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ET DE L’ÉTABLISSEMENT UNIVERSITÁ DI PISA
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Méthodes de calcul rigoureuses pour comprendre le comportement
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Thèse présentée et soutenue à Belfort, le 27 avril 2021
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INTRODUCTION

In 2019 it has been estimated that the amount of digital data in the world is 40 zettabytes,

40 times the number of observable stars in the universe. Obviously providing an accurate

estimate of this amount is impossible, but looking at our society, it is not difficult to imag-

ine that it is so. Managing this amount of data and digital devices is a huge challenge

for mankind, involving virtually every area of knowledge, from metallurgy to ethics. Digital

data nowadays are produced in every observable context of human experience, and one

of their main characteristics is to be in continuous evolution because they represent a

changing reality; furthermore, it is clear to all, that human reality is permeated by chaos,

that is, the evolution of natural phenomena cannot be exactly predicted. It arises sponta-

neously then, to wonder if, despite their intrinsic complexity, it is possible to understand,

in some sense, the evolution of this type of complex systems. This question is naturally

placed in the mathematical field, and one of the techniques currently used to model an

observable phenomenon is to describe the evolution of a system through the evolution

of a certain stochastic process, a random dynamical system. This allows us to take into

account that nature rarely follows laws that are only deterministic or only random, but

often everything is generated by the competition of these two tendencies. In any case,

recall that chaotic behavior can arise in a purely deterministic system. The purpose of this

thesis is to try to answer the following question: given a random dynamical system, are

we able to predict (not just simulate) its behavior in the long term? When we say ”predict

and not simulate,” we mean to have mathematical certainty of the long-term behavior of

the model under consideration. If I put a drop of black ink in a glass of water, the short

term interactions between these two liquids are unpredictable. However, we can all say

with certainty that after enough time, the water and ink mix completely, the glass is filled

with a grey liquid, the system will have reached its equilibrium state.

The example just exposed, can be formalized in many ways, one of these is to consider a

certain operator defined on the appropriate spaces, which maps measures to measures,

and prove for example that this operator admits as fixed point the Lebesgue’s measure

properly normalized (the state of equilibrium). This type of operators, are called Transfer

Operators, and are linear operators defined on appropriate Banach spaces, and are the

object of study of this thesis.

A transfer operator associated with a dynamical system describes the evolution of the

densities according to the dynamics (in the previous example, the drop of ink that we

1
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can model with a delta of Dirac, will evolve in the measure of Lebesgue). The random

dynamical systems can be studied substantially from two points of view, annealed and

quenched; in the first case, one looks at the average behavior of the evolution of the

system with respect to the random parameters, while in the second the focus is on a fixed

realization of the random parameters. In this thesis, we will deal only with the annealed

case, for results in the quenched case we refer for instance to [18; 1], and [50] for a

remarkable application. Indeed, while in the first case the stochastic stability properties

necessary to study the system are ensured by the presence of noise, in the second case

this is no longer true and the relevant objects of study become the Oseledets-Lyapunov

spectrum of some transfer operator cocycle associated to random products of maps.

Therefore we will study the dynamics of a system via annealed transfer operators (see

definition 1.5). Under appropriate assumptions, these transfer operators admit fixed

points, which are the stationary measures of the system, and our goal is to calculate

these fixed points, which represent the statistic behavior of the system under consider-

ation after a long time; a link between stationary measures and statistical behavior of

the system, is proved in theorem 2.6, a variant of the Birkhoff’s ergodic theorem, which,

roughly speaking, show that the time averages of an observable converge to the spatial

average with respect to the invariant measure.

Furthermore we can also study how these equilibrium states, the invariant measures,

vary with respect to small perturbations of the system, i.e. we can study the statistical

stability of the system; if this variation is smooth we say that the system admit Linear

Response.

Unfortunately, in many cases, even simple ones, the calculation of the stationary mea-

sure, or better, of its density with respect to the Lebesgue measure, cannot be addressed

analytically. The strategy we follow is therefore to rigorously approximate these densities;

we remark on the importance of the fact that we are interested in having rigorous quan-

titative estimates, and not in numerically simulating a system. Numerical simulations are

not mathematical proofs and often lead to totally misleading conclusions, see for instance

[14; 26; 25; 29; 27], or 7.1 for a simple example. The central core of this interdisciplinary

thesis is to use mathematical ideas that allow us to have an explicit estimation of the

errors related to these rigorous approximations, combined with an accurate computer

science implementation, which leads to have quantitative theorems proved with the aid of

a computer.

In fact, since the transfer operator associated with a random dynamical system is a linear

operator, we can expect to approximate it with a finite rank operator; this is done by a

suitable composition of the transfer operator with a projection operator on a subspace

of finite dimension. At this point, in order to have an invariant density approximation, it

will be enough to calculate the eigenvector relative to the maximum eigenvalue of this
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matrix. All this procedure, if implemented in floating-point arithmetic, will not give us rig-

orous information about the system; however, by using the so-called interval arithmetic,

we can keep track of all the errors numbers during the computation and if we combine

this information with the theoretical estimates that come from the appropriate quantita-

tive stability theorems, we obtain a rigorous approximation of the invariant measure of a

system. There are three errors to manage during this process:

• the discretization error, coming from the fact that we are approximating the transfer

operator with a finite rank operator; to estimate this error we use theoretical results

on the stability of the fixed points of the operators under consideration, see for

instance lemma 5.6.

• the approximation error, coming from the fact that we represent this finite rank oper-

ator with a matrix that cannot be exactly computed, but will be in fact approximated

• the eigen error, coming from the numerical computation of the eigenvector of this

matrix.

These theoretical errors, added to the numerical errors on the computations which we

automatically keep track of since we work with the interval arithmetic framework, provide

a rigorous approximation of the equilibrium state of a random dynamical system. Our

algorithms, return in output an approximation of the invariant density (a vector of coeffi-

cients) and a rigorous bound on the norm of the difference between the ”true” invariant

density, and the one calculated; the goodness of these rigorous approximations, depends

on how small is the error computed.

This strategy has been presented and successfully used for instance in [24; 23; 44; 48].

As we said, one way to reduce a linear operator to finite dimension is to compose it with

appropriate projections onto spaces of finite size. This procedure is called Galerkin’s

method, and Ulam’s method, which has been used in the above examples, is a spe-

cial case of it, in which we choose as a finite basis of functions on which to project, the

piecewise constant functions. In simple terms, we divide an interval into many small in-

tervals and keep track of how the dynamics of the system moves these intervals. Ulam’s

method has been studied intensively in the literature [17; 45; 11; 13]. In dynamical system

with additive noise of dimension one, the Ulam’s method offer a valid and relatively fast

method to compute the stationary measure; however if on the one hand, the Ulam basis

is easy to implement and does not require assumptions of regularity on the system under

consideration, on the other hand, it is not useful to approach multidimensional problems.

In fact, its strength, that is not to require regularity, is also its weakness, if there is reg-

ularity, the Ulam basis is not able to use it. Of course, considering smaller models, on

one hand reduces the information on the system, on the other hand allows to manage
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it computationally. For this reason it is important to find the right compromise, and if we

want to approach systems of dimension larger than one, Ulam’s method may be no longer

suitable for rigorous computations, due to its computational cost. In this perspective, in

this thesis we present a report of a work in progress [47]: a rigorous approximation strat-

egy, which uses the Fourier basis of functions. To get an idea of the ”gain” in terms of

approximation that results, we present a first simple, but not trivial, example, where we

can obtain errors of the order of 10−80, while with the Ulam method we had errors of the

order of 10−10 or 10−20; this comes from the fact that the Fourier basis guarantees us ex-

ponentials bounds on the discretization and approximation error, if the system is enough

smooth. In the case of random system with additive noise, this regularity will be granted

by the use of additive noise with Gaussian kernel; we also present theoretical results

that allow us to obtain a bound on the approximation error of a system with noise with a

different kernel, starting from the bounds for the same system with Gaussian noise. In

the author’s opinion, the strategy presented represents a promising first step towards the

construction of a rigorous approximation algorithm for multidimensional systems.

In literature we can find other examples of rigorous approximation schemes, including

Fourier-based ones. Regarding the latter: Pollicott, Jenkinson and others have presented

an approach, which involves the computation of sums over periodic orbits, based on the

theory of dynamical zeta function [35; 36]. In [56] has been proved that for circular bil-

liards, the convergence of finite-rank approximations using a Fourier basis follows a power

law where the power depends on the smoothness of the source distribution driving the

system. In [15], using a Fourier-analytic method, it has been shown the first example of a

rigorous scheme for approximating the peripheral spectral data of the Perron-Frobenius

operator of an Anosov map without mollification. In [63], two spectral Galerkin methods

were presented, based on the Fourier exponential bases and the Chebyshev polynomial

bases, for a class of systems satisfying certain assumption. The invariant measure for

the Lanford map was then computed, leading to a bound on the error of about 10−130.

Regarding rigorous Ulam approximations: in [24] a Ulam based approximation strategy

was introduced which is the basis of the work presented in this thesis; This strategy has

been refined in [23], where it has been proved that in the Matsumoto-Tsuda model of the

famous Belosouv-Zabotinsky reaction, an increase in amplitude of the noise causes the

Lyapunov exponent to decrease from positive to negative. This phenomenon is known

as Noise Induced Order. In [48], using a strategy based on linear response theory and

Ulam-based rigorous approximation, it was shown that the rotation number associated

with a family of Arnold maps is differentiable as a function of one of the parameters over

a large range of values, and that in the case of strong nonlinearity, the rotation number is

non-monotonic.

We now turn to the description of the chapters that make up this thesis, specifying basic

references for each.
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In Chapter 1 In chapter 1 we introduce the main objects of study of this thesis: we will

see what is a random transformation and how it induces a linear operator, called transfer

operator. We will be interested in the study of the fixed points of this operator, the station-

ary measures, of which we will demonstrate the existence. In this chapter, as well as in

the next two, we will introduce standard notions from the literature, the texts to which we

have referred are [2], [8], [40], [41], [20].

We then turn to Chapter 2, where we present, in brief, a variant for random dynamical

system of the famous Birkhoff’s ergodic theorem, one of the classical topics of ergodic

theory. Indeed, in Chapter 3, we will define a class of operators, the Perron Frobenius

operators, induced by non-singular transformations, which satisfy the assumptions of the

ergodic theorem; we will introduce the concepts of ergodic transformation and mixing and

prove the existence of stationary measures for positive contractions (of which the Perron

Frobenius operators are a special case).

In Chapter 4, we introduce a particular class of random dynamical systems, dynami-

cal systems with additive noise; we will study the existence and regularity of stationary

measures for this type of systems, as well as introduce the necessary function spaces

(e.g., the space of bounded-variation functions). We then introduce Linear Response

theory, which allows us to analyze how a stationary measure changes in a perturbed ran-

dom system. Linear Response theory deals with the following problem: if a dynamical

system is submitted to some perturbation how does its invariant measure vary? If this

change occurs in a smooth way, we say that the system admits Linear Response, and

this change can be described by a suitable derivative. We refer to [9] for a survey about

linear response for deterministic system (which was first achieved by Ruelle in the uni-

formly hyperbolic case [55; 54]), meanwhile for the random case, we refer to [6], [5], [4],

[22].

After having developed the necessary theoretical framework in the previous chapters, in

Chapter 5 we introduce the finite schemes of rigorous approximation: as we have already

said, we are interested in the computation of a fixed point of a linear operator. To do this

we project this operator onto a finite basis of functions and study this ”discretized” oper-

ator. Since it is a finite-dimensional operator, we can calculate a matrix to approximate

it and study its properties with a computer. We will also provide estimates of the various

errors made during this approximation process, which will eventually lead to what we call

a rigorous approximation. In the first section of this chapter, we will describe a strategy

based on Ulam’s method, i.e. we will choose as a basis of functions, the indicator func-

tions. In the second section, we will present a work in progress, where we will choose as

basis of functions the Fourier basis.

In Chapter 6 we present two applications of the Ulam method described above; in partic-

ular we will focus on a family of random dynamical systems, the Arnold maps, and show
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how the calculation of the stationary measure combined with Linear Response theory,

introduced in Chapter 4, leads to interesting theoretical results, for example, the differ-

entiability of the rotation number. The rotation number, which is a particular function

associated with a dynamical system, in the case of the Arnold maps, presents a surpris-

ing behavior (see for instance Fig. 6.5), which seems to go through a smoothing process

once the noise has been applied. In [48], a linear response theorem has been applied,

where the quantitative estimate required in the assumptions of this statement has been

obtained via rigorous computation. As a consequence, the differentiability of the rotation

number has been derived; in fact, the latter can be described as the integral of an ap-

propriate observable with respect to the invariant measure of the system. Furthermore,

by combining quantitative estimates on the rotation number with stochastic stability the-

orems, the non-monotonicity of the rotation number for a large set of parameters, in the

case of strong nonlinearity, has been deduced.

To conclude in Chapter 7 we describe the numerical details of the work presented and

the pseudocodes of the algorithms used, focusing on the Fourier-based algorithm that we

have introduced. We conclude by showing an example application of the Fourier-based

strategy, which shows the potentiality of this method.
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1

RANDOM DYNAMICAL SYSTEMS

One of the surprises of the ’60s and ’70s was the discovery that three ordinary differ-

ential equations are sufficient to generate an irregular behavior (Lorentz attractor), an

example of what today we call deterministic chaos. However, this kind of behavior is not

enough to explain (or at least model) everything we observe in nature: for example in

the phenomena of ocean-atmosphere interaction, we know that there is a myriad of fac-

tors that interact on virtually every spatial and temporal scale, and that actually contribute

to the dynamics of the system. Mathematical models are often simplified descriptions

that leave out some parameters or details present in reality. One of the ways in which

we can integrate a model in a manner that takes into account very different interactions

and behaviors is to use random noise. This can be done through different mathematical

formalizations, such as stochastic differential equations, but in this thesis, we will use

random dynamical systems, whose role in applied sciences has become of fundamental

importance in recent years. This first chapter will introduce the basic theory of random

dynamical systems, with particular attention to the associated transfer operators and the

existence of stationary measures.

1.1/ RANDOM TRANSFORMATION

Let (S ,S, p) be a probability space and let (Ω,A, µ) be the corresponding symbolic space

of the one-sided sequences endowed with the σ-algebra A = SN and the probability

measure µ = p; we will fix these notations throughout the text and we will also use the

standard notation for the shift map on Ω, σ({ωi}i∈N) = {ωi+1}i∈N.

Definition 1.1. Let (M,B) be a measurable space and let A⊗B be the product σ-algebra

on the space Ω × M. A random transformation over σ is a measurable function

F : Ω × M → Ω × M, such that

1. F(ω, x) = (σ(ω), Fω(x)),

9
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2. the map ω→ Fω depends only from the 0-th coordinate of ω; therefore we shall use,

with abuse, the notation Fω0 .

Definition 1.2. Let (M,B) be a measurable space and let F : Ω × M → Ω × M a random

transformation. Given ω ∈ Ω, a random orbit for F at starting point x is the sequence

{xi
ω}i∈N defined by

x0
ω = x, xn

ω := Fωn−1 ◦ · · · ◦ Fω0(x).

We may also consider the canonical projections πΩ : Ω × M → Ω and πM : Ω × M → M; if

q is a measure on Ω × M, we say that q projects to πΩ(∗q) and that πM(∗q) is the marginal

of q.

The following is a standard example of random transformation.

Example 1.3. Let {G1, . . . ,Gr} be a finite set of homeomorphism over a compact metric

space M, and let S = {1, · · · , r}, Ω = S N. The map G defined as

G(σ(ω),Gω0(x))

is a random transformation over σ.

We are going to use the next proposition to define the transfer operator, which is one of

the main mathematical objects under study in this thesis.

Proposition 1.4. The operators Px : Ω → Ω × M and Pω : M → Ω × M, defined by

Px(ω) = (ω, x) and Pω(x) = (ω, x) are well-defined. Moreover, for any measurable set

E ⊂ Ω × M

1. the slices Ex and Eω of E are measurable set of A and B.

2. for any probability measures µ on (Ω,A) and η on (M,B), the maps x → µ(Ex) and

ω→ η(Eω) are measurable.

3.
∫

M µ(Ex)dη(x) = (µ × η)(E) =
∫
Ω
η(Eω)dµ(ω).

Proof. Px is measurable, because πm ◦ Px(ω) = x and Px ◦ πΩ(ω, x) = (ω, x) are both

measurable (the first is a constant function, the second is the identity); similarly Pω is

measurable and Ex = (Px)−1(E) and Eω = (Pω)−1(E) are measurable. The proof of the

second and third item proceed in standard way [reference]. We will show that the set

E =
{
E ⊂ Ω × M : x 7→ µ(Ex) is measurable and

∫
M
µ(Ex)dη(x) = (µ × η)(E)

}
is a λ-set that contains the π-system of the sets A× B ∈ A×B. The proof is analogous for

ω 7→ η(Eω).
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We first observe that A × B ∈ A×B is a π-system, because (A × B) ∩ (A′ × B′) = (A ∩ A′) ×

(B ∩ B′); moreover a set of the form A × B belongs to E since

µ((A × B)x) =

µ(A) if x ∈ B,

0 if x ∈ M \ B.

and

∫
M
µ((A × B)x)dη(x) = µ(A)η(B) = (µ × η)(A × B).

Finally for E being a λ-system it must hold that Ω×M ∈ E. The maps x 7→ µ(Ω×M)x) = µ(Ω)

and x 7→ µ((Ec)x) = µ(Ω) − µ(Ex) are measurable and∫
M
µ(Ω × M)x)dη(x) = µ(Ω)η(M) = (µ × η)(Ω × M),

∫
M
µ(Ex)x)dη(x) = µ(Ω)η(M) −

∫
M
µ(Ex)dη(x) = (µ × η)(Ec).

Let {E(i)}i∈N a sequence of pairwise disjoint sets in E; observe that (∪NE(i))x = ∪N(E(i)x).

Thus the map x 7→ µ((∪NE(i))x) =
∑

i∈N µ(E(i)x) is given by a series of positive measurable

functions, hence it is measurable and∫
M
µ((∪NE(i))x)dη(x) =

∑
i∈N

∫
M
µ(E(i)x)dη(x) =

∑
i∈N

(µ × η)(E(i)x) =

= (µ × η)((∪i∈NE(i)))x).

�

1.1.1/ TRANSFER OPERATORS

Suppose to have a random orbit {xi}i∈N, of a random transformation F : Ω × M → Ω × M,

for which we know the starting point x0 = x ∈ M, it is a natural question whenever or

not we can compute the expected value E[φ(x1)|x0 = x], where φ ∈ Lp(η), p ∈ [1,∞] is

an observable that quantifies some properties of M. Since the iterate depends on an

outcome ω ∈ Ω which is distributed according to µ, this latter quantity can be formally

computed in the following way

Uφ(x) =

∫
M
φ(Fω(x))dµ(ω) =

∫
M
φ(Fω0(x))dp(ω0). (1.1)

Moreover Uφ(·) defines a bounded, measurable function on M according to proposition

1.4, in fact if φ = χB, for some B ∈ B, the integral
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Uφ(x) = µ(F−1(Ω × B)x), (1.2)

is well defined.

By standard measure theory argument we can extend this to every bounded measurable

function φ.

Definition 1.5. The operator U, as defined in 1.1, is called the transfer operator asso-

ciated to F, which maps bounded (or nonnegative) measurable functions into bounded

(or nonnegative) measurable functions. The adjoint transfer operator acts in the space of

probability measures η on M and it is defined by

U∗η(B) =

∫
η(F−1(ω)(B))dµ(ω) =

∫
η(F−1(Ω × B)ω)dµ(ω); (1.3)

this integral is well defined by proposition 1.4 and U∗η is a well-defined probability, by

proposition 1.11.

The following lemma explains in which sense U and U∗ are dual operators.

Lemma 1.6. Let φ : M → R be a bounded or nonnegative measurable function. Then∫
φd(U∗η) =

∫
Uφdη.

To prove this lemma we consider the positive linear functionals defined by

f (φ) =

∫
φd(U∗η), g(φ) =

∫
Uφdη,

and we want to show that f (φ) = g(φ) for every bounded or nonnegative measurable

function φ : M → R. The following lemma shows that if the condition above holds for every

characteristic function φ = χB, B ∈ B, then it holds for every function under consideration.

Lemma 1.7. Let F be either the space of bounded or nonnegative measurable functions

on (M,B), and let G be an ordered vector space. Let f , g : F → G be positive linear

operators such that

1. if ∃φ ∈ F such that φ , φ+, then f (1) = g(1)

2. ∀B ∈ B, f (χB) ≤ g(χB)

3. if φn ↑ φ ∈ F then f (φn) ↑ f (φ).

Then

∀φ ∈ F , f (φ) ≤ g(φ).
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Proof. If φ is bounded, there exists c > 0 such that φ+ c is nonnegative, hence we can as-

sume φ nonnegative; moreover by linearity and positivity f (φ) ≤ g(φ) holds for all positive

simple functions. Let n ∈ N and let φ be a nonnegative function, define

φn(x) =

∞∑
i=0

1
2nχ(i,1/2n] ◦ φ(x) =

∞∑
i=0

1
2nχφ−1((i,1/2n])(x),

which is simple functions because the sum contains n2n non-zero terms. Observe that

φn ↑ φ because if φ(x) ∈ [i/2n, i + 1/2n), for some i ∈ {0, . . . , n2n − 1}, then φn(x) = i/2n,

otherwise φn(x) = 0. Since for every n ∈ N, f (φn) ≤ g(φ) and f (φn) ↑ f (φ) we conclude that

f (φ) ≤ (φ). �

proof of lemma 1.6. Let us prove that for every φ = χB, B ∈ B, f (φ) = g(φ); by the last

lemma this will extend to all bounded or nonnegative measurable functions φ : M → R.

By proposition 1.4, and 1.2, 1.3

f (φ) =

∫
UχB(x)dη =

∫
µ(F−1(Ω × B)x)dη(x) = (µ × η)(F−1(Ω × B))

=

∫
η(F−1(Ω × B)ω)dµ(ω) = U∗η(B) = g(φ).

�

1.1.2/ STATIONARY MEASURES

Definition 1.8. A probability measure η for M is called stationary for the random transfor-

mation F, if

U∗η = η,

i.e. it is a fixed point of the operator U∗.

In the deterministic set there is the concept of invariant measures:

Definition 1.9. Let (D,D) be a measure space, and T : D → D a measurable function,

then µ is an invariant measure for T if for every E ∈ D, µ(T−1(E)) = µ(E).

Remark 1.10. If η is invariant for every Fω, then η is stationary for F. The converse is not

true: consider example 1.3, and set d = 2, M = PR2, F1([x]) = [A1x] and F2([x]) = [A2x],

where A1 and A2 are invertible matrices that admit a decomposition in invariant sets, i.e.

R3 = Es
i ⊕ Eu

i , i = 1, 2

such that for all xs ∈ Es
i and xu ∈ Eu

i ,

‖Aixs
i ‖ ≤ λi‖xs‖, ‖A−1

i xu‖ ≤ µi‖xu‖, λi, µi ≤ 1,
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and such that Es
i and Eu

i are all distinct.

Let η be a measure which is both F1 and F2 invariant and let V be a neighborhood of [Eu
1].

Since V ⊂ F−1
1 (V) ⊂ . . . ⊂ ∪∞k=0F−k

1 (V) = M \ [Es
1], the invariance with respect to F1 implies

η(V) = η(∪∞k=0F−k
1 (V)) = η(M \ [Es

1]).

This holds for every neighborhood V, therefore η(M \ ([Es
1] ∪ [Eu

1])) = 0. On the other side

this holds also for η(M \ ([Es
2] ∪ [Eu

2])) = 0 and since we are assuming the eigenspaces to

be distinct, this implies η(M) = 0, which is a contradiction.

The following proposition shows the link between invariant and stationary measures.

Proposition 1.11 ([53], lemma 2.1). For every probability measure η on M,

F∗(µ × η) = µ × U∗(η). In particular, η is stationary if and only if µ × η is invariant.

Proof. Let A × B ⊂ Ω × M be a measurable set,

(µ × η)(F−1(A × B)) =

∫ ∫
χA ◦ σ(ω)χB ◦ Fω(x)dη(x)dµ(x)

=

∫
χA ◦ σ(ω)

∫ ∫
χB ◦ Fω(x)dη(x)dp(ω0)dµ(σ(ω))

= µ(A)
∫ ∫

χBFω(x)dη(x)dp(ω0)

= µ(A)
∫ ∫

χBFω(x)dµ(x)dη(x)

= µ(A)U∗η(B).

�

However not every invariant measure for F which projects to µ can be written as a product

measure of the kind above; an explicit example can be found in [3], p.52, ex. 2.1.2.

1.2/ EXISTENCE AND REGULARITY OF STATIONARY DENSITIES

In this section we investigate conditions which guarantee the existence of stationary den-

sities for a random transformation F : Ω × M → Ω × M that we assume continuous, i.e.

each Fω = F(ω, ·) is continuous. The existence of these measures is guaranteed by

the standard Krylov-Bogolyubov procedure, in fact we take advantage of the topological

properties of U and U∗, to deduce (in abstract) the existence of stationary densities, via

a suitable fixed point theorem.

Remark 1.12 ([19],pag.262). The space of regular probability measures on M, denoted by

P(M), can be identified with a subspace of C(M)∗, the dual of the bounded continuous



1.2. EXISTENCE AND REGULARITY OF STATIONARY DENSITIES 15

real function on M; under this identification, for all φ ∈ C(M), for all η ∈ P(M)

η(φ) =

∫
φdη.

In the following, we will consider the weak∗-topology on P(M) as the subspace topology

obtained when C∗(M) is endowed with the weak∗-topology.

Before to restate lemma 1.6 in this new taste, let us prove a variant of theorem 16.8 in

[10]

Theorem 1.13. Let O be an open subspace of a metric space, let µ be a probability mea-

sure on Ω and let f (·, x) : Ω→ R be a measurable function for each x ∈ O. Then:

1. If f (ω, ·) is continuous at x0 for a.e. ω ∈ Ω and there exists a neighborhood Ox0 3 x0

where | f (ω, ·)| ≤ g(ω) for some g ∈ L1(µ); then
∫

f (·, x)dµ is continuous at x0.

2. Suppose that O ⊂ R, that for every x0 ∈ O there exists a full measure set Ωx0 such

that f (ω, ·) and ∂x f (ω, ·) are continuous at x0 and that there exists some neighbor-

hood Ox0 3 x0 where |∂x f (ω, ·)| ≤ g(ω, x0) for some g(·, x0) ∈ L1(µ). Then

∂x

∫
Ω

f (ω, ·)dµ(ω) =

∫
Ω

∂x f (ω, ·)dµ(ω),

and
∫
Ω

f (ω, ·)dµ(ω) ∈ C1(O).

Proof. For the first item, observe that

lim
x→x0

f (ω, x) = f (ω, x0),

for a.e. ω ∈ Ω and | f (ω, x)| ≤ g(ω), for all x ∈ Ox0 ; we obtain the thesis by Lebesgue’s

dominated convergence theorem.

Let Ωx0 and Ox0 as in the hypothesis if item 2. We have that

limx→x0

f (ω, x) − f (ω, x0)
x − x0

= ∂x(ω, x0)

and that for every ω ∈ Ωx0 and for every x ∈ Ox0

|
f (ω, x) − f (ω, x0)

x − x0
| ≤ g(ω, x0).

Since Ox0 is a full measure set, we may take ∂x f (ω, x0) = 0 where the partial derivative

does not exists, and by this argument we can extend ∂x(·, x0) to the whole Ω. By applying
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Lebesgue’s dominated convergence theorem

lim
x→0

∫
Ωx0

|
f (ω, x) − f (ω, x0)

x − x0
− ∂x f (ω, x0)|dµ(ω) = 0,

thus

limx→0

∫
Ω

f (ω, x)dµ(ω) −
∫
Ω

f (ω, x0)dµ(ω)

x − x0
=

∫
Ω

∂x f (ω, x0)dµ(ω).

Moreover, for every ω ∈ Ωx0 , limx→x0 ∂x f (ω, x) = ∂x f (ω, x0), and for all x ∈ Ox0 , |∂x f (ω, x)| ≤

g(ω, x0). Hence we can conclude by applying item 1 to ∂x f (·, x).

�

Let us state the extension of this theorem to function defined on Rn, recall that we use the

multindex notation.

Corollary 1.14. Let f (·, x) : Ω → R be a measurable function for each x ∈ O ⊂ Rn, where

O is open, and let µ be a probability measure on Ω. Suppose that for every x0 ∈ O there

exists a full measure set Ωx0 such that ∂α f (ω, ·) is a continuous function at x0 for every

ω ∈ Ωx0 and α ∈ Nn
0 is such that |α| ≤ k. Suppose that there exists a neighborhood Ox0 of

x0 such that for every α ∈ Nn
0, with |α| ≤ k, |∂α f (ω, ·)| ≤ gα(ω, x0) for some gα(·, x0) ∈ L1(µ).

Then
∫
Ω

f (ω, ·)dµ(ω) ∈ Ck(O) and ∂α
∫
Ω

f (ω, ·)dµ(ω =
∫
Ω
∂α f (ω, ·)dµ(ω) for α ∈ Nn

0, |α| ≤ k.

Proposition 1.15. The operator U maps C(M) to itself and U∗ is weak∗ continuous.

Proof. For the first part observe that we can apply item 1 of theorem 1.13 to the continu-

ous functions f (ω, ·) := φ◦Fω. For the second part let η ∈ P(M) and consider the following

basic neighborhood of U∗η,

V = {ξ ∈ P(M) : ∀φ ∈ Φ(|ξ(φ) − U∗η(φ)| ≤ ε)},

where Φ is a finite subset of C(M) and ε > 0. Consider now

W = {ξ ∈ P(M) : ∀ψ ∈ U(Φ)(|ξ(ψ) − η(ψ)| ≤ ε)},

which is a basic neighborhood of η, because U(Φ) is finite subset of C(M) and U∗(W) ⊂ V,

because U∗ξ(φ) = ξ(Uφ).

�

Corollary 1.16. If M is compact, then there exists a stationary measure on M.

Proof. M is compact, hence the set of the signed Borel measures can be identify via

Riesz representation theorem with C0(M)∗, which it is, if endowed with the weak∗-topolgy,

locally convex ([3], pag 31) Under this identification
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P(M) = ∩φ∈C0(M)+
{η ∈ C0(M)∗ : η(φ) ≥ 0} ∩ {η ∈ C0(M)∗ : η(1) = 1} ⊂ B(0, 1),

is weak∗-compact, since B(0, 1) is compact by Banach-Alaoglu’s theorem. Trivially, it is

also convex, therefore U∗ admits a fixed point by Schauder-Tychnoff fixed point theorem

[19], pag. 456. �

A somewhat standard procedure to obtain stationary measures, is the so-called Krylov-

Bogolyubov procedure ([3], pag 29).

Theorem 1.17. Let n ∈ N, let ν be a probability measure on M, and define

νn =
1
n

n−1∑
j=0

U∗ jν.

Then every limit point of {νn}n∈N is weak∗-invariant, and ν invariant arise in this way.

Proof. Assume without loss of generality that {νn} weak∗-converge to ν; since U∗ is weak∗-

continuous, also {U∗νn} weak∗-converge to U∗ν. Moreover, if φ ∈ C(M) then

|U∗νn(φ) − νn(φ)| =
1
n
|U∗nν(φ) − ν(φ)| ≤

2
n
||φ||,

therefore U∗ν = ν.

For the last part, observe that if ν is invariant, the (Birkhoff) averages νn are equal to ν. �





2

ERGODIC THEOREMS

2.1/ BIRKHOFF ERGODIC THEOREM

In the last chapter we described how the deterministic concept of invariant measure can

be translated into the random context; another example which is of main importance, is

the ergodicity, which naturally extend to random dynamical systems.

Let us recall that our setting is made by a measurable space (M,B) and a random trans-

formation F : Ω × M → Ω × M.

Definition 2.1. Let η be a probability measure on M

• a set B is called η-stationary if UχB = χB.

• a function φ ∈ L1(η), p ∈ [1,+∞] is called η-stationary, if Uφ = φ.

Definition 2.2. A probability measure η on M is said to be ergodic for a random transfor-

mation F if every η-stationary set has either full or null measure.

The following is a technical lemma, which shows that in our setting monotone sequences

converge. It will be used in lemma 2.14 to show that the invariant sets are a σ-algebra on

M.

Lemma 2.3. If φn ↑ φ ∈ Lp(η), then Uφn ↑ Uφ.

Proof. Let n ∈ N and let

En = {x ∈ M : |Uφn(x) − Uφ(x)| > ε}.

{Uφn}n∈N is a monotone sequence, by the positivity of U, thus E1 ⊃ E2 . . .; we claim that

in fn∈Nη(En) = 0. If p = ∞, η(En) = 0 whenever ‖φn − φ‖ ≤ ε/‖U‖. If p < ∞ we use Markov

inequality. In fact En may be written as

19
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En = {x ∈ M|Uφn(x) − Uφ(x)|p > ε p},

η(En) ≤ ε−p
∫

M
|Uφn(x) − Uφ(x)|pdη(x) ≤

1
ε p ‖Uφn − Uφ‖p ≤

‖U‖p

ε p ‖φn − φ‖

.

�

A central role is played by positive, contractive operators, i.e. operators P such that

• If f ≥ 0 then P f ≥ 0

• ‖P‖ ≤ 1

Theorem 2.4 ([20], pag. 8). Let η a probability measure on M and let U be a linear,

positive, contractive operator on Lp(η), p ∈ [1,+∞]. The set S of the stationary sets

B ⊂ M, is the smallest σ-ring on M such that the stationary functions, which are bounded

or non negative, are measurable.

We will now deal with the main feature of this section, (a variant of) the famous Birkhoff

Ergodic Theorem. To formalize the idea that if η is stationary and ergodic for some random

transformation F, then the space average is equal to the time average almost everywhere,

we may want to introduce the Birkhoff sums:

Definition 2.5. Let T be a linear, positive, contractive operator on L1(η), then the n-th

Birkhoff sum with respect to T , is the positive, linear, contractive operator S n : L1(η) →

L1(η) such that

S n(φ) =

n−1∑
i=0

T jφ = φ + Tφ + . . . + T n−1φ. (2.1)

We define also the positive, linear contractive operator An : L1(η) → L1(η), called the n-th

Birkhoff average, defined by

Anφ =
S nφ

n
.

Our main result in this section is the following theorem, which shows the pointwise con-

vergence of the Birkhoff averages:

Theorem 2.6. Let T be a linear, positive, contractive operator on L1(η). If there exists φ0 ∈

L1(η) such that φ0 > 0 and the sequence {Anφ0} admits a weakly convergent subsequence,

then for every φ ∈ L1(η) the limit

φ(x) = limn→+∞Anφ(x) = limn→+∞

1
n

n−1∑
i=0

T iφ(x) (2.2)
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exists for η-a.e. x ∈ M, and it defines a function φ ∈ L1(η) such that Tφ = φ.

Furthermore, if C is the σ-algebra of the invariant sets, then for every B ∈ C, φ satisfies

∫
B
φdη =

∫
B

HCφdη, (2.3)

where

HC = φ(x) = χC

∞∑
k=0

(T ID)kφ(x), with IDφ(x) = χD(x)φ(x). (2.4)

Remark 2.7. In some particular case the link between time and space averages (which

may be not clear in the last statement), is glaring; for instance, if T is the operator Pη in

proposition 3.11, then

limn→+∞

1
n

n−1∑
i=0

T iφ(x) =

∫
M
φdη,

for η-a.e. x ∈ M.

The rest of this section is devoted to the proof of theorem 2.6, which requires two general

statements, namely the Hopf maximal ergodic lemma and the mean ergodic theorem.

2.1.1/ HOPF ERGODIC MAXIMAL LEMMA AND THE σ-ALGEBRA OF THE INVARI-
ANT SETS

The Hopf lemma gives us a first way to investigate the Birkhoff averages, in particular it is

used to decompose M into conservative and dissipative parts; for a proof see [20], pag.

9.

Lemma 2.8 (Hopf maximal ergodic lemma). Let T : L1(η) → L1(η), be a linear, positive,

contractive operator and let ψ ∈ L1(η). Then

∫
E
ψdη ≥ 0, where E = {x ∈ M : supNS nψ(x) > 0}. (2.5)

Definition 2.9 ([32], pag. 32). Let φ0 ∈ L1(η), φ0 > 0; the conservative and dissipative

parts of M are defined respectively as

C = {x ∈ M :
∞∑
j=0

T jφ0(x) = +∞}, (2.6)
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D = {x ∈ M :
∞∑
j=0

T jφ0(x) < +∞}. (2.7)

Lemma 2.10. The definition above is well posed, in particular:

1. C,D do not depend of the choice of φ0 > 0 and Tχc ≤ χC, χD ≤ TχD

2. the Banach operator adjoint of T , T ∗, is positive and T ∗1 ≤ 1.

Proof. Let φ ∈ L1
+(η) and let

C′ = {x ∈ C : 0 <
∞∑
j=0

T jφ(x) < +∞}

D′ = {x ∈ D :
∞∑
j=0

T jφ(x) = +∞}.

Let j ∈ N such that

η({x ∈ C′ : T jφ(x) > 0} > 2− j−1η(C′)

If we apply 2.8 to ψC = φ0 − aT jφ0 and ψD = φ − aφ0, a > 0, then for I ∈ {C,D} we have

I ⊂ EI := {x ∈ M : supNS nψI(x) > 0}

0 ≤
∫

EC

ψCdη ≤
∫

M
φ0dη − a

∫
C′

T jφdη

0 ≤
∫

EDψD ≤

∫
M
φdη − a

∫
D′
φ0dη.

By arbitrarily choosing a > 0, we conclude that η(C′) = η(D′) = 0. Hence

C ⊂ {x ∈ M :
∞∑
j=0

T jφ(x) = 0 or
∞∑
j=0

T jφ(x) = +∞} (2.8)

D ⊂ {x ∈ M :
∞∑
j=0

T jφ(x) < +∞}. (2.9)

In particular C and D are independent from the choice of φ0; moreover if x ∈ C then∑∞
j=0 T jχC(x) = +∞ and also

∑∞
j=0 T j(TχC(x) = +∞, which implies the second part of item

1.
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For item 2, fix ε > 0 and let B ∈ B defined as B := {x ∈ M : T ∗1 > 1 + ε}; then

(1 + ε)η(B) ≤
∫

M
(T ∗1)χBdη =

∫
M

TχBdη ≤ ‖TχB‖ ≤ ‖chiB‖ = η(B),

thus η(B) = 0 and T ∗1 ≤ 1.

�

Definition 2.11. A set B ∈ B is called invariant if T ∗χB = χB on C.

The following from [32], is an easy criterion to verify if a set is invariant.

Lemma 2.12. Let φ ∈ L∞(η) (or φ ∈ L1
+(η)) such that T ∗φ ≤ φ on C (or Tφ ≤ φ on C); then

T ∗φ = φ on C (or Tφ = φ on C).

Proof. Let φ ∈ L∞(η) such that T 8φ ≤ φ on C, let ψ = φ − T ∗φ and φ0 = 1. We observe that

ψ + . . . + T ∗
(n−1)ψ = φ − T ∗nφ,

hence

∫
M
ψ(φ0 + . . . + T n−1φ0)dη =

∫
M

(φ − T ∗nφ)φ0dη ≤ 2‖φ‖L∞‖φ0‖L1 .

Trivially
∑∞

i=0 T n−1φ0 = +∞ on C thus ψ = 0 on C, which proves the first part of the theorem.

For the second part let φ ∈ L1
+(η) such that Tφ ≤ φ and suppose Tφ , φ on C. Then there

exists ε > 0 such that F = {x ∈ C : φ(x) − Tφ(x) > ε} has a positive measure. Let us prove

that
∑∞

j=0 T ∗ jχF = +∞ on F: let c > 0 and let F′ = {x ∈ F :
∑∞

j=0 T ∗ jχF < c}, then

∫
M

(
∞∑
j=0

T jχF′)χFdη =

∫
M
χF′(

∞∑
j=0

T ∗ jχF)dη < +∞,

thus η(F′) = 0 and since F′ ⊂ F ⊂ C equation 2.8 implies (
∑∞

j=0 T jχF′)χF = +∞ on F′. But

this implies that on F

(φ − Tφ)(
∞∑
j=0

T ∗ jχF) = +∞,

which implies a contradiction∫
M

(φ − Tφ)(
∞∑
j=0

T ∗ jχFdη =

∫
M

(
∞∑
j=0

T j(φ − Tφ))χF ≤

∫
M
φχFdη < +∞.

�

Remark 2.13. If M is an invariant set, using that T ∗1 ≤ 1, we may deduce
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χC ≤ T ∗χC and T ∗χD ≤ χD;

in fact T ∗χC ≤ T ∗1 ≤ 1 on C, which implies that T ∗χC = 1 on C, i.e. T ∗χC ≤ χC. Moreover

T ∗χD = T ∗(1 − χC) ≤ 1 − χC = χD.

Lemma 2.14. The set of the invariant sets is a σ-algebra C on M and every φ ∈ L∞(η) such

that T ∗φ = φ on C, is C-measurable.

Proof. We seek a probability ηC on (M,B) such that T ∗φ = φ on B if and only if T ∗φ = φ

ηC-a.e. The case η(C) = 0 is trivial, since we can set η = ηC and C = B; so let η(C) > 0

and define for every B ∈ B

ηC(B) =
η(B ∩C)
η(C)

.

Let B1, B2 ∈ B such that χB1 = χB2 on C, observe that χCT ∗χD = 0 by remark 2.13, then

χC(T ∗χB1) = χC(T ∗χB1∩C + T ∗χB1∩D) = χCT ∗χB1∩C = χCT ∗χB2 .

By lemma 2.3 it follows that if φ = ψ on C then T ∗φ = T ∗ψ on C. Hence we can regard

at T ∗ as an operator defined on L1(ηC), on which it is still linear, positive and contractive.

Moreover T ∗1 = 1 ηC-a.e., thus C is a σ-algebra for which every invariant φ ∈ L∞(ηC) is

measurable. �

2.1.2/ CONVERGENCE OF BIRKHOFF AVERAGES

The last ingredient of the Birkhoff theorem’s proof it is the famous Mean ergodic theorem

(for a proof refer to [41], th. 1.1).

Theorem 2.15 (Mean ergodic theorem). Let T be a bounded operator on a Banach space

V such that the Birkhoff averages are uniformly bounded (as operators). Then for any

v ∈ V such that

limn→+∞n−1T n−1v = 0,

and for any w ∈ V, the following are equivalents:

1. Tw = w and w ∈ cl{T n−1v : n ∈ N}

2. {Anv}n∈N strongly converges to w

3. {Anv}n∈N weakly converges to w
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4. {Anv}n∈N admit a subsequences that converges to w.

Proof of theorem 2.6. We observe that the assumptions of the mean ergodic theorem

are verified. In particular, by contraction property ‖T n‖ ≤ 1; furthermore for any φ ∈ L1(η)

the sequence {Anφ}n∈N = {S nφ/n}n∈N has a weakly convergent subsequence, which is

equivalent to show ([19], cor. 11) that uniformly on n the following holds

limη(E)→0

∫
E

S n(φ)
n

dη = 0.

Fix ε > 0 and let ε0 such that if η(E) < ε0 then
∫

E |φ(·)|dη < ε. Let t > 0 such that

η(Bt) < min{ε, ε0}, where Bt = {x ∈ M : tφ0(x) < |φ(x)|}.

Let φ0 such that {S nφ0/n} has a weakly convergent subsequence (such φ0 exists by hy-

pothesis); then there exists δ > 0 such that if η(E) < δ then
∫

E S n(φ0)/ndη < ε/t.

Thus if η(E) < δ, then

∣∣∣ ∫
E

S nφ

n
dη

∣∣∣ =
∣∣∣ ∫

E\Bt

S n(φ + tφ0)
n

dη +

∫
Bt

S n(φ + tφ0)
n

dη −
∫

E

S n(tφ0)
n

dη
∣∣∣

=
∣∣∣ ∫

E\Bt

S n(φ + tφ0)+

n
dη +

∫
Bt

S n(φ)
n

dη −
∫

E\Bt

S n(tφ0)
n

dη
∣∣∣

≤

∫
E\Bt

S n(φ + tφ0)+

n
dη +

∫
Bt

S n|φ(·)|
n

dη + t
∫

E\Bt

S n(φ0)
n

dη

≤

∫
E
|φ(·)|dη + 2t

∫
E\Bt

φ0dη < 4ε.

(2.10)

Hence the assumptions of the mean ergodic theorem are verified and we may apply it to

obtain a function φ ∈ L1(η), such that Tφ = φ and

lim
n→+∞

∥∥∥S nφ

n
− φ

∥∥∥
L1(η) = 0.

We want to prove that

limn→+∞

S nφ(x)
n

= φ(x), forη − a.e.x ∈ M. (2.11)

It is sufficient to show that for any given ε > 0, for η-a.e. x ∈ M

limsupn→+∞

S nφ(x)
n

≤ φ(x) + ε, (2.12)

in fact the latter applied to −φ gives the opposite bound with the liminf. The set of the
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points x ∈ M such that 2.12 does not hold is contained in

G = {x ∈ M : supn∈NS n(φ(x) − φ(x)) = +∞};

we claim that η(G) = 0. Let ψ = φ − φ − a, with a > 0. Using the Hopf maximal ergodic

lemma 2.5

∫
E

(φ − φ)dη ≥ aη(E), where E = {x ∈ M : supn∈NS nψ(x) > 0}.

We observe that E ⊂ G and thus

‖φ‖ + ‖φ‖ ≥

∫
E

(φ − φ)dη ≥ aη(E) ≥ aη(B),

hence η(G) = 0 by the arbitrariety of a. We now turn to the second part of the theorem

(2.3). Observe that S nφ is bounded on D by 2.9, which implies that φ = 0 on D. Since

χCT kφ = χCT k(χCφ) = χCT k−1(T ID)φ = . . . = χC

k∑
j=0

T k− j(χC(T ID) jφ),

then for any B ∈ C

∫
B
φdη =

∫
B
χcφdη = lim

n→+∞

1
n

n−1∑
k=0

∫
B
χCT kφdη

= lim
n→+∞

1
n

n−1∑
k=0

∫
B
χC

k∑
j=0

T k− j(χC(T ID) jφ)dη

= lim
n→+∞

1
n

∫
M

T ∗(k− j)(χBχC)
k∑

j=0

χC(T ID) jφdη

= lim
n∈N

1
n

∫
<
χBχC

k∑
j=0

χC(T ID) jφdη

=

∫
B

HCφdη.

(2.13)

�

We will end this section showing that since S n1 = n, the η-a.e. convergence of Anφ is a

particular case of the following theorem

Theorem 2.16 (Chacon-Ornstein [20], pag. 26). Let φ ∈ L1(η), φ0 ∈ L1
+(η), and define

Qn(x) =
S nφ(x)
S nφ0(x)

.
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Then Qn converges to a finite limit η-a.e. on the set

B = {x ∈ M :
∞∑
j=0

S nφ0(x) > 0}.

We first need the following lemma

Lemma 2.17. Let φ, φ0 ∈ L1
+(η), and Qn as defined above, then

supn∈N|Qn(·)| < +∞

η-a.e. on {x ∈ M : φ0(x) > 0}/

Proof. Let a > 0, and let

A := {x ∈ M : φ0 > 0, supn∈N|Qn(x)| = +∞}

E := {x ∈ M : supn∈NS n(φ − aφ0)(x) > 0}.

Observe that A ⊂ E; Hopf maximal ergodic lemma (2.5) applied to ψ = φ − aφ0 implies

n‖φ‖ ≥
∫

E
S nφ(x)dη ≥ a

∫
E

S nφ0(x)dη ≥ a
∫

A
S nφ0(x)dη.

Since a is arbitrary, it must holds

∫
A

S nφ0(x)dη = 0.

But S nφ0(x) > 0 on A, hence η(A) = 0. �

proof of theorem 2.16. Without loss of generality we may assume φ non-negative, be-

cause we can always split

Qn(x) =
S nφ

+(x)
S nφ0(x)

−
S nφ

−(x)
S nφ0(x)

.

By triangle inequality,

∣∣∣S nφ(x)
S nψ(x)

ψ(x) − φ(x)
∣∣∣ ≤ ∣∣∣S nφ(x)

S nψ(x)
(
ψ(x) −

S nψ(x)
n

)∣∣∣ +
∣∣∣S nφ(x)

n
− φ(x)

∣∣∣.
The right-hand side converges to 0 for η-a.e. x ∈ B by the latter lemma and Birkhoff

ergodic theorem, hence for η-a.e. x ∈ B
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lim
n→+∞

S nφ(x)
S nψ(x)

ψ(x) = φ(x).

Because ψ(x) is positive on B, we have

lim
n→+∞

S nφ(x)
S nψ(x)

=
φ(x)

ψ(x)
< +∞.

�

So far from now we deal with several properties of linear positive contractive operators,

in particular the Birkhoff Ergodic Theorem; in fact a non singular random transformation

induced an operator of this kind, hence we can study some of the properties of a random

transformation, by taking a look to the induced operator. Since the latter is a linear positive

contractive operator, we can apply the results described in this chapter and in the next

one we will see how to do it.



3

PERRON-FROBENIUS OPERATOR

In the last chapter we deal with the pointwise convergence of the Birkhoff averages of an

operator U; turns out that a non singular transformation F induced an operator (the so-

called Perron-Frobenius operator) which satisfies the hypothesis of the Birkhoff theorem.

This chapter is devoted to the study of this class of operators and then to the study of

criteria for the existence of stationary densities for this particular class.

3.1/ PERRON-FROBENIUS OPERATOR

Let λ be a fixed Borel regular probability on M.

Definition 3.1. A random transformation F : Ω × M → Ω × M is non singular with respect

to λ if for every probability measure q << µ × λ then F∗q << µ × λ.

Let us recall a sufficient condition for a transformation to be nonsingular.

Lemma 3.2. If (Fω)∗λ << λ for µ-a.e. ω ∈ S , then F is non singular.

Proof. The sets of the form A× B generate the σ-algebra of Ω×M, and the null sets form

a σ-algebra. Let A × B ⊂ Ω × M be a µ × λ-null set, then either µ(σ−1(A)) = µ(A) = 0 or

λ(F−1
ω (B)) = λ(B) = 0 for a.e. ω ∈ Ω; thus

F∗(µ × λ)(A × B) =

∫
σ−1(A)

λ(F−1
ω (B))dµ(ω) = 0.

�

If F is a non singular transformation (from now on, we will omit with respect to λ), and

η << λ then

π∗MF∗(µ × η) << π∗M(µ × λ) = λ,

and by proposition 1.11

U∗η = π∗MF∗(µ × η).

29
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Thus U∗ may act on a space of densities instead of a space of measures; before to for-

malize the last statement, let us show with the following example that if F is non singular,

U can be viewed as an operator acting on L∞(M), furthermore if η is stationary for F, U

can be defined on L1(η).

Example 3.3. Let F a non singular transformation and let φ and ψ two bounded measurable

functions such that A = {x ∈ M : ψ(x) , φ(x)} has null measure; then

∫
|Uφ − Uψ|dλ ≤

∫
M

∫
M
|φ(Fωx) − ψ(Fωx)|dµ(ω)dλ(x)

≤ (‖φ‖∞ + ‖ψ‖∞)F∗(µ × λ)(Ω × A) = 0.
(3.1)

Thus also the set {x ∈ M : Uφ(x) , Uψ(x)} has null measure and U is well defined

as an operator U : L∞(M) → L∞(M). If η is stationary for F, then for all φ ∈ L∞(η),

‖Uφ‖L1(η) ≤ ‖φ‖L1(η) and L∞(η) = L1(η). Thus we may consider U : L1(η)→ L1(η).

Remark 3.4. If φ ∈ L1(M), we denote by φλ the Borel measure with density φ, i.e. the

unique measure such that

∀ψ ∈ C0(M) :
∫

ψd(φλ) =

∫
ψφdλ.

Definition 3.5. A non singular random transformation F induced an operator L : L1(M)→

L1(M) defined by

Lφ =
d(U∗(φλ))

dλ
.

L is called the Perron Frobenius operator associated to F or induced by F. Furthermore,

for every φ ∈ L1(M) and ψ ∈ L∞(M),∫
M

(Lφ)ψdλ =

∫
M
φ(Uψ)dλ,

thus identifying L∞(M) as the dual space L1(M), we may write L∗ = U.

We remark that the definition above naturally extends the definition in the deterministic

context, via identification of a deterministic map T : M → M with a random map F :

Ω × M → Ω × M, where Ω is the trivial probability space. The following proposition

introduces some standard properties of the Perron-Frobenius operator

Proposition 3.6. Let F be a random transformation and let L : L1(M) → L1(M) be the

induced Perron Frobenius operator, the following hold:

1. L is linear

2. L is positive, i.e. Lφ ≥ 0 if φ ≥ 0
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3. for every φ ∈ L1(M),
∫

M Lφdλ =
∫

M φdλ

4. Fω, the random transformation on Ω × M defined by (ω, x) 7→ Fn
M(x), induced a

Perron-Frobenius operator LM such that LM = Ln

5. if M is compact, then for any φ ∈ L1(M), ‖Lφ‖L1 ≤ ‖φ‖L1 .

Proof. 1. L can be written as the composition of the linear operators, φ 7→ φλ, U∗

and η 7→ dη/dm; the image of the first is the subspace of absolutely continuous

measures, the second preserves this subspace by nonsingularity and the third is

defined by absolutely continuous measures.

2. We claim that if φ ≥ 0 then U∗(φλ) is a non negative measure, because the Radon-

Nikodym derivative of an unsigned measure is unsigned; this is true because U is

positive, and thus U∗ preserves the subspace of nonnegative measures.

3. We observe that U1 = 1 and∫
M

Lφdλ =

∫
M

(U1)φdλ =

∫
M
φdλ.

4.
Unφ(x) =

∫
M
. . .

∫
M
φ ◦ FωN ◦ . . . ◦ Fω1(x)dµ(ω1) · · · dµ(ωn).

5. For any φ ∈ L∞(M) and for any B ∈ B∫
M
χBLφdη =

∫
M

U(χB)φdη ≤
∫

M
|φ|dη = ‖φ‖L∞ .

�

Definition 3.7. Let (M,B, η) be a measure space; an operator P : L1(η) → L1(η) which

satisfies items 1, 2, 3 of proposition 3.6, is called Markov operator.

Proposition 3.8. Let (M,B, η) be a measure space, let φ ∈ L1(η) and let P be a Markov

operator, then

• (Pφ)+(x) ≤ Pφ+(x), for η-a.e. x ∈ M

• (Pφ)−(x) ≤ Pφ−(x), for η-a.e. x ∈ M

• |(Pφ)(x)| ≤ P|φ(·)|(x) for η-a.e. x ∈ M

• P is contractive, i.e. ‖Pφ‖L1 ≤ ‖φ‖L1 .
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Proof. The positivity of P implies that φ+ − φ ≥ 0, then P(φ= − φ) ≥ 0 and Pφ+ ≥ Pφ;

observing that (Pφ)+ ≥ 0, we conclude that (Pφ)+ ≤ Pφ+(x). Symmetrically, (Pφ)− ≤ Pφ−.

By linearity

|(Pφ)(·)| = (Pφ)+ + (Pφ)− ≤ Pφ+ + Pφ− = P(φ+ = φ−) = P|φ(·)|.

As last step, since for all φ ∈ L1(η),
∫

M Pφdη =
∫

M φdη,

‖Pφ‖ =

∫
m
|Pφ(·)|dη ≥

∫
M

P|φ(·)|dη =

∫
M
|φ(·)|dη = ‖φ‖.

�

If η is equal to the reference measure, i.e. η = λ, and we denote by D the set of positive

densities h ∈ L1(M) such that ‖h‖1 = 1, then for any Markov operator P we have P(D) ⊂ D.

Definition 3.9. Let h ∈ D such that L(hλ) = hλ, then h is called a stationary density for F.

Stationary densities play a central role, because every fixed point of L can be obtained

from them.

Proposition 3.10. Let P a Markov operator and let φ ∈ L1(η) such that Pφ = φ, then

Pφ+ = φ+ and Pφ− = φ−.

Proof. By hypothesis we have

φ+ = (Pφ)+ ≤ Pφ+ and φ− = (Pφ)− ≤ Pφ−;∫
(Pφ+ − φ+)dη +

∫
(Pφ− − φ−)dη =

∫
P(φ+ + φ−) − (φ+ + φ−)dη

+

∫
P|φ(·)| − |φ(·)|dη =

∫
P|φ(·)|dη −

∫
|φ(·)|dη = 0.

Since (Pφ+ − φ+) ≥ 0 and (Pφ− − φ−) ≥ 0, we conclude that Pφ+ − φ+ = 0 and Pφ− − φ− = 0.

�

3.1.1/ ERGODICITY AND MIXING

If h is a stationary density for a random transformation F, we can naturally define a Markov

operator Pη with fixed point 1; throughout this particular class of operators we will define

a mixing property. From now on we will use Lebesgue’s measure as reference measure.
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Proposition 3.11. Let F be a non singular random transformation, let U∗ be its adjoint

transfer operator; let h ∈ D and η = hλ. Then the operator Pη : L1(η)→ L1(η) defined as

Pηφ =
d(U∗(φη))

dη

is a Markov operator. If h is also stationary, then Pη1 = 1 and for every φ ∈ L1(η) and n ∈ N

Pn
η(φ)h = Ln(φh).

Proof. Pη is a Markov operator by the same arguments used in proposition 3.6 and it is

well defined by proposition 1.11. If h is stationary then U∗η = η which implies Pη1 = 1;

furthermore for every φ ∈ L1(η), φh ∈ L1(M) and for every B ∈ B,

∫
B

Pn
η(φ)hdλ = (U∗)n(φη)(B) =

∫
B

Ln(φh)dλ.

�

Definition 3.12. A non singular random transformation F is said to be mixing for η = hdλ,

if for every φ ∈ L1(M) and ψ ∈ L∞(M).

lim
n→+∞

∫
M

Pn
η(φ)ψdη =

∫
M
φdη

∫
M
ψhdλ. (3.2)

Proposition 3.13. If for every φ ∈ L1(M) and ψ ∈ L∞(M)

lim
n→∞

∫
M

Ln(φ)ψdλ =

∫
M
φdλ

∫
M
ψhdλ, (3.3)

then Fis mixing for η. The opposite is true if supp(η) = M.

Proof. Suppose 3.3 holds; by hypothesis φh ∈ L1(M) and ψχh>0 ∈ L∞(M). Evaluating 3.3

in these functions we obtain

lim
n∈N

∫
M

Ln(φh)ψχh>0dλ =

∫
M
φhdλ

∫
<
ψχh>0hdλ =

∫
M
φdη

∫
M
ψdη,

and this implies 3.2 because the first integral is equal to
∫

M Pn(φ)ψdη.

Now suppose 3.2 and that supp(η) = M; if ψ ∈ L∞(M) then ψ ∈ L∞(η) and if φ ∈ L1(M),

there exists φ′ ∈ L1(η) such that φ = φ′h. Using 3.2

lim
n∈N

∫
M

Pn(φ′)ψdη =

∫
M
φ′dη

∫
M
ψdη =

∫
M
φdλ

∫
M
ψhdλ.

�
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We will end this section with a characterization of ergodicity and mixing which clarifies

the link between these two notions ([42], th. 4.2.2 and th. 4.4.1).

Proposition 3.14. Let F be a non singular random transformation. If η is ergodic for F

then there is at most one stationary density of Pη. Moreover, if there is a unique stationary

density h of η and h > 0 η-a.e., then η is ergodic.

Proof. Suppose η ergodic, and let φ1, φ2 be two stationary densities for F. Consider

ψ = φ1 − φ2, then Pηψ = ψ and Pηψ+ = ψ+, Pηψ− = ψ− (proposition 3.10).cannot

Let A± := {x ∈ M : ψ± = 0} and observe that UχA± = χA
±. In fact U∗(φ±η) << φη by the

non singularity condition. But η is ergodic, hence either η(χA+) = 0 or 1, the same for χA− .

Since their union lies in M they cannot have both null measure, thus they both have full

measure, and the same must hold for the intersection {x ∈ M : ψ(x) = 0}, i.e. φ1 = φ2.

For the second part of the proposition, suppose that Pη has a unique positive stationary

density h > 0. Let B ∈ B be any η-stationary set, let B′ = M \ B and rewrite h = χBg + χB′h.

Now we can apply L

χBh + χB′h = L(χBh) + L(χB′h).

We observe that L(χBh) = 0 on B′ because L(χBh) ≥ 0 and

∫
B′

L(χBh)dη =

∫
M

(UχB′)χBhdη =

∫
M
χB′χBhdη = 0.

Hence L(χBh) = χBh and either χB = 0 or χB = 1 (because the stationary density is

unique). �

Proposition 3.15. Let F be a random transformation and η a stationary measure for F.

Then F is ergodic (mixing) for η if and only if the sequence {P j
ηφ} j∈N converge in the sense

of Cesàro (weakly converge) to 1, for all φ ∈ Dη := {ψ ∈ L1(η) :
∫

M ψdη = 1}.

Proof. The Césaro convergence of {P j
ηφ} is equivalent to the pointwise convergence of

the Birkhoff avareges {Anφ}; we also observe that since η is stationary the conservative

part is just M. By Birkhoff ergodic theorem, we deduce that the pointwise limit of these

averages, say φ′, it is η-stationary and
∫
φdη =

∫
φ′dη; furthermore it is equal to 1 for all

φ ∈ Dn, if and only if every η-stationary φ′ it is equal to
∫
φ′dη, if and only if η is ergodic.

Combining the latter with the fact that L1(η) can be identified with L∞(η), give us the proof

of the claim in the mixing case. �
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3.1.2/ EXISTENCE OF STATIONARY MEASURE FOR POSITIVE CONTRACTIONS

We end this section by discussing the existence of stationary measures for a random

transformation, which are absolutely continuous with respect to a reference measure λ

(e.g. Lebesgue measure). A first criteria is given by the Krylov-Bogolyubov procedure,

which shows that a necessary and sufficient condition for the existence of stationary

densities is the existence of some φ ∈ D such that { 1n
∑n1

j=) L jφ}n∈N is a weakly sequentially

compact set.

However positive contractions satisfy the following criteria for the existence of nonzero

positive fixed points ([41], th 4.2), which can be utilized for the Perron-Frobenious opera-

tors since it is a particular case of positive contractions.

Theorem 3.16. Let P be a positive contraction on L1(η); there exists f ∈ L1
+(η) such that

P f = f , 0 if and only if for every strictly positive h ∈ L∞+ (η),

inf
n≥0

∫
P∗nhdη > 0. (3.4)

Moreover, there exists a strictly positive f ∈ L1
+(η) such that P f = f if and only if 3.4 holds

for all non zero h ∈ L∞+ (η).

Proof. Let f ∈ L1
+(η) such that P f = f , 0 and let 0 , h ∈ L∞+ (η). If either f or h is strictly

positive, then there exists ε > 0 such that for all n ∈ N∫
f P∗n(h ∧ 1)dη =

∫
(Pn f )(h ∧ 1)dη =

∫
f (h ∧ 1)dη > 2ε‖ f ‖L1(η).

Let An := ‖P∗n(h ∧ 1) ≥ ε} and observe that P∗n(h ∧ 1) ≤ P∗n1 ≥ 1 implies

2ε‖ f ‖L1(η) <

∫
f P∗n(h ∧ 1)dη < ε

∫
M\An

f dη +

∫
An

f dη,

thus for every n ∈ N,
∫

An
f dη > ε‖ f ‖L1)η. But f ∈ L1

+(η), hence there exists a δ > 0 such that

η(An) > δ, which implies

inf
n≥0

∫
P∗nhdη ≥ inf

n≥0
P∗n(h ∧ 1)dη ≥ δε > 0.

Let us split the other direction of the statement in two different cases

1. If there exists a strictly positive h ∈ L∞+ (η) such that

inf
n≥−

∫
P∗nhdη = 0,

then for every f ∈ L1 + (η) it holds infn≥0
∫

f P∗nhdη = 0. In fact for every n ∈ N
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and ε > 0 there exists a > 0 such that ‖( f − a)+‖L1(η) < ε and by observing that

f ≤ a + ( f − a)+ we obtain

∫
f P∗nh.dη ≤ a

∫
P∗nhdη +

∫
P∗n( f − a)+hdη,

thus ∫
f P∗nh.dη ≤ a

∫
P∗nhdη + ε‖h‖L∞(η.

Hence for every ε > 0 we have infn≥0
∫

f P∗nhdη ≤ ε‖h‖L∞(η). If now f ∈ L1
+(η) is such

that P f = f we have

∫
f hdη = inf

n≥0

∫
(Pn f )hdη = inf

n≥0

∫
f P∗nhdη = 0,

but h is strictly positive, which implies f = 0.

2. If 3.4 is satisfied by every non zero h ∈ L∞+ (η), then M = C. Otherwise there exists

c > 0 such that B = {
∑∞

j=0 P j1 < c} has positive measure, which implies

∞∑
n=0

∫
P∗ jχBdη =

∫
B

∞∑
n=0

P j1 < c,

which contradicts 3.4.

Let δ be a linear functional on L∞(η) defined by

δ(h) := l
({ ∫

P∗nhdη
}
n∈N

)
,

where l is a Banach limit. We observe that for any h ∈ L∞+ (η), δ(h) ≥ 0 and δ(P∗h) =

δ(h). For h ∈ L∞+ we define

ν̃(h) := inf{
∞∑

n=1

δ(hn) : h =

∞∑
n=1

hn, hn ∈ L∞+ (η)}.

Let us prove now that ν(B) := ν̃(χB) defines a σ-additive finite measure on B. For

every b ∈ B, χB ∈ L∞+ (η) and it holds ν(B) ≤ δ(χB) < ∞, thus ν is a finite function;

for sure it is σ-additive, because given a sequence of disjoint sets {Bi}i∈N and their

union B = ∪Bi, for every ε > 0 there exist sequences {hi, j} j∈N such that

χBi =

∞∑
j=1

hi, j and ν(Bi) >
∞∑
j=1

δ(hi, j) −
ε

2i

hence
∞∑

i=1

ν(Bi) >
∞∑

i, j=1

δ(hi, j) ≥ δ(χB) ≥ ν(B).
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the reverse inequality holds as well, because if {h j} j∈N is a sequence in L∞+ (η) such

thatχB =
∑∞

j=1 h j, we have

n∑
i=1

ν(Bi) ≤
n∑

i=1

∞∑
j=1

δ(χBih j) =

∞∑
j=1

δ(χB1∪...∪Bnh j) ≤
∞∑
j=1

δ(h j),

which implies using that δ is linear and positive

∞∑
i=1

ν(Bi) ≥
∞∑
j=1

δ(h j).

So ν is a σ-additive measure on B; let f = dν
dη , we want to show that P f = f . In fact

δ(P∗h) = δ(h) which implies ν̃(P∗h) ≤ ν̃(h), hence P f ≤ f . On the other side, since

M = C we conclude P f = f by lemma 2.12. Now suppose that the set B = { f = 0}

has a positive measure; we observe that ν̃(χB) = 0 which implies that for every m ∈ N
there exists a sequence {hm,n}n∈N such that χB =

∑∞
n=1 hm,n and

∑∞
n=1 δ(hm,n) < 1/m.

Take k(m) large enough to have

∞∑
n=k(m)+1

∫
hm,ndη < 2−mη(B),

and define h∗ = infm∈N
∑k(m)

n=1 hm,n.

Since hm,n ∈ L∞+ (η) also h∗ ∈ L∞+ (η) and moreover

∫
h∗dη +

∞∑
m=1

∞∑
n=k(m)+1

∫
hm,ndη ≥ η(B),

hence
∫

h∗dη > 0 which implies in particular that h∗ , 0. However for all m ∈ N

δ(h∗) ≤ δ(
k(m)∑
n=1

hm,n) =

k(m)∑
n=1

ρ(hm,n <
1
m
,

thus δ(h∗) = 0. In particular lim infn→∞
∫

P∗nh∗dη = 0, which contradicts 3.4, implying

that B has null measure, i.e f is strictly positive.

�

Example 3.17. Let T : [0, 1] → [0, 1] the square map T (x) = x2; then T does not admit any

invariant measure absolutely continuous with respect to Lebesgue. Let U be the transfer

operator of T and h(x) = x; observe that h ∈ L∞+ , it is strictly positive and for every n ∈ N,

for every ε > 0

∫
Unh(x)dx =

∫ √
2nε

0
h(T n(x))dx +

∫ 1

√
2nε

Unh(T n(x))dx ≤
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≤ ε
√

2nε + (1 −
√

2nε)→ ε,

as n tends to infinity, and this implies

inf
n∈N

Unh(x)dx = 0.

The next proposition shows that there is a large class of random transformations which

admit stationary densities absolutely continuous with respect to Lebesgue ([20]).

Proposition 3.18. Let F : Ω × M → Ω × M be a non singular random transformation with

respect to λ. Suppose there exists δ > 0 such that

λ(B) > 1 − δ⇒ inf
x∈M

µ({ω ∈ Ω : Fω(x) ∈ B}) > 0,

then F admits a stationary density η << λ.

Proof. Let us show that there exists f ∈ L1
+(λ) such that L f = f , 0, where L is the Perron-

Frobenius operator of F. If h ∈ L∞+ (M) is strictly positive, fix ε > 0 such that B = {h > ε}

satisfies λ(B) > 1 − δ. For every x ∈ M we have

Uh(x) =

∫
Ω

h(Fω(x))dµ(ω) > ε inf
x∈M

µ({ω ∈ Ω : Fω(x) ∈ A}) = β > 0.

We conclude by applying theorem 3.16, observing that for all n ∈ N

∫
Unhdλ ≥ β > 0.

�

3.1.3/ REGULARITY OF PERRON-FROBENIUS ITERATES

We first introduce an alternative approach to the Perron-Frobenius operator based on

transition probabilities.

Definition 3.19. Let F : Ω × M → Ω × M be a random transformation and let B ⊂ M and

x ∈ M. The transition probability of x to B is

p(x, B) = UχB(x) = µ({ω ∈ Ω : fω(x) ∈ B}).

Proposition 3.20. The map (x, B) 7→ p(x, B), for every fixed x ∈ M defines a probability on

M and for every fixed B ∈ B defines a measurable map (sometimes such a map is called

a transition kernel). Furthermore, if F is non singular and B countably generated, then

there exists a transition density p ∈ L1(M × M) such that
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p(x, B) =

∫
B

p(x, ω)dλ(ω),

for λ-a.e. x ∈ M.

Proof. For every fixed x ∈ M, proposition 1.4 implies that the map Px : ω 7→ (ω, x) is

measurable; µx : B 7→ p(x, B) is a probability measure on M, in fact µx(M) = µ(Ω) = 1 and

µx = (π2 ◦ F ◦ Px)∗µ, and for every fixed B ∈ B, x 7→ µx(B) = UχB(x) is measurable. Thus

µ(A × B) =

∫
A
µx(B)dλ(x),

defines a measure µ over M ×M. µ is absolutely continuous with respect to λ× λ: if A× B

has zero λ × λ measure, then either λ(A) = 0 or λ(B) = 0, i.e. µ(A × B) = 0 or p(x, B) = 0 for

a.e. x ∈ M. Then µ admits a density p ∈ L1(M × M). Moreover, for every fixed B ∈ B

µx(B) =

∫
B

p(x, ω)dλ(ω), for λ-a.e. x ∈ M.

By hypothesis B admits a countable generator, hence there exists a set S ⊂ M of full

measure such that the expression above is true for every B ∈ B.

�

Proposition 3.21. Let F be a non singular random transformation and suppose B to be

countably generated. If φ ∈ L∞(M), then for λ-a.e. x ∈ M,

Uφ(x) =

∫
M

p(x, ·)φdλ and Lφ(x) =

∫
M

p(·, x)φdλ.

Proof. U is a bounded linear operator, and because the first identity is true for φ = χB, it

follows for any φ ∈ L∞(M). On the other hand, let B ⊂ M be a measurable set, then by

Fubini’s theorem

∫
B

Lφdλ =

∫
M

(UχB)φdλ =

∫
M

p(·, B)φdλ =

∫
B

∫
M

p(·, x)φdλdλ.

�

By the proposition above, if F is non singular, B is countably generated and φ ∈ L1(M),

the Perron-Frobenius operator L : L1(M)→ L1(M) admits the following expression

Lφ(x) =

∫
p(t, x)φ(t)dλ(t).

Therefore if we set Ω = M and µ = λ in corollary 1.14 we have the following
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Proposition 3.22. If p ∈ L1(M × M) is of class Ck, then for every φ ∈ L∞(M), Lφ is also of

class Ck.

Proof. The function x 7→ f (t, x) = p(t, x)φ(t) is Ck for any t ∈ M. Moreover, for every x0 ∈ M,

for all α ∈ Nn
0, |α| ≤ k,

|∂α f (t, x)| ≤ ‖∂αp‖L∞(B(x0))|φ(t)|,

where x ∈ B(x0), a sufficiently small neighborhood of x0 such that ∂αp are bounded. Hence

corollary 1.14 applies to f and the claim follows. �
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4

SYSTEMS WITH ADDITIVE NOISE

From now on the rest of the thesis will focus on systems with additive noise. In this

chapter, in addition to introducing the basic concepts, we will see how adding noise to a

deterministic dynamical system regulates its behavior (for example, we will prove that in

such random systems, every stationary measure is Lipschitz-continuous). This regular-

ization property will allow us to rigorously approximate the transfer operator associated

with a dynamical system with additive noise, as we will explain in the next chapter. A

random dynamical system with additive noise is formally defined in the following way.

Definition 4.1. Let T : M → M be a non-singular transformation and let ρξ ∈ BV(M) be

a probability density (ξ ∈ [0, 1] is a fixed parameter, which represents the ”size of the

noise”).

A random dynamical system with additive noise is the random system Tξ : Ω×M → Ω×M

defined by

Tξ(ω, x) = (σ(ω), π(T (x) + ω0)),

where Ω is the symbolic space of the one-sided sequences on M endowed with the

probability measure p with density ρξ. As required in the definition of random system,

the map (ω, x) 7→ π(T (x) + ω0) depends only from the 0-th coordinate of ω; the noise is

modeled as an i.i.d. stochastic process distributed according to the probability density ρξ.

In concrete applications, it might be difficult to model a natural phenomenon with a single

system; it makes more sense to take into consideration a family of dynamical systems,

dependent on a parameter, and to study how the corresponding statistical properties (e.g.

the stationary measures) vary with this parameter: the linear response theory answers

this question, and will be introduced in the second section of this chapter. In particular

the linear response of a system can be described by a suitable derivative which represent

the rate of change of the invariant measure with respect to the perturbation.

In the same spirit, in the last section, we will see some property of stability under suitable

perturbation for random system: in a nutshell, if a system satisfies a particular notion of

43
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mixing, there is a whole neighborhood of nearby systems satisfying the same notion.

Let M = Tn = (S1)n the n-dimensional torus identified with the n-dimensional interval [0, 1],

as measure spaces with the Lebesgue measure λ. Let us define the convolution between

two functions f , g ∈ L1(λ), which will play a central role.

Definition 4.2. Let t = (t1, . . . , tn) ∈ Rn, let π : R→ [0, 1]n the retraction

π(x1, . . . , xn) := (x1 − bx1c, . . . , xn − bxnc),

and consider the family of rotations τt : L1(λ)→ L1(λ) defined as

τt f (x1, . . . , xn) = f (π(x1 − t1, . . . , xn − tn)).

Let f , g ∈ L1(λ), then the convolution f ∗ g of f and g is defined in the following way

( f ∗ g)(x) :=
∫

M
(τt f )(x)g(t)dλ(t) =

∫
M

f (t)(τtg)(x)dλ(t),

for every x ∈ M, where in the equality above we used translational invariance of the

Lebesgue measure.

4.1/ THE BOUNDED VARIATION SPACE

We will discuss random dynamical system with additive noise, where the noise belongs

to the space of bounded variation functions, BV(M), which will now define. Our definition

takes in account that we are working on a torus.

In the following recall that C1
c(U,Rn) is the space of all continuously differentiable functions

ψ : U → Rn such that {ψ > 0} is compact and ‖ψ‖L∞ = supU |ψ(x)| ≤ 1.

In perspective, the work of this thesis will be applied to multidimensional contexts. As

we will see in the next chapter, a fundamental role will be played by Fourier’s analysis,

which will allow to have estimates of errors of exponential order. With this motivation,

and because it is not technically complicated, we now introduce the BV space in several

dimensions, but we remark that we will work in dimension 1.

Definition 4.3. Let U ⊂ Rn be an open set, let f ∈ L1(U), the variation of f on U is defined

by

‖D f ‖(U) := supψ∈C1
c (U,Rn)

∫
U

f (x) divψ(x)d(x).

Let f ∈ L1(λ), let f̂ = f ◦ π, then the variation of f is
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Var( f ) := limU↓M‖D f̂ ‖(U) = inf
U⊃M
‖D f̂ ‖(U), (4.1)

where the limit and the infimum are taken over the open sets U ⊃ M. If I ⊂ M, then

varI( f ) := Var(χI). Finally

BV(M) := { f ∈ L1(λ) : Var( f ) < +∞}.

Observe that if I ⊂ M, then varI( f ) := Var(χI). In the following when we write f ∈ C1(M),

we mean that f ◦ π belongs to C1(Rn).

Proposition 4.4. Let f ∈ BV(M), the following holds:

1. Var is a seminorm on BV(M).

2. let f ∈ C1(M) ∩ BV(M), then Var( f ) =
∫
|∇ f |dλ:

3. there exists a sequence of fi ∈ C∞(M) such that fi → f in L1(λ) and Var( fi)→ Var( f ).

Proof. 1. Let f , g ∈ BV(M) and U ⊃ M an open set, then

‖D( f̂ + ĝ)‖(U) = sup
ψ∈C1

c (U,Rn)

∫
U

( f̂ + ĝ)(x) divψ(x)dx

≤ sup
ψ∈C1

c (U,Rn)

∫
U

f̂ (x) divψ(x)dx + sup
φ∈C1

c (U,Rn)

∫
U

ĝ div φ(x)dx

= ‖D f̂ ‖(U) + ‖Dĝ‖(U).

Taking the limit U ↓ M we obtain Var( f + g) ≤ Var( f ) + Var(g). Analogously we see

that for a ∈ R, Var(a f ) = |a|Var( f ); thus Var( f ) is a seminorm on BV(M).

2. Let U ⊃ M be an open set and let g ∈ L1(Rn,Rn) defined by

g(x) =


∇ f (x)
|∇ f (x)| , if x ∈ M, |∇ f (x)| > 0;

0 otherwise.

Observe that supx∈Rn |g(x)| ≤ 1; fix ρ ∈ C∞(Rn) such that
∫
ρdλ = 1 and {ρ > 1} =

B(0, 1/2). For every ξ > 0, let ρξ(t) = ξnρ(t/ξ). For every i ∈ N let

φi :=
∫

ρ1/i(t)g(x − t)dt =

∫
ρ1/i(x − t)g(t)dt.

We remark that supx∈U |phi(x)| ≤
∫
ρ1/i(t) sup |g(y)|dt ≤; since M is compact, there

exists i0 ∈ N such that B1/i0(x) ⊂ U for every x ∈ M. Let i > i0, then corollary 1.14
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implies that φ ∈ C1
c (U,RN) and Lebesgue’s density theorem ensures that φi → g in

L1(URn). Hence

∫
U

f̂ div φi(x)dx =

∫
U
∇ f̂ (x) · φi(x)dx→

∫
M
|∇ f (x)|dx.

Thus ‖D f̂ ‖(U) ≥
∫

M |∇ f (x)|dx; at the same time if φ ∈ C1(U,Rn), with ‖φ‖∞ ≤ 1, then

∫
U

f̂ div φ(x)dx =

∫
U
∇ f̂ (x) · φ(x)dx ≤

∫
U
|∇ f̂ (x)|dx,

and by taking the supremum over all such φ we obtain ‖D f̂ ‖(U) ≤
∫

U |∇ f̂ (x)|dx.

Putting together the two inequalities and taking the limit U ↓ M, we get Var( f ) =∫
M |∇ f (x)|dx.

3. For i ∈ N, define the open sets Ui := ∪x∈M B1/i(x); consider

fi(x) :=
∫

ρ1/i(t) f̂ (x − t)dt =

∫
ρ1/i(x − t) f̂ dt.

For each fixed i0, we have that for i > i0, fi ∈ C∞(Ui0), fi → f̂ in L1(Ui0) and in

particular fi|M → f in L1(λ). Furthermore, for any t ∈ Rn, for every α ∈ Nn
0 and for

every x, y ∈ Rn, since f (x − t) = f (y − t), we have ∂α fi(x) = ∂α fi(y); thus fi |M ∈ C∞(M).

By item 2,

Var( fi |M) =

∫
|∇ fi(x)|dλ(x) =

∫
|

∫
ρ1/i(t)∇ f̂ (x − t)dt|dλ(x)

≤

∫
Ui

|∇ f̂ (x)|dx
∫

ρ1/i(t)dt = ‖D f ‖(U),

in fact x− t ∈ Ui and t ∈ {ρ1/i > 0}. We just proved that Var( fi|M) ≤ ‖D f̃ ‖(Ui)→ Var( f ).

For the converse, let ε > 0, let ı0 ∈ N, then there exists φ ∈ C1
c (Ui0 ,RN) such that

∫
Ui0

fi |M(π(x))divφ(x0)dx→
∫

Ui0

f̂ (x) div φ(x)dx ≥ ‖D f̂ ‖(Ui0) − ε

thus

lim inf
i→+∞

‖D( fi |M)‖(Ui0) ≥ ‖D f̂ ‖(Ui0) − ε ≥ Var( f ) − ε,

which implies that lim infi→+∞Var( fi |M) ≥ Var( f ) − ε.

�

We now describe some properties which hold in the one-dimensional case; we will make

use of them in the next section, when we will approach the problem of the regularity of

the stationary densities in systems with additive noise.
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Proposition 4.5. Let f : [0, 1]→ R; x is said to be a point of approximate continuity of f if

f (x) =
f (x−) + f (x+)

2
where f (x±) = lim

h→0+
f (π(x ± h)).

Then

1. If g ∈ C∞(S1), then V(g) = Var(g), where

V(g) := sup{x j}
k−1
j=0

k−1∑
j+0

|g(x j+1) − g(x j)|, xk := x0,

where all the {x j}
k−1
j=0 are increasing sequences in [0, 1] of points of approximate

continuity of g.

2. if f ∈ L1(λ), then V( f ) = Var( f ).

3. if f ∈ BV(S1) then there exist increasing functions f1, f2 : [0, 1] → R such that

f (x) = f1(x) − f2(x), for every x point of approximate continuity of f

Proof. Consider the periodic extension ĝ ∈ C∞(R) of g and note that g(x0) = ĝ(1 + x0), for

any sequence {x j}
k−1
j=0 satisfying the hypothesis. Let y j = x j for j ≤ k − 1 and yk = 1 + x0.

Then

k−1∑
j=0

|g(x j+1) − g(x j)| =
k−1∑
j=0

|

∫ y j+1

y j

∇ĝ(y)dy| ≤
k−1∑
j=0

∫ y j+1

y j

|∇ĝ(y)|dy

≤

∫ 1+y0

y0

|∇ĝ(y)|dy +

∫ 1

0
|∇ĥ(y)|dy =

∫
|∇g|dλ = Var(g).

Thus V(g) ≤ Var(g) and moreover the Lebesgue integral is equivalent to a Riemann one;

hence for every fixed ε > 0 there exists δ > 0 such that for any increasing sequence {y j}
k+1
j=0,

with y0 = 0, yk+1 = 1, |y j+1 − y j| < δ for 0 ≤ j ≤ k, we have

k∑
j=0

|g(y j+1 − g(y j)| >
∫
|∇g|dλ − ε,

and since [0, 1] is compact and g is continuous, we can choose δ such that every term

of the above sum is less than ε. Almost everywhere any point x of [0, 1] is a point of

approximate continuity of g, hence there exists an increasing sequences {x j}
k−1
j=0 of such

points such that x0 < δ, xk > 1 − δ, x j+1 − x j| < δ for 0 ≤ j ≤ k − 2. We deduce that

k−1∑
j=0

|g(x j+1) − g(x j)| >
k∑

j=0

|g(y j+1) − g(y j)| − 2ε >
∫
|∇g|dλ − 3ε,
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where xk = x0, y0 = 0, yk+1 = 1 and y j = x j+1 for 1 ≤ j ≤ k; V(g) ≥ Var(g) and the claim

follows.

By item 3 of the last proposition, there exists a sequence { fi}i∈N such that fi|M → f , in

L1(λ). Take any sequence of points {x j}
k
j=0 of approximate continuity of f , then since λ-

a.e. x ∈ [0, 1] is a point of approximate continuity of f , also for λ-a.e. s ∈ [0, 1], π(x j− s) are

points of approximate continuity of f . Furthermore, up to cyclical permutation, {π(x j−s)}k−1
j=0

is increasing, thus

k−1∑
j=0

| fi(x j+1) − fi(x j)| =
k−1∑
j=0

|

∫ 1/2

−1/2
ρ1/i(s)( f (π(x j+1 − s)) − d(π(x j − s)))ds|

≤

∫ 1/2

−1/2
ρ1/i(s)

k−1∑
j=0

| f (π(x j+1 − s)) − f (π(x j − s))|ds

≤ V( f )
∫ 1/2

−1/2
ρ1/i(s) = V( f ).

From the arbitrariety of the increasing sequence follows that V( fi|M) ≤ V( f ) and we can

apply item 1 to obtain Var( fi|M) ≤ V( f ); in fact fi|M → f in L1(λ) and thus

Var( f ) = lim
i→+∞

Var( fi|M) ≤ V( f ).

Now since for any x point of approximate continuity of f holds fi(x) → f (x), we deduce

that

k−1∑
j=0

| f (x j+1) − f (x j)| = lim
i→+∞

k−1∑
j=0

| fi(x j+1) − fi(x j)|

≤ lim
i→+∞

Var( fi|M) = Var( f ),

thus V( f ) ≤ Var( f ), which implies V( f ) = Var( f ).

Let c = lim infy→0 f (y), where y belongs to the set of the points of approximate continuity

of f . Let f1, f2 : [0, 1]→ R be

f1(x) = c + sup
{x j}

k−1∑
j=0

max{ f (x j+1) − f (x j), 0}

f2(x) = sup
{x j}

k−1∑
j=0

max{ f (x j) − f (x j+1), 0},
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where as before, we take the supremum over all increasing sequence {x j}
k−1
j=0 in [0, 1] of

points of continuity of f such that x j ≤ x. f1, f2 are increasing functions; fix ε > 0, let x

be any point of approximate continuity and let {x1
j }

k−1
j=0, {x2

j }
l−1
j=0 be increasing sequences in

[0, 1] upper bounded by x, such that

f1(x) ≥ c +

k−1∑
j=0

max{ f (x1
j+1) − f (x1

j ), 0} > f1(x) − ε

f2(x) ≥
l−1∑
j=0

max{ f (x2
j ) − f (x2

j+1), 0} > f2(x) − ε.

Let x0 < min{x1
0, x

2
0} such that | f (x0) − c| < ε. Since max{a,+b, 0} ≤ max{a, 0} + max{b, 0}

and max{a, 0} − max−a, 0 = a, we can consider an increasing sequence {x j}
m−1
j=0 , made by

joining together the two sequences {x1
j }

k−1
j=0, {x2

j }
l−1
j=0, such that

( f1(x) − ε) − f2(x) < c +

m−1∑
j=0

f (x j+1) − f (x j) < f1(x) − ( f2(x) − ε).

Finally

| f (x) − ( f1(x) − f2(x))| ≤ |c +

m−1∑
j=0

f (x j+1) − f (x j) − ( f1(x) − f2(x))| + | f (x0) − c| < 2ε.

�

Let Nξ : L1(M)→ L1(M) be the operator defined by the convolution

Nξ f = ρξ ∗ f .

Proposition 4.6. The Perron-Frobenius operator Lξ of Tξ is NξL, where L is the (determin-

istic) Perron-Frobenius operator of T .

Proof. Let φ ∈ L1(M) and let B ⊂ N be a measurable set; then

∫
B

Lξφdλ =

∫
Ω

∫
T−1(B−ω0)

φdµ(x) =

∫
S

∫
T−1(B−t)

φ(v)ρξ(t)dλ(x)dt

=

∫
S

∫
B

Lφ(x + t)ρξ(−t)dλ(x)dt =

∫
B

NξLφdλ.
(4.2)

�
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4.2/ EXISTENCE AND REGULARITY OF STATIONARY DENSITIES

We first investigate the existence of a stationary measure for system with additive noise,

which is a consequence of proposition 3.18.

Theorem 4.7. Let F : Ω × M → Ω × M, M = [0, 1]n, be a random dynamical system

with additive noise, where the noise has density ρ ∈ L1(λ) with respect to Lebesgue and

λ({ρ > 0}) > 0. Then there is a stationary measure η << λ.

Proof. Let δ = 1
2λ({ρ > 0}), we want to apply proposition 3.18. Let B be a set such that

λ(B) > 1 − δ, let x ∈ M

λ({ fω(x) ∈ B : ρ(ω > 0)}) ≥ λ(B) + λ({Fωx) : ρ(ω) >)}) − 1 > δ

⇒ λ({ω ∈ {ρ > 0} : Fω(x) ∈ B}) > δ.

Let ε > 0 such that

λ({ω ∈ {ρ > ε} : Fω(x) ∈ B}) > λ({ω ∈ {ρ > 0} : Fω(x) ∈ B}) −
δ

2
,

thus for every x ∈ M

µ({ω ∈ Ω : Fω(x) ∈ B}) ≥ ελ({ω ∈ {ρ > ε} : Fω(x) ∈ B}) >
εδ

2

and the hypothesis of proposition 3.18 are satisfied. �

Lemma 4.8. Let f ∈ BV(M) and let h ∈ Rn, then ‖τh f − f ‖L1 ≤ |h|Var( f ).

Proof. Let φ ∈ C1(Rn,R) and e = h/|h| ∈ Rn and let φ̂ = φe ∈ C1(Rn,Rn); for t = |h| we have

∫
(τh f (x) − f (x))φ(x)dλ(x) =

∫
f (x)(φ(x + h) − φ(x))dλ(x)

=

∫
f (x)

∫ t

0
∇φ(x + se) · edsdλ(x)

=

∫ t

0

∫
f (x) div φ̂(x + se)dλ(x)ds ≤ t Var( f ).

Since C1(Rn,R) is dense in L∞(Rn) we deduce ‖τh f − f ‖L1 ≤ |h|Var( f ). �

Lemma 4.9. If ρ in BV(M) and f ∈ L1(M) then ρ ∗ f ∈ BV(M).

Proof. BV(M) ⊂ L1(M), hence ρ ∗ f ∈ L1(M) by Young’s inequality. Let φ ∈ C1
c (M) with
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‖φ‖∞ ≤ 1, then ∫
(ρ ∗ f ) div φdλ =

∫ ∫
τtρ(x) f (t) div φ(x)dλ(t)dλ(x)

=

∫ (∫
τtρ(x) div φ(x)dλ(x)

)
f (t)dλ(t)

≤

∫
Var(τtρ) f (t)dλ(t) ≤ Var(τtρ)‖ f ‖L1 .

ρ has bounded variation and Var(τtρ) = Var(ρ) < +∞, hence we deduce that ρ ∗ f ∈

BV(M). �

Lemma 4.10. Let BV ′(m) be the set of bounded functions g : [0, 1]→ R such that for every

interval [a, b] ⊂ [0, 1], g−1([a, b]) can be expressed as an union of m intervals, where m is

a fixed integer. Then BV ′(m) ⊂ BV(M).

Proof. Let h ∈ BV ′(M) and let c = sup x ∈ [0, 1]|h(x)|. Our claim is that Var(h) ≤ 4c(m + 1).

Suppose for an absurdum to have Var(h) > 4c(m + 1), then there exists an increasing

sequence {x j}
k−1
j=0 such that

k−1∑
j=0

|h(x j+1) − h(x j)| > 4c(m + 1), xk = x0.

Every interval of the form [h(x j), h(x j+1)] or [h(x j+1, h(x j)] is contained in [−m,m], thus there

exists an interval [a′, b′] ⊂ [−m,m] that is contained in at least 2(m + 1) of this intervals,

and at least m + 1 are of the same type [h(x j), h(x j+1)] or [h(x j+1, h(x j)]; assuming the first

type without loss of generality we have

[a′, b′] ⊂ ∩m
i=0[h(x j(i)), h(x j(i)+1)],

where j(0), . . . , j(m) is now an increasing sequence in {0, . . . , k − 1}. Let a ∈ (a′, b′) and let

b > max{h(x j(1)+1), . . . , h(x j(m)+1)}, then h(x j(i)) < [a, b] and h(x j(i)+1 ∈ [a, b] for all 0 ≤ i ≤ m−1.

We deduce that h−1([a, b]) contains at least m+1 intervals, each one of them contains one

of the x j(i), and thus g < BV ′(M), which is a contradiction.

�

We are now ready to show that every stationary density is Lipschitz continuous.

Theorem 4.11. Let L be the Perron Frobenius operator associated to a non-singular trans-

formation T , let ρξ ∈ L∞(M) and let Lξ = NξL the convolution operator as defined above.

Then the following holds:

1. If φ ∈ L1(M) is such that Lφ ∈ BV(M), then Lξφ is Lipschitz-continuous
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2. if ρξ ∈ Ck(M) then for any φ ∈ L1(M), Lξφ ∈ Ck(M)

3. if ρξ ∈ BV(M) and L(BV(M)) ⊂ BV(M), then every stationary density is Lipschitz-

continuous

4. let M = S1 and ρξ ∈ BV(M). If for every interval [a, b] ⊂ [0, 1], T−1 can be expressed

as a union of m intervals, for some fixed integer m, then every stationary density is

Lipschitz-continuous.

Proof. 1. If Lφ ∈ BV(M), then for every x, h ∈ M,

|τ−hNξLφ(x) − NξLφ(x)| = |
∫

ρξ(t)(τtτ−hLφ(x) − τtLφ(x))dλ(t)|

≤

∫
|ρξ(t)(τ−tτtLφ(x) − τtLφ(x))|dλ(t)

≤ ‖ρξ‖L∞ |h|Var(τtLφ) = |h|‖ρξ‖L∞var(Lφ),

where we used 4.8, thus NξLφ is Lipschitz continuous.

2. We apply corollary 1.14 to f (ω, x) = ρ(x − ω)φ(ω).

3. If f is stationary then f = Lξ f = NξLφ is in BV(M) by lemma 4.9, thus it is Lipschitz

continuous by item 1.

4. We claim that if f ∈ BV(M) then L f = f ◦ T is in BV ′(m) ⊂ BV(M), as in lemma 4.10.

By proposition 4.5, up to a null measure set, there are two increasing functions f1
and f2 such that f = f1 − f2. If [a, b] ⊂ [0, 1], then f −1([a, b]) = [c, d] and

(L f )−1([a, b]) = T−1( f −1([a, b])) = T−1([c, d])

is union of m intervals, thus L f ∈ BV ′(m).

�

4.3/ LINEAR RESPONSE

The goal of this section is to provide an introduction to the linear response theory and

to enunciate theorem 4.21 ([22]) which we will apply in the study of the one-dimensional

Arnold map in the next chapter. To do so we need to introduce the space of Borel signed

measure and the associated regularization properties of the convolution, in the same

taste of the last section. Most of the proof are standard or contained in [22], and they will

be omitted.
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Definition 4.12. Let BS (S1) be the vector space of the Borel signed measures on S1 en-

dowed with the Wasserstein-Kantorovich norm defined on BS as

‖µ‖W = sup‖g‖∞≤1,Lip(g)≤1

∫
S1

g(x)dµ(x),

where Lip(g) is the best Lipschitz constant of g.

By some abuse of notation, in the following we will identify a measure which is absolutely

continuous with respect to the Lebesgue measure with its density.

Remark 4.13. BS is not complete with respect to ‖·‖, the completion leads to a distributions

space, that is the dual of the space of the Lipschitz function.

Definition 4.14. Let f , g ∈ BS (S1), we define the convolution f ∗ g ∈ BS (S)1 as

f ∗ g(A) :=
∫
S1

∫
S1
χA(x + y)d f (x)dg(y).

Remark 4.15. If f ∈ BS (S1) is absolutely continuous with respect to λ, then

f ∗ g(t) =

∫
S1

f (t − τ)dg(τ),

and in this case the convolution f ∗ g is a L1 function.

Definition 4.16. Let µ be a finite Borel measure with sign on S1. The total variation of µ is

defined as

‖µ‖ = µ+(S1) + µ−(S1),

where µ = µ+ + µ− is the decomposition of µ as the difference of two positive measures.

The next lemmas provide regularization properties of the convolution, as in the last sec-

tion.

Lemma 4.17. Under the above conditions, the following inequality holds:

‖ f ∗ g‖1 ≤ ||g|| ∗ || f ||1
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Proof. Suppose first that g is positive

‖ f ∗ g‖1 ≤ sup
‖h‖∞≤1

∣∣∣∣∣∫
S1

h(t) ( f ∗ g)(t)dt
∣∣∣∣∣

= sup
‖h‖∞≤1

∣∣∣∣∣∫
S1

h(t)
∫
S1

f (t − τ)dg(τ) dt
∣∣∣∣∣

≤ sup
‖h‖∞≤1

∣∣∣∣∣∫
S1

∫
S1

h(t) f (t − τ)dt dg
∣∣∣∣∣

≤

∫
S1
‖ f ‖1 dg(τ) ≤ ‖ f ‖1 · g(X)

The general case follows by the linearity of the convolution considering g = g+ − g− and

the fact that g−, g+ are positive measures. �

Lemma 4.18. Let f ∈ BS (S 1) such that f (S 1) = 0 and g ∈ L1. We have

‖ f ∗ g‖W ≤ ‖ f ‖W · ‖g‖1. (4.3)

Lemma 4.19. Let f ∈ BS (S 1), such that f (S 1) = 0, g ∈ BV

‖ f ∗ g‖1 ≤ 2‖ f ‖W · ‖g‖BV . (4.4)

Lemma 4.20. Let f ∈ L1, g ∈ BV

‖ f ∗ g‖BV ≤ ‖ f ‖1 · ‖g‖BV . (4.5)

Proof. Let us suppose first that f , g ∈ C1(S 1). In this case f ∗ g ∈ C1and

Var( f ∗ g) =

∫
S1

∣∣∣( f ∗ g)′(t)
∣∣∣ dt =

∫
S1

∣∣∣ f ∗ g′(t)
∣∣∣ dt

and by Lemma 4.17

Var( f ∗ g) ≤ || f ||1||g
′

||1

from which we get directly the statement.

Now suppose f ∈ C1 and g ∈ BV, let us consider as before gε ∈ C1 such that ‖gε − g‖1 ≤ ε

and ‖gε‖BV = ‖g‖BV .

Now

Var( f ∗ g) ≤ Var( f ∗ g − gε) + Var( f ∗ gε)

≤ Var( f ∗ g − gε) + || f ||1||g
′

ε ||1

but Var( f ∗ g − gε) ≤ Var( f )||g − gε || ≤ εVar( f ), which is arbitrarily small; hence we proved

the partial statement when f ∈ C1 and g ∈ BV.
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Now by approximating f ∈ L1 by a fε ∈ C1 such that ‖ fε − f ‖1 ≤ ε and using again Lemma

4.17 we get the full statement. �

We are finally ready to state the following linear response result. In the statement, (Bw, ‖ ·

‖w) play the role of a weak Banach space; considering a weak and a strong space (in this

case L1) is a common strategy in many areas of ergodic theory, for instance in the study

of Lasota-York inequalities. Please remark that we use the following notation: if A, B are

two normed vector spaces T : A→ B, we write

‖T‖A→B := sup
f∈A,‖ f ‖A≤1

‖T f ‖B

Theorem 4.21. Suppose that the family of operators Lδ satisfies the following four condi-

tions:

(LR0) fδ ∈ BV(S 1) is a probability measure such that Lδ fδ = fδ for each δ ∈
[
0, δ

)
. Moreover

there is M ≥ 0 such that ‖ fδ‖BV ≤ M for each δ ∈
[
0, δ

)
.

(LR1) (mixing for the unperturbed operator) For each g ∈ BV(S 1) with
∫

g dm = 0

lim
n→∞
‖Ln

0g||L1 = 0.

(LR2) (regularization of the unperturbed operator) L0 is regularizing from Bw to L1 and from

L1 to Bounded Variation i.e. L0 : (Bw, ‖ · ‖w)→ L1 , L0 : L1 → BV are continuous.

(LR3) (small perturbation and derivative operator) There is K ≥ 0 such that

||L0 − Lδ||L1→(Bw,‖·‖w) ≤ Kδ, and ||L0 − Lδ||BV→V ≤ Kδ. There is L̇ f0 ∈ Vw such that

lim
δ→0

∥∥∥∥∥ (L0 − Lδ)
δ

f0 − L̇ f0
∥∥∥∥∥

w
= 0. (4.6)

Then (Id − L0)−1 : Vw → Vw is a continuous operator and we have the following linear

response formula

lim
δ→0

∥∥∥∥∥ fδ − f0
δ

− (Id − L0)−1L̇ f0
∥∥∥∥∥

w
= 0. (4.7)

Thus (Id − L0)−1L̇ f0 represents the first-order term in the change of equilibrium measure

for the family of systems Lδ.

Remark 4.22. Observe that condition LR0 is always satisfied by systems with additive

noise and furthermore, the stationary measure f0 has a density of bounded variation (see

[22], Lemma 23), which is coherent with the theory developed so far from now.

Moreover by conditions LR1 and LR2 it follows that f0 is the unique fixed probability

measure of L0 in BS (S 1).
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We stress on the fact, that condition LR2 (regularization property) is required only for the

unperturbed operator L0 as well as condition LR1 (mixing assumption).

We finally remark, that condition LR1 can be verified via computer-aided proof for a cer-

tain class of systems, as we shall see in the next chapter.

4.4/ RATE OF MIXING AND PERTURBATIONS

In concrete applications, see for instance Chapter 6, we need to verify that a families of

random systems are mixing in the sense of Assumption LR1 of Theorem 4.21. Hence this

assumption must be satisfied in some large set of examples, not in just one. A solution to

this problem is to show that if a system is mixing, then there exists an open set of nearby

systems which are mixing. In the next subsection we provide the theoretical estimates,

and in the next chapter we will make advantage of them to study the rotation number of

a family of Arnold maps (see for instance proposition 6.8). These estimates are from [48]

and more details may be found there.

4.4.1/ PERTURBING THE MAP

In this subsection we show that the aforementioned notion of mixing is stable under suit-

ably perturbation. In particular if a given system with additive noise is proved to be mixing,

then we can extend the mixing to nearby system, and we provide quantitative estimates

in the || ||∞ norm.

Definition 4.23. A piecewise continuous map T on [0, 1] is a function T : [0, 1]→ [0, 1] such

that there is partition {Ii}1≤i≤k of [0, 1] made of intervals Ii such that T has a continuous

extension to the closure Īi of each interval.

Proposition 4.24. Let T1 and T2 : [0, 1] → [0, 1] be piecewise continuous nonsingular

maps and ρ ∈ BV. With the notations introduced above, for any f ∈ L1it holds

||(NLT1)n f − (NLT2)n f ||L1 ≤ 2n‖T1 − T2‖L∞ · ‖ρ‖BV · ‖ f ‖L1 .

Let us state some preliminary lemmas.

Lemma 4.25. Let T1 and T2 : [0, 1] → [0, 1] be piecewise continuous nonsingular maps

and let L1, L2 the associated deterministic transfer operators, let f ∈ L1. Then

‖LT1( f ) − LT2( f )‖W ≤ ‖T1 − T2‖L∞ · ‖ f ||L1 .
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Lemma 4.26. Let T1 and T2 : [0, 1] → [0, 1] be piecewise continuous nonsingular maps

and ρ ∈ BV. Let the associated transfer operators with additive noise given by the kernel

ρ be NLT1 , NLT2 , then for any f ∈ L1 it holds

‖NLT1( f ) − NLT2( f )||L1 ≤ 2‖T1 − T2‖L∞ · ‖ρ||BV · ‖ f ||L1 .

Proof of Proposition 4.24. We have that

(NLT1)n − (NLT2)n =

n∑
k=1

(NLT1)n−k(NLT1 − NLT2)(NLT2)k−1

||(NLT1)n − (NLT2)n||L1→L1 ≤ n||NLT1 − NLT2 ||L1→L1 .

We can estimate ||NLT1 − NLT2 ||L1→L1 by Lemma 4.26 we get the statement. �

The following corollary shows how to estimate the rate of mixing of a nearby system.

Corollary 4.27. If

||(NLT1)n f ||V→L1 ≤ α < 1 (4.8)

then

||(NLT2)n f ||V→L1 ≤ α + 2n‖T1 − T2‖L∞ · ‖ρ‖BV .

Indeed Corollary 4.27 implies that, if we have computed n, α for which 4.8 is satisfied for

the operator NLT1 , then all the operators T2 such that

‖T1 − T2‖L∞ <
1 − α

2n‖ρ‖BV
(4.9)

are still mixing. We will use the latter equation in Proposition 6.8.

4.4.1.1/ PERTURBING THE NOISE

Another thing we can do, is to provide mixing and mixing rate of a system when the noise

distribution is changed: the Fourier-based algorithm that we will present in this thesis can

be applied to random dynamical system with additive gaussian noise, i.e. noise with a

gaussian kernel. The result of this subsection shows how to recover the mixing rate for

the same system with a different noise kernel, with a small perturbation in L1.

If ρ1, ρ2 ∈ BV are two kernels we denote by N1,N2 the associated convolution operators.

Proposition 4.28. For each n ∈ N

||(N1L)n f − (N2L)n f ||L1 ≤ n||ρ1 − ρ2||L1 || f ||L1 .
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Proof. The proof is straightforward

(N1L)n − (N2L)n =

n∑
k=1

(N1L)n−k(N1L − N2L)(N2L)k−1

||(N1L)n − (N2L)n||L1 ≤ n||N1 − N2||L1→L1 ≤ n||ρ1 − ρ2||L1 .

�

Using Proposition 4.28 we can show how to estimate the rate of mixing of a perturbation

with respect to the noise of the operator.

Corollary 4.29. If

||(N1L)n f ||V→L1 ≤ α < 1

then

||(N2L)n f ||V→L1 ≤ α + n||ρ1 − ρ2||L1 .



5

RIGOROUS FINITE SCHEMES OF

APPROXIMATION

In this chapter we introduce two rigorous finite schemes of approximations and their ap-

plications; let us emphasize with a list what is, in a nutshell, the core-idea of a rigorous

approximation

• we choose a finite base of functions of a suitable subspace (for instance in the Ulam

method they will be indicator functions as basis of V, the zero-average space of L1),

and we compose an infinite dimensional operator L with the projection operator on

this base, yielding to a finite dimensional operator, i.e. a matrix Lδ

• now we search for a bound on the norm of the iterates of the discretized operator;

indeed this kind of bound, which quantifies in a sense the rate of mixing of the

operator Lδ, implies a bound on the norm of the difference between the stationary

density of L and the fixed point of Lδ (see lemma 5.6). Furthermore, this bound can

be established with a rigorous computation, in particular we will search for an α < 1

and n ∈ N such that ‖Ln
δ‖ ≤ α.

• all the computation are made in the framework of Interval Arithmetic, and not in

floating point arithmetic, which means that the results of our computations are not

floating point numbers, but intervals which contain the exact solution to the problem.

If these intervals are really small (and they will be), we can then speak properly of

rigorous approximation.

We stress on the fact that since we are working with interval arithmetic, the results of

our computations are mathematical statements proved with a computer aided proof, and

not simulations. In the next chapter we will briefly introduce interval arithmetic, but let us

remark this concept with an example.

Example 5.1. When we say ”we compute n, α, with α < 1, such that ‖Lδ‖ ≤ α, we actually

mean that, based on the properties of the interval arithmetic, we proved the following

59
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theorem

Theorem 5.2. There exists a, b ∈ Q, with b < 1, such that ‖Lδ‖ ∈ [a, b].

The latter implies ‖Lδ‖ ≤ α, with α = b.

In the following, we first introduce a rigorous Ulam approximation ([23]), which yield to

a finite stationary density (a vector) and a rigorous (small) error bound on it. Then we

introduce a Fourier finite scheme of approximation which gives a rigorous approximation

of the Perron-Frobenius operator (i.e. a matrix, with a rigorous error bound on it) with

exponential bounds; thus, at least empirically, we should be able to manage system of

dimension more than 1, which is not possible with the quadratic bounds of the Ulam

approximation. The study of the multidimensional setting will be a future work.

In the next chapters we then describe three original applications, in which we use fi-

nite rigorous finite scheme of approximation to investigate (family of) random dynamical

systems, using both the Ulam and Fourier approximation (the Ulam-based applications

appeared in [44; 48]). Working at the crossroad of mathematics (linear response theory)

and computer science (interval arithmetic) yields not only to concrete results (e.g. we

compute up to a certain approximation the Lyapunov exponents of a random system) but

also to theoretical results (e.g. the rotation number of the Arnold map is a differentiable

map).

5.1/ ULAM APPROXIMATION

In this section we describe part of the work contained in [23] [24], which is at the core

of the thesis, and we will use this framework to present the work of the next section. In

particular we will try to explain, without going through all the details (which again, are

contained in [23], [24]), the ingredients of a rigorous computation, so that the reader

can be prepared to approach the next section, in which we present a new scheme of

approximation (in its entirety).

Setting 5.3. For the rest of this section, Lξ = NξL will be the Perron Frobenius operator of

the random dynamical system with additive noise Tξ (see proposition 4.6), and the noise

is distributed according to a kernel ρξ ∈ BV(M), with support in [− ξ2 ,
ξ
2 ]. We also know that

there exists a stationary density fξ, such that Lξ fξ = fξ.

In 1960 (see [59]) Ulam introduces a scheme of approximation, which perhaps is still the

most popular one, for the discretization of a Perron-Frobenius operator.

Definition 5.4. Let {B1, . . . , Bk} be a partition of M by a finite number of disjoint sets, let

T a non singular transformation over M, then the Ulam’s matrix of order k is the matrix
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(pi j) = P ∈ M(k,R) whose entries are defined by the following relation

pi j =
λ(T−1(B j) ∩ Bi)

λ(Bi)
. (5.1)

The definition above is justified from the fact that one can look at the entries pi j as the

probabilities of being mapped from box Bi to box B j by the dynamical system T . P is

a row-stochastic matrix since the denominator λ(Bi) normalizes the entries and thus P

defines a finite Markov chain and has a left eigenvector with eigenvalues 1; whenever or

not this eigenvector approximates the invariant measure of the Perron-Frobenius opera-

tor associated to T , is an open question, called the Ulam’s conjecture, which has been

solved, for instance, in the one-dimensional case ([16], [21], [43], [52]).

Actually the Ulam’s method is a Galerkin projection of the Perron-Frobenius operator to

the subspace spanned by the functions ψi = 1
λ(Bi))

χB1 . Someone could ask if using higher-

order functions in the Galerkin projection could improve the approximation of the operator:

the answer is that in some case it is convenient, however high order approximations do

have the disadvantage that the discretized operator is not, in general, a Markov operator

(i.e. a stochastic matrix, [39], Section 3). In [34] specific Petrov-Galerkin methods which

use piecewise first or second order polynomial as bases functions, are able to recover

the Markov property for the approximated operator.

Thus let us redefine the Ulam’s method as a Galerkin projection, to adapt it to our context.

Definition 5.5. Let M = Tn, let Iδ = {I j}
l
j=1 be a δ-partition of M (i.e. for every j, the I j-s are

convex and diam(I j) ≤ δ); given an operator L : L1(M)→ L1(M) the associated discretized

(Ulam) operator is Lδ : L1(λ)→ L1(λ) defined by

Lδ = πδLπδ,

where πδ : L1(λ)→ L1(λ) is the projection

πδh(x) =

l∑
i=1

E(h|Ii)χIi
.

Thus, our purpose is to study the properties of the discretized operator πδLξπδ; given the

particular nature of Lξ, which is the product of the two operators Nξ and L, for computa-

tional purpose we consider the following discretization

Lδ,ξ := πδNξπδLπδ = (πδNξπδ)(πδLπδ).

Indeed with this definition, we compute once and for all the matrix πδLπδ, which is expen-

sive from a computational point of view, but leads to a sparse matrix. We then apply the
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operator πδNξπδ which is independent of the dynamics. Another reasonable discretization

could be

πδNξlπδ

, but this definition implies that we must recompute the discretized operator for each size

of the noise.

Observe that the invariant measure of Lδ,ξ (the eigenvector of eigenvalue 1), fδ,ξ, can

be computed up to any precision, because Lδ,ξ is a finite operator: hence the problem

becomes how to estimate effectively

‖ fδ,ξ − fξ‖L1 .

5.1.1/ BOUNDING THE RATE OF MIXING

Let V be the zero average subspace of L1. We start with a very simple but powerful

lemma, which explains why it is useful, for our purpose, to have a bound on the norms of

the iterates of a Markov operator (see definition 3.7).

Lemma 5.6. Suppose that there exists n ∈ N and α > 0 such that

‖Ln
δ,ξ |V‖L1→L1 ≤ α < 1,

then

‖ fξ − fδ,ξ‖L1 ≤
1

1 − α
‖(Ln

δ,ξ − Ln
ξ) fξ‖L1 . (5.2)

Proof. Since both fξ and fδ,ξ are fixed points

‖ fδ,ξ − fξ‖L1 = ‖Ln
δ,ξ fδ,ξ − Ln

ξ fξ‖L1

+ ‖Ln
δ,ξ fδ,ξ − Ln

δ,ξ fξ + Ln
δ,ξ fξ − Ln

ξ fξ‖L1

≤ ‖Ln
δ,ξ( fδ,ξ − fξ‖L1 + ‖(Ln

δ,ξ − Ln
ξ) fξ‖L1 .

(5.3)

Then the claim follows because

‖ fξ − fδ,ξ‖L1 ≤ α‖ fξ − fδ,ξ‖L1 + ‖Ln
δ,ξ − Ln

ξ) fξ‖L1 .

�

Indeed with the useful lemma we reduce the problem to finding a good upper bound on

‖(Ln
δ,ξ − Ln

ξ) fξ‖L1 . The following lemma, via telescopic decomposition, will show that this is

equivalent to the study of three quantities, which are way easier to be bounded.
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Lemma 5.7. Let ‖Li
δ,ξ |V‖L1 ≤ Ci and let fξ be an invariant probability measure for Lξ, it holds

‖Ln
δ,ξ − Ln

ξ) fξ‖L1 ≤ ‖(πδ − 1) fξ‖L1

+ (
n−1∑
i=0

Ci) · (‖Nξ(πδ − 1)L fξ‖L1

+ ‖NξπδL(πδ − 1) fξ‖L1).

(5.4)

Proof. We proceed by telescopic decomposition

Lδ,ξ = πδNξπδ − NξL

= NξL − πδNξL

+ πδNξL − πδNξπδL

+ πδNξπδL − πδNξπδLπδ.

With a similar decomposition on Ln
δ,ξ = (πδNξπδL)nπδ, we obtain:

‖(Ln
δ,ξ − Ln

ξ) fξ‖L1 = ‖((πδNξπδL)nπδ − (NξL)n) fξ‖L1

≤

n∑
i=0

‖(πδNξπδL)i(πδ − 1)(NξL)n−i fξ‖L1

+

n−1∑
i=0

‖(πδNξπδL)iπδNξ(πδ − 1)L(NξL)n−i−1 fξ‖L1

=

n∑
i=0

‖(πδNξπδL)i(πδ − 1) fξ‖L1

+

n−1∑
i=0

‖(πδNξπδL)iπδNξ(πδ − 1)L fξ‖L1 .

We can shift the indexes by 1 in the first sum, thus

‖(Ln
δ,ξ − Ln

ξ) fξ‖L1 ≤

≤ ‖(πδ − 1) fξ)‖L1 +

n−1∑
i=0

‖(πδNξπδL)iπδ|V‖L1→L1 · ‖NξπδL(πδ − 1) fξ‖L1

+

n−1∑
i=0

‖ ∗ πδNξπδL)iπδ|V‖L1→L1 · ‖Nξ(πδ − 1)L fξ‖L1

= ‖(πδ − 1) fξ‖L1 + (
n−1∑
i=0

Ci) · (‖Nξ(πδ − 1)L fξ‖L1 + ‖NξπδL(πδ − 1) fξ‖L1).

�

Looking at the three terms, it is easy to realize that what we really need to bound are the
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quantities

‖(1 − πδ)Nξ‖L1 ,

‖Nξ(1 − πδ)‖L1 .

The following theorem (5.8), provides these bounds; we report it in its completness since

it provides other bounds that may be useful to the reader in other situations. Within

lemma 5.7 and lemma 5.6, we can use part of theorem 5.8, to deduce an initial bound on

‖ fδ,ξ − fξ‖L1 .

Theorem 5.8. Let Iδ be a partition of M into convex sets, let πδ be the associated Ulam

projection, let I be a finite union of sets from Iδ and let Nξ be the convolution operator;

then

1. ‖1 − πδ‖var→L1 ≤ δ/2

2. ‖1 − πδ‖L1→W ≤ δ/2;

3. ‖1 − πδ‖varI→W(I) ≤ δ
2/8

4. ‖Nξ‖L1→var ≤ ξ
−1 Var(ρξ)

5. ‖Nξ‖W→L1 ≤ ξ−1 Var(ρξ)

6. ‖(1 − πδ)Nξ‖L1 ≤ 1
2δξ
−1 Var(ρξ)

7. ‖Nξ(1 − πδ)‖L1 ≤ 1
2δξ
−1 Var(ρξ).

Lemma 5.9. If there exist n, α < 1 such that

‖Ln
δ,ξ |V‖L1 ≤ α < 1

then if 0 ≤ Ci ≤ 1 are such that ‖Li
δ,ξ‖L1 ≤ Ci, we have

‖ fδ,ξ − fξ‖L1 ≤
1 + 2

∑n−1
i=0 Ci

2(1 − α)
δξ−1 Var(ρ). (5.5)

Proof. Theorem 5.8 implies that

‖Nξ(1 − πδ)‖L1→L1 ≤
1
2
δξ−1 Var(ρ)

‖(1 − πδ)Nξ‖L1→L1 ≤
1
2
δξ−1 Var(ρ).

We observe that on the right hand side of 5.4 all the items have either Nξ(1 − πδ) or

(1 − πδ)Nξ. Indeed since ‖ fξ‖L1 ≤ 1,
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‖(πδ − 1) fξ‖L1 = ‖(πδ − 1)NξL fξ‖L1 ≤
1
2
δξ−1 Var(ρ),

and similarly for the other summands. Finally applying 5.6 we get the statement.

�

5.1.2/ STRONGER BOUNDS AND COARSE-FINE STRATEGY

Usually we are going to work with large matrices, hence it would be useful to compute

some of the properties of these matrices (for instance its rate of mixing) on smaller ma-

trices. Indeed, if the noise has already been applied to the deterministic system, this is

possible; the following lemma, which bounds the distance between the powers of Lξ and

Lδ,ξ (provided that the noise has been applied at least once), yields to a bound on the

contraction rate of a certain operator using the computed contraction rate of a coarser

one.

Furthermore, assuming some regularity on the deterministic map T , it is possible to

strengthen the previous bounds via a coarse-fine strategy.

This strategy depends from several estimates, and we will resume them without reporting

their proof, which can be found in [23]; please remark, that we will develop a similar

strategy (in a different taste) in the next section, in the Fourier context, and there we will

provide the full details.

Lemma 5.10. Let ‖Li
δ,ξ |V‖L1 ≤ Ci; let σ be a linear operator such that ‖σ‖L1 ≤ 1, σ2 = σ and

σπδ = πδσ = πδ; let Λ = σNξσL. Then for all n ≥ 0

‖(Ln
δ,ξ − Λn)Nξ‖L1 ≤

δ

ξ
· (2

n−1∑
i=0

Ci + 1).

In particular the hypothesis are satisfied if

1. σ = Id and Λ = Lξ

2. σ = πδ′ and Λ = Lδ′,ξ.

Proof. Since σg − πδg = σ(1 − πδ)g, applying theorem 5.8, we have

‖σg − πδg‖L1 ≤ Var(g)δ/2, ‖σg − πδg‖W ≤ ‖g‖L1δ/2.
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Then we have

‖(Ln
δ,ξ − Λn)Nξ‖L1 ≤ ‖(πδNξπδL)n‖L1 · ‖(πδ − σ)Nξ‖L1

+

n−1∑
i=0

‖(πδNξπδL)i‖L1‖(πδ − σ)Nξ‖L1 · ‖(σLσNξ)n−i‖L1

+

n−1∑
i=0

‖(πδNξπδL)iπδ‖L1 · ‖Nξ(πδ − σ)‖L1 · ‖LσNξ(σLσNξ)n−i−1‖L1

≤ ‖(πδ − σ)Nξ‖L1 +

n−1∑
i=0

Ci‖(πδ − σ)Nξ‖L1 · ‖(σLσNξ)n−i‖L1

+

n−1∑
i=0

Ci‖Nξ(πδ − σ)‖L1 · ‖LσNξ(σLσNξ)n−i−1‖L1 ,

(5.6)

and the thesis follows because ‖L‖L1 ≤ 1, ‖Nξ‖L1 ≤ 1 and ‖σ‖L1 ≤ 1. �

The estimate given at 5.9 depend on the ratio δξ−1 and is obtained only with the infor-

mation about the approximated transfer operator Lδ,ξ (in particular its contraction rate). In

order to obtain stronger bounds we need to assume some regularity of the deterministic

part T .

Setting 5.11. In this subsection, the map T is assumed to be piecewise C1+γ, γ > 0,

and monotonic on a partition {C j} of [0,1]. If we denote Ti = T|Ci , then for each density

g ∈ L1(M) we denote by Lig = L(gχi) the component of Lg coming from the i-th branch, in

order to have

Lg =
∑

i

Lg.

We can now use theorem 5.8 and the regularity of T to give better bounds on the terms

appearing in 5.4.

Theorem 5.12. Each term in 5.4 admit a bound of the form

Ai‖ fξ − f̂ ‖L1 + Bi,

for i = 1, 2, 3. This implies the following bound

‖ fξ − f̂ ‖L1 ≤
1

1 − D
· (‖ fδ,ξ − f̂ ‖L1) + C

.

Proof. The three bounds for each term of 5.4 will be proven in the next three lemmas.

Plugging these estimates in 5.4 lead to
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‖(Ln
δ,ξ − Ln

ξ) fξ‖L1 ≤ A · ‖ fξ − f̂ ‖L1 + B,

where

A = A1 + (A2 + A3)
n−1∑
i=0

Ci B = B1 + (B2 + B3)
n−1∑
i=0

Ci.

If C = A/(1 − α) and D = B/(1 − α) (where α comes from 5.6), using 5.2 we obtain

‖ fξ − fδ,ξ‖L1 ≤ C + D · ‖ fξ − f̂ ‖L1

and then

‖ fξ − f̂ ‖L1 ≤ ‖ fδ,ξ − f̂ ‖L1 + CD · ‖ fξ − f̂ ‖L1

which implies

‖ fξ − f̂ ‖L1 ≤
1

1 − D
· (‖ fδ,ξ − f̂ ‖L1 + C).

�

For the sake of completeness we report the constants Ai, Bi, and we remark again that

they are taken from [23].

• A1 = δ
2ξ
−1 Var(ρ) and B1 = δ

2 Var(NξL f̂ )

• A2 = δ
2 Var(ρξ) and B2 = δ

2 Var(ρξ)
∑

I∈Π
∑

i min
{ δ

4 ,VarI(Li f̂ ), ‖Li f̂ ‖L1(I)
}

• A3 = δ
2ξ
−1Var(ρ)

• B3 =
∑

I∈Π min
{ δ2

8 ξ
−1 Var(ρ) · ‖T ′‖L∞(I),

δ
2
}
VarI(NξL f̂ ) + δ2

4 ξ
−1 Var(ρ) · Var(NξL f̂ ).

Please remark that in the second and third item Π is a uniform partition of [0, 1] whose

parts have size that is an integer multiple of δ and T is piecewise monotonic with Li

defined above.

5.2/ FOURIER APPROXIMATION

The Ulam method proposed in the last section is not suitable to work with multidimen-

sional systems, because the size of the matrices involved becomes too large to be han-

dle. Moreover, one of the advantage of the Ulam method, which is that it does not require

regularity of the map, it is also its disadvantage, since this does it means also that the

Ulam method cannot exploit the regularity of the map if there is any. The idea is then to

switch bases of function and instead of considering characteristic functions, we will con-

sider the classic Fourier basis; the regularity of the system will come from the convolution
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with the noise, that we suppose, in this section, to have a Gaussian kernel. As we will see,

this approach, which is slightly different from a computational point of view from the Ulam

one, leads to exponential bounds, which are exactly what we want in the perspective of a

multidimensional applications. This is a work in progress: here we present the theoretical

bounds and in the last chapter we will see an application of this method; further examples

will be presented in [47].

Let us introduce this new setting.

Let `∞ be the space of bilateral bounded sequences and let F be the operator

F ( f )[k] =

∫
S 1

f (x)e−2kπixdx.

This operator, is a version of the well known Fourier transform.

Lemma 5.13. The operator F is continuous from L1 to `∞ and

||F ||L1→`∞ = 1.

Proof. Since |e2kπix| = 1 we have that for all k:

|F ( f )[k]| = |
∫

S 1
f (x)e−2kπixdx| ≤

∫
S 1
| f (x)||e2kπix|dx ≤ || f ||L1 .

�

To simplify the notations, let γσ = 1√
2πσ2

and let ρσ(x) = γσe−
x2

2σ2 . These constants will

appear through the rest of this section.

Let f ∈ L1 and let Nσ f be the convolution of ρσ with the periodic extension of f , i.e.

Nσ f = ρσ∗̂ f =

+∞∑
j=−∞

∫ 1

0
ρσ(x + j − y) f (y)dy,

By definition Nσ f is a periodic function and ∀x ∈ S 1 we have that

Nσ f (x) ≤ 2
+∞∑
j=0

ρσ(x + j)|| f ||L1 ,

which we can bound uniformly by

2|| f ||L1

+∞∑
j=0

ρσ( j),

since the sum is upper bounded, for instance, by
∫ ∞

0 ρσ < +∞.
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The following lemma explains the relationship between the Fourier transform and the

operator Nσ.

Lemma 5.14. There exists an operator Dσ : `∞ → `∞ such that

DσF = F Nσ

Proof. By direct computation we have

F Nσ f (x) =

∫ 1

0

+∞∑
j=−∞

∫ 1

0
f (x − y)ρσ(y + 2k j)dye−2kπixdx.

Since the series in the integral is uniformly bounded, the integral above is equal to

+∞∑
j=−∞

∫ 1

0

∫ 1

0
f (x − y)ρσ(y + 2k j)e−2kπixdydx.

Let z = x − y then

+∞∑
j=−∞

∫ 1

0

∫ 1

0
f (z)ρσ(y + 2k j)e−2kπi(z−y)dydx

=

+∞∑
j=−∞

∫ 1

0

∫ 1

0
f (z)e−2kπizρσ(y + 2k j)e+2kπiydydz

=

∫ 1

0
f (z)e−2kπizdz

+∞∑
j=−∞

∫ 1

0
ρσ(y + 2k j)e+2kπiydy.

Which implies that

Dσe j =

∫ 1

0
ρσ(y + 2k j)e2kπiydye j = e−

k2σ2
2 e j.

�

Indeed, we have something stronger:

Corollary 5.15. Let

`exp = {(ak)k∈Z | ak ≤ Ce−|k|}.

Then Dσ maps `∞ into `exp.

Proof. Since each sequence in `∞ is bounded, this follows from the fact that

e−
k2σ2

2

decays exponentially. �
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Now recall (it is a standard result in Fourier analysis) that if a sequence belongs to `exp,

then the associated Fourier series converges uniformly to an analytic function.

Theorem 5.16. Let {ak}k∈Z be a sequence in `exp. Then

F −1({ak}) =

+∞∑
−∞

ake2πix

converges uniformly to an analytic function. Moreover, if f is in L2, we have that

F −1F ( f ) = f .

We are now ready to define the projection π of a function over a finite Fourier basis, and

to exploit the properties of π in relation to the operators F and Dσ.

Definition 5.17. Let πk : L1 → L∞ be defined as

πk f =

k∑
j=−k

(∫ 1

0
f (x)e−2iπ jxdx

)
e−2iπ jx =

k∑
j=−k

F ( f )[ j]e−2iπ jx.

Definition 5.18. We denote by π̃k : `∞ → `∞ the operator that sends {a j} j∈Z to the sequence

{b j} j∈Z such that b j = a j for | j| ≤ k, b j = 0 for | j| > k.

Lemma 5.19. The following are true

1. Dσ commutes with π̃k and (1 − π̃k),

2. F −1π̃kF = πk f .

Remark 5.20. Since it has only a finite number of Fourier coefficients, the convergence of

F −1π̃kF f

is trivial.

As we already saw in the last section, a central role is played by the quantities, ||Nσ(1−πk)||

and ||(1 − πk)Nσ||, and our goal is to bound them. We have now all the tools to prove the

following theorem, which provides exponential bounds.

Theorem 5.21. Let Γσ,k := γσ
e−

k2σ2
2

k ; the following are true

1. ||Nσ(1 − πk)||L1→L∞ ≤ 2
∑+∞

j=k e−
j2σ2

2 ≤ Γσ,k,

2. ||(1 − πk)Nσ||L1→L∞ ≤ 2
∑+∞

j=k e−
j2σ2

2 ≤ Γσ,k.
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Proof. We prove the first item; we proceed with a formal computation, which will be

proved to be well defined then, by showing that F −1 is defined.

3Nσ(1 − πk) = F −1F Nσ(1 − πk)

= F −1DσF (1 − πk) =

= F −1Dσ(1 − π̃k)F .

Since Dσ maps `∞ into `exp we have that F −1Dσ(1 − π̃k)F f is an analytic function whose

Fourier coefficients are such that a j = 0 for | j| ≤ k and

|a j| ≤ || f ||L1e−
j2σ2

2

for |i| > k. This proves also that

||Nσ(1 − πk)||L1→L∞ = ||F −1Dσ(1 − π̃k)F ||L1→L∞ ≤ 2
+∞∑
j=k

e−
j2σ2

2 ≤
e−

k2σ2
2

kσ
√

2π
= Γσ,k.

Observe now that

(1 − πk)Nσ = F −1F (1 − πk)Nσ

= F −1(1 − π̃k)DσF

= F −1Dσ(1 − π̃k)F

hence the proof can be adapted also to the second item. �

5.2.1/ BOUNDING THE RATE OF MIXING

In this section we do the analogous of what we did for the Ulam method, in a new taste,

using the new bounds we just obtained.

We start by proving the following lemma.

Lemma 5.22. πkNσπkLπk = πkNσLπk
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Proof. Let use the Fourier transform,

πkNσπkLπk = F −1F πkNσπkLπk

= F −1π̃kDσπ̃kF Lπk

= F −1π̃kπ̃kDσF Lπk

= F −1π̃kDσF Lπk

= πkNσLπk.

We used that Dσ commutes with π̃k and π̃2
k = π̃k. �

To proceed in our treatment, we need a bound on the quantity Nπk, provided by the next

lemma.

Lemma 5.23.
||Nσπk||L1 = ||πkNσ||L1 ≤

(
1 + Γσ,k

)
Proof. We observe that

πkNσ = Nσ + (πk − 1)Nσ.

Then

||πkNσ||L1 = ||Nσ||L1 + ||(πk − 1)Nσ||L1 ≤ 1 + Γσ,k,

where we used

||(1 − πk)Nσ||L1 ≤ ||(1 − πk)Nσ||L1→L∞ .

�

Thus if we consider fσ, the fixed point of Lσ this implies the following corollary.

Corollary 5.24.
||πk fσ||L1 = ||πkNσL fσ||L1 ≤

(
1 + Γσ,k

)
|| fσ||L1

Lemma 5.25.

||(Ln
σ,k − Ln

σ) fσ||L∞ ≤
N−1∑
i=0

Ci
(
1 + Γσ,k + ||ρσ||∞

)
Γσ,k

Proof. We start by observing:

(πkNσLπk − NσL) fσ = (πkNσLπk − NσLπk + NσLπk − NσL) fσ,

which gives us

(1 − πk)NσLπk fσ − NσL(1 − πk) fσ

that can be estimated using

||(1 − πk)Nσ||L1→L∞ ≤ Γσ,k
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which implies

||(1 − πk)NσLπk fσ||L∞ ≤
(
1 + Γσ,k

)
Γσ,k,

and the fact that

||(1 − πk) fσ||L1 ≤ ||(1 − πk)NσL fσ||L∞ ≤ Γσ,k

which implies that

||NσL(1 − πk) fσ||∞ ≤ ||ρσ||∞Γσ,k.

With a telescopic argument we obtain

Ln
σ,k − Lσ =

N−1∑
i=0

Li
σ,k(Lσ,k − Lσ)LN−i−1

σ

So, thanks to Lσ fσ = fσ we have

||

N−1∑
i=0

Li
σ,k(Lσ,k − Lσ)LN−i−1

σ fσ||∞ ≤
N−1∑
i=0

Ci
(
1 + Γσ,k + ||ρσ||∞

)
Γσ,k

�

Lemma 5.26. Let fσ be the unique fixed point of Lσ and fσ,k be the unique fixed point of

Lσ,k.

Then

|| fσ − fσ,k||∞ ≤
1

1 − α

N−1∑
i=0

Ci
(
1 + Γσ,k + ||ρσ||∞

)
Γσ,k

Proof. This follows from

|| fσ − fσ,k||∞ ≤ ||Ln
σ,k( fσ − fσ,k)||∞ + ||Ln

σ,k − Ln
σ fσ||L∞ .

�

So far from now, we obtained an effective way to bound the quantity || fσ − fσ,k||∞, which

was our purpose. Let us prove, again, a coarse-fine inequality; as we already explained

this kind of inequalities are extremely useful during the computations.

Lemma 5.27.

||(Ln
σ,k − Ln

σ,k′)Nσ||L1→L∞ ≤

n−1∑
i=0

Ci
(
1 + ||ρσ||∞ + Γσ,k′ + Γσ,k

)
Γσ,k

(
1 + Γσ,k′

)n
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Proof. We may use again a telescopic decomposition

(Ln
σ,k − Ln

σ,k′)Nσ =

n−1∑
i=0

Li
σ,k(Lσ,k − Lσ,k′)Ln−i−1

σ,k′ Nσ.

We already proved that

||(1 − πk)Nσ||L1→L∞ ≤ Γσ,k,

which in turn implies that

||πkNσ f ||L1 ≤ ||Nσ f ||L1 + ||(1 − πk)Nσ f ||L1

≤ || f ||L1 + ||(1 − πk)Nσ f ||L∞

≤
(
1 + Γσ,k

)
|| f ||L1 .

We rewrite now

(πk′NσLπk′) jNσ = πk′Nσ(Lπk′Nσ) j.

The computation above implies that

||(Lπk′Nσ) j||L1 ≤
(
1 + Γσ,k′

) j+1 .

We observe now that πkπk′ = πk. We bound now

(Lk,σ − Lk′,σ)πk′Nσ = πkNσLπkNσ − πk′NσLπk′Nσ

= πkNσLπkNσ − πk′NσLπkNσ

+ πk′NσLπkNσ − πk′NσLπk′Nσ.

We observe that

||(πk − πk′)Nσ||L1 ≤ ||(πk − πk′)Nσ||L1→L∞ ≤ Γσ,k

Then

||πkNσLπkNσ − πk′NσLπkNσ||L1→L∞ ≤ ||(πk − πk′)Nσ||L1→L∞ ||L||L1 ||πkNσ||L1

≤ Γσ,k
(
1 + Γσ,k

)
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and

||πk′NσLπkNσ − πk′NσLπk′Nσ||L1→L∞

≤ ||πk′Nσ||L1→L∞ ||L||L1 ||(πk − πk′)Nσ||L1

≤ (||Nσ||L1→L∞ + ||(1 − πk′)Nσ||L1→L∞)Γσ,k

≤
(
||ρσ||∞ + Γσ,k′

)
Γσ,k

�

5.2.2/ ERROR BY USING THE DFT

The Fourier transform of course cannot be exactly implemented in a laptop, anyway we

may use the Discrete Fourier Transform instead, which provides a fast way (thanks to

the FFT algorithm, Fast Fourier Transform) to compute an approximation of the Fourier

coefficients we want. Thus, we need to take care of the error we are making by using

a FFT of order say N, to compute a coefficient of order k << N. We end this section

providing an exponential bound on the so-called aliasing error, i.e. the difference between

a Fourier coefficient and the same coefficient computed via DFT.

Lemma 5.28. Let f ∈ BV, let {xi}
N−1
i=0 be equispaced points on S 1; consider the two coeffi-

cients

Xk =

N−1∑
n=0

f (
n
N

)e−2πikn/N

and

f̂ (k) = F f (x)e−2πikx

Then we have that

|Xk − f̂ (k)| ≤ 2
+∞∑
p=1

e
−(k+pN)2σ2

2 ≤ Γσ,N (5.7)

Proof.

Xk =
1
N

N−1∑
n=0

∞∑
j=−∞

f̂ (i)e2 jπin/Ne−2kπin/N

=
1
N

∞∑
j=−∞

N−1∑
i=0

e2 jπin( j−k)/N


Now, the sum into parenthesis is different from 0 only when j − k is a multiple of N.

Therefore

Xk =

+∞∑
p=−∞

f̂ (k + pN) = f̂ (k) +

+∞∑
p=1

f̂ (k + pN) + f̂ (k − pN).
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We can choose N such that f̂ (k + N) is really small, since our Fourier coefficients decay

fast. We have indeed

|Xk − f̂ (k)| ≤ 2
+∞∑
p=1

e
−(k+pN)2σ2

2 ≤ Γσ,N

�
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APPLICATIONS

In this chapter and in the last section of chapter 7 we will apply the rigorous schemes of

approximation described so far, to three significative examples. The first two dynamical

systems under consideration belong to the family of the so-called Arnold Maps ([44],[48]),

and they comes from two different natural phenomena; indeed Arnold’s standard circle

maps are widely used to study the quasi-periodic route to chaos. We will use the first

one as an introductory example to the Ulam method, explaining how the theory made

so far, is being applied in a concrete example. We will turn then to a more complicated

example, in which rigorous computations, co-aided by linear response theory, will led to

non-trivial results, such as the differentiability of the rotation number. Arnold’s standard

circle maps are widely used to study the quasi-periodic route to chaos and other phe-

nomena associated with nonlinear dynamics in the presence of two rationally unrelated

periodicities.

Finally in the last example we apply the Fourier scheme of approximation (section 5.2) to

a perturbed doubling map; as we said before this is a work in progress and many, more

meaningful, other examples will be produced in the future. Still, even in this easy but

non trivial case, we can appreciate the power of the Fourier method, obtaining bounds

of the order of 10−80. We choose to report this last example at the end of the numerical

discussion of the Fourier algorithm, 7.2.3.

6.1/ ASSOCIATIVE MEMORY IN THE HIPPOCAMPUS AS RANDOM

DYNAMICAL SYSTEM

The first example that we want to study is a random dynamical system Tξ, with a deter-

ministic component given by an Arnold circle map (see Figure 6.2) and a stochastic part

given by a random additive noise, defined as

xn+1 = T (xn) + ξn (mod 1), where T (v) = v + A sin(4πv) + C, (6.1)

79
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Figure 6.1: Data collected in [33].

for A = 0.08, C = 0.1 and ξn an i.i.d. sequence of random variables with a distribution

assumed uniform over [−ξ, ξ].

This map was proposed in [33; 57] as a model of the evolution of a macrovariable, re-

lated to the activity of an asynchronous neural network in absence of external stimulus,

related to a rule of successive association of memory. Indeed a macrovariable, related

to the “activity” of the network (see Figure 6.1), was observed to evolve as a noisy one

dimensional map in the case that the network receives no external stimulus (its definition

of can be found in [33] (p. 6).). This was regarded in [57] as related to a rule of successive

association of memory, exhibiting chaotic dynamics.

We recall that the Perron-Frobenius operator associated to this system is given by Lξ =

NξL, where Nξ is a convolution operator and L is the Perron-Frobenius operator of T .

Nξ f (t) = ξ−1
∫ ξ/2

−ξ/2
f (t − τ). (6.2)

As explained in the lasts chapters, this operator admits an invariant probability density in

L1, which can be rigorously approximated. We want to compute, up to some error, this

density, using lemma 5.7, lemma 5.9 and theorem 5.12; we recall that in these statements

there are bounds which depend from properties of the discretized operator, e.g. its rate of

mixing. Since the discretized operator is a matrix, we can rigorously compute via interval

arithmetics these quantities, leading to rigorous bounds on the error on the computed

stationary density (lemma 5.7). All the algorithm and the numeric details are reported in

the next chapter.

If we apply this black box described so far, we obtained data summarized in Table 6.1,

6.2; in figure 6.3d, 6.4d, you may see the plot of the computed stationary densities. In the

tables,
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Figure 6.2: Deterministic component of Equation (6.1).

• ξ is the size of the noise

• ncontr and αcontr are such that ‖Lncontr
δ′,ξ ‖ ≤ αcontr, these are the bounds obtained on a

coarser partition δ′

• via coarse-fine strategy we obtain the bounds for the finer partition: α, and the

related
∑

Ci

• finally l1apriori and l1err, are the bounds on the L1 error.

Remark 6.1. The images below show a rigorous estimate of the density of probability of

visits of typical trajectories near the attractors, showing that this is relatively high with

respect to the density of probability of visits in other parts of the space. In particular

we can observe that the trajectories concentrate in certain “weakly attracting” and “low

chaotic” regions of the space.

The presence of these “weakly attracting” and “low chaotic” regions is in concordance

with the concept of chaotic itinerancy, a concept which still did not have a complete math-

ematical formalization. The results presented in this section aim to bring some light on

this concept, which is so widely used in the applied literature: chaotic itinerancy is used

to refer to a dynamical behavior in which typical orbits visit a sequence of regions of the

phase space called “quasi attractors” or “attractor ruins” in some irregular way. This be-

havior was observed in several models and experiments related to the dynamics of neural

networks and related to neurosciences. We invite the reader to consult [58] for a wider

introduction to the subject and to its literature.
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ξ ncontr αcontr α
∑

Ci l1apriori l1err

0.732 × 10−1 126 0.027 0.05 56.64 0.313 × 10−2 0.715 × 10−4

0.610 × 10−1 167 0.034 0.067 78.66 0.530 × 10−2 0.105 × 10−3

0.488 × 10−1 231 0.051 0.1 120.56 0.106 × 10−1 0.184 × 10−3

0.427 × 10−1 278 0.068 0.14 156.45 0.163 × 10−1 0.268 × 10−3

0.366 × 10−1 350 0.087 0.19 213.17 0.273 × 10−1 0.432 × 10−3

0.305 × 10−1 453 0.12 0.26 307.03 0.523 × 10−1 0.813 × 10−3

0.275 × 10−1 532 0.14 0.32 380.64 0.776 × 10−1 0.122 × 10−2

0.244 × 10−1 596 0.19 0.41 467.70 0.124 0.202 × 10−2

δ = 2−19 is used to compute the invariant density via power method; δcontr = 2−14, is used to find the estimates
on the contraction rate and δest = 2−12 is used to estimate the L1 error of the invariant density

.

Table 6.1: Summary of the L1 bounds on the approximation error obtained for the range
of noises ξ, with parameters A = 0.8, C = 0.01.

ξ ncontr αcontr α
∑

Ci l1apriori l1err

0.732 × 10−1 183 0.03 0.059 83.57 0.466 × 10−2 0.255 × 10−4

0.610 × 10−1 237 0.046 0.089 119.31 0.822 × 10−2 0.282 × 10−4

0.488 × 10−1 332 0.069 0.14 186.80 0.170 × 10−1 0.323 × 10−4

0.427 × 10−1 406 0.087 0.18 244.95 0.267 × 10−1 0.358 × 10−4

0.366 × 10−1 494 0.12 0.25 330.89 0.459 × 10−1 0.419 × 10−4

0.305 × 10−1 500 0.3 0.46 419.92 0.974 × 10−1 0.646 × 10−4

0.275 × 10−1 596 0.32 0.52 517.97 0.151 0.807 × 10−4

0.244 × 10−1 600 0.49 0.73 573.04 0.326 0.189 × 10−3

δ = 2−19 is used to compute the invariant density via power method; δcontr = 2−14, is used to find the estimates
on the contraction rate and δest = 2−12 is used to estimate the L1 error of the invariant density

.

Table 6.2: Summary of the L1 bounds on the approximation error obtained for the range
of noises ξ, with parameters A = 0.8, C = 0.01.
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(a)

(b)

(c)

(d)

Approximated stationary densities fξ,δ for Tξ, with δ = 2−19 and A = 0.08. (a) ξ = 0.732 × 10−1; (b)
ξ = 0.488 × 10−1; (c) ξ = 0.305 × 10−1; (d) ξ = 0.214 × 10−1. See remark 6.1.
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(a)

(b)

(c)

(d)

Approximated stationary densities fξ,δ for Tξ, with δ = 2−19 and A = 0.07. ( a) ξ = 0.732 × 10−1; (b)
ξ = 0.488 × 10−1; ( c) ξ = 0.305 × 10−1; ( d) ξ = 0.214 × 10−1. See remark 6.1.
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6.2/ THE ROTATION NUMBER OF THE ARNOLD MAP

The El Niño–Southern Oscillation (ENSO) phenomenon is a crucial component of climate

variability on interannual time scales and it is dominated by the seasonal cycle, on the one

hand, and an intrinsic oscillatory instability with a period of a few years, on the other. The

role of meteorological phenomena on much shorter time scales, such as westerly wind

bursts, has also been recognized and modeled as additive noise. Arnold’s standard circle

maps are widely used to study this kind of phenomena, in which two rationally unrelated

periodicities are in competition; they are defined in the following way: let Tτ,ε : S 1 → S 1

be the deterministic circle map defined by

Tτ,ε(x) := x + τ −
ε

2π
sin(2πx) mod 1 . (6.3)

Here τ := 2π/ω and ω := ωi/ωe is the driving frequency, while ε ≥ 0 parameterizes the

magnitude of nonlinear effects. By Arnold map with additive noise we mean the stochastic

process {Xn}n∈N on S 1 defined by

Xn+1 = Tτ,ε(Xn) + Ωn mod 1. (6.4)

At each iterate of Tτ,ε(x), an independent identically distributed (i.i.d.) noise Ωn, that is

uniformly distributed on [−ξ/2, ξ/2], is added to the deterministic term on the right-hand

side of equation 6.4; in particular, the noise is independent of the point Xn ∈ S 1.

In the case ε = 0, ξ = 0, the system is simply a rotation of the circle. In the deterministic

case, where ξ = 0, and ε ∈ (0, 1) we get the classical Arnold circle map, which is one of

the most used models in several scientific areas: models of coupled oscillators [60; 38],

model for cardiac arrhythmias [61; 28] or sleep-wake regulation cycle [7].

In the deterministic case, one of the most remarkable feature of this model is the mode-

locking phenomenon, but let us first introduce the concept of rotation number.

Definition 6.2. The rotation number ρ = ρτ measures the average rotation per iterate of

6.3 on S 1 and is defined as

ρτ := lim
n→∞

T̃ n
τ,ε(x)
n

where T̃ n
τ,ε : R→ R is the lift of Tτ,ε to R, defined by

T̃τ,ε(x) := x + τ −
ε

2π
sin(2πx). (6.5)

We need to adapt this definition to our random contest, by considering a stochastic pro-
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cess X̃ on R defined by X̃n+1 = T̃τ,ε(X̃n) + Ωn and

ρτ := lim
n→∞

X̃n

n
.

Let us recall two general classical results about the properties of the rotation number,

in the particular case of deterministic and orientation-preserving diffeomorphism of the

circle; for further details we refer to [30; 37].

• the rotation number is independent of x ∈ S 1.

• the Denjoy theorem : it states that an orientation-preserving diffeomorphism (for our

maps Tτ,ε this corresponds to the weakly nonlinear case ε < 1) having an irrational

rotation number is topologically conjugate to an irrational rotation in S 1 (see [37;

62]).

Something surprising happens around the rational values of the driving frequency: the

rotation number is locally constant. In other words: the map ”rotation number vs driving

frequency” is a devil’s staircase (see Fig. 6.5 for one example). Furthermore the graph

of the rotation number seems to go through a ”smoothing” process, i.e the map τ 7→ ρτ

becomes smooth.

In the case ε ∈ (0, 1) (what we called weak nonlinearity), this was rigorously proved in

[64]. Hence we may ask wether or not the map ρτ admits a derivative with respect to the

parameter τ. A classical result asserts that this derivative is defined in a point τ0 when

the corresponding rotation number is irrational (ρτ0 < Q) [30])); other results can be found

in [49],[46].

If ε > 1, i.e. in the case of strong nonlinearity, the methods of [64] cannot work. As in

the diffeomorphism case we can numerically observe that the action of the noise makes

the rotation number smoother. In [48], with the methods illustrated so far from now, it was

proved that

• the rotation number is differentiable at every value τ for which the system is mixing

(and the existence of intervals for which this assumption is verified is proved as

well); this was done by using linear response theory, in particular theorem 4.21 and

using the Ulam algorithm for the rigorous computation of the rate of mixing

• the rotation number is not always monotonic. Here a certified approximation of the

stationary measure, with a small error on L1, leads to a certified estimate on the

rotation number.

In the next sections we are going to review these results, showing the effectiveness and

the power of our rigorous computations.
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Figure 6.5: Plot of the rotation number ρ = ρτ for ε = 0.9. The black line corresponds to
the absence of uniformly distributed noise, while the red line shows this dependence in
the presence of such noise, with amplitude ξ = 0.05. Recall that τ = 2π/ω, where ω is the
driving frequency. The lower panel is a blow-up of the dependence near the value τ = 0.5.
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Figure 6.6: Same as Fig. 6.5 but for ε = 1.4 and for noise amplitude ξ = 0.01. Here the
lower panel is a blow-up of the dependence near τ = 0.7.
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6.3/ DIFFERENTIABILITY OF THE ROTATION NUMBER FOR STRONG

NONLINEARITY

Adapting a general linear response result, theorem 4.21, we will show that the rotation

number is differentiable with respect to the parameter τ. We will use a computer assisted

proof to compute an interval in which the assumption of theorem 4.21 are satisfied. One

of the keys is that the linear response with respect to ‖ · ‖W is sufficient to deduce the

smoothness of the rotation number, because it has an associated observable which is

Lipschitz. Let us start by recalling that we are considering a family of operators Lδ, δ ∈

[0, δ], i.e. the transfer operators associated with the Arnold maps with additive noise; as

already pointed out the transfer operator associated to the system with additive noise

Lδ : L1 → L1 is given by

[Lδ f ](t) = [ρξ ∗ LTδ( f )](t). (6.6)

We start now to verify the assumption of theorem 4.21, this is done in the following two

lemmas. Assumption LR1 will be computationally verified, and we are going to show it at

the end of the section.

Lemma 6.3. The limit defined at (4.6) exists in BS and the limit converges in the W-norm.

lim
δ→0

∥∥∥∥∥∥ (L0 − Lδ)
δ

f0 −
[δ−ξ − δξ]

2ξ
∗ LT0( f0)

∥∥∥∥∥∥
W

= 0.

Proof. We remark that LT0( f0) ∈ L1(S 1) furthermore

L0 f0(t) = [ρξ ∗ LT0( f0)](t) =

∫
S1
ρξ(t − τ)[LT0( f0)](τ)dτ

and

Lδ f0(t) = [ρξ ∗ LTδ( f0)](t) =

∫
S1
ρξ(t − τ)[LT0( f0)](τ − δ)dτ

=

∫
S1
ρξ(t − c − δ)[LT0( f0)](c)dc

hence [Lδ − L0

δ
f0
]

(x) =

∫
S1

ρξ(t − δ − τ) − ρξ(t − τ)
δ

[LT0( f0)](τ)dτ. (6.7)
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Denoting by Rδ : L1 → L1 the translation operator given by [Rδ f ](x) = f (x− δ). It holds that

Lδ − L0

δ
f0 =

[R−δρξ − ρξ]
δ

∗ [LT0( f0)] (6.8)

but

lim
δ→0

∥∥∥∥∥∥ [R−δρξ − ρξ]
δ

−
[δ−ξ − δξ]

2ξ

∥∥∥∥∥∥
W

= 0

where δ−ξ and δξ are the delta measures placed on ±ξ.

Then by (4.3)

lim
δ→0

L0 − Lδ
δ

f0 =
[δ−ξ − δξ]

2ξ
∗ LT0( f0)

(recall that T0 is nonsingular and then LT0( f0) ∈ L1 ) with convergence in the || ||W norm. �

Lemma 6.4. The remaining assumptions of Item LR3 of Theorem 4.21 are satisfied:

||L0 − Lδ||L1→(BS ,‖·‖W ) ≤ Kδ, and ||L0 − Lδ||BV→V ≤ Kδ.

Proof. Let f ∈ L1. By (6.8) it holds

[Lδ − L0] f = [R−δρξ − ρξ] ∗ [LT0( f )].

Since there is a K such that ||[R−δρξ − ρξ]||L1 ≤ Kδ by Lemmas 4.17 and 4.18 we directly

get the statement. �

These estimates are leading to the following linear response statement adapted to our

situation.

Proposition 6.5. Let T0 : S 1 → S 1 be a nonsingular map. Let Tδ defined as Tδ(x) =

T0(x) + δ, let Lδ : L1 → L1 be the transfer operator defined as in (6.6). Let fδ ∈ L1 be such

that Lδ fδ = fδ (a stationary measure for the system Lδ).

Suppose L0 is mixing: for every g ∈ BV[0, 1] with
∫

I g dm = 0, then

lim
n→∞
‖Ln

0g||L1 = 0.

(see Assumption LR1 of Theorem 4.21) Then (Id − L0)−1 is a continuous operator on the

space of zero average Borel measures equipped with the || ||W norm and

lim
δ→0

∥∥∥∥∥∥ fδ − f0
δ

− (Id − L0)−1[
[δ−ξ − δξ]

2ξ
∗ LT0( f0)]

∥∥∥∥∥∥
W

= 0. (6.9)

To conclude our proof, we still need to exploit the fact that the rotation number can be

computed as the integral of a Lipschitz observable with respect to the stationary measure;
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moreover we need to verify that there exists an interval on which assumption LR1 of

theorem 4.21 is true. For the first fact, we report the following proposition from [48], but

this result was already in [64].

Proposition 6.6. Let Tτ,ε be the Arnold map with parameters (τ, ε) and uniformly dis-

tributed noise of size ξ, suppose the system satisfies the assumption LR1, let µτ be the

corresponding stationary measure and ρτ be the associated rotation number. Then

ρτ(ω, x) =

∫
S1
ϕτdµτ. (6.10)

In particular, ρτ is P ⊗ µτ almost surely constant.

Hence, so far from now, we have shown that

Corollary 6.7. The rotation number of the Arnold maps with uniformly distributed additive

noise is differentiable at each value of the parameter τ for which the associated system

is mixing (in the sense stated in assumption LR1 and Proposition 6.5). Furthermore if τ0

is such a parameter we get the following formula for the derivative of the rotation number

computed at τ0

[
d
dτ
ρτ](τ0) = 1 +

∫
S1
ϕτ0 d[(Id − Lτ0)−1 [δ−ξ − δξ]

2ξ
∗ LTτ0

(µτ0)] (6.11)

where LTτ0 ,ε
is the pushforward operator of the map Tτ0,ε .

Proof. By Proposition 6.6 the rotation number is the integral of a Lipschitz observable.

Considering the increment of ρτwe get

ρτ(τ0 − h) − ρτ(τ0)
h

=
1
h

[∫
S1
ϕτ0+h dµτ0+h −

∫
S1
ϕτ0dµτ0

]
=

1
h

[∫
S1
ϕτ0+h dµτ0+h −

∫
S1
ϕτ0dµτ0+h

]
+

1
h

[∫
S1
ϕτ0 dµτ0+h −

∫
S1
ϕτ0dµτ0

]
.

Here
1
h

[∫
S1
ϕτ0+h dµτ0+h −

∫
S1
ϕτ0dµτ0+h

]
=

∫
S1

ϕτ0+h − ϕτ0

h
dµτ0+h = 1

and
1
h

[∫
S1
ϕτ0 dµτ0+h −

∫
S1
ϕτ0dµτ0

]
=

∫
S1
ϕτ0d[

µτ0+h − µτ0

h
]

and the statement directly follows from Proposition 6.5. �

We will now compute an explicit example of case in which the system is mixing and (6.11)

holds. As already pointed out in chapter 4 when considering a family of systems (as in
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this case), it is not sufficient to provide the rate of mixing of just one of them. This is

why we provided results about the rate of mixing of a perturbed system (section 4.4), and

we are going now to use them: we use the Ulam-based strategy of chapter 5 to verify

assumption LR1, i.e to find n and α such that

||Ln
ξ ||V→L1 ≤ α < 1, (6.12)

and we take advantage of section 4.4 to deduce that this assumption is satisfied by nearby

systems.

Proposition 6.8. Let ε = 1.4 and ξ = 0.1. Then, for each τ ∈ [0.75, 0.8], the corresponding

Arnold map with noise and parameters (ε, τ, ξ) satisfies assumption LR1 of Theorem 4.21.

Proof. Suppose we have proved the mixing for a system with parameters (ε0, τ0, ξ0) and

we have α and n such that (6.12) is satisfied, then (4.9) implies that there exists θ0 > 0 and

a whole interval I0 = [τ0 − θ0, τ0 + θ0], such that all the systems with parameters (ε0, τ, ξ0),

τ ∈ I0, are still mixing. Moreover (4.9) gives an explicit formula for θ0 which depends from

α and n. These constants are explicitly computable, hence we can explicitly compute θ0.

To show that the mixing property holds for every system of parameters (1.4, τ, 0.1), with

τ ∈ [0.75, 0.8], a strategy is to consider a finite sequence of points {τi} ⊂ [0.75, 0.8] such

that the systems with parameters (1.4, τi, 0.1) are mixing, for every i, and the associated

intervals Ii := [τi − θi, τi + θi], defined as above, cover the interval [0.75, 0.8].

In Table 6.3 we show the computer aided estimates about the values of θ0 by the method

described above for each example. As it can be seen, since the union of all this computed

intervals is equal to (a, b), with a = 0.749399418088000 and b = 0.800715949198087, we

have then proved the desired property in the whole interval [0.75, 0.8]. �

Once we have Assumption LR1 of Theorem 4.21 satisfied for this family of systems,

applying Corollary 6.7 we directly get

Corollary 6.9. Let ε = 1.4, ξ = 0.1 then, for each τ ∈ [0.75, 0.8] the rotation number

corresponding to the Arnold map with noise and parameters (ε, τ, ξ) is differentiable as τ

varies and (6.11) holds.
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Table 6.3: Given the Arnold map with noise of magnitude ξ and parameters (τ0, ε0), for
which we have already proved mixing, the table shows the computed intervals I0 = [τ0 −

θ0, τ0 + θ0], such that if τ ∈ I0 then the Arnold map with parameters (τ, ε0) is mixing

(τ0, ε0) ξ [τ0 − θ0, τ0 + θ0]

(0.7502, 1.4) 0.1 [0.749399418088000, 0.751000581912001]
(0.7516, 1.4) 0.1 [0.750823157412727, 0.752376842587275]
(0.7532, 1.4) 0.1 [0.752340409081139, 0.754059590918862]
(0.7548, 1.4) 0.1 [0.753967757739070, 0.755632242260931]
(0.7564, 1.4) 0.1 [0.755472331622558, 0.757327668377443]
(0.7582, 1.4) 0.1 [0.757304135181951, 0.759095864818050]
(0.7598, 1.4) 0.1 [0.758934791149505, 0.760665208850496]
(0.7616, 1.4) 0.1 [0.760590252726379, 0.762609747273622]
(0.7632, 1.4) 0.1 [0.762227848809647, 0.764172151190354]
(0.7648, 1.4) 0.1 [0.763863841059881, 0.765736158940120]
(0.7668, 1.4) 0.1 [0.765692173699252, 0.767907826300749]
(0.7688, 1.4) 0.1 [0.767737148314721, 0.769862851685280]
(0.7708, 1.4) 0.1 [0.769780384398816, 0.771819615601185]
(0.7728, 1.4) 0.1 [0.771572710558602, 0.774027289441399]
(0.7748, 1.4) 0.1 [0.773628600754358, 0.775971399245643]
(0.7768, 1.4) 0.1 [0.775681672076595, 0.777918327923406]
(0.7788, 1.4) 0.1 [0.777626636524504, 0.779973363475497]
(0.7812, 1.4) 0.1 [0.779896782767258, 0.782503217232743]
(0.7836, 1.4) 0.1 [0.782295331693974, 0.784904668306028]
(0.7860, 1.4) 0.1 [0.784762771410257, 0.787237228589744]
(0.7884, 1.4) 0.1 [0.787166089347180, 0.789633910652821]
(0.7908, 1.4) 0.1 [0.789629611581057, 0.791970388418944]
(0.7928, 1.4) 0.1 [0.791684956386327, 0.793915043613674]
(0.7948, 1.4) 0.1 [0.793685568440505, 0.795914431559496]
(0.7968, 1.4) 0.1 [0.795685318203188, 0.797914681796813]
(0.7988, 1.4) 0.1 [0.797684476459441, 0.799915523540560]
(0.7996, 1.4) 0.1 [0.798484050801914, 0.800715949198087]
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Table 6.4: This table shows the computed intervals in which the rotation number lies for
each value of the parameters in consideration.

(τ, ε) ξ ρτ

(0.707, 1.4) 0.01 [0.780594, 0.780604]
(0.708, 1.4) 0.01 [0.778348, 0.778361]
(0.709, 1.4) 0.01 [0.775291, 0.775302]
(0.710, 1.4) 0.01 [0.771833, 0.771844]
(0.711, 1.4) 0.01 [0.768335, 0.768348]
(0.712, 1.4) 0.01 [0.765170, 0.765183]
(0.713, 1.4) 0.01 [0.762568, 0.762590]
(0.714, 1.4) 0.01 [0.760585, 0.760612]
(0.715, 1.4) 0.01 [0.759288, 0.759344]
(0.716, 1.4) 0.01 [0.759915, 0.759970]

6.3.1/ NON-MONOTONIC ROTATION NUMBER FOR STRONG NONLINEARITY

For ε < 1, the monotonicity of the rotation number of the Arnold map is a classical result:

it is well known that if τ2 > τ1 then ρτ2 > ρτ1 (see [62]). This is false if ε > 1 and we are

going to show it now for a particular example with ε = 1.4 and ξ = 0.01.

Again we can rigorously approximating the value of the rotation number for several values

of τ, since it can be computed as the integral of a Lipschitz observable with respect to the

(rigorously) computed stationary measure. Indeed, there exist τ1 < τ2 with corresponding

rotation numbers ρ1 ∈ I1, ρ2 ∈ I2, where I1 and I2 are the rigorous computed intervals in

which the rotation numbers lie, and furthermore, these intervals are such that max(I2) <

min(I1). We conclude that ρ2 must be smaller then ρ1.

Proposition 6.10. Let ε = 1.4 and ξ = 0.01, then the rotation number ρτ, as function of the

parameter τ, is not monotonic in the interval [0.707, 0.716].

Proof. As explained above, we use the Ulam based algorithm to estimate the station-

ary measure for ε = 1.4 and for each τ ∈ {0.707, 0.708, ...., 0.716}. We estimate the ex-

pected value of the observable T̃τ,ε(x) − x with respect to the stationary measure for

each example. This gives a certified interval in which the rotation number ρτ of each

example lies (see Proposition 6.6). The results are reported in Table 6.4. The inspec-

tion of these, disjoint, decreasing, intervals shows that the rotation number decreases for

τ ∈ {0.707, 0.708, ....0.715}. The last estimate at (0.716, 1.4) shows an increasing behavior,

showing non monotonicity. �
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NUMERICAL ASPECTS

In this last chapter we discuss the computational details associated to the theory devel-

oped so far; we will try to make this part of the thesis accessible, as far as possible,

even to those who do not have a mathematical background and are more interested in

computer science aspects, or simply want to learn how to use the code we will present

without being able or need to go into the details of the theory.

There are two sections, dedicated respectively to the approximation scheme based on

Ulam, and the one based on Fourier. We have already seen some theoretical differences,

but the algorithms differ, quite substantially, even in numerical aspects, for instance the

matrices of Ulam are sparse, those of Fourier are not. We will focus more on the exposure

of the second method, for several reasons:

• the Ulam-based strategy, which is at the basis of this work, has already been de-

scribed in full details in [23],[24] and then in [44], [48].

• the Ulam-based algorithm, used for example to obtain the results in Chapter 7, is

implemented in SageMath1, meanwhile we have chosen to work with Julia2 with the

new Fourier-based algorithm.

Before moving on to the description of the two algorithms, let us introduce Julia and the

main packages that were used during this work, and the concept of interval arithmetic,

which is the basis of our rigorous calculations.

Working at the crossroad of mathematics, computer science and applied sciences, it can

sometimes be difficult to find the right programming language to accomplish your tasks.

In the author’s opinion, an excellent compromise between facility of use, versatility, speed

and community presence has been achieved by Julia in the last years, the programming

1SAGE, ”System for Algebra and Geometry Experimentation”, is a computer algebra system with features
covering many aspects of mathematics; the first version of SageMath was released on 24 February 2005

2Julia is a high-level, high-performance, dynamic programming language. While it is a general-purpose
language and can be used to write any application, many of its features are well suited for numerical analysis
and computational science.
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language in which the Fourier approximation method we present has been implemented.

The packages used in this work are

• LinearAlgebra.jl, Plots.jl

• IntervalArithmetic.jl, IntervalRootFinding.jl

• ArbNumerics.jl

LinearAlgebra.jl and Plots.jl, implement the obvious basic functions we expect. We will

discuss ArbNumerics.jl directly in section 2, while as you can guess from the name, In-

tervalArithmetic.jl and IntervalRootFinding.jl implement the aforementioned Interval Arith-

metic. To explain what it is, let’s start with an example from ([51]), first given by Rump.

Example 7.1. Let

f = 333.75b6 + a2(11a2b2) − b6 − 121b4 − 2) + 5.5b8 +
a
2b

with a = 77617.0 and b = 33096.0.

If we compute the powers by successive multiplications using, single, doubling or ex-

tended precision (this was done by Rump on an IBM 370 system), we obtain

• single precision: f = 1.17260361 . . .

• double precision: f = 1.17260394005317847 . . .

• extended precision: f = 1.17260394005317863185 . . .

The correct result is f = −0.827396 . . ., not even a positive number.

This example shows us how, a priori, we cannot trust numerical simulations based on

floating point arithmetic. This is normal, for who is used to the scientific simulations:

roundoff error can destroy a numerical simulation. A possible solution to this problem

is to represent intervals instead of numbers, a bit like the polygonal approximations of

Archimede for π; in this way, the result of a numerical calculation, it will be an interval,

instead of a number, and not an ordinary interval, but an interval that contains the exact

solution of our problem.

The idea behind this method, just stated, is quite clear; however, it is clear that the good-

ness of this strategy depends strictly on the ability to obtain a very small interval at the

end. The Fourier based method presented in this thesis, is able to obtain errors of the

order of 10−86 (in the next section we will specify what we mean by error, since the final

error in our situation does not arise just from the computation itself, you must take in ac-

count the error coming from the discretization of the transfer operator, for instance, for

which we developed bounds in the last chapters).
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We have already mentioned the packages used in our algorithms, and we will talk about

some aspects of them later; as for the theory underlying the interval arithmetic (algebraic

properties, interval functions and so on) we refer to [51].

Before starting the study of the algorithms, let us remember what these algorithms do

and what are the errors that come into action, to which we must be careful. In a nutshell

• Input : map T , size of the noise ξ, size of the discretization δ, size of a coarser

discretization δ′

• Output: a function v and a number ε; v is represented by the vector of its basis

coefficients and if f is the stationary density of the system, then ‖ f − v‖ ≤ ε, for

some suitable norm.

The intermediate steps, will then serve to calculate a discretization of the transfer opera-

tor, calculate its fixed point v, and its bound on the error, ε. As we pointed out before, we

have three sources of error, we must take in account:

• Discretization error: we project the transfer operator on a finite base, thus there

is an error on the output coming from this discretization process

• Approximation error: the discretization of the transfer operator is a finite linear

dimensional operator which we represent with a matrix that cannot be exactly com-

puted; hence we have an error on the output coming from this approximation.

• Eigen error: the error coming from the numerical computation of the eigenvector.

The third part is somewhat a solved problem: given a matrix, we may compute rigorously

its steady vector, and the bound on the error depends from the machine epsilon, which

can be arbitrarily increase up to any reasonable level. We refer to the section 8.3 of [24].

Hence in the next sections, providing the full details and the pseudocode for the Fourier

based method, we will describe the algorithms for the computation of the aforementioned

approximation of the stationary density and the relative bounds on the error, with the

respect to the ”true” stationary density.
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7.1/ ULAM-BASED SCHEME OF APPROXIMATION

In the next sections we provide the details of the rigorous approximation algorithm. This

algorithm can be found in different versions, one of them for instance in https://bitbucket.

org/luigimarangio/arnold map/. As we have already observed, for several reasons, we will

focus on the full exposition of the Fourier based method; all the details that are omitted

here, can be found in [24], [23].

Remember that the steps to perform are :

• construct a matrix, which is an approximation of the transfer operator associated

with our random system

• calculate the discretization error and approximation error; this is done by rigorously

estimating the rate of mixing of the approximate transfer operator.

In the next two subsections, we will describe how to deal with the above mentioned steps.

Finally, we will briefly describe how to estimate the average of an observable, algorithm

used for example of the rigorous computation of the rotation number of the Arnold maps.

7.1.1/ BUILDING THE ULAM MATRIX

Let Pk be the matrix of the Ulam approximation, where k is the size of the approximation;

if we partition the interval [0,1] in k intervals I1, . . . , Ik then, the i, j-th entry of Pk is given by

equation 5.1. As already pointed out we cannot compute exactly Pk, but we can compute

a matrix P̃k which is equal to Pk up to an approximation error. Indeed, we first fix a small

β > 0 and we compute a row matrix P̃′k: for each Ii, consider a partition in m smaller

intervals J1, . . . , Jm; we look at the images T (Jl), and we test whether or not these images

are contained in I j. The only problems comes if T (Jl) overlaps I j but is not contained. In

this case we partition again, until the ”problematic” interval has a measure smaller than

β; we denote this measure by εi, j, and at the end we will obtain a row matrix P̃′i, j with an

associated error ε = maxi, j εi, j.

Furthermore observe that we can always split the interval [0, 1] in monotonic branches for

the map T ; hence we can suppose that either T is monotonic on I j or has a discontinuity

https://bitbucket.org/luigimarangio/arnold_map/
https://bitbucket.org/luigimarangio/arnold_map/
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point.

Algorithm 1: Computing the row Ulam Matrix P̃′i j: T is monotone on Ii.

Result: P̃′i j, ε

P̃′i j = 0 ;

εi j = 0;

Partition Ii in m intervals Ii,k for k = 0, . . . ,m − 1;

for k = 0, . . . ,m do
if T (Ii,k) ⊂ I j then

add m(Ii,k) to P̃′i j = 0;

end
if T (Ii,k) ⊂ (I j)c then

discard Ii,k;

end
if T (Ii,k) ∩ I j , ∅ and T (Ii,k) ∩ (I j)c , ∅ and m(Ii,k) ≥ β then

divide Ii,k in m intervals and repeat the procedure;

end
if T (Ii,k) ∩ I j , ∅ and T (Ii,k) ∩ (I j)c , ∅ and m(Ii,k) < β then

add m(Ii,k) to εi, j, discard Ii,k;

end

end
ε = maxi, j εi, j;

Algorithm 2: Computing the row Ulam Matrix P̃′i j: T has a discontinuity in Ii.

Result: P̃′i j, ε

P̃′i j = 0 ;

εi j = 0;

Partition Ii in m intervals Ii,k for k = 0, . . . ,m − 1;

for k = 0, . . . ,m do
if Ii,k does not contain a discontinuity then

apply Algorithm 1;

end
if Ii,k contains the discontinuity and m(Ii,k) ≥ β then

divide Ii,k in m intervals and repeat the procedure;

end
if Ii,k contains the discontinuity and m(Ii,k) < β then

add m(Ii,k) to εi, j, discard Ii,k;

end

end
ε = maxi, j εi, j;
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To obtain the matrix P̃k, we are going to use a markovization process: compute the sum

of the elements on each row, subtract 1 and spread the result uniformly on each nonzero

elements of the row. In this way we have that for every i, j

|P̃i j − Pi j| < 2 × ε,

where ε it was already defined (and computed) as the maximum of the errors |P̃′i j − Pi j|. If

nzi is the number of nonzero elements of the i-th row and nz = maxi nzi, we have

‖Pk − P̃k‖1 < 2 × nz × ε.

This process will ensure that the biggest eigenvalue of P̃k is 1. We will now move to the

estimation of the errors.

7.1.2/ BOUNDING THE ERRORS

Let us recall the notations

• fξ is the fixed point of Lξ, the transfer operator associated to the random system

• vk is the fixed point of Pk, the Ulam approximation of Lξ (in chapter 5 we called it

Lδ,ξ)

• ṽk is the fixed point of P̃k, the matrix we computed

• w the numerical approximation of ṽk.

With this notation, we have that

‖ f − ṽ‖L1 ≤ ‖ fξ − vk‖L1 + ‖vk − ṽk‖L1 + ‖ṽk − w‖L1 .

Remark 7.2. In [24], methods to obtain similar estimates in the L∞ norm are considered.

The third term of the latter equation, comes from the numerical computation of the

eigenvector of the matrix P̃k and we already treated this issue. The discretization er-

ror, ‖ f − vk‖L1 , was addressed in section 5.1.1, theorem 5.9, and it depends from the

contraction rate of the discretized operator. We also see how to improve this estimates

with a coarse fine strategy 5.1.2. For the approximation error, ‖vk − ṽk‖L1 , once we have

computed the rate of mixing of P̃k, i.e. n, α such that ‖P̃n
k‖L1 ≤ α, using lemma 5.6 we have

that

‖vk − ṽk‖L1 ≤
n

1 − α
‖Pk − P̃k‖L1‖vk‖L1 ≤

2n
1 − α

× nz × ε.
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As we can see, the only real computation which is needed in these estimates is the rate

of mixing of a matrix (remember that if you are applying a coarse fine strategy, you need

to compute the contraction rate of the two matrices). Remember that these computation

are done in interval arithmetics, so the matrix P̃k is an interval matrix. To compute n, α

such that ‖P̃n|V‖L1 ≤ α, we have two strategies. The trivial one, we proceed via matrix

multiplications: this way is only practicable if you are dealing with small size matrices (up

to 214). The size of the discretization to use depends on the system you are considering;

for example in [23], the matrices used are in the order of 227, very large, so not only

a smarter strategy was used, but this strategy was implemented through OpenCl to be

executed on gpu Nvidia. Still some computation has required a time of the order of

a week, on an Asus GeForce GTX 1050Ti, 4GB of Ram GPU installed in a desktop

computer with an AMD A4-6300 3.4 Ghz processor and 8 Gb of Ram.

In the case of the Arnold maps (section 6.2), the experiments were performed on the

supercomputer facilities of the Mésocentre de calcul de Franche-Comté. The size of the

matrices in this case is between 216 and 219; we chose to perform the computations on

a supercomputer, because we were able to perform approximately one hundred rigorous

calculations in parallel (see proposition 6.8). This parallel computation could not make

advantage of the gpu, so each simulation was slower, but despite this there was a sig-

nificant gain of time. We emphasize the fact that with matrices of size 227, this strategy

would not have been feasible, the calculation without gpu is prohibitive.

The smarter strategy comes from [31], in which the following inequality about roundoff

error in matrix vector multiplication is shown

‖ f loat(Av) − Av‖ ≤ γk · ‖A‖‖v‖,

where

γk =
ku

1 − ku
,

and U is the machine precision.

Hence, instead of a matrix multiplication, we consider the vector matrix products P̃n
k · vi,

where vi are zero averages basis vectors, which can be computed just iterating a matrix

vector product, without computing P̃n
k . This is done in floating point arithmetics, thus we

have to convert with a simple script the matrix P̃k from interval arithmetic to floating point.

The rate of mixing can be then bounded as ‖P̃n|V‖L1 ≤ maxi P̃n
k · vi. We implement a

stopping criterion by choosing the desired rate of mixing α; once we fixed α, when we find

an integer s such that maxi P̃s
k · vi + err ≤ α the algorithm stops (err is the roundoff error

computed as explained before).
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7.2/ FOURIER-BASED SCHEME OF APPROXIMATION

The algorithm presented in this section is a part of an original work still in progress; the

code can be found at https://bitbucket.org/luigimarangio/phd thesis/. We will now project

the transfer operator associated to a random system on the Fourier basis, defined in

Chapter 5. Let b j = e2 jπix, for −k ≤ j ≤ k, a Fourier basis of 2k + 1 elements. We will use

the fact that the j-th coloumn of Lb j is made by the ”first” 2k + 1 Fourier coefficients of Lb j

(from −k to k); we will represent the matrix relabeling the frequencies in the following way

0, 1, 2, . . . , k − 1, k,−k,−k + 1, . . . ,−1. The computation of these columns is done by using

the explicit action of the transfer operator, given by (see for instance [8], [12])

[L f ](x) =
∑

y∈T−1(x)

f (y)
|T ′(y)|

, (7.1)

to evaluate the function Lσb j at N >> k interpolation nodes. We stress on the fact that this

is the only point in which we need some regularity assumption on the map T and in the

future work we hope to remove this assumption by using the duality relation of the transfer

operator to compute Lσb j. However, plenty of interesting random dynamical system have

a smooth deterministic part. We then perform a Fast Fourier Transform to recover the

Fourier coefficients of Lσb j; the coefficients obtained in this way are really close to the

”true” coefficients, and the error is known as aliasing error and it was analyzed in section

5.2.2.

Once we have computed the matrix, we have to compute its rate of mixing, the approxi-

mation error and the discretization error; we now present the algorithms and the relative

explanations.

7.2.1/ BUILDING THE FOURIER MATRIX

To compute the column of the Fourier matrix, we need an interval version of the Fast

Fourier Transform; this problem was solved by emulating the FFT with the package Arb-

Complex.jl; this latter is a package that uses the Arb C Library, and adapts some C library

interface work from Nemo; furthermore it exports the types needed to work in the interval

analysis framework (e.g. ArbReal and ArbComplex). In the author’s knowledge, until now

there was not in the literature an interval version of the FFT, which has now been added

to the package ArbComplex.jl.

Another important remark is about the enumeration of the frequencies. We choose to put

at index 1 in the matrix the 0th-frequency, then the positive frequencies from 1 to k and

https://bitbucket.org/luigimarangio/phd_thesis/
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finally the negative frequencies in the revers order, from −k to −1.

Algorithm 3: Compute the Fourier matrix Mk via FFT
Result: An interval matrix Mk

Define N interpolation nodes xi − i/N, for i = 0, . . . ,N − 1 ;

Initialize an empty (interval) matrix M;

for j = 1, . . . , 2k + 1 do
Initialize a vector of zeros v j;

Compute the frequence j′ which corresponds to the index j;

for i = 0, . . . ,N − 1 do
Compute Lb j′(xi) with equation 7.1 and add it on v j[i];

end
Apply the Fast Fourier Transform to v j, obtaining a new vector w j. Consider a new

vector v′j which contains the first 2k + 1 frequencies, thus the first k elements and

the last N − k of w j;

v′j is the jth-column of M

end

The computation of the noise matrix is particularly easy. Let us stress that in this sec-

tion we are considering noises with gaussian kernel, meanwhile before we considered

uniform distributed kernels; since the gaussian function is an eigenfunction of the Fourier

transform, the noise matrix Dσ is diagonal with entries

Dσ,k( j, j) = e(−(σπ j′)2),

where as usual we shift the indexes to j′ to select the proper frequency. The finite dimen-

sional operator Lσ,k is then approximated by the matrix Hk = Dσ,kMk In the next subsection

we end this work by describing how to estimate the errors arising from this scheme of ap-

proximation.

7.2.2/ BOUNDING THE ERRORS

In this first version of the algorithm, we are computing the contraction rate of Hk by iterative

multiplications. This is possible because we have exponential bounds: thanks to coarse-

fine strategy, it is possible to obtain bounds of order 10−80 with relative small matrices. In

the example shown in Chapter 6 we consider a fine partition of size 2000 and a coarser

partition of size 500: multiplying interval matrices of size 500 is not a big deal.

Remark 7.3. Of course we must be careful to the accumulation of the numeric error, which

the interval analysis takes automatically in account. Indeed, we bound the L∞-norm on

the zero average space with the sum of all the elements of Hk, except for the first row and

the first column (these corresponds to the 0th-frequency); founding a more effective way
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to bound this norm is a problem on which we are working on.

Let Hk and Hk f ine be the two approximation matrices computed with algorithm 7.2.1 for

two partitions of different size. The following algorithm bounds the mixing rate of Hk f ine

using information on Hk; as said before, the norm of a matrix means the sum of all the

elements of the matrix except for the first row and the first column.

Algorithm 4: Compute α,
∑

Ci, n as in section 5.2.1
Result: α, sumCi, n

Set a maximum number of iteration l and α = 0 ;

Set a tolerance value for α, say β;

Set sumCi equal to the norm of Hk f ine;

Set Q = Hk for i = 1, . . . , l do
Q = Q ∗ Hk;

we add to α the norm of Hk and the coarse fine estimate from equation 5.27;

if α < β then
return α, i and sumCi;

end
add α to sumCi;

end

Once we have computed the rate of mixing, we can take care of the discretization error

and the approximation error. Nevertheless to say, with the theory developed so far, they

are really use to compute:

the approximation error is given by lemma 5.26 and we just need to compute the following

quantity

1
1 − α

N−1∑
i=0

Ci
(
1 + Γσ,k + ||ρσ||∞

)
Γσ,k;

the discretization error in the Fourier case is given by the aliasing error, equation 5.7,

which is equal to

Γσ,N .

7.2.3/ AN INTRODUCTORY EXAMPLE

We are finally ready to apply this Fourier scheme to an easy but non trivial example; more

examples will come in future works. As already mentioned at the beginning of Chapter 6,

this is a first technical and explanatory example, which has no practical relevance (it is not

a toy-model of a natural phenomenon); obviously then its complexity is not comparable to

that of the models presented above, and this example is intended as a first application of
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the theory presented so far.

We consider a perturbed doubling map

T (x) = 2x + 0.001 sin(2πx), (7.2)

and we choose the following parameters for the computation

• k = 250 is the size of the coarse discretization (thus we work with matrix of size 501),

used to compute the Ci (see also remark 7.3)

• k′ = 2000 is the size of a finer discretization, combined with the latter via lemma

5.27 to obtain better estimates

• N = 10000 is the number of interpolation points

• σ = 0.01, where σ2 is the variance of the gaussian kernel.

Applying the results described so far we obtain the following estimate on the rate of mixing

α = 0.0100808 N = 6 and
N−1∑
i=0

Ci = 57.355,

which leads to an approximation error of

‖ fσ − fσ,k‖∞ ≤ 6.5381 × 10−86

an error on the dft of

k · Γσ,N ≤ 10−300.

This simple example allows us to observe the potential of the proposed method. As can

be reasonably expected, figure 7.1 shows the density of the invariant measure of the

system. We conclude by pointing out that the only thing that currently prevents us from

applying this method to more complex systems is the computation of Ci, for which we

need better theoretical estimates.
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Figure 7.1: Density of the computed invariant measure of 7.2
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