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Présentée et à soutenir par Juan Carlos ARCEO LUZANILLA.

Le 23/04/2021, à Valenciennes
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Résumé

L’AVC est l’une des principales causes d’invalidité à long terme et de décès dans le

monde, il existe plusieurs facteurs ou indicateurs qui pourraient influencer la souffrance

de l’AVC tels que le vieillissement, le tabagisme, la consommation d’alcool, le cholestérol,

le stress psychologique auto-perçu, l’alimentation, l’exercice, le récent virus COVID-19,

entre autres causes. Les soins post-AVC représentent l’un des plus gros fardeaux pour

les systèmes de santé, le coût total de l’AVC dans l’Union européenne était estimé à plus

de 38 milliards d’euros par an en 2006.

Cette thèse porte sur le développement d’une interface cerveau-ordinateur hybride ca-

pable de coupler des données électrophysiologiques (signaux d’électroencéphalographie

et d’électromyographie) et des informations biomécaniques du sujet (force et moment)

pour produire une rééducation personnalisée de la cheville via un ergomètre motorisé,

développé au LAMIH, nommé comme le motoBOTTE. Le travail présenté dans ce

manuscrit a été divisé en deux thèmes principaux: 1) la modélisation et le contrôle

du dispositif de rééducation pour suivre des trajectoires prédéfinies et 2) la prise en

compte de l’interaction humaine avec le système, ceci en employant des modèles de

suivi de la cheville humaine et de création dynamique trajectoires à suivre par le robot

d’assistance.

La première partie consiste à obtenir différents modèles mathématiques du dispositif

de rééducation (chapitre 2), qui est un robot parallèle; puis, à l’aide de ces modèles,

différents contrôleurs sont conçus et implémentés en temps réel pour suivre des trajec-

toires prédéfinies (chapitres 3 et 4). Dans ce contexte, deux modèles ont été développés,

un premier est obtenu via une approche bôıte noire et le second utilisant une variante

de l’approche Euler-Lagrange pour les robots parallèles.

La deuxième partie traite du problème de la prise en compte d’un humain en interaction

avec des systèmes d’assistance robotique. Une première proposition est d’introduire un

modèle mathématique (chapitre 5) afin d’estimer l’estimation de la force de la cheville

via des signaux EMG en temps réel. La deuxième proposition concerne les signaux EEG

pour déclencher le mouvement du robot via l’imaginaire moteur, qui a été appliqué à la

conception d’un exosquelette de poignet imprimé en 3D à faible coût (chapitre 6).

Mots-clés: Rééducation motrice, robot parallèle, interface cerveau machine, équations

différentielles-algébriques, modélisation et contrôle de systèmes singuliers non linéaires,

estimation de la force par électromyographie, induction de plasticité neuronale.
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Abstract

Stroke is one of the leading causes of long-term disability and death worldwide. There

are several factors or indicators that might influence the probability of suffering of stroke

such as aging, smoking, alcohol intake, cholesterol, self-perceived psychological stress,

diet, physical inactivity, the recent COVID-19 virus, among other causes. Post-stroke

care represents one of the biggest burdens to health care systems, the total cost of stroke

in the European Union was estimated to be over e 38 billion per year in 2006.

There are many strategies that can be used to improve motor function recovery in

post-stroke rehabilitation such as functional electrical stimulation, transcranial magnetic

stimulation, standing balance, strength training, constrained induced movement, mental

practice with motor imaginary and robot assisted therapy. This thesis focuses on the de-

velopment of an hybrid brain computer interface capable of coupling electrophysiological

data (electroencephalography and electromyography signals) and biomechanical infor-

mation of the subject (force and moment produced by the ankle muscles) to produce a

personalized ankle rehabilitation via a motorized ergometer known as the motoBOTTE.

This work has been divided in two main topics : 1) modeling and control of the rehabil-

itation device for tracking predefined trajectories and 2) consider the human interaction

with the system, this by employing models for monitoring the human ankle and create

dynamical trajectories to be followed by the robot. The first part consists in obtaining

different mathematical models of the rehabilitation device (chapter 2), which is a par-

allel robot; then, using these models different controllers are designed and implemented

in real-time for tracking predefined trajectories (chapters 3 and 4). In this context, two

models have been developed, a first one is obtained via a black-box approach and the

second using a variant of the Euler-Lagrange approach for parallel robots. The second

part deals with the problem of considering a human interacting with robotic assistive

systems. A first proposal is to introduce a mathematical model (chapter 5) in order to

estimate ankle force estimation via EMG signals in real-time. The second proposal is

to EEG signals for triggering the robot movement via motor imaginary, which has been

applied to the design of a low-cost 3D printed exoskeleton (chapter 6). Finally, some

perspectives of this work are provided by the end of this manuscript (Chapter 7).

Keywords : Motor reeducation, parallel robot, brain computer interface, differential-

algebraic equations, modeling and control of nonlinear singular systems, force estimation

via electromyography, neural plasticity induction.
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ḋ Piston velocity m/s

Θ1 Angle of the robot rads

Θ̇1 Angular velocity of the robot rads/s

Θ2 Angle of the robot rads

Θ̇2 Angular velocity of the robot rads/s

γ1 Angle of the robot rads

γ2 Angle of the robot rads

l1 Length of the link 1 rads

l2 Length of the link 2 rads

l3 Length of the link 3 rads

l4 Length of the link 4 rads

l5 Length of the link 5 rads

m1 Mass 1 kg

m2 Mass 2 kg

m3 Mass 3 kg

xxvi



Symbols xxvii



Chapter 1

General introduction

This chapter provides background information about stroke and post-stroke rehabilita-

tion, and the state-of-the-art of the role of robots in assisted rehabilitation; the motiva-

tion, scope and list of publications of this work are presented after that.

1.1 Background and Motivation

Stroke is a disease in which there is a failure in supplying enough oxygen to brain cells

(interruption or leakage of blood supply) [1, 2]. The common symptoms are 1) numbness

or weakness of face, arm or leg, 2) loss of coordination during walking, 3) severe headache

with no apparent reason, 4) sudden confusion and 5) sudden trouble of sight [3].

The total economic cost of stroke in the European Union was estimated to be over e38

billion in 2006 [1, 4], this includes health care, loss of productivity and informal care. In

France, stroke is the third cause of death and leading cause of disability, the estimate

for 1-year cost of stroke health-care in 2000 was e 17 800 per patient [5].

Some of the consequences of stroke are permanent or long-term disabilities in approxi-

mately 39 % of the cases [3, 6], as example of these long-term impairments are hemiplegia

and paraplegia [7], which consists on paralysis of one side of the body or the lower limbs,

respectively. Since each case is different (it might be produced by different causes and

have different consequences), the nature of stroke recovery itself is heterogeneous [8];

this means that each case should be analyzed and treated with an ad-hoc strategy.

1
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Despite the many efforts, stroke is one of the major causes of death and disability

worldwide [8]. According to the World Health Organization (WHO) [9–11] and the

World Stroke Organization (WSO) [12] there are 13 million new cases every year, the

incidence rates of stroke have decreased due to a better prevention and control in risk

factors; but the number of people who had a stroke, died or were disabled due to stroke

has increased by almost two-fold from 1990 to 2016 [12]. There are several factors that

influence the risk of suffering from this cardiovascular disease such as :

• Aging, an augmentation on life expectancy of the global population has led to an

increasing in the group of people at risk of stroke [13]. The incidence of stroke

has been reported to increase from 2.28/1, 000 for patients in the range of 55− 64

years of age to 24.23/1, 000 in patients over 80 years of age [6].

• Heavy consumption of alcohol (60 g of alcohol per day, more than 5 drinks) in-

creases the relative risk of stroke; while light or moderate alcohol intake (12− 24

g/d) may protect against suffering ischemic stroke compared to abstainers (< 12

g/d) [14].

• Smoking status, environmental tobacco smokers (passive smokers) compared to

non-smokers and long-term ex-smokers have an increased risk of stroke (odds ratio,

OR=1.82); compared with people who reported never smoked cigarettes, active

smokers have a fourfold risk of stroke (OR=4.14) [15].

• Drug abuse, 4.8% of the world’s population consume illegal drugs each year, drug

abusers have an increased risk (OR=6.5) of presenting hemorrhagic and ischemic

stroke, the drugs commonly associated with stroke are stimulants such as cocaine

(OR=2.03-2.33) and amphetamine (OR=4.95) [16].

• Diabetes, the risk of stroke is increased in patients with diabetes mellitus (OR=1.5-

3) and risk of recurrence is doubled; patients with diabetes may develop silent lacu-

nar strokes and the levels of glycaemia (measured via HbA1c) have been reported

to be a risk factor for stroke fatality [2, 17].

• Psychological stress, a frequent activation of the sympathetic nervous system may

lead to hypertension and metabolic disturbances. Subjects that have reported

being under self-perceived permanent stress during the last year or more, had a

higher risk of stroke (OR=3.49), [18, 19].
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• Exercise, vigorous exercise once a week (enough for sweating) decreases the risk

by 21% (OR=0.79), no further risk reductions were reported at greater exercise

frequency [20].

• COVID-19, the infection itself has been described to be a risk factor [21]; addition-

ally, stroke patients seem to be more susceptible to develop severe complications

and death when suffering the infection. Moreover, the pandemic has led to impli-

cations on how therapists and patients must interact to deliver stroke care [22, 23].

Other risk factors that had been identified are unhealthy diet, ethnicity, cholesterol,

blood pressure, genetics, obesity, history of cardiovascular diseases, contraceptives with

high doses of estrogen, and so on [2, 24], some of these factors are shared with other

non-cardiovascular diseases [9]; different prediction models have been elaborated using

these indicators [11] to identify people at risk of suffering stroke [25, 26].

As consequence of stroke, patients might suffer from spasticity, which is an hyperex-

citability motor disorder characterised by a velocity-dependant increase in tendon jerks,

it magnifies muscle weakness and produces difficulty during gait, contractures and per-

manent joint deformities; it has been also defined as a permanent or intermittent invol-

untary contraction of muscles that produces motor abnormalities.

1.2 Stroke Motor Rehabilitation Strategies

It is up to an occupational therapist to decide based on the patient’s abilities and role

demands which will be the therapeutic goal, he can decide to focus on promoting learn-

ing or training phenomena on the patient. Where learning is defined as finding ones

solution for a certain task and training is considered as memorizing a given solution

for a challenge [2]. Some of the strategies employed for stroke rehabilitation are stand-

ing balance, strength training, constrained induced movement, electrical stimulation,

transcranial magnetic stimulation, mental practice with motor imaginary, and robotic

assisted therapy, among other approaches [3, 4, 27, 28]. Most of these approaches aim or

share a common goal, which is reducing the disability or handicap produced by stroke

[8]; it is possible to estimate or evaluate the efficiency of applying a determined strat-

egy via tools for measuring functional independence in activities of daily living such as
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the Katz Index or the Barthel Index [29]. Here is a brief description of the mentioned

strategies as well as some concepts that will be used later :

• Standing balance [3]. It consists on maintaining a relative position and motion

of the body center of mass with respect to the foot in contact with the ground;

this therapy has been recently combined with virtual reality systems, in order to

induce to the patient the sensation of disturbances such as riding subway ride,

while keeping him within a safe environment. Ground force plates combined with

3D vision systems have been employed for analyzing the patterns exhibited by the

subject during this therapy, using these tools it is possible to measure the position

of its center of mass, center of pressure, as well as the movements performed.

Which is an interesting therapy since stroke patients often suffer from balance and

gait impairments.

• Strength training [30, 31]. After suffering a stroke, muscle weakness is one of the

biggest sources of impairment experienced. The motor function can be affected

in several ways and the reduction of strength (in terms of maximum voluntary

contraction) is one of the most notorious. Muscle force production can easily be

related to activities of daily living such as bringing food to the mouth, standing

from a chair or walking; the point in which this strength begins to affect the

performance of a certain activity or the one in which additional strength has no

impact varies from a subject to another, and it is worth noticing that not all the

stroke patients experience muscle weakness. When the exercises in this therapy

are performed on specific machines such as dynamometers these can be classified

as isometric, isotonic and isokinetic strengthening.

• Constrained induced movement [31, 32]. According to a systematic review,

this strategy has been found to be the most effective for improving motor perfor-

mance in the upper limp. This strategy has a long history, the first documentations

found are from 1909 of some experiments with primates; later in 1917 experiments

with monkeys showed that when these were forced (using straps) to use their

recovered limb faster after injury.

• Electrical Stimulation [33]. Electromyography are electrical signals that can be

recorded from a muscle, this electrical signal is a chemical reaction that induces

a voluntary contraction in the muscle, and neuromuscular electrical stimulation
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(NMES) consists in applying an electrical stimulation on the muscle to induce an

involuntary contraction, this strategy might influence the subject motor perfor-

mance and its cortical organization, it has been studied in healthy subjects as well

as for subjects with brain injuries, such as stroke. One of the main interests of this

approach is that stroke patients are not able to contract their muscles voluntarily,

and with NMES, it is possible to activate their muscles in order to limit muscular

atrophy (decrease of muscle mass).

• Transcranial magnetic stimulation [34, 35]. It is a type of therapy as well as

a non-invasive tool that can be used for studying the human brain by inducing a

magnetic field near to the brain cortex that depolarizes cortical nerve membranes

and discharges a group of neurons, it produces a relative synchronous muscle re-

sponse known as motor evoked potentials (MEP).

• Motor imaginary (Mental practice) [2]. It consists on creating an internal

representation of the movement to execute, it is mentally simulated without per-

forming the physical activity and can be administered via audio therapy.

• Robot assisted therapy [31, 36]. Using robotic devices in therapy allows to per-

form a repetitive, highly intensive, task-specific treatment of the impaired limb

while monitoring the patient actual state and progress via integrated sensors.

These robots can provide a passive movement feedback to the subject and measure

residual voluntary activity from the impaired limb during its manipulation.

Some reports agree that most of the patient’s recovery occurs during the first three

to six months [37, 38]. The strategies previously described rely on neuroplasticity (or

plasticity) [39], which is the ability of the neural system to reorganize its structure,

functions and connections as a response to intrinsic or external stimulus. It might be

produced as a consequence or response to a disease, induced by therapy, as support of

learning, among other reasons. Not all plasticity has positive impacts, i.e., epilepsy may

appear as complication of cerebral trauma, it might appear even years after the trauma

event, and this suggests that during this time there have been progressive changes in the

brain. Within this general context, this document focuses mainly on ankle rehabilitation

via assisted robotics, this joint plays an important role in gait and balance, although

some applications to wrist rehabilitation are reported by the end of this manuscript.

More details about robotic assisted rehabilitation will be provided in the next section.
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1.3 The Role of Robots in Assisted Therapies

As mentioned before, the strategy of assisted rehabilitation focuses on recovering the

motor function of the impaired limb by following therapist’s specified routines with the

assistance of a robot, while monitoring not only progress, but also the actual state of the

subject during therapy. This section presents some of the emerging trends, advantages of

using robots for assisted rehabilitation and a list of the commercially available products

in the market with a brief description of them.

Popular and emerging trends in rehabilitation robotic devices

The emerging trends in rehabilitation robotics can be summarized by classifying them

in different categories as :

• According to the structure of the robot as end-effector robots [31, 40–42] and

exoskeletons [7, 40, 41, 43–54]. End-effector robots do not necessary have an-

thropomorphic shape. To use this kind of devices the impaired limb is generally

attached to the end-effector of the robot or it can be grabbed as in the case of

upper limb rehabilitation systems; while exoskeletons intend to mimic the shape

of the affected limb and they are generally located around that limb.

• Based on the sensors included in their designs, such as surface electromyography

sensors (EMG) [38, 42, 48, 53, 55, 56] for measuring the electrical activity within

the muscles. They can be coupled to a brain computer interface (BCI) [38, 47]

with biopotential amplifiers capable of measuring, amplifying and converting the

electrical activity in the brain (named electroencephalography, EEG) into a digital

signal (OpenBCI [57]), or with force and torque sensors integrated [7, 42, 45, 46,

51, 54, 55].

• Depending on the task or exercise to be performed by the assistive device : strength

training [31], gait training [7, 44–47, 47, 49–52, 54, 58], afferent feedback [40, 55, 56]

and standing balance [47, 51].

• In relation to the feedback provided to the user of the robot [38] such as visual

feedback [59]. It includes techniques that combine robots with virtual reality or

LEDs to perform experiments with brain computer interfaces, audition, haptic
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interfaces, functional electric stimulation and transcranial magnetic stimulation

(denoted FES and TMS, respectively).

Among the many advantages that can be obtained from applying robots to therapy are :

they can be used to perform repetitive tasks or exercises with high intensity [36], a robot

will never be exhausted and it can be designed to handle forces with higher magnitude

than humans. The integrated sensors allow to measure the progress and behavior of

the patient with high accuracy [36], these sensors might even be used in the future to

improve a patient diagnosis. A single device can provide different types of feedback to

the patient and even combine them in order to maximize the outcome from therapy.

The robots allow to assist the patient’s movements as needed with high precision or to

perform different tasks with a device. Trajectory planning techniques can be employed

to avoid painful positions for the subject’s impaired limb.

Scientific research and commercially available products for rehabilitation

There is a brief list of the many different available scientific research and commercially

available products for rehabilitation that can be found in the literature or the market :

• MIT-MANUS [36, 40, 41, 53, 55, 58] is a two degrees-of-freedom robot designed

for neurological applications (i.e., shoulder and elbow rehabilitation), it belongs

to the category of end-effector robots and its sensors allow measuring different

variables involved in the motion of the patient’s upper limbs such as position,

velocity, interaction forces and surface EMG signals. Also, there is a screen in the

system that provides visual feedback to the patient during therapy, it can be used

to display the value of the different variables measured or information about the

task being performed (target and end-effector positions).

• Neuro-Rehabilitation-Robot (NeReBot) [36, 58, 60] is a 3 degrees-of-freedom

end-effector robot designed to recover from post-stroke upper limb impairment

(shoulder and elbow) by performing repetitive experiments. The system provides

visual and auditory feedbacks to the user, the auditory feedback is employed to

indicate the beginning and ending of the exercise and the visual feedback is a 3D

image representing the upper limb position and the forces applied.

• Lokomat [38, 41, 43, 45, 49, 51, 54, 56, 58, 58, 60, 61] is an exoskeleton designed

for lower-limb rehabilitation after spinal cord injury or stroke by performing gait
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training exercises over a treadmill, it is able to provide body weight to the subject,

the device can drive or assist the leg trajectory of the subject in order to perform a

gait movement over a treadmill. It has position, force and EMG sensors integrated

and can provide to the patient visual and haptic feedbacks as well as functional

electrical stimulation (FES).

• ATLAS [51, 60]. It is an exoskeleton designed for gait assistance to support people

with paralysis caused by spinal cord injury, it can support up to a maximum of 25

kilograms, it has 6 degrees-of-freedom, 3 for each leg (composed by hip, knee and

ankle angles variables). The sensors integrated to this system are goniometers for

measuring the angular position of the joints and force sensors located at the feet

that allows measuring the trajectory of the center of pressure.

• Vanderbilt lower limb exoskeleton [7, 38, 46, 50, 50–52] has been designed to

provide leg mobility to patients suffering from paraplegia or hemiplegia produced

by stroke, the device can control the angular position of the subject hips, knees

and ankles. It has sensors for measuring the angle position at each joint as well

as an inertial measurement unit (IMU), which is a combination of gyroscopes

and accelerometers that can be employed for measuring orientation, velocities and

gravitational forces.

• MINDWALKER [52] is a powered lower limb exoskeleton with 5 degrees-of-

freedom to support people with paraplegia or hemiplegia during gait training, it

has encoders for measuring the joint angular positions, joint torque produced by

the actuators, as well as IMUs.

Among other solutions found [38, 41, 43, 47, 56, 60].

1.4 Scope of this Work

Given the previous context, the LAMIH (UMR CNRS 8201) developed and obtained

a patent for an ergometer with limited size and reasonable production cost [62], the

device employed in this thesis is a motorized version of that ergometer, such device can

be located in the bed of the patient and would allow early therapy. As mentioned before

an early intervention in stroke rehabilitation improves the efficiency of the treatment.
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The main goal of this work is to develop a hybrid brain computer interface (hybrid BCI)

capable of integrate electrophysiological data from the subject, i.e., electromyography

(EMG) and electroencephalography (EEG) signals. The motivation for the development

of this system is using it for post-stroke robotic assisted rehabilitation, a system like this

would be capable to provide a personalized assisted therapy adapted for each subject,

while monitoring its variables with precision.

This work is divided in two stages : 1) modeling and control of the rehabilitation device

and 2) integrating the human in the control loop. The first part consists in modeling

the rehabilitation device, design and implement control laws for tracking predefined

trajectories, the first model is obtained via a black-box approach and the second via a

variant of the Euler-Lagrange approach for parallel robots. The second part deals with

the problem of considering a human interacting with the system. The first approach

presents a model for using EMG signals to estimate the force produced by the ankle in

real-time and the second is using EEG signals for triggering the robot movement via

motor imaginary.

Remark 1.1. Please notice that there is a limitation in the number of subjects employed

and number of experiments that can be performed during the development of this re-

search project.

Reference Control

HumanEMG

BCI

Chapter 2:

Device description

Modeling

Chapter 3:

Computed Torque

ADRC

Chapter 4:

Convex Control for

Singular Systems

Chapter 5:

Muscle Force

Estimation via EMG Chapter 6 :

BCI Integration

Figure 1.1: Organization of this document.
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1.5 Structure of this Document

As it is briefly illustrated in Fig. 1.1, this document is organized as follows :

Chapter 2 introduces the main rehabilitation devices involved in the hybrid brain com-

puter interface, a parallel robot named motoBOTTE and the devices that interact with

it; then, three different mathematical models for describing its dynamics are presented,

the first is obtained via a black-box approach and the second (white box) and third

(grey box) models are two sets of differential-algebraic-equations that take into account

the algebraic constraints of the system, parameters are estimated and validated using

data from real-time experiments.

Chapter 3 presents the design and implementation of different control laws for tracking

trajectories, these designs are validated in simulation and implemented in real-time.

The model-based technique employed in this chapter is computed-torque control and

the model-free approach is active disturbance rejection control, both have been adapted

to be used in parallel robots that are described by a set of differential-algebraic-equations.

Chapter 4 deals with problems related to control design for singular and nonsingular

systems written as an exact convex representation such as conservative solutions and a

new relaxation for double-sums is proposed for it. This chapter focuses on the convex

modeling of nonlinear singular systems, where the importance of taking into account the

algebraic constraints for this process is highlighted. After that, different designs based

on parallel distributed compensation are carried out, similar to the previous chapter,

the designs are used for tracking predefined trajectories.

Chapter 5 focuses on considering a human interacting with the robot. In this case,

models for estimating the human ankle force via electromyography signals in real-time

with the hybrid brain computer interface are adapted from the literature. Each step

of the estimation process is described, parameters of the models are estimated and

validated using data from real-time experiments (gait analysis), then, a new model used

to generate dynamic ankle trajectories is presented and evaluated in simulation.

Chapter 6 exhibits the results obtained when the motoBOTTE and a wrist exoskeleton

were coupled (separately) to a brain computer interface, then, the movement of the

robots were triggered by detecting motor imaginary and the efficiency of employing
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these devices for assisted rehabilitation is evaluated via statistical analysis of the motor

evoked potentials measured during three events pre-, post- and post-30. The design of

the wrist exoskeleton should be considered as part of the result obtained of this thesis.

Chapter 7 gives a conclusion based on the results presented in previous chapters, and

establishes some remarks that could be considered in the future of this work.

1.6 List of Publications

The following publications have been obtained during this thesis :

International Journals

• Jochumsen, M., Cremoux, S., Robinault, L., Lauber, J., Arceo, J. C., Navid, M.

S., . . . & Niazi, I. K. (2018). Investigation of optimal afferent feedback modality

for inducing neural plasticity with a self-paced brain-computer interface. Sensors,

18(11), 3761.

• Arceo, J. C., Álvarez, J., Armenta, C., Lauber, J., Cremoux, S., Simoneau-

Buessinger, E., & Bernal, M. (2021). Novel Solutions onModel-Based andModel-

Free Robotic-Assisted Ankle Rehabilitation*. In Archives of Control Sciences.

• Jochumsen, M., Janjua, T. A. M., Arceo, J.C., Lauber, J., Simoneau-Buessinger,
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International conferences

• Arceo, J. C., Lauber, J., Simoneau, E., & Cremoux, S. (2018, October). Non-
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Chapter 2

Modelling of Parallel Robots

This chapter introduces a specific parallel robot designed for assisted rehabilitation, the

motoBOTTE which is the main device employed in this work. The objective of this

chapter is to provide tractable dynamical models of this system for control design. The

chapter is organized as follows: Section 2.1 describes the characteristics of the rehabil-

itation robot as well as all the different devices involved in the signal acquisition and

processing (sensors, actuator, power supplies and embedded device employed); Section

2.2 is about system identification and provides basic information from the state-of-the-

art of the techniques that will be considered later for obtaining different mathematical

models of the robot. Three subsections are contained in this part: 2.2.1 deals with a first

approach to identify the model of this robot using a black box approach, i.e., considering

input and output signals from real-time experiments and prior knowledge of the system,

the model obtained is in terms of the ankle angle φ and the control input u; Subsection

2.2.2 proposes a white box modelling approach which is illustrated for parallel robots,

the result obtained is a set of differential-algebraic-equations (DAEs) that incorporates

the algebraic relations inherit to parallel robots, i.e., constraints in position, velocity

and acceleration; Subsection 2.2.3 presents the grey box modelling approach, in which

a slightly different set of DAEs is obtained, the parameters of the system are estimated

and validated in simulation using data from real-time experiments with the robot.

13
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Figure 2.1: The motoBOTTE.

2.1 The motoBOTTE : System Description

The Laboratory of Industrial and Human Automation Control, Mechanical Engineering

and Computer Science (LAMIH) developed a transportable robot to perform ankle reha-

bilitation routines as for example on stroke-hit patients [8]. The motoBOTTE (see Fig.

2.1) is a one-degree-of-freedom parallel robot to be used along constant monitoring of

the patient performance, where the ankle angle is denoted by φ; the sensor and control

signals are computer-processed in a embedded device. As shown in [63], such device can

significantly reduce the therapy costs while providing a greater flexibility and adaptation

of the required routines to the corresponding case.

A parallel robot, such as the motoBOTTE, is a structurally closed kinematic chain

mechanism [64] that is capable of moving large loads with high precision [65]. The

geometrical structure of such parallel robots imposes constraints on their position, speed,

acceleration, and degrees-of-freedom [66]; their trajectories are restricted to a manifold

that satisfies all these constraints at once [67].

The robot is actuated by a linear piston shown in Fig. 2.2, the ankle angle φ can be

measured via a potentiometer voltage in the piston [63, 68], the relation between ankle

angle and voltage of the potentiometer is shown in Table 2.1 and fitting the data with
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(a) Piston CAHB-21. (b) Label.

Figure 2.2: Linear piston and its label.

a polynomial function the following relation voltage-position is obtained

φ(V ) = −0.0113V 2 − 0.0630V + 2.7788,

the relation between potentiometer voltage, position and the polynomial approximation

φ(V ) is illustrate in Fig. 2.3. The specifications such as maximum load, speed, weight

and stroke length of this device can be found in the datasheet [68].

Table 2.1: Ankle angle φ and potentiometer voltage measurement.

φ (radians) Volts φ (radians) Volts φ (radians) Volts

2.5212 2.7507 2.4920 2.9659 2.4613 3.1997

2.4291 3.4060 2.4038 3.6139 2.3688 3.8238

2.3416 4.0500 2.3038 4.2438 2.2745 4.4458

2.2340 4.6630 2.2026 4.8633 2.1704 5.0891

2.1260 5.2959 2.0917 5.4878 2.0565 5.6910

2.0205 5.8959 1.9710 6.0912 1.9329 6.2995

1.8939 6.5229 1.8406 6.7403 1.7856 6.9597

1.7292 7.1970 1.6711 7.4124 1.6415 7.6202

1.5964 7.8451 1.5348 8.0741 1.4717 8.2957

1.4234 8.5050 1.3575 8.7174 1.3071 8.9383

1.2730 9.1120

The rotation speed of the DC motor inside the linear piston is controlled by an ESCON
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Figure 2.3: Ankle position and the polynomial approximation.

50/5 DC motor driver [69] that is shown in Fig. 2.4(a), this is a PWM servo controller

which has three different operating modes: speed control (open-loop), speed control

(closed-loop) and current control. This card has been configured to operate in the speed

control (closed-loop) mode for all the experiments described within this document, due

(a) ESCON 50/5 motor driver. (b) NI myRIO-1900.

Figure 2.4: ESCON 50/5 motor driver and myRIO devices.
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to this configuration there is an input saturator such that u ∈ [−10 V, 10 V], where

u denotes the control signal send to the ESCON driver card, it is important to know

that for a control signal equals zero the piston remains in a steady position (i.e., u = 0

produces ḋ = 0), where d and ḋ denote the piston distance and its time derivative,

respectively. At the beginning, the servo controller was located below the foot platform

of the motoBOTTE (see Fig. 2.1); but later, it was removed from that position, because

when this device is operating it produces noise that is transmitted to the EMG sensors

when the foot is in contact with the same foot platform. Both, the motor driver card

and the linear piston are powered by a lithium-ion battery of 24V-12A. It is possible

to measure the motor’s current consumed, from which we can obtain a current - piston

force relation, as indicated in the piston’s manufacturer manual [68]. The functioning

of this device can be configured via a USB using a graphical user interface provided by

the manufacturer.

The motor driver card is connected to the Mini System Port (MSP) Connector C of a

myRIO-1900 embedded device from National Instruments [70], this embedded system

has a dual-core processor model Z-7010 from Xilinx, it is running on NI Linux Real-

Time at 667 MHz and it can be programmed either with LABVIEW or C/C++ code

(in Eclipse). In our case all the controllers designed in further sections that were im-

plemented in real-time are developed via C code programming with the Eclipse IDE.

The signals connected to the myRIO card are distributed as follows: the potentiometer

differential voltage is in the Analog Input 0 (Pin 7 [+] and Pin 8 [-]), the measure of the

motor current is in the Analog Input 1 (Pin 9 [+] and Pin 10 [-]) and the control signal

u is taken out from the Analog Output 0 (Pin 3 [GND] and Pin 4 [AO0]). All the input

and output signals operate with the same sampling time of 10 milliseconds.

The robot has integrated a 3 dimensional force-torque sensor (shown in Fig. 2.5) from

the SENSIX company, according to their website [71], this sensor has been used in

sports, rehabilitation and biomechanics. This device allows to directly measure torque-

force components produced by the ankle at the center of pressure of the sensor, the

forces are denoted as Fx, Fy and Fz, while the torque components are denoted as Mx,

My and Mz. The force sensor outputs are six voltages that can be gathered in a vector
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Figure 2.5: Force-torque cylindrical sensor.

as U =
[
v1 v2 v3 v4 v5 v6

]T
, and the torsor vector T is computed as

T =



Fx

Fy

Fz

Mx

My

Mz


=



202.38 9.09 −215.52 240.40 1.94 −240.11

−154.06 304.03 −123.49 −131.98 272.04 −140.37

−232.14 −219.17 −236.18 −229.45 −229.14 −229.56

−11.14 4.26 6.79 7.42 3.67 −11.98

3.16 10.04 8.71 −7.48 −10.17 −0.88

−10.09 11.90 −10.09 9.44 −8.30 8.82





v1

v2

v3

v4

v5

v6


,

Figure 2.6: Surface electromyography sensor employed.

There are two sensors employed to measure surface EMG (see Fig. 2.6), these are

connected to the NI embedded device, each sensor has integrated an amplifier, a rectifier

and a low-pass filter, these sensors are powered by a ±15 V-2 A symmetric DC power
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supply as recommended by the manufacturer, the output of this sensors are connected

to the myRIO card in the Analog Inputs A0 and A1, for Tibialis Anterior (TA) and

Soleus (SOL) muscles, respectively.

Ankle Torque

EMG

Fx Fy Fz

Mx My Mz

SRE

Ankle Torque

Motor

current

d

Motor current

Potentiometer 

Control u(t)

.

Figure 2.7: Diagram with the connections of the robot.

A diagram of the robot and its connection with the different devices is shown in Fig.

2.7, where SRE stands for smooth rectified EMG. After this full description of the

components of the device, the next section is dedicated to the construction of control

oriented models using system identification method.

Remark 2.1. It is important to take into account these facts about the motoBOTTE :

• It is a motorised version of an existing ergometer designed at the LAMIH [72].

• It is not designed for walking, it is too heavy (≈ 11 Kg.) to be employed for that

porpoise.

• Due to the configuration of the motor driver card, the system is not affected by

external forces, these forces include gravity and the human itself.
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2.2 System Identification

A key point in model-based control techniques is related to the quality of the model

employed; the more accurate it is, the better performance that can be obtained from the

controllers designed. Thus, the process for obtaining a dynamical mathematical model

that describes the behavior of the system from observed data is known as system iden-

tification [73–75], where the main objective is to determine the differential or difference

equations (as well as its coefficients or parameters values involved in such expressions)

for describing the behavior of a system in terms of the input and output signals or ac-

cording to a predefined criterion [73, 74, 76, 77]. Some authors begin the estimation

process by using the prior knowledge of the system to propose a structure for it [74, 75].

According to [73] there are basic ingredients to consider when identifying a system :

1. Measured data, input and output signals as well as any possible disturbance.

2. The set of candidate models, the prior knowledge of the system can be used to

propose some candidate models for describing the system.

3. A criterion of fit, this is usually determined using a cost function, in our case the

function that we are using during all the manuscript is a sum-of-squared errors be-

tween the output of the system measured in real-time and the prediction obtained

with our model.

4. Validation, part of the observed data must be separated to evaluate the perfor-

mance of the identified system and verify if this mathematical model produces a

solution within some acceptable margin of error.

In the literature, the identification process can be classified in three different color cate-

gories according to the level of knowledge or confidence that we have in the parameters

or structure of the system, these categories are [73] :

• Black box models, these structures intend to provide a good approximation for any

type of nonlinear dynamical system [73], some of the most used modelling tech-

niques in this category are : autoregressive with exogenous input models (ARX),

neural networks, fuzzy models, wavelets, among others [74]. Formal proof of con-

vergence for these techniques had been previously established, a common assump-

tion that these techniques share is that the functions or signals involved in the
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behavior of the system are continuously differentiable [78], as in the case of recur-

rent neural networks [79] or polynomial fuzzy systems [80].

• White box models, for this case the model structure and the parameters involved

in it are perfectly known, i.e., there are no uncertainties in the system.

• Grey box models, this category is for systems where a structure of the system can

be deduced from physical laws or prior knowledge of the system but some of the

parameters or coefficients within are unknown, usually this approach are combined

with parameter estimation techniques, these parameter estimation procedures can

also be divided in offline and online techniques, in our case we focused on offline

parameter estimation techniques.

There is not unique solution for the identification problem, it means that there could

be different mathematical representations for a single system, within the next subsec-

tions the three color categories will be illustrated by obtaining different models for the

motoBOTTE.

2.2.1 Black box modelling

In this section we are interested in obtaining a model in terms of the ankle angle φ, its

location is illustrated in Fig. 2.1. A basic relationship between input and output signals

employed to approximate linear systems as a black box [74] is the following difference

equation

y(t) + a1y(t− 1) + · · ·+ any(t− n) = b1u(t− 1) + · · ·+ bmu(t−m), (2.1)

this model is known as autoregressive with external input (ARX), where a1, · · · , an and

b1, · · · , bm are parameters to be estimated, y(t) ∈ R and u(t) ∈ R are the output and

input signals, respectively, and n ∈ R and m ∈ R are the number of samples employed

for each signal.

One basic rule for system identification is ’Do not estimate what you already know!’

[75]. Therefore, this is the prior knowledge of the system and assumptions that will be

considered for proposing a candidate mathematical model that describes the behavior

of our system :
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1. The sampling time in the embedded device has been set to 10 milliseconds.

2. When the control input u equals zero the system remains in the same position.

3. We assume that the function that describes the system is continuously differen-

tiable.

Based on the latter, we will consider a nonlinear discrete-time model of the form

φ(k + 1) = φ(k) + (b0 + b1φ(k))u(k) (2.2)

where b0 and b1 are parameters to be estimated, and k denotes the sampling time

employed (k = 0.01). First, notice that for this candidate structure u(k) = 0 yields to

φ(k + 1) = φ(k). It means that if the control input equals zero, then, the next sample

of the piston distance will remain on the actual position, which coincides with the point

2) in prior knowledge of the system.

The estimation process for parameters b0 and b1 can be done using the Parameter Esti-

mation Toolbox in MATLAB and it consists on following these steps :

1. First, acquire data from real-time experiments, in our case we captured data from

16 experiments, these experiments consist on following different trajectories with

the robot moving it from a position to another during 10 seconds, during these

experiments the robot was controlled by a proportional integral error feedback

controller that was initially calibrated by trial and error, the input and output

signals from these 16 experiments were saved and will be used to estimate the

values of b0 and b1.

2. After that, we filtered the input and output data with a 12-order low pass IIR filter

with a cut-off frequency of 0.2 π rad/sample [81], this is important to reduce the

magnitude of the high-frequency components in the signals (noise), and it should

be done before the estimation; otherwise, we would be modelling this noise.

3. Then, the toolbox runs a simulation and compares every output sample simulated

with the real-filtered, they will be denoted as ylk and ŷlk, respectively and the

samples are indicated with l, l ∈ {1, 2, · · · , 1000} and then computes a sum squared

error cost function to be optimized as ssecf =
∑1000

l=1

∑16
k=1(ylk − ŷlk)2.
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4. Finally, using a nonlinear least squares method with the Levenberg-Marquardt

algorithm [82] optimizes the cost function.

The results of this estimation are shown in Fig. 2.8(a), the values estimated are

b0 = −0.00203, b1 = 0.00054 and the cost function is ssecf = 1.0475. The final step

in identification consists on validation, this model is considered valid if it matches with

the real values within a range of accuracy [83]; we have to use a different signal which

must not be included in the first set of signals used for estimation, the results for this

are shown in Fig. 2.8(b).

2.2.2 White box modelling

The motoBOTTE in Fig. 2.9 is a 5-bar closed-loop mechanism with a piston as actuator;

it is aimed to be employed for ankle reeducation of post-stroke patients by varying φ

[63]. Clearly, it is a constrained mechanical system which can be characterised by a

set of DAEs; its constraints, inherited from geometrical properties [66], and their time

derivatives cause a loss of degrees-of-freedom (DOF) [84].

In this subsection, a white-box model in the form of DAEs for a motoBOTTE is obtained

[85]; it represents more accurately the system dynamics and properties than the black-

box model formerly obtained 2.2. The first step consists in applying the Euler-Lagrange

methodology to the serial-arm configuration (open-loop kinematics), then incorporating

the parallel characteristics (closed-loop kinematics) by means of algebraic restrictions

and their derivatives.

As in some other works dealing with parallel robots [86, 87], analysis is split in open-

and closed-loop kinematics; the former is performed hereby via ordinary Euler-Lagrange

techniques with punctual masses at the end of each link. Consider an n-serial arm

configuration which implies the existence of n generalised joints, each of which has a

prismatic or revolute characteristic. The generalised coordinates are grouped in a vector

q ∈ Rn, leading to the following well-known equations once the Lagrangian L = K − P

is employed, with K being the total kinetic energy and P the total potential energy of

the system [88]:
d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= τ, (2.3)
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(a) Estimation process.
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(b) Validation process.

Figure 2.8: Estimation and validation processes for the black box approach.

which in turn can be written in terms of the inertia M(q), Coriolis C(q, q̇), and gravity

G(q) matrices:

M(q)q̈ + C(q, q̇) +G(q) = τ, (2.4)
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Figure 2.9: The motoBOTTE.

with τ ∈ Rn being the generalised torque vector. A state-space representation can be

found if x = [qT q̇T ]T :

ẋ =

q̇
q̈

 =

0 I

0 0

q
q̇

+

0

I

u, (2.5)

with u = −M−1(q) (C(q, q̇) +G(q)− τ).

Importantly, very often a parallel robot is fully actuated irrespectively of the charac-

teristics of its open-loop counterpart. In the open-loop modelling we will assume that

every actuator is operating; the corresponding simplifications and further considerations

will be left to the second part of the analysis, i.e., for the closed-loop kinematics. As it

will be seen later, the motoBOTTE is fully actuated once the algebraic restrictions are

taken into account.

Once an open-loop kinematic model in the form (2.4) is obtained, the closure due to the

parallel characteristics has to be imposed via algebraic restrictions and its derivatives.

In [87] this task is performed using the generalised coordinates q as well as its time

derivative. In the state-space framework, we will formalise this closure by grouping m

algebraic restrictions in a (possibly nonlinear) function h(·) : R2n → Rm

h(q, q̇) = 0 ⇐⇒ h(x) = 0. (2.6)
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Usually, algebraic restrictions come from geometric considerations and therefore, h(q) =

0 does not include any reference to the time derivative q̇; nevertheless, since the Euler-

Lagrange equation (2.4) has order 2, the time derivative (∂h/∂q) q̇ = 0 is also included

[87]. Naturally, our proposal in (2.6) includes the latter approach as a particular case.

Note also, that (2.6) allows including direct relationships involving q̇, for instance, due

to actuator limitations.

The dynamic equation (2.5) along with the set of algebraic restrictions in (2.6) constitute

a set of DAEs. Should a simulation of such system be performed, consistent initialisation

via the Pantelides algorithm must be employed to guarantee the dynamics lie in the

algebraic manifold, which physically means that the parallel robot is not “broken”.

Control tasks in these systems can benefit from the fact that they are redundantly

actuated [87] because any action on one of the joints will produce unique effects in

the remaining ones. Thus, if a robotic manipulator consists of n serial arms with n

actuators (i.e., an actuated system), it will be redundant when closed; conversely, if a

parallel robot of n joints has only 1 actuator it will be fully actuated despite the fact

that the open-loop is underactuated.

modelling of the motoBOTTE as a Set of DAEs

In order to illustrate the previous discussion, consider the motoBOTTE system in Fig.

2.1. If the arm loop is broken at the end effector from the base as in Fig. 2.10(a), Euler-

Lagrange analysis can be performed. There are several ways of accomplishing this task:

the most naive approach is to blindly consider every joint as an actuated one; another

one consists in imposing some or all of the structural restrictions while preserving the

broken-loop characteristic. Never mind the approach, all of them will result in the same

equations once the loop is closed.

Note that, by construction, γ1 =132◦ while the angle between the links measuring l2 and

l3 is fixed at 90◦; the latter can actually be considered as a single link. Similarly, l4 and l6

are also a single link as γ2 = 103◦ is fixed (l6 is only a sort of pedal on which the patient’s

foot lies). These structural considerations should be kept in mind in the sequel. The

kinetic energy of the system is the sum of the kinetic energies of links l1−d, l2− l3, l4− l6

and l5, which areK1 = (m1/2)ḋ2, K2 = (m2/2)ḋ2+(m2/2)(l22+l23)Θ̇2
1+m2ḋΘ̇1(l2 cos Θ1+

l3 sin Θ1), K3 = (m3/2)(v2
x3 + v2

y3), and K4 = (m4/2)(v2
x3 + v2

y3), respectively, with
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(a) Open-loop kinematics diagram.
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(b) Diagram of the robot.

Figure 2.10: Open and closed diagrams of the robot.

vx3 = l4sin Θ2Θ̇2+(l2 sin Θ1−l3 cos Θ1)Θ̇1 , vy3 = ḋ+l4 cos Θ2Θ̇2+(l2 cos Θ1+l3 sin Θ1)Θ̇1.

Similarly, the potential energy of the system is the sum of P1 = gm1(l1 + d), P2 =

dm2g+l1m2g+l2 sin Θ1m2g−l3 cos Θ1m2g, P3 =gm3(d+l1+l2 sin Θ1−l3 cos Θ1+l4 sin Θ2),

and P4 =gm4l5 sin γ1 +gm4(d+l1+l2 sin Θ1−l3 cos Θ1+l4 sin Θ2), which are the individual

potential energies of the four links under consideration.

Based on these energies and q =
[
d Θ1 Θ2

]T
as the joint vector, the matrix Euler-

Lagrange form (2.4) is obtained, where:

M(q) =


m1+m2+m3+m4 M12 (m3+m4) l4 cos Θ2

M12 (m2+m3+m4)
(
l22 + l23

)
M23

(m3+m4) l4 cos Θ2 M23 (m3 +m4)l24

 ,

G(q) =


(m1 +m2 +m3 +m4) g

(l2 cos Θ1 + l3 sin Θ1) (m2 +m3 +m4)g

l4 cos Θ2(m3 +m4)g

 , C(q, q̇) =


C1

C2

C3

 ,

with M12 = (m2+m3+m4) (l2 cos Θ1+l3 sin Θ1), M23 = l4(m3 + m4)(l2 sin Θ1 −

l3 cos Θ1)(sin Θ2 + cos Θ2), C1 = −(m3 +m4)l4 sin Θ2Θ̇2
2 + (m2 +m3 +m4)(l3 cos Θ1 −

l2 sin Θ1)Θ̇2
1, C2 = −l4(m3 + m4)(l3 cos(Θ1 − Θ2) − l2 sin(Θ1 − Θ2))Θ̇2

2, C3 = l4(m3 +

m4)(l3 cos(Θ1 −Θ2)− l2 sin(Θ1 −Θ2))Θ̇2
1.

Finally, we turn our attention to the algebraic constraints which close the robotic ma-

nipulator just modelled, converting it into a parallel setup as in Fig. 2.10(b); they come

from the fact that horizontal and vertical displacements along the links should sum up
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to 0 [66]:

l2 cos Θ1 + l3 sin Θ1 + l4 cos Θ2 + l5 cos γ1 = 0,

l1 + d+ l2 sin Θ1 − l3 cos Θ1 + l4 sin Θ2 + l5 sin γ1 = 0.
(2.7)

So far, only Euler-Lagrange representations have been written. For a state-space repre-

sentation of the DAEs, the state vector x =
[
d Θ1 Θ2 ḋ Θ̇1 Θ̇2

]T
will be consid-

ered: 

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





x1

x2

x3

x4

x5

x6


+



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


u, (2.8)

with u = −M−1(q) (C(q, q̇) +G(q)− τ), along with the following algebraic constraints


l2 cosx2 + l3 sinx2 + l4 cosx3 + l5 cos γ1

l1 + x1 + l2 sinx2 − l3 cosx2 + l4 sinx3 + l5 sin γ1

x4 + x5l2 cosx2 + x5l3 sinx2 + x6l4 cosx3

−x5l2 sinx2 + x5l3 cosx2 − x6l4 sinx3

 =


0

0

0

0

 , (2.9)

where the last 2 equations are obtained by derivation of the first 2, i.e., those involving

d, Θ1, and Θ2.

Note that the dynamic equations (2.8) along with the algebraic restrictions (2.9) con-

stitute the set of DAEs representing the behaviour of the motoBOTTE; they are the

specific instances of (2.5) and (2.6), respectively. In the next section simulation issues

will be considered.

Differential Algebraic Equations

A variety of numerical methods are available for integration of solutions of ordinary

differential equations (ODEs); in contrast, a set of DAEs represents a numerical challenge

as the algebraic restrictions must hold for any system trajectory, i.e., they are restricted

to a manifold induced by the constraints [89]. Formally speaking, to solve the dynamics

ẋ(t) = f(x) + g(x)u(t), with f(·) and g(·) sufficiently smooth vector fields, subject to



Modeling of Parallel Robots 29

the algebraic constraints h(x) = 0 requires (i) proper initialisation as x(t0) = x0 ∈ S

with S = {x ∈ Rn : h(x) = 0} [67]; (ii) determining missing dynamics and eliminating

redundant ones by means of the Pantelides algorithm [90].

For a parallel robotic manipulator consisting of n serial arms, this task requires taking

into account the algebraic restrictions, deriving them with respect to time as much

as to recover the dynamics in the original equation (second order for Euler-Lagrange

configurations, first-order for state-space representations), and combining them with

the original one. This usually leads to simplification because the dynamics of each joint

are mutually dependent.

Simulation of the motoBOTTE as a set of DAEs

The DAE Toolbox of MATLAB [91] allows simulating a set of DAEs once the symbolic

dynamics, restrictions, and variables are captured, provided they are consistent and the

number of variables is equal to the number of restrictions (both dynamical and algebraic)

[92]. Alternatively, ODE routines can be employed if the steps above are followed, i.e.,

if the first-order time derivative of the algebraic restrictions in (2.7)

1 l2 cos Θ1 + l3 sin Θ1 l4 cos Θ2

0 −l2 sin Θ1 + l3 cos Θ1 −l4 sin Θ2



ḋ

Θ̇1

Θ̇2

 = 0,

and the second-order ones

1 l2 cos Θ1 + l3 sin Θ1 l4 cos Θ2

0 −l2 sin Θ1 + l3 cos Θ1 −l4 sin Θ2



d̈

Θ̈1

Θ̈2


+

−l2 sin Θ1 + l3 cos Θ1 −l4 sin Θ2

−l2 cos Θ1 − l3 sin Θ1 −l4 cos Θ2

Θ̇2
1

Θ̇2
2

 = 0, (2.10)

are considered.

Due to the fact that the motoBOTTE has only 1 actuated input corresponding to the

prismatic joint, d̈ can be solved from the open-loop kinematic equation (2.4) with M(q),

C(q, q̇), and G(q) defined in the previous section; then, d̈ can be substituted in (2.10)
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Figure 2.11: Time evolution of the joint variables (left) and algebraic restrictions
(right).

so that Θ̈1 and Θ̈2 can be solved. It is obvious from this procedure that the prismatic

joint determines the behaviour of the others. These steps leave us with 3 2nd-order

dynamic equations which are omitted for brevity. From them, of course, a 6-state-space

representation can be obtained. Any of these representations can now be simulated

as ODEs without any concern of leaving the manifold corresponding to the algebraic

constraints; yet, it requires an initial condition to be consistent, i.e., within the manifold

in order to avoid impulsive behavior [67].

Another issue is that the motoBOTTE behavior should be such that it remains at rest

if the actuator input is zero, i.e., if τ1 = 0. This is equivalent to the system not being

affected by gravity, i.e., compensating the effects of gravitation in each joint. Thus, the

following modification in the generalised vector must be done: the first actuator preserves

its input by replacing it by τ1+g(m1+m2+m3+m4) while the second and the third only

compensate the gravitational terms as they are passive τ2 = (l2 cos Θ1 + l3 sin Θ1)(m2 +

m3 +m4)g and τ3 = l4 cos Θ2(m3 +m4)g. With the previous considerations if the only

input τ1 is equal to zero the system will not move.

Fig. 2.11 corresponds to the time evolution of the joint variables d = x1, Θ1 = x2,

and Θ2 = x3 under an arbitrary sinusoidal input τ1(t) = −0.4 sin(2πt) + 0.2 cos(12πt)

and the value of the algebraic restrictions in (2.7); initial conditions are x0 =[
0.0331 0.2263 3.2416 0 0 0

]T
. The parameter values are l1 = 0.303267, l2 =

0.097688, l3 = 0.476157, l4 = 0.098445, l5 = 0.155532, m1 = 1, m2 = 1, m3 = 1, and

m4 = 1.
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2.2.3 Grey box modelling

Parallel robots dynamics can be described using differential algebraic equations (DAEs),

also known as singular systems, semi-state representations, implicit differential equa-

tions, among other names, which arise in several areas, not only in robotics [93]. Con-

troller design for DAEs is a challenging task for many reasons: the state-space rep-

resentation is not an ordinary one, but a descriptor [89]; algebraic restrictions oblige

to consistent initialization and holding [90]; numerical simulation cannot be directly

performed via ordinary differential equations (ODEs) [91].

The motoBOTTE, shown schematically in Fig. 2.12, is actuated by a linear piston whose

variable length is denoted by d with an operation range Ω = d∈ [0, 0.103] in meters, the

ankle angle φ is measured via the voltage of a potentiometer in the piston [63, 68]. The

dynamic of the ideal noise-free piston is described by

ḋ = b1u, (2.11)

where u is the control signal, b1 is a constant term that will be estimated later and

there is an input saturator such that u ∈ [−10 V, 10 V]. Previously, a model for the

motoBOTTE was identified using a black box model approach, but it does not provide

information about how forces interact in the system [63]. The following procedure will

take into account these forces; a preliminary work on this direction can be found in [94].

The steps for modelling a non-redundant parallel robot can be summarized as :

1. Open the kinematic chain and follow the Euler-Lagrange methodology to obtain

the actuated or open-loop dynamics of the system.

2. The dynamics for the passive joints can be obtained by substituting the actuated

dynamics into the second-time derivative of the algebraic constraints.

This procedure is illustrated below.

Open-Loop Kinematics

Consider the system in Fig. 2.12 with punctual masses m1, m2, m3, the length of the

links l1, l2, l3, l4, l5, the angles between the links and the horizontal plane Θ1, Θ2, γ1,
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and the fixed inner angle γ2. The total kinetic energy is given by K = K1 + K2 + K3

with

K1 =
1

2
m1ḋ

2, K2 =
1

2
m2

((
ḋ+ z1Θ̇1

)2
+ z2

3Θ̇2
1

)
,

K3 =
1

2
m3

((
ḋ+z1Θ̇1+z2Θ̇2

)2
+
(
z3Θ̇1 + z4Θ̇2

)2
)
,

as the kinetic energies of individual joints. The potential energy is P = P1 + P2 + P3

with

P1 =(l1+d+ z5)m1g, P2 =(l1+d−z3+z5)m2g, P3 =(l1 + d− z3 + z5 − z4)m3g,

as individual potential energies with z1 = l2 cos Θ1 + l3 sin Θ1, z2 = l4 cos Θ2, z3 =

l3 cos Θ1 − l2 sin Θ1, z4 = −l4 sin Θ2, z5 = l5 sin γ1, and g = 9.806.

l1

l2

l3

l5

l4

d
��

��

�

m1

m2

m3

�� ��

Figure 2.12: Scheme of the motoBOTTE.

Since the Lagrange equation for a conservative system [65] is L=K−P , the dynamical

equations for the open-loop kinematics are d
dt

(
∂L
∂q̇

)
− ∂L

∂q = τ , where q is a n−vector of

generalized coordinates composed by the prismatic joint d and two revolute joint angles

Θ1 and Θ2 in radians; this yields q =
[
d Θ1 Θ2

]T
with τ as a vector of generalized

external forces. The Euler-Lagrange equations can be written in the matrix form:

M(q)q̈ + C(q, q̇) +G(q) + F (q̇) = τ, (2.12)
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Table 2.2: Measured parameters of the system.

Parameter Value

l1 0.35 m
l2 0.125 m
l3 0.445 m
l4 0.1014 m
l5 0.15 m
m1 6.15 kg
m2 2.13 kg
m3 2.86 kg
γ1 2.4086 rad
γ2 2.0952 rad

whose matrices are defined as:

C (q̇, q)=


(m2 +m3)z3Θ̇2

1+m3z4Θ̇2
2

m3 (z1z4 − z2z3) Θ̇2
2

m3 (z2z3 − z1z4) Θ̇2
1

, τ=


b0u̇

0

0

,

M(q)=


m1+m2+m3 (m2+m3) z1 m3l4z2

(m2+m3) z1 (m2+m3)
(
l22+l23

)
M23

m3l4z2 M23 m3l
2
4

,

with M23 =m3l4 (z1z2 + z3z4), b0 is an unknown parameter that will be estimated later

and u̇ corresponds to the time-derivative of the control signal. Gravity does not affect

the system due to the piston mechanical structure [68] and the configuration of the motor

driver [69], therefore, it will be considered as G(q) = 0 and be omitted in developments

thereafter. The measurable parameters of the system are presented in Table 2.2.

Assuming that friction is a local effect [65] with unknown dynamics that can be described

by a continuously differentiable function within a region of interest Ω (as in the viscous

friction case), there exists, by Taylor-series, a polynomial that can approximate it [80]

as

F (q̇) =


v11ḋ

2 + v12ḋ

v21Θ̇2
1 + v22Θ̇1

v31Θ̇2
2 + v32Θ̇2

 ,
where the polynomial coefficients v11, v12, v21, v22, v31 and v32 are unknown and will be

estimated later.
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Dynamical Equations of the Passive Joints

Once the open-loop kinematics are closed to yield the motoBOTTE structure, the vec-

tor of generalized coordinates q must satisfy the following set of algebraic constraints

inherited from its geometric structure [66]:

d+ l1 + l2 sin Θ1 − l3 cos Θ1 + l4 sin Θ2 + l5 sin γ1 = 0,

l2 cos Θ1 + l3 sin Θ1 + l4 cos Θ2 + l5 cos γ1 = 0, (2.13)

φ = Θ1 −Θ2 + π/2− γ2,

where the first two restrictions arise from x− and y−axis oriented requirements for

closure and the third one is a constraint for the ankle angle. These restrictions can

be combined to determine the vector of generalized coordinates q using the measured

variable φ, which yields

d = −l1 + z3 + z4 + z5,

Θ1 = φ+ γ2 − π + Θ2,

Θ2 =arcsin

(
−l2 cos γ1√
α2
1+α2

2

)
−arctan

(
α1
−α2

)
,

(2.14)

with α1 = l2 cos
(
φ+γ2− π

2

)
+ l3 cos (φ+γ2−π) + l4 and α2 = l2 sin

(
φ+γ2− π

2

)
+

l3 sin (φ+γ2−π). The constraints (2.13) also impose others in the trajectory deriva-

tives q̇ and q̈; for the first-order derivative case these are

ḋ+ z1Θ̇1 + z2Θ̇2 = 0,

z3Θ̇1 + z4Θ̇2 = 0,
(2.15)

while for the 2nd-order derivative the constraints obtained are

d̈+ z1Θ̈1 + z2Θ̈2 + z3Θ̇2
1 + z4Θ̇2

2 = 0,

z3Θ̈1 + z4Θ̈2 − z1Θ̇2
1 − z2Θ̇2

2 = 0.
(2.16)

Now we have expressions for describing the dynamics of the passive joints.

Remark 2.2. The dynamics of the motoBOTTE are obtained by selecting the actuated

dynamics d̈ in (2.12) and substituting it in (2.16), which concludes this two-step mod-

elling method. Notice that this is a single model for the parallel robot, the model itself

is a combination of two sets of equations, the first equations (2.12) provide a description
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Table 2.3: Estimated parameters using the simplex algorithm of the Parameter Esti-
mation Toolbox in Matlab.

Parameter Value Parameter Value

v11 56.3869 v12 -2.8211
v21 -9.3843 v22 -0.6755
v31 -0.0841 v32 0.0440
b0 0.0627 b1 0.00745

for the behavior of the actuator and the equations in (2.16) describe the dynamics that

the passive joints must have to satisfy the algebraic constraints inherit to the system.

Therefore, our model is a set of differential-algebraic-equations (DAEs).

The procedure above, i.e., obtaining explicit expressions for ‘missing’ or ‘implicit’ dy-

namics for a set of DAEs is known as the Pantelides algorithm [90], which has been

already implemented in the Symbolic Math Toolbox in MATLAB [95, 96]. When this

procedure is combined with the Euler-Lagrange approach as in this work, it resembles

the Lagrange-D’Alembert formulation [87, 97].

Parameter Estimation

So far, the input parameters b0, b1 as well as the friction coefficients v11, v12, v21, v22

v31 and v32 have been considered as unknown. These parameters can be estimated with

2-dimensional input-1-dimensional output pairs ((u, u̇), (φ)) taken from real-time tests

and fed into the simplex algorithm [98], which is already implemented in the Parameter

Estimation Toolbox in MATLAB. The algorithm minimizes a sum-of-squared error cost

function cf =
∑

(φ−φ̂)2 to match the real-time output data φ with our estimated output

φ̂ computed with our mathematical model (2.12) and (2.16).

The signals used in the estimation process are shown in Fig. 2.13(a); they show 8 tra-

jectories from real-time data and estimation. Rich signals are expected for estimation

(not necessarily rehabilitation routines); therefore, the pair (u, u̇) has been chosen as to

produce sinusoidals of varying frequency and amplitude on φ. As a result, the estimated

parameters in Table 2.3 were obtained, which completes our modelling task. As custom-

ary, a different set of data was used for model validation; these trajectories are shown

in Fig. 2.13(b) and illustrate the fact that the estimated parameters are acceptable.
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Figure 2.13: Estimation and validation processes.

2.3 Chronological order of the models

The different models presented in this chapter for the motoBOTTE were obtained in

the chronological order shown in Fig. 2.14, the publications associated with each model
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are indicated below them.

The first model obtained was obtained employing the black-box methodology, it is a

modified version of an auto-regressive system with exogenous input, a non linear term

in the input was considered, this non linear term is assumed to be continuously differ-

entiable and it was approximated via first order polynomial of the ankle position. The

model has been calibrated using data from real-time experiments. This data are the

input (control voltage) and output (ankle position) signals of the robot. One of the

main disadvantages of employing this methodology is that it does not provide an inter-

nal description of the system, which means that we are capable of predicting the future

values of the ankle position, but, there is no information about the forces involved to

produce this movement, and the main advantage is that the resulting model as we will

see in further sections was easy to be employed for control design.

The second model was obtained via a white-box approach and modification of the clas-

sical Euler-Lagrange methodology, which is commonly employed for serial robots; but,

since we are dealing with a parallel manipulator it has to be modified to incorporate the

algebraic constraints inherit to these systems. For this model it was assumed that we

knew the value of all the parameters, which means that there was no calibration and the

resulting model was not realistic, that is, the trajectories of the model in simulation did

not match the ones obtained in real-time and the advantage is that it offers an internal

description of the forces involved inside the system.

The third model was deduced from a grey-box methodology, which is a combination of

the previous two (black- and white-box), most of the system expressions were deduced

from physical laws, algebraic constraints related to position, speed and acceleration were

incorporated into the system description. The effect of gravity was neglected due to the

configuration of the motor driver card and uncertain terms related to friction had to

be incorporated in order to obtain a realistic description of the system while having an

internal description of the system.

The final model employed in this manuscript is a simplification of the model obtained via

the grey-box approach, it is possible to describe its behavior via first order differential

equations and a set of algebraic constraints.



Modeling of Parallel Robots 38

motoBOTTE

black-box white-box gray-box 1 gray-box 2

fixed parameters

  model 1 
- modified ARX
- input/output
- no structure
- no internal description
- easy to control

  model 2 
- Euler-Lagrange
- Pantelides
- all known/deduced
- internal description
- not realisitic

  model 3 

- Euler-Lagrange

- Pantelides

- calibration time

- offers internal info

- consistent initial x(0)

  model 4 
- less expressions
- pos/speed constraint
- consistent initial x(0)
- Not in E-L form

simplified

parameter

estimation

parameter

estimation

Fuzzy PI [ICNR18]

Fuzzy PID [IROS18] Computed Torque

Adapted to DAEs

[ICONS19]
Computed Torque

ADRC

Simulation/real-time

[ACS19]

TS state feedback

Selecting��

Double-sum

Copositive conditions

[AQTR20, IFAC20]

Figure 2.14: Relation between models and publications presented in this manuscript.

2.4 Conclusion

In this chapter the motoBOTTE as well as the devices involved in the functioning of this

parallel robot were introduced, after that, different mathematical models were obtained

for describing the behavior of this system, the models presented were based on black

box, white box and grey box modelling approaches, respectively.

The first model presented is quite simple, but efficient, since the output error seems to be

reasonable small, and more important, it can be used for controlling design purposes as it

will be shown in further chapters. The second and third models obtained are a variation

of the Euler-Lagrange methodology known as the Lagrange-D’Alemberg formulation,

one of the advantages from using this approach is that it does not require Lagrange

multipliers to incorporate the algebraic constraints; therefore, we do not need to compute

the value of these multipliers. It is important to recall that as mentioned in the previous

chapter, these algebraic constraints are important and must be taken into account when

the initial conditions of the system are computed for proper simulation and also in the

models used for trajectory generation for the robot.

The parameters for grey box and black box approaches were obtained by solving a non-

linear optimization problem, which is minimizing a sum-of-squared error cost function,
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the error is computed by taking the difference between the real-time measured output

of the system and the estimated output with our candidate mathematical model.

Please recall that the gravity does not affect the behavior of the system in real-time,

this is due to the configuration of the ESCON motor driver card in Fig. 2.4(a). Thus,

a different configuration of this card will produce a different behavior of the system and

therefore, different models for the system would be required to be identified again if the

configuration is modified.

Finally, during some of the experiments with the robot we found that the motor driver

card that was located below the foot platform (that is made of metal) seemed to affect

the behavior of the electromyography sensors. This device was producing an electrical

noise that was amplified by the amplifiers of the sensor; therefore, we decided to put this

motor driver card away in order to avoid it being in direct contact with the platform,

and it reduced the electrical noise in the sensors.
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Chapter 3

Control of Parallel Robots

The goal for robot-based rehabilitation exercises is to promote motor recovery of the

affected limbs by performing repetitive tasks [99]. To attain this goal, the robot is usually

a wearable device, which thus become a sort of exoskeleton; see, for instance, [100, 101]

for lower-limb examples as those considered in this work. In [102], an exoskeleton device

has been successfully employed for an active ankle support, where the patient is supposed

to be able to walk; this is not the case in most of stroke-hit patients for which robot

assistants are usually voluminous and expensive [61]. Moreover, constructing a device for

assisted rehabilitation requires controller design in order to reproduce clinically validated

routines; this task has been tackled with a variety of control techniques for trajectory

tracking of joint positions and velocities, for instance: proportional [103], feed-forward

[104, 105], and torque control [106]. Importantly, the latter technique is only adequate

if the device is an open kinematic chain.

This chapter deals with different control strategies adapted to parallel robots for track-

ing predefined trajectories. The first one introduced in section 3.1 is an extension of the

computed torque control to parallel robots described as a set of DAEs. The second strat-

egy is a model-free approach that is based on active disturbance rejection, it has been

adapted for tracking trajectories with parallel robots. Section 3.2 presents simulations

and real-time results for both strategies on the MotoBOTTE device.

The organization of this chapter is the following computed-torque control for DAEs in

a state-space representation is shown in subsection 3.1.1, it is illustrated by applying

this technique to the white box model of the motoBOTTE, within this subsection the

41
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importance of taking into account the algebraic constraints inherit to the system into

the trajectory generation model is remarked. The algebraic constraints are needed to

translate a desired trajectory from the end effector of the robot (which in the case of the

motoBOTTE is the ankle angle φ) to the variables of the state-space representation or

generalised coordinates. Subsection 3.1.2 presents some adaptations needed for applying

this control in generalized coordinates such as using the algebraic constraints of the

system in order to obtain the variables that were unmeasured. As a comparison, a

model-free approach that is based on active disturbance rejection control is developed as

well. Simulations and real-time implementation of the proposals are shown by tracking

the ankle trajectory during gait and an isokinetic/isometric exercise taken from the

literature.

3.1 Computed-Torque Control for Parallel Robots

From the point of view of robotics, a device for motor reeducation usually belongs to the

class of rigid body systems; when they consist in serial arms, potential and kinetic ener-

gies are employed to obtain their dynamics via the Euler-Lagrange equations [88]. With

the model at hand and based on feedback linearisation [107], the so-called computed-

torque control successfully drives the manipulator to a desired trajectory [108], provided

appropriate issues of path generation [109], memory [110], and possibly discretisation

[111] are considered.

Nevertheless, if the employed device is a parallel robot, i.e., a closed kinematic chain

mechanism whose end effector is linked to the base [64], Euler-Lagrange methodologies

cannot longer be directly applied [86]. Up to our knowledge, most of the solutions

available [87, 112] ignore the fact that the resulting dynamics can be seen as differen-

tial algebraic equations (DAEs), i.e., system dynamics (serial arms) subject to algebraic

restrictions (parallel characteristics) [89]. As expected, both physically and mathemat-

ically, DAEs require proper initialisation as the dynamics are restricted to a subset of

the free ones [67]; moreover, the Pantelides algorithm is required to find such conditions

as well as recover the missing dynamics for simulation purposes [90].

This section is organized as follows : subsection 3.1.1 is about computed torque control

design for singular systems in a state-space representation, the methodology is illustrated
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via the white box model presented in subsection 2.2.2, simulation results are presented

for this case. Subsection 3.1.2 deals with computed torque control design for parallel

robots in generalized coordinates, this strategy is illustrated via the grey box model that

was presented in subsection 2.2.3, simulation and real-time results are presented.

3.1.1 Computed-Torque in State-Space Representation

The previous discussions are relevant as the sought generalisation of computed-torque

techniques for parallel robots is supposed to take into account only actuated joints while

the ordinary approach assumes the whole generalised torque is available. The solution

to this problem in [87] is based on solving the actuated dynamics and substituting them

in the algebraic restrictions for obtaining the passive dynamics. Nevertheless, the DAE

nature of the result is not considered in this reference as neither the desired trajectory nor

the initialisation takes into account the manifold to which the system is restricted. The

solution hereby proposed does not require any solving but ensures the system dynamics

are restricted to the resulting manifold once algebraic restrictions and torque availability

is taken into account.

Ordinary computed-torque control is usually split in two parts: path generation and

inverse control. For the first part, the fact that we are dealing with a parallel robot whose

model is a DAE obliges us to provide a consistent trajectory, a task that can be performed

by a cascade-like process. Consider a DAE model ẋ(t) = f(x) + g(x)u(t) with f(·) and

g(·) sufficiently smooth fields, subject to the algebraic restrictions h(x) = 0, whose

output is given by y(t) = o(x). A consistent desired trajectory yd(t) is a sufficiently

smooth signal such that y(t) → yd(t) as t → ∞, inducing a state trajectory xd(t)

such that h(xd) = 0. Thus, xd(t) should be algebraically solvable from yd(t) = o(xd);

otherwise claim the approach fails. While some issues related to path generation remain

in parallel robots, such as memory storage and approximation with via points [93], some

others might be simplified, for example the non-uniqueness of the inverse kinematics

[113].

For the second part, i.e., the control itself, the error signal e(t) = xd(t) − x(t) with

xd =
[
qTd q̇Td

]T
as the desired state trajectory in joint coordinates (deduced from

yd(t)), is considered along with the state-space representation ((2.5) in general or (2.8)
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for the white box model of the motoBOTTE) to write the error dynamics as follows:

ė(t) = ẋd(t)− ẋ(t) =

q̇d
q̈

−
q̇
u

 =

0 I

0 0

 e(t) +

0

I

 v(t), (3.1)

with v(t) = q̈d + M−1(q) (C(q, q̇) +G(q)− τ). Any control law in v(t) stabilising the

previous system would be enough for determining a τ achieving trajectory tracking

for an ordinary robotic manipulator. The usual approach is a linear state feedback

v(t) = −Ke(t) with possibly integral terms of the form Kiε with ε =
∫

(qd(t) − q(t))dt,

guaranteeing the closed loop to be stable, a task that can be performed via pole place-

ment [114] or linear matrix inequalities [115]. The final control law has the form

τ = M(q)(q̈d − v(t)) + C(q, q̇) +G(q). (3.2)

Nevertheless, a parallel robot requires using only actuated torques which, due to redun-

dancy, are usually less than for the open-loop kinematics. Our proposal consists in using

the DAE procedure in the previous section for using the actuated inputs in τ resulting

from a stabilising v(t) of (3.1); such actuator directly influences the dynamics of the

states associated to the actuated joint. The rest of the actuators (the passive ones) are

fixed to zero (or, their equivalent values for “rest” position). Simulation of the controlled

plant can thus be performed via the DAE Toolbox. Should an ODE be used instead, the

known dynamics should be substituted in the algebraic restrictions yielding the missing

ones associated to passive joints; the latter is equivalent to what is done in [87].

Simulation Results

The output y(t) of the motoBOTTE is the ankle angle φ(t). It relates with the joint

coordinates by φ(t) = Θ1 −Θ2 − 13◦, which can be equivalently written in terms of the

states as y(t) = o(x) = x2−x3−13◦. Consider a sufficiently smooth trajectory reference

yd(t) = φd(t). In order to find xd(t) (i.e., the state trajectory corresponding to φd(t))

as well as the computed-torque control law, the following algebraic relationships come

at hand; they describe the relationship between φ, φ̇, and φ̈ with the states variables x



Nonlinear Control of Parallel Robots 45

and their time derivatives ẋ:

−x2 + x3 = −13◦ − φ,

−x5 + x6 = −φ̇,

−ẋ5 + ẋ6 = −φ̈.

(3.3)

If φ = φd in the expressions above and (2.9), the expressions for x1d, x2d, and x3d can

be solved:

x1d=−l1−l2 sinx2d+l3 cosx2d−l4 sinx3d−l5 sin γ1,

x2d=φd + 13◦ + x3d,

x3d=arcsin

(
−l5

cos γ1√
α2

1 + α2
2

)
− ψ,

with α1 = l2 cos(φd + 13◦) + l3 cos(φd− 77◦) + l4, α2 = l2 sin(φd + 13◦) + l3 sin(φd− 77◦),

ψ = arctan(α1,−α2). Based on the desired position states just found, expressions for

the corresponding velocities x4d, x5d, and x6d can be calculated; again, (2.9) and (3.3)

with φ̇ = φ̇d are required:


x4d

x5d

x6d

=


1 l2 cosx2d+l3 sinx2d l4 cosx3d

0 −l2 sinx2d+l3 cosx2d −l4 sinx3d

0 −1 1


−1

︸ ︷︷ ︸
A


0

0

−φ̇d

,

Finally, expressions for ẋ4d, ẋ5d, and ẋ6d, corresponding to q̈d and required in the

computed-torque control law, can be calculated using the relationships above:


ẋ4d

ẋ5d

ẋ6d

=A


(−l2 sinx2d+l3 cosx2d)x

2
5d−l4 sinx3dx

2
6d

(−l2 cosx2d−l3 sinx2d)x
2
5d−l4 cosx3dx

2
6d

−φ̈d

.

Only the first of the three entries in τ is required once the computed torque is calcu-

lated, due both to the fact that it is the only actuator and that the parallel charac-

teristics of the system make any other action redundant. The result of applying the

corresponding torque with gains ki =−9000, kp = −1350 and kv =−65, for a PID-like

v(t)=kp (dd−d) +ki
∫

(dd − d)dt+kv

(
ḋd−ḋ

)
appears in Fig. 3.1 from initial condition
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Figure 3.1: Output tracking φ vs φd (left) and the corresponding torque τ1 (right).

x0 =
[
0.14 0.08433 4.3665 0 0 0

]T
. The poles of the resulting closed-loop linear

system are at s1 =−15, s2 =−20 and s3 =−30. Clearly, φ(t) tracks the desired φd(t)

corresponding to an ankle reeducation routine at a speed of 40◦/s [63].

3.1.2 Computed-Torque in Generalized Coordinates

The traditional form of the computed torque control is

τ = M(q) (q̈d − v(t)) + C(q, q̇) + F (q̇), (3.4)

where q̈d corresponds to the second-time derivative of the desired trajectory qd, and

M(q), C(q, q̇) and F (q̇) are the same as (2.12). Hence, as d̈ is the only actuated dynamic

in (2.12) via u̇. we must design the corresponding entry in (3.4), i.e.,

u̇= b−1
0 M11

(
d̈d − v(t)

)
+ C1(q, q̇) + F1(q̇), (3.5)

with M11 = m1 +m2 +m3, C1(q, q̇) = (m2+m3)z3Θ̇2
1 +m3z4Θ̇2

2 and F1(q̇) = v11ḋ
2 +v12ḋ.

Remark 3.1. Within this section we are not using approximations of the model for design,

these should be considered with the measured and estimated parameters values given in

Table 2.2 and Table 2.3, respectively.
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After applying the control law (3.5) to the actuated dynamics in (2.12) a linear system

for the tracking error is obtained


ε̇(t)

ė(t)

ë(t)

 =


0 1 0

0 0 1

0 0 0



ε(t)

e(t)

ė(t)

+


0

0

1

 v(t), (3.6)

where the tracking error is e(t) = dd(t) − d(t) and v(t) = kpe(t) + kiε(t) + kv ė(t) is

a PID-like control signal that can be designed via any of the methodologies for linear

control with ε(t) =
∫ t

0 (dd(t)− d(t)) dt and ė(t) = ḋd(t)− ḋ(t).

Notice that the first time-derivative of the vector of generalized coordinates q̇ is required

for implementing the control law (3.5); yet, only φ can be measured directly, which

combined with (2.14) only gives the position vector q to be computed. Nevertheless,

taking into account the actuator dynamics (2.11) and the two algebraic constraints

involving q̇ in (2.15), it is possible to obtain

ḋ = b1u, Θ̇1 =
−z4b1u

z1z4 − z2z3
, Θ̇2 =

z3b1u

z1z4 − z2z3
, (3.7)

from which it is clear that q̇ can be computed if the control signal u is known. Im-

portantly, this procedure avoids using observers which might compromise the control

task.

Simulation Results To illustrate the proposed model-based control scheme with a

challenging trajectory, consider the signal specified by

dd(t) = 0.05 + 0.025 sin (0.45πt)− 0.025 sin (0.55πt) ,

ḋd(t) = 0.01125π cos(0.45πt)− 0.01375π cos(0.55πt),

d̈d(t) = 0.0075625π2 sin(0.55πt)− 0.0050625π2 sin(0.45πt),

(3.8)

which does not correspond to a rehabilitation path but to a complex dynamic to follow.

Poles of the linear error system (3.6) can be assigned to s1 =−5, s2 =−6 and s3 =−7,

since it was verified by simulation that these poles avoid input saturation and oscillation;

using pole placement gains kp = −210, ki = −107, and kv = −18, have been found for

v(t). Simulations are run from the initial conditions q(0)=
[
0.0906 0.0369 −1.9944

]T
and q̇(0)=

[
0 0 0

]T
, which are consistent with the algebraic constraints in (2.13) and
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(2.15), respectively. Results in Fig. 3.2 are obtained, which clearly indicate the control

technique is able to track the desired trajectory despite its complexity.

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1
Simulation

Reference

Figure 3.2: Time evolution for the piston and its trajectory.

3.2 Active Disturbance Rejection Control for DAEs

If first principles or identification routines cannot be accurately performed in the moto-

BOTTE, model-free approaches can still be developed, as proven in this section which

is concerned with an adaptation of a recently developed technique. This, of course,

comes at a price: complexity of using identification and first principles in the model-

based approach of the previous sections translates into the difficulty of tuning controller

parameters in model-free approaches.

PID controllers are the most popular model-free technique in industrial environments,

including rehabilitation engineering [116], but other approaches such as fuzzy [117] or

model predictive control [118] can be found in such applications. Active disturbance

rejection control (ADRC), a novel technique appeared in [119], widely acknowledged

as a plausible successor of the PID as it overcomes the limitations of the latter while

achieving remarkable robustness to unmodelled dynamics and disturbances, has gained

a remarkable popularity in recent years. We adapt this approach to single-input parallel

robots such as the motoBOTTE.
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ADRC consists on the parts shown in the block diagram of Fig. 3.3: a transient profile

generator which helps avoiding set-point jumps (therefore, not really needed in the con-

text of rehabilitation trajectories which change continuously), an extended state observer

which estimates disturbances and nonlinearities in the spirit of finite-time approaches

such as sliding modes [120], and a nonlinear weighted sum which employs both the tran-

sient profile and the estimations of the observer to cancel out undesired effects as to

guarantee the tracking error is going to zero.

Figure 3.3: ADRC topology.

Since the model is not used in this section, some design parameters are named after [119]

in the sequel. A desired transient profile is obtained by solving the differential equations

v̇1 = v2,

v̇2 = fhan(v1 − v, v2, r),

where v1 is the desired trajectory, v2 is its derivative and the function fhan =

−rsign
(
v1 − v + v2|v2|

2r

)
. The parameter r allows to change the dynamic of the transient

profile guided by the physical limitations of the plant.

The nonlinear weighted sum effectively provides feedback by nonlinearly combining PID-

like laws on an interval, let say fal(e, α, δ) = e
δ1−α if |e| ≤ δ with discontinuous-like ones

such as fal(e, α, δ) = |e|αsign(e), |e| ≥ δ, where α, δ > 0 are design parameters and

e = z1 − y is an error signal.

For SISO plants total disturbance estimation and rejection is achieved by implementing

ẋ1 = x2, ẋ2 = f(x1, x2, w(t), t) + bu, with y = x1 as the measurable output to be

controlled, u being the input, and f(·) being a multivariable function of both the states

and external disturbances. Treating F (t) = f(x1, x2, w(t), t) as an additional state

variable, x3 = F (t) and letting Ḟ (t) = G(t) with G(t) unknown, the original plant is
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now described as ẋ1 = x2, ẋ2 = x3 + bu, ẋ3 = G(t), y = x1, which is always observable,

thus allowing the extended state observer (ESO) with equations ż1 = z2 − β01e, ż2 =

z3 + bu − β02fe, ż3 = −β03fe1, to be constructed, where fe = fal(e, 0.5, δ) and fe1 =

fal(e, 0.25, δ). The observer gains β01, β02, and β03 are usually chosen as β01 = 1,

β02 = 1
3h , β03 = 2

52h1.2
.

Combining the transient profile generation, the nonlinear feedback combination, and

the total disturbance rejection, the ADRC control law is u = −fhan(e1,ce2,r)+z3
b0

, where

e1 = v1−z1 and e2 = v2−z2, leaving only three parameters to tune: r as the amplification

coefficient that corresponds to the limit of acceleration, c as a damping coefficient to be

adjusted in the neighborhood of unity, and b0 as a rough approximation of the coefficient

b in the plant within a ±50% range.

3.3 Real-Time Implementation

3.3.1 Rehabilitation Routines

A specific and repetitive task used for rehabilitation is gait training, it can increase

the strength at patient’s foot and ankle [121]. Human gait is a complex movement

that requires coordination of the neuro-musculo-skeletal system and it is splitted into

stance and swing phases for its analysis [122, 123]. Among these phases, there are some

important events where the ankle (φ) is involved such as : the initial contact with the

floor (IC), toe landing (TL), maximum dorsiflexion (MD) and heel off (HO) [102], these

events are illustrated in Fig. 3.4, the ankle and time values for these events considering

a step speed of 4 seconds per step are given in Table 3.1, see [102] for more details. This

will be denoted as the desired trajectory (φd) and can be approximated by an 11th order

polynomial φd = 0.0049t11 − 0.1227t10 + 1.3103t9 − 7.8109t8 + 28.5069t7 − 65.7025t6 +

95.2514t5 − 83.9365t4 + 41.7027t3 − 9.8969t2 + 0.7538t + 1.6123 when the inversion of

a Vandermonde matrix for the indicated points is computed [124], the ankle trajectory

during gait is shown in Fig. 3.4 with a black line.

A second trajectory is an isokinetic/isometric exercise found in [31], the reference signal

has been adequated to be used with the motoBOTTE while achieving an ankle speed

of 40 degrees per second [125, 126], this trajectory is shown in Fig. 3.4 with a blue line
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Figure 3.4: Ankle trajectory during gait and isokinetic/isometric exercise.

and it is defined as :

φd =



π(7−2t)
9 t < 0.75

1.9199 0.75 ≤ t < 2.25

π(31−4t)
36 2.25 ≤ t < 3.75

1.3963 3.75 ≤ t < 4.5

π(2t−1)
18 4.5 ≤ t ≤ 7.5.

(3.9)

3.3.2 Discrete adaptations

In order to implement the rehabilitation routines just described, the control schemes

developed in subsection 3.1.2 and section 3.2 should be translated into control signals for

the motoBOTTE real-time setup. This goal requires translating continuous signals into

discrete-time ones as the control laws are programmed in C language into an embedded

myRIO 1900 digital device from National Instruments [70] (see Fig. 3.5).

Table 3.1: Events in the gait cycle.

Event IC TL HO TO MD

φ value 1.6179 1.5874 1.863 1.45 1.6895

Cycle % 0 9 49 62 89
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Recall that only one entry of the control law (3.4) is available and it corresponds to u̇;

this signal in turn depends on designing v(t) in (3.5). By Euler’s approximation [127],

we have:

u(k + 1) = u(k) + Tsu̇(k), (3.10)

with u(0) = 0. In this way, u(k) can be sent as a discrete signal into the servo controller,

where Ts = 0.01 second is the sampling time for the embedded device.

Let us first consider the model-based computed-torque implementation. For the discrete

signal v(k) in subsection 3.1.2, consisting on three parts, Euler’s approximation is used

for the integral of the error

ε(k + 1) = ε(k) + Ts (dd(k)− d(k)) , (3.11)

with ε(0) = 0, while e(k) and ė(k) are directly available. The linear error system (3.6)

is discretized using Tustin approximation [128], which yields


ε(k+1)

e(k+1)

ė(k+1)

=


1 0.01 5×10−5

0 1 0.01

0 0 1



ε(k)

e(k)

ė(k)

+


2.5×10−7

5×10−5

0.01

v(k),

where the signal v(k) = kpe(k) + kiε(k) + kv ė(k) is designed using pole placement.

The specification of the poles is usually given in continuous time; it is well-known their

location is related to a variety of performance measures of the controller. The poles in

continuous time have been chosen as s1 =−5, s2 =−6, and s3 =−7, which is ensured with

gains kp=−192.0135, ki = −98.8243, and kv = −16.9623; it was verified by simulation

that these poles avoid input saturation while achieving the trajectory tracking goals

From/to motoBOTTE

Figure 3.5: DSP interface.
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without oscillation. For discrete implementation, poles were translated into discrete

frequency domain as zi = esiTs and i ∈ {1, 2, 3}, yielding z1 = 0.9512, z2 = 0.9418 and

z3 =0.9324.

A first experiment intends to follow the rehabilitation routine for gait given in Fig.

3.4 but transformed from ankle angle φ(t) to the piston actuator coordinates d(t) via

(2.14) and (2.15); this trajectory is defined by real-time results obtained when tracking

this reference using the discrete version of (3.5) with the gains above are shown in Fig.

3.6(a), the control signal is shown in Fig. 3.6(b); the initial conditions in simulation

were q(0) =
[
0.0841 0.0543 −2.0822

]
and q̇(0) =

[
0 0 0

]T
; these initial conditions

must satisfy the algebraic constraints in (2.13) and (2.15) to be considered as consistent.

A second experiment tracking the trajectory for isokinetic/isometric exercise (3.9) the

trajectory is shown in Fig. 3.7(a). The control signals applied are in Fig. 3.7(b). The

gains for the controller are the same as in the previous case. The consistent initial con-

ditions for simulation were q(0) =
[
0.0107 0.1574 −2.8105

]T
and q̇(0) =

[
0 0 0

]T
.

Let us now consider the model-free ADRC implementation. The gains for the controller

and the extended state observer with the input parameter were obtained using the Pa-

rameter Estimation Toolbox with the simplex algorithm [98], then, the input parameter

b2 was manually adjusted by minimizing a sum of absolute error cost function in real-

time cf2 =
∑
|d(k) − dd(k)| via bisection. The values obtained were β01 = 0.97777,

β02 = 2.3586, β03 = 0.0044 r0 = 0.38843, c0 = 7.5321, h0 = 0.0058355, b2 = 0.1088.

The time evolution of the system when applying the active disturbance rejection control

scheme with the ankle trajectory for gait is shown in Fig. 3.8(a) and its respective control

signal is presented in Fig. 3.8(b). The time evolution of the system when applying the

active disturbance rejection control scheme for the isokinetic/isometric exercise is shown

in Fig. 3.9(a) and its respective control signal is presented in Fig. 3.9(b).
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(a) Time evolution of the piston position in simulation and real-time.
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(b) Time evolution of the control signal in simulation and real-time.

Figure 3.6: Gait trajectory under computed-torque control.

3.3.3 Discussion

From Figs. 3.6(a) and 3.8(a) it is clear that trajectory tracking for the gait rehabilitation

routine is almost identical in both schemes, though the model-free ADRC proposal

is slightly better, possibly due to the sliding-like characteristics of both the extended
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0 2 4 6 8
-10

-5

0

5

10
Simulation

Real-time

(b) Time evolution of the control signal in simulation and real-time.

Figure 3.7: Isokinetic/Isometric exercise under computed-torque control.

observer and the control law. A more remarkable difference emerges when control signals

in Figs. 3.6(b) and 3.8(b) are compared: that of the ADRC in real-time implementation

is clearly more noisy than the computed-torque control law, which is a very well-known

disadvantage (or price to pay, if otherwise considered) of variable structure control [120].
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(a) Time evolution of the piston position in simulation and real-time.
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(b) Time evolution of the control signal in simulation and real-time.

Figure 3.8: Gait trajectory under ADRC.

In this case, chattering of the control signal does not pose any threat to the motoBOTTE

piston as the actuator stands well the training cycle; yet, for a long-term use model-based

computed-torque control or a smoother version of the ADRC might be advisable.

Figs. 3.7(a) and 3.9(a) prevent us from jumping to hasty conclusions about advantages
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(a) Time evolution of the piston position in simulation and real-time.
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(b) Time evolution of the control signal in simulation and real-time.

Figure 3.9: Isokinetic/Isometric exercise under ADRC.

and disadvantages of computed-torque and ADRC approaches: it is clear that the first

one tracks the isokinetic/isometric routine better than the ADRC controller. A possible

explanation lies on the less differentiability of the reference signal (it presents sudden

jumps): it causes overshooting in the computed-torque trajectory tracking (see around
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t = 1 in Fig. 3.7(a)) and chattering (high-frequency signals) in Fig. 3.9(a). This

chattering is more remarkable in the control signal of the ADRC controller of Fig.

3.9(b), which despite its wild variations realizes the tracking task; nevertheless, this is

damaging for the DC motor of the piston and is not advised for practical use. On the

other hand, computed-torque signal in Fig. 3.7(b), although being more noisy than the

one used for the gait routine, presents less variations than the ADRC control signal in

Fig. 3.9(b).

Based on the results just described, the control technique should be chosen according

to the ankle rehabilitation routine that is going to be implemented: it is not advisable

to decide it beforehand. The model-free and model-based techniques employed in this

work, namely ADRC and computed-torque adaptations, respectively, have well-known

properties that have been confirmed in this implementation: model-free requires tuning

against fixed design, computed-torque control signals are smoother than ADRC ones,

etc. However, these characteristics may differ from the general criterium when they

are applied to a particular plant (a parallel robot such as the motoBOTTE) subject to

particular tasks (such as the gait and isokinetic/isometric routines).

3.4 Conclusion

Within this chapter, model-based and model-free control strategies have been adapted

to be applied for tracking trajectories with parallel robots that are described by a set

of differential-algebraic-equations. The algebraic constraints inherit to the singular sys-

tem have been incorporated into the trajectory generation model xd, such that all the

variables of the trajectory generation model lie within the manifold of these constraints.

The control strategy based on computed-torque for a system written in a state-space

representation has been illustrated in simulation by applying it to the white box model

of the motoBOTTE that was presented in the previous chapter, and the computed-

torque control technique adapted to parallel robots written in general coordinates and a

model-free approach based on active disturbance rejection control were illustrated using

the model from the grey box approach in the previous chapter, these latter strategies

were simulated and implemented in real-time.
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Details about the real-time implementation, simulation and trajectories selected were

provided, these details include discretization of the control signal, dealing with un-

measured variables, the consistent initial conditions for simulation were provided and

reference for the trajectories selected. The control signal was verified to be within the

operation range (u ∈ [−10, 10] Volts) in simulation, before performing the designs in

real-time implementation.

Finally, there was no notorious difference in term of performances between the computed-

torque control and ADRC design during the real-time implementations except that the

latter is a little bit more sensitive to noise due to it structure.
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Chapter 4

Convex Control for DAEs

Singular systems also known as differential-algebraic-equation systems (DAEs) [67], sin-

gular descriptors, semi-state representations, implicit systems, among other names, ap-

pear when differential equations are required to be combined with algebraic expressions

for describing the behavior of systems, some examples include electrical circuits [129],

chemical processes [130], parallel robots [131], mechanical systems [90, 132], and more.

DAEs do not have solution for all the values of x due to their algebraic constraints; this

allow us to consider a candidate Lyapunov function V (x) that does not require to be

valid for all x (i.e., V (x) > 0 and V̇ (x) < 0), but only for those values of x that satisfy

the algebraic constraints in the DAEs. As indicated in previous results for stability

[89, 133] i.e., such as LaSalle’s theorem, the definition of asymptotic stability is different

to the one given by Lyapunov.

Even for the linear case, attempts to find conditions for stability analysis [134] have yield

to misleading conclusions that were proved to be wrong [135]. A notorious contribution

for the linear case can be found in [136], in which Finsler’s lemma is combined with

Lyapunov’s direct method.

This chapter deals with nonlinear control design based on convex structures obtained

via applying the nonlinear sector methodology, most of the conditions presented on this

chapter are given in terms of linear matrix inequalities (LMIs).

61
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The chapter is organized as follows : section 4.1 presents a brief synthesis of the well

known nonlinear sector methodology that can be used to obtain an exact convex rep-

resentation of nonlinear systems and finish with a remark of the issues found when

methodologies of this kind are employed for control and observer design, then, subsec-

tion presents classic conditions for nonlinear controller and observer design based on a

parallel distributed compensation 4.1.1, these conditions for nonlinear synthesis yield to

the problem of Positivstellensatz that is formally introduced in subsection 4.1.2, new

conditions based on copositive matrices are established in subsection 4.1.3. Afterwards,

in subsections 4.1.4 and 4.1.5 the black box model of the motoBOTTE combined with

an exact convex representation of the tracking error is employed to design a PI and PID

controllers for tracking trajectories, simulation and real-time results for these approaches

are presented. The last section 4.2 provides some insight about how the algebraic con-

straints must be taken into account when selecting the modeling region Ω for a singular

system, this idea is illustrated by examining the determinant of the matrix E(x) when

the dynamical equations of the singular system are expressed in a descriptor form, fi-

nally, new conditions for control design of nonlinear singular systems are established in

subsection 4.3.

4.1 Convex Structures via Nonlinear Sector Method

Consider a continuous time nonlinear system

ẋ(t) = f (x(t)) + g (x(t))u(t), y(t) = z (x(t)) , (4.1)

these systems can be rewritten for all x within a compact of interest Ω by means of the

nonlinear sector methodology from [137]; thus, obtaining an exact convex representation

for

ẋ = A(x)x+B(x)u, y = C(x)x.

The method consists on rewriting each of the ρ non constant terms (denoted by zi, with

i ∈ {1, 2, · · · , ρ}) in the matrices A(x), B(x) and C(x) in (4.3) for all x ∈ Ω, via the

interpolation or membership functions defined as hi = w1
i1
w2
i2
· · ·wrir , where [i1, i2, · · · , ir]

is a ρ−digit binary representation of (i − 1) with i ∈ {1, 2, · · · , r} and r = 2ρ is the

number of membership or interpolation functions necessary to obtain this exact convex
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representation, the weight functions wi0 and wi1 that compose the membership functions

are defined as

wi0 =
z1
i − zi
z1
i − z0

i

, wi1 =
zi − z0

i

z1
i − z0

i

,

where z1
i and z0

i stands for the maximum and minimum values of each non constant term

zi within Ω, respectively. Each non constant term is expressed as the convex sum of its

constant extreme values zi = wi0
(
z0
i

)
+wi1

(
z1
i

)
, the constant matrices can be obtained

by evaluating

Ai = A(x)|hi=1, Bi = B(x)|hi=1, Ci = C(x)|hi=1, (4.2)

it yields to the following exact convex representation

ẋ(t)=
r∑
i=1

hi (Aix(t)+Biu(t)) , y(t)=
r∑
i=1

hiCix(t). (4.3)

The membership functions (denoted by hi) belong to the standard simplex (i.e., they

hold the convex sum properties)

0 ≤ hi ≤ 1,
r∑
i=1

hi = 1. (4.4)

Most of the developments thereafter assume that the mathematical model of the system

has been rewritten as a convex structure, and also that the origin of the system x = 0 is

contained in the modeling region Ω. These systems are known as Takagi-Sugeno (T-S)

due to its historical background in the area of Fuzzy Systems or polytopic systems in

the area of linear parameter varying systems (LPV). It is important to recall that this

is not the only way to obtain an exact convex representation, there are some widely

known alternatives such as polynomial fuzzy models [80] or tensor product models [138];

therefore, the models after this modelling process obtained are not unique and the

selected approach might have an impact on the conservativeness of the solution found

for the controller design problem [139].



Control Design Based on Convex Structures 64

4.1.1 Classic conditions for synthesis of nonlinear systems

Stability conditions for nonlinear control design

First, consider a nonlinear system (4.1) written as an exact convex representation (4.3),

assuming that the state vector x can be fully measured and applying a parallel dis-

tributed compensation control law (denoted as PDC) has the form

u = F (x)x =

r∑
j=1

hjFjx, (4.5)

where hj are the same membership functions as the original system, then, our closed-loop

system is

ẋ=(A(x)+B(x)F (x))x=

r∑
i=1

r∑
j=1

hihj (Ai +BiFj)x. (4.6)

Consider a quadratic candidate Lyapunov function of the form V (x) = xTPx, it is

positive definite if P > 0, its time derivative is V̇ (x) =xTPẋ+ẋTPx, substituting (4.6)

gives

V̇ =xT

 r∑
i=1

r∑
j=1

hihj
(
P (Ai+BiFj)+

(
F Tj B

T
i +ATi

)
P
)x,

it will be negative ∀x if the following holds

r∑
i=1

r∑
j=1

hihj
(
P (Ai +BiFj) +

(
F Tj B

T
i +ATi

)
P
)
< 0,

since hi ≥ 0 and hj ≥ 0 in Ω they can be just removed

P (Ai +BiFj) +
(
F Tj B

T
i +ATi

)
P < 0,

applying congruence with X = P−1, yields to

−AiX −BiFjX −XF Tj BT
i −XATi > 0,

applying substitution with Mj =FjX, then, V̇ is negative definite if
∑r

i,j=1 hihjQij>0,

with Qij =−AiX−BiMj−MT
j B

T
i −XATi .
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Stability Conditions for Nonlinear Observer Design

If the membership functions depend only on measured variables then a nonlinear observer

for the system (4.3) can be defined as

x̂=
r∑
i=1

r∑
j=1

hihj (Aix̂+Biu+Lj (y − ŷ)) , ŷ=
r∑
i=1

hiCix̂, (4.7)

the observation error is e=x−x̂ and its time derivative is

ė = ẋ− ˙̂x =
r∑
i=1

r∑
j=1

hihj (Ai − LjCi) e. (4.8)

Consider a quadratic candidate Lyapunov function for the error V = eTPe, is positive

definite if P > 0, its time derivative is V̇ = eTP ė+ ėTPe and substituting (4.8) gives

V̇ = eT

 r∑
i=1

r∑
j=1

hihj
(
PAi − PLjCi − CTi LTj P +ATi P

) e,
it is negative ∀e if the following holds

r∑
i=1

r∑
j=1

hihj
(
−PAi + PLjCi + CTi L

T
j P −ATi P

)
> 0,

since hi ≥ 0 and hj ≥ 0 in Ω they can be just removed

−PAi + PLjCi + CTi L
T
j P −ATi P > 0,

substituting Nj = PLj , then V̇ is negative definite if
∑r

i,j=1 hihjQij > 0, with Qij =

−PAi+NjCi+C
T
i N

T
j −ATi P .

4.1.2 The Problem of Positivstellensatz

Both cases controller and observer design have been transformed into a problem of Posi-

tivstellensatz, which is basically proving that a constrained polynomial is positive [140].

Notice that Qhh is a quadratic function of h and increasing the number of membership

functions involved will increase the degree of this polynomial function as in results based

on Polya’s theorem such as [80, 141, 142]. The stability conditions obtained for both
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cases are of the form

Qhh > 0, (4.9)

with Qhh =
∑r

i,j=1 hihjQij , where Qij are matrices with constant terms and some of

them are decision variables (terms to be found). A trivial solution for (4.9) would

be Qij > 0 ∀i, j, but this is a conservative solution, it does not take into account the

interaction between subsystems nor the positiveness in the h functions. There are many

shape-independent relaxations available to satisfy the positiveness of (4.9) such as :

Lemma 4.1 ([143]). A sufficient condition for the expression (4.9) to be positive is

Qii > 0,

Qij +Qji ≥ 0, ∀j < i,
(4.10)

holds for i, j ∈ {1, 2, · · · , r}.

Lemma 4.2 ([144]). The equation (4.9) is positive for hi ≥ 0 if

 1
r−1Qii

1
2 (Qij +Qji)

1
2 (Qij +Qji)

1
r−1Qjj

 > 0, ∀j < i. (4.11)

holds for i, j ∈ {1, 2, · · · , r}.

Lemma 4.3 ([145]). The expression (4.9) holds if we guarantee that

Qii − Zii ≥ 0,

Qij +Qji − 2Zij ≥ 0, ∀j < i,
Z11 Z21 · · · Zr1

Z21 Z22 · · · Zr2
...

...
. . .

...

Zr1 Zr2 · · · Zrr

 > 0.

(4.12)
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Lemma 4.4 ([146]). The inequality in (4.9) holds if there are matrices such that

Qii − Zii ≥ 0,

Qij +Qji − Zij − ZTij ≥ 0, ∀j < i,
Z11 ZT21 · · · ZTr1

Z21 Z22 · · · ZTr2
...

...
. . .

...

Zr1 Zr2 · · · Zrr

 > 0.

(4.13)

All the previous lemmas consider the h functions as positive scalars subject to an al-

gebraic and inequality constraint (i.e., h ≥ 0 and
∑
h = 1); is easy to check that the

condition h ≤ 1 is also guaranteed, since you can only satisfy
∑
h = 1 with positive

scalars smaller or equal to 1.

Verifying that a matrix Q is not copositive is a well known NP-complete problem [147],

it can not be verified by checking its eigenvalues, all the positive definite matrices are

copositive, but the converse is false.

Lemma 4.5 ([148]). A sufficient condition for a matrix Q to be copositive is that it can

be written as the sum of a positive semidefinite matrix Pd and a nonnegative matrix Λ

with entries λij :

Q = Pd + Λ (4.14)

with Pd≥ 0 and λij ≥ 0; there are copositive matrices that can not be expressed in this

form [149].

Lemma 4.6 (Finsler’s). [136] Let x ∈ Rn, Q ∈ Sn and B ∈ Rm×n such that rank

(B) < n. The following statements are equivalent :

1. xTQx < 0, Bx = 0, x 6= 0.

2. ∃X ∈ Rn×m : Q+ XB + BTX T < 0.

Definition 4.7 (Positive [150]). Let a matrix Q ∈ Rn×n, be called positive definite if

xTQx > 0 holds for x 6= 0 and x ∈ Rn. A matrix Q is positive definite if and only if its

symmetric part is positive definite 1
2

(
Q+QT

)
> 0.

Definition 4.8 (Copositive [148]). Let a matrix Q be called strictly copositive if hTQh>

0 holds for h�0, with Q∈Rr×r and h ∈ Rr.
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4.1.3 New Conditions for Nonlinear Controller and Observer Design

In this section positiveness of the membership functions is considered into the Lyapunov

analysis for nonlinear control and observer design, the new theorems obtained are based

on the concept of copositive matrix.

Theorem 4.9. The origin of the system (4.3) is asymptotically stable under a control

of the form (4.5) if there are proper size matrices X = XT > 0, Mj, λij = λTij ≥ 0, for

all j<i such that :


Q11 − λ11 QT21 − λT21 · · · QTr1 − λTr1
Q21 − λ21 Q22 − λ22 · · · QTr2 − λTr2

...
...

. . .
...

Qr1 − λr1 Qr2 − λr2 · · · Qrr − λrr

 > 0, (4.15)

is strictly positive definite with the matrices defined as Qii=−AiX−BiMi−XATi−MT
i B

T
i ,

Qij = 1
2

(
−AiX−BiMj−XATi −MT

j B
T
i

)
+ 1

2

(
−AjX−BjMi−XATj −MT

i B
T
j

)
for all

j < i and i, j ∈ {1, 2, · · · , r}. The gains for the controller are Fj =MjX
−1.

Proof. The closed-loop system (4.6) can be written as

ẋ(t) =

r∑
i=1

h2
iGiix(t) + 2

∑
i<j≤r

hihj

(
Gij +Gji

2

)
x(t),

with Gij =Ai+BiFj and consider a quadratic candidate Lyapunov function V =xTPx,

with P >0, its time-derivative is V̇ =xTPẋ+ẋTPx=−xTQhhx, where Qhh is equal to

Qhh =
r∑
i=1

r∑
j=1

hihj
(
∆T
ijP + P∆ij

)
, (4.16)

this can be rewritten as

h̄T


P∆11 + ∆T

11P P∆21 + ∆T
21P · · · P∆r1 + ∆T

r1P

P∆21 + ∆T
21P P∆22 + ∆T

22P · · · P∆r2 + ∆T
r2P

...
...

. . .
...

P∆r1 + ∆T
r1P P∆r2 + ∆T

r2P · · · P∆rr + ∆T
rrP

 h̄, (4.17)
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with h̄ =
[
h1I h2I · · · hrI

]T
and ∆ij = 1

2 (Gij +Gji). Now, consider a copositive

matrix Γij ∈ Rrn×rn, which means that the quadratic form

Γhh =


h1I

h2I
...

hrI



T 
γ11 γT21 · · · γTr1

γ21 γ22 · · · γTr2
...

...
. . .

...

γr1 γTr2 · · · γrr


︸ ︷︷ ︸

Γij


h1I

h2I
...

hrI

 ,

is positive for hi, hj ≥ 0, with γij ∈ Rn×n for all 1≤ j < i≤ r, a sufficient condition for

Γij to be copositive is that it is composed by blocks of positive semidefinite matrices,

therefore, γij≥0. According to Lemma 4.5, if Γij is a copositive matrix, then, (4.17) is

also copositive if (4.18) holds.


P∆11+∆T

11P−γ11 P∆21+∆T
21P−γ21 · · · P∆r1+∆T

r1P−γr1

P∆21 + ∆T
21P −γ21 P∆22 + ∆T

22P −γ22 · · · P∆r2 + ∆T
r2P −γTr2

...
...

. . .
...

P∆r1 + ∆T
r1P −γr1 P∆r2 + ∆T

r2P −γr2 · · · P∆rr + ∆T
rrP −γrr

 > 0. (4.18)

Then, pre- and post- multiplying it by a proper size diagonal matrix of X, with X=P−1

yields to


∆11X+X∆T

11−Xγ11X ∆21X+X∆T
21−Xγ21X · · · ∆r1X+X∆T

r1−Xγr1X

∆21X +X∆T
21 −Xγ21X ∆22X +X∆T

22 −Xγ22X · · · ∆r2X +X∆T
r2 −XγTr2X

...
...

. . .
...

∆r1X +X∆T
r1 −Xγr1X ∆r2X +X∆T

r2 −Xγr2X · · · ∆rrX +X∆T
rr −XγrrX

 > 0, (4.19)

substituting Mj = FjX and λij = XγijX, with λij ≥ 0, yields to conditions in Theorem

4.9, which is equivalent to find Pd > 0 for Pd = Q−Λ in Lemma 4.5, this concludes the

proof.

Theorem 4.10. The origin of the system (4.3) is asymptotically stable under a control

of the form (4.5) if there are proper size matrices X = XT > 0, Mj, λii = λTii ≥ 0,
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1
2

(
λij − λTij

)
> 0 for all j<i, such that :


Q11 − λ11 QT21 − λT21 · · · QTr1 − λTr1
Q21 − λ21 Q22 − λ22 · · · QTr2 − λTr2

...
...

. . .
...

Qr1 − λr1 Qr2 − λr2 · · · Qrr − λrr

 > 0. (4.20)

is strictly positive definite with the matrices defined as Qii=−AiX−BiMi−XATi−MT
i B

T
i ,

Qij = 1
2

(
−AiX−BiMj−XATi −MT

j B
T
i

)
+ 1

2

(
−AjX−BjMi−XATj −MT

i B
T
j

)
for all

j < i and i, j ∈ {1, 2, · · · , r}. The gains for the controller are Fj =MjX
−1.

Proof. It follows directly from previous developments, consider that the elements λij

with j < i are full matrices and they hold the positive condition 1
2

(
λij + λTij

)
> 0.

Theorem 4.11. The origin of the error system (4.8) with the observer (4.7) is asymp-

totically stable if there are proper size matrices P = P T > 0, Nj, γij ≥ 0, for all j < i

such that 
Q11 − γ11 QT21 − γT21 · · · QTr1 − γTr1
Q21 − γ21 Q22 − γ22 · · · QTr2 − γTr2

...
...

. . .
...

Qr1 − γr1 Qr2 − γr2 · · · Qrr − γrr

 > 0. (4.21)

is elementwise strictly positive definite with Qij = −PAi+NjCi+CTi N
T
j −ATi P and

i, j ∈ {1, 2, · · · , r}, where the gains for the observer are computed as Lj = P−1Nj.

Proof. It follows directly from previous developments.

Theorem 4.12. The origin of the error system (4.8) with the observer (4.7) is asymp-

totically stable if there are proper size matrices P = P T >0, Nj,
1
2

(
γij − γTij

)
≥ 0, for

all j<i, such that


Q11 − γ11 QT21 − γT21 · · · QTr1 − γTr1
Q21 − γ21 Q22 − γ22 · · · QTr2 − γTr2

...
...

. . .
...

Qr1 − γr1 Qr2 − γr2 · · · Qrr − γrr

 > 0. (4.22)

is elementwise strictly positive definite with Qij = −PAi+NjCi+CTi N
T
j −ATi P and

i, j ∈ {1, 2, · · · , r}, where the gains for the observer are computed as Lj = P−1Nj.
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Proof. It follows directly from previous developments, just consider 1
2

(
γij + γTij

)
> 0.

The conditions for control design in Theorems 4.9 and 4.10 should be at least as good

as Lemma 4.3 and 4.4, respectively, there is an equivalence given by Lemma 4.5.

The concept of copositive matrices can be applied to previous results where the Posi-

tivstellensatz problem appears, not only to controller and observer design for continuous

systems as it was the case for this report. It is neither constrained to be applied only

for systems with double-sums, it can be adapted for analyzing higher-order polynomials

as shown in [148].

It is important to remark that only the property of positiveness in the membership

functions was taken into account hi ≥ 0 in the previous developments, therefore, an

appropriate method for including the information of the algebraic constraint
r∑
i=1

hi = 1

in the stability analysis should reduce the existing gap. To illustrate this fact consider

the easier case, which is a nonlinear system with two membership functions h1 and h2,

the inequalities in Theorem 4.9 and 4.10 are sufficient to satisfy stability conditions

in the grey region that represents hi ≥ 0 in Fig. 4.1, the region corresponding to the

algebraic constraint h1+h2 = 1 is indicated with a black-dashed line and we must satisfy

stability conditions only for the intersection of both, which is indicated with a red-line.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 4.1: Illustration of the algebraic condition.
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Figure 4.2: Comparison between Theorem 4.9 and Lemma 4.3.

Example 4.1. Consider the matrices for a nonlinear system given in [141, 142] writ-

ten in a convex representation (4.3) are A1 =

1.59 −7.29

0.01 0

, B1 =

1

0

, A2 =0.02 −4.64

0.35 0.21

, B2 =

8

0

, A3 =

−a −4.33

0 0.05

 and B3 =

−b+6

−1

, the parameters

(a, b) vary within the range a∈ [−10, 40] and b∈ [−10, 17] and a control law of the form

(4.5) is designed. The feasible points for Theorem 4.9 and Lemma 4.3 are indicated with

are indicated with × and �, respectively in Fig. 4.2. The feasible points for Theorem

4.10 and Lemma 4.4 are indicated with are indicated with × and �, respectively in Fig.

4.3. These points were obtained via the LMI solvers available in the Robust Control

Toolbox in MATLAB R2019b, see [151].

The solution for the point (a, b)=(38, 15) found using Theorem 4.10, the matrices found

are

F1 =
[
−1.7053 5.1795

]
, F2 =

[
−0.8528 −11.9668

]
, F3 =

[
−1.8248 49.1549

]
,

the matrix associated to the Lyapunov function is

P =

0.0568 0.2863

0.2863 6.8039

 ,



Control Design Based on Convex Structures 73

0 10 20 30 40
-10

-5

0

5

10

15

Figure 4.3: Comparison between Theorem 4.10 and Lemma 4.4.

the solution obtained was simulated with initial conditions x(0)T =
[
−10 20

]
and the

membership functions are

h1 =
cos(10x1) + 1

4
, h2 =

sin(10x1) + 1

4
, h3 = −sin(10x1) + cos(10x1)

4
+

1

2
,

these functions has been taken from [152] and the time evolution of the system with the

Lyapunov function obtained is shown in Fig. 4.4(a) and Fig. 4.4(b), respectively.

4.1.4 Convex Proportional-Integral Control Design

We want to use the nonlinear time-discrete model obtained in (2.2) for tracking a refer-

ence signal r(t) and to do so first we can filter the reference as

xr(t+ 1) = Arxr(t) + (1−Ar)r(t) (4.23)

where Ar = 0.05 is an asymptotically stable matrix and xr(t) the reference signal filtered.

Let us define the tracking error e(t) using this filtered reference signal and the integral
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(a) States of the system.

0 0.1 0.2 0.3 0.4 0.5
0

500

1000

1500

2000

2500

3000

(b) Time evolution of the Lyapunov function.

Figure 4.4: Time evolution of the system in closed-loop.

of the tracking error ei(t) as

e(t+ 1) = φ(t+ 1)− xr(t+ 1), (4.24)

ei(t+ 1) = ei(t) + Ts (φ(t)− xr(t)) , (4.25)
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where Ts = 0.01 is the sampling time of 10 milliseconds; using the relations ∆1 = r(t)
xr(t)

and ∆2 = xr(t)
φ(t) the latter expressions along with (2.2) and (4.23) can be gathered in a

matrix representation of the error which gives

 e (t+ 1)

ei (t+ 1)

 =

∆1 0

Ts 1

 e (t)

ei (t)

+

b0 + b1φ (t)

0

u (t) +

(1−∆1) (1−Ar∆2)φ (t)

0

 ,
x (t+ 1) = A (∆1)x (t) +B (φ)u (t) + ξ (φ,∆1,∆2) ,

with x (t) =
[
e (t) ei (t)

]T
, where ξ (φ,∆1,∆2) can be seen as a disturbance, notice that

if ∆1 = r(t)
xr(t)

= 1 then it banishes (i.e., ξ (φ,∆1,∆2) = 0), we will focus on designing a

controller only for this case, it leads to the error system

x (t+ 1) = Ax (t) +B (φ)u (t) . (4.26)

Notice that the error system contain a non-constant term but, it can be exactly rewritten

as the convex sum of constant terms within our compact of interest defined as Ω =

(φ ∈ {1.27, 2.52}) by means of the nonlinear sector methodology [137].

Convex modeling of the error system

The nonlinear sector methodology indicates the following 3 steps for obtaining a convex

model from systems like the one presented in (4.8) :

1. Identify and indicate the p non-constant terms in the system and gather them

in zi(x) with i ∈ {1, 2, · · · , p}. Their maximum and minimum value within the

compact of interest Ω will be denoted as z1
i and z0

i , respectively. Therefore, the

non-constant term in our system (4.8) is z1(φ) = φ(t) ∈ [φmin, φmax].

2. Using this values we can define the interpolation functions, also named membership

functions as

h1 (φ) =
φmax − φ

φmax − φmin
, h2 (φ) = 1− h1 (φ) .

Notice that these membership functions hold the convex sum property, this means

that 0 ≤ hi ≤ 1 with i ∈ {1, 2} for x ∈ Ω and also h1 +h2 = 1 for all x. Therefore,



Control Design Based on Convex Structures 76

each non-constant term can be expressed as the convex sum of two constant values

z(x) = h1z
0 + h2z

1.

3. The algebraically equivalent convex representation of the system (4.8) is

x(t+ 1) =
r∑
i=1

hi (Ax(t) +Biu(t)) ,

= Ax(t) +Bhu(t), (4.27)

where the constant terms are Bi = B(φ)|hi=1 with i ∈ {1, 2, · · · , r} and r = 2p = 2.

It is important to recall that this is not an approximation, but the convex property

holds only within the compact Ω.

The constant matrices obtained from applying the nonlinear sector to the error system

(4.26) are A =

 1 0

0.01 1

, B1 =

−0.0013

0

 and B2 = 10−3 ×

−0.6651

0

.

Developments thereafter will be based on the exact convex representation (4.27).

Conditions for Parallel Distributed Compensation with Decay Rate

First, notice that we have written the system to control it in terms of the error (4.24)

and the candidate Lyapunov function proposed will be for this error system; recall that

if there is a Lyapunov function associated to a system V (x(t)) then x → 0 as t → ∞;

this is important because, using the same principle we want the e(t)→ 0 and ei(t)→ 0

as t→∞ when tracking our reference r(t).

Consider a parallel compensated distribution (PDC) control law with an integral action

of the following form

u(t) =
r∑
j=1

hjFj

[
e(t) ei(t)

]T
= Fhx(t), (4.28)

substituting the latter expression in (4.26) yields to

x(t+ 1) =
r∑
i=1

r∑
j=1

hihj ((A+BiFj)x(t)) ,

= (A+BhFh)x(t). (4.29)
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The controller will be designed by using Lyapunov’s direct method, it consists on pro-

viding a Lyapunov function that proves stability for the closed-loop system and we can

find this function by solving a set of LMI, the conditions that a function needs to satisfy

such as V (x(t)) > 0 and ∆V (x(t)) < 0 to be a valid Lyapunov function will be expressed

in terms of linear matrix inequalities. This begins with proposing a candidate quadratic

Lyapunov function of the form

V (x(t)) = xT (t)Px(t),

it is positive definite if P > 0 and we can impose a decay rate α on its time derivative

by considering

∆V (x(t)) = xT (t+ 1)Px(t+ 1)− α2xT (t)Px(t),

substituting the expression for the closed-loop system in (4.29) gives

x(t)T (A+BhFh)TP (A+BhFh)x(t)− α2x(t)TPx(t),

this time derivative is negative definite if

(A+BhFh)TP (A+BhFh)− α2P < 0,

defining the new variable X = P−1 and then pre- and post-multiplying the expression

by X we can rewrite it as

X(A+BhFh)TX−1(A+BhFh)X − α2X < 0,

substituting Mh = FhX as a new variable in the latter expression and dividing it by α2

gives

X − (AX +BhMh)T
X−1

α2
(AX +BhMh) > 0,

applying Schur’s complement it is possible to transform this nonlinear inequality to a

linear one

Υhh =

 X XAT +MT
h B

T
h

AX +BhMh α2X

 > 0,

then, by taking into account the convex sum property (i.e., 0 ≤ hi ≤ 1) in the member-

ship functions we can remove them from the expression without changing the sign of the
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inequality. Using Tuan’s relaxation [144] which takes advantage of the double convex

sum (i.e., hi = hj for i = j) , then the expression Υhh > 0 holds if we can can satisfy

2

r − 1
Υii + Υij + Υji > 0.

Finally, the error system (4.26) can be driven asymptotically to zero via a PDC control

law of the form (4.28) with decay rate α2 if there exists matrices X > 0, Mj for all

(i, j) ∈ {1, 2, · · · , r} such that 2
r−1Υii + Υij + Υji > 0 holds with

Υij =

 X XAT +MT
j B

T
i

AX +BiMj α2X

 , (4.30)

where the gains of the nonlinear controller can be computed as Fj = MjX
−1; this

concludes the controller design process. Recall that more performance parameters can

be included in the design by including more proper LMI conditions.

Simulation and Real-Time Results

���t�

Controller
r�t� xr�t�

�
�

e�t�
Filter Motobotte

��V�

Figure 4.5: Scheme used for simulation and real-time implementation.

The scheme of the closed-loop system that will be used for simulation and real-time

implementation purposes is shown in Fig. 4.5, every block shown has been explained

in the previous sections. Now, we are interested in following a piece-wise reference r(t)

defined as

r(t) =


1.4 t < 1,

1.4 + (2.4−1.4)
(2.4323−1)(t− 1) 1 ≤ t ≤ 2.4323,

2.4 t ≥ 2.4323.
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For the LMI conditions in (4.30) and constant matrices in 4.1.4 a solution was found

with

F1 =
[
124.7902 471.4880

]
, F2 =

[
133.7383 504.7693

]
X =

 1.7519 −0.2794

−0.2794 0.0711


with a decay rate α2 = 0.93657.

Simulation results are exhibited in Fig. 4.6, the behavior of the output and reference

is shown in Fig. 4.6(a) and Fig. 4.6(b) shows the time evolution of the input signal

obtained with the control law designed. The real-time implementation results of this

control scheme are shown in Fig. 4.7.

4.1.5 Convex Proportional-Integral-Derivative Control Design

Now, let us define the filtered reference signal as

rf (t+ 1) = Arf (t) + (1−A)r(t),

with |A| < 1, r(t) is the reference, the error between the output of the system and the

filtered reference signal is defined as

e(t+ 1) = φ(t+ 1)− rf (t+ 1),

where the integral and first time derivative of this signal are

ei(t+ 1) = ei(t) + Tse(t),

ed(t+ 1) =
e(t+ 1)

Ts
− e(t)

Ts
,

defining the variables ∆1 = r
rf

and ∆2 =
rf
φ it is possible to gather those expressions as

Ex(t+ 1) = A(∆1)x(t) +B(φ)u(t) + ξ(∆1,∆2, φ),

selecting the state vector as x(t) =
[
e(t) ei(t) ed(t)

]T
. Let us recall that if rf = r,

then ∆1 = 1 and ξ(·) = 0, we will design a controller for this. As there exists E−1, our
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(a) Filtered reference xr(t) and output angle φ(t).
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(b) Control signal u(t) = Fhx(t).

Figure 4.6: Time evolution of the system in simulation.

error system can be expressed as

x (t+ 1) = Āx (t) + B̄ (φ)u (t) ,



Control Design Based on Convex Structures 81

0 1 2 3 4 5

1.4

1.6

1.8

2

2.2

2.4

(a) Filtered reference xr(t) and output angle φ(t).
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(b) Time evolution of the control signal u(t) = Fhx(t).

Figure 4.7: Evolution of the system in real-time.

with E=


1 0 0

0 1 0

−1 0 Ts

, A=


1 0 0

Ts 1 0

−1 0 0

, and a non constant matrix B =


b0+b1φ(t)

0

0

,

Ā = E−1A and B̄ (φ) = E−1B. The nonconstant term φ (t) can be rewritten by means
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of the nonlinear sector approach [137], it is bounded by φ ∈ [1.273, 2.5212]. Define

the interpolation functions as h1 = φmax−φ(t)
φmax−φmin

and h2 = φ(t)−φmin

φmax−φmin
, the convex system

obtained from this modeling process is

x (t+ 1) =
2∑
i=1

hi
(
Āx (t) + B̄iu (t)

)
,

with B̄i = B̄(φ)|hi=1 constant terms B̄1 =


−0.0013

0

−0.1340

 and B̄2 =


−0.0007

0

−0.0665

.

Lemma 4.13 (Output disturbance attenuation [153]). For control design with distur-

bance attenuation consider a disturbance w(t) measured in the output y(t) = Cx(t)+

Dw(t). The origin of the system is asymptotically stable with a PDC control law

u(t)=
2∑
j=1

Fjx(t) =Fhx(t), decay rate α2 and γ is minimized subject to ‖ y(t)
w(t)‖≤γ if there

are matrices X>0, γ>0, Mj for (i, j)∈{1, 2}, where Fi=MiX
−1 and 2Υii+Υij+Υji<0

[144] holds with :

Υij=


−α2X XCTD XATi +MT

j B
T
i XCT

DTCX DTD−γ2I 0 0

AiX+BiMj 0 −X 0

CX 0 0 −I

. (4.31)

Simulation and Real-Time Results The output and disturbance matrices are C=I3

and D=0.1×
[
1 0.01 100

]T
, we want a decay rate of α2 =0.935. A solution was found

for the LMIs in lemma 4.13 with γ = 10.0241, F1 =
[
146.7459 578.6829 0.1757

]
and

F2 =
[
285.8307 1127.1404 0.3419

]
. The closed-loop response is shown in Fig. 4.8(a),

where the dashed line is the filtered reference, the solid black line is the output angle in

simulation, the blue line is the real-time output angle and the red line is the real-time

output angle where the disturbance is a leg pushing in an opposite direction to rf . The

control signal used for each case is illustrated in Fig. 4.8(b).
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Figure 4.8: Control and time-evolution of the system.

4.2 Exact Convex Representations for Singular Systems

A common way to express singular systems is the singular descriptor form, in order

to illustrate some phenomena that occurs in the modeling of these systems consider a
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nonlinear singular system of the form

E(x)ẋ = A(x)x+B(x)u, (4.32)

where x ∈ Rn is the state vector, u ∈ Rm is the input signal and rank(E(x)) < n. First,

the system (4.32) can be expressed in the algebraically equivalent descriptor redundancy

form by using the extended state vector x̄=
[
x ẋ

]T
:

Ē ˙̄x = Ā(x)x̄+ B̄(x)u, (4.33)

with Ē=

I 0

0 0

, Ā(x)=

 0 I

A(x) −E(x)

 and B̄h=

 0

B(x)

.

Following the well-known nonlinear sector methodology [137] we can rewrite (4.33) as

an exact convex representation. This methodology consists on rewriting each of the ρ

non constant terms in E(x), A(x) and B(x) inside an operating region denoted as Ω.

The rewriting process is done by using interpolation or membership functions (MFs).

The MFs are composed by permutations of weight functions (w0
i , w

1
i ), each of the ρ non

constant terms (zi) can be expressed as the convex sum of its extreme values :

zi =

(
z1
i − zi
z1
i − z0

i

)
︸ ︷︷ ︸

w0
i

z0
i +

(
zi − z0

i

z1
i − z0

i

)
︸ ︷︷ ︸

w1
i

z1
i , (4.34)

the maximum and minimum are denoted z1
i and z0

i , respectively. These weight functions

hold the convex sum properties

0 ≤ wji ≤ 1, w0
i + w1

i = 1,

with i ∈ {1, 2, · · · , ρ} and j ∈ {0, 1}, the MFs are defined with permutations of the

weight functions hi = wj11 w
j2
2 · · ·w

jρ
ρ , here [j1, j2, · · · , jρ] is a binary count for (i − 1)

where i∈{1, 2, · · · , r}, r = 2ρ. The convex representation for our system written in the

descriptor redundancy form is

Ē ˙̄x = Āhx̄+ B̄hu, Āh =

r∑
i=1

hiĀi, B̄h =

r∑
i=1

hiB̄i, (4.35)
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where Āi =

 0 I

Ai −Ei

, B̄i =

 0

Bi

, Ei, Ai and Bi are constant terms that can be

obtained by evaluating the membership functions

Ai = A(x)|hi=1, Ei = E(x)|hi=1, Bi = B(x)|hi=1.

Developments thereafter will be based on a singular system expressed in a descriptor

redundancy form and rewritten in an exact convex representation as (4.35).

Lemma 4.14 (Classical descriptor). [154] The nonlinear descriptor system (4.32) is

asymptotically stable with a control law of the form u =
r∑
j=1

hjFjx, if there are matrices

X11 > 0, X1, X3, X4 and Mj, such that

Qii < 0,

2

r − 1
Qii +Qij +Qji < 0,

holds with

Qij =

 X3 +XT
3 (∗)

AiX1+BiMj−EiX3+XT
4 −EiX4 −XT

4 E
T
i

 ,
where Fj = MjX

−1
1 with i, j ∈ {1, 2, . . . , r}.

Now, let us recall that the motoBOTTE in Fig. 2.1 is a five-bars closed-loop mechanism

actuated by a linear piston, the variable distance of this piston is denoted by d ∈ [0, 0.103]

in meters, the fixed length of the bars is denoted by l1, l2, l3, l4 and l5; γ1 and γ2 are

fixed inner angles of the robot, the masses of the links are denoted by m1, m2 and m3.

The dynamics of the actuator d can be described by

ḋ = b1u, (4.36)

with respect to the control input, there is an input constraint at u ∈ [−10V, 10V ], the

angle variables Θ1 and Θ2 are passive. Due to the closed-loop nature of the system it has

constraints on its position, this produce loss in the degrees-of-freedom. The constraints
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in the position variables (d, Θ1 and Θ2) are :

d+l1+l2 sin Θ1 − l3 cos Θ1+l4 sin Θ2+l5 sin Θ3 =0,

l2 cos Θ1 + l3 sin Θ1 + l4 cos Θ2 + l5 cos Θ3 = 0,

Θ1 −Θ2 + π/2− γ = φ,

(4.37)

where the first two expressions can be obtained as displacements over x− and y−axis,

respectively [66]. The value for each parameter in the motoBOTTE are given in Table

4.1.

The algebraic constraints in the position (4.37) also impose constraints on the speed of

the variables, these constraints can be explicitly obtained by computing the correspond-

ing time derivatives :

ḋ+ (l2 cos Θ1 + l3 sin Θ1) Θ̇1 + l4 cos Θ2Θ̇2 = 0,

(l3 cos Θ1 − l2 sin Θ1) Θ̇1 − l4 sin Θ2Θ̇2 = 0,

Θ̇1 − Θ̇2 = φ̇.

(4.38)

Selecting the state vector as x =
[
d Θ1 Θ2

]T
yields to the following descriptor form


1 0 0

1 z1 z2

0 z3 z4


︸ ︷︷ ︸

E(x)


ẋ1

ẋ2

ẋ3

 =


0 0 0

0 0 0

0 0 0


︸ ︷︷ ︸

A


x1

x2

x3

+


b1

0

0


︸ ︷︷ ︸
B

u, (4.39)

where the non constant terms are z1 = l2 cosx2 + l3 sinx2, z2 = l4 cosx3, z3 = l3 cosx2−

l2 sinx2 and z4 = −l4 sinx3.

Table 4.1: Parameters considered in this model.

Parameter Value

l1 0.35 m
l2 0.125 m
l3 0.445 m
l4 0.1014 m
l5 0.15 m
b1 0.00745
Θ3 2.4086 rad
γ 2.0952 rad
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(a) Determinant of E(x) in the region Ω1.

(b) Determinant of E(x) in the region Ω2.

Figure 4.9: Graphical comparison of both regions.

If we consider our region as Ω1 = {x2, x3 ∈ [−π, π]} for convex modeling (i.e., ignoring

the algebraic constraints), then, as it is illustrated in Fig. 4.9(a) that @E−1(x) for some

values of x in Ω1 since det(E(x)) = 0.

The constraints (4.37) have unique solution for the ankle angle values φ ∈ [1.273, 2.5212]
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Table 4.2: Maximum and minimum values for zi in Ω2.

Parameter z1
i z0

i

z1 0.20015 0.12500
z2 −0.01953 −0.09822
z3 0.44499 0.41664
z4 0.09950 0.02520

as indicated in [63], which corresponds to Ω2 ={x2∈ [0, 0.174] , x3∈ [−2.8904,−1.76465]},

the determinant of E(x) inside the region Ω2 is illustrated in Fig. 4.9(b), notice that the

determinant is not crossing zero as before and therefore ∃E−1(x) ∀x ∈ Ω2, this region Ω2

will be used for convex modeling. The maximum and minimum values obtained for the

non constant terms in the region Ω2 are given in Table 4.2, when the nonlinear sector

methodology is applied yields to the form
16∑
i=1

hiEiẋ = Ax+Bu.

4.3 LMI-Based Conditions for Control of DAEs

Consider a set of DAEs whose index has been reduced by applying the Pantelides al-

gorithm, then, modeled via the nonlinear sector methodology as (4.35) under a parallel

distributed compensation control law as

u=

r∑
j=1

hjFjx =

r∑
j=1

hj

[
Fj 0

]
︸ ︷︷ ︸

F̄j

x
ẋ

 = F̄hx̄, (4.40)

where hj are the membership functions of the system obtained during the convex rewrit-

ing process, this yields to a closed-loop system with a double-sum in the MFs

Ē ˙̄x = Ãhhx̄ =
r∑
i=1

r∑
j=1

hihj
(
Āi + B̄iF̄j

)
x̄, (4.41)

where Ē =

I 0

0 0

, Āi =

 0 I

Ai −Ei

 and B̄i =

 0

Bi

,

Theorem 4.15. The origin x = 0 of the descriptor system (4.32), is asymptotically

stable under a PDC control law of the form (4.40), with given gains Fj where j =
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{1, 2, . . . , r}, if the LMIs :

ĒTP = P TE ≥ 0,

Qii ≤ 0,

2

r − 1
Qii +Qij +Qji ≤ 0,

hold with Qij = P T Āij+ĀTijP and nontrivial P , rank(ĒTP ) = n and i, j ∈ {1, 2, · · · , r},

when E is not singular the LMIs involving Qij are strict.

Proof. Consider a generalized candidate Lyapunov function

V (x) = x̄T ĒTPx̄ : ĒTP = P T Ē ≥ 0, (4.42)

where P =

P11 0

P21 P21

, due to symmetry, then, taking into account that V (x) reduces

to V (x) = xTP11x, it will be positive definite if P11 > 0, its time derivative is equal to

V̇ (x) = x̄T ĒTP ˙̄x+ ˙̄xT ĒTPx̄,

applying the symmetric property (4.42) and substituting (4.41)

V̇ (x) = x̄TP T Ē ˙̄x+ ˙̄xT ĒTPx̄ = x̄T
(
P T Āhh + ĀThhP

)
x̄,

is negative if Lemma 4.2 holds with Qij =P T Āij+Ā
T
ijP , which concludes the proof.

Theorem 4.16. The origin x = 0 of the descriptor system (4.32) is assymptotically

stable under a PDC control law of the form (4.40), with given gains Fj where j =

{1, 2, . . . , r}, if there exists P = P T , Z1i, Z2i, εi ≥ 0, with i = 1, 2 such that the

following LMIs hold

Q1
ii > 0, Q2

ii < 0,

2

r − 1
Q1
ii +Q1

ij +Q1
ji > 0,

2

r − 1
Q2
ii +Q2

ij +Q2
ji < 0,
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with

Q1
ij =

Z11Ai + Z11BiFj + (∗) + P − ε1I (∗)

Z12Ai + Z12BiFj − ETi ZT11 −Z12Ei + (∗)

 ,
Q2
ij =

 Z21Ai + Z21BiFj + (∗) + ε2I (∗)

P − ETi ZT21 + Z22Ai + Z22BiFj −Z22Ei + (∗)

 .
Proof. Consider the following candidate Lyapunov function

V (x) =

x
ẋ

T P − ε1I 0

0 0

x
ẋ

 ≥ 0,

subject to the algebraic constraint

[
Ah +BhFh −Eh

]x
ẋ

 = 0, (4.43)

by Lemma 4.6 (Finsler’s) it will be positive definite if there exists matrices such that

P − ε1I 0

0 0

+

Z11

Z12

[Ah +BhFh −Eh
]

+ (∗) > 0,

selecting Q1
ij as indicated in Theorem 4.16 and combined with Lemma 4.6, this concludes

the demonstration for V (x) = xTPx > ε1x
Tx for all x 6= 0 subject to (4.43). Now, the

time derivative of the candidate function is

V̇ (x) =

x
ẋ

T ε2I P

P 0

x
ẋ

 ≤ 0,

by Lemma 4.6 (Finsler’s) it is negative ∀
[
xT ẋT

]T
6= 0 such that (4.43) holds if

ε2I P

P 0

+

Z21

Z22

[Ah +BhFh −Eh
]

+ (∗) < 0,

it is satisfied by applying Lemma 4.2 with Q2
ij selected as indicated by the Theorem;

this conduces to V̇ (x) ≤ −ε2xTx < 0, for all
[
xT ẋT

]T
6= 0 subject to (4.43).
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Example 4.2. Consider the exact convex representation of the motoBOTTE and employ

Theorem 4.16 to design a controller for stabilizing the system in a desired set point,

which is assumed to be consistent and will be denoted as xd. Now, consider an error

feedback of the form u = −Ke, with gain K =
[
20 30 40

]
, the error signal is defined

as e = x− xd, using the LMI conditions in Theorem 4.16 with the LMI Toolbox we are

able to find the following solution, for ε1 = ε2 = 0 :

P =


0.3448 0.4984 0.2939

0.4984 0.6736 0.4261

0.2939 0.4261 0.1741

 ,

Z11 =


2.3701 −2.2865 0.7625

3.2047 −3.0827 1.0232

2.2091 −2.1574 0.7335

 ,

Z12 =


−1.1042 0.5952 −0.1985

0.6810 −0.6942 −0.9057

−3.4018 3.4679 −1.3964

 ,

Z21 =


−0.1053 0.4069 1.0251

−0.1719 0.6056 1.3677

−0.0155 0.2870 0.8913

 ,

Z22 =


0.6171 −0.1087 −0.2624

−0.2549 0.3881 1.0225

3.9496 −3.9503 1.4949

 .

Recall that for Theorem 4.16 P is not required to be positive definite, only symmetric,

in this case the eigenvalues of P are σ(P ) = {−0.0707,−0.0136, 1.2769}. Also for the

same reason, since P is not definite positive this solution is out of the scope of Lemma

4.14, in which P = X−1
1 > 0.

A simulation was carried out considering the following consistent initial condition x(0) =[
0.0842 0.0614 −2.0630

]
, which is equivalent to an ankle angle φ(0) = 1.6 rad, with

the desired set point xd =
[
0.0620 0.1076 −2.3168

]
, that corresponds to φd = 1.9,

the trajectories for the states are shown in Fig. 4.10(a), the ankle trajectory is in Fig.

4.11(a), the corresponding control signal is in Fig. 4.10(b) and the evolution of the

Lyapunov function V (e) = eTPe is given in Fig. 4.11(b).
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(b) Control signal obtained with u = −Ke.

Figure 4.10: System states and control signal.

4.4 Conclusion

In this chapter the nonlinear sector methodology was employed to obtain an exact convex

representation of a nonlinear system, after that, issues related to conservative solutions
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(b) Time evolution of the Lyapunov function.

Figure 4.11: Ankle angle and Lyapunov function.

in nonlinear control and observer design were addressed, specifically, those related to

considering the positiveness of the membership functions and it was addressed via a

known property for copositive matrices, but, even after considering this property we

found that it seems to be only equivalent to existent conditions; therefore, a more relaxed
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condition for copositive matrices than the one from Parrilo’s employed in subsection 4.1.3

would provide a more relaxed solution.

The only condition employed for obtaining the results in subsection 4.1.3 was positiveness

of the membership functions, the new conditions obtained are shape-independent. When

the second property of convex models is taken into account (i.e.,
r∑
i=1

hi = 1), it allows

to increase the order of the polynomial function in the Positivstellensatz problem as

much as needed [141], since
r∑
i=1

hi = (
r∑
i=1

hi)
2 = 1 = · · · = (

r∑
i=1

hi)
n = 1, this approach

has led to asymptotically necessary and sufficient conditions [139, 142], and by Polya’s

theorem, if there is a feasible solution it will be eventually found; but, maybe there

could be another way to include this algebraic condition into the LMIs of the problem to

solve it without having an exponentially increase in the number of inequality constraints.

Attempts to include this algebraic constraint were made by increasing the h̄ vector as h̄ =[
h1I h2I . . . hnI I

]
and arranging the values of Qij in (4.16), then, tried to include

the information of the algebraic constraint via Finsler’s Lemma, but no improvements

were found by doing this. Since the double-sum condition generally appears in the time-

derivative of the Lyapunov function, the idea would be that we only need to satisfy the

negative condition on it (i.e., V̇ < 0) for values of the membership functions that are

not only positive, but also for the ones that satisfy the algebraic constraint (
r∑
i=1

hi = 1),

this has been illustrated in Fig. 4.1 for a system with only two membership functions.

After that, two different controllers were designed with the parallel distributed compen-

sation technique for a tracking desired ankle trajectory φd with the motoBOTTE; the

purpose of the controller designs was to accomplish asymptotic stability in a tracking

error system (i.e, e(t) → 0 when t → ∞), this tracking error system is defined using

the black box model that was identified in the previous chapter, an exact convex repre-

sentation of the error system was obtained and the gains of the controller was obtained

by solving a LMI problem, the designs obtained were implemented in simulation and

real-time, the efficiency of these controllers was illustrated in their respective figures.

Finally, the convex modeling process of nonlinear singular systems was reviewed, indicat-

ing that the algebraic constraints must be taken into account for selecting an appropriate

modeling region Ω, the importance of selecting it properly is illustrated by examination

of the determinant of the matrix E(x) when the system is written in a nonlinear de-

scriptor form. New conditions for convex control design for nonlinear systems described
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by a set of DAEs were obtained in terms of linear matrix inequalities, the proposal of

the convex modeling and the efficiency of the control design technique was illustrated

by applying it to the model of the motoBOTTE.

This chapter is the last one that deals with nonlinear control design for the motoBOTTE,

the next chapters will focus on integrating or considering the human interacting with

the robot.
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Chapter 5

EMG-Force Estimation Models

5.1 Ankle Torque Estimation

Torque production of the impaired limb of stroke patients can be directly measured using

a force sensor or estimated using surface EMG sensors combined with a mathematical

model [155–157]. Although force sensors are accurate and simple to use they present

some clear disadvantages : 1) these devices are expensive, 2) must be calibrated from

time to time due to the stress effect in the extensiometric gauges, such task can only

be done by the manufacturer, 3) might be damaged due to electrical failures and 4) can

be affected by the gravity and acceleration forces when placed over a moving surface,

among other disadvantages.

Muscle force estimation models have been widely used in gait analysis [156] as well as

during isometric contractions [158] of healthy subjects and impaired ones [157]. The use

of an accurate mathematical model in real-time force estimation would allow to reduce

the production cost of rehabilitation robots (avoiding the requirement of a force sensor)

and making it more accessible for everyone, while providing a tool for monitoring the

development of the patient at the same time. The main disadvantage of this approach

is that each human body is different and the parameters in the models vary as well;

but, an advantage is that the mathematical structure seems to be common for healthy

subjects and impaired ones [157].

The relation between EMG and muscle force is not so straightforward and some misleads

have been done in this procedure. There are different commercial softwares available

97
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Figure 5.1: Torque estimation and reference generation scheme.

for analysis of musculoskeletal systems such as the Anybody Modeling System [159] and

open source solutions as OpenSim [160]. The analysis and calibration of these models

is mainly done offline [161] and some efforts have been made to extend these results to

real-time applications [162, 163]

In this chapter we are interested in identifying and validating mathematical models to :

1) estimate ankle force production by the ankle muscles in real-time; specifically forces

produced by Tibialis Anterior (TA) and Soleus (SOL) muscles, 2) generate a dynamic an-

kle trajectory that can be followed by the rehabilitation device, the general scheme used

for controlling the robot position is presented in Fig. 5.1. Note that Tibialis Anterior is

the main dorsiflexors. However, Soleus is not the most powerful of the plantarflexors and

other muscles act for plantarflexion (Gastrocnemii, Tibialis Posterior, Peroneus Longus

and Peroneus Brevis, Flexor Digitorum Longus, Flexor Hallucis Longus, Plantaris); but,

the muscle fiber length, moment arm and tendon length of some of those muscles de-

pend on the knee position and that is a variable that we can not directly measure when

performing experiments with the motoBOTTE.

Some models have been taken from the available literature, where different techniques

and approaches were used for offline muscle force estimation. The approaches presented

vary on several different aspects such as the signal processing procedure to transform

EMG into smooth rectified electromyogram (SRE), the procedure to model SRE into

neural activation, the model of neural activation into muscle activation and the muscle

model itself, and so on. Therefore, a brief comparison of the performance between some

of these models is carried out later.

This section is organized as follows : subsection 5.1.1 gives some background infor-

mation about the state-of-the art in signal processing that must be carried out before

introducing the EMG signals into any mathematical model, then, subsection 5.1.2 deals

with the modeling of neural activation dynamics, subsection 5.1.3 approaches for muscle

activation are presented, in subsection 5.1.4 formulas of a Hill-type muscle model are
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explicitly given; in subsection 5.1.5 polynomials for estimating the muscle fiber length,

tendon length, moment arm, maximum force produced and pennation angle in Tibialis

Anterior and Soleus from ankle position are presented, the data for computing these

polynomials has been taken from an anatomical state-of-the-art model developed by ex-

perts in the field and widely used for analysis [164], in subsection 5.1.6 the hardware set

up employed in the experiments and the signal processing used are described, then, the

parameters for the models are estimated and validated, the range for these parameters

are given; in subsection 5.2 a new reference generation model for the ankle is presented,

parameters are estimated and validated as well.

Some of the contributions found within this chapter are summarized as follows : the

space for searching a solution for the recursive filter model is reduced based on signal

characteristics, the complexity in the estimation process for activation dynamics model

is reduced by employing polynomials instead of using an iterative process, the precision

of these polynomials can be further improved as needed, the introduction of a real-time

muscle model that can be adjusted for each individual and considers anatomical param-

eters taken from state-of-the-art literature; as well as polynomials for approximating

muscle fiber-lengths, moment arms and tendon-lengths are explicitly given.

5.1.1 EMG signal processing

Before applying the electromyogram as an input to any mathematical model for force

estimation the signal must be processed. According to [155, 157, 165–170] the procedure

for processing the signal is

1. Remove the offset of the signal.

2. Apply a full wave rectification of the signal and normalize it using the peak values

of maximum voluntary contraction (MVC).

3. Use a low-pass filter on it.

In this predefined order, after that we obtain a smooth rectified electromyogram signal

(SRE), that will be denoted e(t). Applying a full wave rectification, which consists on

computing the absolute value of the signal and the normalization procedure will vary for

each subject; but, the cutoff frequency for the low-pass filters is not something trivial,
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these can be given via a designer or obtained by an algorithm [171]. After a small

review of the literature is carried out to find how these filters are designed. The articles

with their cutoff frequencies fc values high-pass and low-pass filter, the type and order

for filters found in the literature are shown in Table 5.2. Please notice that there are

propositions for these cutoff frequencies that does not make any sense as in the cases of

[157] or [165, 166, 169, 170]; specially [157] since the low-pass filter is almost one decade

below the high-pass filter, that would eliminate the useful information.

raw
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Figure 5.2: Muscle force estimation scheme.

Table 5.1: Information of the muscles considered.

Muscle Twitch time Fmo lts Lmo Θo

TA 58.0 milliseconds 905 N 0.223 m 0.098 m 5◦

SO 74.0 milliseconds 3549 N 0.250 m 0.050 m 25◦

Table 5.2: Filter found in the literature with wrong values.

Reference High-pass frequency Low-pass frequency

[157] 50 Hz 4 Hz
[165, 166] 30 Hz 6 Hz
[169, 170] 20 Hz 10 Hz

Some references assume that the muscle force dynamics can be approximated with a

critically damped second order system F (t) = F0
t
T e
− t
T , where the T is the twitch

time or time required to reach the maximum force value, it varies for each muscle, the

operation ranges for the ankle muscles of interest are shown in Table 5.1, these values

were taken from an anatomical model that has been previously validated [164], the

parameters shown in the table are the twitch time of the muscles, the maximum force

produced by the muscle Fmo , optimal tendon length lts, optimal fiber length Lmo and

optimal pennation angle Θo, this information will be useful later in this chapter. The

cutoff frequency fc in a critically damped second order low-pass filter is related to the

twitch time of the muscle as fc = 1
2πT and to the muscle force, therefore, we should take

it into account for filtering, by considering this we can avoid reported issues such as

crosstalk [172, 173], since the surface EMG signals can be recorded far from the origin

and this electrical activity might be misunderstood if not properly filtered.
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After the processing the SRE signal can be introduced in an activation dynamics model

to obtain the neural activation signals u(t), these neural activation signals go through

a model of muscle activation and this muscle activation a(t) is the input of a muscle

model, the output of this muscle model is the muscle force computed, and then, after

that we can compute the ankle torque. The whole procedure is illustrated in Fig. 5.2.

5.1.2 Activation dynamics

There is an electromechanical delay inherent to the muscle activation patterns [174,

175], similar to muscle twitch time, this activation delay varies for each muscle [122].

The models used to estimate neural activation u(t) from SRE e(t) aim to take this

electromechanical delay into account, this process is commonly referred as activation

dynamics. The following models are attempts to describe the release, diffusion and

uptake of calcium by the sarcoplasmic reticulum in muscle cells [158, 176].

5.1.2.1 First order differential equation

A first approach presented in [177] for modeling activation dynamics as an unidirectional

process via a first order differential equation [176] is

u̇ (t) =
1

τact
e (t)− [β + (1− β) e (t)]

(
1

τact

)
u (t) , (5.1)

where β is a constant such that 0 < β < 1 and τact is the muscle twitch time during

isometric contraction[155]. Notice that when the muscle is activated, i.e. e(t) = 1, the

time constant is τact and when the muscle is deactivated, i.e. e(t) = 0, the time constant

is τact/β.

5.1.2.2 Recursive filter

According to [122, 155] neural activation dynamics can also be approximated by a crit-

ically damped second order system, whose discrete transfer function is

u(z)

e(z)
=

α1

1 + β1z−1 + β2z−2
=

α

(1 + γ1z−1)(1 + γ2z−1)
, (5.2)
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its poles are located at z = −γ1 and z = −γ2. The values for the parameters β1 and β2

are

β1 = γ1 + γ2, β2 = γ1 × γ2, (5.3)

and its discrete-time solution is

u(k) = α1e(k − d)− β1u(k − 1)− β2u(k − 2), (5.4)

where d is the electromechanical delay of the neural activation, previous reports indicate

that the time solution of this recursive filter should be positive, stable and have a unitary

gain. Stability of the solution can be guaranteed with |γ1| < 1 and |γ2| < 1, then, if we

know that the smooth rectified EMG signal is positive, i.e., e(t) > 0, the only way u(t)

can be negative is if β1 > 0, β2 > 0 or α < 0. Therefore, we can guarantee β1 < 0 and

β2 < 0 with −1 < γ1 ≤ 0 ≤ γ2 < 1, and |γ1| ≥ |γ2|, which reduces the previous region

for searching a solution for γ1 and γ2 [155]. A unitary gain can be guaranteed by setting

α1 = 1 + β1 + β2, and verifying that α1 > 0.

5.1.3 Muscle activation

There are different approaches for modeling the transformation between neural acti-

vation u(t) into muscle activation a(t), the later signal can be used as an input for a

Hill-type model. The main purpose of these models is to consider a nonlinear relation-

ship EMG-force in the modeling at low levels of force [178] and the main advantage of

the models listed below is that they only require a single parameter to be estimated for

each muscle.

5.1.3.1 Exponential model

A simple approach for modeling muscle activation taken from [155, 179] is the exponen-

tial model

a(t) =
eAu(t) − 1

eA − 1
, (5.5)

where the parameter A ∈ [−3, 0] is a nonlinear shape factor to be found.
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5.1.3.2 Single parameter model

A second model presented in [178]. The equations for this model can be obtained

by defining the coordinates of a node point (u0, a0) as u0 = 0.3085 − A cos (45◦) and

a0 = 0.3085 + A sin (45◦); then, the plane a(t)− u(t), with a(t) ∈ [0, 1] and u(t) ∈ [0, 1]

is partitioned in two, where for the first half the relation a(t)− u(t) is a nonlinear curve

and for the second half the relation is linear, this is defined via a piece-wise function

a(t) = α2ln (β3u(t) + 1) , 0 ≤ u(t) ≤ u0,

a(t) = mu(t) + c, u0 ≤ u(t) < 1,
(5.6)

the parameters m, c and β3 can be easily computed as

m =
1− a0

1− u0
, c = m− 1, β3 =

ea0/α − 1

u0
, (5.7)

but, there was no closed-form solution for α2, instead an iterative solution based on

Newton-Raphson method was proposed [178], in which a new value called α2(k+ 1) can

be found from the following expressions

α2(k + 1) = α2(k)− f (α2(k))

ḟ (α2(k))
, (5.8)

with f (α2)=m − α2β3
β3u0+1 and ḟ (α2) = 1

u0

[
−1+

(
1− a0

α2

)
e−a0/α2

]
; this iterative process

must be carried out until the absolute value of the difference ∆α2 = |α2(k+ 1)−α2(k)|

is below a certain tolerance value, i.e. ∆α2 < ε1, with ε1 > 0. According to [178]

the A-parameter is in 0 < A ≤ 0.12, we can use second order polynomials of the form

α2 = γ2A
2+γ1A+γ0 to approximate these solutions within a desired region, this reduces

the complexity in the parameter estimation problem. The iterative solution in equation

(5.8) and the piece-wise polynomial approximation for the parameter α2 are shown in

Fig. 5.3. The value of the coefficients obtained and the regions for the approximation

are in Table 5.3. These approximations can be improved as needed by selecting smaller

regions or increasing the order of the polynomials employed. The curves u(t) − a(t)

generated with this approach for some values of A are illustrated in Fig. 5.4.
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Figure 5.3: Relation between parameters A and α2.

Table 5.3: Coefficient values for the piece-wise polynomials.

Region γ2 γ1 γ0

0.0005 ≤ A < 0.001 61190838.85 −136277.86 98.79

0.001 ≤ A < 0.002 7633638.27 −34007.87 49.35

0.002 ≤ A < 0.005 644423.84 −6653.77 22.04

0.005 ≤ A < 0.01 60968.69 −1358.40 9.88

0.01 ≤ A < 0.02 7619.35 −339.62 4.95

0.02 ≤ A 119.8063 −24.01557 1.4294

5.1.4 Muscle-tendon model

There are different muscle models available in the literature where most of them are at-

tempts to describe muscle based on the external behavior of the system. The Hill-type

model is a widely used approach to estimate the force produced by a muscle fiber con-

nected in series with a tendon. The muscle fiber force is approximated with a contractile

element in parallel with a passive element, the scheme is shown in Fig. 5.5. Where F T

is the tendon force, FM is the muscle fiber force, FA is the active force produced by a

contractile element, FP is the passive force produced by the parallel elastic component,

θ is the pennation angle, `t is the tendon length, `m is the muscle fiber length and `mt

is the muscle-tendon fiber length.

The human muscles produce their maximum force when the sarcomeres length within a
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muscle are at 2.8µm, this is also named as optimal fiber length `mo [155], these optimal

fiber lengths increase when the muscle activation decrease [165], this relation between

neural activation and optimal fiber-length is equivalent to consider :

`mo (t) = `mo (λ1 (1− a(t)) + 1) , (5.9)
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Figure 5.5: Muscle model diagram.
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pennation angle varies with instantaneous optimal fiber as

θ(t) = sin−1

(
`mo sin θo
`mo (t)

)
. (5.10)

The tendon-muscle force can be described by [155, 158, 165]

FMT (φ, t) = F T = FM = FA + FP ,

=
[
fA

(
˜̀
)
f (v) a (t) + fP

(
˜̀
)]
FMo cos (θ (t)) .

Continuing with description of the diagram in Fig. 5.5, the force produced by the active

contractile element in the muscle fiber is FA = fA

(
˜̀
)
f (v) a (t)Fmo (cos θ (t)) and the

force produced by the parallel passive elastic component is FP = fP

(
˜̀
)
FMo cos (θ (t)),

where fA(˜̀) is the normalized active force-length, f(v) is the normalized force-velocity

function and fP (˜̀) is the normalized passive force-length, Fmo is the maximum isometric

muscle force and a(t) is the muscle activation. The normalized muscle fiber length is

defined as ˜̀= `m(t)
`mo

.

The force produced by the tendon element [155] can be computed as

F T = F̃ TFmo , (5.11)

where F̃ T is the normalized tendon force (normalized with respect to the maximum mus-

cle force produced, indicated by Fmo , the same is considered for the following normalized

functions) and it can be defined using the tendon strain ε = `T−`Ts
`Ts

as

F̃ t = 0 ε ≤ 0,

F̃ t = 1480.3ε2 0 < ε < 0.0127,

F̃ t = 37.5ε− 0.2375 ε ≥ 0.0127.

(5.12)

The relation between active force and normalized fiber length can be described using a

Gaussian function [158, 180]

fA

(
˜̀
)

= e
−(˜̀−1)2

σ , (5.13)
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where σ = 0.45 is a nonlinear shape factor[158], the function that describes the passive

force in terms of normalized fiber length is

fP

(
˜̀
)

= eε1(
˜̀−ε2) − ε3, ˜̀≥ 1,

fP

(
˜̀
)

= 0, ˜̀≤ 1.
(5.14)

with ε1 = 6.6667, ε2 = 1.5972 and ε3 = 0.018657, these values were obtained after fitting

the function with the model [164] using OpenSim [160] using the Parameter Estimation

Toolbox available in MATLAB with the Trust-Region algorithm [181].

Finally, the last term corresponding to the normalized force-velocity f (v) can be esti-

mated by considering the muscle activation equals one (i.e., a(t) = 1) and compute

f (v) =
F T − fP

(
˜̀
)
FMo cos (θ(t))

fA

(
˜̀
)
FMo cos (θ (t))

. (5.15)

5.1.5 Musculoskeletal parameters

Usually, the software used to integrate muscle-tendon models with musculoskeletal ge-

ometry available in gait analysis are OpenSim [160] or Anybody Modeling System [159],

in our case we are interested in obtaining a solution that can be implemented in real-

time for two main purposes 1) monitoring the individual muscle force generation of the

subject and 2) generate a reference for the rehabilitation device to follow. The OpenSim

software [160] allows to plot and extract data from previous validated anatomical mod-

els; in our case we are extracting this anatomical information for the muscles Tibialis

Anterior and Soleus from the model in [164]. The extracted data from this model was

optimal fiber lengths `mo , optimal pennation angles Θo, maximum isometric forces Fmo ,

and tendon slack `ts, as well as to calibrate the functions for active force fA and passive

force fP ; this data was used to compute muscle-fiber length `m (φ), tendon length `t (φ)

and moment arm r (φ) from a given position of the ankle angle φ.

The fiber-length, tendon length and moment arm data from the model [164] was ap-

proximated within our region of interest φ ∈ [1.27, 2.52] in radians [63] via polynomials

of the form ` = γnφ
n(t) + γn−1φ

n−1(t) + · · · + γ0, the coefficient values for fiber-length

`m (φ), tendon-length `t (φ) and moment arm polynomials are given in Table 5.4. The
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Fig. 5.6 illustrates a comparison between the data obtained via Opensim from [164] and

our polynomial approximation.

Table 5.4: Coefficients for fiber-length `m (φ), tendon-length `t (φ) and moment arm
r (φ) polynomials.

Polynomial function γ4 γ3 γ2 γ1 γ0

`mTA (φ) 0 0.008294 -0.043684 0.035151 0.094895
`mSOL (φ) 0 -0.009777 0.049179 -0.046497 0.029774
`tTA (φ) 0.000337 -0.001642 0.001634 0.000256 0.229737
`tSOL (φ) 0.00238 -0.015861 0.035313 -0.027316 0.259927
rTA (φ) 0 -0.022564 0.097821 -0.129152 0.090772
rSOL (φ) 0 0 0.014618 -0.030328 -0.033501
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Figure 5.6: Fiber lengths and the approximation.

5.1.6 Signal acquisition and processing

Electrodes for measuring Tibialis Anterior and Soleus muscles were positioned following

the recommendations from SENIAM [182] using EMG Cometa wireless sensors. The

EMG signals were initially sampled with a frequency of 1000 Hz, these signals were

rectified, low-pass filtered using a zero-lag Butterworth filter with a cutoff frequency

of 5 Hz and finally re-sampled at 10 milliseconds to homogenize the EMG sampling

with the other devices. The Vicon Motion Capture System [183] and the motoBOTTE

system were set up to operate at 10 milliseconds.
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The cutoff frequency was selected by analyzing the signals spectrum, applying a fast

Fourier transform to the rectified EMG signals for both Tibialis Anterior and Soleus

of the experiments and selecting a frequency that includes the signal components with

higher magnitude, we assume that the information would be contained on those compo-

nents, these are shown in Fig. 5.7 for one of the experiments, in our case 5 Hz seemed

to be a reasonable cutoff frequency.
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Figure 5.7: Amplitude spectrum of the rectified EMG signals.

During these experiments the subjects walked over a force plate sensor with position

markers on both legs while wearing wireless EMG sensors on the muscles of interest

(Tibialis Anterior and Soleus). The signals obtained through the motion capture system

were coupled to a force plate. The ankle torque production was estimated via inverse

dynamics [184, 185], this biomechanical analysis has been limited only to two-dimensions

and we are assuming that most of the dynamics occur over the sagittal plane [156], the

proceeding for tuning the model consists on minimizing the error signal illustrated in

Fig. 5.8, where each muscle force has been estimated as it is indicated in the previous

sections.

The parameters involved in the transformation between smooth rectified EMG and neu-

ral activation are τact ∈ [0, 1] and β ∈ [0, 1] for the model in subsection 5.1.2.1 and the

parameters d ∈ [0, 0.12], γ1 ∈ (−1, 0) and γ2 ∈ (0, 1) for the model in subsection 5.1.2.2.

For neural activation models the parameter A must be found according to the model
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it can vary from Aa ∈ [−3, 0] or Ab ∈ [0.005, 0.12], where the sub-index denotes the

subsection of the corresponding model in Section 5.1.3.

The combination of different models for activation dynamics, muscle activation with the

Hill-type muscle model and the musculoskeletal model yields to different models for ankle

force estimation. For the sake of comparison of the different approaches presented all the

model combinations are assumed to have the same musculoskeletal parameters varying

only on activation dynamics and muscle activation model. The optimal anatomical

parameters have been scaled for a better model fitting considering Lmo = λ3L̃mo , lts = λ3 l̃
t
s

and Θo = λ4Θ̃o; the percentage of muscle fiber-length variation in relation with the

muscle activation in (5.9) was assumed to be 0 − 30%, i.e., λ1 ∈ [0, 0.3], the maximum

force produced by each muscle was scaled as Fmo = λ2F̃
m
o , we considered λ2 equals for

both muscles, where L̃mo , Θ̃o, l̃
t
s and F̃mo denotes the optimal values from the model

[164] in Table 5.1, Lmo , Θo and l̃ts are the parameters used in the model equations with

λ2 ∈ [0.5, 2.5] as in [157], the tendon and muscle fiber lengths were equally scaled via the

parameter λ3, here we are considering a ±5% variation, which yields to λ3 ∈ [0.95, 1.05],

and the variation of the optimal pennation angle was ±50%, therefore λ4 ∈ [0.5, 1.5]. All

these variations are considered with respect to the optimal values found in a validated

model [164].

Usually, the models in OpenSim are scaled [160] to match the anthropometry of a specific
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subject with respect to the position of the given markers, this would be related to the

height of the subject, but in our case we are scaling all of them when minimizing the

sum-of-squared errors of the experiments using trust region algorithm available in the

Parameter Estimation Toolbox in MATLAB [186, 187].

First, the experimental data of four subjects, denoted as S1, S2, S3 and S4 were used for

trying to estimate a common model that could fit better in comparison with a different

combination, i.e., the model resulting from the combination of the formulas found in

section 2 subsection a and section 3 subsection a would be denoted as model 2a3a,

and so on; but, it seems that there are no significant differences in the performance

of the different models. It is worth noticing that the models 2a3a and 2a3b have 6

parameters and the models 2b3a and 2b3b have 10 parameters, something that affects

the computational time required during the estimation process. The data of the subjects

such as gender, age, height, body mass and body mass index (BIM) are provided in Table

5.5. The signals used in the estimation process are shown in Fig. 5.9(a). One of the

ankle torque signals used to validate the model is shown in Fig. 5.9(b), where dorsiflexion

corresponds to positive values and plantarflexion to the negative ones.

Table 5.5: Subjects information.

Subject Gender Age Height Body mass BIM

S1 Male 20 1.78 m 67 kg 21.15

S2 Male 27 1.73 m 75 kg 25.06

S3 Female 24 1.7 m 59 kg 20.42

S4 Female 37 1.74 m 58 kg 19.16

Since there was no big difference among the different models and the combination 2a3a

has less parameters we will continue thereafter with that model. The parameter values

obtained during the previous estimation process for this model are given in Table 5.6,

where u(0) denotes the initial condition of the neural activation u(t).

Remark 5.1. The methodology presented in this chapter is an adaptation of a model-

based approach for computing the ankle torque in terms of the ankle position and elec-

tromiography, the information of Vicon and the force plate was used to calibrate these

models, the adaptation consists in making the necessary modifications to use the models

in real-time. There are excellent tools for computing muscle forces offline such as Open-

Sim, but it can not be programmed in an embedded system and therefore, it can not be

employed in a real-time scenario, this is one of the motivations behind this proposal.
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Figure 5.9: Estimation and validation process.

5.2 Position reference generation

We assume that the dynamics of the human ankle φ(t) during swing-phase of the gait

cycle can be approximated via a nonlinear second order system, whose input is the ankle
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Table 5.6: Parameters for the estimated model 2a3a.

Musculoskeletal Parameters λ1 λ2 λ3 λ4

Tibialis Anterior 0 0.5 0.9514 0.5

Soleus 0.3 0.5 0.9514 1.5

Activation Parameters τact β u(0) Aa
Tibialis Anterior 0.060613 1 0.024611 −1.4904

Soleus 0.022776 0.55594 0.0010001 −0.83896

torque τ . The structure proposed is :

ẋ1

ẋ2

 =

 0 1

µ1 + µ2x1 µ3 + µ4x2

x1

x2

+

 0

µ5 + µ6x1

 τ,
where x1 = φ and x2 = φ̇; the parameters to find are µi, with i ∈ {1, 2, · · · , 6}; these

parameters can be estimated via Parameter Estimation Toolbox. By considering Eu-

ler’s approximation ẋ = (xk+1 − xk) /Ts, with Ts = 0.01 as the sampling time of 10

milliseconds we can obtain the following discrete expressions

x1k+1 = x1k+Tsx2k,

x2k+1 = x2k+Ts
(
µ1x1+µ2x

2
1+µ3x2+µ4x

2
2+µ5τ+µ6x1τ

)
,

the signals obtained during the previous steps from the inverse dynamics procedure

corresponds to the input τ for our proposed reference generation model, but, only during

the swing-phase, since we consider that it is during this phase where the ankle position is

not affected by ground reaction forces. The parameters estimated for different subjects

are shown in Table 5.7. The signals produced during the validation process for some of

the subjects model are shown in Fig. 5.10.

Table 5.7: Model parameters for each subject.

Subject µ1 µ2 µ3 µ4 µ5 µ6

S1 -88.30 158.26 -22.77 -0.71 -202.12 123.71

S2 -91.45 153.88 -21.21 6.17 -201.27 138.30

S3 -79.33 134.88 -18.90 0.85 -267.91 165.43

S4 -75.17 124.39 -8.03 3.40 -30.04 38.33

S5 -171.05 315.65 -5.00 24.32 700.66 -378.04

S6 -140.87 244.38 -22.62 -2.61 50.68 -30.91
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Figure 5.10: Validation trajectories of the position model.

5.3 Conclusion

Within this chapter new models that have been adapted from state-of-the-art were pre-

sented, these can be used in real-time to estimate the force produced by the Tibialis

Antrior (TA) and Soleus (SOL) muscles, the parameters of the models have been esti-

mated and validated by estimating the ankle force during gait in simulation for every

individual, recall that the models presented must be calibrated before applying them in

real-time, the structure of the mathematical models might be the same for healthy sub-

jects or impaired ones, as it was pointed out by [157], but the value of the parameters in

the model must be estimated as shown in subsection 5.1.6, after the calibration process

they can be employed for monitoring the subject as an alternative of employing a force

sensor, since the commercially available electromyography sensors are generally cheaper

compared with the force sensors.

One of the disadvantages that has been observed in these models is that there is an

oversimplification in some of the blocks; for example, muscle and neural activation are

the result of a chemical process occurring at a cellular level and those dynamics are

modeled or approximated only by a first order differential equations. Although, other

different models are available for those blocks in the literature, they were left out of the

scope in this study.
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We know that neural activation and muscle activation usually are not directly available

to be measured and the range for those signals is between [0, 1]; maybe, instead of

using the actual fully model-based approach from the literature a better idea would

be using a sort of hybrid model approach, we can substitute the neural activation and

muscle activation dynamics for a recurrent neural network and take advantage of the

properties demonstrated in that kind of systems (universal approximation capabilities

and the naturally bounded output of the synapses), while preserving the other blocks

that contain important knowledge of the human modeling, such as the moment arm,

fiber-length, tendon-length, and so on.

Something to consider from the gait experiments is that we also had available the EMG

measurements from Gastrocnemius Lateralis and Gastrocnemius Medialis muscles; but,

since the muscle fiber length, tendon length and moment arm from those muscles depend

also on the knee position and we cannot directly measure that position with the moto-

BOTTE, therefore, those muscles were left out of this analysis. Thus, a better model

for ankle force estimation would consider also the knee position and more muscles.

The analysis presented in this chapter has been delimited to be applied only to ankle

force estimation, but, is important noticing that the methodology presented is quite

general and it should be possible to apply it to different joints, not only to the ankle

joint. For the case of muscles that depends on multiple variables a good idea would

be using the data from the anatomical models from the state-of-the-art literature again

and define some polynomial functions that interpolate depending on the knee and ankle

moment in order to compute the value of the muscle fiber lengths, tendon lengths and

moment arms.

In the next chapter the human interaction with the system will be considered though

a brain computer interface, and the effects of using the motoBOTTE and a new wrist

exoskeleton as rehabilitation devices will be evaluated.
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Chapter 6

Assisted Rehabilitation via Brain

Computer Interfaces

This chapter deals with the results obtained when the motoBOTTE and a new wrist

exoskeleton were coupled to a brain computer interface (BCI). The movement of both

devices was triggered by detecting the intention of movement of the patient, but, the

experiments in both sections are different. The first study in section 6.1 is an inves-

tigation for comparing which type of afferent feedback would be better for inducing

neural plasticity in ankle rehabilitation, three different afferent feedbacks are compared

in this case : electrical stimulation, passive movements and a combination of both. The

feedbacks are triggered when there is a detection of the intention of movement. The

detection of the intention of movement is carried out by employing a brain computer

interface for measuring the brain activity of the subject. The report presented in sec-

tion 6.2 introduces a new low-cost wrist exoskeleton, that was designed, 3D printed and

built specifically for this study. The experiment in this case consists on the following

procedure : first, transcranial magnetic stimulation (TMS) is performed on the subject,

such that it induces a wrist extension, the motor evoked potential resulting from this

action is measured using an EMG sensor; then, the subject performs a motor imaginary

exercise where he imagines a wrist extension, the signals from this imaginary exercise

are recorded via a low-cost BCI, the Motor Imaginary BCI package from OpenVibe is

employed with these signals to detect the motor intention of the subject. After proper

training the software is capable of detecting this motor intention. Once the software cal-

ibration has been finished, the subject performs a training session of motor imaginary

117
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where the exoskeleton device is used to provide a feedback to the subject. Right after

this training session TMS is performed on the subject, finally, after waiting 30 minutes,

TMS is performed again on the subject. The motor evoked potentials are measured for

each case of the TMS and a statistical analysis is carried out on the measured motor

evoked potential to evaluate the performance of combining this exoskeleton with a BCI

for wrist rehabilitation.

6.1 Optimal afferent feedback for inducing plasticity

Brain–computer interfaces (BCIs) have over the past years been proposed also as a

tool for motor rehabilitation after neural injuries, such as spinal cord injury or stroke

[188–193]. It is well-established that BCIs can be used for inducing neural plasticity

[125, 126, 194–196], which is believed to be the underlying mechanism of motor learn-

ing/recovery [197]. These neuroplastic changes are induced in the brain by pairing the

movement-related activity of the brain with the inflow of congruent somatosensory feed-

back from, e.g., electrical stimulation [194], rehabilitation robots, or exoskeletons [125].

Movement-related cortical potentials [198] or event-related desynchronization [199, 200]

have typically been extracted from single-trial EEG recordings and used as the control

signals for triggering the external device that is going to elicit the somatosensory feed-

back. Patients are asked to imagine or attempt to perform a movement which is then

detected through EEG recordings and translated into a device command that provides

feedback to the patient; this can, e.g., be somatosensory afferent or visual feedback. Es-

pecially the somatosensory afferent feedback may be important for rehabilitation since

it is a motor learning task [201, 202].

As mentioned in Chapter 1, the underlying physiological mechanism for motor learning is

neural plasticity [197], and it has been shown in several studies that the neural plasticity

can be induced by BCI training [125, 194, 203]. In these studies, it has been suggested

that Hebbian-associative plasticity is induced by pairing motor cortical activity with

relevant somatosensory afferent feedback in the same way as has been done in paired as-

sociative stimulation protocols [204]. The difference between BCI and paired associative

stimulation is that the motor cortex is activated through imagined movements rather

than by stimulation so that brain activation corresponds to the natural activity [205].

The imagined movement must be detected on a single-trial level immediately during the
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execution to obtain the strict temporal association between motor cortical activity and

somatosensory afferent feedback which is needed to induce plasticity [203], as validated

in several previous studies [125, 206–209]. It has previously been shown that propriocep-

tive/somatosensory afferent feedback induces more cortical changes than visual feedback

when combined with a BCI [210]. It has been suggested that improved BCI performance

could increase the induction of plasticity [194]. Thus, different approaches have been

investigated to optimize the BCI performance, such as using different signal processing

techniques [56, 198, 211–216], combining two different control signals [200], training the

user [126], and facilitate motor imagination [217]. In addition to the technical optimiza-

tion of the BCI, it is likely that the induction of plasticity can be improved by identifying

the optimal type of afferent feedback. Motor-driven orthotic devices and exoskeletons

have been used in BCI-related studies and electrical stimulation has been applied with

different parameters in terms of stimulation frequency, intensity and location (nerve or

muscle stimulation) [125, 188, 203, 218–224]. These afferent feedback modalities have all

been shown to induce plasticity when they were paired with motor cortical activity from

imagined or executed movements. Different electrical stimulation frequencies, parame-

ters and locations as well as passive movements have been compared, but due to a large

number of combinations it is not feasible to include every combination in a single study.

The aim of the current study is to investigate the induction of plasticity when imagined

movements are detected in a self-paced BCI system and paired with: (1) single-pulse

electrical nerve stimulation, (2) passive movement through a motorized orthotic device,

and (3) the combination of electrical nerve stimulation and passive movement. The

plasticity induction of the BCI training is evaluated through motor evoked potentials

(MEPs) elicited with transcranial magnetic stimulation (TMS). We hypothesize that it

is possible to induce plasticity in all three scenarios, but that there is an additive effect

by combining electrical stimulation with passive movements

6.1.1 Materials and Methods

6.1.1.1 Participants

Twelve healthy participants were included in the study (four women: 25 ± 4 years).

All participants gave their written informed consent prior to the experiment, and they

filled in a TMS questionnaire for eligibility based on the recommendations in [225]. All
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procedures were approved by the Northern B Health and Disability ethical committee

(17/NTB/261) New Zealand. All the procedures were carried out according to the

Helsinki Declaration.

6.1.1.2 Experimental Setup

The experiment was divided into three experimental sessions that all followed the same

structure where the only difference was the type of afferent feedback: (1) BCI-triggered

electrical nerve stimulation, (2) BCI-triggered passive movements, and (3) BCI-triggered

electrical nerve stimulation and passive movement. The order of the experimental ses-

sions was randomized, and experimental sessions were separated by at least 24 h. Ini-

tially, the participant was seated in a comfortable chair and asked to do 50 self-paced

movements, while continuous EEG and EMG was recorded. These movements were used

to calibrate the BCI system. After the calibration of the BCI system, the stimulation

sites and parameters for the TMS and electrical stimulation were determined. Before

the BCI intervention, 15 MEPs were recorded; this was repeated immediately after and

30 min after the BCI intervention. The BCI system was calibrated in each of the three

experimental sessions. The BCI intervention lasted until 50 correct pairings of imagined

movements and afferent feedback were obtained.

6.1.1.3 Recordings

EEG Ten channels of continuous EEG were recorded from FP1, F3, Fz, F4, C3, Cz,

C4, P3, Pz, and P4 with a sampling frequency of 2048 Hz (Refa amplifiers, TMSi, TMS

International, Zuidplas, The Netherlands). FP1 was used to monitor eye movements and

eye blinks. The location of these channels over the EEG cap is indicated in Fig. 6.1. The

channels were referenced to the right earlobe. During the experiment all channels were

below 5kΩ. The participants were instructed to sit as still as possible and to minimize

blinking.

Surface EMG MEPs were recorded with surface EMG electrodes. Two electrodes (20

mm Blue Sensor Ag-AgCl, AMBU A/S, Ballerup, Denmark) were placed on the belly

of the right tibialis anterior muscle in a bipolar configuration with the ground electrode
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Figure 6.1: Channel location on the EEG cap.

placed on the tibia. The signals were amplified with a custom-made amplifier with a

gain of 1000 and a sampling frequency of 4000 Hz. The signals were band-pass filtered

from 20–1000 Hz.

6.1.1.4 Stimulation and Motorized Orthotic Device

Transcranial Magnetic Stimulation Single pulse TMS was used to elicit MEPs in

the tibialis anterior with a Magstim 200 (Magstim Company, Dyfed, UK) using a figure-

of-eight double-cone coil with a posterior-anterior current direction. Before recordings,

the optimal stimulation site was determined as the site where the largest peak-to-peak

amplitude of the MEP in tibialis anterior was elicited compared to the adjacent areas.

This area was marked to make sure the coil was placed in the same position for the

pre-, post-, and post-30 min intervention measurements. The resting threshold was then

determined as the lowest stimulator output where five out of 10 peak-to-peak amplitude

MEPs were greater than 50µV . In the pre-, post-, and post-30 min intervention mea-

surements, 15 stimuli were given at 120% of the resting threshold. Each stimulus was

separated by 5–7 s.
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Electrical Stimulation Peripheral nerve stimulation was delivered to the deep branch

of the common peroneal nerve supplying the tibialis anterior. The electrical stim-

ulation was delivered through two stimulation electrodes (32 mm, PALS, Platinum,

Patented Conductive Neurostimulation Electrodes, Axelgaard Manufacturing Co., Ltd.,

Fallbrook, CA, USA) that were placed on the skin overlying the nerve with the cath-

ode placed proximal and the anode placed distal. The optimal stimulation site was

determined by searching for the location that determined activity in the tibialis anterior

without any activity in synergistic or antagonistic muscles (as determined by palpation of

the muscles). The motor threshold was then determined as the lowest intensity required

to elicit a palpable response in the tibialis anterior muscle. In the two interventions

involving electrical stimulation, a single 1-ms wide pulse was delivered with an intensity

corresponding to 110% of the motor threshold.

Passive Movements Through the Motorized Orthotic Device The passive dor-

siflexion ankle movement was delivered through a custom-made motorized orthotic de-

vice based on the design of an ergometer [226] coupled with a CAHB–21 linear actuator

(SKF, Goteborg, Sweden) arranged together to rotate the ankle joint [63, 227]. The

foot and leg were fixed to the orthosis with straps. The initial position of the orthotic

device corresponded to 110◦ of plantar flexion. The orthosis performed a 15◦ dorsiflexion

rotation around the ankle joint at a constant angular speed of 40◦s−1.

6.1.1.5 Brain-Computer Interface

The BCI system used in this study has been previously described [194]. Briefly, the

system was trained from 50 self-paced movements. From these movements, an EEG

signal template of the initial negative phase of the movement-related cortical potentials

was extracted from the onset of the movement (determined from the EMG). For this

purpose, the EEG was band-pass filtered from 0.05–10 Hz with a 2nd-order zero-phase

shift Butterworth filtered, down sampled (at 32 Hz) and filtered with an optimised

spatial filter [206] with Cz as the centre electrode. Template matching was used to

calibrate the BCI detector as explained in [194, 206]. The threshold for detecting the

movements was obtained through a receiver operating characteristics curve to achieve a

trade-off between the true positive and false positive detections/10 min (length of the
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training data set) as shown in Figure 6.2. When the output from the template matching

exceeded the threshold, the BCI system registered it as a movement. During the BCI

intervention, the BCI system was disabled for five seconds after an event was detected

and in this interval the participant indicated if it was a true positive detection or a

false positive detection. The participants also indicated the presence of false negatives.

Moreover, the detector was disabled if the activity in FP1 exceeded a 125µV threshold.

The BCI system performance was evaluated through the true positive rate (TPR) and

number of false positive detections per minute (FPm).

Figure 6.2: ROC curve from a training set.

Statistical Analysis In the statistical analysis, we were concerned with three ques-

tions: (a) Did the BCI performance have an effect on the MEP amplitude? (b) did the

pre- to post- and post-30 treatment effect of electrical stimulation (ES), passive move-

ments (PM), and electrical stimulation combined with passive movements (Comb) in-

duced plasticity? (c) What was the difference in these effects across the three paradigms?

We evaluated (a) in terms of absolute units (mV) using blinded covariate analysis [228],

and (b), (c) in terms of both absolute units and relative units (% change). For absolute

units, we computed the peak-peak amplitudes of the MEPs and averaged them across

the 15 trials. For the relative units, we computed subject wise % changes from the aver-

aged peak-peak amplitudes of the MEPs as (post- − pre-)/pre-× 100. To answer these

questions, we setup linear mixed regression models. In all the models, time, session, and

subject were codified as categorical variables. All the remaining variables were codified

as continuous. The statistical analysis was performed in R (R Foundation for Statistical
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Computing) version 3.5.0. lme4 package version 1.1-17 was used for fitting all the models

[229]. For question (a), four performance metrics were considered as covariates: (i) true

positive rate (TPR), (ii) false positives per minutes (FPm), (iii) time taken to complete

the task (Tt), and (iv) total number of movement repetitions executed (Mr). Following

linear mixed model, presented in R formula syntax, was used for this purpose:

MEPabs v 1 + MEPpre + Time + TPR + FPm + Tt +Mr + (1|Subject) (6.1)

This model estimates MEP amplitudes at two time points (post- and post-30) while

also considering the effect of pre- MEP amplitudes (MEPpre), TPR, FPm, Tt, and Mr.

The random intercept term for subjects (1|Subject) entered into the model, estimates

the variance across the subjects. This model was fitted to data from the three sessions.

However, the Session variable was not added to the model to keep the analysis blinded

as suggested by [228]. This procedure has two benefits. First, it allows for an unbiased

selection of covariates as the selection is done before obtaining the final results. Second,

it leaves out unnecessary covariates which can potentially act as noise in the final model,

thus, improving the statistical power. It was planned a priori that a covariate which

explained greater than or equal to 5% of the variance in the data will be considered as

potentially having a significant effect on the MEP amplitudes. Furthermore, it will be

added to models used for answering questions (b) and (c) in order to statistically control

for its effect. Semi-partial R2 statistic was obtained using the Kenward-Roger method

as a measure of explained variance. The r2glmm package version 0.1.2 was used for this

purpose [230]. For questions (b) and (c), following model, expressed as an R formula,

was used for absolute units:

MEPabs v 1 + Session× Time + MEPpre + Tt + (1|Subject:Session) , (6.2)

This model estimates MEP amplitude across the three sessions (ES, PM, Comb) at both

time points (post-, post-30) while adjusting for the pre- MEP amplitudes. This model

also controls for total time taken to complete the task as it explained more than 5% of the

variance in MEP amplitudes. This model is similar to model 1 suggested by [231] with

two important improvements. First, as the subjects across the sessions were same and

it is reasonable to assume that the subjects respond differently to the three paradigms,
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thus, we used a subject and session wise random intercept (1|Subject : Session) to es-

timate the between subject variance. This model also suits to the repeated measures

design of this study. Second, as the MEP amplitudes are always positive and are not

normally distributed, we used Gamma distribution to model the data. The choice of the

link function (identity or log) was evaluated using Akaike information criterion corrected

for small samples (AICc). The AICc penalises both under fitting and over fitting. We

used the log link. For relative units, we setup the same model with the exception that we

used Gaussian distribution and identity link. The residuals of the model were normally

distributed. The model, expressed as an R formula, is given below:

MEP% v 1 + Session× Time + MEPpre + Tt + (1|Subject:Session) , (6.3)

Significance level was set at 0.05. Effects estimated by the model were reported with

their standard errors. Pair-wise contrasts were performed with Tukey’s HSD method.

6.1.2 Results

6.1.2.1 BCI Performance

The performance metrics and the corresponding variance explained statistics are given

in Table 6.1. Time taken to complete the task explained 6% of the variance in MEP

amplitudes and, therefore, was included as a covariate to statistically control its effect

in the subsequent models used to estimate MEPabs and MEP%.

Table 6.1: BCI performance metrics and percentages of variance explained in MEP
amplitudes by each metric.

Performance Metric Mean[min,max] Variance Explained R2(%)

TPR 78.13[58.82,96.15]% 1.5
FPm 1.21[0.22,4.62] 0.8
Tt 13.42[7,23]min 6.0
Mr 64.36[52,85] 0.3

Table 6.2: The linear trends between Tt and MEPabs and MEP% estimated by the
statistical models.

Trend for Tt Estimate Std. Error ρ,H0 : µ = 0

With MEPabs (mV/min) 0.01 0.02 z = 0.65, ρ = 0.51
With MEP%(%/min) 1.32 2.79 t[31] = 0.47, ρ = 0.63
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The linear trends between Tt and MEPabs and MEP% estimated by the statistical models

are given in Table 6.2. These results suggest that the time taken to complete the task

did not have a statistically significant effect on the MEP amplitudes. As the remaining

performance metrics did not explain considerable (R2
partial < 5%) variance in the data,

they were not added to the statistical models and, thus, their trends were not estimated.

To further elaborate on the differences in true positive rate (TPR) and false positive

detections per minute (FPm) across all subjects and sessions, their means and standard

errors are given in Figure 6.3, where ES, PM and Comb denote electrical stimulation,

passive movement, and combined electrical stimulation and passive movement, respec-

tively. One-way ANOVAs suggested that there was no difference between the sessions

in terms of both the true positive rate (F (2, 22) = 0.001; ρ = 1.0) or number of false

positive detections per minute (F (2, 22) = 0.59; ρ = 0.57). These results together with

the explained variance statistic suggest that none of the BCI performance metrics had

any significant effect on the MEP amplitudes.

Figure 6.3: TPR and FPm detections (mean ± standard errors) across all subjects.

6.1.2.2 MEP Size

The peak-peak MEP raw amplitude values in pre- to post- and post-30 times for all

the subjects are plotted in Figure 6.4. The individual trends suggest that there was

a larger increase in pre- to post-MEP amplitude in case of ES and Comb compared to

PM. The pre- to post-effect sizes estimated from the statistical models are given in Table

6.3. These effects were computed with Tt set to its mean value (13.42 min). Similarly,

pair-wise contrasts across the sessions at the two time points are given in Table 6.3. The

pair-wise contrasts across sessions and time are given in Tables 6.4 and 6.5, respectively.
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As a log link was used in modeling the MEP amplitudes in absolute units, thus the

contrasts performed on the log scale are presented as ratios on the response scale.

Figure 6.4: Peak-peak MEP amplitudes for all the subjects.

These results suggest that the three paradigms increased (ρ < 0.05) the MEP amplitudes

from pre- to post- and post-30 in terms of the absolute units. The effect sizes of Comb

paradigm were larger than ES and PM, although, these differences were not statistically

significant (ρ > 0.05).

Table 6.3: Pre- to post- and post 30-effect sizes along with the standard errors esti-
mated from the statistical models.

Session Time MEPabs (mV) Std. Error (mV) z, ρ,H0 : µ = 0

ES 0.21 0.05 z = −6.97, ρ < 0.001
PM post- 0.17 0.03 z = −8.83, ρ < 0.001
Comb. 0.22 0.04 z = −7.98, ρ < 0.001

ES 0.20 0.05 z = −7.13, ρ < 0.001
PM post-30 0.19 0.04 z = −8.40, ρ < 0.001
Comb. 0.22 0.04 z = −8.00, ρ < 0.001

Session Time MEP% (%) Std. Error (%) z, ρ,H0 : µ = 0

ES 81.26 32.86 t[35.29] = 2.47, ρ = 0.02
PM post- 41.16 29.59 t[36.37] = 1.39, ρ = 0.17
Comb. 94.90 27.99 t[37.05] = 3.39, ρ < 0.01

ES 80.44 32.86 t[32.29] = 2.47, ρ = 0.02
PM post-30 56.37 29.59 t[36.37] = 1.91, ρ = 0.06
Comb. 104.69 27.99 t[37.05] = 3.74, ρ < 0.001

Discussion

The study confirmed that neural plasticity can be induced by BCI-triggered electrical

stimulation or passive movements. However, the three afferent feedback modalities did

not differ in their effects on plasticity. The contrasts suggested that electrical stimulation
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Table 6.4: Contrasts across sessions and their standard errors estimated from the
statistical models.

Contrast Time Ratio
Std. Error
(Ratio)

z, ρ,H0 : µ = 1

ES/PM 1.23 0.25 z = 0.99, ρ = 0.57
ES/Comb. post- 0.94 0.19 z = −0.32, ρ = 0.95
PM/Comb. 0.77 0.15 z = −1.32, ρ = 0.39

ES/PM 1.08 0.22 z = 0.39, ρ = 0.92
ES/Comb. post-30 0.91 0.18 z = −0.46, ρ = 0.89
PM/Comb. 0.84 0.17 z = −0.85, ρ = 0.67

Contrast Time
Difference

(%)

Std. Error

(%)
z, ρ,H0 : µ = 0

ES 40.10 29.90 t[42.22] = 1.34, ρ = 0.38
PM post- -13.64 301.16 t[42.00] = −0.45, ρ = 0.89
Comb. -53.74 29.77 t[42.33] = −1.81, ρ = 0.18

ES 24.06 29.90 t[42.22] = 0.81, ρ = 0.70
PM post-30 -24.25 30.16 t[42.00] = −0.80, ρ = 0.70
Comb. -48.31 29.77 t[42.33] = −1.62, ρ = 0.25

Table 6.5: Contrasts across time and their standard errors estimated from the statis-
tical models.

Contrast Session Ratio
Std. Error

(Ratio)
z, ρ,H0 : µ = 1

ES 1.03 0.08 z = 0.42, ρ = 0.67
post-/post-30 PM 0.94 0.07 z = −1.13, ρ = 0.26

ES + PM 1.00 0.08 z = 0.05, ρ = 0.96

Contrast Session
Difference

(%)

Std. Error

(%)
t[df ], ρ,H0 : µ = 0

ES 0.82 16.74 t[33] = 0.05, ρ = 0.96
pos- – PM -15.22 16.74 t[33] = −0.91, ρ = 0.37
post-30 ES + PM -9.79 16.74 t[33] = −0.59, ρ = 0.56

consistently resulted in slightly higher mean MEP amplitudes than passive movement

and the combination of passive movement with electrical stimulation consistently re-

sulted in slightly higher mean MEP amplitudes than electrical stimulation alone.

Effect of BCI-Triggered Afferent Feedback

All three types of afferent feedback induced neural plasticity when combined with the

BCI, but there was no statistically significant difference between the types of afferent

feedback although larger percentage changes from pre-to post- and pre-to post-30 were

obtained when electrical stimulation was involved. However, there was a large variability

between participants, presumably due to factors such as attention and time of the day
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[232]. It is also likely that there might be a difference in the amount and type of sensory

feedback that is sent to the brain, which depends on the activation of afferents and

the type of receptors that are active during the electrical stimulation (no movement

of the foot) and the passive movement. For the electrical stimulation, only the nerve

innervating the tibialis anterior was stimulated, thus only low-threshold afferents were

recruited [233]. Conversely, during the passive movements, cutaneous and high threshold

afferents would be activated because of joint movement. Moreover, other non-muscle

afferents should also be active via a transcortical loop resulting in an activation which

was close to a voluntary dorsiflexion [233, 234]. However, different types of sensory

feedback may have different effects on the cortical motor networks when applied as

part of an intervention [235]. The latency of the different types of afferent feedback to

reach cortex was presumably similar [236, 237]. Moreover, another advantage of having

the electrical stimulation over peripheral nerve trunk is that it generates contraction

facilitated via central pathways by maximizing the afferent (sensory) volley to spinal cord

where sensorimotor integration occurs, resulting in optimal recruitment of the spinal

motor neuron [216]. It is known in the literature that if the central contribution is

maximized it can lead to reduced muscle atrophy which in turn can be used to restore

movement in persons with movement disorders [238]. The observation of no difference

between electrical stimulation and passive movements supports previous findings by

[220]. This means that the choice of the type of afferent feedback modality may not

be crucial, and it should rather be selected based on the available equipment in the

rehabilitation centers or by the comfort of the patient. However, contrary to the previous

study by [220], in the current study the BCI operated in a self-paced way. The pros of

the electrical stimulation are that it is low-cost, and it has been used by many, but the

cons are that electrical stimulation can lead to muscle fatigue (especially when using

functional electrical stimulation) and it may be painful for some patients (depending

on the stimulation parameters). The pros of the motor-driven orthotic device are that

there is no muscle fatigue and the movement can be executed with great precision, so

it mimics a natural movement. The cons of the motor-driven orthotic device are that

it is more expensive than the electrical stimulation and it is less portable. To overcome

this latter disadvantage, we developed and used a transportable motorized ergometer

[220, 221]. It remains to optimize the passive-movement feedback so that it is as close

as possible to the dynamic of a real movement.
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Neural Mechanisms

It has been suggested in several BCI studies [125, 194, 203, 239] that the neural mecha-

nisms for the changes observed in BCI intervention studies are similar to that of paired

associated stimulation [204], which rely on long-term potentiation properties such as

rapid onset, persistence on cessation of stimulation and associativity but with likely

differences in the origins of those effects [240]. The increase in cortical excitability was

retained at least for 30 min following the intervention [241]. It has previously been shown

that this type of BCI intervention is specific [203, 239], which is another indication of

that it is long-term potentiation-like plasticity that is induced. Furthermore, the origin

of the neural plastic changes was not assessed, but it has been suggested that it is likely

to be changes in the cortical plasticity [125, 194, 203, 220].

Limitations

In the current study, we did not detect a statistically significant difference for the al-

ternative hypothesis that ES and PM combined (Comb) have a larger effect in terms

of inducing cortical excitability. As the estimated effect sizes supported this hypothe-

sis, the potential reason for not achieving statistical significance seems to be the small

sample size (n = 12). Sample size for this study was based on the previous studies

[125, 194, 203, 220, 241] in which it ranged between 8 and 12. Future studies can plan a

higher sample size by using the estimated effects and their standard errors reported in

the current study. Another limitation is the effect of the BCI intervention without sen-

sory feedback was not tested as well as afferent feedback without the BCI intervention.

However, it has previously been shown that 50 electrical stimuli or passive movements

alone do not change the size of the MEPs [125, 203]. The same has been found for the

BCI intervention without any afferent feedback [125, 203]. All findings in the current

study are based on healthy volunteers which limits the generalization/transfer of the

results to stroke rehabilitation. However, similar work has been done for the upper limb

where stroke patients have received upper limb BCI training using functional electrical

stimulation [192] and rehabilitation robots where functional improvements have been

shown [190, 191, 218]. It is likely that similar beneficial effects may be observed for the

lower limbs as well [239].
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6.2 Induction of neural plasticity via a low-cost open

source BCI and a 3D printed exoskeleton

6.2.1 Introduction

The concept of inducing plasticity using a BCI has been shown in several studies; how-

ever, this technology is rarely used in rehabilitation clinics and patient’s home. This is

due to several reasons, one of them being that it is still a fairly new technology, while

some of the translational issues include the complexity of the systems in terms of setting

up (e.g., mounting the EEG cap and calibrating the system), ensuring a good and stable

signal quality, which may require a skilled operator, the mental fatigue of the user, user

compliance, the price of the technology, and access to the detection algorithms [20, 242].

In recent years, several low-cost commercial EEG systems have become available [243].

Some of these systems may not be useful for applications where neural plasticity is in-

duced in the motor system, since they do not record electrical activity from the relevant

brain areas [242]. However, it is possible to record the electrical activity of the motor

cortex with some low-cost EEG systems. Moreover, several research groups have made

their detection algorithms publicly available (see, e.g., the OpenViBE project [244]).

The feasibility of using such low-cost systems for detecting movement-related brain ac-

tivity has been outlined recently [245–247], thus making the BCI technology available

to a wider audience than BCI researchers. To use the BCI for inducing neural plasticity,

besides for neurofeedback applications [248], an external device is needed to provide

congruent somatosensory feedback. This could be a stimulator that could stimulate the

relevant nerves and muscles electrically, or it could be an exoskeleton. With the current

advances made within the design and manufacturing of exoskeletons through 3D print-

ing [249, 250], it has become cheap to create simple exoskeletons for controlling certain

joints such as the wrist or ankle. It is possible to create a simple exoskeleton that can

perform wrist extensions or the dorsiflexion of the ankle joint with a single actuator

[126]. Both of these movement types are important to train during stroke rehabilita-

tion. It has been shown previously that neural plasticity, when quantified with TMS,

can be induced using BCI-triggered electrical stimulation and passive movements from

rehabilitation robots/exoskeletons for the cortical projections of the lower limb muscles

[125, 126, 194–196], but this has not been shown for the cortical projections of the upper
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limb muscles, although functional improvements in stroke patients have been reported

for the upper limbs (see, e.g., Refs. [191, 192, 251, 252]). Therefore, the aim of this

study is to investigate if a BCI-triggered exoskeleton can induce neural plasticity in the

cortical projections of the forearm muscles that control wrist extension. Moreover, it

will be tested if this is possible using a low-cost EEG amplifier and open source BCI

software. Lastly, a cheap 3D-printed exoskeleton will be developed to replicate wrist

extension. The BCI-triggered exoskeleton will be evaluated in terms of BCI system

performance and the ability to induce neural plasticity.

6.2.2 Materials and Methods

6.2.2.1 Subjects

Eleven healthy subjects participated (four females, age: 28± 3 years). Prior to partici-

pation, the subjects provided their written informed consent and filled in a questionnaire

for their eligibility for TMS based on the recommendations in [225]. All procedures were

approved by the local ethical committee (N-20130081), and were in accordance with the

Helsinki Declaration.

6.2.2.2 Experimental Setup

Initially, the subjects were seated in a comfortable chair, where the procedures were

explained, and they were familiarized with TMS. See Figure 6.5 for a timeline of the

experiment. Afterwards, they were instructed and trained on how to perform motor

imagination, and they spent 5 min training this. After the motor imagination train-

ing, the subjects imagined 30 wrist extensions of the right wrist while continuous EEG

was recorded. A visual cue was generated by the “Motor Imagery BCI” in OpenViBE;

the visual cue was modified such that 30 idle/rest trials (“REST” was displayed on the

screen) and 30 motor imagination trials (a red arrow pointing to the right was displayed

on the screen) were performed. The imaginary movement was maintained for four sec-

onds. These trials were used to calibrate the asynchronous BCI for controlling the wrist

exoskeleton. During the actual BCI training, the wrist exoskeleton was mounted on the

subject on the right forearm and hand. The forearm and hand rested on the armrest

of the chair during the training. The subjects were asked to trigger the exoskeleton by
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imagining an extension of the right wrist; the training was complete when 50 correct

pairings of motor imagination and the movement of the exoskeleton were obtained. The

subjects had to keep imagining the movement while the exoskeleton performed the move-

ment. Before, immediately after, and 30 min after the BCI training, TMS measurements

were performed, whereby 30 motor-evoked potentials (MEPs) were obtained.

Setup EEG
MI training

TMS familiarization
(15 min)

BCI calibration
30 x MI

30 x Rest
(10 min)

TMS hotspo�ing
Find Resting

Threshold (RTh)
(10 min)

Pre TMS
30 x 120 % RTh

(5 min)

Find BCI threshold
BCI intervention

50 x True Positives
(5 min + 15 min)

Post TMS
30 x 120 % RTh

(5 min)

Post TMS
30 x 120 % RTh

(5 min)

25 min

Figure 6.5: Timeline of the experiment.

6.2.2.3 Recordings

EEG

Seven channels of continuous EEG were recorded (Cyton Biosensing Board, OpenBCI,

Brooklyn, New York, USA) from F1, F2, C3, Cz, C4, P1, and P2 with respect to the

International 10-20 System using sintered ring electrodes placed in an EASYCAP EEG

cap (EASYCAP GmbH, Herrsching, Germany). The location of these channels are

indicated in Fig. 6.1. The signals were sampled at 250 Hz. The ground electrode was

placed at AFz, and the reference electrode was placed on the mastoid bone behind the

right ear. The subjects were asked to sit still and avoid the contraction of facial muscles

and blinking.

EMG



Assisted Rehabilitation via Brain Computer Interfaces 134

MEPs were recorded using surface EMG electrodes (Neuroline 720, Ambu A/S, Den-

mark) placed on the extensor digitorum muscle in a bipolar derivation. Two electrodes

were placed on the belly of the muscle, which was identified through palpation, and a

ground electrode was placed on the distal head of the Humerus bone. The signals were

amplified with a gain of 5000 using a customized amplifier (Jan Stavnshøj, Aalborg Uni-

versity), and the signals were sampled at 4000 Hz using the Mr. Kick software (Knud

Larsen, Aalborg University).

6.2.2.4 Transcranial Magnetic Stimulation

Motor evoked potentials (illustrated in Figure 6.6) were elicited with a single-pulse

TMS (Magstim 200, Magstim Company, Dyfed, UK) using a figure-of-eight coil with a

posterior–anterior current direction. First, the optimal stimulation site was determined.

This was defined as the location where the largest MEP peak-peak amplitudes were

obtained. Next, the resting threshold was determined. It was defined as the lowest

stimulation intensity that would elicit an MEP of at least 50µV peak–peak amplitude

in five out of ten simulations. In the measurements before, immediately after and 30

min after the intervention, 30 stimuli were given at 120% of the resting threshold. A

random break of 5− 7 s separated two consecutive stimuli.

Figure 6.6: Motor-evoked potential (MEP) from a representative subject.
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6.2.2.5 Brain Computer Interface

The “Motor Imagery BCI” from OpenViBE was used for the detection of the imaginary

wrist extensions. The data were bandpass filtered from 8 to 30 Hz using a 5th order

Butterworth filter, and a common spatial pattern spatial filter was calculated from the

calibration data, which maximized the differences in spectral power between the idle

and motor imagery classes. The trials were divided into 1 s windows with a shift of

1/16 s, and the logarithmic band powers were calculated from each window and used as

features. Based on the features extracted from the training data, a linear discriminant

analysis classifier was trained using 5-fold cross-validation. In the online test, the clas-

sification of the imagined movement was altered compared to the original OpenViBE

scenario. An imagined movement was detected when eight consecutive windows (8/16

s = 0.5 s) exceeded a threshold that was determined for each subject individually. The

determination of the threshold took less than five minutes (see Figure 6.5), and it was

done to obtain a trade-off between true positive and false-positive detections. When the

BCI detected an imagined movement, a trigger was sent through a transmission control

protocol to an Arduino MKR1000 that activated the wrist exoskeleton (see Figure 6.7).

The performance metrics of the BCI were the true positive rate, the number of false

negatives per minute, and the number of false positive detections per minute. The sub-

jects indicated verbally if the trial was correct (true positive) or incorrect (false positive

or false negative).

6.2.2.6 Exoskeleton

The exoskeleton was 3D-printed and developed specifically for this study (see Figure

6.8). The purpose of the exoskeleton was to control the wrist angle position (denoted

by Ψ) to replicate an extension of the wrist (see Figure 6.7). The exoskeleton was

3D-printed using the material PLAMAX, and it was actuated by a model L16-P linear

piston (Actuonix, Motion Devices Inc ®, Victoria, BC, Canada) which was connected

to the X2 input of a linear actuator control (LAC) board (Actuonix, Motion Devices Inc

®, Victoria, BC, Canada) with default settings. A 12V power supply was connected to

the piston and LAC board in the (±) X6 inputs. The analog output (A0) and ground

reference of the Arduino MKR1000 were connected to the (VC) and (-) X6 inputs of the

LAC board, respectively; the Arduino board was programmed and powered via a USB
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Open BCI PC for EEG computation Arduino MKR1000

Actuonix Linear Actuator 
Control Board

�

Exoskeleton actuated by
Actuonix linear piston

Figure 6.7: Overview of the hardware setup.

connection (5V power supply). Finally, the design includes a LED bar that indicates the

wrist angle position, which was connected to the (±) X3 inputs and (P) X4 input of the

LAC board. The exoskeleton received an activation signal from the BCI through serial

communication to the Arduino board with a baud rate of 9600 (bits per second). The

Arduino sends a reference position signal for the linear piston and the LAC board for

compensating for the position error signal of the position in order to follow the desired

trajectory. The predefined trajectory Ψd(t) begins at the initial position Ψd(0) = 180◦,

then the wrist is extended in 1.8 s to Ψd(1.8) = 112.36◦ and stays in this position for 0.5

s before returning to the initial position, which also takes 1.8 s. The average movement

speed while moving is 37.58◦/second. The 3D printed wrist exoskeleton is shown in

Figure 6.9.

6.2.2.7 Statistics

A one-way repeated measure analysis of variance (ANOVA) with time as a factor (3 lev-

els: pre-, post-, and post-30 intervention) was performed on the median MEP peak–peak

amplitudes to investigate if there was a difference between the MEP amplitudes at the

three different time points. A significant statistic test was followed up with a posthoc

analysis using Bonferroni correction to avoid multiple comparisons. Moreover, Spear-

man correlation was calculated between the BCI performance metrics (true positive rate,
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Figure 6.8: Isometric view of the 3D-printed exoskeleton.

Figure 6.9: Isometric view of the wrist exoskeleton.

the number of false negatives per minute, and the number of false positive detections

per minute) including the duration of the training and the changes in MEP amplitude.

Additionally, the correlation between the MEP changes and BCI performance metrics

was calculated with respect to age (Spearman correlation) and gender (Point Biserial

correlation). A significant test was assumed when ρ < 0.05.

6.2.3 Results

The results are summarized in Table 6.6 and Figure 6.10. The presented ρ-values for

the posthoc test have been Bonferroni corrected. On average, 86±12% of the imaginary

wrist extensions were correctly detected by the asynchronous BCI, while there were
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1.20± 0.57 false positive detection per minute and 0.63± 0.58 false negative per minute

(see Table 6.6). It should be noted that there is a large standard deviation, especially

for the true positive rate, and especially subject 2 had difficulties in activating the

exoskeleton through the BCI. The true positive rate was nearly average for subjects 5

and 6, but they had a large number of false positive detections per minute.

Table 6.6: Brain computer interface performance.

Subject
True Positive
Rate (%)

False Negatives
per Minute

False Positive
Detections
per Minute

Duration
of Training
(minutes)

1 93 0.36 0.55 11
2 56 2.11 0.78 18
3 98 0.1 1.00 11
4 79 1.08 0.5 12
5 81 1.09 2.10 11
6 83 0.67 1.93 15
7 100 0 1.81 16
8 94 0.23 1.77 13
9 86 0.53 1.10 15
10 89 0.43 0.57 14
11 94 0.33 1.11 9
Mean ±sd 86± 12 0.63± 0.58 1.20± 0.57 13± 3

Figure 6.10: Summary of the MEP results.

The results of the intervention are presented in Figure 6.10. There was an increase in the

MEP from before intervention to immediately after, and 30 min after, the intervention

in both absolute units (mV) and relative units (percentage). The statistical analysis
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showed a significant effect of time (F (2, 20) = 4.63; ρ = 0.022). The posthoc analysis

revealed a significant increase in the MEP amplitude from the measurement before the

intervention to the measurement 30 min after the intervention (ρ = 0.028). There was

no difference between the MEP from the measurement before the intervention and that

immediately after (ρ = 0.73), or the MEPs in the measurements after the intervention

(ρ = 0.34).

There was no correlation between the true positive rate (correlation coefficient: 0.36;

ρ = 0.28), the number of false positive detections per minute (correlation coefficient:

−0.35; ρ = 0.30), the number of false negatives per minute (correlation coefficient:

−0.39; ρ = 0.24), or duration (correlation coefficient: 0.31; ρ = 0.36), and the changes

in MEP amplitude from before to 30 min after the intervention. Age and gender did

not correlate with any of the other measures.

6.2.4 Discussion

It was possible to detect imaginary wrist movements with a low-cost BCI with a true

positive rate of 86± 12%, with 1.20± 0.57 false detection and 0.63± 0.58 false negative

per minute. The BCI training with the exoskeleton led to increased MEPs after the

training with respect to the pre-intervention measurement. There was a non-significant

increase from pre- to post-intervention measurements of 35 ± 60%, and a significant

increase from pre- to post-30 min intervention measurements of 67± 60%.

6.2.4.1 Induction of Plasticity

The BCI-triggered exoskeleton movements increased the excitability of the cortical pro-

jections to the forearm extensor muscles. The increase in MEP size was similar to what

has been reported previously for the electrical stimulation of the radial nerve based on

an associative BCI, which was approximately 50% compared to baseline MEPs [253]. In

addition, the changes in excitability are in a similar range of what has been reported

previously for BCI-triggered electrical stimulation of the common peroneal nerve and

exoskeleton movement of the ankle joint. The BCI intervention in these studies has

consistently reported increases in corticospinal excitability in the range of 40 − 100%
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[125, 126, 194–196, 253]. In this study, the increase from pre- to post-intervention mea-

surement was not significant, however, it could be attributed to the large standard devi-

ation of approximately 60%, or to the fact that the effect of the intervention takes some

time to consolidate. Large variability has commonly been reported in neuromodulation

studies where the effect of the intervention was quantified using MEPs elicited through

TMS [125, 126, 194–196, 220]. The variability in the MEP size is affected by multiple

factors, such as attention and time of day (reviewed in [232, 254]), but it may also be

due to the variable response of neuromodulation interventions [255–258]. It should also

be noted that there exist other types of techniques that have been used for the induction

of neural plasticity and proposed for stroke rehabilitation, and that activate the corti-

cal brain areas [28]. One of these techniques is repetitive TMS, whereby the cortical

excitability of specific brain areas can be upregulated, which has led to increased ampli-

tudes of motor-evoked potentials [259]. TMS has also been paired with afferent inflow

from the electrical stimulation of a peripheral nerve (paired associative stimulation).

This protocol has been used to consistently induce neural plasticity when the correct

interstimulus interval between the magnetic and electrical stimulation has been selected

[254]. However, the use of TMS may not be tolerated well by some stroke patients [260],

and there would be safety precautions to consider [225]. Another way to activate the

motor cortex is by the use of transcranial direct current stimulation, which has been

used to increase the excitability in the motor cortex [261–263]. Moreover, this technique

has been used for priming before BCI training, but there is no clear indication of an

additive effect [218, 264]. However, it has been shown that transcranial direct current

stimulation can improve the BCI performance [218], possible through the modulation of

the mu event-related desynchronization [265].

The induction of plasticity in this study is expected to be due to the combination of motor

imagery and afferent feedback that was temporally correlated. Two control experiments

could have been performed to investigate the effect of motor imagery alone on the MEP

and the effect of passive movement alone on the MEP amplitude. However, the control

experiment for motor imagery has been conducted three times, wherein 50 imaginary

movements have been performed, and no change in MEP amplitudes has been reported

[125, 194, 219]. For the afferent feedback alone (i.e., passive movement in this study),

it has been reported that 50 passive movements do not change the MEP amplitudes

[125], and when delivering afferent feedback through electrical stimulation alone (50
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stimuli), no change in MEP amplitudes has been reported [194, 266]. The changes in

plasticity in this study are expected to be mediated through long-term potentiation

(LTP)-like changes, as has been suggested in several previous studies using a similar

methodology [125, 195, 219]. The criteria of LTP-like plasticity include associativity

(pairing between motor imagery and afferent feedback from the passive movement),

rapid onset (indicated by the post-intervention measurement), and lasting effects (at

least 30 min, as indicated by the post-30 min intervention measurement) [241]. There

was only a measurement 30 min after the intervention, but the changes associated with

this intervention have been reported to last at least 60 min [218]. It is possible that

the effects last longer, but probably not longer than 24 h. It has been reported that

there was no difference in MEP amplitude between two pre-intervention measurements

before two similar plasticity-inducing protocols, when separated by 24 h [266]. Another

criterion for LTP-like plasticity is specificity, which was not tested in this study, but it

has been reported that this type of intervention is specific [203]. The changes in the

neural plasticity that were observed could happen throughout the nervous system, but

it has been suggested in several studies using the stretch reflex that the changes are

supraspinal [125, 194, 219, 220].

6.2.4.2 BCI system performance

The BCI system that was used in this study performed well in terms of the true positive

rate and number of false positive detections per minute. The performance is compa-

rable with other asynchronous BCI studies that have been used for inducing plasticity,

which have reported true positive rates in the range of 67− 85% and a number of false

positive detections per minute in the range of 0.5 − 2.8 [125, 126, 192, 194–196, 253].

The approaches to movement intention detection in those studies have primarily relied

on movement-related cortical potentials, but the results of the current study show that

a BCI based on sensorimotor rhythms is just as effective in terms of movement inten-

tion detection, and it has also been used successfully for BCI training in stroke patients

[191, 192, 218, 267]. The BCI performance of the participants in this study was vari-

able, but there was only a single participant that experienced low control (true positive

rate of 56%). It would be possible to reduce the detection threshold to allow a higher

true positive rate, but that also increases the number of false-positive detections per

minute. However, the number of false-positive detections could potentially be controlled
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using a paradigm whereby the BCI only accepts inputs in predefined periods, instead

of always being active, as in the asynchronous paradigm, or if the number of windows

is increased when the detection is exceeded; the latter approach would increase the de-

tection latency. It has been shown previously that the afferent feedback should coincide

with the movement intention (i.e., short detection latency) [203], but recent findings

have suggested that plasticity can be induced with less strict detection latencies [195].

This may allow the use of residual EMG, from which it is possible to decode multiple

movement types [242], which could introduce some task variability in the training [201],

and it may be easier for the stroke patients to control the exoskeleton. The correla-

tion analysis showed that there was no correlation between the induction of plasticity

in terms of peak–peak amplitudes in the MEP and the performance metrics of the BCI

system. This may suggest that the current level of BCI system performance is sufficient

for inducing plasticity, and that it may not be needed to optimize the system further

from the movement detection point of view, although it should be pointed out that

correlation analyses were performed on a limited sample wherein all subjects (except

one) had good performance. It has been reported previously that the true positive rate,

number of false positive detections and total time of the intervention explain little of the

variance in the peak–peak amplitude of the MEP, with the duration explaining more

than the other two measures [126, 195]. However, in a similar BCI study, Niazi et al.

reported a statistically significant correlation of 0.8 between the BCI system’s perfor-

mance and changes in MEP amplitude in eight healthy subjects [194]. The BCI system

performance in that study was calculated as the ratio between the true positive rate and

false positive detections; when performing the same calculation in the current study, a

similar significant correlation is observed (correlation coefficient: 0.64; ρ = 0.034). This

indicates that there is an incentive to improve the BCI performance.

6.2.4.3 Limitations and Future Perspectives

In this study, it was shown that young healthy participants could control the BCI, and it

could be used for inducing neural plasticity. These findings should be validated in future

studies with the intended end-users, which are stroke survivors with motor impairment

who often are more than 65 years old. The motor cortex excitability decreases with

age [232], but it has been shown that the MEP amplitudes can increase 100% in stroke

patients using an associative BCI protocol [239]. It is likely that the reported BCI
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system’s performance will be slightly lower for stroke patients [198, 268, 269], and if

the same experimental protocol is used, it must be considered that some of the stroke

patients may not be able to communicate due to, e.g., aphasia, and hence will not be

able to indicate what they intended to do (i.e., true positive, false positive or false

negative). An alternative approach to verbal feedback to the experimenter could be to

use error-related potentials as a check to indicate if the trial was a true positive or false

positive; however, this approach will also be prone to the uncertainty related to the

decoding algorithm used for these potentials [270]. The lower BCI system performance

for stroke patients may cause frustration, and the performance can be affected by fatigue

and inattention. To avoid this, it could be a possibility to implement the BCI training

in a game to make the training more engaging. Using game mechanics, it would be

possible to bias the classifier to improve the performance and conceal it for the user. The

proposed system may be used for motor training in this patient group, but it is important

to note that an increase in MEP size does not equal improvement in motor function,

although increases in MEP size have been reported alongside skill acquisition in healthy

participants [197] and motor recovery in stroke patients [239, 271]. The BCI training

may be used as a training intervention in itself, but it could also be possible to utilize the

lasting increase in the MEP size (more than 30 min) in a rehabilitation scenario where

the BCI training is used to prime the nervous system before other types of training, such

as physiotherapy or occupational therapy. For the BCI to be used in rehabilitation clinics

or home of the patient, the usability should be improved in terms of various aspects, such

as the hardware setup, which should be simplified, and the safety of BCI use in acute

patients should be assessed [272]. The BCI system should be coded on the Arduino to

reduce the amount of hardware, eliminate potential communication problems and delays,

which could allow a faster response of the exoskeleton, and the calibration time should

be reduced or removed using, e.g., a subject-independent movement intention detector

[273, 274]. As regards to communication problems, the robustness of the EEG recordings

and usability testing is where the expensive systems potentially differ most from the

current cheaper alternatives (this is just a speculation); these are important factors to

consider for the technology to be adopted in a clinical setting. It should be investigated

if the cost of the BCI (i.e., the EEG amplifier) and exoskeleton can be reduced further.

In total, the price for the BCI system (including EEG amplifier, cap, electrodes and

cables) and the exoskeleton (all parts including motor, control board and Arduino) was

less than USD 1000. Additionally, the design of the exoskeleton should be improved so
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it will be easier to put on and take off by the users, and the comfort should be increased

as well. This could be done by adapting the exoskeleton to the individual, which would

be possible when the components are 3D-printed. Another option could be to use soft

exoskeletons, such as a glove or sleeve, that can perform the intended movements [275].

In this study, the exoskeleton was used to execute the intended movement and provide

afferent feedback, but it would be possible to use electrical stimulation as well to provide

the afferent feedback. In two recent studies, it has been shown that there is no difference

between the afferent feedback from electrical stimulation and passive movements from an

exoskeleton/robot in terms of the induction of plasticity [126, 220]. This gives the patient

and therapist freedom to choose the modality that works best for the patient. Some

patients may not be able to tolerate electrical stimulation well, or may have problems

in placing the stimulation electrodes correctly, so the usability of the exoskeleton may

be better compared to electrical stimulation; however, this has not been tested, and

it should be validated in future studies with the end-users. To summarize, for this

technology to be used in a home setting the BCI and exoskeleton have to fulfill some

requirements, as follows: (1) it must be easy to take on and off the exoskeleton; (2) the

software must be easy to use, since the user may not be used to working with technology

and may suffer from cognitive impairments to some degree; (3) the system calibration

should be done automatically; (4) the hardware setup of the BCI must be simple, and

(5) the patient should be able to place EEG electrodes over the motor cortex. The

latter may be difficult for patients with severe motor impairments; in a recent study it

was shown that half of the stroke participants were able to mount EEG headsets that

covered the motor cortex while the other half was unable to mount the EEG headsets

[242]. Those that could mount the headset spent roughly 10 min. On the contrary,

relatives to the patients and therapists could quickly mount the EEG headset with little

prior instruction (5 min). The setup times for them were between 3 and 5 min. Thus,

it would be important to have a headset that is easy to mount with one hand for the

most affected patients, unless they have someone to help them with the setup.

6.3 Conclusion

In this chapter two different experiments of exoskeletons in rehabilitation were presented.

In the first case of study three different types of feedbacks for ankle rehabilitation were
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evaluated to determine which strategy provides the best afferent feedback for inducing

neural plasticity, these are : electrical stimulation (ES), a passive movement (PM) or a

combination of both (Comb).

In order to generate the passive movement, the motoBOTTE was coupled to a brain

computer interface (BCI) that after proper training was capable of detecting the inten-

tion of movement of the subject, this detection of the intention of movement triggered

the tracking of a predefined ankle trajectory in the robot. The same BCI was coupled to

the electrical stimulation device and the electrical stimulation signal was provided when

the motor intention was detected. The performance of both strategies as well as its com-

bination were evaluated using the amplitude of motor evoked potentials of the Tibialis

Anterior muscle, these were obtained via applying transcranial magnetic stimulation.

For the second experiment, a new wrist exoskeleton was designed, 3D printed and built

specially for this study, the aim of this investigation was evaluating the performance of

low-cost devices for inducing neural plasticity. In this case the experiment consisted on

five steps : 1) calibrate a low-cost BCI (OpenBCI) to detect the intention of movement

of the subject with the signals from a motor imaginary training session, 2) perform

transcranial magnetic stimulation (TMS) to the subject, 3) the subject does a training

session of motor imaginary using the exoskeleton to provide a passive feedback to the

subject, 4) perform a post-TMS, and finally, 5) perform a post-30 TMS. The efficiency

of this strategy with these devices was evaluated again via the motor evoked potentials

obtained via TMS.

In both studies the human interaction with the robots has been considered via a BCI,

these BCIs were employed only for triggering the tracking of predefined trajectories,

which translates into a passive movement feedback for the subject. Therefore, from the

perspective of the reference it is operating in open-loop, there is no feedback from the

user to the reference signal, besides initializing the tracking of the reference, it would

be interesting to consider if a dynamic reference could be generated with the BCI or a

combination of EMG with BCI, in this case the system will be operating in closed-loop;

but, one of the difficulties found in that direction is that the devices employed must be

able to operate in real-time.
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Chapter 7

Conclusion and Future Work

This chapter provides a general conclusion of the project and finishes by establishing

perspectives about the possible future of this work.

During this project some steps have been made towards the development of a hybrid

brain computer interface for post-stroke rehabilitation. The main device employed was

the motoBOTTE, an ankle exoskeleton that was designed and built at the LAMIH (UMR

CNRS 8201) with the purpose of providing assisted rehabilitation. The different devices

that interact with this robot have been described, then, different modeling methodologies

were illustrated by employing the motoBOTTE (which is a parallel robot) as example.

The computer-torque and active disturbance rejection control methodologies were

adapted to be implemented in parallel robots that are described by a set of differential-

algebraic equations. These new methodologies were illustrated using the identified math-

ematical models for nonlinear controller design. The designs obtained have been imple-

mented in simulation and real-time. Graphics of these implementations were provided.

Considerations for extending the nonlinear sector methodology to the case of nonlinear

singular systems were pointed out in the respective chapter, exact convex representations

of differential algebraic equations were obtained and illustrated using the mathematical

models of the motoBOTTE. A new relaxation that can be used when a double-sum

appears in controller and observer design based in parallel distributed compensation

(which is a problem of Positivstellensatz) have been obtained, it is based on copositive

matrices. Later, controllers based on parallel distributed compensation were designed,

147
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simulated and implemented in real-time for tracking trajectories with the robot and new

conditions for controller design for nonlinear singular system were established as well.

Models for estimating ankle force production via EMG were adapted from the existing

literature to be used in real-time applications. The efficiency of these models was il-

lustrated by analyzing the data from different subjects walking over a force platform.

Inverse kinematics techniques were employed to estimate the ankle force produced by

each subject and were compared to the ankle force produced by the mathematical model

presented. The value of different anatomical parameters have been taken from state-of-

the-art literature, the methodology presented is purely model-based, but modifications

have been suggested to improve this force estimation.

Finally, in the last part, a brain computer interface was coupled to the motoBOTTE

to investigate which type of feedback (passive movement, electrical stimulation or a

combination of both) would be optimal for inducing neural plasticity. In addition to

this, a new wrist exoskeleton was designed, 3D printed and build for wrist rehabilitation.

This robot was coupled to a brain computer as well. In both cases, the BCI was used to

detect the intention of movement of the subject, and this detection triggered a passive

movement in the respective robot. Motor evoked potentials were measured pre-, post-

and post-30 minutes of the experiments to evaluate the efficiency of employing these

kind of systems for rehabilitation.

These following perspectives will be classified in three categories defined as follows :

short-term (< 1 year), mid-term (1− 3 years) and long-term (> 3 years).

• Short-term:

1. The first next step will be to validate the EMG driven models presented in

chapter 5 for estimating the ankle force in real-time using the force sensor

from SENSIX shown in Fig 2.6.

2. A statistical analysis can be performed on the mathematical models obtained

in Chapter 2 to evaluate the performance of the models in terms of accuracy

when predicting the system’s position, i.e., find which model is more accurate.

3. A statistical analysis can be performed on the controllers designed in Chap-

ter 3 to evaluate which controller is more accurate for tracking predefined

trajectories.



Conclusion 149

4. Once the force estimation models have been validated with the sensor, we

can continue by modifying these models, in order to explore if there are

other structures capable of achieving a smaller error or may fit for a wider

range of subjects; ideally, we would be able to keep or preserve some of the

parameters values (anatomical parameters taken from validated models found

in the literature) and structure of the model, i.e., equations for passive, active

and tendon forces, and we would only need to substitute the first two blocks in

Fig. 5.2 by a neural network, for example, to keep some data from anatomical

models that have been already validated and take advantage of the universal

estimator capabilities of neural networks for blocks that are oversimplified.

5. All the techniques employed for parameter estimation within this manuscript

were offline, once we have a fixed structure, it would be interesting if an

online parameter estimation can be employed, maybe based on the classical

extended Kalman filter. I think that something interesting would be trying to

combine convex structures with the Kalman filter to avoid the linearization

step of the methodology.

• Mid-term :

1. Once an accurate model for the force production in terms of electromiogra-

phy signals have been obtained and a force plate is available for performing

experiments, it would be interesting to explore the possibility of using an un-

known input observer or an interval observer to compute which EMG signals

produce that ankle torque.

2. A possible scenario would be trying to improve the reference generation mod-

els for controlling the position of the motoBOTTE. This might involve the

use of a motion capture system as in chapter 5 to obtain accurate signals

from subjects performing dorsiflexion and plantarflexion movements in a sort

of swing phase (without being in contact with the ground), but, with a wider

time-window. Then applying inverse kinematics to this data in order to deter-

mine the ankle force applied by the subject, we could determine and construct

some models that can fit to a wide panel of users.

3. Couple a brain computer interface with the myRIO card permanently, in the

experiments the EEG signal has been only used to trigger the control and it
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would be interesting to capture the signals of the subject while performing

exercises with the motoBOTTE and consider them in real-time. Most of the

analog inputs and outputs of the myRIO card have been used, but an option

to couple the BCI is connecting it to the digital I/O, whether using a low-cost

BCI as in Chapter 6 (Open BCI) or building a BCI from scratch, something

that would require more time but can be more economic in terms of material.

• Long-term :

1. Develop a graphic user interface (GUI) that connected the myRIO card to a

computer. This GUI can be used for many purposes such as : verify all the

robot (force sensor, piston position and control signal) and subject (EEG and

EMG) signals before performing experiments, capture and save these signals

after the experiments to create a database.

2. The database in the previous point, might be able to include useful infor-

mation from the subjects such as height, age, body mass, gender, ethnicity,

personal habits (smoking, alcohol consumption, physical activity, stress level

perception), and so on, as well as signals from the experiments performed;

in summary, this should include information about stroke risk factors and

real-time experiments. The information contained in this database might

be shared with other research groups, such that more models for real-time

applications and maybe diagnosis can be developed taking advantage of the

benefits of combining all these devices at once.

3. Perform statistical analysis on the parameters of the models developed in this

work and try to adapt them to different categories of subjects. This can be

done in order to investigate if there is a relation between the physical charac-

teristics (or physical disease) of the subject and the parameters in the model

obtained. These relations (if found) can be used to 1) estimate parameters

of the models related to specific group of subjects, 2) provide a good initial

condition for this parameter values to reduce the time employed for calibra-

tion of the models, or 3) classify the users detecting if the signal patterns of

the subject and physical parameters correspond to a determined illness.

4. Develop new tools and indexes that can be used for evaluating the efficiency

of assisted rehabilitation therapy in post-stroke patients. Recall that Katz
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Index and Bartel Index mentioned in Chapter 1 do not take into account all

the possible information that could be acquired with this new hybrid brain

computer interface when finished (EEG, EMG, Ankle Force). Those tools

have been widely used; but, they were developed more than 4 decades ago,

and maybe these should be updated to fit better within the context of robot

assisted rehabilitation via brain computer interfaces.
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International, 105(18):330, 2008.

[59] D. Shakti, L. Mathew, N. Kumar, and C. Kataria. Effectiveness of robo-assisted

lower limb rehabilitation for spastic patients: A systematic review. Biosensors

and Bioelectronics, 117:403–415, 2018.



Bibliography 158

[60] K. Lo, M. Stephenson, and C. Lockwood. Effectiveness of robotic assisted reha-

bilitation for mobility and functional ability in adult stroke patients: a systematic

review. JBI database of systematic reviews and implementation reports, 15(12):

3049–3091, 2017.

[61] S. Jezernik, G. Colombo, T. Keller, H. Frueh, and M. Morari. Robotic orthosis

lokomat: A rehabilitation and research tool. Neuromodulation: Technology at the

neural interface, 6(2):108–115, 2003.

[62] E. Simoneau-Buessinger, C. Gillet, S. Leteneur, J.-F. Debril, and N. Decoufour.

Ankle ergometer, November 17 2020. US Patent 10,835,173.

[63] J. C. Arceo, J. Lauber, L. Robinault, S. Paganelli, M. Jochumsen, I. K. Niazi,

E. Simoneau, and S. Cremoux. Modeling and control of rehabilitation robotic

device: motobotte. In International Conference on NeuroRehabilitation, pages

546–550. Springer, 2018.

[64] J.P. Merlet. Parallel robots, volume 128. Springer Science & Business Media, 2006.

[65] D. M. Dawson, C. T. Abdallah, and F. L. Lewis. Robot manipulator control: theory

and practice. CRC Press, 2003.

[66] O. Vinogradov. Fundamentals of kinematics and dynamics of machines and mech-

anisms. CRC press, 2000.

[67] P. J. Rabier and W. C. Rheinboldt. Theoretical and numerical analysis of

differential-algebraic equations. Elsevier, 2002.

[68] SKF. CAHB-21: Linear Actuator. Installation, operation and maintenance man-

ual. SKF Taiwan Co., Ltd, No. 3, Lane 11, Tzu-Chiang St., Tu-Cheng Industrial

District, Taipei, Taiwan, August 2010.

[69] Maxon Motor. ESCON 50/5 DC Servo Controller Hardware Reference. Maxon

Motor, Bränigstrasse 220 P.O.Box 263 CH-6072 Sachseln, rel7125 edition, Novem-

ber 2018.

[70] National Instruments. NI myRIO-1900 User Guide and Specifications. National

Instruments, 11500 North Mopac Expressway, Austin, Texas,78759-3504, 376047c-

01 edition, May 2016.



Bibliography 159

[71] SENSIX. Force-torque sensor for biomechanics - cylindrical sensors, 2021. URL

http://sensix.fr/cylindrical-sensors_std_23_uk.html.

[72] Emilie SIMONEAU-BUESSINGER, Christophe Gillet, Sebastien LETENEUR,

Jean-Francois DEBRIL, and Nicolas DECOUFOUR. Ankle ergometer, Nov 2017.

[73] L. Ljung. Non-linear black box models in system identification. IFAC Proceedings

Volumes, 30(9):1–12, 1997.

[74] L. Ljung. System identification. Wiley encyclopedia of electrical and electronics

engineering, pages 1–19, 1999.

[75] O. Nelles. Nonlinear system identification: from classical approaches to neural

networks and fuzzy models. Springer Science & Business Media, 2013.

[76] J. L. Melsa. System identification. Academic Press, 1971.

[77] K. J. Keesman. System identification: an introduction. Springer Science & Busi-

ness Media, 2011.

[78] S. Haykin. Neural networks: a comprehensive foundation. Prentice-Hall, Inc.,

2007.

[79] E. B. Kosmatopoulos, M. A. Christodoulou, and P. A. Ioannou. Dynamical neural

networks that ensure exponential identification error convergence. Neural Net-

works, 10(2):299–314, 1997.

[80] A. Sala and C. Ariño. Polynomial fuzzy models for nonlinear control: A taylor

series approach. IEEE Transactions on Fuzzy Systems, 17(6):1284–1295, 2009.

[81] F. Gustafsson. Determining the initial states in forward-backward filtering. IEEE

Transactions on Signal Processing, 44(4):988–992, 1996.
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G. Liberati, M. R. Curado, E. Garcia-Cossio, A. Vyziotis, et al. Brain–machine

interface in chronic stroke rehabilitation: a controlled study. Annals of neurology,

74(1):100–108, 2013.

[191] A. A. Frolov, O. Mokienko, R. Lyukmanov, E. Biryukova, S. Kotov, L. Turbina,

G. Nadareyshvily, and Y. Bushkova. Post-stroke rehabilitation training with a

motor-imagery-based brain-computer interface (bci)-controlled hand exoskeleton:

a randomized controlled multicenter trial. Frontiers in neuroscience, 11:400, 2017.



Bibliography 170

[192] A. Biasiucci, R. Leeb, I. Iturrate, S. Perdikis, A. Al-Khodairy, T. Corbet,

A. Schnider, T. Schmidlin, H. Zhang, M. Bassolino, et al. Brain-actuated func-

tional electrical stimulation elicits lasting arm motor recovery after stroke. Nature

communications, 9(1):1–13, 2018.

[193] M. A. Cervera, S. R. Soekadar, J. Ushiba, J. del R. Millán, M. Liu, N. Birbaumer,

and G. Garipelli. Brain-computer interfaces for post-stroke motor rehabilitation: a

meta-analysis. Annals of clinical and translational neurology, 5(5):651–663, 2018.

[194] I. K. Niazi, N. Mrachacz-Kersting, N. Jiang, K. Dremstrup, and D. Farina. Pe-

ripheral electrical stimulation triggered by self-paced detection of motor intention

enhances motor evoked potentials. IEEE transactions on neural systems and re-

habilitation engineering, 20(4):595–604, 2012.

[195] M. Jochumsen, M. S. Navid, U. Rashid, H. Haavik, and I. K. Niazi. Emg-versus

eeg-triggered electrical stimulation for inducing corticospinal plasticity. IEEE

Transactions on Neural Systems and Rehabilitation Engineering, 27(9):1901–1908,

2019.

[196] M. Jochumsen, M. S. Navid, R. W. Nedergaard, N. Signal, U. Rashid, A. Hassan,

H. Haavik, D. Taylor, and I. K. Niazi. Self-paced online vs. cue-based offline

brain–computer interfaces for inducing neural plasticity. Brain sciences, 9(6):127,

2019.

[197] A. Pascual-Leone, D. Nguyet, L. G. Cohen, J. P. Brasil-Neto, A. Cammarota, and

M. Hallett. Modulation of muscle responses evoked by transcranial magnetic stim-

ulation during the acquisition of new fine motor skills. Journal of neurophysiology,

74(3):1037–1045, 1995.

[198] M. Jochumsen, I. K. Niazi, N. Mrachacz-Kersting, N. Jiang, D. Farina, and

K. Dremstrup. Comparison of spatial filters and features for the detection and

classification of movement-related cortical potentials in healthy individuals and

stroke patients. Journal of neural engineering, 12(5):056003, 2015.

[199] G. R. Müller-Putz, V. Kaiser, T. Solis-Escalante, and G. Pfurtscheller. Fast set-up

asynchronous brain-switch based on detection of foot motor imagery in 1-channel

eeg. Medical & biological engineering & computing, 48(3):229–233, 2010.



Bibliography 171
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[229] D. Bates, M. Mächler, B. Bolker, and S. Walker. Fitting linear mixed-effects

models using lme4. arXiv preprint arXiv:1406.5823, 2014.

[230] B. C. Jaeger. R2glmm: Computes r squared for mixed (multilevel models)(version

r package version 0.1. 2), 2017.

[231] J. Twisk, L. Bosman, T. Hoekstra, J. Rijnhart, M. Welten, and M. Heymans.

Different ways to estimate treatment effects in randomised controlled trials. Con-

temporary clinical trials communications, 10:80–85, 2018.

[232] M. C. Ridding and U. Ziemann. Determinants of the induction of cortical plasticity

by non-invasive brain stimulation in healthy subjects. The Journal of physiology,

588(13):2291–2304, 2010.

[233] T. Sinkjær, J. B. Andersen, M. Ladouceur, L. O. D. Christensen, and J. B. Nielsen.

Major role for sensory feedback in soleus emg activity in the stance phase of

walking in man. The Journal of physiology, 523(Pt 3):817, 2000.

[234] J. B. Nielsen and T. Sinkjær. Afferent feedback in the control of human gait.

Journal of electromyography and kinesiology, 12(3):213–217, 2002.

[235] K. Rosenkranz and J. C. Rothwell. Differences between the effects of three plastic-

ity inducing protocols on the organization of the human motor cortex. European

Journal of Neuroscience, 23(3):822–829, 2006.

[236] N. Mrachacz-Kersting, M. Fong, B. A. Murphy, and T. Sinkjær. Changes in

excitability of the cortical projections to the human tibialis anterior after paired

associative stimulation. Journal of neurophysiology, 97(3):1951–1958, 2007.

[237] N. Petersen, L. O. D. Christensen, H. Morita, T. Sinkjær, and J. Nielsen. Evidence

that a transcortical pathway contributes to stretch reflexes in the tibialis anterior

muscle in man. The Journal of physiology, 512(1):267–276, 1998.



Bibliography 175

[238] D. F. Collins. Central contributions to contractions evoked by tetanic neuromus-

cular electrical stimulation. Exercise and sport sciences reviews, 35(3):102–109,

2007.

[239] N. Mrachacz-Kersting, N. Jiang, A. J. T. Stevenson, I. K. Niazi, V. Kostic,

A. Pavlovic, S. Radovanovic, M. Djuric-Jovicic, F. Agosta, K. Dremstrup, et al. Ef-

ficient neuroplasticity induction in chronic stroke patients by an associative brain-

computer interface. Journal of neurophysiology, 115(3):1410–1421, 2016.

[240] A. Suppa, A. Quartarone, H. Siebner, R. Chen, V. Di Lazzaro, P. Del Giudice,

W. Paulus, J. C. Rothwell, U. Ziemann, and J. Classen. The associative brain

at work: evidence from paired associative stimulation studies in humans. Clinical

Neurophysiology, 128(11):2140–2164, 2017.

[241] S. Olsen, N. Signal, I. K. Niazi, T. Christensen, M. Jochumsen, and D. Taylor.

Paired associative stimulation delivered by pairing movement-related cortical po-

tentials with peripheral electrical stimulation: An investigation of the duration of

neuromodulatory effects. Neuromodulation: Technology at the Neural Interface,

21(4):362–367, 2018.

[242] M. Jochumsen, H. Knoche, P. Kidmose, T. W. Kjær, and B. I. Dinesen. Evaluation

of eeg headset mounting for brain-computer interface-based stroke rehabilitation

by patients, therapists, and relatives. Frontiers in Human Neuroscience, 14, 2020.

[243] W. D. Hairston, K. W. Whitaker, A. J Ries, J. M. Vettel, J. C. Bradford, S. E.

Kerick, and K. McDowell. Usability of four commercially-oriented eeg systems.

Journal of neural engineering, 11(4):046018, 2014.

[244] Y. Renard, F. Lotte, G. Gibert, M. Congedo, E. Maby, V. Delannoy, O. Bertrand,

and A. Lécuyer. Openvibe: An open-source software platform to design, test,

and use brain–computer interfaces in real and virtual environments. Presence:

teleoperators and virtual environments, 19(1):35–53, 2010.

[245] C. M McCrimmon, Jonathan Lee Fu, Ming Wang, Lucas Silva Lopes, Po T Wang,

Alireza Karimi-Bidhendi, Charles Y Liu, Payam Heydari, Zoran Nenadic, and

An Hong Do. Performance assessment of a custom, portable, and low-cost brain–

computer interface platform. IEEE Transactions on Biomedical Engineering, 64

(10):2313–2320, 2017.



Bibliography 176

[246] U. Rashid, I. K. Niazi, N. Signal, and D. Taylor. An eeg experimental study

evaluating the performance of texas instruments ads1299. Sensors, 18(11):3721,

2018.

[247] V. Peterson, C. Galván, H. Hernández, and R. Spies. A feasibility study of a

complete low-cost consumer-grade brain-computer interface system. Heliyon, 6

(3):e03425, 2020.

[248] F. Pichiorri, G. Morone, I. Pisotta, M. Petti, M. Molinari, L. Astolfi, F. Cincotti,

and D. Mattia. Bci for stroke rehabilitation: a randomized controlled trial of effi-

cacy. In Proceedings of the Fifth International Brain-Computer Interface Meeting,

Pacific Grove, CA, USA, pages 3–7, 2013.

[249] D. R. Dudley, B. A. Knarr, K.-C. Siu, J. Peck, B. Ricks, and J. M. Zuniga.

Testing of a 3d printed hand exoskeleton for an individual with stroke: a case

study. Disability and Rehabilitation: Assistive Technology, pages 1–5, 2019.

[250] H.-J. Yoo, S. Lee, J. Kim, C. Park, and B. Lee. Development of 3d-printed myoelec-

tric hand orthosis for patients with spinal cord injury. Journal of NeuroEngineering

and Rehabilitation, 16(1):162, 2019.

[251] K. K. Ang, C. Guan, K. S. Phua, C. Wang, L. Zhou, K. Y. Tang, G. J.

Ephraim Joseph, C. W. K. Kuah, and K. S. G. Chua. Brain-computer interface-

based robotic end effector system for wrist and hand rehabilitation: results of a

three-armed randomized controlled trial for chronic stroke. Frontiers in neuro-

engineering, 7:30, 2014.

[252] M. Sebastián-Romagosa, W. Cho, R. Ortner, N. Murovec, T. Von Oertzen, K. Ka-

mada, B. Z. Allison, and C. Guger. Brain computer interface treatment for motor

rehabilitation of upper extremity of stroke patients—a feasibility study. Frontiers

in Neuroscience, 14, 2020.

[253] N. Mrachacz-Kersting and S. Aliakbaryhosseinabadi. Comparison of the efficacy

of a real-time and offline associative brain-computer-interface. Frontiers in neuro-

science, 12:455, 2018.



Bibliography 177

[254] G. Alder, N. Signal, S. Olsen, and D. Taylor. A systematic review of paired asso-

ciative stimulation (pas) to modulate lower limb corticomotor excitability: Impli-

cations for stimulation parameter selection and experimental design. Frontiers in

neuroscience, 13:895, 2019.

[255] S. Wiethoff, M. Hamada, and J. C. Rothwell. Variability in response to transcranial

direct current stimulation of the motor cortex. Brain stimulation, 7(3):468–475,

2014.

[256] M. Hamada, N. Murase, A. Hasan, M. Balaratnam, and J. C. Rothwell. The role of

interneuron networks in driving human motor cortical plasticity. Cerebral cortex,

23(7):1593–1605, 2013.

[257] J. Lahr, S. Paßmann, J. List, W. Vach, A. Flöel, and S. Klöppel. Effects of different
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