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Résumé étendu en française

Ce chapitre est une résumé étendu de la thèse, en français. Le lecteur intéressé pas
plus de détails pourra commencer directement la lecteur au chapitre suivante.

Introduction

Ces dernières années, la méthode des éléments finis d’arête est devenue très populaire
dans la modélisation de la machine électrique rotative tridimensionnelle en raison
de sa capacité à représenter correctement le comportement physique du champ le
long de l’interface. Cependant, la modélisation devient complexe lorsqu’une distor-
sion importante du maillage se produit le long d’une surface de glissement en raison
d’un mouvement. Une étape de remaillage est nécessaire, ce qui augmente le coût
de calcul. Afin d’éviter le remaillage, des méthodes numériques efficaces ont déjà
été développées pour modéliser le mouvement dans la machine électrique tournante
tridimensionnelle par la méthode des éléments finis d’arête. Néanmoins, très peu
de recherches ont été menées pour comparer ces méthodes. L’objectif principal de
cette thèse est de comparer l’interpolation basée sur d’arête et la méthode des élé-
ments avec joints. Pour améliorer la précision de l’interpolation basée sur les arêtes
pour le maillage tétraédrique, nous proposons une stratégie améliorée. Les résultats
numériques illustrent la précision, la robustesse et la performance des méthodes. Une
comparaison détaillée est présentée sur la base des critères mentionnés ci-dessus.

Modélisation numérique de machine électrique tour-

nante

Pour simuler correctement la machine électrique tournante, il faut prendre en compte
le mouvement de rotation. Typiquement une machine électrique tournante est di-
visée en deux domaines : le stator (partie fixe) et le rotor (partie mobile) séparés par
un entrefer. L’entrefer prend également en compte le transfert de flux entre deux do-
maines et aussi la majeure partie de l’énergie concentrée autour de l’entrefer. Ainsi
assurer la continuité de la composante tangentielle du champ magnétique (H) et de
la composante normale de la densité de flux magnétique (B) le long de l’entrefer est
essentiel.

Actuellement, la méthode des éléments finis est largement adoptée pour résoudre
numériquement l’équation de Maxwell. Cependant, tout en tenant compte de la
rotation, cela conduit à un scénario de maillage non conforme à l’interface, c’est-à-
dire un problème de nœuds suspendus voir fig.(1). Maintenant, pour surmonter ce
défi, on peut appliquer un remaillage, ce qui est assez coûteux en calcul. Ainsi par
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t = 0 (Conformed mesh) t > 0 (Non conformed mesh)

Figure 1 – Le scénario initial de maillage conforme devient non conforme lorsque la
partie rotor commence à bouger.

le passé, plusieurs approches ont déjà été proposées pour éviter le remaillage. Les
approches sont généralement classées sous deux principes populaires. Le premier
principe est l’entrefer de volume et les méthodes qui en découlent sont le macro
élément [1], la bande mobile [19] et la technique d’overlapping [30, 31, 32, 62]. Le
deuxième principe est la surface de glissement et les méthodes définies en vertu de
celle-ci sont l’approche pas à pas cite Preston, le multiplicateur de Lagrange [34], la
technique d’interpolation nodale [46] parmi beaucoup d’autres. L’objectif de cette
thèse est d’analyser et de comparer des méthodes basées sur le principe de la surface
de glissement. Les critères de comparaison seront la précision, les performances et
la robustesse dans une région impliquant une grande déformation du maillage.

Méthode basée sur le principe de la surface de glissement sous

cadre d’éléments finis d’arête

Sous la méthode du principe de la surface de glissement basée sur l’approche de pé-
nalisation (Méthode des éléments avec joints) [14, 51, 56] a montré qu’un mouvement
pouvait être modélisé avec une bonne précision.

Cependant, les opérations d’intersection et le calcul des matrices de couplage
sous la méthode des éléments avec joints impliquent une inversion complète de la
matrice, des inconnues supplémentaires et la génération d’un nouveau maillage de
intégration.

Dans le passé, les chercheurs ont produit de nombreuses approches prometteuses
sous interpolation d’arête. Cependant, les méthodes étaient limitées au scénario de
maillage régulier [26, 29] et à l’utilisation d’un maillage temporaire pour appliquer la
continuité de flux [43]. Le moyen le plus simple d’appliquer une interpolation est basé
sur la technique maître-esclave, comme le montre [46] dans un cadre d’éléments finis
nodal. [45] a proposé une technique d’interpolation similaire sous cadre d’éléments
finis d’arête mais limitée au type de maillage hexaédrique. Récemment [66] a pro-
posé une forme simplifiée de [45] pour le type de maillage tétraédrique (scénario
de maillage généralisé) mais montre une faible précision à maillage grossier. Nous
appelons cette méthode le type discontinu dans notre thèse. Dans cette thèse, nous
proposons une extension de [45] pour le type de maillage tétraédrique pour sur-
monter le problème de précision montré dans [66] et la méthode est appelée type
continu.

Chacune des méthodes mentionnées ci-dessus présente des avantages et des in-
convénients, mais très peu de recherches ont été menées pour comparer ces méthodes.
Par conséquent, nous proposons une comparaison de deux techniques pour un scé-
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Résumé étendu en française

nario magnétostatique 3D. La première est la méthode des éléments avec joints [14],
et la seconde technique est l’interpolation d’arête [45].

Formules

Pour le cas magnétostatique, les équations de Maxwell et la loi de comportement
sont données par :

rot H = Jsource with H ⇥ n = 0 on �H, (1)

div B = 0 with B.n = 0 on �B. (2)

Jsource, H and B sont respectivement la densité de courant de la source, le champ
magnétique et la densité de flux magnétique. La condition à l’interface glissante est
donnée comme,

(HM � HF)⇥ n = 0 and (BM � BF).n = 0. (3)

ici n est l’extérieur normal de �. (HM,HF) et (BM,BF) sont les H et B respec-
tivement à l’interface entre la partie mobile (M) et la partie fixe (F). En utilisant
(2), B peut être approximé comme:

B = curl A with A ⇥ n = 0 on �B, (4)

B = µH here µ = magnetic permeability. (5)

Dans (4) en remplaçant B par H en utilisant (5) et en remplaçant dans (1)

curl(µ
�1

curl A) = Jsource. (6)

Méthodes

Méthode des éléments avec joints

F-FMF-FM M-FMM-FMFMFM

Mortar MeshStator(F) Mesh

Rotor(M) Mesh

Figure 2 – Représentation de l’interface integration �FM formée en intégrant des
interfaces �F-FM fixes et mobiles �M-FM.
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Dans la méthode des éléments avec joints [14], [51] la continuité tangentielle de
A est assurée au sens faible en introduisant un multiplicateur de Lagrange A’, tel
que

Z

�FM

A’.(n ⇥ A
F|�F-FM � n ⇥ A

M|�M-FM)d� = 0, (7)

ici �F-FM et �M-FM représentent respectivement l’interface de glissement le long de
la partie fixe F et de la partie mobile M. L’union de deux interfaces donne l’interface
de intégration �FM définie comme :

�FM = �F-FM + �M-FM, (8)

sur lequel un maillage de intégration est construit. Le maillage de intégration
construit est plus fin que le maillage d’interface de la partie mobile et fixe comme
le montre la fig.(2) se référer à [14] pour plus de détails. Soit n�F-FM et n�M-FM le
nombre d’arêtes sur les mailles d’interface de � F-FM et �M-FM respectivement. En
décomposant A sur des éléments finis d’arête, nous pouvons écrire (7) comme :

n�F-FMX

j=1

AF

j

Z

�FM

A’.(n ⇥ N
F

j )d� =

n�M-FMX

i=1

AM

i

Z

�FM

A’.(n ⇥ N
M

i )d�, (9)

(9) peut aussi s’exprimer sous forme de système matriciel, ici C et D sont les
matrices de couplage, l’opération C�1D conduit à un système matriciel dense le long
de l’interface.

CA
F

�F-FM
= DA

M

�M-FM
=) A

F

�F-FM
= C�1DA

M

�M-FM
. (10)

L’interpolation basée sur les arêtes

aa bb

ccdd

ee
ff

ggoo

pp

mm

kk
G2G2

G1G1
Rotor

Stator

(M)

(F)

Rotor (M)

Stator (F)

A A

>1 =1

>1

SLIDING INTERFACE

Figure 3 – Représentation de l’élément triangulaire maître-esclave non conformée en
interface de glissement.

Une approche généralisée est proposée sous le nom de "type continu", qui peut
être appliquée aux maillages tétraédriques conformes. L’approche est une extension
de [45], initialement proposée pour les maillages hexaédriques. Par exemple, pour
l’arête "eop" voir fig.(3), On obtient :

AF

eop
=

X

eij=ecb,eba,eac,ecd,eda

AM

eij
Ceij , (11)
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Résumé étendu en française

Ici AF

eop
est une inconnue basée sur le arête sur le arête pointant du nœud "o"

au nœud "p" du fixe partie (F), de même pour AM

eij
sur la partie mobile (M). Le

coefficient d’interpolation Ceij peut être interprété comme :

Ceij =

Z

leop

N
M

eij
(✏, ⌘).dl, (12)

=
leop

2

Z 1

�1

N
M

eij
(�).eopd�. (13)

où ✏, ⌘ représente le système de coordonnées locales 2-D et � représente eop sur
le système de coordonnées 1-D sur lequel Ceij est calculé en utilisant la méthode de
quadrature Gaussienne à deux points aux points de Gauss "G1" et "G2" voir fig.(3).
N

M

eij
est une fonction de base des arêtes calculée pour les arêtes de la partie mobile

(M) sur les points de Gauss, leop est la longueur d’une arête eop.
Si Ceij est calculé au point "k" d’une arête eop voir fig.(3) en utilisant méthode

de quadrature de Gauss à un point.L’approche devient similaire à [66].

Validation et résultats

(a) Géométrie d’une machine tournante 3D (b) Vue en coupe de la machine tournante
selon le plan XZ ou YZ

Figure 4 – Représentation détaillée d’une machine tournante 3D

Description du cas de test académique 3D magnétostatique

Nous considérons un cas de test académique symétrique autour de l’axe Z. Comme
le montre la fig.(4), le cas de test est construit à l’aide de deux cylindres entourés
d’un conducteur de bobine cylindrique. Le cylindre mobile est construit au sommet
d’un cylindre statique séparé par un mince entrefer d’épaisseur 1 unité. Le diamètre
du cylindre mobile est de 3 unités et celui du cylindre statique est de 6 unités.
L’épaisseur du conducteur de la bobine est de 1 unité. La différence de rayon entre
le conducteur de la bobine et le cylindre statique est de 2 unités et 3,5 unités avec le
cylindre mobile. La hauteur totale du conducteur de la bobine est de 6 unités. Le
cas de test est conçu de manière à ce que la valeur de champ calculée reste constante
à chaque étape.

La propriété physique des deux cylindres est isotrope linéaire avec une perméa-
bilité magnétique relative (µr) de 2000. Le nombre de tours dans l’enroulement de
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la bobine appliqué au conducteur de la bobine est de 350. Le courant de source
appliqué dans la bobine est 5 A.

Mesh Scenarios

(a) Maille conformée à ✓ = 0� (b) Maille non conformée à ✓ = 5�

Figure 5 – Vue 3D du maillage conforme et non conforme autour de l’interface de
glissement

Table 1 – Sélection de scénarios de maillage.

Scénario de maillage Degrés de liberté Maille autour de la surface de glissement
(Environ. longueur d’une arête)

1 87.000 0,6 mm
2 129.000 0,5 mm
3 204.757 0,4 mm
4 591.710 0,2 mm

Le maillage de surface autour de la surface de glissement sous le maillage con-
formé et le maillage non conformé sont représentés respectivement sur la fig.(5a) et
la fig.(5b). Dans ce partie, nous allons tester la méthode des éléments avec joints et
l’interpolation d’arêtes sur quatre scénarios différents de maillage uniforme, comme
détaillé dans le tableau.1. La taille d’une arête appartenant à l’élément triangulaire
autour de la surface de glissement diminue du scénario de maillage 1 au scénario de
maillage 4, comme indiqué dans la troisième colonne du tableau.1.

Isolines de densité de flux magnétique

Afin de valider les approches décrites ici, nous l’avons testé sur le cas de test magnéto-
statique voir fig.(4). La fig.(6) montre des flèches de flux magnétique continu se
déplaçant du cylindre 1 (en mouvement) au cylindre 2 (statique) à travers l’entrefer.
Aucune différence visible ne peut être vue entre le maillage conforme et le maillage
non conforme utilisant l’interpolation d’arêtes et la méthode des éléments avec joints
voir fig.(6).

XV



Résumé étendu en française

(a) Conforme (b) l’interpolation (c) éléments avec joints

Figure 6 – Représentation des flèches de flux du cylindre-1 (en mouvement) au
cylindre-2 (statique) à ✓ = 5�
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Figure 7 – Analyse de convergence pour l’énergie magnétique.

Analyse de convergence (précision)

Le cas de référence pour l’analyse de convergence est le calcul de l’énergie magnétique
sous le maillage conforme pour environ 1,5 million d’inconnues. L’évolution de
l’erreur dans le calcul de l’énergie magnétique est représentée sur l’échelle log-log
de la fig.(7). La pente de celui-ci représente le taux de convergence. Le même taux
de convergence pour la méthode des éléments avec joints et l’interpolation d’arêtes
est observé. Cependant, la précision de la méthode des éléments avec joints et
l’interpolation d’arêtes.

Performance

Table 2 – Temps de calcul par étape.

Scénario Maille conformée Interpolation d’arêtes éléments avec joints
1 19 s 19 s 41 s
2 23 s 23 s 57 s
3 40 s 44 s 127 s
4 126 s 141 s 2.862 s
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Table 3 – Nombre de termes non nuls dans la matrice.

Scénario Maille conformée Interpolation d’arêtes éléments avec joints
1 1.713.786 1.745.178 5.280.970
2 2.011.643 2.049.480 6.437.257
3 2.956.097 3.008.769 9.361.955
4 8.357.734 8.582.596 39.003.229

Figure 8 – Nombre de termes non nuls dans un système matriciel à différents scé-
narios de maillage.

En analysant le tableau.2, il est montré à partir de la simulation que l’interpolation
d’arêtes est deux fois plus rapide que la méthode des éléments avec joints dans le
scénario-1 et cet écart augmente, car la différence de temps de calcul augmente
presque de vingt fois dans le cas du scénario-4. Une autre chose importante qui
doit être remarquée dans le tableau.3 et fig.(8) que le nombre de termes non nuls
dans le cas de la méthode des éléments avec joints augmente de façon exponentielle
contrairement à l’interpolation d’arêtes tout en passer du scénario 1 au scénario 4.
La raison de l’augmentation du nombre de termes non nuls est la taille du maillage
de intégration. Cette augmentation exponentielle du nombre de termes non nuls
dans le cas de la méthode des éléments avec joints conduit également à l’utilisation
d’une grande quantité de mémoire de calcul.

Conclusion

Dans cette thèse, nous avons comparé deux approches pour modéliser une machine
électrique tournante et les avons comparées en fonction de la précision et des per-
formances. De l’analyse présentée dans les sections précision et performance, les
conclusions suivantes peuvent être tirées : -

• Les deux méthodes donnent des résultats précis pour le calcul de l’énergie dans
un scénario de maillage fin.

• La précision de la méthode des éléments avec joints s’est avérée un peu plus
précise que l’interpolation d’arêtes.

• La méthode des éléments avec joints est plus coûteuse que l’interpolation
d’arêtes en termes de temps de calcul et de mémoire de calcul.
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Résumé étendu en française

Si l’on prend en compte tous les facteurs de simulation, c’est-à-dire la précision et
les performances, l’interpolation d’arêtes s’avère plus efficace que la méthode des
éléments avec joints.
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Introduction

Due to an exponential increase in carbon emissions, a deterioration in air quality,
abrupt changes in weather cycle, and global warming are observed recently. These
abrupt changes and deterioration of the environment have pushed the society glob-
ally to seek alternative low emission (sustainable) transportation system that is
energy efficient.

According to [18]-[8], the transportation industry plays a significant contribu-
tion to increasing carbon emission in the environment. Therefore, in curtailing the
greenhouse gases, the automotive industry is switching to electric vehicles (EVs)
from internal combustion engine-based vehicles (ICE). Today traction motors (elec-
tric motors) are widely used as propulsion of a vehicle. To meet new challenges like
emission standards and improve traction motors’ economy has pushed the automo-
tive industry to develop more-complex and energy-efficient traction motors.

A traction motor is a rotating electrical machine composed of a stator (fixed
part), a rotor (moving part) and separated by a thin air-gap. It is an electrome-
chanical converter that converts electrical energy into mechanical energy widely used
for a propulsion of a locomotive and electric vehicles.

In recent times, we have seen computer-aided engineering (CAE) tools, based on
the finite element method, play an essential role in better understanding the design,
improving performance, and reducing design time of traction motors. Today, CAE
tools can perform 3D simulation of the examples like axial machines, permanent
magnet synchronous machines, induction motors etc. These simulations must con-
sider the circuit coupling, the movement of the rotor and the evaluation of the eddy
current losses in the machine.

A finite elements-based solver has been developed to model low-frequency elec-
tromagnetic phenomena on a commercial software Altair FluxTM. In the Altair
FluxTM software, formulations based on the magnetic scalar potential have been
developed with the nodal finite element method and have been used successfully for
many years for the modeling of 3D devices [37]. They make it possible to use a single
unknown in the air and set up coupling with the electric circuit equations. Besides,
the use of nodal finite elements makes it possible to simplify the implementation
of the finite element solution between the stator and the rotor of an electrical ma-
chine. A significant disadvantage of this method is the need to manage the multiply
connectivity problems induced by the magnetic scalar potential. One solution is to
introduce artificial cuts in the mesh, which is difficult to implement by the user [48].

In order to avoid introducing artificial cuts in the studied domain, magnetic
vector potential formulations are used [7]. This thesis’s technical and scientific chal-
lenges will be to develop and compare the methods to take movement into account
in the rotating electrical machines by using magnetic vector potential formulation
with 3D edge finite element.
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INTRODUCTION

The thesis is divided into three parts. The first part gives a brief introduction on
3D modeling of low-frequency Maxwell’s equations for magnetostatic and magneto
transient problem based on A and A-V formulations. The technique for source
computation, while taking the movement into account in the case of non-meshed
coils. A brief recall of functional spaces and finite element method on which the
unknowns are approximated.

In the second part, we discuss how we take movement into account. Based on
that, a brief review of the methods is provided and classified into two families.
Based on literature review and development constraints, two methods are chosen to
be developed. The mortar method and edge interpolation are chosen and explained
in detail. In the case of edge interpolation, a piece-wise continuous integration
approach is proposed to calculate the interpolation coefficient. The new approach
helps in the reduction of numerical oscillations during torque and magnetic flux
calculations.

In the third part, we analyse the mortar method and the edge interpolation based
on performance and accuracy. Firstly, we tested these methods on an academic test
cases in terms of magnetic flux, magnetic torque and magnetic flux density. Based
on the results, we proposed the convergence rate and computation time of these
methods. Finally, we tested edge interpolation in transient FEA of an induction
motor and presented the detailed comparison with the magnetic scalar potential
formulation of the commercial version. The mortar method and edge interpolation
are implemented in a development version of Altair FluxTM.
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Part I

Modeling of low frequency Maxwell
equations
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CHAPTER 1. PROBLEM DESCRIPTION

The numerical modeling or analysis of electrical machines requires electromag-
netic field calculation to derive torque, force, etc.

To derive these quantities, one needs to solve the differential form of Maxwell’s
equations with proper boundary conditions that mathematically represent the par-
ticular electrical machine. Maxwell’s equations are the collection of partial differ-
ential equations of the magnetic field H, electric field E, magnetic flux density B,
electric flux density D. The source of the field can be the current density J, voltage,
etc. The material properties of the electrical machines are taken into account by
the constitutive relation.

Here we only focus on the magneto-static and magneto-transient problems. We
will also show how Maxwell’s equations could be reduced to one or two partial
differential equations using potential.

This chapter gives a summary of Maxwell’s equations, interface conditions, and
potential formulations. For a more detailed explanation, please see [40].

1.1 Maxwell’s equations and interface conditions

1.1.1 Differential form of Maxwell’s equations

The Maxwell’s equations are the collection of laws and theorem proposed by (Gauss,
Ampère, Faraday) that explains and defines the relations between electromagnetic
field quantity and source [63]. The following relations in partial differential form
define as:

curlH = Je + Js +
@D
@t , Maxwell � Ampere, (1.1)

curlE = �@B
@t , Maxwell � Faraday, (1.2)

divB = 0, Maxwell � Thomson, (1.3)
divD = q Maxwell �Gauss, (1.4)

Here,

• E electric field intensity in V.m�1,

• H the magnetic field intensity in A.m�1,

• D the electric flux density in C.m�2

• B magnetic flux density in T,

• Js the electric current density of the coil conductor in A.m�2. It is also the
source of electromagnetic field,

• Je the electric current density induced in the solid conductor in A.m�2.

• q is the electric charge density in C.
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1.1. MAXWELL’S EQUATIONS AND INTERFACE CONDITIONS

1.1.2 Constitutive Relations

Constitutive relation is a relation between two physical quantities that is specific to
the properties of a material.

B = µH or H = ⌫ B (Constitutive equations - Magnetic) (1.5)
Je = �E or E = ⇢Je (Constitutive equations - Electric) (1.6)

where, ’µ’ is the magnetic permeability in H.m�1, ’⌫’ is the magnetic reluctivity in
H�1.m, ’�’ is the electrical conductivity in ⌦�1

.m
�1 and ’⇢’ is the electrical resistivity

in ⌦.m.

1.1.3 Boundary and Interface Conditions

Let ⌦ be the domain of interest and � be its boundary. It is necessary to define cor-
rect boundary conditions on �, to obtain a unique solution for the studied problem.

Boundary conditions

Let � for magnetic quantities can be decomposed into �h and �b. Such that
� = �h [ �b and �h \ �b = ;.

Therefore,

n ⇥ H|�h
= 0, (1.7)

n · B|�b
= 0. (1.8)

The above described condition signifies that the magnetic field H is normal to
the surface �h and its tangential component is null. Similarly, for the magnetic flux
density B is tangential to the surface �b and its normal component is null.

Let � for electric quantities can be break into �e and �j. Such that � = �e [ �j

and �e \ �j = ;.
Therefore,

n ⇥ E|�e = 0, (1.9)
n · J|�j = 0. (1.10)

Only one of the two defined conditions is applied on the edge of the boundary �
in 2D or on the face of the boundary � in 3D from magnetic quantities and electrical
quantities respectively.

Interface Condition

At the interface between two materials, the discontinuous distribution of fields is
observed. The discontinuous distribution is known as the interface conditions.

To define the interface conditions, let us consider an interface �12 normal to ’n’
between two domains ⌦1 and ⌦2 as shown in fig.(1.1). The fields are designated
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CHAPTER 1. PROBLEM DESCRIPTION

Ω1
Ω2

BΩ1.n
 = BΩ

2.nBΩ1 BΩ2

HΩ1

HΩ2

HΩ1x
n = HΩ2x

n

Figure 1.1 – Representation of interface between two domains.

with indices 1 and 2 on their respective domains. Then magnetic and electric fields
components must satisfy the following conditions:

n ⇥ (H1 � H2)|�12 = Js, (1.11)

n · (Je1 � Je2)|�12 =
@⇢s

@t
, (1.12)

n ⇥ (E1 � E2)|�12 = 0, (1.13)
n · (B1 � B2)|�12 = 0, (1.14)

if there is no surface charge and surface current density (Js) on interface. Then
(1.11 - 1.12) are defined as:

n ⇥ (H1 � H2)|�12 = 0, (1.15)
n · (Je1 � Je2)|�12 = 0. (1.16)

This section defines the set of equations and boundary conditions necessary to de-
fine the electromagnetic problem. The next section will illustrate the boundary value
problem under magneto-static and magneto-transient scenarios using Maxwell’s
equations, as mentioned above, with appropriate boundary conditions.

1.2 Magneto-static and magneto-transient problem

This section will formulate the mathematical model for the magneto-static and
magneto-transient problem—the most typical problem found in the electrical en-
gineering application with proper equations, interface, and boundary conditions.

1.2.1 Magneto-Static problem

The magneto-static problem deals with the distribution of the magnetic field caused
by time-invariant currents or permanent magnets. The fig.(1.2) depicts the setup for
magneto-static problem. In the magneto-static scenario, the source current density
JS generates magnetic field H, as mentioned above the interaction between magnetic
field H and electric field E is neglected. After considering the above considerations,
the following Maxwell’s equations (1.1)-(1.6) can be written as:
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1.2. MAGNETO-STATIC AND MAGNETO-TRANSIENT PROBLEM

Region (Magnetic Non Conductive)

Js

Ω

Region (Air)
μ0, ν0

μ, ν

Br
Γh

Γb

Figure 1.2 – Domain representation of magnetostatic field problem.

curlH = Js, (1.17)
divB = 0, (1.18)
divJS = 0, (1.19)

H = ⌫(B � Br), (1.20)
n ⇥ H|�h

= 0, (1.21)
n · B|�b

= 0 (1.22)

There are several potential formulations applicable to calculate the magneto-
static field problem. The principle behind using potential formulation is to reduce
the number of partial differential Maxwell’s equations for a detailed explanation see
[40].

Magnetic vector potential (A - formulation)

The magnetic vector potential is defined by

B = curlA, (1.23)

it exactly satisfy the identity div curl v = 0 for any vector function v = v(x), here x

is the position of vector v. Substituting the vector potential in Maxwell’s equations
and with the utilisation of constitutive relation, it leads to

curl (⌫ curlA) = Js + curl (⌫Br), (1.24)
n ⇥ curlA|�h

= 0, (1.25)
n ⇥ A|�b

= 0. (1.26)

1.2.2 Magneto-transient Problem

Under magneto-transient scenario as shown in fig.(1.3), the electric field and mag-
netic field interact with each other. i.e. current flowing in coils generates magnetic
field in the surrounding of the coil. The magnetic field varying with time generates
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Magnetic non conductive region

Js

Ω

Region (Air)
μ0, ν0

μ, ν

Br
Γh

Γe

Conductive region
μ, ν  σ, ρ

σ = 0

σ = 0

Figure 1.3 – Domain representation of magneto-transient field problem.

electric field in the conducting material.

curlH = Js + Je, (1.27)

curlE = �@B

@t
, (1.28)

divB = 0, (1.29)
divJe = 0, (1.30)
divJs = 0, (1.31)

H = ⌫(B � Br), (1.32)
Je = �E, (1.33)

n ⇥ H|�h
= 0, (1.34)

n ⇥ E|�e = 0. (1.35)

The domain ⌦ of interest consist of two regions magnetic non conductive (µ, � =
0) and solid conductor (µ, � 6= 0). Let Js be the source current density given in
coil and Je be the current induced due to change in magnetic field, Br represents
magnets and � = �h [ �e be the boundary see fig.(1.3).

Eqn.(1.34) and eqn.(1.35) represents the tangential components of the magnetic
field ’H’ and the electric field ’E’ represents at there respective boundary �h and �e

as null.

Magnetic vector potential and electric scalar potential (A - V formula-

tion)

The electric scalar potential ’V’ is defined using eqn.(1.23) and eqn.(1.28) as:

E = �@A

@t
� gradV (1.36)
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1.3. SOURCE COMPUTATION USING MAGNETIC VECTOR POTENTIAL
FORMULATION AJ

Substituting eqn.(1.36) and eqn.(1.23) in equations (1.27 - 1.35) we get,

curl (⌫ curlA) + �(
@A

@t
+ gradV) = Js + curl(⌫ Br), (1.37)

div(�(
@A

@t
+ gradV)) = 0, (1.38)

n ⇥ curlA|�h
= 0, (1.39)

n ⇥ A|�e = 0, (1.40)
n · gradV|�h

= 0, (1.41)
V|�e = 0. (1.42)

In the next section, we will study source computation using magnetic vector
potential formulation Aj under reduced domain.

1.3 Source computation using magnetic vector po-

tential formulation Aj

Coil

Js

n

Ωa

Ωm
Ωs

nm

Γm
Γ

Figure 1.4 – Domain representation for source computation.

In this section, we present source computation using magnetic vector potential
Aj. Here we present the formulation for source computed over reduced domain ⌦m.
This technique, we will be utilizing in the case of rotating electrical machine. Using
this formulation, we don’t need to ensure continuity between moving and fixed parts
of electrical machines for source computation.

Let ⌦ be the domain and � be its boundary. Such that ⌦ = ⌦a [ ⌦m. Let coil
inside the domain ⌦m. Let ⌦s be the domain of coil with current density defined as
Js. Here, we assume ⌦s does not touch the boundary �m.

Let us recall the equation represent problem shown in fig.(1.4).

Js = curlHs, (1.43)
= curlHj, (1.44)
= curl(⌫ curlAj). (1.45)

here Hs is the source magnetic field computed analytically. Hj is the projection
of Hs. For more detail regarding Hj and Aj computation, please see eqn.(A.5) and
eqn.(A.7).
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CHAPTER 1. PROBLEM DESCRIPTION

1.4 Summary

In this chapter, we have presented the magneto-static problem using A formulation
and magneto transient problem, using A-V formulation.

To overcome the continuity of source computation between moving and fixed
part of an electrical machine, a new formulation is presented for source computation
under magnetic vector potential formulation Aj.

In the next chapter, we will present the definition of functional spaces, weak
form and the finite element approximation of aforementioned problem description.
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CHAPTER 2. NUMERICAL MODELING OF LOW FREQUENCY MAXWELL
EQUATIONS USING EDGE FINITE ELEMENT METHOD

This chapter will introduce vector spaces that are standard settings for studying
and solving the differential form of Maxwell equations. After this, we will present
a brief theory on the finite element method and its application on approximating
boundary value problems presented in chapter - 1.

2.1 Functional Spaces

Let ⌦ 2 R3 be the domain of interest with its boundary defined as �. It is a
Euclidean vector space. In the below section, we will define the space on which the
above mentioned partial differential equations are defined.

2.1.1 Lebesgue Spaces

Let L2(⌦) be the square-integrable scalar space and L
2(⌦) be the square-integrable

vector space (for detail description see [9, 10]), defined as:

L
2(⌦) =

⇢
u : ⌦ ! R |

Z

⌦

(u(x))2d⌦ < 1
�

(2.1)

L
2(⌦) =

⇢
u : ⌦ ! R3 |

Z

⌦

ku(x)k2d⌦ < 1
�

(2.2)

2.1.2 Sobolev Spaces

Let us define the Sobolev space H
1(⌦) and H

1(⌦). The Sobolev space in general
contains both function and its derivative (for detail description see [6, 9, 10]).

H
1(⌦) =

⇢
u 2 L

2(⌦) ,
@u

@xi
2 L

2(⌦) 8 i = 1, ..., n

�
(2.3)

H
1(⌦) =

⇢
u 2 L

2(⌦) ,
@u

@xi
2 L

2(⌦) 8 i = 1, ..., n

�
(2.4)

2.1.3 Functional spaces for differential operators

For our remembrance magneto-static model uses three differential operators. The
operators are gradient noted as grad, curl noted as curl and divergence noted as
div. For each operator, we define a closed Hilbert space in which the operators are
defined. The definition of spaces are:

H(grad,⌦) = {u 2 L
2(⌦) | gradu 2 L

2(⌦)} (2.5)
H(curl,⌦) = {u 2 L

2(⌦) | curl u 2 L
2(⌦)} (2.6)

H(div,⌦) = {u 2 L
2(⌦) | div u 2 L

2(⌦)} (2.7)

Let E0
u, E1

u, E2
u be the three subspaces of respective spaces define in (2.5)-(2.7)

and �u be the boundary associated to variable such that
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2.1. FUNCTIONAL SPACES

E
0
u(⌦) = {u 2 L

2(⌦) | gradu 2 L
2(⌦), u|�u = cst} ⇢ H(grad,⌦) (2.8)

E
1
u(⌦) = {u 2 L

2(⌦) | curl u 2 L
2(⌦), n ⇥ u|�u = 0} ⇢ H(curl,⌦) (2.9)

E
2
u(⌦) = {u 2 L

2(⌦) | div u 2 L
2(⌦), n · u|�u = 0} ⇢ H(div,⌦) (2.10)

E
3
u(⌦) = Codomain (div) (2.11)

Furthermore, the implications on boundary conditions are

u|�u = constant ) n ⇥ gradu|�u = 0 (2.12)
n ⇥ u|�u = 0 ) n · curl u|�u = 0 (2.13)

From (2.8)-(2.13) we deduce following inclusions:

gradE
0
u ⇢ E

1
u (2.14)

curlE
1
u ⇢ E

2
u (2.15)

Finally, using (2.8)-(2.10) following conclusion can be drawn:
• A scalar function u in the space E0

u is continuous in the entire domain.

• The tangential component of vector field u 2 E1
u is continuous along two

domains.

• The normal component of vector field u 2 E2
u is continuous across two domains.

Using De Rham complex above points can be represented as:

E
0
u

grad���! E
1
u

curl��! E
2
u

div�! E
3
u (2.16)

2.1.4 Tonti Diagram

Eh

Eh

0

Eh
1

2

Eh
3

grad

curl

div

Eb

Eb

Eb

Eb
0

1

2

3

grad

curl

div

BH

Js A

(μ, ν)

0

0

Figure 2.1 – Representation of Tonti diagram for Magneto-static scenario.

It is possible to classify variables and relations of continuous magneto-static and
magneto-transient problem in a diagrammatic form. To do that, we represent the
functional spaces E

i
h at the base of each step on which the variables are define.

To move variables from one functional space to another functional space, we ap-
ply differential operators. After applying this concept, the two problems as shown
in fig.(1.1) and fig.(1.2) are presented on Tonti diagram see fig.(2.1) and fig.(2.2)
respectively.

The Tonti diagram is composed of two De Rham complexes E
p
h and E

p
b . Both

complexes are interchangeable by the application of constitutive relation.
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H

Je

B

A

E

V

-∂tb
(μ)

(σ)

∂t

div

curl

grad

grad

curl

div

Eh
0

Eh1

Eh
2

Eh
3

Ee
3

Ee
2

Ee
1

Ee
0

0

0

Figure 2.2 – Representation of Tonti diagram for Magneto-transient scenario.

2.2 Finite Element Method

Let the finite element is defined by (K, PK ,
P

K) see [9]:

• K is an unit element of domain ⌦. In three dimensional it can be tetrahedron,
hexahedron, prism and pyramid etc.

• PK is a functional space of dimension nK defined over element K.

•
P

K is a summation of nK degree of freedoms over linear approximation ui,
where 1  i  nK , defined on space PK .

The finite element allows us to approximate the physical quantity ’u’ over space PK

on element K as:

uK(X) =
nKX

j=1

ujwj(X). (2.17)

Here wj is a basis of the space PK . (2.17) states that the value uK(X) of the
approximation function uK at any point X in K is given by the linear combination
of the basis functions wj evaluated at point X with the uj as coefficients.

2.2.1 Approximation spaces

To derive the edge and face basis functions, we need first to define the discrete
functional spaces W

0
u (⌦), W

1
u(⌦), W

2
u(⌦), which are one on one mapped to there

respective continuous functional spaces E
0
u(⌦), E

1
u(⌦), E

2
u(⌦), see (2.8)-(2.10) such

that

W
0
u (⌦) = {w 2 L

2(⌦) | w|K 2 E
0
u(K), 8K 2 ⌦h} (2.18)

W
1
u(⌦) = {w 2 L

2(⌦) | w|K 2 E
1
u(K), 8K 2 ⌦h} (2.19)

W
2
u(⌦) = {w 2 L

2(⌦) | w|K 2 E
2
u(K), 8K 2 ⌦h} (2.20)

where ⌦h is the discretized space of domain ⌦, the definition for edge basis
function is provided in sub-section 2.2.3.
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K̂
K

X2

X1

X2

X1
^

^ϕK

ϕK

-1

Figure 2.3 – Mapping reference element with real element using Jacobian operator.

2.2.2 Mapped finite element (Reference element and real el-

ement)

The concept of calculating interpolating shape function directly on the real element
presents several limitations. The major drawback is the construction of shape func-
tion under the scenario where elements are distorted with the curvilinear boundaries.
To overcome these limitations a new class of mapped finite element was developed.
The objective of this section is to derive geometrical transformation that maps real
complex element with simple reference elements as shown in fig.(2.3).

Let m be dimension of domain ⌦, m = 2 for 2D and m = 3 for 3D. Let K ⇢ Rm

corresponds to real element and K̂ ⇢ Rm corresponds to reference element. Let
x = (x1, ..., xm) be the coordinates of the real element K and x̂ = (x̂1, ..., x̂m) be the
coordinates of the reference element K̂.

Let �K be a continuous and differential function. Then performs one on one
mapping between real element K to reference element K̂.

�K : K̂ ! K
x̂ ! �K (x̂) = x. (2.21)

Also the inverse of the function �K , ��1
K is defined as ��1

K (x) = x̂, 8x 2 K. Using
this theory, we now can define the transformation matrix also known as Jacobian
matrices.

JKi,j(x̂) =

✓
@�K,i

@x̂j
(x̂j)

◆
(2.22)

This relation allows us to define function u on real element and also û on reference
element. In below table.2.1 we provide the transformation for operators grad, curl,
div for more detailed explanation see [25].

Finally, the transformation allows us to calculate shape functions on reference
space and mapped it to real space.

2.2.3 Shape functions

In 3D nodal finite element (Lagrangian-element) due to lack of the divergence con-
dition, non-physical solutions were observed. Second, the imposition of boundary
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Domain K̂ u as a function û operator on u as a function
û

H(grad,
K̂)

u = û
�
��1

K

�
gradu = J

�T
K grad û

�
��1

K

�

H(curl, K̂) u = J
�T
K û

�
��1

K

�
curl u = JK

det(JK
curl û

�
��1

K

�

H(div, K̂) u =
JK

det(JK
û
�
��1

K

� divu = 1
det(JK

div û
�
��1

K

�

Table 2.1 – Piola transformation.

condition at the material interface found to be inconvenient for more detail refer
[28].

To overcome these challenges, a new type form of finite element was proposed
by Nedelec see [44]. Where, we use vector shape function that assign degree of
freedoms to the edges and faces rather than to the nodes of the element. Below, we
will provide the definition of the first order incomplete edge shape function and face
shape function.

Nodal shape functions

Let xi be the coordinate of node ni. The nodal shape function w
ref
ni

(x) for node ni

under reference coordinate is defined as:

w
ref
ni

(xj) =

(
1 when i = j,

0 otherwise.
(2.23)

Using Piola transformation, the nodal shape function wni(x) under real coordi-
nate system is defined as:

wni(x) = w
ref
ni

(��1
k (x)) 8x 2 K, 1  i  nN . (2.24)

here nN is the total number of nodes.

Edge shape functions

We now introduce waij be the edge basis function characterized on the space W
1
u(⌦).

Let aij be the edge consist of two extreme nodes ni and nj. Let {i, j̄} be the face
nodes which also include the node ni of edge aij but exclude the node nj. Now, waij

be the edge shape function computed over edge aij as:

w
ref
aij

= w
ref
ni

grad

 
X

k2{i,j̄}

w
ref
nk

!
� w

ref
nj

grad

 
X

l2{j,̄i}

w
ref
nl

!
(2.25)

waij = J
�T
k (��1

k (x))wref
aij

(��1
k (x)) (2.26)

Z

l

waij .dl =

(
1 along edge aij

0 otherwise.
(2.27)

Let wni be the nodal basis function calculated at node 0
i
0. The line integral

of waij gives value 1 on an edge aij and 0 on the other edge, as shown in (2.27).
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It also shows that the tangential component of waij is continuous along the edges.
However, its normal component is not. The magnetic vector potential A is defined
on the functional space W

1
u(⌦). The magnetic vector potential A approximated on

edge finite element as:

A =
nAX

ij=1

Aaijwaij (2.28)

Here Aaij is the circulation of the magnetic vector potential A along edge aij of
the mesh and nA is the total number of edges.

Face shape functions

Let fm be a face composed of nodes n1, n2, n3. The interpolating shape function for
reference face element is defined as [21]:

w
ref
fm

=afm

nNfmX

k=1

w
ref
nk

grad

 
X

i2{nk,nk+1}

w
ref
ni

!
⇥ grad

 
X

i2{nk,nk�1}

w
ref
nj

!
(2.29)

Here nNfm
is the number of nodes on face fm. afm be the coefficient equal to 2

for triangle. Eqn.(2.29) calculate the interpolating shape function for reference face
element. The interpolating shape function for real element wfm is defined as:

wfm =
Jk(�

�1
k (x))

det(Jk(�
�1
k (x)))

w
ref
fm

(��1
k (x)) 8x 2 K, 1  m  nF . (2.30)

The vector field (interpolating shape function) wf has the following properties:-

•
R
fm

wfn .dS = �mn

• wf .n the normal component is continuous across face element

• wf 2 W
2
u
(⌦).

2.3 Application of finite element for approximating

magneto static problem

Let A’ be a test function defined on space E
1
u0
(⌦) =

�
A’ 2 E

1
u(⌦),A’|�e = 0

 
such

that curl A’ belongs to space L
2(⌦) and � = �h [ �b.

2.3.1 Weak form of magneto-static problem

In this part we present the weak form for magneto static scenario (1.17 - 1.22)
formulated using magnetic vector potential formulation A.

(⌫ curl A, curl A’)
L
2(⌦) + < ⌫ n⇥ curl A, A’ >

L
2(�)= (Js, A’)

L
2(⌦)

+(⌫ Br, curlA’)
L
2(⌦)+ < ⌫ n ⇥ Br, A’ >

L
2(�) (2.31)
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Here the magnetic vector potential A belongs to E
1
u(⌦). As n ⇥ curl A|�h

= 0
as shown in (1.25) and A’|�e = 0, we can write < ⌫ n ⇥ curl A, A’ >

L
2(�)= 0.

Again using (1.20) in limiting condition (1.21) and A’|�e = 0, < ⌫ n⇥Br, A’ >
L
2(�)

becomes equal to zero. Therefore, equation (2.31) is reduced to:

(⌫ curl A, curl A’)
L
2(⌦) = (Js, A’)

L
2(⌦) + (⌫ Br, curlA’)

L
2(⌦) (2.32)

2.3.2 Discretized modeling using finite element method

In this subsection, we present the discrete model of eqn.(2.32) using finite element
approximation. Here A belongs to W

1
u(⌦) and test function A’ belongs to W

1
u0
(⌦).

Using finite element approximation eqn. (2.31) can be written as:
nAX

k=1

Aak(⌫ curlwak(x), curlA’(x))
L
2(⌦) = (Js(x),A’(x))

L
2(⌦)

+(⌫ Br(x), curlA’(x))
L
2(⌦) (2.33)

Using Galerkin method, the test function A’ is defined as A’ = wal here ’l’ varies
between [1, nA]. Now equation (2.33) is rewritten as:

nAX

k=1

Aak(⌫ curlwak(x), curlwal(x))L2(⌦h) =
nAX

l=1

(⌫curlAj(x),wal(x))L2(⌦h)

+
nAX

l=1

(⌫ Br(x), curlwal(x))L2(⌦h) (2.34)

Here nA is the total number of edges and � be the boundary of domain ⌦. Finally
we compute A belongs to W

1
u(⌦) by solving following problem:

RCCAa = MJA +MCBr (2.35)
Aa|�b

= 0 (2.36)

with
• RCC =

h
(⌫curlwak , curlwal)

i

1k, lnA

• MJA =
h
(⌫curlAj, wal)

i

1 lnA

• MCBr =
h
(⌫Br, curlwal)

i

1 lnA

• Aa =
h
Aak

i

1knA

2.4 Application of finite element for approximating

magneto-transient problem

Let A’ be a test function defined on space E
1
u0
(⌦) =

�
A’ 2 E

1
u(⌦),A’|�e = 0

 
such

that curl A’ belongs to space L
2(⌦). Similarly, V’ be a test function defined on

space E0
u0
(⌦) = {V’ 2 E

0
u(⌦),V’|�e = 0} such that grad V’ belongs to space L

2(⌦)
and � = �h [ �e.
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2.4. APPLICATION OF FINITE ELEMENT FOR APPROXIMATING
MAGNETO-TRANSIENT PROBLEM

2.4.1 Weak form of magneto-transient problem

In this part we present the weak form of the magneto-transient scenario derived
using A-V formulation (1.37-1.42):

(⌫ curl A, curl A’)
L
2(⌦)+ < ⌫ n ⇥ curl A, A’ >

L
2(�) +

✓
�
@A

@t
,A’

◆

L
2(⌦)

+

(� gradV,A’)
L
2(⌦) = (Js,A’)

L
2(⌦) + (⌫ Br, curlA’)

L
2(⌦)+ < ⌫n ⇥ Br,A’ >

L
2(�)(2.37)

Here magnetic vector potential A belongs to E
1
u(⌦). Since n⇥ curlA|�h

= 0 as
shown in (1.39) and A’|�e = 0; therefore, < ⌫ n⇥curl A, A’ >

L
2(�) is equal to zero.

By using (1.32) in (1.34) and A’|�e = 0, we can rewrite < ⌫ n⇥Br, A’ >
L
2(�) equal

to zero. Therefore, now equation (2.37) is reduced to:

(⌫ curl A, curl A’)
L
2(⌦) +

✓
�
@A

@t
,A’

◆

L
2(⌦)

+ (� gradV,A’)
L
2(⌦)

= (Js,A’)
L
2(⌦) + (⌫ Br, curlA’)

L
2(⌦) (2.38)

The second equation under A-V formulation is defined as:

�
✓
�
@A

@t
,grad V’

◆

L
2(⌦)

+ < � n · @A
@t

,V’ >
L
2(�) �(� gradV,gradV’)

L
2(⌦)

� < � n · gradV,V’ >
L
2(�)= 0. (2.39)

where electric scalar potential V belongs to E0
u(⌦). Since n · gradV|�h

= 0,
V’|�e = 0 and n ⇥ curlA|�h

= 0 as shown in (1.41) and (1.39); therefore, < � n ·
gradV,V’ >

L
2(�) and < � n · @A

@t ,V’ >
L
2(�) are equal to zero respectively. Now the

equation (2.39) is rewritten as:

�
✓
�
@A

@t
,grad V’

◆

L
2(⌦)

� (� gradV,gradV’)
L
2(⌦) = 0. (2.40)

In the next subsection, we will present the magneto transient problem in discrete
form.

2.4.2 Discretized modeling using finite element method

In this subsection, we present the discrete model of eqn.(2.38, 2.40) using finite
element approximation. Here A belongs to W

1
u(⌦) and test function A’ belongs to

W
1
u0
(⌦). Similarly, V belongs to W0

u(⌦) and test function V’ belongs to W0
u0
(⌦).
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Using finite element approximation eqn. (2.37, 2.39) can be written as:

nAX

k=1

Aak(⌫ curlwak(x), curlA’(x))
L
2(⌦) +

nAX

k=1

@Aak

@t
(�wak ,A’(x))

L
2(⌦) +

nNX

i=1

Vni(t)(� gradwni , A’(x))
L
2(⌦) = (Js(x),A’(x))

L
2(⌦)

+(⌫ Br(t,x), curlA’(x))
L
2(⌦), (2.41)

nAX

k=1

@Aak

@t
(�wak ,gradV

0(x))
L
2(⌦)

+
nNX

i=1

Vni(t)(� gradwni , gradV
0(x))

L
2(⌦) = 0. (2.42)

Using Galerkin method, let test function A’ is defined as A’ = wal here l 2 [1, nA]
and test function V’ is defined as V

0 = wnj here j 2 [1, nN ].

nAX

k=1

Aak(⌫ curlwak(x), curlwal(x))L2(⌦) +
nAX

k=1

@Aak

@t
(�wak ,wal(x))L2(⌦) +

nNX

i=1

Vni(t)(� gradwni , wal(x))L2(⌦) = (Js(x),wal(x))L2(⌦)

+(⌫ Br(t,x), curlwal(x))L2(⌦), (2.43)
nAX

k=1

@Aak

@t
(�wak ,gradwnj(x))L2(⌦)

+
nNX

i=1

Vni(t)(� gradwni , gradwnj(x))L2(⌦) = 0. (2.44)

Here nA and nN are the total number of edges and the total number of nodes
respectively. �e be the electrical boundary of the domain ⌦. Finally we compute A

belonging to W
1
u(⌦) and V belonging to W

0
u(⌦)by solving following problem:

RCCAa +RAA
@Aa

@t
+RAGVn = MJA + MCBr , (2.45)

R
T
AG

@Aa

@t
+RGGVn = 0, (2.46)

Aa|�e = 0, (2.47)
Vn|�e = 0. (2.48)

with

• RCC =
h
(µ�1

curlwak(x), curlwal(x))
i

1k, lnA

• Aa =
h
Aak(t)

i

1knA

• RAA =
h
(�wak(x),wal(x))

i

1k, lnA
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REDUCED DOMAIN

• Vn =
h
Vni(t)

i

1inN

• MJA =
h
Js(x),wal(x))

i

1 lnA

• MCB =
h
�Br(t,x), curlwal(x))

i

1 lnA

• RGG =
h
�gradwni(x),gradwnj(x)

i

1 i,jnN

2.5 Application of finite element for source compu-

tation using magnetic vector potential formula-

tion Aj under reduced domain

2.5.1 Weak form

In this part we present the weak form for source term JS computed using magnetic
vector potential Aj under reduced domain ⌦m, which is a semi-norm projection
H(curl, ⌦) of magnetic source field Hs computed analytically refer section 1.3.

(Js, A’)
L
2(⌦m) = (curl (⌫ curlAj), A’)

L
2(⌦m) 8 A’ 2 E

1
u0(⌦), (2.49)

= (⌫ curlAj, curlA’)
L
2(⌦m)+ < ⌫ n ⇥ curlAj, A’ >

L
2(�m) .(2.50)

2.5.2 Discretized modeling using finite element method

Using Galerkin method, let test function A’ is defined as A’ = wal here ’l’ varies
between [|1, nAm |]. Now equation (2.49) is rewritten as:

(Js, wal)L2(⌦m) = (⌫ curlAj, curlwal)L2(⌦m)+ < ⌫ n ⇥ curlAj, wal >L
2(�m) .(2.51)

Here below w!al
represents edges belongs to reduced domain (⌦m) but excludes

the edges belongs to (�m). w�al
represents the edges belongs to the boundary of

reduced domain.

wal = w!al
+ w�al

. (2.52)

By using (2.52) in (2.51), eqn.(2.51) is rewritten as:

(Js, wal)L2(⌦m) = (⌫ curlAj, curlw!al
)
L
2(⌦m)+ < ⌫ n ⇥ curlAj, w!al

>
L
2(�m)

+(⌫ curlAj, curlw�al
)
L
2(⌦m)+ < ⌫ n ⇥ curlAj, w�al

>
L
2(�m) (2.53)

The source is computed only on the edges belonging to ⌦m\�m. Therefore, w�al
in eqn.(2.53) becomes zero and trace of w!al

on (�m) is also zero. Hence the final
term is written as:

(Js, wal)L2(⌦m) = (⌫ curlAj, curlw!al
)
L
2(⌦m). (2.54)
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Finally, we present (2.54) in matrix form:

MJA = MJA⌦m
, (2.55)

= MR⌦mcurlA⌦m
. (2.56)

with,

• MJA⌦m
=
h
Js(x),wal(x))

i

1 lnA⌦m

.

• MR⌦mcurlA⌦m
=
h
(⌫ curlAj, curlw!al

)
i

1 lnA⌦m

.

2.6 Summary

In this chapter, the numerical modeling of magneto static and magneto transient
scenarios has been studied using A formulation and A-V formulation respectively.
We have also discussed briefly about the vector finite elements in the starting of this
chapter.

In the next part, we are going to give detailed introduction about the methods
that are developed to simulate movement in the electrical machines numerically
modeled using finite element method.
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CHAPTER 3. STATE OF THE ART FOR TAKING MOVEMENT INTO
ACCOUNT

The objective of this thesis is to model rotating electrical machine using magnetic
vector potential. The machine is decomposed into two parts the moving part and
the fixed part. In this chapter, we will study how to take into account movement in
the numerical modelling of Maxwell’s equation.

3.1 Taking movement into account in different frame

of reference

Let ⌦ be the domain representing an electrical machine and ⌦ = ⌦m + ⌦f . The
rotating part of electrical machine is defined as ⌦m and the fixed part as ⌦f . Let
the velocity with which the ⌦m is rotating is v.

The methods to take into account movement are broadly classified under two
popular approaches:

• The Eulerian approach: Under this approach, the frame of reference is fixed
and independent to the position of domain ⌦m

• The Lagrangian approach: Under this approach, two frames of references are
introduced one on domain ⌦m and other on ⌦f . The frame of reference on
domain ⌦m is varying with change in the positioning of ⌦m.

Definition (Material derivative)

Let � be the quantity of interest. In spatial description, attention is focused on
space ’x’ 2 R3 occupied by the particle ’X’. Here ’x’ is the spatial coordinates and
’t’ represent time. Such that:

� = �(x, t) (3.1)
X(x, t1) 6= X(x, t2) (3.2)

t1 and t2 represents particular instances of time ’t’. Under spatial description
one thing should be noticed from eqn.(3.2) that particle ’X’ during time t1 isn’t the
same particle ’X’ during time t2 in the spatial coordinates ’x’.

Under spatial description, the time derivative of � is known as material deriva-
tive. It consist of two parts: the change in � at space ’x’ in time and change brought
by the new particle. This is expressed as:

d�

dt
=

@�

@t
+ (v · grad)� (3.3)

3.1.1 Eulerian approach

We have already observed in section 1.1 the magnetic component (H and B), and
the electric component (E and Je) varying both with respect to time and space.

To understand more precisely, let ⌦m of electrical machine be rotating with
velocity ’v’. Then change in magnetic flux density B with respect to time ’t’ is
written as:

dB

dt
=

@B

@t
+ (v · grad)B (3.4)
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Ωm

Ωf v

Figure 3.1 – Represenation of electrical machine divided into two sub domains
moving(⌦m) and fixed(⌦f ).

Eqn.(3.4) represents the material derivative of ’B’ in time ’t’. The first part in
the right hand side of eqn.(3.4) ’@B@t ’ represents the change in ’B’ with respect to
time and second term in the right hand side represents convective derivative (change
in ’B’ with respect to space) and velocity ’v’.

Using vector identity (v.gradB) decomposed as:

(v · gradB) = v divB � curl(v ⇥ B) (3.5)

Using eqn.(3.5) in (3.4), since divB = 0 and -@B@t = curlE, the Maxwell-Faraday
law (1.2) in Eulerian approach defined as:

dB

dt
= �curl (E + v ⇥ B) (3.6)

The main disadvantage of this method is the additional term (v ⇥ B) in the
Maxwell-Faraday equation makes the matrix system asymmetric. The method is
numerically stable only with hexahedra meshes in the moving part for more infor-
mation refer [39].

3.1.2 Lagrangian approach

Let us consider magnetic flux density ’B’ be property of our interest. Such that for
a particle position at ’X’ at time ’t’ is written as:

B = B(X, t) (3.7)

In eqn.(3.7) the attention is focused on particle position in contrast to eqn.(3.1)
where attention is focused on space. Therefore, the change in magnetic flux density
B with respect to time is written as:

dB

dt
=

@B

@t
(3.8)

The change in magnetic flux density B with respect to space is not taken into
account in Lagrangian approach.

When the movement is applied under Lagrangian approach the mesh of the rotor
side moves leads to hanging nodes problem (Non conformed mesh) at the interface
of moving part (rotor) and fixed part (stator) of electrical machine see fig.3.2.
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t = 0 (Conformed mesh) t > 0 (Non conformed mesh)

Figure 3.2 – Initial conformed mesh scenario becomes non conformed when the rotor
part start moving.

To impose the continuity conditions (1.13-1.14) at the interface under non con-
formed mesh scenario several methods have been developed and studied under edge
finite element but very little study has been carried out on comparing these methods
on three dimensional industrial problem.

In the next section we will study the methods based on air-gap and sliding
interface principle under Lagrangian approach.

3.2 Methods based on volume air-gap principle

Ωf

Ωm

Ωfm

Air-Gap

Γf-fm

Γm-fm

Figure 3.3 – Represenation of airgap(⌦fm) between two sub domains moving(⌦m)
and fixed(⌦f ) of an electrical machine.

The electrical machine (⌦) comprises of three sub-domains:

⌦ = ⌦f [ ⌦m [ ⌦fm (3.9)
�f�fm = ⌦f \ ⌦fm (3.10)
�m�fm = ⌦m \ ⌦fm (3.11)

where,

• ⌦f is the fixed part.

• ⌦m is the moving part.
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• ⌦fm is the air-gap.

• �f�fm and �m�fm are the interfaces.

For more precise information please see fig.(3.3).
In this section, we will be discussing about the methods based on volume air-

gap: remeshing, boundary integral method, macro element method and overlapping
method.

3.2.1 Remeshing

To take movement into account the most simple way is to apply remeshing in the air-
gap region (⌦fm). The remeshing was first presented for rotating electrical machine
using Delaunay adaptive rotating mesh in [54].

(a) Mesh at intial state at
time t = 0 and 0� degree
rotation

(b) Small distortion in
mesh(⌦fm) at time t = t1
and 5� degree rotation

(c) Large distortion in
mesh(⌦fm) at time t = t2
and 12� degree rotation

(d) Change in connectivity
of mesh(⌦fm) at time t =
t2 and 12� degree rotation

Figure 3.4 – Discretization process in the band (air-gap region ⌦fm).

The remeshing of the air-gap region ⌦fm is known as moving band method
in [19, 57]. In the fig.(3.4), we presented the stages of distortion of mesh in the
air-gap(⌦fm), when movement is taken into account in an electrical machine. In
fig.(3.5) the region marked with yellow color represents fixed part (⌦f ) of an electrical
machine, similarly region marked with color green represents moving part (⌦m). The
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region between ⌦f and ⌦m is deemed as an air-gap. Now, we use this definition for
fig.(3.4) such that fig.(3.4a) represents the initial conformed mesh when no movement
is applied.

In fig.(3.4b) the electrical machine rotated to 5� degree from its initial position, a
small distortion is noticed in the mesh of an air-gap region see fig.(3.4b). In fig.(3.4c)
the moving part (⌦m) has been rotated to 12� degree from its initial position and
the scale of distortion has been increased to a level that it may affect the accuracy
of result. Once the mesh has reached to maximum level of strain (distortion) change
in connectivity of mesh (⌦fm) performed as shown in fig.(3.4d).

No increment in the number of unknown is observed during remeshing. Today,
we have robust algorithm available for remeshing (based on Delaunay triangulation).
But, remeshing in 3D is still computationally very costly and sometimes if the air-
gap isn’t properly defined it disrupt the numerical solution.

To avoid theses challenges in the next section we will present the method based
on macro-element.

3.2.2 Macro element

i
i-1

i+1
θ1 θ2

Ai
r-
Ga

p

Ωf

Ωm
Ωfm

Γf-fm

Γm-fm

Figure 3.5 – 2D representation of airgap (Macro element) between two sub domains
moving(⌦m) and fixed(⌦f ) of an electrical machine.

The macro element technique is based on analytical expression for field com-
puted in the region ⌦fm. In the macro element (air-gap ⌦fm) region the magnetic
permeability µ is taken as constant and current density J is equal to zero. For the
first order nodal shape function refer [1] and for the second order shape function
refer [24].

To ensure the continuity of the field on the interface between air-gap of both
side of rotor ’�m�fm’ and stator ’�f�fm’. The boundary condition on the air-gap is
described as:

A(r, ✓) =
LX

i=J

↵i(r, ✓)Ai (3.12)
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Here J 2 [1, L = S], if interface is �m�fm and J 2 [1, L = T], if interface is �f�fm.
S and T are the total number of unknowns belongs to their respective interfaces.
↵i(✓) is the Lagrange polynomials refer [1].

The method presents good quality of results. In [1] it is shown the accuracy of
results depends only on the quality of discretization of mesh in rotor and stator part
of electrical machine.

Nevertheless, increase in computation times is noticed due to increase in the
bandwidth of matrix. An improvement to this challenge was presented for 2D prob-
lem in [35]. The method shows promising results for 2D nodal finite element method,
but turn out to be costlier in 3D finite element method due to dense matrix. The
macro-element has never been tried with edge-finite element method.

3.2.3 Boundary element method

The coupling of finite element and boundary element method has proven to be
an effective method for problem involving movement. For 2D problem and axis-
symmetric problem, it was initially proposed by [58] and then extended to 2D elec-
tromagnetic field problem by [59]. In 3D hybrid finite element - boundary element
method proposed by [41]-[13]-[33] and coupling with edge edge finite element in [13].

In general the method allows to approximate air region using boundary element
method and the rest of the region approximated using finite element. This set of
approximation allows us to retain non-linear property of finite element. To apply
this method for our problem, regions ⌦f and ⌦m see fig.(3.5) are approximated
using finite element. The interface (�f�fm [ �m�fm) air-gap is approximated using
boundary element. The boundary element method is a generalization of macro-
element method in a way i.e. it is independent of interface geometry.

The advantage of the method is that the mesh at interface doesn’t deformed
and good accuracy of result is obtained. It is possible to apply this method for 3D
problem using hybrid edge finite element - boundary element method. The main
drawback of this method is the increase in bandwidth of matrix, which results in
increase in computation time.

In the next sub-section, we will discuss overlapping finite element method based
on volume air-gap. Where, we will try to find the answer regarding the improvement
in computation time in contrast to macro-element and boundary element method.

3.2.4 Overlapping finite element

The overlapping method was first proposed by [62] for 2D problem to take movement
into account. This method has been applied for 3D problem using hexahedron
meshes in [15]-[30]. It was initially proposed for tetrahedron meshes and arbitrary
meshes in [30]-[31]. The overlapping method was also proposed for edge elements
[32].

In the overlapping method the meshes of stator (⌦f ) and rotor (⌦m) are indepen-
dently created, separated by an air-gap (⌦fm) see fig.(3.6). At each step of rotation
of domain (⌦m) an overlapping mesh is created on a air-gap (⌦fm) by performing
orthogonal projection of nodes on opposite site.

To apply overlapping following steps are performed:-

34



CHAPTER 3. STATE OF THE ART FOR TAKING MOVEMENT INTO
ACCOUNT

Iij - Integration area
- real unknowns
- virtual unknowns

Ωf

Ωfm

Ωm

B
C

b
cX

Y

x
y

Figure 3.6 – Creation of overlapping meshes in the region ⌦fm by orthogonal pro-
jection of nodes.

• Projection:- The nodes B and C at �f�fm are orthogonaly projected as virtual
nodes b and c at �m�fm. Similarly, nodes X and Y belonging to �m�fm are
orthogonaly projected as virtual nodes x and y at �f�fm see fig.(3.6). The
quadrangular virtual element BbXx is created in the region ⌦fm see fig.(3.6).
In the case of 3D problem, the virtual element are hexahedron if the mesh are
hexaheron and prism if the mesh is tetrahedron.

• Computation of integration area (Iij):- To compute the integration area ’Iij’ un-
der edge finite element , edges (BC, XY, Bb, Xx) are considered see figure.(3.6).
For nodal finite element considered nodes are B, C, X and Y. The virtual nodes
shape function are not included for calculating basis. For element ’BbXx’ A

is expressed as:

A = ABCWBC + AXY WXY + ABbWBb + AXxWXx (3.13)

where W’s are the edge basis function and A’s are the edge coefficient.

The advantage of the overlapping method is that it converges and matrix remains
sparse. The quality of the solution is good even on irregular mesh. The accuracy of
approximation decreases with increase in thickness of an air-gap. In edge element
new unknowns are introduced in ⌦fm for more detail see [32]. However, the perfor-
mance of overlapping method is improved in the case of edge element by neglecting
edge unknowns in ⌦fm.

The creation of overlapping 3D element in the case of tetrahedron mesh is bit
complex to implement for curved or arbitrary surface [30]-[31]. In the next section,
we will discuss about the sliding interface principle and the methods based on sliding
interface.

3.3 Method based on sliding surface principle

Under the sliding interface principle, the electrical machine is composed of two
domains. Let fixed domain be represented as ⌦f and moving domain be represented
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Ωf

Ωm

- Sliding InterfaceΓfm
(a) Geometry

Ωf

Ωm

Γfm - Sliding Interface

Γf-fm
Γm-fm

(b) Mesh

Figure 3.7 – 2D representation of sliding interface (�fm) between two sub domains
moving(⌦m) and fixed(⌦f ) of an electrical machine.

as ⌦m, such that the interface between ⌦f and ⌦m is depicted as �fm see fig.(3.7a)
and known as sliding interface.

Some definitions:

• ⌦ = ⌦f [ ⌦m,

• �fm = ⌦f \ ⌦m.

To mesh the domain ⌦ two independent interfaces are created �f�fm 2 ⌦f and
�m�fm 2 ⌦m along �fm. Since the interface �m�fm /2 ⌦f , therefore ⌦m can freely
slide or rotate along interface �fm and ⌦f stays fixed along interface �fm.

To explain more precisely above mentioned scenario, we will refer fig.(3.7b). In
fig.(3.7b) mesh of domain ⌦f is coarser then mesh of domain ⌦m. The nodes (color)
of interface mesh belonging to �m�fm are in red, while for nodes belonging to �f�fm

in pink. The domain ⌦m is rotated to an angle of 5�, therefore we observe non
conformed mesh at interface �fm in fig.(3.7b).

In the coming sub-section, we will introduce method based on sliding interface
principle: Lock-step method, penalty based methods, interpolation and some new
horizons.

3.3.1 Lock step method

The lock-step method is one of the earliest and simplest technique adopted under
sliding interface principle for taking movement into account. [49] demonstrates
lock-step method for 2D induction motor analysis. [23]-[12] demonstrates for 3D
induction motor.

In the lock-step method a band of regular mesh is generated along both sides of
sliding interface �fm. Here by regular mesh, we mean the size and the shape of each
element of mesh is equal to one another. A representation of regular mesh along
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Nf1 Nf2 Nf3 Nf4
Nf5 Nf6

Nm1
Nm2 Nm3 Nm4

Nm5 Nm6
Γm-fm

Γf-fm Γfm

Figure 3.8 – Mesh position at initial state.

Nf4 Nf6Nf5Nf2Nf1 Nf3
Nm1 Nm2 Nm3

Nm4
Nm5

Nm6
Γm-fm

Γf-fm
Γfm

Figure 3.9 – Mesh position after movement

sliding interface �fm is shown in fig.(3.8). In fig.(3.8) the elements and nodes in
pink color depicts mesh of the fixed side ⌦f , the mesh in red color shows mesh of
moving side ⌦m. The nodes of element along interface are represented as Nfi and
Nmi respectively for �f�fm and �m�fm. Here i 2 [|1, 6|] for description see fig.(3.8).

To take movement into account using lock-step method, the time-step and rota-
tion speed is defined such that at each step of rotation the mesh of mobile part (⌦m)
always remain conformed with mesh of fixed part (⌦f ) along the interface �fm. To
understand more precisely, fig.(3.8) represents mesh position at initial state (t=0),
here nodes Nfi 2 �f�fm are in front of nodes Nmi 2 �m�fm. Fig.(3.9) depicts posi-
tioning of mesh when movement is applied i.e. time (t=t1), a change in combination
take place and nodes Nfi+1 2 �f�fm are in front of nodes Nmi 2 �m�fm.

The advantage of lock-step technique is mesh stays conformed at each step of
rotation. The technique is simple to implement. The drawback of this technique is
time-step is dependent on the rotation speed of moving part ⌦m.

The method can be implemented for both 2D and 3D problem with nodal finite
element or edge finite element. In the next sub-section we will try discuss the
methods that aren’t dependent of regular band of mesh and rotation speed.

3.3.2 Lagrange multiplier

[55] showed the application of functional minimization using Lagrange multiplier to
model a movement for 2D switch reluctance motor. [55] applied Lagrange multi-
plier for a problem formulated using magnetic vector potential A on nodal finite
elements. After this [38]-[34] extended its application for 3D problem formulated
using magnetic vector potential formulation A or magnetic scalar potential �. [38]
also showed Gaussian integration in the case tetrahedral mesh and [26] proposed the
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method for edge finite elements.

⇧ =

Z

⌦

(HcurlA � AJs)d⌦ (3.14)

⇧0 =

Z

�fm

�(A�f�fm
� A�m�fm

)d� (3.15)

Here ⇧ in eqn.(3.14) describes a magnetostatic problem solved for unknown A

and ⇧0 in eqn.(3.15) describe the coupling term introduced at the interface �fm with
Lagrange multiplier � see [38].

The Lagrange multiplier method use sliding interface principle as shown in
fig.(3.7). On each domain ⌦m and ⌦f eqn.3.14 is solved. To impose continuity
on �fm coupling term ⇧0 eqn.3.15 is imposed on mesh interface i.e. on �f�fm and
�m�fm. During solving, the Lagrange multiplier � is replaced by their values calcu-
lated using functional minimization principle see [55]-[38]-[34].

The advantage of the method is the matrix remains symmetric. The method
also posses several drawbacks and are listed below:

• The efficiency of method is highly dependent on choice of formulation. [38]
showed when permeability of ferromagnetic material is increased, loss in ac-
curacy was observed under � formulation.

• The definition of integrating function on interface �fm is difficult to define.
The best form is to perform the intersection of meshes �f�fm and �m�fm and
then use Gauss quadrature. However, the intersection becomes complex for
3D problem with tetrahedral meshes.

• The matrix becomes singular and ill-conditioned.

• Numerous numerical experiments have shown that the method is not effective
for real applications and shows bad convergence with edge elements, when
mesh consist of combination of hexahedron and tetrahedron elements.

Finally, we can conclude that Lagrange multiplier can be applied for 2D or 3D
problem, even with edge finite element. But according to literature method
proves to be in-efficient for real problems.

To overcome this challenge, In the next sub-section we will introduce mortar
method, which is very close to Lagrange multiplier.

3.3.3 Mortar method

To take movement into account, the mortar method was first studied on 2D and
3D problem using nodal finite element by [50]-[16]-[17]-[5]. Then [51]-[52] extended
it’s application to 2D problem in edge finite element. In 3D edge finite element
the method was proposed by [53]-[14]. Also in [60] this method was compared with
interpolation based on accuracy and performance on nodal finite element.

In the mortar method solving a problem defined on domain ⌦ is equivalent to
solving sub-problems defined on sub-domains ⌦f and ⌦m as ⌦ = ⌦f [⌦m. The con-
tinuity condition is imposed in a weak sense on sliding interface �fm using Lagrange
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type multiplier. In nodal finite element, the Lagrange type multiplier imposed con-
tinuity of unknowns through interface �fm and in edge finite element the continuity
is imposed of tangential component of unknowns along interface �fm.

The unknowns belonging to mesh interfaces �f�fm and �m�fm are connected to
each other by imposing the continuity. This connectivity or continuity are called in
matrix representation as coupling matrices C and D.

In Lagrange multiplier method, we calculated ’�’ using principle of minimization,
whereas in mortar the unknowns in Lagrange type multiplier are replaced with func-
tional form of Galerkin method. In mortar method coupling matrix ’C’ is calculated
using shape function of unknowns belonging to interface �f�fm, whereas coupling
matrix ’D’ is dependent on shape functions of both interfaces i.e. �f�fm and �m�fm.
Since, we are dealing with 3D curved interface, it is necessary to create third mesh
(intermediate mesh between �f�fm and �m�fm) for accurate calculation of matrix
’D’.

The advantage of this method is it gives very accurate result, the order of ac-
curacy is coherent to order of accuracy of conformed finite element. To maintain a
good order of accuracy the intermediate mesh created for calculating matrix D is
very fine almost four times and the inversion of the matrix C is full matrix. This
increases computation time and computational memory for a problem.

In the next chapter, we will provide the detail description of mortar method. In
the next sub-section, we will study another popular technique known as interpolation
and try to find out the advantages and drawbacks of the method.

3.3.4 Interpolation

To take movement into account interpolation method was first proposed by [46]-[20]
for 1st order interpolating function on nodal finite element. [60] proposed the 2nd
and 3rd order interpolating function for 3D problems approximated using nodal finite
elements. The interpolation on non conforming edge elements in 3D was proposed
by [26]-[29]-[43]-[45]-[66].

On the sliding interface, the interpolation is carried out on a line for 2D prob-
lem and on a surface for 3D problem. The interpolation can be applied for nodal
element, edge element and face element. The simplest form interpolation is nodal
interpolation. The interpolation on edge element and face element is bit complex,
especially on curved surface.

To give a simple example of the 1st order nodal interpolation for 2D problem see
fig.(3.7b). In fig.(3.7b) the nodes Nmi belonging to �m�fm are not in coincident with
nodes Nfi belonging to �f�fm. Under this scenario to impose the continuity using
nodal interpolation, the nodal unknowns of interface �m�fm are replaced with linear
combination of nodal unknowns belongs to �f�fm and each nodal unknowns belongs
to �f�fm in linear combination is multiplied by its weights known as interpolating
coefficient. The same can be applied in the case of edge element but the calculation
of interpolating coefficient is bit complex and will be described in the chapter-5.

The main advantage of this method is the resolution of matrix remain sparse
and symmetrical. The performance of this method is really good as no intermediate
mesh is created. Although, the accuracy of the method is affected in the case of
first order incomplete edge element under the irregular mesh scenario. To overcome
this shortcoming a third mesh is necessary created from intersecting elements of
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interfaces �f�fm and �m�fm, which is again a complex task.
The method can be easily applied to 2D or 3D problems. The method has the

capability to deliver the result of order of accuracy coherent to order of accuracy of
finite elements.

In the next sub-section,we will give a small introduction on methods that holds
a good prospects for taking movement into account.

3.3.5 Mixed finite element method / Natural element method

In a recent past, a new type of method has been developed, which attains the
characteristics of meshless methods like the capability to cope up with geometrical
changes and alleviation of computational cost due to mesh generation, but also
retains the capability of FEM to impose the boundary condition at domain boundary
see [64]-[65].

[27] proposed a constraint natural element method to take movement into ac-
count for 2D problem. [27] tested this approach on 2D variable reluctance motor. In
[27] author proved by moving the nodes at the interface doesn’t affect the accuracy
of the solution. The method can be applied for magnetic vector potential formula-
tion A and also for magnetic scalar potential formulation �. The extension of the
method in edge element framework is complicated see [11].

3.4 Conclusion

Methods to take
movement into
account

2D 3D Nodal
FEM

Edge
FEM

Intermediate
Mesh

AccuracyPerformance

Remeshing 3 3 3 3 3 7 7
Macro element 3 7 3 7 7 3 3
Boundary Ele-
ment Method

3 3 3 3 7 3 7

Overlapping 3 3 3 3 3 3 3
Lock-Step 3 3 3 3 7 3 3
Lagrange Multi-
plier

3 3 3 3 3 7 7

Mortar Method 3 3 3 3 3 3 7
Interpolation 3 3 3 3 7 3 3
C-NEM/Mixed
FE

3 7 3 3 7 3 3

Table 3.1 – Summary of methods to take movement into account.

The state of the art for the methods to take movement into account is summarized
in table.(6.4). The method is chosen on four important criterion:

• Accuracy:- The method should have the capability to deliver results of accuracy
in coherent with edge finite element theory.
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• Third mesh (Intermediate mesh):- The implementation of an intermediate
mesh should not be complicated.

• 3D problem:- The method should be capable of solving 3D problem under edge
FEM framework.

• Performance:- The method shouldn’t be computationally costly.

Four methods based on volume air-gap are studied. The first method remeshing
has the capability to solve the 3D problem. Since the mesh at the interface is
very fine to capture the physics accurately, remeshing at the interface becomes
computationally costly and sometimes, the accuracy of results are also affected.
Second, macro element method is difficult to apply in 3D because the resolution of
matrix becomes dense and the method has never been tried on edge elements. Third,
Boundary element method is difficult to apply for the reasons same as macro element
method. Lastly, overlapping method has the ability to solve 3D problem with good
accuracy. However, creation of intermediate mesh in the air-gap is complicated to
implement for curved surfaces.

Again four methods under sliding interface principle are studied as well. Lock-
step method is capable of solving 3D problem under edge element but the method
is limited to regular mesh and rotation speed. Lagrange method failed to solve
lacks the ability to solve real 3D test cases. Mortar method shows promising results
in terms of robustness and accuracy in solving 3D problems under edge elements.
Interpolation method respects all the criterion for taking movement into account.

Mixed finite element is new domain, it has shown promising results under 2D
scenario for taking movement into account. It will be interesting to see its application
on 3D problems. The application of mixed finite element seems bit difficult in the
context of edge finite element.

Finally, three methods shows good prospects in 3D under edge elements to obtain
good results for problem involving rotation movement: Interpolation, overlapping
and mortar methods.

In this thesis, we are going to test interpolation and mortar methods. We will
be leaving overlapping method out from comparison because the creation of inter-
mediate mesh in the air-gap is complicated to implement for curved surfaces for this
method.
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CHAPTER 4. MORTAR METHOD

In this chapter, we present the mortar method. Here, we will discuss in great
detail about the mortar structure, the implementation of mortar method and the
computation of coupling matrices.

4.1 Theory of mortar method

In the mortar method, the meshes at the interface of sub domains do not match,
which introduces undesirable discontinuities in field along interface. Equality along
the interface is imposed by using Lagrange type multiplier. To describe mortar
method, we will be using similar notations as we have described in previous chapters.
Let ⌦ be the domain of interest. The domain ⌦ is sub-divided into two sub-domains
called as fixed domain ⌦f and moving domain ⌦m, ⌦ = ⌦f [ ⌦m. The sliding
interface existing between two sub-domains is represented as �fm, �fm = ⌦f \ ⌦m.

In practicality to impose sliding interface, the double surfaces (3D) or double
interfaces (2D) are created along interface �fm called as �f�fm = ⌦f \ �fm (fixed
side) and �m�fm = ⌦m \ �fm (moving side).

The discretized domains and interfaces are defined as ⌦h, ⌦fh , ⌦mh
and �f�fmh

,
�m�fmh

respectively. In the next section, we will discuss in detail about the con-
struction of Lagrange type multiplier and how it is imposed at the interfaces �f�fm

(fixed side) and �m�fm (moving side) for ensuring the continuity of fields.

4.1.1 Coupling matrices

A.n

A

A x n

n

Figure 4.1 – Representation of vector components.

Let A be the unknown defined on the edge of the finite element mesh. The
unknown A is composed of tangential and normal component defined as:

A = (A · n)n + (A ⇥ n)⇥ n. (4.1)

Here n represents the unit vector perpendicular to surface �fm. A.n and A⇥ n

depicts the normal and the tangential components of A see figure.(4.1).
Under 3D edge element, the continuity of the tangential component of unknown

A is imposed along interface �fm. To impose the continuity Lagrange type multiplier
A

0 is used as:

Z

�fm

A
0 (A ⇥ n|�f�fm

� A ⇥ n|�m�fm
) d� = 0. (4.2)
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4.1. THEORY OF MORTAR METHOD

Lets extend eqn.(4.2) on a discretized domain. But before that, lets define certain
notations that will be utilized . Let nA⌦ be the total number of edges on which
unknown A is approximated. Such that:

nA⌦ = nA⌦f
+ nA⌦m

(4.3)

where nA⌦f
and nA⌦m

be the total number of edges belonging to the fixed side
and the moving side of a domain ⌦. Let ⌦m\�m�fm and ⌦f\�f�fm be the dis-
cretized domain excluding the edges that approximates interfaces �m�fm and �f�fm

respectively. Under this defined scenario the number of edge unknowns are defined
as:

nA⌦f
= nA⌦f \�f�fm

+ nA�f�fm
(4.4)

nA⌦m
= nA⌦m\�m�fm

+ nA�m�fm
(4.5)

If we assume that we know the solution of unknown of A, then on edge finite
element space A is approximated as:

A =

nA⌦f \�f�fmX

i=1

Aafi
wafi

+

nA�f�fmX

j=1

Aafj
wafj

+

nA⌦m\�m�fmX

k=1

Aamk
wamk

+

nA�m�fmX

l=1

Aafl
wafl

(4.6)

Here wafi
is an edge basis function approximated over domain ⌦f\�f�fm and

i belong to 1 i nA⌦f \�f�fm
. Similarly, this definition is extended for wafj

, wamk

and waml
. Aafi

, Aafj
, Aamk

and Aaml
are the expansion coefficients defined on edges

afi 2 ⌦f\�f�fm, afj 2 �f�fm, amk
2 ⌦m\�m�fm and aml

2 �m�fm.
Now using Galerkin method approximation of eqn.(4.6), the continuity condition

eqn.(4.2) on finite element space is approximated as:

nA�f�fmX

j=1

Aafj

Z

�fm

A
0 · (wafj

⇥ n)d� =

nA�m�fmX

l=1

Aaml

Z

�fm

A
0 · (waml

⇥ n)d�. (4.7)

Again using Galerkin method, the Lagrange multiplier A
0 is approximated as:

A
0 = wafp ⇥ n 1  p  nA�f�fm

(4.8)

Now lets write eqn.(4.7) in more compact form i.e. in matrix form:

CA�f�fma = DA�m�fma, (4.9)

here,

• C = [
R
�f�fm

(wafp ⇥ n) · (wafj
⇥ n)d�]1p,jnA�f�fm

= [ca(p, j)]1p,jnA�f�fm
is

a coupling matrix.
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• D = [
R
�fm

(wafp ⇥ n) · (waml
⇥ n)d�]1pnA�f�fm

1lnA�m�fm

= [da(p, l)]1pnA�f�fm
1lnA�m�fm

is a

coupling matrix.

• A�f�fma = [Aafj
]1jnA�f�fm

are the edge coefficients defined on edges 2
�f�fm.

• A�m�fma = [Aaml
]1lnA�m�fm

are the edge coefficients defined on edges 2
�m�fm.

Lets recall eqn.(4.7), the coupling matrix C is only computed on the interface
�f�fm. The coupling matrix C is a square matrix, as it is computed only on interface
�f�fm. Therefore, the size of coupling matrix C is nA�f�fm

⇥ nA�f�fm
. The idea

behind calculating C just on interface �f�fm is to avoid calculation of C at each step
of movement. The calculation of coupling matrix Da takes into account edges be-
longing to the interfaces �f�fm and �m�fm. The coupling matrix D is rectangular in
size nA�m�fm

⇥nA�f�fm
. As already discuss D is dependent on both interfaces �f�fm

and �m�fm. Therefore, coupling matrix D is calculated at each step of rotation.

4.1.2 Matrix structure after including coupling matrices

Using (2.45) linear system of equations representing the problem imposed on domain
⌦ is defined as:

R⌦A⌦ = M⌦ (4.10)

here,

• R⌦ is the stiffness matrix build on domain ⌦,

• A⌦ is the vector containing unknowns approximated on domain ⌦,

• M⌦ is the source vector on domain ⌦.

Now we introduce two sub-domains ⌦f and ⌦m in eqn.(4.10). The eqn.(4.10) in
block matrix form is written as:


R⌦F 0
0 R⌦M

� 
A⌦F

A⌦M

�
=


M⌦F

M⌦M

�
(4.11)

Let us expand our main problem (4.11) by introducing continuity condition (4.9).
Such that ⌦f is composed of ⌦f\�f�fm[�f�fm and ⌦m is composed of ⌦m\�m�fm[
�m�fm.

2

6664

R⌦f\�f�fm
S⌦f

0 0

S⌦f
R�f�fm

0 0
0 0 R⌦m\�m�fm

S⌦m

0 0 S⌦m R�m�fm

3

7775

2

6664

A⌦f\�f�fm

A�f�fm

A⌦m\�m�fm

A�m�fm

3

7775
=

2

6664

M⌦f\�f�fm

M�f�fm

M⌦m\�m�fm

M�m�fm

3

7775
(4.12)
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4.2. IMPLEMENTATION OF MORTAR METHOD

• S⌦f
is mass matrix that connects domain mesh ⌦f\�f�fm

with interface mesh
�f�fm.

• S⌦m is mass matrix that connects domain mesh ⌦m\�m�fm
with interface mesh

�m�fm.

Since, the unknowns of fixed side �f�fm are defined in accordance with moving
side �m�fm. Therefore, using the coupling matrices C and D the unknown vector A

in linear system of equation is re-written as:
2

6664

A⌦f\�f�fm

A�f�fm

A⌦m\�m�fm

A�m�fm

3

7775
=

2

664

I 0 0
0 0 C

�1
D

0 I 0
0 0 I

3

775

2

64
A⌦f\�f�fm

A⌦m\�m�fm

A�m�fm

3

75 (4.13)

After replacing unknown vector A by eqn.(4.13) in eqn.(4.12). It leads to new
orientation of linear system of equation in matrix form:

2

64
R⌦F\�F�FM

0 S⌦FC
�1
D

0 R⌦M\�M�FM
S⌦M

(C�1
D)TS

T
⌦F

S
T
⌦M

(C�1
D)TR�F�FM (C�1

D) + R�M�FM

3

75

2

4
Aa,⌦F\�F�FM

Aa,⌦M\�M�FM

Aa,�M�FM

3

5 =

2

4
M⌦F\�F�FM

M⌦M\�M�FM

(C�1
D)TM�F�FM + M�M�FM

3

5(4.14)

Two important points are needed to be observed in eqn.(4.14). First, the sparsity
of the block matrix is affected. Secondly, the computation requires to perform
inversion of coupling matrix C. In the next section, we are going to explain the
different stages of implementing mortar method for 3D problem.

4.2 Implementation of mortar method

In this section we will discuss two important points: first, the integrating domain in
the case of 3D and secondly, the numerical calculation of coupling matrices C and
D.

4.2.1 Integrating domain

The coupling matrix C depends only on the shape function of the fixed side interface
�f�fm. Therefore, while calculating coupling matrix C, we will only consider the
edges of �f�fm as shown in fig.(4.2). When the rotor part of electrical machine
moves the interface meshes �f�fm and �m�fm become non-conformed. Since, we are
dealing with the curved surface, in the non conformed scenario the meshes belonging
to �f�fm penetrates the interface �m�fm and vice-versa. The calculation of coupling
matrix D becomes difficult. To overcome this challenge a third mesh is created called
as mortar mesh see fig.(4.2).

In 3D the meshes on the fixed interface �f�fm and the moving interface �m�fm

are triangular or quadrangular facets. We can construct a mortar mesh by projecting

46



CHAPTER 4. MORTAR METHOD

F-FMF-FM M-FMM-FMFMFM

Mortar MeshStator(F) Mesh

Rotor(M) Mesh

Figure 4.2 – Representation of Mortar Interface.

the meshes of the interfaces �f�fm and �m�fm on the surface �fm and perform
the intersection. This process of projection and intersection is easy in the case
of quadrangular mesh but in the case of triangle-triangle intersection it becomes
complicated. As in this case, we will have polyhedron with maximum of six edges.
In this case [14] proposed a simpler approach, where we create an independent
mesh. This independent mesh �fm needs to be roughly 2 times finer than mesh at
the interfaces �f�fm and �m�fm. However, in the case of curved surface a loss in
accuracy was observed. Therefore, we have used a mesh �fm which at least four
times finer than mesh at the interfaces �f�fm and �m�fm.

In next section we will discuss about the numerical implementation of calculating
coupling matrices C and D.

4.2.2 Computation of coupling matrices

Figure 4.3 – Projection of Gauss points from �fm to �f�fm and �m�fm.

Lets recall few definition. The mesh belonging to interface �f�fm will be denomi-
nate as �f�fmh

. Similarly for interface �m�fm mesh will be denominated as �m�fmh
.

In 3D to numerically calculate [ca(p, j)] and [da(p, l)] in (4.9) [53]-[14] proposed a
method based on Gauss quadrature method. In this sub-section, we will study the
calculation of coupling matrices C and D using Gaussian quadrature method.
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4.2. IMPLEMENTATION OF MORTAR METHOD

Let nF�f�fm
, nF�m�fm

and nF�fm
be the number of face elements of the mesh

belongs to �f�fmh
, �m�fmh

and �fmh
respectively.

Let ffq be a face element belong to fixed interface �f�fm, where q is ranging
between [1, nF�f�fm

]. Similarly fmr be a face element belong to moving interface
�m�fm, where r is ranging between [1, nF�m�fm

].
Let ngpf be the number of Gauss points for integrating over a face fi. Let !

fi
g

and ⇠
fi
g be the weights and position of Gauss points respectively for the face element

fi, where i range between [1, nF ] and g ranges between [1, ngpf ].

Projection of Gauss points from mortar mesh (�fmh
) to interface meshes

�f�fmh
and �m�fmh

According to [53]-[14]-[25] ⇠ffms
fg

and ⇠
ffms
mg be the orthogonal projection of Gauss

point ⇠
ffms
g on the meshes 2 to interface �f�fm and �m�fm respectively. Where

g and s ranges between [1, ngpf ] and [1, nF�fm
]. The steps to perform orthogonal

projection are described below:-

• First step is to build an operator that perform orthogonal projection of face
elements ffms . Each face element 2 �fm is projected on each face elements 2
�f�fm and �m�fm.

• Second step is to project each Gauss points ⇠
ffms
g on the meshes belong to

�f�fm, here, g 2
⇥
1, ngpf

⇤
and s 2

h
1, nF�fm

i
.

• Third step is to project each Gauss points ⇠
ffms
g on the meshes belong to

�m�fm, here, g 2
⇥
1, ngpf

⇤
and s 2

h
1, nF�fm

i
.

To visualize this process, lets see fig.(4.3). The Gauss points ⇠
ffm30
1 , ⇠ffm30

2 and
⇠
ffm30
3 of face element ffm30 2 �fm is orthogonally projected on facet ff8 2 �f�fm

and projected Gauss points are named as ⇠
ffm30
f1

, ⇠ffm30
f2

and ⇠
ffm30
f3

belongs to ff8 .
Similarly, Gauss points ⇠

ffm30
1 , ⇠

ffm30
2 and ⇠

ffm30
3 of face element ffm30 2 �fm is

orthogonally projected on facet fm1 2 �m�fm and projected Gauss points are named
as ⇠

ffm30
m1 , ⇠ffm30

m2 and ⇠
ffm30
m3 belongs to fm1 .

Computation of coupling term C and D on edge elements

Using Gauss quadrature formula ca and da in (4.9) can be computed as:

ca(p, j) =

Z

�f�fm

⇣
wafp ⇥ n

⌘
·
⇣
wafj

⇥ n

⌘
d�

=

nF�f�fmX

q=1

ngpfX

g=1

⇣
wafp (⇠

ffq
g )⇥ nffq

⌘
·
⇣
wafj

(⇠
ffq
g )⇥ nffq

⌘
!
ffq
g (4.15)

da(p, l) =

Z

�FM

⇣
wafp ⇥ n

⌘
·
⇣
waml

⇥ n

⌘
d�

=

nF�fmX

s=1

ngpfX

g=1

⇣
wafp (⇠

ffms
fg

)⇥ nffms

⌘
·
⇣
waml

(⇠
ffms
mg )⇥ nffms

⌘
!
ffms
g (4.16)
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Here nffq and nffms
be the outward normal to each surface element belonging to

interface �f�fm and �fm respectively. ⇠
ffq
g be the local coordinates of respective

Gauss points and !
ffq
g be its weights for each surface element belong to interface

�f�fm. ⇠
ffms
g be the local coordinates of respective Gauss points and !

ffms
g be its

weights for each surface element belong to interface �fm.

4.2.3 Inversion of coupling matrix C

By taking edge shape function definition into account, the coupling matrix C has
the band size of 2N(na+1), where

• N = order of basis function.

• na = it is the total number of edges belong to elements, that shares edge of
interest (but excluded from na).

In our case we will be utilizing the first order edge shape function. Therefore,
in our case N = 1. Since, the coupling matrix C is made up edges of mesh element
belong to interface �f�fm, in 3D the domain ⌦f is meshed with either hexahedron
or tetrahedron. Therefore, generating two scenarios.

Lets discuss two scenario of coupling matrix C bandwidth:-

1. The domain is meshed using hexahedron mesh element.

2. The domain is meshed using tetrahedron mesh element.

A

B

C

D

E F

(a) Hexahedron Mesh

A

B

C

D

(b) Tetrahedron mesh

Figure 4.4 – Depiction of surface mesh along interface �f�fm based on domain ⌦f

meshed with hexahedron or tetrahedron volume element.

Scenario 1 (Hexahedron mesh)

Lets consider domain ⌦f is composed of only hexahedron mesh element in 3D. Then
at the interface �f�fm the surface element will comprised of quadrangular elements
as shown in fig.(4.4a). In this scenario each edge belonging to surface element �f�fm

is shared by two surface element. For example from fig.(4.4a) edge BD shown in
color red is shared by surface elements ABDC and BDEF, In this example na =
(edgeAB, edgeCA, edgeDC , edgeDF , edgeFE, edgeEB) = 6.

So in 3D with hexahedron mesh and first order edge shape function the band-
width of coupling matrix C will be of size 14.
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Scenario 2 (Tetrahedron mesh)

Lets consider domain ⌦f is composed of only tetrahedron mesh element in 3D. Then
at the interface �f�fm the surface element will comprised of triangular elements as
shown in fig.(4.4b). In this scenario each edge belonging to surface element �f�fm is
shared by two surface element. For example from fig.(4.4b) edge BD shown in color
red is shared by surface elements ABD and BCD, In this example na = (edgeAB,
edgeDA, edgeBC , edgeCD) = 4.

So in 3D with tetrahedron mesh and first order edge shape function the band-
width of coupling matrix C will be of size 10.

Finally, In 3D the coupling matrix C is of bandwidth 14 and 10 for hexahedron
and tetrahedron element respectively. The matrix C can be easily inverted using
direct solver MUMPS see [3].

4.3 Conclusion

In this chapter, we studied mortar method. The method impose continuity along
the sliding interface �fm with the help of Lagrange type multiplier. Numerically,
we have described how the unknowns A�f�fm

belongs to fixed side interface �fm

are expressed as a function of unknowns A�m�fm
belongs to moving side interface

�m�fm using coupling matrices C and D.
To express unknowns A�f�fm

as a function of unknowns A�m�fm
, it is require to

define the integrating domain using coupling matrices C and D see eqn.(4.9). The
coupling matrix C is computed over the edges belongs to mesh of interface �f�fm. A
third mesh is necessary to construct for computing matrix D. Since, we are dealing
with curved surfaces, for 3D scenario a general independent mesh 4 times finer than
mesh belongs to �f�fm and �m�fm is created see fig.(4.2). Next, we have shown the
calculation of edge based coefficient ca and da belongs to coupling matrices C and
D respectively. There are several methods to calculate these edge based coefficient
in our case we have utilized 2D Gauss quadrature formula see eqn.(4.15 - 4.16).
Finally, In the end coupling matrix C is inverted using direct solver MUMPS.

In the next chapter, we will study another method based on sliding interface
known as interpolation. In this chapter we will be discussing the principle of inter-
polation, computation of interpolating coefficient and linear combination.
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CHAPTER 5. INTERPOLATION METHOD

5.1 Introduction to interpolation method

As already discussed in chapter 4, the movement generates a non - conforming
mesh at the interfaces between the fixed part mesh �f�fmh

and the moving part
mesh �m�fmh

. Therefore, the nodes, edges and surface of the mesh elements are no
longer coincident at the interface �fm. To connect the two meshes and, therefore,
unknowns, we resort to an interpolation technique.

The interpolation technique can be performed for different types of quantities
approximated on the nodes, edges and face of an element. The interpolation is easily
applicable on quantities approximated on the elements’ nodes and edges but becomes
difficult to develop for quantities approximated on face elements see [26]. Also, in
the case of tetrahedral mesh to perform interpolation by face element, we need to
create an integrating mesh formed by intersecting meshes belonging to �f�fmh

and
�m�fmh

over each other. The implementation of integrating mesh on the curved
surface is complex.

The method was originally proposed by [46] for the unknowns approximated
on mesh elements’ nodes. It was then extended to second order polynomial inter-
polation by [60]. In this chapter, we propose two strategies to connect unknowns
belonging to non conformed interface in the case of magnetic vector potential A

approximated on the edges of the mesh elements. The strategies are:

Rotor

Stator

A A

Sl
id

in
g 

Interface

ϕ ϕ

(a) Strategy 1: A-� cou-
pling - Nodal Interpolation

Rotor

Stator

A A

Sl
id

in
g 

Interface

(b) Strategy 2: Edge Inter-
polation

Figure 5.1 – 2D representation of Interpolation strategy based on nodal elements
and edge elements.

1. The magnetic non conducting materials is approximated using magnetic vector
potential A formulation and region with air is approximated with magnetic
scalar potential � formulation (A - � coupling) and nodal interpolation is
performed in the air region between �f�fm and �m�fm.

2. Both magnetic non conducting and air regions are approximated using mag-
netic vector potential A formulation and interpolation is performed between
edge elements belongs to interfaces �f�fm and �m�fm.
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5.2 Nodal interpolation method

An illustration of the interpolation method is presented for 2D case in fig.(5.2 - 5.3).
Fig.(5.2) represents the initial mesh position along the interface �fm of mobile part
and fixed part, each node Nfi is coincidental with each node Nmi , where i varies
between 1  i 6. Fig.(5.3) represents the mesh after a movement step. In this case
along interface �fm each node Nfi is not coincidental with each node Nmi , where i
varies between 1  i 6.

Nf1 Nf2 Nf3 Nf4
Nf5 Nf6

Nm1
Nm2 Nm3 Nm4

Nm5 Nm6
Γm-fm

Γf-fm Γfm

Figure 5.2 – Mesh position at initial state.

Nf4 Nf6Nf5Nf2Nf1 Nf3
Nm1 Nm2 Nm3

Nm4 Nm5 Nm6
Γm-fm

Γf-fm
Γfm

Figure 5.3 – Mesh position after movement

In the next sub-section, we will now describe the approach to impose continuity
under the scenario shown in fig.(5.3) based on 2D nodal interpolation.

5.2.1 Principle

In this case the nodal unknowns are magnetic scalar potentials and denoted as �nfi

and �nmj
for the fixed (�f�fm) and mobile (�m�fm) sides respectively.

Lets assume the nodal unknowns belongs to �m�fm side are expressed as linear
combination of nodal unknowns belongs to �f�fm side. The expression is written
as:

�nmj
=

nn�f�fmX

i=1

↵i�nfi
(5.1)

where,

54



CHAPTER 5. INTERPOLATION METHOD

• �nmj
is the nodal unknown associated to nodes belonging to the mobile side

(�m�fm) of the interface.

• �nfi
is the nodal unknown associated to nodes belonging to the fixed side

(�f�fm) of the interface.

• ↵i is the interpolation coefficient.

• nn�f�fm
is the total number of nodes belonging to the fixed side (�f�fm) of

the interface.

0
x1

nm1
(α1=1, α2=0)

αi(x)
1

xx2
nf1

nf2

(a) Initial state

0
x1

nm1

αi(x)
1

xx2
nf1

nf2
x α1

(x2 - x)
(x2 - x1)

=α2 =(x2 - x1)
(x - x1)

(b) After Movement

Figure 5.4 – 1D projection of node nm1 belongs to interface �m�fm on interface
�f�fm.

Using (5.1) we can express nodal unknown �nm1
based on node nm1 represented

in fig.(5.2) and fig.(5.3) as a combination of nodal unknown �nf1
and �nf2

based on
nodes nf1 and nf2 belongs to fixed side (�f�fm) of interface :

�nm1
= ↵1�nf1

+ ↵2�nf2
. (5.2)

To calculate interpolating coefficients ↵1 and ↵2, node nm1 is projected on edge
contains nodes nf1 and nf2 . Let the 1D coordinate of projected node nm1 be x as
shown in fig.(5.4). After the projection, using 1D FEM we calculate the 1D shape
function for the nodes nf1 and nf2 at the coordinate x. The following conclusion are
drawn for interpolating coefficient:

• ↵1 + ↵2 = 1

• In the initial state see fig.(5.4a) the node �nm1
is coincidental with node �nf1

.
For this scenario ↵1 = 1 and ↵2 = 0.

• In the state after a movement see fig.(5.4b) the projection of node �nm1
is

somewhere between nodes �nf1
and �nf2

. For this scenario ↵1 = ↵ and ↵2 =
1� ↵, where, ↵ ranges between [0, 1].

In the next sub-section, we will extend this idea to 3D problem. Where, we will
have surface mesh along the interface �fm sliding over each other.
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Figure 5.5 – Initial and after a step movement positioning of mesh element belongs
to interfaces �m�fm and �f�fm.
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Figure 5.6 – 2D projection of node nm1 belongs to interface �m�fm on interface
�f�fm.

5.2.2 Computation of the interpolation coefficient

In the case of conformed mesh as shown in fig.(5.5a), the nodes belongs to the moving
side are exactly coincidental with nodes belonging to the fixed side. However, after
movement the nodes nmi belonging to the moving side of sliding interface are no
longer coincidental with nodes nfi from the fixed side interface as shown in fig.(5.5b).
Here ’i’ is ranging between 1 to 13. In this case to impose the continuity, the nodal
unknowns �mi are approximated as a function of nodal unknowns �fi on nodes nfi .

Lets approximate nodal unknown �m2 belongs to node nm2 . To do that first we
need to project node nm2 belongs to surface �m�fm on surface �f�fm and search on
which face element node nm2 has been projected. In our case as shown in fig.(5.6)
node nm2 is projected on face element composed of nodes nf2 , nf4 and nf5 . Secondly,
we approximate �m2 as a function of nodal unknowns �f2 , �f4 and �f5 on nodes nf2 ,
nf4 and nf5 respectively.

We assume ’A’ be the area of triangle composed of nodes nf2 , nf4 and nf5 ,
’A5’ be the area of triangle composed of nodes nf2 , nf4 and the projection of node
nm2 . Similarly this definition is extended for area ’A2’ and ’A5’. Then �nm2

is
approximated as:

�nm2
= ↵2�nf2

+ ↵4�nf4
+ ↵5�nf5

(5.3)

In 2D case following conclusion are drawn,

• ↵2 + ↵4 + ↵5 = 1
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CHAPTER 5. INTERPOLATION METHOD

• In the initial state see fig.(5.5a) the node �nm2
is coincidental with node �nf2

.
For this scenario ↵2 = 1, ↵4 and ↵5 are equal to 0.

• In the state after a movement see fig.(5.5b) and fig.(5.6) the projection of node
�nm1

is inside the triangle composed of nodes nf2 , nf4 and nf5 . Using first order
2D nodal shape function principle. For this scenario ↵1 = A1

A , ↵2 = A4
A and

↵3 =
A5
A , where ↵2, ↵4 and ↵5 ranges between [0, 1]. In the case of second order

nodal finite elements, Lagrange polynomials are used to calculate interpolation
coefficient.

5.3 Edge interpolation method

nf4

nf2

nf5

nf7

nf9

nf10

nm2

nm4

nm5

ξ1

ξ2

ξ3

Figure 5.7 – 2D projection of face element fm1 belongs to interface �m�fm on interface
�f�fm.

A generalized approach is proposed here refer as "Continuous type" which can
be applied to non conforming tetrahedral meshes. The approach is an extension of
[45]-[66].

5.3.1 Extending the idea to first order incomplete edge finite

element framework

Let A be the magnetic vector potential unknown approximated on surface element.
Let Aamij

be an unknown approximated over edge amij belonging to the interface
�m�fm and wamij

be its edge shape function. Let us assume nA�f�fm
and nA�m�fm

be the total number of edges on the interfaces belongs to fixed side and moving side
respectively. Using (2.28), we approximate magnetic vector potential unknown A

on surface element belongs to interface �m�fm as:

A =

nA�m�fmX

ij=1

Aamij
wamij

(5.4)

Let eij be a unit vector for an arbitrary edge aij define as:

eij =
aij

||aij||
, (5.5)

eij =
1

laij

Z

laij

dl. (5.6)
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5.3. EDGE INTERPOLATION METHOD

Here laij is the length of an edge aij.
Am and Af are the magnetic vector potential belonging to elements of moving

side and fixed side respectively. Using (5.4), (5.5) and (5.6) we can approximate
unknown Aam45

imposed on edge am45 belonging to �m�fm as shown in fig.(5.7) as:

Aam45
= Am · em45

=
1

lam45

Z

lam45

Am · dl =
1

lam45

Z

lam45

Af · dl

=

nA�f�fmX

lm=1

Aaflm

⇣ 1

lam45

Z

lam45

waflm
· dl

⌘

=

nA�f�fmX

lm=1

Aaflm
↵aflm

(5.7)

Here ↵aflm
is an interpolation coefficient calculated using 1D Gauss quadrature in-

tegration.

5.3.2 Computation of the interpolation coefficient

Here we will show the computation of interpolation coefficient ↵aflm
using Gauss

quadrature for edge am45 belonging to the interface �m�fm as shown in fig.(5.7).
Under generalized case , i.e., for any number of Gauss points eqn.(5.7) can be written
as:

Aam45
=

lam45

2

nA�f�fmX

lm=1

Aaflm

Z 1

�1

waflm
(⇠) · em45d⇠ (5.8)

where,

↵aflm
=

lam45

2

Z 1

�1

waflm
(⇠) · em45d⇠ (5.9)

⇠ is 1-D local coordinate. Now the integration part shown in (5.9) is calculated
using Gauss quadrature as mentioned earlier. Depending on the number of Gauss
points used for the integration of (5.9), two types of interpolation methods can be
distinguished:

• Continuous type:- Gauss quadrature is computed using two or more number
of Gauss points. Under this we take into account edges af74 , af45 , af57 , af49 ,
af97 , af710 and af105 of fixed side for replacing the edge unknown for edge am45

of moving side see fig.(5.7).

• Discontinuous type:- Gauss quadrature is computed using just one Gauss
point. Under this we just take into account edges af74 , af45 and af57 of fixed
side for replacing the edge unknown for edge am45 of moving side see fig.(5.7).
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CHAPTER 5. INTERPOLATION METHOD

Continuous type:-

Let ⇠1, ⇠2 and ⇠3 be the orthogonal projection of 1D Gauss points on surface element
belonging to �f�fm. The projection is made from edge am45 of interface �m�fm .
The corresponding weights can be named as !1, !2 and !3. Now by applying three
Gauss point quadrature integration (5.9) can be computed as:

Aam45
=

lam45

2

"
Aaf74

h⇣
waf74

(⇠1) · em45

⌘
(!1) +

⇣
waf74

(⇠2) · em45

⌘
(!2)

i

+ Aaf57

h⇣
waf57

(⇠1) · em45

⌘
(!1) +

⇣
waf57

(⇠3) · em45

⌘
(!3)

i

+ Aaf45

h⇣
waf45

(⇠1) · em45

⌘
(!1)

i
+ Aaf710

h⇣
waf710

(⇠3) · em45

⌘
(!3)

i

+ Aaf105

h⇣
waf105

(⇠3) · em45

⌘
(!3)

i
+ Aaf49

h⇣
waf49

(⇠2) · em45

⌘
(!2)

i

+ Aaf97

h⇣
waf97

(⇠2) · em45

⌘
(!2)

i#
(5.10)

Discontinuous type:-

Let ⇠1 be the orthogonal projection of 1D Gauss points on surface element belonging
to �f�fm. The projection is made from edge am45 of interface �m�fm. The corre-
sponding weights can be named as !1. Now by applying one Gauss point quadrature
integration (5.9) can be computed as:

Aam45
=

lam45

2

"
Aaf74

⇣
waf74

(⇠1) · em45

⌘
(!1) + Aaf45

⇣
waf45

(⇠1) · em45

⌘
(!1)

+ Aaf57

⇣
waf57

(⇠1) · em45

⌘
(!1)

#
(5.11)

General type (for "n" number of Gauss points):-

For "n", any number of Gauss points, where "n" can be equal to 1 or greater than
one, (5.10) and (5.11) are reformulated as:

Aam45
=

lam45

2

" nA�f�fmX

lm=1

Aaflm

jX

k=i

h⇣
waflm

(⇠k) · em45

⌘
(!k)

i#
(5.12)

Here "
PnA�f�fm

lm=1 " represents the summation of edges "aflm" belonging to interface
�f�fm. "

Pj
k=i" represents the summation of Gauss points with respect to each aflm .

To compute interpolation coefficients under continuous type rectangular integra-
tion can also be used.

5.4 Performing Linear combination

To show linear combination, we will be using the element belong to the moving side
composed of nodes nm2 , nm4 and nm5 as shown in fig.(5.7). For simplicity and better
understanding, we make some assumptions in notation representation.
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5.4. PERFORMING LINEAR COMBINATION

• Aam45
= Am2 , Aam52

= Am4 , Aam24
= Am5 .

Now, lets perform the linear combination for edge unknown ’Am2 ’ for discontin-
uous type interpolation. Let the system of equation for face element composed of
edges Am2 , Am4 and Am5 is expressed as:
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(5.13)

Here ’Rij’ and ’Mi’ in eqn.(5.13) represents the stiffness matrix and the source
vector to the corresponding face element. Only the entries related to one face element
is shown for simplicity and better understanding.

Using eqn.(5.11) Am2 is replaced by Aaf74
, Aaf45

and Aaf57
. Now, the transfor-

mation relationship is expressed as:

2

4
Am2

Am4

Am5

3
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2
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0 0 0 0 1
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77775
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= |↵|

2

66664
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Am4

Am5

3

77775
(5.15)

here |↵| is the transformation matrix. Substituting eqn.(5.14) in eqn.(5.13). In
order to respect the property of Galerkin method, we multiply the matrix represent-
ing face element by |↵|T as well. Which leads to following relation:
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The eqn.(5.16) can be further expanded as:
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From eqn.(5.18) it becomes evident that symmetry of matrix representing system
of equation is retained. Although, the band width of matrix gets increased but the
number unknowns in the global system remains unchanged.

5.5 Conclusion

In this chapter, we have studied interpolation method. The method imposed con-
tinuity along the sliding interface by approximating unknowns belonging to the
interface �m�fm as a function of unknowns belonging to the interface �f�fm.

To execute interpolation with magnetic vector potential formulation, we pro-
posed two strategies. The first strategy was to implement A-� coupling and then
perform nodal interpolation in air region by approximating air region with magnetic
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scalar formulation. The second strategy was to carry out direct interpolation on
edge elements. In the validation and results part, we would be testing the second
strategy because the first strategy is bit complicated from user perspective.

To express unknowns belonging to moving interface �m�fm as a function of un-
knowns belonging to interface �f�fm, computation of interpolation coefficient is
required. We have provided an explanation for computing interpolation coefficient
in the case of nodal elements as well as edge elements. In section (5.4) we have
provided in depth explanation regarding linear combination. While carrying out the
linear combination, we have also shown the symmetry of matrix system is retained.

In the next part, we will validate interpolation and mortar methods on aca-
demic test case to compare the methods on the basis of accuracy, robustness and
performance.
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Part III

Validation and Results
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CHAPTER 6. MAGNETO-STATIC 3D ACADEMIC TEST CASE

(a) Geometry of rotating device (b) Sectional view of rotating device along XZ
or YZ plane

Figure 6.1 – Detail representation of a 3D rotating machine

6.1 Description of magneto-static 3D academic test

case

We consider an academic test case symmetrical around Z-axis. As shown in fig.(6.1),
the test case is built using two cylinders surrounded by a cylindrical coil conductor.
The moving cylinder is built at the top of a static cylinder separated by a thin
air-gap of thickness 1 unit. The diameter of the moving cylinder is 3 units and of
the static cylinder is 6 units. The thickness of the coil conductor is 1 unit. The
difference in the radius between the coil conductor and the static cylinder is 2 units
and 3.5 units with the moving cylinder. The total height of the coil conductor is
6 units. The test case is designed so that the computed field value should remain
constant at each step.

The physical property of both cylinders is linear isotropic with a relative magnetic
permeability (µr) of 2000. The number of turns in the coil winding applied to the
coil conductor is 350. The source current applied in the coil is 5 A.

6.1.1 Mesh Scenarios

(a) Conformed mesh at ✓ = 0� (b) Non conformed mesh at ✓ = 5�

Figure 6.2 – 3D view of conforming and non conforming mesh around sliding interface
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Table 6.1 – Mesh scenarios selection.

Mesh Scenario Degrees of freedom Mesh around sliding surface
(Approx. length of an edge)

1 87,000 0.6 mm
2 129,000 0.5 mm
3 204,757 0.4 mm
4 591,710 0.2 mm

The surface mesh around sliding surface under conformed mesh and non con-
formed mesh are depicted in fig.(6.2a) and fig.(6.2b) respectively. In this chapter,
we are going to test the mortar method and the edge interpolation on four different
uniform mesh scenarios, as detailed in table.6.1. The size of an edge belonging to
the triangular element around the sliding surface decreases from mesh scenario 1 to
mesh scenario 4, as shown in the third column of table.6.1.

6.1.2 Error Computation

Error(✏) =
||uapproach � ureference||2

||ureference||2
⇥ 100 (6.1)

In order to quantify the difference between the results of the different meshes and
methods, we can calculate the L2-norm of the error. Here "u" represents the quantity
such as magnetic energy or flux, ||.||2 represents L2-norm. Results computed under
conformed mesh with 1 million degrees of freedom is taken as reference. MUMPS
[3] has been utilized for linear solving with an auto-gauging technique [61]. The
simulation is made on a CPU configured with an Intel-i7(6820HQ) processor (4
Cores, RAM = 5 GB). The approaches are developed and tested on a development
version of commercial software Altair FluxTM [4].

6.1.3 Intermediate mortar mesh

To select the order of refinement for mortar mesh (�fmh
), we compare error in com-

puting magnetic energy around sliding surface (Air-moving region) between mortar
mesh scenarios approximately 4 times and 2 times finer than mesh around sliding
surface (�m�fmh

). The details regarding the mortar mesh are provided in table.6.2.
Here total number of face element belonging to surface mesh �m�fmh

is equal to
�f�fmh

.

Table 6.2 – Mortar mesh details.

Mesh Scenario
Face element around
sliding surface (�m�fmh

)
Mesh - A
(4⇥ �m�fmh

)
Mesh - B
(2⇥ �m�fmh

)
1 616 2,860 1,508
2 1,118 3,904 1,976
3 1,772 6,808 4,536
4 7,224 29,000 16,254
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Table 6.3 – Error analysis of magnetic energy computation along sliding surface
(Air-moving region).

Mesh Scenario
Mortar Mesh - A
(4⇥ �m�fmh

)
Mortar Mesh - B
(2⇥ �m�fmh

)
1 2.177 % 9.623 %
2 1.24 % 10.324 %
3 0.513 % 23.379 %
4 0.435 % 23.874 %

From a comparison provided in the table.6.3 regarding the accuracy of results com-
puted using mortar mesh 4 times and 2 times finer than the mesh around sliding
surface (�m�fmh

), a constant convergence is observed for mortar mesh - A over mor-
tar mesh - B while moving from mesh scenario 1 to 4. The convergence failure for
mortar mesh - B could be due to an inaccurate Gauss quadrature integration while
computing coupling matrix D, as the mortar mesh is generated independently, i.e.
without performing the mesh-mesh intersection around sliding surface. Therefore,
we choose the mortar mesh approximately 4 times finer than mesh belonging to the
sliding surface (�m�fmh

).

6.2 Validation and results

6.2.1 Isovalues of magnetic flux density

(a) Conformed (b) Interpolation (c) Mortar

Figure 6.3 – Representation of flux arrows from cylinder-1 (Moving) to cylinder-
2(Static) at ✓ = 5�

In order to validate the described herein approaches, we tested it on the magneto-
static test case see fig.(6.1). Fig.(6.3) shows continuous magnetic flux arrows moving
from cylinder-1 (moving) to cylinder-2 (static) through the air gap. No visible
difference can be seen between conformed mesh and, non conformed mesh using
edge interpolation and mortar method see Figure.6.3.

We also computed the magnetic energy around the sliding interface at different
rotor position, as shown in fig.(6.4). One point should be noticed in fig.(6.4), i.e.,
the energy computations are almost constant at each step of rotation. Since the
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Figure 6.4 – Depiction of energy computed around sliding interface (Air moving)
shown in Figure.6.1 at different rotor position.

test case is symmetrical around Z-axis, we have constant value at each step. The
average difference in magnetic energy between interpolation and conformed mesh is
0.87% also between mortar and conformed mesh the difference is 0.81%.
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Figure 6.5 – Convergence analysis for the magnetic energy.

6.2.2 Convergence Analysis (Accuracy)

Now that we have validated both approaches here, we will quantify the convergence
rate for magnetic energy. We will evaluate error according to (6.1). The reference
case for the convergence analysis is the computation of magnetic energy under the
conformed mesh for around 1.5 million unknowns.

The evolution of error in magnetic energy computation is depicted on the log-
log scale in fig.(6.5). The slope of this represents the convergence rate. Despite
the same convergence rate for the mortar method and the edge interpolation, the
mortar method accuracy is better than the edge interpolation.

In the next sub-section, we will study the mortar method and the edge interpo-
lation performance; based on computation time and computational memory, tested
on different mesh scenarios.
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6.2.3 Performance

Table 6.4 – Computation time per step.

Mesh Scenario Conformed mesh Edge Interpolation Mortar Method
1 19 s 19 s 41 s
2 23 s 23 s 57 s
3 40 s 44 s 127 s
4 126 s 141 s 2,862 s

Table 6.5 – Number of non zero terms in matrix.

Mesh Scenario Conformed mesh Edge Interpolation Mortar Method
1 1,713,786 1,745,178 5,280,970
2 2,011,643 2,049,480 6,437,257
3 2,956,097 3,008,769 9,361,955
4 8,357,734 8,582,596 39,003,229

Figure 6.6 – Number of non zero terms in a matrix system at different mesh scenarios.

On analyzing table.6.4, it is shown from the simulation that edge interpolation is
twice as fast as mortar method in scenario-1 and this gap is increasing, as difference
in computation time almost surge by twenty times in the case of scenario-4. One
more important thing should be noticed in table.6.5 and fig.(6.6)that the number of
non zero terms in the case of mortar method increases exponentially in contrast to
edge interpolation while moving from scenario-1 to scenario-4. The reason behind
the increase in the number of non zero terms is the size of mortar mesh. This
exponential increase in the number of non zero terms in the case of mortar method
also leads to the utilization of a large amount of computational memory.

One can notice edge interpolation is bit less accurate than mortar method but
the computation time and computation memory related to edge interpolation is very
close to the conformed edge FEM.
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6.3 Robustness analysis based on mesh regularity

Figure 6.7 – 3D view of surface mesh around sliding surface.
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Figure 6.8 – Error computation for the magnetic energy at different scale of mesh
regularity around sliding surface.

Figure 6.9 – Error computation for the magnetic energy as a function of number of
Gauss points (Ratio = 1.16).

To check the proposed methods’ robustness, we tested the edge interpolation and
the mortar method at a different scale of mesh regularity varying between 2.6 to 1.
Here the scale 2.6 and 1 means the ratio of the size of an edge element belonging
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to the mesh �m�fm to the size of an edge element belonging to mesh �f�fm. The
quality of mesh regularity is best when the scale is 1 and worst at the scale 2.6.

In fig.(6.7), we represents the mesh along sliding surface for �m�fm in such a
way that at ✓ = 180� of rotation the mesh regularity will be close to 2.6. Using the
similar proposition for mesh along sliding surface for �m�fm depicted in fig.(6.2a)
gives mesh regularity close to 1.

In fig.(6.8), we present the error computation for magnetic energy, using edge
interpolation and mortar method. The results computed using edge interpolation
without any intermediate mesh is susceptible to mesh regularity. On analysing
fig.(6.8) and fig.(6.9) together, we can see a minimum 3 integration points (Gauss
points) are needed in the edge interpolation performed over triangle surface elements.
The mortar method is less sensitive to mesh regularity on comparing it with edge
interpolation.

6.4 Validation and results of source terms computed

on reduced domain under the application of move-

ment (Non - Meshed coils)

In the Altair FluxTM, there exist two types of coils: non-meshed coils and meshed
coils. The calculation of source in Altair FluxTM is carried out in three forms: source
magnetic vector potential As, source magnetic field Hs and source current density
Js. For the meshed coil, the source is Js, as the coil’s geometry corresponds to mesh
perfectly. In non-meshed coils, the source is As or Hs calculated analytically using
Biot and Savart law, as the mesh does not corresponds to the geometry of the coil.
After analytical calculation, the source is projected as Aj on the edges of the edge
finite element space. For a more detailed review, please refer [25]

This section will validate source term computation on a reduced domain studied
under the movement for a non-meshed coil. To validate, we will compare academic
test-case results for a non-meshed coil with a meshed coil under the reduced domain.
The source computation under the reduced domain for meshed coil has already
been validated in the past on Altair FluxTM see [25] and under the application of
movement in the previous section. Therefore, we will be using the results of the
meshed coil as a reference in our study.

6.4.1 Isovalues of magnetic flux density

As a qualitative comparison the isovalues of the magnetic flux density B computed
using A formulation are presented in fig.(6.10) and fig.(6.11). In the fig.(6.10) and
fig.(6.11), we compared the isovalues computed on cylinder-1 moving and cylinder-2
static at ✓ = 12� between meshed coil and non-meshed coil.

The source term for meshed coil under reduced domain is Hj for detail refer
chapter 6 of [25]. The source term for non-meshed coil under reduced domain is AJ

is described in section 2.3. The isovalues of B calculated for non-meshed coil are
respectively identical to isovalues of B calculated for meshed coil as shown in (6.10)
and fig.(6.11).

In the next sub-sections, we will present the results for magnetic energy and
magnetic flux computed for the test case shown in fig.(6.1) using a non-meshed coil,
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REDUCED DOMAIN UNDER THE APPLICATION OF MOVEMENT (NON -
MESHED COILS)

(a) Meshed Coil (b) Non-meshed coil

Figure 6.10 – Representation of isovalues of magnetic flux density computed on
cylinder-1 (Moving) at ✓ = 12�

(a) Meshed Coil (b) Non-meshed coil

Figure 6.11 – Representation of isovalues of magnetic flux density computed on
cylinder-2 (fixed) at ✓ = 12�

and we will compare the results with the meshed coil.

6.4.2 Magnetic Energy

Figure 6.12 – Magnetic energy computed at a different rotor position.

The magnetic energy is computed over the whole domain. In fig.(6.12), we
shown the magnetic energy computation at every 2� of rotation from 0� to 104�
under magneto-static scenario. As the test case is axis-symmetric around the z-axis
and rotation is around the z-axis; therefore, the magnetic energy value is constant
for each rotation step. The average difference for magnetic energy between meshed
coil and the non-meshed coil is less than 0.4%. Since the mesh around the sliding
surface is a bit coarse, small oscillations are observed.
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6.4.3 Magnetic Flux

Figure 6.13 – Magnetic flux computed on a coil at a different rotor position.

In this sub-section, we show the magnetic flux computation for coil defined under
reduced domain (⌦f\�f�fm) in the fig.(6.13). Few spurious oscillations are observed
at few positions of computations for non-meshed coils. The average difference for
magnetic energy between meshed coil and the non-meshed coil is less than 1%;
however, at ✓ = 0� and 78� numerical error greater than 10% and 2.5% are observed,
respectively.

6.5 Conclusions

This chapter has validated two approaches to model a rotating motion for the
magneto-static problem and compared them based on accuracy and performance.
From the analysis presented in section 6.2 to 6.4, the following conclusions are
drawn:-

• Both the methods yield the same convergence rate for energy computation
under regular mesh scenario.

• The accuracy of the mortar method proven to be bit more accurate in contrast
to edge interpolation.

• To have a good convergence with the mortar method, the mortar mesh should
be at least 4 times finer than the mesh around the sliding surface.

• The mortar method is costlier than edge interpolation in terms of computa-
tional time and computational memory.

• The edge interpolation is more sensitive to mesh regularity than the mortar
method.

• We also validated the source computation using AJ source term computed
over reduced domain under the application of movement.

In the next chapter, we will test mortar method, the edge interpolation and the
source computation over reduced domain for transient and static FEA of TEAM
WORKSHOP Problem 24 [2].
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7.1 Magneto-static problem

This chapter will study the application of mortar method, and edge interpolation
on TEAM Workshop Problem 24 [2]. This chapter aims to test the mortar method
and the edge interpolation on a complex test case. By complex test case, we mean
the magnetic field behaviour varies as a function of the rotor position.

7.1.1 Test case description

The components of Problem 24 consist of a rotor and a stator with two coil windings
on it, as shown in fig.(7.1). The rotor, coil, shaft and air regions are meshed with the
tetrahedron elements, and the stator region is meshed with the prismatic elements.
During the application of movement, we have a triangle - triangle intersections along
the sliding surface. The material property for both rotor and stator is linear isotropic
with relative permeability (µr) of 500. The total number of turns of coil windings
applied to the coil conductor is 350. The source current applied in the coil is 5 A.
The simulation is made on a CPU configured with an Intel-i7(6820HQ) processor (4
Cores, RAM = 9 GB).

7.1.2 Linear problem

Figure 7.1 – 3D view of test case TEAM workshop Problem-24.

In this sub-section, we will test the methods under the magneto-static scenario.
The behaviour of the material used in defining the stator and rotor core is linear.
We have tested the problem under three case studies based on the quality of mesh
used. In the first case, the total number of unknowns used is closed to 120,000. The
size of an edge element along the sliding surface is equal to 6 mm. In the second
case, the total number of unknowns increased to 266,632; the size of an element’s
edge along the sliding surface equal to 1.5 mm. In the third case, the total number
of unknowns is around 800,000; the edge element’s size along the sliding surface
is equal to 1 mm. The mortar method is tested only on case study 1 because the
source code for building the mortar method topological matrix is not optimal. In the
first section, we test the methods under the magneto-static scenario. After that, we
will test the application of edge interpolation for a non-linear problem. In the last
section, we will test edge interpolation under the influence of source AJ computed
under the reduced domain for the non-meshed coil.
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Case study - 1 (120,000 unknowns)

(a) Isovalues ref-
erence

(b) Remeshing

(c) Edge Interpolation (d) Mortar Method

Figure 7.2 – Representation of magnetic flux density isovalue at ✓ = 18�

Fig.(7.2) shows the magnetic flux density iso-value plots for remeshing, mortar
method and edge interpolation computed at 18� of rotation. The isovalues computed
using all the three approaches are similar and varying between values 0 to 2.160 T.
However, a small variation in the isovalues pattern is observed.

The computation time for edge interpolation is almost 4 times lower than remesh-
ing, as shown in table.7.1. The computation time for the mortar method is 4 times
higher than the edge interpolation. This difference in computation times between
edge interpolation and mortar method is due to the creation of mortar mesh and
computation of D matrix over mortar mesh. The increase in computation time for
the mortar method is directly proportional to the mortar mesh size. In this case,
mortar mesh is 4 times finer than surface mesh around the interface.

Table 7.1 – Computation time per step (Linear problem).

Solver Unknowns Remeshing Edge Interpolation Mortar Method
MUMPS 120,000 75 s 19 s 82 s
MUMPS 266,632 96 s 41 s -
MUMPS 800,000 663 s 206 s -

Fig.(7.3) depicts torque computation for 90 steps, where shaft and rotor rotate 2�
anticlockwise against stator at each step. The simulation is made on a mesh with
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Figure 7.3 – Torque computed at different rotor position for Team workshop
problem-24.
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Figure 7.4 – Magnetic flux computed for coil conductor at different rotor position
for Team workshop problem-24.

120,000 degrees of freedoms. Since the mesh around the sliding surface is coarse
numerical oscillations are observed for all the approaches, including remeshing. The
numerical oscillations are low for the mortar method in contrast with the edge in-
terpolation. The next case study shows that these numerical oscillations for edge
interpolation decrease with finer mesh around the sliding surface. Like torque, sim-
ilar observation is made for magnetic flux computation, as shown in fig.(7.4). In the
next sub-section, we will present the edge interpolation result when tested for the
non-linear problem.

Case study - 2 (266,632 unknowns)

Fig.(7.5) and fig.(7.6) depicts torque and magnetic flux computation for the sim-
ulation made on a mesh with 266,632 degree of freedoms. Since the mesh around
the sliding surface is finer than case study -1, minimal numerical oscillations are
observed for edge interpolation compared to case study - 1. The average variation
between remeshing and edge interpolation for torque and magnetic flux computation
is less than 2%. The computation time for edge interpolation is almost 2.34 times
lower than remeshing, as shown in table.7.1.
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Figure 7.5 – Torque computed at different rotor position for Team workshop
problem-24.
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Figure 7.6 – Torque computed at different rotor position for Team workshop
problem-24.
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Figure 7.7 – Torque computed at different rotor position for Team workshop
problem-24.

Case study - 3 (800,000 unknowns)

Fig.(7.7) and fig.(7.8) depicts torque and magnetic flux computation for the simu-
lation made on a mesh with 800,000 degree of freedoms. Since the mesh around the
sliding surface is much finer, the retrieved solutions using edge interpolation have
almost converged to retrieved solutions using remeshing. The variation between
remeshing and edge interpolation for torque and magnetic flux computation is less
than 1%. The computation time for edge interpolation is almost 3.21 times lower
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Figure 7.8 – Torque computed at different rotor position for Team workshop
problem-24.

than remeshing, as shown in table.7.1.

7.1.3 Non-linear problem

Table 7.2 – Material property (Non-linear problem).

Material Carbon Steel

Magnetic Property
Initial relative permeability:- 17.037E3
Mean evaluated permeability:- 6.065E3
Saturation magnetization Js (T):- 1.99

In this sub-section, the methods are tested under non-linear behaviour material.
For the non-linear test, the chosen material posses the isotropic spline saturation
behaviour in terms of magnetic property, as detailed in table.7.2. The simulation
takes 2 to 3 non-linear iterations to solve for all the three methods.

Case study - 1 (120,000 unknowns)

-4

-3

-2

-1

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90

To
rq

ue
 (N

.m
)

Rotor Position (degree)

Edge Interpolation
MortarMethod
Remeshing

Figure 7.9 – Torque computed at different rotor position on Team workshop problem-
24. (Case Study - 1 Non-linear)
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Table 7.3 – Computation time per step (Non-linear problem).

Solver Unknowns Remeshing Edge Interpolation Mortar method
MUMPS 120,000 83 s 25 s 93 s
MUMPS 266,632 122 s 67 s -
MUMPS 800,000 831 s 381 s -
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Figure 7.10 – Magnetic flux computed at different rotor position on Team workshop
problem-24. (Case Study - 1 Non-linear)

Fig.(7.9) and fig.(7.10) display torque and magnetic flux computations for case
study - 1 under non-linear scenario. Similar to the linear test case, we observe nu-
merical oscillations both in torque and flux computations for all the listed methods.
Computation time for edge interpolation is around 3 times lower than the mortar
method, and remeshing for more detail see table.7.3.

Case study - 2 (266,632 unknowns)
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Figure 7.11 – Torque computed at different rotor position on Team workshop
problem-24. (Case Study - 2 Non-linear)

Here the edge interpolation is nearly 2 times faster than the remeshing, as de-
tailed in table.7.3. As it was observed in the linear test case (case study - 2),
numerical oscillations have been reduced to minimal with the decrease in length of
an edge element from 6 mm to 1.5 mm around the sliding surface see fig.(7.20) and
fig.(7.12). The average variation between the edge interpolation and the remeshing
for torque and magnetic flux computations is below 2%.
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Figure 7.12 – Magnetic flux computed at different rotor position on Team workshop
problem-24. (Case Study - 2 Non-linear)

-4

-3

-2

-1

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90

To
rq

ue
 (N

.m
)

Rotor Position (degree)

Edge Interpolation

Remeshing

Figure 7.13 – Torque computed at different rotor position on Team workshop
problem-24. (Case Study - 3 Non-linear)
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Figure 7.14 – Magnetic flux computed at different rotor position on Team workshop
problem-24. (Case Study - 3 Non-linear)

Case study - 3 (800,000 unknowns)

Similar to the retrieved results for torque, and magnetic flux computations under
case study - 3 (Linear problem), the average difference between the edge interpo-
lation and the remeshing for torque and magnetic flux computations fall below 1%
see fig.(7.13) and fig.(7.14). Again, the edge interpolation is nearly 2 times faster
than remeshing.
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7.2. SOURCE TERM COMPUTED ON REDUCED DOMAIN FOR
NON-MESHED COILS UNDER MAGNETO-STATIC AND MAGNETO
TRANSIENT SCENARIO

7.1.4 Summary

This section validated the application of the mortar method and the edge interpo-
lation for TEAM workshop problem 24. Here again, the computation time taken by
the edge interpolation is less than the mortar method. Less numerical oscillations
are observed in the case of the mortar method on comparing with edge interpolation.
We have also shown the application of edge interpolation for non-linear problems. In
this section, meshed coils are utilized in the simulations. Similar results are obtained
for the magneto transient problem to avoid repetition; results are presented in an
upcoming section. In the next section, we will validate the computation of source
term AJ on the reduced domain under the application of movement for non-meshed
coils.

7.2 Source term computed on reduced domain for

non-meshed coils under magneto-static and mag-

neto transient scenario

Now we are going to validate the computation of source term AJ on a reduced
domain studied in section 2.3 for TEAM workshop problem 24. The source com-
putation under the reduced domain for meshed coil has already been validated on
AltairTM. The regions considered under the reduced domain are stator, stator air
and coil. We will be using computation results of meshed coils as a reference in our
study. The total number of unknowns used in this simulation is around 266,632,
and edge interpolation is used to apply the movement. For magneto transient sce-
nario, a constant speed of 2000 rpm is imposed on the rotor and the shaft in the
anticlockwise direction; and the initial position of the rotor is 2�.

7.2.1 Magneto-static problem

(a) Meshed Coil (b) Non-meshed coil

Figure 7.15 – Representation of magnetic flux density isovalue at ✓ = 8� under
magnetostatic scenario

In fig.(7.15), we present the isovalues of magnetic flux density B computed using
A formulation. The isovalues pattern are exactly identical between meshed coil
and non-meshed coil. In the fig.(7.16) and fig.(7.17), we present the comparison
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of torque and magnetic flux computations between meshed and non-meshed coils
under magneto-static scenario. The average variation in torque and magnetic flux
computation between meshed and non-meshed coils is below 0.4%.
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Figure 7.16 – Torque computed at different rotor position on Team workshop
problem-24.
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Figure 7.17 – Magnetic flux computed at different rotor position on Team workshop
problem-24.

In the next sub-section we will present results retrieve under magneto-transient
scenario for TEAM workshop problem 24 using non-meshed coils.

(a) Meshed Coil (b) Non-meshed coil

Figure 7.18 – Representation of magnetic flux density isovalue at ✓ = 8� under
magneto transient scenario
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7.2.2 Magneto transient problem

Fig.(7.18) depicts the iso values of magnetic flux density B computed at a posi-
tion ✓ = 8�. No variation is observed in iso values pattern between meshed and
non-meshed coils. Fig.(7.19) and fig.(7.20) presents torque and magnetic flux com-
putation under magneto transient scenario. The average variation for torque and
magnetic flux between the meshed coil and non-meshed is less than 0.4%.
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Figure 7.19 – Torque computed at different rotor position on Team workshop
problem-24. (Magneto transient scenario)
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Figure 7.20 – Magnetic flux computed at different rotor position on Team workshop
problem-24. (Magneto transient scenario)

7.2.3 Summary

In this section, we have validated the source term AJ computed on the reduced
domain under the application of movement for non-meshed coil conductor. We have
tested it under both magneto-static and magneto transient scenarios. The average
difference that is noticed between the meshed coil and non-meshed coil computation
is around 0.4%. In the next section, we are going to present holistic observations of
this chapter.

7.3 Conclusion

In this chapter, we have tested the mortar method and edge interpolation on TEAM
Workshop Problem 24. We also tested the computation of source term AJ on the
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reduced domain for non-meshed coil under the application of movement. From the
analysis presented in section 7.1 and section 7.2 following conclusion can be drawn:-

• The increase in computation time for the mortar method is proportional to
the mortar mesh size.

• The scale of numerical oscillations under coarse mesh is less in the mortar
method when comparing it with the edge interpolation.

• Edge interpolation has the capability to solve non-linear problems.

• Accurate results were retrieved when a non-meshed coil conductor was utilized
in simulating the movement under magneto-static and magneto transient sce-
narios.

Now that we have validated and tested the application of the edge interpolation
and the mortar method on a test case, where the magnetic field varies as a function
of rotor position. The next step is to test the method on an industrial problem
like the induction machine. Since the edge interpolation is computationally cheaper
than the mortar method, we choose edge interpolation for the industrial problem
analysis. In the next chapter, we will test the application of edge interpolation in
the induction machine’s transient FEA.
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CHAPTER 8. TRANSIENT FEA OF INDUCTION MACHINE USING EDGE
INTERPOLATION

8.1 Description of induction machine

Housing

Stator
Slot

Rotor 
Slot

Coil

Magnetic Core

Air Gap

Shaft

(a) Sectional view of Induction machine (b) Overview of Induction machine

Figure 8.1 – Detail representation of 3-phase rotating Induction machine

Table 8.1 – Geometric parameters of the induction machine under study.

Stator armature 3 slots
Rotor armature 6 slots
Outer diameter
Stator magnetic core 210 mm
Inner diameter
Stator magnetic core 135 mm
Outer diameter
Rotor magnetic core 134.5 mm
Inner diameter
Rotor magnetic core 70 mm

Air gap thickness 0.25 mm

Table 8.2 – Material property of the induction machine under study.

Shaft Magnetic property:- 2000 (µr)
Electrical property:- 0.5E-06 ⌦.m (⇢)

Magnetic Core Magnetic property:- 5000 (µr)

Squirrel cage Magnetic property:- 1 (µr)
Electrical property:- 0.156E-07 ⌦.m (⇢)

Housing Electrical property:- 0.256E-07 ⌦.m (⇢)

In this chapter, we present the magneto transient analysis of the induction ma-
chine using edge interpolation. Fig.(8.1a) and fig.(8.1b) presents the cross-sectional
view and overview of the induction machine respectively. The main geometric pa-
rameters of the induction machine are provided in the table.8.1.

In table.8.2, we present the material properties of different parts of the induction
machine. Here the magnetic core has the relative permeability of 5000; housing has
the isotropic resistivity of 2.65⇥10�08 ⌦.m, squirrel cage defined on rotor slot is with
the isotropic resistivity of 1.56 ⇥10�08 ⌦.m. The shaft has the relative permeability
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of 2000 and isotropic resistivity of 5⇥10�07 ⌦.m. The speed imposed on the rotor
is 1485 rpm. The details regarding the workstation are Intel core i7-6820 HQ CPU
@ 2.70GHz, 4 cores. Linear solver utilized is MUMPS (edge interpolation).

(a) Mesh overview (b) Mesh along sliding surface

Figure 8.2 – 3D view of mesh utilized to study induction machine.

The induction machine is meshed with tetrahedron elements, as shown in fig.(8.2a).
The induction machine has been approximated with about 1.5 million number of
unknowns (edge interpolation). The mesh along the sliding surface is kept very fine
because of the high concentration of magnetic flux around the sliding surface see
fig.(8.2b). A-V formulation is used in the case of edge interpolation and in the
case of a commercial version of Altair FluxTM

T-� formulation is used with nodal
interpolation. Currently, only T-� formulation can be used for transient FEA of
induction on the commercial version of Altair FluxTM. Nevertheless, this formula-
tion requires artificial cuts when the domain is multiply connected. Artificial cuts
can be avoided by using A-V formulation see [7]. In the next section, we will study
the results retrieved using the method edge interpolation and compare it with the
commercial version (2020.1) of Altair FluxTM for validation.

8.2 Results

8.2.1 Isovalues of magnetic flux density

In this sub-section, we validate the application of edge interpolation in transient
finite element analysis of the induction machine. Fig.(8.3) shows the isovalues of
magnetic flux density computed on induction machine at ✓ = 1�. The results shown
in fig.(8.3a) for edge interpolation are quite close to the results shown in fig.(8.3b)
for Altair FluxTM. In the next sub-section, we will study the torque computation
on the induction machine using edge interpolation.

8.2.2 Torque and Magnetic flux

As no load is applied on the induction machine, net torque for both edge interpola-
tion and Altair FluxTM is zero as shown in fig.(8.4). A small variation in the peak
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(a) Edge Interpolation (b) Altair FluxTM

Figure 8.3 – Representation of isovalues of magnetic flux density computation at
✓ = 1� of rotation.

Figure 8.4 – Torque computed using edge interpolation and Altair FluxTM.
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Figure 8.5 – Comparison of magnetic flux computed over coil conductor.

of the torque is observed between edge interpolation and Altair FluxTM is because
edge interpolation is computed using A-V formulation whereas Altair FluxTM has
utilized T-� formulation. Here, A-V formulation has been approximated using first
order incomplete edge elements and first order nodal elements, whereas T–� formu-
lation is approximated using first order complete edge elements and second order
nodal elements.

Flux computed by edge interpolation are well closed to that obtain by Altair
FluxTM for all the three phases, as shown in fig.(8.5). A small variation in peak
values of magnetic flux is observed; this variation arrives because � unknowns are
approximated over second order nodal elements, and A unknowns are approximated
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on a first order incomplete edge elements. In the following sub-section, we will
present the results for eddy current losses.

8.2.3 Eddy current Losses

Figure 8.6 – Comparison of eddy current losses in housing.
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Figure 8.7 – Comparison of eddy current losses in squirrel cage.

The eddy current losses are computed over housing and squirrel cage for edge
interpolation and Altair FluxTM are presented in fig.(8.6) and fig.(8.7). The eddy
current losses computed are quite diminutive for both the methods as no load is
applied over the induction machine.

8.2.4 Computational performance

Table 8.3 – Numerical approximation.

Formulation Nodal approx Edge approx.
Edge Interpolation A-V 1st order 1st order

Altair Flux T-� 2nd order 1st order
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Table 8.4 – Computation detail per step.

Solution memory
(per step)

Linear
solver

Computation time (per step)

Edge Interpolation 177 MB MUMPS 240 s
Altair Flux 872 MB ICCG 420 s

Table.8.3 represents the numerical settings for the edge interpolation and Altair
FluxTM. Since nodal unknowns, � is approximated over second order finite element,
the numerical memory utilized by Altair FluxTM is higher than edge interpolation as
shown in table.8.4. Due to this, the computational time for Altair FluxTM is almost
1.75 times higher than the edge interpolation.

8.3 Conclusion

In this chapter, we have tested the application of edge interpolation in transient
finite element analysis of induction machine. After observing the results shown by
edge interpolation following conclusion can be drawn:

• The edge interpolation has the ability to accurately solve industrial test cases
such as 3D induction machine.

• Small difference in results between edge interpolation and Altair FluxTM are
observed. The difference maybe arriving due to difference in the formulation
and different order of finite element spaces as discussed earlier.
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The context of the thesis is to numerically model a three dimensional rotating elec-
trical machine, like an induction machine. To optimize the design process of an
electrical machine, accurate characterization of eddy current losses in solid conduc-
tor region using CAE tool plays an important role. Currently, Altair FluxTM model
this problem in three dimension based on magnetic scalar potential and electric
vector potential [37]. However, when the domain is multiply connected (geometry
with a hole), to enforce continuity equation (Maxwell-Gauss and Maxwell-Thomson
equations) over the domain requires artificial mathematical cuts. Algorithm to gen-
erate cuts automatically is already implemented in FluxTM [48]. Sometimes, the
algorithm fails to generate artificial cuts and these cuts are difficult to implement
by the user.

To avoid creating artificial cuts, while modeling a three-dimensional rotating
electrical machine, magnetic vector potential A is approximated on edge finite el-
ements. When the movement is applied on an electrical machine, the two surface
meshes between the rotor region and the stator region slides over each other. There-
fore, the tangential component of the magnetic field H and the normal component
of the magnetic flux density B becomes discontinuous around the sliding surface
between a rotor region and a stator region. Under nodal finite elements, the con-
tinuity is imposed using direct nodal interpolation, which is relatively simple to
implement [46]. Under the edge finite elements imposing continuity is a bit com-
plex. Several methods are studied for taking the movement into account under
edge elements; remeshing, macro-element, boundary element method, overlapping
method, Lagrange multiplier, mortar method, and edge interpolation.

After a detailed bibliographic study, the criteria of choice of methods are: the
method has to be generic in three dimensions i.e. independent of step size and mesh
type constraint. The method should also deliver accurate results. These criteria
made it possible to choose two methods from bibliography, the edge interpolation
and the mortar method [53]. Under edge interpolation, we presented the extension
of edge interpolation method proposed by [66]. In this thesis, we take into account
all the edges belonging to surface elements of stator side intersected by the edge of
a surface element belong to rotor side in the calculation of interpolation coefficient.

The mortar method and the edge interpolation shown same rate of convergence
on a edge finite element of first order incomplete. However, the accuracy of the
mortar method is better than the edge interpolation. In terms of computation time,
the edge interpolation performed better than the mortar method, as a third mesh
was required in the case of mortar method for the calculation of coupling matrix
D. The accuracy of the edge interpolation (continuous type) is better than the edge
interpolation (discontinuous type) on an irregular mesh.

The source of the non-meshed coils are calculated from the source magnetic field
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Hs and source magnetic vector potential Aj deduced from Biot and Savart law [25].
So to avoid the computation of source at each rotation step they are projected and
stored as magnetic vector potential Aj on the edge element of the mesh. When
the movement is applied the quantity curl Aj is not continuous around the sliding
surface. So to ensure the continuity of curl Aj around the interface, the source
is computed on a reduced domain (i.e. the region without coil is excluded from
source computation). Finally, good results are obtained for a three dimension prob-
lem with non-meshed coils under the application of movement. After the detailed
observations, we can choose edge interpolation over mortar method for simulating
3D industrial problems.

This thesis’s first perspective is to extend the continuous method proposed by
[43] on hexahedral elements to tetrahedron elements. The first step is to perform an
overlapping of the edge elements around the sliding surface and retrieving the inter-
section coordinates. However, computing intersecting coordinates on a 3D curved
surface would be a challenging task. Once the intersecting coordinates are retrieved,
we can calculate the interpolation coefficients. The significant difference in the
method presented in this thesis, and the proposed method is the accuracy in cal-
culating the interpolation coefficient, which will be higher in the proposed method.
This thesis’s second perspective is to extend edge interpolation on first order com-
plete and second order edge elements (tetrahedron meshes). In the last chapter,
the difference between the first and second order finite element approximation could
be noticed. The second order edge interpolation would make it possible to obtain
better results for the problem in A-V formulation.

The third perspective is to do a detailed analysis on a linear solving of non-linear
industrial problems, as bad convergence in linear solving was observed after the first
non-linear iteration.

The fourth perspective is to develop other methods for taking movement into
account under edge finite elements, such as overlapping method and compare with
each other; so as to define the best method for taking movement into account under
edge elements.
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Appendix A

Definitions

This chapter covers some important definitions utilized in the source computation
with non-meshed coils. For more detailed study of these definitions, please see [25]

A.1 Inner product form

(u,v)
L
2(⌦) =

Z

⌦

u.v d⌦, 8 u,v 2 L
2(⌦), (A.1)

(u,v)H(curl,⌦) = (u,v)
L
2(⌦) + (curl u, curl v)

L
2(⌦), 8 u,v 2 H

1(⌦). (A.2)

A.2 Norm of L
2(⌦) and H(curl, ⌦)

kuk
L
2(⌦) =

q
(u,u)2

L
2(⌦)

, 8 u 2 L
2(⌦), (A.3)

kukH(curl,⌦) =
q

kuk2
L
2(⌦)

+ kcurl uk2
L
2(⌦)

, 8 u 2 H
1(⌦). (A.4)

A.3 Hj be the L
2(⌦) projection of Hs

Let Hj 2 E
1
u(⌦) defined on the edges of finite element mesh (⌦h)). Such that L

2(⌦)
projection of Hs gives:

Hj =
1

2
arg min kX � Hsk2L2(⌦) 8 X 2 L

2(⌦) (A.5)

A.4 Aj be the H(curl, ⌦) projection of Hs

Let Aj 2 E
1
u(⌦) defined on the edges of finite element mesh (⌦h)). Such that

H(curl, ⌦) projection of Hs gives:

Aj =
1

2
arg min |X � As|2H(curl,⌦) 8 X 2 H(curl, ⌦) (A.6)

=
1

2
arg min kcurlX � µ0 Hsk2L2(⌦) 8 X 2 H(curl, ⌦) (A.7)

For more detailed study, concerning the implementation of pre-computation using
edge finite element approximation see [25].
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Appendix B

A-� nodal interpolation

B.1 A-� formulation

The coupling of A and � formulations approximates H using A in regions with coils
and ferromagnetic materials, reduced scalar potential � in the air around sliding
interface respectively refer fig.(B.1). It gives freedom to utilize the well-known nodal
interpolation for ensuring continuity of potentials at the interface instead of edge-
based interpolation. The � formulation is expressed as:

H = Hs �r�. (B.1)

Here Hs is the magnetic source field defined as

curl Hs = Js with Hs ⇥ n = 0 on �H. (B.2)
The conditions on the interface �A� of the A and � formulations coupling are ex-
pressed as:

µ
�1
A
(curlA)⇥ nA + (Hs �r�)⇥ n� = 0 on �A�, (B.3)
(curlA).nA + µ�(Hs �r�).n� = 0 on �A�. (B.4)

where µA and µ� are the relative permeability of ferromagnetic material and air
respectively. nA and n� are the normal outward for the regions A and � respectively
at the interface.

B.2 Results

B.2.1 Sensor

To analyse the A-� nodal interpolation a simple three dimensional (3D) test case a
sensor is chosen. The components of sensor consist of wheel (rotor) with steel as a
constituent material and permanent magnets (stator) with coil winding on it.

Magnetostatic (multistatic case) computation has been made for 30 steps, where
wheel rotates 1� away from magnet at each step. In order to validate the computation
made using A-� nodal interpolation and edge mortar, magnetic torque on the wheel
have been computed and a comparison is carried out with remeshing technique as
shown in fig.(B.2).

The comparison on the basis of computation time at each step has been made
between techniques such as nodal interpolation, edge mortar and remeshing, as
shown in table.B.1.
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Figure B.1 – Top view representation of test case sensor.
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Figure B.2 – Torque computed on the wheel of sensor using different approaches

Nodal Interpolation Edge Mortar Remeshing
Number of Nodes 1,096,849 1,096,849 1,205,689

Number of non zero terms 11,927,418 15,517,191 16,094,458
Total Computation
time per step (s) 115 840 366

Solver MUMPS(Cores = 1) ICCG ICCG

Table B.1 – Computation Performance of different Approaches

The total computation time for edge mortar is 7.3 times higher than nodal inter-
polation and almost 2.5 times higher than remeshing because of exponential increase
in the number of state variables A at interface due to fine Mortar mesh. Torque
computation on the wheel for edge mortar is in quite good agreement with remesh-
ing as compared to A-� nodal interpolation. As torque is sensitive towards mesh
around corner of a rotor, a large variation in torque is observed from rotor angle 11�

to 19� in A-� nodal interpolation on comparing with remeshing.
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B.2. RESULTS

B.2.2 TEAM workshop problem 24 (Non linear problem)

Figure B.3 – Torque computed on the rotor

Figure B.4 – Magnetic flux computed on the coil

The torque and magnetic flux computations for the A-� nodal interpolation is in
quite good agreement with remeshing and edge interpolation, as shown in fig.(B.3)
and fig.(B.4).
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Résumé

Une machine électrique est divisée en deux domaines: le stator (partie fixe) et le
rotor (partie mobile) séparés par un mince entrefer. Cet entrefer prend également
en compte le transfert de flux entre les deux régions. L’application du mouvement
conduit aux maillages glissants non conformes autour de l’interface. Ainsi, assurer la
continuité des composants de champ magnétique tangentiel et normal et de densité
de flux magnétique est essentiel à l’interface (région de glissement).

Dans le logiciel Altair FluxTM, des formulations basées sur le potentiel scalaire
magnétique ont été développées avec la méthode des éléments finis nodaux et sont
utilisées avec succès depuis de nombreuses années pour modéliser des machines élec-
triques tournantes 3D. Un inconvénient important de cette méthode est la nécessité
de gérer les problèmes de connectivité multiple induits par le potentiel scalaire mag-
nétique. Une solution consiste à introduire des coupes artificielles, ce qui est difficile
à mettre en œuvre par l’utilisateur.

Afin d’éviter d’introduire des coupures artificielles dans le domaine étudié, des
formulations en potentiel vecteur magnétique sont utilisées. Les enjeux techniques et
scientifiques de cette thèse sont de développer et de comparer les méthodes de prise
en compte du mouvement, en particulier, la méthode des éléments avec joints et
l’interpolation d’arête dans le cadre d’une formulation éléments finis d’arêtes basée
sur le potentiel vecteur magnétique.

Mots clés: Méthode des éléments finis d’arête (Edge FEM), Machine électrique,
Interpolation d’arête, Méthode des éléments avec joints, Mouvement de rotation.

Abstract

An electrical machine is divided into two domains: the stator (S) (fixed part) and
rotor (R) (mobile part) separated by a thin air-gap. This air-gap also takes into
account the transfer of flux between two regions. Application of movement leads to
the nonconforming sliding meshes around the interface. Thus, ensuring the conti-
nuity of tangential and normal magnetic field (H) and magnetic flux density (B)

components are essential at the interface (sliding region).
In the Altair FluxTM software, formulations based on the magnetic scalar poten-

tial have been developed with the nodal finite element method and have been used
successfully for many years to model 3D rotating electrical machines. A significant
disadvantage of this method is the need to manage the multiply connectivity prob-
lems induced by the magnetic scalar potential. One solution is to introduce artificial
cuts in the mesh, which is difficult to implement by the user.

In order to avoid introducing artificial cuts in the studied domain, magnetic vec-
tor potential formulations are used. This thesis’s technical and scientific challenges
are to develop and compare the mortar method and edge interpolation to take move-
ment into account.

Keywords: Edge finite-element method (Edge FEM), Electrical machine, Edge
interpolation, Mortar method, Rotation movement.


