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Chapter 1

INTRODUCTION

This thesis is about defending information systems against n-day vulnerabilities. In
Section 1.1 we establish how n-day vulnerabilities create a risk for information systems.
In Section 1.2 we discuss the defenses currently used against them, and how they are in-
adequate in a lot of cases. We present our thesis objective in Section 1.3, our contributions
in Section 1.4, and the outline of this document in Section 1.5.

1.1 Specific Risks Created By N-Day Vulnerabilities
for Information Systems

In this section we define what is an information system in a modern sense, what are
n-day vulnerabilities, and highlight the risk they create against information systems. To
this end we discuss the characteristics of modern information systems in Section 1.1.1.
In Section 1.1.2 we show how high the stakes of information security have become in
the last decade. In Section 1.1.3 we discuss a specific part of the software and hardware
vulnerability lifecycle: newly disclosed vulnerabilities or n-day. In Section 1.1.4 we discuss
three past n-day vulnerabilities that had wide real-world impact. In Section 1.1.5 we
highlight that this real-word impact requires information security to be a continuous
activity.

1.1.1 The Modern Information System

Picolli et al define an information system as “a formal, sociotechnical, organizational
system designed to collect, process, store, and distribute information” [155]. Another way
to formulate this is to describe information systems as comprising the people, hardware,
software, and organizational processes allowing an organization to make decisions. While
information systems are older than computer science, modern information systems have
several recurring characteristics. First, they have multiple stakeholders. The organization
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Introduction

using the information system is not necessarily the same as the organization maintaining
it, the one securing it, or the one developing the software the information system is made
of. Second, modern information systems are composite: they use heterogeneous software
and hardware provided by many vendors. Some of this software is public, some of it is
open-source, some of it is neither. Third, many modern information systems are complex
systems, for which exhaustively charting their numerous components and the interaction
between them is challenging.

1.1.2 The Rise of Cyber-Insecurity

Cyber-security is one of the most important technical and societal topic of the 21st cen-
tury. The more domains are automated through software, the more impactful information
security becomes. All observable metrics point towards the same conclusion: the stakes
are becoming higher every day. The number of known software and hardware vulnerabil-
ities, the number of recorded cyber-attacks, the cyber-defense investments by public and
private organizations have all been growing for over a decade [128, 160, 200].

In the last decade two trends contributed to make cyber-attacks considerably more
dangerous than before. The first is the rise of cyber-warfare, with many nations developing
cyber-offense capabilities in order to target foreign governments and private organizations
for geopolitical reasons. Some of these state-sponsored attacks cost billions of dollars in
damage to their victims [205], and some led to lethal retaliation [101]. The second trend is
the rise of financially motivated cyber-attacks by the organized crime, through the use of
new types of malware such as ransomware [234] and cryptominers [222]. Ransomware in
particular, which encrypt files on infected computers to ask a ransom in exchange for the
decryption key, have already cost billions of dollars in damage to thousands of affected
organizations across the world, and recently led to a fatal casualty following the paralysis
of a German hospital [159].

1.1.3 The Double-Edged Sword of Reuse: the N-Day Vulnera-
bility

As said in Section 1.1.1, information systems are composite: while some of their com-
ponents might be custom-made, most are on-the-shelf software and hardware products.
While beneficial on many aspects, one overlooked drawback of this fact is the opportunity
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for attackers to compromise an information system by finding and exploiting vulnerabili-
ties in the public software and hardware the system is made of.

Vulnerabilities in public software and hardware follow a life cycle. They are initially
introduced through a design or implementation error, then stay undiscovered for some
time. Once a vulnerability has been privately discovered, it becomes a zero-day vulnera-
bility. In some cases the discoverers might keep the vulnerability existence to themselves,
but in other cases they will coordinate a disclosure process, making the vulnerability even-
tually public. However, a vulnerability disclosure increases the short-term risk posed by
the vulnerability, as it becomes a new tool in the arsenal of attackers while organizations
may not have had time to mitigate the vulnerability yet. We call n-day recently disclosed
vulnerabilities that are still in this critical phase of their life cycle. Once the vulnerability
becomes common knowledge for both attackers and defenders, it becomes a well-known
vulnerability and the associated risk diminishes.

1.1.4 Seminal N-Day Vulnerabilities

Heartbleed, Shellshock, and EternalBlue are three infamous n-day vulnerabilities that
had wide real-world consequences.

Heartbleed was an OpenSSL vulnerability that let attackers obtain the SSL private
keys of most public-facing websites on the Internet. It required immediate action for
thousands of system administrators in order to secure their systems. A study of the
timeline and impact of Heartbleed can be found in Appendix A.1.

Shellshock was a bash vulnerability affecting every bash shell installation from 1989
to 2014. It could be exploited remotely through CGI scripts, and was so easy to use
that attacks were recorded within an hour of disclosure. It led to distributed denial of
service attacks against the Akamai CDN and the American Department of Defense (DoD)
networks. A study of Shellshock can be found in Appendix A.2.

EternalBlue was a confidential NSA software exploiting a vulnerability in the Microsoft
implementation of the SMB protocol. This vulnerability affected all versions of Windows
from Windows 3.1 to Windows 10 and could be exploited remotely. The public leak of
EternalBlue led to the launch of the WannaCry ransomware attack and the NotPetya
cyber-warfare attack against Ukraine, which both created multiple billions of dollars in
damage and paralyzed many hospitals across the world, requiring patients to be diverted
to other destinations. A study of EternalBlue can be found in Appendix A.3.

These examples show that the risk created by n-day vulnerabilities is not theoretical.
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Some future n-day vulnerabilities are likely to have similar or even higher real-world
impact. As dozens of vulnerabilities are disclosed every day, they add a risk factor to
information systems that is dynamic over time.

1.1.5 Information Security over Time

An information system can have vastly different risk profiles at two distinct points in
time, even if no modifications have been applied to it in the interval. The system might
be adequately protected against all publicly known vulnerabilities at some point, then
becomes at risk because of a dangerous vulnerability that has just been disclosed and is
not yet mitigated.

This means that information system security is not a one-time activity: security risk
must be measured continuously and defensive actions must be taken regularly for infor-
mation systems to stay secure.

1.2 Motivation

The previous section established the risk posed by n-day vulnerabilities against infor-
mation systems. In this section we justify our belief that further research is needed to
adequately defend against them. In Section 1.2.1 we highlight that n-day vulnerabilities
are the product of trends that will not go away in the future. In Section 1.2.2 we review
the current security practices to defend against n-day vulnerabilities and show why they
are inadequate. In Section 1.2.3 we review the open challenges of defense against n-day
vulnerabilities.

1.2.1 N-Day Vulnerabilities are Here to Stay

The real-world impact of n-day vulnerabilities comes from three trends: software reuse,
public disclosure of vulnerabilities in public software and hardware, and usage of software
in an ever-growing number of use cases, including life-critical contexts. None of these
trends seem likely to lose relevance in the short and medium term. The software engi-
neering community widely acknowledges software reuse as a best-practice yielding many
benefits, particularly through free and open-source software. Public and coordinated vul-
nerability disclosure is considered a best-practice by the security community, for reasons
we explain in Section 2.1.2. Last, incorporating software and network connectivity in new
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objects and places is a tenet of multiple billion dollar industries, such as the Internet of
Things (IoT). This means it is very likely that the risk posed by n-day vulnerabilities will
not diminish in the future and is likely to grow.

1.2.2 Current Security Practices are Inadequate To Defend
Against N-Day Vulnerabilities

Having established that n-day vulnerabilities will likely become more and more prob-
lematic as time goes on, we now review current defenses against them and highlight their
limitations. These defenses are studied further in depth in Section 2.3.

Software Updates

Keeping software up-to-date is a vital step of any n-day mitigation strategy. However,
a patch might not be available in the first minutes or hours following a vulnerability
disclosure. Moreover, a software update might be available, but also contain a bug or a
backward compatibility problem preventing a timely patch deployment. As critical n-day
vulnerabilities such as Shellshock were exploited within one hour of disclosure, diligent
software updates are certainly necessary but not sufficient.

Signature-based Intrusion Detection Systems

Intrusion Detection Systems (IDSs) monitor computing activity and attempt to sep-
arate malicious from legitimate behavior. Multiple approaches exist for intrusion detec-
tion (which we detail in Section 2.3.3) but at least one variant already had a large im-
pact against n-day vulnerabilities: Web Application Firewalls (WAFs) is a cloud industry
term to designate Network-based, signature-based, Intrusion Prevention Systems. A cloud
provider providing a WAF offering monitors incoming traffic on behalf of its clients, and
blocks traffic matching signatures manually crafted to detect malicious activity.

While very useful to defend against known vulnerabilities, WAFs and other signature-
based techniques are not well suited for defense against n-day vulnerabilities. Creating a
detection signature for attacks exploiting a vulnerability requires time, effort, expertise
and a deep knowledge of the targeted vulnerability. It is therefore very difficult to author
a signature in the first hours after disclosure in a systematic way for all vulnerabilities.
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Security by Design and Defense in Depth

Security by design is a broad class of software design and implementation techniques
aiming to incorporate security as a first-class requirement from the inception of a software
project onward. While substantial security gains can be made through these approaches,
they are also inadequate for defending entire information systems against n-day vulnera-
bilities for two reasons. First, these approaches aim to limit the number of vulnerabilities
in a piece of software, but cannot claim to remove them completely. Second, informa-
tion systems are composite. While newer components of a system may have been built
with sound security principles in mind, the whole system is very likely to include legacy
hardware and software components that are not as secure.

It is possible to design an entire information system using security by design practices,
and making it more secure than its individual and possibly insecure components. To this
end, a widely used defense pattern for designing security-critical information systems is the
concept of defense in depth. Defense in depth is the practice of relying on multiple defense
mechanisms simultaneously, so that when one layer fails at mitigating an attack, other
layers might succeed. For n-day vulnerabilities mitigation, a defense in depth strategy
could include a timely software update deployment and the use of intrusion detection
techniques and the use of secure-by-design components. Defense in depth is a crucial part
of many defense strategies, but it has limits. In particular, vulnerability disclosures are
public events, informing both the attacker and the defender that a layer of the defense can
be bypassed. However, a persistent attacker may have secretly found a way to bypass all
the remaining layers, leaving the system briefly vulnerable without the defender knowing
it.

Air Gap

An air gap is the practice of physically isolating an information system from the out-
side, including removing any network link with the global Internet. This is a common
practice for sensitive networks of many countries national armed forces and intelligence
agencies. While certainly useful for defending against n-day vulnerabilities, trading inter-
net access for security is a compromise most organizations are not ready to make.

Moreover, there have been cases of air gap networks being breached by highly moti-
vated attackers. The most spectacular example is Stuxnet, a joint US and Israeli cyber-
warfare operation that included a self-replicating worm corrupting USB flash drives, en-
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abling it to break into an air gap network of the Iranian nuclear program, eventually
destroying many Iranian nuclear centrifuges [111].

1.2.3 Challenges when Defending Against N-Day Vulnerabili-
ties

Defense against n-day vulnerabilities is a race against the clock: acting slower than
attackers is dangerous. But so is acting hastily, as an improper mitigation can be in-
complete or even damage the information system. Mitigating n-day vulnerabilities safely
yet timely is preferable, but more expensive. As proactive mitigation techniques, such as
security by design and defense in depth, are necessary but not always sufficient, organi-
zations considering the security of their information systems as critical look for shorter
and shorter reactive mitigation times. However, all current reactive mitigation techniques
are limited by human reaction times, such as patch development by a software vendor
or the authoring of an IDS signature by security experts. Therefore a promising way to
significantly improve the security of information systems against n-day vulnerabilities is
to propose novel reactive mitigation techniques that do not require human intervention.

1.3 Thesis Objective

The goal of this thesis is to propose novel tools to automatically analyze and react
to the risk posed by n-day vulnerabilities at disclosure. Our ultimate goal is for an infor-
mation system to exhibit constant security over time, with daily vulnerability disclosures
not affecting the overall risk it faces.

A more concrete objective is to automatically and immediately gather, for any newly
disclosed vulnerability, information that is usually gathered by human experts after sev-
eral days. In the first moments after a vulnerability disclosure, a lot of information about
the vulnerability is either missing, fragmented, or not machine-readable. This includes
intrinsic information about a vulnerability such as the software or hardware it affects,
which is provided as machine-readable data days or weeks after disclosure, delaying the
use of any vulnerability management process. It also includes the severity analysis of the
vulnerability, usually provided in the form of a CVSS vector [42], which encodes this anal-
ysis in a machine-readable format but is not available at disclosure either. CVSS vectors
are authored manually by security experts days or weeks after disclosure, again delaying
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the vulnerability management processes. Last, a context-specific analysis is also needed
yet difficult to obtain promptly. This includes how much risk a vulnerability disclosure
creates for a specific information system.

Gathering all of this data automatically is a necessary condition for faster vulnerability
management, yet automation is always a risk of becoming a black box that cannot be
explained by anyone. We argue that automated defense systems can only be trusted if
they can be understood and that decision explicability should be a cornerstone of any
automated security process we devise.

1.4 Contributions

In this thesis we present four contributions to reach our objectives:
— A proposal for an end-to-end defense strategy against n-day vulnerabilities. This

strategy consists in gathering automatically more information about a vulnerabil-
ity in seconds after its disclosure, performing an automated risk analysis of the
vulnerability in the context of a specific information system, then if warranted,
triggering an automated reaction mitigating the risk created by the vulnerability.
All our other contributions implement parts of this overall strategy, in an explicable
way.

— We propose a process enabling the extraction of the name of the affected component
of a vulnerability immediately at disclosure. To our knowledge this is the first one
to be both automated and explicable.

— We propose a prediction process for vulnerability CVSS vectors, that can be used
immediately after disclosure. To our knowledge this is the first one to be both
automated and explicable.

— Building on top of these contributions, we propose a risk analysis process for newly
disclosed vulnerabilities in the context of a specific information system. It uses ac-
tive learning to extract the conscious and unconscious knowledge of the security
team overseeing the information system to decide the appropriate alert level for a
new vulnerability disclosure in the context of the defended system. It is a prelimi-
nary yet promising step towards automated reaction mitigating new vulnerability
disclosures. To our knowledge this is the first process of its kind to be both auto-
mated and explicable.
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1.5 Thesis Outline

In Chapter 2, we present the state of the art in the research and industry fields we
build upon: Security as a Service (SECaaS) and why it is important in the context of
modern, multi-stakeholders information systems, the life cycle of software and hardware
vulnerabilities, n-day vulnerabilities and the current defenses against them, and machine
learning for security alerting which is an important tool to fulfill our objectives.

In Chapter 3, we outline the global picture of this thesis, and present our first con-
tribution: an end-to-end strategy for defending information systems against n-day vul-
nerabilities. We lay out how all our contributions come together towards fulfilling this
strategy.

In Chapter 4, we present our second contribution: automatically determining the soft-
ware or hardware affected by a new vulnerability using only the free-form text description
available at disclosure.

In Chapter 5, we present our third contribution: assessing the severity of a vulnerability
at disclosure through automated prediction of its CVSS vector based on the vulnerability
text description.

In Chapter 6, we present our fourth contribution: automating the decision process of
raising an alert or not regarding a new vulnerability disclosure in the context of a specific
information system.

In Chapter 7 we conclude, and present our perspectives for the short, medium, and
long term.
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Chapter 2

STATE OF THE ART

In this chapter, we establish the state of the art in four domains this thesis builds
upon. In Section 2.1, we explore the security of information systems and the concept of
security as a service. In Section 2.2, we review the life cycle of software and hardware vul-
nerabilities. In Section 2.3, we study a specific part in this life cycle: n-day vulnerabilities.
In Section 2.4, we explore machine learning for security alerting, which is an important
tool used in our contributions. We conclude in Section 2.5.

2.1 Security as a Service

In this section, we explore how information system security practices evolved (Sec-
tion 2.1.1) to acknowledge that security risk evolves over time (Section 2.1.2). We study
how this led to the trends of security as a service and information security outsourcing
(Section 2.1.3).

2.1.1 Information Systems and their Stakeholders

Information systems have been studied and implemented for a long time in both
industry and academic research.

Definition 1 Information systems comprise the people, hardware, software, and organi-
zational processes allowing an organization to make decisions.

As soon as 1991, it was known that information systems are inherently multi-stakeholders
systems [170]. These stakeholders are often divided between the following parties:

Definition 2 The owner of an information system is a physical or legal person legally
responsible for the proper functioning of the system.
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Definition 3 The users of an information system interact with the system day to day to
accomplish their daily tasks.

Definition 4 The developers of an information system build and modify the system.

Definition 5 The administrators of an information system ensure the system is working
as intended on a day to day basis.

The taxonomy may vary: for instance, the advent of cloud computing divided the ad-
ministration of many information systems between two parties: the information system
administrators keep the responsibility for the application layer of the system, while the
cloud provider now usually takes the responsibility for the technical infrastructure under-
neath. It also implies that many core components of information systems are not located
within an organization boundaries anymore, but in a cloud provider infrastructure instead.

Going back to 1991, it was also known that verifying that an information system is
working properly over time is not trivial, nor is it to prove it to all stakeholders. Service-
Level Agreements (SLA) have been shown to be a relevant tool for contractualizing what
is an acceptable level of operation for a given system [167].

Definition 6 A Service-Level Agreement or SLA is a contract between a service provider
and a client to ensure that a service is provided as intended. An SLA is based on an
observable metric, an acceptable threshold for this metric, a time period, and a penalty
(financial or otherwise) for the service provider which occurs if the metric crosses the
threshold during the time period.

When implementing an SLA a stakeholder (such as the information system owner)
becomes a client and another stakeholder (such as a system administration company)
becomes a service provider. A typical metric is the amount of uptime of a computer
machine: typical thresholds can be 99 % (7 hours of allowed downtime per month for the
machine), 99.9 % (44 minutes), or 99.99 % (4 minutes).

Over the last decades, many processes related to information systems turned out to be
better handled continuously than as one-off tasks. For instance, it is worthwhile to note
that information system development and planning mostly went from static waterfall
models to dynamic agile methods, with the system design never being frozen.

Information Security has been gradually accepted as a cornerstone of a well func-
tioning information system. Just as its development or its administration, security of an
information system is best viewed as a continuous process with multiple stakeholders, as
seen in the next sections.
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2.1.2 Evolution of Security Risk over Time

In this section, we examine the difference between proactive and reactive security, and
the causes leading the risk profile of an information system to change over time.

Proactive Security vs Reactive Security

There is an ongoing debate among the security community about whether informa-
tion security should be proactive or reactive. Proactive security considers security as a
paramount quality of systems, software and hardware from their inception, resulting in
architectures that are deemed secure by design. Reactive security, on the other hand,
takes a system, software or hardware as it currently is and only reacts to actual security
incidents, fixing them as they occur.

It is indisputable that proactive security efforts allowed the software community to
dwarf entire classes of security problems. For instance, Microsoft has disclosed that 70 %
of vulnerabilities they fix in their products are due to memory-safety problem [119], a
class of bugs that has been fixed in modern, memory-safe languages such as Java, Go or
Rust.

However, reactive security is still necessary for several reasons. First, software reuse is a
cornerstone of modern software development practices. While this has a lot of benefits, any
security problem in a software dependency of a system (directly or transitively) becomes
a security problem in the system itself [47]. The massive increase in open-source software
in organizations [190] allows both attackers and defenders of a system to study its source
code, for opposite motivations. Second, proactive security does not offer guarantees about
new attack classes that were not part of the original security model. For instance, side-
channel attacks on software/hardware interfaces such as Spectre [109] or Meltdown [115]
were not anticipated in most otherwise secure software architectures.

Reactive security is here to stay. Some even theorize that under certain conditions,
reactive security is an optimal game-theoretical strategy as it allows defenders to focus
their efforts on the areas most susceptible to attacks [15].

Causes of Risk Evolution over Time

There are two main causes of change for the risk profile of an information system
over time. First, attackers motivations can change. Systems that have been secure to past
threats can become overwhelmed by more competent (or more numerous) attackers. A

23



Chapter 2 – State of the Art

common reason for attacker motivation evolution is geopolitics. For example, the 2007
tensions between Estonia and Russia around the relocation of a Soviet-era statue in the
city of Tallinn led to an unprecedented wave of cyberattacks targeting both the Estonian
governement and private organizations, paralyzing parts of the country for 22 days [151].

There have been proposals, such as Caldara et al’s [30], for a global geopolitical risk
index aiming to help both public and private sectors detect heightened periods of risk for
their countries or organizations because of recent world events.

While the evolution of attackers motivations (for both geopolitical and non-geopolitical
reasons) is an important part of the evolution of security risk over time, we chose not to
focus on this topic in this thesis.

Second, latent vulnerabilities in existing software are routinely discovered and dis-
closed publicly. As most information systems are composed of myriads of software and
hardware components, a vulnerability in any of these components can create a security
risk for the whole system. While the vulnerability has been there since the deployment
of the vulnerable component, before disclosure the vulnerability is only known to a lim-
ited number of people (possibly zero). The vulnerability disclosure informs all parties,
benevolent or malicious, of the presence of the vulnerability, creating additional risk for
all vulnerable systems.

This is a major topic of this thesis and we investigate this topic further in depth in
Section 2.2.

2.1.3 Organizations and their Security Policies

In this section, we review how organizations adapted to the dynamicity of security
risk, through the creation of recurring security services. We then highlight that on the
one hand these services are currently too expensive to operate internally for the majority
of organizations needing them, but on the other hand outsourcing security to a third-party
has unique challenges that are still unsolved.

Recurring Security Services

The evolution of cybersecurity threats led organizations to pursue continuous protec-
tion through the creation of Security Operation Centers (SOCs) dedicated to ensuring
their ongoing safety.

SOCs aim to protect organizations and information from cyber attacks in real time,
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through collection, gathering, correlation and analysis of numerous real-time, heteroge-
neous information sources regarding the system to be protected [169]. These information
sources can include host or network logs, IDSs or antivirus alerts, vulnerability disclosures,
and many others.

In practice, even though a SOC might be partially automated, human security analysts
still play a critical role in attack detection and mitigation. A lot of SOCs employ multiple
analysts who work in a 24/7 rotation from a dedicated secure room [191].

Most Organizations Cannot Afford Real-Time Defense

Ideally, every organization would benefit from being protected by a SOC, either inter-
nal or outsourced. However, this is a challenging goal in practice.

Creating an internal SOC is difficult because security analysts are expensive and in
a short supply. According to [200] the median US salary for analysts was $76,000 per
year in 2019, with the 9th decile at $117,000 per year. Meanwhile, the cybersecurity
unemployment rate has stayed at zero per cent since 2011 and a shortage of 3.5 millions
unfulfilled cybersecurity jobs has been predicted for 2021 [202]. This makes the goal of
hiring cyber analysts for an internal SOC out of reach for many organizations.

An organization could try to mitigate this problem through contracting protection
from an outsourced SOC. In this configuration, an organization forwards all its real-time
security data to a dedicated cybersecurity organization which protects multiple clients at
the same time. Outsourcing a SOC does avoid upfront hiring costs for an organization,
and it lets security analysts protect multiple organizations at a time, allowing for more
expertise and specialization. However, it does so at the expense of analysts having an
intimate familiarity with the protected system and imply storing sensitive security data
outside the organization [169]. Moreover an outsourced SOC still faces the global short-
age of security analysts and this reflects in the price it charges its clients. Finally, making
security analysts monitor multiple organizations has limits as there is a documented his-
tory of elevated stress and burnout in SOC analysts [62, 191, 192, 145]. In particular the
US Air Force studied the stress and burnout risks of 500 members of its cyberwarfare
workforce and found higher stress rates among cyberwarfare workers than other positions
inside the US Air Force [34].

Therefore, at a global level it is neither possible to hire more security analysts nor to
give them much more work to do. These facts taken together mean the human component
of cybersecurity defense is globally saturated, and the only way to meet the ever-increasing
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demand for real-time cybersecurity defense is through automation.
However automation also has challenges. First, many SOCs have idiosyncratic pro-

cesses that are formed around the available data sources for the entity to protect. A lot
of analysts have trouble integrating on-the-shelf solutions into their daily analysis work-
flows [191], often requiring automation to be tailored for a specific SOC. Second, even
though automating low-level tasks does work well, automating higher-level security anal-
ysis tasks has proven more challenging. As we see in Section 2.4, machine learning for
security alerting exhibits a number of challenges that are exacerbated the more complex
and critical the decision becomes. SOCs analysts tend to work in a hierarchy [192] with
many entry-level analysts analyzing the bulk of potential alerts then escalating potential
risks to higher-level, more experienced analysts for deeper analysis. While automation lets
us consider automating part of the workload of the cheaper, easier to hire entry-level an-
alysts, it leaves the workload of the more experienced and expensive higher-level analysts
intact.

Nevertheless both outsourcing and automation are part of the solution to affordable
real-time cybersecurity defense for all organizations.

Outsourcing and Security

There is a fundamental problem with outsourcing security critical parts of an infor-
mation system, such as outsourcing a SOC or simply deploying an information system in
a cloud provider infrastructure: it is difficult to prove to both parties that the resulting
system is secure. The service provider can hide or even ignore that its infrastructure is
vulnerable to attacks. A successful covert attack can impact confidentiality or integrity of
a system without neither the service provider nor the client noticing it.

Security researchers, security practitioners, governments and hardware manufacturers
all tried to solve this issue through different means, arguably all unsuccessfully.

A part of the security research community spent the last decade trying to pinpoint the
concept of Security SLA, or Sec-SLA, especially in the context of cloud computing [35,
154, 199, 209]. The concept of a sec-SLA is to take the components of an SLA (a time
period, a metric, a threshold, and a penalty) and apply it to the security properties of the
system. While such a system can be part of a solution, it cannot be complete as important
security properties of a system are unobservable by the client (for example, the physical
security of a cloud provider’s datacenters), and some of these properties are unobservable
by neither the client nor the service provider (for example, the presence of undiscovered
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zero-day vulnerabilities in the technical infrastructure of the cloud provider).
Meanwhile, most of the security industry denied the problem, resulting in a phe-

nomenon called security theater [175]. Security theater is a situation where measures
are applied with the goal of providing the feeling of security instead of actual security.
In particular, multiple SOC analysts have expressed frustration at their hierarchy being
seemingly more focused on justifying the SOC budget to decision-makers than making
the protected systems actually safer [192].

Governments approached the problem through regulation and legislation of sensitive
digital services. For instance, credit card information manipulation is regulated using
the PCI DSS standard [153] world wide, while the European Union regulates electronic
identification and transactions through the eIDAS regulation [59]. These regulations can
include thorough obligation of means, usually evaluated using organizational and technical
audits. However they do not require any obligation of results. While these regulations are
effective at filtering out careless actors, they do not prove that a qualified actor is really
secure.

Hardware manufacturer Intel proposed a technical solution named Software Guard
Extensions (Intel SGX) [99], which introduces the concept of secure enclave. Once an
enclave is created through a specific set of CPU instructions, the code and data residing
in an enclave stay encrypted and cannot be read or modified by the rest of the system,
including the OS. The CPU can sign a proof of enclave allowing two enclaves on two
separate machines to acknowledge the existence of each other. SGX is managed through
a public key infrastructure whose root of trust is Intel. However SGX is only useful in the
rather peculiar threat model where a client would fully trust Intel but not its own service
provider. Moreover, SGX has a history of breaches [177, 82, 25, 28, 176] that makes such
a trust in SGX arguably misplaced.

In the future, a possible way out of this problem could come from cryptography,
namely homomorphic encryption, first described by Rivest et al in 1978 [165] and first
successfully implemented in 2009 by Gentry et al [76]. Homomorphic encryption allows
an untrusted party to achieve computation on data that is still encrypted, on behalf of
another party that did not disclose the decryption keys. For instance, this allows a client
to encrypt her sensitive data, send the encrypted version of the data to a cloud provider
that would then make computations on the data without being able to decrypt it at
all. However, homomorphic encryption comes at a tremendous performance cost: current
state of the art techniques [36] evaluating less than a hundred binary gates (NAND, XOR,
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AND, etc.) per second per CPU core, a slow-down of approximate magnitude 107. This
performance cost makes this approach currently unpractical for general computing tasks.
Nevertheless a homomorphic encryption scheme with acceptable performance would allow
a breakthrough in secure computation outsourcing.

2.2 The Vulnerability Life Cycle

The software vulnerability life cycle is an important source of security risk evolution
over time and a major topic of this thesis. In Section 2.2.1 we propose a fictional example
of a typical vulnerability life cycle in order to get more familiar with the related concepts.
In Section 2.2.2 we describe the data sources and frameworks used in the research and
industry security communities to model the life cycle of software vulnerabilities. In Sec-
tion 2.2.3 we study the security discoveries made by the security community about the
life cycle of software vulnerabilities at scale.

2.2.1 A Typical Vulnerability Life

CVE-PLATYPUS-0001: Story of a Fictional Vulnerability

For a brief time let us forget about the physical computers of the real world and
venture into the fictional, legendary Kingdom of the Mighty Platypus.

In the Kingdom of the Mighty Platypus, plebians are very keen in keeping their trea-
sures secure and they sleep better at night when these treasures are stored into a personal
safe box. However they are aware that the security of their treasures can only be as good
as the security of their safe, and they are always on the look for the best safe manufacturer
in the Kingdom.

It happens that the best safes in the Kingdom are made by a brave smith named
Smith. Smith the smith has the reputation of remedying any weakness in his safes timely
and thoroughly. Alas, he is only one man and the Kingdom is vast.

After years of hard work, Smith’s reputation now precedes him and most of the plebians
are equipped with his safes, even the ones living far away from the small town where Smith
resides.

It is in one of these remote parts of the Kingdom that a vile thief named Thierry made
a terrible discovery: every safe ever manufactured by Smith the smith could be opened

28



2.2. The Vulnerability Life Cycle

without the key by knocking three times and a half on the right panel of the safe, then
pronouncing loudly the word “polyglot”.

Thierry the thief realized he had a very valuable secret in his hands. During the next
few weeks he proceeded to discreetly dispossess a few wealthy citizens of their belongings,
but remained tight-lipped about the mean he used to break into the safes.

But even the vilest thief in the Kingdom makes a mistake sometimes. On a night with
the fullest moon the Kingdom had ever seen, Thierry the thief was busy with his larceny
du jour and did not notice how the moon was shedding light on all his very moves.

From the opposite side of the alley, a virtuous plebian named Virgil was watching
and listening. Fearing for his life, he let Thierry the thief go away with his loot without
bothering him. But Virgil the virtuous did learn Thierry’s secret, and after trying to
knock three times and a half on the right panel of his own safe while saying “polyglot”, he
realized he too could open any safe he wanted. But Virgil the virtuous was virtuous, and
instead of using the finding to live a life of sin, he decided to embark on a journey to find
Smith the smith who only could devise a solution to repair all the safes in the Kingdom
of the Mighty Platypus.

But the journey to Smith the smith was long. After a long walk throughout the
Kingdom, Virgil the virtuous became thirsty and did a well-deserved stop at a tavern
half-way. There he fraternized with some fine folks, and in a lapse of judgment (possibly
induced by alcohol), he revealed to everybody in the tavern the hidden motive behind his
adventure. He then paid for everybody’s drinks and proceeded to complete his expedition.

Smith the smith welcomed the news of the safe’s weakness with stoicism and a sense
of urgency. After two days and one sleepless night of tireless work, he had a breakthrough:
by putting a leaf of sarsaparilla on the inner right side of the safe while pronouncing the
word “salted butter caramel”, the safes would be safe.

Sarsaparilla was abundant in the Kingdom of the Mighty Platypus. This made for
an easy repair, and Smith the smith and Virgil the virtuous started spreading the word
around them. Soon half the Kingdom was frantically looking for sarsaparilla and pro-
nouncing “salted butter caramel !” repeatedly, repairing many safes along the way.

However, back in the tavern a folk had told his mother who told her nephew who
told his neighbor who told his father-in-law about how to break into the safes, and soon
enough all the thieves in the Kingdom, from the best to the worst, started knocking three
times and a half while shouting “Polyglot!” at every safe they could put their hands on.

For some time, chaos ensued. In parts of the Kingdom that first learnt about the
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Thierry the thief discovers the vulnerability
and starts using it secretly

Undiscovered vulnerability Zero-day vulnerability N-day vulnerability

Virgil learns the vulnerability from
Thierry

Word spreads from the tavern
about the vulnerability, attacks start

Smith is alerted

Smith finds a counter-measure
and officially discloses the vulnerability

The vulnerability has become 
public knowledge and most safe 
owners have fixed it

Well-known vulnerability

Figure 2.1 – The life cycle of the fictional vulnerability CVE-PLATYPUS-0001.

sarsaparilla, order prevailed. Thieves came and went frustrated, as knocking and shouting
“polyglot” had no effect whatsoever. However in other parts of the kingdom whole villages
were looted because honest folks did not learn about the weakness in time to fix it.

After some time, almost everybody in the Kingdom had learnt both how to break into
vulnerable safes, and how to repair their own. A few careless folks did neglect to ensure
their safes were safe, to the delight of the mischievous kids in their neighborhood. But all
in all, peace was restored in the land of the Mighty Platypus.

CVE-PLATYPUS-0001: A Fictional But All Too Real Vulnerability

Let us now go back to our real world and computer systems. While the Kingdom of
the Mighty Platypus might be imaginary, the outline of the events depicted here is not.

The safe built by Smith the smith is a component and the fact that it could be opened
without the key is a vulnerability, which we call CVE-PLATYPUS-0001 from now on.
Fixing the problem through the use of sarsaparilla is a counter-measure.

Definition 7 A software or hardware vulnerability is a bug or defect in the design or
implementation of a software or hardware component, creating an unforeseen security
issue.
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Definition 8 The exploitation of a vulnerability is the act of using the vulnerability to
compromise a target.

Definition 9 A counter-measure is a course of action preventing a vulnerability from
being exploited.

Before discovery the vulnerability was already present as an undiscovered vulnerability.
Once Thierry the thief became aware of it and started using it secretly, CVE-PLATYPUS-
0001 became a zero-day vulnerability exploited in the wild.

Definition 10 An undiscovered vulnerability is an existing vulnerability that no one is
aware of, neither secretly nor publicly.

Definition 11 A zero-day vulnerability is secretly known to a limited number of parties
but unknown to the general public.

Definition 12 A vulnerability exploited in the wild is actively used by attackers to com-
promise unwilling targets.

Once the word started to spread, the vulnerability was disclosed and a race against
the clock started to emerge between the exploitation and mitigation of the vulnerabil-
ity. During this troublesome period just after disclosure, the vulnerability was a n-day
vulnerability.

Definition 13 An n-day vulnerability is a de facto public vulnerability (officially disclosed
or not) that not all affected parties are familiar with yet and not all are ready to defend
against, creating a heightened risk for a temporary period of time.

Definition 14 Mitigation is reducing the risk induced by a vulnerability to a negligible
amount. This can include deploying a counter-measure or simply verifying that a vulner-
ability is not exploitable in practice.

Definition 15 The disclosure of a vulnerability is the event marking the transition of the
vulnerability from secret to public knowledge, in other words from zero-day to n-day.

Once both the vulnerability and its counter-measure become common knowledge and
things settle, the vulnerability becomes a well-known vulnerability. The life cycle of this
fictional vulnerability is summarized in Figure 2.1.
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Definition 16 A well-known vulnerability is a public vulnerability that the vast majority
of affected parties are familiar with and ready to defend against.

Definition 17 The life cycle of a vulnerability comprises all the stages of a vulnerability
timeline: from being introduced as an undiscovered vulnerability, to becoming a zero-day
vulnerability once first discovered, then an n-day vulnerability just after its disclosure, then
a well-known vulnerability once firmly in the public knowledge.

CVE-PLATYPUS-0001 shares many similarities with real-world vulnerabilites. Knock-
ing three times and a half to open the safe is inspired by CVE-2017-13872 [143], an actual
macOS High Sierra vulnerability that allowed attackers to log as root by leaving the pass-
word field blank then clicking on the login button multiple times [50] (however, there
was no need to pronounce “polyglot” while doing so). The race between attacks and
mitigation throughout the Kingdom is inspired by CVE-2014-0160 [140] also known as
Heartbleed [61] and CVE-2014-6271 [141] also known as Shellshock [38], which we describe
in detail in Appendix A.

Hardware vulnerabilities, such as Spectre[109] or Meltdown [115], work in a similar
way as software vulnerabilities and in this thesis we treat them the same. They emerge
because of a flaw in the design or manufacturing process of a hardware component, just as
software vulnerabilities emerge because of a flaw in the design or implementation process
of a software component.

It should be highlighted that the fact that a component is vulnerable or not is inde-
pendent of the context in which the component is used (although a specific context may
be required for the vulnerability to be exploited). In that regard, there is a distinction to
be made between a component and a system. While the fictional safe made vulnerable
by CVE-PLATYPUS-0001 is a physical component of limited value in itself, it is part of
a larger system aiming to secure the belongings of many citizens. In this case, the safe
is vulnerable no matter what is inside it, but whether a citizen’s wealth is vulnerable or
not is a matter of if and how the citizen is using the vulnerable safe. Likewise, a software
or hardware vulnerability can lead to an information system vulnerability when the vul-
nerable component is used in a way where it can be exploited to compromise the entire
information system.

Definition 18 An information system vulnerability is a technical or organizational flaw
allowing an information system to get compromised. It can emerge from a vulnerability
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affecting a piece of software or hardware used in the information system if the vulnerability
can actually be exploited in the context of the information system. However information
system vulnerabilities can also happen for other reasons, such as configuration errors or
human negligence.

In this thesis, the word vulnerability always refers to software or hardware vulner-
abilities. Information system vulnerabilities are specifically mentioned as such. Another
distinction to be made is the difference between a vulnerability severity, the threats against
an information system, and the risk an information system faces.

Definition 19 The severity of a software or hardware vulnerability is a measurement of
its potential impact, outside of a specific context.

Definition 20 The threats faced by an information system or an organization are the
attackers attempting to compromise it, with varying degrees of skills, motivation, and
resources.

Definition 21 The assets of an organization are the sensitive resources that the organi-
zation is willing to protect, possibly through the use of an information system. This can
include proprietary data, monetary resources, means of production, and many others.

Definition 22 The risk faced by an information system is the likelihood of an asset in this
information system to be compromised. This risk can be estimated through the combination
of the threats faced by the system, the vulnerabilities it is affected by, and the value of the
assets residing in the system.

In the case of CVE-PLATYPUS-0001, the severity of the vulnerability is solely defined
by the fact that an attacker can open the safe without the key and not the context in
which the safe is used. The threats faced by a citizen are the thieves trying to dispossess
them. The risk faced by a citizen is the combination of how much of a threat the thieves
are, and whether the citizen is using a vulnerable safe to store important belongings.

The more vulnerable an information system is, the likelier it is for even a modest threat
(such as low-skilled and lowly motivated attackers) to result in a compromise. Conversely,
organizations facing strong threats can limit their risk by heavily investing in defense and
counter-measures.

Vulnerability discoverers find and disclose dozens to hundreds of software vulnera-
bilities every day, some benign and some critical. This creates a lot of time-sensitive
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information to analyze and act upon for information system administrators and SOC an-
alysts. The security community has settled on a few de facto standards to present and
organize software vulnerability intelligence, which we detail in the next section.

2.2.2 Data Models and Databases

In this section we present widely used databases and data formats related to the
vulnerability life cycle: CVE, NVD, CVSS, CPE, and CWE.

CVE

The Common Vulnerabilities and Exposures (CVE) database is described as “a list of
entries —each containing an identification number, a description, and at least one public
reference— for publicly known cybersecurity vulnerabilities” [41]. Since its launch in 1999
CVE has become the de facto standard for public vulnerability disclosure. CVE assists in
four important points of the security disclosure process:

— Identifying whether the reported problem is actually a public vulnerability. Some
security findings are not actual vulnerabilities and must not be reported as such.
Others are legitimate vulnerabilities but affect only private components used in-
ternally by organizations and are therefore outside the scope of CVE.

— Identifying possible duplicates and ensuring every unique public vulnerability is
associated with a unique identifier. This identifier is in the form CVE-YYYY-
XXXX, with the first part being the year of the beginning of the disclosure process,
and the second part an incrementing integer.

— Gathering preliminary information about the vulnerability, in the form of at least
one public reference (for instance, the vulnerability announcement from the soft-
ware publisher) and a short free-form English description that includes a brief
description of the problem, including the affected software and versions.

— Coordinating with the original vulnerability discoverer and the software publisher
for an orderly yet timely disclosure process. Deciding the disclosure time can be
difficult as there can be pressure in both directions [180]. Premature disclosure can
lead to the software publisher not being able to provide a timely counter-measure
for the vulnerability. On the other hand the longer a discovered vulnerability stays
undisclosed the more likely it is to become exploited as a zero-day, either through a
leak of the still-confidential disclosure process or through independent rediscovery
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of the vulnerability [156].

CVE is overseen by the not-for-profit organization Mitre [203] but the actual vulnera-
bility disclosure process is world-wide and decentralized. More than a hundred organiza-
tions act as CVE Numbering Authority or CNA [48]. All of them can lead a vulnerability
disclosure process independently under Mitre’s supervision. Most CNAs have a limited
scope and are only concerned with vulnerabilities in a specific set of software products.
Some software publishers, such as Apple and Microsoft, are also CNAs for their own
products, allowing them to assign a CVE number to their products vulnerabilities with-
out requiring third-party assistance. In the case individual CNAs would misbehave, Mitre
still has the final word into deciding what is a legitimate CVE vulnerability or not. An
example of CVE vulnerability can be found in Table 2.2.

NVD

Once a vulnerability has been disclosed by CVE, it is public. However at this stage
the information about the vulnerability is only present in a raw form that is appropriate
for security experts to get a quick understanding of the vulnerability, but not suited to
automated processes.

Created in 2005, the NIST National Vulnerability Database (NVD) [128] aims to refine
vulnerability information provided by CVE into machine readable metadata that can be
consumed by automated vulnerability management processes, using various data formats
such as SCAP [178]. This makes NVD the de facto vulnerability data source for consumers
of vulnerability data.

The main information provided by NVD compared to CVE is a machine readable
analysis of the vulnerability severity in the form of a CVSS vector and score (see below)
and a machine readable enumeration of the affected software and versions in the form of a
CPE URI (see below). This is done through a manual analysis by NVD security experts,
often leading NVD data to be published days or even weeks after the original CVE (see
more details in Chapter 3).

The relationship between CVE and NVD has evolved over time. Historically, CVE and
NVD activities have been strictly separated [51] but in June 2020 NVD announced the
CVMAP initiative [144], that aims to bring CVE’s CNAs and NVD closer and notably
letting CNAs publishing their own metadata information in the NVD database.
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Base Vector Temporal Vector
CVSS V2 CVSS V3 CVSS V2 CVSS V3

Access Vector (AV) Attack Vector (AV) Exploitability (E) Exploit Code Maturity (E)
Access Complexity (AC) Attack Complexity (AC) Remediation Level (RL) Remediation Level (RL)
Authentication (Au) Privileges Required (PR) Report Confidence (RC) Report Confidence (RC)

User Interaction (UI) Environmental Vector
Confidentiality Impact (C) Confidentiality (C) CVSS V2 CVSS V3

Integrity Impact (I) Integrity (I) Collateral Damage Potential (CDP) Modified Base Metrics (M*)
Availability Impact (A) Availability (A) Target Distribution (TD)

Scope (S) Confidentiality Requirement (CR) Confidentiality Requirement (CR)
Integrity Requirement (IR) Integrity Requirement (IR)

Availability Requirement (AR) Availability Requirement (AR)

Table 2.1 – Fields for Base, Temporal, and Environmental CVSS vectors in V2 and V3.

Description
The HTTP/2 implementation in Apache Tomcat 9.0.0.M1 to 9.0.14 and 8.5.0 to 8.5.37
accepted streams with excessive numbers of SETTINGS frames and also permitted clients
to keep streams open without reading/writing request/response data. By keeping streams
open for requests that utilised the Servlet API’s blocking I/O, clients were able to cause
server-side threads to block eventually leading to thread exhaustion and a DoS.
CVSS V3 Base Vector
CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
CVSS V2 Base Vector
AV:N/AC:L/Au:N/C:N/I:N/A:P
CVSS V3 Base Score 7.5 CVSS V2 Base Score 5.0

Table 2.2 – Description (from CVE), CVSS V2 and V3 base vectors and scores (from
NVD) for vulnerability CVE-2019-0199.
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CVSS

The Common Vulnerability Scoring System (CVSS) is described as providing “a way
to capture the principal characteristics of a vulnerability and produce a numerical score
reflecting its severity” [42]. CVSS is a syntax one can use to answer standardized multiple-
choice questions about a vulnerability. These questions can be answered objectively by
someone who has knowledge of the inner workings of the vulnerability. Once the questions
have been answered, the answers (or fields) can be compiled into a machine readable
format called CVSS Vector and a vulnerability severity score between 0.0 and 10.0 can
be computed using the CVSS score formula. The score formula is non-linear and small
changes in the fields values can greatly impact the resulting severity score.

As of 2020 three versions of the CVSS standard are currently in widespread use: CVSS
V2 [1], CVSS V3 [43], and CVSS V3.1 [44]. CVSS V2 and V3 have markedly different
standardized questionnaires and formula, while CVSS V3 and V3.1 differ only by a minor
change in the severity formula.

In all versions of CVSS the fields are divided into three groups or subvectors:
— The base vector describes the inherent properties of the vulnerability that do not

change neither with time or context.
— The temporal vector describes properties of the vulnerability that change over time,

such as the availability of a counter-measure, or a confirmed exploitation of the
vulnerability in the wild.

— The environmental vector describes properties of the vulnerability in the context
of a specific organization to protect.

Therefore the base vector is common to all people at all time, the temporal vector is
common to all people at some point in time, and the environmental vector is specific to
an organization at some point in time. Table 2.1 lists the existing fields for CVSS V2 and
V3.

The CVSS base vector (in both V2 and V3) has been adopted as the de facto standard
for measuring vulnerability severity, and is the format adopted by NVD for providing
severity analysis of a vulnerability. In comparison the temporal and environmental vectors
have been far less adopted as they require vastly more resources to be kept up to date
and are rarely used in practice. Table 2.2 shows the description (provided by CVE) and
the CVSS base vectors and score (provided by NVD) for vulnerability CVE-2019-0199
affecting Apache Tomcat.

An example of a CVSS field is the Attack Vector field (AV) from the base CVSS V3
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CVE-2018-1336
Published on 08/02/2018
An improper handing of overflow in the UTF-8 
decoder with supplementary characters can lead to 
an infinite loop in the decoder causing a Denial of 
Service. Versions Affected: Apache Tomcat 
9.0.0.M9 to 9.0.7, 8.5.0 to 8.5.30, 8.0.0.RC1 
to 8.0.51, and 7.0.28 to 7.0.86.

CPE entry
Apache Software Foundation 
Tomcat 7.0.28

CPE URI
cpe:2.3:a:apache:tomcat:7.0.28:*:*:*:*:*:*:*

*

0..11

*

Published at disclosure by Mitre

Published after security analysis by NVD

Published independently by NVD

Figure 2.2 – The relationships between a CVE vulnerability and its associated CPE URI
and entries. The vulnerability, its metadata, and the CPE entries have three different
publication processes.

vector, which can be set to Network (AV:N, the vulnerability can be exploited remotely),
Adjacent (AV:A, the vulnerability can be used from an adjacent network such as the
same Wifi network or a local IP subnet), Local (AV:L, the vulnerability can only be used
through a local access to the vulnerable system), or Physical (AV:P, the vulnerability
requires physical manipulation of the vulnerable device).

There have been critics of CVSS and in particular of its severity score formulas, which
have been argued as not reflecting expert consensus on a vulnerability severity [92], and
having no correlation with the real-world impact of a vulnerability [8] [9]. Despite these
critics CVSS has been the only vulnerability severity measurement framework to gain
widespread adoption.

CPE

The Common Platform Enumeration (CPE) [132] is a notation to describe the nam-
ing and versioning of software components affected by vulnerabilities. The CPE Dictio-
nary [139] is a database maintained by NVD about every piece of software ever affected
by a vulnerability. CPE is separated into URIs and entries as depicted in Figure 2.2. The
URIs act as references to entries located inside the CPE dictionary.
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The CPE URIs include fields such as the affected software name in short form, the
affected version, the software vendor name and the target software (the name of the
software platform the affected software runs on: for instance an Android application’s
target software is Android). The complete CPE entry includes all these fields as well as
additional information such as the affected software name in long form and sometimes in
multiple languages.

It is worth noting that URIs and dictionary entries have independent publication pro-
cesses. For every analyzed CVE vulnerability, NVD experts provide a list of CPE URIs
that they consider to be associated with the vulnerability, without necessarily ensuring
that a corresponding CPE entry actually exists in the dictionary. Therefore, the informa-
tion about the affected software in a vulnerability comes in three independent steps: in
raw form at disclosure in the text description of the CVE vulnerability, as a CPE URI
when the vulnerability is analyzed by NVD, and as a CPE entry in the CPE dictionary
at some point in time (before or after the publication of the related CPE URI). This lack
of coordination impacts how CPE URIs and the CPE dictionary can be used in practice,
as we show in Chapter 4.

CPE has been criticized for being a theoretical database authored manually by security
experts, which by design cannot map perfectly to actual software binaries and packages
in a production system [173, 204]. This situation creates a lot of discrepancies when doing
analysis, such as associating a CVE vulnerability to incorrect or inexisting CPE entries. In
particular, some software dependencies are difficult to establish, such as static inclusion of
software librairies in a pre-compiled binary. As a concrete example, Bitcoin Core released
an emergency patch [22] for the OpenSSL vulnerability Heartbleed [61] because it included
a copy of OpenSSL compiled statically. However the CPE URIs proposed by NVD for
Heartbleed never included Bitcoin Core as an affected software [140]. In Section 2.3.2 we
discuss some attempts by the research community to remedy these shortcomings.

CWE

The Common Weakness Enumeration (CWE) [52] is described as “a community-
developed list of software and hardware weakness types”. It is maintained by Mitre. It
aims to be the reference documentation of common vulnerability patterns that can be
found across a wide range of software products and technologies. A few examples of CWE
weaknesses have been selected in Table 2.3. For each CVE vulnerability they analyze, the
security experts from NVD provide a reference to a related CWE entry in order to classify
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CWE ID Title Description
CWE-287 Improper Authentication When an actor claims to have a given iden-

tity, the software does not prove or insuffi-
ciently proves that the claim is correct.

CWE-620 Unverified Password Change When setting a new password for a user, the
product does not require knowledge of the
original password, or using another form of
authentication.

CWE-295 Improper Certificate Validation The software does not validate, or incorrectly
validates, a certificate.

Table 2.3 – Examples of CWE Weaknesses.

vulnerabilities by type of weakness.

2.2.3 Analyzing and Predicting the Vulnerability Life Cycle

CVE was started in 1999 and NVD in 2005. As of July 2020, more than 139 000
vulnerabilities have been disclosed by CVE and analyzed by NVD. This has allowed the
research community to explore the vulnerability life cycle at scale instead of settling for
anecdotal evidence as was the norm before.

The seminal work in vulnerability life cycle research was published by Frei et al in
2006 [73]. For the first time, an empirical examination of vulnerabilities was done at scale
(14000 vulnerabilities were studied at the time), revealing global trends in the relationship
between the time of discovery, disclosure, exploit, and patch of the vulnerabilities.

Multiple works followed [37, 183, 74] with the community gradually converging on
three insights. First, the relationship between attacks and vulnerabilities follows a power-
law, with a minority of vulnerabilities being exploited in a majority of attacks, and most
vulnerabilities never being exploited at all [129, 7]. The actual rate of vulnerability ex-
ploitation has been subject to discussion, with figures going from 15 % [129] to 1.3 % [172]
having been reported in the literature. Second, too many vulnerabilities are disclosed at
any time for them to be treated with an equal level of urgency. More than 18000 vulnera-
bilities were disclosed by CVE [41] in 2018 and 2019, around 50 vulnerabilities per day on
average. Prioritization is required. Third, usage of a vulnerability in the wild can increase
as high as five orders of magnitude between before and after vulnerability disclosure [21].

These three facts taken together led the community to a conclusion: vulnerability
exploitation in the wild, both in the present and the future, is the most important property
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of a vulnerability to predict. By properly predicting exploitation in the wild, one can
efficiently prioritize limited mitigation resources while still preventing most attacks.

Starting from 2010, most efforts in the community were devoted to finding accurate
predictors of exploitation. As CVSS was gaining widespread use in the security community
at the time, multiple teams attempted to use CVSS vectors for vulnerabilities as input of
vulnerability exploitation models. None of these efforts led to satisfactory results [93, 8,
9], creating an entrenched divide in the community regarding the usefulness of CVSS [92],
and even regarding the mere feasibility of unbiaised vulnerability statistics [29]. During
the rest of the decade multiple other sources of information were proposed, with better
success.

In 2010 Bozorgi et al [24] tried to predict future vulnerability exploitation using vul-
nerability metadata published in databases such as NVD, CVE, and OSVDB [150] (a
now defunct vulnerability database predating NVD, with mostly similar content). As-
suming the availability of this metadata, they were able to predict the exploitation of a
vulnerability within two days with 85 % accuracy.

Allodi et al [9] compared future vulnerability exploitation prediction using CVSS vec-
tors, presence of a public proof-of-concept exploit, and availability of a weaponized exploit
for sale in vulnerability black-markets. They found the availability of the exploit in vul-
nerability black-markets to be the best predictor of exploitation in the wild.

As social networks such as Twitter became important venues for discussing vulnera-
bility disclosure, multiple works attempted to use tweets as a data source for predicting
current and future vulnerability exploitation [172, 125]. In 2015 Sabottke et al [172] used
this technique and were able to detect vulnerability exploitation two days prior all other
techniques and datasets available at the time. More recently, Tavabi et al [196] used dark
web forums discussions to predict future vulnerability exploitation.

One of the most singular work was proposed in 2018 by Xiao et al [229], who cor-
related botnet activity and patch deployment activity at the ISP level to detect present
vulnerability exploitation in the wild. They achieve a detection accuracy of 90 % and can
detect exploitation earlier than previous state of the art techniques. This is the current
state of the art in present vulnerability exploitation detection.

These prediction efforts culminated with the release in 2019 of the Exploit Predicting
Scoring System (EPSS) [102], which uses many data sources to train a model answering
a simple question: what is the probability of a vulnerability being exploited in the wild in
the twelve months following its disclosure? The data sources included public sources such
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as the NVD database, ExploitDB [67], Rapid7’s metasploit framework modules [122], D2
Security’s Elliot Framework [54], the Canvas Exploitation Framework [31], as well private
data sources from organizations such as Proofpoint [53], Fortinet [71], AlienVault [5] and
GreyNoise [83]. From all these sources they trained a regression model attempting to
make explicable predictions. This is the current state of the art in future vulnerability
exploitation prediction.

One interesting thing to note is that to our knowledge all of these models, including
EPSS, are based on data usually generated after disclosure, such as human discussion or
exploit trading happening after the vulnerability has already gone public for some time.
While some of these models can provide reasonable results days or even hours after the
disclosure, the ability to predict the danger posed by a vulnerability in the minutes or
seconds after its disclosure has not improved significantly. This is an important problem
as, as we can see in the next section, some critical n-day vulnerabilities have been exploited
in very short time frames after their disclosure.

2.3 N-Day Vulnerabilities and Current Defenses
Against Them

In this thesis we focus on a specific part of the vulnerability life cycle: n-day vulner-
abilities, which are recently disclosed vulnerabilities still in the critical part of their life
cycle. We first propose a summary of the real-world impact of n-day vulnerabilities in
Section 2.3.1 then explore current mitigation best practices from the research and practi-
tioners security communities: these include software management and patch deployment
(Section 2.3.2), intrusion detection and prevention (Section 2.3.3), and information shar-
ing (Section 2.3.4).

2.3.1 Real-World Impact of N-Day Vulnerabilities

In Appendix A we propose the case studies of several n-day vulnerabilities with major
real-world impact, including Heartbleed [61], Shellshock [56], and EternalBlue [137, 220,
205]. These case studies include the complete timeline of each vulnerability from the
introduction of the vulnerable code up to the widespread dissemination of the mitigation,
marking the transition of the vulnerability from n-day to well-known. It also includes an
assessment of the real-world damages and consequences of each vulnerability.
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From these case studies we can draw a few observations. First, n-day vulnerabilities
can have tremendous consequences: EternalBlue caused more than 14 billions dollars
of damages, in part through its inclusion in the WannaCry ransomware that paralyzed
thousands of information systems across the world, and also because of its use in NotPetya,
the most devastating cyber-warfare attack in history, that destroyed the content of 1 in
10 computers across Ukraine. During the very last days of work on this thesis, the n-day
vulnerability CVE-2019-19781 [159] led to a confirmed fatal casualty, through its inclusion
in a ransomware that paralyzed an entire hospital, requiring a patient in critical condition
to be diverted elsewhere. The patient passed away during transfer.

Second, dangerous vulnerabilities can stay non-public for a considerable amount of
time. Shellshock and EternalBlue stayed non-public for decades, Heartbleed for years.
Moreover, it is often difficult to assert with confidence whether a non-public vulnerability
has actually stayed undiscovered or was independently discovered (and possibly exploited)
as a zero-day by some parties before the publicly known discovery leading to its eventual
disclosure. EternalBlue is confirmed as having been used as a zero-day before disclosure;
this is still a topic of debate for Heartbleed and Shellshock. Third, once a vulnerability is
disclosed, attacks can happen in a very short time: Shellshock led systems to be compro-
mised just one hour after disclosure. Finally, having a proper patch at disclosure is not a
guarantee: it took an entire week for Shellshock to be properly patched, all while being
under active exploitation.

These observations show in particular that n-day vulnerabilities already have had
widespread impact (including lethal consequences), sometimes in a very short amount of
time after disclosure, and that it could happen again in the future. For further discussion
we refer the interested reader to the case studies in Appendix A. We now describe the
techniques currently proposed by the research and practitioners communities to defend
against n-day vulnerabilities.

2.3.2 Software Management and Patch Deployment

After having established the risk posed by n-day vulnerabilities, in the rest of this
section we study the current state of the art for mitigating them, from both the research
and practitioners security communities. We focus on the case of a single organization
willing to defend its own information systems from risks related to n-day vulnerabilities
disclosures.

A first obvious yet critical way to diminish the risk posed by n-day vulnerabilities is
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the ability to maintain an up-to-date inventory of the software and hardware used in a
complex information system, and being able to quickly apply a pending security update
related to any component used in the system. However this is not easy and does not fully
solve the problem.

Software Updates are not Seamless

Nappa et al [127] used Symantec’s WINE platform to assess security updates dissemi-
nation for various software on 8.4 million hosts that used the Symantec antivirus software.
They found that on average, when a public exploit was released for a vulnerability, only
14 % of the hosts had deployed a patch mitigating the vulnerability. They also found that
some software (such as Adobe Flash) were installed multiple times for more than 50 %
of the hosts, with one installation patched but not the others, creating a false feeling of
security for users that applied security updates but did not correctly catalog all copies of
software residing on their machine.

Why is keeping software up to date so difficult in practice? We identify three problems:
cataloging software and hardware, asserting if a component is vulnerable, and actually
deploying a pending security update.

First, cataloging an information system exhaustively is hard. Software has many forms
and many locations: while software binaries reside on hard disks, firmware is embedded
inside hardware, and uncompiled source code can be interpreted at run time. Software
can be downloaded on the fly over the network without touching the disk, such as when
browsing the web with Javascript enabled. Hardware can be vulnerable [109][115] and is
not easily updated or replaced. While in theory the CPE database [139] (which references
all software and hardware ever affected by a vulnerability) can be used to track and
monitor all these components, discrepancies between the real world and CPE entries
(which are authored manually) quickly accumulate to the point that some have argued
that proper vulnerability management is a myth [204]. This problem also impacts software
versioning: as an example the Debian security team [57] is known to backport security
fixes into debian packages without waiting for official releases of the upstream software,
creating a debian-specific version number while doing so. While this practice should be
lauded for improving the timeliness of Debian security updates, it adds confusion about
how a given version of a software is supposed to behave. Also, when Nappa et al [127]
analyzed the software installed in 8.4 millions hosts they remarked that “identifying all
vulnerabilities affecting a host is challenging due to the various vendor approaches for
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maintaining program and file versions”.
Second, evaluating if a just-disclosed vulnerability affects a given piece of software or

hardware is not straightforward. While in theory the CVE [41] database (which references
all public vulnerabilities) and the CPE database are linked together through CPE URIs
metadata annotating vulnerabilities, discrepancies are numerous here as well, as noted by
Sanguino et al [173]. Several works have been proposed to improve the quality and the
timeliness of the mapping between NVD’s CVE metadata and CPE: Glanz et al [79] pro-
posed to enhance software versions existing in NVD vulnerability metadata by extracting
additional information from the vulnerability CVE description. In this thesis we present a
contribution on automated prediction of affected software of a vulnerability at disclosure
in Chapter 4 and Wåreus et al [221] have since built upon our work by improving the
accuracy of the prediction at the cost of its explicability.

Part of the difficulty of evaluating if a software is affected by a vulnerability is ac-
cidental: due to the way the disclosure process has been historically separated between
CVE and NVD (as discussed in Section 2.2.2), the timing of publication of vulnerabil-
ity information is not optimal. While initiatives such as NVD CVMAP [144] have the
potential to improve the base quality and timeliness of most disclosures, another part of
the difficulty is essential: Shellshock’s initial incomplete patch [56] meant no one in the
vulnerability disclosure team (including long-time bash maintainer Chet Ramey) was able
to fully grasp the extent of the vulnerability at the time of its disclosure. For automated
systems and human experts alike, evaluating if and how a newly-disclosed vulnerability
affects a given piece of software can only be answered with some degree of uncertainty.

Third, even when a newly-disclosed vulnerability is correctly recognized as creating
a risk on a system, a security update is pending and is ready to be deployed, applying
the patch safely is not always straightforward. Software updates can exhibit unforeseen
backward-compatibility problems, which put system administrators in a dilemma: should
they apply security updates quickly at the risk of breaking critical business processes, or
should they leave a known vulnerability unpatched [152]? This problem is particularly
acute in safety-critical systems such as health-care or avionics which are often relying on
legacy software [80], creating life-threatening situations when the wrong choice is made.

Moreover the cloud has heightened the stakes of this problem: Zhang et al [235] pointed
the trend of cloud clients to rely on pre-existing OS images to build their cloud virtual
machines and how this trend created a concentrated risk when a vulnerability is detected in
widely-used images. This concentration creates opportunities for both attack and defense

45



Chapter 2 – State of the Art

at scale.
The way software is actually updated, and how this affects updates dissemination time-

liness has also been subject of study. Duebendorfer et al [60] studied how web browsers’
update mechanisms impacted the timeliness of security updates deployment. They found
that Google Chrome’s completely automated update mechanism allowed it to have to the
most up to date fleet of browsers after three weeks (near 100 % of the browsers were up
to date), while Firefox’s one-click update mechanism (at the time of the study in 2009)
led to the quickest burst of updates after five days (near 75 %).

Software Updates are Necessary but not Sufficient

As said before, complete, correct and timely software patching is critical to defend
against n-day vulnerabilities but is not a complete defense against them. Sometimes there
is simply no viable patch to be deployed when the vulnerability starts to be exploited,
either because none has been prepared in time by the software publisher, or because
deploying the available patch would create unacceptable problems for the information
system. Patch authoring timeliness did improve in the last few years: the Google Project
Zero team [11], which looks for vulnerabilities in widely used closed and open-source
software, has a strict disclosure delay policy: 90 days after contacting a publisher regarding
a vulnerability they discovered, they publicly disclose the vulnerability regardless of the
availability of a mitigation. They remarked that at the time of the team inception (in
the aftermath of Heartbleed in 2014) it was common for vulnerabilities to take up to six
months to be mitigated, while in 2019 97.7 % of their reports were fixed before the 90
days delay [156].

Still, it is inevitable that there will be n-day vulnerabilities exploited before being fully
patched (which has already happened with Shellshock) or information systems that have
legitimate reasons not to apply the available patch. In the next subsections, we explore
n-day vulnerabilities mitigation beyond patch management.

2.3.3 Intrusion Detection and Prevention

Intrusion detection and prevention is an important field with regard to n-day vulner-
ability mitigation. IDSs raise alerts regarding activity they consider malicious, creating
the possibility of false positives and false negatives.

Definition 23 Intrusion Detection aims to analyze computer activity to determine if this
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activity is legitimate or malicious. A security system doing intrusion detection is called
an Intrusion Detection System (IDS).

Definition 24 A false positive is an alert being emitted superfluously while the situation
does not warrant it.

Definition 25 A false negative is the erroneous absence of an alert while the situation
warrants the emission of an alert.

Types of Intrusion Detection Systems

IDSs are usually classified depending on what activity they analyze and how they
analyze it.

Definition 26 Host-based IDSs (HIDSs) reside on a single computer system and evaluate
if the behavior of the various processes executed on the computer system are reflecting
legitimate or nefarious activity.

Unlike an antivirus software which usually focus on the content of files, HIDSs analyze
runtime behavior, such as the sequence of system calls made by a given process in its
lifetime [26].

Definition 27 Network-based IDSs (NIDSs) reside on a computer network: they are given
a copy of every network packet traveling inside the protected network and assess if the
packet is legitimate or part of malicious behavior.

Unlike HIDSs, NIDSs can monitor entire computer networks at a time [110]. Moreover,
IDSs are also separated according to how they make their decisions.

Definition 28 Signature-based (sometimes called rules-based) IDSs are based on expert
knowledge, gathered in the form of signature databases.

These signatures use simple rules (such as string matching) to detect known, specific
attacks [195]. However they are useless against never-seen-before attack techniques [75],
for which anomaly-based IDSs are (in theory) better suited.

Definition 29 Anomaly-based IDSs use statistics techniques or machine learning to sep-
arate normal and anomalous activity.
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While not all anomalous activity is malicious, all malicious activity is by definition
anomalous. However, neither signature-based nor anomaly-based IDSs can prevent an
attack from succeeding, they merely report it. Blocking malicious activity is the task of
Intrusion Prevention Systems (IPSs).

Definition 30 Intrusion Prevention Systems (IPSs) behave like an IDS, but after decid-
ing that an activity is malicious, they block it.

Network-based IPSs drop packets that are considered malicious before they reach their
destination [27][117][75], and host-based IPSs block unauthorized actions before they are
executed by the OS [228]. IPSs have additional constraints compared to regular IDSs,
mostly because they have to make an analysis decision in real time [232].

Signature-Based IDSs

Signature-based IDSs and IPSs already play an operational role in the mitigation of
n-day vulnerabilities. The cloud industry has coined a domain-specific term for signature-
based network IPSs: Web Application Firewall (WAF), with many commercial offerings
such as Amazon Web Services WAF [13], Google Cloud Armor [81], or the Cloudflare Web
Application Firewall [40], while other actors sometimes use the term Next-Generation
Firewall (NGFW) [130]. There are also widely used open-source IDSs such as Snort [195]
and Suricata [193] that can be used with free and commercial signature databases.

However signature-based intrusion detection and prevention share many of the same
shortcomings as patch management: a human expert needs to have enough time to un-
derstand how the vulnerability is exploitable to create signatures detecting the associated
attacks. The signatures need to be disseminated to all IDSs that protect an instance of
the vulnerable software. Large-scale cloud IPSs or WAFs make this last part easier, as
a single signature deployment can protect millions of information systems at once. For
instance, Cloudflare has an history of adding new rules and signatures to its WAF of-
fering in a timely manner [39], and as seen in Appendix A.2 they were able to deploy a
signature mitigating Shellshock three hours after its disclosure. But while this timeliness
was praiseworthy, it was still not enough as the first recorded Shellshock attack occured
less than one hour after disclosure.
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Network-Based, Anomaly-Based IDSs

Anomaly-based IDSs and IPSs, by contrast, can protect computer systems against new
attacks and should in theory be better suited to mitigate n-day and zero-day vulnerabil-
ities. In particular, network-based, anomaly-based IDSs (NAIDSs and NAIPSs) could be
the Holy Grail of n-day vulnerability mitigation for information systems, as they can pro-
tect a whole network at a time against unknown attacks, including n-day vulnerabilities
for which no patch nor signature is available yet.

NAIDSs have been a research topic for several decades, and a complete state of the art
of the field is outside the scope of this thesis (we can refer the interested reader to surveys
by Buckzak et al [27], Bhuyan et al [117], and Garcia et al [75] for going deeper). Instead
we focus on why these considerable research efforts did not lead to security products that
are actually used by security practitioners.

A first problem is that anomaly-based intrusion detection shares all the challenges of
machine learning for security alerting for which we dedicate the complete Section 2.4.
However there are also some difficulties specific to intrusion detection.

The biggest challenge is that properly evaluating an anomaly-based IDS is still an
open problem. In this context, intrusion detection is a prediction problem, and prediction
techniques are typically evaluated by maintaining an evaluation dataset made of annotated
data: each piece of data is fed as an input to the prediction system. This input is annotated
with a ground-truth and an evaluator compares the prediction made from the input and
the ground-truth value that should be predicted. Some prediction techniques require some
form of training data (this is called supervised learning, see Section 2.4.3) and some do not
(unsupervised learning, also Section 2.4.3) but in all cases we need an annotated evaluation
dataset to see how well a given prediction technique actually works compared to another.

All NAIDS evaluation datasets have serious shortcomings. Viegas et al [217] and Hindy
et al [88] identified several properties required for NAIDS evaluation datasets to be rele-
vant.

First, the dataset should be realistic and generalizable. This is a problem because an
IDS can be deployed in many contexts: information systems big and small, domestic LANs
and Internet backbones are all valid situations for which one would wish to use an IDS
yet they have very different definitions of normal traffic. Some datasets [211] are based on
actual traffic captured in a real network while others are more artificial: either a made-
up computer network was created from scratch and the resulting network activity was
captured [233], or the traffic data was entirely generated by simulation [6]. None of these
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approaches are a panacea: real traffic is filled with personal data that makes it difficult
to share publicly, while generated traffic risks not being realistic enough.

Second, the dataset should be valid. This means the base-rate (the ratio between ma-
licious and non-malicious traffic) should be realistic, and all interesting classes of attacks
should be covered. This is a problem because the base-rate is usually very low (a vast
majority of the traffic is legitimate), which implies that an exhaustive dataset must be
very big to stay realistic. Moreover, the state of the art in attacks is not public and con-
stantly evolving, making it challenging to assert the completeness of the coverage. Hindy
et al [88] identified a taxonomy of network threats and concluded that only 33.3 % of
these threats were covered by existing IDSs datasets.

Third, the dataset should be correctly annotated. This is particularly challenging for
datasets based on actual traffic as human authoring of ground-truth annotations is un-
tractable for large amount of traffic data. Moreover, for actual traffic no oracle (human
or IDS) is able to assess with 100 % certainty that a given piece of traffic is legitimate or
part of a covert attack, because of the non-public state of the art in attacks.

Fourth, the dataset should be current and updatable, as both normal and attacker
traffic evolve over time. Even a perfect dataset on all fronts would become outdated after
some years if not updated regularly. This makes proper IDS evaluation an ongoing process,
which is even more challenging than traditional scientific reproducibility (which is already
difficult in a lot of scientific fields).

Fifth, the dataset should be public, or at least shareable, to allow other researchers to
compare their IDSs against existing ones. This is particularly difficult for datasets based
on real traffic comprising personal or confidential data.

As soon as 2010 Tavallaee et al [197] and Sommer et al [187] concluded that past
NAIDS research had profound methodology issues challenging the validity of most research
papers in the field. Overall NAIDSs have not been adopted by the security industry and
to our knowledge there is only one open-source NAIDS available, Hogzilla [90], which
has close to no adoption. Since 2010 the evaluation of NAIDS datasets themselves has
become a growing topic of research [164, 78], but the ideal dataset or evaluation protocol
remains as elusive as ever. Therefore even recent NAIDS works [233] still use standard IDS
evaluation datasets, such as NSL-KDD [138] which is based on the KDD-99 dataset [107]
which was itself based on the DARPA98 dataset [55]. Whatever the merits of DARPA98
when it was released, typical network traffic in 2020 has nothing to do with typical network
traffic in 1998, which inevitably leads these evaluations to lack realism.
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Other recent works [124] included the creation of dedicated, more realistic evaluation
environments, which is laudable but raises questions regarding the validity and general-
izability of their evaluation protocol, as these dedicated evaluation protocols may have
shortcomings themselves. Moreover this makes comparison between multiple IDSs chal-
lenging as each of these works use a different evaluation protocol from the others.

These difficulties prevent NAIDSs from becoming a silver bullet to defend against n-
day vulnerabilities. This may change in the future if a breakthrough happened either in
NAIDS scientific evaluation or NAIDS real-world applicability.

2.3.4 Information Sharing

As seen in the previous section, cyber defense can sometimes be more of an art than
a science as the true state of the art of attackers is non-public, which makes it difficult
to reliably assert the realism and relevance of an evaluation protocol. Therefore it can
be helpful to take a step back and look at which techniques security practitioners have
converged towards when dealing with actual threats in the real world.

The common thread of all these practices is information gathering and sharing. Over
the years practitioners have found that the more information one gathers into one place
and has access to, the more equipped one is to connect the dots and realize that an
attack is taking place. A first success story of information sharing is the vulnerability
disclosure community, which we detail in Section 2.2. In this section we present four
other information sharing endeavors: Endpoint Detection and Response (EDR), Security
Information and Event Management (SIEM), Unified Threat Management (UTM), and
Cyber Threat Intelligence (CTI).

Endpoint Detection and Response

Endpoint Detection and Response (EDR) [214] is a set of software and practices aiming
to protect the endpoints of an information system, e.g. the computer hosts manipulated by
users on a day to day basis. EDR systems gather multiple security metrics from endpoints
and send them to a central coordination entity, which can then trigger remote reactions
to be executed by the endpoint. Common security metrics are process activity (such as
disk writing and reading, or network communication) while common reactions include
network isolation or even computer shutdown. EDR systems are also a great fit with IDSs
as the combination of both allows the analysis of the host and network data of an entire
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information system in a single process, facilitating the detection of unusual activity. A
typical scenario for EDR systems is the rapid detection and mitigation of a ransomware
attack propagating across an organization network [223].

Security Information and Event Management

The quantity of data gathered for security analysis (such as metrics collected by EDR
agents or network IDSs) makes it challenging to navigate and use meaningfully. The in-
dustry solution to this problem is called Security Information and Event Management
software (SIEMs) [213]. SIEMs aim to centralize all available security information in any
form and make it available for security analysts to use in their investigations. Analysts
can then automate parts of their tasks by creating SIEM rules triggering security alerts
according to patterns in the incoming data. According to Bhatt et al [19], a major chal-
lenge for SIEMs is the ever-growing volume of data to be processed, which manifests in
several ways: analysts have difficulties creating alert rules that do not generate too many
false positives and negatives (see Section 2.4), and the scalability requirements for SIEM
hardware and software make them more and more difficult to engineer and maintain.

Unified Threat Management

Unified Threat Management (UTM) [215] is the trend of packing multiple security
functions inside a single piece of software or hardware. For instance, a UTM device can
combine a network firewall with a network IDS and IPS, and include other features such
as a Virtual Private Network (VPN) or even a SIEM. UTM is inherently a tradeoff as
it provides ease of use and natural integration of otherwise disjoint elements, but this
creates the risk of a single point of failure and is contrary to the doctrine of defense in
depth.

Cyber Threat Intelligence

Cyber Threat Intelligence (CTI) is the practice of sharing knowledge about attacks
and attackers between multiple organizations targeted by common threats, in an effort
to get a better picture of the attackers, their motivations, and the tactics, techniques and
procedures (TTPs) they use. CTI starts with collecting and sharing forensic evidence of an
attack (such as computer logs showing an anomalous behavior in an information system)
and attempts to reconstruct the kill chain of the attack: which procedure the attackers
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used to intrude the system and which resources they targeted once they were inside. The
end-goal of this process is attack attribution: determining the identity and motivation of
the attackers from the evidence they left when they attacked.

While information sharing between organizations is a laudable effort, it creates the
challenge of agreeing on a common vocabulary and standardizing the way attack knowl-
edge is encoded and transferred.

Multiple standardization efforts for CTI have been proposed, with the Structured
Threat Information eXpression (STIX) [14] being the closest to an industry standard.
Like CVE, STIX is proposed by Mitre [203] and is an XML Schema aiming to represent
CTI expert knowledge. However CTI as a field has been the subject of criticism. Mavroei-
dis et al [120] argued that no current standard including STIX are readily available for
use for CTI, as each existing one has some shortcomings. Oosthoek et al [147] argued that
CTI is a product without a process, with the field lacking results for multiple reasons such
as methodology deficiencies, lack of sharing, low quality of shared knowledge, bias of CTI
actors, and difficulty of attack attributions. Some of these problems are acknowledged
by the French Agence Nationale de la Sécurité des Systèmes d’Information (ANSSI) and
motivated the creation of OpenCTI [148], an open-source CTI platform. They were also
the motivation for TTPDrill [97], an automated system extracting threat actions from
unstructured textual CTI sources.

It should be noted that these tools and practices (EDR, SIEMs, UTM, and CTI)
have had little scientific validation from the research community so far. This can make
it difficult sometimes to separate valuable tradecraft from security theater. Whatever the
merits of the current state of the industry, current practices did not prevent catastrophic n-
day vulnerabilities such as EternalBlue from occuring. Both researchers and practitioners
need to innovate to better protect information systems and their users in the future.

2.4 Machine Learning for Security Alerting

The recent progress in artificial intelligence (AI) and machine learning has had a
profound impact on many topics of Computer Science and society in general. Information
security is no exception. In 2019 there have been more than 100 machine learning research
papers published every day for the whole year [207]. It is therefore largely beyond the scope
of this thesis to provide an exhaustive state of the art of the field.

Instead we focus on the unique challenges of applying machine learning to security,
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and more specifically to security alerting: deciding whether a perceived situation presents
a risk or not, with the possibility of both false positives and false negatives.

Security alerting is a critical topic for improving the accuracy of many security tools
such as IDSs and SIEMs. In Section 2.4.1 we study the reasons to use (and not to use)
machine learning for security alerting. In Section 2.4.2 we review the difference between
machine learning, data mining, and information retrieval. In Section 2.4.3 we review the
different types of machine learning tasks, such as supervised and unsupervised learning,
and others. In Section 2.4.4 we study the most common machine learning challenges, and
review commonly used solutions to them in the context of machine learning for security
alerting. In Section 2.4.5 we study several machine learning techniques we use in the
contribution of this thesis. Finally, in Section 2.4.6 we review how machine learning was
used to make progress on the vulnerability life cycle (studied in Section 2.2), with a specific
focus on decision explicability.

2.4.1 Why Using Machine Learning for Security?

As both the software industry and the research community rush to apply machine
learning to many open problems without always considering if it is appropriate, it can be
helpful to assert the goals and non-goals of applying machine learning to critical security
decisions such as security alerting.

There are two main properties one may wish to improve by applying machine learning
in this context: decision cost and decision timeliness.

Definition 31 Decision cost is the monetary and human cost of making a decision.

Definition 32 Decision timeliness is the time necessary to make a decision from a given
input.

Currently a lot of security decisions are made by human security experts, which are
expensive and in a short supply. As seen in Section 2.1.3, there is a shortage of SOC
analysts on the job market and current SOC analysts face an elevated risk of burnout.
The present monetary and social cost of security decisions is therefore very high.

Even with unlimited access to security experts, humans have a slow reaction time
while attacks can spread in milliseconds. Therefore the time to make a security decision,
or decision timeliness, is the second property that could be vastly improved by using
machine learning.
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However even if improving decision cost and timeliness is valuable, machine learning
also has an impact on other properties, such as decision accuracy, decision explicability,
and decision reliability over time. These are properties one may wish to preserve.

Definition 33 Decision accuracy, in the context of a prediction system, is the average
rate of correct decisions according to an evaluation protocol proposed by the designers of
the prediction system. Incorrect decisions can be either false positives or false negatives.

Definition 34 Decision explicability, in the context of a prediction system, is the ability
for a third party to evaluate and understand how and why the prediction system made a
decision (correct or not).

Definition 35 Decision reliability over time is the measure of whether measuring decision
accuracy at a given point time can help predict decision accuracy at a later point in time.

If diminishing the cost and time required to make security decisions leads these deci-
sions to become less accurate, one has to make a subjective assessment regarding whether
the trade-off is worth it. Monitoring the accuracy of past security decisions is therefore
critical to make a balanced judgment.

Some machine learning techniques are known as black-boxes where the reasons that led
a predictor to make a decision are not explicable [231], neither by a domain expert nor a
machine learning expert. This is a problem for life-critical and business-critical decisions:
a lack of decision explicability can erode trust in the prediction, especially when the odds
of making an inaccurate prediction are not negligible.

Last but not least, the more complex the prediction system the more difficult it is to
track its potential drifts over time, for instance because the production environment the
system is used in differs more and more from the assumptions taken during training and
evaluation.

Definition 36 Accuracy drift is a gradual divergence between the initial evaluation en-
vironment of a training system and the production environment it is actually used in,
leading to a lack of decision reliability over time.

For these reasons, evaluating both the metrics we want to improve and the ones we
want to preserve is critical when applying machine learning in the context of information
security. But as seen in Sections 2.1.3 and 2.3, many security problems are difficult to
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evaluate properly. For instance SOCs are idiosyncratic environments and IDS evaluation
is challenging. As proper evaluation is simultaneously required yet difficult to achieve
in practice, caution is advised when applying machine learning methods to information
security.

Explicability plays a key role in all the contributions of this thesis and is an important
criterion when comparing the machine learning techniques we discuss in the next sections.

2.4.2 Machine Learning, Data Mining, and Information Retrieval

Machine learning, data mining and information retrieval are three separate yet related
research domains. The common thread of all three domains is the use of data to achieve
a goal.

— Machine learning aims to use data to train a predictor to emulate the behavior of
a function, while not having access to the function itself but only to examples of
its use. Starting from a corpus of all past CVE vulnerabilities, a typical machine
learning task would be to automate the generation of a convincing vulnerability
description.

— Data mining aims to extract new insights from a data collection. Starting from
a corpus of all past CVE vulnerabilities, a typical data mining task would be to
identify the software and hardware most often affected by vulnerabilities.

— Information retrieval aims to select the most relevant documents in a corpus ac-
cording to a user query. Starting from a corpus of all past CVE vulnerabilities,
a typical information retrieval task would be to list all vulnerabilities affecting a
specific piece of software or hardware, provided as a user query.

While each research domain has a different objective and community, there is some
overlap in the techniques they use and in this thesis we made the choice to present the
three of them as a whole.

2.4.3 Learning: Supervised, Unsupervised and Beyond

A cornerstone of machine learning is the use of data for training. Machine learning
techniques are often separated depending on the way they use training data to achieve
the learning goal. In this section we cover five classes of machine learning tasks: supervised
learning, unsupervised learning, semi-supervised learning, active learning, and reinforce-
ment learning.
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Supervised Learning

As mentioned above, the goal of machine learning is to learn the behavior of a function
from a set of examples of its use. Supervised learning [171] is used when we have access
to both the input (the sample) and the corresponding output (the label or annotation)
for the function. A supervised learner then constructs a model that emulates the behavior
learned from the labeled samples: given an input in the same format as the trained data,
the model outputs a prediction based on what it has learned of the hidden behavior of
the function.

Supervised learners can be evaluated using another distinct set of evaluation data also
made of labeled samples from the same function. Model evaluation is important to assess
the ability of the model to generalize, e.g. to provide reasonable results on inputs it has
not seen during its training. Over-fitting is the opposite of generalization: an over-fitted
model performs very well on its own training data but poorly on evaluation or production
data.

Examples of supervised learning applied to security alerting includes DIADEM [16],
a supervised learning framework proposed by Beaugnon et al for security tasks such as
malicious PDF files detection. Another example is the many intrusion detection works [27,
117, 75] based on fully annotated datasets such as DARPA98 [55] and its derivatives.

The requirement of having access to labeled data makes supervised learning difficult to
apply in some contexts. For instance an IDS based on supervised learning would require
labeling network packets from the training data as legitimate or malicious, a costly and
difficult proposition. This requirement can be relaxed using other learning techniques,
which we detail next.

Unsupervised Learning

Unsupervised learning [32] is a class of learning tasks that do not require the train-
ing data to be labeled. Common types of unsupervised learning tasks include clustering
(grouping samples into subgroups depending on their similarity), anomaly detection (find-
ing outliers among samples), and ranking (compare one sample to another according to a
metric). In particular, anomaly-based IDSs can be implemented using anomaly detection
techniques applied to the problem of intrusion detection, such as in the works of Bivens
et al [23] and Leung et al [113].

One problem of unsupervised learning is that although data annotation is not required
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for training, some ground-truth is still required for evaluation, which often implies having
to label the evaluation data in practice. When proper labeling is impractical, unsupervised
learning tends to become as difficult to implement as supervised learning in practice.

Semi-Supervised Learning

Semi-supervised learning [237] is a hybrid class of learning where a small part of the
training data is annotated but the vast majority is not. Semi-supervised techniques can be
considered when properly labeling data is costly but possible. They often take assumptions
regarding the data, such as similar samples tending to share the same label. Moreover,
labeling the evaluation data is still important for proper evaluation.

An example of semi-supervised learning applied to security is EASEAndroid [218], a
framework to automate policy analysis and refinement for SEAndroid [179].

Active Learning

Active learning [181] is another hybrid class of learning where training is an interactive
process between an automated learner and an oracle such as a human expert. The learner
starts with a set of unlabeled data. It then has to solve two learning problems: the first is
to select the next sample to be submitted to the oracle for labeling, and then to use both
the labeled and unlabeled data to make predictions.

The main difference between semi-supervised learning and active learning is interac-
tivity: each label provided by the oracle should impact which sample should be submitted
next.

Active learning is an interesting choice for information security as the same channel
between the learner and the oracle can be used for both training and evaluation: once
the system is trained, random unlabeled samples can be sent to both the learner and the
oracle to compare their answers. The oracle, the learner, the data and its annotations can
all remain in one security context, avoiding the need to share sensitive datasets between
multiple security contexts.

Active learning has two main challenges: the first is oracle availability. For instance
security experts may have limited time to answer annotations from an active learner and
their time is very expensive. This can be controlled by allotting an annotation budget to the
learner, but this raises the question of the feasibility for the learner to reach an acceptable
level of accuracy within the given annotation budget. This problem is particularly acute
when there is a vast number of hyperparameters (see Section 2.4.4) to set before training:
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a bad choice of hyperparameter settings can simultaneously waste the training budget by
submitting superfluous samples to be annotated to the expert, while limiting the ability
of the model to infer correct decisions from the training data.

The second challenge is generalization. While active learning is helpful to learn the
context of an idiosyncratic environment, the learner may not perform as well in a different
context or when evaluated against another oracle (such as a different security expert from
the one the system was trained with).

An example of active learning for security is ILAB [17], an active learning for security
framework designed by Beaugnon et al aiming to facilitate the annotation of intrusion
detection datasets. We make use of an active learning technique proposed by Settles et
al [182] in a contribution detailed in Chapter 6.

Reinforcement Learning

Reinforcement learning [105] does not require a dataset. Instead the learner is put
inside an environment and provided with a utility function to maximize. A reinforcement
learner has to find a balance between exploration and exploitation: when exploring, the
learner tries to discover new things about its environment. When exploiting, the learner
maximizes the utility function based on what it already knows.

Reinforcement learning is appropriate when there exists an environment where a
learner can make mistakes without excessive consequences. Training can therefore take
place in simulations, test-beds, or low-stake production environments as long as the train-
ing environment is close enough to evaluation and high-stake production environments.

Utility function design is another important consideration. For example there are nu-
merous examples of learners respecting the letter of their utility function while ignoring
the spirit behind it, a phenomenon called specification gaming [189]. An example of re-
inforcement learning applied to security is the work of Xiao et al [230] on mobile edge
caching in 5G networks to prevent jamming attacks.

2.4.4 Common Machine Learning Challenges

In this section we describe a selection of common problems encountered in most ma-
chine learning endeavors.
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Document Content
A Little Red Riding Hood
B Little Red Corvette
C Little By Little

Word Doc A Doc B Doc C
By 0 0 1

Corvette 0 1 0
Hood 1 0 0
Little 1 1 2
Red 1 1 0

Riding 1 0 0

Table 2.4 – Examples of bag-of-words applied to a corpus.

Featurization

Most of the data useful for machine learning is unstructured. Meanwhile, the vast
majority of machine learning techniques take a vector of real numbers as input.

Definition 37 Featurization is the process of translating data from an arbitrary format
to a set of vectors of real numbers.

Featurization is an important topic of machine learning applied to security, as the
right or wrong selection of features can deeply impact the accuracy and explicability of
a machine learning system. Automated featurization from raw data is an active research
domain and in 2018 Beaugnon et al [16] concluded that the current state of the art is not
satisfactory enough for security decisions.

While featurization has to be solved on a case-by-case basis, the problem is ubiquitous
enough to have spawned many general-purpose solutions.

In particular, text featurization is the process of converting a corpus of documents into
set of vectors of real numbers. Corpus of documents are a very common type of input data
in machine learning pipelines, and text featurization is necessary for all the contributions
of this thesis. Text featurization has historically been handled through an algorithm called
bag-of-words, proposed by Harris et al in 1954 [85]. As shown in Table 2.4, bag-of-words is
used on a corpus of documents and treats the word index of the entire corpus as a multi-
dimensional space, each dimension representing an individual word. Individual documents
are then treated as vectors in this space, with each word count populating a dimension
(zero indicating the absence of the word in the document).
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Bag-of-words is simple, efficient, and easily explicable. It is still widely used in the
research community (including in two contributions of our own in Chapter 4 and 5)
but has some drawbacks. The main one is that it does not preserve grammar and word
order inside the document, which creates a loss of information during the featurization
stage. Other text-to-vector featurization schemes have been proposed, such as paragraph
vectors [112] which use backpropagation training to encode paragraph semantics in the
vector, at the cost of simplicity and explicability.

Dimension Reduction

Once training samples have been converted into real vectors, various machine learning
algorithms can be applied to them. However, most of these algorithms have superlinear
time or space complexity in the number of dimensions of the data. This creates a phe-
nomenon called curse of dimensionality where some algorithms become intractable on
highly dimensional data. Some featurization schemes can exacerbate this. For instance
bag-of-words adds a new dimension for every new word in the index of the corpus. The
index commonly grows linearly with the size of the corpus, leading some techniques to
break down after the training data becomes too large. This situation creates the need
for dimension reduction [216], a way to keep the number of dimensions of the input data
manageable.

Definition 38 Dimension reduction is the process of managing the number of dimensions
of an input space to ensure that the input space is tractable in the context of a chosen
machine learning technique and available computing resources.

Dimension reduction can be done through feature selection and feature projection.
Feature selection [103] is about retaining the original dimensional space but discarding
individual dimensions that are considered irrelevant. Explicability preservation is the main
advantage of feature selection, as a dimension in the reduced dimensional space is still the
same dimension as it was in the original space (for instance, a bag-of-words followed by
feature selection results in a smaller dimensional space where each dimension still represent
the count of occurrence of a specific word in a document). However the feasibility of feature
selection is often data-specific, making it difficult to generalize.

On the contrary feature projection [216] is about creating a new space with a lower
number of dimensions while creating a projection from the original space to the new
space. Feature projection is an active research topic but older approaches are widely used,
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including Linear Discriminant Analysis (LDA), Principal Component Analysis (PCA)
and Locality Sensitive Hashing (LSH) [98]. However the new dimensional space created
during feature projection is meaningless, which breaks the explicability chain from the
input data throughout the machine learning system.

For the sake of explicability we make use of feature selection in all the contributions
of this thesis.

Similarity Measurement

Once input data has been translated into real vectors of a reasonable size, a common
question is how similar a pair of samples is compared to another pair. Similarity mea-
surement is an integral part of many unsupervised learning techniques such as clustering
or anomaly detection.

The concept of similarity is sometimes expressed as a construction on top of the
concept of distance. As an example, the Radial Basis Function Kernel (RBF Kernel) [33],
described in Equation 2.1 is a similarity measurement based on the euclidean distance
between two vectors x and x′ of n dimensions, with the similarity decreasing exponentially
the bigger the distance between them gets. The exponential decay rate is adjusted using
the hyperparameter σ.

RBF Kernel(x,x′) = exp
(
−‖x− x′‖2

2σ2

)
, (2.1)

An overlooked aspect of distance-based similarity measurement is that similarity be-
tween vectors that have few or no dimensions in common is computed from the norm of
each vector. This can tend to exacerbate the similarity between vectors of lower norms,
as they are close to the origin of the dimensional space.

In some cases it can be desirable to only consider similarity from the shared dimensions
of two vectors. This can be accomplished using similarity measurements that are not
based on distance, such as the cosine similarity [185], described in Equation 2.2. As the
cosine similarity is based on the dot product of the vectors, vectors that do not share any
dimensions have a similarity of zero. We make use of cosine similarity in Chapter 6.

cosine similarity(x,x′) =

n∑
i=1

xix′i

‖x‖‖x′‖
, (2.2)
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Hyperparameters Tuning

A hyperparameter is a parameter that has to be chosen before training occurs, has a
direct correlation with model performance (the computing and time resources required for
the model to be trained and used), but has a non-obvious impact on decision accuracy.

Definition 39 A hyperparameter is a configuration parameter of the training process of
a machine learning pipeline.

A typical example of hyperparameter is the stopping condition of iterative training
methods [91, 236], which can be a number of iterations, an acceptable error threshold,
or both. Many machine learning techniques require additional hyperparameters specific
to their inner architecture (for instance, deep learning which we cover in Section 2.4.5
requires many hyperparameters to define the neural network topology).

A given combination of settings for all the hyperparameters in a machine learning
pipeline is called a hyperstate. The space of all possible hyperstates for a given pipeline is
called a hyperstate space and grows exponentially with the number of hyperparameters.
The optimal choice of hyperparameters settings depends very much on the training and
evaluation data, which creates a risk of over-fitting.

Moreover, as hyperparameters must be set before the beginning of training (which can
be lengthy), a highly dimensional hyperstate space cannot be fully explored repeatedly. As
the accuracy impact of the hyperparameters is difficult to reason about and a thorough
evaluation of all possible hyperparameters is often impossible, hyperparameters tuning
is often done in a rather empirical manner. An excessive number of hyperparameters is
therefore an obstacle to prediction explicability, as a large hyperstate space becomes a
black box. In the next section we review several machine learning techniques, notably
discussing how many hyperparameters they require.

2.4.5 Machine Learning Techniques

In this section we describe several machine learning techniques as a background for
the rest of this thesis. We first focus on two techniques we use in the contributions of this
thesis: regression analysis and ranking functions. We then briefly cover other noteworthy
machine learning techniques we do not use, such as deep learning.
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Regression Analysis

Regression analysis [72] is perhaps the earliest form of machine learning, actually
predating computer science by more than a century. Despite its age it is still a very
relevant tool in many security alerting problems.

There are several forms of regression analysis. In particular, the well-known linear
regression is based on finding a linear combination of the input vectors that properly fits
a desired output, which is itself a real number. The process of fitting a linear regression
consists in finding the appropriate linear coefficients for every dimensions in the input
space. Equation 2.3 shows how a linear model β of n+ 1 dimensions and an input vector
xi of n dimensions can approximate an output yi with error εi. We make use of linear
regression in Chapter 5.

yi = β0 + β1xi1 + · · ·+ βnxin + εi, i = 1, . . . , n, (2.3)

Sometimes yi is better approximated by a non-linear function of xi. In these cases non-
linear regression [72] can be applied by finding a function f such that yi = f(β · xi) + ε.

Linear regression has two very interesting properties for security alerting: it is very
explicable, as the importance of every dimension in the input is reflected in the linear
coefficient applied to it, and it can be trained analytically without any hyperparameter
using the Ordinary Least Squares (OLS) method [72].

Logistic regression [72] can be applied when the output is not a real number but an
enumeration of categories, to compute the probability of getting a given output category
given an input vector. Binary regression is logistic regression with two possible outputs
while multinomial logistic regression is logistic regression with more than two outputs. If
the categories are ordered, ordinal logistic regression can be applied.

However, unlike linear regression, logistic regression models can not be computed
analytically. Instead they require iterative methods such as Iterative Reweighted Least
Squares (IRLS) [91] or gradient-based solvers such as L-BFGS-B [236]. Iterative methods
require hyperparameters for their stopping conditions, which diminishes the explicability
of the model and raises the risk of over-fitting.

Ranking Functions

Ranking functions are a family of algorithms used in information retrieval to order
documents belonging to a corpus according to their relevance to a query. This query can
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be a word or a list of words.
The most well-known ranking function is TF-IDF [104]. TF-IDF is a numerical statis-

tic reflecting the importance of a word to a document, in the context of a corpus. TF-IDF
is defined in Equation 2.4 where t is a word and d is a document belonging to a corpus of
documents D.

TF-IDF(t, d,D) = TF(t, d)× IDF(t,D), (2.4)

TF is based on the number of occurrences of the word in the document. Several
formulas have been proposed, such as using the raw count directly or treating the presence
or absence of a word as a boolean event. Applying a logarithm on top of the raw count of
occurrences has been argued [198] to better reflect the diminishing returns of repeating
the same term several times.

IDF is defined in Equation 2.5:

IDF(t,D) = log |D|
|d ∈ D : t ∈ d| , (2.5)

where |D| is the number of documents in the corpus, and |d ∈ D : t ∈ d| is the number
of documents of the corpus containing the word t. TF-IDF therefore allows more specific
words to have a bigger impact on the mapping than common words.

TF-IDF has spread beyond the information retrieval community and is widely used
in many text analysis tasks across the machine learning community. It is often used in
conjunction with bag-of-words at the featurization stage of a machine learning pipeline
to transform a corpus of text documents into a set of real vectors with specific words
weighted heavier than common words (e.g. “the”, “a”, etc.). We make use of TF-IDF in
Chapters 4 and 6.

However, while TF-IDF is ubiquitous in machine learning, the information retrieval
community argues [226] that it has been made obsolete by another algorithm named Okapi
BM25 [166]. While TF-IDF has been found to work reasonably well in practice, it lacks
theoretical justifications for its formula. Meanwhile Okapi BM25’s formula is more com-
plex but based on information theory. However Okapi BM25 requires two hyperparameters
to be set, unlike TF-IDF which requires none. Okapi BM25 is used in TTPDrill [97].

Choosing between TF-IDF and Okapi BM25 in the context of decision explicability
creates an interesting dilemma, as TF-IDF is simpler, more well-known, and has no need
for hyperparameters, while Okapi BM25 has better theoretical justifications. This raises
the question about whether decision explicability is about making scientifically sound
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decisions even if they are complex to explain, or about keeping the decision process simple
enough to be understandable by a layman.

Deep Learning and Other Advanced Techniques

None of the machine learning techniques presented here are particularly new. Most
of the machine learning research community today is focused on deep learning: the use
of artificial neural networks (ANNs) [171] to solve learning problems. While ANNs have
existed since the 1950s, the abundance of today datasets and computing resources allowed
modern ANNs to unlock a degree of accuracy well above any machine learning technique
that existed before. This has revolutionized multiple research fields and industries in the
last decade.

However there are two major problems when using deep learning in critical contexts
such as security alerting. The first one is the inherent lack of explicability of large neural
networks. Deep learning explicability is a very active topic of research [231, 100] but
overall it is still an unsolved problem.

The second problem is that ANNs are vulnerable to adversarial attacks.

Definition 40 Adversarial attacks happen when an attacker deliberately crafts a mali-
cious input with the goal of misleading the model towards the wrong output.

Since their initial demonstration in 2014 by Szegedy et al [194], mitigation of adversar-
ial attacks against ANNs has been a very active research topic, with promising results [118]
but no complete solution for the time being. While adversarial attacks are only a minor
inconvenience in some fields, they create a very real risk in computer security contexts as
motivated attackers will definitely exploit this type of weakness in defense systems [219].

These two problems lead us to a major decision for this thesis: as of 2020, we believe
that deep learning is not yet suited for security alerting. However both deep learning
explicability and adversarial attacks mitigation are very active research topics and it is
conceivable this may change in the next decade.

Many more machine learning techniques (Support Vector Machines (SVMs) [46], De-
cision Trees [168], Random Forests [106] etc.) are more explicable than deep learning,
but less than regression analysis. Some of them, such as SVMs, are also vulnerable to
adversarial attacks [20]. As we do not use these techniques in this thesis, we omit them
for the sake of brevity.
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2.4.6 Machine Learning and the Vulnerability Life Cycle

To close this chapter, we combine two of our topics of interest, to investigate how
machine learning has been used in the vulnerability life cycle research community to
predict properties of vulnerabilities such as severity and probability of exploitation. For
the reasons described in Section 2.4.1 we view explicability as an important property of
robust security alerting and review the literature with this criterion in mind.

Explicability was an explicit design goal of Jacobs et al [102] when designing the EPSS
prediction model, which attempts to give the probability of a given vulnerability to be ex-
ploited in the twelve months following its disclosure. To achieve explicability they settled
on using logistic regression, which lets them provide a very transparent prediction model.
However they made the choice to use non-public data sources for model training, which
probably improves decision accuracy but hampers decision justification: for instance, ac-
cording to the EPSS model the heaviest factor of vulnerability exploitation risk is for the
software vendor to be either Microsoft or IBM. This is certainly an explanation on a su-
perficial level, but the more interesting question of why were these two vendors weighted
so heavily in the model is a black-box (Jacobs et al did make an effort to justify this
aspect of the EPSS model with the following comment in their paper: “The Microsoft
variable is likely a reflection of the ubiquitousness of Microsoft products (operation sys-
tems, and desktop and servers applications), as well as a long history of being targeted for
exploitation. The IBM variable appears to be related to a handful of exploited and widely
used products being led by their flagship Websphere application”).

Neither Borzorgi et al [24] (who also tried to predict vulnerability exploitation prior
to EPSS) or Khazaei et al [108] (who tried to predict CVSS scores from vulnerability
descriptions) made any mention of explicability in their design goals. Bozorgi et al used
SVMs while Khazaei et al compared multiple machine learning techniques such as SVMs,
random forests, and fuzzy systems. None of these techniques exhibit strong explicability
properties. Though Khazaei et al used a bag-of-words followed by TF-IDF for featurization
of the vulnerability descriptions, they also used non-explicable techniques such as LDA
and PCA for dimension reduction.

Some works have pushed exploitation prediction beyond software and hardware vul-
nerabilities, by trying to predict exploitation of entire websites and information systems
at a time. Soska et al [188] used a custom classification algorithm and web crawler to mon-
itor the entire world wide web, to predict in advance the probability of a given website
to become malicious in the future. Liu et al [116] monitored publicly visible configura-
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tion issues of many organizations (including open recursive resolvers, DNS source port
randomization, BGP misconfiguration, untrusted TLS certificates, open SMTP relays,
etc.) and used random forests to predict the probability of these organizations to suffer
a security breach in the future. Neither Soska et al nor Liu et al made any mention of
explicability as a research goal.

2.5 Conclusion

In this chapter we presented the state of the art of four distinct domains. Section 2.1
outlined how the security risk of an information system keeps evolving over time, making
current cyber-defense approaches unsustainable. Section 2.2 illustrated the complete life
cycle of software and hardware vulnerabilities, from the introduction of the vulnerability,
to its disclosure, to the dissemination of a mitigation. Section 2.3 focused on a specific
part of this life cycle: n-day vulnerabilities, which are newly disclosed vulnerabilities with
heightened risk as they are not well known yet. Finally, in Section 2.4 we reviewed machine
learning tools to be used for n-day vulnerability mitigation, with a specific focus on
decision explicability.

The current state of the art in n-day vulnerability mitigation leaves us with a sense
of urgency. The next major n-day vulnerability will likely cause billions of dollars in
damage and may conceivably lead to fatal casualties as well, two things that have already
happened in the past. Properly managing the constant flow of new vulnerability disclosures
is a very hard problem: most of these vulnerabilities are benign, but any of them can be a
major source of risk. A lot of organizations are vulnerable and have no meaningful ways to
defend themselves. Outsourcing defense requires trust and this trust is undermined by the
difficulty of evaluating and explaining many of the defense mechanisms proposed today
by the practitioners and research communities. The cyberdefense community is facing a
shortage of qualified workers leaving a lot of jobs unfilled and many workers overworked.
Still, automation and machine learning are no silver bullets and misusing one or the other
can easily degrade our defense mechanisms instead of improving them.

While the scale of the challenge is far beyond the work of one PhD thesis, in Chapter 3
we outline how our multiple contributions align together to help improving the current
situation. First we propose contributions to improve the understanding of newly disclosed
vulnerabilities through better and faster prediction of their inherent properties. Second,
we enable security experts to train a prediction system to evaluate the risk and the appro-
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priate response for future vulnerability disclosures in the context of a specific information
system.
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Chapter 3

DEFENDING INFORMATION SYSTEMS

AGAINST N-DAY VULNERABILITIES AT

DISCLOSURE

N-Day vulnerabilities create important risks for information systems, and have already
caused fatal casualties and billion of dollars in damage in the past. The goal of this thesis is
to better defend information systems against them. In this chapter we outline our strategy:
quickly extracting new information regarding n-day vulnerabilities at their disclosure, then
assessing if the vulnerability creates a risk for an information system to be protected. The
quicker this information can be gathered, the faster the risk created by the vulnerability
can be addressed. The free-form text description of a new vulnerability is the only data
we reliably have access to at its disclosure. This means faster vulnerability management
must start with automated analysis of the description using machine learning methods.
This automated analysis should conclude by making a decision about whether to initiate
a counter-measure against the vulnerability, depending on the estimation of the risk it
creates to the protected information system.

As described in Section 2.1.1, many information systems have multiple stakeholders.
This means that any solution we devise should work in the context of a Security as a
Service (SECaaS) offering, where the security of the information system is ensured by a
different organization than the one owning it. Therefore the transparency and explicability
of all of our automated decision processes is paramount.

In Section 3.1 we show how better defenses against n-day vulnerabilities make eco-
nomical sense for both information system owners and security providers, in the context
of multi-stakeholder information systems in a SECaaS arrangement. In Section 3.2 we
describe the overall architecture of our proposed analysis and reaction pipeline aiming to
assess and mitigate the risk created by newly disclosed vulnerabilities. We conclude in
Section 3.3.
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3.1 Economical Relevance of Guaranteeing the Secu-
rity of Information Systems over Time

As seen in Section 2.1 the need for information security far exceeds the number of
available skilled cybersecurity workers. This means hiring dedicated security staff is out
of reach of many organizations that are still seeking some sort of information security.
Therefore providing security to as many organizations as possible can only come in the
form of an outsourced service, with one organization acting as a security service provider
and another one as a client. This has several implications.

First, in order for two organizations to enter a business relationship, they must agree
on a contract. This contract usually stipulates some action to be taken (or result to be
achieved) by one party in exchange for a retribution by the other party. If one party deems
that the other has not fulfilled its obligations, it can challenge it in an appropriate judicial
system. However this implies that both parties (as well as a third-party such as a judicial
court) should be able to evaluate what is and what is not a fulfilled obligation according
to the contract. Therefore security practices in a SECaaS context must inherently be more
transparent than in internal contexts: it is not enough for a provider to keep its clients
secure. A provider should also ensure that it can convincingly confirm it to either the
client or a court.

Another implication is that two parties will not enter a business relationship if one
party sees no benefit to it. Organizations will not pay for a SECaaS offering if they feel that
is not worth the money. Security providers will not propose a SECaaS offering that does
not make economical sense for them. Therefore for our solutions to be relevant in the real
world, they must take into account the legal and economical context of the organizations
willing to use them.

In Section 3.1.1 we propose a new type of Service-Level Agreement (SLA) aiming
to encourage security providers to defend their clients against n-day vulnerabilities. In
Section 3.1.2 we show that this SLA makes economical sense for all parties, and incen-
tivizes security providers to improve the defense mechanisms they provide against n-day
vulnerabilities.
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Figure 3.1 – The structure of our proposed SLA between a security provider and a client.

3.1.1 A Service-Level Agreement on Vulnerability Mitigation
for Information Systems

We propose a new type of Service-Level Agreement (SLA) incentivizing security providers
to provide mitigation plans for n-day vulnerabilities creating a risk for their clients, by
incurring a financial penalty if they fail to provide one. The security provider must then
analyze the financial risk of not being able to provide a mitigation plan under the deadline
even when having correctly classified a vulnerability as threatening. The structure of our
SLA allows the security provider to cover this cost in a probabilistic way.

Example of an SLA for N-Day Vulnerability Mitigation

As described in Section 2.1, the IT industry has long reconciled the business and
technical aspects of IT services through the notion of Service-Level Agreement (SLA).

Therefore we first propose a very simple SLA for n-day vulnerabilities mitigation.
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This SLA can be included in a contract between a security provider and a client which is
responsible for an information system.

The security provider monitors all newly disclosed CVE vulnerabilities. Based on the
knowledge it has of the client’s information system, it estimates which newly-disclosed
vulnerabilities the client should be concerned with, and has to propose a mitigation plan
in a given delay after the disclosure date of the vulnerability.

For this service, the client pays a periodic charge (such as a monthly fee). However, if
the provider misses the deadline and does not propose a mitigation plan for a vulnerability
creating a risk (a false negative), it has to reimburse back a penalty fee. Assuming the
provider’s knowledge of the information system is imperfect, it is also possible for the
provider to send a superfluous mitigation plan to the client (a false positive) which can
also warrant a small penalty fee to prevent mitigation plan spamming. Figure 3.1 shows
how such a contract and SLA might work.

It should be highlighted that the security provider is not tasked with executing the
mitigation plan but merely devising it and notifying the client about it. If a client is no-
tified about an n-day vulnerability and deliberately chooses not to execute the associated
mitigation plan (for good or bad reasons), the security provider’s responsibility is not
engaged.

We also assume that the notifications and mitigation plans cannot be repudiated:
neither party can forge an antedated notification or deny the existence of a legitimate one
in court.

This setup is appropriate for a SECaaS context because it checks all the requirements
of a good-quality SLA: it is based on a metric that is accessible and measurable by both
parties (a public vulnerability disclosure event), the crossing of a threshold (a missed dead-
line for a mitigation plan) is an objective event witnessed by both parties, and evidence
of a breach of contract can be reliably presented to an arbitrator if necessary.

Existing Counter-Measures for Vulnerability Mitigation

Nothing prevents such an SLA to be put in place today. A security provider willing to
propose such an SLA could include a number of counter-measures in its n-day mitigation
plans:

— The deployment of a corrective patch for the vulnerable software,
— The deployment of a new IDS signature detecting attacks exploiting the vulnera-

bility,
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— A workaround specific to the information system to be protected, such as a con-
figuration change, the shutdown or network isolation of non-critical parts of the
information system, etc.

However as seen in Section 2.3, none of these counter-measures are ideal. Corrective
patches and IDS signatures may not be available within the deadline agreed upon by the
provider and the client, and specific workarounds might not be feasible, or deemed too
risky as they usually require an urgent yet manual operation on the production system.
In the next section we see how this SLA incentivizes security providers to develop better
counter-measures for n-day vulnerabilities through a financial reward.

3.1.2 Financial Impact of a Vulnerability Mitigation SLA for
Information Systems Stakeholders

Even assuming that the service provides indisputable security value to the client, ap-
propriate contract parameters still need to be chosen such that both parties are financially
incentivized to sign it. We propose an evaluation strategy based on Fermi estimation [10]
to evaluate the expected monetary value of this SLA for security providers, in two scenar-
ios: by using currently available types of counter-measure, and by assuming the existence
of better defense mechanisms. A variation of this estimation was presented at the French
national conference ComPas’18 [66].

Mitigation with Existing Counter-Measures

We can use Fermi estimation to devise a simple thought experiment. This experiment
helps us to estimate the order of magnitude of the expected monetary value for a security
provider proposing such a contract, assuming plausible parameters. We assume that:

— The only counter-measures proposed by the security provider are software patches.
— A deadline of 30 days after disclosure for the security provider to provide a mitiga-

tion plan to the client before enduring a financial penalty. Frei et al [74] estimated
in 2010 that roughly 70 % of vulnerabilities had a patched available 30 days after
disclosure.

— 100 vulnerabilities are disclosed every day. This is slightly higher compared to
current levels, as more than 18000 vulnerabilities were disclosed by CVE [41] in
2018 and 2019, around 50 vulnerabilities per day on average. However the number
is growing every year and 100 vulnerabilities per day will likely become the norm
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Scenario 1 Scenario 2
Parameters

Number of Vulnerabilities in Period 3000
Revenue for Period 1

Vulnerability Threat Rate 0.1 %
Classification False Positive Rate 0.1 % 0.5 %
Classification False Negative Rate 0.1 % 0.5 %
Counter-Measure Availability Rate 70 % 95 %

Penalty for Unmitigated Vulnerability 100 %
Penalty for False Positive 2 %

Results
Expected Number of Dangerous Vulnerabilities 3
Expected Number of Benign Vulnerabilities 2997

Expected Number of False Positive 2.997 14.985
Expected Number of False Negative 0.003 0.015

Expected Number of Missing Counter-Measures 0.899 0.149
Expected Penalty for False Positive 0.06 0.30

Expected Penalty for Unmitigated Vulnerabilities 0.902 0.164
Expected Monetary Value for Period 0.04 0.54

Table 3.1 – Expected monetary value of the proposed SLA assuming plausible parameters.

in a few years.
— 0.1 % of these vulnerabilities pose a risk to the client’s information system (3 per

month on average). This hypothesis is rather arbitrary as the actual number highly
depends on the size and heterogeneity of the information system to defend.

— Patch delay and the fact that the vulnerability creates a risk on the information
system are two independent probabilistic events. This is likely a worst-case scenario
compared to reality, which probably makes our estimation conservative.

— The security provider hires skilled human security experts to monitor all new CVE
vulnerabilities, who can assert the risk posed by a vulnerability to the client’s sys-
tem with a false positive rate and false negative rate of 0.1 % each. This hypothesis
is rather arbitrary as to our knowledge there is no literature on the accuracy of
human security experts assessing the risk created by newly disclosed vulnerabilities.

— The client pays a monthly fee for the service.
— The security provider reimburses a month worth of fee for every false negative, and

1/50 of a month worth of fee for every false positive.
These propositions and their effects are summarized in Scenario 1 in Table 3.1. Under
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these assumptions, the expected monetary value of the service for the security provider
is actually positive. However more than 96 % of the security provider’s revenues will get
reimbursed back to the client as penalties, mostly because of false negatives.

One could wonder why the security provider should get a financial penalty because of
a third-party software vendor failing to provide a patch for a security issue. This is by
design, as this aligns the financial perspective of the security provider with the security of
its client. It incentivizes the security provider to get creative with vulnerabilities when no
counter-measure is readily available. For instance providers could fix issues in open-source
software themselves, passing deals with software vendors to guarantee timely patches, or
exploring alternatives mitigation solutions, which we evaluate in the next section.

Development of New Counter-Measures

Suppose our security provider proposes the same contract as above to its client, but
through a fully automated solution. We now assume that the security provider uses a new
mitigation technology allowing 95 % of vulnerabilities to be mitigated within deadline
once being classified as dangerous (compared to 70 % previously). However, we assume
that the automated threat analysis system is less accurate than the previous human expert
judgment, and the false positive and negative rates have increased by a factor of five, to
0.5 %. This is Scenario 2 in Table 3.1.

Even with this degradation, the expected value for the security provider is vastly
increased, with the projected reimbursment penalty fees going from 96 % of revenues
to 46 %. The majority of the penalty fees is now due to false positives instead of false
negatives, implying the client’s system is now more secure than previously. This Fermi
estimation shows that it is possible to align the financial incentives of a security provider
with the actual security of its clients against n-day vulnerabilities, creating a positive
feedback loop benefiting everyone.

3.2 Real-Time Assessment of Vulnerability Risk at
Disclosure

In this section we detail the technical and research problems needing to be solved
in order to estimate and react to the risk created by new vulnerability disclosures. In
Section 3.2.1 we explain the impact of a vulnerability disclosure on the threat and risk
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faced by an information system. In Section 3.2.2 we study the estimation of the risk
created by the disclosure of a new vulnerability. In Section 3.2.3 we discuss possible real-
time reactions to this risk, and in Section 3.2.4 we present the open problems implementing
these reactions implies.

3.2.1 Impact of Vulnerability Disclosure on Threat and Risk

As seen in Section 2.2.1, the threats faced by an information system are the attackers
attempting to compromise it, with varying degrees of skills, motivation, and resources.
The risk faced by the information system is the combination of the threats it faces, the
vulnerabilities it is affected by, and the value of the assets it contains.

While not every organization will face dedicated attackers, there are many attackers at-
tempting to indiscriminately compromise systems visible from the Internet. Historically a
recurring motivation has been the constitution of botnets (networks of compromised hosts
that can be used for dedicated attacks such as distributed denial of service). More recently
attackers have also been motivated by financial gain through the use of ransomware [234]
(a type of malware which encrypts the files of its host then asks for a crypto-currency
ransom in order to get the decryption key), or crypto-miner malware [222] (where the
attacker uses the computing resources of the compromised system to gain new crypto-
currency through mining). Therefore any system connected to the Internet faces a baseline
of threat even in the absence of dedicated attackers.

The disclosure of a software or hardware vulnerability does not create additional infor-
mation systems vulnerabilities. After all, the latent vulnerability was already there before
the disclosure. The value of the assets in the information system does not change either.

However, this vulnerability disclosure can still cause an evolution of the threats faced
by the system for two reasons. First, it informs existing attackers of new ways to poten-
tially compromise the system. Finding and exploiting zero-day vulnerabilities is a difficult
and expensive task for all but the most sophisticated attackers, but many n-day vulnera-
bilities can be used rather easily on unprotected systems once they are publicly disclosed.
Therefore even unsophisticated attackers can become dangerous if they are persistent,
through the timely use of a recent n-day vulnerability.

Second, it can motivate new attackers to act for opportunistic reasons, such as financial
gain (through ransomware or crypto-miners for example) or even mere vandalism. This
creates new threats one has to defend against.

As risk is the combination of threat and vulnerabilities, an evolution of threat does lead
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to an evolution of risk. Therefore new vulnerability disclosures do increase the risk faced
by a system. Applying immediately and automatically counter-measures to dangerous
newly disclosed vulnerabilities would effectively smooth out this risk towards a stable
baseline level. However as outlined in Section 2.2 and 2.3, vulnerability information at
disclosure is unstructured and incomplete, making it difficult to properly assess the risk.
Therefore we need automated information extraction techniques in order to gather and
structure as much intelligence as we can regarding the vulnerability, in order to make a
decision about the risk it creates to the systems to defend.

In this thesis our goal is to help security providers of a given information system
answer several questions about a newly disclosed vulnerability and its relationship with
the information system:

— What is the severity of the vulnerability?
— Which software or hardware component does this vulnerability affect?
— Is this component part of the information system?
— Does this vulnerability increase the risk on the information system?
— Does this vulnerability need to be mitigated?
— What are the relevant counter-measures to mitigate this vulnerability?

In Section 3.2.2 we go further in depth regarding these questions and the way they
can be automatically answered at disclosure.

Once the security provider has gathered enough information and asserted the existence
of a risk, it can react to the disclosure by deploying a counter-measure. As seen previously,
multiple counter-measures are possible. They include automatically deploying a corrective
patch, dynamically adjusting the threshold factor of an IPS, and many other possibilities.
We discuss all these counter-measures in Section 3.2.3.

3.2.2 Risk Evaluation at Vulnerability Disclosure

In this section we outline how to better evaluate the risk created by vulnerability dis-
closures by making an exhaustive list of all the unmitigated n-day vulnerabilities affecting
an information system. We then describe two open research problems that must be solved
in order to make progress on this task.
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Listing Unmitigated N-Day Vulnerabilities as a Measure of Threat and Risk
Level Evolution

In order to defend an information system, one could aim to list every public vulner-
ability related to the system that have not been mitigated yet (either because they have
not been analyzed yet or because an analysis confirmed the presence of a risk). This list
would give a relevant picture of the evolution of threat and risk for the system, though
incomplete as threats can evolve for other reasons as we described in Section 2.1.2. This
list is very difficult to maintain over time as many vulnerabilities are disclosed every day
(as seen in Section 2.2.3). Automating this task is therefore desirable.

Unsolved Problem: Analyzing Vulnerabilities at Disclosure

As seen in Section 2.2, the state of the art in vulnerability management relies on
human analysis. Nearly all vulnerability management systems are based on vulnerability
metadata such as CVSS vectors or CPE URIs. This metadata is machine-readable yet
written by humans. Therefore a large number of security experts are needed to author
this metadata as analyzing a single vulnerability requires minutes, hours or even days.

We argue that human analysis of new vulnerabilities at disclosure is unsustainable.
Figure 3.2 shows the number of vulnerability disclosures by year since 2007. We can see
that in 2017 the number of annual vulnerability disclosures more than doubled compared
to 2016 and the number keeps growing every year. It seems that the trend will continue
in 2020: during the first semester 9810 vulnerabilities have been disclosed compared to
7338 on the same period in 2019, a 34 % increase.

NVD, which is the only organization attempting to provide a publicly available anal-
ysis for every CVE vulnerability, has arguably been caught off-guard by this increase.
Figure 3.3 shows the evolution of the NVD analysis delay: the number of days between
the vulnerability disclosure by CVE and the publication of its analysis by NVD. We can
see that the median and 9th decile analysis delay have considerably increased in 2017
and 2018, with a median analysis duration of 35 days in 2018 (compared to 0 days from
2007 to 2015) and a 9th decile of 63 days (compared to 2 days from 2007 to 2012). While
NVD should be credited with reversing the trend in 2019, the delays are still considerably
higher than in the earlier years of its existence. This analysis delay makes many current
vulnerability analysis techniques obsolete as they assume the immediate availability of
vulnerability metadata, which cannot be taken for granted anymore.
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Figure 3.2 – Number of CVE vulnerability disclosures from 2007 to 2019.

Figure 3.3 – Delay between vulnerability disclosure and analysis availability in NVD from
2007 to 2019.
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Description
Stack-based buffer overflow in the brcmf_cfg80211_start_ap function in
drivers/net/wireless/broadcom/brcm80211/brcmfmac/cfg80211.c in the Linux ker-
nel before 4.7.5 allows local users to cause a denial of service (system crash) or possibly
have unspecified other impact via a long SSID Information Element in a command to a
Netlink socket.
CVSS V3 Base Vector
CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:H
CVSS V2 Base Vector
AV:L/AC:L/Au:N/C:N/I:P/A:C
CVSS V3 Base Score 6.1 CVSS V2 Base Score 5.6

Table 3.2 – Description, CVSS V2 and V3 base vectors and scores for vulnerability CVE-
2016-8658, about a not-fully characterized buffer-overflow in the Linux Kernel.

One could understandably wonder if this is a research problem or an organizational
problem between Mitre (which oversees CVE) and NVD. As seen in Section 2.2.2, CVE
vulnerability disclosures are prepared by security experts working for CVE Number Au-
thorities (CNAs) and these experts are well-placed to provide vulnerability metadata
along the free-form text description they currently write. And indeed, the NVD CVMAP
initiative [144] announced in June 2020 aims to let CNAs experts directly provide vulner-
ability metadata themselves in the NVD database if they have authored it while working
on the CVE disclosure. So part of the problem complexity is accidental and will eventually
be solved at the organizational stage.

However another part of the complexity is essential and in our view justifies to consider
the problem as a research problem. First, many vulnerabilities are not fully understood
at disclosure even by their discoverers: some are discovered through source code anal-
ysis (manually or automatically) and many teams managing critical software (such as
the Linux Kernel team) treat any suspect buffer-overflow as a potential vulnerability by
default. They then fix it and disclose it as soon as possible, even if the actual impact of
the vulnerability has not been clearly defined yet. CVE-2016-8658 shown in Table 3.2 is
a typical example of this phenomenon. A second aspect of this problem is that not all
disclosures are executed smoothly. While CVMAP will soon encourage CNAs to share
vulnerability metadata at disclosure, they will not be obligated to do so. Therefore many
CVEs will still be disclosed without metadata. Even if all CVEs were properly disclosed,
sometimes a vulnerability discoverer bypasses the CVE network and brutally discloses a
zero-day vulnerability publicly. In other cases a security researcher will detect active ex-
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ploitation in the wild of a previously unknown zero-day vulnerability, requiring immediate
disclosure and mitigation even though the exact impact of the vulnerability has not been
properly assessed yet.

This means that both in the short term and long term, working with incomplete vul-
nerability data at disclosure is a necessity. When analyzing a newly disclosed vulnerability,
the only information we can reliably count on is the English free-form description of the
vulnerability. However for past vulnerabilities we do have access to both their descriptions
and their metadata, opening the door to machine learning-based predictions of vulner-
ability information at disclosure. Real-time automated analysis is therefore a promising
candidate tool to characterize the inherent properties of a vulnerability faster and cheaper
than using human experts.

We propose two contributions that use text mining techniques to reconstruct machine-
readable vulnerability information from its English description. The first contribution, de-
tailed in Chapter 4, is focused on assessing which software is affected by a newly disclosed
vulnerability. The second contribution, detailed in Chapter 5, is focused on assessing the
severity of the vulnerability through automated prediction of its CVSS vector.

Unsolved Problem: Automated Threat and Risk Evaluation for a Vulnerability
and a Specific System

So far we discussed about predicting the inherent properties of a vulnerability such
as its severity, which is independent of the context. However organizations are more con-
cerned with the risk the vulnerability creates for them, which is only loosely related to
its absolute severity. Automatically assessing the impact of a vulnerability disclosure on
the threat and risk level of an organization requires solving two problems.

First, the automated evaluation system needs to automatically assess if a vulnerable
version of the affected component is present in the information system. This requires
knowing which hardware and software (including version number) are present in the in-
formation system, and having a ground-truth enumerating all vulnerable versions of a
component.

Second, if the evaluation system is confident that the vulnerable component is present
in the system, it needs to evaluate if the vulnerable component results in an informa-
tion system vulnerability, allowing attackers to actually compromise the system. This is
dependent on the way the component is used in the information system, the way the
vulnerability can be exploited, and the impact it has once exploited.
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If these questions cannot be answered in an absolute way, there are other related ques-
tions that may be easier to answer yet providing a useful approximation: for instance, is
it possible to predict the reaction of a human security operator tasked with protecting the
same system if she was faced with this vulnerability? Would she ignore the vulnerability
or try to deploy a counter-measure against it?

This is important as the first two problems are difficult. As seen in Section 2.3, cor-
rectly determining which software components are installed in a complex information
system is non-trivial. Listing existing binaries on every host is not enough as there are
many runtime-based software platforms such as web browsers, the Java Virtual Machine,
etc. Getting the proper version number of all this software is difficult, and this infor-
mation can become obsolete at any moment as software is frequently upgraded without
notice. Moreover this requires a correct ground-truth for the affected versions of the vul-
nerable component, which is a part of the vulnerability properties that are not available
at disclosure in a machine-readable format. Meanwhile, the version information given in
the raw text description of the vulnerability is often ambiguous or even incorrect (see
Section 2.3.2).

For these reasons it is usually neither possible to have a complete picture of an in-
formation system to protect, nor possible to list all public vulnerabilities present in the
system exhaustively, neither at disclosure nor after. And even if it is possible, the way
a vulnerable software component is actually used can make the vulnerability critical or
benign independently of the vulnerability inherent severity. Therefore analyzing the risk
created by a vulnerability disclosure on an information system is very difficult, even for
human experts.

We argue that getting rid of human experts completely for this risk analysis is both
impractical and risky. However we can use machine learning methods such as active learn-
ing (see Section 2.4.3) to allow an automated system to imitate the decisions taken by a
human expert responsible for evaluating the risk created by new vulnerability disclosures.
This would allow for a real-time protection of an information system even when no human
experts are on-call. We propose a contribution on this topic in Chapter 6.

3.2.3 Real-Time Reaction to Vulnerabilities Disclosure

Once an automated risk analysis pipeline has determined that a new vulnerability dis-
closure creates a risk for the system to protect, a reaction to this information is needed so
that the risk can be mitigated. In this paragraph we outline several appropriate reactions,
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from the least to the most automated one: raising an alert, triggering out-of-band security
updates, automatically elevating log levels, switching into a degraded mode, and using a
dynamic IPS to balance confidentiality, integrity and availability.

Raising an Alert

A non-automated yet relevant reaction is simply to alert an on-call human security
operator. We propose a contribution in this regard in Chapter 6. While such an approach
does not allow faster-than-human reaction time, it still allows a human to react in hours
or even minutes, instead of days or weeks (or never) which is common.

There are two main limitations to this approach. First, it still leaves a significant work-
load to human security operators, who are already overworked. It also assumes that there
is an on-call operator available for the system, which is not always the case. Second, this
approach cannot decrease the reaction time beyond human capabilities. As seen in Sec-
tion 2.3.1 and Appendix A.2, the Shellshock vulnerability made most Unix system with
bash shell vulnerable, and the first recorded attack occurred less than an hour after dis-
closure. Simply raising an alert is not enough against such impactful n-day vulnerabilities.
Therefore we now explore more automated reactions.

Automated Security Updates

A possible automated reaction is to lean on a software package manager (such as apt
in Debian-based Linux distributions) to automatically install security patches for all com-
puter hosts of the information system. While it is common for such security updates to be
applied regularly (either manually or automatically), a possible reaction to a vulnerability
disclosure is to accelerate the update check frequency, in order to install a security patch
as soon as it becomes available. This strategy is also applicable to signature-based IDSs
that use upgradable signature databases [195].

There are two main limitations to this approach. First, this reaction only makes sense
if a patch (or an IDS signature) is rapidly made available for the vulnerability (Frei et
al [74] estimated in 2010 that only 50 % of vulnerabilities had a corrective patch available
at disclosure). Moreover, the patch needs to be made available in the package repository
used by the information system, which can be another source of delay. Second, automated
patching of production systems can introduce bugs and regressions in the event of a
flawed patch. This can be partially mitigated through excellent continuous deployment
practices, but not every administration team has the time or skill to put those in place.
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Moreover those practices do not fully eliminate the risk: even cloud providers following
best practices have endured outages due to faulty software updates in the past [2].

Automated Log Elevation

Another possible automated reaction to a vulnerability disclosure is the immediate
elevation of logging levels for various components of the information system, to record
events at a finer granularity for some period of time [12]. This can be instrumental in
giving future forensic investigators enough information to reconstruct the kill chain of a
potential attack after the fact.

There are two main limitations to this approach. First, obviously this reaction alone
does not mitigate the attack itself, it only allows to study it afterwards; though in the
presence of on-call security operators, it may also help in detecting an attack in real time.
Second, keeping an elevated log level for too long creates many log entries needing to
be stored. This may either saturate the storage components of the information system,
creating a risk of cascading failure, or if log rotation is enabled, it risks erasing meaningful
logs as the available space for log storage was not dimensioned for sustained elevated
logging. Moreover too many logs can become an impediment for security operators tasked
with analyzing them. Careful timing of the reaction duration is therefore needed.

Automated Switch into Degraded Mode

Information systems with critical safety requirements can sometimes be designed with
two modes of operation: a nominal mode and a degraded mode where non-critical compo-
nents of the system are deactivated, shut down, or isolated from the network. In degraded
mode, the attack surface of the system is reduced, limiting the probability of a success-
ful compromise. For instance, a hospital information system could be designed with a
degraded mode shutting down every non life-critical computer systems in order to avoid
worm attacks such as WannaCry or NotPetya (discussed in Appendix A.3). In this regard,
a possible automated reaction to a dangerous vulnerability disclosure is the automated
activation of the information system degraded mode. In situations where long-term con-
fidentiality and integrity of the system prevail on its short-term availability, a simple but
radical degraded mode is to isolate the entire system from the Internet at the network
level.

There are three main limitations to this approach. First, information systems are
complex, and complexity is a source of insecurity. Having multiple modes of operation
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Decision threshold

TP TP FP FN TN TN FN TN TN TN

TP TP FP TP FP TN FN TN TN TN

Mal Mal Leg Mal Leg Leg Mal Leg Leg Leg

Considered Malicious Considered Legitimate

Considered Malicious Considered Legitimate

Closer to anomalous Closer to normal

Ground truth

Alert rate = 30%

Alert rate = 50%

Figure 3.4 – Anomaly-based IDSs need a decision threshold to convert a continuous nor-
malcy evaluation into a binary decision. This decision threshold can be set as an alert
rate parameter, with a lower alert rate increasing false negatives and a higher alert rate
increasing false positives.

increases this complexity. Moreover, depending on the type of services provided by the
system, a degraded mode may not even make sense. Second, determining if the vulnerable
component will actually be protected when switching to degraded mode is non-trivial.
Therefore switching into degraded mode does not necessarily prevent a successful com-
promise. However it does hamper the lateral movement ability of an attacker already in
the system, which is a valuable defense-in-depth layer. Third, the components remaining
online in degraded mode are usually the most critical ones in the entire system, and they
remain vulnerable against an attack. In the previous example of a hospital information
system, the only computer hosts remaining online during degraded mode would be the
machines supporting life-critical functions. Yet these machines are precisely the ones that
need to be kept safe the most.

Using an IPS to Balance Integrity, Confidentiality and Availability

As seen in Section 2.3.3, a network-based Intrusion Detection System (IDS) analyzes
incoming network packets and assesses if those are legitimate or malicious. They can work
using detection signatures, or by anomaly detection. When an IDS is given the ability to
block the packets it considers malicious, it becomes an Intrusion Prevention System (IPS).

Network-based IPSes offer an interesting duality: a false negative can impact the con-
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fidentiality and integrity of the system by letting an attack pass through, while a false
positive can impact the availability of the system by blocking legitimate traffic.

Moreover, there is an inherent relationship between the alert rate (AR, Equation 3.1)
of an IDS or IPS, its false negative rate (FNR, Equation 3.2) and its false positive rate
(FPR, Equation 3.3). This is especially true for anomaly-based IDSes and IPSes, which
usually evaluate the normalcy of an incoming packet on a continuous scale, as shown in
Figure 3.4.

AR = TP + FP
TP + FP + TN + FN (3.1)

FNR = FN
TP + FN (3.2)

FPR = FP
TN + FP (3.3)

IDSes and IPSes have to take a binary decision: an IDS has to decide whether to raise
an alert or not, and an IPS has to decide whether to block a packet or not. The higher
the AR, the lower the FNR and the higher the FPR. Conversely, the lower the AR, the
higher the FNR and the lower the FPR.

When using an IPS, we can treat its alert rate as an availability budget for a given
period. This availability budget can be allocated in the form of an SLA. If the risk level
evolves over time, because of vulnerability disclosures in our case, this availability budget
is better spent by increasing the alert rate during periods of higher risk and decreasing it
when the risk is mitigated.

Some anomaly-based IDS and IPS designs do not provide an actual alert rate param-
eter. However nearly all of them first compute a normalcy score for each network packet
then let the administator define a threshold to separate legitimate and malicious behavior
(see Figure 3.4). In that case, the alert rate can be dynamically adjusted using a control
feedback loop taking the observed alert rate as an input and the normalcy threshold as
an output.

3.2.4 Real-Time Reaction: Open Problems

The reactions proposed above require some problems to be solved before becoming
practical. These include synthesizing the perceived risk, comparing it to an expected
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baseline risk, and an unsolved research problem: evaluating anomaly-based IDSes and
IPSes.

Synthesizing the Perceived Risk as a Single Metric

Some reactions, such as raising an alert, can be initiated on a case-by-case basis for
each individual vulnerability. Other reactions, such as switching the system into degraded
mode, have to be decided globally for the entire system at once. In this case, we have to
synthesize the overall risk posed by all non-mitigated n-day vulnerabilities taken together.
Some reactions require a binary decision (for instance, to switch or not to switch into
degraded mode) while others require a numerical metric (such as the alert rate of an
IPS).

A boolean decision can be viewed as a numerical value coupled with a threshold.
Therefore, computing the overall risk level as a numerical value is necessary in many
cases. Non-mitigated n-day vulnerabilities provide a great basis for this numerical value,
but it is possible to incorporate other factors into the risk level, such as geopolitical risk
indexes we described in Section 2.1.2. However the more metrics are incorporated into the
risk level, the more difficult it is to evaluate whether the measured risk level is actually
realistic and useful. If not the risk level becomes a security theater metric, bringing a false
sense of security uncorrelated with reality.

Current Risk and Expected Baseline Risk

In order to decide whether to launch a global reaction, it is not enough to have a
measure of the current overall risk level. We also need a baseline, an expectation of
what the overall risk level is supposed to be in the current situation, assuming no new
vulnerability disclosure. The decision to react is then taken by comparing the currently
measured risk level to the expected baseline risk level.

A baseline is needed for both binary and continuous reactions. For binary decisions, the
baseline can be used to compute the threshold for initiating the reaction. For continuous
reactions, such as an IPS converting the risk level into an availability budget, the expected
risk level is necessary to decide how much the IPS should presently over-spend or under-
spend its budget depending on the current circumstances.

Some reactions require a notion of budget per period. For instance our dynamic IPS
proposal has a limited number of network packets it is allowed to block, and an alert
system may have an alert budget for on-call operators notification. In those cases a pending
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question is what to do when the decision process runs out of budget for the given period.
We should point out that a budget shortage can happen for both good and bad reasons: the
decision system may have successfully detected and mitigated an actual but exceptional
risk and kept the information system safe in extraordinary circumstances, or the risk
may have been miscalculated and the budget wasted. In both cases, one need to decide
if the system should be allowed to temporarily exceed its budget or be shut down for
the remaining of the budget period. For reactions such as a dynamic IPS, this creates
another dilemma between the long-term confidentiality and integrity of a system and its
short-term availability.

Unsolved Problem: Evaluating Anomaly-Based IDSes and IPSes

As outlined in Section 2.3.3, a major obstacle to our dynamic IPS proposal is that
evaluating anomaly-based IDSs and IPSs is still an open research problem [217, 88]. As
we cannot evaluate how well a regular IDS performs, we have no baseline to compare
our dynamic IPS with. Moreover, even if the research community succeeded in authoring
a proper IDS evaluation dataset, we would have an additional requirement: having at-
tacks being realistically correlated with vulnerability disclosures. While the relationship
between attacks in the wild and vulnerability disclosures have been studied (as seen in
Section 2.2.3), the research community is far from having a comprehensive model of how
they interact.

We know that the base rate of attacks in typical network traffic is very low and that
most vulnerabilities are not exploited at all, which means that a dataset correlating at-
tacks and disclosures would need to cover an extended period of time to include multiple
dangerous vulnerability disclosures. It is likely that such a dataset would be of an unprac-
tical size. We do not propose a dynamic IPS design in this thesis, first because of lack of
time, second because the obstacles for evaluating such a work would make it difficult to
publish as scientific research.

3.3 Summary

In this chapter, we showed a new type of SLA between a security provider and a
client that could help limiting the risk created by n-day vulnerabilities against the client’s
information system, while being profitable for the security provider. By focusing on these
two goals at once, we can initiate a positive feedback loop providing sustainable security
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for more organizations around the world. We aim to create a risk evaluation system that
automatically evaluates the risk created by a new vulnerability disclosure on a given
information system. This risk evaluation system can be the basis for many real-time
reactions aiming to reduce the risk endured by an information system. In this chapter we
proposed several counter-measures to be used as reactions against dangerous vulnerability
disclosures.

Before achieving this goal, we first need to solve two open problems. The first problem
is to gather better information about a vulnerability in the seconds after its disclosure,
before it is proposed as machine readable metadata by security analysts. The second
problem is is to analyze how much risk a vulnerability disclosure creates for a given
information system, and evaluating if this disclosure warrants a reaction or not.

In this thesis we propose two contributions on the first problem, and one contribution
on the second one. In Chapter 4, we propose a solution to automatically determine the
software or hardware affected by a new vulnerability using only the free-form text de-
scription available at disclosure. In Chapter 5, we use again this text description to assess
the severity of a vulnerability at disclosure through automated prediction of its CVSS
vector. Once we have gathered enough information about a vulnerability, the risk analysis
of how a vulnerability disclosure impacts a given information system can be automated.
In Chapter 6, we propose an automated decision process to evaluate the need to raise an
alert to an on-call human security operator regarding a new vulnerability disclosure in
the context of a specific information system.
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Chapter 4

EXTRACTING RELEVANT KEYWORDS

FROM VULNERABILITY DISCLOSURE

USING TF-IDF

In Chapter 3, we outlined that automated vulnerability analysis at disclosure was an
unsolved problem. In this chapter we propose a first contribution towards solving this
problem: identifying the affected software of a vulnerability by extracting the relevant
keywords from its text description. To this end we use machine learning tools we presented
in Chapter 2, such as bag-of-words and TF-IDF. We particularly focus on the reliability
of our results in two ways: first by ensuring that our prediction pipeline is explicable, and
second by designing a strong evaluation protocol to precisely evaluate how variations of
the prediction scheme can impact its accuracy and its failure modes. This chapter content
was published in the 2020 IEEE/IFIP Network Operations and Management Symposium
(NOMS 2020) [64].

We detail our objectives for this contribution in Section 4.1. In Section 4.2 we present
the keyword extraction pipeline that we propose to fulfill these objectives. In Section 4.3
we present our evaluation protocol and results. We conclude in Section 4.4.

4.1 Objectives

We want to design an automated technique allowing us to identify the affected software
of a vulnerability based on its raw text description, without the need for any human-
authored metadata. Beyond accuracy we have one major goal for this work: to make the
prediction of the affected software reliable enough to be used in a production environment.

In our view reliability comes from answering two questions: first, how likely is the
prediction to fail? This can be answered by designing a thorough evaluation protocol
identifying not only the accuracy of the prediction but its failure modes as well. Second,
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TF-IDF weighting of keywords

Text description of analyzed vulnerability

Set of unordered keywords

Ordered list of weighted keywords

Improved ordered list of weighted keywords

Word filtering

Domain-specific heuristics

Available CPE URIs

Available vulnerability 
descriptions

Process

Data

Input / Output Final ordered list of weighted keywords

Keyword list truncation

Figure 4.1 – Overview of the vulnerability description processing pipeline.

why did a prediction fail? This can be answered by keeping the analysis pipeline explicable
at all stages, which has a profound impact on the choice of the machine learning techniques
we can use. Explicability is important for security systems as most organizations require
security incidents to be audited and their root cause understood. When such an incident
occurs because of an incorrect decision from an inference system, the decision process of
the inference system becomes the root cause to be analyzed. If the failure mode of the
inference system cannot be understood, the correct course of action to prevent future
occurrences of the incident is not to rely on the inference system anymore, often leading
to its decommissioning. Therefore, our keyword extraction pipeline must be explicable at
all stages, from the input to the output.

In the next section we describe our proposed pipeline to fulfill these two objectives.
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CVE ID Disclosure date Description
CVE-2016-6808 04/12/2017 Buffer overflow in Apache Tomcat Connectors

(mod_jk) before 1.2.42.
Weight Keywords
27.54 tomcat connectors
12.41 mod jk
11.01 connectors
8.37 tomcat

CVE-2017-0155 04/12/2017 The Graphics component in the kernel in Microsoft
Windows Vista SP2; Windows Server 2008 SP2 and
R2 SP1; andWindows 7 SP1 allows local users to gain
privileges via a crafted application, aka “Windows
Graphics Elevation of Privilege Vulnerability.”
Weight Keywords
18.46 windows server 2008
12.30 windows vista
12.28 windows 7
12.18 graphics
11.84 server 2008
11.74 windows server
8.70 windows
5.95 r2

CVE-2015-3421 07/21/2017 The eshop_checkout function in checkout.php in the
Wordpress Eshop plugin 6.3.11 and earlier does not
validate variables in the “eshopcart” HTTP cookie,
which allows remote attackers to perform cross-site
scripting (XSS) attacks, or a path disclosure attack
via crafted variables named after target PHP vari-
ables.
Weight Keywords
26.29 eshop plugin
19.10 eshop
12.33 checkout php
5.71 wordpress

CVE-2015-5194 07/21/2017 The log_config_command function in ntp_parser.y
in ntpd in NTP before 4.2.7p42 allows remote attack-
ers to cause a denial of service (ntpd crash) via crafted
logconfig commands.
Weight Keywords
14.69 ntp
5.07 y
3.50 parser
3.44 config

Table 4.1 – A sample of keyword extraction results, using our analysis pipeline (with all
heuristics enabled and a keyword list truncation target of 95 % of the norm).
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4.2 Our Approach

In this section we present our keyword extraction pipeline aiming to identify the
software or hardware affected by a given vulnerability. Its input is the free-form description
of a new vulnerability. It is analyzed using all vulnerability descriptions and metadata
available at the time of disclosure. It outputs an ordered list of keywords, where each
keyword is given a weight representing its estimated relevance. As an intuitive example,
Table 4.1 presents a sample of vulnerabilities, including their free-form description and the
corresponding keywords extracted by our analysis technique. For the reasons highlighted
in Section 4.1, we deliberately choose to avoid elaborated machine learning methods (such
as deep learning) when their accuracy comes at the expense of explicability.

A high-level overview of the proposed vulnerability analysis pipeline is shown in Fig-
ure 4.1. We now describe each stage of the pipeline in more details, starting with our
choice of data sources in Section 4.2.1, then the word filtering stage in Section 4.2.2,
the TF-IDF weighting scheme in Section 4.2.3, the domain-specific heuristics we use to
improve this weighting in Section 4.2.4, and finally the keyword list truncation stage in
Section 4.2.5.

4.2.1 Data Sources Considerations

As seen in Section 2.2.2, the CVE and the CPE corpus are linked together using a
metadata called the CPE URI. A CPE URI is a unique reference to a specific entry in
the CPE database, i.e. a specific version of a piece of software.

It is tempting to consider these corpus as two relational tables linked together using a
foreign key. However we discovered two drawbacks of this approach. The first one is that
the life cycles of the two databases are very different, resulting in an ever-increasing num-
ber of dead CPE URIs entries referenced in vulnerabilities metadata that do not actually
exist in the CPE database. Figure 4.2 illustrates the problem. While both databases were
mostly kept consistent from 2011 to 2016, the inconsistencies grew substantially since
2017. We want to emphasize that this is an important problem that, if left unchecked,
will greatly decrease the relevance and real-world usefulness of the CPE dictionary.

A second drawback is the lack of a date-of-inclusion field for CPE entries in the
CPE database. While this would have no impact in a production system, it prevents us
from properly evaluating our results using a journaled view of the corpus. In order to
properly simulate an analysis at disclosure time, we want to only consider CVE and CPE
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Figure 4.2 – Historical rate of software names used in vulnerabilities CPE URIs that are
missing from the CPE dictionary.

CPE URI
cpe:2.3:a:apache:tomcat:7.0.28:*:*:*:*:*:*:*

*

*

Published at disclosure by Mitre

Published after security analysis by NVD

Field ‘vendor’ of CPE URI
apache

Field ‘product’ of CPE URI
tomcat

Field ‘version’ of CPE URI
7.0.28

*

*

*

1

1

1

CVE-2018-1336
Published on 08/02/2018
An improper handing of overflow in the UTF-8 
decoder with supplementary characters can lead to 
an infinite loop in the decoder causing a Denial of 
Service. Versions Affected: Apache Tomcat 
9.0.0.M9 to 9.0.7, 8.5.0 to 8.5.30, 8.0.0.RC1 
to 8.0.51, and 7.0.28 to 7.0.86.

Figure 4.3 – When discarding the CPE dictionary we get a more robust data life cycle
while retaining most of the inherent data.
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Description SQL injection vulnerability in register.php in GeniXCMS before 1.0.0 allows remote
attackers to execute arbitrary SQL commands via the activation parameter.

Keyword set
(in alphabetical

order)

activation, before, commands, genixcms, in, parameter, php, register, remote, sql,
the, to, via, vulnerability

Table 4.2 – Description and extracted keyword set for CVE-2016-10096, a vulnerabil-
ity disclosed on 01/01/2017. The filtering list includes all CPE URIs published between
01/01/2007 and 12/24/2016.

published “in the past” compared to the disclosure date of the analyzed vulnerability. We
solve both problems by discarding the CPE database completely and instead we use the
data embedded in the fields of the CPE URIs, as described in Figure 4.3. As CPE URIs
are part of a CVE vulnerability’s metadata, we can reuse the date-of-publication field of
the vulnerability for the included CPE URIs.

4.2.2 Bag-of-Words and Word Filtering

The first step of the pipeline applies the bag-of-words algorithm to all vulnerability
descriptions, in order to view a description text as a set of word counts. Bag-of-words
is described in Section 2.4.4 and is a very common text featurization algorithm that is
simple and explicable. We then filter some of those words using CPE URIs. All available
CPE URIs are parsed as a keyword filter list. Fields extracted from the CPE URI are the
software vendor, software product, and target software. After extraction all these fields are
tokenized into individual words. When analyzing vulnerabilities descriptions, only words
belonging to this filter list are considered, the others are discarded. This filtering is a
trade-off: it vastly reduces analysis noise but may filter out some relevant information.
Specifically a new vulnerability affecting a never-seen-before software product will not
have any relevant CPE URI in available historical data therefore the name of the product
will be filtered out. However, we argue that this is the right trade-off in our context, as
our goal is to feed keyword alerts to a security monitoring system: it is probably more
relevant to output an alert because we did not find any highly relevant keyword than
outputing an alert on a keyword that has never been seen before and is probably not
monitored. This filtering gives us a set of keywords for every vulnerability. However this
set is unordered and contains a lot of irrelevant keywords, as illustrated in Table 4.2.
As we can see the filtering list includes very common words such as “before” that are
not related to the present vulnerability (“before” was added to the filtering list through
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Keyword list Keyword list
(after TF-IDF weighting) (after heuristics)
Keyword Weight Keyword Weight
genixcms 6.36 genixcms 12.71
activation 5.24 sql 5.46
register 3.40 activation 5.24
sql 2.73 register 3.40
commands 1.62 commands 1.62
parameter 1.22 parameter 1.22
php 1.19 php 1.19
vulnerability 0.57 vulnerability 0.57
before 0.56 before 0.56
the 0.21 the 0.21
in 0.18 in 0.18
remote 0.18 remote 0.18
via 0.12 via 0.12
to 0.01 to 0.01

Table 4.3 – Keywords order and weight for CVE-2016-10096, after TF-IDF weighting (left)
and heuristics (right). The corpus includes all vulnerabilities disclosed between 01/01/2007
and 01/01/2017. The capitalization heuristic doubles the scores of “genixcms” and “sql”
(spelled “GeniXCMS” and “SQL” in the description).

vulnerability CVE-2011-5107 affecting the Wordpress plugin Alert Before You Post). It
is clear that the mere presence of a keyword in a vulnerability description is not enough
to assess its relevance for the given vulnerability.

4.2.3 TF-IDF Weighting

Instead of treating the presence of a keyword in a vulnerability as a binary event, we
weight each keyword by the term frequency-inverse document frequency (TF-IDF) [104]
value of the word, in the context of the CVE corpus. The TF-IDF algorithm is described
in Section 2.4.5. In our context, we consider the set of keywords extracted from a CVE
description as an individual document, and the set of these sets as a corpus. We choose
to use the logarithmic version [198] of TF, defined in Equation 4.1, as it better reflects
the diminishing returns of repeating the same term several times.

TF(t, d) = log(1 + |t ∈ d|), (4.1)

TF-IDF therefore allows more specific words to have a bigger impact on the mapping
than common words. As an intuitive example, let us consider an actual software named
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IBM Tivoli Service Request Manager. The word “Tivoli” is much more specific than “Re-
quest”, therefore its weight should be higher. Every keyword in the set is now weighted,
which allows us to order them by relevance. The left side of Table 4.3 gives an example
of such weighting.

4.2.4 Domain-Specific Heuristics

A number of additional heuristics can be applied to the existing ordering to improve
it even further. In this section we propose three of them which we detail below. We want
to emphasize that an important part of our contribution is to give security experts the
ability to formulate such kind of heuristics and reliably evaluate their accuracy. While
these heuristics are very simple and domain-specific, we show in Section 4.3 that each of
them increases the accuracy of the analysis.

Multiple-words keywords.When a CPE URI field contains entries that are multiple
words long, such as “linux kernel”, this heuristic treats “linux”, “kernel”, and “linux
kernel” as three different individual terms with individual TF-IDF values. Therefore this
heuristic allows the existence of keywords that are actually multiple words long. A match
on “linux kernel” is considered more relevant than two separate matches on “linux” and
“kernel”, so this heuristic also multiplies the score of a keyword linearly by the number
of words it is made of.

Capitalized words. We observed that software names in vulnerability descriptions
are often capitalized. This heuristic doubles the score of every keyword that is capitalized
in the vulnerability description. The software industry has a somewhat peculiar grasp of
English capitalization rules, so this heuristic is triggered for any capitalized letter in a
word and not just the first one: “iPhone” or “openSUSE” are considered capitalized.

Words starting by “lib”. We empirically observed that words starting by “lib” that
are not “library” are rare in English but are commonly used as software names (libxml2,
libssh, libpng, etc.). This heuristic doubles the score of every keyword starting by “lib”
that is not “library”.

The right side of Table 4.3 gives an example of how applying all three heuristics alters
the weights and order of keywords. We evaluate these heuristics in Section 4.3.
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4.2.5 Keyword List Truncation

The list of keywords extracted from a vulnerability can be long. Assuming the analysis
did a good job at sorting the relevant keywords first, the end of the list is empty of
meaningful information. It is therefore desirable to truncate the list and only keep the
beginning, as this operation retains most of the information while removing most of the
noise. However it is not straightforward to decide where to cut. Keyword lists lengths vary
greatly (from 0 to 196 keywords in our evaluation dataset) and the amount of relevant
keywords inside them too. This makes static truncation threshold not appropriate, as
it could remove too much information or retain too much noise. Instead we propose a
dynamic truncation scheme based on the euclidean norm. At the truncation step of the
pipeline, we view the untruncated weighted keyword list as a euclidean vector and we
compute its norm. We then compute a truncation budget by defining a target for the
truncated norm, such as staying above 95 % of the untruncated norm. Because most of
the norm of the vector comes from the most relevant keywords, it is possible to cut out
most irrelevant keywords while staying under budget. Table 4.4 gives a practical example
of such a truncation. We evaluate experimentally the impact of keyword list truncation
in Section 4.3.4.

4.3 Evaluation

In this section we present our evaluation protocol and results. In Section 4.3.1 we
present the experimental setup. In Section 4.3.2 we present a first evaluation metric: the
ranking of the first relevant keyword in the resulting keyword list. In Section 4.3.3 we
present a second evaluation metric: the number of keywords necessary to fully reconstruct
an affected software name. In Section 4.3.4 we evaluate the impact of the keyword list
truncation scheme proposed in Section 4.2.5. We discuss the performance of our keyword
extraction pipeline in Section 5.3.5. All the code and data used for our experiment are
available at [69].

4.3.1 Experimental Setup

We analyzed all 31156 CVE vulnerabilities disclosed between January 1st, 2017 and
January 1st, 2019, using all 57640 CVE vulnerabilities disclosed between January 1st,
2007 and December 31st, 2016 as past historical data. This experimental setup simulates
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Untruncated keyword list Truncated keyword list
(target norm = 95 %)

Keyword Weight Keyword Weight
genixcms 12.71 genixcms 12.71
sql 5.46 sql 5.46
activation 5.24 activation 5.24
register 3.40
commands 1.62
parameter 1.22
php 1.19
vulnerability 0.57
before 0.56
the 0.21
in 0.18
remote 0.18
via 0.12
to 0.01

Norm Norm
15.38 14.79

Table 4.4 – Untruncated and truncated weighted keyword lists for CVE-2016-10096, with
a target norm of 95 % for the truncated list.

Data available when analyzing vulnerability V3 
at disclosure

Time

Description of 
vulnerability V1

Metadata of 
vulnerability V1

Description of 
vulnerability V2

Metadata of 
vulnerability V2

Description of 
vulnerability V3

Metadata of 
vulnerability V3

Disclosure of vulnerability

Security analysis of vulnerability

Metadata publication delay

Figure 4.4 – In this example, when analyzing the text description of vulnerability V3 at
disclosure time we have access to the text descriptions for V1 and V2 and to the metadata
for V1, but not the metadata for V2 or V3.
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the behavior of a production system put online on January 1st, 2017, initially fed with
historical information from ten years before, which then monitored all newly disclosed
vulnerabilities continuously for the next two years.

As seen in Section 3.2.2, the delay between a vulnerability disclosure and its analysis
by NVD grew considerably in recent years. Therefore we decided to use a fixed metadata
publication delay for all vulnerabilities which we set at 60 days. This means that when
a vulnerability is disclosed on day N , we consider that its metadata is published on
day N + 60. Conversely, when analyzing a vulnerability disclosed on day N , we have
access to all vulnerability descriptions up to day N and to all vulnerability metadata
up to day N − 60. The choice of 60 days ensures analysis conditions that are overall
realistic (albeit simplified) but strictly worse than any recorded median case, and close
to the worst recorded 9th decile. Therefore if our analysis technique performs well during
evaluation, we can be highly confident that it will perform as well or better in the real
world. Figure 4.4 shows a simplified example of how time impacts the data available when
analyzing vulnerabilities at disclosure.

Any non-zero metadata publication delay implies that the actual metadata of a vul-
nerability including its CPE URIs is not available during analysis. We can therefore use
the CPE URIs from the vulnerability metadata as a ground truth for evaluation.

We propose two metrics to evaluate the quality of the ordered list of keywords: the
ranking of the first relevant keyword, and the number of keywords necessary to reconstruct
the software name. We evaluate our solution using the first metric in Section 4.3.2 and
using the second one in Section 4.3.3.

4.3.2 Ranking of First Relevant Keyword

As our goal is to identify the software affected by a vulnerability, we formally define a
relevant keyword as a substring of any software name or software vendor fields present in
the CPE URIs included in this vulnerability metadata. As our analysis gives us a sorted
list of keywords, we can expect relevant keywords to be placed at the beginning of the list
before irrelevant ones. Therefore the ranking of the first relevant keyword is directly tied
to the usability of the results. It should be emphasized that the number of CPE URIs
included in a vulnerability metadata can vary greatly, as well as the reason why these
CPE URIs were included in the first place. Usually at least one CPE URI is included as
a machine-readable summary of the affected software described in the text description
of the vulnerability. However security analysts sometimes include additional CPE URIs
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Figure 4.5 – First relevant keyword position.

for software absent from the text description (but still relevant for the vulnerability) to
provide context after the fact. This metric sidesteps the problem of choosing the most
appropriate CPE URI as an evaluation ground truth and instead focuses on extracting
the relevant information actually present in the vulnerability text description.

The experimental results for this metric are described in Figure 4.5, for the base TF-
IDF weighting, each heuristic described in Section 4.2.4, and all heuristics combined. We
can see that in all cases at least 70 % of vulnerabilities have a relevant keyword in the
top three keywords of their ordered list, at least 80 % of vulnerabilities have a relevant
keyword in their top five keywords, and 90 % of vulnerabilities have a relevant keyword
in the top ten. How to interpret these scores? In a control trial we randomly sampled 200
vulnerabilites and asked a security expert to guess the software product(s) affected by a
vulnerability from the top three keywords without reading the vulnerability description.
He gave 161 (80 %) correct answers, which is very close to our metric’s (81 %) in the same
configuration (all heuristics combined).

3 % of the vulnerabilities have no relevant keyword at all. For these vulnerabilities there
is not a single common word between the description and the CPE URIs of the vulnera-
bility, creating a plateau for the metric. We randomly sampled 20 of these vulnerabilities
to find out the reason for the absence of keyword matching. In 18 cases the vulnerability
disclosure is about a software that has never been seen before at the time. In the two other
cases, the software was seen only one day and four days before, a time period within the
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metadata delay set in Section 4.3.1. In all cases this leads to the CPE index not being
populated with the proper software name, which is filtered out at the keyword extraction
stage. Examples of such vulnerabilities are CVE-2016-1132 (first vulnerability disclosed
for the Shoplat iOS application) and CVE-2016-1198 (Photopt Android application).

Regarding individual heuristics, we can see that our capitalization heuristic brings a
substantial accuracy increase compared to the base TF-IDF weighting. The number of
vulnerabilities with a relevant keyword at ranking 3 or below is increased from 76 % to
86 %.

The multiple-words heuristic decreases the accuracy under this metric. The reason is
that multiple-words keywords are aggressively pushed to the beginning of the list most of
the time in front of single word keywords. When the software and vendor names are only
one word long, they might lose one rank because of an irrelevant multiple-words keyword.
However the reconstruction metric sheds a different light on this heuristic’s accuracy, as
discussed in the next section.

The lib heuristic, while being strictly superior to the base TF-IDF weighting, provides
such insignificant gains that it probably does not justify its maintenance cost.

All heuristics combined provide a measurable improvement over the base TF-IDF
weighting without heuristics.

4.3.3 Number of Keywords Necessary for Software Name Re-
construction

Our second metric is about measuring our ability to fully reconstruct a software name
using the smallest amount of keywords. Formally, this means finding a permutation of a
subset of keywords equal to a full software name string from a CPE URI of the vulnerabil-
ity, then measuring the highest keyword position in this group. As an intuitive example,
if we want to reconstruct the software name “linux kernel” and our keyword list is, in
order, “kernel”, “overflow”, “linux”, and “buffer”, we can reconstruct the software name
using the first 3 keywords (disregarding “overflow”). This metric is strictly more difficult
than the previous one, as we now want to reconstruct full strings instead of substrings,
and we are focusing on the software name only and not the software vendor. However it is
also more indicative of real-world usefulness, as reconstructing a complete software name
provides more useful information than finding a substring of it.

The experimental results for this metric are described in Figure 4.6. As expected
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Figure 4.6 – Number of keywords necessary for name reconstruction.

reconstructing a full software name is more difficult than finding a relevant keyword.
Using the base TF-IDF weighting, a software name can be reconstructed using the first
three keywords only 42 % of the time.

27 % of the vulnerabilities do not have enough keywords in their description to recon-
struct a software name at all. This leads to a lower plateau for the metric compared to first
relevant keyword position. We sampled 20 of these vulnerabilities at random to investigate
the cause of reconstruction failure. In 14 cases the affected software has never been seen
before, leading to the same problem as described in Section 4.3.2. In the six other cases
the software name is worded differently in the vulnerability description and the associated
CPE URIs. As an example, CVE-2017-3814’s description describes a vulnerability affect-
ing the software Cisco Firepower System Software while the associated CPE URIs are
referencing Cisco Firepower Management Center. One of these 6 cases, while technically
a wording problem, can be attributed to excessive strictness in our parsing logic.

Regarding individual heuristics, the multiple-words heuristic now provides the biggest
improvement. This makes sense, as having multiple-words keywords provides opportuni-
ties to drastically shorten reconstruction of multiple-words software name. For instance,
in a single word setup, the software “linux kernel” takes at least two keywords to be recon-
structed (“linux” and “kernel”), while it can be fully reconstructed in a single multiple-
words keyword (“linux kernel”). The capitalization heuristic again brings a substantial
improvement under this metric. This time again the lib heuristic brings a very small im-
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Figure 4.7 – Distribution of keyword list lengths before and after truncation with a target
of preserving at least 95 % of the norm.

provement such that its maintenance cost is probably not justified. All heuristics combined
together yield the best accuracy of all configurations. Using this setup we can reconstruct
the full name of an affected software in 9 keywords or less for 71 % of the vulnerabilities
in the evaluation dataset.

4.3.4 Keyword List Truncation Evaluation

In this section we evaluate two effects of the truncation step: the keyword list length
reduction ratio and a possible accuracy loss due to excessive truncation. All our evaluations
were done with a truncation target of preserving at least 95 % of the original norm.
Figure 4.7 shows the distribution of keyword list lengths before and after truncation. The
median untruncated keyword list length is between 23 and 24 words long, while the median
truncated keyword list length is between 8 and 9 words long. The average reduction ratio
is 3.22. We can conclude that keyword truncation has a substantial effect on keyword list
length and is particularly effective at bringing keyword lists to sizes more easily readable
by humans.

Does this reduction have an impact on the keyword list accuracy? Figures 4.8 and 4.9
show the impact of truncation on the two accuracy metrics studied before. We can see
that while the effects of truncation are negligible on most vulnerabilities, the relevant
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Figure 4.8 – Impact of keyword truncation on first relevant keyword position (truncated
norm target = 95 %).

Figure 4.9 – Impact of keyword truncation on number of keywords necessary for name
reconstruction (truncated norm target = 95 %).

108



4.4. Conclusion

keywords of a few hard-to-analyze vulnerabilities are lost during keyword truncation.
1446 vulnerabilities (4.64 %) went from having a low ranking first relevant keyword to
having no relevant keyword at all. 649 vulnerabilities (2.08 %) had a software name that
could be reconstructed before the truncation (albeit with difficulty) but not after.

The proper trade-off between truncation and accuracy probably depends on the nature
of the keyword consumers downstream. Humans might prefer shortened keyword lists, as
reading a 23 word long keyword list is probably less convenient than reading the actual
vulnerability description. Meanwhile machine monitoring systems might or might not
prefer untruncated lists, depending on their ability to properly handle keyword noise and
detect weak signals in low-ranked keywords. In either case it is not straightforward to
make good use of a relevant keyword at rank #20 or #25 when all preceding keywords
are irrelevant, which makes a good case for truncation.

4.3.5 Performance of the Analysis Pipeline

While performance was not a major concern for us at this stage, analyzing a day worth
of vulnerability historical data takes under a second on a commodity laptop with 16 GB
of RAM and an Intel Core i7-7600U CPU @ 2.80GHz, making the pipeline suitable for
near real-time analysis at disclosure. Indexing ten years of historical data, which would
be a one-time operation on a production system, takes between 5 and 30 seconds on the
same hardware, depending on the heuristics used: the multiple-words heuristic creates
more keywords to index, increasing the time of indexing when this heuristic is activated.
This fast turnaround time enables a security expert to easily formulate a new heuristic
hypothesis, quickly reindex the full historical dataset using the new heuristic and get a
prompt evaluation of how this heuristic increases or decreases the accuracy of the analysis.

4.4 Conclusion

In this chapter, we presented a pipeline for keyword extraction from vulnerability
descriptions, a first step towards identifying the affected software at disclosure. To our
knowledge this is the first work to focus on identifying the affected software immediately
after a vulnerability disclosure. This pipeline is based on a bag-of-words featurization
stage, a TF-IDF weighting improved by domain-specific heuristics, and a euclidean trun-
cation scheme. Our results are promising, as a simple technique brings results that are
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accurate enough to be useful in the real world. Since the initial publication of this research,
Wåreus et al [221] built upon our work to show that software name reconstruction ac-
curacy could be improved by using hard-to-explain machine learning techniques, a result
that was expected.

A possible improvement for our technique would be to formulate an actual proposition
for the name or for a complete CPE URI instead of returning a weighted list of keywords
as we currently do. Still, a weighted list of keywords is very useful as it can be directly
used as an input for other machine learning endeavors. In that scenario this contribution
becomes a featurization stage for a larger machine learning pipeline, and we actually use
it in this way in our contribution detailed in Chapter 6.

The affected software is an important property to have when analyzing the risk created
by a vulnerability, but as seen in Section 3.2 there are other desirable properties that
are not available at disclosure. In Chapter 5 we use similar techniques to reconstruct a
complete severity analysis of a vulnerability seconds after its disclosure.
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Chapter 5

PREDICTING CVSS SEVERITY USING

LINEAR REGRESSION

In Chapter 3, we outline that automated vulnerability analysis at disclosure is an un-
solved problem. In this chapter we present another contribution in that regard: predicting
the CVSS base vector of a vulnerability at disclosure using its text description only, using
explicable machine learning techniques such as bag-of-words and linear regression. We
again focus on prediction explicability and a strong evaluation protocol to ensure the re-
liability of our prediction system in a production environment. This chapter content was
published at the 15th International Conference on Availability, Reliability and Security
(ARES 2020) [65].

We present our objectives and how our work compares with the state of the art in
Section 5.1. In Section 5.2 we present the CVSS prediction pipeline that we propose
to fulfill these objectives. In Section 5.3 we present our evaluation protocol and results
obtained. We discuss our results and their limitations in Section 5.4. We conclude in
Section 5.5.

5.1 Objectives and Comparison with State of the Art

Our objective is to provide the first explicable CVSS vector prediction pipeline that
can be used reliably at vulnerability disclosure. As described in Section 4.1 for our pre-
vious contribution, our strategy to achieve reliability comes from making the prediction
explicable and having a strong evaluation protocol to evaluate its failure modes.

Before our contribution Khazaei et al had already explored CVSS severity score pre-
diction [108]: they compared the use of SVM, Random Forests, and fuzzy systems to
predict CVSS base scores, in both offline and online environments. However their work
differs from ours in a number of ways:

— Their approach is focused on the severity score of the vulnerability, and they do not
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predict it completely: they approach severity prediction as a classification problem,
treating the integer part of the score as a class to be predicted. To the best of
our knowledge, our approach is the first to reconstruct a full CVSS vector, thus
providing more details about the vulnerability and allowing an actual CVSS score
to be recomputed at disclosure.

— They do not take results explicability into account. Both their approach and ours
start by treating a vulnerability description as a bag-of-words, as described in Sec-
tion 2.4.4 (in their case, they also apply a TF-IDF [104] weighting scheme to the
word count as described in Section 2.4.5). They use dimension reduction methods
(Linear Discriminant Analysis and Principal Component Analysis) that create la-
tent variables that cannot be easily interpreted. Moreover, some of the classifier
algorithms they use, such as random forest or fuzzy systems, do not exhibit strong
explicability properties either. For the reasons described in Chapter 3 and 4, we
consider the explicability of automated analysis as a paramount quality of security
systems. Therefore our prediction pipeline is designed to preserve explicability at
all stages, as described in Section 5.2.

— Furthermore, their experimental protocol evaluates the prediction as a binary
event: either the correct class has been predicted, or not. In our opinion there
is a strong difference between incorrectly classifying a vulnerability with an ac-
tual severity score of 8.x as 7.y and 2.z. In our evaluation protocol we evaluate
the prediction of each vector component individually and study the severity score
prediction as a numerical error.

— Both their evaluation protocol and ours include an “online” evaluation, evaluat-
ing how a vulnerability can be analyzed using the data present at its disclosure.
However they do not take into account that CVSS information is not immediately
available after disclosure, whereas we take this delay into account. Moreover, their
online evaluation uses monthly steps. This is not granular enough for evaluating a
technique robustness for n-day vulnerabilities. Our evaluation protocol uses weekly
steps for all variants of our technique and daily steps for the most promising vari-
ants.

— As our work is more recent, we evaluate our technique on both CVSS V2 and CVSS
V3 using vulnerability data up to 2019 included. Their work only considers CVSS
V2 and data up until 2013 included.

To summarize, our objectives are:
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Dimension reduction

Text description of analyzed vulnerability

High dimension input vector

Low dimension input vector

Predicted numerical value for CVSS field

Bag of words

Linear model inference

Optional domain 
specific whitelists

Process

Data

Input / Output
Predicted value for CVSS field

CVSS numerical value reverse lookup

Low dimension input vectors and one numerical output

Linear model fitting

Selection of dimensions for CVSS field

All past vulnerabilities descriptions and CVSS vectors

Bag of words + CVSS numerical value lookup

High dimension input vectors and multiple numerical outputs

Selected 
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for CVSS field

Linear model 
for CVSS field

For each CVSS field

Training Inference

Predicted value for CVSS vector

Figure 5.1 – Our CVSS vector prediction pipeline.

1. Predicting an entire CVSS V2 and V3 vector for a vulnerability using its text
description only.

2. Ensuring that this prediction is explicable.

3. Evaluating the prediction system thoroughly to understand its possible failure
modes.

4. Taking into account the delay between a vulnerability disclosure and the publica-
tion of the associated metadata.

In the next section we describe how we fulfill these objectives.

5.2 Proposed Approach

In this section we describe our CVSS vector prediction pipeline. Its input is the free-
form description of a new vulnerability. The input is analyzed using all vulnerability
descriptions and metadata available at the time of disclosure. The output is a predicted
CVSS base vector (in V2 or V3 format). A high-level overview of the proposed vulner-
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ability analysis pipeline is shown in Figure 5.1. We make use again of the NVD CVE
database, as it includes descriptions (which we use as training input) and vulnerability
CVSS vectors (which we use as training output) for all past CVE vulnerabilities. Some
variants of the pipeline use a whitelist-based dimension reduction scheme (described in
Section 5.2.1) and require additional data sources: CPE URIs and the CWE framework.

Just as in Chapter 4, beyond accuracy we have one major goal when designing our
machine learning pipeline: keeping an explicable and reliable relationship between the
input and the decision. This also implies limiting the number of hyperparameters in the
pipeline. As we explained in Section 2.4.4, the space of all possible combinations of hy-
perparameters settings for a given training pipeline is called a hyperstate space and grows
exponentially with the number of hyperparameters. As hyperparameters must be set be-
fore the beginning of training (which can be lengthy), a highly dimensional hyperstate
space cannot be fully explored repeatedly, creating risks of accuracy drifts over time or
subtle differences in failure modes when inferring. We would like all variations of our train-
ing pipeline to have either zero or one hyperparameter, allowing for a full understanding
of the hyperstate space.

To handle these constraints, we propose the architecture described in Figure 5.1. For
training we first adopt a bag-of-words approach on each vulnerability description. As the
number of words in the bag-of-words index grows loosely linearly with the number of
vulnerabilities, the size of the resulting dimensional space is unbounded. Therefore we
apply a filtering scheme (described in Section 5.2.1) removing irrelevant words in order
to keep the number of dimensions of the vulnerability vectors manageable. We then train
one regression model (described in Section 5.2.2) for every component of the CVSS vector
using past vulnerabilities as input.

Every step of the training phase is mirrored in the inference phase. For a vulnerability
to be analyzed, its description is converted into a real vector through bag-of-words. For
each CVSS field, dimension reduction is applied by retaining the words deemed relevant
during training. The predicted value for the CVSS field is then inferred using the previ-
ously trained regression model. Once a value has been predicted for each CVSS field, a
predicted CVSS vector is assembled by concatenating each field.

5.2.1 Dimension Reduction Through Filtering

As we wish to preserve the auditability of the bag-of-words embedding (each dimension
counts the number of occurrences of a word) we choose not to use any dimension reduc-
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CWE Weaknesses
Improper Neutralization of Script-Related
HTML Tags in a Web Page (Basic XSS)
Stack-based Buffer Overflow
Use After Free
UNIX Symbolic Link (Symlink) Following
Extracted keywords
a after based basic buffer following free
html improper in link neutralization of
overflow page related script stack symbolic
symlink tags unix use web xss

Table 5.1 – Examples of CWE weaknesses and keywords extracted from them.

tion technique creating latent variables. As seen in Section 2.4.4 this excludes techniques
such as Linear Discriminant Analysis, Principal Component Analysis, Locality Sensitive
Hashing [98], and many others. Instead, we retain existing dimensions but filter out the
ones we deem irrelevant. We propose two approaches for that: domain-specific whitelists,
and dimension sorting using conditional entropy.

Domain-Specific Whitelists

We can generate a keyword whitelist that let us control the number of dimensions of
the vulnerability vectors. We create three whitelist variants based on two pieces of data as
sources of keyword terms: CPE URIs [139], which we use in the same way as in Chapter 4,
and Mitre’s Common Weakness Enumeration (CWE) database [52]. As we described in
Section 2.2.2, CWE is a list of common software and hardware security weaknesses, aiming
to serve as a common vocabulary to describe similar vulnerabilities. We extract all terms
used in CWE titles in order to use them as a whitelist. Table 5.1 shows several examples
of CWE weaknesses and the keywords extracted from them. The third variant is both
whitelists merged together.

We evaluate the impact of all three whitelists in Section 5.3.

Conditional Entropy Sorting

Our second approach to dimension reduction is not based on domain-specific knowl-
edge but on information theory. We use conditional entropy to sort words by how much
prediction power they provide. In this approach we consider a CVSS field as a random
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Word count Attack Vector value
“local”

Physical Local Adjacent Network
0 5 62 11 556
1 0 53 1 6

“document”
Physical Local Adjacent Network

0 5 98 12 545
1 0 17 0 17

“compiler”
Physical Local Adjacent Network

0 5 115 12 505
1 0 0 0 56

TOTAL
5 115 12 562

Table 5.2 – Conditional distributions for various keywords and the value of CVSS field
Attack Vector for vulnerabilities disclosed between January 1st, 2016 and April 1st, 2016.

variable to be predicted, and the count of a word in the vulnerability description as a
random variable whose value is already known.

Table 5.2 depicts the distribution of results for the CVSS field Attack Vector for 694
vulnerabilities disclosed between January 1st, 2016 and April 1st, 2016, and the related
conditional distributions for occurrences of words “local”, “document”, and “compiler”
in the associated vulnerabilities descriptions. We can see that the word “compiler” has
a low predictive power on Attack Vector, as the conditional distribution remains close to
the original one whether the word is present or absent. Conversely, the word “local” has
more predictive power as its presence completely changes the distribution, with the most
probable value switching from Network to Local.

Conditional entropy, described in Equation 5.1, provides a synthesis of this difference
by computing the entropy of one random variable when another one is known. All entropy
computations in this work are done in base 2 with results expressed in bits.

H(Y |X) = −
∑

x∈X ,y∈Y
p(x, y) log p(x, y)

p(x) (5.1)

Once we have computed the conditional entropy of a CVSS field for every word in
our index, we can sort the associated dimensions: the words with the lowest conditional
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Attack Vector (AV)
Metric Value Numerical Value
Network (AV:N) 0.85
Adjacent (AV:A) 0.62
Local (AV:L) 0.55
Physical (AV:P) 0.2

Table 5.3 – Enumerated members for CVSS V3 field Attack Vector and their associated
numerical values as described by the CVSS 3.0 and 3.1 specifications.

entropy are the more predictive dimensions. We can choose a number of dimensions we
wish to retain and discard the rest.

There are two theoretical drawbacks to this approach. First the mutual information
between dimensions is not taken into account. The first and second most predictive dimen-
sions might be very predictive on their own but the second might not provide a lot more
information on top of the first one. The algorithm is linear in the number of dimensions
and properly handling mutual information would make it quadratic as the conditional en-
tropy for each non-selected dimension would need to be recomputed after each dimension
selection. However not handling mutual information is not a problem in practice as the
dimensions are used as an input to a regression model. Dimension sorting is only used to
retain a tractable number of dimensions, and as long as enough predictive dimensions are
retained, the regression model is still able to provide reasonable results.

Second, the number of dimensions we choose to retain is a hyperparameter. In practice,
as this hyperparameter is the only one in the whole analysis pipeline, our hyperstate space
is small enough to be explored thoroughly, as we see in Section 5.3.

5.2.2 Regression Modeling on CVSS Vectors

Once we have a tractable number of dimensions to work with, we can train a model
with it. We consider each CVSS vector component, or field, as an independent problem
and we train a different model for each of them. As described in Section 2.2.2, each CVSS
vector component is valued using a multiple choice enumeration, as shown in Table 5.3. An
intuitive approach would be to use multinomial logistic regression or multinomial ordinal
regression to predict these enumerated fields. However, as seen in Section 2.4, multinomial
regression models are not straightforward to train, with iterative analytical methods such
as Iteratively Reweighted Least Squares (IRLS) [91] or iterative gradient-based solvers
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such as L-BFGS-B [236]. All iterative methods inherently require one or two new hy-
perparameters (either the acceptable error threshold before stopping or the maximum
number of steps, or both), and a lot of solvers require additional hyperparameters specific
to their approach.

The CVSS specification gives us an interesting way of simplifying our modeling. All
CVSS V2 fields values and all but one CVSS V3 fields have a numerical value associated
with each enumerated value. This numerical value is used in the calculation of the CVSS
severity score. Table 5.3 shows the numerical value for each enumerated values of the
CVSS field Attack Vector.

Instead of using multinomial regression to predict the value of a CVSS field enumera-
tion, we can use linear regression to predict the numerical value for the CVSS field. From
the predicted numerical value, we then select the enumerated value whose associated nu-
merical value is the closest to the prediction. A linear model can be trained analytically
using Ordinary Least Squares (OLS) without requiring any new hyperparameter.

One CVSS V3 field, Scope, is a binary field (with possible values Changed or Un-
changed) with no associated numerical value. For this field we associate Unchanged and
Changed to −1 and 1 respectively then treat it in the same way as every other field.
This is equivalent to a binary logistic regression problem followed by selecting the most
probable outcome of the two, without considering the odds.

5.3 Evaluation

In this section we present our evaluation protocol and results obtained. In Section 5.3.1
we present the experimental setup. In Section 5.3.2 we evaluate the accuracy of our
pipeline when predicting the individual CVSS fields of a vulnerability. In Section 5.3.3
we evaluate the accuracy of our pipeline when predicting the CVSS severity score of a
vulnerability. In Section 5.3.4 we discuss the explicability of our experimental results.
In Section 5.3.5 we evaluate the performance of our prediction pipeline. Finally, in Sec-
tion 5.3.6 we discuss how retraining the model daily or weekly impacts accuracy. All the
code and data used for our experiments are available at [68]. For this experimental pro-
tocol we also developed the open-source library libcvss [114], which aims to become the
reference CVSS parsing and manipulation library in the Rust language.
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Figure 5.2 – Success rate for individual CVSS V2 field predictions.

Figure 5.3 – Success rate for individual CVSS V3 field predictions.

5.3.1 Experimental Setup

We analyzed all 33807 CVE vulnerabilities disclosed between January 1st, 2018 and
January 1st, 2020, using all 70172 CVE vulnerabilities disclosed between January 1st,
2007 and December 31st, 2017 as past historical data. This experimental setup simulates
the behavior of a production system put online on January 1st, 2018, initially fed with
historical information from eleven years before, which then monitors all newly disclosed
vulnerabilities continuously for the next two years. Each vulnerability is analyzed using the
data available at its disclosure day only, as in Chapter 4. We decided again to use a fixed
metadata publication delay of 60 days for all vulnerabilities, for the reasons highlighted
in Section 4.3.1.

Seven configurations of our analysis pipeline were evaluated. Three are whitelist-based:
CPE, CWE, and both combined together. Four are based on conditional entropy: the num-
ber of retained dimensions was set to 100, 500, 1000, and 5000. All these configurations are
evaluated for CVSS V2 and V3 prediction. In order to optimize our computing resources
usage, our experiments are simulated assuming a weekly retraining of the regression model
(simulating a daily retraining would require 7 times more resources). Nevertheless in Sec-
tion 5.3.6 we evaluate the impact of going from weekly to daily retraining for the most
promising configuration.
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5.3.2 Prediction for Individual Fields

Figures 5.2 and 5.3 show the raw success rate for each field and predictor: that is, the
number of correct predictions over the number of total predictions. From this data we can
make a few conclusions:

— Dimension reduction using a whitelist based on CPE URIs exhibits overall worse ac-
curacy than all other approaches, even when combining it with the CWE whitelist.
Our hypothesis is that this is due to the CPE whitelist retaining much more dimen-
sions than all other approaches (see Section 5.3.5 and Figure 5.8), to the point of
being detrimental to accuracy, a common problem with linear regression in highly
dimensional spaces.

— Dimension reduction using conditional entropy with a number of retained dimen-
sions between 500 and 1000 exhibits better accuracy than all other approaches.

— Some fields are more difficult to predict than others. In particular, the Confidential-
ity, Integrity and Availability fields have lower accuracy than other fields, especially
in CVSS V3.

Success rates show how the predictors are working “out of the box”, but not the best
possible predictor that can be constructed through the prediction technique, as it does not
take into account “permuted” predictions. For example, it is possible to use a predictor
guessing wrong 100 % of the time to construct another predictor that guesses right 100 %
of the time.

Thus to further evaluate our predictors we can use conditional entropy again (this
time as an evaluation tool) in order to measure the predictive power of each configuration
on individual CVSS fields. By computing the original entropy of a given CVSS field, and
then computing the conditional entropy of this field when knowing a predicted value of
it, we can measure how much information is gained through the prediction. Figures 5.4
and 5.5 show the conditional entropy for each CVSS field and each prediction pipeline
configuration, for CVSS V2 and CVSS V3 respectively. Each column group describes
one CVSS field, with each column measuring the entropy of this field conditioned to the
predicted value for this field according to the given configuration (the lower entropy the
better). The last column of each group shows the entropy of the actual CVSS field, to
serve as a baseline for comparison. We can see that on some fields the conditional entropy
is even higher than the initial entropy: this can be interpreted as performing worse than a
random guess (weighted using the past frequencies of the different members of the CVSS
field). However our best configurations all have significantly lower conditional entropy
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Figure 5.4 – Conditional entropy for individual CVSS V2 field predictions (lower is better).

Figure 5.5 – Conditional entropy for individual CVSS V3 field predictions (lower is better).

than the real entropy of the CVSS field, which indicates that meaningful information was
gained through the predictor.

5.3.3 Prediction for the CVSS Severity Score

After making a prediction for each CVSS field for a given vulnerability, we can assem-
ble a complete, predicted CVSS vector and compute its severity score using the standard
CVSS computation rules (V2 or V3). We can then compare this predicted severity to the
actual severity of the vulnerability, computed from the actual CVSS vector for the vulner-
ability. We define the severity prediction error as PredictedSeverity − ActualSeverity,
giving us a value between −10.0 and +10.0. A severity prediction error of 0 is a perfect
prediction. Any value above 0 is a false positive, with the vulnerability being less severe
than predicted. Any value below 0 is a false negative, with the vulnerability being more

Configuration 50 % 80 % 99 %
Entropy sorting (n=100) 0 2.4 -1.5 3 -5 5.4
Entropy sorting (n=500) 0 1.8 -1.5 2.6 -5.4 5.4
Entropy sorting (n=1000) 0 1.5 -1.5 2.5 -5.8 5.4
Entropy sorting (n=5000) 0 1.5 -1.7 2.5 -6.4 5.4
CWE -0.3 1.7 -1.9 2.8 -5.4 5.4
CPE -0.6 1.7 -2.5 2.6 -7.8 5.4
CPE + CWE -0.7 1.5 -2.6 2.5 -8.5 5.4

Table 5.4 – Error intervals for CVSS V2 score prediction for 50 %, 80 % and 99 % of the
vulnerabilities in the evaluation dataset.
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Figure 5.6 – Severity prediction error distribution for CVSS V2.

Figure 5.7 – Severity prediction error distribution for CVSS V3.
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Configuration 50 % 80 % 99 %
Entropy sorting (n=100) -0.4 1.1 -1.4 2.1 -3.5 4.5
Entropy sorting (n=500) -0.2 1.1 -1.2 2.1 -3.5 4.5
Entropy sorting (n=1000) -0.2 1.1 -1.2 2.1 -3.7 4.5
Entropy sorting (n=5000) -0.4 1.1 -1.4 2.1 -5.4 4.6
CWE -0.7 1.1 -1.5 2.1 -5.4 4.7
CPE -1.2 1 -2.6 2.1 -9.8 4.5
CPE + CWE -1.1 1 -2.6 2.1 -9.8 4.5

Table 5.5 – Error intervals for CVSS V3 score prediction for 50 %, 80 % and 99 % of the
vulnerabilities in the evaluation dataset.

severe than predicted.
Figures 5.6 and 5.7 show the distribution of the severity prediction error in our eval-

uation dataset, while Tables 5.4 and 5.5 show the error intervals for 50 %, 80 %, and
99 % of our evaluation dataset respectively. From these results we can make the following
conclusions:

— Dimension reduction based on conditional entropy sorting provides systematically
better accuracy than dimension reduction based on whitelists. In particular all
whitelists based on CPE URIs provide strictly less accuracy than all other ap-
proaches. Our whitelist based on the CWE framework provides better results,
closer in accuracy to entropy sorting but still outperformed by the best entropy
sorting configurations. Interestingly, combining CWE and CPE whitelists into one
decreases accuracy compared to either whitelists, making it the worse-performing
configuration. This reinforces our hypothesis that the large number of dimensions
of the CPE whitelist is detrimental to accuracy.

— Regarding conditional entropy sorting, the number of dimensions kept after sorting
(our sole hyperparameter) does have an impact on accuracy. In both CVSS V2
and V3, keeping the number of dimensions between 500 and 1000 is important in
order to get the best prediction results. When predicting the CVSS V3 severity
score, accuracy differences between 100, 500 and 1000 retained dimensions are
nearly indistinguishable. When predicting CVSS V2 severity scores, retaining 100
dimensions provides more false positives than 500 or 1000. However it is possible
this is an artifact of our evaluation dataset (this could be checked in the future
by reproducing our experiments using vulnerabilities disclosed from 2020 and later
years), especially given that there are no such differences when predicting CVSS
V3.
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Description
This vulnerability allows remote attackers to execute arbitrary code on
vulnerable installations of Foxit Reader 9.1.0.5096. User interaction is
required to exploit this vulnerability in that the target must visit a ma-
licious page or open a malicious file. The specific flaw exists within the
handling of the setInterval() method. The issue results from the lack of
validating the existence of an object prior to performing operations on
the object. An attacker can leverage this vulnerability to execute code in
the context of the current process. Was ZDI-CAN-6438.
Attack Vector Actual: Network, Predicted: Network
Keyword remote required file interaction
Weight 0.059 0.037 -0.029 0.025
User Interaction Actual: Required, Predicted: Required
Keyword file page malicious interaction
Weight -0.287 -0.021 -0.020 -0.019

Table 5.6 – Top four keywords used to predict CVSS V3 fields Attack Vector and User
Interaction for vulnerability CVE-2018-17625 disclosed on 01/23/2019, using a CWE
whitelist for dimension reduction.

— In nearly all cases the prediction error for CVSS V3 is lower than for CVSS V2.
This was surprising to us as CVSS V3 includes eight fields while CVSS V2 only
includes six: this alone should make it more error prone when predicting a full
CVSS V3 vector. Our hypothesis is that CVSS V3 computation rules are more
likely to give closer severity scores to similar but not identical vectors.

— CVSS V3 score prediction using our best configuration (conditional entropy with
500 retained dimensions) is particularly resilient against false negatives, with 50 %
of the evaluated vulnerabilities having a false negative prediction error below 0.2,
80 % below 1.2, and 99 % below 3.5 %. This makes the predictor suitable for
real-world applications, such as using the predicted CVSS vector in a vulnerabil-
ity management pipeline as a placeholder while waiting for the publication of a
definitive CVSS vector by NVD.

5.3.4 Results Explicability

To maintain explicability, our prediction pipeline is able to show which weighted key-
words were used to make a prediction. Table 5.6 shows an example of how explicability
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Figure 5.8 – Duration in seconds of the complete analysis pipeline at date 2019-01-01.
Time scale is logarithmic.

can be maintained throughout the prediction pipeline. CVE-2018-17625 is a vulnerability
affecting Foxit Reader disclosed on 01/23/2019. For two CVSS V3 fields (Attack Vector
and User Interaction) we show the top four keywords used to predict their value. We
can see that the presence of the word “remote” was the biggest factor when making the
decision to predict the value Network for Attack Vector (meaning vulnerability exploita-
tion can be accomplished remotely). Conversely, the word “file” was an important factor
to predict the value Required for User Interaction (meaning vulnerability exploitation
requires a user to do a specific action).

5.3.5 Performance Impact of Dimension Reduction

The performance of the pipeline is not a goal in itself for us, however we want to ensure
that our architecture is suited for daily retraining. This means a complete retraining of all
our models from scratch, followed by an inference for all new vulnerabilities disclosed on
a new day should not take more than a fraction of a day. Figure 5.8 shows the duration of
the pipeline (in seconds, using a logarithmic scale) for each configuration, at date 2019-01-
01, assuming a complete retraining followed by an analysis of all vulnerabilities disclosed
on that day. All computations were done on a Dell PowerEdge C6420 server with Intel
Xeon Gold 6130 CPUs (Skylake, 2.10 GHz, 2 CPUs/node, 16 cores/CPU) and 192 GiB of
RAM. All performance experiments were run three times: duration was very stable with
half of variations below 1 % and all of them below 3 %.

Durations range from 1 min 33 s for the CWE whitelist in CVSS V3 (and 2 min 16 s
in CVSS V2) to close to 5 hours for the CPE whitelist. Meanwhile, entropy sorting config-
urations run during 5 to 25 minutes depending on the number of retained dimensions. All
configurations are therefore suited for daily retraining if deemed necessary. A production
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Figure 5.9 – Impact of daily and weekly retraining on the error distribution for CVSS V3
score prediction.

implementation of the pipeline could likely be faster than our current prototype as we did
not spend significant effort optimizing this aspect of the experimental protocol beyond
confirming the feasibility of daily retraining.

5.3.6 Daily Retraining vs Weekly Retraining

As described in Section 5.3.1, all experiments were run assuming a weekly retraining
of the prediction model. This was an experimental constraint as we did not have the com-
puting resources to simulate all experiments assuming a daily retraining (which consumes
seven times more resources). However performance measurements from Section 5.3.5 sug-
gest that daily retraining of a production system is feasible. Therefore we ran the most
promising configuration twice (dimension reduction through entropy sorting with 500 re-
tained dimensions) assuming both weekly and daily retraining of the model for CVSS V3
prediction. This impacted the score of 1371 vulnerabilities, around 4 % of our evaluation
dataset. As shown in Figure 5.9 this has negligible impact on the severity prediction error
distribution using our experimental setup. A similar experiment done with CVSS V2 on
a subset of the same dataset gave similar results. One should note that our choice to
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Figure 5.10 – Error rate (as defined by Khazaei et al) for CVSS V2 score prediction.

simulate a metadata publication delay of 60 days for all vulnerabilities could hide some of
the impact of the training frequency compared to a production system relearning a new
model as soon as new information becomes available. However in all cases the accuracy
of such production systems should at least be identical or even better than our results,
for the reasons described in Section 4.3.1.

5.4 Discussion and Limitations

Our prediction pipeline is designed with predictability and explicability in mind and
this has an impact on accuracy. Figure 5.10 compares our approach with the more elabo-
rated machine learning techniques used by Khazaei et al. The comparison has some limits
as they used the now unavailable OSVDB dataset on years 2012 and 2013 using training
data starting from 2004 while we used the NVD dataset on years 2018 and 2019 using
training data starting from 2007. Moreover the error rate metric they proposed does not
allow differentiation between small and large errors, as they consider score prediction
as a classification problem: they consider the integer part of the score as a class to be
predicted, and only distinguish between correct and incorrect predictions. Nevertheless,
their techniques are indisputably more effective at predicting CVSS scores than ours. This
raises a number of questions for an organization willing to deploy a production CVSS pre-
diction pipeline: do CVSS vectors have inherent value or are they just a mean to compute
a severity score? How to balance worst-case accuracy and average accuracy? Is decision
explicability important? Different organizations may not have the same answers to these
questions, leading them to different architectures. In the future we hope to improve the
accuracy of our prediction pipeline to get closer to Khazaei et al, while still preserving
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the predictability and explicability properties making our current architecture novel. This
could involve refining the dimension reduction scheme, for instance by using alternative
whitelists, or using additional input data for hard-to-predict fields such as Confidentiality,
Integrity and Availability impact.

5.5 Conclusion

In this chapter we introduced a method to automatically predict CVSS vectors and
scores for newly disclosed vulnerabilities, relying only on their human-readable descrip-
tion. Our architecture is based on explicable machine learning and information theory
techniques such as bag-of-words, linear regression, and conditional entropy. Our results
are promising, as a simple technique brings results that are accurate enough to be useful
while providing decision explicability, a missing property in the state of the art.

Combined with the previous contribution described in Chapter 4, we now have a
prediction model for most of the inherent properties of a vulnerability at its disclosure,
without the need for a human expert analysis. However, this analysis still considers the
vulnerability without considering the peculiarities of a given information system. In Chap-
ter 6 we propose a risk analysis scheme taking into account a specific information system
to be protected.
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Chapter 6

ESTIMATING RISK-LEVEL EVOLUTION

DUE TO VULNERABILITY DISCLOSURE

USING ACTIVE LEARNING

In Chapters 4 and 5, we tried to reconstruct information inherent to a vulnerability,
without taking into account the information system in which the vulnerability may be
present. In this chapter we attempt to automatically evaluate the evolution of threat and
risk for a given information system following the disclosure of a vulnerability.

As explained in Section 3.2.2, exhaustively listing the software and hardware compo-
nents of an information system is non-trivial. This makes analyzing the risk created by
a vulnerability disclosure to an information system even harder. Instead of basing the
risk analysis on a list of components, we focus on the security team members tasked with
protecting the information system, by studying how a Chief Information Security Officer
(CISO) and her subordinates actually react to vulnerability disclosures. The core propo-
sition of this chapter is to use active learning to extract the conscious and unconscious
knowledge of an information system’s security team in order to automate the risk analysis
of a vulnerability for a specific system to be defended.

At this early stage of our research on this topic we choose not to execute any automated
defense reaction following this risk analysis. Instead, the automated system evaluates,
for all new vulnerability disclosures, the relevance of alerting an on-call human security
operator who will then take action herself. In order to achieve this goal we present in this
chapter a preliminary contribution that we plan to improve in the future.

We present our objectives for this contribution in Section 6.1. In Section 6.2 we present
the active learning architecture that we propose to fulfill these objectives. In Section 6.3
we present our evaluation protocol and preliminary results. We discuss our results in
Section 6.4. We conclude in Section 6.5.
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Figure 6.1 – Proposed active learning architecture to estimate the risk-level evolution.

6.1 Objectives

We want to propose an automated system evaluating, for a newly disclosed vulnerabil-
ity, the necessity to alert an on-call security operator regarding a new risk in the context
of a specific information system to be defended. To this end we intend to let an expert (a
CISO or her subordinates) participate in the training of the prediction system by anno-
tating past vulnerabilities to indicate whether she would have wished being alerted about
a similar recent disclosure. We should also fulfill the following constraints:

1. We want to make the best use of past historical vulnerability data in order to
predict how to react to future vulnerabilities.

2. We want to make the best use of the limited time of security experts by allo-
cating a fixed annotation budget for the training and selecting the most relevant
vulnerabilities to be annotated.

3. We want both the vulnerability selection process during the training stage, and
the vulnerability analysis process during the inference stage, to be explicable.

6.2 Proposed Approach

We propose an active learning architecture based on the work by Settles et al [182],
which we select because of its simplicity and explicability properties. This architecture
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is depicted in Figure 6.1. It is composed of a training phase during which an expert
and the system train together and an inference phase during which the system monitors
new vulnerabilities and evaluates the risk that they create. Since the active learning
architecture originally proposed by Settles et al is deterministic and only handles static
datasets, we made slight modifications to the scheme (detailed in Sections 6.2.6 and 6.2.7)
to handle the dynamic nature of an ongoing flow of vulnerability disclosures and support
a controllable amount of randomness during the training process.

During the training phase the system iteratively selects a relevant past vulnerability,
submits it to the expert through the user interface, who then annotates it by choosing
an appropriate alert level for the vulnerability. The training phase is actually split in two
parts. First, the offline training phase happens during the deployment of a production
prediction system at a fixed point in time, and lets the prediction system and the expert
create together an initial knowledge base by letting the prediction system select any past
vulnerability at that point in time, with the system having full control on the vulnerability
selection process. Second, the online training phase is a continuous interaction between the
prediction system and the expert over time, discretized into periods such as weeks. Every
time a new period starts, the prediction system iteratively selects new vulnerabilities
among the ones disclosed during the last period and makes the expert annotate them.
Each of these phases has a separate annotation budget, with the offline phase requiring
a one-off effort from the expert and the online phase requiring a continuous effort over
time. These two phases of the training are important, as they allow the prediction system
to acquire both long-term context on past vulnerability data as well as awareness of the
latest vulnerability disclosures.

Once the expert considers that the system has been made reliable enough through
offline and online training (we come back to this in Section 6.3), the inference phase
can begin. The system now monitors new vulnerability disclosures in near real time and
chooses an appropriate alert level for them using the knowledge base it has constructed
together with the expert.

The processing of a vulnerability is made of several building blocks, some of them
common to both the training and inference phases, and some specific to one or the other,
as detailed below. During the inference phase, evaluating the risk created by a new vul-
nerability is done by comparing it to similar, annotated vulnerabilities. To this end a
similarity metric between vulnerabilities is needed. This similarity metric is made possi-
ble by viewing vulnerabilities as euclidean vectors through a featurization stage.
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During the training phase, selecting relevant vulnerabilities to be annotated by the
expert is based on the same building blocks. Our similarity metric is used to compute a
similarity matrix for the entire past vulnerabilities dataset, which then lets the learning
system compute an information density metric for every past vulnerability. Selecting a
vulnerability to be annotated by the expert is done by combining this information density
metric with an uncertainty metric computed by simulating an alert decision process for
every vulnerability while measuring the confidence of the prediction.

In the rest of this section we first present the concepts necessary for both training and
inference: in Section 6.2.1 we describe the possible alert levels for a vulnerability and the
user interface used by the expert. In Section 6.2.2 we discuss the featurization stage of
our architecture. In Section 6.2.3 we discuss our choice of similarity metric.

The actual alert decision process used during the inference phase is then presented in
Section 6.2.4.

We finally cover the remaining concepts necessary for the training phase. In Sec-
tion 6.2.5 we present our choice of uncertainty metric. We then discuss concepts proposed
by Settles et al [182] that we use: first the similarity matrix and information density metric
in Section 6.2.6, then in Section 6.2.7 the process used by the learning system to select
the next vulnerability to be annotated by the expert during the training phase.

6.2.1 Alert Levels

An alert level scale is needed to let both the system and the expert translate their
risk analysis of a vulnerability into an actionable decision. The recipient of this alert is
a human, so it makes sense for the alert scale to be human-centered. We use the scale
proposed by Google in their Site Reliability Engineering doctrine [18]:

— LOG: The disclosure is logged in an activity log that can be consulted afterward,
but no alert is actively raised to a human security operator.

— TICKET: The disclosure causes the creation of a ticket in an issue tracking sys-
tem. A ticket is expected to be solved in a non-urgent manner during working
hours.

— PAGE: The disclosure causes an on-call security operator to be paged immediately,
even outside regular working hours. A page is expected to be treated immediately.

As shown in Figure 6.2, in the training phase the system selects a vulnerability to be
labeled by the human expert then shows its description on screen. The expert then selects
the alert level she deems the most appropriate for the vulnerability, in the context of the
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Figure 6.2 – A screen capture of the user interface (UI) of our prototype Firres (FIRst
RESponder) during the active learning phase. For a vulnerability to be labeled, the UI
displays its CVE ID, its description, the weighted keyword list extracted from the de-
scription. The expert can then select an appropriate alert level by entering 1 (for LOG),
2 (for TICKET) or 3 (for PAGE).
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system she is tasked to protect. In the inference phase, the system automatically selects
the appropriate alert level for new vulnerabilities using the same alert scale.

6.2.2 Vulnerability as a Euclidean Vector

In order to transform the raw description of a vulnerability into a euclidean vector,
we reuse the same keyword extraction pipeline as described in Chapter 4: we apply a
bag-of-words on the text description to get a dimension for each word, and the words
are then filtered to retain only words present in past CPE URIs. The retained words are
then weighted using TF-IDF and we apply all domain heuristics presented in Chapter 4
to improve the weighting. We finally use our euclidean truncation scheme to reduce the
number of non-zero components for every vector. As shown in Chapter 4, this pipeline
lets us identify the affected software for a vulnerability in the form of a sparse euclidean
vector (with a low number of non-zero vector components). Vulnerabilities affecting the
same software share many non-zero components, making them similar in the vector space.

The CVSS prediction contribution presented in Chapter 5 was not integrated here
because of lack of time. We come back to this in Section 6.4.2.

6.2.3 Measuring Vulnerability Vectors Similarity

As a similarity metric between vulnerability euclidean vectors we choose the cosine
similarity (presented in Section 2.4.4) that can be computed using the formula first shown
in Equation 2.2 and shown again here:

cosine similarity(x,x′) =

n∑
i=1

xix′i

‖x‖‖x′‖
, (6.1)

Cosine similarity returns a similarity between 0 and 1 for two vectors. It has one
main advantage compared to distance-based similarity metrics such as the RBF kernels
(presented in Section 2.4.4): it returns a similarity of zero for vectors having no common
non-zero components. This is helpful to avoid creating artificial similarity between unre-
lated vulnerabilities. In particular, distance-based similarity metrics tend to overestimate
the similarity between vectors close to origin. In our case, a vector close to origin indicates
a vulnerability for which we have not extracted any meaningful keyword and therefore
have not a strong understanding of. Therefore having two vectors being close to origin
does not necessarily means that the two related vulnerabilities are actually similar to each
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“Little Red Riding Hood”

Norm: 3.25

Keyword Weight

“corvette” 0.0

“hood” 1.2

“little” 2.0

“red” 1.5

“riding” 1.7

“Little Red Corvette”

Norm: 3.32

Keyword Weight

“corvette” 3.0

“hood” 0.0

“little” 0.9

“red” 1.1

“riding” 0.0

Cosine Similarity

”little” : 2.0 x 0.9
+

“red” : 1.5 x 1.1
-------------------------------

3.25 x 3.32

= 0.32

Figure 6.3 – Example of cosine similarity calculation between two weighted keyword vec-
tors similar to the the ones generated after vulnerability featurization.

other. Another advantage of cosine similarity is to not require any hyperparameter, mak-
ing it more explicable and stable than similarity metrics that do. An example of cosine
similarity calculation is shown in Figure 6.3.

6.2.4 Alerting Decision Score

For every new vulnerability disclosure, the prediction system has to make a risk anal-
ysis by choosing an appropriate alert level for the vulnerability, among LOG, TICKET
and PAGE. In order to do that, we had to make several hypotheses. These hypotheses
can be challenged, as we discuss in Section 6.4.

Our first hypothesis is that the TICKET alert level is a reasonable default reaction
for a vulnerability about which nothing is known. This is based on the assumption that
security operators are risk averse and want to eventually review any vulnerability for
which the prediction system could not make a meaningful decision.

In the light of this hypothesis, we propose an alert decision score in range [−1; +1]. It
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can be converted into an alert decision for a vulnerability v using Equation 6.2.

decision(v) =


LOG, if score(v) ∈ [−1;−1

3 [

TICKET, if score(v) ∈ [−1
3 ; +1

3 [

PAGE, if score(v) ∈ [+1
3 ; +1]

(6.2)

Conversely, a default alert decision score is set for all annotated vulnerabilities. The
alert decision score of an annotated vulnerability av is set following Equation 6.3.

score(av) =


−1, if the vulnerability is annotated as LOG

0, if the vulnerability is annotated as TICKET

+1, if the vulnerability is annotated as PAGE

(6.3)

The formula to compute the decision score of a non-annotated vulnerability v is shown
in Equation 6.4, assuming a knowledge base of k annotated vulnerabilities av0 to avk−1:

score(v) =



k−1∑
i=0

score(avi)× similarity(v, avi)
k−1∑
i=0

similarity(v, avi)
, if ∃i ∈ {0, ..., k − 1} similarity(v, avi) > 0

0, otherwise
(6.4)

Put another way, the alert decision score is the average decision score for all annotated
vulnerabilities weighted by their similarity to the analyzed vulnerability, with a special
case of returning 0 when there are no similar annotated vulnerabilities yet.

This formula implies that any vulnerability for which there are few or no similar
annotated vulnerabilities gets an alert decision score close or equal to 0, resulting in
a TICKET alert, in line with our hypothesis that this is the correct default reaction.
Conversely, LOG and PAGE alerts are only emitted if the vulnerability is strongly similar
to known vulnerabilities that were annotated as such.

6.2.5 Uncertainty Score

The active learning architecture we use [182] requires an uncertainty metric for each
vulnerability, as part of the vulnerability selection process used to submit vulnerabilities
to be annotated by the expert (which we discuss in Section 6.2.7). However they do not
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A B C D ID
A 1.0 0.0 0.6 0.4 0.5
B 0.0 1.0 0.0 0.0 0.25
C 0.6 0.0 1.0 0.1 0.42
D 0.4 0.0 0.1 1.0 0.37

Table 6.1 – Example of similarity matrix and information density metric (ID) for a set of
four vulnerabilities.

specify how to implement it.
We make the hypothesis that since TICKET is our default reaction, the closer to

TICKET a vulnerability is, the more uncertain our decision is. Conversely, the closer
to LOG or PAGE a decision is, the more certain our decision is. Therefore we compute
uncertainty using Equation 6.5.

uncertainty(v) = 1− |score(v)| (6.5)

Therefore the uncertainty score of a vulnerability reaches 1 the closer its decision score
is to 0 (TICKET), and reaches 0 the closer its decision score is to −1 or +1 (LOG or
PAGE, respectively).

6.2.6 Similarity Matrix to Measure Information Density

We first describe as background the concepts of similarity matrix and information
density proposed by Settles et al [182], as they are part of our architecture. We then
present a slight modification to the scheme we add in the context of a dynamic dataset
such as ongoing vulnerability disclosures.

Background: Similarity Matrix and Information Density

Assuming a set of n past vulnerabilities v0 to vn−1, a similarity matrix S of size n× n
can be constructed using Equation 6.6.

∀i, j ∈ {0, ..., n− 1} Si,j = similarity(vi, vj) (6.6)

From the similarity matrix S we compute an information density metric for every
vulnerability by computing the average similarity of a vulnerability to every other vulner-
abilities in the dataset, including itself (therefore no vulnerability can have an information
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density of zero). This is described by Equation 6.7.

∀i ∈ {0, ..., n− 1} density(vi) =
n−1∑
j=0

Si,j

n
(6.7)

Information density is a measure of how typical a vulnerability is. When a lot of
vulnerabilities resemble each other, they all have a high similarity metric when compared
to each other, increasing the information density of each of them. Conversely, an outlier
vulnerability with few or no similar vulnerabilities has a low information density. An
example of information density calculation can be found in Table 6.1.

Vulnerability Dataset Truncation

Settles et al proposed the concept of similarity matrix with a static dataset in mind.
However, as many new vulnerabilities are disclosed every day, in our case the dataset
is dynamic and the creation and update of a similarity matrix are quadratic through
time and space. To avoid that, we modify the scheme proposed by Settles et al and
decide to truncate our vulnerability dataset once it goes over a certain size. We define a
hyperparameter N for the maximum number of vulnerabilities we find acceptable, then
remove excess vulnerabilities once n > N . For choosing the vulnerabilities to be truncated
we simply remove the oldest vulnerabilities first.

6.2.7 Selecting a Vulnerability to be Evaluated

The main decision task of the training phase is to select the next vulnerability to be
annotated by the expert. This raises several challenges. Selecting only the most typical
vulnerabilities can lead to submit many vulnerabilities similar to each other, with dimin-
ishing returns after the first few ones. Conversely, selecting vulnerabilities only based on
decision uncertainty leads to submit many outliers to the expert, which does not help
with getting a broader understanding of the entire vulnerability set. Another question is
how much the selection process should be based on randomness. A solely deterministic
process could get the learning stuck in local maxima of the vulnerability euclidean space,
while leaning too much on randomness might lead to submit too many uninteresting
vulnerabilities to the expert.

To address all these challenges, we propose an approach based on the work of Settles et
al [182] which we present as background. We then propose a modification to incorporate
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randomness in the selection strategy.

Background: Selection Score and Selection Strategy

Settles et al [182] proposed that every vulnerability eligible for annotation should be
given a selection score according to a selection strategy. They proposed several strategies
for the selection score and we choose the simplest one as a starting point, shown in
Equation 6.8. This strategy does not include randomness yet, which we describe in the
next section.

select(v) = density(v)× uncertainty(v) (6.8)

As seen in Section 6.2.5, when a vulnerability has no similar annotated vulnerabilities,
it gets an uncertainty score of 1. Therefore, at the beginning of the training (when there
are no annotated vulnerabilities yet) all vulnerabilities get the same uncertainty score,
and the selection process is based on information density only (we show below how we add
randomness). A large group of vulnerabilities similar to each other (and therefore with
high information density) is called a vulnerability cluster. Once more vulnerabilities get
annotated inside the biggest clusters, the uncertainty score of the unannotated vulnerabil-
ities in the clusters progressively decreases as there are similar annotated vulnerabilities in
the knowledge base. At some point, other smaller clusters with lower information density
but higher uncertainty (as they are unexplored yet) reach higher selection scores and get
picked up first.

Adding Randomness to the Selection Process

With no randomness at all, the vulnerability selection is entirely deterministic, as-
suming a fixed set of vulnerabilities and an expert always choosing the same alert level
for the same vulnerability. This can create problems as some vulnerability clusters are
much denser than others, leading the selection process to waste too much of the expert’s
time on too few clusters. However, selecting a vulnerability from a smaller pool of ran-
domly chosen vulnerabilities allows for more exploration of the vulnerability dataset as
the denser clusters are not always present in the random pool. Therefore in our work
we slightly modify the selection strategy proposed by Settles et al [182] to incorporate
a certain amount of randomness by randomly selecting r vulnerabilities from the set of
all candidates vulnerabilities to be annotated, before applying the rules described in 6.8
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to choose a vulnerability from this random subset. r is a hyperparameter. We claim that
taken together, randomness, uncertainty, and information density provide the foundation
for a robust annotation selection process.

Our complete training algorithm, including the vulnerability selection process is de-
scribed in Algorithm 1.

Input: V: set of all past vulnerabilities
Input: B: annotation budget for the current training phase
Input: ONLINE: boolean set to true if the current training phase is online, false

if offline
Input: r: size of the random subset of vulnerabilities
while B > 0 do

C = get_all_unannotated_vulnerabilities(V);
if ONLINE then

C = retain_only_vulnerabilities_disclosed_in_last_period(C);
end
R = select_random_subset_of_vulnerabilities(C, r);
v = select_vulnerability_with_highest_selection_score(R);
submit_vulnerability_to_expert(v);
B = B - 1;

end
Algorithm 1: Training algorithm, including the vulnerability selection process.

6.3 Preliminary Evaluation

Our evaluation goal is to check the real-world applicability of our prediction system,
designed and configured with preliminary hypotheses, by confronting it to actual security
experts in charge of real information systems. In our experimental protocol, these experts
annotate vulnerabilities to assert their risk levels, in the context of the systems they are
responsible for. The experiment is divided in two steps: in the first step, security experts
train the prediction system, through an offline training followed by an online training, by
simulating the passing of time. Second, they evaluate the prediction system: this is done
by randomly selecting vulnerabilities, then submitting them to the prediction system and
the expert simultaneously while comparing their answers. The main difference between the
two steps is that during training the system controls which vulnerabilities are submitted
to the expert, and the resulting annotations are added to the system’s knowledge base.
On the contrary during evaluation the vulnerability selection is completely random and
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    Simulated time

T0
Offline training on vulnerabilities disclosed before T0
Vulnerabilities are selected by the active learning system

T1 to TK
Online training on vulnerabilities disclosed in the last period
Vulnerabilities are selected by the active learning system

TK+1 to Tend
Online evaluation on vulnerabilities 
disclosed in the last period
Vulnerabilities are selected randomly

Random date in 2017

One week

Figure 6.4 – Our experiments simulate the passing of time starting from a random date
in 2017, using weekly time steps.

the expert’s annotations are only used as an evaluation tool without being added to the
system’s knowledge base.

A major challenge of this experiment is the requirement for busy security experts to
commit a certain amount of time to participate, such as half a day. Moreover, as the
training’s vulnerability selection process simultaneously depends on the active learning
architecture, its hyperparameters, and the expert previous choices, any iteration in the
design or configuration of the prediction system requires to undertake a brand new ex-
periment (including the expert full participation) to properly evaluate the changes.

In the end we have been able to complete two experiments, which we denote Experi-
ment A and B in the rest of this chapter. The information system studied in experiment A
is a server-side software development environment, including a git server, an issue tracker,
NTP and DNS servers, as well as Windows and Linux machines communicating through
the Kerberos protocol. The information system studied during experiment B was also an
information system for software development, with Linux machines only. It includes a git
server, a Jenkins server, an issue tracker, a wiki system, and is administered through SSH.

A shortcoming of this preliminary evaluation is that both experiments were done as
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part of a first experimental campaign, and we have not been able to secure the launch
of a second experimental campaign based on what we learned during the first one. This
campaign was based on initial hypotheses we took, some of which turned out to be ques-
tionable, resulting in mixed evaluation results. This is further discussed in Section 6.4.

We present our evaluation protocol in Section 6.3.1 and the results of the experiments
in Section 6.3.2.

6.3.1 Experimental Protocol

Our experimental protocol uses past CVE vulnerabilities to simulate the production
deployment of an alert system at a random past date. The protocol starts with an initial
offline training session, then simulates the passing of time for an online training session,
followed by an online evaluation session. Figure 6.4 shows the outline of an experiment.

A major experimental constraint was that vulnerability annotations authored by our
participants were actually sensitive themselves, as they provided a lot of insights into
the related information systems. This required the whole campaign to be carried out
without us ever seeing those annotations, or storing them on our own hardware. Therefore
experiments were done exclusively on security experts’ own machines (usually laptop
workstations), preventing the use of dedicated server-grade computing resources.

For this reason the vulnerability selection process, which is computationally inten-
sive, had to be bounded in time and resources, as the experience had to stay interactive
enough for the security expert to stay engaged while running entirely from a lightweight
workstation. This is not straightforward as a similarity matrix for the entire CVE dataset
requires hundreds of megabytes of storage, takes minutes to compute, and is only valid for
a specific time step in the simulation as new vulnerabilities and keywords are added and
discarded. We solved this engineering problem by storing all similarity matrices needed
for every time step of the simulated timeline on the experts’ workstations, ensuring the
interactivity of the experience at the cost of each experiment requiring several hundreds
of gigabytes of storage.

The experimental protocol was prepared in 2019, giving us access to all CVE vul-
nerabilities disclosed between 2007 and 2018. However, as explained in Section 6.2.6, the
computation and storage of the vulnerability similarity matrix is quadratic in the number
of vulnerabilities in our database, and differs at every time step (as more vulnerabilities
are disclosed and more CPE URIs are added to the featurization word list). The hyperpa-
rameter N , first described in Section 6.2.6, is the maximum number of vulnerabilities the
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Hyperparameter Value Justification
Active Learning parameters
Maximum size of vulnerability
dataset (N)

10000 Maximum value allowing the experiment to stay interac-
tive.

Size of randomness pool for
vulnerability selection (r)

10 Informal tests suggest randomness could add robustness to
the selection process.

Time step duration 7 days Experiment is not tractable on a workstation with daily
time steps and would not be granular enough with monthly
time steps.

Total annotation budget 300 Maximum budget acceptable for participants.
Offline training annotation
budget

100 Initial hypothesis: offline training should be allocated a
third of the total annotation budget.

Online training budget per
time step

8 Initial hypothesis: online training should be allocated a
third of the total annotation budget. However informal
tests suggest having more time steps with fewer vulnerabil-
ities in each of them could add robustness to the training
process.

Online training number of time
steps

12 Initial hypothesis: online training should be allocated a
third of the total annotation budget. However informal
tests suggest having more time steps with fewer vulnerabil-
ities in each of them could add robustness to the training
process.

Online evaluation budget per
time step

10 Initial hypothesis: online evaluation should be allocated a
third of the total annotation budget.

Online evaluation number of
time steps

10 Initial hypothesis: online evaluation should be allocated a
third of the total annotation budget.

Featurization parameters
Multiple-words heuristic enabled see Chapter 4 results
Capitalized words heuristic enabled see Chapter 4 results
“lib” heuristic enabled see Chapter 4 results
Euclidean truncation target 95 % see Chapter 4 results
Metadata publication delay 7 days Initial hypothesis for a typical delay. In Chapter 4 exper-

imental protocol the delay was eventually changed from 7
to 60 days as the latter is closer to a worst-case scenario
while 7 days is closer to a median scenario according to
real-world NVD delays. However Chapter 4 results should
hold with 7 days as shorter delays are less strict than longer
ones.

Table 6.2 – All hyperparameters necessary for our evaluation protocol, the values chosen
for this first experimental campaign, and a justification for each value.
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prediction system retains in its database. We empirically found that setting N = 10000
was close to the highest value we could set while keeping the user experience interactive
using our current prototype. As we discard older vulnerabilities first and more than 5000
vulnerabilities have been disclosed every year for the last decade, in practice only vul-
nerabilities disclosed between 2014 and 2018 are actually used in the experiment. The
featurization stage hyperparameters were set to the same values as in the experimental
protocol of Chapter 4, except for the metadata publication delay (see Table 6.2).

Regarding the annotation budget, we had initial discussions with potential participants
about the amount of time they would be able to commit to the experiments. From early
participant feedback and preliminary empirical tests, we converged on an experimental
duration of half a day consisting in annotating 300 vulnerabilities, an amount to be
divided into offline training, online training, and online evaluation. This budget was the
best compromise between participant’s availability and experimental validity.

Our first intuition was to divide the annotation budget evenly between offline training,
online training, and online evaluation, providing a budget of 100 annotations for each
step. For online training and evaluation, we also have to divide the budget into a number
of weeks of simulated time and a number of vulnerabilities to be annotated per week.
For online evaluation we settled on an even divide of 10 annotations per week during
10 weeks of simulated time. However early informal experiments highlighted a potential
problem for online training: it is common for many vulnerabilities affecting the same
software or hardware to be disclosed simultaneously, creating a risk of wasting part of the
training budget as most vulnerabilities disclosed in a single period are affecting the same
component. For this reason, we decided to spread the online training budget on more
weeks, with only 8 annotations per week during 12 weeks of simulated time, for a total of
304 vulnerability annotations in the entire experiment.

The last hyperparameter to set was r, the number of randomly picked vulnerabilities
to be ranked during the vulnerability selection process. Early informal experiments high-
lighted the risk of getting stuck into local maxima when carrying a mostly deterministic
vulnerability selection process. Therefore we decided to let randomness have an important
role in vulnerability selection by setting r = 10. We hypothesized that this setting would
let the training process propose varied vulnerabilities to the expert, while still having a
high probability of having at least one interesting vulnerability to submit to the expert
among the ten random ones.

For reference Table 6.2 shows a complete list of all the hyperparameters in our eval-

144



6.3. Preliminary Evaluation

System decision
Expert decision LOG TICKET PAGE

LOG 46 39 0
TICKET 4 2 0
PAGE 5 4 0

Table 6.3 – Evaluation results for experiment A. Correct decisions: 48. False positives: 39.
False negatives: 13.

System decision
Expert decision LOG TICKET PAGE

LOG 35 36 6
TICKET 5 12 1
PAGE 2 3 0

Table 6.4 – Evaluation results for experiment B. Correct decisions: 47. False positives: 45.
False negatives: 10.

uation protocol, as well as the values they were set to and the justifications for these
values.

6.3.2 Results

Evaluation results for experiments A and B are shown in Table 6.3 and 6.4. Correct
decisions are shown in the diagonal row. False positives (for which the system chose a
higher alert level than the expert) are shown above the diagonal, while false negatives
(for which the system chose a lower alert level than the expert) are shown below.

Results show that our approach can be improved: less than half of the decisions are
identical between the system and the expert, with a very high number of false positives
yet a significant amount of false negatives. The most common type of false positives
is a vulnerability deemed benign by the expert (LOG, no alert raised) for which the
system created a non-urgent TICKET for inspection during working hours. This is a
consequence of the low base rate of non-LOG vulnerabilities (experts for experiment A
and B respectively classified 85 % and 77 % of evaluation vulnerabilities as LOG) coupled
with our design choice of favoring TICKET as a default response.

As we said in Section 6.3.1, we did not get access to the expert’s annotations for neither
experiment A or B. However, for experiment B we had the opportunity to follow up with
the expert’s team to get some insight into the evaluation process. An important discovery
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made during this follow-up is that at least five false negatives from experiment B are
actually human errors instead of prediction errors (the five vulnerabilities annotated as
PAGE by the expert were incorrectly annotated during the evaluation and the participant
actually agrees with the system’s decisions). According to the participant, this is partly
due to a specific keyword in the vulnerability description that incorrectly startled him,
and partly due to annotation fatigue, which we discuss in Section 6.4. We chose not to
correct our results following this information for two reasons: first, there have been no
comprehensive review of all evaluation vulnerabilities for neither experiments, leaving the
possibility of even more undetected human errors. Moreover, we consider expert error a
real-world condition that should be acknowledged by a robust evaluation protocol.

6.4 Discussion

As said previously, for both experiments A and B we did not get access to the 304
vulnerabilities submitted to the expert, nor the annotations provided by the expert, for
confidentiality reasons. Under these conditions we can only speculate about what went
right or wrong during the automated decision process, and can outline some design changes
we would propose in the advent of another experimental campaign.

6.4.1 Experimental Limitations

It is likely that a budget of 304 vulnerabilities is not enough for both training and
evaluating our prediction system. It is noteworthy that in the context of a production
prediction system, having a security operator annotate vulnerabilities one hour a week
for a year would result in an order of magnitude increase in annotation budget compared
to our experimental campaign. We do not know how such an increase in budget would
affect decision accuracy.

Moreover for the sake of simplicity we made the choice to completely separate online
training from online evaluation, while still simulating the passing of time. This could have
the effect of progressively making the training obsolete the further the evaluation progress
in the simulated time. In a real-world scenario, online training would likely continue
indefinitely in parallel of decision evaluation and exploitation. We do not know the impact
of this experimental choice on the validity of our results.
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6.4.2 Decision Quality

For this work we only used dimensions generated by the keyword extraction pipeline
described in Chapter 4, with past CPE URIs used as a filtering whitelist to prevent too
many noisy keywords. This raises two risks: the quality of the extracted names may not be
good enough for accurate decisions and comparing vulnerabilities by affected component
alone may not be enough for proper risk analysis.

As we could not study ourselves the training and evaluation data, we delivered a de-
bugging tool to experimenters allowing them to look back at any evaluation vulnerability.
Using this tool they could list the training vulnerabilities that were considered similar,
and the keywords from which the similarity arose. While they did not have time to do
a comprehensive analysis of all evaluation decisions, they did report some valuable in-
sights. Many decision mistakes were due to incorrect links between vulnerabilities, due to
noisy keywords that are nevertheless present in the CPE URI whitelist: this is the case
for common technical words such as “internet” (present in the whitelist because of many
software names starting with Internet Explorer), “api” (because of software names such
as Broker API or API connect), “credentials” (because of software names such as Creden-
tial Bindings). As seen in Chapter 4, multiple words structures that are part of software
names mentioned in CPE URIs can be included as multiple words keywords, creating
some superfluous keywords made of very common English sentence structures: structures
such as “to the” (included in the whitelist because of a vulnerability affecting the Tic Tac
to the Max Android application), “to a” (because of a software named Recommend to a
Friend), and “as a” (because of a software named Metal as a Service) are all superfluous
keywords that led the prediction system to incorrectly pair many vulnerabilities together,
leading to several wrong decisions.

It could be worthwhile to improve the filtering capabilities of our keyword extraction
pipeline, as well as giving security experts the opportunity to blacklist keywords that led
to incorrect decisions in the past. Last but not least, it would be interesting to evaluate
how adding other vulnerability properties such as the predicted CVSS score (as we propose
in Chapter 5) would help risk analysis.

6.4.3 Expert Expectations

When explaining our experimental protocol to participants we did our best to convey
that the current prediction system is only based on affected component names, and does
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not take into account other properties such as affected versions or vulnerability severity.
However we never met directly the participant for experiment A (we presented the protocol
to his colleagues) and more than a year had passed between initial project presentation
and the starting of experiment B. This means participants may have forgotten (or were
never aware to begin with) of this limitation while participating in the experiment, and
participant’s feedback following the experiments left this point unclear. If it was confirmed
that security experts tend to include other information such as version or severity into their
vulnerability analysis, this would be a strong indicator that more vulnerability properties
are needed to increase prediction accuracy.

Another point where our system may have differed from participants’ expectations is
our choice to consider TICKET as a default choice. Our initial hypothesis was that false
negatives are worse than false positives, as they imply the presence of an unmitigated risk
for the information system. Many security experts we talked to disagreed with us: most of
them told us that they had too many alerts from too many monitoring systems to handle
them all, and they did not have time to check all newly disclosed CVE vulnerabilities
manually. Therefore they strongly prefer some false negatives (which is not worse than
their current situation) to false positives (which create even more alerts for them to
handle). While there is probably no universal answer to this question, we believe a future
version of this prediction system should allow the possibility for the security expert to
choose a default alert behavior she feels appropriate.

6.4.4 Hyperparameters Tuning

Our learning system and evaluation protocol both require many hyperparameters, cre-
ating a hyperstate space too vast to be explored comprehensively. This is a problem shared
by many machine learning endeavors, as changing a hyperparameter value requires the
training to be started over from scratch. However as seen in Section 2.4.3 active learning
is especially vulnerable to this phenomenon as training requires the active participation
of a human, and the choice of a sample to be annotated during training is impacted by
the hyperparameters settings. As security experts’ time is expensive, any hyperparam-
eter mistake is very costly. The list of hyperparameters shown in Table 6.2 illustrates
how many big and small decisions must be taken to prepare such an evaluation protocol
(sometimes without the ability to justify these decisions appropriately).

Even if we had the ability to launch a second experimental campaign, or even five
other experimental campaigns, exploring the hyperstate space thoroughly would be still
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out of our reach as it grows exponentially with the number of hyperparameters in our
system. When the participating human is expected to be a domain-knowledge expert
(as in our case), retraining the model is very expensive and doing it repeatedly is not
possible in practice. Therefore there is no way to tune such a system following a rigorous
experimental method. This realization is the reason why we chose to limit the number of
hyperparameters as much as possible in our contributions described in Chapters 4 and 5.

6.4.5 Decision Explicability

In our opinion, our lack of access to this campaign’s experimental data validates our
design choice to consider decision explicability as a critical property of a security decision
system. This enables us to design self-serving debugging tools usable by participants,
giving them the ability to understand by themselves the reasons why predictions succeeded
or failed. The participants were able to give us all the valuable insights we discussed in this
section while still keeping the sensitive details of their information system confidential.

Figure 6.5 shows a concrete example of an alert decision explicability report, from an
informal experiment done in the same conditions as experiments A and B. The evaluation
vulnerability, CVE-2014-4914, is a vulnerability affecting Zend, a PHP framework. On a
superficial level, the decision seems correct: the expert and the prediction system chose
the same alert level (LOG), and overall the keywords extracted from the vulnerability
are of good quality. However, when studying the reason why the prediction system chose
the LOG alert level for this vulnerability, it appears that it was considered similar to
CVE-2017-3614, a vulnerability affecting Berkeley DB annotated as LOG during train-
ing. The keyword creating a link between the two vulnerabilities is “db”, as the Zend
vulnerability is due to a database connection problem. One may consider this link to be
correct, for instance if an expert wanted to classify all database-related vulnerabilities as
LOG because her information system does not include any database. However it is likelier
to be considered incorrect: the expert probably annotated the training vulnerability as
LOG because she was not interested in Berkeley DB, and this should not allow the system
to draw any conclusion on the expert’s interest in the Zend framework. In that case the
system reached the correct decision accidentally because of the low base rate of non-LOG
vulnerabilities, but it should actually have chosen TICKET as there is no genuinely simi-
lar vulnerability in the training data. We can also notice that the keywords extracted from
the Berkeley DB training vulnerability are generally of lower quality compared to the Zend
evaluation vulnerability. This is mainly due to the inclusion of the CVSS vector of the
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Evaluated vulnerability: CVE-2014-4914

System decision: LOG
Expert decision: LOG

The Zend_Db_Select::order function in 
Zend Framework before 1.12.7 does not 

properly handle parentheses, which allows 
remote attackers to conduct SQL injection 

attacks via unspecified vectors.

Keyword Weight

“zend framework” 21.92

“zend” 14.92

“select” 8.80

“db” 7.64

Training vulnerability: CVE-2017-3614

Training decision: LOG

Vulnerability in the Data Store component 
of Oracle Berkeley DB. The supported 

version that is affected is Prior to 6.2.32. 
Difficult to exploit vulnerability allows 

unauthenticated attacker with logon to the 
infrastructure where Data Store executes 

to compromise Data Store. Successful 
attacks require human interaction from a 

person other than the attacker. Successful 
attacks of this vulnerability can result in 
takeover of Data Store. CVSS 3.0 Base 
Score 7.0 (Confidentiality, Integrity and 

Availability impacts). CVSS Vector: 
(CVSS:3.0/AV:L/AC:H/PR:N/UI:R/S:U/C:H/I

:H/A:H).

Keyword Weight

“data store” 42.02

“oracle berkeley db” 27.75

“berkeley db” 18.50

“oracle berkeley” 18.50

“store” 17.60

“i h” 15.37

“h” 13.40

“berkeley” 9.25

“db” 7.64

“data” 6.63

“r” 6.62

“u” 6.12

“pr” 5.56

Similarity
Cosine similarity: 0.03

Keyword similarity: “db” (58.32)

Figure 6.5 – An actual example of an alert decision explicability, from an informal experi-
ment done in similar conditions to experiments A and B. See Section 6.2.3 and Figure 6.3
for more details about cosine similarity calculation.
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vulnerability directly inside its raw text description, which is a non-standard practice yet
occurring from time to time. An expert studying this report could conclude that adding
a data-cleaning step in order to detect and remove CVSS vectors from vulnerability text
descriptions could help increase decision quality.

We can see from this example that decision explicability is a powerful tool that lets
us quickly understand how and why the prediction system made a certain decision, and
suggests steps to improve decision quality. As discussed in Section 6.4.2, a natural next
step would be to give the expert the tools to improve by themselves the quality of a decision
after having diagnosed its root cause. A proposal that is simple for experts to understand
and easy for us to implement would be to allow the expert to manually blacklist a low-
quality keyword, for instance after having debugged an incorrect alert decision.

6.5 Conclusion

In this chapter we presented the initial design of an automated vulnerability risk
analysis prediction system that can immediately choose an appropriate alert level for a
just-disclosed vulnerability. It is interactively trained by a security operator using active
learning: by mimicking the alert decisions of the human operator, the prediction system
can gradually learn which vulnerabilities are considered important in the context of a spe-
cific information system. The system is based on an active learning architecture proposed
by Settles et al [182] that includes the computation of a cosine similarity matrix and
an information density vector. We modified this architecture to handle dynamic datasets
such as the flow of vulnerability disclosures and to add a controllable amount of random-
ness in the vulnerability selection process. The architecture also uses our own work on
vulnerability keyword extraction (described in Chapter 4) as a featurization scheme.

This contribution is still at an early stage. Our experimental results show some of
our initial design choices could be revisited. However, security experts we collaborated
with expressed great interest in the concept and their collaboration was a crucial aspect
of this contribution. Notably, this partnership highlighted how decision explicability is
an important factor for real-world applicability of machine learning for security alerting.
Going forward we would like to carry on this relationship onward as well as extend it
to include even more participants, opening the door to a more iterative research process
and more sound experimental protocols. Validating such a system would be an important
step forward in the defense against n-day vulnerabilities, allowing organizations to set up

151



an around-the-clock vulnerability monitoring system while only requiring their security
operators to work during regular hours to train the system.
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Chapter 7

CONCLUSION AND PERSPECTIVES

In this last chapter of this thesis, we first summarize our contributions then present
the perspectives opened by our work.

7.1 Contributions

The goal of this thesis is to propose novel tools to automatically analyze and react to
the risk posed by n-day vulnerabilities at disclosure. Our ultimate goal is for an informa-
tion system to exhibit constant security over time: daily vulnerability disclosures should
not affect the overall risk faced by the system.

To fulfill these goals we presented four contributions in this thesis. Our first contri-
bution (see Section 7.1.1 below) is a proposal for an end-to-end strategy for defending
information systems against n-day vulnerabilities. Our three other contributions solved
research problems highlighted by this strategy and are divided in two topics: automating
vulnerability analysis at disclosure (see Section 7.1.2) and automating vulnerability risk
analysis at disclosure in the context of a specific information system needing protection
(see Section 7.1.3). In Section 7.1.4 we review how our contributions fulfill our goals and
improve the state of the art.

7.1.1 End-to-end Strategy for Defending Information Systems
Against N-Day Vulnerabilities

In Chapter 3 we outlined a complete strategy to defend information systems against
n-day vulnerabilities. The core steps of the strategy are as follows:

1. Automatically gathering and analyzing information about newly disclosed vulner-
abilities in an explicable fashion, without waiting for human analysis that comes
later.
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2. Automatically analyzing the risk created by newly disclosed vulnerabilities, in an
explicable fashion, in the context of a specific information system to defend.

3. If warranted, triggering a reaction mitigating the risk posed by the vulnerability
to the information system.

Outlining this strategy highlighted several open research problems, some of which we
tackled in our other contributions.

7.1.2 Automated Vulnerability Analysis at Disclosure

In Chapters 4 and 5 we proposed two contributions to gain a better understanding of
vulnerabilities at their disclosure. Disclosure can be a chaotic stage in the vulnerability life
cycle, and some information existing in human readable form (such as the vulnerability
free-form English description) may not exist in a machine readable format yet.

In Chapter 4 we showed that the affected software or hardware of a vulnerability
could be determined at disclosure before the publication of CPE URI metadata from the
text description of the vulnerability by using machine learning and information retrieval
techniques such as TF-IDF. The results of the analysis process are presented as a short
list of weighted and ordered keywords. Our evaluation protocol showed that keywords
related to the name are present in the top three positions of the list 86 % of the time.
There was no prior state of the art for this problem despite its practical relevance for
the practitioners security community. Since the publication of this work other researchers
built on top of this contribution [221], demonstrating the interest of the community for
this problem.

In Chapter 5, we showed that we are able to automatically predict the CVSS vector
of a new vulnerability at disclosure using linear regression, allowing for a complete and
explicable severity analysis of the vulnerability. We achieve a prediction accuracy up
to 96 % for individual CVSS fields and our CVSS score prediction error exhibits false
negatives below 0.2 for 50 % of vulnerabilities and below 3.5 for 99 % of vulnerabilities.
As for our previous contribution there was no prior state of the art for the problem of
CVSS vector prediction despite the practical relevance of the problem.

A paramount requirement for both works is to keep the results explicable. This requires
careful choice of featurization, dimension reduction, and training algorithms for both pre-
diction pipelines, in order to keep an explicable relationship between the input and the
output. We found that techniques such as bag-of-words, whitelist-based and conditional-
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entropy-based filtering, TF-IDF and linear regression are helpful building blocks for de-
signing explicable machine learning pipelines for security purposes.

Taken together these contributions create a state of the art for automated vulnerability
analysis at disclosure.

7.1.3 Automated Vulnerability Risk Analysis at Disclosure

In our contribution detailed in Chapter 6, we go one step further to automate the risk
analysis of newly disclosed vulnerabilities, in the context of a specific information system
to protect. Instead of tackling the complex problem of charting the software used across an
entire information system, we make use of the conscious and unconscious knowledge gath-
ered by its security team by interactively training a risk analysis prediction system using
active learning. The prediction system then monitors all newly disclosed vulnerabilities in
real time, and uses the knowledge base it has acquired from the security expert to assert
an appropriate alert level for each new vulnerability. This alert level is human-centered
and made of three levels: a vulnerability can require an urgent response, a non-urgent
response during business hours, or no response at all.

Our experimental protocol, made possible by the participation of actual security ex-
perts protecting real information systems, highlighted some practical difficulties in val-
idating this design, such as how expensive it is to train active learning systems with
time-constrained human experts. In this context, iterating over many hypotheses is chal-
lenging. However it also shows that keeping prediction systems explicable is a cornerstone
of creating a trust relationship between automated prediction systems and security teams
and that explicability is a decisive factor in the iterative improvement process of security
systems. This contribution is an important step towards automating vulnerability risk
analysis at disclosure.

7.1.4 Reacting to N-Day Vulnerabilities in Information Systems

Our contributions brought us closer to our ultimate goal of making security constant
over time for information systems. In Chapter 3 we outlined an end-to-end strategy to
automate defense against n-day vulnerabilities, and in this thesis work we solved multiple
open problems implied by this strategy.

Before our contributions, to our knowledge there was no prior state of the art on how
to react to new vulnerabilities in the seconds following their disclosure and this thesis
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work bridges this gap. Our contributions detailed in Chapters 4 and 5 open the door to
automatically gathering and understanding the properties of a vulnerability at disclosure,
by proposing explicable automated methods while previous works rely on slow, manual
analysis.

In Chapter 6 we proposed a preliminary contribution aiming to let a security expert
train a defense system during working hours to automate vulnerability monitoring, remov-
ing the need for around-the-clock manual vulnerability management by security experts.

Our contributions already have had some impact:
— Our contribution described in Chapter 4 was published in the 2020 IEEE/IFIP

Network Operations and Management Symposium (NOMS 2020) [64] and we open-
sourced all the related code and data [69]. Less than a year later other researchers
(Wåreus et al [221]) already built upon our work, taking the problem we first
identified and pushing it in a different direction.

— Our contribution described in Chapter 5 was published at the 15th International
Conference on Availability, Reliability and Security (ARES 2020) [65] and we open-
sourced all the code and data for this contribution as well [68]. It was notably pre-
sented to the EPSS Special Interest Group (SIG), and was met with great interest.
This contribution led us to participate regularly in the CVSS and EPSS SIGs and
we hope to continue this participation in the future.

— We developed the open-source library libcvss [114], which aims to become the
reference library when parsing and manipulating CVSS vectors using the Rust
language.

In the next section we outline the perspectives opened up by this thesis.

7.2 Perspectives

In this section we detail the perspectives opened by this thesis, in the short, medium,
and long term.

7.2.1 Short-Term

Our contribution related to vulnerability risk analysis, detailed in Chapter 6, is promis-
ing yet incomplete. More efforts are required in order to get stronger results, as well as
maintaining and expanding our relationship with security experts. Increasing the accuracy
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of our risk prediction system could have important practical implications for real-world
application of our work.

During our discussions, the security experts we partnered with confirmed their interest
in such a vulnerability monitoring system but highlighted how little time they had to
participate in a purely scientific experiment with no immediate value for their day-to-
day operations. Therefore a natural next step would be to build an actual vulnerability
monitoring system that experts could use in a real-world context for an extended period
of time, such as a year. On the one hand this would give them a useful tool (even if
imperfect) while allowing us to collect more evaluation data, letting us iterate over more
hypotheses.

Likewise, our contribution related to determining the affected component of a vulner-
ability, detailed in Chapter 4, could be taken further. In particular, the affected software
is currently provided as a list of ordered keywords: it would be interesting to study the
feasibility of providing it as an actual CPE URI containing the complete software name
and vendor. Wåreus et al [221] built upon our work and showed that this is possible
when using non-explicable machine learning techniques. It would be valuable to create a
complete CPE URI while still retaining the explicability properties of our work.

A piece of vulnerability metadata we have not tried to predict is the CWE entry as-
sociated with the vulnerability, which describes the type of weakness exploited by the
vulnerability. It would be worthwhile to apply the same techniques we used in our contri-
butions from Chapters 4 and 5 to reach this goal.

This thesis was particularly multidisciplinary, highlighting that what is considered the
state of the art in one community is sometimes considered obsolete in another. For in-
stance, the TF-IDF algorithm is a standard algorithm in the Natural Language Processing
(NLP) community, and we make use of it in Chapter 4. However it is considered obsolete
in the Information Retrieval (IR) community, where the Okapi BM25 algorithm is con-
sidered superior. It would be interesting to revisit this contribution and see the effect of
using Okapi BM25 instead of TF-IDF.

The tools and methods we designed during this thesis could be generalized to other
pieces of data apart from vulnerability text descriptions. The activity of analyzing public
data to extract valuable security information is called Open-Source Intelligence (OSINT).
The OSINT community is very active, and it would be interesting to see how our contribu-
tions and in particular our keyword extraction pipeline (described in Chapter 4) could be
applied to other data sources such as social networks, blogs, news sites, GitHub commits,
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and many more.

7.2.2 Mid-Term

Deep learning allows very accurate machine learning decisions, but at the cost of
making the decision process a non-explicable black box. Deep learning explicability is a
very active research topic, with a state of the art improving every year. During this thesis
we made the conscious choice to consider the state of the art in deep learning explicability
as inadequate for security decisions. This may change in the future if the numerous works
in progress on this topic eventually lead to a breakthrough. Such a result would create
opportunities for our work to be superseded by other approaches.

Charting the software used across an entire information system is a challenging un-
solved problem. There are widely used interpreted languages such as Python and Javascript,
or semi-interpreted such as Java, that contradict the simplistic notion of software being
only made of executable binaries. Static, dynamic, and more recently downloaded-on-the-
fly dependencies all make it challenging to determine if a software component is present
or absent in an information system. Complex and reprogrammable firmware blur the line
between software and hardware.

Likewise, software versioning, both for charting software in an information system
and cataloging the vulnerabilities present inside it, is another problem more complex
than it seems at first sight. A software version is essentially a social convention which
sometimes gets fuzzy. There are widely-used Javascript libraries for which the same version
on Github and NPM differs. Debian maintainers are known to apply security patches to
their packages if the original software author did not do it before, in which case they will
create their own version number for the customized version. In a vulnerability free-form
text description, it is difficult for machines and humans alike to discriminate between the
last vulnerable and the first non-vulnerable version of the affected software.

A possible approach for solving both problems is to consider software not as data
but as behavior. In that regard, techniques from intrusion detection (which separates
legitimate from malicious behavior) and fuzzing (which attempts to trigger faulty behavior
in a component by interacting with it) can be adapted to create a chartist system that
recognizes the presence or absence of a software or hardware component, or even a specific
version of a component, by sending an input to the information system and monitoring
the output received in return. Just like with IDSs, some software or hardware might be
detected only from a privileged observer on the same host while others could be detected
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directly from the network. Unlike IDSs, there are no fundamental challenges in evaluating
such an approach. There have been proposals in that direction [174], however this approach
implies interacting with production software and hardware on a large scale, and an open
research problem is how to guarantee the absence of side-effects such as crashes or data
corruption during exploration.

7.2.3 Long-Term

Anomaly-based Intrusion Detection Systems (AIDSs) could one day become impor-
tant tools to defend against n-day vulnerabilities. In Chapter 3 we showed that it was
conceivable to create an Intrusion Prevention System (IPS) that would dynamically react
to dangerous vulnerability disclosures. However, even if building such an IPS is practical,
evaluating that it works properly is not. AIDS research is a twenty-five years-old domain,
and yet a satisfactory evaluation protocol for them is still out of reach. The ideal dataset
to this end would include realistic yet labeled attack and legitimate traffic, and would
be correlated with realistic vulnerability disclosure events to measure their impact on
recorded attacks. In practice, realistic attack traffic is very difficult to craft as the genuine
attacker state of the art is unknown, while legitimate traffic is difficult to study and share
because of privacy and confidentiality problems. The current state of the art in AIDS
is divided between old, obsolete evaluation datasets and modern but unlabeled datasets
(that are sometimes rife with privacy violations). A breakthrough in IDS evaluation would
create many opportunities for better cybersecurity defense.

Assuming the component affected by a new vulnerability has correctly been identified,
one could envision to automatically rediscover vulnerability exploitation vectors using a
fuzzer : a class of test frameworks that use randomness to find bugs and vulnerabilities
in software. This fuzzer could be dynamically guided by the preliminary information
extracted from the vulnerability analysis, such as the affected software, vulnerable and
non-vulnerable versions, the type of weakness exploited, etc. Once the vulnerability has
been formally identified in the software, it might be possible to generate automatically a
signature for it, either to detect the presence of a vulnerable binary in the information
system, or for an IDS to detect an exploitation attempt.

Our work and its implications could be used in other domains, such as offensive se-
curity: could automated vulnerability analysis at disclosure facilitate or even automate
exploit creation for n-day vulnerabilities? A state-sponsored offensive team could gain a
strategic advantage from getting access to vulnerability exploits several hours, days or
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weeks before the general public.
Another domain where defensive and offensive security meet is the concept of au-

tomated counter-attacks. While still within the realm of science-fiction for now, is it
conceivable for an information system to react to an intrusion attempt by automatically
launching a counter-attack aiming to stop and identify the authors of the intrusion? Such
a possibility would raise fascinating ethical and scientific questions.

Most organizations face much stronger online threats than local ones. Why do our
computers and smartphones have to be kept as secure as fortresses while many of us are
content with very simple physical locks to protect our homes and offices? One answer is
that the present Internet resembles an international war zone, in which anyone in the world
can attack anyone else instantly, requiring everybody to adopt military-grade defense
tactics and equipment. Is this sustainable? Should information systems become ever more
secure or should the world become safer? It might be inevitable that online security has
to be delegated to sovereign organizations providing protection to civilians. Currently this
role is assumed by private sector organizations, including the major technology companies
such as Google, Apple, Facebook, Amazon and Microsoft, and key network-level actors
such as Cloudflare. Should this responsibility be handled by nation states instead? What
would be the ethical and privacy implications of such a change? What are the technical
implications of using intrusion detection techniques to protect a nation state comprised
of many heterogeneous systems compared to protecting a single large cloud provider?
A second direction would be a worldwide justice system enabling the prosecution of the
myriads of criminal threat actors that currently operate unbothered in remote parts of the
world. This would require making progress in attack attribution and more importantly,
proof of this attribution, which are both very hard, largely unsolved problems. Could
there be a worldwide initiative aiming to leave no online criminal behavior unpunished?
Could we allow any organization to file a complaint and have the attacker unmasked and
prosecuted? History has shown that prosperity and safety are not achieved by arming
everyone for a perpetual war, but instead by creating the conditions for durable peace.
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Appendix A

N-DAY VULNERABILITIES CASE

STUDIES

In this appendix we present three case studies for major n-day vulnerabilities that had
widespread real-world impact: Heartbleed, Shellshock, and EternalBlue.

A.1 Heartbleed

CVE-2014-0160 [140] or Heartbleed [61] was a software vulnerability affecting the
widely-used cryptography library OpenSSL [149]. Its life cycle is depicted in Figure A.1.
It was introduced by a PhD student, Robin Seggelmann, on December 31st 2011 with the
vulnerable code reviewed and merged by OpenSSL core developer Stephen Henson with-
out the flaw being corrected. The vulnerability was then released as part of OpenSSL 1.0.1
on March 14th 2012. For the next two and half years the vulnerability stayed dormant
before being independently discovered by Neel Metha at Google and the Codenomicon
team, on March 21st and April 2nd 2014 respectively. Both reported it to the OpenSSL
team, which disclosed the vulnerability and released the corrective patch 1.0.1g on April
7th 2014.

Heartbleed allowed an attacker to read a random slice of memory from a remote web
server process, including the content of user requests (in particular login and password
information) as well as the web server private keys used for securing TLS / HTTPS
communications. Between 24 % and 55 % of popular HTTPS websites were deemed vul-
nerable to the attack at the time of disclosure. The disclosure of Heartbleed triggered a
world-wide race against the clock between attackers and defenders. 22 hours after disclo-
sure, 95 out the 100 most popular websites (as estimated by the Alexa ranking [4]) were
non-vulnerable, either because they applied the patch or because they were not affected
in the first place. Meanwhile, the first Heartbleed attack ever recorded had occured a
few minutes earlier. 48 hours after disclosure, more than 110 000 websites out of the top
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D – 17 days: discovery by Neel Matha at Google
Google servers are patched

Undiscovered vulnerability Zero-day vulnerability N-day vulnerability

D – 5 days: independent rediscovery
by Codenomicon

D + 0: disclosure on April 7th 2014 by the OpenSSL project
Patch released as OpenSSL 1.0.1g

D + 21h29m: first recorded attack

D + 22h: 95 sites out of the Alexa 
top 100 were non-vulnerable

D + 58 days: 96.9% of the Alexa top 
1 million websites were non-vulnerable

Well-known vulnerability

D – 828 days: vulnerability introduced by Robin Seggelman
Reviewed and merged by OpenSSL core developer Stephen Henson

D – 754 days: release of vulnerable OpenSSL version 1.0.1

Figure A.1 – The life cycle of the Heartbleed vulnerability (CVE-2014-0160).

one million most popular websites were still vulnerable, while attacks intensified. Two
months later, the number was down to 31 000 (with 96.9 % of the top 1 million websites
being non-vulnerable at the time), as awareness of the vulnerability had spread among
the system administrators community [61].

In many ways, Heartbleed was the ground zero of modern n-day vulnerabilities.
A first important characteristic of Heartbleed is that its usage both as a zero-day and

as a fully public vulnerability has been limited or non-existent. While there have been
speculation about government agencies such as the NSA being aware of the vulnerability
before its known discovery, the NSA denied having knowledge of the vulnerability prior to
its disclosure [227] and all evidences of the contrary have turned out to be inconclusive [87].
Meanwhile, its long-term impact beyond the immediate aftermath of the disclosure has
been fairly limited as well.

Still, Heartbleed had important real-world impact during the days and weeks following
the disclosure. The most notable report was the data theft of non-medical personal data
for 4.5 millions patients from the hospital chain Community Health Systems (CHS) less
than a week after disclosure [162] [210]. The attackers used Heartbleed as an initial vector
to steal CHS security access secrets then used those to achieve the actual data theft.

184



The unprecedented nature of the Heartbleed disclosure led the public opinion to un-
derstandably focus on what went wrong at the time, such as the massive underfunding of
critical open-source projects like OpenSSL [94]. However arguably some things went right
with Heartbleed: the patch was issued on the day of disclosure. This patch completely
fixed the problem and it did not cause additional issues. Thanks to an efficient marketing
campaign [86], the awareness of Heartbleed among the technical community and the gen-
eral public had been extremely high (remarkably, 60 % of American adults had heard of
Heartbleed when polled in April 2014). This, coupled with the fact that the vulnerability
targeted web servers usually administered by professional staff, led to an overall timely
patch dissemination, limiting the global impact of the vulnerability. Still, Heartbleed was
a wake-up call for the technical community and led to the start of multiple initiatives
aimed at improving the security of critical Internet infrastructure software. These initia-
tives included the Core Infrastructure Initiative [45] and the creation of the Project Zero
team at Google [11]. Consensus among security experts at the time was that Heartbleed
would be the first of similar vulnerabilities [95], and the future proved them right.

A.2 Shellshock

Shellshock was a family of vulnerabilities (CVE-2014-6271 [141] quickly followed by
CVE-2014-6277, CVE-2014-6278, CVE-2014-7169, CVE-2014-7186, and CVE-2014-7188)
affecting the ubiquitous bash shell, used in the vast majority of Unix systems across the
world. Its life cycle is depicted in Figure A.2.

Shellshock had an even more extreme timeline than Heartbleed. The original vulner-
ability was introduced on August 5th 1989 by original bash author Brian Fox and was
then released as part of Bash 1.03 on September 1st 1989. It stayed undiscovered during
more than twenty five years before being discovered on September 12th 2014 by Stéphane
Chazelas who then contacted current bash maintainer Chet Ramey on the same day [56].

Shellshock allowed an attacker to achieve remote code execution on a vulnerable ma-
chine because of unforeseen consequences of the way bash historically handled function
definitions in environment variables. Attack vectors included CGI scripts on Apache or
Nginx [58] and mail delivery with qmail [157] which both allowed remote code execution,
while another attack vector through OpenSSH allowed privilege escalation [184].

Taken together these attack vectors had the potential to leave millions of hosts vulnera-
ble to remote attacks. This led Chazelas and Ramey to plan a coordinated disclosure along
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D – 12 days: discovery by Stéphane Chazelas
Private disclosure to bash maintainer Chet Ramey

Undiscovered vulnerability Zero-day vulnerability N-day vulnerability

D + 0: disclosure of CVE-2014-6271 on September 24th 2014 by Florian Weimer of Red Hat
Release of Bash43-025 mitigating CVE-2014-6271

D + 1 hour: first recorded attack

D + 2 days: release of bash43-026 mitigating CVE-2014-7169

D + 54 days: 99.9% of the Alexa top 
1 million websites were non-vulnerable

Well-known vulnerability

D – 25 years and 50 days: vulnerability introduced by bash developer Brian Fox

D – 25 years and 23 days: release of first vulnerable bash version 1.03

D + 3 days: release of bash43-027 mitigating still undisclosed CVE-2014-6278
Disclosure of unmitigated vulnerability CVE-2014-6277

D + 4 days: disclosure of unmitigated vulnerabilities CVE-2014-7186 and CVE-2014-7187

D + 6 days: disclosure of already mitigated CVE-2014-6278

D + 3 hour: Cloudflare deploys IPS mitigation, records 10-15 attacks per second on their network

D + 8 days: release of bash43-028 mitigating CVE-2014-7186 and CVE-2014-7187

D + 9 days: release of bash43-029 mitigating CVE-2014-6277

D + 7 hour: mitigation is incomplete, disclosure of unmitigated vulnerability CVE-2014-7169

Figure A.2 – The life cycle of the Shellshock vulnerabilities (CVE-2014-6271, CVE-2014-
6277, CVE-2014-6278, CVE-2014-7169, CVE-2014-7186, CVE-2014-7188).

with Florian Weimer from Red Hat to make sure all major Linux and Unix distributions
would be ready to distribute a patch at the time of disclosure.

CVE-2014-6271 was disclosed by Weimer on September 24th 2014 at 14:00 UTC [49],
along with the release of Bash 4.3-025 which provided a mitigation. All major Linux
and Unix distributions included it in their security repositories and urged their users to
upgrade as soon as possible. In the next hours, multiple things happened.

The first recorded attack occurred less than an hour after disclosure [84] as taking
control of a vulnerable web server was as simple as executing a simple curl command such
as this one:

curl -H "User-Agent: () { :; }; echo vulnerable" http://victim.com/

Three hours after disclosure, the Cloudflare CDN started logging and blocking Shell-
shock attacks at the HTTP request level using theirWeb Application Firewall (WAF) [40],
first for their customers, and a few days later for all their users. From the moment they
activated their mitigation they recorded as many as 10 to 15 attacks per second on their
network continuously for several weeks [38].
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More worryingly, in the evening of the disclosure day it became apparent that the 4.3-
025 patch was incomplete [56] and that the problem was broader than initially thought.
For more than a week the situation stayed chaotic with five more related vulnerabilities
discovered and patched in a few days, with several of these vulnerabilities being disclosed
without any mitigation in place.

At the beginning of October 2014 bash maintainer Chet Ramey and other parties
involved in the vulnerability mitigation became more confident they had mitigated all
variants of Shellshock and the daily new releases of Bash stopped.

Patch dissemination continued and two months after disclosure 99.9 % of the Alexa
top 1 million websites were non-vulnerable [58].

Like Heartbleed, Shellshock had real-world impact. In the first hours and days after the
disclosure, attackers used the vulnerability to quickly assemble a massive botnet of infected
computers dubbed wopbot, which they then used to provoke distributed denial of service
against the Akamai CDN and the American Department of Defense (DoD) networks [70].
To get a sense of how confusing the initial moments after the disclosure were, Yahoo
networks were initially believed to have been breached using Shellshock [163] although
it later turned out that Yahoo had patched its infrastructure but a Shellshock attack
accidentally triggered a non-Shellshock code execution bug in Yahoo custom monitoring
infrastructure [3]. Fortunately there have not been reports of a major organization being
directly compromised through Shellshock, possibly because CGI scripts (introduced in
1993) were already an old-fashioned technology in 2014.

Still Shellshock was arguably worse than Heartbleed in several ways. The fact that it
had stayed undiscovered for 25 years (compared to two years for Heartbleed) raises even
more questions about potential secret discovery and exploitation (however like Heartbleed
there are no credible reports of usage before Stéphane Chazelas’s discovery). It was consid-
erably easier to use than Heartbleed and allowed remote code execution on the vulnerable
machine while Heartbleed only allowed unauthorized reads of information. The Heart-
bleed OpenSSL patch was flawless while the initial Shellshock mitigation was incomplete,
requiring no less than five releases of bash over a week to fully mitigate the vulnerabil-
ity. Moreover these additional patches happened in full disclosure, with the vulnerability
having been disclosed publicly and used in the wild already.

While both Heartbleed and Shellshock were critical n-day vulnerabilities with actual
real-world impact, thanks to the tireless work of countless system administrators around
the world the actual damages caused by these vulnerabilities have been somewhat lim-
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D - ~5 years: NSA discovers the vulnerability and starts using it confidentially against multiple targets

Undiscovered vulnerability Zero-day vulnerability N-day vulnerability

D - 2 days: Microsoft releases security update MS17-010 for still undisclosed vulnerability 
for Windows Vista, Windows 7, Windows 8.1, Windows 10, Windows Server 2008, 
Windows Server 2012, and Windows Server 2016

D + 0: disclosure on March 16th 2017

D + 57 days: North Korea starts WannaCry worm attack based on NSA EternalBlue exploit
WannaCry will cost 4 billion dollars in damages across the world
National Health Service has to turn away non-critical patients across UK

D + 2 years and 353 days: "We’ve hit 
new-normal high levels of EternalBlue 
scanning and exploit attempts"

Well-known vulnerability

D - ~27 years: Microsoft implements custom vulnerable version of SMBv1

D - 21 years and 213 days: Microsoft releases Windows 95, first vulnerable version of Windows

D + 58 days: Microsoft releases emergency patch for unsupported versions 
of Windows: Windows XP, Windows 8, and Windows Server 2003

D + 103 days: Russia starts the NotPetya worm attack against Ukraine 
NotPetya is based on NSA EternalBlue exploit
10% of Ukraine computers will have their data erased
NotPetya will cost 10 billion dollars in damages

D + 29 days: The Shadow Broker hacking group leaks stolen NSA exploits that uses EternalBlue

Figure A.3 – The life cycle of the CVE-2017-0144 vulnerability (EternalBlue).

ited. However they were warning shots of what the impact of a badly handled n-day
vulnerability could look like, which leads us to our last case-study.

A.3 EternalBlue

CVE-2017-0144 [142] is a software vulnerability in Microsoft’s implementation of the
first version of the Server Message Block protocol (SMBv1), which provides network access
to resources such as files and printers. SMBv1 has been available on every version of
Microsoft Windows from Windows 3.1 (released in 1992) onward [126]. SMBv2 superseded
SMBv1 in 2007 and SMBv1 was deprecated in 2015 [201]. Still, SMBv1 was heavily used
and Windows 10 (released in 2015) was the first version of Windows which did not install
SMBv1 by default [186]. The life cycle of CVE-2017-0144 is depicted in Figure A.3.

In 2012 the AmericanNational Security Agency (NSA) discovered CVE-2017-0144 [137],
and realized it could compromise any version of Windows available at the time using the
vulnerability as a vector for remote code execution. It chose not to report it to Microsoft,
and instead started using it as a zero-day vulnerability in confidential cyber-warfare op-
erations. To this end it created an exploit for vulnerability CVE-2017-0144. This exploit
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was internally code-named EternalBlue. Then the situation stayed unchanged until March
2017.

On March 14th 2017’s patch Tuesday [123], Microsoft released a mitigation for the
still undisclosed CVE-2017-0144. And then disclosed the vulnerability two days later on
March 16th [142].

For some time, nothing happened. On the attack side, CVE-2017-0144 is not easy to
exploit and while the vulnerability had been disclosed, not many details about it were re-
vealed. However on the defense side patch propagation was slow as well. While individuals
and small organizations get Windows updates automatically, major organizations man-
aging vast Windows computer fleets can choose how quickly they want to update their
fleet to ensure backward-compatibility. Some of them end up being very late in applying
critical security updates.

On April 14th 2017, 29 days after disclosure, something peculiar happened. An anony-
mous hacking group which named itself The Shadow Brokers publicly released several
sets of leaked, highly sensitive NSA exploit software, which included EternalBlue [136].
The identity and motivation of the Shadow Brokers have not been confirmed to this day,
and neither how did they get access to the exploit software. Some speculated the group
was linked to an NSA insider threat [89]. Others such as Edward Snowden suggested
the Shadow Brokers were linked to the Russian government and acted in the context of
the diplomatic tension regarding the recent American Democratic National Committee
(DNC) cyber attacks [63]. Some speculated Microsoft had gotten an advance warning
about the leak, allowing them to locate and patch the vulnerability in time for the release
of the exploit [137].

Whatever their reasons were, the Shadow Brokers effectively put highly efficient cyber
weapons in the hand of the general public. While CVE-2017-0144 had been difficult to
exploit so far, following the public release of the NSA tools taking control of a vulnerable
Windows computer was now as easy as typing a command line into a shell. Even though
the vulnerability was not zero-day anymore, patch dissemination was poor and a vast
number of Windows computers across the world were vulnerable to EternalBlue. Attack-
ers around the world took notice, including those from other cyberwarfare government
agencies.

The WannaCry worm and ransomware attack was launched on May 12th 2017 [220].
It was based on EternalBlue but was modified to behave as a self-replicating computer
worm, encrypting the files present on the infected computer host then requesting a Bitcoin
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ransom in order to get the decryption key. The US government would formally attribute
the Wannacry worm to North Korea later in 2017 [212]. The worm had widespread con-
sequences: 200 000 computers across 150 countries had been reported to have been in-
fected [225]. Worryingly, one the most impacted organization was the United Kingdom’s
National Health Service, whose computers and networks came to a complete halt for a
few days [131]. Ghafur et al [77] did a comprehensive study of the impact of WannaCry
on NHS patient care and concluded that impacted hospitals had to divert away 4 % of
their emergency patients and 9 % of their non-emergency patients and had a 50 % in-
crease in appointment cancellation. However, mortality rate was not impacted although
the authors consider it to be a crude measure of patient harm, which they claimed not
being able to evaluate. Globally WannaCry has been estimated to cost between 4 and 8
billion dollars in damages across the world [208] [161].

WannaCry was not the only cyberwarfare act based on EternalBlue. On June 27th

2017, Russia launched the NotPetya malware attack against Ukraine in the context of on-
going tensions between the two countries [205]. NotPetya was also a self-replicating worm,
even more devastating than WannaCry as it combined EternalBlue with an older attack
vector called Mimikatz [224], using EternalBlue to breach into networks then Mimikatz
to replicate inside them [135]. NotPetya deceived its victims into believing it acted like
a ransomware but was instead plainly destroying the infected computer files without en-
crypting them [135]. The attack shut down most major public and private organizations
in Ukraine, including banks, power companies, airports, hospitals, credit card payment
systems, with an estimated 10 % of all computers across the country having their data
erased [205]. It spread widely beyond Ukraine too, paralyzing 17 cargo port terminal
facilities across the world administered by the Danish company Maersk, impacting the
delivery of hundred of thousands of shipping containers for a full week [205]. The Ameri-
can pharmaceutical company Merck & Co saw 30 000 of its workstations and 7 500 servers
impacted, halting sales, manufacturing, and research during two weeks, while some of its
researchers reported having lost 15 years of research data [121]. Other affected organiza-
tions included Fedex [134], French construction company Saint-Gobain [133] [205], and
more. A US White House representative called the NotPetya attack the "most destruc-
tive and costly cyberattack in history" [206] and estimated its overall cost to 10 billion
dollars [205].

While WannaCry and NotPetya were the most visible consequences of EternalBlue,
the leaked NSA exploit also became a widely used tool for non-nation state attackers. It
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was still one of the most common attacks seen in the wild in 2018 [146] [158], and only in
2019 would its usage start to decrease, prompting the security company Rapid7 to assert
in March 2020 that "we’ve hit new normal high levels of EternalBlue scanning and exploit
attempts" [160].

A complex question related to EternalBlue is the non-disclosure of critical zero-day
vulnerabilities discovered by government agencies such as the NSA. In the wake of the
WannaCry attack US House Representative Ted Lieu introduced the Protecting Our Abil-
ity to Counter Hacking Act (PATCH Act) [96] in the US Congress, which would establish
an independent Vulnerability Equities Review Board that would decide for each vulnera-
bility found by agencies such as the NSA or CIA, if it should be disclosed or not. However
the proposal has not been ratified so far.

It seems reasonable to call EternalBlue a world-scale disaster. The overall damage
caused by the CVE-2017-0144 vulnerability is estimated to be between 14 to 18 billion
dollars when cumulating the cost of both the WannaCry and NotPetya attacks. It para-
lyzed the global infrastructure of an entire country as well as many organization’s ones
across the world, including many hospitals. No vulnerability or exploit disclosure has come
close, before or since then. A striking aspect of EternalBlue’s CVE-2017-0144 is how it
had its most damaging impact as an n-day vulnerability and not as a zero-day: it was
disclosed and patched 58 and 103 days prior to the launch of WannaCry and NotPetya
respectively. EternalBlue makes arguably the case that a mishandled n-day vulnerability
is many times more dangerous than either zero-day or public vulnerabilities.

The only positive news regarding the impact of EternalBlue is that there has been no
fatal casualty reported in its aftermath. As WannaCry and NotPetya paralyzed multiple
hospitals each and led some patients to be turned away, the absence of casualties could
only be attributed to luck and to the bravery of many medical workers around the world.

A.4 First Fatal Casualty Related to an N-Day Vul-
nerability

For the first time in history, a fatal casualty was attributed to an n-day vulnerability
during the last days of our work on this thesis. On September 10th, 2020, a ransomware
allegedly exploiting the vulnerability CVE-2019-19781 (disclosed on December 27th, 2019
and affecting the Citrix ADC software) paralyzed the University Hospital Düsseldorf
(UKD) in Germany. A patient in critical condition had to be transferred to another
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hospital following the incident, and passed away during travel [159]. This is an ongoing
story as we are writing. For this reason we do not provide a comprehensive analysis of
this n-day vulnerability like for Heartbleed, Shellshock and EternalBlue.

Yet this tragic event is a milestone highlighting how dangerous n-day vulnerabilities
can be not only for information systems but also for human lives.
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RÉSUMÉ

Cette thèse porte sur la protection des systèmes d’information contre les vulnérabilités
n-day. Dans ce résumé nous commençons par établir le risque posé par les vulnérabilités n-
day contre les systèmes d’information, puis présentons les mécanismes de défenses utilisés
aujourd’hui, ainsi que leur limites. Nous présentons ensuite l’objectif de notre thèse et nos
contributions. Nous terminerons par des perspectives à la suite de nos travaux.

1. Risques liés aux vulnérabilités n-day pour les
systèmes d’information

Dans cette section nous proposons une définition moderne des systèmes d’information,
définissons les vulnérabilités n-day, et mettons en avant le risque qu’elles posent sur les
systèmes d’information. Nous présentons ensuite trois vulnérabilités illustrant le risque
posé par les vulnérabilités n-day. Nous terminons la section en mettant en avant le besoin
d’un effort de sécurité continu dans le temps.

1.1 Les systèmes d’information modernes

Nous définissons un système d’information comme incluant les personnes, matériels,
logiciels, et processus organisationnels permettant à une organisation de manipuler
l’information lui permettant de prendre des décisions. Bien que les systèmes d’information
soient plus anciens que l’informatique elle même, les systèmes d’information modernes ont
plusieurs caractéristiques récurrentes. La première est d’être multi-partis. L’organisation
qui utilise un système d’information n’est pas nécessairement la même que l’organisation
qui le maintient en condition opérationnelle, ou qui le maintient en condition de sécurité,
ou qui développe les composants logiciels du système d’information. Une seconde car-
actéristique des systèmes d’information modernes est d’être composites, et d’inclure du
matériel et logiciel réalisés par de très nombreux fabricants et éditeurs. En particulier, une
partie de ces logiciels sont publics, voire open-source, tandis qu’une partie peut n’être ni
l’un ni l’autre. Enfin, les systèmes d’information modernes sont des systèmes complexes,
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pour lesquels cartographier intégralement leur nombreux composants et l’interaction entre
ces composants est très difficile.

1.2 L’ère de la cyber-insécurité

La cyber-sécurité est un enjeu majeur du 21ème siècle, pour la communauté technique
d’une part et pour la société en général d’autre part. Toujours plus de domaines sont
automatisés via l’informatique, rendant la sécurité de ces systèmes informatiques toujours
plus critique. Toutes les métriques observables pointent vers la même conclusion : les
enjeux montent continuellement.

Durant la dernière décennie deux tendances ont contribué à rendre les cyber-attaques
considérablement plus dangereuses que dans le passé. La première est le développement
de la cyber-guerre : de nombreux États disposent aujourd’hui de capacité cyber-offensives
évoluées, et ciblent des acteurs publics ou privés pour des motifs géopolitiques. Certaines
de ces attaques étatiques ont coûté des milliards de dollars à leur victimes, et d’autres
ont été suivies de représailles militaires. La seconde tendance est l’apparition de cyber-
attaques criminelles à motif financier, via de nouveaux types de malware incluant les
ransomware et les cryptominers. En particulier les ransomware, qui chiffrent les données
d’un ordinateur infecté puis exigent une rançon en échange de la clé de déchiffrement, ont
déjà coûté des milliards de dollars de dommage à leurs victimes et ont récemment mené
à un décès suite à la paralysie du système d’information d’un hôpital allemand.

1.3 Vulnérabilités n-day notables

Une vulnérabilité n-day est une vulnérabilité publique, récemment divulguée, mais qui
n’est pas encore bien connue. Heartbleed, Shellshock, et EternalBlue sont trois célèbres
vulnérabilités illustrant les risques que posent les vulnérabilités n-day.

Heartbleed était une vulnérabilité sur le logiciel OpenSSL qui permettait à un at-
taquant d’obtenir les clés privées SSL de la majorité des sites web accessibles depuis
Internet. Plusieurs milliers d’administrateurs système ont été contraints de déployer en
urgence un correctif pour sécuriser leurs systèmes.

Shellshock était une vulnérabilité affectant toutes les versions de bash shell sorties
entre 1989 et 2014. Elle pouvait être exploitée à distance via des scripts CGI et était
si facile à utiliser que de premières attaques ont été détectées dans l’heure suivant la
divulgation de la vulnérabilité. Elle mena à des attaques par déni-de-service distribué
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contre le CDN Akamai et le département de la défense américaine.
EternalBlue était un logiciel confidentiel de la NSA permettant l’exploitation d’une

vulnérabilité présente dans l’implémentation du protocole SMB par Microsoft. La vul-
nérabilité affectait toutes les versions de Windows de Windows 3.1 à Windows 10. La
diffusion publique du logiciel EternalBlue mena au lancement de l’attaque ransomware
WannaCry et de la cyber-attaque étatique NotPetya contre l’Ukraine. Ces deux attaques
coûtèrent plusieurs milliards de dollars de dommages autour du monde, et paralysèrent
plusieurs hôpitaux, les conduisant à rediriger des patients vers d’autres destinations.

Ces exemples montrent que le risque induit par les vulnérabilités n-day n’est pas
théorique. De futures vulnérabilités n-day auront probablement un impact similaire ou
supérieur. Les dizaines de vulnérabilités divulguées chaque jour font peser sur les systèmes
d’information un facteur de risque dynamique au cours du temps.

1.4 La sécurité des systèmes d’information au cours du temps

Un système d’information peut avoir un profil de risque très différent à deux instants
distincts, même si aucune modification ne lui a été apportée dans l’intervalle. Le système
peut être adéquatement protégé contre toutes les vulnérabilités publiquement connues à
un moment donné, puis entrer dans une période de risque suite à la divulgation d’une
dangereuse vulnérabilité qui n’a pas encore reçu de mitigation.

Cela signifie que la sécurité des systèmes d’information ne peut pas être une activité
ponctuelle : le risque doit être évalué de façon continue et des actions défensives doivent
être prises de façon régulière pour s’assurer de la sécurité des systèmes sur le temps long.

2. Motivation

La section précédente a établi le risque posé par les vulnérabilités n-day envers les
systèmes d’information. Dans cette section nous justifions notre conviction que des efforts
de recherche supplémentaires doivent être menés pour atteindre un niveau de défense
adéquat face à ce risque.

2.1 Les vulnérabilités n-day : un problème de long terme

L’impact concret des vulnérabilités n-day provient de trois tendances : la réutilisation
logicielle, la divulgation publique de vulnérabilités dans les logiciels et matériels publics,
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et l’usage de l’informatique dans un nombre croissant de cas d’usages, incluant des con-
textes critiques. Aucune de ces tendances ne semble perdre de sa pertinence à court et
moyen terme. La communauté d’ingénierie logicielle considère la réutilisation logicielle
comme une bonne pratique apportant de nombreux bénéfices, particulièrement via l’essor
du logiciel libre. La divulgation publique et coordonnée de vulnérabilités logicielles est
également considérée comme une bonne pratique par la communauté de la sécurité infor-
matique. Enfin, inclure plus de connectivité et d’intelligence dans toujours plus d’objets
et de lieux est le concept de multiples industries majeures de notre époque, à commencer
par l’Internet des Objets. Tout cela implique que le risque posé par les vulnérabilités n-day
est peu susceptible de diminuer dans le futur, et il est même probable qu’il augmente.

2.2 Les pratiques actuelles sont inadéquates pour se défendre
contre les vulnérabilités n-day

Après avoir établi que les vulnérabilités n-day sont susceptibles de devenir de plus
en plus problématiques dans le futur, nous passons maintenant en revue les pratiques
actuelles utilisées pour s’en défendre et mettons en lumière leurs déficiences.

2.2.1 Mises à jour logicielles

Garder à jour les logiciels d’un système d’information est une pièce vitale de toute
stratégie de mitigation du risque lié aux vulnérabilités n-day. Cependant, dans les minutes
ou heures qui suivent une divulgation, il est possible qu’aucun correctif ne soit disponible
pour cette vulnérabilité. Et même si un correctif est disponible, il est possible qu’il con-
tienne un bug ou présente un problème de rétro-compatibilité empêchant de le déployer
avec célérité. Dans un contexte où certaines vulnérabilités n-day comme Shellshock sont
exploitées dans l’heure suivant leur divulgation, des mises à jour logicielles ponctuelles
sont nécessaires mais pas suffisantes.

2.2.2 Systèmes de détection d’intrusion par signature

Les Systèmes de Détection d’Intrusion (IDSs) surveillent l’activité d’un système infor-
matique et tentent de séparer les comportements légitimes des comportements malveil-
lants. Plusieurs approches de détection d’intrusion existent et l’une d’entre elles a déjà
eu un impact important dans la lutte contre les vulnérabilités n-day : la détection et
prévention d’intrusion par signature, qu’on retrouve sous la forme de Web Application
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Firewalls (WAF) et Next-Generation Firewalls (NGFW) dans l’industrie. En particulier,
de nombreux fournisseurs Cloud proposent une offre WAF à leurs clients et surveillent le
traffic réseau qui leur est destiné, leur permettant de bloquer les requêtes correspondant
à une signature rédigée manuellement pour détecter de l’activité malveillante.

Bien que très utiles pour se défendre contre les vulnérabilités connues, ces techniques
sont imparfaites dans le cadre de la défense contre les vulnérabilités n-day. Créer une signa-
ture pour détecter l’usage d’une vulnérabilité requiert du temps, des efforts, de l’expertise,
et une connaissance approfondie de l’attaque à détecter. Il est donc très difficile de rédiger
de façon systématique une signature pour chaque nouvelle vulnérabilité dans les premières
heures suivant sa divulgation.

2.2.3 Sécurité par design et défense en profondeur

La sécurité par design est un ensemble de pratiques de conception et implémentation
logicielles visant à incorporer la sécurité comme un élément primordial d’un projet logiciel
dès les premières étapes de son cycle de vie. Bien qu’il soit possible d’obtenir d’importants
gains en sécurité via ces approches, elles sont également inadéquates pour défendre des
systèmes d’information entiers contre les vulnérabilités n-day, pour deux raisons. La pre-
mière est que ces approches visent à limiter le nombre de vulnérabilités présentes dans
un composant logiciel mais ne peuvent prétendre les retirer toutes. La seconde est que
les systèmes d’information sont composites : même si certains composants d’un système
d’information sont conçus en respectant les principes de la sécurité par design, le sys-
tème entier inclut probablement des composants logiciels ou matériels historiques moins
sécurisés.

Il est possible de concevoir des systèmes d’information entiers via les pratiques de
sécurité par design, et de les rendre plus sécurisés que leur composants individuels. Une
pratique très utilisée dans ce but est le concept de défense en profondeur. La défense
en profondeur consiste à utiliser simultanément plusieurs mécanismes de défense afin
que lorsqu’une couche échoue à contrer une attaque, les autres couches aient une chance
d’y parvenir à leur tour. Pour la mitigation de vulnérabilités n-day, une stratégie de
défense en profondeur pourrait inclure une mise à jour diligente des composants logiciels
et l’utilisation de systèmes de détection d’intrusion et l’usage de composants conçus via la
sécurité par design. La défense en profondeur est une part cruciale de nombreuses straté-
gies de défense, mais même cette pratique a des limites. En particulier, les divulgations
de vulnérabilités sont des évènements publiques, qui informent simultanément l’attaquant

197



et le défenseur de la possibilité de contourner une couche de défense. Cependant, un at-
taquant persistant a potentiellement pu trouver secrètement comment contourner toutes
les autres couches de défense, rendant le système vulnérable sans que le défenseur ne le
sache.

2.2.4 Air Gap

L’air gap est la pratique d’isoler physiquement un système d’information de l’extérieur,
et notamment de retirer tout lien réseau avec Internet. Il s’agit d’une pratique courante
pour les réseaux sensibles des forces armées de nombreux pays, ainsi que de nombreuses
agences de renseignement. Un air gap est indubitablement utile pour la défense contre les
vulnérabilités n-day, mais abandonner la possibilité d’un accès à Internet dans un système
d’information est un compromis que peu d’organisations sont prêtes à faire.

De plus, il y a eu des cas documentés d’air gap compromis par des attaquants haute-
ment motivés. L’exemple le plus spectaculaire est Stuxnet, une opération de cyber-guerre
conjointe entre Israël et les États-Unis où un ver auto-répliquant se diffusant sur clé USB
a pu se propager sur un réseau confidentiel Iranien placé derrière un air gap. Cela a mené à
la destruction de centrifugeuses nucléaires iraniennes et au ralentissement du programme
nucléaire de l’Iran.

2.3 Défis liés à la défense contre les vulnérabilités n-day

La défense contre les vulnérabilités n-day est une course contre la montre, car les
défenseurs doivent agir plus rapidement que les attaquants. Mais agir trop rapidement
peut aussi être dangereux : une mitigation inappropriée peut se révéler incomplète, voire
endommager le système d’information. Mitiger le risque posé par les vulnérabilités n-
day d’une façon à la fois sûre et rapide serait l’idéal, mais coûte très cher. De plus,
les techniques de mitigation proactives, comme la sécurité par design ou la défense en
profondeur, sont nécessaires mais pas suffisantes pour éliminer complètement ce risque.
Cela mène les organisations considérant la sécurité de leur systèmes d’information comme
critique à rechercher des temps de réaction toujours plus rapides face à la possibilité
d’un incident de sécurité. Cependant, dans le cas des vulnérabilités n-day, toutes les
techniques réactives actuelles sont limitées par le temps de réaction humain, par exemple
le temps de développement d’un correctif par l’éditeur d’un logiciel ou de rédaction d’une
signature IDS par des experts en sécurité. En ce sens, une façon prometteuse d’améliorer
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significativement la sécurité des systèmes d’information contre les vulnérabilités n-day est
de proposer de nouvelles techniques de mitigation réactive ne requérant pas d’intervention
humaine.

3. Objectif de la thèse

L’objectif de cette thèse est de proposer de nouveaux outils pour l’analyse et la réaction
automatiques face au risque posé par la divulgation de nouvelles vulnérabilités. Notre but
ultime est de permettre à un système d’information de présenter une sécurité constante
au cours du temps, sans que le flux quotidien de divulgations de vulnérabilités n’affecte
le risque global auquel le système fait face.

Un objectif plus concret est de rassembler, immédiatement et automatiquement, et
pour toute vulnérabilité nouvellement divulguée, des informations qui sont habituellement
rassemblées par des humains experts au bout de plusieurs jours. Dans les premiers instants
suivant la divulgation d’une vulnérabilité, de nombreuses informations à propos de celle-
ci sont fragmentées, manquantes, ou présentes dans un format inadapté à une analyse
automatique. Cela inclut d’une part des informations intrinsèques à la vulnérabilité en
elle-même, comme le logiciel ou matériel qu’elle affecte, ou la sévérité hors-contexte de
la vulnérabilité. Le délai dans l’obtention de ces données retarde d’autant le processus
de gestion des vulnérabilités. D’autre part, les informations spécifiques au contexte dans
lequel le composant affecté est utilisé sont également nécessaires mais difficiles à obtenir
promptement. Cela inclut notamment le risque qu’une vulnérabilité divulguée crée pour
un système d’information donné.

Rassembler toutes ces informations automatiquement est une condition nécessaire à
une gestion plus rapide des vulnérabilités. Cependant ajouter de l’automatisation induit
toujours le risque de transformer un processus décisionnel en une boîte noire ne pouvant
pas être expliquée par quiconque. Nous postulons que des systèmes de défense automatisés
ne peuvent être considérés comme de confiance que s’ils peuvent être compris et audités.
L’explicabilité des décisions est donc un critère primordial de tous les systèmes de sécurité
automatisés que nous proposons.
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4. Contributions

Dans cette thèse nous proposons quatre contributions ayant pour but d’atteindre les
objectifs décrits précédemment. La première est une proposition de stratégie complète
pour défendre les systèmes d’information contre les vulnérabilités n-day. Les trois autres
contributions solutionnent des problèmes de recherche mis en lumière par cette stratégie.
Ces problèmes sont divisés en deux axes : automatiser l’analyse d’une vulnérabilité à sa
divulgation et automatiser l’analyse du risque posé par la divulgation d’une vulnérabilité
pour un système d’information donné.

4.1 Stratégie de défense des systèmes d’information contre les
vulnérabilités n-day

Notre première contribution est l’établissement d’une stratégie complète visant à
défendre un système d’information contre les vulnérabilités n-day. Les principales étapes
de cette stratégie sont les suivantes :

1. Automatiquement inférer, d’une façon explicable, les informations disponibles à
propos d’une vulnérabilité nouvellement divulguée, sans attendre l’analyse réalisée
par un expert humain ultérieurement.

2. Automatiquement analyser, d’une façon explicable, le risque créé par la divulgation
d’une vulnérabilité sur le système d’information à protéger.

3. Si nécessaire, déclencher une réaction de mitigation du risque posé par la vulnéra-
bilité sur le système d’information.

Énoncer cette stratégie met en lumière plusieurs problèmes de recherche ouverts, pour
lesquels nous proposons des solutions dans nos contributions suivantes.

4.2 Analyse automatisée de vulnérabilité à la divulgation

Nos deuxième et troisième contributions visent à obtenir une meilleure compréhension
d’une vulnérabilité dans les instants suivant sa divulgation. La divulgation peut être une
étape chaotique du cycle de vie d’une vulnérabilité, et des informations lisibles par un être
humain (comme la description textuelle brute de la vulnérabilité) peuvent ne pas avoir
d’équivalent lisible par une machine à ce stade.
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Dans notre deuxième contribution nous montrons que le nom du logiciel ou matériel
affecté par une vulnérabilité peut être déterminé à la divulgation via l’analyse de la
description textuelle brute de la vulnérabilité, avant la publication de la méta-donnée
officielle fournissant cette information (l’URI CPE). Nous réalisons cela via l’usage de
techniques d’apprentissage machine et de recherche d’information, comme TF-IDF. Les
résultats de notre processus d’analyse sont présentés sous la forme d’une liste pondérée
et ordonnée de mots-clés. Notre protocole d’évaluation montre que des mots-clés liés au
nom recherché sont présents dans les trois premières positions de la liste 86 % du temps.
Ce problème ne semble pas avoir été abordé dans la littérature, malgré l’applicabilité
d’un tel résultat. Depuis la publication de ces travaux, d’autres chercheurs ont proposé
des travaux fondés sur cette contribution, démontrant l’intérêt de la communauté pour
ce problème.

Dans notre troisième contribution nous montrons comment analyser et prédire au-
tomatiquement la sévérité d’une vulnérabilité à sa divulgation, en réalisant une prédiction
explicable du vecteur CVSS de cette vulnérabilité. Nous atteignons une précision allant
jusqu’à 96 % pour les champs CVSS individuels du vecteur CVSS, et notre prédiction du
score CVSS de la vulnérabilité présente un taux de faux négatif inférieur à 0.2 pour 50 %
des vulnérabilités, et inférieur à 3.5 pour 99 % d’entre elles. Tout comme notre précédente
contribution, le problème de la prédiction de vecteur CVSS ne semble pas avoir été abordé
dans la littérature malgré l’applicabilité d’un tel résultat.

Une exigence primordiale qui a guidé les choix effectués pour nos deux contributions
est de s’assurer que les prédictions réalisées sont explicables. Cela nécessite des choix spé-
cifiques de techniques d’apprentissage machine, afin de conserver une relation explicable
entre les entrées et les sorties à chaque étape du processus de décision. Nous avons déter-
miné que des techniques comme bag-of-words, les listes blanches, l’entropie conditionnelle,
TF-IDF et la régression linéaire étaient pertinentes pour la mise en place de processus de
décision explicables.

Combinées, ces deux contributions créent un état de l’art quant à l’analyse automatisée
de vulnérabilité à leur divulgation.
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4.3 Analyse automatisée du risque posé par les vulnérabilités à
leur divulgation

Dans notre quatrième contribution nous allons plus loin en automatisant l’analyse de
risque des vulnérabilités nouvellement divulguées, dans le contexte d’un système
d’information spécifique. Au lieu d’aborder le problème complexe de cartographier un
système d’information entier, nous faisons usage de la connaissance consciente et incon-
sciente dont dispose l’équipe de sécurité du système d’information, en entrainant de façon
interactive un système d’analyse de risque via de l’apprentissage actif. Le système de
prédiction surveille ensuite toutes les divulgations de vulnérabilités, et utilise la base de
connaissance qu’il a construite via son entrainement avec l’équipe de sécurité pour décider
d’un niveau d’alerte approprié pour chaque nouvelle vulnérabilité. Ces niveaux d’alerte
sont au nombre de trois et sont centrés sur l’humain : une vulnérabilité peut nécessiter une
réponse urgente par un personnel d’astreinte, une réponse non-urgente durant les heures
ouvrées, ou ne pas nécessiter de réponse.

Notre protocole expérimental, rendu possible par la participation d’experts en sécurité
chargés de défendre de véritables systèmes d’information, met en lumière des difficultés
pratiques à évaluer la conception d’un tel système de prédiction, et notamment à en-
trainer correctement un tel système à l’aide d’une équipe de sécurité disposant de peu
de temps. Dans ce contexte, itérer sur de nombreuses hypothèses est difficile. Toutefois,
cette évaluation montre également que l’explicabilité d’un système de décision automatisé
est une composante primordiale de la confiance que lui accorde une équipe de sécurité,
et que cette explicabilité est un facteur décisif d’amélioration continue de ces systèmes.
Cette contribution est une étape importante vers l’automatisation de l’analyse de risque
des vulnérabilités à leur divulgation.

5. Conclusion

Nos contributions nous rapprochent de notre but ultime de permettre aux systèmes
d’information d’avoir un niveau de sécurité constant dans le temps. Notre première contri-
bution propose une stratégie complète de défense contre les vulnérabilités n-day, et dans
cette thèse nous proposons des solutions pour plusieurs problèmes de recherche ouverts
induits par cette stratégie.

Avant nos contributions, il n’y avait à notre connaissance pas de travaux sur la façon
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de réagir à de nouvelles vulnérabilités dans les secondes suivant leur divulgation. Notre
travail de thèse comble ce manque. Nos seconde et troisième contributions ouvrent la porte
à la collecte et analyse automatique des propriétés d’une vulnérabilité à sa divulgation, via
des méthodes automatisées et explicables, alors que les travaux précédents se fondaient
sur de l’analyse manuelle plus lente.

Notre quatrième contribution vise à permettre à un expert en sécurité d’entraîner un
système de défense et d’automatiser le suivi des divulgations de vulnérabilité, retirant le
besoin d’avoir une équipe de veille analysant manuellement les nouvelles vulnérabilités
24h sur 24.

Nos travaux ouvrent plusieurs perspectives. La première est le perfectionnement et
l’industrialisation de notre quatrième contribution en vue de la création d’un outil de veille
automatisée pouvant être utilisé en production par les équipes de sécurité en charge de la
protection de systèmes d’information. Une seconde est de cartographier exhaustivement
et automatiquement les composants logiciels et matériels d’un système d’information et
d’inférer les différentes interactions entre ces composants. Une troisième est la mise en
place de nouveaux types de réaction automatisée suite à l’identification d’un risque lié à
la divulgation d’une vulnérabilité n-day.
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