
HAL Id: tel-03346063
https://theses.hal.science/tel-03346063

Submitted on 16 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Initialization methods of convolutional neural networks
for detection of image manipulations

Ivan Castillo Camacho

To cite this version:
Ivan Castillo Camacho. Initialization methods of convolutional neural networks for detection of image
manipulations. Signal and Image processing. Université Grenoble Alpes [2020-..], 2021. English.
�NNT : 2021GRALT032�. �tel-03346063�

https://theses.hal.science/tel-03346063
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
Spécialité : SIGNAL IMAGE PAROLE TELECOMS
Arrêté ministériel : 25 mai 2016
Présentée par
Ivan CASTILLO CAMACHO

Thèse dirigée par Kai WANG
préparée au sein du Laboratoire Grenoble Images
Parole Signal Automatique (GIPSA-lab)
dans l’École Doctorale Electronique, Electrotechnique,
Automatique, Traitement du Signal (EEATS)

Méthodes d’initialisation des réseaux de
neurones convolutifs pour la détection des
manipulations d’images

Initialization Methods of Convolutional Neural
Networks for Detection of Image Manipulations

Thèse soutenue publiquement le 06/05/2021,
devant le jury composé de :
Alice CAPLIER
Professeure, Grenoble INP, GIPSA-lab, Présidente
Francisco GARCIA UGALDE
Professeur, Universidad Nacional Autónoma de México,
Rapporteur
William PUECH
Professeur, Université de Montpellier, LIRMM, Rapporteur
Patrick BAS
Directeur de Recherche, CNRS, CRIStAL, Examinateur
Kai WANG
Chargé de Recherche, CNRS, GIPSA-lab, Directeur de
thèse

Initialization Methods of Convolutional Neural

Networks for Detection of Image Manipulations

Ivan Castillo Camacho

Abstract

Fake images and videos have engulfed mass communication media. This is not
something recent, manipulations and forgeries have occurred since the advent of
photography itself. These alterations can go from innocent retouches in an attempt
to make an image visually attractive to the spread of misleading information or
even the use of false media in legal instances. Accordingly, the creation of methods
that can help us assure the authenticity of an image presented as non-modified is
of paramount importance. In this thesis, we aim at detecting image manipulation
operations using deep learning techniques. We present three methods showing
the progression of our work under one common objective, i.e., the design and test
of Convolutional Neural Network (CNN) initialization methods for image forensic
problems with a variance stability focus for the output of a CNN layer.

First, we carry out an extensive review of the state of the art in deep-learning-based
methods for image forensics. From this review we can confirm that the first layer of
a CNN has big impact on the final performance. Specifically, the initialization used
on the first-layer filters plays an important role that should be in line with the image
forensic task in hand.

As our first attempt to address this research problem, we propose a low-complexity
initialization method for CNNs. Taking advantage of previous methods designed for
the computer vision field, we extend the popular Xavier method to design a filter
that would provide variance stability after a convolution operation. This method
generates a set of random high-pass filters for the initialization of a CNN’s first layer.
These filters allow us to better identify forensic traces which usually lie towards the
high-frequency part of the image.

This first approach constitutes a good starting point of our work. However, a wrong
assumption, largely utilized in the research community, was made. This is corrected
in our second method where we follow a different data-dependent approach and
take into consideration the real statistical properties of natural images. Accordingly,
we propose a scaling method for first-layer filters which can cope well with different
CNN initialization algorithms. The objective remains in keeping the stability of the
variance of data flow in a CNN. We also present theoretical and experimental studies

v

on the output variance for convolutional filter, which are the basis of our proposed
data-dependent scaling.

Next we describe a revisited version of our first proposal now with a corrected
assumption on the statistics of natural images. More precisely, we propose an
improved random high-pass initialization method which does not explicitly compute
the statistics of input data. We believe that such a “data-independent” approach has
higher flexibility and broader application range than our second method in situations
where the computation of input statistics is not possible.

Our proposed methods are tested over several image forensic problems and different
CNN architectures.

Finally, during all this thesis work we took part in a challenge competition of image
forgery detection organized by the French National Research Agency and the French
Directorate General of Armaments. We explain in the Appendix the objectives of the
challenge along with a brief description of our work conducted for each stage of the
competition.

vi

Acronym Table

ABC Attribution Based Confidence

ANR Agence Nationale de la Recherche

AWGN Additive White Gaussian Noise

A-CNN Attention-Convolutional Neural Network

A-RNN Attention-Recurrent Neural Network

CEL Cross Entropy Loss

CFA Color Filter Array

CFFN Common Fake Feature Network

CGI Computer Graphics Image

CISDL Constrained Image Splicing Detection and Localization

CNN Convolutional Neural Network

DCT Discrete Cosine Transform

DEFALS DEtection de FaLSifications dans des images

DGA Direction Générale de l’Armement

EXIF EXchangeable Image File

FCN Fully Convolutional Network

GAN Generative Adversarial Network

GLCM Gray Level Co-occurrence Matrix

IFS-TC Information Forensics and Security Technical Committee

IRHP Improved Random High-Pass

JPEG Joint Photographic Experts Group

LBP Local Binary Pattern

vii

LSTM Long Short Term Memory

MFR Median Filtering Residual

MPS Maximal Poisson-disk Sampling

MSE Mean Square Error

NIST National Institute of Standards and Technology

PRNU Photo Response Non-Uniformity

RELU Rectified Linear Unit

RNN Recurrent Neural Network

R-CNN Region-Convolutional Neural Network

SIFT Scale-Invariant Feature Transform

SRM Spatial Rich Model

SURF Speeded-Up Robust Features

SVM Support Vector Machine

TANH Hyperbolic Tangent

viii

List of Figures

1.1 Example of biased story telling. 2

1.2 Image manipulation by the media. 3

2.1 Visual representation of some typical activation functions. 8

2.2 Example of an artificial neuron. 9

2.3 Visual representation of the CNN architecture proposed in [SZ14]. . . 13

2.4 Examples of image forgery during the BP oil spill. 14

2.5 Classification diagram for deep-learning-based image forensic works. . 16

2.6 Sample images from the NIST Nimble 2016 Dataset [NIS16]. 19

2.7 Architecture of the multi-domain convolutional neural network pro-
posed in [Ame+17] for double JPEG compression detection. 24

2.8 An LSTM cell. 29

2.9 Bounding-box localization results of [Zho+18]. 31

2.10 Source-target disambiguation results of [WAN18a]. 35

2.11 Illustration of typical pipeline of image acquisition and forgery creation. 38

2.12 Visual comparison between a CGI and an image taken by a camera. . . 40

2.13 Example frame of a Deepfake video. 42

3.1 Shape and notations of the initialized high-pass filter. 52

3.2 Examples of images from Dresden database [GB10a] and the generated
patches used in our experiments. 55

4.1 Output/input variance ratio for SRM filters. 64

4.2 Histogram of occurrences for output/input variance ratio for Xavier
filters. 66

4.3 Curves of test accuracy for the data-dependent scaling method on the
multi-class forensic problem. 76

4.4 Test accuracy curves for the JPEG binary problem. 78

4.5 CNN architecture comparison. 80

4.6 Curves of test accuracy for our small architecture. 81

5.1 Filter template and input notations for IRHP initialization method. . . 84

ix

5.2 Histogram of occurrences of output-input variance ratio for our IRHP
initialization. 87

5.3 Examples for real and GAN-generated images. 95

A.1 Ordered CNN output scores with a thresholding at 0.5. 106

x

List of Tables

2.1 Summary of datasets of original image data and falsified image data. . 20

2.2 Datasets of artificially generated data. 22

2.3 Image manipulation detection methods. 27

2.4 Multipurpose image falsification detection methods. 32

2.5 Targeted splicing detection methods. 34

2.6 Targeted detectors of copy-move and inpainting falsifications. 36

2.7 Camera identification methods. 39

2.8 CGI detection methods. 41

2.9 Deepfake detection methods. 45

3.1 Considered manipulation operations in the multiclass forensic problem. 54

3.2 Test accuracy for the multiclass forensic problem. 56

3.3 Test accuracy for the median filtering forensic problem with JPEG
post-processing. 58

4.1 Test accuracy for the multi-class problem for our scaling method. . . . 74

4.2 Test accuracy for the multiclass problem with 30 filters. 77

4.3 Test accuracy for the binary JPEG forensic problem. 78

4.4 Test accuracy results for our smaller CNN architecture. 80

5.1 Considered image manipulation operations and their parameter settings
in the multi-class forensic problem. 88

5.2 Test accuracy for the multi-class problem for IRHP method. 89

5.3 Values obtained in an example 5× 5 filter. 90

5.4 Comparison of batch normalization and our scaling-based and IRHP
initialization methods. 91

5.5 Comparison of test accuracy for SRM diagonal filters, the corresponding
scaled version and our IRHP method, in the JPEG binary classification
scenario. 92

5.6 Average test accuracy for the multi-class and JPEG binary problems
with our proposed smaller CNN, for Bayar, SRM and our IRHP method. 94

xi

5.7 Characteristics of test sets for the evaluation of the generalization
capability of detecting GAN-generated images. 96

5.8 Generalization results for the different test sets with comparisons be-
tween Wang et al.’s ImageNet pre-trained weights and our IRHP initial-
ization on the first layer. 97

xii

List of Equations

2.1 Batch normalization . 9
2.2 Mean Square Error . 10
2.3 Cross entropy loss . 10
2.4 Softmax . 11
2.5 Bayar’s normalization . 26
3.1 Variance of weighted sum . 51
3.2 Variance of filter output for the first approach 52
3.3 Variance of wi for the first approach . 53
3.4 Variance of wi from uniform distribution 53
3.5 Constant C value for the first approach 53
3.6 Multi-class accuracy . 56
4.1 Dot product of W and X . 62
4.2 Variance of weighted sum divided into variance and covariance terms . 63
4.3 Variance of weighted sum with natural image statistics assumptions . . 63
4.4 Sum of elements in a high-pass filters 65
4.5 Variance of Xavier filter output with input X fixed statistics 67
4.6 Mean of variance of output of Xavier filter 68
4.7 Variance of variance of output of Xavier filter 68
4.8 Skewness of variance of output of Xavier filter 69
4.9 Expectation of Var3(y) . 69
4.10 Further derivation for the expectation of Var3(y) 70
4.11 Scaling factor using the covariance-based method 71
4.12 Scaling factor using the convolution-based method 71
5.1 Variance of a sum of potentially correlated variables for the IRHP

method with four terms . 85
5.2 Variance of a sum of potentially correlated variables for IRHP filter with

further derivations . 85
5.3 Variance of IRHP filter with natural image statistics assumptions 85
5.4 Variance of IRHP filter with further natural image statistics assumptions 85
5.5 Variance of wi for the IRHP method . 86
5.6 Constant C value for IRHP method . 86

xiii

Contents

1 Introduction 1
1.1 Truth in Images . 1
1.2 Objectives . 3
1.3 Thesis Organization . 4

2 Background Knowledge and State of the Art 7
2.1 Deep Learning . 7

2.1.1 Neural networks . 7
2.1.2 Convolutional neural networks 11

2.2 Image Forensics . 13
2.2.1 Datasets . 16
2.2.2 Manipulation detection . 21
2.2.3 Falsification detection . 28
2.2.4 Other specific forensic problems 37
2.2.5 Discussion . 44

3 Random High-Pass Initialization 47
3.1 Weight Initialization of CNN . 47

3.1.1 Common initializations of CNN 48
3.1.2 Common initializations of CNN for image forensics 49

3.2 Our Random High-Pass Initialization 50
3.2.1 The proposed method . 50

3.3 Experimental Results . 53
3.3.1 Multiclass forensics . 54
3.3.2 Median filtering forensics with JPEG post-processing 57

3.4 Summary and Discussion . 58

4 Data-Dependent Initialization 61
4.1 Variance of Output of Convolutional Filter 61

4.1.1 Formulation . 62
4.1.2 Convolutional filter initialized with high-pass filter 63
4.1.3 Convolutional filter initialized with Xavier initialization 65

xv

4.2 Scaling of Convolutional Filter . 70
4.2.1 Covariance-based method . 71
4.2.2 Convolution-based method 71

4.3 Experimental Results . 72
4.3.1 Multi-class problem with CNN of Bayar and Stamm [BS18a] . 73
4.3.2 JPEG binary problem with CNN of Bayar and Stamm [BS18a] 77
4.3.3 Multi-class and binary problems on a different smaller CNN . 79

4.4 Summary and Discussion . 81

5 Revisiting the Random High-Pass Initialization 83
5.1 The Proposed Method . 83
5.2 Experimental Results . 87

5.2.1 Multi-class forensic problem 88
5.2.2 Comparison with batch normalization 90
5.2.3 On the selection of SRM filters 91
5.2.4 Smaller CNN architecture . 93
5.2.5 Detection of GAN-generated images 94

5.3 Summary and Discussion . 97

6 Conclusions and Perspectives 99
6.1 Summary of Contributions . 99
6.2 Perspectives . 101

A Challenge Competition for Image Forgery Detection 103
A.1 Challenge Description . 103
A.2 DEFALS 1st Stage . 104
A.3 DEFALS 2nd Stage . 106
A.4 Discussion . 108

B Author’s Publications 109

Bibliography 111

xvi

Introduction 1
„A picture is a secret about a secret, the more it

tells you the less you know.

— Diane Arbus

1.1 Truth in Images

As writers, photographers, or anyone in these days with a smartphone and social
networks, we have the power to highlight or deny. We can influence judgments
people make on the crucial issues of our time. We had better be honest and accurate
with every picture we select and think of the consequences of each picture taken. The
roots of photography lie in reality and almost daily that reality is bent by forgers.

How can we expect the readers and viewers to believe in the stories told by newspa-
pers or documentaries when photojournalism competitors are being disqualified for
image manipulation [@ML15], Pulitzer prizes are being revoked [@Woo20] and
government agencies share altered photographs [@Alj11] distorting the reality?
Every time a photographer takes a false picture, someone manipulates original
images or an editor publishes an untrue picture the credibility of images diminishes.
Believing in the content of a picture is at stake as never before.

In some cases the point of view or the angle of a picture can foster one particular
aspect of the scene, avoiding the whole story. This typically happens to benefit a
certain group. In this case, images are neither staged nor altered. Obviously, the
pictures resulting from this kind of approach are not lies nor are the whole truth.
They are biased photographic story telling. Such is the case of recent manifestations
in Mexico or France where non-doctored photos are shared, focusing only on a
certain aspect and favouring one side of the reality. Figure 1.1 shows an example
of a biased story telling where the top row shows two original pictures from 2020.
The one on the left is a picture shared by journalists claiming 100, 000 assistants in a
protest in Mexico. On the right we see a hotel webcam image of the whole square
showing the real amount of people was probably lower than the number mentioned

1

Fig. 1.1.: Example of biased story telling. Top row shows on the left the image shared by
Mexican media which claims 100,000 assistants. On the right we see an aerial
angle of the square. Below, we see a photo shared by the French media showing
policemen were in fire while in reality it was just the angle of the photo.

by journalists. Below we see a burning policeman, who seems to turn into a “human
torch”. In reality, the angle of view makes this picture misleading. According to
videos of the scene, filmed from different angles, there was indeed an explosion with
flames, but it would have occurred in front of the police, not on them.

Figure 1.2 shows a controversial image of 2006 Lebanon War for which the Reuters
news agency dismissed a photographer collaborator after finding that he had manip-
ulated an image of an Israeli air strike on Beirut. Adnan Hajj’s photograph, which
was distributed by the agency, showed a cloud of smoke rising over buildings in the
Lebanese capital after an Israeli air strike. A day later, after a controversy unleashed
in several blogs, Reuters withdrew the photograph when it was found that it had
been manipulated with PhotoShop to make the smoke thicker. “The photographer
denied that he had deliberately tried to manipulate the image, and argued that he
was only trying to remove the dust marks and that he had made mistakes because
of the bad light conditions he was working in,” explained Moira Whittle, Reuters’
public relations chief [@Edi08].

Examples like this, were tampered images which do not mirror what happens in
reality and can have serious consequences on society. This would be even worse
when considering the fact that the advanced technology for digital imaging has
brought image alteration at our fingertips with hundreds of applications of easy use
ready to be downloaded. The ultimate price could eventually be a further dilution
of the public’s acceptance of the photograph as a credible witness to events.

2 Chapter 1 Introduction

Fig. 1.2.: Image manipulation by the media. On the left we see the original picture,
while the right one shows the alterations which clone and darken the smoke to
exaggerate the damage.

One positive note on what technology and different tools brought is the example of
independent groups that use open-source information, programs and social networks
to investigate a wide range of issues, from journalistic controversies and crimes
against humanity to tracking chemical weapons in conflict zones around the world.
This is the case of bellingcat1 which uses publicly available tools and information
to understand the context and situation of different conflict situations. In many
cases they have used open-source image forensic tools to aid their investigations.
Furthermore, they not only have produced several investigations and won awards
but also created public training for the different tools for the purpose of creating a
bigger group of open-source journalists dedicated to pursuing the truth.

For these reasons, we believe in the necessity of developing algorithms that help us
recover credibility of images, therefore bringing the truth closer to everyone.

1.2 Objectives

Our work mainly deals with image forensics using deep learning techniques. Tradi-
tional detection methods of image tampering resort to the detection of genuine and
tampered blocks based on well-designed discriminative features. Such features are
often borrowed from steganalysis and reflect local image statistics.

At the moment of designing this thesis project, almost all existing methods for detect-
ing image manipulations were based on handcrafted features with the majority of
them tested on medium-sized images of 256×256, leaving the detection performance
on smaller patches, vital for spatially accurate forensics, rather unknown.

1https://www.bellingcat.com

1.2 Objectives 3

https://www.bellingcat.com

Indeed since then research attempts were conducted by introducing some constraints
into the deep learning paradigm to solve image forensic problems in a relatively
ad-hoc manner. Others have used handcrafted high-pass filters at the beginning of
deep neural networks without considerations on how the stability of the amplitude
of the data flow in the network may get reduced. We have the intuition that after
the image data passes through a first layer of high-pass filters, the filters’ output
becomes a weak signal. This would be detrimental to the training of Convolutional
Neural Network (CNN) because the data flow shrinks.

As main objective, we focus on the detection of “routine” operations performed on
image patches which are related to image’s processing history (e.g., medial filtering,
noise addition, compression), because this piece of information can help further
forensic analysis and because we think there is still room for improvement in this
area. One of our goals is to obtain a good forensic performance on small patches,
e.g., patches of 64× 64 pixels. This last point was of great importance in order to
ensure a high spatial accuracy of modification/tampering detection. Additionally,
existing methods mainly consider image manipulation operations with a relatively
big amplitude for the induced modification. We consider more challenging scenarios
where the manipulation operations to be detected introduce modifications of smaller
amplitude.

In order to fulfill the thesis objectives, we dedicate our efforts to a fundamental
part of the deep learning paradigm when applied to the image forensics field. More
specifically, we focus on the study of the weight initialization of the first layer of a
CNN for image forensic purposes.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. First, in chapter 2 we present
background knowledge in deep learning as well as a comprehensive review of the
deep-learning-based methods for image forensics including also the datasets used by
such methods. We divide the review into three large groups of forensic methods: 1)
detection of routine image processing operations, 2) detection of malicious image
falsifications, and 3) other specific forensic problems.

Then in chapter 3 we describe our first approach of CNN initialization for forensic
detection of routine image processing operations. The proposed approach extends
the well-known method of Glorot and Bengio [GB10b] to situations where we need
to generate a group of random high-pass filters as initialization for a CNN’s first

4 Chapter 1 Introduction

layer. As a first step of our thesis work, this method has a problematic yet largely
used assumption which will be taken into account and corrected in our second
data-dependent approach presented in chapter 4. In that chapter, we describe a
practical initialization method based on a proper scaling of any given first-layer
filters. Theoretical and experimental studies on the output variance for convolutional
filters are also presented. The proposed data-dependent method can cope well with
different first-layer initialization algorithms and different CNN architectures. Next, in
chapter 5 we present a revised version of our first initialization method of chapter 3,
now with correct assumption. This revised method is able to generate random
high-pass filters without explicitly computing statistical properties of input data.
The generated filters do not have the data flow shrinking problem at their output.
Additional experimental results (i.e., with new settings of comparisons, for new
forensic problem and on new deep network) are also provided.

Finally, in chapter 6 we present some concluding remarks and suggest several future
working directions to extend this thesis work.

In Appendix A we share our experience in an image forgery detection competition
that we had the opportunity to participate in during the realization of this thesis.
The competition occupied one part of our thesis working time but constitutes a
unique experience of handling very piratical tasks of image forgery detection.

1.3 Thesis Organization 5

Background Knowledge and
State of the Art

2
2.1 Deep Learning

Deep learning is part of a group of machine learning methods that are based on the
so-called representation learning. An observation like an image can be represented
in many ways but some of the representations make it easier to learn for tasks of
interest (e.g., “Is this image a human face?”) based on examples, and research in
this area attempts to define which representations are the “best” and how to create
models to learn and recognize these representations. Nowadays deep learning has
become the main algorithms used in the creation of applications and programs for
image analysis and understanding.

The deep learning framework usually uses a hierarchical structure of artificial neural
networks, which are built in a similar way to the neural structure of the human
brain, with the neuron nodes connected together to simulate a neural network. This
architecture can approach data analysis in a non-linear way. The striking advantage
of deep learning is its ability to automatically learn useful features from available
data, allowing us to bypass the tedious procedure of handcrafted feature design.

2.1.1 Neural networks

Neural networks as an initial step for the deep learning paradigm have been used to
solve a wide variety of tasks (e.g., in computer vision and speech recognition) that
are difficult to solve using ordinary rule-based programming. They are structured
groups of neurons or weights that are connected together to transmit signals. In a
classification problem, the input values pass through the neural network resulting in
output values that represent scores for the considered classes.

In these networks, the output value of a previous neuron is multiplied by a weight
value. These weights can increase or inhibit the activation state of adjacent neurons.
Similarly, at the exit of the neuron, there may be a limiting or threshold function,
which modifies the resulting value or imposes a limit that must not be exceeded

7

Fig. 2.1.: Visual representation of some typical activation functions.

before it spreads to another neuron. This function is known as the non-linearity or
activation function. Neural network models are often organized into a number of
layers of neurons. Inside the different layers of a neural network, one of the most
common components is the fully-connected layer in which neurons between two
adjacent layers are fully pairwise connected, but neurons within a single layer share
no connections.

Activation functions and artificial neurons

The non-linearity of a neural network is necessary to approximate complex patterns
in data. Using activation functions serves this purpose by checking the value pro-
duced by a neuron and deciding whether outside connections should consider this
neuron as activated or not. There are several activation functions that differ on the
allowed threshold they impose. Some of the most common ones are Linear, Sigmoid,
TANH [KK92], Rectified Linear Unit (RELU) [GBB11], etc. Figure 2.1 shows the
graphs of these commonly used activation functions.

Each neuron computes the result of dot product of the input and its weights, then the
sum of the dot product and a bias, and at last the output of the activation function.
For instance, a layer of K neurons can be represented as max(0,W.X + b) where
the function max(0, z) is an example of the RELU activation function that is applied
element-wise, X is the image pixels flattened out in a single vector of shape D × 1,

8 Chapter 2 Background Knowledge and State of the Art

Fig. 2.2.: Example of an artificial neuron comprising the dot product, bias sum and non-
linearity function. xj and wj represent respectively the input and the weights of
the neuron, and y is the output.

W is the weight matrix of shape K ×D, and the K × 1 vector b contains the bias
values. Figure 2.2 shows an example of an artificial neuron.

Regularization

If a neural network performs very well with training samples but fails with the
test dataset, usually the network suffers from the overfitting phenomenon. Regu-
larization is a technique that helps to reduce it by penalizing for complexity. The
objective of using regularization is to avoid this extreme fitting in terms of training
predictions, because we know that usually the (slight) decrease of performance on
training samples induced by regularization would result in a better generalization to
the testing data.

Batch normalization [IS15] and Dropout [GG16] are the two most common tech-
niques of regularization. The network training is usually done in a batch approach
where a subset of the data called a batch is presented as input for the network. The
process for batch normalization is given by Equation 2.1 (with j-th input dimension
as an example), where µj , σ

2
j ∈ R are the mean and variance, respectively, of the

j-th dimension across the batch, ε is some small constant that prevents division by
0, and γj , βj ∈ R are learnable parameters for the j-th dimension. The mean and
variance are often updated in a moving average fashion during training.

x̂j = γj ·
xj − µj√
σ2

j + ε
+ βj . (2.1)

Dropout function works by randomly setting the outgoing value of certain neurons to
0 at each update of the training phase. This is performed with a specified probability

2.1 Deep Learning 9

p (a common value is p = 0.5). These neurons with outgoing value 0 are considered
as ignored during a particular forward or backward pass.

Loss functions

To perform its automatic learning, usually an attempt is made to minimize a loss
function that evaluates the network as a whole. If predictions from the network
deviate too much from actual results, the output of the loss function would result in
a high value, and it will be low if the network is doing a good job.

There are mainly two types of loss functions depending on the learning task. The first
one known as classification loss is used when the prediction outputs probabilities
of belonging to a defined set of categories, e.g., 10 classes of images such as cats,
dogs, flowers, etc. The second group is regression loss which is used when we want
to model a function that explains certain data, e.g., predicting the price of a house.
In other words the choice changes depending on whether our target variables are
numeric (for regression loss) or probabilistic (for classification loss).

Mean Square Error (MSE) is the most common regression loss function, it is also
known as L2 loss. As shown in Equation 2.2, MSE is given by the average of squared
differences between the target and the prediction. In this equation, Y (i) and Ŷ (i)

(scalars in this case) represent the prediction and the target (i.e., ground-truth)
value respectively, while i is the index among the n training samples.

MSE = 1
n

n∑
i=1

(Y (i) − Ŷ (i))2. (2.2)

Cross Entropy Loss (CEL) is the most common loss function for classification prob-
lems. Cross entropy measure is widely used when node activations can be understood
as representing the probability that each hypothesis might be true, i.e., when the
output is a probability distribution. Equation 2.3 shows the case for a binary scenario,
where each Y (i) is a 2-dimensional vector representing the probability of being the
two classes, with Y

(i)
0 + Y

(i)
1 = 1. When the target is class 0 the second term in

parentheses goes to 0, in contrast when the target is class 1 the first term disappears.

CEL = − 1
n

n∑
i=1

(
Ŷ

(i)
0 log Y (i)

0 + (1− Ŷ (i)
0) log(1− Y (i)

0)
)
. (2.3)

An important aspect is that cross entropy loss penalizes heavily the predictions that
are confident but wrong.

10 Chapter 2 Background Knowledge and State of the Art

Classification layer

For a classification task, the most commonly used classification function is the
Softmax function as shown in Equation 2.4, where the M -dimensional vector z is
the output of the last layer before applying the classification function and contains
the predicted values related to an M -class classification problem, with zk the value
for the k-th class. The Softmax function is applied to the vector z, performing a
standard exponential to all elements of z and then normalizing the values by dividing
them by the sum of all the exponentials. This ensures that all the M values after
normalization sum up to 1, i.e.,

∑M
k=1 ẑk = 1.

ẑk = Softmax(z)k = exp(zk)∑M
k=1 (exp(zk))

. (2.4)

Back-propagation

The core algorithm behind how neural networks learn is back-propagation. The
main task is to compute the gradients which will be taken by the optimizer to train
the neural network. The gradient vector will indicate how to adjust each weight in
the network according to how much it contributes to the overall error. The process
starts from the output layer and propagates backwards applying the chain rule to
find the derivatives or gradients of the training cost with respect to any variable
in the nested architecture [RHW86]. After the iterative process of feed-forward
and back-propagation among the training dataset, the series of weights produce
better predictions until a plateau is achieved in the cases where the neural network
architecture is able to model the data.

2.1.2 Convolutional neural networks

CNN is also made up of neurons which have learnable weights. CNNs are designed
with images as inputs instead of vectors. What distinguishes CNNs from any other
neural network is that they use an operation called convolution in some of its
layers, instead of using routine matrix multiplication that is generally applied. The
convolution operation receives the image as input and applies a convolutional filter
or kernel to it, resulting in an activation map that emphasizes certain properties of
the input image.

In a CNN the entire architecture or model from the input image to the prediction
values at the end continues with the approach of creating a differentiable function.

2.1 Deep Learning 11

Similar to a neural network, the output part contains loss and classification layers.
Guided by the loss function, all the weights of the whole architecture will be updated
during the training phase via back-propagation [LeC+98].

The common architecture for a CNN is a progression of convolutional layers joined
with other type of layers with each of them converting its inputs to an activation map
using a differentiable operation. The main components in a CNN are convolutional
layers, activation functions, pooling layers and fully-connected layers.

Inside a CNN for digital images, a convolutional layer contains kernels of several
neurons in three dimensions: width, height and channel. This behavior matches with
the characteristics of an image. The neurons in each layer will only be connected to
a small region of the preceding and subsequent layer, instead of connecting them
with all of the neurons in a fully-connected manner.

As explained before, the activation functions transform the combination of inputs,
weights and biases in a non-linear manner. The activation functions are used to
propagate the output of the nodes in one layer to the next layer. Many (but not
all) of the non-linear transformations used in neural networks transform data at a
convenient range. These types of functions allow the incorporation of non-linear
modelling of input data into the network.

The pooling layer is usually placed after the activation function. Its main use lies
in the reduction of the spatial dimensions: width and height of the input for the
next convolutional layer. The operation of a pooling layer is also known as sampling
reduction, since the reduction in size also leads to the loss of information. However,
such a loss in general helps to both reduce computational complexity and alleviate
overfitting problems. The most common cases for this layer can be realized by taking
the maximum or the average value in each local window.

Figure 2.3 shows as an example of a well-known deep learning architecture designed
by Simonyan and Zisserman [SZ14]. This model won the first place on the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [OK15]. The details of this
architecture are described as follows: There are two layers of 64 channels followed
by a max-pool layer, two layers of 128 channels with max-pool, three layers of 256
channels with max-pool, three layers of 512 channels with max-pool, and again three
layers of 512 with max-pool. After the stack of convolution and max-pooling layers,
the activation map, also called feature map, has a size of (7, 7, 512). This output is
flattened to make it a feature vector. Then there are three fully-connected layers,
and the third layer has an output of 1000 channels for 1000 classes of the ILSVRC

12 Chapter 2 Background Knowledge and State of the Art

6464

224

Conv1
Max pool

128 128

112

Conv2 Max pool

256 256 256

56

Conv3 Max pool

512 512 512

28

Conv4 Max pool

512 512 512

14

Conv5 Max pool

1

4096

fc6

1

4096

fc7

1

K

fc8+softmax

K

Fig. 2.3.: Visual representation of the CNN architecture proposed in [SZ14]. This figure
was created by using the tool shared by Iqbal [@Iqb18].

challenge. The output of the third fully-connected layer is passed to a Softmax layer
in order to normalize the final classification vector.

Deep learning architectures have been used profoundly in the computer vision field
with different depths and characteristics, producing results superior to those of
previous strategies. Recently they have also become a very popular tool in the image
forensics field, as described in the next section.

2.2 Image Forensics

Given our era of advanced technology and the high availability of image editing tools
that make it extremely easy and fast to alter and create fake but realistic images, the
trust of digital images has diminished. We can no longer easily accept an image as
proof of an event without asking ourselves if the image has been modified. This has
been in a continuous development together with the easy accessibility of tools used
to create tampered contents and with the deep learning advancements which have
led to an increase in the realism of fake images or videos [AFG19].

During the last years an evolution on disinformation has appeared to manipulate
and disrupt public opinion. This disinformation comprises sophisticated campaigns
aided by doctored images with the goal of influencing economic and societal events
around the world. Different kinds of problems related to the usage of tampered
images have appeared in different fields and will get worse as both digital cameras
and software editing tools become more and more sophisticated.

2.2 Image Forensics 13

Fig. 2.4.: Examples of image forgery during the BP oil spill. First row shows how the
original image was modified by copying some screens over the initially blank ones.
On the second row, the helipad was removed in the tampered version. Images
were obtained from the following webpage: https://www.cbsnews.com/news/
bp-and-the-gulf-oil-spill-misadventures-in-photoshop/.

In July 2010, British Petroleum (BP) came under public outcry over several doctored
images of its Gulf of Mexico oil spill response, as images were tampered to indicate
that BP staff were busier than they actually were. Figure 2.4 shows two pairs of the
original (first column) and the tampered (second column) images.

A spokesman for the company eventually admitted that in one image (first row of
Figure 2.4) two screens were actually blank in the original picture. On the second
row of Figure 2.4, we see a photo taken inside a company helicopter which appeared
to show it flying off the coast. It was later shown to be fake after internet bloggers
identified several problems, which suggested that the helicopter was not even flying.
The problems included part of a control tower appearing in the top left of the
picture, its pilot holding a pre-flight checklist, and the control gauges showing the
helicopter’s door and ramp open and its parking brake engaged1.

From this context, it is necessary to develop strategies and methods to allow the
verification of the authenticity of digital images. Image forensics [Piv13] is the
science that can help us to know if the image was acquired by the claimed device or
if the current state corresponds to the original captured image, with the objective of

1Please refer to details presented at the following webpage: https://metro.co.uk/2010/07/22/
bp-admits-to-doctoring-another-deepwater-horizon-oil-spill-image-456246/.

14 Chapter 2 Background Knowledge and State of the Art

https://www.cbsnews.com/news/bp-and-the-gulf-oil-spill-misadventures-in-photoshop/
https://www.cbsnews.com/news/bp-and-the-gulf-oil-spill-misadventures-in-photoshop/
https://metro.co.uk/2010/07/22/bp-admits-to-doctoring-another-deepwater-horizon-oil-spill-image-456246/
https://metro.co.uk/2010/07/22/bp-admits-to-doctoring-another-deepwater-horizon-oil-spill-image-456246/

detecting and locating image forgeries. Image forensic techniques depend on the
assumption that each stage of the image acquiring and processing, from the raw
image to its compression, storage and post-processing, holds some inherent statistics
and leaves a particular trace. It is then possible to infer the source of the image
or decide whether it is authentic or tampered by identifying the existence, lack or
inconsistency of forensic traces that are inherent to the image itself.

The research on this field started around 20 years ago and has seen recently a boost
with the latest deep learning tools. This helps to restore some trust to digital images.
Regardless of the big progress in the computer vision field using deep learning tools,
the same strategies cannot be applied directly to the image forensics domain as the
traces or fingerprints that we are looking for are normally not present in the visible
domain. Most of the traces that we search are hardly perceptible by the human eyes.
Therefore, certain strategies have been proposed to cope with this difference.

Early surveys on image forensics [Far09; SWL13; Piv13] naturally focused mainly
on conventional feature-based methods. Recent surveys [ZZT19; Ver20] consider
both conventional and deep-learning methods yet with a different focus or coverage
from ours. For instance, [ZZT19] mainly considers the detection of copy-move,
splicing and inpainting, while we cover more image forensic problems including
also the detection of routine image processing operations, the detection of synthetic
images, etc.; [Ver20] classifies existing methods from a machine learning perspective
(e.g., supervised, unsupervised and anomaly detection) with a special and timely
focus on Deepfakes detection, while we classify with a rather comprehensive list of
image forensic problems and focus on the particularities of deep network design for
different problems. Other existing surveys have dedicated their reviews to presenting
and analyzing the methods for one or several specific issues like copy-move (and
splicing) detection [AHH17; ZWZ18], computer-generated image detection [NCY19],
camera identification [WFT20] and image source identification [Yan+20], while we
attempt to have a broader coverage.

In this chapter, we review existing deep-learning-based methods for a variety of
image forensic problems. The research works presented in this survey can be
classified into three large groups: the detection of image manipulations (i.e., routine
image processing operations like median filtering and JPEG compression), the
detection of image falsifications which alter the semantic meaning of the image
(e.g., copy-move, splicing and inpainting) and other specific forensic problems. We
pay attention to special designs of the deep models and special features used on
the network input. Considering the rapid advancement in the image forensics field
and the difference between our review and existing ones as discussed in the last

2.2 Image Forensics 15

Image Forensics
research works

Image manipulation Image falsification Specific problems

Median filtering

Double JPEG
compression

Contrast
enhancement

Other
operations

Splicing

Copy-move

Inpainting
(Removal)

Camera
identification

CGI detection

Deepfakes
detection

Fig. 2.5.: Classification diagram for deep-learning based image forensic works. “CGI” means
computer graphics image.

paragraph, we believe that our survey can be helpful for the research community
and is complementary to previous reviews. Our classification of research works on
image forensics is illustrated in Figure 2.5. Each of the three main groups and its
subsets are explained in one specific part. Before presenting the various forensic
methods, we first present in the next section the datasets used for image forensics
research which are vital for data-driven methods based on deep learning.

2.2.1 Datasets

Aside from the different models and different approaches, the access to a proper
dataset is the first step and has a crucial role in the deep learning paradigm to
make it work properly. This means using a dataset that corresponds to the results
a researcher wants to predict. The dataset should match the problem context
including the acquiring and any processing steps. Constructing a dataset is a time-
consuming task which requires problem and context knowledge of the procedure
to collect compatible data. If the dataset contains sufficient and adequate data
and information, problems like over-fitting and underfitting could be mitigated.
Furthermore, the usage of multiple available datasets is of paramount importance to
obtain a more reliable benchmarking of existing and new methods. In this section,
the publicly available datasets for different categories of image forensic tasks will be
introduced. Different datasets are grouped according to the different image forensics
categories for which they are used.

16 Chapter 2 Background Knowledge and State of the Art

Original data

Datasets of pristine data used in the image forensics field (e.g., in the manipula-
tion detection area) often contain original uncompressed image data. In this way,
researchers are able to recreate different manipulation operations and conduct
experiments on an adequate and customized dataset. Some of these databases
were originally designed for the purpose of benchmarking camera identification
techniques.

One of the first works in this field is the UCID dataset [SS04] with 1,338 uncom-
pressed images (version 2) in TIFF format stemming from a single camera. The
BOSSBase 1.01 dataset [PP11] contains 10,000 grayscale uncompressed images,
originally designed for research in the steganalysis field. In the Dresden image
dataset [GB10a], 73 digital cameras with 25 different models were used to cre-
ate 14,000 Joint Photographic Experts Group (JPEG) images. The RAISE dataset
[Dan+15] contains 8,156 uncompressed high-resolution images of different cate-
gories such as landscape or indoor scenes. It comprises 4 subsets called RAISE-1K,
RAISE-2K, RAISE-3K and RAISE-4K.

Some recent datasets introduced mobile phone cameras to their catalogue. A small
number of devices was considered in the MICHE-I dataset [De +15] comprising
3,732 iris images from 3 different smartphones using both front and back cameras.
The IEEE and Kaggle [@IEE18] organized a camera identification challenge in 2018
with a dataset captured from 10 different camera models (9 of 10 being smartphone
cameras) with 275 images from each device.

The Vision dataset [Shu+17] also purposed for camera model identification and
contained 34,427 images and 1,914 videos from 35 portable devices of 11 major
brands, both in the native format and in their social platform version including
Facebook, YouTube and WhatsApp. Some datasets like [Ber+19] and [@Ama18]
are designed for a specific domain. For instance [@Ama18] is an ongoing collection
of satellite images of all land on Earth produced by the LandSat 8 satellite. Other
proposals like [NZ08], [Lin+14], [Den+09] [Zho+14] and [Xia+10], initially
designed for object and scene detection, segmentation and recognition, were used
in the image forensics field to create synthetic data. For example, the Microsoft
COCO dataset [Lin+14], originally constructed for object and scene analysis and
comprising more than 300,000 images in JPEG format, has been used to create
different image forgeries. Another example is the SUN2012 dataset [Xia+10],
composed of 130,519 images of different outdoor and indoor scenes, has been
employed to create synthetic data for image forensics purposes.

2.2 Image Forensics 17

Regarding the creation of Deepfakes (i.e., fake images generated by deep neural
networks), some well-known datasets of human faces have been used for network
training, for instance the CelebA dataset [Liu+15] which contains around 200,000
faces with different annotations originally designed for facial image analysis. Stem-
ming from CelebA dataset, CelebAHQ [Kar+17] is a set of high-resolution face
images and is one of the first datasets used for training and evaluation of GAN
(Generative Adversarial Net) models for face generation and editing.

Falsified data

To our knowledge, the first public datasets for detection of splicing (i.e., a common
image falsification in which one copies a part of an image and pastes it to another
image) were the Columbia gray DVMM dataset [@NHC04] and the Columbia color
splicing dataset [HC06]. The two datasets comprise respectively 1,845 grayscale
images for the first one and 180 color spliced images for the second one, both
with rather non-realistic random-like splicing falsifications. Two other well-known
splicing datasets are the Casia V1 and V2 [DW11] with more realistic forgeries and
post-processing operations on the V2 to cover the traces of splicing. In 2013, the
IEEE Information Forensics and Security Technical Committee (IFS-TC) organized
an image forensics challenge and released a dataset of pristine and forged images
[@IEE14] with a set of different falsification techniques such as splicing and copy-
move (i.e., another common falsification in which one copies a part of an image and
pastes it in the same image). Each fake image had an associated ground-truth binary
map showing the regions that were falsified. As a small sub-dataset from the IFS-TC
proposal, the DS0-1 dataset (also known as Carvalho dataset) [Car+13] contains
forgeries created in a careful and realistic manner.

The National Institute of Standards and Technology (NIST) developed the Nimble
[NIS16] and MFC [MFC17] datasets. The first one, often called NIST Nimble 2016,
included three types of falsifications including splicing, copy-move and inpainting
(i.e., a third type of common falsification in which a part of an image is replaced
and filled with realistic synthetic contents), with different levels of compression and
post-processing. Figure 2.6 shows some example images from this dataset. The NIST
MFC17 dataset [MFC17] included more challenging image forgeries but did not
contain the different compressed versions.

The Realistic Tampered Dataset [KH17], also known as Korus dataset, comprises
220 splicing and copy-move forgeries of a realistic level. Authors included PRNU
signatures and ground-truth maps. Other datasets have been created with a specific

18 Chapter 2 Background Knowledge and State of the Art

Fig. 2.6.: Sample images from the NIST Nimble 2016 Dataset [NIS16]. Top row shows
the original images, and bottom row shows from left to right falsifications of
inpainting-based removal, copy-move and splicing.

purpose in mind. Regarding the double compression scenario, the VIPP dataset
[BP12] was created to evaluate the detection of double JPEG compression artifacts
which may be present for instance in the splicing falsification.

The use of datasets specific for copy-move falsification, such as [Wen+16] and
[Tra+13], is not very common for the deep-learning-based detection methods.
The main reason is that existing datasets are relatively small. Therefore, majority
of research on deep-learning-based copy-move detection has created customized
synthetic datasets which are derived from dataset of original images and which
contain much more samples.

Table 2.1 shows a list of popular datasets for image forensics research including
datasets of original data and falsified data. In the case of falsified data, we provide
the number ratio of pristine and tampered images. Regarding the “Operations”
columns we mention the main operations (mostly falsifications) contained in the
dataset and the “Other” case mainly includes double JPEG compression.

Artificially generated data

In the case of artificially generated data, it is important to use datasets that contain
realistic examples. Existing datasets considered different scenes of authentic images
taken by a camera and artificially generated fake images either with conventional
Computer Graphics Image (CGI) creation algorithms or recent Generative Adversarial
Network (GAN) architectures.

2.2 Image Forensics 19

Tab. 2.1.: Summary of datasets of original image data and falsified image data. “GT”
stands for “Ground-truth”. The “Content ratio” column shows the number of
pristine/tampered images.

Type Name
Format
& size

Content
ratio

Operations
GT

mask

C
op

y-
m

ov
e

Sp
li

ci
n

g

In
pa

in
ti

n
g

O
th

er
s

O
ri

gi
na

ld
at

a

BossBase [PP11] PGM 512x512 10K N/A

UCID [SS04]
TIFF 512x384,
384x512 1338 N/A

Landsat [@Ama18]
TIFF 650x650;
5312x2988 Ongoing N/A

MIT SUN [Xia+10] JPEG 200x200 130519 N/A
NRCS [@Mac04] TIFF,JPEG 1500x2100 11036 N/A
MS COCO [Lin+14] JPEG various 328K N/A

CelebA [Liu+15]
JPEG 64x64;
512x512 200K N/A

CelebAHQ [Kar+17] JPEG 512x512 30K N/A
RAISE [Dan+15] TIFF 4288x2848 8156 N/A

Dresden [GB10a]
JPEG 3039x2014;
3900x2616 14K N/A

MICHE-I [De +15]
JPEG 640x480;
2322x4128 3732 N/A

Kaggle Camera [@IEE18]
JPEG,TIFF 1520x2688;
4160x3120 2750 N/A

Vision [Shu+17]
JPEG 960x720;
5248x3696 34427 N/A

Fa
ls

ifi
ed

da
ta

Columbia gray [@NHC04] BMP 128x128 1845/912 • No

IEEE IFS-TC[@IEE14]
PNG 1024x768;
3000x2500 1050/1150 •• Yes

Casia v1 [DW11] JPEG 384x256 1725/925 • No

Casia v2 [DW11]
JPEG,BMP,TIFF
240x160;900x600 7491/5123 •• No

NIST
Nimble 16 [NIS16]

JPEG 500x500;
5616x3744 560/564 ••• No

Coverage [Wen+16] TIFF 400x486 100/100 • Yes

Columbia color [HC06]
TIFF 757x568;
1152x768 183/180 • Yes

Carvalho [Car+13] PNG 2048x1536 100/100 • Yes
Realistic
(Korus) [KH17]

TIFF 1920x1080 220/220 •• Yes

CoMoFoD [Tra+13]
PNG,JPEG 512x512;
3000x2000 260/260 • Yes

VIPP [BP12]
JPEG 300x300;
3456x5184 68/69 • • Yes

NIST MFC17 [MFC17]
RAW,PNG,BMP,JPEG,
TIFF 128x104;
7952x5304

14156/3265•••• No

20 Chapter 2 Background Knowledge and State of the Art

One of the first popular dataset of CGIs is the Columbia dataset [Ng+05] with
1,600 photorealistic computer graphics images. Afchar et al. [Afc+18] created
a dataset with 5,100 fake images generated from videos downloaded from the
internet. Rahmouni et al. created a dataset of CGIs coming from high-resolution
video game screenshots. There are several online repositories for CGI [@ABV05],
[@Cha20], [@Ltd20], [@Aut20] that have been used as datasets for different
detection approaches.

A small dataset of 49 Deepfake and 49 original videos was created by Yang et al.
[YLL19] using the FakeApp application. A bigger one is the Faceforensics dataset
[Rös+18] comprising about 1,000 videos and their corresponding forged versions
focused on expression swap created with the Face2Face model. The same authors
extended the dataset [Ros+19] with 4,000 forged videos. Li et al. [Li+20c] created
a dataset of 590 original videos and 5,639 Deepfake videos. In comparison to other
face datasets [Liu+15; Kar+17], the diversity among genders, ages and ethnic
groups is bigger. The IDIAP institute created DeepfakeTIMIT [Kor+19] also known
as DF-TIMIT containing 620 videos where faces were swapped. This dataset was
generated using the faceswap-GAN [@dee20] with 32 subjects and 2 subsets of
different resolutions: low quality with 64x64 and high quality with 128x128.

Recently, Google in collaboration with Jigsaw and Facebook have created a Deepfake
dataset to contribute to the relevant research. In 2019, Facebook created the DFDC
dataset [Dol+19] for the Deepfake detection challenge with 4,113 Deepfake and
1,131 original videos from 66 subjects of diverse origins who gave their consent
for the relevant data. At last, the DFD dataset [@Goo19] contains 3,068 Deepfake
videos and 363 original ones from 28 individuals who consented to the data.

Table 2.2 summarizes the artificially generated datasets presented above. The
“Content ratio” column shows the number of pristine/fake images.

From the next section, we present different kinds of deep-learning-based image
forensic methods, starting by the detection of routine image manipulations.

2.2.2 Manipulation detection

We consider image manipulation as routine operations modifying or improving
digital images with basic and benign image processing such as median filtering,
JPEG compression or contrast enhancement. These operations may be used to
enhance the visual quality of tampered images or to hide the traces of falsification
operations that may leave an apparent fingerprint if used alone. In this subsection

2.2 Image Forensics 21

Tab. 2.2.: Datasets of artificially generated data.

Type Name Size Format
Content
ratio

Media
Video Image

CGI
Columbia
[Ng+05]

700x500;
3000x2000 JPEG 1600/1600 •

Rahmouni
[Rah+17]

1920x1080;
4900x3200 JPEG 1800/1800 •

CGI &
Deepfakes

Faceforensics
[Rös+18] 480p H.264 1000/1000•

Deepfakes

UADFV
[YLL19] 294x500 MP4 49/49 •
Faceforensics++
[Ros+19]

480p,720p,
1080p H.264 1000/4000•

Afchar
[Afc+18] 854x480 JPEG 7250/5100 •
PGGAN
[Kar+17]

64x64;
1024x1024 JPEG -/100K •

Deepfake TIMIT
[Kor+19]

64x64;
128x128 AVI -/620 •

CelebDF
[Li+20c] Various MP4 509/5639 •
DFDC
[Dol+19]

180p;
2160p H.264 1131/4113•

DFD
[@Goo19] 1080p H.264 363/3068 •

we introduce the most relevant strategies to detect some of the most common
manipulation operations using deep learning as the core technique. We present both
targeted (i.e., aiming at a specific manipulation operation) and general-purpose (i.e.,
aiming at various operations) detectors.

Median filtering detection

The early deep learning proposals in the literature of image forensics were focused
on designing a specific strategy to cope with each forensic challenge individually.
The goal of one of the first methods proposed in 2015 by Chen et al. [CKL15] was to
detect median filtering manipulation.

In their paper, Chen et al. [CKL15] used a tailored CNN to detect median filtering
with JPEG post-processing. The JPEG compression after median filtering made the
forensic problem more challenging because the compression can partially remove
the forensic traces of medial filtering. The tailored CNN took the Median Filtering
Residual (MFR) rather than the raw pixel values as input for the first layer in the
CNN. The MFR is the difference between a given image and its median filtered

22 Chapter 2 Background Knowledge and State of the Art

version. Authors found that using this special input, the network achieved a better
forensic classification performance, with a better detection accuracy when compared
with handcrafted-feature-based strategies on small patches of 64x64 and 32x32.

More recently, Tang et al. [Tan+18] proposed to upscale the input with nearest
neighbor interpolation in an attempt to enlarge the difference between manipulated
and original patches. After this upscaling, the first two layers in the network are
mlpconv layers introduced in [LCY13]. An mlpconv consists in a special layer for
deep learning architectures that defines a group of convolutional layers with activa-
tion functions that can enhance the non-linear ability of the network. Specifically, it
proposes to replace a traditional convolutional layer followed by a ReLU activation
function with a Convolutional layer, ReLU activation function, convolutional layer
with filters of shape 1x1 and a final ReLU activation function. In the case of median
filtering detection, Tang et al. [Tan+18] made use of mlpconv to enhance the
network’s non-linearity to deal with the detection of median filtering non-linearity.

Both the above proposals [CKL15; Tan+18] rely heavily on having a special input
for the network being either the MFR or an upscaled version, regardless of their
differences in the network architecture.

Double JPEG compression detection

JPEG images are widely used in daily life as one of the most common image formats.
Hence, most of the forensic tasks are related to JPEG images. Typically, inside a
normal forgery creation process, an image is decompressed from JPEG to the spatial
domain for falsification, and later recompressed again in JPEG format for storage
and further use. For this reason, the image forensics community has dedicated
important research efforts to the detection of double JPEG compression through the
years. Detection and localization of double JPEG compression provides valuable
information towards image authenticity assessment.

In double JPEG compression, double quantization of Discrete Cosine Transform
(DCT) coefficients leaves special artifacts in the DCT domain, in particular, on
histograms of block-DCT coefficients [PF04]. In [WZ16] and [VAK18] authors
proposed to use as input the concatenation of DCT histograms for their CNNs. These
approaches outperformed non-deep-learning methods, especially on small-sized
images up to 64x64 pixels. Afterwards, Barni et al. [BBB17] found that CNN
architectures could detect double JPEG compression with high accuracy when the
input of the network was noise residuals or histogram features; this was tested on
double compression with both different and same quantization matrix.

2.2 Image Forensics 23

Fig. 2.7.: Architecture of the multi-domain convolutional neural network proposed in
[Ame+17] for double JPEG compression detection.

In [Ame+17], Amerini et al. designed a multi-domain convolutional network to
detect and localize double JPEG compression. They proposed to use both DCT
coefficients and spatial features for the localization. The architecture achieved a
better detection accuracy when compared to using only pixel values or DCT coeffi-
cients. In their implementation, two branches were used as inputs for the network,
one receiving the image patches and the other the DCT coefficients. After several
convolutional blocks (convolutional layer, activation function and pooling layer),
both outputs are concatenated and fed to a final fully-connected layer followed by
the classification layer for detecting different JPEG quality factors. Figure 2.7 shows
the proposed multi-domain neural network. The architecture of the sub-network
with the frequency-domain input has some similarities to the one in [WZ16], while
the range of the bins in the DCT histogram is augmented.

The method proposed in [Par+18] extracted block-wise histogram-related statisti-
cal features under mixed quality factor conditions to achieve better accuracy and
localization capability. The proposed CNN takes a multi-branch approach using

24 Chapter 2 Background Knowledge and State of the Art

histogram features and quantization tables as inputs. The quantization branch is
directly concatenated to the last max-pooling layer output and two fully-connected
layers. Authors reported that the ability of the network to distinguish between
single and double JPEG compressed blocks was dramatically improved by including
quantization table branch.

The above presentation suggests that using special features as input for the first
layer of CNN can achieve good detection performance and that in the case of using
multiple inputs the multi-branch approach can combine them properly.

Contrast enhancement detection

Like median filtering, contrast enhancement is one of the routine image manip-
ulations commonly applied to conceal the traces of tampering. In the case of a
falsified image, it is common to have contrast differences between the background
and the forged region, which may be caused by different lightning conditions. In this
scenario, contrast enhancement is broadly used to remove or alleviate visual clues
that would give away the forgery. Consequently, detecting the application of this
operation has drawn researchers’ attention in the image forensics field [SL10].

In [Bar+18] authors proposed a 9-layer CNN that is directly fed with 64x64 image
pixel values with no special features, making the discriminative features self-learned
by the network. Authors showed good robustness against JPEG compression post-
processing over a wide range of quality factors by training the network with different
contrast adjustments. The proposed architecture also generalized well to unseen
tonal adjustments.

Sun et al. [Sun+18b] proposed to use the Gray Level Co-occurrence Matrix (GLCM)
which is computed by accumulating the occurrence of the pixel intensity pairs
between each pixel and its neighboring pixels. The GLCM was used as input for a
shallow CNN of three convolutional groups for detecting contrast enhancement. The
authors reported good results when an image is JPEG compressed after the contrast
enhancement on 256x256 image patches. The proposed method outperformed the
conventional ones in terms of the manipulation detection accuracy.

Using the GLCM as input of the network in a similar way, Shan et al. [Sha+19] also
proposed a JPEG-robust forensic technique based on CNN to detect both local and
global contrast enhancement. The adopted network architecture is one convolu-
tional block (4 layers in one block) deeper than the one proposed in [Sun+18b].
Experimental results showed that Shan et al.’s method could efficiently detect both

2.2 Image Forensics 25

local and global contrast enhancement in compressed images regardless of the order
of contrast enhancement and JPEG compression.

General-purpose manipulations detection

The manipulation detection methods presented until now focus on the detection of a
specific and targeted manipulation. This limits the application range of such methods
because for creating a doctored image, several different processing operations can
be applied to obtain a visually convincing result. For instance, in the case of splicing
falsification, the forged part of the image can go through one or several basic
operations such as rescaling, contrast enhancement and median filtering. Therefore,
it is of great importance to develop general-purpose strategies that are capable of
detecting different kinds of image manipulation operations.

As mentioned in previous subsections, the usage of special features in the CNN input
in general leads to a better performance for image forensic problems. Following
this approach, Bayar and Stamm [BS18a] proposed a new constrained filter for
the first layer of a CNN to suppress the image contents for detecting various image
processing operations. Their constrained network is forced to learn a set of high-pass
filters by imposing a constraint on the weights of all the K first-layer filters in each
forward pass of the learning process as shown in the following equation [BS18a]: w

(1)
k (0, 0) = −1,∑
m,n 6=0w

(1)
k (m,n) = 1,

(2.5)

where w(1)
k (m,n) denotes the weight at position (m,n) of the kth filter in the first

layer (the indices m and n can be negative or positive), and w(1)
k (0, 0) denotes the

weight at the center of the corresponding filter kernel. In this manner the sum of all
filter elements in each filter is 0, and the constrained first-layer filter operates like
a high-pass one by effectively removing image content. This prediction error layer
extracts and highlights the local dependency of pixels with its neighbours, which is an
important piece of information from the forensics point of view. Experimental results
in [BS18a] also showed that the usage of tanh as activation function outperforms
the more common functions such as ReLU. The reason may be that tanh tends to
preserve more information related to the sign of the values at the function input,
without setting all negative values to be 0 as in ReLU. The sign information may be
important for image forensic tasks.

Recently, Castillo Camacho and Wang [CW19] proposed a different initialization
method for the first layer of a CNN to cope with a challenging setting of general-

26 Chapter 2 Background Knowledge and State of the Art

Tab. 2.3.: Image manipulation detection methods. Network depth describes the number
of convolutional blocks with C for a convolutional layer, or M for mlpconv
layer, followed by an activation function and pooling layer, and the number of
fully-connected blocks denoted by an F (fully-connected layer and activation
function). MF stands for median filtering, DJPEG for double JPEG, CE for
contrast enhancement, GIPO for general-purpose image processing operations,
and approach is color coded as follows:•D detection,•L localization.

Problem Method
Network

depth
Input

feature
Special CNN

design
Input
size

Approach

MF
[CKL15] 5C-2F MFR N/A

64x64,
32x32 •D

[Tan+18] 2M-3C Upscaled values mlpconv
64x64,
32x32 •D

DJPEG

[VAK18] 4C-2F DCT features N/A 128x128 •D

[WZ16] 2C-2F DCT features
Customized
3x1 kernels

64x64,
128x128,...,
1024x1024 •D

[BBB17] 3C-2F
Noise residuals
or DCT features

N/A
64x64,
256x256 •D

[Ame+17]
2C-2F,
3C-1F

DCT features,
pixel values

Two-branch
CNN

64x64 •D•L

[Par+18]
4C-3F,
3F

DCT features,
quantization tables

Two-branch
CNN

256x256 •D•L

CE
[Bar+18] 9C-1F Pixel values N/A 64x64 •D
[Sun+18b] 3C-2F GLCM N/A 256x256 •D
[Sha+19] 4C-2F GLCM N/A 256x256 •D

GIPO
[BS18a] 5C-2F Pixel values

Constrained
1st layer

256x256 •D

[CW19] 5C-2F Pixel values
Special init.
for 1st layer

64x64 •D

[CW20]
5C-2F,
6C

Pixel values
Scaling for
1st layer

64x64 •D

purpose image manipulation detection. It is challenging because the considered
manipulations are of small amplitude. Taking advantage of the milestone work of
the famous Xavier initialization [GB10b], they proposed a way to create random
high-pass filters that could operate without constrains. The method had a high
detection rate for manipulations like median filtering, Additive White Gaussian
Noise (AWGN) and resampling. Recently, the same authors [CW20] proposed a data-
dependent scaling approach for first-layer filters initialized by different algorithms.
The proposed approach took into account natural image statistics and could ensure
the stability of the amplitude (i.e., the variance) of data flow in a CNN, which was
beneficial for general-purpose image manipulation detection. These two methods
[CW19; CW20] will be detailed in subsequent chapters of this manuscript.

Table 2.3 summarizes existing deep-learning-based image manipulation detection
methods, by considering different technical aspects in particular the input feature of
the network and the specificity of CNN design.

2.2 Image Forensics 27

2.2.3 Falsification detection

We consider image falsification as the creation of fake content in some part of the
image to deceive viewers about the facts happened in the past. Different from
routine image manipulation, image falsification is conducted intentionally to change
the image’s semantic meaning, often by inserting or removing certain content.

The most common image falsification techniques can be roughly divided into three
broad categories: copy-move forgery where one part of the image (the source region)
is copied and pasted into the same image as the fake part (the target region); splicing
forgery where the tampered region in a host image was originally from a different
image; and inpainting forgery which is sometimes considered as a subgroup of
copy-move with the difference that the fake region in inpainting falsification is often
constructed by using and combining small motifs at different locations of the same
image. It is worth mentioning that the inpainting technique is traditionally used to
reconstruct a lost or corrupted part of the image and that inpainting falsification
is often applied for carrying out object removal in an image. Research on splicing
detection is in general more active than copy-move and inpainting. This is probably
because it is more convenient to create diverse splicing forgeries from a large pool
of publicly available pristine images. Figure 2.6 shows, from left to right, examples
of inpainting, copy-move and splicing forgeries. In the following, we will organize
the presentation of deep-learning-based falsification detection methods into two
groups: 1) multipurpose detectors which can detect different kinds of image forgeries
among the above three categories and 2) targeted detectors which are focused on
the detection of one specific falsification.

Multipurpose detectors

Multipurpose detectors are usually based on the general assumption that any image
falsification introduces statistical deviation with respect to the authentic part, i.e.,
within the fake region, around the fake region boundary, or both.

Zhang et al. [Zha+16] proposed to use an autoencoder [Kra91] which is a type of
neural network taking an image as input and reconstructing it using fewer number
of bits. Wavelet features were used as input for the network to detect and localize in
a patch-wise manner the tampered regions. Besides wavelet features, local noise
features originally proposed for steganalysis, like Spatial Rich Model (SRM) [FK12],
have been largely used to solve image forensic problems with encouraging results.
In SRM, a group of handcrafted filters were designed to extract local noise from

28 Chapter 2 Background Knowledge and State of the Art

sigmoid sigmoid tanh

sigmoid

tanh

x

x

+x

Xt

ht-1

Ct-1

ht

ht

Ct

Fig. 2.8.: An LSTM cell. Xt is the input, ht−1 and ht are the output of the previous and
current block, Ct−1 and Ct are the cell state on the previous and current block. An
LSTM block can help to correlate neighboring blocks and search for inconsistencies
when a forgery is present. This is achieved via gates of activation functions to
determine if certain data is relevant for forwarding it or forgetting it.

neighboring pixels, and this often allows us to obtain disparities between forged and
original areas. SRM filters have been used for creating a special input for CNNs. This
is one important difference from CNNs used in computer vision tasks: it is considered
beneficial for CNNs of image forensics tasks to use SRM filters as initialization for
the first layer, instead of the random weights conventionally used in CNNs from the
computer vision community. In [RN16], Rao and Ni proposed to use the 30 SRM
filters as initialization for the first layer in a CNN to detect splicing and copy-move
forgeries. The results from the pre-trained CNN were utilized in a Support Vector
Machine (SVM) classifier for solving a binary problem (authentic/forged). In a
similar approach based on steganalysis features, Cozzolino et al. [CPV17] proposed
to use a shallow or short CNN to detect image forgeries on small patches.

In [Bun+17] and [Bap+19], authors made use of a Long Short Term Memory
(LSTM) architecture for localizing with pixel level the tampered regions. An LSTM
as proposed in [HS97] is a special type of Recurrent Neural Network (RNN) designed
for sequences or time series data. An LSTM layer consists of a set of recurrently
connected blocks, known as memory blocks. Each block contains one or more recur-
rently connected memory cells and three multiplicative units – the input (sigmoid
and tanh functions), output (sigmoid and tanh functions) and forget (a sigmoid
function) gates – that regulate the flow of information into and out of the cell.
Figure 2.8 shows an unrolled example of an LSTM block. The core strength of
using LSTM in the image forensics field is to acquire from previous blocks the
boundary information, which is decisive to obtain particular features to classify
between original and tampered regions. In [Bun+17] experiments showed that both
CNNs with Radon transform as input and LSTM based strategies were effective in
exploiting resampling features to detect and localize tampered regions. Bappy et

2.2 Image Forensics 29

al. [Bap+19] proposed an LSTM and an encoder-decoder network to semantically
segment falsified regions in a tampered image.

Some researchers suggested that a CNN trained for detecting camera traces could
be used to detect and localize image splicing. If an analyzed image contains patches
of different sources, then the blocks can be clustered in different groups separating
the suspicious area. Works in [Bon+17] and [CV18] made use of camera-specific
features obtained by a CNN that focuses on them. Both methods analyzed patches
and looked for traces of different cameras in the same image. Bondi et al. [Bon+17]
used a clustering algorithm to create different groups of the authentic and suspicious
areas. In [CV18] a noise residual called Noiseprint was extracted and utilized to
check inconsistencies within a single image.

Yarlagadda et al. [Yar+18] used a GAN that included an adversarial feedback loop to
learn how to generate some information in a realistic manner, with the objective to
detect satellite image forgeries. There are two major components within GANs: the
generator that takes a noise vector as input and outputs an image improved at each
step with the knowledge of what a valid input should be, and the discriminator that
tries to classify between real and fake (i.e., created by generator) contents. Their
proposed architecture was followed by an SVM to detect whether feature vectors
come from pristine images or forgeries.

Recently, [Zho+18] and [WAN19] proposed the multi-branch CNNs to tackle the
challenge of image forgery detection. Specifically, Zhou et al. [Zho+18] proposed
a multi-branch Region-Convolutional Neural Network (R-CNN) which is a type of
CNN typically used for object detection to coarsely locate the tampered regions in
bounding boxes. Authors used pixel values in one branch with ResNet-101 architec-
ture [He+16] and noise features obtained by SRM filters in the second branch. Wu
et al. [WAN19] suggested a multi-branch CNN joined with an LSTM trained with
a set of 385 different image manipulations. Their architecture named Mantra-Net
generates a pixel-level detection mask reflecting the probability of a falsification.
In the three input branches of Mantra-Net the first layers are initialized with SRM
filters, high-pass constrained filters of Bayar and Stamm [BS18a], and normal ran-
dom weights. Figure 2.9 shows example results of bounding-box localization of
falsifications produced by Zhou et al.’s detector [Zho+18].

Very recently, Mara et al. [Mar+20] worked on a full-image CNN based on Xception
architecture [Cho17] to detect and localize image falsifications. The proposed end-
to-end network utilized the Noiseprint [CV18] as features extracted from the image
input. Meanwhile, in [Zho+20] a GAN was proposed to generate falsified images
avoiding the burdensome task of creating and labeling image forgery examples

30 Chapter 2 Background Knowledge and State of the Art

Fig. 2.9.: Bounding-box localization results generated by using the implementation of
[Zho+18] on NIST 16 dataset [NIS16]. Top and bottom rows show copy-move
and splicing examples respectively. (A) is the original image, (B) is the falsified
image, (C) is the ground-truth mask, and (D) is the localization result.

in a conventional way. With this big amount of synthetic examples, the proposed
algorithm was able to segment and refine the focus on boundary artifacts around
falsified regions during the training process.

Table 2.4 provides a summary of the various multipurpose falsification detection
techniques. The summary includes the method reference, input for the network, ini-
tialization used in the first layer, input size, localization level, considered databases,
and network type.

Targeted detectors

Targeted detectors, which are designed to detect only one type of image falsification,
have been developed in parallel with multipurpose ones.

1) Splicing detection

Some early works dealing with splicing detection and localization were based on
autoencoders. In [CV16], authors used SRM features as input for their autoencoder
model. The method in [DAv+17] used the steganalysis features from SRM to analyze
frames in a video with autoencoder and LSTM to detect splicing forgeries.

Wu et al. [WAN17] proposed a framework of Constrained Image Splicing Detection
and Localization (CISDL) based on the well-known VGG-16 architecture [SZ14].
Using two input branches they calculated the probability that one image had been
partially spliced to another one and localized the spliced region. Meanwhile, in
[SRK18] and [LP18], a CNN without fully-connected layers known as Fully Convo-
lutional Network (FCN) [LSD15] was used to predict a tampering map for a given

2.2 Image Forensics 31

Tab. 2.4.: Multipurpose image falsification detection methods. Loc. level describes whether
the localization is performed in a pixel-, block- or bounding-box-wise manner.
Dataset is color coded as follows:•C CASIA [DW11],•M Smartphones,•N NIST
16 [NIS16],•I IEEE Forensics Challenge [@IEE14],•V Coverage [Wen+16],•K
Kaggle Camera Challenge [@IEE18],•L Columbia gray [@NHC04],•D DRESDEN
[GB10a],•O Vision [Shu+17],•A Landsat on AWS [@Ama18],•U UCID [SS04],•F MS COCO [Lin+14],•B Columbia color [HC06],•H Carvalho [Car+13], and•S when it is an ad-hoc dataset created by authors of the original paper.

Method
Input
feature

Init. first
layer

Input
size

Loc.
level Dataset

Network
type

[RN16] Pixel values SRM filters 128x128 pixel •C•L CNN - SVM

[Zha+16]
Wavelet
features

Random init. 32x32 block •C Autoencoder

[CPV17]
Steganalysis
features Random init. 128x128 pixel •S•M CNN - SVM

[Bon+17] Pixel values Random init. 64x64 block •S•D CNN

[Bun+17]
Radon
features

Random init.
64x64,
128x128 pixel •N LSTM

[Bap+17]
Resampling
features

Random init. 64x64 pixel •S•N•I•V CNN

[Zho+18]
Pixel values,
noise features

Random init. 224x224 bbox •S•F•N•C•V Multi-branch

[Yar+18] Pixel values Random init. 64x64 block •S•A GAN-SVM

[CV18]
Pixel values,
Noiseprints

Random init.
44x44,
64x64 pixel •S•D CNN

[Bap+19]
Resampling
features

Random init.
Resized
256x256 pixel •S•N•I•V LSTM

[WAN19] Pixel values
SRM filters,
Bayar filters,
Random init.

256x256,
512x512 pixel •S•D•K•B•N

•C•V
Multi-branch

[Mar+20]
Pixel values,
Noiseprints

Random init.
960x720;
4640x3480 pixel •S•O•U

CNN
incremental
learning

[Zho+20] Pixel values Random init. 224x224 pixel •S•V•C•H GAN-CNN

image. In [SRK18], the proposed architecture has two exit localization branches.
The first one was used for localizing the inner part of the spliced area and the second
one for detecting the boundary between pristine and spliced regions. Concurrently,
Liu et al. [LP18] made use of three FCNs to deal with different scales; moreover,
conditional random field was used to combine the results of different scales.

Some approaches [Huh+18; Pom+18] attempted to detect anomalies or inconsisten-
cies within tampered images. In [Huh+18], a Siamese CNN with a self-consistency
approach to determine if contents had been produced by a single device was pro-
posed. The proposed model could predict the probability that two patches had similar
EXchangeable Image File (EXIF) attributes and output a “self-consistency” heatmap,
highlighting image regions that had undergone possible forgery. In [Pom+18] au-

32 Chapter 2 Background Knowledge and State of the Art

thors used transfer learning from a pre-trained residual network (ResNet-50) with
illumination maps taken from input images to find hints of forgeries.

Recent strategies [KKR19; Bi+19] made use of U-Net [RFB15] architectures. In
a U-Net, the features are captured by a size-reducing way of consecutive layers,
then upsampled and concatenated with the first path in a U-shaped symmetric
path, attempting to reduce loss and improve localization capability. In [KKR19],
authors took advantage of U-Net architecture for the training of a GAN with image
retouching generator, which helped a splicing localization model to learn a wide
range of image falsifications. Meanwhile Bi et al. [Bi+19] proposed a method
mainly based on U-Net as a segmentation network for splicing forgery detection.

Given the popularity of GANs in the computer vision field, some researchers have
also started to use them for image forensics purposes. This is the case of [Bar+19]
where the authors made use of a conditional GAN for the training of a detector to
locate forgeries in satellite images. Liu et al. [Liu+19] proposed a deep matching
CNN together with a GAN to generate probability maps in a CISDL scenario.

Special initialization of first layer was also considered for splicing detector. For
example, Rao et al. [RNZ20] designed and implemented a CNN with the first layer
of the network initialized with 30 SRM filters to locate splicing forgeries.

Table 2.5 summarizes the targeted detectors of splicing falsification. The considered
properties of the detection methods are similar to those in Table 2.4.

2) Copy-move detection

Copy-move detection is one of the forensic techniques that have been studied with
more balance between conventional and deep-learning approaches. As mentioned
before, in a copy-move forgery, a part of the original image (source area) is copied
and pasted at a different place (target area) of the same image. Before pasting, the
target area can be transformed (rotation, scaling, shearing, etc.) to make the forgery
visually realistic. Routine image manipulation (smoothing, contrast adjustment, etc.)
can be applied locally or globally to enhance the visual quality. Copy-move is mainly
used for falsifications where certain content needs to be disguised or cloned.

Probably the first proposal using a deep-learning approach to solve the copy-move
detection problem was the method from Ouyang et al. [OLL17], which was based on
the famous pre-trained AlexNet [KSH12] originally designed for image recognition.
Authors generated forged images by choosing a random square from the upper left
corner and copying it to the center. Although this method obtained decent results in
this artificial scenario, the performance was diminished for realistic forgeries.

2.2 Image Forensics 33

Tab. 2.5.: Targeted splicing detection methods. AE stands for autoencoder. Dataset is color
coded as follows:•C CASIA [DW11],•M Smartphones,•N NIST 16 [NIS16],•T
SUN 2012 [Xia+10],•F MS COCO [Lin+14] ,•L Columbia gray [@NHC04],•H
Carvalho [Car+13],•R Realistic (Korus) [KH17],•W On the wild websites,•B
Columbia color [HC06],•A Landsat on AWS [@Ama18], and•S when it is an
ad-hoc dataset created by authors of the method (information of source images
used for dataset creation may be provided in the original paper).

Method
Input
feature

Input
size Dataset

Network
type

Backbone
architecture

[CV16] SRM features 768x1024 •S AE Own
[WAN17] Pixel values 256x256 •S•T•F CNN VGG-16
[DAv+17] SRM features 720x1280 •S AE-LSTM Own
[SRK18] Pixel values 224x224 •S•C•L•H•N FCN VGG-16

[Huh+18]
EXIF metadata,
pixel values 128x128 •S•L•H•R•W CNN ResNet-v2

[Pom+18] Illuminant maps 224x224 •S•L•H CNN-SVM ResNet-v1
[LP18] Pixel values 224x224 •S•B FCN VGG-16
[Bi+19] Pixel values 384x384 •S•C•B CNN (U-Net) ResNet-v1
[KKR19] Pixel values 512x512 •S GAN (U-Net) VGG-16
[Liu+19] Pixel values 256x256 •F GAN VGG-16
[Bar+19] Pixel values 70x70 •A GAN Pix2Pix

[RNZ20]
SRM features
for 1st layer init. 128x128 •S•C•H CNN-SVM Own

Wu et al. [WAN18b] proposed a CNN-based method which first divided the input
image into blocks, then extracted special features, correlated features between
blocks, localized matches between blocks and finally predicted a copy-move forgery
mask. Furthermore, routine image manipulation operations to hide the forgery traces
such as JPEG compression, blurring and AWGN were applied to training data as a
means of data augmentation. The objective was to easily detect these manipulations
as possible telltales of copy-move falsification. Very shortly after this piece of work,
the same authors [WAN18a] proposed to use a different architecture with two
exit branches to deal with the problem of source-target disambiguation where it is
necessary to discern between source (original) and target (falsified) regions in a
copy-move forgery. Another deep learning method for source-target disambiguation
was proposed in [BPT19] where CNN with multi-exit branches was also used to
identify source and target regions. This method was shown to be capable of learning
special features focusing on the presence of interpolation artifacts and boundary
inconsistencies. Figure 2.10 shows two examples of source-target disambiguation
localization results generated by Wu et al.’s detector [WAN18a].

In [LGZ18] Liu et al. proposed one of the first copy-move detectors that used a CNN
approach. Their proposal was partially based on conventional methods, by taking
keypoints features such as Scale-Invariant Feature Transform (SIFT) or Speeded-Up

34 Chapter 2 Background Knowledge and State of the Art

Fig. 2.10.: Source-target disambiguation results generated by using the implementation
of [WAN18a] on images from the NIST 16 dataset [NIS16]. (A) is the original
image, (B) is the falsified image, (C) is the ground-truth mask, and (D) is the
localization result in which green and red color represents respectively the
source (original) and target (falsified) region in a copy-move forgery.

Robust Features (SURF) as input for their network. One limitation was that this
method had low performance when duplicated areas have a homogeneous content,
because the keypoints could be hardly identified within such areas.

Very recently, Zhu et al. [Zhu+20] proposed an adaptive attention and residual
based CNN to localize copy-move forgeries. The self attention module allowed
neurons to interact with each other to find out which neurons should receive more
attention. Experiments showed comparable results with previous deep-learning
approaches, but the problem of source-target disambiguation was not addressed.

Illumination direction, contrast and noise are usually inconsistent in splicing forgery,
so the tampering traces could be found rather easily by the CNN. However, the source
and target regions are derived from the same image in copy-move, accordingly
the illumination and contrast would be highly consistent, which raises a greater
challenge for copy-move detection based on CNN. This may be one reason for the
fewer published papers focused on copy-move when compared with splicing. The
first part of Table 2.6 summarizes the existing deep-learning methods targeted at
copy-move detection and localization.

3) Inpainting detection

The inpainting technique can create plausible image forgeries which are difficult to
spot for the naked eyes. Different from copy-move where an image area is copied
and pasted, in inpainting the falsified area is often filled with micro components (e.g.,
blocks of 7 by 7 pixels) extracted from different places of the image. These small
blocks usually represent a kind of micro-texture and are combined in inpainting in a
visually convincing way. Although the inpainting method can be used for inoffensive

2.2 Image Forensics 35

Tab. 2.6.: Targeted detectors of copy-move and inpainting falsifications. S-T disam. means
source-target disambiguation. Dataset is color coded as follows:•X Oxford
[NZ08],•U UCID [SS04],•T SUN 2012 [Xia+10], circledmark[turqdos]F MS
COCO [Lin+14],•P ROME patches [Mat+15],•M CoMoFoD [Tra+13],•V Cover-
age [Wen+16],•K Raise [Dan+15],•D DRESDEN [GB10a],•O Vision [Shu+17],•G Imagenet [Den+09],•L MIT Place [Zho+14],•C CASIA [DW11],•V MvTec
[Ber+19] and•S when it is an ad-hoc dataset.

Method
Input
features

Input
size

Localization
level Dataset

Backbone
architecture

Copy-move
[OLL17] Pixel values 256x256 Detection •S•X•U AlexNet
[WAN18b] Pixel values 256x256 Pixel •S•F•T VGG-16
[LGZ18] Keypoints 51x51 Pixel •S•P•M•C Own
[WAN18a] Pixel values 256x256 Pixel, S-T disam. •S•F•T VGG-16
[BPT19] Pixel values 64x64 Pixel, S-T disam. •S•K•D•O ResNet-V1
[Zhu+20] Pixel values 256x256 Pixel •S•C•M•V VGG-16

Inpainting
[Zhu+18] High-pass residuals 256x256 Pixel •S•L Own
[WWN19] Pixel values 128x128 bbox •S•G ResNet-V1
[LH19] High-pass residuals Various Pixel •S•G ResNet-V1
[WNW20] LBP, pixel values 256x256 Pixel and bbox •S•F•G Own
[ZKS20] Pixel values 256x256 Pixel •S•V Own
[LN20] Pixel values 32x32 Pixel and bbox •S•U Own

purposes such as repairing partially deteriorated images, it is utilized likewise in
forgery creation, for instance for object removal to falsify an image or for erasing
visible watermarks. Some splicing or copy-move detection algorithms could be
exploited to detect inpainting forgeries, but in general they do not consider the
particularity of inpainting and their performance remains not as good as expected.

To our knowledge the first method targeted at inpainting detection was proposed by
Zhu et al. [Zhu+18], where authors used an encoder-decoder network to predict
the inpainting probability on each patch. Li and Huang [LH19] focused on detecting
inpainting forgeries made by deep learning methods (also known as deep-inpainting).
Image high-pass residuals were fed to a FCN in which transpose convolutional layers
were initialized with bilinear kernel.

Wang et al. [WWN19] used a R-CNN, originally designed for object detection, to
output a bounding box of the inpainted region along with a probability score. Very
recently, the same authors [WNW20] designed a multitask CNN with two inputs,
i.e., a Local Binary Pattern (LBP) image as the first input and the pixel values as the
second one, for inpainting detection. This new network could produce a bounding
box of inpainted area together with an estimated mask of forgery.

36 Chapter 2 Background Knowledge and State of the Art

In [ZKS20] authors proposed an anomaly detection method by randomly removing
partial image regions and reconstructing them with inpainting methods to detect
a forgery. Authors used a U-Net based encoder-decoder network to reconstruct
the removed regions and output a tampering map in which each image is assigned
an anomaly score according to the region with the poorest reconstruction quality.
Meanwhile, Lu and Niu [LN20] published an object removal detection method by
combining CNN and LSTM to detect inpainting with single and combined post-
processing operations such as JPEG compression and Gaussian noise addition.

The second part of Table 2.6 provides a brief summary of the deep-learning-based
forensic methods targeted at inpainting falsification.

2.2.4 Other specific forensic problems

This subsection is dedicated to the presentation about some other specific problems
on which the image forensics research community has conducted extensive work.
We divide them into three groups: 1) camera identification, 2) computer graphics
image detection, and 3) detection of Deepfake images.

1) Camera identification

A typical image acquiring process is shown in Figure 2.11. First, the light rays are
redirected by the lens, then different filters such as anti-aliasing can be applied
before the Color Filter Array (CFA) divides the light into one of the red (R), green
(G) and blue (B) components per pixel. A demosaicing step is performed afterwards
to reconstruct the full-color scene from the input samples taken by the previous step.
Depending on the camera model and software, several post-processing operations
such as white balancing, gamma correction and JPEG compression can take place.
These post-processing steps contribute with important and distinctive clues to the
image forensics field. When the final output image of camera is falsified to create a
forgery, additional traces unique for each falsification are usually left behind.

The challenge of verifying the authenticity of an image can be tackled from different
perspectives. One of them is approached by answering the following question: given
an image, is it possible to find out the model of the camera with which the image was
taken? Despite the fact that camera model, date and time, and other information can
be found in the EXIF or in the JPEG header, in general it is not possible to consider
such information as reliable and legitimate because image metadata can be easily

2.2 Image Forensics 37

02 03 0401 05 06 07

Fig. 2.11.: Illustration of typical pipeline of image acquisition and forgery creation.

modified. By contrast and as mentioned before, the traces of the post-processing
steps carried out by each camera constitute important source of information that
can be used to authenticate the image provenance in the image forensics field.

First deep learning methods for camera identification were mainly dedicated to
classifying patches produced by different cameras. Bondi et al. [Bon+16] used
a CNN followed by an SVM to classify patches coming from different unknown
cameras. In addition, with the output of their CNN they looked for anomalies in
an image to search for forgeries. Tuama et al. [TCC16] applied a high-pass filter in
the first layer to suppress image content and obtain image residuals as input for a
shallow CNN that was trained to learn to classify among different camera models.
Due to the release of new camera models and the difficulty to keep an updated
database, Bayar and Stamm [BS18b] suggested an open-set scenario which aimed
to predict an unseen camera device. Authors used a constrained initialization for the
first layer of a CNN to infer whether the image was taken by an unknown device.

Ding et al. [Din+19] proposed a multi-task CNN to predict information about brand,
modes and devices from a patch. Authors used ResNet [He+16] blocks together
with high-pass filter residuals as input for the network and with inputs of different
sizes. In [Fre+19], authors used a shallow CNN for mobile camera identification in
a multi-class challenging scenario. Experiments showed good forensic performance,
but the performance diminished when devices came from a same manufacturer.

Methods in [CV19] and [SN20] both used Siamese network for this camera classi-
fication problem. There are multiple inputs in a Siamese network with the same
architecture and same initial weights for each sub-network. Parameter updating is
mirrored across all sub-networks. The purpose of this architecture is to learn the sim-
ilarity of inputs. In [CV19], authors proposed a Siamese CNN to extract the camera
unique fixed-pattern noise from an image’s Photo Response Non-Uniformity (PRNU)
to classify camera devices and furthermore trace device fingerprints for image forgery
detection. Sameer and Naska [SN20] worked on the scenario where annotated data

38 Chapter 2 Background Knowledge and State of the Art

Tab. 2.7.: Camera identification methods. ET means extremely randomized trees. Dataset
is color coded as follows:•D Dresden [GB10a],•I MICHE-I [De +15],•H Carvalho
[Car+13],•V VIPP [BP12],•R Realistic (Korus) [KH17],•N NIST 16 [NIS16],•F MFC [MFC17],•O Vision [Shu+17],•M Smartphones, and•S when it is an
ad-hoc dataset.

Method
Input
features Initialization

Input
size Dataset

Network
type

[TCC16]
High-pass
residuals

Random init. 256x256 •D CNN

[Bon+16] Pixel values Random init. 64x64 •S CNN-SVM

[BS18b]
High-pass
residuals

Bayar’s
constrained 256x256 •D

CNN-SVM
CNN-ET

[Fre+19] Pixel values Random init. 32x32 •I CNN-SVM
[CV19] Pixel values Random init. 48x48 •H•V•R•N•F Siamese

[Din+19]
High-pass
residuals

Random init. 48x48 •D•M
Multi-scale
CNN

[SN20] Pixel values Random init. 64x64 •D•O Siamese

(i.e., in this case image samples) were not available in big quantities and training
had to be performed using a limited amount of samples per class. This approach
is called few-shot learning and refers to learning and understanding a new model
based on a few examples. For this few-shot learning approach, a Siamese network
was used to enhance classification accuracy of camera models. The intuition behind
the Siamese network for this challenge is to form pairs of image patches coming
from the same camera models to improve the training.

Table 2.7 gives a brief summary of the deep-learning-based camera identification
techniques. We can observe two interesting trends regarding the relevant research:
1) techniques like few-shot learning would be helpful in realistic scenarios in which
we have a limited number of annotated samples and 2) the deep learning methods
are promising techniques to deliver a good camera model classification performance
and may further help in the search of anomalies for image forgery detection.

2) Detection of computer graphics images

Computer graphics techniques produce visually plausible images of fictive scenes.
Despite the benefits of CGI in virtual reality and 3D animation, it can also be used as
false information thus affecting real-life decisions, and this situation is augmented
with the fast dissemination of content enabled by the Internet. Consequently, the
challenge of discerning between a real photograph and CGI has been explored by
image forensics researchers. Figure 2.12 shows how challenging it is to distinguish
between CGI and an image taken by a camera.

2.2 Image Forensics 39

Fig. 2.12.: Examples to show the difficulty of visually differentiating between CGI (on
the left) and an image taken by a camera (on the right). The CGI is from
Tumblr forum (https://hyperrealcg.tumblr.com/post/112323738189/
title-a-land-where-dreams-take-wings-artist) and the camera image
is from Reddit forum (https://www.reddit.com/r/EarthPorn/comments/
4o9u03/no_filter_needed_grand_tetons_national_park_wy_oc/).

Rezende et al. [DRC17] took advantage of transfer learning from ResNet-50 model
to classify small patches of CGI and real photographic images. Yu et al. [Yu+17]
investigated for this CGI forensics problem the usage of a CNN without pooling
layers. Authors of [Rah+17] and [Qua+18] proposed to use shallow CNNs in a
patch-based manner. Rahmouni et al. [Rah+17] used a CNN with a customized
pooling layer that computed statistics like mean and variance followed by an SVM
to detect CGI patches. In order to classify a whole image, a weighted voting strategy
was applied to combine the local probabilities on patches of sliding windows to
produce a final label. Quan et al. [Qua+18] proposed an end-to-end approach
using a Maximal Poisson-disk Sampling (MPS) method to crop patches in a loss-less
manner from a full-sized image. Nguyen et al. [Ngu+18] continued with the sliding
window approach to deal with high-resolution images using VGG-19 followed by
multi-layer perceptron based CNN as classifier. In [Yao+18], authors proposed an
approach for discriminating CGI using high-pass residuals as input to a CNN.

He et al. [He+18] designed a two-input CNN-RNN taking the color and texture from
YCbCr color space on each input to detect CGIs. In [Tar+19] authors investigated
the usage of an Attention-Recurrent Neural Network (A-RNN) to classify CGIs in a
local-to-global approach following the sliding window strategy and using the simple
majority voting rule to produce a decision on a whole image. Nguyen et al. [NYE19]
studied the application of dynamic routing capsule networks [SFH17] based on the
VGG-19 model for detecting CGI. Capsule networks were able to identify objects
that hold spatial relationship between features.

More recently, Zhang et al. [Zha+20] proposed a CNN containing a special block
at input called hybrid correlation module composed of a 1x1 convolution layer

40 Chapter 2 Background Knowledge and State of the Art

https://hyperrealcg.tumblr.com/post/112323738189/title-a-land-where-dreams-take-wings-artist
https://hyperrealcg.tumblr.com/post/112323738189/title-a-land-where-dreams-take-wings-artist
https://www.reddit.com/r/EarthPorn/comments/4o9u03/no_filter_needed_grand_tetons_national_park_wy_oc/
https://www.reddit.com/r/EarthPorn/comments/4o9u03/no_filter_needed_grand_tetons_national_park_wy_oc/

Tab. 2.8.: CGI detection methods. Dataset is color coded as follows:•M Smartphones,•C Columbia CGI [Ng+05],•R Rahmouni [Rah+17],•K Raise [Dan+15] ,•H
Carvalho [Car+13],•F MesoNet [Afc+18],•W Web images,•N Faceforensics
[Rös+18],•H He [He+18],•O Vision [Shu+17],•T Artlantis [@ABV05],•B
Corona [@Cha20],•Y Vray [@Ltd20],•G Imagenet [Den+09],•K Autodesk
[@Aut20], and•S when it is an ad-hoc dataset.

Method
Input
size Dataset

Network
type

Backbone
architecture

[DRC17] 224x224 •G CNN-SVM ResNet-50
[Yu+17] 32x32 •S•C•W CNN VGG-16
[Rah+17] 100x100 •R CNN-SVM Own
[Qua+18] 30x30 to 240x240 •C•R CNN Own
[Yao+18] 650x650 •R CNN Own

[Ngu+18] 100x100 •R•K
Two-input
CNN-RNN VGG-19

[He+18] 96x96 •H•W CNN-RNN ResNet-50
[Tar+19] 30x30 to 240x240 •C•K•R A-RNN Own
[NYE19] 128x128 •R•F•N•R Capsule VGG-19
[Zha+20] 96x96 •H CNN Own
[MT20] 224x224 •H CNN DenseNet-201

[He+20] 32x32,64x64 •H
Two-input
A-CNN Inception

[Qua+20] 233x233 •K•O•T•K•B•Y
Two-branch
CNN Own

followed by three blocks of convolutional layers, which would correlate channels
and pixels in an attempt to detect CGIs. Meena and Tyagi [MT20] used the transfer
learning approach from DenseNet-201 [Hua+17] followed by an SVM as classifier. In
[He+20] authors made use of a shallow A-CNN with two inputs for CGI classification.
Interestingly, the inputs for this network were pre-processed by a Gaussian low-pass
filter as the authors wanted to focus on general patterns rather than local details.
Quan et al. [Qua+20] designed a CNN combining SRM filters and Gaussian random
weights as initializations for the first layer on a two-branch architecture. Authors
also proposed to use the so-called negative samples created via gradient-based
distortion to achieve a better generalization on test images created by unknown
graphics rendering engines.

Table 2.8 summarizes the deep-learning-based CGI forensic techniques.

3) Deepfakes detection

Lately, GAN models have been used in various applications and have transformed
a time-consuming task previously reserved to high-skilled experts now to a simple

2.2 Image Forensics 41

Fig. 2.13.: Example frame of a Deepfake video. The tool used to generate this video is avail-
able at the following webpage: https://faceswap.dev/, and the full resulting
video can be viewed at https://www.youtube.com/watch?v=r1jng79a5xc.

and fast operation. One of such applications is to create synthetic yet visually
realistic images and videos. GAN-generated multimedia contents are commonly
known as Deepfakes, making reference to the usage of a deep learning model and
the fabricated synthetic results. Majority of cases have been used to replace a person
(or a person’s face) in an existing image or video with another person (or the face
of this other person). Figure 2.13 illustrates the synthesis process realized by a
GAN which replaces the face in the target (image on the left) by using a source
(image in the middle) to generate the resulting frame (image on the right). Although
benign material has been created for the illustrated example, this technique can have
more serious impact in other situations, e.g., to create political distress. Recently a
big amount of research activities has been dedicated to detecting GAN-generated
fake contents, mainly due to the easiness and impact of Deepfakes. In comparison
with images, videos contain more information and different approaches have been
proposed based on different kinds of clues for the detection of Deepfake videos.

First proposals in the literature [MCL18; Mar+18; Afc+18; Cha+19] focused on the
detection of GAN-generated images created by a specific GAN model. In [MCL18],
authors searched for statistical artifacts introduced by GAN with a pre-processing
layer that extracted high-pass residuals. Marra et al. [Mar+18] tested the per-
formance of some popular CNN-based image forensic methods for the detection
of images created by GANs and shared in social networks. In [Afc+18], authors
used a shallow CNN to detect Deepfakes and Face2Face [Rös+18] videos. Interest-
ingly, Chan et al. [Cha+19] developed as first objective a GAN for video-to-video
translation in dancing poses. Additionally, they developed a detector that would
detect videos coming from their own model. In [Tar+18], authors compared several

42 Chapter 2 Background Knowledge and State of the Art

https://faceswap.dev/
https://www.youtube.com/watch?v=r1jng79a5xc

popular sophisticated architectures and a shallow CNN. Experiments showed that
the shallow CNN had better performance in detecting Deepfakes.

Güera and Delp [GD18] proposed to use a CNN for frame feature extraction and an
LSTM for temporal sequence analysis to detect Deepfake videos which contained
inconsistent frames. Amerini et al. [Ame+19] investigated the use of optical flow
vectors to detect discrepancies in motion across several frames using the PWC-Net
model [Sun+18a]. Optical flow is a vector computed on two consecutive frames to
extract apparent motion between the observer and the scene itself. In a follow-up
work [AC20], an LSTM was utilized in a sequence-based approach which exploited
the dissimilarities between consecutive frames of Deepfake videos.

Other proposals like [CDY20],[LCL18], [Kor+19], [Aga+20] and [Mit+20] focused
on the spatial coherence and temporal consistency among different physiological
features. In [CDY20], authors designed a CNN to detect variations of heart rate
extracted from face regions on different frames. Li et al.’s method [LCL18] was
based on the observation that faces in Deepfake videos had a lower rate of blinking
in comparison with real videos. This occurred in early GAN-generated videos for
which the GAN was trained on faces with open eyes. Authors carried out a couple of
pre-processing steps to locate the eyes and used this feature as input for an LSTM to
detect a lower or higher rate of blinking as a telltale of Deepfake videos. Korshunov
et al. [Kor+19] proposed an LSTM to search for anomalies between the audio
and mouth movements. The method in [Aga+20] went in the same direction by
comparing mouth shapes with the sound associated with M, B an P phonemes which
required complete mouth closure and were in many cases incorrectly synthesized.
Recently, Mittal et al. [Mit+20] went a step forward using a Siamese network to
look for anomalies between the audio and video and combined it with the affective
cues of both inputs to learn the differences between real and Deepfake videos.

The signal-level artifacts introduced during the synthesis were investigated for the
detection of fake contents. Li et al. [Li+20a] focused on artifacts at face boundaries
by exploiting the fact that most existing face tampering methods shared a common
blending operation. Meanwhile in [LL18], authors exploited the inconsistencies be-
tween warped face area and the surrounding background. The method in [Xua+19]
adopted Gaussian noise extraction as a pre-processing step for a CNN, enforcing the
network to learn more meaningful features about GAN traces.

In [Ngu+19] a multi-task CNN was proposed to detect fake faces and to segment
tampered areas. Dang et al. [Dan+20] investigated the use of attention mechanism
for the detection and segmentation of tampered faces. In [Din+20], authors used
deep transfer learning for face swapping detection. Hsu et al. [HZL20] made use

2.2 Image Forensics 43

of a so-called Common Fake Feature Network (CFFN) consisting of several dense
units and a Siamese network for Deepfake detection. One limitation was that the
CFFN may fail when the fake features of the results of a new GAN were significantly
different from most of those used in the training phase.

To overcome data scarcity, [Fer+20] and [KW20] proposed some solutions. Fernan-
des et al. [Fer+20] used a Attribution Based Confidence (ABC) metric to detect
Deepfake videos with a deep model only trained on original videos. Khalid and
Woo [KW20] formulated the challenge as a one-class anomaly detection problem by
using a Variational Autoencoder trained only on real face images and subsequently
detected Deepfakes as anomalies.

More recently, Wang et al. [Wan+20] used the well-known ResNet50 with careful
data preparation to study the artifacts left by GANs. Their method demonstrated
good generalization performance on unseen Deepfake contents. In [Li+20b], authors
designed a two-branch CNN to exploit the distribution differences between pixels in
the face region and the background. Masi et al. [Mas+20] proposed a two-branch
LSTM to combine color and frequency information. A multi-scale Laplacian-of-
Gaussian operator was used in their method, which acted as a band-pass filter to
amplify the artifacts.

Table 2.9 provides a summary of Deepfake detection methods presented above.
Particularly, in the table we present the main cue used by each method, by grouping
cues into several categories as spatial context, generator traces, physiology-inspired,
inter-frame consistency, and anomaly classification.

2.2.5 Discussion

Through this survey, we provide a general understanding of the detection methods
in the image forensics field. The main content of this chapter has recently been
published in an international journal. Readers could extend their reading (e.g., the
recent survey of [TR20] with a different classification of methods and a presentation
of performance metrics) to gain a better understanding of the recent advances in
the rapidly evolving research field of image forensics.

In our survey presented in this chapter, we collected and presented a large number
of deep-learning-based methods divided into three broad categories, with a focus on
the different characteristics that are particular for the image forensic approaches. It
can be observed that a pre-processing step to obtain a certain feature or a special
initialization on the network’s first layer have been used in many pioneer works

44 Chapter 2 Background Knowledge and State of the Art

Tab. 2.9.: Deepfake detection methods. Dataset is color coded as follows:•H CelebAHQ
[Kar+17],•Y CycleGAN [Zhu+17],•N FaceForensics [Rös+18],•A CelebA
[Liu+15],•P PGGAN [Kar+17],•U UADFV [YLL19],•T DeepfakeTIMIT [Kor+19],•D DFDC [Dol+19],•G DFD [@Goo19],•M FaceForensics++ [Ros+19],•V
CelebDF [Li+20c],•F MesoNet [Afc+18] and•S when it is an ad-hoc dataset.

Method
Input
size

Dataset
Network
type

Backbone
architecture

Im
ag

e

V
id

eo

Cue

Sp
at

ia
l

G
A

N
tr

ac
e

Ph
ys

io
lo

gy

In
te

r-
fr

am
e

A
n

om
al

y

[MCL18] 256x256 •H CNN Own • •[Mar+18] 256x256 •S•Y CNN XceptionNet • •
[LCL18] 224x224 •S

CNN-
LSTM

VGG16 • •
[GD18] 299x299 •S

CNN-
LSTM

Inception V3 • •
[Afc+18] 256x256 •N CNN Inception • •
[Tar+18] 1024x1024 •A•P CNN

VGG16,
ResNet110, etc.• •

[LL18] 224x224 •U•T CNN
VGG16,
ResNet50,101 •••

[Cha+19] 256x256 •S CNN Own • •[Ame+19] 224x224 •M CNN PWC-Net • •[CDY20] 128x128 •S•M•N•U•V CNN Own • •
[Kor+19]

720x576,
512x384 •S

CNN-
LSTM

Own • •
[Ngu+19] 256x256 •N•M AE-CNN Own •••[Xua+19] 128x128 •H•P CNN Own •• •[Din+20] 224x224 •S CNN ResNet18 •••[Aga+20] 128x128 •S CNN XceptionNet • •[Li+20a] 64x64 •D•M•V•G CNN XceptionNet •• •
[Dan+20] 299x299 •S CNN

XceptionNet,
VGG16 •••

[AC20] 256x256 •M LSTM Inception V3 • •
[Fer+20] 224x224 •A•V•M

ABC-
CNN

ResNet50 • •
[HZL20] 64x64 •A

Siamese-
CNN

Own • •
[KW20] 100x100 •M VAE One-Class VAE • •[Li+20b] 224x224 •S•N•T•F CNN ResNet18 • •[Mas+20] 224x224 •M•V LSTM Own ••[Mit+20] - •T•D CNN Own • •[Wan+20] 224x224 •M CNN ResNet50 • •

and still exist in recent ones. It is interesting to see that these characteristics are
mainly present in the manipulation, falsification, camera identification and CGI
detection methods but scarcely seen in the Deepfake detection works. We have
not found clear reasons to explain this observation, and it would be interesting
to carry out theoretical studies and practical comparisons with and without the
use of pre-processing step and with different initializations of the first layer, for

2.2 Image Forensics 45

various forensic problems. This is a research opportunity to be explored in our future
work. As any arms race scenario where two opponents, in this case a forger and a
forensic investigator, try to make their respective actions successful, both sides will
keep evolving with new technologies and challenges. Deep learning has brought a
tremendous advance due to its ability to automatically learn useful features from
available data and this strength has been used on both sides and their competition
will be continued in the future.

One promising working direction is that it is beneficial to gain access to real-life
forgery datasets that include ground-truth masks with a vast number of samples.
Currently, depending on the forensic problem we want to study, existing datasets may
have a limited number of examples or focus on a small range of devices or subjects.
Although data scarcity has been tackled with the few-shot learning approach, the
generalization problem may still be in game. In the case of Deepfakes detection,
a very popular research topic as we see from the large number of recent works
collected in this survey, high-quality datasets are becoming more and more available
because of the involvement and commitment of big companies.

We also believe that although single works can obtain good performance, the
combination of several domains or features will be of huge importance in the future.
We have listed some works that combine the usage of image and audio features
to detect Deepfakes, and probably these works would benefit from other features
or strategies if properly combined. To this end, the availability of open-source
implementation of existing methods is of paramount importance.

Another interesting future research topic is the development of counter-forensic
methods which we believe have a right of existence. The creation of tools to deceive
forensic detectors adds another interesting and important player in the game who
challenges the detectors of fake multimedia contents. Such scenarios are particularly
relevant for the face modification detection and Deepfakes detection because they
can have very practical and security-related applications. The resilience of these
detectors would be improved by considering the attacks of counter-forensic methods.
The competition between the two sides would be an interesting topic to follow.

In all, we think that the image forensics research presents big challenges and
opportunities for the future in which we hope to see more deep-learning-based
methods to take better account of the particularities of the image forensics field.

46 Chapter 2 Background Knowledge and State of the Art

Random High-Pass
Initialization

3
„The universe would be a mess if things were not

random.

— Servet Martinez

As mentioned in the Introduction chapter, in this thesis manuscript we focus on
the study of the weight initialization of the first layer of CNN. More specifically,
we consider two important aspects of the initialization of convolutional kernels: 1)
generating a set of random high-pass filters and 2) maintaining the stability of data
flow at the input and output of kernels. The first point is related to the specificity
of image forensic tasks, in our case the detection of basic image manipulation
operations including median filtering, JPEG compression, noise addition, etc. As
discussed in the previous chapter, in many cases forensic traces mainly reside in
the high-frequency components of the image, so a high-pass filter is preferred to
extract these discriminative traces. The second point is important for the efficient
and effective training of CNN, so as to avoid the training difficulties caused by the
exploding or vanishing of the data flow. In this chapter, we present our first attempt
in this direction which was conducted at the beginning of this thesis work and which
aimed at generating a group of random high-pass filters at the CNN’s first layer by
extending the well-know Xavier initialization [GB10b]. The results of this study
were published and presented at the ACM IH&MMSec Workshop. As discussed
later in this chapter, this first attempt has limitations and flaws mainly caused by
an unrealistic assumption largely used in the literature, and improvements will be
proposed in the subsequent chapters. Before presenting our first method, we provide
an overview of some related works on weight initialization of CNN.

3.1 Weight Initialization of CNN

Deep architectures are needed if the objective is to learn complex functions that
are able to predict high-level abstractions [LBL09]. However, every neural network

47

architecture, being small, deep or with different design, contains weights at various
layers that need to be initialized. An easy approach would be to initialize all weights
with zeros because we have limited knowledge on what the ideal weights should be
at the beginning. Nevertheless, using this method would make every weight in the
architecture calculate the same output, which will result in the same gradient and
therefore the same updating for all of them. This means that the neural network
would not achieve the so-called symmetry-breaking due to same initialization in all
weight values [He+15].

As a first strategy to break symmetry on the gradients during the backward process,
random values from a small interval were used. The intuition behind this was
that by having heterogeneous values in the initialized weights, backpropagation
algorithm would output mostly unique results and this would take full advantage of
weights among different layers. In the case of a convolutional neural network where
filters/kernels are used, we expect them to develop differently during the learning
phase. By following this strategy, values of filters are often initialized with random
samples drawn from a somewhat arbitrary uniform or normal distribution.

An issue that arises with this approach is that without any explicit amplitude control
for the initialized weights, signal in neural network may become too small or too
big and this will affect the network training. Indeed, from [BSF94] we know that
when using deep networks, if the weights in a network start too small, then the
signal shrinks as it passes through each layer until it is too tiny to be useful. On the
contrary, when the weights in a network start too large, then the signal grows as it
passes through each layer until it becomes uselessly massive.

3.1.1 Common initializations of CNN

In order to avoid the exploding or vanishing issue mentioned above and to ensure
that the weights in the network will output signal of stable amplitude (as measured
by its variance), Glorot and Bengio [GB10b] proposed to relate the amplitude of
the initialized weights to the number of layer’s inputs and outputs. Their method is
usually called Xavier initialization (Xavier being the given name of the first author
of [GB10b]) and considered as a milestone work in the literature of deep neural
networks. One basic result of this initialization is that the more number of inputs
a filter has, the smaller the initial values of the filter should be. The derivation of
Xavier initialization is simple yet elegant and will be briefly presented in the next
subsection. It is important to note that for the derivation it is assumed that both
the filter inputs and the filter weights follow respectively a zero-mean independent

48 Chapter 3 Random High-Pass Initialization

and identical distribution (iid) and that the input signal and the filter weights are
mutually independent [GBC16; FJY18].

Another important study on weight initialization was presented by He et al. [He+15].
A new initialization method considering the usage of RELU activation function was
proposed. Here we note that the amplitude of weights derived in [He+15] with
RELU activation is bigger than that of Xavier initialization which implicitly considers
linear activation function. This is because of the non-zero mean of RELU function
when compared with linear activation. The weight initialization proposed by He
et al. is commonly known as He initialization or Kaiming initialization (Kaiming
being the given name of the first author of [He+15]). Both Xavier and Kaiming
initializations are used in many deep learning papers and almost all machine learning
implementation frameworks. Another important contribution of [He+15] was a
thorough analysis concluding that if the initialization method produced weights of
appropriate amplitude for the forward process, normally it would also be the case
for the backward process, and vice versa.

3.1.2 Common initializations of CNN for image forensics

As previously described in section 2.2 some popular initialization methods in the
image forensics field are the ones that use high-pass filters to remove the visual
content and enhance traces left by different manipulations. Bayar and Stamm’s
constrained method [BS18a] and the SRM filters are two of the most commonly
used initialization techniques with this approach.

The Bayar’s method proposed a customized first layer which forced the CNN to learn
a set of Laplacian-like filters (please refer to section 2.2.2 for some technical details).
The constraint is enforced through simple filter normalization after each iteration of
training and can give higher detection accuracy than CNNs without this constraint.
Meanwhile SRM filters are a common initialization method for the first layer of
a CNN used in several image forensic tasks, e.g., the detection of manipulation
operations [CLL17a], of splicing and copy-move forgeries [LGC18], and of inpainted
images [LH19]. SRM filters, a group of handcrafted high-pass filters originally
designed for steganalysis [FK12], are put at CNN’s first layer as initialization and
this often leads to very good forensic performances. Other methods such as the one
used in [CKL15] proposed to set the CNN input as the so-called median filtering
residual rather than as the raw image patch. Here, the residual means the difference
between an image patch and its median filtered version, and this can be understood
as a customized first layer of fixed non-linear high-pass filtering in the CNN.

3.1 Weight Initialization of CNN 49

In this manuscript, we describe three approaches that are the results of the evolution
of our work on the design and test of CNN initialization methods for image forensics.
The first approach defines the basic framework for random high-pass initialization of
first-layer filters (this chapter), followed by a correction of an unrealistic assumption
for the design of a data-dependent scaling approach for filters initialized by various
algorithms (chapter 4), and finally a revisited and improved random high-pass
initialization with correct assumption (chapter 5).

3.2 Our Random High-Pass Initialization

In the remaining part of this chapter, we present our first method of random high-
pass initialization. This was conducted at the beginning of this thesis work and was
motivated by the observations about the previous initialization methods used in
image forensics field: methods like [CKL15] with a customized and fixed first layer
are restrictive and in consequence may be sub-optimal for the considered forensic
problem; Bayar’s constrained method [BS18a] is rather computationally costly
(constraint enforcing at each iteration) and might also be sub-optimal; initialization
with SRM filters [FK12] may be a good choice but it does not consider the stability
of the signal in and out of filters; at last popular methods from the computer vision
community, e.g., the well-known Xavier initialization [GB10b], in general do not
cope well with forensic tasks because they do not generate high-pass filters at
first layer, and this in practice usually results in lower performance compared to
other methods mentioned above. We also notice that in many existing CNNs for
forensics of image manipulations, the second to last layers are initialized with a
conventional method, e.g., the popular Xavier method [GB10b], while the first layer
is a customized one. We believe that a simple technical solution can be developed
so as to mitigate the decoupling of the initialization and design of the first and the
remaining layers. Given the above observations, we propose a new initialization
method for CNNs, which is actually an extension of the Xavier method in cases
where we want to generate random high-pass filters. We present the details of our
first approach in the next subsection.

3.2.1 The proposed method

As mentioned above, some previous methods used simple fixed high-pass filtering or
constrained filters in the first layer of CNN [CKL15; BS18a]. Instead, we decided to
derive a less restrictive and less ad-hoc method, i.e., setting up a good initialization

50 Chapter 3 Random High-Pass Initialization

followed by a free training. This was inspired by the milestone work of Glorot
and Bengio [GB10b], also well known as the Xavier initialization. More precisely,
for initializing filter weights in a CNN, a mathematically rigorous study has been
performed which takes into account the stability of the variance of the signal of
CNN data flow, and this helps the signal to reach deep into the network. Indeed, as
mentioned above, if the filter weights in a network start too small (resp. too large),
then the signal shrinks (resp. grows) as it passes through each layer until it becomes
too tiny (resp. too massive) to be useful for the network training [GB10b].

In a CNN, each filter/kernel performs locally a weighted sum of the input data
“seen” by the kernel, using the kernel values as weights [GBC16; FJY18]. Let
us assume that the filter comprises N scalars denoted by W = (w1, w2, ..., wN)
(here considered as a group of random variables), then accordingly the input data
“seen” locally by this filter also comprises N scalar random variables, denoted by
X = (x1, x2, ..., xN). Now it can be seen that the output y of a filter is simply the
inner product between W and X. We can therefore easily derive the variance of y as
given in Eq. (3.1), where the second equality holds under mild conditions that the N
random variables wi,i=1,2,...,N (resp. xi,i=1,2,...,N) follow zero-mean independent and
identical distribution (iid) and that wi and xi are mutually independent [GBC16;
FJY18].

Var(y) = Var(w1x1 + w2x2 + ...+ wNxN)

= NVar(wi)Var(xi).
(3.1)

The idea of Xavier initialization is to keep the variance of the filter output the same
as that of the filter input, so that the data flow keeps stable throughout the CNN,
and this helps to facilitate the network training. From the above analysis, we can see
that this requirement means that the term NVar(wi) in Eq. (3.1) should be equal
to 1, i.e., we have Var(wi) = 1

N . Once we know the variance of wi, we can draw
values from a simple and appropriate distribution (i.e., a uniform or a Gaussian
distribution) to be the initial weights of the filter.

Recall that in this manuscript we aim to detect the traces of image processing
operations. Although CNNs give a promising methodology towards automatic feature
learning, in their current form (mostly from the computer vision community), they
are not fully suitable for forensic problems. This is on the grounds that current
neural networks (especially those coming from the computer vision community)
tend to learn features representative of an image’s content, contrary to forensic
traces which are rather content-free and lie towards the high-frequency part of the
images [CKL15; BS18a]. The Xavier initialization is one of the possible reasons to
explain this observation, as in general the initialized filters in the first layer are not

3.2 Our Random High-Pass Initialization 51

Fig. 3.1.: Shape and notations of the initialized high-pass filter (left) and the corresponding
input (right), with a 3× 3 filter as example (see the main text for details).

high-pass and not very sensitive to forensic traces. Therefore, our objective here
is to design a new initialization method which would be able to keep the variance
stability of filter’s input and output, and at the same time capable of generating a
set of randomly initialized high-pass filters. To this end, we make adaptation to the
original Xavier initialization as explained in the following.

We first of all choose a simple “template” for the high-pass filters to be initialized,
which is shown in Figure 3.1 left. The filters in fact can have different sizes in
different applications. In the case of a 3× 3 filter, we divide the 9 elements into two
groups: The first group is the center element with an unknown constant value C,
while the remaining Ñ = 8 elements are all scalar random variables following a
tractable and adequate distribution. Both the value of C and the statistical properties
of the random variable distribution are to be derived.

Regarding the derivation of our proposed method, first of all, in order to have a
high-pass filter after initialization, we require that the mathematical expectation of
wi,i=1,2,...,Ñ should be equal to −C

Ñ
(i.e., E(wi) = −C

Ñ
), so that the expectation of the

sum of all the Ñ elements is equal to −C, together with the center element forming
a high-pass filter (see Figure 3.1 left). For the filter input, we set the notations as
shown in Figure 3.1 right. Afterwards, by applying the variance properties of the
sum and the product of random variables, we can compute the variance of the filter
output y, for the general case where the number of non-constant filter elements is
Ñ . This is presented in the following equation:

Var(y) = Var(w1x1 + w2x2 + ...+ wÑxE(wi)= C
N

+ C.xÑ+1)

= Var(xi)
[
C2 + C2

Ñ
+ Ñ .Var(wi)

]
.

(3.2)

Here we still assume that wi and xi are mutually independent and follow iid. To
have the second equality, we have mainly used the variance property of the product
of two independent random variables [Goo60] as detailed in the equation below:

Var(wixi) = [E(wi)]2Var(xi) + [E(xi)]2Var(wi) + Var(wi)Var(xi)

= C2

Ñ2 Var(xi) + 0.Var(wi) + Var(wi)Var(xi).

52 Chapter 3 Random High-Pass Initialization

Now, because we want to have the same variance for the input and output, it can be
seen that the term inside the square brackets in Eq. (3.2) should be equal to 1. Then
the variance of wi can be obtained as:

Var(wi) =
1− C2 − C2

Ñ

Ñ
. (3.3)

In the meanwhile, we need to choose an adequate distribution of wi, which should
also be as simple as possible for the sake of easy numerical sampling. To this end,
for wi we choose in our case one of the simplest distributions with a prescribed
expectation of −C

Ñ
(to have a high-pass filter as discussed above), i.e., the uniform

distribution within the interval [−2C
Ñ
, 0] or [0,−2C

Ñ
], depending on the chosen sign

of C. Therefore, the variance of wi can be easily calculated as (with C being positive
as example, but the final result is the same regardless of the sign of C):

Var(wi) =
∫ 0

− 2C
Ñ

(
x+ C

Ñ

)2 Ñ

2Cdx = C2

3Ñ2 . (3.4)

By equalizing Eqs. (3.3) and (3.4), we obtain a simple quadratic equation which is
guaranteed to have two valid real roots as:

(4 + 3Ñ)C2 − 3Ñ = 0 =⇒ C = ±

√
3Ñ

4 + 3Ñ
. (3.5)

This nicely implies that our initialization can be applied to arbitrary size of filters
which comprise Ñ + 1 elements and which follow the template that we have chosen.
In the case of 3 × 3 filter, the center element C is equal to ±

√
6
7 . Accordingly, we

can easily get the uniform distribution for the numerical sampling of wi.

We initialize the CNN’s first layer by using the value of C and drawing samples
of wi to build randomly initialized high-pass filters, and the remaining layers are
initialized with the conventional Xavier initialization. As shown in the next section,
the proposed initialization copes well with two different CNNs to solve two differ-
ent forensic problems of detecting image processing operations, with competitive
performance when compared to existing methods.

3.3 Experimental Results

In order to test the proposed initialization, we carry out experiments for the two
forensic problems considered in [BS18a] and [CKL15]. We first test a multiclass

3.3 Experimental Results 53

Tab. 3.1.: Considered manipulation operations and their parameters in the multiclass
forensic problem. The parameter is randomly chosen for the last two operations.
σ is the parameter of standard deviation. The considered parameter setting is
more challenging than in [BS18a].

Median filtering FilterSize = 3
Gaussian blurring σ = 0.5, FilterSize = 3
Additive Gaussian noise σ = 1.1
Resampling ScalingFactor ∈ {0.9, 1.1}
JPEG compression QualityFactor ∈ {90, 91, ..., 100}

forensic problem for identifying a group of image processing operations [BS18a], and
then conduct experiments for median filtering forensics with JPEG post-processing
[CKL15]. For each problem, we use CNN architectures from the original papers
[BS18a; CKL15] and apply our initialization at the first layer of these networks. In
both experiments, for the CNN with our initialization, we use the Adam optimization
algorithm [KB14] with exponential decay of learning rate for the network training,
and we let the network learn for 25 epochs. In this chapter, the implementation and
test of our proposed method were based on Tensorflow® v1.7.0 with two Nvidia®

GPUs of GeForce GTX 1080 Ti.

3.3.1 Multiclass forensics

We first consider a challenging multiclass classification problem for forensics of
a group of image processing operations. Following [BS18a], our objective is to
correctly classify six kinds of image patches: the unprocessed pristine patches and
the processed patches by respectively five different manipulation operations listed
in Table 3.1 (same operations as in [BS18a] but with differences as explained
below). In fact, our parameter setting of operations is more challenging than those
considered in [BS18a]. For example, we consider JPEG compression with quality
factor higher than or equal to 90, while [BS18a] mainly considers quality factor of 70
and 80; we use median filtering with kernel size of 3, while [BS18a] uses kernel size
of 3 and 5 or even bigger. This in part explains the accuracy decrease of Bayar and
Stamm’s method in this manuscript when compared with the performance reported
in the original paper (results will be presented in the remaining of this subsection).
We have chosen this challenging setting to show performance of forensic methods
when used to solve a difficult problem. This challenging setting can be encountered
in a real scenario in which for example inside a splicing operation a resampling
could be performed with a small scaling factor of 1.1. In this case, the high similarity
of the processed patch to the original one makes the forensic problem difficult. This

54 Chapter 3 Random High-Pass Initialization

Fig. 3.2.: Examples of images from Dresden database [GB10a] and the generated patches
used in our experiments. Bottom images on columns A an D show pristine patches
while columns B and E show the JPEG compressed and median filtered patch
respectively. Columns C and F show the thresholded absolute differences for the
two pairs of pristine and manipulated patches. The threshold is set as 20.

is similar for weak noise addition with a parameter σ = 1.1, which could in some
cases be applied to hide traces of other tampering operations.

The experiment was conducted on the Dresden image database [GB10a], which com-
prises 1491 unprocessed high-resolution images and which was also used in [BS18a].
The Dresden images were converted to be grayscale by the Python rgb2gray function
and then divided into three groups with the ratio of 3:1:1, respectively for training,
validation and testing. Here we conduct tests on patches of 64 × 64 pixels drawn
from full-sized Dresden images. This small size of patches is another challenging
factor, because the smaller a patch is, the less information it contains for carrying
out correct classification. There are 100, 008 patches in the training set, i.e., 16, 668
patches for each of the six classes. The validation and testing sets both have 32, 022
patches, with 5, 337 patches for each class. Figure 3.2 shows on the first row two
images of Dresden database. The bottom row shows both pristine and manipulated
patches along with a binary representation of thresholded absolute difference be-
tween a pair of pristine and processed patches. We can notice that the difference
between pristine and processed patches, both visually and computationally, is quite
small, reflecting that what we consider is a challenging forensic problem.

Since we focus on the first layer initialization and its utility, for this first experiment
we have borrowed the network design used by [BS18a] (see the original paper for

3.3 Experimental Results 55

Tab. 3.2.: Detection accuracy, after 25 epochs, of the three methods regarding the design
of network’s first layer (in %, average of 15 runs), on the testing set of the
challenging multiclass forensic problem.

Method Accuracy
Fixed high-pass filters 77.38

Constrained filters [BS18a] 81.32
Our initialization 87.56

details of network architecture). The first layer of their network contains three
constrained 5× 5 Laplacian-like filters. In our network, we replace the first layer by
three 5×5 filters initialized by our method presented in Section 3.2.1, while keeping
the network architecture unchanged. Later, our network was trained without any
constraint. For comparison purposes, we also tested a network with three fixed 5× 5
high-pass filters which simply compute the prediction error of the center element
in input by using a weighted sum (with equal weights) of its 24 neighbors “seen”
by the filter. For the constrained CNN [BS18a], we have used the original Caffe
implementation shared on-line by the authors1. For the training of network with our
initialization, Adam [KB14] was used with a starting learning rate of 1e−3. We used
a schedule of exponential learning rate decay after each epoch with a parameter of
0.3, and we set a lower bound of 5e− 7 for the decayed rate.

We measure the forensic performance by using the detection accuracy which is
computed as the percentage of correctly classified patches among all the patches of
the six classes as given in Equation 3.6, where M is the number of predictions (i.e.,
the number of samples from all the six classes), ỹi is the ground-truth label of i-th
sample, yi is the predicted label, and 1(.) is the indicator function.

Accuracy = 1
M

M∑
i=1

1(ỹi = yi). (3.6)

Table 3.2 presents the accuracy on the testing set of all the three methods for
the setting of the network’s first layer: our initialization, the constrained filters of
[BS18a], and the fixed high-pass filters. In order to enhance the significance of the
results, we ran the experiments for 15 times for all three methods and report in Table
3.2 the average of 15 runs. We can see that our initialization provides satisfying
forensic accuracy for this challenging multiclass forensic problem.

We would like to mention that due to some technical and implementation difficulties,
in this subsection experiments of our method (implemented with TensorFlow) and

1Code available at https://gitlab.com/MISLgit/constrained-conv-TIFS2018/.

56 Chapter 3 Random High-Pass Initialization

https://gitlab.com/MISLgit/constrained-conv-TIFS2018/

those of Bayar and Stamm’s method (with the original Caffe implementation shared
by the authors) were conducted on two different computers equipped with different
deep learning development environments. We failed to install two environments
on a same computer, probably because of our limited experience on deep learning
development and the limited technical support of multiple environments at that
time. Furthermore, we were not familiar with development using Caffe and were
not able to implement a TensorFlow version of Bayar and Stamm’s method that
could reliably reproduce results of their original Caffe version. In addition, each
method has its own properly tuned optimization algorithm and learning schedule.
Therefore the comparisons were not completely fair and we do not claim that our
method works better. The aim was to show the feasibility and utility of our method
which extends the Xavier initialization and which is based on the idea of random
high-pass initialization followed by free training without constraint. This point about
experiments is improved in the next chapter to achieve fairer comparisons where we
manage to create reliable PyTorch implementations for all considered methods.

3.3.2 Median filtering forensics with JPEG post-processing

To continue the test of proposed initialization, we now consider a second forensic
problem and carry out experiments with a different database and network. The
objective is to accurately detect median filtering applied before JPEG compression.
This problem is challenging because JPEG post-processing can partially remove
the traces of median filtering. Similar to the last experiment, we borrow network
architecture from Chen et al.’s work [CKL15] and replace the first layer of their
fixed residual computation by our initialization and the original Xavier initialization
[GB10b], respectively. Here we use our own implementation for the method and
network of [CKL15] (to our knowledge the original authors’ implementation is not
available). Adam optimizer and the same optimizer parameters were used for our
initialization, Xavier initialization and the method in [CKL15]. We conducted experi-
ments on the UCID database [SS04] which is also used in [CKL15]. The training
set has 16, 668 patches, and the validation and testing sets both have 5, 556 patches,
with equal number of patches for the two classes with or without 3 × 3 median
filtering applied before JPEG compression. We use 64 × 64 patches and consider
three JPEG compression quality factors of 50, 70 and 90. It is worth mentioning that
we mistakenly introduced a second JPEG compression of default quality factor of 75
when saving patches on hard drive. So in the end, there are two JPEG compression
post-processing operations on patches with or without 3×3 median filtering, denoted
respectively by JPEG50+75, JPEG70+75 and JPEG90+75. Our careless mistake in

3.3 Experimental Results 57

Tab. 3.3.: Detection accuracy (in %, average of 5 runs) on the testing set of the median
filtering forensic problem with JPEG post-processing of different quality factors
of 50, 70 and 90. An additional JPEG compression of default quality factor of 75
was mistakenly introduced which makes the detection of median filtering even
more difficult.

Method JPEG50+75 JPEG70+75 JPEG90+75
Chen [CKL15] 80.32 83.32 85.32

Xavier init. [GB10b] 71.56 75.32 84.23
Our init. 83.55 85.77 88.63

data preparation makes the forensic problem even more difficult, nevertheless in
our opinion the problem still remains realistic and reasonable.

Table 3.3 presents the accuracy on the testing set at the end of the CNN training of
25 epochs for all the three scenarios. It can be noticed that our method has satisfying
and competitive forensic performances. The difference of detection accuracy of Chen
et al.’s method when compared to the original paper [CKL15] is probably due to
difference and randomness in JPEG post-processing, experimental data, and network
implementation and training.

3.4 Summary and Discussion

The preliminary results presented in this chapter show the feasibility and effective-
ness of our initialization for the tested forensic problems. Our conjecture is that
the proposed initialization provides a good initial status of the network and puts
less restriction on the training of CNN. This would be useful for the CNN to explore
interesting solution spaces. More precisely, the optimization problem involved in
CNN training is in general highly complicated and non-convex, and the quality of the
final result may depend heavily on the initial values of the CNN. Our initialization
outperforms the conventional Xavier initialization, as shown by the results of median
filtering forensics with JPEG post-processing, especially in the challenging settings
of JPEG50+75 and JPEG70+75 (see Table 3.3). This may be due to that the former
probably gives a better starting point in the optimization space, thus a more relevant
subspace to explore. In fact, our initialization generates a high-pass filter which is
useful to extract forensic traces, while the conventional Xavier initialization does
not generate such a filter.

This is our first attempt in designing CNN initialization for image forensics, and
there is much room for improvement as briefly discussed in the next paragraph.

58 Chapter 3 Random High-Pass Initialization

Nevertheless, the simplicity of this first approach and the easy combination with
popular initialization solutions, i.e., the Xavier initialization, make the proposed
method an eligible option for building and training CNNs for forensic tasks related
to the detection of image processing operations.

For this first approach, we extend the well-known Xavier method to cases where
we want to generate random high-pass filters for CNN kernels. Although satisfying
results were obtained, this first method has limitations and flaws. We quickly
realize later in our thesis work that the independent and identical distribution
(iid) assumption of network input, i.e., image pixels X = (x1, x2, ..., xN) in our
formulation, is unrealistic, though this assumption is largely used among the research
community. Indeed, it has been demonstrated that neighboring pixels in natural
images are highly correlated and not independent at all [SO01]. In addition, we
are aware that the comparisons with existing methods in this chapter were not
completely fair due to different deep learning development environments and the
tuned network training of each method. Furthermore, we would like to thoroughly
analyze the concrete behavior of popular initialization methods (including Xavier
method and various high-pass filters) to understand the actual functioning of these
methods and their impact on the properties of the output signal. These points are
considered, handled and improved in the next chapter in which we propose a simple
data-dependent scaling method for any given initialized first-layer filter to ensure
the data flow stability in and out of the filter.

3.4 Summary and Discussion 59

Data-Dependent Initialization 4
„Flexibility is the key to stability.

— John Wooden

In this chapter, we use a corrected assumption of the statistics of natural images to
propose a scaling method for popular initialization algorithms of CNN’s first layer. To
accomplish this, we focus on two subjects: 1) An analysis of the output variance of a
convolutional filter and 2) a proposed scaling method to maintain a stable output
amplitude. The first part is important to understand why common initialization
algorithms may produce filters that shrink the input signal at their output, which
would slow down the convergence speed of the learning process and reduce the
final accuracy for the detection of image manipulation operations. Furthermore, in
the second part we propose a scaling method based on the knowledge of statistical
properties of input images. The proposed scaling method can improve the forensic
performance of four different initialization algorithms when tested on different
forensic scenarios and CNN architectures. Our proposed method was published
and presented at the IWDW workshop. For the purpose of improving the quality
of our work, from this chapter we test every method and architecture under the
same develop environment to ensure a fair and reliable comparison. As discussed at
the end of this chapter, a data-dependent proposal (i.e., dependent on input signal
properties) such as the one presented in this chapter may not be the preference for
certain situations and this will be addressed in the next chapter. In the following, we
start with an analysis of the output variance of a convolutional kernel in a CNN.

4.1 Variance of Output of Convolutional Filter

Our motivation continue in the line of having a stable data flow in CNN, as reflected
by the stability of variance of the signal in and out a layer. Ideally, the variance of
input and output of a layer should be equal to each other, which is beneficial for the
training of CNN [GB10b; FJY18]. In this second approach, we first show that we can
predict the variance of the output of a convolutional filter by using statistics of input
signal and elements of the filter. Then, we present observations and understandings

61

regarding the output variance for the four initialization algorithms of convolutional
filter which are mentioned in the last chapter. For the sake of brevity, the four
algorithms are hereafter called Xavier [GB10b], SRM [FK12], Bayar [BS18a], and
Castillo [CW19] (our first method presented in the previous chapter).

We observe potential limitations of the four initialization algorithms and have the
intuition that the variance of output of a convolutional filter initialized by them
may change substantially compared to the input. SRM [FK12] and Bayar [BS18a]
do not take into account the output variance during the initialization, because the
two algorithms put directly third-party SRM filters or normalized high-pass filters
at first layer without modelling the input-output relation. Xavier [GB10b] and
Castillo [CW19] consider the input-output relation and generate pseudo-random
filters. These two algorithms are based on a statistical point of view and realized
by drawing pseudo-random samples, so in practice properties of initialized filters
may differ for different realizations. In addition, both algorithms assume that input
is composed of random variables of independent and identical distribution (iid),
but it is clear that pixels in natural images have strong local correlations [SO01].
In consequence, this unrealistic yet popular assumption used by Xavier [GB10b]
and Castillo [CW19] may lead to unexpected or biased results for initialized filters.
Therefore, it is interesting and important to experimentally and theoretically study
the actual output variance of filters initialized by the above algorithms.

4.1.1 Formulation

As described in subsection 3.2.1, convolutional layers used in CNN contains a
set of learnable filters (also called kernels) [FJY18]. During the forward pass,
the kernel moves in a sliding-window manner across the input and computes a
weighted sum of the local input data and the kernel. This procedure results in a
so-called activation map comprising all the local results computed at every sliding
movement of the kernel. Now assume that the kernel contains N scalars denoted
by W = (w1, w2, ..., wN), then the local input data involved in the computation also
contains N scalars, denoted by X = (x1, x2, ..., xN). It is easy to see that the local
output y is simply the dot product of W and X, as:

y = 〈W,X〉 =
N∑

i=1
wi.xi. (4.1)

In Xavier [GB10b] and our first proposal described in the previous chapter, both wi

and xi are assumed as independent random variables. As mentioned before, this

62 Chapter 4 Data-Dependent Initialization

assumption may have limitations, e.g., the (strong) correlations between different
pixels xi are not considered. In this second approach, we take a new and more
practical point of view. Since we focus on a proper scaling of a given kernel, we
assume that the kernel elements wi are known constants, which can be generated
by any initialization algorithm. In addition, we do not consider xi as independent;
instead, we consider them as mutually correlated random variables reflecting the
natural image statistics [SO01]. With these assumptions and based on the property
of variance of weighted sum of variables, we can compute the variance of the output
y as presented in the following equation:

Var(y) = Var
(

N∑
i=1

wi.xi

)
=

N∑
i=1

N∑
j=1

wiwjCov(xi, xj)

=
N∑

i=1
w2

i Var(xi) + 2
∑
1≤i

∑
<j≤N

wiwjCov(xi, xj).
(4.2)

The last expression just divides all the relevant terms into two groups: variance
terms and covariance terms of the input signal components (x1, x2, ..., xN).
Furthermore, it is well-known that natural images have approximate translation
invariance [SO01], implying that Var(xi), i = 1, 2, ..., N are almost identical. In
addition, the neighboring pixels are usually highly-correlated [SO01], which means
that Cov(xi, xj) is close to Var(xi). We approximate Var(xi) by Var(x), the overall
variance of input. Then we have the following approximation for Eq. (4.2):

Var(y) ≈ Var(x)

 N∑
i=1

w2
i + 2

∑
1≤i

∑
<j≤N

wiwjZij

 , (4.3)

with Zij = Cov(xi, xj)/Var(x) which are in practice smaller than but very close
to 1 for small natural image patches due to high correlation of neighboring pixels.
Experimentally the above equation approximates very well the output variance. It
also helps us to understand the output variance of popular initialized filters used for
image manipulation detection, as presented in the remaining of this section.

4.1.2 Convolutional filter initialized with high-pass filter

We first consider convolutional filter initialized as each of the 30 SRM filters1 of
shape 5×5 (so here N = 25). In order to test on real data for convolutional filter, we

1The 30 SRM filters can be found in the class of SrmFiller, starting from line 347 of this webpage
https://github.com/tansq/WISERNet/blob/master/filler.hpp

4.1 Variance of Output of Convolutional Filter 63

https://github.com/tansq/WISERNet/blob/master/filler.hpp

Fig. 4.1.: The value of Var(y)/Var(x) for each of the 30 SRM filters obtained by using the
covariance-based method of Eq. (4.3) and the convolution-based method.

take as input 64× 64 grayscale image patches generated from the Dresden database
[GB10a]. The image manipulation operations that we want to detect are listed in
Table 3.1 (i.e., the same manipulations of the multi-class forensics setting considered
in the previous chapter). We then compute the variance of output of each SRM filter
by two different methods: the first one with Eq. (4.3) and the second one with
actual convolution between the input and the filter. Hereafter, we call the first as
covariance-based method because Eq. (4.3) is mainly based on the covariance terms
Cov(xi, xj) of the input signal components (x1, x2, ..., xN), and we call the second
one as convolution-based method. For the first method, the covariance terms are
estimated from 5× 5 small patches (same size as SRM filters) which are randomly
extracted from the aforementioned 64× 64 Dresden image patches that have been
converted to grayscale.

The results of Var(y)/Var(x), i.e., the ratio of output and input variance, are shown
in Fig. 4.1. We can see that the amplitude of Var(y)/Var(x) is very small for all 30
SRM filters, which lies basically in a range from 0 to 0.016 with a mean of about
0.005. The output of majority of SRM filters has a variance smaller than 1% of
input variance, reflecting the signal shrinkage. It can also be observed that the two
methods to obtain output variance give very close results of Var(y)/Var(x), implying
the coherence of the prediction by Eq. (4.3) with the practical convolution results.

In order to understand the small output variance for SRM filters, we start from
one important property of these high-pass filters. Like many high-pass filters, e.g.,
Laplacian filter, the sum of all filter elements is equal to 0 for all 30 SRM filters
of shape 5 × 5 (i.e., N = 25), which means that we have

∑N
i=1wi = 0 (cf., link in

64 Chapter 4 Data-Dependent Initialization

footnote 1). It is then easy to deduce that
∑N

j=1wj .
∑N

i=1wi =
∑N

i=1
∑N

j=1wi.wj = 0.
By dividing the wi.wj terms into two groups, we obtain

N∑
i=1

w2
i + 2

∑
1≤i

∑
<j≤N

wiwj = 0. (4.4)

The left-hand side of the above equation is almost same as the term in the bracket
of Eq. (4.3), except that in the above Eq. (4.4) we replace Zij by 1. As mentioned
earlier, for small natural image patches, we have the property that Zij are usually
smaller than but very close to 1. This is verified by experiments on Dresden database
where the minimum Zij value is 0.9573 for 5× 5 small patches. It is not surprising
that this minimum Zij value is attained between two pixel positions that are the
farthest from each other within the 5× 5 small patch. From the above analysis we
can see that the term in the bracket of Eq. (4.3) is close to 0, which results in a
small value of output variance Var(y) for 30 SRM filters. This intuitively explains
the small Var(y)/Var(x) values shown in Fig. 4.1.

Regarding the high-pass filter initialized by Bayar [BS18a] and Castillo [CW19],
we simulated 10, 000 filters with both algorithms and calculated the variance of
output of simulated filters. We also observe very small values of the ratio of output-
input variance, with about 0.005 and 0.010 as the mean value of Var(y)/Var(x),
respectively for Bayar and Castillo. As we can see, our method proposed in the
previous chapter results in a much smaller output variance than expected. This
is mainly caused by the unrealistic iid assumption of input signal components
(x1, x2, ..., xN) that we make in the last chapter. In fact, both Bayar and Castillo
generate high-pass filters after initialization. For Bayar all filter elements sum up
to zero after enforcement of filter normalization (cf., Section 2.2.2 in particular Eq.
(2.5)). For Castillo the sum of the two groups of filter elements, i.e., a constant
and a number of pseudo-random numbers, is approximately equal to zero because
theoretically the mathematical expectation of this sum is zero (cf., paragraphs below
Fig. 3.1 in Section 3.2.1). Therefore, the above explanation with Eqs. (4.4) and
(4.3) can still be used to intuitively understand the small output variance of Bayar
[BS18a] and Castillo [CW19]. An improved version of our method Castillo, with
corrected assumption about input signal, will be presented in the next chapter.

4.1.3 Convolutional filter initialized with Xavier initialization

We also carry out studies on the popular Xavier initialization [GB10b] which gener-
ates 5×5 filters filled with pseudo-random samples drawn from a zero-mean uniform

4.1 Variance of Output of Convolutional Filter 65

0

200

400

600

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Var(y)/Var(x)

C
o
u
n
t

0

10

20

30

40

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020
Var(y)/Var(x)

Fig. 4.2.: Two histograms of occurrences of output-input variance ratio Var(y)/Var(x) for
10, 000 Xavier filters. Please refer to main text for detailed explanation.

distribution. We created 10, 000 Xavier filters using PyTorch and Figure 4.2 shows
two histograms of occurrences of output-input variance ratio, i.e., Var(y)/Var(x):
the left one is for the range of 0 to 3 with a bin width of 0.02, while the right one
shows detailed occurrences for the first bin of the left histogram for the range of 0 to
0.02 with a bin width of 0.001. We computed the mean value of Var(y)/Var(x) for
the 10, 000 simulations of Xavier and found that the mean is close to 1 (desired value
of Xavier); this is because of a long tail of big values that we do not completely show
in Fig. 4.2. The left histogram of Fig. 4.2 does not have a peak around 1; instead,
the highest occurrences occur near 0. This is a little surprising yet understandable
according to Eq. (4.3). In fact, the elements of Xavier filter are drawn from a
zero-mean distribution, so the bracket term in Eq. (4.3) tends to have a small value.
However, due to numerical sampling and in particular considering the relatively low
number of 25 pseudo-random samples (for 5× 5 filter), it is possible for the bracket
term to take big values in certain simulations. Experimentally this bracket term of
Eq. (4.3) can be as big as 13 for some Xavier filters. In addition, from the right
histogram of Fig. 4.2, for Xavier the occurrences of Var(y)/Var(x) being very small
values, i.e., less than 0.01, is very low: 109 out of 10, 000 simulations (i.e., around
1% probability). In contrast, the majority of this variance ratio is less than 0.01 for
high-pass filter initializations as presented in last subsection.

Theoretical explanation for the histogram shape of Xavier simulations

We give further explanation for the shape of the histogram shown in Figure 4.2 left.
This histogram of output-input variance ratio of the popular Xavier initialization
is somehow surprising because we would rather expect a high peak at 1 for which
Xavier keeps the stability of output and input variances. However, in practice we

66 Chapter 4 Data-Dependent Initialization

observe very high occurrences at small values, together with a long tail (which we do
not completely show in the histogram) the mean value is around 1. In addition, we
can seen that the ratio Var(y)/Var(x) has a certain variance because it can take both
rather small and relatively big values. More importantly, the histogram is featured
with a big positive skewness, which means that the tail on the right side is longer and
the mass is concentrated on the left side of the histogram. In the following, we show
that with the correct assumption on the input statistics we can predict the values of
the mean, variance and skewness of the histogram, which are important statistical
properties reflecting the shape of the histogram.

In our simulations, we generated 10, 000 Xavier filters of shape [1, 1, 5, 5], meaning
that we have one input, one output and a kernel of height and width of five. These
filters were created using the PyTorch function torch.nn.init.xavier_uniform_.
The interval used for drawing pseudo-random samples is U(−

√
3/25,

√
3/25), based

on the general form of uniform distribution U(−
√

3/N,
√

3/N) for Xavier initializa-
tion with N the total number of elements in a filter (here we have N = 5× 5 = 25).
With these characteristics we can study the theoretical properties of the ratio of
output-input variance and compare with the results of experimental simulations.

For this scenario of Xavier filter simulations, we consider the statistical properties
of X = (x1, x2, ..., xN) as fixed while W = (w1, w2, ..., wN) are sampled in a pseudo-
random way to create each of the 10, 000 Xavier filters. We know that in each
simulation the output variance Var(y) is given by Equation 4.2 and approximated by
Equation 4.3. The computation of Var(y) can be further approximated by replacing
Cov(xi, xj) by Var(x), or equivalently by replacing the Zij terms by 1. This gives
the following Equation 4.5 where we can notice that Var(y) is a random variable
dependent on wi,i=1,2,...,N while Var(x) is the fixed overall variance of the input.

Var(y) =
N∑

i=1

N∑
j=1

wiwjCov(xi, xj)

≈ Var(x)
N∑

i=1

N∑
j=1

wiwj

= Var(x)(w1w1 + · · ·+ w1wN + w2w1 + · · ·+ wNwN).

(4.5)

For the sake of clarity and easy understanding of the subsequent derivations, we
develop all the N2 terms of wiwj in the parentheses above.

1) Mean of Var(y)/Var(x)

We begin by calculating the mean of Var(y) as detailed in Equation 4.6 below. The
last equation is obtained with help of the property of Xavier initialization [GB10b]

4.1 Variance of Output of Convolutional Filter 67

(also briefly presented in subsection 3.2.1) for which we have E(w2
i) = Var(wi) = 1

N

(recall that wi has zero mean). Additionally, many of the N2 terms of E(wiwj) in the
summation are equal to zero when i 6= j (beacause w1, w2, ..., wN follow zero-mean
iid). In the end, only the N terms of E(wiwi) contribute to the sum.

E(Var(y)) ≈ Var(x)E(w1w1 + · · ·+ w1wN + w2w1 + · · ·+ wNwN)

= Var(x)
N∑

i=1

N∑
j=1

E(wiwj) = Var(x)
N∑

i=1
E(wiwi)

= Var(x)NE(w2
i) = Var(x).

(4.6)

The derived theoretical mean of output-input variance ratio, i.e., E(Var(y)/Var(x)),
is actually the desired value 1 of Xavier initialization. However as we showed
previously, the histogram of Var(y)/Var(x) does not have a high peak at 1; in
contrast, it has a big mass concentration on the left and a long tail on the right.

2) Variance of Var(y)/Var(x)

Ideally the variance of Var(y) should be very small, reflecting the stability of output
variance in a large number of simulations. Nevertheless, we can see from the
simulations that Var(Var(y)) would not be very small because the variance ratio
can be a relatively small or a relatively big value. In order to calculate Var(Var(y)),
we use the standard formula of the variance of the sum of (potentially) correlated
random variables as shown in the third row of Equation 4.7 below.

Var(Var(y)) ≈ Var

Var(x)
N∑

i=1

N∑
j=1

wiwj

= Var2(x)Var

 N∑
i=1

N∑
j=1

wiwj

= Var2(x)

 N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

Cov(wiwj , wkwl)

= Var2(x)

[4
5N + 2(N − 1)

N

]
.

(4.7)

In order to obtain the final result in the last row above, we make use of the fact
that among N4 terms of Cov(wiwj , wkwl) in the summation on the third row of
Equation 4.7, many of them are equal to zero. For example, this is the case for terms
like Cov(w2

i , wkwl) = 0 (when i = j and i 6= k 6= l) or Cov(wiwj , wkwl) = 0 (when
the four indices are all different). In fact, only the N terms of Cov(w2

i , w
2
i) = 4

5N2

and the 2N(N − 1) terms of Cov(wiwj , wiwj) = 1
N2 contribute to the sum of the

covariance terms, which leads to the final equation. The detailed derivation is

68 Chapter 4 Data-Dependent Initialization

omitted here but should be easy to be reproduced. One hint is that the different
covariance terms Cov(wiwj , wkwl) can be easily computed by using properties of
wi,i=1,2,...,N , i.e., they follow iid of uniform distribution U(−

√
3/N,

√
3/N). Another

hint is that we can group the N4 covariance terms into different categories and count
the number of terms in each category with basic knowledge of combinatorics.

In our case we have N = 25, so according to Equation 4.7 it can be deduced that
Var(Var(y)) ≈ 1.952Var2(x), i.e., we have Var(Var(y)/Var(x)) ≈ 1.952. The 10, 000
simulations show that the histogram of Var(y)/Var(x) has an empirical variance of
about 1.858. The theoretical and simulated results are close to each other and the
small difference is mainly due to the approximation made in the derivation, i.e.,
we approximate all the Cov(xi, xj) terms by Var(x) in Equation 4.5. We can also
observe that the variance of the output variance is not small, being about 1.952 times
of the square of the input variance.

3) Skewness of Var(y)/Var(x)

The skewness is probably the most interesting and important statistical property to
understand the shape of the histogram in Figure 4.2 left with a big mass concentra-
tion on the left and a long tail on the right. In order to compute the skewness of
Var(y), we start with the general formula of skewness in Equation 4.8.

Skewness(Var(y)) = E[Var3(y)]− 3E[Var(y)]Var(Var(y))− E3[Var(y)]
(Var(Var(y)))

3
2

. (4.8)

We have the formula of E(Var(y)) and Var(Var(y)) respectively in Equation 4.6 and
Equation 4.7. Therefore, in order to calculate the skewness we now only need to
compute the term E[Var3(y)]. By using Equation 4.5 we can write this term as:

E[Var3(y)] ≈ Var3(x)E

 N∑

i=1

N∑
j=1

wiwj

3

= Var3(x)
N∑

i=1

N∑
j=1

N∑
k=1

N∑
l=1

N∑
m=1

N∑
n=1

E [wiwjwkwlwmwn] .

(4.9)

In this last equation, there are N6 terms in the summation, but similar to the
derivation of the variance of Var(y) above, only several kinds of specific terms are
not zero and contribute to the sum. These specific terms are E(w6

i), E(w2
iw

4
j) and

E(w2
iw

2
jw

2
k). In fact, still using the hints presented above for the computation of

Var(Var(y)), we can show that after development the other kinds of terms all have
at least a multiplicative term like E(wi), E(w3

i) or E(w5
i) which is equal to 0 due to

the fact that wi follows a zero-mean uniform distribution.

4.1 Variance of Output of Convolutional Filter 69

Regarding the non-zero terms, after some simple calculations we can deduce that
there are N terms like E(w6

i) = 27/(7N3), N(N − 1)C2
6 = 15N(N − 1) terms like

E(w2
iw

4
j) = 27/(15N3), and C3

N C2
6C2

4 = 15N(N−1)(N−2) terms like E(w2
iw

2
jw

2
k) =

1/N3, where Cb
r is the combination notation of “r choose b”. With these results we

can compute the expectation of Var3(y) as shown in Equation 4.10 below.

E[Var3(y)] ≈ Var3(x)
[
N.27
7N3 + 15N(N − 1).27

15N3 + 15N(N − 1)(N − 2)
N3

]
= Var3(x)

[
105N2 − 126N + 48

7N2

]
.

(4.10)

Here with N = 25, we have E[Var3(y)] ≈ 14.29Var3(x). With Equation 4.10 for
E[Var3(y)], Equation 4.6 for E(Var(y)) and Equation 4.7 for Var(Var(y)), we can
calculate the skewness of Var(y) by using Equation 4.8. This results in a theoretical
value of about 2.726 for the skewness, i.e., Skewness(Var(y)/Var(x)) ≈ 2.726. From
the 10, 000 experimental simulations we obtain an empirical skewness value of about
2.811 for the output-input variance ratio. These results confirm the effectiveness of
the theoretical prediction as well as a relatively big positive skewness value for the
histogram with a big tail on the right and a dense mass concentration on the left.

From this theoretical analysis of the mean, variance and skewness of Var(y)/Var(x),
we demonstrate that with the new and correct assumption of strong correlation
between pixels in natural images, we can accurately predict and explain the statistical
properties of the output-input variance ratio histogram for Xavier initialization.
By contrary, this would not have been possible with the previous assumption of
independently and identically distributed pixel values. Indeed, the shape of the
histogram is somehow surprising and unexpected because in most cases the variance
of the output is smaller than the input, implying that the variance stability is not
maintained as well as what is expected for Xavier initialization.

4.2 Scaling of Convolutional Filter

From results and analysis in Section 4.1, we can see that the variance of output of
convolutional filter initialized by popular algorithms can be significantly smaller
than the variance of input. This is particularly true for high-pass filter: the ratio of
output-input variance Var(y)/Var(x) is usually smaller than 0.01. The output signal
after convolution operation substantially shrinks. This can be detrimental to the
training of CNN, and as shown later in Section 4.3 the CNN training sometimes fails
in such situations.

70 Chapter 4 Data-Dependent Initialization

Using a data-dependent approach (i.e., dependent on input data), we propose a
simple yet effective scaling of the first-layer convolutional filter. The idea is to keep
the variance stable after scaling for the input and output of any given filter generated
by popular initialization algorithms. Corresponding to the two methods to compute
output variance in Section 4.1, we propose two different ways to calculate the
scaling factor s, as presented below. After obtaining the scaling factor, the elements
of the given filter W = (w1, w2, ..., wN) are properly scaled as W̃ = s.W. We then
initialize the first-layer filter with the scaled version W̃.

4.2.1 Covariance-based method

From Eq. (4.3), it can be seen that in order to make Var(y) and Var(x) approximately
equal to each other, we need to compensate for the effect of the term in the bracket.
So the scaling factor is computed as:

s =

√√√√√1
/ N∑

i=1
w2

i + 2
∑
1≤i

∑
<j≤N

wiwjZij

. (4.11)

In practice, we take random small patches of the same shape of the convolutional
filter to be scaled (e.g., 5 × 5) from a small portion of the training data. We then
estimate the variance and covariance terms on these small patches to obtain the
values of Zij = Cov(xi, xj)/Var(x). Afterwards the scaling factor s is computed by
using Eq. (4.11), and at last we obtain the scaled version W̃ of any given filter W
from the considered four initialization algorithms.

4.2.2 Convolution-based method

This is a straightforward approach. The output ŷ is computed, for a small portion of
the training data x̂ as input, by carrying out the convolution operation. The scaling
factor is simply calculated as

s =
√

Var(x̂)/Var(ŷ). (4.12)

From a practical point of view, the covariance-based method might be a slightly
better option than the convolution-based method mainly because of its higher
flexibility. In fact, for the covariance-based method, the computation of the variance
and covariance terms of the input can be performed only once for any number of

4.2 Scaling of Convolutional Filter 71

filters for which we want to scale. By contrast, the convolution-based method has
to be rerun every time we have a new filter to analyze. Nevertheless, it is worth
mentioning that both methods are experimentally quick enough to be used in CNN
initialization. The running time is about several seconds, as presented below.

According to our experiments, for a training set of about 100, 000 images of 64× 64
pixels from all classes, taking 10% of the training data for the convolution-base
method and 10 small patches (e.g., of 5×5 pixels) per image of the 10% training data
for the covariance-based method, we achieve a good trade-off between computation
time and stability of the result. Using more training data has very small impact on
the obtained scaling factor. Even using 100% of the training set results in a change
smaller than 0.1%. The amount of time to calculate the scaling factor is less than 3
seconds per filter for both methods, on a desktop with Intel® Xeon E5-2640 CPU
and Nvidia® 1080 Ti GPU (covariance-based method on CPU and convolution-based
method on GPU). This is run for one time before the CNN training. The computation
time increases very slowly when having more filters for the covariance-based method,
because as mentioned above the variance and covariance terms can be reused. We
believe that the computation time of scaling factor is negligible when compared to
the typical time required to train a CNN model.

4.3 Experimental Results

Several experiments are performed in order to test and show the efficiency of our
proposed scaling. These experiments consider the four filter initialization algorithms
mentioned earlier, two CNN architectures (CNN of Bayar and Stamm [BS18a] and a
smaller CNN without fully-connected layer designed by ourselves), and two forensic
problems (a multi-class problem of detecting a group of manipulation operations
and a binary problem of detecting JPEG compression of high quality factor). For the
multi-class problem, we also consider a different number of filters used in the first
layer of the CNN of Bayar and Stamm [BS18a].

In the last chapter, due to technical difficulties we conducted part of the experiments
in an independent environment with a different framework. From this chapter, we
take a better approach with a fairer comparison by using the same deep learning
framework, hardware and network optimization details for all testes methods.
Consequently, the comparison with existing methods such as Bayar [BS18a] was
carried out with the same environment as our proposed method. We have verified
that the performance of our implementation is on par with or even slightly better than

72 Chapter 4 Data-Dependent Initialization

the authors’ original version. In the following, the implementation and experiments
were all conducted using PyTorch v1.4.0 with Nvidia® 1080 Ti GPU.

The experimental data was created from the Dresden database [GB10a]. Full-
resolution Dresden images are split for training, validation and testing with ratio of
3:1:1 and converted to grayscale. Patches of 64× 64 pixels were randomly extracted
from full-resolution grayscale Dresden images. This relatively small size of image
patches makes the forensic problems more challenging.

4.3.1 Multi-class problem with CNN of Bayar and Stamm [BS18a]

We first consider the multi-class problem described in subsection 3.3.1 of classifying
six different kinds of image patches: the original patches and the five classes of
manipulated patches as explained in Table 3.1. The parameters for the resampling
and JPEG compression manipulations are taken randomly from the specified sets in
Table 3.1. The total number of patches in training set is 100, 000 (≈ 16, 667 patches
per class), while the number of patches in testing set is 32, 000 (≈ 5, 333 patches
per class). The number of training and testing samples is same as in [BS18a]. It is
worth mentioning that the manipulations and their parameters in our study are more
challenging than those in [BS18a]. The patch size is also smaller than [BS18a]: our
patches are of 64× 64 pixels, while [BS18a] mainly considers 256× 256 patches.

We still use the successful CNN architecture of Bayar and Stamm [BS18a] in this
set of experiments and initialize the three filters in the CNN’s first layer with four
different algorithms: Bayar [BS18a], SRM [FK12], Castillo [CW19], and Xavier
[GB10b]. We carry out 5 runs for each algorithm and the corresponding two scaled
versions. For SRM, for each run we randomly select 3 filters from the pool of 30
SRM filters. We compare each original initialization algorithm with their scaled
versions obtained with the covariance-based method and the convolution-based
method presented in Section 4.2. For fair comparisons, we make sure that for
each run the scaled versions share the same “base filters” of the original version
before performing scaling. We follow exactly the same training procedure described
in [BS18a], including optimization algorithm, learning rate schedule, stopping
criterion, etc.

For Bayar algorithm [BS18a], we have tested two variants of the scaling of the first-
layer filters. The first one (“Bayar A.”) follows closely the idea of Bayar’s original
constrained training strategy: we carry out scaling of the normalized high-pass filter
at the beginning of each forward pass (please refer to Section 2.2.2 for detail of the

4.3 Experimental Results 73

Tab. 4.1.: Test accuracy for the multi-class forensic problem (in %, average of 5 runs).
The experiments were performed with four initialization algorithms and their
scaled versions for first-layer filters of the CNN of Bayar and Stamm [BS18a]. In
parentheses is the improvement of scaled version compared to the corresponding
original version.

Initialization
Original
version

Convolution-based
scaling

Covariance-based
scaling

Bayar [BS18a] A.
94.19

96.04 (+1.85) 96.02 (+1.83)
Bayar [BS18a] B. 96.15 (+1.96) 96.22 (+2.03)
Castillo [CW19] 93.71 96.45 (+2.74) 96.42 (+2.71)
SRM [FK12] 94.39 96.54 (+2.15) 96.55 (+2.16)
Xavier [GB10b] 93.48 94.61 (+1.13) 94.71 (+1.23)

normalization procedure proposed in [BS18a]). The second variant (“Bayar B.”)
is computationally cheaper and less complex: the scaling of normalized high-pass
filter is only performed in the initialization, and we no longer impose normalization
constraint during training. Our intuition behind the second variant is that with a
proper scaling of initialized filters even a free training without the constraint of
[BS18a] may provide satisfying performance.

The detection performances in terms of test accuracy (i.e., classification accuracy
on testing set) for this multi-class problem are presented in Table 4.1. The reported
results are average of 5 runs with randomness, e.g., different first-layer “base filters”.
However, for each run, the “base filters” are the same for the original and scaled
versions: original version direct uses these filters, while scaled versions apply proper
scaling on the “base filters” and then use the scaled ones.

We can see from Table 4.1 that the test accuracy of all the initialization algorithms is
consistently and noticeably improved after scaling. Improvement of at least 1.13%
and as high as 2.74% is obtained. We also observe that the results of the two scaling
methods are very close to each other. We checked the computed scaling factors and
found that they are indeed almost identical for the two methods. Furthermore, for
the two scaling variants of Bayar [BS18a], variant B gives slightly better results,
which is also computationally cheaper as it only performs scaling in initialization
without enforcing any constraint during CNN training. This implies that with a
good initialization after proper scaling, it might not be necessary to impose training
constraint. It is worth mentioning that the results of Bayar in Table 4.1 are in general
lower than those reported in [BS18a] because we now consider a more challenging
forensic problem with more difficult manipulations and on smaller patches.

We can observe that our first proposal Camacho [CW19] does not show the same
performance as presented in the last chapter in section 3.3 when compared to Bayar

74 Chapter 4 Data-Dependent Initialization

[BS18a]. Results in the first column of Table 4.1 show that the original unscaled
Bayar has now better performance than unscaled Camacho. We believe that this
happens mainly for two reasons. First, the number of training epochs is increased.
Previously, we trained the network for 25 epochs stopping when a plateau was
reached and the increase of performance was small. This time, the number of epochs
is much higher than in last chapter (25 vs. 60). Second, we used in the previous
chapter a tuned optimizer with a specific learning rate schedule for our first proposal.
In this chapter we follow exactly the network training setting of Bayar’s original
paper [BS18a] for all initialization algorithms, including network optimizer, learning
rate schedule and stopping criterion. Using more epochs and the original hyper-
parameters of Bayar and Stamm [BS18a] might be favorable for their approach,
showing that Bayar was rather designed to be used in a longer training setting.
However, it is worthwhile mentioning that after carrying out our proposed scaling
to better release the potential of various initialization algorithms, the scaled version
of Camacho performs better than scaled Bayar, as shown in the last two columns
of Table 4.1. Lastly, our approach Camacho, as well as Xavier and SRM, has lower
computational complexity than Bayar, because there is no constraint enforcement
during the learning procedure for Camacho, Xavier and SRM. In practice, for the
multi-class forensic problem, one run of Bayar takes in average 60% more time than
the other three algorithms to complete a full training of 60 epochs. This is due to the
fact that on each forward step the Bayar algorithm extracts the values of the filters
in the first layer, normalizes them and saves them. This situation is similar for the
variant A of scaled Bayar which takes much more time for one run of training when
compared to the variant B of scaled Bayar, mainly because of the filter normalization
operation added to each forward step.

Results in Table 4.1 also show that the three kinds of high-pass filters (especially
SRM) indeed outperform Xavier, before and after scaling. This demonstrates the dif-
ference between forensics and computer vision tasks. Nevertheless, the performance
of Xavier is also improved after scaling because as analyzed in subsection 4.1.3 Xavier
can also result in small variance of output. In fact, for Xavier the probability to have
Var(y) smaller than half of Var(x) is about 52.20% in our 10, 000 simulations.

We also observe that the proposed scaling helps to have quicker increase of forensic
performance during CNN training. We show in Fig. 4.3 curves of test accuracy of
SRM and Xavier (average of 5 runs), before and after the covariance-based scaling.
It can be observed that the convergence speed is considerably improved for SRM.
For both algorithms, the curve of scaled version is always above that of original
version during the whole 60 epochs. It is also interesting to notice that the scaled
Xavier performs slightly better than the original SRM.

4.3 Experimental Results 75

Fig. 4.3.: Curves of test accuracy (average of 5 runs) for the multi-class forensic problem,
during the whole 60 training epochs of the CNN of [BS18a]. The curves are
for SRM and Xavier, original version and scaled version by the covariance-based
method.

As mentioned before in subsection 4.1.3, filters initialized with Xavier [GB10b]
can produce output signal with a variance (much) smaller than input. We would
like to test and understand the effect of our scaling method in such situations.
Specifically, we compare three first-layer customized Xavier filters with an output
variance smaller than 1/5 of the input variance, with and without our proposed
scaling. This experiment is still performed for the same multi-class problem and
with Bayar and Stamm’s CNN. For customized Xavier filters, the averages of 5
runs for the test accuracy after 60 epochs are 93.76, 95.86 and 95.95, respectively
for the unscaled version, the scaled version by convolution-based method and the
scaled version by covariance-based method. We observe that with such customized
Xavier filters the test accuracy is higher than conventional Xavier in the last row
of Table 4.1 (accuracy values are 93.48, 94.61 and 94.71), and that the difference
between unscaled and scaled customized Xavier is bigger with more than 2 percent
improvement for test accuracy (93.76 vs. 95.86 or 95.95). Two possible explanations
for these observations are: 1) customized Xavier filters with smaller output variance
behave more like high-pass filters which are more effective in image manipulation
detection; 2) our proposed scaling method is helpful for the network to make full
use of a better initial status of first-layer filters after properly scaling them.

30 filters at first layer

Next, we present results for the same multi-class problem while changing the number
of filters in the first layer of the CNN of [BS18a] to 30. We make this change for

76 Chapter 4 Data-Dependent Initialization

Tab. 4.2.: Test accuracy for the multi-class forensic problem (in %, average of 5 runs).
We still use the CNN of Bayar and Stamm [BS18a] but change the number of
first-layer filters from 3 to 30.

Initialization
Original
version

Convolution-based
scaling

Covariance-based
scaling

Bayar [BS18a] B. 94.91 96.11 (+1.20) 96.04 (+1.13)
Castillo [CW19] 94.11 96.31 (+2.20) 96.32 (+2.21)
SRM [FK12] 94.37 96.51 (+2.14) 96.49 (+2.12)
Xavier [GB10b] 91.80 96.03 (+4.23) 96.02 (+4.22)

two reasons: first, to test our approach with a different number of filters in the
first layer; and second, to use all the 30 SRM filters which is a common practice in
image forensics, e.g., for detecting splicing and copy-move forgeries [LGC18]. For
this scenario we still test the four initialization algorithms but only use variant B for
scaled Bayar as it proved to obtain slightly better results while being computationally
cheaper than variant A. The results are presented in Table 4.2. Again, we observe
that scaling the filters with any of the two methods leads to consistently better test
accuracy, with an improvement ranging from 1.13% to 4.23%. We notice from Tables
4.1 and 4.2 that after increasing the number of first-layer filters, 1) the original
version of high-pass initialization (Bayar, Castillo and SRM) has slightly improved or
comparable performance while the accuracy of Xavier decreases; and 2) the scaled
version of Bayar, Castillo and SRM has comparable performance with the case of 3
filters while Xavier has noticeable improvement. We guess the reason for the good
performance of scaled Xavier may be that with 30 filters there is more chance to have
a very good filter which after scaling can improve the result. We plan to conduct
further analysis in our future work to understand these observations.

4.3.2 JPEG binary problem with CNN of Bayar and Stamm [BS18a]

We notice in the multi-class problem that JPEG compression is the most difficult
manipulation to detect. In this section we consider the binary classification between
original patches and JPEG compressed patches with parameters in Table 3.1 (i.e.,
very high quality factor between 90 and 100). This allows us to test the proposed
scaling on a different challenging forensic problem. We use the CNN of Bayar and
Stamm [BS18a]. The number of training and testing patches per class is the same as
in last subsection. All CNN training settings are kept unchanged.

For this binary problem, we consider two initialization algorithms of Bayar [BS18a]
and SRM [FK12], original and scaled versions (variant B for scaled Bayar). Table 4.3

4.3 Experimental Results 77

Tab. 4.3.: Test accuracy for the binary JPEG forensic problem (in %, average of 5 runs). The
experiments were performed with Bayar and SRM, original and scaled versions
(variant B for scaled Bayar), on the CNN of [BS18a].

Initialization
Original
version

Convolution-based
scaling

Covariance-based
scaling

Bayar [BS18a] B. 88.27 90.80 (+2.53) 90.80 (+2.53)
SRM [FK12] 78.24 92.33 (+14.09) 92.44 (+14.20)

Fig. 4.4.: Curves of test accuracy for the JPEG binary forensic problem: scaled version of
SRM (average of 5 runs) with bars of maximum and minimum accuracy at each
epoch among 5 runs; and the best and worst runs of original version of SRM.

presents the obtained results (average of 5 runs). This challenging problem makes
the original version of both Bayar and SRM struggle to achieve a good performance.
Especially, training of SRM can occasionally fail, leading to accuracy close to random
guess. Much better average test accuracy is achieved by scaled versions. For SRM
[FK12], a boost of more than 14% is obtained with scaling.

We show in Fig. 4.4 some curves of test accuracy for scaled (covariance-based) and
original SRM [FK12]. The curve of scaled version shows the maximum and minimum
test accuracy together with the average at each epoch among the 5 runs. For the
original version of SRM we can have very different results. Therefore, we show
the best and the worst curves of test accuracy among all the 5 runs. As we can see
the worst case does not improve during the whole procedure and the test accuracy
remains close to 50%. The difference may come from the randomly selected three
first-layer SRM filters in each run (certain SRM filters perform worse than others
according to our observation, additional studies on this point will be presented in
the next chapter). At last, we would like to mention that for each run, although we
select randomly different SRM filters, the same selected filters are used to carry out

78 Chapter 4 Data-Dependent Initialization

comparisons between the original and scaled versions. Therefore, even for filters
that result in bad performance for the original version, we can obtain a better and
satisfying performance after scaling them.

4.3.3 Multi-class and binary problems on a different smaller CNN

We then test both the multi-class and JPEG binary problems on a different CNN
designed by ourselves. We first describe the architecture of this smaller network.
Let Ck(M or A) denote a Convolutional-BatchNorm-Tanh(-MaxPool or -AveragePool)
layer with k filters. For the first layer we use Hk which denotes a Convolutional layer
with k filters. The architecture of our smaller CNN is H3-C40M-C25M-C20M-C15M-
C6A. The first four layers have a kernel size of 5 × 5 while for the last two layers
the kernel size is 1 × 1. All convolutional stride size is 1. The first layer and the
last two layers do not have zero-padding, for the other layers the padding size is 2.
This is a network without fully-connected layer. To compare with, the architecture
proposed by Bayar and Stamm [BS18a] is H3-C96M-C64M-C64M-C128A-F200-
F200-F6, where Fk denotes a fully-connected layer with k neurons and Tanh. The
number of learnable parameters of the CNN of [BS18a] is about 337K, while our
smaller CNN has about 41K parameters. Figure 4.5 shows a visual comparison of
both architectures.

Using our smaller CNN, we test both the multi-class and the binary problems on a
different CNN architecture. All the data preparation and experimental setting are
the same as those described in Sections 4.3.1 and 4.3.2. For this set of experiments,
we compare the original and scaled versions of Bayar [BS18a] and SRM [FK12]
(variant B for scaled Bayar). Table 4.4 presents the obtained results. We can see
that in all cases the scaled version leads to improved performance compared to the
original version. The improvement of test accuracy goes from 0.93% for multi-class
problem with Bayar, to 5.27% for binary problem with SRM.

We show in Fig. 4.6 curves of test accuracy of the small CNN architecture for SRM
and Bayar (average of 5 runs), before and after the covariance-based scaling. In
the case of SRM filters, the convergence speed is noticeably improved. For both
initialization algorithms, the curve of scaled version is on average above that of
original version during the whole training procedure.

Our objective in this subsection is to show that with a different CNN, our proposed
scaling can still reliably improve the performance for different initialization algo-
rithms and forensic problems. Meanwhile, it can be noticed that performance is

4.3 Experimental Results 79

Fig. 4.5.: CNN architecture comparison. Figure on the top shows the CNN architecture
of Bayar and Stamm [BS18a], while our smaller CNN is depicted below. Figure
created with the tool PlotNeuralNet [@Iqb18].

Tab. 4.4.: Test accuracy for the multi-class and binary problems with our proposed smaller
CNN without fully-connected layer (in %, average of 5 runs). The experiments
were performed with Bayar and SRM, original version and convolution-based
and covariance-based scaled versions.

Problem
Original
version

Convolution-based
scaling

Covariance-based
scaling

Bayar [BS18a]
Multi-class 95.24 96.17(+0.93) 96.18(+0.94)
JPEG binary 90.56 93.72(+3.16) 93.74(+3.18)

SRM [FK12]
Multi-class 95.72 97.06(+1.34) 97.09(+1.37)
JPEG binary 89.85 95.11(+5.26) 95.12(+5.27)

better with our smaller CNN when compared to the network of [BS18a]. Our guess
is that the forensic problems and/or the amount of data cope better with the smaller
CNN’s size (less parameters) and architecture (only comprising convolutional lay-
ers without fully-connected layer). Thorough analysis and understanding of the
relationships between these factors is one part of our future work.

80 Chapter 4 Data-Dependent Initialization

Fig. 4.6.: Curves of test accuracy using our smaller CNN architecture for the multi-class
forensic problem (average of 5 runs). Results of original version and covariance-
based scaled version are shown for Bayar and SRM.

4.4 Summary and Discussion

The experimental results presented in this chapter show the effectiveness of our
data-dependent scaling (i.e., scaling factor dependent on the input) for the tested
forensic problems, initialization algorithms and CNN architectures. We believe
that for the task of detecting image manipulation operations, the proposed scaling
method provides a better initial status of the network with a stable amplitude
of data flow in and out a convolutional filter. This results in a higher detection
accuracy for the CNN. As originally explained by Glorot and Bengio [GB10b], having
a constant variance for data flow during the CNN training procedure is vital for
a good performance. Our approach follows this strategy and this may explain
the improved results after scaling. It is also interesting to notice that even for
filters not designed for image forensics (e.g., Xavier [GB10b]), scaling them can
lead to a final result comparable to unscaled customized filters (e.g., SRM [FK12])
designed specifically for the considered forensic problems. Our proposed scaling
is able to consistently improve all the initialization algorithms that we tested, as
shown by the results in different forensic problems with different CNN architectures.
Furthermore, the two scaling methods, i.e., covariance-based and convolution-based,
have comparable if not equal behavior, although as we mentioned before, obtaining
the scaling factor with the covariance-based method is a computationally cheaper
option. The simplicity of our method and the small computation time make our
proposal a good candidate for the initialization of CNN models for image forensics

4.4 Summary and Discussion 81

tasks. We believe that the proposed scaling method could also help in other image
analysis tasks where customized filters are used for initializing CNN’s first layer.

In this chapter, we also present theoretical and experimental studies which help
to understand why the ratio of output-input variance for first-layer convolutional
filter can be a (very) small value. In particular, it is very interesting and somehow
surprising to see that experimentally even the popular Xavier initialization in general
does not ensure a very good variance stability between input and output. We
also provided theoretical derivation of the statistical properties of the histogram
of output-input variance ratio for Xavier filters. We show that with the correct
assumption on statistics of neighboring pixels in input, we can accurately predict the
histogram’s statistical properties and understand the shape of the histogram. To our
knowledge, this is the first effort in the image forensics community to experimentally
and theoretically study the real behavior of CNN initialization algorithm.

One possible limitation of our proposed data-dependent scaling method is that it
needs to explicitly calculate the statistics of the input data or carry out convolution
operation between input and convolutional filter to obtain the scaling factor. How-
ever in some practical applications, it is not possible to get access to a sufficient
quantity of input data to reliably estimate the scaling factor for initialization. In
order to propose an alternative solution and still in line with the basic idea of
random high-pass initialization of our first proposal, in the next chapter 5 we will
present a “data-independent” method which does not explicitly use the input data
for the initialization and which can generate a group of random high-pass filters
with rather stable signal variance at input and output. More precisely, we will revisit
and improve our proposal in chapter 3 with a corrected and realistic assumption
about the statistics of pixels in input images.

82 Chapter 4 Data-Dependent Initialization

Revisiting the Random
High-Pass Initialization

5

„The beginning is the most important part of the
work.

— Plato

In the previous chapter we described a data-dependent approach for the initial-
ization of the first layer of a CNN in the image manipulation detection problem.
Nevertheless, there are practical scenarios in which it is not easy or not possible
to reliably calculate the necessary statistical properties of the training data due to
different constraints in the deployment. For example, the training data may come in
a sequential and dynamic way denying the option to reliably calculate beforehand
the covariance terms and the scaling factor from the beginning. A scarce-data sce-
nario where the available data would not be enough to have a confident statistical
estimation may also be in place. Additionally, although the computation complexity
of our scaling solution is negligible in the deep learning field, one main trend is the
usage of end-to-end methods without pre-processing steps. For these reasons we be-
lieve that it is necessary and important to propose a corrected and improved random
high-pass initialization approach which does not explicitly utilize the input data,
e.g., it does not need to calculate explicitly the variance and covariance statistics of
input. For this final approach, we would like to revisit our first random high-pass
initialization proposal with the corrected assumption of natural image statistics for
the input X as presented in the remaining of this chapter.

5.1 The Proposed Method

Our objective is to propose an Improved Random High-Pass (IRHP) initialization
method for image manipulation detection problems. The generated random high-
pass filters will be used as initialization for the first layer of a CNN. To accom-
plish this, we use as filter template such as the one shown in Figure 5.1. The
symbol C represents an unknown constant in the filter, W = (w1, w2, ..., wN) are

83

Fig. 5.1.: Shape and notations of the filter of our IRHP initialization method (left) and the
corresponding input (right), with a 5 × 5 filter as example. C is an unknown
constant and wi,i=1,2,...,24 are scalar random variables following an appropriate
distribution (see main text for details).

independent scalar random variables following an appropriate distribution, and
X = (x1, x2, ..., xN , xN+1) contains a group of mutually correlated random variables
representing the input pixel values. Despite the fact that this template has a shape
of 5 × 5, our proposal can be applied to different filter shapes where there are
two groups of coefficients: the unknown constant C and the remaining N random
elements wi,i=1,2,...,N . For the template shown in Figure 5.1 we have N = 24. As in
our first proposal, the actual values of wi,i=1,2,...,N are sampled from an adequate
distribution which plays an important role as described later.

With the objective of ensuring the high-pass behavior (i.e., filter elements sum up
to 0) for the designed filter, the mathematical expectation of the random variable
wi should be equal to −C

N in order to compensate for the unknown constant C. By
having this characteristic, the expectation of the sum of all wi,i=1,2,...,N is equal to
−C, together with C making the initialized kernel resemble a high-pass filter. In
our first approach, both wi and xi were assumed as independent random variables;
for the second proposal, we considered wi as known constants (i.e., elements of
a given filter to be scaled) while xi as correlated random variables. For this final
proposal, wi,i=1,2,...,N are independent random variables, and xi,i=1,2,...,N,N+1 are
mutually correlated random variables reflecting natural image statistics.

We know that the local operation of an input and a convolutional filter can be
expressed as an inner product. With a filter of the characteristics described above,
the output can be calculated as y = w1x1 +w2x2 + ...+wNxN +CxN+1. Similar to
the derivation in the last chapter and still using the general formula of the variance
of a sum of (potentially) correlated random variables, we can compute the variance
of the output y by dividing the possible terms into four sets, as shown below:

Var(y) =
N∑

i=1
Var(wixi) + Var(CxN+1)

+ 2
∑
1≤i

∑
<j≤N

Cov(wixi, wjxj) + 2
N∑

i=1
Cov(wixi, CxN+1).

(5.1)

84 Chapter 5 Revisiting the Random High-Pass Initialization

In the above Equation 5.1, there are two sets of variance terms and two sets
of covariance terms. These four sets of terms are obtained by considering all
the possible combinations between the two groups of coefficients in the designed
filter: the first group of unknown constant C and the second group of N random
variables wi. Similar to the derivations in the previous chapters, for example by
using the property of product of random variables and the expectation of wi (i.e.,
E(wi) = −C

N), we obtain the following Equation 5.2 for the variance of y:

Var(y) =
N∑

i=1
Var(xi)

[
Var(wi) + C2

N2

]
+ C2Var(xN+1)

+ 2
∑
1≤i

∑
<j≤N

C2

N2 Cov(xi, xj)− 2
N∑

i=1

C2

N
Cov(xi, xN+1).

(5.2)

Following the realistic and classical assumption of almost identical variance for all
input pixels xi,i=1,2,...,N,N+1 (i.e., the approximate translation invariance in natural
images [SO01] which was also utilized in the derivation in subsection 4.1.1), we can
make some adjustments to Equation 5.2 by substituting Var(xi) and Var(xN+1) by
Var(x) (i.e., the total variance of input). In addition, we replace Cov(xi, xj)/Var(x)
by Zij and Cov(xi, xN+1)/Var(x) by ZiN+1. The above approximation and simplifi-
cation give the following Equation 5.3:

Var(y) ≈ Var(x)

 N∑
i=1

[
Var(wi) + C2

N2

]
+ C2 + 2

∑
1≤i

∑
<j≤N

C2

N2Zij − 2
N∑

i=1

C2

N
ZiN+1

 .
(5.3)

Next, following the reasonable assumption of highly-correlated neighboring pixels
in natural images [SO01], we can substitute both Zij and ZiN+1 by 1 because
theoretically and experimentally these terms are smaller than but very close to 1
(cf., the discussion below Equation 4.4 in the last chapter). With this approximation
applied to Equation 5.3, we obtain the following Equation 5.4:

Var(y) ≈ Var(x)
(
NVar(wi) +N

C2

N2 + C2 + 2N(N − 1)
2

C2

N2 − 2NC2

N

)
= Var(x) [NVar(wi)] .

(5.4)

Interestingly, all the terms where C is involved nicely disappear after applying the
considered approximations, which makes our derived result simple and concise. It
is now clear from the above Equation 5.4 that in order to make Var(x) and Var(y)
close to each other, we should have the following property for filter elements wi:

Var(wi) = 1
N
. (5.5)

5.1 The Proposed Method 85

At first glance, the above Equation 5.5 happens to be the same as the one deduced
for the Xavier initialization [GB10b], but there are fundamental differences. First,
the filter template for our case will generate a high-pass filter suitable for image
forensics problems, while the Xavier initialization in general does not have this
property. More precisely, in our filter template we have a new unknown constant
C together with wi forming a high-pass filter, while Xavier filter does not have this
unknown constant. Second, the Xavier initialization assumes that both input X and
filter elements W are random variables following zero-mean iid, while in our IRHP
initialization method xi’s are mutually correlated random variables and wi’s are
random variables with a non-zero mathematical expectation as E(wi) = −C

N . We
can see that the statistical property of wi is related to the unknown constant C. This
is explained with further derivations in the next paragraph.

For the sampling of wi,i=1,2,...,N , we use a simple uniform distribution with the
previously mentioned expectation of −C

N , i.e., U
(
−2C

N , 0
)

or U
(
0,−2C

N

)
depending

on the sign of C. We choose to use this distribution because it is probably the
simplest distribution with the prescribed mathematical expectation. From the chosen
distribution we can easily calculate the variance of wi as Var(wi) = C2

3N2 . In the
meanwhile, from Equation 5.5 we know that in order to make the input and output
variances comparable we should have Var(wi) = 1

N . After combining these two
equations we obtain the following Equation 5.6 to derive the value of C:

Var(wi) = C2

3N2 = 1
N

=⇒ C = ±
√

3N. (5.6)

Accordingly, we also obtain the interval of the uniform distribution for the sampling
of wi as U

(
−2
√

3N
N , 0

)
or U

(
0, 2
√

3N
N

)
. With a derived filter such as the one with

the template of 5× 5 shown in Figure 5.1 left (N = 24), we have the value of C as
C = ±

√
72 ≈ ±8.485. We can notice that the absolute value of the derived values of

C here is significantly larger than the one obtained by using Equation 3.5 of our first
proposal in chapter 3 (still for a filter with a template of 5× 5, by using Equation 3.5
we have C = ±

√
72
76 ≈ ±0.973). This difference is due to the corrected assumption

about the input X used in this chapter. The bigger absolute value of C (as well as the
bigger absolute value of wi because C and wi are related) in our IRHP initialization
method would mitigate the signal shrinkage problem at filter output and thus be
beneficial for the network training.

Figure 5.2 left shows the histogram of the output-input variance ratio Var(y)/Var(x)
for 10, 000 simulated filters using our proposed IRHP initialization, while Figure 5.2
right shows a comparison between our IRHP method and the well-known Xavier
method [GB10b]. As we can see, for our IRHP method the high occurrences no

86 Chapter 5 Revisiting the Random High-Pass Initialization

Fig. 5.2.: Histogram of occurrences of output-input variance ratio for our IRHP and the
Xavier [GB10b] initialization methods. Figure on the left shows the histogram
of occurrences of the variance ratio Var(y)/Var(x) for 10, 000 simulations of our
IRHP filters. On the right, we show the comparison between the histogram of our
IRHP method and the histogram of 10, 000 Xavier filters.

longer happen in an interval of small values as what happens with Xavier method.
Practically there is no occurrence for our method within the interval where Xavier
method has the majority of occurrences. Indeed, the minimum value of output-input
variance ratio for our IRHP method in the 10, 000 simulations is 0.41 with a median
of 1.01, so there is no occurrence at all from 0 to 0.40 for our method. By contrast,
the Xavier method has a minimum value of 0.002, a median of 0.46, and a big mass
concentration of occurrences between 0 and 0.3. We can also observe that for our
IRHP initialization method, the majority of occurrences occur in the range of 0.5
to 0.9, which is closer to an ideal scenario of 1.0 but not centered at 1.0 (though
the median 1.01 as reported above is very close to 1). Our explanation is that this
shift occurs due to the various approximations that we make in our derivations,
in particular we approximate all the Zij = Cov(xi, xj)/Var(x) terms by 1. Further
theoretical studies in an attempt to design a random high-pass initialization with a
histogram ideally centered at 1 are one part of our future work.

These preliminary results show the effectiveness of our new formulation for random
high-pass initialization. In the next section we present experimental performances
obtained for different image forensics problems after initializing the first layer of a
CNN with the proposed IRHP initialization method.

5.2 Experimental Results

In this section we present several experiments performed in order to test and validate
the proposed IRHP initialization in different scenarios.

5.2 Experimental Results 87

Tab. 5.1.: Considered image manipulation operations and their parameter settings in the
multi-class forensic problem. Parameters of the last two operations are chosen
randomly from the given set.

Median filtering FilterSize = 3
Gaussian blurring StandardDeviation = 0.5, FilterSize = 3
Additive Gaussian noise StandardDeviation = 1.1
Resampling ScalingFactor ∈ {0.9, 1.1}
JPEG compression QualityFactor ∈ {90, 91, ..., 100}

For the purpose of carrying out fair comparisons, we begin by testing its utility in the
same multi-class problem considered in section 4.3. Next, we conduct a comparative
experiment with the very popular batch normalization technique under this same
scenario. Subsequently, we illustrate the potential problem of randomly choosing a
few handcrafted filters from a pool of such filters.

We also carry out tests of the proposed method on two other CNN architectures and
one new forensic problem. First, we test our method on a smaller CNN architecture
previously used in subsection 4.3.3 for both the multi-class and the JPEG binary
forensic problems considered in the last chapter. Then, we show the performance
of our IRHP initialization in a new forensic problem of detecting GAN-generated
images using the well-known ResNet50 network.

All the experimental details regarding the deep learning library and GPU specifi-
cations remain the same as mentioned in section 4.3. Like in the last chapter, all
methods under a comparison are implemented with same deep learning framework
and trained with same optimizer and hyper-parameters.

5.2.1 Multi-class forensic problem

As previously tested in chapter 4, we present in this subsection the results for the
multi-class forensic scenario where five image manipulation operations are applied
to unprocessed pristine patches and the network is trained to differentiate among
the six classes. The manipulation operations and parameter settings are the ones
mentioned in subsection 3.3.1 and shown again in this chapter in Table 5.1 for
readability reasons. Following the same settings, this experiment was developed
using the dataset created previously from the Dresden database [GB10a]. There is
no change in the percentage division for training, validation and testing sets with a
3:1:1 ratio. This results in around 100K patches for the training set and 32K patches
for the validation and testing sets. The size of the patches is kept as 64× 64 pixels.

88 Chapter 5 Revisiting the Random High-Pass Initialization

Tab. 5.2.: Test accuracy (in %, average of 5 runs) for the multi-class forensic problem. We
show results of different initialization methods on the first layer, as well as the
scaled version of the first four methods.

Initialization
Original
version

Convolution-based
scaling

Bayar B. [BS18a] 94.19 96.15
Castillo [CW19] 93.71 96.45
SRM [FK12] 94.39 96.54
Xavier [GB10b] 93.48 94.61
Our IRHP init. 96.35 -

In this first scenario we use the network designed by Bayar and Stamm [BS18a]. The
first layer on this network and for this scenario contains three filters of shape 5× 5
which we initialize with our IRHP method presented in section 5.1. The rest of the
network is kept unchanged in an attempt to isolate only the effect of the initialization
used in the first layer. The optimization method together with the learning schedule
remains untouched as the original proposal of [BS18a]. We compare the results of
the IRHP initialization with the previous experiments in subsection 4.3.1: Bayar
[BS18a], SRM [FK12], Xavier [GB10b] and our first proposal Castillo [CW19]
presented in section 3.2. We only show the results of the convolution-based scaling as
the results of the two scaling methods (convolution-based and covariance-based) are
very close to each other. Scaled version “Bayar B.” consists in scaling the normalized
high-pass filter only in the initialization phase without any further constraint or
scaling applied during the learning phase. We only present results of this version
because it is computationally cheaper and obtains better results than the other
version “Bayar A.” as shown previously in subsection 4.3.1. Regarding our IRHP
proposal, we do not try a scaled version given the fact that a random initialization
without data-dependent scaling is our objective and filter values obtained from IRHP
are in fact similar to the scaled ones as described later.

The test accuracy for each initialization method is presented in Table 5.2. We can
observe that in comparison to the original unscaled version of all the other methods,
our IRHP method has the highest test accuracy with an improvement of at least
1.96%. We can also see that the accuracy of IRHP is similar to but slightly lower than
the results of scaled Castillo and scaled SRM. This is probably because the IRHP
method does not ensure perfect equality of input and output variances, as illustrated
in Figure 5.2. Nevertheless, the proposed IRHP initialization is computationally
more efficient than initializations with scaled filters and avoids a pre-processing
step of scaling factor computation with explicit use of input data. This follows the
mainstream of “data-independent” random initialization approach for CNNs in the

5.2 Experimental Results 89

Tab. 5.3.: Values obtained in an example 5×5 filter with our IRHP initialization. The center
value C is 8.4853 and a uniform distribution of U(−0.7071, 0) is used for drawing
pseudo-random samples for non-center elements.

-0.2313 -0.0666 -0.1706 -0.5250 -0.5772
-0.5182 -0.0018 -0.5467 -0.2407 -0.0559
-0.4711 -0.5040 8.4853 -0.5513 -0.3093
-0.4237 -0.1851 -0.6255 -0.5770 -0.5398
-0.2109 -0.6927 -0.6765 -0.1684 -0.0787

research community. It is worth mentioning that “data-independent” is perhaps
not a very rigorous term to describe our IRHP method because our method indeed
considers the real statistics (with approximations) of the input data, however it does
not explicit use the input data for initialization.

It is interesting to take a look at the values in filters generated by this new IRHP
initialization and compare with scaled high-pass filters. We carry out comparison
with the initial and final values of the scaled version of a simple high-pass filter with
+1 and −1 as the only non-zero values. This filter is scaled with a factor of 10.174
and at the end of 60 training epochs for this multi-class problem, these two non-zero
elements have values close to 8.0. The center element in 5 × 5 filter of our IRHP
method has a value of 8.4853, suggesting a good amplitude of filter element for our
initialization. The details of the initial values in one simulation of our IRHP proposal
are shown in Table 5.3.

5.2.2 Comparison with batch normalization

The stability of the data flow in the learning process of a CNN can be achieved
in a complementary manner with proactive and reactive measures. If we want
to start the learning process with a stable data flow, as a proactive measure, the
initialization used for the kernel weights has to be taken care of. In the same sense,
a reactive measure would be the usage of functions such as batch normalization
[IS15] to re-center and re-scale our training batch during the learning stage as briefly
described in section 2.1.1.

For this experiment, we show the comparison of batch normalization, the proposed
scaling-based initialization of section 4.2 (for Xavier [GB10b] and SRM [FK12])
and our new IRHP initialization of section 5.1, in the multi-class forensic scenario.
The network architecture and all other experimental settings remain unchanged as
described in subsection 5.2.1.

90 Chapter 5 Revisiting the Random High-Pass Initialization

Tab. 5.4.: Test accuracy (in %, average of 5 runs) for the multi-class forensic problem. The
rows of “Xavier” and “SRM” present results for our scaling-based method and/or
the batch normalization method, when combined together or applied separately
for the first layer. The rows of “Our IRHP init.” compare our IRHP method for
two cases of with and without batch normalization at the first layer.

Initialization
Covariance-based

scaling
Batch

normalization
Test

accuracy

Xavier [GB10b]
Yes Yes 95.04
No Yes 94.36
Yes No 94.61

SRM [FK12]
Yes Yes 96.53
No Yes 95.43
Yes No 96.54

Our IRHP init.
- Yes 96.51
- No 96.35

Table 5.4 shows firstly three scenarios for Xavier and SRM initializations considering
the different combinations of our scaling method and the batch normalization
method on the first layer. Then, for our IRHP initialization we show the cases with
and without batch normalization for the first layer. We can see that for Xavier and
SRM, our scaling method alone works better than only using batch normalization,
with an improvement of 0.25% and 1.11% for Xavier and SRM respectively. It is also
interesting to notice that in the case of Xavier, jointly using both methods results in
a higher accuracy. Our IRHP method also gets a small improvement when combined
with batch normalization. For SRM filters, the performance is comparable when
using both methods or using only our scaling proposal (i.e., 96.53% vs. 96.54%).

These results suggest that although batch normalization is an effective technique
to maintain a stable data flow within a CNN, a well-designed initialization algo-
rithm such as our scaling proposal or our IRHP method is nevertheless of greater
importance, because experimentally our initializations work better than batch nor-
malization when applied separately. Moreover, the combination of an adequate
initialization algorithm and the batch normalization technique in general can lead
to a slightly higher accuracy.

5.2.3 On the selection of SRM filters

Choosing randomly a few filters from a finite pool can sometimes result in a weaker
performance than expected. As we mentioned before, there are 30 handcrafted
filters available in the pool of SRM [FK12] filters. From the results in the previous

5.2 Experimental Results 91

Tab. 5.5.: Comparison of test accuracy (in %) for 3 diagonal SRM filters, the corresponding
scaled version and our IRHP method, in the JPEG binary classification scenario.
The second column shows the average test accuracy for 5 runs while the third
column presents the worst test accuracy among the 5 runs.

Method Average Worst run
SRM [FK12] diagonal filters 84.50 82.98
SRM [FK12] diagonal filters
with convolution-based scaling

87.14 86.49

Our IRHP init. 91.37 91.25

chapter, we have observed that certain SRM filters perform less well than others
for the image manipulation detection problem. This is the case of the JPEG binary
problem results as shown in Table 4.3 and Figure 4.4. Among the 5 runs, one of them
contained 1 diagonal filter which resulted in a bad forensic performance with almost
random guess for test accuracy of the original unscaled version. Here diagonal filter
means a filter only with non-zero coefficients in the diagonal or anti-diagonal of
the filter matrix. In total, there are 10 diagonal filters in the pool of 30 SRM filters.
Experimentally such diagonal SRM filters in general have a lower performance than
non-diagonal ones in the considered forensic problems. In this subsection, we would
like to test the “unlucky” scenario where 3 diagonal SRM filters are chosen and
compare its performance with our IRHP initialization.

For this experiment we carry out tests with the same JPEG binary classification
problem as described in subsection 4.3.2. The number of filters in the first layer is 3
and the CNN architecture is the one designed by Bayar and Stamm [BS18a]. We
compare the performance of 3 diagonal SRM filters, the corresponding scaled version
using the convolution-based method of section 4.2, and our IRHP proposal.

We show in the second column of Table 5.5 the average test accuracy of 5 runs for
the three different methods at the end of the 60 epochs of training. In each run, 3
SRM diagonal filters are randomly selected as the initialization of first-layer filters.
As we can observe, after scaling the selected diagonal filters, we can only obtain
a limited improvement of about 2.6% for average test accuracy when compared
to the non-scaled ones. This is probably due to the limited forensic capability of
these diagonal filters. By contrast, our IRHP method achieves higher accuracy. We
also show in the last column of Table 5.5 the worst test accuracy among the 5 runs
for each method. The difference between the average and the worst values is the
smallest for our IRHP method, which demonstrates the stability of its performance.

It is interesting to mention that in the worst run presented in Figure 4.4 in the last
chapter for the unscaled SRM filters, we had 1 diagonal filter among the 3 selected

92 Chapter 5 Revisiting the Random High-Pass Initialization

ones. In the experiment of this subsection, we always choose 3 diagonal SRM filters
to be put at the CNN’s first layer. In the former case (1 diagonal filter among 3),
sometimes the training fails but after scaling the performance is much better (e.g.,
the worst case in Figure 4.4). In the latter case (3 diagonal filters), we did not
encounter training failure but after scaling there is less improvement. We have
two possible explanations: first, the performance after scaling may be related to
the overall forensic capability of all the 3 selected filters (non-diagonal SRM filters
are stronger); second, the combined use of diagonal and non-diagonal SRM filters
may cause training failure perhaps due to difficulties in achieving synergy between
different kinds of filters during training. These are only intuitive explanations,
further studies are required to understand these interesting observations.

In all, from the experiments presented in this subsection, we can see that choosing
randomly a few filters from a pool of handcrafted filters may present some risks,
especially when the selected filters have limited forensic capability. Favorably, this
uncertainty does not occur for our IRHP method.

5.2.4 Smaller CNN architecture

Testing our IRHP proposal on a different CNN architecture is important to show its
efficiency. For this purpose, we perform experiments with our proposed smaller CNN
architecture visually shown in Figure 4.5 in the previous chapter. Layer details are
described in subsection 4.3.3. With this different architecture we test two problems
as described previously, i.e., the multi-class and the JPEG binary forensic problems.
In this set of experiment, we compare our IRHP method with Bayar [BS18a] and
SRM [FK12]. The number of patches for each dataset and all experimental settings
remain unchanged as those of subsection 4.3.3.

Table 5.6 presents the obtained experimental results. For the sake of brevity, only the
convolution-based scaling method is considered for scaled version. As we can see,
the original unscaled SRM and Bayar have lower test accuracy than the proposed
IRHP initialization. Regarding the scaled versions, our IRHP method performs
better than scaled Bayar in both multi-class and JPEG binary problems. Scaled SRM
achieves higher accuracy for both problems than our IRHP method. The latter has
nevertheless its own advantages: different from the data-dependent scaling-based
method, the IRHP initialization does not explicitly use input data and thus has higher
flexibility, lower computational cost and broader application range. In addition,
as shown in the previous subsection, it may present some risks when randomly
choosing handcrafted SRM filters for initializing convolutional kernels in a CNN.

5.2 Experimental Results 93

Tab. 5.6.: Average test accuracy (in %, average of 5 runs) for the multi-class and JPEG
binary problems with our proposed smaller CNN without fully-connected layer.
The experiments were performed with Bayar and SRM (original version and
convolution-based scaled version) and our IRHP initialization method.

Problem
Original
version

Convolution-based
scaling

Bayar [BS18a]
Multi-class 95.24 96.17
JPEG binary 90.56 93.72

SRM [FK12]
Multi-class 95.72 97.06
JPEG binary 89.85 95.11

Our IRHP init.
Multi-class 96.76 -
JPEG binary 94.45 -

5.2.5 Detection of GAN-generated images

Finally we consider a new forensic problem with a popular deeper network. As we
mentioned in section 2.2.4, GAN (Generative Adversarial Network) models have
recently been on the news for their capability of creating synthetic and very realistic
images and videos commonly known as Deepfakes. This problem has been on the
rise in part due to the realistic GAN-generated videos impersonating political or
other popular figures. These Deepfakes could bring distress to the society if created
with malicious purposes. We choose to carry out experiments with this problem to
show a different topic in the image forensics research community and demonstrate
the efficiency of our proposal when tested on a well-known CNN architecture.

In this experiment we conduct tests for a binary classification scenario to detect
between GAN-generated and natural images by considering different groups of
Deepfake images generated by different image synthesis tools. For this setting we
use as reference the work recently published by Wang et al. [Wan+20], where the
popular ResNet50 is used to analyze the artifacts left by GANs. We use the same
dataset and code of [Wan+20]1 in order to compare in a fair manner, while only
affecting the initialization method on the first layer of the network.

The main dataset of Deepfake images for this experiment is generated with the
ProGAN network [Kar+17]. Figure 5.3 shows examples of some image categories
with the top row for natural examples and the bottom row for the GAN-generated
ones. Each of the 20 categories comprises 18, 003 images of 256 × 256 pixels for

1Code and dataset are available at https://github.com/peterwang512/CNNDetection.

94 Chapter 5 Revisiting the Random High-Pass Initialization

https://github.com/peterwang512/CNNDetection

Fig. 5.3.: Examples for real and GAN-generated images of different categories in a binary
classification scenario. Top row shows real images while synthetic ones are shown
below. All images come directly from the shared database of [Wan+20] where
the GAN-generated ones were created with ProGAN network [Kar+17].

each class being real or fake. This makes a total of 720, 120 images for the training
set. The validation and testing sets corresponding to the ProGAN network contain
respectively 8, 000 images, with 200 images from each class in each category.

Following the strategy proposed by Wang et al. [Wan+20], we use the popular
ResNet50 as CNN architecture. In their original proposal, the network is pre-
trained with ImageNet [Den+09]. Then the authors conduct further training of
the pre-trained ResNet50 on the training set of the Deepfake binary classification
problem in which the fake images are created by the ProGAN network. In order
to test our method we initialize the first layer of the pre-trained ResNet50 with
our IRHP initialization. This first layer contains 64 filters of shape 7× 7. All other
layers (initialized with pre-trained ImageNet weights for both Wang et al.’s method
[Wan+20] and ours) and all experimental settings are the same as those used in
[Wan+20]. Therefore the only difference is the initialization of the first-layer filters,
i.e., ImageNet pre-trained weights for the state-of-the-art method of Wang et al.
[Wan+20] and IRHP initialization for our method.

Experimentally we use Adam optimizer with a starting learning rate of 1e − 4 as
proposed in [Wan+20]. The code used for this experiment is the one shared on-line
by the same authors. We use the provided training scripts where Gaussian blur
and JPEG compression are considered as data augmentation techniques during the
training stage. JPEG compression is performed with a quality factor taken from a
uniform distribution on the set of {30, 31, ..., 100}. Blurring operation is performed
with standard deviation parameter σ taken from a uniform distribution within the
interval [0, 3]. Both of these techniques are applied with a pre-defined percentage of
probability. Original results by Wang et al. [Wan+20] proved that by using these
data augmentation techniques good generalization performance can be obtained on
test sets of Deepfake images created by tools other than ProGAN. In fact as presented
above, fake images in the training and validation sets are all generated by the
ProGAN network. Here the generalization capability of a trained CNN model means

5.2 Experimental Results 95

Tab. 5.7.: Characteristics of test sets for the evaluation of the generalization capability
of detecting GAN-generated images. Source dataset is color coded as follows:•L LSUN[Yu+15],•G ImageNet [Den+09],•S Style/Object transfer,•A CelebA
[Liu+15],•F MS COCO [Lin+14],•G GTA [Ric+16],•R Raw Camera,•T Standard
SR Benchmark,•M FaceForensics++ [Ros+19].

Model
Source
dataset

Number of
images

ProGAN [Kar+17] •L 8,000
StyleGAN [KLA19] •L 12,000
BigGAN [BDS18] •G 4,000
CycleGAN [Zhu+17]•S 2,600
StarGAN [Cho+18] •A 4,000
GauGAN [Par+19] •F 10,000
CRN [CK17] •G 12,800
IMLE [LZM19] •G 12,800
SITD [Che+18] •R 360
SAN [Dai+19] •T 440
Deepfake [Ros+19] •M 5,400

the detection performance of the model on “unseen” test data of Deepfake images
generated by synthesis tools that remain unknown during the training phase.

The results obtained by Wang et al. [Wan+20] show a final accuracy of about
100.0% on the training and validation sets. This is also the case when we initialize
the first layer with our IRHP method. There is no room for improvement in this
part. Nevertheless, we can observe performance differences when we compare the
generalization capability of the trained networks. In order to test the generalization
results, we consider 11 different test sets coming from a number of state-of-the-art
GANs for creating synthetic images with style transfer applied to a set of source
images. The network architectures and training settings of these GANs are all
different. The image sources and the resulting number of images for each test set are
shown in Table 5.7. These test sets are shared on-line by Wang et al. [Wan+20].

To make a fair comparison, we follow the original idea of Wang et al. [Wan+20]
to train the networks with the ProGAN dataset, and then test the generalization
capability of trained networks on the different test sets listed in Table 5.7. This
represents a real-world scenario where diverse and unknown synthesis tools with
different characteristics are tested after training CNNs on data from a unique tool
(here the ProGAN network). As mentioned previously and reported in [Wan+20]
data augmentation techniques can improve the generalization performance, and
we apply these techniques in the experiments. Table 5.8 presents the generaliza-
tion results with two different data augmentation options: “Case A.” where only

96 Chapter 5 Revisiting the Random High-Pass Initialization

Tab. 5.8.: Generalization results for the different test sets with comparisons between Wang
et al.’s [Wan+20] ImageNet pre-trained weights and our IRHP initialization on
the first layer. Please refer to main text for the meaning of “Case A.” and “Case
B.” of data augmentation options. We show the better result for each test set
and each case in bold. For all scenarios networks were trained with the ProGAN
dataset. Results are reported in terms of Average Precision (in %) as used in
[Wan+20], and mAP is the mean Average Precision of all test sets.

Case A. Case B.

Test set
ImageNet
weights init.

Our IRHP
init.

ImageNet
weights init.

Our IRHP
init.

ProGAN [Kar+17] 100.0 100.0 100.0 100.0
StyleGAN [KLA19] 99.0 98.8 98.5 98.6
BigGAN [BDS18] 82.5 84.7 88.2 89.0
CycleGAN [Zhu+17] 90.1 93.5 96.8 97.0
StarGAN [Cho+18] 100.0 100.0 95.4 96.3
GauGAN [Par+19] 74.7 75.7 98.1 98.1
CRN [CK17] 66.6 73.6 98.9 99.4
IMLE [LZM19] 66.7 73.9 99.5 99.5
SITD [Che+18] 99.6 99.6 92.7 95.8
SAN [Dai+19] 53.7 53.9 63.9 66.1
Deepfake [Ros+19] 95.1 93.4 66.3 69.3
mAP 84.4 86.1 90.8 91.7

blurring is applied with 50% of probability; “Case B.” where both blurring and
JPEG compression are applied with a probability of 50%. In the table, we show the
results obtained by Wang et al. [Wan+20] where the first layer is initialized with
pre-trained ImageNet weights and those obtained by our IRHP initialization.

As we can see from the results in Table 5.8, initializing the first layer with our IRHP
method leads to a better performance for the majority of the test sets. In both “Case
A.” and “Case B.” the mean Average Precision (mAP) is better for our method. One
possible explanation is that our initialization can make the network more oblivious
to image content and more sensitive to the traces of GANs which are likely to be in
the high-frequency component of images.

5.3 Summary and Discussion

In this chapter we proposed a revised random high-pass initialization approach
for the cases where statistics of input cannot be obtained beforehand. To our
knowledge, this is the first random initialization method for image forensic tasks

5.3 Summary and Discussion 97

which considers the realistic statistics of input images. Through the results of a
variety of experimental scenarios, we showed the benefit and applicability of our
IRHP method. Data stabilization as a way to obtain better forensic performance is
achievable via the proposed initialization method. From the experimental results
presented in this chapter we can see that our IRHP method provides a slightly lower
but similar performance when compared to the previously proposed scaling method
in chapter 4, while the IRHP initialization does not explicitly use the input data thus
has a higher flexibility and a better practical applicability.

Our IRHP proposal outperforms existing conventional [GB10b] and image forensics
[FK12; BS18a] initialization methods as shown by the results of multi-class and JPEG
binary forensic scenarios. Different CNN architectures were considered and tested in
order to prove the effectiveness of our proposal. Additionally, we showed that batch
normalization by itself does not achieve the same level of results as our proposal. We
also conducted some experiments to show that our IRHP method does not present
the same risk as we may have when randomly selecting handcrafted filters from
a pool of such filters. Finally, a new forensic problem of the detection of GAN-
generated images was tested using the well-known ResNet50 architecture. Better
generalization performances on test sets of fake images from unknown synthesis
tools were obtained by our initialization method when compared to pre-trained
ImageNet weights. Future efforts shall be devoted to theoretical studies to fully
understand the experimental results/observations and to improve the performance
of such random high-pass initialization.

98 Chapter 5 Revisiting the Random High-Pass Initialization

Conclusions and Perspectives 6
„It is good to have an end to journey toward; but

it is the journey that matters, in the end.

— Ursula K. Le Guin

6.1 Summary of Contributions

Image forensics research is a necessary field to ensure the authenticity of images.
This manuscript was dedicated to the study of initialization methods of convolutional
neural networks used for detecting image manipulation operations.

Designing a CNN initialization method is a challenging assignment, especially when
dealing with a specific problem. Almost all of the initialization methods existing
nowadays for the computer vision field are based on the content of the image and
not on the traces left by image manipulation operations. Such traces, usually left
on the high-frequency parts, are not taken into account in common methods. In
addition, better assumptions related to the statistics of natural images can be used
to design new initialization methods.

In chapter 2 we provided a comprehensive review of the state of the art for deep-
learning-based methods in the image forensics field. With this review, we could
observe the use of different strategies for the input layer in a CNN. Some of them rely
on pre-processing steps to create special features that will be fed to the networks,
while others employ handcrafted steganalysis filters as initialization of convolutional
filters in the first layer. As a result of this general review, we recognize the need for
well-designed filter initialization methods for CNN-based image forensics.

In chapter 3 we introduced our first attempt to propose a new initialization method
used in CNN for forensics of image processing operations. This proposal used as
foundation the well-known Xavier initialization, for which comparable input and
output variances for a convolution operation are the objective for a proposed filter.
We developed the same idea for the image forensics field where a random high-
pass filter is a better fit. As an early proposition we showed the simplicity of the

99

design and the feasibility in different forensic problems. We tested the proposed
method on two problems with different CNN architectures demonstrating that an
initialization properly designed for the given forensic problem is of great importance.
As our first step there were several opportunity areas involving technical aspects and
mathematical assumptions on the data which were addressed in later chapters.

Next, in chapter 4 we took a corrected assumption on the statistics of natural images
where pixels show a strong local correlation. Additionally, we carried out studies
on popular initializations including the Xavier method [GB10b] and the SRM filters
which have been largely used in various image analysis tasks. We showed that
these methods result in a signal shrinkage at filter output, which may deteriorate
the convergence speed and the final performance of the network. With this new
perspective, we developed a data-dependent method in which we calculated the
statistics of the training data to obtain a scaling factor for the filter in use. After
applying scaling of filters generated by the tested initialization methods, we can
ensure a stable data flow for the first-layer filter of a CNN with comparable variances
for input and output. The calculation time for this scaling factor was minor in
relation to the average time commonly spent for training a CNN.

We performed a number of experiments in different scenarios and showed an
improvement for all tested filters when scaled with our method. In addition, the
performance of our scaling proposal were tested using different CNN architectures to
prove its efficiency. It was interesting and a little surprising to observe that popular
initialization methods, though originally designed to maintain a stable data flow, in
practice result in a signal shrinkage at filter output. With the correct assumption of
natural images statistics we were able to explain this interesting observation.

Finally, we proposed in chapter 5 a revised random high-pass initialization with
the corrected assumption about the statistics of input images. This final proposal
is aimed for the scenarios where we are not able to carry out reliable calculation
on the training data. Furthermore, this kind of initialization appears to be the
main trend in the machine learning field. With this improved random initialization
we obtained better performance than existing conventional and image forensics
initialization methods. Moreover, a deeper CNN architecture was tested for a new
forensic problem of detecting GAN-generated fake images, and results showed that
our revised random initialization can achieve better generalization performance.

We believe that these efforts will prove useful in the research of image manipulation
detection. We are aware that further research and studies should be performed to
fully and theoretically understand some experimental observations. Nevertheless,
we hope that our work can bring the truth in images a little closer to everyone.

100 Chapter 6 Conclusions and Perspectives

6.2 Perspectives

With every achievement, several new paths are opened to continue the progress. In
this final section we mention some of the future perspectives that we believe are
necessary or promising and that are derived from this thesis work. We have divided
them in two groups. The first group presents the short- to medium-term lines that
could be envisioned from the results we obtained. For the second group we include
the possible options that could gain inspiration from our work but would take longer
time or are with an objective more or less different from ours.

Shot-term and medium-term perspectives

Image forensics is a vast field that includes many different problems with their
own characteristics. In this manuscript we mainly dedicated our efforts to one of
them, the detection of image manipulation operations. Future works may investigate
different problems such as the detection of copy-move and splicing, or other forgeries
that may leave traces in the high-frequency part of images.

In addition, we see the need to test our proposals using more CNN architectures.
Vanilla and residual architectures were tested in this manuscript but other models
such as multi-branch, LSTM or even deeper architectures could be tested. Moreover,
the combination with other optimizers and loss functions could be analyzed.

In some image forensics works, several initialization methods are combined for the
first layer. Consequently, a mix of our data-dependent and “data-independent” ap-
proaches could be performed and tested. The combination of different initializations
on different input branches could also be tested.

Finally, we would like to consider both forward and backward passes of CNN training
to improve our proposed initializations. Additionally, our derivations do not explicitly
consider the potential impact of an activation function after a convolutional filter.
Therefore, a need of research for a stable output in this more general case for our
proposals is envisioned. Furthermore, even if the trend has shifted to the use of
RELU as the default option, improved derivations could be performed for several
other activation functions that might be more appropriate for image forensic tasks,
leaving the opportunity of having more options.

Long-term perspectives

Future works may consider all layers in the network. Our work is supported by the
idea that the first layer has big importance because it is the one receiving directly the
input data. But there is work to be done to understand the synergy for all layers.

6.2 Perspectives 101

In the GAN-generated image detection problem we tested the generalization ca-
pability. Although improved result could be obtained with our random high-pass
initialization, the generalization performances on some of the test sets were still lim-
ited. Therefore, we see the need of further research to understand the performance
of our initializations on “unknown” test sets.

Majority of works in the image forensics field use well-known architectures from the
computer vision field and apply them directly. It would be an interesting point to
investigate further on the selection of the deep network architecture, in order to
make an educated choice specific for image forgery detection tasks. The recent work
from [AD21] on this subject would be a good starting point.

Additionally, the usage of transfer learning or pre-trained weights could be further
investigated for the image forensics field. Object recognition models are now widely
used but the use of weights trained for the detection of a large number of manipula-
tion operations such as the work of [WAN19] could be tested in combination with
our initializations for the first layer.

Moreover, the shape and template of the high-pass filter in our derivation could be
investigated in more depth. Different technical options for the shape, template and
element values could be designed on a problem-dependent basis.

As we mentioned in the last chapter, we see the need to conduct further research
in an attempt to design a random initialization method with a histogram of output-
input variance ratio centered as closely as possible at 1. Studies on the theoretical
feasibility and the practical implementation would be desirable.

Finally, based on our experience gained from the DEFALS challenge (please refer to
Appendix A for some details), we see the need of new CNN-based forensic methods
that can work on high-resolution images without the need of cropping or resizing.
Furthermore, the experience with the datasets used for the competition showed
that very high-quality and realistic forgeries are difficult to detect for almost all the
state-of-the-art methods we tested. Consequently, we believe that it is necessary to
investigate forensic solutions for this kind of highly professional forgeries.

102 Chapter 6 Conclusions and Perspectives

Challenge Competition for
Image Forgery Detection

A

Besides the research work presented in this manuscript, we also dedicated around
6 months to the image forensics challenge DEtection de FaLSifications dans des
images (DEFALS). In this appendix we briefly present the two stages entailed in the
challenge and describe the tested methods as well as the obtained results.

At each stage, training and testing datasets were released separately in order to
develop and evaluate different image forensic methods. Several state-of-the-art
methods were tested on these datasets but unfortunately they did not show good
performance. This led us in both stages to the use of a combination strategy of
different methods in order to obtain a better forensic accuracy.

A rather satisfying performance was obtained for our team in the overall competition
with better results for the binary detection task. In the following we start by
describing the objectives and characteristics of the challenge.

A.1 Challenge Description

The Direction Générale de l’Armement (DGA), in partnership with the Agence
Nationale de la Recherche (ANR), launched in 2017 the DEFALS challenge. The
main objectives as described in the challenge’s webpage1 are two-fold: 1) to initiate
and advance research in image analysis for integrity verification purposes and 2) to
foster closer links between the academy and private companies on this subject.

Four teams were selected to participate in the challenge, which was organized in two
stages with a common objective of designing and implementing a system that would
allow the automated detection of manipulations and falsifications in images. In the
challenge we use the same definitions of manipulation and falsification as presented
in section 2.2 and categorized in Figure 2.5. Our team called “REVEAL” consisted
of 6 members: Patrick Bas, CNRS Researcher at CRIStAL laboratory and leader

1http://defals.fr/

103

http://defals.fr/

of our team; Kai Wang, CNRS Researcher at GIPSA-lab; François Cayre, Assistant
Professor at Grenoble Institute of Technology; 2 PhD students at GIPSA-lab being
Ivan Castillo Camacho and Ludovic Darmet; and Gaëtan Le Guelvouit, Research
Engineer at B<>Com, the industrial partner in our team.

As mentioned above, for each stage the organizer provided within two different time
intervals a training dataset and a testing dataset, respectively for the development
and evaluation of forensic methods. The difference between the two datasets is that
the training set is provided with ground-truth labels (for the binary detection task in
both stages) and the ground-truth localization masks of falsifications (only for the
localization task of the second stage). Each team had to develop their systems using
the training set, and provide their results on the testing set for evaluation purposes.
The falsifications in these datasets were performed by a hired professional team
to create highly realistic and detailed forgeries in many cases with high-resolution
images, e.g., of 3000× 4000 pixels.

Among the falsifications in the datasets, there were three main types being 1) splicing,
2) copy-move and 3) inpainting. Moreover, various manipulation operations were
also present such as color enhancement, scaling, blurring, etc. In some cases several
falsifications and/or manipulations were applied to the same image. Competition
rules stated that images with manipulation operations only were considered as
authentic. The images supplied in these datasets included photos of persons and
pictures of a great variety of scenes coming from indoor and outdoor natural scenes,
urban scenes and landscapes. The datasets were distributed with a large range
of image sources such as smartphones, compact cameras and professional digital
cameras. Unfortunately, due to copyright restrictions, we are not allowed to visually
show DEFALS images in this manuscript. In the following we briefly present our
strategies and methods adopted and utilized during the two stages of the challenge
competition, starting with the first stage.

A.2 DEFALS 1st Stage

The first round of DEFALS took place between February and March 2019. The
objective was to carry out a binary classification to detect whether tested images
were falsified or not. For this matter we were provided with a testing set of about
700 images with different falsifications.

As mentioned before, we followed different approaches that we combined to obtain
the final result. As a first strategy, we developed a CNN capable of classifying small

104 Appendix A Challenge Competition for Image Forgery Detection

patches and subsequently giving a final probability of falsification for the full-sized
image. The basic architecture was taken from the network designed by Chen et al.
[CLL17b]. It consists of one first convolutional layer initialized with 4 SRM filters
followed by another vanilla convolutional layer with 32 filters. After these two layers,
the network has 6 groups of layers and each group comprises a convolutional layer, a
TANH activation function and a pooling layer. The number of filters used on the first
group is 64, with doubled number of filters in subsequent groups until the sixth and
last group of 2048 filters. The final group uses a global average pooling layer instead
of the max pooling as used in the first five groups. Finally, there is a flattening layer
with Softmax to produce the final output. The original network was designed to be
used with grayscale patches, and we slightly modified it to allow input of 3 channels.
This allowed us to accept color patches as input so that the network could cope
better with the DEFALS datasets which only included color images.

For this network, we created a dataset made up of patches of 256 × 256 pixels
with the objective of training a two-class detection network to classify between: 1)
patches coming from original images and manipulated ones and 2) patches coming
from falsified and falsified + manipulated images. In this case, images from the
second class were fewer than the first. To compensate this unbalance, we made
sure to use all patches from the second class on each training epoch while randomly
selecting equal number of patches from the first class.

Different approaches of extracting patches from full-sized images were tested, such
as using boundary patches in an attempt to localize the falsified region, but the
results were not satisfying for that kind of methods. In the end, the best performance
was achieved by using patches randomly extracted from the two groups of images
mentioned above. This was because the falsified images in the training and testing
sets had undergone some specific post-processing operations which altered the global
color information and which luckily helped the CNN to achieve good results.

Figure A.1 shows the probability of falsification in a descending order achieved by
the CNN-based strategy alone. The testing set in fact included about 90 falsified
images. As we can see from Figure A.1, a simple and intuitive thresholding of
the output scores at a value of 0.5 would allow us to well estimate the number of
falsified images and identify them.

Another strategy was the use of steganalysis features, specifically the color SRM
features and another kind of differential features extracted from the YCrCb color
space. Patches were still extracted randomly from the two classes of images. Like in
the CNN-based strategy, a simple averaging of scores from patches was performed
to obtain a final falsification probability for the full-sized image.

A.2 DEFALS 1st Stage 105

Fig. A.1.: Ordered CNN output scores (i.e., probability of falsification, blue curve) with a
thresholding at 0.5 (red horizontal line).

After obtaining falsification probability scores of an image having been falsified or
not with both strategies, i.e., CNN-based detector and steganalysis-feature-based
detectors with two different kinds of features, we combined the results with the
BORDA fusion technique which worked as consensus-based voting system resulting
in a ranking of falsified images along with the final suspicious level. For the final
results of this first round of challenge, we obtained the first place.

A.3 DEFALS 2nd Stage

The second round of DEFALS took place between February and April 2020. The
objective of this stage was divided in two parts: 1) a binary classification of falsified
images and 2) the localization of the falsified areas. For method development, we
were provided with a training set comprising authentic images as well as high-quality
falsified images and the corresponding ground-truth masks of falsifications. The
evaluation was carried out on a separate testing set. The image falsifications for this
stage mainly included copy-move, inpainting, and splicing forgeries.

In the released datasets for this second stage, there were no apparent traces of
post-processing operations on falsified images. In addition, the falsified regions were
in many cases of very small size, e.g., a letter, a bird or a leaf in a big scene, which
made the forensic analysis very difficult. Fortunately, we found information leak
from the image meta-data, more precisely coming from the dimensions of falsified

106 Appendix A Challenge Competition for Image Forgery Detection

images. This allowed us to obtain almost perfect classification (i.e., close to 100%
accuracy) for the binary detection task of falsified images.

As mentioned in section 2.2 several deep learning options exist for the detection
and localization of image falsifications. We tested the original implementations of
[Bap+19], [WAN19] and [Zho+18]. In all cases the maximum size of input for
the networks was 512× 512. Because of the high-resolution images in the DEFALS
datasets, the memory usage was prohibitive for these networks if full-resolution
images were used (e.g., of 3000× 4000 pixels). We tried initially to resize the images
but this pre-processing resulted in a poor performance probably because resizing
might partially remove falsification traces. Therefore, we created another dataset as
in the first stage comprising patches of 256× 256 pixels cropped from the full-sized
images in order to train and fine-tune the different existing networks.

More precisely, we extracted boundary patches from the falsified images. These
patches were taken with a range of 25% to 75% of the patch pixels within the falsified
region according to the ground-truth masks. In the cases where no patch satisfied the
above condition, which implied that the falsified region was very small, we took some
patches that completely comprised the whole falsified region. After training and/or
fine-tuning the networks with patches we noticed that for the splicing falsification
the networks achieved rather good results at patch level. The reason might be that
edges between spliced and original regions were usually sharper and relatively easy
to detect. However, we encountered the problem of very high false positive when
combining patch-level results to obtain the localization result on full-sized image.
Unfortunately we were not able to fully understand and improve this point.

Regarding copy-move detectors, the best option that we tested was the one designed
and implemented by Cozzolino et al. [CPV15]. Nevertheless, one limitation was
that this detector did not support the source-target disambiguation, while this was
necessary to obtain better results in the challenge because only the target region
was considered as falsified in the localization mask.

At last, we found and used a simple method to combine the splicing and copy-
move results. Images were first divided into two groups which were considered
to have respectively the splicing and the copy-move falsification. The division was
realized based on the binary detection results of falsified images and the copy-move
identification results. Afterwards, the localization maps of the two groups of images
were produced by the splicing detector and the copy-move detector, respectively.
This simple method allowed us to carry out automated detection and localization,
however the obtained localization performance was limited with better results for
copy-move than splicing. The poor performance of splicing localization was mainly

A.3 DEFALS 2nd Stage 107

caused by a high false positive rate when combining patch-level results to get the
predicted mask of the full-sized image.

Following the strategies presented above, we obtained the first place again for the
binary classification task. However, our score for the localization task was not
as good as expected which gave us the third place. In general, the localization
performance was rather limited for all participating teams. This may be due to
the lack of easily detectable forensic traces in high-quality falsifications as those
considered in the second round of the challenge.

A.4 Discussion

Being able to participate in a challenge like DEFALS was a unique experience. The
learning curve during each stage was a fast-paced evolvement with lots of new
knowledge. We also realize that there is a gap between academic research outcome
and forensic methods that can be applied in practice. As mentioned above, almost
all existing state-of-the-art methods have poor performance on DEFALS images.
Meta-data information and post-processing operations were the main clues that
we utilized to achieve a good performance in the binary classification task in the
two stages of the challenge. However, it is very likely that such ad-hoc detectors in
general fail in real-world forensic scenarios.

CNNs may be a qualified solution but it heavily depends on the data that we use to
train the network. The appropriateness and quality of the training data is probably
the key to the success of CNN-based forensic methods and more efforts should be
devoted to the relevant research. We can also see that detection of high-quality
falsifications in high-resolution images should be one of the mains future topics of
the image forensics research. In fact many of the existing solutions were focused on
synthetic and small-sized images, while the resolution of images, even for images
acquired by mobile phones, becomes larger and larger and the visual quality of
falsifications are continuously improved. In this sense, the DEFALS datasets were an
excellent example that could hopefully be shared openly in the future.

Finally, the need for dedicated hardware such as video cards of big memory and
high computational cost for this challenge was a restriction that we would like to
reconsider in our future work. This would give the opportunity to open new lines of
research that would focus on the usage of low-memory and low-cost solutions.

108 Appendix A Challenge Competition for Image Forgery Detection

Author’s Publications B
1. International Journal Paper

a) Castillo Camacho, I. and Wang, K., A comprehensive review of deep-
learning-based methods for image forensics, Journal of Imaging, Special
Issue of Image and Video Forensics (https://www.mdpi.com/journal/
jimaging/special_issues/image_video_forensics), vol. 7, no. 4,
pp. 69:1-69:39, 2021.

2. International Conferences Papers

a) Castillo Camacho, I. and Wang, K., A simple and effective initialization
of CNN for forensics of image processing operations, in Proceedings of
the ACM Workshop on Information Hiding and Multimedia Security (ACM
IH&MMSec), pp. 107-112, Paris, France, July 2019.

b) Castillo Camacho, I. and Wang, K., Data-dependent scaling of CNN’s first
layer for improved image manipulation detection, in Proceedings of the
International Workshop on Digital-forensics and Watermarking (IWDW),
pp. 208-223, Melbourne, Australia (on-line), November 2020.

3. National Conference Paper

a) Castillo Camacho, I. and Wang, K., A simple and effective CNN initializa-
tion for forensic detection of image processing operations, in Proceedings
of the Colloque Gretsi - Communauté Francophone du Traitement du Sig-
nal et des Images, 4 pages, Lille, France, August 2019. (same technical
content as ACM IH&MMSec paper)

4. International Journal Paper Under Preparation

a) Castillo Camacho, I. and Wang, K., Convolutional neural network initial-
izations for image manipulation detection, 2021. (under preparation,
extension of IWDW paper and including technical contents of Chapters 4
and 5)

109

https://www.mdpi.com/journal/jimaging/special_issues/image_video_forensics
https://www.mdpi.com/journal/jimaging/special_issues/image_video_forensics

Bibliography

[Afc+18] D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen. “Mesonet: a compact facial
video forgery detection network”. In: Proceedings of the IEEE International
Workshop on Information Forensics and Security. 2018, pp. 1–7 (cit. on pp. 21,
22, 41, 42, 45).

[Aga+20] S. Agarwal, H. Farid, O. Fried, and M. Agrawala. “Detecting deep-fake videos
from phoneme-viseme mismatches”. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops. 2020, pp. 1–9
(cit. on pp. 43, 45).

[AFG19] S. Agarwal, H. Farid, and Y. Gu. “Protecting world leaders against deep fakes”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops. 2019, pp. 38–45 (cit. on p. 13).

[AD21] A. A. Ahmed and S. M Darwish. “A meta-heuristic automatic CNN architecture
design approach based on ensemble learning”. In: IEEE Access 9 (2021),
pp. 16975–16987 (cit. on p. 102).

[AC20] I. Amerini and R. Caldelli. “Exploiting prediction error inconsistencies through
LSTM-based classifiers to detect deepfake videos”. In: Proceedings of the ACM
Workshop on Information Hiding and Multimedia Security. 2020, pp. 97–102
(cit. on pp. 43, 45).

[Ame+19] I. Amerini, L. Galteri, R. Caldelli, and A. Del Bimbo. “Deepfake video de-
tection through optical flow based CNN”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision Workshops. 2019, pp. 1–3 (cit. on
pp. 43, 45).

[Ame+17] I. Amerini, T. Uricchio, L. Ballan, and R. Caldelli. “Localization of JPEG
double compression through multi-domain convolutional neural networks”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops. 2017, pp. 1865–1871 (cit. on pp. 24, 27).

[AHH17] K. Asghar, Z. Habib, and M. Hussain. “Copy-move and splicing image forgery
detection and localization techniques: a review”. In: Australian Journal of
Forensic Sciences 49.3 (2017), pp. 281–307 (cit. on p. 15).

[Bap+17] J. Bappy, A. K. Roy-Chowdhury, J. Bunk, L. Nataraj, and BS. Manjunath.
“Exploiting spatial structure for localizing manipulated image regions”. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision.
2017, pp. 4970–4979 (cit. on p. 32).

111

[Bap+19] J. Bappy, C. Simons, L. Nataraj, BS. Manjunath, and A. K. Roy-Chowdhury.
“Hybrid LSTM and encoder–decoder architecture for detection of image
forgeries”. In: IEEE Transactions on Image Processing 28.7 (2019), pp. 3286–
3300 (cit. on pp. 29, 30, 32, 107).

[BBB17] M. Barni, L. Bondi, and N. Bonettini. “Aligned and non-aligned double JPEG
detection using convolutional neural networks”. In: Journal of Visual Com-
munication and Image Representation 49 (2017), pp. 153–163 (cit. on pp. 23,
27).

[Bar+18] M. Barni, A. Costanzo, E. Nowroozi, and B. Tondi. “CNN-based detection of
generic contrast adjustment with JPEG post-processing”. In: Proceedings of
the IEEE International Conference on Image Processing. 2018, pp. 3803–3807
(cit. on pp. 25, 27).

[BPT19] M. Barni, Q. Phan, and B. Tondi. “Copy move source-target disambiguation
through multi-branch CNNs”. In: arXiv preprint arXiv:1912.12640 (2019)
(cit. on pp. 34, 36).

[Bar+19] E. Bartusiak, S. Yarlagadda, D. Güera, P. Bestagini, S. Tubaro, F. Zhu, and E. J.
Delp. “Splicing detection and localization in satellite imagery using condi-
tional gans”. In: Proceedings of the IEEE Conference on Multimedia Information
Processing and Retrieval. 2019, pp. 91–96 (cit. on pp. 33, 34).

[BS18a] B. Bayar and M. C. Stamm. “Constrained convolutional neural networks:
A new approach towards general purpose image manipulation detection”.
In: IEEE Transactions on Information Forensics and Security 13.11 (2018),
pp. 2691–2706 (cit. on pp. 26, 27, 30, 49–51, 53–56, 62, 65, 72–80, 89,
92–94, 98).

[BS18b] B. Bayar and M. C. Stamm. “Towards open set camera model identification
using a deep learning framework”. In: Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing. 2018, pp. 2007–2011
(cit. on pp. 38, 39).

[BSF94] Y. Bengio, P. Simard, and P. Frasconi. “Learning long-term dependencies with
gradient descent is difficult”. In: IEEE Transactions on Neural Networks 5.2
(1994), pp. 157–166 (cit. on p. 48).

[Ber+19] P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger. “MVTec AD–A compre-
hensive real-world dataset for unsupervised anomaly detection”. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2019, pp. 9592–9600 (cit. on pp. 17, 36).

[Bi+19] X. Bi, Y. Wei, B. Xiao, and W. Li. “RRU-Net: The ringed residual U-Net for
image splicing forgery detection”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops. 2019, pp. 1–10 (cit.
on pp. 33, 34).

[BP12] T. Bianchi and A. Piva. “Image forgery localization via block-grained analysis
of JPEG artifacts”. In: IEEE Transactions on Information Forensics and Security
7.3 (2012), pp. 1003–1017 (cit. on pp. 19, 20, 39).

112 Bibliography

[Bon+16] L. Bondi, L. Baroffio, D. Güera, P. Bestagini, E. J. Delp, and S. Tubaro. “First
steps toward camera model identification with convolutional neural net-
works”. In: IEEE Signal Processing Letters 24.3 (2016), pp. 259–263 (cit. on
pp. 38, 39).

[Bon+17] L. Bondi, S. Lameri, D. Güera, P. Bestagini, E. J. Delp, and S. Tubaro. “Tam-
pering detection and localization through clustering of camera-based CNN
features”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops. 2017, pp. 1855–1864 (cit. on pp. 30, 32).

[BDS18] A. Brock, J. Donahue, and K. Simonyan. “Large scale GAN training for high
fidelity natural image synthesis”. In: arXiv preprint arXiv:1809.11096 (2018)
(cit. on pp. 96, 97).

[Bun+17] J. Bunk, J. Bappy, et al. “Detection and localization of image forgeries using
resampling features and deep learning”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops. 2017,
pp. 1881–1889 (cit. on pp. 29, 32).

[CW19] I. Castillo Camacho and K. Wang. “A simple and effective initialization of
CNN for forensics of image processing operations”. In: Proceedings of the ACM
Workshop on Information Hiding and Multimedia Security. 2019, pp. 107–112
(cit. on pp. 26, 27, 62, 65, 73, 74, 77, 89).

[CW20] I. Castillo Camacho and K. Wang. “Data-dependent scaling of CNN’s first
layer for improved image manipulation detection”. In: Proceedings of the
International Workshop on Digital-forensics and Watermarking. 2020, pp. 1–
15 (cit. on p. 27).

[Car+13] T. De Carvalho, C. Riess, E. Angelopoulou, H. Pedrini, and A. de Rezende
Rocha. “Exposing digital image forgeries by illumination color classifica-
tion”. In: IEEE Transactions on Information Forensics and Security 8.7 (2013),
pp. 1182–1194 (cit. on pp. 18, 20, 32, 34, 39, 41).

[Cha+19] C. Chan, S. Ginosar, T. Zhou, and A. A Efros. “Everybody dance now”. In:
Proceedings of the IEEE International Conference on Computer Vision. 2019,
pp. 5933–5942 (cit. on pp. 42, 45).

[CLL17a] B. Chen, H. Li, and W. Luo. “Image processing operations identification via
convolutional neural network”. In: arXiv preprint arXiv:1709.02908 (2017)
(cit. on p. 49).

[CLL17b] B. Chen, H. Li, and W. Luo. “Image processing operations identification via
convolutional neural network”. In: arXiv preprint arXiv:1709.02908 (2017)
(cit. on p. 105).

[Che+18] C. Chen, Q. Chen, J. Xu, and V. Koltun. “Learning to see in the dark”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2018, pp. 3291–3300 (cit. on pp. 96, 97).

[CKL15] J. Chen, X. Kang, and Y. Liu. “Median filtering forensics based on convo-
lutional neural networks”. In: IEEE Signal Processing Letters 22.11 (2015),
pp. 1849–1853 (cit. on pp. 22, 23, 27, 49–51, 53, 54, 57, 58).

Bibliography 113

[CK17] Q. Chen and V. Koltun. “Photographic image synthesis with cascaded re-
finement networks”. In: Proceedings of the IEEE international conference on
computer vision. 2017, pp. 1511–1520 (cit. on pp. 96, 97).

[Cho+18] Y. Choi, M. Choi, M. Kim, J. Ha, S. Kim, and J. Choo. “Stargan: Unified gener-
ative adversarial networks for multi-domain image-to-image translation”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 8789–8797 (cit. on pp. 96, 97).

[Cho17] F. Chollet. “Xception: Deep learning with depthwise separable convolutions”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2017, pp. 1251–1258 (cit. on p. 30).

[CDY20] U. A. Ciftci, I. Demir, and L. Yin. “Fakecatcher: Detection of synthetic portrait
videos using biological signals”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence (2020), pp. 1–17 (cit. on pp. 43, 45).

[CPV15] D. Cozzolino, G. Poggi, and L. Verdoliva. “Efficient dense-field copy–move
forgery detection”. In: IEEE Transactions on Information Forensics and Security
10.11 (2015), pp. 2284–2297 (cit. on p. 107).

[CPV17] D. Cozzolino, G. Poggi, and L. Verdoliva. “Recasting residual-based local
descriptors as convolutional neural networks: an application to image forgery
detection”. In: Proceedings of the ACM Workshop on Information Hiding and
Multimedia Security. 2017, pp. 159–164 (cit. on pp. 29, 32).

[CV18] D. Cozzolino and L. Verdoliva. “Camera-based image forgery localization
using convolutional neural networks”. In: Proceedings of the European Signal
Processing Conference. 2018, pp. 1372–1376 (cit. on pp. 30, 32).

[CV19] D. Cozzolino and L. Verdoliva. “Noiseprint: a CNN-based camera model
fingerprint”. In: IEEE Transactions on Information Forensics and Security 15
(2019), pp. 144–159 (cit. on pp. 38, 39).

[CV16] D. Cozzolino and L. Verdoliva. “Single-image splicing localization through
autoencoder-based anomaly detection”. In: Proceedings of the IEEE Interna-
tional Workshop on Information Forensics and Security. 2016, pp. 1–6 (cit. on
pp. 31, 34).

[DAv+17] D. D’Avino, D. Cozzolino, G. Poggi, and L. Verdoliva. “Autoencoder with
recurrent neural networks for video forgery detection”. In: Electronic Imaging
2017.7 (2017), pp. 92–99 (cit. on pp. 31, 34).

[Dai+19] T Dai, J. Cai, Y. Zhang, S. Xia, and L. Zhang. “Second-order attention network
for single image super-resolution”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2019, pp. 11065–11074 (cit. on
pp. 96, 97).

[Dan+20] H. Dang, F. Liu, J. Stehouwer, X. Liu, and A. K. Jain. “On the detection of
digital face manipulation”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2020, pp. 5781–5790 (cit. on pp. 43,
45).

114 Bibliography

[Dan+15] D.-T. Dang-Nguyen, C. Pasquini, V. Conotter, and G. Boato. “RAISE: A raw
images dataset for digital image forensics”. In: Proceedings of the ACM Multi-
media Systems Conference. 2015, pp. 219–224 (cit. on pp. 17, 20, 36, 41).

[De +15] M. De Marsico, M. Nappi, D. Riccio, and H. Wechsler. “Mobile iris challenge
evaluation (MICHE)-I, biometric iris dataset and protocols”. In: Pattern Recog-
nition Letters 57 (2015), pp. 17–23 (cit. on pp. 17, 20, 39).

[DRC17] E. De Rezende, G. Ruppert, and T. Carvalho. “Detecting computer generated
images with deep convolutional neural networks”. In: Proceedings of the
SIBGRAPI Conference on Graphics, Patterns and Images. 2017, pp. 71–78 (cit.
on pp. 40, 41).

[Den+09] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. “ImageNet: A large-
scale hierarchical image database”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2009, pp. 248–255 (cit. on pp. 17,
36, 41, 95, 96).

[Din+19] X. Ding, Y. Chen, Z. Tang, and Y. Huang. “Camera identification based on
domain knowledge-driven deep multi-task learning”. In: IEEE Access 7 (2019),
pp. 25878–25890 (cit. on pp. 38, 39).

[Din+20] X. Ding, Z. Raziei, E. C. Larson, E. V. Olinick, P. Krueger, and M. Hahsler.
“Swapped face detection using deep learning and subjective assessment”. In:
Eurasip Journal on Information Security 2020.1 (2020), pp. 1–12 (cit. on
pp. 43, 45).

[Dol+19] B. Dolhansky, R. Howes, B. Pflaum, N. Baram, and C. C. Ferrer. “The deepfake
detection challenge (DFDC) preview dataset”. In: arXiv preprint arXiv:1910.08854
(2019) (cit. on pp. 21, 22, 45).

[DW11] J. Dong and W. Wang. CASIA Tampered Image Detection Evaluation (TIDE)
Database, v1.0 and v2.0. 2011 (cit. on pp. 18, 20, 32, 34, 36).

[Far09] H. Farid. “A survey of image forgery detection”. In: IEEE Signal Processing
Magazine 2.26 (2009), pp. 16–25 (cit. on p. 15).

[FJY18] L. Fei-Fei, J. Johnson, and S. Yeung. Neural networks part 2: Setting up the data
and the loss. (Course notes of Stanford University “CS231n: Convolutional
Neural Networks for Visual Recognition”). 2018 (cit. on pp. 49, 51, 61, 62).

[Fer+20] S. Fernandes, S. Raj, R. Ewetz, J. Singh Pannu, S. Kumar Jha, E. Ortiz, I.
Vintila, and M. Salter. “Detecting deepfake videos using attribution-based
confidence metric”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops. 2020, pp. 308–309 (cit. on pp. 44,
45).

[Fre+19] D. Freire-Obregón, F. Narducci, S. Barra, and M. Castrillón-Santana. “Deep
learning for source camera identification on mobile devices”. In: Pattern
Recognition Letters 126 (2019), pp. 86–91 (cit. on pp. 38, 39).

Bibliography 115

[FK12] J. Fridrich and J. Kodovsky. “Rich models for steganalysis of digital im-
ages”. In: IEEE Transactions on Information Forensics and Security 7.3 (2012),
pp. 868–882 (cit. on pp. 28, 49, 50, 62, 73, 74, 77–81, 89–94, 98).

[GG16] Y. Gal and Z. Ghahramani. “Dropout as a bayesian approximation: Represent-
ing model uncertainty in deep learning”. In: Proceedings of the International
Conference on Machine Learning. 2016, pp. 1050–1059 (cit. on p. 9).

[GB10a] T. Gloe and R. Bohme. “The Dresden image database for benchmarking
digital image forensics”. In: Proceedings of the ACM Symposium on Applied
Computing. 2010, pp. 1584–1590 (cit. on pp. 17, 20, 32, 36, 39, 55, 64, 73,
88).

[GB10b] X. Glorot and Y. Bengio. “Understanding the difficulty of training deep feed-
forward neural networks”. In: Proceedings of the International Conference on
Artificial Intelligence and Statistics. 2010, pp. 249–256 (cit. on pp. 4, 27, 47,
48, 50, 51, 57, 58, 61, 62, 65, 67, 73, 74, 76, 77, 81, 86, 87, 89–91, 98, 100).

[GBB11] X. Glorot, A. Bordes, and Y. Bengio. “Deep sparse rectifier neural networks”.
In: Proceedings of the fourteenth international conference on artificial intelli-
gence and statistics. 2011, pp. 315–323 (cit. on p. 8).

[GBC16] I. J. Goodfellow, Y. Bengio, and A. C. Courville. Deep Learning. Cambridge,
MA, USA: MIT Press, 2016 (cit. on pp. 49, 51).

[Goo60] L. A. Goodman. “On the exact variance of products”. In: Journal of the
American Statistical Association 55.292 (1960), pp. 708–713 (cit. on p. 52).

[GD18] D. Güera and E. J Delp. “Deepfake video detection using recurrent neural
networks”. In: Proceedings of the IEEE International Conference on Advanced
Video and Signal Based Surveillance. 2018, pp. 1–6 (cit. on pp. 43, 45).

[He+16] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image
recognition”. In: Proceedings of the IEEE/CVG Conference on Computer Vision
and Pattern Recognition. 2016, pp. 770–778 (cit. on pp. 30, 38).

[He+15] K. He, X. Zhang, S. Ren, and J. Sun. “Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification”. In: Proceedings of the
IEEE International Conference on Computer Vision. 2015, pp. 1026–1034 (cit.
on pp. 48, 49).

[He+18] P. He, X. Jiang, T. Sun, and H. Li. “Computer graphics identification combining
convolutional and recurrent neural networks”. In: IEEE Signal Processing
Letters 25.9 (2018), pp. 1369–1373 (cit. on pp. 40, 41).

[He+20] P. He, H. Li, H. Wang, and R. Zhang. “Detection of Computer Graphics Using
Attention-Based Dual-Branch Convolutional Neural Network from Fused
Color Components”. In: Sensors 20.17 (2020), p. 4743 (cit. on p. 41).

[HS97] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780 (cit. on p. 29).

116 Bibliography

[HZL20] C.-C. Hsu, Y.-X. Zhuang, and C.-Y. Lee. “Deep fake image detection based on
pairwise learning”. In: Applied Sciences 10.1 (2020), p. 370 (cit. on pp. 43,
45).

[HC06] Y.-F. Hsu and S.-F. Chang. “Detecting image splicing using geometry invari-
ants and camera characteristics consistency”. In: Proceedings of the Inter-
national Conference on Multimedia and Expo. 2006 (cit. on pp. 18, 20, 32,
34).

[Hua+17] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. “Densely con-
nected convolutional networks”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2017, pp. 4700–4708 (cit. on
p. 41).

[Huh+18] M. Huh, A. Liu, A. Owens, and A. A. Efros. “Fighting fake news: Image
splice detection via learned self-consistency”. In: Proceedings of the European
Conference on Computer Vision. 2018, pp. 101–117 (cit. on pp. 32, 34).

[IS15] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167
(2015) (cit. on pp. 9, 90).

[KK92] B. L. Kalman and S. C. Kwasny. “Why tanh: choosing a sigmoidal function”.
In: Proceedings of the International Joint Conference on Neural Networks. Vol. 4.
1992, pp. 578–581 (cit. on p. 8).

[Kar+17] T. Karras, T. Aila, S. Laine, and J. Lehtinen. “Progressive growing of GANs for
improved quality, stability, and variation”. In: arXiv preprint arXiv:1710.10196
(2017) (cit. on pp. 18, 20–22, 45, 94–97).

[KLA19] T. Karras, S. Laine, and T. Aila. “A style-based generator architecture for
generative adversarial networks”. In: Proceedings of the IEEE CVF Conference
on Computer Vision and Pattern Recognition. 2019, pp. 4401–4410 (cit. on
pp. 96, 97).

[KW20] H. Khalid and S. S. Woo. “OC-FakeDect: Classifying deepfakes using one-
class variational autoencoder”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops. 2020, pp. 656–657
(cit. on pp. 44, 45).

[KB14] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. In:
Proceedings of the International Conference on Learning Representations. ICLR,
2014, pp. 1–15 (cit. on pp. 54, 56).

[KKR19] V. V. Kniaz, V. Knyaz, and Fabio Remondino. “The point where reality meets
fantasy: Mixed adversarial generators for image splice detection”. In: Proceed-
ings of the Advances in Neural Information Processing Systems. 2019, pp. 215–
226 (cit. on pp. 33, 34).

[Kor+19] P. Korshunov, M. Halstead, D. Castan, M. Graciarena, M. McLaren, B. Burns,
A. Lawson, and S. Marcel. “Tampered speaker inconsistency detection with
phonetically aware audio-visual features”. In: Proceedings of the International
Conference on Machine Learning. 2019, pp. 1–5 (cit. on pp. 21, 22, 43, 45).

Bibliography 117

[KH17] P. Korus and J. Huang. “Multi-scale analysis strategies in PRNU-based tamper-
ing localization”. In: IEEE Transactions on Information Forensics and Security
12.4 (2017), pp. 809–824 (cit. on pp. 18, 20, 34, 39).

[Kra91] M. A. Kramer. “Nonlinear principal component analysis using autoassociative
neural networks”. In: AIChE Journal 37.2 (1991), pp. 233–243 (cit. on p. 28).

[KSH12] A. Krizhevsky, I. Sutskever, and G. Hinton. “ImageNet classification with deep
convolutional neural networks”. In: Proceedings of the Advances in Neural
Information Processing Systems. 2012, pp. 1097–1105 (cit. on p. 33).

[LBL09] H. Larochelle, Y. Bengio, and J. Louradour. “Exploring strategies for training
deep neural networks”. In: Journal of Machine Learning Research 10.1 (2009),
pp. 1–40 (cit. on p. 47).

[LeC+98] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning
applied to document recognition”. In: Proceedings of the IEEE 86.11 (1998),
pp. 2278–2324 (cit. on p. 12).

[LH19] H. Li and J. Huang. “Localization of deep inpainting using high-pass fully
convolutional network”. In: Proceedings of the IEEE International Conference
on Computer Vision. 2019, pp. 8301–8310 (cit. on pp. 36, 49).

[LZM19] K. Li, T. Zhang, and J. Malik. “Diverse image synthesis from semantic layouts
via conditional imle”. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. 2019, pp. 4220–4229 (cit. on pp. 96, 97).

[Li+20a] L. Li, J. Bao, T. Zhang, H. Yang, D. Chen, F. Wen, and B. Guo. “Face X-ray
for more general face forgery detection”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2020, pp. 5001–5010
(cit. on pp. 43, 45).

[Li+20b] X. Li, K. Yu, S. Ji, Y. Wang, C. Wu, and H. Xue. “Fighting against deep-
fake: Patch&pair convolutional neural networks (PPCNN)”. In: Companion
Proceedings of the Web Conference. 2020, pp. 88–89 (cit. on pp. 44, 45).

[LCL18] Y. Li, M.-C. Chang, and S. Lyu. “In ictu oculi: Exposing AI created fake videos
by detecting eye blinking”. In: Proceedings of the IEEE International Workshop
on Information Forensics and Security. 2018, pp. 1–7 (cit. on pp. 43, 45).

[LL18] Y. Li and S. Lyu. “Exposing deepFake videos by detecting face warping
artifacts”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops. 2018, pp. 46–52 (cit. on pp. 43, 45).

[Li+20c] Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu. “Celeb-DF: A large-scale challenging
dataset for DeepFake forensics”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2020, pp. 3207–3216 (cit. on
pp. 21, 22, 45).

[LCY13] M. Lin, Q. Chen, and S. Yan. “Network in network”. In: arXiv preprint
arXiv:1312.4400 (2013) (cit. on p. 23).

118 Bibliography

[Lin+14] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick. “Microsoft COCO: Common objects in context”. In: Proceedings
of the European conference on computer vision. 2014, pp. 740–755 (cit. on
pp. 17, 20, 32, 34, 36, 96).

[LP18] B. Liu and C. Pun. “Locating splicing forgery by fully convolutional networks
and conditional random field”. In: Signal Processing: Image Communication
66 (2018), pp. 103–112 (cit. on pp. 31, 32, 34).

[LGC18] Y. Liu, Q. Guan, and Y. Cao. “Image forgery localization based on multi-scale
convolutional neural networks”. In: Proceedings of the ACM Workshop on
Information Hiding and Multimedia Security. 2018, pp. 85–90 (cit. on pp. 49,
77).

[LGZ18] Y. Liu, Q. Guan, and X. Zhao. “Copy-move forgery detection based on convo-
lutional kernel network”. In: Multimedia Tools and Applications 77.14 (2018),
pp. 18269–18293 (cit. on pp. 34, 36).

[Liu+19] Y. Liu, X. Zhu, X. Zhao, and Y. Cao. “Adversarial learning for constrained im-
age splicing detection and localization based on atrous convolution”. In: IEEE
Transactions on Information Forensics and Security 14.10 (2019), pp. 2551–
2566 (cit. on pp. 33, 34).

[Liu+15] Z. Liu, P. Luo, X. Wang, and X. Tang. “Deep learning face attributes in the
wild”. In: Proceedings of the IEEE International Conference on Computer Vision.
2015, pp. 3730–3738 (cit. on pp. 18, 20, 21, 45, 96).

[LSD15] J. Long, E. Shelhamer, and T. Darrell. “Fully convolutional networks for
semantic segmentation”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 2015, pp. 3431–3440 (cit. on p. 31).

[LN20] M. Lu and S. Niu. “A detection approach using LSTM-CNN for object removal
caused by exemplar-based image inpainting”. In: Electronics 9.5 (2020),
p. 858 (cit. on pp. 36, 37).

[Mar+18] F. Marra, D. Gragnaniello, D. Cozzolino, and L. Verdoliva. “Detection of
GAN-generated fake images over social networks”. In: Proceedings of the
IEEE Conference on Multimedia Information Processing and Retrieval. 2018,
pp. 384–389 (cit. on pp. 42, 45).

[Mar+20] F. Marra, D. Gragnaniello, L. Verdoliva, and G. Poggi. “A full-image full-
resolution end-to-end-trainable CNN framework for image forgery detection”.
In: IEEE Access 8 (2020), pp. 133488–133502 (cit. on pp. 30, 32).

[Mas+20] I. Masi, A. Killekar, R. M. Mascarenhas, S. P. Gurudatt, and W. AbdAlmageed.
“Two-branch recurrent network for isolating deepfakes in videos”. In: arXiv
preprint arXiv:2008.03412 (2020) (cit. on pp. 44, 45).

[Mat+15] P. Mattis, M. Douze, Z. Harchaoui, J. Mairal, F. Perronin, and C. Schmid.
“Local convolutional features with unsupervised training for image retrieval”.
In: Proceedings of the IEEE International Conference on Computer Vision. 2015,
pp. 91–99 (cit. on p. 36).

Bibliography 119

[MT20] K. B. Meena and V. Tyagi. “A deep learning based method to discriminate be-
tween photorealistic computer generated images and photographic images”.
In: Proceedings of the International Conference on Advances in Computing and
Data Sciences. 2020, pp. 212–223 (cit. on p. 41).

[MFC17] NIST MFC. Media Forensics Challenge 2018. 2017 (cit. on pp. 18, 20, 39).

[Mit+20] T. Mittal, U. Bhattacharya, R. Chandra, A. Bera, and D. Manocha. “Emotions
don’t lie: A deepfake detection method using audio-visual affective cues”. In:
arXiv preprint arXiv:2003.06711 (2020) (cit. on pp. 43, 45).

[MCL18] H. Mo, B. Chen, and W. Luo. “Fake faces identification via convolutional
neural network”. In: Proceedings of the ACM Workshop on Information Hiding
and Multimedia Security. 2018, pp. 43–47 (cit. on pp. 42, 45).

[Ng+05] T. Ng, S. Chang, J. Hsu, and M. Pepeljugoski. “Columbia photographic im-
ages and photorealistic computer graphics dataset”. In: Columbia University,
ADVENT Technical Report (2005), pp. 205–2004 (cit. on pp. 21, 22, 41).

[Ngu+19] H. H. Nguyen, F. Fang, J. Yamagishi, and I. Echizen. “Multi-task learning for
detecting and segmenting manipulated facial images and videos”. In: Proceed-
ings of the IEEE International Conference on Biometrics Theory, Applications
and Systems. 2019, pp. 1–8 (cit. on pp. 43, 45).

[Ngu+18] H. H. Nguyen, T. N.-D. Tieu, H.-Q. Nguyen-Son, V. Nozick, J. Yamagishi, and I.
Echizen. “Modular convolutional neural network for discriminating between
computer-generated images and photographic images”. In: Proceedings of
the International Conference on Availability, Reliability and Security. 2018,
pp. 1–10 (cit. on pp. 40, 41).

[NYE19] H. H. Nguyen, J. Yamagishi, and I. Echizen. “Capsule-forensics: Using capsule
networks to detect forged images and videos”. In: Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing. 2019,
pp. 2307–2311 (cit. on pp. 40, 41).

[NCY19] X. Ni, L. Chen, and Y. Yao. “An evaluation of deep learning-based computer
generated image detection approaches”. In: IEEE Access 7 (2019), pp. 130830–
130840 (cit. on p. 15).

[NZ08] M. Nilsback and A. Zisserman. “Automated flower classification over a large
number of classes”. In: Proceedings of the Indian Conference on Computer
Vision, Graphics & Image Processing. 2008, pp. 722–729 (cit. on pp. 17, 36).

[NIS16] NIST. Nimble Datasets. 2016 (cit. on pp. 18–20, 31, 32, 34, 35, 39).

[OK15] H. Su O. Russakovsky J. Deng and J. Krause. “ImageNet large scale visual
recognition challenge”. In: International Journal of Computer Vision 115.3
(2015), pp. 211–252 (cit. on p. 12).

[OLL17] J. Ouyang, Y. Liu, and M. Liao. “Copy-move forgery detection based on deep
learning”. In: Proceedings of the International Congress on Image and Signal
Processing, BioMedical Engineering and Informatics. 2017, pp. 1–5 (cit. on
pp. 33, 36).

120 Bibliography

[PP11] T. Filler P. Bas and T. Pevny. “Break our steganographic system: the ins and
outs of organizing BOSS”. In: Proceedings of the International Workshop on
Information Hiding. 2011, pp. 59–70 (cit. on pp. 17, 20).

[Par+18] J. Park, D. Cho, W. Ahn, and H. Lee. “Double JPEG detection in mixed JPEG
quality factors using deep convolutional neural network”. In: Proceedings
of the European Conference on Computer Vision. 2018, pp. 636–652 (cit. on
pp. 24, 27).

[Par+19] T. Park, M. Liu, T. Wang, and J. Zhu. “Semantic image synthesis with spatially-
adaptive normalization”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 2019, pp. 2337–2346 (cit. on pp. 96,
97).

[Piv13] A. Piva. “An overview on image forensics”. In: ISRN Signal Processing 2013
(2013), pp. 1–22 (cit. on pp. 14, 15).

[Pom+18] T. Pomari, G. Ruppert, E. Rezende, A. Rocha, and T. Carvalho. “Image splic-
ing detection through illumination inconsistencies and deep learning”. In:
Proceedings of the IEEE International Conference on Image Processing. 2018,
pp. 3788–3792 (cit. on pp. 32, 34).

[PF04] A. Popescu and H. Farid. “Statistical tools for digital forensics”. In: Proceedings
of the International Workshop on Information Hiding. 2004, pp. 128–147 (cit.
on p. 23).

[Qua+18] W. Quan, K. Wang, D.-M. Yan, and X. Zhang. “Distinguishing between natu-
ral and computer-generated images using convolutional neural networks”.
In: IEEE Transactions on Information Forensics and Security 13.11 (2018),
pp. 2772–2787 (cit. on pp. 40, 41).

[Qua+20] W. Quan, K. Wang, D.-M. Yan, X. Zhang, and D. Pellerin. “Learn with diver-
sity and from harder samples: Improving the generalization of CNN-Based
detection of computer-generated images”. In: Forensic Science International:
Digital Investigation 35 (2020), 301023:1–12 (cit. on p. 41).

[Rah+17] N. Rahmouni, V. Nozick, J. Yamagishi, and I. Echizen. “Distinguishing com-
puter graphics from natural images using convolution neural networks”. In:
Proceedings of the IEEE Workshop on Information Forensics and Security. 2017,
pp. 1–6 (cit. on pp. 22, 40, 41).

[RN16] Y. Rao and J. Ni. “A deep learning approach to detection of splicing and
copy-move forgeries in images”. In: Proceedings of the IEEE International
Workshop on Information Forensics and Security. 2016, pp. 1–6 (cit. on pp. 29,
32).

[RNZ20] Y. Rao, J. Ni, and H. Zhao. “Deep learning local descriptor for image splicing
detection and localization”. In: IEEE Access 8 (2020), pp. 25611–25625 (cit.
on pp. 33, 34).

[Ric+16] S. R. Richter, V. Vineet, S. Roth, and V. Koltun. “Playing for data: Ground
truth from computer games”. In: Proceedings of the European Conference on
Computer Vision. 2016, pp. 102–118 (cit. on p. 96).

Bibliography 121

[RFB15] O. Ronneberger, P. Fischer, and T. Brox. “U-Net: Convolutional networks
for biomedical image segmentation”. In: Proceedings of the International
Conference on Medical image computing and computer-assisted intervention.
2015, pp. 234–241 (cit. on p. 33).

[Ros+19] A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Nießner.
“Faceforensics++: Learning to detect manipulated facial images”. In: Proceed-
ings of the IEEE International Conference on Computer Vision. 2019, pp. 1–11
(cit. on pp. 21, 22, 45, 96, 97).

[Rös+18] A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Nießner.
“Faceforensics: A large-scale video dataset for forgery detection in human
faces”. In: arXiv preprint arXiv:1803.09179 (2018) (cit. on pp. 21, 22, 41, 42,
45).

[RHW86] D. Rumelhart, G. Hinton, and R.J. Williams. “Learning representations by
back-propagating errors”. In: Nature 323.6088 (1986), pp. 533–536 (cit. on
p. 11).

[SFH17] S. Sabour, N. Frosst, and G. Hinton. “Dynamic routing between capsules”. In:
Proceedings of the Advances in Neural Information Processing Systems. 2017,
pp. 3856–3866 (cit. on p. 40).

[SRK18] R. Salloum, Y. Ren, and C-C. K. Kuo. “Image splicing localization using
a multi-task fully convolutional network (MFCN)”. In: Journal of Visual
Communication and Image Representation 51 (2018), pp. 201–209 (cit. on
pp. 31, 32, 34).

[SN20] V. U. Sameer and R. Naskar. “Deep siamese network for limited labels classifi-
cation in source camera identification”. In: Multimedia Tools and Applications
79.37 (2020), pp. 28079–28104 (cit. on pp. 38, 39).

[SS04] G. Schaefer and M. Stich. “UCID – An uncompressed colour image database”.
In: Proceedings of the SPIE: Storage and Retrieval Methods and Applications for
Multimedia. 2004, pp. 472–480 (cit. on pp. 17, 20, 32, 36, 57).

[Sha+19] W. Shan, Y. Yi, R. Huang, and Y Xie. “Robust contrast enhancement foren-
sics based on convolutional neural networks”. In: Signal Processing: Image
Communication 71 (2019), pp. 138–146 (cit. on pp. 25, 27).

[Shu+17] D. Shullani, M. Fontani, M. Iuliani, O. Al Shaya, and A. Piva. “VISION: a
video and image dataset for source identification”. In: EURASIP Journal on
Information Security 2017.1 (2017), p. 15 (cit. on pp. 17, 20, 32, 36, 39, 41).

[SO01] E. P. Simoncelli and B. A. Olshausen. “Natural image statistics and neural
representation”. In: Annual Review of Neuroscience 24.1 (2001), pp. 1193–
1216 (cit. on pp. 59, 62, 63, 85).

[SZ14] K. Simonyan and A. Zisserman. “Very deep convolutional networks for large-
scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014) (cit. on
pp. 12, 13, 31).

122 Bibliography

[SL10] M. C. Stamm and K. R. Liu. “Forensic detection of image manipulation using
statistical intrinsic fingerprints”. In: IEEE Transactions on Information Forensics
and Security 5.3 (2010), pp. 492–506 (cit. on p. 25).

[SWL13] M. C. Stamm, M. Wu, and K. R. Liu. “Information forensics: An overview of
the first decade”. In: IEEE Access 1 (2013), pp. 167–200 (cit. on p. 15).

[Sun+18a] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. “PWC-Net: CNNs for optical flow
using pyramid, warping, and cost volume”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2018, pp. 8934–8943
(cit. on p. 43).

[Sun+18b] J. Sun, K. Seung-Wook, L. Sang-Won, and K. Sung-Jea. “A novel contrast
enhancement forensics based on convolutional neural networks”. In: Signal
Processing: Image Communication 63 (2018), pp. 149–160 (cit. on pp. 25,
27).

[Tan+18] H. Tang, R. Ni, Y. Zhao, and X. Li. “Median filtering detection of small-
size image based on CNN”. In: Journal of Visual Communication and Image
Representation 51 (2018), pp. 162–168 (cit. on pp. 23, 27).

[Tar+19] D. B. Tariang, P. Senguptab, A. Roy, R. S. Chakraborty, and R. Naskar. “Clas-
sification of computer generated and natural images based on efficient deep
convolutional recurrent attention model”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops. 2019,
pp. 146–152 (cit. on pp. 40, 41).

[Tar+18] S. Tariq, S. Lee, H. Kim, Y. Shin, and S. S. Woo. “Detecting both machine
and human created fake face images in the wild”. In: Proceedings of the
International Workshop on Multimedia Privacy and Security. 2018, pp. 81–87
(cit. on pp. 42, 45).

[TR20] R. Thakur and R. Rohilla. “Recent advances in digital image manipulation
detection techniques: A brief review”. In: Forensic Science International 312
(2020), 110311:1–110311:13 (cit. on p. 44).

[Tra+13] D. Tralic, I. Zupancic, S. Grgic, and M. Grgic. “CoMoFoD—New database for
copy-move forgery detection”. In: Proc. of the International Symposium on
Electronics in Marine. 2013, pp. 49–54 (cit. on pp. 19, 20, 36).

[TCC16] A. Tuama, F. Comby, and M. Chaumont. “Camera model identification with
the use of deep convolutional neural networks”. In: Proceedings of the IEEE
International Workshop on Information Forensics and Security. 2016, pp. 1–6
(cit. on pp. 38, 39).

[Ver20] L. Verdoliva. “Media forensics and deepfakes: an overview”. In: arXiv preprint
arXiv:2001.06564 (2020) (cit. on p. 15).

[VAK18] V. Verma, N. Agarwal, and N. Khanna. “DCT-domain deep convolutional
neural networks for multiple JPEG compression classification”. In: Signal
Processing: Image Communication 67 (2018), pp. 22–33 (cit. on pp. 23, 27).

Bibliography 123

[WZ16] Q. Wang and R. Zhang. “Double JPEG compression forensics based on a
convolutional neural network”. In: EURASIP Journal on Information Security
2016.1 (2016), p. 23 (cit. on pp. 23, 24, 27).

[Wan+20] S.-Y. Wang, O. Wang, R. Zhang, A. Owens, and A. A. Efros. “CNN-generated im-
ages are surprisingly easy to spot... for now”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2020, pp. 8695–8704
(cit. on pp. 44, 45, 94–97).

[WNW20] X. Wang, S. Niu, and H. Wang. “Image inpainting detection based on multi-
task deep learning network”. In: IETE Technical Review (2020), pp. 1–9 (cit.
on p. 36).

[WWN19] X. Wang, H. Wang, and S. Niu. “An image forensic method for AI inpaint-
ing using faster R-CNN”. In: Proceedings of the International Conference on
Artificial Intelligence and Security. 2019, pp. 476–487 (cit. on p. 36).

[Wen+16] B. Wen, Y. Zhu, R. Subramanian, T. Ng, X. Shen, and S. Winkler. “COVER-
AGE—A novel database for copy-move forgery detection”. In: Proceedings of
the IEEE International Conference on Image Processing. 2016, pp. 161–165
(cit. on pp. 19, 20, 32, 36).

[WFT20] J. Wu, K. Feng, and M. Tian. “Review of imaging device identification based on
machine learning”. In: Proceedings of the International Conference on Machine
Learning and Computing. 2020, pp. 105–110 (cit. on p. 15).

[WAN18a] Y. Wu, W. Abd-Almageed, and P. Natarajan. “Busternet: Detecting copy-move
image forgery with source/target localization”. In: Proceedings of the European
Conference on Computer Vision. 2018, pp. 168–184 (cit. on pp. 34–36).

[WAN17] Y. Wu, W. Abd-Almageed, and P. Natarajan. “Deep matching and validation
network: An end-to-end solution to constrained image splicing localization
and detection”. In: Proceedings of the ACM international conference on Multi-
media. 2017, pp. 1480–1502 (cit. on pp. 31, 34).

[WAN18b] Y. Wu, W. Abd-Almageed, and P. Natarajan. “Image copy-move forgery de-
tection via an end-to-end deep neural network”. In: Proceedings of the IEEE
Winter Conference on Applications of Computer Vision. 2018, pp. 1907–1915
(cit. on pp. 34, 36).

[WAN19] Y. Wu, W. AbdAlmageed, and P. Natarajan. “ManTra-Net: Manipulation trac-
ing network for detection and localization of image forgeries with anomalous
features”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2019, pp. 9543–9552 (cit. on pp. 30, 32, 102, 107).

[Xia+10] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. “Sun database: Large-
scale scene recognition from abbey to zoo”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2010, pp. 3485–3492
(cit. on pp. 17, 20, 34, 36).

[Xua+19] X. Xuan, B. Peng, W. Wang, and J. Dong. “On the generalization of GAN image
forensics”. In: Proceedings of the Chinese Conference on Biometric Recognition.
2019, pp. 134–141 (cit. on pp. 43, 45).

124 Bibliography

[Yan+20] P. Yang, D. Baracchi, R. Ni, Y. Zhao, F. Argenti, and A. Piva. “A survey of deep
learning-based source image forensics”. In: Journal of Imaging 6.9 (2020),
pp. 1–24 (cit. on p. 15).

[YLL19] X. Yang, Y. Li, and S. Lyu. “Exposing deep fakes using inconsistent head poses”.
In: Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing. 2019, pp. 8261–8265 (cit. on pp. 21, 22, 45).

[Yao+18] Y. Yao, W. Hu, W. Zhang, T. Wu, and Y.-Q. Shi. “Distinguishing computer-
generated graphics from natural images based on sensor pattern noise and
deep learning”. In: Sensors 18.4 (2018), pp. 1–11 (cit. on pp. 40, 41).

[Yar+18] S. K. Yarlagadda, D. Güera, P. Bestagini, F. M. Zhu, S. Tubaro, and E. J. Delp.
“Satellite image forgery detection and localization using gan and one-class
classifier”. In: Electronic Imaging 2018.7 (2018), pp. 1–9 (cit. on pp. 30, 32).

[Yu+15] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao. “Lsun: Construc-
tion of a large-scale image dataset using deep learning with humans in the
loop”. In: arXiv preprint arXiv:1506.03365 (2015) (cit. on p. 96).

[Yu+17] I.-J. Yu, D.-G. Kim, J.-S. Park, J.-U. Hou, S. Choi, and H.-K. Lee. “Identifying
photorealistic computer graphics using convolutional neural networks”. In:
Proceedings of the IEEE International Conference on Image Processing. 2017,
pp. 4093–4097 (cit. on pp. 40, 41).

[ZKS20] V. Zavrtanik, M. Kristan, and D. Skčaj. “Reconstruction by inpainting for
visual anomaly detection”. In: Pattern Recognition (2020). (in press) (cit. on
pp. 36, 37).

[Zha+20] R. Zhang, W. Quan, L. Fan, L. Hu, and D.-M. Yan. “Distinguishing Computer-
Generated Images from Natural Images Using Channel and Pixel Correlation”.
In: Journal of Computer Science and Technology 35 (2020), pp. 592–602 (cit.
on pp. 40, 41).

[Zha+16] Y. Zhang, J. Goh, L. Win, and V. Thing. “Image region forgery detection:
A deep learning approach”. In: Proceedings of the Singapore Cyber-Security
Conference. 2016, pp. 1–11 (cit. on pp. 28, 32).

[ZWZ18] Z. Zhang, C. Wang, and X. Zhou. “A survey on passive image copy-move
forgery detection”. In: Journal of Information Processing Systems 14.1 (2018),
pp. 6–31 (cit. on p. 15).

[ZZT19] L. Zheng, Y. Zhang, and V. L. Thing. “A survey on image tampering and its
detection in real-world photos”. In: Journal of Visual Communication and
Image Representation 58 (2019), pp. 380–399 (cit. on p. 15).

[Zho+14] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. “Learning deep
features for scene recognition using places database”. In: Proceedings of the
Advances in Neural Information Processing Systems. 2014, pp. 487–495 (cit. on
pp. 17, 36).

Bibliography 125

[Zho+20] P. Zhou, B. Chen, X. Han, M. Najibi, A. Shrivastava, S. Lim, and L. Davis.
“Generate, Segment, and Refine: Towards Generic Manipulation Segmen-
tation.” In: Proceedings of the Association for the Advancement of Artificial
Intelligence Conference. 2020, pp. 13058–13065 (cit. on pp. 30, 32).

[Zho+18] P. Zhou, X. Han, V. Morariu, and L. S. Davis. “Learning rich features for
image manipulation detection”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2018, pp. 1053–1061 (cit. on
pp. 30–32, 107).

[Zhu+17] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. “Unpaired image-to-image transla-
tion using cycle-consistent adversarial networks”. In: Proceedings of the IEEE
International Conference on Computer Vision. 2017, pp. 2223–2232 (cit. on
pp. 45, 96, 97).

[Zhu+18] X. Zhu, Y. Qian, X. Zhao, B. Sun, and Y. Sun. “A deep learning approach to
patch-based image inpainting forensics”. In: Signal Processing: Image Commu-
nication 67 (2018), pp. 90–99 (cit. on p. 36).

[Zhu+20] Y. Zhu, C. Chen, G. Yan, Y. Guo, and Yongfeng Y. Dong. “AR-Net: Adaptive
attention and residual refinement network for copy-move forgery detection”.
In: IEEE Transactions on Industrial Informatics 16.10 (2020), pp. 6714–6723
(cit. on pp. 35, 36).

Webpages

[@ABV05] ABVENT. Artlantis Gallery. 2005. URL: https://atl.artlantis.com/en/
gallery/ (visited on Nov. 7, 2020) (cit. on pp. 21, 41).

[@Alj11] Aljazeera. Iran Missile Photo ‘Doctored’. 2011. URL: https://www.aljazeera.
com/news/2008/7/11/iran-missile-photo-doctored (visited on Oct. 6,
2020) (cit. on p. 1).

[@Ama18] Amazon Web Services Inc. Landsat on AWS. 2018. URL: https://aws.amazon.
com/public-datasets/landsat (visited on Nov. 18, 2020) (cit. on pp. 17,
20, 32, 34).

[@Aut20] Autodesk Inc. Autodesk A360 Rendering Gallery. 2020. URL: https://gallery.
autodesk.com/a360rendering/ (visited on Nov. 7, 2020) (cit. on pp. 21,
41).

[@Cha20] Chaos Czech a.s. Corona Renderer Gallery. 2020. URL: https://corona-
renderer.com/gallery (visited on Nov. 7, 2020) (cit. on pp. 21, 41).

[@dee20] deepfakes@Github. Faceswap Github. 2020. URL: https://github.com/
deepfakes/faceswap (visited on Nov. 18, 2020) (cit. on p. 21).

126 Bibliography

https://atl.artlantis.com/en/gallery/
https://atl.artlantis.com/en/gallery/
https://www.aljazeera.com/news/2008/7/11/iran-missile-photo-doctored
https://www.aljazeera.com/news/2008/7/11/iran-missile-photo-doctored
https://aws.amazon.com/public-datasets/landsat
https://aws.amazon.com/public-datasets/landsat
https://gallery.autodesk.com/a360rendering/
https://gallery.autodesk.com/a360rendering/
https://corona-renderer.com/gallery
https://corona-renderer.com/gallery
https://github.com/deepfakes/faceswap
https://github.com/deepfakes/faceswap

[@Edi08] Editor & Publisher Staff. UPDATE: Reuters Fires Photog Over Doctored Pic-
tures. 2008. URL: https://web.archive.org/web/20060908091324/http:
//editorandpublisher.com/eandp/news/article_display.jsp?vnu_
content_id=1002950988&imw=Y (visited on Oct. 6, 2020) (cit. on p. 2).

[@Goo19] Google AI. Deepfakes Detection Dataset. 2019. URL: https://ai.googleblog.
com/2019/09/contributing-data-to-deepfake-detection.html (vis-
ited on Nov. 18, 2020) (cit. on pp. 21, 22, 45).

[@IEE14] IEEE IFS-TC. IEEE IFS-TC Image Forensics Challenge Dataset. 2014. URL: http:
//ifc.recod.ic.unicamp.br/fc.website/index.py (visited on Nov. 18,
2020) (cit. on pp. 18, 20, 32).

[@IEE18] IEEE Signal Processing Society. IEEE’s Signal Processing Society - Camera Model
Identification Competition. 2018. URL: https://www.kaggle.com/c/sp-
society-camera-model-identification (visited on Nov. 18, 2020) (cit.
on pp. 17, 20, 32).

[@Iqb18] H. Iqbal. PlotNeuralNet v1.0.0. 2018. URL: http://doi.org/10.5281/
zenodo.2526396 (visited on Nov. 7, 2020) (cit. on pp. 13, 80).

[@Ltd20] CGworld Pte Ltd. Learn V-Ray Gallery. 2020. URL: https://www.learnvray.
com/fotogallery/ (visited on Nov. 7, 2020) (cit. on pp. 21, 41).

[@Mac04] H. Macdonald. NRCS Photo Gallery. 2004. URL: http://serc.carleton.
edu/introgeo/interactive/examples/morrisonpuzzle.html (visited on
Nov. 7, 2020) (cit. on p. 20).

[@ML15] Y. Ming and O. Laurent. World Press Photo Disqualifies 20% of Its Contest
Finalists. 2015. URL: https://time.com/3706626/world-press-photo-
processing-manipulation-disqualified/ (visited on Oct. 6, 2020) (cit.
on p. 1).

[@NHC04] T. Ng, J. Hsu, and S. Chang. A Data Set of Athentic and Spliced Image
Blocks. 2004. URL: http://www.ee.columbia.edu/ln/dvmm/downloads/
AuthSplicedDataSet/AuthSplicedDataSet.htm (cit. on pp. 18, 20, 32,
34).

[@Woo20] P. Wood. Pulitzer Board Must Revoke Nikole Hannah-Jones’ Prize. 2020. URL:
https://www.nas.org/blogs/article/pulitzer-board-must-revoke-
nikole-hannah-jones-prize (visited on Oct. 6, 2020) (cit. on p. 1).

Webpages 127

https://web.archive.org/web/20060908091324/http://editorandpublisher.com/eandp/news/article_display.jsp?vnu_content_id=1002950988&imw=Y
https://web.archive.org/web/20060908091324/http://editorandpublisher.com/eandp/news/article_display.jsp?vnu_content_id=1002950988&imw=Y
https://web.archive.org/web/20060908091324/http://editorandpublisher.com/eandp/news/article_display.jsp?vnu_content_id=1002950988&imw=Y
https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html
https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html
http://ifc.recod.ic.unicamp.br/fc.website/index.py
http://ifc.recod.ic.unicamp.br/fc.website/index.py
https://www.kaggle.com/c/sp-society-camera-model-identification
https://www.kaggle.com/c/sp-society-camera-model-identification
http://doi.org/10.5281/zenodo.2526396
http://doi.org/10.5281/zenodo.2526396
https://www.learnvray.com/fotogallery/
https://www.learnvray.com/fotogallery/
http://serc.carleton.edu/introgeo/interactive/examples/morrisonpuzzle.html
http://serc.carleton.edu/introgeo/interactive/examples/morrisonpuzzle.html
https://time.com/3706626/world-press-photo-processing-manipulation-disqualified/
https://time.com/3706626/world-press-photo-processing-manipulation-disqualified/
http://www.ee.columbia.edu/ln/dvmm/downloads/AuthSplicedDataSet/AuthSplicedDataSet.htm
http://www.ee.columbia.edu/ln/dvmm/downloads/AuthSplicedDataSet/AuthSplicedDataSet.htm
https://www.nas.org/blogs/article/pulitzer-board-must-revoke-nikole-hannah-jones-prize
https://www.nas.org/blogs/article/pulitzer-board-must-revoke-nikole-hannah-jones-prize

	Cover
	Abstract
	Contents
	1 Introduction
	1.1 Truth in Images
	1.2 Objectives
	1.3 Thesis Organization

	2 Background Knowledge and State of the Art
	2.1 Deep Learning
	2.1.1 Neural networks
	2.1.2 Convolutional neural networks

	2.2 Image Forensics
	2.2.1 Datasets
	2.2.2 Manipulation detection
	2.2.3 Falsification detection
	2.2.4 Other specific forensic problems
	2.2.5 Discussion

	3 Random High-Pass Initialization
	3.1 Weight Initialization of CNN
	3.1.1 Common initializations of CNN
	3.1.2 Common initializations of CNN for image forensics

	3.2 Our Random High-Pass Initialization
	3.2.1 The proposed method

	3.3 Experimental Results
	3.3.1 Multiclass forensics
	3.3.2 Median filtering forensics with JPEG post-processing

	3.4 Summary and Discussion

	4 Data-Dependent Initialization
	4.1 Variance of Output of Convolutional Filter
	4.1.1 Formulation
	4.1.2 Convolutional filter initialized with high-pass filter
	4.1.3 Convolutional filter initialized with Xavier initialization

	4.2 Scaling of Convolutional Filter
	4.2.1 Covariance-based method
	4.2.2 Convolution-based method

	4.3 Experimental Results
	4.3.1 Multi-class problem with CNN of Bayar and Stamm BAYAR
	4.3.2 JPEG binary problem with CNN of Bayar and Stamm BAYAR
	4.3.3 Multi-class and binary problems on a different smaller CNN

	4.4 Summary and Discussion

	5 Revisiting the Random High-Pass Initialization
	5.1 The Proposed Method
	5.2 Experimental Results
	5.2.1 Multi-class forensic problem
	5.2.2 Comparison with batch normalization
	5.2.3 On the selection of SRM filters
	5.2.4 Smaller CNN architecture
	5.2.5 Detection of GAN-generated images

	5.3 Summary and Discussion

	6 Conclusions and Perspectives
	6.1 Summary of Contributions
	6.2 Perspectives

	A Challenge Competition for Image Forgery Detection
	A.1 Challenge Description
	A.2 DEFALS 1st Stage
	A.3 DEFALS 2nd Stage
	A.4 Discussion

	B Author's Publications
	Bibliography

