 3.3.3.

Proposition 3.3.13 ([KPR19, §4.5]). Let k be a field, and let U be the
open set of A2 consisting of abelian surfaces A such that Autk(A) = {±1}
and j3(A) 6= 0. Let ϕ : A → A′ be an `-isogeny over k such that A and A′
lie in U , and such that the subvariety cut out by Siegel modular equations
of level ` is normal at (j(A), j(A′)), where j denotes the collection of the
three Igusa invariants. Then ϕ is generic in the sense of definition 3.3.3.

In fact, all the computations of §3.3.1 can be interpreted algebraically,
and hence make sense over any scheme of characteristic prime to ` [KPR19,
§4.5]; this is arguably a more intrinsic way of showing their universal va-
lidity than using Lefschetz’s principle.

The Hilbert case. The situation in the Hilbert case is analogous: we
have a map

Hβ = (Hβ,1,Hβ,2) : Ag,β → Ag,F ×Ag,F

where Ag,β denotes the moduli stack of principally polarized abelian va-
rieties of dimension g with real multiplication by ZF endowed with the
kernel of a β-isogeny, and both Hβ,1 and Hβ,2 are everywhere étale. All
these stacks are smooth over Z[1/`], where ` = NF/Q(β) [KPR19, §4.2.3],
[Rap78]. As in proposition 3.3.12, we obtain a sufficient condition for a β-
isogeny ϕ to be generic, at least if we are using nonsymmetric invariants
on the Hilbert surface [KPR19, §4.5].

To interpret the computation of the tangent matrix in proposition 3.3.9
algebraically if ϕ : A→ A′ is a β-isogeny defined over a field k, we consider
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the tangent spaces of A and A′ at zero as well as the tangent spaces to the
Hilbert surface at A and A′ as ZF ⊗Z k-modules of rank 1 [KPR19, §4.3.2].
Up to enlarging k, we fix an isomorphism ZF ⊗Z k ' k × k; concretely, we
choose a particular value of

√
∆ in k, where ∆ denotes the discriminant

of F . Then we define a Hilbert-normalized basis of differential forms on A
as a basis of Ω1(A) in which the action of ZF ⊗Z k by multiplication takes
the form of the action of k × k by diagonal matrices; when k = C, we
recover definition 3.3.5.

If A and A′ are endowed with Hilbert-normalized bases of differential
forms, then dϕ is a diagonal matrix and can be computed as in proposi-
tion 3.3.9. Moreover, if (ω1, ω2) is a Hilbert-normalized basis of differential
forms on A, then (ω1 ⊗ ω1, ω2 ⊗ ω2) is naturally identified with a basis
of TA(A2,F ) [Rap78, Prop. 1.6]: this provides an algebraic interpretation
of proposition 3.3.8, and also shows that algorithm 3.3.11 to construct
Hilbert-normalized curve equations is universally valid.

When
√

∆ /∈ k, we could also use another presentation of ZF ⊗Z k
instead of diagonal matrices; since ZF ⊗Z k has no zero divisors in this
case, we should be able to decover ±dϕ from (dϕ)2 without ambiguity.

3.4 Computing isogenies from tangent maps

3.4.1 General strategy

Let A,A′ be principally polarized abelian varieties of dimension g de-
fined over a field k, and assume that we are given the tangent map dϕ of a
separable isogeny ϕ : A→ A′. In general, the task of computing ϕ explicitly
is the following: given models of A and A′, i.e. given very ample line bun-
dles LA,LA′ on A,A′ and a choice of global sections (ai) (resp. (a′j)) which
give a projective embedding of A (resp. A′), express the functions ϕ∗a′j
on A as rational fractions in terms the coordinates (ai).

One method to determine ϕ given dϕ is to use the formal groups of A
and A′. Let x1, . . . , xg be uniformizers at the neutral point 0A of A, and
let y1, . . . , yg be uniformizers at 0A′ . Knowing the map dϕ is equivalent to
expressing the differential forms ϕ∗dyj in term of the differential forms dxi
on A. This allows us to write a differential system satisfied by the func-
tions ϕ∗a′j. We can try to solve this differential system using a multivari-
ate Newton algorithm, possibly over an extension of the formal group. If
the algorithm succeeds, we recover the functions ϕ∗a′j as power series in
x1, . . . , xg up to some precision. Finally we obtain ϕ as a rational map by
multivariate rational reconstruction. In order for the rational reconstruc-
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tion algorithm to succeed, the power series precision must be large enough
when compared to the degrees of the result in the variables (ai). These
degrees can be estimated from the intersection degree of ϕ∗LA′ and LA, or
alternatively from the intersection degree of ϕ∗LA and LA′ .

This strategy to compute ϕ is not new: the idea of using a differ-
ential equation to compute isogenies in dimension 1 appears in [Elk98],
and [BMSS08] uses a Newton algorithm to solve this differential equa-
tion, as we explained in §1.2.2. These ideas are extended to dimension 2
in [CE15]. The method is further extended to compute endomorphisms of
Jacobians over a number field in [CMSV19]. In [CMSV19, §6], the endo-
morphism is represented as a divisorial correspondence; the interpolation
of this divisor is done via linear algebra on Riemann–Roch spaces.

A necessary condition for the whole method to work is that ϕ be com-
pletely determined by its tangent map. In general, this will be the case
when char k is large with respect to the degree of ϕ. For instance, we have
the following statement in the case of `-isogenies.

Proposition 3.4.1. Let A and A′ be principally polarized abelian varieties
over a field k, and let M : T0(A) → T0(A′) be a linear map. Assume that
either char k = 0 or char k > 4N . Then there exists at most one `-isogeny
ϕ : A→ A′ with ` ≤ N such that dϕ = M .

Proof. Let ϕ1 and ϕ2 be two such isogenies. Then ϕ1 = ϕ2 + ψ where ψ
is inseparable. If char k = 0, this implies ψ = 0 and hence ϕ1 = ϕ2.
Otherwise, write p = char k and denote by ϕ̂1 the contragredient isogeny.
Then we have

ψψ̂ = ϕ2ϕ̂2 + ϕ1ϕ̂1 − ϕ1ϕ̂2 − ϕ2ϕ̂1.

If ψ 6= 0, then ψψ̂ is equal to pm for some m ≥ 1, and ϕ1ϕ̂1 = `1, ϕ2ϕ̂2 = `2

with max {`1, `2} ≤ N by hypothesis. Therefore we obtain pm ≤ 4N .

In practice, Newton iterations will fail to reach sufficiently high power
series precision if char k is too small.

In the rest of this section, we carry out this strategy in detail when A
and A′ are the Jacobians of genus 2 hyperelliptic curves C and C ′. Con-
cretely, we are given the matrix of dϕ in the bases of T0(A) and T0(A′) that
are dual to ω(C) and ω(C ′) respectively; this is precisely the input provided
by the algorithm of §3.3. In this case, a nice simplification occurs: the
isogeny ϕ is completely determined by the compositum

C Jac(C) Jac(C ′) C ′<2> A4Q7→[Q−P ] ϕ ∼ m (3.6)
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where P is any point on C, and m is the rational map given by

{(x1, y1), (x2, y2)} 7→
(
x1 + x2, x1x2, y1y2,

y2−y1
x2−x1

)
.

The compositum (3.6) is a tuple of four rational fractions s, p, q, r ∈ k(u, v)
that we call the rational representation of ϕ at the base point P . We
choose a uniformizer z of C around P and perform the Newton iterations
and rational reconstruction using univariate power series in z.

We explain how we choose the base point P and solve the differential
system in §3.4.2. One difficulty is that the differential system we obtain is
singular; therefore we use the geometry of the curves to compute the first
few terms in the series before switching to Newton iterations. In §3.4.3, we
estimate the degrees of the rational fractions that we want to compute and
present the rational reconstruction step.

3.4.2 Solving the differential equation

We write the curve equations C, C ′ and the tangent matrix as

C : v2 = EC(u), C ′ : y2 = EC′(x), and dϕ =

(
m1,1 m1,2

m2,1 m2,2

)
.

We assume that ϕ is separable, so that dϕ is invertible. If P is a base point
on C, we denote by ηP the associated embedding C → Jac(C), as in §2.1.2.
Since C is smooth and C ′<2> is proper, the compositum

C Jac(C) Jac(C ′) C ′<2>ηP ϕ ∼

extends to a morphism from C to C ′<2> that we denote by ϕP .

Step 1: choice of base point and power series. Let P be a point
on C which is not a point at infinity; after enlarging k, we assume that
P ∈ C(k). Since ϕP (P ) is zero in Jac(C ′), we have

ϕP (P ) = {Q, i(Q)}

for some point Q on C ′, where i denotes the hyperelliptic involution on C ′.
We say that ϕP is of Weierstrass type if Q is a Weierstrass point of C ′, and
of generic type otherwise. If z is a local uniformizer of C at P , and if R
is an étale extension of k[[z]], then we define a local lift of ϕP at P with
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coefficients in R to be a tuple ϕ̃P = (x1, x2, y1, y2) ∈ R4 such that we have
a commutative diagram

SpecR C ′ 2

Spec k[[z]] C C ′<2>.

(x1,y1),(x2,y2)

ϕP

(3.7)

If the power series x1, x2, y1, y2 define a local lift of ϕP , then they satisfy
the following differential system:

x1 dx1

y1

+
x2 dx2

y2

= (m1,1u+m1,2)
du

v
dx1

y1

+
dx2

y2

= (m2,1u+m2,2)
du

v
y2

1 = EC′(x1)

y2
2 = EC′(x2),

(3.8)

where we consider the coordinates u, v on C as elements of k[[z]], and where
the letter d denotes derivation with respect to z.

We will show how to solve (3.8) when ϕP is of generic type. Proposi-
tion 3.4.4 below explains how to choose the base point P in order to enforce
this condition; in order to prove it, we first study the existence of local lifts
for arbitrary base points.

Lemma 3.4.2. Let z be a uniformizer of C at P . Then there exists a
quadratic extension k′/k and a local lift of ϕP at P with coefficients in
R = k′[[

√
z]]. Moreover, if ϕP is of generic type, or if P is a Weierstrass

point of C, then the same statement holds with R = k′[[z]].

Proof. First, we assume that ϕP is of generic type. Since the unordered
pair {Q, i(Q)} is defined over k, there exists a quadratic extension k′/k
such that Q is defined over k′. The map C ′ 2 → C ′<2> is étale at (Q, i(Q)),
so it induces an isomorphism of completed local rings. Therefore a local
lift of ϕP exists over k′[[z]].

Second, we assume that ϕP is of Weierstrass type. In diagram (3.7), the
bottom map Spec k[[z]]→ C ′<2> defines a k((z))-point of C ′<2>, and there
exists a preimage of this point defined over an extension K of k((z)) of
degree 2. Let R be the integral closure of k[[z]] in K. Then R is contained
in k′[[

√
z]] for some quadratic extension k′ of k [The18, Tag 09E8]. By the

valuative criterion of properness, our K-point of C ′2 extends to an R-point
uniquely, so a local lift exists over R.
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Finally, we assume that ϕP is of Weierstrass type and that P is a Weier-
strass point of C. Let (x1, x2, y1, y2) be a local lift of ϕP over k′[[

√
z]]. The

completed local ring of the Kummer line of C at P is k[[z2]], and the un-
ordered pair {x1, x2} is defined on the Kummer line; by the same argument
as above, x1 and x2 are actually defined over k′[[z]]. The differential sys-
tem (3.8) can be written as(

1/y1

1/y2

)
=

(
x1 dx1 x2 dx2

dx1 dx2

)−1(
R1(z)
R2(z)

)
for some power series R1, R2 ∈ k[[z]]. Therefore y1 and y2 are defined
over k′[[z]] as well.

Consider the tangent space T(Q,i(Q))(C ′2) of C ′2 at (Q, i(Q)). It decom-
poses as

T(Q,i(Q))(C ′ 2) = TQ(C ′)⊕ Ti(Q)(C ′) ' (TQ(C ′))2 (3.9)

where the last isomorphism in (3.9) is given by the hyperelliptic involution
on the second term.

Lemma 3.4.3. Assume that a local lift ϕ̃P of ϕP to k′[[z]] exists. Then
under the isomorphism (3.9), the tangent vector dϕ̃P/dz at z = 0 is not of
the form (v, v) where v ∈ TQ(C ′).

Proof. Assume the contrary. Since the direction (1, 1) is contracted to zero
in Jac(C ′), every differential form on Jac(C ′) is pulled back to zero via ϕP .
This is a contradiction because ϕ∗ is nonzero.

Proposition 3.4.4. The unordered pair {Q, i(Q)} = ϕP (P ) is uniquely
determined by the property that, up to a scalar factor,

ϕ∗ω′Q = ωP

where ωP (resp. ω′Q) is a nonzero differential form on C (resp. C ′) vanishing
at P (resp. Q).

Proof. First, assume that a local lift ϕ̃P exists over k′[[z]]. By lemma 3.4.3,
the tangent vector dϕ̃P/dz at z = 0 is of the form (v + w,w) for some
v, w ∈ TQ(C ′) such that v 6= 0. Let ω′ be the unique nonzero differential
form pulled back to ωP by ϕ. Then ω′ vanishes on (v, 0), in other words ω′
vanishes at Q.

Second, assume that no such lift exists. By lemma 3.4.2, Q is a Weier-
strass point on C ′, and P is not a Weierstrass point on C. After a change
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of variables, we may assume that Q is not at infinity. Write P = (u0, v0)
with v0 6= 0, and Q = (x0, 0). We have to show that

x0 =
m1,1u0 +m1,2

m2,1u0 +m2,2

.

Let (x1, y1, x2, y2) be a lift over k′[[
√
z]] as in lemma 3.4.2, and look at the

differential system (3.8). Write the lift as

y1 = v1

√
z + t1z + O(z3/2) and y2 = v2

√
z + t2z + O(z3/2).

Then the relation y2 = EC′(x) forces x1 and x2 to have no term in
√
z, so

that we can write

x1 = x0 + w1z + O(z3/2) and x2 = x0 + w2z + O(z3/2).

Using the relation dx/y = 2 dy/E ′C′(x), we obtain the equalities
2x1

dy1

E ′C′(x1)
+ 2x2

dy2

E ′C′(x2)
= (m1,1u+m1,2)

du

v
,

2
dy1

E ′C′(x1)
+ 2

dy2

E ′C′(x2)
= (m2,1u+m2,2)

du

v
.

(3.10)

Inspection of the coefficients in (
√
z)−1 gives the relation v1 = −v2. Write

e = E ′C′(x0). Then the constant term of the series on the left hand side
of (3.10) are respectively

2x0

(
t1
e

+ t2
e

)
and 2

(
t1
e

+ t2
e

)
.

The differential forms on the right hand side do not vanish simultaneously
at P , therefore m2,1u0 + m2,2 is nonzero. Taking the constant term in the
quotient of the two lines of (3.10) gives the result.

Using proposition 3.4.4, we choose a base point P on C such that ϕP
is of generic type. By lemma 3.4.2, a local lift ϕ̃P = (x1, x2, y1, y2) of ϕP
exists over k′[[z]], where k′ is a quadratic extension of k. By the proof of
lemma 3.4.2, k′ is the field of definition of Q.

Let U and D be the power series in z with respective constant terms u0

and d0 such that u = U(z) and du/v = D(z) dz. Then we can rewrite (3.8)
as follows: 

x1x
′
1

y1

+
x2x

′
2

y2

= (m1,1U +m2,1)D

x′1
y1

+
x′2
y2

= (m2,1U +m2,2)D

y2
1 = EC′(x1)

y2
2 = EC′(x2).

(3.11)

where the prime denotes derivation with respect to z.
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Step 2: initialization. Now we explain how to compute the power series
x1, x2, y1, y2 up to O(z2), keeping the notation above. First, we compute
the point Q = (x0, y0) using proposition 3.4.4. Write

x1 = x0 + v1z + O(z2), x2 = x0 + v2z + O(z2).

Then, using the curve equations, we can compute y1, y2 up to O(z2) in
terms of v1, v2 respectively. Then (3.11) gives

v1 + v2 =
y0

x0

(m1,1u0 +m2,1)d0 = y0(m2,1u0 +m2,2)d0. (3.12)

Combining the two lines of (3.11), we also obtain

(x1 − x0)
x′1
y1

+ (x2 − x0)
x′2
y2

= R,

where R = r1z + O(z2) has no constant term. At order 1, this yields

v2
1 + v2

2 = y0r1. (3.13)

Combining (3.12) and (3.13) yields a quadratic equation satisfied by v1

and v2.

Step 3: Newton iterations. Assume that the series x1, x2, y1, y2 are
known up to O(zn) for some n ≥ 2. The system (3.11) is satisfied up
to O(zn−1) for the first two lines, and O(zn) for the last two lines. We
attempt to double the current precision, and write

x1 = x0
1(z) + δx1(z) + O(z2n), etc.

where x0
1 is the polynomial of degree at most n− 1 that has already been

computed. The unknown series δxi and δyi for i ∈ {1, 2} start at the
term zn. As above, we denote by x′ the derivative of a power series x with
respect to z.

Proposition 3.4.5. The power series δx1 and δx2 satisfy a linear differ-
ential equation of the form

M(z)

(
δx′1
δx′2

)
+N(z)

(
δx1

δx2

)
= R(z) + O(z2n−1) (3.14)

where M,N ∈ Mat2×2(k′[[z]]) and R ∈ Mat2×1(k′[[z]]) have explicit expres-
sions in terms of x0

1, x0
2, y0

1, y0
2, u, v, EC and EC′. In particular,

M(z) =

(
x0

1/y
0
1 x0

2/y
0
2

1/y0
1 1/y0

2

)
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and, writing e = E ′C′(x0), the constant term of N is
v1

y0

− x0v1

2y3
0

e
v2

y0

− x0v2

2y3
0

e

− v1

2y3
0

e − v2

2y3
0

e

 .

Proof. Linearize the system (3.11). We omit the calculations.

In order to solve the system (3.11) in quasi-linear time in the required
precision, it is enough to solve equation (3.14) in quasi-linear time in n. One
difficulty here, that does not appear in similar works [CE15, CMSV19], is
that the matrixM is not invertible in k′[[z]]. Still, we can adapt the generic
divide-and-conquer algorithm from [BCG+17, §13.2].

Lemma 3.4.6. The determinant detM(z) =
x0

1 − x0
2

y0
1y

0
2

has valuation one

in z.

Proof. We know that y0
1 and y0

2 have constant term ±y0 6= 0. The polyno-
mials x0

1 and x0
2 have the same constant term x0, but they do not coincide at

order 1: if they did, then so would y1 and y2 because of the curve equation,
contradicting lemma 3.4.3.

By lemma 3.4.6, we can find a matrix I ∈ Mat2×2(k′[[z]]) such that
IM = ( z 0

0 z ).

Lemma 3.4.7. Let κ ≥ 1, and assume that char k > κ + 1. Let A = IN .
Then the matrix A+ κ has an invertible constant term.

Proof. By lemma 3.4.6, the leading term of det(M) is λz for some nonzero
λ ∈ k′. By proposition 3.4.5, the constant term of det(A+κ) is λ2κ(κ+ 1).
We omit the calculations.

Proposition 3.4.8. Let 1 ≤ m ≤ 2n − 1, and assume that char k > m.
Then we can solve (3.14) and compute δx1 and δx2 up to precision O(zm)
using Õ(m) operations in k′.

Proof. Write θ =

(
δx1

δx2

)
. Multiplying (3.14) by I, we obtain the equation

zθ′ + (A+ κ)θ = B + O(zd), where d = 2n− 1 and κ = 0.

We show that θ can be computed from this kind of equation up to O(zd)
using a divide-and-conquer strategy. If d > 1, write θ = θ1 + zd1θ2 where
d1 = bd/2c. Then we have

zθ′1 + (A+ κ)θ1 = B + O(zd1).
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By induction, we can recover θ1 up to O(zd1). Then

zθ′2 + (A+ κ+ d1)θ2 = E + O(zd−d1)

where E can be computed from θ1. By induction, we recover θ2 up to
precision O(zd−d1), hence we can recover θ up to O(zd). We initialize the
induction with the case d = 1, where we have to solve for the constant term
in an equation of the form

(A+ κ)θ = B.

Since θ starts at z2, the values of κ that occur are 2, . . . ,m − 1 when
solving (3.14) up to precision O(zm). By lemma 3.4.7, the constant term
of A+ κ is invertible. This concludes the induction, and the result follows
from standard lemmas in computer algebra [BCG+17, Lem. 1.12].

Proposition 3.4.9. Let n ≥ 1, and assume that char k > n. Then we can
compute the lift ϕ̃P up to precision O(zn) within Õ(n) operations in k′.

Proof. Combine proposition 3.4.8 and [BCG+17, Lem. 1.12].

3.4.3 Rational reconstruction

Finally, we want to recover the rational representation (s, p, q, r) of ϕ
at P from its power series expansion ϕ̃P at some finite precision. First,
we estimate the degrees of the rational fractions that we want to compute;
then we present the reconstruction algorithm.

Degree estimates. The degrees of s, p, q, r as morphisms from C to P1

can be computed as the intersection numbers of certain divisors on Jac(C ′),
namely ϕP (C) and the polar divisors of s, p, q and r as functions on Jac(C ′).
These degrees are already known in the case of an `-isogeny.

Proposition 3.4.10 ([CE15, §6.1]). Let ϕ : Jac(C) → Jac(C ′) be an `-
isogeny, and let P ∈ C(k). Let (s, p, q, r) be the rational representation
of ϕ at the base point P . Then the degrees of s, p, q and r as morphisms
from C to P1 are 4`, 4`, 12`, and 8` respectively.

Let F be a real quadratic field, and assume that Jac(C) and Jac(C ′)
have real multiplication by ZF given by embeddings ι : ZF → End(Jac(C))†
and ι′. Let

ϕ : (Jac(C), ι)→ (Jac(C ′), ι′)
be a β-isogeny. Denote the theta divisors on Jac(C) and Jac(C ′) by Θ
and Θ′ respectively, and denote by ηP : C → Jac(C) the map Q 7→ [Q−P ].
Then ηP (C) is algebraically equivalent to Θ.
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Lemma 3.4.11. The polar divisors of the rational functions s, p, q and r
on Jac(C ′) are algebraically equivalent to 2Θ′, 2Θ′, 6Θ′ and 4Θ′ respectively.

Proof. See [CE15, §6.1]. For instance, s = x1 + x2 has a pole of order 1
along each of the two divisors {(∞±, Q) : Q ∈ C ′}; here ∞± are the two
points at infinity on C ′, assuming that we chose a degree 6 hyperelliptic
model. Each of these two divisors is algebraically equivalent to Θ′. The
proof for p, q, and r is similar.

Recall that linear equivalence classes of divisors on Jac(C ′) are in bi-
jective correspondence with isomorphism classes of line bundles (§2.1.1).
Recall from §2.1.4 that if (A, ι) is a principally polarized abelian surface
with real multiplication by ZF , then there is a bijection (2.2) between ZF
and the Néron–Severi group of A, denoted by α 7→ Lι(α)

A .

Lemma 3.4.12. Let ϕ be a β-isogeny as above. Then the divisor ϕP (C)
is algebraically equivalent to the divisor corresponding to the line bun-
dle Lι

′(β)
Jac(C′) on Jac(C ′).

Proof. There exists an α ∈ ZF such that the divisor ϕP (C) corresponds
to the line bundle Lι

′(α)
Jac(C′) up to algebraic equivalence. Consider the pull-

back ϕ∗ (ϕP (C)) as a divisor on Jac(C). By definition, we have

ϕ∗ (ϕP (C)) =
∑

x∈kerϕ

(x+ ηP (C)) .

Therefore, up to algebraic equivalence, we have

ϕ∗ (ϕP (C)) = (# kerϕ)Θ = NF/Q(β)Θ.

Since ϕ is a β-isogeny, the pullback ϕ∗Θ′ corresponds to the line bun-
dle Lι(β)

Jac(C) up to algebraic equivalence. Therefore, for every γ ∈ ZF , we
have

ϕ∗Lι
′(γ)

Jac(C′) = Lι(γβ)
Jac(C).

Therefore αβ = NF/Q(β), hence α = β.

The next step is to compute the intersection degree of Θ′ and the divisor
corresponding to Lι(α)

Jac(C′) on Jac(C ′), for every α ∈ ZF .

Proposition 3.4.13 ([Kan19, Rem. 16]). Let (A, ι) be a principally polar-
ized abelian surface with real multiplication by ZF , and let Θ be its theta
divisor. Then the quadratic form

D 7→ (D ·Θ)2 − 2(D ·D)
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on NS(A) corresponds via the bijection (2.2) to the quadratic form on ZF
given by

α 7→ 2 TrF/Q(α2)− 1

2
TrF/Q(α)2.

Corollary 3.4.14. Let (A, ι) be a principally polarized abelian surface with
real multiplication by ZF , and let Θ be its theta divisor. Let α ∈ ZF . Then
we have (

Lι(α)
A ·Θ

)2
= TrF/Q(α)2.

Proof. Write α = a + b
√

∆, where ∆ denotes the discriminant of F . By
proposition 3.4.13, we have(

Lι(α)
A ·Θ

)2 − 2
(
Lι(α)
A · Lι(α)

A

)
= 2 Tr(α2)− 1

2
Tr(α)2 = 4b2∆.

On the other hand, the Riemann–Roch theorem [Mil86a, Thm. 11.1] gives(
Lι(α)
A · Lι(α)

A

)
= 2χ

(
Lι(α)
A

)
= 2
√

deg ι(α) = 2(a2 − b2∆).

The result follows by combining the two equations.

Proposition 3.4.15. Let ϕ be a β-isogeny as above, and let (s, p, q, r) be
the rational representation of ϕ at P . Then the respective degrees of s, p,
q, and r considered as morphisms from C to P1 are 2 TrF/Q(β), 2 TrF/Q(β),
6 TrF/Q(β) and 4 TrF/Q(β).

Proof. The degrees of s, p, q, r can be computed as the intersection de-
grees of the polar divisors from lemma 3.4.11 and the divisor ϕP (C). By
lemma 3.4.12, the line bundle associated with ϕP (C) is Lι

′(β)
Jac(C′) up to alge-

braic equivalence. Its intersection number with Θ′ is nonnegative, hence
by corollary 3.4.14, we have(

ϕP (C) ·Θ′
)

= TrF/Q(β) = TrF/Q(β).

The result follows by lemma 3.4.11.

Rational reconstruction. Let us present the rational reconstruction
algorithm, and compute the power series precision that is precisely needed
to recover rational representations of `- and β-isogenies.

Lemma 3.4.16. Let s : C → P1 be a morphism of degree d ≥ 1.

1. If s is invariant under the hyperelliptic involution, then we can write
s(u, v) = X(u) where the degree of the rational fraction X is bounded
above by d/2.
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2. In general, let X, Y be the rational fractions such that

s(u, v) = X(u) + v Y (u).

Then the degrees of X and Y are bounded above by d and d + 3
respectively.

Proof. The function u : C → P1 has degree 2; item 1 follows. For item 2,
write

s(u, v) + s(u,−v) = 2X(u),
s(u, v)− s(u,−v)

v
= 2Y (u).

The degrees of these morphisms are bounded above by 2d and 2d + 6
respectively, and item 1 applies.

Proposition 3.4.17. Let ϕ̃P and ϕ̃i(P ) be local lifts of ϕP at P and i(P )
in the uniformizers z and i(z), where i denotes the hyperelliptic involution
on C. Let n = 8` + 7 in the Siegel case, and n = 4 TrF/Q(β) + 7 in the
Hilbert case. Then, given ϕ̃P and ϕ̃i(P ) at precision O(zn), we can compute
the rational representation of ϕ at P within Õ(n) field operations.

Proof. It is sufficient to recover the rational fractions s and p; afterwards, q
and r can be computed from the equation of C ′.

First, assume that P is a Weierstrass point of C. Then s, p are invariant
under the hyperelliptic involution. Therefore we have to recover univariate
rational fractions in u of degree d ≤ 2` (resp. d ≤ TrF/Q(β)), by proposi-
tions 3.4.10 and 3.4.15. This can be done in Õ(n) field operations from the
power series expansions of s and p up to precision O(u2d+1) [BCG+17, §7.1].
Since u has valuation 2 in z, we need to compute ϕ̃P at precision O(z4d+1).

Second, assume that P is not a Weierstrass point of C. Then the series
defining s(u,−v) and p(u,−v) are given by ϕ̃i(P ). We have to compute
rational fractions of degree d ≤ 4` + 3 (resp. d ≤ 2 TrF/Q(β) + 3) in u, by
lemma 3.4.16. Since u has valuation 1 in z, this can be done in Õ(n) field
operations if ϕ̃P and ϕ̃i(P ) are known up to precision O(z2d+1).

3.5 Summary of the algorithm

We summarize the isogeny algorithm and state precise complexity re-
sults in both the Siegel case (theorem 3.5.2) and the Hilbert case (theo-
rem 3.5.3). Let k be any field, and let F be a fixed real quadratic field.
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Algorithm 3.5.1. Let A and A′ be principally polarized abelian surfaces
over k. Assume either that A and A′ are `-isogenous where ` is a prime
(the Siegel case), or that A and A′ have real multiplication by ZF and are
β-isogenous where β ∈ ZF is a totally positive prime (the Hilbert case).
Moreover, assume that the isogeny, called ϕ, is generic in the sense of
definition 3.3.3 or definition 3.3.6.

1. Use Mestre’s algorithm [Mes91] to construct curve equations C and C ′
whose Jacobians are isomorphic to A and A′ respectively. In the
Hilbert case, use algorithm 3.3.11 to ensure that C and C ′ are poten-
tially Hilbert-normalized.

2. Compute at most 4 candidates for the tangent matrix of the isogeny ϕ
using proposition 3.3.4 in the Siegel case, or proposition 3.3.9 in the
Hilbert case. Run the rest of the algorithm for all these candidates;
in general, only one will produce meaningful results.

3. Choose a base point P on C such that ϕP is of generic type using
proposition 3.4.4, and compute the power series ϕ̃P and ϕ̃i(P ) up to
precision O

(
z8`+7

)
, resp. O

(
z4 Tr(β)+7

)
using proposition 3.4.9.

4. Recover the rational representation of ϕ at P using proposition 3.4.17.

Theorem 3.5.2. Let ` be a prime, and let k be a field such that char k = 0
or char k > 8`+7. Assume that there exists an algorithm to evaluate deriva-
tives of Siegel modular equations of level ` at given Igusa invariants (j, j′)
over k using Ceval(`) operations in k.

Let A,A′ be principally polarized abelian surfaces over k whose Igusa
invariants j(A), j(A′) are well defined, and assume that there exists an
`-isogeny ϕ : A → A′ defined over k which is generic in the sense of def-
inition 3.3.3. Then, given j(A) and j(A′), algorithm 3.5.1 succeeds and
returns

1. a tower k′/k of at most three quadratic extensions,

2. hyperelliptic curve equations C and C ′ over k′ whose Jacobians are
isomorphic to A and A′ respectively,

3. a point P ∈ C(k′),
4. the rational representation (s, p, q, r) ∈ k′(u, v)4 of an `-isogeny

ϕ : Jac(C)→ Jac(C ′) at P .

The cost of algorithm 3.5.1 in the Siegel case is O (Ceval(`))+ Õ(`) elemen-
tary operations and O(1) square roots in k′.

Proof. Mestre’s algorithm returns curve equations C and C ′ defined over ex-
tensions of k of degree at most 2, and costs O(1) operations in k and O(1)
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square roots. Under our hypotheses, proposition 3.3.4 applies and allows
us to recover the matrix Sym2(dϕ) using O(Ceval(`)) + O(1) operations
in k. We recover dϕ up to sign using O(1) square roots and elementary
operations; since ϕ is defined over k, extending the base field is not nec-
essary. We choose the base point P on C such that ϕP is of generic type
using proposition 3.4.4, perhaps taking another extension of degree 2. By
proposition 3.4.9, we can compute the local lifts ϕ̃P and ϕ̃i(P ) up to preci-
sion 8`+7 within Õ(`) field operations; this is where we use the hypothesis
on char k. Finally, we recover the rational representation at P using Õ(`)
field operations by proposition 3.4.17. The total number of quadratic ex-
tensions taken is at most 3.

We conclude with the analogue of theorem 3.5.2 in the Hilbert case.

Theorem 3.5.3. Let F be a real quadratic field, and let β ∈ ZF be a
totally positive prime. Let k be a field such that either char k = 0 or
char k > 4 TrF/Q(β) + 7. Assume that there exists an algorithm to evaluate
derivatives of Hilbert modular equations of level β in Igusa invariants at a
given point (j, j′) over k using Ceval(β) operations in k.

Let A,A′ be principally polarized abelian surfaces over k with real mul-
tiplication by ZF whose Igusa invariants j(A), j(A′) are well defined, and
assume that there exists a β-isogeny ϕ : A → A′ defined over k which is
generic in the sense of definition 3.3.6. Then, given j(A) and j(A′), algo-
rithm 3.5.1 succeeds and returns

1. a tower k′/k of at most three quadratic extensions,

2. hyperelliptic curve equations C and C ′ over k′ whose Jacobians are
isomorphic to A and A′ respectively,

3. a point P ∈ C(k′),

4. at most 4 possible candidates for the rational representation
(s, p, q, r) ∈ k′(u, v)4 of a β- or β-isogeny ϕ : Jac(C)→ Jac(C ′) at P .

The cost of algorithm 3.5.1 is O (Ceval(β))+Õ
(
TrF/Q(β)

)
+OF (1) elemen-

tary operations and O(1) square roots in k′; the implied constants, OF (1)
excepted, are independent of F .

Note that Ceval(β) also depends on F . We expect that the algorithm
returns only one answer for the rational representation of ϕ at P ; if the
algorithm outputs several answers, we could implement tests of correctness,
but they might be more expensive than the isogeny algorithm itself.
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Proof. We use algorithm 3.3.11 to construct the curve equations C and C ′.
We obtain potentially Hilbert-normalized curves, and each of them is de-
fined over an extension of k of degree dividing 4. This requires OF (1)
elementary operations and O(1) square roots in k. We may assume that C
and C ′ are Hilbert-normalized for some choice of real multiplication embed-
dings that are compatible via ϕ, which becomes either a β- or a β-isogeny.

Under our hypotheses, proposition 3.3.9 applies and allows us to recover
two possible values for (dϕ)2 within O(Ceval(β)) + O(1) operations in k,
and hence 4 possible values for dϕ, by taking O(1) square roots. We can
now make a change of variables to the (not necessarily Hilbert-normalized)
curves output by Mestre’s algorithm, so that each curve is defined over an
extension of k of degree at most 2. The end of the algorithm is similar to
the Siegel case: we take an extension of degree 2 to find the base point,
then we try to compute the rational representation for each value of dϕ
using Õ(TrF/Q(β)) operations in k. For the correct value of dϕ, rational
reconstruction will succeed and output fractions of the correct degrees.

3.6 An example in the Hilbert case for Q(
√
5)

To conclude this chapter, we present a variant of our algorithm in the
case of principally polarized abelian varieties with real multiplication by ZF
where F = Q(

√
5). In this case, the Humbert surface is rational: its func-

tion field can be generated by only two elements called Gundlach invari-
ants, introduced in §2.3.4. Having only two coordinates reduces the size of
modular equations, as we mentioned in §2.4.4.

We work over C, but the methods of §3.3.3 show that the computations
remain valid in general. We illustrate the algorithm with an example of
cyclic isogeny of degree 11 over a finite field.

3.6.1 Variants in the isogeny algorithm

There are two improvements. First, in the construction of Hilbert-
normalized curves, we take advantage of the known structure of the ring of
Hilbert modular forms to find an expression for the standard curve CF (τ)
when τ ∈ H2

1. Second, reducing the number of variables allows us to
compute (dϕ)2 using only 2× 2 matrices.

Constructing potentially Hilbert-normalized curves. An alterna-
tive method to algorithm 3.3.11 is given by proposition 2.3.17, which gives
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the expression of the “universal” Siegel modular form f8,6 as a Hilbert mod-
ular form. We keep the notation used in this proposition and in §3.2.1. By
propositions 3.2.7 and 3.2.13, the standard curve CF (τ) attached to τ ∈ H2

1

is proportional to the curve y2 =
∑
bi(τ)xi. The algorithm to compute a

potentially Hilbert-normalized curve C from its Igusa invariants (j1, j2, j3)
runs as follows.

Algorithm 3.6.1. 1. Compute Gundlach invariants (g1, g2) mapping to
the Igusa invariants (j1, j2, j3) via the Hilbert embedding using propo-
sition 2.3.16, and compute values for the generators G2, F6, F10 giving
these values of g1, g2.

2. Compute b2
3, b1b5, etc. using proposition 2.3.17.

3. Recover values for the coefficients: let b3 be any square root of b2
3;

choose any value for b1, which gives b5; finally, solve a quadratic
equation to find b0 and b6.

We can always choose values of G2, F6, and F10 in such a way that b2
3 is

a square in k. Then the output is defined over a quadratic extension of k.
Even if arbitrary choices are made during algorithm 3.6.1, the output will
be potentially Hilbert-normalized.

Computing the tangent matrix. Consider the Hilbert modular equa-
tions in Gundlach invariants of level β, denoted by Ψβ,1 and Ψβ,2, as ele-
ments of the ring Q[G1, G2, G

′
1, G

′
2] after multiplication by their denomia-

tors. Define the 2× 2 matrices

DΨβ,L =

(
∂Ψn

∂Gk

)
1≤n,k≤2

and DΨβ,R =

(
∂Ψn

∂G′k

)
1≤n,k≤2

.

Then the analogue of proposition 3.3.9 holds, where we replace derivatives
of Igusa invariants by derivatives of Gundlach invariants. The relation
between these derivatives is given by proposition 2.3.16.

3.6.2 An example of cyclic isogeny

We illustrate our algorithm in the Hilbert case with F = Q(
√

5) by
computing a β-isogeny between Jacobians with real multiplication by ZF ,
where

β = 3 +
1 +
√

5

2
∈ ZF ,

so that NF/Q(β) = 11 and TrF/Q(β) = 7. We work over the prime finite
field k = F56311, whose characteristic is large enough for our purposes. We
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choose a trivialization of ZF ⊗Z k, in other words a square root of 5 in k,
so that β = 26213.

Consider the Gundlach invariants

(g1, g2) =
(
23, 56260

)
, (g′1, g

′
2) =

(
8, 36073

)
.

The corresponding Igusa invariants are

(j1, j2, j3) =
(
14030, 9041, 56122

)
, (j′1, j

′
2, j
′
3) =

(
13752, 42980, 12538

)
;

they lie on the Humbert surface as expected.
In order to reconstruct a Hilbert-normalized curve, we apply algo-

rithm 3.6.1. We obtain the curve equations

C : v2 = 13425u6 + 34724u5 + 102u3 + 54150u+ 11111

C ′ : y2 = 47601x6 + 35850x5 + 40476x3 + 24699x+ 40502.

The derivatives of Gundlach invariants are given by the matrices

∂g(F )(C) =

(
43658 17394
16028 26656

)
, ∂g(F )(C ′) =

(
15131 739
50692 49952

)
.

After computing derivatives of the modular equations as in proposi-
tion 3.3.9, we find that the isogeny ϕ is compatible with the real multipli-
cation embeddings for which C and C ′ are Hilbert-normalized. We do not
known whether ϕ is a β- or a β-isogeny, so we have four candidates for the
tangent matrix up to sign:

dϕβ,± =

(
38932α + 19466 0

0 ±(53318α + 26659)

)
,

dϕβ,± =

(
50651α + 53481 0

0 ±(11076α + 5538)

)
where α2 + α + 2 = 0. We see that ϕ is only defined over the quadratic
extension k(α).

The curve C has the rational Weierstrass point
(
36392, 0

)
. We can bring

it to (0, 0), so that C is of the more standard form

C : v2 = 33461u6 + 7399u5 + 16387u4 + 34825u3 + 14713u2 + u.

This change of variables multiplies the tangent matrix dϕ on the right by(
44206 18649

0 7615

)
.
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Choose P = (0, 0) as a base point on C, and choose z =
√
u as a

uniformizer; P is a Weierstrass point, and we check that ϕP is of generic
type. We solve the differential system (3.11) up to precision O(z35), or any
higher precision. It turns out that the correct tangent matrix is dϕβ,+ as
the other powers series do not come from rational fractions of the prescribed
degrees. We obtain

s(u) =
50255u6 + 40618u5 + 17196u4 + 9527u3 + 22804u2 + 49419u+ 11726

u6 + 40883u5 + 22913u4 + 41828u3 + 18069u2 + 14612u+ 7238
,

p(u) =
35444u6 + 9569u5 + 52568u4 + 3347u3 + 9325u2 + 32206u+ 7231

u6 + 40883u5 + 22913u4 + 41828u3 + 18069u2 + 14612u+ 7238
.

The degrees of s and p agree with proposition 3.4.15. The isogeny
is k-rational at the level of Kummer surfaces, but not on the Jacobians
themselves: α appears on the numerator of r(u, v).
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Chapter 4

Heights of rational fractions and
interpolation

This chapter corresponds to the preprint [Kie20c]. Let F be a univariate
polynomial of rational fraction of degree d defined over a number field. We
present bounds on the height of F , which encodes the size of the coefficients
of F , in terms of the heights of its evaluations at small integers: we review
well-known bounds obtained from interpolation algorithms given values
of F at d+ 1 or 2d+ 1 points, and obtain tighter results when considering
a larger number of evaluation points. While interesting in their own right,
and readable independently, the results of this chapter have a particular
purpose in this thesis: they will be essential in proving height bounds for
modular equations in chapter 5.

4.1 Presentation of the problem

Let F be a univariate rational fraction of degree d defined over Q.
To define the height h(F ) of F , write F = P/Q where P,Q ∈ Z[Y ] are
coprime; then h(F ) is the maximum value of log |c|, where c runs through
the nonzero coefficients of P and Q. In particular, if x = p/q is a rational
number in irreducible form, then h(x) = log max{|p| , |q|}.

Heights can be generalized to arbitrary number fields, and are a basic
tool in diophantine geometry [HS00, Part B]. They are also meaningful from
an algorithmic point of view: the amount of memory needed to store F in
a computer is in general O(d h(F )), and the cost of manipulating F grows
with the size of its coefficients.

As announced, this chapter presents relations between the height of F
and the heights of evaluations F (x), where x is an integer. One direction
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is easy: by [HS00, Prop. B.7.1], we have

h(F (x)) ≤ d h(x) + h(F ) + log(d+ 1). (4.1)

In the other direction, when we want to bound h(F ) from the heights of
its values, matters are more complicated.

An easy case is when F ∈ Z[Y ] is a polynomial with integer coefficients
of degree at most d ≥ 1. Then looking at the archimedean absolute value
of the coefficients of F is sufficient to bound h(F ). Moreover, given height
bounds on d+ 1 values of F , the Lagrange interpolation formula allows us
to bound h(F ) in a satisfactory way. For instance, assuming that

h(F (i)) ≤ H for every i ∈ J0, dK , (4.2)

we easily obtain

h(F ) ≤ H + d log(2d) + log(d+ 1). (4.3)

This result can be refined and adapted to other sets of intepolation points
[BS10, Lem. 20], [Paz19, Lem. 4.1]; in any case the bound on h(F ) is
roughly H up to additional terms in O(d log d). This is consistent with
inequality (4.1).

When F is a rational fraction or even a polynomial with rational co-
efficients, this nice result breaks down, and surprisingly little information
appears in the literature despite the simplicity of the question.

Polynomials. First, consider the case where F is a polynomial in Q[Y ]
of degree at most d ≥ 1. Then F is determined by its values at d+1 distinct
points. Let x1, . . . , xd+1 be distinct integers, let H ≥ 1, and assume that
h(F (xi)) ≤ H for every i. This time, the Lagrange interpolation formula
yields a bound on h(F ) which is roughly O(dH) (see proposition 4.4.2).
This is intuitive enough: in general, computing F from its values F (xi)
involves reducing the rational numbers F (xi) to the same denominator, thus
multiplying the heights of the input by the number of evaluation points.
But then, inequality (4.1) is very pessimistic at each of the evaluation
points xi: massive cancellations occur with the denominator of F , and the
“expected” size of F (xi) is divided by d.

However, if we consider more than d + 1 evaluation points x1 . . . , xN
where h(F (xi)) ≤ H, we will likely find an evaluation point where inequal-
ity (4.1) is accurate, and hence obtain a bound on h(F ) of the form O(H)
rather than O(dH). We prove the following result in this direction.
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Proposition 4.1.1. Let L be a number field, and let JA,BK be an interval
in Z. Write D = B−A and M = max{|A| , |B|}. Let d ≥ 1, let F ∈ L[Y ]
be a polynomial of degree at most d, let N ≥ d + 1, and let x1, . . . , xN be
distinct elements of JA,BK. Assume that h(F (xi)) ≤ H for all 1 ≤ i ≤ N .
Then we have

h(F ) ≤ N

N − d
H +D log(D) + d log(2M) + log(d+ 1).

For instance, we obtain a bound on h(F ) which is linear in H when
considering N = 2d evaluation points.

Rational fractions. Second, consider the case where F ∈ Q(Y ) is a
rational fraction of degree at most d ≥ 1. Then F is determined by its
values at 2d+ 1 points. If x1, . . . , x2d+1 are distinct integers which are not
poles of F , and h(F (xi)) ≤ H for every i, then a direct analysis of the
interpolation algorithm yields a bound on h(F ) which is roughly O(d2H)
(see proposition 4.5.7). As above, it makes sense to ask for a bound which
is linear in H when more evaluation points are given.

In this case we could imagine cases where F = P/Q has a very large
height, but massive cancellations happen in all the quotients P (xi)/Q(xi).
This makes the result more intricate.

Proposition 4.1.2. Let L be a number field, and let JA,BK be an interval
in Z. Write D = B − A and M = max{|A| , |B|}. Let F ∈ L(Y ) be
a rational fraction of degree at most d ≥ 1. Let S be a subset of JA,BK
containing no poles of F , let η ≥ 1, and let H ≥ max{4, log(2M)}. Assume
further that

1. h(F (x)) ≤ H for every x ∈ S.

2. S contains at least D/η elements.

3. D ≥ max{ηd3H, 4ηddL}.

Then we have

h(F ) ≤ H + CLηd log(ηdH) + d log(2M) + log(d+ 1),

where CL is a constant depending only on L. We can take CQ = 960.

The number of evaluation points in this result is quite large, and de-
pends on H. Still, proposition 4.1.2 is the main result that we need in
chapter 3, and is strong enough to imply the following.
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Proposition 4.1.3. Let c ≥ 1, let d ≥ 1, and let F ∈ Q(Y ) be a rational
fraction of degree at most d. Let V ⊂ Z be a finite set such that F has no
poles in Z\V . Assume that for every x ∈ Z\V , we have

h(F (x)) ≤ cmax{1, d log d+ d h(x)}.

Then there exists a constant C = C(c,#V ) such that

h(F ) ≤ Cd log(4d).

We can take C = (4c+ 1923)
(
12 + log max{1,#V }+ 2 log(c)

)
.

It would be interesting to know whether we can obtain an efficient
bound on h(F ) using only O(d) evaluation points, as in the case of poly-
nomials, instead of O(d3H). The constants in propositions 4.1.2 and 4.1.3
are not optimal: tighter bounds can be obtained following the same ideas
of proof, at the cost of lengthier expressions. The rest of this chapter is
devoted to the definition of heights over number fields and the proofs of
propositions 4.1.1 to 4.1.3.

4.2 Definition of heights

Let L be a number field of degree dL over Q. We denote by V0
L

(resp. V∞L ) the set of all nonarchimedean (resp. archimedean) places of L,
and write VL = V0

L t V∞L . Let PQ (resp. PL) be the set of primes in Z
(resp. prime ideals in the ring of integers ZL of L).

For each place v of L, the local degree of L/Q at v is dv = [Lv : Qv],
where subscripts denote completion. Denote by |·|v the normalized absolute
value associated with v: when v ∈ V0

L, and p ∈ PQ is the prime below v,
we have |p|v = 1/p. If p ∈ PL, we denote the p-adic valuation by vp. By
convention, the p-adic valuation of zero is +∞.

The (absolute logarithmic Weil) height of projective tuples, affine tu-
ples, polynomials and rational fractions over L is defined as follows [HS00,
§B.2 and §B.7].

Definition 4.2.1. Let n ≥ 1, and let a0, . . . , an ∈ L.

1. The projective height of (a0 : · · · : an) ∈ PnL is

h(a0 : . . . : an) =
∑
v∈VL

dv
dL

log
(

max
0≤i≤n

|ai|v
)
.
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2. The affine height of (a1, . . . , an) ∈ Ln is defined as the projective
height of the tuple (1 : a1 : · · · : an):

h(a1, . . . , an)
∑
v∈VL

dv
dL

log
(
max{1, max

1≤i≤n
|ai|v}

)
.

In particular, for a ∈ L, we have

h(a) = h(1 : a) =
∑
v∈VL

dv
dL

log
(
max{1, |a|v}

)
.

3. The height of a polynomial P ∈ L[Y1, . . . , Yn] is the height of the
affine tuple formed by all its coefficients: if

P =
∑

k=(k1,...,kn)∈Nn
ckY

k1
1 · · ·Y kn

n ,

then for v ∈ VL, we write

|P |v = max
k∈Nn
|ck|v

and we define h(P ) as

h(P ) =
∑
v∈VL

dv
dL

log
(
max{1, |P |v}

)
.

If p ∈ PL is a prime ideal, we also define the p-adic valuation of P as

vp(P ) = min
k∈Nn

vp(ck).

4. Let F ∈ L(Y1, . . . , Yn) be a multivariate rational fraction over L, and
choose coprime polynomials P,Q ∈ L[Y1, . . . , Yn] such that F = P/Q.
Then we define h(F ) as the height of the projective tuple formed by
all the coefficients of P and Q.

Elementary properties of heights.

1. The projective height of (a0 : · · · : an) is indeed invariant under
multiplication by a common scalar factor, by the product formula
[HS00, Lem. B.2.1(a)]. Therefore the height of a fraction is also well
defined.

140



2. Heights are independent of the ambient field [HS00, Lem. B.2.1(c)].
This is another consequence of the product formula: in particular, we
have ∑

v∈V∞L

dv
dL

= 1.

3. If x, y ∈ L, then h(xy) ≤ h(x) + h(y); if x 6= 0, then h(1/x) = h(x).

4. Heights satisfy the Northcott property : for every H ∈ R, the number
of projective tuples (a0 : · · · : an) ∈ PnL such that h(a0 : · · · : an) ≤ H
is finite [HS00, Thm. B.2.3].

5. If L = Q, then definition 4.2.1 coincides with the naive definition of
heights given in §4.1.

As definition 4.2.1 suggests, in order to obtain height bounds for poly-
nomials and rational fractions, we will try to bound their coefficients from
above in all the absolute values associated with places of L.

4.3 Heights of values and roots of polynomials

In this section, we relate the height of a univariate polynomial over L
with the height of its roots. We also give bounds from above on the height
of evaluations of polynomials, generalizing eq. (4.1). The statements are
all easy consequences of the formulæ in definition 4.2.1, and will be used
on several occasions.

Let us start with the evaluation of polynomials; the following proposi-
tion is a slight generalization of [HS00, Prop. B.7.1].

Proposition 4.3.1. Let P ∈ L[Y1, . . . , Yn] be a multivariate polynomial of
total degree at most d ≥ 1, let 1 ≤ m ≤ n, and let y1, . . . , ym ∈ L. Let
Q = P (y1, . . . , ym, Ym+1, . . . , Yn). Then we have

h(Q) ≤ h(P ) +m log(d+ 1) + d h(y1, . . . , yn).

More generally, if I1 t · · · t Ir is a partition of J1,mK, and if dk denotes
the total degree of P in the variables Yi for i ∈ Ik, then we have

h(Q) ≤ h(P ) +
r∑

k=1

(#Ik) log(dk + 1) +
r∑

k=1

dk h
(
(yi)i∈Ik

)
.

Proof. It is enough to prove the second statement. Each term of Q is a
sum of terms of the form

c · ya11 · · · yamm · Y
am+1

m+1 · · ·Y an
n
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where c is a coefficient of P , and ai ≤ dk for each 1 ≤ i ≤ m and 1 ≤ k ≤ r
such that i ∈ Ik. For each v ∈ VL, we have

|c · ya11 · · · yamm |v ≤ |P |v
r∏

k=1

(
max

{
1,max

i∈Ik
|yi|v

})dk
.

If v ∈ V0
L, then the ultrametric inequality implies that

|P (y1, . . . , ym, Ym+1, . . . , Yn)|v ≤ |P |v
r∏

k=1

(
max

{
1,max

i∈Ik
|yi|v

})dk
. (4.4)

If v ∈ V∞L , then inequality (4.4) holds after multiplying the right hand side
by the number of possible monomials in Y1, . . . , Ym, which is

r∏
k=1

(dk + 1)#Ik .

Taking logarithms and summing gives the result.

As a consequence, we can bound the height of a monic polynomial given
the height of its roots.

Proposition 4.3.2. Let Q ∈ L[Y ] be monic polynomial of degree d ≥ 1,
and let α1, . . . , αd be its roots in the algebraic closure of L. Then

h(Q) ≤
d∑
i=1

h(αk) + d log 2.

Proof. Apply proposition 4.3.1 on the multivariate polynomial

P =
d∏

k=1

(Yd+1 − Yk)

with m = d, yk = αk, and Ik = {k}. Since the coefficients of P all belong
to {−1, 0, 1}, we have h(P ) = 0.

Conversely, the height of a univariate polynomial over L controls the
height of its roots.

Proposition 4.3.3. Let P ∈ L[Y ]\{0}, and let α be a root of P . Then

h(α) ≤ h(P ) + log(2).
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Proof. We reproduce the proof given in a lecture by F. Pazuki. We can
assume that P is monic. Let v ∈ VL. We want to show that |α|v ≤ |P |v
if v ∈ V0

L, and |α|v ≤ 2 |P |v if v ∈ V∞L . Since P is monic, we always
have |P |v ≥ 1. Write P = Y n +

∑n−1
k=0 ckY

k, for some n ≥ 1.
If v ∈ V0

L, we can assume that |α|v ≥ 1. Then

|α|v =
∣∣∣n−1∑
i=0

ckα
k
∣∣∣
v
≤ |P |v |α|

n−1
v ,

so |α|v ≤ |P |v.
If v ∈ V∞L , we can assume that |α|v ≥ 2. Then, by the triangle inequal-

ity, we obtain

|α|v ≤ |P |v |αv|
n−1
(

1 +
1

|α|v
+ · · ·+ 1

|α|n−1
v

)
≤ 2 |α|n−1

v |P |v ,

so |α|v ≤ 2 |P |v. Taking logarithms and summing over all v ∈ VL yields
the result.

4.4 Heights of polynomials from their values

This section presents bounds on the height of a polynomial F ∈ L[Y ]
of degree at most d ≥ 1 in terms of the heights of evaluations of F . We
take our evaluation points to be integers in an interval JA,BK ⊂ Z, and we
write D = B −A and M = max{|A| , |B|}. Our main tool is the Lagrange
interpolation formula: if x1, . . . , xd+1 ∈ JA,BK are distinct, then

F =
1

D!

d+1∑
i=0

F (xi)Qi where Qi = D!

∏
j 6=i(Y − xj)∏
j 6=i(xi − xj)

∈ Z[Y ]. (4.5)

Lemma 4.4.1. In the notation of eq. (4.5), we have |Qi| ≤ D! (2M)d.

Proof. Since the denominator
∏

k 6=i(xi − xk) divides D!, we have

Qi = Ni

∏
j 6=i

(X − xj)

for some Ni ∈ Z dividing D!. Therefore, for every 0 ≤ k ≤ d, if ck denotes
the coefficient of Xd−k in Qi, we have

|ck| ≤ |Ni|
(
d

k

)
Mk ≤ D! 2dMd.
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A straightforward application of the Lagrange interpolation formula
on d+ 1 evaluation points yields the following result.

Proposition 4.4.2. Let d ≥ 1, let F ∈ L[Y ] be a polynomial of degree at
most d, and let x1, . . . , xd+1 be distinct integers in JA,BK. Write D = B−A
and M = max{A,B}. Assume that h(F (xi)) ≤ H for every 1 ≤ i ≤ d+ 1.
Then we have

h(F ) ≤ (d+ 1)H +D log(D) + d log(2M) + log(d+ 1).

Proof. Let v be a place of L. If v ∈ V0
L, then (4.5) yields

max{1, |F |v} ≤
∣∣∣∣ 1

D!

∣∣∣∣
v

max{1, |F (x1)|v , . . . , |F (xd+1)|v}

≤
∣∣∣∣ 1

D!

∣∣∣∣
v

n+1∏
i=1

max{1, |F (xi)|v}.

If v ∈ V∞L , then lemma 4.4.1 yields

max{1, |F |v} ≤
d+1∑
i=1

|F (xi)|v 2dMd ≤ (d+ 1)2dMd

d+1∏
i=1

max{1, |F (xi)|v}.

Since h(1/D!) = h(D!) ≤ D log(D), taking logarithms and summing gives
the result.

It is interesting to compare proposition 4.4.2 with [HS00, Cor. B.2.6],
using the evaluation maps at xi as linear maps from L[Y ] to L: under the
hypotheses of the proposition, the height of the tuple (F (x1), . . . , F (xd+1))
can be as large as (d+ 1)H.

Better bounds on h(F ) can be obtained given height bounds on more
than d + 1 values of F : this is the content of proposition 4.1.1, which we
recall here for convenience.

Proposition 4.4.3. Let L be a number field, and let JA,BK be an interval
in Z. Write D = B−A and M = max{|A| , |B|}. Let d ≥ 1, let F ∈ L[Y ]
be a polynomial of degree at most d, let N ≥ d + 1, and let x1, . . . , xN be
distinct elements of JA,BK. Assume that h(F (xi)) ≤ H for all 1 ≤ i ≤ N .
Then we have

h(F ) ≤ N

N − d
H +D log(D) + d log(2M) + log(d+ 1).

We need a lemma.
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Lemma 4.4.4. Keep the notation from proposition 4.4.3, and let v ∈ V0
L

(resp. v ∈ V∞L ). Then the number of elements x ∈ JA,BK satisfying the
inequality

|F (x)|v < |D!F |v
(
resp. |F (x)|v <

|F |v
(2M)d(d+ 1)

)
is at most d.

Proof of lemma 4.4.4. We argue by contradiction. Let (xi)1≤i≤d+1 be dis-
tinct elements of JA,BK satisfying the given inequality. If v ∈ V0

L, then the
Lagrange interpolation formula (4.5) gives

|D!F |v ≤ max
i
|F (xi)|v < |D!F |v

which is a contradiction. If v ∈ V∞L , then the contradiction is

|F |v ≤ (2M)d
d+1∑
i=1

|F (xi)|v < |F |v

by lemma 4.4.1.

Proof of proposition 4.4.3. Let v be a place of L. If v ∈ V0
L, then by

lemma 4.4.4, we have |F (xi)|v ≥ |D!F |v for at least N − d values of i.
Therefore

N∏
i=1

max{1, |F (xi)|v} ≥ |D!F |N−dv ,

hence

log max{1, |F |v} ≤ log

∣∣∣∣ 1

D!

∣∣∣∣
v

+
1

N − d

N∑
i=1

log max{1, |F (xi)|v}.

If v ∈ V∞L , then by lemma 4.4.4, at least N − d of the values F (xi) satisfy
the inequality |F (xi)|v ≥ |F |v /(2M)d(d+ 1), hence

log max{1, |F |v} ≤ d log(2M)+log(d+1)+
1

N − d

N∑
i=1

log max{1, |F (xi)|v}.

Since h(1/D!) ≤ D logD, summing over VL yields the result.
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4.5 Heights of fractions from their values

In this section, we study the more difficult question of bounding the
height of rational fractions from above in terms of heights of their values.
Let F ∈ L(Y ) be a fraction of degree at most d ≥ 1, and write F = P/Q
where P,Q ∈ ZL[Y ] are coprime in L[Y ]. Let S be a collection of evaluation
points (in Z, for instance) and assume that h(F (x)) ≤ H for each x ∈ S. If
we can prove that both P (x) and Q(x) are “small” for each x ∈ S, then we
can apply proposition 4.1.1 to obtain an upper bound on h(F ). However,
it can very well happen that P (x) and Q(x) have a large common factor
even if F (x) has small height.

In order to prove proposition 4.1.2, we decompose P (x) and Q(x) in
ideals. Define ideals sx, nx and dx of ZL as follows:

sx = gcd(P (x), Q(x)), (P (x)) = nxsx, (Q(x)) = dxsx.

Then (F (x)) = nxd
−1
x . The ideal sx encodes the simplifications that occur

when evaluating P/Q at x. The main point of the proof is to show that the
ideal sx is “small” for at least some values of x ∈ S. The height of an ideal
in ZL is not well defined, but its norm is. Therefore we start by studying
the relation between heights and norms of elements in ZL.

4.5.1 Heights and norms of integers

We denote the norm of elements and ideals in L by NL/Q, and we make
the following definition.

Definition 4.5.1. Let x ∈ L\{0}. Then we define

h̃(x) =
1

dL
log
∣∣NL/Q(x)

∣∣ =
∑
v∈V∞L

dv
dL

log |x|v .

If a is a fractional ideal in L, we also write

h̃(a) =
1

dL
logNL/Q(a).

Note that h̃ and h are equal on Z. They are not equal on ZL in general.
For instance, h̃ is invariant under multiplication by units; this is not the case
for h as soon as L admits a fundamental unit, by the Northcott property.

Lemma 4.5.2. Let x ∈ ZL\{0}. Then we have

0 ≤ h̃(x) ≤ h(x).

Equality holds on the right if and only if |x|v ≥ 1 for every v ∈ V∞L .
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Proof. We have NL/Q(x) ∈ Z\{0}, so
∣∣NL/Q(x)

∣∣ ≥ 1 and h̃(x) ≥ 0. The
rest is obvious.

Proposition 4.5.3. There exists a constant C depending only on the num-
ber field L such that for every x ∈ ZL\{0}, there exists a unit ε ∈ Z×L such
that

h(εx) ≤ max{C, h̃(x)}.
We can take C = 2dL maxi∈I h(εi), where (εi)i∈I is any basis of units in ZL.

Proof. Let m = #V∞L . In Rm, we define the hyperplane Hs for s ∈ R by

Hs = {(t1, . . . , tm) ∈ Rm : t1 + · · ·+ tm = s},

and we define the convex cone ∆s by

∆s =
{

(t1, . . . , tm) ∈ Rm : ∀i, ti ≥ −s
}
.

The image of Z×L by the logarithmic embedding

Log =
( dv
dL

log |·|v
)
v∈V∞L

is a full rank lattice Λ in H0. There exists a real number smin such that for
every s ≥ smin, the convex set H0 ∩∆s contains a fundamental cell V of Λ;
we can take smin = maxi∈I h(εi) in the notation above. Translating in the
direction (1, . . . , 1), we also have:

1. For every s ≥ msmin, the set Hs ∩∆0 contains a translate of V .

2. For every s ≥ 0, the set Hs ∩∆smin
contains a translate of V .

Let x ∈ ZL\{0}, and consider the point

Log(x) =
( dv
dL

log |x|v
)
v∈V∞L

∈ Rm.

The sum of its coordinates is h̃(x). If h̃(x) ≥ msmin, then by (1) there exists
a unit ε ∈ Z×L such that Log(x) + Log(ε) belongs to ∆0. Then |εx|v ≥ 1 for
every v ∈ V∞L , so

h(εx) = h̃(εx) = h̃(x)

by lemma 4.5.2.
On the other hand, if 0 ≤ h̃(x) < msmin, then by (2) we can still find a

unit ε such that Log(x) + Log(ε) ∈ ∆smin
, in other words

dv
dL

log |εx|v ≥ −smin
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for all v ∈ V∞L . Then

h(εx) =
∑
v∈V∞L

dv
dL

log max{1, |εx|v} ≤ h̃(εx) +
∑
v∈V∞

smin ≤ 2msmin.

This proves the proposition with C = 2msmin ≤ 2dLsmin.

Corollary 4.5.4. Let C be as in proposition 4.5.3. Then every principal
ideal a of ZL admits a generator a ∈ ZL such that

h(a) ≤ max{C, h̃(a)}.

Proof. Apply proposition 4.5.3 with x an arbitrary generator of a.

This allows us to bound the height of a common denominator for a
given polynomial P ∈ ZL[Y ].

Proposition 4.5.5. There exists a constant C depending only on L such
that for every polynomial P ∈ L[Y ], there exists an element a ∈ ZL such
that aP ∈ ZL[Y ] and max{h(a), h(aP )} ≤ h(P ) + C.

Proof. Let C be a set of ideals of ZL that are representatives for the class
group of L, and let P ∈ L[Y ], which we may assume to be nonzero. Let

a =
∏
p∈PL

pmax{0,−vp(P )}

be the denominator ideal of P . Then

h̃(a) =
∑
p∈PL

dp
dL

log max{1, |P |p} ≤ h(P ).

Let c ∈ C such that ca is principal. By corollary 4.5.4, if C denotes the
constant from proposition 4.5.3, we can find a generator a of ca such that

h(a) ≤ max{C, h̃(ca)} ≤ h(P ) + C ′

with
C ′ = max{C,max

c∈C
h̃(c)}.

Then aP has integer coefficients, and we have

h(aP ) ≤
∑
v∈V∞L

dv
dL

(
log max{1, |P |v}+ log max{1, |a|v}

)
= h(P ) + h(a)−

∑
v∈V0

L

dv
dL

log max{1, |P |v}

= h(P ) + h(a)− h̃(a) ≤ h(P ) + C ′.
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4.5.2 A naive height bound for fractions

Let L be a number field, and let F ∈ L(Y )\{0} be a rational fraction of
degree at most d ≥ 1. Write F = P/Q where P,Q are coprime polynomials
in L[Y ], and let dP and dQ be the degrees of P and Q respectively. Let xi
for 1 ≤ i ≤ dP + dQ + 1 be distinct elements in an interval JA,BK ⊂ Z that
are not poles of F .

Let us recall the interpolation algorithm to reconstruct F given the
pairs (xi, F (xi)) [BCG+17, §7.1]. Let S ∈ L[Y ] be the polynomial of degree
at most dP + dQ interpolating the points (xi, F (xi)). Let a be a common
denominator for the coefficients of S, so that T = aS has coefficients in ZL.
We compute the dP -th subresultant of T and the polynomial

Z =
s+1∏
i=1

(Y − xi) ∈ Z[Y ].

We obtain a Bézout relation of the form

UT + V Z = R

where U, V,R ∈ ZL[Y ], and moreover deg(U) ≤ dQ and deg(R) ≤ dP . Then
F = R/aU .

In order to obtain an upper bound on h(F ), we first bound h(S) from
above using proposition 4.4.2. Then, we use the following well-known fact
about the sizes of subresultants in ZL[Y ].

Lemma 4.5.6. Let P,Q ∈ ZL[Y ]\{0} be polynomials of degrees dP and dQ
respectively, and let 0 ≤ k ≤ min{dP , dQ}−1. Let R be the k-th subresultant
of P and Q, and let U and V be the associated Bézout coefficients. Write
s = dP + dQ. Then we have

h(R) ≤ (dQ − k) h(P ) + (dP − k) h(Q) +
s− 2k

2
log(s− 2k),

h(U) ≤ (dQ − k − 1) h(P ) + (dP − k) h(Q) +
s− 2k − 1

2
log(s− 2k − 1),

h(V ) ≤ (dQ − k) h(P ) + (dP − k − 1) h(Q) +
s− 2k − 1

2
log(s− 2k − 1).

For instance, lemma 4.5.6 bounds the sizes of the coefficients appearing
in the subresultant version of the Euclidean algorithm in Q(Y ).

Proof. Let v ∈ V∞L . Every coefficient r of R has an expression as the
determinant of a square matrix of size dP + dQ − 2k ; its entries in the
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first dQ− k columns are coefficients of P , and its entries in the last dP − k
columns are coefficients of Q. By Hadamard’s lemma, we can bound |r|v
by the product of L2-norms of the columns in this determinant. Hence

|r|v ≤
(√

dP + dQ − 2k |P |v
)dQ−k(√dP + dQ − 2k |Q|v

)dP−k.
Taking logarithms and summing over v, we obtain the desired height bound
on R. Similarly, the coefficients of U (resp. V ) are determinants of size dP +
dQ − 2k − 1, with one column less coming from P (resp. Q).

Proposition 4.5.7. Let JA,BK be an interval in Z, and let d ≥ 1. Write
D = B − A and M = max{|A| , |B|}. Let F ∈ L(Y )\{0} be a rational
fraction of degree d. Let dP and dQ be the degrees of the numerator and
denominator of F respectively. Let xi for 1 ≤ i ≤ dP + dQ + 1 be distinct
elements of JA,BK that are not poles of F , and assume that h(F (xi)) ≤ H
for every i. Then we can write F = P/Q where P,Q ∈ ZL[Y ] satisfy
degP = dP , degQ = dQ, and

max{h(P ), h(Q)} ≤ (d+ 1)(2d+ 1)H + (d+ 1)D log(D)

+ (4d2 + 3d) log(2M) + (2d+ 2) log(2d+ 1)

+ (d+ 1)C,

where C denotes the constant from proposition 4.5.5.

Proof. Let S, a, T,R, U, V be as in the interpolation algorithm above; to
choose a, we use proposition 4.5.5, so that

max{h(a), h(T )} ≤ h(S) + C.

By proposition 4.4.2, we have

h(S) ≤ (2d+ 1)H +D log(D) + 2d log(2M) + log(2d+ 1). (4.6)

The absolute values of the coefficients of Z are bounded above by (2M)2d+1,
hence

h(Z) ≤ (2d+ 1) log(2M).

By lemma 4.5.6, we have

h(R) ≤ (d+ 1) h(T ) + d(2d+ 1) log(2M) +
2d+ 1

2
log(2d+ 1),

h(U) ≤ d h(T ) + d(2d+ 1) log(2M) + d log(2d+ 1).
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Then F = R/aU . Therefore

h(F ) ≤ max{h(R), h(a) + h(U)}

≤ (d+ 1)(h(S) + C) + d(2d+ 1) log(2M) +
2d+ 1

2
log(2d+ 1).

We conclude using the upper bound (4.6) on h(S).

As mentioned in §4.1, the upper bound on h(F ) in proposition 4.5.7 is
roughly O(d2H). This motivates a result like proposition 4.1.2, where the
dependency on H is only linear.

4.5.3 Some preparatory lemmas

In this section, we state preparatory lemmas for the proof of proposi-
tion 4.1.2 in §4.5.4; the reader might wish to skip them until their use in
the proof becomes apparent.

Lemma 4.5.8. Let JA,BK ⊂ Z, let D = B − A, and let η ≥ 1. Let S be
a subset of JA,BK containing at least D/η elements, and let 1 ≤ k ≤ D

2η

be an integer. Then there exists a subinterval of JA,BK of amplitude at
most d2ηke containing at least k + 1 elements of S.

Recall that the amplitude of JA,BK is B − A.

Proof. Assume the contrary. We can partition JA,BK in at most
⌈
D

2ηk

⌉
intervals of amplitude at most d2ηke, hence

D

η
≤ #S ≤ k

⌈
D

2ηk

⌉
<
D

2η
+ k.

This is absurd because k ≤ D
2η
.

Lemma 4.5.9. Let R ∈ ZL\{0} be a non-unit. Then

∑
p∈PL, p|R
p|p∈PQ

log(NL/Q(p))

p− 1
≤ dL(2 log log

∣∣NL/Q(R)
∣∣+ 3.5). (4.7)

The sum is over all prime ideals p of L diving R, and p ∈ PQ denotes
the prime lying under p.
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Proof. First, we assume that L = Q, so that R ∈ Z and |R| ≥ 2. Let m be
the number of prime factors of R, and let (pi)i≥1 be the sequence of primes
in increasing order. It is enough to prove (4.7) for R′ =

∏m
i=1 pi, which has

both a greater left hand side, since log(p)/(p− 1) is a decreasing function
of p, and a smaller right hand side, since R′ ≤ R. We can assume that
m ≥ 2. Then

m∑
i=1

log(pi)

pi − 1
=

m∑
i=1

log(pi)

pi
+

m∑
i=1

log(pi)

pi(pi − 1)
≤ log(pm) + 3

by Mertens’s first theorem [Mer74], and because the sum of the second
series is less than 0.76. By [Ros41], we have pm < m logm+m log logm if
m ≥ 6; so the rough bound pm ≤ m2 holds. Since m ≤ log(R′)/ log(2), the
result in the case L = Q follows.

In the general case, if p|R lies above p ∈ PQ, then p divides NL/Q(R),
and

∣∣NL/Q(R)
∣∣ ≥ 2. We apply lemma 4.5.9 to the integer NL/Q(R) ∈ Z:

hence∑
p|R

log(NL/Q(p))

p− 1
≤

∑
p|NL/Q(R)

∑
p|p log(NL/Q(p))

p− 1

= dL
∑

p|NL/Q(R)

log(p)

p− 1
≤ dL(2 log log

∣∣NL/Q(R)
∣∣+ 3.5).

Lemma 4.5.10. Let p ∈ PL be a prime ideal lying over p ∈ PQ, and let Lp

be the p-adic completion of L. Let d ≥ 0, let Q ∈ Lp[Y ]\{0} be a polynomial
of degree d, and assume that vp(Q) = 0. Let x1, . . . , xn be distinct elements
of JA,BK, and write D = B − A; assume that D ≥ 1. Let β ∈ N. Then

n∑
i=1

min{β, vp(Q(yi))} ≤ d

(
β + dL

log(D)

logNL/Q(p)
+

D

p− 1

)
. (4.8)

Proof. We can assume that d ≥ 1. Let λ be the leading coefficient of Q,
and let α1, . . . , αd be the roots of Q in an algebraic closure of Lp, where we
extend |·|p and vp. Up to reindexation, we may assume that |αj|p ≤ 1 for
1 ≤ j ≤ t, and |αj|p > 1 for t+ 1 ≤ j ≤ d. For every i, we have

|Q(xi)|p = |λ|p
d∏
i=1

|xi − αj|p =

(
|λ|p

d∏
j=t+1

|αj|p

) t∏
j=1

|xi − αj|p .

We must have

|λ|p
d∏

j=t+1

|αj|p ≥ 1,
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for otherwise all the coefficients of Q would belong to p. Therefore

vp(Q(xi)) ≤
t∑

j=1

vp(xi − αj).

Let k ∈ N such that pk ≤ D < pk+1. Since the xi are all distinct
modulo pk+1, there are at most d values of i such that vp(xi − αj) > k
for some j. For these indices i, we bound min{β, vp(Q(xi))} by β. This
accounts for the term dβ in inequality (4.8).

For all other values of i (say i ∈ I), we have vp(xi − αj) ≤ k. Thus, for
every 1 ≤ j ≤ t, we have

vp(xi − αj) =

∫ k

0

1u≤vp(xi−αj)du.

Any two xi that fall in the same disk {u ≤ vp(x − αj)} coincide mod-
ulo pdue. Therefore, for a given αj, and a given u ∈ ]l, l + 1], there exist at
most dD/pl+1e values of i such that xi belongs to this disk. Therefore

∑
i∈I

vp(Q(xi)) ≤
∑
i∈I

t∑
j=1

vp(xi − αj)

=
∑
i∈I

t∑
j=1

k−1∑
l=0

∫ l+1

l

1u≤vp(xi−αj)du

=
t∑

j=1

k−1∑
l=0

∫ l+1

l

(∑
i∈I

1u≤vp(xi−αj)

)
du

≤ t

k−1∑
l=0

⌈
D

pl+1

⌉
≤ t

k−1∑
l=0

(
D

pl+1
+ 1

)
≤ tk +

tD

p− 1
.

We have t ≤ d, and

k ≤ log(D)

log(p)
≤ dL

log(D)

logNL/Q(p)
.

This accounts for the two remaining terms in inequality (4.8).

4.5.4 Main result

Finally, we prove propositions 4.1.2 and 4.1.3. We recall the statements
for convenience.
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Proposition 4.5.11. Let L be a number field, and let JA,BK be an interval
in Z. Write D = B − A and M = max{|A| , |B|}. Let F ∈ L(Y ) be
a rational fraction of degree at most d ≥ 1. Let S be a subset of JA,BK
containing no poles of F , let η ≥ 1, and let H ≥ max{4, log(2M)}. Assume
further that

1. h(F (x)) ≤ H for every x ∈ S.
2. S contains at least D/η elements.

3. D ≥ max{ηd3H, 4ηddL}.

Then we have

h(F ) ≤ H + CLηd log(ηdH) + d log(2M) + log(d+ 1),

where CL is a constant depending only on L. We can take CQ = 960.

Proof. We can assume that F 6= 0. We have D ≥ 4ηd, so by lemma 4.5.8
with k = 2d, we can find a subinterval JA′, B′K of JA,BK with amplitude
at most d4ηde containing 2d + 1 elements of S, denoted by x1, . . . , x2d+1.
We use these xi as evaluation points in proposition 4.5.7: we can write
F = P/Q where P,Q ∈ ZL[X] have the correct degrees and

max{h(P ), h(Q)} ≤ (d+ 1)(2d+ 1)H + 2d d4ηde log(d4ηde)
+ (4d2 + 3d) log(2M) + (2d+ 2) log(2d+ 1) + (d+ 1)C1

≤ (27 + C1)ηd2H

where C1 is the constant from proposition 4.5.3, which depends only on L.
To simplify the right hand side, we use the inequalities 1 ≤ d, 1 ≤ η,
d4ηde ≤ D ≤ 2M , d4ηde ≤ 5ηd, and log(2M) ≤ H.

Let x ∈ S, and define the ideals sx, nx and dx of ZL as above:

sx = gcd(P (x), Q(x)), (P (x)) = nxsx, (Q(x)) = dxsx.

Let r be the greatest common divisor of all the coefficients of P and Q.

Claim 4.5.12. There exists a constant CL depending only on L such that
the following property holds: there exist at least 2ddL + 1 elements x of S
such that

h̃(sx) ≤ h̃(r) + CLηd log(ηdH).

Let us explain how to finish the proof of proposition 4.5.11 if claim 4.5.12
holds. By lemma 4.4.4, we can find an x ∈ S among these 2ddL + 1 values
such that for every v ∈ V∞L , we have

|P (x)|v ≥
|P |v

(2M)d(d+ 1)
and |Q(x)|v ≥

|Q|v
(2M)d(d+ 1)

.

154



Then, we can calculate h(F ) as∑
v∈V∞L

dv
dL

log max{|P |v , |Q|v} − h̃(r)

≤
∑
v∈V∞L

dv
dL

log max{|P (x)|v , |Q(x)|v} − h̃(r) + d log(2M) + log(d+ 1)

≤
∑
v∈VL

dv
dL

log max{|P (x)|v , |Q(x)|v}+ h̃(sx)− h̃(r) + d log(2M) + log(d+ 1)

≤ H + CLηd log(ηdH) + d log(2M) + log(d+ 1),

as claimed.
In order to prove claim 4.5.12, a crucial remark is that sx divides the

resultant R of P and Q. By lemma 4.5.6, we have

h(R) ≤ d h(P ) + d h(Q) + d log(2d) ≤ (55 + 2C1)ηd3H.

Let p ∈ PL be a prime factor of R with valuation βp, and let I be a subset
of S with n elements. We claim that∑

x∈I

vp(sx) ≤ n vp(r) + d

(
βp + dL

log(D)

logNL/Q(p)
+

D

p− 1

)
. (4.9)

To prove (4.9), we can work in the p-adic completion Lp of L. Let π be a
uniformizer of Lp, and let r = min{vp(P ), vp(Q)} be the p-adic valuation
of r. Write P1 = P/πr, Q1 = Q/πr. Then one of P1 and Q1 is not divisible
by π; for instance, assume that π does not divide Q1. For every x ∈ S, we
have

vp(sx) ≤ min
{
βp, vp(Q(x))} ≤ vp(r) + min

{
βp, vp(Q1(x))

}
.

Thus inequality (4.9) follows from lemma 4.5.10.
Summing over the prime factors p of R, we obtain an upper bound on

the product of the norms of the ideals sx, for x ∈ I. We can assume that R
is not a unit, otherwise claim 4.5.12 holds trivially. Then∣∣∣∣∣∏

x∈I

NL/Q(sx)

∣∣∣∣∣ ≤ NL/Q(r)n
∣∣NL/Q(R)

∣∣d
· exp

( ∑
p∈PL, p|R
p|p∈PQ

(
ddL log(D) + dD

logNL/Q(p)

p− 1

))

≤ NL/Q(r)n
∣∣NL/Q(R)

∣∣d
· exp

(
ddL log(D) log

∣∣NL/Q(R)
∣∣ / log(2)

+ ddLD(log log
∣∣NL/Q(R)

∣∣+ 3.5)
)
.
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Indeed, R has at most log
∣∣NL/Q(R)

∣∣ / log(2) prime factors, and we can
apply lemma 4.5.9. Since h̃(R) ≤ (55 + 2C1)ηd3H, we obtain∑

x∈I

h̃(sx) ≤ n h̃(r) + d h̃(R) + ddL
log(D)

log(2)
h̃(R)

+ dD(log log
∣∣NL/Q(R)

∣∣+ 3.5)

≤ n h̃(r) + C2(ηd4H log(D) + dD log(ηdH))

with

C2 = max

{
3dL(55 + 2C1)

2 log(2)
, 6.5 + log(dL) + log(55 + 2C1)

}
.

Here we use that log(ηdH) ≥ 1, and log(D) ≥ 2 log 2.
Now we use the assumption that D and S are sufficiently large. Since

D ≥ ηd3H ≥ 4 > exp(1), and since the function t/ log(t) is increasing for
t > exp(1), we have

D

log(D)
≥ ηd3H

3 log(ηdH)
.

Moreover,

#S − 2ddL ≥
D

η
− D

2η
=
D

2η
.

Therefore, ∑
x∈I

h̃(sx) ≤ n h̃(r) + 4C2dD log(ηdH)

≤ n h̃(r) + 8C2ηd log(ηdH)(#S − 2ddL).

This shows that in every subset of #S − 2ddL elements of S, at least
one must satisfy h̃(sx) ≤ h̃(r) + 8C2ηd log(ηdH). Therefore claim 4.5.12
holds with C = 8C2.

If L = Q, we have C1 = 0, hence we can take C2 = 120.

We conclude this chapter with the proof of proposition 4.1.3.

Proposition 4.5.13. Let c ≥ 1, let d ≥ 1, and let F ∈ Q(Y ) be a rational
fraction of degree at most d. Let V ⊂ Z be a finite set such that F has no
poles in Z\V . Assume that for every x ∈ Z\V , we have

h(F (x)) ≤ cmax{1, d log d+ d h(x)}.

Then there exists a constant C = C(c,#V ) such that

h(F ) ≤ Cd log(4d).

We can take C = (4c+ 1923)
(
12 + log max{1,#V }+ 2 log(c)

)
.
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Proof. We want to use proposition 4.1.2 on an interval of the form J0, DK
for some integer D ≥ 4d, with η = 2 and S = J0, DK \V . The set S will
contain at least D/η elements as soon as D ≥ 2#V .

For every x ∈ S, we have h̃(x) ≤ log(D), hence

h(F (x)) ≤ cmax{1, d log d+ d logD}.

Hence, if we define H(D) as

H(D) = max{4, log(2D), c(d log d+ d logD)},

then we can apply proposition 4.1.2 with H = H(D) as soon as

D ≥ 2d3H(D).

We check that we can take

D = max{2#V,
⌈
4cd4 log(4cd4)

⌉
}.

Then, proposition 4.1.2 yields

h(F ) ≤ H(D) + 1920d log(2dH(D)) + d log(2D) + log(d+ 1).

We have H(D) ≤ 4cd log(dD) and 2dH(D) ≤ D, hence

h(F ) ≤ 4cd log(dD) + 1920d log(D) + d log(2D) + log(d+ 1)

≤ (4c+ 1923)d log(dD)

≤ (4c+ 1923)d(log(2dmax{1,#V }) + log(5cd5 log(4cd4)))

To simplify this expression further, we write

log(5cd5 log(4cd4)) ≤ log(20c2d9) ≤ 3 + 2 log(c) + 9 log(d),

hence, after other simplifications,

h(F ) ≤ Cd log(4d)

with
C = (4c+ 1923)(12 + log max{1,#V }+ 2 log(c)),

as claimed.
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Chapter 5

Degree and height bounds for
modular equations

This chapter, which corresponds to the preprint [Kie20a], presents upper
bounds on the size of modular equations on PEL Shimura varieties in terms
of their level. Let us recall the notation introduced in chapter 2.

We fix a PEL datum (B, ∗, V, ψ,G,X+). Let K be a compact open
subgroup of G(Af ), and let Σ be a finite group of automorphisms of V as
in §2.2.4. Let n be the complex dimension of X+; we assume that n ≥ 1.
Let S and T be connected components of ShK(G,X+)(C), and let L be
their field of definition. We fix a choice of invariants j1, . . . , jn+1 as in §2.4.
These modular functions satisfy eq. (2.17):

E(j1, . . . , jn+1) = 0, (5.1)

where

E =
e∑

k=0

Ek(J1, . . . , Jn) J k
n+1 ∈ L[J1, . . . , Jn+1]

and E is irreducible. Our estimates on the size of modular equations involve
constants depending only on this data.

Let δ ∈ G(Af ) be an element of G defining an absolutely irreducible
Hecke correspondence Hδ that intersects S × T nontrivially. In §2.4.3, we
defined the modular equations Ψδ,m for 1 ≤ m ≤ n + 1; they are elements
of the ring L(J1, . . . , Jn)[Jn+1, Y1, . . . , Ym] of degree at most e− 1 in Jn+1,
defining the Hecke correspondence Hδ as a subvariety of S×T . The degree
of Hδ is denoted by d(δ), and the degree of the isogenies described by Hδ in
the modular interpretation (recall corollary 2.4.2) is denoted by l(δ). Our
main theorem, stated as theorem 1.4.3 in chapter 1, is the following.
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Theorem 5.0.1. Using the notation above, there exist constants C1 and C2

(independent of δ) with the following property. Let δ ∈ G(Af ) be as above,
and let F ∈ L(J1, . . . , Jn) be a rational fraction obtained as a coefficient
of one of the modular equations Ψδ,m for 1 ≤ m ≤ n + 1. Then the total
degree of F is bounded above by C1 d(δ), and the height of F is bounded
above by C2 d(δ) log(l(δ)).

We refer to §4.2 for the definition of h(F ). This result allows us to bound
the complexity of algorithms manipulating modular equations, and was
previously known only in the case of elliptic modular polynomials [Coh84].
In the case of Siegel modular equations for abelian surfaces, and Hilbert
modular equations in Gundlach invariants for F = Q(

√
5) (recall §2.4.4),

the constants C1 and C2 are explicit: see propositions 5.1.15 and 5.1.17,
and theorem 5.2.13. In particular, the degree bounds we obtain match
experimental data exactly; on the other hand the constant C2 is far too
pessimistic for algorithmic use.

The strategy to prove the degree bounds is to exhibit a particular modu-
lar form that behaves as the denominator of Ψδ,m, and to control its weight.
Then, we show that rewriting quotients of modular forms in terms of the
chosen coordinates j1, . . . , jn+1 translates bounded weights into bounded
degrees. Giving an explicit expression of the denominator will also be use-
ful in chapter 6. The proof of height bounds is inspired by previous works
on elliptic modular polynomials [Paz19]. We prove height bounds on eval-
uations of modular equations at certain points using well-known results on
the Faltings height of isogenous abelian varieties [Fal83]. Then we use the
tight relation between the height of a rational fraction over a number field
and the height of its evaluations at sufficiently many points provided by
proposition 4.1.2, the main result of chapter 4.

5.1 Degree bounds for modular equations

5.1.1 Denominators of modular equations

We keep the notation used in §2.4.3: in particular

K ′ = K ∩ δKδ−1, K0 = K o Σ,

and K ′′ is a normal subgroup of finite index in K, contained in K ′ and
stabilized by Σ. The natural action of K0 on modular functions of level K ′′
extends to modular forms.

For each 1 ≤ i ≤ n+ 1, fix a nonzero modular form χi invariant under Σ
and defined over L such that χiji is again a modular form (i.e. has no poles);
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we say that χi is a denominator of ji. This is possible by proposition 2.2.13.
For each i, the function

χi,δ : [x, g] 7→ χi([x, gδ])

is a modular form of weight wt(χi) on the preimage of S in ShK′(C). We
define the functions gδ,m for 1 ≤ m ≤ n+ 1 as

gδ,m =
m∏
i=1

∏
γ∈K0/K′

γ · χi,δ.

Lemma 5.1.1. For every 1 ≤ m ≤ n + 1, the function gδ,m is a nonzero
symmetric modular form on S, and

wt(gδ,m) = (#Σ) d(δ)
m∑
i=1

wt(χi).

Proof. We have #(K0/K
′) = (#Σ) d(δ). Therefore the function gδ,m is a

modular form of level K ′′ and weight
∑m

i=1 #(K0/K
′) wt(χi) by construc-

tion. Each modular form γ · χi,δ is nonzero on every connected component
of ShK′′(C) above S, so gδ,m is nonzero as well.

Acting by an element of K0 permutes the factors in the product defin-
ing gδ,m, so gδ,m is in fact a symmetric modular form on S.

Proposition 5.1.2. For every 1 ≤ m ≤ n + 1, the coefficients of the
multivariate polynomial gδ,mΨδ,m are symmetric modular forms on S.

Proof. By definition 2.4.6, the polynomial Ψδ,m is a sum of terms of the
form (

m−1∏
i=1

∏
γi

(
Yi − γi · ji,δ

)) ∏
γm∈Km−1/Km

(
Ym − γγm · jm,δ

)
where γ ∈ K0 is fixed, and the middle product is over all γi ∈ K0/Ki such
that γi = γ modulo Ki−1, but γi 6= γ modulo Ki. In this expression, all the
cosets γi and γγm are simultaneously disjoint as subsets of K0/K

′. Each
denominator is accounted for by some factor in the product defining gδ,m,
so the coefficients of gδ,mΨδ,m are modular forms.

When the invariants j1, . . . , jn+1 have similar denominators, it is possi-
ble to make a better choice for gδ,m.
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Proposition 5.1.3. Assume that there exists a modular form χ on S such
that χi = χαi for some integer αi ≥ 0, for every 1 ≤ i ≤ n + 1. Let
1 ≤ m ≤ n+ 1, and define

gδ,m =
(∏
γ∈K0

γ · χδ
)α
, where α = max

1≤i≤m
αi.

Then gδ,m is a nonzero symmetric modular form on S, and

wt(gδ,m) = (#Σ) d(δ)αwt(χ).

Moreover, the coefficients of gδ,mΨδ,m are symmetric modular forms on S.

The proof is similar to that of proposition 5.1.2, and omitted.

5.1.2 Writing modular functions in terms of invariants

Let f/g be a quotient of symmetric modular forms of weight w on S.
We show that when we rewrite such a quotient in terms of the invari-
ants j1, . . . , jn+1, the degree of the rational fractions we obtain is bounded
above linearly in w, with a proportionality constant depending on our
choice of invariants. In order to make this dependency explicit, we de-
fine the symmetric geometric complexity of our invariants as follows.

Definition 5.1.4. Let fk for 1 ≤ k ≤ r be nonzero generators over L for the
graded ring of symmetric modular forms on S, with respective weights wk.
For each 1 ≤ k ≤ r − 1, let βk ≥ 1 be the minimal integer such that

βkwk ∈ Zwk+1 + · · ·+ Zwr.

We can find nonzero modular forms λk, ξk ∈ L[fk+1, . . . , fr] such that
wt(λk)−wt(ξk) = βkwk. For every 1 ≤ k ≤ r− 1, the function ξkfβkk /λk is
a quotient of two symmetric modular forms of the same weight on S; hence
there exist polynomials Pk, Qk ∈ L[J1, . . . , Jn+1] such that

ξkf
βk
k

λk
=
Pk(j1, . . . , jn+1)

Qk(j1, . . . , jn+1)
.

We define the symmetric geometric complexity of j1, . . . , jn+1 relative to
the choice of fk, λk, ψk, Pk, Qk to be the positive rational number given by,
either
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1. (
1 + max

1≤k≤r−1

wt(ξk)

βkwk

)
max

1≤k≤r−1

deg(Pk)

βkwk + wt(ξk)
,

if the following conditions are satisfied: for every 1 ≤ k ≤ r − 1, the
modular forms λk and ξk are powers of fr and fr−1 respectively (in
particular ξr−1 = 1), and Qk = 1; or

2.
r−1∑
k=1

(
1

βkwk
max

{
deg(Pk), deg(Qk)

} k−1∏
l=1

(
1 +

wt(ξl)

βlwl

))
,

otherwise.

Note that formula 1, when it applies, yields a smaller result than formula 2.
We define the symmetric geometric complexity of the chosen coordi-

nates j1, . . . , jn+1, denoted by SGC(j1, . . . , jn+1), to be the infimum of this
quantity over all possible choices of modular forms fk, λk, ξk and polyno-
mials Pk, Qk.

Given definition 5.1.4, explicit upper bounds on the geometric complex-
ity are easy to obtain if a generating set of modular forms is known. Note
that the symmetric geometric complexity is invariant under permutations
of the invariants j1, . . . , jn+1, in contrast with their geometric complexity to
be defined in the next section, which takes into account the fact that jn+1

is considered differently in eq. (5.1).

Proposition 5.1.5. Let f, g be symmetric modular forms on S of weight w
such that g 6= 0. Then there exist polynomials P, Q ∈ L[J1, . . . , Jn+1] of
degree at most SGC(j1, . . . , jn+1)w such that

f

g
=
P (j1, . . . , jn+1)

Q(j1, . . . , jn+1)
.

Proof. We keep the notation used in definition 5.1.4, and choose gener-
ators fk for 1 ≤ k ≤ r, modular forms λk, ξk for 1 ≤ k ≤ r − 1, and
polynomials Pk, Qk ∈ L[J1, . . . , Jn+1] for 1 ≤ k ≤ r − 1. Let C be the
symmetric geometric complexity of j1, . . . , jn+1 relative to this choice.

Let f , g be as in the proposition. Then f and g can be expressed as a
sum of monomial terms of the form

cfα1
1 · · · fαrr with c ∈ L and

r∑
k=1

αkwk = w.
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We give algorithms to rewrite the fraction P/Q = f/g (currently a rational
fraction in terms of the modular forms fk) as a fraction in the invari-
ants j1, . . . , jn+1, and bound the total degree of the output.

Case 1 of definition 5.1.4. We assume that λk and ξk are powers of fr
and fr−1 respectively for every 1 ≤ k ≤ r−1. In this case, for each k ≤ r−2,
the integer βk can be seen as the order of wk in the group Z/(Zwr−1 +Zwr).
We can write

w =
r−2∑
k=1

skwk (mod Zwr−1 + Zwr)

for some integers 0 ≤ sk < βk, and this determines the integers sk uniquely
(if such a linear combination vanishes, considering the smallest nonzero sk
yields a contradiction). Then each monomial appearing in P and Q is
divisible by f s11 · · · f

sr−2

r−2 . After simplifying by this common factor, we can
assume that the common weight w of P and Q satisfies w ∈ Zwr−1 + Zwr.
Then, for each 1 ≤ k ≤ r − 2, the exponent of fk in each monomial of P
and Q is divisible by βk. For convenience, write

a = max
1≤k≤r−1

wt(ξk)

βkwk
.

In order to rewrite P/Q in terms of invariants, we proceed as follows.

1. Multiply P and Q by f baw/wt(fr−1)c
r−1 .

2. For each 1 ≤ k ≤ r − 2, replace each occurence of fβkk by λkPk/ξk
in P and Q.

3. Let 0 ≤ sr−1 < βr−1 be such that w = sr−1wr−1 mod wr, and divide P
and Q by f sr−1

r−1 .

4. Replace each occurence of fβr−1

r−1 by λr−1Pr−1 in P and Q.

5. Finally, divide P and Q by f (w−sr−1wr−1)/wr
r .

This algorithm runs independently on each monomial of P and Q.
Let M = c

∏r
k=1 f

αk
k , with c ∈ L, be such a monomial after step 1. Let us

show that the exponent of fr−1 in M remains nonnegative after step 2. In
this step, we introduce a denominator given by

r−2∏
k=1

ξ
αk/βk
k =

r−2∏
k=1

f
wt(ξk)αk

wt(fr−1)βk

r−1 .

We have
r−2∑
k=1

wt(ξk)αk
wt(fr−1)βk

≤ a
r−2∑
k=1

αkwk
wt(fr−1)

≤ aw

wt(fr−1)
,
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hence
r−2∑
k=1

wt(ξk)αk
wt(fr−1)βk

≤
⌊

aw

wt(fr−1)

⌋
≤ αr−1 by step 1

because the left hand side is an integer. Therefore, at the end of step 2, M
belongs to the polynomial ring L[J1, . . . , Jn+1][fr−1, fr]. Therefore we have
M ∈ L[J1, . . . , Jn+1][f

βr−1

r−1 , fr] after step 3, and finally M ∈ L[J1, . . . , Jn+1]
after step 5.

It remains to bound the total degree of M after step 5. To do this, we
consider the total weight of M in f1, . . . , fr−1. For each 1 ≤ k ≤ r− 1, the
modular form λk is a power of fr; hence replacing fβkk by λkPk/ξk in steps 2
or 4 reduces this weight by βkwk + wt(ξk), and increases the total degree
of M in J1, . . . , Jn+1 by at most deg(Pk). At the beginning of step 2, the
total weight of M in f1, . . . , fr−1 is at most (1 + a)w. Therefore the total
degree of M in J1, . . . , Jn+1 at the end of the algorithm is bounded above
by

(1 + a)w max
1≤k≤r−1

deg(Pk)

βkwk + deg(ξk)
= Cw

which is the desired result.
Case 2 of definition 5.1.4. In the general case, we perform replacements

and simplifications in a sequential way. We start by defining integers zk, dk
for 0 ≤ k ≤ r − 1 and sk, ak for 1 ≤ k ≤ r − 1 by induction as follows:

• z0 = w and d0 = 0;

• For each 1 ≤ k ≤ r, the integer 0 ≤ sk < βk is defined by the relation

zk−1 = skwk (mod Zwk+1 + · · ·+ Zwr);

• ak =

⌊
zk−1

βkwk

⌋
for each 1 ≤ k ≤ r − 1;

• zk = zk−1 − skwk + ak wt(ξk) for each 1 ≤ k ≤ r − 1;

• dk = dk−1 + ak max{deg(Pk), deg(Qk)} for each 1 ≤ k ≤ r − 1.

In order to rewrite P/Q in terms of invariants, we proceed as follows.
For k = 1 up to r − 1, do:

1. Divide P and Q by f skk ;

2. Replace each occurence of fβkk by
λkPk
ξkQk

in P and Q;

3. Multiply P and Q by ξakk Q
ak
k .
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Finally, simplify the remaining occurences of fr. We prove the following
statement (?)k by induction for every 1 ≤ k ≤ r:

At the beginning of the k-th loop, the polynomials P and Q are elements
of weight zk−1 in the ring L[J1, . . . , Jn+1][fk, . . . , fr], with total degree at
most dk−1 in J1, . . . , Jn+1, such that

f

g
=
P (j1, . . . , jn+1)

Q(j1, . . . , jn+1)
.

The statement (?)1 is true by definition of z0 and d0; assume that (?)k
is true. Then we see, in order, that during the k-th loop:

• zk−1 ∈
∑r

i=k Zwi, hence sk is well defined.

• In each monomial of P and Q, the exponent of fk is of the form
aβk+sk for some integer a ≤ ak. Therefore step 1 is an exact division,
and after step 2 there are no more occurences of fk in P or Q.

• After step 3, P and Q are elements of L[J1, . . . , Jn+1][fk+1, . . . , fr] of
weight

zk−1 − skwk + ak wt(ξk) = zk.

It remains to show that the degree of P, Q in J1, . . . , Jn+1 is bounded
by dk after step 3. This comes from the following observation: during the
k-th loop, we only multiply the polynomials in J1, . . . , Jn+1 already present
by P b

kQ
ak−b
k for some 0 ≤ b ≤ ak. This proves (?)k for all 1 ≤ k ≤ r.

At the end of the algorithm, all the occurences of fr disappear. There-
fore we obtain polynomials P, Q with total degree at most dr−1 such that

f

g
=
P (j1, . . . , jn+1)

Q(j1, . . . , jn+1)
.

By induction, we obtain

zk ≤ w
k∏
l=1

(
1 +

wt(ξl)

βlwl

)
and

dr−1 ≤
r−1∑
k=1

(
w

βkwk
max{deg(Pk), deg(Qk)}

k−1∏
l=1

(
1 +

wt(ξl)

βlwl

))
= Cw.
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5.1.3 Degree bounds in canonical form

Recall that the modular function jn+1 satisfies eq. (5.1) on S: we
have E(j1, . . . , jn+1) = 0 where

E =
e∑

k=0

Ek(J1, . . . , Jn) J k
n+1 ∈ L[J1, . . . , Jn+1]

has degree e in Jn+1 and is irreducible. Let dE denote the total degree of E
in the variables J1, . . . , Jn.

In this section, we work in the ring L(J1, . . . , Jn)[Jn+1] modulo E. We
say that a fraction R ∈ L(J1, . . . , Jn+1) is in canonical form if R is a
polynomial in Jn+1 of degree at most e− 1.

Proposition 5.1.6. Let P, Q ∈ L[J1, . . . , Jn+1] be polynomials with total
degree at most d, and assume that Q(j1, . . . , jn+1) is not identically zero.
Let R ∈ L(J1, . . . , Jn)[Jn+1] be the fraction in canonical form such that
P/Q = R mod E. Then the total degree of R in J1, . . . , Jn is bounded
above by (e+ 2dE)d.

Proof. In this proof, degrees and coefficients are taken with respect to the
variable Jn+1 unless otherwise specified. First, we invert the denomina-
tor Q. Consider the resultant

Z = ResJn+1(Q,E) ∈ L[J1, . . . , Jn],

which is nonzero by hypothesis. Let U, V ∈ L[j1, . . . , jn+1] be the associ-
ated Bézout coefficients, so that

Z = UQ+ V E.

The inverse of Q modulo E is U/Z, hence P/Q = UP/Z mod E.
Recall that Z (resp.Q) has a polynomial expression of degree e (resp. de-

gree e − 1) in the coefficients of Q, and degree deg(Q) in the coefficients
of E. Since the total degree of Q is at most d, the total degrees of Z
and UP in J1, . . . , Jn are bounded above by d(e + dE). The degree of UP
in Jn+1 is at most d+ e− 1.

Now, we reduce UP/Z modulo E to obtain a numerator of degree at
most e− 1 in Jn+1. We can decrease this degree by 1 by multiplying above
and below by Ee(J1, . . . , Jn) and using the relation

EeJ
e
n+1 = −

e−1∑
k=0

Ek J
k
n+1 mod E.
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When doing so, the total degree in J1, . . . , Jn increases by at most dE.
This operation is done at most d times; the result has total degree at
most (e+ 2dE)d in J1, . . . , Jn and e− 1 in Jn+1.

Definition 5.1.7. The geometric complexity of the invariants j1, . . . , jn+1

is defined as

GC(j1, . . . , jn+1) = (e+ 2dE) SGC(j1, . . . , jn+1) + e− 1.

This quantity depends on the choice of jn+1 as a distinguished invariant.

Proposition 5.1.8. Let f and g be symmetric modular forms on S of
weight w, and assume that g 6= 0. Let R ∈ L(J1, . . . , Jn)[Jn+1] be the
rational fraction in canonical form such that

f

g
= R(j1, . . . , jn+1).

Then the degree of R in J1, . . . , Jn+1 is bounded above by GC(j1, . . . , jn+1)w.

Proof. Combine propositions 5.1.5 and 5.1.6.

We are ready to prove the first part of theorem 5.0.1 on degree bounds
for modular equations, with an explicit expression for the constant C1.

Theorem 5.1.9. Let Hδ be an absolutely irreducible Hecke correspondence
on S × T defined by δ ∈ G(Af ), and let d(δ) be the degree of Hδ. For
each 1 ≤ i ≤ n + 1, let χi be a denominator of the modular function ji as
in §5.1.1. Let F ∈ L(J1, . . . , Jn)[Jn+1] be a coefficient of one of the modular
equations Ψδ,m for 1 ≤ m ≤ n + 1. Then the total degree of F is bounded
above by C d(δ), where C is a constant independent of δ; more precisely we
can take C = GC(j1, . . . , jn+1) (#Σ)

∑m
i=1 wt(χi).

Proof. Let gδ,m be the modular form on S defined in §5.1.1. By propo-
sition 5.1.2, the modular function F (j1, . . . , jn+1) is of the form f/gδ,m,
where f is a modular form on S of weight wt(gδ,m). By lemma 5.1.1, we
have

wt(gδ,m) = (#Σ) d(δ)
m∑
i=1

wt(χi),

so the result follows from proposition 5.1.8.
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5.1.4 Complete denominators in dimension 2

In the case of Siegel modular equations for abelian surfaces, and Hilbert
modular equations for the real quadratic field F = Q(

√
5), it is possible

to refine the choice of denominator gδ,m in such a way that the coefficients
of gδ,mΨδ,m are defined over Z, i.e. have integral Fourier coefficients. This
refinement is not necessary to obtain explicit degree bounds for these mod-
ular equations (see §5.1.5), but will be useful in the evaluation algorithm
of chapter 6.

Recall from §2.4.4 that for each prime `, the Siegel modular equations
of level ` are denoted by Ψ`,k ∈ Q(J1, J2, J3)[Y ] for 1 ≤ k ≤ 3. Similarly,
for each totally positive prime β ∈ ZF , the Hilbert modular equations of
level β in Gundlach invariants are denoted by Ψβ,1,Ψβ,2 ∈ Q(J1, J2)[Y ]. In
both cases, the underlying moduli space S is rational.

The Siegel case. We call a polynomial D` ∈ Z[J1, J2, J3] a complete
denominator of the Siegel modular equations Ψ`,k if for each 1 ≤ k ≤ 3, we
have

D`Ψ`,k ∈ Z[J1, J2, J3, Y ].

Our goal is to construct a complete denominator for the Siegel modular
equations, given by an analytic formula. Let C` be a set of representatives
for the quotient Γ0(`)\ Sp4(Z), the congruence subgroup Γ0(`) being defined
by eq. (3.1). For every τ ∈ H2, we define

g`(τ) =
∏
η∈C`

det(η∗τ)−20h2
10(1

`
ητ).

One can check that the function g` is independent of the choice of C`, and
is a Siegel modular form of weight

w` = 20(`3 + `2 + `+ 1).

Under the correspondence of §2.3.2, the Siegel modular form g` is the clas-
sical analogue of the modular form gδ,m for m = 2 or m = 3 defined in
proposition 5.1.3, if we choose the modular forms h10, h

2
10, h

2
10 as denomi-

nators for the Igusa invariants j1, j2, j3 respectively.
For every τ ∈ H2 and 0 ≤ i ≤ `3 + `2 + ` + 1, we define f (i)

`,k(τ) as
the coefficient of Y i in the polynomial g`(τ)Ψ`,k(j1(τ), j2(τ), j3(τ)) ∈ C[Y ].
The functions f (i)

`,k are holomorphic on H2, and also are Siegel modular
forms of weight w` by proposition 5.1.3.

Proposition 5.1.10. The modular forms g` and f
(i)
`,k are defined over Z.
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Proof. Both the Hecke correspondence and the modular form h10 are de-
fined over Q, therefore the modular form g` is defined over Q as well. This
is also the case of the modular forms f (i)

`,k , because the coefficients of Siegel
modular equations are defined over Q as modular functions. Therefore we
only have to show that their Fourier coefficients are algebraic integers.

Let f be a Siegel modular form on H2 of weight k defined over Z, and
let η ∈ C`. We claim that the function

h(τ) = det(η∗τ)−kf(1
`
ητ)

has a Fourier expansion in terms of exp(2πizj(τ)/`2) for 1 ≤ j ≤ 3, where
we write

τ =

(
z1(τ) z3(τ)
z3(τ) z2(τ)

)
,

with coefficients in the ring Z[exp(2πi/`2)]. This claim implies proposi-
tion 5.1.10 because g` and f

(i)
`,k are polynomials in such functions.

In order to compute the Fourier expansion of h(τ), we compute a matrix
ηR ∈ Sp4(Z) such that the transformation τ 7→ ηR(1

`
ητ) leaves the cusp at

infinity “invariant”. More precisely, writing 4× 4 matrices in 2× 2 blocks,
we require that

ηR
(
a b
`c `d

)
=

(
Aη Bη

0 Dη

)
, where η =

(
a b
c d

)
.

To compute ηR, we proceed as follows. Denote by 〈·, ·〉 the standard al-
ternating form

(
0 I2
−I2 0

)
on Q4. Let u1, u2 ∈ Z4 be the two columns of the

4 × 2 matrix
(−`c
a

)
. Then 〈u1, u2〉 = 0, hence u1 and u2 are contained in

an isotropic subspace V ⊂ Q4 of dimension 2. The two last lines of ηR are
given by a basis of Z4 ∩ V , and we complete them into a symplectic basis
of Z4 to obtain ηR.

A possible choice of C` consists of the `3 + `2 + `+ 1 following matrices
[Dup06, Prop. 10.1]:

• T1(a, b, c) =
(
−I2 a b

b c
0 −I2

)
for a, b, c ∈ J0, `− 1K,

• T2(a, b, c) =
(

0 −I2
I2
−a −b
−b −c

)
for a, b, c ∈ J0, `− 1K such that ac = b2 mod `,

• T3(a) =

( −1 −a 0 0
0 0 −a 1
0 0 −1 0
0 −1 0 0

)
for a ∈ J0, `− 1K, and

• T4 =

(
0 1 0 0
0 1 1 0
1 −1 1 1
−1 1 0 0

)
.
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Let us detail a possible choice of ηR for all these matrices.

• If η = T1(a, b, c), we take

ηR = I4, Dη = −`I2, detDη = `2.

• If η = T2(a, b, c), we take

ηR =

(
0 I2

−I2 0

)
, Dη = I2, detDη = 1.

• If η = T3(a), we take

ηR =

(
0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0

)
, Dη =

(
−a 1
−` 0

)
, detDη = `.

• If η = T4, we take

ηR =

(
1 0 0 0
0 ` 0 1
−` ` 1 1
1 −1 0 0

)
, Dη =

(
2` `
−1 0

)
, detDη = `.

Then we have

h(τ) = det(η∗τ)−k det
(
ηR∗(1

`
ητ)
)−k

f
(
(Aητ +Bη)D

−1
η

)
= `2k det(Dη)

−kf
(
(Aητ +Bη)D

−1
η

)
.

We develop f
(
(Aητ + Bη)D

−1
η

)
using the Fourier expansion of f , and ob-

tain an expansion with coefficients in Z[exp(2πi/`2)] in terms of the quan-
tities exp(2πizj(τ)/`2) for 1 ≤ j ≤ 3. Moreover det(Dη)

−k`2k ∈ Z.

The computations in the proof of proposition 5.1.10 show that g` is
divisible by `20(2`2+`+1), but we do not need this fact. We finally define

D`(τ) = 12w`
h4(τ)bw`/6c

h10(τ)ah4(τ)b

∏
η∈C`

det(η∗τ)−20h2
10(1

`
ητ), (5.2)

where a, b are such that 4bw`/6c+ w` = 10a+ 4b with 0 ≤ b ≤ 4.

Proposition 5.1.11. D` ∈ Z[J1, J2, J3], and D`Ψ`,k ∈ Z[J1, J2, J3, Y ] for
each 1 ≤ k ≤ 3.
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Proof. By propositions 2.3.7 and 5.1.10, we know that

12w`g` ∈ Z[h4, h6, h10, h12], and 12w`f
(i)
`,k ∈ Z[h4, h6, h10, h12] for all k, i.

Moreover, using the equalities

h4h6 = j1h10, h2
4h12 = j2h

2
10, h5

4 = j3h
2
10,

one can show (following the proof of proposition 5.1.5) that for every mod-
ular form f ∈ Z[h4, h6, h10, h12] of weight k, we have

h
bk/6c
4 f

ha10h
b
4

∈ Z[j1, j2, j3]

where a, b are such that 4bk/6c+ k = 10a+ 4b and 0 ≤ b ≤ 4.

The Hilbert case. Fix F = Q(
√

5), and let β ∈ ZF be a totally positive
prime. We call Dβ ∈ Z[J1, J2] a complete denominator of the Hilbert
modular polynomials Ψβ,k if for each 1 ≤ k ≤ 2, we have

DβΨβ,k ∈ Z[J1, J2, Y ].

We construct a complete denominator given by an analytic formula, as in
the Siegel case.

Recall that the subgroup Γ0(β) of Γ(1)F = SL(ZF ⊕ ∂−1
F ) is defined by

Γ0
F (β) = {( a bc d ) ∈ Γ(1)F : b = 0 mod β} .

Let ∆ = 5 be the discriminant of F , and write ` = NF/Q(β). A set Cβ of
representatives for the quotient Γ0(β)\Γ(1)F consists of the `+ 1 following
matrices:(

0
√

∆

−1/
√

∆ 0

)
, and

(
1 a
√

∆
0 1

)
for a ∈ J0, `− 1K ,

Let σ denote the real conjugation automorphism in F ; it induces an auto-
morphism of H2

1 given by σ((τ1, τ2)) = (τ2, τ1). A set of representatives for
the quotient Γ0(β)\

(
Γ(1)F o 〈σ〉

)
is given by Cσ

β := Cβ t Cβσ.
For every τ ∈ H2

1, we define

gβ(τ) =
∏
η∈Cσβ

(η∗τ)−10F10( 1
β
ητ).
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We can show that gβ is independent of the choice of Cβ, and that gβ is a
symmetric Hilbert modular form of weight

wβ = 10(2`+ 2).

As in the Siegel case, the Hilbert modular form gβ is the classical analogue of
the modular form gδ,m form = 1 orm = 2 defined in proposition 5.1.3, if we
choose F10 as the denominator of Gundlach invariants; this choice is valid by
proposition 2.3.16. For every 0 ≤ i ≤ 2`+2 and 1 ≤ k ≤ 2, we define f (i)

β,k(τ)
as the coefficient of Y i in the polynomial gβ(τ)Ψβ,k(g1(τ), g2(τ)) ∈ C[Y ].
It is also a symmetric Hilbert modular form of weight wβ.

Proposition 5.1.12. The modular forms gβ and f (i)
β,k are defined over Z.

Proof. As above, both the Hecke correspondence and F10 are defined overQ,
hence gβ is defined over Q. This is also the case of the modular forms f (i)

β,k

because the coefficients of Hilbert modular equations are defined over Q as
modular functions.

As in proposition 5.1.10, it is enough to show the following: if f is a
Hilbert modular form of weight k and η ∈ Cσ

β , then the function

h(τ) = (η∗τ)−kf( 1
β
ητ)

on H2
1 has an expansion in terms of the quantities exp(2πi(nτ1 + nτ2)/`),

where n runs through totally positive elements of ZF , with coefficients in
the ring Z[exp(2πi/`)]. The computations are easier than in the Siegel case
due to the simpler form of coset representatives:

• If η =
(

0
√

∆

−1/
√

∆ 0

)
, then we make η act again, and we have

(η∗τ)−kf( 1
β
ητ) = `f(βτ).

• If η =
(

1 a
√

∆
0 1

)
, then we directly have

(η∗τ)−kf( 1
β
ητ) = f

(
1
β
(t+ (a

√
∆,−a

√
∆)
)
.

Therefore the Fourier expansion of h has integer coefficients.

For every τ ∈ H2
1, we define

Dβ(τ) = 2wβ
G2(τ)2bwβ/6c

F10(τ)aG2(τ)b

∏
η∈Cσβ

(η∗τ)−10F10( 1
β
ητ), (5.3)

where a, b are such that 2bwβ/6c+ wβ = 10a+ 2b with 0 ≤ b ≤ 4.
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Proposition 5.1.13. Let F = Q(
√

5), let β ∈ ZF be a totally positive
prime, and define Dβ as in eq. (5.3). Then Dβ is a complete denominator
of the Hilbert modular equations of level β in Gundlach invariants.

Proof. By propositions 2.3.15 and 5.1.12, we know that

2wβgβ ∈ Z[G2, F6, F10], and 2wηf
(i)
β,k ∈ Z[G2, F6, F10] for all k, i.

Moreover, using the equalities

G2
2F6 = g2F10, G5

2 = g1F10,

one can show (following the proof of proposition 5.1.5) that for every mod-
ular form f ∈ Z[G2, F6, F10] of weight k, we have

G
2bk/6c
2 f

F a
10G

b
2

∈ Z[g1, g2]

where a, b are such that 4bk/6c+ k = 10a+ 2b and 0 ≤ b ≤ 4.

In the case of Hilbert modular equations in Igusa invariants for a general
real quadratic field F , we are not able to determine a complete denomi-
nator, because the structure of the ring of Hilbert modular forms defined
over Z is not known a priori.

5.1.5 Explicit degree bounds in dimension 2

Our methods provide new results about the degrees of the coefficients
of modular equations of Siegel and Hilbert type for abelian surfaces. In the
Hilbert case, we restrict to the quadratic field F = Q(

√
5), and we consider

modular equations in Gundlach invariants.
In both cases, the variety S is a rational. We can choose jn+1 = 1, and

take E = Jn+1−1 as the equation satisfied by jn+1 on S. Then the notions
of geometric complexity and symmetric geometric complexity coincide.

Lemma 5.1.14. Let j1, j2, j3 denote the Igusa invariants on the Siegel
threefold Sp4(Z)\H2, as defined in §2.3.2. Then we have

GC(j1, j2, j3, 1) ≤ 1

6
.

Proof. By theorem 2.3.5, the graded ring of Siegel modular forms is gener-
ated by

f1 = I ′6, f2 = I12, f3 = I4, and f4 = I10.
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We are in case 1 of definition 5.1.7, since

I ′6I4

I10

= j1,
I12I

2
4

I2
10

= j2, and
I5

4

I2
10

= j3.

The definition gives

SGC(j1, j2, j3, 1) ≤
(

1 +
2

3

)
· 1

10
=

1

6
.

Proposition 5.1.15. Let ` be a prime number, and let Ψ`,m for 1 ≤ m ≤ 3
denote the Siegel modular equations of level `. Let F ∈ Q(J1, J2, J3) be a
coefficient of Ψ`,1 (resp. Ψ`,2 or Ψ`,3). Then the total degree of F is bounded
above by 5 d(`)/3 (resp. 10 d(`)/3), where d(`) = `3 + `2 + `+ 1.

Proof. The integer d(`) is the degree of the Hecke correspondence. The
denominators of j1, j2, j3 can be taken to be the Siegel modular forms h10,
h2

10, and h2
10. Let g`,m for 1 ≤ m ≤ 3 be the common denominators of the

modular equations Ψ`,m as in proposition 5.1.3, so that g`,2 = g`,3 = g2
`,1

and wt(g`,1) = 10 d(`). The modular form g`,2 corresponds to the classical
modular form g` studied in §5.1.4.

Let F be a coefficient of Ψ`,1 (resp. Ψ`,2 or Ψ`,3). Then F (j1, j2, j3)
is the quotient of two modular forms of degree 10 d(`) (resp. 20 d(`))
on S, by proposition 5.1.3. Therefore the result follows from lemma 5.1.14
and proposition 5.1.8.

Lemma 5.1.16. Let F = Q(
√

5), and let g1, g2 denote the Gundlach in-
variants on the Hilbert surface SL(ZF⊕∂−1

F )\H2
1, as defined in §2.3.4. Then

we have
GC(g1, g2, 1) ≤ 1

6
.

Proof. Choose F6, F2, F10 as generators for the graded ring of Hilbert
modular forms for F . We have

F6F
2
2

F10

= g2 and
F 5

2

F10

= g1.

We are in case 1 of definition 5.1.7, and

GC(g1, g2, 1) ≤
(

1 +
2

3

)
· 1

10
=

1

6
.

Proposition 5.1.17. Let F = Q(
√

5), let β ∈ ZF be a totally positive
prime, and let Ψβ,m for m ∈ {1, 2} denote the Hilbert modular equations of
level β in Gundlach invariants. Let F ∈ Q(J1, J2) be a coefficient of Ψβ,1

or Ψβ,2. Then the total degree of F is bounded above by 10 d(β)/3, where
d(β) = NF/Q(β) + 1.
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Proof. The integer d(β) is the degree of the Hecke correspondence, and the
automorphism group Σ used to define the Hilbert modular equations has or-
der 2. We can take the modular F10 as denominator of both g1 and g2. The
common denominator gβ,1 = gβ,2 from proposition 5.1.3 has weight 20 d(β);
it corresponds to the classical Hilbert modular form gβ studied in §5.1.4.
The result follows from lemma 5.1.14 and proposition 5.1.8.

The degree bounds in propositions 5.1.15 and 5.1.17 are both reached
experimentally. In the Siegel case with ` = 2, the maximum degree is 25; in
the Hilbert case with NF/Q(β) = 41, the maximum degree is 140 [Mil]. In
particular, the inequalities in lemmas 5.1.14 and 5.1.16 are in fact equalities.

5.2 Height bounds for modular equations

We keep the notation introduced at the beginning of chapter 5. We also
write S = Γ\X+, where Γ is a subgroup of G(Q)+. As we mentioned above,
there are two main steps in the proof of height bounds in theorem 5.0.1:
first, we study the heights of evaluations of modular equations; then we
apply the results of chapter 4 to obtain height bounds on their coefficients.

5.2.1 Heights of abelian varieties

Different types of heights can be defined for an abelian variety A over a
number field L. The Faltings height hF (A) is defined in [Fal83, §3] in terms
of Arakelov degrees of metrized line bundles on A. If A is given a principal
polarization L, and r ≥ 2 is an even integer, we can also define the theta
height of level r of (A,L), denoted by hΘ,r(A,L), as the projective height
of level r theta constants of (A,L) [Paz12, Def. 2.6]. Finally, if A is an
abelian variety with PEL structure over L given by a point z ∈ S where
j1, . . . , jn+1 are well defined, we can define the j-height of A as

hj(A) = h
(
j1(A), . . . , jn+1(A)

)
.

We also write hF (A) = max{1, hF (A)} and define h, hΘ,r, hj similarly.
The goal of this section is to relate the j-heights of isogenous abelian

varieties, under mild conditions related to the geometry of the moduli space.
Such a relation is known for instance in the case of elliptic curves, taking
the usual j-invariant as coordinate [Paz19, Thm. 1.1]. To this end, we
relate the j-height with the Faltings height, since the latter behaves well
with respect to isogenies. Theta heights are an intermediate step between
concrete values of invariants and the Faltings height. More precisely, we
use the two following results.
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Proposition 5.2.1. Let A, A′ be abelian varieties over Q, and assume that
an isogeny ϕ : A→ A′ exists. Then∣∣hF (A)− hF (A′)

∣∣ ≤ 1
2

log(degϕ).

Proof. This is a consequence of [Fal83, Lem. 5].

Theorem 5.2.2 ([Paz12, Cor. 1.3]). For every g ≥ 1, and every even r ≥ 2,
there exists a constant C(g, r) such that the following holds. Let (A,L) be
a principally polarized abelian variety of dimension g defined over Q. Then∣∣hΘ,r(A,L)− 1

2
hF (A)

∣∣ ≤ C(g, r) log
(
min{hF (A), hΘ,r(A,L)}+ 2

)
.

We can take
C(g, r) = 1000r2g log5(r2g).

5.2.2 Relating the j-height and the Faltings height

Using theorem 5.2.2, we can prove that the j-height and the Faltings
height of a generic abelian variety with PEL structure are related.

Proposition 5.2.3. There exists a nonzero polynomial P ∈ L[Y1, . . . Yn+1]
and a positive constant C such that the following holds: if A is the abelian
variety with PEL structure associated with a point z ∈ S where j1, . . . , jn+1

are well defined and P (j1, . . . , jn+1) 6= 0, and if A is defined over Q, then

1

C
hF (A) ≤ hj(A) ≤ C hF (A).

Proof. By [Mil05, Thm. 5.17], we can write S = Γ′\X+ where Γ′ is a con-
gruence subgroup of Gder. Since Gder ⊂ ker(det), it embeds into GSp2g(Q),
where 2g = dimQ V . Therefore, by [Mil05, Thm. 5.16], we can find a con-
gruence subgroup Γ′′ of Gder and an even integer r ≥ 4 such that Γ′′\X+

embeds in the moduli space AΘ,r of principally polarized abelian varieties
of dimension g with level r theta structure. We have a diagram

S̃ = Γ̃\X+

S = Γ′\X+ S ′′ = Γ′′\X+ AΘ,r

p′ p′′

ι

(5.4)

where Γ̃ = Γ′ ∩ Γ′′. The maps p′ and p′′ are finite coverings, and all the
varieties and maps in this diagram are defined over Q.
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The modular interpretation of diagram (5.4) is the following. Let (Λ, ψ)
be the standard polarized lattice associated with the connected compo-
nent S, as in proposition 2.2.8. We can find a sublattice Λ′′ ⊂ Λ, and
λ ∈ Q× such that (Λ′′, λψ) is principally polarized. A point z ∈ S defines
a complex structure x on Λ ⊗ R = V (R), up to action of Γ. Lifting z to
z̃ ∈ S̃ corresponds to considering x up to action of Γ̃ only, and this group
leaves Λ′′ and its level r theta structure stable. Then the image of z̃ in AΘ,r

is given by (Λ′′, x, λψ).
In particular, if z̃ ∈ S̃, and if A and A′′ are the abelian varieties corre-

sponding to the points p′(z̃) ∈ S and ι ◦ p′′(z̃) ∈ AΘ,r respectively, then A
and A′′ are linked by an isogeny of degree d = #(Λ/Λ′′). Hence, by propo-
sition 5.2.1 and theorem 5.2.2, we have∣∣hF (A)− 2 hΘ,r(A

′′)
∣∣

≤ log(d)

2
+ C(g, r) log

(
min{hF (A), hΘ,r(A

′′)}+ 2 + 1
2

log(d)
)

≤ CF min{hF (A), hΘ,r(A
′′)}

with CF = (2 + log(d))C(g, r). Therefore

hF (A) ≤ (2 + CF ) hΘ,r(A
′′) and hΘ,r(A

′′) ≤ 1 + CF
2

hF (A). (5.5)

Now we relate the theta height and the j-height using relations between
modular functions; the genericity hypothesis encoded in the polynomial P
appears in this step. Denote by θ0, . . . , θk the theta constants of level r.
They define a projective embedding of AΘ,r, therefore the pullbacks of the
modular functions θ1/θ0, . . . , θk/θ0 generate the function field of S ′′. By
definition, j1, . . . , jn+1 are coordinates on S. To ease notation, we identify
all these functions with their pullbacks to S̃.

By the primitive element theorem, there exists a function f on S̃ such
that both of the tuples (j1, . . . , jn+1, f) and (θ1/θ0, . . . , θk/θ0, f) are gener-
ating families for the function field of S̃ over Q. We choose polynomials

PJ ∈ Q[Y1, . . . , Yn+1, X] and PΘ ∈ Q[Y1, . . . , Yk, X]

such that PJ(j1, . . . , jn+1, X) and PΘ(θ1/θ0, . . . , θk/θ0, X) are (non neces-
sarily monic) minimal polynomials of f over the function fields of S and S ′′
respectively. We also choose polynomials NJ,i, DJ,i ∈ Q[Y1, . . . , Yk, X]
for 1 ≤ i ≤ n + 1, and NΘ,i, DΘ,i ∈ Q[Y1, . . . , Yn+1, X] for 1 ≤ i ≤ k

177



such that the following equalities hold on S̃:

ji =
NJ,i

DJ,i

(θ1/θ0, . . . , θk/θ0, f) for each 1 ≤ i ≤ n+ 1, and

θi/θ0 =
NΘ,i

DΘ,i

(j1, . . . , jn+1, f) for each 1 ≤ i ≤ k.

Let F̃ be the smallest Zariski closed subset of S̃ such that outside F̃ , the
following properties are all statisfied:

• all the functions f , ji for 1 ≤ i ≤ n + 1 and θi/θ0 for 1 ≤ i ≤ k are
well defined;

• the polynomials PJ(j1, . . . , jn+1, X) and PΘ(θ1/θ0, . . . , θk/θ0, X) do
not vanish;

• All of the quantities DJ,i(θ1/θ0, . . . , θk/θ0, f) for 1 ≤ i ≤ n + 1 and
DΘ,i(j1, . . . , jn+1, f) for 1 ≤ i ≤ k do not vanish.

Then F̃ has codimension 1 in S̃, hence U = S\p′(F̃ ) is open dense in S. Let
P ∈ L[Y1, . . . , Yn+1] be a polynomial such that {P (j1, . . . , jn+1) 6= 0} ⊂ U .

Let z ∈ S be a point where j1, . . . , jn+1 are well defined, take values inQ,
and satisfy P (j1, . . . , jn+1) 6= 0. We look at the diagram (5.4), from left to
right. Lift z to a point z̃ ∈ S̃; by construction, z̃ /∈ F̃ . By propositions 4.3.1
and 4.3.3, we have

h
(
j1(z̃), . . . , jn+1(z̃), f(z̃)

)
≤ C h

(
j1(z), . . . , jn+1(z)

)
(5.6)

with C = h(PJ) + (n+ 1) log(dJ + 1) + dJ + 1, where dJ denotes the total
degree of PJ in Y1 . . . , Yn+1. Writing z′′ = p′′(z̃), we also have for every
1 ≤ i ≤ k,

h(θi/θ0(z̃)) ≤ C h
(
j1(z̃), . . . , jn+1(z̃), f(z̃)

)
(5.7)

with C = h(NΘ,i) + h(DΘ,i) + (n+ 2)
(
log(deg(NΘ,i) + 1) + log(deg(DΘ,i) +

1)
)

+ deg(NΘ,i) + deg(DΘ,i). Combining (5.6) and (5.7), we obtain

h
(θ1

θ0

(z′′), . . . ,
θk
θ0

(z′′)
)
≤ CΘ h

(
j1(z), . . . , jn+1(z)

)
where the constant CΘ has an explicit expression in terms of the heigts and
degrees of the polynomials PJ and NΘ,i, DΘ,i for 1 ≤ i ≤ k. Therefore, if A
and A′′ denote the abelian varieties associated with z and z′′ respectively,
we have

hΘ,r(A
′′) ≤ CΘ hj(A),
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hence by (5.5)
hF (A) ≤ (2 + CF )CΘ hj(A).

Going through the diagram (5.4) from right to left gives the reverse in-
equality

hj(A) ≤ (1 + CF )CJ
2

hF (A)

where CJ is defined in a similar way to CΘ in terms of the polynomials PΘ

and NJ,i, DJ,i for 1 ≤ i ≤ n+ 1.

Assume that the integers r and d, the modular function f , and the poly-
nomials PJ , PΘ, NJ,i, DJ,i, NΘ,i, DΘ,i can be explicitly determined. Then
both the polynomial P and the constant C in proposition 5.2.3 can be
determined explicitly as well. We will do this computation in a slightly dif-
ferent way in §5.2.5 in the case of Igusa invariants on the Siegel threefold.

In the sequel, we define U to be the Zariski open set in S where
j1, . . . , jn+1 are well defined and P (j1, . . . , jn+1) 6= 0.

Corollary 5.2.4. Let C be the constant from proposition 5.2.3, let z and z′
be points of U , and let A and A′ be the abelian varieties with PEL structure
associated with z and z′. Assume that A and A′ are defined over Q, and
are linked by an isogeny of degree `. Then

hj(A
′) ≤ C2(hj(A) + log `).

Proof. Combine propositions 5.2.1 and 5.2.3.

Remark 5.2.5. We can presumably do better than corollary 5.2.4. For
instance, when studying j-invariants of isogenous elliptic curves, one can
prove that | h(j(E)) − h(j(E ′))| is bounded by logarithmic terms [Paz19,
Thm. 1.1]. This is also the kind of bound provided by theorem 5.2.2. The
rough estimate in corollary 5.2.4 is sufficient for our purposes, but has the
drawback that the constants we derive from it are very pessimistic.

5.2.3 Heights of evaluated modular equations

Let U (resp. U ′) be an open subset of S (resp. T ) where a relation
bewteen the j-height and the Faltings height holds, as in proposition 5.2.3.
Define Uδ ⊂ S to be the Zariski open set of all points [x, g] ∈ S such that
[x, g] ∈ U , and moreover the images of [x, g] under the (symmetrized) Hecke
correspondence Hδ all lie in U ′: in other words [σ(x), σ(gkδ)] ∈ U ′ for every
(k, σ) ∈ K0/Kn+1, in the notation of §2.4.3. Finally, we define Vδ ⊂ Ln to
be the Zariski open set of all points (j1, . . . , jn) where the equation (5.1)
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given by E(j1, . . . , jn, Jn+1) = 0 has e distinct roots and the following prop-
erty holds: if jn+1 is a root of (5.1), then (j1, . . . , jn+1) are the invariants of
some point z ∈ Uδ. In particular, the modular equations Ψδ,m do not have
poles on Vδ.

Lemma 5.2.6. There exist a constant C independent of δ, and a nonzero
polynomial Pδ ∈ L[J1, . . . , Jn] of total degree at most Cd(δ) such that
{Pδ(j1, . . . , jn) 6= 0} ⊂ Vδ.

Proof. Let R be the the resultant of E and its derivative with respect
to Jn+1. If R does not vanish at (j1, . . . , jn) ∈ Ln, then the polynomial
E(j1, . . . , jn, Jn+1) ∈ L[Jn+1] has e distinct roots.

Similarly, there exists a nonzero polynomial Q ∈ L[J1, . . . , Jn+1] such
that every tuple (j1, . . . , jn+1) ∈ Ln+1 that satisfies eq. (5.1) and such that
Q(j1, . . . , jn+1) 6= 0 lies in the image of S. Let R′ be the resultant of Q
and E with respect to Jn+1. If R′ does not vanish at (j1, . . . , jn), then
for every root jn+1 of E(j1, . . . , jn, Jn+1), the tuple (j1, . . . , jn+1) lies in the
image of S.

Let λ, λ′ be symmetric modular forms on S and T respectively, defined
over L, such that {λ 6= 0} ⊂ U and {λ′ 6= 0} ⊂ U ′. These modular forms
can be chosen independently of δ. As in §5.1.1, we construct the modular
form

λδ = λ
∏

γ∈K0/K′

γ · λ′δ

where λ′δ is the modular form [x, g] 7→ λ′([x, gδ]) of level K ′. The modular
form λδ is defined over L and has weight

wt(λδ) = wt(λ) + (#Σ) d(δ) wt(λ′).

Modular forms realize a projective embedding of S by theorem 2.2.12;
therefore, possibly after increasing the weight by a constant independent
of δ, we can find a symmetric modular form ξ defined over L such that
wt(λδ) = wt(ξ) and such that the divisors of λδ and ξ have no common
codimension 1 components. By proposition 5.1.8, if we write

λδ

ξ
=

e−1∑
k=0

Rk(j1, . . . , jn)j kn+1 where Rk ∈ L(J1, . . . , Jn),

then degRk ≤ GC(j1, . . . , jn+1) wt(λδ) for every 0 ≤ k ≤ e − 1. Taking
the resultant of

∑
RkJ

k
n+1 and E with respect to Jn+1 yields a rational

fraction R′′ ∈ L(J1, . . . , Jn) of degree at most

(e− 1)dE + e max
0≤k≤e−1

deg(Rk),
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where dE denotes the total degree of E in j1, . . . , jn. If R′ and R′′ are well
defined and do not vanish at (j1, . . . , jn), then for every root jn+1 of (5.1),
the tuple (j1, . . . , jn+1) comes from a point z ∈ Uδ.

We take Pδ to be the product of R, R′, and the numerator of R′′. The
polynomials R and R′ are independent of δ, and the degree of R′′ is bounded
above linearly in d(δ).

If degree bounds on equations defining U and U ′ are explicitly known,
together with the polynomials E and Q, then the proof of lemma 5.2.6
allows us to determine a valid constant C explicitly.

Proposition 5.2.7. There exists a constant C, independent of δ, such that
the following holds. Let (j1, . . . , jn) ∈ Vδ, and let 1 ≤ m ≤ n+ 1. Then

h
(
Ψδ,m(j1, . . . , jn)

)
≤ C d(δ)

(
h(j1, . . . , jn) + log l(δ)

)
.

Proof. Let J be the set of roots of (5.1) at (j1, . . . , jn), and let jn+1 ∈ J .
Let [x, g] be a point of S describing an abelian variety A with PEL structure
whose invariants are (j1, . . . , jn+1). For every σ ∈ Σ, denote by Aσ the
abelian variety with PEL structure associated with the point [σ(x), σ(g)].

By corollary 2.4.2, for each γ = (σ, k) ∈ K0/Km, the point [σ(x), σ(gkδ)]
describes an abelian variety Aγ which is linked to Aσ by an isogeny of de-
gree l(σ(δ)) = l(δ). Therefore, by corollary 5.2.4, we have

h
(
γ · j1,δ([x, g]), . . . , γ · jn+1,δ([x, g])

)
≤ C(h

(
j1, . . . , jn+1) + log l(δ)

)
,

where the constant C > 0 is independent of δ. By definition 2.4.6, the
multivariate polynomial Ψδ,m(j1, . . . , jn, jn+1) ∈ L[Y1, . . . , Ym] is the evalu-
ation of a certain multivariate polynomial at the values γ · ji,δ([x, g]), for
1 ≤ i ≤ m and γ ∈ K0/Ki, each appearing with degree 1. The number of
such values is

d1 + d1d2 + · · ·+ d1 · · · dm ≤ m (#Σ) d(δ).

Therefore, by proposition 4.3.1, we have

h
(
Ψδ,m(j1, . . . , jn+1)

)
≤ m (#Σ) d(δ) log(2)

+m (#Σ) d(δ)C
(
h(j1, . . . , jn+1) + log l(δ)

)
≤ C ′ d(δ)

(
h(j1, . . . , jn+1) + log l(δ)

)
,

where C and C ′ denote explicit constants independent of δ. In order to
obtain Ψδ,m(j1, . . . , jn), we interpolate a polynomial of degree e− 1 in jn+1
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where J is the set of interpolation points. By propositions 4.3.1 and 4.3.3,
we have

h(jn+1) ≤ C h(j1, . . . , jn) for every jn+1 ∈ J ,

where C is another constant independent on δ. The result follows by ap-
plying proposition 4.1.1 with N = d+ 1; recall that log d(δ) = O(log l(δ))
by proposition 2.4.4.

The proof of proposition 5.2.7 provides an explicit value of C if the
constant from corollary 5.2.4 is known.

5.2.4 Heights of coefficients of modular equations

We are ready to prove height bounds on modular equations (the second
part of theorem 5.0.1) using proposition 5.2.7 and the results on heights
of fractions given in chapter 4. From now on, we add subscripts to con-
stants: for instance C5.2.3 denotes a constant larger than 1 such that propo-
sition 5.2.3 holds with this value of C. Moreover, we denote by Clog a
constant independent of δ such that log d(δ) ≤ Clog max{1, log l(δ)}. We
can take Clog = (dimV )2 + log(C2.4.4), where V denotes the Q-vector space
defining the PEL datum.

Definition 5.2.8. We call an (n,N1, N2)-evaluation tree a rooted tree with
depth n, arity N1 at depths 0, . . . , n− 2, and arity N2 at depth n− 1, such
that every vertex but the root is labeled by an element of Z and the sons
of every vertex are distinct.

Let T be an (n,N1, N2)-evaluation tree, and let 1 ≤ k ≤ n. The k-th
evaluation set Ik(T ) of T is the set of points (y1, . . . , yk) ∈ Zk such that y1

is a son of the root, and yi+1 is a son of yi for every 1 ≤ i ≤ k − 1. We
say that T is bounded by M if the absolute value of every vertex in T is
bounded above by M . We say that T has amplitude (D1, D2) if for every
vertex y of depth 0 ≤ r ≤ n − 2 (resp. depth n − 1) in T , the sons of y
lie in an integer interval of amplitude at most D1 (resp. D2); by definition,
the amplitude of JA,BK is B − A.

Let T be an (n,N1, N2)-evaluation tree, let a = (a1, . . . , an) ∈ Zn,
and let M ≥ 1 be an integer. Let F be a coefficient of Ψδ,m for some
1 ≤ m ≤ n + 1, seen as a polynomial in the variables Jn+1, Y1, . . . , Ym of
degree at most e− 1 in Jn+1; hence F ∈ L(J1, . . . , Jn). Write F = P/Q in
irreducible form where P,Q ∈ L(J1, . . . , Jn), and let d = deg(F ); assume
that d ≥ 1. We say that T , a and M are valid evaluation data for F if the
following conditions are satisfied:

1. T and a are bounded by M .
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2. We have M ≥ 2B log2(B + 1), where

B = 4C3
5.1.9C5.2.7 d(δ)4 max{1, log l(δ)}.

3. N1 = 2d and N2 ≥M .

4. T has amplitude (4d, 2M).

5. For every (y1, . . . , yn) ∈ In(T ), the point

(j1, . . . , jn) = (y1yn + a1, . . . , yn−1yn + an−1, yn + an)

belongs to Vδ.

6. For every (y1, . . . , yn−1) ∈ In−1(T ), the polynomials P and Q evalu-
ated at (y1Y + a1, . . . , yn−1Y + an−1, Y + an) are coprime in L[Y ].

7. Q(a1, . . . , an) 6= 0.

Lemma 5.2.9. There exists a constant C, independent of δ, such that the
following holds. Let F be a coefficient of Ψδ,m of degree d ≥ 1. Then there
exist valid evaluation data (T, a,M) for F such that

C d(δ)4 max
{

1, log3(l(δ))
}
≤M < C d(δ)4 max

{
1, log3(l(δ))

}
+ 1

and M ≥ 4d[L : Q]. We can take

C = max {C1, C2, C3}

where

C1 = 24C3
5.1.9C5.2.7

(
4Clog + log(24C3

5.1.9C5.2.7) + 1
)
,

C2 = 14C2
5.1.9 + 5C5.2.6, and C3 = 4C5.1.9[L : Q].

Proof. Let M be as above. We check that condition 2 in the definition of
a valid evaluation tree is satisfied because C ≥ C1.

We start by constructing the vector a. Note that M ≥ 2d+ 1. Since Q
is nonzero, and has degree at most d in Y1, we can find a1 ∈ Z such that
|a1| ≤ M and the polynomial Q(a1, Y2, . . . , Yn) is nonzero. Iterating, we
find a = (a1, . . . , an) bounded by M such that Q(a1, . . . , an) 6= 0.

We now build the evaluation tree T down from the root. Let Pδ be an
equation for the complement of Vδ as in lemma 5.2.6, and define

Rδ = Pδ(Y1Yn + a1, . . . , Yn−1Yn + an−1, Yn + an)
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which is a nonzero polynomial of degree at most 2C5.2.6 d(δ). Let R be the
resultant with respect to Yn of the two polynomials

P (Y1Yn + a1, . . . , Yn−1Yn + an−1, Yn + an)

and
Q(Y1Yn + a1, . . . , Yn−1Yn + an−1, Yn + an).

The polynomial R is nonzero and has degree at most 4d2.
We want to choose 2d values of y1, lying in an interval with amplitude at

most 4d, such that neither Rδ nor R vanishes when evaluated at Y1 = y1;
this nonvanishing condition excludes at most 4d2 + 2C5.2.6 d(δ) possible
values of y1. At least one of the intervals of the form J5kd, (5k + 4)dK for 0 ≤
k ≤ 2d + C5.2.6 d(δ)/d contains at least 2d valid choices of y1. Then |y1| is
always bounded above by 5(2d2 + C5.2.6 d(δ)) + 4d ≤M , because C ≥ C2.

We iterate this procedure to construct T up to depth n − 1 with the
right arity, bound and amplitude, in such a way that the evaluations of Rδ

and R are nonzero at every (y1, . . . , yn−1) ∈ In−1(T ).
We conclude by constructing n-th level of T . Let (y1, . . . , yn−1) ∈

In−1(T ). Then, as before, at most 4d2 + 2C5.2.6 d(δ) ≤ M values for yn
are forbidden as they make either Rδ or R vanish. This leaves at least M
available values for yn in J−M,MK.

For every tuple (y1, . . . , yn) ∈ In(T ), the fact that the polynomials Rδ

and R do not vanish at the point (y1, . . . , yn) guarantees conditions 5 and 6
of definition 5.2.8 respectively. Finally, the inequality C ≥ C3 ensures
that M ≥ 4d[L : Q].

Theorem 5.2.10. Let Hδ be an absolutely irreducible Hecke correspondence
on S×T defined by an element δ ∈ G(Af ), and let d(δ) be the degree of Hδ.
Let F ∈ L(J1, . . . , Jn) be a coefficient of one of the modular equations Ψδ,m

for 1 ≤ m ≤ n + 1. Then the height of F is bounded above by C d(δ),
where C is a constant independent of δ; more precisely we can take

C = 2n−1
(
2C5.2.7(1 + C ′′)

+ 2C4.5.11C5.1.9

(
log(4C5.1.9C5.2.7) + 2Clog + 1 + C ′′

)
+ 4C5.1.9(log(C5.1.9) + Clog)

+ 2C5.1.9(log(2) + C ′′) + 2 log(2C5.1.9) + 2
)
,

where C ′′ = 3 + log(2C5.2.9) + 4Clog.

Proof. By lemma 5.2.9, we can find valid evaluation data (T, a,M) for F
such that the inequalityM ≤ C5.2.9 d(δ)4 max

{
1, log3 l(δ)

}
+1 holds. After

scaling P andQ by an element of L×, we can assume thatQ(a1, . . . , an) = 1.
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Let (y1, . . . , yn−1) ∈ In−1(T ), and write

F̃ (Y ) = F (y1Y + a1, . . . yn−1Y + an−1, Y + an).

For every son yn of yn−1 in T , we have

h
(
y1yn + a1, . . . , yn−1yn + an

)
≤ log

(
(M + 1)M

)
≤ 2 log(M + 1).

Therefore, by proposition 5.2.7,

h(F̃ (yn)) ≤ C5.2.7 d(δ)
(
2 log(M + 1) + log l(δ)

)
≤ 2C5.2.7 d(δ)

(
log(M + 1) + max{1, log l(δ)}

)
.

Denote this last quantity by H. We have H ≥ 4 and H ≥ log(2M). More-
over, in the notation of definition 5.2.8, the inequality M ≥ 2B log2(B+ 1)
ensures that

M

log(M + 1)
≥ B ≥ d3

(
4C5.2.7 d(δ) max{1, log l(δ)}

)
.

Therefore M ≥ d3H.
We are in position to apply proposition 4.5.11 for the univariate ra-

tional fraction F̃ on the interval J−M,MK, with η = 2, using the sons
of (y1, . . . , yn−1) in T as evaluation points. We obtain

h(F̃ ) ≤ H + 2C4.5.11d log(2dH) + d log(2M) + log(d+ 1)

≤ C ′ d(δ) max {1, log l(δ)} ,

where C ′ is a constant independent of δ. In order to obtain an explicit
expression for C ′, we note that

log(M + 1) ≤ C ′′max {1, log l(δ)} .

We check that we can take

C ′ = 2C5.2.7(1 + C ′′)

+ 2C4.5.11C5.1.9

(
log(4C5.1.9C5.2.7) + 2Clog + 1 + C ′′

)
+ C5.1.9(log(2) + C ′′) + log(2C5.1.9) + 1.

In the second part of the proof, we relate the height of F̃ with the height
of F . The quotient

P (y1Y + a1, . . . , yn−1Y + an−1, Y + an)

Q(y1Y + a1, . . . , yn−1Y + an−1, Y + an)
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is a way to write F̃ in irreducible form in L(Y ), and has a coefficient equal
to 1. Therefore h(F̃ ) is the affine height of the coefficients appearing in the
quotient. Hence

h
(
P (y1Yn + a1, . . . , yn−1Yn + an−1, Yn + an)

)
≤ C ′ d(δ) max {1, log l(δ)}

for every (y1, . . . , yn−1) ∈ In−1(P ), and the same inequality holds for Q.
Since N1 = 2d, we can interpolate successively the variables yn−1, . . . , y1,
using proposition 4.4.3 with 2d evaluation points at each vertex of the
tree T . Finally we obtain

h(F ) ≤ 2n−1
(
C ′ d(δ) max{1, log l(δ)}+ 4d log(4d) + d log(2M) + log(d+ 1)

)
≤ 2n−1

(
C ′ + 4C5.1.9(log(C5.1.9) + Clog) + C5.1.9(log(2) + C ′′)

+ log(2C5.1.9) + 1
)
d(δ) max {1, log l(δ)} ,

as claimed.

5.2.5 Explicit height bounds in dimension 2

To conclude this chapter, we derive explicit height bounds for modu-
lar equations of Siegel type and level ` for abelian surfaces in the Igusa
invariants j1, j2, j3. Our first aim is to provide an explicit value for the
constant in corollary 5.2.4, using theta constants of level 4 as an interme-
diate step. To relate theta heights and j-heights in this setting, we use
Mestre’s algorithm and Thomae’s formulæ instead of writing out polyno-
mials NJ,i, DJ,i, NΘ,i, DΘ,i as in the proof of proposition 5.2.3.

Proposition 5.2.11. Let A be a principally polarized abelian surface de-
fined over Q whose Igusa invariants j1, j2, j3 are well defined, and assume
that j3(A) 6= 0. Then we have

hj(A) ≤ 40 hΘ,4(A) + 12 and hΘ,4(A) ≤ 200 hj(A) + 1000.

Proof. Recall the expression of the Igusa invariants in terms of the Siegel
modular forms h4, h6, h10, and h12 (§2.3.2):

j1 =
h4h6

h10

, j2 =
h2

4h12

h2
10

, j3 =
h5

4

h2
10

.

These modular forms have a polynomial expression in terms of the ten even
theta constants of level 4, given in definition 2.3.4. The total degrees of
the polynomials giving h4, h6, h10 and h12 are 8, 12, 20 and 24 respectively;
they contain respectively 10, 60, 1 and 15 monomials, and their height is
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zero. Up to scaling, we may assume that the first theta constant θ0 takes
the value 1. Then, by proposition 4.3.1, we have

h(h5
4, h4h6h10, h

2
4h12, h

2
10) ≤ 5 log(10) + 40 hΘ,4(A),

hence the first inequality

hj(A) ≤ 40 hΘ,4(A) + 12.

For the second inequality, we follow Mestre’s algorithm [Mes91]. Start-
ing from j1(A), j2(A) and j3(A), Mestre’s algorithm constructs a hyperel-
liptic curve y2 = f(x) whose Jacobian is isomorphic to A over Q. Choosing
I10 = 1 in eq. (3.5), we see that j1(A), j2(A) and j3(A) are realized by
covariants I2, I4, I6, and I10 in Q such that

h(I2, I4, I6, I10) ≤ hj(A).

The roots of f are the intersection points of a conic and a cubic in P2

whose equations are given explicitly in terms of I2, I4, I6, and I10. In or-
der to obtain the equation

∑3
i,j=1 cijzizj = 0 of the conic, we start from

Mestre’s equation
∑3

i,j=1 Aijxixj = 0 and substitute the expressions of
A,B,C, and D in terms of I2, I4, I6, and I10. Then we multiply by 211313514

and make the substitutions

z1 = 202500x1, z2 = 225x2, z3 = x3.

Then, each coefficient cij has an expression as a multivariate polynomial
in I2, I4, and I6 (recall that I10 = 1) of total degree at most 7; its coef-
ficients are integers whose absolute values are bounded by 324 · 106. By
proposition 4.3.1, we have

h
(
(cij)1≤i,j≤3

)
≤ 7(hj(A) + log(3)) + 19.6 + 3 log(8) ≤ 7hj(A) + 33.6.

If we restrict to c11, c12, and c22, then we obtain a smaller upper bound, since
the total degree and the height of coefficients are at most 5 and 18.3 respec-
tively. Similarly, the cubic equation, denoted by

∑
1≤i≤j≤k≤3 cijkzizjzk = 0,

has total degree at most 11 in I2, I4, and I6, and has integer coefficients
whose heights are at most 33.5.

In order to find the hyperelliptic curve equation f , we parametrize the
conic. Let us show that it contains a point P0 defined over Q such that
h(P0) ≤ 5hj(A) + 29.9. We can assume that c11 6= 0; otherwise we take
P0 = (1 : 0 : 0). Let α be a root of the monic polynomial

α2 +
c12

c11

α +
c22

c11

= 0.
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The point P0 = (α : 1 : 0) belongs to the conic, and by proposition 4.3.3,

h(P0) = h(α) ≤ h(c11, c12, c22) + log(2)

≤ 5(hj(A) + log(3)) + 18.3 + 3 log(6) + log(2)

≤ 5hj(A) + 29.9.

We parametrize the conic using P0 as a base point; for simplicity, we
continue to assume that c11 6= 0. For (u : v) ∈ P1(Q), the point (z1 : z2 : z3)
defined by

z1 = α(c11u
2 + c13uv + c33v

2)− u((2c11α + c12)u+ (c13α + c23)v),

z2 = c11u
2 + c13uv + c33v

2,

z3 = −v((2c11α + c12)u+ (c13α + c23)v)

runs through the conic. Substituting these expressions in the cubic equa-
tion gives the curve equation f . The polynomials we obtain have total
degrees at most 29 in I2, I4, and I6; they have degree at most 3 in α; and
their coefficients are integers whose heights are bounded above by 86.9.
Therefore, by proposition 4.3.1 (separating I2, I4, I6 from α), we have

h(f) ≤ 29(hj(A) + log(3)) + 86.9 + 3(5hj(A) + 29.9) + 3 log(30) + log(4)

≤ 44hj(A) + 220.1.

Making f monic does not change its height.
Thomae’s formulæ [Mum84, IIIa.8.1] give an expression of the theta

constants of level 4 of A in terms of roots of f : if θ is one of these theta
constants, then θ4 is a product of 18 differences of roots of f (up to a
common multiplicative factor). Therefore, by proposition 4.3.3, we obtain

hΘ,4(A,L) ≤ 1
4
· 18(h(f) + log(4)) ≤ 198hj(A) + 997.

As a consequence, we obtain an explicit analogue of corollary 5.2.4 in
the case of isogenies between principally polarized abelian surfaces.

Proposition 5.2.12. Let A and A′ be principally polarized abelian surfaces
over Q where the Igusa invariants j1, j2, j3 are well defined, and assume
that j3(A)j3(A′) 6= 0. Let ` ≥ 1 be an integer. If A and A′ are linked by an
isogeny of degree `, then we have

hj(A
′) ≤ 8000 hj(A) + 1.08 · 1011 log(hj(A)) + 1.67 · 1012 + 20 log `.
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Proof. By propositions 5.2.1 and 5.2.11 and theorem 5.2.2 (noting that
C(2, 4) ≤ 1.35 · 109), we have

hΘ,4(A) ≤ 200 hj(A) + 1000,
1
2
hF (A) ≤ hΘ,4(A) + C(2, 4) log(hΘ,4(A) + 2)

≤ 200 hj(A) + C(2, 4) log(1202) + C(2, 4) log(hj(A)),
1
2
hF (A′) ≤ 1

2
hF (A) + 1

4
log `,

hΘ,4(A′) ≤ 1
2
hF (A′) + C(2, 4) log(hF (A′) + 2)

≤ 200 hj(A) + C(2, 4) log(1202) + 2C(2, 4) log(hj(A)) + 1
4

log `

+ C(2, 4) log
(
402 + 2C(2, 4) log(1202) + C(2, 4) + 1

2
log `

)
,

≤ 200 hj(A) + 2C(2, 4) log(hj(A)) + 4.17 · 1010 + 1
2

log `, and

hj(A
′) ≤ 40 hΘ,4(A) + 12

≤ 8000 hj(A) + 80C(2, 4) log hj(A) + 1.67 · 1012 + 20 log `.

In lemma 5.2.6, we take λ = I4 and λ′ = I4I10. We have

wt(λδ) = 14 d(δ) + 4,

which is greater than 16, the minimum weight for which Siegel modu-
lar forms define a projective embedding of S. Hence ξ can be chosen
to be a modular form of weight wt(λδ). The fraction R′′ has degree at
most 7

3
(d(δ) + 1) by lemma 5.1.14; this is also an upper bound on deg(Pδ).

We also mimic the proof of proposition 5.2.7 in the Siegel case. Let [x, g]
be a point of S with Igusa invariants (j1, j2, j3) ∈ Vδ. For each 1 ≤ m ≤ 3,
by remark 2.4.10, the polynomial Ψδ,m(j1, j2, j3) is the evaluation of a multi-
variate polynomial in 2 d(δ) variables. Moreover, the Hecke correspondence
describes isogenies of degree `2. By proposition 5.2.12, h

(
Ψδ,m(j1, j2, j3)

)
is bounded above by

2 d(δ)
(
8000 h(j1, j2, j3)+1.08 ·1011 log(hj(A))+1.67 ·1012 +40 log `

)
. (5.8)

Therefore, we can take
C5.2.7 = 3.35 · 1012.

Moreover, we have d(δ) = `3 + `2 + `+ 1 and l(δ) = `2. Hence we can take

Clog =
3

2
+ log(2) ≤ 2.2.
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We also take

C4.5.11 = 960 because L = Q,

C5.1.9 =
10

3
by proposition 5.1.15, and

C5.2.6 = 15 since d(δ) ≥ 15.

In lemma 5.2.9, we can take

C5.2.9 = 1.36 · 1017

and in theorem 5.2.10, we can take

C5.2.10 = 1.42 · 1015.

Since d(δ) ≤ 2`3 and max{1, log `(δ)} ≤ 2 log(`), we obtain the following
result.

Theorem 5.2.13. Let ` ≥ 1 be a prime number, and let F ∈ Q(J1, J2, J3)
be a coefficient of one of the Siegel modular equations of level ` in Igusa
invariants. Then we have

h(F ) ≤ 5.68 · 1015`3 log(`).

In order to obtain tighter height bounds on Siegel modular equations,
we could repeat the computations of §5.2.4 using an expression of the
form (5.8) for the height of evaluated modular equations, instead of the
simpler formula used in proposition 5.2.7. However we cannot hope to
obtain a constant in theorem 5.2.13 that is much lower than the value
of C(2, 4) ' 1.35 · 109 using our methods. Experimentally, we observe
that the inequalities h(F ) ≤ 48.7 `3 log(`) and h(F ) ≤ 43.6 `3 log(`) hold
for ` = 2 and ` = 3 respectively.

We could also give an analogue of theorem 5.2.13 in the case of modular
equations of Hilbert type for Q(

√
5) in Gundlach invariants. To replace

proposition 5.2.11, we would use the relations between Gundlach and Igusa
invariants (proposition 2.3.16) and the explicit curve equation given by
proposition 2.3.17. We leave the precise calculations for future work.
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Chapter 6

Evaluating modular equations
for abelian surfaces

In this chapter, we are interested in the complexity of manipulating
modular equations of Hilbert or Siegel type for abelian surfaces. The cor-
responding preprint is [Kie20b]; part of this chapter also covers the arti-
cle [Kie21], to appear in Publications Mathématiques de Besançon.

By the main result of chapter 5, theorem 5.0.1, we know that for every
prime `, the Siegel modular equations of level `, denoted by

Ψ`,1,Ψ`,2,Ψ`,3 ∈ Q(J1, J2, J3)[Y ],

have degree O(`3) in each variable J1, J2, J3, Y , and that each of their coef-
ficients has height O(`3 log `). Therefore the cost of storing these modular
equations in full is O(`15 log `). Similarly, if F is a fixed real quadratic field
and if β ∈ ZF is a totally positive prime of norm `, then the cost of stor-
ing Hilbert modular equations of level β in Igusa invariants, or Gundlach
invariants if F = Q(

√
5), is OF (`4 log `).

In analogy with elliptic modular polynomials, we expect that both
upper bounds are asymptotically accurate. Experimentally, Siegel mod-
ular equations are very difficult to compute: even using optimized in-
variants, the computations have never been carried out for ` > 7 to our
knowledge [Mil15]. Indeed, we expect that the Siegel modular equations
of level 11 are roughly 10000 times as large as their level 7 analogues.
In the Hilbert case for the quadratic field Q(

√
5), the size of a com-

pressed tar file containing the modular equations is close to 30`4 log ` bytes
for ` ∈ {11, 19, 29, 31, 41}, after which the database [Mil] ends.

Given these bounds, in the context of counting points on principally
polarized abelian surfaces over finite fields, using Elkies’s method with pre-
computed modular equations does not bring any asymptotic improvement
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over Schoof’s method described in [GKS11, GS12]. This unfortunate state
of affairs has led to the belief that modular equations for abelian surfaces
should be avoided in practice. In [CE15], for instance, one can read: “it is
unlikely that modular equations will be of any use to accelerate the compu-
tation of torsion points for higher genera, since they are all far too big”.

However, in most contexts, writing out the modular equations in full is
not truly needed. In order to detect isogenies between abelian surfaces, and
also to compute these isogenies explicitly using the algorithms of chapter 3,
we only need evaluations of modular equations and their derivatives: in the
Siegel case, this would be the polynomials

Ψ`,m(j1, j2, j3, Y ) ∈ K[Y ] and ∂JkΨ`,m(j1, j2, j3, Y ) ∈ K[Y ]

for 1 ≤ k,m ≤ 3, where j1, j2, j3 are fixed elements of a certain field K.
These evaluations can be a lot smaller, because they erase the increase

of the number of variables coming from the dimension of the moduli space.
For instance, if j1, j2, j3 ∈ Q have height O(1), then the size of these
polynomials is O(`6 log `) by theorem 5.0.1; if β ∈ ZF is a totally positive
prime of norm `, then the size of evaluations of Hilbert modular equations
of level β in Igusa invariants at (j1, j2, j3) is only OF (`2 log `), the same
aymptotic estimate (up to constants depending on F ) as in the case of
elliptic modular polynomials.

The goal of this chapter is to present an algorithm that directly com-
putes evaluations of modular equations of Siegel or Hilbert type for abelian
surfaces, given values of Igusa or Gundlach invariants in a number field.
This evaluation algorithm extends to the case of finite fields via lifts. As a
special case, we obtain the following result.

Theorem 6.0.1 (Under hypothesis 6.2.15 below). There exists an algo-
rithm which, given prime numbers p and `, and given (j1, j2, j3) ∈ F3

p where
the denominators of the Siegel modular equations of level ` do not vanish
and such that j3 6= 0, computes Ψ`,m(j1, j2, j3, Y ) and ∂JkΨ`,m(j1, j2, j3, Y )
in Fp[Y ] for 1 ≤ k,m ≤ 3 within Õ(`3 log2 p+ `6 log p) binary operations.

A similar results holds for Hilbert modular equations for F = Q(
√

5) in
Gundlach invariants, with a complexity of only ÕF (` log2 p+`2 log p) binary
operations. In both cases, we save a factor of log p when j1, j2 and j3 are
quotients of small integers. In the case of Hilbert modular equations for a
general F , our algorithm is unfortunately only heuristic.

Let us give a high-level view of the algorithm to evaluate Siegel mod-
ular equations, and describe the heuristic assumption that it uses. Let L
be a number field, and choose Igusa invariants (j1, j2, j3) ∈ L3 where the
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denominator of Siegel modular equations of level `, denoted by D` in §5.1.4,
does not vanish. Assume for simplicity that j1, j2, j3 ∈ ZL. We use complex
approximations: for each complex embedding µ of L, we compute a period
matrix τ ∈ H2 whose Igusa invariants are (µ(j1), µ(j2), µ(j3)). Then, we
compute approximations of the numerator and denominator of Siegel mod-
ular equations at τ using analytic formulæ (definition 2.4.6 and eq. (5.2)).
Finally, we recognize their coefficients as algebraic numbers, more precisely
algebraic integers by proposition 5.1.11. During the algorithm, we keep
track of precision losses in order to obtain a provably correct result.

An essential subroutine in the evaluation algorithm is to convert back
and forth between matrices τ ∈ H2 and the values of theta constants
at τ , defined in eq. (2.10). This can be done in quasi-linear time in
the required precision, at least for certain ranges of inputs, using the
arithmetic-geometric mean (AGM) to compute τ from its theta constants
[Bor88, BM88, Jar08], and an algorithm of Dupont [Dup06, Chap. 10] in
the other direction. Dupont’s algorithm combines the AGM with New-
ton iterations, and works very well in practice, but its proper convergence
remains heuristic. Hypothesis 6.2.15, on which our main theorem relies,
states that Dupont’s algorithm converges uniformly in a certain compact
subset of H2.

This chapter is organized as follows. First, we describe our computa-
tional model and analyze precision losses in “basic” operations on complex
numbers and polynomials, such as reconstructing polynomials from their
roots, Lagrange interpolation, and the reconstruction of integers in number
fields from their values in complex embeddings (§6.1). Then we review the
AGM method for theta constants in genus 2 and Dupont’s algorithm, and
make some new contributions (§6.2):

• In order to bound precision losses uniformly in τ , we prove the tech-
nical result that the relevant AGM sequences are given by good
sign choices [Kie21], a fact that was left as a conjecture in [Dup06,
Conj. 9.1] and [Eng09a, Conj. 9];

• Using Dupont’s algorithm, we explain how to compute theta con-
stants on a fundamental domain F2 ⊂ H2 with uniform quasi-linear
cost, in a similar way to [Dup11, §6.3] in the genus 1 case;

• We also bound the precision losses when reducing a general τ ∈ H2

to F2, using techniques inspired from [Str14, §6].

Finally, we present the evaluation algorithm in §6.3, focusing on the case
of Hilbert modular equations, which is more intricate due to the presence
of the Hilbert embedding.
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6.1 Precision losses in polynomial operations

In all algorithms manipulating complex numbers, we use interval arith-
metic. Given z ∈ C and N ≥ 0, we define an approximation of z to
precision N to be a complex ball centered at some z′ ∈ C of radius 2−N

containing z. An approximation of a polynomial to precision N is by defi-
nition an approximation to precision N coefficient per coefficient.

Approximations of complex numbers centered at dyadic points can be
stored in a computer. This model makes more mathematical sense than
the usual floating-point or fixed-point approximations; using it, we design
algorithms with meaningful input and provably correct output.

Let M ≥ 1. We say that the precision loss in an algorithm A is M bits
if the following property holds: for all N ≥M , if the input of A is given as
approximations to precision N , then the output of A is an approximation
of its “theoretical” output to precision N − M . For instance, precision
losses in elementary operations (additions, multiplications, etc.) can be
bounded above in terms of the size of the operands (see §6.1.1). Besides
these theoretical upper bounds, precision losses can also be computed on
the fly in a precise way. This is done for instance in the Arb library [Joh17],
which is therefore the library of choice to implement our algorithms. If we
run out of precision during the computation, we can simply double the
precision and restart. Therefore, in the theoretical analysis, it is enough to
bound the precision losses in the O notation.

We letM(N) be a quasi-linear, superlinear function of N such that two
N -bit integers can be multiplied inM(N) binary operations. We write log
(resp. log2) for the natural logarithm (resp. logarithm in base 2), and for
x ∈ R, we define

log+ x = log max {1, x} and log+
2 x = log2 max {1, x} .

We denote the absolute value of the largest coefficient in a polynomial P
by |P |; we also use this notation for vectors and matrices.

6.1.1 Elementary operations

To summarize, additions can be done in linear time with a precision
loss of O(1), and multiplications, inversions, and square roots can be done
in quasi-linear time with a precision loss given by the size of the input. We
state these standard facts without proof.

Proposition 6.1.1. Let z ∈ C× and N ≥ − log2 |z|+ 1.
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1. Given an approximation of z to precision N , the inverse 1/z can
be computed within O

(
M(N + log+ |z|)

)
binary operations, with a

precision loss of −2 log2 |z|+ O(1) bits.

2. Given an approximation of z to precision N , an approximation of a
square root of z can be computed within O

(
M(N + log+ |z|)

)
binary

operations, with a precision loss of −1
2

log2 |z|+ O(1) bits.

In proposition 6.1.1, the assumption on N ensures that the ball approx-
imating z does not contain 0.

Precision losses in additions and multiplications of complex numbers
are a special case of the following result for univariate polynomials.

Proposition 6.1.2. Let P1, P2 ∈ C[X], and N,N1, N2 ≥ 1. Assume
that P1, P2 and their approximations have degree at most d.

1. Given approximations of P1, P2 to precision N , the sum P1 + P2 can
be computed within

O
(
(d+ 1) (N + log max{1, |P1| , |P2|})

)
binary operations, with a precision loss of O(1) bits.

2. Given approximations of Pi to precision Ni for i = 1, 2, the prod-
uct P1P2 can be computed within

O
(
M
(
(d+ 1) max{N1 + log |P1| , N2 + log |P2|}

))
binary operations, to precision

min{N1 − log+
2 |P2| , N2 − log+

2 |P1|} − log2(1 + d)−O(1).

6.1.2 Reconstruction from roots and interpolation

We start with a technical lemma that we will use several times, when
we construct polynomials as products of linear factors.

Lemma 6.1.3. There exists an algorithm such that the following holds. Let
d ≥ 1, B ≥ 1, C ≥ 1, and let xi, yi, zi for 1 ≤ i ≤ d be complex numbers
such that

log+ |xi| ≤ B, log+ |yi| ≤ B, log+ |zi| ≤ C, for all i.

Let N ≥ 1. Then, given approximations of these complex numbers to pre-
cision N , the algorithm computes the polynomials

P =
d∏
i=1

(xiX + yi) Q =
d∑
i=1

zi
∏
j 6=i

(xjX + yj)
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within O
(
M
(
d(N+C+dB)

)
log d

)
binary operations, with a precision loss

of O(C + dB) bits.

Proof. We use product trees [BCG+17, §I.5.4]. For each 0 ≤ m ≤ dlog2(d)e,
the m-th level of the product tree to compute P consists of 2dlog2(d)e−m

products of (at most) 2m factors of the form xiX + yi. Hence, for every
polynomial R appearing at the m-th level, we have

deg(R) ≤ 2m and log+ |R| = O(2mB).

Level 0 is given as input. In order to compute level m+ 1 from level m,
we compute one product per vertex, for a total cost of O

(
M
(
d(N + dB

))
binary operations; the precision loss is O(2mB) bits by proposition 6.1.2.
Therefore the total precision loss when computing P is O(dB) bits. The
number of levels is O(log d), so the total cost is O

(
M
(
d(N + dB)

)
log d

)
binary operations.

The computations are similar for the polynomial Q, with a different
product tree. Each vertex at level m + 1 is a polynomial of the form
N1P2 +N2P1 where Pi is a vertex of the product tree for P satisfying

deg(Pi) ≤ 2m and log+ |Pi| = O(2mB),

and the polynomials Ni come from the m-th level, and satisfy

deg(Ni) ≤ 2m − 1 and log+ |Ni| = O(C + 2mB).

By induction, them-th level can be computed to precision N−O(C+2mB)
using a total of O

(
M
(
d(N + C + dB)

))
binary operations.

We apply lemma 6.1.3 to Lagrange interpolation.

Proposition 6.1.4. There exists an algorithm such that the following holds.
Let P ∈ Z[X] be an irreducible polynomial of degree d ≥ 1, let (αi)1≤i≤d be
the roots of P , and let (ti)1≤i≤d be complex numbers. Let M,C ≥ 1 such
that

log+ |P | ≤M, and log+ |ti| ≤ C for every i.

Let N ≥ 1. Then, given P and approximations of the αi, ti, and 1/P ′(αi)
to precision N , the algorithm computes the polynomial Q of degree at most
d− 1 interpolating the points (αi, ti) within

O
(
M
(
d(N + C + dM + d log d)

)
log d

)
binary operations. The precision loss is O(C + dM + d log d) bits.
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Proof. We write

Q =
d∑
i=1

ti
P ′(αi)

∏
j 6=i

(X − αj).

We have log+ |P ′| ≤ M + log d. The discriminant Disc(P ) of P is the
resultant of P and P ′. Hence we can write

UP + V P ′ = Disc(P )

with U, V ∈ Z[X]; the coefficients of U, V have expressions as determinants
of sizeO(d) involving the coefficients of P and P ′, so by Hadamard’s lemma,
we have in particular

log+ |V | = O(dM + d log d).

By the proof of proposition 4.3.3, we have log+ |αi| ≤M+log(2) for every i,
hence

log+

∣∣∣∣ 1

P ′(αi)

∣∣∣∣ = log+

∣∣∣∣ V (αi)

Disc(P )

∣∣∣∣ = O(dM + d log d).

Therefore the precision loss taken when computing the d complex numbers
zi = ti/P

′(αi) is O(C + dM + d log d) bits; the total cost to compute the zi
is

O
(
dM(N + C + dM + d log d)

)
binary operations. We conclude using lemma 6.1.3.

6.1.3 Recognizing integers in number fields

We conclude this section with estimates on the necessary precision to
recognize integers in a number field L.

We give two results according to the description of the number field. In
the first description, the number field is Q(α) where α is a root of some
polynomial P ∈ Z[X] with bounded coefficients, and we want to recognize
an element x ∈ Z[α]. This situation arises for instance when lifting from a
finite field; not much is known about the number field itself. In the second
description, we assume that an LLL-reduced basis of ZL is known, and we
want to recognize an element x ∈ ZL. The necessary precision is given in
terms of the discriminant ∆L of L and the height h(x) of x, defined in §4.2.

Proposition 6.1.5. There exist an algorithm and an absolute constant C
such that the following holds. Let L be a number field of degree d over Q
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defined by a monic irreducible polynomial P ∈ Z[X], and let M ≥ 1 such
that log+ |P | ≤M . Let α be a root of P in L. Let

x =
d−1∑
j=0

λjα
j ∈ Z[α]

with λj ∈ Z and log+ |λj| ≤ H for every j. Let N ≥ C(H + dM + d log d).
Then, given P and approximations of x, α and 1/P ′(α) to precision N in
every complex embedding of L, the algorithm computes x within

O
(
M
(
d(H + dM + d log d)

)
log d

)
binary operations.

Proof. Denote the complex embeddings of L by µ1, . . . , µd. The polynomial
Q =

∑d−1
j=0 λjX

j interpolates the points (µi(α), µi(x)) for every 1 ≤ i ≤ d.
By assumption, we have for each i

log+ |µi(x)| ≤ H + O(dM).

We are in the situation of proposition 6.1.4: we can compute an approxi-
mation of Q with a precision loss of O(H + dM + d log d) bits. Therefore,
for an appropriate choice of the constant C that we do not make explicit,
the resulting precision is sufficient to obtain Q exactly by rounding the
result to the nearest integers.

Let L be a number field of degree d over Q. We endow ZL with the
euclidean metric induced by the map ZL → Cd given by the d complex
embeddings µ1, . . . , µd of L. Then ZL becomes a lattice of volume ∆L

in the Euclidean space ZL ⊗Z R. Denote by 1 ≤ λ1 ≤ · · · ≤ λd the
successive minima of ZL. They satisfy the following inequality [NV09,
Chap. 2, Thm. 5]:

d∏
k=1

λk ≤ α
d/2
d ∆L,

where αd ≤ 1 + d
4
denotes Hermite’s constant [NV09, Chap. 2, Cor. 3].

There exist several definitions of a reduced Z-basis (a1, . . . , ad) of ZL in
the literature, which are usually formulated in terms of the coefficients of
the base-change matrix from (a1, . . . , ad) to its Gram–Schmidt orthogonal-
ization. We do not need the precise definitions here, and we only state the
following properties:
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• If (a1, . . . , ad) is HKZ-reduced [NV09, Chap. 2, Thm. 6], then for
each 1 ≤ k ≤ d, we have

4

k + 3
≤
(
‖ak‖
λk

)2

≤ k + 3

4
.

• If (a1, . . . , ad) is LLL-reduced (with parameter δ = 3
4
) [NV09, Chap. 2,

Thm. 9], then for each 1 ≤ k ≤ d, we have

‖ak‖ ≤ 2(d−1)/2λk.

Moreover,
d∏

k=1

‖ak‖ ≤ 2d(d−1)/4∆L.

HKZ-reduced bases approximate the successive minima closely, but are
difficult to compute as the dimension d grows. On the other hand, LLL-
reduced bases can be computed in polynomial time in d by the LLL algo-
rithm [LLL82].

Proposition 6.1.6. There exist an algorithm and an absolute constant C
such that the following holds. Let L be a number field of degree d and dis-
criminant ∆L. Let (a1, . . . , ad) be an LLL-reduced basis of ZL, let µ1, . . . , µd
be the complex embeddings of L, and let mL be the matrix (µi(aj))1≤i,j≤d.
Let x ∈ ZL, and let H ≥ 1 such that h(x) ≤ H. Let

N ≥ C(log ∆L + dH + d2).

Then, given approximations of (µi(x))1≤i≤d and m−1
L to precision N , the

algorithm computes x within O
(
d2M(H + log ∆L + d2)

)
binary operations.

Proof. Let λj ∈ Z such that x =
∑
λjaj. By definition of mL, we haveλ1

...
λd

 = m−1
L

µ1(x)
...

µd(x)

 .

The determinant of mL is ∆L, so | detmL| ≥ 1. In order to bound the
absolute values of the coefficients of m−1

L from above, we use Hadamard’s
lemma. Each coefficient of (detmL) ·m−1

L is the determinant of a submatrix
of mL, and the L2-norms of the columns of mL are precisely the ‖ak‖
for 1 ≤ k ≤ d. Moreover ‖ak‖ ≥ 1 for every k. Therefore,

∣∣m−1
L

∣∣ ≤ d∏
k=1

‖ak‖ ≤ 2d(d−1)/2∆L,
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and hence
log+

∣∣m−1
L

∣∣ ≤ log ∆L + O(d2).

Since h(x) ≤ H, we have
∑d

i=1 log+ |µi(x)| ≤ dH. Therefore, for some
choice of the constant C that we do not make explicit, we can recover the
coefficients λj ∈ Z exactly. On average, we have log+ |µi(x)| ≤ H, so the
cost of each multiplication is on average O

(
M(H + log ∆L + d2)

)
binary

operations. Therefore the total cost of the matrix-vector product is only
O
(
d2M(H + log ∆L + d2)

)
binary operations.

If (a1, . . . , ad) is instead assumed to be HKZ-reduced in proposition 6.1.6,
then a similar proof shows that one can take

N ≥ C(log ∆L + dH + d log d)

with a cost of O
(
d2M(H + log ∆L + d log d)

)
binary operations. Indeed,

in this case we have

d∏
k=1

‖ak‖ ≤ dd
d∏

k=1

λk ≤ dd(1 + d
4
)d/2∆L,

hence log+
∣∣m−1

L

∣∣ ≤ log(∆L) + O(d log d).

6.2 Computing theta functions in genus 2

In this section, we present the AGM method to compute τ ∈ H2 from
its theta constants, and Dupont’s algorithm to go in the reverse direction.
For convenience, we recall the expression (2.10) of theta constants in any
genus: for a, b ∈ {0, 1}g and τ ∈ Hg, we write

θa,b(τ) =
∑
m∈Zg

exp
(
iπ
((
m+ a

2

)t
τ
(
m+ a

2

)
+
(
m+ a

2

)t b
2

))
. (6.1)

6.2.1 The AGM method

We start with the easier case of the AGM method in genus 1. Let F1

be the classical fundamental domain for the action of SL2(Z) on H1, and
assume that the theta quotients θ0,1/θ0,0 and θ1,0/θ0,0 at τ ∈ F1 are given.
Then the sequence

B(τ) =

(
θ2

0,0(2nτ)

θ2
0,0(τ)

,
θ2

0,1(2nτ)

θ2
0,0(τ)

)
n≥0
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is an AGM sequence, meaning that each term of B(τ) is obtained from the
previous one by the transformation

(x, y) 7→
(x+ y

2
,
√
x
√
y
)
,

for some choice of the square roots. This is a consequence of the duplication
formula [Mum83, p. 221], the correct square roots being the theta quotients
themselves. In the algorithm, the sign ambiguity is easily removed using
the fact that

√
x and √y lie in a common open quarter plane seen from the

origin [Dup11, Thm. 2], i.e. a set of the form

{r exp(i(α0 + α)) | r > 0 and 0 < α < π/2}

for some α0 ∈ R. We say that the AGM sequence B(τ) is given by good
sign choices. The sequence B(τ) converges quadratically to 1/θ2

0,0(τ), as
the series expansion (6.1) shows.

It turns out that the sequence B(−1/τ) is also an AGM sequence with
good sign choices [Dup11, Prop. 7]. Its first term can be computed from
theta quotients at τ using the transformation formulæ for theta constants
under SL2(Z). The limit of B(−1/τ) is 1/θ2

0,0(−1/τ). Finally, we can
recover τ using the formula

θ2
0,0

(−1

τ

)
= −iτθ2

0,0(τ). (6.2)

Since the convergence of both AGM sequences is quadratic, we obtain
an algorithm to invert theta functions on F1 with quasi-linear complexity in
the output precision, at least for fixed τ . This method was already known
to Gauss [Gau68, X.1, pp. 184–206], and we recommend [Cox84, §3C] for a
historical exposition of Gauss’s works on the AGM and elliptic functions.

The analogue of this algorithm in genus 2 is based on a generaliza-
tion of AGM sequences to more than two elements, called Borchardt se-
quences [Bor88].

Definition 6.2.1. A Borchardt sequence is a sequence of complex numbers

(s
(n)
b )b∈(Z/2Z)2, n≥0

with the following property: for every n ≥ 0, there exist complex num-
bers t(n)

b for b ∈ (Z/2Z)2 such that t(n)
b is a square root of s(n)

b , and

s
(n+1)
b =

1

4

∑
b1+b2=b

t
(n)
b1
t
(n)
b2

for each b ∈ (Z/2Z)2.
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The duplication formula [Mum83, p. 221] states that for every τ ∈ H2,
the sequence

B(τ) =
(
θ2

0,b(2
nτ)
)
b∈{0,1}2,n≥0

is a Borchardt sequence; the correct choice of square roots at each step
is given by the theta constants θ0,b(2

nτ) themselves. By the series expan-
sion (6.1), we have

θ0,b(2
nτ) =

∑
m∈Z2

exp
(
−2nπmt Im(τ)m

)
exp
(
iπ
(
2nmt Re(τ)m+mt b

2

))
.

When n tends to infinity, all the terms except m = 0 converge rapidly
to zero, because Im(τ) is positive definite. Therefore the Borchardt se-
quence B(τ) converges to (1, 1, 1, 1).

We say that a set of complex numbers is in good position when it is
included in an open quarter plane. The property of being in good position
is invariant by nonzero complex scaling. A Borchardt sequence is given
by good sign choices if for every n ≥ 0, the complex numbers t(n)

b for
b ∈ (Z/2Z)2 are in good position.

In order to present the algorithm to recover τ ∈ H2 from its theta
quotients, we introduce four matrices γk ∈ Sp4(Z) for 0 ≤ k ≤ 3. Let

S1 =

(
1 0
0 0

)
, S2 =

(
0 0
0 1

)
, S3 =

(
0 1
1 0

)
,

and define the matrix γk ∈ Sp4(Z) for 0 ≤ k ≤ 3 by

γ0 = I4, and γk =

(
−I2 −Sk
Sk −I + S2

k

)
for 1 ≤ k ≤ 3.

Also recall from §2.3.2 that the genus 2 theta constants are numbered as
follows [Dup06, §6.2]:

θ(a0,a1),(b0,b1) =: θj where j = b0 + 2b1 + 4a0 + 8a1 ∈ J0, 15K .

Assuming that the correct choices of square roots in the sequences B(γkτ)
can be determined (for instance, if the sign choices in these Borchardt
sequences are always good), we can compute τ ∈ H2 from its theta quotients
as follows.

Algorithm 6.2.2 ([Dup06, §9.2.3]).
Input: The vector of squares of theta constants θ2

j (τ)/θ2
0(τ) for j ∈ J1, 15K,

for some τ ∈ H2.
Output: The matrix τ .

202



1. For each 0 ≤ k ≤ 3, compute the first term of the Borchardt se-
quence B(γkτ)/θ2

0(γkτ) using the transformation formulæ for theta
constants under Sp4(Z) (see [Igu72, Thm. 2 p. 175 and Cor. p. 176],
or proposition 6.2.6 below);

2. For each 0 ≤ k ≤ 3, compute 1/θ2
0(γkτ) as the limit of the Borchardt

sequence B(γkτ)/θ2
0(γkτ);

3. Use the input and the newly computed θ2
0(γ0τ) = θ2

0(τ) to compute
all squares of theta constants at τ ;

4. Recover τ =

(
z1 z3

z3 z2

)
using the relations given in [Dup06, §6.3.1]:

θ2
0(γ1τ) = −iz1θ

2
4(τ), θ2

0(γ2τ) = −iz2θ
2
8(τ), θ2

0(γ3τ) = − det(τ)θ2
0(τ).

We stress that algorithm 6.2.2 is theoretical: in practice, we need a way
of determining the correct sign choices, we handle approximations of all
the complex numbers involved, and we have to bound the precision losses
incurred in the computations.

The correct sign choices in the AGM algorithm are difficult to describe
in general, but as in the genus 1 case, things become easier if we restrict
to the fundamental F2 for the action of Sp4(Z) on H2, defined as follows.

Definition 6.2.3. Let
Y =

(
y1 y3

y3 y2

)
be a symmetric 2 × 2 real matrix, and assume that Y is positive definite.
We say that Y is Minkowski-reduced if

y1 ≤ y2 and − 0 ≤ 2y3 ≤ y1.

The domain F2 is defined as the set of all matrices τ ∈ H2 such that

1. Im(τ) is Minkowski-reduced.

2. |Re(τ)| ≤ 1/2.

3. |det(γ∗τ)| ≥ 1 for every γ ∈ Sp4(Z).

It is enough to check the last condition for an explicit finite set S ⊂ Sp4(Z)
consisting of 19 elements [Got59], [Dup06, Thm. 6.1]. Recall that for ev-
ery γ = ( a bc d ) ∈ Sp4(Z) and τ ∈ H2, we write γ∗τ := cτ + d.

The original reference [Dup06] makes the observation that the sign
choices in the sequences B(γkτ) for 0 ≤ k ≤ 3 are always good when τ be-
longs to F2. This fact is proved in the case of γ0 = I4 in [Dup06, Prop. 9.1],
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but is otherwise left as a conjecture [Dup06, Conj. 9.1], [Eng09a, Conj. 9].
We managed to prove that the other three sequences B(γkτ) for 1 ≤ k ≤ 3
are also given by good sign choices when τ ∈ F2 [Kie21]; we give the idea of
the proof in §6.2.2. Then we bound the precision losses in algorithm 6.2.2
in §6.2.3.

6.2.2 Sign choices in the AGM method

In the sequel, we use the following notation. For τ ∈ H2, we write

τ =

(
z1(τ) z3(τ)
z3(τ) z2(τ)

)
and

{
xj(τ) = Re zj(τ)

yj(τ) = Im zj(τ)
for 1 ≤ j ≤ 3.

For 1 ≤ j ≤ 3, we also write

qj(τ) = exp(−πyj(τ)).

We denote by λ1(τ) the smallest eigenvalue of Im(τ), and define

r(τ) = min
{
λ1(τ),

y1(τ)

2
,
y2(τ)

2

}
.

We often omit the argument τ to ease notation. We define F ′2 to be the set
of all τ ∈ H2 such that the following conditions are satisfied:

|xj(τ)| ≤ 1

2
for each 1 ≤ j ≤ 3,

2 |y3(τ)| ≤ y1(τ) ≤ y2(τ),

y1(τ) ≥
√

3

2
,

|zj(τ)| ≥ 1 for j ∈ {1, 2}.

(6.3)

The domain F ′2 contains the classical fundamental domain F2 introduced
in §6.2.1. Assumptions similar to (6.3) are usual when giving analytic esti-
mates on theta constants: for instance, the domain B in [Str14] is defined
by the first three inequalities of (6.3).

Theorem 6.2.4 ([Kie21]). For every τ ∈ F ′2 and every 0 ≤ k ≤ 3, the
Borchardt sequence B(γkτ) contains only good sign choices.

The proof works by giving estimates on the value of theta constants
appearing as the terms of these Borchardt sequences, using the series ex-
pansion (6.1). However, the first terms of this series approximate θa,b(τ)
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efficiently only when τ is close to the cusp at infinity, more precisely
when Im z1(τ), Im z2(τ), and det Im(τ) are large. These conditions are
satisfied in the case of the sequence B(γ0τ), whose n-th term consists of
theta constants at 2nτ for every n ≥ 0, but not in the other cases.

To solve this problem, we construct specific symplectic matrices that
bring the matrices 2nγkτ ∈ H2 for n ≥ 0 and 1 ≤ k ≤ 3 closer to the cusp
at infinity, exactly in the same way as we constructed the matrices ηR in
the proof of proposition 5.1.10. For every n ≥ 0, we define

η
(n)
1 =


0 0 −1 0
0 1 0 0
1 0 2n 0
0 0 0 1

 , η
(n)
2 =


1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 2n

 ,

η
(n)
3 =


0 0 0 −1
0 0 −1 0
0 1 2n 0
1 0 0 2n

 , and η
(n)
4 =


0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

 η
(n)
3 .

Proposition 6.2.5. Let n ≥ 0.

1. For every 1 ≤ k ≤ 4, the matrix η(n)
k belongs to Sp4(Z).

2. For every τ =

(
z1 z3

z3 z2

)
∈ H2, we have

τ
(n)
1 := η

(n)
1 (2nγ1τ) =

(
2−nz1 z3

z3 2nz2

)
,

τ
(n)
2 := η

(n)
2 (2nγ2τ) =

(
2nz1 z3

z3 2−nz2

)
,

τ
(n)
3 := η

(n)
3 (2nγ3τ) = 2−nτ, and

τ
(n)
4 := η

(n)
4 (2nγ3τ) =

(
−2n/z1 −z3/z1

−z3/z1 2−n(z2 − z2
3/z1)

)
.

(6.4)

Proof. 1. The lines of each η(n)
k define a symplectic basis of Z4.

2. Recall that the action of Sp4(Z) on H2 extends to an action of the
group GSp4(Q)+. The matrix 2nγkτ is the image of τ under(

−2nI2 −2nSk
Sk −I + S2

i

)
∈ GSp4(Q)+.
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When we multiply this matrix by η(n)
k on the left, we obtain

Diag(−1,−2n,−2n,−1) for k = 1,

Diag(−2n,−1,−1,−2n) for k = 2, and
Diag(−1,−1,−2n,−2n) for k = 3.

In order to relate theta constants at 2nγkτ with theta constants at τ (n)
k ,

we use the following transformation formula. For a square matrix m, we
denote by m0 the column vector containing the diagonal of m.

Proposition 6.2.6 ([Igu72, Thm. 2 p. 175 and Cor. p. 176]). Let a, b ∈
{0, 1}2, and let

γ =

(
A B
C D

)
∈ Sp4(Z).

Define (
α
β

)
= γt

(
a− (CDt)0

b− (ABt)0

)
.

Then, for every τ ∈ H2, we have

θa,b(γτ) = κ(γ) ζ
ε(γ,a,b)
8 det(Cτ +D)1/2 θa′,b′(τ)

where

ζ8 = eiπ/4,

(
a′

b′

)
=

(
α
β

)
mod 2,

ε(γ, a, b) = 2(Bα)t(Cβ)− (Dα)t(Bα)− (Cβ)t(Aβ) + 2
(
(ABt)0

)t
(Dα− Cβ),

and κ(γ) is an eighth root of unity depending only on γ, with a sign ambi-
guity coming from the choice of a holomorphic square root of det(Cτ +D).

Corollary 6.2.7. For every τ ∈ H2, we have the following equalities of
projective tuples:

(θj(2
nγ1τ))0≤j≤3 =

{
(θ4(τ) : θ0(τ) : θ6(τ) : θ2(τ)) if n = 0,

(θ0(τ
(n)
1 ) : θ4(τ

(n)
1 ) : θ2(τ

(n)
1 ) : θ6(τ

(n)
1 )) if n ≥ 1,

(θj(2
nγ2τ))0≤j≤3 =

{
(θ8(τ) : θ9(τ) : θ0(τ) : θ1(τ)) if n = 0,

(θ0(τ
(n)
2 ) : θ1(τ

(n)
2 ) : θ8(τ

(n)
2 ) : θ9(τ

(n)
2 )) if n ≥ 1,

(θj(2
nγ3τ))0≤j≤3 = (θ0(τ

(n)
3 ) : θ8(τ

(n)
3 ) : θ4(τ

(n)
3 ) : θ12(τ

(n)
3 )) for all n ≥ 0,

(θj(2
nγ3τ))0≤j≤3 = (θ0(τ

(n)
4 ) : θ8(τ

(n)
4 ) : θ1(τ

(n)
4 ) : θ9(τ

(n)
4 )) for all n ≥ 0,

where the τ (n)
j are defined as in (6.4).
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Proof. Apply proposition 6.2.6 to the matrices η(n)
k .

The rest of the proof of theorem 6.2.4 involves technical estimates on
the tails of series defining theta constants. The computations are similar
to those found in [Kli90, pp. 116–117], [Dup06, §6.2], [HP17, §5.1]. For
instance, in the case of the Borchardt sequence B(γ0τ) for τ ∈ F ′2, we can
apply the following result.

Proposition 6.2.8. Let τ ∈ H2.

1. If r(τ) ≥ 0.4, then the θj(τ) for 0 ≤ j ≤ 3 are in good position.

2. If λ1(τ) ≥ 0.6, then the θj(τ) for 0 ≤ j ≤ 3 are in good position.

Proof. 1. Write
q = exp(−πr(τ)).

For 0 ≤ j ≤ 3, by (6.1), we have

|θj(τ)− 1| ≤ 4q2 +
∑

n∈Z2, ‖n‖2≥2

exp(−πλ1(τ) ‖n‖2)

≤ 8q2 + 4q4 + 8q5 + 4q8 + 4
1 + q

(1− q)2
q9.

(6.5)

In (6.5), the first term 4q2 comes from the four vectors n ∈ Z2

with ‖n‖ = 1. Then we separate the terms n = (n1, n2) such that
|n1| ≥ 3 and |n2| ≥ 3; this accounts for the term 4q9(1 + q)/(1− q)2,
as in the proof of [Dup06, Prop. 6.1]. We leave the remaining terms
as they are.

If q ≤ 0.287, then the quantity on the right hand side of (6.5) is
less than

√
2/2, and the θj(τ) are contained in a disk centered at 1

which is itself contained in a quarter plane. We have q ≤ 0.287 when
r(τ) ≥ 0.4.

2. Write
q = exp(−πλ1(τ)).

Then for 0 ≤ j ≤ 3, we have

|θj(τ)− 1| ≤ 4q + 4q2 + 4q4 + 8q5 + 4q8 + 4
1 + q

(1− q)2
q9.

This quantity is less than
√

2/2 when λ1(τ) ≥ 0.6.
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Proposition 6.2.8 implies that B(γ0τ) for τ ∈ F ′2 contains only good
sign choices, since

r(2nτ) = 2nr(τ) ≥
√

3/4 ≥ 0.4

for every n ≥ 0.
In the study of B(γkτ) for 1 ≤ k ≤ 3, we separate different cases

according to the value of n. If n is large enough, then 2nλ1(γkτ) ≥ 0.6, and
hence proposition 6.2.8 shows that the n+ 1st term of B(γkτ) is obtained
by a Borchardt iteration with good sign choices. The precise rank where
this happens depends on τ .
Proposition 6.2.9. Let τ ∈ H2 and γ ∈ Sp4(Z). Then

λ1(γτ) ≥ det Im(τ)

8 |γ|2 |τ | (2 |τ |+ 1)2
.

Proof. We have

λ1(γτ) ≥ det Im(γτ)

Tr Im(γτ)
.

By [Str10, (5.11) p. 57], we have

Im(γτ) = (γ∗τ)−t Im(τ)(γ∗τ̄)−1,

hence

det Im(γτ) =
det Im(τ)

|det(γ∗τ)|2
, and

Tr Im(γτ) ≤ 8
∣∣(γ∗τ)−1

∣∣2 |Im(τ)| ≤ 8
|γ∗τ |2 |τ |
|det(γ∗τ)|2

≤ 8
|γ|2 (2 |τ |+ 1)2 |τ |
|det(γ∗τ)|2

.

One can give more precise versions of proposition 6.2.9 when τ ∈ F ′2
and γ ∈ {γ1, γ2, γ3} [Kie21]. For instance, we have

r(γ1τ) ≥ 9 y1(τ)

34 |z1(τ)|2

for all τ ∈ F ′2. Hence proposition 6.2.8 applies to 2nγ1τ if 2n ≥ 1.96y1(τ).
On the other hand, when n is smaller, then the matrix

τ
(n)
1 =

(
2−nz1 z3

z3 2nz2

)
is close to the cusp at infinity. By corollary 6.2.7, in order to prove
that B(γ1τ) contains only good choices of signs, we are led to prove that the
theta constants θj

(
τ

(n)
1

)
for j ∈ {0, 2, 4, 6} are in good position for τ ∈ F ′2

and 2n ≤ 1.96y1(τ). This is done by careful estimates on the tails of the
series (6.1) and on the complex arguments of the sum of the first few terms.
We refer to [Kie21] for a full proof of theorem 6.2.4.
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6.2.3 Precision losses in the AGM method

Once we know that the Borchardt sequences in algorithm 6.2.2 are given
by good sign choices when τ ∈ F ′2, we can estimate the precision losses in
this algorithm when giving approximations of theta constants at τ as input.
We start with four lemmas: the first two give information on the first terms
of the Borchardt sequences obtained from the series expansion (6.1), and
the other ones are general results on Borchardt sequences.

Lemma 6.2.10 ([Str14, Prop. 7.6 and Cor. 7.7]). Let τ ∈ F ′2, and abbre-
viate y1(τ) as y1, z1(τ) as z1, etc. Then we have:

|θj(τ)− 1| < 0.405 for j ∈ {0, 1, 2, 3},∣∣∣ θj(τ)

2 exp(iπz1/4)
− 1
∣∣∣ < 0.348 for j ∈ {4, 6},∣∣∣ θj(τ)

2 exp(iπz2/4)
− 1
∣∣∣ < 0.348 for j ∈ {8, 9},

and ∣∣∣∣ θ12(τ)

2(1 + exp(iπz3)) exp(iπ(z1 + z2 − 2z3)/4)
− 1

∣∣∣∣ < 0.438.

In particular,

0.59 < |θj(τ)| < 1.41 for j ∈ {0, 1, 2, 3},
1.3 exp

(
−π

4
y1

)
< |θj(τ)| < 1.37 for j ∈ {4, 6},

1.3 exp
(
−π

4
y2

)
< |θj(τ)| < 1.37 for j ∈ {8, 9} , and

1.05 exp
(
−π

4
(y1 + y2 − 2y3)

)
< |θ12(τ)| < 1.56.

Lemma 6.2.11. There exists an angle α < π/2 such that the follow-
ing holds. Let S be one of the sets {0, 1, 2, 3}, {0, 2, 4, 6}, {0, 1, 8, 9},
or {0, 4, 8, 12}. Then for every τ ∈ F ′2, the theta constants θj(τ) for j ∈ S
are contained in an open angular sector of angle α seen from the origin.

Proof. Using the estimates of lemma 6.2.10 and the definition of F ′2 in (6.3)
is sufficient to conclude, except in the case S = {0, 4, 8, 12}. Consider for
instance the case of S = {0, 1, 8, 9}. The absolute value of the argument
of exp(iπz2/4) is at most π/8, hence the angle between the theta con-
stants θj(τ) for j ∈ S is bounded above by

π

8
+ arcsin(0.348) + arcsin(0.405) <

π

2
.

In the case of S = {0, 4, 8, 12}, more delicate estimates are needed. We
refer to [Kie21] for the proof.
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Lemma 6.2.12 ([Dup06, §7.2]). Let B =
(
s

(n)
b

)
b∈(Z/2Z)2,n≥0

be a Borchardt

sequence with good sign choices only, and assume that Re
(
s

(n)
b

)
> 0 for

every b ∈ (Z/2Z)2 and n ≥ 0. For every n ≥ 0, define

mn = min
b∈(Z/2Z)2

Re
(
s

(n)
b

)
and Mn = max

b∈(Z/2Z)2

∣∣s(n)
b

∣∣.
Then the sequences (mn) and (Mn) are nondecreasing and nonincreasing,
respectively.

Note that every Borchardt sequence with good sign choices can be
rescaled into a Borchardt sequence to which lemma 6.2.12 applies. Fi-
nally, the next lemma shows that once a Borchardt sequence with good
sign choices starts to converge, it does so quadratically.

Lemma 6.2.13 ([Dup06, Prop. 7.1]). Let B =
(
s

(n)
b

)
b∈(Z/2Z)2,n≥0

be a
Borchardt sequence with good sign choices only, and let s∞ be its limit.
Let 0 < ε <

√
3/2− 1, and let n0 ∈ N such that for every b ∈ (Z/2Z)2, we

have ∣∣s(n0)
b − s(n0)

0

∣∣ ≤ ε
∣∣s(n0)

0

∣∣.
Then, for every k ≥ 0, we have∣∣∣s∞ − s(n0+k)

0

∣∣∣ ≤ 5Mn0

(7ε

2

)2k

,

where Mn0 is defined as in lemma 6.2.12.

We are now ready to bound the precision losses in the AGM method in
genus 2. The contribution we make compared to [Dup06, §9.2.3], besides
showing that the sign choices are good, is that we make the dependency
on τ ∈ F ′2 explicit.

Proposition 6.2.14. Let τ ∈ F ′2 and N ≥ 1. Then, given approximations
of squares of theta quotients at τ to precision N , algorithm 6.2.2 computes
an approximation of τ within

O
(
M(N + |τ |) log |τ |+M(N) logN

)
binary operations. The precision loss is O(logN + |τ | log |τ |) bits.

Proof. By theorem 6.2.4, we obtain the quantities

(θ2
j (2

nγiτ)/θ2
0(γiτ))0≤j≤3
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after n Borchardt steps with good sign choices. By proposition 6.2.9, we
know that ∣∣log λ1(γiτ)

∣∣ = O(log |τ |).

Therefore, there exists n0 = O(log |τ |) such that λ1(2n0γiτ) ≥ 10, for
instance. Even if |τ | is not known explicitly, this moment can be detected
during the algorithm: the four values in the Borchardt sequence become
close to each other, so that lemma 6.2.13 applies.

Let us estimate the precision losses in these n0 steps. Let B =
(
s

(n)
b

)
be one of the four Borchardt sequences that we consider. By lemma 6.2.11,
after scaling by a complex number of modulus one, we may assume that the
absolute values of the arguments of the s(0)

b for b ∈ (Z/2Z)2 are bounded
above by some α < π/2 which is independent of τ . Then, by lemma 6.2.10,
we have

|logm0| = O(|τ |) and |M0| = O(1).

By lemma 6.2.12, the same estimates hold for mn and Mn for every n ≥ 0.
Therefore, in the first n0 Borchardt steps, we perform O(log |τ |) elementary
operations on complex numbers z that satisfy |log(|z|)| = O(|τ |), for a total
cost of

O(M(N + |τ |) log |τ |)

binary operations, and a precision loss of O(|τ | log |τ |) bits.
Then, we scale the values in such a way that one of the four values of

the n0-th term in the Borchardt sequence equals 1, and we add O(logN)
Borchardt steps: this O-constant and the accuracy of the result can be
made explicit by lemma 6.2.13. This costs O(M(N) logN) binary oper-
ations, and the precision loss is O(logN) bits. This allows us to com-
pute the quantities θ2

0(γiτ) for 1 ≤ i ≤ 3; the precision loss up to now is
O(logN + |τ | log |τ |) bits.

Finally, we recover the entries of τ in step 4 of algorithm 6.2.2, for a
cost of O(N+ |τ |) binary operations and a precision loss of O(|τ |) bits.

6.2.4 Dupont’s algorithm for theta constants

Dupont’s thesis [Dup06] builds a Newton scheme around the AGM
method in order to compute theta constants in quasi-linear time. In genus 1,
this method yields a provably correct algorithm [Dup11]. In genus 2, the
convergence of Dupont’s algorithm remains heuristic, even using the prov-
ably correct AGM algorithm presented in §6.2.3. In this section, we briefly
present Dupont’s method, we explain the remaining challenges to obtain
a provably correct algorithm, and we state hypothesis 6.2.15 according to
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which Dupont’s algorithm converges uniformly on a compact set. This as-
sumption is fundamental in the complexity estimates for the evaluation of
modular equations for abelian surfaces.

In genus 1, the algorithm is formulated in terms of the function

k′(τ) :=

(
θ0,1(τ)

θ0,0(τ)

)2

, for τ ∈ H1.

For each z ∈ C with positive real part, we define M1(z) as the limit of
the AGM sequence with good sign choices whose first term is {1, z}. De-
fine F ′1 ⊂ H1 as in [Dup11, Prop. 7]:

F ′1 = {τ ∈ H1 : |Re τ | < 1, |2τ + 1| > 1, |2τ − 1| > 1} .

Note that F ′1 contains the fundamental domain F1. Then k′ is a surjective
analytic map from F ′1 to {z ∈ C : Re(z) > 0} whose derivative does not
vanish. Moreover, the equality

M1(k′(τ)) =
1

θ2
0,0(τ)

holds for all τ ∈ F ′1. By the inverse function theorem, the function M1 is
also analytic.

The Newton scheme to compute k′(τ) from τ ∈ F1 uses the fact that
the function

fτ (z) := iM1(z)− τM1(
√

1− z2)

vanishes at k′(τ); this equality comes from eq. (6.2), the expression of theta
constants at −1/τ ∈ F ′1, and the Jacobi identity θ4

0,0 = θ4
0,1 + θ4

1,0 [Dup11,
§5.1]. The linearization step in the Newton scheme is based on the equality

dfτ
dz

(k′(τ)) =
−2M1(k′(τ))3

πτk′(τ)(1− k′(τ)2)
. (6.6)

If k′(τ) is currently computed to precision N , then the derivative of fτ
at k′(τ) can also be computed to precision roughly N , and this allows in
turn to compute a better approximation of k′(τ) to precision roughly 2N .
The computations are made precise in [Dup11, §5.2, §6.1, and §6.2]. Before
starting the Newton iterations, k′(τ) is computed at low precision using the
series expansions of theta constants (the so-called “naive method”, which is
not quasi-linear in the required precision).

The precision losses in each Newton iteration and the initial precision
necessary depend on τ , and grow quickly as Im τ → +∞. However, when τ
belongs to a compact set of F1, these precision losses can be bounded
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uniformly. When Im(τ) is large, one can compute theta constants at τ/2n
for some appropriate n and perform n AGM steps to recover theta constants
at τ . In this way, we obtain an algorithm to evaluate k′(τ) at precion N ≥ 1
using O(M(N) logN) operations, uniformly in τ ∈ F1 [Dup11, Thm. 5].

The only remaining issue is that in order to implement a provably
correct version of Dupont’s algorithm in genus 1, one needs explicit up-
per bounds on the precision losses in a given compact subset of F1. No
such bound is given in [Dup11], or in subsequent works to our knowl-
edge [Lab18, LT16]. In practice, a common heuristic strategy is to take an
arbitrary error margin; if the Newton iterations do converge in an exper-
imental sense, then one accepts the end value as an approximation of the
true result.

In genus 2, Dupont’s algorithm to compute theta constants follows an
analogous strategy. Given τ ∈ F ′2, we want to compute the theta quo-
tients bj(τ) := θj(τ)2/θ0(τ)2 for j ∈ {1, 2, 3}; this is sufficient, because

1. the duplication formulæ express all squares of theta constants at 2τ
in terms of these quantities;

2. the theta constants θj(τ)2 themselves can be computed from this data
using one further Borchardt mean.

By theorem 6.2.4, computing an approximation of τ ∈ F ′2 from the bj(τ)
for 1 ≤ j ≤ 3 can be done using four Borchardt means with good sign
choices. This yields, as in the genus 1 case, a function

Fτ : {z ∈ C : Re z > 0}3 → C3

which satisfies
Fτ
(
b1(τ), b2(τ), b3(τ)

)
= 0.

In order to build a Newton scheme to compute τ from its theta quo-
tients, one relies on the following heuristic assumption, which holds in
practice [Dup06, §10.2]: the Jacobian matrix of Fτ at (b1(τ), b2(τ), b3(τ))
is invertible, and can be suitably approximated using finite differences on
the function Fτ . This yields a heuristic algorithm to compute theta con-
stants at precision N ≥ 1 in O τ (M(N) logN) binary operations, for a fixed
τ ∈ F ′2. As a by-product, the algorithm computes the Jacobian matrix of Fτ
at high precision; equivalently, we also recover the values of derivatives of
theta constants at τ at precision roughly N/2 for no additional cost.

For our application to the evaluation of modular equations for abelian
surfaces, we need to assume more on the behavior of this algorithm, namely
that the Newton iterations converge uniformly on a compact subset of F ′2.

213



Hypothesis 6.2.15. There exists an algorithm such that the following
holds. Let τ ∈ F ′2 and N ≥ 1. Assume that

max{y1(τ), y2(τ)} ≤ 10.

Then, given an approximation of τ to precision N , the algorithm computes
squares of theta constants at τ , and derivatives of theta constants at τ with
respect to z1(τ), z2(τ), z3(τ), in O(M(N) logN) binary operations with a
precision loss of O(1) bits.

Derivatives of theta constants are uniformly bounded on the compact
set defined by the conditions in hypothesis 6.2.15, hence the precision loss
of O(1) bits. In order to implement an algorithm which hopefully satisfies
hypothesis 6.2.15, one simply applies the Newton scheme with a large ini-
tial precision, say 1000 bits, using the naive evaluation method for theta
constants [Dup06, §10.1], and everything works well.

Using hypothesis 6.2.15, we describe in §6.2.5 an algorithm to compute
theta functions in uniform quasi-linear time at a given τ ∈ F ′2, using du-
plication formulæ as in the genus 1 case. In general, in order to compute
theta constants at a given τ ∈ H2, we first reduce τ to the fundamental
domain with controlled precision losses, using an adaptation of the classical
reduction algorithm for inexact input (§6.2.6).

6.2.5 Extension to the whole fundamental domain

Here we describe an algorithm to evaluate theta constants and their
derivatives at τ ∈ F ′2 to precision N ≥ 1 within O(M(N) logN) binary
operations, uniformly in τ , assuming hypothesis 6.2.15. There are two easy
cases:

1. If τ belongs to the compact set defined in hypothesis 6.2.15, then we
use Dupont’s algorithm directly.

2. If y1(τ) and y2(τ) satisfy min{y1, y2} ≥ CN , where C is an absolute
constant, then we use the naive algorithm to compute theta constants
at τ within O(M(N)) binary operations [Dup06, §10.1].

For other values of τ ∈ F2, we fall back to one of these two cases using
duplication formulæ. For every τ ∈ H2, write

D1(τ) =
τ

2
and D2(τ) =

(
2z1(τ) z3(τ)
z3(τ) 1

2
z2(τ)

)
.

Lemma 6.2.16. Let τ ∈ F ′2.
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1. If D1(τ) ∈ F ′2, then the tuple of theta constants (θ2
j (τ))j∈{0,1,2,3} is

obtained from the tuple of theta constants
(
θ2
j (D1(τ))

)
j∈{0,1,2,3} by a

Borchardt iteration with good choice of roots.

2. If D2(τ) satisfies (6.3), except that the real part of z1(D2(τ)) is al-
lowed to be smaller than 1 instead of 1/2, then (θ2

j (τ))j∈{0,2,4,6} is ob-
tained from

(
θ2
j (D2(τ))

)
j∈{0,2,4,6} by a Borchardt iteration with good

choice of roots.

Proof. The first item is the classical duplication formula: the choice of
roots is given by the theta constants θj(D1(τ)) for 0 ≤ j ≤ 3, and they are
in good position by lemma 6.2.10. For the second item, apply the theta
transformation formula (proposition 6.2.6) to the symplectic matrix

0 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1

 .

The theta constants θj(D2(τ)) for j ∈ {0, 2, 4, 6} also are in good position
by the proof of [Kie21, Lem. 5.2].

Proposition 6.2.17 (Under hypothesis 6.2.15). There exists an algorithm
which, given τ ∈ F ′2 to precision N ≥ 1, computes the squares and deriva-
tives of theta constants at τ in O(M(N) logN) binary operations with a
precision loss of O(1) bits, uniformly in τ .

Proof. Since derivatives of theta constants are uniformly bounded on F ′2,
the difference between theta constants at τ and theta constants at the
center of the complex ball approximating τ is O(2−N). Therefore we may
assume that τ is given at arbitrarily high precision.

First, we let k2 be the smallest integer such that

2k2y1(τ) ≥ min{CN, 2−k2−2y2(τ)}

where C is an absolute constant. Let τ ′ be the matrix obtained after
applying k2 times D2 to τ and reducing the real part at each step. In order
to compute theta constants at τ to precisionN , we compute theta constants
at τ ′ to some precision N ′ ≥ N , then apply k2 times the duplication formula
from lemma 6.2.16. We have k2 = O(logN), and the total precision loss
when extracting square roots is O(N) bits, hence the total precision loss
is O(N) bits. We can take N ′ = C ′N where C ′ is an absolute constant.
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There are now two cases. If y1(τ ′) ≥ CN , then we have y2(τ ′) ≥ CN
as well. Hence we can compute theta constants at τ ′ to precision N ′ using
O(M(N)) operations with the naive algorithm. Otherwise, we have

y1(τ ′) ≤ y2(τ ′) ≤ 4y1(τ ′) ≤ 4CN.

Therefore we can find an integer k1 = O(logN) such that Dk1
1 (τ ′) belongs

to the compact set defined in hypothesis 6.2.15. The precision losses in the
duplication formula for D1 are O(1) bits per step, hence we recover theta
constants at τ ′ to precision N ′ in O(M(N) logN) binary operations.

6.2.6 An approximate reduction algorithm

In order to evaluate theta constants at a given τ ∈ H2, our strategy
is to reduce τ to F2 and to compute theta constants there using the al-
gorithm of proposition 6.2.17. However, the classical reduction algorithm
described in [Str14, §6] is based on inequalities, and this causes problems
on the boundary when the input is inexact. Therefore, we rather describe
reduction algorithms to neighborhoods of F2; we still write inequalities,
but they should be understood as inclusions of intervals. Then we show
the validity of the reduction algorithm on inexact input provided that the
precision remains high enough. We start by defining neighborhoods of F2.

Definition 6.2.18. Fix ε > 0, and let

Y =

(
y1 y3

y3 y2

)
be a symmetric 2× 2 real matrix. Assume that Y is positive definite. We
say that Y is ε-Minkowski reduced if

y1 ≤ (1 + ε)y2 and − εy1 ≤ 2y3 ≤ (1 + ε)y1.

Let S ⊂ Sp4(Z) be the set of 19 matrices defining the boundary of F2, as
in definition 6.2.3. We define the neighborhood F ε2 of F2 as the set of all
matrices τ ∈ H2 such that

1. Im(τ) is ε-Minkowski reduced.

2. |Re(τ)| ≤ 1/2 + ε.

3. |det(σ∗τ)| ≥ 1− ε for every σ ∈ S.

The fundamental domain F2 corresponds to the case ε = 0.
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The approximate reduction algorithm is copied on [Str14, Alg. 6.8]. The
input is a matrix τ ∈ H2 to precision N ≥ 1, and the output is τ ′ ∈ F ε2
together with γ ∈ Sp4(Z) such that τ ′ = γτ . We assume that the precision
remains greater than |log ε|+ 1 at any time. If we run out of precision, we
stop and output “failure”.

Algorithm 6.2.19 (Reduction to F ε2). Start with τ ′ = τ and iterate the
following three steps until τ ′ ∈ F ε2 , keeping track of a matrix γ ∈ Sp4(Z)
such that τ ′ = γτ :

1. Reduce Im(τ ′) such that it becomes ε-Minkowski reduced.

2. Reduce Re(τ ′) such that |Re(τ ′)| ≤ 1/2 + ε.

3. Apply σ ∈ S such that |detσ∗(τ ′)| is at most 1 − ε/2 and has the
smallest upper bound, if such a σ exists.

4. Update γ ∈ Sp4(Z) and recompute τ ′ = γτ .

In order to analyze algorithm 6.2.19, we mimic Streng’s analysis of the
exact reduction algorithm [Str10, §II.5.3]. For τ ∈ H2, we define

Λ(τ) = log max{2, |τ | , det(Im τ)−1}.

Denote by 0 < λ1(τ) ≤ λ2(τ) the two eigenvalues of Im(τ), and by
0 < m1(τ) ≤ m2(τ) the successive minima of Im(τ) on the lattice Z2. By
[Str10, (5.4) p. 54], we always have

3

4
m1(τ)m2(τ) ≤ det Im(τ) ≤ m1(τ)m2(τ), (6.7)

hence
log max{λ1(τ)−1, λ2(τ),m1(τ)−1,m2(τ)} = O(Λ(τ)).

First, we detail the Minkowski reduction step.

Lemma 6.2.20. There exist an algorithm and an absolute constant C such
that the following holds. Let τ ∈ H2 and ε > 0. Then, given an approx-
imation of τ to precision N ≥ C(Λ(τ) + |log ε|), the algorithm computes
a matrix U ∈ SL2(Z) such that U t Im(τ)U is ε-Minkowski reduced within
O(M(N) logN) binary operations.

Proof. Write Im(τ) = RtR, and consider the matrix R′ obtained by round-
ing the coefficients of 2NR to the nearest integers. If C is chosen appropri-
ately, then the matrix R′ is still invertible. We apply a quasi-linear version
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of Gauss’s reduction algorithm [Sch91, Yap92], and obtain a Minkowski-
reduced basis of the lattice R′Z2 within O(M(N) logN) binary operations.
By [Str10, Lem. 5.6], the base change matrix U ∈ SL2(Z) satisfies

log |U | = O(Λ(τ)).

Therefore the matrix U t Im(τ)U is ε-Minkowski reduced provided that C
is large enough.

Then, we bound then precision losses during algorithm 6.2.19.

Lemma 6.2.21. Let τ, τ ′ ∈ H2, and assume that there exists a matrix
γ ∈ Sp4(Z) such that τ ′ = γτ . Then we have

log+ max{|γ∗τ | ,
∣∣(γ∗τ)−1

∣∣} = O
(
max{Λ(τ),Λ(τ ′)}

)
,

log |γ| = O
(
max{Λ(τ),Λ(τ ′)}

)
.

Proof. Let R be a real 2× 2 matrix such that RtR = Im(τ). Then we have

Im(τ ′) = (γ∗τ)−t Im(τ)(γ∗τ)−1 = R′tR′

with R′ = R(γ∗τ)−1. Since |R| ≤ |Im(τ)|1/2 and |R′| ≤ |Im(τ ′)|1/2, we
obtain

|γ∗τ | =
∣∣R′−1R

∣∣ ≤ 2
|R′|

det(R′)
|R| .

Hence log+ |γ∗τ | = O(max{Λ(τ),Λ(τ ′)}), and a similar bound holds in the
case of (γ∗τ)−1.

It remains to bound |γ|. If c, d denote the two lower blocks of γ, then
Im(γ∗τ) = c Im(τ). Therefore log+ |c| = O(max{Λ(τ),Λ(τ ′)}), and

log+ |d| ≤ log+(|cτ |+ |γ∗τ |) = O
(
max{Λ(τ),Λ(τ ′)}

)
.

Finally, we bound the upper blocks a and b of γ in a similar way, using the
relation aτ + b = τ ′(cτ + d).

Lemma 6.2.22. There exists an absolute constant C such that the fol-
lowing holds. Let τ ∈ H2 and ε > 0, and assume that the precision dur-
ing algorithm 6.2.19 remains greater than |log ε| + 1. Then the number
of iterations is O(Λ(τ)). Moreover, during the algorithm, the quantities∣∣log(|det(γ∗τ)|)

∣∣, Λ(τ ′) and log |γ| remain in O(Λ(τ)).

Proof. The number of iterations is O(Λ(τ)) by [Str10, Prop. 5.16]: observe
that [Str10, Lem. 5.14 and 5.15] still apply, because det Im(τ ′) is strictly
increasing in algorithm 6.2.19. The proof of [Str10, Lem. 5.17] also applies
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to algorithm 6.2.19 with slightly worse constants. This shows that log |τ ′|
and log |det(γ∗τ)| remain in O(Λ(τ)).

During the algorithm, we also have log+m2(τ ′) = O(Λ(τ)) by [Str10,
Lem. 5.12]. Moreover det Im(τ ′) ≥ det Im(τ), so

m1(τ ′)−1 ≤ m2(τ ′)

det Im(τ ′)
≤ m2(τ ′)

det Im(τ)
≤ 4m2(τ ′)

3m1(τ)2

by (6.7). Therefore we also have Λ(τ ′) = O(Λ(τ)). The remaining bounds
follow from lemma 6.2.21.

We are now ready to prove the correctness and running time of algo-
rithm 6.2.19.

Proposition 6.2.23. There is an absolute constant C such that the fol-
lowing holds. Let τ ∈ H2 and ε > 0. Then, given an approximation of τ
to precision N ≥ C(Λ(τ) + |log ε|) as input, algorithm 6.2.19 does not run
out of precision, and computes a matrix γ ∈ Sp4(Z) such that γτ ∈ F ε2 and
log |γ| = O(Λ(τ)). It costs O(M(N)N logN) binary operations.

Proof. By lemma 6.2.22, there exists an absolute constant C ′ such that
log |γ| ≤ C ′Λ(τ) during the execution of algorithm 6.2.19 as long as the
absolute precision remains at least |log ε| + 1. Therefore, if C is chosen
appropriately, step 4 in algorithm 6.2.19 ensures that the absolute pre-
cision is at least |log ε| + 1 at every step. Hence the estimate on log |γ|
and Λ(τ ′) remains valid until the end of the algorithm, and we can perform
the approximate Minkowski reductions using lemma 6.2.20.

By lemma 6.2.22, there are O(Λ(τ)) steps in algorithm 6.2.19, and by
lemma 6.2.20, each step costs O(M(N) logN) binary operations. Hence
the cost is overall O(M(N)N logN) binary operations. When the algo-
rithm stops, the absolute precision is still greater than |log ε|+1, hence the
final τ ′ belongs to F ε2 .

Given τ ′ ∈ F ε2 , we can increase the imaginary parts of the coefficients
slightly to obtain τ ′′ ∈ F ′2 such that

|τ ′′ − τ ′| ≤ Cε |τ ′|

for some absolute constant C. Theta constants at τ ′′ can be computed in
quasi-linear time in the precision by proposition 6.2.17; they approximate
the value of theta constants at τ ′.

Corollary 6.2.24 (Under hypothesis 6.2.15). There exist an algorithm
and an absolute constant C such that the following holds. Let τ ∈ H2 and
N ≥ 1. Then, given an approximation of τ to precision N + CΛ(τ), the
algorithm computes
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1. a matrix γ ∈ Sp4(Z) such that log |γ| = O(Λ(τ)),

2. a matrix τ ′′ ∈ F2 such that τ ′′ is an approximation of γτ to preci-
sion N ,

3. an approximation of squares of theta constants at γτ to precision N ,

within
O
(
M(Λ(τ))Λ(τ) log Λ(τ) +M(N) logN

)
binary operations.

Proof. Fix ε = 0.01, for instance. First, we apply proposition 6.2.23 to
compute γ ∈ Sp4(Z) such that γτ ∈ F ε2 , using O

(
M(Λ(τ))Λ(τ) log Λ(τ)

)
binary operations. Then, we recompute τ ′ := γτ to high precision, and
reduce it further if necessary to land in F ε′2 where ε′ = 2−N exp(−CΛ(τ))
for some appropriate constant C. This costs O(M(N + Λ(τ))) binary
operations. Finally we compute τ ′′ which satisfies conditions (6.3) and is
close to τ ′; the matrix τ ′′ is still an approximation of γτ , with O(Λ(τ)) bits
of precision lost. We output theta constants at τ ′′ to precision N + O(1),
which can be computed in time O(M(N) logN) by proposition 6.2.17.

6.3 Evaluating Hilbert modular equations

Let F be a real quadraic field. In this final section, we detail a heuris-
tic algorithm to evaluate Hilbert modular equations of level β and their
derivatives, where β ∈ ZF is a totally positive prime of norm `, given Igusa
invariants (j1, j2, j3) in a number field L lying on the Humbert surface. We
let R ∈ GL2(R) be the matrix chosen as in §2.3.4, defining the Hilbert
embedding HR : H2

1 → H2.
The algorithm can be adapted to the case of Hilbert modular equations

in Gundlach invariants for F = Q(
√

5), and the case of Siegel modular
equations. In both of these cases, using complete denominators for modular
equations as in §5.1.4 allows us to design an algorithm with provably correct
output.

6.3.1 Outline of the algorithm

A high-level view on the algorithm was already given at the beginning
of chapter 6. In every complex embedding µ of L, we compute a period
matrix τ0 ∈ F2 with Igusa invariants (µ(j1), µ(j2), µ(j3)), and invert the
Hilbert embedding to find τ ∈ H2

1 such that HR(τ) is Sp4(Z)-equivalent
to τ0. Then we evaluate the Hilbert modular equations at τ using the
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analytic formula given by definition 2.4.6. By the expression of Igusa in-
variants in terms of theta constants given in §2.3.2, this can be done by
computing theta constants at all the matrices HR( 1

β
ητ) ∈ H2, where η runs

through the set Cσ
β defined in §5.1.4. Similarly, the derivatives of modular

equations at (µ(j1), µ(j2), µ(j3)) can be obtained from derivatives of theta
constants at the matrices HR( 1

β
ητ). Finally, we try to recognize the results

as elements of the number field L.
The necessary precision to perform this algebraic reconstruction is con-

trolled by the height of the modular equations evaluated at (j1, j2, j3), which
is OF

(
` log `+ ` h(j1, j2, j3)

)
by the results of chapter 5. However, we have

no general formula for the implied constant in terms of the discriminant
of F . Therefore the algebraic reconstruction step can only be heuristic in
general. In practice, one could work at a high enough precision N so that
an algebraic reconstruction succeeds, and check that the result remains
identical when the computations are done at precision 2N .

The situation improves if we can build a complete denominator for
the modular equations, as we did in §5.1.4 in the case of Siegel modular
equations, and Hilbert modular equations in Gundlach invariants for F =
Q(
√

5). In this case, we separately evaluate numerators and denominators
of the modular equations using analytic formulæ. Then we only have to
recognize algebraic integers from their images under the complex embed-
dings of L, and we can apply the methods of §6.1.3 to obtain a provably
correct output.

Assume, for instance, that we want to evaluate Hilbert modular equa-
tions of level β for F = Q(

√
5) at a given pair of Gundlach invariants

(g1, g2) ∈ L. We compute a point τ ∈ H2
1 realizing these Gundlach in-

variants by inverting the Hilbert embedding as above. By eq. (5.3), the
denominator Dβ(τ) has the analytic expression

Dβ(τ) = 2wβ
G2(τ)2bwβ/6c

F10(τ)aG2(τ)b

∏
η∈Cσβ

(η∗τ)−10F10( 1
β
ητ), (6.8)

where wβ = 10(2`+ 2), and the integers a, b ≥ 0 are chosen such that

2bwβ/6c+ wβ = 10a+ 2b with 0 ≤ b ≤ 4.

Recall that for every τ = (τ1, τ2) ∈ H2
1, for every η = ( a bc d ) ∈ Cβ, and for

every λ ∈ F , we write λτ = (λτ1, λτ2) and

η∗τ = (cτ1 + d)(cτ2 + d), (ησ)∗τ = η∗
(
(τ2, τ1)

)
.
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By definition of the Hilbert modular equations, we also have the formulæ:

Dβ(t)Ψβ,1

(
µ(g1), µ(g2), Y

)
= Dβ(t)

∏
η∈Cσβ

(
Y − g1( 1

β
ηt)
)

= 2wβ
G2(t)2bwβ/6c

F10(t)aG2(t)b

∏
η∈Cσβ

(η∗t)−10
(
F10( 1

β
ηt)Y −G5

2( 1
β
ηt)
)
, and

Dβ(t)Ψβ,2

(
µ(g1), µ(g2), Y

)
= Dβ(t)

∑
η∈Cσβ

g2( 1
β
ηt)
∏
η′ 6=η

(
Y − g1( 1

β
η′t)
)

= 2wβ
G2(t)2bwβ/6c

F10(t)aG2(t)b

∑
η∈Cσβ

(η∗t)−10G2
2( 1
β
ηt)F6( 1

β
ηt)

·
∏
η′ 6=η

(η′∗t)−10
(
F10( 1

β
ηt)Y −G5

2( 1
β
ηt)
)
.

(6.9)
By proposition 5.1.13, these quantities (6.8) and (6.9) are the values, in

each complex embedding µ of L, of certain elements

D ∈ Z[g1, g2], and P1, P2 ∈ Z[g1, g2, Y ].

If g1 and g2 are integers in L, then D,P1 and P2 are elements of ZL as
well. In the general case, let c ∈ L be such that both cg1 and cg2 are inte-
gers; then, by proposition 5.1.17, it is sufficient to multiply D,P1, and P2

by c10(`+1)/3 to obtain algebraic integers. Finally, we output

Ψβ,1(g1, g2, Y ) = P1/D and Ψβ,2(g1, g2, Y ) = P2/D.

The same idea of using Dβ to obtain algebraic integers works for derivatives
of modular equations too. The proof of correctness follows two steps.

1. In the first step, we assume that we are given approximations of
the values µ(jk) for 1 ≤ k ≤ 3 in a fixed complex embedding µ
of L. We analyze the cost and precision losses in the various steps
of the algorithm: computing τ0 (§6.3.2), inverting the Hilbert em-
bedding (§6.3.3), reducing the matrices HR( 1

β
ητ) to the fundamen-

tal domain F2, computing theta constants, and evaluating modular
equations analytically (§6.3.4). Towards the end, we restrict to the
formulæ (6.8) and (6.9) for the sake of brevity; otherwise, the com-
putations apply to all cases of modular equations in Igusa invariants
discussed above.

2. In the second step (§6.3.5), we focus on the case of Hilbert modular
equations for Q(

√
5) in Gundlach invariants. We consider each of
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the two situations of §6.1.3 for the reconstruction of integers in L: in
each situation, we compute the required precision to recognize D, P1

and P2 uniquely, and conclude on the cost of the whole algorithm.
The computations in the case of Siegel modular equations are very
similar, and we simply point out the differences in running time.

6.3.2 Computing period matrices

Let dL be the degree of L over Q, and fix a complex embedding µ of L.
In this section, we investigate the first step of the algorithm to evaluate
modular equations: given Igusa invariants (j1, j2, j3) ∈ L3, compute a pe-
riod matrix τ ∈ F2 with Igusa invariants (µ(j1), µ(j2), µ(j3)). We assume
that j3 6= 0: otherwise τ is not uniquely determined.

During the algorithm, we will consider a finite family Θ(j1, j2, j3) of
algebraic numbers constructed from j1, j2 and j3. More precisely we con-
sider Θ as a finite family of polynomials Q ∈ Q[X1, . . . , Xn, Y ], and the
algebraic numbers that we consider are constructed as roots of polynomi-
als of the form Q(j1, j2, j3, x4 . . . , xn, Y ), where x4, . . . , xn are previously
constructed elements of Θ(j1, j2, j3). When presented in this way, Θ does
not depend on L, j1, j2, or j3. As a toy example, consider the family Θ
consisting of the single polynomial X1 − Y 2; then Θ(j1, j2, j3) = {

√
j1}.

We call Θ a finite recipe of algebraic extensions.
If H denotes the height of (j1, j2, j3), then the height of all elements

of Θ(j1, j2, j3) is in OΘ(H) by propositions 4.3.1 and 4.3.3.
For every complex embedding µ of L, we define BΘ,µ ≥ 0 as the minimal

real number such that ∣∣log(|µ̃(θ)|)
∣∣ ≤ BΘ,µ

for each nonzero θ ∈ Θ(j1, j2, j3) and each extension µ̃ of µ to the number
field L(Θ(j1, j2, j3)). We can take BΘ,µ = OΘ(dLH); moreover the sum of
the bounds BΘ,µ over all the complex embeddings of L is also OΘ(dLH).
A typical example of how we use BΘ,µ is as follows.

Proposition 6.3.1. There exist an algorithm and a finite recipe of alge-
braic extensions Θ such that the following holds. Let L be a number field,
let j1, j2, j3 ∈ L such that j3 6= 0, let µ be a complex embedding of L, and
define BΘ,µ as above. Let N ≥ 1. Then, given approximations of µ(jk)
for 1 ≤ k ≤ 3 to precision N , the algorithm computes a genus 2 hy-
perelliptic curve C over C with Igusa invariants µ(j1), µ(j2), µ(j3) within
O
(
M(N +BΘ,µ)

)
binary operations, with a precision loss of O(BΘ,µ) bits.

Proof. Use Mestre’s algorithm [Mes91]. This algorithm involves O(1) el-
ementary operations with complex algebraic numbers constructed from
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the µ(jk) for 1 ≤ k ≤ 3, hence the estimates on the running time and
precision losses follow from proposition 6.1.2.

We prove that any period matrix τ ∈ F2 of C is bounded in terms
of BΘ,µ for some Θ. This is done by looking at theta quotients at τ .

Lemma 6.3.2. There exists a finite recipe of algebraic extensions Θ such
that the following holds. Let C be as in proposition 6.3.1, and let τ ∈ F2 be
a period matrix of C. Then we have

|τ | = O(BΘ,µ).

Proof. By Thomae’s formulæ [Mum84, Thm. IIIa.8.1], the theta quotients
θj(τ)/θ0(τ) for j ∈ J1, 15K are algebraic numbers constructed from the
coefficients of C, and are nonzero for j ∈ {0, 1, 2, 3, 4, 6, 8, 12}. Therefore,
we can choose Θ in such a way that∣∣log

(
|θj(τ)/θ0(τ)|

)∣∣ ≤ BΘ,µ for j ∈ {4, 8}.

Write τ = ( z1 z3z3 z2 ). By lemma 6.2.10, the real numbers Im(z1) and Im(z2)
are in O(BΘ,µ) as well, hence also |Im(z3)| because det Im(τ) > 0. Since
|Re(τ)| ≤ 1/2, the result follows.

Proposition 6.3.3 (Under hypothesis 6.2.15). There exist an algorithm
and a finite recipe of algebraic extensions Θ such that the following holds.
Let L be a number field, let j1, j2, j3 ∈ L be such that j3 6= 0, let µ be a
complex embedding of L, and define BΘ,µ as above. Let N ≥ 1. Then,
given approximations of µ(jk) for 1 ≤ k ≤ 3 to precision N , the algorithm
computes a matrix τ ∈ F2 such that the Igusa invariants at τ are the µ(jk)
for 1 ≤ k ≤ 3. The algorithm involves O

(
M(N + BΘ,µ) log(N + BΘ,µ)

)
binary operations, and a precision loss of O(logN +BΘ,µ logBΘ,µ) bits.

Proof. First, we compute a complex curve C as in proposition 6.3.1. Then,
by Thomae’s formulæ, there is a finite number of possibilities for the values
of squares of theta quotients at τ ; one of them corresponds to an actual
matrix τ ∈ F2, and the others correspond to other elements in the or-
bit Sp4(Z)τ . When we run the algorithm of proposition 6.2.14 on these
inputs, we may discard all resulting period matrices that do not belong
to F2. In order to distinguish between the remaining possible values of τ ,
it is usually enough to compute theta constants to precision O(1) using
the naive algorithm, and match with the input. In extreme cases, we may
resort to computing Igusa invariants at all remaining possible values of τ to
precision O(N+Bµ), using O

(
M(N+Bµ) log(N+Bµ)

)
binary operations,

by proposition 6.2.17; this is where we use hypothesis 6.2.15.
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6.3.3 Inverting the Hilbert embedding

Let F be a real quadratic field, and let R ∈ GL2(R) be a matrix defining
a Hilbert embedding HR, as in §2.3.3. Recall that for every τ ∈ H2, we
denote by 0 < λ1(τ) ≤ λ2(τ) the two eigenvalues of Im(τ).

Lemma 6.3.4. Let F and R be as above. Then there exists a constant
C > 0 depending on F and R such that for every τ = (τ1, τ2) ∈ H2

1, we
have

1
C
λ1(HR(τ)) ≤ min{Im(τ1), Im(τ2)} ≤ Cλ1(HR(τ)),

1
C
λ2(HR(τ)) ≤ max{Im(τ1), Im(τ2)} ≤ Cλ2(HR(τ)).

Proof. Use the definition (2.12) of the Hilbert embedding.

Proposition 6.3.5. Let F be a real quadratic field, and let R be as above.
Then there exist an algorithm, a constant C > 0, and a finite recipe of al-
gebraic extensions Θ depending on F and R such that the following holds.
Let L be a number field, let j1, j2, j3 ∈ L be such that j3 6= 0, let µ be a
complex embedding of L, and define BΘ,µ as in §6.3.2. Let C be a genus 2
hyperelliptic curve over C with Igusa invariants µ(j1), µ(j2), µ(j3), and as-
sume that Jac(C) has real multiplication by ZF . Let τ0 ∈ F2 be a period
matrix of C. Then there exists τ = (τ1, τ2) ∈ H2

1 such that HR(τ) ∈ H2 is a
period matrix of C, and

|log(Im τi)| ≤ CBΘ,µ for i = 1, 2.

Moreover, given an approximation of τ0 to precision N + CBΘ,µ, the algo-
rithm computes τ to precision N within OF

(
M(N +BΘ,µ) logBΘ,µ

)
binary

operations.

Proof. By lemma 6.3.2, if Θ is well chosen, we have

|τ0| = O(BΘ,µ).

The result would be obvious from lemma 6.3.4 if there existed τ ∈ H2
1 such

that τ0 = HR(τ), but this is not always the case. In general, by [BW03,
Lem. 4.1], there exist coprime integers a, b, c, d, and e such that

b2 − 4ac− 4de = ∆ and az1(τ0) + bz3(τ0) + cz2(τ0) + d det(τ0) + e = 0,
(6.10)

where ∆ denotes the discriminant of F . Finding the integers a, b, c, d, e
will allow us to construct a conjugate of τ0 under Sp4(Z) which admits a
preimage under HR.
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We claim that the heights of a, b, c, d, e are in OF (BΘ,µ) for some choice
of Θ. We prove this by comparing the analytic and rational representations
(see [BL04, §1.2]) of the endomorphism

√
∆ on the complex abelian variety

A(τ0) = C2/(Z2 ⊕ τ0Z2).

The rational representation of every endomorphism f in the image of ZF
inside End(A(τ0))† is of the form

ρR,τ0(f) =


n ma 0 md
−mc mb+ n −md 0

0 me n −mc
−me 0 ma mb+ n

 for some m,n ∈ Z,

by [BW03, Cor. 4.2]. On the other hand, the analytic representation of
√

∆,
denoted by ρA,τ0(

√
∆), can be computed as follows. Let ω = (ω1, ω2) be a

basis of differential forms on A(τ0) such that Sym2(ω) corresponds by the
Kodaira–Spencer isomorphism to a deformation of A(τ0) along the Humbert
surface. Then, by proposition 3.3.10, the matrix of (

√
∆)∗ in the basis ω is

of the form

±
(√

∆ 0

0 −
√

∆

)
.

Algorithm 3.3.11 shows that such a basis ω exists; moreover the base change
matrix m between (dz1, dz2) and ω can be chosen in such a way that

log max{|m| ,
∣∣m−1

∣∣} = OF (BΘ,µ)

after extending Θ in a suitable way. This proves that the analytic repre-
sentation of the endomorphism

√
∆ on A(τ0) satisfies

log+
∣∣ρA,τ0(√∆)

∣∣ = OF (BΘ,µ).

For every f ∈ End(A(τ0)), the rational and analytic representations of f
are related by the following formula [BL04, Rem. 8.14]:

ρA,τ0(f) (τ0 I2) = (τ0 I2) ρR,τ0(f).

Taking imaginary parts, we find that there exist m,n ∈ Z such that

Im(τ0)

(
n ma
−mc mb+ n

)
= Im

(
ρA,τ0(

√
∆)τ0

)
, and

Im(τ0)

(
0 md
−md 0

)
= Im

(
ρA,τ0(

√
∆)
)
.
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Therefore the heights of a, b, c, d,m and n are in OF (BΘ,µ). The same is
true for the integer e by eq. (6.10). This proves our claim.

The algorithm to compute τ is the following. We compute the integers
a, b, c, d and e using OF (M(BΘ,µ) logBΘ,µ) binary operations with a quasi-
linear version of the LLL algorithm [NSV11, NS16], using eq. (6.10). Then
we apply the algorithm of [BW03, Prop. 4.5] to compute γ ∈ Sp4(Z) such
that γτ0 lies in the image of HR; the matrix γ has a simple expression in
terms of a, b, c, d, and e, hence we also have

log |γ| = OF (BΘ,µ).

By proposition 6.2.9, we also have

Λ(γτ0) = OF (BΘ,µ),

so the result follows from lemma 6.3.4.

6.3.4 Analytic evaluation of modular equations

We return to the case of Hilbert modular equations in Gundlach in-
variants for F = Q(

√
5). Let L be a number field, let µ be a complex

embedding of L, and let (g1, g2) ∈ L. We keep the notation of §6.3.1. In
the following proposition, we detail the algorithm to evaluate the numerator
and denominator of Hilbert modular equations of level β at (µ(g1), µ(g2)).
We assume that g1 6= 0, so that the associated Igusa invariants (j1, j2, j3)
satisfy j3 6= 0.

In order to avoid complicated expressions, we hide logarithmic factors in
the Õ notation from now on. Actually Õ(T ) is alwaysO(M(T log T ) log T ).

Proposition 6.3.6 (Under hypothesis 6.2.15). There exist an algorithm, a
finite recipe of algebraic extensions Θ, and a constant C > 0 such that the
following holds. Let L be a number field, let µ be a complex embedding of L,
let (g1, g2) ∈ L2 such that g1 6= 0, and define BΘ,µ as in §6.3.2. Finally,
let N ≥ C(BΘ,µ logBΘ,µ + log `).

Then, given approximations of µ(g1) and µ(g2) to precision N , the al-
gorithm computes µ

(
Dβ(g1, g2)

)
∈ C and µ

(
DβΨβ,m(g1, g2, Y )

)
∈ C[Y ] for

m ∈ {1, 2} within Õ(`B2
Θ,µ + `N) binary operations, with a precision loss

of Õ(`BΘ,µ + logN) bits.

Proof. We first compute the associated Igusa invariants µ(jk) for 1 ≤ k ≤ 3
using proposition 2.3.16. Note that j3 6= 0. Using proposition 6.3.3, we
compute a matrix τ0 ∈ F2 having these Igusa invariants in Õ(N + BΘ,µ)
binary operations, with a precision loss of O(logN+BΘ,µ logBΘ,µ) bits, for
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a suitable choice of Θ. Then, using proposition 6.3.5, we compute τ ∈ H2
1

such that τ has Gundlach invariants (g1, g2), and

|log(Im τi)| = OF (BΘ,µ), for each i ∈ {1, 2}.

This costs Õ(N+BΘ,µ) binary operations, with a precision loss of O(BΘ,µ)
bits. The next step is to compute the points 1

β
ητ ∈ H2

1 for all η ∈ Cσ
β : this

costs Õ
(
`(N + BΘ,µ)

)
binary operations, with a precision loss of O(log `)

bits. By lemma 6.3.4, we have for every η ∈ Cσ
β :

Λ
(
HR( 1

β
ητ)
)

= O(BΘ,µ + log `).

Then, we reduce the matrices HR( 1
β
ητ) to the fundamental domain

using corollary 6.2.24: we compute matrices τη ∈ F2 and γη ∈ Sp4(Z) such
that

γη(
1
β
ητ) = τη, for every η ∈ Cσ

β ,

with a precision loss of O(BΘ,µ + log `) bits. We also compute squares of
theta constants at every τη. This can be done in Õ(`B2

Θ,µ + `N) binary
operations. Moreover, we have

log |γη| ∈ O(BΘ,µ + log `).

Definition 2.3.4 yields the values of the Siegel modular forms h4, h6, h10, h12

at all the matrices τη using O(`) binary operations, and a precision loss
of O(1) bits.

At the end, we evaluate Dβ(τ) using eq. (6.8), and the equality

F10( 1
β
ητ) =

(
det γ∗η(

1
β
ητ)
)−10

F10(τη),

for every η ∈ Cσ
β . By lemma 6.2.21, O

(
`(BΘ,µ + log `)

)
bits of preci-

sion are lost in this computation; the total cost of computing Dβ(t) is
Õ
(
`(N +BΘ,µ)

)
binary operations.

The polynomials Dβ(τ)µ
(
Ψβ,m(g1, g2, Y )

)
for m ∈ {1, 2}, given by the

formula (6.9), are computed using product trees as in lemma 6.1.3. This
also costs Õ

(
`(N + BΘ,µ)

)
binary operations, and adds a precision loss

of O
(
`(Bσ + log `)

)
bits. We conclude by summing precision losses and

binary costs of each step.

In the case of Siegel modular equations of level `, the complexity and
precision loss estimates are similar to those in proposition 6.3.6, with each
occurence of ` replaced by `3. A further remark is that in the Siegel case,
we can avoid costly reductions to F2 using the matrices ηR from the proof
of proposition 5.1.10. This is especially attractive since this reduction step
is the only one whose cost is not quasi-linear in the output size.
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6.3.5 Algebraic reconstruction

Recall that we fix F = Q(
√

5). Once the Hilbert modular equations
of level β and their denominators have been computed at (g1, g2) in every
complex embedding of L, we recognize their coefficients as algebraic num-
bers using the methods of §6.1.3. We present two results, one in the case
of lifts from a finite field, and one in the case of a general number field.

In the case of a finite field, we are given a prime power q = pd, and
a monic polynomial P ∈ Z[X] of degree d, irreducible modulo p. We let
M ≥ 1 be such that log |P | ≤M . We assume that a black box provides us
with approximations of the roots of P to any desired precision. Then we
represent elements of Fq as elements of Fp[X]/(P ).

Proposition 6.3.7 (Under the conditions of the previous paragraph, and
hypothesis 6.2.15). There exists an algorithm such that the following holds:
given g1, g2 ∈ Fq such that g1 6= 0 and Dβ(g1, g2) 6= 0, the algorithm com-
putes the polynomials Ψβ,m(g1, g2) ∈ Fq[Y ] for m ∈ {1, 2} within

Õ(`d2 log2 p+ `d4M2 + `2d log p+ `2d2M)

binary operations.

If dM = O(log p), and if moreover ` = O(log q), then the cost estimate
simplifies to Õ(log3 q) binary operations. If q = p is prime (i.e. d = 1),
then the cost estimate simplifies to Õ(` log2 p+ `2 log p) binary operations.
Theorem 6.0.1 stated at the beginning of this chapter is the analogue of
proposition 6.3.7 in the case of Fp for Siegel modular equations, where we
replace each occurence of ` by `3.

Proof. Let L be the number field Q[X]/(P ), and let α be a root of P in L.
We lift g1 and g2 to elements of Z[α] in such a way that the height of their
coefficients is bounded above by log p. Then we have

h(α) ≤M + log 2, and
max{h(g1), h(g2)} ≤ log(p) + dh(α) + log(d) = O(dM + log p).

Since Dβ and the coefficients of Ψβ,m form ∈ {1, 2} are elements of Z[g1, g2]
of degree O(`) and height O(` log `) by theorem 5.0.1, the algebraic integers
we have to recognize are all elements of Z[α], and the height of their coeffi-
cients is O(` log `+ `dM + ` log p). By proposition 6.1.5, we can recognize
each coefficient within Õ(`d2M+`d log p) binary operations, provided that
its values in every complex embedding of L are computed to precision at
least C(` log `+ `dM + ` log p), where C is some absolute constant.
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Let µ be a complex embedding of L, and start at precision N ≥ 1.
Then µ(g1) and µ(g2) are obtained by replacing α by one of the complex
roots of P : this can be done within Õ(d(M +N)) binary operations, and a
precision loss of O(dM + log p) bits, via Horner’s algorithm. Then we run
the algorithm of proposition 6.3.6, for each complex embedding µ of L. It
is enough to choose N in

Õ(`dM + ` log p+ `BΘ,µ),

for a cost of Õ(`B2
Θ,µ + `N) binary operations. Since we have∑

µ

BΘ,µ = O(d log p+ d2M),

and each BΘ,µ is in O(d log p+ d2M), the total cost of analytic evaluations
over all embeddings is

Õ(`d2 log2 p+ `d4M2 + `2d log p+ `2d2M)

binary operations, and dominates the cost of algebraic reconstruction.

If g1, g2 ∈ Z are small integers, then the complexity of evaluating mod-
ular equations is quasi-linear in the output size.

Proposition 6.3.8 (Under hypothesis 6.2.15). There exists an algorithm
such that the following holds. Given and g1, g2 ∈ Z such that

max{|g1| , |g2|} ∈ O(1) and g1Dβ(g1, g2) 6= 0 mod p,

the algorithm computes the polynomials Ψβ,m(g1, g2) ∈ Q[Y ] for m ∈ {1, 2}
using a total of O(M(`2 log `) log `) binary operations.

Proof. In this case, we have BΘ,µ = O(1). It is sufficient to round the result
of proposition 6.3.6 with N = C` log `, where C is an absolute constant, to
the nearest integers.

From another point of view, the complexity of evaluating Hilbert mod-
ular equations for F over a number field L can be bounded in terms of the
discriminant ∆L of L and the height of the operands. We assume that an
LLL-reduced basis of ZL has been precomputed. Moreover, if mL is the
matrix defined in proposition 6.1.6, we assume that a black box provides
us with the coefficients of m−1

L to any desired precision.
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Proposition 6.3.9 (Under the conditions from the previous paragraph,
and hypothesis 6.2.15). There exists an algorithm such that the following
holds. Let H ≥ 1, and let g1, g2 ∈ L given as quotients of integers of
height at most H such that g1Dβ(g1, g2) 6= 0. Then the algorithm computes
Ψβ,m(g1, g2) ∈ L[Y ] for m ∈ {1, 2} within

Õ(d2` log ∆L + d3`+ `d2H2 + `2d2H + d4)

binary operations.

In the case L = Q, the cost estimate simplifies to Õ(`H2 + `2H) binary
operations.

Proof. For simplicity, assume that g1 and g2 are actually integers: in the
general case we multiply Dβ by an appropriate power of a common denom-
inator of g1 and g2 in ZL.

We know that Dβ(g1, g2) and the coefficients of DβΨβ,k(g1, g2) are poly-
nomials in Z[g1, g2] of degree O(`) and height O(` log `), by theorem 5.0.1.
Therefore they are algebraic integers of height Õ(`H). By proposition 6.1.6,
we can recognize each coefficient within Õ(d2`H + d2 log ∆L + d4) binary
operations, provided that complex approximations are computed at a pre-
cision N high enough; it is enough to take N in Õ(log ∆L + d`H + d2).

In order to obtain these approximations, we run the algorithm of propo-
sition 6.3.6 in each complex embedding µ of L. For each embedding µ, the
starting precision is chosen in Õ(log ∆L + d`H + `BΘ,µ + d2), for a suit-
able recipe of algebraic extensions Θ. Therefore the cost to compute the
required complex approximations in the embedding µ is

Õ(`B2
Θ,µ + ` log ∆L + d`2H + `2BΘ,µ + `d2)

binary operations. The sum of the bounds BΘ,µ is in O(dH), as well as
each individual BΘ,µ. Therefore, the total cost of computing complex ap-
proximations in all embeddings is Õ(`d2H2 + `d log ∆L + `2d2H) binary
operations.

The complexity results of propositions 6.3.7 and 6.3.9 are not entirely
satisfactory: the dependence on log p in the finite field case, and onH in the
number field case, is quadratic. This comes from the fact that the reduction
algorithm to the Siegel fundamental domain (proposition 6.2.23) is quasi-
quadratic in Λ(τ), and not quasi-linear. Reduction to the fundamental
domain for elements of H2 is essentially equivalent to lattice reduction
for dimension 4 symplectic lattices; it is likely that this reduction can be
done in quasi-linear time, as for Gauss’s algorithm [Sch91, Yap92] and for
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the LLL algorithm [NSV11, NS16]. Another possibility to improve the
complexities in propositions 6.3.7 and 6.3.9 would be to try to adapt the
reduction algorithm for the matrices HR( 1

β
ητ) ∈ H2 for η ∈ Cσ

β , using the
known matrix γ ∈ Sp4(Z) such that γHR(τ) ∈ F2.
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Chapter 7

Elkies’s method for abelian
surfaces

The previous chapters presented several results and algorithms about
higher-dimensional modular equations, and in particular modular equations
of Siegel and Hilbert type in dimension 2. We know how to use them to
compute isogenies between abelian surfaces (chapter 3), we can bound their
degrees and heights (chapter 5), and finally we have efficient algorithms to
evaluate them (chapter 6). Thus, all the necessary ingredients to generalize
Elkies’s method to principally polarized abelian surfaces are gathered. This
short chapter details the resulting algorithm, building upon previous works
on Schoof’s and Atkin’s methods for abelian surfaces [GH00, GS12, GKS11,
BGLG+16]. In particular, we obtain a heuristic point-counting algorithm
for principally polarized abelian surfaces with real multiplication by a fixed
quadratic field F which, up to constants depending on F , has the same
asymptotic complexity as the SEA algorithm for elliptic curves.

7.1 The characteristic polynomial of Frobenius

Let p be a large prime, let q be a power of p, and let A be a principally
polarized abelian surface over Fq. Let πA be the Frobenius endomorphism
of A, and let χA ∈ Z[X] be its characteristic polynomial. Let ` 6= p be
a prime. Then χA is the characteristic polynomial of πA as an endomor-
phism of the `-adic Tate module T`(A). In particular, χA mod ` is the
characteristic polynomial of πA as an endomorphism of A[`] ' (Z/`Z)4.

Our goal, as in Elkies’s method for elliptic curves (§1.2.2), is to com-
pute χA mod ` using subgroups of A[`] obtained as kernels of isogenies
instead of endomorphisms, in order to reduce the degrees of the polynomi-
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als involved. We consider two cases:

• In the Siegel case, we assume nothing a priori on the ring End(A).

• In the Hilbert case, we fix a real quadratic field F and assume the
existence of a real multiplication embedding ZF ↪→ End(A)† defined
over Fq, which is not necessarily explicit or computable.

In the Hilbert case, we further assume that ` splits in ZF into a product
of two principal ideals generated by totally positive elements β, β ∈ ZF .
By the Chebotarev density theorem, this condition holds for a constant
proportion of `’s as q grows to infinity; hence this assumption does not
affect the asymptotic complexity of Elkies’s method. Moreover, we can
choose β in such a way that TrF/Q(β) ∈ OF (

√
`) by [GKS11, §3.3].

The properties of χA are intimately related with the Rosati dual π†A
of πA. For the moment, we do not make the assumption that A is simple or
ordinary. We know that π†A ◦ πA = q in End(A) [Mum70, Thm. 4 p. 206],
hence Q(πA) ⊂ End0(A) is a commutative subring stable under †. More-
over, the roots of χA in C are complex numbers of the form λ1, λ2, q/λ1, q/λ2

with |λk|2 = q for k ∈ {1, 2}. Therefore the characteristic polynomial of πA
takes the form

χA = X4 − s1X
3 + (s2 + 2q)X2 − qs1X + q2

where we set

r1 = λ+
q

λ1

, r2 = λ2 +
q

λ2

, s1 = r1 + r2, and s2 = r1r2.

We have |s1| ≤ 4
√
q and |s2| ≤ 4q; in fact, by the proof of [Rü90, Lem. 3.1],

we also have the inequalities

(|s1| − 4
√
q)2 ≥ s2

1 − 4s2 ≥ 0.

The endomorphism ξA = πA + π†A satisfies ξ2
A − s1ξA + s2 = 0, and πA

satisfies the following relation over Z[ξA]:

π2
A − ξAπA + q = 0.

Note that ξA ∈ End0(A)†. By [Mum70, Thm. 3 p. 202], this ring is
either Q, Q×Q, or a real quadratic number field, and is equal to F in the
Hilbert case. In the point counting context, we want to compute s1 and s2

mod ` using the action of πA on kernels of isogenies. The methods in the
Siegel and Hilbert cases differ.
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7.2 The Siegel case

Recall that A[`] is endowed with an alternating, nondegenerate bilinear
form denoted by (x, y) 7→ 〈x, y〉 ∈ Z/`Z induced by the principal polariza-
tion of A. For all x, y ∈ A[`], we have

〈πA(x), πA(y)〉 = q 〈x, y〉 . (7.1)

We say that ` is an Elkies prime if there exists an `-isogeny ϕ with domain A
which is defined over Fq; equivalently, ` is Elkies if A[`] admits a dimension 2
isotropic subspace which is stable under πA. Let us relate this property with
the decomposition of χA mod `.

If P is a monic polynomial of degree d whose constant term a0 is in-
vertible, then we define its q-reciprocal polynomial as

P̃ =
1

a0

XdP (q/X),

and we say that P is q-reciprocal if P̃ = P . If d = 2, this simply means
that a0 = q.

Proposition 7.2.1. Assume that ` is Elkies, and let ϕ be an `-isogeny with
domain A defined over Fq. Let P be the characteristic polynomial of πA
on kerϕ. Then χA = PP̃ mod `.

Proof. Choose a symplectic basis of A[`] whose first two vectors gener-
ate kerϕ. By (7.1), the matrix of πA in this basis takes the form(

M ∗
0 qM−t

)
,

and the characteristic polynomial of qM−t is P̃ .

Proposition 7.2.2. Let ` be a prime, and assume that one of the following
properties holds:

1. χA splits modulo ` as a product of the form PP̃ where P and P̃ are
coprime; or

2. χA is totally split modulo `.

Then ` is Elkies.
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Proof. In case 1, we write a = P (πA) and ã = P̃ (πA) as endomorphisms
of A[`]. Then we have a decomposition of A[`] as ker a ⊕ ker ã, both sub-
spaces being of dimension 2. Let us show that ker a is isotropic. By (7.1), ã
is the adjoint of a; hence〈

ker a, ker a
〉

=
〈
Im ã, Im ã

〉
=
〈
A[`], Im(aã)

〉
= 0.

In case 2, if v is an eigenvector of πA, then v⊥ is still πA-stable, hence
there exists w ∈ v⊥ such that 〈v〉 ⊕ 〈w〉 is a πA-stable subspace of dimen-
sion 2.

The splitting of χA modulo ` also determines the number of maximally
isotropic subspaces. For instance, if χA is totally split over F`, and if the
eigenvalues satisfy the non-equalities r1 6= r2, λ1 6= q/λ1 and λ2 6= q/λ2,
then there are exactly four of them inside A[`].

To summarize, if ` is an Elkies prime, then we can recover χA mod `
by computing the characteristic polynomial of πA on the kernel of one `-
isogeny, by proposition 7.2.1. Heuristically, we expect that about half of
the primes will be Elkies given the characterization of proposition 7.2.2, so
that it is sufficient to consider Elkies primes ` = O(log q) to complete the
point counting algorithm.

7.3 The Hilbert case

In the Hilbert case, the subgroup A[`] decomposes as the orthogonal
direct sum A[β]⊕A[β], and both subspaces are stable under πA and π†A.
Since A[β] and A[β] are not isotropic, the determinant of πA on both of
these subspaces is q. Hence we have a decomposition of χA mod ` as

χA = (X2 − tβX + q)(X2 − tβX + q)

where tβ and tβ are the traces of πA on A[β] and A[β] respectively.
We say that β (resp. β) is Elkies if πA admits an eigenvector on A[β]

(resp. on A[β]). Equivalently, β is Elkies if there exists a β-isogeny ϕ with
domain A defined over Fq. In this case, knowing the eigenvalue of πA
on kerϕ is sufficient to reconstruct tβ.

However, β and β may not be simultaneously Elkies, hence reconstruct-
ing χA mod ` is not always possible. Instead, we observe that ξA ∈ ZF
and ZF/βZF ' Z/`Z; in this identification, we have tβ = ξA mod β. In-
stead of using the Chinese remainder theorem to recover the coefficients
of χA as integers, we recover ξA as an element of ZF .
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We view ZF as a 2-dimensional lattice, endowed with the Euclidean
distance given by the embedding ZF → C2, x 7→ (x, x). Then ξA ∈ ZF
has length at most (8q)1/2. We claim that ξA is uniquely determined as
soon as we know the value of ξA mod I, where I is an ideal of norm
strictly greater that 16q. Indeed, if ξ, ξ′ are equal mod I but distinct,
then NF/Q(ξ − ξ′) ≥ N(I); therefore

‖ξ − ξ′‖ ≥
√

2
∣∣NF/Q(ξ − ξ′)

∣∣ > 2(8q)1/2.

We can stop the point counting algorithm when we have collected the
values of ξA modulo distinct totally positive primes β1, . . . , βN of ZF such
that

∏N
i=1 NF/Q(βi) > 16q. Heuristically, we expect that a given β is Elkies

with probability about one half, so that it is sufficient to consider Elkies
primes β such that NF/Q(β) = O(log q) to complete the algorithm.

7.4 Computing the action of Frobenius on iso-
geny kernels

If ` or β is an Elkies prime, we still have to explain how to find a suit-
able β- or `-isogeny ϕ with domain A defined over Fq, and how to compute
the characteristic polynomial of πA on kerϕ. The first part, computing ϕ,
is where we apply the results of the previous chapters. The second part
involves polynomial systems and is more classical, being already studied in
the context of Schoof’s algorithm on hyperelliptic curves [GS12, Abe18].

We only give a sketch of the algorithms. For simplicity, we make the
following assumptions:

• The base field Fq is prime, i.e. q = p; moreover p > 8` + 7 in the
Siegel case, and p > 4 TrF/Q(β) + 7 in the Hilbert case.

• A is the Jacobian of a hyperelliptic genus 2 curve C defined over Fp,
and has automorphism group {±1} over an algebraic closure of Fp
(in particular A is absolutely simple).

Moreover, we assume that the various other genericity assumptions used
in the algorithms of chapters 3 and 6 hold true. For instance, in the Siegel
case, we assume in particular that the denominator D` of Siegel modular
equations does not vanish at (j1(A), j2(A), j3(A)). If p is very large, say of
cryptographic size, and if C is chosen at random, then all these genericity
assumptions hold with overwhelming probability.

The algorithm to compute ϕ can be sketched as follows; we recall
that ` = O(log p).

237



1. Evaluate the modular equations and their derivatives at A using the
algorithms of chapter 6, assuming that hypothesis 6.2.15 holds; this
costs Õ(`5 log2 p) binary operations in the Siegel case, and ÕF (` log2 p)
binary operations in the Hilbert case. If the Igusa invariants of A can
be written as quotients of integers of height O(1), then the cost of
evaluating modular equations drops to Õ(`6) and ÕF (`2) binary op-
erations respectively.

In the Hilbert case, the rational reconstruction step is heuristic, unless
one computes an explicit complete denominator for modular equa-
tions, as we did in the case of Gundlach invariants for F = Q(

√
5)

(§5.1.4). It is advisable to use modular equations in nonsymmetric
invariants if possible, since they have smaller degrees and allow us to
distinguish between β and β-isogenies.

2. Compute roots of modular equations to find an isogenous abelian
surface; this step costs Õ(`3 log2 p) binary operations in the Siegel
case, and ÕF (` log2 p) binary operations in the Hilbert case.

3. Compute an explicit representation of the isogeny ϕ using the al-
gorithm of chapter 3; this costs Õ(` log p) binary operations in the
Siegel case, and ÕF (

√
` log p) binary operations in the Hilbert case.

At the end, we have computed a point P of C, possibly over an extension
of Fp, and the rational representation of the isogeny ϕ at the base point P in
the sense of §3.4.1. Denote this rational representation by ϕP : C → C ′<2>.
Following the proof of [Sch95, Prop. 6.1], [BGLG+16, Prop. 3], one can
show that the kernel of ϕ will be defined over Fp in generic cases.

It remains to explain how to compute the characteristic polynomial
of πA on kerϕ using ϕP as input. For simplicity, assume that P is a
Weierstrass point of C, and that all the points of A[`]\{0} can be written
in the form [Q1 + Q2 − K] where Q1, Q2 are distinct points of C and K
denotes the canonical divisor of C. Then such a point lies in kerϕ if and
only if

ϕP (Q1) = −ϕP (Q2) in Jac(C ′).

From this characterization, one derives an ideal of polynomial equations de-
scribing the points of ker(ϕ)\{0} in C<2>. In order to compute with the for-
mal point of ker(ϕ)\{0}, we compute a Gröbner basis of this ideal. Asymp-
totically, the most costly step in this procedure is to compute the resultant
of certain bivariate polynomials of degreeO(d) over Fp [GS12, §3.1], where d
is the degree of the rational fractions describing φP . This costs Õ(d3 log p)
binary operations; in other words Õ(`3 log p) and ÕF (`3/2 log p) binary op-
erations in the Siegel and Hilbert cases, respectively. The degrees of the
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polynomials in the resulting Gröbner basis is O(d2).
The final step is to compute the characteristic polynomial of πA on kerϕ.

In the Siegel case, where we have to determine two elements of Z/`Z, we
perform O(`2 + log p) multiplications modulo polynomials of degree O(d2),
for a total cost of Õ

(
(`2 + log p)`2 log p

)
binary operations. In the Hilbert

case, we only determine one element in Z/`Z, therefore the total cost is
only ÕF (` log2 p) binary operations.

We conclude by summing the complexities of all the steps in the point
counting algorithm, and multiplying by the number O(log p) of auxiliary
primes to consider:

Result. We obtain an algorithm which, given a large prime p and given
a principally polarized abelian surface A = Jac(C) over Fp without extra
automorphisms, computes χA ∈ Z[X]. In the generic case, its heuristic
cost is Õ(log8 p) binary operations, or Õ(log7 p) binary operations if the
Igusa invariants of A are quotients of integers of height O(1). If A has real
multiplication by ZF where F is a fixed real quadratic field, its heuristic
cost is ÕF (log4 p) binary operations.

In the Siegel case, the complexity of Schoof’s method is already Õ(log8 p)
binary operations. It can be further decreased using recent algorithms for
the computation of bivariate resultants [Vil18], although the practical ef-
fects of this improvement are not demonstrated. Therefore, Elkies’s method
is (heuristically) asymptotically faster only when A has small invariants.
In the Hilbert case, the heuristic complexity of Elkies’s method improves
on Schoof’s method: up to constant factors depending on F , we reach the
same asymptotic complexity as the SEA algorithm for elliptic curves.
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Research perspectives

To conclude the thesis, we sketch several directions of research that our
results suggest. They concern either improvements or generalizations of
our algorithms.

• First and foremost, releasing an implementation of the algorithms of
chapters 3 and 6 is in order, and perhaps even a full implementation
of Elkies’s method over prime finite fields in generic cases. In partic-
ular, this would allow us to compare the cost of Elkies’s and Schoof’s
methods in the Siegel case experimentally.

• In order to implement a proved algorithm to compute genus 2 theta
constants in quasi-linear time, it would be nice to prove hypothe-
sis 6.2.15 with explicit upper bounds on the necessary initial preci-
sion in the Newton iterations. This calculation is perhaps feasible,
and would be interesting also in the genus 1 case.

• The complexity of the algorithm of chapter 6 to evaluate modular
equations over number fields is not quasi-linear in the output size
in general. In particular, the term H2 in proposition 6.3.9 comes
from the fact that reduction to the fundamental domain F2 ⊂ H2

is not done in quasi-linear time, as proposition 6.2.23 shows. As we
remarked at the end of chapter 6, it should be possible to reformu-
late this problem in terms of lattice reduction for dimension 4 sym-
plectic lattices, and to adapt existing quasi-linear lattice reduction
algorithms [NSV11, NS16] to this setting.

• In order to assess the complexity of Elkies’s method for abelian sur-
faces, it would be interesting to generalize the known results about the
distribution of Elkies primes in the case of elliptic curves [SS14, SS15]
to higher dimensions.

• The isogeny algorithm of chapter 3 could be applied to the construc-
tion of explicit families of abelian surfaces with real multiplication,
besides the examples presented in [GKS11, §4].
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• In order to evaluate modular equations over a finite field Fq, lifting to
a number field as in proposition 6.3.7 is not the most natural thing
to do. It is interesting to ask if there exists an algorithm to evaluate
modular equations in quasi-linear time over unramified extensions
of Qp, using canonical lifts of abelian surfaces.

• When constructing complete denominators of modular equations, the
structure of the corresponding rings of modular forms over Z plays a
central role. This raises the question of finding an algorithm to com-
pute the ring of Hilbert modular forms over Z for Q(

√
∆), when ∆

varies. The result for ∆ = 29 and ∆ = 37 has recently been com-
puted [Wil20]. It would also be interesting to compute rings of Hilbert
modular forms over Z for totally real cubic fields.

• Finally, beyond abelian surfaces, it would be interesting to extend
Elkies’s method for point counting to the case of principally polar-
ized abelian threefolds with real multiplication over finite fields. We
should obtain strong asymptotic improvements over Schoof’s algo-
rithm in this case. A first step in this direction would be to general-
ize the isogeny algorithm of chapter 3 to Jacobians of quartic curves,
using the newly found correspondance between Siegel modular forms
in dimension 3 and concomitants of ternary quartics [CFvdG20].
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