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Introduction

The objective of my thesis is to use algebraic and combinatorial methods to study questions around the branching problem in representation theory.

The branching problem is one of the most important in representation theory. It allows us to understand how an irreducible module of a Lie algebra g can be decomposed into irreducible modules of a subalgebra ġ ⊂ g and several properties around the decomposition. For example, let ġ be the generalized linear Lie algebra gl n (C) (n ∈ Z ≥0 ). Then the set of all irreducible polynomial gl n (C)-modules corresponds to the set of partitions of length at most n. If λ is such a partition, let V λ be the corresponding irreducible polynomial gl n (C)-module. Then

{V λ ⊗ V µ | λ, µ are partitions of length at most n} (1)
is the set of all irreducible polynomial modules of gl n (C) × gl n (C). These irreducible modules can be considered as gl n (C)-modules. Hence we have decompositions

V λ ⊗ V µ = ν (V ν ) mult λ,µ (ν) , (2) 
where mult λ,µ (ν) is the multiplicity of V ν in V λ ⊗ V µ .

The branching problem consists in many questions around the multiplicity mult λ,µ (ν) and their generalizations to other pairs ġ ⊂ g than gl n (C) ⊂ gl n (C) × gl n (C). For example,

• what is the formula of the multiplicities ?

• what are good algorithms to compute the multiplicities ?

• can we describe explicitly the support of the decomposition ? etc.

There are a lot of approaches to answer those questions from different domains : algebraic geometry, number theory, combinatorics, analysis, .... For example,
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• by combinatorial methods, P. Littelman obtained the generalized Littlewood-Richardson rule for any symmetrizable Kac-Moody algebras. His model is well known and named path model (see [START_REF] Littelmann | A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras[END_REF], [START_REF] Littelmann | The path model for representations of symmetrizable Kac-Moody algebras[END_REF], [START_REF] Littelmann | Paths and root operators in representation theory[END_REF], [START_REF] Littelmann | Characters of representations and paths in H * R . In Representation theory and automorphic forms[END_REF], [START_REF] Littelmann | The path model, the quantum Frobenius map and standard monomial theory[END_REF]). It has too many applications in representation theory, for example, a simple proof of PRV conjecture (see [START_REF] Littelmann | A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras[END_REF]). There are also a lot of notable works using combinatorial methods. For example, [START_REF] Knutson | Honeycombs and sums of Hermitian matrices[END_REF], [START_REF] Knutson | The honeycomb model of GLn(C) tensor products. I. Proof of the saturation conjecture[END_REF], [START_REF] Knutson | The honeycomb model of GLn(C) tensor products. II. Puzzles determine facets of the Littlewood-Richardson cone[END_REF] for the proof of saturation conjecture using honeycomb model. By, e.g., [START_REF] Remmel | Multiplying Schur functions[END_REF], [START_REF] Raymond | A theory of shifted Young tableaux[END_REF], [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF], [START_REF] Sagan | Shifted tableaux, Schur Q-functions, and a conjecture of R. Stanley[END_REF], [START_REF] Serrano | The shifted plactic monoid[END_REF], [START_REF] Vakil | A geometric Littlewood-Richardson rule[END_REF] and so on for developing theory of (shifted) Littlewood-Richardson coefficients.

In this thesis, we study the branching rule on winding subalgebras of affine Kac-Moody algebras and investigate some non-trivial properties of shifted Littlewood-Richardson coefficients which appear in the projective representations of symmetric groups. The explicit results can be described as follows :

The first work is the results mentioned in our preprint [START_REF] Duc | Branching problem on winding subalgebras of affine Kac-Moody algebras A (1) 1 and A (2) 2[END_REF] : "Branching problem on winding subalgebras of affine Kac-Moody algebras A

(1) 1 andA (2) 2 ." Let g be an affine Kac-Moody algebra and let h be a Cartan subalgebra of g. Let g[u] be a winding subalgebra of g for some given positive integer u. The winding subalgebra g[u] is isomorphic to g but nontrivially embedded in g (see [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF]). The integrable irreducible highest weight g-modules (resp. g[u]-modules) are parametrized by the semigroup P + (resp. Ṗ+ ) of dominant integral weights. For Λ ∈ P + (resp. λ ∈ Ṗ+ ), let L(Λ) (resp. L(λ)) be the integrable irreducible highest weight g-module (resp. g[u]module) with highest weight Λ (resp. λ). Under the action of h, the g-module L(Λ) decomposes as

L(Λ) = λ∈h * L(Λ) λ . ( 3 
)
where

L(Λ) λ = {v ∈ L(Λ) | hv = λ(h)v ∀h ∈ h} . ( 4 
)
Let mult Λ,h (λ) be the dimension of L(Λ) λ . Set Γ(g, h) = {(Λ, λ) ∈ P + × h * | mult Λ,h (λ) = 0}.

Now, the g-module L(Λ) is integrable as an g[u]-module. In particular, under the action of g[u], it decomposes as

L(Λ) = λ∈ Ṗ+ L(λ) mult Λ,g[u] (λ) , (5) 
where mult Λ,g[u] (λ) is the multiplicity of L(λ) in L(Λ). Set

Γ(g, g[u]) = {(Λ, λ) ∈ P + × Ṗ+ | mult Λ,g[u] (λ) = 0}.
Our first main result is the following theorem.

Theorem 0.1. As a subset of h * × h * , the set Γ(g, g [u]) is a semigroup.

Let (Λ, λ) ∈ P + × Ṗ+ . Let δ be the basis imaginary root of g. To understand the set Γ(g, g[u]), we study the set

B(Λ, λ) = {b ∈ C | L(λ + bδ) ⊂ L(Λ)}. ( 6 
)
Let P u (Λ) is the set of all λ such that (Λ, λ) ∈ Γ(g, g [u]). The set B(Λ, λ) is nonempty if and only if λ ∈ P u (Λ) + Cδ. In this case, we define b Λ,λ,u be number b ∈ B(Λ, λ) such that b + n ∈ B(Λ, λ) for any n ∈ Z >0 . We also define a number h

[u]
Λ,λ as in (2.118). We describe the set B(Λ, λ) as in the following theorem. vii Theorem 0.2. Let g be an affine Kac-Moody algebra. Let Λ ∈ P + and λ ∈ P u (Λ) + Cδ. We have 1. b Λ,λ,u -(Z ≥0 \ {1}) ⊂ B(Λ, λ) ⊂ b Λ,λ,u -Z ≥0 .

If in addition h

[u] Λ,λ = 0 then B(Λ, λ) = b Λ,λ,u -Z ≥0 .

Let P (Λ) be the set of all λ ∈ h * such that (Λ, λ) ∈ Γ(g, h). For each λ ∈ P (Λ) + Cδ, we set b Λ,λ the complex number b such that λ + bδ ∈ P (Λ) and λ + (b + n)δ ∈ P (Λ) for any n ∈ Z >0 . For g of type A

(1) 1 andA (2) 2 , we can compute explicitly the number b Λ,λ in Propositions 2.32 and 2.37. Let Λ 0 be the 0-th fundamental weight and α be the simple root α 1 . Let m ∈ Z >0 . For each m ∈ Z, we denote by P m the set of all integral weights of level m. The results below help us to understand the branching rule on g[u] in these two particular cases.

Theorem 0.3. Let g be the affine Kac For Λ like in Theorems 0.3, 0.4, we denote by A u (Λ) the set of λ such that the theorems apply. The satured setting of Γ(g, g [u]) is defined by

Γ(g, g[u]) = {(Λ, λ) ∈ P + × Ṗ+ | λ ∈ Λ + Q, L(N λ) ⊂ L(N Λ) for some integer N > 1}. (7)
Let Q be the root lattice of g. The following result is a corollary of Theorems 0.2, 0.3, 0.4.

Corollary 0.5. Let g be affine Kac-Moody algebra of type A

(1) 1 or A

(2) 2 . Fix u ∈ Z >1 (u is an odd number in the case A

(2)

2 ). Let Λ ∈ P + and let λ ∈ A u (Λ) ∩ (Λ + Q). For all b ∈ C, we have viii
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The second work is the results mentioned in our second preprint [START_REF] Duc | On the shifted Littlewood-Richardson coefficients and Littlewood-Richardson coefficients[END_REF] : "On the shifted Littlewood-Richardson coefficients and Littlewood-Richardson coefficients." Namely, let λ, µ, ν be partitions. Let l(λ) be the length of λ, and s λ be the Schur function associated to the partition λ. The Littlewood-Richardson coefficients c ν λµ appear in the expansion (see [START_REF] Fulton | Young tableaux[END_REF] or [START_REF] Macdonald | Symmetric functions and Hall polynomials[END_REF])

s λ s µ = ν c ν λµ s ν . ( 8 
)
If now λ, µ, ν are strict partitions, let Q λ be the shifted Schur Q-function associated to λ. The shifted Littlewood-Richardson coefficients appear in the expansion (see [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF])

Q λ Q µ = ν 2 l(λ)+l(µ)-l(ν) f ν λµ Q ν . ( 9 
)
For any strict partition λ, and a partition µ of the same integer, the coefficients g λµ appear in the decomposition

Q λ = 2 l(λ) µ g λµ s µ . ( 10 
)
The coefficients g λµ can be considered as shifted Littlewood-Richardson coefficients by the identity

g λµ = f µ+δ λδ , ( 11 
)
where δ = (l, l -1, . . . , 1) with l = l(µ).

Our first result is a new interpretation for the shifted Littlewood-Richardson coefficients. More precisely, given a skew shifted shape ν/µ, we construct the set O(ν/µ) of tableaux from the shifted reverse filling of the skew shifted shape ν/µ. Theorem 0.6. Let λ, µ, ν be strict partitions. Then the coefficient f ν λµ is the number of the tableaux T in O(ν/µ) of shape λ.

The coefficient g λµ can be considered as particular shifted Littlewood-Richardson coefficient, we obtain a new model for g λµ .

Theorem 0.7. Let λ be a strict partition and µ be a partition. Then the coefficient g λµ is the number of the tableaux T in O(µ + δ/δ) of shape λ.

Our second result is also a new combinatorial interpretation of the coefficients g λµ . More precisely, let λ be the partition such that its Young diagram is the union of shifted diagram corresponding to λ and its reflection through the main diagonal. Let µ t be the conjugate partition of µ. We prove that g λµ is the cardinal of a subset of a set that counts the coefficients c λ µ t µ . As a corollary, we prove that Theorem 0.8. Let λ be a strict partition and µ be a partition. Then g λµ ≤ c λ µ t µ . We also conjecture a stronger inequality Conjecture 0.9. Let λ be a strict partition and µ be a partition. Then g 2 λµ ≤ c λ µ t µ . We formulate a conjecture on our combinatorial models whose validity implies the conjecture above. An evidence of the second conjecture is that it implies easily a well known equality g λµ = g λµ t .

ix The thesis contains four chapters. In the first chapter, we introduce the fundamental background about Kac-Moody algebras and their representations (in particular, affine Kac-Moody algebras). In the second chapter, we present our results about branching rule on winding subalgebras of affine Kac-Moody algebras of type A

Introduction en Français

L'objectif de ma thèse est d'utiliser des méthodes algébriques et combinatoires pour étudier le problème de branchement en théorie des représentations.

Le problème de branchement est l'un des plus importants de la théorie des représentations. Il demete de comprendre comment un module irréductible d'une algèbre g se décompose en modules irréductibles d'une sous-algèbre ġ ⊂ g et étudier les propriétés de cette décomposition. Bien entendu, des hypothèses sur les algèbres de Lie à considérer doivent être faites pour donner un cadre précis à cette question. Par exemple, considérons l'algèbre de Lie linéaire ġ = gl n (C) (n ∈ Z ≥0 ). Alors, l'ensemble des représentations polynomiales irréductibles de gl n (C) correspond à l'ensemble des partitions de longueur au plus n. Si λ est une telle partition, notons V λ le gl n (C)module polynomiales irréductible correspondant à λ. Alors, {V λ ⊗ V µ | λ, µ sont partitions de longueur au plus n} (12) est l'ensemble de tous les modules polynomiales irréductibles de gl n (C) × gl n (C). Considérant ces modules comme gl n (C)-modules, on obtient les décompositions

V λ ⊗ V µ = ν (V ν ) mult λ,µ (ν) , ( 13 
)
où mult λ,µ (ν) est la multiplicité de V ν dans V λ ⊗ V µ .

Le problème de branchement consiste en de nombreuses questions sur les multiplicités mult λ,µ (ν) et leurs généralisations à d'autres paires ġ ⊂ g que gl n (C) ⊂ gl n (C) × gl n (C). Par exemple,

• quelle est la formule des multiplicités ?

• quels sont les bons algorithmes pour calculer les multiplicités ?

• peut-on décrire explicitement le support de la décomposition ? etc.

Des approches variées pour aborder ces questions relèvent de domaines différents : géométrie algébrique, théorie des nombres, combinatoire, analyse,. . . Par exemple,

• par des méthodes géométriques, S. Kumar, N. Ressayre et P. Belkale ont obtenu des résultats précis sur le support de la décomposition lorsque ġ est une algèbre de Kac-Moody symétrisable et g = ġ ⊕ ġ (voir [START_REF] Belkale | Eigenvalue problem and a new product in cohomology of flag varieties[END_REF], [START_REF] Kumar | On the faces of the tensor cone of symmetrizable Kac-Moody Lie algebras[END_REF], [START_REF] Ressayre | On the tensor semigroup of affine Kac-Moody Lie algebras[END_REF], [START_REF] Ressayre | Geometric invariant theory and the generalized eigenvalue problem[END_REF], [START_REF] Prakash Belkale | A generalization of Fulton's conjecture for arbitrary groups[END_REF] etc).

• en utilisant la théorie des formes modulaires, V. Kac et M. Wakimoto ont obtenu des résultats sur les fonctions de branchement qui nous aident à calculer explicitement la décomposition dans de nombreux cas particuliers (voir [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF]). Ici les algèbres ġ et g sont des algèbres de Lie affines.

xi xii
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• par des méthodes combinatoires, P. Littelmann a obtenu une règle de Littlewood-Richardson pour toute algèbre de Kac-Moody symétrisable. Son modèle, connu sous le nom de modèle des chemins de Littelmann décrit les multiplicités de la décomposition du produit tensoriel (voir [START_REF] Littelmann | A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras[END_REF], [START_REF] Littelmann | The path model for representations of symmetrizable Kac-Moody algebras[END_REF], [START_REF] Littelmann | Paths and root operators in representation theory[END_REF], [START_REF] Littelmann | Characters of representations and paths in H * R . In Representation theory and automorphic forms[END_REF], [START_REF] Littelmann | The path model, the quantum Frobenius map and standard monomial theory[END_REF]). Il a de nombreuses applications en théorie des représentations. Par exemple, une preuve simple de la onjecture PRV (voir [START_REF] Littelmann | A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras[END_REF]). Il existe également de nombreux travaux notables utilisant des méthodes combinatoires. Par exemple, [START_REF] Knutson | Honeycombs and sums of Hermitian matrices[END_REF], [START_REF] Knutson | The honeycomb model of GLn(C) tensor products. I. Proof of the saturation conjecture[END_REF], [START_REF] Knutson | The honeycomb model of GLn(C) tensor products. II. Puzzles determine facets of the Littlewood-Richardson cone[END_REF] pour la preuve de la conjecture de saturation en utilisant le modèle en nid d'abeille. Ou [START_REF] Remmel | Multiplying Schur functions[END_REF], [START_REF] Raymond | A theory of shifted Young tableaux[END_REF], [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF], [START_REF] Sagan | Shifted tableaux, Schur Q-functions, and a conjecture of R. Stanley[END_REF], [START_REF] Serrano | The shifted plactic monoid[END_REF], [START_REF] Vakil | A geometric Littlewood-Richardson rule[END_REF] et ainsi de suite pour développer la théorie des coefficients (décalés) de Littlewood-Richardson, etc.

Ici, nous étudions la règle de branchement pour les sous-algèbres d'enroulement des algèbres Kac-Moody affines et étudions certaines propriétés non triviales des coefficients Littlewood-Richardson qui apparaissent dans la théorie de représentation projective des groupes symétriques. Les résultats explicites peuvent être décrits comme suit :

Le premier travail constitue la pré-publication [START_REF] Duc | Branching problem on winding subalgebras of affine Kac-Moody algebras A (1) 1 and A (2) 2[END_REF] : " Branching problem on winding subalgebras of affine Kac-Moody algebras

A (1) 1 et A (2)
2 ." À savoir, soit g une algèbre de Kac-Moody affine et soit h une sous-algèbre Cartan de g. Soit g[u] une sous-algèbre d'enroulement de g pour un entier positif donné u. La sous-algèbre d'enroulement g[u] est isomorphe à g mais est plongé dans g de manière non triviale (voir [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF]). Les g-modules irréductibles (resp. g[u]modules) sont paramétrés par le semigroupe P + (resp. Ṗ+ ) de poids entiers dominants. Pour

Λ ∈ P + (resp. λ ∈ Ṗ+ ), soit L(Λ) (resp. L(λ)) le g-module (resp. g[u]-module) irréductible intégrable de plus haut poids Λ (resp. λ). Sous l'action de h, le g-module L(Λ) se décompose comme L(Λ) = λ∈h * L(Λ) λ . ( 14 
) où L(Λ) λ = {v ∈ L(Λ) | hv = λ(h)v ∀h ∈ h} . ( 15 
) Soit mult Λ,h (λ) la dimension de L(Λ) λ . Soit Γ(g, h) = {(Λ, λ) ∈ P + × h * | mult Λ,h (λ) = 0}.
Maintenant, le g-module L(Λ) est intégrable en tant que g[u]-module. En particulier, sous l'action de g[u], il se décompose comme

L(Λ) = λ∈ Ṗ+ L(λ) mult Λ, ġ (λ) , ( 16 
) où mult Λ, ġ(λ) est la multiplicité de L(λ) dans L(Λ). Posons Γ(g, ġ) = {(Λ, λ) ∈ P + × Ṗ+ | mult Λ, ġ(λ) = 0}.
Notre premier résultat principal est le théorème suivant.

Theorem 0.10. En tant que sous-ensemble de h * × h * , l'ensemble Γ(g, g[u]) est un semigroupe.

Soit (Λ, λ) ∈ P + × Ṗ+ . Soit δ la racine imaginaire de base de g. Pour comprendre l'ensemble Γ(g, g[u]), nous étudions l'ensemble 

B(Λ, λ) = {b ∈ C | L(λ + bδ) ⊂ L(Λ)}. ( 17 
(Λ) + Cδ. Nous avons 1. b Λ,λ,u -(Z ≥0 \ {1}) ⊂ B(Λ, λ) ⊂ b Λ,λ,u -Z ≥0 .

Si en plus h

[u] Λ,λ = 0 alors B(Λ, λ) = b Λ,λ,u -Z ≥0 . Soit P (Λ) l'ensemble de tous les λ ∈ h * tel que (Λ, λ) ∈ Γ(g, h). Pour chaque λ ∈ P (Λ) + Cδ, nous désignons par b Λ,λ le nombre complexe b tel que λ + bδ ∈ P (Λ) et λ + (b + n)δ ∈ P (Λ) pour tout n ∈ Z >0 . Pour g de type A (1) 1 et A (2)
2 , nous pouvons calculer explicitement le nombre b Λ,λ dans Propositions 2.32 and 2.37. Soit Λ 0 le 0-e poids fondamental et α la racine simple α 1 . Soit m ∈ Z >0 . Pour chaque m ∈ Z, on note P m l'ensemble de tous les poids intégraux de niveau m. Les résultats ci-dessous nous aident à comprendre la règle de branchement sur g[u] dans ces deux cas particuliers. Theorem 0.12. Soit g l'algèbre affine de Kac-Moody de type A

(1)

1 . Soit Λ = mΛ 0 + jα 2 ∈ P m + et soit λ = m ′ Λ 0 + j ′ α 2 ∈ Ṗ+ . 1. S'il existe b ∈ C tel que (Λ, λ + bδ) appartient à Γ(g, g[u]) puis j ′ -j ∈ 2Z et m ′ = m. 2. Si en plus a. j ≤ j ′ ≤ um -j et u est pair ; ou b. j ≤ j ′ ≤ um -(m -j) et u est impair, alors b Λ,λ,u = b Λ,λ .
Theorem 0.13. Soit g l'algèbre affine de Kac-Moody de type

A (2) 2 . Soit λ = mΛ 0 + jα 2 ∈ P m + et soit λ = m ′ Λ 0 + j ′ α 2 ∈ Ṗ+ . 1. S'il existe b ∈ C tel que (Λ, λ + bδ) appartient à Γ(g, g[u]) puis m ′ = m. 2. Si en plus a. j ≤ j ′ ; et b. j ′ ∈ m(u-1) 2 -j + (2Z ≥0 ∪ Z <0 ), alors b Λ,λ,u = b Λ,λ .
Pour Λ comme dans les théorèmes 0.12, 0.13, nous notons A u (Λ) l'ensemble de λ tel que les Théorèmes s'appliquent. Le paramètre saturé de Γ(g, g[u]) est défini par

Γ(g, g[u]) = {(Λ, λ) ∈ P + × Ṗ+ | λ ∈ Λ + Q, L(N λ) ⊂ L(N Λ) pour un entier N > 1}. ( 18 
)
Soit Q le réseau racine de g. Le résultat suivant est un corollaire des Théorèmes 0.11, 0.12, 0.13.

Corollary 0.14. Soit g une algèbre de Kac-Moody affine de type A

(1)

1 ou A (2) 2 . Fixe u ∈ Z >1 (u est un nombre impair dans le cas A (2) 2 ). Soit Λ ∈ P + et soit λ ∈ A u (Λ) ∩ (Λ + Q). Pour tous b ∈ C, nous avons xiv INTRODUCTION EN FRANÇAIS 1. (Λ, λ + bδ) ∈ Γ(g, g[u]) ⇔ d(Λ, λ + bδ) ∈ Γ(g, g[u]) pour tous d ∈ Z ≥2 .

Si en plus h

[u] Λ,λ = 0 alors (Λ, λ + bδ) ∈ Γ(g, g[u]) ⇔ (Λ, λ + bδ) ∈ Γ(g, g[u]).
Notre deuxième travail constitue ma deuxième pré-publication [START_REF] Duc | On the shifted Littlewood-Richardson coefficients and Littlewood-Richardson coefficients[END_REF] : "On the shifted Littlewood-Richardson coefficients et Littlewood-Richardson coefficients." Soient λ, µ, ν trois partitions. Soit l(λ) la longueur de λ et soit s λ la fonction de Schur associée à la partition λ. Les coefficients de Littlewood-Richardson c ν λµ apparaissent dans l'extension (voir [START_REF] Fulton | Young tableaux[END_REF] ou [START_REF] Macdonald | Symmetric functions and Hall polynomials[END_REF])

s λ s µ = ν c ν λµ s ν . ( 19 
)
Si maintenant λ, µ, ν sont des partitions strictes, soit Q λ la fonction de Schur Q décalée associée à la partition λ. Les coefficients décalés de Littlewood-Richardson apparaissent dans l'expansion (voir [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF])

Q λ Q µ = ν 2 l(λ)+l(µ)-l(ν) f ν λµ Q ν . ( 20 
)
Pour toute partition stricte λ, et une partition µ du même entier, les coefficients g λµ apparaissent dans la décomposition

Q λ = 2 l(λ) µ g λµ s µ . ( 21 
)
Les coefficients g λµ peuvent être considérés comme des coefficients de Littlewood-Richardson décalés par l'identité

g λµ = f µ+δ λδ , ( 22 
) où δ = (l, l -1, . . . , 1) avec l = l(µ).
Notre premier résultat est une nouvelle interprétation des coefficients décalés de Littlewood-Richardson. Plus précisément, étant donné une forme décalée ν/µ, nous construisons un ensemble O(ν/µ) de tableaux à partir du remplissage inversé décalé de la forme décalée symétrique ν/µ. xv Nous formulons une conjecture sur nos modèles combinatoires dont la validité implique la conjecture ci-dessus. L'évidence de la deuxième conjecture est qu'elle implique facilement une égalité bien connue g λµ = g λµ t .

La thèse contient quatre chapitres. Dans le premier chapitre, nous introduisons les algèbres de Kac-Moody et leurs représentations (en particulier, les algèbres de Kac-Moody affines). Dans le deuxième chapitre, nous présentons nos résultats sur la règle de branchement pour les sousalgèbres d'enroulement des algèbres de Kac-Moody affines de type A

(1) 

1 et A (2)

Kac-Moody algebras and their representations

In this chapter, we collect some fundamental facts about the Kac-Moody algebras and their representations, which are necessary to understand the next chapter, namely, the first preprint [START_REF] Duc | Branching problem on winding subalgebras of affine Kac-Moody algebras A (1) 1 and A (2) 2[END_REF]. One of the key notions are maximal weights, branching functions, string functions, Weyl-Kac's character formula. For more details, see [START_REF] Victor | Infinite-dimensional Lie algebras[END_REF], [START_REF] Carter | Lie algebras of finite and affine type[END_REF]. 

Generalized Cartan matrix

Let I = {1, . . . , n}. A matrix A = (a ij ) i,j∈I is called a generalized Cartan matrix if it satisfies the conditions below:

1. a ii = 2, 2. -a ij ∈ Z ≥0 for all i = j, 3. a ij = 0 if and only if a ji = 0.
Two generalized Cartan matrices A and A ′ are called equivalent if they have the same size, say n × n, and there exists a permutation σ ∈ S n such that a ′ ij = a σ(i)σ(j) for all i, j = 1, . . . , n.

A generalized Cartan matrix A is called indecomposable if it is not equivalent to a block diagonal of nonzero generalized Cartan matrices.

Lemma 1.1. If A is a generalized Cartan matrix, then the transpose t A is also a generalized Cartan matrix. Moreover, t A is indecomposable if and only if A is.

We can classify indecomposable generalized Cartan matrices into three types according to its corank. Namely, A is of finite type if corank(A) = 0, of affine type if corank(A) = 1, and of indefine type otherwise.

Let u = t (u 1 , . . . , u n ) be a column vector in R n . We write u > 0 if u i > 0 for all i = 1, . . . , n. We write u ≥ 0 if u i ≥ 0 for all i = 1, . . . , n.

Theorem 1.2. Let A be an indecomposable generalized Cartan matrix. Then t A and A have the same type, and 1. A is of finite type iff there exists a vector u ∈ R n such that u > 0, Au > 0, 2. A is of affine type iff there exists a vector u ∈ R n such that u > 0, Au = 0, 3. A is of indefine type iff there exists a vector u ∈ R n such that u > 0, Au < 0.

A generalized Cartan matrix A is called symmetrizable if A = DB for some non-singular diagonal matrix D and symmetric matrix B.

Theorem 1.3. Let A be an indecomposable generalized Cartan matrix of finite type or affine type. Then A is symmetrizable.

GENERALIZED CARTAN MATRIX

3

A generalized Cartan matrix A = (a ij ) i,j∈I is determined by its Dynkin diagram D(A), which is defined as follows: 1. The vertices of D(A) are labelled by i ∈ I. 2. Two distinct vertices i, j of D(A) are joined by the rules:

• If a ij a ji = 0, then vertices i, j are joined by no edge.

• If a ij a ji = 1, then vertices i, j are joined by a single edge.

• If a ij=-1 , a ji = -2, then vertices i, j are joined by a double edge with an arrow pointing towards j.

• If a ij=-1 , a ji = -3, then vertices i, j are joined by a triple edge with an arrow pointing towards j.

• If a ij=-1 , a ji = -4, then vertices i, j are joined by a quadruple edge with an arrow pointing towards j.

• If a ij=-2 , a ji = -2, then vertices i, j are joined by a double edge with two arrows pointing away from i, j. 

A l (l ≥ 1) 1 2 3 l -1 l B l (l ≥ 2) 1 2 3 l -1 l ⇒ C l (l ≥ 2) 1 2 3 l -1 l ⇐ D l (l ≥ 4) 1 2 3 l -2 l -1 l E6 1 2 3 5 6 4 E7 1 2 3 4 6 7 5 E8 1 2 3 4 5 7 8 6 F4 1 2 3 4 ⇒ G2 1 2 ⇛ 4 CHAPTER 1.
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The list of all connected Dynkin diagrams corresponding to generalized Cartan matrices of affine 1.1. GENERALIZED CARTAN MATRIX 5 type is given below. We use the index set I = {0, . . . , l} and standard notations as in [START_REF] Victor | Infinite-dimensional Lie algebras[END_REF].

A (1) 1 0 1 ⇐⇒ A (1) l (l ≥ 2) 1 2 l -1 l 0 B (1) l (l ≥ 3) 1 2 3 l -1 l ⇒ 0 C (1) l (l ≥ 2) 0 1 2 l -1 l ⇐ ⇒ D (1) l (l ≥ 4) 1 2 3 l -2 l -1 0 l G (1) 2 0 1 2 ⇛ F (1) 4 1 2 3 4 2 ⇒ E (1) 6 1 2 3 5 6 4 0 E (1) 7 1 2 3 4 6 7 0 5 E (1) 8 0 1 2 3 4 5 7 8 6 A (2) 2 0 1 A (2) 2l (l ≥ 2) 0 1 2 l -1 l ⇒ ⇒ A (2) 2l-1 (l ≥ 3) 1 2 3 l -1 l ⇐ 0 D (2) l+1 (l ≥ 2) 0 1 2 l -1 l ⇒ ⇐ E (2) 6 0 1 2 3 4 ⇐ D (3) 4 0 1 2 ⇚ 6 CHAPTER 1.
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Realization of a complex square matrix

A realization of a generalized Cartan matrix A is a triple (h, Π, Π ∨ ) such that 1. h is a C-vector space of finite dimension, 2. Π ∨ = {h 1 , . . . , h n } is a linearly independent subset of h, 3. Π = {α 1 , . . . , α n } is a linearly independent subset of h * , 4. α i (h j ) = a ji for all i, j ∈ I.

Let (h ′ , Π ′ , (Π ′ ) ∨ ) be another realization of A with (Π ′ ) ∨ = {h ′ 1 , . . . , h ′ n } ⊂ h ′ and Π = {α ′ 1 , . . . , α ′ n } ⊂ (h ′ ) * such that α ′ i (h ′ j ) = a ji . We say that (h, Π, Π ∨ ) and (h ′ , Π ′ , (Π ′ ) ∨ ) are isomorphic if there is an isomorphism φ : h → h ′ such that φ(h i ) = h ′ i , t φ(α ′ i ) = α i , (1.1)
where t φ : (h ′ ) * → h * is the induced map of φ on dual spaces.

By [START_REF] Carter | Lie algebras of finite and affine type[END_REF], we have

dim(h) ≥ 2n -rank(A). (1.2)
In the case the equality happens, we say that (h, Π, Π ∨ ) is a minimal realization of A. Moreover, there exists a unique, up to isomorphism, minimal realization of a complex matrix.

Kac-Moody algebras

We define the Kac-Moody algebra g(A) associated with A as follows:

Step 1. Let g(A) be the Lie algebra with Lie bracket [, ] generated by elements e 1 , . . . , e n , f 1 , . . . , f n , h for all h ∈ h, (1.3) satisfying the relations

1. λh 1 + µh 2 = λ h 1 + µ h 2 for all λ, µ ∈ C, h 1 , h 2 ∈ h, 2. [ h 1 , h 2 ] = 0 for all h 1 , h 2 ∈ h, 3. [e i , f i ] -h i = 0 for all i = 1, . . . , n, 4.
[e i , f j ] = 0 for all i = j, 5. [ h, e i ] -α i (h)e i = 0 for all i = 1, . . . , n and h ∈ h,

6.

[ h, f i ] + α i (h)f i = 0 for all i = 1, . . . , n and h ∈ h.

KAC-MOODY ALGEBRAS

Step 2. Let h be the subalgebra of g(A) generated by elements h for h ∈ h. The Lie algebra g(A) contains a unique maximal ideal I with I ∩ h = 0 (Proposition 14.13 in [START_REF] Carter | Lie algebras of finite and affine type[END_REF]). We define the Kac-Moody algebra associated to A by g(A) = g(A)/I.

(1.4)

Let n + be the subalgebra of g(A) generated by elements e 1 , . . . , e n . Let ñ-be the subalgebra of g(A) generated by elements f 1 , . . . , f n . Let ψ be the natural homomorphism g(A) → g(A), x → x + I. We define n + = ψ( n + ) and n -= ψ( n -).

(1.5)

From the fact that the map h → h, h → h is an isomorphism of vector spaces (Corollary 14.7 in [START_REF] Carter | Lie algebras of finite and affine type[END_REF]) and the restriction of ψ on h is an isomorphism onto ψ( h) (Proposition 14.14 in [START_REF] Carter | Lie algebras of finite and affine type[END_REF]), we can identify h with ψ( h). The decompositon of g(A)

g(A) = n -⊕ h ⊕ n + (1.6)
induces the triangular decomposition of g(A)

g(A) = n -⊕ h ⊕ n + . (1.7)
We call h the Cartan subalgebra, n + the positive subalgebra, n -the negative subalgebra of g(A).

Let Q be the subgroup of h * generated by {α 1 , . . . , α n }. Let Q + and Q -be the subsets of Q defined by

Q + = {k 1 α 1 + • • • + k n α n | k 1 , . . . , k n ∈ Z ≥0 }, (1.8 
)

Q -= {k 1 α 1 + • • • + k n α n | k 1 , . . . , k n ∈ Z ≤0 }.
(1.9)

For each α ∈ Q, we define

g α = {x ∈ g(A) | [h, x] = α(h)
x for all h ∈ h}.

(1.10) Proposition 1.4. We have

1. g(A) = α∈Q g α , 2. dim(g α ) is finite for all α ∈ Q, 3. g 0 = h, 4. If α = 0, then g α = 0 unless α ∈ Q + or α ∈ Q -, 5. [g α , g β ] ⊂ g α+β for all α, β ∈ Q.
We call an element α ∈ h * a root if α = 0 and g α = 0. The set of all roots of g(A) is denoted by Φ and call it the root system. The set Q is called the root lattice of g(A). Every root belongs to either Q + or Q -. The roots in Q + are called positive roots. The roots in Q -are called negative roots. When α is a root, we call g α the root space of α, and dim(g α ) the multiplicity of α. Proposition 1.5. We have

dim(g ±kαi ) = 1 if k = 1, 0 if k > 1.
(1.11)

We call α 1 , . . . , α n the simple roots of g(A) and h 1 , . . . , h n the simple coroots of g(A).

Symmetrizable Kac-Moody algebras

In this section, assuming that A is symmetrizable, we define the standard invariant form, the Weyl group and the representations of the Kac-Moody algebra g(A). Finally, we describe those objects in the particular case when A is of affine type.

Standard invariant form

Suppose that A = DB for some non-singular diagonal matrix D = diag(d 1 , . . . , d n ) and symmetric matrix B. Let (h, Π, Π ∨ ) be a minimal realization of A.

For α = k 1 α 1 + • • • + k n α n ∈ Q, we define the height of α by ht(α) = k 1 + • • • + k n .
(1.12)

For each i ∈ Z, set

g i = α∈Q,ht(α)=i g α . (1.13)
We have

g(A) = i∈Z g i . (1.14)
From the fact that [g α , g β ] ⊂ g α+β , we have [g i , g j ] ⊂ g i+j . Hence, g(A) can be considered as a Z-graded Lie algebra. For each r ∈ Z ≥0 , we define

g(r) = -r≤i≤r g i . (1.15)
Observe that g(r) is finite dimensional but not necessarily a Lie algebra. Moreover,

h = g(0) ⊂ g(1) ⊂ • • • ⊂ r≥0 g(r) = g(A).
(1.16)

We define the standard invariant form on g(A) by induction as follows (as in the proof of Theorem 16.2 in [START_REF] Carter | Lie algebras of finite and affine type[END_REF]):

A. We define a bilinear form on h. Namely, let h ′ be the subspace of h generated by the elements h 1 , . . . , h n and let h ′′ be a complementary subspace of h ′ in h. We define a bilinear form (|) on h by:

1. (h i |h j ) = d i d j B ij for all i, j ∈ I, 2. (h i |h ′′ ) = (h ′′ |h i ) = d i α i (h ′′ ) for all h ′′ ∈ h ′′ , 3. (h ′′ 1 |h ′′ 2 ) = 0 for all h ′′ 1 , h ′′ 2 ∈ h ′′ .
We can prove that the bilinear form (|) we have constructed on h is symmetric, non-degenerate (Proposition 16.1 in [START_REF] Carter | Lie algebras of finite and affine type[END_REF]) and invariant, i.e.,

([x, y]|z) = (x|[y, z])

(1.17) for all x, y, z ∈ h. B. We first extend the bilinear form (|) on

g(1) = n i=1 Cf i ⊕ h ⊕ n i=1 Ce i (1.18)
by setting more conditions:

1. (g i |g j ) = 0 unless i + j = 0.

(e

i |f j ) = (f j |e i ) = d i δ i,j .
This form is bilinear, symmetric, invariant.

C. Now, we consider the case r ≥ 2. Suppose that have extended the bilinear form to g(r -1), we then extend it to g(r) by setting more conditions:

1. (g i |g j ) = 0 unless i + j = 0, |i|, |j| ≤ r.

2. For x ∈ g r , y ∈ g -r , we can always write

y = j [c j , d j ] (1.19)
for some c j ∈ g -uj , d j ∈ g -vj with u j , v j > 0, u j + v j = r. From the fact that [x, c j ], d j are all in g(r -1) and the sum j ([x, c j ]|d j ) does not depend on the way to express y as in the formula (1.19) (see [START_REF] Carter | Lie algebras of finite and affine type[END_REF]), we define

(x|y) = j ([x, c j ]|d j ) (1.20)
for all x ∈ g r , y ∈ g -r .

We can check that the bilinear form (|) we have extended to g(r) is bilinear, symmetric, nondegenerate and invariant, i.e.,

([x, y]|z) = (x|[y, z]) (1.21)
for all x, y, z ∈ g(r).

Finally, the bilinear form (|) is extended to g(A).

The Weyl group

For i = 1, . . . , n, we define the map s i : h → h by

s i (h) = h -α i (h)h i (1.22)
for all h ∈ h.

Proposition 1.6. We have s 2 i = 1, s i (h i ) = -h i . We call the maps s i : h → h the fundamental reflections. The group W of non-singular linear transformations of h generated by s 1 , . . . , s n is called the Weyl group of g(A).

Let (|) be the standard invariant form on g(A).

Proposition 1.7. We have (h|h ′ ) = (w(h)|w(h ′ )) for all h, h ′ ∈ h and w ∈ W .

We can define the action of the Weyl group on h * by

(w(λ))(h) = λ(w -1 (h)) (1.23)
for all w ∈ W, λ ∈ h * , h ∈ h. Then for any λ ∈ h * , we have

s i (λ) = λ -λ(h i )α i . (1.24)
Moreover, the Weyl group acts on the root system Φ of g(A). And the multiplicity of a root is invariant under the action.
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Proposition 1.8. If α ∈ Φ, then w(α) ∈ Φ. Moreover, dim(g α ) = dim(g w(α) ).

Consider the decomposition

g(A) = h ⊕ α∈Φ g α . (1.25)
We say that a root α ∈ Φ is real if there exists w ∈ W and α i ∈ Π such that α = w(α i ), and α ∈ Φ is imaginary otherwise.

Theorem 1.9. Let A be a symmetrizable indecomposable generalized Cartan matrix. Then 1. If A is of finite type, then g(A) has no imaginary root.

2. If A is of affine type, then there exists a unique vector a = t (a 1 , . . . , a n ) of relatively prime integers such that a i > 0, Aa = t (0, . . . , 0).

Set δ = a 1 α 1 + • • • + a n α n .
Then the imaginary roots of g(A) have form kδ, where k ∈ Z \ {0}.

In the case A is of affine type, we call δ the basic imaginary root of g(A).

Representations of symmetrizable Kac-Moody algebras

We define an order in h * by

λ ≥ µ if and only if λ -µ ∈ Q + . (1.26)
The category O is defined as follows:

1. The objects in the category O are g(A)-modules V satisfying the conditions:

• V = λ∈h *
V λ where

V λ = {v ∈ V | hv = λ(h)v for all h ∈ h}.
(1.27)

• dim(V λ ) is finite for each λ ∈ h * .
• There exists a finite set λ 1 , . . . , λ s ∈ h * such that if V λ = 0, then λ ≤ λ i for some i ∈ {1, . . . , s} 2. The morphisms in the category O are the homomorphisms of g(A)-modules.

For each V ∈ O, we define the character ch(V ) as a function from h * to Z by

ch(V )(λ) = dim(V λ ).
(1.28)

For each λ ∈ h * , we define the function e λ : h * → Z by e λ (µ) = δ λµ .

(1.29)

Then we have ch(V ) = λ∈h * dim(V λ )e λ .
(1.30) Lemma 1.10. We have

1. If V ∈ O and U is a submodule of V , then U ∈ O and V /U ∈ O, 1.4. SYMMETRIZABLE KAC-MOODY ALGEBRAS 11 2. If V 1 , V 2 ∈ O, then V 1 ⊕ V 2 ∈ O and V 1 ⊗ V 2 ∈ O.
For each λ ∈ h * , we define the Verma module M (λ) with highest weight λ by

M (λ) = U(g(A))/K λ , (1.31)
where U(g(A)) is the universal enveloping algebra of g(A) and

K λ = U(g(A))n + + h∈h U(g(A))(h -λ(h)) (1.32)
for all h ∈ h.

The Verma module M (λ) has a unique maximal submodule J(λ). We define 

L(λ) = M (λ)/J(λ). ( 1 
A g(A)-module V is called integrable if V = λ∈h * V λ (1.34)
and e i : V → V , f i : V → V are locally nilpotent for all i = 1, . . . , n.

Proposition 1.12. Let V be an integrable g(A)-module. Then

dim(V λ ) = dim(V w(λ) ) (1.35) for each λ ∈ h * , w ∈ W .
We define the set of all dominant integral weights (1.37)

P + = {λ ∈ h * | λ(h i ) ∈ Z ≥0 for all i = 1, . . . ,

Contravariant Hermitian forms on Verma modules

Let e 1 , . . . , e n , f 1 , . . . , f n , h 1 , . . . , h n , d be the Chevalley generators of g. Let ω 0 be the C-antilinear anti-involution on g defined by

ω 0 (e i ) = f i , ω 0 (f i ) = e i , ω 0 (h i ) = h i , ω 0 (d) = d. (1.38)
Here anti-involution means we have ω 0 ([x, y]) = [ω 0 (y), ω 0 (x)] for all x, y ∈ g and ω 2 0 = Id. The map ω 0 extends uniquely to an anti-linear anti-involution on U(g), which we still denote by ω 0 . The triangular decomposition g = n -⊕ h ⊕ n + with the Poincaré-Birkhoff-Witt theorem imply that

U(g) = U(h) ⊕ (n -U(g) + U(g)n + ). (1.39)
This splitting is stable by ω 0 since ω 0 pointwise fixes U(h) and it interchanges n -U(g) with U(g)n + . In the decomposition (1.39), U(h) is the symmetric algebra S(h) since h is abelian. Let π : U(g) → S(h) be the projection to the first component of the decomposition. It is a S(h)bimodule map, i.e, π(xgy) = xπ(g)y for all g ∈ U(g), x, y ∈ S(h). Let , : U(g) × U(g) → S(h) be the map defined by x, y = π(ω 0 (x)y).

(1.40)

Proposition 1.15. We have 1. , is linear in the second variable, anti-linear in the first variable.

2. gx, y = x, ω 0 (g)y for all x, y, g ∈ U(g).

x, y

= 0 if x ∈ U(g)n + or y ∈ U(g)n + .
Let M be a g-module, a Hermitian contravariant form on M with respect to the anti-involution ω 0 is a map

H : M × M → C satisfying conditions below 1. H(ax + y, z) = aH(x, z) + H(y, z) for all x, y, z ∈ M , a ∈ C, 2. H(z, ax + y) = aH(z, x) + H(z, y) for all x, y, z ∈ M , a ∈ C, 3. H(gx, y) = H(x, ω 0 (g)y) for all x, y ∈ M , g ∈ g.
For each Λ ∈ h * , let ev Λ : S(h) → C be the homomorphism defined by ev Λ (x 1 . . . x r ) = Λ(x 1 ) . . . Λ(x r ) for all x 1 , . . . , x r ∈ h.

(1.41)

The kernel of ev Λ is generated by all elements h -Λ(h)

with h ∈ h * . Set , Λ = ev Λ • , . Let h * R be the dual space of Rd ⊕ n i=1
Rh i . With the help of Proposition 1.15, we obtain the following statement.

Proposition 1.16. We have x, y Λ = 0 for all x or y in U(g

)n + + h∈h U(g)(h -Λ(h)) if and only if Λ ∈ h * R .
By the Proposition 1.16, with the assumption that Λ ∈ h * R , the map , Λ induces a Hermitian form on the Verma module M (Λ), which we still denote by , Λ .

Proposition 1.17.

Let Λ ∈ h * R , we have 1. , Λ is a Hermitian contravariant form on M (Λ). 1.4. SYMMETRIZABLE KAC-MOODY ALGEBRAS 13 2. x, y Λ = 0 for all x ∈ M (Λ) Λ-α , y ∈ M (Λ) Λ-β with α = β in Q + .

The radical of , Λ is the maximal submodule J(Λ) of M (Λ).

A g-module M is said to be unitarizable if it has a positive definite Hermitian form which is contravariant with respect to the anti-involution ω 0 . Let Λ ∈ h * R . By 3. in the Propsition 1.17, , Λ induces such a Hermitian contravariant form on L(Λ). The result below is mentioned in Theorem 11.7 in [START_REF] Victor | Infinite-dimensional Lie algebras[END_REF].

Theorem 1.18. Let Λ ∈ h * R . The g-module L(Λ) is unitarizable if and only if Λ ∈ P + .
Remark 1.19.

1. It can be proved that , Λ is the only candidate to be a Hermitian contravariant form with respect to ω 0 .

2. Assume that g(A) is finite dimensional and G is the simply connected group associated to

g(A) and L(Λ) is finite dimensional of dimension d. Then G is not compact whereas U d (C)
is. So we can not hope an invariant positive definite Hermitian form on L(Λ). The role of ω 0 is here to solve this paradox since G ω0 is a compact form of G.

Affine Kac-Moody algebras

Assume A is of affine type and number the index set as I = {0, . . . , l}. There exists a unique pair of vectors a = t (a 0 , . . . , a l ) and c = (c 0 , . . . , c l ) of relatively prime integers such that a i , c i > 0 and Aa = t (0, . . . , 0), cA = (0, . . . , 0).

Proposition 1.20. We have

1. c 0 = 1, 2. a 0 = 2 if A is of type A (2)
2l , 1 otherwise.

The Coxeter number h and dual Coxeter number h

∨ of A are defined by h = i∈I a i , h ∨ = i∈I c i . (1.42) Recall that (h, Π, Π ∨ ) is a minimal realization of A then dim(h) = l + 2. Fix an element d ∈ h such that α 0 (d) = 1, α i (d) = 0 for all i > 0. (1.43)
We call d a scaling element. The 0-th fundamental weight Λ 0 is defined by

Λ 0 (h j ) = δ 0j , Λ 0 (d) = 0 for all i ∈ I. (1.44) Proposition 1.21. We have 1. {α 0 , . . . , α l , Λ 0 } is a basis of h * , 2. {h 0 , . . . , h l , d} is a basis of h.
Recall that A is symmetrizable. More precisely, we have the following proposition.

CHAPTER 1. KAC-MOODY ALGEBRAS AND THEIR REPRESENTATIONS

Proposition 1.22. We have A = DB, where D = diag(d 0 , . . . , d l ) with d i = a i /c i and B is a symmetric matrix.

Let (|) be the standard invariant form on g(A) constructed as in Section 1.4.1. We have

1. (h i |h j ) = d i d j B ij = aj cj a ij for all i, j ∈ I, 2. (h i |d) = a 0 δ i0 for all i ∈ I, 3. (d|d) = 0.

There is a bijection h

* → h defined by λ → h ′ λ , (1.45)
where

λ(h) = (h ′ λ |h) for all h ∈ h. Set K = l i=0 c i h i , δ = l i=0 a i α i . (1.46) Lemma 1.23. Under the bijection h * → h, λ → h ′ λ , we have 1. α i → ci ai h i , 2. Λ 0 → 1 a0 d, 3. δ → K.
From the fact that the centre of g(A) is the 1-dimensional vector space spanned by K, we call K the canonical central element of g(A). The element δ is called the basic imaginary root as in Section 1.4.2.

The bijection h * → h, λ → h ′ λ allows us to consider (|) as a standard invariant form on h * by 1.

(α i |α j ) = ci ai a ji for all i, j ∈ I, 2. (α i |Λ 0 ) = 1 a0 δ i0 for all i ∈ I, 3. (Λ 0 |Λ 0 ) = 0.
The Weyl group W of g(A) is generated by the fundamental reflections s 0 , . . . , s l , where s i is given by

s i (λ) = λ -λ(h i )α i (1.47) for all λ ∈ h * . For each α ∈ h * , we define t α : h * → h * by t α (λ) = λ + λ(K)α -λ + λ(K)α 2 α δ.
(1.48) Proposition 1.24. We have

1. t α t β = t α+β for all α, β ∈ h * . 1.4. SYMMETRIZABLE KAC-MOODY ALGEBRAS 15 2. wt α w -1 = t w(α) for all α ∈ h * , w ∈ W .
For each i = 0, . . . , l, set

α ∨ i = a i c i α i . (1.49) Suppose that A is of type X (r)
N . We denote the type of t A by

X (r ∨ ) N ∨ . Let M be a sublattice of Q defined by M =        l i=1 Zα i if r ∨ = 1, l i=1 Zα ∨ i if r ∨ > 1.
(1.50)

Set t M = {t α | α ∈ M }.
Let W be the subgroup of W generated by {s 1 , . . . , s l }.

Theorem 1.25. We have

W ∼ = t M ⋊ W . (1.51)
For each i ∈ I, we define the i-th fundamental weight Λ i by

Λ i (h j ) = δ ij for all j ∈ I, Λ i (d) = 0. (1.52)
We remark that the 0-th fundamental weight Λ 0 is already defined in (1.44). Since

δ(h i ) = 0 for all i ∈ I, δ(d) = 1, (1.53) then {Λ 0 , . . . , Λ l , δ} is a basis of h * .
The set of dominant integral weights is given by

P + = i∈I Z ≥0 Λ i + Cδ.
(1.54)

For each Λ ∈ P + , let L(Λ) be the integrable irreducible highest weight g(A)-module with highest weight Λ. Let P (Λ) be the set of all weights of L(Λ), i.e.,

P (Λ) = {µ ∈ h * | L(Λ) µ = 0}.
(1.55)

Theorem 1.26. Let Λ ∈ P + . We have µ ∈ P (Λ) if and only if there exists w ∈ W such that w(µ) ∈ P + and w(µ) ≤ λ.

Corollary 1.27. If µ ∈ P (Λ), then µ -δ ∈ P (Λ).

The corollary implies that if µ ∈ P (Λ), then µ -nδ ∈ P (Λ) for any n ∈ Z ≥0 . Since there exist finitely many positive integers n such that µ + nδ ≤ λ, we say that µ is maximal weight of L(Λ) if and only if µ ∈ P (Λ) but µ + δ ∈ P (Λ). We denote the set of all maximal weights of L(Λ) by max(Λ). In summary,

P (Λ) = W ((Λ -Q + ) ∩ P + ) = max(Λ) -Z ≥0 δ.
(1.56)

Since δ is W -invariant, we have Proposition 1.28. Let Λ ∈ P + . The set max(Λ) is invariant under the action of the Weyl group. In particular, max(Λ) = W (max(Λ) ∩ P + ).

(1.57)
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Set e -δ = q. For each λ ∈ h * , we define the string function c Λ λ ∈ C((q)) associated to λ by

c Λ λ = n∈Z dim(L(Λ) λ-nδ )q n . (1.58)
By Proposition 1.12, for all w ∈ W , we have

c Λ λ = c Λ w(λ) . (1.59) Denote by ch Λ the character ch(L(Λ)). Choose ρ = i∈I Λ i , we see that ρ(h i ) = 1 for all i ∈ I.
We have formulas for character of L(Λ) as follows

ch Λ = λ∈max(Λ) c Λ λ e λ .
(1.60) ρ) .

ch Λ = w∈W ǫ(w)e w(λ+ρ) w∈W ǫ(w)e w(
(1.61)

Chapter 2

Branching problem on winding subalgebras of affine Kac-Moody algebras A

(1)

1 and A

(2) 2

The chapter is a reproduction of our first preprint [START_REF] Duc | Branching problem on winding subalgebras of affine Kac-Moody algebras A (1) 1 and A (2) 2[END_REF].

Abstract

We consider an affine Kac-Moody algebra g. Since g is infinite dimensional, it could occur that a strict subalgebra is isomorphic to g. It is the situation for the winding subalgebra g[u] depending on a positive integer u. We are interested in the branching problem for such a pair g[u] ⊂ g and integrable highest weights g-modules. Fix such a g-module L(Λ) depending on a dominant integral weight Λ. Under the action of g[u], L(Λ) is still integrable with finite multiplicities. Hence, it decomposes in direct sum of g[u]-modules L(λ) as L(Λ) = λ∈ Ṗ+ L(λ) mult Λ,g[u] (λ) . Here P + (resp. Ṗ+ ) denote the set of dominant weights and L(Λ) (resp. L(λ)) the irreducible integral g-module (resp. g[u]-module) associated to Λ ∈ P + (resp. λ ∈ Ṗ+ ). Consider the support of the decomposition Γ(g,

g[u]) = {(Λ, λ) ∈ P + × Ṗ+ | mult Λ,g[u] (λ) = 0}.
Our first result is qualitative and extends to our context a well know Brion-Knop's theorem for finite dimensional reductive algebras: Γ(g, g[u]) is a semigroup. Note that by lack of geometry, our proof is not a straightforward generalization to known proofs. Our second result is a partial description of Γ(g, g[u]). When g is of type 

A (1) 1 or A (2) 2 ,

Introduction

One of the most important question in representation theory is how an irreducible module of a Lie algebra g can be decomposed when we consider it as a representation of some given Lie subalgebra ġ. Assume first that g and ġ are finite dimensional and semi-simple. Then the finite dimensional irreducible g-modules (resp. ġ-modules) are parametrized by the semigroup P + (resp. Ṗ+ ) of dominant integral weights. Given Λ ∈ P + , under the action of ġ, the irreducible g-module L(Λ) of highest weight Λ decomposes as

L(Λ) = λ∈ Ṗ+ L(λ) mult Λ, ġ (λ) , (2.1)
where mult Λ, ġ(λ) is the multiplicity of L(λ) in L(Λ). Understanding the number mult Λ, ġ(λ) is referred as the branching problem. For example, for ġ diagonally embedded in g = ġ × ġ, the coefficients mult Λ, ġ(λ) are the multiplicities of the tensor product decomposition of two irreducible representations of ġ. If ġ = gl n (C), then Ṗ+ may be identified with the set of nonincreasing sequences of n integers and the coefficients are the Littlewood-Richardson coefficients.

If ġ is a Cartan subalgebra of g, the multiplicities mult Λ, ġ(λ) are the Kostka coefficients. The support

Γ(g, ġ) = {(Λ, λ) ∈ P + × Ṗ+ : mult Λ, ġ(λ) = 0}
of these multiplicities is also a fascinating object. Actually, it is a finitely generated semigroup that generates a polyhedral convex cone (see [START_REF] Brion | Restriction de représentations et projections d'orbites coadjointes (d'après Belkale[END_REF]). For ġ diagonally embedded in g = ġ × ġ this cone is the famous Horn cone. Its description has a very long and rich story (see [START_REF] Brion | La conjecture de Horn: quelques développements récents[END_REF], [START_REF] Brion | Restriction de représentations et projections d'orbites coadjointes (d'après Belkale[END_REF], [START_REF] Kumar | A survey of the additive eigenvalue problem[END_REF], [START_REF] Belkale | Eigenvalue problem and a new product in cohomology of flag varieties[END_REF], [START_REF] Ressayre | Geometric invariant theory and the generalized eigenvalue problem[END_REF]).

In this chapter, we are interested in similar questions for affine Kac-Moody algebras. Assume now that g is an affine Kac-Moody algebra and consider the integrable highest weight g-module L(Λ) as module over some subalgebra ġ. In the following three cases, we have decompositions similar to (2.1) with finite multiplicities:

1. ġ = h is a Cartan subalgebra of g, 2. ġ is diagonally embedded in g = ġ × ġ,
3. ġ is a winding subalgebra of g introduced by V. G. Kac and M. Wakimoto in [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF].

Recently, several authors studied Γ(g, ġ) in the case of the tensor product decomposition of affine (or symmetrizable) Kac-Moody Lie algebras (see [START_REF] Ressayre | On the tensor semigroup of affine Kac-Moody Lie algebras[END_REF], [START_REF] Kumar | On the faces of the tensor cone of symmetrizable Kac-Moody Lie algebras[END_REF], [START_REF] Littelmann | A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras[END_REF], [START_REF] Brown | A study of saturated tensor cone for symmetrizable Kac-Moody algebras[END_REF]).

Here, we begin a study of Γ(g, ġ) in the winding case. This case is important and interesting since its relation with the tensor product decomposition (see [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF]) and a solution to Frenkel's conjecture (see [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF], [START_REF] Frenkel | Representations of affine Lie algebras, Hecke modular forms and Korteweg-de Vries type equations[END_REF]). The winding subalgebras g[u] are isomorphic to g but nontrivially embedded in g (the embedding depends on a fixed u, see Section 2.4 or [KW90] for details).

Let P + (resp. Ṗ+ ) be the set of all dominant integral weights of g (resp. g[u]). For Λ ∈ P + (resp. λ ∈ Ṗ+ ), let L(Λ) (resp. L(λ)) be the irreducible highest weight g-module (resp. g[u]-module) with highest weight Λ (resp. λ). By [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF], under the action of g[u], L(Λ) is still integrable and decomposes as

L(Λ) = λ∈ Ṗ+ L(λ) mult Λ,g[u] (λ) .
(2.2)

We define Γ(g, g[u]) to be the support of this decomposition:

Γ(g, g[u]) = {(Λ, λ) ∈ P + × Ṗ+ | mult Λ,g[u] (λ) = 0}. (2.3)
Our first main result is the following theorem.

Theorem 2.1.

The set Γ(g, g[u]) is a sub-semigroup of h * × h * .
Let δ be the basic imaginary root of g. The description of the set

Γ(g, g[u]) is equivalent to describe the sets B(Λ, λ) = {b ∈ C | L(λ + bδ) ⊂ L(Λ)}, for any (Λ, λ) ∈ P + × Ṗ+ . Let P u (Λ) is the set of all λ such that (Λ, λ) ∈ Γ(g, g[u]
). The set B(Λ, λ) is nonempty if and only if λ ∈ P u (Λ) + Cδ. In this case, we define b Λ,λ,u to be number b ∈ B(Λ, λ) such that b + n ∈ B(Λ, λ) for any n ∈ Z >0 . We also define a number h

[u]
Λ,λ as in (2.118). We describe the set B(Λ, λ) as in the following theorem.
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Theorem 2.2. Let g be an affine Kac-Moody algebra of type X (r)

N . Fix u ∈ Z >1 such that u = 1( mod r). Let Λ ∈ P + and λ ∈ P u (Λ) + Cδ. We have 1. b Λ,λ,u -(Z ≥0 \ {1}) ⊂ B(Λ, λ) ⊂ b Λ,λ,u -Z ≥0 .

If in addition h

[u] Λ,λ = 0 then B(Λ, λ) = b Λ,λ,u -Z ≥0 . Since h is contained in g[u], if (Λ, λ) ∈ Γ(g, g[u]) then λ is a weight of L(Λ). Set L(Λ) λ = {v ∈ L(Λ) | hv = λ(h)v for all h ∈ h}.
(2.4)

Set Γ(g, h) = {(Λ, λ) ∈ P + × h * | L(Λ) λ = {0}}. (2.5)
Let us recall how Γ(g, h) can be described. Let P (Λ) be the set of weights of L(Λ). Fix λ ∈ P (Λ) + Cδ, then the set of b ∈ C such that λ + bδ is a weight of L(Λ) is of the form b Λ,λ -Z ≥0 for some well defined b Λ,λ . In particular, describing Γ(g, h) is equivalent to compute the numbers b Λ,λ . For g of type A

(1)

1 and A (2)
2 , we determine this number in Proposition 2.32 and Proposition 2.37, respectively. Let us introduce more notation to describe our results on Γ(g, g[u]) for these two Lie algebras. Let Λ 0 be the 0-th fundamental weight and let α be the simple root α 1 . Up to tensoring by some one dimensional g-module any integrable highest weight g-module is L(Λ) with Λ = mΛ 0 + jα 2 for some j, m ∈ Z ≥0 and j ≤ m (for the case A

(1)

1 ) or j ≤ m 2 (for the case A (2)
2 ).

Theorem 2.3. Let g be the affine Kac-Moody algebra of type

A (1) 1 . Let Λ = mΛ 0 + jα 2 ∈ P + and let λ = m ′ Λ 0 + j ′ α 2 ∈ Ṗ+ . 1. If there exists b ∈ C such that (Λ, λ + bδ) belongs to Γ(g, g[u]) then j ′ -j ∈ 2Z and m ′ = m. 2. If moreover a. j ≤ j ′ ≤ um -j and u is even; or b. j ≤ j ′ ≤ um -(m -j) and u is odd, then b Λ,λ,u = b Λ,λ .
For Λ like in Theorem 2.3, we denote by A u (Λ) the set of λ such that the theorem applies. Namely

A u (Λ) = mΛ 0 + j ′ α 2 j ′ ∈ [j, um -j * ] ∩ (j + 2Z) (2.6)
where j * = j if u is even and j * = m -j if u is odd.

Theorem 2.4. Let g be the affine Kac-Moody algebra of type A

(2)

2 . Let λ = mΛ 0 + jα 2 ∈ P + and let λ = m ′ Λ 0 + j ′ α 2 ∈ Ṗ+ . 1. If there exists b ∈ C such that (Λ, λ + bδ) belongs to Γ(g, g[u]) then m ′ = m. 2. If moreover a. j ≤ j ′ ; and b. j ′ ∈ m(u-1) 2 -j + (2Z ≥0 ∪ Z <0 ), 2.2. PRELIMINARIES 21 then b Λ,λ,u = b Λ,λ .
For Λ like in Theorem 2.4, we denote by A u (Λ) the set of λ such that the theorem applies. Namely

A u (Λ) = mΛ 0 + j ′ α 2 j ′ ∈ j, um 2 ∩ Z ∩ m(u -1) 2 -j + (2Z ≥0 ∪ Z <0 ) . (2.7)
The satured set of the support Γ(g, g[u]) is defined by

Γ(g, g[u]) = {(Λ, λ) ∈ P + × Ṗ+ | λ ∈ Λ + Q, L(N λ) ⊂ L(N Λ) for some integer N > 1}. (2.8)
The following result is a corollary of Theorems 2.2, 2.3, 2.4.

Corollary 2.5. Let g be an affine Kac-Moody algebra of type A

(1) 1

or

A (2) 2 . Fix u ∈ Z >1 (u is an odd number in the case A (2) 2 ). Let Λ ∈ P + and let λ ∈ A u (Λ) ∩ (Λ + Q). For all b ∈ C, we have 1. (Λ, λ + bδ) ∈ Γ(g, g[u]) ⇔ d(Λ, λ + bδ) ∈ Γ(g, g[u]) for all d ∈ Z ≥2 .

If in addition h

[u] Λ,λ = 0 then (Λ, λ + bδ) ∈ Γ(g, g[u]) ⇔ (Λ, λ + bδ) ∈ Γ(g, g[u]
). This chapter is organized as follows. In Section 2.2, we prepare fundamental knowledge of affine Kac-Moody algebras. In Section 2.3, we present results around branching on Cartan subalgebras. We prove that the set Γ(g, h) is a semigroup. In Section 2.4, we introduce the notion of winding subalgebras and study the branching problem for general affine Kac-Moody algebras. The main results in this section are Theorems 2.1, 2.2. In Section 2.5, we present the results in the cases A

(1) 1 and A

(2) 2 . The main results in this section are Theorems 2.3, 2.4, and Corollary 2.5.

Preliminaries

In this section, we recall basic results about affine Kac-Moody algebras in [START_REF] Carter | Lie algebras of finite and affine type[END_REF], [START_REF] Victor | Infinite-dimensional Lie algebras[END_REF], [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF].

Generalized Cartan matrix of affine type

Set I = {0, . . . , l}. Let A = (a ij ) i,j∈I be a generalized Cartan matrix of affine type, i.e., A is indecomposable of corank 1, a ii = 2, -a ij ∈ Z ≥0 for i = j, a ij = 0 iff a ji = 0 and there exists a column vector u with positive integer entries such that Au = 0.

Let a = t (a 0 , . . . , a l ) and c = (c 0 , . . . , c l ) be the vectors of relatively prime integers such that a i , c i > 0 and Aa = t (0, . . . , 0), cA = (0, . . . , 0). The Coxeter number and dual Coxeter number of A are defined by h = i∈I a i and h ∨ = i∈I c i .

Realization of a generalized Cartan matrix

Let (h, Π, Π ∨ ) be a realization of A where h is a C-vector space of dimension l + 2, Π ∨ = {h 0 , . . . , h l } is a linearly independent subset in h and Π = {α 0 , . . . , α l } is a linearly independent subset in h * (the dual space of h) such that α i (h j ) = a ji .
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(2) 2 Let K = i∈I c i h i be the canonical central element and δ = i∈I a i α i be the basic imaginary root.

Let d ∈ h be the scaling element, i.e., α 0 (d) = 1, α i (d) = 0 for i > 0. Let Λ i (i ∈ I) be the i-th fundamental weights, i.e., Λ i (h j ) = δ ij , Λ i (d) = 0 for all j ∈ I. Set ρ = i∈I Λ i . Then {α 0 , . . . , α l , Λ 0 } is a basis of h * and {h 0 , . . . , h l , d} is a basis of h.

Affine Kac-Moody algebras

Let g = g(A) be the affine Kac-Moody algebra corresponding to the matrix A. We call h a Cartan subalgebra of g and Π, Π ∨ the set of simple roots, simple coroots of g, respectively. We have a triangular decomposition

g = n -⊕ h ⊕ n + , (2.9)
where n -is the negative subalgebra of g and n + is the positive subalgebra of g.

An affine Kac-Moody algebra has type X (r)

N with r = 1, 2, 3 (here we use the standard notation in [START_REF] Victor | Infinite-dimensional Lie algebras[END_REF] to label the type of affine Kac-Moody algebras). In particular, the untwisted affine Kac It is known that the matrix t A is also a generalized Cartan matrix of affine type. We denote

X (r ∨ )
N ∨ the type of the algebra g( t A).

Weyl group

Let Q = ZΠ be the root lattice and let Q + = Z ≥0 Π. We define an order on h * by λ

≥ µ if λ -µ ∈ Q + . For each i ∈ I, set α ∨ i = ai ci α i . We define a sublattice M of Q by M =        l i=1 Zα i if r ∨ = 1, l i=1 Zα ∨ i if r ∨ > 1.
(2.12)

Let (|) be the standard invariant form on h * which is defined by

(α i |α j ) = c i a i a ij , (α i |Λ 0 ) = 1 a 0 α i (d), (Λ 0 |Λ 0 ) = 0 ∀i, j ∈ I. (2.13) For each α ∈ h * , we define t α ∈ GL(h * ) by t α (λ) = λ + λ(K)α -λ + λ(K)α 2 α δ. (2.14)
Let W be the Weyl group of g, i.e., the group generated by fundamental reflections {s 0 , . . . , s l }, where

s i ∈ GL(h * ) is defined by s i (λ) = λ -λ(h i )α i . We have W ∼ = t M ⋊ W , (2.15)
where t M = {t α | α ∈ M } and W is the subgroup of W generated by {s 1 , . . . , s l }.

Realization of affine Kac-Moody algebras

Let g be a simple Lie algebra with Lie bracket [, ] 0 , and normalized invariant form (|) 0 (Here we use the notion of normalized invariant form for a simple Lie algebra in the book of Carter [START_REF] Carter | Lie algebras of finite and affine type[END_REF]). We extend g to a new Lie algebra

ĝ = C[t, t -1 ] ⊗ g ⊕ CK ⊕ Cd (2.16) with new Lie bracket [t i ⊗ x + λK + µd, t j ⊗ y + λ ′ K + µ ′ d] = t i+j ⊗ [x, y] 0 + µjt j ⊗ y -µ ′ it i ⊗ x + iδ i+j,0 (x|y) 0 K. (2.17) for all i, j ∈ Z, x, y ∈ g and λ, λ ′ , µ, µ ′ ∈ C.
Let h be a Cartan subalgebra of g and let Φ be the root system of g. For each α ∈ Φ, let

g α = x ∈ g such that [h, x] 0 = α(h)x for all h ∈ h . (2.18)
Let Π = {α 1 , . . . , α l } be the set of simple roots and Π ∨ = {h 1 , . . . , h l } be the set of simple coroots of g. It is known that the dimension of g α is one for each α ∈ Φ. For each i ∈ {1, . . . , l}, let e i be a basis vector of g αi and f i be a basis vector of g -αi . Then g is a Lie algebra with generators {h 1 , . . . , h l , e 1 , . . . , e l , f 1 , . . . , f l }.

Suppose that g is associated to a generalized Cartan matrix A of finite type. Each σ ∈ S l such that a ij = a σ(i)σ(j) for all i, j ∈ {1, . . . , l} can be considered as an automorphism of g by sending

e i → e σ(i) , f i → f σ(i) , h i → h σ(i) .
(2.19)

Let m be the order of σ and set η = e 2iπ/m . We define the automorphism τ of ĝ by

τ (t j ⊗ x) = η -j t j ⊗ σ(x), τ (K) = K, τ (d) = d (2.20)
for all j ∈ Z, x ∈ g. This map is called a twisted automorphism of ĝ.

Now, let g be an affine Kac-Moody algebra of type X (r)

N . Let g be the simple Lie algebra of type X N . If g is an untwisted affine Kac-Moody algebra, i.e., type X

(1) N , we have g ≃ ĝ.

(2.21)

If g is a twisted affine Kac-Moody algebra, i.e., type X (r)

N with r = 2, 3, then the order of nontrivial σ mentioned above is r. In this case, we have g ≃ ĝ τ .

(2.22)

The simple coroots h 1 , . . . , h l of g have the property

h i ∈ 1 ⊗ h (2.23)
for each i ∈ {1, . . . , l}, where h is the Cartan subalgebra of g. For the details, we refer the reader to the proofs of Theorem 18.5, Theorem 18.9 and Theorem 18.14 in [START_REF] Carter | Lie algebras of finite and affine type[END_REF].
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Dominant integral weights

Let P = i∈I ZΛ i + Cδ (2.24)
be the set of integral weights. For any set S ⊂ h * , we denote by S the subset of all λ ∈ S + Cδ such that λ(d) = 0. We have

P = i∈I ZΛ i .
(2.25)

For each λ ∈ P , the number λ(K) is an integer and we call it the level of λ. For each m ∈ Z, we denote by P m the set of all integral weights of level m. Then we have

P m = i∈I m i Λ i i∈I m i c i = m, m i ∈ Z + Cδ.
(2.26)

Let P + = i∈I Z ≥0 Λ i + Cδ (2.27)
be the set of dominant integral weights. Let P + , P m + be the intersection of P , P m with P + , respectively.

Highest weight representations of affine Kac-Moody algebras

Let g be an affine Kac-Moody algebra. Let O be the category which is defined as follows:

1. The objects in the category O are g-modules V satisfying the conditions:

• V = λ∈h * V λ where V λ = {v ∈ V | hv = λ(h)v for all h ∈ h}. • dim(V λ ) is finite for each λ ∈ h * .
• There exists a finite set λ 1 , . . . , λ s ∈ h * such that if V λ = 0, then λ ≤ λ i for some i ∈ {1, . . . , s} 2. The morphisms in the category O are the homomorphisms of g-modules.

For each Λ ∈ h * , we define the Verma module M (Λ) with highest weight Λ by

M (Λ) = U(g)/K Λ , (2.28)
where U(g) is the universal enveloping algebra of g and

K Λ = U(g)n + + h∈h U(g)(h -λ(h)) (2.29) for all h ∈ h.
The Verma module M (Λ) has a unique maximal submodule J(Λ). We define

L(Λ) = M (Λ)/J(Λ).
(2.30) Proposition 2.6. For each Λ ∈ h * , we have M (Λ) ∈ O. Hence, L(Λ) ∈ O. Moreover, the modules L(Λ) are the only irreducible modules in the category O. 

BRANCHING ON CARTAN SUBALGEBRAS

25 A g-module V is called integrable if V = λ∈h * V λ and e i : V → V , f i : V → V

Branching on Cartan subalgebras

In this section, we recall some facts about branching on Cartan subalgebras of affine Kac-Moody algebras.

Let Λ ∈ P + be a dominant integral weight of g, and let h be Cartan subalgebra of g. Regarding the g-module L(Λ) as an h-module, it can be decomposed into direct sum of weights spaces

L(Λ) = λ∈h * L(Λ) λ , (2.31)
where

L(Λ) λ = {v ∈ L(Λ) | hv = λ(h)v ∀h ∈ h} . (2.32)
Let mult Λ,h (λ) be the dimension of the space L(Λ) λ . Then the decomposition (2.31) is encoded by a formal series ch Λ on h * as follows

ch Λ = λ∈h * mult Λ,h (λ)e λ , (2.33) called the character of L(Λ)
, where e λ (µ) = δ λ,µ for µ ∈ h * . The set of weights of L(Λ) is defined by

P (Λ) = {λ ∈ h * | mult Λ,h (λ) = 0} .
(2.34)

For each λ ∈ h * , we say that λ is a maximal weight of L(Λ) if λ ∈ P (Λ) but λ + nδ ∈ P (Λ) for any n > 0. Let max(Λ) be the set of all maximal weights of L(Λ). We have

max(Λ) = W (max(Λ) ∩ P + ) (2.35) and P (Λ) = W ((Λ -Q + ) ∩ P + ) = max(Λ) -Z ≥0 δ.
(2.36)

For each λ ∈ P (Λ) + Cδ, let b Λ,λ be the complex number such that λ

+ b Λ,λ δ ∈ max(Λ). It is an integer if λ ∈ Λ + Q because b Λ,λ δ ∈ Q. For each b ∈ C, λ + bδ ∈ P (Λ + bδ) if and only if λ ∈ P (Λ). Hence b Λ+b2δ,λ+b1δ = b Λ,λ + b 2 -b 1 (2.37) for any b 1 , b 2 ∈ C. Let Γ(g, h) be the set of all (Λ, λ) ∈ P + × h * such that λ ∈ P (Λ).

About the character ch Λ

We now recall some facts about the character ch Λ for any affine Kac-Moody algebra.

Denote e -δ by q. For each λ ∈ h * , we define the string function

c Λ λ ∈ C((q)) of L(Λ) associated to λ by c Λ λ = n∈Z mult Λ,h (λ -nδ)q n .
(2.38)
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Then for any w ∈ W we have

c Λ λ = c Λ wλ (2.39) and ch Λ = λ∈max(Λ) c Λ λ e λ .
(2.40)

For each w ∈ W , let l(w) be the minimal length of w as a product of fundamental reflections s 0 , . . . , s l . Set ǫ(w) = (-1) l(w) . The character ch Λ can be written in terms of Weyl group, with the Weyl-Kac character formula (see Corollary 19.18 in [START_REF] Carter | Lie algebras of finite and affine type[END_REF]):

ch Λ = w∈W ǫ(w)e w(λ+ρ)
w∈W ǫ(w)e w(ρ) .

(2.41)

Semigroup structure

In this part, we study the set

Γ(g, h) ⊂ h * × h * . Theorem 2.8. The set Γ(g, h) is a sub-semigroup of h * × h * .
Proof. Let (Λ, λ) and (Λ, λ) be elements in the set Γ(g, h). We will show that

(Λ + Λ, λ + λ) is still in this set. Indeed, λ + λ is a weight of L(Λ) ⊗ L(Λ). Hence λ + λ is a weight of L(Λ ′′ ) for some Λ ′′ ∈ ((Λ + Λ) -Q + ) ∩ P + .
By (2.36), we have

P (Λ ′′ ) ⊂ P (Λ + Λ). (2.42) It means λ + λ ∈ P (Λ + Λ) and then Γ(g, h) is a semigroup.
Remark 2.9. We can prove that Γ(g, h) is a semigroup for any symmetrizable Kac-Moody algebra g by the same argument.

Branching on winding subalgebras: the general case

In this section, we study the branching problem on winding subalgebras.

Winding subalgebras of an affine Kac-Moody algebra

In this subsection, we recall the notation of winding subalgebras of an affine Kac-Moody algebra in [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF]. The studying of winding subalgebras is important and interesting because of its relation with the tensor product decomposition (see [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF]) and a solution to Frenkel's conjecture (see [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF], [START_REF] Frenkel | Representations of affine Lie algebras, Hecke modular forms and Korteweg-de Vries type equations[END_REF]).

Let g be an affine Kac-Moody algebra of type

X (r)
N which is defined by (2.21), (2.22). Fix u ∈ Z >1 such that u ≡ 1( mod r). It is easy to check that

t j ⊗ x → t uj ⊗ x, K → uK, d → d u , (2.43)
where j ∈ Z, x ∈ g extend to an injective homomorphism ψ u of Lie algebras and the image of ψ u is stable by τ in the case r > 1. Let g[u] be the subalgebra of g which is defined as follows.

•

If r = 1, set g[u] = ψ u ( ĝ).
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• If r > 1, set g[u] = ψ u ( ĝ) τ .
Then g[u] is a subalgebra of g and it is isomorphic to g. We call g[u] the winding subalgebra of g associated to u.

Formulas for characteristic elements

Set K = ψ u (K) = uK. Let ψu : h → h be the restriction of ψ u to the Cartan subalgebra h of g.

For each i ∈ I, set ḣi = ψu (h i ). Then by (2.23), we see that 

ḣi = h i for all i > 0 and ḣ0 = u -1 c 0 K + h 0 . ( 2 
Λi = Λ i + 1 u -1 c i c 0 Λ 0 (2.47) ρ = I Λi = ρ + 1 u -1 h ∨ c 0 Λ 0 .
(2.48)

The map t ψu induces simple reflections ṡi ∈ Aut(h * ), which are defined by ṡi (λ) = λ -λ( ḣi ) αi .

(2.49)

The Weyl group Ẇ of g[u] is generated by the simple reflections ṡi (i ∈ I) turns out to be

Ẇ ∼ = t uM ⋊ W .
(2.50)

In particular, by (2.15), it is a subgroup of the Weyl group W .

Let Ṗ+ = i∈I Z ≥0 Λi + Cδ (2.51)
be the set of dominant integral weights of g [u]. For each m ∈ Z ≥0 , let Ṗ m + be the set of dominant integral weights of g[u] of level m, i.e.,

Ṗ m + = i∈I m i Λi i∈I m i c i = m, m i ∈ Z ≥0 + Cδ.
(2.52)

Let λ ∈ Ṗ+ , we denote the irreducible integrable g[u]-module of highest weight λ by L(λ). The winding subalgebra g[u] has a triangular decomposition

g[u] = ṅ-⊕ h ⊕ ṅ+ , (2.53)
where ṅ-is the negative subalgebra of g[u] and ṅ+ is the positive subalgebra of g[u].
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The set of weights P u (Λ)

For each Λ ∈ P m + (m ∈ Z ≥0 ), the g-module L(Λ) can be regarded as a g[u]-module of level um. Then it can be decomposed into direct sum of integrable irreducible g[u]-module of level um

L(Λ) = λ∈ Ṗ um + L(λ) mult Λ,g[u] (λ) .
(2.54)

Set P u (Λ) = {λ ∈ Ṗ+ | mult Λ,g[u] (λ) = 0}. (2.55)
It is easy to see that P u (Λ) ⊂ P (Λ) (by part 0.5 page 5 in [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF]). Hence P u (Λ) is a subset of max(Λ)-Z ≥0 δ. We say λ ∈ P u (Λ) a g[u]-maximal weight of Λ if there does not exist n ∈ Z >0 such that λ + nδ ∈ P u (Λ). We denote the set of all g[u]-maximal weights of Λ by max u (Λ). For each λ ∈ P u (Λ) + Cδ, there exists a unique complex number b Λ,λ,u such that λ

+ b Λ,λ,u δ ∈ max u (Λ). By definition, we have b Λ,λ -b Λ,λ,u ∈ Z ≥0 . (2.56) Let Γ(g, g[u]
) be the set of all (Λ, λ) ∈ P + × Ṗ+ such that λ ∈ P u (Λ).

Character method

In this subsection, we prepare fundamental background on the representation theory of the Virasoro algebras which help us to study the branching problem. The idea is analogous to the idea in [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF], [START_REF] Brown | A study of saturated tensor cone for symmetrizable Kac-Moody algebras[END_REF]. In general, we need a formula expressing the character of an irreducible highest weight g-module L(Λ) (Λ ∈ P + ) in terms of the characters of irreducible highest weight g[u]-modules L(λ) (λ ∈ Ṗ+ ). The Virasoro characters plays a role in this formula to help us understanding the branching rule.

The Virasoro algebra

The Virasoro algebra V ir is spanned by symbols {L n (n ∈ Z), Z} over C with the Lie bracket

[L m , L n ] = (m -n)L m+n + m 3 -m 12 δ m+n,0 Z and [V ir, Z] = 0.
(2.57)

Set V ir 0 = CL 0 ⊕ CZ. Let V be a V ir-module. For each λ ∈ V ir * 0 , the weight space V λ of V is V λ = {v ∈ V | Xv = λ(X)v for all X ∈ V ir 0 }. (2.58)
Let V be a V ir-module which admits a weight decomposition such that each weight subspace has finite dimension. Let ω V ir 0 be the C-anti-linear anti-involution on V ir defined by

ω V ir 0 (L n ) = L -n (n ∈ Z), ω 0 (Z) = Z.
(2.59)

Here anti-involution means we have

ω V ir 0 ([X, Y ]) = [ω V ir 0 (Y ), ω V ir 0 (X)] for all X, Y ∈ V ir and (ω V ir 0 ) 2 = Id. A Hermitian form , on V is said to be contravariant with respect to ω V ir 0 if Xv, w = v, ω V ir 0 (X)w , (2.60)
for all v, w ∈ M , X ∈ V ir. A V ir-module is said to be unitarizable if there exists a positive define Hermitian form , which is contravariant with respect to ω V ir 0 . It is known that any unitarizable V ir-module is completely reducible.
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A V ir-module V is called a highest weight module if there exists a nonzero vector v 0 in V such that v 0 is a V ir 0 -eigenvector, L n v 0 = 0 for all n ∈ Z >0 and U(

n<0 CL n )v 0 = V (here U(.)
is the universal envelopping algebra). We say that such a module has highest weight λ ∈ V ir * 0 if Xv 0 = λ(X)v 0 for all X ∈ V ir 0 .

Let V be a unitarizable highest weight V ir-module with highest weight λ ∈ V ir * 0 . As in the case affine Kac-Moody algebras, we have λ

∈ V ir * 0R = R(L 0 ) * ⊕ RZ * . Morover, λ(L 0 ), λ(Z) are non-negative since 0 ≤ L -n v 0 , L -n v 0 = L n L -n v 0 , v 0 = (2nλ(L 0 ) + 1 12 (n 3 -n)λ(Z)) v 0 , v 0 .
(2.61)

Let {(L 0 ) * , Z * } be the dual basis of {L 0 , Z}. We now restate Lemma 4.1 in [START_REF] Brown | A study of saturated tensor cone for symmetrizable Kac-Moody algebras[END_REF].

Lemma 2.10. Let V be a unitarizable highest weight (irreducible) V ir-module with highest weight λ. Then

1. If λ(L 0 ) = 0 then V λ+n(L0) * = 0 for all n ∈ Z ≥0 .
2. If λ(L 0 ) = 0 and λ(Z) = 0, then V λ+n(L0) * = 0 for all n ∈ Z >1 and V λ+(L0) * = 0.

If λ(L

0 ) = λ(Z) = 0, then V is one dimensional.
We next present some facts about the Virasoro algebras.

Sugawara construction of Virasoro operators

We recall the Sugawara construction of the Virasoro operator for the reader's convinience. For details, see, e.g., [START_REF] Victor | Modular and conformal invariance constraints in representation theory of affine algebras[END_REF], [START_REF] Victor | Infinite-dimensional Lie algebras[END_REF].

Untwisted case

We first introduce the Sugawara construction of the Virasoro operators for the untwisted affine Kac-Moody algebras. Let g be an untwisted affine Kac-Moody algebra of type X

(1) N . Let g be the simple Lie algebra of type X N .

g = C[t, t -1 ] ⊗ C g ⊕ CK ⊕ Cd.
(2.62) with Lie bracket

[t i ⊗ x + λK + µd, t j ⊗ y + λ ′ K + µ ′ d] = t i+j ⊗ [x, y] 0 + µjt j ⊗ y -µ ′ it i ⊗ x + iδ i+j,0 (x|y) 0 K. (2.63)
for all i, j ∈ Z, x, y ∈ g and λ, λ ′ , µ, µ ′ ∈ C. We denote x (m) for t m ⊗ x (x ∈ g, m ∈ Z). Let {u i } and {u i } be a dual basis of g, i.e., (u i |u j ) = δ ij . The Sugawara operators T n (n ∈ Z) are defined by:

T 0 = i u i u i + 2 m>0 i u (-m) i u i(m) ,
(2.64)

T n = m∈Z i u (-m) i u i(m+n) if n = 0.
(2.65)

The operators T n (n ∈ Z) does not make sense as an element of U(g) in general because they are infinite sum over (m, i). However, they are well defined endomorphisms of V for any gmodule V in the category O because for all v ∈ V there exists finitely many (m, i) such that
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Let V be a g ′ -module in the category O such that K acts on V as the multiplication by scalar k, where k + h ∨ = 0. As endomorphisms of V , we have the following statement.

Proposition 2.11. For any n, m ∈ Z and x ∈ g, we have

1. [x (m) , T n ] = 2(k + h ∨ )mx (m+n) 2. [T m , T n ] = 2(k + h ∨ )((m -n)T m+n + δ m+n,0 m 3 -m 6 (dim g)kId V ). Let g ′ = [g, g] = C[t, t -1 ] ⊗ C g ⊕ CK.
We define the Virasoro operators on V as follows:

L n = 1 2(k + h ∨ ) T n (2.66)
for each n ∈ Z, and Z is the multiplication by scalar k(dim g) k+h ∨ . The following proposition automatically follows Proposition 2.11. Proposition 2.12. For any n, m ∈ Z and x ∈ g, we have

1. [x (m) , L n ] = mx (m+n) . 2. [L m , L n ] = (m -n)L m+n + δ m+n,0 m 3 -m 12 Z.

Twisted case

In this part, we present the Sugawara construction of the Virasoro operators for the twisted affine Kac-Moody algebras. Let g be an twisted affine Kac-Moody algebra of type X (r) N (r = 2, 3). Let g be the simple Lie algebra of type X N and let σ be the diagram automorphism of g. The Z/rZ-gradation of g with respect to σ is g = j∈Z/rZ g j , where g j = {x ∈ g | σ(x) = e 2πij/m x}.

Then we have

g = j∈Z t j ⊗ g j ⊕ CK ⊕ Cd ′ , (2.67) with Lie bracket [t i ⊗ x + λK + µd ′ , t j ⊗ y + λ ′ K + µ ′ d ′ ] = t i+j ⊗ [x, y] 0 + µjt j ⊗ y -µ ′ it i ⊗ x + i r δ i+j,0 (x|y) 0 K. (2.68)
The normalized invariant form on g is given by

(t i ⊗ x + λK + µd ′ |t j ⊗ y + λ ′ K + µ ′ d ′ ) ′ = 1 r δ i+j,0 (x|y) 0 + (λ ′ µ + λµ ′ ).
(2.69) Remark 2.13.

1. We have (α|α) 0 = 2 for all long roots α of g. However, (α|α) ′ = 2r for all long roots α of g.

Let {u i,-j } be a basis of g -j and let {u i,j } be the dual basis of g j . The Sugawara operators T n (n ∈ Z) are defined by:

T 0 = i u i,0 u i,0 + 2 m>0 i u (-m) i,-m u i,m(m) + r -1 2r (dim g -dim g 0 )K, (2.70) T n = m∈Z i u (-m) i,-m u i,m(m+rn) if n = 0.
(2.71)

These operators are well defined endomorphisms of V for any g-module V in the category O because for any v ∈ V there exists finitely many (m, i) such that u

(-m) i,-m u i,m(m+rn) (v) = 0. Let g ′ = [g, g] = j∈Z t j ⊗ g j ⊕ CK.
Let V be a g ′ -module in the category O such that K acts on V as the multiplication by scalar k, where k + h ∨ = 0. As endomorphisms of V , we have the following statement.

Proposition 2.14. For any n, m ∈ Z and x ∈ g m , we have

1. [x (m) , T n ] = 2(k+h ∨ ) r mx (m+rn) . 2. [T m , T n ] = 2(k + h ∨ )((m -n)T m+n + δ m+n,0 m 3 -m 6 r(dim g)kId V ).
We define the Virasoro operators on V as follows:

L n = 1 2(k + h ∨ ) T n (2.72)
for each n ∈ Z and Z is the multiplication by scalar rk(dim g) k+h ∨ . The following proposition automatically follows Proposition 2.14.

Proposition 2.15. For any n, m ∈ Z and x ∈ g m , we have

1. [x (m) , L n ] = m r x (m+rn) . 2. [L m , L n ] = (m -n)L m+n + δ m+n,0 m 3 -m 12 Z.

Inti-involution ω 0 on Virasoro operators

The first conclusions of the Proposition Proposition 2.12 and Proposition 2.15 allow us to define a g ′ ⋊V ir-module structure on V . Here V ir is the Virasoro algebra with Virasoro operators L n (n ∈ Z) and Z. We recall the anti-linear anti-involution ω 0 on U(g) in the part 1.4.4. Up to completion of U(g) to get series in place of finite sums, we have the following statement.

Proposition 2.16. ω 0 (L n ) = L -n (n ∈ Z) and ω 0 (Z) = Z.
Remark 2.17. The Proposition 2.16 implies

L n v, w Λ = v, ω 0 (L n )w Λ = v, L -n w Λ ,
(2.73)

Zv, w Λ = v, ω 0 (Z)w Λ = v, Zw Λ .
(2.74)

CHAPTER 2. BRANCHING PROBLEM ON WINDING SUBALGEBRAS OF AFFINE KAC-MOODY ALGEBRAS A

(1)

1 AND A

(2) 2

Coset construction of Virasoro operators for winding subalgebras

Let g be an affine Kac-Moody algebra of type X (r)

N . Let g be the simple Lie algebra of type X N . We now recall the coset construction of Virasoro operators for winding subalgebras g[u], introduced in [KW90], with some details for the reader's convenience.

Untwisted case

In the case r = 1, we have

g = C[t, t -1 ] ⊗ g ⊕ CK ⊕ Cd,
(2.75)

g[u] = C[t u , t -u ] ⊗ g ⊕ CK ⊕ Cd.
(2.76)

For each Λ ∈ P k + , the g-module L(Λ) is considered as a g[u]-module of level uk. Let {u i } and {u i } be a dual basis of g. For each x ∈ g, n ∈ Z, we set x (n) = t n ⊗ x. Let L n (n ∈ Z) and Z be the Virasoro operators given by the Sugawara construction for the g-module L(Λ). Namely,

L 0 = 1 2(k + h ∨ ) i u i u i + 2 m>0 i u (-m) i u i(m) ,
(2.77)

L n = 1 2(k + h ∨ ) m∈Z i u (-m) i u i(m+n) if n = 0, (2.78) 
Z acts on L(Λ) as the multiplication by scalar

c k = k dim(g) k + h ∨ .
(2.79)

We construct the Virasoro operators Ln (n ∈ Z) and Ż on g[u]-modules as belows.

L0 = 1 2(uk + h ∨ ) i u i u i + 2 m>0 i u (-un) i u i(un) ,
(2.80)

Ln = 1 2(uk + h ∨ ) m∈Z i u (-um) i u i(um+un) if n = 0, (2.81) 
Ż acts on L(Λ) as the multiplication by scalar c uk = uk dim(g) uk + h ∨ .

(2.82)

Remark 2.18. The map ψ u extends to ψ u : U(g) → U(g). Then we have ψ u (L n ) = Ln and ψ(Z) = Ż up to completion to get series in place of finite sums.

Proposition 2.19. For any n, m ∈ Z and x ∈ g, we have

1. [x (um) , Ln ] = mx (um+un) .

[ Lm

, Ln ] = (m -n) Lm+n + δ m+n,0 m 3 -m 12 Ż.
The map

ζ u : V ir → V ir defined by ζ u (L n ) = u -1 L un + δ n,0 u-u -1 24 Z and ζ u (Z) = uZ is a Lie algebra map. Set L n = ζ u (L n ) and Z = ζ u (Z).
Proposition 2.20. For any n, m ∈ Z and x ∈ g, we have

1. [x (um) , L n ] = mx (um+un) . 2. [ L m , L n ] = (m -n) L m+n + δ m+n,0 m 3 -m 12 Z. Set L [u] n = L n -Ln and Z [u] = Z -Ż. Proposition 2.21. We have 1. [g ′ [u], L [u] n ] = 0. 2. [L [u] m , L [u] n ] = (m -n)L [u] m+n + δ m+n,0 m 3 -m 12 Z [u] .

Twisted case

In the case r = 2, 3, we have

g = j∈Z t j ⊗ g j ⊕ CK ⊕ Cd ′ ,
(2.83)

g[u] = j∈Z t uj ⊗ g uj ⊕ CK ⊕ Cd ′ , (2.84)
where g = j∈Z/rZ g j is the Z/rZ-gradation of g with respect the diagram automorphism σ of g.

For each Λ ∈ P k + , the g-module L(Λ) is considered as a g[u]-module of level uk. Let {u i,-j } be a basis of g -j and {u i,j } be a dual basis of g j . For each n ∈ Z, x ∈ g n , we set x (n) = t n ⊗ x. Let L n (n ∈ Z) and Z be the Virasoro operators given by the Sugawara construction for the g-module L(Λ) in the twisted case. Namely,

L 0 = 1 2(k + h ∨ ) i u i,0 u i,0 + 2 m>0 i u (-m) i,-m u i,m(m) + r -1 2r (dim g -dim g 0 )kId V , (2.85) L n = 1 2(k + h ∨ ) m∈Z i u (-m) i,-m u i,m(m+rn) if n = 0, (2.86) 
Z acts on L(Λ) as the multiplication by scalar

c k = rk dim(g) k + h ∨ .
(2.87)

Let Ln (n ∈ Z) and Ż be the Virasoro operators given by the Sugawara construction for the ġ-module L(Λ). Namely,

L0 = 1 2(uk + h ∨ ) i u i,0 u i,0 + 2 m>0 i u (-um) i,-um u i,um(um) + r -1 2r (dim g -dim g 0 )ukId V ,
(2.88) 1. [x (um) , Ln ] = m r x (um+urn) .

Ln = 1 2(uk + h ∨ ) m∈Z i u (-um) i,-um u i,um(um+urn) if n = 0, ( 2 

[ Lm

, Ln ] = (m -n) Lm+n + δ m+n,0 m 3 -m 12 Ż.
The map

ζ u : V ir → V ir defined by ζ u (L n ) = u -1 L un + δ n,0 u-u -1 24 Z and ζ u (Z) = uZ is a Lie algebra map. Set L n = ζ u (L n ) an Z = ζ u (Z).
Proposition 2.23. For any n, m ∈ Z and x ∈ g um , we have

1. [x (um) , L n ] = mx (um+urn) . 2. [ L m , L n ] = (m -n) L m+n + δ m+n,0 m 3 -m 12 Z. Set L [u] n = L n -r Ln and Z [u] = Z -r Ż.
Proposition 2.24. We have

1. [g ′ [u], L [u] n ] = 0. 2. [L [u] m , L [u] n ] = (m -n)L [u] m+n + δ m+n,0 m 3 -m 12 Z [u] .

Inti-involution ω 0 on Virasoro operators

The first conclusions of the Proposition 2.19 and Proposition 2.22 allow us to define a g ′ [u] ⋊ V ir-module structure on L(Λ). Here V ir is the Virasoro algebra with Virasoro operators Ln (n ∈ Z) and Ż. We recall the anti-linear anti-involution ω 0 on U(g) in the part 1.4.4. Up to completion of U(g) to get series in place of finite sums, we have the following statement.

Proposition 2.25. ω 0 ( Ln ) = L-n (n ∈ Z) and ω 0 ( Ż) = Ż.

Remark 2.26. The Proposition 2.25 implies

Ln v, w Λ = v, ω 0 ( Ln )w Λ = v, L-n w Λ ,
(2.91)

Żv, w Λ = v, ω 0 ( Ż)w Λ = v, Żw Λ .
(2.92) By Propositions 2.16, 2.25, we have the following statement.

Proposition 2.27. ω 0 (L

[u] n ) = L [u] -n and ω 0 (Z [u] ) = Z [u] .
Remark 2.28. The Proposition 2.27 implies

L [u] n v, w Λ = v, ω 0 (L [u] n )w Λ = v, L [u]
-n w Λ , (2.93)

Z [u] v, w Λ = v, ω 0 (Z [u] )w Λ = v, Z [u] w Λ .
(2.94)

Unitarizability

For Λ ∈ P + , λ ∈ Ṗ+ + Cδ, set

U(Λ, λ) = {v ∈ L(Λ) | (n + ∩ g ′ [u])v = 0 and hv = λ(h) for all h ∈ h ∩ g ′ [u]}.
(2.95)

The space U(Λ, λ) is stable by

L [n]
n because of the commutativity of L

[u] n with g ′ [u] (see Propositions 2.21, 2.24 in 2.4.4.3). Moreover, we have the decomposition of L(Λ) with respect to the direct sum of g ′ [u] ⊕ V ir-modules (see [START_REF] Victor | Modular and conformal invariance constraints in representation theory of affine algebras[END_REF], [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF])

L(Λ) = λ∈ Ṗ+ mod Cδ L(λ) ⊗ U(Λ, λ).
(2.96)

Recall the positive definite contravariant Hermitian form , Λ in Subsection 1.4.4. It induces a positive definite Hermitian form on U(Λ, λ) by restriction. By Proposition 2.27, this Hermitian form is contravariant with respect to the Virasoro algebra:

L [u] n v, w Λ = v, L [u] -n w Λ = v, ω V ir 0 (L n )w Λ , (2.97) Z [u] v, w Λ = v, Z [u] w Λ = v, ω V ir 0 (Z)w Λ .
(2.98) Thus, the V ir-module U(Λ, λ) is unitarizable.

An identity of characters

Let Λ be an element in P m + (m ∈ Z ≥0 ). By (2.35), (2.39), (2.40) and a fact that Ẇ is a subgroup of W , we have

  w∈ Ẇ ǫ(w)e w( ρ)   ch Λ = λ∈max(Λ)   w∈ Ẇ ǫ(w)e w(λ+ ρ)   c Λ λ .
(2.99)

We may assume that λ + ρ in the above equality is regular with respect to Ẇ . In this case, there exists unique σ ∈ Ẇ and λ ′ ∈ Ṗ+ such that σ(λ + ρ) = λ ′ + ρ. Let p(λ) and {λ} be ǫ(σ) and λ ′ in this case, respectively. In the case λ + ρ is nonregular, set p(λ) and {λ} to be 0. Since w∈ Ẇ ǫ(w)e w(λ+ ρ) = p(λ) w∈ Ẇ ǫ(w)e w({λ}+ ρ) ,

(2.100) it follows from the identities (2.41), (2.99) that:

Proposition 2.29.

ch Λ = λ∈max(Λ) p(λ) ċ h {λ} c Λ λ (2.101)

Semigroup structure

We state our first result about the set Γ(g, g[u]).

Theorem 2.30. The set Γ(g, g[u]) is a sub-semigroup of h * × h * .
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Proof. Let (Λ, λ) and (Λ, λ) be elements in the set Γ(g, g[u]). We need to show that (Λ+Λ, λ+λ) ∈ Γ(g, g[u]). The pair (Λ, λ) is an element of Γ(g, g[u]) if and only if L(λ) ⊂ L(Λ). The condition is equivalent to the existence of a nonzero vector v ∈ L(Λ) such that

g(v) = 0, ∀g ∈ ṅ+ and h(v) = λ(h)v, ∀h ∈ h. (2.102)
Let v be a nonzero vector in L(Λ) satisfying the same conditions but for the pair (Λ, λ). In order to prove the semigroup structure of Γ(g, g[u]) we just need to show the existence of a nonzero vector ṽ in L(Λ + Λ) which satisfies the conditions (2.102) with the weight λ + λ. We make the details in the two following steps.

Step 1. Construction of the vector ṽ. By the fact that L(Λ + Λ) is a g-submodule of L(Λ) ⊗ L(Λ) of multiplicity one, there exists a unique g-stable complementary subspace S such that

L(Λ) ⊗ L(Λ) = L(Λ + Λ) ⊕ S.
(2.103)

Let π : L(Λ) ⊗ L(Λ) → L(Λ + Λ) be the projection with kernel S. Set ṽ = π(v ⊗ v). We show that ṽ is nonzero and satisfies the conditions (2.102) in the next steps.

Step 2. ṽ is nonzero. Let

L(Λ) = ⊕ µ∈h * L(Λ) µ (2.104)
be the weight spaces decomposition of L(Λ). We define

L(Λ) ∨ = ⊕ µ∈h * (L(Λ) µ ) * .
(

2.105)

There exists a nonzero vector ψ ∈ L(Λ) ∨ such that

g(ψ) = 0, ∀g ∈ n -and h(ψ) = -Λ(h)ψ, ∀h ∈ h. (2.106)
Let G be the minimal Kac-Moody group corresponding to the Kac-Moody algebra g (see [START_REF] Kumar | Kac-Moody groups, their flag varieties and representation theory[END_REF]).

To the vector v ∈ L(Λ) defined above, we associate a function

f v : G → C, g → ψ(g -1 (v)). Since L(Λ) is irreducible, the function f v is nonzero (f v = 0 implies Gv ⊂ ker ψ)
. Let B -be the negative Borel subgroup of G. We have

(1, b).f v = Λ(b) -1 f v for all b ∈ B -.
(2.107)

Similarly, for L(Λ), we define ψ ∈ L(Λ) ∨ and

f v : G → C, g → ψ(g -1 (v)). Then f v is nonzero and (1, b).f v = Λ(b) -1 f v for all b ∈ B -. (2.108) Set f = f v f v .
Since G is irreducible as an indvariety, the function f is a well-defined nonzero function on G. And of course,

(1, b).f = (Λ + Λ)(b) -1 f for all b ∈ B -. (2.109) Moreover, we have f (g) = (ψ ⊗ ψ)(g -1 (v ⊗ v)).
(2.110) Indeed, by definition

f (g) = f v (g)f v (g) = ψ(g -1 (v))ψ(g -1 (v)) = (ψ ⊗ ψ)(g -1 (v) ⊗ g -1 (v)) = (ψ ⊗ ψ)(g -1 (v ⊗ v)).
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Now, ψ ⊗ ψ is an element of 

L(Λ) ∨ ⊗ L(Λ) ∨ = (L(Λ) ⊗ L(Λ)) ∨ = L(Λ + Λ) ∨ ⊕ S ∨ . ( 2 
Rewrite v ⊗ v = π(v ⊗ v)
+ s for some s ∈ S. Then we have

(ψ ⊗ ψ)(g -1 (v ⊗ v)) = (ψ ⊗ ψ)(g -1 (π(v ⊗ v) + s)) = (ψ ⊗ ψ)(g -1 (π(v ⊗ v))). It means f (g) = (ψ ⊗ ψ)(g -1 (π(v ⊗ v))). Since f = 0, we have ṽ = π(v ⊗ v) = 0.
Step 3. ṽ satisfies the conditions (2.102). For any g ∈ ṅ+ and h ∈ h, we have:

g(π(v ⊗ v)) = π(g(v ⊗ v)) = π(g(v) ⊗ v + v ⊗ g(v)) = π(0) = 0, h(π(v ⊗ v)) = π(h(v ⊗ v)) = π(h(v) ⊗ v + v ⊗ h(v)) = π((λ + λ)(h)(v ⊗ v)) = (λ + λ)(h)π(v ⊗ v).
We conclude that the set Γ(g, g[u]) is a semigroup.

The descripton of the set Γ(g, g[u])

Let (Λ, λ) ∈ P + × Ṗ+ . The description of the set Γ(g, g[u]) is equivalent to problem of describing the set

B(Λ, λ) = {b ∈ C | L(λ + bδ) ⊂ L(Λ)}.
(2.114)

We may assume that Λ ∈ P + and λ ∈ Ṗ+ . The reason is that

L(λ + b 1 δ) ⊂ L(Λ + b 2 δ) if and only if L(λ + (b 1 -b 2 )δ) ⊂ L(Λ). We have B(Λ + b 2 δ, λ + b 1 δ) = B(Λ, λ) + b 2 -b 1 . (2.115)
Since the set B(Λ, λ) is nonempty if and only if λ ∈ P u (Λ) + Cδ, we just need to suppose that λ ∈ P u (Λ). Let m ∈ Z >0 be the level of Λ, we set

c m = rm dim g m + h ∨ and c [u] m = uc m -c um , (2.116) m Λ = |Λ + ρ| 2 2(m + h ∨ ) - |ρ| 2 2h ∨ and ṁλ = |λ + ρ| 2 2(um + h ∨ ) - | ρ| 2 2h ∨ , (2.117) h [u] Λ,λ = u -1 m Λ -ṁλ + c [u] m /24 -b Λ,λ,u .
(2.118)

The following theorem gives us a description of the set B(Λ, λ).
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Theorem 2.31. Let g be an affine Kac-Moody algebra of type X (r)

N . Fix m ∈ Z >0 , u ∈ Z >1 such that u = 1( mod r). Let Λ ∈ P m + and λ ∈ P u (Λ) + Cδ. We have 1. b Λ,λ,u -(Z ≥0 \ {1}) ⊂ B(Λ, λ) ⊂ b Λ,λ,u -Z ≥0 .

If in addition h

[u] Λ,λ = 0 then B(Λ, λ) = b Λ,λ,u -Z ≥0 .
Proof. The inclusion B(Λ, λ) ⊂ b Λ,λ,u -Z ≥0 is trivial by definitions of B(Λ, λ), b Λ,λ,u and by the fact that P u (Λ) ⊂ P (Λ). By (2.115), we may assume that Λ ∈ P m + and λ ∈ P u (Λ). We have the decomposition of L(Λ) with respect to the direct sum of g

′ [u] ⊕ V ir-modules L(Λ) = λ∈Pu(Λ) L(λ) ⊗ U(Λ, λ).
(2.119)

Here the Virasoro operators are L

[u] n and Z [u] . The operator Z [u] acts on U(Λ, λ) as the multiplication by non-zero scalar c

[u] m . The lowest eigenvalue with respect to

L [u] 0 is h [u]
Λ,λ (see [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF]). By [START_REF] Victor | Modular and conformal invariance constraints in representation theory of affine algebras[END_REF], [START_REF] Kac | Branching functions for winding subalgebras and tensor products[END_REF], we have

ch Λ = λ∈Pu(Λ) ċ h λ q ṁλ -u -1 m Λ tr U (Λ,λ) (q L [u] 0 -Z [u] /24 ).
(2.120)

The representation of V ir on U(Λ, λ) is unitrarizable. We rewrite (2.120) as

ch Λ = λ∈Pu(Λ) ċ h λ q ṁλ -u -1 m Λ -c [u] m /24+h [u] Λ,λ (dim U(Λ, λ) λ ′ + dim U(Λ, λ) λ ′ +(L [u] 0 ) * q + . . . ) (2.121) = λ∈Pu(Λ) ċ h λ q -b Λ,λ,u (dim U(Λ, λ) λ ′ + dim U(Λ, λ) λ ′ +(L [u] 0 ) * q + . . . ) (2.122) = λ∈Pu(Λ) ċ h λ+b Λ,λ,u δ (dim U(Λ, λ) λ ′ + dim U(Λ, λ) λ ′ +(L [u] 0 ) * q + . . . ).
(2.123)

Suppose that V is the highest weight V ir-module of highest weight λ ′ ∈ V ir * 0 with λ ′ (Z [u] ) = c [u] m and λ ′ (L [u] 0 ) = h [u]
Λ,λ , which is contained in U(Λ, λ). By Lemma 2.10, we have

• If h [u] Λ,λ = 0 then 0 = dim V λ ′ +n(L [u] 0 ) * ≤ dim U(Λ, λ) λ ′ +n(L [u] 0 ) * for all n ∈ Z ≥0 . It implies L(λ + (b Λ,λ,u -n)δ) ⊂ L(Λ) for all n ∈ Z ≥0 . • If h [u] Λ,λ = 0 then 0 = dim V λ ′ +n(L [u] 0 ) * ≤ dim U(Λ, λ) λ ′ +n(L [u] 0 ) * for all n ∈ Z ≥0 \ {1}. It implies L(λ + (b Λ,λ,u -n)δ) ⊂ L(Λ) for all n ∈ Z ≥0 \ {1}.
We have proven the theorem.

The cases A

(1)

1 and A (2) 2
In this part, we study two particular cases A

(1) 1 andA (2) 2 . We compute explicitely the number b Λ,λ and show the conditions where we know that b Λ,λ,u = b Λ,λ . Then we obtain relations between the support Γ(g, g[u]) and its satured setting. We are going to compute explicitly the set max(Λ), hence the number b Λ,λ for the cases A

THE CASES A

(1) 1 . By (2.37), we may assume that Λ ∈ P + . The idea of computations is based on the work on S. Kumar and M. Brown in [START_REF] Brown | A study of saturated tensor cone for symmetrizable Kac-Moody algebras[END_REF].

Let g be the affine Kac-Moody algebra of type A

(1) 1 . Fix m ∈ Z >0 . Let α be the simple root α 1 of g. We have

P m + = mΛ 0 + jα 2 j ∈ [0, m] ∩ Z . (2.124)
We can describe explicitly the set max(Λ) and the number b Λ,λ as below. It is the combination of Lemma 5.2 and Lemma 5.3 in [START_REF] Brown | A study of saturated tensor cone for symmetrizable Kac-Moody algebras[END_REF]. We restate and re-explain in details the results.

Proposition 2.32. Let Λ = mΛ 0 + jα 2 ∈ P m + . For each k ∈ Z, let φ(m, j, k) be a number which is uniquely determined by k, m, j as follows 1. Write k = mq + r for some q ∈ Z, r ∈ [0, m).

Set

φ(m, j, k) = -q(k + r + j) + -r if r ∈ [0, m -j], m -j -2r if r ∈ [m -j, m).
(2.125)

Then we have max(Λ) = {Λ + kα + φ(m, j, k)δ | k ∈ Z}. (2.126)
Or equivalently, for each λ = mΛ 0 + j ′ α 2 with j ′ ∈ j + 2Z, we have

b Λ,λ = φ(m, j, j ′ -j 2 ).
(2.127)

In order to prove above proposition, we need the following lemma. In fact, in Proposition 4.4 of [START_REF] Brown | A study of saturated tensor cone for symmetrizable Kac-Moody algebras[END_REF], the authors give the same statement for only untwisted affine Kac-Moody algebras. But the statement and arguments in the proof still work well for any affine Kac-Moody algebras.

Lemma 2.33. For any affine Kac-Moody algebra, let Λ ∈ P + of positive level, then

max(Λ) ∩ P + = Λ - i∈I m i α i m i ∈ Z ≥0 for all i, m i < a i for some i ∈ I ∩ P + . (2.128)
With the aid of Lemma 2.33, we can prove Proposition 2.32 as follows.

Proof. We have max(Λ) = W (max(Λ) ∩ P + ). By Lemma 2.33,

max(Λ) ∩ P + = Λ -m 0 (δ -α), Λ -m 1 α m i ∈ Z ≥0 , m 0 ≤ m -j 2 , m 1 ≤ j 2 . (2.129) Recall that W = {t nα , t nα s 1 | n ∈ Z}. We have t nα (Λ -m 0 (δ -α)) = Λ + (m 0 + mn)α -((j + 2m 0 + mn)n + m 0 )δ, (2.130) t nα s 1 (Λ -m 0 (δ -α)) = Λ + (-j -m 0 + mn)α -((-j -2m 0 + mn)n + m 0 )δ, (2.131) t nα (Λ -m 1 α) = Λ + (-m 1 + mn)α -(j -2m 1 + mn)nδ, (2.132) t nα s 1 (Λ -m 1 α) = Λ + (-j + m 1 + mn)α -(-j + 2m 1 + mn)nδ.
(2.133)
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So an element λ in max(Λ) has form Λ + rα + n ′ δ for some n ′ ∈ Z, r ∈ Z. Fix such a λ. Then, for any q ∈ Z

t qα (Λ + rα + n ′ δ) = Λ + (mq + r)α + (n ′ -(j + 2r + mq)q)δ (2.134)
is still in max(Λ). Set k = mq + r for some q ∈ Z, then

Λ + kα + n ′′ δ ∈ max(Λ)
where n ′′ = n ′ -q(k + r + j).

(2.135)

Assume now that 0 ≤ r < m, then the expression k = mq + r is the Euclidean division. By (2.130), (2.131), (2.132), (2.133) we get

n ′ = -r if r ∈ [0, m -j], m -j -2r if r ∈ [m -j, m).
(2.136)

Hence we obtain n ′′ = φ(m, j, k) as in (2.125). It means

max(Λ) = {Λ + kα + φ(m, j, k)δ | k ∈ Z}.
(2.137)

2.5.0.2

The conditions for b Λ,λ,u = b Λ,λ in the case A

(1) 1

We have seen in the previous part, we know explicitely the number b Λ,λ in the case A

(1) 1 . By Theorem 2.31, the number b Λ,λ,u is the key to understand the support Γ(g, g[u]). The concrete formula for the number b Λ,λ,u is not known in general, even for the case A For Λ like in Theorem 2.34, we denote by A u (Λ) the set of λ such that the theorem applies. Namely

A u (Λ) = mΛ 0 + j ′ α 2 j ′ ∈ [j, um -j * ] ∩ (j + 2Z) (2.138)
where j * = j if u is even and j * = m -j if u is odd.

Before going to proof of the theorem, we need to state some propositions.

Proposition 2.35. Let g be affine Kac-Moody algebra of type A

(1)

1 . Fix m ∈ Z >0 , u ∈ Z >1 . Let Λ = mΛ 0 + jα 2 ∈ P m + .

THE CASES A

(1)

1 AND A

(2) 2 41 1. We parametrize λ ∈ max(Λ) such that λ + ρ is regular with respect to Ẇ by λ k = Λ + kα + φ(m, j, k)δ. Then the only possible values of k are

k = j ′ -j 2 -n(um + 2) and k = - j ′ + j 2 -1 + n(um + 2) (2.139)
where j ′ ∈ [0, um] ∩ (j + 2Z) and n ∈ Z.

Let

N k = -φ(m, j, k) + un(j ′ + 1 -num -2n).
(2.140)

Then i. If k = j ′ -j 2 -n(um + 2), then p(λ k ) = 1 and {λ k } = mΛ 0 + j ′ α 2 -N k δ. ii. If k = -j ′ +j 2 -1 + n(um + 2), then p(λ k ) = -1 and {λ k } = mΛ 0 + j ′ α 2 -N k δ.
iii. The function N k is considered as a function on n and it attains the minimum at n = 0 in the first case and at n = 0 or n = 1 in the second case.

Proof. We need the following data

|α| 2 = 2, ρ = 2 u Λ 0 + 1 2 α, Ẇ = {t unα , t unα s 1 | n ∈ Z}.
(2.141)

Since λ k + ρ is regular with respect to Ẇ , there exists unique σ ∈ Ẇ and µ = mΛ 0

+ j ′ α 2 + b ′ δ ∈ Ṗ um + such that σ(λ k + ρ) = µ + ρ.
a. (Proof of 1. and 2.i.) If σ = t unα for some n ∈ Z, then σ(λ k + ρ) -ρ equals

mΛ 0 + num + 2n + k + j 2 α + (φ(m, j, k) -un(2k + j + 1 + num + 2n))δ. (2.142) Hence j ′ ∈ [0, um] ∩ (j + 2Z) and k = j ′ -j 2 -n(um + 2).
(2.143)

In this case, we have

p(λ k ) = 1 and {λ k } = mΛ 0 + j ′ α 2 + (φ(m, j, k) -un(j ′ + 1 -num -2n))δ.
(2.144) b. (Proof of 1. and 2.ii.) If σ = t unα s 1 for some n ∈ Z, then σ(λ k + ρ) -ρ equals

mΛ 0 + num + 2n -k - j 2 -1 α + (φ(m, j, k) -un(-2k -j -1 + num + 2n))δ. (2.145) Hence j ′ ∈ [0, um] ∩ (j + 2Z) and k = - j ′ + j 2 -1 + n(um + 2).
(2.146)

In this case, we have

p(λ k ) = -1 and {λ k } = mΛ 0 + j ′ α 2 + (φ(m, j, k) -un(j ′ + 1 -num -2n))δ. (2.147) CHAPTER 2.
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-N k = φ(m, j, r) -q(k + r + j) -un(j ′ + 1 -nM ) (2.148) = φ(m, j, r) - ( j ′ -j 2 -nM -r)( j+j ′ 2 -nM + r) m -un(j ′ + 1 -nM ) (2.149) = n 2 M u - M m -n u + uj ′ - M m j ′ + j 2 -j ′2 4m + r 2 m + rj m + φ(m, j, r) .
(2.150)

We have

r 2 m + rj m + φ(m, j, r) = 1 m r(r + j -m) if 0 ≤ r ≤ m -j, 1 m (r -m)(r + j -m) if m -j ≤ r < m.
(2.151)

The condition 0 ≤ r ≤ m -j can be rewritten as

j -m 2 ≤ -nM + j ′ 2 -m q + 1 2 ≤ m -j 2 (2.152)
and m -j ≤ r < m can be rewritten as

-j 2 ≤ -nM + j ′ 2 -m(q + 1) < j 2 . (2.153) It implies that r 2 m + rj m + φ(m, j, r) equals              |-nM + j ′ 2 -m 2 p| 2 - (m-j) 2 4 m if ∃p ∈ 2Z + 1 such that | -nM + j ′ 2 -m 2 p| ≤ m-j 2 , |-nM + j ′ 2 -m 2 p| 2 -j 2 4 m if ∃p ∈ 2Z such that | -nM + j ′ 2 -m 2 p| ≤ j 2 .
(2.154)

Let P j,j ′ : Z → R be the function that maps -n to (2.154). Let F j,j ′ : Z → R be the function defined by

F j,j ′ (t) = t 2 M u - M m + t u + uj ′ - M m j ′ + j 2 -j ′2 4m + P j,j ′ (t). (2.155) So -N k = F j,j ′ (-n).
We will show that the maximum of F j,j ′ (-n) appears when n = 0, i.e., k = j ′ -j 2 . Let P : R × [0, m] × [0, um] → R be the function defined by P (t, j, j ′ ) = P j,j ′ (t). Let F : R × [0, m] × [0, um] → R be the function defined by F (t, j, j ′ ) = F j,j ′ (t). The function F is a continuous, piecewise smooth function. Set ∆(t, j, j ′ ) = F (t + 1, j, j ′ ) -F (t, j, j ′ ). We will prove that it is nonincreasing in t and ∆(-1, j, j ′ ) > 0 > ∆(0, j, j ′ ). Indeed:

∆(t, j, j ′ ) = 2tM u - M m + (M + j ′ ) u - M m + u + P (t + 1, j, j ′ ) -P (t, j, j ′ ).
(2.156)
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We denote the numbers p defined on P j,j ′ (t + 1) and P j,j ′ (t) by p 1 , p 0 , respectively. By definition, we have p1-p0 2 ≥ u. Hence the partial derivatives of ∆ where they exist are

∂ t ∆(t, j, j ′ ) = 2M u - p 1 -p 0 2 ≤ 0, (2.157) ∂ j ′ ∆(t, j, j ′ ) = u - p 1 -p 0 2 ≤ 0. (2.158)
It implies that ∆ is nonincreasing in t and j ′ . So ∆(0, j, j ′ ) ≤ ∆(0, j, 0) and ∆(-1, j, um) ≤ ∆(-1, j, j ′ ). We can easily check that ∆(0, j, 0) < 0 < ∆(-1, j, um).

It implies that F (0, j, j ′ ) > F (t, j, j ′ ) for any t ∈ Z, t = 0, i.e., F i,j (-n) attains its maximum when n = 0. Hence, in the case k = j ′ -j 2 -nM , the minimum of N k occurs when n = 0.

For the case k = -j+j ′ 2 -1 + nM . Since k = j ′ -j 2 + n -j ′ +1
M M , we have

-N k = F n - j ′ + 1 M , j, j ′ .
(2.159)

Then N k attains its minimum when n = 0 or 1.

Here is the next proposition we will use in the proof of Theorems 2.34.

Proposition 2.36. With φ(m, j, k) is defined as in (2.125), for each j ∈ [0, m] and j ′ ∈ [0, um]∩ (j + 2Z), we have

-φ(m, j, j ′ -j 2 ) = min -φ(m, j, - j ′ + j 2 -1), u -φ(m, j, - j ′ + j 2 + 1) (2.160)
if and only if one of the following three conditions below is satisfied:

(A1) m > 1 and j ′ ≤ j -2. (B1) m > 1, u is even, j ′ ≥ um -j + 1. (C1) m > 1, u is odd, j ′ ≥ m(u -1) + j + 2.
Proof. We use a fact that φ(m, j, -(j + k)) = φ(m, j, k).

(2.161)

Indeed, if Λ = mΛ 0 + jα 2 + bδ ∈ P m + and λ = Λ + kα + φ(m, j, k)δ ∈ max(Λ), then s 1 (λ) = Λ -(j + k)α + φ(m, j, k)δ ∈ max(Λ). We use the equality (2.161) to rewrite φ(m, j, - j ′ + j 2 -1) = φ(m, j, j ′ -j 2 ).
(2.162) as φ(m, j, x) = φ(m, j, x + 1), where x = -j ′ +j 2 -1. Use (2.125) for φ(m, j, x) we check that it happens if and only if (A1) happens. Similarly, use (2.161) to rewrite

-u + φ(m, j, - j ′ + j 2 + 1) ≤ φ(m, j, j ′ -j 2 ) (2.163)
as φ(m, j, x + 1) -u ≤ φ(m, j, x), where x = -j ′ +j 2 . Use (2.125) for φ(m, j, x) we can check that it happens if and only if (B1) or (C1) happens.
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We are now going to the proof of Theorem 2.34.

Proof. The first step is writing explicitly ch Λ in Proposition 2.29. It can be done by substituting values of p(λ k ) and {λ k } in Proposition 2.35 to the formula (2.101). We can rewrite ch Λ as follows

j ′ ∈[0,um]∩(j+2Z) ċ h mΛ0+ j ′ α 2     n∈Z, k= j ′ -j 2 -n(um+2) q N k c Λ λ k - n∈Z, k=- j ′ +j 2 -1+n(um+2) q N k c Λ λ k     .
(2.164)

The identity (2.164) implies the condition m ′ = m and j ′ ∈ [0, um] ∩ (j + 2Z) that we need to prove for Theorem 2.34. The coefficients of c Λ λ k in the formula (2.164) are always positive integers since λ k ∈ max(Λ). Proposition 2.35 says that N k attains minimums at n = 0 for those on the left of (2.164), and at n = 0 or n = 1 for those on the right of (2.164). The corresponding minimums of N k are -φ(m, j, j ′ -j 2 ) and min -φ(m, j, - 

j ′ + j 2 -1), u -φ(m, j, - j ′ + j 2 + 1) . ( 2 
-φ(m, j, j ′ -j 2 ) ≤ min -φ(m, j, - j ′ + j 2 -1), u -φ(m, j, - j ′ + j 2 + 1) . (2.166)
Moreover, the equality in (2.166) happens if and only if one of the three conditions (A1), (B1), (C1) in Proposition 2.36 is satisfied. So, for any λ = mΛ 0 + j ′ α 2 ∈ A u (Λ), we have strict inequality in (2.166). By (2.164), in this case we have λ + φ(m, j, j ′ -j

2 )δ ∈ max u (Λ). That means b Λ,λ,u = φ(m, j, j ′ -j

2 ) = b Λ,λ .

Computation of b Λ,λ for the case A

(2) 2

For the case A

(2) 2 , the computation is similar as we did for the case A

(1)

1 . Let Λ 0 be the 0-th fundamental weight and α be the simple root α 1 of g. Fix m ∈ Z >0 , we

P m + = mΛ 0 + jα 2 j ∈ 0, m 2 ∩ Z . (2.167)
We can describe explicitly the set max(Λ) and the number b Λ,λ for the case A

(2) 2 as follows.

Proposition 2.37. Let Λ = mΛ 0 + jα 2 ∈ P m + . For each k ∈ 1 2 Z, let φ(m, j, k) be a number which is uniquely determined by k, m, j as follows

1. Write k = m 2 q + r for some q ∈ Z, r ∈ [0, m 2 ). 2. Set φ(m, j, k) = -q(k + r + j) +      -r if r ∈ [0, m 2 -j], m 2 -j -2r if r ∈ [ m 2 -j, m 2 ) ∩ ( m 2 + Z), m-1 2 -j -2r if r ∈ [ m-1 2 -j, m 2 ) ∩ ( m-1 2 + Z).
(2.168)
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Then we have

max(Λ) = Λ + kα + φ(m, j, k)δ k ∈ 1 2 Z .
(2.169)

Or equivalently, for each λ = mΛ 0 + j ′ α 2 with j ∈ Z, we have

b Λ,λ = φ(m, j, j ′ -j 2 ).
(2.170)

Proof. We have max(Λ) = W (max(Λ) ∩ P + ). By Lemma 2.33, max(Λ) ∩ P + contains exactly elements

Λ -m 0 α 0 , Λ -m 1 α, Λ -α 0 -m 2 α (2.171) such that m i ∈ Z ≥0 , m 0 ≤ m 2 -j, m 1 ≤ j 2 , j + 1 2 - m 4 ≤ m 2 ≤ j + 1 2 . (2.172) Recall that W = t nα 2 , t nα 2 s 1 n ∈ Z . We have t nα 2 (Λ -m 0 α 0 ) = Λ + mn + m 0 2 α - (mn + 2j + 2m 0 )n + m 0 2 δ, (2.173) t nα 2 s 1 (Λ -m 0 α 0 ) = Λ + mn -2j -m 0 2 α - (mn -2j -2m 0 )n + m 0 2 δ, (2.174) t nα 2 (Λ -m 1 α) = Λ + mn -2m 1 2 α - (mn + 2j -4m 1 )n 2 δ,
(2.175)

t nα 2 s 1 (Λ -m 1 α) = Λ + mn -2j + 2m 1 2 α - (mn -2j + 4m 1 )n 2 δ, (2.176) t nα 2 (Λ -α 0 -m 2 α) = Λ + mn + 1 -2m 2 2 α - (mn + 2j + 2 -4m 2 )n + 1 2 δ,
(2.177)

t nα 2 s 1 (Λ -α 0 -m 2 α) = Λ + mn -1 -2j + 2m 2 2 α - (mn -2j -2 + 4m 2 )n + 1 2 δ.
(2.178)

So an element λ in max(Λ) has form Λ + rα + n ′ δ for some n ′ ∈ 1 2 Z, r ∈ 1 2 Z. Fix such a λ. Then for any q ∈ Z

t qα 2 (Λ + rα + n ′ δ) = Λ + m 2 q + r α + n ′ -j + 2r + m 2 q q δ (2.179) is still in max(Λ). Set k = m 2 q + r for some q ∈ Z, then Λ + kα + n ′′ δ ∈ max(Λ)
where n ′′ = n ′ -q(k + r + j).

(2.180)

Assume now that 0 ≤ r < m 2 , then the expression k = m 2 q + r is the Euclidean division. By (2.173), (2.174), (2.175), (2.176), (2.177), (2.178) we get

n ′ =      -r if r ∈ [0, m 2 -j], m 2 -j -2r if r ∈ [ m 2 -j, m 2 ) ∩ ( m 2 + Z), m-1 2 -j -2r if r ∈ [ m-1 2 -j, m 2 ) ∩ ( m-1 2 + Z).
(2.181)

Hence we obtain n ′′ = φ(m, j, k) as in (2.168). It means

max(Λ) = Λ + kα + φ(m, k, j)δ k ∈ 1 2 Z .
(2.182)
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2.5.0.4

The conditions for b Λ,λ,u = b Λ,λ in the case A

(2) 2

In this part, as we did for the case A

(1) 1 , we give conditions where we know that b Λ,λ,u = b Λ,λ . This fact with Theorem 2.31 help us to understand the support Γ(g, g[u]) for the case A

(2) 2 .

Theorem 2.38. Let g be the affine Kac-Moody algebra of type

A (2) 2 . Let λ = mΛ 0 + jα 2 ∈ P m + and let λ = m ′ Λ 0 + j ′ α 2 ∈ Ṗ+ . 1. If there exists b ∈ C such that (Λ, λ + bδ) belongs to Γ(g, g[u]) then m ′ = m. 2. If moreover a. j ≤ j ′ ; and b. j ′ ∈ m(u-1) 2 -j + (2Z ≥0 ∪ Z <0 ), then b Λ,λ,u = b Λ,λ .
For Λ like in Theorem 2.38, we denote by A u (Λ) the set of λ such that the theorem applies. Namely

A u (Λ) = mΛ 0 + j ′ α 2 j ′ ∈ j, um 2 ∩ Z ∩ m(u -1) 2 -j + (2Z ≥0 ∪ Z <0 ) . (2.183)
Before going to proof of the theorem, we need to state some propositions.

Proposition 2.39. Let g be the affine Kac-Moody algebra of type

A (2) 2 . Fix m ∈ Z >0 , u ∈ Z >1 relatively prime to 2. Let Λ = mΛ 0 + jα 2 ∈ P m + .
1. We parametrize λ ∈ max(Λ) such that λ + ρ is regular with respect to Ẇ by λ k = Λ + kα + φ(m, j, k)δ. Then the only possible values of k are

k = j ′ -j 2 -n um + 3 2 and k = - j ′ + j 2 -1 + n um + 3 2 (2.184)
where j ′ ∈ [0, um 2 ] ∩ Z and n ∈ Z.

Let

N k = -φ(m, j, k) + un j ′ + 1 -n um + 3 2 . (2.185) Then i. If k = j ′ -j 2 -n um+3 2 , then p(λ k ) = 1 and {λ k } = mΛ 0 + j ′ α 2 -N k δ. ii. If k = -j ′ +j 2 -1 + n um+3 2 , then p(λ k ) = -1 and {λ k } = mΛ 0 + j ′ α 2 -N k δ. iii.

The function N k is considered as a function on n and it attains the minimum at n = 0

in the first case and at n = 0 or n = 1 in the second case.

Proof. We need the following data

|α| 2 = 4, ρ = 3 u Λ 0 + 1 2 α, Ẇ = t unα 2 , t unα 2 s 1 n ∈ Z .
(2.186)

Since λ k + ρ is regular with respect to Ẇ , there exists unique σ ∈ Ẇ and µ = mΛ 0

+ j ′ α 2 + b ′ δ ∈ Ṗ um + such that σ(λ k + ρ) = µ + ρ.
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(1) 1 AND A (2) 2 47 a. (Proof of 1. and 2.i.) If σ = t unα 2 for some n ∈ Z, then σ(λ k + ρ) -ρ equals

mΛ 0 + k + j 2 + n um + 3 2 α + φ(m, j, k) -un 2k + j + 1 + n um + 3 2 δ. (2.187) Hence j ′ ∈ 0, um 2 ∩ Z and k = j ′ -j 2 -n um + 3 2 .
(2.188)

In this case, we have

p(λ k ) = 1 and {λ k } = mΛ 0 + j ′ α 2 + φ(m, j, k) -un j ′ + 1 -n um + 3 2 δ. (2.189) b. (Proof of 1. and 2.ii.) If σ = t unα 2 s 1 for some n ∈ Z, then σ(λ k + ρ) -ρ equals mΛ 0 + -k - j 2 -1 + n um + 3 2 α + φ(m, j, k) -un -2k -j -1 + n um + 3 2 δ.
(2.190) Hence

j ′ ∈ 0, um 2 ∩ Z and k = - j ′ + j 2 -1 + n um + 3 2 . (2.191)
In this case, we have

p(λ k ) = -1 and {λ k } = mΛ 0 + j ′ α 2 + φ(m, j, k) -un j ′ + 1 -n um + 3 2 δ. (2.192) c. (Proof of 2.iii.) Put M = um + 3. We consider the first case k = j ′ -j 2 -nM 2 . Write k = m 2 q + r for some q ∈ Z, 0 ≤ r < m 2 , then -N k = φ(m, j, r) -q(k + r + j) -un j ′ + 1 - nM 2 (2.193) = φ(m, j, r) - 2( j ′ -j 2 -nM 2 -r)( j+j ′ 2 -nM 2 + r) m -un j ′ + 1 - nM 2 (2.194) = n 2 M 2 u - M m -n u + uj ′ - M m j ′ + j 2 -j ′2 2m + 2r 2 m + 2rj m + φ(m, j, r) .
(2.195)

We have

2r 2 m + 2rj m + φ(m, j, r) equals      2 m r(r + j -m 2 ) if 0 ≤ r ≤ m 2 -j, 2 m (r -m 2 )(r + j -m 2 ) if m 2 -j ≤ r < m 2 , r ∈ m 2 + Z, 2 m (r -m 2 )(r + j -m 2 ) -1 2 if m-1 2 -j ≤ r < m 2 , r ∈ m+1 2 + Z.
(2.196)

The condition 0 ≤ r ≤ m 2 -j can be rewritten as 2j -m 4 ≤ -nM + j ′ 2 - m 2 q + 1 2 ≤ m -2j 4 (2.197)
and m 2 -j ≤ r < m 2 can be rewritten as

-j 2 ≤ -nM + j ′ 2 - m 2 (q + 1) < j 2 .
(2.198)
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Proof. The strategy is the same as in the case A

(1)

1 . The first step is writing explicitly ch Λ in Proposition 2.29. By substituting values of p(λ k ) and {λ k } in Proposition 2.39 to the formula (2.101), we can rewrite ch Λ as follows

j ′ ∈[0, um 2 ]∩Z ċ h mΛ0+ j ′ α 2     n∈Z, k= j ′ -j 2 -n um+3 2 q N k c Λ λ k - n∈Z, k=- j ′ +j 2 -1+n um+3 2 q N k c Λ λ k     .
(2.211)

The identity (2.211) implies the condition j ′ ∈ [0, um 2 ]∩Z that we need to prove for Theorem 2.38. The coefficients of c Λ λ k in the formula (2.211) are always positive integers since λ k ∈ max(Λ). Proposition 2.39 says that the number N k attains minimums at n = 0 for those on the left hand side of (2.211), and at n = 0 or n = 1 for those on the right hand side of (2.211). The corresponding minimums of N k are -φ(m, j, j ′ -j 2 ) and min -φ(m, j, - 

j ′ + j 2 -1), u 2 -φ(m, j, - j ′ + j 2 + 1 2 ) . ( 2 
-φ(m, j, j ′ -j 2 ) ≤ min -φ(m, j, - j ′ + j 2 -1), u 2 -φ(m, j, - j ′ + j 2 + 1 2 ) .
(2.213)

Moreover, the equality happens if and only if condition (A2) or (B2) in Proposition 2.40 is satisfied. So, for any λ = mΛ 0 + j ′ α 2 ∈ A u (Λ), we have strict inequality in (2.213). By (2.211), in this case we have λ + φ(m, j,

j ′ -j 2 )δ ∈ max u (Λ). That means b Λ,λ,u = φ(m, j, j ′ -j 2 ) = b Λ,λ .

Relation between Γ(g, g[u]) and its satured setting

The satured setting of the support Γ(g, g[u]) is defined by

Γ(g, g[u]) = {(Λ, λ) ∈ P + × Ṗ+ | λ ∈ Λ + Q, L(N λ) ⊂ L(N Λ) for some integer N > 1}. (2.214)
Corollary 2.41. Let g be affine Kac-Moody algebra of type A

(1)

1 or A (2) 2 . Fix m ∈ Z >0 , u ∈ Z >1 (u is an odd number in the case A (2) 2 ). Let Λ ∈ P m + and let λ ∈ A u (Λ) ∩ (Λ + Q). For all b ∈ C, we have 1. (Λ, λ + bδ) ∈ Γ(g, g[u]) ⇔ d(Λ, λ + bδ) ∈ Γ(g, g[u]) for all d ∈ Z ≥2 .

If in addition h

[u] Λ,λ = 0 then (Λ, λ + bδ) ∈ Γ(g, g[u]) ⇔ (Λ, λ + bδ) ∈ Γ(g, g[u]).
Before going to the proof, we first restate Lemma 6.3 and Lemma 8.5 in [START_REF] Brown | A study of saturated tensor cone for symmetrizable Kac-Moody algebras[END_REF].

Lemma 2.42. Let g be an affine Kac-Moody algebra of type

A (1) 1 or A (2) 2 . Let Λ ∈ P + and λ ∈ (Λ + Q). Fix a positive integer N . Then λ ∈ max(Λ) if and only if N λ ∈ max(N Λ).
Now we are going to the proof of Corollary 2.41.

Proof. Fix a positive integer d. Since λ ∈ A u (Λ) ∩ (Λ + Q), we have dλ ∈ A u (dΛ) ∩ (dΛ + Q).
By Theorems 2.34, 2.38 and Lemma 2.42, we have b dΛ,dλ,u = b dΛ,dλ = db Λ,λ .

(2.215)

THE CASES A

(1) Λ,λ = 0, then by Theorems 2.31 2., (Λ, λ + bδ) ∈ Γ(g, g[u]).

1 AND A (2) 2 51 Suppose that (Λ, λ + bδ) ∈ Γ(g, g[u]), then λ + bδ ∈ Λ + Q and L(N λ + N bδ) ⊂ L(N Λ) for some integer N > 1. Hence b ∈ Z (since λ ∈ Λ + Q) and N b ≤ b N Λ,N λ,u = N b Λ,
Remark 2.43. In the case A

(1)

1 , we have A u (Λ) ∩ (Λ + Q) = A u (Λ). In the case A (2) 2 , we have A u (Λ) ∩ (Λ + Q) is the subset of elements in A u (Λ) with strict condition j ′ ∈ j + 2Z compare to (2.183).
Chapter 3

Projective representations of symmetric groups

In this chapter, we present the projective representation theory of the symmetric groups. It explains a motivation for studying the shifted Littlewood-Richardson coefficients in our second preprint [START_REF] Duc | On the shifted Littlewood-Richardson coefficients and Littlewood-Richardson coefficients[END_REF]. 
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Shifted Littlewood-Richardson coefficients

Young tableaux

For a partition λ, we write λ = (λ 1 , λ 2 , . . .

) with λ 1 ≥ λ 2 ≥ . . . . If λ = (λ 1 , λ 2 , . . . , λ l ) with λ l > 0 and l i=1 λ i = n, we write l(λ) = l, |λ| = n.
Each partition λ is presented by a Young diagram Y (λ) that is a collection of boxes such that:

• (D1) The leftmost boxes of each row are in a column.

• (D2) The number of boxes from top row to bottom row are λ 1 , λ 2 , . . . , respectively.

A semistandard Young tableau of shape λ is a filling of the Young diagram Y (λ) by the ordered alphabet {1 < 2 < . . .} such that:

(Y1) The entries in each column are strictly increasing.

(Y2) The entries in each row are weakly increasing.

A Young tableau T is said to have content γ = (γ 1 , γ 2 , . . . ) if γ i is the number of entries i in the tableau T . We write

x T = x γ = x γ1 1 x γ2 2 . . . . (3.1)

Ring of symmetric functions

For each partition λ, the Schur function s λ in variables x 1 , x 2 , . . . is defined as the sum of x T , where T runs over the semistandard Young tableaux of shape λ.

The power-sum symmetric function p r with r ≥ 1 is defined by

p r = x r 1 + x r 2 + . . . . (3.2)
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For each partition λ = (λ 1 , λ 2 , . . . ), we define

p λ = p λ1 p λ2 . . . . (3.3) Let Λ = n≥0
Λ n be the graded ring of symmetric functions in the variables x 1 , x 2 , . . . with coefficients in Z, where Λ n is the Z-submodule of elements of degree n. The following sets are Z-basis of Λ n (see [START_REF] Fulton | Young tableaux[END_REF] or [START_REF] Macdonald | Symmetric functions and Hall polynomials[END_REF])

{s λ | λ is a partition of n} , {p λ | λ is a partition of n} .

Shifted tableaux

A partition λ = (λ 1 , λ 2 , . . . ) is said to be strict if λ 1 > λ 2 > . . . .
Each strict partition λ is presented by a shifted diagram sY (λ) that is a collection of boxes such that:

• (SD1) The leftmost boxes of each row are in the main diagonal.

• (SD2) The number of boxes from top row to bottom row are λ 1 , λ 2 , . . . , respectively.

A shifted tableau T of shifted shape λ is a result of filling the shifted diagram sY (λ) by the ordered alphabet

{1 ′ < 1 < 2 ′ < 2 < . . .} such that • (T1)
The entries in each column and in each row are weakly increasing.

• (T2) The entries k ′ in each row are strictly increasing.

• (T3) The entries k in each column are strictly increasing.

The shifted tableau T is said to have content γ = (γ 1 , γ 2 , . . . ) if γ i is the number of i or i ′ in T . We write

x T = x γ = x γ1 1 x γ2 2 . . . . (3.4) Example 3.1. Let λ = (4, 2, 1). Then the shifted diagram sY (λ) is sY ((4, 2, 1)) = And T = 1 2 ′ 2 2 2 ′ 3 4 ′
is a shifted tableau of shifted shape (4, 2, 1). The content of T is (1, 4, 1, 1).

Shifted Littlewood-Richardson coefficients

For each strict partition λ, the Schur Q-function Q λ = Q λ (x) in variables x 1 , x 2 , . . . is defined as the sum of x T where T runs over the shifted tableaux of shape λ. Since every coefficient in Q λ is divisible by 2 l(λ) , we can define a formal power series with integer coefficients

P λ (x) = 2 -l(λ) Q λ (x). (3.5) 
Let

Ω Q = n≥0 Ω n Q be the graded subalgebra of Λ Q = Q ⊗ Z Λ generated by 1, p 1 , p 3 , p 5 , . . . . Let Ω = Ω Q ∩ Λ be the Z-hyper subring of Ω Q . We write Ω = n≥0 (Ω n Q ∩ Λ)
as a graded ring. A fundamental result in the theory of strict partitions is that

{P λ | λ is a strict partition of n} is a Z-basis of Ω n Q ∩ Λ (see [Ste89]
). We can define integers f ν λµ for each strict partitions λ, µ, ν by

P λ P µ = ν f ν λµ P ν . (3.6)
The integers f ν λµ are called the shifted Littlewood-Richardson coefficients.

Moreover, one can think about P λ as an element of Λ n endowed with its Schur basis. Let g λµ be the integers defined by

P λ = |µ|=n g λµ s µ .
(3.7)

Note that in the notation of g λµ , λ is a strict partition and µ is a partition. It turns out that the coefficients g λµ are related with the shifted Littlewood-Richardson coefficients. More precisely (see [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF]),

g λµ = f µ+δ λδ , ( 3.8) 
where µ = (µ 1 , µ 2 , . . . , µ l ) with l = l(µ), (3.9) δ = (l, l -1, . . . , 1), (3.10)

µ + δ = (µ 1 + l, µ 2 + l -1, . . . , µ l + 1). (3.11) 
We have two motivations to study the coefficients f ν λµ and g λµ . The first one explained in the following section, interprets these coefficients in terms of projective representations of the symmetric groups. The second one, see subsection ??, interprets them in terms of Schubert calculus.

Projective representations of symmetric groups

In this subsection, we present fundamental background about projective reprsentations of the symmetric groups and the relation with shifted Littlewood-Richardson coefficients. The main reference are [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF] and [START_REF] Hoffman | Projective representations of the symmetric groups[END_REF].
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Projective representations of S n

Let G be a finite group and V be a finite dimensional complex vector space. A projective representation of the group G on V is a group homomorphism of G in P GL(V ) = GL(V )/C × 1 V . Such an homomorphism may be viewed as a map P : G → GL(V ) such that 1. P (1) is the identity linear map of V .

2. P (x)P (y) = c(x, y)P (xy) (x, y ∈ G) for some c(x, y)

∈ C × . The map c : G × G → C × , (x, y) → c(x, y) is called the factor set of P . It satisfies c(x, 1) = c(1, x) = 1 for all x ∈ G.
(3.12)

By the associativity of GL(V ), we have c(x, y)c(xy, z) = c(x, yz)c(y, z) for all x, y, z ∈ G.

(3.13) Remark 3.2. An ordinary representation of G is a projective representation with c(x, y) = 1 for all x, y ∈ G.

Let P : G → GL(V ) and Q : G → GL(W ) be two projective representations of G. We say that P and Q are equivalent if there exists an invertible linear map S :

V → W and a map b : G → C × such that b(1) = 1 and b(x)SP (x)S -1 = Q(x) for all x ∈ G.
(

Let c and c ′ be factor sets of P ad Q, respectively. In this case, we also say that c and c ′ are equivalent. More precisely, the equivalence of factor sets is given by

c ′ (x, y) c(x, y) = b(x)b(y) b(xy) for all x, y ∈ G. (3.15)
The set of all factor sets modulo equivalence is called the Schur multiplier of G. It is isomorphic to the second cohomology group H 2 (G, C × ).

We associate to each factor set c a twisted group algebra CG c with a basis {α x | x ∈ G} and the multiplication defined by α x α y = c(x, y)α xy . The twisted group algebras associated to equivalent factor sets are isomorphic. A projective representaton of G with factor set c is identified with a CG c -module. Now, suppose that G = S n . Let CS n be the group algebra generated by s 1 , . . . , s n-1 with the relations

(s j ) 2 = 1, (s j s k ) 2 = 1 for all |j -k| ≥ 2, (s j s j+1 ) 3 = 1. (3.16)
Let CS ′ n be the group algebra generated by α 1 , . . . , α n-1 with the relations

(α j ) 2 = 1, (α j α k ) 2 = -1 for all |j -k| ≥ 2, (α j α j+1 ) 3 = 1.
(3.17)

Proposition 3.3. The algebras CS n and CS ′ n are the only possible twisted group algebras structures for S n . They are isomorphic only for n ≤ 3. In particular, H 2 (S n , C × ) is of order 2 only for n ≥ 4.
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The above proposition says that any projective representation of S n is either a CS n -module or a CS ′ n -module. In the case n ≥ 4, set σ j = √ -1α j for each j = 1, . . . , n -1. By relations (3.17), we have

(σ j ) 2 = -1, (σ j σ k ) 2 = -1 for all |j -k| ≥ 2, (σ j σ j+1 ) 3 = -1.
(3.18)

Let S n be the group generated by -1, σ 1 , . . . , σ n-1 with relations (3.18). A CS ′ n -module V is identified with an ordinary representation of S n with -1 represented faithfully in GL(V ), and such a representation is called a spin representation of S n . A CS n -module V is identified with an ordinary representation of S n where the image of -1 in GL(V ) is 1.

Conjugacy classes

Let λ = (λ 1 , . . . , λ l ) (λ l > 0) be a partition of n. We say that λ is even (odd) if n -l(λ) is even (odd). The conjugacy classes of S n are indexed by the partitions of n. Namely, an element σ ∈ S n belongs to the λ th conjugacy class if its cycle length are λ 1 , . . . , λ l . In this case, we write type(σ) = λ. Moreover, we say that σ is even (odd) if λ is even (odd).

Conjugacy classes of S n

Let |.| be the canonical homomorphism from S n to S n , which is defined by -1 → 1, σ j → s j . Set

C λ = {σ ∈ S n such that type(|σ|) = λ}. (3.19) Let σ λ = π 1 . . . π l (l = l(λ)), (3.20) 
where

π j = σ a+1 . . . σ a+λj -1 (a = λ 1 + • • • + λ j-1 ). (3.21) 
Set

C + λ = {τ σ λ τ -1 | τ ∈ S n }, (3.22) 
C - λ = {-τ σ λ τ -1 | τ ∈ S n }. (3.23)
The conjugacy classes of S n are described as follows:

• If any σ ∈ S n is conjugate to -σ, then C λ is an conjugacy class of S n .
• If there is no σ ∈ S n conjugate to -σ, then C λ is the disjoint union of two S n conjugacy classes C + λ and C - λ . We known that (see [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF]) this case happens if and only if λ has only odd parts or it is a strict odd partition.

Conjugacy classes of parabolic subgroups of S n

Let J be a subset of the set {1, . . . , n-1}. There exists a unique sequence of nonnegative integers β = (β 1 , . . . , β l ) such that

β 1 + • • • + β l = n and J = {β 1 + • • • + β j | 1 ≤ j < l}.
(3.24)

The subgroup S J n of S n generated by all elements s j (j ∈ J) is called a parabolic subgroup of S n . Moreover,

S J n ∼ = S β1 × • • • × S β l . (3.25)
The subgroup S J n of S n generated by elements -1 and all σ j (j ∈ J) is called a parabolic subgroup of S n . We write S β (resp. S β ) for the group S J n (resp. S J n ) and regard S βj (resp. S βj ) as subgroups of S β (resp. S β ). We also let CS ′ β (resp. CS β ) be the corresponding subalgebra of CS ′ n (resp. CS n ). The conjugacy classes of S β are indexed by l-tuple λ = (λ 1 , . . . , λ l ) where λ j is a partition of β j . For such an l-tuple λ, set C λ = {π 1 . . . π l such that π j ∈ S βj and type(|π j |) = λ j }.

(3.26)

Set σ λ = σ λ 1 . . . σ λ l where σ λ j ∈ S βj is defined by (3.20) and

C + λ = {τ σ λ τ -1 | τ ∈ S β }, (3.27) 
C - λ = {-τ σ λ τ -1 | τ ∈ S β }. (3.28)
The conjugacy classes of S β are described as follows:

• If any σ ∈ S β is conjugate to -σ then C λ is a conjugacy class of S β . • If there is no σ ∈ S β conjugate to -σ then C λ is the disjoint union of two S β classes C + λ and C - λ . Let λ * = λ 1 ∪ • • • ∪ λ l be
the partition whose parts are union of those of λ 1 , . . . , λ l (we call λ * the multiset partition union of λ 1 , . . . , λ l ). Then this case happens if and only if λ * has only odd parts or λ * is odd and λ j has distinct parts.

The space of class functions of S n

The space of all class functions of S n is of the form Z n ⊕ Z ′ n where Z n is the space spanned by ordinary characters and Z ′ n is the space spanned by spin characters.

For each partition λ of n, we define the indicator function 1 λ by

1 λ (σ) = 1 if type(|σ|) = λ, 0 if type(|σ|) = λ, ( 3.29) 
and the spin-indicator function 1 ′ λ by

1 ′ λ (σ) =      1 if σ ∈ C + λ , -1 if σ ∈ C - λ , 0 if type(|σ|) = λ. (3.30) Then {1 λ | λ is a partition of n} is a basis of Z n , and
{1 ′ λ |
λ is a partition of n with only odd parts or a strict odd partition of n} is a basis of Z ′ n . The product of characters in the space Z n ⊕ Z ′ n is given by

1 λ 1 µ = δ λµ 1 λ , 1 ′ λ 1 µ = δ λµ 1 ′ λ , 1 ′ λ 1 ′ µ = δ λµ 1 λ .
We denote the inner product of characters of the group S n by , .

Basic spin characters of S n

The Clifford algebra C n is the algebra generated by ζ 1 , . . . , ζ n with relations

ζ 2 j = 1, ζ j ζ k + ζ k ζ j = 0 for all k = j. (3.31)
As a vector space, it has a basis Let M m be the matrix algebra of degree m.

{ζ A | A = {a 1 , . . . , a r such that 1 ≤ a 1 < • • • < a r ≤ n}} , ( 3 
If n is an even number, write n = 2k, then C 2k is isomorphic to M 2 k . In particular, the map ρ :

C 2k → M 2 k defined by ζ 2j-1 → ǫ ⊗ • • • ⊗ ǫ ⊗ x ⊗ 1 ⊗ • • • ⊗ 1, ζ 2j → ǫ ⊗ • • • ⊗ ǫ ⊗ y ⊗ 1 ⊗ • • • ⊗ 1,
where x and y are in the j th (1 ≤ j ≤ k) position, and

ǫ = 1 0 0 -1 , x = 0 1 1 0 , y = 0 √ -1 - √ -1 0 , (3.33)
is an isomorphism. Then character of ρ is given by trρ(

A c A ζ A ) = 2 k c ∅ , (3.34) 
where c A is the coefficients of ζ A . Hence, ρ modulo equivalence is the unique irreducible representation of C 2k .

If n is an odd number, write n = 2k + 1, then (3.36)

C 2k+1 = C 2k ⊕ ζC 2k , ( 3 
The characters of ρ ± are given by

trρ ± ( A c A ζ A ) = 2 k c ∅ ± (2 √ -1) k c ζ , (3.37)
where c ζ is the coefficient of ζ. Hence, ρ ± modulo equivalence are the unique irreducible representation of C 2k+1 .

The group S n is embedded into

C × n-1 by a map ψ : S n → C × n-1 given by σ j → a j ζ j + b j ζ j+1 , (3.38) where a j , b j ∈ C × (1 ≤ j ≤ n -1) are such that a 2 j + b 2 j = -1, a j+1 b j = 1 2 , b n-1 = 0. (3.39)
The basic spin representations of S n with respect to the embedding ψ is defined as follows:
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• If n = 2k + 1, it is the composition

S n ψ -→ C × n-1 ρ -→ GL(2 k ), (3.40) 
denoted by ϕ n .

• If n = 2k, it is both of the compositions

S n ψ -→ C × n-1 ρ± --→ GL(2 k-1 ), (3.41) 
denoted by ϕ n ± , respectively. We use the notation ϕ n for either ϕ n + or ϕ n -. These representations modulo equivalence are independent of ψ. The characters of basic spin representations will be denoted by the same symbols ϕ n , ϕ n ± , and we call them the basic spin characters.

Theorem 3.4. The basic spin representations of S n are irreducible. Moreover, we have

ϕ 2k+1 (σ λ ) =
2 (l(λ)-1)/2 if λ is a partition of 2k + 1 with only odd parts, 0 otherwise.

(3.42)

ϕ 2k ± (σ λ ) =      2 (l(λ)-2)/2
if λ is a partition of 2k with only odd parts,

±( √ -1) k √ k if λ = (2k), 0
otherwise.

(3.43)

Spin characters of parabolic subgroups of S n

Let J be a subset of {1, . . . , n -1}. Let β be the sequence of nonnegative integers defined as in (3.24). For each 1 ≤ k ≤ l, set

J k = {j such that β 1 + • • • + β k-1 < j < β 1 + • • • + β k }.
(3.44)

Then J = l k=1
J k and S β k is the subgroup of S β generated by -1 and all elements σ j (j ∈ J k ).

In this subsection, we construct spin representations of S β (or CS ′ β -modules).

First, let V and V ′ be CS ′ n -modules. We say that V and V ′ are associates if

V ′ ∼ = sgn ⊗ V . An CS ′ n -module V is called self-associate if V ∼ = sgn ⊗ V . In this case, there exists S ∈ GL(V ) such that Sσ j | V = -σ j S| V for all 1 ≤ j ≤ n -1. (3.45)
We call S an associator for V . Now, let V j (1 ≤ j ≤ l) be CS ′ βj -modules among which exactly r are self-associate. We assume that V 1 , . . . , V r are the self-associate modules. Let V be an irreducible C l-r -module where C l-r is the Clifford algebra generated by {ζ j+1 , . . . , ζ l } and let S j be an associator of V j for each 1 ≤ j ≤ r. The reduced Clifford product of V 1 , . . . , V l with respect to V and S 1 , . . . , S r is the tensor product Here, σ j in (3.48) is in k th position.

V ⊗ V 1 ⊗ • • • ⊗ V l with CS ′ β -module structure defined by σ j (v ⊗ v 1 ⊗ • • • ⊗ v l ) = v ⊗ A 1 v 1 ⊗ • • • ⊗ A l v l if j ∈ J k , 1 ≤ k ≤ r, ζ k v ⊗ B 1 v 1 ⊗ • • • ⊗ B l v l if j ∈ J k , r < k ≤ l, ( 3 
Let ϕ, ϕ 1 , . . . , ϕ l be spin characters of V, V 1 , . . . , V l , respectively. We denote

ϕ× c ϕ 1 × c • • •× c ϕ l the spin character of V ⊗ V 1 ⊗ • • • ⊗ V l ,
and call it the reduced Clifford product of spin characters ϕ, ϕ 1 , . . . , ϕ l . Theorem 3.5. A reduced Clifford product of the CS ′ βj -modules is irreducible. Conversely, every irreducible CS ′ β -module is of this form.

Irreducible spin characters of S n

For each partition λ, let z λ be the cardinal of the centralizer of any permutation σ of type λ. Let m j (j = 1, 2, 3, . . . ) be the number of the parts of λ of size j. Then we have

z λ = (m 1 !1 m1 )(m 2 !2 m2 ) . . . (3.49)
The characteristic map ch : Z n → Λ n C is the linear isomorphism given by ch(1 λ ) = p λ /z λ .

(3.50)

Set χ λ = ch -1 (s λ ).

Theorem 3.6. The irreducible characters of S n are χ λ (λ is a partition of n).

Define an inner product

[, ] on Ω n C by [p λ , p µ ] = 1 2 l(λ) z λ δ λµ .
(3.51)

For each strict partition λ, set Q * λ = 2 -l(λ)/2 Q λ . Then {Q * λ | λ is a strict partition} is an orthonomal basis of Ω R . The irreducible spin characters of S n associated to λ are defined as follows:

• If λ is an even partition of n with distinct parts, we let ϕ λ ∈ Z ′ n be the self-asscociate class function defined by

ϕ λ (σ µ ) = [Q * λ , 2 l(µ)/2 p µ ]
if µ is a partition of n with only odd parts, 0 otherwise.

(3.52)

• If λ is a strict odd partition of n, we let ϕ λ ± ∈ Z ′ n be the pair of associate class functions defined by

ϕ λ ± (σ µ ) =      1 √ 2 [Q * λ , 2 l(µ)/2 p µ ]
if µ is a partition of n with only odd parts,

±( √ -1) (n-l(λ)+1)/2 z λ 2 if µ = λ, 0 otherwise.
(3.53) In this case, we use the notation ϕ λ for either ϕ λ + or ϕ λ -.

Theorem 3.7. The irreducible spin characters of S n are ϕ λ (λ is an even partition of n with distinct parts) and ϕ λ ± (λ is a strict odd partition of n).

Relation with shifted Littlewood-Richardson coefficients

This subsection explains how the shifted Littlewood-Richardson coefficients appear in the projective representations of symmetric groups.

For each partition λ, set

ǫ λ = √ 2 if λ is odd, 1 if λ is even. (3.54)
Theorem 3.8. Let λ be a strict partition of k, µ be a strict partition of n -k, and ν be a strict partition of n. Then

(ϕ λ × c ϕ µ ) ↑ S n , ϕ ν = 1 ǫ ν ǫ λ∪µ 2 (l(λ)+l(µ)-l(ν))/2 f ν λµ , (3.55)
unless ν is odd and ν = λ ∪ µ. In that case, the multiplicity of ϕ ν ± is 0 or 1 according to the choice of associates. Theorem 3.9. Let λ be a strict partition of n and µ be a partition of n. Then

ϕ n χ µ , ϕ λ = 1 ǫ λ ǫ (n)
2 (l(λ)-1)/2 g λµ , (3.56) unless λ = (n), n is even, and µ is a hook-partition. In that case, the multiplicity of ϕ λ ± is 0 or 1 according to the choice of associates.

Corollary 3.10. The coefficients f ν λµ and g λµ are non-negative integers.

Introduction

Let λ, µ, ν be partitions. Let l(λ) be the length of λ, and s λ be the Schur function associated to the partition λ. The Littlewood-Richardson coefficients c ν λµ appear in the expansion (see [START_REF] Fulton | Young tableaux[END_REF])

s λ s µ = ν c ν λµ s ν . (4.1)
If now λ, µ, ν are strict partitions, let Q λ be the shifted Schur Q-function associated to the strict partition λ. The shifted Littlewood-Richardson coefficients appear in the expansion (see [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF])

Q λ Q µ = ν 2 l(λ)+l(µ)-l(ν) f ν λµ Q ν . (4.2)
For any strict partition λ, and a partition µ of the same integer, the coefficients g λµ appear in the decomposition (see [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF])

Q λ = 2 l(λ) µ g λµ s µ . (4.
3)

The coefficients g λµ can be considered as shifted Littlewood-Richardson coefficients by the identity (see [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF])

g λµ = f µ+δ λδ , ( 4.4) 
where δ = (l, l -1, . . . , 1) with l = l(µ).

There were several developments beyond the Littlewood-Richardson rule. For example, -Zelevinsky [START_REF] Zelevinsky | A generalization of the Littlewood-Richardson rule and the Robinson-Schensted-Knuth correspondence[END_REF] expressed the coefficients c ν λµ as the number of pictures between µ and ν/λ.

-Remmel and Whitney [START_REF] Remmel | Multiplying Schur functions[END_REF] described c ν λµ as the number of standard tableaux of shape λ satisfying some rules depending on the skew shape ν/µ. There is also a similar version by Chen, Garsia, Remmel [START_REF] Chen | Algorithms for plethysm[END_REF] where they replace λ with ν and ν/µ with λ * µ.

-White [START_REF] White | Some connections between the Littlewood-Richardson rule and the construction of Schensted[END_REF] showed that the set of tableaux in the construction of Remmel and Whitney [START_REF] Remmel | Multiplying Schur functions[END_REF] can be understood from a different point of view. It arises from Robinson-Schensted insertion of reading words of column-strict tableaux of a fixed skew shape.

There are new approaches that come from geometry: the algorithm by Liu [START_REF] Ini | An algorithmic Littlewood-Richardson rule[END_REF] and the rule of Ravi Vakil [START_REF] Vakil | A geometric Littlewood-Richardson rule[END_REF] etc.

The theory and methods for shifted Littlewood-Richardson coefficients are also developed parallelly with the theory of Littlewood-Richardson coefficients. Based on the work of Worley [START_REF] Raymond | A theory of shifted Young tableaux[END_REF], Sagan [START_REF] Sagan | Shifted tableaux, Schur Q-functions, and a conjecture of R. Stanley[END_REF], Stembridge [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF], there are several versions of the shifted Littlewood-Richardson rule for f ν λµ , for example, the works of Serrano [START_REF] Serrano | The shifted plactic monoid[END_REF] and Shimozono [START_REF] Shimozono | Multiplying Schur Q-functions[END_REF] and so on. The shifted Littlewood-Richardson rule given by Stembridge [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF] is also re-obtained by using the theory of crystal bases for the quantum queer superalgebra (see [GJK + 14] and [START_REF] Choi | Crystals and Schur P -positive expansions[END_REF]). In [START_REF] Choi | Bijections among combinatorial models for shifted Littlewood-Richardson coefficients[END_REF], the authors established the bijections between three models for shifted Littlewood-Richardson coefficients in [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF], [START_REF] Serrano | The shifted plactic monoid[END_REF] and [GJK + 14].

In this article, we use Stembridge's rule [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF] to obtain a new combinatorial models for the coefficients f ν λµ and g λµ . The advantage of our rules is that they let appear connections with ordinary Littlewood-Richardson coefficients. The motivation of our work comes from the work of P. Belkale, S. Kumar and N. Ressayre [START_REF] Prakash Belkale | A generalization of Fulton's conjecture for arbitrary groups[END_REF]. The main results in the article [START_REF] Prakash Belkale | A generalization of Fulton's conjecture for arbitrary groups[END_REF] raised up some first clues about relations between shifted Littlewood-Richardson coefficients with Littlewood-Richardson coefficients. N. Ressayre conjectures an inequality between them in [START_REF] Ressayre | [END_REF]. We do not use the approach from geometry as in [START_REF] Prakash Belkale | A generalization of Fulton's conjecture for arbitrary groups[END_REF], but we try to develop the combinatorial model of Stembridge [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF] to discover bridges between these coefficients. To be more precise, we describe the results as follows.

Our first result, Theorem 4.22 is a new combinatorial model for the shifted Littlewood-Richardson coefficients. This is analogous to Remmel and Whitney's work [START_REF] Remmel | Multiplying Schur functions[END_REF]. The combinatorial model proposed by Shimozono in [START_REF] Shimozono | Multiplying Schur Q-functions[END_REF] is analogous to White's model [START_REF] White | Some connections between the Littlewood-Richardson rule and the construction of Schensted[END_REF], arising from Sagan's shifted insertion [START_REF] Sagan | Shifted tableaux, Schur Q-functions, and a conjecture of R. Stanley[END_REF]. Despite the case of Littlewood-Richardson coefficients where Remmel and Whitney's construction is identified with White's construction, our construction and Shimozono's construction do not produce the same model.

Since g λµ can be considered as a shifted Littlewood-Richardson coefficient, we obtain a new model for g λµ in Theorem 4.23.

Our second result, Theorem 4.28 is another combinatorial interpretation of the coefficients g λµ . More precisely, let λ be the partition such that its Young diagram is the union of shifted diagram corresponding to λ and its reflection through the main diagonal. Let µ t be the conjugate partition of µ. We prove that g λµ is the cardinality of a subset of a set that counts the coefficients The equality (4.7) might be well known among experts, nevertheless we include a geometric proof in Proposition 4.19.

c λ µ t µ .
The article contains four sections. In the first section, we collect some basic background about the theory of Young tableaux, and related models for Littlewood-Richardson coefficients. In the second section, we present the theory of shifted tableaux, and related models, some interpretations for shifted Littlewood-Richardson coefficients. The last two sections present our two main results on the coefficients f ν λµ and g λµ .

In this section, we present Young tableaux, and related models for Littlewood-Richardson coefficients. Let ν = (ν 1 , ν 2 , . . . ) and µ = (µ 1 , µ 2 , . . . ) be two partitions. We say that ν is bigger than µ if and only if ν i ≥ µ i for all i, and we write ν ≥ µ. The word w(T ) of a Young tableau T is defined to be the sequence obtained by reading the rows of T from left to right, starting from bottom to top. A Young tableau of skew shape ν/µ is said to be a standard skew Young tableau if its word is a permutation of the word 12 . . . |ν/µ|. The transpose of a standard skew Young tableau T is also a standard skew Young tableau and it is denoted by T t .

Young tableaux
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Row-insertion and product tableau

For a Young tableau T and a positive integer x, we recall row-insertion x to T from [START_REF] Fulton | Young tableaux[END_REF]. The result of row-insertion x to T is a Young tableau, is denoted by T ← x. Let T and U be Young tableaux, the product tableau T.U is defined by Let T be a skew Young tableau of skew shape ν/µ. Let b be an inner corner of ν/µ. We recall sliding b out of T from [START_REF] Fulton | Young tableaux[END_REF]. The result of applying sliding b out of T gives us a new skew Young tableau T ′ of skew shape ν ′ /µ ′ such that |ν ′ | = |ν| -1, |µ ′ | = |µ| -1. Choose a random inner corner b ′ of T ′ and do sliding b ′ out of T ′ as before, we get a new skew Young tableau T ′′ of skew shape ν ′′ /µ ′′ such that |ν ′′ | = |ν| -2, |µ ′′ | = |µ| -2. So repeat the process as many times as possible, we finally get a Young tableau and the process will terminate. There is a fact that the Young tableau we get does not depend on the choice of random inner corners in each step. The final tableau we have obtained is called the rectification of T and it is denoted by Rect(T ). The whole process we apply on T to get Rect(T ) is called the jeu de taquin. 

T.U := (. . . ((T ← x 1 ) ← x 2 ) ← • • • ← x n-1 ) ← x n , ( 4 

Littlewood-Richardson rule

A Young tableau T is said to have content γ = (γ 1 , γ 2 , . . . ) if γ i is the number of entries i in the tableau T . We write We can describe a one-to-one correspondence between T (λ, µ, V 0 ) and S(ν/λ, U 0 ) as follows:

x T = x γ = x γ1 1 x γ2 2 . . . . ( 4 
s λ s µ = ν c ν λµ s ν , ( 4 
1. Let (Λ, U ) be an element of the set T (λ, µ, V 0 ). Suppose that

U U 0 ←→ RSK u 1 . . . u m v 1 . . . v m , ( 4.16) 
where m = |µ|. Let S be the new skew tableau obtained by placing u 1 , . . . , u m into the new boxes while doing row-insertion v 1 , . . . , v m into Λ. Then S is an element of S(ν/λ, U 0 ).

2. Conversely, let S be an element of S(ν/λ, U 0 ). Let Λ ′ be an arbitrary Young tableau of shape λ. Put an order on the letters in Λ ′ and S in such a way that all letters in Λ ′ are smaller than those in S. Now, suppose that

V 0 Λ ′ ∪ S ←→ RSK t 1 . . . t n u 1 . . . u m x 1 . . . x n v 1 . . . v m , ( 4 
.17)

CHAPTER 4. ON THE SHIFTED LITTLEWOOD-RICHARDSON COEFFICIENTS AND THE LITTLEWOOD-RICHARDSON COEFFICIENTS

The two-rowed array corresponding to the pair

V 0 Λ ′ ∪ S is 1 1 1 2 2 3 4 1 1 1 1 2 2 3 1 5 6 2 4 3 2 1 3 7 7 4 6 5 . ( 4 

.19)

The tableaux Λ and U such that (Λ, U ) ∈ T (λ, µ, V 0 ) corresponding to S are For each skew shape γ, we define a perforated tableau T of shape γ to be a result of filling some boxes in Y (γ) with integers such that: (PT1) The entries in each column are strictly increasing.

(PT2) The entries in the northwest of each entry t of T are less than or equal to t.

Let S, T be perforated tableaux of shape γ. We say that S, T completely fill γ if all boxes in Y (γ) are filled by entries of S or T , and no box is filled twice. We then call S ∪ T a perforated pair of shape γ.

Let S ∪ T be a perforated pair of shape γ. Let s in S and t in T be adjacent integers, t is below or in the right of s. We define switching s ↔ t by interchanging s and t such that after the action, both perforated tableau of shape γ filled by entries t, and perforated tableau of shape γ filled by entries s satisfy the conditions (PT1) and (PT2).

Choose a random pair (s, t) in S ∪ T such that we can do the switching s ↔ t. Repeat this process until there are no more pair (s, t) in S ∪ T that can be switched s ↔ t. The result is a new perforated pair T ′ ∪ S ′ of shape γ, where S ′ is the perforated tableau filled by entries s and T ′ is the perforated tableau filled by entries t. The point is that the resulting pair T ′ ∪ S ′ does not depend on the choices, it is denoted by S T ∪ S T (see [START_REF] Benkart | Tableau switching: algorithms and applications[END_REF]). The process we have done to produce S T ∪ S T from S ∪ T is called the switching procedure. The map that sends S ∪ T to S T ∪ S T is called the switching map.

The example below visualizes switching procedure.

Example 4.10. Let γ = (4, 3, 3, 2)/(2, 1). The tableau S with red entries and the tableau T with blue entries below are perforated tableaux of shape γ.

S = 1 1 2 3 T = -1 -2 -2 1 2 S ∪ T = 1 -1 -2 -2 1 1 2 2 3 4.1. INTRODUCTION 75 
Look at the entries inside the circles below

1 -1 -2 -2 1 1 2 2 3
We see that we can just switch 1 ↔ 1, but we cannot switch 1 ↔ 2. Indeed, after switching 1 ↔ 1, we get

1 -1 -2 -2 1 1 2 2 3
The new tableau formed by the red entries and the new tableau formed by blue entries satisfy the conditions (PT1), (PT2). But after switching 1 ↔ 2, the new tableau formed by the blue entries does not satisfy the condition (PT2).

Here is the visualization of switching procedure with starting point S ∪ T (we choose pairs in circles to switch).

1 -1 -2 -2 1 1 2 2 3 -→ 1 -1 -2 -2 1 1 2 2 3 -→ -2 -1 -2 1 1 1 2 2 3
Hence,

S T = -2 -1 -2 1 2 and S T = 1 1 2 3
Let S, T be skew tableaux. We say that T extends S if T has skew shape ν/λ and S has shape λ/µ for some partitions ν ≥ λ ≥ µ. The following theorem is a collection of some important properties in Theorem 2.2 and Theorem 3.1 in the article [START_REF] Benkart | Tableau switching: algorithms and applications[END_REF]. Indeed, let Λ 0 be a Young tableau of shape λ and U 0 be a Young tableau of shape µ. We can describe a one-to-one correspondence between S(ν/µ, Λ 0 ) and S(ν/λ, U 0 ) by tableau switching as follows:

1. Let S be an element of S(ν/λ, U 0 ). The switching map sends Λ 0 ∪ S to Λ0 S ∪ (Λ 0 ) S . By Theorem 4.11, we have Λ0 S = U 0 and Rect((Λ 0 ) S ) = Λ 0 . Hence, (Λ 0 ) S ∈ S(ν/µ, Λ 0 ).

2. By Theorem 4.11, the switching map is an involution. Hence, the map that sends S to (Λ 0 ) S is a bijection between S(ν/λ, U 0 ) and S(ν/µ, Λ 0 ). We denote this map by B ν/λ,U0 ν/µ,Λ0 .

Let V 0 and W 0 be Young tableaux of shape ν. The composition of the bijections below

T (λ, µ, V 0 ) F λ,µ,V 0 ν/λ,U 0 -----→ S(ν/λ, U 0 ) B ν/λ,U 0 ν/µ,Λ 0 -----→ S(ν/µ, Λ 0 ) F µ,λ,W 0 ν/µ,Λ 0 -1 ---------→ T (µ, λ, W 0 ) (4.21)
gives us a bijection between the set T (λ, µ, V 0 ) and the set T (µ, λ, W 0 ). We denote this map by S λ,µ,ν V0,U0,Λ0,W0 .

Remark 4.13. Subsection 4.1.5 provides an algorithm to determine the set S(ν/λ, U µ ). Applying then B ν/λ,Uµ ν/µ,Λ0 , we get an algorithm to compute S(ν/µ, Λ 0 ) for any Λ 0 .

The shifted Littlewood-Richardson coefficients

In this section, we present the definition and Stembridge's models, geometric points of view for shifted Littlewood-Richardson coefficients.

Shifted tableaux

A partition λ = (λ 1 , λ 2 , . . . ) is said to be strict if λ 1 > λ 2 > . . . . Each strict partition λ is presented by a shifted diagram sY (λ) that is a collection of boxes such that: (SD1) The leftmost boxes of each row are in the main diagonal.

(SD2) The number of boxes from top row to bottom row are λ 1 , λ 2 , . . . , respectively.

A shifted tableau T of shifted shape λ is a result of filling the shifted diagram sY (λ) by the ordered alphabet {1 ′ < 1 < 2 ′ < 2 < . . .} such that (T1) The entries in each column and in each row are weakly increasing.

(T2) The entries k ′ in each row are strictly increasing.

(T3) The entries k in each column are strictly increasing.

The shifted tableau T is said to have content γ = (γ 1 , γ 2 , . . . ) if γ i is the number of i or i ′ in T . We write

x T = x γ = x γ1 1 x γ2 2 . . . . ( 4 

.22)

Let ν = (ν 1 , ν 2 , . . . ) and µ = (µ 1 , µ 2 , . . . ) be two strict partitions with ν ≥ µ. We define the skew shifted diagram sY (ν/µ) as the result of removing boxes in shifted diagram sY (µ) from shifted diagram sY (ν). A skew shifted tableau T of skew shifted shape ν/µ is a result of filling the shifted diagram sY (ν/µ) by the ordered alphabet {1 ′ < 1 < 2 ′ < 2 < . . .} satisfying the rules (T1), (T2) and (T3). The content of a skew shifted tableau T is defined by the same way as for a shifted tableau. 

= 1 2 ′ 2 2 2 ′ 3 4 ′
is a shifted tableau of shifted shape (4, 2, 1). The content of T is (1, 4, 1, 1).

Shifted jeu de taquin

For the skew shifted diagram sY (ν/µ), we also define inner corners and outside corners by the same way as for the case of skew Young diagrams. Let T be a skew shifted tableau of skew shifted shape ν/µ without entries k ′ . Let b be an inner corner of skew shifted diagram sY (ν/µ), we define shifted sliding b out of T , and shifted jeu de taquin on T , shifted rectification of T which we denote by sRect(T ), by the same way as for the case of skew Young tableaux.

Here is an example of shifted jeu de taquin. The process of applying the shifted jeu de taquin on T can be visualized as follows:

1 2 3 4 5 -→ 1 2 3 5 4 -→ 1 5 2 3 4 -→ 1 3 5 2 4 -→ 1 2 3 5 4 
where the boxes in red are chosen to be slided. Hence, sRect(T ) = 1 2 3 5 4

Shifted Littlewood-Richardson rule

The Schur Q-function Q λ = Q λ (x) in variables x 1 , x 2 , . . . is defined as the sum of x T where T runs over the shifted tableaux of shape λ. Since every coefficient in Q λ is divisible by 2 l(λ) , we can define a formal power series with integer coefficients

P λ (x) = 2 -l(λ) Q λ (x). (4.23) 
We define the power-sum symmetric function p r with r ≥ 1 by

p r = x r 1 + x r 2 + . . . . ( 4.24) 
For each partition λ = (λ 1 , λ 2 , . . . ), we define

p λ = p λ1 p λ2 . . . . ( 4 

.25)

The following set is a Z-basis of Λ n {p λ | λ is a partition of n} .

Let

Ω Q = n≥0 Ω n Q be the graded subalgebra of Λ Q = Q ⊗ Z Λ generated by 1, p 1 , p 3 , p 5 , . . . . Let Ω = Ω Q ∩ Λ be the Z-hyper subring of Ω Q . We write Ω = n≥0 (Ω n Q ∩ Λ) as a graded ring. Since {P λ | λ is a strict partition of n} is a Z-basis of Ω n Q ∩ Λ,
we can define integers f ν λµ for each strict partitions λ, µ, ν by

P λ P µ = ν f ν λµ P ν . ( 4 

.26)

The integers f ν λµ are called the shifted Littlewood-Richardson coefficients.

For any (skew) shifted tableau T , we define the word w(T ) to be the sequence obtained by reading the rows of T from left to right, starting from bottom to top.

Given a word w = w 1 w 2 . . . w n over the alphabet {1 ′ < 1 < 2 ′ < 2 < . . .}, we define a sequence of statistics m i (j) (0 ≤ j ≤ 2n, i ≥ 1) as follows:

m i (j) = multiplicity of i among w n . . . w n-j+1 (0 ≤ j ≤ n), m i (j) = multiplicity of i ′ among w 1 . . . w j-n + multiplicity of i among w n . . . w 1 (n < j ≤ 2n).
We say that the word w is a shifted lattice word if, whenever m i (j) = m i-1 (j), we have

w n-j = i, i ′ if 0 ≤ j < n, w j-n+1 = i -1, i ′ if n ≤ j < 2n.
Stembridge in [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF] obtained a shifted analogue of the Littlewood-Richardson rule as follows.

Theorem 4.16. Let λ, µ, ν be strict partitions. Then the coefficient f ν λµ is the number of skew shifted tableaux T of skew shifted shape ν/µ and content λ satisfying

(F1) The leftmost letter of {i, i ′ in w(T )} is unmarked (1 ≤ i ≤ l(λ)).
(F2) The word w(T ) is a shifted lattice word.

For each strict partition λ and partition µ of the same integer n, let g λµ be the integer defined by With the identity (4.28), he obtained an explicit interpretation of g λµ as in the following theorem.

P λ = |µ|=n g λµ s µ . ( 4 
Theorem 4.17. Let λ be a strict partition and let µbe a partition. Then the coefficient g λµ is the number of skew shifted tableaux T of shape µ and content λ satisfying

(G1) The leftmost letter of {i, i ′ in w(T )} is unmarked (1 ≤ i ≤ l(λ)).
(G2) The word w(T ) is a shifted lattice word.

A skew shifted tableau of skew shifted shape ν/µ is said to be standard if its word is a permutation of the word 12 . . . |ν/µ|. The following result can be translated equivalently from Lemma 8.4 in the article [Ste89] of J. Stembridge. Theorem 4.18. Let λ, µ, ν be strict partitions. Choose a standard shifted tableau T λ of shifted shape λ. Then the coefficient f ν λµ is the number of standard skew shifted tableaux S of skew shifted shape ν/µ such that sRect(S) = T λ .

Geometric interpretation of the coefficients f ν λµ and g λµ

Let V be a complex vector space of dimension m + n. The set Gr(m, V ) of linear subspaces of dimension m in V is called a complex Grassmannian. Fix a complete flag of V

F : 0 = V 0 ⊂ • • • ⊂ V i ⊂ • • • ⊂ V m+n = V, (4.32)
where each V i is a vector subspace of V of dimension i. To each partition λ = (λ 1 , . . . , λ m ) with λ m ≥ 0, contained in the m × n rectangle, we associate the Schubert variety

X λ (F) = {W ∈ Gr(m, V ) | dim(W ∩ V n+i-λi ) ≥ i (1 ≤ i ≤ m)} . (4.33)
The Poincare dual class of X λ (F) is denoted by σ λ and called a Schubert class. Then σ λ is an element of H 2|λ| (Gr(m, V )). We have (see [START_REF] Fulton | Young tableaux[END_REF])

H * (Gr(m, V )) =
λ is a partition contained in the m × n rectangle Zσ λ . (4.34)

Now, let V be a complex vector space of dimension 2n, endowed with a nondegenerate skewsymmetric bilinear form ω. A subspace W of V is isotropic if the form ω vanishes on it, i.e., ω(v, w) = 0 for all v, w ∈ W . A maximal isotropic subspace of V is called Lagrangian. The set LG(n, V ) of Lagrangian subspaces in V is called the Lagrangian Grassmannian. Fix a complete isotropic flag of V

L : 0 = V 0 ⊂ • • • ⊂ V i ⊂ • • • ⊂ V n ⊂ V, ( 4.35) 
where each V i is a vector subspace of V , of dimension i and V n is Lagrangian. To each strict partition λ = (λ 1 , . . . , λ l ) with λ l > 0, contained in (n, n -1, . . . , 1), we associate the Schubert variety

Y λ (L) = {W ∈ LG(n, V ) | dim(W ∩ V n+1-λi ) ≥ i (1 ≤ i ≤ l)} . (4.36)
The Poincare dual class of Y λ (L) is denoted by θ λ and called a Schubert class. Then θ λ is an element of H 2|λ| (LG(n, V )). We have (see [START_REF] Pragacz | Algebro-geometric applications of Schur S-and Q-polynomials[END_REF])

H * (LG(n, V )) =
λ is a strict partition contained in (n, n -1, . . . , 1)

Zθ λ , (4.37) and θ λ θ µ = ν 2 l(λ)+l(µ)-ł(ν) f ν λµ θ ν . (4.38)

There is a canonical embedding ι : LG(n, V ) → Gr(n, V ). The map ι induces the ring homomorphism ι * : H * (Gr(n, V )) → H * (LG(n, V )). For each partition µ contained in the n × n rectangle, we have (see [START_REF] Pragacz | A generalization of the Macdonald-You formula[END_REF])

ι * (σ µ ) =
λ is a strict partition contained in (n,n-1,...,1)

g λµ θ λ . (4.39) 4.2.5 Application to the identity g λµ = g λµ t Proposition 4.19. Let λ be a strict partition and let µ be a partition. Then g λµ = g λµ t .

Proof. Let V be a complex vector space of dimension 2n, endowed with a nondegenerate skewsymmetric bilinear form ω. For each subspace W of V , set 

W ⊥ω = {v ′ ∈ V such that ω(v ′ , v) = 0 for all v ∈ W }, ( 4 
L : 0 = V 0 ⊂ • • • ⊂ V i ⊂ • • • ⊂ V n ⊂ V. (4.42)
Then we can extend L to a complete flag F of V as follow

F : 0 = V 0 ⊂ • • • ⊂ V i ⊂ • • • ⊂ V 2n = V, ( 4.43) 
where V n+i = (V n-i ) ⊥ω for each i = 1, . . . , n. Moreover, the flag F ⊥ defined below is a complete flag of

V * F ⊥ : 0 = (V 2n ) ⊥ ⊂ • • • ⊂ (V 2n-i ) ⊥ ⊂ • • • ⊂ (V 0 ) ⊥ = V * . (4.44)
Then flag L ⊥ defined below is a complete isotropic flag of V *

L ⊥ : 0 = (V 2n ) ⊥ ⊂ • • • ⊂ (V 2n-i ) ⊥ ⊂ • • • ⊂ (V n ) ⊥ ⊂ V * . (4.45)
We define an isomorphism η : Gr(n, V ) → Gr(n, V * ) by W → W ⊥ . By [START_REF] Griffiths | Principles of algebraic geometry[END_REF], we know that η(X µ (F)) = X µ t (F ⊥ ). 

Y λ (L) = {W ∈ LG(n, V ) | dim(W ∩ V n-1+λi ) ≥ i + λ i -1 (1 ≤ i ≤ l)} . (4.50)
2. Now, for any W ∈ Y λ (L) given by (4.50), we have -If the entry j ′ belong to the i-th (i > 1) row of T , and the number of entries less than j in the (i -1)-th, i-th row of T are τ i-1 , τ i , respectively, then τ i-1 > τ i . -If the entry j belong to the i-th row of T , and the number of entries less than j ′ in the i-th, (i + 1)-th row of T are τ i , τ i+1 , respectively, then τ i > τ i+1 .

dim(W ∩ V n-1+λi ) ⊥ = 2n + 1 -λ i -dim(W ⊥ ∩ V ⊥ n-1+λi ).
Remark 4.20.

• Since the size of T is |ν/µ|, the conditions (C1) and (C2) imply that only one of k or k ′ appears in T for each k = 1, 2, . . . , |ν/µ|. We can see that the first and the second condition in (C4) are satisfied. However, the third condition in (C4) is not satisfied. Indeed, the entry 9 belongs to the second row of T . The number of entries less than 9 ′ in the second row and the third row of T are equal two.

Theorem 4.22. Let λ, µ, ν be strict partitions. Then the coefficient f ν λµ is the number of the tableaux T in O(ν/µ) of shape λ.

Proof. Let S λ (ν/µ) be the set of tableaux in Theorem 4.16. Let O λ (ν/µ) be the set of tableaux in the set O(ν/µ) of shape λ.

Let T ∈ S λ (ν/µ) with w(T ) = w 1 w 2 . . . w |ν/µ| . We associate T with a unique tableau T ′ of unshifted shape by the rules: For each i = |ν/µ|, . . . , 2, 1, we have -If w i = k, then |ν/µ| + 1 -i appears in the k th row of T ′ .

-If w i = k ′ , then (|ν/µ| + 1 -i) ′ appears in the k th row of T ′ .

We can easily check that T ′ ∈ O λ (ν/µ). Indeed,
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-T has content λ if and only if T ′ has shape λ.

-The conditions (T1), (T2) and (T3) of T are equivalent to the conditions (C1) and (C2) of T ′ . Indeed, suppose that (k + 1) * belongs to the x-th row of T ′ and k * belongs to the y-th row of T ′ , then k + 1 and k appear in the same row of T ν/µ if and only if x ≤ y and x < y if k * = k ′ in T ′ . This is the statement of the condition (C1). For the condition (C2), suppose that k * belongs to the x-th row of T ′ and h * belongs to the y-th row of T ′ , then k is above h in T ν/µ if and only if x ≤ y and x < y if k * = k in T ′ .

-The condition (F1) of T is equivalent to the condition (C3) of T ′ .

-The condition (F2) of T is equivalent to the conditions (C4) of T ′ . Indeed, by the definition of the shifted lattice words, for each j = 1, . . . , n -1, if m i (j) = m i-1 (j) then w n-j = i, i ′ . Equivalently, if the shape of T ′ after deleting entries k ′ and k < j is τ = (τ 1 , τ 2 , . . . ), then τ must be a partition and if τ i-1 = τ i for some i then (j + 1) ′ does not depend on the t-th row of T . Now, for each j = n, . . . , 2n -1, if m i (j) = m i-1 (j) then w j-n+1 = i -1, i ′ . This condition equivalent to say that for each j = n, . . . , 2, if the shape of T ′ after deleting entries k ′ for k < j is τ = (τ 1 , τ 2 , . . . ), then τ must be a partition and if τ i-1 = τ i then j -1 does not belong to the (i -1)-th row of T ′ . The conditions τ is a partition in both cases is rewritten shortly by T ′ having strictly increasing entries in rows and columns. Of course, the entries in each row of T ′ are strictly increasing. Then, we just need conditions on columns. The last conditions of T ′ are the trivial translation of remaining conditions on T ′ .

Hence, we can define an injection φ : S λ (ν/µ) → O λ (ν/µ), T → T ′ .

Moreover, for each T ′ ∈ O λ (ν/µ), we associate T ′ with a unique tableau T of skew shifted shape ν/µ and word w(T ) = w 1 w 2 . . . w |ν/µ| by the rule: for each j = |ν/µ|, . . . , 2, 1, we have -If j appears in the k th row of T ′ , then w |ν/µ|+1-j = k.

-If j ′ appears in the k th row of T ′ , then w |ν/µ|+1-j = k ′ .

The equivalence of the conditions we have already shown implies that T ∈ S λ (ν/µ). So we can define an injection ψ : O λ (ν/µ) → S λ (ν/µ), T ′ → T . Moreover, φψ = Id. Hence, φ is a bijection and f ν λµ = # S λ (ν/µ) = # O λ (ν/µ). Theorem 4.23. Let λ be a strict partition and let µ be a partition. Then the coefficient g λµ is the number of the tableaux T in O(µ + δ/δ) of shape λ.

Proof. This follows from Theorem 4.22 and identity (4.28).

We illustrate the method to compute the coefficients f ν λµ through an example. Example 4.24. Set λ = (3, 2), µ = (3, 2), ν = (5, 3, 2).

(1) The shifted reverse filling of the skew shifted shape ν/µ is

T ν/µ = 2 1 3 5 4
(2) To construct the tableaux T ′ in O λ (ν/µ), we first use three conditions (C1), (C2) and (C3).

Then check the results if they satisfy the condition (C4) or not. 1. We start with 1 * , there are two possibilities, they are 1 ′ and 1. But if 1 ′ appears in the tableau T ′ then the next position of 2 * will be in the row above the first row by the condition (C1). It is impossible. Hence, just only one case that 1 appears in T ′ . Then the next two possibilities by the condition (C1) are 1 2 1 2 ′ 2. For the second case, by the condition (C2), there are four possibilities below

1 2 ′ 3 ′ 1 2 ′ 3 1 2 ′ 3 1 2 ′ 3 ′
-The last one cannot happen since the tableau T ′ has shape λ = (3, 2). Then we consider 3 ′ as the rightmost letter in the first row of T ′ and it should be 3 to satisfy the condition (C3).

-The second one also cannot happen because the next position of 4 * will be in the row below the row of 3 by the condition (C2). It cannot produce a tableau of shape λ = (3, 2) later.

-For the third one, the next position of 4 * is based on the condition (C2). To produce the shape λ = (3, 2) later, it will be as follows:

1 2 ′ 3 4 1 2 ′ 3 4 ′
-For the first one, the next position of 4 * is based on the conditions (C2) and (C3). To produce the shape λ = (3, 2) later, will be as follows:

1 2 ′ 3 ′ 4
Continue until the end on the remaining cases by similar arguments, we finally can find the tableaux of shape λ = (3, 2) satisfying all conditions (C1), (C2) and (C3) as follows:

1 2 5 3 ′ 4 1 2 ′ 5 3 ′ 4 1 2 ′ 3 4 5
We can check that only the first two tableaux above satisfy the condition (C4). Hence,

f ν λµ = 2.
We automatically find out the set of skew shifted tableaux described in Theorem 4.16 by using the bijection we mentioned in the proof of Theorem 4.22. Here they are

1 1 2 ′ 1 2 1 ′ 1 2 ′ 1 2 [Res12]
, in the case G = Sp(2n, C), G/P is the Lagrangian Grassmannian LG(n, C 2n ), the corresponding Levi group is GL(n), and W P is parametrized by strict paritions. Suppose that w ∈ W P corresponds to strict partition λ, then χ w corresponds to the partition λ. Let λ ∨ be the strict partition corresponding to the completion of sY (λ) in sY ((n, n -1, . . . , 1)). Let λ 1 , λ 2 , λ 3 be the strict partitions corresponding to w 1 , w 2 , w 3 ∈ W P , respectively in Theorem 1.4 in [START_REF] Prakash Belkale | A generalization of Fulton's conjecture for arbitrary groups[END_REF]. Since the structure constants for the singular cohomology and the deformed cohomology ⊙ 0 in this case are the same, the theorem says that for any positive integer k, we have In this subsection, we propose a stronger conjectural inequality than Theorem 4.30. We provide some examples to support this conjecture. Indeed, we formulate a conjecture on combinatorial models whose validity implies the first conjecture.

Conjecture 4.31. Let λ be a strict partition and let µ be a partition. Then g 2 λµ ≤ c λ µ t µ . To compute the decomposition of P λ into Schur functions s µ by computer, we use the code below. For example, with λ = (4, 2), we have P (4,2) = s (2,2,1,1) + s (2,2,2) + s (3,1,1,) + 2s (3,2,1) + s (3,3) + s (4,1,1) + s (4,2) .

(4.62)

The code in SageMath (online version: https://cocalc.com/) is Sym = SymmetricFunctions(FractionField(QQ['t'])) SP = Sym.hall_littlewood(t=-1).P(); s = Sym.schur(); s(SP( [4,2]))
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  Computation of b Λ,λ for the case A(1) 1

  , in this part, we will give some conditions where we know that b Λ,λ,u = b Λ,λ .Theorem 2.34. Let g be the affine Kac-Moody algebra of type A (1) 1 . Let Λ = mΛ 0 + jα 2 ∈ P m + and let λ = m ′ Λ 0 + j ′ α 2 ∈ Ṗ+ . 1. If there exists b ∈ C such that (Λ, λ + bδ) belongs to Γ(g, g[u]) then j ′ -j ∈ 2Z and m ′ = m. 2. If moreover a. j ≤ j ′ ≤ um -j and u is even; or b. j ≤ j ′ ≤ um -(m -j) and u is odd, then b Λ,λ,u = b Λ,λ .

  λ for some N > 1 (by (2.215)). So b ≤ b Λ,λ and they are integers. Hence for any d ∈ Z ≥2 , we have b dΛ,dλ -db = d(b Λ,λ -b) ∈ Z ≥0 \ {1}. Then by Theorem 2.31 1., d(Λ, λ + bδ) ∈ Γ(g, g[u]). If h [u]

  .32) where ζ A = ζ a1 . . . ζ ar .

  .35) where ζ = ζ 1 . . . ζ 2k+1 . The representation ρ of C 2k defined above is extended to two representations ρ ± of C 2k+1 by ρ ± (ζ) = ±( √ -1) k .

For a partition

  λ, we write λ = (λ 1 , λ 2 , . . .) with λ 1 ≥ λ 2 ≥ . . . . If λ = (λ 1 , λ 2 , . . . , λ l ) with λ l > 0 and l i=1 λ i = n, we write l(λ) = l, |λ| = n.Each partition λ is presented by a Young diagram Y (λ).

  The reflection σ(Y ) through the main diagonal of a Young diagram Y is also a Young diagram. The conjugate partition λ t of λ is defined by σ(Y (λ)) = Y (λ t ).A semistandard Young tableau of shape λ is a filling of the Young diagram Y (λ) by the ordered alphabet {1 < 2 < . . .} such that: (Y1) The entries in each column are strictly increasing.(Y2) The entries in each row are weakly increasing.

  In this case, we define the skew Young diagram Y (ν/µ) as the result of removing boxes in the Young diagram Y (µ) from the Young diagram Y (ν). We write |ν/µ| = |ν| -|µ|. A skew Young tableau T of skew shape ν/µ is a result of filling the skew Young diagram Y (ν/µ) by the ordered alphabet {1 < 2 < . . .} satisfying the rules (Y1) and (Y2).

  .8) where w(U ) = x 1 x 2 . . . x n . Sliding and jeu de taquin For the skew Young diagram Y (ν/µ), an inner corner of Y (ν/µ) is a box in the Young diagram Y (µ) such that the boxes below and to the right are not in Y (µ). An outside corner is a box in the Young diagram Y (ν) such that the boxes below and to the right are not in Y (ν).

Lemma 4 . 4 .

 44 Let T and U be skew Young tableaux. If w(T ) = w(U ) then Rect(T ) = Rect(U ).

Example 4 . 7 .

 47 Let w be the two-rowed array

  .13) are called Littlewood-Richardson coefficients. For any Young tableaux V 0 of shape ν, let T (λ, µ, V 0 ) be the set {(Λ, U ) | Λ, U are Young tableaux of shapes λ, µ, respectively and Λ.U = V 0 } . (4.14)For any tableau U 0 of shape µ, let S(ν/λ, U 0 ) be the set {Skew tableaux S of skew shape ν/λ such that Rect(S) = U 0 } . (4.15)

  In this subsection, we recall the definition and basic properties of the switching procedure. The main reference is the article[START_REF] Benkart | Tableau switching: algorithms and applications[END_REF] by G. Benkart, F. Sottile, J. Stroomer.

Theorem 4 .

 4 11. Let S, T be skew Young tableaux such that T extends S. Then 1. S T and S T are skew Young tableaux, S T extends S T .2. S T ∪ S T has the same shape as S ∪ T .3. Rect(S) = Rect(S T ).

4 .

 4 Rect(T ) = Rect( S T ).5. The switching map S ∪ T → S T ∪ S T is an involution.CHAPTER 4. ON THE SHIFTED LITTLEWOOD-RICHARDSON COEFFICIENTS AND THE LITTLEWOOD-RICHARDSON COEFFICIENTS The symmetry of Littlewood-Richardson coefficientsThe tableau switching provides a bijective proof of the symmetry of Littlewood-Richardson coefficients c ν λµ = c ν µλ . (4.20)

Example 4 . 14 .

 414 Let λ = (4, 2, 1). Then the shifted diagram sY (λ) is sY ((4, 2, 1)) = And T

CHAPTER 4 .

 4 ON THE SHIFTED LITTLEWOOD-RICHARDSON COEFFICIENTS AND THE LITTLEWOOD-RICHARDSON COEFFICIENTS

  .27) In the proof of Theorem 9.3 in [Ste89], Stembridge used the fact that g λµ = f µ+δ λδ , (4.28) where µ = (µ 1 , µ 2 , . . . , µ l ) with l = l(µ), (4.29) δ = (l, l -1, . . . , 1), (4.30) µ + δ = (µ 1 + l, µ 2 + l -1, . . . , µ l + 1). (4.31)

  .40)W ⊥ = {f ∈ V * such that f (v) = 0 for all v ∈ W }.(4.41) Fix a complete isotropic flag of V

  map η induces the ring isomomorphism η * :H * (Gr(n, V * )) → H * (Gr(n, V )) with η * (σ µ ) = σ µ t . (4.47)The restriction of η on LG(n, V ) is also an isomorphism and we still denote it by η. We haveη(Y λ (L)) = Y λ (L ⊥ ). each W ∈ Y λ (L), we have W ⊥ω = W , and dim(W ∩ V n+1-λi ) ⊥ω = 2n -1 + λ i -dim(W ∩ V n-1+λi ).(4.49)Then we can rewrite (4.36) as

-

  W ⊥ ∈ Y λ (L ⊥ ) given by (4.36).Hence, the map η induces the ring isomorphism η * : H * (LG(n, V * )) → H * (LG(n, V )) withη * (θ λ ) = θ λ . (4.52) CHAPTER 4. ON THE SHIFTED LITTLEWOOD-RICHARDSON COEFFICIENTS AND THE LITTLEWOOD-RICHARDSON COEFFICIENTS We have η * ι * = ι * η * . (4.53) Apply η * on both sides of the equality (4.39), with the help of (4.47), (4.52), (4.53), we getη * (ι * (σ µ )) = λ is a strict partition contained in (n, n -1, . . . , 1) g λµ θ λ (4.54) = λ is a strict partition contained in (n, n -1, . . . , 1)g λµ t θ λ . (4.55)It implies g λµ = g λµ t .4.3 A new combinatorial model for the coefficients f ν λµGiven a skew shifted shape ν/µ, we number the boxes from top to bottom and right to left in each row by 1, 2, . . . , |ν/µ|, respectively. The result is called the shifted reverse filling of the skew shifted shape ν/µ. We denote it by T ν/µ .For each k = 1, 2, . . . , |ν/µ|, let k * to be meant k or k ′ .We now let O(ν/µ) be the set of all tableaux T of size |ν/µ|, unshifted shape, labelled by the alphabet{1 ′ < 1 < 2 ′ < 2 < • • • < |ν/µ| ′ < |ν/µ|}, satisfying the following conditions: (C1) If k and k + 1 appear in the same row of T ν/µ , then (k + 1) * appears weakly above k or (k + 1) * appears strictly above k ′ in T . (C2) If h appears in the box directly below k in T ν/µ , then h * appears weakly below k ′ or h * appears strictly below k in T . (C3) The rightmost letter in each row of T is unmarked. (C4) Let T be the result of reordering each row of T relatively to the order 1 < 2 < • • • < |ν/µ| < |ν/µ| ′ < • • • < 2 ′ < 1 ′ . Then 4.3. A NEW COMBINATORIAL MODEL FOR THE COEFFICIENTS f ν λµ 83 The entries in each column of T are increasing.

•

  In the condition (C1) for the set O(ν/µ), (k + 1) * must appear strictly right of k * in T . It is similar to the condition (R1) for the set O(ν/µ). However, in the condition (C2) for the set O(ν/µ), it is not necessary that h * appears weakly left of k * in T . It is not similar as the condition (R2) for the set O(ν/µ). Indeed, for ν = (3, 1), µ = (1), in T ν/µ , the entry 2 is directly above the entry 3. But O(ν/µ) containsT = 1 2 ′ 3with 3 is on the right of 2 ′ . Example 4.21. We illustrate how the condition (C4) works. Let T be the following tableau

4. 3

 3 . A NEW COMBINATORIAL MODEL FOR THE COEFFICIENTS f ν λµ 85

4 . 4 . 3

 443 when λ 1 = λ, λ 2 = δ, λ ∨ 3 = µ + δ, the left-hand side of (4.60) becomes1 = f µ+δ λδ = g λµ .With k = 1, the right-hand side of (4.60) becomes1 = c µ+δ λδ = #S( µ + δ/ δ, s(T λ )) = #S(µ t * µ, s(T λ )) = #T (µ t , µ, s(T λ )) = c λ µ t µ .Hence, we get the conclusion (4.58). Similarly, the conclusion (4.59) follows Proposition 1.6 in[START_REF] Prakash Belkale | A generalization of Fulton's conjecture for arbitrary groups[END_REF].Theorem 4.30. Let λ be a strict partition and let µ be a partition. Then g λµ ≤ c λ µ t µ . Proof. By Theorem 4.28 and Theorem 4.8, we haveg λµ = #T (µ t , µ, s(T λ )) ≤ #T (µ t , µ, s(T λ )) = c λ µ t µ . (4.61) Inequality g 2 λµ ≤ c λ µ t µ

  

  

  

  Soit g une algèbre de Kac-Moody affine. Soit Λ ∈ P + et λ ∈ P u

	décrivons l'ensemble B(Λ, λ) dans le théorème suivant.	[u] Λ,λ dans (2.118). Nous
	Theorem 0.11.	

) xiii Soit P u (Λ) l'ensemble de λ tel que (Λ, λ) ∈ Γ(g, g[u]). L'ensemble B(Λ, λ) n'est pas vide si et seulement si λ ∈ P u (Λ) + Cδ. Dans ce cas, nous définissons b Λ,λ,u le nombre b ∈ B(Λ, λ) tel que b + n ∈ B(Λ, λ) pour tout n ∈ Z >0 . Nous définissons un nombre h

  Le coefficient g λµ peut être considéré comme un coefficient décalé de Littlewood-Richardson, nous obtenons un nouveau modèle pour g λµ .Notre deuxième résultat est également une nouvelle interprétation combinatoire des coefficients g λµ . Plus précisément, soit λ la partition telle que son diagramme de Young soit l'union du diagramme décalé correspondant à λ et sa réflexion à travers la diagonale principale. Soit µ t la partition conjuguée de µ. Nous prouvons que g λµ est le cardinal d'un sous-ensemble d'un ensemble qui compte les coefficients c λ µ

	Nous conjecturons également une inégalité plus forte
	Conjecture 0.18. Soit λ une partition stricte et soit µ une partition. Alors g 2 λµ ≤ c λ µ t µ .

Theorem 0.15. Soit λ, µ, ν des partitions strictes. Alors le coefficient f ν λµ est le nombre des tableaux T dans O(ν/µ) de forme λ. Theorem 0.16. Soit λ une partition stricte et soit µ une partition. Alors le coefficient g λµ est le nombre des tableaux T dans O(µ + δ/δ) de forme λ. t µ . En corollaire, nous prouvons que Theorem 0.17. Soit λ une partition stricte et soit µ une partition. Alors g λµ ≤ c λ µ t µ .

Introduction v Introduction en Français xi Contents xvi 1 Kac-Moody algebras and their representations

  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Highest weight representations of affine Kac-Moody algebras . . . . . . . 2.3 Branching on Cartan subalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . Branching on winding subalgebras: the general case . . . . . . . . . . . . . . . . 2.4.1 Winding subalgebras of an affine Kac-Moody algebra . . . . . . . . . . . . 2.4.2 Formulas for characteristic elements . . . . . . . . . . . . . . . . . . . . . 2.4.3 The set of weights P u (Λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.4 Character method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Virasoro algebra . . . . . . . . . . . . . . . . . . . . . . . . 2.4.4.2 Sugawara construction of Virasoro operators . . . . . . . . . . . 2.4.4.3 Coset construction of Virasoro operators for winding subalgebras 2.4.4.4 Unitarizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.4.5 An identity of characters . . . . . . . . . . . . . . . . . . . . . . 2.4.5 Semigroup structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.6 The descripton of the set Γ(g, g[u]) . . . . . . . . . . . . . . . . . . . . . . 2.5 The cases A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.0.1 Computation of b Λ,λ for the case A On the coefficients g λµ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.4.1 A new interpretation of the coefficients g λµ . . . . . . . . . . . . . . . . . 86 4.4.2 Inequality g λµ ≤ c λ µ t µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.4.3 Inequality g 2 λµ ≤ c λ µ t µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

	CONTENTS xviii	xvii CONTENTS
	2 The conditions for b Λ,λ,u = b Λ,λ in the case A 2.5.0.3 Computation of b Λ,λ for the case A 2.5.0.2 2.5.0.4 The conditions for b Λ,λ,u = b Λ,λ in the case A 2 . . . . . . . . . . . . . . . 2 (2) (2) 1 . . . . . . . . (1) 1 . . . . . . . . . . . . . . . (1) 1 and A (2) 2.4.4.1 (1) 4.4 Chapter 1	
	(1) 1 2.1 xvi (2) and A 2	

1.1 Generalized Cartan matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Realization of a complex square matrix . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Kac-Moody algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Symmetrizable Kac-Moody algebras . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.1 Standard invariant form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.2 The Weyl group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.3 Representations of symmetrizable Kac-Moody algebras . . . . . . . . . . . 1.4.4 Contravariant Hermitian forms on Verma modules . . . . . . . . . . . . . 1.4.5 Affine Kac-Moody algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Branching problem on winding subalgebras of affine Kac-Moody algebras A 2.2.1 Generalized Cartan matrix of affine type . . . . . . . . . . . . . . . . . . . 2.2.2 Realization of a generalized Cartan matrix . . . . . . . . . . . . . . . . . 2.2.3 Affine Kac-Moody algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.4 Weyl group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.5 Realization of affine Kac-Moody algebras . . . . . . . . . . . . . . . . . . 2.2.6 Dominant integral weights . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.7 2.3.1 About the character ch Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.2 Semigroup structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4

•

  If a ij a ji ≥ 5, then vertices i, j are joined by an edge with numbers |a ij |, |a ji | shown on it.A generalized Cartan matrix A is indecomposable if and only if its Dynkin diagram D(A) is connected. Moreover, the list of all connected Dynkin diagrams corresponding to generalized Cartan matrices of finite type is given below.

  we describe explicit sub-semigroups of this semigroup. Contents 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Generalized Cartan matrix of affine type . . . . . . . . . . . . . . . . . . . 21 2.2.2 Realization of a generalized Cartan matrix . . . . . . . . . . . . . . . . . 21 2.2.3 Affine Kac-Moody algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.4 Weyl group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.5 Realization of affine Kac-Moody algebras . . . . . . . . . . . . . . . . . . 23 2.2.6 Dominant integral weights . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.7 Highest weight representations of affine Kac-Moody algebras . . . . . . . 24 2.3 Branching on Cartan subalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.1 About the character ch Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.2 Semigroup structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 Branching on winding subalgebras: the general case . . . . . . . . . . . . . . . . 26 2.4.1 Winding subalgebras of an affine Kac-Moody algebra . . . . . . . . . . . . 26

		CHAPTER 2. BRANCHING PROBLEM ON WINDING SUBALGEBRAS OF AFFINE
	18	KAC-MOODY ALGEBRAS A (1) 1 AND A (2) 2

2.4.2 Formulas for characteristic elements . . . . . . . . . . . . . . . . . . . . . 27 2.4.3 The set of weights P u (Λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.4 Character method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.4.1 The Virasoro algebra . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.4.2 Sugawara construction of Virasoro operators . . . . . . . . . . . 29 2.4.4.3 Coset construction of Virasoro operators for winding subalgebras 32 2.4.4.4 Unitarizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4.

  -Moody of type A

	(1) 1 is defined by the generalized Cartan matrix
	2 -2 -2 2	,	(2.10)
	and the twisted affine Kac-Moody algebra of type A matrix 2 -4 -1 2	(2) 2 .	is defined by the generalized Cartan (2.11)

  .44) Let t ψu : h * → h * the dual map of ψu . Namely, for each λ ∈ h * we define t ψu by

	t	ψu (λ)(h) = λ( ψu (h))	(2.45)
	for all h ∈ h. For each i ∈ I, set αi = t	ψu (α i ). Then by (2.44), (2.45) we have
	αi = α i for all i > 0 and α0 =	u -1 a 0	δ + α 0 .	(2.46)

For each i ∈ I, set Λi = t ψu (Λ i ) and ρ = t ψu (ρ). By (2.44), (2.45) we have
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  , . . . , A l ) = (S 1 , . . . , S k-1 , σ j , 1, . . . , 1), (3.47) (B 1 , . . . , B l ) = (S 1 , . . . , S r , 1, . . . , σ j , . . . , 1).

	where
	(A 1 (3.48)
	.46)

  Using a computer program, we checked this conjecture on a lot of examples. Based on our combinatorial model for the coefficients g λµ , we formulate Conjecture 4.32 whose validity implies Conjecture 4.31. An evidence for Conjecture 4.32 is that it implies easily the equality g λµ = g λµ t .

	CHAPTER 4. ON THE SHIFTED LITTLEWOOD-RICHARDSON COEFFICIENTS AND
	THE LITTLEWOOD-RICHARDSON COEFFICIENTS
		(4.7)
	This implies Theorem 4.30 that	
	µ t µ . g λµ ≤ c λ We conjecture a stronger inequality (see Conjecture 4.31)	(4.5)
	g 2 λµ ≤ c λ µ t µ .	(4.6)

  .12) For each partition λ, the Schur function s λ in variables x 1 , x 2 , . . . is defined as the sum of x T , where T runs over the semistandard Young tableaux of shape λ. Let Λ =

n≥0

Λ n be the graded ring of symmetric functions in the variables x 1 , x 2 , . . . with coefficients in Z. The following set is a Z-basis of Λ n {s λ | λ is a partition of n} . The integers c ν λµ for each partitions λ, µ, ν defined by

. Dans le troisième chapitre, nous introduisons les coefficients décalés de Littlewood-Richardson et expliquons la motivation de la théorie de représentation projective des groupes symétriques. Dans le dernier chapitre, nous présentons nos résultats sur les nouvelles interprétations des coefficients décalés de Littlewood-Richardson. Nous prouvons une inégalité, et puis conjecturons une inégalité plus forte avec quelques structures combinatoires qui nous aident à mieux comprendre les relations entre les coefficients.

The element d ′ is not the scaling element of g as in the untwisted case. The formula of the scaling element contains d ′ .

It is proved that the set S(ν/λ, U µ ) is the set of all skew tableaux T * where T runs over the set of all tableaux in O µ (ν/λ).
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(1)

(2.199)

Let P j,j ′ : Z → R be the function that maps -n to (2.199). Let F j,j ′ : Z → R be the function defined by

(2.200)

We will show that the maximum of F j,j ′ (n) appears when n = 0, i.e., k = j ′ -j 2 . To do that, we show that the upper bound function F + : R × [0, m 2 ] × [0, um 2 ] → R of F j,j ′ (t) and lower bound function

given below attains theirs maximum along t ∈ Z when t = 0.

+ P -(t, j, j ′ ), (2.202)

where

(2.203)

and

(2.204)

We just consider the function F + and apply similar arguments for F -. The function

(2.205)

THE CASES A

(1)

1 AND A

(2) 2

49

We denote the numbers p defining P + (t + 1, j, j ′ ) and P + (t, j, j ′ ) by p 1 , p 0 , respectively. Use definition, we have p1-p0 2 ≥ u. Hence the partial derivatives of ∆ + , where they exist are

(2.207)

It implies that ∆ + is nonincreasing in t and j ′ . So ∆ + (0, j, j ′ ) ≤ ∆ + (0, j, 0) and

It implies that F + (0, j, j ′ ) > F + (t, j, j ′ ) for any t ∈ Z, t = 0. The same results is true for F -. Hence F i,j (-n) attains its maximum when n = 0. Hence, in the case k = j ′ -j 2 -nM 2 , the minimum of N k occurs when n = 0.

Then N k attains its minimum when n = 0 or 1.

Here is the next proposition we will use in the proof of Theorems 2.38.

Proposition 2.40. With φ(m, j, k) is defined as in (2.168), for each j ∈ [0, m 2 ] and j ′ ∈ [0, um 2 ]∩ Z, we have

(2.209)

if and only if one of the following two conditions is satisfied:

Proof. We again use the equality (2.161) to rewrite φ(m, j, -

as φ(m, j, x) = φ(m, j, x-1) and φ(m, j, x) = -u 2 +φ(m, j, x+ 1 2 ), where x = -j ′ +j 2 . Use (2.168), we can check that it happens if and only if condition (A2) or (B2) is satisfied.

We are now going to the proof of Theorem 2.38.

Chapter 4

On the shifted Littlewood-Richardson coefficients and the Littlewood-Richardson coefficients

The chapter is a reproduction of our second preprint [START_REF] Duc | On the shifted Littlewood-Richardson coefficients and Littlewood-Richardson coefficients[END_REF].

Abstract

In relation with projective representations of the symmetric group, Stembridge introduced in 1989, the shifted Schur Q-functions Q λ associated to any strict partition λ. The shifted Littlewood-Richardson coefficients f ν λµ ∈ N (where λ, µ, ν are strict partitions) is defined by the relation

In this note, we give a new combinatorial model for these coefficients. The coefficients g λµ appear in the decomposition of Schur Q-function Q λ into the sum of Schur functions: Q λ = 2 l(λ) µ g λµ s µ . Actually, g λµ is equal to some explicit shifted Littlewood-Richardson coefficient and hence, we have a combinatorial model to express it. We also give another description for g λµ as the cardinal of a subset of a set that counts Littlewood-Richardson coefficients c λ µ t µ . This new point of view allows us to establish connections between g λµ and c λ µ t µ . More precisely, we prove that g λµ = g λµ t , and g λµ ≤ c λ µ t µ . We conjecture that g 2 λµ ≤ c λ µ t µ and formulate some conjectures on our combinatorial models which would imply this inequality if it is valid.

CHAPTER 4. ON THE SHIFTED LITTLEWOOD-RICHARDSON COEFFICIENTS AND THE LITTLEWOOD-RICHARDSON COEFFICIENTS

The process of applying the jeu de taquin on T can be visualized as follows:

where the boxes in red are chosen to be slided. Hence,

One can easily check that Rect(U ) = Rect(T ).

Let T and U be Young tableaux. We denote T * U the new skew Young tableau which is defined as follows:

T U

We have another point of view about the product tableau T.U . Lemma 4.6. Let T and U be Young tableaux. We have T.U = Rect(T * U ).

The Robinson-Schensted-Knuth correspondence

A two-rowed array is defined by

with u i 's and v i 's are in two independent alphabets. We say that w is in lexicographic order if

The Robinson-Schensted-Knuth correspondence is mentioned in [START_REF] Fulton | Young tableaux[END_REF], which set up an one-to-one correspondence between a two-rowed array in lexicographic order

and a pair of tableaux of the same shape Q P . We write
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where n = |λ|. Then we can construct a tableau Λ such that (Λ, U ) ∈ T (λ, µ, V 0 ) by

Denote by F λ,µ,V0 ν/λ,U0 the map that sends (Λ, U ) in T (λ, µ, V 0 ) to S in S(ν/λ, U 0 ). This map is a bijection.

A method to compute the set S(ν/λ, U 0 ) is explained in subsection 4.1.7. When U 0 is the Young tableau U µ of shape µ whose all entries in the k th row are equal to k, one can compute explicitly the set S(ν/λ, U µ ) by the model of Remmel and Whitney [START_REF] Remmel | Multiplying Schur functions[END_REF] as follows:

1. Number the boxes of the skew shape ν/λ from top to bottom and right to left in each row by 1, 2, . . . , |ν/λ|, respectively. The result is called the reverse filling of the skew shape ν/λ. We denote it by T ν/λ . There exists a unique skew Young tableau T * of skew shape ν/λ such that w(T * ) is the word we have created.

Theorem 4.8. Let λ, µ, ν be partitions. Let T 0 be a Young tableau of shape ν and U 0 be a Young tableau of shape µ. We have c ν λµ = #O µ (ν/λ) = #S(ν/λ, U 0 ) = #T (λ, µ, V 0 ). Let us illustrate the three models presented in Theorem 4.8 by an example. Example 4.9. Set λ = (3, 2, 1, 1), µ = (4, 2, 1) and ν = (6, 4, 2, 1, 1). Then Hence, c ν λµ = 4. We have

The tableaux of the set S(ν/λ, U µ ) are 

However, Shimozono's model consists of the elements below

On the coefficients g λµ

In this section, we present our second result. Namely, we present a new interpretation of the coefficients g λµ as a subset of a set that counts Littlewood-Richarson coefficients. As corollaries, we can compute the coefficients g λµ by models for Littlewood-Richardson coefficients. We will prove and conjecture inequalities between the coefficients and also state some conjectures that explain the hidden structure behind them.

A new interpretation of the coefficients g λµ

For any (skew) shifted tableau T without entries k ′ , let s(T ) be the new (skew) tableau which is defined as follow:

1. Creat an image of T by the symmetry through its main diagonal.

2. Combine the image we have created with T by gluing them along the main diagonal as the image below.

T

Let ν/µ be the skew shifted shape of T , then we denote the shape of s(T ) by ν/µ. For any strict partition λ of n, let T λ be the shifted tableau of shifted shape λ, obtained by putting numbers 1, 2, . . . , n in the boxes of shifted diagram sY (λ) from left to right, starting from top to bottom. Let T (µ t , µ, s(T λ )) be the subset of T (µ t , µ, s(T λ )) of all pairs (T, U ) such that T = U t . Theorem 4.28. Let λ be a strict partition and let µbe a partition. Then g λµ = #T (µ t , µ, s(T λ )).

Proof. We have g λµ = f µ+δ λδ . By Theorem 4.18, it is the number of standard skew shifted tableaux S of skew shifted shape (µ + δ)/δ such that sRect(S) = T λ . The condition sRect(S) = T λ , by Proposition 4.27 is equivalent to the condition s(T λ ) = Rect(s(S)).

(4.56)

The tableau s(S) has form

where U is a standard Young tableau of shape µ. Since s(S) and U t * U have the same word, then by Lemma 4.4 and Lemma 4.6, we have 

Inequality

In this subsection, we prove a conjecture of N. Ressayre [START_REF] Ressayre | [END_REF]: g λµ ≤ c λ µ t µ . The conjecture was based on the facts below g λµ = 1 implies c λ µ t µ = 1, (4.58)

The conclusions (4.58), (4.59) are versions of Theorem 1.4 and Proposition 1.6 in the article [START_REF] Prakash Belkale | A generalization of Fulton's conjecture for arbitrary groups[END_REF] for the case G = Sp(2n, C). Indeed, with the notations in the article [START_REF] Prakash Belkale | A generalization of Fulton's conjecture for arbitrary groups[END_REF], by
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The result appears in computer is

To compute the Littlewood-Richardson coefficients by computer, we use the code below. For example, for λ = (4, 2), µ = µ t = (3, 2, 1), we have

The code is import sage.libs.lrcalc.lrcalc as lrcalc

The result appears in computer is

4.

We check the conjecture for all strict partitions λ such that |λ| ≤ 11. By Theorem 4.30, we just need to check the cases g λµ > 1. Here is the data of computations on computer.

|λ| strict partitions λ such that there exists 

(7,3) (5, 3, 1, 1) 4 10 (7,3) (6, 2, 1, 1) 4 10 (7,3) (6, 3, 1) 4 10 (6,4) (3, 2, 2, 2, 1) 4 10 (6,4) (4, 2, 2, 1, 1) 4 10 (6,4) (4, 3, 2, 1) 4 10 (6,4) (5, 2, 1, 1, 1) 4

(6,3,1) (5, 3, 2) 6 10

(5,4,1) (4, 3, 2, 1) 7 10

(5,3,2) (5,3,1) (3, 3, 2, 1) 2 6 9

(5,3,1) (4, 2, 2, 1) 2 5 9

(5,3,1) (4, 3, 1, 1) 2 5 9

(5,3,1) ( Proof. We suppose that (U t α , Uα) and (U t β , U β ) are elements in T (µ t , µ, s(T λ )). We construct an element (U t α , U β ) is still in the set as follows:

The elements of the set

1. If (U t α , U β ) belongs to T (µ t , µ, s(T λ )), then we set (U t α , U β ) = (U t α , U β ).

2. If (U t α , U β ) does not belong to T (µ t , µ, s(T λ )), then by Conjecture 4.32, (Vα,

.

The set of all pairs (U t α , U β ) we have constructed is a subset of T (µ t , µ, s(T λ )). Since its cardinal is g 2 λµ , we have g 2 λµ ≤ c λ µ t µ .

We can see the conjecture through following example.

Example 4.35. Let λ = (5, 2) and µ = (4, 2, 1). The correspondence between elements in T (µ t , µ, s(T λ )) and elements in T (µ, µ t , s(T λ )) is showed below (the elements in the subsets T (µ t , µ, s(T λ )) and T (µ, µ t , s(T λ )) -------------→ T (µ, µ t , s(T λ )) Méthodes algébriques et combinatoires pour les problèmes de branchement en théorie des représentations 

Mots-clés :

Algèbres affines de Kac-Moody, sous-algèbres sinueuses, règle de branchement, tableaux de Young, fonctions Schur, coefficients Littlewood-Richardson, changement de tableau, Grassmanniens, variétés Schubert, tableaux décalés, fonctions Schur Q, coefficients décalés Littlewood-Richardson, Grassmanniens Lagrangiens.

Algebraic and combinatorial methods in the branching problems in representation theory

Abstract. The purpose of this thesis is to study the questions surrounding the branching problem in representation theory using algebraic and combinatorial methods. Based on previously built models and ideas of the others, we develop and create new techniques, models to achieve deeper results. Concretely, we focus on two main projects:

In the first project, we study the branching problem of affine Kac-Moody algebras g on its winding subalgebras g[u] by algebraic methods. Let h be the Cartan subalgebra of g. We prove that the support Γ(g, g[u]) and Γ(g, h) of the decomposition of g-modules as g[u]-modules and h-modules are semigroups. Let Λ, λ be dominant integral weights of g, g[u], respectively. Let δ be the basis imaginary root of g. In the cases where g are types A

(1) 1 and A

(2) 2 , with a certain condition on λ, we can describe the set of numbers b ∈ C such that (Λ, λ + bδ) ∈ Γ(g, g[u]). The result helps us to realize the relation between Γ(g, g[u]) and its saturated setting.

In the second project, we study the coefficients appear in projective representation theory of symmetric groups Sn: the shifted Littlewood-Richardson coefficients f ν λµ (λ, µ, ν are strict partitions) and g λµ (λ is a strict partition and µ is partition) which can be considered as special cases of shifted Littlewood-Richardson coefficients. We obtain a new interpretation for the coefficients f ν λµ . Moreover, for the coefficients g λµ , we also obtain another combinatorial description, which allows us to see the relations between g λµ with Littlewood-Richardson coefficients c λ µ t µ . Specifically, we prove that g λµ = g λµ t , and g λµ ≤ c λ µ t µ . We conjecture that g 2 λµ ≤ c λ µ t µ and formulate some conjectures on our combinatorial models which would imply this inequality if it is valid.