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Introduction

The objective of my thesis is to use algebraic and combinatorial methods to study questions
around the branching problem in representation theory.

The branching problem is one of the most important in representation theory. It allows us
to understand how an irreducible module of a Lie algebra g can be decomposed into irreducible
modules of a subalgebra ġ ⊂ g and several properties around the decomposition. For example,
let ġ be the generalized linear Lie algebra gln(C) (n ∈ Z≥0). Then the set of all irreducible
polynomial gln(C)-modules corresponds to the set of partitions of length at most n. If λ is such
a partition, let V λ be the corresponding irreducible polynomial gln(C)-module. Then

{V λ ⊗ V µ | λ, µ are partitions of length at most n} (1)

is the set of all irreducible polynomial modules of gln(C) × gln(C). These irreducible modules
can be considered as gln(C)-modules. Hence we have decompositions

V λ ⊗ V µ =
⊕

ν

(V ν)multλ,µ(ν), (2)

where multλ,µ(ν) is the multiplicity of V ν in V λ ⊗ V µ.

The branching problem consists in many questions around the multiplicity multλ,µ(ν) and
their generalizations to other pairs ġ ⊂ g than gln(C) ⊂ gln(C)× gln(C). For example,

• what is the formula of the multiplicities ?

• what are good algorithms to compute the multiplicities ?

• can we describe explicitly the support of the decomposition ? etc.

There are a lot of approaches to answer those questions from different domains : algebraic
geometry, number theory, combinatorics, analysis, .... For example,

• by geometric methods, S. Kumar, N. Ressayre and P. Belkale obtained strong results on the
support of the decomposition when ġ is a symmetrizable Kac-Moody algebra and g = ġ⊕ ġ

(see [BK06], [KR17], [Res17], [Res10], [BKR12] etc).

• by using theory of modular forms, V. Kac and M. Wakimoto obtained results about bran-
ching functions which help us to compute explicitly the decomposition in many particular
cases (see [KW90]).

v
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• by combinatorial methods, P. Littelman obtained the generalized Littlewood-Richardson
rule for any symmetrizable Kac-Moody algebras. His model is well known and named
path model (see [Lit94], [Lit95a], [Lit95b], [Lit97], [Lit98]). It has too many applications in
representation theory, for example, a simple proof of PRV conjecture (see [Lit94]). There
are also a lot of notable works using combinatorial methods. For example, [KT01], [KT99],
[KTW04] for the proof of saturation conjecture using honeycomb model. By, e.g., [RW84],
[Wor84], [Ste89], [Sag87], [Ser10], [Vak06] and so on for developing theory of (shifted)
Littlewood-Richardson coefficients.

In this thesis, we study the branching rule on winding subalgebras of affine Kac-Moody
algebras and investigate some non-trivial properties of shifted Littlewood-Richardson coefficients
which appear in the projective representations of symmetric groups. The explicit results can be
described as follows :

The first work is the results mentioned in our preprint [Kha19] : “Branching problem on
winding subalgebras of affine Kac-Moody algebras A(1)

1 and A(2)
2 .” Let g be an affine Kac-Moody

algebra and let h be a Cartan subalgebra of g. Let g[u] be a winding subalgebra of g for some given
positive integer u. The winding subalgebra g[u] is isomorphic to g but nontrivially embedded in
g (see [KW90]). The integrable irreducible highest weight g-modules (resp. g[u]-modules) are
parametrized by the semigroup P+ (resp. Ṗ+) of dominant integral weights. For Λ ∈ P+ (resp.
λ ∈ Ṗ+), let L(Λ) (resp. L̇(λ)) be the integrable irreducible highest weight g-module (resp. g[u]-
module) with highest weight Λ (resp. λ). Under the action of h, the g-module L(Λ) decomposes
as

L(Λ) =
⊕

λ∈h∗

L(Λ)λ. (3)

where
L(Λ)λ = {v ∈ L(Λ) | hv = λ(h)v ∀h ∈ h} . (4)

Let multΛ,h(λ) be the dimension of L(Λ)λ. Set

Γ(g, h) = {(Λ, λ) ∈ P+ × h∗ | multΛ,h(λ) 6= 0}.

Now, the g-module L(Λ) is integrable as an g[u]-module. In particular, under the action of g[u],
it decomposes as

L(Λ) =
⊕

λ∈Ṗ+

L̇(λ)multΛ,g[u](λ), (5)

where multΛ,g[u](λ) is the multiplicity of L̇(λ) in L(Λ). Set

Γ(g, g[u]) = {(Λ, λ) ∈ P+ × Ṗ+ | multΛ,g[u](λ) 6= 0}.

Our first main result is the following theorem.

Theorem 0.1. As a subset of h∗ × h∗, the set Γ(g, g[u]) is a semigroup.

Let (Λ, λ) ∈ P+× Ṗ+. Let δ be the basis imaginary root of g. To understand the set Γ(g, g[u]),
we study the set

B(Λ, λ) = {b ∈ C | L̇(λ+ bδ) ⊂ L(Λ)}. (6)

Let Pu(Λ) is the set of all λ such that (Λ, λ) ∈ Γ(g, g[u]). The set B(Λ, λ) is nonempty if and only
if λ ∈ Pu(Λ) +Cδ. In this case, we define bΛ,λ,u be number b ∈ B(Λ, λ) such that b+n 6∈ B(Λ, λ)

for any n ∈ Z>0. We also define a number h[u]
Λ,λ as in (2.118). We describe the set B(Λ, λ) as in

the following theorem.



vii

Theorem 0.2. Let g be an affine Kac-Moody algebra. Let Λ ∈ P+ and λ ∈ Pu(Λ)+Cδ. We have

1. bΛ,λ,u − (Z≥0 \ {1}) ⊂ B(Λ, λ) ⊂ bΛ,λ,u − Z≥0.

2. If in addition h
[u]
Λ,λ 6= 0 then B(Λ, λ) = bΛ,λ,u − Z≥0.

Let P (Λ) be the set of all λ ∈ h∗ such that (Λ, λ) ∈ Γ(g, h). For each λ ∈ P (Λ) +Cδ, we set bΛ,λ

the complex number b such that λ+ bδ ∈ P (Λ) and λ+ (b+ n)δ 6∈ P (Λ) for any n ∈ Z>0. For g

of type A(1)
1 and A(2)

2 , we can compute explicitly the number bΛ,λ in Propositions 2.32 and 2.37.
Let Λ0 be the 0-th fundamental weight and α be the simple root α1. Let m ∈ Z>0. For each
m ∈ Z, we denote by Pm the set of all integral weights of level m. The results below help us to
understand the branching rule on g[u] in these two particular cases.

Theorem 0.3. Let g be the affine Kac-Moody algebra of type A
(1)
1 . Let Λ = mΛ0 + jα

2 ∈ Pm+
and let λ = m′Λ0 + j′α

2 ∈ Ṗ+.

1. If there exists b ∈ C such that (Λ, λ+bδ) belongs to Γ(g, g[u]) then j′−j ∈ 2Z and m′ = m.

2. If moreover

a. j ≤ j′ ≤ um− j and u is even ; or

b. j ≤ j′ ≤ um− (m− j) and u is odd,

then bΛ,λ,u = bΛ,λ.

Theorem 0.4. Let g be the affine Kac-Moody algebra of type A
(2)
2 . Let λ = mΛ0 + jα

2 ∈ Pm+ and

let λ = m′Λ0 + j′α
2 ∈ Ṗ+.

1. If there exists b ∈ C such that (Λ, λ+ bδ) belongs to Γ(g, g[u]) then m′ = m.

2. If moreover

a. j ≤ j′ ; and

b. j′ ∈ m(u−1)
2 − j + (2Z≥0 ∪ Z<0),

then bΛ,λ,u = bΛ,λ.

For Λ like in Theorems 0.3, 0.4, we denote by Au(Λ) the set of λ such that the theorems
apply. The satured setting of Γ(g, g[u]) is defined by

Γ̃(g, g[u]) = {(Λ, λ) ∈ P+ × Ṗ+ | λ ∈ Λ +Q, L̇(Nλ) ⊂ L(NΛ) for some integer N > 1}. (7)

Let Q be the root lattice of g. The following result is a corollary of Theorems 0.2, 0.3, 0.4.

Corollary 0.5. Let g be affine Kac-Moody algebra of type A
(1)
1 or A

(2)
2 . Fix u ∈ Z>1 (u is an

odd number in the case A
(2)
2 ). Let Λ ∈ P+ and let λ ∈ Au(Λ) ∩ (Λ +Q). For all b ∈ C, we have

1. (Λ, λ+ bδ) ∈ Γ̃(g, g[u])⇔ d(Λ, λ+ bδ) ∈ Γ(g, g[u]) for all d ∈ Z≥2.

2. If in addition h
[u]
Λ,λ 6= 0 then (Λ, λ+ bδ) ∈ Γ̃(g, g[u])⇔ (Λ, λ+ bδ) ∈ Γ(g, g[u]).
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The second work is the results mentioned in our second preprint [Kha20] : “On the shifted
Littlewood-Richardson coefficients and Littlewood-Richardson coefficients.” Namely, let λ, µ, ν be
partitions. Let l(λ) be the length of λ, and sλ be the Schur function associated to the partition
λ. The Littlewood-Richardson coefficients cνλµ appear in the expansion (see [Ful97] or [Mac15])

sλsµ =
∑

ν

cνλµsν . (8)

If now λ, µ, ν are strict partitions, let Qλ be the shifted Schur Q-function associated to λ. The
shifted Littlewood-Richardson coefficients appear in the expansion (see [Ste89])

QλQµ =
∑

ν

2l(λ)+l(µ)−l(ν)fνλµQν . (9)

For any strict partition λ, and a partition µ of the same integer, the coefficients gλµ appear in
the decomposition

Qλ = 2l(λ)
∑

µ

gλµsµ. (10)

The coefficients gλµ can be considered as shifted Littlewood-Richardson coefficients by the iden-
tity

gλµ = fµ+δ
λδ , (11)

where δ = (l, l − 1, . . . , 1) with l = l(µ).

Our first result is a new interpretation for the shifted Littlewood-Richardson coefficients.
More precisely, given a skew shifted shape ν/µ, we construct the set Õ(ν/µ) of tableaux from
the shifted reverse filling of the skew shifted shape ν/µ.

Theorem 0.6. Let λ, µ, ν be strict partitions. Then the coefficient fνλµ is the number of the

tableaux T in Õ(ν/µ) of shape λ.

The coefficient gλµ can be considered as particular shifted Littlewood-Richardson coefficient,
we obtain a new model for gλµ.

Theorem 0.7. Let λ be a strict partition and µ be a partition. Then the coefficient gλµ is the

number of the tableaux T in Õ(µ+ δ/δ) of shape λ.

Our second result is also a new combinatorial interpretation of the coefficients gλµ. More
precisely, let λ̃ be the partition such that its Young diagram is the union of shifted diagram
corresponding to λ and its reflection through the main diagonal. Let µt be the conjugate partition
of µ. We prove that gλµ is the cardinal of a subset of a set that counts the coefficients cλ̃µtµ. As
a corollary, we prove that

Theorem 0.8. Let λ be a strict partition and µ be a partition. Then gλµ ≤ cλ̃µtµ.

We also conjecture a stronger inequality

Conjecture 0.9. Let λ be a strict partition and µ be a partition. Then g2
λµ ≤ cλ̃µtµ.

We formulate a conjecture on our combinatorial models whose validity implies the conjecture
above. An evidence of the second conjecture is that it implies easily a well known equality
gλµ = gλµt .



ix

The thesis contains four chapters. In the first chapter, we introduce the fundamental back-
ground about Kac-Moody algebras and their representations (in particular, affine Kac-Moody
algebras). In the second chapter, we present our results about branching rule on winding subal-
gebras of affine Kac-Moody algebras of type A(1)

1 and A
(2)
2 . In the third chapter, we introduce

the shifted Littlewood-Richardson coefficients and explain the motivation from projective repre-
sentation theory of the symmetric groups. In the last chapter, we present our results about new
interpretations for shifted Littlewood-Richardson coefficients. We prove an inequality, and then
conjecture a stronger inequality with some combinatorial structures which help us to understand
better the relations between the coefficients.





Introduction en Français

L’objectif de ma thèse est d’utiliser des méthodes algébriques et combinatoires pour étudier le
problème de branchement en théorie des représentations.

Le problème de branchement est l’un des plus importants de la théorie des représentations. Il
demete de comprendre comment un module irréductible d’une algèbre g se décompose en modules
irréductibles d’une sous-algèbre ġ ⊂ g et étudier les propriétés de cette décomposition. Bien
entendu, des hypothèses sur les algèbres de Lie à considérer doivent être faites pour donner un
cadre précis à cette question. Par exemple, considérons l’algèbre de Lie linéaire ġ = gln(C) (n ∈
Z≥0). Alors, l’ensemble des représentations polynomiales irréductibles de gln(C) correspond à
l’ensemble des partitions de longueur au plus n. Si λ est une telle partition, notons V λ le gln(C)-
module polynomiales irréductible correspondant à λ. Alors,

{V λ ⊗ V µ | λ, µ sont partitions de longueur au plus n} (12)

est l’ensemble de tous les modules polynomiales irréductibles de gln(C) × gln(C). Considérant
ces modules comme gln(C)-modules, on obtient les décompositions

V λ ⊗ V µ =
⊕

ν

(V ν)multλ,µ(ν), (13)

où multλ,µ(ν) est la multiplicité de V ν dans V λ ⊗ V µ.

Le problème de branchement consiste en de nombreuses questions sur les multiplicités multλ,µ(ν)
et leurs généralisations à d’autres paires ġ ⊂ g que gln(C) ⊂ gln(C)× gln(C). Par exemple,

• quelle est la formule des multiplicités ?

• quels sont les bons algorithmes pour calculer les multiplicités ?

• peut-on décrire explicitement le support de la décomposition ? etc.

Des approches variées pour aborder ces questions relèvent de domaines différents : géométrie
algébrique, théorie des nombres, combinatoire, analyse,. . . Par exemple,

• par des méthodes géométriques, S. Kumar, N. Ressayre et P. Belkale ont obtenu des ré-
sultats précis sur le support de la décomposition lorsque ġ est une algèbre de Kac-Moody
symétrisable et g = ġ⊕ ġ (voir [BK06], [KR17], [Res17], [Res10], [BKR12] etc).

• en utilisant la théorie des formes modulaires, V. Kac et M. Wakimoto ont obtenu des
résultats sur les fonctions de branchement qui nous aident à calculer explicitement la dé-
composition dans de nombreux cas particuliers (voir [KW90]). Ici les algèbres ġ et g sont
des algèbres de Lie affines.

xi
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• par des méthodes combinatoires, P. Littelmann a obtenu une règle de Littlewood-Richardson
pour toute algèbre de Kac-Moody symétrisable. Son modèle, connu sous le nom de modèle
des chemins de Littelmann décrit les multiplicités de la décomposition du produit tensoriel
(voir [Lit94], [Lit95a], [Lit95b], [Lit97], [Lit98]). Il a de nombreuses applications en théorie
des représentations. Par exemple, une preuve simple de la onjecture PRV (voir [Lit94]). Il
existe également de nombreux travaux notables utilisant des méthodes combinatoires. Par
exemple, [KT01], [KT99], [KTW04] pour la preuve de la conjecture de saturation en uti-
lisant le modèle en nid d’abeille. Ou [RW84], [Wor84], [Ste89], [Sag87], [Ser10], [Vak06] et
ainsi de suite pour développer la théorie des coefficients (décalés) de Littlewood-Richardson,
etc.

Ici, nous étudions la règle de branchement pour les sous-algèbres d’enroulement des algèbres
Kac-Moody affines et étudions certaines propriétés non triviales des coefficients Littlewood-
Richardson qui apparaissent dans la théorie de représentation projective des groupes symétriques.
Les résultats explicites peuvent être décrits comme suit :

Le premier travail constitue la pré-publication [Kha19] : “ Branching problem on winding
subalgebras of affine Kac-Moody algebras A(1)

1 et A(2)
2 .” À savoir, soit g une algèbre de Kac-

Moody affine et soit h une sous-algèbre Cartan de g. Soit g[u] une sous-algèbre d’enroulement
de g pour un entier positif donné u. La sous-algèbre d’enroulement g[u] est isomorphe à g mais
est plongé dans g de manière non triviale (voir [KW90]). Les g-modules irréductibles (resp. g[u]-
modules) sont paramétrés par le semigroupe P+ (resp. Ṗ+) de poids entiers dominants. Pour
Λ ∈ P+ (resp. λ ∈ Ṗ+), soit L(Λ) (resp. L̇(λ)) le g-module (resp. g[u]-module) irréductible
intégrable de plus haut poids Λ (resp. λ). Sous l’action de h, le g-module L(Λ) se décompose
comme

L(Λ) =
⊕

λ∈h∗

L(Λ)λ. (14)

où
L(Λ)λ = {v ∈ L(Λ) | hv = λ(h)v ∀h ∈ h} . (15)

Soit multΛ,h(λ) la dimension de L(Λ)λ. Soit

Γ(g, h) = {(Λ, λ) ∈ P+ × h∗ | multΛ,h(λ) 6= 0}.

Maintenant, le g-module L(Λ) est intégrable en tant que g[u]-module. En particulier, sous l’action
de g[u], il se décompose comme

L(Λ) =
⊕

λ∈Ṗ+

L̇(λ)multΛ,ġ(λ), (16)

où multΛ,ġ(λ) est la multiplicité de L̇(λ) dans L(Λ). Posons

Γ(g, ġ) = {(Λ, λ) ∈ P+ × Ṗ+ | multΛ,ġ(λ) 6= 0}.

Notre premier résultat principal est le théorème suivant.

Theorem 0.10. En tant que sous-ensemble de h∗× h∗, l’ensemble Γ(g, g[u]) est un semigroupe.

Soit (Λ, λ) ∈ P+ × Ṗ+. Soit δ la racine imaginaire de base de g. Pour comprendre l’ensemble
Γ(g, g[u]), nous étudions l’ensemble

B(Λ, λ) = {b ∈ C | L̇(λ+ bδ) ⊂ L(Λ)}. (17)
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Soit Pu(Λ) l’ensemble de λ tel que (Λ, λ) ∈ Γ(g, g[u]). L’ensemble B(Λ, λ) n’est pas vide si et
seulement si λ ∈ Pu(Λ) + Cδ. Dans ce cas, nous définissons bΛ,λ,u le nombre b ∈ B(Λ, λ) tel
que b + n 6∈ B(Λ, λ) pour tout n ∈ Z>0. Nous définissons un nombre h[u]

Λ,λ dans (2.118). Nous
décrivons l’ensemble B(Λ, λ) dans le théorème suivant.

Theorem 0.11. Soit g une algèbre de Kac-Moody affine. Soit Λ ∈ P+ et λ ∈ Pu(Λ) +Cδ. Nous
avons

1. bΛ,λ,u − (Z≥0 \ {1}) ⊂ B(Λ, λ) ⊂ bΛ,λ,u − Z≥0.

2. Si en plus h
[u]
Λ,λ 6= 0 alors B(Λ, λ) = bΛ,λ,u − Z≥0.

Soit P (Λ) l’ensemble de tous les λ ∈ h∗ tel que (Λ, λ) ∈ Γ(g, h). Pour chaque λ ∈ P (Λ) + Cδ,
nous désignons par bΛ,λ le nombre complexe b tel que λ + bδ ∈ P (Λ) et λ + (b + n)δ 6∈ P (Λ)

pour tout n ∈ Z>0. Pour g de type A(1)
1 et A(2)

2 , nous pouvons calculer explicitement le nombre
bΛ,λ dans Propositions 2.32 and 2.37. Soit Λ0 le 0-e poids fondamental et α la racine simple α1.
Soit m ∈ Z>0. Pour chaque m ∈ Z, on note Pm l’ensemble de tous les poids intégraux de niveau
m. Les résultats ci-dessous nous aident à comprendre la règle de branchement sur g[u] dans ces
deux cas particuliers.

Theorem 0.12. Soit g l’algèbre affine de Kac-Moody de type A
(1)
1 . Soit Λ = mΛ0 + jα

2 ∈ Pm+ et

soit λ = m′Λ0 + j′α
2 ∈ Ṗ+.

1. S’il existe b ∈ C tel que (Λ, λ+ bδ) appartient à Γ(g, g[u]) puis j′ − j ∈ 2Z et m′ = m.

2. Si en plus

a. j ≤ j′ ≤ um− j et u est pair ; ou

b. j ≤ j′ ≤ um− (m− j) et u est impair,

alors bΛ,λ,u = bΛ,λ.

Theorem 0.13. Soit g l’algèbre affine de Kac-Moody de type A
(2)
2 . Soit λ = mΛ0 + jα

2 ∈ Pm+ et

soit λ = m′Λ0 + j′α
2 ∈ Ṗ+.

1. S’il existe b ∈ C tel que (Λ, λ+ bδ) appartient à Γ(g, g[u]) puis m′ = m.

2. Si en plus

a. j ≤ j′ ; et

b. j′ ∈ m(u−1)
2 − j + (2Z≥0 ∪ Z<0),

alors bΛ,λ,u = bΛ,λ.

Pour Λ comme dans les théorèmes 0.12, 0.13, nous notons Au(Λ) l’ensemble de λ tel que les
Théorèmes s’appliquent. Le paramètre saturé de Γ(g, g[u]) est défini par

Γ̃(g, g[u]) = {(Λ, λ) ∈ P+ × Ṗ+ | λ ∈ Λ +Q, L̇(Nλ) ⊂ L(NΛ) pour un entier N > 1}. (18)

Soit Q le réseau racine de g. Le résultat suivant est un corollaire des Théorèmes 0.11, 0.12, 0.13.

Corollary 0.14. Soit g une algèbre de Kac-Moody affine de type A
(1)
1 ou A

(2)
2 . Fixe u ∈ Z>1 (u

est un nombre impair dans le cas A
(2)
2 ). Soit Λ ∈ P+ et soit λ ∈ Au(Λ) ∩ (Λ + Q). Pour tous

b ∈ C, nous avons
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1. (Λ, λ+ bδ) ∈ Γ̃(g, g[u])⇔ d(Λ, λ+ bδ) ∈ Γ(g, g[u]) pour tous d ∈ Z≥2.

2. Si en plus h
[u]
Λ,λ 6= 0 alors (Λ, λ+ bδ) ∈ Γ̃(g, g[u])⇔ (Λ, λ+ bδ) ∈ Γ(g, g[u]).

Notre deuxième travail constitue ma deuxième pré-publication [Kha20] : “On the shifted
Littlewood-Richardson coefficients et Littlewood-Richardson coefficients.” Soient λ, µ, ν trois par-
titions. Soit l(λ) la longueur de λ et soit sλ la fonction de Schur associée à la partition λ. Les
coefficients de Littlewood-Richardson cνλµ apparaissent dans l’extension (voir [Ful97] ou [Mac15])

sλsµ =
∑

ν

cνλµsν . (19)

Si maintenant λ, µ, ν sont des partitions strictes, soit Qλ la fonction de Schur Q décalée associée
à la partition λ. Les coefficients décalés de Littlewood-Richardson apparaissent dans l’expansion
(voir [Ste89])

QλQµ =
∑

ν

2l(λ)+l(µ)−l(ν)fνλµQν . (20)

Pour toute partition stricte λ, et une partition µ du même entier, les coefficients gλµ apparaissent
dans la décomposition

Qλ = 2l(λ)
∑

µ

gλµsµ. (21)

Les coefficients gλµ peuvent être considérés comme des coefficients de Littlewood-Richardson
décalés par l’identité

gλµ = fµ+δ
λδ , (22)

où δ = (l, l − 1, . . . , 1) avec l = l(µ).

Notre premier résultat est une nouvelle interprétation des coefficients décalés de Littlewood-
Richardson. Plus précisément, étant donné une forme décalée ν/µ, nous construisons un ensemble
Õ(ν/µ) de tableaux à partir du remplissage inversé décalé de la forme décalée symétrique ν/µ.

Theorem 0.15. Soit λ, µ, ν des partitions strictes. Alors le coefficient fνλµ est le nombre des

tableaux T dans Õ(ν/µ) de forme λ.

Le coefficient gλµ peut être considéré comme un coefficient décalé de Littlewood-Richardson,
nous obtenons un nouveau modèle pour gλµ.

Theorem 0.16. Soit λ une partition stricte et soit µ une partition. Alors le coefficient gλµ est

le nombre des tableaux T dans Õ(µ+ δ/δ) de forme λ.

Notre deuxième résultat est également une nouvelle interprétation combinatoire des coeffi-
cients gλµ. Plus précisément, soit λ̃ la partition telle que son diagramme de Young soit l’union
du diagramme décalé correspondant à λ et sa réflexion à travers la diagonale principale. Soit
µt la partition conjuguée de µ. Nous prouvons que gλµ est le cardinal d’un sous-ensemble d’un
ensemble qui compte les coefficients cλ̃µtµ. En corollaire, nous prouvons que

Theorem 0.17. Soit λ une partition stricte et soit µ une partition. Alors gλµ ≤ cλ̃µtµ.

Nous conjecturons également une inégalité plus forte

Conjecture 0.18. Soit λ une partition stricte et soit µ une partition. Alors g2
λµ ≤ cλ̃µtµ.



xv

Nous formulons une conjecture sur nos modèles combinatoires dont la validité implique la
conjecture ci-dessus. L’évidence de la deuxième conjecture est qu’elle implique facilement une
égalité bien connue gλµ = gλµt .

La thèse contient quatre chapitres. Dans le premier chapitre, nous introduisons les algèbres
de Kac-Moody et leurs représentations (en particulier, les algèbres de Kac-Moody affines). Dans
le deuxième chapitre, nous présentons nos résultats sur la règle de branchement pour les sous-
algèbres d’enroulement des algèbres de Kac-Moody affines de type A(1)

1 et A(2)
2 . Dans le troisième

chapitre, nous introduisons les coefficients décalés de Littlewood-Richardson et expliquons la
motivation de la théorie de représentation projective des groupes symétriques. Dans le dernier
chapitre, nous présentons nos résultats sur les nouvelles interprétations des coefficients décalés
de Littlewood-Richardson. Nous prouvons une inégalité, et puis conjecturons une inégalité plus
forte avec quelques structures combinatoires qui nous aident à mieux comprendre les relations
entre les coefficients.
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Chapter 1

Kac-Moody algebras and their

representations

In this chapter, we collect some fundamental facts about the Kac-Moody algebras and their
representations, which are necessary to understand the next chapter, namely, the first preprint
[Kha19]. One of the key notions are maximal weights, branching functions, string functions,
Weyl-Kac’s character formula. For more details, see [Kac90], [Car05].

1
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Contents

1.1 Generalized Cartan matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Realization of a complex square matrix . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Kac-Moody algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Symmetrizable Kac-Moody algebras . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Standard invariant form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 The Weyl group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.3 Representations of symmetrizable Kac-Moody algebras . . . . . . . . . . . 10
1.4.4 Contravariant Hermitian forms on Verma modules . . . . . . . . . . . . . 12
1.4.5 Affine Kac-Moody algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Generalized Cartan matrix

Let I = {1, . . . , n}. A matrix A = (aij)i,j∈I is called a generalized Cartan matrix if it
satisfies the conditions below:

1. aii = 2,

2. −aij ∈ Z≥0 for all i 6= j,

3. aij = 0 if and only if aji = 0.

Two generalized Cartan matrices A and A′ are called equivalent if they have the same size, say
n× n, and there exists a permutation σ ∈ Sn such that a′ij = aσ(i)σ(j) for all i, j = 1, . . . , n.

A generalized Cartan matrix A is called indecomposable if it is not equivalent to a block
diagonal of nonzero generalized Cartan matrices.

Lemma 1.1. If A is a generalized Cartan matrix, then the transpose tA is also a generalized
Cartan matrix. Moreover, tA is indecomposable if and only if A is.

We can classify indecomposable generalized Cartan matrices into three types according to its
corank. Namely, A is of finite type if corank(A) = 0, of affine type if corank(A) = 1, and of
indefine type otherwise.

Let u = t(u1, . . . , un) be a column vector in Rn. We write u > 0 if ui > 0 for all i = 1, . . . , n.
We write u ≥ 0 if ui ≥ 0 for all i = 1, . . . , n.

Theorem 1.2. Let A be an indecomposable generalized Cartan matrix. Then tA and A have
the same type, and

1. A is of finite type iff there exists a vector u ∈ Rn such that u > 0, Au > 0,

2. A is of affine type iff there exists a vector u ∈ Rn such that u > 0, Au = 0,

3. A is of indefine type iff there exists a vector u ∈ Rn such that u > 0, Au < 0.

A generalized Cartan matrix A is called symmetrizable if A = DB for some non-singular
diagonal matrix D and symmetric matrix B.

Theorem 1.3. Let A be an indecomposable generalized Cartan matrix of finite type or affine
type. Then A is symmetrizable.
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A generalized Cartan matrix A = (aij)i,j∈I is determined by its Dynkin diagram D(A),
which is defined as follows:
1. The vertices of D(A) are labelled by i ∈ I.
2. Two distinct vertices i, j of D(A) are joined by the rules:

• If aijaji = 0, then vertices i, j are joined by no edge.

• If aijaji = 1, then vertices i, j are joined by a single edge.

• If aij=−1, aji = −2, then vertices i, j are joined by a double edge with an arrow pointing
towards j.

• If aij=−1, aji = −3, then vertices i, j are joined by a triple edge with an arrow pointing
towards j.

• If aij=−1, aji = −4, then vertices i, j are joined by a quadruple edge with an arrow pointing
towards j.

• If aij=−2, aji = −2, then vertices i, j are joined by a double edge with two arrows pointing
away from i, j.

• If aijaji ≥ 5, then vertices i, j are joined by an edge with numbers |aij |, |aji| shown on it.

A generalized Cartan matrix A is indecomposable if and only if its Dynkin diagram D(A) is
connected. Moreover, the list of all connected Dynkin diagrams corresponding to generalized
Cartan matrices of finite type is given below.

Al(l ≥ 1)
1 2 3 l − 1 l

Bl(l ≥ 2)
1 2 3 l − 1 l

⇒

Cl(l ≥ 2)
1 2 3 l − 1 l

⇐

Dl(l ≥ 4)
1 2 3 l − 2 l − 1

l

E6

1 2 3 5 6

4

E7

1 2 3 4 6 7

5

E8

1 2 3 4 5 7 8

6

F4

1 2 3 4
⇒

G2

1 2
⇛
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The list of all connected Dynkin diagrams corresponding to generalized Cartan matrices of affine
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type is given below. We use the index set I = {0, . . . , l} and standard notations as in [Kac90].

A
(1)
1

0 1
⇐⇒

A
(1)
l (l ≥ 2)

1 2 l − 1 l

0

B
(1)
l (l ≥ 3)

1 2 3 l − 1 l
⇒

0

C
(1)
l (l ≥ 2)

0 1 2 l − 1 l
⇐⇒

D
(1)
l (l ≥ 4)

1 2 3 l − 2 l − 1

0 l

G
(1)
2

0 1 2
⇛

F
(1)
4

1 2 3 4 2
⇒

E
(1)
6

1 2 3 5 6

4

0

E
(1)
7

1 2 3 4 6 7 0

5

E
(1)
8

0 1 2 3 4 5 7 8

6

A
(2)
2

0 1

A
(2)
2l (l ≥ 2)

0 1 2 l − 1 l
⇒⇒

A
(2)
2l−1(l ≥ 3)

1 2 3 l − 1 l
⇐

0

D
(2)
l+1(l ≥ 2)

0 1 2 l − 1 l
⇒⇐

E
(2)
6

0 1 2 3 4
⇐

D
(3)
4

0 1 2
⇚
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1.2 Realization of a complex square matrix

A realization of a generalized Cartan matrix A is a triple (h,Π,Π∨) such that

1. h is a C-vector space of finite dimension,

2. Π∨ = {h1, . . . , hn} is a linearly independent subset of h,

3. Π = {α1, . . . , αn} is a linearly independent subset of h∗,

4. αi(hj) = aji for all i, j ∈ I.

Let (h′,Π′, (Π′)∨) be another realization ofA with (Π′)∨ = {h′1, . . . , h′n} ⊂ h′ and Π = {α′1, . . . , α′n} ⊂
(h′)∗ such that α′i(h

′
j) = aji. We say that (h,Π,Π∨) and (h′,Π′, (Π′)∨) are isomorphic if there

is an isomorphism φ : h→ h′ such that

φ(hi) = h′i,
tφ(α′i) = αi, (1.1)

where tφ : (h′)∗ → h∗ is the induced map of φ on dual spaces.

By [Car05], we have
dim(h) ≥ 2n− rank(A). (1.2)

In the case the equality happens, we say that (h,Π,Π∨) is a minimal realization of A. More-
over, there exists a unique, up to isomorphism, minimal realization of a complex matrix.

1.3 Kac-Moody algebras

We define the Kac-Moody algebra g(A) associated with A as follows:

Step 1. Let g̃(A) be the Lie algebra with Lie bracket [, ] generated by elements

e1, . . . , en, f1, . . . , fn, h̃ for all h ∈ h, (1.3)

satisfying the relations

1. ˜λh1 + µh2 = λh̃1 + µh̃2 for all λ, µ ∈ C, h1, h2 ∈ h,

2. [h̃1, h̃2] = 0 for all h1, h2 ∈ h,

3. [ei, fi]− h̃i = 0 for all i = 1, . . . , n,

4. [ei, fj ] = 0 for all i 6= j,

5. [h̃, ei]− αi(h)ei = 0 for all i = 1, . . . , n and h ∈ h,

6. [h̃, fi] + αi(h)fi = 0 for all i = 1, . . . , n and h ∈ h.
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Step 2. Let h̃ be the subalgebra of g̃(A) generated by elements h̃ for h ∈ h. The Lie algebra
g̃(A) contains a unique maximal ideal I with I∩ h̃ = 0 (Proposition 14.13 in [Car05]). We define
the Kac-Moody algebra associated to A by

g(A) = g̃(A)/I. (1.4)

Let ñ+ be the subalgebra of g̃(A) generated by elements e1, . . . , en. Let ñ− be the subalgebra of
g̃(A) generated by elements f1, . . . , fn. Let ψ be the natural homomorphism g̃(A)→ g(A), x 7→
x+ I. We define

n+ = ψ(ñ+) and n− = ψ(ñ−). (1.5)

From the fact that the map h→ h̃, h 7→ h̃ is an isomorphism of vector spaces (Corollary 14.7 in
[Car05]) and the restriction of ψ on h̃ is an isomorphism onto ψ(h̃) (Proposition 14.14 in [Car05]),
we can identify h with ψ(h̃). The decompositon of g̃(A)

g̃(A) = ñ− ⊕ h̃⊕ ñ+ (1.6)

induces the triangular decomposition of g(A)

g(A) = n− ⊕ h⊕ n+. (1.7)

We call h the Cartan subalgebra, n+ the positive subalgebra, n− the negative subalgebra
of g(A).

Let Q be the subgroup of h∗ generated by {α1, . . . , αn}. Let Q+ and Q− be the subsets of Q
defined by

Q+ = {k1α1 + · · ·+ knαn | k1, . . . , kn ∈ Z≥0}, (1.8)

Q− = {k1α1 + · · ·+ knαn | k1, . . . , kn ∈ Z≤0}. (1.9)

For each α ∈ Q, we define

gα = {x ∈ g(A) | [h, x] = α(h)x for all h ∈ h}. (1.10)

Proposition 1.4. We have

1. g(A) =
⊕
α∈Q

gα,

2. dim(gα) is finite for all α ∈ Q,

3. g0 = h,

4. If α 6= 0, then gα = 0 unless α ∈ Q+ or α ∈ Q−,

5. [gα, gβ ] ⊂ gα+β for all α, β ∈ Q.

We call an element α ∈ h∗ a root if α 6= 0 and gα 6= 0. The set of all roots of g(A) is denoted
by Φ and call it the root system. The set Q is called the root lattice of g(A). Every root
belongs to either Q+ or Q−. The roots in Q+ are called positive roots. The roots in Q− are
called negative roots. When α is a root, we call gα the root space of α, and dim(gα) the
multiplicity of α.

Proposition 1.5. We have

dim(g±kαi) =

{
1 if k = 1,

0 if k > 1.
(1.11)

We call α1, . . . , αn the simple roots of g(A) and h1, . . . , hn the simple coroots of g(A).
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1.4 Symmetrizable Kac-Moody algebras

In this section, assuming that A is symmetrizable, we define the standard invariant form, the
Weyl group and the representations of the Kac-Moody algebra g(A). Finally, we describe those
objects in the particular case when A is of affine type.

1.4.1 Standard invariant form

Suppose that A = DB for some non-singular diagonal matrix D = diag(d1, . . . , dn) and sym-
metric matrix B. Let (h,Π,Π∨) be a minimal realization of A. For α = k1α1 + · · ·+ knαn ∈ Q,
we define the height of α by

ht(α) = k1 + · · ·+ kn. (1.12)

For each i ∈ Z, set
gi =

⊕

α∈Q,ht(α)=i

gα. (1.13)

We have
g(A) =

⊕

i∈Z
gi. (1.14)

From the fact that [gα, gβ ] ⊂ gα+β , we have [gi, gj ] ⊂ gi+j . Hence, g(A) can be considered as a
Z-graded Lie algebra. For each r ∈ Z≥0, we define

g(r) =
⊕

−r≤i≤r
gi. (1.15)

Observe that g(r) is finite dimensional but not necessarily a Lie algebra. Moreover,

h = g(0) ⊂ g(1) ⊂ · · · ⊂
⋃

r≥0

g(r) = g(A). (1.16)

We define the standard invariant form on g(A) by induction as follows (as in the proof of
Theorem 16.2 in [Car05]):

A. We define a bilinear form on h. Namely, let h′ be the subspace of h generated by the elements
h1, . . . , hn and let h′′ be a complementary subspace of h′ in h. We define a bilinear form (|) on
h by:

1. (hi|hj) = didjBij for all i, j ∈ I,

2. (hi|h′′) = (h′′|hi) = diαi(h
′′) for all h′′ ∈ h′′,

3. (h′′1 |h′′2) = 0 for all h′′1 , h
′′
2 ∈ h′′.

We can prove that the bilinear form (|) we have constructed on h is symmetric, non-degenerate
(Proposition 16.1 in [Car05]) and invariant, i.e.,

([x, y]|z) = (x|[y, z]) (1.17)

for all x, y, z ∈ h.
B. We first extend the bilinear form (|) on

g(1) =

n⊕

i=1

Cfi ⊕ h⊕
n⊕

i=1

Cei (1.18)

by setting more conditions:
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1. (gi|gj) = 0 unless i+ j = 0.

2. (ei|fj) = (fj |ei) = diδi,j .

This form is bilinear, symmetric, invariant.
C. Now, we consider the case r ≥ 2. Suppose that have extended the bilinear form to g(r − 1),
we then extend it to g(r) by setting more conditions:

1. (gi|gj) = 0 unless i+ j = 0, |i|, |j| ≤ r.
2. For x ∈ gr, y ∈ g−r, we can always write

y =
∑

j

[cj , dj ] (1.19)

for some cj ∈ g−uj , dj ∈ g−vj with uj , vj > 0, uj + vj = r. From the fact that [x, cj ], dj
are all in g(r− 1) and the sum

∑
j

([x, cj ]|dj) does not depend on the way to express y as in

the formula (1.19) (see [Car05]), we define

(x|y) =
∑

j

([x, cj ]|dj) (1.20)

for all x ∈ gr, y ∈ g−r.

We can check that the bilinear form (|) we have extended to g(r) is bilinear, symmetric, non-
degenerate and invariant, i.e.,

([x, y]|z) = (x|[y, z]) (1.21)

for all x, y, z ∈ g(r).

Finally, the bilinear form (|) is extended to g(A).

1.4.2 The Weyl group

For i = 1, . . . , n, we define the map si : h→ h by

si(h) = h− αi(h)hi (1.22)

for all h ∈ h.

Proposition 1.6. We have s2
i = 1, si(hi) = −hi.

We call the maps si : h → h the fundamental reflections. The group W of non-singular
linear transformations of h generated by s1, . . . , sn is called the Weyl group of g(A).

Let (|) be the standard invariant form on g(A).

Proposition 1.7. We have (h|h′) = (w(h)|w(h′)) for all h, h′ ∈ h and w ∈W .

We can define the action of the Weyl group on h∗ by

(w(λ))(h) = λ(w−1(h)) (1.23)

for all w ∈W,λ ∈ h∗, h ∈ h. Then for any λ ∈ h∗, we have

si(λ) = λ− λ(hi)αi. (1.24)

Moreover, the Weyl group acts on the root system Φ of g(A). And the multiplicity of a root is
invariant under the action.
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Proposition 1.8. If α ∈ Φ, then w(α) ∈ Φ. Moreover, dim(gα) = dim(gw(α)).

Consider the decomposition

g(A) = h⊕
(
⊕

α∈Φ

gα

)
. (1.25)

We say that a root α ∈ Φ is real if there exists w ∈ W and αi ∈ Π such that α = w(αi), and
α ∈ Φ is imaginary otherwise.

Theorem 1.9. Let A be a symmetrizable indecomposable generalized Cartan matrix. Then

1. If A is of finite type, then g(A) has no imaginary root.

2. If A is of affine type, then there exists a unique vector a = t(a1, . . . , an) of relatively prime
integers such that ai > 0, Aa = t(0, . . . , 0). Set δ = a1α1 + · · ·+anαn. Then the imaginary
roots of g(A) have form kδ, where k ∈ Z \ {0}.

In the case A is of affine type, we call δ the basic imaginary root of g(A).

1.4.3 Representations of symmetrizable Kac-Moody algebras

We define an order in h∗ by

λ ≥ µ if and only if λ− µ ∈ Q+. (1.26)

The category O is defined as follows:

1. The objects in the category O are g(A)-modules V satisfying the conditions:

• V =
⊕
λ∈h∗

Vλ where

Vλ = {v ∈ V | hv = λ(h)v for all h ∈ h}. (1.27)

• dim(Vλ) is finite for each λ ∈ h∗.

• There exists a finite set λ1, . . . , λs ∈ h∗ such that if Vλ 6= 0, then λ ≤ λi for some
i ∈ {1, . . . , s}

2. The morphisms in the category O are the homomorphisms of g(A)-modules.

For each V ∈ O, we define the character ch(V ) as a function from h∗ to Z by

ch(V )(λ) = dim(Vλ). (1.28)

For each λ ∈ h∗, we define the function eλ : h∗ → Z by

eλ(µ) = δλµ. (1.29)

Then we have
ch(V ) =

∑

λ∈h∗

dim(Vλ)eλ. (1.30)

Lemma 1.10. We have

1. If V ∈ O and U is a submodule of V , then U ∈ O and V/U ∈ O,
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2. If V1, V2 ∈ O, then V1 ⊕ V2 ∈ O and V1 ⊗ V2 ∈ O.

For each λ ∈ h∗, we define the Verma module M(λ) with highest weight λ by

M(λ) = U(g(A))/Kλ, (1.31)

where U(g(A)) is the universal enveloping algebra of g(A) and

Kλ = U(g(A))n+ +
∑

h∈h
U(g(A))(h− λ(h)) (1.32)

for all h ∈ h.

The Verma module M(λ) has a unique maximal submodule J(λ). We define

L(λ) = M(λ)/J(λ). (1.33)

Proposition 1.11. For each λ ∈ h∗, we have M(λ) ∈ O. Hence, L(λ) ∈ O. Moreover, the
modules L(λ) are the only irreducible modules in the category O.

A g(A)-module V is called integrable if

V =
⊕

λ∈h∗

Vλ (1.34)

and ei : V → V , fi : V → V are locally nilpotent for all i = 1, . . . , n.

Proposition 1.12. Let V be an integrable g(A)-module. Then

dim(Vλ) = dim(Vw(λ)) (1.35)

for each λ ∈ h∗, w ∈W .

We define the set of all dominant integral weights

P+ = {λ ∈ h∗ | λ(hi) ∈ Z≥0 for all i = 1, . . . , n}. (1.36)

Proposition 1.13. Let g(A) be a symmetrizable Kac-Moody algebra. The module L(λ) is inte-
grable if and only if λ ∈ P+.

Since h1, . . . , hn are linearly independent, we can choose an element ρ ∈ h∗ such that ρ(hi) = 1
for all i = 1, . . . , n.

Theorem 1.14. (Weyl-Kac’s character formula) Let g(A) be a symmetrizable Kac-Moody alge-
bra. For each λ ∈ P+, we have

ch(L(λ)) =

∑
w∈W

ǫ(w)ew(λ+ρ)

∑
w∈W

ǫ(w)ew(ρ)
. (1.37)
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1.4.4 Contravariant Hermitian forms on Verma modules

Let e1, . . . , en, f1, . . . , fn, h1, . . . , hn, d be the Chevalley generators of g. Let ω0 be the C-anti-
linear anti-involution on g defined by

ω0(ei) = fi, ω0(fi) = ei, ω0(hi) = hi, ω0(d) = d. (1.38)

Here anti-involution means we have ω0([x, y]) = [ω0(y), ω0(x)] for all x, y ∈ g and ω2
0 = Id. The

map ω0 extends uniquely to an anti-linear anti-involution on U(g), which we still denote by ω0.
The triangular decomposition g = n− ⊕ h⊕ n+ with the Poincaré-Birkhoff-Witt theorem imply
that

U(g) = U(h)⊕ (n−U(g) + U(g)n+). (1.39)

This splitting is stable by ω0 since ω0 pointwise fixes U(h) and it interchanges n−U(g) with
U(g)n+. In the decomposition (1.39), U(h) is the symmetric algebra S(h) since h is abelian. Let
π : U(g) → S(h) be the projection to the first component of the decomposition. It is a S(h)-
bimodule map, i.e, π(xgy) = xπ(g)y for all g ∈ U(g), x, y ∈ S(h). Let 〈, 〉 : U(g) × U(g) → S(h)
be the map defined by

〈x, y〉 = π(ω0(x)y). (1.40)

Proposition 1.15. We have

1. 〈, 〉 is linear in the second variable, anti-linear in the first variable.

2. 〈gx, y〉 = 〈x, ω0(g)y〉 for all x, y, g ∈ U(g).

3. 〈x, y〉 = 0 if x ∈ U(g)n+ or y ∈ U(g)n+.

Let M be a g-module, a Hermitian contravariant form on M with respect to the
anti-involution ω0 is a map H : M ×M → C satisfying conditions below

1. H(ax+ y, z) = aH(x, z) +H(y, z) for all x, y, z ∈M , a ∈ C,

2. H(z, ax+ y) = aH(z, x) +H(z, y) for all x, y, z ∈M , a ∈ C,

3. H(gx, y) = H(x, ω0(g)y) for all x, y ∈M , g ∈ g.

For each Λ ∈ h∗, let evΛ : S(h)→ C be the homomorphism defined by

evΛ(x1 . . . xr) = Λ(x1) . . .Λ(xr) for all x1, . . . , xr ∈ h. (1.41)

The kernel of evΛ is generated by all elements h − Λ(h) with h ∈ h∗. Set 〈, 〉Λ = evΛ ◦ 〈, 〉. Let

h∗R be the dual space of Rd⊕
n⊕
i=1

Rhi. With the help of Proposition 1.15, we obtain the following

statement.

Proposition 1.16. We have 〈x, y〉Λ = 0 for all x or y in U(g)n+ +
∑
h∈h
U(g)(h − Λ(h)) if and

only if Λ ∈ h∗R.

By the Proposition 1.16, with the assumption that Λ ∈ h∗R, the map 〈, 〉Λ induces a Hermitian
form on the Verma module M(Λ), which we still denote by 〈, 〉Λ.

Proposition 1.17. Let Λ ∈ h∗R, we have

1. 〈, 〉Λ is a Hermitian contravariant form on M(Λ).
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2. 〈x, y〉Λ = 0 for all x ∈M(Λ)Λ−α, y ∈M(Λ)Λ−β with α 6= β in Q+.

3. The radical of 〈, 〉Λ is the maximal submodule J(Λ) of M(Λ).

A g-module M is said to be unitarizable if it has a positive definite Hermitian form which
is contravariant with respect to the anti-involution ω0. Let Λ ∈ h∗R. By 3. in the Propsition
1.17, 〈, 〉Λ induces such a Hermitian contravariant form on L(Λ). The result below is mentioned
in Theorem 11.7 in [Kac90].

Theorem 1.18. Let Λ ∈ h∗R. The g-module L(Λ) is unitarizable if and only if Λ ∈ P+.

Remark 1.19.

1. It can be proved that 〈, 〉Λ is the only candidate to be a Hermitian contravariant form with
respect to ω0.

2. Assume that g(A) is finite dimensional and G is the simply connected group associated to
g(A) and L(Λ) is finite dimensional of dimension d. Then G is not compact whereas Ud(C)
is. So we can not hope an invariant positive definite Hermitian form on L(Λ). The role of
ω0 is here to solve this paradox since Gω0 is a compact form of G.

1.4.5 Affine Kac-Moody algebras

Assume A is of affine type and number the index set as I = {0, . . . , l}. There exists a unique pair
of vectors a = t(a0, . . . , al) and c = (c0, . . . , cl) of relatively prime integers such that ai, ci > 0
and Aa = t(0, . . . , 0), cA = (0, . . . , 0).

Proposition 1.20. We have

1. c0 = 1,

2. a0 =

{
2 if A is of type A

(2)
2l ,

1 otherwise.

The Coxeter number h and dual Coxeter number h∨ of A are defined by

h =
∑

i∈I
ai, h∨ =

∑

i∈I
ci. (1.42)

Recall that (h,Π,Π∨) is a minimal realization of A then dim(h) = l + 2. Fix an element d ∈ h

such that
α0(d) = 1, αi(d) = 0 for all i > 0. (1.43)

We call d a scaling element. The 0-th fundamental weight Λ0 is defined by

Λ0(hj) = δ0j , Λ0(d) = 0 for all i ∈ I. (1.44)

Proposition 1.21. We have

1. {α0, . . . , αl,Λ0} is a basis of h∗,

2. {h0, . . . , hl, d} is a basis of h.

Recall that A is symmetrizable. More precisely, we have the following proposition.
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Proposition 1.22. We have A = DB, where D = diag(d0, . . . , dl) with di = ai/ci and B is a
symmetric matrix.

Let (|) be the standard invariant form on g(A) constructed as in Section 1.4.1. We have

1. (hi|hj) = didjBij =
aj

cj
aij for all i, j ∈ I,

2. (hi|d) = a0δi0 for all i ∈ I,

3. (d|d) = 0.

There is a bijection h∗ → h defined by

λ 7→ h′λ, (1.45)

where λ(h) = (h′λ|h) for all h ∈ h. Set

K =

l∑

i=0

cihi, δ =

l∑

i=0

aiαi. (1.46)

Lemma 1.23. Under the bijection h∗ → h, λ 7→ h′λ, we have

1. αi 7→ ci

ai
hi,

2. Λ0 7→ 1
a0
d,

3. δ 7→ K.

From the fact that the centre of g(A) is the 1-dimensional vector space spanned by K, we
call K the canonical central element of g(A). The element δ is called the basic imaginary
root as in Section 1.4.2.

The bijection h∗ → h, λ 7→ h′λ allows us to consider (|) as a standard invariant form on h∗ by

1. (αi|αj) = ci

ai
aji for all i, j ∈ I,

2. (αi|Λ0) = 1
a0
δi0 for all i ∈ I,

3. (Λ0|Λ0) = 0.

The Weyl group W of g(A) is generated by the fundamental reflections s0, . . . , sl, where
si is given by

si(λ) = λ− λ(hi)αi (1.47)

for all λ ∈ h∗.

For each α ∈ h∗, we define tα : h∗ → h∗ by

tα(λ) = λ+ λ(K)α−
(
λ+

λ(K)α

2

∣∣∣∣α
)
δ. (1.48)

Proposition 1.24. We have

1. tαtβ = tα+β for all α, β ∈ h∗.
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2. wtαw
−1 = tw(α) for all α ∈ h∗, w ∈W .

For each i = 0, . . . , l, set
α∨i =

ai
ci
αi. (1.49)

Suppose that A is of type X(r)
N . We denote the type of tA by X(r∨)

N∨ . Let M be a sublattice of
Q defined by

M =





l⊕
i=1

Zαi if r∨ = 1,

l⊕
i=1

Zα∨i if r∨ > 1.

(1.50)

Set tM = {tα | α ∈M}. Let W be the subgroup of W generated by {s1, . . . , sl}.

Theorem 1.25. We have
W ∼= tM ⋊W. (1.51)

For each i ∈ I, we define the i-th fundamental weight Λi by

Λi(hj) = δij for all j ∈ I, Λi(d) = 0. (1.52)

We remark that the 0-th fundamental weight Λ0 is already defined in (1.44). Since

δ(hi) = 0 for all i ∈ I, δ(d) = 1, (1.53)

then {Λ0, . . . ,Λl, δ} is a basis of h∗.

The set of dominant integral weights is given by

P+ =
∑

i∈I
Z≥0Λi + Cδ. (1.54)

For each Λ ∈ P+, let L(Λ) be the integrable irreducible highest weight g(A)-module with
highest weight Λ. Let P (Λ) be the set of all weights of L(Λ), i.e.,

P (Λ) = {µ ∈ h∗ | L(Λ)µ 6= 0}. (1.55)

Theorem 1.26. Let Λ ∈ P+. We have µ ∈ P (Λ) if and only if there exists w ∈ W such that
w(µ) ∈ P+ and w(µ) ≤ λ.

Corollary 1.27. If µ ∈ P (Λ), then µ− δ ∈ P (Λ).

The corollary implies that if µ ∈ P (Λ), then µ − nδ ∈ P (Λ) for any n ∈ Z≥0. Since there
exist finitely many positive integers n such that µ+ nδ ≤ λ, we say that µ is maximal weight
of L(Λ) if and only if µ ∈ P (Λ) but µ+ δ 6∈ P (Λ). We denote the set of all maximal weights of
L(Λ) by max(Λ). In summary,

P (Λ) = W ((Λ−Q+) ∩ P+) = max(Λ)− Z≥0δ. (1.56)

Since δ is W -invariant, we have

Proposition 1.28. Let Λ ∈ P+. The set max(Λ) is invariant under the action of the Weyl
group. In particular,

max(Λ) = W (max(Λ) ∩ P+). (1.57)
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Set e−δ = q. For each λ ∈ h∗, we define the string function cΛ
λ ∈ C((q)) associated to λ by

cΛ
λ =

∑

n∈Z
dim(L(Λ)λ−nδ)q

n. (1.58)

By Proposition 1.12, for all w ∈W , we have

cΛ
λ = cΛ

w(λ). (1.59)

Denote by chΛ the character ch(L(Λ)). Choose ρ =
∑
i∈I

Λi, we see that ρ(hi) = 1 for all i ∈ I.

We have formulas for character of L(Λ) as follows

chΛ =
∑

λ∈max(Λ)

cΛ
λe

λ. (1.60)

chΛ =

∑
w∈W

ǫ(w)ew(λ+ρ)

∑
w∈W

ǫ(w)ew(ρ)
. (1.61)



Chapter 2

Branching problem on winding

subalgebras of affine Kac-Moody

algebras A
(1)
1 and A

(2)
2

The chapter is a reproduction of our first preprint [Kha19].

Abstract

We consider an affine Kac-Moody algebra g. Since g is infinite dimensional, it could occur that a
strict subalgebra is isomorphic to g. It is the situation for the winding subalgebra g[u] depending
on a positive integer u. We are interested in the branching problem for such a pair g[u] ⊂ g

and integrable highest weights g-modules. Fix such a g-module L(Λ) depending on a dominant
integral weight Λ. Under the action of g[u], L(Λ) is still integrable with finite multiplicities.
Hence, it decomposes in direct sum of g[u]-modules L̇(λ) as L(Λ) =

⊕
λ∈Ṗ+

L̇(λ)multΛ,g[u](λ).

Here P+ (resp. Ṗ+) denote the set of dominant weights and L(Λ) (resp. L̇(λ)) the irreducible
integral g-module (resp. g[u]-module) associated to Λ ∈ P+ (resp. λ ∈ Ṗ+). Consider the
support of the decomposition Γ(g, g[u]) = {(Λ, λ) ∈ P+ × Ṗ+ | multΛ,g[u](λ) 6= 0}. Our first
result is qualitative and extends to our context a well know Brion-Knop’s theorem for finite
dimensional reductive algebras: Γ(g, g[u]) is a semigroup. Note that by lack of geometry, our
proof is not a straightforward generalization to known proofs. Our second result is a partial
description of Γ(g, g[u]). When g is of type A(1)

1 or A(2)
2 , we describe explicit sub-semigroups of

this semigroup.
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2.1 Introduction

One of the most important question in representation theory is how an irreducible module of
a Lie algebra g can be decomposed when we consider it as a representation of some given Lie
subalgebra ġ. Assume first that g and ġ are finite dimensional and semi-simple. Then the finite
dimensional irreducible g-modules (resp. ġ-modules) are parametrized by the semigroup P+

(resp. Ṗ+) of dominant integral weights. Given Λ ∈ P+, under the action of ġ, the irreducible
g-module L(Λ) of highest weight Λ decomposes as

L(Λ) =
⊕

λ∈Ṗ+

L̇(λ)multΛ,ġ(λ), (2.1)

where multΛ,ġ(λ) is the multiplicity of L̇(λ) in L(Λ). Understanding the number multΛ,ġ(λ)
is referred as the branching problem. For example, for ġ diagonally embedded in g = ġ × ġ,
the coefficients multΛ,ġ(λ) are the multiplicities of the tensor product decomposition of two
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irreducible representations of ġ. If ġ = gln(C), then Ṗ+ may be identified with the set of non-
increasing sequences of n integers and the coefficients are the Littlewood-Richardson coefficients.
If ġ is a Cartan subalgebra of g, the multiplicities multΛ,ġ(λ) are the Kostka coefficients. The
support

Γ(g, ġ) = {(Λ, λ) ∈ P+ × Ṗ+ : multΛ,ġ(λ) 6= 0}
of these multiplicities is also a fascinating object. Actually, it is a finitely generated semigroup
that generates a polyhedral convex cone (see [Bri13]). For ġ diagonally embedded in g = ġ × ġ

this cone is the famous Horn cone. Its description has a very long and rich story (see [Bri15],
[Bri13], [Kum14], [BK06], [Res10]).

In this chapter, we are interested in similar questions for affine Kac-Moody algebras. Assume
now that g is an affine Kac-Moody algebra and consider the integrable highest weight g-module
L(Λ) as module over some subalgebra ġ. In the following three cases, we have decompositions
similar to (2.1) with finite multiplicities:

1. ġ = h is a Cartan subalgebra of g,

2. ġ is diagonally embedded in g = ġ× ġ,

3. ġ is a winding subalgebra of g introduced by V. G. Kac and M. Wakimoto in [KW90].

Recently, several authors studied Γ(g, ġ) in the case of the tensor product decomposition of affine
(or symmetrizable) Kac-Moody Lie algebras (see [Res17], [KR17], [Lit94], [BK14]).

Here, we begin a study of Γ(g, ġ) in the winding case. This case is important and interesting
since its relation with the tensor product decomposition (see [KW90]) and a solution to Frenkel’s
conjecture (see [KW90], [Fre82]). The winding subalgebras g[u] are isomorphic to g but nontriv-
ially embedded in g (the embedding depends on a fixed u, see Section 2.4 or [KW90] for details).

Let P+ (resp. Ṗ+) be the set of all dominant integral weights of g (resp. g[u]). For Λ ∈ P+ (resp.
λ ∈ Ṗ+), let L(Λ) (resp. L̇(λ)) be the irreducible highest weight g-module (resp. g[u]-module)
with highest weight Λ (resp. λ). By [KW90], under the action of g[u], L(Λ) is still integrable
and decomposes as

L(Λ) =
⊕

λ∈Ṗ+

L̇(λ)multΛ,g[u](λ). (2.2)

We define Γ(g, g[u]) to be the support of this decomposition:

Γ(g, g[u]) = {(Λ, λ) ∈ P+ × Ṗ+ | multΛ,g[u](λ) 6= 0}. (2.3)

Our first main result is the following theorem.

Theorem 2.1. The set Γ(g, g[u]) is a sub-semigroup of h∗ × h∗.

Let δ be the basic imaginary root of g. The description of the set Γ(g, g[u]) is equivalent to
describe the sets

B(Λ, λ) = {b ∈ C | L̇(λ+ bδ) ⊂ L(Λ)},
for any (Λ, λ) ∈ P+ × Ṗ+. Let Pu(Λ) is the set of all λ such that (Λ, λ) ∈ Γ(g, g[u]). The set
B(Λ, λ) is nonempty if and only if λ ∈ Pu(Λ) + Cδ. In this case, we define bΛ,λ,u to be number
b ∈ B(Λ, λ) such that b + n 6∈ B(Λ, λ) for any n ∈ Z>0. We also define a number h[u]

Λ,λ as in
(2.118). We describe the set B(Λ, λ) as in the following theorem.
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Theorem 2.2. Let g be an affine Kac-Moody algebra of type X
(r)
N . Fix u ∈ Z>1 such that u = 1(

mod r). Let Λ ∈ P+ and λ ∈ Pu(Λ) + Cδ. We have

1. bΛ,λ,u − (Z≥0 \ {1}) ⊂ B(Λ, λ) ⊂ bΛ,λ,u − Z≥0.

2. If in addition h
[u]
Λ,λ 6= 0 then B(Λ, λ) = bΛ,λ,u − Z≥0.

Since h is contained in g[u], if (Λ, λ) ∈ Γ(g, g[u]) then λ is a weight of L(Λ). Set

L(Λ)λ = {v ∈ L(Λ) | hv = λ(h)v for all h ∈ h}. (2.4)

Set
Γ(g, h) = {(Λ, λ) ∈ P+ × h∗ | L(Λ)λ 6= {0}}. (2.5)

Let us recall how Γ(g, h) can be described. Let P (Λ) be the set of weights of L(Λ). Fix λ ∈
P (Λ)+Cδ, then the set of b ∈ C such that λ+bδ is a weight of L(Λ) is of the form bΛ,λ−Z≥0 for
some well defined bΛ,λ. In particular, describing Γ(g, h) is equivalent to compute the numbers
bΛ,λ. For g of type A(1)

1 and A(2)
2 , we determine this number in Proposition 2.32 and Proposition

2.37, respectively. Let us introduce more notation to describe our results on Γ(g, g[u]) for these
two Lie algebras. Let Λ0 be the 0-th fundamental weight and let α be the simple root α1. Up
to tensoring by some one dimensional g-module any integrable highest weight g-module is L(Λ)

with Λ = mΛ0 + jα
2 for some j,m ∈ Z≥0 and j ≤ m (for the case A(1)

1 ) or j ≤ m
2 (for the case

A
(2)
2 ).

Theorem 2.3. Let g be the affine Kac-Moody algebra of type A
(1)
1 . Let Λ = mΛ0 + jα

2 ∈ P+

and let λ = m′Λ0 + j′α
2 ∈ Ṗ+.

1. If there exists b ∈ C such that (Λ, λ+bδ) belongs to Γ(g, g[u]) then j′−j ∈ 2Z and m′ = m.

2. If moreover

a. j ≤ j′ ≤ um− j and u is even; or

b. j ≤ j′ ≤ um− (m− j) and u is odd,

then bΛ,λ,u = bΛ,λ.

For Λ like in Theorem 2.3, we denote by Au(Λ) the set of λ such that the theorem applies.
Namely

Au(Λ) =

{
mΛ0 +

j′α

2

∣∣∣∣ j
′ ∈ [j, um− j∗] ∩ (j + 2Z)

}
(2.6)

where j∗ = j if u is even and j∗ = m− j if u is odd.

Theorem 2.4. Let g be the affine Kac-Moody algebra of type A
(2)
2 . Let λ = mΛ0 + jα

2 ∈ P+ and

let λ = m′Λ0 + j′α
2 ∈ Ṗ+.

1. If there exists b ∈ C such that (Λ, λ+ bδ) belongs to Γ(g, g[u]) then m′ = m.

2. If moreover

a. j ≤ j′; and

b. j′ ∈ m(u−1)
2 − j + (2Z≥0 ∪ Z<0),
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then bΛ,λ,u = bΛ,λ.

For Λ like in Theorem 2.4, we denote by Au(Λ) the set of λ such that the theorem applies.
Namely

Au(Λ) =

{
mΛ0 +

j′α

2

∣∣∣∣ j
′ ∈
[
j,
um

2

]
∩ Z ∩

(
m(u− 1)

2
− j + (2Z≥0 ∪ Z<0)

)}
. (2.7)

The satured set of the support Γ(g, g[u]) is defined by

Γ̃(g, g[u]) = {(Λ, λ) ∈ P+ × Ṗ+ | λ ∈ Λ +Q, L̇(Nλ) ⊂ L(NΛ) for some integer N > 1}. (2.8)

The following result is a corollary of Theorems 2.2, 2.3, 2.4.

Corollary 2.5. Let g be an affine Kac-Moody algebra of type A
(1)
1 or A

(2)
2 . Fix u ∈ Z>1 (u is

an odd number in the case A
(2)
2 ). Let Λ ∈ P+ and let λ ∈ Au(Λ) ∩ (Λ + Q). For all b ∈ C, we

have

1. (Λ, λ+ bδ) ∈ Γ̃(g, g[u])⇔ d(Λ, λ+ bδ) ∈ Γ(g, g[u]) for all d ∈ Z≥2.

2. If in addition h
[u]
Λ,λ 6= 0 then (Λ, λ+ bδ) ∈ Γ̃(g, g[u])⇔ (Λ, λ+ bδ) ∈ Γ(g, g[u]).

This chapter is organized as follows. In Section 2.2, we prepare fundamental knowledge
of affine Kac-Moody algebras. In Section 2.3, we present results around branching on Cartan
subalgebras. We prove that the set Γ(g, h) is a semigroup. In Section 2.4, we introduce the
notion of winding subalgebras and study the branching problem for general affine Kac-Moody
algebras. The main results in this section are Theorems 2.1, 2.2. In Section 2.5, we present the
results in the cases A(1)

1 and A
(2)
2 . The main results in this section are Theorems 2.3, 2.4, and

Corollary 2.5.

2.2 Preliminaries

In this section, we recall basic results about affine Kac-Moody algebras in [Car05], [Kac90],
[KW90].

2.2.1 Generalized Cartan matrix of affine type

Set I = {0, . . . , l}. Let A = (aij)i,j∈I be a generalized Cartan matrix of affine type, i.e., A is
indecomposable of corank 1, aii = 2,−aij ∈ Z≥0 for i 6= j, aij = 0 iff aji = 0 and there exists a
column vector u with positive integer entries such that Au = 0.

Let a = t(a0, . . . , al) and c = (c0, . . . , cl) be the vectors of relatively prime integers such that
ai, ci > 0 and Aa = t(0, . . . , 0), cA = (0, . . . , 0). The Coxeter number and dual Coxeter number
of A are defined by h =

∑
i∈I

ai and h∨ =
∑
i∈I

ci.

2.2.2 Realization of a generalized Cartan matrix

Let (h,Π,Π∨) be a realization of A where h is a C-vector space of dimension l + 2, Π∨ =
{h0, . . . , hl} is a linearly independent subset in h and Π = {α0, . . . , αl} is a linearly independent
subset in h∗ (the dual space of h) such that αi(hj) = aji.
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Let K =
∑
i∈I

cihi be the canonical central element and δ =
∑
i∈I

aiαi be the basic imaginary root.

Let d ∈ h be the scaling element, i.e., α0(d) = 1, αi(d) = 0 for i > 0. Let Λi (i ∈ I) be the
i-th fundamental weights, i.e., Λi(hj) = δij ,Λi(d) = 0 for all j ∈ I. Set ρ =

∑
i∈I

Λi. Then

{α0, . . . , αl,Λ0} is a basis of h∗ and {h0, . . . , hl, d} is a basis of h.

2.2.3 Affine Kac-Moody algebras

Let g = g(A) be the affine Kac-Moody algebra corresponding to the matrix A. We call h a
Cartan subalgebra of g and Π,Π∨ the set of simple roots, simple coroots of g, respectively. We
have a triangular decomposition

g = n− ⊕ h⊕ n+, (2.9)

where n− is the negative subalgebra of g and n+ is the positive subalgebra of g.

An affine Kac-Moody algebra has typeX(r)
N with r = 1, 2, 3 (here we use the standard notation

in [Kac90] to label the type of affine Kac-Moody algebras). In particular, the untwisted affine
Kac-Moody of type A(1)

1 is defined by the generalized Cartan matrix
(

2 −2
−2 2

)
, (2.10)

and the twisted affine Kac-Moody algebra of type A
(2)
2 is defined by the generalized Cartan

matrix (
2 −4
−1 2

)
. (2.11)

It is known that the matrix tA is also a generalized Cartan matrix of affine type. We denote
X

(r∨)
N∨ the type of the algebra g(tA).

2.2.4 Weyl group

Let Q = ZΠ be the root lattice and let Q+ = Z≥0Π. We define an order on h∗ by λ ≥ µ if
λ− µ ∈ Q+. For each i ∈ I, set α∨i = ai

ci
αi. We define a sublattice M of Q by

M =





l⊕
i=1

Zαi if r∨ = 1,

l⊕
i=1

Zα∨i if r∨ > 1.

(2.12)

Let (|) be the standard invariant form on h∗ which is defined by

(αi|αj) =
ci
ai
aij , (αi|Λ0) =

1

a0
αi(d), (Λ0|Λ0) = 0 ∀i, j ∈ I. (2.13)

For each α ∈ h∗, we define tα ∈ GL(h∗) by

tα(λ) = λ+ λ(K)α−
(
λ+

λ(K)α

2

∣∣∣∣α
)
δ. (2.14)

Let W be the Weyl group of g, i.e., the group generated by fundamental reflections {s0, . . . , sl},
where si ∈ GL(h∗) is defined by si(λ) = λ− λ(hi)αi. We have

W ∼= tM ⋊W, (2.15)

where tM = {tα | α ∈M} and W is the subgroup of W generated by {s1, . . . , sl}.
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2.2.5 Realization of affine Kac-Moody algebras

Let g be a simple Lie algebra with Lie bracket [, ]0, and normalized invariant form (|)0 (Here we
use the notion of normalized invariant form for a simple Lie algebra in the book of Carter [Car05]).
We extend g to a new Lie algebra

ĝ = C[t, t−1]⊗ g⊕ CK ⊕ Cd (2.16)

with new Lie bracket
[ti ⊗ x+ λK + µd, tj ⊗ y + λ′K + µ′d]

= ti+j ⊗ [x, y]0 + µjtj ⊗ y − µ′iti ⊗ x+ iδi+j,0(x|y)0K. (2.17)

for all i, j ∈ Z, x, y ∈ g and λ, λ′, µ, µ′ ∈ C.

Let h be a Cartan subalgebra of g and let Φ be the root system of g. For each α ∈ Φ, let

gα =
{
x ∈ g such that [h, x]0 = α(h)x for all h ∈ h

}
. (2.18)

Let Π = {α1, . . . , αl} be the set of simple roots and Π
∨

= {h1, . . . , hl} be the set of simple
coroots of g. It is known that the dimension of gα is one for each α ∈ Φ. For each i ∈ {1, . . . , l},
let ei be a basis vector of gαi

and fi be a basis vector of g−αi
. Then g is a Lie algebra with

generators {h1, . . . , hl, e1, . . . , el, f1, . . . , fl}.

Suppose that g is associated to a generalized Cartan matrix A of finite type. Each σ ∈ Sl such
that aij = aσ(i)σ(j) for all i, j ∈ {1, . . . , l} can be considered as an automorphism of g by sending

ei 7→ eσ(i), f i 7→ fσ(i), hi 7→ hσ(i). (2.19)

Let m be the order of σ and set η = e2iπ/m. We define the automorphism τ of ĝ by

τ(tj ⊗ x) = η−jtj ⊗ σ(x), τ(K) = K, τ(d) = d (2.20)

for all j ∈ Z, x ∈ g. This map is called a twisted automorphism of ĝ.

Now, let g be an affine Kac-Moody algebra of type X(r)
N . Let g be the simple Lie algebra of

type XN . If g is an untwisted affine Kac-Moody algebra, i.e., type X(1)
N , we have

g ≃ ĝ. (2.21)

If g is a twisted affine Kac-Moody algebra, i.e., type X
(r)
N with r = 2, 3, then the order of

nontrivial σ mentioned above is r. In this case, we have

g ≃ ĝ
〈τ〉
. (2.22)

The simple coroots h1, . . . , hl of g have the property

hi ∈ 1⊗ h (2.23)

for each i ∈ {1, . . . , l}, where h is the Cartan subalgebra of g. For the details, we refer the reader
to the proofs of Theorem 18.5, Theorem 18.9 and Theorem 18.14 in [Car05].
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2.2.6 Dominant integral weights

Let
P =

∑

i∈I
ZΛi + Cδ (2.24)

be the set of integral weights. For any set S ⊂ h∗, we denote by S the subset of all λ ∈ S + Cδ
such that λ(d) = 0. We have

P =
∑

i∈I
ZΛi. (2.25)

For each λ ∈ P , the number λ(K) is an integer and we call it the level of λ. For each m ∈ Z, we
denote by Pm the set of all integral weights of level m. Then we have

Pm =

{
∑

i∈I
miΛi

∣∣∣∣∣
∑

i∈I
mici = m,mi ∈ Z

}
+ Cδ. (2.26)

Let
P+ =

∑

i∈I
Z≥0Λi + Cδ (2.27)

be the set of dominant integral weights. Let P+, Pm+ be the intersection of P , Pm with P+,
respectively.

2.2.7 Highest weight representations of affine Kac-Moody algebras

Let g be an affine Kac-Moody algebra. Let O be the category which is defined as follows:

1. The objects in the category O are g-modules V satisfying the conditions:

• V =
⊕
λ∈h∗

Vλ where Vλ = {v ∈ V | hv = λ(h)v for all h ∈ h}.

• dim(Vλ) is finite for each λ ∈ h∗.

• There exists a finite set λ1, . . . , λs ∈ h∗ such that if Vλ 6= 0, then λ ≤ λi for some
i ∈ {1, . . . , s}

2. The morphisms in the category O are the homomorphisms of g-modules.

For each Λ ∈ h∗, we define the Verma module M(Λ) with highest weight Λ by

M(Λ) = U(g)/KΛ, (2.28)

where U(g) is the universal enveloping algebra of g and

KΛ = U(g)n+ +
∑

h∈h
U(g)(h− λ(h)) (2.29)

for all h ∈ h.

The Verma module M(Λ) has a unique maximal submodule J(Λ). We define

L(Λ) = M(Λ)/J(Λ). (2.30)

Proposition 2.6. For each Λ ∈ h∗, we have M(Λ) ∈ O. Hence, L(Λ) ∈ O. Moreover, the
modules L(Λ) are the only irreducible modules in the category O.
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A g-module V is called integrable if V =
⊕
λ∈h∗

Vλ and ei : V → V , fi : V → V are locally

nilpotent for all i = 1, . . . , n.

Proposition 2.7. Let g be an affine Kac-Moody algebra. The module L(Λ) is integrable if and
only if Λ ∈ P+.

2.3 Branching on Cartan subalgebras

In this section, we recall some facts about branching on Cartan subalgebras of affine Kac-Moody
algebras.

Let Λ ∈ P+ be a dominant integral weight of g, and let h be Cartan subalgebra of g. Regarding
the g-module L(Λ) as an h-module, it can be decomposed into direct sum of weights spaces

L(Λ) =
⊕

λ∈h∗

L(Λ)λ, (2.31)

where
L(Λ)λ = {v ∈ L(Λ) | hv = λ(h)v ∀h ∈ h} . (2.32)

Let multΛ,h(λ) be the dimension of the space L(Λ)λ. Then the decomposition (2.31) is encoded
by a formal series chΛ on h∗ as follows

chΛ =
∑

λ∈h∗

multΛ,h(λ)eλ, (2.33)

called the character of L(Λ), where eλ(µ) = δλ,µ for µ ∈ h∗. The set of weights of L(Λ) is defined
by

P (Λ) = {λ ∈ h∗ | multΛ,h(λ) 6= 0} . (2.34)

For each λ ∈ h∗, we say that λ is a maximal weight of L(Λ) if λ ∈ P (Λ) but λ+ nδ 6∈ P (Λ) for
any n > 0. Let max(Λ) be the set of all maximal weights of L(Λ). We have

max(Λ) = W (max(Λ) ∩ P+) (2.35)

and
P (Λ) = W ((Λ−Q+) ∩ P+) = max(Λ)− Z≥0δ. (2.36)

For each λ ∈ P (Λ) + Cδ, let bΛ,λ be the complex number such that λ + bΛ,λδ ∈ max(Λ). It is
an integer if λ ∈ Λ + Q because bΛ,λδ ∈ Q. For each b ∈ C, λ + bδ ∈ P (Λ + bδ) if and only if
λ ∈ P (Λ). Hence

bΛ+b2δ,λ+b1δ = bΛ,λ + b2 − b1 (2.37)

for any b1, b2 ∈ C. Let Γ(g, h) be the set of all (Λ, λ) ∈ P+ × h∗ such that λ ∈ P (Λ).

2.3.1 About the character chΛ

We now recall some facts about the character chΛ for any affine Kac-Moody algebra.

Denote e−δ by q. For each λ ∈ h∗, we define the string function cΛ
λ ∈ C((q)) of L(Λ) associated

to λ by
cΛ
λ =

∑

n∈Z
multΛ,h(λ− nδ)qn. (2.38)
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Then for any w ∈W we have
cΛ
λ = cΛ

wλ (2.39)

and
chΛ =

∑

λ∈max(Λ)

cΛ
λe

λ. (2.40)

For each w ∈ W , let l(w) be the minimal length of w as a product of fundamental reflections
s0, . . . , sl. Set ǫ(w) = (−1)l(w). The character chΛ can be written in terms of Weyl group, with
the Weyl-Kac character formula (see Corollary 19.18 in [Car05]):

chΛ =

∑
w∈W

ǫ(w)ew(λ+ρ)

∑
w∈W

ǫ(w)ew(ρ)
. (2.41)

2.3.2 Semigroup structure

In this part, we study the set Γ(g, h) ⊂ h∗ × h∗.

Theorem 2.8. The set Γ(g, h) is a sub-semigroup of h∗ × h∗.

Proof. Let (Λ, λ) and (Λ, λ) be elements in the set Γ(g, h). We will show that (Λ + Λ, λ+ λ) is
still in this set. Indeed, λ+ λ is a weight of L(Λ)⊗ L(Λ). Hence λ+ λ is a weight of L(Λ′′) for
some Λ′′ ∈ ((Λ + Λ)−Q+) ∩ P+. By (2.36), we have

P (Λ′′) ⊂ P (Λ + Λ). (2.42)

It means λ+ λ ∈ P (Λ + Λ) and then Γ(g, h) is a semigroup.

Remark 2.9. We can prove that Γ(g, h) is a semigroup for any symmetrizable Kac-Moody
algebra g by the same argument.

2.4 Branching on winding subalgebras: the general case

In this section, we study the branching problem on winding subalgebras.

2.4.1 Winding subalgebras of an affine Kac-Moody algebra

In this subsection, we recall the notation of winding subalgebras of an affine Kac-Moody algebra
in [KW90]. The studying of winding subalgebras is important and interesting because of its rela-
tion with the tensor product decomposition (see [KW90]) and a solution to Frenkel’s conjecture
(see [KW90], [Fre82]).

Let g be an affine Kac-Moody algebra of type X(r)
N which is defined by (2.21), (2.22). Fix

u ∈ Z>1 such that u ≡ 1( mod r). It is easy to check that

tj ⊗ x 7→ tuj ⊗ x, K 7→ uK, d 7→ d

u
, (2.43)

where j ∈ Z, x ∈ g extend to an injective homomorphism ψu of Lie algebras and the image of ψu
is stable by 〈τ〉 in the case r > 1. Let g[u] be the subalgebra of g which is defined as follows.

• If r = 1, set g[u] = ψu(ĝ).



2.4. BRANCHING ON WINDING SUBALGEBRAS: THE GENERAL CASE 27

• If r > 1, set g[u] = ψu(ĝ)〈τ〉.

Then g[u] is a subalgebra of g and it is isomorphic to g. We call g[u] the winding subalgebra of
g associated to u.

2.4.2 Formulas for characteristic elements

Set K̇ = ψu(K) = uK. Let ψ̃u : h→ h be the restriction of ψu to the Cartan subalgebra h of g.
For each i ∈ I, set ḣi = ψ̃u(hi). Then by (2.23), we see that

ḣi = hi for all i > 0 and ḣ0 =
u− 1

c0
K + h0. (2.44)

Let tψ̃u : h∗ → h∗ the dual map of ψ̃u. Namely, for each λ ∈ h∗ we define tψ̃u by

tψ̃u(λ)(h) = λ(ψ̃u(h)) (2.45)

for all h ∈ h. For each i ∈ I, set α̇i = tψ̃u(αi). Then by (2.44), (2.45) we have

α̇i = αi for all i > 0 and α̇0 =
u− 1

a0
δ + α0. (2.46)

For each i ∈ I, set Λ̇i = tψ̃u(Λi) and ρ̇ = tψ̃u(ρ). By (2.44), (2.45) we have

Λ̇i = Λi +

(
1

u
− 1

)
ci
c0

Λ0 (2.47)

ρ̇ =
∑

I

Λ̇i = ρ+

(
1

u
− 1

)
h∨

c0
Λ0. (2.48)

The map tψ̃u induces simple reflections ṡi ∈ Aut(h∗), which are defined by

ṡi(λ) = λ− λ(ḣi)α̇i. (2.49)

The Weyl group Ẇ of g[u] is generated by the simple reflections ṡi (i ∈ I) turns out to be

Ẇ ∼= tuM ⋊W. (2.50)

In particular, by (2.15), it is a subgroup of the Weyl group W .

Let
Ṗ+ =

∑

i∈I
Z≥0Λ̇i + Cδ (2.51)

be the set of dominant integral weights of g[u]. For each m ∈ Z≥0, let Ṗm+ be the set of dominant
integral weights of g[u] of level m, i.e.,

Ṗm+ =

{
∑

i∈I
miΛ̇i

∣∣∣∣∣
∑

i∈I
mici = m,mi ∈ Z≥0

}
+ Cδ. (2.52)

Let λ ∈ Ṗ+, we denote the irreducible integrable g[u]-module of highest weight λ by L̇(λ). The
winding subalgebra g[u] has a triangular decomposition

g[u] = ṅ− ⊕ h⊕ ṅ+, (2.53)

where ṅ− is the negative subalgebra of g[u] and ṅ+ is the positive subalgebra of g[u].
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2.4.3 The set of weights Pu(Λ)

For each Λ ∈ Pm+ (m ∈ Z≥0), the g-module L(Λ) can be regarded as a g[u]-module of level um.
Then it can be decomposed into direct sum of integrable irreducible g[u]-module of level um

L(Λ) =
⊕

λ∈Ṗum
+

L̇(λ)multΛ,g[u](λ). (2.54)

Set
Pu(Λ) = {λ ∈ Ṗ+ | multΛ,g[u](λ) 6= 0}. (2.55)

It is easy to see that Pu(Λ) ⊂ P (Λ) (by part 0.5 page 5 in [KW90]). Hence Pu(Λ) is a subset of
max(Λ)−Z≥0δ. We say λ ∈ Pu(Λ) a g[u]-maximal weight of Λ if there does not exist n ∈ Z>0 such
that λ+ nδ ∈ Pu(Λ). We denote the set of all g[u]-maximal weights of Λ by maxu(Λ). For each
λ ∈ Pu(Λ) + Cδ, there exists a unique complex number bΛ,λ,u such that λ+ bΛ,λ,uδ ∈ maxu(Λ).
By definition, we have

bΛ,λ − bΛ,λ,u ∈ Z≥0. (2.56)

Let Γ(g, g[u]) be the set of all (Λ, λ) ∈ P+ × Ṗ+ such that λ ∈ Pu(Λ).

2.4.4 Character method

In this subsection, we prepare fundamental background on the representation theory of the
Virasoro algebras which help us to study the branching problem. The idea is analogous to the
idea in [KW90], [BK14]. In general, we need a formula expressing the character of an irreducible
highest weight g-module L(Λ) (Λ ∈ P+) in terms of the characters of irreducible highest weight
g[u]-modules L̇(λ) (λ ∈ Ṗ+). The Virasoro characters plays a role in this formula to help us
understanding the branching rule.

2.4.4.1 The Virasoro algebra

The Virasoro algebra V ir is spanned by symbols {Ln(n ∈ Z), Z} over C with the Lie bracket

[Lm, Ln] = (m− n)Lm+n +
m3 −m

12
δm+n,0Z and [V ir, Z] = 0. (2.57)

Set V ir0 = CL0 ⊕CZ. Let V be a V ir-module. For each λ ∈ V ir∗0 , the weight space Vλ of V is

Vλ = {v ∈ V | Xv = λ(X)v for all X ∈ V ir0}. (2.58)

Let V be a V ir-module which admits a weight decomposition such that each weight subspace
has finite dimension. Let ωV ir0 be the C-anti-linear anti-involution on V ir defined by

ωV ir0 (Ln) = L−n (n ∈ Z), ω0(Z) = Z. (2.59)

Here anti-involution means we have ωV ir0 ([X,Y ]) = [ωV ir0 (Y ), ωV ir0 (X)] for all X,Y ∈ V ir and
(ωV ir0 )2 = Id. A Hermitian form 〈, 〉 on V is said to be contravariant with respect to ωV ir0 if

〈Xv,w〉 = 〈v, ωV ir0 (X)w〉, (2.60)

for all v, w ∈ M , X ∈ V ir. A V ir-module is said to be unitarizable if there exists a positive
define Hermitian form 〈, 〉 which is contravariant with respect to ωV ir0 . It is known that any
unitarizable V ir-module is completely reducible.
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A V ir-module V is called a highest weight module if there exists a nonzero vector v0 in V
such that v0 is a V ir0-eigenvector, Lnv0 = 0 for all n ∈ Z>0 and U(

⊕
n<0

CLn)v0 = V (here U(.)

is the universal envelopping algebra). We say that such a module has highest weight λ ∈ V ir∗0 if
Xv0 = λ(X)v0 for all X ∈ V ir0.

Let V be a unitarizable highest weight V ir-module with highest weight λ ∈ V ir∗0 . As in the
case affine Kac-Moody algebras, we have λ ∈ V ir∗0R = R(L0)∗ ⊕ RZ∗. Morover, λ(L0), λ(Z) are
non-negative since

0 ≤ 〈L−nv0, L−nv0〉 = 〈LnL−nv0, v0〉 = (2nλ(L0) +
1

12
(n3 − n)λ(Z))〈v0, v0〉. (2.61)

Let {(L0)∗, Z∗} be the dual basis of {L0, Z}. We now restate Lemma 4.1 in [BK14].

Lemma 2.10. Let V be a unitarizable highest weight (irreducible) V ir-module with highest weight
λ. Then

1. If λ(L0) 6= 0 then Vλ+n(L0)∗ 6= 0 for all n ∈ Z≥0.

2. If λ(L0) = 0 and λ(Z) 6= 0, then Vλ+n(L0)∗ 6= 0 for all n ∈ Z>1 and Vλ+(L0)∗ = 0.

3. If λ(L0) = λ(Z) = 0, then V is one dimensional.

We next present some facts about the Virasoro algebras.

2.4.4.2 Sugawara construction of Virasoro operators

We recall the Sugawara construction of the Virasoro operator for the reader’s convinience. For
details, see, e.g., [KW88], [Kac90].

Untwisted case

We first introduce the Sugawara construction of the Virasoro operators for the untwisted
affine Kac-Moody algebras. Let g be an untwisted affine Kac-Moody algebra of type X(1)

N . Let
g be the simple Lie algebra of type XN .

g = C[t, t−1]⊗C g⊕ CK ⊕ Cd. (2.62)

with Lie bracket
[ti ⊗ x+ λK + µd, tj ⊗ y + λ′K + µ′d]

= ti+j ⊗ [x, y]0 + µjtj ⊗ y − µ′iti ⊗ x+ iδi+j,0(x|y)0K. (2.63)

for all i, j ∈ Z, x, y ∈ g and λ, λ′, µ, µ′ ∈ C. We denote x(m) for tm ⊗ x (x ∈ g,m ∈ Z). Let {ui}
and {ui} be a dual basis of g, i.e., (ui|uj) = δij . The Sugawara operators Tn (n ∈ Z) are defined
by:

T0 =
∑

i

uiu
i + 2

∑

m>0

∑

i

u
(−m)
i ui(m), (2.64)

Tn =
∑

m∈Z

∑

i

u
(−m)
i ui(m+n) if n 6= 0. (2.65)

The operators Tn (n ∈ Z) does not make sense as an element of U(g) in general because they
are infinite sum over (m, i). However, they are well defined endomorphisms of V for any g-
module V in the category O because for all v ∈ V there exists finitely many (m, i) such that
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u
(−m)
i ui(m+n)(v) 6= 0. Let V be a g′-module in the category O such that K acts on V as the

multiplication by scalar k, where k + h∨ 6= 0. As endomorphisms of V , we have the following
statement.

Proposition 2.11. For any n,m ∈ Z and x ∈ g, we have

1. [x(m), Tn] = 2(k + h∨)mx(m+n)

2. [Tm, Tn] = 2(k + h∨)((m− n)Tm+n + δm+n,0
m3−m

6 (dim g)kIdV ).

Let g′ = [g, g] = C[t, t−1]⊗C g⊕ CK. We define the Virasoro operators on V as follows:

Ln =
1

2(k + h∨)
Tn (2.66)

for each n ∈ Z, and Z is the multiplication by scalar k(dim g)
k+h∨ . The following proposition auto-

matically follows Proposition 2.11.

Proposition 2.12. For any n,m ∈ Z and x ∈ g, we have

1. [x(m), Ln] = mx(m+n).

2. [Lm, Ln] = (m− n)Lm+n + δm+n,0
m3−m

12 Z.

Twisted case

In this part, we present the Sugawara construction of the Virasoro operators for the twisted
affine Kac-Moody algebras. Let g be an twisted affine Kac-Moody algebra of type X(r)

N (r = 2, 3).
Let g be the simple Lie algebra of type XN and let σ be the diagram automorphism of g. The
Z/rZ-gradation of g with respect to σ is g =

⊕
j∈Z/rZ

gj , where gj = {x ∈ g | σ(x) = e2πij/mx}.

Then we have
g =

⊕

j∈Z
tj ⊗ gj ⊕ CK ⊕ Cd′, (2.67)

with Lie bracket
[ti ⊗ x+ λK + µd′, tj ⊗ y + λ′K + µ′d′]

= ti+j ⊗ [x, y]0 + µjtj ⊗ y − µ′iti ⊗ x+
i

r
δi+j,0(x|y)0K. (2.68)

The normalized invariant form on g is given by

(ti ⊗ x+ λK + µd′|tj ⊗ y + λ′K + µ′d′)′

=
1

r
δi+j,0(x|y)0 + (λ′µ+ λµ′). (2.69)

Remark 2.13.

1. We have (α|α)0 = 2 for all long roots α of g. However, (α|α)′ = 2r for all long roots α of
g.

2. The element d′ is not the scaling element of g as in the untwisted case. The formula of the
scaling element contains d′.
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Let {ui,−j} be a basis of g−j and let {ui,j} be the dual basis of gj . The Sugawara operators
Tn (n ∈ Z) are defined by:

T0 =
∑

i

ui,0u
i,0 + 2

∑

m>0

∑

i

u
(−m)
i,−mu

i,m(m) +
r − 1

2r
(dim g− dim g0)K, (2.70)

Tn =
∑

m∈Z

∑

i

u
(−m)
i,−mu

i,m(m+rn) if n 6= 0. (2.71)

These operators are well defined endomorphisms of V for any g-module V in the category O
because for any v ∈ V there exists finitely many (m, i) such that u(−m)

i,−mu
i,m(m+rn)(v) 6= 0. Let

g′ = [g, g] =
⊕
j∈Z

tj ⊗ gj ⊕CK. Let V be a g′-module in the category O such that K acts on V as

the multiplication by scalar k, where k+ h∨ 6= 0. As endomorphisms of V , we have the following
statement.

Proposition 2.14. For any n,m ∈ Z and x ∈ gm, we have

1. [x(m), Tn] = 2(k+h∨)
r mx(m+rn).

2. [Tm, Tn] = 2(k + h∨)((m− n)Tm+n + δm+n,0
m3−m

6 r(dim g)kIdV ).

We define the Virasoro operators on V as follows:

Ln =
1

2(k + h∨)
Tn (2.72)

for each n ∈ Z and Z is the multiplication by scalar rk(dim g)
k+h∨ . The following proposition auto-

matically follows Proposition 2.14.

Proposition 2.15. For any n,m ∈ Z and x ∈ gm, we have

1. [x(m), Ln] = m
r x

(m+rn).

2. [Lm, Ln] = (m− n)Lm+n + δm+n,0
m3−m

12 Z.

Inti-involution ω0 on Virasoro operators

The first conclusions of the Proposition Proposition 2.12 and Proposition 2.15 allow us to
define a g′⋊V ir-module structure on V . Here V ir is the Virasoro algebra with Virasoro operators
Ln (n ∈ Z) and Z. We recall the anti-linear anti-involution ω0 on U(g) in the part 1.4.4. Up to
completion of U(g) to get series in place of finite sums, we have the following statement.

Proposition 2.16. ω0(Ln) = L−n (n ∈ Z) and ω0(Z) = Z.

Remark 2.17. The Proposition 2.16 implies

〈Lnv, w〉Λ = 〈v, ω0(Ln)w〉Λ = 〈v, L−nw〉Λ, (2.73)

〈Zv,w〉Λ = 〈v, ω0(Z)w〉Λ = 〈v, Zw〉Λ. (2.74)
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2.4.4.3 Coset construction of Virasoro operators for winding subalgebras

Let g be an affine Kac-Moody algebra of type X(r)
N . Let g be the simple Lie algebra of type

XN . We now recall the coset construction of Virasoro operators for winding subalgebras g[u],
introduced in [KW90], with some details for the reader’s convenience.

Untwisted case

In the case r = 1, we have

g = C[t, t−1]⊗ g⊕ CK ⊕ Cd, (2.75)

g[u] = C[tu, t−u]⊗ g⊕ CK ⊕ Cd. (2.76)

For each Λ ∈ P k+, the g-module L(Λ) is considered as a g[u]-module of level uk. Let {ui} and
{ui} be a dual basis of g. For each x ∈ g, n ∈ Z, we set x(n) = tn ⊗ x. Let Ln (n ∈ Z) and Z be
the Virasoro operators given by the Sugawara construction for the g-module L(Λ). Namely,

L0 =
1

2(k + h∨)

(
∑

i

uiu
i + 2

∑

m>0

∑

i

u
(−m)
i ui(m)

)
, (2.77)

Ln =
1

2(k + h∨)

(
∑

m∈Z

∑

i

u
(−m)
i ui(m+n)

)
if n 6= 0, (2.78)

Z acts on L(Λ) as the multiplication by scalar ck =
k dim(g)

k + h∨
. (2.79)

We construct the Virasoro operators L̇n (n ∈ Z) and Ż on g[u]-modules as belows.

L̇0 =
1

2(uk + h∨)

(
∑

i

uiu
i + 2

∑

m>0

∑

i

u
(−un)
i ui(un)

)
, (2.80)

L̇n =
1

2(uk + h∨)

(
∑

m∈Z

∑

i

u
(−um)
i ui(um+un)

)
if n 6= 0, (2.81)

Ż acts on L(Λ) as the multiplication by scalar cuk =
uk dim(g)

uk + h∨
. (2.82)

Remark 2.18. The map ψu extends to ψu : U(g) → U(g). Then we have ψu(Ln) = L̇n and
ψ(Z) = Ż up to completion to get series in place of finite sums.

Proposition 2.19. For any n,m ∈ Z and x ∈ g, we have

1. [x(um), L̇n] = mx(um+un).

2. [L̇m, L̇n] = (m− n)L̇m+n + δm+n,0
m3−m

12 Ż.

The map ζu : V ir → V ir defined by ζu(Ln) = u−1Lun + δn,0
u−u−1

24 Z and ζu(Z) = uZ is a
Lie algebra map. Set L̃n = ζu(Ln) and Z̃ = ζu(Z).

Proposition 2.20. For any n,m ∈ Z and x ∈ g, we have
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1. [x(um), L̃n] = mx(um+un).

2. [L̃m, L̃n] = (m− n)L̃m+n + δm+n,0
m3−m

12 Z̃.

Set L[u]
n = L̃n − L̇n and Z [u] = Z̃ − Ż.

Proposition 2.21. We have

1. [g′[u], L
[u]
n ] = 0.

2. [L
[u]
m , L

[u]
n ] = (m− n)L

[u]
m+n + δm+n,0

m3−m
12 Z [u].

Twisted case

In the case r = 2, 3, we have

g =
⊕

j∈Z
tj ⊗ gj ⊕ CK ⊕ Cd′, (2.83)

g[u] =
⊕

j∈Z
tuj ⊗ guj ⊕ CK ⊕ Cd′, (2.84)

where g =
⊕

j∈Z/rZ
gj is the Z/rZ-gradation of g with respect the diagram automorphism σ of g.

For each Λ ∈ P k+, the g-module L(Λ) is considered as a g[u]-module of level uk. Let {ui,−j} be a

basis of g−j and {ui,j} be a dual basis of gj . For each n ∈ Z, x ∈ gn, we set x(n) = tn⊗x. Let Ln
(n ∈ Z) and Z be the Virasoro operators given by the Sugawara construction for the g-module
L(Λ) in the twisted case. Namely,

L0 =
1

2(k + h∨)

(
∑

i

ui,0u
i,0 + 2

∑

m>0

∑

i

u
(−m)
i,−mu

i,m(m) +
r − 1

2r
(dim g− dim g0)kIdV

)
, (2.85)

Ln =
1

2(k + h∨)

(
∑

m∈Z

∑

i

u
(−m)
i,−mu

i,m(m+rn)

)
if n 6= 0, (2.86)

Z acts on L(Λ) as the multiplication by scalar ck =
rk dim(g)

k + h∨
. (2.87)

Let L̇n (n ∈ Z) and Ż be the Virasoro operators given by the Sugawara construction for the
ġ-module L(Λ). Namely,

L̇0 =
1

2(uk + h∨)

(
∑

i

ui,0u
i,0 + 2

∑

m>0

∑

i

u
(−um)
i,−umu

i,um(um) +
r − 1

2r
(dim g− dim g0)ukIdV

)
,

(2.88)

L̇n =
1

2(uk + h∨)

(
∑

m∈Z

∑

i

u
(−um)
i,−umu

i,um(um+urn)

)
if n 6= 0, (2.89)

Ż acts on L(Λ) as the multiplication by scalar cuk =
urk dim(g)

uk + h∨
. (2.90)

Proposition 2.22. For any n,m ∈ Z and x ∈ gm, we have
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1. [x(um), L̇n] = m
r x

(um+urn).

2. [L̇m, L̇n] = (m− n)L̇m+n + δm+n,0
m3−m

12 Ż.

The map ζu : V ir → V ir defined by ζu(Ln) = u−1Lun + δn,0
u−u−1

24 Z and ζu(Z) = uZ is a
Lie algebra map. Set L̃n = ζu(Ln) an Z̃ = ζu(Z).

Proposition 2.23. For any n,m ∈ Z and x ∈ gum, we have

1. [x(um), L̃n] = mx(um+urn).

2. [L̃m, L̃n] = (m− n)L̃m+n + δm+n,0
m3−m

12 Z̃.

Set L[u]
n = L̃n − rL̇n and Z [u] = Z̃ − rŻ.

Proposition 2.24. We have

1. [g′[u], L
[u]
n ] = 0.

2. [L
[u]
m , L

[u]
n ] = (m− n)L

[u]
m+n + δm+n,0

m3−m
12 Z [u].

Inti-involution ω0 on Virasoro operators

The first conclusions of the Proposition 2.19 and Proposition 2.22 allow us to define a g′[u]⋊
V ir-module structure on L(Λ). Here V ir is the Virasoro algebra with Virasoro operators L̇n
(n ∈ Z) and Ż. We recall the anti-linear anti-involution ω0 on U(g) in the part 1.4.4. Up to
completion of U(g) to get series in place of finite sums, we have the following statement.

Proposition 2.25. ω0(L̇n) = L̇−n (n ∈ Z) and ω0(Ż) = Ż.

Remark 2.26. The Proposition 2.25 implies

〈L̇nv, w〉Λ = 〈v, ω0(L̇n)w〉Λ = 〈v, L̇−nw〉Λ, (2.91)

〈Żv, w〉Λ = 〈v, ω0(Ż)w〉Λ = 〈v, Żw〉Λ. (2.92)

By Propositions 2.16, 2.25, we have the following statement.

Proposition 2.27. ω0(L
[u]
n ) = L

[u]
−n and ω0(Z [u]) = Z [u].

Remark 2.28. The Proposition 2.27 implies

〈L[u]
n v, w〉Λ = 〈v, ω0(L[u]

n )w〉Λ = 〈v, L[u]
−nw〉Λ, (2.93)

〈Z [u]v, w〉Λ = 〈v, ω0(Z [u])w〉Λ = 〈v, Z [u]w〉Λ. (2.94)
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2.4.4.4 Unitarizability

For Λ ∈ P+, λ ∈ Ṗ+ + Cδ, set

U(Λ, λ) = {v ∈ L(Λ) | (n+ ∩ g′[u])v = 0 and hv = λ(h) for all h ∈ h ∩ g′[u]}. (2.95)

The space U(Λ, λ) is stable by L[n]
n because of the commutativity of L[u]

n with g′[u] (see Propo-
sitions 2.21, 2.24 in 2.4.4.3). Moreover, we have the decomposition of L(Λ) with respect to the
direct sum of g′[u]⊕ V ir-modules (see [KW88], [KW90])

L(Λ) =
⊕

λ∈Ṗ+ mod Cδ

L̇(λ)⊗ U(Λ, λ). (2.96)

Recall the positive definite contravariant Hermitian form 〈, 〉Λ in Subsection 1.4.4. It induces a
positive definite Hermitian form on U(Λ, λ) by restriction. By Proposition 2.27, this Hermitian
form is contravariant with respect to the Virasoro algebra:

〈L[u]
n v, w〉Λ = 〈v, L[u]

−nw〉Λ = 〈v, ωV ir0 (Ln)w〉Λ, (2.97)

〈Z [u]v, w〉Λ = 〈v, Z [u]w〉Λ = 〈v, ωV ir0 (Z)w〉Λ. (2.98)

Thus, the V ir-module U(Λ, λ) is unitarizable.

2.4.4.5 An identity of characters

Let Λ be an element in Pm+ (m ∈ Z≥0). By (2.35), (2.39), (2.40) and a fact that Ẇ is a subgroup
of W , we have


∑

w∈Ẇ
ǫ(w)ew(ρ̇)


 chΛ =

∑

λ∈max(Λ)


∑

w∈Ẇ
ǫ(w)ew(λ+ρ̇)


 cΛ

λ . (2.99)

We may assume that λ+ ρ̇ in the above equality is regular with respect to Ẇ . In this case, there
exists unique σ ∈ Ẇ and λ′ ∈ Ṗ+ such that σ(λ+ ρ̇) = λ′ + ρ̇. Let p(λ) and {λ} be ǫ(σ) and λ′

in this case, respectively. In the case λ+ ρ̇ is nonregular, set p(λ) and {λ} to be 0. Since

∑

w∈Ẇ
ǫ(w)ew(λ+ρ̇) = p(λ)

∑

w∈Ẇ
ǫ(w)ew({λ}+ρ̇), (2.100)

it follows from the identities (2.41), (2.99) that:

Proposition 2.29.

chΛ =
∑

λ∈max(Λ)

p(λ)ċh{λ}c
Λ
λ (2.101)

2.4.5 Semigroup structure

We state our first result about the set Γ(g, g[u]).

Theorem 2.30. The set Γ(g, g[u]) is a sub-semigroup of h∗ × h∗.
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Proof. Let (Λ, λ) and (Λ, λ) be elements in the set Γ(g, g[u]). We need to show that (Λ+Λ, λ+λ) ∈
Γ(g, g[u]). The pair (Λ, λ) is an element of Γ(g, g[u]) if and only if L̇(λ) ⊂ L(Λ). The condition
is equivalent to the existence of a nonzero vector v ∈ L(Λ) such that

g(v) = 0, ∀g ∈ ṅ+ and h(v) = λ(h)v, ∀h ∈ h. (2.102)

Let v be a nonzero vector in L(Λ) satisfying the same conditions but for the pair (Λ, λ). In order
to prove the semigroup structure of Γ(g, g[u]) we just need to show the existence of a nonzero
vector ṽ in L(Λ + Λ) which satisfies the conditions (2.102) with the weight λ+ λ. We make the
details in the two following steps.

Step 1. Construction of the vector ṽ. By the fact that L(Λ + Λ) is a g-submodule of
L(Λ)⊗ L(Λ) of multiplicity one, there exists a unique g-stable complementary subspace S such
that

L(Λ)⊗ L(Λ) = L(Λ + Λ)⊕ S. (2.103)

Let π : L(Λ) ⊗ L(Λ) → L(Λ + Λ) be the projection with kernel S. Set ṽ = π(v ⊗ v). We show
that ṽ is nonzero and satisfies the conditions (2.102) in the next steps.

Step 2. ṽ is nonzero. Let
L(Λ) = ⊕µ∈h∗L(Λ)µ (2.104)

be the weight spaces decomposition of L(Λ). We define

L(Λ)∨ = ⊕µ∈h∗(L(Λ)µ)∗. (2.105)

There exists a nonzero vector ψ ∈ L(Λ)∨ such that

g(ψ) = 0,∀g ∈ n− and h(ψ) = −Λ(h)ψ, ∀h ∈ h. (2.106)

LetG be the minimal Kac-Moody group corresponding to the Kac-Moody algebra g (see [Kum02]).
To the vector v ∈ L(Λ) defined above, we associate a function fv : G→ C, g 7→ ψ(g−1(v)). Since
L(Λ) is irreducible, the function fv is nonzero (fv = 0 implies Gv ⊂ kerψ). Let B− be the
negative Borel subgroup of G. We have

(1, b).fv = Λ(b)−1fv for all b ∈ B−. (2.107)

Similarly, for L(Λ), we define ψ ∈ L(Λ)∨ and fv : G → C, g 7→ ψ(g−1(v)). Then fv is nonzero
and

(1, b).fv = Λ(b)−1fv for all b ∈ B−. (2.108)

Set f = fvfv. Since G is irreducible as an indvariety, the function f is a well-defined nonzero
function on G. And of course,

(1, b).f = (Λ + Λ)(b)−1f for all b ∈ B−. (2.109)

Moreover, we have
f(g) = (ψ ⊗ ψ)(g−1(v ⊗ v)). (2.110)

Indeed, by definition

f(g) = fv(g)fv(g)

= ψ(g−1(v))ψ(g−1(v))

= (ψ ⊗ ψ)(g−1(v)⊗ g−1(v))

= (ψ ⊗ ψ)(g−1(v ⊗ v)).
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Now, ψ ⊗ ψ is an element of

L(Λ)∨ ⊗ L(Λ)∨ = (L(Λ)⊗ L(Λ))∨ = L(Λ + Λ)∨ ⊕ S∨. (2.111)

By (2.109), (2.110) we have
ψ ⊗ ψ ∈ L(Λ + Λ)∨. (2.112)

It implies that
ker(ψ ⊗ ψ) ⊃ S. (2.113)

Rewrite v ⊗ v = π(v ⊗ v) + s for some s ∈ S. Then we have

(ψ ⊗ ψ)(g−1(v ⊗ v)) = (ψ ⊗ ψ)(g−1(π(v ⊗ v) + s))

= (ψ ⊗ ψ)(g−1(π(v ⊗ v))).

It means f(g) = (ψ ⊗ ψ)(g−1(π(v ⊗ v))). Since f 6= 0, we have ṽ = π(v ⊗ v) 6= 0.

Step 3. ṽ satisfies the conditions (2.102). For any g ∈ ṅ+ and h ∈ h, we have:

g(π(v ⊗ v)) = π(g(v ⊗ v))

= π(g(v)⊗ v + v ⊗ g(v))

= π(0) = 0,

h(π(v ⊗ v)) = π(h(v ⊗ v))

= π(h(v)⊗ v + v ⊗ h(v))

= π((λ+ λ)(h)(v ⊗ v))

= (λ+ λ)(h)π(v ⊗ v).

We conclude that the set Γ(g, g[u]) is a semigroup.

2.4.6 The descripton of the set Γ(g, g[u])

Let (Λ, λ) ∈ P+× Ṗ+. The description of the set Γ(g, g[u]) is equivalent to problem of describing
the set

B(Λ, λ) = {b ∈ C | L̇(λ+ bδ) ⊂ L(Λ)}. (2.114)

We may assume that Λ ∈ P+ and λ ∈ Ṗ+. The reason is that L̇(λ + b1δ) ⊂ L(Λ + b2δ) if and
only if L̇(λ+ (b1 − b2)δ) ⊂ L(Λ). We have

B(Λ + b2δ, λ+ b1δ) = B(Λ, λ) + b2 − b1. (2.115)

Since the set B(Λ, λ) is nonempty if and only if λ ∈ Pu(Λ) + Cδ, we just need to suppose that
λ ∈ Pu(Λ). Let m ∈ Z>0 be the level of Λ, we set

cm =
rm dim g

m+ h∨
and c[u]

m = ucm − cum, (2.116)

mΛ =
|Λ + ρ|2

2(m+ h∨)
− |ρ|

2

2h∨
and ṁλ =

|λ+ ρ̇|2
2(um+ h∨)

− |ρ̇|
2

2h∨
, (2.117)

h
[u]
Λ,λ = u−1mΛ − ṁλ + c[u]

m /24− bΛ,λ,u. (2.118)

The following theorem gives us a description of the set B(Λ, λ).
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Theorem 2.31. Let g be an affine Kac-Moody algebra of type X
(r)
N . Fix m ∈ Z>0, u ∈ Z>1 such

that u = 1( mod r). Let Λ ∈ Pm+ and λ ∈ Pu(Λ) + Cδ. We have

1. bΛ,λ,u − (Z≥0 \ {1}) ⊂ B(Λ, λ) ⊂ bΛ,λ,u − Z≥0.

2. If in addition h
[u]
Λ,λ 6= 0 then B(Λ, λ) = bΛ,λ,u − Z≥0.

Proof. The inclusion B(Λ, λ) ⊂ bΛ,λ,u −Z≥0 is trivial by definitions of B(Λ, λ), bΛ,λ,u and by the
fact that Pu(Λ) ⊂ P (Λ). By (2.115), we may assume that Λ ∈ Pm+ and λ ∈ Pu(Λ). We have the
decomposition of L(Λ) with respect to the direct sum of g′[u]⊕ V ir-modules

L(Λ) =
⊕

λ∈Pu(Λ)

L̇(λ)⊗ U(Λ, λ). (2.119)

Here the Virasoro operators are L[u]
n and Z [u]. The operator Z [u] acts on U(Λ, λ) as the multipli-

cation by non-zero scalar c[u]
m . The lowest eigenvalue with respect to L[u]

0 is h[u]
Λ,λ (see [KW90]).

By [KW88], [KW90], we have

chΛ =
∑

λ∈Pu(Λ)

ċhλq
ṁλ−u−1mΛtrU(Λ,λ)(q

L
[u]
0 −Z[u]/24). (2.120)

The representation of V ir on U(Λ, λ) is unitrarizable. We rewrite (2.120) as

chΛ =
∑

λ∈Pu(Λ)

ċhλq
ṁλ−u−1mΛ−c[u]

m /24+h
[u]

Λ,λ(dimU(Λ, λ)λ′ + dimU(Λ, λ)
λ′+(L

[u]
0 )∗q + . . . )

(2.121)

=
∑

λ∈Pu(Λ)

ċhλq
−bΛ,λ,u(dimU(Λ, λ)λ′ + dimU(Λ, λ)

λ′+(L
[u]
0 )∗q + . . . ) (2.122)

=
∑

λ∈Pu(Λ)

ċhλ+bΛ,λ,uδ(dimU(Λ, λ)λ′ + dimU(Λ, λ)
λ′+(L

[u]
0 )∗q + . . . ). (2.123)

Suppose that V is the highest weight V ir-module of highest weight λ′ ∈ V ir∗0 with λ′(Z [u]) = c
[u]
m

and λ′(L[u]
0 ) = h

[u]
Λ,λ, which is contained in U(Λ, λ). By Lemma 2.10, we have

• If h[u]
Λ,λ 6= 0 then 0 6= dimV

λ′+n(L
[u]
0 )∗ ≤ dimU(Λ, λ)

λ′+n(L
[u]
0 )∗ for all n ∈ Z≥0. It implies

L̇(λ+ (bΛ,λ,u − n)δ) ⊂ L(Λ) for all n ∈ Z≥0.

• If h[u]
Λ,λ = 0 then 0 6= dimV

λ′+n(L
[u]
0 )∗ ≤ dimU(Λ, λ)

λ′+n(L
[u]
0 )∗ for all n ∈ Z≥0 \ {1}. It

implies L̇(λ+ (bΛ,λ,u − n)δ) ⊂ L(Λ) for all n ∈ Z≥0 \ {1}.

We have proven the theorem.

2.5 The cases A
(1)
1 and A

(2)
2

In this part, we study two particular cases A(1)
1 and A(2)

2 . We compute explicitely the number bΛ,λ

and show the conditions where we know that bΛ,λ,u = bΛ,λ. Then we obtain relations between
the support Γ(g, g[u]) and its satured setting.
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2.5.0.1 Computation of bΛ,λ for the case A
(1)
1

We are going to compute explicitly the set max(Λ), hence the number bΛ,λ for the cases A(1)
1 .

By (2.37), we may assume that Λ ∈ P+. The idea of computations is based on the work on S.
Kumar and M. Brown in [BK14].

Let g be the affine Kac-Moody algebra of type A(1)
1 . Fix m ∈ Z>0. Let α be the simple root

α1 of g. We have

Pm+ =

{
mΛ0 +

jα

2

∣∣∣∣ j ∈ [0,m] ∩ Z

}
. (2.124)

We can describe explicitly the set max(Λ) and the number bΛ,λ as below. It is the combination
of Lemma 5.2 and Lemma 5.3 in [BK14]. We restate and re-explain in details the results.

Proposition 2.32. Let Λ = mΛ0 + jα
2 ∈ Pm+ . For each k ∈ Z, let φ(m, j, k) be a number which

is uniquely determined by k,m, j as follows

1. Write k = mq + r for some q ∈ Z, r ∈ [0,m).

2. Set

φ(m, j, k) = −q(k + r + j) +

{
−r if r ∈ [0,m− j],
m− j − 2r if r ∈ [m− j,m).

(2.125)

Then we have
max(Λ) = {Λ + kα+ φ(m, j, k)δ | k ∈ Z}. (2.126)

Or equivalently, for each λ = mΛ0 + j′α
2 with j′ ∈ j + 2Z, we have

bΛ,λ = φ(m, j,
j′ − j

2
). (2.127)

In order to prove above proposition, we need the following lemma. In fact, in Proposition 4.4
of [BK14], the authors give the same statement for only untwisted affine Kac-Moody algebras.
But the statement and arguments in the proof still work well for any affine Kac-Moody algebras.

Lemma 2.33. For any affine Kac-Moody algebra, let Λ ∈ P+ of positive level, then

max(Λ) ∩ P+ =

{
Λ−

∑

i∈I
miαi

∣∣∣∣∣mi ∈ Z≥0 for all i,mi < ai for some i ∈ I
}
∩ P+. (2.128)

With the aid of Lemma 2.33, we can prove Proposition 2.32 as follows.

Proof. We have max(Λ) = W (max(Λ) ∩ P+). By Lemma 2.33,

max(Λ) ∩ P+ =

{
Λ−m0(δ − α),Λ−m1α

∣∣∣∣mi ∈ Z≥0,m0 ≤
m− j

2
,m1 ≤

j

2

}
. (2.129)

Recall that W = {tnα, tnαs1 | n ∈ Z}. We have

tnα(Λ−m0(δ − α)) = Λ + (m0 +mn)α− ((j + 2m0 +mn)n+m0)δ, (2.130)

tnαs1(Λ−m0(δ − α)) = Λ + (−j −m0 +mn)α− ((−j − 2m0 +mn)n+m0)δ, (2.131)

tnα(Λ−m1α) = Λ + (−m1 +mn)α− (j − 2m1 +mn)nδ, (2.132)

tnαs1(Λ−m1α) = Λ + (−j +m1 +mn)α− (−j + 2m1 +mn)nδ. (2.133)
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So an element λ in max(Λ) has form Λ + rα+ n′δ for some n′ ∈ Z, r ∈ Z. Fix such a λ. Then,
for any q ∈ Z

tqα(Λ + rα+ n′δ) = Λ + (mq + r)α+ (n′ − (j + 2r +mq)q)δ (2.134)

is still in max(Λ). Set k = mq + r for some q ∈ Z, then

Λ + kα+ n′′δ ∈ max(Λ) where n′′ = n′ − q(k + r + j). (2.135)

Assume now that 0 ≤ r < m, then the expression k = mq + r is the Euclidean division. By
(2.130), (2.131), (2.132), (2.133) we get

n′ =

{
−r if r ∈ [0,m− j],
m− j − 2r if r ∈ [m− j,m).

(2.136)

Hence we obtain n′′ = φ(m, j, k) as in (2.125). It means

max(Λ) = {Λ + kα+ φ(m, j, k)δ | k ∈ Z}. (2.137)

2.5.0.2 The conditions for bΛ,λ,u = bΛ,λ in the case A
(1)
1

We have seen in the previous part, we know explicitely the number bΛ,λ in the case A(1)
1 . By

Theorem 2.31, the number bΛ,λ,u is the key to understand the support Γ(g, g[u]). The concrete
formula for the number bΛ,λ,u is not known in general, even for the case A(1)

1 . However, in this
part, we will give some conditions where we know that bΛ,λ,u = bΛ,λ.

Theorem 2.34. Let g be the affine Kac-Moody algebra of type A
(1)
1 . Let Λ = mΛ0 + jα

2 ∈ Pm+
and let λ = m′Λ0 + j′α

2 ∈ Ṗ+.

1. If there exists b ∈ C such that (Λ, λ+bδ) belongs to Γ(g, g[u]) then j′−j ∈ 2Z and m′ = m.

2. If moreover

a. j ≤ j′ ≤ um− j and u is even; or

b. j ≤ j′ ≤ um− (m− j) and u is odd,

then bΛ,λ,u = bΛ,λ.

For Λ like in Theorem 2.34, we denote by Au(Λ) the set of λ such that the theorem applies.
Namely

Au(Λ) =

{
mΛ0 +

j′α

2

∣∣∣∣ j
′ ∈ [j, um− j∗] ∩ (j + 2Z)

}
(2.138)

where j∗ = j if u is even and j∗ = m− j if u is odd.

Before going to proof of the theorem, we need to state some propositions.

Proposition 2.35. Let g be affine Kac-Moody algebra of type A
(1)
1 . Fix m ∈ Z>0, u ∈ Z>1. Let

Λ = mΛ0 + jα
2 ∈ Pm+ .
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1. We parametrize λ ∈ max(Λ) such that λ+ ρ̇ is regular with respect to Ẇ by λk = Λ + kα+
φ(m, j, k)δ. Then the only possible values of k are

k =
j′ − j

2
− n(um+ 2) and k = −j

′ + j

2
− 1 + n(um+ 2) (2.139)

where j′ ∈ [0, um] ∩ (j + 2Z) and n ∈ Z.

2. Let

Nk = −φ(m, j, k) + un(j′ + 1− num− 2n). (2.140)

Then

i. If k = j′−j
2 − n(um+ 2), then p(λk) = 1 and {λk} = mΛ0 + j′α

2 −Nkδ.

ii. If k = − j′+j
2 − 1 + n(um+ 2), then p(λk) = −1 and {λk} = mΛ0 + j′α

2 −Nkδ.
iii. The function Nk is considered as a function on n and it attains the minimum at n = 0

in the first case and at n = 0 or n = 1 in the second case.

Proof. We need the following data

|α|2 = 2, ρ̇ =
2

u
Λ0 +

1

2
α, Ẇ = {tunα, tunαs1 | n ∈ Z}. (2.141)

Since λk + ρ̇ is regular with respect to Ẇ , there exists unique σ ∈ Ẇ and µ = mΛ0 + j′α
2 + b′δ ∈

Ṗum+ such that σ(λk + ρ̇) = µ+ ρ̇.

a. (Proof of 1. and 2.i.) If σ = tunα for some n ∈ Z, then σ(λk + ρ̇)− ρ̇ equals

mΛ0 +

(
num+ 2n+ k +

j

2

)
α+ (φ(m, j, k)− un(2k + j + 1 + num+ 2n))δ. (2.142)

Hence

j′ ∈ [0, um] ∩ (j + 2Z) and k =
j′ − j

2
− n(um+ 2). (2.143)

In this case, we have

p(λk) = 1 and {λk} = mΛ0 +
j′α

2
+ (φ(m, j, k)− un(j′ + 1− num− 2n))δ. (2.144)

b. (Proof of 1. and 2.ii.) If σ = tunαs1 for some n ∈ Z, then σ(λk + ρ̇)− ρ̇ equals

mΛ0 +

(
num+ 2n− k − j

2
− 1

)
α+ (φ(m, j, k)−un(−2k− j− 1 +num+ 2n))δ. (2.145)

Hence

j′ ∈ [0, um] ∩ (j + 2Z) and k = −j
′ + j

2
− 1 + n(um+ 2). (2.146)

In this case, we have

p(λk) = −1 and {λk} = mΛ0 +
j′α

2
+ (φ(m, j, k)− un(j′ + 1− num− 2n))δ. (2.147)
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c. (Proof of 2.iii.) Put M = um+ 2. We consider the first case when k = j′−j
2 − nM . Write

k = qm+ r for some q ∈ Z, 0 ≤ r < m, then

−Nk = φ(m, j, r)− q(k + r + j)− un(j′ + 1− nM) (2.148)

= φ(m, j, r)− ( j
′−j
2 − nM − r)( j+j′

2 − nM + r)

m
− un(j′ + 1− nM) (2.149)

= n2M

(
u− M

m

)
− n

(
u+ uj′ − M

m
j′
)

+
j2 − j′2

4m
+

(
r2

m
+
rj

m
+ φ(m, j, r)

)
.

(2.150)

We have

r2

m
+
rj

m
+ φ(m, j, r) =

{
1
mr(r + j −m) if 0 ≤ r ≤ m− j,
1
m (r −m)(r + j −m) if m− j ≤ r < m.

(2.151)

The condition 0 ≤ r ≤ m− j can be rewritten as

j −m
2
≤ −nM +

j′

2
−m

(
q +

1

2

)
≤ m− j

2
(2.152)

and m− j ≤ r < m can be rewritten as

−j
2
≤ −nM +

j′

2
−m(q + 1) <

j

2
. (2.153)

It implies that r2

m + rj
m + φ(m, j, r) equals





|−nM+ j′

2 −m
2 p|

2− (m−j)2

4

m if ∃p ∈ 2Z + 1 such that

| − nM + j′

2 − m
2 p| ≤

m−j
2 ,

|−nM+ j′

2 −m
2 p|

2− j2

4

m if ∃p ∈ 2Z such that

| − nM + j′

2 − m
2 p| ≤

j
2 .

(2.154)

Let Pj,j′ : Z → R be the function that maps −n to (2.154). Let Fj,j′ : Z → R be the
function defined by

Fj,j′(t) = t2M

(
u− M

m

)
+ t

(
u+ uj′ − M

m
j′
)

+
j2 − j′2

4m
+ Pj,j′(t). (2.155)

So −Nk = Fj,j′(−n).

We will show that the maximum of Fj,j′(−n) appears when n = 0, i.e., k = j′−j
2 . Let

P : R × [0,m] × [0, um] → R be the function defined by P (t, j, j′) = Pj,j′(t). Let F :
R × [0,m] × [0, um] → R be the function defined by F (t, j, j′) = Fj,j′(t). The function F
is a continuous, piecewise smooth function. Set ∆(t, j, j′) = F (t+ 1, j, j′)− F (t, j, j′). We
will prove that it is nonincreasing in t and ∆(−1, j, j′) > 0 > ∆(0, j, j′). Indeed:

∆(t, j, j′) = 2tM

(
u− M

m

)
+ (M + j′)

(
u− M

m

)
+u+P (t+ 1, j, j′)−P (t, j, j′). (2.156)
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We denote the numbers p defined on Pj,j′(t + 1) and Pj,j′(t) by p1, p0, respectively. By
definition, we have p1−p0

2 ≥ u. Hence the partial derivatives of ∆ where they exist are

∂t∆(t, j, j′) = 2M

(
u− p1 − p0

2

)
≤ 0, (2.157)

∂j′∆(t, j, j′) = u− p1 − p0

2
≤ 0. (2.158)

It implies that ∆ is nonincreasing in t and j′. So ∆(0, j, j′) ≤ ∆(0, j, 0) and ∆(−1, j, um) ≤
∆(−1, j, j′). We can easily check that ∆(0, j, 0) < 0 < ∆(−1, j, um).

It implies that F (0, j, j′) > F (t, j, j′) for any t ∈ Z, t 6= 0, i.e., Fi,j(−n) attains its maxi-
mum when n = 0. Hence, in the case k = j′−j

2 − nM , the minimum of Nk occurs when
n = 0.

For the case k = − j+j′

2 − 1 + nM . Since k = j′−j
2 +

(
n− j′+1

M

)
M , we have

−Nk = F

(
n− j′ + 1

M
, j, j′

)
. (2.159)

Then Nk attains its minimum when n = 0 or 1.

Here is the next proposition we will use in the proof of Theorems 2.34.

Proposition 2.36. With φ(m, j, k) is defined as in (2.125), for each j ∈ [0,m] and j′ ∈ [0, um]∩
(j + 2Z), we have

− φ(m, j,
j′ − j

2
) = min

(
−φ(m, j,−j

′ + j

2
− 1), u− φ(m, j,−j

′ + j

2
+ 1)

)
(2.160)

if and only if one of the following three conditions below is satisfied:

(A1) m > 1 and j′ ≤ j − 2.

(B1) m > 1, u is even, j′ ≥ um− j + 1.

(C1) m > 1, u is odd, j′ ≥ m(u− 1) + j + 2.

Proof. We use a fact that
φ(m, j,−(j + k)) = φ(m, j, k). (2.161)

Indeed, if Λ = mΛ0 + jα
2 + bδ ∈ Pm+ and λ = Λ + kα + φ(m, j, k)δ ∈ max(Λ), then s1(λ) =

Λ− (j + k)α+ φ(m, j, k)δ ∈ max(Λ). We use the equality (2.161) to rewrite

φ(m, j,−j
′ + j

2
− 1) = φ(m, j,

j′ − j
2

). (2.162)

as φ(m, j, x) = φ(m, j, x + 1), where x = − j′+j
2 − 1. Use (2.125) for φ(m, j, x) we check that it

happens if and only if (A1) happens. Similarly, use (2.161) to rewrite

− u+ φ(m, j,−j
′ + j

2
+ 1) ≤ φ(m, j,

j′ − j
2

) (2.163)

as φ(m, j, x+ 1)− u ≤ φ(m, j, x), where x = − j′+j
2 . Use (2.125) for φ(m, j, x) we can check that

it happens if and only if (B1) or (C1) happens.
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We are now going to the proof of Theorem 2.34.

Proof. The first step is writing explicitly chΛ in Proposition 2.29. It can be done by substituting
values of p(λk) and {λk} in Proposition 2.35 to the formula (2.101). We can rewrite chΛ as
follows

∑

j′∈[0,um]∩(j+2Z)

ċh
mΛ0+ j′α

2




∑

n∈Z,

k=
j′−j

2
−n(um+2)

qNkcΛ
λk
−

∑

n∈Z,

k=−
j′+j

2
−1+n(um+2)

qNkcΛ
λk


 . (2.164)

The identity (2.164) implies the condition m′ = m and j′ ∈ [0, um] ∩ (j + 2Z) that we need
to prove for Theorem 2.34. The coefficients of cΛ

λk
in the formula (2.164) are always positive

integers since λk ∈ max(Λ). Proposition 2.35 says that Nk attains minimums at n = 0 for those
on the left of (2.164), and at n = 0 or n = 1 for those on the right of (2.164). The corresponding
minimums of Nk are

− φ(m, j,
j′ − j

2
) and min

(
−φ(m, j,−j

′ + j

2
− 1), u− φ(m, j,−j

′ + j

2
+ 1)

)
. (2.165)

By (2.127), (2.56), (2.164), (2.165), we can imply that

− φ(m, j,
j′ − j

2
) ≤ min

(
−φ(m, j,−j

′ + j

2
− 1), u− φ(m, j,−j

′ + j

2
+ 1)

)
. (2.166)

Moreover, the equality in (2.166) happens if and only if one of the three conditions (A1), (B1),
(C1) in Proposition 2.36 is satisfied. So, for any λ = mΛ0 + j′α

2 ∈ Au(Λ), we have strict

inequality in (2.166). By (2.164), in this case we have λ+φ(m, j, j
′−j
2 )δ ∈ maxu(Λ). That means

bΛ,λ,u = φ(m, j, j
′−j
2 ) = bΛ,λ.

2.5.0.3 Computation of bΛ,λ for the case A
(2)
2

For the case A(2)
2 , the computation is similar as we did for the case A(1)

1 . Let Λ0 be the 0-th
fundamental weight and α be the simple root α1 of g. Fix m ∈ Z>0, we

Pm+ =

{
mΛ0 +

jα

2

∣∣∣∣ j ∈
[
0,
m

2

]
∩ Z

}
. (2.167)

We can describe explicitly the set max(Λ) and the number bΛ,λ for the case A(2)
2 as follows.

Proposition 2.37. Let Λ = mΛ0 + jα
2 ∈ Pm+ . For each k ∈ 1

2Z, let φ(m, j, k) be a number which
is uniquely determined by k,m, j as follows

1. Write k = m
2 q + r for some q ∈ Z, r ∈ [0, m2 ).

2. Set

φ(m, j, k) = −q(k + r + j) +





−r if r ∈ [0, m2 − j],
m
2 − j − 2r if r ∈ [m2 − j, m2 ) ∩ (m2 + Z),
m−1

2 − j − 2r if r ∈ [m−1
2 − j, m2 ) ∩ (m−1

2 + Z).

(2.168)
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Then we have

max(Λ) =

{
Λ + kα+ φ(m, j, k)δ

∣∣∣∣ k ∈
1

2
Z

}
. (2.169)

Or equivalently, for each λ = mΛ0 + j′α
2 with j ∈ Z, we have

bΛ,λ = φ(m, j,
j′ − j

2
). (2.170)

Proof. We have max(Λ) = W (max(Λ) ∩ P+). By Lemma 2.33, max(Λ) ∩ P+ contains exactly
elements

Λ−m0α0,Λ−m1α,Λ− α0 −m2α (2.171)

such that
mi ∈ Z≥0,m0 ≤

m

2
− j,m1 ≤

j

2
,
j + 1

2
− m

4
≤ m2 ≤

j + 1

2
. (2.172)

Recall that W =
{
tnα

2
, tnα

2
s1

∣∣n ∈ Z
}

. We have

tnα
2

(Λ−m0α0) = Λ +
mn+m0

2
α− (mn+ 2j + 2m0)n+m0

2
δ, (2.173)

tnα
2
s1(Λ−m0α0) = Λ +

mn− 2j −m0

2
α− (mn− 2j − 2m0)n+m0

2
δ, (2.174)

tnα
2

(Λ−m1α) = Λ +
mn− 2m1

2
α− (mn+ 2j − 4m1)n

2
δ, (2.175)

tnα
2
s1(Λ−m1α) = Λ +

mn− 2j + 2m1

2
α− (mn− 2j + 4m1)n

2
δ, (2.176)

tnα
2

(Λ− α0 −m2α) = Λ +
mn+ 1− 2m2

2
α− (mn+ 2j + 2− 4m2)n+ 1

2
δ, (2.177)

tnα
2
s1(Λ− α0 −m2α) = Λ +

mn− 1− 2j + 2m2

2
α− (mn− 2j − 2 + 4m2)n+ 1

2
δ. (2.178)

So an element λ in max(Λ) has form Λ + rα+n′δ for some n′ ∈ 1
2Z, r ∈ 1

2Z. Fix such a λ. Then
for any q ∈ Z

t qα
2

(Λ + rα+ n′δ) = Λ +
(m

2
q + r

)
α+

(
n′ −

(
j + 2r +

m

2
q
)
q
)
δ (2.179)

is still in max(Λ). Set k = m
2 q + r for some q ∈ Z, then

Λ + kα+ n′′δ ∈ max(Λ) where n′′ = n′ − q(k + r + j). (2.180)

Assume now that 0 ≤ r < m
2 , then the expression k = m

2 q + r is the Euclidean division. By
(2.173), (2.174), (2.175), (2.176), (2.177), (2.178) we get

n′ =





−r if r ∈ [0, m2 − j],
m
2 − j − 2r if r ∈ [m2 − j, m2 ) ∩ (m2 + Z),
m−1

2 − j − 2r if r ∈ [m−1
2 − j, m2 ) ∩ (m−1

2 + Z).

(2.181)

Hence we obtain n′′ = φ(m, j, k) as in (2.168). It means

max(Λ) =

{
Λ + kα+ φ(m, k, j)δ

∣∣∣∣ k ∈
1

2
Z

}
. (2.182)
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2.5.0.4 The conditions for bΛ,λ,u = bΛ,λ in the case A
(2)
2

In this part, as we did for the case A(1)
1 , we give conditions where we know that bΛ,λ,u = bΛ,λ.

This fact with Theorem 2.31 help us to understand the support Γ(g, g[u]) for the case A(2)
2 .

Theorem 2.38. Let g be the affine Kac-Moody algebra of type A
(2)
2 . Let λ = mΛ0 + jα

2 ∈ Pm+
and let λ = m′Λ0 + j′α

2 ∈ Ṗ+.

1. If there exists b ∈ C such that (Λ, λ+ bδ) belongs to Γ(g, g[u]) then m′ = m.

2. If moreover

a. j ≤ j′; and

b. j′ ∈ m(u−1)
2 − j + (2Z≥0 ∪ Z<0),

then bΛ,λ,u = bΛ,λ.

For Λ like in Theorem 2.38, we denote by Au(Λ) the set of λ such that the theorem applies.
Namely

Au(Λ) =

{
mΛ0 +

j′α

2

∣∣∣∣ j
′ ∈
[
j,
um

2

]
∩ Z ∩

(
m(u− 1)

2
− j + (2Z≥0 ∪ Z<0)

)}
. (2.183)

Before going to proof of the theorem, we need to state some propositions.

Proposition 2.39. Let g be the affine Kac-Moody algebra of type A
(2)
2 . Fix m ∈ Z>0, u ∈ Z>1

relatively prime to 2. Let Λ = mΛ0 + jα
2 ∈ Pm+ .

1. We parametrize λ ∈ max(Λ) such that λ+ ρ̇ is regular with respect to Ẇ by λk = Λ + kα+
φ(m, j, k)δ. Then the only possible values of k are

k =
j′ − j

2
− num+ 3

2
and k = −j

′ + j

2
− 1 + n

um+ 3

2
(2.184)

where j′ ∈ [0, um2 ] ∩ Z and n ∈ Z.

2. Let

Nk = −φ(m, j, k) + un

(
j′ + 1− num+ 3

2

)
. (2.185)

Then

i. If k = j′−j
2 − num+3

2 , then p(λk) = 1 and {λk} = mΛ0 + j′α
2 −Nkδ.

ii. If k = − j′+j
2 − 1 + num+3

2 , then p(λk) = −1 and {λk} = mΛ0 + j′α
2 −Nkδ.

iii. The function Nk is considered as a function on n and it attains the minimum at n = 0
in the first case and at n = 0 or n = 1 in the second case.

Proof. We need the following data

|α|2 = 4, ρ̇ =
3

u
Λ0 +

1

2
α, Ẇ =

{
tunα

2
, tunα

2
s1

∣∣n ∈ Z
}
. (2.186)

Since λk + ρ̇ is regular with respect to Ẇ , there exists unique σ ∈ Ẇ and µ = mΛ0 + j′α
2 + b′δ ∈

Ṗum+ such that σ(λk + ρ̇) = µ+ ρ̇.
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a. (Proof of 1. and 2.i.) If σ = tunα
2

for some n ∈ Z, then σ(λk + ρ̇)− ρ̇ equals

mΛ0 +

(
k +

j

2
+ n

um+ 3

2

)
α+

(
φ(m, j, k)− un

(
2k + j + 1 + n

um+ 3

2

))
δ. (2.187)

Hence

j′ ∈
[
0,
um

2

]
∩ Z and k =

j′ − j
2
− num+ 3

2
. (2.188)

In this case, we have

p(λk) = 1 and {λk} = mΛ0 +
j′α

2
+

(
φ(m, j, k)− un

(
j′ + 1− num+ 3

2

))
δ. (2.189)

b. (Proof of 1. and 2.ii.) If σ = tunα
2
s1 for some n ∈ Z, then σ(λk + ρ̇)− ρ̇ equals

mΛ0 +

(
−k − j

2
− 1 + n

um+ 3

2

)
α+

(
φ(m, j, k)− un

(
−2k − j − 1 + n

um+ 3

2

))
δ.

(2.190)
Hence

j′ ∈
[
0,
um

2

]
∩ Z and k = −j

′ + j

2
− 1 + n

um+ 3

2
. (2.191)

In this case, we have

p(λk) = −1 and {λk} = mΛ0 +
j′α

2
+

(
φ(m, j, k)− un

(
j′ + 1− num+ 3

2

))
δ. (2.192)

c. (Proof of 2.iii.) Put M = um + 3. We consider the first case k = j′−j
2 − nM

2 . Write
k = m

2 q + r for some q ∈ Z, 0 ≤ r < m
2 , then

−Nk = φ(m, j, r)− q(k + r + j)− un
(
j′ + 1− nM

2

)
(2.193)

= φ(m, j, r)− 2( j
′−j
2 − nM

2 − r)(
j+j′

2 − nM
2 + r)

m
− un

(
j′ + 1− nM

2

)
(2.194)

= n2M

2

(
u− M

m

)
− n

(
u+ uj′ − M

m
j′
)

+
j2 − j′2

2m
+

(
2r2

m
+

2rj

m
+ φ(m, j, r)

)
.

(2.195)

We have 2r2

m + 2rj
m + φ(m, j, r) equals





2
mr(r + j − m

2 ) if 0 ≤ r ≤ m
2 − j,

2
m (r − m

2 )(r + j − m
2 ) if m

2 − j ≤ r < m
2 , r ∈ m

2 + Z,
2
m (r − m

2 )(r + j − m
2 )− 1

2 if m−1
2 − j ≤ r < m

2 , r ∈ m+1
2 + Z.

(2.196)

The condition 0 ≤ r ≤ m
2 − j can be rewritten as

2j −m
4

≤ −nM + j′

2
− m

2

(
q +

1

2

)
≤ m− 2j

4
(2.197)

and m
2 − j ≤ r < m

2 can be rewritten as

−j
2
≤ −nM + j′

2
− m

2
(q + 1) <

j

2
. (2.198)
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It implies that 2r2

m + 2rj
m + φ(m, j, r) equals





2
m (|−nM+j′

2 − m
4 p|2 − |

m−2j
4 |2) if ∃p ∈ 2Z + 1 such that

|−nM+j′

2 − m
4 p| ≤

m−2j
4 ,

2
m (|−nM+j′

2 − m
4 p|2 −

j2

4 ) if ∃p ∈ 2Z such that

|−nM+j′

2 − m
4 p| ≤

j
2 ,

j′−j
2 − nM

2 − m
2 (p2 − 1) ∈ m

2 + Z ,
2
m (|−nM+j′

2 − m
4 p|2 −

j2

4 )− 1
2 if ∃p ∈ 2Z such that

−nM+j′

2 − m
4 p ∈ [− 1+j

2 , j2 ],
j′−j

2 − nM
2 − m

2 (p2 − 1) ∈ m+1
2 + Z .

(2.199)

Let Pj,j′ : Z → R be the function that maps −n to (2.199). Let Fj,j′ : Z → R be the
function defined by

Fj,j′(t) = t2
M

2

(
u− M

m

)
+ t

(
u+ uj′ − M

m
j′
)

+
j2 − j′2

2m
+ Pj,j′(t). (2.200)

So −Nk = Fj,j′(−n).

We will show that the maximum of Fj,j′(n) appears when n = 0, i.e., k = j′−j
2 . To do

that, we show that the upper bound function F+ : R× [0, m2 ]× [0, um2 ]→ R of Fj,j′(t) and
lower bound function F− : R × [0, m2 ] × [0, um2 ] → R of Fj,j′(t) given below attains theirs
maximum along t ∈ Z when t = 0.

F+(t, j, j′) = t2
M

2

(
u− M

m

)
+ t

(
u+ uj′ − M

m
j′
)

+
j2 − j′2

2m
+ P+(t, j, j′), (2.201)

F−(t, j, j′) = t2
M

2

(
u− M

m

)
+ t

(
u+ uj′ − M

m
j′
)

+
j2 − j′2

2m
+ P−(t, j, j′), (2.202)

where P+(t, j, j′) is




2
m (| tM+j′

2 − m
4 p|2 − |

m−2j
4 |2) if ∃p ∈ 2Z + 1 such that

| tM+j′

2 − m
4 p| ≤

m−2j
4 ,

2
m (| tM+j′

2 − m
4 p|2 −

j2

4 ) if ∃p ∈ 2Z such that

| tM+j′

2 − m
4 p| ≤

j
2 .

(2.203)

and P−(t, j, j′) is




2
m (| tM+j′

2 − m
4 p|2 − |

m−2j
4 |2) if ∃p ∈ 2Z + 1 such that

tM+j′

2 − m
4 p ∈ [ 2j−m

4 , m−2j
4 − 1

2 ],
2
m (| tM+j′

2 − m
4 p|2 −

j2

4 )− 1
2 if ∃p ∈ 2Z such that

tM+j′

2 − m
4 p ∈ [− 1+j

2 , j2 ].

(2.204)

We just consider the function F+ and apply similar arguments for F−. The function F+

is a continuous, piecewise smooth function. Let ∆+(t, j, j′) = F+(t+ 1, j, j′)−F+(t, j, j′),
then it is nonincreasing in t and ∆+(−1, j, j′) > 0 > ∆+(0, j, j′). Indeed: ∆+(t, j, j′)
equals

tM

(
u− M

m

)
+

(
j′ +

M

2

)(
u− M

m

)
+ u+ P+(t+ 1, j, j′)− P+(t, j, j′). (2.205)
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We denote the numbers p defining P+(t + 1, j, j′) and P+(t, j, j′) by p1, p0, respectively.
Use definition, we have p1−p0

2 ≥ u. Hence the partial derivatives of ∆+, where they exist
are

∂t∆
+(t, j, j′) = M

(
u− p1 − p0

2

)
≤ 0, (2.206)

∂j′∆+(t, j, j′) = u− p1 − p0

2
≤ 0. (2.207)

It implies that ∆+ is nonincreasing in t and j′. So ∆+(0, j, j′) ≤ ∆+(0, j, 0) and ∆+(−1, j, um2 ) ≤
∆+(−1, j, j′). We can check that ∆+(0, j, 0) < 0 < ∆+(−1, j, um2 ).

It implies that F+(0, j, j′) > F+(t, j, j′) for any t ∈ Z, t 6= 0. The same results is true for
F−. Hence Fi,j(−n) attains its maximum when n = 0. Hence, in the case k = j′−j

2 − nM
2 ,

the minimum of Nk occurs when n = 0.

For the case k = − j′+j
2 − 1 + nM

2 . Since k = j′−j
2 +

(
n− 2 j

′+1
M

)
M
2 , we have

−Nk = F

(
n− 2

j′ + 1

M
, j, j′

)
. (2.208)

Then Nk attains its minimum when n = 0 or 1.

Here is the next proposition we will use in the proof of Theorems 2.38.

Proposition 2.40. With φ(m, j, k) is defined as in (2.168), for each j ∈ [0, m2 ] and j′ ∈ [0, um2 ]∩
Z, we have

− φ(m, j,
j′ − j

2
) = min

(
−φ(m, j,−j

′ + j

2
− 1),

u

2
− φ(m, j,−j

′ + j

2
+

1

2
)

)
. (2.209)

if and only if one of the following two conditions is satisfied:

(A2) m > 2 and j′ ≤ j − 1.

(B2) m ≥ 2, j′ ∈ m(u−1)
2 + 1− j + 2Z≥0.

Proof. We again use the equality (2.161) to rewrite

φ(m, j,−j
′ + j

2
−1) = φ(m, j,

j′ − j
2

) and − u
2

+φ(m, j,−j
′ + j

2
+

1

2
) = φ(m, j,

j′ − j
2

) (2.210)

as φ(m, j, x) = φ(m, j, x−1) and φ(m, j, x) = −u2 +φ(m, j, x+ 1
2 ), where x = − j′+j

2 . Use (2.168),
we can check that it happens if and only if condition (A2) or (B2) is satisfied.

We are now going to the proof of Theorem 2.38.
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Proof. The strategy is the same as in the case A(1)
1 . The first step is writing explicitly chΛ in

Proposition 2.29. By substituting values of p(λk) and {λk} in Proposition 2.39 to the formula
(2.101), we can rewrite chΛ as follows

∑

j′∈[0,um
2 ]∩Z

ċh
mΛ0+ j′α

2




∑

n∈Z,

k=
j′−j

2
−n

um+3
2

qNkcΛ
λk
−

∑

n∈Z,

k=−
j′+j

2
−1+n

um+3
2

qNkcΛ
λk


 . (2.211)

The identity (2.211) implies the condition j′ ∈ [0, um2 ]∩Z that we need to prove for Theorem 2.38.
The coefficients of cΛ

λk
in the formula (2.211) are always positive integers since λk ∈ max(Λ).

Proposition 2.39 says that the number Nk attains minimums at n = 0 for those on the left
hand side of (2.211), and at n = 0 or n = 1 for those on the right hand side of (2.211). The
corresponding minimums of Nk are

− φ(m, j,
j′ − j

2
) and min

(
−φ(m, j,−j

′ + j

2
− 1),

u

2
− φ(m, j,−j

′ + j

2
+

1

2
)

)
. (2.212)

By (2.170), (2.56), (2.211), (2.212), we can imply that

− φ(m, j,
j′ − j

2
) ≤ min

(
−φ(m, j,−j

′ + j

2
− 1),

u

2
− φ(m, j,−j

′ + j

2
+

1

2
)

)
. (2.213)

Moreover, the equality happens if and only if condition (A2) or (B2) in Proposition 2.40 is
satisfied. So, for any λ = mΛ0 + j′α

2 ∈ Au(Λ), we have strict inequality in (2.213). By (2.211), in

this case we have λ+ φ(m, j, j
′−j
2 )δ ∈ maxu(Λ). That means bΛ,λ,u = φ(m, j, j

′−j
2 ) = bΛ,λ.

2.5.0.5 Relation between Γ(g, g[u]) and its satured setting

The satured setting of the support Γ(g, g[u]) is defined by

Γ̃(g, g[u]) = {(Λ, λ) ∈ P+ × Ṗ+ | λ ∈ Λ +Q, L̇(Nλ) ⊂ L(NΛ) for some integer N > 1}. (2.214)

Corollary 2.41. Let g be affine Kac-Moody algebra of type A
(1)
1 or A

(2)
2 . Fix m ∈ Z>0, u ∈ Z>1

(u is an odd number in the case A
(2)
2 ). Let Λ ∈ Pm+ and let λ ∈ Au(Λ)∩ (Λ +Q). For all b ∈ C,

we have

1. (Λ, λ+ bδ) ∈ Γ̃(g, g[u])⇔ d(Λ, λ+ bδ) ∈ Γ(g, g[u]) for all d ∈ Z≥2.

2. If in addition h
[u]
Λ,λ 6= 0 then (Λ, λ+ bδ) ∈ Γ̃(g, g[u])⇔ (Λ, λ+ bδ) ∈ Γ(g, g[u]).

Before going to the proof, we first restate Lemma 6.3 and Lemma 8.5 in [BK14].

Lemma 2.42. Let g be an affine Kac-Moody algebra of type A
(1)
1 or A

(2)
2 . Let Λ ∈ P+ and

λ ∈ (Λ +Q). Fix a positive integer N . Then λ ∈ max(Λ) if and only if Nλ ∈ max(NΛ).

Now we are going to the proof of Corollary 2.41.

Proof. Fix a positive integer d. Since λ ∈ Au(Λ) ∩ (Λ + Q), we have dλ ∈ Au(dΛ) ∩ (dΛ + Q).
By Theorems 2.34, 2.38 and Lemma 2.42, we have

bdΛ,dλ,u = bdΛ,dλ = dbΛ,λ. (2.215)



2.5. THE CASES A
(1)
1 AND A

(2)
2 51

Suppose that (Λ, λ + bδ) ∈ Γ̃(g, g[u]), then λ + bδ ∈ Λ + Q and L̇(Nλ + Nbδ) ⊂ L(NΛ) for
some integer N > 1. Hence b ∈ Z (since λ ∈ Λ + Q) and Nb ≤ bNΛ,Nλ,u = NbΛ,λ for some
N > 1 (by (2.215)). So b ≤ bΛ,λ and they are integers. Hence for any d ∈ Z≥2, we have
bdΛ,dλ − db = d(bΛ,λ − b) ∈ Z≥0 \ {1}. Then by Theorem 2.31 1., d(Λ, λ + bδ) ∈ Γ(g, g[u]). If
h

[u]
Λ,λ 6= 0, then by Theorems 2.31 2., (Λ, λ+ bδ) ∈ Γ(g, g[u]).

Remark 2.43. In the case A(1)
1 , we have Au(Λ) ∩ (Λ +Q) = Au(Λ). In the case A(2)

2 , we have
Au(Λ)∩ (Λ +Q) is the subset of elements in Au(Λ) with strict condition j′ ∈ j + 2Z compare to
(2.183).





Chapter 3

Projective representations of symmetric

groups

In this chapter, we present the projective representation theory of the symmetric groups. It
explains a motivation for studying the shifted Littlewood-Richardson coefficients in our second
preprint [Kha20].
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3.1 Shifted Littlewood-Richardson coefficients

3.1.1 Young tableaux

For a partition λ, we write λ = (λ1, λ2, . . . ) with λ1 ≥ λ2 ≥ . . . . If λ = (λ1, λ2, . . . , λl) with

λl > 0 and
l∑
i=1

λi = n, we write l(λ) = l, |λ| = n.

Each partition λ is presented by a Young diagram Y (λ) that is a collection of boxes such
that:

• (D1) The leftmost boxes of each row are in a column.

• (D2) The number of boxes from top row to bottom row are λ1, λ2, . . . , respectively.

A semistandard Young tableau of shape λ is a filling of the Young diagram Y (λ) by the
ordered alphabet {1 < 2 < . . .} such that:

(Y1) The entries in each column are strictly increasing.

(Y2) The entries in each row are weakly increasing.

A Young tableau T is said to have content γ = (γ1, γ2, . . . ) if γi is the number of entries i in
the tableau T . We write

xT = xγ = xγ1

1 x
γ2

2 . . . . (3.1)

3.1.2 Ring of symmetric functions

For each partition λ, the Schur function sλ in variables x1, x2, . . . is defined as the sum of xT ,
where T runs over the semistandard Young tableaux of shape λ.

The power-sum symmetric function pr with r ≥ 1 is defined by

pr = xr1 + xr2 + . . . . (3.2)
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For each partition λ = (λ1, λ2, . . . ), we define

pλ = pλ1
pλ2

. . . . (3.3)

Let Λ =
⊕
n≥0

Λn be the graded ring of symmetric functions in the variables x1, x2, . . . with

coefficients in Z, where Λn is the Z-submodule of elements of degree n. The following sets are
Z-basis of Λn (see [Ful97] or [Mac15])

{sλ | λ is a partition of n} ,

{pλ | λ is a partition of n} .

3.1.3 Shifted tableaux

A partition λ = (λ1, λ2, . . . ) is said to be strict if λ1 > λ2 > . . . .

Each strict partition λ is presented by a shifted diagram sY (λ) that is a collection of boxes
such that:

• (SD1) The leftmost boxes of each row are in the main diagonal.

• (SD2) The number of boxes from top row to bottom row are λ1, λ2, . . . , respectively.

A shifted tableau T of shifted shape λ is a result of filling the shifted diagram sY (λ) by
the ordered alphabet {1′ < 1 < 2′ < 2 < . . .} such that

• (T1) The entries in each column and in each row are weakly increasing.

• (T2) The entries k′ in each row are strictly increasing.

• (T3) The entries k in each column are strictly increasing.

The shifted tableau T is said to have content γ = (γ1, γ2, . . . ) if γi is the number of i or i′

in T . We write
xT = xγ = xγ1

1 x
γ2

2 . . . . (3.4)

Example 3.1. Let λ = (4, 2, 1). Then the shifted diagram sY (λ) is

sY ((4, 2, 1)) =

And

T =
1 2′ 2 2

2′ 3

4′

is a shifted tableau of shifted shape (4, 2, 1). The content of T is (1, 4, 1, 1).
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3.1.4 Shifted Littlewood-Richardson coefficients

For each strict partition λ, the Schur Q-function Qλ = Qλ(x) in variables x1, x2, . . . is defined
as the sum of xT where T runs over the shifted tableaux of shape λ. Since every coefficient in
Qλ is divisible by 2l(λ), we can define a formal power series with integer coefficients

Pλ(x) = 2−l(λ)Qλ(x). (3.5)

Let ΩQ =
⊕
n≥0

ΩnQ be the graded subalgebra of ΛQ = Q ⊗Z Λ generated by 1, p1, p3, p5, . . . . Let

Ω = ΩQ ∩ Λ be the Z-hyper subring of ΩQ. We write Ω =
⊕
n≥0

(ΩnQ ∩ Λ) as a graded ring. A

fundamental result in the theory of strict partitions is that

{Pλ | λ is a strict partition of n}

is a Z-basis of ΩnQ ∩ Λ (see [Ste89]). We can define integers fνλµ for each strict partitions λ, µ, ν
by

PλPµ =
∑

ν

fνλµPν . (3.6)

The integers fνλµ are called the shifted Littlewood-Richardson coefficients.

Moreover, one can think about Pλ as an element of Λn endowed with its Schur basis. Let gλµ
be the integers defined by

Pλ =
∑

|µ|=n
gλµsµ. (3.7)

Note that in the notation of gλµ, λ is a strict partition and µ is a partition. It turns out that the
coefficients gλµ are related with the shifted Littlewood-Richardson coefficients. More precisely
(see [Ste89]),

gλµ = fµ+δ
λδ , (3.8)

where

µ = (µ1, µ2, . . . , µl) with l = l(µ), (3.9)

δ = (l, l − 1, . . . , 1), (3.10)

µ+ δ = (µ1 + l, µ2 + l − 1, . . . , µl + 1). (3.11)

We have two motivations to study the coefficients fνλµ and gλµ. The first one explained in
the following section, interprets these coefficients in terms of projective representations of the
symmetric groups. The second one, see subsection ??, interprets them in terms of Schubert
calculus.

3.2 Projective representations of symmetric groups

In this subsection, we present fundamental background about projective reprsentations of the
symmetric groups and the relation with shifted Littlewood-Richardson coefficients. The main
reference are [Ste89] and [HH92].
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3.2.1 Projective representations of Sn

Let G be a finite group and V be a finite dimensional complex vector space. A projective rep-
resentation of the group G on V is a group homomorphism of G in PGL(V ) = GL(V )/C×1V .
Such an homomorphism may be viewed as a map P : G→ GL(V ) such that

1. P (1) is the identity linear map of V .

2. P (x)P (y) = c(x, y)P (xy) (x, y ∈ G) for some c(x, y) ∈ C×.

The map c : G×G→ C×, (x, y) 7→ c(x, y) is called the factor set of P . It satisfies

c(x, 1) = c(1, x) = 1 for all x ∈ G. (3.12)

By the associativity of GL(V ), we have

c(x, y)c(xy, z) = c(x, yz)c(y, z) for all x, y, z ∈ G. (3.13)

Remark 3.2. An ordinary representation of G is a projective representation with c(x, y) = 1
for all x, y ∈ G.

Let P : G → GL(V ) and Q : G → GL(W ) be two projective representations of G. We say
that P and Q are equivalent if there exists an invertible linear map S : V → W and a map
b : G→ C× such that

b(1) = 1 and b(x)SP (x)S−1 = Q(x) for all x ∈ G. (3.14)

Let c and c′ be factor sets of P ad Q, respectively. In this case, we also say that c and c′ are
equivalent. More precisely, the equivalence of factor sets is given by

c′(x, y)

c(x, y)
=
b(x)b(y)

b(xy)
for all x, y ∈ G. (3.15)

The set of all factor sets modulo equivalence is called the Schur multiplier of G. It is isomor-
phic to the second cohomology group H2(G,C×).

We associate to each factor set c a twisted group algebra CGc with a basis {αx | x ∈ G}
and the multiplication defined by αxαy = c(x, y)αxy. The twisted group algebras associated
to equivalent factor sets are isomorphic. A projective representaton of G with factor set c is
identified with a CGc-module.

Now, suppose that G = Sn. Let CSn be the group algebra generated by s1, . . . , sn−1 with
the relations

(sj)
2 = 1, (sjsk)2 = 1 for all |j − k| ≥ 2, (sjsj+1)3 = 1. (3.16)

Let CS′n be the group algebra generated by α1, . . . , αn−1 with the relations

(αj)
2 = 1, (αjαk)2 = −1 for all |j − k| ≥ 2, (αjαj+1)3 = 1. (3.17)

Proposition 3.3. The algebras CSn and CS′n are the only possible twisted group algebras struc-
tures for Sn. They are isomorphic only for n ≤ 3. In particular, H2(Sn,C×) is of order 2 only
for n ≥ 4.
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The above proposition says that any projective representation of Sn is either a CSn-module
or a CS′n-module. In the case n ≥ 4, set σj =

√
−1αj for each j = 1, . . . , n − 1. By relations

(3.17), we have

(σj)
2 = −1, (σjσk)2 = −1 for all |j − k| ≥ 2, (σjσj+1)3 = −1. (3.18)

Let S̃n be the group generated by −1, σ1, . . . , σn−1 with relations (3.18). A CS′n-module V is
identified with an ordinary representation of S̃n with −1 represented faithfully in GL(V ), and
such a representation is called a spin representation of S̃n. A CSn-module V is identified with
an ordinary representation of S̃n where the image of −1 in GL(V ) is 1.

3.2.2 Conjugacy classes

Let λ = (λ1, . . . , λl) (λl > 0) be a partition of n. We say that λ is even (odd) if n − l(λ) is
even (odd). The conjugacy classes of Sn are indexed by the partitions of n. Namely, an element
σ ∈ Sn belongs to the λth conjugacy class if its cycle length are λ1, . . . , λl. In this case, we write
type(σ) = λ. Moreover, we say that σ is even (odd) if λ is even (odd).

3.2.2.1 Conjugacy classes of S̃n

Let |.| be the canonical homomorphism from S̃n to Sn, which is defined by −1 7→ 1, σj 7→ sj . Set

Cλ = {σ ∈ S̃n such that type(|σ|) = λ}. (3.19)

Let
σλ = π1 . . . πl (l = l(λ)), (3.20)

where
πj = σa+1 . . . σa+λj−1 (a = λ1 + · · ·+ λj−1). (3.21)

Set

C+
λ = {τσλτ−1 | τ ∈ S̃n}, (3.22)

C−λ = {−τσλτ−1 | τ ∈ S̃n}. (3.23)

The conjugacy classes of S̃n are described as follows:

• If any σ ∈ S̃n is conjugate to −σ, then Cλ is an conjugacy class of S̃n.

• If there is no σ ∈ S̃n conjugate to −σ, then Cλ is the disjoint union of two S̃n conjugacy
classes C+

λ and C−λ . We known that (see [Ste89]) this case happens if and only if λ has
only odd parts or it is a strict odd partition.

3.2.2.2 Conjugacy classes of parabolic subgroups of S̃n

Let J be a subset of the set {1, . . . , n−1}. There exists a unique sequence of nonnegative integers
β = (β1, . . . , βl) such that

β1 + · · ·+ βl = n and J = {β1 + · · ·+ βj | 1 ≤ j < l}. (3.24)

The subgroup SJn of Sn generated by all elements sj (j ∈ J) is called a parabolic subgroup of
Sn. Moreover,

SJn
∼= Sβ1

× · · · × Sβl
. (3.25)
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The subgroup S̃Jn of S̃n generated by elements −1 and all σj (j ∈ J) is called a parabolic

subgroup of S̃n. We write S̃β (resp. Sβ) for the group S̃Jn (resp. SJn ) and regard S̃βj (resp. Sβj )

as subgroups of S̃β (resp. Sβ). We also let CS′β (resp. CSβ) be the corresponding subalgebra of
CS′n (resp. CSn). The conjugacy classes of Sβ are indexed by l-tuple λ = (λ1, . . . , λl) where λj

is a partition of βj . For such an l-tuple λ, set

Cλ = {π1 . . . πl such that πj ∈ S̃βj
and type(|πj |) = λj}. (3.26)

Set σλ = σλ
1

. . . σλ
l

where σλ
j ∈ S̃βj is defined by (3.20) and

C+
λ = {τσλτ−1 | τ ∈ S̃β}, (3.27)

C−λ = {−τσλτ−1 | τ ∈ S̃β}. (3.28)

The conjugacy classes of S̃β are described as follows:

• If any σ ∈ S̃β is conjugate to −σ then Cλ is a conjugacy class of S̃β .

• If there is no σ ∈ S̃β conjugate to −σ then Cλ is the disjoint union of two S̃β classes C+
λ

and C−λ . Let λ∗ = λ1∪ · · ·∪λl be the partition whose parts are union of those of λ1, . . . , λl

(we call λ∗ the multiset partition union of λ1, . . . , λl). Then this case happens if and
only if λ∗ has only odd parts or λ∗ is odd and λj has distinct parts.

3.2.3 The space of class functions of S̃n

The space of all class functions of S̃n is of the form Zn ⊕ Z ′n where Zn is the space spanned
by ordinary characters and Z ′n is the space spanned by spin characters.

For each partition λ of n, we define the indicator function 1λ by

1λ(σ) =

{
1 if type(|σ|) = λ,

0 if type(|σ|) 6= λ,
(3.29)

and the spin-indicator function 1′λ by

1′λ(σ) =





1 if σ ∈ C+
λ ,

−1 if σ ∈ C−λ ,
0 if type(|σ|) 6= λ.

(3.30)

Then
{1λ | λ is a partition of n}

is a basis of Zn, and

{1′λ | λ is a partition of n with only odd parts or a strict odd partition of n}

is a basis of Z ′n. The product of characters in the space Zn ⊕ Z ′n is given by

1λ1µ = δλµ1λ,

1′λ1µ = δλµ1′λ,

1′λ1′µ = δλµ1λ.

We denote the inner product of characters of the group S̃n by 〈, 〉.
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3.2.3.1 Basic spin characters of S̃n

The Clifford algebra Cn is the algebra generated by ζ1, . . . , ζn with relations

ζ2
j = 1, ζjζk + ζkζj = 0 for all k 6= j. (3.31)

As a vector space, it has a basis

{ζA | A = {a1, . . . , ar such that 1 ≤ a1 < · · · < ar ≤ n}} , (3.32)

where ζA = ζa1 . . . ζar
.

Let Mm be the matrix algebra of degree m.

If n is an even number, write n = 2k, then C2k is isomorphic to M2k . In particular, the map
ρ : C2k →M2k defined by

ζ2j−1 7→ ǫ⊗ · · · ⊗ ǫ⊗ x⊗ 1⊗ · · · ⊗ 1,

ζ2j 7→ ǫ⊗ · · · ⊗ ǫ⊗ y ⊗ 1⊗ · · · ⊗ 1,

where x and y are in the jth (1 ≤ j ≤ k) position, and

ǫ =

(
1 0
0 −1

)
, x =

(
0 1
1 0

)
, y =

(
0

√
−1

−
√
−1 0

)
, (3.33)

is an isomorphism. Then character of ρ is given by

trρ(
∑

A

cAζA) = 2kc∅, (3.34)

where cA is the coefficients of ζA. Hence, ρ modulo equivalence is the unique irreducible repre-
sentation of C2k.

If n is an odd number, write n = 2k + 1, then

C2k+1 = C2k ⊕ ζC2k, (3.35)

where ζ = ζ1 . . . ζ2k+1. The representation ρ of C2k defined above is extended to two representa-
tions ρ± of C2k+1 by

ρ±(ζ) = ±(
√
−1)k. (3.36)

The characters of ρ± are given by

trρ±(
∑

A

cAζA) = 2kc∅ ± (2
√
−1)kcζ , (3.37)

where cζ is the coefficient of ζ. Hence, ρ± modulo equivalence are the unique irreducible repre-
sentation of C2k+1.

The group S̃n is embedded into C×n−1 by a map ψ : S̃n → C×n−1 given by

σj 7→ ajζj + bjζj+1, (3.38)

where aj , bj ∈ C× (1 ≤ j ≤ n− 1) are such that

a2
j + b2

j = −1, aj+1bj =
1

2
, bn−1 = 0. (3.39)

The basic spin representations of S̃n with respect to the embedding ψ is defined as follows:
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• If n = 2k + 1, it is the composition

S̃n
ψ−→ C×n−1

ρ−→ GL(2k), (3.40)

denoted by ϕn.

• If n = 2k, it is both of the compositions

S̃n
ψ−→ C×n−1

ρ±−−→ GL(2k−1), (3.41)

denoted by ϕn±, respectively. We use the notation ϕn for either ϕn+ or ϕn−.

These representations modulo equivalence are independent of ψ. The characters of basic spin
representations will be denoted by the same symbols ϕn, ϕn±, and we call them the basic spin
characters.

Theorem 3.4. The basic spin representations of S̃n are irreducible. Moreover, we have

ϕ2k+1(σλ) =

{
2(l(λ)−1)/2 if λ is a partition of 2k + 1 with only odd parts,

0 otherwise.
(3.42)

ϕ2k
± (σλ) =





2(l(λ)−2)/2 if λ is a partition of 2k with only odd parts,

±(
√
−1)k

√
k if λ = (2k),

0 otherwise.

(3.43)

3.2.3.2 Spin characters of parabolic subgroups of S̃n

Let J be a subset of {1, . . . , n− 1}. Let β be the sequence of nonnegative integers defined as in
(3.24). For each 1 ≤ k ≤ l, set

Jk = {j such that β1 + · · ·+ βk−1 < j < β1 + · · ·+ βk}. (3.44)

Then J =
l⋃

k=1

Jk and S̃βk
is the subgroup of S̃β generated by −1 and all elements σj (j ∈ Jk).

In this subsection, we construct spin representations of S̃β (or CS′β-modules).

First, let V and V ′ be CS′n-modules. We say that V and V ′ are associates if V ′ ∼= sgn⊗V .
An CS′n-module V is called self-associate if V ∼= sgn⊗V . In this case, there exists S ∈ GL(V )
such that

Sσj |V = −σjS|V for all 1 ≤ j ≤ n− 1. (3.45)

We call S an associator for V .

Now, let Vj (1 ≤ j ≤ l) be CS′βj
-modules among which exactly r are self-associate. We assume

that V1, . . . , Vr are the self-associate modules. Let V be an irreducible Cl−r-module where Cl−r
is the Clifford algebra generated by {ζj+1, . . . , ζl} and let Sj be an associator of Vj for each
1 ≤ j ≤ r. The reduced Clifford product of V1, . . . , Vl with respect to V and S1, . . . , Sr is
the tensor product V ⊗ V1 ⊗ · · · ⊗ Vl with CS′β-module structure defined by

σj(v ⊗ v1 ⊗ · · · ⊗ vl) =

{
v ⊗A1v1 ⊗ · · · ⊗Alvl if j ∈ Jk, 1 ≤ k ≤ r,
ζkv ⊗B1v1 ⊗ · · · ⊗Blvl if j ∈ Jk, r < k ≤ l,

(3.46)
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where

(A1, . . . , Al) = (S1, . . . , Sk−1, σj , 1, . . . , 1), (3.47)

(B1, . . . , Bl) = (S1, . . . , Sr, 1, . . . , σj , . . . , 1). (3.48)

Here, σj in (3.48) is in kth position.

Let ϕ,ϕ1, . . . , ϕl be spin characters of V, V1, . . . , Vl, respectively. We denote ϕ×cϕ1×c · · ·×cϕl
the spin character of V ⊗ V1 ⊗ · · · ⊗ Vl, and call it the reduced Clifford product of spin
characters ϕ,ϕ1, . . . , ϕl.

Theorem 3.5. A reduced Clifford product of the CS′βj
-modules is irreducible. Conversely, every

irreducible CS′β-module is of this form.

3.2.3.3 Irreducible spin characters of S̃n

For each partition λ, let zλ be the cardinal of the centralizer of any permutation σ of type λ.
Let mj (j = 1, 2, 3, . . . ) be the number of the parts of λ of size j. Then we have

zλ = (m1!1m1)(m2!2m2) . . . (3.49)

The characteristic map ch : Zn → ΛnC is the linear isomorphism given by

ch(1λ) = pλ/zλ. (3.50)

Set χλ = ch−1(sλ).

Theorem 3.6. The irreducible characters of Sn are χλ (λ is a partition of n).

Define an inner product [, ] on ΩnC by

[pλ, pµ] =
1

2l(λ)
zλδλµ. (3.51)

For each strict partition λ, set Q∗λ = 2−l(λ)/2Qλ. Then

{Q∗λ | λ is a strict partition}

is an orthonomal basis of ΩR. The irreducible spin characters of S̃n associated to λ are defined
as follows:

• If λ is an even partition of n with distinct parts, we let ϕλ ∈ Z ′n be the self-asscociate class
function defined by

ϕλ(σµ) =

{
[Q∗λ, 2

l(µ)/2pµ] if µ is a partition of n with only odd parts,
0 otherwise.

(3.52)

• If λ is a strict odd partition of n, we let ϕλ± ∈ Z ′n be the pair of associate class functions
defined by

ϕλ±(σµ) =





1√
2
[Q∗λ, 2

l(µ)/2pµ] if µ is a partition of n with only odd parts,

±(
√
−1)(n−l(λ)+1)/2

√
zλ

2 if µ = λ,

0 otherwise.
(3.53)

In this case, we use the notation ϕλ for either ϕλ+ or ϕλ−.
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Theorem 3.7. The irreducible spin characters of S̃n are ϕλ (λ is an even partition of n with
distinct parts) and ϕλ± (λ is a strict odd partition of n).

3.2.4 Relation with shifted Littlewood-Richardson coefficients

This subsection explains how the shifted Littlewood-Richardson coefficients appear in the pro-
jective representations of symmetric groups.

For each partition λ, set

ǫλ =

{√
2 if λ is odd,

1 if λ is even.
(3.54)

Theorem 3.8. Let λ be a strict partition of k, µ be a strict partition of n− k, and ν be a strict
partition of n. Then

〈(ϕλ ×c ϕµ) ↑ S̃n, ϕν〉 =
1

ǫνǫλ∪µ
2(l(λ)+l(µ)−l(ν))/2fνλµ, (3.55)

unless ν is odd and ν = λ ∪ µ. In that case, the multiplicity of ϕν± is 0 or 1 according to the
choice of associates.

Theorem 3.9. Let λ be a strict partition of n and µ be a partition of n. Then

〈ϕnχµ, ϕλ〉 =
1

ǫλǫ(n)
2(l(λ)−1)/2gλµ, (3.56)

unless λ = (n), n is even, and µ is a hook-partition. In that case, the multiplicity of ϕλ± is 0 or
1 according to the choice of associates.

Corollary 3.10. The coefficients fνλµ and gλµ are non-negative integers.





Chapter 4

On the shifted Littlewood-Richardson

coefficients and the

Littlewood-Richardson coefficients

The chapter is a reproduction of our second preprint [Kha20].

Abstract

In relation with projective representations of the symmetric group, Stembridge introduced in
1989, the shifted SchurQ-functionsQλ associated to any strict partition λ. The shifted Littlewood-
Richardson coefficients fνλµ ∈ N (where λ, µ, ν are strict partitions) is defined by the relation
QλQµ =

∑
ν

2l(λ)+l(µ)−l(ν)fνλµQν . In this note, we give a new combinatorial model for these

coefficients. The coefficients gλµ appear in the decomposition of Schur Q-function Qλ into the
sum of Schur functions: Qλ = 2l(λ)

∑
µ
gλµsµ. Actually, gλµ is equal to some explicit shifted

Littlewood-Richardson coefficient and hence, we have a combinatorial model to express it. We
also give another description for gλµ as the cardinal of a subset of a set that counts Littlewood-
Richardson coefficients cλ̃µtµ. This new point of view allows us to establish connections between

gλµ and cλ̃µtµ. More precisely, we prove that gλµ = gλµt , and gλµ ≤ cλ̃µtµ. We conjecture that

g2
λµ ≤ cλ̃µtµ and formulate some conjectures on our combinatorial models which would imply this

inequality if it is valid.
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4.1 Introduction

Let λ, µ, ν be partitions. Let l(λ) be the length of λ, and sλ be the Schur function associated to
the partition λ. The Littlewood-Richardson coefficients cνλµ appear in the expansion (see [Ful97])

sλsµ =
∑

ν

cνλµsν . (4.1)

If now λ, µ, ν are strict partitions, let Qλ be the shifted Schur Q-function associated to the strict
partition λ. The shifted Littlewood-Richardson coefficients appear in the expansion (see [Ste89])

QλQµ =
∑

ν

2l(λ)+l(µ)−l(ν)fνλµQν . (4.2)

For any strict partition λ, and a partition µ of the same integer, the coefficients gλµ appear in
the decomposition (see [Ste89])

Qλ = 2l(λ)
∑

µ

gλµsµ. (4.3)

The coefficients gλµ can be considered as shifted Littlewood-Richardson coefficients by the iden-
tity (see [Ste89])

gλµ = fµ+δ
λδ , (4.4)

where δ = (l, l − 1, . . . , 1) with l = l(µ).

There were several developments beyond the Littlewood-Richardson rule. For example,

- Zelevinsky [Zel81] expressed the coefficients cνλµ as the number of pictures between µ and
ν/λ.
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- Remmel and Whitney [RW84] described cνλµ as the number of standard tableaux of shape
λ satisfying some rules depending on the skew shape ν/µ. There is also a similar version
by Chen, Garsia, Remmel [CGR84] where they replace λ with ν and ν/µ with λ ∗ µ.

- White [Whi81] showed that the set of tableaux in the construction of Remmel and Whitney
[RW84] can be understood from a different point of view. It arises from Robinson-Schensted
insertion of reading words of column-strict tableaux of a fixed skew shape.

There are new approaches that come from geometry: the algorithm by Liu [Liu10] and the rule
of Ravi Vakil [Vak06] etc.

The theory and methods for shifted Littlewood-Richardson coefficients are also developed paral-
lelly with the theory of Littlewood-Richardson coefficients. Based on the work of Worley [Wor84],
Sagan [Sag87], Stembridge [Ste89], there are several versions of the shifted Littlewood-Richardson
rule for fνλµ, for example, the works of Serrano [Ser10] and Shimozono [Shi99] and so on. The
shifted Littlewood-Richardson rule given by Stembridge [Ste89] is also re-obtained by using
the theory of crystal bases for the quantum queer superalgebra (see [GJK+14] and [CK18]).
In [CNO14], the authors established the bijections between three models for shifted Littlewood-
Richardson coefficients in [Ste89], [Ser10] and [GJK+14].

In this article, we use Stembridge’s rule [Ste89] to obtain a new combinatorial models for the
coefficients fνλµ and gλµ. The advantage of our rules is that they let appear connections with
ordinary Littlewood-Richardson coefficients. The motivation of our work comes from the work
of P. Belkale, S. Kumar and N. Ressayre [BKR12]. The main results in the article [BKR12]
raised up some first clues about relations between shifted Littlewood-Richardson coefficients
with Littlewood-Richardson coefficients. N. Ressayre conjectures an inequality between them
in [Res19]. We do not use the approach from geometry as in [BKR12], but we try to develop the
combinatorial model of Stembridge [Ste89] to discover bridges between these coefficients. To be
more precise, we describe the results as follows.

Our first result, Theorem 4.22 is a new combinatorial model for the shifted Littlewood-
Richardson coefficients. This is analogous to Remmel and Whitney’s work [RW84]. The combi-
natorial model proposed by Shimozono in [Shi99] is analogous to White’s model [Whi81], arising
from Sagan’s shifted insertion [Sag87]. Despite the case of Littlewood-Richardson coefficients
where Remmel and Whitney’s construction is identified with White’s construction, our construc-
tion and Shimozono’s construction do not produce the same model.

Since gλµ can be considered as a shifted Littlewood-Richardson coefficient, we obtain a new
model for gλµ in Theorem 4.23.

Our second result, Theorem 4.28 is another combinatorial interpretation of the coefficients
gλµ. More precisely, let λ̃ be the partition such that its Young diagram is the union of shifted
diagram corresponding to λ and its reflection through the main diagonal. Let µt be the conjugate
partition of µ. We prove that gλµ is the cardinality of a subset of a set that counts the coefficients
cλ̃µtµ. This implies Theorem 4.30 that

gλµ ≤ cλ̃µtµ. (4.5)

We conjecture a stronger inequality (see Conjecture 4.31)

g2
λµ ≤ cλ̃µtµ. (4.6)
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Using a computer program, we checked this conjecture on a lot of examples. Based on our
combinatorial model for the coefficients gλµ, we formulate Conjecture 4.32 whose validity implies
Conjecture 4.31. An evidence for Conjecture 4.32 is that it implies easily the equality

gλµ = gλµt . (4.7)

The equality (4.7) might be well known among experts, nevertheless we include a geometric proof
in Proposition 4.19.

The article contains four sections. In the first section, we collect some basic background
about the theory of Young tableaux, and related models for Littlewood-Richardson coefficients.
In the second section, we present the theory of shifted tableaux, and related models, some inter-
pretations for shifted Littlewood-Richardson coefficients. The last two sections present our two
main results on the coefficients fνλµ and gλµ.

In this section, we present Young tableaux, and related models for Littlewood-Richardson
coefficients.

4.1.1 Young tableaux

For a partition λ, we write λ = (λ1, λ2, . . . ) with λ1 ≥ λ2 ≥ . . . . If λ = (λ1, λ2, . . . , λl) with

λl > 0 and
l∑
i=1

λi = n, we write l(λ) = l, |λ| = n.

Each partition λ is presented by a Young diagram Y (λ).

Example 4.1.

Y ((3, 2)) =

The reflection σ(Y ) through the main diagonal of a Young diagram Y is also a Young dia-
gram. The conjugate partition λt of λ is defined by σ(Y (λ)) = Y (λt).

A semistandard Young tableau of shape λ is a filling of the Young diagram Y (λ) by the
ordered alphabet {1 < 2 < . . .} such that:

(Y1) The entries in each column are strictly increasing.

(Y2) The entries in each row are weakly increasing.

Let ν = (ν1, ν2, . . . ) and µ = (µ1, µ2, . . . ) be two partitions. We say that ν is bigger than µ
if and only if νi ≥ µi for all i, and we write ν ≥ µ. In this case, we define the skew Young
diagram Y (ν/µ) as the result of removing boxes in the Young diagram Y (µ) from the Young
diagram Y (ν). We write |ν/µ| = |ν| − |µ|. A skew Young tableau T of skew shape ν/µ is a
result of filling the skew Young diagram Y (ν/µ) by the ordered alphabet {1 < 2 < . . .} satisfying
the rules (Y1) and (Y2).

The word w(T ) of a Young tableau T is defined to be the sequence obtained by reading
the rows of T from left to right, starting from bottom to top. A Young tableau of skew shape
ν/µ is said to be a standard skew Young tableau if its word is a permutation of the word
12 . . . |ν/µ|. The transpose of a standard skew Young tableau T is also a standard skew Young
tableau and it is denoted by T t.
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4.1.2 Row-insertion and product tableau

For a Young tableau T and a positive integer x, we recall row-insertion x to T from [Ful97].
The result of row-insertion x to T is a Young tableau, is denoted by T ← x.

Example 4.2.

1 2 2

3 4
← 1 =

1 1 2

2 4

3

Let T and U be Young tableaux, the product tableau T.U is defined by

T.U := (. . . ((T ← x1)← x2)← · · · ← xn−1)← xn, (4.8)

where w(U) = x1x2 . . . xn.

Example 4.3. Let

T =
1 2 2

3 4
and U =

1 2 3

2 4

then w(U) = 24123 and

T.U =
1 1 2 2 2 3

2 4 4

3

4.1.3 Sliding and jeu de taquin

For the skew Young diagram Y (ν/µ), an inner corner of Y (ν/µ) is a box in the Young diagram
Y (µ) such that the boxes below and to the right are not in Y (µ). An outside corner is a box
in the Young diagram Y (ν) such that the boxes below and to the right are not in Y (ν).

Let T be a skew Young tableau of skew shape ν/µ. Let b be an inner corner of ν/µ. We recall
sliding b out of T from [Ful97]. The result of applying sliding b out of T gives us a new skew
Young tableau T ′ of skew shape ν′/µ′ such that |ν′| = |ν| − 1, |µ′| = |µ| − 1. Choose a random
inner corner b′ of T ′ and do sliding b′ out of T ′ as before, we get a new skew Young tableau T ′′

of skew shape ν′′/µ′′ such that |ν′′| = |ν| − 2, |µ′′| = |µ| − 2. So repeat the process as many
times as possible, we finally get a Young tableau and the process will terminate. There is a fact
that the Young tableau we get does not depend on the choice of random inner corners in each
step. The final tableau we have obtained is called the rectification of T and it is denoted by
Rect(T ). The whole process we apply on T to get Rect(T ) is called the jeu de taquin.

Lemma 4.4. Let T and U be skew Young tableaux. If w(T ) = w(U) then Rect(T ) = Rect(U).

Example 4.5. Let

T =
1

1 2 2

3 4

and U =
1

1 2 2

4

3



70
CHAPTER 4. ON THE SHIFTED LITTLEWOOD-RICHARDSON COEFFICIENTS AND

THE LITTLEWOOD-RICHARDSON COEFFICIENTS

The process of applying the jeu de taquin on T can be visualized as follows:

1

1 2 2

3 4

−→ 1

1 2 2

3 4

−→ 1 2

1 2

3 4

−→ 1 1 2

2 4

3

where the boxes in red are chosen to be slided. Hence,

Rect(T ) =
1 1 2

2 4

3

One can easily check that Rect(U) = Rect(T ).

Let T and U be Young tableaux. We denote T ∗ U the new skew Young tableau which is
defined as follows:

T

U

We have another point of view about the product tableau T.U .

Lemma 4.6. Let T and U be Young tableaux. We have T.U = Rect(T ∗ U).

4.1.4 The Robinson-Schensted-Knuth correspondence

A two-rowed array is defined by

w =

(
u1 . . . un
v1 . . . vn

)
, (4.9)

with ui’s and vi’s are in two independent alphabets. We say that w is in lexicographic order
if

1. u1 ≤ u2 ≤ · · · ≤ un.

2. If uk−1 = uk for some k, then vk−1 ≤ vk.

The Robinson-Schensted-Knuth correspondence is mentioned in [Ful97], which set up an

one-to-one correspondence between a two-rowed array in lexicographic order
(
u1 . . . un
v1 . . . vn

)

and a pair of tableaux of the same shape
(
Q
P

)
. We write

(
u1 . . . un
v1 . . . vn

)
←→
RSK

(
Q
P

)
. (4.10)
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Example 4.7. Let w be the two-rowed array
(

1 2 3 4 5 6 7
2 3 6 7 4 5 1

)
. (4.11)

The tableaux P and Q are

P =
1 3 4 5

2 7

6

and Q =
1 2 3 4

5 6

7

4.1.5 Littlewood-Richardson rule

A Young tableau T is said to have content γ = (γ1, γ2, . . . ) if γi is the number of entries i in
the tableau T . We write

xT = xγ = xγ1

1 x
γ2

2 . . . . (4.12)

For each partition λ, the Schur function sλ in variables x1, x2, . . . is defined as the sum of xT ,
where T runs over the semistandard Young tableaux of shape λ. Let Λ =

⊕
n≥0

Λn be the graded

ring of symmetric functions in the variables x1, x2, . . . with coefficients in Z. The following
set is a Z-basis of Λn

{sλ | λ is a partition of n} .
The integers cνλµ for each partitions λ, µ, ν defined by

sλsµ =
∑

ν

cνλµsν , (4.13)

are called Littlewood-Richardson coefficients.

For any Young tableaux V0 of shape ν, let T (λ, µ, V0) be the set

{(Λ, U) | Λ, U are Young tableaux of shapes λ, µ, respectively and Λ.U = V0} . (4.14)

For any tableau U0 of shape µ, let S(ν/λ, U0) be the set

{Skew tableaux S of skew shape ν/λ such that Rect(S) = U0} . (4.15)

We can describe a one-to-one correspondence between T (λ, µ, V0) and S(ν/λ, U0) as follows:

1. Let (Λ, U) be an element of the set T (λ, µ, V0). Suppose that
(

U
U0

)
←→
RSK

(
u1 . . . um
v1 . . . vm

)
, (4.16)

where m = |µ|. Let S be the new skew tableau obtained by placing u1, . . . , um into the new
boxes while doing row-insertion v1, . . . , vm into Λ. Then S is an element of S(ν/λ, U0).

2. Conversely, let S be an element of S(ν/λ, U0). Let Λ′ be an arbitrary Young tableau of
shape λ. Put an order on the letters in Λ′ and S in such a way that all letters in Λ′ are
smaller than those in S. Now, suppose that

(
V0

Λ′ ∪ S

)
←→
RSK

(
t1 . . . tn u1 . . . um
x1 . . . xn v1 . . . vm

)
, (4.17)
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where n = |λ|. Then we can construct a tableau Λ such that (Λ, U) ∈ T (λ, µ, V0) by

(
t1 . . . tn
x1 . . . xn

)
←→
RSK

(
Λ
Λ′

)
. (4.18)

Denote by Fλ,µ,V0

ν/λ,U0
the map that sends (Λ, U) in T (λ, µ, V0) to S in S(ν/λ, U0). This map is a

bijection.
A method to compute the set S(ν/λ, U0) is explained in subsection 4.1.7. When U0 is the

Young tableau Uµ of shape µ whose all entries in the kth row are equal to k, one can compute
explicitly the set S(ν/λ,Uµ) by the model of Remmel and Whitney [RW84] as follows:

1. Number the boxes of the skew shape ν/λ from top to bottom and right to left in each row
by 1, 2, . . . , |ν/λ|, respectively. The result is called the reverse filling of the skew shape
ν/λ. We denote it by Tν/λ.

2. Define O(ν/λ) to be the set of Young tableaux T of size |ν/λ|, constructed from Tν/λ
satisfying the following conditions:

(R1) If k and k+ 1 appear in the same row of Tν/λ, then k+ 1 appears weakly above
and strictly right of k in T .

(R2) If h appears in the box directly below k in Tν/λ, then h appears strictly below
and weakly left of k in T .

3. Let Oµ(ν/λ) be the set of all tableaux T in O(ν/λ) of shape µ. For each T in Oµ(ν/λ),
we construct a word x|µ| . . . x1, where xk is the row where k belongs to in the tableau T .
There exists a unique skew Young tableau T ∗ of skew shape ν/λ such that w(T ∗) is the
word we have created.

4. It is proved that the set S(ν/λ,Uµ) is the set of all skew tableaux T ∗ where T runs over
the set of all tableaux in Oµ(ν/λ).
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Theorem 4.8. Let λ, µ, ν be partitions. Let T0 be a Young tableau of shape ν and U0 be a Young
tableau of shape µ. We have cνλµ = #Oµ(ν/λ) = #S(ν/λ, U0) = #T (λ, µ, V0).

Let us illustrate the three models presented in Theorem 4.8 by an example.

Example 4.9. Set λ = (3, 2, 1, 1), µ = (4, 2, 1) and ν = (6, 4, 2, 1, 1). Then

Tν/λ =
3 2 1

5 4

6

7

The tableaux of the set Oµ(ν/λ) are

1 2 3 7

4 5

6

1 2 3 6

4 5

7

1 2 3 5

4 6

7

1 2 3 5

4 7

6

Hence, cνλµ = 4. We have

Uµ =
1 1 1 1

2 2

3

The tableaux of the set S(ν/λ,Uµ) are

1 1 1

2 2

3

1

1 1 1

2 2

1

3

1 1 1

1 2

2

3

1 1 1

1 2

3

2

Set

V0 =
1 1 2 3 4 5

2 6 6 7

3 7

4

5

and Λ′ =
1 1 1

2 2

3

4

with order that 1 < 2 < 3 < 4 < 1 < 2 < 3. Set

S =
1 1 1

2 2

3

1

∈ S(ν/λ,Uµ)
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The two-rowed array corresponding to the pair

(
V0

Λ′ ∪ S

)
is

(
1 1 1 2 2 3 4 1 1 1 1 2 2 3
1 5 6 2 4 3 2 1 3 7 7 4 6 5

)
. (4.19)

The tableaux Λ and U such that (Λ, U) ∈ T (λ, µ, V0) corresponding to S are

Λ =
1 2 2

3 6

4

5

and U =
1 3 4 5

6 7

7

4.1.6 Tableau switching

In this subsection, we recall the definition and basic properties of the switching procedure. The
main reference is the article [BSS96] by G. Benkart, F. Sottile, J. Stroomer.

For each skew shape γ, we define a perforated tableau T of shape γ to be a result of filling
some boxes in Y (γ) with integers such that:

(PT1) The entries in each column are strictly increasing.

(PT2) The entries in the northwest of each entry t of T are less than or equal to t.

Let S, T be perforated tableaux of shape γ. We say that S, T completely fill γ if all boxes in
Y (γ) are filled by entries of S or T , and no box is filled twice. We then call S ∪ T a perforated
pair of shape γ.

Let S ∪ T be a perforated pair of shape γ. Let s in S and t in T be adjacent integers, t is
below or in the right of s. We define switching s↔ t by interchanging s and t such that after
the action, both perforated tableau of shape γ filled by entries t, and perforated tableau of shape
γ filled by entries s satisfy the conditions (PT1) and (PT2).

Choose a random pair (s, t) in S ∪ T such that we can do the switching s ↔ t. Repeat this
process until there are no more pair (s, t) in S ∪ T that can be switched s ↔ t. The result is a
new perforated pair T ′ ∪S′ of shape γ, where S′ is the perforated tableau filled by entries s and
T ′ is the perforated tableau filled by entries t. The point is that the resulting pair T ′ ∪ S′ does
not depend on the choices, it is denoted by ST ∪ST (see [BSS96]). The process we have done to
produce ST ∪ ST from S ∪ T is called the switching procedure. The map that sends S ∪ T to
ST ∪ ST is called the switching map.

The example below visualizes switching procedure.

Example 4.10. Let γ = (4, 3, 3, 2)/(2, 1). The tableau S with red entries and the tableau T with
blue entries below are perforated tableaux of shape γ.

S =
1

1 2

3

T =
−1

−2 −2

1

2

S ∪ T =
1 −1

−2 −2

1 1 2

2 3
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Look at the entries inside the circles below

1 −1

−2 −2

1 1 2

2 3

We see that we can just switch 1 ↔ 1, but we cannot switch 1 ↔ 2. Indeed, after switching 1 ↔
1, we get

1 −1

−2 −2

1 1 2

2 3

The new tableau formed by the red entries and the new tableau formed by blue entries satisfy the
conditions (PT1), (PT2). But after switching 1 ↔ 2, the new tableau formed by the blue entries
does not satisfy the condition (PT2).

Here is the visualization of switching procedure with starting point S ∪ T (we choose pairs in
circles to switch).

1 −1

−2 −2

1 1 2

2 3

−→ 1 −1

−2 -2

1 1 2

2 3

−→ −2 −1

−2 1

1 1 2

2 3

Hence,

ST =
−2 −1

−2

1

2

and ST =
1

1 2

3

Let S, T be skew tableaux. We say that T extends S if T has skew shape ν/λ and S has shape
λ/µ for some partitions ν ≥ λ ≥ µ. The following theorem is a collection of some important
properties in Theorem 2.2 and Theorem 3.1 in the article [BSS96].

Theorem 4.11. Let S, T be skew Young tableaux such that T extends S. Then

1. ST and ST are skew Young tableaux, ST extends ST .

2. ST ∪ ST has the same shape as S ∪ T .

3. Rect(S) = Rect(ST ).

4. Rect(T ) = Rect(ST ).

5. The switching map S ∪ T 7→ ST ∪ ST is an involution.
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Example 4.12. Let

S =
1 1 1

2 2

3

4

and T =
1 1 1

2 2

3

1

Then T extends S and

ST =
1 1 1 1

2 2

3

and ST =
1 1

1 2

2

3

4

4.1.7 The symmetry of Littlewood-Richardson coefficients

The tableau switching provides a bijective proof of the symmetry of Littlewood-Richardson
coefficients

cνλµ = cνµλ. (4.20)

Indeed, let Λ0 be a Young tableau of shape λ and U0 be a Young tableau of shape µ. We can
describe a one-to-one correspondence between S(ν/µ,Λ0) and S(ν/λ, U0) by tableau switching
as follows:

1. Let S be an element of S(ν/λ, U0). The switching map sends Λ0 ∪ S to Λ0S ∪ (Λ0)S . By
Theorem 4.11, we have Λ0S = U0 and Rect((Λ0)S) = Λ0. Hence, (Λ0)S ∈ S(ν/µ,Λ0).

2. By Theorem 4.11, the switching map is an involution. Hence, the map that sends S to
(Λ0)S is a bijection between S(ν/λ, U0) and S(ν/µ,Λ0). We denote this map by Bν/λ,U0

ν/µ,Λ0
.

Let V0 and W0 be Young tableaux of shape ν. The composition of the bijections below

T (λ, µ, V0)
Fλ,µ,V0

ν/λ,U0−−−−−→ S(ν/λ, U0)
Bν/λ,U0

ν/µ,Λ0−−−−−→ S(ν/µ,Λ0)

(
Fµ,λ,W0

ν/µ,Λ0

)−1

−−−−−−−−−→ T (µ, λ,W0) (4.21)

gives us a bijection between the set T (λ, µ, V0) and the set T (µ, λ,W0). We denote this map by
Sλ,µ,νV0,U0,Λ0,W0

.

Remark 4.13. Subsection 4.1.5 provides an algorithm to determine the set S(ν/λ,Uµ). Apply-

ing then Bν/λ,Uµ

ν/µ,Λ0
, we get an algorithm to compute S(ν/µ,Λ0) for any Λ0.

4.2 The shifted Littlewood-Richardson coefficients

In this section, we present the definition and Stembridge’s models, geometric points of view for
shifted Littlewood-Richardson coefficients.
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4.2.1 Shifted tableaux

A partition λ = (λ1, λ2, . . . ) is said to be strict if λ1 > λ2 > . . . .

Each strict partition λ is presented by a shifted diagram sY (λ) that is a collection of boxes
such that:

(SD1) The leftmost boxes of each row are in the main diagonal.

(SD2) The number of boxes from top row to bottom row are λ1, λ2, . . . , respectively.

A shifted tableau T of shifted shape λ is a result of filling the shifted diagram sY (λ) by
the ordered alphabet {1′ < 1 < 2′ < 2 < . . .} such that

(T1) The entries in each column and in each row are weakly increasing.

(T2) The entries k′ in each row are strictly increasing.

(T3) The entries k in each column are strictly increasing.

The shifted tableau T is said to have content γ = (γ1, γ2, . . . ) if γi is the number of i or i′

in T . We write
xT = xγ = xγ1

1 x
γ2

2 . . . . (4.22)

Let ν = (ν1, ν2, . . . ) and µ = (µ1, µ2, . . . ) be two strict partitions with ν ≥ µ. We define
the skew shifted diagram sY (ν/µ) as the result of removing boxes in shifted diagram sY (µ)
from shifted diagram sY (ν). A skew shifted tableau T of skew shifted shape ν/µ is a result
of filling the shifted diagram sY (ν/µ) by the ordered alphabet {1′ < 1 < 2′ < 2 < . . .} satisfying
the rules (T1), (T2) and (T3). The content of a skew shifted tableau T is defined by the same
way as for a shifted tableau.

Example 4.14. Let λ = (4, 2, 1). Then the shifted diagram sY (λ) is

sY ((4, 2, 1)) =

And

T =
1 2′ 2 2

2′ 3

4′

is a shifted tableau of shifted shape (4, 2, 1). The content of T is (1, 4, 1, 1).

4.2.2 Shifted jeu de taquin

For the skew shifted diagram sY (ν/µ), we also define inner corners and outside corners by
the same way as for the case of skew Young diagrams. Let T be a skew shifted tableau of skew
shifted shape ν/µ without entries k′. Let b be an inner corner of skew shifted diagram sY (ν/µ),
we define shifted sliding b out of T , and shifted jeu de taquin on T , shifted rectification
of T which we denote by sRect(T ), by the same way as for the case of skew Young tableaux.

Here is an example of shifted jeu de taquin.
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Example 4.15. Set

T =
1

2 3

4 5

The process of applying the shifted jeu de taquin on T can be visualized as follows:

1

2 3

4 5

−→ 1

2 3 5

4

−→ 1 5

2 3

4

−→ 1 3 5

2 4
−→ 1 2 3 5

4

where the boxes in red are chosen to be slided. Hence,

sRect(T ) =
1 2 3 5

4

4.2.3 Shifted Littlewood-Richardson rule

The Schur Q-function Qλ = Qλ(x) in variables x1, x2, . . . is defined as the sum of xT where T
runs over the shifted tableaux of shape λ. Since every coefficient in Qλ is divisible by 2l(λ), we
can define a formal power series with integer coefficients

Pλ(x) = 2−l(λ)Qλ(x). (4.23)

We define the power-sum symmetric function pr with r ≥ 1 by

pr = xr1 + xr2 + . . . . (4.24)

For each partition λ = (λ1, λ2, . . . ), we define

pλ = pλ1pλ2 . . . . (4.25)

The following set is a Z-basis of Λn

{pλ | λ is a partition of n} .

Let ΩQ =
⊕
n≥0

ΩnQ be the graded subalgebra of ΛQ = Q ⊗Z Λ generated by 1, p1, p3, p5, . . . . Let

Ω = ΩQ ∩ Λ be the Z-hyper subring of ΩQ. We write Ω =
⊕
n≥0

(ΩnQ ∩ Λ) as a graded ring. Since

{Pλ | λ is a strict partition of n}

is a Z-basis of ΩnQ ∩ Λ, we can define integers fνλµ for each strict partitions λ, µ, ν by

PλPµ =
∑

ν

fνλµPν . (4.26)

The integers fνλµ are called the shifted Littlewood-Richardson coefficients.

For any (skew) shifted tableau T , we define the word w(T ) to be the sequence obtained by
reading the rows of T from left to right, starting from bottom to top.
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Given a word w = w1w2 . . . wn over the alphabet {1′ < 1 < 2′ < 2 < . . .}, we define a
sequence of statistics mi(j) (0 ≤ j ≤ 2n, i ≥ 1) as follows:

mi(j) = multiplicity of i among wn . . . wn−j+1 (0 ≤ j ≤ n),

mi(j) = multiplicity of i′ among w1 . . . wj−n

+ multiplicity of i among wn . . . w1 (n < j ≤ 2n).

We say that the word w is a shifted lattice word if, whenever mi(j) = mi−1(j), we have

wn−j 6= i, i′ if 0 ≤ j < n,

wj−n+1 6= i− 1, i′ if n ≤ j < 2n.

Stembridge in [Ste89] obtained a shifted analogue of the Littlewood-Richardson rule as follows.

Theorem 4.16. Let λ, µ, ν be strict partitions. Then the coefficient fνλµ is the number of skew
shifted tableaux T of skew shifted shape ν/µ and content λ satisfying

(F1) The leftmost letter of {i, i′ in w(T )} is unmarked (1 ≤ i ≤ l(λ)).

(F2) The word w(T ) is a shifted lattice word.

For each strict partition λ and partition µ of the same integer n, let gλµ be the integer defined
by

Pλ =
∑

|µ|=n
gλµsµ. (4.27)

In the proof of Theorem 9.3 in [Ste89], Stembridge used the fact that

gλµ = fµ+δ
λδ , (4.28)

where
µ = (µ1, µ2, . . . , µl) with l = l(µ), (4.29)

δ = (l, l − 1, . . . , 1), (4.30)

µ+ δ = (µ1 + l, µ2 + l − 1, . . . , µl + 1). (4.31)

With the identity (4.28), he obtained an explicit interpretation of gλµ as in the following theorem.

Theorem 4.17. Let λ be a strict partition and let µbe a partition. Then the coefficient gλµ is
the number of skew shifted tableaux T of shape µ and content λ satisfying

(G1) The leftmost letter of {i, i′ in w(T )} is unmarked (1 ≤ i ≤ l(λ)).

(G2) The word w(T ) is a shifted lattice word.

A skew shifted tableau of skew shifted shape ν/µ is said to be standard if its word is a
permutation of the word 12 . . . |ν/µ|. The following result can be translated equivalently from
Lemma 8.4 in the article [Ste89] of J. Stembridge.

Theorem 4.18. Let λ, µ, ν be strict partitions. Choose a standard shifted tableau Tλ of shifted
shape λ. Then the coefficient fνλµ is the number of standard skew shifted tableaux S of skew
shifted shape ν/µ such that sRect(S) = Tλ.
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4.2.4 Geometric interpretation of the coefficients fν
λµ and gλµ

Let V be a complex vector space of dimension m + n. The set Gr(m,V ) of linear subspaces of
dimension m in V is called a complex Grassmannian. Fix a complete flag of V

F : 0 = V0 ⊂ · · · ⊂ Vi ⊂ · · · ⊂ Vm+n = V, (4.32)

where each Vi is a vector subspace of V of dimension i. To each partition λ = (λ1, . . . , λm) with
λm ≥ 0, contained in the m× n rectangle, we associate the Schubert variety

Xλ(F) = {W ∈ Gr(m,V ) | dim(W ∩ Vn+i−λi
) ≥ i (1 ≤ i ≤ m)} . (4.33)

The Poincare dual class of Xλ(F) is denoted by σλ and called a Schubert class. Then σλ is an
element of H2|λ|(Gr(m,V )). We have (see [Ful97])

H∗(Gr(m,V )) =
⊕

λ is a partition contained in the m× n rectangle

Zσλ. (4.34)

Now, let V be a complex vector space of dimension 2n, endowed with a nondegenerate skew-
symmetric bilinear form ω. A subspace W of V is isotropic if the form ω vanishes on it, i.e.,
ω(v, w) = 0 for all v, w ∈ W . A maximal isotropic subspace of V is called Lagrangian. The
set LG(n, V ) of Lagrangian subspaces in V is called the Lagrangian Grassmannian. Fix a
complete isotropic flag of V

L : 0 = V0 ⊂ · · · ⊂ Vi ⊂ · · · ⊂ Vn ⊂ V, (4.35)

where each Vi is a vector subspace of V , of dimension i and Vn is Lagrangian. To each strict
partition λ = (λ1, . . . , λl) with λl > 0, contained in (n, n − 1, . . . , 1), we associate the Schubert
variety

Yλ(L) = {W ∈ LG(n, V ) | dim(W ∩ Vn+1−λi) ≥ i (1 ≤ i ≤ l)} . (4.36)

The Poincare dual class of Yλ(L) is denoted by θλ and called a Schubert class. Then θλ is an
element of H2|λ|(LG(n, V )). We have (see [Pra91])

H∗(LG(n, V )) =
⊕

λ is a strict partition contained in (n, n− 1, . . . , 1)

Zθλ, (4.37)

and
θλθµ =

∑

ν

2l(λ)+l(µ)−ł(ν)fνλµθν . (4.38)

There is a canonical embedding ι : LG(n, V ) → Gr(n, V ). The map ι induces the ring homo-
morphism ι∗ : H∗(Gr(n, V )) → H∗(LG(n, V )). For each partition µ contained in the n × n
rectangle, we have (see [Pra00])

ι∗(σµ) =
∑

λ is a strict partition contained in (n,n−1,...,1)

gλµθλ. (4.39)

4.2.5 Application to the identity gλµ = gλµt

Proposition 4.19. Let λ be a strict partition and let µ be a partition. Then gλµ = gλµt .
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Proof. Let V be a complex vector space of dimension 2n, endowed with a nondegenerate skew-
symmetric bilinear form ω. For each subspace W of V , set

W⊥ω = {v′ ∈ V such that ω(v′, v) = 0 for all v ∈W}, (4.40)

W⊥ = {f ∈ V ∗ such that f(v) = 0 for all v ∈W}. (4.41)

Fix a complete isotropic flag of V

L : 0 = V0 ⊂ · · · ⊂ Vi ⊂ · · · ⊂ Vn ⊂ V. (4.42)

Then we can extend L to a complete flag F of V as follow

F : 0 = V0 ⊂ · · · ⊂ Vi ⊂ · · · ⊂ V2n = V, (4.43)

where Vn+i = (Vn−i)⊥ω for each i = 1, . . . , n. Moreover, the flag F⊥ defined below is a complete
flag of V ∗

F⊥ : 0 = (V2n)⊥ ⊂ · · · ⊂ (V2n−i)
⊥ ⊂ · · · ⊂ (V0)⊥ = V ∗. (4.44)

Then flag L⊥ defined below is a complete isotropic flag of V ∗

L⊥ : 0 = (V2n)⊥ ⊂ · · · ⊂ (V2n−i)
⊥ ⊂ · · · ⊂ (Vn)⊥ ⊂ V ∗. (4.45)

We define an isomorphism η : Gr(n, V ) → Gr(n, V ∗) by W 7→ W⊥. By [GH78], we know
that

η(Xµ(F)) = Xµt(F⊥). (4.46)

Hence, the map η induces the ring isomomorphism η∗ : H∗(Gr(n, V ∗))→ H∗(Gr(n, V )) with

η∗(σµ) = σµt . (4.47)

The restriction of η on LG(n, V ) is also an isomorphism and we still denote it by η. We have

η(Yλ(L)) = Yλ(L⊥). (4.48)

Indeed,

1. For each W ∈ Yλ(L), we have W⊥ω = W , and

dim(W ∩ Vn+1−λi
)⊥ω = 2n− 1 + λi − dim(W ∩ Vn−1+λi

). (4.49)

Then we can rewrite (4.36) as

Yλ(L) = {W ∈ LG(n, V ) | dim(W ∩ Vn−1+λi) ≥ i+ λi − 1 (1 ≤ i ≤ l)} . (4.50)

2. Now, for any W ∈ Yλ(L) given by (4.50), we have

dim(W ∩ Vn−1+λi)
⊥ = 2n+ 1− λi − dim(W⊥ ∩ V ⊥n−1+λi

). (4.51)

Then W⊥ ∈ Yλ(L⊥) given by (4.36).

Hence, the map η induces the ring isomorphism η∗ : H∗(LG(n, V ∗))→ H∗(LG(n, V )) with

η∗(θλ) = θλ. (4.52)
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We have
η∗ι∗ = ι∗η∗. (4.53)

Apply η∗ on both sides of the equality (4.39), with the help of (4.47), (4.52), (4.53), we get

η∗(ι∗(σµ)) =
∑

λ is a strict partition contained in (n, n− 1, . . . , 1)

gλµθλ (4.54)

=
∑

λ is a strict partition contained in (n, n− 1, . . . , 1)

gλµtθλ. (4.55)

It implies gλµ = gλµt .

4.3 A new combinatorial model for the coefficients f ν
λµ

Given a skew shifted shape ν/µ, we number the boxes from top to bottom and right to left in
each row by 1, 2, . . . , |ν/µ|, respectively. The result is called the shifted reverse filling of the

skew shifted shape ν/µ. We denote it by T̃ν/µ.

For each k = 1, 2, . . . , |ν/µ|, let k∗ to be meant k or k′.

We now let Õ(ν/µ) be the set of all tableaux T of size |ν/µ|, unshifted shape, labelled by the
alphabet {1′ < 1 < 2′ < 2 < · · · < |ν/µ|′ < |ν/µ|}, satisfying the following conditions:

(C1) If k and k+ 1 appear in the same row of T̃ν/µ, then (k+ 1)∗ appears weakly above k
or (k + 1)∗ appears strictly above k′ in T .

(C2) If h appears in the box directly below k in T̃ν/µ, then h∗ appears weakly below k′ or
h∗ appears strictly below k in T .

(C3) The rightmost letter in each row of T is unmarked.

(C4) Let T̂ be the result of reordering each row of T relatively to the order 1 < 2 < · · · <
|ν/µ| < |ν/µ|′ < · · · < 2′ < 1′. Then
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- The entries in each column of T̂ are increasing.

- If the entry j′ belong to the i-th (i > 1) row of T̂ , and the number of entries less than
j in the (i− 1)-th, i-th row of T̂ are τi−1, τi, respectively, then τi−1 > τi.

- If the entry j belong to the i-th row of T̂ , and the number of entries less than j′ in
the i-th, (i+ 1)-th row of T̂ are τi, τi+1, respectively, then τi > τi+1.

Remark 4.20.

• Since the size of T is |ν/µ|, the conditions (C1) and (C2) imply that only one of k or k′

appears in T for each k = 1, 2, . . . , |ν/µ|.

• In the condition (C1) for the set Õ(ν/µ), (k+ 1)∗ must appear strictly right of k∗ in T . It
is similar to the condition (R1) for the set O(ν/µ). However, in the condition (C2) for the
set Õ(ν/µ), it is not necessary that h∗ appears weakly left of k∗ in T . It is not similar as
the condition (R2) for the set O(ν/µ). Indeed, for ν = (3, 1), µ = (1), in T̃ν/µ, the entry 2

is directly above the entry 3. But Õ(ν/µ) contains

T = 1 2′ 3

with 3 is on the right of 2′.

Example 4.21. We illustrate how the condition (C4) works. Let T be the following tableau

T =
1 2 3 4 5′ 8′ 10

6 7′ 9

11 12

We have

T̂ =
1 2 3 4 10 8′ 5′

6 9 7′

11 12

We can see that the first and the second condition in (C4) are satisfied. However, the third
condition in (C4) is not satisfied. Indeed, the entry 9 belongs to the second row of T̂ . The
number of entries less than 9′ in the second row and the third row of T̂ are equal two.

Theorem 4.22. Let λ, µ, ν be strict partitions. Then the coefficient fνλµ is the number of the

tableaux T in Õ(ν/µ) of shape λ.

Proof. Let S̃λ(ν/µ) be the set of tableaux in Theorem 4.16. Let Õλ(ν/µ) be the set of tableaux
in the set Õ(ν/µ) of shape λ.

Let T ∈ S̃λ(ν/µ) with w(T ) = w1w2 . . . w|ν/µ|. We associate T with a unique tableau T ′ of
unshifted shape by the rules: For each i = |ν/µ|, . . . , 2, 1, we have

- If wi = k, then |ν/µ|+ 1− i appears in the kth row of T ′.

- If wi = k′, then (|ν/µ|+ 1− i)′ appears in the kth row of T ′.

We can easily check that T ′ ∈ Õλ(ν/µ). Indeed,
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- T has content λ if and only if T ′ has shape λ.

- The conditions (T1), (T2) and (T3) of T are equivalent to the conditions (C1) and (C2)
of T ′. Indeed, suppose that (k + 1)∗ belongs to the x-th row of T ′ and k∗ belongs to the
y-th row of T ′, then k + 1 and k appear in the same row of T̃ν/µ if and only if x ≤ y and
x < y if k∗ = k′ in T ′. This is the statement of the condition (C1). For the condition (C2),
suppose that k∗ belongs to the x-th row of T ′ and h∗ belongs to the y-th row of T ′, then
k is above h in T̃ν/µ if and only if x ≤ y and x < y if k∗ = k in T ′.

- The condition (F1) of T is equivalent to the condition (C3) of T ′.

- The condition (F2) of T is equivalent to the conditions (C4) of T ′. Indeed, by the definition
of the shifted lattice words, for each j = 1, . . . , n− 1, if mi(j) = mi−1(j) then wn−j 6= i, i′.
Equivalently, if the shape of T ′ after deleting entries k′ and k < j is τ = (τ1, τ2, . . . ), then
τ must be a partition and if τi−1 = τi for some i then (j + 1)′ does not depend on the t-th
row of T . Now, for each j = n, . . . , 2n − 1, if mi(j) = mi−1(j) then wj−n+1 6= i − 1, i′.
This condition equivalent to say that for each j = n, . . . , 2, if the shape of T ′ after deleting
entries k′ for k < j is τ = (τ1, τ2, . . . ), then τ must be a partition and if τi−1 = τi then
j − 1 does not belong to the (i − 1)-th row of T ′. The conditions τ is a partition in both
cases is rewritten shortly by T̂ ′ having strictly increasing entries in rows and columns. Of
course, the entries in each row of T̂ ′ are strictly increasing. Then, we just need conditions
on columns. The last conditions of T̂ ′ are the trivial translation of remaining conditions
on T ′.

Hence, we can define an injection φ : S̃λ(ν/µ)→ Õλ(ν/µ), T 7→ T ′.

Moreover, for each T ′ ∈ Õλ(ν/µ), we associate T ′ with a unique tableau T of skew shifted
shape ν/µ and word w(T ) = w1w2 . . . w|ν/µ| by the rule: for each j = |ν/µ|, . . . , 2, 1, we have

- If j appears in the kth row of T ′, then w|ν/µ|+1−j = k.

- If j′ appears in the kth row of T ′, then w|ν/µ|+1−j = k′.

The equivalence of the conditions we have already shown implies that T ∈ S̃λ(ν/µ). So we can
define an injection ψ : Õλ(ν/µ)→ S̃λ(ν/µ), T ′ 7→ T . Moreover, φψ = Id. Hence, φ is a bijection
and fνλµ = #S̃λ(ν/µ) = #Õλ(ν/µ).

Theorem 4.23. Let λ be a strict partition and let µ be a partition. Then the coefficient gλµ is

the number of the tableaux T in Õ(µ+ δ/δ) of shape λ.

Proof. This follows from Theorem 4.22 and identity (4.28).

We illustrate the method to compute the coefficients fνλµ through an example.

Example 4.24. Set λ = (3, 2), µ = (3, 2), ν = (5, 3, 2).
(1) The shifted reverse filling of the skew shifted shape ν/µ is

T̃ν/µ =
2 1

3

5 4

(2) To construct the tableaux T ′ in Õλ(ν/µ), we first use three conditions (C1), (C2) and (C3).
Then check the results if they satisfy the condition (C4) or not.
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1. We start with 1∗, there are two possibilities, they are 1′ and 1. But if 1′ appears in the
tableau T ′ then the next position of 2∗ will be in the row above the first row by the condition
(C1). It is impossible. Hence, just only one case that 1 appears in T ′. Then the next two
possibilities by the condition (C1) are

1 2 1 2′

2. For the second case, by the condition (C2), there are four possibilities below

1 2′

3′
1 2′

3

1 2′ 3 1 2′ 3′

- The last one cannot happen since the tableau T ′ has shape λ = (3, 2). Then we
consider 3′ as the rightmost letter in the first row of T ′ and it should be 3 to satisfy
the condition (C3).

- The second one also cannot happen because the next position of 4∗ will be in the
row below the row of 3 by the condition (C2). It cannot produce a tableau of shape
λ = (3, 2) later.

- For the third one, the next position of 4∗ is based on the condition (C2). To produce
the shape λ = (3, 2) later, it will be as follows:

1 2′ 3

4

1 2′ 3

4′

- For the first one, the next position of 4∗ is based on the conditions (C2) and (C3). To
produce the shape λ = (3, 2) later, will be as follows:

1 2′

3′ 4

Continue until the end on the remaining cases by similar arguments, we finally can find the
tableaux of shape λ = (3, 2) satisfying all conditions (C1), (C2) and (C3) as follows:

1 2 5

3′ 4

1 2′ 5

3′ 4

1 2′ 3

4 5

We can check that only the first two tableaux above satisfy the condition (C4). Hence,

fνλµ = 2.

We automatically find out the set of skew shifted tableaux described in Theorem 4.16 by using the
bijection we mentioned in the proof of Theorem 4.22. Here they are

1 1

2′

1 2

1′ 1

2′

1 2
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Remark 4.25. The model of Remmel and Whitney for Littlewood-Richardson coefficients
[RW84], i.e., the set Oµ(ν/λ) in Theorem 4.8, has another interpretation by White [Whi81].
Namely, each tableau in the set Oµ(ν/λ) can be considered as the recording tableau of the word
rewritten in inverse order of a tableau in the set S(ν/λ,Uµ). Our model, i.e., the set Õλ(ν/µ), is
analogous to Remmel and Whitney’s model but for shifted Littlewood-Richardson coefficients.
In [Shi99], M. Shimozono gave an analogous model to the White’s model in [Whi81] but for
shifted Littlewood-Richardson coefficients. Our model and Shimozono’s model are totally differ-
ent. For example, with λ = (3, 2), µ = (3, 2) and ν = (5, 3, 2), our model Õλ(ν/µ) consists of
the elements below

1 2 5

3′ 4

1 2′ 5

3′ 4

However, Shimozono’s model consists of the elements below

1 2 4′

3 5

1 2 4′

3 5′

4.4 On the coefficients gλµ

In this section, we present our second result. Namely, we present a new interpretation of the
coefficients gλµ as a subset of a set that counts Littlewood-Richarson coefficients. As corollaries,
we can compute the coefficients gλµ by models for Littlewood-Richardson coefficients. We will
prove and conjecture inequalities between the coefficients and also state some conjectures that
explain the hidden structure behind them.

4.4.1 A new interpretation of the coefficients gλµ

For any (skew) shifted tableau T without entries k′, let s(T ) be the new (skew) tableau which is
defined as follow:

1. Creat an image of T by the symmetry through its main diagonal.

2. Combine the image we have created with T by gluing them along the main diagonal as the
image below.

T

Let ν/µ be the skew shifted shape of T , then we denote the shape of s(T ) by ν̃/µ.
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Example 4.26.

If T =
1 4

3

2 5

then s(T ) =
1 4

3

2 2 5

1 3 5

4

The following result is a restatement of Proposition 5.4 in the article [Hai89] of M. D. Haiman.

Proposition 4.27. Let T be a skew shifted tableau without entries k′. Then we have s(sRect(T )) =
Rect(s(T )).

For any strict partition λ of n, let Tλ be the shifted tableau of shifted shape λ, obtained by
putting numbers 1, 2, . . . , n in the boxes of shifted diagram sY (λ) from left to right, starting
from top to bottom. Let T (µt, µ, s(Tλ)) be the subset of T (µt, µ, s(Tλ)) of all pairs (T, U) such
that T = U t.

Theorem 4.28. Let λ be a strict partition and let µbe a partition. Then gλµ = #T (µt, µ, s(Tλ)).

Proof. We have gλµ = fµ+δ
λδ . By Theorem 4.18, it is the number of standard skew shifted tableaux

S of skew shifted shape (µ + δ)/δ such that sRect(S) = Tλ. The condition sRect(S) = Tλ, by
Proposition 4.27 is equivalent to the condition

s(Tλ) = Rect(s(S)). (4.56)

The tableau s(S) has form

U

U
t

where U is a standard Young tableau of shape µ. Since s(S) and U t ∗ U have the same word,
then by Lemma 4.4 and Lemma 4.6, we have

s(Tλ) = Rect(U t ∗ U) = U t.U. (4.57)

It is clear that U is uniquely determined by S. Hence, gλµ is the number of pairs (T, U) in the
set T (µt, µ, s(Tλ)) such that T = U t.

Theorem 4.28 gives a way to compute the coefficients gλµ.

Example 4.29. Let λ = (5, 2) and µ = (4, 2, 1). Since µt = (3, 2, 1, 1), we can re-use the
computation in Example 4.9. The elements in the set S(λ̃/µt,Uµ) with the corresponding elements
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in the set T (µt, µ, s(Tλ)) are (the elements in the subsets T (µt, µ, s(Tλ)) are marked by coloring
all boxes in green).

S(λ̃/µt,Uµ)

(
Fµt,µ,s(Tλ)

λ̃/µt,Uµ

)−1

−−−−−−−−−−−−−→ T (µt, µ, s(Tλ))

1 1 1

2 2

1

3

7−−−−−−−−−−−−−→ 1 2 6

3 7

4

5

1 3 4 5

2 7

6

1 1 1

2 2

3

1

7−−−−−−−−−−−−−→ 1 2 2

3 6

4

5

1 3 4 5

6 7

7

1 1 1

1 2

3

2

7−−−−−−−−−−−−−→ 1 2 7

3 6

4

5

1 3 4 5

2 6

7

1 1 1

1 2

2

3

7−−−−−−−−−−−−−→ 1 2 7

3 6

4

5

1 3 4 5

2 7

6

Hence, gλµ = 2.

4.4.2 Inequality gλµ ≤ cλ̃
µtµ

In this subsection, we prove a conjecture of N. Ressayre [Res19]: gλµ ≤ cλ̃µtµ. The conjecture was
based on the facts below

gλµ = 1 implies cλ̃µtµ = 1, (4.58)

gλµ 6= 0 implies cλ̃µtµ 6= 0. (4.59)

The conclusions (4.58), (4.59) are versions of Theorem 1.4 and Proposition 1.6 in the article
[BKR12] for the case G = Sp(2n,C). Indeed, with the notations in the article [BKR12], by
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[Res12], in the case G = Sp(2n,C), G/P is the Lagrangian Grassmannian LG(n,C2n), the
corresponding Levi group is GL(n), and WP is parametrized by strict paritions. Suppose that
w ∈ WP corresponds to strict partition λ, then χw corresponds to the partition λ̃. Let λ∨

be the strict partition corresponding to the completion of sY (λ) in sY ((n, n − 1, . . . , 1)). Let
λ1, λ2, λ3 be the strict partitions corresponding to w1, w2, w3 ∈ WP , respectively in Theorem
1.4 in [BKR12]. Since the structure constants for the singular cohomology and the deformed
cohomology ⊙0 in this case are the same, the theorem says that for any positive integer k, we
have

f
λ∨

3

λ1λ2
= 1 implies ck̃λ

∨
3

k̃λ1k̃λ2

= 1. (4.60)

In particular, when λ1 = λ, λ2 = δ, λ∨3 = µ+ δ, the left-hand side of (4.60) becomes

1 = fµ+δ
λδ = gλµ.

With k = 1, the right-hand side of (4.60) becomes

1 = cµ̃+δ

λ̃δ̃
= #S(µ̃+ δ/δ̃, s(Tλ))

= #S(µt ∗ µ, s(Tλ))

= #T (µt, µ, s(Tλ))

= cλ̃µtµ.

Hence, we get the conclusion (4.58). Similarly, the conclusion (4.59) follows Proposition 1.6
in [BKR12].

Theorem 4.30. Let λ be a strict partition and let µ be a partition. Then gλµ ≤ cλ̃µtµ.

Proof. By Theorem 4.28 and Theorem 4.8, we have

gλµ = #T (µt, µ, s(Tλ)) ≤ #T (µt, µ, s(Tλ)) = cλ̃µtµ. (4.61)

4.4.3 Inequality g2
λµ ≤ cλ̃

µtµ

In this subsection, we propose a stronger conjectural inequality than Theorem 4.30. We provide
some examples to support this conjecture. Indeed, we formulate a conjecture on combinatorial
models whose validity implies the first conjecture.

Conjecture 4.31. Let λ be a strict partition and let µ be a partition. Then g2
λµ ≤ cλ̃µtµ.

To compute the decomposition of Pλ into Schur functions sµ by computer, we use the code
below. For example, with λ = (4, 2), we have

P(4,2) = s(2,2,1,1) + s(2,2,2) + s(3,1,1,) + 2s(3,2,1) + s(3,3) + s(4,1,1) + s(4,2). (4.62)

The code in SageMath (online version: https://cocalc.com/) is

Sym = SymmetricFunctions(FractionField(QQ[’t’]))

SP = Sym.hall_littlewood(t=-1).P();

s = Sym.schur();

s(SP([4,2]))

https://cocalc.com/
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The result appears in computer is

s[2, 2, 1, 1] + s[2, 2, 2] + s[3, 1, 1, 1] + 2*s[3, 2, 1] + s[3, 3] + s[4, 1, 1] + s[4, 2].

To compute the Littlewood-Richardson coefficients by computer, we use the code below. For example,
for λ = (4, 2), µ = µt = (3, 2, 1), we have

c
λ̃
µtµ = 4. (4.63)

The code is

import sage.libs.lrcalc.lrcalc as lrcalc
A = [5,4,2,1]
B = [3,2,1]
C = [3,2,1]
lrcalc.lrcoef(A,B,C)

The result appears in computer is

4.

We check the conjecture for all strict partitions λ such that |λ| ≤ 11. By Theorem 4.30, we just need to
check the cases gλµ > 1. Here is the data of computations on computer.

|λ| strict partitions λ such that there exists gλµ > 1 µ such that gλµ > 1 gλµ cλ̃
µtµ

11 (9,2) (3, 2, 1, 1, 1, 1, 1, 1) 2 4
11 (9,2) (4, 2, 1, 1, 1, 1, 1) 2 4
11 (9,2) (5, 2, 1, 1, 1, 1) 2 4
11 (9,2) (6, 2, 1, 1, 1) 2 4
11 (9,2) (7, 2, 1, 1) 2 4
11 (9,2) (8, 2, 1) 2 4
11 (8,3) (3, 2, 2, 1, 1, 1, 1) 2 4
11 (8,3) (4, 2, 1, 1, 1, 1, 1) 2 4
11 (8,3) (4, 2, 2, 1, 1, 1) 2 4
11 (8,3) (4, 3, 1, 1, 1, 1) 2 4
11 (8,3) (5, 2, 1, 1, 1, 1) 2 4
11 (8,3) (5, 2, 2, 1, 1) 2 4
11 (8,3) (5, 3, 1, 1, 1) 2 4
11 (8,3) (6, 2, 1, 1, 1) 2 4
11 (8,3) (6, 2, 2, 1) 2 4
11 (8,3) (6, 3, 1, 1) 2 4
11 (8,3) (7, 2, 1, 1) 2 4
11 (8,3) (7, 3, 1) 2 4
11 (7,4) (3, 2, 2, 2, 1, 1) 2 4
11 (7,4) (4, 2, 2, 1, 1, 1) 2 4
11 (7,4) (4, 2, 2, 2, 1) 2 4
11 (7,4) (4, 3, 2, 1, 1) 2 4
11 (7,4) (5, 2, 1, 1, 1, 1) 2 4
11 (7,4) (5, 2, 2, 1, 1) 2 4
11 (7,4) (5, 3, 1, 1, 1) 2 4
11 (7,4) (5, 3, 2, 1) 2 4
11 (7,4) (5, 4, 1, 1) 2 4
11 (7,4) (6, 2, 1, 1, 1) 2 4
11 (7,4) (6, 3, 1, 1) 2 4
11 (7,4) (6, 4, 1) 2 4
11 (7,3,1) (3, 3, 2, 1, 1, 1) 2 6
11 (7,3,1) (4, 2, 2, 1, 1, 1) 2 5
11 (7,3,1) (4, 3, 1, 1, 1, 1) 2 5
11 (7,3,1) (4, 3, 2, 1, 1) 3 13
11 (7,3,1) (5, 2, 2, 1, 1) 2 5
11 (7,3,1) (5, 3, 1, 1, 1) 2 5
11 (7,3,1) (5, 3, 2, 1) 3 13
11 (7,3,1) (6, 2, 2, 1) 2 5
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11 (7,3,1) (6, 3, 1, 1) 2 5
11 (7,3,1) (6, 3, 2) 2 6
11 (6,4,1) (3, 3, 2, 2, 1) 2 6
11 (6,4,1) (4, 2, 2, 2, 1) 2 5
11 (6,4,1) (4, 3, 2, 1, 1) 3 14
11 (6,4,1) (4, 3, 2, 2) 2 7
11 (6,4,1) (4, 3, 3, 1) 2 4
11 (6,4,1) (4, 4, 2, 1) 2 7
11 (6,4,1) (5, 2, 2, 1, 1) 2 5
11 (6,4,1) (5, 3, 1, 1, 1) 2 5
11 (6,4,1) (5, 3, 2, 1) 3 14
11 (6,4,1) (5, 4, 1, 1) 2 5
11 (6,4,1) (5, 4, 2) 2 6
11 (6,3,2) (4, 3, 2, 1, 1) 3 10
11 (6,3,2) (4, 3, 2, 2) 2 4
11 (6,3,2) (4, 3, 3, 1) 2 5
11 (6,3,2) (4, 4, 2, 1) 2 4
11 (6,3,2) (5, 3, 2, 1) 3 10
11 (5,4,2) (4, 3, 2, 1, 1) 2 4
11 (5,4,2) (4, 3, 2, 2) 2 5
11 (5,4,2) (4, 3, 3, 1) 2 5
11 (5,4,2) (4, 4, 2, 1) 2 5
11 (5,4,2) (5, 3, 2, 1) 2 4
10 (8,2) (3, 2, 1, 1, 1, 1, 1) 2 4
10 (8,2) (4, 2, 1, 1, 1, 1) 2 4
10 (8,2) (5, 2, 1, 1, 1) 2 4
10 (8,2) (6, 2, 1, 1) 2 4
10 (8,2) (7, 2, 1) 2 4
10 (7,3) (3, 2, 2, 1, 1, 1) 2 4
10 (7,3) (4, 2, 1, 1, 1, 1) 2 4
10 (7,3) (4, 2, 2, 1, 1) 2 4
10 (7,3) (4, 3, 1, 1, 1) 2 4
10 (7,3) (5, 2, 1, 1, 1) 2 4
10 (7,3) (5, 2, 2, 1) 2 4
10 (7,3) (5, 3, 1, 1) 2 4
10 (7,3) (6, 2, 1, 1) 2 4
10 (7,3) (6, 3, 1) 2 4
10 (6,4) (3, 2, 2, 2, 1) 2 4
10 (6,4) (4, 2, 2, 1, 1) 2 4
10 (6,4) (4, 3, 2, 1) 2 4
10 (6,4) (5, 2, 1, 1, 1) 2 4
10 (6,4) (5, 3, 1, 1) 2 4
10 (6,4) (5, 4, 1) 2 4
10 (6,3,1) (3, 3, 2, 1, 1) 2 6
10 (6,3,1) (4, 2, 2, 1, 1) 2 5
10 (6,3,1) (4, 3, 1, 1, 1) 2 5
10 (6,3,1) (4, 3, 2, 1) 3 13
10 (6,3,1) (5, 2, 2, 1) 2 5
10 (6,3,1) (5, 3, 1, 1) 2 5
10 (6,3,1) (5, 3, 2) 2 6
10 (5,4,1) (4, 3, 2, 1) 2 7
10 (5,3,2) (4, 3, 2, 1) 3 9
9 (7,2) (3, 2, 1, 1, 1, 1) 2 4
9 (7,2) (4, 2, 1, 1, 1) 2 4
9 (7,2) (5, 2, 1, 1) 2 4
9 (7,2) (6, 2, 1) 2 4
9 (6,3) (3, 2, 2, 1, 1) 2 4
9 (6,3) (4, 2, 1, 1, 1) 2 4
9 (6,3) (4, 2, 2, 1) 2 4
9 (6,3) (4, 3, 1, 1) 2 4
9 (6,3) (5, 2, 1, 1) 2 4
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9 (6,3) (5, 3, 1) 2 4
9 (5,3,1) (3, 3, 2, 1) 2 6
9 (5,3,1) (4, 2, 2, 1) 2 5
9 (5,3,1) (4, 3, 1, 1) 2 5
9 (5,3,1) (4, 3, 2) 2 6
8 (6,2) (3, 2, 1, 1, 1) 2 4
8 (6,2) (4, 2, 1, 1) 2 4
8 (6,2) (5, 2, 1) 2 4
8 (5,3) (3, 2, 2, 1) 2 4
8 (5,3) (4, 2, 1, 1) 2 4
8 (5,3) (4, 3, 1) 2 4
7 (5,2) (3, 2, 1, 1) 2 4
7 (5,2) (4, 2, 1) 2 4
6 (4,2) (3,2,1) 2 4

< 6 ∅ ∅

Conjecture 4.32. We have

1. The restriction of the map Sµt,µ,λ̃

s(Tλ),Uµ,Uµt ,s(Tλ) on the set T (µt, µ, s(Tλ)) is a bijection onto the set

T (µ, µt, s(Tλ)).

2. The elements of the set T (µt, µ, s(Tλ)) have the form (U t
α, Uα), with index α. Let (Vα, V t

α) be the

image of (U t
α, Uα) through the bijection Sµt,µ,λ̃

s(Tλ),Uµ,Uµt ,s(Tλ). Let (U t
α, Uα) and (U t

β , Uβ) be elements

of the set T (µt, µ, s(Tλ)). If (U t
α, Uβ) is not in the set T (µt, µ, s(Tλ)), then (Vα, V t

β ) is in the set

T (µ, µt, s(Tλ)).

Remark 4.33. Thanks to Theorem 4.28, the validity of Conjecture 4.32 1. implies the equality gλµ =
gλµt , which was proved in Proposition 4.19.

Proposition 4.34. Suppose that Conjecture 4.32 holds. Then we have g2
λµ ≤ cλ̃

µtµ.

Proof. We suppose that (U t
α, Uα) and (U t

β , Uβ) are elements in T (µt, µ, s(Tλ)). We construct an element

˜(U t
α, Uβ) is still in the set as follows:

1. If (U t
α, Uβ) belongs to T (µt, µ, s(Tλ)), then we set ˜(U t

α, Uβ) = (U t
α, Uβ).

2. If (U t
α, Uβ) does not belong to T (µt, µ, s(Tλ)), then by Conjecture 4.32, (Vα, V t

β ) belongs to

T (µ, µt, s(Tλ)). Set ˜(U t
α, Uβ) is the image of (Vα, V t

β ) through the bijection
(

Sµt,µ,λ̃

s(Tλ),Uµ,Uµt ,s(Tλ)

)−1

.

The set of all pairs ˜(U t
α, Uβ) we have constructed is a subset of T (µt, µ, s(Tλ)). Since its cardinal is g2

λµ,

we have g2
λµ ≤ cλ̃

µtµ.

We can see the conjecture through following example.

Example 4.35. Let λ = (5, 2) and µ = (4, 2, 1). The correspondence between elements in T (µt, µ, s(Tλ))

and elements in T (µ, µt, s(Tλ)) is showed below (the elements in the subsets T (µt, µ, s(Tλ)) and T (µ, µt, s(Tλ))
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are marked by coloring all boxes in green).

T (µt
, µ, s(Tλ))

S
µt,µ,λ̃

s(Tλ),Uµ,U
µt ,s(Tλ)

−−−−−−−−−−−−−→ T (µ, µ
t
, s(Tλ))

1 2 6

3 7

4

5

1 3 4 5

2 7

6

7−−−−−−−−−−−→
1 2 3 7

4 6

5

1 4 5

2 6

3

7

1 2 2

3 6

4

5

1 3 4 5

6 7

7

7−−−−−−−−−−−→
1 2 3 7

4 6

5

1 4 5

2 7

3

6

1 2 7

3 6

4

5

1 3 4 5

2 6

7

7−−−−−−−−−−−→
1 2 3 6

4 7

5

1 4 5

2 7

3

6

1 2 7

3 6

4

5

1 3 4 5

2 7

6

7−−−−−−−−−−−→
1 2 3 3

4 6

5

1 4 5

2 7

6

7
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Méthodes algébriques et combinatoires pour les problèmes de branche-

ment en théorie des représentations

Résumé. Le but de cette thèse est d’étudier les questions entourant le problème de branchement en
théorie des représentations à l’aide de méthodes algébriques et combinatoires. Sur la base des modèles
et des idées des autres construits précédemment, nous développons et créons de nouvelles techniques,
des modèles pour obtenir des résultats plus profonds. Concrètement, nous nous concentrons sur deux
projets principaux :

Dans le premier projet, nous étudions le problème de branchement des algèbres Kac-Moody affines
g sur ses sous-algèbres sinueuses g[u] par des méthodes algébriques. Soit h la sous-algèbre Cartan de
g. Nous prouvons que le support Γ(g, g[u]) et Γ(g, h) de la décomposition de g-modules en tant que
g[u]-modules et h-modules sont des semi-groupes. Soit Λ, λ des poids entiers dominants de g, g[u],

respectivement. Soit δ la racine imaginaire de base de g. Dans les cas où g est de type A
(1)
1 et

A
(2)
2 , avec une certaine condition sur λ, nous pouvons décrire l’ensemble des nombres b ∈ C tels que

(Λ, λ+bδ) ∈ Γ(g, g[u]). Le résultat nous aide à réaliser la relation entre Γ(g, g[u]) et son paramètre saturé.

Dans le deuxième projet, nous étudions les coefficients apparaissant dans la théorie de représentation
projective des groupes de symétrique Sn : les coefficients décalés de Littlewood-Richardson fν

λµ (λ, µ, ν

sont des partitions strictes) et gλµ (λ est une partition stricte et µ est une partition) qui peuvent être
considérés comme des cas particuliers de coefficients Littlewood-Richardson décalés. Nous obtenons
une nouvelle interprétation pour les coefficients fν

λµ. De plus, pour les coefficients gλµ, nous obtenons
également une autre description combinatoire, qui nous permet de voir les relations entre gλµ avec les

coefficients Littlewood-Richardson cλ̃
µtµ. Plus précisément, nous prouvons que gλµ = gλµt , et gλµ ≤ cλ̃

µtµ.

Nous conjecturons que g2
λµ ≤ cλ̃

µtµ et formulons quelques conjectures sur nos modèles combinatoires qui
impliquent cette inégalité si cela est valable.

Mots-clés : Algèbres affines de Kac-Moody, sous-algèbres sinueuses, règle de branchement, tableaux
de Young, fonctions Schur, coefficients Littlewood-Richardson, changement de tableau, Grassmanniens,
variétés Schubert, tableaux décalés, fonctions Schur Q, coefficients décalés Littlewood-Richardson, Grass-
manniens Lagrangiens.

Algebraic and combinatorial methods in the branching problems in rep-

resentation theory

Abstract. The purpose of this thesis is to study the questions surrounding the branching problem in
representation theory using algebraic and combinatorial methods. Based on previously built models and
ideas of the others, we develop and create new techniques, models to achieve deeper results. Concretely,
we focus on two main projects:

In the first project, we study the branching problem of affine Kac-Moody algebras g on its winding
subalgebras g[u] by algebraic methods. Let h be the Cartan subalgebra of g. We prove that the support
Γ(g, g[u]) and Γ(g, h) of the decomposition of g-modules as g[u]-modules and h-modules are semigroups.
Let Λ, λ be dominant integral weights of g, g[u], respectively. Let δ be the basis imaginary root of g.

In the cases where g are types A
(1)
1 and A

(2)
2 , with a certain condition on λ, we can describe the set of

numbers b ∈ C such that (Λ, λ + bδ) ∈ Γ(g, g[u]). The result helps us to realize the relation between
Γ(g, g[u]) and its saturated setting.

In the second project, we study the coefficients appear in projective representation theory of symmetric
groups Sn: the shifted Littlewood-Richardson coefficients fν

λµ (λ, µ, ν are strict partitions) and gλµ (λ
is a strict partition and µ is partition) which can be considered as special cases of shifted Littlewood-
Richardson coefficients. We obtain a new interpretation for the coefficients fν

λµ. Moreover, for the
coefficients gλµ, we also obtain another combinatorial description, which allows us to see the relations

between gλµ with Littlewood-Richardson coefficients cλ̃
µtµ. Specifically, we prove that gλµ = gλµt , and

gλµ ≤ cλ̃
µtµ. We conjecture that g2

λµ ≤ cλ̃
µtµ and formulate some conjectures on our combinatorial models

which would imply this inequality if it is valid.

Keywords: Affine Kac-Moody algebras, winding subalgebras, branching rule, Young tableaux, Schur
functions, Littlewood-Richardson coefficients, tableau switching, Grassmannians, Schubert varieties,
shifted tableaux, Schur Q-functions, shifted Littlewood-Richardson coefficients, Lagrangian Grassman-
nians.
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