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Abstract
Device-to-device (D2D) communications are valuable in several domains, such as data of-

floading and diffusion, as their cost is only a fraction of what regular cellular communication
would have. With the ubiquity of smartphones, opportunities for direct communications
between users are more likely than ever. In this thesis, we argue that understanding the po-
tential utility behind direct communications is key to quantifying the realization of contact
networks. We tackle related questions from two distinct, yet complementary contributions.

Firstly, we consider the problem of estimating the importance of a node in large dynamic
topologies. We focus on the traditional node utility calculation in graphs, known as the
centrality, applied in a contact network context. Computing any node’s centrality in a dy-
namic context is challenging because of the perpetual creation and destruction of links be-
tween users. We propose a novel approach to estimate centralities based on a pre-established
database, where the estimation is based on the geographical coordinates of the node instead
of the identifier of the node. As the centrality of a coordinate is much more stable than that
of a mobile node, we can achieve a good centrality estimation at a fraction of the cost of tra-
ditional strategies. Our results using real-worldmobility datasets show that we can obtain an
accurate estimation of the centrality of up to 80% of the nodes with our method.

Estimating the centrality of a node alone is not enough to characterize the node’s com-
munication capabilities. In our second contribution, we propose to quantify the value of
direct links through an experimental measurement campaign. We conceived a tool to actively
measure the throughput between different Android devices, using available device-to-device
APIs. We derived a model to obtain an estimate of the upper-bound of D2D throughput
basedon thedistancebetween thedevices. Besides themodel, we could also leverage anumber
of unexpected observations that emerged during the experimentation campaigns. Among
them, we could point out the fact that the asymmetrical antenna characteristics and brand
design do have a strong impact on the communication capabilities of the nodes; for example,
some nodes are good emitters, while other are better receivers. Such an asymmetry may be
used to fine tune the graph representation of the network.

Thirdly, we investigate the differences between the traditional quantification of a contact
and the model extracted from ourmeasurements campaigns. Among other results, we reveal
that when considering an adaptive throughput according to the distance between two de-
vices, the long-distance data-exchange makes up more than 50% of the total data exchanged
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in the entire network. We propose a tool to extract frommobility datasets the volume of data
obtained, based on specific contact quantification strategies.

This thesis contributes to moving forward several aspects of the literature in regards to
linkutility and contactnetworks to accurately characterizeD2Ddata exchange. Futureworks
will focus on the asymmetrical characteristics of D2D communications revealed in this thesis
to precisely model interactions.
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1
Introduction

Over the last decade, smartphones and other connected devices have become a fundamen-
tal part of our lives. In 2017, there was an estimated total of 8.6 billion connected devices
throughout the world and mobile data consumption grew 17-fold between 2012 and 2017,
with an expected growth of seven-fold by 2022 [26, 27]. The consequence was a humongous
growth of mobile traffic, ultimately leading to a saturation of the cellular spectrum.

Fortunately, by 2017, more than half of the total mobile traffic was offloaded from tra-
ditional cellular base-stations to alternative channels such as Wi-Fi or femtocells [27]. So far,
this choice has been user-based, i.e., driven by the user’s willingness to avoid using hermobile
data-plan when unnecessary. The upcoming generation of mobile networks aims to push
offloading solutions even further, by enabling new technologies to uncongest the network
without the direct involvement of users.

Device-to-device (D2D) communication is a paradigm which states that devices may ex-
change data directly without having to go through an infrastructure. The idea is tomake use
of users’ co-locality andmobility as a means to save bandwidth [55]. The very principle itself
is not new – as a matter of fact, D2D communications were industrially standardized back
in 2015 with the 12th release of the 3GPP under the LTE specifications as proximity services
(ProSe) [17] but were not implemented in industrial cellular networks, most likely because
of lack of financial incentives for network providers at that time [65, 106]. With the immi-
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nent deployment of the 5G standard [40], several innovations are being proposed for higher
throughput, lower latency, and overall spectral efficiency, with D2D among them.

The forthcoming of D2D communications creates an array of new possibilities. For in-
stance, while its most evident usage would be to opportunistically offload mobile traffic [4,
82, 87, 115], it can also leverage the proximity of users to disseminate data to specific pop-
ulation [78], which is typically a prime use case for targeted advertisements [90]. Device-
to-device brings a new form of traffic, which is not inherently based on traditional user-
requested information but instead assumed to be of interest based on its neighbors or social
ties [102]. D2D communications could also be benefitial in sparsely populated areas, since
it can extend the range of cellular communications by leveraging nodes at the edge of the
cellular range who act as relays for people out of conventional cellular coverage [55]. In the
event of a catastrophic failure of the cellular network (e.g., natural disaster), devices could au-
tonomously create a multi-hop network as a back-up emergency network [74, 85, 88]. This
use case was commonly explored in the form of MANETs, but D2D communications may
use licensed cellular spectrum, therefore bringing new possibilities [2, 3, 34, 75].

Device-to-device communications are likely to become a fundamental part of mobile
communications because of their potential ability to bring services closer to the user, for
nearly a fraction of the cost a regular operator would spend using traditional cellular com-
munications. While its advantages are obvious, there are still several issues left open and the
goal of this thesis is to tackle some of them, as we motivate and explain in the following.

1.1 Problem statement and positioning

The public recently took an interest in device-to-device communications when its real-life
applicability has been demonstrated during protests [61]. D2D usage notably showcased its
capacity to circumvent usual cellular communication’s shortcomings, such as censorship or
saturation in hyper-densely populated areas. While its efficiency in relaying text messages
has been proven, both theoretically and practically, questions arise when considering other
kinds of content such as large files. Nowadays, large scale dynamic networks are becoming a
reality through the ubiquity of smartphones (or D2D User Equipment, DUE), along with
IoT, and soon with vehicular networks, but the ever-increasing scale of such networks could
be detrimental to conclusions previously drawn in the literature.
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Let us take MANET as an example, where traditionally all nodes communicate under a
single connected component. In reality, it is highly unrealistic to assume that an entire city
forms a single connected component, thus resulting in multiple partitioned networks [92].

Themobile network research community then considereddelay-tolerantnetworks (DTN)
as a means to model direct interactions with multiple intermittently-connected components
(which involves disruptions). In DTNs, no contemporaneous source-destination paths are
assumed to exist. Wireless links are known to be volatile, since high individual mobility and
interferencemay causewireless links to lose connectivity at any time. Additionally, due to the
heterogeneous characteristics of the DUEs, it is a common practice to have a different maxi-
mum communication range for each node. Last but not least, the mobility is not seen as an
impediment, but rather as a method to carry and forward information to sparsely connected
nodes [47].

With the DTN paradigm, several solutions have been proposed to alleviate typical issues
from cellular networks, through the inherent usage of D2D communications, notably in of-
floading and data dissemination domains. The majority of the efforts were concentrated on
achieving a high delivery ratio, short delay, and minimizing delivery costs [35]. A plethora
of routing techniques and contact analysis have been proposed for DTNs [51, 119]. Never-
theless, when taking a closer look at actual device-to-device links inside a DTN context, we
notice unusual gaps in the literature. The following paragraphs describe several problems we
found most critical to address.

1.1.1 Centrality in a D2D network

Centralitymetrics are widely used as a tool to route traffic in a communication network [96],
with awide range of applications inDTNs [33, 52]. However, when considering aD2Dcom-
munication context, obtaining the traditional centralities of nodes requires full or at least
partial knowledge of the topological structure of the network at all times. Due to the volatile
nature of connected components in DTNs, computing a global centrality such as the be-
tweenness is a hard task [71]. As an effort to minimize the computational time required to
obtain centralities, the community has proposed several approximation methods, especially
when it comes to the betweenness centrality [7, 19, 89].

A value of centrality can only be interpreted based on the aspect it aims to measure for
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a given context. In other words, most centralities were initially coined for the purpose of
analyzing static social networks. Even though theywere proven to be useful in other domains,
notably inDTNs/MANETs, it does not necessarily mean that they fit well such contexts. As
such, re-defining centralities to tune the centrality measurement to the context is also a valid
approach taken by the networking community [72], but not exclusively. For example, to
emancipate from the static graph context, the dynamic betweenness centrality is therefore
not calculated based on the available paths but on the journeys, meaning series of paths that
consequently existed during sequential time-epochs [22]. The problem with this definition
of dynamic centrality is that a global knowledge of the graph is still required. Furthermore,
we need to be aware of all past, present, and potentially future edges existing between all
vertices. As an attempt to alleviate the need for global network knowledge, the notion of
ego-network was introduced [32]. To compute the ego version of a centrality, a node only
takes into consideration its direct neighbors and the edges between these neighbors. Because
of the high correlation between traditional centralities and ego centralities, it can be used as a
way to estimate the real centrality of a nodewith only a small percentage of the computational
cost [73]. Some variants propose to consider two-hop instead of one-hopneighborhood [59].

This thesis revolves around mobile networks and not pure complex networks or theo-
retical routing algorithms. While centralities are undeniably useful for routing algorithms,
the actual communication requirement between the vertices (i.e., DUEs) to be aware of their
neighboring nodes (i.e., to establish an edge) is frequently overlooked. Each communication
comes with a cost since mobile nodes have a finite amount of battery life, they cannot afford
to waste any energy. This, in a real-life setting, translates to another problem which relates
to the topological awareness of nodes: maintaining up-to-date knowledge of the graph for
all the nodes/vertices inside a connected component is yet another open challenge. As a mat-
ter of fact, one of the biggest problems around the topological awareness of nodes in DTNs
is the latency required for all nodes to be notified about each topological change. In other
words, on top of centralities (or alternatives definitions of it) being complex to compute on
a large number of dynamically changing graphs, obtaining the actual graph itself is already a
hardship.

In summary, obtaining centralities is an important component to efficiently route data
in a network, but hardly applies to a dynamic context.
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Problem 1

Is there amethod to obtain a reasonably good estimate of the centrality of real-lifeDUEs
without having to compute it every single time we need it?

1.1.2 Value of a D2D link

DTNs are modeled as graphs, where a vertex always represents a DUE, but edges have differ-
ent definitions. In some works, they consider a time-varying graph where an edge signifies
the presence of a functional wireless link between the two DUEs [93, 99]. A more complex
perspective arises when considering contact graphs, in which the edges are weighed as a way
to rate the importance of the link with respect to others. For instance, the weight of the edge
could represent the number of consecutive time-epochs during which the two nodes had a
functioning wireless link [52, 53]. Some suggest multiple weights for the same edges as a so-
lution to compute shortest-paths based on different criteria, for instance, Shevade et al. [95]
propose to weight link according to average available bandwidth, average delivery delay, and
variance delivery delay. The common point between these solutions is that they all assign
static values to links.

Problem 2

Current static metrics do not suffice to capture the potentiality of a link between two
DUEs. We lack a method to quantify the intrinsic value of a D2D link to, in the long
run, understand D2D data exchange opportunities on the macroscopic scale.

1.1.3 Fixed data-rate model

A contact is the continuous amount of time during which two devices are able to operate a
validD2D link. In theDTN literature, it is considered that a contact starts at the very instant
when two DUEs are within communication range of each other [58]. A threshold distance,
which aims to model the maximum communication range, is set according to the environ-
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ment, needs of the experiment, specifications of the antennas, and so on. In this approach,
two DUEs exchange data at a fixed throughput for the entire duration of the contact.

In reality, the distance between the nodes inevitably affects the performance of the link,
besides other factors such as the presence of obstacles and interference from nearby commu-
nications [6]. In this thesis, we focus on the influence of the distance on the quality of a
link.

Problem 3

Real-life wireless links are directly affected by the distance separating the devices. If the
data rate is fixed, as suggested in the literature, can we actually obtain a realistic estimate
of the volume of data exchanged during a contact?

1.2 Contributions and thesis outline

The above problems are all, to some extent, related to D2D performance issue. We will give
the necessary background on a per-chapter basis, to exhibit aspects which have not been ad-
dressed by the community. In this thesis, we propose to address these issues from a pragmat-
ical yet original point of view.

We now outline each chapter and their respective contributions. The thesis’s workflow
is briefly summarized in Figure 1.1.

1.2.1 Spatial centrality (Chapter 2)

First, we take a look at contact graphs from a theoretical standpoint, to familiarize ourselves
with the concept and have a broad spectrum idea of recurrent issues which are found in the
literature. Doing so, we notably observe the high computational complexity of commonly
used graph metrics. These metrics are typically useful to understand the global (or local) im-
portance of a node within a graph structure. This “importance” may be defined in many dif-
ferent ways, but the core idea is generally the same: the importance depends on how central a
node is located in regards to the rest of the graph. Thus, this metric is commonly referred to
as centrality. When considering static graphs, even large ones, approximating the centrality
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Figure 1.1: Visual summary of the invesঞgaঞve workflow of the thesis.

values of nodes is considered a viable option. To this extent, numerous approximation algo-
rithms have been proposed by the community. However, in a D2D scenario, since the nodes
are highly mobile, the centrality of nodes is likely to vary accordingly.

Since the network continually evolves, the computational time becomes a critical feature.
The central question we address is: is it possible to compute the centrality of nodes at the pace
of the topological changes? This sole question spawns other problems, such as how frequent
do the changes have to be in order to be considered unfeasible, or are approximation strategies
accurate enough to capture topological changes?

Let us make the hypothesis that approximation algorithms converge fast enough and ac-
curately enough tofind themost important individual in the entireD2Dnetwork, at all times.
From a purely theoretical standpoint, this would solve our issue, but in reality, several factors
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weigh in. First, in a D2D context, the construction of the graph is not instantaneous as it
requires numerous message exchanges between all of the nodes of the actual graph. Even if
we considered a scenario where base towers could roughly assume that all nodes within their
cellular reach can communicate together, thus simplifying the contact graph construction
process, there would still be a non-negligible latency issue. Indeed, since contact graphs may
spanover several base stations, it still requires inter-BS communications, thus having a latency
issue to maintain up-to-date graphs. Second, from a sustained development as well as an eco-
nomic perspective, the computational cost ofmaintaining up-to-date centralities, possibly at
all times, may far exceed its benefits.

Instead of traditionally investigating contact graphs as mentioned above, we decided to
bypass these questions entirely by taking an original approach and, to the best of our knowl-
edge, never researched in the literature. Considering the D2D context of our study, nodes
(i.e., mobile users) are in fact individuals carrying devices, and are roaming through space.
The movements of users in space are arguably never random since not only they must have
a destination, but the movements are also restricted by the underlying topography (e.g., a
pedestrian must walk on curbs, a car must follow roads).

Therefore, the centrality of users could be directly correlatedwith their geographical loca-
tion. We seek to estimate centralities of nodes, and by construction of contact graphs, using
this intuitive observation. Considering a reasonable learning period, and the fact that day-
to-day mobility does not change significantly, we could approximate the centrality of a node
by merely looking up its position in space, thus mitigating the perpetual computation issue,
complexity issue, and global network knowledge issue.

Related publications:

• C. Bertier, F. Benbadis, M. Dias de Amorim, and V. Conan, “Centrality Maps for
Moving Nodes”, International Conference on Complex Networks and Their Applica-
tions (Complex Networks), Cambridge, United Kingdom, 2018.

• C. Bertier, F. Benbadis, M. Dias de Amorim, and V. Conan, “Dis moi où tu es, je te
dirai ce que tu vaux”, 20èmes Rencontres Francophones sur les Aspects Algorithmiques
des Télécommunications (Algotel), Roscoff, France, 2018.
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1.2.2 Direct link throughput modeling (Chapter 3)

We treat inChapter 2 a theoretical issue (estimation of centralities) following a down-to-earth
approach. InChapter 3, we go a step further by going in-depth intowhat direct links are, and
what they imply as of today’s hardware and software. In the literature, ad hoc networks were
initially considered in a context where the data transferred between two devices would be
very small, in the order of a few kilobytes. As such, the majority of the works and algorithms
developed to spread data into a contact networkwould revolve around the principle that once
two nodes are in contact, i.e., when a wireless link exists, the transfer would automatically
succeed.

Nowadays, mobile video traffic consumes the majority of the cellular bandwidth [27];
thus the community has actively considered video sharing within a D2D context to avoid
cellular bandwidth to be wasted [9, 104]. Considering the size of a video file, along with the
ever-increasing quality of smart-phones displays (therefore also increasing the size of video
files), we cannot consider that a transfer instantly succeeds simply because two devices are in
contact.

The next logical step would be to consider the data transfer rate betweenD2D devices to
assert the success or failure of the file transfer. To our surprise, we found very little work done
onfile transfer betweenD2Ddevices, andmore specifically on accurate estimation of bit rates
between D2D devices. Additionally, the literature mostly consists of somewhat outdated
work, considering the evolution of smartphones over the last decade.

In order to be able to assess the transfer capacities of smartphones, we propose to inves-
tigate the current state of D2D communications in real smartphones, to ultimately model
their D2D links bit-rate accurately.

Related publication:

• C. Bertier, F. Benbadis, M. Dias de Amorim, and V. Conan, “Modeling Realistic
Bit Rates of D2D Communications between Android Devices”, ACM International
Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MSWiM), Miami, Florida, USA, 2019.
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1.2.3 Quantifying realistic contact capacities (Chapter 4)

If we recall Chapter 2, where we analyzed the centrality of mobile nodes, one of the motiva-
tions behind the work was to pinpoint nodes with high data diffusion capacity. However,
in a wireless graph, a link solely exists if devices are within communication distance; other-
wise, it does not. This binary perspective of D2D links highly conceals the reality behind
such connections. For instance, it feels natural to imagine that nodes close to each other will
effortlessly transfer data to one another. In other words, the link quality of close-by nodes is
high, while faraway nodes have poor link quality.

In the problem statement, we mentioned that it is common to assume that the through-
put between two nodes is constant (fixed) if it reaches a reasonably close distance. In this
chapter, we tackle this issue by showing that using a constant value for the throughput dur-
ing a contact may bias the results, whereas an adaptive throughput according to the distance
between the nodes helps to obtain a more accurate characterization of the contacts. This
chapter does not aim to advocate for an adaptive model (as opposed to fixed model) but in-
stead focuses on characterizing the differences between the two.

Given a context where the geographical distance between two nodes is known, which
is common if devices have their GPS location enabled, we can utilize our newly established
goodput-to-distance model from Chapter 3 to estimate the instantaneous throughput be-
tween two nodes. Thus, by regularly sampling the distance between two nodes, we can esti-
mate the total volume of data potentially exchanged during the contact, which we designate
as the contact capacity.

Of course, parameters which we used to establish our distance-to-throughput model are
not valid under every circumstance; it solely fits best the scenario under which we ran our
experimental procedure. As an effort to generalize these results, we notably investigate how
changing the throughput to distance estimation affects the contact capacity. Additionally,
we provide capacity observations by varying the propagation conditions to fit different en-
vironments. By doing so, we also investigate how the environment in which devices roam
affects the contact network.

Last but not least, we notably propose an open-source library* which takes as an input
a mobility trace (e.g., GPS) and outputs all contacts which are uniquely identified, along

*https://github.com/Bertier/OpportunistiKapacity
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with the duration of the contact and the contact capacity. Its functioning is explained in
Appendix A, and we are hopeful that this incentive will push other researchers to compare
our results to theirs.

Related publication:

• C. Bertier, F. Benbadis,M.Dias de Amorim, andV.Conan, “Computing realistic and
adaptive capacity ofD2D contacts”, International Symposium on aWorld ofWireless,
Mobile, andMultimedia Networks (WoWMoM), Washington, DC, USA, 2019.
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I am a better poet than scientist.

Claude Shannon

2
Centrality estimation through spatial

positioning

Base-stations taking sophisticated decisions such as offloading traffic to an individual carrying
a smartphone (or a car) with device-to-device capabilities will soon become a reality. While
there are several different barriers (e.g., security of information, battery consumption issues,
legal complexities for information tractability)we found the decisional one to be of particular
interest. Typically, the community has highlighted that a base station should carefully decide
whether it should decide to offload, and to whom [83, 94].

A popular solution consists of sharing, when the conditions allow it, an information to
an individual with proficient relaying capacity [101, 109]. Then, the chosen individual can
share the datawith its entourage through direct communications. Tomodel relationships be-
tween individuals and finding the best-suited relay candidate, let us visualize this by picturing
a graph. In this graph, a vertex represents a user carrying amobile device, and an edge between
two nodes exists if the devices carried by the two individuals are within wireless communica-
tion range of each other. Throughout this thesis, we label these graphs as contact graphs, be-
cause they represent all wireless contacts at a specific instant. Using a contact graph, we can
compute the relative importance of nodes in order to find the node with the best relaying
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capacity. We want to be able to compute the importance as a way to obtain the best-suited
candidate to disseminate data.

2.1 Intuition

A centrality is a metric that measures the importance of a node in a graph by observing how
much this node is central, compared to the rest of the graph. Several definitions of the cen-
trality of a node in a graph exist; some are very straightforward to compute, such as the degree,
and others more require more time and resources like the closeness or the betweenness. The
more elaborate ones are useful and relevant for understanding technological, social, and bi-
ological networks, but have not been designed for large dynamic networks, because of the
time complexity of their calculation [56]. Within the context of D2D contact graphs, know-
ing the centrality of nodes is paramount for mobile networks structural analysis [114] and is
of particular importance for D2D offloading applications [98, 107].

Maintaining up-to-date centrality values at all times in such unstable networks might be
unfeasible for two reasons. Firstly, several studies have proposed approximations to some
centrality metrics [7, 89] though these solutions allow sufficient approximations, their com-
putation time may still be too long compared to the speed at which the network evolves. In
other words, in a real-time situation, the value of the centrality may be outdated when its cal-
culation is completed and, as a consequence, no longer relevant to the current network [18].
Secondly, the network has to be notified of each topological change (i.e., a created or deleted
link between two nodes). As such, there is a period of latency during which nodes may have
an inconsistent view of the graph, thus resulting in an erroneous computation of the central-
ities of nodes depending on howmuch the update has spread.

We adopt a radically different approach to estimating the importance of a node in such
dynamic topologies. We consider that all nodes represent physical mobile devices which are
bound to spatial coordinates, such as GPS ones [36]. For instance, the coordinates could rep-
resent smartphones carried by pedestrians or vehicles with wireless communication capacity
(as found in VANETs). Our idea relies on the observation that, in many scenarios, it is not
necessary to know the exact numerical centrality value of all nodes of the network but rather
to know which nodes are the most and least central [66, 79].

It is also based on an intuition that the structure of the contact graph is shaped by the con-
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Figure 2.1: Betweenness centrality value of a 100 randomly-chosen cars in Luxembourg based on a V2V contact graph.
Each color represents a different car.

straints of the underlying geographic area. Thus, by construction, nodes occupying some
areas are likely to have higher centrality than nodes occupying other areas. This intuition
comes from the observation of Figure 2.1, where we plot the paths of 100 randomly chosen
cars (each color represents a car) in downtown Luxembourg during the morning rush hour
(from 6 a.m. to 11 a.m.)*. The x-axis and y-axis represent the geographic position of a vehi-
cle over time, and the z-axis represents betweenness centrality† of each car, according to the
contact graph formed by the vehicles. Note that in the city center, which corresponds to the
middle of the figure, there are surges of betweenness centrality. This central area, holding
very high betweenness centrality, corresponds in reality to a very popular boulevard connect-
ing several busy streets during this time of the day. In other words, vehicles in this area at this
hour are likely to have a high betweenness centrality, whereas cars in the outskirts of the city
tend to have low values. To the best of our knowledge, and despite this intuitive observation,
no other work uses the geographic positions of nodes as a way to estimate their centrality.

*Though only 100 cars are shown (hence 100 3d-curves), there are at least a thousand cars simultaneously
roaming the city during the day. More details are found in Section 2.4.1

†The betweenness centrality is the number of shortest paths going through a node. Its formal definition is
found in Section 2.4.2.
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How central is N?
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pre-computed 
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Lookup estimation for 
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N

Figure 2.2: General centrality maps idea. The le[ part of the figure represents a contact graph, with a grid superimposed
on top. To esঞmate how central nodeN is, we look-up a pre-established table based on the geographical coordinates of
the node.

We summarize howour idea leverages the geographical position of nodes to estimate their
centrality in Figure 2.2. On the left side of the figure, we have nodes and edges, represent-
ing contact graphs, with each node being placed at its spatial coordinates. On top of these
graphs, we superimposed a grid with each square of the grid associated with a I,J index. Let
us assumewe need to estimate how central a particular node is, for instance the nodeN inside
of square I=12,J=26, highlighted in red. Instead of going through the traditional centrality
calculation process, we propose to estimate how central the node is by merely consulting a
pre-established centrality table. The table, shown on the right side of the figure, contains the
centrality estimation for all squares of the grid. Themethodologywill be thoroughly detailed
in Section 2.3. We argue that the centrality of the geographical area (here, a square) can be
used to estimate the centrality of the nodes lying in the same geographical area.

Our idea in this chapter involves a two-step process. We first observe during a learning
period, at every moment of the day, the contact graph formed by the vehicles or pedestrians,
compute the nodes’ centralities, and associate these centralities to the geographic positions
where they were measured. As such, we obtain a centrality map of the region which is fortu-
nately stable over time,mainly in areas where the centrality is very high or very low (which are
centralities of particular interest). Then, for nodes evolving in a target area, we do not have
to compute their centrality at all times – it suffices to refer to the centralitymap to know how
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central they are.
As a summary, the contributions of this chapter are:

• Centrality map. We present a method to create a geographical centrality database, by
dividing the surface into squares and utilizing the centrality of nodes located inside the
squares as a way to estimate the square’s centrality.

• Geo-centrality. We propose a new way to identify quickly, and as fast as querying a
database, the nodes with the highest centralities in large-scale dynamic networks. This
method, based on the creation of centralitymaps fromdata collected allows immediate
access to an estimate of the centrality of a node based on its geographic coordinates
only.

• Application to real-world scenarios.Weevaluate ourmethod in large-scale vehicular
and pedestrian networks. We compare the current geographical centrality of a square
to the real centrality of nodes living in this square. We observe that the estimated geo-
graphical values reflect well on nodes with the lowest and the highest centrality values,
often regardless of the type of centrality metric.

• Application to content distribution use case. To measure the relevance of our cen-
trality estimation method, we evaluate it as part of a content distribution protocol
based on the centrality of the nodes and compare its performanceswith the sameproto-
col using exact centralities calculated with classical methods. We find that ourmethod
gives results at least as good as those of conventional methods. The results we get with
our method are sometimes even better than the methods that require more time and
resources.

2.2 Relatedwork

Tothebest of our knowledge, very littleworkhasbeendoneon thepositionofnodes inferring
the centrality. The idea of a “geographical centrality” did exist, but with a meaning different
from ours. In most works we found, the notion of centrality and geography was within the
context of urban studies [12], such as the study of transportation networks (commuting ser-
vices, airports) [49, 105] or street/road layout [31, 100]. These examples do not compare to
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our work at all; in our case, dynamic graphs are constructed based on the geographical prox-
imity of mobile nodes (e.g., humans or vehicles), whereas the works mentioned above study
static graphs based on amore abstract notion of links (e.g., transport of goods/people or city’s
road topology), or direct street adjacency.

Computing or estimating centralities within a reasonable time is still an on-going issue,
due to both the natural high-complexity of certain centralities, and the scale of the studied
graphs. There have been numerous approximation solutions proposed [1, 7, 8, 29, 39, 89].
They take different approaches to the approximation issue, for instance, one solution consists
of lowering the number of calculations by sampling the nodes [39, 64, 89], another solution
consists of distributing the calculation to enhance the scaling [70]. An interesting approach,
used within theMANET community, focused on considering an egocentric network, where
the centrality is only calculated with its 1-hop neighbors [32, 73], and has proven to be an
excellent approximation for the betweenness.

The closest idea to ourworkproposes to predict the centrality value of nodes based on the
passed centrality values of the same nodes [60]. In the latter, authors study human contact
networks, in which they demonstrate that the centrality value (betweenness, closeness, and
degree) of nodes at a given time t is highly correlated with values of the same nodes at a future
time t + τ. They leverage this periodicity to obtain the actual value of a node based on its
passed value. Nevertheless, none of the works we have found used the geographical location
of mobile nodes as a solution to deduce the centrality.

Still, in the context ofMANETs/VANETs, there have been several efforts to leverage the
geographical (or topographical) position of cars to find themost suitable candidate to dissem-
inate content as efficiently as possible. In SADV [112], the disseminationmethod is based on
the awareness of intersections; if no node is found within communication range, and if the
current holder of the information is in an intersection, the data is transferred to a static-node
assumed to be existing in themiddle of the intersection. Later, the nodewill forward the data
to vehicles passing in the intersection. A similar idea is found in Throwboxes [117], where
the authors state that knowing contact opportunity is necessary. In [116], a data-center tries
to disseminate information (accident, traffic-jam) to vehicles within a pre-defined dissemina-
tion zone. The data is broadcasted on specific roads, knowing they intersect other roads of
the area. To avoid using the data-center too often, they propose to use relay and broadcast
stations, located at intersections, whose purpose is to copy the information and forward it to
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other nodes. In all the examples above, it is assumed that intersections are the areas where the
most opportunistic forwarding should happen, given the density and transient nature of the
vehicles found inside of them. Additionally, numerous VANET algorithms make use of the
topography to disseminate the content [108, 110].

The aforementioned works assume some correlation between the geographical position
of a node (e.g., vehicle) and its ability to efficiently disseminate data. To our surprise, they
have attempted to leverage the geographical position as a way to study contact graphs, and
more specifically to potentially deduce a node’s centrality. Lima et al. have proposed to rede-
fine centralities to make them usable within a spatial context [67].

2.3 Our proposal: Geo-centrality

We are looking into a method to estimate the centrality of mobile nodes, in a contact graph.
With thismethod, we aim to provide an estimate reasonably close to the real node’s centrality
without requiring asmany calculations. We assign, based on the day of the week and the time
of day, a centrality value to an area in space, and not a node.

Therefore, when we want to know the centrality of a node at a given moment, we refer
to its position in space, and take in consideration the time of day as well as whether it is a
weekday or holiday. Other features may be We utilize the fact that human mobility patterns
are redundant, depending on the type of day [41], so that our results generalize to days with
the same type. We first calculate a centralitymap, a database that lists the centralities by point
in space and by the time of day. This section explains our method for the centrality map
calculation. Once a centralitymap is obtained, usingour centralitymap for anode’s centrality
estimation is as easy and fast as looking up in a database.

2.3.1 Problem statement

We consider the case of a communication network, made up of mobile nodes whose central-
ity we want to know. Since the network is mobile, the centrality we wish to compute must
be instantaneous and evolves with each change in the topology. At each moment, then, we
consider a snapshot of our network and construct the graphwhose vertices are the nodes. An
edge between two nodes exists if the euclidean distance between them is less than Δ. From
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this graph, we compute the centrality of every node. So far, this entire process has no novelty
to it. The issue here is that the construction of the graph and, in particular, the calculation
of the centrality of every single node is very greedy in terms of resources and calculation time,
which makes it scale very poorly.

Another issue with this traditional graph centrality calculation is the fact that mobile
nodes imply dynamic graphs. As such, even if we can obtain perfectly accurate centralities
of all nodes in the snapshot, the centrality values of all nodes may be completely different
at the next snapshot, even if a short time separates the two snapshots. The time between
two topology changes is much shorter than the time required to calculate the centrality of all
nodes. Thus, the result of the calculation of centrality is no longer valid once it converges,
since the topology has changed.

We argue that the sole geographical position of a node may be enough to approximate
its centrality. As such, the Geo-Centrality, noted geo-c in the rest of the chapter, is not a new
centrality but a method to map a traditional node-based centrality onto a geographical area;
in other words, geo-c turns geographical coordinates into a centrality estimation tool.

2.3.2 Centrality map calculation

Let us rely on Figure 2.3 to explain our method to calculate the geo-c, and by extension, the
centrality map, the database storing the centrality estimations of all geographical positions.

On the left side of the figure, inside the dashed frame, we have:

• The temporal window W, this represents the temporal granularity of the centrality
map,

• W is divided into 4 time-stamps, noted t1 to t4,

• A geographic area, represented at each instant t, divided into 9 squares,

• Up to 6 nodes, noted n1 to n6, living in the geographic area. These nodes may join
and leave the area duringW,

• a red square, noted S, for which we compute the geo-centrality for time windowW,

• And γ(t, n), our centrality estimated value for node n at time t.
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Weexplain in this section how the geo-centrality of S is computed. The samemethodwill
be applied for all the squares of the considered area to obtain the complete centrality map.

Consider thatwehave a function γ, explained indetails in the following subsection,which
computes the centrality estimated value of node n at instant t. The γ functionwith the topol-
ogy represented in Figure 2.3 gives the following results:

1. At t1: γ(t1, n1) = 1

2. At t2: γ(t2, n1) = 1, γ(t2, n2) = 1

3. At t3: γ(t3, n3) = 1, γ(t3, n6) = 5

4. At t4: γ(t4, n5) = 5

These estimations of nodes’ centrality values living in square S during periodW, includ-
ing the four instants t1 to t4, are used to populate the array γ(W, S), which represents the
centrality estimated value of S duringW. In our example, this array equals to [1, 1, 1, 1, 5, 5]
and represents the γ-values of square S during windowW. This array gives the histogram of
γ for S duringW (right-hand side of Figure 2.3).

This histogram allows deducing the geo-c of S duringW based on the γwith the highest
probability, 1 in the example we depict here.

2.3.3 Calculation of γ

Our approach is centrality-agnostic but, for the sake of illustration, we consider the between-
ness centrality in Figure 2.3. We evaluate, however, different centrality metrics in the evalua-
tion section 2.5.

In dynamic graphs, the notion of high or low centrality values quickly becomes blurred
because of the constant topological changes and a fluctuating number of nodes. This makes
absolute values of centrality difficult to interpret [60]. A better approach is to rely on the
relative centrality of the nodes by ranking them [16] in decreasing order of centralities. Nev-
ertheless, because such a ranking is still too unstable, we make a step forward and consider
the quantiles of ranks. We refer to this rank as the γ(t, n).

Computing square S’s geo-centrality during windowW, noted geo-c(W, S), requires to
obtain the γ(t, n) of all nodes n inside of square S. A value of γ is always calculated on nodes
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Figure 2.3: General methodology to create a geographical centrality. Here we have 4 different snapshots with different
topologies (inside the dashed frame, on the le[), and we focus on a single square S (highlighted in red). By analyzing the
centrality values of nodes (funcঞon γ), we can establish a geographical centrality for S (geo-c).

that existed inside of S at specific snapshot t ∈ W. To clarify how to obtain the γ(n, t) for all
nodes n existing inside S at t, we go through the following steps:

1. We compute the centrality (betweenness centrality is considered in this figure) of all
nodes at the specific snapshot t ∈ W. In Figure 2.3, at instant t1, centrality of node n1
is equal to 2

3 while centralities of n2, n3, and n4 are equal to 0. If the square were to
be empty of nodes at snapshot t, we do note compute any γ.

2. We rank all nodes based on their computed centralities. In the considered figure, at
time t1, node n1 has the highest centrality and is then at rank 1. n2, n3, and n4 have
the same centrality value (0) and have then rank 2.

3. We segment the ranks in N quantiles, with each quantile holding 100
N percent of the

ranks. Without loss of generality,wefixN = 5. Hence,wehave γ : X 7→ {1, 2, 3, 4, 5},
where the first quantile corresponds to the top 20% of the ranks, the second quantile
corresponds to the range 20-40%, and so on. In Figure 2.3, at instant t1, we consider
only node n1 since its the only one in square S. γ(t1, n1) = 1 then.
Note that because of this segmentation, we require at least 5 nodes with 5 different
ranks so that no quantile is empty. We suppose this condition always true as our
datasets always fulfil this requirement.

4. We repeat steps 1 − 3 for every instant t of windowW. We can see, for instance, that
γ of nodes n3 and n6 are respectively equal to 1 and 5 at instant t3. That means that
n3 is among the top 20% values and n6 is among the lowest 20% values, resulting in
γ(t3, n3) = 1 and γ(t3, n6) = 5.
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Figure 2.4: Betweenness value of a random node over ঞme. The variaঞons over ঞme do not show an obvious pa�ern,
making it complex to anঞcipate future values.

2.3.4 Distribution of γ

Now that we have the γ (quantiles) of the nodes within square S in the window, we aggregate
these values to obtain the centrality of the square. In Figure 2.3, the γ of the nodes inside of
S are [1,1,1,1,5,5].

The next step is to determine the probability distribution of these values, as represented
on the right side of Figure 2.3. We note the probability density of a quantile q in square S
during windowW as δq(W, S); in our example, we have δ1(W, S) = 2

3 , δ2(W, S) = 0, and
δ5(W, S) = 1

3 , and so on.
We aim to find squares with a representative quantile, i.e., a quantile with much higher

probability than the others. To this end, we define a stability threshold; a square is considered
as stable if one of its quantiles above η.

The geo-c of a square is defined only if the requirements below are met, otherwise we
consider its geo-c to be undefined:

geo-c(W, S) = q ↔ ∃!q, δq(W, S) > η. (2.1)
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2.4 Applyingcentralitymapstovehicularnetworks

When observing the centrality value of a node, for instance in Figure 2.4 we observe the
betweenness-centrality of a random node over 100 seconds, we noticed that values prior to
time t were not evidently correlated with of the value at time t. In other words, “predicting”
the current centrality value of a node based on its previous values does not seem straightfor-
ward.

Our solution offers to rely on the geographical position as a way to predict the current
value of a node. As such, we must verify that the passed centrality values of nodes in a given
area will help predict the current centrality values of nodes within this very area.

In short, the general idea is that we aim guess the present centrality of a node by looking
at past geo-c of the square it falls in. For all time steps t spaced by τ:

1. We compute the geographic centralities geo-c(Wt, S) of all squares S of the map on the
sliding windowWt = [t,W+ t[.

2. We compute the γ of all nodes at the timeW+ t+ τ.

3. For eachnodenwithin a square S, we compare the true centrality quantile of the nodes,
γ(W+ t+ τ, n) to the one predicted by its geographic position geo-c(Wt, S)when it
exists. If both values are equal, we count the prediction as a success.

2.4.1 Experimental datasets

To verify whether nodes can be predicted from their geographical positions or not, we first
and foremost require mobility datasets. These datasets consist of the pinpoint of a user at
a specific time (e.g., through GPS). For contact graphs to be accurate at all times, which is
mandatory since we need to obtain the exact centrality of all nodes at any given time, we
require both fine precision and frequent updates in the dataset.

Unfortunately, we foundnoopen-source real-lifemobility traceswith updates sufficently
regular to ensure consistency in our graph calculation. As such, we will rely on the following
peer-reviewed emulated vehicular datasets‡:

‡Ideally, having fine-grained and accurate datasets spanning over several days, perhaps months, would have
grandly facilitated the study.
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• LuST [28] covers 172 km2 over the city of Luxembourg, with approximately 300,000
vehicles over 24 hours, typical workday.

• TapasCologne [103] covers 400km2 over the city ofCologne,with approximately 700,000
vehicles over 24 hours, typical workday.

For both datasets, we focus on the city center, a surface of approximately 20 km2 in both
cases. We calculate the centrality of nodes (vehicles) of the contact graphs. To construct the
graph, we consider that two vehicles form an edge if they are within a communication radius
Δ of each other. In this work, we take Δ = 50 meters. It corresponds to a relatively short
distance in the context of vehicular networks, which is a reasonable assumption given our
high-density urban environments.

These two vehicular datasets differ from one another in several aspects. The road lay-
out of Luxembourg is more star-shaped than Cologne’s, whereas Cologne has a shorter and
more crowded rush-hour. In terms of graph dynamics, the Luxembourg dataset forms sig-
nificant connected components in the same areas throughout the day, whereas in Cologne,
they change over the time of day.

In our analysis, we set the following parameters: windowW = 60s, time step τ = 10s,
and stability threshold η = 0.5. This value of η is chosen so that only one quantile may
represent the geo-c of a square, since more than 50% of all γ values within it must belong to
the same quantile.

2.4.2 Node centralities

There are numerous centrality metrics in the literature [37], but here we only focus on the
most well-known in a networking context.

Degree centrality counts the number of direct links of a node. It provides a value of the local
importance of the node in the graph.

Closeness centrality represents the average distance between a node and the rest of the graph.
It needs to be computed over the entire connected component. Notingd(v, u) as the distance
(in terms of number of hops) between nodes v and u:

clos(v) =
∑
u

n− 1
N− 1

n− 1
d(u, v)

· (2.2)
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The n−1
N−1 factor aims toweight themetric according to the proportion of reachable nodes

in the connected component of v, with n being the size of the connected component andN
the total population.

Betweenness centrality gives the proportion of shortest-paths that go through node v. Not-
ing σsd as the number of shortest-path between a source s and a destination d, and σsd(v) as
the number of these shortest-paths that go through node v:

bet(v) =
∑
s̸=v

∑
d ̸=s ̸=v

σsd(v)
σsd

· (2.3)

Egobetweenness centrality is a local approximation for the betweenness centrality [73]. It
follows the same formula as the betweenness of a node but limited to its 1-hop neighbors
component.

2.5 Results

Figure 2.5 presents the success rate of predicting the nodes centralities from their positions:
γ of the node is compared to the geo-c value of the square it falls in (see Section 2.4), and re-
sults are given per quintile. Evaluations were carried out for both Luxembourg and Cologne
datasets over the entire day-time period (from 5.30 am to 10 p.m.).

The overall pattern for both cities is strikingly similar. Prediction rates are best for the
first and fifth quantiles: if the node is within the top 20% values or lowest 20% values, its
node centrality is correctly provided from its position. This is true with 82 to 90% chances if
it lies in the fifth quantile and between 60 to 80% chances if it lies in the first quantile. Note
that betweenness and ego-betweenness are the only ones with prediction success rate lower
than 50%.

2.5.1 Contact density

To understand better the success rate of each centrality, in Figure 2.6 we provide the number
of predictions per quantile (inmillions of prediction attempts), for all centralities, alongwith
the proportion of successes (light green) and failures (dark red).
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Figure 2.5: Success rate of node centrality predicঞon per quanঞle for degree (deg), closeness (clos), betweenness (bet)
and ego-betweenness (ego) centraliঞes.

Keep in mind that the number of nodes in each quantile may vary depending on the
centrality metric. Indeed different centralities yield different behaviors in terms of value dis-
tribution. This is a pure graph property; for instance, the betweenness is known to have few
very high valued nodes because of its flow-based nature, but nodes located even one hop away
from the highest betweenness-valued node may have a value of zero.

Since we only take into account squares which have a defined geo-c; depending on the
centrality, the same square at the same time may or may not have a defined geo-c value. This
explains why the four centralities have different behaviors: for the betweenness (and ego-
betweenness) most values are found in the 5th quantile, where nodes have low betweenness
centrality values. The number of nodes within quintiles 1 to 4 is much smaller than those
within the 5th one.

However, all the centralities reveal a similar pattern: the 5th quantile holds the largest
number of predictable nodes (i.e., cars located in a square with a defined geo-c value) and
this 5th quantile also yields the best prediction results (between 80-90% successes on all four
centralities).

These squares with low geo-c, therefore, correspond to areas where cars have limited con-
tact opportunities. The takeaway here is that we can easily predict low centrality values of
nodes based on their positions, hence predicting a large proportion of the population.
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Figure 2.6: Number of node centrality predicঞons per quanঞle for the four centraliঞes.

2.5.2 Evolution over time

In Figure 2.7, we show how the prediction success rate evolves over time, during a day-long
period. Weplot success and failure rates for the first quantile (i.e., nodeswith centrality values
among the top 20%). For all four centralities, the plot shows a pattern corresponding to three
periods: the morning rush (from 6 a.m. to 11 a.m.), the noon break (12 p.m. to 3 p.m.), and
the evening rush (4 p.m. to 8 p.m.).

Thedegree centrality (Figure 2.7a) shows adentedpattern. Thismeans that success/failure
patterns are not strongly time-correlated in the short term. Predicting degree centrality is very
uneasy: there are no long periods where success outnumbers failures (but the total number
of successes is still larger than failures).

For betweenness and ego-betweenness, represented in (Figures 2.7b and 2.7c, a better
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Figure 2.7: Evoluঞon of node centrality predicঞon (success and failure) over ঞme, for the four centraliঞes and the first
quanঞle.

prediction is achieved for the rush hours, either in the morning or in the evening. At noon,
it is difficult to obtain good predictions.

The closeness centrality (Figure 2.7d) leads to better and more regular prediction suc-
cesses – it is significantly less sensitive to population density the majority of the time; no
matter the population or hour of the day, there are more successes than failures. Observing
these centralities over time helps to shed light on their behaviors. They respond differently to
population density, with the closeness being the less sensitive, aswell as providing an excellent
prediction for the morning and evening rush-hour periods.

On Figure 2.8 we focus on themorning peak of the rush hour period; we plot the success
rate of the closeness centrality prediction every 5 minutes from 8 a.m. to 10 a.m. Prediction,
in this case, is very successful: there is at least 80% chance of successfully predicting the cor-
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Figure 2.8: Successful predicঞons every 5 minutes during the morning rush-hour.

rect quantile, with amaximumof approximately 95% of nodes’ quantiles correctly predicted.
Even if centralities are sensitive to population density, as we have seen above, when we fo-
cus only on very dense scenarios, we can ensure a very high prediction success rate with our
methodology. Such results strongly encourage that creating a database matching a centrality
to a particular time of day is feasible.

2.6 Influence of parameters

While we have previously determined the applicability of our method for short-term central-
ity estimation, thewindow size and square size parameterswere set for simplicity’s sake. Since
our model has numerous parameters, we deemed necessary to discuss their influence on our
results.

2.6.1 Success rate according to the window and square size

To properly understand the benefit or disadvantage for a given value of a parameter, let us
consider the average prediction success rate of each quantile. To do so, we compute themean
prediction success rate over the entire dataset as an estimation of the global efficiency of the
parameters used. In Figure 2.9, we present this mean success rate of predictions, when using
the closeness centrality, while varying the window size and the square size.

Let us first observe the results for the first quantile (top 20% values), as shown in Fig-
ure 2.9a. When choosing a large square size, for instance of 1000m, we observe that the
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(a) 1st quanঞle (b) 2nd quanঞle (c) 3rd quanঞle (d) 4th quanঞle (e) 5th quanঞle

Figure 2.9: Heatmap of mean predicঞon success according to window size and square size, per quanঞle, for the Luxem-
bourg dataset.

success rate goes to zero. Attempting to predict the centrality of nodes in an area this large
(1km) does not work as expected, for several reasons. The nodes inside the square will either
be too diverse (belonging to different quantiles) hence making all squares’ geo-c undefined,
or, squares will have a defined value of geo-c=5 since nodes of the fifth quantile are count for
the majority of values of the dataset. In any case, trying to find a vast zone where all nodes
belong to the same first quantile is not possible. While choosing aminimal square value (e.g.,
5 m) may seem like it will automatically yield the best results, we can observe that the small-
est square size results in a success rate of 70-75 percent. When a square size of≈50 meters is
chosen, the success rate is at its highest, reaching 80-85% success. This observation is of partic-
ular importance because it reveals that a trade-off between a large square (too many different
values) and a small square (not enough values) is the optimal solution.

Figures 2.9b,2.9c and 2.9d, respectively representing quantiles 2, 3 and 4, all seem nearly
identical. Here, while the success rates presented are globally smaller than the ones in the first
quantile, a clear pattern emerges: shorter window size (60 seconds) as well as smaller square
size (5m), leads to the highest success rate.

Let us reflect on the implications of the latter observation. A small window infers that
less information is accumulated for the geo-c’s calculation. A smaller square also infers less
information, because fewer nodes are likely to reside within its borders. Hence, the fact that
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quantiles 2-3-4 have a higher success rate using both smallwindowand small square size show-
cases the difficulty of accurately localizing nodes belonging to these quantiles, because not
only is the geo-c is suitable for a very short duration, it is also only valid for very small areas.
Either nodes from these quantiles are extremelymobile (thus hard to locate over time), or the
nodes’ centrality value constantly switches between quantile 2-3-4. In any case, an accurate
prediction based on the geo-c is impractical.

Lastly, when observing the results of the fifth quantile in Figure 2.9e, we can observe a
clear correlation between the two parameters. Contrary to quantiles 2-3-4, this time if the
window is small (60 seconds), and the square size is also small (5m), then the success rate is at
its lowest. Reciprocally, if thewindow is large and the square size is large, the success rate is the
highest (≈ 0.95). We remind the reader that a given success rate must be interpreted within
the context of its own quantile, thus while the “lowest success” rate of the fifth quantile is
approximately 80 percent, it is still tremendously higher than the success rate of the other
quantiles. Contrary to our observation for the first quantile, there is no trade-off to obtain
for this quantile, the larger the square and window, the better.

In summary, nodes from quantile 5 (the least central) grandly benefit from larger win-
dows and larger squares. This shows that such nodes are highly geographically correlated and
zones in which they evolve are stable through time. On the opposite, nodes from quantiles
2-3-4, due to their instability, are very difficult to locate accurately. The influence of param-
eters on nodes from the quantile 1, the most central nodes, are a bit more complicated. To
achieve the best prediction rate, tuning of parameters is required to enable 80 to 85% success
rate.

We can only set a single square and window size for the entire anticipation process. One
could potentially choose these parameters according to the quantile that one wishes to antic-
ipate the most efficiently.

2.6.2 Influence of window on predictability rates

As a solution to help decide howparameters should be set in case one does notwish to achieve
maximum success rate for a particular quantile, we propose to investigate the percentage of
predictable nodes. A node is “predictable” at time t if the node is locatedwithin a squarewith
a defined geo-c value at time t.
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Figure 2.10: Mean percentage of predictable nodes, according to window size and square size.

Onemay believe that observing the number of predictable squares is a better-suited met-
ric, however, doing so does not take into account the actual population inside the squares,
and would strongly be biased by squares which have seen a single node for the duration of
the entire window.

As such, in Figure 2.10, we observe the mean percentage of predictable nodes, according
to window size and square size. First of all, when using enormous values such as 1000m
squares and windows of 540 seconds, we reach a predictability rate of approximately 45%
of nodes. When squares are this large, their geo-c is either undefined or is equal to the fifth
quantile, since the majority of nodes are from the fifth quantile (as seen in Section 2.5) and
realistically leave no other possibility.

Taking minimal values (5m and 60 seconds) is not a good solution either, since it only
enables the prediction of nodes from quantiles 2-3-4, which represent a small part of the
population, thus only yielding 30% predictability rate.

Still, on Figure 2.10, we can observe that the highest predictability rates are achieved by
selecting values which benefit the prediction success rate of all quantiles. For instance, we
observe that a small window size of 60 seconds and a reasonably sized square between 20 and
150 meters allow the predictability rate to reach up to 70%.
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2.6.3 How to set window and square sizes

From these observations, we now advise two strategies to set the window and square size pa-
rameters. The first solution requires to select a “target quantile” beforehand, meaning a par-
ticular quantile of interest that one wishes to achieve maximum predictability onto. Then,
tune the parameters to achieve the best success rate for the target quantile. The second so-
lution, which requires no prior select, consists of merely choosing the value which results in
the highest predictability rate.

2.7 Use case: Closeness as an epidemic propagation
tool

As a way to showcase the applicability of our method in real-life usage, we propose a final
experimentmotivated by a pragmatical use case. Let us consider a cellular offloading scenario
where a content provider (CP) needs to propagate a piece of information as fast as possible
inside a city while consuming as less cellular resources as possible [87]. To do so, the CP
decides to send the information to a single node, which has to share the information with its
direct entourage. Direct (or device-to-device) communications allow users to exchange data
directly between each other without having to go through a base station, thus enabling such
a scenario in a real-life setting.

The CPwants to send a single copy of the information, to themost well-connected node
in order to achieve maximum information propagation within the shortest amount of time.
The closeness-centralitymeasures themean distance (in term of hops) of a node to the rest of
the graph and thus, by construction, can be used as a tool to quantify which individual could
share a piece of information most rapidly to the rest of the network.

2.7.1 Epidemic propagation

We conduct an epidemic propagation which starts at time t, for a total duration of 600 sec-
onds. Initially, a single node is infected (has the information), and this node infects anyone
that stays within its communication range for 5 consecutive seconds, the time we consider
sufficient to transfer the information. Newly infected nodes also contaminate their neighbor
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Figure 2.11: Comparison of epidemic propagaঞon at different hours of the Luxembourg dataset. We select a source
node based on its actual centrality (node), or the geo-centrality.

nodes, and so on. We proceed to two disseminations with the same topological conditions:
in one case, the first infected node is chosen thanks to the closeness while in the second case,
the node is chosen thanks to geo-c. We then measure the evolution of the number of nodes
having received the information as a function of time.

To determine which node has the highest closeness, we simply compute the closeness
centrality of all nodes at time t, given t is the beginning of the infection.

The geo-c closeness is computed over the windowWt = [t, t + 600[, with a square size
of 20 meters. To select the first infected node with based on the geo-c closeness, we first select
a square from the first quantile (i.e, a square S which satisfies geo-c(Wt, S) = 1) at random,
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and if nodes are found within the boundaries of square S at instant t, we randomly choose
one of them as the first node to be infected. If no node exists within that specific square, we
pick another one.

Contrary to the closeness-centrality propagation, our geo-c closeness propagation is not
deterministic, since we randomly chose a square and then randomly chose a nodewithin that
same square. We run the geo-c propagation 100 times to accurately quantify the mean and
standard deviation of the propagation over time.

2.7.2 Propagation Results

Luxembourg. We start our propagation scheme at four different times of the Luxem-
bourg dataset, each corresponding to different traffic patterns. On Figure 2.11, we plot the
results of the propagation evolution as a function of time, with the error bars for the geo-c
representing the standard deviation around the mean number of nodes infected. Since the
population density is different depending on the hour of the day, the numbers on the y-axis
may differ from one time of the day to another.

On Figure 2.11a, we observe the propagation scheme at 6 a.m., which corresponds to
a time where the node density slowly rises. Firstly, the number of infected nodes is nearly
similar using closeness and geo-c closeness, with a slight advantage in favor of the geo-c. This
showcases that even though the nodes selected for infection through our geo-c method may
not be exactly the same as the one obtained through a regular closeness calculation (hence the
standard deviation around the geo-c), they exhibit the same behavior in terms of propagation.

The previous observation took place during a very-low population density scenario, and
we now take a look at a high-density scenario on Figure 2.11b, where the propagation takes
place during rush-hour (8 a.m.).This time, the two curves are strikingly similar, almost su-
perimposed, and once again demonstrates the ability of the geo-c to locate nodes with the
highest closeness. It does not come to a surprise that this time of day yields very close results,
since massive traffic jams reduce the mobility of high-closeness nodes, making them easily
geolocalized.

Wehave shown in section 2.5 that anticipation during themid-day often performs poorly.
However, when we start the propagation at 12 p.m., the node closeness andmean geo-c close-
ness still provide the same results. During this period, however, the geo-c has a large spread
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Figure 2.12: Comparison of epidemic propagaঞon in the city of Stockholm.

around its mean, since the standard deviation reveals that the geo-c may grandly over or un-
derperform the regular node closeness, during this time of day.

As the last example to showcase the similarity between the two schemes, we started a prop-
agation at the beginning of the evening (9 p.m.). At this hour, the nodes selected through the
geo-c scheme completely outperform the node closeness by approximately 30 percent.

While this experiment showcases the similarity between epidemic propagation based on
the actual closeness and the geo-c’s closeness in a vehicular context, we propose to go a step
further and generalize those results using a different type of mobility dataset.

Stockholm. We now run the same dissemination experiment over a pedestrian dataset,
the Ostermalm dataset [50], a mobility trace taking place in the city of Stockholm. The
trace has a duration of approximately five hours, with a total of 2,400 nodes moving within a
5,872m2 area. Contrary to Luxembourg, the population does not vary significantly through-
out the trace, holding a constant value around 60 nodes at any instant.

In Figure 2.12, we show the propagation over time when using the Stockholm dataset.
Since the population does not vary over time, starting the propagation at any time of the
dataset yield approximately the same results. We can easily observe the two very similar behav-
iors for the geo-c and node closeness for this pedestrian propagation. The standard deviation
is small, showing the little variability in the results even though we ran the geo-c experiment
100 times. This once again shows that the geo-c is able to find nodes with approximately the
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same closeness value, enabling equivalent propagation.
In conclusion, this experiment shows that the geo-c, even calculated over a large window,

can find nodes with a closeness similar to the node with the highest real closeness value. If
we could learn the geo-c of 10minutes over the duration of a typical workday, the geo-c can be
used as a way to approximate the closeness of nodes during upcoming workdays at the sole
cost of querying the centrality map based on time of day and location of the node.

2.8 Conclusion and future work

Throughout this chapter, we explored the correlation between the centrality of nodes and
their geographical position. To do so, we defined a geographical centrality of small areas
(squares), based on the centrality of nodes located inside of them. We evaluated this idea over
two vehicular datasets, by comparing an estimation of the current real centrality of nodes to
the passed geographical centrality of the square they are in. Our evaluation showed that up
to 80% (resp. 90%) of the 20% highest (resp. lowest) centrality values can be successfully esti-
mated, based on their position. By investigating the success rate as a function of the time of
day, we saw that the success rates of different centralities strongly variate according to popu-
lation. Our finding is, the higher the population, the more reliable the centrality estimation
can be done from the position, for the highest centrality nodes. Some centralities are less
sensitive to this, notably the closeness, which yields good results regardless of population or
time.

Our future work consists of turning the ideas presented here into a pragmatical solution
for position-based centrality estimation. Wewill first study in greater detail the failures in the
predictions by analyzing how far-off the prediction was from the actual centrality, to achieve
a higher success rate. Then, we aim to implement a database containing the list of areas with
their associated centralities according to time of day. It would require to pre-processmobility
traces to calculate the centralities beforehand, but once such calculation is done by leveraging
the day-to-day redundancy in traffic patterns, we can easily estimate the centrality of a user
at the sole cost of querying the database, independently from the user’s identity or centrality
complexity.
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A great deal of my work is just playing with equations and
seeing what they give.

Paul Dirac

3
Characterization of D2D throughput

through empirical validation

The interest of adopting device-to-device (D2D) communications is evident inmany real use
cases, ranging from cellular traffic offloading to localized social networks [30, 87]. Neverthe-
less, nothing guarantees that the quality of the direct link is sufficient to fit the application
requirements. The literature, although rich in theoretical analyses and proposals of oppor-
tunistic communications, still lacks experimental work that focuses on finely understanding
D2D links in real setups. The majority of the work either consists of simulations that often
sidestep multiple parameters behind an actual D2D communication or implements a D2D
framework/application but restrained to short-range laboratory settings [57].

It is surprisingly difficult to find answers to simple questions such as “what is the expected
transfer rate between two smartphones if they are 25m apart?’’ or “how far can these two smart-
phones communicate reliably?’’ In this chapter, we focus on characterizing the link quality
of device-to-device communications based on empirical measurements. The particularity of
our experimental methodology is that, besides the wireless environment, we also consider
other sources of influence on the quality of the link such as the device brand and the strategy
to establish direct links. Surprisingly, the quality of the link is highly dependent on the device
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and software that the users carry.
As a summary, the contributions of this chapter are:

• Android D2D APIs review. We recap the currently available high-speed D2D tools
in stock Android. As some APIs are proprietary, their inner-workings are not always
disclosed, which requires indirect analysis to assess their behavior.

• Data collection app. To acquire data through theseAPIs, we designedOcat, an applica-
tion whose purpose is to implement all currently available APIs and store all collected
information for post-processing.

• Measurements campaign. We detail our experimental procedure to collect data by
using Ocat on Android smartphones from three different brands, considering both
Google Nearby andWi-Fi P2P APIs. We vary the distance between the devices.

• Heterogeneity’s characteristics analysis. We explore the performance difference be-
tween the devices. We notably reveal that performance is not as straightforwardly cor-
related to the hardware or the distance as expected.

• Distance-to-throughputmodel. Finally, after a thorough analysis of the collected data,
we propose a model to estimate the goodput-to-distance upper-bound, using the best
performing devices.

This work aims to be a stepping-stone on how to accurately model D2D communica-
tions between twoAndroid devices in a real-life setting. While there are still limited efforts to
leverage D2D communications as an applicable data-exchange solution [30], we are hopeful
results provided in this work entice the community to do so.

3.1 Relatedwork

We first looked into studies where the distance between two devices is estimated from the
received signal strength. This is a standard practice in wireless sensor networks [48, 54, 111],
vehicular networks [23, 97], and in mobility detection of smartphones [62, 81].

Given theubiquitousnature ofWi-Fi inmoderndevices, some studies evaluate theperfor-
mance of the differentWi-Fi standards, which can be useful depending on the smartphone’s
supported standard. Zeng et al. explore the relationship between overlapping Wi-Fi stan-
dards (e.g., 802.11n/ac using the same frequency) and power consumption [113]. Saha et
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al. extend this idea by focusing on the characterization of the relationship between Wi-Fi
throughput of smartphones and battery consumption using several popular models [91].

Some authors have previously raised the idea of establishing the throughput based on the
distance between two entities. Chowdhury et al. approximated the distance-to-throughput
by first fixing a path loss equation and then observing the distances covered by each modu-
lation in the case of IEEE 802.11n standard [24]. Qayyum et al. proposed to measure the
distance-to-throughput using amobile application in Android [84]. Although sharing some
goals with us, their work was restrained to short-range D2D links as they focused on Blue-
tooth links. Neto et al. proposed to estimate the contact throughput by taking into account
the speed of a mobile node [76] and aWi-Fi access point. They transferred data and attempt
to establish a relationship between speed, RSSI, and throughput.

Several authors have implementedD2DcommunicationsusingAndroiddevicesAndroid.
For instance, Keller et al. propose a cooperative streaming system named Microcast [57].
They divide a file into chunks, with the base station sending a chunk to one of the devices
which in return has to share the chunk with its entourage and eventually receive chunks by
eavesdropping on other devices. In this specific case, all devices are connected through the
same access point, which is unlikely in reality. Other examples of full-fledged D2D data shar-
ing solutions exist, but they all assume the devices communicatewithin a short range [11, 63].
Another issue is the assumption that devices canmaintain several simultaneousD2D connec-
tions, while in reality this is not guaranteed and switching from oneWi-Fi Direct connection
to the next may create a latency of several seconds [38]. On top of this, while these frame-
works may be functional, they are not found in stock Android and are therefore not always
available to developers nor have guaranteed support.

While all these works are substantial to their domains, they often ignore the importance
of distance as a parameter for the throughput estimation. Fortunately, some authors shed
light onto this issue. The closest works to our study have investigated the idea of tuning
throughput according to the distance. For instance, Chowdhury et al. [24] observed that the
Wi-Fi protocol adapted its rate according to the RSSI, and therefore proposed to calculate
the amount of transferable data between a Wi-Fi access point and a mobile node according
to the distance between them. Neto et al. [76] take this idea and empirically try to verify this
model by measuring the throughput between a mobile node (car) and a base-station. Last,
Qayyum et al. [84] take an empirical measurement of the throughput according to distance
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using a mobile application.
An essential difference between our study and the previously mentioned works is the

method used to estimate the throughput between two devices according to the distance sepa-
rating them. Chowdhury et al. [24] took the theoretical link speed as specified in theWi-Fi 4
(IEEE 802.11n) standard, and tried to fit a piece-wise and polynomial function to obtain the
link speed from the RSSI. Then, they estimate the RSSI according to distance by using a
log-distance propagationmodel. Qayyum et al. [84] first empirically measure the distance to
throughput by implementing a Bluetooth data transfer scheme in a mobile application, and
then propose a distance to throughputmodel using cubic spline interpolation. Compared to
ourmodel, they report a notably lower throughput, and in their case, shorter range (≈10m).
As detailed in the rest of the chapter, our model takes the best of these two approaches.

3.2 Stock AndroidHigh-Speed D2DAPIs

To establish the upper-boundofD2Ddata-rate according to the distance inmodernAndroid
devices, we decided to go for an empirical approach and thus must carry out field measure-
ments. To this end, we first take a look at currently available D2D APIs in Android.

As of this thesis, there are two supported APIs for high-speed D2D in stock Android,
namely Wi-Fi P2P [45] and Google Nearby Connections [43]. The former is an imple-
mentation of theWi-Fi Direct standard [21], while the latter is a closed-source framework to
share files, strings (e.g., URLs), or even data streams (e.g., VoIP) with surrounding devices.

Some other third-party solutions may exist for D2D communications or even hardware
modifications, but we remind the reader that we intend to investigate stock Android as the
majority of users do not modify their OS. In other words, the whole purpose of this study is
to find a model which emulates the throughput to distance behavior of off-the-shelf smart-
phones.

3.2.1 Wi-Fi P2P

Wi-FiP2P is theAndroid implementationof theWi-FiAlliance’sWi-FiDirect standard. Peer-
to-peer (P2P) devices communicate through P2P Groups, which are dynamically formed by
electing a device as the P2P Group Owner, which embodies the role of the access point. As
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Figure 3.1: Simplified connecঞon process of both APIs.

specified in the standard, a P2P device can concurrently act as a P2P Group Owner and as a
P2P Client of another group.

Once two P2P devices have detected each other, one (or both) can initiate a Wi-Fi P2P
connection, as shown in Figure 3.1. The Wi-Fi Direct standard imposes the connection to
be set up through the Wi-Fi Protected Setup protocol, thus forcing the connection to be
approvedmanually by the user(s) via a pop-up notification. A P2PGroupOwner is decided,
and IP addresses are then configured through DHCP. In a nutshell, this all the Wi-Fi Direct
does, and thus, all thisAPIdoes. After the assignmentof IP addresses tobothdevices, a socket
has to be opened on the newly availableD2D interface to establish a two-way communication
tunnel between the two devices.

For data to be exchanged between the two D2D devices, the responsibility of transport
and applicationprotocols choices is left towhoeverwill design thedata exchange (e.g.,OS/mobile
app programmer). Our implementation of the application protocol built on top of theWi-Fi
Direct will be thoroughly detailed in Section 3.3.1.

Limitations. The standard’s inner-workings have been thoroughly reviewed in the lit-
erature [21], yet, as of this thesis, the Android implementation reveals significant technical
restriction. While the standard does not state any limitations in the number of clients in a
P2P group, wewere unable tomaintainmore than oneD2D connection using theWi-Fi P2P
API. This issue is independent of the role embodied by the device (P2PGroupOwner or P2P
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Client), in fact from our experiments we found that theWi-Fi P2P framework systematically
interrupts any previously existing Wi-Fi P2P connection in favor of the new one. Surpris-
ingly, an Android device can connect to one P2PGroup and a regular 802.11 AP at the same
time, hence provingmultiple simultaneousWi-Fi connections are technically possible in An-
droid [38]. The single Wi-Fi P2P connection restriction seems to be more of a design choice
rather than a real technical limitation, thus possibly mitigated in the near future.

3.2.2 Nearby

Nearby Connections was released in 2017 by Google as a high-throughput D2D framework
to completely abstract network-related complexities of the connection so that developers can
focus on application features rather than communications technicalities. For the rest of this
thesis, we refer toNearbyConnections API asNearby for simplicity’s sake, but keep inmind
other variants of this API exist (Nearby Messages and formerly Nearby Notifications, shut
down in late 2018).

Other than the application level functions (and callbacks) available to developers, there
are close to no technical specification of the inner-workings of Nearby. As such, we do not
know which network or transport or application-level protocols are used when transferring
data.

D/A

D

D/A

A

D

A

D D

D

D

D
D

A

Cluster
Mode

Star
Mode

D

Figure 3.2: Illustraঞon of both topologies supported in Nearby
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Topological restrictions. There are two supported types of topology: cluster and
star*. An illustration of the topological difference can be found in Figure 3.2. The devices
have to choose a role before starting the connection process; they can be either discoverers
or advertisers (noted as D, A or D/A), along with a service name. As we can observe, cluster
topology acts in a completely decentralized fashion, where any device can accept/start a con-
nection from/to any other device. On the other hand, the star topology is more restrictive,
since advertisers can accept all incoming connections but cannot initiate a connection with
another advertiser, and a discoverer can only be connected to a single advertiser.

Nearby leverages all the commonly available wireless technologies found in off-the-shelf
smartphones, namely Bluetooth Low Energy (BLE), Bluetooth, andWi-Fi. The topological
differences between star and cluster seem to be imposed by the technology used. For instance,
cluster topology uses Bluetooth for data exchange which enables connections to multiple de-
vices simultaneously, while the star topology focuses on leveraging the speed of Wi-Fi links
for high-throughput through an adviser acting as anAP.This also explainswhy the star topol-
ogy is restrictive, since Android client devices may only be connected to a single AP at a time.
In this chapter, we solely consider the star topology for this API due to significantly higher
bit-rates enabled by the Wi-Fi, since we aim to establish the upper-bound of D2D reachable
rates.

Using the adb software [42] and a spectrum analyzer, we unveil that the connection pro-
cess is actually three-fold, as summarized in Figure 3.1. First, a BLEbeacon is sent to notify all
users within communication range that a server is available (advertiser) or a client is looking
for a server to connect to (discoverer). Once two devices have detected each other, they first
establish a Bluetooth connection in order to begin the data transfer as soon as possible. Dur-
ing this Bluetooth data transfer, the two devices attempt to establish a Wi-Fi connection; if
they succeed, they automatically switch the data transfer over to the Wi-Fi link. If the Wi-Fi
link drops due to poor signal, they fall back to the Bluetooth connection. TheWi-Fi standard
and carrier frequency are set by the advertiser, which acts as an AP.

After the establishment of theD2D link, thefile transfer can start. Nearby triggers regular
callbacks to notify the user-space of internal framework events, such as a status update on the
transfer of the file.

*A newmode, point-to-point, was released since this thesis was written [Google]
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Figure 3.3: Representaঞon of applicaঞon-level data arrival in Nearby.

3.2.3 Goodput measurement

We focus on Wi-Fi P2P and Nearby because they both enable higher transfer speeds than
BLE and Bluetooth. Unfortunately, there is no integrated way in neither Wi-Fi P2P nor
Nearby APIs to obtain the throughput of the D2D wireless link (i.e., the data exchange rate
between the two Wi-Fi interfaces). Thus, instead of obtaining the throughput, we consider
the goodput in the remainder of this chapter. The goodput is the data rate measured at the
application level.

To obtain the goodput, we have to look at the behavior of the APIs. Nearby triggers a
callback every time a chunk is received. A chunk is≤ 216 bytes-long (theNearby API sets this
size). As shown in Figure 3.3, we store a timestamp at the arrival of each chunk in order to
calculate themean goodput after the file has been entirely sent. We apply the same idea in our
implementation of the Wi-Fi P2P API. For both Nearby and Wi-Fi P2P APIs, we calculate
the mean goodput as:

Mean Goodput =
∑N

n=2 sizeChunk(n)
TimestampN− Timestamp 1

· (3.1)

We start at n = 2 because we cannot obtain the timestamp before the arrival of the first
chunk.

3.2.4 Network-related data collection

To better understand D2D characteristics, we need to collect all possible accessible network-
related information/statistics when using either APIs. As we have not found any straight-
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forward way to obtain extra information using Nearby and Wi-Fi P2P APIs, we use a third
API supported in stock Android that solves the issue at least for the Nearby case. This API,
called WifiManager [46], is initially meant to handle client Wi-Fi connections in Android.
We exploit the fact that once Nearby establishes a D2D link throughWi-Fi, this link acts as a
standardWi-Fi connection; thus, it becomes possible to useWifiManager to query theWi-Fi
interface to obtain extra information. Thanks to this workaround, we obtain:

• the received signal strength indication (RSSI, in dBm)

• the link speed (in Mbit/s)

• the used frequency (in MHz)

Unfortunately, this technique exclusively works on the client-side of the connection, due
to the AP-side information being inaccessible in Android.

Once again, while there arguably could be complex software solutions such as installing
a custom Android firmware on the device or tampering the hardware, this falls outside of
the scope of this work since we focus on off-the-shelf hardware running stock Android to
generalize our results easily.

3.3 Experimental procedure

To assess the upper-bound performance of D2D data exchange rates in modern Android
smartphones, we conduct a measurement campaign to empirically evaluate the performance
of the Nearby andWi-Fi P2P APIs.

We designed and implementedOcat (Opportunistic communications assessment tool), a
mobile applicationwhose purpose is tomeasure the connectivity characteristics between two
or more devices using (so far) either Nearby or Wi-Fi P2P. In Figure 3.4, we show the user
interface of the application. The process consists of generating random files of 10 MBytes,
transmitting them between the devices, and storing all the gathered information in a logging
file for post-process analysis. It is useful to remind that we only collect information once the
data reaches the application level at the receiver side since we cannot access network-related
information at the operating system level.
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Figure 3.4: Ocat user interface.

3.3.1 Ocat

In Figure 3.5, we show the protocol exchanges implemented inOcat. In order to have a richer
view of the exchanges between the devices, we keep the data and control planes separate. The
purpose of the control plane is mainly to keep the synchronization between the transmitter
and the receiver although it also communicates other useful information for the log to be
intelligible such as the name of the file being sent, the name of the device currently transmit-
ting, and so on. As precisely estimating the distance between two devices is complex using
nothing but the available information, we decided that the usermustmanually input the real
distance. This distance, set on the transmitter side, will be shared through the control plane
to the transmitter to simplify the post-process analysis.

Among technical issues we came across while implementing this app, we noticed that
Nearby prematurely notified the transmitter of transfer completion. Using this synchroniza-
tion scheme allowed us to enforce strict transmission rules so that two files are never sent
concurrently, which is a requirement for a fine-grained measurement of file transfer rates.

Last but not least, once the file transmission is completed, wemust ensure that the file has
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Figure 3.5: Representaঞon of the synchronizaঞon protocol implemented in Ocat.

been sent correctly – since we cannotmake any assumptions in regards to the APIs reliability.
Thus, the receiver must compute the cryptographic hash of the received file and send it back
to the transmitter, which in return will compare this hash and the one from the original file.
In case of comparison failure, the same file will be sent several times until a maximum retry
has been reached, which in our case was set to 5. Additionally, the receiver may request the
next file in the transmission queue with the next/ command.

This synchronization protocol is built on top of both APIs, for the sake of having consis-
tent logs between both APIs, thus streamlining the post-process analysis.

3.3.2 Distance-to-Goodput methodology

We now propose the following methodology to obtain the goodput as a function of the dis-
tance. In this experiment, we laid on the ground ameasuring tape which we used as a marker
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(a) Photography of the experimental procedure.
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(b) Representaঞon of the gradual spacing of the devices.

Figure 3.6: General measurement methodology.

to know the exact distance d between the transmitter and receiver devices. We put the smart-
phones on tripods, both of them set at the height of 1.3 meter. We start by putting them
1 meter apart, as seen in Figure 3.6a, and then we gradually increase the distance, as repre-
sented in Figure 3.6b. Using Ocat, we connect two devices using eitherWi-Fi P2P orNearby
(an option in the application). Through an active D2D connection, the transmitter sends
100 randomly generated files to the receiver. Once all files have been sent, we move the re-
ceiver to the nextmark and start the next round of transmissions. We repeat the process until
the devices are too far to establish a connection.

In practice, a plethora of parameters related to thewirelessmediumhave to be considered,
such as shadowing, refraction, or fading. To limit as much as we could the influence of these
parameters, we conducted our experiments in a rural environment with little to no external
interference (Figure 3.6a). This is compliant with our goal ofmeasuring themaximum reach-
able transfer speeds. We checked for interference using a spectrum analyzer by verifying that
no signal above noise-level (-100dBm in our case) was detected on the 2.4 GHz and 5 GHz
bands.
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3.4 Devices testing

In the experiments, wemakeuse of six smartphones from three different brands: 2×Samsung
Galaxy S8, 2×OnePlus 5T, and 2×Honor View 10. From the product specification and
using a spectrum analyzer in an interference-free environment, we derived Table 3.1.

Model #antennas Nearby Wi-Fi P2P
Samsung S8 4×4 2.4 GHz (Wi-Fi 4) 5.8 GHz (Wi-Fi 5)
OnePlus 5T 2×2 5.1 GHz (Wi-Fi 5) 5.1 GHz (Wi-Fi 5)

Honor View 10 1×1 2.4 GHz (Wi-Fi 4) 5.1 GHz (Wi-Fi 5)

Table 3.1: Technical characterisঞcs of the smartphones used in the experiments.

The characteristics of the devices are, as expected, heterogeneous. We can see that, us-
ing Nearby, the Samsung and Honor devices use Wi-Fi 4 (802.11n), which has a 20MHz
bandwidth, while the OnePlus device usesWi-Fi 5 (802.11ac), which may have a bandwidth
ranging from 20 to 160MHz. All of the tested devices, when using theWi-Fi 5 standard, au-
tomatically set their bandwidth to 80MHz. Interestingly, when using Wi-Fi P2P, all devices
adopt Wi-Fi 5.

3.4.1 Close-range communication performance

To better understand the differences between the devices regarding signal transmission and
reception capabilities, we carried out an experiment using Ocat by putting a pair of devices
side-by-side and then measuring the signal strength on the receiver side.

InFigure 3.7,we show themeanRSSImeasuredbetween all pairwise combinations of the
devices. On the x-axis, we show the transmitter’s name, and on the y-axis, the receiver’s name.
Thus, by reading a column, we observe how a particular phone performs as a transmitter,
while a row shows its performance as a receiver.

If we observe the first two columns on the left, where the Honor View 10 devices act
as senders, we can underline that the mean signal strength measured by all received brands
ranges from -29 to -35dBm, thusperforming significantlyworse than theotherbrands. When
observing rows 3 and 4 (in the middle), where the Samsung S8 devices act as receivers, we
could conjecture that they are poor receivers to some extent, as they seem to have a signal
strength ranging from -12 to -18 dBm.
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Figure 3.7: Mean recepঞon signal heatmap for Nearby for all devices tested. For this experiment, devices were placed
side-by-side.

From this preliminary experiment, we could hypothesize that D2D communications us-
ing off-the-shelf devices present device-dependent asymmetrical signal transmission or recep-
tion characteristics.

3.4.2 Medium-range performance characteristics

Verifying the performance of D2D communications when they are located precisely next to
each other is arguably not enough to validate performance differences. Because of numerous
parameters (e.g., shadowing, fading, multipath), the devices may tend to perform equally in
a real-life situation, contrary to what the side-by-side signal reception might suggest. As an
effort to point out differences in the testedhardware and toweedout deviceswithpossibly un-
derwhelming performances, we test all of the six smartphones with the distance-to-goodput
methodology established in the previous section. We choose a stepping of 1-2-5-10-20-30-50
meters and keep longer distances for the best performing devices in a later section.

The results of this measurements campaign can be found in Figure 3.8 and Figure 3.9,
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Figure 3.8: Overview of medium range experiments on all using smartphones Wi-Fi 4.

with each subplot containing the result ofmeasurements donewith a particular setup, a setup
being a pair of sender and receiver. Each colored dot represents a set of measurements done
at a specific distance. The x-axis represents the signal strength measured, with the horizontal
error-bar representing the 5th-95th percentile. The y-axis represents the median goodput
measured, with the vertical error bar representing the 5th-95th percentile. The error bars
may be asymmetrical.

Let us first have a look at Figure 3.8, where all the transfers are done using Wi-Fi 4. We
can observe, in all of the plots, that the signal at 30 meters seem to display more mediocre
performance than at other distances, surprisingly evenwhen the devices are farther apart such
as 50 meters. This observation notably showcases that we cannot monotonically correlate
distance with goodput, as the 50-meter performance exhibits not only better signal reception
but also higher goodput than 30 meters, regardless of being a sender or a receiver.

Focusing on thefirst row,whereHonorView10devices act as senders, the goodput seems
relatively similar, about 5.5 MBytes/s independently of the receiver. For the 30-meter mark,
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Figure 3.9: Overview of medium range experiments on all using smartphones Wi-Fi 5.

as previously observed, the goodput and received signal strength are consistently lower than
the other measurements. In Figure 3.8b, where the Honor View 10 sends to the Samsung
S8, we can observe that the signal strength spreads, represented by the horizontal error bars,
overlap with each other. This implies that there is an extreme signal strength variance in this
particular setup, thus making it hard to uniquely match a specific RSSI to a distance.

In the next row, where the Samsung S8 emits, several differences appear. In Figure 3.8d,
where the Samsung S8 sends to the Honor View 10, we can observe underwhelming perfor-
mance in the goodput when compared to the rest of the row. This difference is partially ex-
plained by the fact that the Honor View 10 has a single antenna, hence disabling theMIMO
feature of Wi-Fi 4 while the other models have multiple antennas. Nonetheless, when we
compare this figure to Figure 3.8b, where the roles of sender and receiver are reversed, the
goodput medians are higher, approximately 5.5 MBytes/s compared to 3-4 MBytes/s, along
with a notably larger spread of the goodput.

The above observation notably highlights that we cannot estimate the goodput of D2D
communications in apairwisemanner, since sending and receiving capacities seem tobe asym-
metrical depending on the model used.

If we compare Figures 3.8e and 3.8f, when the OnePlus 5T acts as a receiver, the good-
put is significantly higher at close range than when the Samsung is a receiver. This is partic-
ularly counter-intuitive since Samsungs have 4×4 antennas and OnePluses have 2×2, one
may think that Samsungs should automatically have better goodput. Nevertheless, it is not
the case, and OnePluses seem to also have better signal reception, with all points shifted to
the left of the plot when compared to when the Samsung acts as a receiver.
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Let us now observe the results of the D2D communications under Nearby when using
Wi-Fi 5, meaning when a OnePlus acts as the sender. In Figure 3.9a, the goodput from one
distance to the next is not as stable as previously observed on Wi-Fi 4. For instance, at one
meter the goodput is approximately 8 MBytes/s, and at 5 meters it is 13 MBytes/s. Seeing
at 10 meters it goes back down to 9 MBytes/s, we once again demonstrate that distance and
goodput measurements cannot be monotonically correlated.

Figure 3.9b shows different results. First, an obvious shift to the right can be observed,
thus showing that this particular setup yields poor signal reception on the Samsung. While
the Samsunghas four antennas and theOnePlus has two antennas (thusOnePlus to Samsung
D2D communications should use 2×2 MIMO), the goodput is only≈8-9MBytes/s; this is
approximately as fast as the Honor who only has a single antenna. Once again, it shows that
there seems to be a performance issue regards Samsungs acting as receivers since no MIMO-
proportional growth of goodput is observed we could hypothesize that MIMO is either de-
activated or not function properly. On the other hand, when a OnePlus sends to another
OnePlus (Figure 3.9c, the goodput goes up to 23-24MBytes/s). When compared to the per-
formance of the Honor, the growth is more than two-fold, thus showing that MIMO can
function adequately with the Nearby API.

We first demonstrated that the sending and receiving capacities are, in fact, asymmetri-
cal. In other words, when considering two different devices, the goodput between the two
strongly depends on which one is currently receiving and sending. Secondly, even when a
phone has MIMO capabilities, it may not function when using Nearby, and therefore does
not always correctly workwhile usingD2D communications. Thirdly, when considering the
same sender at the same distance, receiving devices may have a very different signal strength
readings.

As this study aims to establish an upper-bound of D2D data exchange rates, in the re-
mainder of this chapter, we explore results for the OnePlus 5T smartphones acting both as
sender and receiver. The reasoning behind this choice is threefold: the OnePluses have the
best goodput performance and overall good signal strength measurement regardless of the
sender. Secondly, neither the Samsung S8 nor the Honor View 10 uses the same Wi-Fi stan-
dard for bothWi-Fi P2P andNearby (see Section 3.1) – this is likely to produce biased results
which are difficult to interpret. Thirdly, since we are using the same device model as sender
and receiver, we can ignore the issue of the asymmetrical characteristics.
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3.5 RSSI for goodput estimation

As previously explained, we can only access the RSSI on the receiver side, as Android does
not give access to the transmission power of the sender. The RSSI, in dBm, is calculated as:

RSSI(d) = Pt + Gt + Gr − L− PL(d), (3.2)

where d is the distance between the transmitter and the receiver, Pt is the transmission power,
Gt is the transmitter’s antenna gain,Gr is the receiver’s antenna gain,L is the loss of the system,
and PL(d) is the path loss according to distance d. For the off-the-shelf smartphones that we
use in our experiments, most of these parameters are not disclosed.

We first assume that smartphones transmit at constant power, meaning that Pt is fixed.
We simplify the equation by letting A = Pt + Gt + Gr − L. This is done since we can only
measure the RSSI, hence making it impossible to differentiate the terms. We have then:

RSSI(d) = A− PL(d). (3.3)

3.5.1 Modeling the RSSI

We present in Figure 3.10 the RSSI measurements between two OnePlus 5T following the
measurementmethodology presented in Section 3.3. We chose the following stepping: from
1 to 10 meters we use a 1 m stepping, from 10 m to 100 m we use a 5 m stepping, and from
100 m we use a 10 m stepping until the signal is lost. While at short distances (1 m to 20 m),
the strength of the signal seems to be monotonically decreasing, it is not the case throughout
the entire experiment. For instance, from 30 m to 50 m, there is an apparent increase in the
signal strength even though we put more distance between the devices.

To accurately model this path loss behavior, we consider three different models, namely
the free-spacepath loss propagationmodel [14], the log-distancepath lossmodel [14], and the
accurate version of the two-ray ground-reflection model (as opposed to the approximation
often found in the literature) [86, 97].

Free-space model The free-space model, sometimes known as the Friis transmission
equation, is the expected signal reception in an optimal environment. Its path-loss compo-
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Figure 3.10: RSSI to distance measurements using the OnePlus 5T devices.

nent can be written as:

PLfreespace(d) = −10log10
[

λ2

(4π)2d2

]
(3.4)

with λ the wavelength in meters, and d the distance in meters between the transmitter and
receiver.

Log-Distance model Other more general models exist, for instance, the Log-Distance
path loss model which can be tuned to fit any environment by setting an attenuation expo-
nent. For instance, the indoor environment of a building will have a greater attenuation
exponent than an outdoor field. It is formulated as [14]:

PLlogdistance(d) = PLfreespace(d0) + η10log10
[
d
d0

]
(3.5)

with d0 a close-in reference distance (typically 1 meter), d the distance in meters, and η the
attenuation exponent. When the attenuation exponent is equal to 2, this formula is the same
as the free-space, therefore η has to be equal or superior to 2.
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Two-ray ground-reflection model The idea behind this model is that the receiver
obtains two copies of the same signal, the original one and a copy reflected from the ground.
The principle is to calculate the phase difference between the two copies of the signal to verify
whether the interference is constructive or destructive, based on the heights of the transmit-
ter and the receiver. In our case, these heights are equal because of the tripods, which guar-
antees that the line of sight distance between the two devices is dlos = d. The distance of the
reflected signal is dreflect =

√
d2 + (hr + ht)2, where hr and ht are the heights of the trans-

mitter and receiver devices, respectively (again, equal in our setup). The phase difference as
ϕ = 2π dlos−dreflect

λ .
To obtain the finalmodel, we also need the reflection coefficient, which gives the capacity

of the ground to reflect an electromagnetic wave. It is given by:

Γ⊥ =
sin θ−

√
ε− cos2 θ

sin θ+
√
ε− cos2 θ

(3.6)

where θ is the angle of incidence of the reflected signal based on the heights of the trans-
mitter and receiver, and ε is a fixed parameter based on the material.

The two-ray ground reflection model is then written as [97]:

PLtworay(d) = 20 log10

[
4π

d
λ
|1+ Γ⊥eiϕ|−1

]
· (3.7)

Using Euler’s formula, we replace the complex exponential in the equation as:

PLtworay(d) = 20 log10

[
4π

d
λ
|1+ Γ⊥ cos ϕ+ Γ⊥i sin ϕ|−1

]
· (3.8)

As the modulus of a complex number yields a real number, we use this final equation:

PLtworay(d) = 20 log10

[
4π

d
λ

√
(1+ Γ⊥ cos ϕ)2 + Γ2⊥ sin2 ϕ

−1]
· (3.9)

Fittingmodelsontoexperimentaldata Weestimate theparameters for eachmodel
through a best-fit approach. As we only have the RSSI at each receiver, we need to estimate
the global gain of the system A (see Equation 3.3) for all models. To find which path loss
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model leads to the best fit, we perform a least-square curve fitting using lmfit [77]. We re-
mind the reader that, depending on the PLmodel used, different parameters are used to find
the best fit. These parameters are listed in Table 3.2, where η is the attenuation exponent
of the log-distance model and ε is a parameter that depends on the material of the reflection
surface and hr/ht the height of the receiver/transmitter.

Table 3.2: Summary of the models and their parameters.

Path-Loss Model Param 1 Param 2 Param 3
Free-space A - -

Log-Distance A η -
Two-Ray ground-reflection A ε hr/ht
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Figure 3.11: RSSI Models a[er least-square fiমng. The two-ray ground ground-reflecঞon model is the only model
capturing the signal increase while augmenঞng the distance.

We show in Figure 3.11 how the different models fit our measures. The free-space model
leads to a pretty good fitting by using a global gain A ≈ 10.46. The log-distance model
seems to exhibit the same behavior, however, the best-fit yields a gain of A ≈ 8.3 and the
attenuation exponent is fitted to η ≈ 1.8; the problem is that η is under the minimum value
of 2 which corresponds to the propagation of a signal in free-space. Thus, we consider this
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Figure 3.12: Empirical RSSI-to-goodput relaঞonship with the indicaঞon of the modulaঞon used.

fit to be invalid and ignore it since fixing this parameter to a minimum of 2 is equivalent to
calculating the free-space model.

The two-ray ground-reflection model gives the best results. It can capture specific phe-
nomena such as the signal increase observed between 30 m and 50 m (which is the con-
sequence of constructive interference due to the ground reflection). The algorithm fixes
the parameters A ≈ 9.19 dB and ε = 1.009. It is not a surprise that the algorithm gave
hr = hs ≈ 1.38m, which corresponds to the height of the phones on top of the tripods.

3.5.2 RSSI and Goodput

In order to derive a distance-to-goodput model, we need to establish if a clear correlation be-
tween a given RSSI value and a goodput exists. We know from the Wi-Fi 5 standard [25]
(a.k.a. 802.11ac, used by the OnePlus 5T devices) that, for each value of RSSI, a particular
modulation is chosen in order to achieve the best trade-off between throughput and error re-
silience. Typically, modulations reaching the highest throughputs are quite sensitive to noise
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Table 3.3: Android Wi-Fi 5 theoreঞcal maximum throughput using 80MHz bandwidth & 2*2 MIMO, 400ns GI

MCS Data Rate Modulation Redundancy Max RSSI Min RSSI
9 866 256-QAM 5/6 - -55
8 780 256-QAM 3/4 -56 -57
7 650 64-QAM 5/6 -58 -58
6 585 64-QAM 3/4 -59 -59
5 520 64-QAM 2/3 -60 -63
4 390 16-QAM 3/4 -64 -67
3 260 16-QAM 1/2 -68 -70
2 195 QPSK 3/4 -71 -72
1 130 QPSK 1/2 -73 -75
0 65 BPSK 1/2 -76 -

and are unsuitable for long-distance communications.
Recall that, in Android, the modulation used by theWi-Fi interface is not disclosed; still,

it can be inferred from the link speed if the number of MIMO antennas is known. We com-
piled Table 3.3 from the Wi-Fi 5 standard to better understand the behavior of the through-
put. The BPSKmodulation does not have a minimumRSSI as it continues to operate until
the signal is lost, and the same logic applies to the 256-QAM, which operates no matter how
high the RSSI is.

The units we consider are dBm for the RSSI and MBytes/s for the goodput. In Sec-
tion 3.2.3, we calculated a mean goodput per file sent, and we now apply the same idea to
theRSSI. TheRSSI given byWifiManager is not guaranteed to be up-to-date for each chunk.
We mitigate this issue by weighting the RSSI of each chunk using the transmission time of
the chunk to establish the mean RSSI of the file.

As the choice of a specific RSSI value is not left to the user, we cannot guarantee that
all possible values of RSSI are covered. However, by iteratively moving the tripods back and
forth several times, we were able to cover a wide range of possible values, from -39 dBm to
-90 dBm. In Figure 3.12, we present the results of the RSSI-to-goodput value. Each blue
dot in the figure represents a sample (a file sent by Ocat) associated with a goodput, and we
superimposed the RSSI range of all modulations to give a physical layer perspective to the
reader. The red line represents the median values of all values of RSSI, given that at least 50
samples over the same RSSI are available.
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Figure 3.13: Goodput measurements from OnePlus 5T to OnePlus 5T connecঞons with both APIs. The box-plots’
whiskers include 95% of the data.

We observe, on the left part of the plot, where the RSSI values are covered under the 256-
QAMmodulation, a broader spread of the goodput around the median when compared to
other modulations. For instance, between -40 dBm and -50 dBm, the goodput varies from
7 MBytes/s to 35 MBytes/s with a median around 24.5 MBytes/s. Note that up until the
usage of the 64-QAM modulation, approximately the same median value is found, except
that the spread around the median is significantly smaller, ranging from 20 MBytes/s to
30MBytes/s.

Weobserve that themediandoesnot significantly change in the range -40dBmto -62dBm
despite five different modulations. Since prior works have found a clear correlation between
modulation used and energy consumption in smartphones [113], this reveals a potential en-
ergy consumption issue. As the goodput using themodulations between 256-QAM5/6 and
64-QAM 2/3 are unequivocally equivalent, it seems that using the 64-QAM 2/3 modula-
tion from -40 dBm to -62 dBm could be a better alternative as we know that it consumes
less energy. Also, there are two significant drops in the measured median goodput, at pre-
cisely -63 dBm and -72 dBm. While it would seem intuitive to think that they correspond to
a modulation change, they are not correlated to a particular modulation.

Strictly speaking, the upper-bound should consist of all maximal valuesmeasured at each
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RSSI. However, we notice on Figure 3.12 that there are outliers that may strongly bias our
model with values close to non-reproductible. As a way to propose a bound reasonably close
to the upper-limit we will consider the median as it adequately corresponds to the close-to-
optimal RSSI-to-throughput D2D relationship we want to approximate.

The median of Figure 3.12 can be easily approximated by a linear piecewise function
̂goodput(x), where x is the RSSI:

̂goodput(x) =


24.26 x ≥ −64,
−0.36x+ 42.35 −64 < x ≤ −71,
−0.79x+ 66.44 −71 < x ≤ −82,
−0.24x+ 21.13 −82 < x.

(3.10)

Now that we have the goodput as a function of the RSSI, we need to extend it to become
a function of the distance. This is the topic of the next section.

3.6 Goodput estimation according to distance

3.6.1 Analysis of empirical observations

Let us first note that we were able tomaintain a D2D connection up to 280m distance using
Wi-Fi P2P and up to 310 m using Nearby. This difference is explained by the fact that Wi-
Fi P2P is solely based on Wi-Fi 5 (5 GHz band) while Nearby may fall back to Bluetooth
(2.4 GHz band), as explained in Section 3.2.2. Nonetheless, when Nearby remains at the
5 GHz band, the distance limit is around 280 m, exactly like Wi-Fi P2P. To the best of our
knowledge, there is no reference in the literature reporting D2D experiments that achieve
such long distances using off-the-shelf smartphones using Android.

In Figure 3.13, we show the goodput results obtained from twoOnePlus 5Tdevices com-
municating using bothNearby andWi-Fi P2P.When we observe the results for Nearby (Fig-
ure 3.13a), several patterns emerge. On short distances (1 m to 20 m), the throughput seems
relatively constant, ranging from 23 MBytes/s to 25 MBytes/s. The dispersion around the
median is however quite large, with values as high as 33MBytes/s and as low as 10MBytes/s –
but this is consistent with our observations in the RSSI analysis in Section 3.5.2, where a
close-range communication generated more spread around the median.
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As for the Wi-Fi P2P API (Figure 3.13b), we see that the large variance pattern is also
foundwithin short distances in the rangeof 1mto20m. Themedian ranges from35MBytes/s
to 39MBytes/s, which is significantly higher than the speed reachedwithNearby. We believe
that this difference in short distances is due to a software bottleneck. Another hint is the pre-
viously studied RSSI-to-goodput relationship (Section 3.5.2), which showed no increase in
throughput, albeit using modulations with higher theoretical speeds. Hence, we can deduce
that Nearby’s maximum goodput is, in fact, software-related more than hardware-related.

Going back to Figure 3.13a, we observe an increase in the goodput in the range 30 m to
50 m. We were expecting this behavior as it corresponds to the constructive interference due
to ground reflection (as discussed in Section 3.5.2). This enables the devices to maintain a
high goodput, ranging from 13 MBytes/s to 17 MBytes/s; notably, such a high goodput is
achieved within medium-range distance.

The next pattern can be seen in the range 60 m to approximately 270 m. We observe a
sawtooth behavior. This is a consequence of the lowRSSI over long-range communications,
where any obstacle may increase or decrease the signal (e.g., leaves on the ground and nearby
trees). Regardless, the goodput ranges from 1MByte/s to 7 MBytes/s, which is still a signifi-
cant value.

Over even longer distances, between 280 m and 310 m, the goodput measurements are
less accurate due to Nearby’s behavior. When the Wi-Fi connection drops between two de-
vices, which can happen when the RSSI is around -90 dBm, Nearby automatically falls back
to the Bluetooth connection. Nearby still allows devices to exchange data, but this time with
a significantly lower bit-rate between 10 KBytes/s to 100 KBytes/s.

3.6.2 Model of the goodput as a function of the distance

Having explored the multiple aspects affecting the D2D communications in our experimen-
tal setting, we now propose a final model to estimate the goodput based on the distance be-
tween two Android devices.

We use the PLtworay(d)model to estimate the path loss and fix the inner parameters from
the least-square estimation, where A ≈ 9.19 (see Section 3.5.1). From Equation 3.3, we
derive:
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Figure 3.14: Comparison between the empirical data and our model for Nearby.

R̂SSI(d) = 9.19− PLtworay(d). (3.11)

To obtain the goodput in function of the distance, we combine Equations 3.10 and 3.3:

goodput(d) = ̂goodput(R̂SSI(d)). (3.12)

In Figure 3.14, we show how this model fits the dataset. The original data is the same as
the one presented in Figure 3.13a, but in Figure 3.14 we only show the median for the sake
of readability. Our model presents the expected characteristics that we observed in practice,
notably the sudden surge in goodput in the range 30 m to 50 m along with the significant
drop after 70 m.

The proposedmodel, which is the upper-bound ofD2D communication in off-the-shelf
Android smartphones, allows the research community to estimate the quantity of exchange-
able data based on the distance between two devices.

64



3.7 Conclusion and future work

In this chapter, we explored the current state of D2D communications in stock Android
devices. To this end, we first designed and implemented Ocat, an Android application that
eases the measurement process of D2D communications through both Google Nearby and
Wi-Fi P2P. As a result, we were able to establish a model for the upper-bound goodput of
D2D communications as a function of the distance between the communicating devices.

We first confirmed the fact that smartphones have asymmetrical signal reception perfor-
mance [69], andwenotably highlight the fact that goodput performance is also asymmetrical.
In other words, accurately quantifying the D2D link from both sender and receiver side, not
pairwise, is critical to model D2D interactions accurately.

We showed that the Nearby API can maintain a goodput of 25 MBytes/s in the 1 m to
20 m range. Within the same range, Wi-Fi P2P can reach up to 39 MBytes/s, showing that
Nearby possibly lacks software optimization to achieve similar speeds. In our findings, we
note that the ground reflection has a significant impact on goodput performance, which can
be positive within medium distances between 30 m to 50 m, enabling a steady goodput rate
between 13 MBytes/s to 17 MBytes/s. Surprisingly, devices were able to communicate at
relatively long distances (280 m to 310 m).

We also revealed that D2D communications in Android smartphones potentially have
an energy consumption issue: due to the software maximum of Nearby, the goodput using
a 256-QAMmodulation and 64-QAMmodulation is the same. Since using 256-QAM con-
sumes more energy, deactivating it for D2D-based Wi-Fi communications is recommended
on current smartphones using Nearby.

In our future work, to better assess D2D data sharing capabilities, we intend to exchange
data between several devices at the same time and different distances. Ultimately, this work
enables a new sort of characterization for D2D communications by establishing how much
data canbe exchangedbetweendevices through a spatiotemporal contact. Webelieve that our
work will significantly help researchers and application designers understand the possibilities
and limits of D2D communications using Android devices.
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Errors using inadequate data are much less than those
using no data at all.

Charles Babbage

4
Computing realistic and adaptive capacity

of D2D contacts

Designing and implementing an opportunistic network remains a challenge [5, 55], most no-
tably because of the highly dynamic nature of the topology. Individual nodes have their own
mobility patterns, and communication links only exist when two nodes get in communica-
tion range of each other. An accurate characterization of such interactions is then a must-
have step.

The literature is full of outstanding contributions that assess the underlying phenom-
ena governing opportunistic device-to-device communications [50, 84]. In particular, we
have today a good understanding of inter-contact patterns in such networks [80]. Unfor-
tunately, there are still critical open questions regarding the contact characterization. While
inter-contacts depend primarily on the mobility of the nodes, characterizing a contact in de-
tail also depends on other parameters such as the device-to-device communication technol-
ogy. In this chapter, we investigate issues explicitly related to the contact between twomobile
nodes.

A common limitation of existing works is that they assume either that a contact has in-
finite capacity, allowing the transfer of any amount of data during a single encounter, or
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that the communication throughput during the contact follows the nominal values of the
technology (e.g., Bluetooth or Wi-Fi). This leads to a sort of fixed-rate characterization of
contacts, where either nodes are in contact (with a unique characteristic), or they are not. In
this chapter, we advocate that to achieve a better characterization of opportunistic contacts,
we should adopt a finer representation of the relative mobility of nodes, in order to capture
the communication possibilities better.

The central premise of our work centers around the upper-bound we established in the
previous chapter. We witnessed that because of the inherent characteristics of the wireless
medium, the quality of the link varies with the distance between the nodes. This variation
depends on the communication technology under consideration, but regardless of this, the
throughput always fluctuates as a function of the distance between the transmitter and the
receiver.

In this chapter, we help advance state of the art in several regards. We investigate the im-
pact of the different relative distance between nodes on the capacity of opportunistic links. By
capacity, we mean the total amount of data that can be transferred during the entire contact.
Our ultimate goal is to establish a basis for more accurate design and evaluation of device-to-
device communication strategies. We adopt an empiricalmethodology to achieve a character-
ization of device-to-device links. Our experiments involve Android smartphones equipped
with the Google Nearby API, as per previously studied. We apply the observed characteriza-
tion parameters to two mobility datasets, namely a vehicular one in the city of Luxembourg
and a pedestrian one in Stockholm. We confront our observations with the traditional fixed-
rate contact characterization strategy and make some observations. We confirm the fact that
considering only the duration of a contact and a fixed throughput is far from enough to cap-
ture the actual capacity of the contact.

Although the quantitative analysis thatwe showcase is dependent on the communication
technology, as well as the type of devices, we considered during the data collection campaign
mentioned in the previous chapter. It also depends on the environmental conditions. The
qualitative observations made in this chapter can be extended to any setup, given that the
wireless technology adopts a rate-adaptive strategy. We finally propose a transformation tool
that takes mobility traces as inputs and generates plausible contact capacity traces as outputs.
As a summary, our contributions are:

• Adaptive contact characterization. We thoroughly characterize the contact capacity,
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meaning the amount of exchangeable data through a contact, whenwe consider a fixed-
rate contact and an adaptive-rate contact. We show they are not equivalent,mostly due
to many contacts happening at a near-maximum range.

• Fixed parameter selection. Even though we advocate against fixed-rate contacts as a
way to estimate contact capacity, we also propose a recommended fixed-rate contact
value, to yield more realistic results.

• Dataset breeding tool. Wepropose a transformation tool that takesmobility datasets
as input and generates contact datasets that include plausible capacity information for
each pairwise D2D link between nodes.

4.1 Relatedwork

In the literature, fixing a data exchange rate for a contact has been an on-going issue for more
than a decade. While it obviously depends on the wireless technology used, as well as the
mobility scenario and the environment, most often these issues are entirely overlooked.

Delay tolerant networks (DTN), ormore specificallyDTNrouting/diffusion algorithms,
is a fieldwhere contacts and inter-contact times are used as a way to quantify exchange oppor-
tunities [10, 20, 32, 68]. Specific algorithms focus on the fact that nodes (i.e., transmitting
or receiving devices) have a finite amount of memory that limits their receiving/forwarding
capabilities and forces exceptional buffer management [10, 20]. Yet, while it is a common
practice to take into account hardware limitation due tomemory, we are surprised to see that
transfer speed is simply ignored. In other words, it is often assumed that the packet transfer
between two nodes always succeeds if two nodes are within communication range (though,
these algorithms assume small packet size).

Let us pick the example of the Opportunistic Network Environment simulator (The
ONE), a state-of-the-art simulator aiming to simplify the evaluation of DTN algorithms in
a realistic fashion [58]. For the throughput of mobile devices, they chose a conservative and
simplistic estimate by setting a fixed-rate throughput for contacts. For instance, they assume
that nodes using Bluetooth can exchange data at a 2Mbps throughput within a 10 m radius
and that nodes usingWi-Fi have a 4.5Mbps throughput within a 30 m radius [58]. A recent
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example of such a practice is proposed by Zhu et al. [118], where a contact happens with any
vehicle inside a 200 m range with an exchange rate of 20Mbps. Our study shows that such a
characterization is not very precise and that distance between communicating nodes should
be taken into account in order to accurately model these interactions.

Asmentioned in theprevious chapter, severalworkshaveproposed to estimate the through-
put according to distance [24, 76, 84], utilizing this method as a way to quantify adaptive
contacts. Contrary to these approaches, in this chapter we consider several new aspects. First,
instead of assuming only one of the two nodes is mobile, which is unrealistic in a pedestrian
or vehicular environment, we suppose that both nodes in a contact aremobile. Second, while
other studies simulate randompositions of nodes or real traces with a small number of nodes,
weuse realistic traceswith hundreds, even thousands, ofmobile nodes to understandhow the
adaptive rate affects the contact capacity in a large network.

4.2 Definitions and problem formulation

Weuse the consensual definition of contacts in an opportunistic network, which is the period
of time during which two nodes have a valid wireless link and can exchange data. We note
this duration as τ. Nodes are mobile, and a contact starts as soon as the two nodes are within
communication range of each other. Here, we assume that all nodes have the same antenna
characteristics leading to symmetric links. We also assume omnidirectional antennas. We
note the distance between two nodes A and B as dAB(t).

In this chapter, we focus on the contact capacity CAB, defined as themaximum amount of
data that can be transferred betweenA andB during a contact. The contact capacity depends
on the duration of the contact and the data rate of the opportunistic link between the two
nodes.

In the literature, many authors simplify the problem by considering that nodes can ex-
change data at a fixed rate δfixed when within communication range. In this case, the contact
capacity is simple to obtain:

Cfixed
AB = δfixed × τ. (4.1)

Although the fixed-rate contact characterization is simple to manipulate, it falls short in
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Figure 4.1: Four contacts of∼100 seconds each. Note that the distance between the nodes show the most variable
pa�erns.

capturing the actual characteristics of a contact in a real setup. Because of several physical
phenomena, the throughput that we can get in a wireless link depends on many factors, in-
cluding the distance separating the sender from the receiver and the propagation conditions.
The consequence is that the contact capacity is seldom a linear function of the duration.

Although the wireless medium shows a continuous decreasing behavior in terms of sig-
nal delivery, existing technologies adopt a step-wise transmission data rate calculation as a
function of the received signal strength indication (RSSI). In the previous chapter, we show
this dependence in the case of IEEE 802.11ac (Wi-Fi 5), the one we consider in our experi-
ments. Aswe can see, the ratio between themaximumandminimumachievable throughputs
is higher than one order of magnitude. A contact between two nodes is likely to traverse sev-
eral of these data rate levels; depending on themobility pattern, the resulting contact capacity
can be anything between τ× δL and τ× δH, where τ is the contact duration and δL (resp. δH)
is the lowest (resp. the highest) data rate authorized by the wireless technology. For these
reasons, considering only the contact duration may not be enough to characterize and analyze
opportunistic networks.

The rest of the work consists of investigating howmuch impact we may get from a finer
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Figure 4.2: Distance to throughput model previously established. We will explore the influence of each model in the
annotated secঞons.

characterization of contacts. The first step is to make sure that nodes do observe varying
distances with regard to neighbors for the same contact duration – this is exactly what we
observe in practice. In Figure 4.1, we plot four different contacts of approximately 100 sec-
onds in a real-world pedestrian scenario. As we can see, the four patterns show that, for the
same given contact duration, the distances between the two nodes may vary unpredictably
from one contact to another. We can find a case (red curve) where the nodes get very close
(about 10m) before moving away again. However, we can also find a case (blue curve) where
the nodes remain very far from each other during all the duration of the contact and never
approach less than 250 m.

Problem statement. The estimation of the throughput according to the distance involves
essentially two steps, as shown in Figure 4.2. The first one relates distance to RSSI based on
some signal propagationmodel. The second step transformsRSSI into throughput, and this
dependsmainly on themodulation scheme. While there are common practices to determine
the propagationmodel to fit a given environment, findingwhichmodulation scheme reflects
best the system is arguably more complex. To the best of our knowledge, there is no well-
defined method to transform a given RSSI into a throughput. The main challenge will be
to find models that can transform distance to throughput so that existing mobility datasets
can also be extended to include information on the amount of data that can be transferred
whenever two nodes meet.

4.2.1 Adaptive contact capacity

In opposition to the traditional fixed-rate contact characterization, whose contact capacity is
given in Equation 4.1, we propose adaptive contact characterization as an alternative to better
capture the behavior of opportunistic links.

We involve the two components of the system shown in Figure 4.2: propagation and
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modulation. Let RSSI(dAB(t)) be the RSSI measured on an opportunistic link when the
nodes are at a distance dAB(t) (varying distance over time) and δadaptive(RSSI(dAB(t))) be the
throughput.

The contact capacity for the adaptive contact characterization is given by:

Cadaptive
AB =

∫ T+τ

T
δadaptive(RSSI(dAB(t)))dt. (4.2)

where [T,T+ τ] is the contact interval.

4.3 Empirical reference link characterization

To establish a realistic reference basis, we run an experiment to observe how the relationship
between RSSI and throughput behaves in off-the-shelf devices.

4.3.1 Experimental RSSI to throughput estimation

From the previous chapter, recall that we carried out day-longmeasurement campaigns in or-
der to collect throughput values for different RSSIs in a near interference-free environment.
For the communicating devices, we used two OnePlus 5T smartphones equipped with the
Android 8.1 operating systemand2×2MIMOantennas. Weused theGoogleNearby frame-
work to establish device-to-device links between the nodes [43]. Google Nearby is a propri-
etary device-to-device library which uses Wi-Fi 5 (5 GHz band) for high-speed throughput.

Theoretical versus empirical throughput. One may believe that it suffices to use the tech-
nology’s specification (e.g., the RSSI to MCS relationship shown in the previous chapter)
to obtain realistic contact capacity estimation according to distance. To verify the validity or
not of this assertion, we show the results of our experiment in Figure 4.3. The black step-wise
function represents Wi-Fi 5’s theoretical data rate, and red dots show the empirical through-
put we observed during our experiments. The median, shown as a blue line in the plot, rep-
resents the expected empirical throughput for a given RSSI. We refer to this median as the
“empirical goodput” since it represents the observed transfer capacity of off-the-shelf devices
(OnePlus 5T devices in this case).
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Figure 4.3: RSSI-to-throughput experimental results. The step-wise black line represents the theoreঞcal maximum
values provided by the standard.

We can make two significant observations. Firstly, the theoretical data rate is too opti-
mistic, especially for the highestRSSI values, due to hardware limitations aswell as implemen-
tation choices in theNearby framework. Secondly, for the BPSKmodulation, corresponding
to the lowest RSSI levels (below -75 dBm), the experimental curve goes down to 0 Mbps at
-87 dBm. As we will see later on, the fact that the theoretical curve remains horizontal at this
very last modulation mode has a significant impact on the behavior of the model.

Lastly, inwireless systems,modulation schemes determinewhich physicalmodulation to
be used according to one or several parameters. In the previous chapter, we took the liberty
to refer as modulation scheme the mapping between a given received signal strength and an
expected throughput. For clarification purposes, we remind the reader that in our measure-
ments, as seen in Figure 4.3 as the “empirical goodput”, other parameters than modulation
affect the throughput. Typically, OS scheduling, buffermanagement, signaling, and possible
QoS may interfere. In this chapter, for consistency and simplicity’s sake we still refer to this
relationship as the modulation scheme, since we do not have the means to differentiate the
two, as seen in the following paragraphs.
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Figure 4.4: Modulaঞon schemes considered in this work. They all have a null throughput under -87 dBm, being the
minimum sensiঞvity of our receiver.

4.3.2 Finding an appropriate modulation scheme

In order to assess the effects of the modulation scheme, we investigate the probability den-
sity function of contact capacity for the four different modulation schemes illustrated in Fig-
ure 4.4.

• Step-wise maximum. This is the theoretical step-wise function taken from the Wi-
Fi 5 specification. It is the simplest modulation, since it does not require experimental
testing for verification.

• Step-wise linear adjusted. Almost the same as the step-wise maximum, except that
the slowest modulation (BPSK) has its data-rate linearly decreasing until it reaches 0
at -87 dBm. This only requires knowledge of connectivity loss, thus minimal experi-
mentation.
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Figure 4.5: Contact capacity probability density funcঞon for all modulaঞons using a two-ray propagaঞon model in
Stockholm.

• Step-wise fit. In this scheme, we move all of the steps from theWi-Fi 5 specifications
to the same levels as the experimental data. This requires heavy experimentation to
correctly estimate the position of each step.

• Empirical goodput. For a given RSSI, the empirical goodput is the median through-
put of collected samples over theRSSI (medianblue curve in Figure 4.3). Similar to the
step-wise fit, this modulation scheme requires heavy experimentation to be correctly
estimated.

To evaluate the influence of these modulation schemes on the capacity of a contact, we
first need a mobility scenario. In this section, we consider the Ostermalm dataset [50], a
pedestrianmobility trace in the city of Stockholm. The trace was generated with Legion Stu-
dio [15], a mobility simulator meant for architects and designers to test out pedestrian flows
in large infrastructures. The trace has a duration of approximately five hours, with a total of
2,400 nodesmovingwithin a 5,872m2 area. The dataset covers a period of 5 hours and shows
coordinate updates every 0.6 seconds. This high frequency of position updates is necessary
as we need an accurate estimation of the distance between the nodes. The population does
not vary significantly throughout the trace, holding a constant value around 60 nodes.
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We also need a propagationmodel to transformdistances intoRSSI (recall Figure 4.2 and
Equation 4.2). We consider the two-ray propagation model as it is the one that best fits our
experimental scenario (we will discuss about the propagation models in Section 4.4.1). The
results of the contact capacity PDF are shown in Figure 4.5.

Twopatterns emerge. While the step-wisemaximumand the step-wise linear curves show
a humped behavior, the step-wise linear adjusted is the only one that succeeds to capture the
behavior of the empirical goodput. Even though the step-wise linear adjusted overestimates
the overall capacity of the system when compared to the empirical goodput, the most im-
portant observation here is the shape of the curve, as in a real-world scenario, we expect to
observe lower capacity due to interference from neighboring communications.

Themain takeaway from this experimental evaluation is the apparent necessity to take the
effect of the modulation scheme into account when estimating the adaptive contact capacity.
Most importantly, one has tomodel this carefully, to take into account the asymptotic behav-
ior of throughput according to RSSI and, by extension, throughput according to distance.

4.3.3 Explaining the step-wise linear adjusted scheme

As we could see in the previous subsection, the step-wise linear adjusted scheme was the only
approachwhich can capture the behavior of the experimental results, albeit a small difference
with regard to step-wise maximum. Our intuition is that most contacts happen at the edge
of the communication range, thus using the lowest throughput modulation (in the case of
Wi-Fi 5, BPSK 1/2).

We checkwhich of short-range or long-range contacts contribute themost, by evaluating
the contact capacity of a mobility trace. To this end, we consider the two-ray ground model
for the propagation. For the modulation schemes, we first assess the suitability of the step-
wise maximum and the empirical goodput. In Figure 4.6, we show the CCDF of the total
capacity of the network as a function of the distance between nodes. As we can see in this
figure, regardless of the idealistic (step-wisemax) or realistic (empirical goodput)modulation
scheme, between 68% to 61% of the total capacity of the network happens due to commu-
nications occurring at more than 60 m, which shows the importance of long-distance com-
munications and thus of BPSK modulation. As a result, the modulation scheme used over
long distances should not be neglected. The use of a realistic modulation scheme, where the
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Figure 4.6: CCDF of the total capacity of the Stockholm dataset according to the distance between nodes. For the
adapঞve contact capacity, we here choose a two-ray propagaঞon model and plot the capacity using two modulaঞon
schemes. Regardless of the modulaঞon scheme, the majority of the network capacity falls under BPSK 1/2.

throughput decreases with distance until reaching zero, is recommended.
Part of the explanation also comes from the fact that, in the case of free space and two-ray

ground reflection models, the area “covered” by the BPSK modulation is much bigger than
those covered by the othermodulation schemes. In Figure 4.7, we illustrate the differences be-
tween the areas. The bigger the area, the more neighbors are likely to communicate through
longer links. Other propagation models (especially those adapted for indoors) would lead
to different observations; for this reason, we will have further insights into this problem in
Section 4.4.1.

4.4 Fixed vs. adaptive contact characterization

Let us now compare the capacity of contacts when they are modeled by the fixed-rate and
adaptive approaches. For all contacts, we compute the capacity by applying Equations 4.1
and 4.2, respectively. To showcase the generalization of the upcoming observations, we con-
sider twodatasets, the aforementionedpedestrianOstermalmdataset (presented inSection4.3.2)
and the Luxembourg dataset. Luxembourg LuST [28] is a vehicular mobility trace created
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Figure 4.7: Propagaঞon and modulaঞon on the space. The outer disk represents the coverage zone of BPSK 1/2.

using SUMO [13], a state-of-the-art micro-mobility simulator. The simulation runs over 24
hours and covers a 20 km2 area and a total of 167,000 nodes. The trace simulates a realistic
daily traffic pattern, with peaks of population density during the morning and evening with
approximately 2,500 simultaneous nodes.

4.4.1 Influence of propagation model

Wepreviously investigated the impact ofmodulation schemes on the contact capacity, andwe
nowpropose to generalize our observations using different propagationmodels. We consider
three propagation models: freespace [14], two-ray ground [97], and log-distance [14].

As previously explained, theminimum sensitivity of our devices is -87 dBm. As the prop-
agation model determines the maximum range of communication, we consider contact du-
ration along with contact capacity to justify the distributions. For the sake of reference, in
our work, the maximum communication range using free space and two-ray propagation is
≈ 300 m, and for the log-distance ≈ 45 m (we use an attenuation exponent η of 3). We
set the modulation as the step-wise linear adjusted for the rest of this section. Lastly, we also
plot the contact capacity for a fixed-rate contact δfixed = 65Mbps (this throughput being the
same data rate as the BPSK 1/2 for Wi-Fi 5).

For the adaptive contact, we could consider the empirical goodput since it must inher-
ently follow a realistic contact capacity distribution. However, we know from Section 4.3.2
that the stepwise linear adjusted follows the same contact capacity distribution. As it requires
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Figure 4.8: Contact duraঞon and contact capacity distribuঞon on a vehicular dataset (Luxembourg).

less information (i.e., does not require a full-fledgedmeasurement campaign) than the empir-
ical goodput, we argue that it can be used as our adaptive rate reference since we only care
about the caracterisation induced, not the absolute values.

Let us first consider the vehicular case, shown in Figure 4.8. The contact duration dis-
tribution, as seen in Figure 4.8a, exhibits two different behaviors. The free space and two-
ray propagation models behave similarly, with a mean contact duration around 30 seconds,
whereas the log-distance model leads to a higher probability for contact durations closer to
zero. This is a consequence of few contacts happening at a short distance (small coverage sur-
face); even when short-distance contacts happen, the velocity of vehicles prevent the contact
from lasting longer than a few seconds.

When observing the contact capacity distribution (Figure 4.8b), as expected, the fixed-
rate curves reflect pretty well the distribution of contact duration of Figure 4.8a. What is
eye-catching in this figure is the behavior of the adaptive capacitywhen using the log-distance
propagationmodel. Contrarily to free space and two-ray propagationmodels, log-distance is
muchmore restrictive and intended to reflect indoor scenarios. This means that the coverage
zone of BPSK 1/2 with regard to the other modulations is much smaller. In this way, the
ratio of neighbors communicating through low-throughput links decreases significantly.

In the pedestrian case (Figure 4.9), contact duration distribution shows a more spread
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Figure 4.9: Contact duraঞon and contact capacity distribuঞon on a pedestrian dataset (Stockholm).

behavior than Luxembourg’s. This is due to the shorter relative speeds between human be-
ings compared with the vehicular case, which leads to longer contact duration. As such, this
yields a more spread out distribution for the free space and two-ray models and a completely
different shape for the log-distance model. In fact, for the log-distance model, the highest
contact duration probability is found between 25 to 30 seconds.

The distribution of contact capacities in the Stockholm scenario, depicted in Figure 4.9b,
has several similarities with the plots of the Luxembourg case – the fixed-rate plots follow the
same shape as the distribution of contact duration, while the adaptive plot looks like that of
a decreasing exponential, except for the log-distance.

The peculiar shape the log-distance with a step-wise linear adjusted modulation scheme
contact capacity distribution is explained by carefully observing the behavior of nodes, which
act as pedestrians. Indeed, due to the much shorter communication range in the case of log-
distance, there are only two sorts of contacts. The contact is either very short, thus yielding
poor capacity, or the contact is long with little distance between the two nodes. These two
sorts of behaviors are a direct consequence of the pedestrian mobility behavior with short
communication range; either pedestrian cross each other for a brief period, or two pedestrian
walk next to each other for a longer duration thus yielding higher capacity.

We also confirm once again that the fixed-rate approach exhibits an unrealistic behavior,
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Figure 4.10: Contact capacity as a funcঞon of contact duraঞon.

and we conclude from our results that designers willing to set up an opportunistic network
based on device-to-device communications should account for the type of modulation the
underlying technology relies on. The influence of the environment, represented by the prop-
agation model, is limited compared to the modulation scheme. By adopting this strategy,
they may be able to obtain muchmore accurate results compared to what they would obtain
with the fixed-rate characterization.

4.4.2 Picking a better fixed-rate value

If for some reason, one still prefers to use a fixed-rate characterization, she ought to better
select δfixed. To select a better fixed-rate contact throughput value, we fit a simple linear equa-
tion on the δadaptative mean values for both Luxembourg and Stockholm scenarios, as shown
in Figure 4.10. We remind the reader that in the case of contact capacity as a function of
contact duration, a fixed-rate contact follows the linear equation δfixed = ax+ b = ax, since
b is always equal to 0; a contact of 0 second obviously yielding 0 contact capacity.

The boxplots in Figure 4.10 represent the distribution of contact capacity for a given con-
tact duration, considering an adaptive contact. With each box having a height corresponding
to 50% of the data, and the bottom (resp. top) whiskers are corresponding to the 5th (resp.
95th) percentile. The curve with triangle symbols holds the arithmetic mean of all values
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found inside the bin.
When focusing on the vehicular case Figure 4.10a, we can see that the linear fit for the

fixed-rate contact does not seem like a goodmatch. For contacts of less than 40 seconds long,
the spread around the empirical means is quite small, but the contact capacity growth be-
tween one bin to the next is less than linear. This shows that most contacts under 40 seconds
happen on the edge of the node communication range, where the data rates are the slowest.
Knowing from the distribution of contact times in section 4.4 that the majority of contacts
in Luxembourg happen under 40 seconds, these edge-communications concern most con-
tacts. The slope of the δfixed-linear fit, which is the closest value that we could recommend
if a fixed-rate had to be chosen, would be 53.84 Mbits/s. We advise to be wary of the use of
fixed-contact, even when using this recommended value, seeing the potential incorrect char-
acterisation noted previously.

For the Stockholm case, as represented on Figure 4.10b, the linear fitted linear function
seems to be a better match. The surface in which nodes evolve inside the Stockholm dataset
is much inferior to the Luxembourg one, making the average contact about 80 seconds long.
Again, the slope of the δfixed-linear fit for Stockholm is 41.10 Mbits/s, which is the closest
value we could recommend.

Overall, having a fixed-rate contact is more realistic in the pedestrian case than the ve-
hicular case. We, however, remind the reader that the vast spread around the means shows
fixed-rate contacts are far from being the optimal way to portray realistic contact capacity.

4.5 Contact network capacity computation tool

As a contribution to the community, we propose an open-source software to quantify the
contact capacity of a mobility trace.* The software, implemented as a Python library, pro-
poses several preset models for the propagation law and modulation scheme to meet the re-
quirements of the user. As an incentive for users to fine-tune the software to their specific
needs, we provide access to lower-level functions in case onewishes to implement customized
models. The tool can handle bothmobility and contact traces. A brief user-guide is provided
as an appendix of this thesis.

*https://github.com/Bertier/OpportunistiKapacity
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Figure 4.11: Contact capacity probability according to contact duraঞon in the Stockholm scenario. Here, the two-ray
propagaঞon and step-wise linear adjusted modulaঞon scheme is used.

4.5.1 Mobility traces

For this type of trace, the computation is straightforward. The software takes a mobility
trace as input (i.e., a sequence of GPS coordinates) and calculates the distance between nodes
at each snapshot in order to determine if there is a contact or not. A contact exists if the
distance between the nodes is below the threshold set by the model. If a contact is found, it
computes the capacity using the throughput estimation based on the distance between the
two nodes, until they lose connectivity.

4.5.2 Duration-based contact capacity estimation

Contact traces offer the duration of each contact but not the geographical coordinates of the
nodes. Thus, we cannot handle these traces as we do with mobility traces. Recall that, in
Section , we presented Figure 4.1 that clearly showed that contacts of the same duration are
likely to hide different mobility patterns. To circumvent this issue, we propose to rely on
probability density functions that relate duration to capacity.

Let us illustrate this idea with an example. Let us assume the user chooses the two-ray
propagation model along with the step-wise linear adjusted modulation scheme. Firstly, we
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calculate the contact capacity for each contact duration, as seen in Figure 4.11. This figure
comes from the measured data we showed in Section 4.3, and we expect to extend our ref-
erence dataset with other measurement campaigns in the future. The software computes
then a contact capacity based on the duration of the contact directly from the appropriate
probability density function.

As advocated in this chapter, and overall in throughout the thesis, fixed-rate contacts
having a very unrealistic contact capacity distribution compared to our adaptive models, this
solution should better approach the real contact capacity with significantly more accuracy.

4.6 Conclusion

In this chapter, we investigated contact characterization based on the throughput between
the nodes, namely fixed and adaptive. Our adaptive contact characterization relies on the
principle that one should take the distance between two nodes into account in order to accu-
rately estimate the throughput between them. The adaptive contact characterization adopts
a two-step calculation strategy: firstly, the distance is turned into a received signal strength
(propagationmodel), then the signal strength is turned into a throughput (modulation scheme).

We applied our strategy in two mobility datasets. We observed that the essential factor
when capturing the behavior of a contact is that the modulation scheme’s throughput must
decrease with distance until reaching zero. Also, although distant contacts have the poorest
data-rate, they contribute the most in terms of global network capacity regardless of opti-
mistic or realisticmodulation schemes. By comparing the fixed and adaptive contact capacity
distributions, we noticed that their distribution shapes are entirely different, thus showcasing
that fixed-rate contacts are not enough to adequately capture the essence of realistic contact
capacities.

We additionally provide software that computes the contact capacity of a mobility trace,
either based on the distance between the nodes or, if the latter is not available, on the contact
duration with greater accuracy than fixed-rate contacts. With this tool as a means to simplify
the contact capacity computation, we hope that the community will get further insights into
how the varying contact throughputs impact protocols and algorithms for D2D networks.

In our future work, we intend to provide amathematical framework to calculate the con-
tact capacity based on the duration of contact, also taking in consideration the asymmetric
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features of D2D communications, thus resulting in different capacities depending on which
role is embodied by each device.

Additionally, we also intend to conduct more experimental campaigns so that our tool
encompasses more scenarios, typically see what the results would look like in an interference-
heavy environment such as indoors.
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5
Conclusion and perspectives

Throughout this thesis, we explored different aspects of device-to-device communications.
We investigatedD2Dfrom theoretical, practical, and empirical points of view. In this chapter,
we summarize our contributions along with our most notable results and conclude with the
perspectives and questions left open.

5.1 Summary and takeaways

In this thesis, we helped advance the state-of-the-art in several different manners. From com-
plexnetworks towirelessmodeling fromreal smartphonemeasurements,we adopted a spread
spectrumapproach as away toobserve thedevice-to-device topic fromawide-angle. Through
location-based centrality estimations, ourwork incentifies telecomcompanies tobypass heavy-
load calculations. Additionally, our work notably solidifies the pragmatical aspect of D2D
networks by accurately quantifying links and providing a tool for the community tomeasure
our approach onto their own datasets.

In Chapter 2, we took an interest in the behavior of D2D contacts at the macroscopic
level, approaching them in the form of contact graphs. More accurately, we investigated the
relationship between the topological and geographical location of a node within a contact
graph. Using our methodology, we were able to have a centrality estimate for an area, pro-
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vided there was enough stability in the estimate. Doing so, we showcased that the closeness,
and to some extent, the (ego)-betweenness were easily predicted from their position. Inter-
estingly, nodes with the highest and lowest centralities have the most successful geographical
estimations, revealing that these values of particular interest are rarely highly mobile.

When attempting to correlate the geographical positionwith a specific time of day, which
is a requirement in our methodology, we observed a substantial variance in the percentage of
success depending on the hour of the day. Typically, during high-population density hours
such as the morning rush-hour (8-9 a.m.) yields the highest success results regardless of cen-
trality observed. When it comes to night or mid-day density, the closeness is still able to
achieve high success for the nodes with the highest values.

We found that there is a trade-off between the size of the surface (in our case, squares)
and overall predictability of the nodes inside of it. Tiny squares (<10*10 m) does not yield
good results because not enough nodes go through the surface to accurately predict its cen-
trality estimate. On the opposite, a square too large (>200*200m) also obviously yields poor
results because of the natural proportionality of low-centrality nodes in contact graphs. We
recommend selecting squares based on the mean percentage of predictable nodes. This way,
we abstract the actual success or failure rates. When using a square size of≈100 m results in
the highest predictability rate (75%).

Takeaway 1

Estimating the centrality based on the geographical position is feasible, though highly
dependant on the type of centrality, with closeness yielding the best results. The estima-
tion success rate is highly correlated with the time of day, and the size of the predictable
area.

After observing D2D relationships contact graphs, in chapter 3, we decided to establish
the upper-bound of D2D links. We first reviewed the Wi-Fi P2P and Nearby Connections
APIs (implemented in our data collectionAndroid appOcat). Using ourmethodology to ob-
tain the goodput based on the distance, we obtained the upper-bound of theseD2D commu-
nications, whichmay reach up to 25 (Nearby) and 35MBytes/s (Wi-Fi P2P) at close distance.
Even at 100 m both APIs can reach up to 5 to 10 MBytes/s and can maintain a connection
up to≈280 m.
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Wenoticed that the goodput and the distance were not monotonically correlated. When
we looked into the behavior of the received signal strength, we found that the ground reflec-
tion of the signal had a significant impact on the RSSI. When then observed that and that
RSSI and goodput could be monotonically correlated. As such, we proposed to model the
goodput by first estimating the signal strength, then match a signal strength to a goodput.

Not only do devices have heterogeneous characteristics (e.g., different CPU, wireless
chips, MIMO antennas), through our experiments, we also revealed they have asymmetrical
network performances. This means that if we consider devices A and B, both with different
characteristics, the goodput of A receiving from B and B receiving from A may be different.
Another interesting observation is that it is possible that higher MCS does not yield higher
goodput; thus creating an energy consumption issue. We purposely chose devices with high
performance and symmetrical characteristics for our model.

Takeaway 2

Modern Android devices can communicate up to nearly 300 meters distance in an out-
door setting. We can estimate the goodput between two devices using an estimation
of the received signal strength transformed into an estimated goodput. The direction
which the data takes in a D2D link affects the data-rate of the link, meaning D2D links
are asymmetrical.

In chapter 4, wepropose to quantify contacts adaptively, by combining the contact graph
approach and our newly established upper-bound of D2D goodput approach. Nonetheless,
we extended our results to other types of signal propagation and modulation schemes to re-
veal potential differences the contact characterization.

The fixed contact approach has a volume distribution, which is precisely the same as the
contact time distribution, multiplied by the chosen fixed rate. On the other hand, when
considering a realistic adaptive contact strategy, the distribution of contact volume is entirely
different. More specifically, adaptive-rate contacts have a very high likelihood of having a
volume close to 0, which results in a reverse J-shape distribution of contact volume.

As it turns out, the number of small-duration contacts far exceeds the number of long-
duration contacts. In terms of actual volume, we found that whether we consider a realistic
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modulation scheme (where the throughput goes toward 0) and an unrealistic one (the last
modulation remains constant until devices fall out of range), in both cases the majority of
the total volume of data exchanged happens using the last modulation.

Because of the behavior of small contacts happening at long distances, considering a fixed-
rate will overestimate the volume of contacts. Nonetheless, if one requires a fixed-rate esti-
mate for technical reasons, we propose OpportunistiKapacity, our open-source software for
adaptive-rate contact volume calculation, from which one could trivially estimate the best-
suited fixed-rate instead of a rough estimate as done in the literature.

Takeaway 3

We shed a new light on short-duration contacts which are, in fact, the backbone of con-
tact networks.

5.2 Perspectives

With this thesis, we opened up several promising leads to gain further insights into D2D and
contact graphs. The following includes a list of topics left open for research:

Spatio-temporalvariations ingeographicalcentralityestimations. While
we showed that we could pin a location (area) to a centrality estimate, the accuracy, and over-
all reliability may be explored in several different aspects. For instance, the shape of the area
was chosen in the form of a grid, but perhaps other solutions such as the Voronoi tessella-
tion could enhance the results significantly. On top of this, we observed the strong correla-
tion between time of day and the success in estimating centralities; studying the geographical-
centrality periodicity could help predict upcoming values. Last but not least, with the help of
GPS trace over the span of several days, we could implement a database, based on an offline
learning of a few days, that the locations are redundant thus definitely solving the need to
approximate the centrality of individuals perpetually. Ultimately, this could have a variety of
application in mobile offloading through modern routing and dissemination algorithms.

89



D2D asymmetrical performance-oriented direct graph approach for con-
tact networks. In case of a contact network with heterogeneous devices, which will
happen in a real-life scenario, there will be an asymmetrical relationship between the devices.
In this thesis, we reveal that this asymmetric feature surprisingly extends to the goodput be-
tween two devices; thus, the goodput estimation depends on which way the data is going.
First, a subtle characterization of devices D2Dperformance through their technical specifica-
tion is required; this includes the hardware, software (OS,D2DAPI used). Second, by apply-
ing the newly definedD2D link performance onto a direct graph, we will be able to quantify
contact graphs using a novel D2D performance-based metric. Additionally, we could also
model the neighboring interference using the number of links and model the noise through
a carefully design a random variable for the noise/shadowing phenomena. Then, using our
previously insights gained from the geo-centrality methodology, we could try to see match
this newly established metric to a geographical position. Hopefully, this centrality is stable
in somewaywhichwould then solve the offloading candidate choice in themost data-efficient
manner.
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A
Realistic contact computation library:

OpportunistiKapacity

Weprovide a python library to turnmobility traces into opportunistic contact capacity. This
library aims to simplify the calculation of total network data capacity, more precisely in the
context of contact networks.

A.1 Basic run usingwrapper

You must provide at least 4 parameters for the software to run:

1. The trace kind

2. The trace path

3. A propagation model

4. A modulation scheme

If these arguments are known, you can run the script:
./OKwrapper.py trace_kind dataset propagation_model modulation_scheme
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A.2 Supported traces

This library only considers two types of datasets. Both are text-based.

A.3 Mobility trace

The mobility trace kind is a format where all existing nodes have their geographical coordi-
nates updated at each snapshot. For example:

time node x y
0.0 a 50479.67 54248.598
0.0 b 47721.375 54930.71
0.0 c 48519.473 55673.586
0.0 d 48798.016 54503.477
0.0 e 50233.27 55252.617
1.0 a 50479.684 54248.62
1.0 b 47722.023 54930.7
1.0 c 48518.676 55675.266
1.0 d 48798.703 54505.332
1.0 e 50235.68 55251.816

Table A.1: Snippet from a mobility trace.

Publishing traces in such a format is a common practice withinmobility simulation stud-
ies (e.g., [TAPASCologne](http://kolntrace.project.citi-lab.fr/)).

A.3.1 Contact trace

The contact trace kind is a format describing a contact durationbetween twonodes, regardless
of when the contact actually happened.

The above snippet has four columns, from left to right: id node 1, id node 2, start contact,
end contact.
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node 1 node 2 beginning contact end contact
1 2 1156084891 1156084895
2 3 1156085092 1156085159
4 2 1156085110 1156085118
5 8 1156085190 1156085191
4 2 1156085219 1156085302

Table A.2: Snippet from a contact trace.

A.3.2 Propagation models

The propagationmodels, found in the ‘communications‘ module, calculate the signal loss ac-
cording to the distance between the receiver and transmitter. So far we include the following
path loss models:

• Freespace (freespace_loss)

• Log-distance (logDistance_loss)

• Two-Ray ground reflection (twoRay_loss)

A.3.3 Modulation schemes

The modulation schemes, found in the ‘communications‘ module, set a data rate for a given
RSSI between two nodes. So far, we propose the following path loss models (explained thor-
oughly in the fourth chapter):

• Wifi5_empirical_goodput

• Wifi5_stepwise_max

• Wifi5_stepwise_linear_adjusted

• Wifi5_stepwise_fit
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A.4 Module and classes

The module is separated in 3 files:

• communications: every function todowith the translationofdistance into a through-
put estimation.

• datasetparser: provides two classes, (ContactParser,MobilityParser) to iterate over
a dataset file.

• contactcalculator: provides the two classes (GeographicTrace, ContactTrace) to
calculate the contact capacity.
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