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Transport of active bacteria: from micro-scale processes to macroscopic hydrodynamic dispersion

This thesis focuses on the micro-hydrodynamics and the transport properties of Escherichia coli bacteria (E. coli ) in microchannel in a flow.

The bacterial trajectories are recorded using a 3D Lagrangian tracking device. With this apparatus, on can follow bacteria at surfaces and in bulk, with and without flow.

First, the "run and tumble" process of wild type E. coli in a quiescent fluid is investigated. It is shown that this process does not follow the standard picture, and the distribution of persistence time is not a Poisson distribution but a log-normal distribution. This distribution of persistence time is due to a behavioral variability of the bacteria.

Bacteria spend long times swimming near surfaces. For wild type bacteria, the residence time at surfaces is widely distributed and follow a log-normal distribution, like the persistence time. Smooth swimmers spend much more time at surfaces than wild type bacteria, suggesting that tumbling events are important mechanisms to leave the surface. Then, the entrapment and escape dynamics are studied via the incoming and escape angle. Without flow, bacteria tend to leave the surface with a weak pitch angle, i.e more aligned with the surface, whereas they arrive at surfaces with a pitch angle isotropically distributed.

When submitted to a flow, bacteria exhibit different types of trajectories. At surfaces, four rheotactic regimes are found, depending on the applied shear rate, including a new regime where the bacterium orientation oscillates. For wild type bacteria, the residence time at surfaces decreases when the flow is turned on, but bacteria still spend ∼ 50% of their time at the surface, independently of the applied shear rate. Surfaces thus play an important role in bacterial transport in a flow. In the bulk, trajectories of smooth swimmers are compared with an active Bretherton-Jeffery model. Experimentally, bacteria perform cycloid-like "swinging" and "shear tumbling" trajectories, predicted by the model. New features, such as swimming planes and drift angles, are also derived from the model and observed experimentally. The agreement between the model and the experiments is however local in time. At long time, a rotational noise disorients the bacteria. Thanks to a maximization method developed during this thesis, it is shown that this noise is compatible in magnitude with a brownian rotational noise.

To conclude, the microscopic aspects of bacterial trajectories are discussed in the framework of the hydrodynamic dispersion. Preliminary results show that the dispersion coefficient scale quadratically with the Péclet number, as it is the case for the classical Taylor dispersion, but with a larger prefactor, reflecting a larger dispersion. This may comes from retention processes at surfaces.

Résumé

Cette thèse porte sur les propriétés micro-hydrodynamiques et le transport de bactéries Escherichia coli (E. coli ) dans des micro-canaux sous écoulement.

Pour ce faire, des trajectoires de bactéries sont enregistrées grâce à un tracking Lagrangien 3D, permettant de suivre en 3D dimensions une bactérie nageant dans un environnement avec ou sans écoulement. Au cours de cette thèse, deux types de souches bactériennes sont utilisées : une souche sauvage se déplaçant suivant une dynamique de "run and tumble" et une souche mutante dite "smooth swimmer", pour laquelle les événements de "tumble" sont inhibés.

Dans un premier temps, le processus de "run and tumble" de E. coli dans un fluide au repos et loin des parois est étudié. Au temps longs, contrairement à l'image classiquement admise, la distribution des temps de persistence n'est pas distribuée suivant une loi de Poisson mais suivant une loi log-normal. Cette distribution est attribuée à des fluctuations interne d'une protéine responsable des évènements de "tumble".

Les bactéries sont attirées par les surfaces, pour des souches sauvages la distribution des temps passée aux surfaces suit une loi log-normale. Pour des "smooth swimmers", la fraction de temps passée aux surfaces est significativement plus importante que pour la souche sauvage, ce qui souligne l'importance des "tumbles" dans les mécanismes de détachement. L'angle d'approche de la surface et de décollage sont aussi étudiés ; les bactéries arrivent aux surfaces avec une orientation distribuée aléatoirement tandis que la distribution d'orientation au décollage est biaisée par la présence de la surface.

Sous écoulement, différents types de trajectoires sont observés. A la surface, quatre régimes rhéotactiques, dépendant du taux de cisaillement à la paroi, sont mis en évidences dont un nouveau regime où l'orientation de la bactérie oscille. Les temps de résidences et la fraction du temps passé à la surface et sous écoulement sont aussi étudiés pour la souche sauvage. Loin des parois, les trajectoires de bactéries "smooth swimmers" sont analysées et comparées à un modèle de Bretherton-Jeffery actif décrivant la dynamique de l'orientation d'un ellipsoïde nageant à vitesse constante dans un profil de vitesse. Expérimentalement, des trajectoires de types cycloïdes, prédites par le modèle, sont observées. De nouveaux comportements sont aussi observés expérimentalement et dérivés analytiquement, comme par exemple la présence d'un angle de drift autour duquel s'enroulent les trajectoires de types cycloïdes. L'accord entre les trajectoires expérimentales et le modèle n'est néanmoins valide qu'à temps court. En effet, pour des temps longs, un bruit agissant sur l'orientation de la bactérie fait dévier les trajectoires de la prédiction du modèle. Grâce à une méthode de maximisation développée pendant cette thèse, l'amplitude de ce bruit est calculée et est comparable en ordre de grandeur à un bruit d'origine thermique.

Pour conclure, les aspects micro-hydrodynamiques des trajectoires de bactéries sont discutés dans le cadre de la dispersion hydrodynamique.

Chapter I Introduction 1 Motivation

Microorganisms are found in a broad range of natural environments. They populate oceans, rivers, lakes and soils and are even found in suspension in the air or inside other living organisms. They represent 20% of the biomass at the planet scale [1]. In this broad family of species, some have developed different strategies to move. For example, sperm cells propagate waves along their flagella, paramecia propagate metachronal waves along their cilia array and algae such Clamydomonas Reinhardtii move thanks to a breaststrokelike motion. Other microorganisms such as Bacillus Subtilis and Escherichia coli (E. coli) move by rotating helicoidal flagella that create a propulsive bundle. From a genetical point of view E. coli is one of the most, if not the most documented organism, it is easy to grow and lots of mutant strains are available. For these reasons, E. coli is widely used in biophysics and is the microorganism I used for my thesis. During they life cycle, bacteria evolve and undergo profound changes. In the planktonic (free-swimming) state, they are isolated and free to move. Then, once they attach to a solid surface, they divide and form biofilm which is a complex surface-attached community [START_REF] O'toole | Biofilm formation as microbial development[END_REF], bound to the surface and with each others by an extra-cellular matrix. At some point cells detach from a biofilm and go back to planktonic state to eventually start a new colony elsewhere. Biofilm formation has been the focus of most of the studies about microorganisms and the free-swimming state have been only a recent concern and an active field of research for the last ten years [3]. Bacteria in suspension, motile or non motile, belong to the microbiome of the humans and other animals. They are found in multiple regions of the body, including digestive tracks [START_REF] Stearns | Bacterial biogeography of the human digestive tract[END_REF]5], urinary tract, and lungs [START_REF] Kim | Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow[END_REF]7]. Because they control and regulate important biological functions, or could be pathogen causing severe diseases, a better understanding of these motile entities can be useful in medicine. Understanding and controlling the transport properties of bacteria can lead to many practical applications. For pathogens, it can prevent contamination of catheters [7]. For sperm cells, a deeper understanding of the motility mechanisms can help the fertilization processes [8,9,[START_REF] Ren | A sperm ion channel required for sperm motility and male fertility[END_REF]. Bacteria can be used to decompose and fix contaminants trapped in soil [START_REF] Pieper | Engineering bacteria for bioremediation[END_REF] or to fertilize it. In industry, they are used in bioreactor [START_REF] Garcia-Ochoa | Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview[END_REF] and can even enhance oil recovery [START_REF] Rusconi | Microbes in flow[END_REF].

The diversity of environments encountered by bacteria makes them swim under various 1 physical and geometrical constrains. They can freely move in open space as in quiescent water, or confined in structures like pores in rocks [14].The surrounding fluid in which they swim can flow, this is the case in biological conducts like blood vessels and urinary tracks. They often have to swim in viscous non newtonian fluids such as mucus [5]. In all these situations, interactions between bacteria and surfaces are determinant. From a physical point of view, bacteria are "exotic particles". They differ fundamentally from passive colloid by their ability to convert chemical energy into motion. Suspensions of such motile entities are what physicists recently called "active fluids" . This notion enforces the statistical physics credo that "more is different" meaning that at some scales, will emerge a unified physical entity ruled by macroscopic transport equations associated with constitutive relations. However, the nature of the emergent fields (stress, velocity, density...) differs strongly from what is currently known for standard fluids. We know for instance that the definition of pressure in active systems differs from the equilibrium one and is not always a state function [START_REF] Bansil | The influence of mucus microstructure and rheology in Helicobacter pylori infection[END_REF][START_REF] Takatori | Swim pressure: stress generation in active matter[END_REF]17,[START_REF] Donnelly | In vitro fertilization and pregnancy rates: the influence of sperm motility and morphology on IVF outcome[END_REF]. At high concentration, bacteria can decrease the effective viscosity [19] and self-organize leading to the so-called low-Reynolds "turbulence" [START_REF] Gachelin | Collective motion in an active suspension of Escherichia coli bacteria[END_REF].

A lot of efforts have been made to put in equations and formalize those new phenomena. Along those lines, my intention is to contribute to the understanding of macroscopic transport properties of active bacteria in suspension. In this perspective, I focused on the various microscopic processes, i.e at the scale of a bacterium, which contribute to macroscopic transport properties.

To do so, I studied a large collection of individual bacterial trajectories in order to quantify the retention dynamics at surfaces, the swimming behavior in the flow as well as the exchange properties between the surface and the bulk. In particular, I highlighted the central contribution of singular features in the "run and tumble" process to all these issues.

In conclusion I will gather those elements and discuss their implications on the complex problem of hydrodynamic dispersion of active particles.

2

Dispersion and retention of particles in a flow

Dispersion of bacteria in porous media

Waste water is one of the source of contamination of the ground by possible harmful bacteria. In this context, very large amount of research has been undertaken to predict the spreading of bacteria in soils and in ground water. To describe these phenomena, the practitioners usually borrow the conceptual background derived from the hydrodynamic dispersion of passive colloids. In practice, one of the methods developed to quantify these effects uses macroscopic columns filled with different granular material [START_REF] Tufenkji | Transport of Cryptosporidium oocysts in porous media: Role of straining and physicochemical filtration[END_REF]22,[START_REF] Ford | Role of chemotaxis in the transport of bacteria through saturated porous media[END_REF][START_REF] Lutterodt | The effect of surface characteristics on the transport of multiple Escherichia coli isolates in large scale columns of quartz sand[END_REF][START_REF] Lutterodt | Transport of Escherichia coli in 25 m quartz sand columns[END_REF].

The standard approach to quantify the transport properties of particles in such porous media is to measure their displacement distribution along the flow as a function of time. In this picture, the variation of the particle concentration along the flow direction will follow the classical convection dispersion equation [START_REF] Saffman | A theory of dispersion in a porous medium[END_REF]. For a narrow band of particles injected through an homogeneous porous medium, after few pores, the distribution of displacement will be gaussian of width ∆x, increasing as the square-root of time, with: ∆x ≈ √ D G t . Where D G ≈ αU is the geometric dispersion coefficient with α the dispersivity which is of the order of the grain (or pore) size and U the mean velocity. The Fig. I.1(a) shows an example of concentration curves at different distances from the inlet. The solid lines are solutions of the classical convection diffusion equation. For experiments done with NaCl, the agreement between the model and the data is very good. With bacteria, the concentration profiles are qualitatively different: a large retention tail and an early breakthrough can be seen. Therefore, these curves cannot be fitted by a classical model.

There is another class of models called "filtration model" describing the retention process by a fixed probability of attachment at the solid surface. This picture provide generically an exponential decay of concentration with distance [START_REF] Logan | Clarification of clean-bed filtration models[END_REF]. A growing body of studies on the deposition of colloids such as micro latex spheres, bacteria, viruses and protists, however, suggests that the deposition frequently does not agree with such filtration theory predictions. Some studies even suggested that the fraction of bacteria retained as function of the sticking efficiency should follow a power law distribution [START_REF] Lutterodt | Transport of Escherichia coli in 25 m quartz sand columns[END_REF]. In all cases, theories developed to understand the observed retention processes suppose the existence of chemical phenomena (heterogeneity in surface charge...) or physical phenomena (grain roughness, micro-pore filtration or trapping in the contact areas between grains). But to date, only few recent studies on the dispersion of microorganisms consider the influence of the swimming activity on retention and dispersion [27,[START_REF] Alonso-Matilla | Transport and dispersion of active particles in periodic porous media[END_REF].

A first step toward a microscopic and quantitative comprehension of the dispersion of bacteria in porous media was done by Creppy et al. [27]. They used a soft microfluidics printing technique to make a transparent chip containing randomly placed obstacles mimicking a porous medium. Their device enables the observation and recording of the eulerian trajectories of motile and non motile bacteria at different flow velocities. In this study, the authors were careful suppressing the sticking of bacteria at the solid surfaces by adding chemicals in the suspension. spend time swimming around the obstacles. This set-up thus allows to carefully study the effect of hydrodynamic forces between the bacteria and the surface on the dispersion process. First, they did not observe a strong influence of the motility on the dispersion and the dispersion coefficient always scales linearly with the flow velocity. However the distribution of bacterial displacement is not a gaussian, as it is the case in the standard picture, but is skewed as seen in Fig I.3(a). This is due to two effects: first a retardation effect since bacteria tend to accumulate and spend time at the pore surfaces, second an enhanced spreading of the forefront, due to to bacteria transported at a velocity larger than the local flow velocity, thanks to their activity.

Surface retention effects, due to the swimming activity, therefore play a central role in the transport of bacteria suspended in a flow.

Flow in a channel of rectangular cross section and Taylor dispersion

Porous media are already geometrically complex materials. In a first step, to understand at a deeper level the interactions of bacteria with surfaces, the geometry can be simplified. In this thesis, I will study the transport of bacteria in a channel of rectangular cross-section. Thus in the following, I will review the problem of hydrodynamic dispersion in a Poiseuille flow, aka the Taylor-Aris dispersion [30,[START_REF] Taylor | Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion[END_REF], in order to clarify the significant difference with porous media. For passive particles flowing in a Poiseuille flow, the dispersion is due to the coupling between the flow advection and the molecular diffusion. The Péclet number P e is a dimensionless quantity which compares these two effects and is equal to P e = U h 2Dm with U the mean flow velocity, h the channel height and D m the molecular diffusion coefficient.

Let us consider the simple 2D case of a fluid flowing between two parallel plates separated by a distance h. In absence of flow, a particle will simply diffuse in the direction parallel and normal to the channel and the spreading along the channel direction after a time t is ∆x ≈ √ D m t where D m is the molecular diffusion coefficient of the tracers. Under a pressure gradient, the velocity profile is parabolic with its maximum a the center, and zero at the surfaces. At a time t = 0, if a narrow band of particles is injected at the channel inlet, it will spread due to the velocity profile. At short time (t=10 on Fig I .4), each particle follows the streamline and the concentration profile along the transverse direction y has a shape underlying the parabolic velocity profile. In that case, the distance over which a particle spreads out in the flow direction x is : ∆x ≈ u(y)t, where u(y) is the local flow velocity. As time increases, due to brownian diffusion, the particles cross the stream lines which broadens the concentration profile (t=100 on Fig I .4). For times longer than the time it takes for a particle to diffuse across half the channel width h/2 (i.e for τ taylor > h 2 4Dm ), the concentration profile becomes almost homogeneous in the channel transverse direction. When averaged over the section of the tube (t=1000 on Fig I .4), we observe experimentally and numerically that the variation with x of the averaged con- centration is gaussian with a standard deviation σ x increasing as the square-root of time, with: σ x ≈ √ D T t. Fig I .5 displays an experimental dispersion curve at different time. As the time increases, the concentration profile is advected along the flow direction (here x), its maximum decreases and at the same time its width σ x increases. At times larger than the Taylor time τ taylor , one has a diffusive spreading (superimposed on the average displacement at the velocity U) characterized by D T the Taylor dispersion coefficient [33]:

D T = D m (1 + P e 2 A ) (I.1)
with P e = hU Dm and A a geometric factor (A = 210 for flow between two parallel plates and A = 192 for flows in a capillary tube).

In a numerical work, Chilukuri et al. [34] studied the dispersion of flagellated swimmers in a Poiseuille flow. In this work, the swimmer is modeled by two beads, representing the head and the flagella bundle, connected by a stiff spring. Hydrodynamic interactions between the swimmer and the walls are modeled by the hydrodynamic images of point forces to enforce the no slip boundary conditions [START_REF] Blake | A note on the image system for a Stokeslet in a no-slip boundary[END_REF]36]. Under those conditions, they were able to measure the contribution of the motility on hydrodynamic dispersion. They computed the standard deviation of the distribution of displacements of the swimmers:

σ x = √ 2Kt
, where K would be the effective Taylor dispersion coefficient. For low flow rates (or low P e), they found that the K of swimmers is higher than that of non-motile, because of their swimming motion (Fig I .6 region I). As the flow rate increases, K drops, reaching a minimum (Fig I .6 region II) before increasing at high flow rates. The minimum occurs approximately when the swimming velocity of the organism equals the mean flow velocity. Then, at high flow, the K value approaches the one of passive particles (Fig I .6 region III) and K is proportional to P e 2 (Taylor regime). Note importantly, that they do not observe any strong dependence of the dispersion coefficient on the tuning or the suppression of hydrodynamic interactions between the swimmer and the wall.

This study shows that even with a simplified picture of the microorganism (approximations on its shape, on the hydrodynamic swimmer-wall interactions and on the flow geometry), the dispersion properties are already different from those of passive particles.

Even if the subject has not received a large attention so far, the swimming activity is suspected to modify the hydrodynamic dispersion process and to induce surface retention effects especially when the fluid and the swimming velocity are of the same order of magnitude. The studies so far performed are, however, too scarce to offer a complete and accurate picture of the motility effects at the macroscale.

About Escherichia coli

At the scale of the bacterium, the viscous drag is dominant compared to the inertia and the typical Reynolds numbers Re = ρLUs η is the order of 10 -4 with ρ and η the density and the viscosity of water, L = 10 µm and U s = 25 µm s -1 the typical length and swimming velocity. In this regime, hydrodynamics is governed by the Stokes equation and the bacterium motion is force-free and torque-free. E. coli has a rod-like shaped body of 2 µm in length and 1 µm in width and a tail composed of 5 to 6 flagella bundled together when the bacterium is in propulsive mode. The rotation of the bundle propels the bacterium at typical velocity of 25 µm s -1 . Each flagellum is rotated individually by a hook anchored in the membrane of the body and is powered by a rotary molecular motor. Due to the Stokes equation the viscous force balances the propulsion and the motion is force-free. During the run phase, the force balance can be modeled by a force dipole in which the body and the flagella act on the fluid in the direction away from the cell major axis [START_REF] Drescher | Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering[END_REF], as seen on Fig I .8. Such swimmers are called "pushers", because they push the fluid to move. The velocity field around the cell can be adjusted by a velocity field of the form: 

u(r) = A |r| 2 3(r.d) -1 r (I.

The run and tumble strategy of E. coli

The flagella of E. coli are rotated by molecular motors. The rotational direction of the motor is triggered by a protein named CheY which can be phosphorilated in CheY-P, where P designates the phosphoryl group (P + O 2- 3 ). In abundance of protein CheY, the molecular motor turns in counterclockwise direction (CCW), all the flagella bundle together and the bacterium swims in a straight line. This phase is called the run phase. When the CheY is phosphorilated into CheY-P, it can eventually bind to the molecular motor and induce a rotation in the clockwise direction (CW). If at least one of the motors turn CW the bacterium "tumbles". In a simple model initially proposed by Berg et al. [START_REF] Berg | Chemotaxis in Escherichia coli analysed by threedimensional tracking[END_REF] and completed by Saragosti et al. [START_REF] Saragosti | Modeling E. coli tumbles by rotational diffusion. Implications for chemotaxis[END_REF] during the tumbling events, the bacterium almost stop and undergoes a reorientation similar to a rotational diffusion.

The direction of rotation of the motor and thus the rate of tumbling depends on the CheY-P concentration: the higher the CheY-P concentration the more likely tumbling [START_REF] Berg | Chemotaxis in Escherichia coli analysed by threedimensional tracking[END_REF] events will be. By alternating run phase and tumbling events, the bacterium undergo at long time a random walk with translational diffusion coefficient D t ∼ 400 µm 2 /s, and then explores its environment [START_REF] Berg | E. coli in motion[END_REF]. Note that in the absence of activity the translational coefficient due to thermal fluctuation would be of order of 0.4 µm 2 /s. In the presence of a chemical gradient, the bacterium biases the statistics of the tumbling events in order to go to favorable regions [START_REF] Berg | E. coli in motion[END_REF].

As it controls the E. coli space exploration, the run and tumble dynamics have been the focus of several studies. In a first work, Berg and Brow [START_REF] Berg | Chemotaxis in Escherichia coli analysed by threedimensional tracking[END_REF] As we have seen earlier in the section, motors turn CCW during a run phase. The results of Korobkova suggest that the distribution of run time should also follow a power law which is not what Berg observed and the run and tumble process is still a open question.

Bacteria motility and accumulation at surfaces

There are a large number of experiments that show that bacteria spend time and accumulate at solid interfaces [START_REF] Berke | Hydrodynamic attraction of swimming microorganisms by surfaces[END_REF]. The physical origin of the accumulation is still debated and can be due to hydrodynamic interaction coming from its force dipole [START_REF] Berke | Hydrodynamic attraction of swimming microorganisms by surfaces[END_REF] as well as steric interactions and collisions with the surface [START_REF] Li | Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion[END_REF]. Near a flat solid surface the drag force acting on an object increases as one approaches the surface. For a bacterium, it means that the part of the body and the bundle closest to the surface experience a higher drag force than the other parts. This leads to a net force in the direction perpendicular to the bacteria body axis and toward the surface (see Fig I .12). Because of the low Reynolds number, the motion of E. coli is torque-free and the rotation of the flagella in the CCW direction makes the body turn in the opposite direction. Therefore, the viscous drag acting on these two parts, of opposite sign, creates a torque on the bacterium around the normal surface direction. When looking from above at bacteria swimming at the surface vicinity, one observes CW circular motion [START_REF] Berg | Chemotaxis of bacteria in glass capillary arrays. Escherichia coli, motility, microchannel plate, and light scattering[END_REF][START_REF] Frymier | Three-dimensional tracking of motile bacteria near a solid planar surface[END_REF][START_REF] Lauga | Swimming in Circles: Motion of Bacteria near Solid Boundaries[END_REF][START_REF] Di Leonardo | Swimming with an image[END_REF], as one can see on Fig I .11.

Surfaces also affect the tumbling events. In their study, Molaei et al. [START_REF] Molaei | Failed escape: Solid surfaces prevent tumbling of escherichia coli[END_REF] demonstrated that near surfaces the tumbling frequency is reduced by 50%. They also show that after a tumble the reorientation is biased by the solid surface and is more likely parallel to the surface. These surfaces effects prevent bacteria escaping from the surface and have been attributed to hydrodynamic interactions rather than steric ones.

Swimming in a velocity gradient

In nature, bacteria often have to swim in presence of flows. Transport properties of motile microorganisms under flow are of first importance to address questions of contamination issues or cell migration. Under flow, the transport of bacteria is a complex interplay between the activity of the bacteria, its shape, the flow velocity profile and the boundary conditions.

a) The Bretherton-Jeffery dynamics

In first approximation, one can model the bacteria shape by a rigid ellipsoid. Under flow it is advected by the fluid and rotated due to the shear. The angular dynamics of a passive ellipsoid in a shear flow have been analytically derived by Jeffery [START_REF] Jeffery | The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid[END_REF] and later completed by Bretherton [START_REF] Bretherton | The motion of rigid particles in a shear flow at low Reynolds number[END_REF]. A 2D version of this effect is presented on Fig I .13. The orientation dynamics then follow the Bretherton-Jeffery equation:

ṗ = (I -pp)(βE + Ω)p (I.3)
with the strain rate tensor E = (1/2) ∇v + (∇v) T and the rotation rate tensor

Ω = (1/2) ∇v -(∇v) T , β = (r 2 -1)/(r 2 + 1
) is the Bretherton parameter and r = l/e is the ellipsoid aspect ratio with the length l and the width e.

The ellipsoid periodically rotates and performs so-called "Jeffery orbits" [START_REF] Jeffery | The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid[END_REF][START_REF] Bretherton | The motion of rigid particles in a shear flow at low Reynolds number[END_REF]. The rotation rate is function of the ellipsoid inclination with respect to the shear. Its average over one period is proportional to the local shear rate. To describe the motion of bacteria in flows an "active version" of the model (aka "the active B-J model") where a swimming velocity is added to the local flow velocity was developed [START_REF] Saintillan | Active suspensions and their nonlinear models[END_REF]. In the active B-J model the bacterium orientation and the swimming direction are collinear:

V p = V p p
In most flows, the shear profile is not constant and might vary in space. This is the case for planar Poiseuille flows, where the shear varies linearly with one of the coordinates. Passive particles will thus rotate at a rate that is function of the local shear rate and they will stay on the same streamline. In this case, the Jeffery orbits are simply an angular dynamics, and the motion of the particle centroid is just a translation at constant speed given by the local stream line velocity. For active particles the dependence in space of the shear profile has strong implications. Indeed due to their activity, they will cross streamlines, experience different shear rates, and will rotate at various angular velocities. Thus, adding activity introduces another source of translation and couples the dynamics of the angle to the position in space. The trajectories of bacteria under flow then turn into complex dynamics.

These trajectories have been studied theoretically by Zöttl et al. [START_REF] Zöttl | Nonlinear dynamics of a microswimmer in Poiseuille flow[END_REF][START_REF] Zöttl | Periodic and quasiperiodic motion of an elongated microswimmer in Poiseuille flow[END_REF], they identified mathematical features and associated them with the emergence of cycloid trajectories. In some cases, the kinematics can be mapped onto a dynamical Hamiltonian problem with conserved constants of motion [START_REF] Zöttl | Nonlinear dynamics of a microswimmer in Poiseuille flow[END_REF][START_REF] Zöttl | Periodic and quasiperiodic motion of an elongated microswimmer in Poiseuille flow[END_REF].

In the 2D model, under the B-J assumptions, the body of the microorganism is modeled as an ellipsoid of length l and diameter e, swimming at a velocity V b = V b p. The effective ellipsoid coordinates are its centroid position r = (x, z) with an orientation vector p = (cos θ, sin θ) (see 

flow velocity: V = V b p + v. For a Poiseuille flow: v(z) = 4V M (1 -z h ) z h e
x , the trajectories are controlled by the dimensionless parameters A = V b /4V M fixing the ratio between the bacterium velocity and the maximal flow velocity and β. The swimmer positions and orientations are given by a set of 3 coupled dynamical equations giving the evolution of the bacterium position and orientation (x, z, θ):

ẋ = A cos(θ) + z(1 -z) ż = A sin(θ) θ = 1 2 [β cos(2θ) -1](1 -2z) (I.4)
The Fig. I. [START_REF] Bansil | The influence of mucus microstructure and rheology in Helicobacter pylori infection[END_REF] shows examples of 2D trajectories in the space (x, z). However, it is convenient to describe the trajectory of a bacterium, not in the real space (x, z) but in the (z, θ) space. In that space, trajectories are then represented by a line. As one can see in Fig I .16, the phase portraits exhibits 4 different regions corresponding to 4 types of trajectories. Let us first consider the phase portrait (a) of the Fig I .16 corresponding to a low flow velocity, compared to the bacterium velocity (high A). In this phase portrait, one can see three different regions, separated by black dashed lines, corresponding to three types of trajectories.

Trajectories of type (i), starting at a wall (z/h = 0 or 1) in the direction of the flow (θ close to 0 or 2π) and ending at the same wall (red line in Fig I .16(a)). The separatrix are the dashed black lines that run from z/h = 0 to 1 tangent to the lines of equation θ = 0 or θ = 2π.

Trajectories of type (ii), starting at a wall (z/h = 0 or 1) with a higher angle θ, and crossing the mid-plane z/h = 0.5 before being fully rotated, and end at the opposite wall (orange line in x/h z/h At high flow velocity (small A) the lines of the phase portrait are stretched and the trajectories of the orange region no longer touch the surface. These new trajectories oscillate in the bulk, but stay and explore a half-channel (dark blue line in Fig I .16(b)) and correspond to the trajectories of type (iii). The physical interpretation of this transition is that for high flow velocity the shear rate is strong enough to rotate the bacterium before it reaches the surface or the mid-plane. These trajectories are then confined and oscillate in a half channel.

Tracking experiments of bacteria under flow have already been performed in 3D [START_REF] Molaei | Succeed escape: Flow shear promotes tumbling of Escherichia colinear a solid surface[END_REF], but they did not report any B-J trajectories. A first experimental observation of these trajectories has been reported by Rusconi et al. [START_REF] Rusconi | Bacterial transport suppressed by fluid shear[END_REF], but only in the form of a 2D projection. Bacterial trajectories being three-dimensional, no full characterization of the dynamics and no direct comparison with the active B-J model was performed. Despite the importance of this fundamental model, experimental validation and proof of its applicability to bacterial trajectories is still lacking.

b) Rheotaxis

Rheotaxis refers to changes in motion due to shear and was observed for a wide range of organisms (fishes, insects, sperm cells). If at first approximation, the shape of the bacterium can be modeled as an effective ellipsoid, a more refined approximation needs to take into account the helicity of the flagella bundle. Indeed, in a shear flow the chirality of the helix gives rise to a rheotactic effect as has been observed experimentally by Marcos et al. [START_REF] Marcos | Bacterial rheotaxis[END_REF] and can can be understood as follows.

Let us first consider a helix aligned in a simple shear flow (see of opposite directions. For a rigid fiber, the viscous drag is anisotropic with a greater resistance in the direction perpendicular to the fiber. That is why a rigid rod sedimenting with a angle with respect to the gravity force will drift perpendicular to this direction.

If we consider a single pitch of the helix, one can consider the upper and lower parts as two rigid fibers with different orientations with respect to the flow direction (see Fig I .17(b)). As these two parts experience a velocity of opposite signs, their corresponding drift forces are both along the same direction, making the helix crossing the stream lines in the transverse direction with respect to the flow profile. Consequently, for a left-handed helix, the drift is opposed to the vorticity direction (i.e opposed to the y-axis on the Fig I .17).

For a bacterium, it is more subtle as the helix is attached to a head. The rheotactic forces acting only on the helix, the head will act as an "anchor". The viscous drag of the head, together with the rheotactic force, produces a torque that reorient the bacterium in a direction opposite to the rheotactic force acting on the helix. For a passive bacterium with a left-handed helix, this would lead to a drift in the opposite vorticity direction with an orientation having a positive component along the vorticity direction. But if one adds activity, the bacterium will then propel itself in the direction of its orientation i.e towards the vorticity direction.

Another type of rheotaxis due to the fore-aft asymmetry of the bacterium plays a role in cell transport near surfaces. Because the head of bacteria has a higher drag coefficient than the flagella bundle [START_REF] Daddi-Moussa-Ider | State diagram of a three-sphere microswimmer in a channel[END_REF], it is easier to move the flagella than the head. The bacterium tumbles due to the shear with the head pointing upstream. If the flow velocity is small enough (as it can be near a surface) this mechanism leads to direct upstream cell migration as it is the case for sperm cells [START_REF] Tung | Emergence of upstream swimming via a hydrodynamic transition[END_REF][START_REF] Kantsler | Rheotaxis facilitates upstream navigation of mammalian sperm cells[END_REF]. For E. coli , this rheotactic effect was quantified by measuring instantaneous orientation distributions [START_REF] Kaya | Direct Upstream Motility in Escherichia coli[END_REF] or average transport velocities [START_REF] Figueroa-Morales | Living on the edge: transfer and traffic of E. coli in a confined flow[END_REF].

As we have seen, the shear and the surface both modify the motion of bacteria and all these effects give rise to unsuspected behavior: bacteria can swim upstream and cross the flow perpendicularly. To our knowledge there is no study that takes into account all the effects due to surfaces, shear and bacteria shape, and a complete dynamical picture of the underlying mechanisms is still to be studied.

Organization

In this thesis, I investigate the transport properties of E. coli in a flow. To do so, I focus on different aspects of the swimming dynamics of bacteria, at the microscopic scale. In the conclusion, I gather my results and discuss their impacts on the macroscopic transport under flow.

In the chapter II I introduce the Lagrangian 3D tracker that I used and improved. This apparatus allows to follow bacteria in 3 dimensions over long periods of time and large spaces in a quiescent fluid or under flow and is the suitable tool to study microscopic properties of bacteria.

In chapter III, I focus on the motility of bacteria in the bulk of quiescent fluids. Especially, I focus on the "run and tumble" process and bridge the gap between the shorttime and long-time approach. I then study the long time behavior of bacteria at surfaces as well as the exchange with the bulk.

In chapter IV, the flow is turned on and I study the behavior of bacteria at surfaces, submitted to different shear. To have a general picture of bacterial transport, I consider all the effects due to surfaces, shear and bacteria activity and shape. Then, I focus on bacterial trajectory in the bulk under flow. I find new features and compare my experimental result to the active Bretherton-Jeffery model.

In chapter V, thanks to a theoretical framework, I build a method able to extract parameters from our experimental data.

To conclude, I discuss the implication of my work in the framework of bacterial transport and dispersion.

Chapter II

Experimental tool, the 3D Lagrangian tracking

To investigate the motion of microorganisms, most of the methods are limited to the 2D observation field provided by standard microscopes. But when the trajectories take place in the bulk this limitation is all the more pronounced as it is difficult to capture 3D behaviors. Indeed one has to pay attention to the biases of measurements: for 2D projections of 3D bulk observations, trajectories and other behaviors that stay in the plane of observation (in general perpendicular to gravity) will be favored with respect to the ones crossing the observation plane and thus being observed for less time. That is the reason why researchers built devices to have access to the full 3D trajectories of microorganisms. The first one was built by Berg et al. [START_REF] Berg | How to track bacteria[END_REF] to investigate the swimming properties of E. coli Later, other 3D tracking devices were developed using fast scanning techniques [START_REF] Corkidi | Tracking sperm in three-dimensions[END_REF] or digital holography techniques [START_REF] Molaei | Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm[END_REF]. All these 3D observation techniques are eulerian and thus confined in a volume of observation. This restriction limits the observation: the microorganisms exit the field of observation at some point as it it the case for long time observation or when the organisms are submitted to an external flow.

3D Lagrangian Tracking

To investigate the motion of E. coli in 3D, on surface and in the bulk under various flow conditions, I use a Lagrangian tracking system developed in the laboratory by Darnige et al. [START_REF] Darnige | Lagrangian 3D tracking of fluorescent microscopic objects in motion[END_REF] and which I modified, with the help of Thierry Darnige, to meet my needs. The 3D Lagrangian tracker is based on real-time image processing, determining the displacement of a XY mechanical stage suited to keep the tracked object at a fixed position in the observation frame. The Z displacement is based on the refocusing of the fluorescent moving object which is then kept in focus. The Lagrangian tracker is composed of an inverted microscope (Zeiss-Observer, Z1) with a high magnification objective and a fast camera. The former version of the tracking (that I used at the beginning of the thesis) was composed of a high magnification objective: 100 × /0.9 DIC Zeiss ECEpiplan-Neofluar and a ANDOR iXon 897 EMCCD camera. The new version is composed of a high magnification objective (C-Apochromat 63X/1.2 W) and an Hamamatsu Orca-flash 4.0 camera. The real time image processing is performed using a home-made Labview software.

In the following I will briefly recall the mode of operation of the algorithm of the tracking device.

Tracking in the X-Y plane.

A region of 100x100 pixel (ROI) is taken around the former position of the object, the typical size of the object is 20 pixels. After image analysis (smoothing, gaussian filter and median filter), the histogram of the intensity is computed, a threshold is then taken using the function AutoBThreshold. Groups of pixels smaller than 75 pixels are removed and, using the function Particle Analysis, the centroid and the "mass" (i.e number of pixels) of all the others are detected. Sometimes several groups of pixels are detected corresponding to different bacteria in the ROI. To discriminate the group of pixels corresponding to the tracked bacterium, the one with the centroid closest to the previous XY positions of the tracked bacteria is selected. One then has the XY position of the bacterium.

Tracking in Z

The difficult part of the tracking algorithm is the strategy to refocus in Z. Indeed, to compute the vertical step ∆Z needed to refocus the bacterium image, one has to determine the bacterium position with respect to the focal plane. To do so, we take advantage of the off-focus optical patterns of the optical device (see Fig II .1). When a bacterium is below the focal plane, a ring appears around the bright spot corresponding to the bacterium image, we call this region 1. When the bacterium is far above the focal plane the bright spot gets wider, this region is called region 3. Between the region 1 and 3 the bacterium is close to the focal plane and the light intensity is maximum, this region is the region 2.

The off-focus optical patterns are qualitatively robust from an objective to another but differs quantitatively. For the tracking modifications, I changed the objective of the microscope and thus I had to modify the refocusing strategy in Z. The former one can be found in the references: [START_REF] Darnige | Lagrangian 3D tracking of fluorescent microscopic objects in motion[END_REF][START_REF] Morales | Active bacterial suspensions: from microhydrodynamics to transport properties in microfluidic channels[END_REF].

At the beginning of the track, a sweep in Z is performed during which the maximal intensity of the bright spot I max corresponding to the focal plane is recorded. This value is stored and is used to discriminate the region 2 from the region 3.

Selection of the region

From the XY position of the bacterium, a radial intensity mean is performed and the resulting radial intensity profile is fitted by two gaussians curves :

I(r) = a 1 e r-a 2 √ 2a 3 2 + a 4 e r-a 5 √ 2a 6 2 (II.1)
where r is the radial coordinate.

If the distance between the maxima of the two gaussians is larger than 12 pixels (|a 2 -a 5 | > 12 pix) and ratio of the amplitudes greater than 0.2 (a 4 /a 1 > 0.2) we consider that we have a ring and that the bacterium is in region 1 (the first gaussian corresponds to the bright central spot of the bacterium image and the second to the ring around it).

If not, we compute the ratio I/I max , where I is the maximum value of the intensity on the picture at the current Z position. This ratio is close to 1 when the bacterium is in region 2 and decreases when the bacterium goes away. If I/I max > 0.5, the bacterium is considered to be located in region 3 and if I/I max < 0.5 the bacterium is in region 2.

Computation refocusing step ∆Z Once the dwelling region has been identified, the distance ∆Z from the focal plane is determined. If the bacterium is in region 2, the distance ∆Z depends on the width of the gaussian a 3 . The value a 3 is minimum at the focal plane and gets larger when going away. The correspondence between a 3 and ∆Z was obtained by scanning at different ∆Z a bacterium attached to the surface to have a 3 as function of ∆Z. Fig. II.1 shows an example of such a profile. We tested several functions to fit the central region but non of them were stable and we lost the bacterium. Finally, we empirically took: ∆Z = ±(a 3 -a 0 )/6.58 where a 0 is the width of the bright spot at the focal plane, recorded during the sweep. Then, a given value a 3 corresponds to two different ∆Z. We first assume that the bacterium keeps going in the same direction which selects one of the two solutions. If the move decreases the value of a 3 , the tracking keeps going in this direction and if not, it steps back and take the other value.

Region 1 : At first order the value ∆Z is proportional to the ring radius. Knowing the ring radius, we then compute ∆Z.

Region 3 : At first order the value ∆Z is proportional to the ratio I/I max . Knowing the value I/I max , we then compute ∆Z.

One step of the algorithm (image analysis, computation of ∆Z) takes 8 ms. To ensure a good synchronization between the camera and the stage, the image acquisition and the stage position are triggered via a TTL signal. A sketch of the set-up is provided in Fig II .2.

Tracking in two colors

Thanks to the 3D Lagrangian tracking technique, I have access to the 3D trajectory of bacteria. During the track, I image the fluorescent body, but not the flagella. That is why I improved the tracking set-up to be able to track bacteria and observe the flagella at the same time. Flagella visualization by fluorescence has already been performed by L. Turner et al. [START_REF] Turner | Real-time imaging of fluorescent flagellar filaments[END_REF] and W. C. K. Poon et al. [START_REF] Schwarz-Linek | Escherichia coli as a model active colloid: A practical introduction[END_REF]. I combined this technique with the tracking system to observe the behavior of the flagella bundle during the track. The two-color technique described below was developed in the framework of a bilateral collaborative program with the University of Edinburgh (CNRS-Royal Society). The optical system was mounted in Paris with the help of Jochen Art and Vincent Martinez and the bacteria strain was developed by Angela Dawson.

The bacteria used for the flagella visualization are mutant strains AD62 and AD63, with a mutation on the flagella that allows the attachment of a fluorescent protein. The AD62 and AD63 are genetically modified to express a green fluorescent protein (GFP) and the flagella are labelled with a fluorescent protein Alexa 647. More detail about the bacterial culture can be found in appendix A section 1, and in reference [START_REF] Schwarz-Linek | Escherichia coli as a model active colloid: A practical introduction[END_REF]. AD63). The body is green and the flagella red.
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To observe the bacterium and the flagella, I use a beam splitter composed of a semireflective mirror that splits the emission light into two light beams: one above 640nm and one below as well as two filters adapted for the GFP and Alexa 647. A sketch of the beam splitter optics and a description of the spectral lines selection are shown in Fig II .3. To avoid any slowing down of the tracking, the CCD pixel matrix of the camera is divided into two parts, each part dedicated to a color. I then observe, over a region of 1024×512 pixel 2 , the body in green on the upper part and the flagella in red on the lower part of the pixel matrix. After processing the contrast, the two parts are merged to reconstruct the full image. Fig II .4 shows a snapshot of a smooth swimmer bacterium with the flagella labeled, the helical shape of the bundle is clearly visible.

To date, people who have been working on swimming statistics of E. coli to study the process of run and tumble did not have access to the images of the flagellar motion during long time tracking of the same bacterium and moreover when swimming in a flow. So essentially the tumbling event was inferred from the body dynamics and statistics done on a population. Tumbling events are usually defined as a strong velocity drops together with a rapid changes in the swimming direction [START_REF] Berg | Chemotaxis in Escherichia coli analysed by threedimensional tracking[END_REF][START_REF] Molaei | Failed escape: Solid surfaces prevent tumbling of escherichia coli[END_REF]. The drawbacks of this definition is that it depends on thresholds (threshold on velocity drop and orientation change which contains a part of arbitrariness). The more accurate way to define a tumbling event is to directly look at the debundling process of the flagella during the track.

Thanks to the two colors tracking device, I am able to see directly the tumbling event along the trajectory. In Fig II .5, I present a sequence of images showing a tumbling event of a wild type bacterium swimming in a quiescent fluid. The tumbling lasts 0.5 second and takes place as follows. On image 1 the bacterium is initially running. It almost stops on image 2 and two flagella go out of the bundle (images 3 and 4). From the images 4 to 5 one can see a single flagellum going from the second bundle to the main one leaving one flagellum out of the bundle. Finally from the images 6 to 8 the last flagellum moves back to the bundle. 

Data analysis

After the acquisition, the set of (x, y, z) coordinates of the bacterium is first filtered to reduce the noise. The x and y coordinates are filtered with a moving average window of length 0.1s while the Z coordinate is filtered with a larger time window of 0.5s. To determine the local velocity V(t) of the swimmer, I analyze independently x, y and z. To determine the local component of the of velocity v x (i) in the i -th position inside the trajectory, a polynomial fit of order 2 is performed on the sub set of positions [x(i -n), ..., x(i), ..., x(i + n)]. The first derivative of the polynomial, evaluated in the center, gives the local velocity. For a typical tracking frequency at 80Hz, the smoothing parameter is n = 13. Similar calculation is done for the y and z coordinates. Finally, I discard the first and last n points of the track to avoid undesirable border effects due to filtering.

Tracking in different configurations

During my thesis, I was able to follow bacteria over large spaces. In the XY plane, bacteria can be followed over centimeters. In the Z direction I improved the exploration range from 140 µm up to 300 µm. This larger exploration range allows the tracking of bacteria in more open environments. The position of the bacterium is determined with a precision of 0.02 µm for the X and Y coordinates and of few microns for the Z coordinate. The resolution and acquisition frequency have also been improved. With the former tracking device, the maximal acquisition frequency was 80Hz for an image resolution of 256 × 256 pixel 2 and 30Hz for 512 × 512 pixel 2 . We can now track at 100Hz with a resolution of 1024 × 1024 pixel 2 . This higher resolution allows to split the CCD pixel matrix of the camera in two parts to observe the body and the flagella on each part. To investigate the transport behavior of E. coli , I use the tracking device to follow individual bacteria and to record their 3D trajectory.

In Fig. II.6, I display the X coordinate of tracked bacteria swimming in a flow inside a microchannel of reclangular cross-section (height h = 100 µm, width W = 600 µm), the fluid flowing along the X axis. Each line is the X coordinate of a tracked bacterium as a function of time, the color code indicates the distance d s between the bacterium and the nearest surface (d s = 0 at the surface and d s = 50 µm at the center of the channel). The mean flow velocity is the slope of the black dashed line.

In this figure, two main observations can be made. First, bacteria seem to spend a significant time at the surface and dynamically switch from the surface to the bulk. Secondly, the dynamics of bacteria under flow is complex and several behaviors can be observed. Some bacteria are advected at the mean flow velocity and others swim upstream (those with X < 0). One can also see oscillations of small amplitude corresponding to bacteria that swim in circle at the surface.

To decipher these rich behaviors and their impacts on the macroscopic transport properties, I use the tracking device in different configuration to study different aspects of the swimming mechanisms of E. coli .

-500 First, I tracked different strains of bacteria, and we basically consider two kinds: wild type and smooth swimmer strains. Wild type bacteria swim and perform runs and tumbles. Smooth swimmer bacteria are genetically modified in order to suppress the tumbling event and are always in the run phase. A description of protocols used to grow and prepare the bacterial suspensions can be found in the appendix A section 1. In this thesis, I split issues in two parts and study the behavior of bacteria at surfaces and in the bulk separately.
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With the 3D Lagrangian tracker, I also tracked bacteria under flow. In Fig. II.9 I present an example of 3D trajectory of two different strains under flow: a wild type and a smooth swimmer strain. If one focuses on parts of trajectories in the bulk one can see that the behavior of the two bacteria is qualitatively different. The trajectory of the wild type presents some abrupt changes in direction interrupting smooth parts of trajectories. On the opposite, there is no abrupt change of direction for the smooth swimmer and its trajectory is indeed smoother, as expected. The abrupt change of direction of the wild type are due to the tumbling events while for the smooth swimmer these events have been inhibited, leading to a more regular trajectory. For both trajectories the smooth changes in direction are due to the surrounding fluid shearing the bacteria.

Chapter II. Experimental tool, the 3D Lagrangian tracking

Each of these tracking configurations allow to investigate different aspects of the transport properties of an E. coli in suspension. The motility strategy is bound to play an important role, and I will compare the behavior of wild type and smooth swimmer. Differences also arise between trajectories at surfaces and in the bulk and I will focus on these two regions. Last but not least, I will see how an external flow affects the bacteria trajectories.

Chapter III

Bacteria swimming in a quiescent fluid

The run time distribution, assumed by wild type bacterial, and its consequences on the spatial exploration process is still a debated issue. On one hand Berg et al. [START_REF] Berg | Chemotaxis in Escherichia coli analysed by threedimensional tracking[END_REF] reported a Poisson like distribution, for the run time, while the study of Korobkova et al. [START_REF] Korobkova | From molecular noise to behavioural variability in a single bacterium[END_REF] shows a power law tail for the CCW time distribution. The run time being the consequence of the CCW direction of rotation of the motor, these two results seem incompatible. This is why the 3D Lagrangian device built in the PMMH is a unique instrument to try to decipher this important question.

In this chapter, I first focus on the swimming statistics of E. coli in the bulk via the long time monitoring of the run and tumble dynamics. This first part was done in collaboration with Nuris Figueroa-Morales, the former Phd student, who did the preliminary experiments and analysis and Rodrigo Soto, from the Universidad de Chile, who did numerical simulations to model the process. We report a large behavioral variability of wild-type E. coli, revealed in their long time three-dimensional trajectories. We show how it affects the swimming statistics and compare our results from the results of Berg and Korobkova.

In a second part I study the behavior of E. coli at surfaces. In particular, I find large distributions of residence time and discuss the link between residence time and tumbling events.

1

Run and tumble statistics

Short-time observation of a wild-type E. coli population

Using the 3D Lagrangian tracking technique presented in chapter II section 1, a first set of experiments was performed in our group by Nuris Figueroa-Morales [START_REF] Morales | Active bacterial suspensions: from microhydrodynamics to transport properties in microfluidic channels[END_REF]. A drop of bacteria is confined between two horizontal glass plates, the height of confinement is h = 250 µm. For this experiment, a high magnification objective X100 is used with a relatively short working distance. Consequently, the top glass plate is outside the range of exploration of the tracking device (140 µm). Hundreds of E. coli trajectories from different strains are recorded. the velocity distribution shows a peak corresponding to the run phase and a low velocity tail that might correspond to tumbling events (see Fig. III.1(c)). For the wild type strain the average of the peak values for V over the different tracks is < V >= 27 ± 6 µm s -1 . The director vectors pointing along the track are determined as p(t) = V (t) || V (t)|| . Here we do not seek to explicitly identify the tumbling events. Standard analysis to extract run-time distributions, initiated by Berg, rely on the identification of such events. This is usually done by identification of velocity drops and/or abrupt changes in swimming direction, which, without direct observation of the flagella, requires the choice of arbitrary criteria. From the classical picture of an exponential distribution of run times, the orientation correlation function is expected to decay exponentially with a typical decay time τ p , defining the persistence time of the trajectory. For a characteristic run time of τrun = 1s and a distribution of reorientation angles of mean value θ m = 51 • [38] one finds τ p = τrun 1-<cos θ> = 1.5s [START_REF] Lovely | Statistical measures of bacterial motility and chemotaxis[END_REF]. Recently a slight dependence of this angle on the swimming speed has been demonstrated [START_REF] Taute | High-throughput 3D tracking of bacteria on a standard phase contrast microscope[END_REF], but will be neglected in our study.

In ). In our experiment, even if the orientation decreases exponentially, we observe that the persistence time τ p varies from one bacterium to the other and is widely distributed. To check if this behavior is not medium or strain dependent, various media either poor or rich in nutriment, and other wild type strain (AB 1157) used in previous works are tested. For each experiment, we determine the persistence time for each bacterium. In Fig. III.3 we present the results of these experiments. As one can see for all the wild type strains (RP437 and AB1157) in all the different media (MB with serine, MB, M9G) we do observe a wide distribution of persistence time. The only experiment for which the persistence times are not so widely distributed is for the smooth swimmer strain. In this case, the results seem to group around large values that could correspond to a Brownian rotational diffusivity. The expression of the Brownian rotational diffusion coefficient D B can be evaluated with the formula [START_REF] Perrin | Mouvement Brownien d'un ellipsoide (I). Dispersion diélectrique pour des molécules ellipsoidales[END_REF][START_REF] Perrin | Mouvement Brownien d'un ellipsoide (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoidales[END_REF]:

D B = 3k b T ln(2l/a) πηl 3 (III.1)
Where D B is the Brownian rotational diffusion coefficient of an ellipsoid of length l and width e immersed in a fluid of a viscosity η at a temperature T . Note the sensitivity of this value to the actual estimation of the ellipsoid long axis l. For an effective ellipsoid of length l = 5 -10 µm and width e = 1 µm, this coefficient can be estimated using eq. (III.1) and the estimation yields a time scale τ = 1/2D B ≈ 10 -40 s (τ = 40s is the upper limit on the graph).

From these experiments we can say that for a population, a wide distribution of persistence times seems to be a characteristic of the tumbling process and does not depend either on strains or on the swimming medium. Nevertheless, these results do not indicate the origin of this behavior. They could be for example, attributed to a phenotypical variability, inside the bacterial population.

The long time behavior

The essential differences between Berg and Korobkova's experiments are the observation time and the motion of the bacteria. Indeed, Berg et al. looked at the behavior at short time scales (of typically 10s) of swimming bacteria, while Korobkova et al. focused on the behavior of a single bacterium attached at the surface over long time (up to 170min). The latter found that important fluctuations can be observed in the behavior of a single bacterium rotary motor statistics.

To find the origin of the persistence time distribution, following the preliminary work of Nuris Figueroa-Morales, I perform a second set of experiments. For these experiments, an objective with a different magnification (X63) and long working distance was used. With this new objective, the exploration range of the tracking device is now 300 µm, allowing to track bacteria during a larger time in more open environments. The idea is to see if the distribution of persistence time is due to a phenotypical variability inside the population or if it is due to a behavioral variability of the bacterium along time, as pointed out by Korobkova et al. . To do so, I record 66 trajectories of wild type bacteria (RP437) from a drop of bacterial suspension squeezed in a Geneframe between two glass plates, the height of confinement is h=250 µm. To access the long time behavior, I track the bacteria over long times (the longest track lasts 21min10s). In total 7h of track are recorded. For this analysis, only the 33 longest track are used. A bacterium tracked over a long time swims alternately between the surface and the bulk. As we are interested in the bulk properties the analysis is restricted to parts of the trajectories that are at least 10 µm away from the surfaces. To address quantitatively the variation of τ p in time and make connection with the behavioral variability model, that we will present later in the thesis, we perform the following procedure. Bacterial trajectories are cut in fixed intervals of 20s on which we compute τ p . The center of two consecutive time intervals is separated by 5s in order to see τ p varying smoothly. In To determine the time scale over which τ p varies, we cut the long trajectories into intervals of a specific time spans varying between 10 and 55 s. For a fixed time span we extract the sequence of τ p of each trajectory. We then determine the auto-correlation times of these sequences and average over the ensemble of trajectories. In We may interpret this value as the memory time for swimming persistence. The correct duration of the intervals to analyze the tracks is then ∼ 20s. Interestingly, this time is significantly smaller that the correlation time found in the experiments of Korobkova et al. (around 40 s) [START_REF] Korobkova | From molecular noise to behavioural variability in a single bacterium[END_REF]. However, the motor switching statistics were not obtained in conditions of free swimming and are extracted from a single measurement. Note also that this memory time is of the same order as the brownian decorrelation time of the orientation.

a) Behavioral variability model

To rationalize our experimental results, we have to go back to the biological origins of the tumbling event.

As we have seen in the introduction section 3.1, tumbling events are triggered by a switch in the direction of rotation of the molecular motors. This direction of rotation is set by the concentration [Y ] of a protein named CheY-P. To rationalize the CCW and CW spinning of bacterial flagella motor, Tu and Grinstein [START_REF] Tu | How white noise generates power-law switching in bacterial flagellar motors[END_REF] following the proposition of Khan and Mc Nab, provide a description for the direction of rotation of the motor as a two-state model with variable barrier heights. The two states CCW and CW are at the bottom of two potential wells separated by an energy barrier ∆G 0 (resp. ∆G 1 ) for the transition CCW → CW (resp. CW → CCW). Then the switching time τ s and τ t for the transition CCW → CW and CW → CCW are: 

CCW CW G 1 1/⌧ s 1/⌧ r G 0 (t)
τ s = τ 1 .e ∆G 0 /k B T τ t = τ 2 .e ∆G 1 /k B T (III.2)
with ∆G 0,1 the free energies, τ 1,2 the attempt times and k B T the thermal energy.

In addition, the concentration [Y ] can be written as :

[Y ](t) = Y 0 + δY where Y 0 =< [Y ] > is the average of [Y ]
over time and δY is the fluctuation of concentration around Y 0 .

The key of the Tu and Grinstein's model is to make the energy barrier dependent on the CheY-P concentration. Thus, the free energy barrier ∆G 0 = ∆G 0 ([Y ](t)) varies in time. Let us consider at first approximation that [Y ] does not vary much and that δY (t) is small with respect to Y 0 . The Taylor expansion of the free energy ∆G 0 near Y 0 yields:

∆G 0 ([Y ](t)) k B T = ∆G 0 (Y 0 ) k B T -α δ[Y ](t) Y 0 (III.3)
Here α characterizes the steepness of the motor response curve to changes in CheY-P concentration. Cluzel et al. [START_REF] Cluzel | An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells[END_REF] have already characterized macroscopically the high sensitivity of the motor rotation switch to CheY-P concentration. In their original model, Tu and Grinstein also suppose that the concentration [Y ] follows an Ornstein-Uhlenbeck process:

dδX dt = -δX/T Y + 2/T Y ξ(t) (III.4)
where δX = ([Y ] -Y 0 )/σ Y is the normalized concentration with σ Y the root mean square (r.m.s) of the concentration, T Y is the memory time and ξ a gaussian with noise : < ξ(t)ξ(t ) >= δ(t -t ). Note that T Y is considered to be larger than the typical motor switching time. Therefore δX is gaussian normal distributed with zero mean and a r.m.s equal to 1. Now let us replace in eq (III.

2) the free energy ∆G 0 ([Y ](t)) by its expansion in δX of the eq (III.3). The switching time for the transition CCW → CW then reads:

τ s = τ 0 .exp(-∆ n δX) (III.5) with τ 0 = τ 1 .exp(∆G 0 (Y 0 )/k B T ) and ∆ n = α σ Y Y 0
The run time is now an exponential distribution with a characteristic time τ s . This characteristic time is not constant and varies with the CheY-P concentration which is distributed as a gaussian. This means that ln(τ s ) is also gaussian distributed with an average ln(τ 0 ) and a standard deviation ∆ n i.e τ s is log-normal distributed. Since τ s and τ p are proportional, τ p also follows a log-normal distribution and ln(τ p ) is gaussian distributed with an average < ln(τ p ) > and a standard deviation σ ln(τp) = ∆ n .

With this model, we see that a separation of scale for the motility features of a bacterium naturally occurs. For bacteria, at short time (smaller than T Y ), the run time is a Poisson distribution with characteristic time τ s which does not vary much. At long time (i.e. typically larger than T Y ), the switching time τ s will have changed due to the CheY-P fluctuation. Consequently, over time scales much larger than the memory time, the distribution of run-times would be log-normal. Note that a random choice of a bacteria is like a random choice of CheY-P concentration i.e a random choice of τ s . In experiment, this yield naturally to an apparent large population variation when bacteria are tracked over a small time lags.

We then modeled the dynamics of a swimming wild type bacterium as follows. During the run phase the bacterium swims at a constant speed and its orientation changes due to the thermal diffusion:

ṙ = V b p ṗ = 2D B ṗ ∧ ξ ξ ξ (III.6)
with D B the brownian rotational diffusion coefficient, V b the swimming speed and ξ ξ ξ a vectorial gaussian white noise with :

ξ i (t).ξ j (t ) = δ ij δ(t -t ).
At the rate 1/τ s = exp(∆ n δX)/τ 0 tumbles occur to end the run phase. Then, the bacterium stops swimming during a time t tumble and the reorientation equation reads:

ṙ = 0 ṗ = 2D r ṗ ∧ ξ ξ ξ (III.7)
Note that for the tumbling events all that matter to define a new orientation is the normalized tumble diffusion coefficient Dr = D r .t tumble . The normalized concentration δX follows equation eq (III.4). After the tumble a new run starts. At times larger than the memory time, δX has changed significantly and the switching time τ s is then different. In III.7(a) II, the higher concentration of δX leads to a smaller switching time value τ s (t 2 ), i.e to shorter run times.

b) Comparison with the experiment

We then compare the behavioral variability model to the experiments. The parameters of the behavioral variability model are the following: the attempt time τ 0 of the transition CCW→CW (< ln(τ s ) >= ln(τ 0 )), the sensitivity ∆ n of the rotary motor to fluctuation of δX (σ ln(τs) = ∆ n ), the normalized tumble coefficient Dr , the brownian rotational diffusion coefficient D B and the memory time T Y of the fluctuation of δX. Experimentally, we measured the memory time of the persistence time: T M = 20 s. As the relation between the persistence time and the run time is linear, we identify the memory time of the persistence time T M with the memory time T Y of the switching time. In the following we will consider T M = T Y = 20s as the memory time of the fluctuation of δX, and persistence times τ p will be computed on intervals of duration 20s.

In our method, we compute τ p on a finite interval of 20s. During this 20s, the concentration δX has slightly changed, as has τ s . Then, the persistence time is the consequence of runs sampled at different δX. The distribution of τ p would be a "pure" log-normal distribution only if the τ p were computed on interval of constant δX, i.e for a memory time T Y which tends to infinity. Obviously it is not the case, and this creates additional moments in the distribution of ln(τ p ), which is not a "pure" log-normal distribution. Then, to compare the experimental results to the simulations, one has to pay attention and analyzed simulations and experiments in the very same way.

Bacterial trajectories are cut in fixed intervals of 20s on which we compute τ p . The center of two consecutive time intervals is separated by 5s. In this way, the mean persistence time is < τ p >= 5.9s with a standard deviation σ τp = 6.18s. We then draw the distribution of ln(τ p ) (red curve in In Fig III .8, we show the probability distribution of ln(τ p ) from experiment (in red), simulation using the behavioral variability model (in black), and simulation using a Poisson distribution (in blue). For the two simulations, the parameters: ln(τ 0 ), ∆ n , Dr and D B are chosen to better match the 4th first moments of the experimental distribution of ln(τ p ).

We can see that the Poisson model does not fit at all the experimental distribution. Moreover, the mean residence time of this Poisson distribution is < τ p >= 4.3 s, which is significantly larger than 1.5s, the persistence time found by Berg. For the distribution simulated with the behavioral variability model, we see a small peak around ln(τ p ) = 3. Indeed, during a piece of track of 20 s, it sometimes happens that bacteria do not tumble. Then, the decorrelation of the orientation solely comes from the brownian rotational diffusion. This leads to a second peak around the value of the decorrelation time associated to the brownian diffusion τ B = 1/2D B . For our simulations: D B = 0.0254s -1 i.e the decorrelation time is τ B = 19.7 s and ln(τ B ) = 2.98, which is indeed the position of the peak on the black curve. Importantly, for a real bacterium, the D B value would be very sensitive to the length of the bacteria (see eq. (III.1)), which varies over the bacterial population from single to double, leading naturally to a distribution of D B , as identified for smooth swimmers. Thus, experimentally, instead of having a narrow peak, one has a broad peak coming from each different D B and the broad peak merges with the rest of the distribution. That is why we do not see a peak on the experimental distribution.

With the fit, we find D B = 0.0254s -1 corresponding to a decorrelation time of ≈ 20 s, which is indeed consistent with a brownian rotational diffusion. Interestingly, the normalized tumble coefficient Dr = 3.86 that we found is higher that the one found by Saragosti et al. with Berg's data [START_REF] Saragosti | Directional persistence of chemotactic bacteria in a traveling concentration wave[END_REF]. They found D r = 3.5s -1 and a mean tumble time of t tumble = 0.14 leading to a normalized tumble coefficient of 0.5. Experimentally, we find < ln(τ p ) >= 1.217 compared to 1.225 in the simulation, and σ ln(τp) = 1.135 compared to 1.145.

Our experimental results are in good agreement with the simulations and the behavioral variability model capture efficiently the long time behavior of the swimming statistics of wild type bacteria. The model could eventually be refined accounting for a distribution of bacteria body length, but in no case our experimental data can match the classical vision of a run time distributed as a Poisson process.

Swimming behavior of bacteria near surfaces

As revealed by studies dealing with confined bacterial suspensions [START_REF] Berke | Hydrodynamic attraction of swimming microorganisms by surfaces[END_REF][START_REF] Molaei | Failed escape: Solid surfaces prevent tumbling of escherichia coli[END_REF], bacteria accumulate near surfaces. Indeed, the bacterial concentration is known to increase as approaching the surface, and one can define an accumulation length ranging from 5 µm (from wild type strain) to 50 µm for smooth swimmers [START_REF] Berke | Hydrodynamic attraction of swimming microorganisms by surfaces[END_REF][START_REF] Molaei | Failed escape: Solid surfaces prevent tumbling of escherichia coli[END_REF]. Other mechanisms as the tumbling events are also affected by the presence of solid interfaces over a distance of 20 µm [START_REF] Molaei | Failed escape: Solid surfaces prevent tumbling of escherichia coli[END_REF].

That is why studying the residence time of bacteria at the surface, as well as the exchange dynamics with the bulk, is crucial to describe the behavior of these suspensions, with [START_REF] Mathijssen | Oscillatory surface rheotaxis of swimming E. coli bacteria[END_REF] or without an external flow. So far, theoretical studies have been done on the resident time of smooth swimmers [START_REF] Schaar | Detention times of microswimmers close to surfaces: Influence of hydrodynamic interactions and noise[END_REF], enhancing the role of thermal rotational diffusion and hydrodynamic on the surface retention process, but importantly no experimental confrontation have been performed since it would require to follow bacteria over long time. A small part of the trajectory is in the surface region but does not cross h in . (c) A part of the trajectory is in the surface region and has crossed h in , the green part of trajectory is considered to be at the surface.

V xy = (V 2 x + V 2 y ), values.
Regarding the exchanges between surface and bulk, take off conditions of bacteria from the surface is also of first importance as it will determine the future trajectories in the bulk and then play a crucial role in the dispersion process.

In this section, I present a study on the long time behavior of wild type E. coli swimming near a solid surface. In particular I investigate the distribution of residence times at the surface, as well as the angles to enter and leave the surface. To do so, I use the same data set as the one used for the long time swimming statistics in the bulk in section 1.2. The difference is that I now focus on part of trajectories near the surface and consider all the 66 trajectories of the data set. Fig III.9 shows a typical trajectory of a bacterium that swims alternately at the surface and in the bulk. As already noticed by previous studies [START_REF] Berg | Chemotaxis of bacteria in glass capillary arrays. Escherichia coli, motility, microchannel plate, and light scattering[END_REF][START_REF] Frymier | Three-dimensional tracking of motile bacteria near a solid planar surface[END_REF][START_REF] Lauga | Swimming in Circles: Motion of Bacteria near Solid Boundaries[END_REF][START_REF] Di Leonardo | Swimming with an image[END_REF], bacteria at surface swims in circular motion and sometimes presents abrupt changes of direction as shown in Fig III.9(d), likely due to tumbling events. During the time a bacterium dwells at the surface, its height is not strictly constant and fluctuates, as it can be seen in Fig III .9(c). These fluctuations can be real fluctuation of the bacterial trajectory, but are also readjustment noise coming from the tracking device. Indeed, the tracking is more accurate when the tracked object is moving in the z direction. When swimming at the surface, the position of the bacterium is determined with less precision than in the bulk. The acquired position in z oscillates around the real bacterium position and we estimate the exploration amplitude of ∼ 4 µm.

First, we need to define a criterion to identify bacteria as dwelling at the surface. The simplest definition would be to consider at the surface any bacterium swimming while touching it, i.e being at a distance h out less than one cell body length (few microns) from the surface. Another way would be to consider at the surface any bacterium that have steric interaction including the flagella bundle, meaning being at a distance less than the flagella length ∼ 10 µm. However, this definition is not efficient. Indeed, by taking the typical height h out too short (see Fig III .10(a)), any fluctuation in height will make the bacterium leave the surface region. Finally, one will obtain an insignificant large number of small portions of trajectories at the surface interrupted by rapid excursions on the bulk. On the contrary, by taking the typical height larger that the height fluctuations, a bacterium that reaches the limit height without going deeper and touches the surface will be considered at the surface for a short time (see Fig.

III.10(b))

. In order to minimize potential artifacts associated with the arbitrary definition of a single height below which one should consider a bacterium to be at the surface, we propose a more elaborate definition. To be considered as being in the surface region, a portion of trajectories has to be below a given distance h out which roughly sets the limit between the bulk and the surface region, this h out has to be large enough to take possible fluctuations of height into account. Then, to be considered at the surface, during the time spent below h out , the bacterium has to go below a second height h in smaller than h out at least once to avoid taking into account bacteria that reach the limit height h out without going deeper (see Fig. III.10(c)).

Residence time

First, I study time of residence of bacteria at the surface. In order to see the dependence of my results to the surface definition, I compute the mean residence time: τ c =< τ > (averaged over all portions of track and over all bacteria) as function of h out for different value of h in . Note that when h out increases, the time it takes for a bacterium to go from h out to h in and to go from h in to h out also increases and contributes to increase the residence time. To reduce their influence, I remove these two parts to compute the residence time τ which is then defined as the time between the first and the last time the bacterium crosses h in ( In Fig III .12, I display the mean residence time τ c , as function of h out for different value of h in . As we can see, there is only a weak dependence of τ c with h in and all the curves are very similar while for h out , two regimes can be observed. At low h out , τ c increases linearly with a slope of 3.5 ± 0.16 s µm -1 . Then, around a value h out ≈ 5 µm the slope decreases rapidly and a second linear regime is observed with a much smaller slope of 0.4 ± 0.01 s µm -1 . The cross over value h cross is indicated by vertical dashed lines in Fig III .12 and is computed by fitting each of the two regimes by a straight line, the intersection of the two lines gives the cross over values: h cross = 5 -7.6 µm. (s) The interpretation of these two regimes is the following: below a distance h cross , a bacterium is at the surface and its height fluctuates with a small amplitude. These fluctuations in height are the combination of physical height fluctuations (the bacterium "jumps" on the surface) and any artifact from the tracking device. By taking h out < h cross , fluctuations in height will be considered as out of the surface and one will under estimate the residence time. On the opposite, by taking h out too large we actually "link" two parts of trajectories at the surface and separated by an excursion in the bulk. One should then choose a value of h out between 5 and 8 µm to define the surface domain.

h in =17m h in =27m h in =37m h in =47m h in =57m
To characterize the typical residence time at the surface independently of the choice of h in and h out , I take the value of τ c at the cross over or equivalently, in the limit h out → 0 of the second linear regime. By extrapolating the second linear regime to h out = 0 (dashed lines on Fig III .12), I find for each curve a value of the typical residence time. By taking the mean of these values I find a characteristic residence time at the surface τ 0 = 18 ± 1 s. (a) This value is extremely large, three times larger than the mean persistence time in the bulk < τ p >∼ 6 s found in the previous section b). Since τ p reflects the run time, it means that during a stay at the surface either bacteria tumble less frequently than in the bulk or eventually, in case of a tumbling event, the bacterium fails to escape from the surface.
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I finally analyze the distribution of residence time for different values of h out close to h cross and ranging from 5 to 10 µm. In the following I will always take h in = 3 µm. The residence time seems to be neither distributed as an exponential nor as a power law and displays a significantly long tail.

Finally, I draw the distribution of the logarithm of the residence time in Fig. III.14(a). Qualitatively, the distribution of ln(τ /τ c ) seems to be a gaussian. To test if the distribution follows a log-normal distribution rather than a simple exponential distribution, I fit my experimental data with two functions: a standard gaussian distribution G and a exponential distribution F . Note that if x is exponentially distributed, the distribution of ln(x) is distributed according to F (ln(x)).

F (x) = exp(x -exp(x)/a)/a G(x) = 1 √ 2πσ 2 exp (x -µ) 2 2σ 2 (III.8)
As we can see in Fig. III.14, the exponential distribution fails to capture the long time behavior while overestimating the short time. On the opposite I have a good agreement between my experimental data and the gaussian distribution which capture well the long time behavior.

Interestingly, the residence time is distributed in the same way as the persistence time (see section b)) but on a different scale. The characteristic residence time τ 0 ≈ 18s is much larger than the mean persistence time < τ p >≈ 6s and is comparable to the brownian decorrelation time τ B ≈ 20 s in the bulk. Theoretical studies dealing with bacteria at surfaces report that thermal fluctuation could be a way for motile microorganisms to leave the surface [START_REF] Li | Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion[END_REF][START_REF] Schaar | Detention times of microswimmers close to surfaces: Influence of hydrodynamic interactions and noise[END_REF]. As τ 0 and τ B are close, thermal fluctuation could be a way for bacterial to escape the surface.

To see if bacteria escape from the surface due to thermal rotational diffusion or due to other processes like tumblings events (then setting the residence time), I performed the same experiment with smooth swimmers as we will see in section 2.3.

Incoming and escape angles

In the following, I study the angle at which the bacteria leave the "surface" as well as the one at which they get to the "surface".

I define the pitch angle as the angle θ between the bacterium orientation p and the surface (see Fig III.15). I call θ in the angle at which the bacterium arrives at the surface and θ out the one at which the bacterium leaves it. Note that with our definition θ in is always negative and θ out always positive. In experiments, I consider that the velocity of the bacterium is aligned with the orientation of its body so that: V b = V b p with V b the norm of the bacteria velocity and p its orientation. The angles are then obtained from the velocity of the bacterium by: θ

= arcsin(p z ), θ ∈ [-π 2 π 2 ]
. For θ = 0, the bacterium swims parallel to the surface, for θ = ± π 2 the bacterium swims perpendicular to the surface with 

✓ V p = V b p z h out ✓ in ✓ out (a) (b)
θ = arcsin(V z /V b ), θ ∈ [-π 2 π 2 ]
. The in-plane angle is ψ. (b) Sketch of a bacterial trajectory at the surface: the bacterium enters the surface region with an incoming angle θ in when crossing z = h out , and escapes with an escape angle θ out . its head pointing (-) towards or (+) away from the surface. I first consider trajectories that passed at least at h in = 3 µm from the surface and looked at the incoming and escape angle θ in/out at different height h out from the surface.

The probability to have a solid angle in the half sphere is: P (θ, ψ) = dΩ.Π(θ, ψ), with, in our notation: dΩ = cos θdθdψ, with ψ the in-plane angle and Π(θ, ψ) = 1/2π the isotropic probability density to have a solid angle in the half sphere. The probability for a bacterium with an angle θ to cross any plane parallel to the surface, from below, is proportional to the flux of bacteria passing through this plane with an angle θ i.e is proportional to sin θ. Then, the probability to cross this plane is:

dP cross (θ, ψ) = 1 π cos θ sin θdθdψ (III.9)
averaging over the angle ψ leads to:

dP cross (θ) = sin(2θ)dθ (III.10)
and the probability density to cross, from one side, any plane parallel to the surface with an angle θ is:

P cross (θ) = ± sin(2θ) (III.11)
where this expression complies with the angle sign value: -when crossing the plane from above and + when crossing from below.

As we can see in Fig. III.16(a), the distribution of θ in follows P cross suggesting that the bacteria reach the surface with equiprobable pitch angle. For the escape angle, the distribution is skewed towards low angle values for h out = 6-10 µm. At h out = 20 µm, the distribution approaches P cross . To confirm my interpretation, I divide each distribution by sin(2θ) and I call P the new distribution then obtained. Fig. III.17 presents these distributions, the flat distribution corresponding to θ uniformly distributed. For θ in , we can see that the distributions are almost flat. For θ out for h out between 6 and 10 µm, the probability to have an angle θ out < 40 • is larger than the probability to have θ out > 40 • . For h out ≈ 20 µm, one recovers a flat probability density.

To quantify the deviation between the experimental distribution P (θ in/out ) and the flat distribution Piso = 1/90, I compute E the integrated difference between P (θ in/out ) and the flat distribution: One can see that E in is constant with h out while, for E out , we observe a continuous decrease for h out between 6 and 15 µm. After h out = 15 µm, E out stays constant. By fitting E out with a decaying exponential, I found a typical length l out = 11 ± 1µm that characterizes the surface effect on the bacteria orientation.

These observations indicate that the surface does not strongly affect the orientation of the incoming bacterium. This is coherent with the recent observations of Bianchi et al. [START_REF] Bianchi | Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria[END_REF]. In their study, they released with a controlled pitch angle trapped smooth swimmers E. coli from a fixed distance h = 10 µm from the surface. They observe that the collision angle with the surface does not differ from the initial released angle. However, for the escape angle, I found that the surface has an impact on the orientation of the bacteria over a distance l out = 11 µm. This tendency could be due to the steric interaction between the surface and the flagella bundle, which hinders the bacterium take-off. Indeed, the bacterium cannot escape with a high angle θ because it has behind a bundle of ∼ 10 µm, whereas for the entrapment, a bacterium can hit the wall with an angle θ = π/2, leading to an isotropic distribution of incoming pitch angle.

Smooth swimmers swimming near surfaces

Following the previous experiments on residence time of wild type bacteria, I investigate the physical mechanisms that allow bacteria to take off from the surface. This escape mechanisms can be due to the thermal rotational diffusion or to the tumbling events.

To see the influence of tumbling events, I repeat the experiment with smooth swimmer. Under the same experimental conditions, 42 long tracks of smooth swimmer (CR20) are recorded.

To define a residence time of a bacterium, an arrival time and a departure time are needed. Sometimes, and especially for smooth swimmers, some bacteria are observed to stay on the surface more time than the observation time. In other situations, only the arrival or the departure of the bacteria are recorded. In these cases, it is not possible to compute a residence time. Instead, I defined τ er "interrupted residence time" which is defined as the time of observation of the bacteria at the surface. I draw, in Fig III .19, the histograms of τ er . For wild type bacteria, there are only few values of τ er larger than 100s, while for smooth swimmers they are largely represented. For smooth swimmers, the largest τ er lasts 916 s, which is more than 50 times the mean residence τ 0 = 18 s.

Differences between smooth swimmers and wild type bacteria can also be seen by studying the fraction of time a bacterium stay at the surface during the track. duration. The average is performed over all the tracks for a given strain. One can see that on average, wild type bacteria spend 55% ± 13% of their time at the surface while smooth swimmers spend 84% ± 14%. These results confirm the first intuition that smooth swimmers spend much more time at the surface than wild type bacteria.

Summary and discussion

In this section I studied the behavior of a wild type and smooth swimmer E. coli bacteria both in the bulk and at surfaces.

First, I demonstrated that in the bulk, the run and tumble statistics of wild type bacteria differs from the classical picture often assumed. At short time, the decorrelation of the orientation of the bacteria decreases exponentially with a typical persistence time τ p . This persistence time is not distributed as a Poisson distribution. Indeed, the model suggests that due to the fluctuation of CheY-P, a molecule responsible of the direction of motor rotation, the persistence time varies in time for the same bacterium. These fluctuations occur at a time scale of 20s called "memory time", leading at long time to a persistence time distributed as a log-normal. Bacteria thus have a "behavioral variability" meaning that they experience moments when they tumble very often and others when tumbling events are scarce. We compared our experimental results to simulations and obtained a good agreement.

In addition I studied the residence time of wild type bacteria at the surface. I found a large distribution with very long residence time, the characteristic residence time being τ 0 ≈ 18s. This characteristic residence time is much larger than the mean persistence time, suggesting that either surface inhibits tumbling events or tumbling events do not detach automatically the bacteria from the surface. This picture is in agreement with a previous study [START_REF] Molaei | Failed escape: Solid surfaces prevent tumbling of escherichia coli[END_REF] by Molaei et al. . In their work they found that within 20 µm from the surface, tumbling events are suppressed by 50% and reorientations are largely confined to surface-parallel directions, preventing escape of bacteria from the near-surface region. According to them, the suppression of the tumbling events is likely due to a surfaceinduced reduction in the hydrodynamic forces responsible for the flagellar unbundling that causes tumbling. They conclude by saying that tumbling events are not a good strategy to escape from the surface. With my results, this picture has to be reconsidered. I found that the distribution of residence time, like the persistence time, is log normal distributed. In addition, I studied the residence time and the fraction of time smooth swimmers spend at surface. I saw that smooth swimmers stay at the surface much longer than wild type bacteria. All of this hints towards a relation between the run time and the residence time at the surface. In addition the mean residence time τ 0 = 18s and the memory time T Y = 20s of CheY-P fluctuations are very close. In our interpretation, it suggests that bacteria may stay at the surface until the CheY-P fluctuations drive they into "tumbling mood". In this "mood", tumbling events are frequent and a succession of tumbling events make the bacteria leave the surface. After all, tumbling events could be the way to leave the surface, even if there are not as "efficient", regarding the reorientation process, as in the bulk. The broad log-normal distribution of residence time could then find its origin in the log-normal distribution of τ p .

Then, I looked at the distribution of the incoming and escape angle. I found that bacteria arrive at surface with an angle distributed isotropically. Whereas the distribution of escape angle is not isotropic and is shifted towards low value of angles, meaning that bacteria tends to escape with an orientation preferentially aligned along the surface. This could be due to steric interactions between the bacterium bundle and the surface that hinders the bacteria take off.

These results contribute to decipher the long time behavior of E. coli both at surface and in the bulk. The run and tumble statistics identified for free swimming in the bulk, seems to impact the residence time at the surface leading to very long residence time. Thus, surfaces are of first importance for the swimming dynamics of E. coli in a quiescent fluid and may also play a crucial role in the transport mechanism under flow, as we will see in the next chapter.

Chapter IV

Bacteria swimming in a flow

In this chapter, I investigate the microscopic behavior of bacterial suspension in a flow. In the first part, I focus on bacterial trajectories at surfaces, submitted to different shear rates. In a second part, I investigate the behavior of bacteria in the bulk and compare my experimental findings to the outcome of the active Bretherton-Jeffery model.

Experimental set up

To study the behavior of bacteria in a flow, a bacterial suspension is injected in a microfluidic channel of rectangular cross-section (height h = 100 µm, width W = 600 µm), made in Polydimethylsiloxane (PDMS) and obtained using standard soft-lithography techniques. The flow is imposed via a syringe pump (dosing unit: LowPressure Syringe Pump neMESYS 290N and base: Module BASE 120N). A sketch of the set-up is provided in Fig.

IV.1(a). At low Reynolds number, the velocity profile v(y, z) of a fluid flowing along the x direction in a channel of rectangular cross-section is [START_REF] Tabeling | Introduction to microfluidics[END_REF]:

v(y, z) = ∞ n,odd 4h 2 c π 3 n 3 1 - cosh( nπy h ) cosh( nπW h ) sin πnz h (IV.1)
where c = ∇P η is the pressure gradient normalized by the fluid viscosity.

Midway between the lateral sides, and in a region of width 200 µm smaller than the width of the rectangular channel (W=600 µm), the lateral sides effect on the velocity profiles are negligible and v(y, z) ≈ v(z). We are then in the Hele-Shaw approximation and have a parabolic velocity profile of expression:

v(z) = 4V M (1 - z h ) z h e x (IV.2)
Under those conditions and using the 3D Lagrangian tracker, I first recorded trajectories of 1 µm fluorescent beads that seeds the fluid. By fitting each curve independently by a parabolic fit (using eq. (IV.2)), I obtain the channel height h and the maximal velocity V M . From the fit, the channel height is determined with a precision of 2 µm and the maximal velocity with an uncertainty of 3%. I then compute the corresponding flow rate Q e = V M hW/α, where α = v th Q th is a geometrical coefficient which takes into account the finite aspect ratio of the rectangular section. and the maximum of the distribution gives the swimming velocity V b . The average < V b >= 1/N N i V b over all the bacteria for a given experiment (i.e for a given flow rate) is displayed on Fig IV .3.We note that the bacteria motility can vary a little bit between two experiments: from 20 to 30 µm, but does not depend on the flow velocity.

Swimming behavior of smooth swimmer bacteria at surfaces under shear

In this section, I present the results obtained in collaboration with Arnold J. T. M Mathijssen and Andreas Zöttl, who did the theoretical and numerical analysis and Nuris Figueroa-Morales, who performed the preliminary experiments on bacteria with stained flagella. Additional details on the theory, simulations and on the experiment on stained flagella can be found in the reference [START_REF] Mathijssen | Oscillatory surface rheotaxis of swimming E. coli bacteria[END_REF]. 

Experimental observations

To investigate the dynamics of E. coli at the surface under flow, I track bacteria at the surface at different flow rates. As we have seen in chapter III section 2.3, smooth swimmer bacteria spend much more time at surfaces than wild type bacteria. We then take advantage of this observation and choose a smooth swimmer strain (CR20) to study bacterial behavior at surface under flow. To do so, I recorded dozens of tracks close to the surface at different flow rate corresponding to a maximal wall shear rate γM = 4V M h ranging between 1 to 50 s -1 . Fig. IV.4(a) displays typical experimental trajectories at the surface for different maximal shear rates. As shear increases, the trajectories change qualitatively and several types of trajectories could be identified.

In absence of flow, bacteria swim in circles [START_REF] Berg | Chemotaxis of bacteria in glass capillary arrays. Escherichia coli, motility, microchannel plate, and light scattering[END_REF][START_REF] Frymier | Three-dimensional tracking of motile bacteria near a solid planar surface[END_REF][START_REF] Lauga | Swimming in Circles: Motion of Bacteria near Solid Boundaries[END_REF][START_REF] Di Leonardo | Swimming with an image[END_REF] and at low shear rate (dark blue tracks) this circular motion begins to evolve towards cycloid motion with a biased drift to the right. Here, we define the term "to the right" as the direction of the flow vorticity. This bias to the right is induced by the chirality of the flagella [START_REF] Marcos | Bacterial rheotaxis[END_REF]. When the flow increases (light blue and orange tracks), the bacteria start to orient upstream. This upstream migration has been observed by Kaya et al. [START_REF] Kaya | Direct Upstream Motility in Escherichia coli[END_REF] and is due to the fore-aft asymmetry of the bacteria. Then at higher shear rate (orange tracks) the bacteria are still oriented upstream but the flow velocity is too strong and the trajectories bend into the flow direction stopping the upstream migration. The bacterial motion are still biased to the right. However for strong flow velocity and high shear rate (red tracks), we observe, for the first time, trajectories that are biased to the left. Surprisingly, an oscillatory motion appears for high shear rate (orange and red tracks). 
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Theoretical model

To understand my experimental observations, I first list the effects that come into play and discuss how their combination may give this oscillatory motion.

In the model, the bacterium consists of an elongated body and a bundle of left-handed flagella, subject to shear flow at a surface (see Fig. The orientation of a swimmer at the surface then evolves as:

ψ = Ω ψ (ψ, θ), θ = Ω θ (ψ, θ), (IV.3)
where the reorientation rates Ω ψ and Ω θ stem from three main contributions, Ω = Ω W + Ω F + Ω V , that account for the presence of the wall (Ω W ), local shear flow (Ω F ), and surface-flow coupled effects (Ω V ).

In the absence of flow, the hydrodynamic swimmer-wall interactions [START_REF] Berke | Hydrodynamic attraction of swimming microorganisms by surfaces[END_REF] and steric interactions [START_REF] Li | Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion[END_REF] force the bacteria to swim approximately parallel to the wall [START_REF] Lauga | Swimming in Circles: Motion of Bacteria near Solid Boundaries[END_REF] (Fig. IV.6(a)). This surface alignment is then modeled as:

Ω W θ (θ) = -ν W sin 2(θ -θ 0 ) (IV.4)
where the prefactor ν W is an effective angular velocity capturing both the hydrodynamic and the steric contributions. A small zero-shear pitch angle θ 0 < 0 represents the observation that bacteria in average point towards the wall [START_REF] Bianchi | Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria[END_REF].

The second wall effect stems from the counter-rotation of the bacterial body and the bundled flagella. Near solid surfaces this leads to a hydrodynamic torque leading to circular motion in the clockwise direction when viewed from above the surface (Fig.

IV.6(b)).

The reorientation rate in the ψ direction is approximated by a constant :

Ω W ψ (θ) = ν C (IV.5)
For typical bacteria with left-handed flagella, the prefactor is positive, rise to clock-wise circles.

ν C > 0, giving (a) 
Under shear, elongated objects such as rods and fibers, or non motile bacteria [81] tumble, and their orientation follow the so-called Jeffery orbits.

The orientation vector performs a periodic motion about the vorticity (y) direction (Fig. IV.6(d)) according to the eq (I.3) :

Ω J ψ = γ 2 (1 + β) sin ψ tan θ, Ω J θ = γ 2 (1 -β cos 2θ) cos ψ (IV.6)
In the presence of walls, the orbit amplitudes decay because of the surface alignment, but their reorientation rate (frequency) is not affected significantly, as simulated in detail for passive ellipsoidal particles [START_REF] Pozrikidis | Orbiting motion of a freely suspended spheroid near a plane wall[END_REF].

The second flow effect stems from the chirality of the bacterial flagella, making cells reorient towards the vorticity direction [START_REF] Makino | Migration of twisted ribbon-like particles in simple shear flow[END_REF][START_REF] Marcos | Separation of microscale chiral objects by shear flow[END_REF]. Together with activity this allows streamline crossing, which in the bulk leads to a net migration of bacteria to the right [START_REF] Marcos | Bacterial rheotaxis[END_REF] (Fig.

IV.6(c)).

The chirality-induced reorientation is given by:

Ω H ψ = γ νH cos ψ cos 2θ cos θ , Ω H θ = γ νH sin ψ sin θ. (IV.7)
The prefactor solely depends on the geometry of the bacterium, 0 < νH 1 for lefthanded flagella as E. coli .

The swimmer body experiences an effective anchoring at the surface when pointing towards it, because its hydrodynamic friction with the wall is larger than the contribution of the flagellar bundle [START_REF] Daddi-Moussa-Ider | State diagram of a three-sphere microswimmer in a channel[END_REF], an effect explained by lubrication theory or solid friction at the wall contact [START_REF] Tung | Emergence of upstream swimming via a hydrodynamic transition[END_REF]. Consequently, the flagella are advected with the flow, like a weathervane (Fig IV .6(e)). Then, the bacterium orients upstream [START_REF] Miki | Rheotaxis guides mammalian sperm[END_REF][START_REF] Kantsler | Rheotaxis facilitates upstream navigation of mammalian sperm cells[END_REF][START_REF] Tung | Emergence of upstream swimming via a hydrodynamic transition[END_REF], which is modeled using the reorientation rates:

Ω V α = -γ νV sin(α) 1 2 1 -tanh θ θ V , (IV.8)
for both α = {θ, ψ}.

The hyperbolic tangent, with a constant θ V depending on the cell geometry, accounts for the fact that the asymmetry in friction is reduced when the swimmer faces away from the surface, θ > 0, where the weathervane effect disappears. This effect was not included in previous descriptions [START_REF] Kantsler | Rheotaxis facilitates upstream navigation of mammalian sperm cells[END_REF][START_REF] Tung | Emergence of upstream swimming via a hydrodynamic transition[END_REF] where only the in-plane angle were taken into account.

Having described the individual effects of the wall and of the flow on bacterial reorientation, these terms can be combined to begin to obtain more complex dynamics. First of all, by joining the contributions from surface alignment and head-tail rotations, we recover the well-known circular swimming [START_REF] Lauga | Swimming in Circles: Motion of Bacteria near Solid Boundaries[END_REF]. However, when the weathervane effect is added (eq. IV.8) the cells break out of the circular kinetics and swim upstream. This transition has also been observed for sperm cells [START_REF] Tung | Emergence of upstream swimming via a hydrodynamic transition[END_REF]. Secondly, combining the effects of Jeffery orbits and chirality (eq. IV.7), we recover bulk rheotaxis [START_REF] Marcos | Bacterial rheotaxis[END_REF]. Third, merging the Jeffery orbits in the bulk and the weathervane effect (IV.8) for cells near the surface, Jeffery's periodic motion about the vorticity directions (± ˆ y) now shifts to oscillations about a vector pointing more and more upstream as the shear rate is increased.

To understand my experimental trajectories accurately, however, all terms must be included, including rotational noise, as described in the following.

A simulated trajectory starts with a random in-plane angle ψ, parallel to the surface, θ = 0, and it finishes when it reaches a given escape angle, θ e [START_REF] Drescher | Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering[END_REF][START_REF] Schaar | Detention times of microswimmers close to surfaces: Influence of hydrodynamic interactions and noise[END_REF][START_REF] Mathijssen | Hotspots of boundary accumulation: dynamics and statistics of micro-swimmers in flowing films[END_REF][START_REF] Bianchi | Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria[END_REF]. Subsequently, the spatial dynamics are found by computing the velocity parallel to the surface, at a constant swimming speed V b , plus the downstream advection with velocity v = γM z ˆ

x, based on the shear rate and the distance from the wall, z. Hence, Fig IV .4(b)-(e) shows typical trajectories for different shear rates γM and initial conditions. Four regimes are identified (I-IV ), separated by critical shear rates.

In the weak flow regime (I ), bacteria move in circular trajectories, with a drift to the right (Fig. IV.4(a)). Above a critical shear rate, found in the BD simulations at γsim c 1 ≈ 1.5s -1 , they no longer move in circles but swim stable consistently to the right ). This transition [START_REF] Tung | Emergence of upstream swimming via a hydrodynamic transition[END_REF] stems from the competition between the constant head-tail rotations and the weathervane effect, that increases with flow. Owing to noise, coexistence between circling and upstream swimming may exist close to γc 1 , and oscillations may also appear already, as discussed below. Above a second critical shear rate, γsim c 2 ≈ 15s -1 (regime III ), an oscillatory motion directed to the right emerges (Fig. IV.4(c)). Similar to the first transition, the oscillations arise because the flow contributions now outweigh the surface terms that do not increase with shear. Essentially, the Jeffery and weathervane effects govern the oscillation dynamics. A simplified pictorial summary of this oscillation process is provided in Fig IV .7. Above a third critical shear rate, γsim c 3 ≈ 40s -1 (regime IV ), oscillatory swimming to the left arises (Fig. IV.4(d)), in coexistence with the aforementioned oscillations to the right. Moreover, bacteria may switch dynamically between the left and the right (purple and green trajectories). Still, this mode of leftward rheotaxis is rare as the flagellar chirality gives a bias to the right.

Comparison of the model with experimental observations

First, all types of trajectories observed experimentally have also been obtained numerically. Visual differences between experimental trajectories and simulations can arise from fluctuations, variations in swimming speed and distances from the wall. In the experiment, bacteria swim at different distances from the surface thus experience a different flow velocity.

To go beyond, I compare experiments and simulations in a quantitative way. To do so, I compute the frequency of the observed oscillations to the experimental trajectories. x y z At low shear rate and below γ c1 , the oscillation frequency is constant and comes from the circular motion due to the surface effects. These surface effects being constant, the effect due to the shear (weather-vane effect and jeffery orbit) will become more and more important as shear rate is increased and will dominate at high shear rate. In Fig IV .9(c) we can see that this cross-over is observed experimentally and numerically, with a good agreement between both.

Residence time and exchange dynamics of wild type bacteria under shear

In this section, I now focus on the residence time of wild type bacteria at surface as well as the exchanges between the surface and the bulk, via the incoming and escape angles. . More details about the theoretical estimations can be found in [START_REF] Mathijssen | Oscillatory surface rheotaxis of swimming E. coli bacteria[END_REF].

Using the set-up described at the begin of this chapter section 1, I recorded 180 bacterial trajectories of wild type RP437 at different flow rate ranging from 1 to 6 nL/s, corresponding respectively to maximal velocity V M between (34 ± 2) µm/s and (172 ± 5) µm/s and maximal shear rates γM = 4V M /h between (1.4 ± 0.08) s -1 and (6.8 ± 0.2) s -1 . In the following, I use the same methods as the one used in chapter III section 2 to define the surface, and I systematically take h in = 3 µm and h out = 8 µm.

Residence time

In Then, I compute the mean fraction of time spent by the bacteria at the surface: < T s /T tot > with T s the time spent at the surface by a bacterium and T tot the track duration. The bracket denotes an average over all the bacterial trajectories. 
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Incoming and escape angles

Dynamics of bacteria at the surface being complex, any model dealing with macroscopic transport would certainly have to consider the bulk region and the surface region separately. To link them, it is crucial to study their exchange dynamics. As I did in the case without a flow, I consider the exchanges between the surface and the bulk via two events: when bacteria arrive at the surface and when they escape. For these two events, I study the corresponding pitch angle and in-plane angles as defined in the previous section (see Fig IV.5). Fig IV .15 displays the distribution of the incoming and escape pitch angles θ in and θ out for different shear rates γM . As we can see, the two distributions are affected by the external flow. Without flow (dark blue line) the distribution of θ in follows the distribution P cross = -sin(2θ in ), while for θ out the distribution is clearly skewed towards zero. When the flow is turned on, the maximum of both distributions shifts towards zero.

I then compute the "rescaled" probability distribution P (θ in/out ) (as defined in the chapter III section 2.2 ) as function of γM as shown in Fig. IV.13. As we already saw, without flow, P (θ in ) is flat, while P (θ out ) is slightly asymmetric. When the flow is turned on, the two distributions shift towards low angle value meaning that, under flow, bacteria tend to arrive and leave almost aligned with the surface.
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To quantify the deviation of the angle distributions from an isotropic distribution, I compute the integrated difference E(θ) (see eq. (III.12)) between the experimental distributions and the flat distribution. Fig. IV.14 shows E in/out as the function of the applied shear rate. At zero shear, P (θ in ) is almost flat and E in = 0.03 while for P (θ out ), the distribution is already skewed leading to a greater value of E out = 0.05. When the flow is turned on, E in increases from 0.03 without flow to 0.11 for γM = 1.4 s -1 and E out increases from 0.05 to 0.09. Then, when increasing the flow, we do not see a dependency of E in/out with the shear rate and E in and E out stay constant at around 0.1. For the incoming angle ψ in the distribution, which is flat without flow, becomes peaked around ψ = 0 when the flow is turned on. This means that bacteria have a tendency to arrive at the surface with their head pointing upstream. When increasing the flow, this upstream orientation starts to vanish around γM ≈ 6.8 s -1 . For the escape angle ψ out the distribution is more difficult to interpret and one can not see a clear tendency.
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Summary and discussion

In this section I investigated the full time-resolved orientation dynamics of a smooth swimmer bacteria swimming close to a surface, as a function of the applied flow strength. I found four rheotactic regimes, separated by shear-regulated transitions as well as a new oscillating behavior. Simulating a kinetic model coupling the effects of the shear flow, the surface and the bacteria shape yields the same type of trajectories as observed experimentally. Furthermore this model predicts the bacterial oscillation frequencies, which are in good agreement with my experimental results. Furthermore, with a wild type strain, I studied the residence time at surface under flow. I found that the mean residence time decreases when the flow is turned on and stays constant equal to ∼ 8s for the range of shear rate that I explored. Nevertheless, it is still larger than the mean persistent time < τ p >= 5.9 s or the hydrodynamic time associated with the shear rate: 1/ γM ≈ 0.1 -1 s. Surprisingly, I observed that the fraction of time bacteria spend at the surface is not affected by the external flow. Even if the residence time decreases, bacteria spend on average 50% of their time at the surface. This means that if the flow helps the bacteria to detach from the surface, they quickly come back, likely due to shear that rotates them towards the surface. Therefore, the shear does not seem to be an efficient way to erode bacteria from a surface. This is consistent with what has been found in a previous work by Figueroa-Morales et al. [START_REF] Figueroa-Morales | Living on the edge: transfer and traffic of E. coli in a confined flow[END_REF] where they report that the concentration of bacteria decreases exponentially with the shear rate, but with a very large typical erosion shear rate of 140 s -1 . In my experiment, the largest shear rate I used is of 7 s -1 which is very small compared to this typical erosion shear rate. In soils, typical flow velocities are of U ≈ 50 µm s -1 and typical shear rates γ ≈ 1 -10 s -1 , which is the range that I explore in the thesis. Then, one could expect bacteria to spend a significant fraction of their time at solid interfaces. Thus, surface can not be ignored and any macroscopic model of transport under flow should take it into account.

I then focus on the exchanges between the surface and the bulk via the incoming and escape angle. I showed that under flow bacteria tend to arrive and leave the surface almost aligned with it (θ in and θ out close to 0). For the in-plane angle, I showed that the flow polarizes the in-plane incoming angle ψ in and that bacteria arrive at the surface with their head pointing upstream (ψ in close to 0). This is due to the weathervane effect that becomes important when approaching the surface. This tendency starts to faint close to γM = 6.8 s -1 . This is consistent with a previous work [START_REF] Kaya | Direct Upstream Motility in Escherichia coli[END_REF] where they observed upstream swimming below critical shear rate value 6.4 s -1 . For the escape angle ψ out , I did not see a strong impact of the flow and the distribution is rather flat for the range of shear rate that I explored. This could be due to the complex dynamics of bacteria at surfaces. Indeed, experiments with wild type bacteria were performed at γM = 1.4 -6.8s -1 corresponding to dark and light blue trajectories in Fig IV .4. We see that these trajectories take several shapes and possibly leave the surface in many different ways. Therefore, I could not identify a characteristic in-plane escape angle.

Bacterial bulk trajectories in flow

In the case of simple flow geometries as a Poiseuille flow in 2D or 3D, bacterial trajectories have been studied theoretically by Zöttl et al. [START_REF] Zöttl | Nonlinear dynamics of a microswimmer in Poiseuille flow[END_REF][START_REF] Zöttl | Periodic and quasiperiodic motion of an elongated microswimmer in Poiseuille flow[END_REF] using the active B-J model. This model relies on a simplified vision of the bacterial shape and swimming behavior. For instance, the chirality of the flagellar bundle responsible for rheotactic effects [START_REF] Marcos | Bacterial rheotaxis[END_REF][START_REF] Mathijssen | Oscillatory surface rheotaxis of swimming E. coli bacteria[END_REF] or the flexibility of the flagella [START_REF] Son | Bacteria can exploit a flagellar buckling instability to change direction[END_REF][START_REF] Reigh | Synchronization and bundling of anchored bacterial flagella[END_REF][START_REF] Spöring | Hook length of the bacterial flagellum is optimized for maximal stability of the flagellar bundle[END_REF] are neglected. Despite the importance of this fundamental model, experimental validation and proof of its applicability to bacterial trajectories is still lacking.

To study the motion of E. coli in the bulk under flow, I recorded hundreds of bacterial trajectories of smooth swimmers at different flow rates Q, ranging from 1 to 6 nL/s, corresponding respectively to V M between (28±2) µm/s and (168±5) µm/s and maximal shear rates γM = 4V M /h between (1.1 ± 0.08) s -1 and (6.7 ± 0.2) s -1 . The experimental set-up used here is the same as the one used in the previous section to study bacteria on surfaces under flow. I now focus on the bulk region and consider part of the trajectories that are at least 5 µm away from the top and the bottom walls.

Typology of experimental trajectories

I first look at the shape of the bacterial trajectories. Fig IV .16(a) shows a projection of bacterial trajectories in the shear plane, each color corresponds to a different type of trajectory. In the lower half plane (0 < z/h < 1/2) the vorticity rotates the bacteria in the CW direction and in the upper plane it turns CCW. The shape of the trajectory then depends on the shear rate (the higher it is, the faster the bacteria will be rotated), on the geometry of the bacterium and finally on the initial conditions of the trajectories. The shape of each type of trajectory can then be qualitatively understood as follows.

Let us first consider a bacterial trajectory that starts at the surface. For strong flows (high shear rate) the bacterium is rotated toward the same wall before its swimming speed makes it cross the middle of the channel. These trajectories are the red trajectories of the Fig. IV.16. For moderate flows, due to the lower shear rate, the bacterium can eventually reach the middle of the channel. Then the vorticity changes sign, and the bacterium is rotated in the opposite direction and lands on the opposite wall. These are the orange trajectories on Fig IV .16. As we will see later for symmetry reasons a bacterial trajectory that starts at a wall will always end at a wall. Now let us consider a bacterial trajectory starting in the bulk. For moderate flows, a bacterium approaching the surface can eventually be rotated before touching the wall and be re-injected in the bulk. The trajectory has a cycloid-like shape and the bacterium oscillates in the bulk, these are the light blue trajectories on Fig IV .16. For higher flows, the bacterium can be re-injected in the bulk when approaching a surface and due to the strong shear can also be rotated towards the surface before having crossed the middle plane. The trajectory has also a cycloid-like shape but is in a confined half plane (between 0 < z/h < 0.5 or 0.5 < z < 1. These trajectories are the dark blue trajectories of Fig IV .16.

In the following we call trajectories of type (i) the red trajectories, type (ii) the orange one, type (iii) the dark blue one and type (iv) the light blue one. These four types of trajectories have been predicted theoretically by Zöttl et al. [START_REF] Zöttl | Periodic and quasiperiodic motion of an elongated microswimmer in Poiseuille flow[END_REF]. As seen in the introduction and for a 2D case, each type of trajectory corresponds to specific regions in the 2D phase portrait. In our case, our experimental trajectories are 3 dimensional (trajectories presented in Fig IV .16 are 2D projections of 3D trajectories). The correspondence between type of trajectory and region in phase portrait still holds but is less obvious to see in a 3D phase portrait. However, an important remark can be made. As seen in the introduction, for a fixed value of β, the phase portrait changes as one increases the shear rate and, below a critical value, trajectories of type (ii) disappear. Above this shear rate, a smooth swimmer bacterium starting at the surface can not reach the opposite surface anymore.

Note that trajectories starting and ending at the channel walls are frequent in our experiments. As smooth swimmer bacteria spend a significant amount of time at the solid boundaries, many trajectories recorded were indeed initiated at a channel wall.

The active Bretherton-Jeffery model

To understand and rationalize our experimental observations, we consider an active B-J model describing the motion of a self-propelled ellipsoid in a plane Poiseuille flow. This model has already been studied theoretically by Zöttl et al. [START_REF] Zöttl | Periodic and quasiperiodic motion of an elongated microswimmer in Poiseuille flow[END_REF]. Here using a different parametrization more suitable to what we observe experimentally, we rederive some of their results as well as new features. These features are then compared to the experimental observations. Let us consider a planar Poiseuille flow:

v(z) = 4V M (1 -z h ) z h e
x where V M is the maximum flow velocity and h the channel height. The effective ellipsoid coordinates are its centroid position r = (x, y, z) with an orientation vector p = (cos θ, sin θ cos φ, sin θ sin φ) (see Fig . IV.17). In the section, I focus on part of trajectories in the bulk. I then choose a different angle parametrization (different than the one chosen to study the surface), better suited to to the bulk dynamics. In this 3D parametrization the angle θ is the angle of the ellipsoid with respect to the flow direction (here along x) and varies between θ ∈ [0 π]. The angle φ is the angle in the plane perpendicular to the flow direction and varies between φ ∈ [0 2π]. Then, a bacterium swims upstream when θ = π and in the flow direction when θ = 0. The bacterium swims parallel to the surface when φ = 0 or π and swims perpendicular to it when φ = π/2 or 3π/2.

The velocity of the ellipsoid is the vectorial sum of the swimming velocity and the local flow velocity: V = V b p + v. The Bretherton-Jeffery derivation describes how an axisymmetric ellipsoid of aspect ratio r = l/e is reoriented in a Stokes flow (see eq. I.3) . In the following, all distances are rescaled by the channel height h and time by γM . The swimmer positions and orientations are then given by five coupled dynamical equations, implying three adimensionalized position coordinates (x(t), y(t), z(t)):

ẋ = A cos(θ) + z(1 -z), ẏ = A sin(θ) cos(φ), ż = A sin(θ) sin(φ),
(IV.9) and two angular coordinates θ and φ

θ = 1 2 sin(φ)[β cos(2θ) -1](1 -2z), sin(θ) φ = 1 2 (β -1) cos(φ) cos(θ).
(IV.10)

with A = V b /4V M the parameter fixing the ratio between the bacterium velocity and the maximal flow velocity and β the Bretherton parameter.

As we can see in eq. (IV.9) and eq. (IV.10) the z, θ and φ coordinates and are coupled and do not depend on x and y. The trajectory of a bacterium can then be described, not in the real space x -y -z but in the z -θ -φ space. To do so, I derive two exact relations between these variables. A first one gives the height z of the bacterium as function of θ the angle with respect to the flow direction. A second one gives φ the angle in the plane perpendicular to the flow direction as function of θ. Each of these relations is a 2D projection of a space portrait that is three dimensional. I first calculate the phase portrait z(θ). The ratio between ż and θ (eqs (IV.9) and (IV.10)) yields dz dθ =

2A sin(θ)

[β cos(2θ)-1](1-2z) , and can be integrated to obtain the relation:

z ± = 1 ± 1 + 4B(cos θ) 2 (IV.11) with B(cos θ) = -z 0 (1 -z 0 ) + A 2aβ ln (a + cos θ)(a -cos θ 0 ) (a -cos θ)(a + cos θ 0 ) (IV.12)
where a = β+1 2β . The solutions z + and z -correspond respectively to sections of trajectories in the upper half (0.5 < z < 1) or in the lower half (0 < z < 0.5) of the channel. I then evaluate the phase portrait φ(θ). By dividing φ by θ (eqs. (IV.9) and (IV.10)) one obtains sin θ dφ dθ = (β-1) cos(φ) cos(θ) sin φ[β cos(2θ)-1] , yielding after integration:

cos φ cos φ 0 = tan θ 0 tan θ 1 + r 2 tan 2 θ 1 + r 2 tan 2 θ 0 . (IV.13)
One of the differences between the 2D and 3D phase portraits is that in 2D as the time increases, a trajectory will span its whole phase line. On the opposite, in 3D, the phase portraits z -θ and φ -θ are projections of a 3D phase portrait, thus the projections in these phase spaces do not necessarily follow the entire phase line, as we can see on ) is symmetric with respect to the plane z = 0.5. This comes from the symmetry of the Poiseuille flow and trajectories starting at a wall, will also end at a wall (same wall for type (i) and opposite for type (ii). For trajectories that stay in the bulk: if they cross the middle plane, one has a symmetry with respect to z = 0.5. The θ corresponding to the z extrema are either equal for trajectories of type (iv) (see Fig IV .18), or symmetric with respect to π/2 for trajectories of type (iii) (see Fig IV .19).

We can see that the phase portrait φ -θ is symmetric with respect to π, and a trajectory cannot cross the plane φ = π/2 or 3π/2. Indeed, the angle φ is related to the y component of the velocity. Due to the absence of shear in the plane z -y (plane perpendicular to the flow direction), the velocity component v y of a bacterium is constant. If it is positive, the bacterium will swim with an angle φ ∈ [0 ; π/2] ∪ [3π/2 ; 2π], meaning towards positive y values. If it is negative, the bacterium will swim with an angle φ ∈ [π/2 ; 3π/2], meaning towards negative y values. In Fig IV. [START_REF] Gachelin | Collective motion in an active suspension of Escherichia coli bacteria[END_REF], we can see the two phase portraits with data coming from an experimental trajectory in blue, and data coming from a simulated trajectories in red (using the same initial conditions and parameter than the experiments). What we see is that the blue curve follows the phase line and the simulation, and we obtain a good agreement between experiment and theory.

Model predictions and comparison to experimental observations

As no closed form solution is available for the B-J model, I solved the equation numerically.

The numerical trajectories displayed on Figs. IV.16, IV.21 and IV.22, are obtained by numerical integration of eqs. (IV.9) and (IV.10) simply using an explicit Euler scheme. Typical experimental observations are reproduced by the numerical trajectories, as can be seen from From the phase portraits displayed in Figs. IV.24 (a-c), we can rationalize the prominence of these trajectories staying close to the plane φ = φ c , as long as the angle θ is not close to 0 or π (i.e. sin θ going to zero). Then, in the latter case, the model predicts a shift from the initial plane to the mirror plane (see Fig. T as the time to go back to this point. Since ẋ and ẏ only depend on z, θ and φ (all periodic functions), one can then define the displacements over one period T, along the flow, ∆x, and perpendicular to the flow, ∆y. The expressions of these two displacements are obtained by direct integration of eq. (IV.9) and their ratio yields an expression for the tangent of the drift angle ψ. In the following, we derive an analytical expression for tan ψ.

From eqs. (IV.9), we see that an extremum is reached when ż = 0 i.e sin φ = 0 or equivalently cos φ 2 = 1. Calling θ * the angle corresponding to the z extremum, and setting cos φ 2 to 1 in eq. (IV.13) one obtains:

cos θ * ± = ± 1 + r 2 tan 2 θ 0 sin 2 φ 0 1 + tan 2 θ 0 (r 2 sin 2 φ 0 + cos 2 φ 0 ) (IV.14)
From direct integration of eq. IV.9 for x and y we obtain:

∆x = t 0 +T t 0 [A cos θ + z(1 -z)] dt ∆y = t 0 +T t 0 A sin θ cos φ dt (IV.15)
For a given trajectory, due to the periodicity, the values of ∆x and ∆y do not depend on the specific choice of t 0 , the starting time. Therefore, one can define the angle ψ, such as tan ψ = ∆x/∆y, as a quantity independent of the choice of initial position on the curve. To perform an explicit calculation of tan ψ, we choose to start from one of the extrema of z.

As we do not know the expression of the period T, nor any expression of z, θ, φ as function of time, we perform a change of variable t into η = cos θ in the integrals of eqs. (IV.15). Starting from a point in the phase space z, θ, φ, the period T is defined as the time to go back to the same point. So, after the change of variable, the integrals run from cos θ(t 0 ) to cos θ(t 0 + T ) = cos θ(t 0 ). These integrals are not equal to zero because the change of variable is not bijective. We thus have to modify the integrand, to ensure a one-to-one correspondence as it is explained in the following.

The relation η(θ) is bijective in the interval [0, π]. However, as the function t → θ(t) is not bijective on [θ(t), θ(t + T )], the integral has to be split over domains to ensure a one-to-one correspondence.

Using eqs. (IV.13), and (IV.14) one obtains sin 2 φ as a function of θ and θ * :

sin 2 φ = cos 2 θ * -cos 2 θ (1 -cos 2 θ)(a 2 -cos 2 θ * )(r 2 -1) (IV.16)
We also need an expression for the angle θ 1/2 = θ(z = 0.5). Using eq. (IV.11) for z = 1/2, we obtain:

cos θ 1/2 = a[cos θ 0 (1 + C 1/2 ) + a(1 -C 1/2 )] cos θ 0 (1 -C 1/2 ) + a(1 + C 1/2 ) C 1/2 = exp z 0 (1 -z 0 ) -1 4 A 2(β + 1)β (IV.17)
To express dθ as function of θ and dt, one can replace z using eq. (IV.11) and sin φ using eq. (IV.16) in the expression of θ in eq. (IV.10). Then:

dθ = -S 1 2 sin 2 φ(1 -β cos(2θ)) 1 + 4B(θ)dt (IV.18)
where S is a sign function taking ±1 values such as to keep dt > 0 on the domains of integration according to θ variations. Therefore, for the η(t) variation, one obtains the relation:

dη = Sβ| sin φ| 1 -η 2 (a 2 -η 2 ) 1 + 4B(η)dt (IV.19)
Therefore, to keep t(η) bijective piece-wise for the integrals in eq. (IV.15), the domains of integration are chosen between the extrema of θ(t). Eq. (IV.10) shows that dθ changes sign when sin φ = 0, or when the trajectory crosses the plane z = 1/2. We perform an integration from the value η * = cos(θ * -), which means we have to start from z 0 = z -(θ * + ) for type (iii) trajectories in the upper half of the channel and z 0 = z -(θ * -) otherwise. We call B * (η) the function of eq. (IV.12) when choosing these initial conditions. We then derive for the (iii) and (iv) trajectories, explicit integral expressions for ∆x and ∆y provided the expressions:

K x = (r 2 + 1) a 2 -η * 2 r 2 -1 K y = cos(φ 0 ) | cos(φ 0 )| (1 -η * 2 )(r 2 + 1) √ r 2 -1 , (IV.20)
-Type (iii) trajectories -These trajectories cross the planes φ = 0 or φ = π. The integrals can be split into two domains [η * , -η * ] and [-η * , η * ], yielding two identical contributions, then:

∆x = 2K x -η * η * (Aη -B * (η))dη (a 2 -η 2 ) (η * 2 -η 2 )(1 + 4B * (η)) ∆y = 2K y -η * η * Adη (1 + 4B * (η))(a 2 -η 2 )(η * 2 -η 2 ) (IV.21)
-Type (iv) trajectories -the trajectories cross the planes z = 1/2 and φ = π. The integrals are split into 4 domains [η * , η 1/2 ], [η 1/2 , η * ] , [η * , η 1/2 ] and [η 1/2 , η * ], yielding four identical contributions, then:

∆x = 4K x η 1/2 η * (Aη -B * (η))dη (a 2 -η 2 ) (η * 2 -η 2 )(1 + 4B * (η)) ∆y = 4K y η 1/2 η * Adη (1 + 4B * (η))(a 2 -η 2 )(η * 2 -η 2 ) (IV.22)
Then dividing ∆y by ∆x, one obtains an analytical expression for tan ψ: [START_REF] Ford | Role of chemotaxis in the transport of bacteria through saturated porous media[END_REF] where y = cos(φ 0 )

tan ψ = y 1 -η * 2 a -η * 2 η f η * Adη √ (a 2 -η 2 )(η * 2 -η 2 )(1+4B * (η)) η f η * (Aη-B * (η))dη (a 2 -η 2 ) √ (1+4B * (η))(η * 2 -η 2 ) (IV.
| cos(φ 0 )| is a sign function, positive for an initial swimmer orientation towards increasing y (otherwise negative). The function B * (η) is defined by eq. (IV.12) with θ 0 = θ * -and z 0 = z + (θ * -) for type (iii) trajectories in the upper half of the channel and by z -(θ * -) otherwise. For type (iii) trajectories, η f = cos(θ 1/2 ), and for type (iv), η f = cos(θ 1/2 ).

The tangent of the angle ψ is parametrized by the dimensionless numbers of the problem, A, β and the initial trajectory conditions z 0 , θ 0 , φ 0 .

From the projection of the numerical trajectory of type (iv), into the shear plane x-y in Fig IV .21 the drift angle ψ is clearly identified. We define the µ, λ-coordinates as shown in Fig . IV.21, respectively along, and perpendicular, to the drift direction. We then obtain a remarkable property by projecting the trajectory in the plane λ-z resulting from a rotation around z by the angle ψ obtained from the analytical expression (eq. IV.23): each 3D B-J trajectory collapses onto a closed orbit in the z-λ plane with a shape depending on the initial conditions of the trajectory and on the parameters A and β. Similar results are observed for the experimental trajectories of type (iii) and (iv) shown together with corresponding numerical predictions on Figs. IV.22(b) and (c). For all these cases, the drift angle ψ and the closed orbits are clearly visible. There are two types of closed orbits. For the trajectory of type (iii) the closed orbit stays in a half plane and has an "egg" shape (see Fig IV.22(b)). For the trajectory of type (iv) the closed orbit crosses the mid-plane and has a "8" shape (see Fig IV .22(c)).

It is important to note, that the dependence of the drift angle ψ on initial conditions z 0 , θ 0 and φ 0 may have consequences for the macroscopic transport properties. For example, the calculation shows that the direction of the drift is explicitly dependent on the sign of the angle φ 0 , which might be selected during the phase of detachment from solid boundaries through non trivial interaction processes between bacteria and the wall [START_REF] Frymier | Three-dimensional tracking of motile bacteria near a solid planar surface[END_REF][START_REF] Schaar | Detention times of microswimmers close to surfaces: Influence of hydrodynamic interactions and noise[END_REF][START_REF] Bianchi | Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria[END_REF][START_REF] Mathijssen | Oscillatory surface rheotaxis of swimming E. coli bacteria[END_REF]. Any biased distribution of initial orientations stemming from the boundary conditions will contribute to a net bacterial drift which could add up to the rheotactic contribution due to chirality, as proposed by Marcos et al. [START_REF] Marcos | Bacterial rheotaxis[END_REF].

In section 3.2 I found that under flow, bacteria tends to escape parallel to the surface. However, in the range of shear rate that I explored, I could not find a characteristic inplane angle at which bacteria escape (see Fig. IV.15). Therefore, I can not conclude on a possible impact of the drift angle on the macroscopic transport along or transverse to the flow direction.

c) Failed attempt to find the Bretherton parameter β

By looking at the expression of the tan ψ in eq (IV.23), one notices that it depends on the dimensionless numbers of the problem, A, β and on the initial trajectory conditions z 0 , θ 0 , φ 0 . Experimentally, I measured the parameter A and for a given trajectory I can also determine the initial conditions. Then, one can consider tan ψ as a function of β parametrized by the initial cin red onditions and A: tan ψ = f ct(β; A, z 0 , θ 0 , ψ 0 ).

By inverting the relation, one can theoretically find the β parameter: β = f ct -1 (tan ψ). I have not found an analytical expression for f ct -1 (tan ψ) and I computed it numerically. Using the expression of tan ψ in equation eq (IV.23) I evaluate numerically tan ψ for different value of β, for a given set of initial conditions and parameter A. The numerical evaluation of tan ψ is done with the function trapz in matlab. In figure IV.23 I show an example of a tan ψ as function of β (blue dotted curve).

For cycloid-like trajectories of type (iii) and (iv), tracked during enough time to iden-tify an angle ψ, one can also measure the angle ψ and determine its tangent. Therefore once one has the tan ψ measured experimentally and the curve tan ψ = f ct(β), one can determine the β. Unfortunately, the curve tan ψ(β; A, z 0 , θ 0 , φ 0 ) is very sensitive to the initial conditions, and changing the value of θ 0 by ∆θ = 0.1rad leads to a very different curve, as we can see in Fig IV .23, where tan ψ(β; A, z 0 , θ 0 ± ∆θ, φ 0 ) is displayed in red dotted lines. By looking at the intersection of the red dotted lines and the full blue line, one obtains the uncertainty on the determination of β, which is in this example: β exp = 0.73 (0.1, 1). Therefore, using the analytical expression of tan ψ is unfortunately not an accurate method to determine the β parameter.

Influence of rotational noise

For all trajectories observed experimentally, the features revealed by the active 3D B-J model have been recovered semi-quantitatively. However, even for the smooth swimmer strain used here, a quantitative agreement between simulations and experiments is only local in time. Indeed, after a relatively short observation period experimental trajectories deviate systematically from the numerical predictions, even for bacterial trajectories that remain far from the channel walls. I attribute this deviation to the presence of rotational noise in the experiment. Such erratic changes in the bacteria orientation can be due to several reasons, such as a mechanical bending of the flagellar bundle under shear [START_REF] Tournus | Flexibility of bacterial flagella in external shear results in complex swimming trajectories[END_REF], remnant tumbling processes or thermal fluctuations. By the nature of the equations of motion (IV.9) and (IV. the trajectories.

To study the influence of noise on the orientation I add a noise term of amplitude D r (see eq. (III.1)) in the equation of the orientation (IV.10).

The evolution of the orientation p is then:

ṗ = (I -pp)(βE + Ω)p + 2 Pe p ∧ ξ ξ ξ (IV.24)
where ξ ξ ξ is a vectorial white noise with ξ i (t) = 0 and ξ i (t 1 )ξ j (t 2 ) = δ(t 1 -t 2 )δ ij , Pe = γM Dr and the Stratonovich interpretation must be used for the multiplicative noise.

To illustrate the influence of noise I display on Fig. IV.24 the θ-z and θ-φ phase-spaces (green lines), parametrized by A and β corresponding to typical experimental realizations. To the B-J trajectories, I add a rotational noise term of amplitude D r = 1/47s -1 (in black) [START_REF] Figueroa-Morales | 3D spatial exploration by E. coli echoes motor temporal variability[END_REF] corresponding to the rotational diffusion of an ellipsoid of size l = 8µm and width e = 1µm Figures IV. [START_REF] Lutterodt | The effect of surface characteristics on the transport of multiple Escherichia coli isolates in large scale columns of quartz sand[END_REF] 

Summary and discussion

In this section, I showed that the active B-J model is able to reproduce semi-quantitatively the observed experimental trajectories for a non tumbling E. coli bacteria swimming in a Poiseuille flow. In particular, I proved experimentally the existence of families of cycloidlike "swinging" and "shear tumbling" trajectories as predicted by Zöttl et al. [START_REF] Zöttl | Periodic and quasiperiodic motion of an elongated microswimmer in Poiseuille flow[END_REF]. Therefore, in spite of the geometrical complexity of E. coli bacteria, the core of the Bretherton model associating a swimming bacterium with an effective ellipsoid, is validated experimentally. I showed the propensity to swim in planes of nearly constant angle φ = φ c along the flow and to repeatedly switch between φ = φ c and its mirror planes φ = 2π -φ c , a robust feature recovered experimentally. I established that this feature comes from the long aspect ratio of the bacteria (Bretherton parameter β → 1). I showed that cycloidlike trajectories display a drift angle with the flow direction and I proved that after a rotation around the vertical axis, the oscillating B-J trajectories collapse onto closed orbits. Experimentally, this properties can be recovered, but within noise.

Crucial questions remain concerning the reorientation of the swimming angles due to rotational noise, which contributes to the hydrodynamic dispersion process (in the real x-y-z space). Here, I have shown that the randomization process observed in the phase space is consistent, at least in magnitude, with a rotational Brownian motion, for an effective ellipsoid. It is, however, possible that other sources of randomization come into play such as the bundle flexibility [START_REF] Potomkin | Flagella bending affects macroscopic properties of bacterial suspensions[END_REF] partial debundling due to shear, wiggling effects [START_REF] Hyon | The wiggling trajectories of bacteria[END_REF] or reorientation due to the chirality of the bacteria flagella [START_REF] Marcos | Bacterial rheotaxis[END_REF].

Chapter V Trajectory probability and Maximum likelihood method

Bacterial trajectories in a flow are affected by the activity that propels the bacterium and the flow contribution that advects the bacteria and rotates its orientation. In section 4.4 we have seen that these ingredients describe well the behavior of smooth swimmer bacteria at short times but fail to predict the long time behavior. Indeed, the orientation of bacteria also diffuses and the deterministic prediction coming from the active B-J model no longer holds at long times. As discussed before, the amplitude of this rotational diffusion is qualitatively compatible with a thermal diffusion (always present in an experiment). Of course, in the experimental context, other sources of noise can also come into play.

To cope with this inherent stochasticity, coming from the thermal diffusion and other possible biological noise, one should rely on a probabilistic approach to compute physical quantities, as for example the time of first passage at the surface starting in the bulk.

In the following, with the collaboration of Reinaldo Garcia Garcia, I will derive an analytical expression the probability to have a trajectory R(t), given a certain model. I then use this probability to find experimental parameters of the active Bretherton-Jeffery model, via a maximization method.

Expression of the trajectory probability

In this section, we derive the expression of the probability to have a given trajectory. The calculation is done without specifying the flow profile and can a priori be applied to any laminar flow. To begin, we recall the kinematic equations governing the behavior of a bacterium under flow with noise:

ṙ = V b p + v(r), ṗ = I -pp βE + Ω p + 2D r p ∧ ξ. (V.1)
In eq (V.1), V b is the swimming speed of the particle, assumed constant, v is the flow velocity, the matrix I ij = δ ij is the identity matrix, β is the Bretherton parameter, D r is the rotational diffusion coefficient and ξ is a white noise with ξ(t)ξ(t ) = Iδ(t -t ).

Matrices E and Ω are given as follow,

E ij = (∂ x i v j +∂ x j v i )/2 and Ω ij = (∂ x i v j -∂ x j v i )/2.
Finally, for the flow velocity v I consider three important cases: no flow, i.e. the free particle case, shear flow, and finally, Poiseuille flow.

Let us consider a trajectory R(t) with R(t) = (x(t), y(t), z(t)). What we want to do is to compute the probability P[{R(t)}] to have this trajectory R(t) given our B-J model with noise. To do so, we start from the Martin-Siggia-Rose-Janssen-De Dominics representation in terms of path integrals [START_REF] Martin | Statistical dynamics of classical systems[END_REF] and write the path probability of continuous trajectories. Our motivation is to build a method that will be use on experimental trajectories, which are a finite collections of positions. We then have to consider the discrete trajectory R α that is a collection of position R α = (x(t α ), y(t α ), z(t α )) over time and compute the probability P[{R α }].

After some some calculation (see details in appendix 3) we find an analytical expression for the probability to have a trajectory realization R α :

P[{R α }] = π D r V 3 b N N -1 α=0 1 ∆t 4 α δ U x,α exp - (U 2 z,α + U 2 y,α ) 4D r ∆t α (V.2)
with U i,α a vector depending on the position z α , the orientation p α and its time derivative ṗα of the bacterium trajectory at t = t α , as well as on the parameter of the problem D r and β (see details in the section appendix section 3).

In the eq. (V.2), the term δ U x,α ensures the normalization of the vector p. In the next calculation, we will drop this term, keeping in mind that |p| = 1 and will consider the probability P[{R α }] defined as below:

P[{R α }] = π D r V 3 b N N -1 α=0 1 ∆t 4 α exp - (U 2 z,α + U 2 y,α ) 4D r ∆t α (V.3) 2 

Maximum Likelihood method

In a homogeneous environment and in absence of flow, the evolution of the orientation is only due to the diffusion. Then, the quantification of the rotational diffusion is relatively easy, using standard methods as for example by computing the decorrelation time of the orientation vector p, which should decay exponentially. But in presence of a flow, the orientation changes, not only due to the diffusion, but also due to the velocity gradient. Furthermore, the noise on the orientation is multiplicative. It is thus trickier to evaluate and separate experimentally the contribution of the diffusion from the contribution of the flow, and standard methods cannot be used.

In this section, we develop a method to quantitatively determine the parameters of our model from experimental data.

The scheme we develop here is called Maximum-likelihood (M-L) method [START_REF] Rossi | Mathematical Statistics: An Introduction to Likelihood Based Inference[END_REF] and is based on the maximization of the probability to have a trajectory R(t) given a certain model. This model depends on parameters and the minimization with respect to these parameters gives the set of parameters that best fits the data. Here, the data are the experimental bacterial trajectories, the model, the active BJ model and the parameter to extract the rotational diffusion coefficient and the Bretherton parameter β.

To find an expression of the parameters, we first maximize the logarithm of the probability ln( P[{R α }]) with respect to the parameters. In other words we want to find the values of parameters that maximize the probability to have the trajectory realization R α . The logarithm being a strictly increasing function, the values of parameters that maximize ln( P[{R α }]) will also maximize P[{R α }].

Let us first consider the parameter D r , the derivative of ln( P[{R α }]) with respect to D r gives :

∂ ln( P[{R α }]) ∂D r = - N D r + 1 4∆tD 2 r N -1 α=0 (U 2 y,α + U 2 z,α ) (V.4)
The diffusion coefficient D M r that maximizes the logarithm satisfies the equation :

∂ ln( P[{R α }]) ∂D r     D M r = 0 (V.5)
Which yields the expression of D M r :

D M r = 1 4N ∆t N -1 α=0 (U 2 y,α + U 2 z,α ) (V.6)
In the case of a simple shear or a Poiseuille flow, time was adimensionalized using the shear rate and the expression of the probability is :

P[{R α }] = πP e V 3 b N N -1 α=0 1 ∆t 4 α exp - P e(U 2 z,α + U 2 y,α ) ∆t α (V.7)
with P e = γ Dr the peclet number with D r the rotational diffusion coefficient, and γ the shear rate (for the simple shear flow, it is the typical shear rate and for the Poiseuille flow, it is the maximal shear rate at the surface γM = 4V M /h, with h the channel height and V M the maximal velocity at the channel center).

Following the same procedure, we then maximize the logarithm of the probability with respect to P e, to find the expression of P e M :

P e M = 4N ∆t N -1 α=0 U 2 y,α + U 2 z,α -1 (V.8)
A similar calculation can be made with the parameter β, taking the derivative of the logarithm of P[{R α }] yields:

∂ ln( P[{R α }]) ∂β = N -1 α=0 ∂ ∂β U 2 y,α + U 2 z,α (V.9)
The coefficient β M that maximizes the logarithm satisfies the equation :

∂ ln( P[{R α }]) ∂β     β M = 0 (V.10) equivalently: N -1 α=0 ∂ ∂β U 2 y,α (β M ) + U 2 z,α (β M ) = 0 (V.11)
U y,α and U z,α depend linearly on β (see appendix 3), then the term:

∂ ∂β U 2 y,α (β M ) + U 2
z,α (β M ) also depends linearly on β and one can write:

∂ ∂β U 2 y,α (β M ) + U 2 z,α (β M ) = A α β + B α (V.12)
with

A α = ∂ 2 ∂β 2 U 2 y,α (β M ) + U 2 z,α (β M ) B α = ∂ ∂β     β=0 U 2 y,α (β M ) + U 2 z,α (β M ) (V.13)
The expression of β M is then:

β M = - N -1 α=0 B α N -1 α=0 A α (V.14)
In appendix 3 we provide the expressions of U i,α , A α and B α in 3 different cases: no flow, simple shear and Poiseuille flow.

To test the M-L method, I simulate bacterial trajectories in three simple cases: no flow, a simple shear flow and a Poiseuille flow. The goal is to extract the set of parameters from the simulated trajectories using the M-L method and compare it with the input parameters of the simulation. If the method works well the parameters estimated with the M-L method should be very close to the input parameters, while the deviation gives an estimation of the precision of the method.

No flow

First, we test the M-L method in the case where is no flow. To do so, I simulate the dynamics on the orientation, using the following equation :

ṗ = √ 2p ∧ ξ. (V.15)
where the time has been rescaled by the rotational diffusion coefficient D r . In this way, the decorrelation function of the orientation C(τ ) decays exponentially, as follows :

C(τ ) =< p(t).p(t + τ ) > t = e -2τ
(V.16) given by the method, to the one used to run the simulation (which is equal to 1 due to the rescaling). In Fig. V.2, I show the distribution of D M r found by the M-L method. As one can see, the distribution is well peaked around a mean value < D M r >= 1 ± 10 -3 . The M-L works well to find the rotational coefficient in absence of flow.

Simple shear flow

To simulate the dynamics on the orientation for a simple shear flow, I use eq. (V.1) in which I replace E and Ω by their expression for a simple shear flow, i.e for a flow : v = z γe x . In the following, the time is made dimensionless by the typical shear γ. The dynamics on the orientation then follows the equation :

ṗ = I -pp βE + Ω p + 2 P e p ∧ ξ (V.17)
To compare the output of the M-L method to the input of the simulation I perform two tests.

First I test the convergence of the method. To do so, I simulate a track of duration T max = 1000 with a time step dt = 10 -2 (dimensionless unit) for P e = 100 and β = 1. I then compute the M-L parameters over a portion of trajectory of length T. As T increases the estimation of the parameters gets better and better. In As one can see, we also have a good agreement between β M and β for large value of P e. For small values of P e, as the effect of the flow is less pronounced, the agreement is less good and in the limit P e → 0 it would not be possible to estimate the β.

Poiseuille flow

In a Poiseuille flow, the shear rate is not constant in space and varies linearly with the z coordinate. To simulate the dynamics, one therefore needs the position z and the orientation p of the swimmer. I use the eq (V.1), in which I replace E and Ω by their expression for a Poiseuille flow, i.e for a flow : v = 4V M (1 -z h ) z h e x . I then normalized the space by the height h of the channel, and the time by the maximal shear rate at the surface: γM = 4V M h The dynamics on the position z and orientation p then follows the equation : 

ż = Ap z + z(1 -z), ṗ = I -pp βE + Ω p + 2 P e p ∧ ξ (V.18)
For a simple shear flow, there are no boundaries and one can simulate a trajectory of arbitrary duration. However, for a Poiseuille flow there are boundaries (at z = 0 and z = 1) and the simulation ends when a bacterium hits a wall. Thus, I cannot have trajectories of arbitrary length or predict the trajectory length knowing the initial conditions. In the case of a Poiseuille flow, the simulated trajectories will then be shorter than the ones simulated in the simple shear case and consequently the estimation of the parameters will be less accurate. Then I run simulations for different couples (P e,β). For each couple of (P e,β) I simulate 100 trajectories of duration T = 4 with a time step dt = 10 -2 . I then take the average value of P e and β over the 100 trajectories. 

Experimental determination of the rotational diffusion coefficient

In the following, I apply the M-L method on my experimental data in two different cases : no flow and Poiseuille flow. Without flow, I compute the orientation diffusion coefficient using two methods: the M-L method and the decorrelation of the orientation vector p.

For the Poseuille flow, I determine the P e.

To compute D r with the M-L method, one needs the orientation vector p and its time derivative ṗ. These are derivatives of first and second order with respect to the position of the bacteria that I measure. Experimentally, derivatives amplify the noise and the M-L will be sensitive to the noise. To avoid this amplification, I smooth the position of the bacteria using a moving average filter over a time window t w before computing p and ṗ. This time window is used as an adjusting parameter to match the results of the two methods. Indeed by taking a time window too short, artificial noise will still be present and will be interpreted as a physical effective noise and D r will be overestimated. On the other hand, by taking a time window too large, one will smooth physical fluctuations and the corresponding D r will be underestimated.

Using a time window of t w = 1/8s I computed the rotational coefficient with the two methods for 25 bacterial trajectories of smooth swimmer squeezed in a drop between two glass plates with a height of confinement h = 250 µm. I consider only trajectories longer than 5s that are at least 10 µm away from the top and bottom wall. For each bacterium I compute the rotational diffusion coefficient with the two methods. I then draw two Then, I apply the M-L method to the data set of the chapter IV section 4 i.e for smooth swimmer under flow. For each flow I computed P e M for trajectories longer than 5s that are at least 10 µm away from the top and bottom wall, and 200 µm away from the lateral walls, for the time window, I use the same value found previously: t w = 1/8s. To compute P e M , I need the value of β. As we have seen, for these experimental conditions, one cannot estimate β. Therefore, I take a value β = 0.8 to compute the P e M . I then average the P e M over all the tracks at a given flow. In Fig V .8, I show the mean value < P e M >, estimated with the M-L method as function of the maximal shear rate γM . As expected, < P e M > depends linearly on γM and the slope gives a rotational diffusion coefficient D M r = 0.0625 ± 0.02. Without flow I previously found a mean value of: < D r >= 0.041 s -1 , in the chapter III section b), the diffusion coefficient that best fits the data is: D B = 0.0254s -1 . The value of the rotational diffusion coefficient found with the M-L method under flow is then consistent with these values.

Summary and conclusion

To quantify the rotational noise on my experimental data, and based on the active B-J model with a rotational noise, I derived an analytical expression of the probability for a bacterium to have a given trajectory. Then, with a maximum likelihood method, I built a tool to extract parameters from the experimental data, such as the rotational diffusion coefficient. I tested the method on numerical simulations, and showed that it is working for range of parameters compatible with my experimental conditions. However, a complete and rigorous test is still lacking and all I can say is that the precision on the determination of the Peclet number is of 5% in a case of a Poiseille flow. The preliminary tests also showed that in our experimental conditions we can not determine the Bretherton parameter β. One possible way to improve the estimation is to modify the path probability to account for the absorbing conditions at the boundary, which will be implemented in a future stage of this work. I applied the method on the experimental trajectories. Modulo and adjusting parameter, the method is able to find the rotational diffusion coefficient in a quiescent fluid. In this case, I found a mean diffusion coefficient < D r >= 0.04 s -1 compatible with a thermal rotational diffusion and close to the rotational diffusion coefficient D B = 0.025 s -1 , used to fit the behavioral variability model. I then tested the method on bacterial trajectories under flow, and I found a rotational coefficient of 0.06 s -1 , which is of the same order as the two coefficients found previously. Therefore, the M-L method can be applied on experimental data.

Chapter VI

Conclusions and perspectives

In this thesis, I used a 3D Lagrangian tracking technique, to study the swimming behavior of E. coli bacteria at the surface and in the bulk both in a quiescent fluid and under flow.

First, I improved the 3D tracking device to be able to follow bacteria over very long times. Thanks to this improvement, I was able to prove the existence of a large behavioral variability for the motility features. The measurements show that each individual bacterium undergoes phases of tumbling occurring at high frequency, followed by periods of long persistent runs. In consequence, the distribution of persistence time does not follow the standard picture of Berg et al. . To explain this behavior variability, I proposed a model based on the fluctuations of the CheY-P protein participating to the chemotactic internal machinery and at the origin of the motor rotational switching. These fluctuations display a memory time T Y = 20 s, determined experimentally. Over times larger than T Y , the orientational persistence time of a swimming bacterium will change. This model leads naturally to a log-normal distribution of persistence times, instead of an exponential one, as assumed in the standard run and tumble picture.

Importantly, this behavioral variability seems to play an important role on the swimming behavior of bacteria at surfaces. For wild type bacteria, I found a wide distribution of residence times. I showed that this distribution is also log-normal. The mean residence time τ 0 ≈ 20s is very large, much larger than the mean persistence time, obtained in free swimming conditions and reflecting the run ad tumble process. It is comparable to the Brownian decorrelation time and the memory time T Y . To clarify the influence of tumbling events on the residence time, I investigated the behavior of smooth swimmer bacteria at the surface and found that smooth swimmers stay much longer at the surface than wild type bacteria. Then, suppressing tumbling events leads to much larger residence times. Therefore tumbling events seem to be the dominant escape mechanism and not the thermal diffusion process. However, I found that the mean residence time at the surface is much larger that the orientation persistence time, which itself time reflects an even smaller mean run time. The tumbling events are then crucial to escape the surfaces but apparently seem inhibited or inefficient. Molaei et al. [START_REF] Molaei | Failed escape: Solid surfaces prevent tumbling of escherichia coli[END_REF] proposed an explanation for this failed tumbling event, that would lie in the presence of hydrodynamic and steric interactions between the flagella and the surface. The long residence times that I found, indicate that a single tumbling event is not enough to orient bacteria such as to make them leave the surface. The fact that the mean residence time τ 0 ≈ 20s and the memory time T Y ≈ 20s are very close, points towards the new scenario, consistent with our picture of the run and tumbling process. To escape, the bacteria would have to wait until the fluctuations of CeY-P drive them in a "tumbling mood". In this mood, the bacteria make series of tumbles in a row, which compensates the tumbling surface inhibition, and makes them leave the surface. The broad log-normal distribution of residence time could then find its origin in the log-normal distribution of the "run and tumble" process. Noteacibely my measurements of the escape pitch angle distribution seem to reveal a steric hindrance at the scale of a bacterium (including flagella).

To obtain a direct proof of the relation between surface detachment and tumbling events, I propose to apply the two colors technique, developed during this doctoral work, to observe the flagella bundle dynamics of the swimming bacteria near the surface. These experiments could be complemented by numerical simulations of swimming bacteria, which would include the behavioral variability model. The key point would be to take into account the interactions between the bacterium and the surface, hindering the active rotational diffusion process taking place during the tumbling events. This is ongoing work.

Thereafter, I studied the swimming dynamics of E. coli bacteria in a Poiseuille flow. To develop transport models, macroscopic absorption-desorption rules have to be determined to complement the bulk transport equation, as well as equations rendering the specific transport processes at a surface. First, with this aim in mind, I investigated the behavior of smooth swimmer bacteria at surfaces. Combining all terms due to hydrodynamic and steric interactions between the bacteria and the surface, I observed 4 different rheotactic regimes including a new one, at high shear rate, where bacteria oscillate due to the combination of shear and weathervane effect.

Then, by looking at the behavior of wild-type bacteria at surfaces, I found that the mean residence time decreases significantly when the flow is turned on (from ∼ 20s without flow to ∼ 8s under flow) and stays constant while increasing the shear rate (in the range of shear rates explored). These residence times are still large and are likely to play an important role in the hydrodynamic dispersion mechanism. In addition, I found that the fraction of time spent by the bacteria at surfaces is about 50% and does not depend on the shear rate. This value is close to the value reported by Creppy et al. [27], in a more complex geometry. Thus, any macroscopic model dealing with bacterial transport under flow will have to include non-trivial surface dynamics, stemming from activity, in the retention process.

I studied the exchange between the bulk and the surface via the distribution of incoming and escape angles. I found that the flow tends to align the bacteria with the surface shifting the incoming and escape pitch angles towards zero. For the in-plane angle, bacteria arrive at the surface with their head pointing upstream. This is likely due to a "weathervane effect" that becomes dominant near the surface.

Focussing on trajectories of smooth swimmers in the bulk, I found that the active Bretherton-Jeffery (B-J) model describes accurately the motion of a bacterium in a Poiseuille flow at short times. I recovered experimentally the "swinging" and "shear tumbling" trajectories predicted theoretically by Zöttl et al. . In addition, I found that the bacterial trajectories are 2 dimensional piece-wise and, for the "swinging" and "shear tumbling" trajectories, oscillate around a drift angle with respect to the flow direction. An analytical expression was derived for this drift angle. spend ≈ 50% of their time at the surface, where their mean velocity along the flow is almost zero, and ≈ 50% of their time in the bulk, where their mean velocity is ≈ V M . On average, it naturally yields a mean transport velocity U M = 1 2 V M . I also computed the second moment of the distribution σ 2 X as a function of time, for different mean flow velocities and σ 2 X is fitted using the following equation: A remarkable result is that D L depends linearly on P e 2 , which is the standard Taylor dispersion scaling, but with a much larger coefficient α = 7 10 -2 ± 10 -2 compared to α T = 4.8 10 -3 , the classical Taylor prediction. To account for interactions with the surfaces, one can compare with a standard result of chromatography in a Poiseuille flow, that introduces a retention ratio k = τs τm , where τ s (resp. τ m ) is the mean time spent by the particles at the surface (resp. in the bulk). In this picture, the Taylor coefficient is increased and one gets [START_REF] Desty | [END_REF]: 4 (VI. Note that, as anticipated before, the relevant sub-space of Γ is two-dimensional and we have: Once one has specified the flow profile, it is convenient to adimensionalize the equation A.23. In the case of a simple shear, the time is made dimensionless by the shear rate γ and for a Poiseuille flow the time is made dimensionless by the maximal shear rate at surface γM = 4v M /h, with v M the maximal fluid velocity, and distances by the channel height h. In the following, in order to lighten the expression we drop the α index of the notation of the vectors a and b. We then have:

α C = α T 1 + 9k + 51 2 k 2 (1 + k)
P[{R α }] = 1 V 3N b N -1 α=0 |b x,α | ∆t 3 α ∞ -∞
Without flow (we keep dimensional quantities) : 

U 2 y,α = ∆t 2 (a z b x -a x b z ) 2 (b 2 x + b 2 z ) U 2 z,α = ∆t 2 b 2 x + b 2

Fig. I. 1

 1 Fig. I.1 Concentration curves sample at different distances from the inlet of a column filled with pure quartz grains of size ranging from 180 to 500 µm for (a) concentration of NaCl fitted (solid line) by convection diffusion model and (b) E. coli . Figure from Lutterodt et al. [25].

  Fig. I.2 (a) Superimpositions of the velocity field obtained with passive tracers (in colors) and E. coli trajectories (black lines). White circles represent the pillars (average diameter d = 35 µm). (b) Colored lines representing trajectories of bacteria at the obstacle scale. Figure from Creppy et al. [27]

Fig. I. 3

 3 Fig. I.3 Normalized distribution of the distance ξ = ∆x-∆x σx along the flow direction travelled by motile (a) and non-motile (b) bacteria for different flow velocities. ∆x is the bacterium displacement along the flow direction, ∆x is the average displacement and σ x the standard deviation of the distribution. For non-motile bacteria, the normalized distance follows a gaussian distribution. For motile bacteria the distribution is not symmetric with respect to ξ = 0. The authors attributed the positive skewness to active retention and fast swimming.Figure from Creppy et al. [27]

  Figure from Creppy et al. [27]

Fig. I. 4

 4 Fig. I.4 Monte-Carlo simulation of Taylor dispersion [32]. Schematic diagram of the spreading of a band of tracer particles (black dots) in a Poiseuille flow between parallel plates separated by a distance h, at four successive instants of time (t=10, 100, 1000 and 10000 time steps). The scale in the x-direction is contracted by a factor 10 between successive graphs.

Fig. I. 5

 5 Fig. I.5 Experimental concentration curves of potassium permanganate flowing through a glass tube of internal diameter 0.5mm and 152cm long. The concentration has been measured at three different times I, II and III and shows the dispersion of the concentration profile. Figure from G. Taylor [30].

Fig. I. 6

 6 Fig. I.6 Dispersion coefficient K for different confinements versus the Péclet number P e (a) without hydrodynamic interactions between the swimmer and the walls (b) with hydrodynamic interactions. Dispersion along the channel is quantified for three confinements h compared to the swimmer length l (2h = 4l black circles, red squares 2h = 10l and blue triangles 2h = 16l). The black solid line represents Taylor's dispersion for a passive particle with the Brownian diffusivity of a non-motile organism eq. (I.1). The black dotted-dashed line represents Taylor's dispersion of a passive particle with Brownian diffusivity of a motile organism. Figure from Chilukuri et al. [34]

Fig. I. 7

 7 Fig. I.7 (a) Sketch of an E. coli (b) Picture of an E. coli , the body is in green and the flagella bundle in red (from the tracking in two colors).

2 )

 2 Fig. I.8 Flow field measured in the bacterial swimming plane of a swimming E. coli bacteria. The streamlines are indicted by black lines. Adapted from Drescher et al. [37].

Fig

  Fig. I.9 Tumble (twiddle) and run time distribution. (a) Tumble (line a) and run (line b) time distribution in linear scale. (b) Cumulative time distribution of (line a) tumble and (line b) run in a lin/log scale. The curve c is the cumulative time distribution of "rescaled" run. The "rescaled" run and the tumble time distributions decrease exponentially with a time scale equal to 0.1s for the tumbling time and 1s for the run time. Figure from Berg and Brown[START_REF] Berg | Chemotaxis in Escherichia coli analysed by threedimensional tracking[END_REF] 

  studied the swimming statistics of E. coli far from any surface in a homogeneous environment. Thanks to a ground-breaking 3D Lagrangian tracking technique developed in the mid 70's, they recorded dozens of trajectories of wild type E. coli for a total track length of 25min. To characterize the dynamics, they looked at the statistics and the distribution of run time and tumbling time. Their results show (see Fig I.9) that the run and the tumbling time distributions P (τ ) follow a poisson process P (τ ) = 1 τc exp(τ /τ c ) with a characteristic time scale of τ c = 1s for the run time and 0.1s for the tumbling time.

Fig

  Fig. I.10 (a) Sketch of the set-up developed by Korobkova et al. [41]. A bacterium is attached to a coverslip and its flagellum is free to rotate. The direction of rotation is obtained by monitoring the trajectory of a small bead fixed to the flagella. (b) Time sequence of CW and CCW events. (c) Distribution of time of CW (in grey) and CCW (in black) vents. The inset shows the CCW time distribution in a log/log scale, the grey line is a linear fit of the data. For time between 1s and 50s, the CCW time distribution is a power law of exponent: α = -1.2.

Fig. I. 11

 11 Fig. I.11 Super-imposed phase-contrast video microscopy showing E. coli cells (HCB437) swimming in circular trajectories near a glass surface [44].

Fig. I. 12

 12 Fig. I.12 Physical picture of a model bacterium (front and side views) swimming near a surface [44]. (a) The rotation of the body leads to a net viscous force on the body. (b) The rotation of the bundle leads to net viscous force on the flagella. The two forces being of opposite sign, the whole bacterium rotates CW around the normal vector to the surface.

p

  Fig. I.13 2D representation of a passive ellipsoid with an orientation p in a velocity profile V f (z) of constant shear rate γ = ∂V f ∂z . The ellipsoid rotates due to the velocity gradient.

Fig. I. 14

 14 Fig. I.14 Parametrization of an ellipsoid (length l, cross section e) swimming in a 2D Poiseuille flow at a velocity V b . The distance between the two surfaces is h.

  Fig I.16(a)). The separatrix is the dashed black line tangent to the lines of equation z/h = 0 and z/h = 1. Trajectories of type (iv) oscillating in the bulk without touching the surface and crossing the mid-plane (light blue line in Fig I.16(a)).

Fig. I. 15

 15 Fig. I.15 Typology of 2D active B-J trajectories of an ellipsoidal particle. Numerical trajectories of type (i) in red (A = 0.068, β = 0.95), of type (ii) in orange (A = 0.15, β = 0.95), of type (iii) in light blue (A = 0.072, β = 0.95) and of type (iv) in dark blue (A = 0.068, β = 0.80).

Fig. I. 17

 17 Fig. I.16 Phase portraits for A = 0.15 (a) and A = 0.02 (b), β = 0.95. (a) 3 regions separated by black dashed lines are highlighted. The red region corresponds to type (i) trajectories, the orange to type (ii) and the light blue to the type (iv). (b) The red region corresponds to type (i) trajectories, the dark blue to type (iii) and the light blue to the type (iv). Corresponding trajectories in real space (x, z) are shown in Fig. I.15.

Fig. II. 1

 1 Fig. II.1 Width of the central bright spot a 3 as function of the distance to the focal plane ∆Z, the dashed black lines delineate the 3 regions. For each region an image in fluorescence of the bacterium is shown. In image 1 the focal plane is under the bacterium (region 1). In image 2 the bacterium is in focus and we observe a maximum of intensity (region 2). In image 3 the focal plane is above the bacterium and we can see a ring around the central bright spot (region 3).

  x s ( t ) , y s ( t ) , z s ( t ) ) I m a g e ( t )Objective lens

Fig. II. 2

 2 Fig. II.2 Sketch of the tracking device. The bacterial sample is put on top of the mechanical stage. From the image the position of the bacterium is computed and sent to the stage which moved to reach it. The trigger provides the synchronization of the image acquisition and the stage displacement. During the process the images and the stage positions are recorded.

Fig

  Fig. II.3 (a) Sketch of the beam splitter. (b) Spectra of the different fluorescent proteins. In blue the GFP and in red the Alexa 647. The excitation spectra are represented in dashed lines and the emission spectra in full lines. The wavelength of the 2 diodes used to excite the sample are represented in vertical blue line (GFP) and vertical red line (Alexa 647), the wavelength (640nm) at which the spectrum is divided by the separatrix is indicated with a vertical black line.

Fig. II. 4

 4 Fig. II.4 Snapshot of a smooth swimmer bacterium with labeled flagella (strainAD63). The body is green and the flagella red.

Fig. II. 5

 5 Fig. II.5 Time lapse of bacterium (strain AD62) during a tumbling event. Each image is overlaid over 5 snapshots, the total duration is 0.5 second. The elapsed time between 2 snapshots is ∆T = 0.625s except from image 5 to image 6 where it is 2∆T

Fig. II. 6 X

 6 Fig. II.6 X coordinate of tracked bacteria as a function of time. The bacteria were tracked in a microchannel under flow at a flow rate Q = 1.2 nL s -1 . Each line represents the X coordinate of a bacterium, X being the flow direction.

Fig. II. 7

 7 Fig. II.7 Example of two bacteria 3D trajectories, the color codes the Y position. (a) Trajectory of a wild type bacterium (RP437). (b) Trajectory of a smooth swimmer bacterium (CR20).

  Fig. II.7 presents two trajectories of different bacterial strains. As one can see, the two trajectories look qualitatively different. The trajectory in Fig. II.7 (a) is from a wild type strain (RP 437) and displays an erratic motion with abrupt changes in direction due to the tumbling event. The trajectory in Fig. II.7 (b) is from a smooth swimmer strain (CR20). In the bulk, those kind of swimmers swim almost in straight line and diffuse slowly with the rotational thermal diffusion. At surfaces, bacteria behave differently than in the bulk and Fig. II.8 shows an example of a bacterial trajectory at the surface, viewed from above. As one can see the trajectory looks qualitatively different than trajectories in the bulk, and, in absence of flow, bacteria at surface perform a circular motion.

Fig. II. 8

 8 Fig. II.8 Example of a trajectory of a wild type bacterium (RP 437) at the surface view from above. The color codes the Y position.

Fig. II. 9

 9 Fig. II.9 Example of 3D trajectories of two different strains of bacteria under flow at Q = 1.0nL/s. The color codes the Y position .(a) Trajectory of a wild type strain (RP437). (b) Trajectory of a smooth swimmer strain (CR20).

FigFig. III. 1

 1 Fig. III.1 shows one example of a 3D trajectory and its corresponding velocity. The velocity curves for each track are typically irregular like the one shown. For a single track

Fig. III. 2

 2 Fig. III.2 Orientation and persistence time. (a) Sketch of the angles used for the orientational correlation function: C(∆t) =< p(t).p(t + ∆t) >=< cos(θ(∆t)) >, with a running average on time t. (b) Correlation function C(∆t) obtained for 30 tracks of different RP437 bacteria. The dotted line corresponds to τ p = 1.5s as expected from a standard Berg Poisson model [38]. The inset shows the correlation functions as a function of ∆t rescaled by τ p . The dashed line is exp(-x).

  Fig. III.2(b), we present orientation correlation functions C(∆t) as a function of the time lag ∆t for different trajectories of a wild type strain. For each trajectory, the orientation correlation function is fitted by an exponential decay: exp(-∆t/τ p ) to determine the persistence times τ p . In the inset of Fig. III.2(b), the correlation functions are rescaled by τ p . What we can see is that due to the tumbling events the orientation of the bacterium decreases exponentially with the time lag. This is coherent with a run time distributed as a poisson distribution, as it have been observed by Berg et al. [38]. However Berg et al. report a typical run time of 1s (the associated correlation function is represented by the black dotted line on Fig. III.3(b)

Fig. III. 3

 3 Fig. III.3 Persistence times for individual bacteria of strains wild type RP437 and AB1157, and smooth swimmer CR20 in different media (MB with L-serine, MB and M9G). The black line of equation τ p = 40s is the cutoff from Brownian diffusion corresponding to a bacterium of a length of 10 µm. The dotted line corresponds to the persistence time of 1.5 s.

Fig. III. 4 Fig

 4 Fig. III.4 (a) Sketch of a bacterium moving between two glass plates. The pieces of track in the bulk used to compute τ p are enclosed by black dashed lines. (b) persistence time τ p computed for different pieces of the same trajectories. Bacterium id is the label of the bacteria. The color indicates the starting time of measurement at which τ p has been computed.

  Fig III.5(a) we display the persistence time, computed along two tracks (blue and red tracks). Gaps larger than 5s between consecutive points correspond to lapses for which the bacteria were swimming close to surfaces. As already noted on Fig III.4, for a single track, τ p varies significantly over time. Indeed by inspection of Fig III.5(a) for the blue longer trajectory interrogated at a time of 5 minutes, the persistence time is close to 0.1s, in contrast with a persistence time close to 5 s around time ∼ 17 minutes.

  Fig. III.5(b), we display the mean of these correlation times as a function of the time interval used in the correlation function determination. Error bars are the standard deviations. These correlation times grow with the time interval, until saturation around T M = 20.8 ± 2s.

Fig. III. 6

 6 Fig. III.6 Sketch of the double well potential of the two-state model. The solid line indicate the potential at time t, the dashed line at a time t'.

  Fig. III.7 displays an illustration of the behavioral variability mechanism. In Fig. III.7(a), the concentration δX is sketched as function of time. Over intervals of duration T Y , the switching time τ s is almost constant. For instance, in III.7(a) I, the low concentration δX leads to a large value of switching time τ s (t 1 ) i.e to long run times τ CCW .

  Fig. III.8). With the behavioral variability model we simulate a long trajectory using eqs. (III.6) and (III.7). Following the same procedure as for experimental data, this trajectory is cut in intervals of 20s on which we compute τ p . We then draw the distribution of ln(τ p ) (black dashed curve in Fig. III.8). To compare the behavioral variability to the classical model of Berg, we also simulate a long trajectory with a run time distributed as a Poisson distribution (i.e for ∆ n = 0) and we perform a similar analysis.

Fig. III. 7

 7 Fig. III.7 Qualitative illustration of the behavioral variability model. Sketch governing the run and tumble process and the corresponding CheY-P concentrations. The switching time τ s represents the local average of the stochastic run times τ CCW ; τ s stays almost constant during the memory time T Y and evolves as a function of δX. (b) 2D projection of the simulated 3D trajectory where the δX fluctuations drive the tumbling process. Insets correspond to different levels of δX.

Fig. III. 8

 8 Fig. III.8 Probability distribution of the logarithm of persistence time τ p from experiment (in red), simulation using the behavioral variability model (in black) and simulation using a Poisson model (in blue). For the behavioral variability model, the parameters of the simulation are: ln(τ 0 ) = 1.53, ∆ n = 1.62, Dr = 3.86 and D B = 0.0254 s -1 . For the Poisson model, the parameters of the simulation are: ln(τ 0 ) = 1.18, ∆ n = 0, Dr = 1.61 and D B = 0.0262 s -1

Fig. III. 9

 9 Fig. III.9 Example of a wild type bacterial trajectory (RP 437). Parts of the trajectory below 10 µm from the surface are represented in red. (a) Z component as function of time. (b) 3D view of the trajectory, the color code indicates the Y component. (c) Zoom of the Z component as function of time, Z fluctuates and is not constant near the surface. (d) Projection in the x-y plane of a part of the trajectory below 10 µm. The color code indicates the in-plane velocity: V xy = (V 2x + V 2 y ), values.

Fig

  Fig. III.10 Sketch of three different trajectories approaching the surface. (a) h out is smaller than the amplitude of fluctuation. (b) h out is larger than the fluctuation.A small part of the trajectory is in the surface region but does not cross h in . (c) A part of the trajectory is in the surface region and has crossed h in , the green part of trajectory is considered to be at the surface.

Fig. III. 12

 12 Fig. III.12 Mean residence time τ c as function of h out for different value of h in . The vertical dashed lines indicate the cross over value h cross for each value of h in . The other dashed lines are linear fits over the second regime of the curves used to find τ 0 = 18 ± 1s.

Fig. III. 13

 13 Fig. III.13 Normalized residence time distribution for different values of h out . (a) Distribution in linear scale. (b) Distribution in log/lin scale, the black line represents an exponential with characteristic time scale τ exp = 3 2 τ c . (c) Distribution in log/log scale, the black line indicates the slope -3/2.

Fig

  

Fig

  Fig. III.14 Distribution of ln(τ /τ c ). (a) Distribution for different values of h out .Experimental data are in full color line, the black dashed line is the gaussian fit of (c). (b) Experimental distribution for h out = 8 µm in red, with the fitting function: F (ln(τ /τ p )) in blue. The fitting parameter is a=0.66 and the goodness of the fit is 0.89 (adjust r-square). (c) Experimental distribution for h out = 8 µm in red, with the fitting function G(ln(τ /τ p )) in black. The fitting parameters are: µ = -0.72 and σ = 1.17, the goodness of the fit is 0.93 (adjust r-square).

Fig. III. 15

 15 Fig. III.15 Sketch of the angle parametrization. (a) The pitch angle θ is defined as the angle between the bacterium orientation p and the surface. The vertical coordinate of the bacterium velocity is: V z = V b sin θ and the angle θ is then: θ = arcsin(V z /V b ), θ ∈ [-π

Fig. III. 16

 16 Fig. III.16 Distribution of incoming angle θ in (a) and escape angle θ out (b) at different distance h out from the surface. The black dashed line indicates the theoretical probability density P cross = ± sin 2θ to cross a plan with an angle θ given an isotropic distribution of θ.

Fig

  Fig. III.17 Experimental "rectified" distribution P of θ in (a) and θ out (b) for different values of h out . The isotropic distribution is indicated by an horizontal black dashed line.

Fig. III. 18

 18 Fig. III.18 Integrated square difference E in/out as function of the distance h out . The dashed blue line indicates the average value of E in .

Fig. III. 19 Fig. III. 20

 1920 Fig. III.19 Histogram of interrupted residence time for wild type bacteria in red and smooth swimmers in blue. The residence times have been determined using h in = 3 µm and h out = 8 µm.

Fig

  Fig. IV.1 (a) Experimental set-up: a syringe pump injects a bacterial suspension at constant flow rate into a channel of rectangular cross section (height h=100 µm and width W=600 µm). (b) Flow velocity profiles, v x (z), obtained by tracking tracer latex particles of diameter d= 1 µm (x is the flow direction). From blue to orange the input flow rates are Q 0 = 1, 2, 3, 4 nL/s, corresponding to maximal velocities: V M = (28.7, 58.0, 86.4, 117) µm s -1 . (c) Flow rates measured experimentally from the velocity profile as function of the input flow rate. The dashed line represents the line of equation: y=x.

Fig. IV. 2

 2 Fig. IV.2 Velocity of a smooth swimmer strain CR20 at Q = 1.0nL/s. (a) The light blue line is the norm of the instantaneous lagrangian bacterium velocity V (t) as function of time. The orange line is the norm of the bacterium velocity V b (t) once the local flow v(z) is substracted. The red line is the swimming velocity V b . (b) Corresponding Z-position of the bacterium, recorded by the tracking, as function of time. (c) Distribution of the instantaneous bacterium velocity V b (t), the experimental data are in blue and the gaussian fit in red.

Fig. IV. 3

 3 Fig. IV.3 Swimming velocity < V b > averaged over all bacterial at a fixed V M . Vertical bars are standard deviations of the different measurements.

Fig. IV. 4

 4 Fig. IV.4 Characterization of the four surface rheotaxis regimes identified at the surface. (a) Various types of surface trajectories obtained experimentally from 3D tracking at shear rates γM = 1 -50s -1 (colors), shown in the lab frame and displayed in the figure according to increasing shear. Circles indicate the initial positions, the blue arrow indicates the flow direction. The transverse velocity of the trajectory with a star is presented as an example in Fig IV.9. (b)-(e) Simulated trajectories in the laboratory reference frame with increasing shear rate: (b) (I, γ = 1s -1 ) Circular swimming with a bias to the right. (c) (II, γ = 5s -1 ) Upstream motion. (d) (III, γ = 25s -1 ) Oscillatory motion, increasingly more to the right. (e) (IV, γ = 60s -1 ) Coexistence between swimming to the right and to the left, with dynamical switching between them. Black circles indicate the initial swimmer positions.
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 2222 Fig. IV.5 Sketch of the bacterium and parametrization of the angles. The red arrow represents the orientation vector p and we have: p = (-cos θ cos ψ, cos θ sin ψ, sin θ). With ψ ∈ [-π π] the in-plane angle and θ ∈ [-π 2

Fig. IV. 6

 6 Fig. IV.6 Summary of the reorientation mechanisms included in the model in absence of random noise. Wall effects: (a) Steric and hydrodynamic interactions align swimmers with the surface. (b) Clockwise torque due to the counterrotation of the cell body and of the flagella. Flow effects: (c) Left-handed helical flagellar bundle in shear reorients swimmers to the right. (d) Jeffery orbits undergone by elongated bacteria under shear. Flow-wall coupling: (e) Weathervane effect reorients swimmers to the upstream direction.

Fig. IV. 7

 7 Fig. IV.7 Sketch of the oscillatory rheotaxis mechanism. Here the bacterium is initially oriented towards the right and slightly downstream, and red arrows show the projection of the cell onto the surface. Then, the oscillations can be envisaged as a 4-step process: (a) The vorticity pushes the body down onto the surface and lifts the flagella up. (b) Then the flow advects the flagella faster than the body, rotating the bacterium about the y axis to the upstream direction. The weathervane effect enhances this rotation as the cell pivots about the anchoring point. (c) Now the vorticity pushes the flagella onto the wall and lifts the body up. (d) Subsequently the body is advected faster, rotating the swimmer back to the downstream direction. This cycle is repeated, leading to oscillatory trajectories. Note that this is a simplified picture and all surface and flow effects (Fig. IV.6) contribute to the dynamics at any one time.

Fig. IV. 8

 8 Fig. IV.8 Time lapse of an oscillating bacterium with fluorescently stained flagella, using 10 fps snapshots overlaid, taken in the Lagrangian reference frame of the average downstream bacterial velocity.

y

  Fig. IV.9 Oscillation frequency of bacterial trajectories under shear. (a) Example of transverse velocity as function of time (The example corresponds to the trajectory with the star in Fig IV.4). (b) Angle ψ as function of time obtained with the stained flagella experiment. (c) Oscillation frequency as function ofthe applied shear rate. The green symbols are for the tracking experiment, the pink stars is from the stained flagella experiment and blue triangles from the simulation. The green and yellow dashed lines are theoretical estimation for the circling frequency (green) and oscillation frequency (yellow). More details about the theoretical estimations can be found in[START_REF] Mathijssen | Oscillatory surface rheotaxis of swimming E. coli bacteria[END_REF].

  Fig. IV.10(a) I display the distribution of residence times normalized by the mean residence time τ c =< τ > at different shear rate γM . Due to a lack of statistics, the distributions under shear are noisy (for a given flow between 20 and 30 trajectories are recorded). Therefore I can not say if they are log-normal or simply exponentially distributed. What I can say is that they seem to collapse on the distributions for zero flow, meaning that one can observe long residence times. In Fig. IV.10(b), the mean residence time τ c as function of the shear rate γM is shown. When the flow is turned on, the residence time decreases abruptly from τ c ∼ 20s to τ c ∼ 6s with flow. If the flow rate is further increased, we do not observe any influence of the flow rate and the average residence time is of 8 second; The vertical bars on Fig. IV.10(a) show the standard deviation of the distribution. Without flow, this standard deviation is important and agrees with what is expected from a log-normal distribution.

  Fig. IV.11 shows the mean fraction of time < T s /T tot > as function of the shear rate. Surprisingly, This ratio does not depend on the shear rate and stays constant around a value of 50%.

Fig. IV. 10

 10 Fig. IV.10 (a) Normalized distribution of residence time τ /τ c at different shear rates. (b) Mean residence time τ c as function of the shear rate. The vertical bars show the standard deviation of the residence time distribution.

Fig. IV. 11

 11 Fig. IV.11 Mean fraction of time < T s /T tot > spent by bacteria at the surface as function of the shear rate. The vertical bars show the standard.

Fig. IV. 12

 12 Fig. IV.12 Distribution of the incoming (a) and escape (b) pitch angle θ for different values of shear rates.

Fig. IV. 13 Fig. IV. 14

 1314 Fig. IV.13 Rescaled distribution P of the incoming (a) and escape (b) pitch angle θ for different values of shear rates.

PDFFig. IV. 15

 15 Fig. IV.15 Distribution of ψ in and ψ out for different values of shear rate.

  Fig. IV.16 Typology of different 3D bacterial trajectories in Poiseuille flow projected in the shear plane z-x for different values of the parameters A = V b /4V M and β (a) Experimental trajectories: for each type of trajectories (different colors) two experimental trajectories are shown: from left to right: A = 0.067, 0.062 (orange), A = 0.15, 0.057 (red), A = 0.072, 0.053 (light blue) and A = 0.031, 0,020 (dark blue). (b) Numerical trajectories: from left to right: A = 0.068, 0.15, 0.072, 0.031 and β = 0.95, 0.95, 0.95, 0.80. 4 types of trajectories are observed: (i) beginning and ending at the same wall (red), (ii) starting and ending at a different wall (orange), (iii) performing cycloid motion in a half channel (dark blue) and (iv) in the whole channel (light blue). For the numerical trajectories the values of β have been chosen such as to reproduce qualitatively the experimental trajectories.

Fig. IV. 17

 17 Fig. IV.17 Parametrization of the active effective ellipsoid modeling the bacterium. The orientation vector is p = (cos θ, sin θ cos φ, sin θ sin φ). The angle θ is the angle of the ellipsoid with respect to the flow direction (here along x) and varies between θ ∈ [0 π]. The angle φ is the angle in the plane perpendicular to the flow direction (i.e the x-y plane) and varies between φ ∈ [0 2π].

  Fig IV.19 and Fig IV.[START_REF] Donnelly | In vitro fertilization and pregnancy rates: the influence of sperm motility and morphology on IVF outcome[END_REF]. In 3D it is then more difficult to interpret the region of the phase portrait in terms of types of trajectories.

Fig

  Fig. IV.18 3D phase portrait and its projection of a type (iv) trajectory for A = 0.02 and β = 0.95. The phase lines in blue are obtained using eqs. IV.11 and IV.13. The red line represents a trajectory in this 3D space. (a) Phase portrait in the z -θ space. (b) Phase portrait in the φ -θ space. (c) Phase portrait in the 3D z -θ -φ space.

Fig

  Fig. IV.19 3D phase portrait and its projection of a type (iii) trajectory for A = 0.02 and β = 0.95. The phase lines in blue are obtained using eqs. IV.11 and IV.13. The red line represents a trajectories in this 3D space. (a) Phase portrait in the z -θ space. (b) Phase portrait in the φ -θ space. (c) Phase portrait in the 3D z -θ -φ space.

  Fig. IV.[START_REF] Takatori | Swim pressure: stress generation in active matter[END_REF], where all trajectory types observed are displayed. The detailed properties of these trajectories are discussed below.

  Fig. IV.20 Phase portraits for A = 0.059 and β = 0.90. The phase lines in green are obtained using eqs. IV.11 and IV.13. The blue line is the experimental data, the red line is a simulation done with the experimental initial conditions.

  IV.21). These fixed planes hosting the bacterial motion, can be seen as a consequence of the absence of shear in the plane perpendicular to the flow direction x. Fig. IV.21 displays a numerical trajectory of type (iv) performing swinging motion, as well as its projection onto various planes. The planes of constant angle φ are clearly illustrated by the (y-z) projection (in green).

  Figure IV.22 shows different experimental and numerical trajectories (type (ii), (iii) and (iv)) projected into the same planes as on Fig. IV.21. From the projections on (y -z) (first column), one can clearly observe a tendency for a bacterium to swim in planes of nearly constant angle φ and also the presence of subsequent flipping between mirror planes. Hence this good agreement between the experimental outcome and the simulations indicates that smooth swimmers are well modeled by a β value close to 1, i.e. well modeled by elongated ellipsoid.

  Fig. IV.21 Example of a type (iv) swinging trajectory (see Fig. IV.16) computed using A = 0.04 and β = 0.95.In the y-z plane (green), the bacterium swims with two nearly constant angles φ c or 2π -φ c . In the x-y plane (blue), one observes the cycloid-like trajectory with a drift angle ψ. By rotating the trajectory by the drift angle ψ (computed using the analytical expression given by eq. IV.23) around the z-axis, the trajectory collapses in the λ-z plane into a closed orbit (in pink).

  Fig. IV.22 Projection in the y-z, x-y and z-λ planes of experimental (blue lines) and numerical trajectories (red lines). The numerical trajectories are computed using the parameter A, determined experimentally, and using as initial conditions the positions and angles of the bacterium in the middle of the track considered. The only fitting parameter is β. For the projection in the λ-z plane, I use the value of ψ computed using the analytical expression given by eq. IV.23. For each example, the values of β and A are provided in brackets. (a) type (i) trajectory [β = 0.90 and A = 0.059]. (b) cycloid type (iii) trajectory (β = 0.86 and A = 0.019). (c) type (iv) trajectory [β = 0.95 and A = 0.045].

Fig. IV. 23

 23 Fig. IV.23 Experimental determination of β with the tan ψ, using the trajectory of the Fig IV.22(b). The expression of tan ψ as function of β is indicated by the full blue line with uncertainties in red dotted lines. The experimental value of tan ψ is indicated by an horizontal full line with bounds corresponding to uncertainties in the initial conditions labeled in red dashed lines. The intersection of the horizontal blue curve and the dotted blue curve gives a value of β exp = 0.73. The intersections of the red dotted lines and the blue line give the uncertainty on the β determination.

Fig IV. 23

 23 Fig IV.[START_REF] Ford | Role of chemotaxis in the transport of bacteria through saturated porous media[END_REF] shows an example of such determination. The expression of tan ψ as function of β at a given A and initial conditions is plotted in blue dotted line. The full blue line indicates the value of tan ψ measured experimentally (the dotted red lines indicates uncertainties on this determination). The intersection of these two curves then gives in principle the experimental value β exp for a given trajectory.

Fig. IV. 24

 24 Fig. IV.24 Phase portraits. The phase lines in green are obtained using eqs. IV.11 and IV.13, blue line: experimental data, red and black lines are resp. numerical simulations without and with rotational noise projected into the phase space. (a) and (b) phase portraits (A = 0.0625 and β = 0.97). The trajectories in black show two different realizations of a numerical trajectory with noise (D r = 1/47s -1 ) simulated using the same initial conditions and parameters as for the red trajectory without noise. In panel (a) simulations with and without noise remain very close, whereas in panel (b) an important difference is observed.

  (b) and (c) show the same phase portrait including a chosen numerical trajectory without noise (in red). Two different realizations with noise are shown in figs. IV.24(b) and (c) respectively, demonstrating that the presence of Brownian rotational noise can lead to very different trajectories for identical initial conditions.

Fig. V. 1 Fig. V. 2

 12 Fig. V.1 Correlation of the orientation C(τ ) computed with simulated orientation dynamics (in blue) in (a) lin/lin and (b) log/log scale. C(τ ) has been averaged over 100 orientation dynamics of duration T=100. Red curve is the line of expression: C(τ ) = e -2τ .

Fig. V. 4

 4 Fig. V.3 Convergence test for a simple shear case with P e = 100 and β = 1. (a) Ratio between P e M and P e, as function of the interval length T on which P e M is computed. (b) Ratio between β M and β, as function of the track interval length T on which P e M is computed. In both cases the parameter estimated with the M-L method converge toward the input value.

Fig. V. 5

 5 Fig. V.5 Convergence test for the Poiseuille flow case with P e = 100 and β = 1. (a) Ratio between P e M and P e, as function of the interval length T on which P e M is computed. (b) Ratio between β M and β, as function of the interval length T on which P e M is computed. In both cases the parameter estimated with the M-L method converges toward the input value.

For

  the Poiseuille flow, I perform the same tests as for the simple shear. I simulate a track of duration T max = 150 with a time step dt = 10 -2 (dimensionless unit) for P e = 100 and β = 1. I then compute the M-L parameters over a portion of trajectory of length T. Fig. V.3 displays the ratios P e M (T )/P e and β M (T )/β, with the P e M (T ) and β M (T ) computed on an interval of length T. As T increases, the M-L parameters well converge toward the input value of the simulation.

Fig V. 6 Fig. V. 6

 66 Fig. V.6 Comparison between the P e M and β M estimated with the M-L and the input parameter of the simulation P e and β for the Poiseuille flow case. Each point is an average over 100 trajectories, with corresponding standard deviation. (a) Ratio between P e M and P e, as function of P e for different values of β. (b) Ratio between β M and β, as function of β for different values of P e.

Fig. V. 7

 7 Fig. V.7 Distribution of the experimental rotational coefficient D r of smooth swimmer bacteria (CR20) in quiescent fluid. The green line is the distribution computed using the M-L method and the red one the distribution computed using the decorrelation of the orientation vector p. The red vertical dashed line indicates the cutoff from Brownian diffusion.

Fig. V. 8

 8 Fig. V.8 Estimation of the experimental P e. The red square are the mean P e M with corresponding error bars estimated with the M-L method as function of the maximal shear rate γM . The dashed line is a linear fit of equation: y( γM ) = γM /D M r with D M r =0.0625 s -1

Fig

  Fig. VI.3 (a) Normalized quadratic displacement σ 2 X /h 2 as a function of the normalized time ∆T /t c . (b) Dispersion coefficient D L as a function of the mean flow velocity V .

σ 2 X

 2 (∆T ) = 2(U 0 t c ) 2 (∆T /t c -(1 -exp(-∆T /t c ))) (VI.1) The fit yields a typical velocity U 0 and a characteristic time t c . Fig. VI.3(a) shows the normalized quadratic displacement σ 2 X /h 2 as a function of the normalized time ∆T /t c , where h is the channel height. Using the fitting parameters, the dispersion coefficient D L = U 2 0 t c is computed. To do so, I only consider flows for which the quadratic displacement is computed over times larger than ∆T 2tc . In Fig. VI.3(b), I show the dispersion coefficient as a function of the mean flow velocity. At small flow velocities, D L converges towards the diffusion coefficient of bacteria without flow D 0 = 310 µm 2 /s. To compare directly to the standard Taylor dispersion model, the normalized diffusion coefficient DL = D L -D 0 D 0 is displayed as a function of the square of the Péclet number P e = V h D 0 in Fig. VI.4.

|

  2)where B α ij (p α ) = 2D r ∆t α A ij (p α ). We then take advantage of the delta functions and defineb α (V b ) = V -1 b [(∆R α /∆t α ) -v α ],to rewrite (A.15) as followsP[{R α }] α δ (3) p α -b α (V b ) (A.16) × d 3 pα exp ı ∆p α -h α (D r , β)∆t α exp ı ∆b α (V b ) -f α (D r , β, V b )∆t α T pα -1 2 pT α B α (b α (V b ))p α , (A.17)wheref α (D r , β, V b ) = h(R α , b α (V b ); D r , β). Now, the integral over {p α } is delicate and needs to be done with extreme care. The issue now is that det(B α ) = 0 ∀α. A Gaussian integration is still feasible but, as we will see below, it has to be performed over a twodimensional subspace of the three-dimensional space. Let us make the change of variables p = Rω introduce the short-hand notationV α = R T [∆b α (V b ) -f α (D r , β, V b )∆t α ], where the matrix R is given as det(R(b α ))| ∆t 3 α d 3 ω α exp ıV T α ω α -1 2 ω T α Γ α (b α )ω α , (A.19)where we have that det(R(b α )) = -b x,α , and the matrix Γ α has the form:

.

  dω x,α exp ıV x,α ω x,α (A.21) y,α exp ıV y,α ω y,α -D r ∆t α (b 2 x,α + b 2 z,α )ω 2 z,α exp ıV z,α ω z,α -D r ∆t α b 2 x,α exp -(U 2 z,α + U 2 y,α ) 4D r ∆t α (A.23)The expression A.23 is general and can be applied for different flow profile through the matrix E and Ω in the expression:V α = ∆t α R T [a α (V b )-I-b α b α ) βE+Ω b α -2D r b α ],where a α = ∆p α /∆t α .

y a y (b 2 x + b 2 z 2 ( 2 U 2 z,α = ∆t 2 b 2 x + b 2 y 2 (A. 25 ) 2 x 2 y 2 (

 2222222225222 ) -b y (a x b x + a z b z ) z b x -2a x b z -b 2 x (β -1) + b 2 z (β + 1) a y (b 2 x + b 2 z ) -b y (a x b x + a z b z -b x b z β) + b 2 z )(2a z b x + b 2 x + b z (-2a x + b z )) + 8b x b y b z (-b y (a x b x + a z b z ) + a y (b 2 x z b x -2a x b z -(1 -2z) b 2 x (β -1) -b 2 z (β + 1) a y (b 2 x + b 2 z ) -b y a x b x + a z b z -b x b z β(1 -2z) A.27) A α = (b 4 x + 2b 2 x (-1 + 2b 2 y )b 2 z + b 4 z )(1 -2z) 2 2(b 2 x + b 2 z ) B α = -1 + 2z 2(b 2 x + b 2 z ) (-4b x b y b z (-b y (a x b x + a z b z ) + a y (b 2 x + b 2 z ))+ (b x -b z )(b x + b z )(2a z b x + b 2 x -2a x b z + b 2 z -2(b 2 x + b 2 z )z)) (A.28) 

  

  see Fig. III.11).Fig. III.11 Sketch of a bacterial trajectory at the surface. The residence time τ = t 2 -t 1 is computed between the first time t 1 and the last time t 2 the bacterium crosses h in .
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Remerciements

Finally, my experiments have shown that the B-J model is valid only at short times, as smooth swimmers do not stay forever on the same active B-J orbit and switch from one orbit to another. This is due to a rotational diffusion process that disorients the bacteria. Using a maximal likelihood method, I obtained an orientation noise compatible with a thermal Brownian rotational diffusion. Then the B-J model with an rotational noise should be a good model to describe bacteria swimming in a flow.

In the following, I discuss the implication of my work in the framework of hydrodynamic dispersion and show preliminary results to illustrate the interpretation of the experimental results in terms of an "active" Taylor dispersion picture.

In the case of geometric dispersion, it is the spatial heterogeneity of the velocity field which mixes the particles. In Taylor dispersion it is the diffusion together with the velocity gradient. For active bacteria, there are two processes that could randomize the displacement along the flow direction. The first one is the rotational diffusion and the tumbling events that allow bacteria to switch from one B-J orbit to another. The second one is due to the dynamical exchanges between the surface and the bulk. We saw that bacteria spend long times at surfaces with and without a flow. The distance traveled along the flow direction by a bacterium in the bulk is much larger than the one travelled by a bacterium at the surface. In addition, motion at the surface can be sometimes against the flow. Consider for example two bacteria, one in the bulk and the other one at the surface. Let us consider that the bacterium in the bulk is advected at the mean flow velocity V = 50 µm s -1 , and that the bacterium at the surface stay there during τ 0 ≈ 10s, the mean residence time (without significantly moving in the flow direction), before going back to the bulk. The difference of distances traveled by both bacteria is then: ∆x = 500 µm which is huge compared to all the other lengths of the problem.

By alternately swimming at the surface and in the bulk, a bacterium will randomize its displacement along the flow direction. This process will occur at a time t c larger than the mean residence time, and is likely to be large.

To illustrate the effect of surfaces on the transport properties of bacteria in a flow, I computed the distribution of normalized displacement of wild type bacteria, for different mean flow velocities V . To do so, I used the same dataset as the one in section 3. As one can see, the distributions are not Gaussian, as it would be the case for simple passive colloids, but are skewed, and for large velocities, a peak can be seen for small displacement values. I attribute the asymmetry of the distributions to the presence of a retention process. As we have seen earlier, even with a flow, bacteria spend much times at surfaces. Bacteria that are transported at a velocity larger than the local flow velocity, thanks to their activity, could also contribute to the asymmetry. All of this reminds us the dispersion of bacteria in porous media (see Fig. where α C is the Taylor coefficient taking into account the retention process. In our case (k ≈1), the corresponding coefficient is α C = 2.2α T , which is still smaller than the measured α (see Fig. VI.4).

Therefore, in conclusion, I have shown for the first time to my knowledge that the transport of active bacteria follows macroscopically the scaling of Taylor dispersion. Quantitatively, the large dispersion coefficient measured reflects the complexity of bacterial motion in the flow and at the surfaces. To go further and to shed new light on the active dispersion process, it would be enlightening to study the dependence of the dispersion coefficient with the confinement.

Appendix A Appendix 1 Bacterial culture

For strains RP437 and CR20 for which we image only the fluorescent body. Suspensions are prepared using the following protocol: bacteria are inoculated in 5mL of culture medium (M9G: 11.3 g/L M9 salt, 4 g/L glucose, 1 g/L casamino acids, 0.1mM CaCl 2 , 2mM MgSO 4 ) with antibiotics (chloramphenicol at 25µg/mL for RP437 and amphiciline at 100µg/mL for CR20) and grown over night at 30 • C until early stationary phase. The growth medium is then removed by centrifuging the culture and removing the supernatant. The bacteria are resuspended in a Motility Buffer (MB: 0.1mM EDTA, 0.001mM l-methionine, 10mM sodium lactate, 6.2mM K 2 HPO 4 , 3.9mM KH 2 PO 4 ) with 0.005% polyvinyl pyrrolidone (PVP) and is supplemented with 0.08g/mL L-serine. The addition of L-serine increases the bacteria mobility and PVP is classically used to prevent bacteria from sticking to the surfaces. The solution is mixed with Percol (1:1) to avoid bacteria sedimentation. Under these conditions, the average swimming speed is v s = 26 ± 4µm/s.

For strains AD62 and AD63 for which we image the fluorescent body and the flagella. Suspension are prepared using the following protocol: bacteria are inoculated in 10mL of Lurial Broth (LB) with amphiciline at 100µg/mL and grown over night at 30 • C. Then 100µL of this solution is inoculated in 10mL of Triptone Broth (TB) and grown during several hours until early stationary phase. The growth medium is then removed by centrifuging the culture and removing the supernatant. The bacteria are resuspended in 1mL of Berg Motility Buffer (BMB: 6.2 mM K 2 HPO 4 , 3.8 mM 2 PO 4 4, 67 mM NaCl, and 0.1mM EDTA) with 10µL of Alexa red colorant (Alexa 647 at 5mg/mL diluted in DMSO) and let under soft shacking during 2 hours. The solution is then washed by centrifuging the culture and removing the supernatant. Finally the bacteria are resuspended in BMB with PVP (and when it is mentioned supplemented with 0.08g/mL L-serine).

Equations of the orientation with noise

In the section 4. D r is the thermal rotational diffusion coefficient of an ellipsoid of length l and width e immersed in a fluid of a viscosity η at a temperature T . Its expression is given by the formula:

The evolution of the orientation p is then:

where ξ ξ ξ is a vectorial white noise with ξ i (t) = 0 and

Dr and the Stratonovich interpretation must be used for the multiplicative noise. The projections on the x, y and z axes are then :

and the corresponding discretization scheme is:

where the additional term -2dtp/P e corresponds to the drift produced by the multiplicative noise in (A.3) [START_REF] Gardiner | Handbook of stochastic methods[END_REF]. Finally, after each time step (A.4), p is rescaled to obtain a normalized vector.

Maximum Likelihood calculation

In the following, we detail the Maximum likelihood calculation. In Eq. (V.1), V b is the self-propulsion velocity of the particle, assumed constant, v is the flow velocity, the matrix I ij = δ ij is the identity matrix, β is a geometric parameter, D r is the rotational diffusion coefficient and ξ is a white noise with ξ(t)ξ(t ) = Iδ(t-t ). The matrices E and Ω are given as follow,

Finally, for the flow velocity v one can consider three important choices: no flow, i.e., the free particle case, Couette flow, and finally, Poiselle flow. Nevertheless for this calculation we do not need to specify the flow profile. What this means is that the expressions we are going to derive below are completelly general, and can be adapted to different flows by specifying the appropriate functions. Finally, Eq. (A.5) is interpreted in the Ito sense. Then the Ito term -2D r p is needed to guarantee the conservation the norm of p. Let us write h(r, p; D r , β) = Ipp βE + Ω p -2D r p, so that ṗ = h(r, p; D r , β) + 2D r p ∧ ξ.

(A.6)

Consider now a trajectory of duration τ for wich the position of the particle is sampled at discrete time instants. Let us rewrite Eqs. (A.5), (A.6) in components considering such discrete-time scenarii explicitly (recall Ito convention). We use lowercase latin characters for vector components, and lowercase greek letters for time instants. We have

where ∆f α = f α+1 -f α for any function f , ijk is the Levi-Civita symbol, and we have used the notations v i,α = v i (r(t α )) and h i,α (D r , β) = h i (r(t α ), p(t α ); D r , β). Note that we are considering the generic case in which the discrete time intervals {∆t α } N α=1 are not necessarily equal (N is the number of subintervals in which the interval [0, τ ] has been discretized). The probability of a given (discretized) realization of the process, {R α } can now be formally written as follows [START_REF] Martin | Statistical dynamics of classical systems[END_REF]:

where ı is the imaginary unit, ı 2 = -1, and we have used the notations The average over the noise is easy to perform. Introduce φ k,α = √ 2D r ∆t α i,j pi,α ijk p j,α . We then have from (A. where A ij (p α ) = k,l,q ilk jqk p l,α p q,α . (A.13)

We then have, using this result in (A.9):