
HAL Id: tel-03346038
https://theses.hal.science/tel-03346038

Submitted on 16 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconfiguration problems in graphs
Paul Ouvrard

To cite this version:
Paul Ouvrard. Reconfiguration problems in graphs. Data Structures and Algorithms [cs.DS]. Univer-
sité de Bordeaux, 2021. English. �NNT : 2021BORD0106�. �tel-03346038�

https://theses.hal.science/tel-03346038
https://hal.archives-ouvertes.fr


THÈSE PRÉSENTÉE

POUR OBTENIR LE GRADE DE

DOCTEUR

DE L’UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE MATHÉMATIQUES ET INFORMATIQUE

Spécialité Informatique

par Paul Ouvrard

RECONFIGURATION PROBLEMS IN
GRAPHS

Date de soutenance : 24 mars 2021

Devant la commission d’examen composée de :

Mathieu LIEDLOFF . Maître de Conférences, Université d’Orléans . . . . . . . . . . . . . . . . . . . . . . . . . Rapporteur
Laurent VIENNOT . . Directeur de Recherche, Inria - Université de Paris . . . . . . . . . . . . . . . . . . . Rapporteur
Aurélie LAGOUTTE . Maître de Conférences, Université Clermont-Auvergne . . . . . . . . . . . . . Examinatrice
Nicolas TROTIGNON Directeur de Recherche, ENS Lyon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Examinateur
Marthe BONAMY . . . Chargée de Recherche, CNRS - LaBRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Encadrante
Paul DORBEC . . . . . . . Professeur, Université Caen-Normandie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Directeur
Cyril GAVOILLE . . . . Professeur, Université de Bordeaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Directeur

Présidée par : Nicolas TROTIGNON





Remerciements

Cette thèse fut une très belle aventure, parfois semée d’embûches mais tellement enrichissante.
Durant ces quatre dernières années, de nombreuses personnes m’ont aidé à franchir la ligne
d’arrivée et j’aimerais ici pouvoir les en remercier.

Je souhaiterais dans un premier temps remercier Mathieu Liedloff et Laurent Viennot pour
la relecture attentive de ce manuscrit, surtout en ces temps difficiles. Un grand merci également
à Aurélie Lagoutte et Nicolas Trotignon pour avoir accepté de faire partie de mon jury.

Cette thèse n’aurait jamais vu le jour (et encore moins abouti) sans la précieuse aide de mes
trois directeurs de thèse, Marthe, Paul et Cyril. Merci pour votre soutien, vos nombreux conseils
et votre bonne humeur quotidienne. J’ai pris énormément de plaisir en travaillant à vos côtés,
mais j’aimerais aussi vous remercier pour l’autonomie que vous m’avez laissée et pour votre
confiance. Je m’estime très chanceux de vous avoir eu comme directeurs, merci pour tout !

J’aimerais également remercier Nicolas Bousquet qui m’a tout particulièrement suivi ces
deux dernières années. Je garde notamment un excellent souvenir de notre séjour au Japon et
de nos nombreuses discussions, qu’elles soient scientifiques ou non.

I also would like to thank all the members of the DATCORE project. Many thanks to Marc
Heinrich, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Akira Suzuki and Kunihiro Wasa. It
has been a great pleasure to work and spend all this time with you! In particular, thanks to the
Japanese members for your kindness and your hospitality during our stay in your wonderful
country; I have excellent memories of it.

Un grand merci aux participants (que je n’ai pas remerciés jusque là) des trois Pessac Graph
Workshops auxquels j’ai eu le plaisir d’assister : Oscar Defrain, Tereza Klimošová et Jean-Florent
Raymond. Bien entendu, merci à Peppie pour son soutien sans faille, à Marthe et à la famille
Simon sans qui tous ces bons moments n’auraient pas existés.

Je souhaiterais également remercier les chercheurs avec lesquels j’ai eu la chance de pou-
voir travailler durant ces trois années. En particulier, merci à Cédric Chauve, Clément Dallard
et Alice Joffard, j’ai beaucoup apprécié ces sessions travail (mais pas que !) avec vous. Merci
également à Mikaël Rabbie, Jukka Suomela et Jara Uitto.

Durant les quatre dernières années, j’ai eu la chance de pouvoir enseigner à l’IUT, et surtout
à l’UF Informatique. J’aimerais pouvoir remercier celles et ceux m’ayant fait confiance mais
comme je risquerais oublier certaines personnes en donnant des noms, je préfère donc simple-
ment remercier les membres des équipes pédagogiques d’ACSI, POO et COO pour l’IUT ; Algo
des graphes, AlgoStruct’, CoCa, InitInfo, Ini Prog C, POO et TAP pour l’UF.

J’aimerais également remercier tous les membres du LaBRI pour faire de ce laboratoire un
environnement de travail idéal. Naturellement, merci à l’équipe CombAlgo et en particulier
à tous les membres du thème Graphes et optimisation pour m’avoir accueilli à bras ouverts.
Un grand merci en particulier à tous les doctorants que j’ai eu la chance de rencontrer ces
quatre dernières années : Alex, Jonathan, Théo et Claire H. (la famille en premier !), mais aussi
Mohammed, Thomas et Dimitri.

iii



De manière plus générale, merci à tous les doctorants du LaBRI pour tous ces moments de
convivialité et de légèreté. Je pense notamment à tous les événements organisés par l’AFoDIB
comme le traditionnel pot de Noël ou les nombreuses pauses café. Merci à Karim Aderghal,
Karim Alami, Tristan, Tobias, Simon, Henri, Valentin, Mathias, Julien, Nathan et Tidiane.

Je souhaiterais également remercier mes amis, du labo et d’en dehors. Merci à Lamine
pour nos discussions toujours passionantes, ta culture (scientifique ou autre) m’impressionne à
chaque fois. J’ai aussi beaucoup apprécié notre collaboration ! Un énorme merci à Luchito, mon
chilien préféré et l’une des plus belles rencontres de cette thèse. Un tout aussi grand merci à Ja-
son a.k.a. ShootShoot et Rohan a.k.a. Roro mes super co-bureaux mais surtout mes super amis.
Merci pour tout ce qu’on a partagé ensemble (les galères comme les nombreuses bières), notre
amitié a été l’un des piliers de cette thèse, mais aussi et surtout de ma vie en dehors du labo.
Un immense merci à Corentin, Laura et Marie, mes amis de longue date et qui partagent avec
moi (à Bordeaux et ailleurs !) cette souffrance d’être supporter des Girondins. Merci à Nico le
sosie de Tom Cruise et surtout l’animateur de nos soirées ! Pour finir, merci à Dimitri et Marie
pour tout. Vivement notre prochain week-end inopiné ensemble !

Merci également à ma belle-famille tout entière pour m’avoir accueilli à bras ouverts dès le
départ, et me considérer comme l’un des vôtres. Merci en particulier à mes beaux oncle, tante
et cousins de La Rochelle, grands-parents, sœurs et bien sûr parents. Merci pour tout.

Parce que je ne serais rien sans eux et même si ces quelques lignes ne peuvent représenter
tout l’amour que je leur porte, j’aimerais remercier ma famille. Merci à tous mes oncles, tantes
et cousins. J’aimerais en particulier remercier Augustin, Valentin et bien sûr Lucas avec qui
je partage beaucoup, vous êtes tous les trois des cousins géniaux ! Merci aussi à mes grands-
parents pour votre soutien et votre amour de tous les jours (Mamie, je pense fort à toi). Merci
à Emma, ma sœur, je suis fier de toi et j’admire celle que tu es devenue. Bien sûr, un grand
merci à Mehdi, je suis ravi que tu fasses partie de la famille. Merci à vous deux d’être là dans
les bons comme dans les mauvais moments, et merci pour ce magnifique bébé des îles, je suis
un tonton comblé. Enfin, merci à mes deux merveilleux parents. Merci pour votre soutien de
tous les instants et de toute nature, merci d’avoir toujours fait en sorte que je ne manque de
rien. Je suis un privilégié d’avoir des parents comme vous et je vous en serai éternellement
reconnaissant.

Je ne pourrais pas terminer ces remerciements sans un grand Miaou à Pelote, a.k.a. Pepe le
pot de colle, notre chat-chien, pour ces ronronnements et ses câlins incessants.

Mes derniers remerciements vont tout naturellement à Amandine. Je ne vais pas lister
toutes les raisons que j’aurais de te dire merci - il y en aurait tellement - mais juste te remercier
pour ce 19 septembre qui restera une journée inoubliable. J’espère que nous aurons l’occasion
de continuer à découvrir le monde ensemble, et je suis sûr que nous saurons profiter pleine-
ment de tous les bonheurs que la vie a à offrir.

iv Paul Ouvrard



Contents

Contents v

Introduction (in French) 1

Introduction 7

1 Preliminaries 13
1.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 A few words on finite sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.2 Basic definitions on graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Some graph classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.1 Simple graph classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.2 Chordal graphs and related subclasses . . . . . . . . . . . . . . . . . . . . . 20
1.2.3 Planar graphs and cographs . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.1 Decision problems and Turing machines . . . . . . . . . . . . . . . . . . . 24
1.3.2 Some complexity classes and completeness . . . . . . . . . . . . . . . . . . 26
1.3.3 Parameterized complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4 Some graph problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4.1 Independent set, vertex cover, k-coloring . . . . . . . . . . . . . . . . . . . 32
1.4.2 Treewidth, pathwidth and graph bandwidth . . . . . . . . . . . . . . . . . 34

1.5 Combinatorial reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.5.1 Illustration of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.5.2 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.5.3 Complexity of reconfiguration problems . . . . . . . . . . . . . . . . . . . 40
1.5.4 Example of reconfiguration problems . . . . . . . . . . . . . . . . . . . . . 42
1.5.5 Defining an adjacency rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 Domination in graphs 51
2.1 Introduction on domination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.1.2 Definitions and simple results . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.1.3 Relation with other graph parameters . . . . . . . . . . . . . . . . . . . . . 54
2.1.4 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2 Price of Connectivity for domination . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.2.2 PoC-Near-Perfect graphs with threshold two . . . . . . . . . . . . . . . . . 66
2.2.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3 Reconfiguration of dominating sets 81
3.1 Connectivity of the reconfiguration graph under TAR . . . . . . . . . . . . . . . . 81

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

v



CONTENTS

3.1.2 Upper bound related to the independence number . . . . . . . . . . . . . 86
3.1.3 H-minor free graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.1.4 Bounded treewidth graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.1.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2 Complexity under Token Sliding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.2.2 PSPACE-completeness results . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.2.3 Polynomial-time algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.2.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.3 Optimization variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.3.2 Polynomial-time (in)tractability . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.3.3 Parameterized complexity of OPT-DSR . . . . . . . . . . . . . . . . . . . . 115
3.3.4 Changing the target dominating set . . . . . . . . . . . . . . . . . . . . . . 121
3.3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4 Other reconfiguration problems 127
4.1 Reconfiguration of spanning trees with many or few leaves . . . . . . . . . . . . . 127

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.1.2 Spanning tree with many leaves . . . . . . . . . . . . . . . . . . . . . . . . 128
4.1.3 Spanning trees with few leaves . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.1.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.2 Distributed recoloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.2.2 Definition of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.2.3 Warmup – simple results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.2.4 Recoloring algorithm for trees . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.2.5 Recoloring algorithm for subcubic graphs . . . . . . . . . . . . . . . . . . . 167
4.2.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Conclusion 173

Bibliography 175

vi Paul Ouvrard



Introduction (in French)

Quelques mots sur les graphes et la domination dans les graphes

Cette thèse s’inscrit dans le cadre la théorie des graphes qui est la branche des mathématiques
et de l’informatique étudiant les graphes. Un graphe est une structure mathématique composée
de sommets qui peuvent être connectés deux à deux par des arêtes. Avec cette définition, on
observe que les graphes sont des modèles très puissants qui peuvent être utilisés pour décrire
n’importe quelle relation binaire sur un ensemble : chaque élément de l’ensemble correspond
à un sommet, et deux éléments en relation sont reliés par une arête. L’étude des graphes a été
initiée par Euler il y a près de trois cents ans, et l’intérêt pour ce domaine des mathématiques
discrètes n’a cessé de croître depuis, notamment grâce à l’émergence de l’informatique.

La théorie des graphes a de nombreuses applications dans différents domaines. L’un des
plus connus est probablement celui lié à la planification ; en voici un exemple très simple pour
l’illustrer. Chaque étudiant d’une université suit un certain nombre de cours et doit passer un
examen afin de valider le semestre. Cependant, tous les étudiants ne sont pas inscrits dans
les mêmes cours et chaque étudiant ne peut pas avoir deux examens en même temps. Par
conséquent, l’université doit répondre à la question suivante : comment faut-il organiser ces
examens afin de minimiser le temps total nécessaire ? Ce problème peut être modélisé en tant
que problème de graphe comme ceci : chaque cours est un sommet et deux cours ayant des
étudiants en commun sont reliés par une arête. L’objectif est de planifier la session d’examen,
c’est-à-dire d’assigner un horaire à chaque cours. Le fait que deux examens ne puissent pas
être programmés en même temps est modélisé par une arête entre les deux sommets cor-
respondants. Enfin, l’horaire d’un examen peut être représenté par une couleur ; ainsi tous
les cours possédant la même couleur ne peuvent pas avoir leur examen se déroulant simul-
tanément. La contrainte indiquant que chaque étudiant ne peut pas avoir deux épreuves se
déroulant en même temps implique qu’il ne peut y avoir deux sommets adjacents possédant la
même couleur. Il est maintenant clair que minimiser le temps nécessaire pour la session entière
d’examens est équivalent à utiliser un nombre minimum de couleurs (voir la figure 1).

ÉlectroniquePhysique

Chimie

Mathématiques

Informatique

Français

Figure 1 – Illustration du problème.

1



Introduction (in French)

Dans la figure 1, nous avons trouvé une solution utilisant trois couleurs, et on peut se de-
mander si ce nombre est optimal ou non. En fait, on peut observer que les examens de chimie,
d’électronique et de physique ne peuvent pas se dérouler en même temps car les sommets
correspondants sont tous deux à deux adjacents. Par conséquent, au moins trois couleurs sont
nécessaires. Comme nous avons trouvé une solution utilisant trois couleurs, on peut en con-
clure que ce nombre est optimal. Plus généralement, ce type de problème peut être abordé en
étudiant des propriétés structurelles du graphe sous-jacent. Par exemple, si le graphe possède
un ensemble X de sommets deux à deux adjacents (appelé clique), alors tous les sommets de X
doivent recevoir des couleurs différentes. Ainsi, au moins |X| couleurs sont nécessaires afin de
colorer tout le graphe. D’un autre côté, on peut observer que si tous les sommets sont connectés
à au plus ∆ autres sommets, on peut toujours colorer le graphe avec ∆ + 1 couleurs. Il s’ensuit
que le nombre optimal de couleurs nécessaires pour colorer n’importe quel graphe est toujours
au moins la taille de sa plus grande clique, mais au plus son degré maximum plus un.

Malheureusement, l’écart entre la taille d’une plus grande clique et le degré maximum peut
être arbitrairement grand. Ainsi, il se peut que ces bornes ne soient pas très utiles afin de déter-
miner le nombre optimal de couleurs. Cela n’aide pas non plus pour effectivement trouver
une solution, c’est-à-dire pour réellement planifier la session d’examens. De plus, le nombre de
cours différents peut être très important rendant impossible une résolution "à la main". Pour
cette raison, il est souvent très intéressant de concevoir des algorithmes rapides permettant de
renvoyer une solution. Comme il se peut qu’un algorithme "rapide" trouvant une solution op-
timale n’existe pas, il est également très intéressant de déterminer à quel point le problème est
"dur" à résoudre. Ces deux différentes approches sont précisément celles qui nous intéressent
dans cette thèse : étudier les propriétés structurelles d’un problème de graphes, concevoir des
algorithmes le résolvant, ou à défaut se concentrer sur sa complexité algorithmique.

Discutons maintenant d’un autre problème de la vie quotidienne pour lequel la théorie
des graphes pourrait être utile. Une marque aimerait faire de la publicité afin d’augmenter les
ventes de son produit phare. Pour cela, elle souhaiterait utiliser les réseaux sociaux car elle
estime qu’il s’agit de la façon la plus efficace d’atteindre des clients potentiels de nos jours.
Cependant, il serait très coûteux d’envoyer un message individuel à chaque membre du réseau
social. Ainsi, une autre manière de procéder consiste à payer des personnes qui diffuseront
elles-mêmes le message auprès de leurs amis virtuels via un poste, un tweet, une vidéo etc.
Comme l’entreprise souhaite dépenser le moins d’argent possible, il est crucial de trouver les
"bonnes" personnes afin de minimiser le coût total. Ces personnes choisies sont en réalité ap-
pelées influenceurs car elles ont de nombreux amis (sur les réseaux sociaux) ou sont suivies par
de nombreuses personnes. Par souci de simplicité, on suppose que la relation est symétrique,
c’est-à-dire que si une personne A suit une personne B, alors B suit également A. Dans ce cas,
on dit que A et B sont amies. Ainsi, le réseau social peut être facilement modélisé par un graphe
: chaque membre est un sommet et deux sommets sont adjacents si et seulement si les deux util-
isateurs sont amis sur le réseau social. Par conséquent, le problème que la marque doit résoudre
est le suivant : quel nombre minimum d’influenceurs faut-il payer afin que chaque personne
non rémunérée soit amie avec au moins un influenceur ? Ce problème est appelé ENSEMBLE

DOMINANT, et est le problème au départ de cette thèse.

Figure 2 – Ensemble dominant minimum de taille deux d’un graphe.

2 Paul Ouvrard



Introduction (in French)

(a) (b) (c)

Figure 3 – Trois nouveaux ensembles dominants de taille deux du même graphe.

La figure 2 donne un exemple d’un ensemble dominant de taille deux d’un graphe. On
peut facilement prouver qu’il s’agit bien d’un ensemble dominant minimum, c’est-à-dire qu’il
n’existe pas d’ensemble dominant possédant moins de sommets. En effet, le graphe ne contient
pas de sommet adjacent à tous les autres. Ainsi, il n’existe pas d’ensemble dominant de taille
un. Cependant, notons que le graphe admet trois autres ensembles dominants de taille deux
que celui représenté dans la figure 2 ; voir la figure 3. De plus, on peut observer que sur la
figure 2 ainsi que sur les figures 3a et 3b, les deux sommets qui forment l’ensemble dominant
ne sont pas adjacents, contrairement à la figure 3c. Plus généralement, on peut se concentrer
sur certains cas particuliers d’ensembles dominants : que se passe-t-il si nous souhaitons avoir
un ensemble dominant indépendant, c’est-à-dire dont les sommets sont deux à deux non adja-
cents ? À l’inverse, combien cela coûte-t-il (en termes de sommets supplémentaires) d’avoir un
ensemble dominant connexe comme dans la figure 3c ? Ces ensembles dominants particuliers
sont intéressants pour différentes raisons. Par exemple, les ensembles dominants connexes peu-
vent avoir une application dans le calcul du routage pour des réseaux mobiles ad hoc. En effet,
un ensemble dominant connexe peut servir de "colonne vertébrale" pour les communications :
les nœuds n’appartenant pas à l’ensemble dominant connexe peuvent communiquer avec les
autres en transmettant leurs messages à un de leur voisin qui appartient à l’ensemble [WL99].

Reconfiguration combinatoire

D’un point de vue plus théorique, on peut également se demander si ces quatre ensembles
dominants de taille deux sont tous équivalents, à une opération élémentaire fixée près. Le cas
échéant, peut-on borner la longueur d’une transformation entre deux ensembles dominants
donnés ? D’autre part, si cela n’est pas toujours possible, quelle est la complexité de déterminer
si un ensemble dominant peut être transformé en un autre ? Toutes ces problématiques peu-
vent être résumées par cette question très simple mais générale : étant donné une configuration
courante, est-il possible d’atteindre une configuration cible fixée ? Dans ce contexte, on peut ob-
server que de nombreux jeux à un joueur comme le Rubik’s cube, le jeu de Taquin ou encore Rush
Hour peuvent être considérés comme des problèmes de reconfiguration. Ce formalisme est très
large car il peut être appliqué à la plupart des problèmes combinatoires, plusieurs opérations
permettant de transformer une solution peuvent être considérées et il soulève de nombreuses
questions très intéressantes. Dans cette thèse, nous nous intéressons seulement à la reconfig-
uration de problèmes de graphes, mais nous soulignons que de nombreux problèmes comme
SATISFIABILITÉ peuvent être étudiés dans le cadre de ce formalisme. Ito et al. [IDH+08] ont
initié une étude systématique de la complexité de ces questions. Contrairement à ce qui se
passe pour les jeux à un joueur mentionnés ci-dessus, dans la reconfiguration de problèmes de
graphes, il est nécessaire que chaque étape intermédiaire entre les solutions source et cible soit
également une solution du problème (par exemple nous devons nous assurer qu’il s’agit bien
d’un ensemble dominant). Cette contrainte rend le problème beaucoup plus intéressant car il se
peut qu’une transformation n’existe pas. Certaines solutions peuvent même être gelées, ce qui
signifie qu’elle ne peuvent pas du tout être modifiées. Une séquence de reconfiguration entre deux

Reconfiguration problems in graphs 3



Introduction (in French)

solutions Ss et St d’un problème de Π est une séquence 〈S0 = Ss, S1, . . . , S`−1, S` = St〉 telle que
chaque Si est également une solution de Π qui peut être obtenue à partir de Si−1 en appli-
quant une seule modification appelée règle de reconfiguration. Notons que cette règle est unique
et ne peut donc pas être changée durant la transformation. En revanche, il existe souvent plus
d’un choix naturel pour celle-ci. Par exemple, si nous nous intéressons à la reconfiguration
d’ensembles dominants, trois règles ont été principalement étudiées jusqu’ici :

• ajout ou suppression d’un seul sommet ;

• remplacement d’un sommet par un autre ;

• remplacement d’un sommet par l’un de ses voisins.

Il est évident que pour la première règle, nous devons ajouter une contrainte supplémen-
taire sur la taille de chaque solution intermédiaire sans quoi le problème devient trivial. En
effet, en ajoutant d’abord chaque sommet de St \ Ss puis en supprimant chaque sommet de
Ss \ St, nous obtenons une (plus courte) transformation entre Ss et St. Bien qu’il s’agisse d’un
problème intéressant, la plupart des travaux dans ce domaine n’étudient pas la relation entre
ces différentes règles de reconfiguration. Les questions les plus étudiées sont les suivantes :

• ACCESSIBILITÉ : existe-t-il une séquence de reconfiguration entre deux solutions ?

• CONNEXITÉ : existe-t-il une séquence de reconfiguration entre toutes les paires de solu-
tions ?

• PLUS COURTE TRANSFORMATION: existe-t-il une séquence de reconfiguration de longueur
au plus ` entre deux solutions ?

Pour tous ces problèmes, on peut s’intéresser à la complexité du problème de décision asso-
cié. Cependant, ils sont souvent PSPACE-complets, y compris lorsque le problème original peut
se résoudre en temps polynomial (comme par exemple le problème du COUPLAGE PARFAIT) .

!

(a) D0 = Ds

!

(b) D1

!

(c) D2 (d) D3 = Dt

Figure 4 – Séquence de reconfiguration d’ensembles dominants du graphe de Petersen.

Aperçu de la thèse

Dans cette thèse, nous nous intéressons uniquement à la reconfiguration de problèmes de
graphes. Le problème au départ de cette thèse est celui de l’ENSEMBLE DOMINANT. Nous étu-
dions notamment la relation entre un ensemble dominant et un ensemble dominant connexe
dans le chapitre 2, puis nous nous focalisons sur la reconfiguration d’ensembles dominants
dans le chapitre 3. Nous nous intéressons également à la reconfiguration de deux autres prob-
lèmes dans le chapitre 4 : la reconfiguration d’arbres couvrants et la k-recoloration. Ainsi, cette
thèse se divise en quatre chapitres que nous allons maintenant présenter rapidement.

4 Paul Ouvrard



Introduction (in French)

Le chapitre 1 est consacré aux définitions, notations, ainsi que certains résultats connus de la
théorie des graphes que nous utiliserons. Ce chapitre contient également une introduction plus
complète sur la reconfiguration combinatoire dans la section 1.5. Nous y présentons notam-
ment quelques résultats connus dans ce domaine. Cependant, pour un aperçu plus complet, le
lecteur est invité à consulter les synthèses de van den Heuvel [vdH13] et Nishimura [Nis18].
Pour chaque problème que nous étudions dans cette thèse, une introduction contenant les ré-
sultats connexes est reportée au début de la section correspondante.

La première partie du chapitre 2 est une introduction à la domination dans les graphes.
Nous présentons le problème ainsi que certains résultats connus. Nous discutons également
de la relation entre le nombre de domination d’un graphe (c’est-à-dire la taille minimum d’un
ensemble dominant), son nombre de domination supérieure (c’est-à-dire la taille maximum
d’un ensemble dominant minimal par inclusion) et d’autres paramètres de graphes. Nous nous
concentrons également sur la complexité du problème ENSEMBLE DOMINANT. Nous donnons
d’abord deux célèbres réductions polynomiales prouvant sa NP-complétude ; nous en utilis-
erons une dans le chapitre 3. Nous présentons également deux algorithmes connus permettant
de calculer le nombre de domination des arbres et des graphes d’intervalles en temps linéaire.
Dans la seconde partie du chapitre 2, nous étudions la relation entre le nombre de domination
d’un graphe et la taille d’un ensemble dominant connexe minimum. Cette section est basée
sur un travail conjoint en cours avec Marthe Bonamy, Nicolas Bousquet et Tereza Klimošová.
Plus précisément, nous montrons que la taille d’un ensemble dominant minimum connexe de
tout-sous graphe induit H d’un graphe G est au plus deux fois le nombre de domination de H
si et seulement G ne contient pas de P9, de C9 ou le graphe suivant comme sous-graphe induit :

v1 v2 v3 v4

v5v6v7v8

v9 v10

Figure 5 – Le troisième sous-graphe induit interdit.

Le chapitre 3 est entièrement consacré à la reconfiguration d’ensembles dominants par to-
ken addition and removal et token sliding. Dans la section 3.1, nous présentons un travail en
commun avec Nicolas Bousquet et Alice Joffard [BJO20]. Plus précisément, nous nous con-
centrons sur le seuil k correspondant à la taille maximum de chaque solution intermédiaire.
Nous montrons que pour certaines valeurs spécifiques de k, il existe toujours une transforma-
tion courte (ici "courte" signifie de longueur linéaire) entre n’importe quelle paire d’ensembles
dominants. De plus, nos preuves sont constructives et nous permettent de calculer une telle
séquence de reconfiguration en temps polynomial (ou en temps FPT pour le résultat concer-
nant la largeur arborescente). Dans la section 3.2, nous étudions la complexité de la question
d’accessibilité d’ensembles dominants par token sliding. Il s’agit d’un travail en commun avec
Marthe Bonamy et Paul Dorbec [BDO21]. Ce travail étant le premier à notre connaissance à
considérer la reconfiguration d’ensembles dominants sous cette règle, nous commençons par
introduire le problème. En particulier, nous décidons d’autoriser la superposition de jetons sur
un même sommet afin d’éviter des exemples artificiels négatifs. Notre résultat principal est que
le problème est PSPACE-complet, y compris lorsque l’on se restreint aux graphes bipartis par
exemple. Il peut cependant se résoudre en temps polynomial dans les cographes ou les graphes
dually chordaux, une classe contenant notamment les arbres et les graphes d’intervalles. En-
fin, nous présentons une nouvelle variante de reconfiguration d’ensembles dominants appelée
OPT-DSR récemment introduite par Ito et al. [IMNS19] pour la reconfiguration d’ensembles

Reconfiguration problems in graphs 5



Introduction (in French)

indépendants. Dans ce nouveau problème, étant donné un ensemble dominant D d’un graphe
G, l’objectif est de trouver le plus petit ensemble dominant de G qui est accessible depuis D par
token addition and removal. Après une rapide présentation, nous nous concentrons sur sa com-
plexité. Nous nous intéressons principalement à sa complexité paramétrée, mais nous prou-
vons également qu’il est PSPACE-complet. Enfin, nous montrons que si l’objectif est de trouver
le plus petit ensemble dominant indépendant accessible depuis D, alors le problème est égale-
ment PSPACE-complet, y compris dans les graphes bipartis. Il s’agit d’un travail en commun
avec Alexandre Blanché, Haruka Mizuta et Akira Suzuki [BMOS20].

Dans le chapitre 4, nous changeons de problème hôte. Ce chapitre est composé de deux par-
ties qui sont totalement indépendantes. Dans la section 4.1, nous nous intéressons à la complex-
ité de la reconfiguration d’arbres couvrants avec des contraintes supplémentaires sur le nombre
de feuilles. Plus précisément, nous nous concentrons sur la reconfiguration d’arbres couvrants
possédant respectivement au moins k feuilles, et au plus k feuilles. Bien qu’il soit connu qu’il
existe toujours une transformation entre deux arbres couvrants [IDH+08], nous montrons que
ces nouvelles contraintes rendent le problème beaucoup plus difficile. Plus précisément, nous
prouvons que ces deux problèmes sont PSPACE-complets. Nous exhibons également un al-
gorithme polynomial pour la reconfiguration d’arbres couvrants possédant au moins n − 2
feuilles, n étant le nombre de sommets du graphe. Nous expliquons ensuite comment nous
pouvons utiliser ce résultat pour concevoir un algorithme polynomial pour les cographes. Il
s’agit d’un travail conjoint avec Nicolas Bousquet, Takehiro Ito, Yusuke Kobayashi, Haruka
Mizuta, Akira Suzuki and Kunihiro Wasa [BIK+20]. Enfin, dans la section 4.2, nous nous con-
centrons sur des problèmes de k-recoloration. Cependant, nous n’étudions pas ce problème
dans un cadre centralisé, mais de manière décentralisée. Plus précisément, nous utilisons le
modèle LOCAL d’algorithmique distribuée dans lequel chaque sommet reçoit un identifiant
unique mais n’a aucune connaissance préalable du graphe. Évidemment, chaque sommet con-
naît également sa couleur initiale, ainsi que sa couleur cible. En outre, un sommet peut commu-
niquer avec ses voisins et réaliser un calcul à chaque étape. Grâce à cela, il peut ainsi décider de
changer sa couleur en conséquence. Comme le problème de k-coloration est intrinsèquement
global et qu’une solution n’existe pas toujours, nous décidons d’autoriser des couleurs sup-
plémentaires durant la transformation. Nous nous concentrons uniquement sur des instances
positives, et notre objectif de minimiser à la fois le nombre de rondes de communications et le
nombre maximum d’étapes nécessaires pour que chaque sommet puisse atteindre sa couleur
finale. Nous présentons dans un premier temps des bornes inférieures et supérieures simples,
avant de nous concentrer dans un second temps sur la 3-recoloration d’arbres et de graphes
sous-cubiques. Il s’agit d’un travail en commun avec Marthe Bonamy, Mikaël Rabie, Jukka
Suomela et Jara Uitto [BOR+18].

6 Paul Ouvrard



Introduction

A few words on graphs and domination in graphs

This thesis lies in the field of graph theory which is the branch of mathematics and computer
science that studies graphs. A graph is a mathematical structure made up of vertices that may be
pairwise connected by edges. With this definition, it is observed that graphs are very powerful
models that can be used to describe any binary relation on a set: each element of the set corre-
sponds to a vertex, and two elements that are in relation are connected by an edge. The study
of graphs was pioneered by Leonhard Euler nearly three hundred years ago, and interest in
this field of discrete mathematics has continued to grow ever since, thanks in particular to the
emergence of computer science.

Graph theory has many applications in various fields. Probably, one of the most famous one
is related to scheduling; here is a very simple example to illustrate it. Each student at a univer-
sity takes a number of courses and must pass the exam in order to validate the semester. How-
ever, not all students are enrolled in the same courses and each student cannot have two exams
at the same time. Hence, the university has to answer the following question: how should it
organize these exams in order to minimize the amount of time needed for the whole session?
Actually, this problem can be modeled as a graph problem as follows: each course is a vertex,
and two courses that have students in common are connected by an edge. The goal is to sched-
ule the exam session, i.e., to assign a timetable to each course. The fact that two exams cannot
be scheduled at the same time is modeled by an edge between the two corresponding vertices.
Finally, the schedule of an exam can be represented by a color; hence all the vertices with the
same color cannot have their exam taking place simultaneously. The constraint that each stu-
dent cannot have two exams at the same time implies that no two adjacent vertices can receive
the same color. It is now clear that minimizing the amount of time needed for the whole exam
session is equivalent to using a minimum number of colors (see Figure 1).

Electronics
Physics

Chemistry

Mathematics

Computer science

French

Figure 1 – Illustration of this problem.

7



Introduction

In Figure 1, we found a solution with three colors and one can wonder whether this number
of colors is optimal or not. Actually, it is observed that the exams of Chemistry, Electronics and
Physics cannot occur at the same time because the corresponding vertices are pairwise adjacent.
Hence, at least three colors are required. Since we found a solution using three colors, one can
conclude that this number is optimal. More generally, this kind of problem can be tackled by
studying structural properties of the underlying graph. For instance, if the graph has a set X
of pairwise adjacent vertices (called a clique), then all the vertices of X must receive different
colors and thus at least |X| are needed to color the whole graph. On the other hand, one can
observe that if every vertex is connected to at most ∆ other vertices, then one can always color
the graph with ∆ + 1 colors. This suggests that the optimal number of colors needed to color
any graph is at least the size of its largest clique, but at most its maximum degree plus one.

Unfortunately, the gap between the size of a largest clique and the maximum degree can
be arbitrarily large, and thus it might not be very helpful to find the optimal number of colors.
And it does not help us to actually find a solution, i.e., to schedule the exam session. Moreover,
the number of different courses may be huge and thus, making impossible to solve it by hand.
Therefore, one might be interested to design fast algorithms to find a solution. Because a "fast"
algorithm finding an optimal solution might not exist, it is also very interesting to determine
how hard it might be to solve it. These two different approaches are precisely the ones that in-
terest us in this thesis: studying structural properties of a graph problem, designing algorithms
to solve it, or focusing on its computational complexity.

Let us now discuss about another daily-life problem where graph theory might be useful.
A brand company would like to advertise in order to increase the sales of its flagship product.
To this end, it would like to use social media because it believes this is the most effective way
to reach potential clients nowadays. However, it would be very costly to send an individual
message to each member of the social media. Therefore, another possible way is to pay some
people to spread the message to their virtual friends themselves; it could be via a post, a tweet,
a video and so on. Because the company wants to spend as little money as possible while
reaching all the members of the social media, it is crucial to choose the right people so that the
company minimizes the number of paid people. These people are usually called social media
influencers, because they have many friends (on the social media) or are followed by a lot of
people. For the sake of simplicity, suppose that the relation is symmetric, i.e., if a person A
follows a person B, then B also follows A. In that case, we say that A and B are friends. Thus,
the social media can be easily modeled by a graph: each member is a vertex, and two vertices
are adjacent if and only if the two users are friends on the social media. Hence, the problem that
the company must solve is the following: what is the minimum number of influencers it has to
pay so that each non-chosen people is friend with at least one chosen influencer? This problem
is the so-called DOMINATING SET problem, which is the original problem of this thesis.

Figure 2 – Minimum dominating set of size two of a graph.

Figure 2 gives a example of a dominating of size two of a graph. One can easily prove that
this is actually a minimum dominating set, i.e., there is no dominating set with less vertices.
Indeed, the graph does not contain a vertex adjacent to all the others, hence there is no dom-
inating set of size one. However, note that the graph admits three more dominating sets of

8 Paul Ouvrard



Introduction

(a) (b) (c)

Figure 3 – Three different dominating sets of size two of the same graph.

size two different from the one depicted in Figure 2 (see Figure 3). Moreover, one can observe
that on Figure 2 as well as Figures 3a and 3b, the two vertices that form the dominating set
are not adjacent while they are neighbors in Figure 3c. More generally, one can focus on some
special cases of dominating sets: what happens if we want an independent dominating set, i.e.,
a dominating set where the vertices are pairwise non-adjacent? On the opposite, how does it
cost (in terms of extra vertices) to have a connected dominating set like in Figure 3c? These
special dominating sets are interesting for various reasons. For instance, connected dominating
sets may find application in the computation of routing for mobile ad hoc networks. Indeed, a
connected dominating set can be used as a backbone for communications: nodes that are not in
the connected dominating set can communicate with the others by passing messages through
a neighbor in the set [WL99].

Combinatorial reconfiguration

From a more theoretical point of view, one may also wonder whether these four dominating
sets of size two are all equivalent up to a fixed elementary operation. If so, can we bound the
length of a transformation between two given dominating sets? On the other, if this is not al-
ways possible, what is the complexity of determining if one dominating set can be transformed
into another one? All these questions can be embedded into a more general framework called
combinatorial reconfiguration, and can be summarized by this very simple but general question:
given a current configuration, is it possible to reach a fixed target? In that context, one can ob-
serve that a lot of one-player games like Rubik’s cube, the 15-puzzle or Rush hour for instance,
can be considered as reconfiguration problems. This framework is very large as it can be ap-
plied to most combinatorial problems, several operations that allow us to modify a solution
can be considered and it raises a lot of very interesting questions. In this thesis, we are only
interested in the reconfiguration of graph problems but we stress that many problems such
as SATISFIABILITY can be studied through the lens of this framework. Ito et al. [IDH+08] ini-
tiated a systematic study of the complexity of these problems. Unlike what happens for the
one-player games mentioned above, in the reconfiguration of graph problems it is required
that each intermediate step between the source and the target solutions is also a feasible so-
lution of the problem, e.g., we must ensure that it is a dominating set. This constraint makes
the problem much more interesting as it might be possible that a transformation does not exist
at all, and some solution may even be frozen meaning that there is no way to modify them. A
reconfiguration sequence between two feasible solutions Ss and St of a problem Π is a sequence
〈S0 = Ss, S1, . . . , S`−1, S` = St〉 such that each Si also is a feasible solution of Π and it can be
obtained from Si−1 by a single move called reconfiguration rule. Note that this rule is unique,
hence it cannot be changed during a transformation. However, there is often more than one
natural choice for this rule. For instance, if we focus on the reconfiguration of dominating set,
three different ones have been studied so far:

• addition or removal of a single vertex;

Reconfiguration problems in graphs 9



Introduction

• the replacement of a vertex by any other one;

• the replacement of a vertex by one of its neighbors.

Obviously, for the first one, one need to add a constraint on the size of each intermediate
solution otherwise the problem would become trivial. Indeed, first adding each vertex in St \ Ss
and then removing every vertex in Ss \ St yields a (shortest) transformation between Ss and St.
While this is an interesting problem, most work on this field do not study the relation between
these three different reconfiguration rules. The most studied questions are the following:

• REACHABILITY: does there exist a reconfiguration sequence between two given solutions?

• CONNECTIVITY: does there exist a reconfiguration sequence between any pair of feasible
solutions?

• SHORTEST TRANSFORMATION: does there exist a reconfiguration sequence of length at
most ` between two feasible solutions?

For all of those problems, one might be interested in the complexity of the associated deci-
sion problem. However, they are usually PSPACE-complete, even when the original problem
is polynomial-time solvable, like PERFECT MATCHING.

!

(a) D0 = Ds

!

(b) D1

!

(c) D2 (d) D3 = Dt

Figure 4 – Reconfiguration sequence between two dominating sets of the Petersen graph.

Overview of the thesis

In this thesis, we are only interested in reconfiguration problems on graphs. The original prob-
lem is DOMINATING SET and we study the relation between a dominating set and a connected
dominating set in Chapter 2 as well as the reconfiguration of dominating sets in Chapter 3. We
also focus on the reconfiguration of two other problems, namely spanning trees and k-colorings
in Chapter 4. Therefore, the thesis is divided in four different chapters; let us introduce them.

Chapter 1 is devoted to definitions, notations and some known results of graph theory
that we will use throughout the thesis. This chapter also contains in Section 1.5 a more de-
tailed introduction to combinatorial reconfiguration. We present some known results on this
field. However, for a more complete overview, we refer the reader to the surveys of van den
Heuvel [vdH13] and Nishimura [Nis18]. For each problem that we study in this thesis, the in-
troduction containing related results is deferred to the beginning of the corresponding section.

The first part of Chapter 2 is an introduction to domination in graphs. We present the prob-
lem and give some known results. We also discuss the relation between the domination num-
ber of a graph (i.e., the minimum size of a dominating set), its upper domination number (i.e.,
the maximum size of an inclusion-wise minimal dominating set) and other graph parameters.
We then focus on the computational complexity of the DOMINATING SET problem. We first
give two well-known polynomial-time reductions to prove its NP-completeness; we will use

10 Paul Ouvrard



Introduction

one of them in Chapter 3. We also present some well-known algorithms that can be used to
solve the problem on restricted graph classes like trees and interval graph in linear time. In the
second part of Chapter 2, we study the relation between minimum dominating sets and con-
nected dominating sets of a graph. This section is based on an ongoing joint work with Marthe
Bonamy, Nicolas Bousquet and Tereza Klimošová. More precisely, we prove that for any in-
duced subgraph H of a graph G, the minimum size of a connected dominating set of H is at
most twice the size of a minimum dominating set of H if and only if G does not contain P9, C9
or the following graph as an induced subgraph:

v1 v2 v3 v4

v5v6v7v8

v9 v10

Figure 5 – The third forbidden induced subgraph.

Chapter 3 is entirely devoted to the reconfiguration of dominating sets under the token ad-
dition and removal and token sliding rules. In Section 3.1, we present a joint work with Nicolas
Bousquet and Alice Joffard [BJO20]. More precisely, we focus on the threshold k corresponding
to the maximum size of each intermediate solution. We show that for some specific values of
k, one can always find a short transformation (here "short" means of linear length) between
any two dominating sets. Moreover, our proofs are constructive and such a reconfiguration se-
quence can be found in polynomial time (or in time FPT for the result regarding the treewidth).
In Section 3.2, we investigate the computational complexity of the reachability of dominat-
ing sets reconfiguration under token sliding. This part is based on a joint work with Marthe
Bonamy and Paul Dorbec [BDO21]. Because our work is the first one to consider the reconfigu-
ration of dominating sets under this rule to the best of our knowledge, we start by introducing
the problem. In particular, we decide to allow the superposition of tokens to avoid some arti-
ficial negative examples. Our main result is that the problem is PSPACE-complete even when
restricted to bipartite graphs for instance, while it is polynomial-time solvable on cographs or
dually chordal graphs, a class containing trees and interval graphs. Finally, we present a new
optimization variant of dominating sets reconfiguration called OPT-DSR recently introduced
by Ito et al. [IMNS19] for the reconfiguration of independent sets. In this new problem, we are
given a dominating set D of a graph G and we want to find the smallest dominating set of G
that is reachable from D under the token addition and removal rule. After presenting it and
making some useful observations, we study its complexity. We mainly focus on its parame-
terized complexity, but we also prove that it is PSPACE-complete. Finally, we show that if the
goal is to find a smallest independent dominating set reachable from D, then the problem is also
PSPACE-complete even when restricted to bipartite graphs. This is joint work with Alexandre
Blanché, Haruka Mizuta et Akira Suzuki [BMOS20].

In Chapter 4, we change the host problem. This chapter contains two different parts, that
are completely independent. In Section 4.1, we investigate the complexity of the reconfigura-
tion of spanning trees with additional constraints on the number of leaves. More precisely, we
focus on the reconfiguration of spanning trees with respectively at least k leaves, and at most
k leaves. While it is known that there always exists a transformation between two spanning
trees [IDH+08], we show that these new constraints make the problem much harder. More pre-
cisely, we prove that these two problems are PSPACE-complete. We also provide a polynomial-
time algorithm for spanning trees with at least n− 2 leaves, and explain how to use this result
to design a polynomial-time algorithm for cographs. This is joint work with Nicolas Bousquet,

Reconfiguration problems in graphs 11



Introduction

Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Akira Suzuki and Kunihiro Wasa [BIK+20].
Finally, in Section 4.2, we consider k-recoloring. However, we do not study this problem in
the "centralized setting" but in a decentralized way. More precisely, we use the LOCAL model
in Distributed Computing where each vertex has a unique identifier but has no knowledge
about the graph. Obviously, each vertex knows its initial color and its target color. Moreover,
it can communicate with its neighbors at any step, and it can perform a computation. Thanks
to this, it can then decide to change its color accordingly. Because the k-recoloring problem is
inherently global and solutions do not always exist, we decide to allow extra colors during the
transformation. We only focus on positive instances, and our goal is to minimize both the num-
ber of communication rounds and the maximum number of steps needed so that each vertex
can reach its target color. We present first some simple lower and upper bounds. We then focus
on 3-recoloring trees and subcubic graphs. This is based on joint work with Marthe Bonamy,
Mikaël Rabie, Jukka Suomela and Jara Uitto [BOR+18].

12 Paul Ouvrard



1 Preliminaries

Contents
1.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 A few words on finite sets . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.2 Basic definitions on graphs . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Some graph classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1 Simple graph classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.2 Chordal graphs and related subclasses . . . . . . . . . . . . . . . . . . . 20

1.2.3 Planar graphs and cographs . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.1 Decision problems and Turing machines . . . . . . . . . . . . . . . . . . 24

1.3.2 Some complexity classes and completeness . . . . . . . . . . . . . . . . 26

1.3.3 Parameterized complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4 Some graph problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4.1 Independent set, vertex cover, k-coloring . . . . . . . . . . . . . . . . . 32

1.4.2 Treewidth, pathwidth and graph bandwidth . . . . . . . . . . . . . . . 34

1.5 Combinatorial reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.5.1 Illustration of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.5.2 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.5.3 Complexity of reconfiguration problems . . . . . . . . . . . . . . . . . . 40

1.5.4 Example of reconfiguration problems . . . . . . . . . . . . . . . . . . . 42

1.5.5 Defining an adjacency rule . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.1 Basic definitions

1.1.1 A few words on finite sets

Cardinality, subset, complement. Let S be a finite set. We denote by |S| the cardinality (or
size) of S, i.e., the number of elements in S. A k-subset of S is a set S′ ⊆ S containing exactly k
distinct elements of S. The number of k-subsets of a finite set S on n elements is (n

k). Let X be a
subset of S, i.e., X ⊆ S. We denote by X the complement of X in S, that is X = S \ X.

13



1 – Preliminaries

Bijection between two sets. Let S1 and S2 be two sets, and let f : S1 7→ S2 be a mapping. The
mapping f is injective if for every element x ∈ S2, there is at most one element x′ ∈ S1 such that
f (x′) = x. The mapping f is surjective if for every element x ∈ S2, there is at least one element
x′ ∈ S1 such that f (x′) = x. The mapping f is bijective if it is both injective and surjective. The
inverse mapping of f is a bijective mapping from S2 to S1. In particular, if S1 and S2 are two
finite sets such that there exists a bijection between them, then |S1| = |S2|.

Symmetric difference. Let S1 and S2 be two finite sets. We denote by S14 S2 the symmetric
difference of S1 and S2, that is S14 S2 = (S1 \ S2) ∪ (S2 \ S1) = (S1 ∪ S2) \ (S1 ∩ S2) .

Partition of a set. Let S be a finite set. A partition of S is a set of subsets of S denoted by
S1, S2, . . . , Sk satisfying the following:

(i) each element of S belongs to some subset Si, i.e., ∪k
i=1Si = S;

(ii) the subsets are pairwise disjoint, i.e., Si ∩ Sj = ∅;

(iii) every subset Si is non empty, i.e., Si 6= ∅, 1 ≤ i ≤ k.

Maximal/minimal set and maximum/minimum set. Let P be a property, and let S be a set
satisfying P. We say that S is inclusion-wise minimal for P if every proper subset S′ ⊂ S does
not satisfy P. We say that S is minimum for property P if there is no set S′ such that |S′| < |S|
satisfying P (note that S′ is not necessarily a subset of S). It follows that every minimum set is
minimal. However, the converse is often false.

We say that S is inclusion-wise maximal for P if every proper superset S′ of S (i.e., S′ ⊃ S)
does not satisfy P. We say that S is maximum for P if there is no set S′ such that |S′| > |S|
satisfying P. Here again, each maximum set is also maximal, but the converse may not be true.

1.1.2 Basic definitions on graphs

A graph is an object made from points called vertices, with lines (called edges) connecting some
pairs of points. A graph is simple if there is neither a line connecting a point to itself (i.e., we
say that the graph is loopless) nor two parallel lines connected the same pair of points (i.e., there
is no multiple edges). More formally, a simple graph G is an ordered pair (V, E) where V is a
non-empty finite set of vertices and E is a set of two-subsets of V. Hence, the number of edges
of a simple graph on n vertices is at most (n

2) =
n·(n−1)

2 . We simply denote by uv the edge {u, v}.
The vertices u and v are the endpoints of the edge uv. We say that the edge uv is incident to u
and v, and that u and v are adjacent.

In the remaining of this thesis, we only consider finite graphs. Let G = (V, E) be a finite
graph. We denote by V(G) and E(G) the vertex set and edge set of G, respectively. If there is
no ambiguity, we simply denote them by V and E. The order of G is its number of vertices and
we denote it by n(G) (or simply n if there is no ambiguity), i.e., n(G) = |V(G)|. Similarly, we
denote by m(G) (or simply m if the context is clear) its number of edges, i.e., m(G) = |E(G)|.

Degree. The degree of a vertex u ∈ V is the number of edges incident to u. We denote it
degG(u), or simply deg(u) when it is clear from the context. A vertex of degree zero is an
isolated vertex, a vertex of degree one is a leaf (or pendant vertex), and a universal vertex is a vertex
adjacent to all the vertices. The minimum degree (resp. maximum degree) of G, denoted by δ(G)
(resp. ∆(G)), is the minimum (resp. maximum) over all the degrees of the vertices of G. More
formally, we have:

δ(G) = min
u∈V

deg(u) and ∆(G) = max
u∈V

deg(u).

14 Paul Ouvrard



1.1. Basic definitions

Neighborhood. The open neighborhood of a vertex u, denoted by NG(u), is the set of vertices
which are adjacent to u, i.e., NG(u) = {v | uv ∈ E}. Hence, |NG(u)| = degG(u). The closed neigh-
borhood of u, denoted by NG[u] is the set NG(u) ∪ {u}. When there is no ambiguity, we simply
denote by N(u) and N[u] the open neighborhood and closed neighborhood of u, respectively.

Let S ⊆ V(G) be a subset of vertices. One can define the closed neighborhood of S, denoted
by N[S] as the set

⋃
u∈S NG[u]. The open neighborhood of S is N[S] \ S, i.e., the set of vertices

which have a neighbor in S but that are not in S.

Graph isomorphism. Let H be a graph. The graphs G and H are isomorphic if there exists a
bijection between the vertex set of G and the one of H that preserves the adjacency relation.
More formally, let f : V(G) 7→ V(H) be a bijective function. Then, G and H are isomorphic if
for any two vertices u, v ∈ V(G), uv ∈ E(G) if and only if f (u) f (v) ∈ E(H). If G and H are
isomorphic, we write G ' H.

G H

Figure 1.1 – Isomorphism between two graphs G and H.

Subgraphs. Let S ⊆ V. The subgraph of G induced by S, denoted by G[S], is the graph with ver-
tex set S and which can be obtained from G by keeping all the edges of G with both endpoints
in S. More formally, V(G[S]) = S and E(G[S]) = {uv ∈ E | u, v ∈ S}. If S = V \ {u} for some
vertex u ∈ V, we sometimes denote by G − u the graph obtained from G by removing u and
all the edges incident to u. In other words, G− u denotes the graph G[V \ {u}].

A graph H is an induced subgraph of G if there exists a subset S ⊆ V such that G[S] is
isomorphic to H. In other words, the graph H can be obtained from G by a vertex-removals
sequence, i.e., we iteratively remove a vertex and all the edges incident to it and repeat this
process in the resulting graph. If H indeed is an induced subgraph of G, we say that G contains
H as an induced subgraph. On the other hand, we say that G if H-free if it does not contain H as
an induced subgraph.

Figure 1.2 – The rightmost graph is an induced subgraph of the leftmost one.

We say that H is a subgraph of G if H can be obtained from G by a sequence of removals
of vertices and/or edges. More formally, H is a subgraph of G if V(H) ⊆ V(G), and E(H) ⊆

Reconfiguration problems in graphs 15



1 – Preliminaries

{uv ∈ E(G) | u, v ∈ V(H)}. It follows that any induced subgraph is a subgraph, but the
converse might not be true.

Figure 1.3 – Sequence of removals of vertices and edges: the rightmost graph is a subgraph of
the leftmost one, but not an induced one.

If S ⊆ E, the subgraph induced by S is the graph obtained from G by removing each edge in
E \ S. More formally, G[S] is the graph with vertex set V(G[S]) = V(G) and edge set E(G[S]) =
S. In that case, we say that G[S] is a partial graph of G.

An edge contraction is an operation that removes an edge uv from G, and merge the two
vertices u and v into a new one zuv. The neighborhood of zuv is the union of the neighborhoods
of u and v. A graph H is a minor of G if it can be obtained from G by a sequence of vertex
and/or edge removals and/or edge contractions.

u

v

zuv zuv

Figure 1.4 – The rightmost graph is a minor of the leftmost one. The third graph in this sequence
is obtained from the second by contracting the edge uv.

Clique and independent set. An independent set (or stable set) of G is a subset of vertices S ⊆ V
such that all the vertices in S are pairwise non-adjacent. In other words, the graph G[S] is K2-
free, i.e., it does not contain any edge. On the other hand, S is a clique if all the vertices in S are
pairwise adjacent. In other words, S is an independent set in the complement graph G, that is
the graph with vertex set V(G) = V(G), and for any two vertices u 6= v, uv ∈ E(G) if and only
if uv 6∈ E(G).

G G

Figure 1.5 – Graph G and its complement G. The graph induced by the green vertices is a clique
of size four in G, and an independent set in G.

16 Paul Ouvrard



1.2. Some graph classes

Path, cycle, connectivity. A path in G between two vertices u0 and uk is a sequence of pairwise
distinct vertices (u0, u1, . . . , uk−1, uk) such that uiui+1 ∈ E(G), for every 0 ≤ i < k. For the sake
of simplicity, we denote by u0u1 . . . uk such a path. Note that if we do not require the vertices in
the sequence (u0, u1, . . . , uk−1, uk) to be pairwise distinct, then the sequence is a walk between
u0 and uk. The vertex u0 (respectively uk) is called the first (respectively last) vertex, and we say
that u0 and uk are the extremities of the path u0u1 . . . uk.

The graph G is connected if there exists a path between any pair of vertices of G. If G is not
connected, a connected component C of G is an inclusion-wise maximal subset of vertices C ⊆ V
such that G[C] is connected.

A cycle is a sequence of pairwise distinct vertices (u0, u1, . . . , uk−1, uk) such that u0u1 . . . uk
is a path, and u0uk ∈ E(G). Since we consider simple graphs, we must have k ≥ 2, that is a
cycle must contain at least three vertices. A cycle on three vertices (and thus with three edges)
is sometimes called a triangle.

u0

u5

u2u1

u3u4

u6

u0

u5

u2u1

u3u4

u6

Figure 1.6 – Connected graph with a path u0u5u6u2u3, and a cycle u1u4u3u2u5u1.

Distance, radius, diameter. The length of a path is its number of edges. A shortest path in G
between two vertices u and v (if it exists) is a path with a minimum length among all the paths
connecting u to v. The distance between u and v is the length of a shortest path between u and
v if it exists, it is infinity otherwise. We denote by distG(u, v) (or dist(u, v) when it is clear from
the context) the distance between u and v in G.

Let u ∈ V be a vertex of G. The eccentricity of u denoted by ε(u) is the greatest distance
between u and any other vertex of G, i.e., ε(u) = maxv∈V distG(u, v). The radius r of G is the
minimum eccentricity of any vertex of G, i.e., r = minu∈V ε(u). Hence, if the radius of G is r,
then there exists a vertex u at distance at most r from all the other vertices of G. Similarly, the
diameter D of G is the maximum eccentricity of any vertex of G, i.e., D = maxu∈V ε(u). Hence,
if the diameter of G is D, then the distance in G between any pair of vertices is at most D.

The radius of the graph in Figure 1.6 is two, as there is no universal vertex. On the other
hand, u0u1u2u3 is a shortest path of length three between u0 and u3. One can observe that the
distance between any pair of vertices is at most three, and so the diameter of the graph in
Figure 1.6 is three.

1.2 Some graph classes

1.2.1 Simple graph classes

Forests and trees. The graph G is a forest if it does not contain a cycle as a subgraph. If, in
addition, G is connected, then G is a tree. Let T = (V, E) be a tree on at least two vertices,
and let u ∈ V. We often refer u as a node. The node u is a leaf if degT(u) = 1, it is an internal
node otherwise. Note that since T is connected and has at least two nodes, T does not contain a
vertex of degree zero.

Reconfiguration problems in graphs 17



1 – Preliminaries

Proposition 1.1 (Folklore). Let T be a tree on n nodes. The following conditions are equivalent:

(i) T is connected and does not contain any cycle;

(ii) T is connected and T has n− 1 edges;

(iii) for any pair of vertices u 6= v, there exists exactly one path between u and v;

(iv) adding one edge creates a cycle, and removing an edge disconnects T.

Let G be a connected graph on n vertices which is not a tree. A spanning tree of G is a con-
nected subgraph T of G such that V(T) = V(G) and |E(T)| = n− 1. Hence, T is a tree.

T F G

Figure 1.7 – A tree T and a forest F with three connected components, each of them being a
tree. The red edges of the graph G induce a spanning tree of G.

Rooted tree, breadth-first search algorithm. Let T be a tree. One can choose a particular node
r of T called the root and obtain a tree rooted in r, denoted by Tr. Then, the edges of Tr can be
oriented in two natural ways: either away from r, or towards r. In the first case, the resulting
tree is called an out-tree; in the latter case it is called an in-tree.

Let G = (V, E) be a graph, and let u ∈ V. A breadth-first search algorithm can be used
to traverse G, starting from u and exploring all vertices of G by increasing distance from u.
In particular, the first nodes that are explored (except u) are the neighbors of u, and then the
neighbors of the neighbors of u (i.e., the nodes at distance two from u), and so on.

Algorithm 1 Breadth-first search algorithm (BFS)

Require: A graph G = (V, E), a vertex u ∈ V.
Ensure: A set of oriented edges S

1: Label all vertices UNDISCOVERED

2: S = ∅
3: Let Q be an empty queue (i.e., a FIFO data structure)
4: Add u to Q
5: Label u with DISCOVERED

6: while Q is not empty do
7: Let v be the top vertex of Q
8: for every vertex x ∈ N(v) do
9: if x is UNDISCOVERED then

10: Add x to Q
11: Label x with DISCOVERED

12: Orient the edge e = vx ∈ E from v to x and add it to S
13: return S

18 Paul Ouvrard



1.2. Some graph classes

Note that if G is connected, all the nodes are explored. Thus, the complexity of this algo-
rithm is O(|V|+ |E|) since each vertex and each edge of G is visited at most once.

Suppose that G is connected. Let u ∈ V, and let S be the set of edges returned by the BFS
algorithm performed from u. The set S is of size |V(G)| − 1, and induces an in-tree Tu rooted in
u. If we omit the orientation of the edges in S, then Tu is a spanning tree of G. Moreover, each
path in Tu from u to a vertex v corresponds to a shortest path of G between u and v, assuming
that G is an unweighted graph.

G

u1

u2 u3 u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

Tu1

u1

u2 u3 u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

Figure 1.8 – The set of edges S obtained by running a BFS from u1 is depicted by the red edges.
The vertices are visited by lexicographic order: if ui and uj are two vertices adjacent to uk with
i < j, the vertex ui is visited before uj. G[S] is a spanning tree of G.

k-regular graphs. Let k be a non-negative integer. The graph G is k-regular if all the vertices
of G have degree exactly k. A well-studied class of k-regular is the class of 3-regular graphs.
Such a graph is also called a cubic graph. A graph with maximum degree three (but that is not
necessarily 3-regular) is called a subcubic graphs.

Suppose that G is connected and has n vertices. If G is a (n − 1)-regular graph, then G is
called the complete graph on n vertices, and it is denoted by Kn. Observe that it corresponds to a
clique on n vertices. If G is a 2-regular graph on n vertices, then G is the cycle on n vertices, and
it is denoted by Cn. Finally, if all the vertices of G but exactly two have degree two, then G is
the path on n vertices, and it is denoted by Pn.

Bipartite and split graphs. A graph G is bipartite if its vertex set can be partitioned into two
disjoint subsets U and V such that G[U] and G[V] are two independent sets. In other words,
all the edges of G are between a vertex in U, and a vertex in V. Since G[U] and G[V] are two
independent sets, G has no cycle of odd length. Actually, the class of bipartite is precisely the
class of {Ck | for any odd k ≥ 3}-free graphs.

The class of bipartite graphs contains all the trees (and forests by extension). Indeed, let T
be a tree and root T on an arbitrary node r. Then, we divide the vertex set of T into two parts:
U is the set of nodes at even distance from r, and V the set of nodes at odd distance. We then
observe that both U and V induce two independent sets.

Let G = (U ∪ V, E) be a bipartite graph, with |U| = n and |V| = m. If U is complete to V
(i.e., if for every vertex u ∈ U and every vertex v ∈ V, uv ∈ E), then G is the complete bipartite
graph and it is denoted by Kn,m.

Reconfiguration problems in graphs 19



1 – Preliminaries

u1 u2 u3 un

v1 v2 v4 v5 vm

Figure 1.9 – Complete bipartite graph Kn,m.

1.2.2 Chordal graphs and related subclasses

In this subsection, we focus on a well-studied graph class, namely the one of chordal graphs.
We will then discuss about some subclasses of chordal graphs that interest us in this thesis.

Let G = (V, E) be a graph. G is a chordal graph if every cycle of G of length at least four has
a chord, i.e., an edge whose endpoints are two non-consecutive vertices of the cycle. In other
words, there is no induced cycle of length at least four. There exist several characterizations of
chordal graphs. One of them is based on the existence of a special ordering of the vertices of G,
namely a perfect elimination ordering. Let v ∈ V be a vertex. We say that v is a simplicial vertex
if the neighbors of v are pairwise adjacent, that is G[N(v)] is a clique, and thus so is G[N[v]]. A
perfect elimination ordering (or peo for short) of G is an ordering v1, v2, . . . , vn on the vertices such
that the vertex vi is a simplicial vertex in the graph G[{vi, vi+1, . . . , vn}], for every 1 ≤ i ≤ n.

Theorem 1.2 ([FG65]). G is chordal if and only if it has a peo.

A chordal graph can be recognized in linear time by using a refinement of the breadth-first
search algorithm, namely the Lexicographic BFS (or LexBFS for short) algorithm [RT75]. This
algorithm can be used to compute a perfect elimination ordering of a chordal graph.

Another characterization of chordal graphs is closely related to the notion of tree decom-
position that we will see in Section 1.4.2. Let G = (V, E) be a chordal graph, and let K be
the set of maximal cliques of G. Given a vertex u ∈ V, we denote by Ku the set of maximal
cliques of G containing u. A clique tree of G is a tree T whose vertex set is K and such that
T[Ku] is a connected subtree of T, for any u ∈ V (see Figure 1.10). Then, we have the following
characterization of chordal graphs due to Gavril:

Theorem 1.3 ([Gav74]). G is a chordal graph if and only if it has a clique tree.

a

b

c e

d

f

g

h

i
a

b

c

b

c e

d
f

d
h

i

e
g

G T

Figure 1.10 – Chordal graph G and a clique tree T of G.

20 Paul Ouvrard



1.2. Some graph classes

Split graphs. A first subclass of chordal graphs that we consider in this thesis is the one of
split graphs. A graph G is a split graph if its vertex set can be partitioned into two disjoint
subsets of vertices K and I such that G[K] is a clique, and G[I] is an independent set. Note that
the partition is not unique: for instance in Figure 1.11, K ∪ {v} and I \ {v} is also a partition of
V(G) into a clique and an independent set.

K I

v

Figure 1.11 – Split graph G.

It is not difficult to see that any split graph is a chordal graph. Indeed, any vertex u ∈ I sat-
isfies N(u) ⊆ K, and thus N(u) induces a clique. Hence, we first remove one by one each vertex
in I in an arbitrary order. Thus, the resulting graph is a clique. Since any induced subgraph of
a clique is also a clique, it is clear that any vertex is simplicial. It follows that this elimination
ordering is a perfect elimination ordering, and thus that G is chordal by Theorem 1.2. Note
moreover that the complement of a split graph is also a split graph. Hence, the complement
of a split graph is also chordal. Actually, Foldes and Hammer proved that these are the only
chordal graphs whose complement is also chordal, i.e., G is a split graph if and only if it is
chordal and its complement G is chordal [FH77]. They also proved that G is a split graph if
and only if G is (C4, C5, 2K2)-free. Note that excluding 2K2 as an induced subgraph is enough
to avoid any induced cycle of length at least six.

Finally, the class of split graphs is of special interest as "almost all chordal graphs are split
graphs". More formally, Bender, Richmond and Wormald proved that the fraction of chordal
graphs on n vertices which are also split graphs tends to one, as n tends to infinity [BRW85].

Interval graphs. We end this subsection with the class of interval graphs. An interval graph is
the intersection graph of a family of intervals on the real line. In other words, let {I1, I2, . . . , In}
be a set of intervals on the real line. Each interval Ii can be represented by its extremities with
`(Ii) ≤ r(Ii) ∈ R. We call these values respectively `-value and r-value (for left and right). The
corresponding interval graph G = (V, E) is the following:

• V = {I1, I2, . . . , In};

• Ii Ij ∈ E⇔ Ii ∩ Ij 6= ∅ i.e., `(Ij) ≤ r(Ii) and `(Ii) ≤ r(Ij).

We now order the vertices of G with respect to their r-value, i.e., vi < vj if and only if
r(Ii) < r(Ij) (or r(Ii) = r(Ij) and `(Ii) < `(Ij)). Then, we get the following useful property:

Observation 1.4. Let vi and vj be two vertices of G such that vi < vj. If vivj ∈ E, then for any vk such
that vi < vk < vj, we have vkvj ∈ E.

Proof. Since vi < vk < vj, we have r(Ii) ≤ r(Ik) ≤ r(Ij). Since vivj is an edge, `(Ij) ≤ r(Ii).
Thus, we get that `(Ij) ≤ r(Ik). Adding that `(Ik) ≤ r(Ik) ≤ r(Ij), the conclusion follows.

Reconfiguration problems in graphs 21



1 – Preliminaries

It immediately follows from Observation 1.4 that any interval graph is chordal. Indeed, let
us consider a cycle C = vivjvk, . . . v`vi of length at least four, such that vi < vj < vk < v`. Since
viv` ∈ E, v` is adjacent to all the vertices of C. Hence, C is not an induced cycle.

Actually, interval graphs are the chordal graphs whose complement graph is a comparabil-
ity graph, that is a graph which is transitively orientable [GH64]. Let G = (V, E) be a graph,
and let uv ∈ E be an edge. We denote by −→uv the orientation of the edge uv from u to v. Thus, G
is a comparability graph if its edges can be oriented in such a way that if we have

−→
ab and

−→
bc ,

then we must have −→ac .

Another characterization of interval graphs is related to the notion of clique tree seen pre-
viously. More precisely, G is an interval graph if and only if its maximal cliques can be linearly
ordered such that, for every vertex u of G, the maximal cliques containing u occur consecu-
tively [GH64]. This characterization can be reformulated as follows: G is an interval graph if
and only if there is a path P whose vertex set corresponds to the maximal cliques of G and such
that the subgraph of P induced by the cliques containing any particular vertex is connected. In
other words, the clique tree of an interval graph is actually a clique path.

This last characterization is of special interest since one can compute an interval represen-
tation of an interval graph from its clique path. Indeed, suppose that a vertex v is contained in
the maximal cliques Ci, Ci+1, . . . , Cj. We define the corresponding interval Iv with r(Iv) = i− ε
and `(Iv) = j + ε, for some ε > 0. By choosing different epsilon values for each interval, we
can moreover assume that all the intervals start and end at distinct points of the line. Habib et
al. [HMPV00] gave a linear-time algorithm for interval graphs recognition. More precisely, they
provided an algorithm that, given a graph G = (V, E), returns a clique path if G is an interval
graph. This algorithms runs in time O(|V|+ |E|).

1 2

3

6

4

5 7

8

9

11

10

12

(a) An interval graph G.

1 2

C1

2
3

4

5

C2

4

5

6

7

8

C3

7

8

9

C4

8

9

11

10

C5

11 12

C6

(b) Clique path of G.

1 2 3 4 5 6

I2 I8

I4 I9

I5 I11

I7

I1 I3 I6 I10 I12

(c) A possible interval representation of G.

Figure 1.12 – Interval graph and an interval representation obtained from the clique path of G.

22 Paul Ouvrard



1.2. Some graph classes

1.2.3 Planar graphs and cographs

We end this section with the definition of two graphs classes that we consider in this thesis in
various chapters, namely the classes of planar graphs and the class of cographs.

Planar graphs. The class of planar graphs is probably one of the most famous, and thus one
of the most studied class in graph theory. A planar drawing of a graph G is a drawing of G in the
plane such that no two edges cross each other. A planar graph is a graph that admits a planar
drawing. Let G = (V, E) be a graph. A subdivision of the edge uv ∈ E is an operation that consists
in removing the edge uv from G, and adding a new degree-two vertex w adjacent to both u and
v. A subdivision of G is a graph G′ that can obtained from G by edge subdivisions. Then, we
have the following characterization of planar graphs due to Kuratowski:

Theorem 1.5 ([Kur30]). A finite graph is planar if and only if it has no subgraph isomorphic to a
subdivision of K5 or K3,3.

Given a planar drawing of a planar graph G, the edges of G partition the plane into several
regions, called faces. The only unbounded face is called the outer face. The size of a face is the
number of edges on its boundary. Assume now that G is connected and let us consider a planar
drawing of G. We denote by f the number of faces of G. There is a relation between the number
of edges, vertices and faces of G, as pointed out by the following formula:

Theorem 1.6 (Euler’s formula). Any planar graph G satisfies the formula |V| − |E|+ f = 2.

Proof. By induction on the number of edges of G. Let n = |V|, m = |E|, and let T be a spanning
tree of G. Observe that T is drawn in a planar way since it has been obtained from G by edge
removals. Then, T has n vertices, n− 1 edges and only one face (the outer face) since it has no
cycle. Hence, n − (n − 1) + 1 = 2. Now, suppose that the statement holds for any connected
partial graph G′ of G on k edges, with n − 1 < k < m. By assumption, G′ satisfies Euler’s
formula. Now, observe that the addition of a single edge creates exactly one new face since it
partitions a face into two new faces. Hence, any partial subgraph of G with k + 1 edges also
satisfies Euler’s formula.

Any face of a planar graph has size at least three, and an edge belongs to at most two faces.
Hence, 2|E| ≥ 3|F|. Euler’s formula implies that |E| ≤ 3|V| − 6. Hence, planar graphs are sparse
graphs in the sense that they have O(|V|) edges. The graph in the Figure 1.13 below satisfies
the formula since it has fifteen vertices, twenty edges and seven faces.

Figure 1.13 – A planar graph with a planar drawing.

Cographs. We end this subsection with the definition of cographs. Let us first define the two
following operations on graphs. Let G and H be two graphs. The disjoint union G∪H of G and H

Reconfiguration problems in graphs 23



1 – Preliminaries

yields a graph with vertex set V(G)∪V(H), and edge set E(G)∪E(H). Informally, the resulting
graph is obtained by making two copies of G and H. The second operation is the join G + H
of G and H. Informally, the resulting graph is obtained by (i) making the disjoint union G ∪ H,
and (ii) adding all the possible edges between V(G) and V(H). More formally, G + H is the
graph with vertex set V(G) ∪V(H) and edge set E(G) ∪ E(H) ∪ {uv | u ∈ V(G), v ∈ V(H)}.

G H G+HG ∪H

Figure 1.14 – Graphs G and H, and their disjoint union G ∪ H and join G + H.

We are now ready to define the family of cographs which corresponds to the family of P4-free
graphs, or equivalently graphs that can be obtained with the following recursive construction:

• K1 is a cograph;

• for G and H any two cographs, the disjoint union G ∪ H is a cograph;

• for G and H any two cographs, the join G + H is a cograph.

x

y

z

u

v

x

y

z

u

v

x

y

z

u

v

Figure 1.15 – Cograph G obtained by the join of two cographs: G[{u, v}] is the join of two K1
and G[{x, y, z}] is obtained by the join of G[{y}] and G[{x, z}].

There exist several characterizations of cographs [CLB81]. Recall that for instance, G is a co-
graph if and only if G is P4-free. Hence, the diameter of any connected component of a cograph
is at most two. Finally, note that cographs can be recognized in linear time, see e.g., [HP05].

1.3 Computational complexity

In this section, we give some definitions on computational complexity. For further information
on this subject, we refer the reader to the following books [Pap94, CFK+15].

1.3.1 Decision problems and Turing machines

David Hilbert and Wilhelm Ackermann asked in 1928 whether there exists a "mechanical pro-
cess" (i.e., an algorithm) that considers, as input, a mathematical statement and answers "yes"
or "no" according to whether the statement is universally valid, i.e., valid in every structure

24 Paul Ouvrard



1.3. Computational complexity

satisfying the axioms. This kind of mathematical problem is called a decision problem. More for-
mally, a decision problem Π is a problem where we are given a set of input values on which
we ask a question whose answer is either yes or no. For instance, the following problem is a
decision problem:

Graph isomorphism

Instance: Two graphs G and H.
Question: Are G and H isomorphic?

Alan Turing introduced in 1936 in his seminal paper "On Computable Numbers, With An
Application To The Entscheidungsproblem" [Tur36] an abstract model (called a Turing ma-
chine) of what such a mechanical process could be, in an attempt to answer the aforementioned
question of Hilbert and Ackermann.

Suppose that we are given a one-way infinite and one-dimensional tape, divided into cells.
Each cell can contain a symbol. It is supplied with a "head" that can be positioned on a cell
in order to scan the symbol written on that cell, or to write a symbol at this position. Then, a
Turing machine is a 6-tuple (Q, q0, F, Γ, Σ, δ) where:

• Q is a finite, non-empty set of states;

• q0 is the initial state;

• F ⊆ Q is a subset of states called final (or accepting) states;

• Γ is a finite, non-empty set of tape alphabet symbols, with � ∈ Γ the blank symbol;

• Σ ⊆ Γ \ {�} is the input alphabet;

• δ : (Q \ F)× Γ 7→ Q× Γ× {←,→,−} is the transition function.

The set of transitions represents the algorithm. Indeed, given the current state and the sym-
bol scanned by the head, the transition function indicates:

• the symbol that has to be written on the tape by the head;

• the new state; and

• the head shift on the tape: "←" (resp. "→") means "move to the left (resp. right) cell", and
"−" means "stay stationary".

Note that if δ is not defined on the current state and the current tape symbol, then the
machine halts. The machine also halts if it reaches a final state. Note also that there exist several
definitions (e.g., with more than one tape, an infinite two-way tape and so on), which are all
equivalent.

A computable function is a function that can be computed by an algorithm that runs in fi-
nite time. Unfortunately, there exist functions which are not computable by Cantor’s diagonal
argument. What makes Turing machines of special interest is the Church-Turing thesis. It as-
serts that if a function is computable, then there exists a Turing machine that can compute this
function as well.

A Turing machine is deterministic if given a non final state q and a symbol a, there is at
most one triple (q′, a′, s) with q′ ∈ Q, a′ ∈ Γ, s ∈ {←,→,−} such that δ(q, a) = (q′, a′, s). In
other words, the next configuration of the Turing machine is completely determined by the

Reconfiguration problems in graphs 25



1 – Preliminaries

current one. In contrast, a nondeterministic Turing machine allows more than one triple, i.e., the
next configuration is not necessarily fully determined by the current one. One might think that
nondeterministic Turing machines are more powerful than the deterministic ones. In fact this
is not true, i.e., each nondeterministic Turing machine can be simulated with a deterministic
Turing machine. However, it is believed that the time complexity might be different.

1.3.2 Some complexity classes and completeness

We herein focus on computational problems, i.e., problems that can be solved by an algorithm
in finite time. The goal of computational complexity is to classify problems according to the
amount of resources needed to solve them. This amount of resources is usually measured with
respect to the input size, and involved time and memory requirements.

Classical complexity classes. We first present the three different complexity classes that in-
terest us in this thesis, namely P, NP and PSPACE.

Definition 1.7 (P, NP, PSPACE). We denote by P the set of decision problems that can solved
by a deterministic Turing machine in polynomial time with respect to the input size.

NP is the set of decision problems that can be solved by a nondeterministic Turing machine in
polynomial time. Alternatively, NP is the set of decision problems that can be verified in polyno-
mial time by a deterministic Turing machine. In other words, one can check in polynomial time
using a deterministic Turing machine that a given solution is a feasible solution.

Finally, we denote by PSPACE the set of decision problems that can be solved by a deterministic
Turing machine using a polynomial amount of space.

Similarly to NP, one can define NPSPACE as the set of decision problems that can be solved
by a nondeterministic Turing machine using a polynomial amount of space. However, Sav-
itch’s theorem states that PSPACE = NPSACE, i.e., these two classes are equivalent [Sav70].
Moreover, these definitions imply the following inclusions:

P ⊆ NP ⊆ PSPACE

The first inclusion is trivial because any deterministic Turing machine is also a nondeter-
ministic Turing machine. For the second inclusion, a nondeterministic Turing machine that
solves a problem in NP can only visit a polynomial space since it runs in polynomial time.
Hence, P ⊆ NPSPACE, and thus P ⊆ PSPACE by Savitch’s theorem. However, the two follow-
ing questions are still open:

Question 1.8. Do we have NP ⊆ P?

Question 1.9. Do we have PSPACE ⊆ NP?

Polynomial-time reductions and completeness. Given a decision problem Π and an instance
I of Π, we say that I is a yes-instance if I has a solution. Let Π1 and Π2 be two decision
problems. A polynomial-time reduction from Π1 to Π2 is a function that transforms in polynomial
time an instance I1 of Π1 to an instance I2 of Π2 such that I1 is a yes-instance if and only if I2
is a yes-instance. In that case, we say that Π1 is (polynomially) reducible to Π2.

Let C be a complexity class, and let Π be a decision problem. If all the problems in C are
reducible to Π, we say that Π is C-hard. Intuitively, this means that Π is at least as hard to solve
as any problem in C. If moreover Π ∈ C, then Π is C-complete.

26 Paul Ouvrard



1.3. Computational complexity

It follows from the definition that if a problem Π1 is polynomially reducible to another
polynomial-time solvable problem Π2, then Π1 in polynomial-time solvable as well. This ob-
servation is highly related to the above open question: is P equal to NP? Indeed, if one can
find a polynomial-time algorithm solving an NP-complete problem Π, then any NP-complete
problem can be solved is polynomial-time as well since it is reducible to Π by definition. On
the other hand, if P 6= NP, then there is no polynomial-time algorithm solving a problem in NP.

Conjunctive normal form and SAT. Let X = {x1, x2, . . . , xn} be a set of boolean variables,
that is variables which can be either True (1, or >) or False (0, or ⊥). A boolean formula is a
logical formula built from variables and logical operators. There exist several logical operators,
but we only present the three we need: the logical "and" called conjunction and denoted by ∧,
the logical "or" (disjunction) ∨, and finally the logical "not" (negation) ¬. Note that ∧ and ∨ are
both binary operators, while ¬ is an unary operator. Let φ be a boolean formula. A literal is
either a variable (xi), called positive literal, or the negation of a variable (¬xi), called negative
literal. A clause is a disjunction of literals, e.g., x1 ∨¬x2 ∨ x3. A formula φ is in conjunctive normal
form (or CNF for short) if it is a conjunction of clauses, i.e., φ can be written C1 ∧ C2 ∧ . . . ∧ Cm,
where every Ci is a clause. Any propositional formula can be transformed into a new formula in
CNF that preserves satisfiability thanks to Tseitin transformation [Tse83]. The size of this new
formula is linear in the size of the original one. However, the two formulas are not necessarily
logically equivalent, as they may not have the same truth tables.

If we want to build an equivalent formula, then it possible thanks to the double negation
elimination, De Morgan’s laws, and the distributive law. However the size of the new
formula might be exponential in the size of the original one. For instance, transforming
the following formula (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ . . . ∨ (xn ∧ yn) into CNF results in a new
formula with 2n clauses.

Let φ be a boolean formula with variable set X. A boolean assignment (or simply assignment)
is a function φ : X 7→ {0, 1}, i.e., a function that sets each variable of φ to 1 (True) or 0 (False).
The formula F is satisfiable if there exists an assignment of its variables such that φ is True. We
are now ready to define the SATISFIABILITY problem (or SAT for short):

SAT

Instance: A formula φ in conjunctive normal form.
Question: Is φ satisfiable?

Actually, the SATISFIABILITY problem can take as input any boolean formula, and not
necessarily a formula in CNF. However, we assume in this thesis that the input formula
is in conjunctive normal form.

Example 1.10. Let x1, x2, x3 and x4 be four boolean variables, and let us consider the following
formula:

φ = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x4) ∧ (¬x2 ∨ x3) ∧ (¬x3 ∨ ¬x4)

The assignment x1 = > , x2 = >, x3 = > and x4 = ⊥ satisfies the formula φ and therefore φ is
satisfiable.

The SAT problem plays a key role in computational complexity due to the following result
proved independently by Stephen Cook in 1971 and Leonid Levin in 1973:

Reconfiguration problems in graphs 27



1 – Preliminaries

Theorem 1.11 ([Coo71, Lev73]). SAT is NP-complete.

Let φ be a formula in conjunctive normal form, and let k ≥ 1 be an integer. If we require
each clause of φ to contain exactly k literals, then we say that φ is in k-conjunctive normal form
(or k-CNF). Similarly, one can define the k-SAT problem as follows:

k-SAT

Instance: A formula φ in k-conjunctive normal form.
Question: Is φ satisfiable?

The 3-SAT problem is one of Karp’s 21 NP-complete problems [Kar72]. Note that by adding
new clauses and literals, one can prove that k-SAT is NP-complete, for every k ≥ 3. On the other
hand, it is known that 1-SAT and 2-SAT are in P, and can even be solved in linear time [APT79],
yielding a complete dichotomy for the complexity of k-SAT.

1.3.3 Parameterized complexity

The parameterized complexity has been introduced by Downey and Fellows in the 1990s (see,
e.g., [DF99]). It is a branch of computational complexity whose goal is to classify the complex-
ity of computational problems according to some parameter (or even parameters). Let us first
define what is a fixed-parameter tractable problem.

Definition 1.12 (Fixed-parameter tractable). A decision problem Π with parameter k is fixed-
parameter tractable (or FPT for short) if it can be solved in time f (k) · nO(1), for some computable
function f and where n is the size of the instance of Π.

Example 1.13. Given a graph G = (V, E), a subset of vertices C ⊆ V is a vertex cover of G if for
any edge uv ∈ E, {u, v} ∩ C 6= ∅. In other words, the graph G[V \ C] is edgeless. We claim that
deciding whether G admits a vertex cover of size at most k can be solved in time O(2k · |G|).
In other words, the problem is FPT with respect to the natural parameter k. Let us denote by
(G, k) the corresponding instance.

The key observation is that in any vertex cover of G, at least one endpoint of each edge must
be in the vertex cover. And they are at most two possibilities to cover the edge. Let uv ∈ E.
Then, we observe that G has a vertex cover of size k if and only if G− u or G− v has a vertex
cover of size k− 1.

u

v

u

v

u

v

G G− u G− v

Figure 1.16 – G has a vertex cover of size four depicted by the red vertices but G − u has no
vertex cover of size three. However, G− v has a vertex cover of size three.

Following this idea, let us try to build a vertex cover C of size at most k as follows. First, we
choose arbitrarily an edge uv ∈ E. Then, we recurse on G− u and G− v by creating two new
instances: (G − u, k− 1) and (G − v, k− 1). There are two base cases: if the resulting graph is

28 Paul Ouvrard



1.3. Computational complexity

edgeless, then (G, k) is a yes-instance. If the graph has at least one edge but k = 0, then (G, k) is a
no-instance. In any other case, we recurse again. Note that this process ends since whenever we
create a new instance, we decrease by one the size of the desired vertex cover and we remove at
least one edge from G. Moreover, each instance creates at most two new instances. Hence, the
number of recursive calls is at most 2k. Finally, it is clear that detecting whether G is edgeless or
not, or removing a vertex from G can be done in time O(|G|). It follows that the time complexity
of this algorithm is O(2k · |G|).

Reduction rules and kernelization. Let Π be a parameterized problem, and let (I , k) be an
instance of Π with parameter k. In order to design an FPT algorithm with respect to k for Π,
one can try to reduce the size of the instance I so that I is "small enough" and can be solved
by a brute-force algorithm for instance. This idea yields the concept of kernelization:

Definition 1.14 (Kernelization). A kernelization is an algorithm A that transforms the instance
(I , k) of Π into a new instance instance (I ′, k′) such that:

(i) A runs in polynomial-time with respect to |I|;

(ii) (I , k) is a yes-instance if and only if (I ′, k′) is a yes-instance;

(iii) |I ′| ≤ f (k) for some computable function f ; and

(iv) k′ ≤ g(k) for some computable function g.

The instance (I ′, k′) obtained from the kernelization of (I , k) is called a kernel. Hence, "small
enough" means that the size of I ′ only depends on k, the original parameter. It is clear from
Definition 1.14 that if (I , k) has a kernel, then I can be solved in time FPT with respect to k.
Moreover, it is known that if I can be solved in FPT time with respect to k, then I has a kernel:

Proposition 1.15 (Folklore). An instance (I , k) of Π has a kernel if and only if Π is FPT in k.

In order to reduce the size of I and obtain a kernel, one needs to use some reductions rules.
Let us illustrate this concept with an example.

Example 1.16. We again consider the VERTEX COVER problem presented in Example 1.13. Let
(G, k) be an instance. Our goal is to determine whether G has a vertex cover of size at most k or
not. Let us consider the two followings rules:

Rule 1: if there is an isolated vertex u, we consider the instance (G− u, k).
Rule 2: if there is a vertex u such that deg(u) > k, we consider the instance (G− u, k− 1).

Note that applying a rule can be done in linear time in |G|. We apply iteratively as many times
as possible the two aforementioned rules on the resulting graph. Let (G′, k′) be the resulting
instance, and note that it can be obtained in polynomial-time since whenever a rule is applied,
exactly one vertex is removed. In order to prove that (G′, k′) is a yes-instance if and only if (G, k)
is a yes-instance, one needs to prove that these two rules are "safe", meaning that applying them
does not change the existence of a solution. Since an isolated vertex cannot cover any edge, Rule
1 is safe. On the other hand, if a vertex u satisfies deg(u) > k, then u must be in any vertex cover
of G of size at most k. Indeed, if u is not in a vertex cover, all of its neighbors must be in the
vertex cover. It follows that Rule 2 is also safe. So any vertex u of G′ satisfies 1 ≤ degG′(u) ≤ k.
If |E(G′)| > k2, then (G′, k′) is a no-instance since any vertex of G′ can cover at most k edges
(because it has degree at most k). Otherwise, we have |V(G′)| ≤ 2k2. Indeed, each edge has two
endpoints, and G′ has no isolated vertex. Hence, (G, k) has a kernel of size O(k2).

Reconfiguration problems in graphs 29



1 – Preliminaries

FPT reductions. There is an analogous notion to the one of polynomial reduction, namely
FPT reduction (or parameterized reduction).

Definition 1.17 (FPT reduction). Let Π1 and Π2 be two parameterized problems, and let
(I1, k1) be an instance of Π1 with parameter k1. An FPT reduction from Π1 to Π2 is a func-
tion f that transforms (I1, k1) into an instance (I2, k2) of Π2 such that:

(i) The running time of f is h(k1) · |I1|O(1), for some computable function h;

(ii) k2 ≤ g(k1) for some computable function g; and

(iii) (I1, k1) is a yes-instance if and only if (I2, k2) is a yes-instance.

Note that since we require the parameter k2 to be bounded by a function of k1, not every
polynomial-time reduction is an FPT reduction. On the other hand, the running time of an FPT
reduction can be more than polynomial, and thus not every FPT reduction is a polynomial-time
reduction. Hence, FPT reductions and polynomial reductions are incomparable. However, they
can be used to transfer fixed-parameter tractability results:

Theorem 1.18 ([CFK+15])). If there exists an FPT reduction from Π1 to Π2, and Π2 is FPT, then
Π1 is FPT as well.

W-hierarchy. Even if there exists an FPT reduction from a parameterized problem Π1 to a
parameterized problem Π2, the converse might not be true. Hence, this suggests that there is
a hierarchy of hard parameterized problems. For this reason, Downey and Fellows introduced
the W-hierarchy in an attempt to capture more precisely the complexity of hard parameterized
problems. In order to define the W-hierarchy, we first need to define boolean circuits. A boolean
circuit is a directed acyclic graph (DAG) with four kinds of nodes:

• the nodes of indegree zero are the input nodes;

• the nodes of indegree one are the negation nodes;

• the nodes of indegree at least two are either and-node or or-node;

• the only node of outdegree zero is the output node.

Hence, any boolean formula φ in CNF on n variables and m clauses can be represented as
a boolean circuit with n input nodes, m or-nodes, and one and-node which is the output node.
Since any boolean formula can be transformed into an equivalent CNF formula, it is enough to
restrict the nodes of a boolean circuit to and-nodes, or-nodes and negation nodes. The depth of
a boolean circuit is the maximum length of a path from an input node to the output node.

x1

¬

x2

¬

x3

¬

x4

¬

∨ ∨ ∨ ∨

∧

Figure 1.17 – Boolean circuit corresponding to the boolean formula φ of Example 1.10.

30 Paul Ouvrard



1.3. Computational complexity

By assigning to each input node a weight in {0, 1}, one can obtain the weight of every node
of the circuit in the natural way. In particular, one can obtain a weight for the output node.
Given an assignment ν of the input nodes, we say that ν satisfies the boolean circuit if the output
node has weight one. It is clear that deciding whether there exists an assignment satisfying a
boolean circuit is NP-complete since any 3-SAT formula can be represented as a boolean circuit
as discussed above. The weight of an assignment is the sum of the weights of the input nodes.
One can now define the following problem:

WEIGHTED CIRCUIT SATISFIABILITY (WCS)

Instance: A boolean circuit C, an integer k ≥ 1.
Question: Is there an assignment of C of weight exactly k satisfying C?

We need a last definition that allows us to distinguish the nodes. Given a boolean circuit, a
small node is a node with indegree at most two, and a large node is a node which is not small.
The weft of a boolean circuit is the maximum number of large nodes in a path from an input
node to the output node. We denote by Ct,d the class of boolean circuits with weft at most t and
depth at most d. We are now ready to define the W-hierarchy:

Definition 1.19. For any t ≥ 1, a parameterized problem Π is in W[t] if there exists an FPT
reduction from Π to WEIGHTED CIRCUIT SATISFIABILITY restricted to Ct,d, for some d ≥ 1.

We have FPT=W[0] and W[i] ⊆ W[j] for any i ≤ j. Similarly as for NP-completeness or
PSPACE-completeness, a problem Π is W[t]-complete (for some t ≥ 1) if the following two
conditions are satisfied:

(i) there exists an FPT reduction from a W[t]-complete problem; and

(ii) Π ∈W[t], i.e., there exists an FPT reduction from Π to WCS restricted to Ct,d, for some d
by Definition 1.19.

Hence, one needs an analogous theorem to Cook-Levin’s theorem. We say that a boolean
formula is t-normalized if it is the conjunction of disjunctions of conjunctions of disjunctions,
. . . , alternating for t levels. For instance, CNF formulas are 2-normalized formulas. Let us
consider the more formal definition proposed in [CFK+15]. Let us first define both ∆0 and Γ0
to be the set of boolean formulas consisting of only a single literal. Then, for t ≥ 1, we define
∆t (respectively Γt) to contain formulas that are the disjunctions of an arbitrary number of Γt−1
(resp. ∆t−1) formulas. Hence, Γt is exactly the set of t-normalized formulas. Then, one can define
the WEIGHTED t-NORMALIZED SATISFIABILITY problem as the weighted satisfiability problem
corresponding to boolean circuits representing t-normalized formulas. We are now ready to
introduce the following theorem:

Theorem 1.20 ([DF99]). For any t ≥ 1, the WEIGHTED t-NORMALIZED SATISFIABILITY prob-
lem is W[t]-complete.

As they mention in [DF99], Downey and Fellows believe that "WEIGHTED t-NORMALIZED

SATISFIABILITY is strictly easier than WEIGHTED (t + 1)-NORMALIZED SATISFIABILITY", mean-
ing that W[i] ( W[j] for every 1 ≤ i < j. Moreover, it is widely believed that FPT 6= W[1]. In
other words, any W[t]-hard problem (for t ≥ 1) is believed not to be FPT. Indeed, if NP = P,
then any problem in NP must be in FPT, hence W[1] = FPT. It follows that W[1] 6= FPT would
imply that P 6= NP, providing a negative answer to Question 1.8. The converse direction (i.e.,

Reconfiguration problems in graphs 31



1 – Preliminaries

does W[1] = FPT imply P = NP?) is not known but Downey and Fellows [DF99] observed that
FPT = W[1] would imply the failure of the Exponential Time Hypothesis (ETH) which states that
SAT cannot be solved in subexponential time, roughly speaking.

1.4 Some graph problems

In this section, we define some graph problems that we mention throughout this thesis. Note
that we mainly speak about the decision problem. Let G = (V, E) be a simple graph, and let k
be a non-negative integer.

1.4.1 Independent set, vertex cover, k-coloring

Independent set. One of the most studied problems in graph theory due to its many connec-
tions with other graph problems is probably the INDEPENDENT SET problem. Recall that an
independent set (or stable set) is a subset I ⊆ V of pairwise non-adjacent vertices. Then, the
INDEPENDENT SET problem is simply defined as follows:

INDEPENDENT SET

Instance: A graph G = (V, E), a non-negative integer k.
Question: Does G have an independent set of size at least k?

This problem is known to be NP-complete in the general case. Indeed, the CLIQUE problem
which asks for a subset of pairwise adjacent vertices of size at least k is one of the Karp’s 21
NP-complete problems [Kar72]. Since a clique of size k in G is an independent set in G, and that
G can be computed from G in polynomial-time, we obtain a polynomial-time reduction from
the CLIQUE problem to the INDEPENDENT SET problem. Hence, this problem is NP-hard. Be-
sides, one can also check in polynomial-time whether a given subset is an independent set, or
not. Hence, the problem is NP-complete. Actually, these two problems are polynomially equiv-
alent, because this reduction also works in the converse direction. Note that this is also an FPT
reduction. Moreover, the INDEPENDENT SET problem is W[1]-complete when parameterized
by k [DF99].

A maximal independent set I ⊆ V is an inclusion-wise maximal independent set, meaning that
the addition of any vertex to I would break the independence property. A maximal indepen-
dent set can be computed in polynomial time by a greedy algorithm. A maximum independent set
I is a maximal independent set of largest size, meaning that G does not have any independent
set of size strictly larger than |I|. The independence number of G, denoted by α(G), is the size
of a maximum independent set of G. The clique number of G, denoted by ω(G), is the size of a
maximum clique of G. Hence, α(G) = ω(G).

Figure 1.18 – A maximal independent set of size three and a maximum independent set of size
four of the same graph.

32 Paul Ouvrard



1.4. Some graph problems

Vertex cover. Recall that a vertex cover is a subset of vertices C ⊆ V such {u, v} ∩ C 6= ∅
holds for every edge uv ∈ E. Let I ⊆ V. Then, we have the following useful observation:

Observation 1.21. I is an independent set of G if and only if V \ I is a vertex cover of G.

Proof. Suppose first that there is an edge uv which is not covered by V \ I. This means that both
u and v are in I, and thus I is not an independent set, a contradiction. Suppose now that V \ I is
a vertex cover of G. Assume by contradiction that I is not an independent set of G. Then, there
exist two adjacent vertices u, v ∈ I. Thus, u, v 6∈ V \ I. It follows that the edge uv ∈ E is not
covered, a contradiction.

The VERTEX COVER problem is defined similarly as the INDEPENDENT SET problem: it takes
as input a graph G and a non-negative integer k, and it asks whether G admits a vertex cover
of size at most k or not. Let (G, k) be an instance of INDEPENDENT SET. By Observation 1.21,
(G, k) is a yes-instance if and only if (G, n − k) is a yes-instance for VERTEX COVER. Hence,
VERTEX COVER is NP-hard. It is not difficult to see that VERTEX COVER is in NP, and thus
is NP-complete. Unfortunately, this reduction is not an FPT reduction because n − k is not
bounded by a function which only depends on k.

C is a minimal vertex cover if and only if the removal of any vertex in C leaves at least one
edge uncovered. A minimum vertex cover is the minimum size of a vertex cover; we denote by
τ(G) the size of a minimum vertex cover of G. As an immediate corollary of Observation 1.21,
we obtain that α(G) + τ(G) = n(G) holds for any graph G.

If we want a subset of vertices covering the other vertices of the graph and not its edges,
then we are interested in a different problem, namely the DOMINATING SET problem.
Given a graph G = (V, E), a dominating set of G is a subset D ⊆ V of vertices such that
N[D] = V. A more complete introduction of this problem is given in Section 2.1.

k-coloring. A k-coloring of G is a function f : V 7→ {1, 2, . . . , k} such that for any two adjacent
vertices u, v of G, we have f (u) 6= f (v). Hence, the set of vertices with color i induces an
independent set of G, for every 1 ≤ i ≤ k. Hence, one can think of a k-coloring as a partition of
V into at most k independent sets, which are called color classes.

Figure 1.19 – A 3-coloring of a graph G. Note that χ(G) = 3 since α(G) = 4 and |V(G)| = 10.

We say that a graph is k-colorable if it admits a k-coloring. Then, the k-COLORING problem
asks whether G is k-colorable or not. This problem is polynomial for k ∈ {1, 2}. Indeed, a graph
is 2-colorable if and only if it is bipartite. Hence, it is sufficient to determine if G has an odd
cycle to determine if it is 2-colorable. However, it is NP-complete for any k ≥ 3 [Kar72]. This
problem is one of the most studied in graph theory, and the Four Colors Theorem is probably
one of the best known results in this field. It states that any planar graph is 4-colorable. It was
proved by Appel and Haken in 1976 [AH77, AHK77] but it was a long outstanding question,

Reconfiguration problems in graphs 33



1 – Preliminaries

initiated by Francis Guthrie in 1852. The smallest integer k such that a graph G is k-colorable
is called the chromatic number of G, and it is denoted by χ(G). A great deal of work has been
done on both structural and algorithmic aspects of the chromatic number of a graph. However,
it is beyond the scope of this thesis. We only mention the following inequality implied by the
fact that a χ(G)-coloring is a partition into χ(G) independent set, each of them being of size
at most α(G): |V(G)| ≤ χ(G) × α(G). In Section 4.2.4, we also consider a generalization of
k-COLORING, namely the LIST COLORING problem.

1.4.2 Treewidth, pathwidth and graph bandwidth

Tree decomposition and treewidth. The tree decomposition is a method of decomposition
into subsets of vertices initially introduced by Bertelè and Brioschi in 1972 [BB72]. It was then
rediscovered by Robertson and Seymour in its current form in 1984 [RS84]. It was used in their
seminal work on the Graph Minor Theory. Let G = (V, E) be a graph. A tree decomposition is an
ordered pair (X, T) where X is a set of subsets of vertices of G called bags and T is a tree whose
vertex set is X, and that satisfies the three following points:

(i) for any vertex v ∈ V(G), v belongs to at least one bag of X;

(ii) for any edge uv ∈ E(G), there exists a bag that contains both u and v; and

(iii) for any vertex v ∈ V, the set of bags containing v forms a subtree of T.

0

1

3

4 8 5

2

6

7

(a) Graph G

0, 1, 2

0, 1, 3 1, 2, 5

3, 4 1, 5, 8 2, 6, 7

(b) Tree decomposition of G

Figure 1.20 – Graph G and a tree decomposition of G of width two.

Let G = (V, E) be a graph, and let (X, T) be a tree decomposition of G. The width of (X, T)
is defined as the maximum size of a bag of X, minus one. For instance, the width of the tree
decomposition in Figure 1.20b is two since the largest bag contains three elements. The treewidth
of G, denoted by tw(G) is the minimum width among all possible tree decompositions of G.
Informally, the treewidth measures how tree-like a graph is. For instance, trees and forests
are the only graphs of treewidth one, and the complete graphs on n vertices has treewidth
n− 1. The tree decomposition in Figure 1.20b is optimal, i.e., the treewidth of the graph G in
Figure 1.20a is two, as it contains triangles and is therefore not a tree.

Given a graph G = (V, E) and an integer k ≥ 1, the TREEWIDTH problem asks whether
tw(G) ≤ k or not. This problem is NP-complete [ACP87]. However, it is FPT with respect to k.
More precisely, Bodlaender [Bod96] showed the following theorem:

Theorem 1.22 ([Bod96]). Let G = (V, E) be a graph on n vertices, and let k ≥ 1 be an integer.
There exists an algorithm that determines whether tw(G) ≤ k and, if so, finds a tree decomposition
of width at most k. This algorithm runs in time O(2O(k3) · n).

34 Paul Ouvrard



1.4. Some graph problems

The complexity of finding a tree decomposition of a given graph on n vertices can be im-
proved if one does not require this tree decomposition to be optimal. For instance, one can
compute a tree decomposition of G of width O(tw(G) ·

√
log tw(G)) in time O(n) [FHL05]. If

we want to find a tree decomposition which is closer to an optimal one, then this is possible
at the expense of a worse time complexity. For instance, one can compute a tree decomposi-
tion of width at most 4.5k in time O(8k · k1.5 · n2) [Ami01], or of width at most 3k + 2 in time
O(81k · k2 · n log n) [Ree92].

The tree decomposition of graphs is of special interest to solve combinatorial optimization
problems on graphs. Indeed, the idea is to use a bottom-up traversal starting from the leaves
of the tree decomposition to iteratively solve the problem on a set of bags, and then try to
extend the partial solution to a superset of bags. Moreover, Courcelle showed the following
metatheorem on graphs of small treewidth:

Theorem 1.23 ([Cou90]). Every graph property definable in the monadic second-order logic of
graphs can be decided in linear time on graphs of bounded treewidth.

The monadic second order logic (MSO) is a fragment of the second-order logic where we are
allowed to quantify over sets of variables. In terms of formal language theory, the Büchi-Elgo-
Trakhtenbrot theorem states that MSO is exactly the class of regular languages, i.e., languages
that can be recognized by a deterministic finite automaton [Bü60, Elg61, Tra61].

Example 1.24. Let G = (V, E) be a graph. The 3-colorability of G can be defined by the follow-
ing MSO formula:

∃X, Y, Z, (∀u ∈ V, (u ∈ X ∨ u ∈ Y ∨ u ∈ Z) ∧ (1.1)

X ∩Y = ∅ ∧ X ∩ Z = ∅ ∧Y ∩ Z = ∅ ∧ (1.2)

∀u, v ∈ V, (((u ∈ X ∧ v ∈ X) ∨ (u ∈ Y ∧ v ∈ Y) ∨ (u ∈ Z ∧ v ∈ Z)) (1.3)

⇒ uv 6∈ E))

Lines 1.1 and 1.2 state that there exist three pairwise disjoint sets X, Y and Z that cover all the
vertices of G. In other words, X, Y, Z is a partition of the vertex set of G. Line 1.3 states that any
pair of vertices that belong to the same set are not adjacent in G, and thus that X, Y, Z induce
three independent sets of G.

By Courcelle’s theorem, 3-colorability is linear-time solvable on bounded treewidth graphs.
However, there is a constant which is a tower of exponentials whose height depends on the
number of alternations of existential and universal quantifiers of the underlying MSO formula.
Unfortunately, the height of this tower of exponentials is in general unbounded, making the
algorithm inapplicable in practice.

Path decomposition and pathwidth. A path decomposition (X, T) of a given graph G is a spe-
cial case of tree decomposition for which the underlying tree T is actually a path. Similarly,
one can define the width of a given path decomposition to be the maximum size of a bag of X
minus one. The pathwidth of G, denoted by pw(G), is the minimum width among all possible
path decompositions of G (see Figure 1.21a).

As for the treewidth problem, it is NP-complete to compute the pathwidth of a given graph
G, even if G is a planar graph of bounded maximum degree [MS88] or is bipartite [KBMK93].
However, the problem is FPT when parameterized by k: there is a linear-time algorithm that
tests whether G has pathwidth at most k and, if so, outputs a path decomposition of G of

Reconfiguration problems in graphs 35



1 – Preliminaries

0

1

3

4 8 5

2

6

7

(a) Graph G

3, 4

0, 1, 3

1, 5, 8

1, 2, 5

2, 6, 7

(b) Path decomposition of G

Figure 1.21 – Path decomposition of the graph G seen in Figure 1.20a of width two.

width at most k [Bod96]. However, the constant factor of this algorithm is very large, "much
too large for practical purposes" as said by the author. If we restrict to interval graphs, then the
problem can be solved in time O(|V|+ |E|). Moreover, the pathwidth corresponds to the size of
a maximum clique of G minus one. Indeed, a clique path of G is a path decomposition of G since
any edge (and isolated vertex) is contained in at least one maximal clique. Since the cliques
containing a vertex u ∈ V occur consecutively in the clique path by definition, it is indeed
a path decomposition of G. Following this observation, there exists an alternative definition
of pathwidth, involving interval graphs. Let G = (V, E) be a graph. An interval completion
of G is an interval graph H = (V, F) with E ⊆ F. In other words, H is an interval graph
obtained from G by iteratively adding edges. The pathwidth of G is defined as min{ω(H)−
1 | H is an interval completion of G}, or equivalently as the minimum pathwidth of an interval
completion of G among all possible interval completions.

Any graph G satisfies tw(G) ≤ pw(G) since any path decomposition also is a tree decompo-
sition. For interval graphs, these two parameters are equal. However, this is not true in general.
For instance, for any forest F on n vertices, we have tw(F) = 1 but pw(F) = O(log n) [KS93],
and this bound is tight. For instance, the complete binary tree of height h has pathwidth d h

2e
(see, e.g., [MW15]).

Graph bandwidth. Let us consider a labeling ` : V 7→ {1, 2, . . . , n} of the vertices of G (with
|V| = n), where no two vertices receive the same label. The graph bandwidth problem aims
to minimize the maximum absolute difference of the labels of two adjacent vertices. More for-
mally, the GRAPH BANDWIDTH problem is defined as follows:

GRAPH BANDWIDTH

Instance: A graph G = (V, E), a non-negative integer k.
Question: Does there exist a labeling ` : V 7→ {1, 2, . . . , n} such that |`(u)− `(v)| ≤ k for

every edge uv ∈ E?

This problem is NP-complete [Pap76] and Bodlaender et al. [BFH94] showed that it is hard
for W[t] for every t ≥ 1, even when restricted to trees. This latter result therefore indicates that
the problem is unlikely to be FPT, unless the W-hierarchy collapses. We denote by bw(G) the
bandwidth of G, that is the smallest integer k such that (G, k) is yes-instance. It is easy to see
that the complete graph on n vertices Kn has bandwidth n− 1, while the path on n vertices Pn
has bandwidth one. More generally, if G has bandwidth k, then any vertex can have at most k
neighbors with a lower label, and at most k neighbors with a larger label. Hence, if bw(G) ≤ k,
then the maximum degree ∆(G) is at most 2k.

36 Paul Ouvrard



1.4. Some graph problems

3

4

2

1 5 6

7

8

9

Figure 1.22 – Labeling of a graph G of bandwidth at most three.

The graph G in Figure 1.22 has bandwidth at most three, as there exists a labeling ` such that
|`(u)− `(v)| ≤ 3, for any pair of adjacent vertices u, v. Moreover, bw(G) > 2 since ∆(G) = 5
(the vertex u such that `(u) = 4 has degree five). Hence, we have bw(G) = 3. Moreover, there
exists a relation between the treewidth, the pathwidth and the bandwidth of G, as pointed out
by the following observation:

Observation 1.25 ([BPTW10]). Let G = (V, E) be a graph. We have tw(G) ≤ pw(G) ≤ bw(G).

Proof. We have already explained the inequality tw(G) ≤ pw(G). It remains to prove that
pw(G) ≤ bw(G). For the sake of simplicity, let us fix k = bw(G), and n = |V|. Let ` : V 7→
{1, 2, . . . , n} be a labeling such that |`(u)− `(v)| ≤ k holds for any pair of adjacent vertices u, v.
We define a path decomposition of G of width at most k as follows:

• the path decomposition has n− k bags, let us say X1, X2, . . . , Xn−k;

• Xi = {u ∈ V | i ≤ `(u) ≤ i + k};

• two bags Xi and Xj are adjacent if and only if |i− j| = 1.

1, 2, 3, 4 2, 3, 4, 5 3, 4, 5, 6 4, 5, 6, 7 5, 6, 7, 8 6, 7, 8, 9

Figure 1.23 – This decomposition applied to the labeling of the graph of Figure 1.22.

It is clear that we have |Xi| ≤ k + 1, for every 1 ≤ i ≤ n− k. Hence, the width of this de-
composition is at most k. And it is clear that this path decomposition induces a path. Moreover,
we have the following properties:

• each vertex is contained in at least one bag. Indeed, let us consider the vertex u of label
i, i.e., the vertex such that `(u) = i. If i ∈ [1, n − k], u belongs to the bags Xj, for every
max{1, i− k} ≤ j ≤ i. If i ∈ [n− k + 1, n], u belongs to the bags Xj for every i− k ≤ j ≤
n − k. Hence, one can observe that the bags containing u occur consecutively, and thus
induce a connected subgraph.

• for every edge uv ∈ E, there exists a bag which contains both u and v. Let us assume
without loss of generality that `(u) < `(v), and recall that `(v)− `(u) ≤ k. If `(u) ≤ n− k,
the bag X`(u) contains both u and v by definition. Otherwise, u and v both belong to Xn−k
since Xn−k contains all the vertices labeled n− k, n− k + 1, . . . , n.

If follows that this decomposition indeed is a path decomposition of G of width k. Hence,
pw(G) ≤ bw(G), and the conclusion follows.

Reconfiguration problems in graphs 37



1 – Preliminaries

1.5 Combinatorial reconfiguration

This section is a general introduction on combinatorial reconfiguration. For a more complete
overview of recent results on reconfiguration problems, the reader is referred to the surveys by
Jan van den Heuvel [vdH13] and Naomi Nishimura [Nis18].

1.5.1 Illustration of the problem

Let us first illustrate what is a reconfiguration problem with the simple following example,
taken from [HHS98]. Suppose that we have a group of people representing a community. These
people wish to elect a committee of representatives as small as possible to lead their community.
However, there are differences of opinion within the community on many points. Therefore,
and in the interest of representativeness, it is important that each person from the community
who has not been chosen to be part of the committee has (at least) one representative whose
ideas are close to her or his own. How many people should be elected? And who? This question
can be solved by modeling the situation as a graph theory problem: each person is a vertex, and
two vertices are adjacent if the two corresponding persons share the same ideas. So asking the
minimum number of people that we need in the committee is the same as the minimum size of
a dominating set of the corresponding graph.

Emma

Tom

Lucas Marie

Théo
Éric

Léa

Jean

Léon

Laura

Figure 1.24 – Modeling of this problem: the dominating set is depicted by the red vertices.

In addition, it is important to regularly renew the members of the committee in order to
advocate new ideas. However, we do not want to replace more than one member at a time
so that change is not too much abrupt. Moreover, whenever a member of the committee is
replaced by another, it is essential that the new committee also satisfies the requirement that
all the people in the community are represented by someone. Thus, a legitimate question is to
ask whether it is possible to renew all or part of a Committee A into a Committee B. If so, how
should we process?

Emma

Tom

Lucas Marie

ThéoÉric

Léa

Jean

Léon

Laura

Emma

Tom

Lucas Marie

ThéoÉric

Léa

Jean

Léon

Laura

Emma

Tom

Lucas Marie

ThéoÉric

Léa

Jean

Léon

Laura

Emma

Tom

Lucas Marie

ThéoÉric

Léa

Jean

Léon

Laura

Figure 1.25 – Modification of the committee {Jean, Léa, Théo, Tom} into the committee {Emma,
Léon, Jean, Laura}, where each intermediate committee is a valid one.

38 Paul Ouvrard



1.5. Combinatorial reconfiguration

More generally, given an instance I of a combinatorial problem Π, is it possible to trans-
form two feasible solutions of I , let us say S1 and S2, while satisfying the desired property (e.g.,
being a dominating set of the graph) at any time during the transformation? We emphasize that
S1 and S2 are not necessarily part of the instance I . This is typically the kind of questions that
are studied in the reconfiguration framework. Obviously, one needs a rule which allows us to
transform a solution into another one. For instance, in the previous example, one can replace
one member of the committee by another people. This corresponds to removing a vertex from
the dominating set and adding another one in a single step. Before moving on to the formaliza-
tion of the reconfiguration framework, let us consider another (slightly different) example of a
reconfiguration problem.

Rush Hour™ is a one-player game that is played on a n× n grid. Some cars are placed on
the cells of the grid, and they occupy two or three cells, depending on their size. We distinguish
one special car (the target car) and a single exit is located on the perimeter of the grid, at a fixed
position. The goal of this game is to get the target car out through the exit. For that purpose,
one can move cars either horizontally or vertically, depending on their orientation in the initial
configuration of the grid. However, this initial configuration often contains traffic jams, making
it impossible to solve the problem in a single move of the target car. Hence, the player has to
find a sequence of moves of the cars that makes all the cells located between the target car and
the exit free.

Figure 1.26 – Rush Hour configuration: the target car is the police car. © Newgrounds Inc.

Figure 1.26 gives an example of a Rush Hour configuration on a 6× 6 grid. Surprisingly, this
game is more complex than it seems: it might take forty moves to exit the police car. Actually,
Flake and Baum [FB02] showed that a generalization of this game where the grid has arbitrary
height and width and where the exit can be located at any position on the perimeter of the grid
is a PSPACE-complete problem.

1.5.2 Formalization

Reconfiguration problems model dynamic situations where we are given an instance I of a com-
binatorial search problem Π and we seek to find a step-by-step transformation between two
feasible solutions of I such that each intermediate solution satisfies the two following proper-
ties (i) it is also a feasible solution of I ; and (ii) it is obtained from the previous one by applying
a specified (and unique) rule, called reconfiguration rule. The original problem Π is called the host
problem. The reconfiguration rule that allows us to modify a solution depends on the problem;
we will discuss it in more detail in Section 1.5.5. Such transformation between two solutions Ss
and St of I is called a reconfiguration sequence, and is denoted by 〈S0 = Ss, S1, S2, . . . , S` = St〉.
Ss is called the source solution, and St the target solution. Unfortunately, a reconfiguration se-
quence does not always exist and some solutions may even be frozen, meaning that they cannot
be modified at all.

Reconfiguration problems in graphs 39

https://www.newgrounds.com/portal/view/673693


1 – Preliminaries

Reconfiguration problems can be expressed in terms of properties of the reconfiguration
graph which is defined as follows:

Definition 1.26 (Reconfiguration graph). The reconfiguration graph associated with the in-
stance I of Π is the graphR(I) defined as follows:

• the vertices ofR(I) are the feasible solutions of I ; and

• two vertices u, v of R(I) are adjacent if and only if one can transform the solution associ-
ated with vertex u into the solution associated with v by applying the specified reconfigu-
ration rule.

The reconfiguration framework can be applied to many combinatorial problems by defin-
ing an adjacency relation between two feasible solutions. Interest in the reconfiguration of
graphs problems steadily increased during the last decade. Many works in this context deal
with structural properties of the reconfiguration graph. One of the most studied questions is to
find conditions that guarantee the reconfiguration graph to be connected. Conversely, finding
necessary conditions for the connectivity of the reconfiguration graph has also been studied
extensively. This can be done for instance by exhibiting infinite families of graphs for which
some conditions must hold in order to guarantee this connectivity. One another well-studied
property concerns the diameter of the reconfiguration graph, or of its connected components
if it is not connected. In Chapter 3, we focus on the reconfiguration of dominating sets and in
Section 3.1, we study the diameter of the reconfiguration graphRk(G) for some specific values
of k.

On the other hand, Ito et al. [IDH+08] initiated a systematic study of the computational
complexity of reconfiguration problems. The three main problems that are mainly studied are
the following:

• Π-REACHABILITY: given an instance I of Π and two solutions Ss and St of I , does there
exist a path inR(I) between Ss and St?

• Π-CONNECTIVITY: given an instance I of Π, is the reconfiguration graph R(I) con-
nected?

• Π-SHORTEST PATH: given an instance I of Π, two solutions Ss and St of I and an integer
` ≥ 1, does there exist a path inR(I) between Ss and St of length at most `?

1.5.3 Complexity of reconfiguration problems

It turns out that many reconfiguration problems are in PSPACE, and are actually PSPACE-
complete. Indeed, Ito et al. [IDH+08] observed that if a problem Π is in NP, then its reconfigu-
ration version is in NPSPACE. Let I be an instance of Π. Since Π is in NP, we can enumerate all
possible solutions of I with a polynomial amount of space. One can then check whether each
solution indeed is a feasible solution of I or not. We then non deterministically traverse the so-
lutions that are adjacent with the current solution (the adjacency can be checked in polynomial
time by assumption). This nondeterministc algorithm can be converted into a deterministic one
since NPSPACE = PSPACE by Savitch’s theorem [Sav70].

One possible analogous of SAT to prove the PSPACE-hardness of (graph) reconfiguration
problems is the Nondeterministic Constraint Logic (or NCL for short), introduced by Hearn and
Demaine [HD05]. Indeed, a lot of PSPACE-hardness proofs in combinatorial reconfiguration
are based on a polynomial-time reduction from NCL. In this problem, we are given a 3-regular

40 Paul Ouvrard



1.5. Combinatorial reconfiguration

graph G = (V, E), where a weight in {1, 2} is assigned to each edge of G. One may represent
the weights by colors: the edge e ∈ E is colored red (respectively blue) if the weight of e is 1
(resp. 2). Moreover, each vertex is incident to an even number of red edges. This graph is called
a constraint graph. Since G is 3-regular, one can distinguish two different types of vertices:

• the ones which are not incident to a red edge: they are called OR vertices; and

• the ones which are incident to exactly two red edges: they are called AND vertices.

OR

(a) An OR vertex

AND

(b) An AND vertex

Figure 1.27 – The two types of vertices in an instance of NCL.

In NCL, a feasible solution is an orientation of the edges in such a way that for each node,
the sum of the weights of its incoming edges is at least two. In particular, each OR vertex must
have at least one incoming edge (and actually one is enough since it is only incident to edges
of weight two) so it behaves like an OR gate in boolean logic. On the other hand, in an AND

vertex, the only edge of weight two may be directed outwards only if the two edges of weight
one are directed inwards so it behaves like an AND gate in a sense.

Figure 1.28 – A possible instance for the NCL problem and a feasible solution for this instance.

In the NCL-REACHABILITY, we are given two different orientations α and β of the edges
of a constraint graph and we want to find a step-by-step transformation from α to β such that
all intermediate solutions are also feasible. In this case, the reconfiguration rule that allows
us to modify a solution into another is to reverse the orientation of a single edge. Hearn and
Demaine [HD05] showed that this problem is PSPACE-complete, even if the input constraint
graph is planar. They reduced from QUANTIFIED BOOLEAN FORMULA, the problem where
each variable of the propositional formula is quantified with either an existential or a universal
quantifier, which is PSPACE-complete [GJ79]. This result was later improved by van der Zan-
den [vdZ15] who showed that it remains PSPACE-complete even if the constraint graph is a
3-regular planar graph with bounded bandwidth.

As we said, if the host problem is NP-complete, then the reconfiguration version is often
PSPACE-complete. However, this is not always the case. For instance, the 3-coloring prob-
lem which asks whether a given graph G can be properly colored with at most three colors
is NP-complete. However, finding a reconfiguration sequence between two given 3-colorings
of G is polynomial-time solvable [CVDHJ11]. However, the reachability variant of k-recoloring

Reconfiguration problems in graphs 41



1 – Preliminaries

becomes PSPACE-complete whenever k is at least four [BC09]. On the other hand, a lot of
reconfiguration problems whose host problem is in P are also in P. This includes MAXIMUM

MATCHING or MINIMUM SPANNING TREE for instance [IDH+08]. In contrast, it is well-known
that finding a shortest path between two given vertices s and t is polynomial-time solvable. For
instance, if the input graph G = (V, E) is undirected and the weights (on the edges) are positive
real numbers, then it is solvable in time O(|E|+ |V| · log |V|) [FT87], or even in time O(|E|) if
the weights are positive integers and if we assume that multiplications can be done in constant
time [Tho99]. However, the reconfiguration of (s, t)-shortest paths is PSPACE-complete in the
general case, while it is in P if the input graph is K1,3-free or C4-free [Bon12]. This problem is
not the first one to be PSPACE-complete even if the host problem is in P. Indeed, Bonsma et
al. [BC09] showed in 2009 that k-recoloring is PSPACE-complete if k = 4 and the graph is a
bipartite planar graph which is therefore 2-colorable.

1.5.4 Example of reconfiguration problems

In this section, we give a brief outline of problems that are studied in combinatorial recon-
figuration. For a more complete overview, we refer the reader to the surveys of Jan van den
Heuvel [vdH13] and Naomi Nishimura [Nis18], or to Amer Mouawad’s PhD thesis [Mou15].
The reconfiguration framework can be applied to a lot of combinatorial problems, and not only
to graph problems. For instance, we have already seen that the one-player game Rush Hour can
be seen as a reconfiguration problem.

Distance between triangulations. Some problems that arise from discrete geometry for in-
stance can be expressed as reconfiguration problems. Given a set P of n points in the Euclidean
plane, a triangulation of P is a maximal straight-line planar graph whose vertex set is P . Given
a triangulation of P , a flip is an operation that replaces the diagonal of a convex quadrilateral
by the other diagonal (the quadrilateral must be convex otherwise the flip is not allowed).

e f

Figure 1.29 – Example of flip: the diagonal e is replaced by the other diagonal f .

Given a set P of n points of the Euclidean plane, one can define the flip graphR(P) where
(i) each triangulation of P is a vertex; and (ii) there is an edge between two vertices (i.e., trian-
gulations) if one can be obtained from the other by a flip. Aichholzer et al. [AHN04] showed
that the lower bound on the number of vertices of R(P) is Ω(2.33n) and Lawson [Law72]
showed that it is connected and has diameter O(n2). Hurtado et al. [HNU99] showed that this
bound is tight. Given two triangulations Ts and Tt of the same set P of n points, we know that
there always exists a flip sequence between Ts and Tt of length at most O(n2). The problem
of determining the shortest reconfiguration sequence between two triangulations if called FLIP

DISTANCE. Lubiw and Pathak [LP15] showed that finding a shortest sequence between two
triangulations of a set of points in the Euclidean plane is NP-complete, and Pilz proved that it
is APX-hard [Pil14]. However, it is known that it is fixed-parameter tractable with respect to
the length of the solution [LFMW17]. More precisely, they provided an algorithm that deter-
mines whether the length of a reconfiguration sequence between two triangulations is at most
k or not in time O∗(k · 32k); the O∗ notation means that we omit the polynomial factor on n,
the number of points. Aichholzer et al. [AMP15] showed that FLIP DISTANCE is NP-complete

42 Paul Ouvrard



1.5. Combinatorial reconfiguration

on triangulations of simple polygons. However, the complexity on triangulations of convex
polygons is still open. Sleator et al. [STT86] showed that the shortest sequence between two tri-
angulations of a convex polygon is at most 2n− 10 for n > 12, and that it is precisely 2n− 10 for
all sufficiently large values of n. Sleator et al. [STT86] observed that there is a bijection between
triangulations of convex polygons and binary trees, a data structure widely used in computer
science. A rotation in a binary tree is an operation that changes the structure without changing
the order of the elements. It is used for instance to balance the height of binary search trees and
thus to speed-up queries on these data structures (see, e.g., [GMAV62]). More precisely, there
is a one-to-one correspondence between a triangulation of an n-sided convex polygon and a
binary tree on n− 2 nodes. And a flip between two triangulations is equivalent to a rotation in
the two corresponding binary trees. Hence, the problem FLIP DISTANCE on convex polygons
is equivalent to the rotation distance between two binary trees.

Satisfiability reconfiguration. Recall that a boolean formula φ is in CNF if it is a conjunction
of disjunctions. The formula φ is satisfiable if there is an assignment ν of the variables of φ
such that φ is true. However, this assignment may not be unique. Let us consider again the
Example 1.10, with φ = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x4) ∧ (¬x2 ∨ x3) ∨ (¬x3 ∨ ¬x4). We
have already seen that the assignment ν(x1) = >, ν(x2) = >, ν(x3) = >, ν(x4) = ⊥ satisfies φ.
However, ν(x1) = ⊥, ν(x2) = ⊥, ν(x3) = ⊥, ν(x4) = ⊥ also satisfies φ. One can compute all the
assignments satisfying φ by computing its truth table. If φ has n variables x1, x2, . . . , xn and m
clauses C1, C2, . . . , Cm, then the number of assignments is bounded above by 2n. Moreover, one
can check in time O(m) whether a given assignment satisfies φ or not. So one can compute in
time O(2n ·m) the set of feasible solutions of φ. Let νs and νt be two assignments that both satisfy
φ. We want to determine whether νs can be transformed into νt. Then, a natural operation that
allows us to modify an assignment is to change the value of a single variable at a time.

One may represent an assignment ν by a binary word wν of length n where the i-th bit of
wν is 1 if and only if ν(xi) = >. For instance, ν(x1) = >, ν(x2) = >, ν(x3) = >, ν(x4) = ⊥
is equivalent to the binary word 1110. So an assignment ν can be transformed in one step into
another assignment ν′ thanks to the aforementioned operation if and only if wν and wν′ differ by
exactly one bit, i.e., the Hamming distance of wν and wν′ is equal to one. Let φ be a CNF formula
on n variables. The reconfiguration graphR(φ) is the graph with vertex set {wν | ν satisfies φ},
and two vertices wν, wν′ are adjacent if and only they differ by exactly one bit. See Figure 1.30
for an example of the reconfiguration graph associated with the CNF formula of Example 1.10.
Note that this reconfiguration graph is not connected.

1110 0010 0000 0001 1001

Figure 1.30 –R(φ) of φ = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x4) ∧ (¬x2 ∨ x3) ∧ (¬x3 ∨ ¬x4).

In SATISFIABILITY RECONFIGURATION, we are given a CNF formula φ and two assignments
νs and νt satisfying φ, and we want to determine if there exists a path in R(φ) between νs and
νt. If φ is a 2-CNF formula (i.e., if each clause of φ contains at most two literals), then Gopalan
et al. [GKMP09] showed that SATISFIABILITY RECONFIGURATION is polynomial-time solvable.
This result is not surprising as discussed in Subsection 1.5.3 since it is well-known that the
original problem 2-SAT is also in P [APT79]. Actually, Thomas Schaefer proved in 1978 a di-
chotomy theorem regarding the complexity of the SATISFIABILITY problem [Sch78]. More pre-
cisely, he even proved a more general result since he fully characterized the complexity of what
he called GENERALIZED SATISFIABILITY. In this problem, we are given a finite set S of relations
over propositional variables. An instance of this problem is an S-formula, i.e., a conjunction
of clauses of the form R(xi1 , . . . , xik) with R ∈ S and all the xij ’s are propositional variables.

Reconfiguration problems in graphs 43



1 – Preliminaries

Schaefer showed that GENERALIZED SATISFIABILITY is in P only for formulas built from some
identified Boolean relations (called Schaefer relations), and is NP-complete otherwise. This result
was extended to the reconfiguration framework by Gopalan et al. [GKMP09], later corrected by
the work of Schwerdtfeger [Sch14]. More precisely, they proved that SATISFIABILITY RECON-
FIGURATION is in P for formulas built from tight relations (a superset of Schaefer relations), and
is PSPACE-complete otherwise. Moreover, Gopalan et al. [GKMP09] proved a dichotomy result
regarding the diameter of the connected components of the reconfiguration graphR(φ): it can
be exponential if the problem is PSPACE-complete, while it is linear otherwise.

Mouawad et al. [MNPR15] studied the shortest variant of SATISFIABILITY RECONFIGURA-
TION. More precisely, they proved a trichotomy theorem based on tight relations and a subset of
tight relations called navigable relations. Their result is that finding a shortest sequence between
two assignments νs and νt is in P if the formula is built from navigable relations, NP-complete
if it is built from tight relations which are not navigable, and PSPACE-complete otherwise.
Their result is of special interest since the shortest reconfiguration sequence (that can be found
in polynomial time) may be greater than the size of the symmetric difference of the values of
the variables in νs and νt. Indeed, it is the first result where a polynomial-time algorithm com-
puting the shortest sequence does not decrease the size of the symmetric difference along the
transformation.

Reconfiguration of edge-subsets problems. In a lot of graph problems, a solution is a sub-
set of edges. For instance, one can cite the following problems: SHORTEST PATH, MINIMUM

SPANNING TREE, MAXIMUM MATCHING and so on. The first ones that were studied under
the reconfiguration framework in the seminal paper by Ito et.al [IDH+08] are the MINIMUM

SPANNING TREE and MAXIMUM MATCHING problems. The reachability variant of these two
problems is in P, which is not surprising since the host problems also are in P. In the MINIMUM

SPANNING TREE RECONFIGURATION problem, we are given an edge-weighted graph G, an
integer k and two spanning trees Ts and Tt of G both of weight at most k and we seek to trans-
form Ts into Tt via edge flips without ever getting into a tree with weight greater than k. Note
that this positive result follows from a more general result on matroids regarding the exchange
property. In Section 4.1, we focus on the reconfiguration of spanning trees with constraints on
the number of leaves of each spanning tree.

For the MAXIMUM MATCHING RECONFIGURATION problem, the rule considered by Ito et
al. in [IDH+08] is not the same since they can only either add or remove a single edge at each
step. The problem is defined as follows: we are given an edge-weighted graph G, a positive
integer k and two matchings Ms and Mt (both of weight at least k) and we seek to transform Ts
into Tt via the addition or deletion of a single edge at each step, and without ever getting into
a matching with weight less than k. The proof consists in showing that the greedy algorithm
indeed solves the problem. Moreover, for positive instances, it provides a bound in O(n2) on
the length of the reconfiguration sequence.

Figure 1.31 – Reconfiguration sequence of perfect matchings via edge flips.

Gupta et al. [GKM19] studied the shortest variant of maximum matchings reconfiguration,
where two matchings are adjacent if and only they differ by exactly two edges. More precisely,

44 Paul Ouvrard



1.5. Combinatorial reconfiguration

they showed that determining if the length of the shortest reconfiguration sequence between
two maximum matchings Ms and Mt is at most a given integer ` is NP-hard, even if the input
graph is an unweighted bipartite graph of maximum degree four. This NP-hardness result was
independently found by Bousquet et al. in [BHIM19], where they also proved that the problem
is fixed-parameter tractable on bipartite graphs when parameterized by |Ms4Mt|. If the two
matchings are maximum, then they showed that there is a |Ms4Mt|ε-factor approximation
algorithm for every ε > 0. On the positive side, they proved that the problem becomes tractable
if at least one of the two input matchings is not inclusion-wise maximal.

Bonamy et al. [BBH+19] studied the reconfiguration of perfect matchings. Obviously, since
a perfect matching touches all the vertices, it is not possible to add or remove an edge without
breaking the property. Hence, a natural rule is to exchange the edges around an alternating C4.

Figure 1.32 – Example of flip: the green edges are edges of a perfect matching M and the red
ones are edges of another perfect matching M′.

They investigated the complexity of the reachability of PERFECT MATCHING RECONFIGU-
RATION and showed that this problem is PSPACE-complete, even if the input graph is a split
graph or is bipartite with bounded bandwidth and maximum degree five. On the other hand,
they proved that it is polynomial-time solvable on strongly orderable graphs, cographs or out-
erplanar graphs. Moreover, a reconfiguration sequence (if it exists) of linear size can be com-
puted in polynomial time for each of these three graph classes. Ito et al. [IKK+19] investigated
the complexity of the shortest variant where they are allowed to exchange the edges of any al-
ternating cycle at each step. They showed that this problem is NP-hard even if the input graph
is bipartite or planar, while it is in P on cographs. They also observed that it is equivalent to the
combinatorial shortest path problem in perfect matching polytopes.

Mizuta et al. [MIZ16] studied the reconfiguration of minimum Steiner trees, a generaliza-
tion of the MINIMUM SPANNING TREE problem. In the MINIMUM STEINER TREE problem, we
are given a (weighted) graph G = (V, E), and a subset of vertices S ⊆ V called terminals and
the goal is to find a subset of edges of minimum weight that induces a tree and that covers all
the terminals. Hence, if S = V, then it corresponds to the MINIMUM SPANNING TREE problem.
In this paper, they showed that the reconfiguration of minimum Steiner trees via edge flips is
PSPACE-complete, even if the input graph is a split graph, and all the edges have weight one.
On the positive side, they proved that the problem is linear-time solvable if the input graph is
an interval graph. Mizuta et al. [MHIZ19] later studied the same problem under two different
reconfiguration rules, where it is allowed to exchange vertices that are used in the Steiner trees
to connect the terminals. Note that if the set of terminals is just a pair (s, t) of vertices, then
the problem corresponds to (s, t)-shortest paths reconfiguration, which is PSPACE-complete as
discussed above. They showed that the complexity may change depending on the reconfigu-
ration rule. For instance, in one case, the problem is PSPACE-complete on split graphs (and
thus on chordal graphs) while it is polynomial-time solvable on chordal graphs in the other
case [MHIZ19].

Reconfiguration problems in graphs 45



1 – Preliminaries

Independent set and vertex cover reconfiguration. The reconfiguration of independent sets
is probably the first graph problem that was considered under the reconfiguration framework
by Hearn and Demaine [HD05]. It was proposed as a natural extension of token-sliding puz-
zles, for which Rush Hour (see Subsection 1.5.1) is a particular case and where the goal is to
move (not necessarily horizontally or vertically) pieces (whose shape can be integral rectan-
gle, L shape, etc.) so that a particular piece can reach a given target position. Hearn and De-
maine [HD05] proved that if the pieces form an independent set, and a move can only be done
to an adjacent position, then the problem is PSPACE-complete. As a corollary, their result im-
plies that the reconfiguration of independent sets where one can exchange a single vertex with
one of its neighbors at each step is PSPACE-complete. A few years later, Ito et al. [IDH+08]
studied the reachability of independent sets via vertex addition or removal and showed that
this problem is also PSPACE-complete if we require that each intermediate independent set
must contain a certain number of vertices. Extensive work has since been done on this topic,
and a large part of this research has focused on the complexity (in comparison with the com-
plexity of the host problem) of this problem from a graph classes perspective, or depending on
the operation that allows us to modify a solution. As discussed in Subsection 1.5.3, it is common
that when the host problem is in P, so is the reconfiguration variant. And the INDEPENDENT

SET RECONFIGURATION is no exception to this pattern. For instance, the INDEPENDENT SET

PROBLEM is polynomial-time solvable on cographs [MS99], K1,3-free graphs [Sbi80], or interval
graphs [Gav74, RT75]. For both of these two operations (i) add or remove a single vertex; and
(ii) exchange a vertex with one of its neighbors, INDEPENDENT SET RECONFIGURATION has
been proven to be in P as well for each of these three classes (see Figure 1.33 for an illustration
with the latter rule).

Figure 1.33 – Reconfiguration sequence of independent sets with rule (ii).

For the operation (ii), see [KMM12] for cographs, [BB17] for chordal graphs, and [BKW14]
for K1,3-free graphs. For the operation (i), see [BB14, Bon16] for cographs, [KMM12, MNR14,
INZ15] for chordal graphs (actually they show the result on even-hole free graphs, a superclass
of chordal graphs), and [BKW14] for K1,3-free graphs. However, there are exceptions to this pat-
tern. For instance, it is known that the INDEPENDENT SET problem is polynomial-time solvable
on bounded treewidth graphs [AP89] but its reconfiguration version is PSPACE-complete for
both operations (i) and (ii) [Wro18].

The result of Wrochna is more general since it is shown that INDEPENDENT SET RECON-
FIGURATION is PSPACE-complete on bounded bandwidth graphs, a proper subclass of
bounded treewidth graphs (see Observation 1.25).

Another very interesting result is the one by Lokshtanov and Mouawad [LM18] where it
is showed that the complexity of INDEPENDENT SET RECONFIGURATION is not the same for
operations (i) and (ii). More precisely, they proved that the problem is NP-complete if we con-
sider operation (i), but PSPACE-complete for operation (ii). Recall that the host problem is in P
for bipartite graphs. Moreover, we have seen that INDEPENDENT SET RECONFIGURATION is in

46 Paul Ouvrard



1.5. Combinatorial reconfiguration

P for even-hole free graphs with rule (i) [KMM12, MNR14, INZ15]. However, the complexity
remains open for both the host problem and rule (ii) on this graph class.

The INDEPENDENT SET problem is closely related to the MAXIMUM MATCHING problem.
Indeed, a maximum independent set I in the line graph L(G) of a graph G corresponds to a
maximum matching in G. Recall that the line graph L(G) can be obtained from G by creating a
vertex for each edge of G, and two vertices of L(G) are adjacent if the two corresponding edges
of G are adjacent. Moreover, given a line graph G, one can construct in linear time a graph H
such that G is the line graph of H [Rou73]. It follows that the INDEPENDENT SET RECONFIG-
URATION problem in H is equivalent to the MAXIMUM MATCHING RECONFIGURATION in G
(see Figure 1.34).

a

b

c

d

e f

gh

i j

k

a

b

c

d i j

k

H G

e f

h g

Figure 1.34 – Maximum matching in H and the corresponding maximum independent set in
its line graph G.

Another problem which is closely related to INDEPENDENT SET is the VERTEX COVER prob-
lem. Indeed, recall that given a graph G = (V, E), a subset of vertices I ⊆ V is an independent
set of G if and only if V \ I is a vertex cover of G (see Observation 1.21).

Figure 1.35 – A maximum independent set whose complement is a minimum vertex cover.

Therefore, INDEPENDENT SET RECONFIGURATION and VERTEX COVER RECONFIGURATION

are equivalent with respect to classical complexity. Indeed, suppose that there is reconfigu-
ration sequence 〈I0 = Is, I1, I2, . . . , I` = It〉 between two independent sets Is and It. Then,
〈V \ I0 = V \ Is, V \ I1, V \ I2, . . . , V \ I` = V \ It〉 is a reconfiguration sequence between
Cs = V \ Is and Ct = V \ It. However, the parameterized complexity of these two problems is
not the same since VERTEX COVER is FPT with respect to the solution size k (see Example 1.13)
while INDEPENDENT SET is W[1]-hard when parameterized by k [DF99]. Hence, it is not sur-
prising that the reconfiguration of independent sets is W[1]-hard parameterized by k + ` where
` is the length of the desired reconfiguration sequence, and thus W[1]-hard parameterized by
k [MNR+17]. This result contrasts with the one on VERTEX COVER RECONFIGURATION which
has been shown to be FPT with respect to k [MNR+17]. On the positive side, INDEPENDENT

Reconfiguration problems in graphs 47



1 – Preliminaries

SET RECONFIGURATION is FPT when parameterized by both the solution size k and the max-
imum degree ∆ on general graphs [IKO+20] and on planar graphs (actually they proved the
result for any graph that excludes K3,d as a subgraph for any d ≥ 3) with respect to k [IKO14].
This result was latter generalized to graphs that exclude Kd,d as a minor, for any d ≥ 3 [BMP17].
The FPT algorithms for planar graphs and bounded maximum degree graphs are implied by
a more general FPT algorithm on nowhere dense graphs [LMP+18]. In the same paper, Lok-
shtanov et al. also provided an FPT algorithm parameterized by k for bounded degeneracy
graphs. However, Bonamy and Bousquet [BB17] showed that if the operation that modifies
a solution consists in exchanging a vertex against one of its neighbors, then the problem be-
comes W[2]-hard (also with respect to the solution size k) on split graphs. For VERTEX COVER

RECONFIGURATION which is FPT with respect to k on general graphs, it has also been shown
that it is W[1]-hard when parameterized by `, the length of the desired reconfiguration se-
quence [MNR+17]. However, it is FPT when parameterized by both ` and the treewidth of
the input graph [MNRW14]. Even if VERTEX COVER is NP-complete on planar graphs, or on
bounded maximum degree ∆ graphs (with ∆ ≥ 4), FPT algorithms parameterized by ` have
been designed for these two classes [MNRW14, MNR14]. On the other side, VERTEX COVER RE-
CONFIGURATION is W[1]-hard when parameterized by ` on bipartite graphs. However, the host
problem is in P by König-Egerváry’s theorem which states that the maximum size of a match-
ing is equal to the minimum size of a vertex cover in bipartite graphs and Edmonds’ blossom
algorithm to solve MAXIMUM MATCHING on general graphs in time O(|E| · |V|2) [Edm65].

1.5.5 Defining an adjacency rule

Reconfiguration problems are closely related to the state space of the host problem as discussed
in Section 1.5.2. Typical questions that arise in this framework are for instance: "Does there ex-
ist a path in the state space between two solutions?" or "What is the minimum length of such
a path, if it exists?". All these questions can be studied through the lens of the reconfiguration
graph (see Section 1.5.2): is this graph connected? What is its diameter? Indeed, recall that the
vertices of the reconfiguration graphsR(I) associated with an instance I of a problem Π corre-
spond to the feasible solutions of I . The adjacency between two vertices ofR(I) is determined
by the reconfiguration rule. Obviously, this rule deeply depends on the host problem.

Let us focus on the reconfiguration of graphs problems, and let G = (V, E) be the input
graph of the host problem. It is clear that if a solution of a graph problem Π is a subset of
edges E′ ⊆ E, the reconfiguration rule is unlikely to be the same as if it is a subset of vertices
V ′ ⊆ V for instance. We have seen that if the host problem is the MATCHING problem, then a
modification of a given solution often consists in adding new edges or removing some of its
edges, sometimes in a single step. On the other hand, if we are interested in the INDEPENDENT

SET problem, the reconfiguration rule may consist either in exchanging a vertex, or adding or
removing a vertex. However, this is not always the case. For instance, Mizuta et al. [MHIZ19]
considered vertex exchanges as a reconfiguration rule in their paper on MINIMUM STEINER

TREES RECONFIGURATION for which a solution is a subset of edges connecting the terminals.

In some problems, there is only one natural choice for the elementary operation that de-
fines the adjacency in R(I). For instance, in SATISFIABILITY RECONFIGURATION, the natural
transformation is to change the value of a single variable at each step. However, for many prob-
lems, there may be more than one possible reconfiguration rule. For instance, for the PERFECT

MATCHING RECONFIGURATION problem, the operation used in [IKK+19] is more general than
the one used in [BBH+19]. Indeed, the rule in [BBH+19] consists in exchanging the edges of an
alternating cycle of length four, i.e., two matching M1 and M2 are adjacent if and only if their
symmetric difference is a C4. With this rule, it is not always possible to transform a matching
Ms into a matching Mt and Bonamy et al. [BBH+19] proved that the reachability problem is

48 Paul Ouvrard



1.5. Combinatorial reconfiguration

PSPACE-complete. However, in [IKK+19], one can exchange the edges of any alternating cycle.
This model is strictly more powerful than the one in [BBH+19], as it is always possible to trans-
form a matching into another one. Indeed, the symmetric difference of two disjoint matchings
Ms and Mt is a collection of even-length alternating cycles. Hence, Ito et al. [IKK+19] focused
on the length of the shortest transformation between Ms and Mt, which can be much smaller
than the number of disjoint alternating cycles in the symmetric difference Ms4Mt. Note that
the rule introduced by Ito et al. in [IDH+08] for the MAXIMUM MATCHING problem and which
allows the addition or removal of a single edge does not make any sense for the PERFECT

MATCHING PROBLEM. Indeed, the addition of an edge to a perfect matching M breaks the in-
dependence property of the edges of M, while the removal of an edge e ∈ M yields a matching
which is not perfect.

When the solution of Π is a subset of vertices, one can represent the solution S by a set
of tokens, where exactly one token is placed on each vertex that belongs to S. Then, modify-
ing a solution corresponds to shifting the tokens according to the reconfiguration rule. In the
literature, three kinds of operations have been mainly studied:

• Token Addition and Removal (TAR): one can add or remove a token;

• Token Jumping (TJ): one can move a token to any vertex of the graph;

• Token Sliding (TS): one can slide a token along an edge, i.e., one moves a token to a
neighbor of its current location.

One can observe that in the last two models, the size of each solution remains constant
at any time, as opposed to what happens in the TAR model. Moreover, any reconfiguration
sequence under the token sliding rule is also a valid sequence under the token jumping model.
However, the converse is not always true, and actually TJ is strictly more powerful than TS as
showed below for INDEPENDENT SET RECONFIGURATION.

I0 I1 I2 I3

u u u uv v v v

Figure 1.36 – Reconfiguration sequence under TJ between two independent sets I0 and I3.

In Figure 1.36, one can see a reconfiguration sequence between two independent sets I0 and
I3 under token jumping. However, one can observe that I0 cannot be transformed into I3 by
token sliding. Indeed, before moving a token from the left part to the right part, one first need
to move the token from v to one of its two degree-one neighbors. But then, no token cannot be
put again on v. Since there is a unique path between a vertex in the left part and a vertex in the
right part and that path goes through v, the conclusion follows.

Unlike what happens under token jumping and token sliding, token addition and removal
modifies the size of the solutions. Hence, in order to make the problem more interesting, TAR
comes with a threshold k which gives a bound on the size of each solution. Then, if Π is a mini-
mization (respectively maximization) problem like VERTEX COVER (resp. INDEPENDENT SET),
k correspond to the maximum (resp. minimum) size of each intermediate solution. Indeed, if
we do not put any restrictions on the size of the intermediate solutions, the following trivial
algorithm yields a shortest reconfiguration sequence between two independent sets Is and It:
(i) remove one-by-one each vertex in Is \ It; and (ii) add one-by-one each vertex in It \ Is. How-
ever, the TAR model and the TJ model are equivalent under some conditions, as observed by
Kamiński et al. [KMM12]:

Reconfiguration problems in graphs 49



1 – Preliminaries

Theorem 1.27 ([KMM12], Theorem 1). There exists a reconfiguration sequence between two inde-
pendent sets Is and It of size k under TJ if and only if there exists a reconfiguration sequence under
TAR where each solution has size at least k − 1. Moreover, there exists an algorithm that, given a
reconfiguration sequence between Is and It in one of these two models, outputs a reconfiguration
sequence connecting the two sets in the other model in time polynomial in the length of the sequence.
The algorithm maps every shortest TAR sequence to a shortest TJ sequence, and vice versa. The TAR
sequence is twice as long as the TJ sequence.

I0 I1 I2

u u u uv v v v

I ′0

u v

I ′1

u v

I ′2

u v

I3

Figure 1.37 – Reconfiguration sequence under TAR between two independent sets I0 and I3.

In Figure 1.37, one can see the reconfiguration sequence S′ under TAR between I0 and I3
corresponding to the sequence S′ under TJ depicted in Figure 1.36. The length of S′ is twice the
length of S. Moreover, each intermediate solution contains at least two tokens. For an example
of a reconfiguration under TS, see Figure 1.33.

In the remaining of this thesis, we denote by TAR(k) the reconfiguration rule TAR associated
with the threshold k. Let Π be a graph problem, let I be an instance of Π and let Ss and St be
two solutions of I . We denote by TAR(k)-sequence (or simply TAR-sequence) a reconfiguration
sequence 〈S0 = Ss, S1, . . . , S` = St〉 under the TAR(k) rule between Ss and St, where:

(i) each intermediate solution Si is a feasible solution of I of size at least (or at most) k; and

(ii) Si can be obtain from Si−1 by applying once the TAR rule.

We adopt the same notation for the TJ and TS rules, and denote by TJ-sequence (respec-
tively TS-sequence) a reconfiguration sequence under token jumping (resp. token sliding). We
also introduce the three following notation, where Ds and Dt are two dominating sets of G,
both of size k.

• Ds
TAR(k)
 Dt: there is a TAR(k)-sequence that transforms Ds into Dt;

• Ds
TJ
 Dt: there is a TJ-sequence that transforms Ds into Dt;

• Ds
TS
 Dt: there is a TS-sequence that transforms Ds into Dt;

A useful observation is that each reconfiguration sequence that we consider in this thesis is
reversible: if Ds  Dt holds, then Dt  Ds holds too. We thus denote this relation by Ds ! Dt
in the remaining of this thesis.

50 Paul Ouvrard



2 Domination in graphs

Contents
2.1 Introduction on domination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.1.2 Definitions and simple results . . . . . . . . . . . . . . . . . . . . . . . . 52

2.1.3 Relation with other graph parameters . . . . . . . . . . . . . . . . . . . 54

2.1.4 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2 Price of Connectivity for domination . . . . . . . . . . . . . . . . . . . . . . . . 63

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.2.2 PoC-Near-Perfect graphs with threshold two . . . . . . . . . . . . . . . 66

2.2.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.1 Introduction on domination

We start this chapter by a brief introduction on domination in graphs. For a more complete
overview, the reader is referred to the books by Haynes, Hedetniemi and Slater [HHS97, HHS98].

2.1.1 History

Even if the study of domination problems in graphs began around 1960, the first domination-
related problems appeared more than a hundred years earlier. Indeed, the problem that can
be considered to be the origin of the study of dominating sets is related to chess. This game is
played on a 8× 8 chessboard. Among the game pieces, the queen moves horizontally, vertically
or diagonally, as long as each square in its way is free of any other piece (see Figure 2.1).

        

     
 

   

        

        

  
 

 

 

     

        

        

        

 
 

Figure 2.1 – The queen can move to any dark gray shaded square.

51



2 – Domination in graphs

We say that the queen dominates all the squares located horizontally, vertically and diago-
nally from its current position. For example, all the dark gray shaded on Figure 2.1 are domi-
nated by the queen drawn. Chess players wondered what is the minimum number of queens
needed to dominate all the squares. They thought that the answer was five on a 8 × 8 grid,
which turned out to be correct [BCM97].

        

     
 

 

 
 

  

  
 

 

  
 

 
  

    
 

 

   

  
 

 
 

 
  

 

 

 

   
 

 

    

        

     
 

  

 
 

Figure 2.2 – A possible solution.

This problem can easily be modeled as a graph problem. Indeed, consider the graph G
defined as follows: associate a vertex with each square and let two vertices be adjacent if and
only if the corresponding squares are vertically or horizontally aligned, or if they belong to
the same diagonal. Then, finding the minimum number of queens that dominate all the free
squares (i.e., squares that do not carry a queen) is the same as finding the smallest possible
subset D of vertices of G such that each vertex not in D has at least one neighbor in D.

The study of domination in graphs started in 1960s with the seminal book "Graph theory
and its applications" by Claude Berge [Ber58]. In this book, Berge introduced the external sta-
bility number of a graph, nowadays known as the domination number. The names dominating set
and domination number were actually introduced a few years later by Øystein Ore in his book
"Graph theory" [Ore62]. Berge continued the study of dominating sets in his book "Graphs and
hypergraphs" published in 1973 [Ber73]. However, the paper that stimulated work on this topic
is probably the survey of Cockayne and Hedetniemi from 1977 [CH77]. This paper introduced
the notations γ(G) and Γ(G) to denote respectively the minimum size of a dominating set, and
the maximum size of a minimal dominating set.

2.1.2 Definitions and simple results

Let G = (V, E) be a graph on n vertices. A dominating set of G is a subset of vertices D ⊆ V
such that N[D] = V. In other words, each vertex that does not belong to D must have (at least)
one neighbor in D. It is clear that every graph admits a dominating set since we can simply
select all the vertices to be in the dominating set. Moreover, we have γ(G) = 0 if and only G
has no vertex, and γ(G) = n if and only if G is edgeless. However, for connected graphs on at
least two vertices, we can have a much better upper bound:

Proposition 2.1 ([Ore62]). If G is a connected graph on at least two vertices, then γ(G) ≤ bn/2c.

Proof. Let T be a spanning tree of G. Root T on an arbitrary node r. Let X (respectively Y) be the
set of vertices which are at even (respectively odd) distance from r in T. It is clear that we have
|X| ≤ bn/2c, or |Y| ≤ bn/2c since X, Y is a partition of V(T) and thus of V(G). We assume
without loss of generality that |X| ≤ |Y|. X is a dominating set of T since each vertex in Y has
at least one neighbor in X. Note that X is also a dominating set of G. Indeed, any vertex u of G
dominated by a vertex v ∈ N[u] ∩ D in T is also dominated by v in G since V(G) = V(T) and
every edge of T belongs to G. Hence, X is a dominating set of G of size at most bn/2c.

52 Paul Ouvrard



2.1. Introduction on domination

r

Figure 2.3 – Illustration for the proof of Proposition 2.1: the red vertices dominate the graph.

Actually, the result of Proposition 2.1 can be generalized to graphs without isolated vertices.
Indeed, let X1, X2, . . . , Xk be the connected components of G. We denote by ni the number of
vertices of Xi. Note that ni ≥ 2 holds for any 1 ≤ i ≤ k as G does not contain isolated vertices.
For any connected component Xi, we apply Proposition 2.1 and obtain a dominating set Di
of size at most bni/2c. Clearly,

⋃k
i=1 Di is a dominating set of G of size at most ∑k

i=1bni/2c ≤
bn/2c. So Proposition 2.1 can be replaced by the following theorem:

Theorem 2.2 ([Ore62]). If G be a graph without isolated vertices, then γ(G) ≤ bn/2c.

Let G′ = (V, E′) be a partial graph of G, i.e., V(G′) = V(G) and E′ ⊆ E. As discussed in
the proof of Proposition 2.1, any dominating set D of G′ also is a dominating set of G since
NG′ [u] ⊆ NG[u] holds for any vertex u of G (and thus G′). With a similar idea, one can prove
the following observation:

Observation 2.3. Let G = (V, E) be a graph, let D be a dominating set of G, and let u ∈ D. If there
exists a vertex v ∈ V \ D such that N[u] ⊆ N[v], then (D \ {u}) ∪ {v} is also a dominating set of G.

This observation states that one can replace a vertex u of a dominating set D by another
vertex v ∈ V \D as long as v dominates all the vertices dominated by u. Hence, if a dominating
set D has two vertices u and v such that N[u] ⊆ N[v], then D \ {u} also is a dominating set of
G. This observation leads to the following characterization of minimal dominating sets:

Proposition 2.4. A dominating set D of a graph G is inclusion-wise minimal if and only if there is no
pair of vertices u, v ∈ D such that N[u] ⊆ N[v] or N[v] ⊆ N[u].

Proof. (⇒) Suppose that D contains two vertices u and v such that N[u] ⊆ N[v]. Then, D \ {u}
also is a dominating set, a contradiction.
(⇐) Suppose that D does not contain a pair of vertices u, v such that N[u] ⊆ N[v] or N[v] ⊆
N[u]. So, for any vertex u ∈ D, there exists a vertex x ∈ N[u] (note that we may have x = u)
such that x has no neighbor in D \ {u}. Hence, the removal of u leaves x undominated, and the
conclusion follows.

The vertex x in the proof of Proposition 2.4 is called a private neighbor of u with respect to D.
Hence, Proposition 2.4 can be rephrased as follows:

Proposition 2.5. A dominating set D is minimal if and only if each vertex in D has a private neighbor.

As we said before, the minimum size of a minimal dominating set of G is the domination
number of G and it is denoted by γ(G). On the other hand, the maximum size of a minimal
dominating set of G is the upper domination number, and it is denoted by Γ(G). A dominating set
of size γ(G) is a minimum dominating set of G, while a dominating set of size Γ(G) is an upper
dominating set of G. The complete graph Kn is the only graph satisfying γ(G) = Γ(G) = 1.
However, note that the difference between γ(G) and Γ(G) can be arbitrarily large, as pointed
out by the following proposition:

Reconfiguration problems in graphs 53



2 – Domination in graphs

Proposition 2.6. The complete graph K1,n satisfies γ(G) = 1 and Γ(G) = n.

Proof. Note that we may assume without loss of generality that n > 2 since γ(K1,1,) ' K2. Let
u be the universal vertex of G. Since K1,n has at least one edge and contains a universal vertex,
we have γ(G) = 1. On the other hand, any minimal dominating set that does not contain u
must contain all the n degree-one vertices since they induce an independent set. Since there is
no minimal dominating set of size at least two containing u, Γ(K1,n) = n.

u u

Figure 2.4 – A minimum dominating set and an upper dominating set of K1,5.

2.1.3 Relation with other graph parameters

For any graph G, there is a very interesting inequality chain that bounds γ(G) and Γ(G) by
other graphs parameters related with maximal independent sets and irredundant sets (they
will be define later) of G. This chain was introduced by Cockayne, Hedetniemi and Miller in
1978 [CHM78]. Let us briefly discuss it here.

Maximal independent sets

Given a graph G = (V, E), the dominating sets of G and its maximal independent sets are
related by the following well-known observation:

Observation 2.7. Let S ⊆ V be a maximal independent set of G. Then, S also is a dominating set of G.

Proof. Let S be a maximal independent set of G, and suppose that S is not dominating. Then,
there exists a vertex u ∈ V which is not dominated by S. This means that N[u] ∩ S = ∅. But
then, S ∪ {v} is an independent set that contradicts the maximality of S.

In Observation 2.7, the fact that S is inclusion-wise maximal is crucial since obviously any
independent set does not necessarily dominate G. More precisely, an independent set S is max-
imal if and only if the following condition holds:

for every vertex u ∈ V \ S, u has at least one neighbor in S.

Note that this condition corresponds precisely to the definition of domination: any vertex
not in the set must have at least one neighbor in the set. However, the converse of Observa-
tion 2.7 is not true: a dominating set D does not necessarily induce a maximal independent set
of G, even if D is minimal (see Figure 2.5).

u v

Figure 2.5 – The set {u, v} is a minimal dominating set, but not a stable set.

54 Paul Ouvrard



2.1. Introduction on domination

So one can replace Observation 2.7 by the following, which was first observed by Berge:

Proposition 2.8 ([Ber58]). A set S ⊆ V is a maximal independent set of G if and only if G[S] is
edgeless and S dominates G.

Proof. We have already seen in Observation 2.7 that if S is a maximal independent set, then it is
also a dominating set. Let us show the converse direction. Suppose that S is both independent
(i.e., G[S] is edgeless) and dominating. Assume that S is not inclusion-wise maximal. Then,
there exists u ∈ V \ S such that S ∪ {u} is also an independent set. Since we can add u to S
without breaking the independence property, this means that u has no neighbor in S and thus
N[u] ∩ S = ∅. But then u is not dominated by S, a contradiction.

u v

u1

u2

v1

v2

Figure 2.6 – The set {u1, u2, v} is a maximal independent set.

Recall that α(G) is the independence number of G, that is the maximum size of an indepen-
dent set of G. We denote by i(G) the minimum size of a maximal independent set of G. This
parameter is called the independent domination number of G because it corresponds to the mini-
mum size of a dominating set of G that is also an independent set by Proposition 2.8. Hence, it
immediately follows from Proposition 2.8 that the following inequalities hold for any graph G:

γ(G) ≤ i(G) ≤ α(G) ≤ Γ(G) (2.1)

Note that for complete graphs, we have γ(Kn) = i(Kn) = α(Kn) = Γ(Kn) = 1. However, the
difference between any two of these parameters can be make arbitrarily large. For instance, let
us consider the graph Sr,r which is obtained by creating an edge uv and then r pendant vertices
u1, u2, . . . , ur (respectively v1, v2, . . . , vr) adjacent to u (respectively v). Observe that the graph
showed in Figure 2.6 is the graph S2,2. Note that for any r ≥ 2, the graph Sr,r satisfies γ(Sr,r) = 2
(see Figure 2.5), i(Sr,r) = r + 1 (see Figure 2.6) and α(Sr,r) = Γ(Sr,r) = 2r. Hence, a natural
question is to determine if there exists a graph G such that γ(G) = s1, i(G) = s2, α(G) = s3,
Γ(G) = s4 for given integers s1, s2, s3 and s4. If such a graph exists, then (s1, s2, s3, s4) is called a
domination sequence. These sequences were characterized by Cockayne and Mynhardt:

Theorem 2.9 ([CM93]). Let s1, s2, s3 and s4 be four integers. Then, (s1, s2, s3, s4) is a domination
sequence if and only if the three following conditions hold:

(i) 1 ≤ s1 ≤ s2 ≤ s3 ≤ s4;

(ii) s1 = 1⇒ s2 = 1; and

(iii) s3 = 1⇒ s4 = 1.

Domination perfect graphs. In the same spirit as the concept of perfect graphs which are
graphs that satisfy χ(H) = ω(H) for any induced subgraph H of the graph G, Sumner and
Moore [SM88] introduced the concept of domination perfect graphs. A graph G is domination
perfect if and only if γ(H) = i(H) for any induced subgraph H of G. Zvervich and Zverovich
[ZZ95] gave a full characterization of domination perfect graphs in terms of forbidden induced

Reconfiguration problems in graphs 55



2 – Domination in graphs

subgraphs. More precisely, they found seventeen graphs which are minimally domination imper-
fects, meaning that they are not domination perfects but all their proper induced subgraphs are.
They then showed that any graph that does not contain any of these seventeen graphs as an
induced subgraph indeed is domination perfect. For a more complete overview on domination
perfect graphs, we refer the reader to the survey of Sumner [Sum90].

In Section 2.2, we study a similar concept: given a graph G, we give necessary and suf-
ficient conditions (in terms of forbidden induced subgraphs as well) to determine if
γc(H) ≤ 2γ(H) (where γc(H) is the minimum size of a connected dominating set of
H) holds for any induced subgraph H of G.

Irredundant sets and the domination chain

Even if it is beyond the scope of this thesis, let us briefly discuss how we can extend the inequal-
ity chain 2.1 to bound below γ(G) and to bound above Γ(G). Recall that by Proposition 2.5, a
dominating set D is minimal if and only if each vertex in D has a private neighbor with respect
to D. In other words, for any u ∈ S, there exists v ∈ N[u] such that N[v] ∩ (D \ {u}) = ∅,
i.e., the removal of u from D leaves v undominated. Recall that we may have u = v. This idea
leads to the notion of irredundant sets. Let G = (V, E) be a graph, and let S ⊆ V be a subset of
vertices. Then, S is irredundant if every vertex in S has a private neighbor with respect to S. It
follows that the minimality condition for a dominating set corresponds to the definition of an
irredundant set.

An irredundant set S is maximal if for any vertex u ∈ V \ S, the set S ∪ {u} is not irredun-
dant, meaning that there exists a vertex v ∈ S ∪ {u} without any private neighbor with respect
to S ∪ {u}. Let us denote by ir(G) and IR(G) the minimum size and the maximum size of a
maximal irredundant set of G, respectively. The following result was first observed by Bollobás
and Cockayne:

Proposition 2.10 ([BC79]). Let G be a graph, and let D be a minimal dominating set of G. Then, D is
also a maximal irredundant set of G.

We are know ready to define the domination chain which was first observed by Cockayne,
Hedetniemi, and Miller in 1978 and was then extensively studied in domination theory:

Theorem 2.11 ([CHM78]). The following domination chain holds for any graph G:

ir(G) ≤ γ(G) ≤ i(G) ≤ α(G) ≤ Γ(G) ≤ IR(G) (2.2)

Cockayne and Mynhardt showed a stronger result than the one presented in Theorem 2.9
since they actually proved the following theorem:

Theorem 2.12 ([CM93]). Let s1, s2, s3, s4, s5 and s6 be six integers. Then, there exists a graph G
such that ir(G) = s1, γ(G) = s2, i(G) = s3, α(G) = s4, Γ(G) = s5 and IR(G) = s6 if and only
if the four conditions hold:

(i) 1 ≤ s1 ≤ s2 ≤ s3 ≤ s4 ≤ s5 ≤ s6;

(ii) s1 = 1⇒ s3 = 1;

(iii) s4 = 1⇒ s6 = 1; and

(iv) s2 ≤ 2s1 − 1.

56 Paul Ouvrard



2.1. Introduction on domination

2.1.4 Computational complexity

In this section, we focus on the computational complexity of finding a dominating set of a given
size in a graph. More precisely, we are interested in the decision version of the DOMINATING

SET problem, which is defined as follows:

DOMINATING SET

Instance: A graph G = (V, E), an integer k.
Question: Does G have a dominating set of size at most k?

Hardness of the DOMINATING SET problem

There exist many polynomial-time reductions to show the NP-completeness of the DOMINAT-
ING SET problem. Let us present two different ones: the first is a reduction from 3-SAT, and the
second from VERTEX COVER. First, observe that the problem belongs to NP, as it is sufficient to
check if N[u] ∩ D 6= ∅ holds for any vertex u to determine whether a subset of vertices D is a
dominating set or not.

Reduction from 3-SAT. The reduction presented here is a very slight adaptation of the well-
known reduction that we can find in [CHM78] for instance. Let φ be a 3-CNF formula with n
variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm. We construct the corresponding graph Gφ

as follows. For any variable xi, we create the gadget Gi depicted in the figure below:

vi ¬vi

yi

zi

Figure 2.7 – The gadget Gi corresponding to the variable xi of φ.

Now, for each clause Cj, we add a vertex aj. If the clause Cj contains the literal xi, we add
the edge ajvi. If it contains the literal ¬xi, we add an edge between aj and ¬vi. Note that each
vertex aj has degree three since each clause of φ contains exactly three literals. Therefore, the
graph Gφ has 4n + m vertices, and 5n + 3m edges. Thus Gφ can be constructed in linear time.

v1 ¬v1

y1

z1

v2 ¬v2

y2

z2

v3 ¬v3

y3

z3

v4 ¬v4

y4

z4

a1 a2

Figure 2.8 – The graph Gφ corresponding to the formula φ = (x1 ∨¬x2 ∨ x3)∧ (x2 ∨¬x3 ∨¬x4).

Reconfiguration problems in graphs 57



2 – Domination in graphs

Note that each dominating set of Gφ must contain at least one vertex in each gadget Gi since
N(yi) = N(zi) ⊆ Gi. Let (Gφ, n) be the resulting instance of DOMINATING SET, and let ν be an
assignment of the variables of φ that satisfies the formula φ. One constructs a dominating set
of Gφ of size n as follows: if ν(xi) = >, we add vi to D. Otherwise, we add ¬vi to D. Since both
vi and ¬vi dominate Gi, all the vertices in G1 ∪ G2 ∪ . . . ∪ Gm are dominated. Now, let aj be the
vertex corresponding to the clause Cj of φ. Since ν satisfies φ, at least one literal satisfies Cj. But
then D contains the corresponding vertex (vi or ¬vi) and thus is dominated by D.

For the other direction, let D be a dominating set of Gφ of size n (recall that Gφ has no
dominating set of size less than n). Thus |D ∩ Gi| = 1 for every 1 ≤ i ≤ n. Since yizi 6∈ E(Gφ),
D cannot contain yi or zi. So it contains either vi or ¬vi, but not both. Finally, {a1, a2, . . . , am} ∩
D = ∅. Hence, one can build an assignment ν of the variables of φ such that ν(xi) = > if D
contains vi, and ν(xi) = ⊥ if D contains ¬(vi). Since each vertex corresponding to a clause is
dominated by at least one of its neighbors, each clause of φ is satisfied by one of its literals and
the conclusion follows.

Reduction from Vertex Cover. This reduction to show the NP-hardness of the DOMINATING

SET problem is probably the most famous one. It has been found by Garey and Johnson in their
seminal book "Computers and Intractability: a guide to the theory of NP-completeness" [GJ79].
The reduction works as follows. Let G = (V, E) be a graph, and let (G, k) be the instance of
VERTEX COVER. We may assume without loss of generality that G has no vertex of degree zero.
We construct the corresponding graph G′ by first making a copy of G. Then, for each edge
uv ∈ E, we add a new vertex zuv of degree two, which is adjacent to both u and v. So G′ has
|V|+ |E| vertices and 3|E| edges. Thus, it can be constructed in linear time.

Figure 2.9 – Reduction from VERTEX COVER to DOMINATING SET.

We claim that G has a vertex cover of size k if and only if G′ has a dominating set of size k.
Suppose first that G has a vertex cover S of size at most k. We show that S also is a dominating
set of G′. Since S is a vertex cover, we have S ∩ {u, v} 6= ∅ for every edge uv ∈ E(G). Hence,
the vertex zuv is dominated. Since G has no isolated vertex, each vertex u is adjacent to at least
one vertex v. Since S is a vertex cover, at least one vertex in {u, v} belongs to S and thus u is
dominated as well. Hence, S is a dominating set of G′ of size at most k.

Suppose now that G′ has a dominating set D of size at most k. Since D is a dominating
set, each vertex zuv ∈ V(G′) \ V(G) that corresponds to the edge uv ∈ E(G) is dominated,
i.e., N[zuv] ∩ D 6= ∅. If N[zuv] ∩ D = {zuv}, one can replace zuv by either u or v and still
obtain a dominating set of size at most k by Observation 2.3. Hence, we may assume that
D ⊆ V(G) ∩V(G′) and thus D is a vertex cover of G of size at most k.

NP-hardness for split and bipartite graphs. We now show that the DOMINATING SET prob-
lem remains NP-complete, even when restricted to bipartite or split graphs. These two reduc-
tions were found independently by Chang and Nemhauser [CN84] and Bertossi [Ber84] in 1984.
They consist in a polynomial-time reduction from DOMINATING SET in general graphs.

58 Paul Ouvrard



2.1. Introduction on domination

u2u1

u4 u3

(a)

v1

v4

v2

v3

w1

w2

w3

w4

(b)

v1

v4

v2

v3

w1

w2

w3

w4

(c)

Figure 2.10 – (a) Original graph with (b) corresponding split graph and (c) bipartite graph.

We first explain the construction for split graphs. Let G = (V, E) be a graph with V =
{u1, u2, . . . , un}. Then, the corresponding split graph G′ is the following:

• V(G′) = V1 ∪ V2 where V1 = {v1, v2, . . . , vn} and V2 = {w1, w2, . . . , wn}, i.e., V1 and V2
are two copies of the vertex set of G; and

• E(G′) = {uv | u, v ∈ V1} ∪ {viwj | uj ∈ NG[ui]}.

Note that G′[V1] is a clique, and G′[V2] is an independent set. Hence, G′ is a split graph and
it can be constructed in polynomial time. Moreover, a vertex vi ∈ V1 dominates V1 and all the
vertices of V2 which belong to the closed neighborhood of ui in G. Hence, any dominating set
of G can be directly translated into a dominating set of G′ of same size by adding the corre-
sponding vertices of V1. Now, let D′ be a dominating set of G′ of size k. By Observation 2.3, we
may assume that D′ ⊆ V1 as any vertex wi ∈ V2 satisfies NG′ [wi] ⊆ NG′ [vi]. So each vertex in V2
is dominated by a vertex in V1. Hence, the set D = {ui | vi ∈ D} is a dominating set of G and
the conclusion follows.

Let us now move on to bipartite graphs. The construction is very similar to the one for
split graphs. More precisely, we start from the split graph and we first remove all the edges
between two vertices in V1 so that G[V1] becomes independent. Now, we add two new vertices
x and y. We make x adjacent to all the vertices in V1 and to y. So observe that G′[V1 ∪ {y}] and
G′[V2 ∪ {x}] induce two independent sets. We can easily prove that G has a dominating set of
size k if and only if G′ has a dominating set of size k + 1. Indeed, let D be a dominating set of
G. Then, observe that the set D′ = {vi | ui ∈ D} ∪ {x} dominates G′ and has size |D|+ 1. For
the converse direction, let D′ be a dominating set of G′. Since NG′ [y] ⊆ NG′ [x], we may assume
that D′ does not contain y but x. Even if now NG′ [wi] ⊆ NG′ [vi] is not true anymore, observe
that if D′ contains a vertex wi ∈ V2, then (D′ \ {wi}) ∪ {vi} also dominates G′. Indeed, recall
that V1 ⊆ NG′(x) and NG′ [wi] ⊆ V1 ∪ {wi}. Therefore, since viwi ∈ E(G′), one can replace wi
by vi and still get a dominating set. So we may assume that D′ ⊆ V1 ∪ {x} and thus the set
D = {ui | vi ∈ D′} dominates G and has size at most k.

Polynomial-time algorithms for several graph classes

In this section, we give two well-known algorithms to solve the DOMINATING SET problem in
linear time on respectively interval graphs and trees. These algorithms are simple, and we will
see in Section 3.2 how they can be generalized to solve the problem on a superclass of both
trees and interval, namely the class of dually chordal graphs.

The case of paths. Recall that the path on n vertices denoted by Pn is the unique tree of
diameter n− 1. It is well-known that γ(Pn) = dn/3e. This value matches the following lower
bound on the domination number of any graph:

Reconfiguration problems in graphs 59



2 – Domination in graphs

Proposition 2.13. Let G be a graph on n vertices with maximum degree ∆. Then, γ(G) ≥ d n
∆(G)+1e.

Proof. Let u be any vertex of G, and note that deg(u) ≤ ∆(G). Hence, |N[u]| ≤ ∆(G) + 1. Since
all the vertices have to be dominated, we obtain the inequality.

We also have γ(G) ≤ n− ∆(G). Indeed, let u be a vertex such that deg(u) = ∆(G). Then,
adding u to a dominating set leaves n− ∆(G)− 1 vertices undominated. By adding each
of them to the set, we obtain a dominating set of size n− ∆(G).

Let v1, v2, . . . , vn be the ordering of the vertices of Pn such that vivi+1 ∈ E(Pn) holds for
every 1 ≤ i < n. Let us give a dominating set D of Pn of size dn/3e. If n ≡ 0 mod 3 or n ≡ 2
mod 3, we set D = {vi | i ≡ 2 mod 3}. Otherwise, if n ≡ 1 mod 3, we set D = {vi | i ≡ 2
mod 3}∪{vn}. In both cases, D can be seen as the "rightmost" dominating set of Pn, i.e., moving
any vertex to the right leaves a vertex undominated (see Figure 2.11).

v1 v2 v3 v4 v5 v3k+cv3k

Figure 2.11 – Rightmost minimum dominating set of Pn with n 6≡ 0 mod 3.

Interval graphs. Recall that an interval graph is the intersection graph of intervals on the
real line. Let G = (V, E) be an interval graph. By ordering the vertices of G according to their
right value, we obtain an ordering v1, v2, . . . , vn such that for any i < k, if vivk ∈ E, then
vjvk ∈ E for any i < j < k by Observation 1.4. We define the rightmost neighbor of a vertex
vi ∈ V as the neighbor of vi with the highest index, i.e., vk is the rightmost neighbor of vi if
k = max{j | vj ∈ N[vi]}. Thanks to this property, one can define the "rightmost" dominating
set which is the one computed by the following algorithm:

Algorithm 2 Interval graphs Domination

Require: An interval graph G = (V, E).
Ensure: The rightmost dominating set of G.

1: D = ∅
2: for i from 1 to n do
3: if vi is not dominated by D then
4: Let vk be the rightmost neighbor of vi
5: Add vk to D
6: return D

This algorithm runs in time O(|V| + |E|). Moreover, one can prove that it actually com-
putes a minimum dominating set of G. Roughly speaking, the reason why this is true is be-
cause at step i, all the vertices with index less than i are already dominated by vertices in
{v1, v2, . . . , vi−1}. So it remains to dominate the vertices of the graph Gi = G[{vi, vi+1, . . . , vn}].
Let vj ∈ N[vi] such that vj is not the rightmost neighbor of vi (note that we possibly have vi = vj
but vi and vj are different from vk). Therefore, we have vi < vj < vk assuming that vi 6= vj. So
for any neighbor v` of vj in Gi, v`vk ∈ E by Observation 1.4 and thus NGi [v`] ⊆ NGi [vk]. Hence,
vk can be seen as an "optimal" vertex to dominate vi (see Figure 2.12).

Trees. Another possible way to see the rightmost dominating set of the path Pn is due to
its "tree structure". More precisely, let us denote by Xi the set {v1, v2, . . . , vi}. So at step i of
Algorithm 2, all the vertices in Xi−1 are dominated by vertices in Xi−1. And if i ≡ 1 mod 3,

60 Paul Ouvrard



2.1. Introduction on domination

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

Figure 2.12 – Rightmost dominating set {v2, v8, v11} of the interval graph showed in Figure 1.12.

vi is the first vertex not yet dominated. But then, observe that vi is a leaf in the graph Gi =
G[V \ Xi−1]. To dominate vi, the algorithm adds its unique neighbor vi+1 to the dominating
set since NGi [vi] ⊆ NGi [vi+1]. This idea can be generalized to any tree T to compute γ(T). This
algorithm was found by Cockayne, Goodman and Hedetniemi in 1975 [CGH75] and it works
as follows. We first root T on an arbitrary node r and we orient all the edges of T towards the
root r. This orientation gives a unique parent to each node, which corresponds to its unique out-
neighbor. Now, we label each node according to a post-order traversal of T. This ensures that
for every 1 ≤ i ≤ n, vi is a leaf in Ti. The algorithm is exactly the same as Algorithm 2 except
that instead of adding the rightmost neighbor of vi to D, we add its parent (see Figure 2.13).

v1

v2

v3

v4

v5

v6

v7

v8 v9

v10

v11

v12

v13

Figure 2.13 – Minimum dominating set {v3, v4, v6, v8, v11, v12} of a tree T.

Actually, there is a common point between the orderings described for interval graphs
and trees. Indeed, we ensure that the vertex vk added to dominate vi (which is its right-
most neighbor for interval graphs, and its parent for trees) satisfies NGi [vj] ⊆ NGi [vk] for
any neighbor vj or vk in Gi. We will use this property in Section 3.2.3.

Parameterized complexity of the problem

Let us now discuss the parameterized complexity of DOMINATING SET. This part is inspired
by the lecture notes by Cyril Gavoille [Gav20].

Fixed-parameter tractability. Here, we consider the parameterized complexity of DOMINAT-
ING SET with respect to its natural parameter k, the size of the desired solution. Downey and
Fellows showed that this problem is W[2]-complete [DF95], meaning that there is no hope for
an algorithm finding a dominating set of size at most k in time O( f (k) · |G|O(1)) for any graph
G, unless the W-hierarchy collapses. This suggests that it is harder to solve than VERTEX COVER

(which is in FPT) or even INDEPENDENT SET which is W[1]-complete [DF95].

What could explain why DOMINATING SET is harder than INDEPENDENT SET is related
to the definability of these two properties by first-order logic formulas. Indeed, given a graph
G = (V, E) and an integer k, the fact that G has an independent set of size k can be expressed
by the following first-order logic formula:

Reconfiguration problems in graphs 61



2 – Domination in graphs

(∃v1, ∃v2, . . . , ∃vk) :
∧

1≤i<j≤k

vivj 6∈ E

By contrast, if one wants to express that G admits a dominating set of size k, one needs to
add a universal quantifier, creating two alternating blocks of quantifiers:

(∃v1, ∃v2, . . . , ∃vk) : (∀u)
∨

1≤i≤k

(u = vi ∨ uvi ∈ E)

This universal quantifier over all the vertices of the graph makes the problem "global" be-
cause one needs to check that all the vertices are dominated. On the other hand, the first for-
mula for defining an independent set is entirely "local" since only the vertices v1, v2, . . . , vk are
involved (see [DF13] for an extensive discussion on this subject).

Positive results. Since the problem is W[2]-complete with respect to its natural parameter,
most work has been focused on graph classes for which FPT algorithms could exist. A good
candidate is the class of planar graphs since any planar graph is 5-degenerate, meaning that any
induced subgraph of a planar graph has a vertex of degree at most five. Indeed, any dominating
set D of a graph G = (V, E) satisfies N[u] ∩ D 6= ∅. Therefore, one could try to design an
algorithm very similar to the one given in Example 1.13: select of vertex u of degree at most
five and then branch on all the different possibilities to dominate u. In other words, for any
vertex v ∈ N[u], we add v to the dominating set and recurse on G − v and with parameter
k− 1. There are (at least) two different possible graphs G− u: (i) remove u from G (i.e., u and
all the edges incident to u); or (ii) remove N[u]. However, none of these two ideas seems to
work.

u

v

u1 u2 u3 u4

v4v3v2v1

u

v

u1 u2 u3 u4

v4v3v2v1

(a) (b)

Figure 2.14 – Neither the graph (a) G− u nor (b) G− N[u] has a dominating set of size one.

Hence, one needs to remember that if u is added to the dominating set, then all the vertices
in N[u] are dominated. This means that we should solve a slightly different problem, which is
actually a generalization of DOMINATING SET:

ANNOTATED DOMINATING SET

Instance: A graph G = (B ]W, E), an integer k.
Question: Does G have a subset D ⊆ B ]W such that |D| ≤ k and W ⊆ N[D]?

In other words, in the ANNOTATED DOMINATING SET, we are given a graph where each
vertex is either black (in B) or white (in W), which is called a black and white graph. And the
goal is to find a subset of at most k vertices (which may be either black or white) that domi-
nates the black vertices. Hence, if W = ∅, then ANNOTATED DOMINATING SET is equivalent

62 Paul Ouvrard



2.2. Price of Connectivity for domination

to DOMINATING SET. One can see the white vertices as the vertices which are already domi-
nated. Alber et al. [AFF+05] showed that after applying some reduction rules, any black and
white planar graph has a black vertex u of degree at most seven. By branching on each ver-
tex in N[u], we obtain an algorithm with running time O(8k · n) similar to the one for VERTEX

COVER (see Example 1.13). Obviously, we have to whiten the vertices which are now dom-
inated in each recursive call. Actually, one can compute a kernel of size O(k) in time O(n3)
(where n is the number of vertices) [AFN04]. By computing this kernel as a preprocessing, we
obtain an algorithm that runs in time O(8k · k + n3) for ANNOTATED DOMINATING SET in pla-
nar graphs. This result was later improved by Fomin and Thilikos [FT06] by using a dynamic
programming algorithm to a specific decomposition of the edges of the kernel, yielding an
O(215.13

√
k + n3) time algorithm. FPT algorithms have been designed for various graph classes

of graph: bounded genus graphs [EFF04], H-minor-free graphs [DFHT05], bounded expansion
graphs [NDM08] and finally for nowhere dense classes of graph [DK09]. On the other hand,
Alon and Gutner [AG08] provided a kO(dk)n time algorithm for finding a dominating set of
size at most k on d-degenerate graphs with n vertices, showing that the problem is in FPT for
d-degenerate graphs. However, nowhere dense classes and d-degenerate classes of graphs are
uncomparable. Telle and Villanger [TV12] generalized the results of [DK09] and [AG08] by
showing that DOMINATING SET (and some of its variants) is FPT when parameterized by k + t
on graphs that do not contain Kt,t as a subgraph.

Drange et al. [DDF+16] also studied the parameterized complexity of DOMINATING SET.
They showed that this problem has a linear kernel for every graph class G of bounded expan-
sion. In the more general case where G is only assumed to be nowhere dense, then the problem
has an "almost" linear kernel. More precisely, they proved the following theorem:

Theorem 2.14 ([DDF+16]). For every hereditary graph class G with bounded expansion, DOM-
INATING SET admits a kernel of size O(k) on graphs from G. For every hereditary and nowhere
dense graph class G and every ε > 0, DOMINATING SET admits a kernel of size O(k1+ε) on graphs
from G.

To prove Theorem 2.14, Drange et al. [DDF+16] introduced the concept of domination core:
for a graph G = (V, E), a domination core is a subset of vertices C ⊆ V such that any vertex
subset D ⊆ V is a dominating set of G if and only if C ⊆ N[D]. In other words, it is sufficient to
dominate the vertices in C to dominate the whole graph G. Note that any d-degenerate graph
G that admits a dominating set of size at most k has a domination core of size at most dkd, and
it can be computed in FPT time with respect to k + d [LMP+18]; we will use it in Section 3.3.3.

2.2 Price of Connectivity for domination

2.2.1 Introduction

Connected dominating sets

A connected dominating set of a graph G = (V, E) is a subset of vertices D ⊆ V that is both
dominating and connected, i.e., N[D] = V and G[D] is connected. Moreover, it is clear that
only connected graphs admit a connected dominating set. We denote by γc(G) the minimum
size of a connected dominating set of G.

The CONNECTED DOMINATING SET problem which asks if the connected domination
number of a graph is at most k is NP-complete. To see this, observe that we can use

Reconfiguration problems in graphs 63



2 – Domination in graphs

exactly the same polynomial-time reductions as the ones described in Section 2.1.4 for
split and bipartite graphs.

Since a connected dominating set is a dominating set, we obtain γ(G) ≤ γc(G). Moreover,
we have the following upper bound:

Proposition 2.15. Let G be a graph on n vertices. Then, γc(G) ≤ n− 2.

Proof. Let T be a spanning tree of G, and let U be the set of leaves of T. Then, V \ U is a
connected dominating set of size at most n− 2, as |U| ≥ 2 holds for any tree.

Surprisingly, this trivial upper bound turned out to be tight since γc(Pn) = γc(Cn) = n− 2.
Indeed, let v1v2 . . . vn be an ordering of the vertices of Pn and Cn such that vi and vi+1 are
adjacent for any 1 ≤ i < n (the cycle Cn additionally has the edge v1vn). Since v1 and vn are
the two leaves of Pn, we can select v2 and vn−1 to dominate them. But we are forced to take
each intermediate vertex, yielding a set of size n− 2. If G is the cycle on n vertices, observe that
all the vertices but at most two have to be in a connected dominating set otherwise it is not
connected (if the vertices not in the set are not consecutive in the ordering) or there is a vertex
which is not dominated (if there is three consecutive vertices which are not in the set).

v1 v2 v3 vnvn−1

v1

v2

v3

v4

vn−1

vn

(a) (b)

Figure 2.15 – (a) Minimum connected dominating set of Pn and (b) of Cn.

As we have seen in the proof of Proposition 2.15, connected dominating sets of a graph
G = (V, E) are related to the spanning trees of G. More precisely, from a connected dominating
set D of G, one can construct a spanning tree T of G with |V| − |D| leaves. We first take a
spanning tree of G[D] and then we attach each vertex in V \ D to an arbitrary vertex in D that
dominates it. Conversely, if T is a spanning tree of a graph G with at least two vertices, then
the internal nodes of T correspond to a connected dominating set of G. In particular, we obtain
the following:

Proposition 2.16 (Folklore (see, e.g., [Dou92]). Let G be a graph on n > 2 vertices. Let εT denote
the maximum number of leaves over all spanning trees of G. Then, γc(G) = n− εT.

Note that given a spanning tree T of G, the set of internal nodes of T is a dominating set of
T, and thus of G by extension. Hence, γc(G) ≤ γ(T). This was first observed by Sampathkumar
and Walikar in 1979:

Proposition 2.17 ([SW79]). Let G be a connected graph, and let H be a connected spanning subgraph
of G. Then, γc(G) ≤ γc(H).

Recall that γc(G) ≥ γ(G). However, the ratio cannot be arbitrarily large:

Proposition 2.18 ([DM82]). For any connected graph G, γc(G) ≤ 3γ(G)− 2.

64 Paul Ouvrard



2.2. Price of Connectivity for domination

Proof. Let D be a minimum dominating set of G. Let C1, C2, . . . , Ck be the connected components
of G[D], and note that k ≤ γ(G). Observe that for any set T ⊆ ∪i{Ci}, the distance between T
and ∪i{Ci} \ T is at most three. Indeed, let Ci and Cj be two connected component minimizing
the distance between T and ∪i{Ci} \ T. Suppose that the distance between Ci and Cj is at least
four, and let P be a shortest path between Ci and Cj. Then, observe that the middle vertex
of P is not dominated by D, a contradiction. So the distance between Ci and Cj is at most
three. Hence, G[D ∪ P] has at most k − 1 connected components and |D ∪ P| ≤ |D| + 2. In
other words, adding (at most) two vertices is enough to decrease the number of connected
components by at least one. Therefore, one can iteratively apply this argument and obtain a
connected dominating set D′ such that D ⊆ D′ and |D′| ≤ |D|+ 2k− 2 ≤ 3γ(G)− 2.

Price of Connectivity for domination

Since for any graph G we have γ(G) ≤ γc(G) < 3γ(G), a natural question is the following:
how can we bound the ratio?

Definition 2.19 (PoC). Let G be a graph. PoC(G) = γc(G)/γ(G).

The price of connectivity has been originally introduced by Cardinal and Levy [Lev09,
CL10] for the VERTEX COVER problem. It has then been studied for the FEEDBACK VERTEX

SET problem by Belmonte et al. [Bv'HKP17]. Finally, the price of connectivity for domination
was formally introduced in a work by Camby and Schaudt [CS14] but research on this direction
has been done before, as discussed below.

As a corollary of Proposition 2.18, it follows that PoC(G) lies in the interval [1, 3) for any
graph G. Moreover, Camby and Schaudt [CS14] proved that this upper bound is asymptoti-
cally tight. Indeed, recall that γ(Pn) = γ(Cn) = dn/3e and γc(Pn) = γc(Cn) = n− 2. Hence,
limn→∞ γc(Pn)/γ(Pn) = limn→∞ γc(Cn)/γ(Cn) = 3. More surprisingly, it is also asymptotically
sharp in the class of (P9, C9)-free graphs. Indeed, for any k, there exists a graph Gk such (i) Gk
is (P9, C9)-free, (ii) γ(Gk) = k + 1, and (iii) γc(G) = 3k. The construction of Gk is very simple:
we just attach to each vertex of Kk a path on three vertices (see Figure 2.16 below).

Figure 2.16 – The graph G5.

Recall the following result by Zvervich and Zverovich on domination perfect graphs:

Theorem 2.20 ([ZZ95]). There exist seventeen graphs G1, G2, . . . , G17 such that the following as-
sertions are equivalent for every graph G:

(i) γ(H) = i(H) for any induced subgraph H of G;

(ii) G is (G1, G2, . . . , G17)-free.

Reconfiguration problems in graphs 65



2 – Domination in graphs

A few years later, Zverovich obtained a similar result regarding connected dominating sets.
More precisely, he proved the following:

Theorem 2.21 ([Zve03]). For every graph G, the following assertions are equivalent:

(i) γ(H) = γc(H) for any connected induced subgraph H of G;

(ii) G is (P5, C5)-free.

A (P5, C5)-free graph is called a PoC-Perfect graph. This result is the starting point of the
work initiated by Camby and Schaudt [CS14]. They proved that a graph G is (P6, C6)-free if
and only if γc(H) ≤ γ(H) + 1 holds for every connected induced subgraph H of G. They also
showed that this bound is sharp for an infinite family of (P6, C6)-free graphs with arbitrarily
large domination number. This result motivated the study of PoC-Near-Perfect graphs:

Definition 2.22 (PoC-Near-Perfect graph). A graph G is PoC-Near-Perfect with threshold t
if and only if γc(H) ≤ t× γ(H) for any connected induced subgraph H of G.

Hence, Camby and Schaudt [CS14] proved that a graph G is PoC-Near-Perfect with thresh-
old 3/2 if and only G is (P6, C6)-free. They also tried to characterize PoC-Near-Perfect graphs
with threshold two and proved the following:

Theorem 2.23 ([CS14]). Every (P8, C8)-free graph G satisfies PoC(G) ≤ 2.

However, this result is not a characterization of PoC-Near-Perfect graphs with threshold
two since γc(P8) = γc(C8) = 6 and γ(P8) = γ(C8) = 3. So these two graphs do not violate the
inequality γc(G) ≤ 2γ(G). Actually, the smallest paths and cycles with price of connectivity
larger than two are P9 and C9 since their domination number is three but their connected dom-
ination number is seven. While intensively searching for minimal connected graphs G with
PoC(G) > 2, they found the following graph H in addition to P9 and C9:

v1 v2 v3 v4

v5v6v7v8

v9 v10

Figure 2.17 – The graph H.

Camby and Schaudt [CS14] got "the strong impression that P9, C9 and H might be the only
minimal graphs with PoC larger than two". They established the following conjecture:

Conjecture 2.24. A graph G is PoC-Near-Perfect with threshold two if and only if G is (P9, C9, H)-free.

2.2.2 PoC-Near-Perfect graphs with threshold two

In the remaining of this section, we present a result from an ongoing joint work with Marthe
Bonamy, Nicolas Bousquet and Tereza Klimošová. More precisely, we prove that the Conjec-
ture 2.24 by Camby and Schaudt is true, i.e., we show the following result:

Theorem 2.25. Let G be a graph. Then PoC(G) ≤ 2 if and only if G is (P9, C9, H)-free.

66 Paul Ouvrard



2.2. Price of Connectivity for domination

Camby and Schaudt [CS14] observed that for any graph G ∈ {P9, C9, H}, we have γc(G) >
2γ(G). So we have to exclude these graphs as induced subgraphs to have price of connectivity
at most two. However, the main question was to determine whether these three graphs are the
only obstructions to get price of connectivity at most two. In the remaining, we prove that the
answer is positive, i.e., if a graph G is (P9, C9, H)-free, then PoC(G) ≤ 2. We give a proof by
contradiction. Note that we have the following useful remark:

Remark 2.26. Let H be the graph depicted in Figure 2.17. The addition of one of the following set of
edges to H creates an induced P9 or C9:

• v1v8;

• v1v10 or v8v10;

• both v1v10 and v8v10.

Proof. If v1v8 ∈ E, then v10v9v5v6v7v8v1v2v3 is an induced P9. If v1v10 ∈ E (respectively v8v10 ∈
E) then v10v1v2v3v4v5v6v7v8 (resp. v10v8v7v6v5v4v3v2v1) in an induced P9. Finally, if we have
both v1v10 ∈ E and v8v10 ∈ E, then v1v2v3v4v5v6v7v8v10v1 is an induced C9.

Let G = (V, E) be a connected (P9, C9, H)-free graph. We assume for contradiction that
γc ≥ 2γ + 1. Let D0 be a minimum dominating set of G with the fewest number of connected
components. Note that |D0| = γ and N[D0] = V. Let us denote by CC(D0) the set of con-
nected components of G[D0] and by D0

1, . . . , D0
g the connected components in CC(D0). There-

fore, |CC(D0)| = g. Since γc ≥ 2γ + 1, we have g ≥ 2. We emphasize that G does not have
a minimum dominating set with strictly less than g connected components. Moreover, as a
consequence of the proof of Proposition 2.18, we obtain the following:

Observation 2.27. For any set T ⊆ ∪i{Di}, the distance between T and ∪i{Di} \ T is at most three.

Let ` be the largest integer such that there exists a dominating set D` of G that satisfies the
following properties:

• G[D`] has g− ` connected components;

• |D`| ≤ γ + `;

• there exists an increasing function f that maps every connected component of D` to a
non-empty set of connected components of D0.

More formally, we want a function f satisfying the following properties:

• Codomain: for every D`
j ∈ CC(D`), f (D`

j ) ⊆ 2CC(D0) \ {∅};

• Injective property: for every D0
i ∈ CC(D0), there exists a unique connected component

D`
j of CC(D`) such that f (D`

j ) contains D0
i ;

• Size constraint: for every D`
j ∈ CC(D`), |D`

j | ≤ (∑D0
i ∈ f (D`

j )
|D0

i |) + | f (D`
j )| − 1;

• Increasing property: for every D`
j ∈ CC(D`),

⋃
D0

i ∈ f (D`
j )

N[D0
i ] ⊆ N[D`

j ].

Let us now give a less formal definition of the function f for the sake of intuition. For a
more algorithmic point of view, we can think about f as follows: if there exist q ≥ 2 connected
components of D0, without loss of generality D0

1, . . . D0
q , such that there exists X ⊆ V satisfy-

ing the following properties: (i) G[X] is connected, (ii) |X| ≤ (∑
q
i=1 |D0

i |) + (q − 1), and (iii)⋃q
i=1 N[D0

i ] ⊆ N[X], then we replace D0
1, . . . D0

q by X. We set f (X) =
⋃q

i=1 D0
i . Therefore, to get

D`, we apply as many times as possible the previous procedure. Note that we decreased by at
least one the number of connected components.

Reconfiguration problems in graphs 67



2 – Domination in graphs

Let D`
i be a connected component of D`, and let D0

j ∈ f (D`
i ). Note that we do not have

necessarily D0
j ⊆ D`

i . However, N[wk] ⊆ N[D`
i ] must hold, for every wk ∈ D0

j .

Among all the dominating sets satisfying the four properties above, we pick one of smallest
size, and write for short D = D`. Note that we possibly have ` = 0. Again, since γc ≥ 2γ + 1,
we have ` ≤ g− 2. Let us denote by D1, . . . , Dg−` the connected components of G[D].

We define the following two useful notions:

Definition 2.28 (Relevant set). A set S ⊆ V \D is relevant if G[D∪ S] has at most g− `− |S|
connected components.

By maximality of `, there is no relevant set. In particular, the following holds:

Observation 2.29. For every 1 ≤ i 6= j ≤ g− `, N(Di) ∩ N(Dj) = ∅.

Definition 2.30 (Semi-relevant set). A set S ⊆ V \D is semi-relevant if G[D∪ S] has at most
g− `− |S|+ 1 connected components.

By Observations 2.27 and 2.29, every Di is incident to a semi-relevant set of size two.

Proposition 2.31. Let S ⊆ V be a semi-relevant set. Then, G[S] is connected.

Proof. Assume for the sake of contradiction that G[S] is not connected, and let S1, . . . , Sk be the
connected components of G[S]. Since G does not contain any relevant set, each Si is (in the best
case) a semi-relevant set and thus G[D∪ Si] has at most g− `− |Si|+ 1 connected components.
Therefore, the total number of connected components of G[D ∪ S] = G[D ∪ S1 ∪ . . . ∪ Sk] is at
most g− `− |S1| − . . .− |Sk|+ k = g− `− |S|+ k which is larger than g− `− |S|+ 1 since k is
at least two, a contradiction.

Definition 2.32 (Action of a set). Given a semi-relevant set S, we can define its action A(S)
as the set of connected components of G[D] that it is adjacent to.

Then, we have the following observation:

Observation 2.33. Given a semi-relevant set S, every vertex in S is adjacent to a unique connected
component in A(S), and conversely.

Proof. First, observe that no vertex in S is adjacent to two (or more) connected component of
A(S) otherwise we get a contradiction with the maximality of `. On the other hand, each vertex
in S is adjacent to at least one connected component of A(S). Indeed, if S contains a vertex v
without any neighbor in A(S), then S must contain a vertex with at least two neighbors in A(S)
since adding S to D decreases by at least |S| − 1 the number of connected components, which
is not possible.

On the other hand, it is clear that every component of A(S) is adjacent to at least one vertex
in S. Let wi be a vertex of a connected component Di ∈ A(S), and let vi be a neighbor of wi in
S. We claim that vi is the only neighbor of wi in S, i.e., N(wi) ∩ S = {vi}. Suppose that there
exists another vertex vj ∈ S (with j 6= i) such that wivj ∈ E. Then, if vj is adjacent to another
connected component Dj ∈ A(S), we get a contradiction with the choice of `. However, since
vj is only adjacent to Di which is already spanned by vi, we get a contradiction with the fact

68 Paul Ouvrard



2.2. Price of Connectivity for domination

vS1S vS2

vS3

D3

w3u3

x

w1

y

D1

D4

w2

D2 u2

Figure 2.18 – The vertex x is 4-linking for S.

that G[D ∪ S] has at most g− `+ 1 connected components. As a consequence, every connected
component of A(S) is adjacent to exactly one vertex in S. The conclusion follows.

It follows from Observation 2.33 that there exists a bijection between S and A(S). In par-
ticular, |S| = |A(S)|. As a consequence, we get the following:

Proposition 2.34. For every semi-relevant set S, there exists a connected component Di such that
Di 6∈ A(S).

Proof. By contradiction. Suppose that there exists a semi-relevant set S with A(S) =
⋃g−`

i=1 Di.
We consider the set D ∪ S which is a connected dominating set of G since we assumed that S
spans all the connected components of G[D]. Besides, |D ∪ S| = |D|+ |S| = |D|+ |A(S)| ≤
γ + g− ` ≤ 2γ, which contradicts the fact that γc ≥ 2γ + 1.

All along the proof, for every semi-relevant set S and for every Di ∈ A(S), we refer to the
vertex of S adjacent to Di as vS

i . We drop the exponent when there is no ambiguity.

Useful definitions. A semi-relevant set S is p-maximal if Dp 6∈ A(S) and there is no semi-
relevant set S′ such that |S′| ≤ |S|+ 1 and A(S) ∪ Dp ⊆ A(S′).

Definition 2.35 (Maximal semi-relevant set). A semi-relevant set S is maximal if its action
is inclusion-wise maximal among all actions of semi-relevant sets with one more element. More
formally, a semi-relevant set S is maximal if, for every semi-relevant set S′ such that A(S) (
A(S′), we have |S′| ≥ |S|+ 2.

For every semi-relevant set S and for every Dj 6∈ A(S), a vertex x 6∈ S ∪ D is j-linking for S
if there is Di ∈ A(S) such that x has a neighbor in Di and a neighbor in the neighborhood of
Dj, i.e. x is at distance two from Dj (see Figure 2.18). For every semi-relevant set S, we say that
a vertex x 6∈ S ∪ D is linking for S if there is some j such that x is j-linking for S. In other words,
the vertex x is linking for S if it has a neighbor y such that {x, y} is a semi-relevant set with
action A({x, y}) = {Di, Dj}. We can now rephrase Observation 2.27:

Observation 2.36. Every maximal semi-relevant set S admits a linking vertex for S.

Proof. Let S be a maximal semi-relevant set. By Proposition 2.34, S does not span all the con-
nected components of G[D]. Among all connected components that do not belong to A(S), at
least one of them is at distance exactly three from some Di ∈ A(S) by Observation 2.27. Hence,
the vertex in this path incident to Di is a linking vertex for S.

Reconfiguration problems in graphs 69



2 – Domination in graphs

Lemma 2.37. For every semi-relevant set S, for every Di ∈ A(S), there exists a vertex ui ∈ N[Di]
such that ui /∈ N[S] and there exists a vertex wi ∈ Di ∩ N(S) incident to ui.

Proof. By contradiction. If S dominates N[Di] then we consider D′ = (D∪ S) \Di. It is clear that
D′ is a dominating set of G. Besides, |D′| ≤ |D|+ |S| − 1 since |Di| ≥ 1 and G[D′] has at most
g− `− |S|+ 1 connected components. Therefore, we get a contradiction with the maximality
of `.

Note that wi can only be adjacent to a single vertex vi of S by Observation 2.33, which is the
one incident to Di. All along the proof wi and ui are vertices such that vi, wi, ui is an induced P3
that satisfies Lemma 2.37. Similarly, we obtain the following observation:

Observation 2.38. For any 1 ≤ i 6= j ≤ g − ` and for any two adjacent vertices x, y such that
x ∈ N(Di) and y ∈ N(Dj), there is a vertex uj ∈ N[Dj] that does not belong to N({x, y}) but has a
common neighbor wj ∈ Dj with y.

Proof. This is a direct consequence of Lemma 2.37 since {x, y} is a semi-relevant set.

Lemma 2.39. Let S be a j-maximal semi-relevant set and let x be a vertex that is j-linking for S. Let
p be the index such that Dp ∈ A(S) and x ∈ N(Dp). We have that xvS

p ∈ E. Moreover, there is an
index q such that vS

q lies in a different connected component of G[S ∪ {x} \ {vS
p}] than x and some

vertex uq in N[Dq] that does not belong to N(S∪ {x, y}) (where y is a neighbor of x incident to Dj)
but has a common neighbor wq ∈ Dq with vS

q .

Proof. We first prove that there is an index q such that vS
q is in a different connected component

of G[(S ∪ {x}) \ {vS
p}] than x, and that there exists a vertex uq in N[Dq] at distance two from vS

q
that does not belong to N(S ∪ {x, y}). By contradiction, assume that for every index q, either
vS

q ∈ (S ∪ {x}) \ {vS
p} is in the connected component of x, or N[Dq] ⊆ N(S ∪ {x, y}). Let C

be the connected component of x in G[(S \ {vS
p}) ∪ {x}]. Let U = C \ {x} and T = S \U. For

every index q such that vS
q ∈ T, we apply Lemma 2.37 and obtain a vertex uq. We then note

that S′ = (S \ T \ {vS
p}) ∪ {x, y} ∪ {uq | vS

q ∈ T} is a semi-relevant set that contradicts the
j-maximality of S. Therefore, an index q and a vertex uq as desired exist.

We then apply Observation 2.38, and get a vertex uj at distance three from x. Note that due
to j-maximality of S, uj has no neighbor in S. It follows that uqwqvqvpwpxywjuj is an induced
P9 or C9, depending on the presence of the edge uquj.

By Proposition 2.34, G does not contain a semi-relevant set whose action covers all the con-
nected components of G[D]. Nevertheless, we show in what follows that starting from any
maximal semi-relevant set S, there exists a semi-relevant set S′ that shares exactly one con-
nected component with S and such that A(S)∪ A(S′) =

⋃g−`
i=1 Di = D. Note that the connectiv-

ity of G[D ∪ S ∪ S′] is ensured since A(S) ∩ A(S′) 6= ∅.

In the remaining of the proof, given a semi-relevant set S and a connected component Di ∈
A(S), we refer to the vertex of Di adjacent to vS

i as wi. Furthermore, we apply Lemma 2.37 for
every Di ∈ A(S) and denote by ui the vertex in N[Di] adjacent to wi and without any neighbor
in S. Let Dj be a connected component such that Dj 6∈ A(S). Observe that for any 1 ≤ i ≤ g− `,
the vertex ui is not adjacent to any vertex uj ∈ N(Dj). Indeed otherwise, when uiuj is an edge,
ui is j-linking for S and thus uivS

i ∈ E by Lemma 2.39, a contradiction.

70 Paul Ouvrard



2.2. Price of Connectivity for domination

Lemma 2.40. Let S be a j-maximal semi-relevant set and let x be a vertex that is j-linking for S. Let
p be the index such that Dp ∈ A(S) and x ∈ N(Dp). Then, there exists an induced path on four
vertices P starting from vS

p such that P ∩ {x} = ∅ and the only edge between a vertex in P and x
is xvS

p. Moreover, we have P ⊆ S ∪ A(S) or the three first vertices of P are in S ∪ A(S) and the last
one is a vertex ui.

Proof. First, observe that xvS
p ∈ E by Lemma 2.39 since x is j-linking for S. Assume by contra-

diction that P does not exist. So for any neighbor vS
i ∈ S of vS

p, we have xvS
i ∈ E or xui ∈ E (or

both) otherwise vS
pvS

i wiui would be an induced P4 as desired. Let y be a neighbor of x such that
y ∈ N(Dr). If NS(vS

p) ⊆ N(x), then S′ = (S \ {vS
p}) ∪ {x, y} is a semi-relevant set that contra-

dicts the r-maximality of S. We denote by N(vS
p, x̄) the neighbors of vS

p in S that are not adja-
cent to x, i.e., N(vS

p, x̄) = {vS
i | vS

i ∈ NS(vS
p) and xvS

i 6∈ E}. Observe that N(vS
p, x̄) 6= ∅. We let

U = {ui | vS
i ∈ N(vS

p, x̄)} and note that U ⊆ N(x). Let S∗ = (S \ (N(vS
p, x̄)∪ {vS

p}))∪U ∪ {x, y}
and note that |S∗| = |S|+ 1 since |N(vS

p, x̄)| = |U|. If G[S∗] is connected, we are done because
S∗ is a semi-relevant set that contradicts the r-maximality of S. Hence, one can assume that
G[S∗] is not connected. Let C be the connected component of x in G[S∗] and let v be a vertex
in S∗ \ C. Recall that S∗ \ S = U ∪ {x, y} and U ∪ {y} ⊆ N(x). It follows that v 6∈ U ∪ {x, y}
and thus v ∈ S. Therefore, we refer to v as vS

j , with j 6= i. Besides, observe that each vertex in
NS(vS

p) ∩ S∗ belongs to C. Since G[S] is connected, let us consider a shortest path P′ between
vS

p and vS
j in G[S] and note that the length of P′ is at least two since vS

pvS
j 6∈ E. Since vS

j 6∈ C,
no vertex of P \ {vS

p} is adjacent to x. If |P′ ∩ S| ≥ 4, we set P to be the subpath of P′ of length
three starting in vS

p, and observe that P ⊆ S, as desired. Otherwise, |P′ ∩ S| = 3 and we set P to
be the concatenation of P′ with wj. In that case, P ⊆ S ∪ A(S), and the conclusion follows.

We are now ready to prove the following lemma:

Lemma 2.41. For every maximal semi-relevant set S, there is a semi-relevant set S′ that satisfies the
following two properties:

(i) A(S) ∪ A(S′) =
⋃g−`

i=1 Di;

(ii) |A(S) ∩ A(S′)| = 1.

Proof. Let S be a maximal semi-relevant set. We consider a semi-relevant set S′ of maximal size
under the condition that |A(S) ∩ A(S′)| = 1. Note that |A(S′)| ≥ 2 since S admits a linking
vertex by Observation 2.36. Moreover, since S′ is a semi-relevant set, we have |S′| = |A(S′)|
by Observation 2.33 and thus |S′| ≥ 2. If Property (i) is satisfied, the conclusion holds. We
can therefore assume that A(S) ∪ A(S′) (

⋃g−`
i=1 Di. We assume without loss of generality that

A(S) ∩ A(S′) = {D1}, and note that vS
1 vS′

1 ∈ E by Lemma 2.39. We emphasize that the size of
S′ is maximal under |A(S) ∩ A(S′)| = 1, and not A(S) ∩ A(S′) = {D1}. In other words, there
is no semi-relevant set S′′ such that |S′′| > |S′| and |A(S) ∩ A(S′′)| = 1.

By Observation 2.27, there is an index p with Dp ∈ A(S) ∪ A(S′) such that S or S′ (or
both) has a linking vertex x adjacent to Dp. The vertex x has a neighbor y adjacent to Dr 6∈
A(S) ∪ A(S′). Observe that {x, y} is a semi-relevant set. Hence, xywrur is an induced P4 by
Lemma 2.37. Note that due to the maximality of `, S is r-maximal. Moreover, we claim that S′

is r-maximal. Let S′′ be a semi-relevant set such that |S′′| ≤ |S′|+ 1 and A(S′)∪ {Dr} ⊆ A(S′′).
So we have |S′|+ 1 ≥ |S′′| = |A(S′′)| ≥ |A(S′)|+ 1. Since there is no relevant set, we actually
have |A(S′′)| = |A(S′)|+ 1 and thus A(S′′) = A(S′) ∪ {Dr}. So |A(S′′) ∩ A(S)| = |(A(S′) ∪
{Dr}) ∩ A(S)| = |A(S′) ∩ A(S)| = 1 since A(S′) et {Dr} are disjoint. So S′′ is a semi-relevant

Reconfiguration problems in graphs 71



2 – Domination in graphs

y

wr

ur

vS
′

1
vS

′
j

wj

x

wl

S S ′
vSi

vS1

vSl
P

(a)

y

wr

ur

vS
′

1
vS

′
j

wj

x

S S ′
vS1

vS3

u3

w3
vS4

w4

P

(b)

Figure 2.19 – Illustration for the proof of Case 1 of Lemma 2.41

set that satisfies |A(S) ∩ A(S′′)| = 1 and that contradicts the maximality of S′. Hence, S′ is
r-maximal. We consider the following three different cases depending on whether x is linking
for S, S′ or both.

Case 1. If p = 1, i.e., if x is r-linking for both S and S′ (this case is illustrated on Figure 2.19a).

By Lemma 2.39, we have xvS
1 ∈ E since S is r-maximal and x is r-linking. Similarly, xvS′

1 ∈ E.
Moreover, since S (respectively S′) is r-maximal, wr, ur and y have no neighbor in S (resp. S′).
By Lemma 2.40, there exists an induced path P on four vertices, starting from vS′

1 such that
vS′

1 is the only vertex of P adjacent to x. Moreover, this path is in G[S′ ∪ A(S′)]. Let us denote
P = vS′

1 vS′
j wjuj in the remaining of the proof of Case 1.

Suppose first that vS
1 has a neighbor vS

i ∈ S which is neither adjacent to x nor to vS′
1 . Then

urwryxvS′
1 vS′

j wjuj is an induced H with antenna vS
1 vS

i . On the other hand, if vS
1 has a neighbor in

S, let us say vS
l , which is adjacent to both x and vS′

1 , we also get an induced H but with antenna
vS

l wl . See Figure 2.19a for an illustration of these two cases where P ⊆ S′ ∪ A(S′) since P ends
with wj ∈ Dj. Therefore, the neighborhood of vS

1 in S can be partitioned into two subsets:

• Nx, the neighbors of vS
1 (in S) adjacent only to x but not vS′

1 , i.e., Nx = {vS
i | vS

i ∈ NS(vS
1)∩

NS(x) and vS
i vS′

1 6∈ E};

• N1, the neighbors of vS
1 (in S) adjacent only to vS′

1 but not x, i.e., N1 = {vS
i | vS

i ∈ NS(vS
1) ∩

NS(vS′
1 ) and xvS

i 6∈ E}.

Observe that Nx (resp. N1) is not empty otherwise (S \ {vS
1}) ∪ {x, y} (resp. (S \ {vS

1}) ∪
{vS′

1 , vS′
i }) would be a semi-relevant set that contradicts the maximality of S. Besides, we claim

that Nx and N1 are complete to each other, meaning that for any pair u, v of vertices with u ∈ Nx
and v ∈ N1, we have uv ∈ E. Assume by contradiction that there exist two vertices vS

3 ∈ N1 and
vS

4 ∈ Nx such that vS
3 vS

4 is not an edge. By Lemma 2.39, there exists an index q such that vS
q is not

in the connected component that contains x in G[(S \ {vS
1}) ∪ {x}] and a vertex uq at distance

two from vS
q with no neighbor in S ∪ {x, y}. We claim that q = 3, i.e., vS

q is a neighbor of vS
1 .

Indeed, consider a shortest path P (thus of length at least two) in G[S] between vS
q and vS

1 . Since
vS

q is not in the connected component of x in G[(S \ {vS
1}) ∪ {x, y}] and xvS

4 ∈ E, no vertex of P
is adjacent to vS

4 or x. Hence, wqPxywrur is an induced H with antenna vS
4 w4, a contradiction.

So vS
q = vS

3 . But then u3w3vS
3 vS

1 xywrur is an induced H with antenna vS
4 w4, a contradiction

(see Figure 2.19b).

As a result, since Nx is not empty, the set S∗ = (S \ {vS
1}) ∪ {x, y} is a semi-relevant set that

contradicts the maximality of S.

72 Paul Ouvrard



2.2. Price of Connectivity for domination

Case 2. If x is r-linking but only for S′ and not S.

First, recall that Dp ∈ A(S′) \ A(S) and x ∈ N(Dp). Since S is maximal, there is no edge
between a vertex in S and x (otherwise the set S ∪ {x} would contradict the p-maximality of
S). Let us consider a shortest path P in G[S′ ∪ {x, vS

1}] between x and vS
1 . Note that this path

exists since we have xvS′
p ∈ E, G[S′] is connected and vS

1 vS′
1 ∈ E by Lemma 2.39. Note that

the length of P is at least two as xvS
1 6∈ E. Moreover, note that since P is a (shortest) path of

G[S′ ∪ {x, vS
1}] that ends in vS

1 , vS
1 is the only vertex of S that belongs to P. Moreover, the only

possible edge between vS
1 and a vertex in S′ is vS

1 vS′
1 by maximality of S. So the neighbor of vS

1
in P is vS′

1 . By Lemma 2.40, there exists an induced path P′ on four vertices, starting from vS
1

and such that vS
1 is the only vertex of P′ adjacent to a vertex in S′, which is vS′

1 . Moreover, we
have |P′ ∩ S| ∈ {3, 4}. If P′ ⊆ S, we consider P′Pywrur which is an induced P9. Otherwise,
wiP′Pywrur is an induced P9 (see Figure 2.20).

y
wr

ur

vS
′

1

x

S S ′
vS1vSi

Pwi

P ′

Figure 2.20 – Illustration for the proof of Case 2.

Case 3. If x is r-linking but only for S and not S′ (and thus p 6= 1).

We claim that there exists a path P on four vertices starting from vS′
1 such that vS′

1 is the only
vertex of P adjacent to x (if xvS′

1 ∈ E). Since x is not r-linking for S′ in this case, we cannot
directly apply Lemma 2.40. However, note that the proof is very similar. Suppose that P does
not exist. As in the proof of Lemma 2.40, we denote by N(vS′

1 , x̄) the neighbors (in S′) of vS′
1

which are not adjacent to x, i.e., N(vS′
1 , x̄) = NS′(vS′

1 ) \ N(x). First, note that N(vS′
1 , x̄) is not

empty, otherwise S′′ = (S′ \ {vS′
1 }) ∪ {x, y} would be a semi-relevant set that satisfies Property

(ii) since A(S′′) = (A(S′) \ {D1}) ∪ {Dp, Dr} and that contradicts the fact that the size of S′

is maximal under |A(S′) ∩ A(S)| = 1. Let U = {ui | vS′
i ∈ N(vS′

1 , x̄)} and note that xui ∈ E.
Indeed, otherwise vS′

1 vS′
i wiui would be an induced P4 since vS′

i is a neighbor of vS′
1 not adjacent

to x by definition of U. We then consider S∗ = (S′ \ (N(vS′
1 , x̄) ∪ {vS′

1 })) ∪U ∪ {x, y} and note
that |S∗| = |S′| + 1. If G[S∗] is connected, S∗ is a semi-relevant set that satisfies Property (ii)
since A(S∗) = (A(S′) \ D1) ∪ {Dp, Dr} that contradicts the fact that the size of S′ is maximal
under |A(S) ∩ A(S∗)| = 1. Therefore, G[S∗] is not connected. So there exists a vertex vS′

j which
is not in the connected component of x in G[S∗], and we obtain the desired induced P4 similarly
as in the proof of Lemma 2.40. Note that every vertex in P belongs to S′ ∪ Dj with Dj ∈ A(S′).
Therefore, the only vertex of P which can be adjacent to a vertex in S is vS′

1 . We assume moreover
that P ends with a vertex wj ∈ Dj with Dj ∈ A(S′). Let vS′

2 be the neighbor of vS′
1 in P. Hence,

vS′
1 is 2-linking for S and P = vS′

1 vS′
2 vS′

j wj.

Claim 1. xvS
1 is not an edge.

Proof. Assume by contradiction that xvS
1 ∈ E. If xvS′

1 is not an edge, then urwryxvS
1 vS′

1 vS′
2 vS′

j wj is

an induced P9 or C9. Hence, one can assume that xvS′
1 ∈ E. It follows that vS

1 xvS′
1 is a triangle.

Let vS
i ∈ NS(vS

1). If vS
i is not adjacent to x and vS′

1 , then urwryxvS′
1 vS′

2 w2u2 is an induced H with
antenna vS

1 vS
i . On the other hand, if vS

i is adjacent to both vS′
1 and x, then urwryxvS′

1 vS′
2 vS′

j wj is

Reconfiguration problems in graphs 73



2 – Domination in graphs

vS
′

1

vS
′

2

w2

xw4

S S ′vS1
vS3

u2

vS4
w3

u4

Figure 2.21 – Case 3 of Lemma 2.41: q = 4.

an induced H with antenna vS
i wi. So as in the proof of Case 1, we partition the neighborhood of

vS
1 in S into two subsets. We use the same notation and denote by Nx (resp. N1) the neighbors

of vS
1 in S which are only adjacent to x (resp. vS′

1 ) and not vS′
1 (resp. x). We claim that Nx and

N1 are complete to each other. Indeed, suppose that there exist vS
3 ∈ N1 and vS

4 ∈ Nx such
that vS

3 vS
4 6∈ E. By Lemma 2.39, there exists an index q such that vS

q lies in a different connected
component of G[(S \ {vS

1}) ∪ {vS′
1 }] than vS′

1 and a vertex uq at distance two from vS
q with no

neighbor in S ∪ {vS′
1 , vS′

2 }. Note that q 6= 3 since vS
3 vS′

1 ∈ E. If q = 4, then we are done since
u4w4vS

4 vS
1 vS′

1 vS′
2 w2u2 is an induced H with antenna vS

3 w3 (see Figure 2.21). So one can assume
that q 6= 4. We claim that vS

q is at distance at least two from vS
1 . Indeed, suppose that vS

1 vS
q ∈ E.

Since vS
q is not in the connected component of vS′

1 (and thus vS
3 ), we have vS

q vS
3 ∈ E and thus

this case is the same as q = 4. So vS
1 vS

q ≥ 2. Let us consider a shortest path P′ between vS
q and

vS
1 in G[S]. Since vS

q is not in the connected component of vS′
1 , there is no edge between vS′

1 and
a vertex in P \ {vS

1}. Due to the maximality of S, no vertex of P is adjacent to vS′
2 or vS′

j . So

uqwqPvS′
1 vS′

2 vS′
1 wj is an induced P9 (uqwj 6∈ E by maximality of `), a contradiction. ♦

First assume that xvS′
1 is not an edge. Then, consider a shortest path P between x and vS′

1 in
G[S ∪ {x, vS′

1 }]. Hence, the only vertices in P but not in S are precisely x and vS′
1 . Note that P

exists since x is adjacent to vS
p ∈ S, vS

1 vS′
1 ∈ E and G[S] is connected. Moreover, the length of P

is at least two since xvS′
1 6∈ E. So urwryPvS′

2 vS′
1 wj is an induced P9, a contradiction. Hence, in the

remaining of this proof, we assume that xvS′
1 ∈ E.

We claim that there exists a path P′ on four vertices, starting from a vertex vS
i ∈ {vS

1 , vS
p} and

such that vS
i is the only vertex of P′ adjacent to {x, vS′

1 }. Here again, the proof is very similar
to the one of Lemma 2.40. However, let us briefly explain it. Assume by contradiction that the
statement does not hold. Observe that this implies that for each vertex vS

j ∈ NS(vS
1) ∪ NS(vS

p),

either vS
j has a neighbor in {x, vS′

1 } or uj does. Let T = {vS
j | vS

j ∈ NS(vS
1) ∪ NS(vS

p) and xvS
j 6∈

E}, and U = {uj | vS
j ∈ T}. We then consider the set S∗ = (S \ ({vS

p, vS
1} ∪ T)) ∪ {x, y, vS′

1 } ∪ U.
If G[S∗] is connected, we get a contradiction with the maximality of S since |S∗| = |S|+ 1 and
A(S) ( A(S∗). So G[S∗] is not connected. Note that since xvS′

1 ∈ E, x and vS′
1 are in the same

connected component of G[S∗], let us say C. Let v be a vertex of S∗ which is not in C. Recall that
S∗ \ S = U ∪ {x, y, vS′

1 } and U ⊆ N(x) ∪ N(vS′
1 ). Therefore, we have v ∈ S and we denote v by

vS
j . Moreover, (NS(vS

p) ∪ NS(vS
1)) ∩ S∗ ⊆ N(x) ∪ N(vS′

1 ) so vS
j is at distance at least two from vS

1

and vS
p. Any path P′′ from vS

j to vS
p and vS

1 avoids both x and vS′
1 . And there is no edge between

a vertex of P′′ and a vertex in {x, vS′
1 } since vS

j is not in C. Hence, the concatenation of wj with
P′′ gives us P′, as desired. We consider different cases depending on the value of i:

74 Paul Ouvrard



2.2. Price of Connectivity for domination

• if vS
i = vS

p, i.e., if the starting point of P′ is vS
p. If vS

pvS′
1 ∈ E, P′P is an induced H with

antenna xy. Otherwise, P′xP is an induced P9. See Figure 2.22a.

• if vS
i = vS

1 , i.e., the starting point of P′ is vS
1 . Recall that by Claim 1, xvS

1 is not an edge.
Therefore, urwryxvS′

1 P′ is an induced P9. See Figure 2.22b.

P ′′

y

wr

ur

vS
′

1
vS

′
j

wj

x

wj

S S ′vSp
vSj

P

(a)

P ′′

y

wr

ur

vS
′

1
vS

′
j

wj

x

wj

S S ′vS1vSj

(b)

Figure 2.22 – Illustration for the proof of Case 3 of Lemma 2.41.

So in all the cases we obtain a contradiction. This concludes the proof of Lemma 2.41.

Let S be a maximal semi-relevant set. By Lemma 2.41, there exists a semi-relevant set S′ such
that A(S) ∪ A(S′) = ∪i{Di} = D and |A(S) ∩ A(S′)| = 1. We then consider D′ = D ∪ S ∪ S′

which is a connected dominating set of G since it contains D and each connected component of
G[D] has a neighbor in S ∪ S′. Moreover, we have:

|D′| = |D|+ |A(S)|+ |A(S′)|
= |D|+ |A(S) ∪ A(S′)|+ 1 By Property (ii)
= |D|+ g− `+ 1 By Property (i)
≤ γ + `+ g− `+ 1
= γ + g + 1

Therefore, it follows that g = γ otherwise we get that γc ≤ 2γ, a contradiction. In other
words, |D0

i | = 1 for every 1 ≤ i ≤ g. For every i, we denote by xi the unique vertex in D0
i . In

the remaining of the proof, we assume without loss of generality that A(S) ∩ A(S′) = {D1}.

Lemma 2.42. We have |D1| = 1.

Proof. Suppose that |D1| > 1 and let k1 = | f (D1)|. Since 1 < |D1| ≤ 2k1− 1, we get that k1 ≥ 2.
Besides, it follows from the definition of D1 that |D1| = 2k1 − 1 otherwise D ∪ S ∪ S′ would be
a connected dominating set of size at most 2γ. Indeed, suppose that |D1| < 2k1− 1 and let ki =

| f (Di)|, for every 2 ≤ i ≤ g− `. Note that ∑
g−`
i=1 ki = γ. Then, |D| = ∑

g−`
i=1 |Di| < 2γ− (g− `)

and thus |D ∪ S ∪ S′| < 2γ− g + `+ g− `+ 1 ≤ 2γ, a contradiction.

In the remaining of this proof, we denote k = k1 for short and we consider f (D1) =
{x1, . . . , xk}. Let X = (D \ D1) ∪ S ∪ S′. We first recall that:

• D0 is a minimum dominating set;

• D0 induces an independent set;

Reconfiguration problems in graphs 75



2 – Domination in graphs

• N[xi] ⊆ N[D1] for every xi ∈ f (D1) due to the increasing property of f .

Recall also that |S′| ≥ 2. Therefore, there exists vS′
2 ∈ NS′(vS′

1 ) such that vS
1 vS′

2 6∈ E since S
is a maximal semi-relevant set. Moreover, vS

1 vS′
1 ∈ E by Lemma 2.39 since vS′

1 is 2-linking for S.
By Lemma 2.40, there exists a path P on four vertices starting from vS

1 such that vS
1 is the only

vertex of P adjacent to vS′
1 . Moreover, we have either P ⊆ S ∪ A(S), or the first three vertices of

P are in S ∪ A(S) and the last one is a vertex ui, with Di ∈ A(S). In the remaining of this proof,
we assume that P ends with u3 ∈ N[D3], with D3 ∈ A(S). We claim that the concatenation of P
with vS′

1 vS′
2 w2u2 is an induced P8. By maximality of S, vS′

2 has no neighbor in P ∩ S. Moreover,
vS′

2 has no neighbor in D3 by maximality of `, and neither vS′
2 u3 ∈ E nor u2vS′

3 ∈ E (otherwise
u3 would be 2-linking for S and we would have u3vS

3 ∈ E by Lemma 2.39, a contradiction). By
maximality of S and `, w2 (resp. u2) has no neighbor in S ∪ N[A(S)] (resp. S ∪ A(S)).
Claim 1. For every 1 ≤ i ≤ k, there exist ti ∈ N[X] and ri ∈ N[ti] such that N[xi] ⊆ N[X ∪
{ti, ri}].
Proof. We consider several cases depending on the distance from xi to X. First, observe that if
xi ∈ X, one can pick ti = ri = xi. If dist(xi, X) = 1, we choose ti to be a neighbor of xi in X
and ri to be xi. If dist(xi, X) = 2, we let ri = xi, and ti to be a neighbor of xi adjacent to a vertex
in X. Since in all cases {ri, ti} contains xi, we have N[xi] ⊆ N[X ∪ {ri, ti}] and the conclusion
follows. So one can now assume that dist(xi, X) ≥ 3.

Recall that since xi ∈ f (D1), xi ∈ N[D1]. Recall also that both vS
1 and vS′

1 have a neighbor
in D1 (which might be the same). Since G[D1] is connected, let us consider a path P′ in G[D1 ∪
{xi, vS

1 , vS′
1 }] between xi and the vertex in {vS

1 , vS′
1 } that minimizes the distance. In other words,

if dist(xi, vS
1) ≤ dist(xi, vS′

1 ), then P′ is between xi and vS
1 . Otherwise, P′ is between xi and vS′

1 .
Note that P′ must be a shortest path, and the length of P′ is at least three. Let P′ = a1a2 · · · ak−1ak
(with k ≥ 4) where a1 = xi, {a2, a3, . . . ak−1} ⊆ D1, and ak ∈ {vS

1 , vS′
1 }. Then, we obtain the

following:

• neither vS
1 nor vS′

1 has a neighbor in {a1, a2, . . . , ak−2} since P′ minimizes the distance be-
tween xi and {vS

1 , vS′
1 };

• since dist(a1, X) ≥ 3, a1 has no neighbor in {u3, w3, vS
3 , vS

1 , vS′
1 , vS′

2 , w2, u2};

• since w2 ∈ D2, w3 ∈ D3 and {a2, a3, . . . , ak−1} ⊆ D1, neither w2 nor w3 has a neighbor in
the set {a2, a3, . . . , ak−1};

• since {a2, a3, . . . , ak−1} ⊆ D1, P \ {w3} ⊆ S ∪ {u3} and ` is maximal, there is no edge
between a vertex in (P \ {w3}) ∪ {vS′

2 , u2} and a vertex in {a2, a3 . . . , ak−1}.

Suppose first that the length of P′ is at least four. We then consider two cases depending on
whether ak−1 is adjacent to both vS

1 and vS′
1 , or only one of them. We first consider the case where

ak−1 is adjacent to both vS
1 and vS′

1 . Then, PvS′
1 vS′

2 w2u2 is an induced H with antenna ak−1ak−2
(this case is illustrated in Figure 2.23a). So one can assume that ak−1 has exactly one neighbor in
{vS

1 , vS′
1 }. If ak−1vS

1 ∈ E (respectively ak−1vS′
1 ∈ E), then the concatenation of P′ with vS′

1 vS′
2 w2u2

(resp. P) in an induced P9. The case a5 = vS
1 is illustrated in Figure 2.23b). In both cases, we get

a contradiction.

Hence, we assume that the length of P′ is three (recall that it cannot be less than three as
dist(xi, X) ≥ 3). Let ti be the vertex of P′ at distance one from {vS

1 , vS′
1 }, and let ri be the neighbor

of xi in P′. Recall that {ti, ri} ⊆ D1. If ti is adjacent to both vS
1 and vS′

1 , PvS′
1 vS′

2 w2u2 is an induced
H with antenna tiri. So one can assume |N(ti) ∩ {vS

1 , vS′
1 }| = 1. First, observe that if X ∪ {ti, ri}

dominates N[xi], the conclusion directly follows. So one can assume that there exists a vertex

76 Paul Ouvrard



2.2. Price of Connectivity for domination

vS
′

2

a3

a2

a1 = xi

vS
′

1

u2

w2

a4

S S ′
a5 = vS1vS3

w3

P

D1

u3

(a)

vS
′

2

a3

a2

a1 = xi

vS
′

1

u2

w2

a4

S S ′
a5 = vS1vS3

w3

D1

u3

(b)

Figure 2.23 – Illustration for the proof of Claim 1 where |P| ≥ 5.

ui ∈ N[xi] with no neighbor in X∪ {ti, ri}. Since xiri ∈ E, ui 6= xi. Moreover, P∪ {vS′
1 , vS′

2 , w2} ⊆
X. But then observe that if tivS

1 ∈ E (respectively tivS′
1 ∈ E) then uixiritivS

1 vS′
1 vS′

2 w2u2 (resp.
uixiritivS′

1 P) is an induced P9 or C9 if uiu2 ∈ E (resp. uiu3 ∈ E). So N[xi] is dominated by
X ∪ {ti, ri}, as desired. This concludes the proof of Claim 1. ♦

In particular, Claim 1 implies that for any vertex xi ∈ f (D1), there exist two vertices ti and ri
such that N[xi] ⊆ N[X∪ {ti, ri}] and G[X∪ {ti, ri}] is connected. This claim is of special interest
due to the following:
Claim 2. The set D′ = (D \ D1) ∪ {x1, x2, . . . , xk} is a dominating set of G.
Proof. Suppose by contradiction that D′ is not a dominating set of G and let u be an undomi-
nated vertex. Since D \ D1 ⊆ D′ and D is dominating, we have u ∈ N[D1]. Let v be a vertex of
D0 that dominates u. Since u is not dominated by D′, v 6∈ f (D1) = {x1, x2, . . . , xk}. Due to the
injective property of f , there exists a connected component Dj with j 6= 1 such that v ∈ f (Dj).
Due to the increasing property of f , N[v] ⊆ N[Dj]. In particular, we have that u ∈ N[Dj]. But
then observe that u ∈ N[D1] ∩ N[Dj], which contradicts the maximality of ` (since j 6= 1). ♦

Recall that X = (D \ D1) ∪ S ∪ S′ and that D ∪ S ∪ S′ is a connected dominating set
of size 2γ + 1. By Claims 1 and 2, for every 1 ≤ i ≤ k, there exist ri, ti ∈ V such that (D′ \
{xi}) ∪ S ∪ S′ ∪ {ti, ri} also is a dominating set of G. So Claims 1 and 2 together imply that
for any set Y ⊆ {x1, x2, . . . xk}, there exists a set S(Y) such that (i) |S(Y)| ≤ 2 · |Y|; and (ii)
X ∪ ({x1, x2, . . . , xk} \ Y) ∪ S(Y) is a connected dominating set of G. Moreover, observe that
if Y = {x1, x2, . . . , xk}, X ∪ S(Y) is a connected dominating set of size at most 2γ + 2 (since
|D1| = 2k− 1 and |S(Y)| ≤ 2k).

Suppose first that there exists xi ∈ f (D1) such that xi ∈ X and let Y = {x1, x2, . . . , xk} \ {xi}.
Then X∪ S(Y) is a connected dominated set of size at most 2γ(G) since |S(Y)| ≤ 2k− 2 < |D1|.
So we assume that {x1, x2, . . . , xk} ∩ X = ∅.

So there exist xi, xj ∈ {x1, x2, . . . , xk} such that xivS
1 ∈ E and xjvS′

1 ∈ E. Indeed, {vS
1 , vS′

1 } ⊆
N(D1). Hence, similarly as in the proof of Claim 2 and due to the increasing property of the
function f , both vS

1 and vS′
1 must be dominated in D0 by a vertex in f (D1). Suppose first that

i 6= j, i.e., xi and xj are two distinct vertices of f (D1) at distance one from S ∪ S′. In that case,
take Y = {x1, x2, . . . , xk} \ {xi, xj}. But then X ∪ S(Y) ∪ {xi, xj} is a connected dominating of
size at most 2γ since |S(Y) ∪ {xi, xj}| ≤ 2k − 2 < |D1|, a contradiction. So one can assume
that xi = xj and thus xivS

1 vS′
1 is a triangle. If N[xi] ⊆ N[X], then X ∪ S({x1, x2, . . . , xk} \ {xi})

is a connected dominating set of size at most 2γ, a contradiction. So there exists ui ∈ N(xi)
such that ui has no neighbor in X, and thus PvS′

1 vS′
2 w2u2 is an H with antenna xiui. The only

possible missing edges are uiu2 or uiu3. But in that case, Remark 2.26 allows us to conclude (see
Figure 2.24).

Reconfiguration problems in graphs 77



2 – Domination in graphs

vS
′

2

ui

vS
′

1

u2

w2

xi

S S ′
vS1vS3

w3

P

u3

Figure 2.24 – Illustration for the proof of Lemma 2.42: the only possible missing edges are the
dotted ones.

As a result, let us denote by w1 the unique vertex of D1 = D`
1. To conclude the proof of

Theorem 2.25, we derive the same contradiction as in the proof of Lemma 2.42. More precisely,
either D′ = D \ {w1} ∪ S ∪ S′ is a connected dominating set, in which case the conclusion
follows since |D′| ≤ 2γ, or it is not. If D′ is not a connected dominating set, then we claim that
we can find a copy of a forbidden subgraph. Let u1 be a neighbor of w1 with no neighbor in
D′. First, recall that w1vS

1 vS′
1 is a triangle by Lemmas 2.39 and 2.42. Since |S′| ≥ 2, let vS′

2 be a
neighbor of vS′

1 and recall that vS′
2 has no neighbor in S due to maximality of S (vS′

2 is incident
to D`

2 /∈ A(S) and then the addition of vS′
2 to S provides a contradiction).

By Lemma 2.40, there exists an induced path P on four vertices such that only vS
1 has a

neighbor in S′ (which is vS′
1 ). So the concatenation of P with vS′

1 vS′
2 w2u2 is an induced P8. Indeed,

the only possible missing edge is u2u3, if P ends with a vertex u3 ∈ N[D3]. But in that case, u3
would be 2-linking for S′ and we would have u3vS

3 ∈ E by Lemma 2.39, a contradiction. Hence,
PvS′

1 vS′
2 w2u2 is an induced H with antenna w1u1 unless u1u2 ∈ E or u1u3 ∈ E. In all cases, we

can find an induced copy of a forbidden subgraph by Remark 2.26. This concludes the proof of
Theorem 2.25.

2.2.3 Concluding remarks

In this section, we characterized the class of PoC-Near-Perfect graphs with threshold two. One
can observe that for any k ∈ {10, 11}, PoC(Pk) < 7/3 = PoC(P9). Similarly, PoC(Ck) < 7/3 =
PoC(C9). However, PoC(P12) = PoC(C12) = 5/2. Hence, if one wants to characterize PoC-
Near-Perfect graphs with threshold 7/3 in terms of forbidden induced subgraphs, one must
exclude P12 and C12.

More generally, one can observe that P9 can be obtained from P3 (with V(P3) = {v1, v2, v3})
by (i) first subdividing each edge twice, (ii) adding two new leaves adjacent to v1 and v3, re-
spectively. Let P′ be the resulting path. The graph C9 is obtained from P′ by adding an edge
between the leaves of P′. And the graph H is obtained from P′ by adding an edge between the
neighbors of v2, and then add a new leaf adjacent to v2. These constructions can be generalized
in the following way (see Figure 2.25):

Definition 2.43. For any k ≥ 3, we define the class Tk consisting of graphs created as follows:

(i) start with any tree T with vertex set {v1, v2, . . . , vk};

(ii) subdivide each edge of T twice;

(iii) to each original leaf u of T, add a new leaf adjacent to u;

78 Paul Ouvrard



2.2. Price of Connectivity for domination

(iv) we may add edges between the neighbors of vi if vi is not adjacent to a leaf. If at some point
the subgraph induced by N(vi) becomes connected by the addition of these edges, we attach
a new leaf to vi and we do not add any more edges between vertices in N(vi);

(v) we may add a matching between the leaves of the graph obtained at step (iii).

v1v2

v3

v4

v1

v2

v3 v4

v2

v3

v4
v1

v1

v2 v3

v4

v1 v2 v3 v4

v2

v3

v4v1

Figure 2.25 – Any graph from T4 is obtained from one of these graphs by adding a (non neces-
sarily maximal) matching between the leaves.

One can prove that any graph G in Tk has domination number k and connected domination
number 3k − 2. Hence PoC(G) = 3− 2

k . We thought that the graphs in Tk were the only for-
bidden induced subgraphs to be PoC-Near-Perfect with threshold 3− 2

k−1 . More precisely, we
conjectured the following:

Conjecture 2.44. Let G be a graph. Any connected induced subgraph H of G satisfies γc(H)
γ(H)

≤ 3− 2
k−1

if and only if G does not contain any graph in Tk as an induced subgraph.

However, very recently, Klimošová and Hulcová [HK20] disproved Conjecture 2.44. Indeed,
our conjecture states that G is T4-free if and only if G is PoC-Near-Perfect with threshold t =
7/3. However, they found the following graph which is T4-free but with price of connectivity
12/5 > 7/3.

Figure 2.26 – Counterexample for Conjecture 2.44.

Reconfiguration problems in graphs 79



2 – Domination in graphs

They generalized this conjecture for any value of k in the following way. For any k ≥ 5, there
exists a graph Gk+1 with PoC(Gk+1) = 3− 3

k+1 and Gk+1 is critical (i.e., PoC(H) < PoC(Gk+1)
for any induced subgraph H of Gk+1). And this graph is Tk-free. Indeed, any graph from Tk has
price of connectivity 3− 2

k , which is larger than PoC(Gk+1) = 3− 3
k+1 and thus Gk+1 is critical.

80 Paul Ouvrard



3 Reconfiguration of
dominating sets

Contents
3.1 Connectivity of the reconfiguration graph under TAR . . . . . . . . . . . . . . . 81

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.1.2 Upper bound related to the independence number . . . . . . . . . . . . 86
3.1.3 H-minor free graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.1.4 Bounded treewidth graphs . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.1.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2 Complexity under Token Sliding . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.2.2 PSPACE-completeness results . . . . . . . . . . . . . . . . . . . . . . . . 97
3.2.3 Polynomial-time algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.2.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.3 Optimization variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.3.2 Polynomial-time (in)tractability . . . . . . . . . . . . . . . . . . . . . . . 111
3.3.3 Parameterized complexity of OPT-DSR . . . . . . . . . . . . . . . . . . 115
3.3.4 Changing the target dominating set . . . . . . . . . . . . . . . . . . . . 121
3.3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

In this chapter, we study the reconfiguration of dominating sets, mainly under token addi-
tion and removal (TAR) and token sliding (TS). The results presented are from joint work with
Nicolas Bousquet and Marthe Bonamy [BDO21], Nicolas Bousquet and Alice Joffard [BJO20],
and Alexandre Blanché, Haruka Mizuta and Akira Suzuki [BMOS20]. In Section 3.1, we con-
sider questions regarding the connectivity of the reconfiguration graph under TAR. We then
study in Section 3.2 the computational complexity of the reachability of dominating sets recon-
figuration under TS from a graph classes viewpoint. Finally, in Section Section 3.3, we mainly
investigate the parameterized complexity of an optimization variant recently introduced by Ito
et al. [IMNS19] for INDEPENDENT SET RECONFIGURATION.

3.1 Connectivity of the reconfiguration graph under TAR

3.1.1 Introduction

As we said in Section 1.5, reconfiguration problems can be studied through the lens of the
reconfiguration graph. Recall that the vertices of the reconfiguration graph are the feasible so-
lutions of an instance I of a problem Π, and two vertices (i.e., two solutions of I) are adjacent if

81



3 – Reconfiguration of dominating sets

and only if one solution can be obtained from the other by applying the specified reconfigura-
tion rule. Hence, this graph deeply depends on the choice of this rule since it defines the vertex
set as well as the adjacency between the vertices. Indeed, the reconfiguration graph under TAR
contains solutions of various sizes, while the size of each solution must remain constant un-
der TJ or TS. Hence, the reconfiguration graphs associated with the TAR rule contains more
vertices than the ones associated with TJ and TS.

Reconfiguration graph of minimum dominating sets. The first papers dealing with the re-
configuration of dominating sets focused on the reconfiguration graph under TJ. Sridharan
and Subramanaian [SS08] introduced the concept of γ-graph which corresponds to the recon-
figuration graph Rγ(G) where the vertices are the minimum dominating sets of G, and the
adjacency is defined by the token jumping rule (see Figure 3.1).

Figure 3.1 – γ-graph of the House graph under TJ (where we take into account the dashed
edges). If we remove the dashed edges, it is the γ-graph under TS.

In particular, they determined the γ-graph of cycles and paths, and proved that the γ-graph
of any tree is connected. The same authors showed that if G has at most one cycle (i.e., G is a
tree or a unicyclic graph), then G is the γ-graph of some graph. On the other hand, they proved
that any graph that contains the graph K2,3 where we add an edge between the two vertices
of degree three as an induced subgraph cannot be the γ-graph of any graph. Following this
idea, Lakshmanan and Vijayakumar [LVA10] showed that if a graph H is a γ-graph, then H is
(K2,3, K2 + P3, (K1 ∪ K2) + 2K1)-free. They also showed that the γ-graph of any cograph G has
diameter at most two. And the diameter is one if and only if G has a universal vertex. Very
recently, DeVos et al. [DDJS20] extended the concept of γ-graphs by studying the reconfigura-
tion graph of minimum d-dominating sets (i.e., a vertex dominates itself and all the vertices at
distance at most d).

In 2011, Fricke et al. [FHHH11] studied γ-graphs where the adjacency is determined by
the token sliding rule (see Figure 3.1 where we do not take into account the dashed edges). In
particular, they proved that the γ-graph of any triangle-free graph is also triangle-free. More-
over, they showed that the γ-graph of a tree is connected and bipartite. Conversely, they also

82 Paul Ouvrard



3.1. Connectivity of the reconfiguration graph under TAR

showed that any tree is the γ-graph of some graph. The latter was then extended by Connelly et
al. [CHHH11] since they proved that any graph is the γ-graph of infinitely many graphs. They
also showed that the γ-graph of graphs with at most five vertices is connected and character-
ized graphs on six vertices whose γ-graph is not connected. Edwards et al. [EMN18] investi-
gated the order, maximum degree and diameter of γ-graphs of trees. Very recently, Lemańska
and Żyliński [LŻ20] studied the diameter of γ-graphs defining by both TS and TJ. More pre-
cisely, they showed that for any tree on n vertices (n ≥ 3), the diameter of its γ-graph associated
with TJ is at most n/2, while it is at most 2(n− 1)/3 if we consider the TS rule.

k-reconfiguration graph. Haas and Seyffarth [HS14] were the first to study properties of the
reconfiguration graph where the adjacency is defined by the token addition and removal rule
with threshold k. They called this graph the k-dominating graph; we call it k-reconfiguration
graph in this manuscript and denote it by Rk(G), where G is the input graph. Recall that the
vertices ofRk(G) correspond to the dominating sets of G of size at most k. And two vertices of
Rk(G) are adjacent if and only if the size of the symmetric difference of the two corresponding
dominating sets is equal to one. Haas and Seyffarth [HS14] obtained a similar result than the
one by Kamiński et al. [KMM12] regarding the relation between the rules TAR and TJ. More
precisely, they showed that there exists a reconfiguration sequence between two dominating
sets Ds and Dt, both of size k, under the TJ rule if and only if there exists a TAR(k + 1)-sequence
between Ds and Dt. Let us give a shorter proof of this result:

Lemma 3.1. Let G be a graph and Ds and Dt be two dominating sets of G of size k. Then, there

exists a TAR(k + 1)-sequence between Ds and Dt if and only if Ds
TJ
! Dt holds.

Proof. The proof is an adaptation of the Theorem 1 of Kamiński et al. [KMM12].

(⇐) Suppose first Ds
TJ
! Dt, and let S be a TJ-sequence that reconfigures Ds into Dt. This

sequence corresponds to a sequence of moves u TJ
 v. We construct a TAR-sequence by replac-

ing each atomic move u TJ
 v with two moves of the TAR model: we first add v and then delete

u. By first adding v, we preserve the domination property. Besides, since we immediately delete
u after the addition of v, each intermediate solution is of size at most k + 1, as desired.

(⇒) For the other direction, let S′ be a TAR(k + 1)-sequence that reconfigures Ds into Dt.
Note that since |Ds| = |Dt| = k, S′ is of even length. Moreover, by hypothesis, S′ does not
contain a configuration of size more than k + 1. If all the configurations of S′ are of size k or
k + 1, this means that S′ corresponds to an alternation of an addition of a token on some vertex
v immediately followed by the deletion of a token on a vertex u. Therefore, to get a TJ-sequence,

we simply replace each of these subsequences by a move u TJ
 v. Suppose now that S′ contains

some configuration of size less than k and consider a configuration, let us say Di, of smallest
size. Since Di is a configuration of smallest size, this means that it has been obtained from Di−1
by the deletion of some vertex x. We also know that the configuration Di+1 is obtained from Di
by the addition of some vertex y. If x = y, then these two steps are redundant and can simply
be ignored. Otherwise, observe that if we first add y and then delete x, the new sequence is
still valid. If all the configurations are of size k or k + 1, we immediately obtain a TJ-sequence.
Otherwise, we can repeat this process until this is the case.

In their seminal paper, Haas and Seyffarth [HS14] showed that R2(K1,k) ' K1,k and asked
whether there are other graphs G for which Rk(G) ' G. Alikhani et al. [AFK17] answered
negatively as long as G has no isolated vertex. More precisely, if G is a graph on n vertices with
minimum degree at least one such that Rk(G) ' G (with γ(G) ≤ k ≤ n), then k = 2 and
G ' K1,n−1, for some n ≥ 4. They also showed that for any d ≥ 1, there exists a finite number

Reconfiguration problems in graphs 83



3 – Reconfiguration of dominating sets

of connected d-regular graphs which are reconfiguration graphs of connected graphs. For the
case d = 2, they proved that C6 and C8 are the only connected 2-regular graphs (i.e., cycles)
which are reconfiguration graphs of connected graphs. Moreover, P1 and P3 are the only paths
which are reconfiguration graphs of connected graphs.

The case of complete bipartite graphs K1,n (which are called star graphs) is of special interest
due to the following observation by Haas and Seyffarth:

Observation 3.2 ([HS14]). For any n ≥ 3, the graph Rk(K1,n) is connected for any 1 ≤ k ≤ n− 1.
However, if k = n, thenRk(K1,n) is disconnected.

Proof. First, observe that any dominating set of K1,n of size at most n− 1 must contain the uni-
versal vertex. So let Ds and Dt be two dominating sets of size at most n− 1. One can transform
Ds into Dt by (i) removing one-by-one each vertex in Ds \ Dt; and (ii) adding one-by-one all
the vertices in Dt \ Ds. However, note that the dominating set D containing the n degree-one
vertices is a minimal dominating set of K1,n. Since it is minimal, one cannot remove any vertex
from D. Since |D| = n (the size of the threshold we cannot exceed), we cannot add any ver-
tex to D neither. Therefore, D is frozen, i.e., it is an isolated vertex in Rn(K1,n). But the graph
Rn(K1,n) also contains the dominating sets of size at most n− 1 which are in the same connected
component of Rn(K1,n) (see Figure 3.2).

Figure 3.2 – The reconfiguration graphR3(K1,3) is disconnected.

Actually, they observed that any upper dominating set is an isolated vertex in the recon-
figuration graph RΓ(G). Hence, RΓ(K1,n) is disconnected whenever G has at least one edge.
Moreover, Observation 3.2 states that being reconfigurable is not a monotone property, i.e.,
Rk(G) being connected does not necessarily imply that Rk+1(G) also is connected. In that
context, Haas and Seyffarth [HS14] introduced a new parameter d0(G) which is the smallest
integer such that for any k ≥ d0(G), the reconfiguration graph Rk(G) is connected. Note that
this parameter is well defined as Rn(G) is always connected for any graph G with n vertices.
Indeed, given two dominating sets Ds and Dt, one can first add all the vertices of Dt \ Ds and
then remove each vertex in Ds \ Dt to transform Ds into Dt. Note that this corresponds to a
shortest transformation since at each step, we decrease by one the size of the symmetric differ-
ence |Ds4Dt|, which is the best we can hope for within the TAR model. On the positive side,
Haas and Seyffarth proved the following:

84 Paul Ouvrard



3.1. Connectivity of the reconfiguration graph under TAR

Lemma 3.3 ([HS14]). Let G be a graph. If k > Γ(G) and Rk(G) is connected, then Rk+1(G) is
connected.

Moreover, they proved that if G has at least two independent edges, then d0 ≤ min{n −
1, Γ(G) + γ(G)}. They also showed that this value can be lowered to Γ(G) + 1 if G is bipar-
tite or a chordal graph. This result is tight since K1,n is bipartite and chordal and Rn(K1,n)
is not connected. They then asked if this result can be generalized to any graph. Suzuki et
al. [SMN14] answered negatively this question by constructing an infinite family of graphs
for which RΓ(G)+1(G) is not connected. Mynhardt et al. [MTR19] improved this result by con-
structing two infinite families of graphs:

• the first construction provides graphs with arbitrary Γ ≥ 3, arbitrary domination number
in the range 2 ≤ γ ≤ Γ such that d0 = Γ + γ− 1;

• the second one gives graphs with arbitrary Γ ≥ 3, arbitrary domination number in the
range 1 ≤ γ ≤ Γ − 1 for which d0 = Γ + γ. For γ ≥ 2, this is the first construction of
graphs with d0 = Γ + γ.

Note that this lower bound is somehow the best we can hope for in the general case since
d0 ≤ min{n− 1, Γ(G) + γ(G)} holds for any graph G with at least two independent edges.

Suzuki et al. [SMN14] generalized the upper bound of n− 1 on d0 for graphs with at least
two edges by relating d0 to the size of a maximum matching of G. More precisely, they proved
that if a graph G on n vertices has a matching of size (at least) µ + 1, then Rn−µ is connected.
This result is best possible since the path P2k has matching number µ(P2k) = k = Γ(P2k) and re-
call thatRΓ(P2k) is disconnected. Moreover, it follows from the result by Suzuki et al. [SMN14]
that the diameter of Rn−µ(G) is linear. However, they constructed an infinite family of graphs
such that for each graph Gn in the family,Rγ+1(Gn) has diameter Ω(2n).

Very recently, Rautenbach and Redl [RR20] studied how many additional vertices should
be allowed in order to transform a given dominating set into another one. They showed that
there is a positive constant c such that for every positive integer n, there is a 4-regular graph
G of order at least n that can be embedded on the torus, and there are two dominating sets Ds
and Dt of G, both of size n/5, such that there is a TAR(k)-sequence that transforms Ds into Dt
only if k ≥ c

√
n. On the other hand, they proved that for an hereditary class of graph G that

has balanced separators of order n 7→ nα (for some α < 1), there is a constant C such that for
any graph G ∈ G on n vertices, and for any two dominating sets Ds and Dt of G there is a
TAR(k)-sequence that transforms Ds into Dt if k = max{|Ds|, |Dt|}+ bCnαc.

Finally, Haas and Seyffarth [HS17] related the parameter d0 to the independence number
of a graph. More precisely, they proved that if k = Γ(G) + α(G)− 1, then the reconfiguration
graphRk(G) is connected. To obtain this result, they proved that all the independent dominat-
ing sets of G are in the same connected component ofRΓ(G)+1(G).

Our contribution. In this section, we complete some of the results mentioned above by pro-
viding upper bounds on d0 depending on several graph parameters. This is joint work with
Nicolas Bousquet and Alice Joffard [BJO20]. Note that all the proofs lead to linear transforma-
tions between any pair of dominating sets. Each transformation can be computed in polynomial
time, or in FPT time for the upper bound depending on the treewidth.

Reconfiguration problems in graphs 85



3 – Reconfiguration of dominating sets

3.1.2 Upper bound related to the independence number

In this section, we relate the upper bound on d0 to the upper domination number and the
independence number of a graph G. More precisely, we improve the following result by Haas
and Seyffarth:

Lemma 3.4. [HS17] Let G be a graph. If k = Γ(G) + α(G)− 1, thenRk(G) is connected.

Indeed, their result states that the reconfiguration graph is connected, but their induction-
based proof does not give any bound on its diameter. Here, we give a new (simpler) proof of the
same result that moreover implies that the diameter ofRk(G) is linear. The proof is constructive
and provides an algorithm that computes a TAR(k)-sequence between two dominating sets of
size at most k of G.

As discussed in Chapter 1, computing a maximum independent set of a given graph G is a
classical NP-complete problem [Kar72]. However, computing a maximal one can be done triv-
ially in linear time by a greedy algorithm. Moreover, given an independent set S′ which is not
maximal, one can greedily complete S′ into a maximal independent set S such that S′ ⊆ S. In
particular, if there exist two vertices u and v such that uv 6∈ E, then there exists a maximal inde-
pendent set of G which contains both u and v. Obviously, this is also true when S′ is reduced to
a single vertex. We will use this fact in the proof of Theorem 3.6. Recall also that any maximal
independent set of G also is a minimal dominating set of G (see Proposition 2.8). In particular,
any maximal independent set S of G satisfies |S| ≤ α(G) ≤ Γ(G). We also need the following
observation:

Observation 3.5. Let D be a minimal dominating set of G, and let S be a maximal independent set of
G such that D ∩ S 6= ∅. If k = Γ(G) + α(G)− 1, then there exists a TAR(k)-reconfiguration sequence
between D and S of length at most |D|+ α(G)− 2.

Proof. Recall that since S is a maximal independent set, |S| ≤ α(G) ≤ Γ(G). We first add to D
each vertex in S \ D one by one. Note that there are at most α(G) − 1 such vertices. We thus
obtain the set D′ = D ∪ S. We then remove one by one each vertex in D \ S. There are at most
|D| − 1 such vertices since S ∩ D 6= ∅. Each intermediate solution is indeed a dominating set
since it either contains D or S which are both dominating sets. Moreover, each solution is of
size at most |D′| ≤ |D|+ |S| − 1 ≤ k.

We are now ready to prove the main result of this subsection regarding the diameter of the
reconfiguration graphRk(G), with k = Γ(G) + α(G)− 1:

Theorem 3.6. Let G = (V, E) be a graph on n vertices. If k = Γ(G) + α(G)− 1 then Rk(G) has
diameter at most 10n.

Proof. Let D1 and D2 be two dominating sets, both of size at most k. Free to remove at most
2 · (Γ(G) + α(G)− 2) vertices in total, one can assume without loss of generality that D1 and
D2 are both inclusion-wise minimal dominating sets of G. Hence |D1| ≤ Γ(G) and |D2| ≤ Γ(G).
We outline a path between D1 and D2 in Rk(G). The next claim deals with the case where D1
and D2 have a non-empty intersection.
Claim 1. If D1 ∩ D2 6= ∅, then there exists a reconfiguration sequence from D1 to D2 of length
at most 2 · (α(G) + Γ(G)− 2).
Proof. Let x be a vertex that belongs to both D1 and D2. One first constructs greedily (and thus
in polynomial-time) a maximal independent set S of G which contains x (which is then of size
at most α(G)). By Observation 3.5, one can transform D1 into S under the TAR(k) rule. And
the length of the reconfiguration sequence is at most Γ(G) + α(G)− 2. Similarly, there exists a

86 Paul Ouvrard



3.1. Connectivity of the reconfiguration graph under TAR

reconfiguration sequence of length at most Γ(G) + α(G)− 2 from D2 to S. By combining these
two transformations, we obtain a reconfiguration sequence between D1 and D2 of length at
most 2 · (α(G) + Γ(G)− 2), as desired. ♦

In the remainder of this proof, we assume that D1 ∩ D2 = ∅ otherwise we can directly
conclude the proof by Claim 1. If there exist ui ∈ D1 and vj ∈ D2 such that the set D′ =
(D1 \ {ui}) ∪ {vj} is a dominating set of G, then we can conclude the proof by Claim 1 since
D′ ∩ D2 6= ∅ and D′ can be obtained from D1 in two steps. Suppose now that D′ = (D1 \
{ui}) ∪ {vj} is not a dominating set of G. This means that ui is adjacent to a vertex x with no
neighbors in (D1 \ {ui}) ∪ {vj}. Hence, there exists a maximal independent set S1 of G which
contains both x and a vertex uk ∈ D1 \ {ui}. Similarly, there exists a maximal independent set
S2 which contains both x and vj. By Observation 3.5, there exists a reconfiguration sequence of
length at most Γ(G) + α(G) − 2 between S1 (respectively S2) and D1 (respectively D2) under
the TAR(k) rule. Finally, since S1 and S2 intersect, we can again use Observation 3.5 that ensures
that there exists a transformation from S1 to S2 of length at most 2α(G)− 2.

Hence, we obtain a TAR(k)-reconfiguration sequence from D1 to D2 of length at most 4 ·
(Γ(G) + α(G)− 2) + 2 · (α(G)− 1) < 10n.

3.1.3 H-minor free graphs

In this section, we prove some better bounds on k for minor-free graphs. We say that a graph is
d-minor sparse if all its bipartite minors have average degree less than d. Note that it is equivalent
to say that the ratio between the number of edges and the number of vertices of any bipartite
minor of G is strictly less than d

2 . Let us first prove the following lemma:

Lemma 3.7. Let G be a d-minor sparse graph. Let A and B be two dominating sets of G such that
|A| = |B| and |B \ A| ≥ d. Then, there exists a vertex a ∈ A \ B and a set S ⊂ B \ A with
|S| = d− 1 such that (A ∪ S) \ {a} is a dominating set of G.

Proof. We prove it by contradiction. For every ai ∈ A \ B, let Si,1 be a subset of B \ A of size
d− 1. Let xi,1 be a vertex that is only dominated by ai in A and not dominated by Si,1 in B (such
a vertex must exist otherwise the conclusion follows). Note that this vertex can be a vertex of
A, a vertex of B, a vertex of both or a vertex of neither. Let bi,1 be a vertex of (B \ A) \ Si,1 that
dominates xi,1. This vertex exists since B is a dominating set and xi,1 is only dominated by ai in
A. Now, for every 2 ≤ j ≤ d, we define recursively Si,j, bi,j and xi,j as follows. The set Si,j is a
subset of size d− 1 of B \ A containing {bi,1, . . . , bi,j−1}. We let xi,j be a vertex only dominated
by ai in A that is not dominated by Si,j in B, and bi,j be a vertex of (B \ A) \ Si,j that dominates
xi,j. Note that, for every j, since xi,j is incident to bi,j and not to Si,j, bi,j /∈ {bi,1, . . . , bi,j−1}. In
particular, Bi = {bi,1, . . . , bi,d} has size exactly d. Note that Bi ⊆ B \ A. The construction of the
set Bi is illustrated in Figure 3.3.

B \ A

A \ Baiaj

xi,1

bi,1

xi,2

bi,2

xi,3

bi,3 . . .

. . .

. . .

Figure 3.3 – The set Bi. The dotted lines represent the non-edges, and the zigzags represent the
edges that are contracted in G′.

Reconfiguration problems in graphs 87



3 – Reconfiguration of dominating sets

Let us construct a minor G′ of G of density at least d. In this minor, every vertex ai in A \ B
will be adjacent to every vertex of Bi. To that end, for every ai ∈ A \ B, we contract the edges
aixi,j for any j such that xi,j 6∈ B \ A and xi,j 6∈ A \ B. If xi,j ∈ A \ B, then xi,j = ai and ai is already
adjacent to bi,j, so no contraction is needed. If xi,j ∈ B \ A, then by construction xi,j = bi,j and no
contraction is needed. By abuse of notations, we still denote by ai the vertex resulting from the
contractions involving ai. Note that the vertices xi,j are pairwise disjoint. If xi,j = xi′,j′ then, since
xi,j is only dominated by ai and xi′,j′ by a′i, we must have ai = a′i. And by construction in the
previous paragraph, xi,j 6= xi,j′ if j 6= j′. So the contractions above are well defined. Moreover,
the size of A \ B is left unchanged. Similarly the size of B \ A is not modified. We finally remove
from the graph any vertex which is not in (A \ B) ∪ (B \ A), and any edge internal to A \ B or
to B \ A. The resulting graph G′ is a minor of G and is bipartite.

For every i and every vertex v in Bi, there exists a j such that v is adjacent to xi,j or ai in G.
Thus, ai is adjacent to every vertex of Bi in G′. Therefore, for any ai ∈ A \ B, ai has degree at least
d in G′. Thus, there are at least d · |A \ B| edges in G′. Since G′ has |A \ B|+ |B \ A| = 2|A \ B|
vertices, it contradicts the fact that G is a d-minor sparse graph.

Lemma 3.8. Let G be a d-minor sparse graph. If k = Γ(G) + d− 1, then Rk(G) is connected and
the diameter ofRk(G) is at most 2Γ(G) · (d− 1) + 2 ·max{Γ(G)− 1, d− 1}.

Proof. Let Ds and Dt be two dominating sets of G of size at most k. Since Γ(G) is the maximum
size of a dominating set minimal by inclusion, we can add or remove vertices from Ds and Dt
so that Ds and Dt both have size exactly Γ(G), while still remaining dominating sets. To do so,
we need to remove or add at most 2 ·max{Γ(G)− 1, d− 1} vertices in total. So from now on,
we assume that |Ds| = |Dt| = Γ(G). Let us show that there is a path from Ds to Dt in Rk(G)
of length at most 2|Dt \ Ds| · (d − 1). Since |Dt \ Ds| ≤ Γ(G), and by taking into account the
at most 2 ·max{Γ(G)− 1, d− 1} vertices initially added or removed, this will give the desired
result. We proceed by induction on |Dt \ Ds|.

If |Dt \ Ds| ≤ d− 1 then, since |Ds| = Γ(G), we have |Ds ∪ Dt| ≤ Γ(G) + d− 1. Thus, we
can simply add all the vertices of Dt \Ds to Ds and then remove the vertices of Ds \Dt. We thus
obtain a path from Ds to Dt inRk(G) of length at most 2d− 2 ≤ 2|Dt \ Ds| · (d− 1).

Assume now that |Dt \ Ds| ≥ d. By Lemma 3.7, there exists a vertex v ∈ Ds \ Dt and a set
S ⊂ Dt \ Ds with |S| = d− 1 such that D′s = (Ds ∪ S) \ {v} is a dominating set of G. Let D′′s
be any dominating set of size exactly Γ(G) obtained by removing vertices of D′s, i.e., such that
D′′s ⊆ D′s. Since |S| = d− 1 and |Ds| = Γ(G), the transformation that consists in adding every
vertex of S to Ds and then removing v and every vertex of D′s \ D′′s is a path from Ds to D′′s in
Rk(G). Moreover, |D′s| = Γ(G) + d− 2. Thus, this path has length 2d− 2.

We have D′s = (Ds ∪ S) \ {v} where v ∈ Ds \ Dt and S ⊂ Dt \ Ds with |S| = d− 1. Thus,
|Dt \ D′s| = |Dt \ Ds| − d + 1. Since D′′s ⊆ D′s and |D′s \ D′′s | ≤ d − 2, it gives |Dt \ D′′s | ≤
|Dt \Ds| − 1. By the induction hypothesis, there exists a path from D′′s to Dt inRk(G) of length
at most |Dt \ D′′s | · (2d− 2). The concatenation of the two paths gives a path from Ds to Dt in
Rk(G) of length at most 2|Dt \ Ds| · (d− 1). This concludes the proof.

As an immediate corollary of Lemma 3.8, we obtain the two following results about planar
graphs and K`-minor free graphs:

Corollary 3.9. Let G be a graph. Then, we have the following:

• if G is planar, thenRk(G) is connected and has linear diameter for every k ≥ Γ(G) + 3.

• if G is K`-minor free, then there exists a constant C such that Rk(G) is connected and has linear
diameter for every k ≥ Γ(G) + C`

√
log2 `.

88 Paul Ouvrard



3.1. Connectivity of the reconfiguration graph under TAR

Proof. Every minor of a planar graph is planar. Moreover every bipartite planar graph has at
most 2n− 4 edges. Thus every planar graph is a 4-minor sparse graph and the first point follows
from Lemma 3.8.

A result of Thomason [Tho84] (improving a result of Mader [Mad68]) ensures that the av-
erage degree of a K`-minor free graph is at most 0.265 · `

√
log2 `(1 + o(1)). In particular, there

exists a constant C such that, for every ` and every K`-minor free graph G, the average degree
of G is at most C`

√
log2 `. Thus G is C`

√
log2 `-minor sparse and the second point follows

from Lemma 3.8.

3.1.4 Bounded treewidth graphs

Let us now move on to the last result of this section which provides a new upper bound on d0
depending on the upper domination number and the treewidth of G. More precisely, our result
is the following:

Theorem 3.10. Let G = (V, E) be a graph. If k = Γ(G) + tw(G) + 1, then Rk(G) is connected.
Moreover, the diameter ofRk(G) is at most 4(n + 1) · (tw(G) + 1).

Proof. Let (X, T) be a tree decomposition of G such that the maximum size of a bag of X is
tw(G) + 1. Let b = |X|. We root the tree T in an arbitrary bag, then set X = {X1, . . . , Xb},
where for any Xi, Xj such that Xi is a child of Xj, we have i < j. In other words, X1, . . . , Xb is an
elimination ordering of the (rooted) tree T where at each step we remove a leaf of the remaining
tree. We say that a bag Xi is a descendant of Xj if Xj is on the path from the root to Xi (in other
words, Xi belongs to the subtree rooted in Xj in T). Note that, free to contract edges if a bag
is included in another, we can assume b ≤ n. We denote by Vi the set of vertices that do not
appear in the set of bags ∪b

j=i+1Xj. We set V0 = ∅.

Let Ds and Dt be two dominating sets. Free to first remove vertices from Ds and Dt if possi-
ble (which can be done in at most 2(tw(G) + 1) operations in total), we can assume that Ds and
Dt have size at most Γ(G). Let D be a minimum dominating set of G. Instead of proving directly
that there exists a reconfiguration sequence from Ds to Dt, we will prove that that there exists
a reconfiguration sequence from Ds to D and from Dt to D of length at most 2n · (tw(G) + 1)
each. Since the reverse of a reconfiguration sequence also is reconfiguration sequence, that will
give a reconfiguration sequence of the desired length. So the rest of the proof is devoted to
prove the following:

Lemma 3.11. Let G = (V, E) be a graph and let Ds be a dominating set of G of size at most
Γ(G) and D be a minimum dominating set of G. If k = Γ(G) + tw(G) + 1, then there is a recon-
figuration sequence from Ds to D. Moreover, the length of this reconfiguration sequence is at most
2n · (tw(G) + 1).

In order to prove Lemma 3.11, we prove that there exists a sequence 〈D1 = Ds, D2, . . . , Db〉
of dominating sets such that, for every j, Dj satisfies the following property P :

(i) Dj is a dominating set of G of size at most Γ(G),

(ii) For every j > 1, there exists a transformation sequence of length at most 2(tw(G) + 1)
from Dj−1 to Dj inRk(G),

(iii) Dj ∩ Vj−1 ⊆ D. Recall that Vj−1 is the set of vertices that do not appear in the set of bags
∪b

q=jXq so in other words, the vertices of Dj that only belong to bags in X1 ∪ . . .∪Xj−1 are
also in D.

Reconfiguration problems in graphs 89



3 – Reconfiguration of dominating sets

So that will provide a reconfiguration sequence in Rk(G) from Ds to a dominating set Db
sufficiently close to D to ensure the existence of a transformation from Db to D of length at most
2n · (tw(G) + 1). To prove the existence of the sequence, we use induction on j.

First note that since Ds is a dominating set of G of size at most Γ(G) and V0 is empty, Ds
satisfies property P . Let us now show that if Dj satisfies property P , then there exists a set Dj+1
that satisfies property P . A vertex v is a left vertex (for Xj) if v only appears in bags that are
descendant of Xj. Note that by definition, Xj is a descendant of itself. Otherwise, we say that v
is a right vertex. When no confusion is possible, we will omit the mention of Xj.

Claim 1. If a left vertex u (for Xj) is adjacent to a right vertex v (for Xj), then v ∈ Xj.

Proof. Since u and v are adjacent in G, there exists a bag Xi which contains both u and v. Note
that since u is a left vertex, Xi is a descendant of Xj. Besides, since v is a right vertex, there exists
a bag Xi′ that contains v and which is not a descendant of Xi. Since the set of bags that contain
v induces a connected tree, v must belong to each bag on the unique path from Xi to Xi′ . In
particular, v ∈ Xj. ♦

In order to construct Dj+1, we define the following subsets of vertices (see Figure 3.4 below):

• A is the set of left vertices of Xj ∩ (Dj \ D). In other words, A is the set of left vertices of
Xj that are in Dj but not in D.

• B is the set of right vertices of Xj. In other words, B is the set of vertices of Xj that also
appear in a bag Xj′ with j′ > j.

• C is the set of left vertices of D \ Dj. In other words, C is the set of vertices of D at the left
of Xj that are missing in Dj.

We partition again B into three parts:

• B1 is the set of vertices of B \ D that are dominated by C

• B2 = B ∩ Dj

• B3 = B \ (B1 ∪ B2).

Xj

Xb

. . .

A

C

B

Figure 3.4 – The tree decomposition of G, and the sets A, B and C. The circles represent the bags
of the tree decomposition. The vertices are represented by lines, or dots, that go throughout the
bags they belong to. The thick full lines represent the vertices of B, the dashed lines represent
the vertices of D, and the dotted lines represent the vertices of Dj. By the induction hypothesis,
the left vertices of Dj that do not belong to Xj belong to D.

We set D′j = (Dj \ A) ∪ C ∪ B3. Let us first prove that D′j is a dominating set of G.

Claim 2. The set D′j is a dominating set of G.

90 Paul Ouvrard



3.1. Connectivity of the reconfiguration graph under TAR

Proof. Since Dj is a dominating set of G and Dj \ A ⊆ D′j, the only vertices that can be un-
dominated in D′j are the ones dominated only by vertices of A in Dj. Let Nr(A) (resp. Nl(A))
be the right vertices (resp. left vertices) that are only dominated by A in Dj. Note that Nl(A)
might contain vertices of A, while Nr(A) does not, since by definition the vertices of A are left
vertices. Let us show that all the vertices in Nr(A) ∪ Nl(A) are dominated by D′j.

We start with Nr(A). Since the vertices of A are left vertices and the vertices of Nr(A) are
right vertices, by Claim 1, we have Nr(A) ⊆ Xj. Since the vertices in Nr(A) are right vertices,
we have Nr(A) ⊆ B. Moreover, since every vertex of Nr(A) is only dominated by A in Dj
but does not belong to A, it is not in Dj and thus not in B2. Thus, the vertices of Nr(A) either
belong to B1 (and are by definition dominated by C), or they belong to B3. Therefore, Nr(A) is
dominated by C ∪ B3 and thus by D′j.

Let us now focus on Nl(A). In D, Nl(A) is dominated by vertices that we partition into
two sets: the right vertices Y and the left vertices Z. We show that both Y and Z are included
in D′j, which implies that D′j dominates Nl(A). Since the vertices of Nl(A) are left vertices
and the vertices of Y are right vertices, Claim 1 gives Y ⊆ Xj. Thus, by definition, Y ⊆ B.
Moreover, the vertices of Y that belong to Dj do not belong to A as they are right vertices, and
thus belong to Dj \ A, and the vertices of Y that do not belong to Dj belong by definition to
B ∩ (D \ Dj) ⊆ B3. Thus, Y ⊆ (Dj \ A) ∪ B3 ⊆ D′j. Finally, the vertices of Z either belong to
Dj and thus by definition to Dj ∩ D ⊆ Dj \ A, or they do not belong to Dj and by definition
they thus belong to C. Therefore, Z ⊆ (Dj \ A)∪C ⊆ D′j. Therefore, Nl(A) is dominated by D′j,
which concludes the proof of this claim. ♦

Let us now prove the following:

Claim 3. |Dj ∪ C ∪ B3| ≤ Γ(G) + tw(G) + 1.

Proof. Let us first show that the set D′ = (D \ C)∪ A∪ B1 ∪ B2 is a dominating set of G. We will
then explain how to exploit this property to prove that |Dj ∪ C ∪ B3| ≤ Γ(G) + tw(G) + 1.

Since D is a dominating set, the only vertices that can be undominated in (D \ C) ∪ A ∪
B1 ∪ B2 are vertices that are only dominated by C in D. Let Nr(C) (resp. Nl(C)) be the subset
of right (resp. left) vertices that are only dominated by C in D. Note that Nl(C) might contain
vertices of C and Nr(C) does not, since the vertices of C are left vertices. We prove that Nr(C)
and Nl(C) are dominated by D′.

We first prove that the vertices of Nr(C) are dominated in D′. Since C only contains left
vertices and Nr(C) only contains right vertices, Claim 1 ensures that Nr(C) ⊆ Xj. Thus, by
definition of B, Nr(C) ⊆ B. Since the vertices of Nr(C) are only dominated by C in D, Nr(C) ⊆
B1. Therefore (D \ C) ∪ A ∪ B1 ∪ B2 dominates Nr(C).

Let us now prove that Nl(C) is dominated in D′. Every vertex v ∈ Nl(C) is dominated in Dj
by either a right vertex or a left vertex. Assume that v is dominated in Dj by a right vertex w.
Since v is a left vertex and w a right vertex, Claim 1 ensures that w ∈ Xj and thus w ∈ B. Since
w ∈ Dj, w ∈ B2 ⊆ D′. Assume now that v is dominated in Dj by a left vertex u. If u belongs to
D, it is in D ∩ Dj ⊆ D \ C ⊆ D′. So we can assume that u /∈ D. By the induction hypothesis, Dj
satisfies (iii) and since u /∈ D, the vertex u necessarily belongs to Xj. So we finally have u ∈ A.
Thus, u ∈ (D \ C) ∪ A ⊆ D′. So Nl(C) is dominated in D′. And then D′ is a dominates G.

We can now show that |Dj ∪C∪ B3| ≤ Γ(G)+ tw(G)+ 1. Since D is a minimum dominating
set of G and D′ = (D \C)∪ (A∪ B1 ∪ B2) also is a dominating set of G, we have |C| ≤ |A∪ B1 ∪
B2|. Thus, |C ∪ B3| ≤ |A|+ |B1 ∪ B2|+ |B3|. But A, B1 ∪ B2 and B3 are pairwise disjoint subsets
of Xj. Thus, |A|+ |B1 ∪ B2|+ |B3| ≤ |Xj| ≤ tw(G) + 1, and |C ∪ B3| ≤ tw(G) + 1. Since, by the
induction hypothesis, Dj has size at most Γ(G), this gives |Dj ∪C ∪ B3| ≤ Γ(G) + tw(G) + 1. ♦

Reconfiguration problems in graphs 91



3 – Reconfiguration of dominating sets

We now have a reconfiguration sequence of length at most tw(G) + 1 from Dj to D′j by
simply adding all the vertices of C ∪ B3 and then removing all the vertices of A. All along the
sequence, the corresponding set is dominating. Indeed, it contains Dj during the first part and
D′j during the second one. One is dominating by assumption and the other is dominating by
Claim 2. By Claim 3, this reconfiguration sequence exists inRΓ(G)+tw(G)+1(G).

The dominating set Dj+1 will be any dominating set of size at most Γ(G) obtained from
D′j by removing vertices, i.e., any dominating set Dj+1 satisfying Dj+1 ⊆ D′j and |Dj+1| =
Γ(G), which necessarily exists by definition of Γ(G). This can be done in at most tw(G) + 1
deletions. Thus, there exist a sequence in RΓ(G)+tw(G)+1(G) from Dj to Dj+1 of length at most
2(tw(G) + 1), and Dj+1 thus satisfies (i) and (ii). Let us now justify why Dj+1 satisfies (iii).

Since Dj+1 is a subset of D′j, if (iii) holds for D′j it holds for Dj+1. We have D′j = (Dj \ A) ∪
C ∪ B3. Since C ⊆ D, if a left vertex v (for Xj) appears in D′j but not in D, it is either in Dj \ A
or in B3. Since B3 only contains right vertices, it must be in Dj \ A. Since A contains the left
vertices of Xj ∩ (Dj \ D), it means that v should be in Vj−1. But, by the induction hypothesis,
the vertices of Dj that belong to Vj−1 belong to D. So v does not exist and D′j satisfies (iii).
Thus, Dj+1 satisfies property P , and by induction, there exists a set Db that satisfies property
P . Moreover, since for any i such that 2 ≤ i ≤ b, there is a path of length at most 2(tw(G) + 1)
from Di−1 to Di in Rk(G), there is a transformation of length at most 2(b − 1) · (tw(G) + 1)
from Ds to Db inRk(G).

To complete the construction of a path from Ds to D in Rk(G), we show that there exists
a transformation from Db to D in Rk(G) of length at most 2(tw(G) + 1). Let A′ = Db \ D,
and C′ = D \ Db. We have D = (Db ∪ C′) \ A′. Let S′1 be the reconfiguration sequence from
Db to Db ∪ C′ which consists in adding one by one every vertex of C′. Since each of the sets
of S′1 contains Db, they are all dominating sets of G. Note that S′1 has length |C′|. Let S′2 be
the reconfiguration sequence from Db ∪ C′ to D which consists in removing one by one each
vertex of A′. Since each of the sets of S′2 contains D, they all are dominating sets. Note that S′2
has length |A′|. Thus, applying S′1 then S′2 gives a reconfiguration sequence from Db to D of
length |C′|+ |A′|. Moreover, the maximum size of a dominating set reached in this sequence is
|Db ∪ C′|. Let us show that |Db ∪ C′| ≤ Γ(G) + tw(G) + 1. We have Db = (D \ C′) ∪ A′. Thus,
since D is a minimum dominating set, |C′| ≤ |A′|. Since Db satisfies (iii), every vertex of Db
that does not belong to Xb also belongs to D. Thus, A′ ⊆ Xb, and |A′| ≤ tw(G) + 1, which gives
|C′| ≤ tw(G) + 1, as well as |C′|+ |A′| ≤ 2(tw(G) + 1). Since Db is a minimal dominating set
of G, we have therefore |Db ∪ C′| ≤ Γ(G) + tw(G) + 1. Thus, there is a path of length at most
2(tw(G) + 1) from Db to D in Rk(G) which completes the transformation of length at most
2b · (tw(G) + 1) from Ds to D inRk(G). Since b ≤ n, the conclusion follows.

3.1.5 Concluding remarks

In this section, we focused on the connectivity of the reconfiguration graph of dominating sets
under the token and addition rule. More precisely, we first improved a result by Haas and
Seyffarth [HS17] by showing that Rk(G) is connected and has linear diameter whenever k ≥
Γ(G) + α(G) − 1. Moreover, the proof is constructive and outputs a transformation between
two dominating sets in polynomial time.

We then studied the class of d-minor sparse graphs which contains in particular planar
graphs. We showed that if G is a d-minor sparse graph, thenRk(G) is connected and has linear
diameter whenever k ≥ Γ(G) + d− 1. Since planar graphs are 4-minor sparse graphs, it follows
that Rk(G) is connected and has linear diameter for any k ≥ Γ(G) + 3. This result is almost
tight. Indeed, Suzuki et al. [SMN14] found a planar graph G for which Rk(G) is disconnected
if k = Γ(G) + 1 (see Figure 3.5).

92 Paul Ouvrard



3.1. Connectivity of the reconfiguration graph under TAR

Figure 3.5 – The planar graph G such thatRΓ+1(G) is not connected.

It is easily seen that Γ(G) = 3. Moreover, if we consider the dominating set depicted by the
red vertices, in order to remove a vertex, we must add the two black vertices it is adjacent to,
thus reaching a dominating set of size Γ(G) + 2. However, we were not able to find a planar
graph G for whichRΓ+2(G) is not connected and thus we conjecture the following:

Conjecture 3.12. Let G be a planar graph. If k ≥ Γ(G) + 2, thenRk(G) is connected.

Finally, we considered an upper bound on d0 depending on the treewidth of a graph. More
precisely, we showed that if k ≥ Γ(G) + tw(G) + 1, then Rk(G) is connected and has lin-
ear diameter. We claim that this bound is tight up to an additive constant factor. Mynhardt
et al. [MTR19] constructed an infinite family of graphs G`,r (with ` ≥ 3 and 1 ≤ r ≤ ` − 1)
for which 2Γ(G)− 1 tokens are necessary to guarantee the connectivity of the reconfiguration
graph. Let us describe their construction when r = `− 1. The graph G`,`−1 contains `− 1 cliques
C1, C2, . . . , C`−1 called inner cliques, each of size `. We denote by cj

i the j-th vertex of the clique
Ci. We then add a new clique C0 of size `, called the outer clique and we add a new vertex u0
adjacent to all the vertices of C0 (hence, C0 can be seen as a clique of size ` + 1). For every
1 ≤ i ≤ `− 1 and for every 1 ≤ j ≤ `, we add an edge between cj

i and cj
0. This completes the

construction of G`,`−1 (see Figure 3.6 for an example).

c21 c31

c11

c22 c32

c12

c10

c20 c30

u0

C0

Figure 3.6 – The graph G3,2

Mynhardt et al. [MTR19] showed that G`,`−1 satisfies Γ(G`,`−1) = `. They moreover proved
thatR2`−2(G`,`−1) is not connected. Let us show that G`,`−1 has treewidth `:

Proposition 3.13. The graph G`,`−1 has treewidth `.

Reconfiguration problems in graphs 93



3 – Reconfiguration of dominating sets

Proof. First, observe that tw(G`,`−1) ≥ ` since G[C0 ∪ {u0}] is a clique of size `+ 1. Let us now
give a tree decomposition of G`,`−1 of width `. We first create a "central" bag B0 containing all
the vertices of C0 and the vertex u0. For each inner clique Ci with 1 ≤ i ≤ `− 1, we attach to
B0 a path B1

i B2
i · · · B`

i where Bj
i contains the vertices (C0 \

⋃j−1
k=0 ck

0) ∪
⋃j

k=1 ck
i (see Figure 3.7 for

an example). Observe that for any 1 ≤ i ≤ `− 1, the bag B`
i contains all the vertices of Ci. And

the bag Bj
i contains both cj

0 and cj
i . Hence, each edge is contained in at least one bag. For every

1 ≤ j ≤ `, the vertex cj
0 is contained in the bags B0 ∪

⋃`−1
i=1

⋃j
k=1 Bk

i . And for every 1 ≤ i ≤ `− 1
and every 1 ≤ j ≤ `, the vertex cj

i is contained in B1
i , B2

i , . . . , Bj
i . It follows that for every vertex

u ∈ V(G`,`−1) the set of bags containing u induces a connected subtree. Finally, one can easily
check that each bag contains exactly `+ 1 vertices. Hence, this decomposition indeed is a tree
decomposition of G`,`−1 of width ` and the conclusions follows. ♦

c10, c
2
0, c

3
0, u0B0

c10, c
2
0, c

3
0, c

1
1B1

1 c10, c
2
0, c

3
0, c

1
2 B1

2

c20, c
3
0, c

1
1, c

2
1B2

1

c30, c
1
1, c

2
1, c

3
1B3

1

c20, c
3
0, c

1
2, c

2
2 B2

2

c30, c
1
2, c

2
2, c

3
2 B3

2

Figure 3.7 – Tree decomposition of G3,2 of width tw(G3,2).

Hence, the reconfiguration graph RΓ(G)+tw(G)−2 is not necessarily connected and thus our
function of the treewidth is tight up to an additive constant factor. Moreover, we have the
following about the pathwidth of G`,`−1:

Proposition 3.14. The pathwidth of G`,`−1 is at most 2`− 1.

Proof. We give a path decomposition of width at most 2` − 1 of G`,`−1. We first create a bag
B0 which contains C0 ∪ {u0}. For every 1 ≤ i ≤ ` − 1, we create a bag Bi = C0 ∪ Ci such
that B1B2 . . . B`−1 induces a path. One can easily check that it is a path decomposition of width
2`− 1 of G`,`−1. ♦

However, it is not clear if and how we can obtain a better upper bound for bounded path-
width graphs. To sum up, Rk(G) is not necessarily connected if k < Γ(G) + pw(G)/2 + O(1)
and is connected if k > Γ(G) + pw(G) + 1. We were not able to close this gap and left it as an
open problem as well.

3.2 Complexity under Token Sliding

3.2.1 Introduction

In this section, we study the reachability of dominating sets under token sliding from a graph
classes perspective. This is joint work with Marthe Bonamy and Paul Dorbec [BDO21]. The
complexity of the reconfiguration of dominating sets was initiated by the work of Haddadan

94 Paul Ouvrard



3.2. Complexity under Token Sliding

et al. [HIM+16] who studied the reachability of dominating set under the TAR rule. More pre-
cisely, they considered the complexity of the following problem that we denote by DSRTAR (for
DOMINATING SET RECONFIGURATION under TAR):

DSRTAR

Instance: A graph G, two dominating sets Ds, Dt of G, an integer k ≥ max{|Ds|, |Dt|}.
Question: Is there a TAR(k)-sequence that transforms Ds into Dt?

First, recall that if there is a reconfiguration sequence 〈D0 = Ds, D1, . . . , D`−1, D` = Dt〉
from Ds to Dt (no matter what the reconfiguration rule is), then 〈D` = Dt, D`−1, . . . , D1, D0 =
Ds〉 is a reconfiguration sequence from Dt to Ds. We denote this by Ds ! Dt.

Let (G, Ds, Dt, k) be an instance of DSRTAR. Haddadan et al. [HIM+16] showed that the
problem DSRTAR is PSPACE-complete, even if G is bipartite, a split graph, a planar graph with
maximum degree six, or has bounded pathwidth. On the other hand, they proved that the
problem is linear-time solvable if G is a tree, a cograph or an interval graph. Interestingly, all
these positive results were obtained by applying the same strategy. Indeed, they introduced the
concept of canonical dominating set:

Definition 3.15 (Canonical dominating set). A dominating set C of a graph G is canonical if
it is both minimum and reachable from any dominating set D of G via a TAR(|D|+ 1)-sequence.

They showed that each of these three graph classes admits a canonical dominating set. This
implies that if G is an interval graph, a cograph or a tree, then (G,Ds, Dt, k) is a yes-instance
whenever k ≥ max{|Ds|, |Dt|}+ 1. Indeed, we can transform both Ds and Dt into the canonical
dominating set C, i.e., Ds ! C ! Dt is a reconfiguration sequence between Ds and Dt.
Finally, if k = max{|Ds|, |Dt|}, then (G,Ds, Dt, k) is a yes-instance if and only if Ds and Dt are
not minimal dominating set of G. Since one can check in linear time whether a dominating set
is minimal or not, DSRTAR is linear-time solvable on each graph class that admits a canonical
dominating set.

Mouawad et al. [MNR+17] studied the parameterized complexity of the reconfiguration of
dominating sets under token addition and removal. They proved that this problem is W[2]-hard
when parameterized by k + `, where k is the threshold and ` the length of the reconfiguration
sequence. As a positive result, Lokshtanov et al. [LMP+18] gave a fixed-parameter algorithm
with respect to k for graphs excluding Kd,d as a subgraph, for any constant d. More recently,
Lokshtanov et al. [LMPS19] studied the parameterized complexity of the reconfiguration of
connected dominating sets. They showed that this problem is W[2]-hard when parameterized
by k + `, even if the input graph is 5-degenerate.

As we said, we focus on the complexity of the reachability question of DOMINATING SET

RECONFIGURATION under token sliding. This reconfiguration rule has already been studied for
various reconfiguration problems but not for dominating sets, to the best of our knowledge.
In this model, a natural question is whether we should authorize more than one token to be
placed on a vertex during the reconfiguration sequence. Here is an example where it makes
a difference: consider the star graph K1,n on n + 1 vertices and two dominating sets D1 and
D2 of K1,n of size k, with k ∈ [2, n − 1]. Any dominating set of that size necessarily contains
the central vertex. To reconfigure D1 into D2, we are forced to move a token from one leaf to
another, which can only be done by going through the central vertex which already contains
a token. Given such artificially negative examples, we choose to allow the superposition of
tokens on a vertex. Note that this question did not arise in previous works considering the

Reconfiguration problems in graphs 95



3 – Reconfiguration of dominating sets

token sliding model, to the best of our knowledge. Indeed, for problems like independent set,
there can be no question of superposing two tokens, as two tokens cannot be adjacent in the
first place. In the aforementioned results considering token sliding for dominating sets (see
Section 3.1.1), they exclusively consider that model in the case of minimum dominating sets: if
superposition was an option, there would be a smaller dominating set, which is impossible.

Let G be a graph, Ds and Dt be two dominating sets of G of same size k. We say that Ds is re-
configurable into Dt by token sliding if there exists a TS-sequence 〈D0 = Ds, D1, . . . , D`−1, D` =
Dt〉 that satisfies the two following properties (see Figure 3.8):

• each Di is a multiset of size k that is a dominating set of G;

• there exists an edge uv such that Di+1 = (Di \ {u}) ∪ {v}, i.e., we slide the token placed

on the vertex u along the edge uv. We denote this move by u TS
 v.

!

(a) D0 = Ds

!

(b) D1

!

(c) D2 (d) D3 = Dt

Figure 3.8 – Example of TS-sequence from Ds to Dt.

We are now ready to define more formally the DOMINATING SET RECONFIGURATION prob-
lem under token sliding, denoted by DSRTS:

DSRTS

Instance: A graph G = (V, E) and two dominating sets Ds and Dt of cardinality k of G.

Question: Is there a TS-sequence between Ds and Dt, i.e., does Ds
TS
! Dt hold?

We first obtain a similar result as the one obtained by Haas and Seyffarth [HS14] regarding
the connectivity of the reconfiguration graph under TAR. More precisely, we show that being
reconfigurable is not a monotone property also for the token sliding model.

Theorem 3.16. For every ` ≥ 3, there exists a graph G` where, for every k < `, every dominating
set of size k can be reconfigured into any other, while there are two dominating sets of size ` that
cannot be reconfigured one into the other.

Proof. We first prove the statement for k = 2. For every integer ` > 2, we define the graph
G` such that G` contains exactly one dominating set of size γ(G) = 2 but for which the dom-
inating sets of size ` are not reconfigurable. To construct G`, we first create ` pairs of triangles
{(Gi

1, Gi
2), . . . , (G`

1, G`
2)} such that Gi

1 and Gi
2 share exactly one vertex wi. Moreover, let all the

Gi
1’s share a vertex u and all the Gi

2’s share a vertex v (see Figure 3.9 for G3 as an example). Note
that we have γ(G`) = 2 since {u, v} is a dominating set and G` does not contain a universal
vertex (i.e., a vertex adjacent to all the other vertices).

Consider the dominating set Ds = {w1, . . . , w`}. It is a dominating set of G` of size `. By
token sliding, Ds cannot be reconfigured into any other dominating set of size `. Indeed, in
Ds we cannot move any wi in a triangle because it would leave the other triangle of the pair

96 Paul Ouvrard



3.2. Complexity under Token Sliding

u

v

w1 w2 w3

Figure 3.9 – The graph G3 from Theorem 3.16.

(Gi
1, Gi

2) not dominated. Note that any set of ` vertices containing u and v is a dominating set
of G`, hence the existence of two dominating sets of size ` as desired.

Consider now k < `. Any dominating set of G` on fewer than ` vertices contains both u
and v. Indeed, if for instance u is not in the dominating set, then ` extra vertices are necessary
to dominate the triangles Gi

1. Therefore, any dominating set D of G` on k vertices contains
both u and v. The other vertices are therefore not necessary for domination purposes, and we
can slide them around as desired, superposing them with u and v arbitrarily. There are many
dominating sets on k vertices, but they all contain u and v and can be trivially reconfigured one
into another.

3.2.2 PSPACE-completeness results

In this section, we study the complexity of DSRTS in the general case. We show that this prob-
lem is PSPACE-complete, even when restricted to split graphs, bipartite graphs or bounded
treewidth graphs. Let us first recall the following result from Haddadan et al. [HIM+16], stat-
ing the complexity of the reconfiguration problem for the TAR model.

Theorem 3.17 ([HIM+16]). Let G be a graph and Ds, Dt be two dominating sets of G of size k.

Deciding whether Ds
TAR
! Dt is PSPACE-complete.

Note that the problem remains PSPACE-complete, even if the input graph is a planar graph
with maximum degree six, has bounded bandwidth, is bipartite or is a split graph as discussed
previously. Recall also the following result by Haas and Seyffarth [HS14]:

Theorem 3.18 ([HS14]). Let G be a graph, and let Ds and Dt be two dominating sets of G both of

size k. Then, Ds
TJ
! Dt holds if and only if Ds

TAR
! holds with threshold k + 1.

As a corollary of Theorem 3.17 and Theorem 3.18, we obtain that deciding whether two
dominating sets of size k of a graph G can be reconfigured under the token jumping model is a
PSPACE-complete problem. We are now ready to prove Theorem 3.19.

Theorem 3.19. DSRTS is PSPACE-complete on split graphs.

Proof. First, note that the problem is in PSPACE [IDH+08]. We give a polynomial-time reduc-
tion from DSRTJ, which is PSPACE-complete as discussed above. Let G = (V, E) be a graph
with V(G) = {v1, . . . , vn}. We construct the corresponding split graph G′ as follows; the con-
struction is the one given in [CN84, Ber84] (see Section 2.1.4).

Reconfiguration problems in graphs 97



3 – Reconfiguration of dominating sets

• V(G′) = V1 ∪V2 where V1 = {v1, . . . , vn} and V2 = {w1, . . . , wn};

• E(G′) = {uv | u, v ∈ V1} ∪ {viwj | vj ∈ NG[vi]}, i.e., we add all possible edges in V1 so
that V1 forms a clique. We also add an edge between a vertex vi ∈ V1 and a vertex wj ∈ V2
if and only if the corresponding vertex vj in the original graph G belongs to the closed
neighborhood of vi in G.

v1

v2

v3

v4

(a) G

v1

v2

v3

v4

w1

w2

w3

w4

(b) G′

Figure 3.10 – Example for the reduction of Theorem 3.19.

Observe that G′ is a split graph since V1 forms a clique and V2 an independent set (see
Figure 3.10 for an example). To a set of vertices of G, we associate the corresponding vertices of
V1 in G′. By definition of G′, any dominating set D of G is also a dominating set for G′: indeed,
a vertex vi ∈ V1 dominates all the vertices in V1 (since it is a clique) and all the vertices in V2
that correspond to vertices in its closed neighborhood in G. That D dominates G allows us to
conclude that the corresponding set also dominates V2. Hence, D is also a dominating set of G′.

Let (G, Ds, Dt) be an instance of DSRTJ; we reduce this instance to the instance of DSRTS

(G′, Ds, Dt). This reduction can be done in quadratic time. It remains to prove that Ds
TS
! Dt

holds in G′ if and only Ds
TJ
! Dt holds in G.

(⇐) Consider a TJ-sequence in G, and translate it to G′. All intermediate sets still are dom-
inating sets, and since all pairs of vertices are joined by an edge in V1, this sequence is a valid
TS-sequence in G′.

(⇒) We now prove the other direction. Let 〈D0 = Ds, . . . , Dp = Dt〉 be a TS-sequence in G′.
First, observe that any dominating D′ of G′ such that D′ ⊆ V1 corresponds to a dominating set
of G. Indeed, any vertex wj ∈ V2 is dominated by a vertex vi ∈ V1 and by construction of G′,
vivj ∈ E(G). Hence, vj is dominated by vi and thus D′ is also a dominating set of G. Hence,
if the sequence does not use vertices in V2, we immediately obtain a TJ-sequence in G from
Ds to Dt, as the token jumping model does not require adjacency. Suppose on the other hand
that the sequence goes through some vertices in V2. Since all vertices are initially in V1, there

is a subsequence that contains a move vi
TS
 wj. Since wj /∈ V1, there exists a later step where

the token on wj is moved to an adjacent vertex vk in V1 (since V2 is independent). However, wj
does not dominate any vertex in V2 (since V2 is a stable set) and thus N[wj] ⊆ N[vk]. Therefore,

we simply replace these two moves by a single move vi
TS
 vk. We can thus assume that the

reconfiguration sequence only uses vertices in V1. The conclusion follows.

Next, we prove that DSRTS is PSPACE-complete on bipartite graphs. We use a reduction
from VERTEX COVER RECONFIGURATION under token sliding (or VCRTS for short). Recall that

98 Paul Ouvrard



3.2. Complexity under Token Sliding

a vertex cover is a set of vertices such that every edge has an endpoint in the set. The comple-
ment of a vertex cover is an independent set whose reconfiguration is known to be PSPACE-
complete on planar graphs of maximum degree three [HD05, BC09] or on bounded bandwidth
graphs [Wro18]. Hence, VCRTS is PSPACE-complete, even when restricted to these two classes.

Theorem 3.20. DSRTS is PSPACE-complete on bipartite graphs.

Proof. We give a polynomial-time reduction from VCRTS. This is an adaptation of the well-
known reduction from VERTEX COVER to DOMINATING SET [GJ79]. Let G = (V, E) be a graph.
We construct the corresponding bipartite graph G′ = (V1 ] V2, E′) as follows: for each edge
uv ∈ E, add u and v to V1 and a new vertex zuv of degree two to V2 that is adjacent to exactly u
and v. Note that E′ does not contain the edge uv so that V1 induces an independent set. Finally,
add to V2 a vertex x adjacent to all the vertices in V1 and attach to x a degree-one vertex y which
is added to V1 (see Figure 3.11 for an example). Formally, the graph G′ is the following:

• V(G′) = V1 ∪V2 where V1 = V(G) ∪ {y} and V2 = {zuv | uv ∈ E} ∪ {x};

• E′ = {uzuv and zuvv | u, v ∈ V1 and zuv ∈ V2} ∪ {xv | v ∈ V1} ∪ {xy}.

a

e

d c

b

(a) G

b e

a

x

zaezab

zbc

zcd
c d

zde

y

(b) G′

Figure 3.11 – Example for the reduction of Theorem 3.20.

Observe that G′ is bipartite and the reduction can be done in polynomial time. We now
prove that the vertex covers of G of size k are reconfigurable if and only if the dominating
sets of G′ of size k + 1 are. Let (G, Cs, Ct) be an instance for the VCRTS problem. We define the
corresponding instance for the DSRTS problem as (G′, Cs ∪ {x}, Ct ∪ {x}). Since Cs is a vertex
cover of G, for every edge uv ∈ E(G) we have {u, v} ∩Cs 6= ∅ and thus the vertices u, v, zuv are
dominated by Cs in G′. Now x dominates both x and y, so Ds = Cs ∪ {x} is a dominating set of
G′, and by the same argument, so is Dt = Ct ∪ {x}. Since VCRTS and DSRTS both employ the
same reconfiguration rule, we simply denote by u  v a move of a reconfiguration sequence
between Cs and Ct (respectively Ds and Dt).

(⇒) We start with the only if direction. First, it immediately follows from the definition of
Ds and Dt that Ds \ {x} = Cs and Dt \ {x} = Ct. Let us assume that (G, Cs, Ct) is a yes-instance
for the VCRTS problem. Then, there exists a reconfiguration sequence S using the token sliding
model between Cs and Ct. One can construct a sequence S′ for G′ by replacing a move u  v
(where uv ∈ E(G)) of S into two moves: u  zuv followed by zuv  v. We need to prove
that the domination property is preserved at every step. First, observe that each intermediate
solution contains x, so each move of the form zuv  v is safe because u is still dominated by x
and zuv by v. Therefore, the only risk is to leave some vertex zwu non dominated after a move
u  zuv. In that case, this implies that w does not belong to the solution, which in turn means
that the edges wu and uv are covered only by u. Therefore, the move u  v of the sequence S

Reconfiguration problems in graphs 99



3 – Reconfiguration of dominating sets

is not valid (because the edge wu is no longer covered), a contradiction. Therefore, (G′, Ds, Dt)
is a yes-instance for the DSRTS problem.

(⇐) It remains to prove the if direction. Suppose that (G′, Ds, Dt) is a yes-instance for the
DSRTS problem. Then, there exists a reconfiguration sequence S′ = 〈Ds, . . . , Dt〉 in G′. First, ob-
serve that at each step, y needs to be dominated and thus either x or y belongs to each solution.
Moreover, initially, Ds does not contain y. We can ignore all moves of the form x  y (each
such move will be eventually followed by a move y  x), and assume that x contains at least
one token in each solution. Therefore, the only vertices whose domination is not immediate by
the existence of a token on x are the vertices of the form zuv, i.e., the vertices that correspond to
the edges of G. Recall that Ds = Cs ∪ {x}, so every vertex in Ds \ {x} belongs to V(G′)∩V(G).
We consider in turn the two other possible moves u v, where u ∈ V(G)∩V(G′) (i.e., u corre-
sponds to a vertex of the original graph G), and v either belongs to V(G′) \V(G) or v = x. We
focus on the next operation (which may not be consecutive) that touches the vertex v. Suppose
first that v ∈ V(G′) \ V(G), i.e., v corresponds to a vertex zuu′ for some vertex u′ ∈ NG[u]. If
the next move that touches zuu′ is zuu′  u, these two operations can be ignored. Otherwise,
since zuu′ has degree two, the next operation that touches zuu′ is zuu′  u′. Moreover, we claim
that we can assume that zuu′  v is the operation that immediately follows the move u zuu′ .
Indeed, NG′ [zuu′ ] ⊆ NG′ [u] so if a dominating set D contains zuu′ , D′ = (D \ {zuu′}) ∪ {u′} is
also a dominating set of G′. So one can assume that in S′, if we have a move u  zuu′ , it will
be immediately followed by a move zuu′  u′. In that case, one can replace these two moves
by u  u′ in a reconfiguration sequence from Cs to Ct. Let us now consider the other possible
move: u x. If the next move that touches x is x u, we again simply ignore these two steps.
Let Di be the dominating set of S′ to which the move u x is applied. Recall that when a token
is moved from a vertex a to a vertex zab (for some neighbor b of a), it is followed by zab  b.
Therefore, we know that Di does not contain any vertex of the form zuv. So for every edge uu′

incident to u, Di+1 must contain u (this is possible if u has at least two tokens in Di) or u′ in
order to dominate zuu′ . Hence, Ci+1 = Di+1 \ {x} is a vertex cover of G. If the next move that
touches x is x  u′, one can safely replace these two moves u  x and x  u′ by d moves
where d is the distance between u and u′ in G. Therefore, one can obtain from S′ a TS-sequence
that reconfigures Cs into Ct and thus (G, Cs, Ct) is a yes-instance for VCRTS, as desired. This
concludes the proof of Theorem 3.20.

Finally, we prove that DSRTS is PSPACE-complete on planar graphs of maximum degree
six and bounded bandwidth graphs. Recall that a graph has bandwidth at most k if there exists
a numbering ` of the vertices with distinct integers between 1 and n (where n is the number of
vertices of the graph) such that adjacent vertices must have labels at distance at most k (i.e., for
every edge uv ∈ E, |`(u)− `(v)| ≤ k).

Theorem 3.21. DSRTS is PSPACE-complete on planar graphs of maximum degree six and bounded
bandwidth graphs.

Proof. First, recall that VCRTS is PSPACE-complete on planar graphs of maximum degree three
(see, e.g., [HD05, BC09]) and on bounded bandwidth graphs [Wro18]. The proof for dominat-
ing sets reconfiguration under TAR on planar graphs from [HIM+16] works also here since
VCRTS is PSPACE-complete on planar graphs. We use the well-known reduction mentioned in
Theorem 3.20, which is the following: start with a copy of the original graph G and for each
edge uv, add a vertex zuv of degree two adjacent to u and v. Let G′ be the resulting graph, and
note that the planarity property of G′ is preserved.

Let G be a graph whose bandwidth is bounded by some constant k. Since a vertex can
have at most k neighbors of lower label and k neighbors of higher label, this implies that the

100 Paul Ouvrard



3.2. Complexity under Token Sliding

maximum degree of G is bounded by 2k. We use this observation to prove that the graph G′

obtained from the reduction has its bandwidth bounded by k · (k+ 1). We explain how to obtain
a labeling `′ of G′ from ` that satisfies the bandwidth property. The underlying idea is to leave k
free values between any two vertices labeled consecutively in the original labeling (i.e., vertices
u and v such that `(v) = `(u) + 1) in order to label the vertices in V(G′) \V(G).

More precisely, for all i > 1, we relabel the vertex labeled i in ` with the label 1 + (i− 1) ·
(k + 1) in `′. Let u and v be two adjacent vertices of G with `(u) < `(v), then `(v)− `(u) ≤ k
and thus `′(v)− `′(u) ≤ k · (k + 1). Moreover, we label the new vertex zuv with label `′(u) +
(`(v)− `(u)), which lies between `′(u) + 1 and `′(u) + k by the bandwidth hypothesis. We also
have `′(v) − `′(zuv) < k · (k + 1), and the bandwidth condition is satisfied. So the difference
between the labels of any two adjacent vertices in G′ is at most k · (k + 1).

Observe however that not all vertices have k neighbors of higher label in G, and thus the
labeling `′ does not use consecutive values. To fix this, we just relabel the graph with values
between 1 and |V(G′)|, maintaining the ordering of `′. The new labeling `′′ obtained does not
increase the distance from `′, and thus satisfies the bandwidth condition, as required.

Recall that the pathwidth and thus the treewidth of a graph are bounded by its bandwidth
(see Section 1.4.2). Therefore, we immediately get from Theorem 3.21 that DSRTS is PSPACE-
complete on bounded pathwidth and bounded treewidth graphs.

3.2.3 Polynomial-time algorithms

In this section, we focus on graph classes for which DSRTS can be solved in polynomial time.
As discussed before, a natural way to solve this problem is to distinguish a special dominating
set, called canonical [HIM+16]. However, note that our definition of canonical dominating set is
different from the one in [HIM+16]. Indeed, we only define a canonical as a minimum domi-
nating set. We will then show that this special dominating is reachable from any dominating
set under token sliding.

The canonical dominating set is not part of the original instance, so it is crucial to be able to
compute it in polynomial time if we aim to compute the reconfiguration sequence in polyno-
mial time as well. However, this is not an issue if we are only interested in the decision problem.
We moreover emphasize the fact that this canonical dominating set must be uniquely defined,
i.e., the set of vertices that hold a token as well as the number of tokens on each of these vertices
must be fixed.

Join and cographs

Recall that the domination number of a join G1 + G2 is always at most two, since taking a vertex
from each operand of the join dominates the whole graph.

Theorem 3.22. Let G1 and G2 be two graphs, and Ds and Dt be two dominating sets of G1 + G2 of
the same size. The dominating set Ds can be reconfigured into Dt by token sliding if and only if one
of the three following conditions holds:

(i) |Ds| = |Dt| ≥ 3;

(ii) the domination number of G1 or of G2 is at most two;

(iii) both G1 and G2 are connected.

Reconfiguration problems in graphs 101



3 – Reconfiguration of dominating sets

Proof. We first show that if none of these conditions hold, then (G1 +G2, Ds, Dt) is a no-instance.
Let G1 and G2 be two graphs with γ(G1) > 2 and γ(G2) > 2, and assume without loss of
generality that G1 is not connected, say with two components C1 and C2. Note that γ(G1 +
G2) = 2 since neither G1 nor G2 has a universal vertex.

Let Ds = {u, v} and Dt = {w, v} be two minimum dominating sets of G with u ∈ C1,
w ∈ C2 and v ∈ V(G2). We prove that Ds can not be reconfigured into Dt. Since G1 is not
connected, there is no path between u and w in G[V1]. Therefore, the only way to reach w from
u is to go through V(G2). But since γ(G2) > 2 no pair of vertices in G2 can dominate G2, and
thus no move from V(G1) to V(G2) is possible.

We now prove the sufficiency, i.e., we prove that each of the above conditions is sufficient
for the dominating sets to be reconfigured.

Condition (i). Suppose |Ds| = |Dt| ≥ 3. Recall that picking a vertex of G1 and one of G2 always
forms a dominating set of G1 + G2. We infer that it is always possible to make one move from
Ds to reach a configuration with tokens in both G1 and G2, then from such position tokens can
be slid freely in their part, until reaching Dt with a last move.

We assume now that |Ds| = |Dt| ≤ 2.

Condition (ii). For the case where G1 or G2 has domination number at most two, we consider
different cases depending on whether a graph has domination number one or not.

Case 1. If γ(G1) = 1 or γ(G2) = 1: then G1 + G2 contains a universal vertex. Then, from Ds,
one can place a token on this vertex, reconfigure other possible tokens freely, then move that
token to reach Dt.

Case 2. If γ(G1) = 2 and γ(G2) = 2. Assume without loss of generality that γ(G1) = 2. Note
that in this case, γ(G1 +G2) = 2, let Ds = {v1, v2}. We define an arbitrary canonical dominating
set C by taking a vertex (e.g., of smallest index) in each of G1 and G2; we denote these vertices
u1 ∈ V(G1) and u2 ∈ V(G2). Recall that each reconfiguration sequence is reversible. Hence,
it is sufficient to prove that both Ds and Dt can been transformed into C. We only show this
statement for Ds; the proof for Dt follows by symmetry.

Suppose first that v1 and v2 belong to the same original graph, say v1, v2 ∈ V(G1). We show
how to reconfigure Ds into C in at most two steps. First, observe that since C is a dominating
set of G, u1 ∈ N[{v1, v2}], say u1 belongs to N[v1]. Our first step is to slide the token from v2 to
u2, along the corresponding edge of the join. Then, by our observation that u1 ∈ N[v1], we can
slide if necessary the token from v1 to u1.

Suppose now that v1 and v2 belong respectively to V(G1) and V(G2). Since γ(G1) = 2, let
{w1, w2} be a dominating set of G1 and thus of G1 + G2 (it can be computed naively in cubic
time). It dominates v1 so assume without loss of generality that v1w1 is an edge. First moving
the token from v1 to w1 (if v1 6= w1) and then from v2 to w2, at most two steps permit us to
reconfigure Ds into {w1, w2}, which we can then reconfigure into C by the above argument.

Condition (iii). Suppose finally that γ(G1) ≥ 3 and γ(G2) ≥ 3 but both G1 and G2 are con-
nected. Then γ(G1 + G2) = 2 and the minimum dominating sets of G1 + G2 are exactly the
sets containing a vertex in G1 and a vertex in G2. Let Ds = {v1, v2} and Dt = {w1, w2} with
v1, w1 ∈ V(G1) and v2, w2 ∈ V(G2). Since G1 is connected, there exists a path from v1 to w1 in
G[V(G1)]. Moving the token along this path, we always keep a dominating set by the above
observation. Doing similarly along a path from v2 to w2, we have a reconfiguration sequence
from Ds to Dt. This concludes the proof of Theorem 3.22.

We now consider the special case of cographs. Recall that the family of cographs can be
defined as the family of P4-free graphs, or equivalently by the following recursive definition:

102 Paul Ouvrard



3.2. Complexity under Token Sliding

• K1 is a cograph;

• for G1 and G2 any two cographs, the disjoint union G1 ∪ G2 is a cograph;

• for G1 and G2 any two cographs, the join G1 + G2 is a cograph.

Brandelt and Mulder gave in [BM86] an alternative characterization of cographs: G is a
cograph if and only if G is the disjoint union of distance-hereditary graphs with diameter at
most two. Note that computing a minimum dominating set in distance-hereditary graphs is
linear-time solvable [NS01]. Hence, we can compute the domination number of a cograph in
linear time as well.

By the previous theorem, we infer that if a cograph is constructed as a join of two cographs,
the case is polynomial-time decidable. The case when G = K1, is straightforward. If G =
G1 ∪ G2 is the disjoint union of two cographs, then for two dominating sets Ds and Dt, de-

ciding whether Ds
TS
! Dt is equivalent to deciding whether Ds ∩ V(G1)

TS
! Dt ∩ V(G1) in

G1, and Ds ∩ V(G2)
TS
! Dt ∩ V(G2) in G2, which can be done inductively by induction. As a

consequence, we obtain the following:

Theorem 3.23. There is a polynomial-time algorithm deciding DSRTS in cographs.

Dually chordal graphs

Let G = (V, E) be a graph with V = {v1, v2, . . . , vn}. We denote by Gi the graph induced by
{vi, vi+1, . . . , vn}. A maximum neighbor of a vertex u is a vertex v ∈ N[u] such that we have
N[w] ⊆ N[v] for every vertex w ∈ N[u]. In other words, v contains in its closed neighborhood
every vertex at distance at most two from u. A maximum neighborhood ordering (or mno for short)
is an ordering of the vertices in such a way that vi has a maximum neighbor in the graph Gi.
A graph is dually chordal if it has a maximum neighborhood ordering. This ordering can be
computed in linear time [BCD98]. Moreover, the mno computed by this algorithm is such that
for every vertex vi (with i < n), v′is maximum neighbor is different from vi (for connected
graphs). An alternative proof of a similar statement for not necessarily connected graphs can
be found in [DKR15]. In the following, we always assume that an mno is associated with a
function mn : V −→ V that associates with each vertex a maximum neighbor.

v8

v7 v6 v5 v3

v4 v2 v1

Figure 3.12 – A dually chordal graph.

Note that a dually chordal graph is not necessarily chordal. Figure 3.12 gives an example
of a graph which is dually chordal but not chordal, since it contains an induced cycle on four
vertices. The label inside each vertex corresponds to its rank in the ordering, and its maximum
neighbor is the endpoint of its single outgoing edge (note that v8’s maximum neighbor is itself).

Reconfiguration problems in graphs 103



3 – Reconfiguration of dominating sets

Moreover, observe that any tree T is a dually chordal graph: root the tree in some vertex and
orient all edges toward the root; any numbering keeping all Gi connected is an mno where arcs
point towards the vertex maximum neighbor.

Link with interval graphs. Recall that an interval graph is the intersection graph of a family
of intervals on the real line. In other words, let {I1, I2, . . . , In} be a set of intervals. Each interval
I can be represented by its extremities `(I), r(I) with `(I) ≤ r(I) ∈ R. We call these values
respectively the `-value and r-value (for left and right). The corresponding interval graph G =
(V, E) is the following:

• V = {I1, I2, . . . , In};

• Ii Ij ∈ E⇔ Ii ∩ Ij 6= ∅, i.e., `(Ij) ≤ r(Ii) and `(Ii) ≤ r(Ij).

I0

I1

I2

I3

I4

I5

I6

I7

I8

Figure 1

(a) Set of intervals

I0 I1 I2 I3 I4 I5 I6 I7 I8

Figure 1

(b) Corresponding interval graph

Figure 3.13 – Interval graph and its maximum neighborhood ordering.

Let G = (V, E) be an interval graph. For convenience, we denote by vi the vertex related to
the interval Ii. We now order the vertices of G with respect to their r-values, i.e., vi < vj if and
only if r(Ii) < r(Ij) (or r(Ii) = r(Ij) and `(Ii) < `(Ij)). Then, recall that we have the following
property (see Section 1.2.2 for a proof):

Observation 3.24. Let vi and vj be two vertices of G such that vi < vj. If vivj ∈ E, then for any vk
such that vi < vk < vj, we have vkvj ∈ E.

We can now prove the following:

Observation 3.25. Interval graphs are dually chordal graphs.

Proof. To see this observation, we prove that the ordering described above is an mno. For every
vertex vi, we show that its neighbor of maximum index vj in the ordering is a maximum neigh-
bor. Indeed, consider any neighbor vk of vi in Gi. By definition of vj, we have vi < vk ≤ vj, and
vk is adjacent to vj. Moreover, any other neighbor v` > vi of vk either satisfies vi < v` < vj or
vk < vj < v`. In both cases, Observation 1.4 concludes the proof.

An example of the construction used above on an interval graph is given in Figure 3.13
where the maximum neighbor of Ii is its only out-neighbor, i.e., the endpoint of the only di-
rected edge incident to Ii.

104 Paul Ouvrard



3.2. Complexity under Token Sliding

Computing the canonical dominating set. Let G be a dually chordal graph, whose vertices
are ordered by an mno. Let C = {c1, c2, . . . , ck} be a dominating set of G and T = {t1, t2, . . . , tk}
a set of vertices, both sets in increasing order according to the mno. We say that C is a triggered
dominating set with triggering vertices T if and only if the two following properties are satisfied:

(i) ci = mn(ti) for all 1 ≤ i ≤ k,

(ii) following the mno, ti is the least vertex not in N[c1, . . . , ci−1], for all 1 ≤ i ≤ k.

It is known that the MINIMUM DOMINATING SET problem is linear-time solvable on du-
ally chordal graphs [BCD98]. In our case, we give another algorithm to compute a triggered
dominating set, that will serve as a canonical dominating set.

Observe that an mno is associated with exactly one triggered dominating set. The following
algorithm, called MDS, is strongly inspired by the classical algorithm for computing minimum
dominating sets in trees [MCH79]. It takes as input a dually chordal graph G = (V, E) with
an mno and computes a triggered dominating set C of size γ(G) and its corresponding set of
triggering vertices T in running time O(|V|+ |E|).

Algorithm 3 MDS

Require: A dually chordal graph G with an mno.
Ensure: A minimum triggered dominating set C and its set of triggering vertices T.

1: Mark all vertices BOUNDED

2: C ← ∅
3: for all i from 1 to n do
4: if vi is labeled BOUNDED then
5: Label mn(vi) with REQUIRED

6: Add vi to the set of triggering vertices T
7: for all u ∈ N[mn(vi)] do
8: if u is not labeled REQUIRED then
9: Label u with FREE

10: if vi is labeled REQUIRED then
11: C ← C ∪ {vi}
12: return C and T

Lemma 3.26. Given a dually chordal graph G = (V, E), the algorithm MDS computes a triggered
dominating set of G of order γ(G) in time O(|V|+ |E|).

Proof. The fact that C is a triggered dominating set with triggering vertices T is a direct conse-
quence of the construction of the algorithm. Statement (i) comes from line 5 of the algorithm,
while statement (ii) simply comes from the fact that we deal with the vertices in increasing
order in the loop of line 3. Still we need to prove that this dominating set is of size γ(G).

A labeled graph is a graph whose vertices are labeled FREE, REQUIRED or BOUNDED, such
that a vertex is labeled FREE if and only if it is adjacent to a vertex labeled REQUIRED and it is
not labeled REQUIRED. Observe that the algorithm MDS maintains all along a labeled graph.
In a labeled graph, we define a labeled dominating set a set of vertices containing all the vertices
labeled REQUIRED and dominating all vertices labeled BOUNDED. The labeled domination number
is the minimum size of a labeled dominating set. We show that the algorithm MDS keeps the
labeled domination number of the graph invariant. At the beginning, when all the vertices
are labeled BOUNDED, the labeled domination number of the graph is exactly its domination
number. This will allow us to conclude that the set of vertices marked REQUIRED at the end
forms a minimum dominating set of G, of order γ(G).

Reconfiguration problems in graphs 105



3 – Reconfiguration of dominating sets

Let S be a minimum labeled dominating set of a labeled graph G, and let vi be the mini-
mum vertex in the mno that is labeled BOUNDED. Let w be the maximum neighbor of vi in Gi.
If w ∈ S, then S is also a minimum labeled dominating set of the graph G where w is labeled
REQUIRED and all its neighbors previously labeled BOUNDED are labeled FREE, so the algo-
rithm does not change the labeled domination number of G. Otherwise, say vj is the vertex that
dominates vi in S. Since vi is marked BOUNDED, vj is not marked REQUIRED. If j ≥ i, then by
the maximum neighbor property, w is adjacent to all the neighbors of vj that are in Gi, so w
dominates all neighbors of vj that are still marked BOUNDED. Thus we can replace vj by w in
S and keep a minimum labeled dominating set of G. This concludes the case j ≥ i. Suppose
now j < i. Consider vk the maximum neighbor of vj in Gj. Observe that since no vertex less
than vi is BOUNDED, by the maximum neighbor definition, vk dominates any BOUNDED vertex
adjacent to vj. Thus, we can again replace vj by vk in S and keep a minimum dominating set.
We can iterate until the vertex dominating vi in S is no less than vi, and then refer to the above
argument, used when j ≥ i. This concludes the proof that the algorithm MDS keeps the labeled
domination number of the graph invariant, and thus that it produces a minimum dominating
set of G.

For the time complexity of the algorithm, observe that the algorithm visits every vertex at
most once in the main loop, and it visits the neighborhoods of each vertex at most once when
it possibly labels it REQUIRED. So the complexity is upper bounded by ∑v∈V O(1 + |N(v)|) =
O(|V|+ |E|).

The reconfiguration algorithm. We now show how to make use the canonical triggered dom-
inating set C computed by the MDS algorithm in order to reconfigure two dominating sets of a
dually chordal graph. To do that, we provide an algorithm called DUALLY-CHORDAL-RECONF

that modifies any dominating set D of a dually chordal graph in such a way that C ⊆ D. The
idea of this algorithm is to pick one vertex in D that dominates the triggering vertex ti (from
the output of algorithm MDS) and to replace it by the corresponding vertex ci of C. Recall that

the notation u TS
 v is used for sliding the token along the edge uv.

Algorithm 4 DUALLY-CHORDAL-RECONF

Require: A dually chordal graph G = (V, E), a minimum dominating set D of G
1: Compute an mno for G
2: (C, T)← MDS(G).
3: for i from 1 to γ(G) do
4: Let xi be the least vertex of D ∩ N[ti]
5: if xici ∈ E then
6: xi

TS
 ci

7: else
8: yi ← mn(xi)

9: xi
TS
 yi

10: yi
TS
 ci

Lemma 3.27. Given a dually chordal graph G = (V, E) and a dominating set D, DUALLY-
CHORDAL-RECONF modifies D with respect to the token sliding model in such a way that C ⊆ D
in O(|V|) time, where C is the canonical triggered dominating set computed by the MDS algo-
rithm.

Proof. Let T = (t1, t2, . . . , tγ) and C = {c1, c2, . . . , cγ} be the output of algorithm MDS, with
ci = mn(ti). We denote by Ci = {c1, . . . , ci} the set of i first vertices of C according to the mno.

106 Paul Ouvrard



3.2. Complexity under Token Sliding

In order to prove the correctness of the algorithm, we need to prove that the two following
constraints are satisfied:

(i) each move is valid with respect to the token sliding model;

(ii) every intermediate set is a dominating set of G. (Note that this ensures the existence of
the xi of line 4.)

We prove these two properties by induction on the index i, with 0 < i ≤ γ. For some
i > 0, assume that the algorithm reconfigured properly D into Di−1 = (D \ {x1, . . . , xi−1}) ∪
{c1, . . . , ci−1} . We explain how to extend this up to rank i. By definition, ti is the least vertex
which is not dominated by N[Ci−1] = N[{c1, . . . , ci−1}]. Let xi be the least vertex dominating ti
in D. Observe that xi /∈ {c1, . . . , ci−1} since ti is the triggering vertex of ci. To simplify notation,
we denote by G′ the subgraph of G induced by vertices larger than ti in the mno (i.e., the sub-
graph Gj where j is the index of ti in the mno). Note that since Ci−1 ⊂ Di−1, all vertices in G \G′

are dominated. We consider two cases:

Case 1. xi is adjacent to ci. Observe first that this case occurs whenever xi ≥ ti in the mno
(where xi ∈ NG′ [ti] ⊆ NG′ [ci]). In that case, the algorithm executes line 6 and the token sliding
constraint (i) is satisfied. Now, since ci = mn(ti) and xi is adjacent to ti, NG′ [xi] ⊆ NG′ [ci], and
constraint (ii) is also satisfied. The conclusion follows from the fact that all vertices in G \G′ are
dominated.

Case 2. xi is not adjacent to ci. This is possibly the case when xi < ti in the mno. The algorithm
then first reconfigures xi into its maximum neighbor yi, which is adjacent to xi and dominates
all neighbors of xi that might not be dominated yet by {c1, . . . , ci−1}, satisfying constraint (ii).
Moreover, xi is adjacent to ti and xi < ti in the mno, so yi, as the maximum neighbor of xi, must
be adjacent to ti and all its neighbors in G′, among which there is ci. So the next move to ci
satisfies the token sliding constraint (i). Also, since yi is adjacent to ti and ci is the maximum
neighbor of ti, NG′(yi) ⊆ NG′ [ci], and constraint (ii) is also satisfied.

Theorem 3.28. DSRTS can be solved in linear time on dually chordal graphs, and we can obtain a
reconfiguration sequence between two dominating sets in quadratic time.

Proof. Let G = (V, E) be a dually chordal graph and Ds, Dt be two dominating sets of G of size
k. We may assume that G is connected, otherwise we proceed independently for each connected
component by checking first that the number of tokens on each component fit. More precisely,
(G, Ds, Dt) is a yes-instance if and only if for each connected component Gi of G, we have
|Ds ∩ Gi| = |Dt ∩ Gi|. This can be done in linear time. We explain how to reconfigure Ds into
Dt in at most quadratic time.

First, we compute in linear time the canonical dominating set C of G with the algorithm
MDS. By Lemma 3.27, one can transform Ds and Dt in such a way that both contain C. This can
be done in linear time (with respect to the order of G) since we move at most γ(G) tokens and
each move requires at most two steps. If k = γ(G), we are done. Otherwise, choose a vertex v
of minimum eccentricity and move all the remaining tokens by a shortest path to v. Therefore,
the total time complexity is O(|V| + |E|) + O(|V|) + O((k − γ(G)) · ε(v)), which is at most
quadratic (when k = Ω(n)).

Observe that when k is close to γ, the algorithm is linear. However, when the number of
extra tokens is large (i.e., is linear in n), the quadratic overhead may be necessary. Indeed,
consider a path on n vertices Pn. The minimum eccentricity of Pn is that of the middle vertex v
which is bn/2c. Therefore, if all the extra tokens are on an extremity of the path, the time needed

Reconfiguration problems in graphs 107



3 – Reconfiguration of dominating sets

to move all of them to v is quadratic. Since a path is a dually chordal graph, the conclusion
follows.

3.2.4 Concluding remarks

In this section, we initiated the study of the computational complexity of DSRTS, the reachabil-
ity question of DOMINATING SET RECONFIGURATION under token sliding. We proved that the
problem is PSPACE-complete in several graph classes including split or bipartite graphs while
it is polynomial-time solvable on cographs and dually chordal graphs (see Figure 3.14).

PSPACE-c

Poly.

Perfect

Chordal

Split Planar

Bounded treewidth

Bounded pathwidth

Bounded bandwidth

Interval

Threshold Proper interval

Dually chordal

Tree

Bipartite

Cograph

Figure 3.14 – Our results: the frontier between PSPACE-completeness and tractability.

However, in all of our polynomial results presented in Section 3.2.3, computing a minimum
dominating set can be done in polynomial or even linear time on the graph classes considered.
Therefore, a challenging question is the following: does there exist a graph class for which
computing a minimum dominating set is NP-complete but DSRTS can be solved in polynomial
time? As a result of Theorem 3.28, we get that DSRTS is polynomial-time solvable on interval
graphs. Recall that a circle graph is the intersection graph of a set of chords of a circle. The
DOMINATING SET PROBLEM has been shown to be NP-complete on this graph class [Kei93].
Hence, we ask the following question; note that if the problem is tractable, it would generalize
our result on cographs:

Question 3.29. What is the complexity of DSRTS on circle graphs?

A circular-arc graph is the intersection graph of a set of arcs on the circle. Even if computing
a minimum dominating set can be computed in linear time on circular-arc graphs [Cha98],
we are interested in the complexity of the reconfiguration version under token sliding. More
precisely, we ask for the following:

Question 3.30. Is DSRTS polynomial-time solvable on circular-arc graphs?

Recently, Nicolas Bousquet and Alice Joffard studied the complexity of DSRTS [Jof20]. They
proved that the problem is PSPACE-complete on planar bipartite graph, unit disk graphs, line
graphs and circle graphs (answering Question 3.29). Hence, it remains open to determine if
there exists a graph class for which DOMINATING SET is NP-complete but DSRTS is in P. On
the positive side, they answered positively to Question 3.30 (see Figure 3.15).

Besides, we found polynomial-time algorithms for cographs and dually chordal graphs but
the underlying reconfiguration sequence is most likely not optimal. Indeed, it may be possi-
ble that the shortest path in Rk(G) between the two given solutions does not go through the
canonical dominating set. Therefore, can we bound the diameter of the reconfiguration graph?

108 Paul Ouvrard



3.3. Optimization variants

PSPACE-c

Poly.

Perfect

Cograph

Chordal

Split

Planar

Unit Disk

Circular arc

Circular interval

Circle Line

Bounded treewidth

Bounded pathwidth

Bounded bandwidth

Interval
Threshold

Proper interval

Dually chordal

Tree

Bipartite

Planar bipartite

Figure 3.15 – Complexity of DSRTS with the results by Bousquet and Joffard [Jof20].

In other words, what is the maximum length of a shortest reconfiguration sequence between
any pair of dominating sets? Moreover, what is the complexity of finding the optimal solution,
i.e., the shortest reconfiguration sequence between two dominating sets on cographs or dually
chordal graphs? Is it polynomial-time solvable, as the reachability variant studied here? Or
does it become harder?

3.3 Optimization variants

In this section, we focus on an optimization variant of reconfiguration recently introduced by
Ito et al. [IMNS19] for INDEPENDENT SET RECONFIGURATION. We apply it to dominating sets
and we study the tractability and fixed-parameter tractability according to graph classes. The
results presented in Sections 3.3.2 and 3.3.3 are from a joint work with Alexandre Blanché,
Haruka Mizuta and Akira Suzuki [BMOS20], while the result of Section 3.3.4 is an ongoing
work with Alexandre Blanché and Haruka Mizuta.

3.3.1 Introduction

Combinatorial reconfiguration models dynamic transformations of systems, where we wish to
transform the current configuration of a system into a more desirable one by a step-by-step
transformation. In the current framework of combinatorial reconfiguration, we need to have in
advance a target, i.e., a more desirable configuration. However, it is sometimes hard to decide
a target configuration, because there may exist exponentially many of them. Based on this sit-
uation, Ito et al. [IMNS19] introduced the new framework of reconfiguration problems, called
optimization variant. In this variant, we are given a single solution as a current configuration,
and asked for a more "desirable" solution reachable from the given one. They might be several
definitions of what is a "more desirable" solution. In [IMNS19], it corresponds to a solution that
maximizes its size, since INDEPENDENT SET is a maximization problem. More precisely, then
studied the following problem called OPT-ISR:

OPT-ISR

Instance: A graph G, two integers k, s ≥ 0, an independent set I of G such that |I| ≥ k.
Output: An independent set It of G such that |It| ≥ s and It is reachable from I under

the TAR(k) rule if it exists, no-instance otherwise.

Reconfiguration problems in graphs 109



3 – Reconfiguration of dominating sets

They proved that this problem is PSPACE-hard on bounded pathwidth while it is linear-
time solvable on chordal graphs. They also studied the parameterized complexity of OPT-ISR
according to three different parameters: the degeneracy d of the input graph, the threshold k
and the solution size s. They showed that the problem is W[1]-hard when only one of d, k, and
s is taken as a parameter. However, OPT-ISR admits an XP algorithm with respect to the latter
since they provided an O(s3n2s) time algorithm. Moreover, they also gave a fixed-parameter
algorithm with respect to s + d. This result implies that OPT-ISR is fixed-parameter tractable
when parameterized by s on planar graphs, and on bounded treewidth graphs.

As we said before, we apply this optimization framework to the reconfiguration of domi-
nating sets. We consider the TAR rule as well and our goal is to minimize the size of the target
dominating set. More precisely, the optimization variant of DOMINATING SET RECONFIGURA-
TION (or OPT-DSR for short) is defined as follows:

OPT-DSR

Instance: A graph G, two integers k, s ≥ 0, a dominating set D of G such that |D| ≤ k.
Output: A dominating set Dt of G such that |Dt| ≤ s and Dt is reachable from D under

the TAR(k) rule if it exists, no-instance otherwise.

We denote by a 4-tuple (G, k, s, D) an instance of OPT-DSR; the Figure 3.16 illustrates a
yes-instance with threshold k = 4 and solution size s = 2.

D0 D1 D2 D3

Figure 3.16 – Reconfiguration sequence between D0 and D3 via dominating sets D1, D2 with
upper bound k = 4, where added or removed vertices are surrounded by dotted circles.

Let us now give some useful observations regarding OPT-DSR.

Observation 3.31. Let (G, k, s, D) be an instance of OPT-DSR. If k, s and |D| violate the inequality
s < |D| ≤ k, then D is a solution of the instance.

Proof. By the definition of D, we know |D| ≤ k. Therefore if the inequality is violated, we have
|D| ≤ s ≤ k or |D| ≤ k ≤ s. In both cases, |D| ≤ s holds, and hence D is a solution.

It is observed that the condition in Observation 3.31 can be checked in linear time. There-
fore, we sometimes assume without loss of generality that s < |D| ≤ k holds. Then, another
observation follows.

Observation 3.32. Let (G, k, s, D) be an instance of OPT-DSR such that s < |D| holds. If D is minimal
and |D| = k holds, then the instance has no solution.

Proof. Since |D| = k, we cannot add any vertex to D without exceeding the threshold k. Besides,
since D is minimal, we cannot remove any vertex while maintaining the domination property.
As a result, there is no dominating set Dt of size at most s which is reachable from D under the
TAR(k) rule.

110 Paul Ouvrard



3.3. Optimization variants

Again, the conditions in Observation 3.32 can be checked in linear time, and hence we can
assume without loss of generality that D is not minimal or |D| < k holds. Suppose that D is not
minimal. Then, we can always obtain a dominating set of size less than k by removing some
vertex without private neighbor from D, that is, we have a dominating set D′ reachable from
D under the TAR(k) rule such that |D′| < k. Note that (G, k, s, D) has a solution if and only if
(G, k, s, D′) does. Therefore, it suffices to consider the case where |D| < k holds. Combining it
with Observation 3.31, we sometimes assume without loss of generality that s < |D| < k holds.

Finally, we have the following observation which states that OPT-DSR is a generalization
of the DOMINATING SET Problem; a similar result holds for OPT-ISR:

Observation 3.33. Let G = (V, E) be a graph and s be an integer. The instance (G, |V|, s, V) of
OPT-DSR is equivalent to finding a dominating set of G of size at most s.

Proof. Suppose that G admits a dominating set Dt of size at most s. Since we started from a
dominating set containing all the vertices of G, it is sufficient to remove one by one each vertex
in V \ Dt to reach Dt and thus (G, |V|, s, V) is a yes-instance. The converse direction is trivial: if
(G, |V|, s, V) is a yes-instance, then G has a dominating set of size at most s.

Observation 3.33 implies that the hardness results for the original DOMINATING SET prob-
lem extend to OPT-DSR. In particular, we obtain as a corollary that OPT-DSR is NP-hard
even for the case where the input graph has maximum degree three, or is planar with maxi-
mum degree four [GJ79]. However, we will show in Section 3.3.2 that this problem is actually
PSPACE-complete.

3.3.2 Polynomial-time (in)tractability

In this section, we give some results regarding the tractability of OPT-DSR with respect to
graph classes. We first show that the problem is PSPACE-complete for bounded pathwidth
graphs, for split graphs, and for bipartite graphs. Additionally, we explain how to extend some
known results on DSRTAR to get polynomial-time algorithms for cographs, trees or interval
graphs for instance.

PSPACE-completeness for several graph classes We first show that OPT-DSR is PSPACE-
complete. More precisely, we prove the following:

Theorem 3.34. OPT-DSR is PSPACE-complete even when restricted to bounded pathwidth
graphs, for split graphs, and for bipartite graphs.

First, observe that OPT-DSR is in PSPACE. Indeed, when we are given a dominating set Dt
as a solution for some instance of OPT-DSR, we can check in polynomial time whether it has
size at most s or not. Furthermore, since DSRTAR is in PSPACE, we can check in polynomial
space whether it is reachable from the original dominating set D. Therefore, we can conclude
that OPT-DSR is in PSPACE.

We now give three reductions to show the PSPACE-hardness for split graphs, bipartite
graphs and bounded pathwidth graphs, respectively. These reductions are slight adaptations
to the ones of PSPACE-hardness for DSRTAR developed in [HIM+16] To this end, we use a
polynomial-time reduction from the optimization variant of VERTEX COVER RECONFIGURA-
TION, denoted by OPT-VCR.

Recall that given a graph G = (V, E), a vertex cover is a subset of vertices that contains at
least one endpoint of each edge in E. We now give the formal definition of OPT-VCR. Sup-
pose that we are given a graph G, two integers k, s ≥ 0, and a vertex cover C of G whose

Reconfiguration problems in graphs 111



3 – Reconfiguration of dominating sets

cardinality is at most k. Then OPT-VCR asks for a vertex cover Ct of size at most s reachable
from C under the TAR(k) rule. This problem is PSPACE-complete even for bounded pathwidth
graphs. Indeed, Ito et al. [IMNS19] showed that OPT-ISR is PSPACE-complete on bounded
bandwidth graphs. Since any vertex cover of a graph is the complement of an independent set,
the PSPACE-completeness of OPT-VCR follows.

Lemma 3.35. OPT-DSR is PSPACE-hard even for split graphs.

Proof. As we said, we give a polynomial-time reduction from OPT-VCR. More precisely, we ex-
tend the idea developed in [Ber84, CN84] to prove the NP-hardness of DOMINATING SET prob-
lem on split graphs. Let (G′, k′, s′, C) be an instance of OPT-VCR with V(G′) = {v1, v2, . . . , vn}
and E(G′) = {e1, e2, . . . , em}. We construct the corresponding split graph G as follows (see also
Figure 3.17). Let V(G) = A∪ B, where A = V(G′) and B = {w1, w2, . . . , wm}; the vertex wi ∈ B
corresponds to the edge ei ∈ E(G′). We join all pairs of vertices in A so that A forms a clique
in G. In addition, for each edge ei = vpvq in E(G′), we join wi ∈ B with each of vp and vq. Let
G be the resulting graph, and let (G, k = k′, s = s′, D = C) be the corresponding instance of
OPT-DSR (we will prove later that D is a dominating set of G). Clearly, this instance can be
constructed in polynomial time.

v1 v2

v3v4

e1

e2

e3

e4 e 5

(a) Original graph G′.

v1

v2

v3

v4

w1

w2

w3

w4

w5

(b) Corresponding split graph G.

Figure 3.17 – Reduction for Lemma 3.35. Note that {v2, v4} forms a vertex cover of G′, and a
dominating set of G.

It remains to prove that (G′, k′, s′, C) is a yes-instance for OPT-VCR if and only if (G, k, s, D)
is a yes-instance for OPT-DSR.

(⇒) We start by the only-if direction. Suppose that (G′, k′, s′, C) is a yes-instance. Then, there
exists a vertex cover Ct of size at most s′ reachable from C under the TAR(k’) rule. Since k′ = k,
s = s′ and both problems employ the same reconfiguration rule, it suffices to prove that any
vertex cover of G′ is a dominating set of G. Since C ⊆ V(G′) = A and A is a clique, all vertices
in A \ C are dominated by the vertices in C. Thus, consider a vertex wi ∈ B, which corresponds
to the edge ei = vpvq in E(G′). Then, since C is a vertex cover of G′, at least one of vp and
vq must be contained in C. This means that wi is dominated by the endpoint vp or vq in G.
Therefore, each vertex cover in the reconfiguration sequence between C and Ct is a dominating
set of G (including D = C and Dt = Ct) and thus, (G, k, s, D) is a yes-instance.

(⇐) We now focus on the if direction. Suppose that (G, k, s, D) is a yes-instance. Then, there
exists a dominating set Dt of G of size at most s reachable under the TAR(k) rule by a sequence
R = 〈D0, D1, . . . , Dt〉, with D = D0. Recall that D = C and thus D is a vertex cover of G′. We
want to produce a sequence of dominating sets that are subsets of A. To this end, we proceed
by eliminating the vertices of B that appears in R one by one from the sequence. Let i be the
smallest index such that Di ∈ R contains a vertex wj ∈ B associated to the edge vkvl ∈ E(G).

112 Paul Ouvrard



3.3. Optimization variants

Let j ≥ i be the largest index such that every dominating Dk ∈ R (i ≤ k ≤ j) contains wj. Then,
for every Dk ∈ R (i ≤ k ≤ j) we instead consider the set D′k = (Dk \ wj) ∪ {vk}, where vk ∈
NG′(wj). Observe that each D′k is a dominating set since NG′ [wj] ⊆ NG′ [vk]. If vk ∈ Di−1, observe
that Di−1 = D′i . Otherwise, D′i is obtainable from Di−1 in one step since we just replace the
addition of wj by the one of vk. Moreover, due to the choice of j, Dj+1 = Dj \ {wj}. Hence, Dj+1
contains a vertex in A adjacent to wj. If this vertex is vk, D′j = Dj+1. Otherwise, Dj+1 = D′j \ {vk},
which corresponds to a valid TAR move. Finally, since we ensure that each dominating set D′k
with i ≤ k ≤ j contains vk, we can ignore each move in the subsequence of R that touches vk.
Hence, D′k ↔ D′k+1 holds, for every i ≤ k < j. The resulting subsequence does not touch wj.
Hence by repeating this process for each subsequence containing wj we get a new sequence
that does not touch wj at all. We then repeat this process for every vertex of B that appears in
R and we obtain a sequence R′ where each dominating set is a subset of A. Finally, observe
that any dominating set D of G such that D ⊆ A = V(G′) forms a vertex cover of G′, because
each vertex wi ∈ B is dominated by at least one vertex in D ⊆ V(G′). Therefore, (G′, s′, k′, C) is
a yes-instance.

Finally, the two following lemmas complete the proof of Theorem 3.34.

Lemma 3.36. OPT-DSR is PSPACE-hard even for bipartite graphs.

Proof. We give a polynomial-time reduction from OPT-DSR on split graphs to the same prob-
lem restricted to bipartite graphs. The same idea is used in the NP-hardness proof of DOMI-
NATING SET problem on bipartite graphs [Ber84, CN84].

Let (G′, k′, s′, D′) be an instance of OPT-DSR, where G′ is a split graph. Then V(G′) can
be partitioned into two subsets A and B which form a clique and an independent set in G′,
respectively. Furthermore, by the reduction given in the proof of Lemma 3.35, the problem on
split graph remains PSPACE-complete even if the given dominating set D′ consists of vertices
only in A. We thus assume that D′ ⊆ A holds.

We now construct the corresponding bipartite graph G, as follows. First, we delete any
edge joining two vertices in A so that A forms an independent set. Then, we add a new edge
consisting of two new vertices x and y, and join y with each vertex in A. The resulting graph G
is bipartite (see Figure 3.18 for an example).

v1

v2

v3

v4

w1

w2

w3

w4

(a) Original split graph G′.

v1

v2

v3

v4

w1

w2

w3

w4

x y

(b) Corresponding bipartite graph G.

Figure 3.18 – Reduction for Lemma 3.36. Note that {v2, v4} forms a dominating set of G′, and
{y, v2, v4} a dominating set of G.

Let D = D′ ∪ {y}, k = k′ + 1 and s = s′ + 1. Then we obtain the corresponding OPT-DSR
instance (G, k, s, D) where G is bipartite (here again, we will prove later that D is dominating
set of G). Clearly, this instance can be constructed in polynomial time. We then prove that
(G, k′, s′, D′) is a yes-instance if and only if (G, k, s, D) is a yes-instance.

Reconfiguration problems in graphs 113



3 – Reconfiguration of dominating sets

(⇒) We first prove the only-if direction. Suppose that there exists a dominating set D′t of G′

such that D′ k′
! D′t and |D′t| ≤ s′. Consider any dominating set D′′ of G′. Then, B ⊆ NG[D′′]

holds because B ⊆ NG′ [D′′] and we have deleted only the edges which have both endpoints in
A. Since NG[y] = A∪{x}, we can conclude that D′′∪{y} is a dominating set of G. Furthermore,

|D′t ∪ {y}| ≤ s′ + 1 = s. Thus there exists a dominating set Ds of G such that D k
! Dt and

|Dt| ≤ s, as desired.

(⇐) We then prove the if direction. Suppose that there exists a dominating set Dt of G, of
size at most s and reachable from D by a TAR(k) sequence R = 〈D0, D1, . . . , Dt〉, with D = D0.
Recall that D = D′ ∪ {y}, and notice that any dominating set of G contains at least one of x
and y. Since NG[x] ⊂ NG[y], we can assume that Ds contains y. Therefore, we can also assume
that y is contained in every dominating set of the reconfiguration sequence. Recall that the
assumption D′ ⊆ A holds. As in the proof of Lemma 3.35, we can produce an equivalent
sequenceR′ that does not touch any vertex of B. Again, if a dominating set Di touches a vertex
wj associated to the edge vk, vl , we replace Di by D′i = (Di \ wj) ∪ vk. We repeat the operation
for all wj and obtain the wanted sequence. Consider any dominating set D of G in such a
reconfiguration sequence. Since y ∈ D, we have |D ∩ V(G′)| ≤ k− 1 = k′. Furthermore, since
D ∩ V(G′) ⊆ A and A forms a clique in G′, we have A ⊆ NG′ [D ∩ V(G′)]. Since there is no
edge joining y and a vertex in B, each vertex in B is dominated by some vertex in D ∩ V(G′).
Therefore, D ∩ V(G′) is a dominating set of G′ with cardinality at most k′, and hence there

exists a dominating set D′t of G′ such that D′ k′
! D′t and |D′t| ≤ s′.

Lemma 3.37. OPT-DSR is PSPACE-hard even for bounded pathwidth graphs.

Proof. Our reduction follows from the original reduction from VERTEX COVER to DOMINATING

SET [GJ79]. Let (G′, k′, s′, C) be an instance of OPT-VCR, where the pathwidth of G′ is bounded;
note again that OPT-VCR is PSPACE-complete even for bounded pathwidth graphs. Let G be
the graph constructed from G′ as follows: for each edge u, w, we add a new vertex vuw and join
it with both of u and w by edges (see Figure 3.19).

u w

(a)

u w

vuw

(b)

Figure 3.19 – Reduction for Lemma 3.37. (a) Original edge uv in G′ and (b) gadget in G for uv.

We now claim that the pathwidth of G is bounded. Let P ′ be the path decomposition of G′

of width pw(G′). Then we construct a path decomposition P of G from P ′ by adding each new
vertex vuw to any vertex subset X′i inP ′ in which both u and w are contained; from the definition
of a path decomposition, such a vertex subset X′i always exists. For each vertex subset in P ′,
the number of pairs of two vertices is O(pw(G′)2), and hence the resulting path decomposition
P has width O(pw(G′)2); it is bounded by some constant since pw(G′) is. Let (G, k = k′, s =
s′, D = C) be the corresponding instance of OPT-DSR. This construction can clearly be done
in polynomial time. Hence, it remains to prove that (G′, k′, s′, C) is a yes-instance for OPT-VCR
if and only if (G, k, s, D) is a yes-instance for OPT-DSR.

(⇒) Suppose first that (G′, k′, s′, C) is a yes-instance and let Ct be a vertex cover of size at
most s′ reachable from C under the TAR(k′) rule, by a sequence R′. Since any vertex cover of

114 Paul Ouvrard



3.3. Optimization variants

G′ is a dominating set of G and k = k′, s = s′, then the sequence R′ yields a reconfiguration
sequence from D = C to Dt = Ct. Thus, (G, k, s, D) is a yes-instance.

(⇐) We now prove the other direction. Suppose that (G, k, s, D) is a yes-instance and let
R = 〈D0, D1, . . . , Dt〉 be a TAR(k) sequence of dominating sets of G starting at D = D0 and
reaching a dominating set Dt that satisfies |Dt| ≤ s. Recall that D does not contain any newly
added vertex in V(G) \ V(G′). We want a sequence R′ that does not touch any newly added
vertex vuw. To this end, in the same spirit as in the proofs of Lemmas 3.35 and 3.36, we eliminate
the vertices of V(G) \ V(G′) one by one. If a Di contains a vertex vuw, then we replace Di by
D′i = (Di \ vuw) ∪ {u}, which is also a dominating set and is reachable in one step from Di−1.
Thus, the resulting sequence does not touch vuw, and by repeating the operation to all vertices
of V(G) \V(G′), we obtain the wanted TAR(k) sequenceR′ of subsets of V(G′). In this way, we
can obtain a reconfiguration sequence of vertex covers in G′ between C and Ct = Dt as needed.

Since OPT-VCR is PSPACE-complete for bounded pathwidth graphs, the reduction above
implies PSPACE-hardness on bounded pathwidth graphs.

Linear-time algorithms We now explain how OPT-DSR can be solved in linear time for sev-
eral graph classes including cographs, trees and interval graphs. To this end, we deal with the
concept of a canonical dominating set seen in Section 3.2.1. Recall that a dominating set C is
canonical if C is a minimum dominating set which is reachable from any dominating set D
under the TAR(|D|+ 1) rule. Then we have the following theorem.

Theorem 3.38. Let G be a class of graphs such that any graph G ∈ G has a canonical dominating
set that we can compute it in linear time. Then OPT-DSR can be solvable in linear time on G.

Proof. Let (G, k, s, D) be an instance of OPT-DSR, where G ∈ G. Recall that we can assume
without loss of generality that s < |D| < k; we can check in linear time whether the inequality
is satisfied or not, and if it is violated, then we know from Observations 3.31 and 3.32 that it
is a trivial instance. Since G ∈ G, G admits a canonical dominating set and we can compute
in linear time an actual one. Let C be such a canonical dominating set. Then it follows from
the definition that C is reachable from D under the TAR(k) rule since k ≥ |D| + 1. Since C is
a minimum dominating set, we can output it if |C| ≤ s holds, and no-instance otherwise. All
processes can be done in linear time, and hence the theorem follows.

Recall that Haddadan et al. showed in [HIM+16] that every cograph, tree (actually for-
est), and interval graph admit a canonical dominating set. Their proofs are constructive, and
hence we can find an actual canonical dominating set. It is observed that the constructions on
cographs and trees can be done in linear time. The construction on interval graphs can also
be done in linear time with a nontrivial adaptation by using an appropriate data structure.
Therefore, we have obtain the following result regarding the tractability of OPT-DSR.

Corollary 3.39. OPT-DSR can be solved in linear time on cographs, trees, and interval graphs.

3.3.3 Parameterized complexity of OPT-DSR

We now study the fixed-parameter complexity of OPT-DSR with respect to several parameters:
the threshold k, the solution size s, the minimum size of a vertex cover τ and the degeneracy d.
We first show that OPT-DSR is W[2]-hard when parameterized by the upper bound k. We use
the idea of the reduction constructed by Mouawad et al. [MNR+17] to show the W[2]-hardness
of DSRTAR.

Theorem 3.40. OPT-DSR is W[2]-hard when parameterized by the threshold k.

Reconfiguration problems in graphs 115



3 – Reconfiguration of dominating sets

Proof. We give an FPT-reduction from the (original) DOMINATING SET problem that is W[2]-
hard when parameterized by its natural parameter k [DF99].

Let (G′, k′) be an instance of the DOMINATING SET problem, where |V(G′)| = n′ and
V(G′) = {v1, v2, . . . , vn′}. Then, we construct the corresponding instance (G, k, s, D) of OPT-
DSR, as follows. We first describe the construction of G. Let G0 be the graph obtained by adding
a universal vertex v0 to G′, and G1, G2, . . . , Gk′ be k′ copies of G0. The vertex set of G consists
of
⋃

j∈{0,1,...,k′} V(Gj). For any j ∈ {1, 2, . . . , k′} and i ∈ {0, 1, . . . , n′}, we use vj,i to denote the
vertex in Gj corresponding to vi in G0. Then, for each vertex vi in G0 except for v0, we connect
vi by new edges to all vertices in NGj [vj,i] in each j ∈ {1, 2, . . . , k′}; formally, the edge set of G
consists of

⋃
j∈{0,1,...,k′} E(Gj) ∪

⋃
i∈{1,2,...,n′}

⋃
j∈{1,2,...,k′}{viw | w ∈ NGj [vj,i]}. This completes the

construction of G; see Figure 3.20 for an example of this reduction.

v1

v2

v3v4

v5

G′

(a) (G′, k′ = 2).

v0

v1

v2

v3v4

v5

v1,0

v1,1

v1,2

v1,3v1,4

v1,5

v2,0

v2,1

v2,2

v2,3v2,4

v2,5

G1 G0 G2

(b) (G, k = 5, s = 2, D).

Figure 3.20 – Reduction for Theorem 3.40 with D′ = {v1, v3} and D = {v0, v1,0, v2,0}.

Note that for readability purposes, we do not draw all the edges between the vertices in
G′ and those of Gj, for j ∈ {1, 2}. The only such drawn edges are the dotted ones (in gray)
that are incident to the vertices v1 and v3. We set k = 2k′ + 1, s = k′, and D = {vj,0 | j ∈
{0, 1, . . . , k′}}; notice that D has k′ + 1 vertices. In this way, we constructed the corresponding
instance (G, k, s, D). It remains to prove that (G′, k′) is a yes-instance if and only if (G, k, s, D) is
a yes-instance.

(⇒) We first prove the only-if direction. Suppose that (G′, k′) is a yes-instance, hence there
exists a dominating set D′ of G′ of size at most k′. Then by the construction of G, we know
that D′ is also a dominating set of G (if we identify the vertices of G′ with those of G0). Thus it

suffices to show that D k
! D′, since D′ has at most s = k′ vertices. We first add vertices in D′ to

D one by one; this transformation can be done under TAR(k) since |D ∪D′| ≤ (k′ + 1) + k′ = k.
We then remove vertices in D one by one. In this way, we can transform D into D′ under TAR(k),
and hence (G, k, s, D) has a solution D′.

(⇐) We then prove the if direction. Suppose that (G, k, s, D) has a solution D′. We know that
D′ has at most s = k′ vertices. Then, since G has k′ + 1 copies G0, G1, . . . , Gk′ , there exists a copy
Gj ∈ {G0, G1, . . . , Gk′} such that V(Gj) ∩ D′ = ∅. We know that j 6= 0 because all neighbors of
v0 are in V(G0), hence D′ contains at least one vertex in V(G0). For any p ∈ {1, 2, . . . , k′} \ {j},
there is no edge joining a vertex in V(Gj) and a vertex in V(Gp). Therefore, for any vertex vj,i
in Gj, a vertex u ∈ D′ which dominates vj,i is contained in (V(G0) ∩ D′) \ {v0}. Then, by the
construction of G, u also dominates the corresponding vertex vi in G0. Thus, we know that
D′′ = (V(G0) ∩ D′) \ {v0} is a dominating set of G′. Since |D′′| ≤ |D′| ≤ s = k′ holds, D′′ is a
desired dominating set of G′.

We now give two FPT algorithms with respect to the combination of the solution size s and
the degeneracy d, and then with parameter τ, the minimum size of a vertex cover.

116 Paul Ouvrard



3.3. Optimization variants

Theorem 3.41. OPT-DSR is fixed-parameter tractable when parameterized by d + s, where d is the
degeneracy and s the solution size.

To prove the theorem, we give an FPT algorithm with respect to d + s. Note that our algo-
rithm uses the idea of an FPT algorithm solving the reachability variant of DOMINATING SET

RECONFIGURATION, developed by Lokshtanov et al. [LMP+18]. Their algorithm uses the con-
cept of domination core; for a graph G, a domination core of G is a vertex subset C ⊆ V(G) such
that any vertex subset D ⊆ V(G) is a dominating set of G if and only if C ⊆ NG[D] [DDF+16].

Suppose that we are given an instance (G, k, s, D) of OPT-DSR where G is a d-degenerate
graph. By Observation 3.32, we can assume without loss of generality that |D| < k. We first
check whether G has a dominating set of size at most s: this can be done in FPT(d + s) time
for d-degenerate graphs [AG08]. If G does not have it, then we can instantly conclude that
(G, k, s, D) is a no-instance.

In the remainder of this subsection, we assume that G has a dominating set of size at most
s. In this case, we kernelize the instance: we shrink G by removing some vertices while keeping
the existence of a solution until the size of the graph only depends on d and s. To this end, we
use the concept of domination core.

Lemma 3.42 ([LMP+18]). If G is a d-degenerate graph and G has a dominating set of size at most
s, then G has a domination core of size at most dsd and we can find it in FPT(d + s) time.

Therefore, one can compute a domination core of G of size at most dsd in FPT(d + s) time
by Lemma 3.42. In order to shrink G, we use the following reduction rule:

R1: if there is a domination core C and two vertices vr, vl ∈ V(G) \ C such that NG(vr) ∩ C ⊆
NG(vl) ∩ C, we remove vr.

We need to prove that R1 is "safe", that is, we can remove vr from G without changing the
existence of a solution. However, if the input dominating set D contains vr, we cannot do it
immediately. Therefore, we first remove vr from D.

Lemma 3.43. Let D be a dominating set such that both |D| < k and vr ∈ D hold. Then there exists

D′ such that vr /∈ D′ and D k
! D′, and D′ can be computed in linear time.

Proof. We first consider the case where vl ∈ D. In this case, we simply remove vr from D; let D′

be the resulting vertex subset. It is clear that D k
! D′, and hence it suffices to show that D′ is

a dominating set of G. We know that C ⊆ NG[D] holds by the definition of a domination core.
Then since NG(vr) ∩ C ⊆ NG(vl) ∩ C and vl ∈ D hold, we have C ⊆ NG[D \ {vr}] = NG[D′].
Thus D′ is a dominating set of G.

We then consider the remaining case where vl /∈ D. In this case, we can add vl to D since
|D| < k. Then the resulting dominating set contains vl , and we can remove vr as discussed
above.

We can now redefine D as a dominating set which does not contain vr. We then consider
removing vr from G. Let G′ = G[V(G) \ {vr}]. The following lemma ensures that removing vr
keeps the existence of a solution.

Lemma 3.44. Let (G, k, s, D) be an instance where vr /∈ D. Then, (G, k, s, D) has a solution if and
only if (G′, k, s, D) has a solution.

Reconfiguration problems in graphs 117



3 – Reconfiguration of dominating sets

Proof. (⇐) We first prove the if direction. Suppose that (G′, k, s, D) has a solution D′s. Then there
exists a reconfiguration sequence D′ = 〈D = D′0, D′1, . . . , D′`′ = D′t〉 of dominating sets of G′.
It suffices to show that any dominating set D′i of G′ in D′ is also a dominating set of G. Since
D′i is a dominating set of G′ and vr /∈ C, we have C ⊆ V(G′) ⊆ NG′ [D′i ]. By the definition of
domination core, we know that D′i is also a dominating set of G.

(⇒) We then prove the only-if direction. Suppose that (G, k, s, D) has a solution Ds. Then
there exists a reconfiguration sequence D = 〈D = D0, D1, . . . , D` = Dt〉 of dominating sets
of G. Based on D, we construct another sequence D′ = 〈D = D′0, D′1, . . . , D′` = D′t〉 of vertex
subsets of G′, where

D′i =

{
(Di \ {vr}) ∪ {vl} if vr ∈ Di

Di otherwise

for each i ∈ {0, 1, . . . , `}. Notice that any vertex subset in D′ does not contain vr. Our claim is
that D′s is a solution of (G′, k, s, D). To prove it, we show the following two statements:

(i) for each i ∈ {0, 1, . . . , `}, D′i is a dominating set of G (and hence of G′); and

(ii) for each i ∈ {0, 1, . . . , `− 1}, |D′i4D′i+1| ≤ 1 holds, i.e., we have D′i ↔ D′i+1.

Then the sequence obtained by removing redundant ones from D′ is a reconfiguration se-
quence from D to D′s. We first show Statement (i). Let Di be any dominating set inD. If vr /∈ Di,
then the statement clearly holds. Thus we consider the other case where vr ∈ Di. Since Di
is a dominating set of G, we know C ⊆ V(G) ⊆ NG[Di]. Furthermore, since NG(vr) ∩ C ⊆
NG(vl) ∩ C, we have C ⊆ NG[(Di \ {vr}) ∪ {vl}] ⊆ NG[D′i ]. By the definition of domination
core, D′i is a dominating set of G, and hence Statement (i) follows.

We then show Statement (ii). Let Di and Di+1 be any two consecutive dominating sets in
D. Then, we know |Di4Di+1| = 1. We assume without loss of generality that Di ⊆ Di+1;
otherwise the proof is symmetric. We prove the statement in the following three cases:

• Case 1: both vr /∈ Di and vr /∈ Di+1 hold;

• Case 2: either vr ∈ Di or vr ∈ Di+1 holds (but not both); and

• Case 3: both vr ∈ Di and vr ∈ Di+1 hold.

In Case 1, we know that |D′i4D′i+1| = |Di4Di+1| = 1, and hence the statement clearly
holds. We then consider Case 2. In this case, since Di ⊆ Di+1, we observe that vr /∈ Di and vr ∈
Di+1, and hence {vr} = Di+1 \ Di Therefore, D′i4D′i+1 = Di4 ((Di+1 \ {vr}) ∪ {vl}) ⊆ {vl}.
Thus we can conclude that |D′i4D′i+1| ≤ 1, and hence the statement follows. We finally deal
with Case 3. In this case, we have D′i4D′i+1 = ((Di \ {vr}) ∪ {vl})4 ((Di+1 \ {vr}) ∪ {vl}) ⊆
Di4Di+1. Therefore, |D′i4D′i+1| ≤ |Di4Di+1| = 1 holds, and hence the statement follows.
In this way, we can conclude that D′s is a solution of (G′, k, s, D). This concludes the proof.

We exhaustively apply the reduction rule R1 to shrink G. Let Gk and Dk be the result-
ing graph and dominating set, respectively. Then, any two vertices u, v ∈ V(Gk) \ C satisfy
NGk(u)∩C 6= NGk(v)∩C (more precisely, NGk(u)∩C 6⊆ NGk(v)∩C). Then the following lemma
completes the proof of Theorem 3.41.

Lemma 3.45. (Gk, k, s, Dk) can be solved in FPT(d + s) time.

118 Paul Ouvrard



3.3. Optimization variants

Proof. We first show that the size of the vertex set of Gk is at most f (d, s) = dsd + 2dsd
. Since

|C| ≤ dsd, it suffices to show that |V(Gk) \ C| ≤ 2dsd
holds. Recall that any two vertices u, v ∈

V(Gk) \ C satisfy NGk(u) ∩ C 6= NGk(v) ∩ C. Then since the number of combination of vertices
in C is at most 2|C| ≤ 2dsd

, we have the desired upper bound |V(Gk) \ C| ≤ 2dsd
.

We now prove that (Gk, k, s, Dk) can be solved in FPT(d + s) time. To this end, we con-
struct an auxiliary graph GA, where the vertex set of GA is the set of all dominating sets of
Gk, and any two nodes (that correspond to dominating sets of Gk) D and D′ in GA are adja-
cent if and only if |D4D′| = 1 holds. Let n = |V(Gk)| and m = |E(Gk)|. Then the number
of candidate nodes in GA (vertex subsets of Gk) is bounded by O(2n). For each candidate,
we can check in O(n + m) time if it forms a dominating set. Thus we can construct the ver-
tex set of GA in O(2n(n + m)) time. We then construct the edge set of GA. There are at most
O(|V(GA)|2) = O(4n) pairs of nodes in GA. For each pair of nodes, we can check in O(n) time if
their corresponding dominating sets differ in exactly one vertex. Therefore we can construct the
edge set of GA in O(4nn) time, and hence the total time to construct GA is O(4nn + 2n(n + m))
time. We finally search a solution by running a breadth-first search algorithm from Dk on GA
in O(|V(GA)|+ |E(GA)|) = O(4n) time.

We can conclude that our algorithm runs in time O(4nn + 2n(n + m)) in total. Since n ≤
f (d, s) and m ≤ n2 ≤ ( f (d, s))2, this is an FPT time algorithm with parameter d + s.

We end this section with the following theorem:

Theorem 3.46. OPT-DSR is fixed-parameter tractable when parameterized by τ.

Let (G, k, s, D) be an instance of OPT-DSR. As in the previous section, we may first assume
by Observation 3.32 that |D| < k. We first establish the following fact:

Observation 3.47. If G is d-degenerate, then d ≤ τ.

Proof. Let G be a graph, X a minimum vertex cover of G and H be any subgraph of G. Recall
that G[V \ X] is an independent set. If H contains a vertex v outside X, then v has a degree at
most τ in G and therefore in H. Otherwise, H is a subgraph of G[X] and thus has at most τ
vertices. Hence all vertices of H have degree at most τ in H. Therefore, since any subgraph H
of G contains a vertex of degree at most τ, G is τ-degenerate.

We are now able to get down to the proof of Theorem 3.46, by providing an algorithm
that solves OPT-DSR and runs in time FPT(τ). We first compute a minimum vertex cover
X ⊆ V(G) of G in time FPT(τ) [CKX10]. We partition the vertices of G into two components,
the vertex cover X and the remaining vertices I. By definition of vertex cover, no edge can
have both endpoints outside X, therefore I is an independent set. Note that if s ≤ τ, then by
Observation 3.47 we have d + s ≤ 2τ, where d is the degeneracy of G. In this case we are able
to use the algorithm of the last section, that runs in time FPT(d + s).

We may therefore assume τ < s. In that case, we have the following lemma:

Lemma 3.48. If τ < s, then (G, k, s, D) is a yes-instance.

Proof. In the remainder of the proof, we assume that the graph G has no isolated vertex since
an isolated vertex must belong to any dominating set of G. We now prove that (G, k, s, D) is
always a yes-instance, i.e., there exists a dominating set of size at most τ that is reachable from
D under the TAR(k) rule.

We associate with every vertex v ∈ X \ D a special neighbor among its neighbors that domi-
nate it (which can be either in X or I), i.e., we pick arbitrarily a vertex in NG[v] ∩ D. We denote

Reconfiguration problems in graphs 119



3 – Reconfiguration of dominating sets

a

b

c

v1

v2

v3

v4

v5

X I

(a) D0 = D

a

b

c

v1

v2

v3

v4

v5

X I

(b) D1

a

b

c

v1

v2

v3

v4

v5

X I

(c) D2

a

b

c

v1

v2

v3

v4

v5

X I

(d) D3 = Dt

Figure 3.21 – Reconfiguration sequence from the original dominating set D = I to the target
one Dt = {b, v1, v3}. D1 is obtained from D0 by applying Rule (ii) and D2 (resp. D3) obtained
from D1 (resp. D2) by applying Rule (i). The special neighbor of a vertex v ∈ X \ D is the one
pointed by its outgoing edge.

this special neighbor t(v). Let T be the set of special neighbors, i.e., T = {t(v) | v ∈ X \ D}.
This corresponds to the set of vertices that are used to dominate the vertices in X that do not
belong to D. Note that |T| ≤ τ.

We are now able to describe the algorithm we use to output Dt, the target dominating set.
It consists in exhaustively applying the two following rules on the vertices of I that belong to
the current dominating set:

(i) if there is a vertex v in I but not in T that is already dominated by another vertex, then
we remove v from the dominating set; and

(ii) if there is a vertex v in I but not in T that is dominated only by itself, then we add any
one of its neighbors u ∈ X to the dominating set, and then remove v. The vertex u does
not need a special neighbor anymore, since it now belongs to the dominating set. We thus
update the set T by only keeping the special neighbors t(w) of vertices w that are still in
X \ D.

We first prove that these two rules are safe, i.e., we do not break the domination property
at any step. Since Rule (i) removes a vertex v that is not required to dominate itself or another
vertex u ∈ X (because it has not been chosen in T), we can safely remove it. In Rule (ii), after
adding a neighbor of v to the dominating set, v is not required to dominate itself anymore.
Since v is not in T, we can now apply Rule (i) which is safe.

Recall that |D| < k. Then, each dominating set obtained after applying one of these rules
is of size at most k since Rule (i) only removes vertices and Rule (ii) consists in an addition
immediately followed by a removal.

Now, let Dt be the dominating set obtained once we cannot apply Rule (i) and Rule (ii)
anymore (see Figure 3.21 for an example). All remaining vertices in I ∩ Dt now belong to T.
By definition of T, each vertex in X \ Dt has (exactly) one neighbor in T (but they are not
necessarily distinct). Therefore, |I ∩ Dt| ≤ |X \ Dt|. As a result, |Dt| = |X ∩ Dt|+ |I ∩ Dt| ≤
|X ∩ Dt|+ |X \ Dt| = |X| = τ. Since τ < s, the size of Dt is at most s, as desired.

120 Paul Ouvrard



3.3. Optimization variants

It remains to discuss the complexity of this algorithm. As we already said, we first com-
pute a minimum vertex cover X of G in time FPT(τ). If s ≤ τ, we run the FPT algorithm of
Theorem 3.41. Otherwise, we first compute the set T and then run the subroutine which are
both described in the proof of Lemma 3.48. The two rules used in this subroutine only apply to
vertices that belong to the set I and whenever one is applied, exactly one vertex in I is removed
(and none is added). Hence, they are applied at most |I ∩ D| times. Therefore, the subroutine
runs in polynomial time and produces the desired dominating set Dt. As a result, this algorithm
is FPT with respect to τ. This concludes the proof.

3.3.4 Changing the target dominating set

As discussed in Section 3.3.1, there might be several definitions of what is a "more desirable"
solution. Here, we would like to output an independent dominating set if it exists, and no-
instance otherwise. The result we present in this section is based on an ongoing joint work with
Alexandre Blanché and Haruka Mizuta. For a discussion on independent dominating sets, we
refer the reader to Section 2.1.3. More precisely, we focus on the following problem that we call
OPT-IDSR:

OPT-IDSR

Instance: A graph G, two integers k, s ≥ 0, a dominating set D of G such that |D| ≤ k.
Output: An independent dominating set D′ of G such that |D′| ≤ s and D′ is reachable

from D under the TAR(k) rule if it exists, no-instance otherwise.

We denote by 4-tuple (G, k, s, D) an instance of OPT-IDSR. First, observe that a similar
result than Observation 3.33 holds for OPT-IDSR:

Observation 3.49. Let G = (V, E) be a graph and s be an integer. The instance (G, |V|, s, V) of
OPT-IDSR is equivalent to finding an independent dominating set of G of size at most s.

Proof. Suppose that G admits an independent dominating set Dt of size at most s. Since we
started from a dominating set containing all the vertices of G, it is sufficient to remove one
by one each vertex in V \ Dt to reach Dt and thus (G, |V|, s, V) is a yes-instance. The converse
direction is trivial: if (G, |V|, s, V) is a yes-instance, then G has an independent dominating set
of size at most s.

Garey and Johnson proved that INDEPENDENT DOMINATING SET is NP-complete [GJ79]. It
was then shown to be NP-complete even when restricted to bipartite or comparability graphs
by Corneil and Perl [CP84], or when restricted to line graphs by Yannakakis and Gavril [YG80].
Hence, OPT-IDSR is NP-hard on all these graph classes as a corollary of Observation 3.49.

In the remaining of this section, we actually prove that OPT-IDSR is PSPACE-complete
even when restricted to bipartite graphs. First, observe that OPT-IDSR is in PSPACE. Indeed,
when we are given a dominating set D as a solution for some instance of OPT-IDSR, we can
check in polynomial time whether it is actually an independent dominating set of size at most
s or not. Furthermore, since DSRTAR is in PSPACE, we can check in polynomial space whether
it is reachable from the original dominating set D. Therefore, we can conclude that OPT-IDSR
is in PSPACE. It remains to prove that it is PSPACE-hard.

Recall that Haddadan et al. [HIM+16] proved that DSRTAR is PSPACE-complete. Actually,
one of their hardness proof is based on a reduction from VERTEX COVER RECONFIGURATION,
which is known to be PSPACE-complete even if the input graph has bounded bandwidth and
the two vertex covers are minimum [Wro18]. More precisely, their reduction follows from the
classical reduction from VERTEX COVER to DOMINATING SET [GJ79] and it ensures that if the

Reconfiguration problems in graphs 121



3 – Reconfiguration of dominating sets

vertex covers are minimum, so are the corresponding dominating sets. Let G be a graph, and
Ds, Dt be two dominating sets of size k of G. Recall that there exists a TJ-sequence between
Ds and Dt if and only if there is a TAR(k + 1)-sequence. It follows that the reconfiguration of
minimum dominating sets under TJ (denoted by MDSR) is PSPACE-complete. Finally, recall
that for any graph G on n vertices with no isolated vertex, γ(G) ≤ bn/2c (see Section 2.1).

Theorem 3.50. OPT-IDSR is PSPACE-hard, even if the input graph is a bipartite.

To prove Theorem 3.50, we give a polynomial-time reduction from MDSR. We first explain
the construction. Let (G, Ds, Dt) be an instance of MDSR, where Ds and Dt are two minimum
dominating sets of a connected graph G on at least three vertices. Note that |Ds| = |Dt| ≤
bV(G)/2c. For convenience, let k = |Ds| = |Dt|. We construct the corresponding bipartite
graph G′ as follows. Let V(G) = {v1, v2, . . . , vn}. For each vertex vi ∈ V(G), we create a set
Ai = {ai,1, ai,2 . . . , ai,k+2} containing k + 2 copies of vi. We also make another copy bi of vi. Let
A =

⋃n
i=1 Ai and B = {b1, b2, . . . , bn}. We add an edge between ai,j and bk in G′ if and only if

vk ∈ NG[vi]. In other words, every vertex bk ∈ B satisfies N(bk) = {∪Ai | vi ∈ NG[vk]}. Note
that any pair (bi,j, bi,j′) of vertices of Ai satisfies N(bi,j) = N(bi,j′), for every 1 ≤ i ≤ n. We
then add a vertex xs adjacent to all the vertices in B, and a vertex xt adjacent to all the vertices
in B \ {bi | vi ∈ Dt}. Finally, we add two vertices xm and y1, both adjacent to xs and xt, and
we attach a leaf y2 to y1. Observe that A∪ {xs, xt, y2} and B∪ {xm, y1} induce two independent
sets. Hence, G′ is bipartite and the construction can be done in polynomial time. See Figure 3.22
for an example.

v1

v2

v3

v4

b1

b2

b3

b4

a1,1

a1,4

a2,1

a2,4

a3,1

a3,4

a4,1

a4,4

A1

A2

A3

A4

...

...

...

...

xs

xt

xm

y1 y2

Figure 3.22 – Example for the reduction of Theorem 3.50: the original instance is (G, Ds =
{v2, v3}, Dt = {v1, v4}) and the corresponding instance (G′, 5, 4, D′s = {b2, b3, xs, y1}) of OPT-
IDSR, where G′ is a bipartite graph. The only independent dominating set of size k + 2 = 4 of
G′ is Dt = {b1, b4, xt, y2}.

Proposition 3.51. The graph G′ has no dominating set of size at most k + 1.

Proof. First, observe that at least two vertices in V(G′) \ (A∪ B) are required in any dominating
set to dominate xm and y2. But at least k = γ(G) vertices are needed to dominate the vertices
in A by construction of G′.

Proposition 3.52. The set D′s = {bi ∈ B | vi ∈ Ds} ∪ {xs, y1} is a dominating set of size k + 2 of G′.

Proof. The fact that |D′s| = k + 2 is straightforward since |Ds| = k and we add in D′s exactly one
vertex for each vertex in Ds, plus xs and y1. It remains to prove that D′s is a dominating set of G′.

122 Paul Ouvrard



3.3. Optimization variants

First, observe that {xs, y1} dominates B ∪ {xm, xs, xt, y1, y2}. Finally, consider a vertex ai,j ∈ A.
Suppose that the corresponding vertex vi ∈ V(G) is dominated by some vertex vk ∈ V(G) in
Ds. By construction of G′, ai,jbk ∈ E(G′) and note that bk ∈ D′s. Hence, ai,j is dominated, and
thus D′s is a dominating set of G′.

Lemma 3.53. There is no dominating set of size k + 2 of G′ containing a vertex in A.

Proof. Let D′ be a dominating set of size k + 2 of G′. Note that since N[xm] = {xm, xs, xt} and
N[y2] = {y1, y2}, D′ must contain at least two vertices in V(G′) \ (A ∪ B) in order to dominate
xm and y2. It follows that D′ ∩ (A ∪ B) ≤ k. Note also that |Ai| = k + 2 and G′[Ai] is an
independent set, for every 1 ≤ i ≤ n. Hence, for every set Ai (with 1 ≤ i ≤ n), D′ must contain
a vertex bj ∈ B such that Ai ⊆ N(bj). Any subset X ⊆ B such that each Ai is at distance one
from X is of size at least k = γ(G), since it corresponds to a dominating set of G. Hence, D′

contains exactly k vertices in B and no vertex in A.

Lemma 3.54. G′ has exactly one independent dominating set of size k + 2.

Proof. We first prove that G′ admits an independent dominating set of size k + 2. Let X =
{bi ∈ B | vi ∈ Dt}. We consider the set D′t = X ∪ {xt, y2}. Recall that xt is by construction
of G’ adjacent to all the vertices in B \ X. Hence, G′[D′t] is an independent set of size k + 2.
By definition, X dominates A ∪ X ∪ {xs}. The remaining vertices in B (i.e., the set B \ X) are
dominated by xt, as well as xm and y1. Finally, y2 dominates itself. It follows that D′t is an
independent dominating set of size k + 2 of G′. It remains to prove that it is the only one. Let
D′ be an independent dominating set of G′ of size k + 2.

Claim 1. D′ ∩ {xs, xt} = {xt}.

Proof. By Lemma 3.53, D′ ∩ A = ∅. Hence, in order to dominate the set A, D′ must contain
at least one vertex of B. Besides, note that at least k vertices of B are required to dominate A
since k corresponds to the size of a minimum dominating set of G. On the other hand, at least
two vertices of V(G′) \ (A ∪ B) are required to dominate {xm, y2}. It follows that |D′ ∩ B| = k.
However, recall that |B| = |V(G)| and k ≤ bV(G)/2c. Hence, |B \D′| ≥ 1. This implies that D′

contains at least one vertex in {xs, xt} to dominate the vertices in B \ D′. Since xs is adjacent to
all the vertices in B and D′ contains at least one vertex of B, we must have D′ ∩ {xs, xt} = {xt}
since G[D′] is independent. ♦

Note that it follows from Claim 1 that D′ ∩ B = X since xt is adjacent to all the vertices in
B \ X but has no neighbor in X, and X dominates A. Moreover, since xs is adjacent to all the
vertices in B, xs is dominated by X. Finally, it remains to dominate y2. Since D′ contains xt and
y1xt ∈ E(G′), D′ ∩ {y1, y2} = {y2}. As a result, D′ = X ∪ {xt, y2} = D′t. This concludes the
proof of Lemma 3.54.

Lemma 3.55. There is no independent dominating set of G′ of size k + 3.

Proof. Assume by contradiction that G′ has an independent dominating set D of size k + 3.
We first show that D does not contain any vertex in A. Indeed, suppose that D contains a
vertex ai,j ∈ A and recall that N(ai,j′) = N(ai,j) for any 1 ≤ j′ ≤ k + 2. So all the vertices
in Ai \ {ai,} must be dominated by themselves; note that this is possible so far since G′[Ai]
is independent. Hence, Ai ⊆ D and thus |D| ≥ k + 2. However, at least two extra vertices
are needed to dominate xm and y2, yielding a dominating set of size at least k + 4. Hence,
D ⊆ B ∪ {x, m, xs, xt, y1, y2}.

Reconfiguration problems in graphs 123



3 – Reconfiguration of dominating sets

Recall that at least k vertices of B are needed to dominate A. We now claim that |D ∩ B| <
|B|. Indeed, if B ⊆ D and since we need at least two extra vertices to dominate xm and y2, we
obtain |D| ≥ |B|+ 2 = |V(G)|+ 2 > b|V(G)|/2c ≥ k + 3 = γ(G) + 3 whenever |V(G)| ≥ 3,
a contradiction. Since xs is adjacent to all the vertices in B and |D ∩ B| ≥ 1, xs 6∈ B and xs is
dominated. Hence, we must have xt ∈ D to dominate the vertices in B \ D. This implies that
D ∩ B = X, with X = B \ N(xt) = {bi | vi ∈ Dt}. In particular, |D ∩ B| = k and X ∪ {xt} ⊆ D.
However, X ∪ {xt} dominates V(G′) \ {y2}. Hence, we cannot add two new vertices so that
|D| = k + 3 without breaking the independence property.

Recall that each dominating set of G′ has size at least k + 2 by Proposition 3.51. In partic-
ular, G′ has no independent dominating set of size less than k + 2. By Lemma 3.55, G′ has no
independent dominating set of size at least k + 3. And there is a unique one, let us say D′, of
size k + 2 by Lemma 3.54. Let (G′, k + 3, k + 2, D′s) be the resulting instance of OPT-IDSR. The
following lemma concludes the proof of Theorem 3.20:

Lemma 3.56. (G, Ds, Dt) is a yes-instance of DSRTAR if and only if (G′, k + 3, k + 2, D′s) is a
yes-instance of OPT-IDSR.

Proof. (⇒) Suppose first that (G, Ds, Dt) is a yes-instance, and let S be a TJ-sequence of length
` between Ds and Dt. Recall that given a dominating set Di ∈ S of G, the set D′i = {bj ∈ B | vj ∈
Di} ∪ {xs, y1} is dominating set of G′. For any two consecutive dominating sets Di and Di+1
of S (i.e., Di = (Di+1 \ {vj}) ∪ {vi}), we first add bj and then remove bi. Hence, we obtain a
TAR(k + 3)-sequence of length 2` between D′s and D′t. Finally, we can reach the independent
dominating set D′ from D′t in four more steps by first moving the token from xs to xt, and then
moving the token from y1 to y2. This yields a reconfiguration sequence of length 2(`+ 2) from
D′s to the unique independent dominating set D′ of G′.

(⇐) Suppose now that (G′, k + 3, k + 2, D′s) is a yes-instance. By Lemma 3.54, the target
independent dominating set must be D′. Recall that |D′| = |D′s| = k + 2. Hence, consider
a TAR(k + 3)-sequence S′ between D′s and D′. By Proposition 3.51, each dominating set in S′

has size k + 2 or k + 3. As discussed in Section 3.1.1, S′ can be replaced by an equivalent TJ-
sequence, where each dominating set in S′ has size k + 2. By Lemma 3.53, D′i ∩ A = ∅ holds for
every dominating set D′i ∈ S′. Besides, it also follows from the proof that D′i ∩ B = k and that
the set Xi = {vj ∈ V(G) | bj ∈ B ∩ D′i} is a dominating set of G. In particular, the restriction
of D′ to B corresponds to Dt, hence the existence of a TJ-sequence between Ds and Dt. This
concludes the proof of Lemma 3.56.

3.3.5 Concluding remarks

In this section, we studied a new framework of combinatorial reconfiguration recently intro-
duced by Ito et al. [IMNS19] for INDEPENDENT SET RECONFIGURATION. This new framework
is called optimization variant as it asks, given a solution, whether it is possible to reach a more
desirable one under a fixed reconfiguration rule. We applied this new framework to the re-
configuration of dominating sets under token addition and removal. We were interested in
two different possibilities of what could be a "more desirable" solution. We first considered the
problem of finding a smallest dominating set that is reachable from the given one under TAR,
that we called OPT-DSR. We observed that OPT-DSR generalizes DOMINATING SET; hence it
is NP-hard. However, we actually showed that it is PSPACE-complete, even when restricted to
bipartite graphs, split graphs or bounded bandwidth graphs. We know that OPT-DSR is NP-
hard on planar graphs because the host problem is NP-complete on this class. We believe that
OPT-DSR is PSPACE-complete on planar graphs but we were not able to prove it and we leave

124 Paul Ouvrard



3.3. Optimization variants

it as an open problem. On the other hand, we observed that the problem becomes tractable on
every graph class that admits a canonical dominating set (see Section 3.2.1).

We then studied the parameterized complexity of OPT-DSR. We showed that the problem
is W[2]-hard when parameterized by the threshold k. However, it would be interesting to de-
termine whether there exists an XP algorithm with parameter k, i.e., an algorithm that runs in
time O(|G| f (k)) for some computable function f . On the other hand, we proved that OPT-DSR
is FPT with respect to d + s, where d is the degeneracy of the input graph and s the size of
the target dominating set. Therefore, the problem is FPT with respect to s for planar graphs or
bounded bandwidth graphs. We also showed that it is fixed-parameter tractable with parame-
ter τ, the minimum size of a vertex cover of the input graph.

Degeneracy d
( PSPACE-c. for fixed d)

Maximum degree ∆
NP-h. for fixed ∆
[Observation 3.33]

Pathwidth pw
PSPACE-c. for fixed pw

[Theorem 3.34]

Vertex cover number τ
FPT for τ

[Theorem 3.46]

(a) Graph parameters.

d + s
FPT for d + s

[Theorem 3.41]

any
other combinations

(b) Combinations.

Solution size s
(W[2]-h. for s)

Upper bound k
W[2]-h. for k

[Theorem 3.40]

(c) Input parameters.

intractable

tractable

Figure 3.23 – Our results for fixed-parameter tractability, where A→ B means that the param-
eter A is bounded by some function of B.

We finally considered a second optimization variant where the goal is to find the smallest
independent dominating set that is reachable from the given one under the TAR(k) rule. This
problem generalizes INDEPENDENT DOMINATING SET and is therefore NP-hard on bipartite
graphs, comparability graphs, or line graphs. We proved that it is actually PSPACE-complete on
bipartite graphs. We did not manage to prove that it is also PSPACE-complete on split graphs
(and thus on chordal graphs); we leave it as an open question. However, we believe that one
can solve the problem in polynomial time on interval graphs with a dynamic programming
algorithm based on a path decomposition of the interval graph.

Reconfiguration problems in graphs 125





4 Other reconfiguration
problems

Contents
4.1 Reconfiguration of spanning trees with many or few leaves . . . . . . . . . . . 127

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.1.2 Spanning tree with many leaves . . . . . . . . . . . . . . . . . . . . . . 128

4.1.3 Spanning trees with few leaves . . . . . . . . . . . . . . . . . . . . . . . 138

4.1.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.2 Distributed recoloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.2.2 Definition of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.2.3 Warmup – simple results . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.2.4 Recoloring algorithm for trees . . . . . . . . . . . . . . . . . . . . . . . . 163

4.2.5 Recoloring algorithm for subcubic graphs . . . . . . . . . . . . . . . . . 167

4.2.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

In this chapter, we change the host problem and we study the reconfiguration of two differ-
ent problems. The first one is related to spanning trees with some additional constraints on the
number of leaves of each spanning tree. This is joint work with Nicolas Bousquet, Takehiro Ito,
Yusuke Kobayashi, Haruka Mizuta, Akira Suzuki and Kunihiro Wasa [BIK+20]. We then focus
on the problem of recoloring in the so-called LOCAL model in Distributed Computing, based
on a joint work with Marthe Bonamy, Mikaël Rabie, Jukka Suomela and Jara Uitto [BOR+18].
In both cases, we are interested in the computational complexity of these two problems.

4.1 Reconfiguration of spanning trees with many or few leaves

4.1.1 Introduction

The MINIMUM SPANNING TREE problem was one of the first reconfiguration problem to be
studied with a complexity perspective in the seminal paper by Ito et al. [IDH+08]. In this prob-
lem, we are given an edge-weighted graph G, an integer k and two spanning trees Ts and Tt of
G, both of weight at most k. The goal is to determine whether there exists a sequence of edge
flips that transforms Ts into Tt, each intermediate spanning tree in the sequence being of weight
at most k as well. Ito et al. [IDH+08] proved that one can always transform Ts into Tt; it easily
follows from the exchange properties for matroids. One can then ask the following question:
is there still a transformation when we add some constraints on the spanning tree? If not, is it
possible to decide efficiently if such a transformation exists?

127



4 – Other reconfiguration problems

Mizuta et al. [MIZ16] made a first step in that direction by studied the reconfiguration of
Steiner trees via edge flips. More precisely, in STEINER TREE RECONFIGURATION, we are given
two Steiner trees Ts and Tt (with the minimum number of edges) connecting all the terminal
vertices of an unweighted graph G. The goal is to determine whether there exists a sequence
of edge flips (i.e., we exchange a single edge at each step) transforming Ts into Tt. They proved
that the problem is PSPACE-complete on split graphs, while linear-time solvable on interval
graphs. Note that even if all the Steiner trees have the same number of edges (because we
exchange a single edge at each step), the set of vertices may be different. Indeed, if Ts and Tt
have the same vertex set, then there is a transformation between Ts and Tt as implied by the
result of Ito et al. [IDH+08] discussed above. Mizuta et al. [MHIZ19] later studied the same
problem under two new reconfiguration rules consisting in vertex exchanges. In both cases,
the problem is PSPACE-hard since it is a generalization of (s, t)-shortest paths reconfiguration,
which is PSPACE-complete [Bon12]. However, the complexity differs depending on the rule: in
one case it is PSPACE-complete on split graphs and planar graphs, while it is polynomial-time
solvable on chordal graphs and planar graphs on the other case [MHIZ19].

In the last few years, many reconfiguration problems have been studied through the lens
of edge flips such as matchings (see Section 1.5.4 for an extensive discussion on this problem).
Hanaka et al. [HIM+18] studied the complexity of the reconfiguration of some specific partial
graphs of a given graph. They showed that the reconfiguration of paths (i.e., subgraphs defined
by edges of a given graph that are paths) is NP-hard under the TJ rule (i.e., an edge flip with
no restriction on the edges that are flipped). On the other hand, they proved that the reconfig-
uration of cycles or cliques is linear-time solvable. The case of complete bipartite graphs Kn,m
is in P, for any pair of positive integer n, m. Note that all of these results hold for any graph,
and for both TJ and TS (one can only flip two adjacent edges). Finally, they proved that the
reconfiguration of trees (not necessarily spanning) is linear-time solvable under TJ.

In this section, we study the reconfiguration of spanning trees with some constraints on the
number of leaves. The results presented are from [BIK+20]. We first consider in Section 4.1.2
the reconfiguration of spanning trees with at least k leaves. Recall that the spanning trees with
at least k leaves of a graph G on n vertices are related to its connected dominating sets of size
n− k (see Section 2.2.1); we will use this observation in the proof of Theorem 4.2. We will then
consider the reconfiguration of spanning trees with few leaves in Section 4.1.3.

Before moving on to the results we obtained, let us give some definitions and notations that
we will need in the remaining of this section. Let G be a graph on n vertices, and let T be a
spanning tree of G. Every vertex of degree one is a leaf and every vertex of degree at least two
is an internal node. A vertex of degree at least three is called a branching node. Recall that the
number of leaves of T is equal to (∑v∈T(max{0, dT(v)− 2})) + 2. We denote by in(T) the set of
internal nodes of T. Note that the number of leaves is indeed n− |in(T)|.

4.1.2 Spanning tree with many leaves

As we said, we first consider the reconfiguration of spanning trees with at least k leaves via
edge flips. More precisely, we are interested in the following problem:

SPANNING TREE WITH MANY LEAVES

Instance: A graph G, an integer k ≥ 2, two spanning trees Ts and Tt of G with at least k
leaves.

Question: yes if and only if there exists a transformation via edge flips between Ts and
Tt such that all the intermediate trees have at least k leaves.

128 Paul Ouvrard



4.1. Reconfiguration of spanning trees with many or few leaves

We will prove that SPANNING TREE WITH MANY LEAVES is PSPACE-complete even when
restricted to bipartite graphs, split graphs, or planar graphs. We will then show that if k =
n− 2, then the problem is polynomial-time solvable. This result will allow us to show that the
problem is polynomial-time solvable on cographs as well. Before moving on to the main results
of this section, let us prove the following:

Lemma 4.1. Let G be a graph and T1, T2 be two trees. There exists a transformation from T1 to T2
such that every intermediate tree T satisfies in(T) ⊆ in(T1) ∪ in(T2).
In particular, all the trees with the same set of internal nodes are in the same connected component
of the reconfiguration graph.

Proof. Let us prove that we can iteratively add an edge of E(T2) \ E(T1) to T1 and remove an
edge of E(T1) \ E(T2) without creating any internal node in V \ (in(T1) ∪ in(T2)). Let uv ∈
E(T2) \ E(T1). We add this edge to T1 and observe that it creates a unique cycle in the resulting
tree T′. If it does not create an internal node in V \ (in(T1) ∪ in(T2)), we remove from the cycle
any edge of E(T1) \ E(T2). Otherwise, assume u /∈ in(T1) ∪ in(T2). In particular u is a leaf of
both T1 and T2, and uv is an edge of T2 so v ∈ in(T2). Since u is a leaf of T2, the cycle in T′ passes
through the other edge incident to u. We remove it in order to keep a connected graph.

PSPACE-completeness for split graphs, bipartite graphs and planar graphs

Theorem 4.2. SPANNING TREE WITH MANY LEAVES is PSPACE-complete even when restricted
to bipartite graphs or split graphs.

Proof. We first prove Theorem 4.2 for bipartite graphs and then explain how we can adapt the
proof for split graphs. We give a polynomial-time reduction from DSRTAR. Recall that Had-
dadan et al. [HIM+16] showed that this problem is PSPACE-complete. More precisely, they
proved that given a graph G and Ds, Dt two dominating sets of G, deciding whether there
is a reconfiguration sequence between Ds and Dt under the TAR(max{|Ds|, |Dt|} + 1) rule is
PSPACE-complete (see Section 3.2.1).

Let G = (V, E) be a graph with vertex set V(G) = {v1, v2, . . . , vn} and let Ds, Dt be two
dominating sets of G. Free to add vertices to the set of smallest size, we can assume without
loss of generality that Ds and Dt are both of size k. Let (G, k + 1, Ds, Dt) be the correspond-
ing instance of DSRTAR, where k + 1 is the threshold that we cannot exceed. We construct the
bipartite graph G′ as follows: we make a first copy A = {a1, a2, . . . , an} of the vertex set of
G, and a second copy B = {b1,0, b1,1, b2,0, b2,1, . . . , bn,0, bn,1} where we double each vertex. We
add an edge between ai ∈ A and bj,k ∈ B for k ∈ {0, 1} if and only if vj ∈ NG[vi]. Note that
N(bi,0) = N(bi,1), for every 1 ≤ i ≤ n. We finally add a vertex x adjacent to all the vertices in
A and we attach it to a degree-one vertex y. See Figure 4.1 for an illustration. Note that G′ is
bipartite since A ∪ {y} and B ∪ {x} induce two independent sets.

Claim 1. For every spanning tree T of G′, in(T) ∩ A is a dominating set of G.

Proof. Let bi be a vertex of B. Since x is an internal node of T, there is a path from bi to x. Since
N(b) ⊆ A, the second vertex of the path is in A. So there exists an internal node of T incident
to bi.

Claim 2. For every spanning tree T of G′, there exists a tree TA in the connected component of
T such that in(TA) ⊆ in(T) ∩ (A ∪ {x}).

Proof. If in(T) ⊆ A ∪ {x}, the conclusion holds. So we can assume that there exists b ∈ B such
that b ∈ in(T). Let us prove that we can transform T into another spanning tree T′ such that

Reconfiguration problems in graphs 129



4 – Other reconfiguration problems

v1

v5

v4 v3

v2

(a) Original graph G.

a1

a2

a3

a4

a5

A

b1,0

b1,2

b2,0

b2,1

b3,0

b3,1

b4,0

b4,1

b5,0

b5,1

B

xy

(b) Corresponding bipartite graph G′.

Figure 4.1 – Example for the reduction of Theorem 4.2: the dominating set D = {v2, v5} of G is
depicted by the red vertices and the spanning tree of G′ associated with D is the tree induced
by the solid edges. For the split case, we add all the possible edges in G′[A] so that G′[A ∪ {x}]
is a clique and G′[B ∪ {y}] an independent set.

in(T′) ⊆ in(T) \ {b} without creating a new internal node. First, recall that x ∈ in(T) since x
must be an internal node in any spanning tree of G. Let a be the unique neighbor of b in the path
from b to x in T. Now, for every vertex a′ 6= a incident to b, we remove the edge ba′ and create
the edge xa′. Since x is internal in every tree, it does not increase the number internal nodes.
Since b is on the path between a′ and x in T, it keeps the connectivity of the graph. After all
these operations, the resulting tree TA satisfies in(TA) ⊆ in(T) \ {b}. We repeat this operation
until no vertex of B is internal.

Let D be a dominating set of G of size k. We can associate with D a spanning tree of G′ with
k + 1 internal nodes as follows. We attach every vertex in A ∪ {y} to x. Every vertex bi ∈ B is
a leaf adjacent to a vertex that dominates vi in D. If vi has more than one neighbor in D, we
choose the one with the smallest index. This spanning tree is called the spanning tree associated
with D. See Figure 4.1 for an example.

Let (G, k + 1, Ds, Dt) be an instance of DSRTAR. It is clear that G′ can be constructed in
polynomial-time as well as Ts and Tt the spanning trees associated with Ds and Dt. It remains
to prove that (G, k + 1, Ds, Dt) is yes-instance of DSRTAR if and only if (G′, k′, Ts, Tt) is a yes-
instance of SPANNING TREE WITH MANY LEAVES.

(⇐) Suppose first that there exists a reconfiguration sequence of spanning trees S′ = 〈T0 =
Ts, T1, . . . , T`′ = Tt〉, where each spanning tree has at most k + 2 internal nodes. Since x is an
internal node of any spanning tree of G′, Di = in(Ti) ∩ A has size at most k + 1, for every
0 ≤ i ≤ `′. Moreover, by construction of Ts and Tt, in(Ts) ∩ A = Ds and in(Tt) ∩ A = Dt. For
every vertex b of B and every i, there exists a vertex of A in the path from b to x in Ti. It follows
that the set Di is a dominating set of G, for every 0 ≤ i ≤ `′. Hence, 〈Ds = D0, . . . , D`′ = Dt〉
is a transformation from Ds to Dt. It remains to prove that |Di+14Di| ≤ 1 for every 0 ≤ i < `′

to guarantee the existence of a TAR(k + 1)-reconfiguration sequence between Ds and Dt in G.
What we will show is actually a bit more subtle. We will show that it is not necessarily the case
but that, if it is not the case for some i, there exists a dominating set D′i such that Di, D′i , Di+1
satisfies |Di4D′i | ≤ 1 and |D′i4Di+1| ≤ 1 which is enough to conclude.

130 Paul Ouvrard



4.1. Reconfiguration of spanning trees with many or few leaves

We consider an edge flip between two consecutive spanning trees of S′, let us say Ti and
Ti+1. Let ei (respectively ei+1) be the edge in E(Ti) \ E(Ti+1) (resp. ei+1 = E(Ti+1) \ E(Ti)).
We denote by ei  ei+1 the edge flip that transforms Ti into Ti+1. Since G′ is bipartite and y
has degree one in G′, both ei and ei+1 have an endpoint in A and |{ei, ei+1} ∩ A| ≤ 2. Hence,
|Di4Di+1| ≤ 2. If ei and ei+1 are incident to a same vertex of A, the edge flip preserves its
degree and thus |Di4Di+1| = 0. Let us denote by ai (resp. ai+1) the vertex in A incident to ei
(resp. ei+1) in A. Observe that |Di4Di+1| ≤ 1 unless ai has degree two and ai+1 is a leaf in Ti.

First assume that the other endpoint of ei is a vertex bi in B. Let b′i be the vertex bj,1 if bi is bj,0
or bj,0 if bi is bj,1, i.e., b′i corresponds to the false twin of bi. We claim that there exists an internal
node of Ti distinct from ai incident to b′i . By contradiction. The neighbor of b′i on the unique
path from b′i to x has to be ai (since otherwise the neighbor of b′i which is not x has to have a
path to x which provides the desired internal node). Since ai has degree two, the two neighbors
of ai are bi and b′i . But this P3 has to be connected to x. So bi or b′i are incident to another internal
node a′ of A. But then Di \ {ai} is a dominating set (since a′ dominates bi) and then setting
D′i = Di \ {ai}, we have |D′i4Di| ≤ 1 and |Di+14D′i | ≤ 1.

Now assume that ei = aix. Let bi be the other neighbor of ai in Ti. Let b′i be the vertex bj,1 is
bi is bj,0 or bj,0 if bi is bj,1. The neighbor a of b′i on the path from b′i to x is neither ai nor ai+1. So,
again D′i = Di \ {ai} is a dominating set and we have |D′i4Di| ≤ 1 and |Di+14D′i | ≤ 1. So
the conclusion follows.

(⇒) We now prove the other direction. Suppose that there exists a TAR(k + 1)-reconfiguration
sequence S′ = 〈D0 = Ds, D1, . . . , D`′ = Dt〉, from Ds to Dt in G. Let us prove that, for every i,
there exists an edge flip between a tree with internal node {x} ∪ A(Di) and a tree with internal
nodes included in {x} ∪ A(Di+1) (for every j, A(Dj) is the set of vertices of A corresponding to
the set Dj). The existence of a transformation from Ts to Tt follows since all the trees with the
same set of internal nodes of A are in the same connected component of the reconfiguration
graph by Lemma 4.1 and Claim 2. Free to permute Di and Di+1, we can assume that Di con-
tains Di+1. Let u be the vertex of Di \ Di+1. Now, let Ti be a spanning tree with internal nodes
included in Di ∪ {x}. By Claim 2, we can assume that the set of internal nodes of the spanning
tree is included {x} ∪ A(Di). Now, we can flip the edges in such a way that all the edges in-
cident to x are in the spanning tree (since x already is an internal node, it cannot increase the
number of internal nodes). Now for every edge aub in the spanning tree, we can replace it by an
edge avb with v ∈ Di+1 since Di+1 is a dominating set. After this transformation, the resulting
tree has its internal nodes in x ∪ A(Di+1) which completes the proof.

We now discuss how to adapt the proof for split graphs. First, we add an edge between
any two vertices in A so that G′[A] is a clique. Then, observe that G′[A ∪ {x}] is a clique, and
G′[B∪{y}] an independent set. Given two dominating sets Ds and Dt, we associate with Ds and
Dt the two corresponding spanning trees Ts and Tt of G′ in the same way as in the proof for
bipartite graphs. Now, given a reconfiguration sequence between Ds and Dt, the same proof
as for bipartite graphs also holds here. A transformation for bipartite graphs indeed gives a
transformation for split graphs. The converse direction also holds since we can assume that no
vertex of B is internal all along the transformation. Suppose now that there is a reconfiguration
sequence S′ between Ts and Tt. We can assume that every vertex in B is a leaf in any spanning
tree Ti of S′ for the same reason as in the proof for bipartite graphs. Since x must be an internal
node in any spanning tree, we can suppose that no edge between two vertices in A is added
to S′. Suppose that an edge aiaj is added. This edge must have replaced either the edge xai or
the edge xaj. In any way, we cannot decrease the number of internal nodes since x is still an
internal node. It follows that S′ only touches edges between A and B. Hence, we can conclude
as in the proof for bipartite graphs. The conclusion follows.

We now focus on planar graphs, and we show the following result:

Reconfiguration problems in graphs 131



4 – Other reconfiguration problems

Theorem 4.3. SPANNING TREE WITH MANY LEAVES is PSPACE-complete on planar graphs.

We give a polynomial-time reduction from the reconfiguration of minimum vertex covers
under TJ, abbreviated in MVCR. Hearn and Demaine [HD05] showed that the reconfiguration
of maximum independent set under TJ is PSPACE-complete. Since the complement of a maxi-
mum independent set is a minimum vertex cover, we directly get the PSPACE-completeness of
MVCR. We use a reduction which is a slight adaptation of the reduction used in [MHIZ19, The-
orem 4]. Let G = (V, E) be a planar graph and let (G, Cs, Ct) be an instance of MVCR. We can
assume that G is given with a planar embedding of G since such an embedding can be found
in polynomial time. Let F(G) be the set of faces of G (including the outer face). We construct
the corresponding instance (G′, k, Ts, Tt) as follows (see Figure 4.2 for an example).

We define G′ from G as follows. We start from G and first subdivide every edge uv ∈ E(G)
by adding a new vertex wuv. Then, for every face f ∈ F(G), we add a new vertex w f adjacent
to all the vertices of the face f . Finally, we attach a leaf u f to every vertex w f . Note that G′ is
a planar graph and |V(G′)| = |V(G)|+ |E(G)|+ 2 · |F(G)|. The vertices wuv for uv ∈ E (resp.
w f for f ∈ F) are edge-vertices (resp. face-vertices). The vertices u f for every f are called the leaf-
vertices. Note that, for every spanning tree T, all the face-vertices are internal nodes of T and
all the leaf-vertices are leaves of T. The vertices of V(G′) which are neither edge, face or leaf
vertices are called original vertices. Finally, we choose arbitrarily order of V(G) and F. It will
permit us to define later a canonical spanning tree for every vertex cover.

v1

v5

v4
v3

v2

v6

v10

v9 v8

v7

v11

f0

f1 f2

f3

f4

f5

f6

f7

f8

(a) Original labeled planar graph G. (b) Corresponding planar graph G′.

Figure 4.2 – Reduction for Theorem 4.3. The vertex cover C of G is depicted by the red vertices.
The dual graph is the graph induced by the green edges. The spanning tree obtained by the
BFS is represented by the solid edges. The face-vertices (respectively edge-vertices) of G′ are
depicted by triangles (resp. squares). The spanning tree T of G′ associated with the vertex cover
C is the tree induced by the red edges. The number of leaves of T is 2(|E(G)|+ 1)− |C| = 32.

Lemma 4.4. Every spanning tree of G′ has at most 2(|E(G)|+ 1)− τ(G) leaves.

Proof. Let k = 2(|E(G)| + 1) − τ(G). Assume by contradiction that G′ has a spanning tree T
with at least k + 1 leaves. First, observe that if we require every edge-vertex to be a leaf in
T, then T has at most k leaves. Indeed, as we already noticed, every face-vertex is an internal
node. Then, minimizing the number of original vertices that have to be internal nodes in T
is equivalent to minimize the size of a vertex cover in G. Hence, the total number of internal

132 Paul Ouvrard



4.1. Reconfiguration of spanning trees with many or few leaves

nodes in T is at least |F(G)|+ τ(G) and thus the number of leaves is at most |V(G′)| − |F(G)| −
τ(G) = |V(G)|+ |E(G)|+ |F(G)| − τ(G) = k since |F(G)| = 2− |V(G)|+ |E(G)| by Euler’s
formula.

It follows that since T has at least k + 1 leaves, then T must contain an edge-vertex wuv
as an internal node. So both uwuv and vwuv are in T. Let T′ = T \ {uwuv}. We denote by Cu
(respectively Cv) the connected component of T′ containing u (respectively v). By symmetry,
we can assume that w f ∈ Cu. If we add vw f to T′, the resulting set of edges T′′ induces a
spanning tree of G′. Besides, the number of leaves in T′′ is at least the number of leaves in T
since wuv has degree one in T′ and w f was already an internal node in T. The number of edge-
vertices which are internal nodes have decreased without increasing the number of internal
nodes. We repeat this process as long as there is at least one internal edge-vertex. We end up
with a spanning tree in which every edge-vertex is a leaf and which contains at least k + 1
leaves, a contradiction.

Lemma 4.5. For any minimum vertex cover C of G = (V, E), we can define a canonical tree with
exactly k = 2(|E(G)|+ 1)− τ(G) leaves which are all the edge-vertices, all the leaf-vertices and
all the original vertices but the ones in C. Moreover, this spanning can be computed in polynomial
time.

Proof. We first explain how to construct T from C. For every edge-vertex wuv, we select in T an
edge between wuv and a vertex of {u, v} ∩ C (if both u and v are in C we attach it to the one
with the minimum label value). Such a vertex exists since C is a vertex cover of G. For every
face f , we select the edge w f u f .

Let fo be the outer face and let wo be the face-vertex of fo. We attach every vertex of fo to
wo. If the resulting graph is already a spanning tree, we are done.

We say that two faces are adjacent if they share a common edge. We now consider the
following graph G′′: we create a vertex for every face of G and two vertices of G′′ are adjacent
if the corresponding faces of G are adjacent. In other words, G′′ is the dual graph of G, without
multiple edges. We then run a BFS algorithm from the vertex of G′′ which corresponds to fo.
Here again, we can first label the vertices in order to process the children in the same order. We
use the breadth-first search to incrementally increase the size of the connected component of T
which contains wo and is denoted by So. Observe that every vertex of fo belongs to So.

Now, let fi be the i-th face visited by the breadth-first search traversal. We assume that all
the vertices that belong to faces whose index is strictly less than i already belong to So. This
includes the edge-vertices and the face-vertices with their respective degree-one neighbor. We
now explain how to add the vertices of fi to So. Let f j be the parent of fi in the BFS traversal, for
some j < i. By assumption, all the vertices of f j belong to So. Since f j is the parent of fi, these
two faces share at least one edge. Among all the edges incident to both fi and f j, we pick the
one which is covered in C by the vertex with the smallest identifier. We denote by u this vertex.
We attach every vertex in fi \ So to the face-vertex wi. Finally, we attach wi to u.

Therefore, at the end of the BFS traversal, every vertex belongs to So. Since at every step, we
only attach vertices that did not belong to So before, we do not create any cycle. It follows that
the resulting graph is a spanning tree. Besides, it is clear that it can be computed in polynomial
time. It remains to prove that the number of leaves is exactly 2(|E(G)|+ 1)− τ(G). First, recall
that for every planar graph G = (V, E), the number of faces of G is precisely 2− |V| + |E|.
Now, let T be the spanning tree obtained by the previous algorithm. We classify the vertices of
G′ in four different categories: the edge-vertices, the face-vertices, the leaves attached to these
face-vertices, and finally the original vertices from G. By construction, each edge-vertex and
each vertex in V(G) \ C is a leaf in T. On the other hand, each face-vertex is an internal node in

Reconfiguration problems in graphs 133



4 – Other reconfiguration problems

T since it must be adjacent to its degree-one neighbor and it must be connected to the rest of the
spanning tree T. Finally, since C is minimum and thus minimal, for every vertex u ∈ C, there is
an edge uv ∈ E(G) which is only covered by u. Therefore, it follows from the construction of T
that the corresponding edge-vertex wuv is attached to u and thus that u is an internal node.

As a result, the total number of leaves in T is |F(G)|+ |E(G)|+ |V(G)| − |C| = 2(|E(G)|+
1)− τ(G), as desired.

Recall that (G, Cs, Ct) is an instance of MVCR. We already explained how to construct the
corresponding graph G′ from G. By Lemma 4.5, we can compute in polynomial time two
spanning trees Ts and Tt from Cs and Ct with 2(|E(G)| + 1) − τ(G) leaves. Finally, we set
k = 2(|E(G)|+ 1)− τ(G)). Let (G′, k, Ts, Tt) be the resulting instance of SPANNING TREE WITH

MANY LEAVES. It remains to prove that (G, Cs, Ct) for MVCR is a yes-instance if and only if
(G′, k, Ts, Tt) is a yes-instance for SPANNING TREE WITH MANY LEAVES.

(⇒) Suppose first that (G, Cs, Ct) is a yes-instance and let S = 〈C1 = Cs, C2, . . . , C` = Ct〉 be
a reconfiguration sequence between Cs and Ct. For every vertex cover Ci in the sequence, there
exists a spanning tree Ti of G′ associated with C with k leaves by Lemma 4.5. It is sufficient to
show that we can transform two spanning trees Ti and Ti+1 corresponding to two consecutive
vertex covers Ci and Ci+1, without increasing the number of internal nodes during the trans-
formation. Let u be the vertex of Ci \ Ci+1 and let v be the vertex of Ci+1 \ Ci. We first claim
that uv ∈ E(G). Suppose that uv 6∈ E(G). Since v 6∈ Ci, all the neighbors of v belong to Ci by
the definition of vertex cover. Therefore, Ci+1 \ {v} contains N(v) and thus is a vertex cover. A
contradiction with the minimality of k.

Since v 6∈ Ci, it follows from the construction of Ti that v is a leaf. Therefore, before attaching
any vertex to v, we first need to reduce the degree of u. Since Ci4Ci+1 = {u, v}, we have that
N[u] \ {v} ⊆ Ci. Recall that every vertex that belongs to Ci is an internal node in Ti. Let X be
the set of edge-vertices except wuv attached to u in Ti. First, we attach every vertex in X to its
other extremity.

Now, we root Ti and Ti+1 on the leaf attached to the face-vertex of the outer face, denoted
by wo. If u belongs to the outer face, its parent in Ti and Ti+1 is wo. Therefore, for every face
f incident to u such that the corresponding face-vertex w f is attached to u in Ti, we attach w f
to the same vertex as in Ti+1, except if this vertex is v. Since we do not want to increase the
number of internal nodes, we first need to attach w f to a vertex in ( f ∩ Ci) \ {u}. Note that this
vertex exists since any vertex cover contains at least two vertices per face. It follows that now
u has degree two. Therefore, we can attach the edge-vertex wuv so that u becomes a leaf and v
and internal node. Let T′ be the resulting tree. Finally, we can now attach to v every face-vertex
that is adjacent to it in Ti+1.

If u does not belong to the outer face, we need to be more careful since we should not isolate
u while modifying Ti into Ti+1. Recall that the parent of u in Ti is the face-vertex corresponding
to the first face incident to u visited during the BFS traversal. Since the labeling of the faces
is independent of the vertex cover, u has the same parent in Ti+1 as in Ti. The same argument
also applies to v and thus the parent of v is the same in Ti and Ti+1. Therefore, (G′, k, Ts, Tt) is a
yes-instance, as desired.

(⇐) For the other direction, let S′ = 〈T1 = Ts, T2, . . . , T` = Tt〉 be a reconfiguration sequence
between Ts and Tt such that the number of leaves is at least k at any time. Recall that the number
of leaves in Ts and Tt is maximal. Hence, each spanning tree in S′ has exactly k leaves.

We claim that every edge-vertex is a leaf in any spanning tree of S′. First, recall that this
statement holds for Ts and Tt. Let Ti be the first spanning tree in S′ which contains an edge-
vertex as an internal node. Since every edge-vertex is a leaf in Ti−1 and |E(Ti−1)4 E(Ti)| = 2,

134 Paul Ouvrard



4.1. Reconfiguration of spanning trees with many or few leaves

exactly one edge-vertex in Ti is an internal node. Let wuv be this vertex. We assume without loss
of generality that uwuv ∈ E(Ti−1) and thus the edge in Ti \ Ti−1 is vwuv. We consider the (only)
edge in Ti−1 \ Ti, denoted by e. Ti−1 contains three kinds of edges: between an original vertex
and an edge-vertex, between an original vertex and a face-vertex, or between a leaf-vertex and
a face-vertex. Since all the vertices of the form u f or wxy have degree one in Ti−1, e is necessarily
of the form xw f , i.e., an edge linking a face-vertex and an original vertex. Recall that w f is an
internal node in any spanning tree of G′. Since wuv is a leaf in Ti−1 but not in Ti, the degree
of x in Ti−1 must be two, otherwise we would increase the total number of internal nodes.
Note that uv ∈ E(G) since wuv is an edge-vertex of G′ and thus G′ contains a face-vertex w f ′

adjacent to both u and v. Let T′i be the forest obtained from Ti by removing the edge vwuv and
observe that T′i = Ti−1 \ {xw f }. We denote by Cu (respectively Cv) the connected component of
u (respectively v) in T′i . We apply the same argument as in the proof of Lemma 4.5. The node
w f ′ has a neighbor either in Cu or in Cv (which might be u or v) but not in both Cu and Cv
otherwise Ti would contain a cycle. We assume without loss of generality that w f ′ ∈ Cu. Then,
observe that if we add the edge vw f ′ to T′i , we get a spanning tree of G′ such that |Ti4 T′i+1| = 2
but with k + 1 leaves, a contradiction.

It follows that for every Ti ∈ S′, 1 ≤ i ≤ `, the number of leaves in Ti is exactly k =
2(|E(G)|+ 1)− τ(G), and every edge-vertex of G′ is a leaf in Ti. From Ti, we can deduce a vertex
cover Ci of G: the vertex that covers the edge uv ∈ E(G) in Ci corresponds to the neighbor of
the edge-vertex wuv in Ti. In particular, the corresponding vertex covers of Ts and Tt are Cs and
Ct, respectively.

Then, from S′, we can deduce a sequence S′′ = 〈C1 = Cs, C2, . . . , C`′ = Ct〉 of vertex covers
of G. Note that the length of S′′ is not necessarily the same as the length of S′, i.e., it is possible
that two adjacent spanning trees Ti and Ti+1 in S′ give the same corresponding vertex cover
of G. It remains to prove that |Ci| = τ(G) for every 1 ≤ i ≤ `′, and |Ci4Ci+1| = 2 for any
two adjacent vertex covers of S′′, i.e., S′′ is a TJ-sequence of minimum vertex covers of G.
Since |C1| = |C`′ | = τ(G), it is sufficient to prove that |Ci4Ci+1| = 2, for every 1 ≤ i < `′.
Let Ci and Ci+1 be two consecutive vertex covers in S′′. Let i′ be the maximal index such that
the vertex cover induced by the spanning tree Ti′ ∈ S′ is Ci. Due to the maximality of i′, the
vertex cover induced by Ti′+1 corresponds to Ci+1, since it cannot be Ci. Therefore, the edge
in Ti′ \ Ti′+1 is between an edge-vertex and an original vertex. We denote by uwuv ∈ E(G′)
this edge. Then, since wuv has degree one in Ti′ , the edge in Ti′+1 \ Ti′ must be vwuv. Therefore,
Ci+1 = (Ci \ {u}) ∪ {v} and thus |Ci4Ci+1| ≤ 2 holds, for every 1 ≤ i < `′ as desired. Hence,
(G′, k, Ts, Tt) is a yes-instance. This concludes the proof of Theorem 4.3.

Polynomial-time results

We now prove that SPANNING TREE WITH MANY LEAVES is polynomial-time solvable if k ≥
n− 2 for any graph G with n vertices. We will then use this result to show that the problem is
polynomial-time solvable as well if the input graph is a cograph.

Theorem 4.6. Let G be a graph and Ts or Tt be two spanning trees with at most two internal nodes.
Then we can check in polynomial time if one can transform the other via a sequence of spanning trees
with at most two internal nodes.

Proof. We first consider the case where either Ts or Tt has one internal node, but not both. We
assume without loss of generality that in(Ts) = {u}. If u ∈ in(Tt), we just have to attach every
leaf in Tt to u, one by one. It follows that in(Ts) ∩ in(Tt) = ∅ and thus u has degree one in Tt.
Hence, if we want to reconfigure Ts into Tt, we must remove all but one of the edges incident

Reconfiguration problems in graphs 135



4 – Other reconfiguration problems

to u and thus we must create a new internal node. Therefore, it is sufficient to consider the last
following case: |in(Ts)| = |in(Tt)| = 2.

First, observe that if in(Ts) = in(Tt), then (G, k, Ts, Tt) is a yes-instance. Indeed, we just have
to change the parent of a node, and this can be done without increasing the number of internal
nodes. Hence, in the remaining of the proof, we only consider the case in(Ts) 6= in(Tt).

A vertex u is a pivot vertex of G if deg(u) ≥ n− 2 in G (deg(u) being the size of the neigh-
borhood of u, u not included). A spanning tree T of G is frozen if all the spanning trees in its
component of the reconfiguration graph have the same internal nodes.

Claim 1. Let T be a spanning tree of G. If in(T) does not contain a pivot vertex, then T is frozen.

Proof. By contradiction. Assume that in(T) does not contain a pivot vertex and thus each vertex
in in(T) has degree at most n − 3. Then, we want to prove that we cannot modify in(T). Let
in(T) = {u, v}, and note that uv ∈ E(T). Note also that since deg(u) ≤ n− 3 and deg(v) ≤
n− 3, both u and v have degree at least three in T. Since k = 2 and |in(T)| = 2, we first need
to lower the degree of u or v to one or two, without creating a new internal node. Suppose
without loss of generality that we want to lower the degree of u, the other case follows by
symmetry. First, observe that we cannot remove the edge uv ∈ E(T) with an edge flip because
it would create a new internal node, as the degree of both u and v is at least three. Recall that
∑u∈V(T) degT(u) = 2n− 2. Since T has n− 2 leaves, degT(u) + degT(v) = n. Hence, if we want
u to have degree two, v must have degree n− 2, a contradiction. ♦

Claim 2. Let u be a pivot vertex. All the trees containing u as an internal node are in the same
connected component of the reconfiguration graph.

Proof. Let T and T′ be two trees such that u ∈ in(T) ∩ in(T′). If the other internal nodes (if
they exist) are the same, then the conclusion follows from Lemma 4.1. So we can assume that
in(T) = {u, v} and in(T′) = {u, w} with v 6= w. Since deg(u) ≥ n− 2, there exists a spanning
tree T2 with internal nodes {u, v} such that deg(u) = n − 2 and deg(v) = 2 and uv ∈ T2.
By Lemma 4.1, this spanning tree is in the component of T. Let z be the neighbor of v distinct
from u. Now remove the edge vz and create wz or uz (one of them must exist since in(T2) =
{u, w}. The internal nodes of the resulting tree is in {u, w} and then the conclusion follows by
Lemma 4.1. ♦

We say that a spanning tree T contains a pivot vertex if in(T) contains a pivot vertex. By
Claim 2, if Ts and Tt contains a common pivot vertex, then the answer is positive. (Note that
the existence of a pivot vertex can be checked in polynomial time). If Ts or Tt does not contain
any pivot vertex, then the answer is negative by Claim 1 (except if the set of internal nodes are
the same by Lemma 4.1). So we restrict our attention to the case where they contain a pivot
vertex which is different.

Let in(Ts) = {u, v} and in(Tt) = {x, y} where u and x are pivot vertices (note that we can
possibly have v = y). If u (or x) is a universal vertex, we can modify in(Ts) (or in(Tt)) into a
spanning tree T with in(T) = {u} (resp. {x}). Claim 2 ensures that both Ts and a spanning
containing u and x as internal nodes are in the same component. And this latter spanning tree
is in the component of Tt by Claim 2. So we can assume that none of the four internal nodes is
universal.

If in(Ts) or in(Tt) contains two pivot vertices, without loss of generality in(Ts), then {u, x}
or {v, x} dominates G. So there exists a spanning tree T with in(T) = {u, x} or {v, x}. Up to
symmetry, let us say {u, x}. By Claim 2, T is both in the connected component of Ts and Tt.

So in(Ts) and in(Tt) contain exactly one pivot vertex; respectively u and x. Observe that,
if we want to reconfigure Ts into Tt, we must remove u from the spanning tree at some point

136 Paul Ouvrard



4.1. Reconfiguration of spanning trees with many or few leaves

since it does not belong to in(Tt). But then, just before disappearing, the second internal node
has to have degree n− 2 in the spanning tree, and then has to be a pivot vertex. So the previous
paragraph ensures that Ts can be transformed into Tt if and only if there exists a spanning tree
in the component of Ts with two pivot vertices. It is the case if and only if there exists a second
pivot vertex w such that {u, w} dominates the graph, which can be checked in polynomial
time.

We now have all the ingredients to prove the following theorem:

Theorem 4.7. SPANNING TREE WITH MANY LEAVES can be decided in polynomial time on
cographs.

Proof. Let G = (V, E) be a cograph and let (G, k, Ts, Tt) be an instance of SPANNING TREE WITH

MANY LEAVES. We denote by n the number of vertices of G. First, since Ts and Tt are two
spanning trees of G, G must be connected. Hence, G has been obtained from the join of two
cographs, let us say A and B. Recall that maximizing the number of leaves of a spanning tree is
equivalent to minimizing the number of internal nodes. Hence, in the remaining of this proof,
we denote by k the threshold on the maximum number of internal nodes.

If k = 1, any spanning tree of G is a star and thus contains exactly one internal node.
Therefore, two spanning trees of G are reconfigurable if and only if G contains at most three
vertices or the same internal node by Lemma 4.1. Hence, we can safely assume that k ≥ 2. Since
G is the join of two cographs, G can be partitioned into two subsets A and B such that G[A] and
G[B] are two cographs, and we have all possible edges between A and B. Let T be a spanning
tree of G. We say that T is an A-tree (resp. B-tree) if in(T) ⊆ A (resp. in(T) ⊆ B. Otherwise, we
say that T is an (A, B)-tree.

If k = 2, Theorem 4.6 ensures that the problem can be decided in polynomial time. So from
now on, we can assume that k ≥ 3. In this case, we claim that (G, k, Ts, Tt) is a yes-instance.

Let us first prove by induction on the size of G that there exists a transformation from any
tree T with at most k internal nodes to a tree T′ with at most k− 1 of them such that all along
the transformation there exists a vertex x which is always an internal node. We moreover prove
that this transformation can be found in polynomial time. If T has at most two internal nodes,
the conclusion follows. So we can assume that T has exactly k internal nodes.

If T is an (A, B)-tree, we can reach T′ as follows. Let a ∈ in(T) ∩ A and b ∈ in(T) ∩ B such
that ab ∈ T (such an edge must exist). Using edge flips, we make a adjacent to any vertex in
B and b adjacent to every vertex of A (which is possible since A− B is a join). After all these
modifications, the resulting tree has exactly two internal nodes.

So we can assume that T is an A-tree or a B-tree, without loss of generality an A-tree. Thus
every vertex in B is a leaf and then the restriction TA of T to G[A] also is a spanning tree of
G[A]. By induction, since G[A] is a connected cograph, we can find in polynomial time a trans-
formation of TA into a spanning tree T′A in such a way that x is an internal node all along the
transformation (and this transformation can be found in polynomial time). This transforma-
tion can be adapted for T by first connecting all the vertices of B to x using edge flips and then
transforming the edges of G[A] ∩ T into T′A. All along the transformation x is an internal node
and at any step the set of internal nodes are precisely the ones of the tree restricted to G[A].

So we can assume that Ts and Tt have at most k− 1 internal nodes. Let us define a canonical
spanning tree Tc with two internal nodes and show that both Ts and Tt can be reconfigured into
Tc. We define in(Tc) as follows: we pick a vertex a ∈ A, and a vertex b ∈ B arbitrarily. We only
explain without loss of generality how to reconfigure Ts into Tc.

Reconfiguration problems in graphs 137



4 – Other reconfiguration problems

Since |in(Ts)| < k, we can trivially modify it into in(Tc). We only show the statement for
|in(Ts)| = 2, and k = 3. The proof is similar for other values of k. Let in(Ts) = {u, v}. Suppose
first that Ts is an A-tree or a B-tree. We will consider the case where Ts is an (A, B)-tree later.
We assume without loss of generality that Ts is an A-tree. We first add b to in(Tc), i.e., we
attach each vertex in A to b. Observe that we can now remove a vertex in {u, v} since all the
vertices in A are covered by b and only one vertex is needed to cover B. It follows that Ts is
now an (A, B)-tree with two internal nodes. Hence, we can now attach each leaf in B to a (it
creates a third internal node but this is allowed since k ≥ 3). It remains to remove the vertex in
(in(Ts) ∩ A) \ {a}. This concludes the proof of Theorem 4.7.

4.1.3 Spanning trees with few leaves

In this section, we consider the reconfiguration of spanning trees with at most k leaves. More
precisely, we are interested in the following problem:

SPANNING TREE WITH AT MOST k LEAVES

Instance: A graph G, an integer k ≥, two spanning trees Ts and Tt of G with at most k
leaves.

Question: yes if and only if there exists a transformation via edge flips between Ts and
Tt such that all the intermediate trees have at most k leaves.

We will prove the following theorem:

Theorem 4.8. SPANNING TREE WITH AT MOST k LEAVES is PSPACE-complete for every k ≥ 3.

In order to prove Theorem 4.8, we first prove it for k = 3. We will then explain how we can
modify this proof in order to get the hardness for any k ≥ 3.

Theorem 4.9. SPANNING TREE WITH AT MOST 3 LEAVES is PSPACE-complete.

In order to prove Theorem 4.9, we will provide a reduction from the reconfiguration of min-
imum vertex covers under TAR. Wrochna [Wro18] showed that MAXIMUM INDEPENDENT SET

RECONFIGURATION under TJ is PSPACE-complete even when restricted to bounded band-
width graphs. However, recall that the complement of an independent set is a vertex cover.
Besides, Kamiński et al. [KMM12] observed that the TJ model and TAR model are equivalent
when the threshold is the minimum value of a vertex cover plus one. Hence, MINIMUM VERTEX

COVER RECONFIGURATION is PSPACE-complete under the TAR model.

The idea of the proof of Theorem 4.9 is to adapt a reduction from VERTEX COVER to HAMIL-
TONIAN PATH. Let (G = (V, E), k) be an instance of VERTEX COVER. This reduction creates a
graph H(G) which contains a Hamiltonian path if and only if G admits a vertex cover of size
k. In particular, we will show that there is a "canonical way" to define a vertex cover from any
Hamiltonian path. The reduction is provided in the next section together with some properties
of the spanning trees with at most three leaves in H(G). In order to adapt the proof in the recon-
figuration setting, we need to prove that the proof is "robust" with respect to several meanings
of the word. First, we need to show that, if we consider a spanning tree with at most three
leaves in H(G) then there is a "canonical" vertex cover of size at most k + 1 associated with
it. Proving that this vertex cover always has size at most k + 1 is the first technical part of the
proof. Then, for any edge flip between two spanning trees with at most three leaves, there is a
corresponding "transformation" between the canonical vertex covers associated with them. We

138 Paul Ouvrard



4.1. Reconfiguration of spanning trees with many or few leaves

need to prove that for any two adjacent spanning trees in H(G), their canonical vertex covers
are either the same or are incident in the TAR model (in G).

Finally, we need to prove that it is possible to transform a Hamiltonian path P1 (associated
with a vertex cover X) into a Hamiltonian path P2 associated with a vertex cover Y via spanning
trees with at most three leaves if and only if X can be transformed into Y in the TAR model.

The reduction and construction of H(G)

The reduction is a classical reduction (see Theorem 3.4 of [GJ79] for a reference) from the op-
timization version of VERTEX COVER to the optimization version of HAMILTONIAN PATH. Let
G be a graph and k be a non-negative integer. We provide a reduction from VERTEX COVER

of size at most k to HAMILTONIAN PATH. Let us construct a graph H(G) (abbreviated into H
when no confusion is possible) as follows.

For each edge e = uv of G, we create the following edge-gadget Ge represented in Figure 4.3.
The edge-gadget Ge has four special vertices denoted by xe

u, xe
v, ye

u, ye
v. The vertices xe

u and xe
v

are called the entering vertices and ye
u and ye

v the exit vertices. The gadget contains 8 additional
vertices denoted by re

1, . . . , re
8. When e is clear from context, we will omit the superscript. The

graph induced by these twelve vertices is represented in Figure 4.3. The vertices re
1, . . . , re

8 are
local vertices and their neighborhood will be included in the gadget. The only vertices connected
to the rest of the graphs are the special vertices.

xeu

xev

yeu

yev

re1 re2 re3 re4

re5 re6 re7 re8

Figure 4.3 – Edge-gadget corresponding to the edge e = uv. The white vertices are the only
ones connected to the outside.

We add an independent set Z = {z1, . . . , zk+1} of k+ 1 new vertices to V(H). And we finally
add to V(H) two more vertices s1, s2 in such a way that z1 (resp. zk+1) is the only neighbor of s1
(resp. s2) in H(G). Since s1 and s2 have degree one in H(G), s1 and s2 are leaves in any spanning
tree of H(G). In particular, the two endpoints of any Hamiltonian path of H(G) are necessarily
s1 and s2.

Let us now complete the description of H(G) by explaining how the special vertices are
connected to the other vertices of H(G). Let u ∈ V(G). Let E′ = e1, . . . , e` be the set of edges
incident to u in an arbitrary order. We connect xe1

u and ye`
u to all the vertices of Z. For every

1 ≤ i ≤ ` − 1, we connect yei
u to xei+1

u . The edges yei
u xei+1

u are called the special edges of u. The
special edges of H(G) are the union of the special edges for every u ∈ V(G) plus the edges
incident to Z but s1z1 and s2zk+1. This completes the construction of H(G) (see Figure 4.4).

Basic properties of H(G)

Remark 4.10. If T is a spanning tree of H(G) with at most ` leaves, then at most `− 2 of them are in
V(H) \ {s1, s2}.

For a spanning tree T, we say that an edge-gadget contains a leaf if one of the twelve vertices
of the edge-gadget is a leaf of T. If the spanning tree is a Hamiltonian path, Remark 4.10 ensures
that no edge-gadget contains a leaf. Besides, at most one edge-gadget contains a leaf if T is a

Reconfiguration problems in graphs 139



4 – Other reconfiguration problems

a

b

c

d

(a) Original instance (G, k) of Minimum Vertex Cover with a vertex cover {a, c}.

xab
a yabarab1 rab2 rab3 rab4

z2 z3

xab
b yabbrab5 rab6 rab7 rab8

xad
a yadarad1 rad2 rad3 rad4

xad
d yaddrad5 rad6 rad7 rad8

xbc
b ybcbrbc1 rbc2 rbc3 rbc4

xbc
c ybccrbc5 rbc6 rbc7 rbc8

xcd
c ycdcrcd1 rcd2 rcd3 rcd4

xcd
d ycddrcd5 rcd6 rcd7 rcd8

s1

s2

z1

Gab Gad Gbc Gcd
(b) Graph H(G) obtained from the reduction. The ordering for the vertices of the vertex cover {a, c} of G is the lexicographic
order, as well as the ordering of the edges incident to each vertex. The corresponding Hamiltonian path is depicted by the
thick dashed edges.

Figure 4.4 – Illustration of the reduction of Theorem 4.9.

spanning tree with at most three leaves. An edge-gadget contains a branching node of T if one of
the twelve vertices of the gadget is a vertex of degree at least three. Any spanning tree with at
most three leaves indeed contains at most one branching node.

Let T be a spanning tree of H(G). An edge-gadget is irregular if at least one of its twelve
vertices is not of degree two in T, i.e., if it contains a branching node or a leaf. An edge-gadget
is regular if it is not irregular. By abuse of notation we say that e ∈ E(G) is regular (resp.
irregular) if the edge-gadget of e is regular (resp. irregular). A vertex u is regular if every edge
incident to u is regular. The vertex u is irregular otherwise.

Let S be a subset of vertices of H(G). We denote by δT(S) the set of edges with exactly
one endpoint in S. When there is no ambiguity, we omit the subscript T. Moreover, if S is the
singleton {u}, we write δT(u) for δT({u}). Given an edge e of G and a spanning tree T of of
H(G), δT(e) denotes the set of edges of T with exactly one endpoint in the edge-gadget Ge of
e. The restriction T(Ge) of a spanning tree T around an edge-gadget Ge is the set of edges with
both endpoints in Ge plus the edges of δT(Ge) (which are considered as "semi edges" with one
endpoint in Ge).

Lemma 4.11. Let T be a spanning tree of H and G be a regular edge-gadget. Then the tree T
around the edge-gadget G is one of the two graphs represented in Figure 4.5. Note that the graph of
Figure 4.5(b) has to be considered up to symmetry between u and v.

In order to prove Lemma 4.11, we will need the following lemma that will be useful all
along our proof:

Lemma 4.12. Let R be the graph restricted to an edge-gadget. There is no Hamiltonian path from
one vertex of {xe

u, ye
u} to one vertex of {xe

v, ye
v} in R.

Proof. By contradiction. Let us denote by w1, w2 the two endpoints of a Hamiltonian path P.
If w1, w2 are the two entering (resp. exit) vertices, then both exit (resp. entering) vertices must

140 Paul Ouvrard



4.1. Reconfiguration of spanning trees with many or few leaves

xeu

xev

yeu

yev

xeu

xev

yeu

yev

(a) (b)

Figure 4.5 – The two possible subgraphs around a regular edge-gadget G. Thick edges are edges
in the tree. Edges with one endpoint in the gadget are edges of δ(G).

have degree two in P. If both exit vertices have degree two, then one of r3r4 or r7r8 do not exist
in P since otherwise P admits a cycle. And then r4 or r8 are leaves of P, a contradiction since P
is a Hamiltonian path in R. Similarly, the same holds if both entering vertices have degree two.

So, by symmetry, we can assume that w1 = xe
u and w2 = ye

v. Since xe
v and ye

u have degree two
and all the local vertices have degree two in P, the subpaths xe

ur1r2xe
vr5r6 and r3r4ye

ur7r8ye
v are in

P. It is impossible to connect these two paths into a Hamiltonian path in R, a contradiction.

Let us now prove Lemma 4.11:

Proof. Remark that since all the vertices of the edge-gadget Ge have degree two in T, the number
of edges with one endpoint in the gadget is even (the subgraph of T induced by the vertices
of Ge being a union of paths). Moreover, since r1, r4, r5, r8 are not leaves of T and have degree
two in H(G), both edges incident to them are in T. So the number of edges of δT(Ge) incident
to each of xe

u, ye
u, xe

v, ye
v is either zero or one. In particular, |δT(Ge)| ≤ 4.

If |δT(Ge)| = 2, then, since the edge-gadget is regular, the restriction of T to the edge-gadget
is a Hamiltonian path P. By Lemma 4.12, the endpoints of P cannot be one vertex of {xu, yu}
and one vertex of {xv, yv}. So, by symmetry, we can assume that the endpoints of P are xu are
yu. Since, r1, xv, r5, r8, yv, r4 have degree two in the subgraph induced by the edge-gadget, it
forces all the edges of the gadget but xur6, yur7, r6r7 and r2r3 to be in P. Since P is a Hamiltonian
path from xu to yu, r5r6 ∈ E(T) which gives the graph of Figure 4.5(b) (up to symmetry.).

So we can now assume that |δT(Ge)| = 4. Since at most one edge of δT(Ge) is incident to
each special vertex, all these vertices have degree one in the subtree induced by the vertices of
Ge. So, the subforest induced on the gadget must be a union of two paths. Since r1, r4, r5 and r8
have degree two, the only way to complete this set of edges into a Hamiltonian path provides
the graph of Figure 4.5(a), which completes the proof.

If P is a Hamiltonian path of H, then Remark 4.10 ensures that all its edge-gadgets are
regular. And then, by Lemma 4.11, for every edge-gadget G, the graph around G is one of the
two graphs of Figure 4.5.

Vertex Cover and Hamiltonian Path

Suppose that G has a vertex cover X = {v1, . . . , vk} of size k. We claim that the following set of
edges F induces a Hamiltonian path in H(G). We start with F = ∅. For every i ≤ k, we add to F
the edge between zi and the entering vertex of the first edge of vi and the edge between zi+1 an
the exit vertex of the last edge of vi. For every vi ∈ X, all the special edges of vi are added to F.
The edges s1z1 and s2zk+1 are also in F. We claim that, for each edge-gadget G corresponding to
the edge uv, either two edges or four edges of F have exactly one endpoint in F. Indeed, if none
of them are selected, then by construction of F, neither u nor v are in X, a contradiction since X
is a vertex cover of G. Moreover, by construction of F, xe

v is an endpoint of an edge of F if and
only if ye

v also is. Note moreover that: (i) no local vertex of the edge-gadget is incident to an edge

Reconfiguration problems in graphs 141



4 – Other reconfiguration problems

of F, (ii) special vertices are incident to at most one, and (iii) vertices of Z are incident to two of
them. So in order to complete F into a Hamiltonian path, we add the edges of Figure 4.5(a) or (b)
depending if two or four edges of the current set F are incident to a vertex of the edge-gadget
(two when one endpoint is in X, four is both of them are in X). The set F induces a Hamiltonian
path, as proved in [GJ79]. This Hamiltonian path is called a Hamiltonian path associated with the
vertex cover X. Note that there might be several Hamiltonian paths associated with the same
vertex cover since the path depends on the "ordering" of X. Indeed we have to choose which
entering vertex is attached to z1, z2, . . . , zk which gives a natural ordering of X.

Conversely, let us explain why we can associate with every Hamiltonian path P a vertex
cover. Let G be an edge-gadget. The graph H[G] is the subgraph induced by the twelve vertices
of the edge-gadget. Note that the subgraph of P induced by G is not the graph around G, which
contains the semi-edges leaving G.

Lemma 4.13. Let G be a graph, T be a spanning tree of H(G), and u be a regular vertex of T. If
there exists an edge e ∈ E(G) with endpoint u such that xe

u or ye
u has degree one in the subgraph of

T induced by the vertices of H[Ge], then, for every edge e′ with endpoint u, xe′
u and ye′

u have degree
one in the subgraph of T induced by the vertices of H[Ge′ ].
In particular, there is an edge of T between Z and the first entering vertex of u and an edge between
Z and the last exit vertex of u.

Proof. By symmetry, xe
u has degree one in the subgraph of T induced by the vertices of H[Ge].

Since the graph around the gadget is one of the two graphs of Figure 4.5 (which corresponds to
the only possible restrictions of T around a regular edge-gadget), for both xe

u and ye
u, an edge of

T is leaving the gadget. If e is the first (resp. last) edge of u, then there is an an edge linking xe
u

(resp. ye
u) to Z. Otherwise, let us denote by e′ (resp. e′′) the edge before (resp. after) e in the order

of u. The only edge incident to xe
u (resp. ye

u) in δT(Ge′) is xe
uye′

u (resp. ye
uxe′′

u ). Since u is regular,
both xe

uye′
u and ye

uxe′′
u are in T. And then we can repeat the same argument on e′ (resp. e′′) until

we reach the first (resp. last) edge of u.

If, for a regular vertex u and an edge e = uv, xe
u or ye

u have degree one in H[Ge], then there is
a path between two vertices of Z passing through all the special vertices xe′

u and ye′
u for every e′

incident to u and all the vertices on this path have degree two. Note that the union of all such
vertices forms a vertex cover of G.

Defining a vertex cover

Let T be a spanning tree with at most three leaves. By Lemma 4.11, for every edge-gadget Ge,
if T(Ge) is not one of the two graphs of Figure 4.5, Ge contains a branching node or a leaf. So
Remark 4.10 implies:

Remark 4.14. There are at most two irregular edge-gadgets. Thus there are at most four irregular
vertices.

Indeed, if T has two leaves, all the edge-gadgets are regular. If T has three leaves, the third
leaf must be in an edge-gadget, creating an irregular edge-gadget. And this leaf might create a
new branching node which might be in another edge-gadget than the one of the third leaf. So
the number of irregular edge-gadget is at most two, and thus the number of irregular vertices
is at most four (if the edges corresponding to these two edge-gadgets have pairwise distinct
endpoints).

Let T be a spanning tree of H(G) with at most three leaves. A vertex v is good if there exists
an edge e = vw for w ∈ V(G) such that xe

v or ye
v has degree one in the subtree of T induced

142 Paul Ouvrard



4.1. Reconfiguration of spanning trees with many or few leaves

by the twelve vertices of the edge-gadget of e. In other words, if we simply look at the edges
of T with both endpoints in Ge, xe

v or ye
v has degree one (or said again differently, xe

v or ye
v are

adjacent to exactly one local vertex). Let us denote by S(T) the set of good vertices.

Lemma 4.15. Let T be a spanning tree with at most three leaves of H(G) and e = uv be an edge of
G. At least one special vertex of the edge-gadget Ge has degree one in the subgraph of T induced by
the vertices of Ge.
In particular, S(T) is a vertex cover.

Proof. Let R be the subgraph of H(G) induced by the vertices of Ge. Let T′ be the restriction of
T to R. Assume by contradiction that none of the four special vertices have degree one in T′.
Since special vertices Y have degree two in R, the special vertices have degree zero or degree
two in T′. We claim that the number of special vertices of degree zero is at most one. Indeed,
if xe

u (resp. ye
u, xe

v, ye
v) has degree zero in T′, then r1 (resp. r4, r5, r8) is a leaf of T. Since T has at

most three leaves, Remark 4.10 ensures that at most one of them has degree one in T′ and thus
at least three vertices of Y have degree two in T′. So, we can assume without loss of generality
that both entering vertices have degree two in T′. Then, xur1, xur6, xvr2 and xvr5 are edges. Since
T is a tree, one of r1 or r5 are leaves. Now if yu (resp. yv) has degree zero in T′ then r4 (resp. r8)
is a leaf of T. And, if both yu, yv have degree two, then r4 or r8 are leaves. In both cases, we have
a contradiction with Remark 4.10.

So, for every tree T with at most three leaves, S(T) is a vertex cover. We say that S(T) is the
vertex cover associated with T.

Spanning Tree Reconfiguration to Vertex Cover Reconfiguration

The goal of this section is to prove that an edge flip reconfiguration sequence between spanning
trees with at most three leaves in H(G) provides a TAR vertex cover reconfiguration sequence in
G. So we want to prove that (i) for every spanning tree T with at most three leaves, |S(T)| ≤ k+
1; and (ii), for every tree T′ obtained via an edge flip from T, |S(T) \ S(T′)|+ |S(T′) \ S(T)| ≤ 1.

Lemma 4.16. Let T be a spanning tree of H(G) with at most three leaves. Let u be a vertex of G
and e be an irregular edge with endpoint u. Assume moreover that no edge before u (resp. after u) in
the ordering of u are irregular. Then if there is an edge of δT(Ge) incident to xe

u (resp. ye
u) then there

is an edge between Z and the first (resp. last) entering (resp. exit) vertex of u.

Proof. Assume that an edge of δT(Ge) is incident to xe
u. Since Ge is the unique irregular edge-

gadget for u, we can conclude using the arguments of Lemma 4.13.

Let us now prove that |S(T)| ≤ k + 1 for any spanning tree T with at most three leaves.
When no confusion is possible, we will write S for S(T).

Lemma 4.17. Every spanning tree T of H(G) with at most three leaves satisfies |S(T)| ≤ k + 1.

Proof. Assume by contradiction that |S| ≥ k + 2. By Remark 4.14, at least k − 2 vertices of S
are regular. By Lemma 4.13, for each regular vertex w ∈ S, there is an edge of T between Z
and the first entering vertex of w and Z and the last exit vertex of w. So at least 2k − 4 edges
of δT(Z) are incident to regular vertices. Moreover two edges of δT(Z) are incident to s1 and
s2. So, T already has 2k − 2 edges in δT(Z). Since |Z| = k + 1 and T has at most three leaves,
Remark 4.10 ensures that δT(Z) has size 2k + 1, 2k + 2 or 2k + 3. Indeed, if either all the vertices
of Z have degree two or if Z contains both the vertex of degree three and the vertex of degree

Reconfiguration problems in graphs 143



4 – Other reconfiguration problems

one, then |δT(Z)| = 2k + 2. Otherwise, if Z only contains the vertex of degree one (resp. three),
and then |δT(Z)| = 2k + 1 (resp. 2k + 3). Moreover, if there is no irregular edge-gadget then,
since |S| ≥ k + 2, Lemma 4.13 ensures that Z is incident to at least 2k + 4 edges, a contradiction.
So there is one or two irregular edge-gadgets by Remark 4.14.

Case 1. T has exactly one irregular edge-gadget Ge for e = uv.

Since |S| ≥ k + 2, k vertices are regular (otherwise the number of edges incident to Z would
be at least 2k + 4 using the argument above, a contradiction). So by Lemma 4.13, 2k edges of
δT(Z) are incident to regular vertices and two are incident to s1 and s2. So it already gives
2k + 2 edges in δT(Z). Moreover, since T is connected, at least one edge is in δT(Ge). So by
Lemma 4.16, exactly one edge of T is in δT(Ge). Note that it already gives 2k + 3 edges incident
to Z so a vertex of Z has degree three. And then, in T, all the vertices of Ge but at most one have
degree two and the last one have degree one. Moreover, |δT(Ge)| = 1.

Let R be the graph restricted to Ge and T′ be the subforest of T restricted to R. Since both u
and v are in S, at least one vertex v1 in {xe

u, ye
u} (resp. v2 in {xe

v, ye
v}) has degree one in R. Since

all the vertices have degree two in T but at most one and |δT(R)| = 1, the graph T′ on V(Ge)
is a Hamiltonian path between v1 and v2. In particular, all the local vertices must have degree
two in T′. By Lemma 4.12, there is no Hamiltonian path between v1 an v2, a contradiction.

Case 2. There are two irregular edge-gadgets G1 and G2.

Since each special edge-gadget of T contains a vertex of degree one or a vertex of degree
three by Lemma 4.11, all the vertices of Z have degree two in T. So, |δT(Z)| = 2k + 2. Since we
have seen that at least 2k− 4 edges of δT(Z) are incident to regular vertices, there are at most
four edges between Z and special vertices of irregular vertices.

Subcase 2.1. The two irregular edge-gadgets are not endpoint disjoint.

We denote by u1u2 and u2u3 the two edges of the irregular edge-gadgets. We can assume
without loss of generality that the edge-gadget of u1u2 contains a vertex of degree one and the
one of u2u3 contains a vertex of degree three.

Since u1u2 (resp. u2u3) is the unique irregular edge incident to u1 (resp. u3), all the edges
incident to u1 (resp. u3) before and after u1u2 (resp u2u3) in the ordering of u1 (resp. u3) are
regular. So if there is an edge of δ(Gu1u2) (resp. δ(Gu2u3)) incident to the entering or exit vertex
of u1 (resp. u3), Lemma 4.16 ensures that this edges creates an additional edge incident to Z.

Let a ≥ 0 such that |S| = k + 2 + a. Let us first prove that a = 0. Since there are three
irregular vertices, there are at least k− 1 + a regular vertices. So by Lemma 4.13, at least 2k−
2 + 2a edges of δT(Z) are incident to regular vertices and two are incident to s1 and s2 by
Remark 4.10. So in total, it already gives 2k + 2a edges incident to Z. Since |δT(Z)| = 2k + 2, if
a > 0 then there is no edge between Z and an entering or exit vertex of an irregular vertex.

So no edge of δ(Gu1u2) is incident to the entering or exit vertex of u1 and the same holds for
u3 in δ(Gu2u3) by Lemma 4.16 (since u1u2 are and u2u3 are the only irregular edges incident to
respectively u1 and u3). Up to symmetry, we can assume that u1u2 is before u2u3 in the ordering
of u2. So Lemma 4.16 ensures that no edge is incident to the entering vertex of u2 in δ(Gu1u2)
and the exit vertex of u2 in δ(Gu2u3) (these edges are the only irregular edge-gadgets containing
u2). So if δT(Gu1u2) (respectively δT(Gu2u3) is not empty, it can only contain an edge incident to
yu1u2

u2 (respectively xu2u3
u2 ).

But since T is connected, at least one edge has to leave from Gu1u2 and Gu2u3 . So T have to
contain the edges leaving yu1u2

u2 and xu2u3
u2 . Note that it might be the same edge if u1u2 and u2u3

are consecutive in the ordering of u2. But since the gadgets between them are regular, all the

144 Paul Ouvrard



4.1. Reconfiguration of spanning trees with many or few leaves

vertices between yu1u2
u2 and xu2u3

u2 in T have degree two and does not contain any vertex of Z.
And then the vertices of the two edge-gadgets cannot be in the connected component of s1, a
contradiction.

So we must have |S| = k + 2 and u1, u2 and u3 are in S. Indeed, there are k − 1 regular
vertices in S and at most three irregular vertices candidates to be in S.

Let e1 = u1u2. Let R be the graph restricted to Gu1u2 and T′ be the subforest of T restricted
to R. Since Ge1 does not contain any vertex of degree three and contains exactly one leaf, T′ is
a union of paths (some of them might be reduced to a single vertex). Moreover, since T has at
most one leaf distinct from s1, s2, at most one local vertex (whose neighborhood is completely
included in the edge-gadget) is a leaf of a path in T′. Since T′ contains a leaf and no vertex of
degree at least three, |δ(Gu1u2)| is odd (since the sum of the degrees of V(Gu1u2) is even in T′

and odd in T and the difference only consists of edges in δ(Gu1u2)). If an entering or exit vertex
contributes for two edges in δ(Gu1u2), one of its local neighbors is a leaf (since this vertex has
degree at most two by assumption and one of its local neighbors has degree exactly two in H).
So at most one edge incident to each -but at most one- entering and exit vertices is in δ(Gu1u2).
Thus we have |δ(Gu1u2)| ∈ {1, 3, 5}.

First assume |δ(Gu1u2)| = 5, then there are two edges of δ(Gu1u2) incident to the same special
vertex of the gadget. By construction of H(G), a special vertex of Gu1u2 is either incident to
exactly one edge of δ(Gu1u2) if it is not the first entering or last exit vertex, or all the edges of
δ(Gu1u2) incident to it goes to Z. So two edges of δ(Gu1u2) are between Z and a special vertex of
Gu1u2 . So it already creates two new edges incident to Z. Moreover, since |δ(Gu1u2)| = 5, at least
one edge leaving the gadget is incident to each entering or exit vertex. So by Lemma 4.16, since
u1u2 is the only irregular gadget for u1, it creates at least one more edge in δT(Z). Since δT(Z)
already contains 2k− 2 edges incident to entering or exit vertices of the k− 1 regular vertices,
and two edges incident to s1 and s2, we have |δT(Z)| ≥ 2k + 3, a contradiction. So from now
on, we can assume that |δ(Gu1u2)| ∈ {1, 3}.

Since u1 ∈ S, an entering or exit vertex of u1 has degree one in the restriction of T to some
edge-gadget containing u1. If an entering or exit vertex of u1 has degree one in the subtree T′

of T restricted to the edge-gadget for an edge distinct from u1u2, then Lemma 4.16 ensures that
there is an edge between Z and the first entering vertex or the last exit vertex of u1. Now assume
that at least one vertex of xu1u2

u1 , yu1u2
u1 has degree one in T′. Either an edge of T incident to xu1u2

u1 or
yu1u2

u1 leaves the edge-gadget, and then one edge goes to Z by Lemma 4.16. Otherwise, without
loss of generality, xu1 has degree one in T′ and in T. So all the other vertices of the edge-gadget
have degree two in T. So free to virtually add an edge between xu1 and the rest of the graph,
the gadget becomes regular and then by Lemma 4.11, the vertex yu1 has an edge to the rest of
the graph (in T), which finally goes to Z by Lemma 4.16. So, there is at least one edge of δT(Z)
incident to a special vertex of u1.

Recall that Gu2u3 contains a vertex of degree three and no leaves. Let us prove that because
of this edge-gadget, we can add two edges incident to Z. If two of the three edges of the degree-
three vertex are in δ(Gu2u3), we have already seen that, by definition of H(G), the other end-
points of these edges are in Z. And then the conclusion follows. The restriction T′′ of T to
the vertices of Gu2u3 is a forest. Note that the leaves of T′′ can only be special vertices since
all the vertices of Gu2u3 have degree at least two in T. If T′′ has at least three leaves, then by
Lemma 4.16, at least two of them creates an edge incident to Z since the only one which does
not create it is xu2u3

u2 . Indeed, by Lemma 4.16, all the edges of δ(Gu2u3) incident to a special ver-
tex of u3 immediately creates an edge incident to Z. The same holds for yu2u3

u2 since u2u3 is the
last irregular edge incident to u3. So if T′′ has three leaves, it creates two edges incident to Z
(indeed three edges are leaving the edge-gadget and only the one, if it exists, incident to xu2u3

u2

does not create an edge incident to Z). So we can assume that T′′ has exactly two leaves and

Reconfiguration problems in graphs 145



4 – Other reconfiguration problems

then the degree-three vertex is an entering or exit vertex. Since this vertex has degree two in
T′′, T′′ contains two other leaves. And again there are three distinct special vertices incident
to an edge of δT(Gu2u3). And as in the previous case, Lemma 4.16 ensures that at least two of
them are creating one new edge incident to Z. So in both cases, the number of edges of δT(Z)
incident to entering or exit vertices of u2, u3 is at least two.

So |δT(Z)| ≥ 2k + 3, a contradiction.

Subcase 2.2. The two irregular edge-gadgets are endpoint disjoint.

Let u1u2 and u3u4 be the two irregular edges. Let G1 = Gu1u2 and and G2 = Gu3u4 . Note that
since u1u2 and u3u4 are the unique irregular edges for respectively u1, u2, u3, u4, all the edges
leaving these edge-gadgets create an edge incident to Z by Lemma 4.16. Since there are at most
four edges between Z and special vertices of irregular vertices, we have |δT(G1)|+ |δT(G2)| ≤ 4.
Let us prove by contradiction that |δT(G1)|+ |δT(G2)| > 4.

Let us first prove that the number of regular vertices is exactly k− 2. We have already seen
that it has to be at least k− 2. Assume by contradiction that the number of regular vertices is at
least k− 1. Then, by Lemma 4.13, there are 2k− 2 edges between Z and entering or exit vertices
of regular vertices. We also have the edges s1z1 and s2z2. Moreover, every edge in δT(G1) and
δT(G2) creates an edges in δT(Z) incident to irregular vertices by Lemma 4.16 and the fact that
u1u2 and u3u4 are the only irregular edges incident to each of these four vertices. Since there
are two irregular edges, all the vertices of Z have degree two and so |δT(Z)| = 2k + 2. So
|δT(G1)| + |δT(G2)| = 2. But since one of G1 or G2 contains a vertex of degree three and no
leaves, three edges have to leave it, a contradiction. So from now on we can assume that the
number of regular vertices is k− 2 and then all of u1, u2, u3, u4 are in S (since |S| ≥ k + 2).

First assume that, |δT(G1)| = 1 or |δT(G2)| = 1, let us say w.l.o.g. G1. Then, one vertex of the
edge-gadget G1 is a leaf and G2 contains the vertex of degree three. Since there are two irregular
edge-gadgets, all the vertices of G1 but the leaf have degree two in T. Moreover, since both u1
and u2 are in S, an entering or exit vertex incident to u1 and u2 have to be of degree one in the
restriction of T to one of their edge-gadgets.

We claim that it implies that an entering or exit vertex of both u1 and u2 in the edge-gadget
of G1 has degree one in the restriction of T to G1. Let us first prove that an edge of δT(G1) is
incident to the entering or exit vertices of u1, and that the same holds for u2. Let us prove the
statement for u1 and assume by contradiction that it is not the case. Let e′i be the closest edge

from u1u2 in the ordering of u1 such that xe′i
ui or ye′i

ui has degree one in the graph restricted to Ge′i
.

Since e′i is regular, it implies by Lemma 4.11 that an edge of T is incident to the exit vertex of
the gadget before e′i and the entering vertex of the gadget after e′i. So an edge of T leaving the
gadget G1 is incident to entering or exit vertices of u1, denoted by x. Now, since G1 contains
one leaf and no vertex of degree three, if x has degree one in T, its degree-two incident local
neighbor also is a leaf, a contradiction. So it has degree two and then has degree one in the
gadget. A similar proof gives the same for u2.

So one of the vertices {xu1u2
u1 , yu1u2

u1 } and one of the vertices {xu1u2
u2 , yu1u2

u2 } have degree one
in the subgraph T′ of T induced by the vertices of G1. Since all the vertices but at most one
(which cannot be a local vertex) have degree two in T and |δT(G1)| = 1 by assumption, T′ is a
Hamiltonian path on G1 between one vertex of {xu1u2

u1 , yu1u2
u1 } and one vertex of {xu1u2

u2 , yu1u2
u2 }, a

contradiction with Lemma 4.12. So we cannot have |δ(G1)| = 1.

So we can assume that |δT(G1)| = 2 and |δT(G2)| = 2. Let G2 be the edge-gadget containing
a vertex of degree three and no leaves. Since it contains a branching node and no leaf, at least
three edges are in δT(G2), a contradiction.

146 Paul Ouvrard



4.1. Reconfiguration of spanning trees with many or few leaves

So the vertex cover S(T) associated with every spanning tree T with at most three leaves
has size at most k + 1. In order to prove that a spanning tree transformation provides a vertex
cover transformation for the TAR setting, we have to prove that, for every edge flip, then either
S is not modified, or one vertex is added to S or one vertex is removed from S.

Lemma 4.18. Let T1 and T2 be two adjacent trees with at most three leaves. Then the symmetric
difference between the sets S(T1) and S(T2) is at most one.

Proof. We want to prove that S(T2) = S(T1) or there exists x such that S(T2) = S(T1) \ {x}
or S(T2) = S(T1) ∪ {x}. In order to prove it, the rest of the proof is devoted to show that, if
after some edge flip, a vertex is added to S(T2) then no vertex of S(T1) is removed in S(T2).
We claim that it is enough to conclude. Indeed, since |S| ≤ k + 1 by Lemma 4.17 and |S| ≥ k
(since k is the minimum size of a vertex cover), if we want the symmetric difference to be at
least two, then we must contain at least one vertex in S(T1) \ S(T2) and conversely. Let us now
assume by contradiction that |S(T1) \ S(T2)| = 1 and |S(T2) \ S(T1)| = 1. Let f be the edge of
T1 \ T2 and g be the edge of T2 \ T1. Let u = S(T2) \ S(T1) and v = S(T1) \ S(T2). Note that in
order to modify S(T) (for some tree T), we need to modify the degree of a special vertex in an
edge-gadget of an edge of G incident to it. So both f and g have to have both endpoints in the
same edge-gadget. And the following remark ensures that the addition or deletion of f and g
can only modify by one vertex the set S. In particular, it implies that |S(T1)4 S(T2)| ≤ 2.

Remark 4.19. Let a, b be two special vertices in the same edge-gadget. The distance between a and b is
at least three in H(G).

Remark 4.19 ensures that, if we remove or add an edge of T, the degree of exactly one
entering or exit vertex is modified. Since S(T2) \ S(T1) and S(T1) \ S(T2) are non empty, an
entering or exit vertex of u or v has to be incident to f and an entering or exit vertex of the
other vertex of u or v has to be incident to g. By abuse of notation we will say that f (resp. g)
adds u to S(T2) (resp. remove v from S(T1)).

Since the edge f (resp. g) adds u or remove v, it has to have both endpoints in the same
edge-gadget. Indeed, in order to add u to S(T2) (or remove v from S(T1)) we must modify the
degree of xe

v or ye
v (resp. xe

u or ye
u) inside an edge-gadget.

Now let us distinguish cases depending on the degree of the endpoints of f . If both end-
points of f are of degree two, then the deletion of f creates two vertices of degree one. By
Remark 4.10, at most one of them is a leaf in T2. So g has to be incident to one of them. And by
Remark 4.19, the edge g cannot be incident to another special vertex of the edge-gadget. And
thus g does not add or remove a good vertex, a contradiction.

If one endpoint of f has degree three and one has degree one, then the deletion of f creates a
vertex of degree zero. Thus g must be incident to the degree zero vertex. Again, by Remark 4.19,
g cannot add or remove another vertex of S(T1), a contradiction. Note that we get a similar
contradiction if one endpoint of f has degree two and the other has degree one.

So we can assume that one endpoint of f has degree two and the other has degree three. The
edge g cannot be added between two vertices of degree at least two in T1 \ f since otherwise
T2 would have two branching nodes. So at least one endpoint of g (and even exactly one by
Remark 4.10) has degree one in T1 \ f . By Remark 4.19, the endpoint of g of degree one was
already of degree one in T1 since g has to modify S. Moreover, the other endpoint of g has
degree exactly two in T1 \ f (otherwise we would create a vertex of degree four in T2), and then
by Remark 4.19 has degree two in T1. So in particular, the edge-gadget containing f has one
vertex of degree three and all the others have degree two and the edge-gadget containing g has
one vertex of degree one and all the others have degree two in T1. Note that the deletion of f

Reconfiguration problems in graphs 147



4 – Other reconfiguration problems

xeu

xev

yeu

yev

xeu

xev

yeu

yev

re1 re2 re3 re4

re5 re6 re7 re8

(a) (b)

Figure 4.6 – Illustration of the proof of Lemma 4.18.

can have two effects on S(T1): either a vertex disappears (because the degree of a special vertex
drops from one to zero), or a vertex appears (because the degree of a special vertex drops from
two to one).

Case 1. v is removed from S(T1) when f is removed.

Let e = wv be the edge such that f has both endpoints in Ge. Let R be the subgraph induced
by the vertices of Ge and T′ the restriction of T1 on R. Since v is removed from S(T1), it implies
that xe

v or ye
v has degree one in T′ and f is incident to that vertex. Up to symmetry let us assume

that it is xe
v. If the edge f is not xe

vr1, then r1 is a leaf of T1, a contradiction since the degree one
vertex has to be in the edge-gadget containing g. So the only edge of T′ incident to xe

v is xe
vr1

and then f = xe
vr1. Since one the two endpoints of f has degree three in T1 and r1 has degree

two in H(G), there are two edges of δ(Ge) incident to xe
v.

Claim 1. Let Ge with e = vw be an edge-gadget and R be the subgraph of H induced by the
vertices of Ge. There does not exist any tree T such that, in the subgraph of T induced by the
vertices of R, all the local vertices but r1 have degree two, xe

v has degree zero and ye
v has degree

two.

Proof. Let us denote by T′ the subgraph of T induced by the vertices of R. Since all the local
vertices but r1 have degree two and ye

v has degree two in T′, T′ contains the paths r1r2, xe
wr5r6

and r3r4ye
vr7r8ye

w. Since xe
vr6 is not an edge of T (because we assumed that xe

v has degree zero in
R) and r7 does not have degree three, r6 is a leaf of T, a contradiction. ♦

When f is removed from T1, v is removed from S, thus ye
v has degree zero or two in T′.

Since all the local vertices of R have degree two in T1 and r4 has degree two in H(G), both
edges incident to it are in T′. And then ye

v does not have degree zero. So by Claim 1, the edge-
gadget must contain another vertex of degree three or another leaf, a contradiction.

Case 2. u is added to S(T1) when f is removed.

Let e = uv be the edge such that f is in Ge. Let R be the subgraph induced by the vertices
of Ge. In that case, the vertices xe

u and ye
u have degree two in R ∩ T1 (if one of them was of

degree one, u was already in S and none of them can be of degree zero, otherwise one local
vertex should be a leaf, a contradiction since the leaf is in the edge-gadget containing g). Since
all the local vertices have degree two or three, it implies that xe

vr5r6xe
ur1r2 and ye

vr8r7ye
ur4r3 are

in T1. But then r2r3 must be in T1, otherwise they would be leaves of T1 (xe
vr2 6∈ E(T1) otherwise

xe
vr5r6xe

ur1r2 is a cycle (same for re
3ye

u)). Moreover r6r7 cannot be an edge since otherwise there
is a cycle (and both r6, r7 would have degree three). So the endpoint of f of degree three has to
be xe

u or ye
u, without loss of generality xe

u. So the graph around Ge is the graph represented in
Figure 4.6(a). Note in particular that |δT1(Ge)| = 3 since xe

v and ye
v have degree two in T1 and xe

u
has degree three in T1.

148 Paul Ouvrard



4.1. Reconfiguration of spanning trees with many or few leaves

Let e′ be the edge such that g is in Ge′ with e′ = u′v′. Recall that u′ or v′ is removed from
S when g is added. So we can assume without loss of generality that g is incident to xe

u′ . Let
R′ be the subgraph induced by the vertices of Ge′ . All the vertices in the edge-gadget Ge′ have
degree two in T1 but one vertex which has degree one. Moreover, g is an edge between a vertex
of degree two and a vertex of degree one. Since u′ is removed from S when we add g, xe′

u′ has
degree exactly one in the restriction of T1 to R′.

Let us first assume that xe′
u′r1 is in T1 and then xe′

u′r6 is not in T1 (i.e., g = xe′
u r6). Since all the lo-

cal vertices but maybe r6 have degree two and ye′
u′ has degree two, all the subpaths r3r4ye′

u′r7r8ye′
v′ ,

xe′
v′r5r6 and xe′

u′r1r2 are in T1. Since r3 must have degree two in T1 and r3ye′
v′ closes a cycle, r2r3 is

in T1. Since xe′
u′r6 is not in T1 by assumption and Ge′ does not contain any vertex of degree three,

r6 is a leaf of T1 and then |δT1(Ge′)| = 3 since xe′
u′ , xe′

v′ and ye′
v′ have degree two in T1.

Let us now assume that xe′
u′r1 is not in T1 and then xe′

u′r6 is (i.e., g = xe′
u′r1). Since all the local

vertices but r1 have degree two and ye′
u′ has degree two, all the subpaths r3r4ye′

u′r7r8ye′
v′ , xe′

v′r5r6xe′
u′

and r1r2 are in T1. Since r3 must have degree two in T1 and r3ye′
v′ closes a cycle, r2r3 is in T1. Since

r1 is a leaf of T1, xe′
u′ has degree two in T1. And then |δT1(Ge′)| = 3 since xe′

u′ , xe′
v′ and ye′

v′ have
degree two in T1. The graph around Ge′ is the graph represented in Figure 4.6(b).

So in both cases (xe′
u′r1 or xe′

u′r6 in T1), we have |δT1(Ge′)| = 3. Moreover, we have seen that
|δT1(Ge)| = 3. We claim that S(T1) has size k + 1. Recall that f = uv and g = u′v′. Let us
show that S(T1) \ {u′} is a vertex cover. For every edge u′w with w 6= u, v′, since S(T2) =
(S(T1) ∪ {u}) \ {u′} is a vertex cover, w is in S(T1). So if an edge is not covered in S(T1) \ {u′},
it is uu′ or u′v′. After the edge flip, xu′v′

u′ and yu′v′
u′ have even degree in T2 and thus xu′v′

v′ or
yu′v′

v′ has degree one by Lemma 4.15. Since neither f nor g changes the degree of xu′v′
v′ nor yu′v′

v′ ,
v′ ∈ S(T1). So if an edge is not covered, it is uu′. But, since u 6∈ S(T1), in the restriction of T1
to Guu′ , either xuu′

u′ or yuu′
u′ has degree one and this degree does not change after the edge flip,

a contradiction since u′ 6∈ S(T2), so uu′ does not exist and then S(T1) \ {u′} is a vertex cover.
Since a minimum vertex cover has size k, S(T1) has size at least k + 1 and then exactly k + 1 by
Lemma 4.17.

So k− 2 vertices of S(T1) are not incident to any irregular edge-gadgets. Indeed, there are
at most four irregular vertices and u′ /∈ S(T1) is one of them. By Lemma 4.13, this gives 2k− 4
edges in δ(Z). Since, for both Ge and Ge′ , there are three edges leaving the gadget and since e
and e′ are endpoint disjoint, this creates 6 more edges incident to Z. Since there are moreover
the two edges s1z1 and s2zk+1 in δ(Z), it gives in total 2k + 4 edges in δ(Z), a contradiction with
the fact that all the vertices of Z must have degree two.

Lemmas 4.17 and 4.18 immediately imply the following:

Lemma 4.20. If there is an edge flip reconfiguration sequence between two spanning trees T1 and
T2, then there is a TAR-sequence (with threshold k + 1) between S(T1) and S(T2).

Vertex Cover Reconfiguration to Spanning Tree Reconfiguration

We now prove the converse of the previous subsection. Actually, the statement will not be
exactly the converse but it will actually be enough to conclude. We will prove that if there is
a TJ-transformation sequence between two vertex covers X and Y then we also have an edge
flip reconfiguration sequence between Hamiltonian paths corresponding to X and Y. Let X, Y
be two vertex covers of size k. In the TJ-adjacency rule, X and Y are adjacent if there exist two
vertices x and y such that Y = (X \ {x}) ∪ {y}.

Reconfiguration problems in graphs 149



4 – Other reconfiguration problems

We have already remarked that there might be a lot of Hamiltonian paths associated with a
vertex cover X in H(G). Note that, in all these paths, for every u ∈ X, the subpath Px between
the first entering vertex of u and the last exit vertex of u is the same. However (i) the order in
which these subpaths appear in the path may differ (according to the ordering in which they
are attached to Z); (ii) when we follow the path from s1 to s2 we might see the path in the
ordering of Px or in the reverse ordering depending on whether the first vertex of Z incident to
Px is incident to the first entering vertex of the last exit vertex. The goal of the proof is to show
that, if we have one of them, then we can reach all of them, i.e., change the order of appearance
of the paths Px and reverse their ordering. The first part of this section is devoted to proving
that they all are in the same connected component of the reconfiguration graph. Let us first
show the following intermediate lemma.

Lemma 4.21. Let A, B be two sets such that |A| = |B| + 1 and G be the bipartite graph B on
vertex set (A, B ∪ {s1, s2}) where A is complete to B and s1, s2 be two vertices of B, each connected
to exactly one (distinct) vertex of A. Let P1, P2 be two Hamiltonian paths with the same endpoints
s1, s2. Then one can transform P1 into P2 via edge flips where all the intermediate spanning trees
have at most three leaves.

Proof. We say that two paths P, P′ on the same vertex set agree up to i ∈ N if the first i vertices
of P and P′ are the same. Note that P1, P2 agree up to 2 since both start with s1 and s1 only have
one neighbor in B. We prove iteratively that if we have two paths that agree up to i, then we
can transform the second into two paths that agree up to i + 1.

Assume that P1 and P2 agree up to i. Let u be the i-th vertex and v be the (i + 1)-th in P1. If
v also is the (i + 1)-th vertex in P2, the conclusion holds. So we can assume that the (i + 1)-th
vertex of P2 is y 6= v. Let w be the vertex after v in P2. Note that it cannot be y since both y and
v are in the same set of A, B. We perform the following edge flips in P2: we remove uy to create
uv. We then remove vw to create yw.

After these two operations, all the vertices have degree two. Moreover the intermediate and
final graphs are connected. Indeed, since u, y, v appear in P2 in that order, the removal of uy to
create uv keeps a connected graph. And one can remark that the two operations just consists
in permuting the subpath between y and v in P2. To conclude, we have to prove that the edges
we want to create indeed exist in B. Since B is complete to A, if u and w are in B, the conclusion
follows. So we can assume that they are in A∪{s1, s2}. Since A is complete to B, and u is distinct
from s1, and y, v ∈ B (since they are not the last vertices of P1 and P2), the only edge that might
not exist is yw if w = s2. But it is impossible since s2 only have one neighbor in B and then the
second to last vertex of P1 and P2 are the same, i.e., y cannot be incident to u in P2.

Using this lemma, let us prove the following:

Lemma 4.22. Let G = (V, E) be a graph and X be minimum vertex cover of G. Then all the Hamil-
tonian paths associated with X in H(G) are in the same connected component of the reconfiguration
graph of spanning trees with at most three leaves.

Proof. Let k = |X|. Let us denote by A the set Z of H(G) and by B the set X. Note that by
construction |A| = |B| + 1. We now add two new vertices s1, s2 one connected to z1 and the
other connected to zk+1 and create all the edges between A and B. We denote by B the resulting
graph that satisfies the condition of Lemma 4.21. Now one can associate with any Hamiltonian
path associated with X a path of B where x in B is connected to z, z′ in A if z and z′ are the
vertices of Z attached to the first and last entering and exit vertices of x. By Lemma 4.21, one can
transform any path of B into any other. We claim that such a transformation can be immediately

150 Paul Ouvrard



4.1. Reconfiguration of spanning trees with many or few leaves

extended for the Hamiltonian paths of H(G). Indeed, by definition of a Hamiltonian path of
H(G) associated with X, the subpath Pu between the first entering vertex of u and the last exit
vertex of u (for u ∈ X) does not contain any other entering or exit vertex of vertices of X and
only contains degree-two vertices. So the connectivity of the graph as well as its non-degree
two vertices remain the same if we can contract Pu into a single vertex u.

After this operation, we know that in the resulting Hamiltonian path, the subpaths associ-
ated with each vertex appear in the same ordering. However, it might be the case that in some
path zi is connected to the first entering vertex x of u ∈ X and zi+1 to the last exit vertex y of u
and that we have the converse in the other path. In other words, instead of "reading" the path
from the first entering vertex to the last exit vertex we "read" it in the other direction. In that
case, for every such i, we perform the following edge flips: remove ziu to create ziv; and then
remove zi+1v to create zi+1u.

Let us now prove that any TJ-transformation between two vertex covers X and Y can be
adapted into an edge flip transformation between the corresponding Hamiltonian paths via
spanning trees with at most three leaves. In order to prove it, we simply have to show that we
can do it for each single step transformation.

Lemma 4.23. Let X be a minimum vertex cover of G and Y = (X \ {u}) ∪ {v} be another vertex
cover, for some vertices u and v. Then we can transform any Hamiltonian path associated with X
into any Hamiltonian path associated with Y via a sequence of spanning trees with at most three
leaves.

Proof. By Lemma 4.22, all the Hamiltonian associated with X are in the same connected com-
ponent of the reconfiguration graph and the same holds for Y. So we simply have to show that
there exists a transformation from a Hamiltonian path associated with X into a Hamiltonian
path associated with Y. First, observe that since X and Y are both minimum vertex covers of G
and Y = (X \ {u}) ∪ {v}, X \ {u} covers all the edges of G, but uv. In particular, all the neigh-
bors of u but v are in X. Similarly, all the neighbors of v but u are in Y. Let W = X ∩ Y given
with an arbitrary ordering of W. The canonical path associated with W, u (resp. W, v) is the Hamil-
tonian path of H(G) with the ordering of u (resp. v) and then the ordering of W. More formally,
recall that given a vertex cover W, we can define a path Pw for every w ∈ W between the first
entering vertex of w and the last exit vertex of w that does not contain any special vertex of
w′ ∈ W with w′ 6= w. And that any Hamiltonian path associated with W is the concatenation
of these paths linked together thanks to the vertices of Z. So the ordering of W of a path P is
the ordering of appearance of the subpaths Pw for w ∈ W. In particular, in the ordering of Wu,
the subpath Pu appears at the beginning of the path and thus Pu is connected to z1 and z2.

The half-path Th associated with W, u, v is the following. For every edge-gadget Ge with e
distinct from the first edge of v, the restriction of Th around Ge is one of the graphs of Figure 4.5;
If both endpoints of e are in W ∪{u, v} = X∪Y, the gadget is the one of Figure 4.5(a), otherwise
it is the one of Figure 4.5(b) (the edges of δTh(Ge) being incident to the entering and exit vertex
of W ∪ {u, v}). For the edge-gadget of e′ = vw (note that we possibly have w = u), the first edge
of the ordering of v, the restriction of Th around Ge′ is the graph xe′

v r1r2r3r4ye′
v and xe′

wr5r6r7r8ye′
w

plus edges leaving ye′
v , xe′

w, ye′
w but no edge leaving xe′

v .

Let us now explain how the vertices of Z are connected to entering and exit vertices. The
vertex z1 is incident to s1 and the first entering vertex of u. The vertex z2 is incident to the last
exit vertex of u and the last exit vertex of v. Moreover, the vertex zi+1 is incident to the last exit
vertex of the i-th vertex of W and the first entering vertex of the (i + 1)-th vertex of W. Finally
the vertex zk+1 is incident to s2. One can easily check that the following holds for Th:

Reconfiguration problems in graphs 151



4 – Other reconfiguration problems

• All the vertices of Th have degree two but z2 that has degree three and the first entering
vertex of v that has degree one. Indeed, z2 is incident to the last exit vertex of u, the last
exit vertex of v and the first entering vertex of the first vertex of W. And the first entering
vertex of v is not connected to any vertex of Z.

• The subpath of Th from s1 to z2 is s1z1 and then the concatenation of the paths (for ev-
ery edge e incident to u) xe

u, r1, r2, r3, r4, ye
u (or xe

u, r5, r6, r7, r8, ye
u) connected by the special

edges between consecutive edge-gadgets of u. Indeed, W \ {u} covers all the edges but
uv, all the neighbors of u but v are in W. Let e′′ = uv. The construction of W, u, v also
ensures that Ge′′ contains the subpath xe′′

u r1r2r3r4ye′′
u (or r5r6r7r8), no matter whether e′′ is

the first edge of v, or not.

• Similarly the subpath of Th from the first entering vertex of v to z2 is the concatenation of
the paths (for every edge incident to v) containing the entering vertex of v for the current
edge, r1, r2, r3, r4 (or r5, r6, r7, r8) and the exit vertex of v.

• The subpath of Th from z2 to s2 is the subpath of the canonical path associated with W, u
except that for every edge e = vw, the graph around Ge is the graph of Figure 4.5(a)
instead of the graph of Figure 4.5(b).

In particular, one can notice that Th is a tree. Note moreover that, if we denote by respec-
tively e and e′ the first edges of u and v respectively, the edge flip z1xe

u into z1xe′
v transforms the

half-path of W, u, v into the half-path of W, v, u.

So in order to conclude, we simply have to prove that we can transform the canonical path
associated with W, u into the half-path associated with W, v, u.

The proof is based on local transformations for every edge-gadget iteratively on the gadgets
(see Figure 4.7 below).

xev yev

(1) (2)

yeuxeu

Figure 4.7 – Transformation of an edge-gadget.

Let P be the Hamiltonian path associated with X, u. Since X and Y are vertex covers, the
path P has the following properties:

• The restriction of P to every edge-gadget with endpoint v is of type Figure 4.5(b). Indeed
v /∈ X and X is a vertex cover. In particular, the restriction of P to the edge-gadget of uv
is of type Figure 4.5(b).

• The restriction of P to every other edge-gadget edge incident to u is of type Figure 4.5(a).
Indeed (X \ {u}) ∪ {v} is a vertex cover. So all the neighbors of u but v are in X.

Let us denote by xu, xv, yu, yv the first entering vertices of u and v and the last exit vertices
of u and v, respectively. Since P is associated with X, u, z1xu and z2yu are edges of P. Let us
delete z1xu and add z1xv. Note that this operation creates a vertex of degree one (namely xu)
and a vertex of degree three (namely xv). The resulting graph is indeed connected since only
s1z1 is attached to z1.

152 Paul Ouvrard



4.1. Reconfiguration of spanning trees with many or few leaves

Let us prove iteratively on the edges incident to v that we can transform the current graph
keeping the degree sequence and the connectivity in such a way that (i) the unique vertex of
degree three is the current entering vertex x of v, and (ii) there is a subpath attached to x which
is s1z1 and then the concatenation of the paths (for every edge incident to v smaller than the
current edge) containing the entering vertex of v for that edge, r1, r2, r3, r4 (or r5, r6, r7, r8) and
the exit vertex of v.

Note that the property indeed holds at the beginning since xv the first entering vertex of v
has degree three and there is a path s1z1 attached to it. Since v is not in X, the graph around the
current edge e is indeed the graph of Figure 4.5(b) in P. So in the current tree, we have the graph
of Figure 4.7. One can remark that the transformations proposed in Figure 4.7 keeps the degree
sequence. Moreover, after these operations, one can note that the property holds up to the next
entering vertex of v. So we simply have to show that the connectivity is kept to conclude. The
first transformation indeed keeps connectivity. The second also keeps connectivity since the
next entering vertex of v is not in the subpath between s1 and xe

v.

When we treat the last edge-gadget of v, we simply have to connect the last exit vertex to z2
(which now has degree three) in order to obtain the subpath associated with W, v, u. Similarly,
we can transform the path associated with W, v into the half-path associated with W, u, v. And,
as we already observed, there is one edge flip that transforms the first into the second. So it is
possible to transform the canonical path associated with W, u into the canonical path associated
with W, v, which completes the proof.

Spanning trees with more leaves

We are now ready to get down to the proof of Theorem 4.8, that is SPANNING TREE WITH AT

MOST k LEAVES is PSPACE-complete for every k ≥ 3:

Proof. We perform the same reduction as in the proof of Theorem 4.9 except that in the con-
struction of the graph H(G) we replace the two vertices s1, s2 by ` + 1 additional vertices
s1, s2, . . . , s`+1 where s1 is connected to z1, s2 is connected to zk+1 and s3, . . . , s`+1 are connected
to s1. Note that in any spanning tree, s2, . . . , s`+1 are leaves. So Remark 4.10 also holds with this
reduction. The rest of the proof is the same.

4.1.4 Concluding remarks

In this section, we studied the reconfiguration of spanning trees with additional constraints on
the number of leaves of each spanning tree. We first considered the problem SPANNING TREE

WITH MANY LEAVES, where each spanning tree has at least k leaves, for a positive integer k ≥ 2.
We showed that it is PSPACE-complete, even when restricted to bipartite graphs, split graphs
or planar graphs. However, one might be interested in the complexity on outerplanar graphs: is
it polynomial-time solvable or not? We also proved that SPANNING TREE WITH MANY LEAVES

is in P if the input graph is a cograph. As an intermediate result, we showed that if we have
two internal nodes and thus k = n − 2, then one can solve in polynomial-time SPANNING

TREE WITH MANY LEAVES on any graph G. We believe that this result can be extended to any
k = n− ` for any positive constant ` ≥ 2. However, a very interesting question is to determine
whether the problem is FPT when parameterized by ` or not.

We then studied SPANNING TREE WITH AT MOST k LEAVES, where each spanning tree has
at most k leaves, for a positive integer k ≥ 2. We prove that the problem is PSPACE-complete
for every k ≥ 3. However, the reduction does not preserve any graph parameter. Hence, one
might be interested to determine the complexity in restricted graph classes. Finally, note that if
k = 2, then SPANNING TREE WITH AT MOST k LEAVES is equivalent to HAMILTONIAN PATH

Reconfiguration problems in graphs 153



4 – Other reconfiguration problems

RECONFIGURATION. We were not able to determine the complexity of this problem, and we
leave it as an open problem.

4.2 Distributed recoloring

In this last section, we again change the host problem since we focus on recoloring. However,
unlike the other chapters of this thesis, we study reconfiguration in the so-called LOCAL model
used in Distributed Computing. We mainly study distributed recoloring in the case where the
input graph is a tree or a subcubic graph. This is joint work with Marthe Bonamy, Mikaël Rabie,
Jukka Suomela and Jara Uitto [BOR+18].

4.2.1 Introduction

k- recoloring. Before moving on to the definition of the LOCAL model, let us discuss about
k-recoloring in a centralized setting. Let G = (V, E) be a graph, and let k be an integer. Recall
that a k-coloring of G is a function f : V 7→ {1, 2, . . . , k} such that for any two adjacent vertices
u and v, f (u) 6= f (v). One can define the k-recoloring graph Rk(G) of G in a similar way
as discussed in Section 1.5.2. The vertices of Rk(G) are the k-colorings of G, and two vertices
are adjacent if one can go from one to the other by applying the fixed reconfiguration rule.
As for other reconfiguration problems, there is not a unique choice that allows us to modify a
k-coloring into another one. Actually, two main models have been considered so far. The first
one is the single-vertex recoloring where one can recolor a vertex with a new color that does not
appear in its neighborhood. The second involves Kempe chains, a concept introduced in 1879
by Alfred Kempe in his attempted proof of the Four Color Theorem [Kem79]. A Kempe chain is a
connected component of the subgraph induced by two color classes of a k-coloring of G. Then,
the second reconfiguration rule is a Kempe change; it consists in permuting the colors of a Kempe
chain. Though this proof was fallacious, the Kempe change technique has proved useful in, for
example, the proof of the Five Color Theorem and a short proof of Brooks’ theorem. Note
that Kempe change recoloring is a generalization of single-vertex recoloring since the latter
corresponds to a Kempe change where the Kempe chain is reduced to a single vertex.

The usual questions considered in k-RECOLORING are identical to the ones presented is
Section 1.5.2: given a graph G and a positive integer k, is Rk(G) connected? If so, what is its
diameter? All of those questions can also be asked for two specific k-colorings s and t of G. Is
there a path between s and t in Rk(G)? If so, what is the length of a shortest transformation
between s and t? What is the complexity of deciding that?

The reachability question of k-RECOLORING is typically a PSPACE-complete problem for
both single-vertex recoloring [BC09] and Kempe changes [BHI+19]. The related question of de-
ciding equivalence when a bound ` on the length of a recoloring sequence is given as part of
the input has also been considered under single-vertex coloring by Bonsma et al. [BMNR14].
They proved that the problem is W[1]-hard when parameterized by k (but in XP), but FPT with
respect to k + `. For the special case of trees, we know that the maximum number of opera-
tions needed to go from one 3-coloring to another is Θ(n) [CVDHJ11]. They also proved that
the problem is polynomial-time solvable for any graph G, and there exist instances that require
Ω(n2) recoloring steps, where n is the number of vertices of the input graph. While (∆ + 1)-
recoloring a graph with no node of degree more than ∆ is not always possible, having ∆ + 2
colors always suffices [Jer95], and there are also meaningful results to obtain for the problem
of (∆+ 1)-recoloring [FJP16]. Two other settings have received special attention: characterizing
fully when 3-recoloring is possible [CVDHJ11, CVdHJ09], and guaranteeing short reconfigura-
tion sequences in the case of sparse graphs for various notions of sparse [BB18, BP16].

154 Paul Ouvrard



4.2. Distributed recoloring

Let G be a graph and k be an integer. We say that G is k-Kempe mixing if one can always
transform any two k-colorings of G via Kempe changes. Note that if one can always transform
any two k-colorings of G via single-vertex recoloring, then G is k-Kempe mixing. However, the
converse might not be true. Indeed, any bipartite graph is k-Kempe mixing for any k ≥ 2 (see,
e.g., [Moh07]) but for any k ≥ 2, there exist bipartite graphs for which it is not always possible
to transform a k-coloring into another one via single-vertex recoloring [CvdHJ08]. Mohar con-
jectured in [Moh07] that for any k ≥ 3 and for any k-regular graph G which is not the complete
graph, then G is k-Kempe mixing. However, van den Heuvel [vdH13] first observed that for
k = 3, the 3-prism is not 3-Kempe mixing (see Figure 4.8):

Figure 4.8 – These two 3-colorings of the 3-prism cannot be transformed into each other by
Kempe changes.

Feghali et al. [FJP17] showed that for k = 3, the 3-prism is the only counterexample to the
conjecture of Mohar. In other words, they proved that any 3-regular graph G which is neither
K4 nor the 3-prism graph is 3-Kempe mixing. Finally, Bonamy et al. [BBFJ19] proved that the
conjecture is true whenever k ≥ 4. While we will not discuss Kempe recoloring in our work,
we point out that recoloring with extra colors is closely connected to Kempe recoloring: Kempe
recolorability implies recolorability with one extra color (while the converse is not true). Hence
the negative results related to one extra color also hold for Kempe recoloring.

Finally, note that some other variants have also been studied, perhaps most notably the
question of how many nodes to recolor at once so that the graph can be recolored [McD15].

The LOCAL model. Let us now introduce the LOCAL model used in Distributed Computing
we are interested in. For a more complete overview, the reader is referred to the book of David
Peleg [Pel00], or the survey by Jukka Suomela [Suo13]. Distributed Computing is rather differ-
ent than "centralized" graphs problems which are problems we have studied so far. Indeed, in
this field, we are given some entities which might be computers, robots, mobile agents and so
on that evolve in the same environment. Their goal is to cooperate together in order to achieve
a global task, without central control. Because the definition is vague, there are many different
models. Some of them work in an asynchronous way, meaning that the different entities may
not have the same notion of time or can process tasks at different speeds. Others work syn-
chronously meaning that there exists a central clock used to synchronized all the entities. In the
remaining of this section, we assume that each entity corresponds to a processor, which is able
to perform some computation.

Research on local algorithm was pioneered by Dana Angluin [Ang80] in her seminal paper
"Local and global properties in networks of processors". Angluin explained that this model "at-
tempts to get at some of the fundamental properties of distributed computing by means of the
following question: how much does each processor in a network of processors need to know
about its own identity, the identities of other processors, and the underlying connection net-
work in order for the network to be able to carry out useful functions?". It is observed that the
"underlying connection network" can be modeled as a (connected) graph. More precisely, each
processor corresponds to a node and we add an edge between two nodes if the corresponding
processors can communicate, i.e., there exists a communication link between them. Moreover,
in Angluin’s model, it is required that each node initially does not have any knowledge about

Reconfiguration problems in graphs 155



4 – Other reconfiguration problems

the global network. It is also required that all the nodes with the same degree are considered
to be identical, i.e., the network is anonymous, without any unique identifier on its nodes. In
order to achieve the global task, a basic computation step consists in an exchange of messages
by two adjacent nodes. Thanks to the information shared, the two nodes can decide to change
their internal state accordingly, without affecting the other nodes. Angluin [Ang80] studied the
limitations of her model: she proved that there is no deterministic algorithm that elects a leader
(i.e., all the nodes have to agree to distinguish a single node) within finite time on a cycle. In a
sense, this means that there is now way to break symmetry.

Actually, most functions cannot be carried out by anonymous networks, even for very sim-
ple topologies like cycles as discussed above. This impossibility usually results from symme-
tries that the network may have (for instance, a cycle is a connected 2-regular graph). These
symmetries can be broken by means of randomization or by using unique identifiers on the
nodes. In the latter, we may assume that each node in the network G = (V, E) receives a
unique identifier in the range [1, |V|]. Nathan Linial [Lin92] focused on the following question:
how can algorithmic graphs problems can be solved in a distributed fashion? In other words,
how much knowledge of the network does a node need to have in order to take a decision?
By taking a decision, we mean deciding if it has to be in the solution (e.g., a dominating set)
or choosing its color if the goal is to find a proper k-coloring of the network. For that purpose,
Linial [Lin92] introduced the so-called LOCAL model. Let G = (V, E) be a graph on n nodes
where each node has a unique identifier between 1 and n. Initially, each node only knows its
identifier. This model works synchronously: there is global clock that guarantees that all nodes
take steps simultaneously in parallel. Each step is called a round. At each round, a node can:

• send a message to its neighbors;

• receive messages from its neighbors;

• do a local computation.

Because we are interested in the locality of the problem, i.e., "to what extent a global solution
to a computational problem can be obtained from locally available data" in the words of Linial,
we assume that (i) we do not have any restriction on the size of the messages (unlike what
happens in the CONGEST model); and (ii) each processor has an unbounded computing power.
Thus, the complexity of a distributed algorithm (in the LOCAL model) is the maximum number
of rounds needed so that each node can output its final state. Note that for any (connected)
graph G on n nodes and with diameter D, it is possible to solve any decidable problem in
O(D) rounds. Indeed, since we do not have any restriction on the size of the messages, in t
rounds each node u will have full knowledge of the ball of radius r centered in u. In particular,
in D rounds, each node will have full knowledge of G (the topology as well as the identifier
of each node). Now, one specific node (e.g., the one with the smallest identifier) can compute
a solution (in one round) and then broadcast it to each node of the graph, with D additional
rounds. Hence, the major question raised by Linial [Lin92] is to determine which (decidable)
problems can be solved faster than that.

Coloring paths. Let us now give a simple example of a distributed algorithm in the LOCAL
model, taken from [HS20]. We are given the path on n vertices Pn where each vertex receives
a unique identifier, which might be larger than n. The goal is to find a proper 3-coloring of
Pn. Hence, for each node u ∈ Pn, we want to output a variable c(u) (with c(u) ∈ {1, 2, 3})
which corresponds to the final color of node u. Note that if we do not have identifiers, the
problem cannot be solved deterministically within finite time, even if n = 2. Hence, we will
make intense use of these identifiers in order to break symmetry. For each node u ∈ Pn, we

156 Paul Ouvrard



4.2. Distributed recoloring

denote by id(u) the identifier of u. First, observe that the identifiers induce a proper coloring of
Pn; thus we initially set c(u) = id(u) for any node u. Hence, the only thing that we have to do is
to reduce the total number of colors so that c(u) = {1, 2, 3} holds for any node u. The strategy
is very simple: at each step, if a node u has the maximum color among all the colors that appear
in its neighborhood, u changes its color to the smallest one which is available.

15 8 21 27 11 30

Figure 4.9 – Nodes with identifiers 15, 27 and 30 will change their color at first.

Note that the new color of u belongs to {1, 2, 3} since u has at most two neighbors. More-
over, no two adjacent nodes will change their color at the same time. See Figure 4.10 below for
an example.

15 8 21 27 11 30

15 8 21 27 11 30

1 8 21 1 11 1

1 8 21 1 11 1

1 8 2 1 2 1

1 8 2 1 2 1

1 3 2 1 2 1

Figure 4.10 – Execution of the algorithm on a P6.

It is observed that once a node has a color in {1, 2, 3}, it can output it as its final color and
inform all of its neighbors. In particular, it will not have to send messages to its neighbors any-
more, as they are all aware of the final color. So each node u will run the following algorithm:

Algorithm 5 3-coloring of a path (algorithm for node u)

1: F ← ∅
2: while c(u) 6∈ {1, 2, 3} do
3: Send "c(u)" to all neighbors
4: Receive messages from all neighbors; let M be the set of messages.
5: if a node v sent its final color to u then
6: F ← F ∪ {c(v)}
7: if c(u) 6∈ {1, 2, 3} and c(u) > max{M ∪ F} then
8: c(u)← min{{1, 2, 3} \ (M ∪ F)}
9: Send "final color c(u)"

10: Output c(u)

More precisely, at each round, the node u will execute once the lines 2 – 8 as long as it
has not reached its final color. When this will be the case, it will send a last specific message

Reconfiguration problems in graphs 157



4 – Other reconfiguration problems

to all of its neighbors to inform them about it (line 9) and will output its final color (line 10).
For this reason, the set F contains all the final colors of the neighbors of u; note that it is not
required to know to which nodes they correspond. Finally, we assume that all the nodes send
their messages simultaneously. In particular, if a node u satisfies id(u) ∈ {1, 2, 3}, it will execute
line 9 during the first round, and thus all of its neighbors will be aware during the first round
as well, thanks to line 4.

The problem will be solved once a 3-coloring of the whole path has been found, i.e., once
each node has its color from the set {1, 2, 3}. The overall complexity of this algorithm corre-
sponds to the maximum number of rounds needed for each node to reach its final color. With
this definition, one can observe that Algorithm 5 is not very efficient in the worst case. Indeed,
if all the identifiers are ordered in an increasing order, then the complexity of the algorithm is
Θ(n). However, note that one can do it much faster. For instance, one can compute a 3-coloring
of a tree with n nodes in time O(log n) [MR89].

7 13 21 23 31 39

Figure 4.11 – Θ(n) rounds are needed for this example.

Distributed coloring. The literature on the standard distributed coloring is vast; most of the
work done so far has focused on coloring graphs of maximum degree ∆ with at most ∆ + 1
colors. The best overview on the topic is the book by Barenboim and Elkin [BE13]; some recent
developments include the following results. Rozhoň et al. [RG20] found recently a random-
ized algorithm that computes a (∆ + 1)-coloring in poly(log log n) rounds. If we restrict to
trees, the number of colors can be reduced to ∆ with the cost of increasing the running time to
O(log∆ log n) [CKP16]. On the deterministic side, the best known (∆ + 1)-coloring algorithm
requires O(log6 n) communication rounds [GGR20]. In the case of trees, the rake-and-compress
method by Miller and Reif gives a 3-coloring in time O(log n) [MR89] as we said before. How-
ever, it is well-known that each graph which is neither an odd cycle nor a complete graph can
be colored with at most ∆ colors by Brooks’ theorem [Bro41]. Panconesi and Srinivasan [PS95]
initiated research on finding fast distributed algorithms to color such graphs with at most ∆
colors. They gave an O(log3 n/ log ∆) deterministic algorithm that uses Kempe changes to find

a ∆-coloring. Ghaffari et al. [GHKM18] found an O(log ∆) + 2O(
√

log log n)-time randomized al-
gorithm when ∆ ≥ 4, or in time O((log log n)2) if ∆ is a constant. Aboulker et al. [ABBE18]
tackled distributed coloring with a rather different perspective: instead of finding fast algo-
rithm for ∆ + 1 coloring, they focused on finding coloring with the fewest number of colors in
a polylogarithmic number of rounds. A typical example is the case of planar graphs for which
a 4-coloring always exists and can be found in quadratic time (in the centralized setting). Gold-
berg, Plotkin, and Shannon [GPS88] obtained a deterministic distributed algorithm that finds
a 7-coloring of a planar graph in O(log n) rounds. Recently, Aboulker et al. [ABBE18] found an
O(log3 n)-time deterministic algorithm to color a planar graphs with at most six colors. They
also showed that no distributed algorithm can color a planar graph with four colors in o(n)
rounds. Finally, Linial proved a remarkable theorem in his seminal paper: a 3-coloring of the
cycle on n vertices requires Ω(log∗ n) rounds [Lin92], where log∗ n is the number of times the
logarithm function must be iteratively applied before the result is less than or equal to one. This
bound is tight by a result of Cole and Vishkin [CV86]. Linial also proved that any algorithm for
coloring the d-regular tree of radius r which runs in time at most 2r/3 requires at least Ω(

√
d)

colors [Lin92].

158 Paul Ouvrard



4.2. Distributed recoloring

4.2.2 Definition of the problem

Formalization. Recall that deciding whether a k-coloring of a graph G can be transformed into
another one is PSPACE-complete for both Kempe changes [BHI+19] and single-node recolor-
ing [BC09]. Thus, this problem is typically inherently global and solutions (when they exist) are
long, i.e., the length of a transformation between the two k-colorings is large in the worst case.

We are now ready to introduce recoloring problems in a distributed setting; note that no
prior work studied reconfiguration in a distributed way to the best of our knowledge. We will
show that there are natural relaxations of the problem that are attractive from the perspective
of distributed graph algorithms: they admit solutions that are short and that can be found lo-
cally (e.g., in sublinear number of rounds). Distributed recoloring problems are closely related
to classical symmetry-breaking problems that have been extensively studied in the area of dis-
tributed graph algorithms, but as we will see, they also introduce new kinds of challenges.

We will work in the LOCAL model of Distributed Computing presented in Section 4.2.1. In
particular, computation proceeds in synchronous rounds: each node sends a message to each
of its neighbors, receives a message from each of its neighbors, and updates its local state.
Eventually, all nodes have to announce their local outputs and stop; the running time of the
algorithm is the number of communication rounds until all nodes stop. We assume that the
algorithm is deterministic, and each node is labeled with a unique identifier. Initially, each
node is only aware of its identifier and has no knowledge of the graph.

In distributed recoloring, each node v ∈ V is given two colors, an input color s(v) and a target
color t(v). It is guaranteed that both s and t form a proper coloring of G, that is, s(u) 6= s(v)
and t(u) 6= t(v) for every uv ∈ E. Each node v ∈ V has to output a finite recoloring schedule
x(v) = 〈x0(v), x1(v), . . . , x`(v)〉 for some ` = `(v). For convenience, we define xi(v) = x`(v)
for i > `(v). We say that the node changes its color at time i > 0 if xi−1(v) 6= xi(v); let Ci be the
set of nodes that change their color at time i. Define L = maxv `(v); we call L the length of the
solution. A solution is feasible if the following holds (see Figure 4.12 for a simple example of
distributed recoloring steps):

1. x0 = s and xL = t;

2. xi is a proper coloring of G for all i;

3. Ci is an independent set of G for all i.

The key differences between distributed recoloring and classical recoloring are:

1. input and output are given in a distributed manner: no node knows everything about G,
s, and t, and no node needs to know everything about xi or the length of the solution L;

2. we do not require that only one node changes its color; it is sufficient that adjacent nodes
do not change their colors simultaneously.

Note that a solution to distributed recoloring is locally checkable in the following sense:
to check that a solution is feasible, it is enough to check independently for each edge uv ∈ E
that the recoloring sequences x(u) and x(v) are compatible with each other, and for each node
v ∈ V that x(v) agrees with s(v) and t(v). However, distributed recoloring is not necessarily an
LCL problem (see [NS95] for a definition) in the formal sense, as the length of the output per
node is not a priori bounded. We emphasize that we keep the following aspects well-separated:
what is the complexity of finding the schedule, and how long the schedules are. Hence it makes
sense to ask, e.g., if it is possible to find a schedule of length O(1) in O(log n) rounds (note that
the physical reconfiguration of the color of the node may be much slower than communication
and computation).

Reconfiguration problems in graphs 159



4 – Other reconfiguration problems

Input Coloring Target Coloring

Figure 4.12 – Distributed recoloring: the input coloring s can be seen on the left and the target
coloring t on the very right. The illustration shows one possible way to reach the target coloring
in three steps by, in each step, changing the colors of an independent set of nodes.

Recoloring with extra colors. Recoloring is computationally very hard, as solutions do
not always exist, and deciding whether a solution exists is PSPACE-hard. It is in a sense anal-
ogous to problems such as finding an optimal node coloring of a given graph; such problems
are not particularly interesting in the LOCAL model, as the complexity is trivially global. To
make the problem much more interesting we slightly relax it. More precisely, we will allow ex-
tra colors, i.e., colors that do not appear neither in the source nor in the target k-coloring. More
precisely, we define a k + c recoloring problem (a.k.a. k-recoloring with c extra colors) as follows:

• We are given colorings with s(v), t(v) ∈ [k].

• All intermediate solutions must satisfy xi(v) ∈ [k + c].

Here we use the notation [n] = {1, 2, . . . , n}.

1)

2)

3)

4)

Figure 4.13 – In the input graph, a bipartition is given. Therefore, the target coloring can be
reached by using one extra color in three steps.

The problem of k + c recoloring is meaningful also beyond the specific setting of distributed
recoloring. For example, here is an example of a very simple observation:

Lemma 4.24. Recoloring with one extra color is always possible in any bipartite graph, with a
distributed schedule of length L = 3.

Proof. Let the bipartition be V = V1 ∪ V2. First each node v ∈ V1 switches to k + 1, then each
v ∈ V2 switches to color t(v), and finally each v ∈ V1 switches to color t(v).

Incidentally, it is easy to extend this result to show that k-recoloring with c = χ− 1 extra
colors is always possible with a schedule of length O(c) in a graph with chromatic number
χ, and in particular k-recoloring with c = k − 1 extra colors is trivial. Figure 4.13 gives an
illustration of recoloring a bipartite graph with one extra color. As a corollary, we can solve
distributed k + 1 recoloring in trees in O(n) rounds, with a schedule of length O(1): simply
find a bipartition of the tree and then apply the above lemma. However, is this optimal? Clearly
finding a bipartition in a tree requires Ω(n) rounds, but can we solve recoloring with one extra
color strictly faster?

160 Paul Ouvrard



4.2. Distributed recoloring

These are examples of problems that we will study in this section. We initiate the study of
distributed complexity of recoloring, with the ultimate objective of finding a complete charac-
terization of graph families and parameters k, c, and L such that distributed k + c recoloring
with schedules of length L can be solved efficiently in a distributed setting. As we will see,
the problem turns out to be surprisingly rich already in very restricted settings such as subcu-
bic graphs or 3-regular trees. Many of the standard lower bound techniques fail; in particular,
known results on the hardness of graph coloring do not help here, as we are already given two
proper colorings of the input graph.

Let us end this introduction on distributed recoloring by an observation related to a variant
that we call weak recoloring: if two adjacent nodes u and v change their color simultaneously at
time i, then {xi−1(u), xi(u)} ∩ {xi−1(v), xi(v)} = ∅, that is, we have a proper coloring regard-
less of whether u or v changes its color first. Let us now contrast weak recoloring with strong
recoloring, in which adjacent nodes never change colors simultaneously. Trivially, strong recol-
oring solves weak recoloring. But the converse is also true up to constant factors: if we have
k input colors and a solution to weak recoloring of length L, then we can also find a solution
to strong recoloring of length kL. To see this, we can implement one weak recoloring step in k
strong recoloring substeps such that in substep j nodes of input color j change their colors. As
our focus is on the case of a small number of input colors, we can equally well study strong or
weak recoloring here; all of our results hold for either of them. However, we present our results
using strong recoloring, as it has a more convenient definition.

4.2.3 Warmup – simple results

We start by presenting a number of simpler upper and lower bounds that also serve as an
introduction to the topic of distributed recoloring.

Upper bounds

Lemma 4.25. In any graph, k + c recoloring for c = k− 1 is possible in 0 communication rounds,
with a schedule of length O(k).

Proof. Generalize the idea of Lemma 4.24; note that the schedule of node v depends only on
s(v) and t(v), and not on the colors of any other node around it.

Lemma 4.26. In paths and trees, 3-recoloring is possible in O(n) rounds, with a schedule of length
O(n).

Proof. Every node has full knowledge of the graph. The statement can be intuited by induc-
tion on the size of the tree, but we delay a formal proof to Section 4.2.4 and more precisely
Lemma 4.38.

Lemma 4.27. In cycles and paths, 3 + 1 recoloring is possible in O(1) rounds, with a schedule of
length O(1).

Proof. Use the input coloring to find a maximal stable set I. Nodes of I switch to color 4. Nodes
of V \ I induce paths of length O(1), apply Lemma 4.26 there to recolor each of the paths by
brute force, without using the extra color 4. Finally, nodes of I switch to their target colors.

Lemma 4.28. Let G be a graph of maximum degree at most ∆, and let k ≥ ∆ + 2. Then k-recoloring
with c extra colors is at least as easy as (k− 1)-recoloring with c + 1 extra colors.

Reconfiguration problems in graphs 161



4 – Other reconfiguration problems

Proof. Given a k-coloring x, we can construct a (k− 1)-coloring x′ as follows: all nodes of color
k pick a new color from {1, 2, . . . , k − 1} that is not used by any of their neighbors. Note that
x x′ is a valid step in distributed recoloring (nodes of color k form an independent set), and
by reversing the time, also x′  x is a valid step. Hence to recolor s  t with c extra colors,
it is sufficient to recolor s′  t′ with c + 1 extra colors (color k no longer appears in the input
and target colorings and can be used as an auxiliary color during recoloring). Then we can
put everything together to form a recoloring schedule s  s′  t′  t, with only constant
overhead in the running time and schedule length.

Lemma 4.29. In subcubic graphs, 4 + 1 recoloring is possible in O(1) rounds, with a schedule of
length O(1).

Proof. Use the input coloring to find a maximal independent set I in constant time. Nodes of
I switch to color 5. Delete I; we are left with a graph G′ that consists of paths and isolated
nodes. Apply Lemmas 4.28 and 4.27 to solve 4 + 0 recoloring in each connected component of
G′. Finally nodes of I can switch to their target colors.

Lower bounds

Lemma 4.30. Recoloring without any extra colors is not possible in the following settings for some
pairs of input and target colorings:

(a) 2-recoloring paths or trees.
(b) 2-recoloring cycles.
(c) 3-recoloring cycles.
(d) 2-recoloring cubic graphs.
(e) 3-recoloring cubic graphs.
(f) 4-recoloring cubic graphs.

Proof. We can construct a source coloring in which no node can make a move, and a target
coloring different from the input coloring. Here we show examples of the source coloring s; the
target coloring can be constructed by t(v) ≡ s(v) + 1 mod k:

(a) A path with 2 nodes, s =
[
1 2

]
.

(b) A 4-cycle, s =
[
1 2 1 2

]
.

(c) A 4-cycle, s =
[
1 2 3 2

]
.

(d) Complete bipartite graph K3,3, with s constructed from the bipartition.

(e) Prism graph: connect the nodes of a 3-cycle colored with
[
1 2 3

]
to another 3-cycle

colored with
[
2 3 1

]
, in this order.

(f) Complete graph K4.

Lemma 4.31. In paths and trees, 3-recoloring without extra colors requires Ω(n) rounds and pro-
duces schedules of length Ω(n) in the worst case. This holds also in the case of 3-regular trees.

Proof. Consider a long path with the input coloring 1, 2, 3, 1, 2, 3, . . . , 1, 2, 3 and observe that a
node of degree 2 can change its color only after at least one neighbor has changed colors. We
can embed such a path also in a 3-regular tree.

162 Paul Ouvrard



4.2. Distributed recoloring

Lemma 4.32. In trees, 4-recoloring without extra colors requires Ω(log n) time and produces sched-
ules of length Ω(log n) in the worst case.

Proof. It is sufficient to construct a 3-regular tree in which each node is surrounded by nodes
of all other colors: color the root with color 1 and its neighbors with colors 2, 3, and 4. Then
recursively for each leaf node of color x that is already adjacent to a node of color y, add two
new neighbors with the colors {1, 2, 3, 4} \ {x, y}, etc., and continue in a balanced manner such
that the distance between the root and the nearest leaf is logarithmic. Now a non-leaf node can
change its color only once its neighbor has changed its color.

4.2.4 Recoloring algorithm for trees

In this section, we provide two efficient algorithms for recoloring and list-recoloring trees; the
list-coloring problem will be defined later.

k-recoloring. We first consider node recoloring; we will then focus on list recoloring. Our
main result regarding node recoloring on trees is the following:

Theorem 4.33. For any k ∈ N, for every tree T on n nodes, for any two k-colorings α, β of T, we
can compute in O(log n) rounds how to recolor T from α to β with one extra color and a schedule of
length O(1).

We first discuss how to compute efficiently an independent set with some desirable prop-
erties. For this, we use a simple modification of the rake and compress method by Reif and
Miller [MR89]. More precisely, we iterate rake and compress operations, and label nodes based
on the step at which they are reached. We then use the labels to compute an independent set
satisfying given properties. We finally explain how to make use of the special independent set
to obtain an efficient recoloring algorithm, in each case.

Definition 4.34. A light h-labeling is a labeling V → [h] such that for any i ∈ [h]:

1. Any node labeled i has at most two neighbors with label ≥ i, at most one of which with
label ≥ i + 1.

2. No two adjacent nodes labeled i both have a neighbor with label ≥ i + 1.

Lemma 4.35. There is an O(log n)-round algorithm that finds a light (4 log n)-labeling of a tree.

Proof. As discussed above, we merely use a small variant of the rake and compress method. At
step i, we remove all nodes of degree one and all nodes of degree two that belong to a chain of
at least three nodes of degree two, and assign them label i.

One can check that this yields a light labeling. It remains to discuss how many different
labels are used, i.e., how many steps it takes to delete the whole tree. Let us argue that no
node remains after 4 log n rounds. Let T be a tree, let V1 (resp. V2, V3) be the number of nodes
of degree one (resp. two, at least three) in the tree, and let T′ be the tree obtained from T
by replacing any maximal path of nodes of degree two with an edge. Note that |V(T′)| =
|V1|+ |V3|. Let W be the set of nodes in T that have degree two with both neighbors of degree
two. Note that |V2 \W| ≤ 2|E(T′)| = 2(|V1|+ |V3| − 1). Note also that |V1| ≥ |V3|, simply by
the fact that there are fewer edges than nodes in a tree. It follows that |W| ≥ |V2| − 2(|V1| +
|V3| − 1) = |V(T)| − |V1| − |V3| − 2(|V1|+ |V3| − 1) ≥ |V(T)| − 6|V1|. Consequently, we obtain

Reconfiguration problems in graphs 163



4 – Other reconfiguration problems

|W|+ |V1| ≥ |V|
6 . In other words, at every step, we remove in particular W ∪V1, hence at least

a sixth of the nodes. It follows that at after k steps, the number of remaining nodes is at most
n ·
( 5

6

)k. Note that this is less than one once k ≥ 4 log n.

We now discuss how to make use of light h-labelings.

Lemma 4.36. For any graph T, any 3-coloring α of T, and any integer h, let L be a light h-labeling
of T. There is an O(h)-round algorithm that finds a maximal independent set S such that T \ S only
has connected components on one or two nodes.

Proof. In brief, we proceed as follows: at step i = h, h− 1, . . . , 1, we first add all nodes of label
i which have a neighbor of label ≥ i + 1 that is not in S (they form an independent set by
definition of a light label), then use the 3-coloring to obtain a fast greedy algorithm to make S
maximal on the nodes of label ≥ i. The algorithm is the following.

Algorithm 6 DECOMPOSING INTO AN INDEPENDENT SET AND COMPONENTS OF SIZE ≤ 2

Require: A tree T, a 3-coloring α and a light h-label of T.
Ensure: A set S of V(T) such that G[S] is an independent set and every connected component

of G[V \ S] has size at most 2.
1: for i from h down to 1 do
2: for u with label i (in parallel) do
3: If u has a neighbor of higher label that is not in S, add u to S
4: for j from 1 to 3 do
5: for u with label i and color j (in parallel) do
6: If N(u) ∩ S = ∅, add u to S

The fact that the output S is an independent set follows directly from the construction, as
does the fact that the running time in O(h) rounds. We note that no connected component of
T \ S contains nodes of different labels, due to the first operation at step i.

It remains to argue that for any i, the nodes of label i that do not belong to S only form
connected components of size one or two. Assume for a contradiction that there is a node u of
label i which has two neighbors v and w, also of label i, such that none of {u, v, w} belongs to
S. By definition of a light label, the node u has no other neighbor of label ≥ i, a contradiction to
the fact that we build S to be an MIS among the nodes of label ≥ i.

Combining Lemmas 4.35 and 4.36, and observing that a 3-coloring of a tree can be obtained
in O(log n) rounds, we immediately obtain the following.

Lemma 4.37. There is an O(log n)-round algorithm that finds an MIS in a tree, such that every
component induced by non-MIS nodes is of size one or two.

We are now ready to prove Theorem 4.33.

Proof of Theorem 4.33. First, we use Lemma 4.37 to obtain in O(log n) rounds a maximal inde-
pendent set S such that T \ S only has connected components of size one or two. We recolor
each node in S with the extra color. Remove S, and recolor each component from α to β without
using any extra colors; this can be done in O(1) recoloring rounds. Each node in S can then go
directly to its color in β.

164 Paul Ouvrard



4.2. Distributed recoloring

List-recoloring. We know focus on list-recoloring. Before moving on to our results, we first
need to define what is a list coloring. Given a graph G = (V, E), a list-assignment is a func-
tion which assigns to each node v ∈ V a list of colors L(v). An L-coloring of G is a function
c that assigns to each node v ∈ V a color c(v) ∈ L(v) such that for any two adjacent nodes
u, v ∈ V, we have c(u) 6= c(v). A graph G is k-list-colorable if it admits an L-coloring for every
list-assignment where each node has a list of size at least k. It is observed that list-coloring gen-
eralizes node-coloring if we consider the special case where each node receives the same input
list. The notion of L-recoloring is a natural generalization of k-recoloring: the same elementary
steps are considered, and every intermediate coloring must be an L-coloring of G. However,
we have to use a more convoluted approach since there is no global extra color that we can
use. Before discussing 4-list-recoloring, we discuss 3-list-recoloring. For the sake of intuition,
we start by presenting an algorithm for 3-recoloring trees, and explain afterwards how to adapt
it for the list setting.

Lemma 4.38. For every tree T with radius at most p and for any two 3-colorings α, β of T, we can
compute in O(p) rounds how to 3-recolor T from α to β with a schedule of length O(p).

Proof. Let c : V → [3] be a 3-coloring of T. We introduce an identification operation: Given a leaf
u and a node v such that u and v have a common neighbor w, we recolor u with c(v), and from
then on we pretend that u and v are a single node. In other words, we delete u from the tree we
are considering, and reflect any recoloring of v to the node u. Note that these operations can
stack up: the recoloring of a single node might be reflected on an arbitrarily large independent
set in the initial tree.

We now briefly describe an algorithm to recolor a 3-coloring into a 2-coloring c′ in O(p)
rounds, with schedule O(p). First, root T on a node r which is at distance at most p of any
node of T. Any node of T which is not adjacent to the root has a grandparent, which is defined
as its parent’s parent. Then, at each step, we consider the set A of leaves of T which have a
grandparent, if any. We identify each leaf in A with its grandparent (note that the notion of
grandparent guarantees that this operation is well-defined, and that the operation results in A
being deleted).

This process stops when T consists only of the root r and its children. We select one of the
children arbitrarily and identify the others with it. This results in T being a single edge. Note
that the color partition of c′ is compatible with the identification operations, as we only ever
identify nodes at even distance of each other. We then recolor T into c′: this is straightforward
in the realm of 3-recoloring.

We can now choose a 2-coloring of T (this can be done in O(p) rounds), and apply the above
algorithm to 3-recolor both α and β to that 2-coloring. This results in a 3-recoloring between α
and β with schedule O(p).

The same idea can be adapted to list coloring:

Lemma 4.39. For every tree T with radius at most p, for any list assignment L of at least 3 colors
to each node, for any two L-colorings α, β of T, we can compute in O(p) rounds how to L-recolor T
from α to β with schedule O(p).

Proof. We adapt the identification operation introduced in the proof of Lemma 4.38, merely
by adapting the notion of having the same color. Let u and v be two nodes with a common
neighbor w. We say u has the same color as v with respect to w in the following cases:

• if L(u) 6= L(w), then u is colored with the smallest element of L(u) \ L(w);

Reconfiguration problems in graphs 165



4 – Other reconfiguration problems

• if L(u) = L(w) and the color of v belongs to L(u), then u is colored the same as v;

• if L(u) = L(w) and the color of v does not belong to L(u), then u is colored with the
smallest element of L(w) that differs from the color of w.

Therefore, when we identify a leaf u with a node v that has a common neighbor w with u,
we first assign to u the same color as v with respect to w, and from then on we pretend that u
and v are a single node. In other words, any recoloring of v is mirrored on u so that at each step,
the node u has the same color as v with respect to w. Note that in some cases it may be that the
color of u does not actually change when the color of v does.

When the operations stack up, i.e., a node u is identified with a node v which is identified
with a node x, we do not claim transitivity of the relation. In particular, u and x have no com-
mon neighbor, hence them having the same color is not well-defined. We merely enforce that u
has the same color as v with respect to their common neighbor, and that v has the same color
as x with respect to their common neighbor.

We insist on the fact that the definition of having the same color only depends on the list
assignment. In particular, let us consider the situation once no more identification operation
can be operated, i.e., the tree has been identified into an edge (see the proof of Lemma 4.38).
The coloring of the edge characterizes entirely the coloring of the whole tree, regardless of the
initial coloring. Therefore, we can pick an arbitrary L-coloring of the edge, and recolor both α
and β into the corresponding L-coloring of the tree in O(p) rounds with schedule O(p).

This results in computing in O(p) rounds an L-recoloring between α and β with a schedule
of length O(p).

Finally, we need a last lemma to split the tree in small components. We slightly adapt the
proof of Lemma 4.36 and obtain the following:

Lemma 4.40. For any tree T, any 3-coloring α of T, and any integer h, let L be a light h-label of T.
There is a O(h)-round algorithm that finds a maximal independent set S such that no node has two
neighbors in S and T \ S only has connected components of radius O(h).

Proof. The algorithm is far simpler than Algorithm 6. We compute the set R of nodes with no
neighbor of higher label. We note that T[R] is a collection of paths. We compute an independent
set S ⊆ R that is maximal subject to the property that no node in R has two neighbors in S. Note
that by definition of light label, no node outside of R may have two neighbors in R (hence in
S). It remains to argue that T \ S only has connected components of radius O(h). We point out
that every connected component of T[R] contains an element of S. Therefore, any connected
subset of nodes of T[R] has at most one neighbor of higher label, since T is a tree. Together
with the fact that any connected component of T[R \ S] has at most two nodes, we derive the
conclusion.

Theorem 4.41. For every tree T on n nodes and any list assignment L of at least four colors to every
node of T, for any two L-colorings α, β of T, we can compute in O(log n) rounds how to L-recolor
T from α to β with schedule of length O(log n).

Proof. Compute in O(log n) rounds an independent set S such any two elements of S are at dis-
tance at least three of each other and every connected component of T \ S has radius O(log n).
By Lemmas 4.35 and 4.40 and the fact that a 3-coloring of a tree can be computed in O(log n)
rounds [MR89], we compute in O(log n) rounds an L-coloring γ of T \ S such that every node
adjacent to an element u ∈ S has a color different from α(u) and β(u). Note that this coloring
exists since any tree is 2-list-colorable. Use Lemma 4.39 to recolor each connected component

166 Paul Ouvrard



4.2. Distributed recoloring

of T \ S from α to γ. Recolor every element of S with its color in β. Use Lemma 4.39 to recolor
each connected component T \ S from γ to β. Note that this yields an L-recoloring of T from α
to β with schedule O(log n).

Note that a direct corollary of Theorem 4.41 is that for any two k−colorings α, β of a tree
with k ≥ 4, a schedule of length Θ(log n) can be found in Θ(log n) rounds.

4.2.5 Recoloring algorithm for subcubic graphs

In this section we study recoloring in subcubic graphs (graphs of maximum degree at most
three); our main result is summarized in the following theorem:

Theorem 4.42. For every subcubic graph G on n nodes, for any two 3-colorings α, β of G, we can
compute in O(log2 n) rounds how to recolor G from α to β with one extra color and a schedule of
length O(log n).

A theta is formed of three node-disjoint paths between two nodes. Note that in particular if
a graph contains two cycles sharing at least one edge, then it contains a theta. We note Bk(u)
the set of nodes at distance at most k to u, that is the ball of radius k centering in u.

Figure 4.14 – A theta graph.

We show here, roughly speaking, that there is around every node a nice structure that we
can use to design a valid greedy algorithm for the whole graph. This proof is loosely inspired
by one in [ABBE18].

Lemma 4.43. For every subcubic graph G on n nodes, for every node u ∈ V(G), there is a node v
with degree at most two or a theta that is contained in B2 log n(u).

Proof. Assume for a contradiction that there is a subcubic graph G on n nodes with a node u
such that B2 log n(u) contains no node of degree two nor any theta. Let B be the set of nodes at
distance at most 2 log n from u, and B− the set of nodes at distance at most 2 log n − 1 from
u. Let C be the set of cycles of G contained in B. Note that cycles in C are edge-disjoint by
assumption on u and thus node-disjoint since G is cubic. We select a set E by picking for every
C ∈ C an arbitrary edge in E(C) among those with both endpoints farthest from u. Note that
|E | = |C|, and that by choice of E , every edge in B with both endpoints at the same distance of
u is selected in E . Therefore, the distance to u yields a natural orientation of the edges in B \ E ,
orientation from closer node to u toward further node. We also note that by choice of E , for any
edge wx in E such that x is farther away from u than w, the node x has another neighbor y at
the same distance of u as w. In that case, note that the edge xy does not belong to E . We claim
as a consequence that the distance from u is the same in B as in B \ E .

For any node w ∈ B, we say an outgoing edge is useful if it does not belong to E . In addition
to the above remarks, we make two observations:

Reconfiguration problems in graphs 167



4 – Other reconfiguration problems

1. every node in B− has at least one useful edge;

2. if a node w in B− has only one useful edge wx, then x has two outgoing useful edges.

Let us consider the graph H obtained from G[B] by removing all edges in E . We claim that
every node in B has degree at least two in H, and that no two adjacent nodes in H have degree
two: this is immediate from the observations and remarks above. We also observe that H is a
tree. Let H′ be the graph obtained from H by replacing every node of degree two with an edge.
We note that H′ is a 3-regular tree of root u and with no leaf at distance less than log n of u. It
follows that H′ contains at least 1 + 3 · 2log n > n nodes, a contradiction.

Lemma 4.44. Let G be a subcubic graph, let p be an integer, and let A be a collection of thetas and
nodes of degree≤ 2 in G each at distance at least two of each other. Let r ≥ 1 be such that no element
of A has diameter more than r

2 . If the nodes of G \ (⋃A∈A A) can be partitioned into S and F such
that G[S] is an independent set and G[F] is a forest of radius at most p, then there is a partition
(S′, F′) of

⋃
A∈A A such that G[S ∪ S′] is an independent set and G[F ∪ F′] is a forest of radius at

most p + r.

Proof. Our construction ensures that any pair of nodes that are not connected in G[F] are not
connected in G[F ∪ F′] neither. Hence, it suffices to prove that the statement holds for a single
element of A, since the elements of A are by hypothesis non-adjacent. Let A be an element of
A. We consider two cases depending on whether A is a node of degree at most two or is a theta.

• If A consists of a node v of degree one, or two, we set v to be in F′ if it has a neighbor in
S, in S′ otherwise. Note that since v has at most one neighbor in F, the radius of F ∪ F′ is
at most one more than that of F.

• If A consists of a theta with endpoints u and v and three node-disjoint paths P1, P2, P3,
we prove independently that each Pi admits a partition that is compatible with u being
set to S′ and v to F′, in such a way that the connected component of F ∪ F′ that contains
v is contained in F′. We do this by induction on the number of nodes in Pi. If Pi has no
internal node, the conclusion immediately follows. If all the neighbors of Pi at distance at
least three of u through Pi are in S, we set all of Pi to F′. Otherwise, let w be the neighbor
of Pi in F that with smallest distance (≥ 3) to u through Pi. Let x be the neighbor of w
in Pi. We apply induction on Pi \ {nodes closer to u than x}, with x in the role of u. Note
that x is distinct from v and not adjacent to u, by construction. The nodes between u and
x on Pi are added to F′. Note that these nodes are connected to at most one component
of G[F], on the first node of Pi. We extend the resulting decomposition to the rest of Pi by
setting all corresponding nodes to F′.

Given a graph G = (V, E), an (α, β)-ruling set is a set S ⊆ V such that (i) the distance
between any two nodes of S is at least α, and (ii) each node in V \ S is at distance at most β
from a node in S.

Lemma 4.45. Let G be a subcubic graph on n nodes. We can compute in O(log2 n) rounds a
partition (S, F) of the nodes of G that G[S] is an independent set and G[F] is a forest of radius
O(log n).

Proof. To that purpose, we combine the previous lemmas in Algorithm 7. The algorithm com-
putes a decomposition as desired and runs in O(log n) + RS(n) rounds, where RS(n) is the
number of rounds necessary to compute a (4 log n, 8 log n)-ruling set in a subcubic graph. We
derive from [PS92] that RS(n) = O(log2(n)), hence the conclusion.

168 Paul Ouvrard



4.2. Distributed recoloring

Algorithm 7 DECOMPOSING INTO A SMALL FOREST AND AN INDEPENDENT SET

Require: A subcubic graph G.
Ensure: A decomposition (F, S) of V(G) such that G[S] is an independent set and every con-

nected component of G[F] has radius at most log n.
1: for u in V(G) (in parallel) do
2: Acquire knowledge on B2 log n(u)
3: Select in the node set of B2 log n(u) a configuration C(u) that is a minimal theta or a node

of degree 1 or 2
4: Compute a (4 log n, 8 log n)-ruling set X in G
5: Define A = ∪u∈X{C(u)}
6: Compute the distance of every node in G to an element of A
7: Let F = S = ∅
8: for i = 8 log n downto 1 do
9: Extend the partition (F, S) to the nodes at distance i from A, more precisely:

10: Each connected component is a path or cycle where no internal node has an already
assigned neighbor, let Ui be the set of the internal nodes

11: Assuming a pre-computed MIS on each layer for the sets Ui, assign that MIS to S
12: Extend greedily on the remaining nodes (which form bounded-size components), as-

signing nodes to S when possible, to F when not
13: Extend the partition (F, S) to the nodes belonging to an element of A using Lemma 4.44

We are now ready to prove Theorem 4.42, which we do in a similar fashion as Theorem 4.33.

Proof of Theorem 4.42. Use Lemma 4.45, and obtain a decomposition (S, F) as stated. Recolor
all of S to the extra color, then use Lemma 4.39 on each connected component of G[F] so that
all nodes of F reach their target color (remember that each connected component of G[F] has
radius O(log n)). Finally recolor each node of S with its target color.

4.2.6 Concluding remarks

In this section, we introduced k-recoloring in the LOCAL model of distributed computing.
Because the problem of reconfiguring a k-coloring into another one is inherently global as it
is PSPACE-complete to determine if such a transformation exists, we decided to allow extra
colors. These extra colors are colors that appear neither in the source nor in the target k-coloring,
but that we can use throughout the transformation. We moreover focus on positive instances,
that is we only consider instances where a reconfiguration schedule exists. Hence, our goal is
to minimize two different parameters: the number of communication rounds and the length of
the reconfiguration schedule (i.e., the length of the transformation).

We first considered 3-recoloring on trees and we studied the impact of the addition of extra
colors. If we do not allow any extra color, the problem can be solved in O(n) rounds with a
schedule of length O(n) by reconfiguring the two 3-colorings into a 2-coloring. Note that this
is tight by Lemma 4.31. On the other hand, if we allow two extra colors, then the problem
becomes trivial: it can be solved without any communication round and a schedule of length
O(1). Hence, we could ask what happens in-between? Therefore, we studied 3+1 recoloring
and showed that the problem can be solved in O(log n) rounds with a schedule of constant
length. It remains open to determine whether the number of communication rounds is optimal
or not, and we leave it as an open problem. By using a small adaptation of the proofs, one can
show that one can always transform a 4-list coloring into another one with a schedule of length
O(log n) in O(log n) communication rounds. Here again, note that this result is tight.

Reconfiguration problems in graphs 169



4 – Other reconfiguration problems

Moreover, the idea used in the proofs of Theorems 4.33 and 4.41 of finding a maximal inde-
pendent set whose removal leaves a forest where each connected component has small diame-
ter can be generalized in the following sense:

Lemma 4.46. Assume that we are given a graph G and input and target colorings with k ≥ 3
colors. Assume that in O( f (n)) rounds we can find an independent set I of G such that V \ I
induces a forest of trees of depth at most O(d(n)). Then in O( f (n) + d(n)) rounds we can solve
k + 1 recoloring, with a schedule of length O(d(n)).

Proof. Each node in I switches to color k+ 1. We then use the algorithm described in the proof of
Lemma 4.38 to find a recoloring with schedule of length O(d(n)) for each connected component
after the removal of I. After that, each node of I can switch to its final color.

Our results regarding 3-recoloring of trees are summarized in the following tables:

Table 4.1 – Results: distributed recoloring in 3-regular trees.

input extra schedule communication reference
colors colors length rounds

2 0 ∞ Lemma 4.30
2 1 O(1) 0 Lemma 4.25

3 0 Θ(n) Θ(n) Lemmas 4.26 and 4.31
3 1 O(1) O(log n) Theorem 4.33
3 2 O(1) 0 Lemma 4.25

4 0 Θ(log n) Θ(log n) Theorem 4.41 and Lemma 4.32
4 1 O(1) O(1) Lemma 4.29
4 3 O(1) 0 Lemma 4.25

5 0 O(1) O(1) Lemmas 4.29 and 4.28

Table 4.2 – Results: distributed recoloring in trees.

input extra schedule communication reference
colors colors length rounds

2 0 ∞ Lemma 4.30
2 1 O(1) 0 Lemma 4.25

3 0 Θ(n) Θ(n) Lemmas 4.26 and 4.31
3 1 O(1) O(log n) Theorem 4.33
3 2 O(1) 0 Lemma 4.25

4 0 Θ(log n) Θ(log n) Theorem 4.41 and Lemma 4.32
4 1 O(1) O(log n) Theorem 4.33
4 3 O(1) 0 Lemma 4.25

Finally, we studied 3-recoloring of subcubic graphs in Section 4.2.5. More precisely, we
showed that these graphs have a particular structure that can be used to greedily solve the
problem on the whole graph. Our main result is that one can transform any two 3-colorings of
a subcubic graph with one extra color in O(log2 n) rounds with a schedule of length O(log n).
Here again, we leave as an open problem to determine whether this result is optimal or not.
Our results regarding subcubic graphs are presented in Table 4.3.

170 Paul Ouvrard



4.2. Distributed recoloring

Table 4.3 – Results: distributed recoloring in subcubic graphs.

input extra schedule communication reference
colors colors length rounds

2 0 ∞ Lemma 4.30
2 1 O(1) 0 Lemma 4.25

3 0 ∞ Lemma 4.30
3 1 O(log n) O(log2 n) Theorem 4.42
3 2 O(1) 0 Lemma 4.25

4 0 ∞ Lemma 4.30
4 1 O(1) O(1) Lemma 4.29
4 3 O(1) 0 Lemma 4.25

5 0 O(1) O(1) Lemma 4.28

In addition to the open questions mentioned above, it would be obviously interesting to
design algorithm for other graph classes. We could also image to introduce distributed recon-
figuration for other graph problems. In that context, we would like to mention the work by
Censor-Hillel and Rabie [CHR20] where they study the reconfiguration of maximal indepen-
dent sets in the LOCAL model as well. At each step, the set of nodes that change their mem-
bership status must induce an independent set. Their main result is that for any graph G of
diameter at least three, one can always reconfigure two MIS of G with a schedule of length 28,
and where each intermediate solution is an independent 4-dominating set (i.e., each node is at
distance at most four from a vertex in the set). This schedule can be compute in O(MIS + R32)
rounds, where MIS is the complexity of finding an MIS on a worst-case graph and R32 is the
complexity of finding a (3,2)-ruling set on a worst-case graph. An immediate corollary of this
result is that for graphs of bounded maximum degree one can compute the constant length
schedule within O(log∗ n) rounds. Censor-Hillel and Rabie proved that this result is tight, but
it remains open to determine whether their algorithm is optimal for general graphs.

Reconfiguration problems in graphs 171





Conclusion

In this thesis, we studied some reconfiguration problems in graphs, often with a domination-
related problems common base. To conclude this work, let us mention our main results, and
recall some open questions that are of particular interest to us raised by this thesis.

In Chapter 2, we considered a structural question regarding the relation between dominat-
ing sets and connected dominating sets of a graph. More precisely, we proved the following
conjecture by Camby and Schaudt [CS14]: for any graph G, it holds that γc(H) ≤ 2× γ(H) for
any induced subgraph H of G if and only if G does not contain P9, C9 or the following graph as
an induced subgraph:

v1 v2 v3 v4

v5v6v7v8

v9 v10

Figure 1 – The third forbidden induced subgraph.

A natural but ambitious question is the following: can we give a (finite) collection of for-
bidden induced subgraphs to characterize PoC-Near-Perfect graphs with threshold t, for any
t ∈ [1, 3)? For instance, we proved that for t = 2, the collection contains only P9, C9 and H.

In Chapter 3, we focused our attention on the reconfiguration of dominating sets, mainly
under the TAR and TS rules. In Section 3.1, we studied some specific values on the threshold k
(that is the maximum size of each intermediate solution) that ensures the reconfiguration graph
Rk′(G) to be connected, for any k′ ≥ k. We first improved a result by Haas and Seyffarth [HS17]
by showing that theRk(G) is connected and has linear diameter whenever k ≥ Γ(G) + α(G)−
1. We then showed results for several graph classes: we proved that Rk(G) is connected and
has linear diameter for planar graphs whenever k ≥ Γ(G) + 3 and for K`-free minor graphs as
long as k ≥ Γ(G) + C`

√
log2 `, for some constant C. Note that these two results are obtained

from a more general one on d-minor sparse graphs, that is graphs whose all bipartite minors
have average degree less than d (e.g., planar graphs are 4-minor sparse graphs). Moreover,
our proofs are algorithmic and a reconfiguration sequence can be computed in polynomial
time. However, the best lower bound for planar graphs is Γ(G) + 1; hence it remains open
for k = Γ(G) + 2 and we conjectured that RΓ(G)+2(G) is connected. Finally, we proved that if
k ≥ Γ(G)+ tw(G)+ 1, thenRk(G) is connected and has diameter at most 4(n+ 1) · (tw(G)+ 1).
Here again, the proof is constructive. Since a tree decomposition of width r can be computed
in time 2O(r3) · n [Bod96], this yields an FPT algorithm parameterized by the treewidth that
outputs a linear transformation between any pair of dominating sets of size at most k. It remains
open to determine whether Rk(G) is connected or not for k ∈ {Γ(G) + tw(G) − 1, Γ(G) +
tw(G)}. In Section 3.2, we investigated the computational complexity of DOMINATING SET

173



Conclusion

RECONFIGURATION under token sliding. We showed that the problem is PSPACE-complete
for various graph classes including split graphs or bipartite graphs. On the other hand, we
gave polynomial-time algorithm for cographs and dually chordal graphs, a superclass of both
trees and interval graphs. However, for all the classes for which DSRTS is PSPACE-complete
(respectively in P), DOMINATING SET is NP-complete (resp. in P). Hence, the most challenging
problems for DSRTS are to find graph classes for which the host problem is "easy" (in P) but
DSRTS is NP-hard, or vice-versa. In Section 3.3, we again considered the token addition and
removal rule, but with a rather different perspective. We considered an optimization variant
recently introduced by Ito et al. [IMNS19] for INDEPENDENT SET RECONFIGURATION which
attempts to answer the following question: given a dominating set D of a graph G and an
integer k, what is the smallest dominating set of G that can be obtained from D under the
TAR(k) rule? It is observed that this new problem generalizes DOMINATING SET by setting
D = V and k = |V|. It immediately follows that it is NP-hard; we actually proved its PSPACE-
completeness in several graph classes. However, we were not able to determine the complexity
of OPT-DSR on planar graphs. We know that it NP-hard, but we believe that it is PSPACE-
complete. Nevertheless, our main contribution is related to its parameterized complexity. We
first proved that it is W[2]-hard with respect to k while it is FPT when parameterized by d + s
(where d is the degeneracy and s the size of the target dominating set) or by τ, the minimum
size of a vertex cover of G.

Finally, in Chapter 4, we focused on two different reconfiguration problems. We first inves-
tigated the complexity of the reconfiguration of spanning trees with additional constraints on
the number of leaves. We proved that it is PSPACE-complete to decide whether there exists an
edge flip transformation between two spanning trees where each spanning tree must have at
least k leaves. This result holds in particular for bipartite graphs, split graphs or planar graphs.
Note that because spanning trees with many leaves is highly-related to minimum connected
dominating sets, it is not surprising that the PSPACE-completeness for split graphs or bipartite
graphs follows from polynomial-time reductions from DOMINATING SET RECONFIGURATION.
However, we proved that if we allow at most two internal nodes, then the problem becomes
polynomial-time solvable. This result is of special interest, as it can be used to prove that the
problem is in P as well for cographs. More generally, can we decide if there exists a transfor-
mation between two spanning trees with at most n − ` leaves in time FPT with respect to `?
On the other hand, we showed that it is also PSPACE-complete to determine whether one can
reconfigure two spanning trees where each solution has at most k leaves. The result holds for
any k ≥ 3, and the proof is an adaptation of a well-known reduction from VERTEX COVER to
HAMILTONIAN PATH. Moreover, note that if k = 2, then SPANNING TREE WITH AT MOST k
LEAVES is equivalent to HAMILTONIAN PATH RECONFIGURATION whose complexity remains
open. In Section 4.2, we introduced reconfiguration in a distributed setting. More precisely, we
studied k-recoloring in the LOCAL model in Distributed Computing, where no two adjacent
nodes can change their color simultaneously. In particular we focused on 3-recoloring of trees
and subcubic graphs. We proved that if we allow one extra color, then 3-recoloring of an n-
vertex tree can be solved in O(log n) rounds with a schedule of length O(1). This result can be
adapted to obtain a similar result for list-recoloring: 4-list-recoloring can be solved in O(log n)
rounds with a schedule of length O(log n). Finally, we proved that 3-recoloring with one extra
color can be solved in O(log2 n) rounds and with a schedule of length O(log n) on subcubic
graphs. One may ask whether our results for 3 + 1 recoloring on trees and subcubic graphs are
optimal (mainly with regard to the number of rounds) or not. Finally, it would be interesting to
study the reconfiguration of other graph problems in a distributed setting.

174 Paul Ouvrard



Bibliography

[ABBE18] P. Aboulker, M. Bonamy, N. Bousquet, and L. Esperet. Distributed Coloring in
Sparse Graphs with Fewer Colors. In Proceedings of the 2018 ACM Symposium on
Principles of Distributed Computing, PODC ’18, page 419–425, New York, NY, USA,
2018. Association for Computing Machinery.

[ACP87] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of Finding Embed-
dings in a k-Tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, April
1987.

[AFF+05] J. Alber, H. Fan, M. R. Fellows, H. Fernau, R. Niedermeier, F. Rosamond, and
U. Stege. A refined search tree technique for Dominating Set on planar graphs.
Journal of Computer and System Sciences, 71(4):385–405, November 2005.

[AFK17] S. Alikhani, D. Fatehi, and S. Klavžar. On the Structure of Dominating Graphs.
Graphs and Combinatorics, 33(4):665–672, May 2017.

[AFN04] J. Alber, M. R. Fellows, and R. Niedermeier. Polynomial-time data reduction for
dominating set. Journal of the ACM, 51(3):363–384, May 2004.

[AG08] N. Alon and S. Gutner. Linear Time Algorithms for Finding a Dominating Set of
Fixed Size in Degenerated Graphs. Algorithmica, 54(4):544–556, July 2008.

[AH77] K. Appel and W. Haken. Every planar map is four colorable. Part I: Discharging.
Illinois J. Math., 21(3):429–490, 09 1977.

[AHK77] K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. Part II:
Reducibility. Illinois J. Math., 21(3):491–567, 09 1977.

[AHN04] O. Aichholzer, F. Hurtado, and M. Noy. A lower bound on the number of triangu-
lations of planar point sets. Computational Geometry, 29(2):135 – 145, 2004.

[Ami01] E. Amir. Efficient Approximation for Triangulation of Minimum Treewidth. In Pro-
ceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, UAI’01,
page 7–15, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[AMP15] O. Aichholzer, W. Mulzer, and A. Pilz. Flip Distance Between Triangulations of a
Simple Polygon is NP-Complete. Discrete & Computational Geometry, 54(2):368–389,
June 2015.

[Ang80] D. Angluin. Local and global properties in networks of processors (Extended Ab-
stract). In Proceedings of the twelfth annual ACM symposium on Theory of computing -
STOC '80. ACM Press, 1980.

[AP89] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems
restricted to partial k-trees. Discrete Applied Mathematics, 23(1):11–24, April 1989.

175



BIBLIOGRAPHY

[APT79] B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing the
truth of certain quantified boolean formulas. Information Processing Letters, 8(3):121
– 123, 1979.

[BB72] U. Bertele and F. Brioschi. Nonserial Dynamic Programming. Academic Press, Inc.,
USA, 1972.

[BB14] M. Bonamy and N. Bousquet. Reconfiguring Independent Sets in Cographs. CoRR,
abs/1406.1433, 2014.

[BB17] M. Bonamy and N. Bousquet. Token sliding on chordal graphs. In Proceedings of
the 43rd International Workshop on Graph-Theoretic Concepts in Computer Science (WG
2017), pages 127–139, 2017.

[BB18] M. Bonamy and N. Bousquet. Recoloring graphs via tree decompositions. European
Journal of Combinatorics, 69:200–213, 2018.

[BBFJ19] M. Bonamy, N. Bousquet, C. Feghali, and M. Johnson. On a conjecture of Mohar
concerning Kempe equivalence of regular graphs. Journal of Combinatorial Theory,
Series B, 135:179 – 199, 2019.

[BBH+19] M. Bonamy, N. Bousquet, M. Heinrich, T. Ito, Y. Kobayashi, A. Mary, M. Mühlen-
thaler, and K. Wasa. The Perfect Matching Reconfiguration Problem. In 44th In-
ternational Symposium on Mathematical Foundations of Computer Science, MFCS 2019,
August 26-30, 2019, Aachen, Germany, pages 80:1–80:14, 2019.

[BC79] B. Bollobás and E. J. Cockayne. Graph-theoretic parameters concerning domina-
tion, independence, and irredundance. Journal of Graph Theory, 3(3):241–249, 1979.

[BC09] P. Bonsma and L. Cereceda. Finding Paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theoretical Computer Science,
410(50):5215 – 5226, 2009. Mathematical Foundations of Computer Science (MFCS
2007).

[BCD98] A. Brandstädt, V. D. Chepoi, and F. F. Dragan. The algorithmic use of hypertree
structure and maximum neighbourhood orderings. Discrete Applied Mathematics,
82(1):43 – 77, 1998.

[BCM97] A. Burger, E. Cockayne, and C. Mynhardt. Domination and irredundance in the
queens' graph. Discrete Mathematics, 163(1-3):47–66, January 1997.

[BDO21] M. Bonamy, P. Dorbec, and P. Ouvrard. Dominating sets reconfiguration under
token sliding. Discrete Applied Mathematics, 301:6–18, 2021.

[BE13] L. Barenboim and M. Elkin. Distributed graph coloring: Fundamentals and recent
developments. Synthesis Lectures on Distributed Computing Theory, 4(1):1–171, 2013.

[Ber58] C. Berge. Théorie des graphes et ses applications. Collection universitaire de mathé-
matiques. Dunod, 1958.

[Ber73] C. Berge. Graphs and Hypergraphs. Graphs and Hypergraphs. North-Holland Pub-
lishing Company, 1973.

[Ber84] A. Bertossi. Dominating sets for split and bipartite graphs. Information Processing
Letters, 19(1):37–40, 1984.

176 Paul Ouvrard



BIBLIOGRAPHY

[BFH94] H. L. Bodlaender, M. R. Fellows, and M. T. Hallett. Beyond NP-Completeness for
Problems of Bounded Width (Extended Abstract): Hardness for the W Hierarchy.
In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing,
STOC ’94, page 449–458, New York, NY, USA, 1994. Association for Computing
Machinery.

[BHI+19] M. Bonamy, M. Heinrich, T. Ito, Y. Kobayashi, H. Mizuta, M. Mühlenthaler,
A. Suzuki, and K. Wasa. Diameter of Colorings Under Kempe Changes. In Lecture
Notes in Computer Science, pages 52–64. Springer International Publishing, 2019.

[BHIM19] N. Bousquet, T. Hatanaka, T. Ito, and M. Mühlenthaler. Shortest Reconfigura-
tion of Matchings. In Graph-Theoretic Concepts in Computer Science, pages 162–174.
Springer International Publishing, 2019.

[BIK+20] N. Bousquet, T. Ito, Y. Kobayashi, H. Mizuta, P. Ouvrard, A. Suzuki, and K. Wasa.
Reconfiguration of Spanning Trees with Many or Few Leaves. In F. Grandoni,
G. Herman, and P. Sanders, editors, 28th Annual European Symposium on Algorithms
(ESA 2020), volume 173 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 24:1–24:15, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik.

[BJO20] N. Bousquet, A. Joffard, and P. Ouvrard. Linear Transformations Between Domi-
nating Sets in the TAR-Model. In Y. Cao, S.-W. Cheng, and M. Li, editors, 31st In-
ternational Symposium on Algorithms and Computation (ISAAC 2020), volume 181 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 37:1–37:14, Dagstuhl,
Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[BKW14] P. Bonsma, M. Kamiński, and M. Wrochna. Reconfiguring Independent Sets in
Claw-Free Graphs. In R. Ravi and I. L. Gortz, editors, Algorithm Theory – SWAT
2014, pages 86–97, Cham, 2014. Springer International Publishing.

[BM86] H.-J. Bandelt and H. M. Mulder. Distance-hereditary graphs. Journal of Combinato-
rial Theory, Series B, 41(2):182 – 208, 1986.

[BMNR14] P. Bonsma, A. E. Mouawad, N. Nishimura, and V. Raman. The complexity of
bounded length graph recoloring and CSP reconfiguration. In International Sympo-
sium on Parameterized and Exact Computation, pages 110–121. Springer, 2014.

[BMOS20] A. Blanché, H. Mizuta, P. Ouvrard, and A. Suzuki. Decremental Optimization of
Dominating Sets Under the Reconfiguration Framework. In L. Gąsieniec, R. Klas-
ing, and T. Radzik, editors, Combinatorial Algorithms, pages 69–82, Cham, 2020.
Springer International Publishing.

[BMP17] N. Bousquet, A. Mary, and A. Parreau. Token Jumping in Minor-Closed Classes.
In R. Klasing and M. Zeitoun, editors, Fundamentals of Computation Theory, pages
136–149, Berlin, Heidelberg, 2017. Springer Berlin Heidelberg.

[Bod96] H. L. Bodlaender. A Linear-Time Algorithm for Finding Tree-Decompositions of
Small Treewidth. SIAM Journal on Computing, 25(6):1305–1317, December 1996.

[Bon12] P. Bonsma. The Complexity of Rerouting Shortest Paths. In Mathematical Founda-
tions of Computer Science 2012, pages 222–233. Springer Berlin Heidelberg, 2012.

[Bon16] P. S. Bonsma. Independent Set Reconfiguration in Cographs and their Generaliza-
tions. Journal of Graph Theory, 83(2):164–195, 2016.

Reconfiguration problems in graphs 177



BIBLIOGRAPHY

[BOR+18] M. Bonamy, P. Ouvrard, M. Rabie, J. Suomela, and J. Uitto. Distributed Recoloring.
In U. Schmid and J. Widder, editors, Proceedings of DISC 2018, volume 121 of LIPIcs,
pages 12:1–12:17. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

[BP16] N. Bousquet and G. Perarnau. Fast recoloring of sparse graphs. European Journal
of Combinatorics, 52:1–11, 2016.

[BPTW10] J. Böttcher, K. P. Pruessmann, A. Taraz, and A. Würfl. Bandwidth, expansion,
treewidth, separators and universality for bounded-degree graphs. European Jour-
nal of Combinatorics, 31(5):1217 – 1227, 2010.

[Bro41] R. L. Brooks. On colouring the nodes of a network. Mathematical Proceedings of the
Cambridge Philosophical Society, 37(2):194–197, April 1941.

[BRW85] E. A. Bender, L. B. Richmond, and N. C. Wormald. Almost all chordal graphs
split. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and
Statistics, 38(2):214–221, April 1985.

[Bv'HKP17] R. Belmonte, P. van 't Hof, M. Kamiński, and D. Paulusma. The price of connec-
tivity for feedback vertex set. Discrete Applied Mathematics, 217:132–143, January
2017.

[Bü60] J. R. Büchi. Weak Second-Order Arithmetic and Finite Automata. Mathematical
Logic Quarterly, 6(1-6):66–92, 1960.

[CFK+15] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer Publishing Com-
pany, Incorporated, 1st edition, 2015.

[CGH75] E. Cockayne, S. Goodman, and S. Hedetniemi. A linear algorithm for the domina-
tion number of a tree. Information Processing Letters, 4(2):41–44, November 1975.

[CH77] E. J. Cockayne and S. T. Hedetniemi. Towards a theory of domination in graphs.
Networks, 7(3):247–261, 1977.

[Cha98] M.-S. Chang. Efficient Algorithms for the Domination Problems on Interval and
Circular-Arc Graphs. SIAM Journal on Computing, 27(6):1671–1694, December 1998.

[CHHH11] E. Connelly, K. R. Hutson, S. T. Hedetniemi, and T. Haynes. A Note on γ-Graphs.
AKCE International Journal of Graphs and Combinatorics, 8(1):23–31, 2011.

[CHM78] E. J. Cockayne, S. T. Hedetniemi, and D. J. Miller. Properties of Hereditary Hyper-
graphs and Middle Graphs. Canadian Mathematical Bulletin, 21(4):461–468, Decem-
ber 1978.

[CHR20] K. Censor-Hillel and M. Rabie. Distributed reconfiguration of maximal indepen-
dent sets. Journal of Computer and System Sciences, 112:85–96, September 2020.

[CKP16] Y.-J. Chang, T. Kopelowitz, and S. Pettie. An Exponential Separation between Ran-
domized and Deterministic Complexity in the LOCAL Model. In Foundations of
Computer Science (FOCS), pages 615–624, 2016.

[CKX10] J. Chen, I. Kanj, and G. Xia. Improved upper bounds for vertex cover. Theoretical
Computer Science, 411(40):3736 – 3756, 2010.

[CL10] J. Cardinal and E. Levy. Connected vertex covers in dense graphs. Theoretical
Computer Science, 411(26-28):2581–2590, June 2010.

178 Paul Ouvrard



BIBLIOGRAPHY

[CLB81] D. Corneil, H. Lerchs, and L. Burlingham. Complement reducible graphs. Discrete
Applied Mathematics, 3(3):163 – 174, 1981.

[CM93] E. Cockayne and C. Mynhardt. The sequence of upper and lower domination,
independence and irredundance numbers of a graph. Discrete Mathematics, 122(1-
3):89–102, November 1993.

[CN84] G. J. Chang and G. L. Nemhauser. The k-Domination and k-Stability Problems on
Sun-Free Chordal Graphs. SIAM Journal on Algebraic Discrete Methods, 5(3):332–345,
September 1984.

[Coo71] S. A. Cook. The Complexity of Theorem-Proving Procedures. In Proceedings of
the Third Annual ACM Symposium on Theory of Computing, STOC ’71, page 151–158,
New York, NY, USA, 1971. Association for Computing Machinery.

[Cou90] B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Information and Computation, 85(1):12 – 75, 1990.

[CP84] D. Corneil and Y. Perl. Clustering and domination in perfect graphs. Discrete
Applied Mathematics, 9(1):27–39, September 1984.

[CS14] E. Camby and O. Schaudt. The price of connectivity for dominating set: Upper
bounds and complexity. Discrete Applied Mathematics, 177:53–59, November 2014.

[CV86] R. Cole and U. Vishkin. Deterministic coin tossing and accelerating cascades: mi-
cro and macro techniques for designing parallel algorithms. In Proceedings of the
eighteenth annual ACM symposium on Theory of computing - STOC '86. ACM Press,
1986.

[CvdHJ08] L. Cereceda, J. van den Heuvel, and M. Johnson. Connectedness of the graph of
vertex-colourings. Discrete Mathematics, 308(5):913 – 919, 2008. Selected Papers
from 20th British Combinatorial Conference.

[CVdHJ09] L. Cereceda, J. Van den Heuvel, and M. Johnson. Mixing 3-colourings in bipartite
graphs. European Journal of Combinatorics, 30(7):1593–1606, 2009.

[CVDHJ11] L. Cereceda, J. Van Den Heuvel, and M. Johnson. Finding paths between 3-
colorings. Journal of graph theory, 67(1):69–82, 2011.

[DDF+16] P. Drange, M. Dregi, F. Fomin, S. Kreutzer, D. Lokshtanov, M. Pilipczuk,
M. Pilipczuk, F., F. Villaamil, S. Saurabh, S. Siebertz, and S.Sikdar. Kernelization
and sparseness: the case of dominating set. In 33rd Symposium on Theoretical Aspects
of Computer Science (STACS 2016), pages 31:1–31:14, 2016.

[DDJS20] M. DeVos, A. Dyck, J. Jedwab, and S. Simon. Which Graphs Occur as γ-Graphs?
Graphs Comb., 36(4):1219–1246, 2020.

[DF95] R. G. Downey and M. R. Fellows. Fixed-Parameter Tractability and Completeness
I: Basic Results. SIAM Journal on Computing, 24(4):873–921, August 1995.

[DF99] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Com-
puter Science. Springer, 1999.

[DF13] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.
Springer London, 2013.

Reconfiguration problems in graphs 179



BIBLIOGRAPHY

[DFHT05] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos. Subexponential
parameterized algorithms on bounded-genus graphs and H-minor-free graphs.
Journal of the ACM, 52(6):866–893, November 2005.

[DK09] A. Dawar and S. Kreutzer. Domination Problems in Nowhere-Dense Classes. In
R. Kannan and K. N. Kumar, editors, IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, volume 4 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 157–168, Dagstuhl, Germany, 2009.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[DKR15] P. Dorbec, G. Košmrlj, and G. Renault. The domination game played on unions of
graphs. Discrete Math., 338(1):71–79, 2015.

[DM82] P. Duchet and H. Meyniel. On Hadwiger’s number and the stability number. Ann.
Discr. Math., 13:71–74, 1982.

[Dou92] R. J. Douglas. NP-completeness and degree restricted spanning trees. Discrete
Mathematics, 105(1-3):41–47, August 1992.

[Edm65] J. Edmonds. Paths, Trees, and Flowers. Canadian Journal of Mathematics, 17:449–467,
1965.

[EFF04] J. Ellis, H. Fan, and M. Fellows. The dominating set problem is fixed parameter
tractable for graphs of bounded genus. Journal of Algorithms, 52(2):152–168, August
2004.

[Elg61] C. C. Elgot. Decision Problems of Finite Automata Design and Related Arith-
metics. Transactions of the American Mathematical Society, 98(1):21–51, 1961.

[EMN18] M. Edwards, G. MacGillivray, and S. Nasserasr. Reconfiguring minimum dominat-
ing sets: the γ-graph of a tree. Discussiones Mathematicae Graph Theory, 38(3):703,
2018.

[FB02] G. W. Flake and E. B. Baum. Rush Hour is PSPACE-complete, or “Why you should
generously tip parking lot attendants”. Theoretical Computer Science, 270(1):895 –
911, 2002.

[FG65] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific J.
Math., 15(3):835–855, 1965.

[FH77] S. Foldes and P. L. Hammer. Split graphs. In Proceedings of the Eighth Southeast-
ern Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ.,
Baton Rouge, La., 1977), pages 311–315, 1977.

[FHHH11] G. Fricke, S. M. Hedetniemi, S. T. Hedetniemi, and K. R. Hutson. γ-graphs of
graphs. Discussiones Mathematicae Graph Theory, 31(3):517–531, 2011.

[FHL05] U. Feige, M. Hajiaghayi, and J. R. Lee. Improved Approximation Algorithms for
Minimum-Weight Vertex Separators. In Proceedings of the Thirty-Seventh Annual
ACM Symposium on Theory of Computing, STOC ’05, page 563–572, New York, NY,
USA, 2005. Association for Computing Machinery.

[FJP16] C. Feghali, M. Johnson, and D. Paulusma. A Reconfigurations Analogue of Brooks’
Theorem and Its Consequences. Journal of Graph Theory, 83(4):340–358, 2016.

180 Paul Ouvrard



BIBLIOGRAPHY

[FJP17] C. Feghali, M. Johnson, and D. Paulusma. Kempe equivalence of colourings of
cubic graphs. European Journal of Combinatorics, 59:1–10, 2017.

[FT87] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved net-
work optimization algorithms. Journal of the ACM, 34(3):596–615, July 1987.

[FT06] F. V. Fomin and D. M. Thilikos. Dominating Sets in Planar Graphs: Branch-Width
and Exponential Speed-Up. SIAM Journal on Computing, 36(2):281–309, January
2006.

[Gav74] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal
graphs. Journal of Combinatorial Theory, Series B, 16(1):47 – 56, 1974.

[Gav20] C. Gavoille. Analyse d’algorithme. Lecture notes, Université de Bordeaux, 2020.

[GGR20] M. Ghaffari, C. Grunau, and V. Rozhoň. Improved Deterministic Network Decom-
position. CoRR, abs/2007.08253, 2020.

[GH64] P. C. Gilmore and A. J. Hoffman. A Characterization of Comparability Graphs and
of Interval Graphs. Canadian Journal of Mathematics, 16:539–548, 1964.

[GHKM18] M. Ghaffari, J. Hirvonen, F. Kuhn, and Y. Maus. Improved Distributed Delta-
Coloring. In Proceedings of the 2018 ACM Symposium on Principles of Distributed
Computing. ACM, July 2018.

[GJ79] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco, CA, 1979.

[GKM19] M. Gupta, H. Kumar, and N. Misra. On the Complexity of Optimal Matching
Reconfiguration. In SOFSEM 2019: Theory and Practice of Computer Science, pages
221–233. Springer International Publishing, 2019.

[GKMP09] P. Gopalan, P. G. Kolaitis, E. Maneva, and C. H. Papadimitriou. The Connectiv-
ity of Boolean Satisfiability: Computational and Structural Dichotomies. SIAM J.
Comput., 38(6):2330–2355, March 2009.

[GMAV62] E. M. L. G. M. Adelson-Velskii. An algorithm for organization of information. Dokl.
Akad. Nauk SSSR, 146(2), 1962.

[GPS88] A. V. Goldberg, S. A. Plotkin, and G. E. Shannon. Parallel Symmetry-Breaking
in Sparse Graphs. SIAM Journal on Discrete Mathematics, 1(4):434–446, November
1988.

[HD05] R. Hearn and E. Demaine. PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computa-
tion. Theoretical Computer Science, 343(1–2):72–96, 2005.

[HHS97] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Domination in graphs : advanced
topics. Marcel Dekker, New York, 1997.

[HHS98] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of domination in graphs.
Marcel Dekker, 1998.

[HIM+16] A. Haddadan, T. Ito, A. E. Mouawad, N. Nishimura, H. Ono, A. Suzuki, and
Y. Tebbal. The Complexity of Dominating Set Reconfiguration. Theor. Comput.
Sci., 651(C):37–49, October 2016.

Reconfiguration problems in graphs 181



BIBLIOGRAPHY

[HIM+18] T. Hanaka, T. Ito, H. Mizuta, B. Moore, N. Nishimura, V. Subramanya, A. Suzuki,
and K. Vaidyanathan. Reconfiguring Spanning and Induced Subgraphs. In Lecture
Notes in Computer Science, pages 428–440. Springer International Publishing, 2018.

[HK20] T. Hulcová and T. Klimošvá. Personal communication, 2020.

[HMPV00] M. Habib, R. McConnell, C. Paul, and L. Viennot. Lex-BFS and partition refine-
ment, with applications to transitive orientation, interval graph recognition and
consecutive ones testing. Theoretical Computer Science, 234(1):59 – 84, 2000.

[HNU99] F. Hurtado, M. Noy, and J. Urrutia. Flipping Edges in Triangulations. Discrete &
Computational Geometry, 22(3):333–346, October 1999.

[HP05] M. Habib and C. Paul. A simple linear time algorithm for cograph recognition.
Discrete Applied Mathematics, 145(2):183 – 197, 2005. Structural Decompositions,
Width Parameters, and Graph Labelings.

[HS14] R. Haas and K. Seyffarth. The k-Dominating Graph. Graphs and Combinatorics,
30(3):609–617, May 2014.

[HS17] R. Haas and K. Seyffarth. Reconfiguring dominating sets in some well-covered
and other classes of graphs. Discrete Mathematics, 340(8):1802 – 1817, 2017.

[HS20] J. Hirvonen and J. Suomela. Distributed Algorithms. Textbook, Aalto University,
2020.

[IDH+08] T. Ito, E. D. Demaine, N. J. A. Harvey, C. H. Papadimitriou, M. Sideri, R. Uehara,
and Y. Uno. On the Complexity of Reconfiguration Problems. In Algorithms and
Computation, 19th International Symposium, ISAAC 2008, Gold Coast, Australia, De-
cember 15-17, 2008. Proceedings, pages 28–39, 2008.

[IKK+19] T. Ito, N. Kakimura, N. Kamiyama, Y. Kobayashi, and Y. Okamoto. Shortest Re-
configuration of Perfect Matchings via Alternating Cycles. In 27th Annual Euro-
pean Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching,
Germany, pages 61:1–61:15, 2019.

[IKO14] T. Ito, M. Kamiński, and H. Ono. Fixed-Parameter Tractability of Token Jumping
on Planar Graphs. In Algorithms and Computation, pages 208–219. Springer Inter-
national Publishing, 2014.

[IKO+20] T. Ito, M. Kamiński, H. Ono, A. Suzuki, R. Uehara, and K. Yamanaka. Parame-
terized complexity of independent set reconfiguration problems. Discrete Applied
Mathematics, 283:336–345, September 2020.

[IMNS19] T. Ito, H. Mizuta, N. Nishimura, and A. Suzuki. Incremental Optimization of Inde-
pendent Sets Under the Reconfiguration Framework. In Computing and Combina-
torics - 25th International Conference, COCOON 2019, Xi’an, China, July 29-31, 2019,
Proceedings, pages 313–324, 2019.

[INZ15] T. Ito, H. Nooka, and X. Zhou. Reconfiguration of Vertex Covers in a Graph. In
K. Jan, M. Miller, and D. Froncek, editors, Combinatorial Algorithms, pages 164–175,
Cham, 2015. Springer International Publishing.

[Jer95] M. Jerrum. A very simple algorithm for estimating the number of k-colorings of a
low-degree graph. Random Structures & Algorithms, 7(2):157–165, 1995.

182 Paul Ouvrard



BIBLIOGRAPHY

[Jof20] A. Joffard. Graph domination and reconfiguration problems. PhD thesis, Université
Claude Bernard Lyon 1, 2020.

[Kar72] R. M. Karp. Reducibility among Combinatorial Problems. In R. E. Miller, J. W.
Thatcher, and J. D. Bohlinger, editors, Complexity of Computer Computations: Pro-
ceedings of a symposium on the Complexity of Computer Computations, held March 20–
22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York,
and sponsored by the Office of Naval Research, Mathematics Program, IBM World Trade
Corporation, and the IBM Research Mathematical Sciences Department, pages 85–103.
Springer US, Boston, MA, 1972.

[KBMK93] T. Kloks, H. Bodlaender, H. Müller, and D. Kratsch. Computing treewidth and
minimum fill-in: All you need are the minimal separators. In Algorithms—ESA
'93, pages 260–271. Springer Berlin Heidelberg, 1993.

[Kei93] J. Keil. The complexity of domination problems in circle graphs. Discrete Applied
Mathematics, 42(1):51 – 63, 1993.

[Kem79] A. B. Kempe. On the geographical problem of the four colours. American Journal
of Mathematics, 2(3):193–200, 1879.

[KMM12] M. Kamiński, P. Medvedev, and M. Milanič. Complexity of independent set recon-
figurability problems. Theoretical Computer Science, 439:9 – 15, 2012.

[KS93] E. Korach and N. Solel. Tree-width, path-width, and cutwidth. Discrete Applied
Mathematics, 43(1):97 – 101, 1993.

[Kur30] C. Kuratowski. Sur le problème des courbes gauches en Topologie. Fundamenta
Mathematicae, 15(1):271–283, 1930.

[Law72] C. L. Lawson. Transforming triangulations. Discrete Mathematics, 3(4):365 – 372,
1972.

[Lev73] L. A. Levin. Universal Sequential Search Problems. Problems of Information Trans-
mission, 9(3), 1973.

[Lev09] E. Levy. Approximation Algorithms for Covering Problems in Dense Graphs. PhD thesis,
Université Libre de Bruxelles, 2009.

[LFMW17] S. Li, Q. Feng, X. Meng, and J. Wang. An Improved FPT Algorithm for the Flip Dis-
tance Problem. In K. G. Larsen, H. L. Bodlaender, and J.-F. Raskin, editors, 42nd
International Symposium on Mathematical Foundations of Computer Science (MFCS
2017), volume 83 of Leibniz International Proceedings in Informatics (LIPIcs), pages
65:1–65:13, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik.

[Lin92] N. Linial. Locality in Distributed Graph Algorithms. SIAM Journal on Computing,
21(1):193–201, February 1992.

[LM18] D. Lokshtanov and A. E. Mouawad. The complexity of independent set reconfig-
uration on bipartite graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10,
2018, pages 185–195, 2018.

[LMP+18] D. Lokshtanov, A. Mouawad, F. Panolan, M. Ramanujan, and S. Saurabh. Recon-
figuration on sparse graphs. J. Comput. Syst. Sci., 95:122–131, 2018.

Reconfiguration problems in graphs 183



BIBLIOGRAPHY

[LMPS19] D. Lokshtanov, A. E. Mouawad, F. Panolan, and S. Siebertz. On the Parame-
terized Complexity of Reconfiguration of Connected Dominating Sets. CoRR,
abs/1910.00581, 2019.

[LP15] A. Lubiw and V. Pathak. Flip distance between two triangulations of a point set is
NP-complete. Computational Geometry, 49:17–23, November 2015.

[LVA10] S. A. Lakshmanan, A. Vijayakumar, and S. Arumugam. The gamma graph of a
graph. AKCE International Journal of Graphs and Combinatorics, 7(1):53–59, 2010.

[LŻ20] M. Lemańska and P. Żyliński. Reconfiguring Minimum Dominating Sets in Trees.
Journal of Graph Algorithms and Applications, 24(1):47–61, 2020.

[Mad68] W. Mader. Homomorphiesätze für Graphen. Math. Ann., 178:154–168, 1968.

[McD15] D. C. McDonald. Connectedness and Hamiltonicity of graphs on vertex colorings.
arXiv preprint arXiv:1507.05344, 2015.

[MCH79] S. Mitchell, E. Cockayne, and S. Hedetniemi. Linear algorithms on recursive rep-
resentations of trees. Journal of Computer and System Sciences, 18(1):76 – 85, 1979.

[MHIZ19] H. Mizuta, T. Hatanaka, T. Ito, and X. Zhou. Reconfiguration of Minimum Steiner
Trees via Vertex Exchanges. In 44th International Symposium on Mathematical Foun-
dations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen, Germany., pages
79:1–79:11, 2019.

[MIZ16] H. Mizuta, T. Ito, and X. Zhou. Reconfiguration of Steiner Trees in an Unweighted
Graph. In V. Mäkinen, S. J. Puglisi, and L. Salmela, editors, Combinatorial Algo-
rithms, pages 163–175, Cham, 2016. Springer International Publishing.

[MNPR15] A. E. Mouawad, N. Nishimura, V. Pathak, and V. Raman. Shortest Reconfigura-
tion Paths in the Solution Space of Boolean Formulas. In Automata, Languages, and
Programming, pages 985–996. Springer Berlin Heidelberg, 2015.

[MNR14] A. Mouawad, N. Nishimura, and V. Raman. Vertex cover reconfiguration and
beyond. In Proceedings of the 25th International Symposium on Algorithms and Com-
putation (ISAAC 2014), pages 452–463, 2014.

[MNR+17] A. Mouawad, N. Nishimura, V. Raman, N. Simjour, and A. Suzuki. On the Pa-
rameterized Complexity of Reconfiguration Problems. Algorithmica, 78(1):274–297,
2017.

[MNRW14] A. E. Mouawad, N. Nishimura, V. Raman, and M. Wrochna. Reconfiguration
over Tree Decompositions. In Parameterized and Exact Computation, pages 246–257.
Springer International Publishing, 2014.

[Moh07] B. Mohar. Kempe Equivalence of Colorings. In A. Bondy, J. Fonlupt, J.-L. Fouquet,
J.-C. Fournier, and J. L. Ramírez Alfonsín, editors, Graph Theory in Paris: Proceedings
of a Conference in Memory of Claude Berge, pages 287–297. Birkhäuser Basel, Basel,
2007.

[Mou15] A. Mouawad. On Reconfiguration Problems: Structure and Tractability. PhD thesis,
University of Waterloo, 2015.

[MR89] G. L. Miller and J. H. Reif. Parallel Tree Contraction Part 1: Fundamentals. Advances
in Computing Research, 5:47–72, 1989.

184 Paul Ouvrard



BIBLIOGRAPHY

[MS88] B. Monien and I. Sudborough. Min cut is NP-complete for edge weighted trees.
Theoretical Computer Science, 58(1-3):209–229, June 1988.

[MS99] R. M. McConnell and J. P. Spinrad. Modular decomposition and transitive orien-
tation. Discrete Mathematics, 201(1-3):189–241, April 1999.

[MTR19] C. Mynhardt, L. Teshima, and A. Roux. Connected k-dominating graphs. Discrete
Mathematics, 342(1):145–151, January 2019.

[MW15] E. A. Marshall and D. R. Wood. Circumference and Pathwidth of Highly Con-
nected Graphs. Journal of Graph Theory, 79(3):222–232, 2015.

[NDM08] J. Nešetřil and P. O. De Mendez. Structural Properties of Sparse Graphs. In
M. Grötschel, G. O. H. Katona, and G. Sági, editors, Building Bridges: Between Math-
ematics and Computer Science, pages 369–426. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008.

[Nis18] N. Nishimura. Introduction to Reconfiguration. Algorithms, 11(4):52, 2018.

[NS95] M. Naor and L. Stockmeyer. What can be computed locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995.

[NS01] F. Nicolai and T. Szymczak. Homogeneous sets and domination: A linear time
algorithm for distance—hereditary graphs. Networks, 37(3):117–128, 2001.

[Ore62] Ø. Ore. Theory of Graphs. Colloquium Publications 2473-3946. American Mathe-
matical Society, 1962.

[Pap76] C. H. Papadimitriou. The NP-Completeness of the bandwidth minimization prob-
lem. Computing, 16(3):263–270, September 1976.

[Pap94] C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[Pel00] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial
and Applied Mathematics, January 2000.

[Pil14] A. Pilz. Flip distance between triangulations of a planar point set is APX-hard.
Computational Geometry, 47(5):589–604, July 2014.

[PS92] A. Panconesi and A. Srinivasan. Improved distributed algorithms for coloring and
network decomposition problems. In Proceedings of the twenty-fourth annual ACM
symposium on Theory of computing, pages 581–592. ACM, 1992.

[PS95] A. Panconesi and A. Srinivasan. The local nature of ∆-coloring and its algorithmic
applications. Combinatorica, 15(2):255–280, 1995.

[Ree92] B. A. Reed. Finding approximate separators and computing tree width quickly.
In Proceedings of the twenty-fourth annual ACM symposium on Theory of computing -
STOC '92. ACM Press, 1992.

[RG20] V. Rozhoň and M. Ghaffari. Polylogarithmic-Time Deterministic Network Decom-
position and Distributed Derandomization. In Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020, page 350–363, New York,
NY, USA, 2020. Association for Computing Machinery.

[Rou73] N. D. Roussopoulos. A max {m, n} algorithm for determining the graph H from
its line graph G. Information Processing Letters, 2(4):108–112, October 1973.

Reconfiguration problems in graphs 185



BIBLIOGRAPHY

[RR20] D. Rautenbach and J. Redl. Reconfiguring dominating sets in minor-closed graph
classes. CoRR, abs/2005.13844, 2020.

[RS84] N. Robertson and P. Seymour. Graph minors. III. Planar tree-width. Journal of
Combinatorial Theory, Series B, 36(1):49 – 64, 1984.

[RT75] D. J. Rose and R. E. Tarjan. Algorithmic Aspects of Vertex Elimination on Directed
Graphs. Technical report, Stanford, CA, USA, 1975.

[Sav70] W. J. Savitch. Relationships between nondeterministic and deterministic tape com-
plexities. Journal of Computer and System Sciences, 4(2):177 – 192, 1970.

[Sbi80] N. Sbihi. Algorithme de recherche d’un stable de cardinalite maximum dans un
graphe sans etoile. Discrete Mathematics, 29(1):53–76, 1980.

[Sch78] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth
annual ACM symposium on Theory of computing - STOC’78. ACM Press, 1978.

[Sch14] K. W. Schwerdtfeger. A Computational Trichotomy for Connectivity of
Boolean Satisfiability. Journal on Satisfiability, Boolean Modeling and Computation,
8(3–4):173–195, June 2014.

[SM88] D. Sumner and J. Moore. Domination perfect graphs. Notice Amer.Math.Soc.26, 1988.

[SMN14] A. Suzuki, A. E. Mouawad, and N. Nishimura. Reconfiguration of Dominating
Sets. In Computing and Combinatorics - 20th International Conference, COCOON 2014,
Atlanta, GA, USA, August 4-6, 2014. Proceedings, pages 405–416, 2014.

[SS08] N. S. Sridharan and K. Subramanian. γ-Graph of a graph. Bull. Kerala Math. Assoc,
5:17–34, 2008.

[STT86] D. D. Sleator, R. E. Tarjan, and W. P. Thurston. Rotation Distance, Triangulations,
and Hyperbolic Geometry. In Proceedings of the Eighteenth Annual ACM Sympo-
sium on Theory of Computing, STOC ’86, page 122–135, New York, NY, USA, 1986.
Association for Computing Machinery.

[Sum90] D. P. Sumner. Critical concepts in domination. Discrete Mathematics, 86(1-3):33–46,
December 1990.

[Suo13] J. Suomela. Survey of local algorithms. ACM Computing Surveys, 45(2):1–40, Febru-
ary 2013.

[SW79] E. Sampathkumar and H. B. Walikar. The connected domination number of a
graph. J. Math. Phys, 13(6):607–613, 1979.

[Tho84] A. Thomason. An extremal function for contractions of graphs. Mathematical Pro-
ceedings of the Cambridge Philosophical Society, 95(2):261–265, 1984.

[Tho99] M. Thorup. Undirected single-source shortest paths with positive integer weights
in linear time. Journal of the ACM, 46(3):362–394, May 1999.

[Tra61] B. A. Trakhtenbrot. Finite automata and the logic of single-place predicates. Dokl.
Akad. Nauk SSSR, 140(1):326–329, 1961.

[Tse83] G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus. In Au-
tomation of Reasoning, pages 466–483. Springer Berlin Heidelberg, 1983.

186 Paul Ouvrard



BIBLIOGRAPHY

[Tur36] A. M. Turing. On Computable Numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42:230–265, 1936.

[TV12] J. A. Telle and Y. Villanger. FPT Algorithms for Domination in Biclique-Free
Graphs. In Algorithms – ESA 2012, pages 802–812. Springer Berlin Heidelberg,
2012.

[vdH13] J. van den Heuvel. The complexity of change. In S. R. Blackburn, S. Gerke, and
M. Wildon, editors, Surveys in Combinatorics, volume 409 of London Mathematical
Society Lecture Note Series, pages 127–160. Cambridge University Press, 2013.

[vdZ15] T. C. van der Zanden. Parameterized Complexity of Graph Constraint Logic. In
T. Husfeldt and I. Kanj, editors, 10th International Symposium on Parameterized and
Exact Computation (IPEC 2015), volume 43 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 282–293, Dagstuhl, Germany, 2015. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[WL99] J. Wu and H. Li. On calculating connected dominating set for efficient routing in
ad hoc wireless networks. In Proceedings of the 3rd international workshop on Discrete
algorithms and methods for mobile computing and communications - DIALM '99. ACM
Press, 1999.

[Wro18] M. Wrochna. Reconfiguration in bounded bandwidth and tree-depth. Journal of
Computer and System Sciences, 93:1 – 10, 2018.

[YG80] M. Yannakakis and F. Gavril. Edge Dominating Sets in Graphs. SIAM Journal on
Applied Mathematics, 38(3):364–372, June 1980.

[Zve03] I. E. Zverovich. Perfect connected-dominant graphs. Discussiones Mathematicae
Graph Theory, 23(1):159, 2003.

[ZZ95] I. E. Zvervich and V. E. Zverovich. An induced subgraph characterization of dom-
ination perfect graphs. Journal of Graph Theory, 20(3):375–395, November 1995.

Reconfiguration problems in graphs 187





Titre : Problèmes de reconfiguration dans les graphes

Dans cette thèse, nous nous intéressons à la théorie des graphes, et plus particulièrement à des problèmes
de reconfiguration. Pour un problème d’optimisation donné, l’objectif est alors d’étudier les relations exis-
tant entre les différentes solutions. Typiquement, est-il possible de transformer étape par étape une solution
en une autre à l’aide d’opérations élémentaires, de telle sorte que chaque étape intermédiaire soit également
une solution ?

Le problème au départ de cette thèse est celui d’ENSEMBLE DOMINANT, qui consiste à trouver un sous-
ensemble D de sommets tel que chaque sommet est dans D ou adjacent à un sommet de D. Nous étudions
la reconfiguration d’ensembles dominants sous deux opérations élémentaires différentes, principalement
d’un point de vue algorithmique. Nous donnons également des conditions nécessaires et suffisantes garan-
tissant qu’une transformation est toujours possible entre deux solutions données. Enfin, nous nous intéres-
sons à la complexité paramétrée d’une variante d’optimisation : étant donné un ensemble dominant D,
quel est le plus petit ensemble dominant que l’on peut atteindre depuis D sous certaines contraintes ?

Nous nous intéressons également à deux autres questions de reconfiguration. Nous étudions d’une part la
complexité de la reconfiguration d’arbres couvrants avec une contrainte sur le nombre de feuilles ; d’autre
part la recoloration dans le modèle LOCAL, un modèle de calcul distribué. Pour cette dernière question,
nous cherchons à optimiser à la fois le nombre de communications et d’étapes permettant de transformer
une coloration en une autre.

Mots-clés : graphes, reconfiguration, ensembles dominants

Title: Reconfiguration problems in graphs

In this thesis, we are interested in graph theory, and more specifically in reconfiguration problems. The goal
of this area is to study the relationship between the feasible solutions of a given combinatorial optimization
problem. Typically, is it possible to find a step-by-step transformation between two solutions thanks to an
elementary operation, in such a way that every intermediate step is also a solution to the problem?

The original problem of this thesis is the so-called DOMINATING SET problem, which consists in finding a
subset D of vertices such that each vertex either belongs to D or is adjacent to a vertex in D. We study the
reconfiguration of dominating sets under two different elementary operations, mainly from an algorithmic
point of view. We also provide necessary and sufficient conditions to ensure that a transformation always
exists between two given solutions. Finally, we are interested in the parameterized complexity of an opti-
mization variant: given a dominating set D, what is the smallest dominating set that is reachable from D
under certain constraints?

We are also interested in two other reconfiguration problems. First, we study the complexity of spanning
trees reconfiguration with some constraints with respect to the number of leaves. Finally, we introduce
recoloring in the LOCAL model in Distributed Computing. In this last problem, we seek to optimize both
the number of communication rounds and the number of steps between the two colorings.

Keywords: graphs, reconfiguration, dominating sets

Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Unité Mixte de Recherche CNRS (UMR 5800)

351 cours de la Libération, 33400 Talence, France




	Contents
	Introduction (in French)
	Introduction
	Preliminaries
	Basic definitions
	A few words on finite sets
	Basic definitions on graphs

	Some graph classes
	Simple graph classes
	Chordal graphs and related subclasses
	Planar graphs and cographs

	Computational complexity
	Decision problems and Turing machines
	Some complexity classes and completeness
	Parameterized complexity

	Some graph problems
	Independent set, vertex cover, k-coloring
	Treewidth, pathwidth and graph bandwidth

	Combinatorial reconfiguration
	Illustration of the problem
	Formalization
	Complexity of reconfiguration problems
	Example of reconfiguration problems
	Defining an adjacency rule


	Domination in graphs
	Introduction on domination
	History
	Definitions and simple results
	Relation with other graph parameters
	Computational complexity

	Price of Connectivity for domination
	Introduction
	PoC-Near-Perfect graphs with threshold two
	Concluding remarks


	Reconfiguration of dominating sets
	Connectivity of the reconfiguration graph under TAR
	Introduction
	Upper bound related to the independence number
	H-minor free graphs
	Bounded treewidth graphs
	Concluding remarks

	Complexity under Token Sliding
	Introduction
	PSPACE-completeness results
	Polynomial-time algorithms
	Concluding remarks

	Optimization variants
	Introduction
	Polynomial-time (in)tractability
	Parameterized complexity of OPT-DSR
	Changing the target dominating set
	Concluding remarks


	Other reconfiguration problems
	Reconfiguration of spanning trees with many or few leaves
	Introduction
	Spanning tree with many leaves
	Spanning trees with few leaves
	Concluding remarks

	Distributed recoloring
	Introduction
	Definition of the problem
	Warmup – simple results
	Recoloring algorithm for trees
	Recoloring algorithm for subcubic graphs
	Concluding remarks


	Conclusion
	Bibliography

