
HAL Id: tel-03349500
https://theses.hal.science/tel-03349500v1

Submitted on 20 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Models, Analysis and Execution of Audio Graphs in
Interactive Multimedia Systems

Pierre Donat-Bouillud

To cite this version:
Pierre Donat-Bouillud. Models, Analysis and Execution of Audio Graphs in Interactive Multimedia
Systems. Signal and Image Processing. Sorbonne Université, 2019. English. �NNT : 2019SORUS604�.
�tel-03349500�

https://theses.hal.science/tel-03349500v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE
SORBONNE UNIVERSITÉ

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique
(Paris)

Présentée par

Pierre DONAT-BOUILLUD

Pour obtenir le grade de
DOCTEUR de SORBONNE UNIVERSITÉ

Sujet de la thèse :

Models, Analysis and Execution of Audio Graphs
in Interactive Multimedia Systems

soutenue le 6 décembre 2019

devant le jury composé de :

M. Florent Jacquemard Directeur de thèse
M. Jean-Louis Giavitto Encadrant de thèse
Mme Myriam Desainte-Catherine Rapporteur
M. Pierre Jouvelot Rapporteur
M. Alain Girault Examinateur
M. Christoph Kirsch Examinateur
M. Yann Orlarey Examinateur
M. Dumitru Potop-Butucaru Examinateur

Abstract

Interactive Multimedia Systems (IMSs) are used in concert for interactive per-
formances, which combine in real time acoustic instruments, electronic instru-
ments, data from various sensors (gestures, midi interface, etc.) and the control
of different media (video, light, etc.). This thesis presents a formal model of
audio graphs, via a type system and a denotational semantics, with multirate
timestamped bufferized data streams that make it possible to represent with
more or less precision the interleaving of the control (for example a low fre-
quency oscillator, velocities from an accelerometer) and audio processing in an
MIS. An audio extension of Antescofo, an IMS that acts as a score follower
and includes a dedicated synchronous timed language, has motivated the de-
velopment of this model. This extension makes it possible to connect Faust
effects and native effects on the fly safely. The approach has been validated
on a mixed music piece and an example of audio and video interactions.

At last, this thesis proposes offline optimizations based on the automatic
resampling of parts of an audio graph to be executed. A quality and execution
time model in the graph has been defined. Its experimental study was carried
out using a prototype IMS based on the automatic generation of audio graphs,
which has also made it possible to characterize resampling strategies proposed
for the online case in real time.

i

Résumé

Les Systèmes Interactifs Multimédia (SIM) sont utilisés en concert pour des
spectacles interactifs, qui mêlent en temps-réel instruments acoustiques, ins-
truments électroniques, des données issues de divers capteurs (gestes, interface
midi, etc) et le contrôle de différents média (vidéo, lumière, etc). Cette thèse
présente un modèle formel de graphe audio, via un système de types et une
sémantique dénotationnelle, avec des flux de données bufferisés datés multi-
périodiques qui permettent de représenter avec plus ou moins de précisions
l’entrelacement du contrôle (par exemple un oscillateur basse fréquence, des
vitesses issues d’un accéléromètre) et des traitements audio dans un SIM. Une
extension audio d’Antescofo, un SIM qui fait office de suiveur de partition et
qui comporte un langage synchrone temporisé dédié, a motivé le développe-
ment de ce modèle. Cette extension permet de connecter des effets Faust et
des effets natifs, à la volée, de façon sure. L’approche a été validée sur une
pièce de musique mixte et un exemple d’interactions audio et vidéo.

Enfin, cette thèse propose des optimisations hors-ligne à partir du rééchan-
tillonnage automatique de parties d’un graphe audio à exécuter. Un modèle
de qualité et de temps d’exécution dans le graphe a été défini. Son étude ex-
périmentale a été réalisée grâce à un SIM prototype à partir de la génération
automatique de graphes audio, ce qui a permis aussi de caractériser des stra-
tégies de rééchantillonnage proposées pour le cas en ligne en temps-réel.

ii

Acknowledgements

Je remercie mes encadrants de thèse, Florent et Jean-Louis, qui m’ont appris
à faire de la recherche, avec deux visions différentes et complémentaires, la
vision Inria, et la vison Ircam. Merci Jean-Louis, pour toutes tes anecdotes de
directeur adjoint sur le mille-feuille administratif de la recherche en France.
Merci à Virginie, à Kevin, à Meriem, les assistants d’équipe à Inria, et à Anne-
Marie, Sylvie, et Vasiliki, à l’Ircam. Merci à l’équipe d’Antescofo des débuts
qui m’ont donné envie de poursuivre à l’Ircam, Arshia, José, et Philippe. Merci
à Clément, qui m’a montré l’exemple du thésard impliqué. Merci aux autres
doctorants de l’Ircam, dont j’ai eu le plaisir d’être le très actif délégué ! Merci
à Léo, et à Pierre. Merci aussi à Pierre pour avoir relu les premiers chapitres
de cette thèse. Merci à Martin qui va prendre la relève dans le bureau A112.
Merci à José-Miguel, grâce à qui j’ai pu aller donner quelques master class en
Russie et découvrir à la fois la truculence perpignanaise et la rigueur suisse, y
compris en Chine et en Russie. Merci aux membres de l’Ensemble Flashback,
Alex, Thomas et Thomas, Philippe, Emmanuel.

I would like to thank my reviewers, Myriam Desainte-Catherine and Pierre
Jouvelot, for the insightful comments and corrections on my dissertation.

Merci à Yann Orlarey, Dominique Fober, Stéphane Letz, et Romain Michon,
qu m’ont accueilli au Grame une semaine pour y découvrir les entrailles du
compilateur Faust, et m’ont fait redécouvrir ma ville de naissance.

I would also like to thanks Christoph Kirsch, whose lab I visited in Salzburg
in Austria, where he told me how and about the importance of finding interest-
ing problems, and where I first got the idea of the optimization by resampling.
Many thanks to Ana, Martin, Ouafae, and Sebastian, who tried to remind me
how to ski!

Merci à mes parents et à mes frères, qui m’ont toujours soutenu. Merci à
mes amis qui étaient toujours là, Yann, Sylvain, Yasya, Goce, Victor, Alina,
Gabriel, Élie, y compris pendant la rédaction anachorétique du manuscrit.
Merci à mon merveilleux colocataire, Michel/Matthieu hybride, prescripteur
en humour, à la faconde tantôt croquignolesque, tantôt érudite, sans qui cette
thèse aurait été moins joyeuse.

Спасибо русским и украинским друзьям. Благодаря вам, я узнал красивыйе
язык и културу. 谢谢曼，她带我认识了中国，并与我度过了愉快的时光

iii

Contents

1. Introduction 1

2. An overview of Interactive Multimedia Systems 9
2.1. A bestiary of Interactive Multimedia Systems 10
2.2. IMSs as real-time systems . 26
2.3. Optimization in IMSs . 30
2.4. Formal models for IMSs . 35

I. Formalization 43

3. Objects 45
3.1. Audio graphs . 45
3.2. The domain of discrete streams 47

4. Syntax and types 62
4.1. Syntax of nodes and audio graphs 62
4.2. Types . 66

5. Semantics 76
5.1. Stream transformations . 76
5.2. Semantics . 85
5.3. Related work and comparison with the formalization 94

II. Implementation and optimization of audio graphs 99

6. Proof of concept of an architecture for extensible, dynamic, het-
erogeneous audio plugins 100
6.1. Audio plugins . 101
6.2. Audio extension syntax . 104
6.3. Audio architecture . 109
6.4. Applications . 120

iv

Contents

7. Offline optimization of audio graphs 129
7.1. Approximate computing . 129
7.2. Optimization by resampling . 130
7.3. A quality model for audio graphs 142
7.4. Ranking nodes by average execution time 145
7.5. Experimental evaluation . 150

8. Adaptive overhead-aware scheduling of audio graphs by resampling 166
8.1. Real-time systems and adaptation 166
8.2. Resampling strategies suitable for real-time scheduling 168
8.3. Execution of the audio graph and prediction of deadline misses 172
8.4. Results and discussion . 172

9. Conclusion and perspectives 180
9.1. Conclusion . 180
9.2. Perspectives . 182

Bibliography 186

Tools 204
1. The audio graph format . 204
2. The ims-analysis program . 205
3. The Rust prototype IMS . 206

List of Figures 208

List of Tables 215

List of Algorithms 217

List of Codes 219

v

1. Introduction

Interactive Multimedia Systems (IMS) [Row93] offer powerful signal processing
functionalities for audio and video and ways of controlling audio and video by
reaction to events coming from the analysis of the signal or from the physical
environment. They are used for concerts of mixed music, as in Anthèmes II
by Pierre Boulez, where human musicians with acoustical instruments play
along with electronic sounds driven by computers. They can also be used in
theatre plays where they can control lights in addition to the music, or in live
coding [Col+03], where the performer-coder programs a musical piece in real
time in front of the audience. IMSs combine multiple inputs ranging from
the move of a slider, periodic low-frequency events sampled on a curve, to the
detection of a note in an audio stream or the detection of gestures [Bev+10;
Fer+17] through accelerometers and gyroscopes. They operate as a central
hub that gathers inputs from various sensors, analyses and processes them,
and dispatches the results to control some synthesis and transformation of the
multimedia materials, as illustrated in Figure 1.1. The sensors and the pro-
cessing can be directly integrated into the IMS or communicate via messages,
thanks to various protocols such as MIDI [Loy85], OSC [Wri05] or O2 [DC16],
to mention only the most popular ones. IMSs interact also with other IMSs and
with human performers, establishing a feedback loop, often called human-in-
the-loop [Con+12]. Sound can also be distributed and transmitted to the IMS
hub, using Jack Connection Kit [LOF05] for instance. Upon receiving these
events and signals, IMSs react by processing the sounds, triggering processes,
and changing parameters. The interactivity in IMSs emphasizes the need to
state precisely in time how to control the diverse processes running in the IMS.

IMSs are difficult to design and implement because they must orchestrate
heterogeneous models of computation, and have to accommodate periodic sig-
nals, such as audio signals, typically at 44 100 Hz, video signals, which are
carried at a smaller frequency, for instance 24 Hz (commonly said as 24 FPS,
or frame per seconds), or gesture data from an accelerometer, and control
events, which are aperiodic.

More generally, IMSs have to take into account many computations at very

1

1. Introduction

GUI

sensor
OSC, MIDI

sound

IMS

v1 v2

v3

light

sound

video

Figure 1.1.: The big picture of an IMS as a central hub connecting sensors and
controlling synthesis and signal processors, with a human in the
loop.

2

1. Introduction

different rates. Moreover, they are real-time systems: not outputting audio
at the right time can entail a discontinuity in the signal, hence an unpleasant
click. Dealing with a control event slightly late can also be noticed: two
events are perceived by our ears to be simultaneous if they are less than 20 ms
apart. Video constraints are less stringent: studies [Ste96] have shown that the
human ear is more sensitive to audio gaps and glitches than the human eye is to
video jitter. Dropping one frame1 in a video is usually not visible. Therefore,
in this work, we will focus on IMSs that mainly deal with audio. However,
there still remains a large amount of signal processing tasks with different
rates and timing constraints, such as spectral processing, physical modelling
of acoustical models, spatialization, or transactional processing to query sound
files in databases. We aim at designing an uniform model to handle multiple
rates.

Audio graphs. In IMSs, the interconnection of heterogeneous sound proces-
sors naturally leads to the concept of audio graphs to model the dependen-
cies among tasks. In audio graphs, audio processing is performed by nodes
that exchange the audio signals through ports, called inlets and outlets in
Max/MSP [Zic02] and Puredata [Puc+96]. This audio graph model suits par-
ticularly well IMSs with unit generators as the base processing unit, but is
also relevant for systems such as Faust that internally transforms [OFL04]
the program representation into a graph of operations on signals flowing on
the edges. It stems from the more general dataflow paradigm [Liu+91] where
nodes are connected together and exchange data, called tokens. When they
have enough tokens on their inputs, they can be fired and generate a certain
amount of tokens on their outputs. In the context of audio graphs, tokens are
audio samples. In addition to the audio signals, the audio processing nodes are
also connected to control parameters and can themselves generate control pa-
rameters for another node. Depending on the case, this graph can be statically
defined or can also be reconfigurable during execution.

Precision of control. If we look at the audio signal more closely, we see that
it becomes a discrete signal after entering the computer and going through the
analog to digital conversion, i.e., it is sampled. Samples are values of a signal
measured at precise moments in time, and usually periodically. The periodicity
of the measurement defines the sample rate or audio rate, the number of mea-

1This is not true with some modern compression schemes, where a video is encoded with
key frames and with indications on how to deduce surrounding frames from the changes
of the frame.

3

1. Introduction

surements per second. Hence, the audio signal is seen as a stream of samples
and some languages, such as Faust, describe signal processing as operations on
one sample at a time. For performance reasons, these samples are grouped into
buffers (also called blocks), and processed together at the same time. Apart
from the values of the signal, one may get the frequency spectrum of the signal,
which is usually computed on overlapping windows of the signal. The result
can also be seen as a stream with a lower rate (depending on the successive
shifts of the windows) that carries buffers of spectral bins.

On the contrary, control events are aperiodic and furthermore do not nec-
essarily coincide with a multiple of the audio rate. Therefore, IMSs strive to
reconcile those various known rates and the unpredictability of the timings
of the control. Indeed, controls can be taken more or less precisely into ac-
count, immediately at the next sample in time, or at the next block, as in
Figure 1.2. The delay in acknowledging the control for the audio processing
is called control latency. The precision also depends on the signal processing
task in use: some require sample accuracy, such as granular synthesis or some
physical models; other behave correctly with only block accuracy; others need
their control parameters to be smoothed.

In this work, we attempt to develop a common formal model with time ex-
plicitly represented, handling multiple rates, buffering, and the subtle handling
of control and audio, as we think it will help:

• to better characterize the control precision in IMSs;

• to design more efficient and precise architectures.

Precision of the audio signal. IMSs are often deployed on mainstream op-
erating systems such as Windows, macOS or Linux, which are not real-time
systems but rather best-effort systems, meaning that there is absolutely no
guarantees that audio and controls will be delivered at the right time or will
be late due to interferences with other programs. Indeed, the IMS has to coex-
ist along with other applications such as a web browser. The complex temporal
scenarios driven by sensors capturing the physical environment, as well as the
human-in-the-loop, lead to high unpredictability. It entails high-load situa-
tions where many audio processing effects compete for the processor. That has
brought composers and musicians to use more powerful machines, and pro-
grammers to optimize their IMS. One of the current trends is to parallelize the
processing tasks to put into use the multicore processors of today.

To tackle this problem, we rather want to take advantage of another limita-
tion of the human auditory system: human beings cannot hear sounds whose

4

1. Introduction

×

gainsynth

1, . . . , 2

−2 0 2
−1

−0.5
0

0.5
1

2

−2 0 2
−1

−0.5
0

0.5
1

Figure 1.2.: An audio graph processing signals, seen as streams of buffered sam-
ples, with control parameters. A synthesizer generates an audio
stream and its result is multiplied by a gain. Depending on when
the gain is sent, and when it is applied, the shape of the sinusoid
out of node × will be different. The first arrow on the left shows
when gain 2 is changed. The second one corresponds to sample
accuracy, and the third one, to block accuracy. If the change in
gain between 1 and 2 is not smoothed, there will be a discontinuity
in the signal.

5

1. Introduction

frequency is more than 20 kHz and more generally, do not hear well the higher
range of the spectrum. It means that multirate can be leveraged to decrease
the amount of computations to perform. For instance, downsampling by 2
typically results in half of the computations. Actually, the precision of control
can also be seen as resampling problem: is the control at the rate of the audio,
or is it downsampled down to the rate of a block? Or is it not downsampled at
all but rather new audio samples are created to reach the so-called subsample
accuracy?

In this work, we will explore the trade-off between performance and precision,
where precision is understood either as precision of the control or precision of
the signal.

Contributions
A formal model for audio graphs in IMSs with multirate streams

We develop a formal model of IMSs where signals with buffers are first-class
citizens. The model represents signals (whether they are audio signals or con-
trol signals) as a stream of timestamped buffers. These signals are processed
by typed audio nodes connected together in a graph. We introduce a type sys-
tem that can handle multiple rates, i.e., constraints on the timestamps of the
buffers, as well as the buffering in the stream, or aperiodic streams. The type
system can also distinguish between sample-accurate nodes and block-accurate
nodes. We present a denotational semantics of the execution of an audio graph
on the input streams, and characterize precisely, depending on the types of the
nodes, how and when aperiodic control is applied to an audio stream. That
formalization is the subject of Part I.

An audio extension for Antescofo

Antescofo [Con+12] is a score follower and a programming language. The
Antescofo IMS lacked audio processing: it is embedded into Max/MSP or
Puredata and delegates all audio processing to its host. We have developed an
audio extension inside Antescofo, which has inspired the formal semantics. The
audio extension is high-level, i.e., it connects (potentially dynamically during
execution) blackbox nodes, code in Faust or C++, annotated with types that
describe how they can be connected together. The audio extension is described
in Chapter 6 of Part II.

6

1. Introduction

Offline and online optimizations of audio graphs

We explore the tradeoff between audio signal precision and performance. We
show how we can downsample parts of an audio graph, and how to choose
these parts, given time constraints, while maximizing some quality model. It
works as a kind of compilation pass that can take an audio graph of an IMS,
for instance a Max patch, and output an optimized version of the patch. These
optimized versions can then be used during the execution of the graph directly,
or swapped to replace the non-degraded graph in case of a permanent overload.
We also explore heuristics that can choose subgraphs to degrade at the time
of execution, at the middle of an audio cycle, in case of transient overload.
Offline and online optimizations are presented in Chapters 7 and Chapter 8 in
Part II.

Outline
In Chapter 2, we present an overview of Interactive Multimedia Systems (IMSs),
challenges in IMSs, and a comparison of the main IMSs. We also focus on real-
time aspects of IMSs and on optimizations, especially parallelism. We also
present the real-time paradigms that are often used to describe IMSs.

Part I describes a model of audio graphs and audio and control streams with
arbitrary rates. Chapter 3 introduces the objects that we formalize, including
the domain of streams. In Chapter 4, we present a syntax for audio graphs
and a type system that indicates how nodes can be connected together and
how streams are processed by the nodes. The execution of the audio graph
on streams is formalized with a denotational semantics in Chapter 5. In this
chapter, we also compare our approach to other formalization of IMSs and
languages for signal processing.

Part II presents more practical work. In Chapter 6, we describe an audio
extension for Antescofo. It brings signal processing in an integrated way to
Antescofo and makes it possible to connect annotated heterogeneous nodes
coded in Faust and in C++ ; we present two real-case studies. An optimization
of audio graphs, the resampling of chosen parts of the graph, is described in
Chapter 7 (offline) and in Chapter 8 (online). In Chapter 7, we introduce
models of quality and execution time and we evaluate some of our strategies
in real experiments. In Chapter 8, we present heuristics to be used during the
execution of an audio graph, and we compare our strategies to other adaptive
scheduling strategies.

Chapter 9 discusses the contributions and their limitations and suggests some
perspectives.

7

1. Introduction

Chapter 2, Part I, Chapter 6, Chapter 7 with Chapter 8 and Chapter 9 can
be essentially read independently. However, we advise to read Part I before
Chapter 6.

8

2. An overview of Interactive
Multimedia Systems

Interactive Multimedia Systems (IMS) [Row93] are programmable systems that
combine audio and video signal processing with control in real time. In the
sequel, we restrict our focus mostly on music- or audio-specific IMSs. At run
time, during a concert, they process or synthesize audio signals in real time,
using various audio effects. For that purpose, they periodically fill audio buffers
and send them to the soundcard. They also make it possible to control the
sound processing tasks, with aperiodic control (such as changes in a graphical
interface) or periodic control (for instance, with a low-frequency oscillator).
Audio signals and controls are dealt with by an audio graph whose nodes
represent audio processing tasks (filters, oscillators, synthesizers...) and edges
represent dependencies between these audio processing tasks. Sometimes, this
graph can be dynamically modified, i.e., nodes can be added or removed during
execution.

Puredata [Puc02a] and Max/MSP [Zic02] are examples of IMSs. They graph-
ically display the audio graph, but modifying it at run time as a result of a
computation can be complicated. Other IMSs, such as ChucK [Wan09] or Su-
perCollider [McC96], are textual programming languages. They are also more
dynamic. In Antescofo [Ech+13], human musicians and a computer can inter-
act on stage during a concert, using sophisticated synchronization strategies
specified in an augmented score, programmed with a dedicated language that
can also specify dynamic audio graphs [Don+16]. Commercial software such as
Ableton Live, Cubase or ProTools can also be qualified as IMSs. We present
a classification of IMSs in Section 2.1.

IMSs are real-time systems, with real-time constraints: audio must be sent
to the sound card periodically before a deadline. If the deadline is missed, we
hear a click, as the audio human ear is sensitive to audio gaps and glitches.
We present the real-time challenges of audio in IMSs in Section 2.2.

More and more complex pieces, as well as the trend to put the electronics
of the pieces on small embedded cards, have led to various optimizations in

9

2. An overview of Interactive Multimedia Systems

IMSs: parallelizing or vectorizing the audio graph for instance [Ble11; BFW10;
Kie+15; Cam15], explicitly or implicitly, using static [OLF09] or dynamic
strategies [LOF10], or more ad-hoc and handcrafted solutions. We present
these optimizations, with a focus on parallelization, in Section 2.3. We also
present formal models developed for IMSs, especially to describe the interac-
tions between control and signal processing, and the precision of the timing, in
Section 2.4.

2.1. A bestiary of Interactive Multimedia Systems
Interactive Multimedia Systems [Row93] combine audio and video processing,
but also light, gesture, or movement. They provide a way of controlling the pro-
cessing of those signals in real time by reacting to events coming from the com-
puter system or from the outside environment thanks to sensors, possibly with
a human-in-the-loop. Inputs and outputs can be audio signals, MIDI [Loy85]
events or OSC [Wri05] messages. Events drive audio processing, from sound
transformation to spatialization. They can trigger processes or cascade changes
of parameters.

We do not deal here with out-of-time systems that can handle audio pro-
cessing and keep track of time, but do not run in real time. For instance,
Computer-aided Composition (CAC) systems where a composer creates a score
and an audio file such as OpenMusic [BAA11] are not considered as IMSs.1

Here, we will focus on systems that deal at least with audio. Some also add
video and other media.

We start by identifying classifying criteria for IMSs; then we will present a
few ones in more details.

Programmable or not. We distinguish between IMSs that can be programmed
such as Max/MSP and PureData and IMSs that are delivered “batteries-
included”, with a strict workflow, such as commercial Digital Audio Work-
stations (DAWs), for instance, Ableton Live.2

Visual versus textual. We separate IMSs that use a graphical paradigm, for
instance the Patcher paradigm of Max/MSP and PureData, and IMSs that

1Although the difference is somehow becoming less and less relevant, as recent versions
of OpenMusic offer a reactive extension [BG14] that makes it possible to create real-
time interactions, while IMSs such as Max/MSP start to offer subsystems for out-of-time
composition of scores, with Bach [AG12].

2https://www.ableton.com/

10

https://www.ableton.com/

2. An overview of Interactive Multimedia Systems

are programmed textually, which we can call musical programming languages,
such as Faust or Supercollider.

Interactiveness. We rank IMSs on how much can be controlled in the lan-
guage, such as which protocols can be used and how it handles a human-in-the-
loop. For instance, i–score [ADA08; Cel+15] allows musicians to write complex
abstract temporal constraints to describe interactions between musicians and
electronics, using the OSC protocol to communicate. Antescofo [Con10] can
also specify complex scenarios where the musician tempo is fed back to the
system to adapt its temporal awareness. We also indicate how dynamic the
computations are, i.e. if the audio graph can be easily reconfigured during
execution.

Scheduling of events. This criterion is more technical and deals with how
precise control events are taken into account: are they block-accurate, sample-
accurate, subsample-accurate and in which circumstances? IMSs deal with
audio and video streams, where a buffer has to be filled periodically, and with
controls that can be aperiodic (a GUI change) or periodic (a low-frequency
oscillator). How to articulate control and processing is one of the challenges of
scheduling an IMS. Control can take too much time and delay audio processing.
An audio task often processes by chunks (or buffers, or blocks) to use the vector
instructions of the targeted processor, so that control cannot occur inside such a
chunk, as shown in Figure 2.1. However, for some audio processing or synthesis,
for instance when the phase must be accurate or in some physical synthesis,
and also in granular synthesis, the timing of a control event must be taken into
account at the sample level, which is more precise than the block level.

Multiple rates. When dealing with multimedia, being able to tackle multiple
rates is crucial: audio is usually driven at a 44 100 Hz rate while a typical video
uses 24 Hz. Some controls are also driven by low-frequency oscillators. Even
only in audio, several rates are useful, for instance for a spectral analysis using
overlapping windows of the signal with a lower rate than the sample rate.

Level of abstraction. We consider here whether the system is mainly used
to define low-level signal processing tasks or rather high-level abstractions to
compose the signal processing tasks and interaction building blocks.

Imperative or functional, implicit-time or explicit-time model. In the
implicit-time paradigm, programs are built by composing operations on sig-

11

2. An overview of Interactive Multimedia Systems

Control

0 t

Audio

0 tp Subsample
accuracy

Sample
accuracy Block accuracy

Figure 2.1.: Three possible ways of dealing with a control event occurring dur-
ing audio processing: at the boundaries of a buffer, at the sample
level, or with a subsample accuracy. Audio is precise with an ac-
curacy of p, the sample period. This is the sample accuracy. Block
accuracy is 8× p here, as we have 8 samples per block.

nals as a whole and do not directly refer to individual samples. They provide
two primitive operands to build sample-shifted signals to navigate in time,
delay and feedback. Faust [OFL04] is a language that uses this paradigm.
The explicit-time paradigm does not sample time but uses an explicit dura-
tion in physical time, such as advancing 2 s as in ChucK [Wan09]. We also
say that an IMS uses explicit time when it defines signals as a set of recur-
sive equations where a time index appears explicitly, such as in the Alpha lan-
guage [Cha+04; LMQ91] or the Arrp language [Leb16]. Actors are the building
blocks in the dataflow model of computation [Bha+18], where these building
blocks are thought as autonomous parallel communicating entities. They rep-
resent signal processing blocks, connected together with channels, with tokens
flowing on the channel representing the signal. Actors are amenable to the
functional paradigm of programming. Other languages, such as Faust, use
combinators to represent the audio graph and are also functional. On the con-
trary, languages with mutable variables and side-effects, such as Antescofo, are
imperative. We give examples of the combinations between those paradigms
in Table 2.1.

12

2. An overview of Interactive Multimedia Systems

Implicit-time Explicit-time
Imperative Threads Antescofo
Functional Max/MSP,

Faust
Arpp

Table 2.1.: Classifying IMSs according to the model of time and the program-
ming paradigm.

13

2.
A

n
overview

ofInteractive
M

ultim
edia

System
s

IMS Visual Interactive Control Multirate Abstraction Prog. model Time-model Remarks

Ableton visual sample-
accurate
(automation)

no high-level DAW

Bitwig Studio visual idem no high-level DAW
Max/MSP
[Zic02]

visual OSC, messages block-accurate one audio rate high-level functional implicit sample-
accurate with
Gen

Puredata
[Puc97]

visual OSC, messages block-accurate One audio rate high-level functional implicit Change block-
size with
block~

ChucK
[Wan09]

textual OSC sample-
accurate

No both imperative explicit-time

Faust [OFL09] textual OSC block-accurate,
sample-
accurate for
MIDI

experimental
[OJ16]

low-level functional implicit-time

SuperCollider
[Ben11]

textual live-coding,
OSC, dynamic

block-accurate One audio rate high-level imperative explicit-time client-server

PWGLSynth
[LNK05]

visual OSC sample-
accurate

Not directly high-level functional implicit-time Embeds Kro-
nos

Marsyas
[LT14]

textual sample-
accurate

multirate both imperative implicit-time scripting lan-
guage and
C++ lib

Antescofo
[Con10]

textual OSC, score fol-
lower, dynamic

sample-
accurate for
Curve

multirate high-level imperative explicit-time

ossia [CDC16] visual OSC sample-
accurate
(libAu-
dioStream)

one audio rate high-level functional explicit-time ossia = succes-
sor of i–score
[ADA08]

Nyquist
[Dan+93]

textual control-rate one audio rate high-level imperative explicit-time

Arrp [Leb16] textual sample-
accurate

multirate low-level functional explicit-time

Sig [TL15] textual possibly multirate low-level functional implicit-time
LuaAV
[WSR10]

textual OSC, dynamic sample-
accurate

one audio rate high-level imperative explicit-time synths coded in
C or csound

exTempore
[Sor18]

textual,
dynamic

live-coding sample-
accurate

one audio rate high-level functional explicit-time opensource of
Impromptu

XTLang
[Sor18]

textual live-coding sample-
accurate

one audio rate low-level imperative explicit-time used with ex-
Tempore

Csound [VE90] textual score ksmps-accurate one audio rate high-level functional implicit-time ksmps can be
set to 1 sample.

Kronos [Nor15] textual dynamic sample-
accurate

multirate low-level functional implicit-time

LC [NIS14] textual sample-
accurate

multirate low-level imperative explicit-time

Serpent
[Dan02]

textual OSC, O2, Aura
msgs

one audio rate high-level imperative implicit-time real-time GC

Aura [DB96] textual OSC, O2, dy-
namic

block-accurate sub-multiples
of audio rate

high-level imperative implicit-time

Table 2.2.: Comparison of 22 IMSs. All of the IMSs here are programmable, except Bitwig Studio and Ableton (but it has now an embedded
version of Max, Max for Live). For the multirate criteria, we analyze whether there are multiple audio rates or not. O2 is an
extension of OSC [DC16]. Prog. model refers to programming model. If a column is not filled for a specific IMS, it means either
that we could not find the relevant information or that it does not apply to the IMS.

14

2. An overview of Interactive Multimedia Systems

There are dozens of IMSs. We give more details about some them in the
section, chosen for their popularity and representativeness, and compare suc-
cinctly about 20 of those in Table 2.2. This is not by far an exhaustive list. For
instance, we do not speak about the oldest musical programming languages.

2.1.1. The Patcher family
The Patcher family, with Max/MSP [Zic02], PureData [Puc97], jMax [Déc+99],
MAX/FTS [Puc02b] originally developed by Miller Puckette at Ircam [Puc88],
emphasizes visual programming for dataflow processing. Functions are rep-
resented by boxes, placed on a screen called canvas. Boxes are connected
together with links, and data flow from one object to another through these
links. Functions can process audio signals, process control, and some boxes
are also control-flow structures. Here, we give more details about PureData,
which is open-source.

In PureData, actions can be timestamped by some boxes, for instance the
boxes metro, delay, line, or timer. GUI updates are also timestamped.
Other incoming events are MIDI events, with notein and OSC. The scheduling
in Puredata is block-synchronous, i.e. control occurs at boundaries (at the
beginning) of an audio processing on a block of 64 samples, at a given sample
rate. For a usual sample rate of 44.10 kHz, a scheduling tick lasts for 1.45 ms.
Depending on the audio backend,3 the scheduler can be a polling scheduler (see
Figure 2.2) or use the audio callback of the backend.

PureData can handle multiple block sizes and overlapping blocks by changing
them in a subpatch using the block~ box.

2.1.2. SuperCollider
SuperCollider [Ben11] is an interactive multimedia system mainly used for
audio synthesis and for live coding.4 SuperCollider uses a client/server archi-
tecture (see Figure 2.3): on the client side, an object-oriented and functional,
Smalltalk-like language makes it possible to compose the piece, and generates
OSC messages which are sent to the server. OSC messages can be timestamped
and in this case, they are put in a priority queue and executed on time, or can
be sent without a timestamp and are then processed when received. The Su-
perCollider server processes audio through an ordered tree of unit generators

3Jack or ALSA on Linux, CoreAudio on macOS, or WASAPI on Windows, for example.
4Live coding consists of creating a musical piece at the time of the performance by coding

it in a DSL in front of the attendance: the addition, deletion or modification of the lines
of code is usually projected as the musical piece is created.

15

2. An overview of Interactive Multimedia Systems

Clocks DSP

Poll Gui
5000 actions

sched tick

Poll MIDI Poll GUI Idle hook

Every 64 samples

Figure 2.2.: Scheduling cycle in Puredata (polling scheduler) A cycle starts
by executing all the timestamped operations events (handled by
clocks) then the actual signal processing is performed. After that,
MIDI events then GUI events are taken into account. The idle
hook is a custom processing than the user can add. For the GUI
not to be too unresponsive, after 5000 DSP actions, the GUI is
polled for events.

(UGen) for analysis, synthesis and processing. It can use any number of input
and output channels. UGen are grouped statically in a higher-level processing
unit, called a synth, as in Code 2.1.

{ SinOsc .ar (440 , 0, 0.1) + WhiteNoise .ar (0.01) }. play;

Code 2.1: This simple program generates a sine at 440 Hz with phase 0 and an
amplitude of 0.1, and white noise at the audio rate (i.e. ar), adds
them, and plays them. The sine and the white noise are both synths.
The sclang language implements the evaluation of this expression by
sending OSC messages to the scynth server.

All events with timestamps lower than the tick size (or scheduling period)
are executed at once. This tick size is by default linked to a block size of
64 samples. However, better accuracy can be achieved if a trade-off is made
for more latency, by explicitly setting it with s.latency = 0.2 for instance.
Nevertheless, the client and the server do not share a sample clock, which
makes it difficult to get very precise timings. The OffsetOut UGen can help
starting new synths with sample accuracy. Another UGen, SubsampleOffset,
can start a synth with subsample accuracy.

However, by default, only two rates are used in SuperCollider, control rate

16

2. An overview of Interactive Multimedia Systems

(at block boundaries) called kr and audio rate, ar. Control values are in-
terpolated linearly [McC02] to prevent a discontinuity in the control signal.

sclang

scynth

Non-real-time
queue

Real-time
queue

OSC messages
4689s _ 010101001

100100
audio output

audio input

Figure 2.3.: Client-server architecture of SuperCollider.

The server uses three threads: a network thread, a real-time thread for
signal processing, and a non-real-time thread for purposes such as reading files.
Commands among threads are communicated via lock-free FIFOs.

There are three clocks in the language: AppClock, a clock for non-critical
events that is allowed to drift, SystemClock for more precise timing, and not
allowed to drift, and TempoClock, the ticks of which are beats synchronized
with a fixed tempo. If the live coding performer changes the tempo, the actual
next event date can be recomputed.

2.1.3. ChucK
Chuck [Wan09] is a strongly timed (i.e. with an explicit manipulation of time,
thanks to variable now), synchronous, concurrent, and on-the-fly music pro-
gramming language. It is mainly used for live coding. It is compiled to byte-
code and executed in a virtual machine.

Time and event-based programming mechanism. Time can be represented
as a duration (type dur) or a date (type time). The keyword now makes it
possible to read the current time, and to go forward in time with the Chuck
operator =>. Time can also be advanced until an event, such as a MIDI event,
an OSC event, or a custom event, is triggered, as in Code 2.2.

17

2. An overview of Interactive Multimedia Systems

1::second => now;//advance time by 1 second

now + 4::hour => time later;
later => now;//Advance time to date now + 4 hours

.5::samp => now;//subsample advance

Event e;
e => now;//Wait on event e

Code 2.2: Advancing time by assigning now in ChucK.

now allows time to be controlled at any desired rate, such as musical rate
(beats), as well as sample or subsample rate, or control rate.

Chuck makes it possible to use an arbitrary control rate (control occurs
after the assignment to now stops blocking) and a concurrent control flow of
execution. Audio is synthesized from the audio graph one sample at a time.

The audio graph is composed of UGens dynamically connected together with
the ChucK operator, as in Code 2.3. Unit generators can also be dynamically
disconnected with the UnChucK operator =<.

SinOsc s => Gain g => JCRev r => dac;

Code 2.3: A linear chain composed of a sinusoidal oscillator, a gain, a reverb,
and then an output to the soundcard.

Cooperative scheduling. ChucK processes are cooperative lightweight user-
space threads called shreds (and are scheduled by a shreduler); they share data
and timing. When time advances thanks to ... => now, the current shred
is blocked until now attains the desired time, giving room to other shreds to
execute. Shreds are synchronous (sample-based clock at 44.10 kHz in general)
and shreduling is deterministic: instantaneous instructions in every shred are
executed until reaching an instruction that next advances in time. Shreds are
shreduled using a queue of shreds sorted by waiting time before wake up (see
Figure 2.4).

18

2. An overview of Interactive Multimedia Systems

Figure 2.4.: Shreduling in ChucK. Figure from [WCS15].

2.1.4. LC
LC [NIS14; Nis18b] is a mostly-strongly timed programming language. It is
inspired by ChucK and also exhibits a now special variable to advance time.
It puts forward adding an explicit switch between a synchronous and non-
preemptive context, and an asynchronous and preemptive context (i.e. mostly-
strongly timed) to be used when audio tasks would be at risk of taking too much
time and outputting audio too late, using keywords sync and async. The two
contexts can be nested. For instance, loading a wavefile will be undertaken
in an asynchronous context. LC also provides strategies to handle timing
violations with the within(duration) ... timeout handling.

The language and runtime also make it possible to do sample-accurate con-
trol and start an audio processing with sample accuracy.

2.1.5. Imprompu/ExTempore
ExTempore [Sor18] (called Imprompu before being opensourced) is a music
programming language dedicated to live coding, and according to its author,
cyberphysical programming. It is composed of a Scheme interpreter and a XT-
Lang just-in-time compiler using a LLVM backend. XTLang is used to program
low-level audio processing effects while the ExTempore Scheme language en-
ables the live coder to organize its performance in time. Advancing in time is

19

2. An overview of Interactive Multimedia Systems

approached through temporal recursion, i.e. functions that call themselves in
some specified time in the future, as in Code 2.4. A relative deadline for the
function can also be specified.

(lambda (i)
(p r i n t l n ’ i : i)
(i f (< i 5)

(c a l l b a c k (+ t ime 4000) my−f unc (+ i 1)))))

Code 2.4: Temporal recursion in ExTempore: a function reschedules itself to
be executed 4000 samples later.

The audio processing is in fine handled in a special XTLang function dsp
that processes one sample at a time.

2.1.6. Faust
Faust [OFL09] is a functional synchronous domain-specific language dedicated
to digital signal processing, which compiles to C++, directly to machine code
using LLVM as a backend, or to webassembly [Haa+17; LOF18b] to be de-
ployed on the web and executed in a web browser. Faust code can also be
easily deployed on an Android phone [Mic13]. It also aims at facilitating the
creation of audio plugins for digital audio workstations, and thus provides a
way of defining a graphical interface or to communicate to the audio process
via OSC [FOL11]. Faust first generates the signal processing code and then
injects it into an architecture wrapper which defines the actual implementation
of the graphical interface, inputs and outputs with the soundcard and so on.

In Faust, signals are combined with operators that either compute one sam-
ple of each signal at a time, or delay the signal in time. In Code 2.5, operator
+ adds two signals together. Expressions are called block diagrams and are
combined with routing operators:

• parallel A,B, to execute to two block diagrams simultaneously, where the
inputs of A,B are the inputs of A and B, and its outputs, the outputs of
A and B;

• sequential A : B, which connects the outputs of A to the inputs of B;

• split A <: B, which distributes the outputs of A to the inputs of B,
when B as more inputs than A has outputs;

• merge A :> B, which mixes the outputs of A into the inputs of B, when
A has more outputs than B has inputs;

20

2. An overview of Interactive Multimedia Systems

• recursion, A ~ B, when some outputs of B are connected, with a one
sample delay, to some inputs of A.

An infix notation (traditionally used for numerical operators) and a prefix
notation (common for function application) are also available:

2*3 //infix
2,3: * //combinator
*(2,3) //prefix

Macro operators can be used to duplicate expressions or build new expres-
sions. For instance, par duplicates an expression in parallel and can build
new versions of the expression that depends on an iteration variable. A delay
in samples can be written with x@n, meaning that signal x is delayed by n
samples.

Audio is processed sample by sample in the language, but after compilation,
it is processed in buffers (32 samples by default) within the generated compute
method, and control only occurs at the boundaries of buffers. More recently,
Faust has been able to handle MIDI events with sample accuracy [Let+17], by
using the timestamps of the MIDI messages. In that case, the MIDI events are
dealt with one buffer of latency.

2.1.7. Antescofo
We present here in more details Antescofo, an IMS that is embedded in a host
IMS (typically PureData or Max/MSP). Antescofo harnesses the audio effects
of the host environment. One of the goals of the thesis is to embed directly
digital signal processing in Antescofo (see Chapter 6), and to formalize the
interaction of control and audio computations (see Part I).

Antescofo [Con10] is an IMS for musical score following and mixed music. It
is an artificial musician that can play with human musicians in real time dur-
ing a performance, given an augmented score prepared by the composer. Since
2008, Antescofo has been featured in more than 40 original mixed electronic
pieces by well-known ensembles and composers, such as Pierre Boulez, Philippe
Manoury, Marco Stroppa, the Radio France orchestra and Berlin Philharmon-
ics.

Figure 2.5 shows the architecture of the system, in two components: a lis-
tening machine and a reactive machine. The listening machine processes an
audio or MIDI stream and estimates in real time the tempo and the position
of the live performers in the score, trying to conciliate performance time and
score time. Position and tempo are sent to the reactive machine to trigger

21

2. An overview of Interactive Multimedia Systems

import("music.lib");

upfront(x) = (x-x’) > 0.0;
decay(n,x) = x - (x>0.0)/n;
release(n) = + ~ decay(n);
trigger(n) = upfront : release(n) : >(0.0);

size = hslider("excitation (samples)", 128, 2, 512, 1);

dur = hslider("duration (samples)", 128, 2, 512, 1);
att = hslider("attenuation", 0.1, 0, 1, 0.01);
average(x) = (x+x’)/2;

resonator(d, a) = (+ : delay(4096, d-1.5)) ~
(average : *(1.0-a)) ;

process = noise * hslider("level", 0.5, 0, 1, 0.1)
: vgroup("excitator", *(button("play"): trigger(size)))
: vgroup("resonator", resonator(dur, att));

Code 2.5: A Karplus-Strong string model in Faust. Some graphical interface
elements are defined in the code: hslider, button, and vgroup
to group other GUI elements. Some signal processing elements are
grouped into macro functions, such as release(n), to be used later.
The process instruction on the last line gives access to the audio
inputs and outputs of the target architecture.

22

2. An overview of Interactive Multimedia Systems

actions specified in the mixed score. These actions are emitted to an audio
environment, either Max/MSP or PureData, in which Antescofo is embedded
in a performance patch. As for human musicians, Antescofo relies on adapted
synchronization strategies informed by a shared knowledge of tempo and the
structure of the score. Those strategies include synchronizing only with the
tempo, or only with the position in the score, or even on particular position
targets in the score.

The mixed scores of Antescofo are written with a dedicated reactive and
timed synchronous language, where events of the physical world (pitches and
durations of notes played by musicians for instance), the part of the artificial
musician, and the synchronization between them are specified. It has to take
into account the temporal organization of musical objects and musical clocks
(tempi, which can fluctuate during performance time) which are actualized in
a physical performance time. This performative dimension raises particular
challenges for a real-time language:

• multiple notions of time (events and durations) and clocks (tempi and
physical time);

• explicit specification of the musical synchronisation between computer-
performed and human-performed parts;

• robustness to errors from musicians (wrong or missed notes) or from the
listening machine (recognition error).

Listening machine Reactive engine
position

tempo

Mixed score

Musicians Audio software

Audio or
MIDI stream

Messages

Figure 2.5.: Architecture of the Antescofo system. Continuous arrows repre-
sent pre-treatment, and dashed ones, real-time communications.

The Antescofo language

The Antescofo language is a synchronous and timed reactive language pre-
sented for instance in [EGC13; Ech+11; Ech15]. A full documentation is avail-
able at http://antescofo-doc.ircam.fr. We give here a quick description
of the notions needed to grasp the proposed extensions in the following parts.

23

http://antescofo-doc.ircam.fr

2. An overview of Interactive Multimedia Systems

Instrumental events. The augmented score details events played by hu-
man musicians (pitches, silences, chords, trills, glissandi, improvisation boxes)
and their duration (absolute, in seconds, or relative to the tempo – quaver,
semiquaver...). An ideal tempo can also be given.

Loop1

a11 a12

Loop2

a21 a22 a23

BPM 90
NOTE 60 1.0 note1
Loop Loop1 4.0
{ a11

0.5 a12
}
NOTE 67 1.0 note2
Loop Loop2 4.0
{ a21

0.33 a22
0.33 a23

}

Figure 2.6.: An Antescofo augmented score: actions a11 and a12, with a 0.5
delay, are associated to an instrumental event, here, a C quarter
note.

Actions. Actions (see Figure 2.6) are triggered by an event, or follow other
actions with some delay. Actions follow the synchronous hypothesis (see Sec-
tion 2.4.2), and are executed in zero time, and in the specified order.

Atomic actions. It is a variable assignment, an external command sent to
the audio environment, or the killing of an action.

Compound actions. A group is useful to create polyphonic phrases: sev-
eral sequential actions that share common properties of tempo, synchroniza-
tion, and error handling strategies. A loop is similar to a group but its actions
execute periodically. A curve is also similar to group but interpolates some
parameters during the execution of the actions. Compound actions can be
nested and inherit the properties of surrounding blocks unless otherwise ex-
plicitly indicated.

24

2. An overview of Interactive Multimedia Systems

An action can be launched only if some condition is verified, using guard
statements, and it can be delayed for some time after the detection of an
event (or previous action). The delay is expressed in physical time (seconds or
milliseconds) or relative time (beats).

Processes. Processes are parametrized actions that are dynamically instan-
tiated and performed. Calling a process executes one instance of this process
and several instances can execute in parallel.

Expressions and variables. Expressions are evaluated to Booleans, ints, floats,
strings (scalar values) or data structures such as vectors, maps and interpolated
functions (non-scalar values).

Variables are either global, or declared local to a group. The assignment of
a variable is an event, to which a logical timestamp is associated. $v is the
last value of the stream of values associated with v, and [date]:$v the value
at the date date.

whenever statement. It makes it possible to launch actions when a predicate
is satisfied, contrary to other actions which are linked to events sequentially
notated in the augmented score.

Temporal patterns, i.e. a sequence of events with particular temporal con-
straints, can also be matched by a whenever.

Synchronization strategies and fault tolerance. One strategy, the loose
strategy, schedules actions according to tempo only. Another strategy, the
tight strategy, not only schedules according to timing positions, but also with
respect to triggering relative event positions. There are also strategies that can
synchronize according to a target in the future: the tempo adapts so that the
electronic part and the followed part arrive on this target at the same time.

In case of errors (missed events), two strategies are possible: if a group is
local, the group is dismissed in the absence of its triggering event; if it is global,
it is executed as soon as the system realizes the absence of the triggering event.

Antescofo runtime

A logical instant in Antescofo, which entails an advance in time for the reactive
engine, is either the recognition of a musical event, or the external assignment
by the environment of a variable, or the expiration of a delay. In one logical
instant, all synchronous actions are executed in the order of their declarations.

25

2. An overview of Interactive Multimedia Systems

The reactive engine maintains a list of actions to be notified upon one of
those three types of events. For actions waiting for the expiration of a delay,
three waiting queues are maintained: a static timing-static order queue, for
actions delayed by a physical time (in seconds, for instance); a dynamic timing-
static order queue, for delays related to the musician tempo (in beats); and a
dynamic timing-dynamic order queue, for delays depending on local dynamic
tempo expressions. Delays are reevaluated depending on changes of tempo,
so that the order of actions in the queue should change. The next action to
execute is the action that has the minimum waiting delay among the three
queues.

We will present an audio extension of Antescofo in more details in Chapter 6.

2.1.8. Current trends for IMS
The most recent IMSs such as ChucK, LuaAV, LC, Kronos or Arpp tend to fos-
ter highly synchronous approaches to favor a strong precision of control, up to
the sample. Most of these languages, including Faust, implement some kind of
compilation (JIT or static) and optimization mechanisms. More and more lan-
guages are developed to program at the low level, i.e. signal-processing effects,
whereas these effects would have been programmed with general-purpose lan-
guages such as C or C++ before. Some IMSs actually come with two languages,
one for the high-level description of timings and interactions, and one for the
low-level programming of the audio processing, such as ExTempore [Sor18] and
XTLang, or Meta-Sequencer [Nor16] and Kronos.

Another trend is to port an IMS from the computer platform (and especially,
from macOS) to platforms more accessible to the general public, such as Faust
to the web [Let+15] or Android [Mic13], or directed to the maker community
with small embedded cards such as Puredata on Raspberry Pi [Dry15], or with
the Bela platform [Mor+17], a card dedicated to audio signal processing.

2.2. IMSs as real-time systems
Audio samples must be written into the input buffer of the soundcard period-
ically. For a sample rate of 44.10 kHz, such as in a CD, and a buffer size of 64
samples, the audio period is 1.45 ms. The buffer size can range from 32 samples
for dedicated audio workstations to 2048 samples for some smartphones run-
ning Android, depending on the target latency and the resources of the host
system. It means that the audio processing tasks in the audio graph are not
activated for each sample but for a buffer of samples.

26

2. An overview of Interactive Multimedia Systems

IMSs are not safety-critical systems: a failure during a performance is not
life-critical; it will not generally result in damages or injuries. However, audio
real-time processing has strong real-time constraints. Missing a deadline for
an audio task is immediately audible.

Buffer underflow The audio driver uses a circular buffer the size of which
is a multiple of the size of the soundcard buffer. If the task misses a
deadline, it does not fill the buffer quickly enough. Depending on the
implementation, previous buffers will be replayed (machine gun effect) or
silence will be played, which entails cracks or clicks due to discontinuities
in the signal, as seen on Figure 2.7. A larger buffer decreases deadline
misses but increases latency.

Buffer overflow In some implementations, filling the buffer too quickly can
also lead to discontinuities in the audio signal, if audio samples cannot
be stored to be consumed later.

On the contrary, in video processing, missing a frame among 24 images per sec-
ond5 does not entail a visible decrease in quality so that lots of streaming pro-
tocols [ABD11] accept to drop a frame. Therefore, real-time audio constraints
are more stringent than for video. Yet, they have not been investigated as
much as real-time video processing.

Figure 2.7.: The signal processor has missed its deadline. Thus, no audio sam-
ple generated by the processor during this audio cycle can be sent
to the audio buffer of the soundcard. In this implementation, the
system sends silence, i.e., samples set to zero. It entails a discon-
tinuity in the signal at the red strip, hence, a click.

Composers and musicians use IMSs on mainstream operating systems such
as Windows, macOS or Linux, where a reliable and tight estimation of the
worst-case execution time (WCET) is difficult to obtain, because of the com-
plex hierarchy of caches of the processor, because there are usually no real-time

5Although missing a key frame in a compressed stream can be visible.

27

2. An overview of Interactive Multimedia Systems

3.635 3.661 3.686 3.711 3.737 3.762 3.787 3.813 3.838 3.864

100

101

102

103

time budget (ms)

Figure 2.8.: Histogram of time budgets for the audio callback on a MacBook
Pro with 16 GiB RAM and 3.10 GHz processor, with macOS Sierra.
We execute a test program generating a sawtooth signal for 10 s.
The time budgets range from 3.64 ms to 3.89 ms, i.e., a 254 µs
jitter, with a mean of 3.78 ms.

28

2. An overview of Interactive Multimedia Systems

4.74 6.79 8.84 10.88 12.93 14.97 17.02 19.06 21.11 23.15

101

102

103

25.2

execution time (µs)

Figure 2.9.: Histogram of the execution time for the same code generating a
saw signal for 10 s. Here, we show the execution time at each
cycle in the audio callback for generating a sawtooth signal on
a MacBook Pro with 16 GiB RAM and 3.10 GHz processor, with
macOS Sierra. The execution times range from 4.74 µs to 25.20 µs
with an average of 9.17 µs. The standard deviation is 1.59 µs.

29

2. An overview of Interactive Multimedia Systems

scheduler or temporal isolation among tasks, and because it is difficult to pre-
dict which tasks will be executed at a given time. In addition, to spare energy
or avoid heating, the CPU frequency can be dynamically adjusted, which is
another important source of execution-time non-determinism. Those operat-
ing systems6 are not real-time systems and do not offer any strong guarantee
on deadlines for audio processing (see Figure 2.8) or on execution times (see
Figure 2.9). Applications that perform audio computations have to compete
for CPU and memory with other applications during a typical execution. It
means that hard-real-time scheduling algorithms that depend on knowing the
WCET cannot be applied to IMSs in the general case.

Furthermore, IMSs are more and more ported to embedded cards such as
Raspberry Pi and have to adapt to limited computation resources on these
platforms. Moreover, composers and sound designers create more and more
complex musical pieces, with lots of dynamically interconnected nodes, requir-
ing a sampling rate up to 96 kHz, for instance in Re Orso7 by Marco Stroppa.

When real-time constraints are not critical, modifying the quality of service
(QoS) by partially executing some tasks or even discarding them is an option to
consider. In the case of IMSs, tasks are dependent, with dependencies defined
with the edges of the audio graph. The quality of a task is itself position-
dependent: it depends on the position of the audio processing task in a path
going from an audio input to an audio output. It means one cannot merely
discard or degrade any task in the audio graph to achieve an optimal QoS
adaptation.

2.3. Optimization in IMSs
Larger pieces, with more and more audio processing effects, require increasing
resources on the computer, as well as optimizing the audio processing.

Optimizations range from improving memory allocation in order to reduce
memory consumption and cache pressure, such as in [Nis18a], to using special
hardware such as DSP processors, with languages dedicated to program these
hardwares such as Soul [JUC19] which intends to be a kind of generic audio
shader. Pieces do not benefit from the same optimizations and exploring a set
of possible optimizations, by benchmarking subsets of them for a given program
as in [LOF18a], helps to find which ones are suitable.

Going from one rate to multiple rates is also a common optimization: not all

6There is an earliest-deadline-first scheduler [Fag+09] in Linux, but it’s typically not acti-
vated on mainstream distributions.

7http://brahms.ircam.fr/works/work/27678/

30

http ://brahms.ircam.fr/works/work/27678/

2. An overview of Interactive Multimedia Systems

computations should be performed at the quickest rate, which is usually the
audio rate. Most IMSs have at least two rates, audio rate and control rate.
Other ones allow for more rates [OJ16; Nor15], leading to a balanced choice
between precision and high load, for high rates, or less precision but less load,
for low rates.

Another common approach is to take advantage of multicore and multipro-
cessor architectures and of vector instructions, with parallel computing [Kum02].
Parallelism can be exploited explicitly, using dedicated instructions of the IMS,
or automatically and implicitly. We give more details about parallelism in IMSs
here.

Data parallelism. In data parallelism, the same computation is performed
on several data available simultaneously close in memory. For example, for a
vector addition, the same scalar operation (e.g., scalar addition) is performed
on all vector elements. Data are divided into components and the same task
is run on the multiple components. The data can be distributed on several
cores or processors with the same operation executed on them, or use special
instructions, such as SIMD instructions [PH13], with Intel MMX [PWW97] or
SSE [Lom11]. For instance, the addps MMX instruction operates on 128 bits
at the same time, and can add together four 32 bit numbers with four other
32 bit numbers.

Task (or control) parallelism. Task parallelism consists of distributing com-
puting tasks on multiple processors or cores. For instance, audio processing
tasks can be assigned to different processors, usually using several threads.
The dependencies between tasks reduce the amount of parallelism as a task
needs to wait for the result of another task to start processing and so cannot
be executed in parallel.

Pipelining. When dependent tasks operate on a stream of buffers, a task can
start processing a new buffer of data while another task processes the previous
buffer which was first processed by the first task, as shown in Figure 2.10.
Pipelining increases latency, as the first buffer will be output at least one
buffer late. The pipelining can happen at several levels, at a lower level than
the stream of buffers for instance, to handle the processing of samples within
a buffer.

Static vs. dynamic. The parallelization, i.e., the mapping of computations to
threads, can be performed statically before executing the tasks, by analysing the

31

2. An overview of Interactive Multimedia Systems

dependencies between tasks, or dynamically during the execution of tasks, by
observing how tasks communicate together. This dynamic approach is useful
if the tasks are not known before execution and can be started or stopped
at unknown times, but also if the execution times and communication times
(access to memory, to the cache...) among tasks are not known beforehand.

time

Task 1

Task 2

Task 3

1 2

1

3

2

1

3

2

Figure 2.10.: Pipelining on a stream of three buffers with three dependent
tasks, tasks 1, 2 and 3, where task 3 needs the results of task
2 and task 2, the results of task 1.

Manual ad-hoc parallelisation. Large musical pieces can often be manually
divided into coarse-grained independent tasks and the independent ones are
executed on several computers. For instance, several SuperCollider servers are
spawned on several cores and different sound processing tasks are manually
assigned to each of the servers.

Explicit instructions

Some IMSs do not automatically parallelize the audio graph but provide in-
structions to parallelize parts of it.

Max/MSP and poly~ [7419]. poly~ subpatch n creates n instances of subpatch
in order to parallelize them. It is first aimed at creating polyphonic synthesiz-
ers. Parallelism can be activated using the parallel attribute and the number

32

2. An overview of Interactive Multimedia Systems

of threads can be set with the threadcount message. It achieves a rudimentary
synchronization between subpatches using the thispoly~ instruction inside a
subpatch. It indicates whether the instance is busy or not and can receive
messages, and can also stop and start signal processing in the instance using
the mute message.

Puredata and pd~ [Puc09]. The pd~ object creates a Puredata subprocess
within Puredata that communicates with the parent process using FIFOs which
can carry audio as well as messages. It adds one buffer of latency. The stdout
object in the subprocess is used to send messages to the parent.

Supercollider with supernova [Ble11] and ParGroup. SuperCollider, when
using the ad-hoc server Supernova, provides an explicit instruction ParGroup
to parallelize tasks. It considers that all the tasks that it is fed are independent,
and it executes them in parallel.

Automatic parallelization

Some IMSs can automatically parallelize the audio processing.

Vectorization using SIMD instructions. The Kronos language [NL09] auto-
matically vectorizes the signal processing code. Faust outputs C++ code [OLF09]
organized such that a smart-enough C++ compiler would generate SIMD in-
structions. It works by breaking a single computation loop into several smaller
loops easier to autovectorize. A more recent version of Faust uses an inter-
mediate representation in which it uses the same small loop optimization and
then generates machine code using LLVM [LOF13] and its autovectorizing
capabilities.

Mapping tasks on multiple cores. Csound orchestra files provide information
about the instruments and how they communicate through global variables,
f-tables or the zak bus. In [ffi09; Wil09], an analysis of the orchestra file builds
a dependency graph of the instruments based on the read and write access on
the communication variables. Using a database of average execution times,
instruments are clustered in order to gather quick instruments to prevent the
overhead of assigning a quick instrument alone on a thread.

Faust automatically parallelizes [OLF09] the audio processing by inserting
OpenMP instructions [DM98] at the code-generation phase. OpenMP is an API
aimed at achieving high-level parallelism in Fortran and C/C++ programs. It

33

2. An overview of Interactive Multimedia Systems

provides a special notation to specify regions of codes that can be executed on
several processors. In particular, loops can be annotated with OpenMP in the
program, and here are labelled automatically by Faust. The graph of regions
is topologically sorted within OpenMP to find which loops can be computed in
parallel.

In [LOF10], Faust can also parallelize using a work-stealing scheduler. A pool
of worker threads accept tasks that are assigned to one of the threads and put
in its queue. An idle thread without task to execute can steal a non-executed
task in the queue of another thread in the pool. Optionally, it also provides
automatic pipelining, by duplicating tasks and running them on a subpart of
the audio buffer. Larger buffer sizes give better performance. However, the
pipelining does not speed up the computations in most cases.

Using GPUs for audio processing

Graphical Processing Units (GPUs) are massively parallel architectures dedi-
cated to data parallelism [Buc+04]. A GPU typically has thousands of cores
and can execute many more threads. In [BFW10], a non-negative matrix fac-
torization (NMF), often used to perform audio source separation [Vir07], is
ported on a GPU using the CUDA API for Nvidia processors. However, it
appears that the latency of copying the buffers to and from the GPU to the
soundcard can be prohibitive. In [Bel+11], GPUs are used to achieve mas-
sive convolution, i.e., many multiple convolutions on several audio channels to
perform effects such as 3D spatial sound. The convolutions are based on Fast
Fourier Transforms (FFT). The cost of transferring data between the GPU and
the CPU is alleviated through a pipeline structure. GPU audio processing is
limited to dedicated effects specially coded manually, although some attempts
have been undertaken to automatically generate code for GPU for Faust and
csound.

IMSs and parallelism

We compare in Table 2.3 various IMSs on parallelism. The audio tasks in IMSs
are not always easily parallelizable as dependencies among the tasks reduce the
number of tasks that can be executed at the same time. The overhead of the
synchronization between threads is sometimes too costly for small buffers and
so entails a tradeoff between long buffers and high latency, and small buffers but
a higher overhead of the parallelism. Audio processing is not an embarassingly
parallel problem [Dan08] in general, but polyphonic instruments for instance
or processing on large buffers can benefit from it.

34

2. An overview of Interactive Multimedia Systems

Optimizations we have described here preserve the semantics of the audio
processing operations; they are low-level operational properties and should be
ideally hidden from the composer’s or programmer’s point of view. In our
work, we will consider optimizations that can change the semantics of the
audio processing, by potentially degrading it. It is similar to the distinction
made in image and audio compression between lossless and lossy compression:
the first one encodes the image by just exploiting redundancies of the signal,
such as in the Flac format [Xip19], and the second one takes advantage of
psychoacoustics to discard parts of the signal that are less audible, such as in
the mp3 format [Sta+93].

IMS Explicit or im-
plicit

Data or task Description

csound Automatic -jK with K the
number of paral-
lel threads

Max/MSP Explicit Task poly~ instruc-
tion

SuperCollider Explicit Task Use several
servers

Supernova (Su-
percollider)

Explicit Task ParGroup in-
struction

Puredata Explicit Task pd~

Kronos Automatic Data Vectorization
Faust Automatic Data and Tasks Vectorization,

OpenMP, work
stealing

Table 2.3.: Comparison of IMSs with respect to parallelism.

2.4. Formal models for IMSs
In this section, we describe formal models that are suitable to describe IMSs:
the dataflow paradigm and real-time paradigms, including reactive synchronous
programming and the logical-execution-time paradigm, which we illustrate with
actual programming languages. In Chapter 5.3, we will describe some of these

35

2. An overview of Interactive Multimedia Systems

paradigms and languages in comparison with the type system and formal se-
mantics of Part I.

2.4.1. The dataflow paradigm
In the dataflow model [Pto14], computations are represented by a directed
graph of nodes (or actors) that communicate using channels materialized by
the graph arcs. Each channel is a FIFO queue of tokens. The dataflow model is
data-oriented, i.e. when there are enough data (tokens) in each input channel
of a node, the node is fired (activated), and consequently yields some tokens
in its output channels. The number of tokens consumed or produced by a
node in an execution is called token rate. The dataflow paradigm does not
precise the order of execution.8 How the token rates are defined, i.e. statically
before execution or during execution, using some pattern or not, entails various
species of dataflow models.

Synchronous dataflow

A dataflow graph is synchronous [LM87] if the number of tokens produced and
consumed by nodes are known a priori and constant, as in Figure 2.11. This
restriction ensures properties such as predictability or static scheduling.

v1

v2

v3
2 1

1

1 2

1

Figure 2.11.: A simple synchronous dataflow graph with three nodes v1, v2 and
v3. Data flows from v1 to v3, from v1 to v2 and from v2 to v3. v1
yields 1 token per firing, and v3 requires 2 tokens to be fired, one
from v1 and one from v2.

If the number of tokens produced and consumed by every node is the same,
the dataflow graph is said to be homogeneous. In the more general case with
different numbers of tokens, the dataflow model is a multirate model.

8It is only constrained by the size of the channels holding the tokens, which cannot become
negative.

36

2. An overview of Interactive Multimedia Systems

This leads to a balance equation that states that the amount of tokens pro-
duced by an actor A and consumed by an actor B, as shown in Figure 2.12,
must be the same after A is fired kA times and B, kB times:

kA ×m = kB × n (2.1)

A B
m n

Figure 2.12.: Two actors A and B exchange tokens: m tokens are generated
when A is fired and n tokens are consumed by B to be fired.

Such an equation can be added for each edge in the synchronous dataflow
graph. For the graph of Figure 2.11, the system of balance equations is:

kv1 = kv2

2× kv1 = kv3

2× kv2 = kv3

(2.2)

The least positive (non-zero) integer solution is kv1 = 1, kv2 = 1, kv3 = 2. It
leads to a schedule that is statically computed. The schedule is, in order, the
iteration of v1v2v3v3.

More generally, if the system of balance equations has a non-zero solution,
the synchronous dataflow (SDF) graph is said to be consistent [LS16] and the
buffers to store the tokens are bounded for an infinite execution. Otherwise, it
is inconsistent and the buffers are unbounded.

Another point to check for a dataflow graph is whether there are cycles. In
the presence of cycles, actors do not know when to fire. Indeed, each actor in
the cycle expects tokens to arrive in its inputs to be fired but those tokens will
reach it if itself generates tokens, therefore entailing a deadlock. The typical
solution to this problem is to have a special actor that produces initial tokens
to ramp up the graph.

More complex dataflow models

In dynamic dataflow [LP95], the number of tokens produced and consumed is
not constant. The number of produced tokens can depend on the number of
consumed tokens and some actors can implement control flow such as condi-
tionals. It has more expressive power, but finding deadlock or checking if token
buffers are bounded is undecidable.

37

2. An overview of Interactive Multimedia Systems

Some models are more expressive than SDF but remain decidable. Cyclo-
static dataflow [Bil+96] allows production and consumption rates to change
periodically. In heterochronous dataflow [GLL99], changes in production and
consumption rates are governed by finite state machines. Given some condi-
tions on the finite state machine, the model becomes decidable. This is a similar
approach to scenario-aware dataflow [The+06; GS10], where each state of the
automaton is a SDF graph. In parametrized SDF [BB01b], changes in con-
sumption or production rates, but also initial values of delay actors, can be
parametrized. A change of the parameters can only happen at some specific
points in time during execution.

Another useful model for multimedia applications is the multidimensional
SDF [ML02]. In this model, channels between actors carry multidimensional
arrays of tokens.

Optimizing some metrics in the dataflow model is for instance studied in the
scalable synchronous dataflow model [Rit+93]. There, the number of samples
consumed or produced per activation can be multiplied by an integer factor.
The goal is to minimize context switching and maximize vectorisation: samples
are grouped together, but the signal is not resampled.

Audio graphs and the dataflow paradigm

The dataflow model has also been applied to describe real-time audio processing
graphs, especially in IMSs. As the IMSs usually have control-flow nodes, i.e.
conditionals, loops and so on, they are well modelled by the dynamic dataflow
model where tokens are audio samples. It means that no static schedule can be
computed but rather that execution is totally demand-driven, i.e. the arrival
of tokens activates audio processing nodes. They also depart from the pure
dataflow model in how they deal with control tokens. In Max/MSP, audio
tokens always fire the node, but control tokens fire a node only if they are
on a hot inlet. If they are on a so-called cold inlet, new tokens will discard
the previous tokens, and only the last one on the cold inlet will be taken into
account when the node is fired. In Puredata, in addition to hot and cold inlets,
the order of the connections at the moment of creating the patch determines
the order in which tokens are sent. Finally, the dataflow graph of those IMSs
is traversed depth-first.

Besides, IMSs are real-time systems, which departs from dataflow graphs
optimized for throughput. The time-triggered dataflow model [AA09] adds
time (execution time, firing times, deadlines) to the dataflow model and is
used to model a C++ multimedia library, CLAM [AAG06].

38

2. An overview of Interactive Multimedia Systems

2.4.2. Real-time paradigms
We use the classification of real-time programming paradigms in [KS12] in
three main models.

Bounded execution time (BET) or scheduled model. This is the model used
in mainstream programming languages: time is not a first-class citizen,
but they use functions that schedule operations to be performed at some
instant. Execution times of programs have explicit deadlines.

Zero execution time (ZET) or synchronous model. The execution time of a
program from input to output, including computations, is assumed to be
zero.

Logical execution time (LET) or timed model or time-triggered model. Input
and output are performed in zero time, but the computations in-between
span a strictly positive fixed duration.

Here we will focus on the zero execution time and logical time paradigms.

Synchronous reactive languages

Real-time synchronous reactive languages are a common model to describe pro-
cessing on real-time streams. They assume the zero execution time hypothesis,
where processing units execute infinitely quickly or equivalently, execute in
zero time. This hypothesis can be checked by computing the worst-case execu-
tion time of the tasks and ensuring it is smaller than the maximum worst-case
execution time (the relative deadline) that we can allow for a correct execution.
It is also reactive as it computes at least one reaction for any event and it is
deterministic as it ensures that at most one reaction is computed for any event.
Correctness analysis must check the absence of infinite cycles using causality
analysis.

They also exhibit a powerful type system on streams, where types on streams
are called clock types. A clock defines the streams of regular logical instants
when a variable takes a value and can be over-sampled or under-sampled. They
are a good fit for signal processing as they can describe multirate streams and
the processing on the streams.

In addition, synchronous languages abstract the implementation details such
as buffer management and audio callbacks, through the compiler. They ensure
some safety properties that are granted when programming audio systems on
the bare metal, especially synchronization properties. A much more detailed
review on synchronous languages in computer music can be found in [BJ13].

39

2. An overview of Interactive Multimedia Systems

The main synchronous reactive languages are Lustre [HLR92], Lucid Syn-
chrone [Pou06], Esterel[BG92] and Signal [BLJ91]. We distinguish between
two types of synchronous reactive languages:

• dataflow synchronous languages;

• process-algebra synchronous languages.

Dataflow synchronous languages describe computations as a set of equations
on signals, and are as such well-suited for audio signal processing.

Lustre [HLR92]. Lustre is a synchronous dataflow programming language.
It is declarative as outputs of programs are defined by unordered equations,
called node definitions, as in Code 2.6.

node negate(x: bool) returns (b : bool);
let

b = not a;
tel

Code 2.6: A node definition that takes one sequence as input, negates it and
returns it.

The previous value of variable p can be accessed with pre p: the stream
pre p is similar to stream p except for the first value which is undefined. The
expression q -> (pre p) can be used to specify it: operator a -> b is a stream
whose first value is the first value of stream a and then is equal to b.

Lustre can process several variables seen as an array using array itera-
tors [Mor02].

Clocks. Two operators allow under-sampling, when, and over-sampling, current.
In the code except 2.7, when creates a new stream where only the values of x
when the expression c is true are kept (or sampled). Operator current on the
sampled stream y projects it on the clock of x and uses the last previous value
where y is not defined.

Compilation of Lustre programs. Lustre programs are compiled into sequen-
tial imperative C programs, with the following shape:

40

2. An overview of Interactive Multimedia Systems

y = x when c
x + current(y)

Code 2.7: Clock under-sampling and over-sampling.

Init memory
Loop {

read inputs
compute outputs
update memories

}

They can also be compiled into parallel programs and to circuits [RH91].
Lustre is packaged with a model-checking tool, lesar.

Lustre-like languages and buffering The n-synchronous Lucy-n [MPP10]
language is an extension of Lustre that makes it possible to use clocks that
are not necessarily synchronized, but close from each other, by using buffers,
the size of which is automatically computed. For that, it uses a sub-typing
constraint which is added to the clock calculus of Lustre. Another extension
of Lustre that describes how to aggregate and disaggregate the elements of a
stream is described in [Gua16].

The process-algebra synchronous languages are based on a more imperative
approach: the new value of a signal is updated by emitting it and other pro-
cesses react to the new value by waiting on it.

It is less straightforward to describe signal processing but convenient for
controls.

Esterel [BG92]. Esterel is an imperative reactive synchronous language. It
can both express parallelism and preemption. In the following example, await
waits for signal A or signal B. If one of them is received, signal O is sent via the
emit instruction.

[await A || await B];
emit O

Antescofo is actually inspired by Esterel, but adds the management of arbitrary
delays. The underlying time model is hybrid because it handles both reactive
events and timed transitions.

41

2. An overview of Interactive Multimedia Systems

Event Response time

Wait time

Figure 2.13.: Logical execution time: delay if actual execution finishes before
the pre-fixed execution time. Adapted from [Kir02].

ReactiveML [MP05]. ReactiveML is an synchronous reactive extension for
ML, here a subset of OCaml. ReactiveML compiles to OCaml code. In [Bau+13],
it was used to implement a very simplified version of the Antescofo language.

Logical execution time

In the logical execution time [KS12], although inputs and outputs are read and
written in zero time, the processing time itself of a task is a strictly positive
fixed number. This is different from BET as this duration is not an upper bound
but the actual duration of the execution. If the task finishes earlier, it waits
until the fixed duration has elapsed, as in Figure 2.13. Analysis of causality is
simplified compared to ZET thanks to the strictly positive duration of a task.

The main languages of this paradigm are Giotto [HHK01] and xGiotto [Gho+04].
Giotto is a time-triggered language with several control modes in which tasks
coded in C are periodically executed. Switching between modes is also time-
triggered. xGiotto adds event -triggering to Giotto.

42

Part I.
Formalization

43

In this part, we present a formal model of timed streams and their compu-
tation by an audio graph. The audio graph describes how at some date signal
processing and control are dealt within an IMS. The audio graph combines
audio processing nodes together with nodes distinguished as sources and sinks
of the audio signal. Here, we formalize both the structure of the graph and the
associated domains in Chapter 3 as well as the streams that flow between au-
dio processing nodes in a audio graph, using a type system, in Chapter 4. We
present a formal denotational semantics of audio graphs with streams in Chap-
ter 5. We compare our model to models used for signal processing languages
in Section 5.3.

Our motivation is to reflect actual buffered implementations where elements
in streams, the samples, are grouped together into buffers. Processing nodes
execute on buffers, not on samples. We also explain what happens when a con-
trol event occurs while a buffer is processed: is the control taken into account
immediately, or rather at the next buffer? Indeed, buffering entails that some
samples and some controls are dealt with later than their occurrence; this delay
is called latency and we want to characterize it here. Furthermore, streams can
be processed at different rates. We obtain a buffered sampled representation
of multirate signals with timestamps.

44

3. Objects

In this chapter, we present the main objects we will employ to describe the
types and semantics of an audio graph. In Section 3.1, we formalize the audio
graph structure. In Section 3.2, we introduce the domain of streams. Finally,
in Section ??, we present the syntax of nodes and how to combine them in an
audio graph.

Notations
We introduce here some operators that will be useful in the chapter.

Operator ? is the Kleene star and X? is the set of all finite sequences over
set X, i.e., X? = ⋃

n≥0 {x1x2 · · ·xn |x1, x2, . . . , xn ∈ U}. Note that the empty
sequence is in U?.

Operator ω is used to define the set of infinite sequences, as follows: for a
set X, Xω is the solution of the equation Xω = XXω.

The b·c operator is the floor function and d·e is the ceil function, such that
for k ∈ R, bkc = max {m ∈ Z |m ≤ k} and dke = min {m ∈ Z |m ≥ k}

3.1. Audio graphs
An audio signal is processed by various functions connected together: a trans-
formation of the audio signal can be described through audio processing nodes
in a graph that takes signals as input and output signals. Here, we describe
the structure of this graph.

Usually, graphs have only one edge between two vertices. In actual audio
graphs, two nodes can be linked together with several edges between the nodes,
for instance a node that would expose two outputs, one for each stereo channel,
to a mixer node, as in Figure 3.1. A graph with multiple edges between two
nodes is called a multigraph. We explicitly add the connection points, called
ports, to nodes, and the edges attach to ports of nodes. The edges are directed,

45

3. Objects

as the signal flows in only one direction, and so there are two categories of
ports, input ports and output ports.

mixer

source 1 source 2

sink

Figure 3.1.: Example of an audio graph, with two mono sources, a mixer, and
a stereo sink. There are multiple edges between the mixer node
and the sink node.

We adapt the port graph formalism, as in [AK08], to audio graphs. An audio
graph is a triplet G = (V, P, E) where:

• V is a set of vertices;

• P = (Pi, Po) is a pair of finite sets of ports where Pi = {1̌, . . . , ň} is the
set of input ports and Po = {1̂, . . . , m̂} is the set of output ports;

• E ⊂ ((V ×Po)× (V ×Pi)) is a set of edges. An edge e = ((v, po), (v′, pi))
represents the data flowing between vertices v and v′ and connects the
output port po of vertice v to the input port pi of vertice v′. We note
v.pi port pi of v and edge e as v.po → v′.pi. v v′ will denote any edge
v.p→ v′.p′ between v and v′.

If G is a graph, we denote by VG its set of vertices and by EG its set of edges.
An edge v v is called a loop. For an edge v v′, v is called the source and v′

the target, and v and v′ are adjacent or neighbour nodes. A subgraph G′ of G is
a graph whose node set, port set and edge set are subsets of those of G. A path
π of G is a sequence v1, . . . , vn such that, for all i ∈ {1, . . . , n − 1}, vi vi+1.
We will note π = v1 · · · vn. The number of incoming edges in v is the
in degree denoted i(v) of v, and the number of outgoing edges in v is the out
degree o(v) of v. Also, we enforce that given a node v, an input port pi and
output port po of v, pi ∈ {1̌, . . . , ˇi(v)} and po ∈ {1̂, . . . , ˆo(v)}.

The degree of v is the number of incoming and outgoing edges of v. If K is
the set of shortest paths between any vertices v and v′ of G, the diameter dG

of G is the longest of those paths in K.

Distinguished nodes. The nodes without input ports are called sources. They
are typically audio stream generators. The nodes without output ports are the

46

3. Objects

sinks. They are audio sinks and are actually inputs to the soundcard, for
instance. Nodes that are neither sources nor sinks are called effects.

Acyclic Audio graph

A graph G is cyclic if there is a node v ∈ V and a path v · · · v in G. A
graph is acyclic if it is not cyclic. Although some audio processing algorithms
require feedback, they actually implement it with a delay, which is said to
break the cycle in the graph. For instance for a one-pole filter, which adds a
weighted output signal to the current input signal, we replace the feedback by
a memory with one node that stores the output and another node that retrieves
it after some delay, as shown in Figure 3.2. For that reason, we will assume
that all audio graphs are acyclic in the following pages.

in 0.999

+

×

out delay

in 0.999 out
mem

+

×

out
in
mem

Figure 3.2.: A one-pole filter that exhibits feedback: the output of + goes back
into an input of + with a delay. On the right, we implement this
delay, by adding two ad-hoc nodes: in mem stores its input, and
out mem outputs what was stored by in mem.

3.2. The domain of discrete streams
Digital audio processing systems do not compute on the continuous signal but
on a discretization of it.1 The dataflow paradigm [LM87] (see Section 2.4.1)
is well suited to describe digital signal processing graphs, where tokens are
typically audio samples or control parameters and vertices are audio processing
nodes. A drawback of the standard dataflow paradigm is that it does not take
time into account explicitly. In the following section, we will address this
drawback and add time to this model.

1See Section 7.2.1 for a compact description.

47

3. Objects

A sample is the value of a signal at a given date. We associate a timestamp
to a sample, and this timestamp can represent different moments, as shown in
Figure 3.3:

• production or acquisition, when the signal is the result of a synthesizer
or is recorded with a microphone for instance;

• processing, when the signal exits a processing node;2

• delivery, when the signal is output to the soundcard to be played by the
speakers.

All three different times could be assigned to one sample by an audio processing
node. The first one makes it possible to process synchronously two signals
entering a node, the second one corresponds to the delay introduced by the
processing latency in the node, and the third one is the deadline of the whole
audio graph, before which the signal has to be processed.

0 tt1

Production

0 tt2

P1

Pi

Pn

Processing

0 tt3

Delivery

Figure 3.3.: A timestamp can represent various dates in the lifetime of a sam-
ple: production or acquisition, processing or delivery. Here, the
second sample, after being processed by Pi, can be associated
timestamps t1 (production, in a source), t2 (processing, output
of Pi) or t3 (deadline, for a sink).

Here we will consider only the first two kinds of timestamps. As in the logical
execution time paradigm [KS12], we assume that the delivery or output date

2The time it enters a processing node can be deduced from the time it exits the connected
input nodes, assuming instantaneous communications.

48

3. Objects

of the sample happens no later than the timestamp of production of the next
sample in the sequence. Therefore, we do not use a timestamp that would
represent the deadline for the whole graph. It means that we do not track the
processing time of a node here. We will deal with the deadline of the audio
graph in Chapter 8.

Audio processing nodes also actually process the samples grouped together in
buffers. Audio samples are grouped in buffers because buffers can be processed
more quickly by the processor; but grouping also increases the buffering latency
as samples in the buffer are output at the date of the last sample. The buffering
latency corresponds to a production latency as inputs are first delivered as
buffers. Note that it is different from the processing latency, which we do not
consider here. There are also other production latencies such as the latency
caused by analog to digital converters, for instance.

Often in IMSs, control is aperiodic and will be represented by a timestamped
sequence of control samples, as in Figure 3.4. Audio is represented by a times-
tamped sequence of buffers, as in Figure 3.5, which can be canonically rep-
resented by a timestamped sequence of samples, as shown in Figure 3.6. A
periodic timestamped sequence of buffers can also be used to model periodic
control such as control from a low-frequency oscillator. However in general, the
sequence of buffer timestamps is not necessarily periodic. We also differentiate
between buffers of samples, where we can attach a date to every sample, given
the timestamp of the beginning of the buffer and the sample rate, and buffers
of data, where each individual piece of data is not temporally localized in the
buffer but is dated by the timestamp of the buffer. In the following, a buffer
refers only to a buffer of samples, and an aggregate of data will be called an
array and considered as one multidimensional sample. To find out the best
tradeoff between the sample latency and the efficiency of the audio processing,
we can choose to process longer buffers or smaller buffers, by splitting or fusing
buffers in the ideal periodic buffer sequence, as in Figure 3.7.

0 t

Figure 3.4.: An aperiodic timestamped sequence, used to model aperiodic con-
trol.

We want to model how samples are grouped together when processed by a
signal processing node. We will give types (see Chapter 4) that describe stati-
cally how sequences of samples can be grouped together and if they are periodic,
or not, how periodic, and show a semantics (see Section 5.2) of how an audio

49

3. Objects

t1
t2 t3 t4 t5 t60 t

Figure 3.5.: Periodic timestamped sequence of 4-sample buffers.

0 t

Figure 3.6.: Canonical periodic timestamped sequence associated to the peri-
odic timestamped sequence of 4-sample buffers of Figure 3.5

0 t

0 t

Figure 3.7.: A stream of timestamped 4-sample buffers at the top. At the
bottom, the buffers of the same stream have been split (buffer 4)
or fused (buffer 5 and 6).

50

3. Objects

graph computes such streams. In comparison to the usual execution model
of an audio graph, we want to handle multirate and dynamic restructuring of
buffering and to compute the latency introduced by the buffering.

Domains

We define here the domain [GS90] of streams. Defining a domain allows the
definition of stream functions by induction without burden using standard
tools.

We note U the set of possible samples. The set of timestamps T is countable,
with T ⊂ Q+. It is ordered with the canonical numerical order < on Q+. We
consider T as a flat domain T⊥ where ⊥ is the minimal element [Mos90] : all
elements are incomparable except ⊥ for the domain order ≺. We also assume
the following property on T :

∃ε ∈ Q+, ε > 0,∀t1, t2 ∈ T , t1 6= t2 ⇒ ε < |t1 − t2|

This property ensures that time advances, i.e. does not get stuck (non density).
A buffer b is a triplet (µ, p, b) of B = L × P × U? where µ ∈ LQ a latency,

p ∈ P is the sample-period, with P = Q+ \ {0}, and b is a finite sequence
b1, . . . , bn of U , which will be called a buffer of samples. We note `(b) the size
of buffer b , µb the latency of buffer b, and pb the sample-period of buffer b.
We will also note b[i] the i-th element of buffer of samples b. We also define
an infix operator ⊕ : B × L → B such that (µ1, p, b)⊕ µ2 = (µ1 + µ2, p, b).

A timestamped sequence of buffers, or stream of buffers, is a function s ∈ S
with S = T → B. It associates to a timestamp a buffer of samples with latency
and sample-period. A stream of buffers can also be seen as a sequence indexed
by elements in T ordered by the canonical numerical total order on Q+, giving
a meaning to prefix, suffix, first and last elements.

For a stream s, if dom(s) is finite, we say that s is finite. Similarly, if dom(s)
is infinite, stream s is said to be infinite. We note ε the empty stream (i.e.
dom(ε) = ∅).

We can represent a function s in S as a subset of dom(s) × codom(s) ⊂
(T × B)? ∪ (T × B)ω. To ensure the causality of the operations on streams
defined in that way, we use the prefix order on (T ×B)? ∪ (T ×B)ω, instead
of the usual Scott order. The idea is that with the passing of time, we gain
information and the known prefix (i.e. initial non-⊥ element) increases.

Definition 1 (first). Given s ∈ S \ ε, we define first(s) as:

first(s) = min (dom(s))

51

3. Objects

We also note last(s) = max(dom(s)) if s is finite. Note that last is undefined
for an infinite stream. For an ordered set E, we note E< = E \ {max(E)} if
E is finite and E< = E if E is infinite. For a set A, we note Ā = A ∪ {+∞}.

Definition 2 (next). Given s ∈ S and t ∈ dom(s)<, we define next(s, t) as:

next(s, t) = min
{
t′ ∈ dom(s)

∣∣ t′ > t
}

Definition 3 (tail). Given s ∈ S, we define tail(s) as:

tail(s) =
{

dom(s) \ {first(s)} if dom(s) 6= ∅
∅ if dom(s) = ∅

We note `(s) = card (dom(s)) ∈ N̄ the length of stream s, potentially infinite.
We also define two operators prec and succ returning a subset of dom(s)

with, for s ∈ S and t ∈ dom(s):

prec(s, t) =
{
t′ ∈ dom(s)

∣∣ t′ ≤ t
}

(3.1)
succ(s, t) =

{
t′ ∈ dom(s)

∣∣ t′ ≥ t
}

(3.2)

Definition 4 (interleave). Given two streams s1 and s2, we define s = interleave(s1, s2)
as follows:

dom(s) = dom(s1) ∪ dom(s2)

∀t ∈ dom(s), s(t) =
{

s1(t), if t ∈ dom(s1)
s2(t), if t 6∈ dom(s1)

Operator interleave yields a stream s resulting from the temporal asymmetric
interleaving of two streams s1 and s2. If there are samples at the same times-
tamp in each stream, as s must be a function, we need to associate to it only one
value. We could parametrize interleave with a function that would combine
the value of s1 and s2 at that timestamp, as it is done in ReactiveML [MP05]
with the gather construct. We choose here the value of s1 at that timestamp
for the sake of simplicity.

Definition 5 (concat). We define concat from interleave with an additional
condition on the timestamps of the last and first bufers in the two streams to
concatenate. Given s, s′ ∈ S \ ε with last(s) < first(s′), we define concat =
interleave. We will also denote concat(s, s′) as s� s′.

52

3. Objects

s1

0 t

s2

0 t

s

0 t

Figure 3.8.: Operator interleave on two aperiodic 1-sample buffer streams s1
and s2. Samples in s are greyed in accordance to the stream they
take their value from. Remark that s1 and s2 share a timestamp,
and that we keep in s the value of s1 at that timestamp.

Notation of s as a sequence. We have a stream s ∈ S \ ε; dom(s) as an
ordered set can be written {t1, t2, . . .} such that s = ((t1, b1), (t2, b2), . . .). We
denote t1 = first(s). Given i ∈ {1, . . . , `(s)}, if ti is an element of dom(s)<, then
ti+1 = next(s, ti) and more generally, for 1 ≤ k ≤ `(s)− i, ti+k = next(s, ·)k(ti).
We note Is = {1, . . . , `(s)}, which we call set of indices of s. We similarly note
for i ∈ Is, bi = s(ti) and si = (ti, bi) and finally, s = ((ti, bi))i∈Is .

If all buffers in the stream have size 1, we call it a stream of samples. We
note A = {s ∈ S | ∀t ∈ dom(s), `(s(t)) = 1} the set of streams of samples. If all
buffers of a stream have all the same size, we call the stream a homogeneous
stream. If the stream has only one buffer, we call it a singleton stream.

Definition 6 (Substream). Let s ∈ S a stream. s′ ∈ S is the substream of s
starting at t ∈ T , and ending t′ ∈ T̄ such that:

dom(s′) =
{
t′′ ∈ dom(s)

∣∣ t ≤ t ≤ t′}
∀t′′ ∈ dom(s′), s′(t′′) = s(t′′)

We will note s′ = substream(s, t, t′).

Definition 7 (Canonical flattening of a stream of buffers into a stream of
samples). Any stream can be converted into a stream of samples, using the
conversion function φ : S → A.

Let s = ((ti, bi))Is be a stream. s′ = φ(s) is defined by s′ = ((t′
i, b′

i))i∈Is′

53

3. Objects

where:

`(s′) =
`(s)∑
i=1

`(bi)

and

∀i ∈ Is,∀j ∈ {1, . . . , `(bi)},

t′
j+

∑i−1
k=1 `(bk)

= ti + pbi
× (j − 1)

b′
j+

∑i−1
k=1 `(bk)

[1] = bi[j]

pb′
j+

∑i−1
k=1 `(bk)

= pbi

µb′
j+

∑i−1
k=1 `(bk)

= µbi

(3.3)

Definition 8 (Equivalence between streams). Given two streams s and s′, we
say they are equivalent if φ(s) = φ(s′). We will note it s ≡ s′.

Definition 9 (Buffer-periodic stream of buffers). A stream s ∈ S is buffer-
periodic if and only if:

∃πs ∈ P, ∀i ∈ Idom(s)< , ti+1 − ti = πs

We call this πs the stream-period.

Note that the sample-period pb of a buffer b, and the buffer-period πs of a
stream s are usually not the same periods. For instance, a typical audio stream
will have a sample-period of 1/44100 s, whereas the buffer period will usually
be between 32

44100 s and 1024
44100 s.

We give a simpler expression of the canonical representation φ(s) of a stream
of buffers s ∈ S when s is homogeneous with buffers of size n. With s =
((ti, bi))i∈Is and s′ = ((t′

i, b′
i))i∈Is′ where s′ = φ(s) and we have:

∀i ∈ Is′ ,

t′
i = t1+

⌊
i−1

n

⌋ + ((i− 1) mod n)× pb
1+

⌊
i−1

n

⌋
b′

i[1] = b1+
⌊

i−1
n

⌋[1 + (i− 1) mod n]

pb′
i

= pb
1+

⌊
i−1

n

⌋
µb′

i
= µb

1+
⌊

i−1
n

⌋
(3.4)

and `(s′) = n× `(s).

Proof. We prove here that the equation 3.4 in the case of a stream of buffers
of the same size is equivalent to the Definition 7.

Let s a homogeneous stream with buffers of same size n and s′ = φ(s).

54

3. Objects

1. From Equation 3.4 to Equation 3.3 of Definition 7.
Let i ∈ Is and j ∈ {1, . . . , n}.

t′
j+

∑i−1
k=1 `(bk)

= t′
j+n×(i−1) as all buffers bk have the same size

= t1+
⌊

j+n×(i−1)
n

⌋ + ((j + n× (i− 1)− 1) mod n)× pb
1+

⌊
j+n×(i−1)

n

⌋
using Equation 3.4

= t1+
⌊

j−1
n

+i−1
⌋ + ((j + n× (i− 1)− 1) mod n)× pb

1+
⌊

j−1
n +i−1

⌋
= ti + ((j − 1) mod n)× pbi

= ti + (j − 1)× pbi
as j ∈ {1, . . . , n}

Similarly, we have, using the same arguments on indices:

b′
j+

∑i−1
k=1 `(bk)

[1] = bi[j]

`(s′) =
ns∑

i=1
`(bi)

pb′
i

= pb
1+

⌊
i−1

n

⌋
µb′

i
= µb

1+
⌊

i−1
n

⌋
So Definition 7 holds.

2. From Definition 7 to Equation 3.4. We have:

∀i ∈ Is, ∀j ∈ {1, . . . , `(bi)},

t′
j+

∑i−1
k=1 `(bk)

= ti + pbi
× (j − 1)

b′
j+

∑i−1
k=1 `(bk)

[1] = bi[j]

All buffers in stream s have same size n, therefore, `(s′) = n× `(s).
Let i ∈ Is′ . We can write:

t′
i = t′

1+(i−1) mod n+n
(

1+
⌊

i−1
n

⌋
−1

)
We set j = 1 + (i− 1) mod n and i′ = 1 +

⌊
i−1
n

⌋
to rewrite it as:

t′
i = t′

j+n×(i′−1)

55

3. Objects

We remark that for x ∈ N and y ∈ N \ {0}, the following property holds:⌊
x

y

⌋
= x− x mod y

y
(3.5)

If we write the Euclidian division of x by y, we have x = y × q + r with
0 ≤ r < y and q ∈ N.

x− x mod y

y
= y × q + r − r

y

= q

and ⌊
x

y

⌋
=

⌊
y × q + r

y

⌋
=

⌊
q + r

y

⌋
= q as q ∈ N and 0 ≤ r

y
< 1

It follows from Equation 3.5 that:

j + n× (i′ − 1) = 1 + (i− 1) mod n + n×
(

1 +
⌊

i− 1
n

⌋
− 1

)
= 1 + (i− 1) mod n + n×

(
1 + (i− 1)− (i− 1) mod n

n
− 1

)
= 1 + (i− 1) mod n + (i− 1)− (i− 1) mod n

= i

We also have:

i′ = 1 +
⌊

i− 1
n

⌋
≤ 1 +

⌊
n`(s)− 1

n

⌋
= 1 + (n`(s)− 1)− (n`(s)− 1) mod n

n
using Equation 3.5

= `(s) + n− 1− (n`(s)− 1) mod n

n
= `(s) as n− 1− (n(`(s)− 1) + n− 1) mod n = 0

Therefore i′ ∈ {1, . . . , `(s)} = Is.

56

3. Objects

As all buffers have same size, we have:

n× (i′ − 1) =
i′−1∑
k=1

`(bk)

Hence, we can apply Definition 7 with i′ ∈ Is and j ∈ {1, . . . , `(bi′)} and
we get:

t′
j+

∑i′−1
k=1 `(bk)

= ti′ + pbi′ × (j − 1)

= t1+
⌊

i−1
n

⌋ + pb
1+

⌊
i−1

n

⌋ × ((i− 1) mod n)

b′
j+

∑i′−1
k=1 `(bk)

[1] = bi′ [1 + (i− 1) mod n]

pb′

j+
∑i′−1

k=1 `(bk)
= pb

1+
⌊

i−1
n

⌋
µb′

j+
∑i′−1

k=1 `(bk)
= µb

1+
⌊

i−1
n

⌋
which is Equation 3.4.

Property 1 (Flattening of a buffer-periodic stream). Let s be an homogeneous
buffer-periodic stream with period πs, s 6= ε, and s′ = φ(s). We have:

∀i ∈ Is′ ,

t′
i = t1 + πs ×

⌊
i−1
n

⌋
+ ((i− 1) mod n)× pb

1+
⌊

i−1
n

⌋
b′

i[1] = b1+
⌊

i−1
n

⌋[1 + (i− 1) mod n]
(3.6)

Period and latency are as in Equation 3.4.

Definition 10 (Sample-periodic stream). A stream s ∈ S is said sample-
periodic if φ(s) is buffer-periodic.

It implies that all buffers b in s have the same sample-period pb. However, a
buffer-periodic stream is not necessarily sample-periodic. For instance, buffer-
periodic streams with buffers of same sample-periods are not necessarily sample-
periodic, as in the counter-example of Figure 3.9. The number of samples in
the buffers could also change, as in a non-homogeneous stream. For instance,
it can represent a stream which has been resampled at some time intervals.

57

3. Objects

Another example are streams filtered by a control condition (switch on/off):
the absence of a buffer is not the same as a buffer of silent audio. In those cases
though, subsequences of the stream are sample-periodic. A 1-buffer stream is
sample-periodic, because of the periodicity of its only one buffer.

Audio streams are represented by sample-periodic buffered streams, where
the sample period is typically 1/44100 s. Buffer sizes often range from 32 to
4096 samples, in powers of 2; therefore for a buffer size of 256, the buffer period
is 256/44100 s.

buffer-period sample-period0 t

Figure 3.9.: A stream that is buffer-periodic and has all buffers with the same
sample-period. However, the stream is not sample-periodic. The
time interval between the last sample of a buffer and the first
sample of the next buffer is not populated with samples with the
same sample-period.

Property 2 (Sample-periodic buffer-periodic streams with same periods). Let
s ∈ S a buffer-periodic stream with buffer-period πs where all buffers have the
same sample-period p and the same size n, i.e, for all i ∈ Is, `(si) = `(s1).
Stream s is sample-periodic if and only if:

∀i ∈ Idom(s)< , psi = ti+1 − ti

`(si)

i.e.
πs = p× n

Proof. Let s ∈ S a buffer-periodic stream where all buffers have the same
sample-period p and the same size n. We note s′ = φ(s). As s is buffer-
periodic with buffer-period πs and buffers have the same size n, we can apply
Equation 3.4. Let i ∈ {1, . . . , n× ns − 1}. We have:

t′
i = t1+

⌊
i−1

n

⌋ + ((i− 1) mod n)× p

Hence:

t′
i+1 − t′

i = t1+
⌊

i
n

⌋ + (i mod n)× p− t1+
⌊

i−1
n

⌋ − ((i− 1) mod n)× p (3.7)

58

3. Objects

1. We assume that s is sample-periodic. Then s′ is buffer-periodic and there
exists a period π′ such that:

π′ = t1+
⌊

i
n

⌋ + (i mod n)× p− t1+
⌊

i−1
n

⌋ − ((i− 1) mod n)× p

Let i be such that sample b′
i[1] in s′ is the last of a buffer of s, and the

next sample b′
i+1[1] is the first of the next buffer in s. The idea is that

even if buffers have all the same sample-period, we need to also have
the same time interval as the sample-period between the last sample of
a buffer and the first sample of the buffer that follows it.
In that case, i is the last index of a buffer in s, which all have size n, so n
divides i. Therefore, there exists q ∈ N such that i = q× n and we have:⌊

i− 1
n

⌋
+ 1 = (q × n− 1)− (q × n− 1) mod n

n
+ 1 using Equation 3.5

= q × n− 1− (n− 1) + n

n
= q

and
⌊

i
n

⌋
=

⌊
q×n

n

⌋
= q.

Hence, we have
⌊

i
n

⌋
=

⌊
i−1
n

⌋
+ 1. We also have (i − 1) mod n = n − 1.

It follows that:

π′ = t1+
⌊

i−1
n

⌋
+1 − t1+

⌊
i−1

n

⌋ − (n− 1)× p (3.8)

If we consider the case where the two samples are not at the boundaries
of a buffer, n does not divide i, hence, we have

⌊
i
n

⌋
=

⌊
i−1
n

⌋
and so we

get:
π′ = p× (i mod n− (i− 1) mod n) = p

It yields, by replacing π′ by p in Equation 3.8:

p = t1+
⌊

i
n

⌋
+1 − t1+

⌊
i−1

n

⌋ − (n− 1)× p

so

p =
t⌊ i

n

⌋
+2 − t1+

⌊
i−1

n

⌋
n

i.e. p = π′

n

We can rewrite it as:
pbj

= tj+1 − tj

n

where j = 1 +
⌊

i−1
n

⌋

59

3. Objects

2. Let us assume that the equation of Property 2 holds.
Let i ∈ {1, . . . , `(s) − 1}. We need to prove that t′

i+1 − t′
i is the same

quantity for all i. Our hypothesis that all buffers have the same sample-
period ensures that for an interval between two consecutive samples in-
side a buffer of s, t′

i+1 − t′
i = p. We need to check that if t′

i+1 − t′
i = p

when i is the index of the last sample of a buffer and i + 1 the index of
the first sample of the next buffer. In that case, Equation 3.7 gives:

t′
i+1 − t′

i = t1+
⌊

i
n

⌋ + (i mod n)× p− t1+
⌊

i−1
n

⌋ − ((i− 1) mod n)× p

= t1+
⌊

i
n

⌋
+1 − t1+

⌊
i
n

⌋ − (n− 1)× p

using the same arguments as for Equation 3.8.

The equation of Property 2 states, as all buffers have size n, at index
1 +

⌊
i−1
n

⌋
, that:

p =
t1+

⌊
i−1

n

⌋
+1 − t1+

⌊
i−1

n

⌋
n

Therefore:

t′
i+1 − t′

i = t1+
⌊

i−1
n

⌋
+1 − t1+

⌊
i−1

n

⌋ − (n− 1)×
t1+

⌊
i−1

n

⌋
+1 − t1+

⌊
i−1

n

⌋
n

=
t1+

⌊
i−1

n

⌋
+1 − t1+

⌊
i−1

n

⌋
n

= p

Hence, s′ is buffer-periodic and therefore, s is sample-periodic.

We summarize the various sets in use, and show how they are linked to
expressing control and audio signals of IMSs in Table 3.1.

We can also classify the streams as in Table 3.2. Some streams are called
atypical and are not usually found in audio systems.

60

3. Objects

in S in IMS
U a sample, a control event
U? a buffer of samples
L a latency
P a period
b ∈ B a buffer
aperiodic s ∈ S with ∀t ∈ dom(s), `(s(t)) = 1 control events
sample-periodic s ∈ S an audio stream

Table 3.1.: Signal and control in IMS and representation in S

Buffer-periodicity Sample-periodicity Description

Buffer-Periodic
Homogeneous Same size of all buffers
Sample-periodic Same size and period

for all buffers and πs =
`(si)× psi

Atypical Previous conditions do
not apply.

Buffer-aperiodic Stream of samples `(si) = 1
Atypical Previous conditions do

not apply.

Table 3.2.: A classification of streams: s refers to a stream here.

61

4. Syntax and types

In this chapter, we present a syntax of audio graphs, where audio processing
nodes are first declared, and then connected together, in Section 4.1. We show
a type system on streams flowing from nodes to nodes on the edges of the audio
graph in Section 4.2.

4.1. Syntax of nodes and audio graphs
An audio graph is defined first by defining its nodes, and then how the nodes
are connected together.

We distinguish between simple nodes, which process their input streams
buffer per buffer and output streams with the same timestamps as their in-
puts; and special nodes, which can output streams and take input streams
with buffers with different sample-period, sizes, or production timestamps (for
instance a delay).

An audio graph is specified by a list of nodes and by the connections between
these nodes. Nodes are referred to with an identifier 〈id〉. The edges of the
graph are identified by a variable that materializes the ports. A connection is
the association of the input edges and output edges to a node. As mentioned
before, ports of a node are explicitly ordered, which means that the input edges
and output edges can be ordered.

ε represents the empty string and \n is a new line.

62

4. Syntax and types

〈port〉 ::= 〈node〉.〈portnumber〉
〈edge〉 ::= 〈port〉→〈port〉

〈edgelist〉 ::= 〈edge〉,〈edgelist〉 | 〈edge〉
〈signals〉 ::= ((〈edgelist〉 | ε))
〈decl〉 ::= 〈id〉:=〈node〉

〈equation〉 ::= 〈signals〉=〈id〉〈signals〉
〈statement〉 ::= 〈decl〉 | 〈equation〉
〈audiograph〉 ::= 〈statement〉\n 〈audiograph〉 | 〈statement〉

Simple nodes

Here, we give the syntax of 〈node〉.

〈node〉 ::= maps(f ; a, b ; a’, b’)

where f is a function from samples tuples to samples tuples, not streams to
streams, with a input controls and a′ output controls, b audio inputs and b′

audio outputs. When v is the node identifier 〈id〉, then i(v) = a + a′ and
o(v) = b + b′. The signature of f is:

f : Ua × Ub → Ua′ × Ub′

We can also define simple nodes as such:

〈node〉 ::= mapb(f ; a, b ; a’, b’)

In that case, v will have a input controls and a′ output controls, and b audio
inputs and b′ audio outputs. f is a function from buffers to buffers, such that:

f : Ua ×Bb → Ua′ ×Bb′

Sources and sinks

〈node〉 ::= in(m)

〈node〉 ::= out(m)

We distinguish sources and sinks from other nodes: in(m) defines a source
with m outputs and out(n) defines a sink with n inputs.

63

4. Syntax and types

Special nodes

Special nodes are used to explicity convert between two streams with different
buffering and sampling characteristics. They can be seen as coercion operators.

We define a special node as follows:

〈node〉 ::= specialnode(params)

We give an overview of the special nodes considered in this work in Table 4.1.

Node Description
delay(n, b) Gives back its input with a delay of n samples with

default value b
window(n, m) Sliding window of size n samples, shifted by m sam-

ples
fuse(n) Fuse n consecutive buffers of a sample-periodic

stream into one large buffer
split(n) Split buffers into n buffers of equal size
expansion(n) Multiply the number of samples in a buffer by n and

decrease the sample-period by a factor of n
decimation(n) Only keep 1

n of the samples in a buffer and increase
the sample-period by a factor of n

periodicize(p, n) Transform an aperiodic stream into a homogeneous
periodic stream with sample-period p and buffer size
n by copying the data as needed to feed the output

Table 4.1.: Special nodes. All these operators have one input stream and one
output stream.

These nodes are representative of the computations happening in audio
graphs and we will describe their semantics in the next sections.

For the graph of Figure 3.2, we have the following node declarations, leading
to the graph with identifiers of Figure 4.1.

64

4. Syntax and types

v1 := in(1)
v2 := maps(0.999; 0, 0; 1, 0)
v3 := maps(out mem; 0, 1; 0, 1)
v4 := maps(+; 0, 2; 0, 1)
v5 := maps(×; 1, 1; 0, 1)
v6 := out(1)
v7 := maps(in mem; 0, 1; 0, 1)

v1 v2 v3

v4

v5

v6

v7

1̂

1̌

1̂
1̌

1̂

1̌

1̂
2̌

1̂
2̌

2̂
1̌

Figure 4.1.: The audio graph from the one pole filter of Figure 3.2 with ports
and variable names on the edges.

Node fork. We also have a fork(n) with one input and n outputs. It is
used when an outgoing port of a node would be connected to n input ports of
nodes. Instead, we connect this output to a fork node, the outputs of which
are connected to the input ports of the outgoing nodes, as shown in Figure 4.2.
This node simplifies the expression of the type system and the semantics by
making sure an output port is only used once. It makes it possible to adapt
the type of each occurrence of a stream depending on which input port an
output port is connected to. It supports the idea of implementing an edge as
an intermediate memory storage that can adapt to various buffering demands
as described in Chapter 6.

65

4. Syntax and types

v

v1 v2

1̂
1̌ 1̌

v

fork(2)

v1 v2

1̂ 1̌

1̂

1̌

2̂

1̌

Figure 4.2.: Several edges go out of the same port on the left. In that case, we
have to duplicate the output stream, by inserting a fork node, on
the right.

Connecting nodes together

We write the execution of the whole graph in the applicative style, i.e. we
write the nodes with their inputs and outputs as a set of unordered equations
on variables labelling the inputs and outputs. We could have also used com-
binators (functional style [Del+87]) to describe the shape of the graph, but we
thought that the additional positioning information given by the combinators
is not useful here as we do not want to generate an actual circuit [Sch87].

An audio graph is written as a set of equations where variables represent
connections between the nodes. Sources and sinks are also identifiable in the
syntax by looking at the absence of input edges and output edges.

For instance, if we take the graph of Figure 4.1, we get the following equa-
tions:

(v1.1̂→ v4.1̌) = v1()
(v2.1̂→ v5.1̌) = v2()
(v3.1̂→ v5.2̌) = v3()
(v5.1̂→ v4.2̌) = v5(v2.1̂→ v5.1̌, v3.1̂→ v5.2̌)

(v4.1̂→ v4.1̌, v4.2̂→ v7.1̌) = v4(v1.1̂→ v4.1̌, v5.1̂→ v4.2̌)
() = v6(v4.1̂→ v6.1̌)
() = v7(v4.2̂→ v7.1̌)

4.2. Types
We associate types to streams, nodes and the whole audio graph. Types de-
scribe which nodes can be connected together and which kind of streams they
can get as inputs and outputs. Some nodes can only accept some specific

66

4. Syntax and types

streams, with a given buffer size or periodicity, while other nodes accept generic
streams, i.e. any buffer size, any periodicity. The types of nodes are the usual
types on a function where argument and return types are streams types. There-
after, we will define the semantics only on well-typed audio graphs.

We use type variables α, β, . . . to specify parametric polymorphism [PB02].
The graph must be syntactically correct and well-formed, i.e., a new equation

only involves input edges that have been output ports in the previous equations.

Types of elements in U

Elements of U can represent control, audio samples, i.e. scalar elements, or
multidimensional elements, such as images or spectral bins obtained from a
spectral analysis.

The syntax of element types is defined by the following grammar:

〈element type〉 ::= 〈SType 〉 | α

where SType (as scalar type) is handled as usual ML types, as in [Kah87], such
as float, int, array. If we need several type variables for element types, we
will note them α1, . . . , αn.

For instance, an audio sample could have type real. A pixel in an image
could have type pixel = int × int × int where each integer is one of the
RGB components, and a 64x64 square image, array (pixel, 64, 64).

Type of a buffer

A buffer is similar to an array but its elements are called samples and may be
associated to a timestamp (using φ, see Definition 7).

〈buf type〉 ::= buffer (p, n, 〈element type〉)

where p ∈ P ∪ {γ}, the period of buffers, and n ∈ N \ {0} ∪ {δ} the size of the
buffer. δ and γ are type variables that indicate that a period or a size within
respectively P and N \ {0} can be used for the considered buffer.

Type of a stream

The type of streams indicates the amount of information we have on the type
of the samples, the buffer size, and the sample-period or the buffer-period of a

67

4. Syntax and types

stream.

〈period type〉 ::= aperiodic (〈element type〉) |
periodic (π, 〈element type〉) |
elastic (p, n, 〈element type〉) |
buffered (p, n, 〈element type〉) |
βstream

where π ∈ P ∪ {γ} a buffer-period, p ∈ P ∪ {γ}, the sample-period of buffers,
and n ∈ N \ {0} ∪ {δ} the size of buffers. γ and δ are type variables that
indicate that any period or any size within respectively P and N \ {0} can be
used for the considered stream.

Each of the four different types for a stream describes less and less precisely
the sample-period, buffering and periodicity or not of a stream:

• Type buffered (p, n, element type) is the type of sample-periodic buffer-
periodic streams, such as audio streams.

• Type elastic (p, n, element type) is the type of sample-periodic streams
that are not buffer-periodic but are buffered in buffers of at most n sam-
ples with sample-period p. These maximum-size buffers can be split in
smaller parts.

• Type periodic (π, element type) is the type of buffer-periodic streams
that are not necessarily sample-periodic.

• Type aperiodic (element type) is the type of any stream, non necessarily
periodic. It can be used for control streams.

Note that buffered and elastic types cannot represent a stream which
would change of sample rate dynamically during the execution, because its
sample-period p remains the same. Type aperiodic can be used but it hides
the fact that the stream is actually piecewise sample-periodic, i.e., given s ∈ S:

∃T ⊂ dom(s), first(s) ∈ T ∧ ∀t ∈ T, ∃p ∈ P, ∃n ∈ N \ {0},
(substream(s, t, t) : elastic(p, n, e)
∨substream(s, t, t) : buffered(p, n, e))

where e the common element type of s. Type periodic could also be used as
the buffering, i.e. the buffer-period, would not change with a change in sample
rate. Because these types refer to increasing information on their inhabitants,
they exhibit a subtyping relationship (see Figure 4.3). These types also char-
acterize the processing capabilities of a node. For example, some nodes are

68

4. Syntax and types

general enough to handle buffers of any size, others are specific to one buffer
size.

However, a change in sample rate is introduced through a resampler (or
expansion or decimation) node in our framework. It means streams do not
change of sample rates here but rather that we created a new graph which re-
sults from the insertion of a new node in the current graph. This new graph has
another type, where a given stream has also the same sample rate permanently.

Types of functions for simple nodes

The functions used for maps have type 〈sample function type〉 and for mapb,
〈buffer function type〉:

〈sample function type〉 ::= 〈element type〉× · · · ×〈element type〉 →
〈element type〉× · · · ×〈element type〉

〈buffer function arg〉 ::= 〈element type〉 | 〈buf type〉
〈buffer function〉 ::= 〈buffer function arg〉× · · · ×〈buffer function arg〉 →

〈buffer function arg〉× · · · ×〈buffer function arg〉

Type of a node and of an audio graph

A node and an audio graph are seen as functions of streams into streams:

〈node〉 ::= 〈stream〉× · · · ×〈stream〉 → 〈stream〉× · · · ×〈stream〉
〈source〉 ::= → 〈stream〉× · · · ×〈stream〉
〈sink〉 ::= 〈stream〉× · · · ×〈stream〉 →

A graph is a function from sources to sinks, where we give the types of the
input streams and output streams.

Typing rules

We note Γ a typing environment, which binds type τ to term s, denoted s : τ or
v : τ . ∅ is the empty context and Γ, s : τ is an augmented context where term
s with type τ has been added. E is a set of equations on types. Γ ` s : τ, E is
the relation between environment Γ, term s, type τ , and set of equations E.

Types of a stream. A buffered type is a subtype of an elastic type, as in
Rule (subtyping 1) and an elastic type is a subtype of an aperiodic type, as in
Rule (subtyping 2). A buffered type is also a subtype of a periodic type, as in

69

4. Syntax and types

Rule (subtyping 3), which is a subtype of an aperiodic type, as in Rule sub-
typing 4. This leads to the subtyping hierarchy of Figure 4.3. We will write
A <: B to say that A is a subtype of B.

Γ ` s : buffered(p, n, α), E

Γ ` s : elastic(p, n, α), E
(subtyping 1)

Γ ` s : elastic(p, n, α)
Γ ` s : aperiodic(α)

(subtyping 2)

Γ ` s : buffered(p, n, α)
Γ ` s : periodic(p× n, α)

(subtyping 3)

Γ ` s : periodic(π, α)
Γ ` s : aperiodic(α)

(subtyping 4)

aperiodic(α)

elastic(p, n, α) periodic(p × n, α)

buffered(p, n, α)

Figure 4.3.: Subtyping hierarchy for streams. A type can be upgraded to a type
upper in the diagram. This generalization corresponds to losing
some temporal and buffering information related to the stream.

Declaration This is similar to a let-binding construct typing.

Γ ` v := node : τ1, E Γ, v : τ1 ` G : τ2, F

Γ ` v := node : τ1\n G : τ2, E ∪ F
(decl)

Below, we show the actual types of simple nodes and special nodes, which
are functions from streams to streams.

Types of simple nodes. A simple mode built with maps can operate on any
buffer size and periodicity of buffers, as in Rules (maps elastic), (maps aperiodic).
We show the rule for two inputs and two outputs, each aperiodic and elastic,
to ease the writing, but it extends naturally to more inputs and outputs.

70

4. Syntax and types

Γ ` f : α1 × α2 → α3 × α4

Γ ` maps(f ; 1, 1; 1, 1) : aperiodic(α1)× elastic(γ1, δ1, α2)→ aperiodic(α3)× elastic(γ1, δ1, α4)
(maps elastic)

In Rule (maps elastic), α1, α2, α3, α4 are sample types as f is a sample function
with which we build a node with maps. Node maps has two inputs and two
outputs. The first input and the first output of maps have respectively type
aperiodic(α1) and type aperiodic(α2) and represent control, whereas the
second input and output of maps have respectively type elastic(γ1, δ1, α2)
and elastic(γ2, δ2, α4) and represent audio streams.

Γ ` f : α1 × α2 → α3 × α4

Γ ` maps(f ; 1, 1; 1, 1) : aperiodic(α1)× aperiodic(α2)→ aperiodic(α3)× aperiodic(α4)
(maps aperiodic)

A node built with mapb is typed similarly as with maps. The difference lies in
how audio signals are typed: if the function on buffers handles buffers with a pe-
riod and size, then audio signals are typed as buffered, in Rule (mapb buffered).
They can also be typed as periodic as in Rule (mapb periodic) if the node
handles buffer-periodic but not sample-periodic buffers, such as a FFT node
that operates on overlapping windows of the signal.

Γ ` f : α1 × buffer(γ1, δ1, α2)→ α3 × buffer(γ2, δ2, α4)
Γ ` mapb(f ; 1, 1; 1, 1) : aperiodic(α1)× periodic(γ1 × δ1, α2)→ aperiodic(α3)× periodic(γ2 × δ2, α4)

(mapb periodic)

Γ ` f : α1, buffer(γ1, δ1, α2)→ α3, buffer(γ2, δ2, α4)
Γ ` mapb(f ; 1, 1; 1, 1) : aperiodic(α1)× buffered(γ1, δ1, α2)→ aperiodic(α3)× buffered(γ2, δ2, α4)

(mapb buffered)

Types of special nodes on a stream. We show the declarations of special
nodes here. Some special nodes preserve sample-periodicity or create sample-
periodic streams, and are typed with the buffered or elastic type.

The typing rules have the following general shape:

Γ, v : τ1, . . . , τn → Tnode(τ1, . . . , τn) ` v : τ1, . . . , τn → Tnode(τ1, . . . , τn), ∅
(node)

where Tnode is a function from types to types that depends on the kind of
considered node. We now show several possible Tnode.

71

4. Syntax and types

For instance, fuse(m) take m consecutive buffers and fuse them into one
buffer and can only do that if consecutive buffers have the same sample-
periodicity, as in (fuse).

Tfuse(m) :
{

elastic(p, n, α)→ elastic(p, m× n, α)
buffered(p, n, α)→ buffered(p, m× n, α)

(fuse)

Rule (split) refers to a node split(m) that split buffers in a stream into m
buffers.

Tsplit(m) :

buffered(p, n, α)→ buffered(p, n

m , α) if n mod m = 0
elastic(p, n, α)→ elastic(p, n

m , α) if n mod m = 0
periodic(π, α)→ periodic(π

m , α)
aperiodic(α)→ aperiodic(α)

(split)

A delay(k) node delays by k samples and so has only a meaning for sample-
periodic streams, i.e. with buffered and elastic types.

Tdelay(k) :
{

buffered(p, n, α)→ buffered(p, n, α)
elastic(p, n, α)→ elastic(p, n, α)

(delay)

The window(k, m) node creates a sliding window of buffers of size k shifted
by m which overlap, the overlap being of k − m samples, from a sample-
periodic stream. The result is not sample-periodic any more due to the overlap
(see Property 2) but is buffer-periodic.

Twindow(k, m) :
{

buffered(p, n, α)→ periodic(p×m, α)
elastic(p, α)→ periodic(p×m, α)

(window)

Nodes expansion(k) and decimation(k) are used to resample the stream
and oversample or undersample it by k > 0. Period and buffer size change but
the stream remains sample-periodic if it was beforehand. It also technically ap-
plies to buffer-periodic but not sample-periodic streams, and aperiodic streams,
even those which would be composed of buffers of strictly positive size, but the
signal processing meaning of it is less obvious.

72

4. Syntax and types

Texpansion(k) :

buffered(p, n, α)→ buffered(p

k , k × n, α)
elastic(p, n, α)→ elastic(p

k , k × n, α)
periodic(π, α)→ periodic(π, α)
aperiodic(α)→ aperiodic(α)

if k 6= 0

(expansion)

For decimation, we give Rule (decimation).

Tdecimation(k) :

buffered(p, n, α)→ buffered(k × p, n

k , α)
elastic(p, n, α)→ elastic(k × p, n

k , α)
periodic(π, α)→ periodic(π, α)
aperiodic(α)→ aperiodic(α)

(decimation)

Node periodicize(p, n) takes an aperiodic stream and transforms it into
a sample-periodic stream of elastic type with sample-period p and buffer size
n. We can also use a combination of fuse, split, expansion and decimation
can be used to obtain a sample-periodic stream of desired period and buffer
size from a sample-periodic stream with given period and buffer size, sintead
of using periodicize.

Tperiodicize(p, n)(aperiodic(α)) = elastic(p, n, α) (periodicize)

Multiple rates. The typing rules illustrate that we handle multirate on two
levels:

• multirate at the sample rate level. For that, we use resampler nodes,
such as expansion and decimation

• multirate at the buffer rate level. Nodes fuse and split modify the
buffer-period p × n at a constant sample-period p, changing only buffer
size n.

Type of an audio graph. The type of an audio graph is determined by looking
at the set of equations connecting the nodes together.

73

4. Syntax and types

Γ ` x1 : µ1, E1 . . . Γ ` x′
1 : µ′

1, E′
1 . . . Γ ` v : τ1 × · · · → Tv(τ1, . . .)

Γ ` (x′
1, . . .) = v(x1, . . .) : µ1 · · · → µ′

1 × . . . , E ∪ · · · ∪ {µ1 <: τ1} ∪ · · · ∪ E′
1 ∪ {µ′

1 <: τ ′
1} ∪ {µ′

1, · · · = Tv(µ1, . . .)}
(equation)

Γ ` e : µ1 × · · · → µ′
1 × . . . , E Γ ` G : τ

Γ ` e\n G : {eµ1 × · · · → µ′
1 × . . .} ∪ τ, E ∪ E′ (audio graph)

To type the audio graph, we want to type all of the edges of the graphs, which
appear in the equation defining the connections of the graph. For that, we
have used the Hindley algorithm, by building a set of equations on types. The
equations are then solved using the unification algorithm of Robinson [DL06].

Example of a simple graph. We show the graph declaration and types for
the audio graph of Figure 4.4.

+

s1 s2

∗

sink(1)

c

1̂ 1̌ 1̂2̌

1̂
2̌1̂

1̌

1̂ 1̌

Figure 4.4.: A simple graph which mixes two sources and then applies a gain
c to the result, before outputting it to a sink. For simple nodes,
we just write the function used for maps as node label.

A textual syntax associated to the graph is the following:

s1 := source(1)
s2 := source(2)
c := source(1)

v1 := maps(+;0,2 ; 0,1)
v2 := maps(*; 1,1; 0,1)

s := sink(1)

74

4. Syntax and types

The equations associated to the graph are:

es1.1̂→v1.1̌ = s1()
es2.1̂→v1.2̌ = s2()
ev1.1̂→v2.2̌ = v1(es1.1̂→v1.1̌, es2.1̂→v1.2̌)
ec.1̂→v2.1̌ = c()
ev2.1̂→s.1̌ = v2(ec.1̂→v2.1̌, ev1.1̂→v2.2̌)

() = s(ev2.1̂→s.1̌)

75

5. Semantics

We present a denotational semantics that resolves to isochronous streams, i.e.
control is periodicized and sent to the boundaries of buffers. We first give
some operators that are used to transform streams, and then we present the
semantics, based on the idea that nodes operate on isosynchronous streams, i.e.
nodes output something when they are fed elements with the same timestamps.

5.1. Stream transformations
Several operators are used to transform stream timings but not the inner ele-
ments (in U). Operator map (Definition 11) applies a buffer operator to each
buffer in a stream. Operator fuse fuses contiguous buffers in a stream, as shown
in Figure 5.1; split splits a buffer in a stream into several ones, as in Figure 5.2.
Operator bufferize transforms a finite stream into a one-buffer stream, as in
Figure 5.3. Operator snap snaps a stream to the timestamps of another stream,
as in Figure 5.4. Operator periodicize transforms any stream into a sample-
periodic stream, as shown in Figure 5.5. Operator window (see Figure 5.6)
transforms a stream into a stream of potentially overlapping windows of the
signal. Table 5.1 summarizes the operators with their domains and codomains.

Causality of operators Informally, an operator on s is causal if when it
modifies the buffer at timestamp t, it only needs the buffers at timestamps
prec(s, t) \ {t}. We will define only causal operators.

Definition 11 (map). Let s ∈ S a stream and o : B → B. We define map(s, o)
as:

map(s, o) = ((t, o(s(t))))t∈dom(s)

If o requires arguments args in addition to the buffer b to process, we note it
in a currified way as o(args)(b).

We also define similarly a series of map(i) transformations that can apply
an operator o : Bi → Bj to i input buffers. The operator does not apply a

76

5. Semantics

function to elements at the same index in the input sequences as in an usual
map(i)1 but two elements with the same timestamp. It also means that when
some elements in an input stream have timestamps not present in another
input stream, they are discarded.2

map(i)(s1, . . . , si, o) = ((t, o(s1(t), . . . , si(t))))t∈
⋂i

k=1 dom(sk) (5.1)

In addition, we update latencies in the following way. For each output stream
s′

k′ with k′ ∈ {1, . . . , j}, we have:

µs′
k′

(t) = max
k∈{1,...,i}

{µsk
(t)}

We additionally define a flatmap operator for functions that generate streams,
i.e. o : B → S, such that:

flatmap(s, o) =
⊙

t∈dom(s)
o(s(t)) (5.2)

We also define mapsubstreams that applies a function to consecutive sub-
streams of period p of the input stream. We write it here recursively, but
we could write it as well by intension as the previous map operators.

mapsubstreams(s, o, p) =
[
fix(λf.λs′.o(substream(s′, t1, t1 + p))

�f(substream(s′, next(s′, t1 + p), last(s′)))))
]
(s)

(5.3)

Definition 12 (fuse). We consider a finite sample-periodic stream s = ((ti, bi))Is ∈
S. We define fuse with:

fuse(s) =

fuse
(
fuse2 (first(s), s(first(s)), s(next(s, first(s))))� s�tail(tail(s))

)
if `(s) ≥ 2

s if `(s) < 2

where s�tail(tail(s)) is the restriction of s to tail(tail(s)), and where fuse2(t, b1, b2) =
((t′, b′)), such that:

t′ = t

b′ = (µ1 + µ2, ps, b1[1] · · · b1[`(b1)] · b2[1] · · · b2[`(b2)])

with ps the common sample-period, µ1, µ2 respectively the latency of b1, b2.
Operator fuse fuses all the consecutive buffers of a finite sample-periodic

stream into a singleton stream, with only one larger buffer.

77

5. Semantics

s 1 2 3 4 5 6

0 t

s′ 1

0 t

Figure 5.1.: The fuse operator: s′ = fuse(s)

Operator fuse also applies on any finite sample-periodic substream of a non-
sample-periodic stream, as shown on Figure 5.1.

Definition 13 (split). Given a singleton stream s = ((t, b)), an integer m ∈
N \ {0}, a stream s′ = ((t′

i, b′
i))i∈{1,2} = split(s, m) is obtained by:

t′
1 = t1 and b′

1 = (µb − pb × (`(b)−m), pb1 , b[1] · · · b[m]) (5.4)
t′
2 = t1 + m× pb1 and b′

2 = (µb, pb, b[m + 1] · · · b[`(b)] (5.5)

Operator split splits the buffer in the stream into two consecutive buffers, as
shown in Figure 5.2. The first one is defined by Equation 5.4 and the second
one, by Equation 5.5.

We also define operator splite(s, m) that splits a one-buffer stream s = ((t, b))
into a m-buffer buffer-periodic sample-periodic stream, if `(b) mod m = 0, such
that:

splite(s, m) = s1 � splite(s2, m− 1)

where s1 � s2 = split(s, `(b)
m)

Extending split or splite to a stream s with `(s) > 1 is easily done with
flatmap. For instance, λs.flatmap(s, splite(2)) will split all buffers of s into
two buffers of equal size and generate a stream with those new buffers.

Definition 14 (bufferize). We consider a finite stream of samples s ∈ S
(where all buffers have size 1), and a period p ∈ P. We define s′ = bufferize(s, p)

1For instance in OCaml, List.map2.
2This is analogous to an usual map on input sequences with different sizes but in our case,

absent timestamps can be anywhere in the streams, whereas for sequences, absent indices
are at the end.

78

5. Semantics

s 1

0 t0 t

s′ 1 2

0 t

s′′ 1 2 3 4 5 6

0 t

Figure 5.2.: The split operator on a 24-sample one-buffer stream. We show
s′ = split(s, 14), which yields a two-buffer stream where the two
buffers do not have the same size, and s′′ = splite(s, 4), which
yields a 6-buffer stream with buffers of size 4.

with s′ = ((t′, b′)) a singleton stream, such that:

t′ = first(s) and

`(b′) = 1 +
⌊ last(s)− first(s)

p

⌋
b′ = (dlast(s)− first(s)e , p, (b′[1] · · · b′[`(b′)]))

∀i ∈ {1, . . . , `(b′)}, b′[i] = bs(t′
i)[1]

where t′
i = max(prec(s, first(s) + (i− 1)× p)).

Operator bufferize transforms a timestamped finite stream into a stream with
only one buffer, as shown in Figure 5.3. It picks the sample whose timestamp
is closest to the given multiple of a period in the past. It is causal: it is enough
to know all the timestamps and elements of the stream before the current
timestamp. It is usually applied on a substream. For a general stream s ∈ S
with arbitrary buffer sizes, we apply bufferize on φ(s). As the first sample
has to wait for the last sample to be processed, latency added by bufferize is
(`(b′)− 1)× p = dlast(s)− first(s)e. Typically, bufferize is used to periodically
sample aperiodic control. We also use it to group into buffers a sample-periodic
stream where samples are not grouped beforehand, which models the behaviour
of a source for instance.

Definition 15 (snap). We consider a stream s = ((ti, bi))i∈Is, a set T ⊂ T of

79

5. Semantics

s

0 t

s′

0 tp

Figure 5.3.: The bufferize on an aperiodic 1-sample buffer stream. We want
to transform it into a stream with one buffer of period p. Samples
in s′ are greyed in accordance to the sample in s they take their
value from.

timestamps and an element b ∈ B. We define s′ = snap(s, T, b) by:

dom(s′) = T

s′ = ((t′
i, b′

i))i∈Is′

with:

∀t′ ∈ dom(s′), s′(t′) =
{

s(max prec(s, t′))⊕ (t′ −max prec(s, t′)) , if prec(s, t′) 6= ∅
b, if prec(s, t′) = ∅

The snap operator3 binds stream buffers to the timestamps of another stream.
As shown in Figure 5.4, it chooses the value of the timestamp that is the closest
in the past to the current timestamp of the target timestamps and as such, it
is causal. If there is no such element, we use a default buffer b ∈ B. We
could write bufferize as the composition of snap to a periodic stream, followed
by fusing the elements in the stream. Typically, snap can be used to snap
control samples to the boundaries of audio buffers. The latency is equal to the
difference between the new and the old timestamp.

We can also use a stream s′′ as argument for snap instead of the set of target
timestamps T . In that case, we take T = dom(s′′).

Property 3 (Timestamp preservation). Operators substream, fuse and split
preserve the timestamps of the samples, i.e., for a stream s ∈ S and an operator
o among those operators:

dom(φ(s)) = dom(φ(o(s))
3The name of the operator is inspired by the snap to grid function available in some DAWs

to quantize MIDI notes.

80

5. Semantics

s

0 t

T

0 t

s′

0 t

Figure 5.4.: The snap on an aperiodic 1-sample buffer stream. We want to
use new timestamps for the samples. Samples in s′ are greyed in
accordance to the sample in s they take their value from. We do
not need a default buffer here as the first timestamp of T is higher
than the first timestamp of s.

Property 4 (Sample-periodicity preservation). Operators substream, bufferize,
fuse and split preserve sample-periodicity.

Definition 16 (periodicize). Let s ∈ S a stream, n ∈ N \ {0} and p ∈ P. We
define s′ = periodicize(s, p, n) by:

∀t′ ∈ dom(s′), s′(t′) = bufferize(substream(snap(φ(s), T), t′, t′ + (n− 1)× p), p)

where

dom(s′) = {t ≤ L(s) | ∃k ∈ N, t = first(s) + k × n× p}
T = {t ≤ L(s) | ∃k ∈ N, t = first(s) + k × p}

L(s) =
{

+∞, if s is infinite
last(s) + ps(last(s)) × `(s(last(s))), if s is finite

Property 5 (periodicize sample-periodizes). Given s ∈ S, n ∈ N \ {0} and
p ∈ P, periodicize(s, p, n) is sample-periodic and homogeneous.

Proof. Let s ∈ S a stream, n ∈ N\{0} and p ∈ P. We note s′ = periodicize(s, p, n).
For each timestamp t ∈ dom(s′), bufferize is applied using period p on a

substream of duration (n − 1) × p and so all the buffers in the stream have

81

5. Semantics

s

0 t

s′

0 tp

Figure 5.5.: periodicize(s, p, 4) operator on an aperiodic 1-sample buffer
stream s. It transforms here s into a stream with 4-sample buffers
of sample-period p. Samples in s′ are greyed in accordance to the
sample in s they take their value from.

the same size n and the same period p. s′ is also clearly buffer-periodic per
definition of dom(s′).

Let i ∈ Idom(s)< .

ti+1 − ti

`(si)
= (t1 + (i + 1)× n× p)− (t1 + i× n× p)

n
using the definition of dom(s′)

= p

So we can apply Property 2 to s′. Therefore, s′ is sample-periodic.

Definition 17 (window). Let s ∈ S a sample-periodic stream with sample-
period p. Let n ∈ N \ {0} and m ∈ N. We define s′ = window(n, m), with
s′′ = φ(s), by:

dom(s′) =
{

D ∩ [0, last(s)] if s is finite
D if s is infinite

where D = {first(s) + m× p× k | k ∈ N}
∀t′ ∈ dom(s′), s′(t′) = fuse(substream(s′′, t′, t′ + p× (n− 1)))(t′)

A window of size n is shifted repeatedly by m samples to yield window(n, m),
as shown in Figure 5.6. Note that s′ is not sample-periodic, because of the
overlap between buffers.

Resampling on a buffer

Buffer operators transform a buffer into a buffer. Buffer operators decimation
and expansion are used to change the number of samples in a buffer, as shown

82

5. Semantics

s 1 2 3 4 5 6

0 t

s′

0 t

Figure 5.6.: The window operator: s′ = window(6, 4)(s)

in Figures 5.7 and 5.8. We do not call them downsampling and upsampling as
these operations usually require additional filtering that would be performed
by an audio processing node (see Section 7.2).

Definition 18 (decimation). On a sample-periodic buffer b ∈ B with latency
µ ∈ L, period p ∈ P, given m ∈ N\{0}, we define b′ = decimation(b, m) with
latency µ′ and period p′ such that:

µ′ = µ

p′ = p×m

`(b′) =
⌊

`(b)
m

⌋
∀i ∈ {1, . . . , `(b′)}, b′[i] = b[(i− 1)×m + 1]

s 1 2 3 4 5 6

0 t

s′ 1 2 3 4 5 6

0 t

Figure 5.7.: The decimation operator, where s′ = map(s, decimation(2)).

Definition 19 (expansion). On a sample-periodic buffer b ∈ B with latency
µ ∈ L, period p ∈ P, given m ∈ N \ {0}, we define b′ = expansion(b, m) with

83

5. Semantics

latency µ′ and period p′ such that:

µ′ = µ

p′ = p

m
`(b′) = `(b)×m

∀i ∈ {1, . . . , `(b′)}, b′[i] = b[
⌊

i− 1
m

⌋
+ 1]

s 1 2 3 4 5 6

0 t

s′ 1 2 3 4 5 6

0 t

Figure 5.8.: The expansion operator, where s′ = map(s, expansion(2)).

We also define operator resampling, such that for b a buffer and r = n
m ∈

Q+\{0}, n, m ∈ N+\{0}, resampling(b, r) = decimation(expansion(b, n), m).
We usually want to apply resampling on a sample-periodic stream. Any

stream s can be made sample-periodic by applying periodicize (see Property 5).
Then, we just have to apply map with resampling as the buffer operation.

Property 6 (Snapping and resampling). Given s ∈ S and n ∈ N \ {0}, we
have:

φ(map(s, decimation(n))) = snap(φ(s), T)

with T = {t1+i | i ≡ 0 mod n}.
And we also have:

φ(map(s, expansion(n))) = snap(φ(s), T ′)

with T ′ =
{

ti + j × ti+1−ti

n

∣∣∣ i ∈ Is ∧ j ∈ {0, . . . , n− 1}
}

Resampling buffers on a stream s and then applying φ is the same as choosing
an adequate set of timestamps to which to snap timestamps of φ(s), i.e. snap
is a more general version of map(·, resampling(·, r)) with r ∈ Q+ \ {0}.

84

5. Semantics

Definition 20 (apply). Given a one-sample buffer e ∈ B and a buffer b ∈ B,
and a function on samples f : U2 → U , we define apply as a buffer:

apply(f, e, b) = (µb, pb, f(e[1], b[1]) . . . f(e[1], b[`(b)]))

Operator apply is used to apply a sample function on a buffer with a control
value. We generalize apply to any number of one-sample buffers and any
number of buffers with more than one sample with the same size.

Audio graphs and nodes

To a node v ∈ V with p inputs and q outputs, we associate a function fv :
Sp → Sq. Similarly, a graph G with n sources and m sinks is denoted by a
function gG : Sn → Sm.
Definition 21 (Isochronous streams). We say that streams s and s′ are isochronous
if and only if dom(s) = dom(s′). We note s

.= s′.
If we have any given streams s and s′, then s�dom(s)∩dom(s′)

.= s′
�dom(s)∩dom(s′),

where s�A is the restriction of the definition domain of s to A. Given two
isochronous streams s and s′, if s is buffer-periodic, then s′ is buffer-periodic
with the same buffer-period.
Property 7 (map(i) and isochrony). Let i ∈ N \ {0} and s1, . . . , si i streams
and an operator operator : Bi → Bj. We have:

map(i)(s1, . . . , si, operator) = map(i)(s1�∩i
k=1 dom(sk), . . . , si�∩i

k=1 dom(sk), operator)
(5.6)

and if we note s′
1, . . . , s′

j ∈ Sj the result, then:

∀k′ ∈ {1, . . . , j}, dom(s′
k′) = ∩i

k=1 dom(sk) (5.7)

meaning s′
1

.= . . .
.= s′

j.
As we will see in the execution semantics of an audio graph in Section 5.2,

to execute an audio node, we will make its input streams isochronous.

5.2. Semantics
We present the semantics of an audio graph on streams, where we are concerned
both on how the signals are transformed and when they are transformed. Our
semantics is a denotational semantics that can split a buffer unevenly for more
precision. We can split buffers at the time of the control (sample-accuracy),
as in Rule 5.19, or snap control to the buffer boundaries (block-accuracy), as
in Rule 5.18.

85

5. Semantics

Operator Domain Codomain
first S T
last S T̄
next S × T T
tail S T
substream S × T × T S
fuse P P
split S × N \ {0} S
bufferize S × P P
snap S × T ×B S
interleave S × S S
periodicize S × P × N \ {0} P
map S × (B → B) S
decimation B × N \ {0} B
expansion B × N \ {0} B

Table 5.1.: Operators on streams and on buffers. S is the set of streams, B
is the set of buffers; T is the set of timestamps; P is the set of
periods. We note P the set of sample-periodic streams.

Type of a stream

An audio graph transforms its input streams into its output streams. Its se-
mantics depends on its typing, as we will not process buffers the same way for
buffered and elastic. We give types for the constants in the audio graphs,
i.e. the sources and sinks. We define a functionM that given a type associates
streams s ∈ S.

• M(buffered(p, n, e)) is the set of sample-periodic streams s with sample-
period p, buffer-periodic with buffer-period n× p, with sample type e.

• M(elastic(p, n, e)) is the set of streams that are sample-periodic and
have a sample-period p, buffer-periodic with buffer-period n × p, with
sample type e.

• M(periodic(π, e)) is the set of streams that are buffer-periodic with
buffer-period π, with sample type e.

• M(aperiodic(e)) is the set of streams whose samples have type e and
where we assume no additional properties.

86

5. Semantics

Types buffered, periodic and aperiodic correspond to increasingly lenient
constraints on the shape of the stream (sample-period, buffer-period). Type
elastic adds additional information on how the stream is processed by the
node. Type aperiodic will typically correspond to some control.

For the reciprocal function M−1, we choose that a sample-periodic stream
with sample-period p, buffer-periodic with buffer-period π, with types of sam-
ples e has type buffered(p, π

p , e) (not elastic). It is not an issue due to the
subtyping rules.

Periodic execution

All nodes of graph G must be executed within a periodic audio tick of period
T , by an audio callback that is fed by and feeds the soundcard.

With periodic execution, a periodic schedule is built from the periodic types.
We compute a base tick τ , which can be different from the audio callback tick
T , such that:

τ = gcd(π1, . . . , πm) (5.8)
where π1, . . . , πm are the buffer-periods of all the stream periodic types ap-
pearing in the audio graph, i.e. periodic(π, e), and buffered(pi, ni, ei) and
elastic(pi, ni, ei) where πi = pi × ni. If all the sample-periods are the same
and there are only buffered or elastic types, as it is in an audio graph with
only one samplerate, τ becomes the greatest common divisor of the buffer sizes
in the types.

The denotation function JvK for a node v ∈ V is a function Si(v) → So(v).

Special nodes. We give the semantics of special nodes on streams. Let x be
a stream.

Jfuse(n)K(x) = mapsubstreams(x, fuse, n× pfirst(x) × `(x(first(x)))) (5.9)

Jsplit(n)K(x) = flatmap(x, splite(n)) (5.10)

Jdecimation(n)K(x) = map(x, decimation(n)) (5.11)

Jexpansion(n)K(x) = map(x, expansion(n)) (5.12)

87

5. Semantics

Jperiodicize(p, n)K(x) = periodicize(x, p, n) (5.13)

Jdelay(n, b)K(x) = λt.

{
x(t− px(first(x)) × n) if t ≥ px(first(x)) × n

b if t < px(first(x)) × n
(5.14)

Jwindow(n, m)K(x) = window(n, m)(x) (5.15)

Simple nodes. We give here the equations for simple nodes. To simplify
the equations, we only write these equations for the case i(v) = 2. They can
easily be extended to nodes with an arbitrary number of inputs. Thanks to the
subtyping rules and by permutating input types, among the 16 possible input
types, we consider only 6 cases. Other cases are described in Table 5.2.

buffered elastic periodic aperiodic

buffered 5.16 5.16 5.17 5.18
elastic 5.16 5.16 5.17 5.19
periodic 5.17 5.17 5.17 5.18
aperiodic 5.18 5.19 5.18 5.20 or 5.21

Table 5.2.: The rules to apply for a given combination of types for a two =input
node.

Let v a simple node.

1. v := mapb(f ; 0, 2; a′, b′) or v := maps(f ; 0, 2; a′, b′) and
v : buffered(p, n, α)× buffered(p, n, β)→ z1 × · · · × za′+b′

Both input streams are buffered with same period and buffer size.

Jmapb(f ; 0, 2; a′, b′)K(x, y) = map(2)(x, y, f)
Jmaps(f ; 0, 2; a′, b′)K(x, y) = map(2)(x, y, apply(f))

(5.16)

2. v := mapb(f ; 0, 2; a′, b′) or v := maps(f ; 0, 2; a′, b′) and
v : elastic(p, n, α)× elastic(p, n, β)→ z1 × · · · × za′+b′

Both input streams are elastic with same period and buffer size. We use
Rule 5.16.

88

5. Semantics

3.
v := mapb(f ; 0, 2; a′, b′) and v : periodic(π, α)× periodic(π′, β)→ z1 × · · · ×
za′+b′

where π = π′.

Jmapb(f ; 0, 2; a′, b′)K(x, y) = map(2)(x, y, f) (5.17)

4. v := mapb(f ; 1, 1; a′, b′) or v := maps(f ; 1, 1; a′, b′) and
v : aperiodic(α)× buffered(p, n, β)→ z1 × · · · × za′+b′

We have one aperiodic input stream (control) and one buffered input
stream (audio). In that case we snap the aperiodic event to the periodic
buffers.

Jmapb(f ; 1, 1; a′, b′)K(x, y) = map(2)(snap(x, dom(y), bx), y, f)
Jmaps(f ; 1, 1; a′, b′)K(x, y) = map(2)(snap(x, dom(y), bx), y, apply(f))

(5.18)
where bx : buffer(p, n, α) is a default buffer. Typically, we choose the
default buffer to represent silence, i.e., samples inside are zeroes, and
latency is 0. Note that snap will keep only one control value per time
interval between two timestamps of x and discard the other ones.

5. v := maps(f ; 1, 1; a′, b′) and
v : aperiodic(α)× elastic(p, n, β)→ z1 × · · · × za′+b′

One input is aperiodic and the other is elastic. The elastic type
allows us to split buffers to accommodate control. It makes it possible to
have better precision (less latency) than with Rule 5.18.

Jmaps(f ; 1, 1; a′, b′)K(x, y) = map(2)(
interleave(y, snap(x, T (x), bx)),
mapsubstreams(2)(x, y, fix (splitting) , p× n),
apply(f))

(5.19)

where bx : buffer(p, n, α) is a default value. Operator mapsubstreams
grabs all control values of y in a buffer-period p× n of x and gives them
to splitting which splits a buffer of the audio stream at each timestamp
of the control stream and is defined as follows:

splitting(f)(s, s′) =

let s′′ = split(s′,

⌈first(s)− first(s′)
p

⌉
) in

s′′(first(s′′))� f(s′′(next(first(s′′))), s�tail(s))

89

5. Semantics

interleave(y, snap(x, T (x), bx)) builds the new set of timestamps repre-
senting the new buffers, i.e. the timestamps of the audio streams and
the timestamps of the control stream snapped at the level of samples,
where T (s) =

{
p×

⌈
t
p

⌉ ∣∣∣ t ∈ dom(s)
}

. Note that bx is actually never
used by snap as first(T (x)) ≥ first(x).

6. v := mapb(f ; 2, 0; a′, b′) ou v := mapb(f ; 2, 0; a′, b′) and
v : aperiodic(α)× aperiodic(β)→ z1 × · · · × za′+b′

Both input streams are aperiodic. Two cases arise depending on whether
there are audio outputs or not.

a) b′ > 0 i.e. one of the outputs is an audio stream, with type buffered(p, n, γ)
or elastic(p, n, γ).

The node must be executed so that it yields a buffer of its periodic
stream at each activation. Therefore, we snap the two aperiodic
inputs to the required buffer-period, with the set of timestamps T =
{min{first(x), first(y)}+ p× n× k < max{last(x), last(y)} | k ∈ N}.

Jmapb(f ; 2, 0; a′, 1)K(x, y) = map(2)(snap(x, T, bx), snap(y, T, by), f)
Jmaps(f ; 2, 0; a′, 1)K(x, y) = map(2)(snap(x, T, bx), snap(y, T, by), apply(f))

(5.20)
where bx : buffer(p, 1, α) and by : buffer(p, 1, β) are default values.

b) b′ = 0 i.e. none of the outputs is periodic.
We want to execute the node each time there is a new value either
in x or in y.

Jmapb(f ; 2, 0; a′, 0)K(x, y) = map(2)(snap(x, interleave(x, y), bx),
snap(y, interleave(x, y), by), f)

Jmaps(f ; 2, 0; a′, 0)K(x, y) = map(2)(snap(x, interleave(x, y), bx),
snap(y, interleave(x, y), by), apply(f))

(5.21)
where bx : buffer(p, 1, α) and by : buffer(p, 1, β) are default values.

Note that in a well-typed audio graph, the following input types do not
appear, for a node v : z1 × z2 → w1 × · · · × zo(v):

• z1 : buffered(p, n, α) and z2 : buffered(p′, n′, β) where p×n 6= p′×n′.
It means we need to explicitly insert fuse and split node if we want to

90

5. Semantics

adapt between different buffer sizes, and use resampler nodes if we want
to resample. It is what we conceptually do in the audio architecture in
Chapter 6 by inserting fuse and split nodes with type variables between
all processing nodes and let the actual types for fuse and split nodes
be inferred.

• z1 : elastic(p, n, α) and z2 : elastic(p′, n′, β) where p× n 6= p′ × n′.

• z1 : buffered(p, n, α) and z2 : periodic(π′, β) where p× n 6= π′.

• z1 : elastic(p, n, α) and z2 : periodic(π′, β) where p× n 6= π′.

• Permutations of the previous types.

To extend to more than two audio inputs, we consider the subtyping rules
and then apply rules where the audio inputs have all the same type. When
there are several aperiodic inputs, we merge recursively the aperiodic inputs
similarly to what we do in Rule 5.21 or Rule 5.20 depending on whether there
are also audio inputs or not.

Executing the whole graph. Let G a graph with nodes in V with sources
vi

1, . . . , vi
n and sinks vo

1, . . . , vo
m.

The denotation function JGK for G is a function Sn → Sm. We have:

JGK(vi
1, . . . , vi

m) = (fix.F)�{y1,...,ym}(vi
1, . . . , vi

n) (5.22)
where xy1 , . . . , xym is the permutation of the subtuple of (c1, . . . , cν) that cor-
responds to the sinks nodes vo

1, . . . , . . . vo
m. We restrict the tuple resulting from

the fixpoint iteration of F to the indices y1, . . . , ym. Finally, F is defined as
follows:

F (s1, . . . , sν) = Jv1K(τ1)++ . . . ++JvnK(τn) (5.23)
where τi is the tuple of streams from the streams of source nodes vi

1, . . . , vi
n and

++ : Sg × Sh → Sg+h is the concatenation on tuples.

Examples. We show here two examples of execution of the semantics on a
typical audio node, with typical audio streams. We consider an adder, + :
S×S → S. + can add any streams, periodic or aperiodic, together. It has two
input streams, x and y. We note t′′ = first(x + y). In case we need a default
value for the streams, we choose a one-sample buffer with a zero sample inside
x(0). We will show two examples where what changes is the input streams.
The streams in time are represented on Figures 5.9 and 5.10.

91

5. Semantics

x 2 3 1 8 . . .

0 tt1

y 3 . . .

0 tty
1

y′ 3 . . .

0 tt1

x + y 5 6 4 11 . . .

0 tt1

Figure 5.9.: An audio periodic generic stream and a control stream are inputs of
a node. We only show the first buffers of the stream. The aperiodic
control buffer is snapped to the periodic buffer boundaries, yielding
stream y′.

x 2 . . .

0 ttx
1

y 3 . . .

0 tty
1

x + y 3 5 . . .

0 tty
1 tx

1

Figure 5.10.: Two aperiodic streams. We only show the first buffers of each
stream. For each timestamp in one aperiodic stream, we generate
a timestamp for the other periodic stream, where its value is its
previous value or a default one.

92

5. Semantics

• Figure 5.9. x is an audio stream with period p and y is a control aperiodic
stream.

We note t1 = first(x) and ty
1 = first(y). We suppose that bx(t1) =

(2, 3, 1, 8) and by(ty
1) = (3). Rule 5.18 applies, as we cannot split the

buffer in the periodic stream here.
We have b(x+y)(t1) = (5, 6, 4, 11), and x + y has only one element at
timestamp t1.

• Figure 5.10. x and y are two control aperiodic streams and we generate control.

Rule 5.20 applies. We note first(x) = tx
1 and first(ty

1). We suppose that
bx(tx

1) = (2) and by(ty
1) = (3) and that first(x) > first(y).

x+y has two elements, at timestamps ty
1 and tx

1 , and b(x+y)(ty
1) = (2) and

b(x+y)(tx
1) = (5).

Soundness. We show the soundness of the semantics by showing the following
preservation property: a well-typed term and a semantic rule yield a well-typed
value that has the right type according to the typing rules. The composition
of functions preserving types obviously preserves types, so it is enough to show
the preservation for each predefined node. We show here the preservation on
node fuse.

Let s a sample-periodic stream with sample-period p, buffer size n and ele-
ment type e. Using M from Section 5.2, we get:

s : buffered(p, n, e) or s : elastic(p, n, e)

Let m ∈ N \ {0}.

Node fuse. The semantics rule for fuse gives:

s′ = Jfuse(m)K(s) = mapsubstreams(s, fuse, m×pfirst(s)×`(s(first(s)))) (5.24)

It means that a node fuse fuses slices of m contiguous buffers of size `(s(first(s))).
As s is buffer-periodic, `(s(first(s))) = n.

The resulting buffer of operator fuse has the same sample-period p as the
sample-period of its input stream substream(s, k×m×pfirst(s)×`(s(first(s))), k×
m× pfirst(s) × `(s(first(s)))), which is the k + 1-th slice of stream s, by Defini-
tion 12 and has length m×n. Operator mapsubstreams builds a buffer-periodic
stream with buffer-period π = m × n × p. We can apply Property 2, as the

93

5. Semantics

buffer period π = m × n × p = p × (m × n), so s′ is sample-periodic. Besides,
fuse does not touch the sample itself so we preserve the sample type.

As s′ is sample-periodic with period p, buffer-periodic with buffer size m×n,
we can conclude that:

s′ : buffered(p, m× n, e) respectively s′ : elastic(p, m× n, e)

This is the expected conclusion of typing rule (fuse).

5.3. Related work and comparison with the
formalization

Here, we compare our type system (Chapter 4) and our semantics (Chap-
ter 5) with what is done in IMSs and for more general-purpose signal process-
ing languages, using the dataflow model and the reactive synchronous model.
Chapter 2 provides a more general description of the various paradigms and
languages.

The comparison focuses on the following points:

• how they handle control and audio;

• how buffering is modelled (or not);

• how multiple rates are handled.

Dataflow model

The dataflow model (see Section 2.4.1)) involves connected nodes, which com-
municate using fixed numbers of tokens, in the synchronous dataflow model
[LM87]. When a node has received enough tokens, it can be fired and generate
tokens. In this model, audio samples are represented by tokens and consuming
or producing several tokens at the same time is a way of grouping them, as in
buffers. The model allows different token consumption and production rates.
The consistency of the rates is checked statically using the balance equations:
the existence of a non-zero solution indicates that the rates are consistent. How-
ever, the multiple rates do not represent any timings in the classical dataflow
models. We also think that using a type system to check the consistency of
the rates is more user-friendly as it makes it possible to state precisely where
in the audio graph the incompatible rates lie.

However, there are models based on the dataflow model that add timing
information, such as the time-triggered dataflow model [AA09], which is well

94

5. Semantics

suited for audio architectures with callbacks. In this model, nodes are divided
into three types: inputs, outputs and untimed nodes. Inputs are time-triggered,
i.e. started by the time-triggered callback, and outputs are time-restricted,
i.e. they have a deadline and correspond to the end of the callback function.
Not all sources are inputs, but all inputs are sources. Similarly, not all sinks
are outputs, but all outputs are sinks, to represent that some sources and sinks
drive the audio processing, such as a microphone or a speaker that needs buffer
at a precise instant, whereas other ones, such as synthesizers, can adapt. In
our own model, we can also model that by giving precise periodic types to
the microphone and speaker nodes, and generic types (with type variables) to
the synthesizer node. The time-triggered dataflow is also constrained by the
callback activations, and does not describe precisely how control is intertwined
with the audio processing.

Synchronous languages

Synchronous languages (Section 2.4.2) define a model for real-time execution
of tasks. They also use a type system where types are called clock types to
describe the consecutive values in time of a stream. Compared to clock types
of synchronous languages which defines a sequence but not timings, our model
allows for any timing and explain how an event with an arbitrary timing can
be processed with other ones. A synchronous language would hide in the im-
plementation how an event that can arrive at any time is actually bound to
some clock. It is particularly crucial to keep track of these timings to be able
to assess the precision and the latency in the audio graph. Besides, those lan-
guages are also used to define the processing nodes, contrary to ours where we
take a higher-level view and see nodes as blackboxes with annotations.

Another difference lies on how we compute simultaneously on two streams:
in synchronous languages, computations on several streams at the same time
generate elements that are on the intersection of their two clock types or cannot
be performed if the two clock types are different, depending on the language.
In our semantics, nodes with several audio inputs compute on the intersection
of the timestamps of their inputs, but control inputs (type aperiodic) behave
differently. Those ones are snapped to the timestamps of audio inputs if there
are audio inputs. If there are several control inputs, the computations operate
on the union of the timestamps.

Our model has buffers as first-class citizens: a buffer is a grouping of consec-
utive samples that are processed at the same time, even though it represents
a sequence of samples where each sample could have its own timestamp.

95

5. Semantics

In usual synchronous languages, elements of a stream are dealt with indepen-
dently, but recent works have studied how to group those consecutive elements
into buffers, with type systems that describe the possible groupings.

A synchronous functional language with integer clocks [Gua16] This work
describes a synchronous reactive language similar to Lustre, with more complex
clock types, that can represent the grouping of several values in the same
time instant. The usual clock type is a boolean clock type that represents the
presence or absence of a value. On the contrary, an integer clock represents the
number of values in a time instant. The clock types can also be hierarchical
and provide a local time scale, in which time steps from a subprogram are
hidden.

The model also involves operators on streams: unpack, which unpack seg-
ments (i.e. buffers for us) into one stream, is similar to our φ. However, as
for the synchronous languages, the model does not embed timestamps; it en-
codes only the length of each segment. It is as if all streams in our model were
sample-periodic, with a period fixed outside of the model, at implementation
time.

Audio signal processing languages

Faust. A model for multirate Faust is presented in [OJ16]. The semantics use
a function from periodic time domains, which can be seen as a set of periodic
timestamps in our semantics, to multidimensional samples. It has upsampling
and downsampling operators similar to the ones we presented: they decimate
or expand by copying values and it is the task of the programmer to add filters
afterwards. It also adds multidimensional operators v and s that vectorizes
contiguous samples into a vector of samples, respectively serializes a vector
of samples to individual samples. Although those operators can be used to
describe a buffer-per-buffer semantics of Faust, they are mostly used to describe
processing operations that cannot be effectively done sample-by-sample, such
as a FFT. Indeed, the idealized semantics of Faust is to process signals sample-
per-sample, although the implementation is buffer-per-buffer. In our semantics,
we capture this buffer-per-buffer approach, which enables us to describe more
precisely how audio signals and control signals interact.

The type system encodes multiple rates, bounds on the set of values and
the dimension of the samples. Sample types (including the size of the vectors)
and rates are independent except for the rule for the serialize operator. As
such, the inference of sample types is performed first, followed by the inference
of rates. Expressions can be rate-scalable, i.e. their rate can be adjusted to

96

5. Semantics

their context, as simple nodes can with buffered or elastic types when their
sample-period or buffer size is a type variable.

Again for Faust, in [JO11], dependent vector types are introduced to achieve
the same vectorization and serialization operations.

A preliminary implementation4 was undertaken in a multirate Faust inter-
preter called Faustine [BWJ14]. A difficulty that appears with the multidimen-
sional operators of Faust is the absence of higher-order functions that forces
to implement operations using macros and access vectors element per element,
leading to huge Faust expressions after macro expansion.

Another limitation is that the multidimensional model for Faust does not
handle arbitrary overlapping vectors. Our domains can represent it and our
type system can also address it using the periodic(π, α) type. It seems it is
not satisfactory as we lose both sample-period and buffer size, but overlapping
windowed streams are usually directly consumed by a function that will pro-
duce a value. For instance in the case of the FFT, a window will lead to one
sample, which is not an audio sample but an array of frequency bins, for which
one can deduce the sample-period, i.e. π, and the buffer size, i.e. 1.

Kronos. Kronos [NL09; Nor15] is a musical programming language that lets
the compiler decide the signal rates dealt with by the signal processors, as
the signal processors are rate-polymorphic (with constraints). The type sys-
tem is based on System Fω. It handles event streams and can also repre-
sent multidimensional signals, including overlapping windows. As Faust, it
aims at “implement[ing] the bottom of the signal-processing stack well”, not
to “replace high-level composition systems”. Our model rather targets higher
abstractions by embedding audio effects coded outside with some type anno-
tation (buffered, elastic and so on) to connect them effectively, and that is
why a stream of buffers and not a stream of samples is our main abstraction
of a signal.

Arrp. In Arrp [Leb16], signals are streams of multidimensional arrays. They
are also considered as a multidimensional array, one dimension of which is in-
finite. Computations are written as recurrence equations on the signals. Array
size is part of the array type. Indexing is restricted to quasi-affine expression,
which allows upsampling and downsampling, as well as defining an overlapping
window. Type checking and inference use the polyhedral model [Fea91].

4It does not process signals in real time, tackles a subset of Faust expressions and performs
only dynamic type checking.

97

5. Semantics

Marsyas Marsyas processes data as chunks called slices [BPT06]. A slice
is a two-dimensional piece of data characterized by its number of samples,
its number of observations and its sampling rate. The samples are the usual
division in time of the signal, while observations refer to the dimensionality of
the sample: there can be several observations per sample. This is similar to
having unidimensional arrays as a possible sample type. Control updates are
slice-synchronous but slices can have any size, and different sizes within the
same stream.

Max/MSP and PureData In these two IMSs, the semantics of when a control
is taken into account for a node that processes only control depends on the
temperature of the inputs ports, which can be hot or cold. Our semantics
is less versatile: each arrival of a control activates a computation, i.e. the
timestamps of the activations are the union of the timestamps of the input
streams.

98

Part II.
Implementation and

optimization of audio graphs

99

6. Proof of concept of an
architecture for extensible,
dynamic, heterogeneous
audio plugins

First, the user experiments to
develop (or appropriate) a
signal-processing or synthesis routine
to use as a building block. Next, one
uses the plug-in definition facility to
define the routine’s inputs, outputs,
and parameters (and then shares the
plug-in with others, if desired).

(David Zicarelli)

In this chapter, we apply the formal model of Part I to an actual IMS, An-
tescofo. Antescofo is a score follower and a music programming language (see
Chapter 2 for a more detailed description). We have extended Antescofo, which
is embedded in Max/MSP or Puredata as an external and did not process itself
audio signals, with an audio extension. This paves the way to a standalone
Antescofo, especially on embedded platforms. Our audio extension makes it
possible to define an audio graph, and to reconfigure it during execution, as an
Antescofo action, to embed Faust effects, a subset of OpenCV functions, and
custom audio processing units. It uses the type system defined in Section 4
to help connecting together heterogeneous audio effects and has a partial1 im-
plementation of the semantics described in Chapter 5. This work has been
previously described in my articles [Don+16; DG17].

we will give two examples of applications using this audio extension in Sec-
tion 6.4.

1For instance, buffers are not split at a control timestamp in this implementation.

100

6. An architecture for extensible, dynamic, heterogeneous audio plugins

6.1. Audio plugins
Audio plugins are special third-party components that can be loaded into an
audio system2 to add functionalities [Izh17; GM03], especially in Digital Audio
Workstations (DAWs) where they are inserted on the tracks to modify the
sound. The audio system is called the host. Audio plugins usually aim at
complying to a standardized interface that describes how they can be used in
a specific audio system, or even better, a range of audio systems. Among the
requirements of audio plugins, we can list the following important ones:

• Do not crash the host;

• Expose as many functionalities to the host as possible;

• Display a user interface to control the plugin;

• Provide functionalities to save and load commonly used parameters, i.e.
presets.

A number of standards for audio plugins have emerged, each targetting a
specific platform first, as described in Table 6.1.

Several kinds of audio plugins. Audio plugins can be divided into several
categories:

• Instrument, where the plugin generates a sound per note, and that sound
can be controlled through control parameters;

• Effect, that processes the input signal and output the resulting signal;

• Analyzer and meter, that help to understand the input signal and can
display a spectrograph or a loudness meter, for instance.

Usually, the notes are transmitted to the plugin using MIDI [Loy85]. Some
plugin specifications, such as the VST one or LV2,3 also allows the plugin to
modify MIDI information, e.g. by transposing or arpeggiating MIDI notes.
Here we focus on plugins that generate or process audio, not MIDI.

Inputs and outputs. Some plugin formats support only a fixed number of
inputs and outputs, whereas others such as VST 3 can dynamically change
their inputs and outputs, as well as their category.

2They were first introduced with the release of Pro Tools III, as early as 1994, and VST, in
Cubase version3.02 in 1996.

3https://x42-plugins.com/x42/x42-midifilter

101

https://x42-plugins.com/x42/x42-midifilter

6. An architecture for extensible, dynamic, heterogeneous audio plugins

Standard Platforms Characteristics
VST (Virtual Studio Technology) Windows, ma-

cOS, Linux
AU (AudioUnits) macOS
LADSPA (Linux Audio Developer’s
Simple Plugin API)

Linux

DSSI (Disposable Soft Synth Inter-
face)

Linux add note events
to LADSPA

LV2 (LADSPA Version 2) Linux
AAX (Avid Audio eXtension) ProTools 10 and

later
RTAS ProTools 10 and

earlier
Web audio plugin web browsers
MAX/MSP externals Max Similar to Pure-

data externals

Table 6.1.: The main standards of audio plugins, with the platforms on which
they can be run. If there are several ones, there is often one which
is the first and main target, and we emphasize it.

102

6. An architecture for extensible, dynamic, heterogeneous audio plugins

Control in audio plugins. Plugin capabilities for control parameters differ in
how and when they handle the control parameters. When controls are modified
unpredictably during a live performance, they are usually taken into account
at the next buffer. However, audio plugins are often used in non-live contexts,
where control is known in advance. It is called automation and recorded or
drawn as a curve with various interpolations. In that case, sample-accurate
automation becomes possible and is handled by some audio plugin formats,
such as VST 3 or LV2.

Resampling, vector size. DAWs usually have a fixed sample rate and vector
size (buffer size), which cannot be changed during playback or at different
positions in the effect chain, and even sometimes require to restart the DAW
is such a change is needed. In VST 3 for instance, the sample rate and the
maximum vector size cannot change during audio processing.

Graphical interface. The audio plugin can expose its controllable parameters
and some visualisations to the host, which will be in charge of generating an
interface using generic graphical elements, or use a custom interface, as shown
in Figure 6.1. In some plugin formats, such as VST 3, control parameters can
be grouped semantically by category.

Capabilities of a plugin. The audio plugin informs the host of its capabilities:
which control parameters it has, how many inputs and outputs and so on. It
can also declare which extension or version of the specification it can handle.
Some plugin formats deal with it directly in the binary code, by providing
functions in the API that indicate the presence or absence of a functionality,
as for the VST format. In LV2, the textual human-readable format turtle is
used.

In the next sections, we describe an audio extension for Antescofo where we
connect audio blackbox nodes together. These nodes can be Faust [LFO13]
code, or can be custom-coded in C++ or any other coupled programming
language. For instance, we developed an FFT node, in order to do spectral
processing which is difficult to undertake in pure Faust. The automation in
Antescofo is represented by the Curve instruction. In the cases when the
control curve is known beforehands, the audio extension of Antescofo is able to
do sample-accurate automation. Our extension does not only handle audio but
can also handle other multimedia streams, such as video, thanks to its multirate

103

6. An architecture for extensible, dynamic, heterogeneous audio plugins

Figure 6.1.: Two possible graphical interfaces for the amSynth plugin4 in the
Carla host. On the left, the generic interface; on the right, the
custom interface. Image from Linux Magazine Issue 175, June
2015.

capabilities. We do not aim at providing a graphical interface5 but a textual
interface to use in the Antescofo programming language. We describe the
annotations we give to the nodes of an audio graph when defining them, which
exposes what they can do, and we will explain later the audio architecture
of the host, i.e. Antescofo, as well as the API that the nodes have to follow
when programmed in C++and in Faust. Antescofo programs can dynamically
change the audio graph during execution, which typical hosts cannot usually
do.

6.2. Audio extension syntax
In Antescofo, signals flow through processing nodes, called effects, which trans-
form samples, connected through audio channels. We will explicitly represent

4amSynth is an analog modelling synthesizer using subtractive synthesis. https://amsynth.
github.io/

5Though it could be derived from the annotations we give to the node.

104

https://amsynth.github.io/
https://amsynth.github.io/

6. An architecture for extensible, dynamic, heterogeneous audio plugins

the channels. Effects can also be controlled with control parameters and gener-
ate control themselves. It is a partial implementation of the formal semantics of
Part I.6 Audio channels transport sample-periodic signals, and control param-
eters are represented by aperiodic signals. In the implementation, buffers are
not split yet when controls happen, and control is only implicitly timestamped
at the granularity of a buffer.

In the formal semantics, we explicitly defined nodes that would aggregate
several buffers or rather return slices of buffers, i.e. operators fuse and split.
Here, channels semantically act as fuse or split to adapt the streams between
two nodes of incompatible types. Moreover, only types buffered for sample-
periodic audio signals and aperiodic for control parameters are used here.

We do not give here a full formal syntax but some representative examples
to get the gist of how to write an Antescofo program that natively processes
audio signals.

6.2.1. Declaration of effects and channels
Effects and channels are declared in the score and are instantiated at parsing
time, whereas the connections between effects can be changed all along the
performance, using a patch action. The declaration
@dsp_def my_ef fect : t ype := dsp : : F(arg1 , . . . , a rgn)

introduces an instance my_effect of a DSP node dsp :: F with the optional type
specification type. Giving an explicit type to a DSP node makes it possible
to add further constraint to the type inference system, for instance to impose
some constraints induced by the environment. The arguments in the right
hand side are instantiation parameters (e.g. the size of a FFT window), which
cannot be changed during execution. The effect dsp :: F can be a builtin effect or
can be defined in another DSP processing language, such as Faust [Don+16],
for which effect can be defined with a @faust_def, as shown in Section 6.2.4.

Channels are declared only to specify the identifiers that can be used in a
patch:
@dsp_channel $$my_channel

6.2.2. Type annotations
Explicit type annotations can be added by the programmer when defining an
effect or instantiating it. We draw a distinction between control values and
audio signal values by using sigils: control value types start by one $ whereas

6The full semantics of the audio extension was actually written afterwards.

105

6. An architecture for extensible, dynamic, heterogeneous audio plugins

signal value types start by $$. Scalar types can be any Antescofo types: a float,
a map, an array for instance. For signal types, we can precise the sampling
rate, the buffer size and the element type, or use the wildcard ∗ to add new
type variables that will be inferred later. If we do not specify anything to the
signal type, then it assumes a type variable by default. By default, it uses float
as element type. We also handle int and multidimensional arrays of float or int
as element type. For isochronous effects, where the sample rate is supposed
to be the same for all input and outputs, it is indicated only once, as shown
in Code 6.1. We have chosen to specify the sample rate and not the period
in the actual syntax, in contrast to the formal semantics of Chapter 5, as it is
more intuitive for audio programmers to speak about sample rate (44 100 Hz
instead of 2.27× 10−5 s).

$$, $ − [44100] −→ $$ (256) , $

Code 6.1: A type annotation that describes an effect with two inputs and two
outputs. There is one audio input and one control input, and one
audio output and one control output. The node is isochronous and
uses a sampling rate of 44 100 Hz. We also impose the buffer size of
the output audio signal to be 256 samples.

6.2.3. Connecting effects
Effects are connected together to create a dataflow graph, that typically takes
an audio signal from the soundcard or the host environment, and sends back
a transformed signal. In Antescofo, connecting effects is an elementary action
in the score, called a patch action. Patches describe the dataflow graph in a
functional style: it lists a number of equations with the outputs on the left-
hand side, and the digital signal processor and its inputs on the right-hand
side.

In Code 6.2, a builtin sampler that plays a wav sound file is connected to
the audio output. The type specifies that the sampler takes one control input
(to trigger the playback) and outputs two data: a signal (from the sound
file) and a control value that indicates the end of the playback. The whenever
construction defines a reaction which is performed each time its condition

$end_sample is set to true. The boolean control variable $play_sample triggers the
playback. Notice the intersection between the control variable in the program
and the control variable in the patch. The patch plugs the sampler through
control variables and links. When $play_sample is set to true, the sampler starts

106

6. An architecture for extensible, dynamic, heterogeneous audio plugins

$p lay_sample := f a l s e
$end_sample := f a l s e

@dsp_channel $$out
@dsp_def dsp : : my_sampler : $ − [88200] −→ $$, $

:= dsp : : samp le r (" sample . wav")

whenever ($end_sample) { p r i n t " P l a y i n g ␣Done" }

patch {
$$out , $end_sample := dsp : : my_sampler ($p lay_sample)
dsp : : output [0] ($$out)

}
; . . .
$p lay_sample := t r u e

Code 6.2: An Antescofo score where a sampler is connected to the soundcard
output. The sampler used a 88200 sample rate, has one scalar control
input to indicate when the sample must be played, one audio signal
output and one scalar output to say when the sample has finished
playing.

its playback. Once the playback has finished, the output $end_sample is set to
true by the effect, which triggers the reaction, making it easy to loop a sample
for instance.

As an Antescofo action, a patch action can be played after detecting some
musical event, waiting for some delay, and can be synchronized with the usual
synchronization strategies [Con+12] of Antescofo.

The graph held by a patch action is dynamic: subsequent patch actions modify
the graph. This is a much more convenient and lightweight way than the huge
connection matrices that are usually found in typical hosts such as Max/MSP,
which require to precisely know the number of plugins in use.

6.2.4. Defining effects
Effects can be defined in two ways in the audio extension:

• with the Faust language, where audio variables in Faust represent audio
channels for Antescofo, and interface variables in Faust represent control
variables in Antescofo.

• with C++ using a dedicated API, which we use it to code nodes that
cannot be programmed in Faust, such as nodes with multirate inputs.

107

6. An architecture for extensible, dynamic, heterogeneous audio plugins

With the Faust language

The @faust_def instruction starts a Faust processing node declaration, as in
Code 6.3. In Antescofo, scalar variable names start7 with a $. Variables car-
rying signals are distinguished from the scalar variables, by starting with $$.8
The Faust definition of an effect shows the scalar or signal type of each input
arguments. The signal outputs are inferred from the Faust code, by looking at
the final process instruction. To bind variable names in Antescofo and control in
the Faust code, we do not use Faust audio signals but the graphical interface
elements: hslider for instance represents a GUI element in Faust and is con-
sidered as a control parameter in Antescofo. Similarly, Faust code can expose
output controls to Antescofo with the vbargraph and hbargraph Faust instructions,
that are typically used as GUI elements to display a meter showing the level
of a signal.

@faus t_de f f a u s t : : P i t ch ($$aud io In , $hr1 , $p i t ch , $psout)
{

impor t (" music . l i b ") ;
w=2048 ;
x=100 ;
hr1=h s l i d e r (" hr1 " , 0 , −20000 , 20000 , 0 . 1) ;
psout=h s l i d e r (" psout " , 0 . 5 , 0 , 1 , 0 . 1) ;
p i t c h=h s l i d e r (" p i t c h " , 0 . 5 , 0 , 20000 , 0 . 1) ;

r a t i o = (p i t c h+hr1) / p i t c h ;
s em i tone s = 12∗ l o g (r a t i o) / l o g (2) ;

t r a n s po s e 1 (s i g) =
f d e l a y 1 s (d , s i g) ∗ fmin (d/x , 1) + f d e l a y 1 s (d+w, s i g)∗(1− fmin (d/x , 1))
w i th {

i = 1 − r a t i o ;
d = i : (+ : +(w) : fmod (_,w)) ~ _ ;

} ;

p r o c e s s = _<:(t r a n s po s e 1) :>_∗ psout ;
}

Code 6.3: A pitch shifter programmed in Faust, declared as an effect in An-
tescofo. It has one audio input, $$audioIn, and three control parame-
ters, $hr1, $hr2, and $psout, and one audio output. In the Faust code,
the inputs and outputs are represented implicitly by the underscores
(in the last line).

7It is reminiscent of sigils in Perl, and due to the birth of Antescofo as a language sending
and receiving Max messages that can use arbitrary characters.

8The same symbols are used for the type declarations of nodes.

108

6. An architecture for extensible, dynamic, heterogeneous audio plugins

Faust effects are compiled at definition time using the Faust on-the-fly com-
piler in libfaust [LFO13], based on LLVM [LA04]. The libfaust library gen-
erates LLVM IR code from Faust code, which is then compiled by LLVM,
taking advantage of the many optimization passes available in the compiler.
Compiling at definition time in the score, i.e. when the score is first loaded in
Antescofo, increases load times, but makes it easier to distribute the score on
various architectures, without having to pre-compile the Faust code for several
architectures.

With the C++ API

Faust cannot natively deal with multirate streams and also does not deal with
signals carrying array values, which can be used to represent images of a video,
for instance. In that case, we can use a dedicated C++ API to program native
signal processing nodes.

Such an effect declares its activation period as it has to be isochronous,
as seen in Code 6.4. The activation period can be defined as generic, which
corresponds to a periodic type with period α in the type system. The types
of the inputs and outputs, and the instantiation parameters, are also specified.
To process the input signals using the provided controls, a signal processing
node has to implement the compute method (see Code 6.5). Input and output
buffers as well as control parameters are retrieved using methods of the parent
class DspNode.

Antescofo variables used as input or output controls are accessed through
the member variables in_control_variables and out_control_variables and can be ma-
nipulated as any other Antescofo variables.9

6.3. Audio architecture
We present the audio architecture of the host of the audio effects, i.e. An-
tescofo. We show how the audio graphs of Part I are represented, especially,
how they pass audio through audio buffers. We detail the type checking and
type inference. We also explain how Antescofo schedules the audio tasks.

The lifetime of an audio graph starts with a patch action; then we perform
type checking and type inference, using a subset of the rules of Chapter 4, i.e.
Rules for types buffered and aperiodic ; then we compute the scheduling

9As it happens in a code typically called in an audio thread, whereas Antescofo control code
operates in another thread, some codes are used to make sure that no synchronization
problem as well as no blocking of the audio thread occur.

109

6. An architecture for extensible, dynamic, heterogeneous audio plugins

MyNode :: MyNode (pre_antescofo *antesc , string id ,
DspPeriod * period ,

vector <pair <string , DspStreamType *>*>& ins ,
vector <pair <string , DspStreamType *>*>& outs ,
const vector <Value >& params ,
location * loc) : DspNode (antesc , id , *period , loc)

bool MyNode :: infer_and_check_connections (int
nb_inchannels , int nb_incontrolvars , int
nb_outchannels , int nb_outcontrolvars , DspPeriod
*period , vector <pair <string , DspStreamType *> *>
&ins , vector <pair <string , DspStreamType *> *> &
outs)

Code 6.4: All native signal processing nodes inherit from the DspNode class.
DspPeriod refers to the activation period, and DspStreamType, to the types
of the inputs and outputs. The parameters to give when instantiat-
ing are stored in params. Types for a given node are checked within
the infer_and_check_connections method.

void DspCamera :: compute ()
{

if (! is_valid)
return ;

assert (sources .size () == 0);
assert (destinations .size () == 1);
// Process the outputs
buffer outbuf = destinations [0] −→

get_input_buffer ();
assert (outbuf . is_valid ());
// And write results in the output buffers
copy_n (data , size , (unsigned char *) (outbuf .

begin (). get_pointer ()));
}

Code 6.5: A typical compute method, that needs to be implemented by all signal
processing effects.

110

6. An architecture for extensible, dynamic, heterogeneous audio plugins

of the nodes, and then the graph is executed, until a new patch action or the
performance stops, as summed in Figure 6.2.

patch action

Creating graph
structure

Type checking
– type inference

Scheduling

Executing
the graph

Stopping
execution

Figure 6.2.: Summary of the lifetime of a DSP graph.

6.3.1. Audio graph internal representation
The DSP graph is internally represented as a bipartite graph, alternating audio
effect nodes and channel nodes, with channels storing internal audio buffers.
Channels are also used to implement the fork node as described in Chapter 3,
as shown in Figure 6.3. It means that they have one input but have several
outputs to distribute the signal coming from one port to several ports. The
DSP graph is created when a patch action in the Antescofo score is executed,
after some specified event in the score. The effects as well as the channels are
allocated before, at instantiation time.

A channel has an internal circular buffer that is used to adapt to the various
rates. An effect connected to the input of a channel writes in the buffer,
and nodes connected to the outputs read the buffer. We use virtual memory
functionalities, i.e. the mmap sytem call on Linux and macOS, to remap the
memory addresses after the end of the buffer to the start of the buffer itself.
It ensures that we can directly give a pointer to the internal buffer without
having to copy buffers when buffers span the end and the beginning of the

111

6. An architecture for extensible, dynamic, heterogeneous audio plugins

Input

Effect 1 Effect 2

Input

Channel

Effect 1 Effect 2

Figure 6.3.: DSP graph (left) and the associated bipartite graphs (right). Chan-
nels nodes hold buffers. We use one channel node per output port
of a node.

circular buffer, thus optimizing for less copying. It also entails that we can
only allocate memory on multiple of a page size, typically, 4 KiB. For a graph
with 10 effects and 20 links, the memory consumption will be roughly 80 KiB.
This is quite small for modern computers, even for small card boards such as
Raspberry Pi.10

If the graph has no sinks or no output control parameters set to an Antescofo
variable, we say it is not active and we do not execute it. It means that we
assume that nodes do not have side effects.

If a DSP node or a link channel is not used in an active patch, the link
and the related DSP nodes are disabled, as shown in Figure 6.4: removing a
channel (resp. a node) from the audio graph also removes the subtree rooted
by the channel (resp. the node). All links and nodes that are not connected to
an output channel are also disabled.

. . .

Effect 1 Effect 2

Effect 3 Output

c0

c1 c2 c3

Effect 2

Output

c3

Figure 6.4.: Removing channel c0 in the DSP graph. As Effect 1 and Effect 3
need buffers in channel c0; Effect 1, Effect 3 and channel c0, c1, c2
are removed from the graph. The incoming effects to Effect 1 that
do not have any other outcoming path to the Output are also
removed from the Dsp graph.

10The Raspberry 3 has 1 GiB RAM.

112

6. An architecture for extensible, dynamic, heterogeneous audio plugins

6.3.2. Type checking and type inference
Usually in an audio graph, most nodes will have a generic type, except sources
and sinks, and embedded legacy effects that can only work with a precise buffer
size or frequency. For instance, Faust effects are sets of equations on samples.
The Faust compiler generates a compute function that is parametrized by the
length of the processed buffers, hence accepts any buffer size.

Each time a patch action is executed in the Antescofo score, it defines a new
graph, for which we need to apply type checking and type inference. We infer
the actual types of the generic types, and we check that the already defined
types are coherent. In a working DSP graph, i.e. a graph with at least one
sink, at least one node has a non-generic type: the sink. A case where already
defined types are not coherent happens when a source and a sink do not use
the same sample rate and there are no resamplers along the paths in-between.

Channels are used as “impedance” adaptors and fuse and split the buffers of
their incoming streams in order to adapt between types with different buffer
sizes (but same sample-period), while maintaining the relation:

∀j ∈ {1, . . . , m}, πinput
ninput

=
πj

output

nj
output

(6.1)

where ninput is the buffer size and πinput the buffer-period of the input of the
channel, respectively nj

output, πj
output, of an output of channel j, where the

channel has m outputs. Conceptually, it is as if we inserted fuse and split
nodes with type variables for the buffer size between all nodes of the graph.

Type inference and type checking are performed using a fixpoint algorithm:
typing rules can be seen as functions that take premises and yield the conclu-
sion. A fixpoint algorithm finds the solution by substitution, as described in
Algorithm 1. The types of the nodes are then used for the scheduling of the
audio graph.

Type checking and type inference are usually fast enough to be performed in
real time, when audio graphs are small enough (hundreds of nodes as an order
of magnitude).

6.3.3. Scheduling
The order of execution of nodes is computed using a topological sort of the
graph.11 The execution of the DSP graph is driven by a period called DSP
tick. Every DSP tick, some nodes are activated; they consume some data

11We had assumed the graph is acyclic, see Chapter 3.1.

113

6. An architecture for extensible, dynamic, heterogeneous audio plugins

Algorithm 1 Fixpoint algorithm for type inference and type checking. If the
fixpoint algorithm stabilizes, iterations are bounded by the diameter of the
graph, so we compute our number of iterations with respect to that diameter.
We perform successively period then buffer-size, then element-type inference.
It means that we assume that we managed to compute all periods before com-
puting buffer sizes. Update functions of types use Equation 6.1 to propagate
buffer sizes in addition to the typing rules of Chapter 4. We do not perform
fixpoint iterations for the element type, as we do not allow type variables for it
in the implementation. Variable nbNodes is the number of active nodes in the
graph, and variable nodes is the list of active nodes in the graph. The order of
nodes in the list depends on the order in which the nodes have been declared
in the score.

changes ←false
maxIter ←2× nbNodes
repeat

for all node in nodes do
changes ←updatePeriod(node) ∨ changes

end for
maxIter ←maxIter - 1

until not changes ∨ (maxIter = 0)
changes ←false
maxIter ←2× nbNodes
repeat

for all node in nodes do
changes ←updateBuffersize(node) ∨ changes

end for
maxIter ←maxIter - 1

until not changes ∨ (maxIter = 0)
for all node in nodes do

updateElementType(node)
end for

114

6. An architecture for extensible, dynamic, heterogeneous audio plugins

available in their input channels, perform some computations, and produce
some data in the buffers of the output channels. The DSP tick is computed
as the greatest common divisor (GCD) of all the periods, that is to say, the
smallest tick that divides all the periods of all the nodes. A node is activated
when its reaching the right number of DSP ticks, as shown in Figure 6.5.

Node 1
0 t

Node 2
0 t

Dsp tick
0 t

Figure 6.5.: Scheduling two audio nodes with different periods with activations
on a DSP tick.

A particular period actually drives the audio computations: it is the audio
callback period. At each audio callback activation, we advance the DSP tick the
number of time required to cover all its duration and execute nodes accordingly,
as computed in Algorithm 2 below. It means that we use the audio clock to
schedule all nodes, including nodes that would process other kinds of signals,
such as video signals. As the callback period is always among the periods, the
DSP tick is always lower or equal to this callback period.

6.3.4. Sample-accurate control
Control computations, which are supposed to happen instantly, are not always
taken into account right at the moment where they are computed. They are
applied to a sample of the audio signal, which entails at least sample-accuracy.
Due to limited computational resources available, samples are grouped into
buffers. Hence, controls may be delayed until the end of the audio compu-
tations, i.e. DSP tick or audio callback period, thus decreasing the temporal
accuracy of the system to buffer-accuracy. We described more precisely tem-
poral precision in Chapter 5, and how we can increase temporal precision by

115

6. An architecture for extensible, dynamic, heterogeneous audio plugins

Algorithm 2 Computing timings of the next DSP tick. The audio callback is
called repeatedly on buffers of n samples at a sample rate f so we can deduce
its period n

f . The change in sample rate or buffer size in the callback does
not change the timings either. tickNum is used to determine which node to
execute during the period. timeRemaining is the time remaining before the
end of the callback activation and callbackPeriod is the duration between
two periodic calls of the audio callback. The wait instruction is useful if we
want to have controls taken into account in the right tick, and not recompute
the ticks if a timestamped control arrives after its associated DSP tick has
been computed. If we just aim at callback period accuracy, we can remove this
wait. Variable DSPTickPeriod is the duration of the dsp tick for the audio
graph. PerformTick executes the nodes in the order of the schedule for all
the samples for one DSPTickPeriod.

tickNum ←0 . Global variable here
timeRemaining ←0 . Global variable here
function AudioCallback(buffers, size, samplerate)

callbackDuration ←size / samplerate
. timeRemaining is the time remaining at the end of the previous DSP

tick started in the previous callback invocation and is negative or zero.
timeRemaining ←callBackPeriod + timeRemaining
while timeRemaining > 0 do

wait(callbackPeriod - timeRemaining)
. If we want DSP tick accuracy instead of callback accuracy.

tickNum ←tickNum + 1
PerformTick(tickNum)
timeRemaining ←timeRemaining - DSPTickPeriod

end while
end function

116

6. An architecture for extensible, dynamic, heterogeneous audio plugins

cutting buffers (which is not fully implemented here12).
The following outcomes with respect to sample-accuracy can occur, as summed

up in Figure 6.6 for Antescofo:

• Audio computations are independent of any control parameter so the
computations are sample-accurate by definition.

• Audio computations happen at buffer boundaries: sample-accuracy, as
the buffer timestamp is also the timestamp of the first buffer here.

• Musical events are detected by the listening machine and signaled to the
reactive engine (see Chapter 2), which triggers some control computa-
tions. We can achieve only buffer-accuracy at best as we cannot locate
a musical event more precisely than at the buffer granularity. The event
detection is handled with a spectral analysis on a buffer in the listening
machine, which works on 4096-sample sliding windows at 44.10 kHz, with
an overlap of 512 samples.

• Control computations are triggered by a delay or by an external event
signaled by the environment, such as a keyboard event. It is again buffer-
accurate, plus the latency of the system.

• Starting or reorganizing the audio computations (for instance, a patch
action) can only happen at buffer boundaries. They are buffer-accurate.

• Control computations are driven by symbolic continuous data or discrete
data known beforehands. Discrete data are read at buffer boundaries
and are assumed constant during the next buffer computation, whereas
symbolic continuous data are updated before each sample computation
as their evolution in time is known a priori. In both cases, we achieve
sample-accuracy. Note that this case is similar to what VST 3 or LV2
can do with automation curves.

A focus on continuous control variables. Control variables managed within
the reactive engine can be taken into account during audio processing at the
level of sample-accuracy, when they are tagged “continuous”, which is denoted
by starting their identifier with $$. Continuous variable can be used as ordinary
Antescofo control variables. However, when their updates can be anticipated,
because for instance they are used to sample a symbolic curve construct, this
12Control can happen at the middle of a buffer, but the timing of when this control happens

is imprecise in the current implementation.

117

6. An architecture for extensible, dynamic, heterogeneous audio plugins

mixer

gain

$x := 0.75

Curve
{
 $$x
}

Antescofo audio Antescofo reactive
outlet

inlet antescofo~

continuous
 variable

discrete variable

inlet

Faust reverb

listening
machine

events

tempo

continuous
time-driven
(high and periodic sampling)

(low and asynchronous sampling)
event-driven

discrete

threshold Patch {
 $$y := mixer(…)
}

rewiring

Figure 6.6.: Possible interactions between audio processing and reactive com-
putations, i.e. control, in Antescofo.

knowledge is used to achieve sample accuracy in the corresponding audio pro-
cessing. Figure 6.7 illustrates the difference; the top plots draw the values of
the variable $y in relative and absolute time in the program:
Curve @gra in 0 . 2 s { $y { {0} 6 {6} } }

This curve construct specifies a linear ramp in time relative to the musician
tempo. For the implementation, the control variable $y samples the curve every
0.20 s (notice that the sampling rate is here specified in absolute time) going
from 0 to 6 in 6 beats. There are 3 changes in the tempo during the scan of
the curve, which can be seen as slight changes in the curve slope in the right
plots (these changes do not appear in relative time). The bottom plots figure
the value of the continuous variable $$y (the same changes in the tempo are
applied) defined by:
Curve @gra in 0 . 2 s { $$y { {0} 6 {6} } }

Despite the specification of the curve sampling rate (used within the reactive
engine), the continuous control variable samples the line every 1/44100 =
0.02 ms during audio processing.

Sub-sample accuracy. If the date when the control happens is between two
sampling dates, we can only take into account the control at the next sample.

118

6. An architecture for extensible, dynamic, heterogeneous audio plugins

Relative Absolute

Figure 6.7.: Top: plot of the values of the variable $y in Curve @grain 0.2s $y 0 6
6,in relative and absolute times. There are 3 changes in the tempo
during a linear ramp. Bottom: plot of the value of the continuous
variable $$y in Curve @grain 0.2s $$y 0 6 6. The same changes in the
tempo are applied.

119

6. An architecture for extensible, dynamic, heterogeneous audio plugins

To reach sub-sample accuracy, we would need to choose a value for the signal
between the two samples, for instance, using sinc interpolation or keeping the
last value. It means we assume properties about the considered signal because
in fine, we are conceptually oversampling the signal compared to its nominal
sampling rate. After getting this new value, we would also have to keep track
that this sample is not evenly spaced compared to the other samples of a buffer,
which we do not handle in our audio extension.

6.4. Applications
Here, we describe a piece and a proof of concept that use the audio extension
of Antescofo, embedded into PureData [Puc02b] and an Udoo small board.13

6.4.1. Anthèmes II by Pierre Boulez
We present the beginning of the rendition of Anthèmes II (1997) by Pierre
Boulez using the audio extension of Antescofo. This piece, which has entered
the repertoire,14 is for violin and live electronics. It has been implemented
on multiple platforms, including Max and PureData. We started from an
implementation of the piece that used Antescofo and PureData as described in
the Antescofo tutorial [CG14].

Programming of Interactive Music pieces starts by a specification of the in-
teractions, computing processes and relations between each other and with the
physical world in form of an Augmented Music Score. Figure 6.8 (left) shows
the beginning few bars of “Anthèmes II”, Section 1. The top staff, upper line, is
the violin section for the human performer and in human-readable traditional
Western musical notation; and the lower staves correspond to computer pro-
cesses either for real-time processing of live violin sound (four harmonizers and
frequency shifter), sound synthesis (two samplers), and spatial acoustics (arti-
ficial reverberation IR, and live spatialization of violin or effect sounds around
the audience). Computer actions in Figure 6.8 are ordered and triggered either
upon a previous action with a delay or onto an event from a human performer.
Computer processes can also be chained (one sampler’s output going into a re-
verb for example) and their activation is dynamic and depends on the human
performer’s interpretation.

13www.udoo.org
14Multiple performances can be watched on the Internet, for instance https://www.youtube.

com/watch?v=MzawnjOiccM, played by Francesco d’Orazio in 2013 at the Biennale di
Venezia, with Serge Lemouton from Ircam for the electronics.

120

www.udoo.org
https://www.youtube.com/watch?v=MzawnjOiccM
https://www.youtube.com/watch?v=MzawnjOiccM

6. An architecture for extensible, dynamic, heterogeneous audio plugins

Figure 6.8.: Top: Composer’s score excerpt of Anthèmes 2 (Section 1) for Vio-
lin and Live Electronics (1997). Bottom: Main PureData patcher
for Anthèmes 2 (Section 1) from Antescofo Composer Tutorial.

121

6. An architecture for extensible, dynamic, heterogeneous audio plugins

Figure 6.8 (right) shows the main patcher window implementation of the
electronic processes of the augmented score in PureData. The patch con-
tains high-level processing modules, Harmonizers, Samplers, Reverb, Frequency
Shifting and Spatial Panning, as sub-patchers. The temporal ordering of the
audio processes is implicitly specified by a data-driven evaluation strategy for
the dataflow graph. For example, the real-time scheduling mechanism in Pure-
Data is mostly based on a combination of control and signal processing in a
Round-Robin fashion [RT08], where, during a scheduling tick, time-stamped
actions, then DSP tasks, MIDI events and GUI events are executed in that or-
der, as shown in Figure 6.9. Scheduling in PureData is thus block-synchronous,
meaning that controls occur at the boundaries of audio processing. Further-
more, as in data-flow oriented languages, the audio processes activation, their
control and most importantly their interaction with respect to the physical
world (human violinist) cannot be specified nor controlled at the program level.

Clocks DSP Poll
MIDI

Poll
GUI

Idle
hook

Every 64 samples

Figure 6.9.: Scheduling cycle in PureData (polling scheduler)

Using the audio extension of Antescofo instead of the digital signal processing
capabilities of Antescofo makes it possible to control more finely the processes
and to adapt the execution of the audio processing to what we know about
the music scenario, whereas PureData merely received messages to control
the effects. For instance, the symbolic curves of Antescofo that control some
effects allow for sample-accurate control. It also leverages more efficient audio-
processing nodes coded in Faust thanks to the embedded just-in-time Faust
compiler. The audio graph of effects and links of the beginning of Anthèmes II
is represented in Figure 6.10 and corresponds to the patch action of Code 6.6.

In Code 6.7, a level control (fs−out−db) and a DSP parameter (frequency
shift value fd1_freq) are sent as messages to the PureData patch. Code 6.8
modifies directly Antescofo variables (resp. $psout and $freq) that were specified
as controlling the pitch shifter in the previous patch declaration. Variable $psout
is controlled as a curve in that case.

On a MacBook Pro, time-profiling the prototype of the embedded audio
version with Faust against the message-passing implementation in PureData

122

6. An architecture for extensible, dynamic, heterogeneous audio plugins

patch {
$$ l i nkRev2 := f a u s t : : adapto r1 ($$aud i o I n)
$$ l i n kRev := f a u s t : : i r 1 ($$ l inkRev2 , $damping , $rooms ize , $wet , $ i r o u t)
$$ l i nkFS := f a u s t : : P i t ch ($$aud io In , $ f r eq , $aux , $psout)
$$l inkOutPanFS1 ,
$$l inkOutPanFS2 ,
$$l inkOutPanFS3 ,
$$l inkOutPanFS4 ,
$$l inkOutPanFS5 ,
$$l inkOutPanFS6 := f a u s t : : pannerFS ($$ l inkFS , $s1FS , $s2FS , $s3FS ,

$s4FS , $s5FS , $s6FS)
$$l inkHarm := f a u s t : : Harms ($$aud io In , $h1 , $h2 , $h3 , $h4 , $h rout)
$$ l inkSampl , $endSample := dsp : : samp le r ($p l a y)

$$ l inkOutPanSampler1 ,
$$ l inkOutPanSampler2 ,
$$ l inkOutPanSampler3 ,
$$ l inkOutPanSampler4 ,
$$ l inkOutPanSampler5 ,
$$ l inkOutPanSampler6 := f a u s t : : pannerSampl ($$ l inkSampl , $s1S , $s2S ,

$s3S , $s4S , $s5S , $s6S , $sampl2out)

; ; ; ; Output aud io :
$$audioOut1 ,
$$audioOut2 ,
$$audioOut3 ,
$$audioOut4 ,
$$audioOut5 ,
$$audioOut6 := f a u s t : : megaMixer ($$aud io In , $$ l i nkRev ,

$$l inkHarm , $$l inkOutPanFS1 ,
$$l inkOutPanFS2 , $$l inkOutPanFS3 ,

$$l inkOutPanFS4 ,
$$l inkOutPanFS5 , $$l inkOutPanFS6 ,

$$ l inkOutPanSampler1 ,
$$ l inkOutPanSampler2 , $$ l inkOutPanSampler3 ,
$$ l inkOutPanSampler4 , $$ l inkOutPanSampler5 ,
$$ l inkOutPanSampler6)

}

Code 6.6: The patch action for the beginning of Anthèmes II by Pierre Boulez.
Figure 6.10 shows a more human-understandable visualization of the
audio graph with the audio channels.

TRILL (8100 8200) 7/3 Q25
; b r i n g l e v e l up to 0db i n 25ms
f s−out−db 0 .0 25
; f r e qu en c y s h i f t v a l u e
f d1_ f r e −205.0

Code 6.7: Anthèmes II score: message passing (old style)

123

6. An architecture for extensible, dynamic, heterogeneous audio plugins

Input

Harms Ir1 PitchShifter Sampler

PannerFS PannerSampler

MegaMixer

Output

audioIn audioIn
audioIn

linkFS1, . . . , linkFS6linkPan1, . . . ,
linkPan6

linkHarms
linkRev linkFS1, . . . ,

linkFS6
linkPS1, . . . , linkPS6

linkAudioOut1, . . . , linkAudioOut6

Figure 6.10.: Audio graph at the beginning of Anthèmes 2 by Pierre Boulez,
with the audio channels. The audio signal flows from Input to
Output. We do not show the input and output controls here.

TRILL (8100 8200) 7/3 Q25
Curve c3 @gra in := 1ms
{ ; b r i n g l e v e l up to 0db i n 25ms

$psout
{

{0}
25ms {1}

}
}
$ f r e q := −205 ; f r e q . s h i f t v a l u e

Code 6.8: Anthèmes II score: embedded audio (new style)

124

6. An architecture for extensible, dynamic, heterogeneous audio plugins

shows a 12% system usage improvement in favour of the new implementation.
It is due to the optimization of the DSP nodes thanks to the just-in-time Faust
compiler but also to less overhead of controls, due the control Curve approach.
However, these results are only one example and it is difficult to accurately
evaluate the improvement, especially to instrument the program to measure
its real-time behaviour.

6.4.2. Speed tracking and control of a synthesizer
In this example, we show how the audio extension of Antescofo can deal with
streams with different sample rates, i.e. audio rate and video rate, and per-
form analysis on live video to control synthesis. The proof of concept does
speed tracking of the largest foreground object in a video to control an audio
effect. It can be used to roughly track the speed of a waving arm, for instance.
The video input has typically a rate of an order of magnitude of 10 Hz, for
example, 29.97 frames per second, whereas the audio output usually requires a
44.10 kHz sample rate to keep all human-audible frequencies. This shows that
our architecture can accommodate both rates.

In Puredata [Puc+96] with GEM [Dan97], although Puredata makes it pos-
sible to change the sample rate in a subpatch using a block~ object, it is
difficult to have several rates live together in the same patch, as mixing video
and audio would require. In GEM, a gemHead object creates [Zmö04] a state
that can store images, and a pointer to this state is carried through the inlets
and oulets in a Puredata atom, as a gemList, i.e. the frames are not carried as
signals, only pointers to them. In Chuck [WCS16], results of unit analyzers are
stored in an object called a UAnaBlob [WFC07], which contains a timestamp
indicating when it was computed. In contrast, in Antescofo, spectral bins re-
sulting from a FFT for instance would also be represented as a signal, but with
a different rate depending on the parameters of the FFT.

Our type system ensures that frames can be carried safely and in a general
way within the DSP graph: a video stream with a framerate “fps”, seen as a
stream of images of given width and height, will have a type such as

periodic(1
fps , 1, Image(width, height))

as shown in Figure 6.11. Image(width, height) is an alias for Array(int ×
int× int, width, height). The output of the speed tracking node is a control
variable, which is updated for each frame. It means that we can further process
this control variable, by detecting when it changes, with a whenever, as shown on
Code 6.9. In Antescofo, the whenever control instruction watches a condition on

125

6. An architecture for extensible, dynamic, heterogeneous audio plugins

BPM 120

$speed := 0 .
$max_speed := 15
$p i t c h_ f r e q := 0 ;
$c0 := 16 .35
$c7 := 2093.00

@faus t_de f f a u s t : : S impleSynth ($ f r equency)
{

impor t (" s t d f a u s t . l i b ") ;

f r e q = h s l i d e r (" f r e qu en c y " , 16 . 35 , 16 .35 , 2093 .0 , 0 . 01) : s i . smoo ;

p r o c e s s = os . osc (f r e q) : r e . mono_freeverb (0 . 5 , 0 . 5 , 0 . 5 , 2 3) ;
}

@dsp_def dsp : : webcam := dsp : : camera (0) % S e l e c t camera 0
@dsp_def dsp : : t r a c k i n g := dsp : : s p e e d t r a c k i n g ()

@dsp_def dsp : : s yn th := dsp : : S impleSynth ()

@dsp_def dsp : : audioOut := dsp : : output (0) % Output 0 o f the soundcard

@dsp_channel $$v ideo
@dsp_channel $$out

whenever ($speed)
{

p r i n t " Speed␣ update "
$p i t c h_ f r e q := $c0 + @min ($max_speed , $speed) ∗ ($c7 − $c0) /

$max_speed
}
% Wait f o r 6 bea t s
6 p r i n t S t a r t

patch {
$$v ideo := dsp : : webcam ()
$speed := dsp : : t r a c k i n g ($$v ideo)
$$out := dsp : : s yn th ($p i t c h_ f r e q)
:= dsp : : audioOut ($$out)

}
40 s p r i n t DONE DONE

Code 6.9: An Antescofo score that uses speed tracking of an arm to control a
synthesizer.

126

6. An architecture for extensible, dynamic, heterogeneous audio plugins

webcam tracking

synthaudioOut

periodic(1
fps , 1, Image(width, height))

$$video

Control
whenever
($speed)

periodic(1
sample rate , n, AudioSample)

$$out

Figure 6.11.: The DSP graph is made of four main nodes: a input node con-
nected to a video source (video camera or video file), a node that
does speed tracking, a node that plays a sound, and an audio
output, to the soundcard.

variables of the score and computes something when the values of the variables
change and the condition evaluates to true. The code associated to that whenever
computes here a frequency from the speed. After that, the frequency is used
to drive a synthesizer which is coded in Faust.

Speed tracking. To track the speed of a foreground object, we embedded a
subset of the OpenCV library [Bra00] in Antescofo. The speedtracking effect is
a builtin effect coded in OpenCV. We extract the foreground using the Sub-
stractor Background MOG2 [ZV06], eroding and deleting the result to get rid
of noise, and then detecting the contours and keeping the largest one with
respect to its area, as shown on Figure 6.12. The speed is computed by mea-
suring the displacement of its mass center, and smoothed. When the detected
contour changes are higher than a given threshold, the speed is reset.

Synthesizer. The Faust effect is embedded in Antescofo as described in [Don+16].
The input frequency is smoothed and then used to drive a simple oscillator, to
which we add some reverb using freeverb, an opensource implementation of a
Schroeder/Moorer reverb model [Sch70].

127

6. An architecture for extensible, dynamic, heterogeneous audio plugins

Figure 6.12.: Detection of waving arm and hand in a video using OpenCV. The
centroid of the contour is the yellow point left to the wrist.

128

7. Offline optimization of
audio graphs

You do not want your audio to
glitch. Period.

(Ross Bencina)
IMSs are real-time systems (see Chapter 2.2) and missing a deadline entails
glitches and cracks in the audio output. As in video streaming where the
resolution of the stream is reduced if too many frames are dropped, or in audio
compression with the mp3 format with respect to file sizes, we study a way
of decreasing the execution time of an audio graph while not deteriorating too
much the quality. We consider it as an optimization problem where given
an audio graph as input, for instance a PureData patch, we want to output
one or several degraded versions. The optimization will be performed through
resampling parts of the audio graph. We will show how we find the nodes in
the graph to resample. The degraded versions can be later used in a real-time
context, as described in Chapter 8.

We start by presenting the approximate computing paradigm in Section 7.1.
In Section 7.2, we describe in more details how resampling works and how we
select nodes to degrade. In Section 7.3, we present a quality model of nodes
and of graphs and, in Section 7.4, an execution time model. In Section 7.5, we
describe our experiments and discuss them.

This work originates from our article [DGJ19].

7.1. Approximate computing
Approximate computing [Ven+15] is a paradigm of computation that allows
some errors in computations in order to improve performance. It relaxes the
concept of correctness, to a correctness with a quantified error. It is best
suitable when intrinsic application resilience criteria apply.

Intrinsic application resilience consists of:

129

7. Offline optimization of audio graphs

1. Not having an unique answer, but considering that a range of answers is
acceptable;

2. Users who have got used to accepting good-enough results;

3. Noisy input data, and algorithms built to deal with this noise;

4. Using computation patterns that decrease approximations.

Approximate computing can be introduced at various layers of the com-
puting stack: circuits, architecture, software, but also in methodology and
tools, and as a cross-layer optimization. The goal is to design systems with
a favourable quality versus performance or energy trade-off. It often needs
at first a profiling or training executions step and depends on an application-
dependent quality measure.

In [Zhu+12], a graph is used to represent a map-reduce program, with map
nodes which compute and reduce nodes which aggregate data. Accuracy-aware
transformations are separated into two classes.

Substitution transformations: they replace one implementation with another
implementation. Functions have a propagation, a resource-consumption
(energy, time, cost) and an accuracy specification.

Sampling transformations: they randomly subsample the input of a reduction
node. They are characterized by a sampling rate.

The method is to randomly choose transformations to ensure a chosen trade-
off between accuracy and resource consumption. It is dedicated exclusively to
map-reduce applications, and does not natively embeds time constraints1. The
transformations are chosen without taking into account any coherent sampling
rate on a path. It also requires a preliminary phase of profiling, and hence
cannot tackle dynamic graphs.

7.2. Optimization by resampling
We present here a way of optimizing audio graphs with the approximate com-
puting paradigm, by resampling parts of the graph. The optimization requires
to both choose parts of the graph suitable to be resampled, and to resample
them. Resampling consists of changing the number of samples we use per sec-
ond to represent an audio signal. If we downsample a part of the graph, the

1Though it may be possible to design an aggregate error metric that also takes time into
account.

130

7. Offline optimization of audio graphs

audio processing nodes operate on less samples and so the audio graph is ex-
ecuted more quickly. The downsampling will also degrade the quality of the
signal. To select the best compromise between execution time and quality, we
can enumerate all the possible degraded versions, or use heuristics.

7.2.1. Resampling as a degradation
Here we briefly present some signal processing theory results to understand
better the impact of resampling on an audio signal.

The sampling theorem

A continuous-time signal is digitally represented as a discrete-time signal [OS14].
Given a continuous signal s(t), the sampled signal using sampling period T is
s(nT) for n ∈ N. The sampling rate fs is the number of samples per second,
fs = 1

T . Sampling is the process of converting s(t) into (s(nT))n∈N.

Theorem 1 (Shannon’s sampling theorem [Sha49]). Given a sampled signal s
with sampling rate fs, with maximum frequency fmax, the following condition
must be respected in order to reconstruct the continuous signal s:

fs ≥ 2× fmax (7.1)

fmax is called the Nyquist frequency.

Given a discrete-time signal x[n], we can get the continuous-time signal x(t)
using the Whittaker-Shannon interpolation formula:

x(t) =
+∞∑

n=−∞
x[n] sinc

(
t− nT

T

)
(7.2)

where sinc is the normalized cardinal sine function, defined as follows:

sinc(x) =
{ sin(πx)

πx if x 6= 0
limx→0

sin(πx)
πx = 1 if x = 0

(7.3)

Definition 22 (Band-limited signal). A band-limited signal is a signal whose
frequency content has a bounded frequency content. fmax of Theorem 1 is also
called band limit.

Actual signals have finite duration and their frequency content does not usu-
ally have an upper bound.

131

7. Offline optimization of audio graphs

Perception by the human ear. Above some frequency threshold, no qual-
ity improvement is perceived by human beings, according to psychoacoustics
studies [RH11]. The human auditory system cannot perceive frequency above
20 kHz. Shannon’s theorem implies that the sampling rate must be at least dou-
ble of the maximum frequency, so about the sampling rate of audio CDs, at
44.10 kHz. However, oversampling makes it possible to better handle round-
ing errors that could occur during signal processing and that is why higher
sampling rates than 44.10 kHz are often used.

Yet, the signal perceived by the human ear can be approximated to a ban-
dlimited signal in practice.

How to resample

Resampling consists of modifying the discrete-time signal to use a different
sampling rate. Thus, the sampling period is different and new samples need to
be computed from the previous ones. Two equivalent approaches are possible:
interpolating the old samples to get the new ones, or using filters. The second
approach [Smi19b] is the one mainly in use in the field of digital audio pro-
cessing. The quality of the resampling will depend on the quality of the filters,
e.g., no filter, a linear filter, or a windowed sinc filter.

Downsampling by an integer factor M . As the signal is downsampled, the
band limit will be smaller and so we need to get rid of high frequencies to
prevent aliasing (see 7.2.1). Thus, the signal first goes through a lowpass filter,
the cutoff frequency of which is fs

M . Then, the filtered signal is decimated by
M , i.e., only one sample every M th is kept. Both steps can be computed
conjointly if the filtering phase is done using a finite impulse response (FIR)
filter. If x[n] is the original signal, y[n] is the resampled signal, and h is the
impulse response with length K, we have:

y[n] =
K−1∑
k=0

x[nM − k] · h[k] (7.4)

Upsampling by an integer factor N . Two steps are enough to implement
upsampling . First, the original signal is expanded by inserting N − 1 zeros
between the original samples; then, the discontinuities entailed by the zeroes
are smoothed using a lowpass filter, with cutoff frequency fs

N . As for downsam-
pling, the two steps can be combined using a FIR filter h of length K, where
x is the original signal and y the upsampled signal:

132

7. Offline optimization of audio graphs

y[n] =
K∑

k=0
x[p− k] · h[r + kN]

where n = pN + r

and r ≡ n (mod N), r ∈ {0, . . . , N − 1}

(7.5)

Resampling by a rational factor N
M . The original signal is first upsampled by

N and then downsampled by M . Both steps require a lowpass filter, so only
one filtering with a cutoff frequency the lowest of the two is necessary.

Interpolation filters [Smi19a]. The input signal is convoluted with the filter.
Several kinds of filters are used:
Zero-order hold: the filter keeps the last sample as the value for the current

sample. It is similar to do a piecewise constant interpolation of the signal.

First-order hold: it performs a linear interpolation of the signal.

Windowed sync interpolation: the filter is, for L the window size and w a
symmetric window such as Hamming, Blackman or Kaiser, and α < 1:

h∆(n) =
{

w(n−∆) sinc(α(n−∆)), 0 ≤ n ≤ L− 1
0 otherwise

(7.6)

Degradations in the signal

Resampling can lead to degradations in the signal, due to aliasing and to
interpolation filter noise.

Aliasing. Aliasing occurs when the high-frequency content of the original sig-
nal becomes undistinguishable from frequencies lower than the Nyquist fre-
quency in the downsampled signal. Let us illustrate it on two sinusoid signals,
x1(t) = cos(2π(kfe + f0)t + φ0) and x2(t) = cos(2π(kfe − f0)t − φ0) and let
sample them at frequency fe. It means the sampling period is T = 1

fe
and so

we get the samples, for n such that t = nT = n
fe

:

x1(t) = cos
(2πn(kfe + f0)

fe
+ φ0

)
= cos

(
2nkπ + 2π

nf0
fe

+ φ0

)
= cos

(2πf0n

fe
+ φ0

)

133

7. Offline optimization of audio graphs

Similarly:

x2(t) = cos
(

2nkπ − 2π
nf0
fe
− φ0

)
= cos

(2πf0n

fe
+ φ0

)
The samples from x1 and from x2 are indistinguishable. Hence, signals fold
around the Nyquist frequency after downsampling: a signal with frequency f
larger than fe

2 is folded into fe − f .

Interpolation/filter noise. To prevent aliasing from happening, frequencies
above f2

2 are disposed of by filtering them, but filters are not perfect and only
attenuate the signal with an increasing slope. Just after fe

2 , the slope is small,
but the signals there are folded into a non-audible part of the spectrum. When
the signals are close to fe, they are folded into audible parts, but the slope
of the filters are higher. A windowed sinc filter is better at removing high
frequencies than a linear one.

Resamplers as audio nodes

A resampler with resampler factor r ∈ Q is an audio node v with one input
port and one output port. The buffer sizes of the stream on the input port
ni and the stream on the output port no are linked (see Chapter 4) such that
ni = r × no.

Resampling is agnostic of the actual computation node semantics as it oper-
ates on the input signal itself, contrary to replacing a node by another degraded
version, which requires to know the semantics of the computations in the node.

Definition 23 (Signal distance on a graph). Let G and G′ be two audiographs
with the same numbers of sources and sinks, n and m, that act on streams of
S where elements are in U , which we suppose is equipped with a norm ‖ · ‖.
In practice for audio with elements in R, we can choose the absolute value, or
the Euclidian distance if we need continuity.

We define the signal distance ds(JGK, JG′K) between JGK and JG′K as:

ds(JGK, JG′K) = max
(s1,...,sn)∈Sn

‖JGK(s1, . . . , sn)− JG′K(s1, . . . , sn)‖

Proof. ds(JGK, JG′K) is actually the distance associated to the L∞norm.

Note that ds is a distance on the signal of the graph, not on the structure of
the graph. Indeed, ds(JGK, JG′K) = 0 does not entail necessarily that G = G′.

134

7. Offline optimization of audio graphs

If we add an identity node in a graph, we will get the same signal but not the
same structure.

7.2.2. An optimization problem under constraints
Given an audio graph, we want to find some equivalent degraded versions
of it that maximize some criterion while respecting some constraints. The
degradation is achieved by inserting resamplers on the edges of the graph, as
shown on Figure 7.1, in order to resample parts of it. The premise here is
that a node that receives less samples per activation will take less time to be
executed.

When a downsampler node is inserted on a path, all the following nodes
operate on a downsampled signal. We need to insert an upsampling node if
there is a node on the path that enforces a specific sample rate, for instance, a
sink to the soundcard.

v2

v2.p̌i

v1

v1.p̂o

v2

v2.p̌i

v1

v1.p̂o

r

r.p̌i

r.p̂o

Figure 7.1.: Inserting a downsampling node r between nodes v1 and v2. v1 has
an output port v1.p̂o, v2 has an input port v2.p̌i and r has an input
port r.p̌i and an output port r.p̂o.

Insertion of a resampler

We note G the non-degraded audio graph.

Definition 24 (Resampling of the audio graph). A resampling ξr(G) = (Vξr(G), Pξr(G), Eξr(G))
at resampling factor r ∈ Q \ {0} of an audio graph G = (V, P, E) is a function
G → G such that:

Insertion of resamplers: ∃e ∈ E, ∃e1, e2 ∈ Eξr(G), e = v.p̂o → v′.p̌i, e1 =
v.p̂o → R(r).p̌i, e2 = R(r).p̂o → v′.p̌i and R(r) is a resampler node with
resampling factor r. We insert it only on an edge between two audio
ports (buffered or elastic stream types).

135

7. Offline optimization of audio graphs

Structure preservation: ∀e ∈ Eξr(G), e ∈ E ∨ ∃v ∈ V, e = v.p̂o → R(r).p̌i ∨ e =
R(r).p̂o → v.p̌i where R(r) is a resampler node with resampling factor r.

Incoming path resampling: v is a node of G and i(v) = n, we note the incom-
ing paths to v in ξr(G), v1 · · · v up to vn · · · v. Those paths
are the paths whose last edge is going to v. If v.ǩ has an audio type with
sample-period p′ in ξr(G), whereas it has sample-period p = r × p′, then
all input audio ports of v are also resampled.

Outcoming path resampling: If v1 · · · vn is a path of ξr(G) where v1 is
a resampler R(r) and vn is a sink, then there exists j ∈ {2, . . . , n − 1}
such that vj = R(1

r).

Type safety: ξr(G) is well-typed.

We say that ξr(G) is a degraded version of G.

Incoming path resampling is introduced to make sure that all inputs are
resampled in the same way. It indicates that in case a node on a resampled
path has several input ports and that one of them receives a resampled signal,
we also have to resample the signal going into the other input ports by the same
resampling factor, as shown on Figure 7.2. This is performed by inserting a
resampling node connected to this input port. Outcoming path resampling
ensures that a resampling by r is always followed by a reverse resampling, by
1
r .

v

p1
i p2

i

Figure 7.2.: We assume that node v is on path v1 → · · · → vn. The resampled
signal flows on this path through input port p1

i with resampling
factor q. Node v has another input port, p2

i . The signal coming
into this port must also be resampled with resampling factor r.

Specific graphs. The non-degraded graph has no additional resamplers. It
has the best quality and among the longest execution times (not necessarily
the longest). If we should a resampling factor r < 1, the fully-degraded graph
is obtained by having all the possible nodes resampled by r. It has the worst
quality but among the shortest execution times per cycle.2

2Not necessarily the shortest indeed, as it requires to insert many resamplers, which adds
to the overhead.

136

7. Offline optimization of audio graphs

Rewriting the graph

The structure preservation property may lead to the insertion of many re-
samplers, which adds to the overhead of the degradations and entails a larger
execution time. In some cases, we can merge the resamplers. For that, we
perform a rewriting of the graph using rewriting rules that we describe here.

Merging outcoming resamplers from the same output port. If an output
port p of node v is connected to several input ports p1, . . . , pn, it is more
efficient, with respect to the execution time, to insert the resampler and then a
node with n outputs that distributes the signals, instead of inserting a resampler
on each edge p→ pk, as shown on Figure 7.3.

v

p

v′
1

p1

v′
2

p2

v′
3

p3

v

p

v′

v′′

p′

p′
1 p′

2 p′
3

p1 p2 p3

Figure 7.3.: Node v has one output port, p, which is connected to three input
ports, p1, p2, p2. On the left, we insert a resampler on each edge
p → p1, p → p2, p → p3 with same resampling ratio, whereas on
the right, we insert a node v′′ with one input port p′ and 3 outputs
p′

1, p′
2, p′

3, and we insert the resampler v′ on edge p→ p′.

Incoming resamplers into a mixer. When a mixer has only resamplers with
the same resampling ratio as incoming nodes, we can remove those resamplers
and rather insert one resampler after the graph, as shown on Figure. 7.4.

Downsampler followed by an upsampler. If a downsampler with resampling
ratio ρ < 1 is immediatly followed by an upsampler with resampling ratio
1
ρ > 1, both can be removed, as shown on Figure 7.5.

137

7. Offline optimization of audio graphs

mix

r1r2

v1v2

v

mix

v1v2

r

v

Figure 7.4.: Rewriting the graph in the presence of a mixer mix. Resamplers
r1 and r2 with the same resampling ratio ρ are removed and a
resampler with resampling ratio ρ is inserted after mix.

v1

r1

r2

v2

v1

v2

Figure 7.5.: Downsampler r1 followed by an upsampler r2, where both have
the same resampling ratio.

138

7. Offline optimization of audio graphs

Optimization problems

We can define the quality degradation as an optimization problem under con-
straints. Given a graph G, we want to:

• given a deadline, find the best possible quality;

• given a quality target, find the shortest possible execution time;

• find the Pareto front.

Best quality under time constraint. The optimization problem is, given a
deadline D:

maximize quality qG under the constraint:

AG < D

where AG is the execution time of G.

Best execution time under quality constraint. The optimization problem is,
given a target quality q:

minimize AG under the constraint:

qG > q

Pareto front. Our optimization problem is seen as a bi-objective optimiza-
tion problem, where qG has to be maximized and AG has to be minimized,
conjointly. There are no solutions that optimize both objectives: the non-
degraded graph has the best quality but among the longest execution times,
whereas the fully-degraded graph has the worst quality but among the shortest
execution times. A solution is Pareto-optimal if it cannot be improved in any
of the objectives without degrading another objective, i.e., if there is no other
solution that dominates it.

Definition 25 (Pareto domination). Given a graph G, ξ1 and ξ2 two resam-
plings, we say that ξ1 dominates ξ2 if:

1. qξ1(G) ≥ qξ2(G) and Aξ1(G) ≤ Aξ2(G);

2. qξ1(G) > qξ2(G) or Aξ1(G) < Aξ2(G)

The set of Pareto optimal solutions is called the Pareto front. In our case,
with two criteria, we can visualize it on a graph with one criterion in abscissa
and the other one in ordinate.

139

7. Offline optimization of audio graphs

7.2.3. Exhaustive enumeration
We suppose a graph G has n nodes. To enumerate all the possible degraded
versions, we can select all the possible subsets of nodes that can be degraded.
After selecting a subset, we generate an intermediate rate graph where all edges
are annotated with their sample rate. The nodes that can be resampled are
the nodes for which one can insert a downsampler on a path leading to it and
an upsampler on a path going from it, which excludes sources and sinks.The
number of such possible nodes is N = n − nsources − nsinks. The maximum
number of possible subsets is 2N = 2n−nsources−nsinks .

After a subset of degraded nodes is chosen, adjacent nodes can be gathered
in a degraded subtree and then resamplers are inserted at the start and end of
the path, as shown in Algorithm 3 . For each path, we can choose a sampling
rate inferior to the nominal sampling rate of the path in the list of admissible
sampling rates.

Algorithm 3 Degrades a graph by inserting resamplers, given a graph where
all edges where a degraded signal flows are marked with a boolean to_degrade.
This works where there only two sample rates: one normal rate, and one
degraded rate. For more rates, we use a integer storing the rate in Hz instead
of the boolean.

function degrade(graph)
for edge in edges(graph) do

source ←source(edge)
pred_edges ←predecessors(source)
pred_degraded ←all previous edges are set to to_degrade
if (is_empty(pred_edges) or not pred_degraded) and edge.to_de-

grade then
insertDownsampler(edge) . Insert a downsampler on the edge

else if not is_empty(pred_edges) and not pred_degraded and not
edge.to_degrade then

insertUpsampler(edge) . Insert an upsampler on the edge
end if

end for
end function

Random sampling. Enumerating all the degraded versions is exponential and
becomes impractical for big graphs, so we can randomly sample a part of the
degraded versions, by uniformly selecting subsets of nodes to be degraded. We

140

7. Offline optimization of audio graphs

always make sure that the non-degraded graph and the fully degraded graphs
are among the versions. For the experiments of Section 7.5, we will sample 64
graphs3 in addition to the non-degraded graph.

7.2.4. Heuristics
The exhaustive enumeration is costly and can generate potentially hundreds
of degraded versions. We also want more control on the degraded versions
generated than with a random sampling. We present three heuristics: one
resamples the longest shortest subpaths first, another one resamples from the
outputs, and the last one resamples in the order of a topological sort of a graph.
The last two ones are suitable for online degradation, when degrading a graph
in real time.

First longest k-shortest path resampling

This heuristic selects first nodes and subpaths that are the slowest ones (ac-
cording to the execution time model in Section 7.4.2) to execute among paths
with a given number of nodes, in increasing size of number of nodes. The
idea is to degrade first what takes a lot of time to be executed. Given a non-
degraded graph G, we build a sequence of degraded graphs such that, for all
k ∈ {1, . . . , nmax−1}, where nmax is the maximum number of degraded nodes,4

A
v

ξk(G)
1 ··· v

ξk(G)
k

< A
v

ξk+1(G)
1 ··· v

ξk+1(G)
k+1

(7.7)

where v
ξk(G)
j is a node of degraded graph ξk(G).

We can find such a sequence by computing the ascending-ordered sequence
(lk)k∈{1,...,nmax} of ascending-ordered k-longest paths and picking, if it exists,
in each lk, Gk such that AGk

> AGk−1 . Computing all the shortest paths in a
directed acyclic is tractable, with algorithms such as the Jonhson algorithm or
the Floyd-Marshal algorithm [Cor+09].

Resampling from the sinks

This heuristic downsamples increasingly larger subpaths that end at the sinks,
in a depth-first backwards traversal way. Intuitively, downsampling nodes at
the beginning of the audio graph is worse at degrading quality than downsam-
pling at the end, as we lose some information on which we will compute later,
and we cannot rebuild this information afterwards.

3Using a power of two makes it more efficient and easy to compute.
4nmax = nG − nsinks − nsources

141

7. Offline optimization of audio graphs

For a graph G, the sequence of degraded graphs (ξi(G)) is defined as shown
on Algorithm 4.

Algorithm 4 Computing the sequence of degraded graphs with a standard
depth-first backward traversal. A node has two attributes, visited and to_de-
grade. to_degrade indicates that a node is included into the set of nodes to
be degraded. For this heuristics, visited and to_degrade will actually have the
same values. ξi(G) is a sequence of graphs obtained from the non-degraded
graph G, with ξ0(G) = G. Note that modifying the attributes of currentNode
modifies the graph.

function degradedGraphs(graph)
i ←0
ξ0(G) ←graph
nodesToVisit ←sinks(graph)
while isNotEmpty(nodesToVisit) do

currentNode ←pop(nodesToVisit)
currentNode.to_degrade ←true
currentNode.visited ← true
parents ←parents(currentNode)
nextNodes ←notVisited(parents)
push(nodesToVisit, nextNodes)
ξi(G) ←Degrade(graph)
i ←i + 1

end while
end function

Topologically-ordered resampling

Given a graph G with n nodes, we sort it topologically, leading to a sequence
(vi) of nodes, from which we deduce the sequence of degraded graphs (ξi). For
ξi(G), we enforce:

∀k ≥ i,∀p ∈ {1, . . . , n},vk · · · vp is a path ∧ o(vp) = 0
=⇒ vk · · · vp is a degraded path

(7.8)

7.3. A quality model for audio graphs
Here, we present models to evaluate the quality of an audio graph. The models
should be easily and quickly computable on a graph given the nodes and its

142

7. Offline optimization of audio graphs

structure. In Subsection 7.3.1, we present a general compositional quality
model that can be adapted through choosing adequate qualities for nodes and
adequate composition rules. In Subsection 7.3.2, we present how to determine
empirical qualities and composition rules based on finite impulse responses of
the individual nodes.

7.3.1. A general model of quality
The quality of an audio graph, of an audio signal in general, is a subjective
matter and relates to psychoacoustics. It heavily depends on the semantics of
the nodes and needs a reference graph that represents the best quality. We
aim at presenting an a priori model of quality, that does not require to execute
the full audio graph, which is necessary to be able to compute a quality in real
time, and also to optimize an audio graph offline in a reasonable time.

The quality measure should be compositional, i.e. the quality of the graph
qG ∈ [0, 1] must depend on the structure of the graph. The quality of a sub-
graph must be a function of the quality of its nodes and edges and of the in-
coming qualities on its inputs, not where the subgraph is placed in the graph.
The worst quality is 0 and the best quality is 1. For each node v, we also note
qv ∈ [0, 1] its quality (see below).

We define the quality qv1→···→vn on a path v1 → · · · → vn as qv1 ⊗ · · · ⊗ qvn

for an operator ⊗ with the following properties:

Associativity: qv1 ⊗ (qv2 ⊗ qv3) = (qv1 ⊗ qv2)⊗ qv3

Decreasing: qv ⊗ qv′ ≤ qv′ It means that quality never increases on the path,
as the information lost by degrading cannot be rebuilt.

Identity element: There is an identity element 1⊗ such that 1⊗⊗v = v⊗1⊗ =
v. Such an element is the quality which preserves for the output the
quality of its input.

An obvious choice for an operator fulfilling these desired properties is multipli-
cation on real numbers. For v → v′:

qv→v′ = qv ⊗ qv′ = qv × qv′

On the path v1 → · · · → vn, thanks to associativity:

qv1→···→vn =
n∏

i=1
qvi (7.9)

143

7. Offline optimization of audio graphs

We also define a join operator ⊕ that models the quality resulting from
joining two paths, such as v1 → v3 and v1 → v2 → v3 on Figure 2.11.

qG = qv1→v3 ⊕ qv1→v2→v3

= (qv1 ⊗ qv3)⊕ (qv1 ⊗ qv2 ⊗ qv3)
(7.10)

In practice, we choose ⊕n
k=1 qk = 1

n

∑n
k=1 qk for n joining paths for mixer-like

nodes and ⊕ = min for the other nodes. For mixer-like nodes, we want to take
into account that low-quality input streams can have very low volume and can
be mixed with good-quality input streams, and hence have a good quality.

Assigning qualities to individual nodes

The a priori quality measure in the case of resampling is a function of the
sample rate: the lower the sample rate, the lower the quality. In the case
of a resampler with resampling ratio r on a stream with sample-period p, the
output sample rate is r

p . If audio is sent too late to the output buffer, a click
can be heard. We consider that it is worse to hear a click because of missing
a deadline than to hear a resampled signal. A node that would entail always
missing deadlines is given the worst possible quality, i.e., 0. The quality qv of
a downsampled node is such that qv < 1⊗. The quality of a non-downsampled
node is 1.

7.3.2. Estimating quality of nodes using finite impulse responses
In 7.3.1, we choose the quality of an individual node to be in [0, 1] using a
heuristic. We can also be more precise and approximate all the digital effects
by linear time-invariant digital filters.

Linear time-invariant digital filters (LTI filters)

Definition 26 (Linear filter). A filter v is linear if it has the following prop-
erties:

scaling v(λs) = λv(s) for λ ∈ R and s a signal

superposition v(s1 + s2) = v(s1) + v(s2) for s1, s2 two signals

LTI filters do not introduce new spectral components.

Definition 27 (Time-invariant filter). A filter v is time-invariant if, for a
signal s, and for N ∈ N:

∀n > N, v(s)[n−N] = v(λi.s[i−N])[n]

144

7. Offline optimization of audio graphs

It means that if the input signal is shifted by N samples, the output signal is
also shifted by N samples.

Impulse response

Any LTI filter can be characterized by an impulse response. An impulse re-
sponse is the output signal obtained from inputting a short signal with all
frequencies, usually modelled as a Dirac delta or Kronecker delat function. A
frequency response sampled on the frequency axis, with N samples, can be
obtained from the impulse response:

∀k ∈ {0, . . . , N − 1},H(k) = DFTk(o)
DFTk(i) (7.11)

where i is the input signal and o is the output signal, and DFTk is the discrete
Fourier transform defined in Equation 7.12.

DFTk(x) =
N−1∑
n=0

x(n)e−jωknT with ωk = 2πfs
k

N
where fs = 1

T
(7.12)

We can measure the impulse response of the nodes of the audio graphs and
how it increases or decreases the frequency content above the Nyquist frequency
of the desired sampling rate. The quality q of the node in that case will be the
average of the ratio of the magnitude of the original high-frequency content
versus the degraded high-frequency one:

q = 1
N

N∑
k=M

∣∣∣∣DFTk(o)
DFTk(i)

∣∣∣∣ (7.13)

where M is the frequency band where the Nyquist frequency is located.

7.4. Ranking nodes by average execution time
In order to pick the quickest graphs, we need to be able to rank them by
average execution time. To estimate the average case execution (ACET) time
of an audio graph, possibly degraded, we need to have an estimation of the
average execution of each kind of node in the graph and how to combine these
estimations for the whole graph. We suppose that the perturbations on the
execution time are independent for each node.

The ordering in execution times between two nodes, and thus on the whole
graph, does not depend on the input buffer size. Hence, we choose a specific
buffer size to perform all the measurements of execution time.

145

7. Offline optimization of audio graphs

7.4.1. Average execution time of individual nodes
We measure the average execution time Av of all the possible nodes that can
be part of the audio graph. We do not care about the exact execution time,
but rather of an ordering on the execution times between various versions of an
audio graph. In addition, the execution time increases monotonically with the
buffer input sizes, as shown on Figure 7.6. Thus, we only measure the average
execution of a given buffer size, as shown on Table 7.1. However, some nodes
can have a variable number of inputs and outputs, such has a mixer node.
We do not want to measure all possible combinations of inputs and outputs.
Experimentally, we find that:

Amixer(ninputs, noutputs) = ninputs × (Amixer(2, 1)−Amixer(1, 1))︸ ︷︷ ︸
cost of adding

+ noutputs × (Amixer(1, 2)−Amixer(1, 1))︸ ︷︷ ︸
cost of copying one buffer

(7.14)

where Amixer(1, 1) is a mixer with one input and one output, Amixer(2, 1) trans-
forms a stereo channel into a mono one by simply adding them, and Amixer(1, 2)
does not correspond really to a mixer but creates a stereo channel by copying
twice its input.

Oscillator Modulator Linear re-
sampler

Mixer 1-1 Mixer 2-1 Mixer 1-2

3.50 3.50 2.00 0.24 0.28 0.42

Table 7.1.: ACET for basic nodes for a buffer size of 256 samples on a MacBook
Pro with 16 GiB RAM and 3.10 GHz processor with macOS Sierra.
Execution times are in µs.

For the measurements, we use the rust benchmark library criterion [Hei19],
which performs outlier classification, bootstrapping and linear regression be-
tween sample sizes to get robust statistics on the runs, as shown on Figure 7.7.

7.4.2. Average execution time on a path with degraded nodes and
of the whole graph

Let G a graph and π = v1 · · · vn a path of G. We assume that the nodes
in the path execute at the same initial rate.5 We assume that the computation

5If a node v is executed twice as often as the other nodes, we can set A2
v = 2×Av and use

subsequently A2
v instead of av.

146

7. Offline optimization of audio graphs

64 25
6

51
2

1,
02

4

2,
04

8

4,
09

6
0

10,000

20,000

30,000

40,000

50,000

Buffer size

Ex
ec

ut
io

n
tim

e
(µ

s)

11.99 · buffer_size + 316.57

Figure 7.6.: Average execution time of an oscillator in function of the buffer
size on a MacBook Pro with 16 GiB RAM and 3.10 GHz processor
with macOS Sierra: powers of 2 from 64 to 4096 samples. We
show the 95% confidence intervals and a linear regression of the
average execution time.

147

7. Offline optimization of audio graphs

0

5

10

15

20

25

3 4 5 6 7
0

2

4

6

8

10

12

14

It
er

at
io

ns
×

10
3

D
en

sit
y
×

10
−

4
(a

.u
.)

Average time (µs)

PDF
Mean
Clean sample
Mild outliers
Severe outliers

Figure 7.7.: Probability density function of the execution time of an oscillator
with input buffer size of 256 samples. Outliers are probably due to
the non real-time guarantees of the mainstream operating system
on which the benchmark runs.

148

7. Offline optimization of audio graphs

nodes process all their incoming samples and hence, that the complexity of
their computations is at least linear. Therefore, we can bound execution times
of vk for k ∈ {2, . . . , n − 1}, the average execution time Avk

and the worst
execution time WvK for a downsampler with resampling factor 1

r :

A′
vk
≤1

r
×Avk

(7.15)

W ′
vk
≤1

r
×Wvk

(7.16)

We can deduce a bound on the whole execution times of the degraded path
between v1 and vn, π′ = v1 . . . v′

1 · · · vk . . . v′N · · · vn where
v′

1 and v′
n are respectively the downsampler and upsampler by r. We add the

overhead of the resamplers and so we have:

A′
π ≤ Av1 + Av′

1
+ 1

r
×

n−1∑
k=2

Avk
+ Av′

n
+ Avn (7.17)

that’s to say for the subpath v2 · · · vn:

A′
π ≤ Av1 + Av′

1
+ 1

r
Av2 ··· vn + Av′

n
+ Avn (7.18)

The execution time of graph G, on an uniprocessor, as the processing nodes
are executed sequentially, is:

AG =
∑

v∈VG

Av (7.19)

The execution time of the degraded graph G′ is:

AG′ =
∑

v∈VG′

Av

=
∑

v∈Vnon degraded

Av +
∑

v∈π′,π′∈Π′

Av −
∑

v∈π′
1∩π′

2,π′
1,π′

2∈Π′

Av

(7.20)

Π′ is the set of degraded paths in G′ and Vnon degraded is the set of non degraded
nodes in the graph. The last term of the right member expresses that some
paths can share nodes and that we do not want to count them several times.

Note that we take into account the execution times of the inserted nodes,
so that the optimization is overhead-aware. For small graphs with audio pro-
cessing nodes with an execution time of the same order of magnitude as the
resamplers, the execution time of a degraded graph can be actually larger than
the non-degraded one.

149

7. Offline optimization of audio graphs

The case of graphs with nodes with the same average execution times Let
G a graph with nodes v1, . . . , vn. We assume that all nodes have the same
average execution time A: for all i, Avi = A. We also assume that resamplers
have the same average execution time as the nodes in graph G.

If the graph is a line, with only one path v1 · · · v2 and that we
resample only one subpath of that path, between node vp and graph vq with
p ≤ q, Equation 7.17 yields, for degraded graph G′:

AG′ =
∑

i∈{1,...,p−1}∪{q+1,...,n}
Avi + Avd

+ Avu + 1
r

∑
i∈{p,...,q}

Avi (7.21)

where vd and vu are respectively the downsampler and the upsampler, Avd
and

Avu their average execution times, with resampling rate 1
r < 1 and r ∈ N\{0}.

We want:

AG′ < AG ⇐⇒ Avd
+ Avu + 1

r

∑
i∈{p,...,q}

Avi <
∑

i∈{p,...,q}
Avi

⇐⇒ r(Avd
+ Avu) < (r − 1)

∑
i∈{p,...,q}

Avi as r ∈ N∗

⇐⇒ 2rA < (r − 1)(q − p + 1)A

⇐⇒ 2r

r − 1 < q − p + 1
(7.22)

It means that we need to degrade at least nmin = 2r
r−1 nodes in one subpath

to have a degraded graph faster than the non-degraded graph, when all nodes
have the same average execution time. For r = 2 (i.e., downsampling by 2),
nmin = 4. For graphs with such execution times and fewer than 6 nodes,6 it is
not worth it to degrade. As nmin decreases and limr→+∞

2r
r−1 = 2, increasing

the downsampling rate still requires at least 2 nodes minimum on the degraded
subpath.

7.5. Experimental evaluation
In order to evaluate our theoretical models, we instantiate our models on a large
number of graphs and compare the models. However, there are no reference
benchmarks of audio graphs for IMSs. We decided to generate a huge number

6The source and the sink cannot be resampled, hence, a graph with 6 nodes has 4 degradable
nodes.

150

7. Offline optimization of audio graphs

of graphs, compute the theoretical execution time and quality of each graph,
and then measure actual the execution time and quality by executing each
audio graph. We then compare the theoretical values and the measured ones.

Audio graphs are executed faster-than-real-time and output a wav audio file.
For the potential sources of graphs that are not synthetisers, we either use an
audio file or generate white noise as inputs.

Audio graph genera-
tion

Audio graph execu-
tion.

Measurements

Theoretical quality
and exec time Comparison

Figure 7.8.: The experimental setup to evaluate the models of quality and ex-
ecution time.

7.5.1. Measuring execution time and quality
Execution time

To measure average execution times, we execute audio graphs on a large num-
ber of cycles using a simple prototype IMS we developed (See Appendix 3)
and average the execution times of the cycles, after discarding the first cycles
to take into account cache warming. The prototype IMS handles basic audio
effects such as oscillators, modulators, and some effects imported from Faust,
using the experimental Rust exporter of Faust, such as a transposer, a reverb
(Zita_Reverb) or a guitar emulation.

Quality

To measure the quality of the degraded graphs, we compare the audio signal
of the non-degraded graph G and the one of a degraded graph G′. Hence, we
need a psychoacoustic distance between two signals. To generate new audio
effects given audio examples in [San+18] , the authors compare the output x
of potential audio effects with the example signal y, by computing a Fourier
transform of ts time slices of the input signal and then taking the Euclidian

151

7. Offline optimization of audio graphs

distance d of the first largest p peak frequency bins at time slice t:

ts∑
t=0

p∑
i=0

d (bin(i, FFT(x)[t]), bin(i, FFT(y)[t])) (7.23)

The compared signals must be temporally-aligned.
Our distance aims at better quantifying how some frequencies are less per-

ceived than other ones. Given the spectrum of each signal, we compute their
constant-Q transform [Bro91], as we are interested in music signals. We then
use psychoacoustics curves such as A-weighting [Moo12] or ITU-468 [Ass86]
to account for the limited hearing range of human beings (up to 20 kHz) and
that the perceived loudness of sound depends on the frequency. For the actual
experiments, we have used A-weighting, which is both used for noise and pure
sounds and so is more suitable for musical contents. Finally, we compute the
L2 norm between the two resulting spectra xG and xG′ and normalize it so
that a distance of 0 leads to a quality of 1 and, of +∞, a quality of 0.

qmes
G′ = exp(−‖xG − xG′‖

nb_bins) (7.24)

where nb_bins is the number of spectral bins used in the constant-Q transform.

Equal-loudness contour ISO 226. Two sine waves of different frequencies
have the same loudness if they are perceived as equally loud by a young
non-hearing-impaired listener. Equal-loudness contours were first measured by
Fletcher and Munson [FM33]. The international standard ISO 226:2003 [Suz+03]
defines more precise loudness-equal contours, as shown on Figure 7.9. An equal-
loudness curve defines a level of phon, the measure of loudness.

A-weighting. A-weighting is based on the set of equal-loudness contours mea-
sured by Fletcher and Munson and is in widespread use to measure noise levels.
It is supposed to be used for low-level sounds (at 40 phon). The weighting func-
tion A(f), in dB units, which must be added to the dB spectrum, is defined
by, for frequency f :

RA(f) = 121942 × f4

(f2 + 20.62)
√

(f2 + 107.72)(f2 + 737.92)(f2 + 121942)
(7.25)

A(f) = 20 log10(RA(f)) + 2 (7.26)

152

7. Offline optimization of audio graphs

101 102 103 104

0

50

100

130

1010101010101010101010101010101010

2020202020202020202020202020202020

3030303030303030303030303030303030

4040404040404040404040404040404040

5050505050505050505050505050505050

6060606060606060606060606060606060

7070707070707070707070707070707070

8080808080808080808080808080808080

9090909090909090909090909090909090

Frequency (Hz)

So
un

d
pr

es
su

re
le

ve
l(

dB
)

Figure 7.9.: ISO 226-2003 equal-loudness contours, in phon, with frequency, in
Hz. For low frequencies, the sound pressure level must be higher
to be heard as loud as sounds with a mid-range frequency.

ITU 468. It is a standard [Ass86] from the International Telecommunication
Union that aims at measuring random audio noise. Contrary to A-weighting,
which was first developed for pure tones, and then used for noise, ITU 468 has
been specifically dedicated to noise measurement. It also includes a correction
for tone bursts, which are perceived differently than long noises. The amplitude
response ITU(f) for a given frequency f is:

RIT U (f) = 1.246332637532143 · 10−4 f√
(h1(f))2 + (h2(f))2 (7.27)

ITU(f) = 18.2 + 20 log10 (RITU(f)) (7.28)

where

h1(f) = −4.737338981378384 · 10−24 f6 + 2.043828333606125 · 10−15 f4

− 1.363894795463638 · 10−7 f2 + 1
h2(f) = 1.306612257412824 · 10−19 f5 − 2.118150887518656 · 10−11 f3

+ 5.559488023498642 · 10−4 f

153

7. Offline optimization of audio graphs

7.5.2. Comparing models and measurements
Graph generation

The graph generation is undertaken in two phases: first, generating the struc-
ture of the graph, and then picking an actual audio processor for each vertex
in a node dictionary.

Exhaustive generation for a given number of nodes. We enumerate all the
non-labelled weakly-connected directed acyclic graphs (WCDAGs) with n ver-
tices. Non-labelled entails that a → b and b → a are isomorphic, i.e. are the
same graphs. Given the set of vertices V = {0, . . . , n − 1}, we undertake the
following steps.

1. Compute the set of all the possible directed edges E between distinct ver-
tices in one direction. Edges are all the possible pairs of distinct elements
of the set of vertices V . The function pair that computes the set of all
such possible pairs from a list of elements can be defined inductively, as
pairs(ak, . . . , an) = ⋃

i∈{k+1,...,n}{(ak, ai)}∪ pairs(ak+1, . . . , an) It will en-
tail acyclicity, as we cannot create new edges that would go a an already
used vertex.

2. Compute P(E).

3. In a connected graph with n vertices, there are at least n− 1 edges (i.e.
chain graph). So we keep only subsets with n−1 edges of P(E), or more,
in our admissible set of set of edges, E.

4. Build the set D of DAGs from E, one graph per subset.

5. Filter D to remove non weakly-connected graphs, by picking a node and
then traverse the undirected version of the graph and counting the ver-
tices. If there are the same numbers as the total number of vertices in
the graph, it is weakly connected.

The set of all possible edges from n nodes has size:

(n− 1) + n− 2 + . . . 1 =
n−1∑
k=1

k = O(n2) (7.29)

Thus the powerset has size O(2n2). The operations that follow the power
generation reduce the number of graphs, so that upper bound remains correct.

154

7. Offline optimization of audio graphs

Random generation. As the increase in the number of graphs is over-exponential,
it becomes untractable when n > 6 in practice. For n = 7 for instance, there are
3 781 503 possible DAGs. Hence, for larger number of nodes, we randomly gen-
erate graphs. There are various random directed-acyclic-graph generation mod-
els [CSH19]: layer-by-layer methods, random generation of triangular matrices,
uniform random generation using a recursive/counting approach or Markov-
chain Monte Carlo, or derivation from randomly generated orders. We have
chosen to use an adaptation to directed acyclic graphs of a simple and flexible
model, the Erdős–Rényil [ER60] random graph model, in the family of methods
undertaking random generation through generation of triangular matrices. In
this model, a graph can be chosen uniformly at random from the graphs with
n nodes and M edges, or with n nodes and a given probability p of having an
edge between two nodes. In that case, all graphs with n nodes and M edges
have probability pM (1− p)(

n
2)−M . The larger p, the more edges. The average

number of edges is
(n

2
)
p.

We want to get weakly connected DAGs. According to Erdős and Rény,
if np > 1, the generated graphs have one large component, and other compo-
nents with no more than O(ln(n)) vertices. We proceed to a weakly-connected
component decomposition of the graph and keep the largest component. In
addition, we can select p > (1+ε) ln(n)

n for ε → 0, and the graphs will almost
surely (in the probabilistic meaning) be connected.

From Puredata patches. Audio graphs tend to exhibit a particular structure:
few incoming and outgoing edges per node, which leads to long chains in the
audio graph, with a few nodes with more inputs that typically mix signals, as
shown on Table 7.2. To take into account this structure, we parsed all the
Puredata patches of its tutorial and examples,7 i.e. 133 graphs. Puredata
patches can be nested: there can be subpatches inside a Puredata patch, as
shown on Figure 7.10. Inputs and outputs of the subpatches inside the subpatch
are denoted with special boxes: inlet, outlet for control, inlet~, outlet~
for audio signals, tabsend~ and tabreceive~ for arrays. We flatten the nested
structure into one big graph and keep the biggest connected component.

Node database. We maintain a database of possible audio processing nodes,
with their estimated execution time, their numbers of input ports and output
ports, and their possible control parameters. The database is a file with nodes
described with our custom audiograph format (see Appendix 1).

7They are included in the standard distribution of Puredata.

155

7. Offline optimization of audio graphs

(a) Main patch (b) fft-analysis subpatch.

(c) calculate-mask subpatch. (d) test-signal subpatch.

Figure 7.10.: A denoiser patch with multiple subpatches. fft-analysis (b)
and test-signal (d) are subpatches of the main patch (a),
whereas calculate-mask (c) is a subpatch of fft-analysis (b).

156

7. Offline optimization of audio graphs

i(v)v∈G,G∈G o(v)v∈G,G∈G maxv∈G i(v) maxv∈G o(v) nedges

1.1356 1.1356 2.2857 2.5274 16.0989

nvertices max{nedges} max{nvertices} dG max{dG}

14.1758 61 43 5.8571 13

Table 7.2.: Statistics on in and out degrees, number of edges, of nodes, di-
ameter of graphs extracted from Puredata patches. i(v)v∈G,G∈G
is the average in-degree; o(v)v∈G,G∈G is the average out-degree;
maxv∈G i(v) is the average max in-degree; maxv∈G o(v) is the av-
erage max out-degree. In a directed graph, and due to the hand-
shaking lemma, i(v)v∈G,G∈G = o(v)v∈G,G∈G = n i.e. edges

nvertices
.

All the parameters of a node, except the number of input and output ports
and the kind of processing, can be either given a value, or annotated with a
range, or with a finite set. The annotation also indicates if we want to randomly
pick a value among the possible values or generate a graph per value (for a
finite set) or with a sampling of the range. A range is notated [n,m] and a
finite set {e1, . . . , en}. Picking a value is notated with @pick, and enumerating
or sampling is notated with @all. In Code 7.1, we show the definition of a
modulator node that can take several frequencies as parameters and a volume
in the range [0, 1].

n1 =
{

kind : "mod",
in: 1,
out : 1,
freq : "@pick{20,440,1000,2500,6000}",
volume : "@pick[0,1]",
wcet: 3.5,

};

Code 7.1: A modulator node in the database of nodes. The frequency and the
volume can take several values. For frequency, the values are taken
from a finite set and, for volume, from a range.

From the graph structure to the audio graph. Given the structure of the
graph, for each vertex in it, we can pick (or generate all possible versions of)

157

7. Offline optimization of audio graphs

nodes with the same number of input ports as incoming edges and a number
of output ports between 1 and the number of outgoing edges. There may be
less output ports than outgoing edges because several outgoing edges can share
one output port, as as shown on Figure 7.11.

vertex

⇓
node node

Figure 7.11.: Port sharing entails that a vertex can be replaced by a node with
a smaller number of output ports. At the top, it is a vertex
with 3 outgoing edges. At the bottom, we show two possible
actual nodes generated from this vertex, one with 3 output ports,
and one with 2 output ports and the second port shared by two
outgoing edges.

Comparing rankings

After generating the audio graphs, the models of execution time in Section 7.4
and quality in Section 7.3 and the measurements in Section 7.5.1 make it
possible to compute two rankings of the set of audio graphs. The theoretical
one, σth, and the measured one, σmes, are two permutations of the same set
and we aim at computing how far from each other those two permutations are.

Distances. A first way to compare permutations is to use a distance, such as
Kendall’s τ distance, Spearman’s footrule distance, Cayley’s distance [FV86],
which counts the minimum number of transpositions that transforms one per-
mutation into the other, or Ulam distance [AD99], which counts the number
of delete, shift, insert operations.8 We do not detail Kendall’s τ distance and
Spearman’s footrule distance but rather the correlations they inspire.

Rank correlation. Rank correlation measures the relationship between rank-
ings of the same size, and the rank correlation coefficient measures the sim-

8It can be described as an edit-distance on non-repetitive strings.

158

7. Offline optimization of audio graphs

ilarity between two rankings. If the two rankings are in the same order, the
correlation coefficient is 1, i.e., the function that transforms the values of one
of the rankings into the values of the other ranking is monotonic. If it is
−1, the order is reversed. If the coefficient is 0, the rankings are completely
independent.

Kendall’s τ correlation coefficient [Ken48]. It is linked to the number of
inversions9 needed to transform one ordering into the other one. For pairs of
observations ((xi, yi))i∈{1,...,n}, τ is defined as:

τ = Nc −Nd

n(n− 1)/2 (7.30)

where Nc is the number of concordant pairs, defined by:

Nc = |{(i, j) | (xi > xj ∧ yi > yj) ∨ (xi < xj ∧ yi < yi), i, j ∈ {1, . . . , n}}|

and Nd is the number of discordant pairs, with:

Nd = |{(i, j) | (xi > xj ∧ yi < yj) ∨ (xi < xj ∧ yi > yi), i, j ∈ {1, . . . , n}}|

Spearman’s ρ correlation coefficient [Dan+78]. It is linked to the dis-
tance in positions of a same graph in the two orderings. For pairs of observa-
tions ((xi, yi))i∈{1,...,n} such that all n ranks are distinct integers, ρ is defined
by:

ρ = 1− 6 ∑n
i=1 d2

i

n(n2 − 1) (7.31)

where di is the difference between the two ranks xi and yi of each observation.

Other measures

We also collect the worst and best execution times, the worst qualities, and
how many versions are faster than their non-degraded graph.

7.5.3. Results
The resamplers in use for these experiments are the linear resamplers, and we
only resample by 2. The graphs are executed with an initial buffer size of
512 samples and a sample rate of 44 100 Hz, for 10000 cycles, which amounts

9If we have two elements at positions i and j, i < j in an ordering, σ is an inversion if
σ(i) > σ(j) and only those elements are swapped.

159

7. Offline optimization of audio graphs

to about 116 s of audio. We use two different databases of nodes: one where
the execution time of nodes is the same order of magnitude as the one of a
resampler, and one where the execution time of nodes is one order of mag-
nitude smaller than the execution time of a resampler, in order to illustrate
Equation 7.22. We use the heuristic quality measure of Section 7.3.1.

On one graph

We present the results for the 5-node graph of Figure 7.12a, which has 3 possible
degraded versions, as shown on Figure 7.12. The maximum number of inserted
resamplers is 3, and the minimum number is 2. The execution times and
qualities are shown on Figure 7.13. The model, on Figure 7.13a, somewhat
accurately mirrors the measured execution times on Figure 7.13b. The non-
degraded graph has the best quality, and here, it also has the best execution
time, because the nodes of the graph are basic nodes with short ACET, and so
the decrease of execution time of the nodes on resampled paths is squandered
by the overhead of adding resamplers.

Exhaustive enumeration

We perform an exhaustive enumeration of all the 838 graphs with 5 nodes
using the dictionary of basic nodes. The average number of versions of a non
degraded graph (including the non-degraded graph) is 3.658± 2.067 and there
are 57 graphs without degraded versions. The rank correlations between the
model data and the measures for quality and cost are shown on Figure 7.14 with
histograms. Most of the correlations are close to 1. When the non-degraded
graph has no degraded version, the correlations are not defined and that is
why the cumulative population on the histograms is less than 838. Only 33
degraded graphs (i.e, 2% of the graphs) are faster to execute than their non-
degraded versions. Indeed, the overhead of the resamplers here is too much
compared to what is gained by halving the buffer sizes on some branches.

On the contrary, when using a dictionary of slow nodes, 275 graphs, i.e.,
33%, have at least one degraded version faster than the non degraded version.

Large random graphs

We generate 100 random graphs with the dictionary of basic nodes with up
to 10 nodes using the Erdős–Rényil model (see Section 7.5.2) with probability
0.3, which ensures that the graphs have one big component but not too many
edges. If there are too many degraded versions, which would be too long to

160

7. Offline optimization of audio graphs

mod

mod

mix

osc osc

(a) Non-degraded graph

mod

2

mod

0.5

mix

osc osc

(b) Degraded graph

mod

2

mod

mix

0.5

osc

0.5

osc

(c) Degraded graph

mod

mod

2

mix

0.5

osc

0.5

osc

(d) Degraded graph

Figure 7.12.: The degraded graph 7.12a and all its degraded versions 7.12b,
7.12c and 7.12d. The resamplers are filled in light grey and an-
notated with their resampling ratio.

161

7. Offline optimization of audio graphs

0.8 0.9 1
14

16

18

20

0

1

2

3

Quality

C
os

t
graph

(a) Cost and quality model.

0.94 0.96 0.98 1

40

50

0

1
2

3

Quality

C
os

t
(m

s)

graph

(b) Measured cost and quality.

Figure 7.13.: Execution time and quality for the graphs obtained from the
graph 7.12a, according to the models and according to the mea-
surements. Graph 0 is the non-degraded graph. Graph 1 is
(7.12b); graph 2 is (7.12c); graph 3 is (7.12d).

−1–
−0.8

−0.8
–−

0.6

−0.6
–−

0.4

−0.4
–−

0.2

−0.2
–0
0–

0.2

0.2
–0

.4

0.4
–0

.6

0.6
–0

.8
0.8

–1
0

200

400

600

−1 1

Correlation

Po
pu

la
tio

n

Kendall Tau
Spearman

(a) Correlations between the cost
model and the measured cost

−1–
−0.8

−0.8
–−

0.6

−0.6
–−

0.4

−0.4
–−

0.2

−0.2
–0
0–

0.2

0.2
–0

.4

0.4
–0

.6

0.6
–0

.8
0.8

–1
0

100

200

300

−1 1

Correlation

Po
pu

la
tio

n

Kendall Tau
Spearman

(b) Correlations between the quality
model and the measured quality

Figure 7.14.: Histogram of correlations for cost in 7.14a and quality in 7.14b
for exhaustive enumeration of 5-node graphs, using Kendall Tau
and Spearman correlations.

162

7. Offline optimization of audio graphs

test, we only generate a subsample of size 65.10 The histograms of correlations
are shown of Figure 7.15. They show that the model execution time and the
measured execution times are relatively well-correlated. For quality, the results
are less good, as there are lots of correlations close to 0, but mainly strictly
positive. The average number of versions is 23.26. As we also use basic nodes
here, there are only 15 non-degraded graphs for which their degraded version
is faster, whereas with slow nodes, there are 45 such graphs.

On Figure 7.16, we show a plot of the slowest version of a non-degraded graph
against the fastest version. We use two different linear regression methods
robust to outliers, Siegel [Sie82] and Theil-Sen [Sen68; The92]. The first one
yields a 1.65 coefficient and the second one 2.34 , with a 90 % confidence
interval between 1.54 and 3.07. Those values are close to 2, the value we
expect when fully downsampling the audio graph by 2. The fastest version is
in practice slower than the slowest divided by 2 as the sources and sinks are
not resampled and the resamplers add some overhead.

−1–
−0.8

−0.8
–−

0.6

−0.6
–−

0.4

−0.4
–−

0.2

−0.2
–0
0–

0.2

0.2
–0

.4

0.4
–0

.6

0.6
–0

.8
0.8

–1
0

10

20

30

40

−1 1

Correlation

Po
pu

la
tio

n

Kendall Tau
Spearman

(a) Correlations between the cost
model and the measured cost

−1–
−0.8

−0.8
–−

0.6

−0.6
–−

0.4

−0.4
–−

0.2

−0.2
–0
0–

0.2

0.2
–0

.4

0.4
–0

.6

0.6
–0

.8
0.8

–1
0

10

20

30

−1 1

Correlation

Po
pu

la
tio

n

Kendall Tau
Spearman

(b) Correlations between the quality
model and the measured quality

Figure 7.15.: Histogram of correlations for cost in (7.15a) and quality in (7.15b)
for 10-node random graphs, using Kendall Tau and Spearman
correlations.

10The non-degraded graph plus a not too large power of 2, which comes from bounding the
number of degraded graphs by the size of the powerset.

163

7. Offline optimization of audio graphs

0 20 40 60 80
0

200

400

600

Quickest version (ms)

Sl
ow

es
t

ve
rs

io
n

(m
s)

Siegel
Theil-Sen

Figure 7.16.: Quickest and slowest versions for each non-degraded graph. We
perform two linear regressions using methods robust to outliers,
Siegel estimator [Sie82] and Theil-Sen estimator [Sen68; The92].

With graphs from Puredata

We use 133 Puredata patches from the Puredata tutorials as the structure
for the generated audio graphs and nodes from the dictionary of basic nodes.
We only keep graphs with 4 nodes or more, which amounts to 102 graphs.
In average, there are 38.88 degraded versions11 for a non-degraded graph. 48
graphs have degraded versions that are faster than their non-degraded graph.
On average, 8 degraded versions, i.e., 18.7% of the degraded versions, are faster
than the non-degraded graph. The correlations between models and measures
are shown on Figure 7.17.

Discussion

We evaluated the models and the algorithm on audio graphs that were exhaus-
tively enumerated for graphs with few nodes, randomly generated for larger
graphs, and generated from Puredata patches at last. The execution time
model is quite accurate. The quality model is well correlated for small graphs,
has to be improved on large random graphs and shows promising results for
graphs generated from real Puredata patches.
11We remind that we limit the number of degraded versions to 65 maximum when we do

random sampling because otherwise, it would take too long to test. See Section 7.4.2.

164

7. Offline optimization of audio graphs

−1–
−0.8

−0.8
–−

0.6

−0.6
–−

0.4

−0.4
–−

0.2

−0.2
–0
0–

0.2

0.2
–0

.4

0.4
–0

.6

0.6
–0

.8
0.8

–1
0

10

20

−1 1

Correlation

Po
pu

la
tio

n

Kendall Tau
Spearman

(a) Correlations between the cost
model and the measured cost

−1–
−0.8

−0.8
–−

0.6

−0.6
–−

0.4

−0.4
–−

0.2

−0.2
–0
0–

0.2

0.2
–0

.4

0.4
–0

.6

0.6
–0

.8
0.8

–1
0

10

20

30

−1 1

Correlation

Po
pu

la
tio

n

Kendall Tau
Spearman

(b) Correlations between the quality
model and the measured quality

Figure 7.17.: Histogram of correlations for cost in 7.17a and quality in 7.17b for
graphs generated from Puredata patches, with at least 4 nodes,
using Kendall Tau and Spearman correlations.

We observe that large graphs without too many ramifications and with nodes
with execution times at least an order of magnitude higher than the execution
time of a resampler take advantage the most of the resampling optimization.
Actual audiographs from IMSs, such as the ones from Puredata, have actually
these characteristics. The heuristic quality measure is arbitrary. We could
organize listening tests, but it would be impractical considering the huge size
of the set of possible graphs and possible degraded graphs. We should rather
use a more precise model based on measurements as proposed in Section 7.3.1.

165

8. Adaptive overhead-aware
scheduling of audio graphs
by resampling

The offline optimization techniques presented in Chapter 7 can be adapted to an
online setup, where an audio graph executes in real time and the degradations
are computed or applied on the fly, when the processor becomes overloaded and
a deadline miss is predicted. The optimization computations need to be quick,
as the short deadlines do not let enough time to do an exhaustive exploration
for instance. We present techniques that are used in real-time systems for
quality adaptation, and especially in multimedia systems in Section 8.1. In
Section 8.2, we show how to adapt the degrading strategies can be used in
the real-time case. In Section 8.3, we explain how an audio graph is executed
during one cycle and how we estimate if a deadline is likely to be missed. The
results are presented and discussed in Section 8.4. This work originates from
our article [Don18].

8.1. Real-time systems and adaptation
Adaptive scheduling for hard or soft real-time systems has been dealt with by
removing some tasks or by degrading them, like the approximate programming
paradigm (see Section 7.1) or mixed criticality. Another way of dealing with
tasks competing for resources is resource reservation.

In multimedia systems, a basic strategy [Liu+91] related to mixed criticality
consists of dividing tasks between a mandatory and an optional part, which can
be discarded in case of a processor overload. In [SN13], a task has two versions:
P1, with a good quality of service but that takes an unknown duration to
complete, and P2, which has a bad quality of service but has a known execution
time. Two strategies are used to choose between the two versions: first chance
and last chance. For first chance, as soon as a deadline miss is likely to happen
for P1, P1 is aborted in favour of P2. In last chance, P2 is started first, and if

166

8. Adaptive overhead-aware scheduling of audio graphs by resampling

there is enough time before the deadline, P1 is executed while the results of P2
are kept in case of P1 exceeding the deadline. Instead of switching to another
version of the task, with a worse quality but a predictable execution time,
in [SN13], some tasks can be selected to be totally aborted. Tasks are given
an importance value. In case of overload, tasks with the least importance are
killed until there is no more overload. To handle the termination of such tasks
gracefully, tasks have two modes, a normal mode and a survival mode, with
an abortion or an adjournment property, e.g., freeing memory, saving partial
computations to carry on later.

Real-time scheduling with this strategy does not entail too much overhead
but does not handle dependencies between tasks, in particular for quality esti-
mation.

Some mixed criticality approaches address graph-based tasks for mixed-
criticality systems, such as in [EY16]. However, the dependencies between
tasks are functional dependencies: all tasks in a graph have the same crit-
icality, but it is possible to switch to other graphs with another criticality.
Criticality levels are not like qualities that would depend on the topology of
the graph.

In resource reservation [Årz+11], part of the processor computation resources
is reserved to some tasks. For instance, in the case of multimedia, video tasks
and audio tasks could have different reservations, as audio tasks are more real-
time than video ones. Nevertheless, resource reservation requires a dedicated
scheduler, which is not often present in mainstream operating systems. It does
not deal with similar tasks linked by dependencies, such as in a graph, either.

The (m, k)-firm model [HR95] deals with qualit of service (QoS) by stating
that at least m out of any k consecutive tasks must meet their deadlines. This
model is used for streams and is well suited for multimedia, for instance for
video, where some frames can be discarded without losing too much quality.
However, it does not apply in our case, as we do not consider independent
streams but a graph of audio streams, the quality of which depends on their
position in the audio graph.

Dynamic voltage scaling (DVS) for scheduling modifies the frequency of
the processor(s) and makes it possible to optimize the energy consumption.
In [But02], in case of a change in the processor speed, the period of tasks in the
system is reduced using the elastic approach [But+02], where the utilization
of tasks is seen as a linear spring system where a force is applied. In [LZ09], it
is used in the context of high-performance computing systems for applications
with tasks with precedence constraints. However, the energy consumption of a
task depends only on the frequency of the processor when the task is executed.
It means that the quality is reduced in the same way for all the tasks and is

167

8. Adaptive overhead-aware scheduling of audio graphs by resampling

global. In an audio graph, the quality depends on the quality of the inputs and
so is local.

8.2. Resampling strategies suitable for real-time
scheduling

In a real-time context, we want to detect that a graph is likely to miss its
delivery deadline, i.e., the processor is overloaded, and to degrade it while
keeping the quality as high as possible. We also have to take into account the
time overhead to find a worthy degraded version, and hence we must aim at
fast strategies. We present two strategies to adapt the graph:

• Use pre-computed degraded versions to swap the graph with;

• Degrade all or part of the remaining nodes to execute in a cycle with a
heuristic.

Using pre-computed degraded versions

In Chapter 7, we presented strategies to enumerate and choose degraded ver-
sions of a graph based on the quality or the execution time of the graph. We
want to decrease the number of graphs. As the execution times result from
measurements, it is likely that all graphs have different execution times, so we
first cluster the graphs by execution times. For that, we use a 1-dimensional
version of k-means, called ckmeans [WS11], where the number of clusters k can
be estimated within a provided range, with a complexity of O(kn log(n)) for n
versions to cluster (and O(nk) if they are already sorted by execution times).

Then we can compute the Pareto front (see Section 7.2.2) of execution times
and quality of the clusters, i.e. for each cluster, we keep the graph with the
best quality, as pictured in Figure 8.1. We finally get a set G of representative
degraded graphs.

Swapping graphs. As we swap whole graphs, when we detect a possible dead-
line miss, we can only use a degraded version starting from the next cycle. An
issue is that the average execution times A we get are measured for a given
buffer size m and a given system. We first do a rough approximation of the
execution time for another buffer size m′ as A′ = m′

m × A. We then pick
the graph that has the maximum quality while respecting the deadline d i.e.
Gpick = argmaxG∈G {qG |AG < d}. If the set of such graphs is empty, we pick
the graph with the minimum execution time, even though its execution time

168

8. Adaptive overhead-aware scheduling of audio graphs by resampling

10 20 30 40
0.5

0.6

0.7

0.8

0.9

1

Execution time (ms)

Q
ua

lit
y

Pareto front

Figure 8.1.: Pairs of execution time and quality for degraded graphs and their
non-degraded graph. A red ellipsis is a cluster of graphs where the
clustering is done on the execution time axis. In each cluster, we
pick the best quality graph, which gives us an approximate Pareto
front with four graphs.

169

8. Adaptive overhead-aware scheduling of audio graphs by resampling

exceeds the deadline. If the estimation of the execution time of the degraded
graph was not accurate, and we still miss the deadline, we also pick the graph
with minimum execution time for the next cycles.

Using heuristics

We want to be able to degrade the graph in the middle of an audio cycle.
Yet, it means that we do not want to and cannot degrade the nodes that have
already executed. We design two heuristics:

• progressive strategy, with a backward traversal from the sinks, inspired
by the offline heuristics in Section 7.2.4;

• exhaustive strategy, which degrades all remaining nodes.

In the progressive strategy, we start from one of the output nodes, and we
traverse the graph backwards and see how inserting a downsampling node
on a path going to this output node would change the estimated remaining
execution time, until the estimation of remaining execution time is lower than
the remaining time before the deadline, as shown in Figure 8.2. Other branches
can be explored if it is not enough. Then the downsampling and upsampling
nodes are inserted on the paths chosen to be resampled.

However, exploring the branches is O(n) in the number of nodes of the graph
hence is costly and can create too much overhead. The exhaustive strategy
addresses that by not exploring the graph but rather degrading brutally all the
remaining nodes, by downsampling all inputs to remaining nodes if they are
not already downsampled. This strategy has a complexity of O(1).

For each strategy, we estimate the execution time of the remaining node if
using the degraded version. If that estimated degraded execution time entails
a deadline miss, we consider it is not worth it degrading.

Transient and permanent overload

Informally, a transient overload of the processor happens when the processor
is overloaded for less than k cycles, whereas a permanent overload occurs when
it is overloaded for more than k cycles. Here, k is fixed in advance manually.

If a possible deadline miss is detected during the execution of the graph, it
is a sign of a possible transient overload. In that case, we want to degrade
the graph while executing it, at the middle of a cycle. Therefore, we use the
heuristics. On the contrary, in case of permanent overload, we do not need
to degrade during the execution of an audio cycle, hence we rather use a pre-
computed degraded version.

170

8. Adaptive overhead-aware scheduling of audio graphs by resampling

Osc1 Osc2 OSc3

Mixer

Record

SideChain

Effect

Mod1

Mod2

Output

321 µs

20 µs 100 µs

53 µs

60 µs

50 µs

25 µs

47 µs

Executed
To degrade Deadline : 2346 µs

Figure 8.2.: The progressive strategy in action. The dashed nodes have already
been executed. It is the turn of the Mixer node (in blue) to be ex-
ecuted, but the estimated remaining time exceeds the remaining
allocated time budget and would entail a deadline miss. We tra-
verse backwards from the Output and find out that degrading the
red branch is enough not to miss the deadline.

171

8. Adaptive overhead-aware scheduling of audio graphs by resampling

8.3. Execution of the audio graph and prediction of
deadline misses

A schedule of the nodes to execute has been computed using a topological sort.
As shown in Algorithm 5, we execute the nodes in order of the schedule; we
check before executing each node in the schedule if the elapsed time plus the
estimated remaining time, computed using the model in Section 7.4.2, does not
exceed the remaining time budget, risking a deadline miss. The environment
provides the relative deadline. If the estimated remaining computation time
exceeds it, we use one of the heuristics in chooseNodes (see Algorithm 5).
This function does not generate a new graph but rather tags the nodes to be
degraded and especially the first and last nodes of each path to be degraded.
Again, to prevent adding too much overhead, we do not insert full resampler
nodes but rather directly downsample and upsample. After each node, we
update our estimation of the average execution time of the node. At the end of
a cycle, we send some monitoring information to a recorder thread, which saves
it on the disk for further analysis. We made sure to use a lock-free queue to
send to the monitoring thread not to disturb the real-time audio computations.

Execution time estimation We measure the execution time of each node
of the audio graph as well as the time to copy data in the audio channels
and the time used by a resampler for each cycle. We update the average
of those execution times at the end of each cycle, using a numerically stable
expression [Knu97] of the mean:

Av(n) = Av(n− 1) + Tv(n)−Av(n− 1)
n

where Av(n) is the average execution time of node v computed up to cycle n
and Tv(n) is the execution time of the node at cycle n. Using the mean for the
whole execution assumes that the execution time of the nodes does not change
too much, but that what changes is the relative deadline of the audio callback.
We could also use a moving average or an exponential moving average to take
more into account transient changes of node execution times.

8.4. Results and discussion
There are no commercial benchmarks of audio graphs of IMSs nor any reference
benchmarks. Besides, audio graphs of pieces for IMSs are usually not shared

172

8. Adaptive overhead-aware scheduling of audio graphs by resampling

Algorithm 5 Execution of the graph for one cycle, possibly starting degra-
dation with the heuristics at the middle of the cycle. node is the function
that performs the sound processing of node. “buffers” is a set of buffers used
as input and output buffers. Heuristics compute the set of nodes to degrade
by updating flags associated to the node in chooseNodes. node.firstToDegrade
indicates that the current buffer must be downsampled before performing the
node processing, and node.lastToDegrade, that the buffer after must be up-
sampled after the node processing.
Require: S a schedule, G an audio graph with associated execution times, d

deadline
expectedRemainingTime ←0
buffers ←CallfromSoundcard
while S is not empty do

node ←pop_first(S)
update(expectedRemainingTime)
if expectedRemainingTime ≥ 0 then

chooseNodes(G, d, expectedRemainingTime) . Heuristics to find
the nodes to degrade

end if
if node.firstToDegrade then

downSample(buffers)
end if
buffers ←node.process(buffers)
if node.lastToDegrade then

upSample(buffers)
end if
update performanceCounters

end while
toSoundcard(buffers)

173

8. Adaptive overhead-aware scheduling of audio graphs by resampling

as open source, as the audio graph is considered by the composers to be a part
of a score, which is sold.

Hence, we use a real-time version of the basic IMS we have developed (see
Appendix 3) to generate typical and random audio graphs to evaluate the
heuristics, in a similar way of Chapter 7. We also generate graphs with patho-
logical shapes, i.e., chains and combs.

Setup. The online adaptive heuristics have been implemented in a prototype
in Rust, which uses a Rust version of Portaudio [BB01a] for the audio callback.
Resampling is performed with libsamplerate.1 This is an open-source library
that makes it possible to downsample down to a 256 ratio, and to upsample up
to a 256 ratio. The sampling rate can be changed in real time. The library pro-
vides five resamplers, classified by decreasing order of quality: best, medium,
faster sync resamplers (as in [SG84]), zero-order hold resampler, and a linear
resampler. Experiments for random graphs have been run on a Mac Book Pro
with an Intel Core i7 processor at 3.1 GHz with 16 GiB RAM. Experiments
for the pathological graphs were run on a MacBook Pro with an Intel Core i7
processor at 2.6 GHz, with 8 GiB.

Experiments. We evaluated the two heuristics, the total and the progressive
strategies. For the progressive strategy, we limit the backward traversal to
only one branch here. For each adaptive strategy, total and progressive, we
randomly generate audio graphs with a fixed number of nodes, n, using four
types of simple audio processors: a sine oscillator, a sine modulator, a low-pass
filter and a mixer. An oscillator is a source, and a modulator has one input and
one output, as the low-pass filter. A mixer has an arbitrary number of inputs
and one output. We generated graphs with 10, 400 and 1000 nodes. We chose
only two sample rates for our finite set of sample rates: the sample rate of the
soundcard, and half of it. The buffer size is 64 and the signal is mono. Each
audio graph is executed for 500 cycles, i.e., for 500 invocations of the audio
callback. We chose a fixed number of cycles and not a fixed duration, as the
time budget allocated to the audio callback can change.

We also evaluated the strategies on pathological graphs, with specific shapes:
graphs with only one path, as in Figure 8.3b, and comb-shaped graphs, with
only one-node paths from input to output, as in Figure 8.3a. In the first case,
inserting a downsampler decreases all the following nodes. In the second case,
we have to insert resamplers for all remaining paths, and so it exhibits the
most possible overhead.

1http://www.mega-nerd.com/SRC/

174

http://www.mega-nerd.com/SRC/

8. Adaptive overhead-aware scheduling of audio graphs by resampling

Osc1 Osc2 · · · Oscn

Mixeur

(a) Comb-shaped audio graphs with n oscillators.

Osc1

M1

...

Mn

(b) Chain audio graph
with one oscillator fol-
lowed by n modula-
tors.

Figure 8.3.: Two pathological kinds of graphs used for the online experiments.

Results. The results on the experiment with random graphs are shown in
Table 8.1. From 400 nodes, the processor starts to be overloaded and the
graph is degraded. In case degradation is decided, the total strategy performs
worse on average than the progressive strategy: the time budget is lower and
even negative for the total strategy. The total strategy brutally degrades all
the remaining nodes to be executed. It inserts many more resamplers than the
progressive strategy, about 5200 against 438, nodes for instance.

On the contrary, the progressive strategy is smarter but has much more
variability in the time budget: it arbitrarily picks one parent to degrade when
traversing the audio graph backwards. For 1000 nodes, the average deadline
of the audio callback is 18 661 µs and the duration of choosing nodes, 6813 µs,
so about 36% of the allocated callback duration.

For the pathological graphs, we show the results for the chain graphs and the
exhaustive strategy on Figure 8.4. We tested a chain with 2000 modulators
and another one with 3000. We also compared it with a comb graph with
2000 oscillators, in Figure 8.5, however, for 3000 modulators, the overhead of
resampling the 2000 paths was too much to get meaningful results. For the
graph with 2000 modulators, even though some cycles require degradation,

175

8. Adaptive overhead-aware scheduling of audio graphs by resampling

the time budget is enough not to miss a deadline.2 For the graph with 3000
modulators, the degradation strategy prevents missing deadlines most of the
time.

We started investigating the heuristics before working on the offline opti-
mization that can pre-compute degraded versions of the graphs. Indeed, it
appears that the overhead of the heuristics is usually too much for a real-time
context: they insert too many resamplers, or they are smarter but take time
to compute.

2It is surprising that we managed to execute more nodes on the less powerful MacBookPro,
compared to the experiments with random graphs on a more powerful MacBookPro. We
think it is due to the non-real time nature of the OS and the difficulty to reproduce the
state of an OS, with all its background services, frequency scaling of the processor and so
on.

176

8. Adaptive overhead-aware scheduling of audio graphs by resampling

Number of nodes Mode Degraded cycles Number of edges Time budget Remaining time

10 EX 0.00 13.87 18 688.88± 48.61 3.26± 2.06
10 PROG 0.00 13.43 18 684.56± 46.13 3.16± 1.96
400 EX 2.24 23 961.39 9968.46± 1766.89 199.60± 1262.25
400 PROG 10.35 23 946.02 9241.36± 2944.51 602.82± 2816.39
1000 EX 500.00 149 883.01 −45 425.66± 8753.99 19 192.02± 1976.93
1000 PROG 500.00 149 771.73 −52 402.94± 13 086.58 26 185.41± 1827.86

Number of nodes Mode Choosing duration Number of resamplers Degraded nodes

10 EX 0.00± 0.00 0.00± 0.00 0.00± 0.00
10 PROG 5.33± 4.04 0.00± 0.00 0.00± 0.00
400 EX 0.00± 0.00 5199.50± 3204.51 55.08± 41.44
400 PROG 921.04± 1016.85 438.24± 638.27 71.55± 46.84
1000 EX 0.00± 0.00 53 968.99± 9416.71 773.52± 72.17
1000 PROG 6813.13± 2489.17 22 448.03± 6320.89 748.36± 61.60

Table 8.1.: Results of the experiments. Each line corresponds to 100 random
graphs with the same number of nodes. EX refers to the total
heuristics and PROG to the progressive heuristics. All durations
are in µs and when it is relevant, with their standard deviation.
Degraded cycles is the average number of times a cycle has been
degraded during the 500 cycles of a run. Time budget is the time
budget that remains at the end of the execution of the callback.
If it is negative, it means that the deadline has been missed by
this duration. Remaining time is the time that is estimated to re-
main before finishing execution for one audio cycle when we first
decide to degrade. Choosing duration is only relevant to the pro-
gressive strategy: it is the time to decide and choose the nodes
to be degraded. The number of resamplers is the number of in-
serted resamplers during a degraded cycle. If it is strictly positive,
it means that there were degraded cycles. Degraded nodes are the
average of the number of degraded nodes per degraded cycles.

177

8. Adaptive overhead-aware scheduling of audio graphs by resampling

0 200 400 600 800
−2,000

0

2,000

4,000

cycle

µ
s

2000 Modulators

0 200 400 600

0

2,000

4,000

6,000

cycle

µ
s

3000 Modulators

Deadline Expected remaining time
Time budget Degraded

Figure 8.4.: Results for the chain graph of Figure 8.3b, with 2000 modulators
and 3000 modulators respectively, using the exhaustive strategy.
When the time budget is negative, it means there was a deadline
miss. The expected remaining time is the estimated time for the
cycle if a degradation decision is taken. Graphically, a degradation
must occur if the estimated remaining time is above the deadline.

178

8. Adaptive overhead-aware scheduling of audio graphs by resampling

0 200 400 600 800

0

2,000

4,000

6,000

cycle

µ
s

2000 Modulators

Deadline Expected remaining time
Time budget Degraded

Figure 8.5.: Results for the comb graph of Figure 8.3b, with 2000 modulators
using the exhaustive strategy. When the time budget is negative,
it means there was a deadline miss. The expected remaining time is
the estimated time for the cycle if a degradation decision is taken.
Graphically, a degradation must occur if the estimated remaining
time is above the deadline.

179

9. Conclusion and
perspectives

9.1. Conclusion
That work was undertaken in the Repmus group at Ircam, in the team where
Antescofo was born, and at Inria Paris. The idea of optimizing by resampling
was born during a stay at the University of Salzburg in Austria with Prof.
Christoph Kirsch.

Our work has drawn up to two directions related to the concept of precision
or approximation in computing signals in audio graphs in IMSs and how it
entails a trade-off between precision and performance, how to handle control
and multiple rates, and how to force some rates by resampling to decrease the
execution time of some processing.

At the end of this journey, I can draw some conclusions on the work and
experiments carried out in this research.

Control and multiple rates. A first imprecision dwells in how multiple rates
for signals are handled in IMSs: both periodic rates, usually corresponding to
audio, whose timings are predictable, and aperiodic rates, for control events,
for which the elements of the signal arrive at unpredictable instants. These
controls events are not necessarily taken into account at the exact physical
instant when they arrive. The audio signal is sampled and therefore, the control
is possibly applied at the next sample. Moreover, often, audio samples are
grouped and processed into blocks, and in that case, the control is applied
to the next block. To better characterize how predictable and unpredictable
multiple rates are, we presented a type system and a denotational semantics
in Part I with timestamped buffers of samples as first-class citizens, which
we compare with other formalizations of IMSs. The precision is represented
by how much a buffer or a sample is delayed, i.e., the latency, compared to
when the sample arrived in the audio graph. There, we have tackled buffering
latency. The type system distinguishes how a node can deal with a control

180

9. Conclusion and perspectives

arriving at the middle of a buffer, at the next sample, or at the next buffer.
We do not handle sub-sample accuracy. We do not describe how control can
be smoothed either, as we reckon that it should be the responsibility of an
explicit node smooth.

Optimization by resampling. Another imprecision resides in how fine-grained
the sampled representation of a signal is. The more high-frequency content
there is in the signal, the more fine-grained it must be, or in more technical
terms, the higher the sample rate must be, which hints at how we degrade the
signal, by resampling. Given an audio graph, we generate degraded versions of
it that may decrease its execution-time. In Chapters 7 and 8, we actually deal
with the processing latency. We describe an execution time model based on
the average execution time and a structural quality model for an audio graph,
where we describe how to combine qualities from individual nodes into paths
of the audio graph. We show how we can choose subgraphs to degrade in the
graph to optimize for quality or execution time under a time or quality con-
straint. The models are evaluated in experiments by enumerating the degraded
versions and measuring empirical execution time and quality.

The execution-time model, based on the average execution time, is quite
accurate but our quality model, which is structural but does not dive deeply
into assessing the quality of an individual node, is less accurate for large graphs.

We also designed heuristics to explore a relevant subset of the degraded
graphs but they need more evaluation. We use the optimized graphs in a real-
time context to switch to them in case of overload, as well as heuristics that can
degrade a graph at the middle of an execution cycle. The optimized graphs
are useful in case of permanent overload, whereas we thought the heuristics
would be more relevant for transient overload. However, experimental results
show that these heuristics are still costly in a real-time context and we need
to pursue experimenting with the swapping to the degraded versions.

Another obstacle to optimizing by resampling is that composers and musi-
cians might be afraid of degrading their music, even though it is not audible.
Therefore, the optimization will be probably more embraced when degrading
from high sample rates, from 96 kHz to 48 kHz for instance.

An audio extension for Antescofo. We developed an audio extension to An-
tescofo which beforehands had to delegate audio processing to its host, such
as PureData or Max/MSP. The extension is high-level; it aims at connecting
heterogeneous nodes coded in Faust or in C++, not at coding directly audio
processing nodes in Antescofo. Connecting nodes becomes a first-class citizen

181

9. Conclusion and perspectives

reaction in Antescofo and as such, the audio graph can be reconfigured during
execution as a reaction to some events, i.e., we can change the connections
between the audio nodes. However, nodes and graphs are not yet totally in-
tegrated into the programming model of Antescofo. For instance, nodes and
audio graphs are not Antescofo values, and so we cannot store them in an
array or a map. It makes it more difficult to programmatically build a graph
and add new nodes during execution.1 The audio extension handles multiple
rates, for instance, for FFT analysis or video processing, which we demonstrate
with a speed detector that leverages the OpenCV C++ library. Antescofo, as
a complex scenario description language gives information about when some
control can happen. For some kinds of control curves, the control can be
sample-accurate. However, the splitting semantics of elastic input stream
nodes is yet to be implemented.

Tooling. In addition to the development of an audio extension to Antescofo,
this work led to two tools to optimize an audio graph:

• ims-analysis, an OCaml tool (see Appendix 2) to analyze audio graphs
in IMSs and generate optimized versions. Puredata and Max patches, in
addition to a custom audio graph format (see Appendix 1) are supported;

• audio-adaptive-scheduling, a small IMS (see Appendix 3) coded in
Rust that can execute audio graphs in real time in our audio-graph format
and perform online degradation with the heuristics.

9.2. Perspectives
In this section, we discuss improvements, new developments and new research
directions. We list the perspectives in the same order of the topics of our work.

9.2.1. Type system and semantics
A difficulty of our type system is how we represent overlapping periodic buffers.
They have the periodic type, where we lose the sample-periodicity and buffer
size information. In the case of an FTT on overlapping buffers, it seems it is
not a huge issue as the overlapping buffers are immediately consumed by the
FFT node which outputs one multidimensional sample per period, i.e., an
array of frequency bins which has a known buffer size of 1. However, for the

1Yet, Antescofo has a powerful macro system, and so we can still build complex graphs
more easily at loading time.

182

9. Conclusion and perspectives

sake of elegance and as we may want to perform different operations on the
overlapping buffers, we could introduce another type which would correspond
to an homogeneous periodic stream, i.e., buffer with the same size:

homogeneous(p, n, m, e)

where p ∈ P is the sample-period, n ∈ N \ {0} is the buffer size, e ∈ U is the
sample type, and m ∈ Z with n + m > 0 is the number of samples added or
removed from a buffer. If m = 0, it corresponds to a buffered type. If m > 0,
it models overlapping buffers. If m < 0, it models a stream with buffers with
a gap in-between. We are not sure if that last case refers to any real situation
in audio processing though.

We also want to add more theoretical results, such as a study of the com-
pleteness of the type system or the causality of the semantics. We took care
of defining causal operators but did not prove causality formally. Another in-
teresting result that we could prove is that we can deduce an upper-bound on
the latency computed by the semantics by looking only at the type system.

When a node computes only on controls, i.e., aperiodic streams, our se-
mantics activates the node on the union of the timestamps of the inputs. We
can make it more flexible: similarly to Max/MSP and Puredata, which distin-
guish hot and cold inlets, we could also choose that the node is activated only
on timestamps of the union of the so-called hot inputs.

9.2.2. Audio extension of Antescofo
The Antescofo score language makes it possible to express complex scenarios.
We think that we could better schedule the audio processing if we better make
use of the timing information in the score. For instance, if a sensor that
controls some parameters is only instantiated after some measure in the score,
we can assume that this control parameter will not change until that measure.
In that case, we could compute the audio statically, a bit in advance, when
the processor is less loaded. Furthermore, Antescofo has been recently able
to compile pure functions (functions defined with @fun_def)). We want to allow
the Antescofo programmer to define signal processing functions also using these
functions, when they have float arrays as arguments.

Another point of improvement is to fully implement the semantics of Part I
for the audio extension. So far, when a control arrives at the middle of the
processing of a buffer for a node that can process sample by sample, we do not
split the buffer but delay the control to the next block.

183

9. Conclusion and perspectives

9.2.3. Optimization of audio graphs by resampling
More experiments. Our first experiments in Chapter 7.5 and Chapter 8.4
gave us insights on the execution time and quality model, but we still need
to assess how the heuristics in the offline case behave, i.e., how much of the
degraded graph space they explore. In the online case, we have realized that the
heuristics that can degrade at the middle of the cycle do not behave well and
take too much time, either because they insert too many resamplers, or because
they search the graph for too long. We suppose that using pre-computed graphs
is a more effective solution. We are working on evaluating to which extent.

Model of quality and operators. In Section 7.3.1, we propose a structural
mode of quality and we choose a specific join operator ⊕ and path operator ⊗,
respectively min and the average, and ×. Other choices of operators can lead
to a semiring structure that enables efficient optimization algorithms [Moh02].

Driving the precision of control with a quality model. Currently, if a node
supports sample accuracy, we make sure that the control is taken into account
at the precision of a sample during the execution. However, to pursue the
trade-off between precision and performance, we could only perform sample-
accurate computations when the node can do it and if the quality model has
not selected the node to be degraded.

Exact model of quality of a small audio-processing language. The current
quality model is not precise: it assumes that downsampling impacts all nodes in
the same way. However, some nodes only touch the low range of the spectrum
and hence are oblivious to the downsampling. If we know exactly what each
node does, we can get a better approximation of the range of frequencies output
by a node, using abstract interpretation techniques. This is feasible for a small
language with simple arithmetic nodes, such as +, × and so on.

In Faust [OJ16], bounds on the amplitude of the signal are computed. We
would like to compute also bounds on the frequency range. It will actually
be always encompassed between 0 and the maximum audible frequency for
humain beings, i.e., 20 kHz, as we do not care about non-audible frequencies.

Speeding up the the enumeration. In the experiments of Section 7.5, we real-
ized that a non-negligible number of degraded graphs take more time to execute
than the non-degraded graph. Therefore, we want to detect that problem early
in the generation to prevent unnecessary computations. When enumerating,
we first get the possible sets of degraded nodes within the graph. In practice,

184

9. Conclusion and perspectives

we do not need to build all the associated graphs to save some memory and
accelerate the enumeration. We can get a crude lower bound of the execution
time just with the subset of degraded nodes. Given a graph G, the execution
time of a degraded version G′ is given by:

AG′ =
∑

v∈Vnon degraded

Av +
∑

v∈Vdegraded

Av +
∑

v∈Vresamplers

Av (9.1)

To estimate the number of resamplers necessary to degrade a subset, we look
for the nodes that do not have incoming connections from, or outcoming con-
nections to another node of the subset. It gives us an estimation of the number
of resamplers to insert and hence a lower bound on the execution time of the
degraded graph. If the subset is implemented with a hash table, we can check
if a connection leads to a node in the subset in O(1) in average. Then we
can check whether the lower bound is smaller or not than the execution time
of the non-degraded graph. If it is much higher2, the graph associated to the
degraded subsets does not need to be generated.

Implementation in Faust. We want to implement the offline optimization
algorithm into Faust. We think it would be a coherent addition to a language
that aims at describing mathematically signal processing and let the compiler
optimize. Adding the optimization algorithm in Faust requires Faust support
of multirate, which is still a work in progress, but it may be a good motivation
to complete its implementation.

This work has been undertaken with IMSs as target. IMSs are outstanding
examples of cyber-physical systems, where embedded systems at work in our
daily life – airplanes, cars, drones – interact with the physical world and with
human beings, the human-in-the-loop. We surmise that this thesis may prove
useful to model, analyze and execute more general cyber-physical systems.

2Much higher, not just higher, to take into account the imprecision of the estimation of the
average execution time.

185

Bibliography

My publications

[Che+16] Nathanaël Cheriere, Pierre Donat-Bouillud, Shadi Ibrahim, and
Matthieu Simonin. “On the Usability of Shortest Remaining Time
First Policy in Shared Hadoop Clusters”. In: SAC 2016-The 31st
ACM/SIGAPP Symposium on Applied Computing. Pisa, Italy, Apr.
2016. url: https://hal.inria.fr/hal-01239341.

[DG17] Pierre Donat-Bouillud and Jean-Louis Giavitto. “Typing hetero-
geneous dataflow graphs for static buffering and scheduling”. In:
ICMC 2017 - 43rd International Computer Music Conference. Shang-
hai, China, Oct. 2017. url: https : / / hal . inria . fr / hal -
01585489.

[DGJ19] Pierre Donat-Bouillud, Jean-Louis Giavitto, and Florent Jacque-
mard. “Optimization of audio graphs by resampling”. In: DAFx-19
- 22nd International Conference on Digital Audio Effects. Pro-
ceedings of the 22nd International Conference on Digital Audio
Effects. Birmingham, United Kingdom, Sept. 2019. url: https:
//hal.inria.fr/hal-02284258.

[DJS15] Pierre Donat-Bouillud, Florent Jacquemard, and Masahiko Sakai.
“Towards an Equational Theory of Rhythm Notation”. In: Mu-
sic Encoding Conference 2015. Florence, Italy, May 2015. url:
https://hal.inria.fr/hal-01105418.

[DK17] Pierre Donat-Bouillud and Christoph M Kirsch. “Work-in-Progress:
Adaptive Scheduling with Approximate Computing for Audio Graphs”.
In: 2017 IEEE Real-Time Systems Symposium (RTSS). IEEE.
2017, pp. 372–374.

[Don+16] Pierre Donat-Bouillud, Jean-Louis Giavitto, Arshia Cont, Nicolas
Schmidt, and Yann Orlarey. “Embedding native audio-processing
in a score following system with quasi sample accuracy”. In: ICMC
2016-42th International Computer Music Conference. ICMC. Sept.
2016.

186

https://hal.inria.fr/hal-01239341
https://hal.inria.fr/hal-01585489
https://hal.inria.fr/hal-01585489
https://hal.inria.fr/hal-02284258
https://hal.inria.fr/hal-02284258
https://hal.inria.fr/hal-01105418

Bibliography

[Don18] Pierre Donat-Bouillud. “Ordonnancement adaptatif d’un graphe
audio avec dégradation de qualité”. In: JIM 2018 - Journées d’In-
formatique Musicale. Amiens, France, May 2018, pp. 1–9. url:
https://hal.archives-ouvertes.fr/hal-01791407.

[FGD19] José Miguel Fernandez, Jean-Louis Giavitto, and Pierre Donat-
Bouillud. “AntesCollider: Control and Signal Processing in the
Same Score”. In: ICMC 2019 - International Computer Music Con-
ference. New York, United States, June 2019. url: https://hal.
inria.fr/hal-02159629.

[JDB15a] Florent Jacquemard, Pierre Donat-Bouillud, and Jean Bresson. “A
Structural Theory of Rhythm Notation based on Tree Represen-
tations and Term Rewriting”. In: Mathematics and Computation
in Music: 5th International Conference, MCM 2015. Ed. by David
Meredith Tom Collins and Anja Volk. Vol. 9110. Lecture Notes
in Artificial Intelligence. Oscar Bandtlow and Elaine Chew. Lon-
don, United Kingdom: Springer, June 2015, p. 12. url: https:
//hal.inria.fr/hal-01138642.

[JDB15b] Florent Jacquemard, Pierre Donat-Bouillud, and Jean Bresson.
A Term Rewriting Based Structural Theory of Rhythm Notation.
Research Report. ANR-13-JS02-0004-01 - EFFICACe, Mar. 2015,
p. 11. url: https://hal.inria.fr/hal-01134096.

References

[7419] Cycling 74. Max 8 poly documentation. July 2019. url: https:
//docs.cycling74.com/max8/refpages/poly~.

[AA09] Pau Arumı and Xavier Amatriain. “Time-triggered static schedula-
ble dataflows for multimedia systems”. In: Multimedia Computing
and Networking 2009. Vol. 7253. International Society for Optics
and Photonics. 2009, p. 72530D.

[AAG06] Xavier Amatriain, Pau Arumi, and David Garcia. “CLAM: A frame-
work for efficient and rapid development of cross-platform audio
applications”. In: Proceedings of the 14th ACM international con-
ference on Multimedia. ACM. 2006, pp. 951–954.

[ABD11] Saamer Akhshabi, Ali C Begen, and Constantine Dovrolis. “An
experimental evaluation of rate-adaptation algorithms in adaptive
streaming over HTTP”. In: Proceedings of the second annual ACM
conference on Multimedia systems. ACM. 2011, pp. 157–168.

187

https://hal.archives-ouvertes.fr/hal-01791407
https://hal.inria.fr/hal-02159629
https://hal.inria.fr/hal-02159629
https://hal.inria.fr/hal-01138642
https://hal.inria.fr/hal-01138642
https://hal.inria.fr/hal-01134096
https://docs.cycling74.com/max8/refpages/poly~
https://docs.cycling74.com/max8/refpages/poly~

Bibliography

[AD99] David Aldous and Persi Diaconis. “Longest increasing subsequences:
from patience sorting to the Baik-Deift-Johansson theorem”. In:
Bulletin of the American Mathematical Society 36.4 (1999), pp. 413–
432.

[ADA08] Antoine Allombert, Myriam Desainte-Catherine, and Gérard As-
sayag. “Iscore: a system for writing interaction”. In: Proceedings
of the 3rd international conference on Digital Interactive Media in
Entertainment and Arts. ACM. 2008, pp. 360–367.

[AG12] Andrea Agostini and Daniele Ghisi. “Bach: An environment for
computer-aided composition in max”. In: ICMC. 2012.

[AK08] Oana Andrei and Hélene Kirchner. “A rewriting calculus for multi-
graphs with ports”. In: Electronic Notes in Theoretical Computer
Science 219 (2008), pp. 67–82.

[Årz+11] Karl-Erik Årzén, Vanessa Romero Segovia, Stefan Schorr, and
Gerhard Fohler. “Adaptive resource management made real”. In:
3rd Workshop on Adaptive and Reconfigurable Embedded Systems.
2011.

[Ass86] ITU Radiocommunication Assembly. RECOMMENDATION ITU-
R BS.468-4 - Measurement of audio-frequency noise voltage. 1986.

[BAA11] Jean Bresson, Carlos Agon, and Gérard Assayag. “Openmusic–
visual programming environment for music composition, analysis
and research”. In: 2011.

[Bau+13] Guillaume Baudart, Florent Jacquemard, Louis Mandel, and Marc
Pouzet. “A synchronous embedding of Antescofo, a domain-specific
language for interactive mixed music”. In: Proceedings of the Eleventh
ACM International Conference on Embedded Software. IEEE Press.
2013, p. 1.

[BB01a] Ross Bencina and Phil Burk. “PortAudio-an Open Source Cross
Platform Audio API.” In: ICMC. 2001.

[BB01b] B. Bhattacharya and S. S. Bhattacharyya. “Parameterized dataflow
modeling for DSP systems”. In: IEEE Transactions on Signal Pro-
cessing 49.10 (Oct. 2001), pp. 2408–2421. doi: 10 . 1109 / 78 .
950795.

[Bel+11] Jose A Belloch, Alberto Gonzalez, Francisco-Jose Martınez-Zaldıvar,
and Antonio M Vidal. “Real-time massive convolution for audio
applications on GPU”. In: The Journal of Supercomputing 58.3
(2011), pp. 449–457.

188

https://doi.org/10.1109/78.950795
https://doi.org/10.1109/78.950795

Bibliography

[Ben11] Ross Bencina. “The SuperCollider Book”. In: ed. by S. Wilson, D.
Cottle, and N. Collins. MIT Press, 2011. Chap. Inside Scynth. url:
http://supercolliderbook.net/.

[Bev+10] Frédéric Bevilacqua, Bruno Zamborlin, Anthony Sypniewski, Nor-
bert Schnell, Fabrice Guédy, and Nicolas Rasamimanana. “Con-
tinuous realtime gesture following and recognition”. In: Gesture
in Embodied Communication and Human-Computer Interaction:
Lecture Notes in Computer Science (LNCS) volume 5934. Springer
Verlag, 2010, pp. 73–84. url: http : / / articles . ircam . fr /
textes/Bevilacqua09b/index.pdf.

[BFW10] Eric Battenberg, Adrian Freed, and David Wessel. “Advances In
The Parallelization Of Music And Audio Applications.” In: ICMC.
2010.

[BG14] Jean Bresson and Jean-Louis Giavitto. “A reactive extension of the
openmusic visual programming language”. In: Journal of Visual
Languages & Computing 25.4 (2014), pp. 363–375.

[BG92] Gérard Berry and Georges Gonthier. “The Esterel synchronous
programming language: Design, semantics, implementation”. In:
Science of computer programming 19.2 (1992), pp. 87–152.

[Bha+18] Shuvra S Bhattacharyya, Ed F Deprettere, Rainer Leupers, and
Jarmo Takala. Handbook of signal processing systems. Springer,
2018.

[Bil+96] Greet Bilsen, Marc Engels, Rud Lauwereins, and Jean Peperstraete.
“Cycle-static dataflow”. In: Signal Processing, IEEE Transactions
on 44.2 (1996), pp. 397–408.

[BJ13] Karim Barkati and Pierre Jouvelot. “Synchronous programming in
audio processing: A lookup table oscillator case study”. In: ACM
Computing Surveys (CSUR) 46.2 (2013), p. 24.

[Ble11] T. Blechmann. “Supernova-A Multiprocessor Aware Real-Time
Audio Synthesis Engine For SuperCollider”. MA thesis. Vienna
University of Technology, 2011. url: http://tim.klingt.org/
publications/tim_blechmann_supernova.pdf.

[BLJ91] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot.
“Synchronous programming with events and relations: the SIG-
NAL language and its semantics”. In: Science of computer pro-
gramming 16.2 (1991), pp. 103–149.

189

http://supercolliderbook.net/
http://articles.ircam.fr/textes/Bevilacqua09b/index.pdf
http://articles.ircam.fr/textes/Bevilacqua09b/index.pdf
http://tim.klingt.org/publications/tim_blechmann_supernova.pdf
http://tim.klingt.org/publications/tim_blechmann_supernova.pdf

Bibliography

[BPT06] Neil Burroughs, Adam Parkin, and George Tzanetakis. “Flexible
Scheduling for DataFlow Audio Processing.” In: ICMC. 2006.

[Bra00] G. Bradski. “OpenCV Library”. In: Dr. Dobb’s Journal of Software
Tools (2000).

[Bro91] Judith C Brown. “Calculation of a constant Q spectral transform”.
In: The Journal of the Acoustical Society of America 89.1 (1991),
pp. 425–434.

[Buc+04] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon
Fatahalian, Mike Houston, and Pat Hanrahan. “Brook for GPUs:
stream computing on graphics hardware”. In: ACM transactions
on graphics (TOG) 23.3 (2004), pp. 777–786.

[But+02] Giorgio C Buttazzo, Giuseppe Lipari, Marco Caccamo, and Luca
Abeni. “Elastic scheduling for flexible workload management”. In:
IEEE Transactions on Computers 51.3 (2002), pp. 289–302.

[But02] Giorgio C Buttazzo. “Scalable applications for energy-aware pro-
cessors”. In: International workshop on embedded software. Springer.
2002, pp. 153–165.

[BWJ14] Karim Barkati, Haisheng Wang, and Pierre Jouvelot. “Faustine: a
vector faust interpreter test bed for multimedia signal processing”.
In: International Symposium on Functional and Logic Program-
ming. Springer. 2014, pp. 69–85.

[Cam15] Ede Cameron. “Parallelizing the ALSA modular audio synthe-
sizer”. PhD thesis. Concordia University, 2015.

[CDC16] Jean-Michaël Celerier, Myriam Desainte-Catherine, and Jean-Michel
Couturier. “Rethinking the audio workstation: tree-based sequenc-
ing with i-score and the LibAudioStream”. In: Sound and Mu-
sic Computing Conference. Hamburg, Germany, Aug. 2016. url:
https://hal.archives-ouvertes.fr/hal-01360797.

[Cel+15] Jean-Michaël Celerier, Pascal Baltazar, Clément Bossut, Nicolas
Vuaille, Jean-Michel Couturier, et al. “OSSIA: Towards a unified
interface for scoring time and interaction”. In: 2015.

[CG14] Arshia Cont and Jean-Louis Giavitto. “Antescofo workshop at
ICMC: Composing and Performing with Antescofo”. In: Joint ICMC
- SMC Conference. The remake of Anthèmes 2 is part of the tu-
torial and it can be downloaded at http://forumnet.ircam.fr/
products/antescofo/. Athens, Greece, Sept. 2014.

190

https://hal.archives-ouvertes.fr/hal-01360797
http://forumnet.ircam.fr/products/antescofo/
http://forumnet.ircam.fr/products/antescofo/

Bibliography

[Cha+04] Francois Charot, Madeleine Nyamsi, Patrice Quinton, and Charles
Wagner. “Modeling and scheduling parallel data flow systems using
structured systems of recurrence equations”. In: Proceedings. 15th
IEEE International Conference on Application-Specific Systems,
Architectures and Processors, 2004. IEEE. 2004, pp. 6–16.

[Col+03] Nick Collins, Alex McLean, Julian Rohrhuber, and Adrian Ward.
“Live coding in laptop performance”. In: Organised sound 8.3 (2003),
pp. 321–330.

[Con+12] Arshia Cont, José Echeveste, Jean-Louis Giavitto, and Florent
Jacquemard. “Correct Automatic Accompaniment Despite Machine
Listening or Human Errors in Antescofo”. In: Proceedings of In-
ternational Computer Music Conference (ICMC). IRZU - the In-
stitute for Sonic Arts Research. Ljubljana, Slovenia, Sept. 2012.
url: http://hal.inria.fr/hal-00718854.

[Con10] Arshia Cont. “A coupled duration-focused architecture for real-
time music-to-score alignment”. In: Pattern Analysis and Machine
Intelligence, IEEE Transactions on 32.6 (2010), pp. 974–987.

[Cor+09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and
Clifford Stein. Introduction to algorithms. MIT press, 2009.

[CSH19] Louis-Claude Canon, Mohamad El Sayah, and Pierre-Cyrille Héam.
“A Comparison of Random Task Graph Generation Methods for
Scheduling Problems”. In: arXiv preprint arXiv:1902.05808 (2019).

[Dan+78] Wayne W Daniel et al. Applied nonparametric statistics. Houghton
Mifflin, 1978.

[Dan+93] Roger B Dannenberg et al. “The implementation of nyquist, a
sound synthesis language”. In: PROCEEDINGS OF THE INTER-
NATIONAL COMPUTER MUSIC CONFERENCE. INTERNA-
TIONAL COMPUTER MUSIC ASSOCIATION. 1993, pp. 168–
168.

[Dan02] Roger B Dannenberg. “A language for interactive audio applica-
tions”. In: PROCEEDINGS OF THE INTERNATIONAL COM-
PUTER MUSIC CONFERENCE. INTERNATIONAL COMPUTER
MUSIC ASSOCIATION. 2002.

[Dan08] Roger B Dannenberg. “Is Music Audio Processing Embarrassingly
Parallel?” In: ICMC. Citeseer. 2008.

[Dan97] Mark Danks. “Real-time Image and Video Processing in GEM.”
In: ICMC. 1997.

191

http://hal.inria.fr/hal-00718854

Bibliography

[DB96] Roger B Dannenberg and Eli Brandt. “A flexible real-time software
synthesis system”. In: Proceedings of the International Computer
Music Conference. INTERNATIONAL COMPUTER MUSIC AS-
SOCIATION. 1996, pp. 270–273.

[DC16] Roger B Dannenberg and Zhang Chi. “O2: Rethinking Open Sound
Control”. In: Proceedings of the International Computer Music
Conference. 2016, p. 494.

[Déc+99] François Déchelle, Riccardo Borghesi, Maurizio De Cecco, Enzo
Maggi, Butch Rovan, and Norbert Schnell. “jMax: an environment
for real-time musical applications”. In: Computer Music Journal
23.3 (1999), pp. 50–58.

[Del+87] C Delgado, P Loos, K Fritzson, and N Andersson. “Semantics
of digital circuits”. In: Lecture Notes in Computer Science 285
(1987).

[DL06] Gilles Dowek and Jean-Jacques Lévy. Introduction à la théorie des
langages de programmation. Editions Ecole Polytechnique, 2006.

[DM98] Leonardo Dagum and Ramesh Menon. “OpenMP: An industry-
standard API for shared-memory programming”. In: Computing
in Science & Engineering 1 (1998), pp. 46–55.

[Dry15] Alexandros Drymonitis. “Embedded Computers and Going Wire-
less”. In: Digital Electronics for Musicians. Berkeley, CA: Apress,
2015, pp. 97–139. isbn: 978-1-4842-1583-8. doi: 10.1007/978-1-
4842-1583-8_3. url: https://doi.org/10.1007/978-1-4842-
1583-8_3.

[Ech+11] José Echeveste, Arshia Cont, Jean-Louis Giavitto, and Florent
Jacquemard. “Formalisation des relations temporelles dans un con-
texte d’accompagnement musical automatique”. In: 8e Colloque
sur la Modélisation des Systèmes Réactifs (MSR’11). Vol. 45. 2011,
pp. 109–124.

[Ech+13] José Echeveste, Arshia Cont, Jean-Louis Giavitto, and Florent
Jacquemard. “Operational semantics of a domain specific language
for real time musician–computer interaction”. In: Discrete Event
Dynamic Systems 23.4 (2013), pp. 343–383.

[Ech15] José Echeveste. “Un langage de programmation pour composer l’in-
teraction musicale”. PhD thesis. Paris VI, 2015.

192

https://doi.org/10.1007/978-1-4842-1583-8_3
https://doi.org/10.1007/978-1-4842-1583-8_3
https://doi.org/10.1007/978-1-4842-1583-8_3
https://doi.org/10.1007/978-1-4842-1583-8_3

Bibliography

[EGC13] José Echeveste, Jean-Louis Giavitto, and Arshia Cont. A Dynamic
Timed-Language for Computer-Human Musical Interaction. Re-
search Report RR-8422. Dec. 2013. url: https://hal.inria.fr/
hal-00917469.

[ER60] Paul Erdős and Alfréd Rényi. “On the evolution of random graphs”.
In: Publ. Math. Inst. Hung. Acad. Sci 5.1 (1960), pp. 17–60.

[EY16] Pontus Ekberg and Wang Yi. “Schedulability analysis of a graph-
based task model for mixed-criticality systems”. In: Real-time sys-
tems 52.1 (2016), pp. 1–37.

[Fag+09] Dario Faggioli, Fabio Checconi, Michael Trimarchi, and Claudio
Scordino. “An EDF scheduling class for the Linux kernel”. In:
Proceedings of the Eleventh Real-Time Linux Workshop. Citeseer.
2009.

[Fea91] Paul Feautrier. “Dataflow analysis of array and scalar references”.
In: International Journal of Parallel Programming 20.1 (1991),
pp. 23–53.

[Fer+17] José Miguel Fernandez, Thomas Köppel, Nina Verstraete, Gré-
goire Lorieux, Alexander Vert, and Philippe Spiesser. “Gekipe, a
gesture-based interface for audiovisual performance.” In: NIME.
2017, pp. 450–455.

[ffi09] John ffitch. “Parallel execution of csound”. In: Proc. of the Inter-
national Computer Music Conference (ICMC. 2009.

[FM33] Harvey Fletcher and Wilden A Munson. “Loudness, its definition,
measurement and calculation”. In: Bell System Technical Journal
12.4 (1933), pp. 377–430.

[FOL11] Dominique Fober, Yann Orlarey, and Stéphane Letz. “FAUST Ar-
chitectures Design and OSC Support.” In: International Confer-
ence on Digital Audio Effects. Ed. by IRCAM. Paris, France, 2011,
pp. 231–216. url: https://hal.archives-ouvertes.fr/hal-
02158816.

[FV86] Michael A Fligner and Joseph S Verducci. “Distance based rank-
ing models”. In: Journal of the Royal Statistical Society: Series B
(Methodological) 48.3 (1986), pp. 359–369.

[Gho+04] Arkadeb Ghosal, Thomas A Henzinger, Christoph M Kirsch, and
Marco AA Sanvido. “Event-driven programming with logical ex-
ecution times”. In: International Workshop on Hybrid Systems:
Computation and Control. Springer. 2004, pp. 357–371.

193

https://hal.inria.fr/hal-00917469
https://hal.inria.fr/hal-00917469
https://hal.archives-ouvertes.fr/hal-02158816
https://hal.archives-ouvertes.fr/hal-02158816

Bibliography

[GLL99] Alain Girault, Bilung Lee, and Edward A Lee. “Hierarchical fi-
nite state machines with multiple concurrency models”. In: IEEE
Transactions on computer-aided design of integrated circuits and
systems 18.6 (1999), pp. 742–760.

[GM03] Vincent Goudard and Remy Muller. “Real-time audio plugin ar-
chitectures”. In: Comparative study. IRCAM-Centre Pompidou.
France (2003).

[GN00] Emden R. Gansner and Stephen C. North. “An open graph visu-
alization system and its applications to software engineering”. In:
SOFTWARE - PRACTICE AND EXPERIENCE 30.11 (2000),
pp. 1203–1233.

[GS10] Marc Geilen and Sander Stuijk. “Worst-case performance analysis
of synchronous dataflow scenarios”. In: Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis. ACM. 2010, pp. 125–134.

[GS90] Carl A Gunter and Dana S Scott. “Semantic domains”. In: Formal
Models and Semantics. Elsevier, 1990, pp. 633–674.

[Gua16] Adrien Guatto. “A synchronous functional language with integer
clocks”. PhD thesis. PSL Research University, 2016.

[Haa+17] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF
Bastien. “Bringing the web up to speed with WebAssembly”. In:
ACM SIGPLAN Notices. Vol. 52. 6. ACM. 2017, pp. 185–200.

[Hei19] Brook Heisler. Citerion, a statistics-driven micro-benchmarking
tool. Mar. 2019. url: https://bheisler.github.io/criterion.
rs/book/criterion_rs.html.

[HHK01] Thomas A Henzinger, Benjamin Horowitz, and Christoph Meyer
Kirsch. “Giotto: A time-triggered language for embedded program-
ming”. In: International Workshop on Embedded Software. Springer.
2001, pp. 166–184.

[HLR92] Nicolas Halbwachs, Fabienne Lagnier, and Christophe Ratel. “Pro-
gramming and verifying real-time systems by means of the syn-
chronous data-flow language LUSTRE”. In: IEEE Transactions
on Software Engineering 9 (1992), pp. 785–793.

194

https://bheisler.github.io/criterion.rs/book/criterion_rs.html
https://bheisler.github.io/criterion.rs/book/criterion_rs.html

Bibliography

[HR95] Moncef Hamdaoui and Parameswaran Ramanathan. “A dynamic
priority assignment technique for streams with (m, k)-firm dead-
lines”. In: IEEE transactions on Computers 44.12 (1995), pp. 1443–
1451.

[Izh17] Roey Izhaki. Mixing audio: concepts, practices, and tools. Rout-
ledge, 2017.

[JO11] Pierre Jouvelot and Yann Orlarey. “Dependent vector types for
data structuring in multirate Faust”. In: Computer Languages,
Systems & Structures 37.3 (2011), pp. 113–131.

[JUC19] JUCE team at ROLI. Soul language. July 2019. url: https://
github.com/soul-lang/SOUL.

[Kah87] Gilles Kahn. “Natural semantics”. In: Annual symposium on the-
oretical aspects of computer science. Springer. 1987, pp. 22–39.

[Ken48] Maurice George Kendall. “Rank correlation methods.” In: (1948).
[Kie+15] Marc Aurel Kiefer, Korbinian Molitorisz, Jochen Bieler, and Wal-

ter F Tichy. “Parallelizing a Real-Time Audio Application–A Case
Study in Multithreaded Software Engineering”. In: 2015 IEEE In-
ternational Parallel and Distributed Processing Symposium Work-
shop. IEEE. 2015, pp. 405–414.

[Kir02] Christoph M Kirsch. “Principles of real-time programming”. In:
International Workshop on Embedded Software. Springer. 2002,
pp. 61–75.

[Knu97] Donald Ervin Knuth. The art of computer programming. Vol. 3.
Pearson Education, 1997.

[KS12] Christoph M Kirsch and Ana Sokolova. “The logical execution time
paradigm”. In: Advances in Real-Time Systems. Springer, 2012,
pp. 103–120.

[Kum02] Vipin Kumar. Introduction to parallel computing. Addison-Wesley
Longman Publishing Co., Inc., 2002.

[LA04] Chris Lattner and Vikram Adve. “LLVM: A compilation frame-
work for lifelong program analysis & transformation”. In: Pro-
ceedings of the international symposium on Code generation and
optimization: feedback-directed and runtime optimization. IEEE
Computer Society. 2004, p. 75.

195

https://github.com/soul-lang/SOUL
https://github.com/soul-lang/SOUL

Bibliography

[Leb16] Jakob Leben. “Arrp: A Functional Language with Multi-dimensional
Signals and Recurrence Equations”. In: Proceedings of the 4th In-
ternational Workshop on Functional Art, Music, Modelling, and
Design. FARM 2016. Nara, Japan: ACM, 2016, pp. 17–28. isbn:
978-1-4503-4432-6. doi: 10.1145/2975980.2975983. url: http:
//doi.acm.org/10.1145/2975980.2975983.

[Let+15] Stéphane Letz, Sarah Denoux, Yann Orlarey, and Dominique Fober.
“Faust audio DSP language in the Web”. In: Linux Audio Con-
ference. Mainz, Germany, 2015, pp. 29–36. url: https://hal.
archives-ouvertes.fr/hal-02159002.

[Let+17] Stéphane Letz, Yann Orlarey, Dominique Fober, and Romain Mi-
chon. “Polyphony, sample-accurate control and MIDI support for
FAUST DSP using combinable architecture files”. In: Linux Audio
Conference. Ed. by Vincent Ciciliato, Yann Orlarey, and Laurent
Pottier. Saint-Etienne, France: CIEREC, 2017, pp. 69–75. url:
https://hal.archives-ouvertes.fr/hal-02159003.

[LFO13] Stéphane Letz, Dominique Fober, and Yann Orlarey. “COMMENT
EMBARQUER LE COMPILATEUR FAUST DANS VOS AP-
PLICATIONS ?” In: Journées d’Informatique Musicale. Paris, France,
May 2013, pp. 137–140. url: https://hal.archives-ouvertes.
fr/hal-00832224.

[Liu+91] Jane WS Liu, Kwei-Jay Lin, Wei Kuan Shih, Albert Chuang-shi
Yu, Jen-Yao Chung, and Wei Zhao. Algorithms for scheduling im-
precise computations. Springer, 1991.

[LM87] Edward A Lee and David G Messerschmitt. “Synchronous data
flow”. In: Proceedings of the IEEE 75.9 (1987), pp. 1235–1245.

[LMQ91] Hervé Le Verge, Christophe Mauras, and Patrice Quinton. “The
ALPHA language and its use for the design of systolic arrays”. In:
Journal of VLSI signal processing systems for signal, image and
video technology 3.3 (1991), pp. 173–182.

[LNK05] Mikael Laurson, Vesa Norilo, and Mika Kuuskankare. “PWGLSynth:
A visual synthesis language for virtual instrument design and con-
trol”. In: Computer Music Journal 29.3 (2005), pp. 29–41.

[LOF05] Stéphane Letz, Yann Orlarey, and Dominique Fober. “Jack audio
server for multi-processor machines”. In: International Computer
Music Conference. Ed. by ICMA. Barcelona, Spain, 2005, pp. 1–4.
url: https://hal.archives-ouvertes.fr/hal-02158920.

196

https://doi.org/10.1145/2975980.2975983
http://doi.acm.org/10.1145/2975980.2975983
http://doi.acm.org/10.1145/2975980.2975983
https://hal.archives-ouvertes.fr/hal-02159002
https://hal.archives-ouvertes.fr/hal-02159002
https://hal.archives-ouvertes.fr/hal-02159003
https://hal.archives-ouvertes.fr/hal-00832224
https://hal.archives-ouvertes.fr/hal-00832224
https://hal.archives-ouvertes.fr/hal-02158920

Bibliography

[LOF10] Stephane Letz, Yann Orlarey, and Dominique Fober. “Work steal-
ing scheduler for automatic parallelization in faust”. In: Linux Au-
dio Conference. 2010.

[LOF13] S Letz, Y Orlarey, and D Fober. “Dynamic compilation of parallel
audio applications”. In: Compilers for Parallels Computing (2013).

[LOF18a] Stéphane Letz, Yann Orlarey, and Dominique Fober. “An Overview
of the FAUST Developer Ecosystem”. In: 2018.

[LOF18b] Stéphane Letz, Yann Orlarey, and Dominique Fober. “FAUST Do-
main Specific Audio DSP Language Compiled to WebAssembly”.
In: Companion Proceedings of the The Web Conference 2018. In-
ternational World Wide Web Conferences Steering Committee.
2018, pp. 701–709.

[Lom11] Chris Lomont. “Introduction to intel advanced vector extensions”.
In: Intel White Paper (2011), pp. 1–21.

[Loy85] Gareth Loy. “Musicians make a standard: the MIDI phenomenon”.
In: Computer Music Journal 9.4 (1985), pp. 8–26.

[LP95] Edward A Lee and Thomas M Parks. “Dataflow process networks”.
In: Proceedings of the IEEE 83.5 (1995), pp. 773–801.

[LS16] Edward Ashford Lee and Sanjit A Seshia. Introduction to embed-
ded systems: A cyber-physical systems approach. Mit Press, 2016.

[LT14] Jakob Leben and George Tzanetakis. “Declarative Composition
and Reactive Control in Marsyas”. In: ICMC. 2014.

[LZ09] Young Choon Lee and Albert Y Zomaya. “Minimizing energy con-
sumption for precedence-constrained applications using dynamic
voltage scaling”. In: Proceedings of the 2009 9th IEEE/ACM In-
ternational Symposium on Cluster Computing and the Grid. IEEE
Computer Society. 2009, pp. 92–99.

[McC02] James McCartney. “Rethinking the computer music language: Su-
perCollider”. In: Computer Music Journal 26.4 (2002), pp. 61–68.

[McC96] James McCartney. “SuperCollider: a new real time synthesis lan-
guage”. In: Proceedings of the International Computer Music Con-
ference. 1996. url: http://www.audiosynth.com/icmc96paper.
html.

197

http://www.audiosynth.com/icmc96paper.html
http://www.audiosynth.com/icmc96paper.html

Bibliography

[Mic13] Romain Michon. “Faust2android: a Faust architecture for An-
droid”. In: Proceedings of the 16th International Conference on
Digital Audio Effects (DAFx-13), Maynooth, Ireland. 2013, pp. 2–
6.

[ML02] Praveen K Murthy and Edward A Lee. “Multidimensional syn-
chronous dataflow”. In: IEEE Transactions on Signal Processing
50.8 (2002), pp. 2064–2079.

[Moh02] Mehryar Mohri. “Semiring frameworks and algorithms for shortest-
distance problems”. In: Journal of Automata, Languages and Com-
binatorics 7.3 (2002), pp. 321–350.

[Moo12] Brian CJ Moore. An introduction to the psychology of hearing.
Brill, 2012.

[Mor+17] Fabio Morreale, Giulio Moro, Alan Chamberlain, Steve Benford,
and Andrew P McPherson. “Building a maker community around
an open hardware platform”. In: Proceedings of the 2017 CHI Con-
ference on Human Factors in Computing Systems. ACM. 2017,
pp. 6948–6959.

[Mor02] Lionel Morel. “Efficient compilation of array iterators for lustre”.
In: Electronic Notes in Theoretical Computer Science 65.5 (2002),
pp. 19–26.

[Mos90] Peter D Mosses. Handbook of Theoretical Computer Science, vol-
ume 2, chapter Denotational Semantics. 1990.

[MP05] Louis Mandel and Marc Pouzet. “ReactiveML: a reactive extension
to ML”. In: Proceedings of the 7th ACM SIGPLAN international
conference on Principles and practice of declarative programming.
ACM. 2005, pp. 82–93.

[MPP10] Louis Mandel, Florence Plateau, and Marc Pouzet. “Lucy-n: a n-
synchronous extension of Lustre”. In: International Conference on
Mathematics of Program Construction. Springer. 2010, pp. 288–
309.

[NIS14] HIROKI NISHINO. “LC: A Mostly-strongly-timed Prototype-based
Computer Music Programming Language that Integrates Objects
and Manipulations for Microsound Synthesis”. PhD thesis. 2014.

[Nis18a] Hiroki Nishino. “ON-STACK COMPUTATION OF AUDIO VEC-
TORS FOR UNIT-GENERATOR-BASED SOUND SYNTHESIS”.
In: International Workshop on Computer Music and Audio Tech-
nology. 2018.

198

Bibliography

[Nis18b] Hiroki Nishino. “Unit-generator Graph as a Generator of Lazily
Evaluated Audio-vector Trees”. In: Proc. of Sound and Music
Computing. 2018.

[NL09] Vesa Norilo and Mikael Laurson. “Kronos-a vectorizing compiler
for music dsp”. In: Proc. of the 12th Int. Conference on Digital
Audio Effects (DAFx-09). Vol. 317. 2009.

[Nor15] Vesa Norilo. “Kronos: A declarative metaprogramming language
for digital signal processing”. In: Computer Music Journal 39.4
(2015), pp. 30–48.

[Nor16] Vesa Norilo. “Kronos Meta-Sequencer–From Ugens to Orchestra,
Score and Beyond”. In: 42nd International Computer Music Con-
ference 2016. 2016.

[OFL04] Yann Orlarey, Dominique Fober, and Stephane Letz. “Syntactical
and semantical aspects of Faust”. In: Soft Computing 8.9 (2004),
pp. 623–632.

[OFL09] Y. Orlarey, D. Fober, and S. Letz. “Faust: an efficient functional
approach to DSP programming”. In: New Computational Paradigms
for Computer Music (2009).

[OJ16] Yann Orlarey and Pierre Jouvelot. “Signal rate inference for mul-
tidimensional faust”. In: Proceedings of the 28th Symposium on
the Implementation and Application of Functional Programming
Languages. ACM. 2016, p. 1.

[OLF09] Yann Orlarey, Stephane Letz, and Dominique Fober. Adding au-
tomatic parallelization to Faust. na, 2009.

[OS14] Alan V Oppenheim and Ronald W Schafer. Discrete-time signal
processing. Pearson Education, 2014.

[PB02] Benjamin C Pierce and C Benjamin. Types and programming lan-
guages. MIT press, 2002.

[PH13] David A Patterson and John L Hennessy. Computer Organiza-
tion and Design MIPS Edition: The Hardware/Software Interface.
Newnes, 2013.

[Pou06] Marc Pouzet. “Lucid synchrone, version 3”. In: Tutorial and ref-
erence manual. Université Paris-Sud, LRI 1 (2006), p. 25.

[Pto14] Claudius Ptolemaeus. System design, modeling, and simulation:
using Ptolemy II. Vol. 1. Ptolemy. org Berkeley, 2014.

199

Bibliography

[Puc+96] Miller Puckette et al. “Pure Data: another integrated computer
music environment”. In: Proceedings of the second intercollege
computer music concerts (1996), pp. 37–41.

[Puc02a] M. Puckette. “Using Pd as a score language”. In: Proc. Int. Com-
puter Music Conf. Sept. 2002, pp. 184–187. url: http://www.
crca.ucsd.edu/~msp.

[Puc02b] Miller Puckette. “Max at Seventeen”. In: Comput. Music J. 26.4
(2002), pp. 31–43. issn: 0148-9267. doi: http://dx.doi.org/10.
1162/014892602320991356.

[Puc09] Miller Puckette. “Multiprocessing for pd”. In: Proc. of the 3rd Int’l
Pure Data Convention (PDCON09). 2009.

[Puc88] Miller Puckette. “The Patcher”. In: Proceedings of International
Computer Music Conference (ICMC). 1988, pp. 420–429.

[Puc97] M. Puckette. “Pure data”. In: Proc. Int. Computer Music Conf.
Thessaloniki, Greece, Sept. 1997, pp. 224–227. url: http://www.
crca.ucsd.edu/~msp.

[PWW97] Alex Peleg, Sam Wilkie, and Uri Weiser. “Intel MMX for multi-
media PCs”. In: Communications of the ACM 40.1 (1997), pp. 24–
38.

[RH11] Stuart Rosen and Peter Howell. Signals and systems for speech
and hearing. Vol. 29. Brill, 2011.

[RH91] Frédéric Rocheteau and Nicolas Halbwachs. “Implementing reac-
tive programs on circuits a hardware implementation of LUSTRE”.
In: Workshop/School/Symposium of the REX Project (Research
and Education in Concurrent Systems). Springer. 1991, pp. 195–
208.

[Rit+93] Sebastian Ritz, Matthias Pankert, V Zivojinovic, and Heinrich
Meyr. “Optimum vectorization of scalable synchronous dataflow
graphs”. In: Application-Specific Array Processors, 1993. Proceed-
ings., International Conference on. IEEE. 1993, pp. 285–296.

[Row93] Robert Rowe. Interactive Music Systems: Machine Listening and
Composing. AAAI Press, 1993.

[RT08] Rasmus V. Rasmussen and Michael A. Trick. “Round robin schedul-
ing – a survey”. In: European Journal of Operational Research
188.3 (2008), pp. 617–636. issn: 0377-2217. doi: http : / / dx .
doi.org/10.1016/j.ejor.2007.05.046. url: http://www.
sciencedirect.com/science/article/pii/S0377221707005309.

200

http://www.crca.ucsd.edu/~msp
http://www.crca.ucsd.edu/~msp
https://doi.org/http://dx.doi.org/10.1162/014892602320991356
https://doi.org/http://dx.doi.org/10.1162/014892602320991356
http://www.crca.ucsd.edu/~msp
http://www.crca.ucsd.edu/~msp
https://doi.org/http://dx.doi.org/10.1016/j.ejor.2007.05.046
https://doi.org/http://dx.doi.org/10.1016/j.ejor.2007.05.046
http://www.sciencedirect.com/science/article/pii/S0377221707005309
http://www.sciencedirect.com/science/article/pii/S0377221707005309

Bibliography

[San+18] Mark Santolucito, Kate Rogers, Aedan Lombardo, and Ruzica
Piskac. “Programming-by-example for audio: synthesizing digital
signal processing programs”. In: Proceedings of the 6th ACM SIG-
PLAN International Workshop on Functional Art, Music, Model-
ing, and Design. ACM. 2018, pp. 18–25.

[Sch70] Manfred R Schroeder. “Digital simulation of sound transmission in
reverberant spaces”. In: The Journal of the Acoustical Society of
America 47.2A (1970), pp. 424–431.

[Sch87] Martine Schlag. “The planar topology of functional programs”. In:
Conference on Functional Programming Languages and Computer
Architecture. Springer. 1987, pp. 174–193.

[Sen68] Pranab Kumar Sen. “Estimates of the regression coefficient based
on Kendall’s tau”. In: Journal of the American statistical associa-
tion 63.324 (1968), pp. 1379–1389.

[SG84] Julius O Smith and Phil Gossett. “A flexible sampling-rate conver-
sion method”. In: Acoustics, Speech, and Signal Processing, IEEE
International Conference on ICASSP’84. Vol. 9. IEEE. 1984, pp. 112–
115.

[Sha49] Claude Elwood Shannon. “Communication in the presence of noise”.
In: Proceedings of the IRE 37.1 (1949), pp. 10–21.

[Sie82] Andrew F Siegel. “Robust regression using repeated medians”. In:
Biometrika 69.1 (1982), pp. 242–244.

[Smi19a] Julius O Smith III. Interpolated delay lines, ideal bandlimited inter-
polation, and fractional delay filter design. Apr. 2019. url: http:
//ccrma.%20stanford.%20edu/%5C~%7B%7D%20jos/Interpolation.

[Smi19b] Julius O Smith. Digital audio resampling home page. Apr. 2019.
url: http://www-ccrma.%20stanford.%20edu/%5C~%7B%7D%
20jos/resample.

[SN13] Ralf Steinmetz and Klara Nahrstedt. Multimedia systems. Springer
Science & Business Media, 2013.

[Sor18] Andrew Carl Sorensen. “Extempore: The design, implementation
and application of a cyber-physical programming language”. PhD
thesis. 2018.

[Sta+93] International Organization for Standardization/International Elec-
trotechnical Commission et al. “Coding of moving pictures and as-
sociated audio for digital storage media at up to about 1.5 Mbit/s”.
In: ISO/IEC 11172 (1993).

201

http://ccrma.%20stanford.%20edu/%5C~%7B%7D%20jos/Interpolation
http://ccrma.%20stanford.%20edu/%5C~%7B%7D%20jos/Interpolation
http://www-ccrma.%20stanford.%20edu/%5C~%7B%7D%20jos/resample
http://www-ccrma.%20stanford.%20edu/%5C~%7B%7D%20jos/resample

Bibliography

[Ste96] Ralf Steinmetz. “Human perception of jitter and media synchro-
nization”. In: IEEE Journal on selected Areas in Communications
14.1 (1996), pp. 61–72.

[Suz+03] Yôiti Suzuki, Volker Mellert, Utz Richter, Henrik Møller, Leif
Nielsen, Rhona Hellman, Kaoru Ashihara, Kenji Ozawa, and Hisashi
Takeshima. “Precise and full-range determination of two-dimensional
equal loudness contours”. In: Tohoku University, Japan (2003).

[The+06] Bart D Theelen, Marc CW Geilen, Twan Basten, Jeroen PM Voeten,
Stefan Valentin Gheorghita, and Sander Stuijk. “A scenario-aware
data flow model for combined long-run average and worst-case per-
formance analysis”. In: Formal Methods and Models for Co-Design,
2006. MEMOCODE’06. Proceedings. Fourth ACM and IEEE In-
ternational Conference on. IEEE. 2006, pp. 185–194.

[The92] Henri Theil. “A rank-invariant method of linear and polynomial
regression analysis”. In: Henri Theil’s contributions to economics
and econometrics. Springer, 1992, pp. 345–381.

[TL15] Baltasar Trancón y Widemann and Markus Lepper. “The shepard
tone and higher-order multi-rate synchronous data-flow program-
ming in Sig”. In: Proceedings of the 3rd ACM SIGPLAN Interna-
tional Workshop on Functional Art, Music, Modelling and Design.
ACM. 2015, pp. 6–14.

[VE90] Barry Vercoe and Dan Ellis. “Real-time CSound: Software Synthe-
sis with Sensing and Control.” In: ICMC. Vol. 90. 1990, pp. 209–
211.

[Ven+15] Swagath Venkataramani, Srimat T Chakradhar, Kaushik Roy, and
Anand Raghunathan. “Computing approximately, and efficiently”.
In: Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition. EDA Consortium. 2015, pp. 748–751.

[Vir07] Tuomas Virtanen. “Monaural sound source separation by nonnega-
tive matrix factorization with temporal continuity and sparseness
criteria”. In: IEEE transactions on audio, speech, and language
processing 15.3 (2007), pp. 1066–1074.

[Wan09] G. Wang. “The ChucK audio programming language." A strongly-
timed and on-the-fly environ/mentality"”. PhD thesis. Princeton
University, 2009.

202

Bibliography

[WCS15] Ge Wang, Perry R. Cook, and Spencer Salazar. “ChucK: A Strongly
Timed Computer Music Language”. In: Computer Music Journal
39.4 (2015), pp. 10–29. doi: 10.1162/COMJ_a_00324.

[WCS16] Ge Wang, Perry R Cook, and Spencer Salazar. “Chuck: A strongly
timed computer music language”. In: Computer Music Journal
(2016).

[WFC07] Ge Wang, Rebecca Fiebrink, and Perry R Cook. “Combining Anal-
ysis and synthesis in the Chuck Programming Language.” In: ICMC.
2007.

[Wil09] Christopher Wilson. Csound Parallelism. Tech. rep. Technical Re-
port CSBU-2009-07, Department of Computer Science, University
of Bath, 2009.

[Wri05] Matthew Wright. “Open Sound Control: an enabling technology
for musical networking”. In: Organised Sound 10.3 (2005), pp. 193–
200.

[WS11] Haizhou Wang and Mingzhou Song. “Ckmeans. 1d. dp: optimal
k-means clustering in one dimension by dynamic programming”.
In: The R journal 3.2 (2011), p. 29.

[WSR10] Graham Wakefield, Wesley Smith, and Charles Roberts. “LuaAV:
Extensibility and heterogeneity for audiovisual computing”. In:
Proceedings of Linux Audio Conference. 2010.

[Xip19] Xiph.org Foundation. Free Lossless Audio Code (Flac). July 2019.
url: https://xiph.org/flac.

[Zhu+12] Zeyuan Allen Zhu, Sasa Misailovic, Jonathan A Kelner, and Martin
Rinard. “Randomized accuracy-aware program transformations for
efficient approximate computations”. In: ACM SIGPLAN Notices.
Vol. 47. 1. ACM. 2012, pp. 441–454.

[Zic02] David Zicarelli. “How I Learned to Love a Program That Does
Nothing”. In: Comput. Music J. 26.4 (2002), pp. 44–51. issn: 0148-
9267. doi: http://dx.doi.org/10.1162/014892602320991365.

[Zmö04] Johannes Zmölnig. “Gem for pd-recent progress.” In: ICMC. 2004.
[ZV06] Zoran Zivkovic and Ferdinand Van Der Heijden. “Efficient adap-

tive density estimation per image pixel for the task of background
subtraction”. In: Pattern recognition letters 27.7 (2006), pp. 773–
780.

203

https://doi.org/10.1162/COMJ_a_00324
https://xiph.org/flac
https://doi.org/http://dx.doi.org/10.1162/014892602320991365

Tools

1. The audio graph format
We developed a custom format to describe audio graphs. The format must
be able to handle graphs with ports and several edges between two nodes,
which is not directly possible in the well-known graph visualisation Graphviz
format [GN00]. It must also be able to represent graphs from various IMS such
as Max/MSP, Puredata or Chuck, selecting a meaningful and relevant set of
common attributes.

The audiograph format is used to exchange graphs between our analysis tool
ims-analysis and a small IMS coded in Rust. ims-analysis can also convert
Max/MSP patches and Puredata patches to the audiograph format.

Declaring a node A node has three main attributes: kind, similar to the
classname in Max/MSP, in, the number of input ports and out, the number
of output ports, as in Code .1. Attribute kind is compulsory but the two other
ones can be omitted and will have a value of 0 in that case. More attributes
can be added to control other parameters of a specific node. For instance, for a
synthesizer, we add a freq attribute, which controls the synthesized frequency.

n1 =
{

kind : "osc",
freq : "440",
in: 0,
out : 1,

};

Code .1: An simple oscillator node with no input port and one output port.

Connecting nodes Ports of nodes are connected together using the -> key-
word, as in Code .2. Connections can also be chained.

204

Tools

n1.1 -> n3.2;
n3.1 -> n4.1 -> n5.1 ;

Code .2: Output port 1 of node n1 is connected to input port 2 of node n3. On
the second line, we write the connections between three nodes.

2. The ims-analysis program
The tool is open source and available on https://github.com/programLyrique/
ims-analysis.

We give here the command line options of the tool:

usage: ims_analysis [options] [input_file]

options:

Make analysis and optimizations of IMS programs

--version show program’s version and exit
-h, --help show this help message and exit
--debug Debug messages

Input:

Input options

--connect-subpatches
Connects subpatches to get only one connected graph,
not several components per subpatch

Display:

Display options

-oSTR, --output-name=STR
Name of the output file (without extension)

-d, --dot Outputs a dot file of the signal processing graph
-e, --audiograph Outputs an audiograph file

of the signal processing graph

205

https://github.com/programLyrique/ims-analysis
https://github.com/programLyrique/ims-analysis

Tools

-s, --stats Stats about the processing and the graphs
-r, --report A report about the optimization process

Optimizations:

Various optimizations

-w, --downsample Optimization by downsampling

Downsampling tweaking:

-aFLOAT, --deadline=FLOAT
Deadline of the audio callback in ms

-mFLOAT, --resampler-dur=FLOAT
Duration of a resampler in ms

-x, --exhaustive Exhaustive exploration
-l, --random Random exploration
--merge-resamplers

Merging resampler optimization
--nb-samples=INT Number of samples
-z, ----use-graphs

From existing audio graphs
-nINT, --nb-nodes=INT

Number of nodes in case of enumerating/random
generation all connected directed graphs with n nodes

-pFLOAT, --edge-prob=FLOAT
Edge probability in case of random generation of
connected directed graphs with n nodes

--node-file=STR Definitions of possible nodes for use for full
enumeration.

3. The Rust prototype IMS
The tool is open source and available on https://github.com/programLyrique/
audio-adaptive-scheduling. It also features scripts to reproduce the exper-
iments.

We give here the command line options of the tool:

USAGE:
audiograph [FLAGS] [OPTIONS] <INPUT> <--real-time|--bounce>

206

https://github.com/programLyrique/audio-adaptive-scheduling
https://github.com/programLyrique/audio-adaptive-scheduling

Tools

FLAGS:
-a, --audio-input Audio input used as source when bouncing
-b, --bounce Execute the graph offline (bounce),

as fast as possible.
-h, --help Prints help information
-m, --monitor Monitor execution and save it as a csv file.
-r, --real-time Execute in real-time
--silent No output at all on the terminal.
-V, --version Prints version information

OPTIONS:
-c, --cycles <NbCycles> Number of cycles to execute the audio graph

ARGS:
<INPUT> Sets the audiograph to use.

207

List of Figures

1.1. The big picture of an IMS as a central hub connecting sensors
and controlling synthesis and signal processors, with a human
in the loop. 2

1.2. An audio graph processing signals, seen as streams of buffered
samples, with control parameters. A synthesizer generates an
audio stream and its result is multiplied by a gain. Depending
on when the gain is sent, and when it is applied, the shape of the
sinusoid out of node × will be different. The first arrow on the
left shows when gain 2 is changed. The second one corresponds
to sample accuracy, and the third one, to block accuracy. If the
change in gain between 1 and 2 is not smoothed, there will be a
discontinuity in the signal. 5

2.1. Three possible ways of dealing with a control event occurring
during audio processing: at the boundaries of a buffer, at the
sample level, or with a subsample accuracy. Audio is precise
with an accuracy of p, the sample period. This is the sample
accuracy. Block accuracy is 8 × p here, as we have 8 samples
per block. 12

2.2. Scheduling cycle in Puredata (polling scheduler) A cycle starts
by executing all the timestamped operations events (handled by
clocks) then the actual signal processing is performed. After
that, MIDI events then GUI events are taken into account. The
idle hook is a custom processing than the user can add. For the
GUI not to be too unresponsive, after 5000 DSP actions, the
GUI is polled for events. 16

2.3. Client-server architecture of SuperCollider. 17
2.4. Shreduling in ChucK. Figure from [WCS15]. 19
2.5. Architecture of the Antescofo system. Continuous arrows rep-

resent pre-treatment, and dashed ones, real-time communications. 23
2.6. An Antescofo augmented score: actions a11 and a12, with a 0.5

delay, are associated to an instrumental event, here, a C quarter
note. 24

208

List of Figures

2.7. The signal processor has missed its deadline. Thus, no audio
sample generated by the processor during this audio cycle can
be sent to the audio buffer of the soundcard. In this implemen-
tation, the system sends silence, i.e., samples set to zero. It
entails a discontinuity in the signal at the red strip, hence, a click. 27

2.8. Histogram of time budgets for the audio callback on a MacBook
Pro with 16 GiB RAM and 3.10 GHz processor, with macOS
Sierra. We execute a test program generating a sawtooth signal
for 10 s. The time budgets range from 3.64 ms to 3.89 ms, i.e., a
254 µs jitter, with a mean of 3.78 ms. 28

2.9. Histogram of the execution time for the same code generating
a saw signal for 10 s. Here, we show the execution time at
each cycle in the audio callback for generating a sawtooth signal
on a MacBook Pro with 16 GiB RAM and 3.10 GHz processor,
with macOS Sierra. The execution times range from 4.74 µs to
25.20 µs with an average of 9.17 µs. The standard deviation is
1.59 µs. 29

2.10. Pipelining on a stream of three buffers with three dependent
tasks, tasks 1, 2 and 3, where task 3 needs the results of task 2
and task 2, the results of task 1. 32

2.11. A simple synchronous dataflow graph with three nodes v1, v2
and v3. Data flows from v1 to v3, from v1 to v2 and from v2 to
v3. v1 yields 1 token per firing, and v3 requires 2 tokens to be
fired, one from v1 and one from v2. 36

2.12. Two actors A and B exchange tokens: m tokens are generated
when A is fired and n tokens are consumed by B to be fired. . 37

2.13. Logical execution time: delay if actual execution finishes before
the pre-fixed execution time. Adapted from [Kir02]. 42

3.1. Example of an audio graph, with two mono sources, a mixer,
and a stereo sink. There are multiple edges between the mixer
node and the sink node. 46

3.2. A one-pole filter that exhibits feedback: the output of + goes
back into an input of + with a delay. On the right, we implement
this delay, by adding two ad-hoc nodes: in mem stores its input,
and out mem outputs what was stored by in mem. 47

209

List of Figures

3.3. A timestamp can represent various dates in the lifetime of a
sample: production or acquisition, processing or delivery. Here,
the second sample, after being processed by Pi, can be associated
timestamps t1 (production, in a source), t2 (processing, output
of Pi) or t3 (deadline, for a sink). 48

3.4. An aperiodic timestamped sequence, used to model aperiodic
control. 49

3.5. Periodic timestamped sequence of 4-sample buffers. 50
3.6. Canonical periodic timestamped sequence associated to the pe-

riodic timestamped sequence of 4-sample buffers of Figure 3.5 . 50
3.7. A stream of timestamped 4-sample buffers at the top. At the

bottom, the buffers of the same stream have been split (buffer
4) or fused (buffer 5 and 6). 50

3.8. Operator interleave on two aperiodic 1-sample buffer streams s1
and s2. Samples in s are greyed in accordance to the stream they
take their value from. Remark that s1 and s2 share a timestamp,
and that we keep in s the value of s1 at that timestamp. 53

3.9. A stream that is buffer-periodic and has all buffers with the same
sample-period. However, the stream is not sample-periodic. The
time interval between the last sample of a buffer and the first
sample of the next buffer is not populated with samples with the
same sample-period. 58

4.1. The audio graph from the one pole filter of Figure 3.2 with ports
and variable names on the edges. 65

4.2. Several edges go out of the same port on the left. In that case,
we have to duplicate the output stream, by inserting a fork node,
on the right. 66

4.3. Subtyping hierarchy for streams. A type can be upgraded to a
type upper in the diagram. This generalization corresponds to
losing some temporal and buffering information related to the
stream. 70

4.4. A simple graph which mixes two sources and then applies a gain
c to the result, before outputting it to a sink. For simple nodes,
we just write the function used for maps as node label. 74

5.1. The fuse operator: s′ = fuse(s) 78

210

List of Figures

5.2. The split operator on a 24-sample one-buffer stream. We show
s′ = split(s, 14), which yields a two-buffer stream where the two
buffers do not have the same size, and s′′ = splite(s, 4), which
yields a 6-buffer stream with buffers of size 4. 79

5.3. The bufferize on an aperiodic 1-sample buffer stream. We want
to transform it into a stream with one buffer of period p. Samples
in s′ are greyed in accordance to the sample in s they take their
value from. 80

5.4. The snap on an aperiodic 1-sample buffer stream. We want to
use new timestamps for the samples. Samples in s′ are greyed
in accordance to the sample in s they take their value from. We
do not need a default buffer here as the first timestamp of T is
higher than the first timestamp of s. 81

5.5. periodicize(s, p, 4) operator on an aperiodic 1-sample buffer stream
s. It transforms here s into a stream with 4-sample buffers of
sample-period p. Samples in s′ are greyed in accordance to the
sample in s they take their value from. 82

5.6. The window operator: s′ = window(6, 4)(s) 83
5.7. The decimation operator, where s′ = map(s, decimation(2)). 83
5.8. The expansion operator, where s′ = map(s, expansion(2)). . 84
5.9. An audio periodic generic stream and a control stream are in-

puts of a node. We only show the first buffers of the stream.
The aperiodic control buffer is snapped to the periodic buffer
boundaries, yielding stream y′. 92

5.10. Two aperiodic streams. We only show the first buffers of each
stream. For each timestamp in one aperiodic stream, we gener-
ate a timestamp for the other periodic stream, where its value
is its previous value or a default one. 92

6.1. Two possible graphical interfaces for the amSynth plugin in the
Carla host. On the left, the generic interface; on the right, the
custom interface. Image from Linux Magazine Issue 175,June
2015. 104

6.2. Summary of the lifetime of a DSP graph. 111
6.3. DSP graph (left) and the associated bipartite graphs (right).

Channels nodes hold buffers. We use one channel node per out-
put port of a node. 112

211

List of Figures

6.4. Removing channel c0 in the DSP graph. As Effect 1 and Effect 3
need buffers in channel c0; Effect 1, Effect 3 and channel c0, c1, c2
are removed from the graph. The incoming effects to Effect 1
that do not have any other outcoming path to the Output are
also removed from the Dsp graph. 112

6.5. Scheduling two audio nodes with different periods with activa-
tions on a DSP tick. 115

6.6. Possible interactions between audio processing and reactive com-
putations, i.e. control, in Antescofo. 118

6.7. Top: plot of the values of the variable $y in Curve @grain 0.2s $y 0
6 6,in relative and absolute times. There are 3 changes in the

tempo during a linear ramp. Bottom: plot of the value of the
continuous variable $$y in Curve @grain 0.2s $$y 0 6 6. The same
changes in the tempo are applied. 119

6.8. Top: Composer’s score excerpt of Anthèmes 2 (Section 1) for
Violin and Live Electronics (1997). Bottom: Main PureData
patcher for Anthèmes 2 (Section 1) from Antescofo Composer
Tutorial. 121

6.9. Scheduling cycle in PureData (polling scheduler) 122
6.10. Audio graph at the beginning of Anthèmes 2 by Pierre Boulez,

with the audio channels. The audio signal flows from Input to
Output. We do not show the input and output controls here. . 124

6.11. The DSP graph is made of four main nodes: a input node con-
nected to a video source (video camera or video file), a node that
does speed tracking, a node that plays a sound, and an audio
output, to the soundcard. 127

6.12. Detection of waving arm and hand in a video using OpenCV.
The centroid of the contour is the yellow point left to the wrist. 128

7.1. Inserting a downsampling node r between nodes v1 and v2. v1
has an output port v1.p̂o, v2 has an input port v2.p̌i and r has
an input port r.p̌i and an output port r.p̂o. 135

7.2. We assume that node v is on path v1 → · · · → vn. The resampled
signal flows on this path through input port p1

i with resampling
factor q. Node v has another input port, p2

i . The signal coming
into this port must also be resampled with resampling factor r. 136

212

List of Figures

7.3. Node v has one output port, p, which is connected to three input
ports, p1, p2, p2. On the left, we insert a resampler on each edge
p → p1, p → p2, p → p3 with same resampling ratio, whereas
on the right, we insert a node v′′ with one input port p′ and 3
outputs p′

1, p′
2, p′

3, and we insert the resampler v′ on edge p→ p′. 137
7.4. Rewriting the graph in the presence of a mixer mix. Resamplers

r1 and r2 with the same resampling ratio ρ are removed and a
resampler with resampling ratio ρ is inserted after mix. 138

7.5. Downsampler r1 followed by an upsampler r2, where both have
the same resampling ratio. 138

7.6. Average execution time of an oscillator in function of the buffer
size on a MacBook Pro with 16 GiB RAM and 3.10 GHz proces-
sor with macOS Sierra: powers of 2 from 64 to 4096 samples.
We show the 95% confidence intervals and a linear regression of
the average execution time. 147

7.7. Probability density function of the execution time of an oscillator
with input buffer size of 256 samples. Outliers are probably due
to the non real-time guarantees of the mainstream operating
system on which the benchmark runs. 148

7.8. The experimental setup to evaluate the models of quality and
execution time. 151

7.9. ISO 226-2003 equal-loudness contours, in phon, with frequency,
in Hz. For low frequencies, the sound pressure level must be
higher to be heard as loud as sounds with a mid-range frequency. 153

7.10. A denoiser patch with multiple subpatches. fft-analysis (b)
and test-signal (d) are subpatches of the main patch (a),
whereas calculate-mask (c) is a subpatch of fft-analysis (b). 156

7.11. Port sharing entails that a vertex can be replaced by a node with
a smaller number of output ports. At the top, it is a vertex with
3 outgoing edges. At the bottom, we show two possible actual
nodes generated from this vertex, one with 3 output ports, and
one with 2 output ports and the second port shared by two
outgoing edges. 158

7.12. The degraded graph 7.12a and all its degraded versions 7.12b,
7.12c and 7.12d. The resamplers are filled in light grey and
annotated with their resampling ratio. 161

7.13. Execution time and quality for the graphs obtained from the
graph 7.12a, according to the models and according to the mea-
surements. Graph 0 is the non-degraded graph. Graph 1 is
(7.12b); graph 2 is (7.12c); graph 3 is (7.12d). 162

213

List of Figures

7.14. Histogram of correlations for cost in 7.14a and quality in 7.14b
for exhaustive enumeration of 5-node graphs, using Kendall Tau
and Spearman correlations. 162

7.15. Histogram of correlations for cost in (7.15a) and quality in (7.15b)
for 10-node random graphs, using Kendall Tau and Spearman
correlations. 163

7.16. Quickest and slowest versions for each non-degraded graph. We
perform two linear regressions using methods robust to outliers,
Siegel estimator [Sie82] and Theil-Sen estimator [Sen68; The92]. 164

7.17. Histogram of correlations for cost in 7.17a and quality in 7.17b
for graphs generated from Puredata patches, with at least 4
nodes, using Kendall Tau and Spearman correlations. 165

8.1. Pairs of execution time and quality for degraded graphs and their
non-degraded graph. A red ellipsis is a cluster of graphs where
the clustering is done on the execution time axis. In each cluster,
we pick the best quality graph, which gives us an approximate
Pareto front with four graphs. 169

8.2. The progressive strategy in action. The dashed nodes have al-
ready been executed. It is the turn of the Mixer node (in blue)
to be executed, but the estimated remaining time exceeds the
remaining allocated time budget and would entail a deadline
miss. We traverse backwards from the Output and find out
that degrading the red branch is enough not to miss the deadline.171

8.3. Two pathological kinds of graphs used for the online experiments.175
8.4. Results for the chain graph of Figure 8.3b, with 2000 modulators

and 3000 modulators respectively, using the exhaustive strategy.
When the time budget is negative, it means there was a dead-
line miss. The expected remaining time is the estimated time
for the cycle if a degradation decision is taken. Graphically, a
degradation must occur if the estimated remaining time is above
the deadline. 178

8.5. Results for the comb graph of Figure 8.3b, with 2000 modula-
tors using the exhaustive strategy. When the time budget is
negative, it means there was a deadline miss. The expected re-
maining time is the estimated time for the cycle if a degradation
decision is taken. Graphically, a degradation must occur if the
estimated remaining time is above the deadline. 179

214

List of Tables

2.1. Classifying IMSs according to the model of time and the pro-
gramming paradigm. 13

2.2. Comparison of 22 IMSs. All of the IMSs here are programmable, except Bitwig
Studio and Ableton (but it has now an embedded version of Max, Max for Live).
For the multirate criteria, we analyze whether there are multiple audio rates or
not. O2 is an extension of OSC [DC16]. Prog. model refers to programming
model. If a column is not filled for a specific IMS, it means either that we could
not find the relevant information or that it does not apply to the IMS. 14

2.3. Comparison of IMSs with respect to parallelism. 35

3.1. Signal and control in IMS and representation in S 61
3.2. A classification of streams: s refers to a stream here. 61

4.1. Special nodes. All these operators have one input stream and
one output stream. 64

5.1. Operators on streams and on buffers. S is the set of streams, B
is the set of buffers; T is the set of timestamps; P is the set of
periods. We note P the set of sample-periodic streams. 86

5.2. The rules to apply for a given combination of types for a two
=input node. 88

6.1. The main standards of audio plugins, with the platforms on
which they can be run. If there are several ones, there is often
one which is the first and main target, and we emphasize it. . . 102

7.1. ACET for basic nodes for a buffer size of 256 samples on a Mac-
Book Pro with 16 GiB RAM and 3.10 GHz processor with macOS
Sierra. Execution times are in µs. 146

215

List of Tables

7.2. Statistics on in and out degrees, number of edges, of nodes, di-
ameter of graphs extracted from Puredata patches. i(v)v∈G,G∈G
is the average in-degree; o(v)v∈G,G∈G is the average out-degree;
maxv∈G i(v) is the average max in-degree; maxv∈G o(v) is the
average max out-degree. In a directed graph, and due to the
handshaking lemma, i(v)v∈G,G∈G = o(v)v∈G,G∈G = n i.e. edges

nvertices
. . 157

8.1. Results of the experiments. Each line corresponds to 100 random
graphs with the same number of nodes. EX refers to the total
heuristics and PROG to the progressive heuristics. All durations
are in µs and when it is relevant, with their standard deviation.
Degraded cycles is the average number of times a cycle has been
degraded during the 500 cycles of a run. Time budget is the time
budget that remains at the end of the execution of the callback.
If it is negative, it means that the deadline has been missed by
this duration. Remaining time is the time that is estimated to
remain before finishing execution for one audio cycle when we
first decide to degrade. Choosing duration is only relevant to
the progressive strategy: it is the time to decide and choose
the nodes to be degraded. The number of resamplers is the
number of inserted resamplers during a degraded cycle. If it
is strictly positive, it means that there were degraded cycles.
Degraded nodes are the average of the number of degraded nodes
per degraded cycles. 177

216

List of Algorithms

1. Fixpoint algorithm for type inference and type checking. If the
fixpoint algorithm stabilizes, iterations are bounded by the di-
ameter of the graph, so we compute our number of iterations
with respect to that diameter. We perform successively period
then buffer-size, then element-type inference. It means that we
assume that we managed to compute all periods before comput-
ing buffer sizes. Update functions of types use Equation 6.1 to
propagate buffer sizes in addition to the typing rules of Chap-
ter 4. We do not perform fixpoint iterations for the element
type, as we do not allow type variables for it in the implemen-
tation. Variable nbNodes is the number of active nodes in the
graph, and variable nodes is the list of active nodes in the graph.
The order of nodes in the list depends on the order in which the
nodes have been declared in the score. 114

2. Computing timings of the next DSP tick. The audio callback is
called repeatedly on buffers of n samples at a sample rate f so
we can deduce its period n

f . The change in sample rate or buffer
size in the callback does not change the timings either. tickNum
is used to determine which node to execute during the period.
timeRemaining is the time remaining before the end of the call-
back activation and callbackPeriod is the duration between
two periodic calls of the audio callback. The wait instruction
is useful if we want to have controls taken into account in the
right tick, and not recompute the ticks if a timestamped control
arrives after its associated DSP tick has been computed. If we
just aim at callback period accuracy, we can remove this wait.
Variable DSPTickPeriod is the duration of the dsp tick for the
audio graph. PerformTick executes the nodes in the order of
the schedule for all the samples for one DSPTickPeriod. 116

217

List of Algorithms

3. Degrades a graph by inserting resamplers, given a graph where
all edges where a degraded signal flows are marked with a boolean
to_degrade. This works where there only two sample rates: one
normal rate, and one degraded rate. For more rates, we use a
integer storing the rate in Hz instead of the boolean. 140

4. Computing the sequence of degraded graphs with a standard
depth-first backward traversal. A node has two attributes, vis-
ited and to_degrade. to_degrade indicates that a node is in-
cluded into the set of nodes to be degraded. For this heuristics,
visited and to_degrade will actually have the same values. ξi(G)
is a sequence of graphs obtained from the non-degraded graph
G, with ξ0(G) = G. Note that modifying the attributes of cur-
rentNode modifies the graph. 142

5. Execution of the graph for one cycle, possibly starting degrada-
tion with the heuristics at the middle of the cycle. node is the
function that performs the sound processing of node. “buffers”
is a set of buffers used as input and output buffers. Heuristics
compute the set of nodes to degrade by updating flags associated
to the node in chooseNodes. node.firstToDegrade indicates that
the current buffer must be downsampled before performing the
node processing, and node.lastToDegrade, that the buffer after
must be upsampled after the node processing. 173

218

List of Codes

2.1. This simple program generates a sine at 440 Hz with phase 0 and
an amplitude of 0.1, and white noise at the audio rate (i.e. ar),
adds them, and plays them. The sine and the white noise are
both synths. The sclang language implements the evaluation of
this expression by sending OSC messages to the scynth server. 16

2.2. Advancing time by assigning now in ChucK. 18
2.3. A linear chain composed of a sinusoidal oscillator, a gain, a

reverb, and then an output to the soundcard. 18
2.4. Temporal recursion in ExTempore: a function reschedules itself

to be executed 4000 samples later. 20
2.5. A Karplus-Strong string model in Faust. Some graphical in-

terface elements are defined in the code: hslider, button, and
vgroup to group other GUI elements. Some signal processing el-
ements are grouped into macro functions, such as release(n),
to be used later. The process instruction on the last line gives
access to the audio inputs and outputs of the target architecture. 22

2.6. A node definition that takes one sequence as input, negates it
and returns it. 40

2.7. Clock under-sampling and over-sampling. 41

6.1. A type annotation that describes an effect with two inputs and
two outputs. There is one audio input and one control input,
and one audio output and one control output. The node is
isochronous and uses a sampling rate of 44 100 Hz. We also
impose the buffer size of the output audio signal to be 256 sam-
ples. 106

6.2. An Antescofo score where a sampler is connected to the sound-
card output. The sampler used a 88200 sample rate, has one
scalar control input to indicate when the sample must be played,
one audio signal output and one scalar output to say when the
sample has finished playing. 107

219

List of Codes

6.3. A pitch shifter programmed in Faust, declared as an effect in
Antescofo. It has one audio input, $$audioIn, and three control
parameters, $hr1, $hr2, and $psout, and one audio output. In the
Faust code, the inputs and outputs are represented implicitly
by the underscores (in the last line). 108

6.4. All native signal processing nodes inherit from the DspNode class.
DspPeriod refers to the activation period, and DspStreamType, to the
types of the inputs and outputs. The parameters to give when
instantiating are stored in params. Types for a given node are
checked within the infer_and_check_connections method. 110

6.5. A typical compute method, that needs to be implemented by all
signal processing effects. 110

6.6. The patch action for the beginning of Anthèmes II by Pierre
Boulez. Figure 6.10 shows a more human-understandable vi-
sualization of the audio graph with the audio channels. 123

6.7. Anthèmes II score: message passing (old style) 123
6.8. Anthèmes II score: embedded audio (new style) 124
6.9. An Antescofo score that uses speed tracking of an arm to control

a synthesizer. 126

7.1. A modulator node in the database of nodes. The frequency and
the volume can take several values. For frequency, the values
are taken from a finite set and, for volume, from a range. . . . 157

.1. An simple oscillator node with no input port and one output port.204

.2. Output port 1 of node n1 is connected to input port 2 of node
n3. On the second line, we write the connections between three
nodes. 205

220

	1 Introduction
	2 An overview of Interactive Multimedia Systems
	2.1 A bestiary of Interactive Multimedia Systems
	2.2 IMSs as real-time systems
	2.3 Optimization in IMSs
	2.4 Formal models for IMSs

	I Formalization
	3 Objects
	3.1 Audio graphs
	3.2 The domain of discrete streams

	4 Syntax and types
	4.1 Syntax of nodes and audio graphs
	4.2 Types

	5 Semantics
	5.1 Stream transformations
	5.2 Semantics
	5.3 Related work and comparison with the formalization

	II Implementation and optimization of audio graphs
	6 Proof of concept of an architecture for extensible, dynamic, heterogeneous audio plugins
	6.1 Audio plugins
	6.2 Audio extension syntax
	6.3 Audio architecture
	6.4 Applications

	7 Offline optimization of audio graphs
	7.1 Approximate computing
	7.2 Optimization by resampling
	7.3 A quality model for audio graphs
	7.4 Ranking nodes by average execution time
	7.5 Experimental evaluation

	8 Adaptive overhead-aware scheduling of audio graphs by resampling
	8.1 Real-time systems and adaptation
	8.2 Resampling strategies suitable for real-time scheduling
	8.3 Execution of the audio graph and prediction of deadline misses
	8.4 Results and discussion

	9 Conclusion and perspectives
	9.1 Conclusion
	9.2 Perspectives

	Bibliography
	Tools
	1 The audio graph format
	2 The ims-analysis program
	3 The Rust prototype IMS

	List of Figures
	List of Tables
	List of Algorithms
	List of Codes

