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Abstract
Decentralised congestion control mechanisms for autonomous vehicles

using distributed constraints optimisation

by Huan Vu

Autonomous vehicles are predicted to number several millions by 2025. Crucially,

these vehicles will be able to communicate and coordinate with vehicles in range,

opening up opportunities to mitigate congestion and the risk of accidents. This

ability to communicate and coordinate underpins the notion of Connected Au-

tonomous Vehicles (CAVs). This thesis presents a decentralised mechanism for

traffic control of CAVs in settings where road intersections have to be managed

and optimised. Against this background, we propose a solution based on the dis-

tributed constraint optimisation approach (DCOP). We first model the intersection

and formulate the regulation problem as a DCOP. Following this, we evaluate the

performance of different DCOP algorithms. Thereafter, we opt for an algorithm

and adapt it to the traffic regulation problem, in order to improve performance

and enhance security. In a multi-intersection setup, we propose an individual pri-

ority mechanism allowing road intersections to distribute vehicles while avoiding

computational expensive global optimisation.
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Résumé
Mécanismes de régulation décentralisés pour les véhicules autonomes

fondés sur l’optimisation sous contraintes distribuée

par Huan Vu

On prévoit que le nombre de véhicules autonomes atteindra plusieurs millions d’ici

2025. Ces véhicules pourront communiquer et se coordonner avec les véhicules à

leur portée, ce qui permettra de réduire les encombrements et les risques d’accidents.

Cette capacité de communication et de coordination sous-tend la notion de véhicules

autonomes connectés (CAVs). Cette thèse présente un mécanisme décentralisé

de régulation de traffic pour les CAVs dans des environnements où les intersec-

tions doivent être gérées et optimisées. Nous proposons une solution basée sur

l’approche d’optimisation sous contraintes distribuée (DCOP). Nous modélisons

d’abord l’intersection et formulons le problème de régulation comme un DCOP.

Ensuite, nous évaluons les performances de différents algorithmes DCOP. Ensuite,

nous optons pour un algorithme et l’adaptons au problème de la régulation du

trafic afin d’améliorer les performances et la sécurité. Dans une configuration

multi-intersections, nous proposons un mécanisme de priorité individuel permet-

tant aux intersections de répartir les véhicules tout en évitant une optimisation

globale coûteuse en calcul.
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Chapter 1

Introduction

With the growth in urbanisation and ownership of cars, most major cities around

the world suffer from high rates of traffic congestion, with a significant impact on

the economy and human well-being. In the US alone, urban congestion costs 8.8

billion hours of travel delay, and 3.3 billion gallons of wasted fuel per year (Schrank

et al., 2019). In addition, pollution due to petrol and diesel cars at stand still at

major traffic intersections can rise to more than 20 times than in normal free flow

traffic conditions (Goel and Kumar, 2015).

Several attempts have been made to address this problem for the last decades. So-

lutions vary from the new designs of lanes, intersections and roundabouts to the

optimisation of traffic light plans and traffic flow. With the arrival of new tech-

nologies that are developed in recent years, vehicles are now able to use intelligent

devices on board (e.g. sensors, communication devices, auto pilot systems). These

devices enable the possibility to conduct new approaches to coordinate vehicles in

urban traffic.

In urban traffic, intersections are often in the core of congestion since it is the place

where roads meet. Hence, reducing delays of vehicles in front of intersections

is considered extremely crucial when optimising traffic conditions. In the first

approaches, researchers take advantage of sensors installed on road networks to

optimise traffic lights plans. The optimisation can either be offline (Robertson,

1



Introduction 2

1969) (i.e. the plan is incapable of reacting to real-time information) or online

(Hunt et al., 1982; Sims and Dobinson, 1980; Henry et al., 1984) (i.e. the light

plan is optimised using the current traffic data). However, these approaches are

still based on the traffic light technology, which only deals with vehicles as a flow

instead of considering each vehicle individually.

Furthermore, autonomous cars are predicted to number several million by 2025.

Crucially, these cars will be able to communicate and coordinate with vehicles in

range, opening up opportunities to mitigate congestion and the risk of accidents.

This ability to communicate and coordinate underpins the notion of Connected

Autonomous Vehicles (CAVs). During the 1990s and 2000s, artificial intelligence

enabled the investigation of new methods for traffic modelling and regulation,

especially with multi-agent technologies that are able to solve various problems

in a decentralised and/or distributed way (Bazzan and Klügl, 2014; Dresner and

Stone, 2008, 2007). Today’s communication technology has enabled the design

of regulation methods based on real-time communication of accurate information.

Each vehicle on a network has a traffic context, and the information provided

can be useful for efficient regulation: the accumulated delay since the start of the

vehicle’s journey, its current position, its short and long-term intentions, etc.

The drawback of recent methods is that they focus only on the intersection level

and often are not compatible with classic traffic flow optimisation solutions. There-

fore, even though these solutions are proven to be effective at the intersection level,

without the knowledge about the situation from neighbouring intersections, vehi-

cles can be sent to a congested, or even deadlock situation. We discuss this in

more detail in the Chapter 5.

On account of this, this thesis focus on designing a mechanism that optimises

traffic at each intersection in a microscopic manner, while being able to improvise

different situations in the neighbour intersections. In the following section, we will

list all the requirements that such mechanism needs to fulfil.
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1.1 Research Challenges

Designing a traffic regulation model for CAVs can be quite challenging. We can

highlight some of the main challenges as follows.

• Safety: Before taking into account the efficiency of the regulation method,

the model needs to be safe. Safety is, indeed, the key of any transportation

system currently and in the future. This is the reason why traffic lights are

adopted all over the world because if vehicles follow the rules, there would be

no conflict between them. In the Intelligent Transportation System (ITS)

where vehicles follow their individual crossing plan, safety would become

even more crucial. Therefore, at any point in time, the system must be

conflict free if vehicles follow their instructions. Thus, an agreement should

be made in advance and the system must ensure that vehicles share the same

agreement before they cross the intersection.

• Efficiency: The efficiency of the system must be considered. In a near fu-

ture, CAVs are probably preferred over human drivers thanks to the quick-

ness and precision of their reaction. Indeed, several researches have shown

that even a basic lightless intersection can outperform classical traffic light

system. Regarding the overall measurement of efficiency, many criteria can

be taken into account, the first and most obvious being the traffic delays.

Other criteria might also be considered, such as the energy efficiency and

the comfort of passengers.

• Robustness: Since the traffic is a highly dynamic system, the regulation

model must be robust to sudden changes. The examples of these changes

can be: the arrival of emergency vehicles, buses, accidents and other infras-

tructure failures. Such events need to be dealt with in a quick and efficient

way.

• Compatibility: The number of CAVs can only gradually increase over

time. Thus, part of the traffic will still be conducted by human beings. In

transition period, the system needs to be compatible with human drivers.
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One possible solution is to give CAVs a dedicated lane. However, this would

require extending existing roads, which is costly in urban area. In this regard,

we believe that the best solution that is to build a mechanism that can take

into account human drivers and CAVs at the same time.

In addition to these, there might be some minor problems such as communication

range of vehicles and computational requirements from the infrastructure. These

problems need to be addressed later when deploying such mechanism. Therefore

in the scope of this work, we only give discussion in regard of these challenges.

Thereafter, we discuss the contributions of this thesis to the state-of-the-art.

1.2 Research contributions

Against these challenges, the contributions of this thesis are as follows.

• We model the traffic regulation problem at an intersection. In our model, we

take into account a large amount of information, from vehicle speed, position

and destination to traffic conditions. We then identify the rules to build a

plan for all vehicles to cross the intersection.

• We formulate our model as a Distributed Constraint Optimisation Problem

where vehicles can continuously exchange messages to find the optimal plan.

This is a novel approach to microscopic transportation model. We then eval-

uate different DCOP algorithms in terms of solution quality and complexity

to choose an algorithm that suits our case.

• We propose a safety enhancement to the algorithm. Note that DCOP al-

gorithms may take a large amount of time to finish. Therefore, in case of

failure, the system must be able to provide a backup plan that allows vehicles

to cross the intersection instead of stopping them waiting for the algorithm.

• We propose some improvements to the chosen algorithms (the Max-Sum

algorithm (Farinelli et al., 2008) and the Max-Sum AD VP algorithm (Zivan
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and Peled, 2012)) and adapt them to our traffic problem, enhancing the

efficiency and the computational speed.

• We develop our model to connect several intersections. In so doing, we create

an individual priority level for vehicles that allows the system to deal with

different traffic flows coming from several directions. Since optimising delays

at a single intersection can sometimes result in sending the vehicles to a more

congested area, this tool helps the system or the city authorities to regulate

traffic in a macroscopic level.

• We discuss the choice of different methods proposed in regard to the equip-

ment level at different intersections throughout the network, and also at the

CAVs.

When taken together, this work proposes a novel congestion management model

based on a DCOP representation, both at the intersection and the network level.

The solution combines the efficiency of microscopic traffic regulation at the in-

tersection level where each vehicle is considered individually, and the possibility

of balancing traffic between the intersections. The proposed solution makes it

possible to reduce congestion across the network, while avoiding computationally

expensive global optimisation. At the intersection level, we propose two models

with different precision levels. We then evaluate several DCOP algorithms, and

opt for two of these algorithms, the Max-Sum algorithm (Farinelli et al., 2008)

and the Max-Sum AD VP algorithm (Zivan and Peled, 2012). For each of the al-

gorithms used, we propose an improvement to account for the particular structure

of our problem. Furthermore, we empirically evaluate all our propositions, at the

intersection level as well as at different multi-intersection scenarios, to show their

effectiveness and drawbacks.

Parts of our work during the PhD has led to the publication of the following paper:

Huan Vu, Samir Aknine and Sarvapali Ramchurn (2018). A Decentralised Ap-

proach to Intersection Traffic Management. In Proceedings of the 27th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI 2018) (Vu et al., 2018).

This paper presents our first cellular intersection model and a novel application of
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DCOP algorithms to traffic regulation problem. The paper also illustrates differ-

ent aspects such as safety and continuity of the solution. The work proposed in

this paper is presented in Chapter 4.

Huan Vu, Samir Aknine, Sarvapali Ramchurn and Alessandro Farinelli (2020).

Decentralised Multi-Intersection Congestion Control for Connected Autonomous

Vehicles. In Proceedings of the 17th European Conference on Multi-Agent Systems

(EUMAS 2020) (Vu et al., 2020). This paper presents some extensions to the

cellular model presented in the previous one on several aspects, including a more

space-efficient model, the use of a recent variant of the algorithm, and the multi-

intersection solution. This work is detailed in Chapter 5.

During the PhD program, the knowledge achieved on intelligent transportation

system and/or distributed constraints optimisation has also led to the publication

of:

Matthis Gaciarz, Samir Aknine and Huan Vu (2017). A constraint-based co-

ordination model to advantage buses in urban traffic. In Proceedings of the 29th

IEEE International Conference on Tools with Artificial Intelligence (Gaciarz et al.,

2017). This is a paper that introduced a coordination/negotiation policy for in-

tersections to allow a bus to respect its timetable.

Sacha Lhopital, Samir Aknine, Vincent Thavonekham, Huan Vu and Sarvapali

Ramchurn (2020). Decentralised Control of Intelligent Devices: A Healthcare

Facility Study. In Proceedings of the 17th European Conference on Multi-Agent

Systems (EUMAS 2020) (Lhopital et al., 2020). This paper presents a DCOP

solution to deliver notifications for healthcare assistants to reduce their workload.

1.3 Thesis Outline

The remainder of this thesis is organised as follows:

In Chapter 2, we explore the existing solutions to traffic management. The chapter

first gives the outline of classical methods used widely around the world, then
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discusses different optimisation proposed to these methods. After that, it discusses

the future of traffic using connected vehicles (CVs) and connected autonomous

vehicles (CAVs), then surveys several existing solutions in both the transportation

research area and the artificial intelligence one.

Chapter 3 gives a background on the method that we use throughout this thesis

to address the challenges. We first give a definition of a DCOP framework and

why it is a popular field of research in multi-agent systems. We then discuss

different DCOP algorithms and their properties. Finally, we show some notable

applications using the framework.

In Chapter 4, we first detail our proposed intersection model using a cellular repre-

sentation. We then propose different ways of formulation as a DCOP to the model

and evaluate some DCOP algorithms. Via this evaluation, we choose the suitable

algorithm, namely the Max-Sum algorithm, and identify the remaining issues. We

then propose some improvement to the Max-Sum algorithm to overcome these

issues. Finally, we discuss safety and continuity of our approach and evaluate the

performance of our system.

Chapter 5 proposes different extensions to the previous model. First, we outline

the limits of a cellular model and propose a novel space-efficient model. After

that, we propose the use of an individual priority to take into account traffic

information at a higher level (e.g. density, congestion). We develop this tool and

propose possible priority distributions regarding traffic conditions. In this chapter,

we also study the use of a recent variant of the previously used Max-Sum algorithm

and based on our priority level, we propose a better way to order nodes to speed

up the computation. We conclude the chapter by evaluating these propositions in

different traffic conditions.

Chapter 6 concludes the work in this thesis, and outlines possible improvements

in the future.





Chapter 2

Background on Intersection

Management Methods

Many efforts have been made throughout history to deal with traffic management

issues. In this chapter, we will highlight several existing methods that were used

or proposed to coordinate vehicles in the urban area, in order to keep a safe and

efficient traffic flow. 1

We first begin by identifying the compositions of an intersection in urban traffic in

section 2.1. We then discuss in section 2.2 the classic regulation methods that are

widely used in cities such as priority rules, priority signs and traffic lights. In this

section, we also highlight some of the existing work on optimisation of a traffic

light plan. After that, in section 2.3, we will discuss agent-based approaches for

traffic regulation, which are designed for connected vehicles (CVs) or connected

autonomous vehicles (CAVs). We put forward single intersection approaches, then

coordination approaches between intersections.

1Part of this background research was done in collaboration with M. Garciarz in our internal
report. (Gaciarz et al., unpublished)

9
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2.1 Urban Traffic Composition

First, we define several compositions of an urban traffic intersection. An inter-

section is a place where two or more roads intersect. Each intersection may have

one or several incoming and outgoing lanes in each direction. The zones of an

intersection can be divided as follows (cf. Figure 2.1):

• The conflict zone: the area where several roads superimpose and where con-

flicts between vehicles are most likely to occur.

• The incoming lanes: upstream of the conflict zone, contains the vehicles

likely to enter the conflict zone.

• The outgoing lanes: downstream of the conflict zone, through which the

vehicles are evacuated.

2.2 Classic Regulation Methods

When crossing an intersection, the classical way to coordinate human drivers is

through traffic laws. Different countries can use different laws. Here are some that

are widely used around the world.

2.2.1 Priority Rules for Uncontrolled Intersection

When approaching an uncontrolled intersection (i.e. an intersection that has no

other controlling method), vehicles must follow the priority rule. This rule is often

called ”Priority to the right” for countries where traffic keeps to the right. This

system requires all vehicles to give way to the ones approaching from their right

at intersections. This is a common law that is applied in most countries and is

stipulated in the Vienna Convention on Road Traffic (United Nations Economic

Commission for Europe, 1968).
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Figure 2.1: An intersection between two roads with 6 lanes each. Driving is
on the right. The conflict zone is coloured in purple, the incoming lanes in gray
and the outgoing lanes in yellow. The arrows represent the different possible
vehicle streams. Thus the green vehicle or a vehicle on the same track can only
go straight using the East-West current. The blue vehicle or a vehicle on the

same track can only turn left using the West-North current.

Intersections are sometimes constructed by a different manner using roundabouts.

Priority, in this case, should be given to traffic that is already inside the junction

(e.g. traffic coming from the left in countries that drive on the right side). Modern

roundabouts can have different designs that may enhance safety and capacity of

roads in a different manner. (Kennedy, 2007) reviews the effect of different designs

in various countries.
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2.2.2 Priority Signs

Traffic laws used for uncontrolled intersections can be overridden by priority signs.

Common examples are the Give Way sign (cf. Figure 2.2a) and the Stop sign (cf.

Figure 2.2b). These signs are often used to indicate that vehicles must give way

to other directions, regardless of their destination. The Stop sign also requires

vehicles to stop before continuing their cross.

(a)
(b)

Figure 2.2: Traffic sings: (A) Give Way sign (B) Stop sign, as in the Vienna
Convention on Road Signs and Signals. (United Nations Economic Commission

for Europe, 2006)

2.2.3 Traffic Lights and Optimising Traffic Light Plans with

Classic Methods

One of the most commonly used regulation methods is traffic lights. Traffic lights

allow road users, pedestrians or vehicles to be assigned the right to enter the

conflict zone of an intersection or on a pedestrian crossing. For vehicles, this is

represented by a colour code:

• Green allows vehicles to enter the conflict zone.

• Yellow is a transitional state from green to red, and vehicles should stop as

far as possible.
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• Red prohibits vehicles from entering the conflict zone.

The configuration of the intersection decides which group of vehicles is affected

by the signal. A signal may relate to one or several channels of the same section.

Sometimes the signal relates to a particular flow of the intersection, that is to say

vehicles traveling from some lanes in the storage area to several lanes in the exit

zone.

The conventional traffic light systems function as follows: time is divided into a

series of cycles, which are themselves a series of phases. A phase is the period

during which one or more flows are admitted into the intersection. These flows

must be coherent, i.e. they must not overlap (they are said to be compatible),

or be sufficiently used to reduce the risk of conflicts. At the end of a phase the

signal changes to yellow, then to red. After a few seconds of full red during which

no phase is active, in order to allow vehicles to evacuate out of the conflict zone,

another phase begins. A cycle is therefore a succession of phases during which all

the currents admitted into the intersection have been served at least once.

This type of conventional systems is implemented by TRANSYT (TRAffic Net-

work Study Tool) (Robertson, 1969), one of the oldest systems proposed for traffic

light management. This requires many parameters on the network on which it is

deployed: network geometry, number of vehicles measured or expected, etc. This

system optimises the traffic light plan in order to produce an optimal configuration.

However, this optimisation stays an off-line solution, and is therefore incapable of

adapting to the variations of the traffic in real time.

In contrary, some systems, called ”adaptive”, measure in real time certain traffic

data and exert a strategy that adapts into the actual conditions of traffic.

Moreover, some transportation systems, whether they concern the issue of reg-

ulation or not, are called ”cooperative”. A cooperative transportation system is

defined by the European Commission as a system in which ”Road operators, infras-

tructure, vehicles, their drivers and other road users will co-operate to deliver the

most efficient, safe, secure and comfortable journeys” (Bly, 2004). A co-operative

system therefore requires communication and reaction capacities from its actors,
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cycle

Phase 1 Phase 2 Phase 3 Phase 4

Figure 2.3: An intersection between two roads with 2 lanes each. 12 currents
exist to cross this intersection. These currents can be decomposed into 4 groups
of compatible currents (other cuttings are possible). The periods during which
green and yellow are assigned to each of these groups of currents are the different

phases forming the cycle.
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in particular the vehicles. This can be obtained by the increasing equipment level

of vehicles and drivers. A ”connected vehicle” is a vehicle equipped for commu-

nication. This type includes autonomous vehicles, i.e. vehicles without a human

driver, whose presence on the roads could become common in the near future. A

cooperative system may have different objectives, such as travel safety or traffic

quality.

2.2.3.1 Adaptive Cyclic Systems

Several adaptive systems remain close to the conventional traffic light systems

with cycles. However, the traffic light plans are modified dynamically in order to

adapt to the traffic conditions.

The most popular system of this kind is SCOOT (Split Cycle and Offset Optimi-

sation Technique) (Hunt et al., 1982), developed in the United Kingdom in the

1980s. Sensors (electromagnetic loops) located on each section make it possible

to measure the flow of vehicles, to detect the rise of queues due to congestion,

and the presence of vehicles which may be stopped for another reason. All this

information is used and processed by a traffic flow model to refine the phases of

the lights for each intersection of the area supervised by the system in order to

minimise the weighted sum of the number of stops by the vehicles and the length

of queues in front of the intersections. This optimisation strategy is implemented

by slight variations in the duration of the phases (up to 4 seconds) and / or the

duration of the cycles (up to 8 seconds) of the lights in the area concerned.

SCATS (Sydney Coordinated Adaptive Traffic System) (Sims and Dobinson, 1980)

was developed in the 1980s. Like SCOOT, this system retrieves information using

electromagnetic loops. In fact, SCOOT relies on a traffic flow model to anticipate

progression while SCATS operates on the data directly perceived. This strategy

is based on several libraries: for cycle times, offsets and green light times. An

algorithm helps select the most appropriate elements in different libraries to dy-

namically build a light plan. Different optimisation criteria are used depending

on the context (night, fluidity, peak period, congestion). Implementation of this
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strategy takes the same forms as the SCOOT strategy, namely the modification of

cycle times, phases and offsets. SCATS performs an optimisation on a subsystem

containing from an isolated intersection to a set of 10 intersections.

TUC (Traffic-Responsive Urban Control) (Diakaki, 1999) is a system developed in

the 1990s in response to SCOOT and SCATS’ lack of efficiency towards rapid traffic

conditions changes, particularly congestion, and the algorithmic complexity of the

acyclic systems described hereafter (OPAC, PRODYN, RHODES ...) which is an

obstacle to their deployment on the scale of an entire urban network. The main

strategy is based on an automatic control theory (Linear-Quadratic-Regulator)

to dynamically modify the relative duration of the phases in a cycle. In this

system, the collection of dynamic data can be based on electromagnetic loops as

for SCOOT or SCATS, or on a video detection system.

2.2.3.2 Adaptive Acyclic Systems

Unlike the adaptive systems presented above, certain systems depart from the

cycles of the traffic lights, eliminating this notion. In most cases, this is replaced

by the choice of the switching time, that is to say the switch to the next phase.

One of the oldest systems of this type is PRODYN (DYNamic Programming)

(Henry et al., 1984) developed in the 1980s. In this system, 2 to 3 electromagnetic

loops are arranged on each section, and the assumed state of traffic on each path

is estimated using a simple flow model to anticipate the progress of vehicles on

the track. This system performs an optimisation on the ”isolated” intersection.

However some versions of this system allow communications between neighbouring

intersections in order to anticipate incoming flows. The strategy used by this

system consists in analysing at each time step (of 5 seconds) whether to switch

the state of the light (i.e. to change phase) is the optimal decision (i.e. if it

minimises the waiting time of vehicles in front of the intersection for the next 75

seconds according to the flow model used).

OPAC-RT (Real-Time Optimisation Policies for Adaptive Control) (Gartner et al.,

2001), also developed in the 1980s, shares a number of similarities with PRODYN:
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it is based on switching, and its strategy is also based on the minimisation of the

waiting time of the vehicles by a flow model. There are several differences between

OPAC-RT and PRODYN: the position of the sensors (only one at the beginning

of the section), the flow model used, as well as the duration of the time horizon

considered.

UTOPIA (Urban Traffic Optimisation by Integrated Automation) (Mauro and

Di Taranto, 1990) was developed in the 1980s. One of its main objectives being

the setting up of priorities for public transport. Sensors are located on each sec-

tion near the lines of fire. This system operates on two levels. At the regional

level, a macroscopic flow model is used to predict the vehicle progression and op-

timisation is carried out in order to minimise the travel time of vehicles on the

network. Reference light plans as well as other parameters resulting from this

optimisation are transmitted to the local level (i.e. to the intersections). Based

on these recommendations, each intersection locally carries out an optimisation of

the weighted sum of the waiting time and the number of stops by the vehicles,

and the length of the queues. The two levels of regulation consider different time

scales: the regional level is based on a time horizon of 30 minutes and the local

level is based on a time horizon of 120 seconds.

2.2.3.3 Other Adaptive Systems

The systems presented in the previous two sections are based on baseline ap-

proaches and have all been effectively implemented in one or more cities. Several

other systems with different approaches exist but have not been implemented,

except for on-site experiments for some of them.

CRONOS (Control of Networks by Optimisation of Switchovers) (Boillot et al.,

2006) is a different system that relies on a heuristic approach. It allows an opti-

misation that can be decentralised, where each intersection is treated locally and

individually, or more centralised, where an overall optimisation is carried out over

an area of up to 6-8 intersections. One of its peculiarities is to recover traffic

data, not by electromagnetic loops but by cameras. Finally, CRONOS does not
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have predetermined phases but relies on security constraints making it possible to

prohibit states of light that may create conflicts.

RHODES (Real-time Hierarchical Optimised Distributed Effective System) (Mir-

chandani and Head, 2001) operates on three different levels: the first level takes

into account the slowly shifting traffic characteristics (change of the network, evo-

lution of the most frequented routes, etc.), the second level is based on the first

one to estimate the number of vehicles per hour on each section and to deduce an

approximate green time, which allows the last level to produce a control adapted

to the demand at the scale of an intersection.

MOVA (Microprocessor Optimised Vehicle Actuation) (Vincent and Peirce, 1988)

relies on another type of information, inter-vehicular distances, to determine the

saturation state of traffic. Thus, the criteria taken into account in the regulation

strategy vary according to this state.

The MOTION (On-line Controlled Networks) (Bielefeldt and Busch, 1994) strat-

egy works as follows: each intersection determines a minimum cycle time as a

function based on the estimated vehicle flows. Then a common cycle time at all

intersections is determined, and coordination takes place as a phase offset to create

green waves.

The CARS (Control Audoadaptativo para Redes Semaforizades) strategy (Barceló,

1991) is close to SCOOT, except that it relies on a sliding time horizon whose

duration is permanently adjusted to correspond to the duration of the cycle.

2.2.3.4 Discussion on Traffic Light Optimisation Approaches

The systems presented above, whether TRANSYT or the adaptive systems, are

implemented in many cities around the world. This can, of course, be explained

historically. However these systems possess a number of interesting properties:

• Limited perception of the environment: these systems rely on data collected

by simple sensors, usually electromagnetic loops, present between one and
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three times per section. If the information used by these systems is limited,

it does not require complex and costly equipment.

• Computational simplicity: the calculations made by these systems are most

often carried out individually by intersections and are relatively simple,

which facilitates their application in real time.

• Decentralisation and communication simplicity: some systems such as UTOPIA

are structured at several levels and use regional centralisation, while others

like PRODYN allows communication between neighbouring intersections.

Although these communications are costly, they are relatively rare, mak-

ing these systems less sensitive to a number of failures and do not require

complex communication infrastructure.

These properties make it possible to discard a certain number of hypotheses, no-

tably on the level of equipment of the environment (infrastructure and vehicles).

However, recent technologies, especially those embedded in vehicles, make these

assumptions less and less costly. Moreover, these adaptive systems make other

hypotheses, which can be more or less simplifying.

These systems, in particular the cyclic systems, limit the actions to a certain num-

ber of possibilities, most often resulting from the traditional regulation: modifica-

tion of phase times, cycles and phase shifts between neighbouring intersections.

However, other regulatory actions can be envisaged to allow more dynamic regu-

lation. Moreover, the connected vehicles make it possible to envisage new possi-

bilities of action which can be used for regulation, for example to communicate on

the control strategy of an intersection so that the vehicle adapts its acceleration

profile.

Some of these systems rely on flow models to predict changes in traffic. While

it seems difficult to avoid any predictive model in an anticipatory approach, the

simplicity of the perceptions of these systems does not allow a dynamic adjustment

of the predictions realised. This criticism can be reinforced by the fact that the

connected vehicles, because of their communication and coordination capacities,
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exhibit different dynamic flows than classic vehicles. The diffusion of this type

of vehicle could make the predictions realised by this type of system less and less

relevant, and thus decrease the effectiveness of the regulation realised.

2.3 Using Multi-Agent Systems for Traffic Reg-

ulation

Various issues related to the regulation of urban traffic have been identified by

the multi-agent community. We describe here several works, in their diversity, the

way that they deal with regulation or coordination between vehicles, on the scale

of an intersection or a wider area. In the first case, coordination and regulation

at an intersection can be considered as a problem independent of the question of

global regulation on a network, and the term ”isolated” intersection means that the

rest of the network is not taken in consideration. In the latter case, coordination

takes place between intersections in order to achieve more coherent network-wide

regulation.

2.3.1 Regulation on an Isolated Intersection

On an isolated intersection, various coordination problems and various approaches

can be considered. Most of them concern real-time traffic regulation, and how

the right-of-way is allocated to the vehicles. Some of these approaches imply a

regulation agent that performs the regulation alone, others imply inter-vehicular

coordination.

A first approach is tackled in (Zou and Levinson, 2003). In this paper, vehicles

communicate their information to other vehicles in order to coordinate on the in-

tersection. The vehicles have various trajectories that intersect at conflict points.

To perform a right-of-way allocation and provide a crossing date to each vehicle,

the agents’ behaviour is based on a collaboration scheme. Without any coordi-

nation, the vehicles have conflicts. With a basic collision avoidance, the vehicles’
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crossing dates are delayed, one at a time, to avoid these conflicts. In the collabora-

tion scheme, the vehicles can change the order in which they are delayed in order

to minimise the accumulated delay of the vehicles. However the authors do not

provide details about the interaction mechanism performing this minimisation.

(Balan and Luke, 2006) uses the notion of fairness for traffic regulation, by propos-

ing a control policy for intersections based on the history of the vehicles. This

policy reduces the variance of the total time spent by the vehicles waiting at red

lights during their journeys. Each intersection has a controller able to produce

several traffic light patterns. A traffic light pattern is a combination of green and

red lights duration for each approach, that avoids conflicts. The controller uses

various score functions based on efficiency and fairness to evaluate each possible

regulation pattern. The efficiency and the fairness of each pattern are evaluated,

for various grid sizes and various traffic loads.

Some of the works on the isolated intersection concern vehicle coordination, and

others concern the intersection regulation. AIM (Autonomous Intersection Man-

agement) aims to coordinate autonomous vehicles at an intersection. Coordinat-

ing these vehicles implies granting the right-of-way to the vehicles, so AIM also

performs intersection regulation based on the vehicle information. The following

articles treat the subject of AIM.

In (Dresner and Stone, 2008), K. Dresner and P. Stone propose a right-of-way

awarding mechanism based on reservations for autonomous vehicles. It relies on a

policy called FCFS (First Come First Served), granting the right-of-way to each

vehicle requesting, as quickly as possible. This mechanism allows to take into

account human drivers (Dresner and Stone, 2007) by using a classical traffic light

policy for human drivers, and giving the right-of-way on red lights to automatic

vehicles using the FCFS policy. Although this mechanism can accommodate hu-

man drivers, its main benefits are derived from the FCFS policy and the presence

of autonomous vehicles.

(Grégoire et al., 2013) aims to perform coordination between vehicles approaching

an intersection by constructing a priority (oriented) graph. This work proposes a

characterisation of feasible priorities using a priority graph. The authors suggest,
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the use of heuristics to build such graphs in an optimal way at a future stage of

this work.

In (Yan et al., 2014), the different trajectories of the vehicles in the intersection

are called streams. For example, all the vehicles coming from the south and

going to the west form a stream. Groups of streams are formed, such that groups

do not intersect in conflict points. Such streams are called ”compatible”. The

streams of a group can have green lights at the same time. Then the right-of-way

awarding problem is represented as a job scheduling problem. Groups of vehicles

are formed based on the groups of compatible streams. These groups of vehicles

are represented as groups of jobs, and based on this scheduling representation, the

overall evacuation time of the vehicle is minimised using exact resolution (branch

and bound, dynamic programming).

(Schepperle and Böhm, 2007) and (Schepperle et al., 2009) propose mechanisms

to take into account the different valuations of time reduction for the drivers (for

example, one minute is more important for a driver being late for a job interview

than for a driver driving home from work). In these mechanisms, each vehicle

has a budget and can buy or sell time slots. In (Schepperle and Böhm, 2007),

an auction mechanism called ITSA (Initial Time Slot Auction) is proposed: while

joining the neighbourhood of an intersection every vehicle has the ability to bid a

part of its budget in order to get the first available time slot and thus cross the

intersection. In (Schepperle et al., 2009), another mechanism is proposed: TSE

(Time Slot Exchange). With TSE, vehicles can trade their respective time slots for

credits. A hurried driver will be able to spend what he saved to gain time; other

drivers will earn credits. A brokerage agent manages these exchanges according

to the demands of each driver.

(Vasirani and Ossowski, 2009) also proposes a market-based approach for AIM.

While choosing their itineraries, drivers are likely to choose the shortest path ac-

cording to the estimated travel time of each path. In this model, the drivers

have to purchase reservations from the intersection managers in order to cross the

intersections. This reservation system provides incentives for drivers to explore

alternative paths. In this mechanism, each intersection manager has to determine
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its reservation fare in order to maximise its profit. With few vehicles the inter-

section manager would earn a low profit, but with numerous vehicles it would

actually lose profits because of congestion, so it has to adjust the reservation fare

to get an average number of vehicles. In order to perform a relevant joint action

in fare adjusting, intersection managers use Q-learning.

(Tlig et al., 2014) proposes a synchronisation-based control to manage traffic at

an intersection. In this work, the inner area of the intersection is managed by

a control agent. This agent uses an alternating principle in order to determine

right-of-way for vehicles from different directions through the intersection. The

main idea is to compute the speed profile for each vehicle (i.e. acceleration and

deceleration) so that it arrives at the intersection at the assigned time and speed.

In (Fayazi et al., 2017), the optimal scheduling for CAVs is dealt with using Mixed

Integer Linear Program (MILP). In this mechanism, the constraints that vehicles

have to follow in order to build a plan are formalised. These constraints are

calculated based on the speed limit and maximum acceleration, as well as the

safety gap between vehicles. The gaps are categorised into: gap between vehicles

on the same trajectory and gap between vehicles having conflicting movements.

Finally, after identifying all the constraints, the mechanism uses MILP to solve

the formulated problem, in order to find the optimal solution.

2.3.2 Other Inter-Vehicular Coordination Problems

Regulation and right-of-way allocation is not the only coordination problem exist-

ing at an intersection. In the following approaches, vehicles use vehicular commu-

nication to perform a real-time coordination for a pre-existing regulation policy.

In (Champion, 2003), coordination between vehicles is used for traffic simulation.

By modelling the intersection problem as a 2-player game where the players are

the vehicles, and then as a n-player game, it’s possible to simulate realistic human

behaviours when a priority rule already exists. The moves of the players are ”go”

and ”stop”, and the payoff matrix is built by the players, allowing them to choose
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the most relevant behaviour. However, the complexity of this method is high and

it is difficult to use it for more than a few vehicles.

A common coordination problem for vehicles on an isolated intersection is Collision

Avoidance (CA) (de Campos et al., 2013; Hafner et al., 2011). CA consists in

adjusting the speed of autonomous vehicles approaching an intersection in order

to avoid collisions, and the solution to this problem often involves the use of

mechanical equations to find the appropriate speed for each vehicle. The CA

therefore does not concern the policy of regulation although the adjustment of the

speed of the vehicles can affect their admission date in the intersection. However

this aspect is not tackled in detail. For example, (de Campos et al., 2013) states

that the approach to the admission order of vehicles can be seen as a simple rule

of priority in which the first agent in the sequence has the advantage of keeping

its desired motion profile.

(Lee and Park, 2012) presents the right of way as a nonlinear constrained optimi-

sation problem. In this method, the vehicles adjust their speed under various con-

straints (maximum acceleration and deceleration, maximum and minimum speed,

minimum headway distance) in order to minimise the length of the overlapping

trajectories of the vehicles in the conflict zone. The computation is performed in

a centralised way by an Intersection Control Agent.

2.3.3 Coordinated Regulation for Several Intersections

The following works are based on coordination on the scale of several intersections.

Allowing a larger scale coordination provides a better efficiency of the network, for

example with green waves formation. A green wave is a phenomenon consisting in

coordinating traffic lights in such a way that a group of vehicles can pass through

a succession of green lights, reducing the time loss caused by stop-and-go traffic.

(France and Ghorbani, 2003) proposes a hierarchical multi-agent model for traffic

regulation. In this model, Local Traffic Agents (LTA) perform a regulation at the

intersection scale using sensory data. At a larger scale, an Information Traffic

Agent stores information about the state of each intersection. At an intermediate
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scale, Coordinator Traffic Agents (CTA) monitor the intersections of an area to

provide information to LTAs about the state of their neighbours, particularly

congestion, allowing the LTAs to adjust their behaviours and take into account

larger scale information and goals.

In (Kosonen, 2003), groups of compatible streams are called ”signal groups” and

are represented by agents. On the intersection scale, each signal group negotiates

with the others to get green light or green time extension according to the size of

the queues for each signal group. Fuzzy logic is used to determine whether queues

have to be considered as short or long in a non-boolean way. On the network

scale, intersections are able to exchange their traffic and control data. This allows

signal groups to take into account the neighbours’ control decision to get green

extensions and cause green waves.

(Camponogara and Kraus Jr, 2003) represents traffic control as a stochastic game.

Traffic has various possible states, and various possible traffic policies are possible

actions to be performed by an agent representing the intersection controller. A

distributed Q-learning is performed to learn and apply the best traffic policy for

each traffic state.

(Abdoos et al., 2013) proposes a holonic multi-agent system for traffic signals

control. A holonic system is a multi-level system in which each ”holon” is made of

lower level holons, or atomic agents at the lowest level. In this model, the atomic

agent is a signal controller for a single intersection and performs a local regulation

based on a Q-learning. Higher level holons represent areas of the network, and

their role is to restrict the action space of their sub-holons by giving them abstract

actions to perform. Super-holons and sub-holons perform a common Q-learning

and each level updates its own policy.

(Hausknecht et al., 2011) shows how an optimisation between several intersections

is possible in an AIM context. On an individual scale, itinerary communication

allows each intersection manager to produce an estimation of the crossing time for

the vehicles. Then, this crossing time is given to the vehicles, allowing these to

change their itineraries with realistic estimations of their travel times. On a larger

scale, this work addresses Braess’ Paradox, whereby opening additional travel
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options for the vehicles reduces the efficiency of all vehicles in the system. Indeed,

allowing the vehicles to perform a dynamic itinerary choice with self-interested

goals leads to this suboptimal Nash equilibrium in which Braess’ paradox occurs.

Using dynamic lane reversal, the topology of the network is dynamically changed

and avoids Braess’ Paradox.

Some methods are based on drivers’ behaviour, others on traffic light control.

(Bazzan et al., 2008) discusses the co-adaptation of vehicles and traffic controllers.

Various experiments are made, where only the drivers adapt themselves or only the

controllers adapt themselves, or both adapt. They conclude that co-adaptation

leads to traffic improvements, especially in large-scale situations involving hun-

dreds of vehicles.

(Marsa-Maestre et al., 2015) presents an approach for congestion management in

CSINs (Complex Self-Interested Networks) using negotiation between agents. The

network is represented by a graph and divided into subgraphs, called ”worlds”.

This division of the graph is based on graph properties. The main problem is

divided into sub-problems, easier to solve, and the agents negotiate to decide

where to place the ”doors” between each world, allowing the agents to go from

one world to another. At the end of this work, a transportation management

scenario is succinctly shown, illustrating how this approach could be used for

traffic management.

(Doniec et al., 2008) proposes a coordination model for multi-agent systems using

anticipation. In this model, the agents compute the consequences of their actions

using constraint networks to predict if their actions will cause ”undesirable states”

and avoid it. This algorithm is applied on a traffic regulation problem on the

intersection scale. Vehicles are agents able to Go or to Stop, and have to cross

an intersection. Gridlocks may happen in the intersection (because of left-turning

vehicles), and are considered as an undesirable state that can be avoided using

this algorithm.

(Morales et al., 2011) proposes an approach to build regulation plans in multi-

agent traffic control using unsupervised machine learning. On a traffic intersection

scenario, vehicles can move and have to avoid collisions. A traffic authority gathers
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the information and performs a case-based reasoning, using past experience, to

determine the solution to apply in order to solve the current case. Then a norm

manager translates the solutions into norms for car agents, who apply these norms

using a rule engine. A reduction of the number of norms necessary to accomplish

the system goals (avoiding conflict) is also performed in order to reduce the number

of norms the agents have to check.

(Dinanga and Pasin, 2014) proposes signals traffic regulation policies based on the

real-time position of each vehicle around the intersection. These policies are based

on the number of vehicles waiting in each queue around the intersection.

(Ashtiani et al., 2018) extends the MILP single intersection management in (Fayazi

et al., 2017), proposing an optimisation over multiple intersections. Based on the

access time of a vehicle through an intersection, the mechanism compute its desired

access time through the next intersection in the trajectory. Using this mechanism,

the intersection controllers have knowledge about both vehicles presented in the

area, and vehicles that are about to arrive. The information is then taken into

account in the MILP optimisation.

In (Junges and Bazzan, 2008), R. Junges and A.L.C. Bazzan propose a novel traffic

light synchronisation problem using Distributed Constraint Optimisation (DCOP).

In this work, intersections exchange messages using DCOP algorithms to optimise

over the quality of the traffic lights plan. It shows that solution quality achieved

with DCOP is of good quality, but communication overhead and computational

time tends to be an issue for such system. In literature, DCOP is widely used and

has been shown to be effective in task allocation and meeting scheduling problems

(Macarthur et al., 2011; Farinelli et al., 2008; Modi and Veloso, 2004).

2.3.4 Discussion on Existing Multi-Agent Approaches

MAS-based approaches presented above rely on different assumptions and envi-

ronment than the classic intersection control system. Classic approaches gather

information through a number of loops and sensors installed in the infrastructure.

They are used to measure macroscopic information about the traffic such as traffic
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flow, velocity and density. In contrary, MAS-based approaches rely on accurate

perception of the position, velocity and desired destinations from vehicles on the

network, and therefore, can model the state of the network more precisely. This

assumption is reasonable in an environment where vehicles are highly equipped

and have significant communication capabilities. In a future state of transporta-

tion systems, the presence of CAVs can reasonably make this type of hypothesis

because CAVs are proposed with these capacities.

MAS-based approaches can further be categorised into several types, based on

their control variables. Some gather precise information from vehicles to optimise

the traffic light plan (Balan and Luke, 2006; Kosonen, 2003; Junges and Bazzan,

2008). In contrary, others aim to regulate intersections without using traffic lights

(Dresner and Stone, 2008; Vasirani and Ossowski, 2009; Tlig et al., 2014). Such

systems require communicating to each vehicle approaching an intersection its

desired crossing time. The signal received can be similar to an individual traffic

light, where each vehicle has a small time window to cross. Therefore, when

opting for such solutions, vehicles must be able to react precisely to their plan (i.e.

acceleration, deceleration, cross).

Regarding the level of decentralisation, most approaches presented above are cen-

tralised (Dresner and Stone, 2008; Vasirani and Ossowski, 2009; Fayazi et al.,

2017), i.e. they require a control agent that optimises over the situation and sends

a solution to the traffic light system or to the vehicles. However, decentralised sys-

tems are believed to have some advantages over centralised systems when dealing

with problems that are distributed by nature such as traffic regulation problems.

For example, one can list the privacy by not transmitting all the data to the cen-

tral agent, a better robustness due to not having a central point of failure and the

parallelisation of certain computations. Furthermore, a decentralised approach

would only require Vehicle-to-Vehicle communication and thus can be adopted in

rural areas with minimal infrastructure level.

In terms of optimisation problems, most of traffic regulation mechanisms measure

their performance using the average delay or average travel time of vehicles. This

performance indicator has been widely considered one of the best since a lower
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average delay leads to lower fuel consumption and greater comfort for passengers.

However, when facing a realistic setup, the systems need to be able to consider

more criteria. Indeed, in an urban traffic area, there are various types of vehicles,

each with its own intention and each vehicle values its time differently based

on their types (e.g. buses, road maintenance, other priority vehicles) or on the

objectives of their travels (e.g. going to a hospital, going to work and others).

We also notice that most microscopic traffic regulation methods solve optimisa-

tion problems locally, at the scale of an intersection. These approaches can at

times be greedy in certain scenarios because optimising traffic on each intersec-

tion locally does not guarantee an optimal result on a global scale. On the other

hand, optimising traffic in a microscopic way over the network is highly computa-

tional expensive. Hence, a mechanism needs to be able to take into account global

information, without raising additional complexity issues.

2.4 Summary

We surveyed the different approaches proposed from the AI community as well as

from the transportation community to mitigate traffic congestion. Specifically, in

Section 2.1, we denoted the areas in an urban traffic system. Section 2.2 presented

the classic methods widely used for urban traffic regulation. These methods ranged

from the basic one being traffic signs, to more advanced technologies that percept

information from magnetic loops and sensors to optimise traffic lights.

After that, Section 2.3 highlighted several contributions from the multi-agent com-

munity to address traffic regulation problems. We discussed in this section both

traffic lights optimisation approaches and microscopic approaches where each vehi-

cle’s crossing time is decided individually. Finally, we discussed these approaches

to identify the differences and the limits of some notable ones.





Chapter 3

Background on Distributed

Constraint Optimisation

Problems

In this chapter, we give a brief literature on Distributed Constraint Optimisation

Problems (DCOPs) and their applications in multi-agent systems. First we discuss

different constraints handling frameworks then we define the DCOP framework

(Section 3.1). We then survey in section 3.2 different DCOP algorithms. At the

end of this chapter, we discuss the current applications in MAS that are proposed

using DCOPs (Section 3.3).

3.1 Distributed Constraint Optimisation Prob-

lems

For several decades, coordination problems between agents have drawn consider-

able attention in literature. One of the techniques that are mostly used in the

multi-agent community is by formulating these problems using a constraint han-

dling framework. Using the framework often requires formulating the coordination

problems with a constraint network. Generally, in a constraint network, agents

31
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are represented with nodes, while constraints between agents are represented using

edges. Constraints can either be hard constraints which return a binary value for

each joint assignment or soft constraints which can return a real value based on

the degree of satisfaction.

In problems that can be formulated only using hard constraints, finding value

assignment for all variables can be referred as a Constraint Satisfaction Problem

(CSP). In multi-agent systems, resources are often distributed among agents. In

this case, a CSP can be extended as a Distributed Constraint Satisfaction Problems

(DisCSPs).

In some MAS domains, problem formulations require using soft constraints. Hereby,

the DisCSPs is generalised as a Distributed Constraint Optimisation Problems

(DCOPs). In DCOPs, agents aim to choose values for their variables, to either

minimise the cost or maximise the utility of a set of constraints.

Definition 3.1. A Distributed Constraint Optimisation Problem (or DCOP) is

defined by a tuple 〈A,X ,D, C〉, where:

• A = {a1, ..., an} is a set of n agents.

• X = {x1, ..., xn} are variables owned by the agents, where variable xi is

owned by agent ai. An agent can own a number of variables. In the scope

of our problem, only single variable DCOP is needed and thus, for the sake

of simplicity, we limit our literature review to this type of problem.

• D = {Dx1 , ...,Dxn} is a set of finite-discrete domains. A variable xi takes

values in Dxi
= v1, ..., vk.

• C = {c1, ..., cm} is a set of constraints, where each ci defines a cost ∈ R∪{∞}.

The constraints between one or several variables can naturally be represented by

a constraint graph G (cf. Figure 3.1). Depending on the problem, a solution

to the DCOP is an assignment to all variables that either minimise or maximise
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Figure 3.1: Example of a constraint graph representing five variables x1 to x5,
each controlled by one agent, a1 to a5 respectively. A link between two variables

represents a constraint between them.

the aggregated global objective function. Hence, the assigned values of all the

variables, X∗, are produced as:

X∗ = argmax
X

m∑
i=1

ci OR X∗ = argmin
X

m∑
i=1

ci (3.1)

3.2 DCOP Algorithms

In this section, we highlight some notable DCOP algorithms. DCOP algorithms

are often categorised into two different categories: exact algorithms and non-exact

algorithms. In addition, they can be further categorised into several groups based

on their level of decentralisation and the way local information is updated.

First, algorithms can either be fully decentralised while some are classified as

partially centralised algorithms. Partially centralisation is often proposed to allow

agents to have a better local view and thus, improves the performance. The trade

off is the loss of privacy since the central agent needs to have access to knowledge

of other agents in the group.
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Based on the synchronicity of the algorithms, they can be categorised as syn-

chronous and asynchronous. Synchronous algorithms define the notion of cycle.

Each cycle consists of several actions for each agent. One cycle needs to be fin-

ished before the algorithm advances to the next one. In asynchronous algorithms,

agents can update their assignment solely based on their local view of the problem,

without waiting for decisions of the other agents. This minimises the idle time

of each agent and allows them to react quickly but was shown to have a negative

impact on communication overhead and performance of the algorithms (Peri and

Meisels, 2013).

3.2.1 Exact Algorithms

Exact algorithms guarantee to find a solution that optimises the objective function

for a DCOP instance. Note that even though the constraint graph (cf. Figure

3.1) is the standard way to represent a DCOP instance, each algorithm performs

some pre-processing steps and thus, operate on a slightly different version of the

constraint graph. Thereafter, we present some well-known exact algorithms.

3.2.1.1 ADOPT and Its Variants

Asynchronous Distributed OPTimisation (ADOPT) (Modi et al., 2005) is a fully

decentralised, asynchronous exact algorithm. ADOPT first organises agents into

a Depth-First Search (DFS) tree (cf. Figure 3.2). When transforming the original

constraint graph to a DFS tree, constraints are not allowed between agents in

different branches of the tree. Therefore, these agents can search for solutions

independently of each other. ADOPT then uses three kinds of messages: VALUE,

COST and THRESHOLD. The goal of the algorithm is to update at each agent

the lower and upper bounds on the solution cost at each subtree rooted by the

agent itself. Upon receiving a message, an agent chooses the value with minimum

cost, then sends these messages (VALUE messages to all of its descendants, COST

message to its parent and THRESHOLD messages to its direct child nodes). The
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process repeats until termination condition, i.e. when the lower bound meets the

upper bound at the root node of the tree. The optimal solution is therefore found.

a1

x1

a4

x4

a2

x2

a3
x3

a5

x5

a2

x2

a1

x1

a4

x4

a3
x3

a5

x5

Figure 3.2: Two possible transformations of the Constraint Graph described
in Figure 3.1 to a DFS tree. For example, on the left a1 is the root node. Its
descendants include every other nodes, while a2 and a4 are its direct childs. On
the right is another possible way of transforming, using a2 as the root node.

ADOPT was further extended in several ways. The most well-known version being

BnB-ADOPT (Yeoh et al., 2008). This algorithm uses the same structure and

message from ADOPT, while proposing the use of branch-and-bound strategy to

improve computation. Other extensions are proposed in (Gutierrez et al., 2011),

a combination of ADOPT and BnB-ADOPT, or BnB-ADOPT+ (Gutierrez and

Meseguer, 2010), a variant of BnB-ADOPT without redundant messages.

3.2.1.2 OptAPO

Optimal Asynchronous Partial Overlay (OptAPO) (Mailler and Lesser, 2004) is

an exact, partially decentralised, asynchronous DCOP algorithm. In OptAPO,
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mediator agents are used to solve conflicting assignment between neighbouring

agents. In more details, OptAPO has three steps: initialisation, checking the

agent view and mediation, with the mediation step being the most important part

of the process. In this step, the mediator agents, decided earlier using a priority

order, solve subproblems using a centralised branch-and-bound search. Petcu et al.

(2006) shows that mediator agents occasionally solve overlapping problems, thus

reducing their efficiency.

(Grinshpoun and Meisels, 2008) have improved OptAPO to address the incom-

pleteness problem of the original version. In this work, the authors identified

scenarios that can lead OptAPO to run infinitely due to the asynchronicity of

the mediators, then proposed the complete version of OptAPO, named CompOp-

tAPO.

3.2.1.3 DPOP and Its Variants

Distributed Pseudotree Optimisation Procedure (DPOP) (Petcu and Faltings,

2005b) is a fully decentralised, synchronous exact algorithm, In more details,

DPOP operates using the DFS tree. Each agent in DPOP takes the role of the

node which represents its own variable. The main process of DPOP consists in

computing and exchanging messages between nodes. Each iteration is executed

in 3 phases. In the first phase, agents exchange messages in order to generate a

proper tree graph, which later serves as a communication structure for the next

steps. After that, the second phase starts from the leaves of the tree. Each agent

computes its Util matrix depending on its value and on the values from its children

and propagates the matrix in the upward direction. This Util matrix summarises

the influence of the sending agent and its neighbours on the next step. After the

second phase, the third phase is started by the root. In this phase, the V alue

messages are computed and propagated downward. Each agent then computes its

optimal value based on its Util matrix and the V alue message received from its

parents.
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Similar to ADOPT, DPOP has been extended in many different ways. In PC-

DCOP (Petcu et al., 2006), the Util phase is partially centralised when the di-

mension of the Util matrix exceeds a certain threshold. Partially centralising im-

proves the performance of DPOP, but leads to a loss of privacy. ADPOP (Petcu

and Faltings, 2005a) is an approximate version of the algorithm. The solution

quality achieved is therefore lower, in exchange for lower computational time.

3.2.2 Non-Exact Algorithms

Finding an optimal solution for a DCOP is known to be NP-hard (Modi et al.,

2005). In practice, resources are often limited and thus, applying exact algorithms

raises a serious issue regarding scalability. Non-exact algorithms are proposed to

address this issue, trading off solution quality for computational and communica-

tion requirements. In this section, we will discuss several well-known non-exact

algorithms that are used in different DCOP problems.

3.2.2.1 MGM

Maximum Gain Message (MGM) (Maheswaran et al., 2004a) is a non-exact, syn-

chronous, fully decentralised algorithm that is based on a local greedy search

strategy. Each agent assigns a random value to its variable, then sends the as-

signment to all its neighbours. Upon receiving all messages from its neighbours,

an agent selects a better value that maximises its gain, then propagates the gain

to neighbouring agents. If the local gain of an agent using the selected value

is greater than the maximum gain of neighbouring agents, the selected value is

assigned. The two-phase process repeats until a termination condition is met.

3.2.2.2 DSA

Distributed Stochastic Algorithm (DSA) (Zhang et al., 2005) is a non-exact, syn-

chronous, fully decentralised algorithm. DSA is similar to MGM, without the gain

propagating phase. Each agent only stochastically choses between values based on
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its gain. DSA also terminated when a condition is met 1. MGM and DSA both

cannot provide a bound to the quality of the solution found.

3.2.2.3 Max-Sum and Its Variants

Unlike other algorithms, Max-Sum (Farinelli et al., 2008) and its variants operate

on a factor graph (cf. Figure 3.3). In a factor graph, nodes are categorised into

variable nodes and function nodes. Each variable node represents one variable,

while each function node describes a constraint. One variable node is linked with

one function node if and only if the variable is concerned in the constraint. Variable

nodes are controlled by their controlling agents. The control of a function node is

delegated to one of the agents controlling the neighbouring variable nodes.

a5

a3

a2

a1a4
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x2

f12

f14x4

f13

x3 f23f35x5

Figure 3.3: A factor graph describing the problem represented in Figure 3.1.
A function node fij represents the constraint between xi and xj and is either

controlled by ai or aj ,

Max-Sum is a non-exact, synchronous, fully decentralised algorithm based on belief

propagation. Messages are recursively propagated between variable nodes and

function nodes. After each iteration, variable nodes can update their beliefs based

1The algorithms usually terminated after a fixed number of steps.
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on messages received from neighbouring factor nodes. Max-Sum is guaranteed to

converge in acyclic graph (i.e. graphs that do not contain cycles). When there is no

ties among utilities, the algorithm will converge to the optimal solution. In cyclic

graphs, convergence is not guaranteed but extensive empirical evidence shows that

the algorithm generates good approximate solutions (Kschischang et al., 2001).

Max-Sum has many different variants. Fast Max-Sum (Ramchurn et al., 2010)

improves Max-Sum in a RoboCup rescue environment by restricting the value ex-

changed by nodes, therefore reducing communication and computation. Bounded

Max-Sum (Rogers et al., 2011) proposes a bounding technique to the quality of

the solution by removing edges from cyclic factor graph, then run Max-Sum on

the acyclic graph. Recently Max-Sum AD VP (Zivan and Peled, 2012) proposes

a novel way to exchange messages by alternating the direction through phases. In

this algorithm, the factor graph is transformed into a directed graph by ordering

nodes. Max-Sum AD VP usually uses nodes index as the order (cf. Figure 3.4).

The algorithm is proven to converge faster than standard Max-Sum on acyclic

graph (Zivan and Peled, 2012; Chen et al., 2017).
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Figure 3.4: A directed factor graph used in Max-Sum AD VP describing the
problem represented in Figure 3.1. Nodes are ordered using their index.
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3.3 DCOP Applications

In recent decades, DCOP solutions have been proposed to various multi-agent

system problems (Fioretto et al., 2018). Applications range from coordination

problems for disaster respond (Carpenter et al., 2007), meeting scheduling (Mah-

eswaran et al., 2004b), mobile sensor teams (Zivan et al., 2009; Yedidsion et al.,

2018) to load distribution in smart grids (Davidson et al., 2009; Miller et al.,

2012). Through these applications, DCOP is shown to be a flexible way to model

distributed optimisation problems. Moreover, DCOP algorithms are regularly

proposed in a general way and thus, modelling a problem as a DCOP can take

advantage of a wide range of research, each with its own benefit (e.g. privacy,

robustness, time complexity, communication overhead).

In regard to the intelligent transportation system, a first work using DCOP has

been proposed for traffic light synchronisation problem (Junges and Bazzan, 2008).

By using a DCOP formulation, this system aims to coordinate multiple intersec-

tions in order to create green waves, allowing vehicles to cross multiple intersections

in an efficient way.

DCOP has not yet been adopted to solve right-of-way allocation problems at

intersections. Indeed, there are several major challenges when applying DCOP

in this highly dynamic environment. First, the runtime of DCOP algorithms

tends to increase exponentially, which makes it hard to find a solution in rush

hours. One can overcome this issue by applying incomplete algorithms, but the

solution quality must be evaluated. Moreover, such system needs to be enhanced

to ensure a solution is found even if algorithms failed to converge. Finally, the

system needs to be robust when facing dynamic events that occur in traffic (e.g.

emergency vehicles, incidents, road maintenance). In this thesis, we discuss the

possibility of formulating the problem as a DCOP, then evaluate several DCOP

algorithms. Based on the evaluation, we choose the most suited algorithm and

propose improvements to the algorithm to respond to the formulated problem.
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3.4 Summary

This chapter surveyed the DCOP approach that has been studied for over a decade

in the multi-agent community. Specifically, we gave the definition of a DCOP in

Section 3.1. We identified in Section 3.2 some notable DCOP algorithms and

categorised them based on their completeness, their level of decentralisation and

synchronicity. Finally, in Section 3.3 we gave some examples of applying DCOP

for MAS coordination problems.

Through this survey, we can notice that DCOP is a popular framework used for

distributed reasoning and can be applied in many MAS domains. However, when

taking DCOP to microscopic traffic regulation problems, exact algorithms raise

an issue due to their complexity which is usually exponential in either memory

or communication overhead. On the other hand, non-exact algorithms are less

complex but can converge to an awful solution, even an invalid one (i.e. a solution

that has an infinite cost due to the violation of a structural constraint). In the next

chapter, we propose a DCOP formulation of the right-of-way allocation problem at

an intersection and discuss the use of DCOP algorithms to address this problem.





Chapter 4

Cellular Model for an Intersection

In this chapter, we first present in Section 4.1 a simple cellular model of an inter-

section. We then define a configuration, which we aim to build based on vehicles’

positions and the optimisation problem that we are facing. Next, Section 4.2 pro-

poses a formulation of our problem as a DCOP and evaluates the performance of

some notable DCOP algorithms on the problem. We then discuss continuity of

the solution in Section 4.3. In Section 4.4, we opt for an algorithm, the Max-Sum

algorithm, then based on its properties, we propose another DCOP formulation,

and an improvement to Max-Sum using a pruning technique. Finally, we evaluate

the performance of each proposition in Section 4.5.

4.1 Problem Statement

We first model an intersection using a cellular automaton model (cf. Figure 4.1).

This model is widely used in literature because it retains the main properties of

a network while being relatively simple to use (Brockfeld et al., 2001; Maerivoet

and Moor, 2005). An intersection is composed of several incoming lanes, several

outgoing lanes, and a central zone called conflict zone. The path of a vehicle

across the intersection is called a trajectory. Each incoming lane and trajectory is

a succession of cells. A cell inside the conflict zone is called a conflict spot.

43
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n1 = 4

n2 = 6

n3 = 6

v2 v1

v3

1
2
3

4 5 6

7
8
9

101112

Figure 4.1: Intersection with 12 incoming lanes (in gray), 12 outgoing lanes (in
yellow) and a conflict zone (in purple), all divided in cells. The incoming lanes
are numbered from 1 to 12. The conflict zone is crossed by various trajectories.
The cells belonging to several trajectories (every cell of the conflict zone in
this case) are conflict spots. There are 3 vehicles v1 (red rectangle), v2 (blue
rectangle) and v3 (green rectangle). v1 and v2 are heading north, while v3 is

heading west.
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The main objective of the system is to minimise travel time. The travel time of a

vehicle consists of the time it needs to travel through its journey at its speed, and

a waiting time. Thus, to minimise the travel time, we must minimise the waiting

time of vehicles. Our objective is to assign to each vehicle an admission time to

the conflict zone. A vehicle’s admission time is the time that this vehicle can begin

crossing the intersection, similar to an individual traffic light system. We define,

for each time step t a configuration Φt as the set of admission times of vehicles in

front of the conflict zone.

This configuration must satisfy the following rules:

• The configuration must ensure that vehicles can cross the intersection at

their admission time safely and without stopping inside the conflict zone.

• A vehicle must have only one admission time at a time.

• The current configuration must be accessible by all vehicles so they share

the same agreement any time.

In order to build this configuration, we model the right-of-way allocation problem

as follows.

Definition 4.1. Let t be the current time step and Vt the set of all vehicles

approaching the intersection. A configuration is a set Φt = {ϕ1, ..., ϕk} where

each ϕi is the admission time in the conflict zone assigned to each vi ∈ Vt.

Let L be the set of incoming lanes and lk ∈ L be the lane k. For each vi ∈ Vt,

let lvi ∈ L be the lane in which the vehicle vi is present, ni be the distance (in

number of cells) between vi and the conflict zone, and τi be vi’s trajectory inside

the conflict zone. Let e be one of the cells in trajectory τi, pos(e, τi) is the distance,

in number of cells, between the cell e and the first cell of τi. The position of the

first cell of τi is 0. Let si be the speed of the vehicle vi in cells per time step.

We aim to build, for each time step t, a configuration Φt for all vehicles in Vt that

minimises their total waiting time. The input is the set of vehicles Vt presented
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in the system at the current time step and the configuration at the last time step

Φt−1. Let wi be the waiting time of the vehicle vi and Φ be the set of all possible

configurations (this waiting time can be changed to weighted waiting time to take

into account a vehicle’s priority). Thus our goal is to search for a minimisation:

f : (t, Vt,Φt−1) �→ argmin
Φt∈Φ

∑
vi∈Vt

wi (4.1)

To ensure that the configuration Φt satisfies the rules described above, the admis-

sion times of vehicles in the configuration must follow some structural constraints.

c1. Distance constraint A vehicle has to cross the distance separating it from

the conflict zone before entering it:

∀vi ∈ V, ϕi > t+
ni

si
(4.2)

c2. Anteriority constraint In our model, we consider that no overtaking is

possible when vehicles are close to the intersection. Thus a vehicle vj can-

not enter the conflict zone before the vehicles vj preceding it on its lane.

This constraint should be modified in a more complex model that takes into

account overtaking. We have:

∀vi, vj ∈ V 2
t , lvi = lvj , ni < nj ⇒ ϕi < ϕj (4.3)

c3.a Simple conflict constraint Two vehicles cannot be in the same cell at the

same time in the conflict zone. If the vehicles belong to the same lane, the

anteriority constraint covers this case. However, if two vehicles vi and vj

coming from different lanes, having a conflict spot in their trajectories, their

admission times must ensure that they are not present in the conflict spot

at the same moment. Thus, we have:

∀vi, vj ∈ V 2
t , ∀e ∈ τi, e ∈ τj ⇒

(ϕi +
pos(e,τi)

si
) �= (ϕj +

pos(e,τj)

sj
)

(4.4)
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c3.b Conflict constraint with safety lapse We can further restrict constraint

c3.a for safety reasons. Indeed, adding a time lapse tsafe between the passing

of a vehicle vi on a cell c and the passing of another vehicle vj, in a conflict-

ing trajectory on this cell, enhances the drivers’ safety. Thus, vj can only

occupy this cell after a tsafe duration of vi’s occupation. The simple conflict

constraint can be replaced by the following:

∀vi, vj ∈ V 2
t , ∀e ∈ τi, e ∈ τj ⇒

|(ϕi +
pos(e,τi)

si
)− (ϕj +

pos(e,τj)

sj
)| > tsafe

(4.5)

Example 4.1. Consider the scenario presented in Figure 4.1. Assuming the speed

of all vehicles is 1 cell/time step. Let e(i, j) be the conflict cell between two trajec-

tories τi and τj, the distance (in cell) from the the first cell of τi to the conflict spot

is presented in the table 4.1. Therefore, the structural constraints can be described

as:

c1: v1 has 4 cells to travel before entering the conflict zone, thus ϕ1 > 4. By the

same logic, ϕ2 > 6;ϕ3 > 6.

c2: v2 cannot overtake v1, therefore ϕ2 > ϕ1.

c3.b: There is a conflict spot between the trajectory of v1 and that of v3. The

conflict spot is the cell number 4 in v1’s trajectory and the cell number 2 in

v3’s trajectory. Let the safety lapse be 1 time step, we have:

|(ϕ1 + 4)− (ϕ3 + 2)| > 1 (4.6)

v2 has the same conflict spot with v3, we also have:

|(ϕ2 + 4)− (ϕ3 + 2)| > 1 (4.7)

We next formalise the right-of-way allocation problem as a distributed constraint

optimisation problem.
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4.2 DCOPs for Intersection Management

Centralised solutions to traffic regulation result in high computational require-

ments for one agent. Moreover, centralised approaches create a single point of

failure and have a lack of scalability and adaptability to dynamic events such

as accidents or the arrival of an emergency vehicle. In such a dynamic context,

using a decentralised approach allows to be proactive to any change in traffic con-

trol. This is particularly relevant in the light of connected vehicles capable of

advanced computations. In this section, we present a decentralised formalisation

of traffic regulation model using a DCOP. This formalisation allows every agent

to coordinate by exchanging messages with their neighbours, thus reduces the

computational requirements for each agent.

A Distributed Constraint Optimisation Problem (or DCOP), as defined in Defi-

nition 3.1, is a tuple {A,X ,D, C}, where: A = {a1, ..., an} is a set of n agents;

X = {x1, ..., xn} are variables owned by the agents, where variable xi is owned

by agent ai; D = {Dx1 , ...,Dxn} is a set of finite-discrete domains. A variable xi

takes values in Dxi
= {v1, ..., vk}; C = {c1, ..., cm} is a set of constraints, where

each ci defines a cost ∈ R+ ∪ {∞}. A solution to the DCOP is an assignment to

all variables that minimises
∑

i ci.

There are several ways to formalise a problem as a DCOP, depending on what

agents, variables and constraints represent. The most natural way to model our

problem as a DCOP is to model each vehicle using an agent. Here we name it the

vehicles-based approach.

4.2.1 Vehicle-based Approach

The vehicle-based approach consists of modelling all the vehicles as agents. The

number of agents is also the number of vehicles arriving at the intersection. Each

agent holds a variable which corresponds to the vehicle’s admission time to the

intersection. The domain of the variables varies from t+ ni+1
si

, which is the earliest

possible admission time of this vehicle taking into account its distance to the
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conflict zone, to t + ni+1
si

+ p. p is the time window for the waiting time of each

vehicle. A small window may limit the search and makes it impossible to find a

solution, while a large window adds unnecessary complexity to the problem. The

value of this time window will be detailed in Section 4.4.3. Since the domain

of the variables already takes into account the distance constraint described in

Equation 4.2, we map the other structural constraints described in Equation 4.3

and Equation 4.5 as follows:

Anteriority constraint

c1(ϕi, ϕj) =

⎧⎨
⎩
∞ if lvi = lvj , ni < nj and ϕi > ϕj

0 otherwise
(4.8)

Conflict constraint with safety lapse

c2(ϕi, ϕj) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞ if ∃e ∈ τi, e ∈ τj and

|(ϕi +
pos(e,τi)

si
)− (ϕj+

pos(e,τj)

sj
)| ≤ tsafe

0 otherwise

(4.9)

In order to formalise our objective (Equation 4.1) as a DCOP, each vehicle holds

a cost constraint, which directly links to its waiting time. Thus, we also have:

Waiting constraint

c3(ϕi) = ϕi − (t+
ni + 1

si
) (4.10)

The objective of a DCOP is to minimise
∑

ci(.)∈C ci(.). This optimisation repre-

sents the goal of the system (minimise the global waiting time of vehicles without

violating any structural constraint).

4.2.2 Evaluating the Performance of DCOP Algorithms

After formulating our problem as a DCOP, we evaluate the performance of some

notable DCOP algorithms. We do that by randomly generating traffic scenarios,
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then we use the algorithm to solve the generated problem. DCOP algorithms

are evaluated using Frodo (Léauté et al., 2009), a DCOP solver. We test each

algorithm on a varied number of vehicles using the intersection presented above

(cf. Figure 4.1). The algorithms terminate whenever convergence is achieved or

the timeout is reached.

In this evaluation, we measure the performance of five DCOP algorithms (ADOPT,

DPOP, Max-Sum, DSA, MGM) on different factors (e.g., solution quality, runtime,

communication overhead).

First, Figure 4.2 shows the success rate of each DCOP algorithm in giving a valid

solution in time (a valid solution is a solution that does not violate any structural

constraint). For the sake of simplicity, we set the timeout of the process at 6

seconds. In this evaluation, we observe that greedy incomplete algorithms (DSA,

MGM) always provide a feasible solution. This is due to the fact that constraints

between two agents (i.e. anteriority constraints and conflict constraints) are hard

constraints, which makes the problem similar to a classic satisfaction problem.

On the other hand, the success rate of complete algorithms (ADOPT, DPOP)

decreases drastically from 10 agents. This suggests that the use of a complete

algorithm is rather impossible in our problem.

Figure 4.3 shows the solution quality of each algorithm. ADOPT and DPOP

provide the optimal solution and thus, are of the best quality. For the sake of

comparison between incomplete algorithms, the average solution quality is only

taken for problem instances where all the 3 algorithms provide a feasible solution.

Max-Sum does not perform well compared to DSA and MGM as it fails about

25-30% of the time and when they all converge, the solution quality from Max-

Sum is lower. Overall, the solutions computed using any DCOP algorithm are

better than the ones using a simple FCFS mechanism as DCOP algorithms try to

optimise solution quality.

Regarding communication overhead, the messages size of the algorithms are con-

sistent (cf. Figure 4.5), except for DPOP which is known to grow exponentially

with the complexity of the pseudo tree (Fioretto et al., 2018). Due to the termina-

tion condition, DSA and MGM agents, who have less computational requirement
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can run more iterations than Max-Sum. This is why they exchange a lot of small

messages while Max-Sum agents exchange a lower number of larger messages (cf.

Figure 4.4). Figure 4.6 shows that the communication cost of MGM tends to be

much higher than the other incomplete algorithms. At this point the computa-

tional and communication capabilities of real CAVs, as well as the robustness of

the message passing system are not known yet. Once these information is avail-

able, further studies can look at the incomplete algorithms in order to choose the

most suitable one.

Figure 4.7 shows the average runtime of each algorithm. In a simple scenario,

complete algorithms have surprisingly low runtime. However, the runtime grows

exponentially with the number of agents, and regularly timed out from 12 agents.

As we ran the algorithms until convergence or timed out, the runtime of Max-

Sum also grows quickly because the algorithm failed to converge and is at about

4 seconds when reaching 18 agents. MGM and DSA always converge in a fairly

low amount of time.

Based on this evaluation, we can notice that only incomplete algorithms can be

used for our traffic regulation model. The solution quality achieved by DSA and

MGM seems to be the best. Max-Sum did not provide the best solution quality as

we use the standard version, but opting for this algorithm has several advantages.

The algorithm has a large number of variants that can be used to improve solution

quality, convergence rate or preserve privacy. Furthermore, the algorithm is shown

to be robust to message loss. However, there are several issues that we have to

address when opting for this algorithm. When the number of agents is low, Max-

Sum fails to escape from local minimum and provides bad quality solutions (even

FCFS solutions are close to the optimal one). Furthermore, the runtime of Max-

Sum tends to grow rapidly with the number of agents. In the next sections,

we first discuss the continuity problem and the solution we propose. After that,

we propose some improvements to the Max-Sum algorithm to address the issues

presented above.
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4.3 Continuity of the Solution

Now that we have formalised the problem as a DCOP, it is also necessary to discuss

the continuity of the solution to deal with the continuous flow of vehicles. Since

vehicles continuously approach the intersection, at each time step, we must define

the vehicles that take part in the DCOP, the vehicles for which the DCOP will

provide an admission time, and the conditions under which an admission time of

a vehicle can be revised.

Conflict zone

Inner area

External area

Figure 4.8: Inner and external areas of the intersection.

We propose several policies to manage the continuity problem. First, we distin-

guish two areas on the approaches of the intersection: the inner area, where all

the vehicles are about to reach the conflict zone in a short term, and the external

area, where the vehicles will reach the conflict zone in a slightly longer term (cf.

Figure 4.8). The size of each area depends on the intersection. At each time step,

the set Vt of the incoming vehicles is divided into two subsets: V in
t the vehicles

inside the inner area and V ext
t the vehicles in the external area. Thus we have:
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Vt = V in
t ∪ V ext

t , V in
t ∩ V ext

t = ∅ (4.11)

Let V par
t be the subset of vehicles participating in DCOP at the current time step,

i.e. vehicles whose admission time can be revised. The intersection can choose to

apply several policies as follows:

Iterated Policy (IP) Each vehicle in V in
t participates once and only once in

finding the solution. Once an admission time is chosen, it cannot be changed in

the next time steps. Thus we have:

V par
t = V in

t \V in
t−1 (4.12)

This policy continues to iterate and to produce new admission times for the next

vehicles in the inner area without revising those of the vehicles that already were

in it.

Continuous Policy (CP) All vehicles in V in
t participate in the DCOP and the

admission time of every vehicle can be revised at any time step. Thus V par = V in.

For safety reasons, we also note that it is risky to change the admission time of a

vehicle at the last moment because of the delay in the reaction of the drivers. To

avoid this, we define a safety threshold tlow. An admission time lower than tlow

cannot be modified. Let V low be the set of vehicles vi having ϕi − t ≤ tlow, we

have:

V par = V in\V low (4.13)

Compared to the CP, the IP has fewer vehicles whose admission time will be

assigned or modified. This leads to a lower number of agents to take part in the

DCOP algorithm, reducing its computational and communication complexity. In

addition, CP revises the admission time of all the vehicles, which results in a larger

search space. Therefore, we expect a better quality of the solution provided using

the CP (as we show later in Section 4.5).
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4.4 A Max-sum Solution for the Traffic Manage-

ment Problem

Based on the evaluation above (cf. 4.2.2), we choose to use the Max-Sum algorithm

to solve our problem. Despite the fact that our formalisation is compatible with

any complete or incomplete DCOP algorithm, we chose to use max-sum as it is

one of the most efficient algorithms in high density traffic and it has been applied

in many multi-agent domains (Macarthur et al., 2011; Ramchurn et al., 2010;

Stranders et al., 2009). In this section, we present the basic Max-Sum process and

propose solutions to overcome the issues that Max-Sum had during the evaluation

(low quality results in low density, high runtime in high density).

In more details, max-sum operates on a factor graph: a bipartite, undirected

graph, that contains a variable node xi for each variable, a factor node cj for each

constraint, and an edge connecting a variable node xi with a factor node cj if and

only if xi is involved in cj. Each agent in max-sum takes the role of the variable

node which represents its own variable. The function node’s role is taken by one

of the agents whose variable is involved in the constraint. Figure 4.9 shows the

factor graph of the vehicle-based approach of the scenario presented in Figure 4.1.

c2(ϕ1,ϕ3) ϕ1

c3(ϕ1)v1

c1(ϕ1,ϕ2) ϕ2

c3(ϕ2)v2

c2(ϕ2,ϕ3) ϕ3

c3(ϕ3)v3

Figure 4.9: Vehicle-based factor graph for the scenario presented in Figure
4.1. There are 3 agents (v1, v2, v3), each holds an admission time as a variable
node (ϕ1, ϕ2, ϕ3), 1 anteriority factor node c1(ϕ1, ϕ2), 2 conflict factor nodes
(c2(ϕ1, ϕ3) and c2(ϕ2, ϕ3)), and 3 waiting time factor nodes (c3(ϕ1), c3(ϕ2),

and c3(ϕ3)).

The main routine of max-sum is the repetition of computing and exchanging mes-

sages between variable nodes and factor nodes. At each iteration i of the process,

a message is sent from each variable node x to a factor node c, including for each

value d ∈ Dx, the sum of the costs for this value she received from all factor node
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neighbours apart from c in iteration i − 1. Formally, for each value d ∈ Dx the

message Qi
x→c(d) is:

Qi
x→c(d) =

∑
c′∈Cx\c

cost(f ′.d)− α (4.14)

Cx is the set of factor neighbours of variable x and cost(c′.d) is the cost for value

d included in the message received from c′ in iteration i− 1. α represents a scalar

to prevent the message to increase endlessly in cyclic factor graphs.

To search for minimisation, the message sent from a factor node c to a variable

node x contains for each possible value d ∈ Dx the minimum cost that can be

achieved from any combination of other variables involved in c. Formally, for each

value d ∈ Dx, the message Ri
f→x(d) is:

Ri
f→x(d) = minPA−xcost(〈x, d〉, PA−x) (4.15)

In this message PA−x is a possible combination of assignments to all variables

involved in c except x. The cost of an assignment a = (〈x, d〉, PA−x) is c(a) +∑
x′∈Xf\x cost(x

′.d′). c(a) is the original cost in the constraint c for the assignment

a and cost(x′, d′) is the cost which was received from the variable node x′ during

iteration i− 1, for the value d′ which is assigned to x′ in a.

Example 4.2. To give an example of the messages sent, consider the factor graph

presented in Figure 4.9. Let Dϕ1 = {5, 6, 7}, Dϕ2 = {7, 8}. The message that the

variable node ϕ1 sends to the factor c1(ϕ1, ϕ2) at iteration i for the value d = 5 is

the following:

Qi
ϕ1→c1(ϕ1,ϕ2)

(5) = Ri−1
c2(ϕ1,ϕ3)→ϕ1

(5) +Ri−1
c3(ϕ1)→ϕ1

(5) (4.16)

The message sent from the factor node c1(ϕ1, ϕ2) to the variable node ϕ1 at itera-

tion i is the following:

Ri
c1(ϕ1,ϕ2)→ϕ1

(5) = min(cost({5, 7}), cost({5, 8})) (4.17)
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where:

cost({5, k}) = c1({5, k}) +Qi−1
ϕ2→c1(ϕ1,ϕ2)

(k) (4.18)

During the propagation of messages, an agent is able to calculate locally its ad-

mission time that minimises the sum of the costs over all neighbour functions.

Standard max-sum often terminates after the solution converges, or after a fixed

number of iterations per agent. We have to note that the factor graph of the

problem is not cycle free. Therefore, there is no guarantee of convergence with

max-sum but extensive empirical evidence demonstrates that the algorithm gen-

erates good approximate solutions (Kschischang et al., 2001). In our model, the

time complexity is also an issue because a solution that is found after the end of

the time step is not useful. Thus, we have to optimise the algorithm to reduce

computation.

We observe that, the convergence time of Max-Sum increases quickly to the num-

ber of agents. When evaluating Max-Sum using the Vehicle-based approach (cf.

Section 4.2.2), we notice that the runtime in high density traffic is costly com-

pared to MGM and DSA. To overcome the issue, we next propose the Lane-based

approach, a partially centralised approach that is compatible with the structure

of our model.

4.4.1 Lane-based Approach

Instead of considering each vehicle as an agent, we can consider each incoming lane

as an agent. The lane agents can either be a part of the traffic control system, or

be one of the vehicles in the lane that has the highest computational capability.

We consider that there is an agent per incoming lane that has the knowledge of

all vehicles in it. As a lane agent, it holds an array variable φl that contains the

admission time of every vehicle in the lane l. By having the knowledge on all

these vehicles, the lane agent can build its own domain, respecting both distance

constraints and anteriority constraints. These are defined as follows:
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Conflict constraint

c2(φi, φj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ if ∃ϕk ∈ φi, ∃ϕm ∈ φj,

∃e ∈ τk, e ∈ τm and

|(ϕk +
pos(e,τk)

sk
)− (ϕm+

pos(e,τm)
sm

)| ≤ tsafe

0 otherwise

(4.19)

Waiting constraint

c3(φi) =
∑
ϕj∈φi

ϕj − (t+
nj + 1

sj
) (4.20)

c2(φ1,φ8)φ1

c3(φ1) l1

φ8

c3(φ8) l8

Figure 4.10: Lane-based factor graph for the scenario presented in Figure 4.1.
Only two lanes have vehicles approaching the intersection so there are only two
agents (l1 and l8). Each agent holds an array variable node, φ1 contains ϕ1 and
ϕ2, φ8 contains ϕ3. There are 2 waiting time factor nodes (c3(φ1) and c3(φ8)),

and 1 conflict factor node (c2(φ1, φ8)).

Figure 4.10 shows the factor graph corresponding to the lane-based approach of

the scenario presented in Figure 4.1. Clearly, the lane-based approach has a lower

number of variables and factors compared to the vehicle-based approach. The lane-

based approach considers, as an agent, a lane which contains at least 1 vehicle,

thus the worst-case number of agents is the maximum number of incoming lanes

(O(|L|)), while the number of agents in the vehicle-based approach grows with

the number of vehicles (O(|V |)). The number of factors is also reduced from

O( |V |×(|V |−1)
2

) for the vehicle-based approach to O( |L|×(|L|−1)
2

) for the lane-based

approach. This reduction leads to a smaller number of messages, in exchange for

a growth in the average size of messages due to a larger domain. For the vehicle-

based approach the domains grow at O(p), while for the lane-based approach the

domains grow at O(pk) where k is the number of vehicles presented in the lane.
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Since the lane-based approach may lead to tighter search space and less cycles

in the factor graph, which increase the chance for the algorithm to converge, we

expect a better performance using this approach.

For safety reasons, we need to ensure each vehicle is assigned an admission time

before entering the intersection. However, the DCOP solver may not provide a

solution in time. In the next section, we detail the role of the intersection agent

which guarantees configurations.

4.4.2 Guaranteeing Safe Configurations

As the traffic conditions change dynamically, we have to ensure that every vehi-

cle that enters the inner area at time step t is assigned an admission time before

time step t+ 1. To deal with this problem, we design an intersection agent. This

agent has two roles: to hold the current configuration so that the vehicles are syn-

chronised every time there is a change, and to assign to each vehicle that enters

the intersection at the beginning of the time step a precalculated admission time.

This admission time can be calculated easily by giving to each vehicle (in a random

order) the earliest possible admission time, respecting all the other vehicles’ ad-

mission times, including those whose admission times were just assigned. Despite

not being the optimal solution for the system, this solution has two advantages:

• it helps ensure that no vehicle in the inner area is found without an admission

time at any time step, even if the DCOP solver fails to terminate in time.

• it gives the DCOP algorithm an upper bound UB (i.e. the total waiting time

of the vehicles on the precalculated solution) to run a pruning algorithm as

a preprocessing step.

Example 4.3. Consider the scenario presented in Figure 4.1. Let t = 0. At the

time step t−1, consider having only v1 in the inner area. The configuration of t−1

is {ϕ1 = 5}. At the beginning of the current time step, v2 and v3 enter the inner

area. The precalculated admission times for v2 and v3 are: (1) For v2 the earliest

admission time respecting {ϕ1 = 5} is ϕ2 = 7 (2) For v3 the earliest admission

time respecting {ϕ1 = 5, ϕ2 = 7} is ϕ3 = 11. Therefore, we have UB = 4.
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4.4.3 Pruning the Domains

The complexity of max-sum is known to be exponential in the number of agents

where the base is the domain size and the exponent is the number of variables

involved (Macarthur et al., 2011). Thus, one solution to reduce the calculation time

of max-sum is to prune the search space. The pruning technique was implemented

using a modified version of the preprocessing method proposed in (Stranders et al.,

2009) to reduce the size of the variables’ domains by detecting values that are

dominated. The values are detected as follows:

1. The intersection agent notifies other agents about UB.

2. The variable nodes calculate the lower bound (LB) of the cost of the value

assignment, for each value assignment in their domains.

3. The variable nodes remove dominated values. A dominated value is one

whose LB is higher than UB.

4. The variable nodes propagate their updated domains to the factor nodes.

The factor nodes recalculate the costs and propagate them further.

5. The steps 2,3,4 are repeated until no more elimination found.

We note that the total cost of the solution cannot exceed UB. As mentioned

in Section 4.3, depending on the policy, there are vehicles whose admission time

cannot be changed. Let V u
t be the set of these vehicles. Thus the cost of the

admission time for each vehicle in V par
t cannot exceed UB −∑

vj∈V u
t
c3(ϕj). Thus

we have:

∀vi ∈ V par
t , ϕi − (t+

ni + 1

si
) ≤ UB −

∑
vj∈V u

t

c3(ϕj) (4.21)

Therefore, the value of p which is the range of each domain before pruning can be

predetermined as:
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p = UB −
∑
vi∈V u

t

c3(ϕi) (4.22)

Example 4.4. Following the scenario presented in Example 4.3. Let the precal-

culated configuration for {v1, v2, v3} be φ = {5, 7, 11}. Thus we have UB = 4

and p = 4, initially we have Dϕ1 = {5, 6, 7, 8, 9},Dϕ2 = {7, 8, 9, 10, 11},Dϕ3 =

{7, 8, 9, 10, 11}. After completing the pruning process, we obtain the following

pruned domains: Dϕ1 = {5, 6, 7},Dϕ2 = {7, 8, 9, 10, 11},Dϕ3 = {7, 9, 11}.

After running max-sum on the vehicle-based scenario presented above, we obtain

the following solutions:

• With IP (the admission time of v1 cannot be revised): Φt = {5, 9, 9}, total
waiting time of all vehicles: 4s.

• With CP (any admission time can be revised): Φt = {7, 8, 7}, total waiting
time of all vehicles: 3s.

4.5 Empirical Evaluation

In this section, we evaluate the performance of our method using max-sum algo-

rithm. All experiments were performed using an Intel Core i5-4690 3.5 GHz, 8

GB RAM, under Ubuntu 16.04. Max-sum algorithm is implemented using Frodo

(Léauté et al., 2009). All compared values are averages over at least 50 simulations,

with 95% confidence interval as error bars. All algorithms are evaluated according

to the insertion rate of vehicles. The insertion rate varies from 0.1 (off-peak) to

0.5 (rush hour) (Junges and Bazzan, 2008). An insertion rate of 0.5 consists of

adding 5 vehicles to a lane every 10 time steps. We ran our experiments with the

vehicle-based and lane-based approaches, using both IP and CP.
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4.5.1 Benchmarking

First we compare our methods with the state of the art FCFS algorithm (Dresner

and Stone, 2008) where each vehicle sends a request for an admission date and the

intersection handles these requests using a First come First served policy to test

the quality of the solution, the computational time and the number of messages

exchanged between agents.
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Figure 4.11: Average waiting time of vehicles.

In terms of quality of the solution, IP did not provide a significantly better solution

compared to the FCFS policy. On the other hand, CP performs better than all

the other policies, reducing the waiting time by about 60% in rush hours (cf.

Figure 4.11). We also note that IP consumed more resources than FCFS, but less

than CP. In rush hours, vehicle-based IP exchanged in average 2200 times more

messages, while lane-based IP exchanged about 660 times more messages than

FCFS. Lane-based CP used even more resources, exchanging 7880 times more

messages than FCFS (cf. Figure 4.12 and 4.13).

To compare the vehicle-based approach and lane-based approach, we note that

both provided the same solution quality. The lane-based approach reduced the
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Figure 4.12: Average communication overhead at each iteration.
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Figure 4.13: Average computational time at each iteration.
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number of messages and calculation time, as its level of decentralisation is lower.

In our experiments, due to the limit in computational capability of our system,

we fix the time out of the DCOP solver at 6000 ms. When using the max-sum

algorithm, as the convergence time grows drastically with the number of agents,

the vehicle-based approach quickly failed to converge to a feasible solution in

time, while the lane-based approach using CP continued to generate solutions at

the insertion rate of 0.5.

4.5.2 Pruning Efficiency

To measure the performance of the pruning algorithm, Figures 4.14 and 4.15 show

the difference in number of messages exchanged and calculation time (in millisec-

onds) between the pruned and unpruned versions of the lane-based approach using

CP. For the unpruned version, we just fix

p = UB −
∑
vi∈V u

t

c3(ϕi) (4.23)

at every time step. We note that the pruned algorithm reduces about 25% - 30%

of the messages exchanged and calculation time because convergence was achieved

in less iterations.

4.5.3 Dynamic Events

The DCOP formalisation of microscopic traffic regulation is also adaptable to dy-

namic events. We have done 20 simulations and got the average results to compare

how the CP, lane-based approach and FCFS react on the arrival of emergency ve-

hicles. We simulate the traffic over 500 time steps, with an emergency vehicle

added to a random lane on time step 200. The emergency vehicle is defined in

the system as a vehicle with an extremely high cost per second of waiting time.

This forces the DCOP solver to look for a solution which minimises the waiting

time of the emergency vehicle. This solution often leads to the immediate evacu-

ation of the vehicles in front of the emergency vehicle in its lane. We observe that
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Figure 4.16: Average waiting time of vehicles at each time step. The emer-
gency vehicle arrives at t = 200. The CP stabilises at t ≈ 250 while FCFS

stabilises at t ≈ 310.

the arrival of the emergency vehicle leads to a high average waiting time on the

other vehicles. FCFS succeeds in giving the emergency vehicle a reasonably low

waiting time (2.7 seconds) by prioritising the emergency vehicle’s lane, but this

policy takes on average 110 time steps to evacuate the other lanes to return to a

stable state. The DCOP approach stabilises after 50 time steps (about half the

amount of time compared to FCFS) and returns to the normal condition, giving

the emergency vehicle a waiting time of 2.4 seconds.

4.5.4 A Note on the Lane-Based Approach

As shown in the empirical results, the lane-based approach can sometimes be out-

performed by the vehicle-based approach, especially in the lower density settings.

However, there is also another aspect we should take a closer look at, namely

the communication range of the vehicles. Communication between vehicles can

be achieved via the infrastructure installed at the intersection level. However,
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there are always areas where intersections may not have any computation capa-

bility (e.g., in rural areas or non-urban settings). This can be important in mass

evacuations following fires or floods (Ramchurn et al., 2010).

Figures 4.17 and 4.18 show the communication required for the vehicle-based and

the lane-based approaches. We can see that the lane-based approach also helps

reducing communication range, because only the vehicle representing the lane is

required to communicate with vehicles representing conflicting lanes. Hence, in

the lane-based approach, the lane agent should be the first vehicle in the lane due

to the reduction of communication range.

In an intersection such as ours, even the lane-based approach will have 12 agents

negotiating in dense traffic (i.e. one for each lane). As we have shown in the Section

4.2.2, complete algorithms have a very low success rate with 12 vehicle agents. It

is then unlikely that this type of algorithm can be used for such intersection.

However, in less complex scenario (e.g. intersections with 4 lanes), they can be

opted to produce the true optimal solution.

4.6 Summary

In this chapter we have modelled the traffic management problem at an intersec-

tion using constraints (cf. Section 4.1). We then provided in Section 4.2 a DCOP

formalisation of the problem. In this section, we also evaluated the performance

of two notable complete algorithms (ADOPT, DPOP) and three incomplete al-

gorithms (Max-Sum, DSA, MGM). Through the experiments, we used different

factors to identify the strengths and weaknesses of each algorithm. We then high-

lighted the different issues that we have to address with our chosen algorithm.

Section 4.4 shown in more details the use of the Max-Sum algorithm and dis-

cussed how we overcome the issues identified. Finally, Section 4.5 showed the

performance of the complete mechanism to manage traffic at a single intersection.

The mechanism is empirically shown to outperform the state of the art solution

in terms of reductions in waiting time and robustness to dynamic events.
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Anteriority constraint communication

Conflict constraint communication

Road marks

Figure 4.17: Communication range required for vehicle-based approach. Two
vehicles need to be able to communicate with each other if they are constrained
(i.e. either they are on the same lane, or they have conflicting trajectories).
Therefore, the green vehicle on the western side has to communicate with the
blue one on the north side. Such problem leads to higher communication range

required.

Conflict constraint communication

Road marks

Anteriority constraint communication

Figure 4.18: Communication range required for lane-based approach. Each
lane is represented by a vehicle. To reduce communication range, the lane
should be represented by the first vehicle on it. The communication is required
between lane agents to solve conflicting trajectories. Other vehicles only need
to communicate with their lane agent. The range required is therefore lower.
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While this chapter has shown the potential of DCOPs to solve traffic management

problems, it can be further extended in many ways. First, cellular model keeps the

presentation simple, but seems to result in a loss of space when dealing with vehi-

cles with different sizes. Furthermore, not taking into account multi-intersection

setup can lead to the solution being worse at a larger scale. In the next chapter,

we extend this model in several ways. First, we propose a space-efficient model

of the intersection, which is more space-efficient compared to the cellular model.

We then propose an individual priority level which can be used to guide traffic

based on global information. Finally, we evaluate these propositions using a re-

cent variant of the Max-Sum algorithm, with some improvements in regard to the

structure of our problem.



Chapter 5

The Space-Efficient Model, the

Use of Max-Sum AD VP and the

Multi-Intersection Problem

In this chapter, we extend the model proposed in the previous one (cf. Chapter 4).

We first discuss the limits of the cellular model used widely in traffic regulation

research. We overcome these limits by proposing a precise model, where vehicles

use their exact position and velocity to compute their possible conflicts. After that,

we propose a multi-intersection approach where global information can be used to

guide DCOP algorithm, in order to balance traffic between different areas. We then

opt for a recent variant of the Max-Sum algorithm, namely the Max-Sum AD VP

algorithm, and propose a better way to order nodes when computing. Finally, we

evaluate each of our proposition and discuss further possible studies.

5.1 Limits of the Cellular Model

When opting for intelligent intersection management, one crucial step is to model

the intersection area and define rules for vehicles crossing this area. In most works

proposed earlier in multi-agent systems, cellular-based presentations are often the

73
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authors’ choice (Dresner and Stone, 2008; Vasirani and Ossowski, 2009), or the

one in Chapter 4. However, using cellular-based model might lead to a higher

use of space than necessary (e.g. in the model proposed by (Dresner and Stone,

2008), the area that a vehicle reserved is always higher than its exact length

and width), or a lack of precision (e.g. in the model proposed in the previous

chapter, each vehicle is counted as one cell, regardless of their length). Figure 5.1

shows situations where a car can occupy more than one cell and thus, leads to an

inefficient way of using space. Furthermore, using the space-efficient model makes

the mechanism compatible with different types of intersections, for example, the

ones with an uneven number of lanes in each direction.

Figure 5.1: A car with a longer size can occupy two, or even three cells at a
time, depending on its position.

In every existing intersection model, rules for vehicles are the same. They aim to

give each vehicle a reservation (Dresner and Stone, 2008; Vasirani and Ossowski,

2009), which is a set of cells for each time step or an admission time, which is

the time that the vehicle can enter the intersection. The rules for reservations or

admission times to be accepted is that vehicles can cross the intersection without

stopping and without any conflict between them. Conflicts are often detected if

vehicles try to use the same cell at the same time.

In reality, depending on the infrastructure installed at the intersection level, vehi-

cles might be able to know their exact position. They also have information about

their velocity and their length. Thus, instead of using a cellular model and check-

ing for conflict between vehicles using their reserved cells, they might be able to
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overcome the limits of the cellular model by applying the exact formula computed

based on this information. In the next section, we describe a novel space-efficient

model and redefine the constraints.

5.2 A Space-Efficient Intersection Model

As mentioned above, vehicles are regularly not precisely represented in a cellular

model and can occupy more space than necessary. This may lead to an inefficient

way of using space and thus can reduce the performance of the model. In this

section, we will present a precise way to model trajectories of vehicles to avoid

conflict, while being more space-efficient.

Definition 5.1. Let t be the current time step and Vt the set of all vehicles

approaching the intersection. Each vehicle vi ∈ Vt is modelled with: its relative

distance to the intersection di, its velocity si and its length �i.

Definition 5.2. An intersection is modelled with several incoming lanes, several

outgoing lanes, and a central zone called conflict zone. The path of a vehicle across

the intersection is called a trajectory. The shared area between two trajectories is

called a conflict spot (cf. Figure 5.2).

5.2.1 Structural Constraints

We model each intersection using a DCOP model described in Chapter 4. This

model aims to find, for each time step t, a configuration Φt, which consists of one

admission time for each vehicle. Vehicles are able to cross the intersection at a

constant speed at their admission time. The conflict-free property is guaranteed.

As mentioned earlier, we extend the existing model by using the exact information

about vehicle location, velocity and length. Thus, the rules in that model can be

rewritten as follows:

Let L be the set of incoming lanes and lk ∈ L be lane k. For each vi ∈ Vt, let

lvi ∈ L be the lane in which the vehicle vi is present and τi be vi’s trajectory inside
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�1 d1

�2d2

ds1,2

de1,2

de2,1

ds2,1

Figure 5.2: Intersection with 12 incoming lanes, 12 outgoing lanes and a
conflict zone. Incoming lanes are numbered from 1 to 12. The conflict zone is
crossed by various trajectories. There are 3 vehicles v1 (light blue), v2 (green)
and v3 (orange). The trajectories τ1 of v1 and τ3 of v3 are the same and are
coloured in light blue, and τ2 of v2 in green. The conflict spot between the two

trajectories is coloured in red.

the conflict zone. Let dsi,j the distance between the beginning of τi and the starting

point of the conflict spot between τi and τj, and dei,j the distance between τi and

the end of this conflict spot.

c1. Distance constraint A vehicle has to cross the distance separating it from

the conflict zone before entering it:

∀vi ∈ V, ϕi > t+
di
si

(5.1)

c2. Anteriority constraint A vehicle vi cannot enter the conflict zone before

the vehicle vj, preceding it on its lane, completely enters the conflict zone.

In our model, we consider the area close to an intersection. Therefore, no

overtaking is possible. Thus a vehicle vi cannot enter the conflict zone before

the vehicle vj preceding it on its lane completely enters the conflict zone. We
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have:

∀vi, vj ∈ V 2
t , lvi = lvj , di > dj ⇒ ϕi > ϕj +

�j
sj

(5.2)

c3. Conflict constraint Two vehicles must not be present at the same time in

their conflict spot. Given all the information, if the trajectories of vi and vj

have a conflict spot, vi has to leave it before vj arrives or vice-versa
1. Note

that the time it takes for vi to completely leave the conflict spot is the time

it travels the distance dei,j + �i. We have:

∀vi, vj ∈ V 2
t , (ϕi +

dsi,j
si
) > (ϕj +

dej,i+�j

sj
) ∨ (ϕj +

dsj,i
sj
) > (ϕi +

dei,j+�i

si
) (5.3)

c3b. Conflict constraint with safety lapse When adding a safety lapse tsafe

for the constraint c3. We have:

∀vi, vj ∈ V 2
t , (ϕi +

dsi,j
si
) > (ϕj +

dej,i+�j

sj
+ tsafe) ∨ (ϕj +

dsj,i
sj
) > (ϕi +

dei,j+�i

si
+ tsafe)

(5.4)

For the scenario presented in Figure 5.2, assuming that the width of each lane is 3

meters (i.e. the conflict area of the intersection has a dimension of 18x18 meters),

the distance between each trajectory τi and the conflict spot between it and a

trajectory τj (i.e. d
s
i,j) is shown precisely in Table 5.1. The distance between each

trajectory τi and the end of the conflict spot between it and a trajectory τj (i.e.

dei,j) is presented in Table 5.2.

5.2.2 Objective of Each Intersection and Discussion

The average delay of vehicles has been the common performance indicator of a

system at the intersection level (Dresner and Stone, 2008; Vasirani and Ossowski,

1This solution aims to work for settings with a large number of CAVs. In transitional periods
where non-autonomous vehicles are presented, this constraint can be extended by adding a time
lapse between the two vehicles to keep a safe distance.
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2009). Let wi be the waiting time of vi, this minimisation can be described as

finding the minimum value for
∑

vi∈Vt
wi. However, from a network point-of-view,

simply evacuating vehicles in front of the intersection as quickly as possible can

create high density traffic in the outgoing lanes. Indeed, several studies (Lighthill

and Whitham, 1955a,b; van Rijn, 2014) have shown that traffic flow speed in a lane

is not linear in the lane’s density, but rather follows complex rules. Hence, in a road

network, continuing to send vehicles to a lane that has a high density may result

in a significant slowdown. In the market-based regulation system (Vasirani and

Ossowski, 2009), authors have introduced a dynamic pricing policy to improve the

performance of the network. Building upon that policy, we will next introduce a

priority setting technique that can be used to regulate traffic in a multi-intersection

settings.

5.3 Priority Levels for Multi-Intersection Set-

tings

To date, intersection management algorithms have mainly been shown to optimise

traffic flow for individual intersections. However, they do not acknowledge the fact

that it is not always possible to evacuate vehicles through the outgoing lanes as

they might be the neighbouring intersections’ incoming lane and thus might have

a long queue. This leads to the fact that optimising traffic at an intersection might

lead to further conflict at another intersection. In this section, we present a novel

dynamic individual priority level, which can be used to distribute vehicles among

intersections, or even guide vehicles to a better trajectory.

Similar to a dynamic pricing problem (Faruqui and Sergici, 2010; Do Chung et al.,

2012) where resources might have different costs each time, a vehicle’s delay should

be continuously evaluated using several criteria. Formally, we define for each

vehicle vi a strictly positive real value priority level ρi. This priority level is

updated using traffic information such as the vehicle’s past trajectories, the state

of its destination and the nature of the vehicle. A priority is defined by its type

(e.g., emergency vehicles, buses, road maintenance vehicle) whilst a dynamic factor
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is added using the other information (e.g., trajectory, destination, delay). Next we

propose two ways to update vehicles’ priority level, namely the Priority by history

and the Priority by destination.

5.3.1 Calculating Priority Levels

The priority of a vehicle represents the contribution of its delay in the solution

(i.e. a vehicle with higher priority contributes more to the quality of the solution).

Therefore, dynamically updating this priority can guide the mechanism to different

solutions as time progresses. In this chapter, we propose two ways to calculate

and update a vehicle’s priority based on its information and on the global traffic

conditions.

Priority by history: Priority by history is computed based on the total delay

of a vehicle from the beginning of its trajectory. We assume that every ordinary

vehicle that enters the road network has the same priority level and each inter-

section will try to minimise average delays, the method would favour the more

crowded lanes. This makes vehicles that travel in a less crowded trajectory wait

for an extremely long time in dense traffic. To be able to balance a vehicle’s

waiting time and the global objective of the intersection, we dynamically change

vehicles’ priority by history. In this chapter, we consider the distribution of prior-

ity by history, ranging from 0 for vehicles that recently entered the system to 10

for vehicles that are suffering lots of delay (cf. Figure 5.3). In certain cases, this

priority can also help evacuating vehicles from a congested area as they tend to

have higher delays and thus, higher priority than others.

Priority by destination: Priority by destination is computed based on the den-

sity of the next destination of a vehicle to avoid sending vehicles to a congested

area. In a simple intersection model, it is often assumed that the outgoing lanes

are always free and capable of taking vehicles. However, this assumption breaks

down in real-world settings as the conditions at the neighbouring intersections will

determine how fast cars can move along. For example, if an intersection cannot
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shift vehicles from one of its incoming lanes, a neighbouring intersection cannot

and should not shift more vehicles to this lane. Such situation can also create a

deadlock if the first CAV in the lane has to stop because its destination doesn’t

have enough free space. Hence, redistributing priority so that an intersection can

avoid sending vehicles to a more congested intersection can also be useful. Further-

more, giving a priority bonus to a certain direction also encourages vehicles to take

a less congested route when they have multiple options to complete their journey.

The bonus priority by destination is also distributed from 0 to 10, according to

the density of a vehicle’s destination communicated by the neighbouring intersec-

tion (cf. Figure 5.4). Furthermore, intersections can exchange information with

neighbouring intersections in case of blocked lanes due to unpredictable events so

that traffic flows can be eased.

5.3.1.1 Optimising Weighted Delay

Since each vehicle has its priority level, we will build, for each time step t, a

configuration Φt for all vehicles in Vt in front of the intersection that minimises

their total weighted delay whilst being able to satisfy all the structural constraints

described above. The input is the set of vehicles Vt presented in front of the

intersection at the current time step and the configuration at the last time step

Φt−1. Let wi be the waiting time of vehicle vi (i.e. the difference between the

admission time of vi in fluid condition and its actual admission time) and Φ be

the set of all possible configurations, our goal can be expressed as follows:

f : (t, Vt,Φt−1) �→ argmin
Φt∈Φ

∑
vi∈Vt

wi ∗ ρi (5.5)

We next discuss the formalisation of the model using a DCOP and show how

existing DCOP solution algorithms can be optimised to consider the parameters

of our problem.
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5.4 DCOPs for Intersection Management

We have presented two possible ways to formalise the intersection management

problem as a DCOP, depending on what we choose to represent with agents,

variables and constraints. The choices have an impact in both computational load

and communication overhead of agents. In this chapter we continue to evaluate

our model using two formalisations, namely the vehicle-based approach where

each vehicle is considered as an agent and the lane-based approach where the

sub-problem of the lane is solved before the global optimisation problem.

As a reminder, in the vehicle-based approach, each vehicle participate in the DCOP

formulation as an agent. They each have one variable representing their admission

time. The vehicles then perform a fully decentralised process in order to find a

global solution that does not cause any conflict, and that optimises the overall

delay.

On the other hand, in the lane-based approach, each lane is represented by an

agent. This solution sacrifices some decentralisation in exchange for less computa-

tional time. Vehicles in the same lane are affected with the anteriority constraint,

and may often cross the intersection using the same trajectory. Thus, the lane

agent can solve the sub-problem and exchanges solutions that do not violate the

anteriority constraint. The lane agent uses a pseudo-variable which is the Carte-

sian product of the admission times of all the vehicles in the lane.

The lane-based approach has been shown to outperform the vehicle-based approach

in standard Max-sum setting (cf. Chapter 4). However, when switching to a

recent variant of the algorithm, the Max-sum AD VP (Zivan and Peled, 2012),

the success rate becomes higher and thus we reevaluate their performances and

notice that each approach is preferred in different traffic densities.

In the space-efficient model, the agents and variables are the same as the cellular

model. The changes in the DCOP formalisation are the size of the domains and

the equations that describe the constraints. As we know, Max-Sum has a linear

complexity to the domain size of variables. Hence we can continue to use the Max-

Sum family algorithms to exploit the two models presented above. In the next
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step, we give a discussion on another variant of the Max-Sum algorithm, named

the Max-Sum AD VP (Zivan and Peled, 2012), on its difference and performance

compared to the standard version.

5.4.1 The Max-sum AD VP Algorithm and the Importance

of Node Ordering

Max-sum AD VP is a recent variant of Max-sum and is empirically proven to

converge faster and to a better solution than the standard version (Zivan and

Peled, 2012). It operates on a directed factor graph (c.f. Figures 5.5 and 5.6) to

avoid cycles. The transformation between these two graphs is produced by giving

each agent a unique index to create an order.

c2(ϕ1,ϕ3) ϕ1

c3(ϕ1)v1

c1(ϕ1,ϕ2) ϕ2

c3(ϕ2)v2

c2(ϕ2,ϕ3) ϕ3

c3(ϕ3)v3

Figure 5.5: Vehicle-based directed factor graph for the scenario presented
in Figure 5.2. There are 3 agents (v1, v2, v3), each holds an admission time
as a variable node (ϕ1, ϕ2, ϕ3), 1 anteriority factor node c1(ϕ1, ϕ2), 2 conflict
factor nodes (c2(ϕ1, ϕ3) and c2(ϕ2, ϕ3)), and 3 waiting time factor nodes (c3(ϕ1),

c3(ϕ2), and c3(ϕ3)).

c2(φ1,φ8)φ1

c3(φ1) l1

φ8

c3(φ8) l8

Figure 5.6: Lane-based directed factor graph for the scenario presented in
Figure 5.2. Only two lanes have vehicles approaching the intersection so there
are only two agents (l1 and l8). Each agent holds an array variable node, φ1

contains ϕ1 and ϕ2, φ8 contains ϕ3. There are 2 waiting time factor nodes
(c3(φ1) and c3(φ8)), and 1 conflict factor node (c2(φ1, φ8)).

Max-Sum AD was first proposed to address the shortcoming of standard Max-Sum

not converging or producing low-quality solutions on a cyclic factor graph. In more
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details, Max-Sum AD uses the same messages as Max-Sum (cf. Equations 4.14

and 4.15). At each phase, messages are sent only on one direction (e.g. upstream

direction in odd phases and downstream direction in even phases). Messages

are computed by considering all received messages (i.e. messages from upstream

neighbours in the current phase, and messages received in the previous phase from

downstream neighbours).

From the third phase, Max-sum AD VP adds value propagation to Max-Sum AD.

In this technique, each variable node selects a currently optimal assignment and

sends it alongside the standard message. Factor nodes then, based on the value

chosen, compute messages by minimising only over assignments that are consistent

with the value chosen.

To transform the original factor graph into an acyclic directed graph, Max-sum AD VP

has no preference and often uses the variable indices. Since the solution quality

of Max-sum AD VP is highly related to the initial assignments, we aim to find a

good way to organise nodes to improve its performance. In our system, vehicles

come with different priorities and we can see that the optimal solution is more

likely to favour vehicles with high priority. Thus, we conjecture that by arranging

the nodes in the priority order the algorithm can converge faster to a better solu-

tion. This is due to the fact that during the value propagation phases, the nodes

with higher priority propagate their values first. In section 5.5.2 we will evaluate

the performance of ordering nodes in different traffic conditions.

In the lane-based approach, instead of the priority of the vehicles, lane agents use

the sum of the priorities over the vehicles presented in the lane.

5.5 Empirical Evaluation

In this section, we evaluate the performance of our mechanism and the efficiency

of the improvements that we proposed for the Max-sum AD VP algorithm. The

experiments were performed using an Intel Core i5 clocked at 2.9 GHz with 32

GB RAM, under Ubuntu 16.04. The Max-sum AD VP algorithm is implemented
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as per (Zivan and Peled, 2012). We compare values from at least 50 simulations,

with 95% confidence interval as error bars. The insertion rate of vehicles to the

intersection ranges from 0.1 (off-peak) to 0.5 (rush hour) (Junges and Bazzan,

2008).

5.5.1 Evaluating Space Efficiency at Individual Intersec-

tions

In this first benchmark, we aim to compare the performance of our model and

the standard cellular model used in Chapter 4. The intersection evaluated is the

one from Figure 5.2. Each incoming lane has a width of 3 meters. We decided

to use such intersections as they are one of the most complicated scenarios in

urban settings. Vehicles are generated without any priority and both models

are evaluated using the lane-based approach with the same standard Max-sum

algorithm. A time step is set at 2 seconds and is also the timeout of the DCOP

algorithms. If the algorithm fails to provide a solution before timing out, the

intersection will automatically apply the FCFS solution as it is very simple to

compute and advance to the next time step. Based on the results in Figure 5.7,

we observe an improvement in dense traffic only from using space more efficiently,

without changing the algorithm.

5.5.2 Evaluating the Efficiency of the Max-sum AD VP

Algorithm at Individual Intersections

Next, we evaluate in detail our mechanism at a single intersection. Here we evalu-

ate all combinations of the approaches: Vehicle-based approach with node ordering

(VB-NO), Lane-based approach with node ordering (LB-NO), standard vehicle-

based approach (VB) and standard lane-based approach (LB). Vehicles are gen-

erated with a random priority ranging from 1 to 10. We measure the quality of

the solution (i.e. the total weighted delay of vehicles) during off-peak and rush
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hours. For reference, we also put the results from the model proposed in the pre-

vious Chapter on the same weighted delay problem (i.e. using a cellular, standard

Max-sum resolution). The intersection and timeout conditions stay the same as

the first experiment.

Figure 5.8 shows the average success rate of each approach (i.e. the percentage

of iterations where the algorithm converges to a better solution than the one

provided by FCFS). We can see that in dense traffic, VB fails to respond to

the 2-second timeout and thus, has the worst success rate of about 24% whilst

LB converges about 80% of the time with node ordering and 70% of the time

without. Figure 5.9 shows the average solution quality when successful. We note

that VB tends to converge to a better solution in off-peak conditions. In VB,

the solution is less likely to favour vehicles with high priority since it depends

more on the number of vehicles in the lane. Therefore, using node ordering with

this approach does not always result in a better outcome, and at times pushes

Max-sum AD VP to greedily pick a worse solution. For LB, since lanes with

more vehicles or with vehicles of higher priority are more likely to have shorter

delays, using node ordering causes Max-sum AD VP to converge faster with higher

success rate, especially in dense traffic. Figure 5.10 shows the overall quality of

the solution, i.e. the average weighted delay of all vehicles. VB is the solution that

gives the best performance in off-peak conditions. In dense traffic, since it often

has to take the FCFS solution when it fails to converge, its overall cost is higher

than the cost of LB. LB-NO provides a fairly good result in dense traffic and is

the best one in rush hours. It outperforms the existing approach by up to 32%.

Hence, switching between approaches for different traffic conditions could lead to

a better solution for single intersection traffic management. Figure 5.12 shows the

anytime quality of the solution to compare the performance between the ordered

and the standard versions of the lane-based approach Max-sum AD VP. We can

clearly observe a better convergence when ordering nodes using priority levels.
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Figure 5.7: Performance of the space-efficient model compared to the cellular
model.
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5.5.3 Multi-Intersection Efficiency

To be able to measure the effect of dynamic vehicle priorities, we evaluate our

mechanism in two different scenarios using a 2x2 intersection model. In the sce-

nario A, we consider the East-West direction through I1 and I2 in the rush hour

conditions whilst the other directions in normal conditions (cf. Figure 5.13). This

is a common scenario during rush hours in urban traffic. In the scenario B, we

consider the east and south outgoing lanes of I4 can only evacuate 1 vehicle every

3 time steps and get crowded (cf. Figure 5.14). Table 5.3 shows results achieved

using each individual priority, a combined version using the sum of the priorities,

and the standard version.

I1 I2

I3 I4

Figure 5.13: Scenario 1: The east-west direction through I1 and I2 (in red) is
more crowded than the other directions.

Priority by
history only

Priority by
destination only

Combined
priority

No
priority

Scenario A 24.74 ± 3.13 27.88 ± 3.86 21.25 ± 2.25 32.19 ± 6.29
Scenario B 21.98 ± 3.01 12.85 ± 2.66 13.12 ± 3.84 21.16 ± 4.42

Table 5.3: Average delay of vehicles in different scenarios.
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I1 I2

I3 I4

Figure 5.14: Scenario 2: The east and south outgoing lanes of I4 (in red) have
a limited capacity.

In the scenario A, both priorities contribute to the improvement of the overall

solution. Indeed, when we take a closer look at the intersections I3 and I4, their

north lanes often have to evacuate more vehicles. The priority by history speeds up

this evacuation since the vehicles in these lanes have suffered from higher delays.

On the other hand, the priority by destination prevents I3 and I4 to send vehicles

to the north, since the northern outgoing lanes might not be able to evacuate a

large number of vehicles.

In the scenario B, we noticed that the priority by destination contributes much

more to the congestion avoidance. In fact, without the priority by destination,

vehicles continue to be sent to the intersection I4, creating a congested situation.

This congestion further leads to the impossibility of sending vehicles from I2 and I3

to the east and south directions respectively, thus blocked vehicles from entering

I2 and I3. The average delay grows rapidly due to deadlocks. The priority by

history makes the performance slightly worse (but not significant) while sending

unnecessary vehicles to I4. In this simulation, we consider that vehicles have a

fixed trajectory before entering the network but to extend the model, vehicles
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might choose to go from I2 to I3 or vice-versa through I1 instead of I4 to reduce

their delays and optimise the use of traffic network.

5.6 Summary

In this chapter, we proposed several extensions to the model previously used (cf.

Chapter 4). First, Section 5.1 discussed the limits of the cellular models. A space-

efficient model was introduced in Section 5.2, along with the associated constraints.

In regard to a multi-intersection setup, we introduced in Section 5.3 a novel way to

coordinate intersections, while avoiding the computationally expensive of network

optimisation. This solution was inspired by the market-based solution (Vasirani

and Ossowski, 2009) where, right-of-way can be purchased with a variable price,

and the distributed weighted graph colouring problem, a common benchmark in

DCOP literature in which each agent has its own preferences and priority over

its choices. After that, we discussed in Section 5.4 the use of a recent variant of

the Max-Sum algorithm and proposed a node ordering mechanism. Finally, the

approaches were empirically evaluated in Section 5.5. The results showed that the

new variant of the algorithm and the space-efficient model improved the overall

solution. The dynamic priority assignment technique is proven to be efficient in

multi-intersection settings.

Since the combined version might not be the best in some cases, future work will

look at a detailed evaluation of combination between several priority distribution

functions to adapt to traffic conditions. This evaluation should include extreme

scenarios. One can list several scenarios as followings:

• Vehicles with high priorities coming from every direction.

• Platoons of vehicles taking the same trajectory.

• Different emergency vehicles (e.g. police cars, ambulances, firefighters) ap-

proaching an intersection from different directions.
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Furthermore, vehicles might start their journeys with a different priority, based

on their delays from the past, or based on the cooperation level (e.g. a vehicle

that violates their crossing plan might be penalised). Finally, other performance

metrics such as fuel consumption and comfort of passengers (due to acceleration,

deceleration and stop-and-go) can also be used for evaluation.





Chapter 6

Conclusions and Future Work

This chapter summarises the thesis and discusses possible improvements. In more

details, in Section 6.1, we give the results achieved of this thesis while, in Section

6.2, we discuss the challenges in implementing such system and directions for

future work.

6.1 Conclusions

In this thesis, we sought to propose a novel traffic regulation mechanism based

on a DCOP representation. Our proposal advanced the existing techniques of

mitigating congestion in future urban area with the existence of CAVs. To do

that, we proposed to distribute computation over vehicles, and coordinate them

in order to find the optimal crossing plan through an intersection. We chose DCOP

as a solution because of its flexibility and its rich background researches shown in

numerous MAS-based applications (Fioretto et al., 2018). When applying DCOP

to the microscopic intersection management problem, we had to address certain

challenges, mainly due to the computational and communication complexity and

we have successfully adopted a DCOP algorithm. We have empirically proven the

possibility of applying such framework in a highly dynamic environment, while

respecting road safety.

97
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In Chapter 4, to design and implement our proposal, we first modelled the inter-

section in the traditional cellular way. This kept the problem simple and made it

possible to evaluate the performance of a DCOP formalisation. Thereafter, based

on the performance of notable DCOP algorithms, we have chosen the Max-Sum

algorithm (Farinelli et al., 2008). Thanks to the structure of our problem, we

found a better partially centralised approach to speed up the computation and

reduce communication overhead. Then, we enhanced safety during the continuous

optimisation process by proposing a bound to the solution quality. This helped

guarantee a solution at any time step and reduce the search space for the algo-

rithm, thus reduced computational time. Finally, we evaluated the performance

of the approach in different traffic densities, as well as in dealing with dynamic

event.

Following this, in Chapter 5, we developed several extensions to the previous

mechanism. First, we discussed the limits of the standard cellular model. We

then modelled the intersection in a more space-efficient way and redefined the

associated constraints. The second extension was proposed to address the lack of

multi-intersection coordination in microscopic intersection management methods.

This extension helped the mechanism deal with traffic conditions at a larger scale,

while keeping the same complexity as the single-intersection optimisation problem.

The third extension was the use of a recent variant of the Max-Sum algorithm, the

Max-Sum AD VP algorithm (Zivan and Peled, 2012). When studying the node

ordering problem in Max-Sum AD VP, we discovered a better way to use our

individual priority policy to order nodes and improve the runtime performance of

the algorithm. Through the experiments, we showed that the space-efficient model

outperformed the cellular version when applying to vehicles with different sizes,

and that node ordering can improve the success rate of the algorithm. We also

highlighted the needs for a multi-intersection coordination in two common urban

traffic scenarios.

When taken together, this thesis presented a first use of DCOP formalisation to

address the traffic regulation problem. We have designed a flexible solution that

can be applied to optimise traffic at an intersection, as well as at the network
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scale. In the next section, we briefly describe how this work can be improved in

the future.

6.2 Future Work

6.2.1 Single Intersection Model

In the scope of this thesis, we simulated our mechanism using an intersection with

12 incoming lanes and 12 outgoing lanes, which is one of the most complicated

scenarios in the urban area. Regarding the intersection model, future work will

first look at different forms of the intersection and evaluate the impact of the

mechanism on these forms (e.g. the ones listed in Figure 6.1). These experiments

are important as they validate the efficiency of our approach compared to classic

traffic regulation methods.

Figure 6.1: Different types of intersections in the urban area (Donnelley,
2010).
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We assumed, in our thesis, that vehicles travel with a fixed speed. However,

vehicles’ speed might differ from one to another. This leads to the need of a way

to optimise over the current speed of vehicles, in order to build a speed profile

allowing them to cross the intersection at their desired crossing time, minimising

the negative effects of stop-and-go. This can be done by combining the algorithm

with another work that addressed the speed profile problem (e.g., (Zhang et al.,

2018)).

In Chapter 4, we evaluated the performance of our mechanism with a dynamic

event to test its robustness. However, it is noteworthy that, to validate the mech-

anism, additional events might be simulated. These events include the arrival of

buses, blocked lanes or reduced speed due to maintenance and incidents.

6.2.2 DCOP Algorithms

DCOP is a field of research that had a lot of improvements during the last decade,

and new algorithms are continuously proposed. While our formalisation can be

solved with any algorithm, a more exhaustive comparison can be studied to choose

a suitable algorithm for a realistic system. This evaluation should take into account

the communication range of vehicles, as well as their computational capability,

memory and the robustness of the message passing protocol. Such research would

require the knowledge about the capabilities of CAVs in the future.

When taking DCOP algorithms dynamically, it can be interesting to look at the

changes between iterations. Indeed, from an iteration to the next one, the con-

straints between vehicles that participate in both iterations stay the same (e.g., if

two vehicles are constrained with a conflict constraint, since they cannot change

the lane, they stay constrained in the next iteration). Therefore, when taking

into account that non-changing part in the factor graphs, we can avoid redundant

messages by saving knowledge that other agents have achieved during their last

iterations. Furthermore, if we can predict certain changes (e.g., vehicles arriving

or leaving the area), we can improve the performance of DCOP by only exchanging

messages between vehicles that can be affected by these changes.
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6.2.3 Multi-Intersection Setup

When dealing with a multi-intersection setup, different cities might have different

preferences (e.g., some might prefer to prioritise vehicles with a higher number

of occupants, ordinary vehicles that are going to a hospital or prioritise electric

vehicles to encourage the use of this type of energy). This leads to a need of

studying the priority distribution with multiple objectives. Indeed, any function

can be applied to distribute this priority. Hence, finding the optimal way for

priority distribution might requires simulation and data collection in a larger scale.

Furthermore, simulating traffic on a larger scale (e.g. a city) using real data might

be interesting. In a real city, the traffic contains many complex factors, each of

them contributes differently to traffic congestion. By evaluating the mechanism

on real data, we can be able to measure the performance of the system in different

realistic conditions.

In addition, a future intelligent transportation system may include many types of

vehicles, each has to be dealt with differently. We can list some of them as follows:

• Public transportation: Current solution in cities to favour public trans-

portation (e.g., buses) usually implies giving them a dedicated lane. In our

system, buses can be dealt with using a different manner, by giving them

additional priority over other vehicles. However, priority for buses must be

different than other types of vehicles because unlike other vehicles which

want to arrive as fast as possible, buses have to respect their timetable, and,

arriving to their destinations too soon or too late should both be penalised.

Since the arrival of a bus can be predicted, we can further develop a more

complex strategy where the lane of the bus might be dynamically reserved

before its arrival, while can still be used for other vehicles outside of this

reservation.

• Car sharing: A person that is willing to share his/her car can be prioritised.

Furthermore, this type enables the possibility to predict traffic beforehand

because the departure time and the arrival time of the car to pick up the
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passengers are often fixed in advance. Such prediction leads to the need of

studying how to regulate traffic efficiently using these data.

• Autonomous taxi: The system might also include autonomous taxi, which

can be used to pick up passengers. This type of vehicles needs an efficient

mechanism to assign each vehicle to its passengers, in order to minimise

cost (e.g. minimise trajectory length, number of passengers on board or fuel

consumption). Since passengers are informed of their position and might be

able to wait for its arrival, the regulation method can also consider these

vehicles differently.

Finally, our work can be adapted to fit alongside other policies that addressed

other challenges in urban traffic, such as optimising lane changing decision (e.g.,

(Cao et al., 2017)). When combined altogether, these approaches can provide a

complete autonomous driving policy in the urban area.
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Champion, A. Mécanisme de coordination multi-agent fondé sur des jeux:
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