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Abstract

The shear instability occuring at the interface between a slow water layer and a
fast air stream is a complex phenomenon driven by momentum and viscosity differ-
ences across the interface, velocity gradients, as well as by injector geometries. Simu-
lating such an instability in the conditions of experiments is numerically challenging
and few studies exist in the literature. This work aims at filling a part of this gap by
presenting a study of the convergence between two-dimensional simulations, linear
theory, and experiments, in regimes where the instability is triggered by confine-
ment, i.e., the finite thicknesses of the gas and liquid streams. Very good agreement
between the three approaches is obtained. Moreover, using simulations and linear
theory, we explore in details the effects of confinement on the stability of the flow
and on the transition between absolute and convective instability regimes, which is
shown to depend on the lengthscale of confinement as well as on dynamic pressure
ratio. In the absolute regime under study, interfacial wave frequency is found to be
inversely proportional to the smallest injector size (liquid or gas). We then study the
transition between primary and secondary instability through wave acceleration. In
additional, we explore the impact of three-dimensional effects on the flow. Finally,
we present the development of an open boundary condition for turbulent multiphase
flows and surface waves simulations. Initially thought as a way to improve accuracy
and lower needed computational ressources of air-water mixing layer simulations,
this work leads to improvements in the use of traction boundary conditions. Par-
ticularly, this novel boundary treatment couples Lagrangian traction estimation to
backflow stabilization which provides stability, accuracy and non-reflectivity of arti-
ficial boundaries.
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Chapter 1

Fundamentals

1.1 Atomization: why and how?

Atomization is the process in which one wants to separate a bulk in a collection
of small particles, or, in the context of liquid atomization, to separate a bulk of
liquid into a cloud of droplets, or spray. Liquid sprays play a key role in many
environmental flows (e.g., breaking waves, waterfall mists), engineering devices (e.g.,
food processing, coating, printing, cooling, fire safety, crop spraying), or everyday
life (e.g., shower heads, body sprays). Controlling spray quality, i.e., controlling
drop sizes and their spatial repartition is essential for many industrial applications.

In crop spraying, one need to avoid small droplets as they may be more sensible to
meteorologial conditions and drift too far away, thus spreading chemicals away from
their destination. In metalurgical processes, liquid sprays may be used to cool down
liquid metal, and drop sizes must be controlled to ensure homogenous cooling and
desired heat and mass transfer. In combustion devices, liquid fuel must be turned
into the finest spray as possible, i.e., into the smallest droplets, as fuel combustion
efficiency will be maximized by a high surface to volume ratio. In this last field of
application, controlling spray quality has a direct impact on fuel consumption and
pollutants emissions.

Separating a bulk of liquid into a cloud of droplets involves creating surface area,
thus surface energy, as one can define the surface energy, ES, as ES = σS, with σ,
in [N/m] or [J/m2], a material property called surface tension and S, the surface of
the liquid parcel. ES is also called the surface in excess energy as it results from an
interfacial thermodynamic desequelibrium. As mechanical systems tend to minimize
their total energy, at constant volume, liquid parcels will take a spherical shape, as
it minimizes surface area. Thus, spray creation involves the injection of a sufficient
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4 CHAPTER 1. FUNDAMENTALS

Fig. 1.1 – Photographs illustrating the effect of liquid pressure injection on a swirl
atomizer, extracted from Lefebvre (1989).

amount of energy in order to induce the break up of the liquid into a large number of
small droplets. The different methods of atomization correspond to different ways to
inject this energy, see Lefebvre (1989) for an extensive review. We hereafter briefly
present two ways to transform a liquid bulk into a spray.

Pressure atomizers

When a liquid is discharged through a small aperture under high applied pressure,
pressure energy is converted into kinetic energy. Under a succesion of interfacial
instabilities, kinetic energy will be progressively transformed into surface energy, thus
resulting in droplets generation. Increasing or decreasing liquid injection pressure has
an effect on the resulting spray, as shown on figure 1.1 for the case of a swirl pressure
injector, i.e., when liquid is discharging into the gaseous atmosphere with a non-zero
tangential velocity. For low injection pressure (left picture of figure 1.1), the flow is
somehow similar to a dripping faucet: a succesion of large drops. For high injection
pressure (right picture of figure 1.1), the liquid expands from the nozzle into a conical
wavy liquid sheet that progressively transforms into a cloud of droplets.

Because of the complex, random nature of atomization process, many character-
istics of the flow, from injection pressure effect to droplets clustering further down-
stream, need to be studied and understood in order to ensure maximal control of the
process, as summarized on figure 1.2.
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Fig. 1.2 – Illustration of the many features that need to be characterized and under-
stood in order to control spray formation, extracted from Bachalo (2000).

Airblast atomizers

Another way to inject the energy needed to create a spray is to inject it via a
medium other than the liquid. Namely, one can use a very high speed gas that will
transfer its energy to the liquid phase and induce its deformations and break-up into
droplets. Contrary to a pressure atomizer, such device does not require to operate
under high pressure conditions which is why they are commonly used in aircraft
propulsion systems. A classic configuration corresponds to the case of a cylindrical
slow liquid jet surrounded by a fast annular air stream. Another configuration,
called prefilming atomizer, corresponds to a case where the liquid is first spread onto
a solid plate and then exposed to the fast gas stream. Increasing gas velocity will
have an effect on the resulting spray, as illustrated on figure 1.3. When increasing gas
velocity one can see that more and more small droplets are created downstream of the
injector. One can also see, even for high gas velocity figure 1.3d), the detachment



6 CHAPTER 1. FUNDAMENTALS

Fig. 1.3 – Photographs illustrating the effect of gas velocity, UG, at fixed liquid
velocity, Ul = 1.41m/s, extracted from Delon (2016).

of large liquid structures into the downstream part of the spray, which must be
avoided in combustion applications. This demonstrates that increasing gas velocity,
therefore increasing kinetic energy injection, is not necessarily the only key to a fine
spray. Again, the complexity of the phenomena shows that many elements need to be
characterized in order to obtain a good understanding and control of spray creation,
from axisymmetric wave creation near the injector (figure 1.3a), creation of thin films
(middle part of figure 1.3b), to interactions between small droplets and large liquid
parcels (downstream part of figure 1.3d).

In the following, we exclusively focus to what is happening in the primary atom-
ization step, i.e., when liquid structures are still connected to the injector. What hap-
pens during secondary atomization, i.e., droplets-turbulence interactions or droplets
clustering, is not in the scope of this work. In the next section, we qualitatively detail
the different events leading to droplet creations in the context of airblast atomization.
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Fig. 1.4 – Instability cascade in a co-axial airblast atomizer. a) primary wave, b)
ligaments ejection and droplets formations, c) flapping instability. a) and b) extracted
from Marmottant and Villermaux (2004), c) extracted from Delon (2016).

Instability cascade in airblast atomizers

The succesion of events leading to droplet creation is often described using the
concept of “instability cascade” (Marmottant and Villermaux, 2004), and is illus-
trated on figure 1.4. The different steps are usually refered to as: 1/ wave formation
(or primary instability, see figure 1.4a), 2/ ligaments ejection (or secondary insta-
bility, see figure 1.4b), 3/ droplets creation. As seen on figure 1.4c, under some
conditions, a large scale instability, called flapping instability, can lead to the cre-
ation of large liquid structures. We hereafter qualitatively describe the phenomena
at play behind each step.

Wave formation

Two initially parallel streams (with zero viscosity and same densities) having
different velocities are naturally unstable: this is the Kelvin-Helmholtz instability (see
Charru (2012) for a review of hydrodynamic instabilities, including Kelvin-Helmholtz
instability). This is the mechanism at play behind primary wave formation. In case
of airblast atomization, the conditions for instability, its nature and characteristics,
mains subjects of this thesis, are very complex and will be detailed in section 1.3.

Ligaments ejection

The primary wave is growing under linear, then non-linear, mechanisms until
forming a thin liquid sheet that can undergo a secondary instability. A widely ad-
mitted mechanism for ligaments ejection is through a Rayleigh-Taylor instability
(Varga et al., 2003). The thin formed liquid sheet is exposed to the high speed gas
jet and becomes subject to an axial acceleration induced by aerodynamic effects.
This acceleration from the heavy to the light phase can lead to the amplification of
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perturbations, similarly to a classical gravitational Rayleigh-Taylor instability (see
Charru (2012)), and to wave crest deformation into liquid ligaments that are further
stretched by the gas stream, see figure 1.4b). Some models for this acceleration have
been proposed, based on aerodynamic forces balance (Varga et al., 2003; Marmottant
and Villermaux, 2004), and are further included in theoretical models predicting the
growth of a Rayleigh-Taylor instability. These models agree generally well with ex-
perimental measurements of transverse wavelength (Varga et al., 2003; Marmottant
and Villermaux, 2004; Ben Rayana, 2007), except with the most recent experiments
of Marty (2015). Note that transverse wavelength is often deduced from mean droplet
size, as a Rayleigh-Plateau droplet formation mechanism involves a proportionallity
between mean droplet and ligament sizes, with the latters proportionals to transverse
wavelength (Marmottant and Villermaux, 2004).

On the other hand, some mechansims for ligaments ejection have been proposed
based on hole formations. Indeed, it has been seen through experiments (Raynal,
1997; Villermaux, 2020) and simulations (Ling et al., 2017; Zandian et al., 2017),
that when the liquid sheet becomes very thin, some holes may appear in this thin
film and may further expand until inducing the rutpure of the wave crest into liga-
ments. Interactions between vorticity dynamics and ligaments have been studied by
Zandian et al. (2019) in a configuration similar to a pressure injector (low external
gas velocity). Other instabilities may play a role, see (Villermaux, 2020) for a review.

Droplets creation

Once ligaments are created, the mechanism by which droplets are created is
widely accepted to be due to a Rayleigh-Plateau instability. This instability involves
the creation of droplets from a ligament in order to minimize surface area, there-
fore surface energy (Charru, 2012). Surface tension is the destabilizing mechanism
whereas inertia is stabilizing. The competition between both effects is known to be
the source of the dripping/jetting transition observed for capillary jets (Clanet and
Lasheras, 1999). As said previously, this mechanism involves a proportionality be-
tween ligament size and mean droplet size, which has been validated experimentally
(Marmottant and Villermaux, 2004). The final drop size distribution is the result of
many complex interactions between waves and ligaments, secondary break-up, dis-
parities in ligament sizes, and other mechanisms of fragmentation, see Villermaux
(2007) for a review.

Among these other mechanisms of fragmentation, one can cite the bag-breakup
phenomena, which is usually occuring during secondary atomization at low gas ve-
locity (Zhao et al., 2011). As observed on figure 1.3b), some liquid membranes can
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be formed by the blowing of the gas into the thin liquid sheet formed by primary
wave growth. These membranes can further explode into a large collection of small
droplets. This mechanism can thus also be part of the primary atomization mecha-
nisms. Note that this mechanism is also involved in drop size distribution of raindrops
(Villermaux and Bossa, 2009).

Another mechanism for droplet creation has been identified on prefilming airblast
atomizers by Jerome et al. (2013), and is called the “droplet catapulting” mechanism.
This mechanism, due to interactions between a wave and vortices detachment in its
wake, induces a flapping motion of the ligament that can result in droplets ejection
with large angle, as observed in the experiments of Raynal (1997).

Flapping instability

As shown on figure 1.3, in the downstream part of the spray, a large scale insta-
bility can appear and induce a global flapping motion of the liquid jet (Chigier and
Farago, 1992), or the liquid sheet in case of plane jet (Lozano and Barreras, 2001).
This flapping motion can result in the detachment of large liquid structures that can
deteriorate the quality of the spray, thus deteriorate combustion efficiency in fuel
injection systems. Recent experiments on a co-axial configuration show that two
flapping regimes can be distinguished (Delon et al., 2018). In the first one, flapping
is triggered by the wake downstream of nonaxisymmetric modes of the shear instabil-
ity. In this regime, flapping frequency closely follows primary wave frequency (even
though systematically smaller). In the second flapping regime, flapping frequency is
not anymore connected to primary wave frequency.

Interactions between coherent turbulent structures and flapping motion have been
evidenced (López-Pagés et al., 2004; Odier et al., 2015, 2018). In case of co-axial jets,
by analogy with vortex rings pairing in single phase round jet (da Silva and Métais,
2002b), Odier et al. (2018) observe the flapping to be triggered by interfacial wave
pairing.

1.2 Survival kit of linear stability analysis

Before focusing our study on primary wave creation, we provide the reader with a
few fundamental notions of stability analysis. Indeed, the parallel, or quasi-parallel,
nature of the flow before wave creation makes it an ideal framework for theoretical
approaches like linear stability analysis. For a larger introduction to stability analysis
we refer the reader to Charru (2012); Drazin and Reid (2004); Chandrasekhar (1961).
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Objectives of stability analysis

The stability of a given system is refering to its response to a perturbation: if this
perturbation is damped, the system is stable, if the perturbation is amplified, the
system is unstable. In fluid mechanics the system is called a basic state. It represents
a configuration where the variables of the problem (velocity, presure, temperature and
density fields) satisfy the usual conservation equations (mass, momentum, energy)
and boundary conditions. Stability studies are answering to the following questions:

• Is a basic state stable or unstable to a given perturbation?

• If it’s unstable:

– Under which conditions is it unstable?

– Is there a threshold for instability?

– What are the physical mechanisms behind instability?

– At which rate does the pertubation grow?

Impulse response

In order to give some fundamentals notions of stability, we start by considering
the response of a given one-dimensional linear system to an impulse perturbation,
S(x, t), of the form

S(x, t) = δ(x)δ(t), (1.1)

where x is the spatial coordinate and t, the time. δ(x) and δ(t) are the impulse
perturbations (Dirac functions) at x = 0 and t = 0, respectively. Depending on
the asymptotic value of the impulse response, G(x, t) (Green function), different
behaviours are possible (see figure 1.5). If

lim
t→∞

G(x, t) = 0, along all lines x/t = cste, (1.2)

the perturbation is damped and the basic state is stable (figure 1.5a). If

lim
t→∞

G(x, t) =∞, along at least one line x/t = cste, (1.3)

the perturbation is amplified and the basic state is unstable. Two possibilities are
then appearing. If

lim
t→∞

G(x, t) = 0, along the line x/t = 0, (1.4)
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Fig. 1.5 – Impulse response of a given system leading to three different asymptotical
behaviours: a) stable, b) convectively unstable, c) absolutely unstable. Extracted
from Charru (2012).

the basic state is convectively unstable: the perturbation is amplified and convected
away from where it has been generated (figure 1.5b). If

lim
t→∞

G(x, t) =∞, along the line x/t = 0, (1.5)

the basic state is absolutely unstable: the perturbation is growing where it has been
generated (figure 1.5c). This distinction between convectively and absolutely unsta-
ble basic state only makes sense in case of open flows. In closed flows a perturbation
will be forced to pass where it has been generated. This first study also shows a
difference between convective and absolute instability: without continuous forcing,
the impulse response of a convective instability is decaying to zero (along the line
x/t = 0), which means that this system behaves as a “noise amplificator”. On the
other hand, an absolute instability will exhibit an intrisic dynamic and behaves as an
“oscillator”. These notions are more widely covered in Huerre and Monkewitz (1990).
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Local linear stability theory

The stability properties of a given basic state can be studied mathematically
using linear stability analysis. The variables of the problem are described with the
following expressions (neglecting thermal effects and density variations)

u = u0 + u′, (1.6)

p = p0 + p′, (1.7)

where u0 and p0 are the velocity vector and pressure of the basic state, respectively,
u′ and p′, the velocity vector pertubation and pressure perturbation, respectively, and
u and p the velocity vector and pressure fields, respectively. Note that we are only
considering two-dimensional steady base flows and that we do not consider the spatial
evolution of the base flow in more than one direction, i.e., the analysis is local and
stricly parallel. Velocity and pressure fields are expressed in the coordinates system
and are then injected in the conservation equations (mass, momentum, energy) and
boundary conditions. This will result in a coupled system of non-linear equations.
For small perturbations, the system can be linearized around the basic state, i.e.,
we neglect the products of perturbations. We will then get a system of linearized
equations, with constant coefficients.

We assume that the coordinate system is Cartesian and the base flow is only
varying with the vertical coordinate, y, i.e., u0 = (u0(y), 0, 0) and p0 = p0(y). The
linearized system admits solutions (for perturbations) in normal modes, which could
be treated separately because each of them satisfies the system of equations, in the
form

(u′, v′, w′, p′) = (û, v̂, ŵ, p̂)(k, y, ω)ei(kx−ωt), (1.8)

where (û, v̂, ŵ, p̂) are the eigenfunctions, ω and k are the complex frequency and
complex wavenumber, respectively. Frequency and wavenumber can be decomposed
in real and complex parts,

ω = ωr + iωi, (1.9)

k = kr + iki, (1.10)

where kr = 2π/λ is the wavenumber, with λ the wavelength, ki is the spatial
growthrate, ωr = 2πf is the pulsation, with f the frequency, ωi is the temporal
growth rate.

Introduction of these perturbations in the linearized system of equations and
associated boundary conditions will lead to a dispersion relation of the form

D(ω, k) = 0. (1.11)

It will be solved differently depending on the nature of k and ω:
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• temporal resolution: considering a real wavenumber (k = kr), we are looking
for the temporal branches of the instability, i.e., we want to find the values of
the complex frequency ω = ωr + iωi as a function of kr,

• spatial resolution: considering a real frequency (ω = ωr), we are looking for
the spatial branches of the instability, i.e., we want to find thes value of the
complex wavenumber k = kr + iki as a function of ωr,

• spatio-temporal resolution: we are considering complex frequency as well as
complex wavenumber. As we consider both spatial and temporal evolution
of perturbations, this approach allows to distinguish between convective and
absolute instabilities.

With wave-like perturbations, it is also useful to consider the phase velocity of a
wave,

vp =
ωr
kr
, (1.12)

and the group velocity of a wave paquet,

vg =
∂ωr
∂kr

. (1.13)

Conditions for convective and absolute instabilities

Two types of instability have been described previously using the impulse response
of a given system. We will now describe the conditions for these instabilities to occur
using the elements introduced with linear stability analysis. Introducing (1.9) and
(1.10) in (1.8), we get, for the axial velocity perturbation,

u′ = û(k, y, ω)ei(krx−ωrt)eωit−kix. (1.14)

In the previous equation, the exponential that contains the frequency and wavenum-
ber real parts is related to the spatio-temporal propagation of the wave. The other
exponential contains the informations about the spatio-temporal amplification of the
wave. It simply follows that the conditions for instability of a base flow will depend
on the type of resolution:

• for a temporal resolution (ki = 0), the condition for instability is ωi > 0,

• for a spatial resolution (ωi = 0), the condition for instability is ki < 0.
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In a spatio-temporal resolution, the complex nature of wavenumber and frequency
allows to distinguish between convective and absolute instabilities. The criteria in-
troduced by Briggs (1964) are used to reveal absolute mechanisms:

• A “pinching” point is occuring between two spatial branches. These two spatial
branches must lie in two opposite half-planes of the (kr,ki) plane when ωi is
large.

• The group velocity at the pinching point is equal to zero.

• The imaginary part of the frequency must be positive at the pinching point. It
is often denoted ω0i and called absolute growth rate.

The first and third criterions are represented on figure 1.6. L and F are the integration
paths in the complex ω and k planes, respectively. As the path L is going down, the
shape of the mode ω(k) is modified and the path F is deformed. Then a singularity
can occur with the pinching of two spatial branches. The group velocity at this point
tends to zero and if the absolute growth rate is positive the instability is absolute.
When there is no pinching point, the criterions on the sign of ωi and ki are applied
to detect a convective instability. Moreover, in convective as well as absolute modes,
several wavenumbers or frequencies can be unstable. In this case, we use the value
of the spatial or temporal growth rates to find the most amplified frequency or
wavenumber.

These three criterions can be understood phenomenologically:

• The absolute instability is associated with a mechanism of resonance between
two physical phenomena (usually a downstream/upstream resonance), which
explains the pinching between two spatial branches, each of them being con-
trolled by a different mechanism. The identification of the mechanisms con-
trolling each branch is usually done by indentifying which parameters of the
problem (e.g., flow speed, flow geometry, physical properties) control the posi-
tion of each branch in the (kr,ki) plane.

• As seen previously with the study of the impulse response, an absolute insta-
bility is growing where it has been generated. For wavelike perturbations, the
group velocity of an absolute instability is thus equal to zero.

• The final condition is that the perturbation will be amplified in time, thus
requiring the absolute growth rate to be positive at the pinching point.
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Fig. 1.6 – Mechanism for absolute instability, extracted from Huerre and Monkewitz
(1990). As the integration path in complex ω-plane is going down (a), the integration
path in complex k-plane and the relation ω(k) are modified (b), allowing for the
emergence of a singularity named “pinching point” (c).

Extensions

The previous description is based on several strong hypothesis that can limit the
range of validity of such approach. Here, we briefly describe some more advanced
approaches that avoid one or several of the previous hypothesis. Note that, in the
rest of the manuscript, we limit ourselves to the stability analysis presented above,
but that it is important to keep in mind its limiting hypothesis.

Global linear stability

We assumed previously that the base flow was strictly parallel, therefore that
the analysis was local. Taking into account spatial variations of the base flow is
possible with two different methods, depending on the degree of variation of the base
flow with spatial coordinates. The objective of such analysis is to find informations
about the global response of the flow to some pertubations, and particularly to find
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informations about ωG, the global resonance complex frequency. The informations
we summarize here are extracted from Huerre and Monkewitz (1990) and Juniper
et al. (2011).

One first way to obtain informations about global stability properties of a system
is through the connection of several local linear analysis. This approach is only
valid in case of weakly non-parallel flow (WKBJ hypothesis). The regroupment
of informations about local stablity properties will be used to find global stability
properties. Particularly, the global mode is deduced from the variation of the local
absolute frequency, i.e., the complex part of ω at the pinching point, with downstream
distance (see section 4.3 of Juniper et al. (2011) and Chomaz et al. (1991) for an
explanation of the method).

The second method, which does not assume a weakly non-parallel behaviour of
the flow, is by constructing a global linear stability analysis. Conservation equations
are still linearized around the steady base flow, but the latter is fonction of more
than one spatial coordinates, and the unsteady perturbations are assumed to be of
the form, for example for the axial velocity components of a base flow varying along
x and y, u′ = û(x, y, ωG)e(−iωGt). The steady state base flow might be obtained
by numerical simulations and the system of linearized equations is solved for ωG
by building a matrix eigenvalue problem (whose size is much bigger than the one
obtained for a local analysis). We refer to the section 3 of Juniper et al. (2011) for
more detailed explanations.

Once the informations about ωG are obtained, they can be used to deduce infor-
mations on the global stability behaviour of the system. In the case where only one
global mode is found, the criterion for global instability is that its imaginary part is
positive, i.e.,

ωG,i > 0. (1.15)

The distinction between convective and absolute instability can therefore be com-
pleted by the distinction between local and global instability. Particularly, a local
convective mode will be globally stable, while a local absolute instability is a neces-
sary, but not sufficient, condition for global instability.

An application of such global linear stability analysis can be found in the study of
wakes (Monkewitz, 1988; Thiria and Wesfreid, 2007; Juniper et al., 2011). Particu-
larly, the creation of the von Kármán vortex street above a critical Reynolds number
is due to the creation of a global mode of instability. Such global mode is expected
to contaminate all the flow (see section 3.2 of Huerre and Monkewitz (1990) for a
description of stability properties evolution with Reynolds number for a flow around
a cylinder).
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Inclusion of turbulence

Even though the base flow is steady, one can include into a linear stability analysis
the effects of fluctuations in the flow. One way to do so is by increasing viscosity in
the turbulent part of the flow in order to account for turbulent diffusion, for example
with a turbulent eddy viscosity model (Matas et al., 2015; Jiang and Ling, 2020;
Dagaut et al., 2021).

Non-orthogonality, unsteady base flow, uncertainties, non-linearity

The previous approach is also based on several other strong hypothesis, such as
orthogonality of perturbations, steadiness of base flow, or linearization of governing
equations. For an introduction to methods of stability analysis that tackle one, or
several, of these hypothesis, we refer the reader to the review of Schmid (2007).

1.3 Primary wave of an air-water mixing layer

In this chapter, we exclusively focus on describing the mechanisms behind pri-
mary wave formation (axisymmetric or not, depending on the configuration) at the
interface between a slow liquid stream and a fast air stream. We show on figure 1.7
another example of such instability for the case of a prefilming airblast atomizer.
The parallel, or quasi-parallel, nature of the flow just downstream of the injector
makes it an idealized framework for linear stability analysis. As said previously, lin-
ear stability analysis (also refered to as LSA in the following) allows a comprehension
of the mechanisms driving the instability. In the following we mainly focus on the
comparison between experimental results and LSA in order to understand the mech-
anisms driving wave formation in airblast atomization. One interesting point of the
comparison is to follow the evolution of base flows as well as methods of resolution,
as we also describe in the following.

Comparison between inviscid studies and experiments

The instability occuring at the interface between two layer of fluids with different
velocities is known as the shear instability. It has first been studied by Helmholtz
(1868), with a localized perturbation, and by Kelvin (1871), with wave-like perturba-
tions, both with a continuous density across the two phases. This instability is thus
known as the Kelvin-Helmholtz instability and the inviscid mechanism behind its
occurence in this configuration is simple to understand (see figure 1.8). A perturba-
tion, ubiquitous in nature, deforms the interface, leading to the emergence of bumps
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Fig. 1.7 – Primary wave of an air-water mixing layer. Extracted from Fuster et al.
(2013).

and hollows. On top of bumps, fluid velocity is increasing while it is decreasing in
hollows. This results in a difference of pressure between both fluids that enhances
interface deformation.

Fig. 1.8 – Inviscid mechanism of Kelvin-Helmholtz instability (extracted from Charru
(2012)). U is the mean flow velocity, u and p are the velocity and pressure pertur-
bations, respectively

While in first inviscid studies velocity profiles were discontinuous (figure 1.9a), Rayleigh
(1879) adds an union between liquid and gas velocities through a gas vorticity layer
thickness δg. Chandrasekhar (1961) adds a jump in density across interface. Com-
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bining both Chandrasekhar and Rayleigh approaches (resulting in the base flow pre-
sented figure 1.9b)), Raynal (1997) uses a linear stability analysis, with a temporal
resolution, that is direclty compared to experimental results obtained on the prefil-
iming airblast atomization configuration. The gas vorticity thickness is measured to
vary as

δg = 6Hg/
√
HgρgUg/µg, (1.16)

where Hg, ρg and µg are the gas stream thickness, density and dynamic viscosity,
respectively. One main stability result is the following trend for the most amplified
wave frequency,

f ∼ ρg
ρl

Ug
δg
∼ U3/2

g , (1.17)

with ρl, the liquid density. This scaling is valid in case of large dynamic pressure
ratio, i.e., M = ρgU

2
g /ρlU

2
l >> 1, with Ul the liquid velocity, and ρl the liquid

density. An experimental observation is that wave velocity is in close agreement
with (Dimotakis, 1986),

UD =

√
ρg.Ug +

√
ρl.Ul

√
ρg +

√
ρl

, (1.18)

which is the velocity of the moving frame in which liquid and gas dynamic pressure
are at equilibrium. Frequency and wavenumber are related through

f = UD/λ. (1.19)

The relation (1.17) has been validated by many authors, as it is shown in figure
1.10: all measured wave frequencies are following the same trend with gas velocity
but pre-factors are not the same. It is interesting to note that the scaling law of
equation (1.17) can be recovered, as in Matas (2015), by an energy budget that
draws a direct link between Reynolds stress in gas phase and kinetic energy of the
perturbation. The later point combined with the fact that wave velocity is well
estimated by Dimotakis relation (1.18) are strong arguments in favor of an inviscid
mechanism of instability.

The base flow has then been complexified with the addition of a liquid vorticity
thickness δl (Raynal, 1997), as in figure 1.9c), but it did not improve the comparison
between predictions and measurements.
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a) b)

c) d)

Fig. 1.9 – Velocity profiles used in the different inviscid LSA studies. a) discontinuous
profile (Extracted from Charru (2012)). b) introduction of a gas vorticity thickness.
c) introduction of a liquid vorticity thickness. d) introduction of a zero interfacial
velocity. b-c-d) are extracted from Matas et al. (2011).

One element that was not considered in the analysis so far was the influence of
splitter plate between gas and liquid streams on base flow. Indeed, in the wake of
the splitter plate, the exact shape and the spatial evolution of the velocity profiles
is not known. One can, as shown in figure 1.11, naturally think that sufficiently
far away from the splitter plate, the boundary layer on both sides of the liquid/gas
interface would have developped up to result in the velocity profile on the right of
figure 1.11. Close to the splitter plate, the presence of a zero interfacial velocity
also seems natural. Note that, to the best of our knowledge, there is no result in the
litterature that presents the evolution of the velocity profiles downstream of a splitter
plate in airblast atomization conditions that would confirm, or not, the picture of
figure 1.11.

Following the previous remark, the base flow used in local stability analysis has
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Fig. 1.10 – Comparison of instability fequency for different sets of experiments with
M > 4. +: results of Raynal (1997) ; ◦: results of Marmottant and Villermaux (2004)
(co-axial configuration) ; ×: results of Ben Rayana (2007); ∗: results of Matas et al.
(2011). All data are following the same trend with Ug but with differents pre-factors.
Figure extracted from Fuster et al. (2013).

thus been modified in Matas et al. (2011) to account for zero interfacial velocity
(see figure 1.9d), which improved wave frequency prediction and in particular the
prediction of the role of liquid velocity. Marty (2015) shows that this theory finds
its limits in the prediction of the role of Hl, the liquid stream thickness, and in
the prediction of ki, the spatial growth rate of the waves. Based on the results
of Ben Rayana (2007), it is observed in Matas et al. (2011), that the gas stream
thickness, Hg, has no other effect than through its effect on δg (Eq. (1.16)).

Inclusion of viscosity

In the previous section, we have presented the inviscid mechanism that leads to
Kelvin-Helmhotz instability and how it has been applied to airblast atomization pro-
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Fig. 1.11 – Representation of the expected spatial variations of the flow in the wake
of the splitter plate, from Raynal (1997). It is also shown that the development of
the liquid boundary layer is longer than that of the gas.

cess. Another mechanism is likely to appear, driven by viscosity difference between
gas and liquid. This mechanism has been evidenced by Yih (1967) and is now usu-
ally refered as the “H-mode”, following the work of Hooper and Boyd (1983). This
instability has been described phenomenologically by Hinch (1984). Starting from
the base flow represented in figure 1.12a), a vertical perturbation y = η(x) is applied
to the interface (see figure 1.12b). At the peak A, the undisturbed velocity (contin-
uous line) of the more viscous fluid (upper fluid in this case) is lower than that of
the lower fluid. Thus, due to continuity of tangential velocity, the upper fluid must
speed up while the lower fluid must slow down (final velocity profiles are in dashed
line in figure 1.12b)

At a fluid-fluid interface, viscosities of both fluids are linked by the continuity of
tangential stresses,

µ1

(
∂u1

∂y

)
= µ2

(
∂u2

∂y

)
, (1.20)

where the subscripts refer to both fluids. Then, the magnitude of the speed up, or
slow down, in each fluid will depend on the viscosity contrast between both fluids.
These disturbances in velocity profiles will result in disturbances in vorticity which
are positive in peaks, and negative in throughs, as it is indicated on figure 1.12b).
Due to continuity of tangential stresses, vorticity will be larger in the less viscous
fluid. Finally, advection of this disturbance vorticity will result in an induced motion
of the interface that enhances instability.
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a) b)

Fig. 1.12 – Viscous instability of the mixing layer. a) : base flow profile (from Hooper
and Boyd (1983)), b) description of the mechanism (from Hinch (1984)).

a) b)

Fig. 1.13 – Base flows used in viscous linear studies. a) base flow used by Boeck and
Zaleski (2005). b) base flow used for the spatio-temporal resolution of Otto et al.
(2013) in which the interface velocity is controlled by a deficit parameter, δ0 which
is the same as the parameter δd we use in the manuscript.

The study of the viscous modes of the planar air-water mixing layer has been
performed by Boeck and Zaleski (2005) with a temporal resolution. Their base flow
is shown on figure 1.13a). They have shown that the“H-mode”was likely to appear in
a configuration and in a range of parameters representative of atomization conditions,
and that it was stronger than the inviscid mode (higher growth rate). Even if the
predicted growth rate was closer to experimental results than the one obtained with
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inviscid studies, predicted frequencies strongly overestimate experimental ones.

Transition from convective to absolute instability

It has been shown in previous sections that inviscid studies were able to predict
the experimental trend in wave frequencies with the gas velocity and, providing that
a zero interfacial velocity is included, predict the role of liquid velocity. Results
of the viscous study were surprisingly less satisfying. To solve this paradox, Otto
et al. (2013) carried a spatio-temporal analysis, including viscosity. Their base flow
is shown on figure 1.13b). It is defined with error-functions as in Boeck and Zaleski
(2005), but the interface velocity can be adjusted using a new parameter δd to mimic
the effect of the splitter plate, similarly to what is shown on figure 1.11. The reduction
of the interfacial velocity is also refered to as the inclusion of a velocity deficit.
Without deficit, the control parameter δd is equal to 1. The interfacial velocity Ui is
computed as

Ui =
(Ugµg/δg + Ulµl/δl)

(µl + µg)
δdδl, (1.21)

where µl is the liquid dynamic viscosity. The expression for Ui ensures equality of
tangential stresses whatever the value of δd.

Otto et al. (2013) have shown that a transition between convective and absolute
instabilities was likely to appear under the experimental conditions of Matas et al.
(2011) and that the mechanism behind this absolute instability was due to a pinching
between the shear branch and a branch controlled by surface tension. Particularly,
the absolute instability is triggered by a reduction of δd. This convective/absolute
transition has also been seen numerically (at reduced density ratio) to be driven by
splitter plate thickness (Fuster et al., 2013). Moreover, an energy budget has shown
that the instability was mostly fed by viscous stresses. In case of absolute instability,
the agreement with experiments is satisfying, whereas frequency is strongly overes-
timated when instability is predicted to be convective, which is the case for most of
experimental injection conditions.

Even if this study from Otto et al. (2013) has evidenced the fact that an absolute
instability could appear in this configuration, and that this transition could be due
to the effect of velocity profile variation in splitter plate wake, it does not allow a
complete convergence between LSA and measured wave frequencies. It also does
not explain the apparent paradox behind the superiority of inviscid theory against
viscous theory to predict wave frequency.
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Fig. 1.14 – Base flow used in Matas (2015). Compared to the profiles used in Otto
et al. (2013), finite thicknesses of gas and liquid streams (confinement) is taken into
account. The interfacial velocity can still be adjusted through a deficit parameter.

As shown for the stability of wakes (Biancofiore et al., 2011), homogeneous mixing
layers (Healey, 2009), or jets (Juniper and Candel, 2003), the confinement of a flow
can have an effect on its stability, and can favour a transition from convective to
absolute instability. By confinement, we refer to the proximity of a wall or the finite
thickness of a stream.

Following these studies, Matas (2015) has finally obtained a satisfying agreement
between LSA and experimental data using a complete study (with viscosity, surface
tension, gravity, control of interface velocity using a deficit parameter) and the in-
troduction of finite width of gas and liquid streams (base flow presented on figure
1.14).

It is evidenced that two different mechanisms of absolute instability and a con-
vective instability were likely to appear for the experimental conditions of Matas
et al. (2011). These two types of absolute instability are due to a pinching point
between a shear branch, which refers to the branch coming from the upper-half of
the complex k-plane, and either a confinement branch, located close to ki axis and
therefore leading to low wavenumber instability, or a surface tension branch, com-
ing from the lower-half of the complex k-plane. This is illustrated in figure 1.15
for a co-axial configuration. For moderate deficit (δd = 0.3, ∗), the shear branch
deforms until pinching with a confinement branch located close to the ki axis. For
stronger deficit (δd = 0.1, +), the shear branch deforms until pinching with a surface
tension-controlled branch.
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Fig. 1.15 – Illustration of the pinching points leading to absolute instabilities. Co-
axial configuration in air-water conditions, with Hg = Hl = 5 mm, Ul = 0.28 m/s,
Ug = 37 m/s. ∗: δd = 0.3, ωi = 270s−1;+: δd = 0.1, ωi = 950s−1. Extracted from
Matas et al. (2018).

The results of Matas (2015) are presented on figure 1.16. We can see that for
the two largest liquid velocities, the agreement betwenn LSA and experiments is
satisfying with the results of Otto et al. (2013) (∗) which corresponds to surface
tension driven absolute instability. For lower liquid velocities, the agreement is made
with the new results of Matas (2015) (◦ and �), this time predicting an absolute
mechanism driven by confinement. The fact that, for the lowest liquid velocities,
agreement is found without deficit is also consitent with the idea that a velocity
deficit will be longer to resorb at larger liquid velocities, i.e., that δd needs to be
reduced when increasing Ul, assuming that the picture of figure 1.11 is a correct
representation of the flow behind the splitter plate. Note that, the convergence
between LSA, with the inclusion of confinement, and experiments on primary wave
frequency value has also been obtained for co-axial geometry (Matas et al., 2018). In
Matas et al. (2018), the product δdδl for which there is agreement between LSA and
experiments is found to be of the order of splitter plate thickness. It is not known
yet whether this is significant or just a coincidence.

It should be noted, however, that for an absolute instability the predicted spatial



1.3. PRIMARY WAVE OF AN AIR-WATER MIXING LAYER 27

Fig. 1.16 – Convergence between linear stability analysis and experiments for Ug =
27m/s, Hg = Hl = 1cm. � : experimental results Matas et al. (2011), ∗ : theoretical
results of Otto et al. (2013) with a strong deficit (δd = 0.1), ◦ : results of Matas
(2015) without deficit (δd = 1), � : results of Matas (2015) with a moderate deficit
(δd = 0.5). Extracted from Matas 2015.

growth rate has no clear meaning for waves traveling downstream of the injector
(because the instability is growing where it has been generated, see figure 1.5). The
comparison of this quantity between theoretical predictions and experiments did not
give satisfaction. The predicted ki may however still be useful as it provides a length
scale for instability in the transverse direction (Juniper et al., 2011).

Most importantly, using an energy budget, the mechanism behind confinement
driven absolute instability is shown to be inviscid (fed by gas Reynolds stresses), while
for the other cases the mechanisms are viscous, which explains the performance of an
invscid study to predict the characteristics of this instability compared to a purely
viscous, temporal or spatial, study.
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Map of the different regimes

As stated before, the absolute instability can be triggered by confinement or by
surface tension. The viscous mechanism is triggered by viscosity differences across
interface.

As described in Healey (2007), the mechanism due to confinement is due to the
propagation of perturbations in cross-stream direction (figure 1.17a) which, due to
finite width of gas/liquid layers, can be reflected (figure 1.17b) and enter in resonance
with the shear instability wave.

Cross-stream

Reflected
a) b)

perturbation

perturbation

Fig. 1.17 – Mechanism of resonance due to confinement leading to absolute instability.

As said previously, surface tension-induced absolute instability is triggered by a
reduction of interfacial velocity. As interpreted in Matas et al. (2018), on co-axial con-
figuration, the condition for this instability to occur is that interface velocity should
be low enough so that capillary waves can send information upstream. Therefore, the
mechanism of resonance leading to absolute instability is the following: shear insta-
bility creates a downstream propagating wave (figure 1.18a) that enters in resonance
with the upstream propagating capillary wave generated by the restoring effect of
surface tension σ (figure 1.18b).

σ

Downstream Upstream
a) b)

propagating propagating
wave wave

Fig. 1.18 – Mechanism of resonance due to surface tension leading to absolute insta-
bility.
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Fig. 1.19 – Map of the different regimes, extracted from Matas et al. (2018). Filled4:
surface tension driven absolute instability, filled �: convective viscous mechanism, ◦:
confinement driven absolute instability, ∗: cases where both absolute regimes have
similar absolute growth rates.

Exploring the borders between the different regimes, Matas et al. (2018) finds
that borders are well defined on a map constructed with two parameters. The first
one is the dynamic pressure ratio M and the second one is WeUi

= ρlU
2
i /(σki max), a

liquid Weber number based on the interfacial velocity, Ui, and ki max, the maximum
growth rate of the shear branch. This map is shown on figure 1.19. As soon as WeUi

is lower than one, surface tension-induced absolute mode (filled 4) is dominating.
Above this threshold, the transition between convective (�) and absolute mode due
to confinement (◦) is driven by M , with the absolute mode dominating for large M .

Impact of gas turbulence intensity

A parameter that is difficult to control in industrial configurations is the turbu-
lent intensity. It is studied in Matas et al. (2015) how it affects instability. Two
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different techniques are used in order to generate turbulence intensity: with obsta-
cles of different heights placed upstream of the gas nozzle and with an impulse jet
introduced upstream of the gas nozzle. This way, results are independent of forcing
method. It is found that turbulence intensity has a great impact on instability and
that wave frequency is increasing linearly with the level of fluctuations (see figure
1.20).

For a turbulent level of 10%, frequency is doubling compared to a case with almost
no turbulent fluctuations. It is also possible to predict this trend using LSA with the
introduction of an eddy viscosity model representing the increased level of diffusion
with turbulent intensity (symbols ?). This effect could be a possible cause for discrep-
ancies between results carried on similar experiments, and for reproductibility issues.
Moreover, as turbulence intensity is inducing a decrease of the absolute growth rate
at the pinching point, it could also affect the convective/absolute transition and the
convective mode may be favoured at high turbulence intensity.

These results are confirmed numerically at moderate density ratio by Jiang and
Ling (2020), who also found a linear increase of primary wave frequency with gas
turbulence intensity, and found in addition a linear increase of primary wave spatial
growth rate with gas turbulence intensity.

Primary wave growth

In the previous section, we explained in details the state of the art of the com-
parison between LSA and experiments on primary wave frequency. In most of ex-
perimental and numerical studies, wave speed is found in close agreement with UD,
Eq. (1.18), thus giving a way to estimate wavelength through Eq. (1.19). So far, we
have not described spatio-temporal growth of waves, i.e., what is happening to the
wave after its inception, except that, once a liquid sheet is formed, it can undergo
different instabilites leading to ligaments or droplets ejections.

The experimental study of waves amplitude in Matas et al. (2011) shows that
3 zones can be distinguished, see figure 1.21a). The first one is a region of “super-
exponential” growth in the vicinity of the inlet. The second one, enhanced by red
dashed lines, is a region of exponential growth. In the third zone, one can see that
wave keep growing with downstream distance but at a lower rate than in the previous
zone.

The nature of the first zone is still unclear but certainly linked with the presence
of splitter plate. The second zone shows that the instability is following a region of
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Fig. 1.20 – Effect of turbulence level on primary instability frequency, extracted
from Matas et al. (2015). In this case Ug = 27m/s, Ul = 0.28m/s, Hl = Hg = 1cm.
f0 is the frequency of the instability with the initial turbulence level. ? : results of
theoretical prediction using an eddy viscosity model. Other symbols are experimental
values obtained with different techniques.

exponential growth. For most of the cases under study, the instability is absolute
(Matas, 2015). As discussed previously, the predicted value of the spatial growth
rate has no clear meaning for an absolute instability, but this exponential growth
zone has been found in experiments as well as in numerical simulations (Agbaglah
et al., 2017; Ling et al., 2019; Jiang and Ling, 2020). Figure 1.21a) also shows that
the width of this zone, and its slope, are greatly affected by variations in gas velocity.
Particularly, in Matas et al. (2011) the measured spatial growth rate is shown to be
proportional to U2

g .

Figure 1.21a) is also showing that an increase in gas velocity will favour the entry
in third zone: the faster the gas, the closer to the injector is the entry in the third
zone. From the measurements of Ben Rayana (2007) (see figure 1.21b), we know
that, in this third zone, amplitude is growing linearly with downstream distance,
with a pre-factor that depends on injection conditions.

These observations can be linked with the work of Hoepffner et al. (2011) and the
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a) b)

Fig. 1.21 – Wave amplitude variation with downstream distance. a) experimental
data of Matas et al. (2011). The red dashed lines enhance the region of exponential
growth of the instability. From right to left : Ug = 12, 17, 22 and 27m/s. Ul =
0.37m/s. Hg = Hl = 1cm. b) : experimental data of Ben Rayana (2007) for
Hg = Hl = 1cm. The black dashed lines enhance the region of linear growth with
downstream distance.

study of the growth of a localized disturbance, going back to the original proposition
from Helmholtz (1868). It is found that there is a region of algebraic growth of the
wave where a self-similar solution can be derived,

h ∼
√
ρg
ρl
Ugt, (1.22)

where h is the wave height and t is the time after wave inception. This model has
been derived using a balance of pressure between both phases. The mechanism is
represented on figure 1.22a). From Bernoulli equation, one can state that pressure
drop in gas phase is P+−P− ∼ ρgU

2
g . As the same law is applied in the liquid and if

pressure drops in liquid and gas are equal, we also have P+ − P− ∼ ρlv
2, where v is

the suction velocity at the wave bottom, leading to the relation v ∼
√
ρg/ρlUg. If S

is the wave surface which has crossed the y = 0 limit, with S = h2, we can derive its
evolution with a simple time differential equation: ∂tS ∼ hv (the flow is entering from
the wave bottom of width h with a velocity v), which, once integrated, results in the
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a) b)

Fig. 1.22 – Algebraic growth of a localized perturbation in Kelvin-Helmholtz insta-
bility, figures extracted from Hoepffner et al. (2011). A is the liquid area that has
crossed the y=0 limit (refered to as S in the text), L is the wave height (L = h) and U
is the gas velocity. a): representation of the mechanism behind self-similar solution.
b): Numerical results (blue curves) as fonction of the density ratio r (r = ρg/ρl)
compared to the self-similar solution (light blue dashed lines). The insert represents
the results for r > 0.1.

self-similar relation Eq. (1.22). This model is then compared to numerical simulations
(figure 1.22b).The agreement is satisfying as soon as density ratio r = ρg/ρl is lower
than 0.1. It should also be noted that this approach is only valid in a range between
the scale where viscosity and surface tension have a damping effect, to the scale where
gravity will limit wave growth (gravity is not included in Hoepffner et al. (2011) but
is included latter in Orazzo and Hoepffner (2012)).

Marty (2015) adapts the self-similar relation Eq. (1.22) to his experimental studies
by replacing t with x/UD. The algebraic growth of waves is validated up to Ug =
30m/s. Beyond this value, wave growth is limited by the strong atomization of its
crests. However, systematic study of the comparison between the mean ratio h/x
and the quantity

√
ρg/ρlUg/UD shows that some corrections must be introduced on

wave velocity to obtain a perfect agreement for all dynamic pressure ratios.

One quantity that has been quantified by many authors is the liquid cone length,
L. It corresponds to the length of the cone in which liquid is always present through
time. The knowledge of L is useful as it allows locating where liquid is detached from
injector. The creation of this cone is not exclusively due to primary wave growth,
but is also due to the transformation of the wave into ligaments and droplets. L is
found to vary as L/2Hl = Pref/

√
M , with Pref = 6 (Raynal, 1997; Ben Rayana,

2007). Simple arguments based on mass conservation and interfacial turbulent stress
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continuity confirm the model. Marty (2015) finds that the value of Pref is affected
by changes in Hl, and that at very low Hl, the dependency in M−1/2 is not valid
anymore.

1.4 Challenges of atomization simulations

To engineers, atomizing liquid-gas flows present major challenges for control and
optimization in comparison to single-phase flows. In addition to the large viscosity
and density differences between the two phases, leading to discontinuous pressure
and velocity gradients, liquid-gas interface exchanges kinetic energy with the flow
via surface tension. Moreover, spray formation involves frequent topology changes,
usually through formation and rupture of liquid ligaments and sheets. Downstream
of atomization region, the spray is dispersed (and thus simpler to represent, e.g.,
as a collection of spherical droplets), but it remains dense, strongly coupled to gas
phase turbulence, and droplet-droplet interactions are frequent. Such challenges
hinder simple mechanistic descriptions of liquid sprays and, since liquid droplets
and ligaments form an optically opaque zone that surrounds the liquid core where
atomization takes place, experiments have been similarly limited. Consequently, the
detailed understanding of liquid atomization physics that would be needed to enable
spray control simply does not exist today.

As said in the “Roadmap for the Development of Advanced Atomization and
Spraying Technologies”by the Atomization Technology Innovation Consortium (March
2017):

“Numerical simulation and high-fidelity, physics-based models provide far greater
detail on the mechanisms that influence the break-up of fluids than traditional pro-
cess models. Improvements in computational capabilities and broad access to high-
performance computing facilities can enable direct numerical simulations of complex
engineering spray and atomization processes. Being able to better predict the im-
pacts of variables such as physical property variations, differences in nozzle geome-
tries, and changes in process variables on the characteristics of atomized droplets
and spray patterns can enable more advanced process improvements.”

Such simulations have to deal with various difficulties. The combination of high
density and velocity differences between both phases is known to create numerical
difficulties that are difficult to resolve without ensuring consistency between mass and
momentum transport (Rudman, 1998; Desjardins and Moureau, 2010; Vaudor et al.,
2017). Numerical errors are a natural consequence of the numerous approximations
made in order to resolve the equations of motion, and such numerical errors can
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create erroneous interfacial momentum transport, leading to dramatic interfacial
deformations (Pal et al., 2021).

As seen in experimental pictures in section 1.1 and said just before, spray for-
mation involves large interfacial deformations and energy transfer through surface
tension. Both elements are challenging to tackle numerically and a perfect solution
simply does not exist today. Both elements are tight together, as interfacial defor-
mations will result in interfacial curvature variations, thus modifications in surface
tension forces. Numerical inacurracies at any of the different steps will result in
erroneous simulation result, or even to numerical instabilities.

Resolving these challenges (need for consistent transports, need to resolve large
interfacial deformations, need to compute interfacial curvature), as well as dealing
with discontinuous pressure fields, velocity gradients and physical properties, incom-
pressibility condition, turbulence generation, necessity to resolve from the injector to
the droplet scale, ... , is an extremely challenging task. Putting aside the question
of the cost of the methods (in terms of computational time), simulation capabilities
have been recently advanced and these challenges have either been resolved, or are
on the edge of being resolved.

The problem of the air-water mixing layer has recently been used as a way to quan-
titatively validate numerical solvers, against experiments, that managed to combine
methods that resolve the previously cited challenges, or at least limit the associated
errors (Fuster et al., 2013; Agbaglah et al., 2017; Vaudor et al., 2017). Numerical
simulations have also been extensively used on jets or mixing layer problems with
relaxed conditions compared to experiments, i.e., with lower density ratios, or lower
velocity contrast between phases. These simulations, even though they cannot al-
ways be considered as fully realistic, are of great interest for the scientific community
and have already provided, and will keep providing, numerous informations on the
physic of atomization (airblast or not). For example, the Direct Numerical Simula-
tion (DNS) of a mixing layer at moderate density ratio has been obtained by Ling
et al. (2017, 2019), illustrated in figure 1.23a), enlighting the link between interfa-
cial instability development and downstream turbulence, as well as the mechanisms
behind spray formation under those conditions.

In addition to references already cited in section 1.3, we give here more details on
references that simulated the case of an air-water mixing layer. Bagué et al. (2010)
simulate the case of the convective mode and show that very high resolution is needed
to correctly capture the sharp variations of eigenfunctions close to the interface.
Fuster et al. (2013) simulate a case of absolute instability triggered by surface tension.
They obtain a satisfying agreement between their simulation, experimental results
and linear stability analysis on the value of wave frequency. Desjardins et al. (2013)
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a)

b) c)

Fig. 1.23 – Illustration of liquid-gas mixing layer simulations. a) DNS at reduced
density ratio (Ling et al., 2019). The grey surface is the liquid-gas interface and the
background is the z-component of vorticity. b) 2D air-water mixing layer (Desjardins
et al., 2013). The black line is the liquid-gas interface and the background is the
velocity magnitude. c) Co-axial air-water jet (Vaudor et al., 2017).
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simulate an air-water mixing layer, as illustrated in figure 1.23b), and show a good
agreement of liquid cone length and wavelength with the experiments of Ben Rayana
(2007) for two values of M . Agbaglah et al. (2017) and Chiodi and Desjardins (2017)
demonstrate good agreement with experiments on frequency, wave speed, growth rate
and liquid cone length for several values of M , in an absolute regime supposed to
be driven by surface tension (conditions of Fuster et al. (2013)). They also present
the effect of splitter plate angle on flow stability, as well as provide flow statistics in
two-dimensions (2D) and three-dimensions (3D). Vaudor et al. (2017) obtain a good
agreement with experimental results concerning liquid cone length in prefilming and
co-axial configurations, as illustrated in figure 1.23c). In air-water conditions, Fuster
et al. (2013); Agbaglah et al. (2017); Vaudor et al. (2017); Desjardins et al. (2013)
are including a splitter plate in their configuration. Contact line dynamic occurs at
the splitter plate, as revealed by simulations (Fuster et al., 2009), and simulating
such process is challenging and expensive.

1.5 Objectives & contents of the manuscript

It follows from previous section that only few studies are providing a comparison
of numerical results with linear stability analysis and experiments, including a sys-
tematic validation of instability characteristics, i.e., frequency, growth, wave speed,
and that the range of resolution needed to accurately simulate an air-water mixing
layer is not known. The effect of the confinement on the stability of the flow has been
demonstrated theoretically (Matas, 2015) and provides an explanation for the low
frequencies observed in the experiments, but it has never been observed numerically.

This thesis aims at filling a part of this gap by answering to the following ques-
tions:

• Can we obtain the systematic convergence between simulations, experiments
and LSA on the different regimes of instability?

• Can we proove that the confinement is indeed a destabilizing mechanism, as
predicted by LSA?

• Taking advantage of the flexibility of numerical simulations, in synergy with
a simplified approach like LSA, what is the impact of injector sizes (liquid or
gas) selection on the primary wave formation of an air-water mixing layer?

To do so, we gave in this first chapter all the elements needed to understand the con-
text, the physical mechanisms behind the stability of an air-water mixing layer, the
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theoretical framework used to reveal these mechanisms, and the challenges associated
with the simulation of such flows.

In the second chapter we will give more details on the numerical simulation of
atomization, starting from fundamentals of fluid mechanics, to an emphasis on the
methods used to produce this work. In the third chapter, we will answer to the
questions presented just above.

The fourth chapter is devoted to the numerical development of an open boundary
condition for turbulent and multiphase flows. This work started as a side project
over the course of the present thesis, with the initial aim of reducing the cost of
air-water mixing layers simulations and improving their accuracy. Even though this
work is not connected anymore to the other three chapters, it is entirely part of the
work done over the course of this thesis.



Chapter 2

Simulating atomization

2.1 Fundamentals of incompressible fluid

dynamics

Fluid dynamic is governed by conservation laws. Those conservation laws concern
mass, momentum and energy. In a Lagrangian formalism, they are applied on a small
volume of fluid that moves at the speed of the flow, whereas in an Eulerian formalism,
they are applied on a small volume of fluid that is fixed in space.

We consider a volume V , fixed in space (Eulerian formalism), of external surface

Fig. 2.1 – A control volume V , fixed in space, of external surface S, extracted from
(Tryggvason et al., 2011).

39
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S, and with n, the normal vector to its surface oriented towards the exterior of V .
dS and dV are the infinitesimal surface and volume elements, respectively, see figure
2.1. The velocity field is u(x, t), with x the spatial coordinate vector, and t the time.

Incompressibility condition

The temporal variation of V is related to the flow rate passing through its bound-
aries, i.e.,

d

dt

ˆ
V

dV = −
˛
S

u · ndS, (2.1)

which, using divergence theorem, can be transformed into

d

dt

ˆ
V

dV = −
ˆ
V

(∇ · u)dV. (2.2)

Therefore, the velocity divergence is related to change in the control volume, i.e.,
to the local compression or dilatation of the fluid. For an incompressible fluid, the
previous equation becomes

∇ · u = 0, (2.3)

which is true as long as the local flow speed is much smaller than the speed of sound.

Mass conservation

The temporal variation of the mass inside V is related to the mass flux passing
through its boundaries, i.e.,

d

dt

ˆ
V

ρdV = −
˛
S

ρu · ndS, (2.4)

which, as the volume is fixed in space and using divergence theorem, can be trans-
formed into ˆ

V

∂ρ

∂t
dV = −

ˆ
V

∇ · (ρu)dV, (2.5)

which is true for any volume V . Therefore, we obtain the local mass conservation
equation

∂ρ

∂t
+∇ · (ρu) = 0, (2.6)

which can further been expanded into,

∂ρ

∂t
+ u · (∇ρ) = −ρ(∇ · u), (2.7)
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whose right hand side will be equal to zero for an incompressible fluid.
Mass being conserved, any compressibility effect (change in volume) will be re-

lated to change in density. In incompressible flows, it does not mean that all fluid
parcels must have the same density, but that the density of a fluid parcel will not
change through time. In incompressible multiphase flows, density is constant within
each phase but discontinuous at the interface. Moreover, in incompressible flows,
the pressure loses its thermodynamic role and cannot be computed through an equa-
tion of state. In an incompressible flow, acoustic phenomena are not considered and
pressure waves (sound waves) are supposed to travel at infinite speed.

Momentum conservation

The temporal variation of the momentum inside V is due to the momentum flux
passing through its boundaries as well as due to the momentum generated by body
forces f and surface forces T acting on its boundaries, i.e.,

d

dt

ˆ
V

ρudV = −
˛
S

ρu⊗ u · ndS +

ˆ
V

fdV +

˛
S

T · ndS. (2.8)

The body force is usually the gravitational force, f = ρg, but can be of other nature
(e.g., magnetic, rotational acceleration). The surface force is related to the local
deformation rate and pressure forces. For a Newtonian fluid, the relation between
stress and deformation rate is linear, i.e.,

T =

(
−p− 2

3
µ∇ · u

)
I + 2µS, (2.9)

where I is the identity tensor, µ is the viscosity of the fluid and S = 1
2

(
∇u +∇uT

)
is

the deformation rate tensor. This expression for surface stress does only correspond
to internal stresses, interfacial stresses being detailed later in this section. Introducing
the expression for T in Eq. (2.8), and using the divergence theorem, the fact that V
is fixed in space and the fact that the final relation is true for any volume V , one
can obtain the local momentum conservation law,

∂ρu

∂t
+∇ · (ρu⊗ u) = f −∇p−∇

(
2

3
µ∇ · u

)
+∇ · (2µS), (2.10)

where the third term on the right hand side is equal to zero for incompressible flows.
Similarly, one can build a conservation law for energy that relates the local rate

of change of internal and kinetic energy to body, pressure and viscous forces, as well
as to the local heat flux, see Tryggvason et al. (2011) for a derivation.
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Interfacial boundary condition

Previous equations are valid only if we use them on a scale large enough so that
matter can be considered as continuous. Similarly, at a fluid-fluid interface, one can
adopt two points of view to describe the transition from one fluid to another: at the
microscale, the interface is a zone of interpenetration of the molecules coming from
both fluids, whereas at the macroscale we consider the interface as a two-dimensional
medium of zero mass and thickness. The thermodynamic desequilibrium at the
interface gives rise to the presence of singular forces acting on it. In this work, we
only consider the effect of surface tension, but note that shear or dilatational effects
can also occur in this two-dimensional medium (Patouillet, 2020).

In the absence of phase change, the application of the momentum balance Eq. (2.8)
to a control volume surrounding a fluid-fluid interface (volume of thickness approach-
ing zero and whose normal coincides with the normal to the interface nΓ), and the
introduction of the singular force acting on the interface results in

[T]Γ · nΓ = σκnΓ +∇Sσ, (2.11)

where κ is the interfacial curvature and ∇S is the surface gradient operator. The
notation [.]Γ refers to the jump from one phase to another. Expressing the pre-
vious equation in the normal and tangential directions to the interface results in,
respectively,

[p]Γ = σκ+ 2 [µ]Γ nTΓ · ∇u · nΓ, (2.12)

−
[
2µ tjΓ · S · nΓ

]
Γ

= tjΓ · ∇Sσ, (2.13)

where tjΓ refers to the tangential vectors to the interface. The first boundary condition
states that the magnitude of the pressure discontinuity at a fluid-fluid interface is
due to the curvature of the interface and the surface tension coefficient, as well as due
to viscous effects. The second boundary condition states that a gradient of surface
tension can induce a jump of tangential stresses. In the rest of this work, surface
tension gradient will be equal to zero.

Moreover, in the absence of phase change, the jump of velocity is zero at the
interface, i.e.,

[u]Γ = 0. (2.14)

Finally, in incompressible multiphase flows, the set of equations to resolve is
composed of Eqs. (2.3)–(2.7)–(2.10) completed by interfacial boundary conditions,
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Eqs. (2.12)–(2.13)–(2.14), and wall boundary conditions (moving or static walls, con-
tact angles). In the following section we explain how we resolve these equations in
the context of airblast atomization. For larger introductions to numerical methods
for multiphase flows we refer the reader to Tryggvason et al. (2011) and Mirjalili
et al. (2017).

2.2 Numerical methods: generalities

In the previous section we presented the system of equations to be resolved in
order to simulate incompressible multiphase flows. No general analytical solution for
these equations can be obtained. Numerical simulation thus involves approximating
the equations in the best way as possible in order to obtain a solution. One first
approximation is that the equations are discretized spatially, i.e., flow variables are
known only at specific spatial locations, and temporally, i.e., flow variables are known
only at specific instants. Refining these discretizations means getting closer to a
space and time continuous solution. Ideally, numerical methods must be able to
tend towards the exact solution (if available) when refining discretization, but this
involves an increase in the number of operations needed to approximate the equations,
therefore an increase of computational cost.

A Lagrangian approach of the spatial discretization would involve a spatial grid
moving and deforming at the fluid velocity (see for example the SPH method (Mon-
aghan, 1992)), whereas in an Eulerian formalism the spatial grid is fixed. In the
framework of the finite volume method, used in this work, flow variables are stored
at specific locations and control volumes are built around those grid points. The
governing equations are then solved by evaluating mass and momentum fluxes at the
boundaries of these control volumes. In this work, we use a staggered arrangement
of the variables, where each of the variables is stored at a different spatial location
(Harlow and Welch, 1965). This arrangement is shown on figure 2.2 where one can
see a two-dimensional cartesian grid where the shaded area is a computational cell
centered on the pressure location, i.e., the pressure cell. Velocity components are
stored on the boundaries of this cell. Note that other scalar quantities (volume
fraction, temperature) are usually stored at the same location as the pressure.

In case of multiphase flows, Eqs. (2.3)–(2.7)–(2.10) are valid within each phase
and coupled by interfacial boundary conditions Eqs. (2.12)–(2.13)–(2.14). Therefore,
these equations could be resolved for each phase of the system and coupled through
interfacial boundary conditions and closure models (see for example the work of Mer
et al. (2018) using this “two-fluids” approach on the test case of an emptying bottle).
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Fig. 2.2 – Staggered arrangement of the variables for a two-dimensional Cartesian
grid. Pressure and scalars are located at the center of the grid cells, whereas velocity
components are located on their edges. Extracted from Tryggvason et al. (2011).

In this work, we rather use the formalism of the one-fluid model, i.e., a single
system of equations is solved for the whole flow and the presence of the different
phases is accounted for by using space varying physical properties with the inclusion
of singular forces at the interface to account for the presence of surface tension. Local
momemtum conservation equation thus becomes, in case of incompressible flows,

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+∇ ·

(
µ
[
∇u +∇uT

])
+ Tσ + ρg. (2.15)

where Tσ is a singular surface tension force acting on the interface and the physical
properties, ρ and µ, are function of space and time, i.e., ρ ≡ ρ(x, t) and µ ≡ µ(x, t).
The singular surface tension force is expressed as Tσ = σκnΓδS, where δS is a surface
Dirac–δ function that is non-zero only at the interface.

Using this formulation, one needs to know the position of the interface in order
to compute the physical properties used in Eq. (2.15) from the individual properties
of each fluid, and to compute interfacial quantities such as interface normal and
interfacial curvature. This is achieved by using a marker function that will identify
each fluid in the system. In the following section, we briefly review the different
possibilities to use a marker function in order to compute all the quantities related to
mass advection and interface deformation, we then explain the methods implemented
in the solver used in this work, NGA (Desjardins et al., 2008a).
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2.3 Numerical methods: mass advection and

interfacial quantities

Advecting the marker function

As said previously, we use a marker function in order to identify the region occu-
pied by each fluid. This can be achieved in many different ways and the disctinction
between Lagrangian and Eulerian methods can be made. In a Lagrangian method,
instead of directly using a marker function, one uses marker points located on the
interface. The marker function is then reconstructed from the marker points. In
Eulerian methods, the marker function is advected directly. Lagrangian methods are
usually refered to as “Front–Tracking”, whereas Eulerian methods are refered to as
“Front–Capturing”.

In Front–Tracking methods, such as the one developped by Unverdi and Tryggva-
son (1992), the interface is seeded with marker points that are then advected using
the fluid velocity interpolated at the marker points locations. Once marker points
position is known, one can compute a marker function used to compute the physical
properties. Surface tension forces, known at the marker points location, have then
to be interpolated back to the Eulerian grid where flow variables are known.

In Front–Capturing method, the marker function is directly advected by the
velocity field using the advection equation,

∂G(x, t)

∂t
+ u · (∇G(x, t)) = 0, (2.16)

where the flow is supposed to be incompressible and G(x, t) is the marker function,
whose expression depends on the method.

In the Level-Set method, the marker function is taken as the signed distance
between the grid point and the closest interface location (Osher and Sethian, 1988),

G(x, t) = φ(x, t) = min||x− xΓ||, (2.17)

where xΓ is the interface position. The interface is thus located as the isocontour
φ = 0. The definition of φ(x, t) implies that ||∇φ|| = 1, which will not be the case
after advection by Eq. (2.16). The advection step has thus to be completed with a
reinitialization step that will modify φ(x, t) so that the condition ||∇φ|| = 1 is finally
respected. Neither the advection step nor the reinitialization ensure mass conser-
vation, which is the main drawback of the method. Many improvements have been
brought to this formulation, such as the Conservative Level-Set (Olsson and Kreiss,
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2005), the Accurate Conservative Level-Set (Desjardins et al., 2008b), and their sub-
sequent modifications (McCaslin and Desjardins, 2014; Chiodi and Desjardins, 2017),
that all improved the performance of Level-Set methods.

In the Volume-Of-Fluid (VOF) method, the marker function is a discontinuous
function that is equal to one in the liquid and zero in the gas (Hirt and Nichols,
1981). The liquid volume fraction, α, is reconstructed by the integration of the
marker function in each cell. In grid cells that contains the interface, 0 < α(x, t) < 1.
Physical properties can be obtained from the knowledge of α(x, t), e.g., the density
can be computed using an arithmetic averaging,

ρ(x, t) = α(x, t)ρl + (1− α(x, t))ρg, (2.18)

and the viscosity using, for example, an harmonic averaging,

µ(x, t)−1 = α(x, t)µ−1
l + (1− α(x, t))µ−1

g . (2.19)

VOF method is conservative providing that advection step is done carefully, and
topological changes are implicit in the formulation. The only information given by
the advection step is the field of α. Informations about interface orientation and
normals are obtained through a step of interface reconstruction. The method is
illustrated on figure 2.3. On figure 2.3a), the real interface is represented using a
solid line and the field of α(x, t) obtained after the advection step is indicated in
the cells. Using the values of α(x, t), one can reconstruct the interface using either
the method of Hirt and Nichols (1981) 2.3b), or the PLIC method 2.3c) (Rider and
Kothe, 1998). In the PLIC method, used in this work, the interface is represented
by a single straight line whose position in the grid cell depends on the normal vector
to the interface orientation and the value of the liquid volume fraction.

Many methods have been proposed to advect the marker function in the context
of VOF method. The main difficulty being to avoid excessive diffusion of the (dis-
continuous) marker function while ensuring mass conservation. Two classes can be
distinguished: geometric VOF and algebraic VOF. In the first, used in this work,
the geometric reconstruction of the interface is needed to compute the VOF fluxes
entering trough each grid cell boundaries, while in the latter the marker function is
approximated by, for example, a hyperbolic-tangent which allows an algebraic com-
putation of the fluxes (Xiao et al., 2005). Geometric VOF methods can be divided
in two sub-classes: split and unsplit advection.

In split advection methods, the advection step Eq. (2.16) is decomposed along
each direction and additional steps are used to ensure mass conservation and diver-
gence free. One can cite the schemes of Aulisa et al. (2007) and Weymouth and Yue
(2010).
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Fig. 2.3 – Illustration of the principle behind VOF method. a) after advection, the
liquid volume fraction is known in each pressure cell (indicated in numbers). The
real interface is displayed as a thin continuous line. The interface can then be re-
constructed using the method of Hirt and Nichols (1981) b), or using the PLIC
reconstruction c). The later method requiring the knowledge of the normal orien-
tation represented by the vector m on figure c). Extracted from Tryggvason et al.
(2011).

In unsplit advection methods, the advection is performed in one single step. In
this work we use the unsplit VOF advection method of Owkes and Desjardins (2014)
that is illustrated with a two-dimensional example on figure 2.4. The velocity field
is first interpolated at the vertices of the pressure cell. Using a simple Lagrangian
advection step, the vertices of the cell are projected back in time, i.e., point 2 is
projected back in time into point 3. Once this is done for all vertices of the pressure
cell, one obtain for each face a three-dimensional flux volume. In 2D, for the left face
of the pressure cell, this flux volume is the flux area formed by points 1− 2− 3− 4.
In order to evaluate the flux entering or leaving by the left face of the pressure cell,
one need to evaluate the area occupied by the liquid in the flux area. This is done
by performing surface cutting (or volume cutting in 3D) operations, until being able
to exactly integrate gas and liquid volume fractions in each flux volume.

Once this operation has been performed for all faces of the pressure cell, the new
liquid volume fraction can be obtained. Such construction of the flux volumes will
avoid overlapping between flux volumes but does not naturally respect divergence free
condition. A correction step is therefore needed before performing volume cutting
operations, see Owkes and Desjardins (2014) for more details. Note that such scheme
has been extended to unstructured grids (Ivey and Moin, 2017). For all volume
cutting operations and interface reconstructions we use the open-source library IRL
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Fig. 2.4 – Illustration of an unsplit geometric VOF advection method. Extracted
from Tryggvason et al. (2011).

1.

Interface reconstruction and curvature computation

Once the liquid volume fraction α is known in every computational cell, the inter-
face can be reconstructed. Using PLIC method, once α is known, the only missing
information is the normal orientation, which can be computed in many different
ways. One can cite, the gradient method (Youngs, 1982), the least-squares VOF
interface reconstruction algorithm (LVIRA, Puckett et al. (1997)) and its efficient
version (ELVIRA, Pilliod Jr and Puckett (2004)), or the MOF method (Dyadechko
and Shashkov, 2008; Mukundan et al., 2020). We refer to the introduction of Commi-
nal et al. (2015) for an explanation of the differences between these methods. In this
work, we use the ELVIRA method as it provides second error convergence on normal
oriententation error. Once the normal vector to the interface is obtained, one can
perform the PLIC reconstruction step. A recent improvement of the reconstruction
method is the two planes reconstruction method (R2P) of Chiodi and Desjardins
(2018), which allows the capture of liquid films of thickness much smaller than grid
size.

1Source code available at https://github.com/robert-chiodi/

interface-reconstruction-library

https://github.com/robert-chiodi/interface-reconstruction-library
https://github.com/robert-chiodi/interface-reconstruction-library
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Once the liquid volume fraction, the normal vector to the interface, and the
interface position are known, the remaining interfacial quantity to compute is the
interfacial curvature. Such step is of critical importance in atomization simulation,
where surface tension effects must be accurately computed for the atomization of the
liquid to be correctly captured. Here we detail the way the curvature κ is computed,
whereas in the next section we detail how surface tension forces are included into the
momentum conservation law. For a larger introduction to surface tension models we
refer the reader to the review of Popinet (2018).

Curvature may be obtained from volume fraction by many different methods.
Direct use of the volume fraction field, or from a smoothed volume fraction field,
from a reconstructed distance function (similarly to what is done in Level-Set meth-
ods) are shown not to be converging, i.e., when refining spatial discretization, the
error compared to an exact solution is not decreasing (Cummins et al., 2005). On
the other hand, the height function method of Poo and Ashgriz (1989); Sussman
(2003) has shown to give satisfying results in both error levels and convergence order
providing that curvature is low enough compared to spatial resolution (Cummins
et al., 2005), i.e., that κ∆ < 1/5, with ∆ the cell size. Rotated height functions
have been developped to improve curvature computation of under-resolved interface
(Owkes and Desjardins, 2014). Another class of methods relies on approximating
the interface by a paraboloid and resolving a minimization problem to find its best
possible orientation, see for example Renardy and Renardy (2002). Such method is
found to be efficient for under-resolved interface, even though at the cost of solving
a non-linear optimization problem. Switching from height functions to paraboloid
approximations is a way to optimize curvature computation over a large range of
resolution.

In this work, we use a combination of the height function method of Popinet
(2009) and least-squares fits (in a way similar to Owkes et al. (2018)). More exactly,
if the height function method fails to provide a sufficient number of heights, we use
a least-squares fit of a paraboloid through the PLIC barycenters with weights based
on a Gaussian function of the distance to the interface times the PLIC surface area.

As we have detailed how we resolve mass conservation and obtain interfacial
quantities, we detail in the next section how we resolve momentum conservation
Eq. (2.15).
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2.4 Numerical methods: momentum advection

General algorithm

Resolving momentum conservation involves resolving the coupling between ve-
locity and pressure. A popular way to resolve this coupling is through a pressure
projection method (Chorin, 1968). In this work we use the incremental pressure
projection method of Goda (1979). This method is usually not used for multiphase
flows but we saw that, providing that an incremental approach was also used for
surface tension forces, this approach was not creating more errors than the classical
projection method, in addition of being approximately 30% faster.

Time is advanced through an iterative Crank-Nicolson scheme (Teukolsky, 2000)
with an implicit discretization of viscous effects and a semi-implicit discretization
of inertial effects. These choices are motivated by energy conservation and stability
properties (Desjardins et al., 2008a). In the following equations, superscripts n and
n + 1 refer to previous and new time steps, respectively, whereas subscript k refers
to the subiterations of the iterative Crank-Nicolson time advancement scheme. The
succesion of equations being resolved in the solver is as follow. Note that we remove
surface tension effects of the equations and detail how they are included in a following
subsection. First, a non-solenoidal velocity field, u∗k+1, is computed as

ρn+1
k+1u

∗
k+1 − ρnun

∆t
=−∇pn+1

k −∇ ·
(
ρnu

n+1/2
k ⊗

(
un + u∗k+1

2

))
+∇ ·

[
µn+1

(
∇
(

un + u∗k+1

2

)
+ ∇

(
un + u∗k+1

2

)∣∣∣∣T
)]

+ ρn+1
k+1g,

(2.20)

where the intermediate velocity field is

u
n+1/2
k =

1

2

(
un+1
k + un

)
. (2.21)

Then, a Poisson equation is solved for the pressure increment Φn+1 = pn+1
k+1 − p

n+1
k ,

∇ ·
(

∆t

ρn+1
k+1

∇
(
Φn+1

))
= ∇ · u∗k+1. (2.22)

Finally, the velocity and the pressure at the next time step are obtained using Φn+1,

un+1
k+1 = u∗k+1 −

∆t

ρn+1
k+1

∇
(
Φn+1

)
, (2.23)
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pn+1
k+1 = pn+1

k + Φn+1. (2.24)

Eqs. (2.20), (2.22) and (2.23)-(2.24) are refered to as estimation, projection, and
correction. ∆t is the time step size. In the case of multiphase flows, ρn and µn+1

values are computed from the old and new VOF field, respectively, whereas ρn+1
k+1 is

computed in a way that ensures consistency between mass and momentum transport,
see more details in the next subsection. All spatial derivatives, except the one used
in the convective term at the interface, are approximated using second order centered
schemes.

At any of the different steps, boundary conditions have to be provided. For more
details, we refer to chapter 4 of this manuscript and to Desjardins et al. (2008a).

Details on consistent mass and momentum advections

We give here some details on the strategy used to obtain consistent mass and
momentum advections. In order to simplify the explanation, the strategy is detailed
in the case of a one-dimensional advection.

As explained earlier, we use a staggered arrangement of the variables, see figure
2.2, where scalar quantities are stored at a different location than velocity compo-
nents, which may result in spurious interfacial momentum transfer when the coupling
between mass and momentum schemes is insufficient, see for example Vaudor et al.
(2017).

The staggered arrangement of the variables is illustrated on figure 2.5: cells i and
i − 1 are centered on the pressure location, whereas cell iu is centered on the axial
velocity location. The first step of the consistent methodology is to reconstruct a
density field where momentum is computed, i.e., at the velocity location. The liquid
volume fraction at the previous time step αn is known only in cells i and i− 1, but
interface position at time n can be used in order to obtain αnu, the old liquid volume
fraction in cell iu. α

n
u is then used to obtain the old density in the staggered cell ρnu.

The next steps are to compute the new staggered density field ρn+1
u,k+1, and to

enforce consistency between mass and momentum transport using appropriate nu-
merical schemes. To do this, we solve a new equation to obtain ρn+1

u,k+1,

ρn+1
u,k+1 − ρnu

∆t
+
∂ρnuu

n+1/2
k

∂x
= 0, (2.25)

before the estimation step,

ρn+1
u,k+1u

∗
k+1 − ρnuun

∆t
+
∂ρnuu

n+1/2
k u

n+1/2
k+1

∂x
= RHS, (2.26)
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Fig. 2.5 – Illustration of the staggering of the variables and of the strategy to obtain
consitant mass and momentum trasnport. Density and momentum fluxes have to
be reconstructed in the staggered cell iu. Extracted from Palmore and Desjardins
(2019).

where RHS represents all the terms on the right hand side of Eq. (2.20). The key
aspect of this treatment is that, at the interface, the advective fluxes in Eqs. (2.25)
and (2.26) must be discretized using the same operator. In our case ∂/∂x is approx-
imated using a first order upwind scheme. See Palmore and Desjardins (2019) for
more details. Note that viscosity is also computed using a staggered approach, and
is computed directly where the viscous fluxes are evaluated.

Inclusion of surface tension forces

As said previously, surface tension forces are expressed as Tσ = σκnΓδS. We
explained in a previous section how we compute κ. We now detail the way surface
tension forces are included into momentum conservation law

The product nΓδS can be expressed as the gradient of a Heaviside function H,
i.e.,

Tσ = σκnΓδS = σκ∇H, (2.27)

where different choices can be made for H, see Popinet (2018) for a review. In our
case we use the CSF approach (Francois et al., 2006) where H is equal to α.
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For u = 0, momentum conservation, Eq. (2.15), reduces to,

−∇p+ σκ∇H = 0, (2.28)

which, in case of constant σ and κ, further reduces to

−∇ (p− σκH) = 0. (2.29)

This equation has an exact solution, p = σκH + constant, that can be recovered
numerically only if the same discrete operator is used to evaluate the pressure gradient
and the gradient of H, i.e., if the formulation is well-balanced (Francois et al., 2006;
Popinet, 2018). A one-dimensional well-balanced formulation is therefore,

− pi+1 − pi
∆

+ (σκ)i+1/2

αi+1 − αi
∆

= 0, (2.30)

where the gradients are evaluated using the same centered scheme and where ∆ is
the cell size. Note that curvature has to be evaluated at the location i+ 1/2, i.e., the
location where gradients of pressure and α are evaluated. In our case, curvature is
evaluated at i+ 1/2 using a surface area wheighted interpolation from known values
in cells i and i+ 1.

In our solver, surface tension forces are included in the pressure gradient using an
incremental approach. In Eq. (2.20), −∇pn+1

k is thus replaced by −∇pn+1
k +(σκ∇α)n.

In Eqs. (2.22) and (2.23), the pressure increment gradient is completed by surface
tension forces, i.e., ∇Φn+1 is replaced by ∇Φn+1 + (σκ∇α)n − (σκ∇α)n+1.

Note that the interfacial boundary condition Eq. (2.12) contains a jump of normal
stress due to a jump in viscosity, and that Eq. (2.13) involves the continuity of tan-
gential stresses. In our approach, as viscosity is function of α (harmonic averaging),
the viscous term in momentum conservation law Eq. (2.15) already includes these
boundary conditions.

Conclusion on the flow solver

We have thus describe the main elements of the numerical solver used in the
present work. This solver has been extensively validated on a large collection of
configurations, from single-phase flows (Desjardins et al., 2008a) to airblast water
layer simulations (Agbaglah et al., 2017). This solver is exactly mass, momentum
and energy conserving within each phase while mitigating momentum and energy
conservation errors at the interface even in the presence of high density or viscosity
ratio, high shear or large exchange of kinetic energy.
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An open-source version of this solver, NGA2, upgraded with an object-oriented
structure that allows overlapping of multiple meshes and simulations, is now available
2.

2Source code available at https://github.com/desjardi/NGA2

https://github.com/desjardi/NGA2


Chapter 3

Stability of an air-water mixing
layer: focus on the confinement
effect

Abstract

The content of this chapter until the end of section 3.3 has been created
in collaboration with Prof. Jean-Philippe Matas (Univ. Lyon 1/LMFA). The
results of section 3.4 have been partially obtained by Samantha Pereira (Cornell
U.) during her undergraduate research project under my guidance.

3.1 Configuration

We study a wall-bounded air-water mixing layer corresponding to the configura-
tion studied experimentally in Matas et al. (2011). The description of the numerical
domain is presented in figure 3.1a). A slow liquid stream with velocity Ul, located
above a wall, is placed below a fast gas stream with velocity Ug. Liquid and gas
streams both have a finite thickness, Hl and Hg, respectively. The domain is 2D,
with a velocity field defined as u = (u, v), where u, v are the velocity components in
the x, y directions, respectively, with 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly.

We choose not to include the splitter plate separating the gas and liquid streams.
This has two advantages: firstly, we avoid the simulation of the contact line dynam-
ics on the splitter plate, which is expensive given the typical scales of the splitter
plate; secondly we retain full control over the shape of the initial velocity profile.
Linear stability (Matas, 2015; Otto et al., 2013) has shown that the details of the

55
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Fig. 3.1 – a) Sketch of the configuration. The deficit value δd controls the initial shape
of the velocity profile close to the interface. b) Typical picture of the flow displaying
the liquid-gas interface (blue line) and the velocity magnitude (gray scale).

velocity profile close to the interface and the finite thickness of the streams control
the transition between convective and absolute regime, as well as the transition from
confinement-induced to surface tension-induced absolute instability. In this study,
we compare the results obtained using simulations, i.e., a fully non-linear and global
approach that allows for the development of the base flow, and linear stability anal-
ysis, i.e., a highly idealized approach that performs a local analysis of a parallel base
flow subjected to infinitesimal perturbations. Both approaches are connected as the
inlet velocity profile in simulations is also used as the base flow in the linear stability
analysis.

The inlet velocity profiles are expressed as uin = u(x = 0, y) = (u(y), 0). The
expression of u(y) depends on the vertical position. For y ≤ Hl,

u(y) =

{
Ulerf

(
Hl − y
δl

)
+ Ui

(
1 + erf

(
y −Hl

δdδl

))}
× erf

(
y

δl

)
, (3.1)
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for Hl < y ≤ Hg +Hl,

u(y) =



{
Ugerf

(
y −Hl

δg

)
+ Ui

(
1− erf

(
y −Hl

δdδl

))}
× erf

(
Hg +Hl − y

δg

)
+ Usm

(
1 + erf

(
y − (Hg +Hl)

δg

))
,

(3.2)

and for y > Hg +Hl,

u(y) = Usm

(
1− erf

(
y − (Hg +Hl)

δg

))
+ Ucferf

(
y − (Hg +Hl)

δg

)
. (3.3)

In the previous expressions, δg is the gas vorticity thickness, δl is the liquid vortic-
ity thickness, δd is the dimensionless deficit parameter, Ui is the interfacial velocity,
Ucf = 0.1Ug is the co-flow velocity, and Usm = (Ucf + Ug)/2 is the single-phase mix-
ing layer velocity. The gas vorticity thickness is computed using the experimental
correlation given in Matas et al. (2011): δg = 6Hg/

√
ρgUgHg/µg. Note that, in the

following, when Hg is varied we do not vary δg but instead keep the value obtained
using the previous relation for Hg = 1 cm. The liquid vorticity thickness is constant
and equal to 5× 10−4 m. Following Otto et al. (2013), the interfacial velocity is de-
fined based on tangential stresses continuity, Ui = (Ugµg/δg +Ulµl/δl)/(µl + µg)δdδl,
with µl and µg the liquid and gas dynamic viscosities, respectively. The deficit pa-
rameter δd is used to control the magnitude of the interfacial velocity, therefore the
shape of the velocity profile around the liquid gas interface: if δd = 1, there is no ve-
locity deficit, while a reduction of δd will induce a decrease of the interfacial velocity,
as seen on figure 3.1a). This velocity profile only differs from the one used for linear
stability by the presence of a co-flow used to provide the mass entrained by the high
speed gas (as in da Silva and Métais (2002a)). Note that one will exactly recover the
velocity profiles used for linear stability analysis with Ucf = 0.

The inlet velocity profile described by Eqs. (3.1)-(3.3) is imposed at x = 0. Except
stated otherwise, a uniformely random perturbation of maximum amplitude ε = 10−5

m/s is introduced at the inlet on both components of the velocity in a band of width δg
around the interface. A convective outlet boundary condition is imposed at x = Lx
(Orlanski, 1976). The convective velocity used in that condition is taken as the
maximal speed in the vicinity of the outlet plane. The bottom boundary condition
at y = 0 is a no-slip wall, while the top boundary condition y = Ly is a slip wall. The
physical properties of air and water, as well as σ, the surface tension coefficient at an
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ρl ρg µl µg σ
(kg/m3) (kg/m3) (Pa · s) (Pa · s) (N/m)

1000 1.2 10−3 1.8× 10−5 0.072

Table 3.1 – Physical properties of air and water

Case
Ug Ul M Reg,Hg Rel,Hl

(m/s) (m/s) (−) (−) (−)

A1 22 0.50 2.32 14667 5000
A2 22 0.37 4.24 14667 3700
A3 22 0.26 8.59 14667 2600
B1 27 0.50 3.49 18000 5000
B2 27 0.37 6.39 18000 3700
B3 27 0.26 12.94 18000 2600

Table 3.2 – Summary of injection conditions and relevant non-dimensional parameters
for Hg = Hl = 1 cm.

air-water interface, are taken as constant throughout this study and are presented in
table 3.1. Gravity is taken into account, with g = (0,−9.81) m/s2 the gravity vector.
The numerical domain is discretized with a uniform cell size, ∆x = ∆y = δg/n, with
n to be specified later, for y ≤ 6Hl. In the upper part of the domain, the mesh
is progressively stretched in the vertical direction up to y = Ly = 1.3Lx using a
constant stretching ratio of 1.05.

All the combinations of injection velocities used in this paper, as well as relevant
non-dimensional parameters, are summarized in table 3.2 for the case where Hg =
Hl = 1 cm. The additional non-dimensional parameters presented in table 3.2 are the
gas stream Reynolds number, Reg,Hg = ρgUgHg/µg and the liquid stream Reynolds
number, Rel,Hl = ρlUlHl/µl.

Finally, the base flow for stability analysis is the inlet velocity profile, with Ucf =
0. The method used is the same as in Matas (2015). After superposition of a
perturbation to the base flow and linearization, the perturbations are expanded into
normal modes of the form ũ(k, y, ω)ei(kx−ωt), witk k and ω the complex wavenumber
and complex frequency, respectively. Gravity is taken into account. Integration of
the resulting equations with a Runge-Kutta method is carried out from the solid
wall in the liquid, and from a solid wall located at a distance Lg in the gas phase,
with Lg much larger than the stream thicknesses, namely Lg = 30 max(Hg, Hl). The
dispersion relation results from the connection of these integrated liquid/gas solutions
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at the interface via appropriate continuity of normal and tangential stresses.
The dispersion relation is solved for complex k using a shooting method, for fixed

complex ω. The absolute modes are then tracked using the Briggs criterion (Briggs,
1964): we look for a pinching between branches (controlled by shear, confinement or
surface tension) located in opposite sides of the k half-plane at large ωi, with ωi the
imaginary part of the complex frequency. Particularly, this pinching must occur at
positive ωi for the instability to be considered as absolute, and ∂ωr/∂kr, the group
velocity, is equal to zero at the pinching point, with ωr and kr the real part of the
complex frequency and wavenumber, respectively.

3.2 Stability of an air-water mixing layer

General description

A typical flow picture displaying the liquid-gas interface and the velocity magni-
tude is presented on figure 3.1b). Initially flat, the interface progressively deforms
into a wavy shape. The liquid strongly interacts with the high speed jet in the down-
stream part of the flow: the liquid jet gets thinner due to the transfer of momentum
from gas to liquid and flow rate conservation, but one can also see large amplitude
waves deviating the gas jet, as well as ligaments and liquid fragments pulled out
by the jet. The gas-gas mixing layer shows the triggering of a Kelvin–Helmholtz
instability. No recirculation is observed in the top part of the domain, showing that
the co-flow actually provides the mass entrained by the high speed jet. The vertical
position of the interface is sampled for all positions downstream of the inlet at a
frequency of 10, 000 Hz, allowing the study of the spatio-temporal development of
the instability.

On figure 3.2a), we show the spatial evolution of the wave amplitude, and on figure
3.2b) the spectrogram of the interface height for case A2, with n = 2 and δd = 1.
The wave amplitude is computed using the method presented in Matas et al. (2011):
for a given downstream position, we construct a histogram of the interface positions
over the sampling time and exclude the lowest and highest 0.5%. The remaining
width of the histogram is taken as the amplitude A of the waves. Several zones can
be distinguished. Focusing on figure 3.2a), one can see that for 20 ≤ x/δg ≤ 50, the
computed amplitude (◦) seems to increase exponentially with downstream distance,

A = A0e
kix, (3.4)

with, for figure 3.2a), ki = ki,exp = 323.2 m−1, where ki,exp is the value obtained
experimentally (Matas et al., 2011), as represented with a dashed line on figure
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3.2a).

This observation has to be taken cautiously. The stability analysis predicts that
the instability is absolute for these conditions, as seen on figure 3.3, where we see
the pinching between the confinement branch, located close to the ki axis, and the
shear branch. Non-linearity is therefore expected to quickly dominate. As the group
velocity at the pinching point is zero, the predicted spatial growth rate has no clear
meaning for the waves travelling downstream of the injector (Huerre and Monkewitz,
1990). This exponential growth zone has been seen experimentally and numerically
(Agbaglah et al., 2017; Ling et al., 2019). Figure 3.2a) shows that the wave growth
obtained numerically is in agreement with the wave growth observed experimentally.
The insert in figure 3.2a) shows that the zone of exponential growth rate is extremely
short, as seen in experiments.

The end of the previous zone occurs when the amplitude is on the order of the
vorticity thickness, as observed in experiments. For x/δg ≥ 75, the amplitude is
growing linearly with downstream distance, following well the self-similar model of
Hoepffner et al. (2011),

A = C0

√
ρg/ρlUgτ, (3.5)

with the characteristic time taken as τ = x/UD, as in Marty (2015), UD is obtained
using Eq. (1.18), and C0 is a model constant to be specified. This model is represented
by the continuous line in figure 3.2a).

On figure 3.2b), one can see the spatial evolution of the interface height spectra.
For each location downstream of the inlet, we obtain the interface height spectrum
and then normalize the spectral power by its local maximum. Note that we use
the Welch method (Welch, 1967) to facilitate the extraction of the most amplified
frequency, i.e., before taking its Fourier transform, we split the signal in 10 parts
with a 60% overlap between them, the resulting spectra are then averaged. The
most amplified frequency remains unchanged over a large extent of the domain and a
very clear peak is observed, in agreement with the absolute nature of the instability.
Close to the outlet, lower frequency peaks are appearing.

In the next section, we detail the influence of the numerical parameters and the
integration time on these results.

Assessment of the numerical methods

On figure 3.4a), we show the influence of integration time on the most amplified
frequency obtained at three downstream locations for two sets of injection conditions.
The most amplified frequency is presented as a function of the normalized duration of
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Fig. 3.2 – Spatio-temporal development of the instability for the case A2 with n = 2,
δd = 1. a) spatial evolution of the wave amplitude. ◦: computed wave amplitude,

: Eq. (3.4), with A0/δg = 3.8 × 10−4 and ki = ki,exp = 323.2 m−1, : Eq. (3.5),
with C0 = 0.21. The insert shows the same data in a log scale, with a zoom in on
the exponential growth region. b) spectrogram of the interface height. P∗ is the
normalized spectral power.

the signal ∆Tfth, with ∆T the signal duration and fth the predicted wave frequency
obtained by linear stability analysis. Note that the statistics are collected once the
averaged height is stabilized over time. One can see that as soon as ∆Tfth is larger
than 10, i.e., approximately 10 waves have been generated, the variations of the most
amplified frequency in time and space are of the order of the spectral resolution. This
is in agreement with the results of Agbaglah et al. (2017). For both cases, the most
amplified frequency is stable in time, and with the increase of spectral resolution all
measured frequencies become perfectly independent of the position, providing that
the latter is in the interval 25 ≤ x/δg ≤ 150. In order to reduce the uncertainty
on the frequency value an integration time of ∆Tfth ≥ 40 would be ideal, but this
choice will be more difficult to achieve for 3D simulations, or even very resolved 2D
simulations. The present analysis shows that even an integration time of ∆Tfth ∼ 10
is sufficient to obtain a good estimate of the frequency.

On figure 3.4b), we show the impact of domain length on the frequency spectra
for two sets of injection conditions. Our tests show that, for the cases of figure 3.4b),
the most amplified frequency is not affected by the position of the outlet boundary
condition once Lx/δg is larger than 240, which has been confirmed for other cases
(results not shown). We will therefore ensure that this condition is met for all cases.
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Fig. 3.3 – Case A2. Pinching between confinement and shear branches, at ωi = 30
s−1. The confinement branch is located close to the ki axis. The arrows indicate the
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On figure 3.5, we show the effect of resolution on the spatio-temporal development
of the instability for case B1 and two values of the deficit parameter. On figure 3.5a)
is presented the evolution of the frequency spectra with n (= ∆x/δg = ∆y/δg),
the resolution, for δd = 1. We see that, as the mesh is refined, the most amplified
frequency approaches the theoretical value. The error on the finest mesh, here n = 8,
is of only 4.6%, while the error for the coarsest resolution, n = 2, is of 12%. On
figure 3.5b) the convergence of the amplitude with mesh resolution for δd = 1 is
shown. From n = 2 (4) to n = 16 (+) the amplitude is mostly affected by the
resolution in the area close to the injector, where the amplitude is small. Far from
the inlet, i.e., x/δg ≥ 75, the amplitude is essentially not affected by resolution and
closely follows the self-similar model. Mesh resolution mostly affects the location at
which the amplitude reaches this self-similar region. This location is shifted closer
to the injector as the mesh is refined. Note that the amplitude is essentially not
modified between n = 8 and n = 16, meaning that we reach independence from
mesh resolution. Note also that, close to the injector, we do again see a zone of
exponential growth, with a slope equal to the one observed experimentally for these
injection conditions. As the mesh is refined, the transition between the inlet of the
domain and the zone of exponential growth progressively disappears, which is not
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Fig. 3.4 – (Color online) Dependence of frequency measurements on integration time
and domain length for n = 2, δd = 1. a) Spatio-temporal convergence of the most
amplified frequency. Blue: case B1, magenta: case A2. ◦: x/δg = 44, 4: x/δg = 67,
�: x/δg = 89. The error bars represent the spectral resolution. Horizontal dashed
lines: theoretical frequency for each case. b) Dependence of frequency spectra on
domain length for ∆Tfth = 40, x/δg = 89. Blue: case B1, magenta: case A2.
Continuous line: Lx/δg = 240, dotted line: Lx/δg = 320

the case in experiments (Matas et al., 2011) or simulations including a splitter plate
(Agbaglah et al., 2017; Ling et al., 2019).

On figure 3.5c), we present the evolution of the frequency spectra with mesh
resolution for δd = 0.5 and the same B1 case. Again, one can see that, as the mesh is
refined, the most amplified frequency converges towards the predicted value, but the
error on the finest resolution, n = 10, is still of 12%. The evolution of amplitude with
resolution for δd = 0.5 is shown on figure 3.5d). Similarly to the case without velocity
deficit, we can see that as the mesh is refined, the position at which the amplitude
enters the self-similar region is shifted towards the inlet. In the exponential growth
region, we are again in very good agreement with the slope measured experimentally
by Matas et al. (2011). Note that we do observe that the self-similar growth region
is affected by the reduction of δd as we had to increase C0 from 0.21 to 0.27 in order
to obtain a good agreement between the computed amplitude and Eq. (3.5) in the
downstream area. This is consistent with our observation of a decrease in the wave
speed with the decrease of δd (results not shown). This suggests, as already pointed
out by Marty (2015), that one needs to adjust the velocity scale used in Eq. (3.5) to
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Fig. 3.5 – (Color online) Effect of mesh resolution on the instability characteristics
for case B1 and two values of the deficit parameter. In the zone of interest, ∆x =
∆y = δg/n. All spectra are taken at x/δg = 67, with ∆Tfth ≥ 20. a) Convergence
of frequency with mesh resolution for δd = 1. The vertical dashed line represents the
corresponding theoretical frequency. b) Convergence of wave amplitude with mesh
resolution for δd = 1. : Eq. (3.4), with A0/δg = 0.016 and ki = ki,exp = 569.9 m−1,

: Eq. (3.5), with C0 = 0.21. c) Similar to a), with δd = 0.5. d) Similar to b), with
δd = 0.5, A0/δg = 0.046 and C0 = 0.27. Note that in b) and d), only 1 data point
every 6 is shown to enhance readability.



3.2. STABILITY OF AN AIR-WATER MIXING LAYER 65

the variations of the interfacial wave speed, therefore to the details of the velocity
profile, in order to obtain a good self-similarity of the wave amplitude.

Overall, we find that the influence of the velocity deficit δd is expensive to capture
and the systematic study of its influence on the simulation results is left to future
work. For the rest of this work, we will only consider the δd = 1 case in simulations.
Nonetheless, we wish to comment on the reason for this difficulty. As pointed out
by Otto et al. (2013), and seen on figure 3.1a), the presence of an interfacial velocity
deficit induces the presence of a minimum in the velocity profile, in our case on the
liquid side, around which the shear changes sign. Depending on the value of δd and
other injection parameters, this minimum can move very close to the interface. In
our case this minimum is located at a distance of 238µm from the interface, hence
a distance twice smaller than the vorticity thickness. Reducing δd or M can make
this minimum move even closer to the interface (Otto et al., 2013). The position of
this minimum and the associated shear are very expensive to capture in simulations,
hence the difficulty to capture the effect of δd. Unlike the case of convective modes
presented in Bagué et al. (2010), we do not observe the presence of extremely sharp
variations of the eigenfunctions associated with the mode of instability, as can be
seen on figure 3.6, where we show |Ψ|, the norm of the stream function computed
by the stability analysis for case B1 and for two values of δd: δd = 1 (dashed line)
and δd = 0.5 (continuous line), as a function of the vertical coordinate. The stream
function is related to the vertical velocity perturbation: ∂Ψ/∂x = ṽ(k, ω, y)ei(kx−ωt).
No significant difference is observed between both cases, except a slightly higher value
of |Ψ| in the gas stream for δd = 1. Thus, we think that the difficulty associated with
the resolution of the velocity deficit is solely due to the difficulty of resolving the
velocity minimum position and the associated shear, rather than to an increase in
the eigenfunctions sharpness. Note that this comment only applies to confinement-
induced absolute modes which occur at low wavenumbers (Matas, 2015).

This mesh convergence study shows that, focusing on the case where no interfa-
cial velocity deficit is introduced, a resolution n = 8 allows a converged amplitude
and a very low error on the frequency value. We will therefore choose this resolu-
tion in section 3.2 where we will compare simulation results obtained for all cases
presented in table 3.2. However, the previous mesh convergence study also shows
that a resolution n = 2 leads to an acceptable error on the frequency, as well as an
amplitude that follows the self-similar growth model. We will therefore choose n = 2
in section 3.3, devoted to the analysis of the effect of confinement on the stability of
the flow.

We have thus established the performance and the limits of our numerical meth-
ods, which could be useful for the development and validation of future methods. We
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Fig. 3.6 – Absolute value of the stream function eigenfunction for case B1 with
Hg = Hl = 1 cm. Dotted line: δd = 1 (k = 140 + 170i m−1, ω = 209 + 30i s−1),
continuous line: δd = 0.5 (k = 135 + 195i m−1, ω = 272 + 35i s−1). Red: liquid side,
blue: gas side. The horizontal axis is rescaled so that the y = 0 location corresponds
to the interface location.

now switch to the use of the solver to demonstrate convergence between simulations,
linear theory, and experiments on confinement-induced absolute modes.

Convergence between simulation, linear theory, and
experiments

On figure 3.7a), we show the evolution of the most amplified frequency obtained
numerically, for n = 8 (◦) and n = 2 (∗), as a function of the dynamic pressure ratio
and for all cases of table 3.2. We plot the numerical results along with the most am-
plified frequency obtained with linear stability analysis (4). For all cases of table 2,
the stability analysis predicts that the instability is absolute, driven by a resonance of
the shear instability within the confined streams (confinement mechanism). We also
add for reference the experimental results of Matas et al. (2011) (�). We do see that
the comparison between simulation and linear stability analysis is very satisfactory,
with a level of error varying between 0.5% and 14% on the finest resolution, and
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Fig. 3.7 – (Color online) a) Most amplified frequency of the interface height signal as
a function of the dynamic pressure ratio for all cases of table 3.2. �: experimental
results (Matas et al., 2011), 4: linear stability analysis results, ∗: simulation results
with n = 2, ◦: simulation results with n = 8. b) Spectrogram of the interface height
signal for case A1, with n = 8. The horizontal magenta line represents the predicted
wave frequency.

between 8% and 21% on the coarsest. Moreover, the comparison with experiments
is very favorable.

This is a significant result because it shows that, while the level of error may
vary between cases, we do observe convergence between simulation, linear stability
analysis and experiment on cases where the instability is triggered by confinement.
The inclusion of the finite thickness of liquid and gas streams in the stability analysis
has been shown to allow the convergence between experiments and linear stability
analysis (Matas, 2015; Matas et al., 2018), here we do confirm for the first time
its impact through simulations. Our work is therefore highly complementary to the
one presented in Fuster et al. (2013), which showed convergence between simulation,
linear stability analysis, and experiments on surface tension-induced absolute insta-
bilities. In section 3.3, we will give further evidence of the destabilizing influence of
confinement.

In figure 3.7b), we show a spectrogram of the interface height signal for case A1
with n = 8. One can see that the most amplified frequency is not perfectly constant
with downstream distance, but that it matches the theoretical value for more than
half of the spatial locations. We can thus question the appearance of such small spa-
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tial variations of the most amplified frequency. A possibility would be to question the
local or global nature of the mode of instability (Huerre and Monkewitz, 1990). The
frequencies predicted by linear stability analysis correspond to the stability property
of the inlet velocity profile, but do not give the information of whether the predicted
absolute mode is local or global. However, it is observed experimentally that the most
amplified frequency does not vary with downstream distance (Matas et al., 2011),
i.e., that the absolute mode is global. We observed in our simulations that those
spatial frequency variations are increasing with resolution. Therefore, we postulate
instead that this is an effect of the 2D nature of the simulation, and particularly of
the 2D nature of the turbulence. Note that a decrease of frequency with downstream
distance has already been observed for similar 2D configurations with moderate den-
sity ratios, and was attributed to vortex pairing (Fuster et al., 2009) or wave merging
(Valluri et al., 2010). A way to improve the understanding of spatial frequency varia-
tions would be to perform a mesh convergence in 3D under experimental conditions,
but this task is made difficult by its very high computational cost.

In figure 3.8, we present a comparison of the wave amplitude evolution for the
cases of table 3.2. In figure 3.8a), one can see that for all cases studied, the amplitude
follows a similar evolution as the one described in section 3.2. The main differences
in terms of amplitude are found for x/δg ≤ 50, where we see that, for the range
of injections conditions under study, the amplitudes are sorted with the dynamic
pressure ratio, as detailed by the insert in figure 3.8a). This effect of the dynamic
pressure ratio on the near injector amplitude is coherent with the creation of a
potential liquid cone that shortens with M (Raynal, 1997). Downstream of this
zone, the amplitudes are closer to each other, but clearly follow a linear growth with
downstream distance, as predicted by Eq. (3.5). To further examine this zone of
linear growth, we present on figures 3.8b) and 3.8c) the evolution of the amplitude
at fixed gas Reynolds number, Reg = 14667 and Reg = 18000, respectively, and
for the three values of the liquid Reynolds number used in this study. On both
of those figures, we add the self-similar growth model, Eq. (3.5), for comparison.
The agreement with simulation results is very good. Remarkably, C0 is constant for
all plots, and the differences in the slopes are only due to the change in injection
conditions, showing a clear self-similarity of the wave amplitude. This was not the
case in the experiments of Marty (2015), where C0 had to be adjusted to fit the
experimental results. This is consistent with our observation of section 3.2: when
the wave speed changes, some corrections have to be applied to the velocity scale used
in Eq. (3.5). Since all the cases simulated in this section correspond to confinement-
induced absolute modes, the wave velocity is close to UD, which is in agreement with
the inviscid mechanism driving the instability (Matas, 2015), therefore no correction
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Fig. 3.8 – (Color online) Comparison of wave amplitude for all cases of table 3.2, for
n = 8. ◦:A1, ◦:A2, ◦:A3, ◦:B1, ◦:B2, ◦:B3. a) evolution of the amplitude for all 6
cases. The insert shows the same data with a zoom in on the inlet area. b) Evolution
of the amplitude for Reg = 14667. c) Evolution of the amplitude for Reg = 18000.
In b) and c), the solid lines correspond to the self-similar growth model, Eq. (3.5),
with the same color code as the symbols and C0 = 0.21. d) �: evolution of the
position of entry in the non-linear regime as a function of the dynamic pressure ratio
for all cases of table 3.2. The dashed black line corresponds to a 1/M scaling. The
insert shows the same data plotted as a function of the gas Reynolds number with
�: Rel = 2600, ×: Rel = 3700, 4: Rel = 5000. Note that in a), b) and c), only 1
data point every 6 is shown to enhance readability.
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is needed in the self-similar growth model.
In figure 3.8d) we present the position of entry in the self-similar region as a

function of the dynamic pressure ratio. For the range of injection conditions studied
here, one can see that the position of entry in the self-similar zone appears to scale
as 1/M . We also plot this position as a function of the gas Reynolds number, which
shows that the impact of the liquid Reynolds number increases when the gas Reynolds
number is reduced. Note that, in figure 3.5d), one can observe that the decrease of
δd seems to induce an earlier entry in the non-linear growth region.

In summary, we have demonstrated the agreement between linear theory, sim-
ulations, and experiments on wave frequency value in case of confinement modes,
which validates the role of confinement in the stability of an air-water mixing layer.
We have also shown the consistency between simulations and experiments on wave
growth.

3.3 Exploring the effect of confinement

In this section we explore in greater details the effect of gas and liquid stream
confinement on the stability of the flow. We first prove that confinement is indeed one
of the mechanisms driving the transition between convective and absolute instabilities
(along with the interfacial velocity value). We then discuss the effects of confinement,
symmetric or non-symmetric, on the characteristics of the instability. For this part,
we exclusively study cases A1 and B2. All parameters but Hg and Hl are kept
constant and equal to the values used in the previous section. In particular, note
that the gas vorticity thickness δg is kept constant equal to its value obtained for
Hg = 1 cm.

Convective/absolute transition

As already said in the introduction, convectively unstable flows behave as noise
amplificators, i.e., the response of the system depends on the injected perturbations,
whereas absolutely unstable flows behave as oscillators, i.e., the response of the sys-
tem does not depend on the injected perturbations (Huerre and Monkewitz, 1990).

In order to apply those notions to our study, we first focus on case B2, with
Hg = Hl = H, i.e., a symmetric confinement. We study two values of H, namely
H = 1 cm and H = 0.25 cm. We show on figure 3.9 that the flow is predicted by
linear stability analysis to be absolutely unstable for H = 1 cm (•), and convectively
unstable for H = 0.25 cm (∗). In case of absolute mode, a pinching occurs at low
wavenumber (and positive ωi) between confinement and shear branches. For the
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Fig. 3.9 – Spatial branches for case B2. H = 1 cm (•) and H = 0.25 cm (∗).

convective mode, the most unstable mode of the shear branch, corresponding to the
largest |ki|, is located at a higher wavenumber. For H = 0.25 cm (∗), the confinement
branch can be seen close to the imaginary axis but no pinching occurs with the shear
branch.

On figure 3.10, we examine the spectrograms of the instability for these two
values of H and different injected perturbations. We choose a uniformely random,
low-amplitude perturbation (figure 3.10a) and b)), as in the previous section, and a
deterministic perturbation f ′ = 10−3 sin(2πfpertt) (figure 3.10c), d), e) and f)), with
fpert, the perturbation frequency to be specified later.

One can see that when the mode is predicted to be absolute (H = 1 cm, left
column of figure 3.10), the spectrograms are barely modified by the injected pertur-
bations. The injected deterministic perturbation can be seen on figures 3.10 c) and
e), only very close to the inlet (x/δg ≤ 5). Further downstream, the flow has its own
dynamic, and the most amplified frequency and its variations are not affected by the
injected perturbation.

On the other hand, when the mode is predicted to be convective (H = 0.25 cm,
right column of figure 3.10), the spectrograms look very different depending on the
injected noise. In the case of a random, low-amplitude perturbation, shown in figure
3.10b), the most amplified frequency is more difficult to extract as it varies spatially.
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Fig. 3.10 – (Color online) Noise amplificator versus oscillator behaviour. Case B2,
n = 2. Spectral resolution is 0.56 Hz for all spectrograms. a), c), e): H = Hg = Hl =
1 cm and b), d), f): H = Hg = Hl = 0.25 cm. a) and b): random noise of amplitude
10−5. c), d), e) and f): deterministic noise of amplitude 10−3 and fpert = 15; 40; 60; 80
Hz for the cases c), d), e) and f), respectively. The color scale corresponds to the
normalized spectral power.
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This behaviour had already been seen in Fuster et al. (2009), where it is also said
that for the case of convectively unstable flows, the comparison between local linear
stability analysis and simulations has to be restricted to the linear growth region,
i.e., where the linear stability analysis makes sense. In this area, around x/δg = 25,
the most amplified frequency is of 73 Hz. Further downstream, the most amplified
frequency is progressively decreasing. For the cases with a deterministic perturbation
injection, shown in figures 3.10d) and f), one can see that the forcing frequency is
the most amplified in more than half of the domain, showing that the stability of the
flow does actually depend on the injected perturbation.

Another way to illustrate that we capture a convective/absolute transition driven
by confinement is by constructing a spatio-temporal diagram of the interface height,
also called Hovmöller diagram, as used in Odier et al. (2015, 2018). As shown
on figure 3.9, in the confinement-induced absolute mode, the pinching point occurs
at a low wavenumber, whereas in the case of convective mode, the most amplified
wavenumber is much higher. This difference can also be seen through the Hovmöller
diagram of the instability. On figure 3.11, we show, for case B2 and a random
inlet forcing, two spatio-temporal diagrams of the interface height for the same time
window and two values of H: H = 1 cm (left) and H = 0.25 cm (right). One can
see that the main difference between both plots is in the wavelength. The waves are
much shorter for H = 0.25 cm than for H = 1 cm which is consistent with the much
larger predicted wavenumber for these conditions.

Acccording to the energy budget presented in Matas (2015), the absolute mode
induced by confinement is driven by inviscid stresses, whereas the convective mode
is driven by viscous stresses. This difference can also be seen by examining the
effect of H on the wave speed. On figure 3.11, we add on both plots a magenta line
corresponding to a wave speed equal to UD. For H = 1 cm (left figure), this value is
in agreement with the numerical result, which may be interpreted as an argument in
favour of an inviscid mechanism, as suggested by Matas (2015). On the other hand,
for H = 0.25 cm (right figure), the agreement between the numerical results and UD
is less favourable.

These three previous arguments (noise amplificator versus oscillator behaviour,
wavenumber value, and wave speed) demonstrate that the transition from convective
to absolute mode is indeed induced by confinement, as predicted by linear stability
analysis, and is fully captured numerically.



74
CHAPTER 3. STABILITY OF AN AIR-WATER MIXING LAYER: FOCUS ON

THE CONFINEMENT EFFECT

0 50 100 150 2001

1.05

1.1

1.15

1.2

x/δg

t[s
]

0.8

1

1.2

1.4

a) h/Hl

0 50 100 150 2001

1.05

1.1

1.15

1.2

x/δg

t[s
]

0.8

1

1.2

1.4

b) h/Hl

Fig. 3.11 – (Color online) Spatio-temporal diagrams of the interface height. Case B2,
n = 2 with a low amplitude random forcing at the inlet. a) H = Hg = Hl = 1 cm.
b) H = Hg = Hl = 0.25 cm. The magenta line corresponds to a wave speed equal to
UD, i.e., Uφ = UD = 1.30 m/s.

Effect of confinement on the stability of the flow

In the previous section we confirmed the transition between convective and ab-
solute modes due to flow confinement. We now study the impact of confinement,
symmetric or not, on the characteristics of the instability, i.e., frequency and ampli-
tude. We remind the reader that we focus on cases A1 and B2, where we only vary
the thicknesses of the gas and liquid streams, Hg and Hl, respectively, while keeping
all other parameters constant. We first start by considering the effect of H for a
symmetric confinement, Hg = Hl = H, on the most amplified frequency, shown in
figure 3.12.

First, one can observe that the overall agreement between linear stability analysis
and simulations is very satisfactory, in convective as well as in absolute regimes.

One can observe that, when reducing H, case A1 (M = 2.32) presents a transition
from absolute to convective regimes for H between 0.75 cm and 1 cm. On the other
hand, case B2 (M = 6.39) presents the same behaviour for H between 0.25 cm and
0.35 cm. These results suggest that the transition from convective to confinement-
induced absolute instabilities does depend on the injection condition, i.e., the value
of M , as well as on the confining geometry. In other words, when increasing M , the
flow may be absolutely unstable for a larger range of stream thicknesses.

On figure 3.13, we show the evolution of the most amplified frequency in the case
of non-symmetric streams, i.e., we keep one stream thickness constant while varying
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Fig. 3.12 – (Color online) Case of a symmetric confinement: effect of H on the most
amplified frequency. n = 2. a) ◦: simulation results for case A1, b) ◦: simulation
results for case B2. In both plots the triangles correspond to the frequency predicted
by linear stability, with an open symbol for a convective mode and a filled symbol
for an absolute mode due to confinement. Spectral resolution is of 0.56 Hz for all
simulation results. Dashed lines correspond to a 1/H scaling.

the other one. In figure 8 of Matas (2015), it is shown through stability analysis that
both thicknesses have symmetric effects on the location of the pinching point, which
may be surprising as a flow with a thin gas stream and a large liquid stream could
seem very different from a flow with a thick gas stream and a thin liquid stream.
Here we do confirm this symmetric behaviour through simulations: one can see on
figure 3.13 that in most cases, the results for Hg = 1 cm, Hl = H (symbols ◦ and
◦) and Hg = H, Hl = 1 cm (symbols � and �) are in agreement. For H ≤ 1 cm,
the most amplified frequencies are very similar to the ones presented on figure 3.12
for the case of symmetric streams, i.e., Hg = Hl. Above H = 1 cm, and in case of
absolute mode, the most amplified frequency appears to be constant with H, which
is not the case for a symmetric confinement (see figure 3.12).

For case A1, Hg = 1 cm and Hl = 2 cm, as well as for Hl = 1 cm and Hg = 2
cm, the mode is predicted to be convective, hence the high value (71 Hz) for the
frequency predicted by linear stability analysis, whereas for both non-symmetric cases
we find numerically a resonance at low frequency (26 Hz). Compared to the case of
a symmetric confinement, the fact that a non-symmetric confinement may favour a
transition to a convective instability is explained by a decrease in the absolute growth
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Fig. 3.13 – (Color online) Case of a non-symmetric confinement: effect of H on the
most amplified frequency. n = 2. a) case A1, ◦: simulation results with Hg = 1
cm and Hl = H, �: simulation results with Hg = H and Hl = 1 cm, b) case B2,
◦: simulation results with Hg = 1 cm and Hl = H, �: simulation results with
Hg = H and Hl = 1 cm. In both plots the triangles correspond to the frequency
predicted by linear stability for Hg = 1 cm and Hl = H, with an open symbol for a
convective mode and a filled symbol for an absolute mode due to confinement. The
spectral resolution is of 0.56 Hz for all simulation results. Dashed lines correspond
to a 1/min(Hg, Hl) scaling.

rate at the pinching point. Indeed, for this case, the pinching between shear and
confinement branches occurs at a frequency of 26 Hz, i.e., the value found numerically,
but at an absolute growth rate of −20 s−1. The predicted instability can therefore not
be considered as absolute and the value retained for the prediction is therefore that
corresponding to the largest |ki|, namely 71 Hz. This discrepancy between numerics
and linear stability analysis in the transition from convective to absolute modes may
be due to numerical errors (Cossu and Loiseleux, 1998).

Note again that the linear stability results presented in figure 3.13 correspond
to the case Hg = 1 cm and Hl = H, as the symmetric case gives the same result,
which has been carefully checked, see also figure 8 of Matas (2015). Even though we
simulate extremely small injectors (H = 1.5 mm), we do not observe the occurence
of a jetting/driping transition, i.e., a transition to an absolute regime driven by the
reduction of the liquid Weber number (Clanet and Lasheras, 1999). This may occur
for lower liquid velocities, smaller liquid injectors, or for a co-axial atomizer. In such
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Fig. 3.14 – (Color online) Effect of confinement on the amplitude for case B2 with
n = 2. a) Effect of the reduction of H for a symmetric confinement (Hg = Hl = H).
+: H = 2 cm, ◦: H = 1 cm, ◦: H = 0.5 cm, 4: H = 0.25 cm, �: H = 0.15
cm. b) Evidence of the non-symmetric effect of the gas and liquid thicknesses on the
amplitude. ◦: Hl = Hg = 1 cm, ◦: Hg = 0.15 cm and Hl = 1 cm, 4: Hl = 0.15 cm
and Hg = 1 cm, �: Hl = Hg = 0.15 cm. In both plots, only 1 data point every 4 is
shown to enhance readability. : Eq. (3.4), with A0/δg = 0.0003 and ki = 614.6m−1.

: Eq. (3.5), with C0 = 0.21. : Eq. (3.5), with a): C0 = 0.045, and b): C0 = 0.032.

regime one may loose the symmetry of the role played by gas and liquid thickness.

One important observation is that the gas stream thickness, Hg, has its own
effect on the instability via the triggering of this absolute instability. It does not
only affect the instability through its effect on the gas vorticity thickness δg, unlike
what has been observed in Matas et al. (2011) based on the results of Ben Rayana
(2007). However, both effects are related in the experiments and controlling one
independently of the other may not be technically feasible.

On figure 3.14, we present the effect of confinement on wave amplitude. We
start by studying on figure 3.14a) the effect of a reduction of H for a symmetric
confinement, from H = 2 cm (+) to H = 0.15 cm (�). One can see that the
reduction of H induces a global decrease of the amplitude in the downstream region.
The growth close to the inlet, i.e., x/δg ≤ 25, does not seem to be affected until the
amplitude is on the order of the gas vorticity thickness. Further downstream, the
lower the value of H, the earlier the amplitude seems to depart from the self-similar
growth model, and stabilize up to a constant value increasing with H.

To clarify the effect of each stream thickness on the wave amplitude, we present
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on figure 3.14b) the effect of a reduction of Hg only (◦), Hl only (4), and both (�).
One can see that, although the effect of both stream thicknesses on the frequency is
symmetric, the effect on the amplitude is non-symmetric. It seems that the decrease
in amplitude observed in figure 3.14a) between H = 2 cm (symbol +) and H = 0.15
cm (symbol �) is mainly due to the decrease of Hl since the same decrease is observed
when only Hl is reduced (symbol 4 in figure 3.14b). It also seems that when Hl only
is reduced, the growth is slower in the region close to the injector, which agrees with
the experimental observations of Marty (2015).

Similarly, the departure from the self-similar model seems to be due to the re-
duction of Hg. Following the derivation of the self-similar model in Hoepffner et al.
(2011), the amplitude increase is due to the aerodynamic suction created by the
acceleration in the gas stream above the wave. When the wave amplitude becomes
large compared to the gas stream, there is no longer a sufficient acceleration to induce
wave growth.

Scaling law for confinement modes

The destabilizing effect of confinement has been demonstrated and explored by
means of numerical simulations and linear stability analysis in previous subsections.
In Matas et al. (2018), a scaling law derived from the linearized equations was pro-
posed for the wave frequency in confinement-induced absolute modes,

f ∼

√
ρg
ρl

δl
δg
Ug + Ul

L
, (3.6)

where L is a characteristic length related to the confinement. This scaling has recently
been found to account very well for the effect of the nozzle size in experiments on a
co-axial configuration (Singh et al., 2020). Eq. (3.6) predicts a linear evolution of the
frequency with the liquid velocity, which has been observed experimentally (Matas
et al., 2011; Singh et al., 2020). In the case of large gas velocity, δg � δl, and for δg
varying as U

−1/2
g , the frequency is proportional to U

5/4
g , which is close to the scaling

predicted by inviscid theory (Raynal, 1997; Marmottant and Villermaux, 2004), see
section 1.1. Note that the scaling of Eq. (3.6) is only valid for absolute modes due
to confinement.

In order to compare our results to the scaling of Eq. (3.6), we add lines en-
hancing the scaling of the frequency with H in absolute regimes on figure 3.12. In
confinement-induced absolute regime, we find that the most amplified frequency fol-
lows a ∼ 1/H scaling in the case of symmetric confinement. For Hg 6= Hl, as seen
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in figure 3.13, it seems that the frequency scales with the most restrictive confining
length, i.e.,

f ∼ 1/min(Hg, Hl). (3.7)

Thus, our results match very well with the scaling of Eq. (3.6) and we evidence that
L is of the order of the smallest injector size. This is different from what has been
observed experimentally by Delon et al. (2018) for a co-axial geometry, where the
frequency is found to always scale with 1/Hl. The shear branch being barely affected
by the value of H, frequency is expected to be independent of the confining size in
the convective regime.
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3.4 Transition from primary to secondary

instability

As said in the first chapter of this thesis, liquid ligaments generation is mainly due
to a Rayleigh-Taylor instability triggered by liquid acceleration under aerodynamic
stresses induced by gas jet. In order to go further in the study of the stability of an
air-water mixing layer, by extracting informations about ligaments generation while
keeping computational time to a reasonable level, we carry two studies. The first
one is dedicated to a “classic” Rayleigh–Taylor instability and allows us to define a
resolution requirement to accurately simulate such instability. The second study is
focused on wave acceleration measurements, in the configuration studied previously,
which are then compared to experimental results.

Rayleigh–Taylor instability

We study here the ability of our solver to predict the temporal growth of a“classic”
Rayleigh–Taylor instability where a liquid layer of density ρl is located above a fluid
of density ρg. Viscosity is not taken into account. Surface tension is the same
as in the air-water case (see table 3.1 for physical properties values). At t = 0,
the interface between both fluids is perturbed by a cosinusoidal deformation of low
amplitude β, namely β = 10−4 m. λrt = 2π/kr is the perturbation wavelength.
Gravity is taken into account and is oriented from top to bottom. Application of
linear stability analysis methodology to this problem leads to the following dispersion
relation (Charru, 2012)

(ρl + ρg)ω
2 −

(
(ρg − ρl)gkr + k3

rσ
)

= 0, (3.8)

where g = 9.81 m/s−2 is the gravity acceleration norm. For a temporal resolution, ω
is complex and finding the roots of Eq. (3.8), solved for ω, depending on the different
parameters values gives informations on flow stability.

For ρg > ρl, the roots are reals and there is no temporal amplification of pertur-
bations.

For ρl > ρg, several cases can be distinguished. For kr > lc, with lc =
√
σ/(g|ρl − ρg|)

the capillary length, or cut-off length, the roots are reals and the perturbation is not
amplified. In this case, the destabilizing effect of gravity is damped by the restoring
effect of capillarity. For kr < lc, the roots are purely complexes and the unstable
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Fig. 3.15 – Rayleigh–Taylor instability: comparison of growth rate predicted by linear
stability analysis to growth rate obtained by numerical simulation for different mesh
resolutions.

mode grows with a rate

τrtωi =

√(
ρl − ρg
ρl + ρg

)
krlc (1− k2

r l
2
c), (3.9)

with τrt =
√
lc/g the characteristic time. In order to confront our numerical results

to the previous prediction, we simulate this configuration on a numerical domain
of size 0 ≤ x ≤ λrt, 0 ≤ y ≤ 10λrt, discretized with a uniform cell size ∆ to be
prescribed. The growth rate is obtained from the temporal evolution of interface
position by least-squares minimization. Physical properties correspond to the air-
water case with zero viscosities.

Results are shown in figure 3.15, where we compare temporal growth rate obtained
numerically for different resolutions and wavenumbers to the prediction of Eq. (3.9).
One can see that for λrt/∆ = 8, i.e., when resolution corresponds to eight cells per
wavelength, growth rate is accurately captured for the smallest wavenumbers but
not close to cut-off length. This might be due to errors in curvature computation.
With such a resolution, waves smaller than cut-off length are amplified in time. As
soon as the resolution corresponds to λrt/∆ = 16, the error on the cut-off length is
of less than 5%. With λrt/∆ = 32, the growth rate obtained numerically matches
the prediction. We should therefore recommand a resolution λrt/∆ = 16 for accurate
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simulation of such instability. Note that better curvature computation methods could
lead to better numerical prediction of growth rate close to cut-off length with lower
resolution.

One can compare the value λrt/∆ = 16 obtained by the present analysis to the
resolution used previously for primary wave simulations. We remind that for primary
wave simulations, resolution was taken as a function of gas vorticity thickness with
∆ = δg/n. One therefore obtains n = 16δg/λrt. From Ben Rayana (2007), the
relation between Sauter Mean Diameter D32 and transverse wavelength is D32 ≈
0.1λrt. The Sauter diameter of a particle is the diameter of a sphere that has the
same volume to surface ratio as the particle under study (in our case a water droplet).
The Sauter Mean Diameter (SMD) is one of the quantities used to characterize the
performance of an atomizer. n can thus be estimated as

n ≈ 1.6δg/D32. (3.10)

The quantity D32/δg is available from drop sizes measurements of Marty (2015).
For Hg = Hl = 1cm, M = 16 and Ug in the range [20; 60] m/s, one obtains n
in the range [1.56; 9.45], with n increasing quadratically with Ug. For cases without
velocity deficit, n = 8 allows resolution of primary wave as well as of Rayleigh–Taylor
instability. In the instability cascade, wave acceleration is induced by aerodynamic
stresses. One can therefore wonder how to measure this acceleration and which
resolution is needed to correctly capture it. The following section gives some first
attempts in this direction.

Note that the results presented in the present section do not include viscous ef-
fects. For the air-water case, viscous effects are negligible. We also carried a valida-
tion of the numerical solver for cases where viscous effects are important (results not
shown) that confirmed the conclusion drawn above concerning the minimal resolution
to accurately resolve the “classic” Rayleigh–Taylor instability. The only additional
difficulty induced by the presence of viscous effects is that additional restrictions
must be applied on the simulation time step (even with an implicit resolution of
viscous terms) so that viscous errors are not amplified in time.

Wave acceleration

As said previously, we give here the result of our explorations concerning wave
acceleration measurements and the comparison of numerical results to models and
experimental results. The configuration used for numerical simulations is the one
described in section 3.1 (viscous effects are included). The dynamic pressure ratio is
kept equal to 4 and gas and liquid velocities are varied in order to change the Weber
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number based on gas vorticity thicknessWeδg = ρg(Ug−UD)2δg/σ. Quantities related
to secondary instability are classicaly presented as a function of Weδg (Marmottant
and Villermaux, 2004; Varga et al., 2003; Ben Rayana, 2007; Marty, 2015).

Acceleration measurements could be done in many different ways, e.g., direct
computation of a Lagrangian acceleration field or seeding of the interface with marker
points. Here we rather use a simple strategy based on spatio-temporal diagrams of
interface height. In section 3.3, these diagrams are constructed using the lowest
interface position, i.e., if along the vertical direction at a given downstream position,
several interfaces are found, interface position is taken as the vertical coordinate of
the lowest interface. If, on the other hand, one uses the third interface position as
interface height in case of multiple interfaces, one can follow the dynamic of the thin
liquid sheet formed by wave crest under aerodynamic stresses.

An example of spatio-temporal diagram obtained with such method is shown
in figure 3.16a). One can see that in the downstream area, i.e., x > 80δg, some
paraboloids are appearing. These paraboloids correspond to an acceleration in the
x direction, which is the source of transverse instability. The acceleration is then
measured by fitting a two-dimensional paraboloid onto the diagram each time such
acceleration is seen. No efficient way to automatize paraboloid extraction and fitting
operation has been found. These operations are simply done by arbitrarily picking up
three points coordinates on the paraboloid, whose coefficients are then found by linear
system resolution. This operation is repeated for a large number of waves (usually
between 20 and 30) until the averaged acceleration 〈a〉t does not exhibit variations of
more than 10%. Repeating this process for different injection conditions and injector
geometries with a moderate resolution (n = 2), we obtain the results presented in
figure 3.16b).

The acceleration is found to increase with Weδg , and a decrease of Hl induces an
increase of wave acceleration. One can estimate the transverse wavelength λT as the
most amplified wavelength of Rayleigh–Taylor instability, i.e.,

λT = 2π

√
3σ

ρl〈a〉t
. (3.11)

As D32 ≈ 0.1λT (Ben Rayana, 2007), one can therefore compare D32/δg estimated
from acceleration measurements to the experimental results of Marty (2015), as
shown in figure 3.16c). One can see that the results seem closer to the We−1

δg
scal-

ing than to We
−1/2
δg

scaling, and that values obtained for D32/δg from acceleration
measurements are slightly higher than experimental values.

Acceleration was found to increase with mesh resolution, thus inducing a re-
duction of estimated D32/δg, but its variations from one wave to another were also



84
CHAPTER 3. STABILITY OF AN AIR-WATER MIXING LAYER: FOCUS ON

THE CONFINEMENT EFFECT

0 50 100 150 200

0.58

0.6

0.62

x/δg

t[s
]

1

1.2

1.4

a) h/Hl

100 101 102101

102

103

104

105

Weδg

〈a
〉 t

[m
/s

2 ]

Hl = 10 mm
Hl = 6 mm

b)

100 101 10210−1

100

101

Weδg

D
32
/δ
g

num
exp
7We−1

δg

4We
−1/2
δg

c)

100 101 10210−1

100

101

102

103

Weδg

〈a
〉 tH

l
[m

2 /
s2 ]

Hl = 10 mm
Hl = 6 mm

d)

Fig. 3.16 – Wave acceleration measurements. a): spatio-temporal diagram of interface
height for Hg = Hl = 1 cm, M = 4, Ug = 40 m/s, n = 2. b): evolution of measured
wave acceleration with Weδg and two values for Hl. Hg = 1cm, M = 4, n = 2. c):
comparison between experimental D32 values (Marty, 2015) and D32 deduced from
acceleration measurements. The numerical results in c) correspond to the Hl = 6
mm case used in figure b). The experimental results are obtained for M = 4, Hg = 1
cm, Hl = 6 mm. d): same data as in b) but with mean acceleration multiplied by
liquid injector size. In b) and d), the error bars correspond to the 10% uncertainty
on mean acceleration value. In c), the error bars correspond to a 5% uncertainty due
to the propagation of mean acceleration value uncertainty.
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found to increase, requiring longer simulations to obtain a converged averaged ac-
celeration. This last point might be due to a two-dimensional turbulence effect.
We have therefore not performed further computations with the aim of measuring
wave acceleration. A three-dimensional mesh convergence would be needed to check
the dependency of results to mesh resolution and to the two-dimensional nature of
present simulations. Despite simplicity of measurement method and moderate res-
olution, good agreement is obtained between simulations and experiments on the
values of wave acceleration through the value of D32/δg.

Finally, our numerical results and the experimental results of Marty (2015) can
be compared to the literature. In Ben Rayana (2007) and Hong et al. (2003), D32/δg
scales as We

−1/2
δg

, whereas our results seem closer to a We−1
δg

scaling, as observed by
Marty (2015). Following Marty (2015), the difference in experimental results might
be explained by differences in optical measurement devices.

Focusing now on acceleration modeling, we first recall that the model of Varga
et al. (2003) starts from an aerodynamic force balance,

a =
Fd
mw

=
Cdρg (Ug − UD)2Aw

2ρlAwb
(3.12)

where Fd is the aerodynamic force exerted by the gas on the wave, mw is the mass of
liquid accelerated by the gas, Cd is the wave drag coefficient, Aw is the wave area and
b is the wave base thickness. b is assumed to be a fraction of primary wavelength,
i.e., b = γλ, with γ a model coefficient between 0 and 1. Following Raynal (1997)
and Eq. (1.17)-(1.18), for large Ug the primary wavelength λRay scales as

λRay ∼ δg, (3.13)

which gives the following scaling for acceleration

aRay ∼
Cd
γ

(Ug − UD)2 δ−1
g . (3.14)

Similarly, combining Eq. (3.6) and Eq. (1.18), for large Ug the following scaling can
be obtained for primary wavelength

λMat ∼ L
√
δg, (3.15)

which finally gives the following scaling for acceleration

aMat ∼
Cd
Lγ

(Ug − UD)2 δ−1/2
g . (3.16)
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The scaling for aMat involves an inversely proportional relation to L, and is only
valid for confinement-induced absolute modes. As shown in the previous section, as
L scales with the smallest injector size, a reduction of Hg or Hl should induce an
increase of acceleration. This corresponds to the results of figure 3.16b), where a
decrease of Hl induces an increase of acceleration. In Marty (2015), a reduction of
Hl is found to induce a decrease of D32, therefore an increase of acceleration.

To further test the scaling of Eq. (3.16) for injector size effect, we plot in figure
3.16d) the quantity [〈a〉t×Hl] for the data series of figure 3.16b). The series are very
close, even though not perfectly collapsed, suggesting that the scaling of Eq. (3.16)
for injector size effect is correct. However, note that we have not studied the effect of
Hg on acceleration. In Ben Rayana (2007), Hg is found not to have any other effect
on D32 than through its effect on δg.

In figure 3.16c), the quantity D32/δg seems to scale as We−1
δg

. The corresponding
scaling for acceleration with injection velocities is

a ∼ (Ug − UD)4 . (3.17)

Thus, except a correct prediction of the effect of Hl with the scaling of Eq. (3.16),

in case of constant Cd and γ, and δg varying as U
−1/2
g , none of the proposed scalings

can predict the good dependency to injection velocities. Non-constant Cd and γ with
injection velocities might be the reason for the discrepancy between models and mea-
surements for wave acceleration, as already suggested by Marty (2015). Numerical
simulations could be a solution to measure γ and to deduce the variations of Cd with
injection velocities from the scaling of Eq. (3.16). This is left to future work.

Note also that for D32/δg scaling as We
−1/2
δg

, as found by Ben Rayana (2007);
Hong et al. (2003), the scaling of Eq. (3.14) with injection conditions is correct, but
does not involve any dependency to injector sizes.
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Size 2D Lz = Hl Lz = 3Hl Lz = 6Hl

∆Tfth 50 30 24 9
ncells 1.4× 105 6.6× 106 20× 106 40× 106

Table 3.3 – Comparison between 2D and 3D simulations for case B1, δd = 1, n = 2,
Hg = Hl = 1 cm. Summary of transverse domain size, normalized sampling time,
and number of cells.

3.5 Comparison between 2D and 3D simulations

In this section we present a comparison between two-dimensional and three di-
mensional simulations for the same B1 case, see table 3.2, without interfacial velocity
deficit and for different transverse domain size. The different domain widths, sam-
pling time, and number of cells for each of the simulations are summarized in table
3.3. The domain is uniformely discretized in the transverse direction with a cell size
equal to δg/n. Periodic boundary conditions are applied in the transverse direction.
Interface position is recorded during a time equal to ∆Tfth, see table 3.3 for the
values of ∆Tfth for each case, at all downstream positions and at z = Lz/2.

The objective is to provide qualitative and quantitative comparisons between 2D
and 3D simulations, in order to evaluate the dependency of the results presented
previously to the two-dimensional nature of simulations, and to provide a study of
the dependency of the flow and instability characteristics to transverse domain size,
which is an essential step before three-dimensional mesh convergence. We follow
different steps: we first compare flow visualizations, then instability characteristics,
and we finally compare mean flow statistics.

Visualization

In order to perform a qualitative comparison concerning the effect of the three-
dimensional nature of the flow on interface deformations, we show a comparison of
flow pictures for the different cases of table 3.3 at the same time, t = 344 ms, in
figure 3.17. Note that here the comparison is done at one single instant but the
observations presented hereafter are valid for the whole simulations. One can see
that the three-dimensional case with the smallest transverse size (figure 3.17b) does
not exhibit significant transverse deformations. The level of transverse deformations
increases for Lz = 3Hl (figure 3.17c) but no ligaments generation can be seen on this
picture. On the other hand, for the largest domain size, corresponding to Lz = 6Hl

(figure 3.17d), a clear generation of liquid ligaments is seen. This seems to correspond
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a) b)

c) d)

Fig. 3.17 – Comparison of interfacial deformations for different transverse domain
sizes at t = 344 ms. B1 case, δd = 1, n = 2, Hg = Hl = 1 cm. a) 2D simulation, b)
Lz = Hl, c) Lz = 3Hl, d) Lz = 6Hl.

to a Rayleigh–Taylor instability induced by wave acceleration. Indeed, the spatio-
temporal diagram of interface height confirms the presence of acceleration during
liquid ligaments generation, see figure 3.18. Using the method presented in section
3.4 we obtain

a3D = 67m/s2, (3.18)

which, as for this case Weδg = 4.87, is in agreement with the values presented in
figure 3.16b). This value can be used to get an estimation of the most amplified
wavelength of Rayleigh–Taylor instability, Eq. (3.11),

λT,est = 2π

√
3σ

ρla3D

= 1.13cm. (3.19)
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Fig. 3.18 – Evidence of acceleration during ligaments generation. B1 case, δd = 1,
n = 2, Hg = Hl = 1 cm, Lz = 6Hl. The magenta dashed line indicates t = 344 ms.
The orange dotted line corresponds to x = 0.5at2 + bt+ c, with a = 67, b = −21.93,
c = 3.597.

This value can be compared to a measured averaged transverse wavelength computed
using the number of liquid ligaments seen in figure 3.17d), i.e.,

〈λT,meas〉z =
Lz
7

= 0.86cm. (3.20)

Both values are in good agreement, even though the prediction using acceleration
value is slightly higher than the value based on visual observation. This discrep-
ancy might be explained by an erroneous measure for acceleration, by transverse
domain size effect, or by the fact that the transverse wavelength due to a Rayleigh-
Taylor instability may, in the absence of controlled forcing, be different from the most
amplified frequency predicted by the model. This result is nonetheless a strong ar-
gument in favour of a model for transverse destabilization based on Rayleigh–Taylor
instability. Note that for the widest domain (Lz = 6Hl), only one event of such a
clear ligament generation has been seen, probably beacause of a too short simulation
time. For Lz = 3Hl, several ligaments generation have been seen, but with a less
clear wavelength compared to what is shown in figure 3.17d). One can also see in
figure 3.18 that not all waves undergo acceleration.
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a) t = 332ms b) t = 336ms

c) t = 340ms d) t = 344ms

Fig. 3.19 – Visualization of ligaments generation. Lz = 6Hl, B1 case, δd = 1, n = 2,
Hg = Hl = 1 cm. a) t = 332 ms, b) t = 336 ms, c) t = 340 ms, d) t = 344 ms.

To complete previous observations on ligaments generation, we present in figure
3.19 a serie of flow pictures at succesive instants for the widest domain. One can
observe wave formation and growth (figure 3.19 a-b) followed by transverse desta-
bilization (figure 3.19 c) leading to ligaments generation (figure 3.19 d). We show
a side view of ligaments generation for similar instants in figure 3.20. One can see
that ligaments are indeed oriented in the axial direction, i.e., the direction in which
acceleration occurs. One can also see that shortly after their generation, ligaments
are falling down in the liquid and do not further desintegrate into droplets, as would
have been expected in the instability cascade. This might be due to a lack of reso-
lution that prevents resolution of capillary instability leading to droplets generation.
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a) t = 336ms

b) t = 344ms

c) t = 346ms

Fig. 3.20 – Side view of ligaments generation. Lz = 6Hl, B1 case, δd = 1, n = 2,
Hg = Hl = 1 cm. a) t = 336 ms, b) t = 344 ms, c) t = 346 ms.

Instability characteristics

We now turn to the comparison of instability characteristics. In order to compare
the spatio-temporal development of the instability for all cases, we show in figure
3.21 the Hovmöller diagrams of interface height (constructed using the first interface
position along vertical direction) for each case. On each plot we add a magenta line
corresponding to a phase velocity equal to UD. One can see that wave velocity is not
affected by domain width and is in close agreement with UD. On the other hand,
one can observe that wavelength is shorter for the three-dimensional cases than for
the two-dimensional simulation. This results in a wave frequency higher in 3D than
in 2D. Note that all 3D simulations have the same wavelength and frequency.

This discrepancy could be explained by the impact of downstream turbulence
rate in the gas phase. Indeed, although there is no turbulence injection at the inlet
of the domain, turbulence quickly developped in gas phase, as we will see in the
following subsection. As shown by Matas et al. (2015); Jiang and Ling (2020) and in
chapter 1, a turbulence rate of 10% can double wave frequency compared to a case
where there is no turbulence in gas phase. In 3D, the diffusion due to turbulence is
higher than in 2D, which could explain why the effect of turbulence is seen in 3D
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but not in 2D, even though turbulence rates are similar. We remind the reader that
increased turbulent diffusion is the source of the impact of gas phase turbulence on
primary instability as it lowers the energy feeding the resonance leading to absolute
instability (Matas et al., 2015) .

Another possibility for this discrepancy could be an increased level, in 3D com-
pared to 2D, of numerical errors in curvature computation or in mass/momentum
advection. In Agbaglah et al. (2017), frequency value is the same in 2D and 3D,
but their configuration includes a splitter plate between gas and liquid streams. One
can imagine that the splitter plate could impact frequency selection through a 3D
mechanism but this is not documented in the literature. The presence of a splitter
plate also induces higher wave amplitude in the near-injector region than for our
configuration (results not shown), which could result in a lower influence of numer-
ical errors, in 3D, for the configuration of Agbaglah et al. (2017). This discrepancy
should be confirmed, or not, by mesh convergence in future work. Nonetheless, this
reinforces the interest for 2D simulations as they allow a better control of the different
parameters at play behind the stability of an air-water mixing layer.

Downstream of the flow, i.e., x > 150δg, wavelength is increasing in 2D as well as
in 3D. This shows that the appearance of low frequency peaks in this area, as seen
in section 3.2, is not due to the 2D nature of the flow. We have carefully checked
that this is not induced by outlet boundary condition type and position. This might
be due to an incomplete atomization of waves due to a lack of resolution, or to the
emergence of another mode of instability triggered by base flow variations. Mesh
convergence and global linear stability would be useful to go further in this study,
but this is left to future work.

In figure 3.22 we compare wave amplitude for all cases of table 3.3. Similarly to
what has been done in previous sections, we add for reference the exponential growth
obtained experimentally for this case (Matas et al., 2011), and the self-similar growth
model of Hoepffner et al. (2011), Eq. (3.5), with C0 = 0.21, as in previous sections for
δd = 1. One can see that no significant difference can be observed between cases. For
each case, amplitude is first growing exponentially, in agreement with the growth rate
found experimentally, then growing linearly with downstream distance, in agreement
with self-similarity of waves.

Flow statistics

Finally, we provide a comparison between two-dimensional and three-dimensional
mean flow quantities. The goal is not to perform an exhaustive comparison of flow
statistics between all cases, but rather give some elements allowing to evaluate on
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Fig. 3.21 – Spatio-temporal diagrams of interface height for different transverse do-
main sizes. B1 case, δd = 1, n = 2, Hg = Hl = 1 cm. a) 2D simulation, b) Lz = Hl,
c) Lz = 3Hl, d) Lz = 6Hl.
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Fig. 3.22 – Evolution of wave amplitude for different transverse domain size. B1
case, δd = 1, n = 2, Hg = Hl = 1 cm. : Eq. (3.4), with A0/δg = 0.00018 and
ki = 569.9m−1. : Eq. (3.5), with C0 = 0.21. Only 1 data point every 3 is shown to
enhance readability.

which downstream distance the flow is not affected by the 2D nature of the simulation
in case of 2D domains, and then to give the minimal transverse domain size that could
be used to perform a DNS of primary wave formation, as well as some insights into
flow development.

Several methods could be used to average flow quantities. We use here a time
and space averaging (along transverse direction). For example, the averaged axial
velocity is computed as

〈u(x, y)〉z,t =
1

Lz∆T

ˆ
∆T

ˆ
Lz

u(x, y, z)dtdz. (3.21)

Alternatively, a Favre averaging method may be used, as in Ling et al. (2019).
We firt show the downstream evolution of the averaged interface height yint for

all cases of table 3.3 in figure 3.23a). One can see that no significant differences can
be observed between 2D and 3D cases before x/δg = 75. Beyond this value, the
averaged height decreases slower for 3D simulations than in 2D. No differences is
seen between 3D cases until x/δg > 150, where case Lz = Hl has a higher averaged
amplitude. Similar observations can be made from the evolution of the maximum
averaged axial velocity with downstream distance, see figure 3.23b).
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Fig. 3.23 – Evolution of averaged quantities with downstream distance for different
domain sizes. a) averaged interface height, b) maximum averaged axial velocity. B1
case, δd = 1, n = 2, Hg = Hl = 1 cm.

Then, we show the evolution of the averaged axial velocity profiles with down-
stream distance for different transverse domain sizes in figure 3.24. One can see that
until x/δg = 80 no differences is seen between cases. At x/δg = 80 a recirculation
zone is observed just above mean interface position for all cases. This recirculation is
likely to appear in the waves wake. Further downstream, this recirculation is clearly
longer to resorb in 2D than in 3D, as seen in figures 3.24c-d). This might be due to
the absence of tridimensionalization for vortices generated in the wave wake. Due
to the presence of this recirculation, gas jet deviation is higher in 2D than in 3D.
The presence of this large recirculation might also be the reason for the smaller yint
in 2D than in 3D for x/δg > 100. Case Lz = Hl also shows a recirculation slightly
longer to resorb than for cases with a wider domain, see figure 3.24c). No significant
difference can be seen between Lz = 3Hl and Lz = 6Hl.

Finally, we show a comparison of the evolution of 〈u′u′〉t,z with downstream dis-
tance for different transverse domain sizes in figure 3.25. u′ is the deviation of the
instantaneous velocity u from the averaged value, i.e., u′ = u−〈u〉t,z. Note that this
kind of averaging does not take into account fluctuations in density, and is strictly
valid only for single-phase flows. The differences between the method used here and
Favre averaging method will be mainly located in the gas-liquid mixing layer, but
Reynolds stresses obtained using both methods have similar orders of magnitude
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Fig. 3.24 – Evolution of averaged axial velocity profiles for different domain widths
with downstream distance. The vertical axis is rescaled by mean interface location at
each downstream position. B1 case, δd = 1, n = 2, Hg = Hl = 1 cm. a) x/δg = 40,
b) x/δg = 80, c) x/δg = 120, d) x/δg = 180. In a-b-d) only 1 data point every 2 is
shown to enhance readability. In c) only 1 data point every 4 is shown to enhance
readability.
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(Ling et al., 2019). One can see in figure 3.25 that whatever the downstream po-
sition, 〈u′u′〉 is higher in 2D than in 3D. Beyond x/δg = 80, in 2D, 〈u′u′〉t,z keeps
increasing, which could be a consequence of vortex merging phenomena typical of
two-dimensional turbulence. In 3D, beyond x/δg > 80, the maximum value of 〈u′u′〉t,z
does not increase anymore. No significant difference is observed between Lz = 3Hl

and Lz = 6Hl, except for x/δg = 40 (figure 3.25a), where differences might be due
to a shorter sampling time for the widest domain. Some slight differences can be
noted between these two cases and the case with Lz = Hl in the maxima of 〈u′u′〉t,z
profiles.

Concerning turbulence rate, one can deduce from figure 3.25a) that, at x/δg = 40
and in case of 3D simulations, the maximum level of fluctuations is between 15%
and 18%. This value might be affected by the averaging method, but it is at any
rate a sufficient turbulence level to induce an increase of frequency. However, this
value corresponds to the maximum level of fluctuations close to the average interface
position, whereas in Matas et al. (2015) the level of fluctuations is measured in the
center of gas channel. In order to understand if these fluctuations could be responsible
for the frequency increase observed in 3D simulations, the stability analysis performed
in Matas et al. (2015) could be completed with the inclusion of an eddy viscosity
profile rather than a constant value across the gas phase.

In this section, we have first shown through visualizations that ligaments gen-
eration is triggered by a Rayleigh–Taylor instability induced by wave acceleration.
Wave growth and speed are not affected by domain width. However, frequency is
different between 2D and 3D cases. This might be due to the turbulence rate in gas
phase, but this point deserves further study. The study of averaged quantities shows
that there is essentially no differences between Lz = 3Hl and Lz = 6Hl. The value
Lz = 3Hl could be retained as the minimal domain width needed to perform a DNS
of primary wave formation. However, resolving ligaments formation and subsequent
atomization process may require a wider domain. The comparison between 2D and
3D domains shows that mean flow statistics start being affected by the 2D nature of
the domain when the instability enters its non-linear growth area (beyond x/δg = 80
for n = 2).

Starting from last conclusion, if one restricts the study to linear growth region,
one can study velocity profiles spatial variations with statistics extracted from 2D
simulations and for various resolutions. The main observation is that the base flow
does not vary between the inlet of the domain and the location at which wave am-
plitude departs from exponential growth (results not shown). This is in agreement
with Fuster et al. (2009).
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Fig. 3.25 – Evolution of 〈u′u′〉 profiles for different domain widths with downstream
distance. The vertical axis is rescaled by mean interface location at each downstream
position. a) x/δg = 40, b) x/δg = 80, c) x/δg = 120, d) x/δg = 180. B1 case, δd = 1,
n = 2, Hg = Hl = 1 cm. In b-c-d) only 1 data point every 2 is shown to enhance
readability.
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3.6 Conclusion

The confinement of the air-water mixing layer has previously been found to be
the missing element allowing to reconcile experimental wave frequencies with vis-
cous linear theory. In this work, we have shown for the first time the convergence
between linear theory, experiments, and numerical simulations on the values of the
wave frequency, in regimes where the absolute instability is predicted to be due to
confinement. We have shown that, in those conditions, waves are self-similar in the
downstream area. We proved that the confinement is indeed a mechanism for the
transition between convective and absolute regimes. The gas and liquid streams
thicknesses are found to have symmetric effects on wave frequency, as first suggested
in Matas (2015), but not on wave amplitude. A symmetric confinement and a high
dynamic pressure ratio can favour the triggering of an absolute instability, hence
enlarging the range of validity of the scaling law given in Eq. (3.6). Finally, it seems
that the most amplified frequency scales with the most restrictive confining length,
i.e., the thinnest stream, in the absolute regime, which is different from what has
been observed on a co-axial configuration.

These conclusions only focus on the transition between convective and confinement-
induced absolute regimes. As shown in Otto et al. (2013); Fuster et al. (2013) and
Matas et al. (2018), a surface tension-induced absolute regime is dominant as soon
as the interfacial wave speed is low enough so that capillary waves are able to send
information upstream. This transition is driven by δd, the deficit parameter, and
in fine by the presence of the splitter plate between gas and liquid streams. The
configuration we chose to simulate would allow a precise study of the impact of δd
on the instability and on the flow statistics. This task would be an essential step
to understand how the spatial development of the flow affects the instability regime,
through the selection of δd. However, we have shown that this is a very expensive
task, even in two dimensions, that we leave for future work. Our results also sug-
gest that the use of fine meshes in 2D simulations can give rise to some unphysical
effects due to two-dimensional turbulence. A 3D mesh convergence would be needed
to study spatial frequency variations and to study the global, or not, nature of the
instability, but this, again, is an highly expensive task that we leave to future work.
The observed switch to low frequency far from the injector seems to appear in 3D as
well, but this needs to be confirmed by mesh convergence.

We have then studied the transition between primary and secondary instability.
In a first step, simulations of a canonical Rayleigh–Taylor instability and confronta-
tion to linear theory allowed the definition of a minimal resolution for the simulation
of such instability. In a second step, we measured wave acceleration in simulations
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of air-water mixing layers. Despite simplicity of measurement method, we obtained
a good agreement between simulations and experiments. We evidenced the scaling
of acceleration with liquid injector size, in agreement with the scaling of Eq. (3.6).

We have finally describe the impact of domain width on flow pictures, instability
characteristics and mean flow statistics, which does not exist in the literature for the
configuration under study. We confirmed that ligaments generation occurs due to a
Rayleigh–Taylor instability induced by wave acceleration. We obtained the minimal
domain width, Lz = 3Hl, that could be used for the DNS of primary wave formation.
The observed discrepancy between 2D and 3D simulations for wave frequency value
deserves further study. Growth and wave speed are not affected by domain width or
two-dimensional nature of simulations.



Chapter 4

Traction open boundary condition
for incompressible, turbulent,
single- or multi-phase flows, and
surface wave simulations

Abstract

The content of this chapter has been published in the Journal of Compu-
tational Physics (Bozonnet et al., 2021).

4.1 Motivations

This work started as a side project over the course of the present thesis, with
the initial aim of reducing cost of simulation of air-water mixing layers by reducing
computational domains, as well as improving the accuracy of such simulations. Even
though this work is not connected anymore to the other three chapters, it is entirely
part of the work done over the course of this thesis.

4.2 Introduction

Due to the finite nature of numerical simulations, it is often necessary to truncate
computational domains. This requires imposing artificial boundaries along with the
associated mathematical conditions that close the system of equations to be solved.

101
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The primary goal of such boundaries is to restrict the computation to a given region of
interest without perturbing the solution inside the domain, thereby limiting cost. In
the case of outflow boundaries, the flow should be allowed to leave the computational
domain in the most natural way possible without undergoing any perturbations that
could propagate upstream and thus pollute the upstream solution. Moreover, com-
plex dynamics may occur at the artificial boundary and the flow may contain regions
of both outflow and backflow, i.e., regions of flow reversal where the outlet boundary
acts as an inlet, potentially polluting the solution (Blayo and Debreu, 2005).

The definition of an ideal open boundary condition (OBC) for incompressible fluid
dynamic simulations is still an unresolved topic, as demonstrated by Sani and Gresho
after the “Open boundary condition minisymposium” (Sani and Gresho, 1994), or by
other authors in recent reviews (Blayo and Debreu, 2005; Bertoglio et al., 2018).
However, one can describe the effect of a non-ideal OBC on a simulation result.
In wave-like simulations, the phenomena of wave reflection can create unrealistic
flows, instabilities and prevent the flow from reaching a statistical equilibrium over a
long computational time (Marchesiello et al., 2001). In turbulent flows, the presence
of backflow can cause the system to experience an uncontrolled growth in kinetic
energy, which has for example been evidenced in biofluids simulations (Moghadam
et al., 2011).

More generally, the choice of OBC can severely influence the size of the computa-
tional domain due to the difficulty of finding a condition that does not durably affect
the upstream flow, the most famous example being the impact of the outflow posi-
tion on a cylinder drag and lift coefficients (Persillon and Braza, 1998). Indeed, the
incompressibility constraint and the unphysical nature of domain truncations may
prevent finding a perfect OBC. However, in this chapter, we endeavor to present
a novel boundary treatment that reduces the error induced by outlet position on
severely truncated domains and is stable to backflow, in addition to satisfying the
incompressibility constraint.

In the next section, the main types of outflow treatments are discussed. The new
proposed strategy is then presented. In section 3, the numerical implementations of
these boundary conditions are presented in the context of a fractional step method
with pressure projection method. Section 4 is devoted to single phase test cases,
consisting of the Kovasznay flow for measuring spatial convergence, a time-dependent
manufactured solution test for measuring temporal convergence, and a flow past a
square and a turbulent plane jet to explore the stability and accuracy of the method.
Finally, multiphase test cases are considered in section 5, with the convection of a high
density droplet, a turbulent swirling liquid jet, and the transport of surface gravity
waves. All of the work presented hereafter is applied to outlet boundary conditions
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where the flow is expected to be mostly leaving the computational domain, but it
can be applied as well on lateral and inlet boundaries.

4.3 Existing methods and present work

Before giving a short review of existing methods we introduce here some use-
ful notations. The computational domain will be refered to as Ω. This domain is
bounded by real and artifical (open) boundaries. The firsts ones are denoted ∂Ωd and
the laters ∂Ωo. ∂Ω will refer to both types of boundaries, i.e., ∂Ω = ∂Ωd ∪ ∂Ωo. The
vector n is defined as the unit normal to those boundaries, always oriented toward
the exterior of the domain.

Existing methods

Apart from classical Dirichlet and Neumann conditions, one of the most widely
used boundary conditions is the convective boundary condition,

∂φ

∂t
+ c

∂φ

∂n
= 0. (4.1)

This equation represents the transport of a quantity φ through a boundary of normal
n with a phase speed c, where n is the coordinate in the n direction. This condition,
known as the Sommerfeld equation, or the radiation condition, is in fact an exact
absorbing condition, i.e., specification of the incoming characteristic to zero, for a
1D wave equation with a constant wave speed (Blayo and Debreu, 2005). The most
famous choice of phase speed comes from the work of Orlanski (Orlanski, 1976): c is
computed locally based on known values of φ in the vicinity of the boundary. This
solution has been shown to result in a phase velocity close to white noise (Durran,
2001). Despite some improvements of Orlanski’s method (Raymond and Kuo, 1984),
it seems that no satisfying method has emerged to obtain an accurate estimation of
the phase velocity without a priori knowledge of it (Blayo and Debreu, 2005; Higdon,
1994).

A general mathematical approach to obtain exact absorbing boundary conditions
has been derived (Engquist and Majda, 1977). However, to our knowledge, no appli-
cations of this method to Navier-Stokes equations have been presented, the closest
being recent progress on shallow-water equations (Blayo and Debreu, 2005). It has
been applied to a 2D wave equation whose coefficients are then identified using the
Navier-Stokes equations (Jin and Braza, 1993). It results in a condition similar to
Eq. (4.1) with the phase velocity evaluated as the local speed and the presence of a
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viscous term on the right hand side. More generally, a whole family of OBCs relies
on the method of characteristics (Blayo and Debreu, 2005).

On the other hand, another type of boundary condition can be directly derived
from the Navier-Stokes equation in its weak form (Taylor et al., 1985): the traction
boundary condition. It consists of applying a condition on the normal stress at the
artificial boundary,

σ · n = (−pI + µ(∇u +∇uT )) · n = t, (4.2)

where σ, p, µ and u are the stress tensor, the pressure, the dynamic viscosity, and
the velocity, respectively. t is a traction vector that must be prescribed. No clear
guidelines exist for the choice of this vector. The most widespread choice is t = 0,
giving the well-known “traction-free” boundary condition (Liu, 2009; Hasan et al.,
2005). The traction t has also been computed locally and iteratively (Taylor et al.,
1985), based on previous runs on longer domains (Sani and Gresho, 1994), or defined
analytically with a Stokes solution (Bruneau and Fabrie, 1994).

As stated previously, the presence of backflow at an outlet boundary could lead
to an instability due to an uncontrolled growth of kinetic energy. To understand it,
the energy balance in the overall computational domain, Ω, can be considered (Dong
et al., 2014; Dong, 2014),

∂

∂t

ˆ
Ω

1

2
ρ|u|2 =−

ˆ
Ω

µ

2
‖D(u)‖2 +

ˆ
Ω

(ρg + Tσ) · u

+

ˆ
∂Ωd

(
σ · n− 1

2
ρ|u|2n

)
· u

+

ˆ
∂Ωo

(
σ · n− 1

2
ρ|u|2n

)
· u,

(4.3)

Where ρ is the density, g is the gravity vector, D(u) is the shear rate tensor and
Tσ represents surface tension forces. It results that the rate of change of kinetic
energy is controlled by viscous dissipation (exchange with internal energy), gravity
(exchange with potential energy), surface tension (exchange with surface energy) and
by two surface terms. The first one is expressed on ∂Ωd, the Dirichlet boundaries,
where variables are known. The second surface term is expressed on ∂Ωo, the outflow
boundary, where all variables have to be computed. In case of backflow, the convec-
tive part of this term becomes positive and can lead to a global increase of kinetic
energy, leading to the instability of the system.

Following Eq. (4.3), one possible backflow treatment is to ensure that the last
term is zero, preventing backflow from causing an unstable growth of kinetic energy.
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It leads to the following OBC

σ · n = (−pI + µ(∇u +∇uT )) · n =
ρ

2
f(u)n, (4.4)

with f(u) chosen so that it cancels the last term of Eq. (4.3) in case of backflow, for
example

f(u) =

{
(u · n)2 if u · n < 0,

0 otherwise.
(4.5)

This condition is similar to the stabilized traction-free condition used for single phase
flows (Dong et al., 2014; Dong and Shen, 2015) and for multiphase flows (Dong, 2014;
Dong and Wang, 2016). In case of backflow, the normal stress will compensate the
normal influx of kinetic energy, whereas it will vanish in case of outflow. Different
forms for f(u) along with other types of backflow treatments have been reviewed
(Bertoglio et al., 2018).

The traction boundary condition, when used as the stabilized traction-free con-
dition as in Eq. (4.4), requires the flow to be well-developped before reaching the
boundary (Taylor et al., 1985). Several methods have already been proposed to com-
bine stability and accuracy even at high Reynolds number, such as the “convective-
like” traction boundary condition (Dong, 2015),

σ · n = −µD0
∂u

∂t
+
ρ

2
Θ(u · n)((u · n)u + |u|2n), (4.6)

where D0 is computed using a characteristic velocity, and the function Θ(x) is essen-
tially equal to 1 for negative value of x and 0 otherwise, see Dong (2015) for more
details. The value of D0 is found to have little effect on the overall flow, except on the
flow patterns near the outlet boundary. An earlier method developped by Bruneau
and Fabrie (Bruneau and Fabrie, 1994) combines a stabilization to backflow and a
non-zero traction,

σ · n = σ
ref · n +

ρ

2
(u · n)−(u− uref ), (4.7)

where the reference values are computed using an analytical solution, or evaluated
from known values inside the domain (Bruneau, 2000), and (u ·n)− = max(0,−u ·n).
Note that this condition leads to a well-posed problem (Bruneau and Fabrie, 1996).
It has, to the best of our knowledge, not been applied to projection methods.

Another potential backflow treatment is to simply force all velocities such that
u ·n < 0 to zero, thus preventing any influx of kinetic energy. This solution provides
energy stability of the system, but we will show in section 4.6 that it can lead to
severe inaccuracies in multiphase flows. In Marchesiello et al. (2001), when the phase
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velocity is computed as u·n < 0, the use of external data allows to limit the occurence
of the backflow instability.

As said in the introduction, the main difficulties encountered by outflow treat-
ments are associated with the proper transmission of perturbations through the ar-
tificial boundary, and to the presence of inflow/backflow regions on it. One common
way to overcome those issues is to try to dissipate, or damp, the fluctuating energy
of the flow before the outlet using artificial zones called sponge layers or nudging
layers. Sponge layers consist in the introduction of a dissipative source term in
Navier-Stokes equations that becomes stronger when getting closer to the boundary
(Clément, 1996). Nudging layers consist of the relaxation of the flow towards pre-
scribed external data (Marchesiello et al., 2001). These solutions are intentionally
excluded from our study to focus on the improvements of an accurate OBC.

Finally, most efforts to get non-reflective and accurate boundaries have been
focused on convective-like OBCs, often requiring the use of external data that is
consistent with the backflow treatment (Marchesiello et al., 2001), whereas traction
boundary conditions present an easier way to deal with backflow without the need
for external data. As said previously, the stabilized traction-free condition, Eq. (4.4),
requires the flow to be well-developped before reaching the boundary (Taylor et al.,
1985). Traction boundary conditions have, to our knowledge, never been applied to
problems of wave reflections.

Generalized traction boundary condition

We propose a new traction boundary condition, inspired from the Bruneau and
Fabrie condition Eq. (4.7), that combines the two following characteristics. Firstly,
the flow will not be required to be well-developped at the boundary, which will be
achieved by applying a non-zero traction at the boundary. Secondly, this OBC will
be stable to influxes of kinetic energy due to backflow, which will be achieved by the
inclusion of a stabilization term.

We express the traction at the boundary as

(−pI + µ(∇u +∇uT )) · n = tstab + θtest. (4.8)

tstab is a numerical treatment to ensure stability to backflow. test is an estimation of
the traction at the outlet boundary and θ = [0; 1] is an adjustable parameter. The
accuracy of the present boundary treatment will depend on the choice of the last two
terms.



4.3. EXISTING METHODS AND PRESENT WORK 107

Following Eq. (4.3), the stabilization term is taken such that it cancels the term
responsible for the backflow instability in case of backflow,

tstab =
ρ

2
f(u)n, (4.9)

with f(u) defined as in Eq. (4.5). Thus, the kinetic energy variation at the open
boundary is not equal to zero, as with Eq. (4.4), but depends on the value of θtest.
The results presented in this chapter show that this novel boundary condition is
sufficient to ensure the stability of the system in the presence of backflow at the
open boundary. If θ is equal to zero, one can see that we recover the stabilized
traction-free condition presented in Dong et al. (2014).

To obtain the best possible traction estimate we introduce here the general idea
behind our work. We propose test, the estimated traction at the boundary, to be
considered as a Lagrangian quantity. Its value can therefore be evaluated using an
advection equation,

∂test

∂t
+ uad · ∇test = 0, (4.10)

where uad is an advection velocity that can be computed using an analytical expres-
sion, an averaged or a local velocity.

Scope of this work

The previous method to estimate the traction is very general and studying all
possible ways to resolve it is beyond the scope of the present chapter. Thus, we
restrict our study to a few particular cases. We first assume a one dimensional
advection velocity of the estimated traction in the outlet boundary normal direction.
Then, we assume a first order explicit temporal resolution of Eq. (4.10) on a cartesian
grid. The choice of an explicit resolution is a consequence of the algorithm used to
solve the coupling between velocity and pressure, as we detail in the next section.
Finally, we use a first order upwind discretization of the spatial term in order to use
values inside the computational domain.

The traction estimation is therefore expressed as

test =
[
φσBC−1 · n + (1− φ)σBC · n

]
, (4.11)

where the notations BC − 1 and BC refer to the point just before the boundary
and the boundary point, respectively. φ is an interpolation coefficient computed
using numerical parameters and the one dimensional advection velocity. φ can be
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considered as a CFL condition and therefore has here to be kept in the range [0; 1]
as the advection is only done between the boundary point and its closest neighbour.

The previous choices of resolution for Eq. (4.10) are not suitable in case of dis-
continuities in the traction field. This latter point is limiting in case of multiphase
flows due to the effect of surface tension. The presence of a pressure jump can thus
deteriorate the traction estimation and create unphysical velocities, or even stabil-
ity issues. Therefore, in case of multiphase flows we limit our study to high Weber
number. A way to get around that difficulty would be to use, for example, a semi-
Lagrangian advection method (Owkes and Desjardins, 2014) for test. Other aspects
may have to be considered, such as the curvature computation in the vicinity of the
open boundary, or the density boundary condition. Note that the use of multiphase
traction-free condition in phase field method provides a natural way to get around
that difficulty as a surface tension term appears in the outlet boundary energy flux
(Dong, 2014).

For θ = 0, the generalized traction boundary condition, Eq. (4.8), reduces to

(−pI + µ(∇u +∇uT )) · n =
ρ

2
f(u)n, (4.12)

which will be refered to as the stabilized traction-free condition (TF) in the following.
TF is the same condition as used in Dong et al. (2014). For θ = 1 and φ = 1, Eq. (4.8)
reduces to

(−pI + µ(∇u +∇uT )) · n =
ρ

2
f(u)n + σBC−1 · n, (4.13)

which will be refered to as the estimated traction boundary condition (ET). This
condition ressembles the Bruneau and Fabrie condition, Eq. (4.7). The choice φ = 1
raises the question of the dependence of the accuracy to numerical parameters, as the
traction at the point just before the boundary may not always be a good estimation.
In the final part of the chapter, we will consider the φ 6= 1 case, where Eq. (4.8)
reduces to

(−pI + µ(∇u +∇uT )) · n =
ρ

2
f(u)n +

[
φσBC−1 · n + (1− φ)σBC · n

]
, (4.14)

which will be refered to as the convected traction boundary condition (CT). Note
that in the previous three boundary conditions f(u) is computed using Eq. (4.5).

In the rest of the chapter we also use classic OBCs, such as the Neumann boundary
condition (NM),

∂u

∂n
= 0, (4.15)
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or the convective boundary condition (CV),

∂u

∂t
+ c

∂u

∂n
= 0. (4.16)

As mentioned previously the performance of such condition will be strongly linked
to the choice of the convective velocity, which will be detailed later.

Finally, the main objectives of the present chapter are, for each of the OBCs under
consideration, to give a detailed description of the algorithm allowing to their use in
the context of projection methods and VOF/Level Set methods, to demonstrate the
importance of bakflow stabilization in single- or multiphase flows, and to demonstrate
the stability and accuracy of the non-zero traction methods, such as ET or CT. CT
will only be used in the end of the chapter, where the level of accuracy obtained with
ET is not satisfactory.

4.4 Mathematical formulation and algorithms

General framework

The main elements of the solver have been described in chapter 2. We remind
the reader that momentum conservation equation is solved in the framework of a
pressure projection method formed by Eqs. (2.20), (2.22) and (2.23)-(2.24).

At all of these steps, boundary conditions have to be provided: velocity boundary
condition after estimation and correction, and pressure boundary condition during
projection. At the inflow and on the walls, those steps are straightforward and
well documented (Gresho, 1991). For the velocity it simply consists of setting the
corresponding values in the velocity vector. As these values will not change during
estimation and correction, this step is only necessary after estimation, Eq. (2.20),

u∗k+1

∣∣
∂Ωd

= un+1
D , (4.17)

where un+1
D is an imposed velocity value given by the physics, i.e., inflow or walls. The

definition of the pressure boundary condition is directly obtained from the application
of Eq. (2.23) on those boundaries,

∂Φn+1

∂n

∣∣∣∣
∂Ωd

= 0. (4.18)

The expression of outlet boundary conditions for velocities and pressure at each step
of the projection algorithm, resulting in the application of the OBCs presented in
section 4.3, is detailed in the next subsections.
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Implementation of convective/Neumann OBC

Neumann (NM) and convective (CV) boundary conditions can be directly used
to compute outlet velocities at the estimation step. In the CV boundary condition,
Eq. (4.16), a wave velocity c has to be prescribed. In the present work, it is going to
be taken as the maximal velocity in the plane just before the exit,

c = cmax = max(u∗k+1 · n)BC−1, (4.19)

or as a theoretical wave speed, if available,

c = cth. (4.20)

The theoretical expression for the phase velocity will be detailed in the results when
used. Except if otherwise stated, the phase velocity will be taken as c = cmax.
What is of interest here is the definition of the pressure boundary condition that will
allow to obtain a solution to the Poisson equation, Eq. (2.22). This comes from the
integration of Eq. (2.22) over the computational domain:

ˆ
∂Ω

∆t

ρn+1
∇Φn+1 · ndS =

ˆ
∂Ω

u∗k+1 · ndS (4.21)

Applying Eq. (4.18) will directly lead to the following pressure outlet boundary con-
dition, ˆ

∂Ω

∆t

ρn+1

∂Φn+1

∂n

∣∣∣∣
∂Ωo

dS = Qin −Qout, (4.22)

where Qin and Qout are the inlet and outlet flow rates, respectively. Thus, if inlet
and outlet flow rates are forced to be the same (including the clipping of negative
velocities, as explained in section 4.3) when considering the application of the veloc-
ity OBC and the resolution of the Poisson equation, the pressure outlet boundary
condition can simply be a Neumann BC,

∂Φn+1

∂n

∣∣∣∣
∂Ωo

= 0, (4.23)

thus ensuring that the integral on the left hand side of Eq. (4.22) is equal to zero.
Finally, as the gradient of pressure on all boundaries is equal to zero, there is no
need to correct outlet velocities during the correction step. The overall algorithm is
presented in algorithm 1.
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Algorithm 1: Algorithm for Neumann and convective OBCs

Input: un, pn, ρn in Ω and on ∂Ω
1 Solve Eq. (2.7) using VOF advection → κn+1, µn+1 in Ω
2 for k = 0 to kmax − 1 do
3 Compute ρn+1

k+1

4 Solve Eq. (2.20) → u∗k+1 in Ω
5 Apply Eq. (4.17) and Neumann or convective OBC on u∗k+1

6 Set all velocities such that u∗k+1 · n < 0 to zero in the outlet section
7 Correct outlet flow rate
8 Solve Eq. (2.22) with Eq. (4.18) and Eq. (4.23) → Φn+1 in Ω
9 Correct velocities Eq. (2.23) and pressure Eq. (2.24) → un+1

k+1 and pn+1
k+1 in Ω

Output: un+1, pn+1, ρn+1 in Ω and on ∂Ω

Implementation of traction-free and estimated traction OBC

The implementation of traction boundary conditions in pressure projection meth-
ods has been the subject of many publications in recent years (Poux et al., 2011; Liu,
2009; Dong and Shen, 2015; Guermond et al., 2005). See also Angot and Cheaytou
(2012) in the context of vector penalty method and Bänsch (2014) for an extension to
curved artificial boundaries. Note furthermore that all algorithms presented herein
may be adapted to velocity correction methods starting from the work presented in
Poux et al. (2012).

The main difficulty is to ensure the validity of the relation,

(−pn+1
k+1I + µn+1(∇un+1

k+1 +∇un+1
k+1

T
)) · n = tn+1 (4.24)

along with the incompressibility constraint at the end of the correction step. The
form of the vector tn+1 will depend on the type of traction boundary condition (TF,
ET, or CT, see section 4.3) and will be explained below. A first strategy consists
in simply setting the pressure increment to zero at the outlet (Liu, 2009), but this
strategy is known to limit the order of convergence of the overall method (Guermond
et al., 2005). An improvement is found whith an update of the outlet pressure through
a rotational pressure correction method (Dong et al., 2014; Dong, 2014; Dong and
Shen, 2015). It is known with those methods that the use of a rotational pressure
correction will significantly improve the convergence order of the overall algorithm.
However, in multiphase flows, there is, to our knowledge, only one example of a
rotational pressure-correction (Dong and Wang, 2016), which involves the resolution
of a second linear system due to the absence of an analytical solution for the pressure
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increment. Thus, we choose to employ the method presented in Poux et al. (2011),
extended for multiphase flow and non-zero traction.

The method presented in Poux et al. (2011) starts by applying the normal, i.e.,
perpendicular, projection of the traction boundary condition just after the estimation
step, Eq. (2.20), using the available variables, namely pn+1

k and u∗k+1. To simplify the
understanding of the method, the coordinate system is taken to be cartesian (x, y, z)
with an artificial boundary oriented along x. This first step is then,

− pn+1
k + 2µn+1∂u

∗
k+1

∂x
= tn+1

x , (4.25)

where tn+1
x is assumed to be known. The final step will be the application of the

traction outlet boundary condition on the new variables un+1
k+1 and pn+1

k+1 ,

− pn+1
k+1 + 2µn+1∂u

n+1
k+1

∂x
= tn+1

x . (4.26)

We are then looking for the pressure increment that will ensure the validity of
Eq. (4.26) as well as satisfy the incompressibility condition. We first take the in-
compressibility condition in the cell just before the boundary,

∇ · un+1
k+1 =

∂un+1
k+1

∂x
+
∂vn+1

k+1

∂y
+
∂wn+1

k+1

∂z
= 0, (4.27)

where we express ∂un+1
k+1/∂x using Eq. (4.25) and Eq. (4.26), and ∂vn+1

k+1/∂y and
∂wn+1

k+1/∂z using Eq. (2.23). It leads to

∇·un+1
k+1 =

pn+1
k+1 − p

n+1
k

2µn+1
+∇·u∗k+1−

∂

∂y

(
∆t

ρn+1
k+1

∂

∂y
Φn+1

)
− ∂

∂z

(
∆t

ρn+1
k+1

∂

∂z
Φn+1

)
. (4.28)

Finally, as the flow is incompressible, the pressure boundary condition is

∂

∂y

(
1

ρn+1
k+1

∂

∂y
Φn+1

)
+

∂

∂z

(
1

ρn+1
k+1

∂

∂z
Φn+1

)
− 1

2µn+1∆t
Φn+1 =

∇ · u∗k+1

∆t
, (4.29)

which is the pressure boundary condition derived in Poux et al. (2011) adapted to a
variable density flow. Previous equations are forming the algorithm used to compute
and couple the x-velocity and the pressure at the outflow, and to satisfy exactly
the relation Eq. (4.26) along with the incompressibility constraint. Concerning the
tangential components of the velocity, the outflow condition is simply a Neumann
condition,



4.5. SINGLE PHASE TEST CASES 113

∂v∗,n+1
k+1

∂x
=
∂w∗,n+1

k+1

∂x
= 0. (4.30)

This choice, rather than the use of a constraint on the tangential traction value,
is motivated by the well-known fact that a tangential traction-free condition is not
compatible with a parallel flow (Leone Jr and Gresho, 1981) and by the fact that
several results are reported as better with a Neumann condition on tangential veloci-
ties rather than a tangential traction condition, even with non-zero traction (Gresho,
1991).

It should be noted that the pressure boundary condition, Eq. (4.29), is only valid
if tn+1

x does not change between the estimation and correction steps. Otherwise, any
change will have to be taken into account into the pressure OBC, Eq. (4.29). Thus,
the traction tn+1

x can be given depending on the type of open boundary condition.
For TF, it is

tn+1
x =

ρn

2
f(un), (4.31)

and for non-zero traction conditions (ET and CT),

tn+1
x =

ρn

2
f(un) + test,n+1

x . (4.32)

The density is taken at the previous time step to be coherent with the choice of
the velocity. The backflow stabilization is thus not instantaneous but delayed by one
time step. As stated previously, the estimated normal traction is computed using
interior values and at the previous iteration to ensure the validity of the pressure
boundary condition. For ET,

test,n+1
x =

(
−p+ 2µ

∂u

∂x

)n
BC−1

, (4.33)

and for CT,

test,n+1
x = φ

(
−p+ 2µ

∂u

∂x

)n
BC−1

+ (1− φ)

(
−p+ 2µ

∂u

∂x

)n
BC

, (4.34)

with φ to be prescribed later. The overall algorithm is presented in algorithm 2.

4.5 Single phase test cases

The improvements obtained using our novel outlet treatment are first illustrated
on single phase test cases. The first test case, the Kovasznay flow, allows to see
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Algorithm 2: Algorithm for traction OBCs

Input: un, pn, ρn in Ω and on ∂Ω
1 Solve Eq. (2.7) using VOF advection → κn+1, µn+1 in Ω
2 for k = 0 to kmax − 1 do
3 Compute ρn+1

k+1

4 Solve Eq. (2.20) → u∗k+1 in Ω
5 Apply Eqs. (4.17)-(4.25) and (4.30) on u∗k+1

6 Solve Eq. (2.22) with Eq. (4.18) and Eq. (4.29) → Φn+1 in Ω
7 Correct velocities Eq. (2.23) and pressure Eq. (2.24) → un+1

k+1 and pn+1
k+1 in Ω

8 Apply Eqs. (4.26) and (4.30) on un+1
k+1

Output: un+1, pn+1, ρn+1 in Ω and on ∂Ω

the spatial order of convergence of the overall method, while the second test case,
a time-dependent manufactured solution test, allows to study the temporal order of
convergence of the present algorithm. The third test case, the flow around a square,
shows both qualitative and quantitative improvements thanks to ET. The last case,
a turbulent plane jet, shows the stability and accuracy of ET in the presence of a
fully turbulent flow.

Kovasznay flow

The Kovasznay flow is a steady state flow used to mimic the flow behind a cylinder
(Kovasznay, 1948). This configuration is a 2D domain, periodic along the vertical
axis, with an inflow on its left boundary and an OBC on its right. The analytical
solution of the Kovasznay flow is given by

u = 1− eλx cos(2πy), (4.35)

v =
λ

2π
eλx sin(2πy), (4.36)

p =
1

2

(
1− e2λx

)
, (4.37)

where λ = Re
2
−
√

Re2

4
+ 4π2. We choose here Re = 1/40. Thus, this test case

can be used to study the effect of the type of OBC and its position on the error
level compared to the analytical solution (Dong et al., 2014). The domain is a two-
dimensional domain of size −0.5 6 x 6 Lx and −0.5 6 y 6 0.5, with Lx the position
of the OBC. The mesh is uniform and Cartesian with a cell size ∆, with ∆ to be
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Fig. 4.1 – Streamlines of the Kovasznay flow

specified later. In all cases presented below, ∆t = 0.001. The inflow is defined using
the analytical solution in x = −0.5. The streamlines of this flow are shown in figure
4.1.

Hereafter we study the effect of the OBC choice on the error compared to the
theoretical solution. Considered OBCs are NM, TF and ET. CV is intentionally
excluded from this test case to avoid any discussion on the choice of the convective
velocity at this point.

In a first comparative test, the domain length is kept constant with Lx = 4.5
and the mesh is progressively refined in order to check the convergence of the error
depending on the type of OBC. In figure 4.2a) we show the evolution of the L2

error norm of the x-velocity and the pressure, for differents OBCs and depending on
mesh resolution. One can first observe two differents behaviors: for coarser meshes,
the same level of error is obtained for all three OBCs, which decreases with mesh
resolution (with order 2, i.e., the order of used numerical methods). For finer meshes,
and for NM and TF OBCs, the error progressively saturates at a constant value,
indicating that outflow error is dominating. Note that this deviation occurs later
for TF than for NM and stabilizes also at a lower value, meaning that TF gives a
lower error than NM on that test case. On the other hand, with ET, no deviation is
observed from the second order slope, meaning that in that range of mesh resolutions,
the error due to the outflow is never dominating. With finer meshes and ET, one will
necessarily observe a saturation of the error as the choice of the estimated traction
is not perfect. Note that one can also compute the estimated traction using the
analytical solution (Dong et al., 2014), which is not possible in real flow simulations.
For shorter domains, the spatial convergence study gives the same results but the
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Fig. 4.2 – Error levels for different OBCs: a) Mesh convergence, b) Effect of domain
truncation. Continuous line: ET - Dashed line: TF - Dotted line: NM

saturation of the error occurs for coarser meshes. Note that second order convergence
is also obtained in Linf error norm.

In a second comparative test, the mesh is kept constant (∆ = 1/80) and the
domain is progressively truncated. Similarly to the previous test, we show on figure
4.2b) the evolution of the L2 error norm of the x-velocity and the pressure, for
differents OBCs and depending on the position of the artificial boundary. It is seen
in figure 4.2b) that on a sufficiently long domain all OBCs produce the same level
of error. It is also seen that with NM the truncation of the domain has a much
stronger effect than with other OBCs. The result is, for the range of Lx considered
here, barely independent of the artifical boundary position. This point is improved
with TF, which provides a better independence of the result with the position of the
outlet. With ET the result is independent of Lx for a large range of domain size,
even though a small increase of L2(u) is noticeable. Note that all OBCs are stable
for the smallest domain (Lx = −0.1), where the outflow boundary is located in a
recirculation zone, which is not possible without backflow treatment such as clipping
or stabilization. But, in case of the durable presence of a backflow, even the traction
condition will not provide a perfectly accurate solution as the stabilization term only
makes sense in terms of kinetic energy conservation. Those tests demonstrate the
interest of the non-zero traction OBC on a steady state problem in terms of error
level and independence to outlet position.
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Time-dependent manufactured solution

In order to study the temporal order of convergence of the proposed method, we
use the time-dependent manufactured solution of Dong et al. (2014),

u = 2 cos(πy) sin(πx) sin(t), (4.38)

v = −2 cos(πx) sin(πy) sin(t), (4.39)

p = 2 sin(πx) sin(πy) cos(t), (4.40)

which satisfies the incompressibility condition (∇ · u = 0). In order to satisfy
Eq. (2.15), unsteady body forces have to be added to the Navier-Stokes equations.

The computational domain is two-dimensional, of size 0 6 x 6 2 and −1 6 y 6 1,
with 256 uniform cells in both directions. Eqs. (4.38) and (4.39) are enforced as
Dirichlet boundary conditions on three boundaries of the computational domain,
whereas the traction condition Eq. (4.24) is used on the last one. Similarly to Dong
et al. (2014); Dong and Wang (2016); Poux et al. (2011), the right hand side of
Eq. (4.24) is computed using the manufactured solution. The initial velocity field is
set to zero, in agreement with the manufactured solution. For this test case we use
ρ = 1 and µ = 0.01.

The simulation is advanced in time with a fixed time step, ∆t, to be specified,
until a fixed final time tf = 0.5. The L2 error norm on different flow variables at this
final time is computed with respect to the manufactured solution. The test is then
repeated with various time steps.

The results are shown on figure 4.3. One can see that the error norm convergence
for all flow variables is approximately of second order until a progressive saturation
of the temporal error by the spatial error. Note that the convergence of the error
seems to be faster for the velocities than for the pressure, which may be due to the
presence of splitting errors Poux et al. (2011). A rotational pressure correction would
be a solution to resolve this discrepancy (Poux et al., 2011; Dong et al., 2014), but
for the reason cited in section 9 we chose not to use this strategy. Note that the
same results are obtained in Linf error norm. In agreement with Poux et al. (2011),
these results suggest that the present algorithm for the implementation of traction
conditions does not deteriorate the order of temporal convergence.

Flow around a square

We now compare the different OBCs on an unsteady case: the flow over a two-
dimensional square. This test case presents two main interests from the point of
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Fig. 4.3 – Method of manufactured solution. Convergence of the error level with
respect to the time step. The dashed black line shows second order convergence.

view of OBC performance. Firstly, we study their ability to convect the vortices
generated by the von Kármán instability through the artificial boundary. Secondly,
we investigate the impact of the OBC position and type on aerodynamic quantities
such as drag and lift coefficients and vortex shedding frequency

In a first test, we use the square as a vortex generator and we compare qualita-
tively TF and ET on their ability to properly convect vortices through the artificial
boundary. The test case is a two dimensional domain of size −5H 6 x 6 5H and
−5H 6 y 6 5H where H is the size of the square located in the middle of the
domain. The Reynolds number Re = ρUH/µ is equal to 1000. U is the velocity
uniformely imposed at the inflow (x = −5H) and the outflow is located at x = 5H.
Symmetry boundary conditions are used at y = ±5H and the domain is uniformely
discretized with a cell size ∆ = H/40. The time step is chosen such that the CFL
number stays equal to 1. Under those conditions a strongly unsteady flow is gen-
erated downstream of the obstacle. It should be noted that this flow is unphysical
given the three-dimensionality of a real flow at that Reynolds number, but this test
case allows to assess the accuracy of outlet boundary conditions (Dong et al., 2014).

On figure 4.4 we show, through isocontours of z vorticity, the exit of several
vortices through the outlet boundary. The top row of figures presents the result
with TF, whereas the bottom row of figures presents the result using ET. On the
top images, one can observe that the use of TF tends to flatten the vortices on



4.5. SINGLE PHASE TEST CASES 119

a) b) c) d)

e) f) g) h)

Fig. 4.4 – Isocontours of z vorticity. Top figures: TF; bottom figures: ET. From left
to right, all figures are separated by a time interval of 0.5H/U .

the outlet and to delay their complete exit through the open boundary. This can
simply be explained by a balance of pressure: the pressure at the vortex center is
balanced by the imposed outlet pressure through imposed traction and by inertial
effects. As inertial effects are not strong enough to push out the vortex, it sticks
to the boundary and is only slighty – and slowly – pulled out of the domain by the
backflow stabilization term. We observed that if no backflow stabilization is taken
into account, vortices were gathering on the artificial boundary, finally leading to
the blow-up of the simulation due to the backflow instability. Note that, although
the vortices exit seems unnatural, once the stabilization term is included the code
remains perfectly stable to backflow at the outlet boundary. On the other hand,
with ET, no vortex sticking is observed and vortices simply cross the boundary with
barely any deformation.

We now propose a more quantitative comparison between different OBCs through
the study of the aerodynamic quantities. To avoid any confinement effect and any
impact of the inflow position, the domain is this time of size −10H 6 x 6 L and
−10H 6 y 6 10H, with L the position of the outlet boundary and H the size of
the square located at (0, 0). The Reynolds number Re = ρUH/µ is now equal to
100. The domain is discretized with a uniform cell size ∆ = H/40 in the sub-domain
−10H 6 x 6 L and −4H 6 y 6 4H, to avoid any loss of resolution of the vortices
in the wake of the obstacle, and is then progressively stretched up to the top and
bottom boundaries with a constant stretching ratio of 1.05. The time step is chosen
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Fig. 4.5 – Impact of the outflow position and type on the aerodynamic quantities:
a) mean drag coefficient, b) r.m.s lift coefficient, c) Strouhal number. On all plots,
the vertical axis is the error compared to the value obtained on the longest domain,
whereas the horizontal axis is the distance between the square and the outflow po-
sition L normalized by the size of the square H. The reference results included are
the results from Dong et al. (2014) and Poux et al. (2011).

such that the CFL number stays equal to 1. The aerodynamic forces are directly
integrated on the surface of the obstacle.

Figure 4.5 presents the evolution of differents aerodynamic quantities as a function
of the position and the type of open boundary. We also included the results of two
recent publications using the stabilized traction-free condition (Dong et al., 2014)
and the traction-free condition (Poux et al., 2011). In order to simplify comparison
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with other publications, the evolution of the aerodynamic quantities is presented in
terms of error relative to the value obtained on the longest domain. Figure 4.5a)
shows the evolution of the mean drag coefficient, figure 4.5b) shows the evolution of
the r.m.s lift coefficient and figure 4.5c) shows the evolution of the Strouhal number
associated with the vortex shedding frequency. The results obtained with ET keep
a correct behavior even on the smaller domains by exhibiting the lowest variation of
aerodynamic quantities as a function of the outflow position. This improvement is
largely explained by the fact that the underlying assumption of well-developped flow
associated with the traction-free condition, stabilized or not, is no longer required
with ET.

Turbulent plane jet

To finally assess the stability and the accuracy of the proposed boundary condi-
tion we study the spatial evolution of a turbulent plane jet. The configuration, the
expression of the analytical inlet velocity profile and the choice of parameters are the
same as in da Silva and Métais (2002a) (case refered to as “DNS2” in their original
paper). The numerical domain is a 3D domain of size 0 6 x 6 12.4h, −6h 6 y 6 6h
and −1.6h 6 z 6 1.6h, where h is the jet width. The inlet boundary is located at
x = 0 and the outflow at x = 12.4h. The other boundaries are periodic. The domain
is discretized with a uniform cell size ∆x = ∆y = ∆z = 0.04h. The constant time
step is ∆t = 0.02.

In a first study the Reynolds number based on the jet width, Re = (Ui−Uff )h/ν,
is taken equal to 3000, with Ui the jet centerline inlet velocity and Uff the inlet far-
field velocity. The isocontours of positive Q-criterion (Dubief and Delcayre, 2000) are
shown on figure 4.6, using TF (a) and ET (b). On both figures one can see the spatial
development of the jet, initiated by the apparition of successive Kelvin-Helmholtz
rolls that are then connected by the apparition of vortices in the streamwise direction.
When reaching the outlet boundary the flow is fully tridimensional. On figure 4.6a)
one can see the dramatic effect of TF on the exit of the vortices. A part of them
sticks to the boundary and is prevented to leave the domain. On the other hand,
using ET, no vortex sticking is observed and the vortices are crossing the boundary
with barely any deformations, see figure 4.6b). With CV, the vortices exit looks very
similar to the one seen using ET (results not shown). Note that using TF we had
to reduce the time step size in order to obtain a stable simulation. This may be due
to the vortex sticking phenomena coupled to the delayed backflow correction of one
time step. Considering the poor qualitative result seen on figure 4.6a) and the need
to decrease the time step size, we therefore exclude TF from the following analysis.
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The jet exhibits a self-similar behaviour in its downstream region (da Silva and
Métais, 2002a). In this region, several quantities computed from the time averaged
velocity field are evolving linearly with the downstream distance. We choose here
to use the centerline velocity, Uc = 〈u(x, y = 0)〉, and the jet half-width, δ1/2, de-
fined as the y−location where the velocity is equal to half of the centerline velocity,
i.e., 〈u(x, y = δ1/2)〉 − Ux,∞ = 0.5 (Uc − Ux,∞), with Ux,∞ = 〈u(x, y = ∞)〉, the
far-field velocity. Those quantities follow the following relationships (Gutmark and
Wygnanski, 1976):

δ1/2

h
= Ku1

[x
h

+Ku2

]
, (4.41)

and [
Ui − Uff
Uc − Ux,∞

]2

= Cu1

[x
h

+ Cu2

]
. (4.42)

We plot those quantities, along with their linear relations, on figure 4.6c) and
4.6d) using ET and CV. Using ET, in addition to provide a natural exit of the
vortices as well as the stability of the simulation, the self-similar region is barely
disturbed by the presence of the open boundary. With CV both of the self-similar
quantities are strongly affected by the presence of the outflow. Note that the slopes
of the linear relations are the same as in da Silva and Métais (2002a).

To demonstrate that the proposed boundary treatment is stable for highly tur-
bulent flows, we study the large eddy simulation of the turbulent plane jet at Re =
30000. The sub-grid stresses are estimated with a dynamic Smagorinsky eddy viscos-
ity model using Lagrangian averaging to compute the dynamic coefficient (Meneveau
et al., 1996). The computational domain is now larger in the vertical direction to
account for the entrainment induced by the jet, i.e., −8h 6 y 6 8h. The isocon-
tours of positive Q-criterion are shown on figure 4.7a). One can see that there is
no accumulation of vortices on the open boundary although the turbulence is fully
developped when reaching the open boundary. To show the long-term stability of
the proposed method even in the presence of a strong turbulent flow, we show the
temporal evolution of the kinetic energy integrated over the computational domain
on figure 4.7b). After an initial transient, the flow reaches a statistically station-
ary state that is not perturbed by the presence of backflow at the open boundary.
As stated before, this result strongly suggests that a zero energy flux at the open
boundary is not needed to ensure the stability of the simulation. The accuracy of
the proposed boundary treatment could even be improved using a better estimation
of the traction at the open boundary, for example with CT.
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Fig. 4.6 – (Color online) Turbulent plane jet at Re = 3000. Positive Q-criterion
isocontours (20 isocontours from Q = 0.25 to Q = 100) at t(Ui−Uff )/h = 166, using
TF (a) and ET (b). c) Evolution of the jet half-width with downstream distance using
ET and CV. Model computed using Eq. (4.41) with Ku1 = 0.089 and Ku2 = −1. d)
Evolution of the centerline jet velocity with downstream distance using ET and CV.
Model computed using Eq. (4.42) with Cu1 = 0.165 and Cu2 = −2.
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Fig. 4.7 – Large eddy simulation of a turbulent plane jet at Re = 30000. a) Positive
Q-criterion isocontours (10 isocontours from Q = 0.25 to Q = 100) at t(Ui−Uff )/h =
400 using ET. b) Temporal evolution of the normalized kinetic energy integrated over
the domain using ET.

4.6 Multiphase test cases

We now turn our attention to multiphase flows. In this section, the importance
of backflow stabilization is demonstrated using first a single drop advection test
case, then a turbulent swirling jet flow simulation. Finally, we demonstrate the
improvements obtained using CT on a problem of surface waves reflection.

Drop convection

A water droplet of size D = 0.1 with initial velocity Ul = 3 is placed at the
center a domain of size −10D 6 x 6 10D and −10D 6 y 6 10D and surrounded by
quiescent air. The outflow is located at x = 10D, with periodic boundary conditions
at y = ±10D. At x = −10D, a slip wall condition is used. The simulation is run on
a 64× 64 mesh with a timestep ∆t = 0.001.

Figure 4.8 shows velocity vectors along with the liquid-gas interface during the
advection of the drop towards the outlet for two types of boundary conditions. On
the top row of images the result are obtain with the CV, and on the bottom row of
images the result are obtained with ET. Note that, on this test case, one can replace
CV by NM and ET by TF, for the same qualitative result.
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a) b) c) d)

e) f) g) h)

Fig. 4.8 – Water drop advection in a domain without inlet. a)-d) : CV ; e)-h) : ET.
From left to right, all figures are separated by a time interval of 0.6D/Ul.

On the top pictures of figure 4.8, one can observe that with CV OBC the drop is
flattening on the boundary and no liquid is exiting the domain. On the other hand,
using ET, the drop is completely going out with minimal deformation. The reason
for these completely different behaviors lies in the fact that the incompressibility
condition requires the outlet flow rate to be equal to the inlet flow rate, in this
case zero. Thus, the only way for the drop to exit is to allow backflow. We see
here one strong limitation of the clipping strategy, which severely affects the flow
by preventing the drop from going out, though it provides unconditional stability.
On the other hand, once the stabilization term is included, ET and TF are perfectly
stable to backflow as can be seen in figures 4.8f-g-h).

Turbulent swirling jet

To show the importance of backflow stabilization in a more realistic case, we
present a simulation of turbulent swirling jet. As shown in figure 4.9, a turbulent
liquid jet exits from a nozzle located on the left of the domain. The jet then develops
into a conical shape and becomes subject to different interfacial instabilities leading
to its atomization. The outflow is located on the right of the domain (colored in
pink), whereas all lateral boundary conditions are periodic. All physical properties,
injection parameters and geometric characteristics are the same as in Evrard et al.
(2019). The domain is discretized with a 200 × 400 × 400 cartesian grid and the
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a) b)

Fig. 4.9 – (Color online) Turbulent swirling jet test case. Liquid-gas interface colored
by axial velocity shown at a time tU/D = 11 (dark blue: u = 0, dark red: u = 3U ,
with U the bulk injection velocity). a) result using CV, b) result using ET.

simulation is advanced with a CFL number of 0.8.

On figures 4.9a) and 4.9b), the liquid-gas interface colored by the axial velocity
is shown after a simulation time tU/D = 11, where U is the bulk injection velocity,
and D the external diameter of the injector. On figure 4.9a), the result with CV is
shown, with the phase velocity computed using Eq. (4.19). One can see that since
this outflow treatment does not allow backflow, some of the liquid is prevented from
going out and “splashes” on the exit plane. Figure 4.9b) shows the result using the
ET OBC, and in this case the liquid is not blocked on the exit plane. This obviously
has a large impact on the capability to reach long term simulations of such atomizing
liquid jets. With a boundary condition that does not allow backflow, the simulation
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time is obvisouly limited by the length of the domain, which is not the case with
a stabilized traction boundary condition. It should be noted here that CV may be
replaced by NM and ET by TF for the same results on the liquid exit. The difference
between TF and ET will lie in the speed of the droplets in the vicinity of the outlet
and in the behavior of the vortices exiting the domain, as already discussed using
the test case of the flow around a square.

Although here traction conditions are used only as exit conditions, it should
be noted that they may also be used as lateral boundary condition (Dong, 2015;
Bruneau and Tancogne, 2018). One can also imagine replacing the wall used around
the liquid injector by an open traction boundary condition in order to get a more
realistic representation of such jets by allowing the development of a “natural” gas
co-flow. We will investigate that point in future works.

Surface gravity waves

We finally evaluate the ability of the different OBCs to evacuate a surface wave
without reflection. As said in the introduction, wave reflection is a problem of critical
importance in ocean modeling as it prevents the convergence of flow statistics and
may create unrealistic flows (Marchesiello et al., 2001).

The test case is set up using solitary wave theory (Munk, 1949). The interface
height is defined as

η(x) = A0sech2

(√
3A0

4h0
3x

)
, (4.43)

with A0 the initial height of the wave and h0 the water depth. The initial velocity is
defined as u = (u(x), 0, 0) where

u(x) = η(x)

√
|g| (h0 + A0)

h0 + η(x)
+ Uin, (4.44)

and Uin is the inflow velocity. The computational domain is two-dimensional, of
size −60h0 6 x 6 20h0 and −h0 6 y 6 4h0 with symmetry boundary conditions
along y, a constant velocity inflow u = Uin at x = −60h0 and the OBC at x = 20h0.
Air/water conditions are used for the choice of physical properties. This setup results
in the transport of a soliton from the position x = 0 to the OBC at a constant phase
velocity cth =

√
|g| (h0 + A0) + Uin. For all cases presented below parameters are

chosen as A0 = 0.005, h0 = 0.01, Uin = 0.07. The domain is discretized using a
uniform Cartesian mesh with ∆x = ∆y = 5× 10−4. The solution is advanced using
a time step size ∆t = 1× 10−3.
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Fig. 4.10 – (Color online) Transport of a surface gravity waves through an OBC.
a) CV with c = cmax, b) ET, c) CV with c = cth, d) CT with c = cth. The color
indicates the liquid height.

On figure 4.10 are presented the space-time plots of the interface height for 4
different OBCs along with, on figure 4.11, the interface height signals at a position
x = 10h0. On figure 4.10a), the result with CV is shown. As in previous tests,
the wave speed is taken as c = cmax. One can first see a transient phenomenon at
the initialization which causes the emission of perturbations towards the left of the
domain and the height of the wave to slightly decrease. Since the inflow is located
at x = −60h0, none of the results presented herein are affected by the reflexion
of these initial perturbations on the inflow. The reason for these perturbations is
an initial adjustment due to the discrete approximations of the continuous solution
(Marchesiello et al., 2001). Following this initial transient, the soliton travels towards
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Fig. 4.11 – Interface height signals at a fixed position x = 10h0 for 4 different OBCs.

the OBC at a constant speed cth. Once the wave reaches the artificial boundary, it
completely crashes on the boundary and a large part is reflected in the domain in a
succession of smaller waves, forming a reflection cone. This result is not a surprise
given the inapropriate choice of the convective velocity.

In figure 4.10c), we use the theoretical wave speed as the convective velocity
in CV. One can see that the reflection is much lower in amplitude but creates an
increase of the mean liquid level, seen also in figure 4.11. Thus, even with the best
choice of the wave speed, a convective condition is not able to evacuate a soliton out
of the domain without reflection.

We now focus our study on the use of a traction condition. First, it should be
noted that the use of TF is impractical for such simulations. The pressure being
hydrostatic in the domain, using a traction-free condition will impose a pressure
close to zero at the outlet (velocity gradients being small far from the soliton), thus
resulting in a strong suction of the flow which rapidly propagates up to the inlet. On
figure 4.10b), we show the result using the ET. One can observe that the reflection is
almost suppressed but that small waves propagate upstream. Thus, such an arbitrary
choice of the estimated traction (computed at the point just before the boundary at
the previous time step) is in fact even better than the best choice of a convective
OBC. However, two points have to be emphasized. Firstly, ET is not perfectly non-
reflective. Secondly, we have observed a dependence of its performance to numerical
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parameters such as the time step or cell sizes.

The reason for the last two points has in fact already been explained in section
4.3. Considering the estimated traction as a Lagrangian quantity, the present choice
is not optimal. Indeed, taking the estimation of the traction at the point before
the boundary and at the previous time step is not always a good choice depending
on numerical parameters. A more accurate choice can be found considering the
convected traction boundary condition (CT). The theoretical wave speed, cth, is
taken as the advection velocity. The interpolation coefficient used in Eq. (4.14) is
therefore φ = cth∆t/∆x. The result using this approach is shown on figures 4.10d)
and 4.11).

One can see that CT, our new OBC, is now perfectly non-reflective. It must be
emphasized that this result is now independent of the time step, the mesh size, and
is also independent of the OBC position.

Remark: extension to non-regular grids and domains

In most of the present chapter, we use an estimation of the traction at the point
just before the boundary, which is easy to define on a structured mesh. The extension
to fully unstructured meshes is possible thanks to the Lagrangian estimation of the
traction introduced previously, as done in Eq. (4.14). On such meshes, one has to
define an advection velocity and then perform a semi-Lagrangian interpolation of
the traction field at the location of interest to obtain the traction estimate. In case
of curved boundaries, one has to use differential geometry to complete the pressure
boundary condition, Eq. (4.29), as done in Bänsch (2014).

Remark: use as inlet boundary condition

Eq. (4.10) is a general form of traction estimation and does not make any as-
sumption on the sign of uad. Several choices can be made for uad: based on a local
CFL = 1 condition, such as with ET, computed using an analytical expression, such
as with the use we made of CT in section 4.6, or using a local velocity.

All of these choices are perfectly suited for the case of an outgoing flow but not to
the case of an inflow: if uad · n is positive, traction estimation is made using interior
values, whatever the orientation of the flow, if uad ·n is negative, traction estimation
has to be done using values outside of the domain, which are not known.

For [uad · n ≥ 0; u · n ≤ 0], several cases can be distinguished regarding to the oc-
curence of backflow. In case of local backflow induced by vortices passing through the
outlet boundary, no blocking of the flow will be observed and the use of ET and CT
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will result in accurate and stable simulations, as demonstrated in previous sections.
In case of durable backflow, i.e., use as an inlet or a far-field boundary condition,
the use of ET or CT will result in unphysical flows, as test will keep increasing from
one iteration to another, thus pulling the flow outside of the computational domain,
eventually blocking the incoming flow (results not shown). In this case, an appro-
priate solution could be to control the value of test over time compared to interior
values, in order to ensure that the flow is not over stabilized but is still compatible
with the interior flow.

If uad · n < 0, whatever the sign of u · n, test has to be computed using exter-
nal values. This is similar to the need for external data in convective conditions
(Marchesiello et al., 2001). One could think that test = 0 is an appropriate choice
as the external traction values are not known, but if one combines this choice with a
non-zero traction estimation where the flow is outgoing, some discontinuities in the
traction field can occur, leading to unphysical flows and even numerical instabilities
(results not shown). The use of TF in cases where the flow is mostly coming from
the outside will be appropriate, though with the accuracy issues of TF. If one wants
to obtain a flexible solution that would allow durable backflow, as well as the level
of accuracy obtained using ET or CT, a strategy to estimate test in case of incoming
flow has to be defined. One may start from the strategy developped by Bruneau and
Creusé (2001) to evaluate incoming characteristics in compressible flows.

4.7 Conclusion

We have presented a comparison between several outlet boundary treatments
on single and multiphase test cases along with their numerical implementation in
the context of fractional step methods. One major difference between these open
boundary conditions lies in the backflow treatment. The implementation of backflow
clipping associated with Neumann or convective open boundary conditions, while
providing unconditional stability, can have a strong effect in the simulation of mul-
tiphase flows. On the other hand, stabilized traction conditions are perfectly suited
to resolve this issue. The main drawback of the traction-free condition lies in its un-
derlying assumption of well-developed flow that is not suited for severely truncated
domains or high Reynolds number flows. To overcome this issue, an open boundary
condition combining stabilization to backflow and space and time varying estimated
traction is proposed, allowing stable and accurate simulations for turbulent and mul-
tiphase flows. This estimated traction is considered as a Lagrangian quantity, which
allows to use it as a non-reflective artifical boundary for surface waves simulations.
This work shows that traction conditions have the potential to resolve most of issues



132

CHAPTER 4. TRACTION OPEN BOUNDARY CONDITION FOR
INCOMPRESSIBLE, TURBULENT, SINGLE- OR MULTI-PHASE FLOWS,

AND SURFACE WAVE SIMULATIONS

related to outflow treatment. They might also be used as lateral or inlet boundary
conditions, providing that an appropriate method to estimate the traction is found,
and allow a considerable reduction in the cost of numerical simulations. The very
general form under which the estimated traction is introduced also opens the way
to a study of the effect of different advection methods on the accuracy of traction
boundary conditions.

In section 4.2 we explained that convective boundary conditions were limited
by their stability to backflow and the difficulty to evaluate a phase velocity. The
treatment of these issues still deserve some improvements with traction boundary
conditions. In case of backflow, one need to find a way to estimate the traction in a
way that will not lower the accuracy of the boundary treatment and is able to sustain
long term backflows. For the case of surface waves, traction estimation still requires
the use of a phase velocity. No satisfying method exists in the literature to perform
such computation, probably because all methods are too local in space and time.



Chapter 5

Conclusion and perspectives

The objectives of this work, initially centered on the stability of an air-water
mixing layer, were focused on the role of confinement in primary wave formation. We
have demonstrated the convergence between linear stability analysis, simulations, and
experiments on instability characteristics in regimes where finite thicknesses of liquid
and gas layers are predicted to trigger an absolute instability. We have then proved
numerically that confinement is indeed a source of transition between convective
and absolute regimes. These two studies definitely demonstrate that injector size
selection has an effect on primary wave formation and that further study is needed
to ease this choice.

We have thus explored in greater details, through simulations and linear stabil-
ity analysis, the effect of confinement on flow stability. We have evidenced that in
confinement-induced absolute regime wave frequency is inversely proportional to the
smallest injector size (liquid or gas), and that both stream thicknesses have a sym-
metric effect on wave frequency but not on wave amplitude. A reduction of Hl, the
liquid stream thickness, induces a global reduction of the amplitude, especially in the
self-similar growth region, while a reduction of Hg, the gas stream thickness, seems to
induce the departure from this self-similar growth. The range of validity of Eq. (3.6)
will be favoured by high dynamic pressure ratio and symmetric confinement.

We lead the first study of wave acceleration, which gave results in agreement with
recent drop sizes measurements and with the effect of confinement on primary wave
formation.

Finally, we realized 3D simulations of air-water mixing layer. We evidenced that
ligaments generation is triggered by wave acceleration, in agreement with the insta-
bility cascade described in the first chapter of this manuscript. The study of domain
width effect gave the minimal requirement needed, in terms of computational domain

133
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size, to perform DNS of primary wave formation.

One natural extension of this work is to pursue the study of velocity deficit effect.
This will require the use of locally refined meshes in the vicinity of the interface
in order to precisely quantify the effect of δd on the instability characteristics, and,
particularly, to confirm that its effect on wave frequency is indeed the one predicted
by linear stability analysis. However, the use of extremely fine meshes in 2D may
give rise to unphysical spatial frequency variation. The study of δd effect may have
to be done in 3D, which will first require investigation of the observed discrepancy
between 2D and 3D simulations for wave frequency value. One may first have to lead
a 3D mesh convergence study. 3D mesh convergence will also allow wave acceleration
and related quantities (e.g., the wave drag coefficient Cd) measurements.

The configuration we used to study the stability of an air-water mixing layer does
not include a splitter plate between gas and liquid streams. In complement to the
study of the effect of δd on the instability, one could actually verify the relevance of
the inclusion of a deficit by performing resolved simulations of splitter plate wake.
These simulations would allow the study of contact line dynamic at the splitter plate
and the study of mean velocity profiles spatial variation in order to confirm, or not,
the picture of figure 1.11. One already knows that splitter plate thickness has an
effect on wave frequency selection (Ben Rayana, 2007; Fuster et al., 2013). This
effect has been included into linear stability analysis through velocity deficit (Matas
et al., 2011; Otto et al., 2013; Fuster et al., 2013), but this choice of modelisation has
not been yet confirmed by experiments or numerical simulations. Such study already
exists for single phase flows (Laizet et al., 2010), where the spatial evolution of a wake
deficit parameter (similar to δd), vortex dynamics, and flow statistics are presented
for three different splitter plate shapes. Some questions that could be answered are:
does a change in injection conditions modify velocity profiles evolution or contact line
dynamic? Does the shape of the splitter plate affect velocity profiles evolution or
contact line dynamic? Does contact line dynamic affect velocity profiles evolution?
This study will however require the use of very refined meshes around splitter plate
and, probably, 3D simulations.

Finally, the scaling of Eq. (3.6) does include density ratio. However, density ratio
has not been systematically varied in experiments and no stability studies including
confinement have been led to study its impact. An important task would be to
study precisely how density ratio impacts the borders between different instability
regimes. Particularly, in the conditions of Ling et al. (2017, 2019), confinement is not
found to have a destabilizing influence. It would be interesting to carry experiments,
simulations and linear stability analysis for varying density ratio, in order to assess
its influence on flow stability.



135

Over the course of this thesis we also developed a new traction open boundary
condition for incompressible, turbulent, single- or multi-phase flows, and surface wave
simulations, with the initial aim of improving accuracy of air-water mixing layers for
shorter computational domains. We developed a generalized traction boundary con-
dition that combines backflow stabilization and a Lagrangian traction estimate. This
Lagrangian traction estimate has only been used under its most simple forms, but
resulting boundary condition allows stable and acurate simulations of turbulent, high-
Webernumber multiphase flows, as well as non-reflectivity for gravity wave transport
through an open boundary.

A natural extension of the method to low-Weber numbers can be done by im-
proving traction estimation. Resolving the choice of test in case of backflow will be
a challenging step towards a flexible solution that allows accuracy and stability of
boundary treatment for outgoing as well as incoming flows.

Similarly, accurate phase velocity measurement is a very challenging subject.
An avenue to explore could be the use of mode decomposition techniques to phase
velocity measurements.
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Abstract

The shear instability occuring at the interface between a slow water layer and a fast air
stream  is  a  complex  phenomenon  driven  by  momentum and  viscosity  differences
across the interface, velocity gradients, as well as by injector geometries. Simulating
such an instability in the conditions of  experiments is numerically challenging and few
studies exist in the literature. This work aims at filling a part of this gap by presenting a
study  of  the convergence  between two-dimensional  simulations,  linear  theory,  and
experiments, in regimes where the instability is triggered by confinement, i.e., the finite
thicknesses of the gas and liquid streams. Very good agreement between the three
approaches is obtained. Moreover, using simulations and linear theory, we explore in
details  the effects  of  confinement  on the stability of  the flow and on the transition
between absolute and convective instability regimes, which is shown to depend on the
lengthscale  of  confinement  as  well  as  on dynamic  pressure  ratio.  In  the absolute
regime under study, interfacial wave frequency is found to be inversely proportional to
the smallest injector size (liquid or gas). We then study the transition between primary
and  secondary  instability  through  wave acceleration.  In  additional,  we explore  the
impact of three-dimensional effects on the flow. Finally, we present the development of
an  open  boundary  condition  for  turbulent  multiphase  flows  and  surface  waves
simulations.  Initially  thought  as  a  way  to  improve  accuracy  and  lower  needed
computational  ressources  of  air-water  mixing  layer  simulations,  this  work  leads  to
improvements  in  the  use  of  traction  boundary  conditions.  Particularly,  this  novel
boundary treatment couples Lagrangian traction estimation to backflow stabilization
which provides stability, accuracy and non-reflectivity of artificial boundaries.

Keywords: atomization, shear instability, confinement, open boundary condition

Résumé

L’instabilité de cisaillement se produisant à l’interface entre une couche d’eau lente et
un courant  d’air  rapide est  un phénomène complexe induit  par des différences de
quantité  de  mouvement  et  de viscosité  à  travers  l’interface,  de forts  gradients  de
vitesse, et par la géométrie des injecteurs. Simuler numériquement une telle instabilité
dans  les  conditions  expérimentales  est  difficile  et  peu  d’études  existent  dans  la
littérature.  Ce  travail  a  pour  objectif  de  combler  une  partie  de  cette  lacune  en
présentant une étude de la convergence entre simulations à deux dimensions, théorie
linéaire  et  expériences,  dans  des  régimes  où  l’instabilité  est  déclenchée  par  le
confinement de l’écoulement. Un très bon accord entre les différentes approches est
obtenu. De plus, via des simulations et la théorie linaire, nous explorons les effets du
confinement  sur  la  stabilité  de  l’écoulement  et  sur  la  transition  entre  régimes
d’instabilité absolus et convectifs. Cette transition est trouvée comme dépendante de
la longueur caractéristique du confinement et du ratio de pression dynamique. Dans le
régime absolu étudié, la fréquence des vagues interfaciales est trouvée comme étant
inversement  proportionnelle  à la plus petite taille d’injecteur (liquide ou gaz).  Nous
étudions ensuite la transition entre les instabilités primaires et secondaires à travers
l’accélération  de  la  vague.  Nous  étudions  par  la  suite  l’impact  des  effets  tri-
dimensionnels  sur  l’écoulement.  Enfin,  nous  présentons  le  développement  d’une
condition de frontière ouverte pour des écoulements turbulents, multiphasiques et des
simulations d’ondes de surface. Initialement pensé comme un moyen d’améliorer la
précision et de diminuer les ressources informatiques nécessaires aux simulations de
couches de mélange eau-air, ce travail mène à des améliorations dans l’utilisation des
conditions  de  traction.  Plus  particulièrement,  cette  nouvelle  condition  aux  limites
couple une estimation Lagrangienne de la traction à une stabilisation aux écoulements
rentrants, ce qui permet la stabilité,  la précision et  la non-reflectivité des frontières
artificielles.

Mots clés: atomisation, instabilité de cisaillement, confinement, condition de frontière
ouverte
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