Como aplicaci ón de la funtorialidad y usando la conjetura de Ramanujan para los grupos generales lineales demostrada por L. Lafforgue, probamos la conjetura de Ramanujan no ramificada para representaciones automofas cuspidaldes globamente gen éricas de nuestro grupo cl ásico cuasi escindido en característica positiva.

Teorema. Sea π = π x una representaci ón automorfa cuspidal

Summary

The Langlands program plays an important role in Number theory and Representation Theory. A crucial aspect of this program is the functoriality conjecture, expressed in a letter of Langlands to Weil in 1967. Let F be a global field with ring of ad èles A F and let ρ : L G → L H, be a given L-homomorphism between the L-groups of two connected (quasi-split) reductive groups G and H over F . Then, according to this conjecture, for every cuspidal automorphic representation π = x π x of G(A F ), there exists an automorphic representation Π = x Π x of H(A F ) such that, at almost all places x where π x is unramified, Π x is unramified and its Satake parameter corresponds to the image under ρ of the Satake parameter of π x . Such representation will be called a weak lift or transfer of π. Furthermore that transfer process should respect arithmetic information coming from γ-factors, L-functions and ε-factors, and lead to a local version of functoriality at the ramified places as well.

When G is a classical group, L G has a natural representation into L H for a specific general linear group H, and that case has been studied by many people. When F is a number field, two main tools have been used: converse theorem and trace formulas. The former was used by Cogdell, Kim, Piatetski-Shapiro and Shahidi in combination with the Langlands-Shahidi method to prove the conjecture for a globally generic automorphic representation π when G is a quasi-split symplectic, unitary or special orthogonal group. For the latter, Arthur and his continuators used trace formulas to get more complete results, not restricted to quasi-split groups in characteristic zero.

Lomelí extended the converse theorem method to global function fields, getting functoriality for globally generic automorphic representations of split classical groups and unitary groups. The present thesis further extends the converse theorem method, over a function field F , to establish the functoriality conjecture when G is a quasi-split non-split even special orthogonal group, and π a globally generic representation.

Theorem. Let F be a global function field and π be a globally generic cuspidal automorphic representation of SO * 2n (A F ). Then, π transfers to an irreducible automorphic representation Π of GL 2n (A F ). Furthermore, Π can be expressed as an isobaric sum

Π = Π 1 • • • Π d ,
where each Π i is a unitary self-dual cuspidal automorphic representation of GL N i (A F ) for some N i , and where Π i ∼ = Π j for i = j. Moreover if we write Π = x Π x , then for τ x an irreducible generic unitary representation of GL m (F x )

γ(s, π x × τ x , ψ x ) = γ(s, Π x × τ x , ψ x )
where the γ-factors on the right are obtained by the Rankin-Selberg method and those on the left by the Langlands-Sahidi method, as extended by Lomelí to positive characteristic.

As in Cogdell, Kim, Piatetski-Shapiro and Shahidi and Lomelí, the method of proof uses the converse theorem and L-functions to construct an automorphic representation of GL n (A F ): we provide a proof of a twisted version in positive characteristic of the converse theorem of Cogdell and Piatetski-Shapiro. To apply the converse theorem, one needs analytic properties of the Langlands-Shahidi L-functions, and to establish them we adapt Lomelí's arguments to our new case. We first obtain a weak lift which has the desired properties at almost all places. Then further properties of partial Lfunctions give that there is a lift which is an isobaric sum of unitary cuspidal automorphic representations. We prove the compatibility between the gamma local factors of π and the lift Π at all places.

As an application of the functoriality and the validity of the Ramanujan conjecture for general linear groups established by L. Lafforgue, we prove the unramified Ramanujan conjecture for globally generic cuspidal automorphic representations of our classical group in positive characteristic.

Theorem. Let π = x π x be a globally generic cuspidal automorphic representation of SO * 2n (A F ). Then, if π x is unramified, its Satake parameters have absolute value 1.

R ésum é

Le programme de Langlands joue un r ôle important en th éorie des nombres et en th éorie des repr ésentations. Un aspect crucial de ce programme est la conjecture de fonctorialit é, formul ée dans une lettre de Langlands à Weil en 1967. Soit F un corps global avec son anneau d'ad èles A F et soit

ρ : L G → L H,
un L-homomorphisme donn é entre les L-groupes de deux groupes r éductifs quasid éploy és connexes G et H sur F . Alors, la conjecture dit que pour toute repr ésentation automorphe cuspidale π = x π x de G(A F ), il existe une repr ésentation automorphe cuspidale Π = Π x de H(A F ) telle que, pour presque toute place x o ù π x est nonramifi ée, Π x est non ramifi ée et son param ètre de Satake corresponds à l'image par ρ du param ètre de Satake de π x . Une telle repr ésentation sera appel ée le transfert ou rel èvement faible de π. Encore plus, elle doit respecter l'information arithm étique provenant des facteurs γ, fonctions L et facteurs ε, et donner aussi une version locale de la fonctorialit é en les places ramifi ées.

Quand G est un groupe classique, L G a une repr ésentation naturelle dans un Lgroupe L H d'un groupe lin éaire g én éral sp écifique, et dans ce cas, la conjecture a ét é étudi ée par diverses personnes. Quand F est un corps de nombres, deux techniques principales ont ét é utilis ées : la m éthode du th éor ème r éciproque et la formule des traces. La premi ère a ét é utilis ée pour d émontrer la conjecture pour les repr ésentations automorphes cuspidales g én ériques π quand G est un groupe symplectique, un groupe unitaire, ou un groupe orthogonal sp écial, tous quasi-d éploy és. La deuxi ème a ét é utilis ée par Arthur et ses continuateurs pour obtenir de r ésultats plus complets, et non restreints aux groupes quasi-d éploy és en caract éristique nulle.

Lomelí étend la m éthode du th éor ème r éciproque au cas des corps de fonctions pour obtenir ces r ésultats en caract éristique positive pour les groupes classiques d éploy és et groupes unitaires. Cette th èse étend la m éthode du th éor ème r éciproque, sur un corps de fonctions F , pour établir la conjecture de fonctorialit é quand G(A F ) est un groupe sp écial orthogonal pair quasi-d éploy é non-d éploy é, et π une repr ésentation globalement g én érique.

Th éor ème. Soit F un corps de fonctions et π une repr ésentation automorphe cuspi-dale g én érique de SO * 2n (A F ). Alors, π se transf ère à une repr ésentation automorphe irr éductible Π de GL 2n (A F ). De plus, Π peut-être repr ésent ée par une somme isobare

Π = Π 1 • • • Π d ,
o ù chaque Π i est une repr ésentation automorphe cuspidale unitaire et auto-duale de GL N i (A F ), pour quelque N i , et o ù Π i ∼ = Π j pour i = j. Encore plus, si on écrit Π =

x Π x , alors pour τ x une repr ésentation g én érique unitaire de GL m (F x ), on a γ(s, π x × τ x , ψ x ) = γ(s, Π x × τ x , ψ x ) o ù les facteurs γ à droite sont obtenus par la m éthode de Rankin-Selberg et ceux à gauche par la m éthode de Langlands-Shahidi, étendue par Lomelí à caract éristique positive.

Comme chez Cogdell, Kim, Piatetski-Shapiro, et Shahidi, et Lomelí, la m éthode de la preuve utilise le th éor ème r éciproque de Cogdell et Piatetski-Shapiro et les fonctions L pour construire une repr ésentation automorphe de GL n (A F ) : On donne une version tordue du th éor ème r éciproque de Cogdell et Piatetski-Shapiro. Pour appliquer le th éor ème r éciproque, on a besoin de propri ét és analytiques des fonctions L de Langlands-Shahidi, et pour les obtenir nous adaptons les arguments de Lomelí à notre nouveau cas. Ainsi, on obtient un rel èvement faible qui satisfait les propri ét és attendues en presque toute place. Des propri ét és compl émentaires des fonctions L partielles nous donnent l'existence d'un rel èvement qui est une somme isobare de repr ésentations automorphes cuspidales unitaires. Nous d émontrons la compatibilit é entre facteurs gamma locaux de π avec celles du transfert Π.

Comme application de la fonctorialit é et de la conjecture de Ramanujan pour les groupes g én éraux lin éaires, d émontr ée par L. Lafforgue, on d émontre la conjecture de Ramanujan non-ramifi ée pour les repr ésentations automorphes cuspidales g én ériques de notre groupe classique quasi-d éploy é en caract éristique positive.

Th éor ème. Soit π une repr ésentation automorphe cuspidale g én érique de SO * 2n (A F ). Alors, si π x est non-ramifi ée, ses param ètres ont valeur absolue 1.

Resumen

El programa de Langlands juega un rol importante en teoría de n úmeros y en teoría de representaciones. Un aspecto crucial de este programa es la conjetura de funtorialidad, formulada en una carta de Langlands a Weil en 1967. Sea F un cuerpo global con anillo de ad èles A F y sea ρ : L G → L H, un L-homomorfismo dado entre los L-grupos de dos grupos reductivos (cuasi escindidos) G y H sobre F . Entonces, seg ún esta conjetura, para toda representaci ón automorfa cuspidal π de G(A F ), existe una representaci ón automorfa Π de H(A F ) tal que, para casi todo lugar x donde π x es no ramificada, Π x es no ramificada y su par ámetro de Satake corresponde al de la imagen por ρ del par ámetro de Satake de π x . Una tal representaci ón ser á llamada levantamiento d ébil o transferencia. M ás a ún, esta transferencia deber á respetar la informaci ón aritm ética proveniente de los factores γ, funciones L y factores ε y conducir tambi én a una versi ón local de la funtorialidad en los lugares ramificados.

Cuando G es un grupo cl ásico, L G tiene una representaci ón natural en L H para un grupo general lineal específico H, y en ese caso ha sido estudiado por varias personas. Cuando F es un cuerpo de n úmeros, dos t écnicas principales han sido usadas: teorema del recíproco y la f órmula de trazas. La primera t écnica fue usada junto con el m étodo de Langlands-Shahidi por Cogdell, Kim, Piatetski-Shapiro, y Shahidi para demostrar la conjetura de funtorialidad de Langlands para representaciones automorfas cuspidales globlamente gen éricas de grupos simpl écticos, unitarios y ortogonales cuasi escindidos. Con la segunda t écnica, Arthur y sus continuadores lograron obtener resultados m ás completos, no restringi éndose a grupos cuasi escindidos en característica cero.

Lomelí extiende el m étodo del teorema del recíproco a cuerpos de funciones, obteniendo así la funtorialidad para representaciones autormofas cuspidales de grupos cl ásicos escindidos y grupos unitarios. Esta tesis extiende el m étodo del teorema del recíproco, sobre un cuerpo de funciones F , para obtener la conjetura de funtorialidad cuando G es un grupo ortogonal especial par cuasi escindido no escindido y π una representaci ón globalmente gen érica.

Teorema. Sea F un cuerpo de funciones global y π una representaci ón automorfa cuspidal globalmente gen érica de SO * 2n (A F ). Entonces, π se transfiere a una representaci ón automorfa irreducible Π de GL 2n (A F ). Adem ás, Π puede ser expresada como una suma isob árica

Π = Π 1 • • • Π d ,
donde cada Π i es una representaci ón globalmente gen éricas automorfa cuspidal unitaria auto dual de GL N i (A F ) para alg ún N i , y donde Π i ∼ = Π j para i = j. M ás a ún, si escribimos Π = Π x , entonces para τ x una representaci ón unitaria gen érica de GL m (F x ) γ(s, π x × τ x , ψ x ) = γ(s, Π x × τ x , ψ x ) donde los factores γ del lado izquierdo son obtenidos usando el m étodo de Rankin-Selberg y lo del lado derecho es obtenido usando el m étodo de Langlands-Shahidi, extendido por Lomelí a característica positiva.

Introduction

The Langlands program plays an important role in Number Theory and Representation Theory. A crucial aspect of this program is the Langlands functoriality conjecture. In [START_REF] Cogdell | Functoriality for the classical groups[END_REF][START_REF] Cogdell | Functoriality for the Quasisplit Classical Groups[END_REF] Cogdell, Kim, Piatetski-Shapiro and Shahidi prove Langlands functoriality for globally generic representations from split classical groups, unitary groups or even quasi-split special orthogonal groups to general linear groups. They have done this in the context of characteristic zero. Later, Lomelí in [START_REF] Lomelí | Functoriality for the Classical Groups over Function Fields[END_REF][START_REF] Lomelí | The Langlands-Shahidi method over function fields: Ramanujan Conjecture and Riemann Hypothesis for the unitary groups[END_REF] extends this result to split classical groups and unitary groups in positive characteristic. Now the main objective of this thesis is to establish the functoriality conjecture in the case of the quasi-split (nonsplit) special orthogonal group for globally generic representations in positive characteristic (Theorem 7.2.1).

As in Cogdell, Kim, Piatetski-Shapiro and Shahidi over number fields and Lomelí over function fields, the method of proof uses the converse theorem, which allows us to use properties of L-functions to construct an automorphic representation of general linear groups; we provide a proof of a twisted version (Theorem 3.2.1) in positive characteristic of the converse theorem of Cogdell and Piatetski-Shapiro [START_REF] Cogdell | Converse Theorems for GL n[END_REF]. The L-functions, related local factors and their basic properties, necessary to apply the converse theorem, are provided by the Langlands-Shahidi method, as extended by Lomelí to positive characteristic. One first obtains a so-called "weak lift" which has the desired properties at almost all places, and further properties of partial L-functions give that there is a lift which is an isobaric sum of unitary cuspidal automorphic representations. As an application, we prove the Ramanujan conjecture for globally generic cuspidal representations of our quasi-split classical group (in positive characteristic). Now we proceed to present the main results obtained in this thesis, by giving a small exposition of the ideas and tools used in this work to prove them.

Functoriality Conjecture

The functoriality conjecture first appeared in a letter from Langlands to Andr é Weil in 1967. To formulate this conjecture, let F be a global field with ring of ad èles A F and let ρ : L G → L H, be a given L-homomorphism between the L-groups of two connected (quasi-split) reductive groups G and H over F . Then, according to this conjecture, for every cuspidal automorphic representation π = ⊗ x π x of G(A F ), there exists an automorphic representation Π = ⊗Π x of H(A F ) such that, at almost all places x where π x is unramified, Π x is unramified and its Satake parameter corresponds to the image under ρ of the Satake parameter of π x . Furthermore it respects arithmetic information coming from γ-factors, L-functions and ε-factors. This representation Π will be called lift or transfer.

This general problem has been central in the work of many people. Now, the main goal of this thesis is to find a transfer in the case where ρ is a certain embedding of the L-group of an even quasi-split special orthogonal group into the L-group of an appropriate general linear group, and π is globally generic.

Theorem A (7.2.1 & 7.3.1). Let F be a global function field and let π be a globally generic cuspidal automorphic representation of SO * 2n (A F ). Then, π transfers to an irreducible automorphic representation Π of GL 2n (A F ) (Section 6.4). Its central character is given by (6.1.3) and Π can be expressed as an isobaric sum

Π = Π 1 • • • Π d ,
where each Π i is a unitary self-dual cuspidal automorphic representation of GL N i (A F ) for some N i , and where Π i ∼ = Π j for i = j. Moreover if we write Π = ⊗Π x , then for τ x an irreducible generic unitary representation of GL m (F x )

γ(s, π x × τ x , ψ x ) = γ(s, Π x × τ x , ψ x )
where on the left hand side we use Langlands-Shahidi γ-factors.

Next, we explain the different elements of this result and provide the ideas and tools to prove it.

Special Orthogonal Groups

The group that we will be interested in is the non-split quasi-split even special orthogonal group. We are going to define this group in all characteristics, including two (Section 1.4). In order to define it, we follow the general construction of the special orthogonal group of even dimensional quadratic forms given in [START_REF] Conrad | Reductive group schemes. Autour des Sch émas en Groupes, École d' ét é "[END_REF].

Having this general construction as a base, we then specialize it to the following case. Let E/F be a separable quadratic extension of a field F and consider the quadratic form

q E,n (x 1 , . . . , x n-1 , x, x n+2 , . . . , x 2n ) = x 1 x 2n + • • • + x n-1 x n+2 + N E/F (x),
where each x i ∈ F and x ∈ E. By SO * 2n , we refer to the non-split quasi-split even special orthogonal group SO(q E,n ).

Following the general algebraic properties of these groups, we have that the connected component of the L-group of SO * 2n is SO 2n (C) and we can construct the Lhomomorphism for which we will answer the functoriality conjecture (Section 5.6):

ρ * 2n : SO 2n (C) Γ F → GL 2n (C) × Γ F . (g, τ ) →    (gw, τ ) if τ ∈ Γ E (g, τ ) if τ ∈ Γ E where w =       1 n-1 0 1 1 0 1 n-1      
.

To finish our discussion on the algebraic properties of our group, we mention two cases in Section 1.5, that will be relevant in calculating the central character of the lift, and also the γ-factor in a special case: when n = 1, SO * 2 is isomorphic to the "norm one F -torus" associated to E/F ; when n = 2, the simply connected cover of SO * 4 is isomorphic to

Res E/F SL 2 .

Langlands Parameters

Now that we have our groups and the L-homomorphism, we recall the notion of Langlands parameters. They will be useful in the construction of the candidate lift. First, if F is a non-archimedean local field, we fix a geometric Frobenius element Fr ∈ W F (Section 5.1). For a connected quasi-split reductive group G over F , we denote by Φ(G) the set consisting of group homomorphism

φ : W F = W F × SL 2 (C) → L G, such that φ(Fr) is semi simple, φ| I F is continuous, φ| SL 2 (C)
is algebraic and φ satisfies certain relevance condition, modulo L G • -conjugacy (see Section 5.2). Moreover, in the case that φ| I F and φ| SL 2 (C) are trivial, φ will be called unramified.

With this notion, the local unramified condition in the functoriality conjecture can be expressed (up to notation) as the commutativity of the following diagram (Section 5.4):

SO 2n (C) Γ F GL 2n (C) × Γ F , W F ρ * 2n φπ φ Π
where φ π is the unramified parameter associated to the semisimple conjugacy class of an unramified representation π of SO * 2n (F ) and Π is the unramified representation of GL 2n (F ) associated to the semisimple conjugacy class φ Π (Fr) = (ρ * 2n • φ π )(Fr). Furthermore, this setup also tells us how to find the transfer for n = 1 (relative rank 0). Indeed, using a combination of the Langlands correspondence for tori and GL 2 , we give a description of it. First, let σ be the non-trivial element of Gal(E/F ) and φ E × the Langlands parameter of the extension of scalar of SO * 2 along E ⊃ F , obtained from a restriction procedure for φ (5.3.3). The description of the transfer is thus obtained using the commutative diagram

SO * 2 (E) SO * 2 (F ), C × π φ E × Norm π φ
given by naturality of the local Langlands correspondence (φ → π φ ) for tori and the isomorphism between SO * 2 and the "norm one F -torus" associated to E/F mentioned before (thus for example SO * 2 (E) = E × and SO * 2 (F ) = E 1 , and with these identifications the Norm sends x to xσ(x) -1 ). This allows us to obtain that, for the character π φ = χ : E 1 → C × , associated to the parameter φ, the representation Π is given by (6.1.1)

   i GL 2 B 2 (ν ⊗ κν) if µ = ν • N E/F , for some smooth character ν of F × , π µ otherwise,
where µ :

E × → C × is given by [x → χ(xσ(x) -1
)], κ is the determinant of the representation of W F induced by the trivial representation of W E , viewed as character F × via the Artin Reciprocity map (Section 5.1), and π µ is a special case of the local Langlands correspondence for GL 2 appearing in [START_REF] Bushnell | The Local Langlands Conjecture for GL(2)[END_REF]. Moreover, we note that by construction the central character of Π is

κχ| F × = κ.
Finally, we also use this construction to produce a principal series with good enough data at the missing places to complete our unramified data (Section 6.1).

Up to now, we can think of forming a global representation from the local pieces. However, we need tools to check that these constructions form together an automorphic form for GL 2n . For that, two ingredients are needed: the converse Theorem and the Langlands-Shahidi method.

Converse theorem

The converse theorem gives us a way to prove that an irreducible admissible representation of GL n (A F ) is automorphic, whenever we can prove certain properties of appropriately twisted families of Rankin-Selberg L-functions and ε-factors. This theorem is a vast generalization of the classical converse theorem of Hecke for modular forms. In our setup, we will prove and use an adapted version of the converse theorem in positive characteristic, already stated in [START_REF] Lomelí | Functoriality for the Classical Groups over Function Fields[END_REF].

Our proof of the converse theorem will closely follow the arguments appearing in the version by L. Lafforgue [START_REF] Lafforgue | Chtoucas de Drinfeld et correspondance de Langlands[END_REF]. The differences between his version and ours are that we will allow a twist and that the representation of GL n (A F ) is irreducible and admissible.

Let F be a global field of positive characteristic with field of constants F q , |F | its set of places and let ψ be a non-trivial character of A F /F . For a finite subset S of |F | and a continuous character η of A × F /F × , we let T (S; η) be the set consisting of τ = τ 0 ⊗ η, where τ 0 is a cuspidal automorphic representation of GL m (A F ), such that τ 0,x is unramified for every x ∈ S, and m is an integer ranging from 1 ≤ m ≤ n-1. Given a smooth representation π, we let π denote its smooth contragredient representation.

Theorem B (3.2.1). Let n ≥ 2 be an integer and π = x∈|F | π x an irreducible admissible representation of GL n (A F ). We suppose that, for a finite set S of places of F , π satisfies the following properties:

i) The central character χ π = x∈|F | χ πx of π is invariant by the discrete subgroup F × of A × F .
ii) For all π ∈ T (S; η), the formal series in q -s L(s, π × π ) and L(s, π × π ) are polynomials in q -s and they satisfy the functional equation

L(s, π × π ) = ε(s, π × π , ψ)L(1 -s, π × π ).
Then there exists an irreducible automorphic representation of GL n (A F ), where the factor at each place x ∈ S such that π x is unramified, is unramified and it corresponds to the factor π x of π, via the Satake parametrization. This representation is cuspidal if S = ∅.

Let Ξ x be the representation of GL n , for which π x is the Langlands quotient (Section 2.2). The representation Ξ x has the following form

Ξ x = i GLn(Fx) Q(Fx) (ρ 1,x | det | u 1,x ⊗ • • • ⊗ ρ mx,x | det | um x,x ),
where Q is the parabolic subgroup containing the Borel subgroup of upper triangular matrices associated to the ordered partition (r mx,x , . . . , r 1,x ) of n, ρ i,x is an irreducible tempered representation of GL r i ,x (F x ) and the u i,x are real numbers satisfying 0 < u 1,x ≤ • • • ≤ u mx,x . The representation Ξ x is induced of Whittaker type (Section 3.1). The first step is to reduce the problem to η = 1. This can be done thanks to the following general identity: for every pair τ x , τ x of induced representations of Whittaker type of GL n (F x ) and GL m (F x ), respectively, we have that

L(s, τ x × (τ x ⊗ η x )) = L(s, (τ x ⊗ η x ) × τ x ).
Once we are in the case where η = 1, we can follow the constructions in [START_REF] Lafforgue | Chtoucas de Drinfeld et correspondance de Langlands[END_REF]. That is, using the Whittaker models, we construct in (3.2.5) a non-zero equivariant homomorphism from the admissible representation x ∈S Ξ x to x ∈S GL n (F x ) into the space of functions on GL n (F )\ GL n (A F ) that are smooth in the sense of being invariant under some open compact subgroup of GL n (A F ) of GL n(A F ) acting via the right regular action. We then proceed to construct the desired automorphic representation. In this way we can obtain the desired version of the converse theorem. Thus after we locally construct the lift and form a global representation of GL 2n from the quasi-split Special Orthogonal Group SO * 2n using the parameter formalism, we need to check the conditions of the converse theorem. For that we need to use the following central tool in our work.

Langlands-Shahidi Method

Let P = M N be a (standard, i.e. containing a Borel subgroup) maximal parabolic subgroup of a connected quasi-split group G over a non-archimedean local field F of positive characteristic, where M and N are the Levi and unipotent subgroups, respectively. Let also L n be the Lie algebra of the corresponding unipotent subgroup of the L-group of G, on which L M acts via the adjoint action. Fix ψ a non-trivial additive character of F . The adjoint representation has the following decomposition into irreducible representations,

r = mr i=1 r i : L M → GL( L n).
The Langlands-Shahidi method associates to a generic representation σ of M(F ) a rational polynomial in C(q -s F ), called γ-factor γ(s, σ, r i , ψ).

This construction was first developed by Shahidi [START_REF] Shahidi | On Certain L-Functions[END_REF] in characteristic zero. Later Lomelí [START_REF] Lomelí | The Langlands-Shahidi method over function fields: Ramanujan Conjecture and Riemann Hypothesis for the unitary groups[END_REF] developed this in positive characteristic and it will be in this context that we will work.

In our case when G = SO * 2(m+n) , and the maximal parabolic has Levi subgroup M = GL m × SO * 2n , the adjoint representation we consider has the following decomposition

r = r 1 ⊕ r 2 ,
where r 1 = ρ m ⊗ ρ * 2n and r 2 = ∧ 2 ρ m (Section 2.5). Here, ρ m is the standard representation of GL m (C) and ρ * 2n is the contragredient the representation ρ * 2n , introduced before in the section titled Special Orthogonal Groups . Now using this general construction we can specify the first factor appearing in Theorem A. Let π be a generic representation of SO * 2n (F ) and τ a generic representation of GL m (F ). Then σ = τ ⊗ π is a generic representation of M(F ) and we denote

γ(s, π × τ, ψ) = γ(s, τ ⊗ π, r 1 , ψ).
An important feature of this system of γ-factors is the multiplicativity property and its relation with Tate local factors. If m = 1, π is a generic constituent of i

SO * 2n P 0 (χ 1 , ..., χ n-1 , η)
and τ is a representation of F × , these two properties give us the following form for the γ-factors (see (2.9.1)):

γ(s, π × τ, ψ) = γ(s, η × τ, ψ) n-1 i=1 γ(s, χ i τ, ψ)γ(s, χ -1 i τ, ψ),
where γ(s, χ i τ, ψ) are Tate factors. The factor γ(s, η × τ, ψ) can be characterised using the construction of γ-factors and the determination of the simply connected cover of SO * 2 (see Proposition 2.9.2).

Another essential property of γ-factors, is their stability under twists by sufficiently highly ramified characters (Theorem 2.8.2). This important input comes from the work of Gan-Lomelí in [START_REF] Wee | Globalization of supercuspidal representations over function fields and applications[END_REF], where they establish this powerful result in positive characteristic.

The Langlands-Shahidi method provides the means to construct local L-functions and ε-factors ε(s, π, r i , ψ) & L(s, π, r i )

that complete the ones defined in the unramified case and satisfy the expected properties. For that, a property is needed, whose validity amounts to the Shahidi tempered L-function conjecture. It is known for arbitrary quasi-split groups in characteristic zero [START_REF] Volker Heiermann | On the tempered L-functions conjecture[END_REF] and for split groups in positive characteristic [START_REF] Lomelí | Rationality and holomorphy of Langlands-Shahidi L-functions over function fields[END_REF]. In this thesis we prove it in a special case (Remark 2.10.3), to use it in the construction of the lift. Later, in order to obtain the full compatibility between the local components of the cuspidal automorphic representation of SO * 2n and those of its transfer, we will assume the property. Now let us go back to the global situation. Let F be a global field of positive characteristic. Then the Langlands-Shahidi method allows us to define for a globally generic cuspidal automorphic representation π = ⊗ x π x of M(A F ) ⊂ G(A F ), the global Langlands-Shahidi L-functions and ε-factors

L(s, π, r i ) := x∈|F | L(s, π x , r i,x ) & ε(s, π, r i ) := x∈|F | ε(s, π x , r i,x , ψ x ).
They satisfy the crucial functional equation

L(s, π, r i ) = ε(s, π, r i )L(1 -s, π, r i ).

Global L-functions

Before we continue, we need to study global L-functions in more detail. For this, we use the constructions in the theory of Eisenstein Series in positive characteristic. They allow us to establish two main properties we need for the global L-functions. The first one is the holomorphy for each L-function associated to a generic cuspidal automorphic representation π of M(A F ) that satisfies w0 π ∼ = π (Corollary 4.2.1), where w0 is a representative of w 0 = w l,G w l,M (Section 1.1). The holomorphy of the intertwining operator and the Eisenstein coefficient, for representations that satisfy w0 π ∼ = π 0 , gives us a partial result. We complete it by using a local property on normalized intertwining operators (2.11.2). We then obtain that

mr i=1 L(is, π, r i ) L(1 + is, π, r i ) (resp. mr i=1 L(1 + is, π, r i ))
is holomorphic for Re s ≥ 1/2 (resp. holomorphic and non-zero for Re s ≥ 0). We conclude by using induction on m r . This discussion is valid for a general quasi-split reductive group, that satisfies the property on the normalized intertwining operators. This last property is known as the Kim's assumption. We will prove it under the assumption that the representations that we are considering, satisfy the standard module conjecture in a special case (Section 2.11).

The following property is the holomorphy (without twist) of partial L-functions (Theorem 4.2.6) for a cuspidal representation of

GL l × SO * 2m ⊂ SO * 2(l+m) .
We study the intertwining operator as before. Using that SO(q Fx⊗ F E,n ) is split for a subset of density 1/2 of the unramified places x of E/F and the relation of the intertwining operator with the residual spectrum, we show that it is holomorphic for Re s > 1 (Proposition 4.1.5). We finish by using the fact that m r = 2, which enables us to arrive at a Siegel Levi case studied in general in [START_REF] Lomelí | Rationality and holomorphy of Langlands-Shahidi L-functions over function fields[END_REF], and doing a similar analysis as above we arrive at the following Theorem C (4.2.6). Let G = SO * 2n , and let P = M N be a parabolic subgroup of with Levi subgroup M of the form GL m × SO * 2n . Let σ = τ ⊗ π be a generic cuspidal automorphic representation of M(A F ) unramified outside of a finite set S of places. Then L S (s, σ, r 1 ) is holomorphic and non-vanishing for Re(s) > 1 and has at most a simple pole at s = 1. This result will play a main role in the study of the image of functoriality.

Functoriality for SO * 2n

We now have all the ingredients ready to apply them to our problem. Let π = ⊗ x π x be a globally generic cuspidal automorphic representation of SO * 2n (A F ), such that π x is unramified outside for x ∈ S. We fix a maximal torus T of SO * 2n , P 0 a Borel subgroup of SO * 2n containing T and ψ = ⊗ψ x a nontrivial character of A F /F , such that ψ x is unramified for x ∈ S.

For every place x such that π x is unramified, we choose a character λ x of T(F x ) related to π x via the Satake parametrization (5.4.1) and for x ramified, the induced representation i SO * 2n P 0 (λ x ) has an (irreducible) generic subquotient π λx = π x with the same central character of π x . From λ x , we get φ λx : W Fx → L T x . Now let T n = {t = diag(t 1 , . . . , t n , t -1 n , . . . , t -1 1 )} be a maximal split torus of SO 2n . Then, after composing these parameters with the inclusion i x : T n (C) Γ Fx → SO 2n (C) Γ Fx and applying local Langlands correspondence to

ρ x • i x • φ λx : W Fx → GL 2n (C) × Γ Fx ,
we find an admissible irreducible representation Π x of GL 2n (F x ). Finally we put Π = ⊗ x Π x , which is an irreducible admissible representation of GL 2n (A F ). Using the construction (6.1.1) mentioned in the section titled Langlands Parameters, we have a description of these representations and their central characters.

We then use the properties of the Langlands-Shahidi γ-factors, L-functions and εfactors, to prove that we have the following compatibility between the Langlands-Shahidi and Rankin-Selberg L-functions and ε-factors of the lift (Corollary 6.2.8). Namely, there is a character η of A × F /F × , such that for every cuspidal automorphic representation τ ∈ T (S; η), we have that

L(s, π × τ ) = L(s, Π × τ ), ε(s, π × τ, ψ) = ε(s, Π × τ, ψ).
With these relations, we are in position to check the hypotheses of the converse theorem, under the assumption that a special case of the standard module conjecture is valid (2.11.1). Indeed, using a combination of the holomorphicity of the L-functions after a twist (in this case by η) and the functional equation, we get the polynomial condition of the global Rankin-Selberg L-function. Thus after applying the converse theorem, we are able to find a (weak) automorphic lift Π (Section 6.4) as a subquotient of a representation

Ind(Π 1 , • • • , Π d ),
where Π 1 , . . . , Π d are cuspidal automorphic representations of smaller general linear groups and Ind is the (global) normalized induction functor from a certain parabolic subgroup of GL 2n to GL 2n . This settles the existence of the desired lift, but we go further and we verify additional important properties, that will be useful for further applications.

Theorem D (7.2.1). Let π be a globally unitary generic cuspidal automorphic representation of SO * 2n (A F ). Then, π transfers to an irreducible automorphic representation Π of GL 2n (A F ). Its central character is given by the quadratic character of A F /F × defining E (6.1.3) and Π can be expressed as an isobaric sum (see Section 6.4)

Π = Π 1 • • • Π d ,
where each Π i is a unitary self-dual cuspidal automorphic representation of GL N i (A F ), and Π i ∼ = Π j for i = j.

In fact, combining holomorphy properties of Rankin-Selberg partial L-functions, Langlands-Shahidi partial L-functions (without twist) and the relation

L S (s, π × τ ) = L S (s, Π × τ ),
we can prove that the cuspidal factors Π i are distinct, unitary and self dual in positive characteristic. As Π i is unitary for every i, Ind(Π 1 , • • • , Π d ) is irreducible and thus Π coincides with the isobaric sum.

Next, we prove the following compatibility between the γ-factors of π and the lift Π.

Theorem E (7.3.1). Let π = ⊗π x be a globally generic cuspidal automorphic representation of SO * 2n (A F ) and Π its transfer to GL 2n (A F ). Let x ∈ |F | and m a positive integer. Then for τ x an irreducible generic unitary representation of GL m (F x )

γ(s, π x × τ x , ψ x ) = γ(s, Π x × τ x , ψ x ).
In order to prove this for the γ-factors, we use the global functional equation of the L-functions. The combination of Theorem D and E yield the main result of this thesis (Theorem A).

Ramanujan Conjecture

Finally, thanks to the validity of the Ramanujan conjecture for GL 2n (A F ) established by L. Lafforgue in [START_REF] Lafforgue | Chtoucas de Drinfeld et correspondance de Langlands[END_REF], we prove the unramified Ramanujan conjecture for SO * 2n .

Theorem F (7.4.1). Let π be a globally generic cuspidal representation of SO * 2n (A F ). Then, if π x is unramified, its Satake parameters have absolute value 1.

Perspectives

Our work relies on the tempered L-function property, where the general case was settled in characteristic 0 by Heiermann and Opdam [START_REF] Volker Heiermann | On the tempered L-functions conjecture[END_REF] and by Lomelí for split groups in characteristic p [START_REF] Lomelí | Rationality and holomorphy of Langlands-Shahidi L-functions over function fields[END_REF]. However, all of the machinery in positive characteristic is now available to prove the property for quasi-split groups. Thus, we aim to bridge this gap in future work. We observe that arguing as in [START_REF] Volker Heiermann | On the standard modules conjecture[END_REF], the tempered L-function property implies the standard module conjecture and also Kim's assumption. In particular, we provide a proof of Kim's assumption in Section 2.11 under the assumption of a weak version of the standard module conjecture. However, we take special care throughout the thesis to give complete proofs that do not involve the full use of the tempered L-function conjecture, property (T). This results in the fact that Theorems A, E and F do not use property (T), but do use the weak version of the standard module conjecture, if the compatibility at all local places is changed to all unramified places. All other results are unconditional. For example, we prove Theorem D using partial L-functions, hence property (T) at ramified places is not required.

The construction of the transfer was made in the context of globally generic cuspidal representations of the even quasi-split non-split special orthogonal group. But now with the work in positive characteristic of V. Lafforgue on the global Langlands parametrisation and that of the Lafforgue-Genestier on the local Langlands parametrisation up to semisimplification, there are new paths to approach the functoriality conjecture for non-generic representations.

While we do not use the results of V. Lafforgue and Genestier-Lafforgue in this thesis, we do make use of the landmark result of L. Lafforgue on the global Langlands correspondence for general linear groups [START_REF] Lafforgue | Chtoucas de Drinfeld et correspondance de Langlands[END_REF]. In particular, combining our functorial lift from SO * 2n to GL 2n with the results of L. Lafforgue, we establish the Ramanujan conjecture for SO * 2n , at least at every unramified place.

Chapter 1

Special orthogonal groups

In this chapter we set up, as in [START_REF] Conrad | Reductive group schemes. Autour des Sch émas en Groupes, École d' ét é "[END_REF], the general facts and properties of algebraic groups that will be useful throughout the thesis. In particular we will define the quasi-split nonsplit special orthogonal group. Let k be a field and fix a separable closure k s and denote

Γ k = Gal(k s /k).
Let us denote by G ks , the base-change to k s of a group G over k.

1.1 Weights and parabolic subgroups. Let H be a smooth connected group over a field k. We denote

X(H) = Hom(H, G m ) & X * (H) = Hom(G m , H).
the set of characters and co-characters of H.

Assume that H is abelian. Then these sets are abelian groups and since Hom(G m , G m ) ∼ = Z we have that the composition

Hom(G m , H) × Hom(H, G m ) → Hom(G m , G m ) (µ, ν) → ν • µ induces a natural pairing of abelian groups X(H) × X * (H) → Z (ν, µ) → ν, µ .
Let S be a k-split subtorus of H. As H acts functorially on h := Lie(H) via the adjoint action so does S. In this case we define

Φ(H, S) := {a ∈ X(S) -{0} : h a = 0} ⊂ X(S) ⊗ Z R,
where h a is the unique subspace of h characterized be the property that

(h a ) R = (h a ⊗ k R) := {v ∈ h R : t • v = a(t)v, t ∈ S(R)}, for every k-algebra R.
Let G be a connected reductive group over k, S a maximal k-split torus in G and T a maximal k-torus in G containing S. With these choices, we denote

Φ = Φ(G ks , T ks ) & Σ = k Φ = Φ(G, S).
In this case, these are moreover root systems, which are also called absolute and relative root system respectively. The dual root system is denoted by

Φ ∨ ⊂ X * (T ks ) ⊗ R and Σ ∨ ⊂ X * (S) ⊗ R.
We can relate these informations with each other. Pick a minimal parabolic ksubgroup P 0 such that S ⊂ T ⊂ P 0 , a Borel k s -subgroup T ks ⊂ B ⊂ P 0,ks , and let

Φ + = Φ(B, T ks ) & Σ + = k Φ + = Φ(P 0 , S).
We also denote by ∆ a basis of simple roots of Φ + . This set carries an action of Gal(k s /k) = Γ k called the * -action [13, p.607] and [START_REF] Conrad | Reductive group schemes. Autour des Sch émas en Groupes, École d' ét é "[END_REF]Remark 7.1.2]. The Γ k -action on ∆ does not come from the one on X(T ks ), though it does if G is quasi-split, i.e has a Borel subgroup B defined over k. Now thanks to the inclusion S ks ⊂ T ks we have a surjective (restriction) homomorphism

X(T ks ) → X(S ks ) = X(S)
which caries Φ into Σ ∪ {0}, hitting all of Σ. Also it sends Φ + into Σ + ∪ {0}, as B ⊂ P ks . Denote by ∆ 0 the set {a ∈ ∆ : Res (Parabolic subgroup). We can parametrize parabolic subgroups containing a fixed minimal parabolic subgroup P 0 that contains S in the following way [13, Proposition 3.5.1]:

{Parabolic subgroups P ⊃ P 0 } → {Parabolic subsets Ψ ⊂ Σ containing Σ + } P → Φ(P, S).
Moreover, the sets on the right hand side are exactly the subsets k Φ Proposition 20]. Thus we obtain an inclusion preserving bijection (in both directions)

+ ∪ [θ], where θ ⊂ k ∆ and [θ] := (Z • θ) ∩ k Φ [6, Ch. VI, §1, n • 7.
{Parabolic subgroups P ⊃ P 0 } ← → {Subsets θ ⊂ k ∆} P θ ← θ.
(Weyl Group). The Weyl group of G is

W G = W (G, S) = N G (S)(k)/Z G (S)(k) ⊂ GL(X(S) ⊗ R).
It can be identified with the Weyl group W ( k Φ) of the root system k Φ [13, Theorem C.2.15]. We denote by w l = w l, k ∆ = w G the longest element of W G . Finally, for w ∈ W G , we denote by w a lift in N G (S)(k) ⊂ G(k).

1.2 Root groups and Levi subgroups. To know more about the structure of reductive groups and its subgroups, we use the construction in [START_REF] Conrad | Gabber Pseudo-reductive Groups[END_REF]Proposition 3.3.6] that we now summarize. Let G be a smooth connected affine k-group equipped with an action by a split k-torus S and let A ⊂ X(S) be a semigroup not containing 0. There exists a unique S-stable smooth connected k-subgroup

U A (G)
such that Lie(U A (G)) is the span of the a-weight spaces for all a ∈ A ∩ Φ(G, S). This k-group is unipotent and contains any S-stable smooth connected k-subgroup H ⊂ G such that all weights of S on Lie(H) belong to A. Now this construction allows us to consider the (relative) root groups as follows. For any a ∈ X(S) -{0}, let a be the semigroup consisting of positive integral multiples of a. For a ∈ Σ, we define the (relative) root group associated to a ∈ Σ as

U a := U a (G).
(Levi subgroups). These groups can also be used to describe the parabolic subgroups. Indeed for any parabolic subgroup P of G containing S, if we denote by Ψ P the subset of Σ that consists of all the a ∈ Σ such that -a ∈ Φ(P, S), then [START_REF] Conrad | Gabber Pseudo-reductive Groups[END_REF]

, Proposition C.2.26] R u,k (P) = U Ψ P ,
where R u,k (P) is the k-unipotent radical of P. In fact this description enables us to not only characterize the radical uniponent subgroups of a parabolic subgroup, but also to find an explicit expression of their Levi subgroups. Let P 0 be a minimal parabolic subgroup containing S. Let P θ ⊃ P 0 , where θ ⊂ k ∆. Let's consider

A P θ = S θ := ker a 0 red ⊂ S & M P θ := Z G (S θ ).
Then, we have the following Levi decomposition

P θ = Z G (S θ ) U Ψ P θ .
As a consequence of this explicit description we get that every parabolic P subgroup containing S has a unique Levi subgroup M P ⊃ S. Moreover, M P is the centralizer of a split subtorus A P = A M P ⊂ S. For a fixed S, these are often called semi-standard parabolic subgroup and semi-standard Levi subgroup.

a ∈ ∆. The Isomorphism Theorem [START_REF] Conrad | Reductive group schemes. Autour des Sch émas en Groupes, École d' ét é "[END_REF]Theorem 6.1.17] gives that the natural map

Aut ks (G ks , T ks , {X a } a∈∆ ) → Aut(R, ∆) is bijective.
Let G be the unique pinned connected reductive group (scheme) over C whose based root datum is equipped with an identification with (R ∨ , ∆ ∨ ), where R ∨ = (X * (T ks ), Φ ∨ , X(T ks ), Φ), obtained from the Isomorphism theorem [START_REF] Conrad | Reductive group schemes. Autour des Sch émas en Groupes, École d' ét é "[END_REF]Theorem 6.1.17]. Moreover, as this latter root datum carries the * -action, it defines a composite homomorphism

ρ : Γ k → Aut(R ∨ , ∆ ∨ ) → Aut( G). (1.3.1)
The embedding

Aut(R ∨ , ∆ ∨ ) → Aut( G)
depends on the choice of pinning of G [12, p 243, (7.1.3)], but the G(C)-conjugacy class of this homomorphism is independent of this choice. The Langlands dual of G is the disconnected locally algebraic group

L G k := Γ k G, well-defined up to G(C)-conjugation. We write L G k := L G k (C) and L G 0 k := G k (C) ⊂ L G k . If the context allows us, we just write L G. If H is another reductive group over k with L-group L H k , then an L-homomorphism from L G k to L H k is a continuous group homomorphism ρ whose restriction to L G 0 k is a complex analytic homomorphism of L G 0 k into L H 0 k , such that the following diagram is commutative L G k L H k Γ k ρ 1.
4 Special orthogonal groups. We start with the general construction of SO(q), for an even dimensional non-degenerate quadratic space Q = (V, q). First we recall some definitions: for a k-algebra R, a R-quadratic space is a pair (V, q) of a finite free Rmodule V and a quadratic form

q : V → R i.e. i) q(rv) = r 2 q(v), for all r ∈ R and v ∈ V , ii) the map B q : V × V → R, defined by B q (x, y) = q(x + y) -q(x) -q(y), is R-bilinear.
The orthogonal group O(q) for a general k-quadratic space (V, q) over k, is a closed subscheme of GL(V ), which represents the functor

R → {g ∈ GL(V R ) : q R (gx) = q R (x) for all x ∈ V R }.
Now, suppose that V has even dimension n. In this case non-degenerate means that the bilinear form B q (x, y) is non-degenerate. Now to define the special orthogonal group, we need for every k-algbera R, the Clifford algebra given by

C(V R , q R ) = Sym(V R )/ q R (x) -x ⊗ x : x ∈ V R ,
where SymV R denotes the symmetric algebra. The algebra C(V R , q R ) has a Z/2Zgrading, induced by the Z-grading of Sym V R . This algebra satisfies the following structural property

Proposition 1.4.1. [12, Corollary C.2.2] The R-algebra C(V R , q R ) and its even part C 0 (V R , q R ) are respectively isomorphic, fppf-locally on R, to M 2 n/2 (R) and a product of two copies of M 2 (n/2)-1 (R), with the left C 0 (V R , q R )-module C 1 (V R , q R ) free of rank 1. Furthermore, C(V R , q R ) and C j (V R , q R ) (j = 1, 2) are R-free and the centers of C(V R , q R ) and C 0 (V R , q R ) are respectively equal to R and a rank-2 finite étale R-algebra Z q . C 0 (V R , q R ) is the centralizer of Z q in C(V R , q R ).
The induced action of O(q)(R) on C(V R , q R ) preserves the grading and, hence induces an action on C 0 (V R , q R ), so finally we obtain an action on Z q R . Now the automorphism scheme Aut Zq/k is uniquely isomorphic to the constant group Z/2Z. Thus we get a homomorphism [12, C.2.2]

D q : O(q) → Z/2Z,
that is moreover compatible with isomorphisms of quadratic spaces (V, q), i.e. k-linear isomorphism preserving the quadratic forms. Its formation commutes with extension of scalars. This allows us to define SO(q) := ker D q . Theorem 1.4.2. [12, Section C.2] The group SO(q) is connected, smooth and reductive of dimension n(n -1)/2. Its center is the 2-root of unity µ 2 as a group scheme. The Dickson morphism D q is a smooth surjection, identifying Z/2Z with O(q)/ SO(q).

On the other hand, we also have the determinant homomorphism, that, thanks to the non-degeneracy property of B q , factors through µ 2

det : O(q) → µ 2 ⊂ G m . Furthermore one can prove [12, Corollary C.3.2], SO(q) ⊂ ker(det)
and that it is an equality if and only if char(k) = 2.

Remark 1.4.3.

There is a similar construction for SO(q) for odd dimensional quadratic space (V, q) [12, C.2].

We are going to consider two families of these groups: for n ≥ 1 consider the quadratic space Q n = (k 2n , q n ), where

q n (x 1 , . . . , x 2n ) := x 1 x 2n + • • • + x n x n+1 .
We have an orthogonal decomposition

Q n = H 1 ⊥ • • • ⊥ H n , for n hyperbolic planes H i = (ke i ⊕ke 2n-i+1 , x i x 2n-i+1
). Indeed, we note that B qn (x, y) = (x i y 2n-i+1 +x 2n-i+1 y i ), which it is non-degenerate. To simplify the notation, when the base field k is clear from context, we denote

SO 2n := SO(q k,n ).
Let l a separable quadratic extension of k, N l/k the norm, Tr l/k the trace and σ the nontrivial element of Gal(l/k). For n ≥ 1 consider the quadratic space

Q l,n = (k n-1 ⊕ l ⊕ k n-1 , q l,n ), where q l,n (x 1 , . . . , x n-1 , x, x n+2 , . . . , x 2n ) = x 1 x 2n + • • • + x n-1 x n+2 + N l/k (x).
We have an orthogonal decomposition

Q l,n = H 1 ⊥ • • • ⊥ H n-1 ⊥ (l, N l/k ), for n -1 hyperbolic planes H i = (ke i ⊕ ke 2n-i+1 , x i x 2n-i+1
) and an (anisotropic) non-degenerated quadratic space (l, N l/k ). Indeed, we note that

B q l,n (x, y) = (x i y 2n-i+1 + x 2n-i+1 y i ) + Tr l/k (xσ(y))
, which it is non-degenerate. To simplify the notation, when the extension l over k is clear from context, we write SO * 2n := SO(q l,n ).

1.5 Properties and calculations for SO(q l,n ). The group SO(q l,n ) is a k-form, splitting over l, of the split group SO 2n , whose absolute root system is D n .

We let

S = n-1 i=1 SO(H i ) ⊂ SO(q l,n ) & T = S × SO(l, N l/k ) ⊂ SO(q l,n ).
Since the dimension of S is n -1 and the dimension of T is n, we get that

S ⊂ SO(q l,n ) is a maximal split k-torus and T is a maximal k-torus. Let W = H 1 ⊥ • • • ⊥ H n-1 . Now, if we write the elements of End(Q l,n ) as block matrices A B C D ,
with A ∈ End(W ), B ∈ Hom(W, l), C ∈ Hom(l, W ), and D ∈ End(l), then S can be identified with the set of block matrices of the form

A 0 0 Id l , with A consisting of matrices diag(t 1 , • • • t n-1 , t -1 n-1 , • • • , t -1 1 ),
with respect to the ordered basis of W given by {e 1 , . . . , e n-1 , e n+2 , . . . , e 2n }.

On the other hand, by noticing that q l,n restricted to

W ⊥ k • 1 is the split form of 2(n -1) + 1 variables x 1 x 2n + • • • + x n-1 x n+2 + x 2 ,
we get a copy of

SO 2n+1 ∼ = SO(W ⊥ k • 1) inside SO(q l,n ).
Finally, putting these together we can show that the (relative

) root system Φ(SO(q l,n ), S) = Φ(SO(W ⊥ k • 1), S) = Σ = B n-1 and moreover Z G (S) = T .
Let us choose α ∈ l such that l = k(α). Let P 0 be the minimal parabolic subgroup of SO(q l,n ) containing S consisting of upper triangular block matrices with respect to the ordered basis of Q l,n given by {e 1 , . . . , e n-1 , 1, α, e n+2 , . . . , e 2n }. Then, as Z G (S) = T, we have

P 0 = T R u,k (P 0 ),
and that SO(q l,n ) is quasi-split. As it will be used later, we study the following low relative rank cases.

(Relative rank 0). [12, Example C.6.1] Let us choose α ∈ l such that l = k(α). We look at Q 1,l = (l, N l/k ). As dim k (l) = 2 we can check by definition that, C 0 = C 0 (l, N l/k ) = Z q = k[1 ⊗ α] = l & C 1 = C 1 (l, N l/k ) = l.
The algebra C 0 acts on C 1 , as l acts on l, i.e. by multiplication. Furthermore as the action of SO(N l/k ) on C 1 corresponds to the natural one and since its action on C 0 is trivial by definition, we have that the functor of points of SO(N l/k ) ⊂ GL k (l) consists in llinear maps that preserve N l/k . Now if we consider the morphism induced by the action of l × on GL k (l), this leads to an immersion of the norm one

N 1 (Res l/k G m ) elements of Res l/k (G m ), in GL k (l)
. By definition this corresponds to the l-linear automorphisms that preserve N l/k , thus we have that

SO(N l/k ) ⊂ N 1 (Res l/k G m ).
Finally as both tori (smooth and connected) have the same dimension, the inclusion must be an equality.

(Relative rank 1). We relate Res l/k SL 2 to the simply connected cover of SO(q l,2 ). First we note that Q l,2 is isomorphic to the quadratic space (E, q) of Hermitian 2 × 2 matrices, with quadratic form q = -det, via

(x 1 , x 2 , x) → -x 1 x σ(x) x 2 .
Furthermore, we have an action of Res l/k SL 2 on E, via a → gag * , where g * = t σ(g). We observe that q(a) = q(gag * ) and det(a → gag * ) = 1. Thus the action gives us a morphism

Res l/k SL 2 → SO (q) = ker(det | O(q) ).
As Res l/k SL 2 is connected and O(q)/ SO(q) = Z/2Z, this morphism factors through SO(q) ∼ = SO(q l,2 ). Finally as the kernel of this morphism is µ 2 and the dimensions of the groups SO(q l,2 ) and Res l/k SL 2 are the same, we have

1 → µ 2 → Res l/k SL 2 → SO(q 2,l ) → 1. (1.5.1)
We can also obtain this description using the general theory of orthogonal groups. Recall that Spin(q) [12, p. 336] is the simply connected central cover of

SO(q) [12, Lemma C.4.1] 1 → µ 2 → Spin(q) → SO(q) → 1.
By definition we have that

Spin(q) ⊂ D(Res Zq/k C 0 (V, q) × ),
where D(Res Zq/k C 0 (V, q) × ) is the derived k-group of Res Zq/k C 0 (V, q) × . Now suppose V has dimension 4. We claim that in fact this is an equality. Indeed, as we know, C 0 (V, q) is a quaternion algebra over Z q (Proposition 1.4.1), thus Res Zq/k C 0 (V, q) × is an inner form of GL 2 (Z q ), so D(Res Zq/k C 0 (V, q) × ) is of dimension 6. On the other hand we have that Spin(q) also has dimension 6, and as both are smooth and connected, the inclusion is an equality.

In the case

(V, q) = Q l,2 = H 1 ⊥ (l, N l/k ), we have, from the definition, a graded isomorphism [31, IV, (1.3.1)] C(V, q) ∼ -→ C(H) ⊗C(l, N l/k ). Furthermore, as C(H) ∼ = M 2 (k) [31, V, (2.1.6)] and C(l, N l/k ) ∼ = l ⊕ ul [31, V, (2.2.1)
] with the multiplication rules xu = uσ(x) and u 2 = 1, we also have a graded isomorphism

M 2 (k) ⊗(l ⊕ ul) → M 2 (l ⊕ ul) a b c d ⊗ (x + uy) → a(x + uy) b(x + uy) c(x -uy) d(x -uy) ,
in particular we get that

C 0 (V, q) ∼ = l ul ul l ⊂ M 2 (l ⊕ ul).
Finally, the map

a ⊗ x 1 b ⊗ ux 2 c ⊗ ux 3 d ⊗ x 4 → ax 1 bσ(x 2 ) cx 3 dσ(x 4 ) , induces an isomorphism C 0 (V, q) ∼ = M 2 (l).
This implies that in fact C 0 (V, q) × ∼ = GL 2 (l) and Z q = l, thus

Spin(q) ∼ = Res l/k SL 2 .
Chapter 2

The Langlands-Shahidi Method

In this chapter, we recall some local and global notions. We mainly follow [START_REF] Lomelí | The Langlands-Shahidi method over function fields: Ramanujan Conjecture and Riemann Hypothesis for the unitary groups[END_REF], in order to present the Langlands-Shahidi γ-factors, L-functions and ε-factors. We apply this to the case SO * 2n . We finish by discussing three foundational conjectures in this theory, Shahidi's tempered L-function conjecture, the standard module conjecture and Kim's assumption.

Let G be a (connected) reductive group over a non-archimedean local or a global field F of positive characteristic. Let us fix a separable closure F s of F . Finally, let us fix in G a maximal F -split subtorus S and P 0 a minimal parabolic subgroup containing S.

From now on, in order to reduce the size of the indices, we sometimes use the notation M = M(F ), for the rational points of an algebraic group scheme M over F .

2.1 Basic structures. For a Levi subgroup M containing S (i.e. semi-standard, see Section 1.2) of G, we let

a * M = X(M) ⊗ Z R & a * M,C = X(M) ⊗ Z C.
In the case where

M θ is the Levi subgroup of G associated to θ ⊂ F ∆ (Section 1.2), we let a * θ = a * M θ and a * θ,C = a * M θ ,C . Let us recall that, as G is connected reductive, the restriction homomorphism to A G (Section 1.2): Res G A G : X(G) → X(A G ) has finite cokernel and is injective; in particular it induces an isomorphism a * G → X(A G ) ⊗ Z R.

Now, let us consider L be a semi-standard Levi subgroup of G containing M. By definition we have

A L ⊂ A M ⊂ M ⊂ L .
This chain induces the following commutative diagram by the restrictions

X(L) X(A L ) X(M) X(A M ). Res L A L Res L M Res M A M Res A M A L
Since the horizontal arrows are injections with finite cokernels between torsion free groups, they become isomorphisms after tensoring them by R. Moreover, we obtain a split exact sequence

0 a * L a * M (a L M ) * 0,
where

(a L M ) * := coker(X(L) → X(M)) ⊗ Z R.
In other words, we have a decomposition,

a * M = a * L ⊕ (a L M ) * .
Analogously, we have for

a M = (X(M) ⊗ Z R) * the following exact sequence 0 a L a M (a L M ) 0,
and thus a decomposition a M = a L ⊕ a L M . By definition Φ(P, A M ) (Section 1.1) is a subset of X(A M ), hence of a * M ; in fact it lies in (a G M ) * and it spans it. In particular F ∆ ⊂ Φ(P 0 , S) spans (a G 0 ) * . Moreover, for P a parabolic subgroup of G containing P 0 , the restriction A M ⊂ A M 0 = S induces a map

Φ(P, S) → Φ(P, A M ) ∪ {0}, such that Φ(M, A P 0 ) maps to 0. Denote by ∆ P ⊂ a * M the image of ∆\Φ(M, A 0 ) in Φ(P, A M ).
Finally, let

a * ,+ M = {ν ∈ a * M θ 0 : ν, α ∨ > 0, α ∈ ∆ P } a * ,+ M = {ν ∈ a * M θ 0 : ν, α ∨ ≥ 0, α ∈ ∆ P }.
(Unramified character). Now suppose that F is a non-archimedean local field, with residue field F q . For every χ ∈ X * (G), we define

|χ| F := | • | F • χ(F ) : G(F ) χ(F ) --→ F × |•| F --→ q Z ⊂ C × ,
where χ(F ) is group homomorphism between the F -points of G and G m induced from χ .

Let us consider the map

log G : G(F ) → a G = Hom Z (X(G), R). g → [χ → -log |χ| F (g)]
Again, from the restriction map of A G ⊂ G, we have that Im(log G ) is contained in the lattice Hom Z (X(G), 1 log q Z) of a G and has finite index there. We also consider a variant of this map, where we use log q instead of log, we denote it by

H G : G(F ) → X * (G) = Hom Z (X(G), Z).
We put

G 1 := ker log G = χ∈X * (G) ker |χ| F , X (G) := Hom Z (G(F )/G 1 , C × ).
We have a surjection,

κ : a * G,C ∼ -→ Hom C (a G,C , C) = Hom C (Im(log G ) ⊗ C, C) = Hom Z (Im(log G ), C) exp •- ---→ Hom Z (Im(log G ), C × ) -•log G ----→ Hom Z (G(F )/G 1 , C × ) = X (G),
which can be also be written as

χ ⊗ s → [g → |χ| s F (g)],
with kernel equal to R = 2iπ log q Hom Z (Im(log G ), Z).

We put

Re

X (G) = κ(a * G ) & Im X (G) = κ(ia * G ). We note that κ restricts to the following isomorphisms a * G → Re X (G),
and ia * G /R → Im X (G). Let C[G(F )/G 1 ] the group algebra of G(F )/G 1 over C.
The universal property of this algebra gives us the following natural indentification

Hom Z (G(F )/G 1 , C × ) = Hom C-alg (C[G(F )/G 1 ], C).
In other words, X (G) is the set of rational points of Spec(C[G(F )/G 1 ]). As G(F )/G 1 is free of some finite rank r, we have a (non-canonical) isomorphism from Spec(C[G(F )/G 1 ]) to G r m , giving us an algebraic structure on X (G), such that it is isomorphic to (C × ) r .

We can also give a real manifold structure on Re X (G) and Im X (G), given by the isomorphism above. In the second case it is a compact torus.

(Inertia classes). The group X (G) acts on the set of equivalences classes of the smooth irreducible representations of G(F ), Irr(G) :

(χ, [(π, V )]) → [(π ⊗ χ, V )], χ ∈ X (G), π ∈ Irr(G).
We denote the induced action of a * G,C via κ by π ν = π ⊗ κ(ν) and

(ν, [(π, V )]) → [(π ν , V ν )].
Using that X (G) is an algebraic complex torus and that the stabilizers of this action are finite we have that its orbits also have an algebraic complex structure. We denote the orbit of π as O π,C , and let R π,C ⊂ a * G,C be the lattice such that

a * G,C /R π,C → O π,C
is a bijection.

Similarly Im X (G) acts on the set of equivalences classes of smooth unitary irreducible representations and this allows us to think of its orbits as real manifolds that are diffeomorphic to real compact tori. We denote the orbit of π as O π , and let

R π ⊂ ia * G be the lattice such that a * G /R π → O π is a bijection.
(Induced representation). For a totally disconnected topological group H, we denote by Rep(H) the (abelian) category of smooth representations of H.

Let P = M N be a parabolic subgroup of G, with M a Levi subgroup and N its unipotent radical. Then we denote the normalized parabolic induction functor by

i G P : Rep(M ) → Rep(G). If (π, V ) ∈ Rep(M ) then we let i G P (π, V ) = (i G P π, i G P V ).
Finally we denote, for a parabolic subgroup

P = M N with M ⊃ S and ν ∈ a * M,C i G P (ν, (π, V )) := (i G P (π ν ), i G P V ν ).
P 0 , σ an irreducible tempered representation of M(F ), and ν ∈ a * M,C such that Re(ν) ∈ a * ,+ M . Then i G P (ν, π) has a unique irreducible quotient [45, Th éor ème VII.4.2] called the Langlands quotient and it is denoted by J(P, ν, π). Moreover, if J(P , ν , π ) ∼ = J(P, ν, π) then M = M, Re(ν -ν ) = 0 and π ν ∼ = π ν . Every irreducible smooth representation of Rep(G(F )) is isomorphic to a Langlands' quotient.

In the case of

M = GL n b × • • • × GL n 1 × G n 0 ⊂ G n , where G n = SO *
2n (we recall that we have already fixed a minimal parabolic subgroup in Section 1.5) or SO 2n (we will also fix a minimal parabolic subgroup in Section 5.6). Notice that the center of G n is finite, and Langlands quotients are indeed quotients of representations of the form i

Gn(Fx) P (π b | det | r b ⊗ • • • ⊗ π 1 | det | r 1 ⊗ π 0 ), where 0 < r 1 ≤ • • • ≤ r b , π i is an irreducible tempered representation of GL n i (F ) for 1 ≤ i ≤ b and π 0 is an irreducible tempered representation of G n 0 (F ) .

Local Intertwining operator.

Suppose that F is a non-archimedean local field. Consider two parabolic subgroups P = M U and P = M U of G, with a common Levi subgroup M, containing S, and let π be a smooth representation of M(F ). We denote by P the unique parabolic subgroup G that is opposite to P and contains M. We first define formally the G-invariant operator,

J P |P (π) : i G P V → i G P V
characterized by

(J P |P (π)f )(g), v = U ∩U \U f (u g), v du for all v ∈ V .
If for all v ∈ V this integral converges absolutely and there exits v ∈ V such that this integral is equal to v, v for all v ∈ V , we will say that J P |P (π) is defined by convergent integrals. The vector obtained will be denoted by

(J P |P (π)f )(g) = (U ∩U )\U f (u g)du .
Theorem 2.3.1. [56, Th éor ème I V.1.1] Suppose that π is of finite length. Then there exists R ∈ R such that if Re(χ), α ∨ > R for all α ∈ Φ(P, A M ) ∩ Φ(P , A M ), then J P |P (π ⊗ χ) is defined by convergent integrals. Moreover, the operator J P |P defined in the region just described of O π,C is rational.

We also introduce a variant of that operator, used by Shahidi. We recall that we have a parametrization of parabolic subgroups containing P 0 , by subsets of F ∆ (Section 1.1). First, for θ, θ ⊂ F ∆, let

W (θ, θ ) = {w ∈ W G : w(θ) = θ }. For a representative w ∈ N G (S)(F ) of w ∈ W (θ, θ ) and ν ∈ a * M θ , as Shahidi, we can define A(ν, π, w) := J P θ |wP θ (π ν ) • t( w) : i G P θ (ν, π) → i G wP θ ( w(ν), w(π)) → i G P θ ( w(ν), w(π)),
where (t( w)f )(g) = f ( w-1 g), w(π)(g) = π( w-1 g w) and π ν is an in Section 2.1. This operator is defined in a suitable cone as in the statement of Theorem 2.3.1 by convergent integrals as follows For each x ∈ |F |, let (π x , V x ) be an admissible representation of M(F x ). Assume that for some finite subset S 0 of |F |, we are given a non-zero vector v x ∈ V x for each x ∈ S 0 . These data define a representation of M(A F ) [15, Section 2],

A(ν, π, w)f (g) = wU θ w -1 ∩U θ \U θ f ( w-1 u g)du . ( 2 
( vx π x , vx V x ),
called the restricted tensor product of the collection {(π x , V x ) : x ∈ |F |} with respect to the collection {v x ∈ V x : x ∈ S 0 }.

If we assume that these representations satisfy dim

V Kx x = 1 and v x ∈ V Kx
x , then their isomorphism classes as M(A F )-modules do not depend on the choice of the set {v x }, and thus we just write x π x . The elements of these isomorphism classes will be called factorizable. Finally, we recall that an irreducible admissible representation of M(A F ) is factorizable [15, Theorem 3].

Adjoint representation.

Suppose that G is quasi-split. Let P = M N be a maximal parabolic subgroup of G containing P 0 , associated to F ∆ -{α}. We denote

ρ = 1 2 b∈Φ(P,A M ) b ∈ a * M & α := ρ, α ∨ -1 ρ ∈ a * M .
For β ∈ Σ = Φ(G, S) we denote by β ∈ Φ = Φ(G Fs , T Fs ) a root such that Res T Fs S Fs β = β. We consider the L-group L G (Section 1.3). Moreover we extend the pinning {X b } b∈∆ ∨ , used to define Ĝ, to a Chevalley basis {X b : b ∈ Φ ∨ }. Now let us consider the adjoint representation r of L M on L n = Lie( L N ). For every positive integer i, we consider the subrepresentation r i acting on

V i = Span{X β ∨ ∈ L n : α, β ∨ | A M = i}.
Thanks to the algebraic arguments in [47, Section 2] valid in all characteristics, there exists a positive integer m r such that

{ α, β ∨ | A M : β ∈ Σ + , X β ∨ ∈ L n} = {1, . . . , m r }.
In fact these subspaces V i correspond to the space generated by the weight spaces

g γ ∨ such that γ ∨ | A L M = iα ∨ | A L M ,
and they form an irreducible decomposition of r [START_REF] Shahidi | On the Ramanujan Conjecture and Finiteness of Poles for Certain L-Functions[END_REF]Proposition 4.11]. Thus we can write

r = ⊕ mr i=1 r i : L M → GL( L n). (2.5.1)
Let E/F be a quadratic extension in F s . In the case when (Restriction). Now we recall some properties of the restriction of the adjoint representation to smaller Levi subgroups. These properties will play a role in the general multiplicativity formula of γ-factor below (Section 2.7).

P = M N ⊂ SO(q E,m+n ) = SO * 2(m+n) , with M = GL m × SO * 2n (
Let w 0 = w l, F ∆ w l, F ∆-{α} . We study the restriction of the representation r i to smaller Levi subgroups. Let θ ⊂ F ∆ -{α}, fix a reduced decomposition

w 0 = w n-1 • • • w 1 [46, Lemma 2.1.2] and denote θ = w 0 (θ) ⊂ F ∆. For each j, 2 ≤ j ≤ n -1, let w j = w j-1 • • • w 1 . Set w 1 = 1. Also, let Ω j = θ j ∪ {α j }, where θ 1 = θ, θ n = θ , and θ j+1 = w j (θ j ), 1 ≤ j ≤ n -1.
Then the group M Ω j contains M θ j N θ j as a maximal parabolic subgroup.

The L-group L M θ acts on V i . Given an irreducible subrepresentation of this action, there exists a unique j, 1 ≤ j ≤ n -1, which under w j is equivalent to an irreducible subrepresentation of the action of L M θ j on the Lie algebra of L N θ j . We denote i(j) the index of this subspace of the Lie algebra of L N θ j . Finally, let S i denote the set of all such i's where S i , in general, is a proper subset of 1 ≤ i ≤ n -1.

To shorten some indices we use the following notation. If σ be a representation of M(F ) and ν ∈ a * M , then we denote by σ j the representation of M θ j given by w j (σ) and ν j = w j (ν) ∈ a * θ j .

2.6 Generic representations. Suppose that G is quasi-split, so P 0 = B = T U 0 is a Borel subgroup and F is a non-archimedean local field. Let χ : U 0 (F ) → C × be a character that is generic in the sense that it is non-trivial on U a (F ) for every a ∈ F ∆ and that is trivial on the normal subgroup a∈Σ + -∆ U a (F ). An irreducible admissible representation (π, V ) is said to be χ-generic if there exists a non-zero χ-generic Whittaker functional for π, i.e a functional λ χ :

V → C such that λ χ (π(u)v) = χ(u)λ χ (v),
for all u ∈ U 0 (F ) and v ∈ V . The space of such Whittaker functionals, for an irreducible admissible representation has dimension at most one [START_REF] Shalika | The multiplicity one theorem for GL(n)[END_REF]. For a generic character χ and a χ-generic representation (π, V ), there is a unique non-zero Whittaker functional V , up to multiplication by a non-zero constant.

2.7

The Langlands-Shahidi Method. Suppose F is a local field of positive characteristic, with residue field k F , and G quasi-split. Denote q F = #k F . Let P = M N be a maximal parabolic subgroup of G, containing P 0 . The adjoint representation r decomposes intro irreducibile representations (Section 2.5)

r = ⊕ mr i=1 r i : L M → GL( L n).
Let also (π, V ) be a (χ-)generic representation of M(F ) and ψ : F → C × a smooth non-trivial character. Then the Langlands-Shahidi method [38, Section 5] constructs rational functions C(q -s ) called γ-factors that are uniquely determined by the following properties i) (Naturality). Let η : F → F be an isomorphism of non-archimedean local fields and let π be the representation of M(F ) and ψ the character of F , obtained via η. Then γ(s, π, r i , ψ) = γ(s, π , r i , ψ ).

ii) (Isomorphism) Let π 1 and π 2 be two isomorphic generic representations of M(F ).

Then γ(s, π 1 , r i , ψ) = γ(s, π 2 , r i , ψ).
iii) (Compatibility with Artin factors) Let π be a generic unramified representation of M(F ). Let σ : W F → L M be the Langlands parameter corresponding to π (Section 5.4). Then γ(s, π, r i , ψ) = γ(s, r i • σ, ψ).

iv) (Multiplicativity) Let π be the generic subquotient of the representation of M(F ) given as i M P θ 0 ∩M π 0 , where π 0 is a generic representation M θ 0 (F ), with θ 0 ⊂ θ. Then

γ(s, π, r i , ψ) = j∈S i γ(s, π 0,j , r i(j) , ψ),
where S i , π 0,j and r i(j) are as in the last paragraph Section 2.5. v) (Dependence on ψ) For a ∈ F × , let ψ a : F → C × be a character given by ψ a (x) = ψ(ax). Then, there is a real number h i and a rational character t :

F × → Z(G) such that γ(s, π, r i , ψ a ) = ω π (t(a)) h i |a| n i (s-1 2 ) F • γ(s, π, r i , ψ),
where n i = dim V i and ω π is the central character of π. x ∈S L(s, π x , r i,x ), with L(s, π x , r i,x ) = det(Id -q -s Fx r i,x (a x )) -1 , [a x ] the semisimple conjugacy class in L G x associated to π x (Section 5.4). It is a rational function on q -s and

L S (s, π, r i ) = x∈S γ(s, π x , r i,x , ψ x ) • L S (1 -s, π, r i ).

Stability of γ-factors for SO *

2n . We apply the construction of the Langlands-Shahidi γ-factors to the Levi subgroup M = GL m × SO * 2n of SO * 2(m+n) . As we mentioned (Section 2.5), the adjoint representation gives us two irreducible components r 1 and r 2 . Thus we obtain two γ factors.

The one associated to r 1 will play a main role in functoriality (Section 6.2). For that reason, we will use the following notation. Let M = GL m × SO * 2n ⊂ SO * 2(n+m) , π be a generic representation of SO * 2n (F ) and τ a generic representation of GL m (F ). We let π denote the contragredient representation of π. Then τ ⊗ π is a generic representation of M(F ) and we write γ(s, τ ⊗ π, r 1 , ψ) = γ(s, π × τ, ψ).

Among the properties of this factor, we would like to highlight two forms of the multiplicativity property. Let

M 1 = GL m × GL n b × • • • × GL n 1 × SO * 2n 0 ⊂ M, and suppose that π is the generic subquotient of i SO * 2n (F ) P 1 (π b ⊗ • • • ⊗ π 1 ⊗ π 0 ),
where P 1 = M 1 N 1 is the parabolic subgroup of SO * 2n , containing P 0 , π i is a generic representation of GL n i (F ) for 1 ≤ i ≤ b and π 0 is a generic representation of SO * 2n 0 (F ). Then the multiplicative property gives us

γ(s, π × τ, ψ) = γ(s, π 0 × τ, ψ) b i=1 γ(s, π i × τ, ψ)γ(s, πi × τ, ψ),
where γ(s, π i × τ, ψ) is Rankin-Selberg γ-function (Section 3.1). For the other case, let

M 2 = GL m b × • • • × GL m 1 × SO * 2n ⊂ M and suppose that τ is the generic subquotient of i GLm(F ) Q (τ b ⊗ • • • ⊗ τ 1 ),
where Q = M 2 N 2 is the parabolic subgroup of GL m containing the upper triangular matrices, τ i is a generic representation of

GL m i (F ) for 1 ≤ i ≤ b. Then γ(s, π × τ, ψ) = b i=1 γ(s, π × τ i , ψ).
For r 2 , we obtain the exterior square representation, that will play a role in the study of partial L-functions (Section 4.2), γ(s, τ ⊗ π, r 2 , ψ) = γ(s, τ, ∧ 2 ρ m , ψ).

These factors have already been studied in detail [START_REF] Henniart | Local-to-global extensions for GL(n) in non-zero characteristic: a characterization of γ F (s, π, Sym 2 , ψ) and γ F (s, π, ∧ 2 , ψ)[END_REF]. The multiplicative property in this case has the following form. Let

M 1 = GL m b × • • • × GL m 1 × SO * 2n ⊂ M and suppose that τ is the generic subquotient of i GLm(F ) P (τ b ⊗ • • • ⊗ τ 1 )
,

where τ i is a generic representation of GL m i (F ) for 1 ≤ i ≤ b. Then γ(s, τ, ∧ 2 ρ m , ψ) = b i=1 γ(s, τ i , ∧ 2 ρ m i , ψ) i<j γ(s, τ i × τ j , ψ).
We now present two stability results for the γ-functions. Lemma 2.8.1. [49, Main Lemma 1] Let π be a generic representation of SO * 2n (F ) and τ a generic representation of GL m (F ). Then there exists a character χ of F × so that γ(s, π × (τ • χ), ψ) is a monomial in q -s F , for 1 ≤ i ≤ m. Moreover χ can be replaced by any character of F × whose conductor is larger than that of χ.

We also have the following important result. Theorem 2.8.2. [START_REF] Wee | Globalization of supercuspidal representations over function fields and applications[END_REF]Corollary 6.5] Let π 1 and π 2 be two irreducible generic representations of SO * 2n (F ) having the same central character, and let τ be an irreducible generic representation of GL m (F ). Then for a sufficiently highly ramified character χ of F × , we have

γ(s, π 1 × (τ • χ), ψ) = γ(s, π 2 × (τ • χ), ψ).
2.9 Principal Series and Relative Rank one. Let E be a separable quadratic extension of F (local field of positive characteristic) contained in F s , with Galois group Gal(E/F ) = {1, σ}. Let (χ 1 , ..., χ n-1 , χ) be a character of the maximal subtorus T(F ) of SO * 2n = SO(q E,n )(F ) (See Section 1.5, for notations), where χ i is a character of

F × for each 1 ≤ i ≤ n -1 and χ is a character of E 1 . Then if π is the generic subquotient of i SO * 2n P 0 (χ 1 , ..., χ n-1 , χ)
and ξ a character of F × , the multiplicativity formula gives us

γ(s, π × ξ, ψ) = γ(s, χ × ξ, ψ) n-1 i=1 γ(s, χ i ξ, ψ)γ(s, χ -1 i ξ, ψ) (2.9.1)
where the γ(s, χ i ξ, ψ) are Tate factors.

Let us study the rank one case. First write ψ E = ψ • Tr E/F and let λ(E/F, ψ) be the Langlands constant [START_REF] Bushnell | The Local Langlands Conjecture for GL(2)[END_REF]Section 30.4]. Now let us recall that we constructed the simply connected cover of SO(q E,2 ) (1.5.1):

Res E/F SL 2 → SO(q E,2 ).
This morphism restricts to

diag(t, t -1 ) → [(x 1 , x 2 , x) → (N E/F (t)x 1 , N E/F (t) -1 x 2 , tσ -1 (t)x)].
Thus we have the following [38, Proposition 1.3] Proposition 2.9.2. Let (χ, ξ) be a smooth character of T(F ), and µ the character of Let us start with the following definition: Let π be a tempered generic representation. Now let P π,r i be the unique polynomial with P π,r i (0) = 1 and such that P π,r i (q -s F ) is the numerator of γ(s, π, r i , ψ). Then we define

E × defined by [t → (χ • N E/F )(t) • ξ(tσ -1 (t))]. Then γ(s, χ × ξ, ψ) = λ(E/F, ψ)γ(s, µ, ψ E ).
L(s, π, r i ) = 1 P π,r i (q -s F )
.

Starting from this definition, we can extend it to general generic representation (see the properties viii-ix below). In order that this construction has good properties (see for example properties vii,x), the following property (T), known as Shahidi's tempered L-function conjecture, must be valid. It was proved in most cases by Kim, see [START_REF] Kim | On Local L-Functions and Normalized Intertwining Operators II; Quasi-Split Groups[END_REF] for a detailed account, and Heiermann and Opdam in characteristic 0 for arbitrary quasi-split groups [START_REF] Volker Heiermann | On the tempered L-functions conjecture[END_REF], using harmonic analytic tools developed in [START_REF] Volker Heiermann | D écomposition spectrale et repr ésentations sp éciales d'un groupe r éductif p-adique[END_REF] and [START_REF] Silberger | Introduction to Harmonic Analysis on Reductive p-adic Groups[END_REF]. Now, we have the Langlands-Shahidi method available in positive characteristic [START_REF] Lomelí | The Langlands-Shahidi method over function fields: Ramanujan Conjecture and Riemann Hypothesis for the unitary groups[END_REF], and observing that these harmonic analysis tools are also valid in this situation, it is natural to expect the validity of property (T) in all characteristic. Furthermore, a proof in positive characteristic for split reductive groups using the Kazhdan transfer is found in [START_REF] Lomelí | Rationality and holomorphy of Langlands-Shahidi L-functions over function fields[END_REF].

(T) Let π be a generic tempered representation of M(F ), then L(s, π, r i ) is holomorphic on Re(s) > 0.

Under the assumption that this property (T) holds, we have vii) (Tempered ε-factors). Let π be a tempered generic representation of M(F ). Then

ε(s, π, r i , ψ) = γ(s, π, r i , ψ) L(s, π, r i ) L(1 -s, π, r i ) ,
is a monomial in q -s F . Moreover, we can extend the definitions of L-functions and ε-factors for any generic representation in such a way that [START_REF] Lomelí | The Langlands-Shahidi method over function fields: Ramanujan Conjecture and Riemann Hypothesis for the unitary groups[END_REF]Section 5] viii) (Twists by unramified characters). Let π be a generic representation of M(F ). Then

L(s + s 0 , π, r i ) = L(s, q -s 0 α,H M (•) F ⊗ π, r i ), ε(s + s 0 , π, r i , ψ) = ε(s, q -s 0 α,H M (•) F ⊗ π, r i , ψ).
ix) (Langlands' classification). Let π be a generic representation of M(F ). Let π 0 be a tempered generic representation of M θ 0 (F ) and χ an unramified character of M θ 0 (F ) as in (Section 2.2). Suppose that π is the Langlands quotient of

i M P θ 0 ∩M (π 0,χ ),
with π 0,χ = π 0 • χ. Note that each π 0,χ,j is quasi-tempered i.e. a tempered representation twisted by an unramified character. Then

L(s, π, r i ) = j∈S i L(s, π 0,χ,j , r i(j) ), ε(s, π, r i , ψ) = j∈S i ε(s, π 0,χ,j , r i(j) , ψ).
(2.10.1)

x) (Global functional Equation). Let k be a global field of positive characteristic, with field of constants F q and G a quasi-split reductive k-group. Let π = x π x be a globally generic cuspidal automorphic representation of M (A k ) where M is the Levi k-subgroup of a maximal parabolic subgroup of G , containing a Borel subgroup P 0 . We define L(s, π, r i ) :

= x∈|k| L(s, π x , r i,x ).
It is a rational function in q -s and we have the functional equation

L(s, π, r i ) = ε(s, π, r i )L(1 -s, π, r i ).
(2.10.2)

As before, we apply this construction to M = GL m × SO * 2n ⊂ SO * 2(m+n) . Let π be a generic representation of SO * 2n (F ) and τ a generic representation of GL m (F ). Then τ ⊗ π is a generic representation of M(F ) and we denote by

L(s, τ ⊗ π, r 1 , ψ) = L(s, π × τ ) ε(s, τ ⊗ π, r 1 , ψ) = ε(s, π × τ, ψ).
We also note that these factors satisfy similar multiplicativity formulas, as in the case of γ-factors (Section 2.8). As each Satake parameter of π has absolute value 1, property (T) is true for general linear groups and by property iv) of Section 2.7, we get that L(s, τ ⊗ π, r i ) satisfies property (T).

To finish, we note that it follows from the construction of the L-functions and Lemma 2.8.1 that given any generic representation π of M(F )and τ a generic representation of GL m (F ), there exists a character χ of F × so that

L(s, π × (τ • χ)) ≡ 1.
(2.10.4)

2.11 Kim's assumption. In this section we discuss Kim's assumption. In general its proof relies on property (T) and the standard module conjecture. This last conjecture, follows formally from property (T), as can be seen from [START_REF] Volker Heiermann | On the standard modules conjecture[END_REF], the machinery for its proof being in place.

We provide a proof of a version of Kim's assumption in Proposition 2.11.8, under the assumption of a weak version of the standard module conjecture: let π be a generic non-tempered unramified representation of SO * 2n (F ). Then it is a full induced representation of the form i

SO * 2n (F ) P (π b | det | r b ⊗ • • • ⊗ π 1 | det | r 1 ⊗ π 0 ), (2.11.1) 
where

0 < r 1 ≤ • • • ≤ r b , π i is an irreducible tempered representation of GL n i (F ) for 1 ≤ i ≤ b and π 0 is an irreducible tempered representation of SO * 2n 0 (F ).
In general the standard module conjecture was proven in characteristic zero [START_REF] Volker Heiermann | On the standard modules conjecture[END_REF] for quasi-split groups using the harmonic analytic tools in [START_REF] Volker Heiermann | D écomposition spectrale et repr ésentations sp éciales d'un groupe r éductif p-adique[END_REF], which are valid in all characteristics. Having the Langlands-Shahidi method in positive characteristic, we plan to look these three interrelated properties, namely, Shahidi's tempered L-function conjecture, the standard module conjecture and Kim's assumption, in future work. For the moment, we will assume the version of the standard module conjecture in positive characteristic given above to prove Kim's assumption in the special case we need.

Let P = M N be a maximal parabolic subgroup of G containing P 0 , associated to

F ∆ \ {α} and w0 ∈ G(F ) a representative of w 0 = w l,G w l,M ∈ W G (Section 1.1). For π a generic representation of M(F ), we define r(s, π) = mr i=1 L(is, π, r i ) L(1 + is, π, r i )ε(is, π, r i , ψ) ,
and the normalized intertwining operator N (s, π, w0 ) is defined to be such that

A(s, π, w0 ) = r(s, π)N (s, π, w0 ), (2.11.2) 
as a rational operator in s (See Section 2.3, for definition of A(s, π, w0 )). Kim's assumption then asserts that (A) Let k be a global field. Assume that π = ⊗ x∈|k| π x is a globally generic unitary cuspidal automorphic representation of M(A k ). Then N (s, π x , w0 ) is holomorphic and non-zero on Re(s) ≥ 1/2 for all x ∈ |k|.

This assumption has been proven in characteristic 0 in [START_REF] Kim | On Local L-Functions and Normalized Intertwining Operators II; Quasi-Split Groups[END_REF] for quasi-split groups, using the tempered L-function conjecture and the standard module conjecture. We will prove a version (Proposition 2.11.8) of this assumption, but that will be enough for our purposes (Section 6.3).

Lemma 2.11.3. Let ρ be a generic unitary cuspidal representation of M(F ). Then N (s, ρ, w0 ) is holomorphic and non-zero outside of Re(s) = -1/2, -1.

Proof. Indeed from [38, Section 5], m i=1 L(is, ρ, r i ) -1 A(s, ρ, w0
) is entire and non-zero. Therefore the poles of N (s, ρ, w0 ) are zeros of m i=1 L(1 + is, ρ, r i ) -1 , but this does not have a zero outside of Re(s) = - Proof. In fact, in this case A(s, π, w0 ) is holomorphic and non-zero on Re(s) > 0 [56, Section IV, Proposition 2.1 & Equation [START_REF] Cogdell | Functoriality for the classical groups[END_REF]]. Now thanks to property (T), we conclude that N (s, π, w0 ) is holomorphic and non-zero on Re(s) > 0. For Re(s) = 0 we use [58, Lemma 2], which is also valid in positive characteristic.

Let M θ 0 be a non-maximal Levi subgroup G, with θ 0 ⊂ F ∆ \ {α}. In this case, we recall that we also have spaces of parameters denoted by a * θ 0 ,C = a * M θ 0 ,C and a * θ 0 = a * M θ 0 (Section 2.1). We will need them to state the following non-vanishing result concerning the normalized intertwining operator.

Proposition 2.11.5. Let π be a generic representation of M(F ). Suppose that

π = i M P θ 0 ∩M (Λ, π 0 ),
where θ 0 ⊂ F ∆ \ {α}, Λ ∈ a * θ 0 ,C with Re(Λ) ∈ a * ,+ θ 0 , π 0 is a tempered generic representation of M θ 0 (F ), and assume that L(s, π 0,j , r i(j) ) satisfies (T) for every i and j ∈ S i . Then if N (s, π, w0 ) is holomorphic at s 0 ∈ C, it is also non-zero at s 0 .

This result is [58, Theorem 3] in characteristic zero. We mostly follow his proof with almost no changes to prove the result in positive characteristic.

Proof. As in [START_REF] Zhang | The holomorphy and nonvanishing of normalized local intertwining operators[END_REF], we extend the definition of the normalization r(s, π), to deal with the non-maximal parabolic subgroup P θ 0 , by

r(ν, π 0 ) = n-1 l=1 r(ν i , π 0,l ), for ν ∈ a * θ 0 ,C . This allows us to define N (ν, π 0 , w0 ) = r(ν, π 0 ) -1 A(ν, π 0 , w0 ).
From the condition that L(s, π 0,j , r i(j) ) satisfies (T) for every i and j ∈ S i and Lemma 2.11.4, we obtain that N (ν, π, w0 ) is non-zero and holomorphic on Re(ν) ∈ a * ,+ θ 0 and holomorphic on Re(ν) ∈ a * ,+ θ 0 . Then arguing as in [58, Theorem 3, p. 393] we conclude that it is also non-vanishing in the closure. Finally, we can find g ∈ W G such that g(θ 0 ) ⊂ ∆, and w 0 (s 0 α+Λ) is in a * ,+ g(θ 0 ) . Then again thanks to the proof of [58, Theorem 3, pp. 393-394], we obtain that N (ν, π 0 , w0 ) is non-vanishing at s 0 α+Λ, as it is holomorphic there. Finally as N (s 0 , π, w0 ) = N (s 0 α + Λ, π 0 , w0 )| i G P (s,π) [29, Proof of Lemma 4.3], we obtain the non-zeroness. We adapt the arguments in [START_REF] Henry | Langlands-Shahidi method and poles of automorphic L-functions II[END_REF]Lemma 3.3] to our case. Proposition 2.11.7. Let π be a generic unramified representation of SO * 2n (F ). Suppose that L(s, π × τ ) is holomorphic on Re(s) > 1, for every unitary generic representation τ of GL m (F ). Then π is the Langlands quotient of

i SO * 2n (F ) P (π b | det | r b ⊗ • • • ⊗ π 1 | det | r 1 ⊗ π 0 ), where 0 < r 1 ≤ • • • ≤ r b , with r b < 1, π i is an irreducible tempered representation of GL n i (F ) for 1 ≤ i ≤ b and π 0 is an irreducible tempered representation of SO * 2n 0 (F ).
Proof. We can suppose that each π i is a discrete series representation of GL n i (F ), for

1 ≤ i ≤ b. By property ix) of Section 2.10, L(s -r b , π b × πb ) is a factor of L(s, π × πb ). As L(s -r b , π b × πb ) is a Rankin-Selberg L-functions (Remark 3.1.1)
, it has a pole for s = r b and L(s, π × πb ) is holomorphic on Re(s) > 1, we have that r b < 1.

The L-function condition in the previous proposition will be studied in Proposition 4.2.4, for a local component of a cuspidal automorphic representation. The next proposition is a weak version of Kim's assumption that we will prove under the assumption of the standard module conjecture in the case (2.11.1). To prove it we adapt the arguments in [START_REF] Henry | Langlands-Shahidi method and poles of automorphic L-functions II[END_REF]Proposition 3.4] 

(π b | det | r b ⊗ • • • ⊗ π 1 | det | r 1 ⊗ π 0 ), where 0 < r 1 ≤ • • • ≤ r b , with r b < 1, π i is an irreducible tempered representation of GL n i (F ) for 1 ≤ i ≤ b and π 0 is an irreducible tempered representation of SO * 2n 0 (F ). Then N (s, τ ⊗ π, w0
) is holomorphic and non-zero on Re(s) ≥ 1/2 for every generic unitary representation τ of GL m (F ).

Proof. We can write τ as the full induced representation [54, Section 7]

i GLm Q (ξ 1 | det | t 1 ⊗ • • • ⊗ ξ d | det | t d ⊗ ξ d+1 ⊗ ξ d | det | -t d ⊗ • • • ⊗ ξ 1 | det | -t 1 ),
where Q is a parabolic subgroup containing the Borel subgroup of GL m consisting of upper triangular matrices, the ξ i 's are tempered representations of GL m i (F ) and 0

< t 1 ≤ • • • ≤ t d < 1/2.
Combining the description for π and τ as induced representations, we obtain that τ ⊗ π is full induced from quasi-tempered datum. This allows us to use multiplicativity of the normalized intertwining operators (See [30, Proposition 4.6]), in order to reduce to the following rank one cases 

GL k × GL l ⊂ GL l+k , SO * 2l × GL k ⊂ SO * 2(l+k) and GL l-1 ⊂ SO * 2l (l ≥ 3): i) For the case GL k × GL l ⊂ GL l+k , we obtain from Re(s ± r i ± t j ) > -1, for Re(s) ≥ 1/

Chapter 3

Converse theorem

In this chapter, based on [START_REF] Cogdell | Converse Theorems for GL n[END_REF] and [START_REF] Lafforgue | Chtoucas de Drinfeld et correspondance de Langlands[END_REF], we provide a proof of the twisted version of the converse theorem found in [START_REF] Cogdell | Functoriality for the Quasisplit Classical Groups[END_REF]Section 2] for an admissible irreducible representation in positive characteristic. This result is stated in [37, Theorem 8.1], and we now take the opportunity to provide a proof.

Let F be a global field of positive characteristic with field of constants F q . We keep the notations introduced in Section 2.4.

We denote by U n the radical unipotent subgroup of the Borel F -subgroup B n of upper triangular matrices of GL n and by Z n the center of GL n .

Let us also write K =

x

K x = x GL n (O x ).
It is a maximal open compact subgroup of GL n (A F ), and GL n (A F ) is the restricted product of GL n (F x ) with respect to the K x = GL n (O x ).

Rankin-Selberg L-functions.

(Local factors). Let ψ x be a non-trivial character of F x and use it to also denote the (generic) character of the unipotent group U n (F x ), that associates to u = (u i,j ) the complex number

ψ x (u) = n-1 i=1 ψ x (u i,i+1 ).
Let us consider a pair of irreducible smooth representations or induced smooth representations of Whittaker type π 1 and π 2 of GL n (F x ) and GL m (F x ), respectively. We define as in [START_REF] Herv É Jacquet | Rankin-Selberg convolutions[END_REF] the local Rankin-Selberg L-functions, ε-factors and γ-factors,

L(s, π 1 × π 2 ), ε(s, π 1 × π 2 , ψ x ) & γ(s, π 1 × π 2 , ψ x ).
They are rational polynomials in C(q -s ).

Let us recall the definition of L-functions for induced representations of Whittaker type, i.e. representations of the form i

GLn(Fx) Q(Fx) (ρ 1,x | det | u 1,x ⊗ • • • ⊗ ρ mx,x | det | um x,x ),
where Q is a parabolic subgroup containing B n associated to a partition (r 1,x , . . . , r mx,x ) of n, ρ i,x is an irreducible square-integrable representation of GL r i,x (F x ) and the u i,x are real numbers satisfying u 1,x ≤ • • • ≤ u mx,x . Every induced representation of Whittaker type π admits a (ψ x )-Whittaker model, i.e the space W(π, ψ x ) spanned by functions on

GL n (F x ) of the form g → λ ψx (π(g)ξ x ),
where λ ψx is a non-zero Whittaker functional, and ξ x is a vector of π (See Section 2.6).

Once the non-zero Whittaker functional is fixed, we denote such function by W ξx . Now, consider a pair of induced smooth representations τ of GL n (F x ) and τ of GL m (F x ) of Whittaker type. We define for any W ∈ W(τ, ψ x ), W ∈ W(τ , ψ x ), and any compactly supported locally constant function Φ : F n x → C, the following local integrals, which define rational functions in C(q -s Fx ) [26, Theorem 2.7]. In the case where m < n, for 0 ≤ j ≤ n -m -1, we denote

Ψ j (s; W, W ) = Um(Fx)\ GLm(Fx) M j,m (Fx) W     h y I j I n-m-j     dy • W (h)| det(h)| s-(n-m)/2 dh.
In the case where m = n, we put

Ψ(s; W, W , Φ) = Um(Fx)\ GLm(Fx) W (g)W (g)Φ(e n g)| det(g)| s dg.

These integrals form C[q s

Fx , q -s Fx ]-fractional ideals I(τ, τ ) in the case where n = m, and I j (τ, τ ), in the case where m < n, for 0 ≤ j ≤ n-m-1, in C(q -s Fx ). The unique generator of these ideals has the form L(s, τ × τ ) = 1 P (q -s ) with P (X) ∈ C[X] a polynomial with P (0) = 1. This is the Rankin-Selberg L-function of τ × τ . Remark 3.1.1. We remark that from [START_REF] Henniart | Uniqueness of Rankin-Selberg products[END_REF]Corollary 3.8], in the where case where π 1 , π 2 are generic representations of GL n (F x ) and GL m (F x ) respectively, the polynomials L(s, π 1 × π 2 ) and ε(s, π 1 × π 2 , ψ) coincide with L(s, π 1 ⊗ π2 , r) and ε(s, π 1 ⊗ π2 , ψ, r), defined in Section 2.10, where the maximal parabolic subgroup considered contains B n+m and its Levi subgroup is isomorphic to GL n × GL m .

(Global Factors). Let ψ = ψ x be a non-trivial character of F \A F and use it to also denote the character of the unipotent group U n (A F ), that associates to u = (u i,j ) the complex number

ψ(u) = n i=1 ψ(u i,i+1 ).
Let π = π x be a factorizable representation of GL r (A F ) and π = π x be a factorizable representation of GL r (A F ). We assume that π x and π x are irreducible or induced of Whitaker type. By definition L(s, π x × π x ) is a rational function such that L(s, π x × π x ) -1 is a polynomial in the variable q -deg(x)s , with constant term equal to 1. Furthermore, ε x (s, π x × π x , ψ x ) is a monomial in the variable q -deg(x)s and is equal to 1 for almost all x. We can define

L(s, π × π ) = x L(s, π x × π x ), as a formal power series in q -s , ε(s, π × π , ψ) = x ε(s, π × π , ψ x ) as a monomial in q -s ,
because there are only a finite number of places x with given q Fx .

Converse Theorem. Let S be a finite subset of |F |. For each integer m, let

A 0 (m) = {τ | τ is a cuspidal representation of GL m (A F )},

and

A S 0 (m) = {τ ∈ A 0 (m) | τ v is unramified for all v ∈ S}. For n ≥ 2, we set

T (n -1) = n-1 m=1 A 0 (m) and T S (n -1) = n-1 m=1 A S 0 (m). If η is a continuous character of F × \ A × F , set T (S; η) = T S (n -1) ⊗ η = {τ = τ ⊗ η : τ ∈ T S (n -1)}. Theorem 3.2.1.
Let n ≥ 2 be an integer, let π = x∈|F | π x be an irreducible admissible representation of GL n (A F ) and let η be a continuous character of A × F trivial on F × . We suppose that, for a finite set S of places |F |, π satisfies the following properties:

i) The central character χ π = x∈|F | χ πx of π is invariant by the discrete subgroup F × of A × F .
ii) For all π ∈ T (S; η), the formal series L(s, π × π ) and L(s, π × π ) are polynomials and they satisfy the functional equation

L(s, π × π ) = ε(s, π × π , ψ)L(1 -s, π × π ).
Then there exists an irreducible automorphic representation ρ of GL n (A F ) such that, for each place x ∈ S such that π x is unramified, ρ x is unramified and π

x ∼ = ρ x . Moreover, ρ is cuspidal if S = ∅.
In order to prove this, we will review some notions.

(Subgroups and Compact subgroups of GL n ). We fix a normal and proper curve X F over F q (unique up to isomorphism) with field of fractions F .

Denote by P n ⊂ GL n the subgroup of matrices of the form

       * • • • • • • * . . . . . . * • • • • • • * 0 • • • 0 1        .
For every closed subscheme N of X F supported on S with the ring of global sections denoted by O N , we consider the finite index subgroup K S (N ) of

K S = x∈S GL n (O x ) of matrices with image in GL n (O N ) of the form        * • • • • • • * . . . . . . * • • • • • • * 0 • • • 0 1        .
We denote GL n (A F ) S (N ) the open subgroup of GL n (A F ) given by the inverse image of K S (N ) under GL n (A F ) → x∈S GL n (F x ).

(Whittaker models). Every induced representation of (ψ x )-Whittaker type π x of GL n (F x ) with a fixed Whittaker functional, admits a Whittaker model W(π x , ψ x ), which we recall is a non-zero space spanned by functions W ξx : GL n (F x ) → C, indexed by vector in the space of π x . Note that each such function W ξx is right-invariant under some open subgroups of GL n (F x ) and the collection of these functions satisfies the following relation:

W ξx (u x g x ) = ψ x (u x )W ξx (g x ), for every g x ∈ GL n (F x ), u x ∈ U n (F x ).
Globally, let π = x π x be an admissible representation of GL n (A F ), where π x is induced of Whittaker type with fixed Whittaker functional. We can choose K x -fixed vectors ξ •

x , for x outside some finite subset T of |F |, such that W ξ • x ∈ W(π x , ψ x ) is invariant under right multiplication by the compact open subgroup GL n (O x ) and it is equal to 1 at the identity. Now, for every vector ξ = (ξ x ) x∈|F | of π, such that ξ x = ξ •

x for almost all x, we consider the complex valued function on GL n (A F ) given by

W ξ : g = (g x ) x → x W ξx (g x ). (3.2.2) Each such W ξ is right-invariant under a compact open subgroup of GL n (A F ) and satis- fies W ξ (ug) = ψ(u)W ξ (g), for every g ∈ GL n (A F ), u ∈ U n (A F ).
This function will be our main ingredient for constructing a non-zero equivariant homomorphism to the space of automorphic forms.

(Twist). We have the following relation between Rankin-Selberg L-functions Proposition 3.2.3. Let E a non-archimedean local field, η : E × → C × a character and (τ, V ), (τ , V ) two induced representations of Whittaker type of GL n (E) and GL m (E), respectively. Then

L(s, τ × (τ ⊗ η)) = L(s, (τ ⊗ η) × τ ).
Proof. By definition (Section 3.1), we notice that, after choosing a Whittaker functional Λ : V → C of τ , we can compute the function W ξ ∈ W(τ ⊗ η, ψ) as follows

W ξ (g) = η(det(g))Λ(τ (g)ξ) = Λ(τ ⊗ η(g)ξ). (3.2.4)
Now, let Λ : V → C and Λ : V → C be the respective Whittaker functionals of τ and τ , and W ξ ∈ W(τ, ψ) and W ξ ∈ W(τ ⊗ η, ψ). Then using the identity (3.2.4) we get that

Ψ(s; W ξ , W ξ ) = Ψ(s; Λ(τ (•)ξ), η(det(•))Λ (τ (•)ξ )),
if n = m, and

Ψ j (s; W ξ , W ξ ) = Ψ j (s; Λ(τ (•)ξ), η(det(•))Λ (τ (•)ξ )),
if m < n and 0 ≤ j ≤ n -m -1. As these relations imply by definition the equality of the ideals, we have proved our desired relations. Now we go back to the proof of the converse theorem.

Proof of Theorem 3.2.1. For every x ∈ |F | such that π x unramified, we fix a vector v x ∈ V Kx x . For every x, let Ξ x be the representation of GL n (F x ) that has π x as its unique Langlands' quotient. Every Ξ x is of the form

Ξ x = i GLn(Fx) Q(Fx) (ρ 1,x | det | u 1,x ⊗ • • • ⊗ ρ mx,x | det | um x,x ),
where Q is a parabolic subgroup containing B n associated to a partition (r 1,x , . . . , r mx,x ) of n, ρ i,x is an irreducible tempered representation of GL r i ,x (F x ) and the u i,x are real numbers satisfying

u 1,x > • • • > u mx,x .
We can reduce the theorem to the case η = 1. Indeed, by definition of Rankin-Selberg L-function (Section 3.1) and using Proposition 3.2.3 we have

L(s, π x × (π x ⊗ η x )) = L(s, Ξ x × (Ξ x ⊗ η x )) = L(s, (Ξ x ⊗ η x ) × Ξ x ) = L(s, (π x ⊗ η x ) × π x ),
we can apply the Theorem 3.2.1, with trivial character, to π ⊗ η. Therefore we have that there exists an automorphic representation Π such that Π x ∼ = π x ⊗ η for x ∈ S such that π x is unramified. Then Π := Π ⊗ η -1 is automorphic and satisfies that Π x ∼ = π x for x ∈ S such that π x is uramified.

Suppose that S is not empty. For every x ∈ S for which π x is unramified, Ξ x must have a unique K x -fixed vector ξ •

x which projects to the fixed K x -fixed v x vector of π x . From these choices, we can consider for every ξ = (ξ x ) x such that ξ x = ξ •

x for almost all x ∈ S, the global Whittaker function W ξ (3.2.2). Now for every x ∈ S such that π x is ramified, we can choose ξ •

x such that (ξ • x ) x∈S is K S (N )-invariant for some subscheme N of X F , supported on S, and ([9, Section 8 & p. 203])

W ξ • x (1) = 1.
Thus, for every x ∈ S, ξ • x is invariant under right multiplication by

h 0 0 1 , with h ∈ GL n-1 (O x ).
Finally we consider as in [START_REF] Lafforgue | Chtoucas de Drinfeld et correspondance de Langlands[END_REF]Corollaire B.15], the well defined function on GL n (A F )

U ξ (g) = γ∈Un(F )\ Pn(F ) W ξ (γg). (3.2.5) 
Putting these together we are able to consider, for every ξ S = (ξ x ) x ∈S completed by ξ = (ξ S , (ξ 

(A F ) of GL n (A F )
on the span of these functions is according to the central character χ π of π.

Since Ξ S has Π S as its unique irreducible quotient, if we take a vector ξ S which has a non-zero projection to Π S , then ξ S is a cyclic generator of Ξ S . Thus the representation V of GL n (A F ) generated by the space of U ξ S is admissible [5, Section 5] and cyclic, generated by some element f 0 . Let U be a maximal GL n (A F )-invariant subspace of V not containing f 0 . Then Π = V /U is a non-zero subquotient of the space of automorphic forms; Π is automorphic and at every place x ∈ S where π x is unramified, its Satake parameter equal that to the one of π x [9, Theorem A].

In the case where S is empty, we just consider (ξ → U ξ ). As U ξ is cuspidal [START_REF] Herv É Jacquet | Automorphic Forms on GL(3) II[END_REF]Proposition 12.3], we can conclude as before.

Chapter 4 Global L-functions

In this chapter, we start by recalling the global theory of intertwinining operators and Eisenstein series, following [START_REF] Moeglin | Spectral Decomposition and Eisentein Series[END_REF], to have access to certain properties of global Lfunctions. More precisely, these properties are the holomorphicity of L-functions after a twist, that will be essential in the application of the converse theorem construction to a candidate lift (Section 6.3), and the holomorphicity of partial L-functions without a twist, that will be used to describe the image of the functoriality (Theorem 7.2.1). These two properties are obtained following the ideas in [START_REF] Lomelí | Rationality and holomorphy of Langlands-Shahidi L-functions over function fields[END_REF], in the context of the Langlands-Shahidi method in positive characteristic.

Let G be a quasi-split (connected) reductive group over a positive characteristic global field F with field of constants F q and fix a separable closure F s of F . Let us fix a maximal F -split subtorus S and P 0 = T U 0 a minimal parabolic subgroup containing S.

Intertwining operator & Eisenstein Series.

We first introduce the intertwining operator and Eisenstein Series. Then we realize a connection between them using partial L-functions. We fix a maximal compact open subgroup K = x K x of G = G(A F ), as in [START_REF] Moeglin | Spectral Decomposition and Eisentein Series[END_REF]Section I.1.4].

Let P = M N be a maximal parabolic subgroup of G containing P 0 associated to θ = F ∆ -{α} ⊂ F ∆ and let w 0 = w l,G w l,M ∈ W G (see Section 1.1). Let σ = ⊗ x σ x a unitary cuspidal automorphic representation of M(A F ), where the restricted product is taken with respect to functions {ϕ • x }. We write

i G P (s, σ) = x i G P (s, σ x ) = x i G P (σ x ⊗ q s α,H Px (•) ),
where the restricted product is taken with respect to the functions f

• x,s ∈ i G P (s, π x ) such that f • x,s (k x ) = ϕ • x for all k x ∈ K x .
For w0 a representative of w 0 , we define the global intertwining operator for Re(s) big enough, as in [39, Section 1.2], by

M (s, σ, w0 ) : i G P (s, σ) → i G P (w 0 (s), w 0 (σ)) f → g → N (A F ) f ( w-1 0 ng)dn ,
where N is the radical of P = P w 0 (θ) , and the Eisenstein series, for an automorphic form Φ :

M(F ) N(A F )\ G(A F ) → C E(s, Φ, g, P) = γ∈P(k)\ G(k) Φ s (γg),
where Φ s = Φ • q s α+ρ P ,H P (•) . These two are moreover rational in the variable q -s [41, Proposition IV.1.12].

Assume that σ is globally generic, i.e. that there exist a cusp form ϕ in σ such that, for some generic character χ of (M ∩ U 0 )(F )\(M ∩ U 0 )(A F ) (i.e. that is non-trivial on the root subgroups of M associated to the simple roots and trivial on the other root subgroups, see Section 2.6), ϕ has a non-vanishing χ-Fourier coefficient

W ϕ (g) = (M ∩ U 0 )(F )\(M ∩ U 0 )(A F ) ϕ(ug)χ(u)du = 0, (4.1.1) 
and unramified outside a finite subset S of places. Then we have the following connections between the intertwining operator and the partial L-functions.

Let f s = f S,s ⊗ f S s ∈ i G P (s, π), where f S s = ⊗ x ∈S f • x,s . Then [39, Eq. (3.2)] M (s, σ, w0 )f s = ⊗ x∈S A(s, σ x , w0 )f x,s • mr i=1 L S (is, σ, r i ) L S (1 + is, σ, r i ) ⊗ x ∈S f • x,s , (4.1.2) where f • x,s (k x ) = ϕ • x for all k x ∈ K x and L S (s, σ, r i ) = x ∈S L(s, σ x , r i,x ), with L(s, π x , r i,x ) = det(Id -q -s Fx r i,x (a x )) -1
, where [a x ] the semisimple conjugacy class in L G x associated to π x and r i,x , the restriction via Γ Fx → Γ F of r i (See Section 5.5 for the restriction notations).

On the other hand, we also have a connection between the Eisenstein series and the partial L-functions. Let ψ = ⊗ x ψ x be non-trivial character of A F /F , unramified outside of S, that we extend to U 0 (F )\ U 0 (A F ) as in [START_REF] Kottwitz | Foundations of twisted endoscopy[END_REF]Section 5.3]. We define as in [39, Section 1.5]

E ψ (s, Φ, g, P) = U 0 (F )\ U 0 (A F ) E(s, Φ, ug, P)ψ(u)du.
The Fourier coefficients of these Eisenstein Series are also rational functions on q -s [18, Section 1.6]. [START_REF] Lomelí | Rationality and holomorphy of Langlands-Shahidi L-functions over function fields[END_REF]Section 1.2 & 1.5]. Then we have the following formula [START_REF] Lomelí | Rationality and holomorphy of Langlands-Shahidi L-functions over function fields[END_REF]Eq. (1.3)] [START_REF] Lomelí | Rationality and holomorphy of Langlands-Shahidi L-functions over function fields[END_REF]Lemma 3.3] Let P = M N be a parabolic subgroup of G containing P 0 with Levi subgroup M and w0 ∈ G(F ) be a representative of w 0 ∈ W G . Let σ be a globally generic unitary cuspidal automorphic representation of M(A F ), such that w0 σ ∼ = σ. Then M (s, σ, w0 ) and E(s, Φ, g, P) are holomorphic on Re(s) ≥ 0.

Starting from an automorphic form

ϕ = ⊗ϕ x : M(F )\ M(A F ) → C in σ, we construct an automorphic form Φ ϕ : M(F ) N(A F )\ G(A F ) → C and an element f ϕ,s = ⊗ x f x,ϕ,s ∈ i G P (s, π) as in
E ψ (s, Φ ϕ , g, P) = x∈S λ ψx (s, π x )(i G P (s, π x )(g x )f x,ϕ,s ) mr i=1 L S (1 + is, π, r i ) -1 , ( 4 
We go back to our case. Let E be a quadratic extension of F in F s , and we denote SO * 2n = SO(q E,n ), as usual. We also recall that we have fixed a minimal parabolic subgroup P 0 (Section 1.5). Proof. Let S be a finite subset of |F |, such that σ x is unramified for x ∈ S.

Thanks to the work of L. Lafforgue [33, Th éor ème VI.10], we know that each local component of the globally generic cuspidal automorphic representation τ = x τ x of GL m (A F ) is tempered. Then, for each x ∈ S we have that τ x is of the form

i GLm Bm (χ 1,x ⊗ • • • ⊗ χ m,x ),
where χ j,x is unitary unramified character of F ×

x . On the other hand, for each x such that

E x = E ⊗ F F x is a product of two fields (x is split in E), we have the classification of generic unitary representations of SO 2n (F x ) ∼ = SO * 2n (F x ) = SO(q Ex,n )(F x ),
given in [START_REF] Lomelí | Rationality and holomorphy of Langlands-Shahidi L-functions over function fields[END_REF]Theorem 5.6]. This gives that for split x, πx is of the form i

SO 2n (Fx) Q (δ b,x ν r b ⊗ • • • ⊗ δ 1,x ν r 1 ⊗ π 0,x ),
where Q is a parabolic subgroup containing the Borel subgroup of upper triangular matrices in SO 2n and δ i,x are unitary discrete series representation of GL n i (F x ); the constants r 1 , . . . , r b ∈ R satisfy

1 > r b ≥ • • • ≥ r 1 > 0,
and π 0,x is a tempered generic representation of SO 2n 0 (F x ). Now, if s 0 is a pole of M (s, σ, w0 ), then some subquotient of i G P (s 0 , σ) would be in the discrete residual spectrum [28, Section 1], thus unitary. Then for such s 0 , we would have that for almost every x ∈ |F |, i G(Fx) P(Fx) (s 0 , σ x ) is unitary. We argue by contradiction, and thus we assume that Re(s 0 ) > 1. First, we can enlarge S, so that i G(Fx) P(Fx) (s 0 , σ x ) is unitary. As the set {x ∈ |F | \ S : x is split in E} has density 1/2 by Chebotarev's theorem, we can always some find x 0 ∈ S split in E. But, thanks to Proposition A.2.1, we get that the unramified component of i G(Fx) P(Fx) (s 0 , σ x ) is not unitary, thus a contradiction.

Global Langlands-Shahidi L-functions.

Using the intertwining operator, the Eisenstein Fourier coefficients and the normalized intertwining operator (Section 2.11) on ramified places, we prove the following result for global L-functions. Corollary 4.2.1. Let P = M N be a parabolic subgroup of the general quasi-split reductive group G over F containing P 0 with Levi subgroup M and w0 ∈ G(F ) be a representative of w 0 ∈ W G . Let σ be a generic cuspidal automorphic representation of M(A F ) such that w 0 σ ∼ = σ. Suppose T ⊂ S is a subset with the property that for x ∈ T , the normalized intertwining operator N (s, σ x , w0 ) is holomorphic and non-zero on Re s ≥ 1/2. Then the partial L-function

L S\T (s, σ, r i ) = x ∈S\T L(s, σ x , r i,x )
is holomorphic on Re s ≥ 1/2 and non-zero on Re s ≥ 1.

Proof. To shorten some notations, we denote, for the finite subset T of |F |,

L T (s, σ, r i ) = x∈T L(s, σ x , r i,x ) & ε T (s, σ, r i ) = x∈T ε(s, σ x , r i,x ).
Now, putting the definition of the normalized intertwining operator in the right hand side of the formula (4.1.2), we get

M (s, σ, w0 )f = x∈S\T A(sα, σ x , w0 )f x • mr i=1 L T (is, σ, r i ) L T (1 + is, σ, r i )ε T (is, σ, r i , ψ) x∈T N (s, σ x , w0 )f x • mr i=1 L S (is, σ, r i ) L S (1 + is, σ, r i ) x ∈S f • x .
Using that M (s, σ, w0 ) is holomorphic on Re(s) ≥ 0 (Lemma 4.1.4), N (s, σ x , w0 ) is holomorphic and non-zero on Re(s) ≥ 1/2 and that A(sα, σ x , w0 ) [56, p. 283 Equation [START_REF] Cogdell | Functoriality for the classical groups[END_REF]] and ε T (s, σ, r i , ψ) are non-vanishing, we have that

mr i=1 L S\T (is, σ, r i ) L S\T (1 + is, σ, r i )
is holomorphic on Re(s) ≥ 1/2. From the fact that L-functions are holomorphic on some Re(s) > N [4, Section 13.2], we get that i

L S\T (is, σ, r i ) (4.2.2) is holomorphic on Re(s) ≥ 1/2.
On the other hand, as E(s, Φ, g, P) is holomorphic on Re(s) ≥ 0 (Lemma 4.1.4) and the local L-functions are non-vanishing by definition, using the relation (4.1.3) we also get

mr i=1 L T (1 + is, σ, r i ) • mr i=1 L S (1 + is, σ, r i ) = mr i=1 L S\T (1 + is, σ, r i ) (4.2.3) is non-zero on Re s ≥ 0.
Now we proceed by induction on m r , as in [START_REF] Lomelí | Rationality and holomorphy of Langlands-Shahidi L-functions over function fields[END_REF]Lemma 2.4], to get that L S\T (s, σ, r i ) is holomorphic on Re(s) ≥ 1/2 and non-zero on Re s ≥ 1. Indeed, for m r = 1 it follows directly from (4.2.2) and (4.2.3). Now, if we suppose that the statement is true for L S\T (s, σ, r i ) with i = 2, . . . , m r , then mr i=2 L S\T (is, σ, r i ) is holomorphic and non-zero on Re s ≥ 1/2. Thus by (4.2.2), L S\T (s, σ, r 1 ) is holomorphic on Re s ≥ 1/2. Similarly, but using (4.2.3), we get it is non-zero.

We go back again to our case G = SO * 2(m+n) and a maximal Levi subgroup M = GL m × SO * 2n . The adjoint action decomposes as

r 1 ⊕ r 2 ,
where r 1 = ρ m ⊗ ρ * 2n and r 2 = ∧ 2 ρ m (2.5.2). Using the Langlands-Shahidi method for r 1,x and r 2,x we obtain the Langlands-Shahidi L-functions

L(s, π x × τ x ) = L(s, τ x ⊗ πx , r 1,x ) & L(s, τ, ∧ 2 ρ m ) = L(s, , τ x ⊗ πx , r 2,x ),
for π x a generic representation of SO * 2n (F x ) and τ x a generic representation of GL m (F x ) (See Section 2.8 for inert places i.e. when E x = E ⊗ F F x is a field and [37, Section 6] for analogous description for split places, i.e, as in the case where SO * 2n is replaced by the split group SO 2n ). ) such that w 0 σ ∼ = σ. Suppose that for a fixed inert place x 0 , π x 0 is unramified and

π x 0 = i SO * 2n (Fx 0 ) P 1 (π b,x 0 | det | r b ⊗ • • • ⊗ π 1,x 0 | det | r 1 ⊗ π 0,x 0 ), (4.2.5) where 0 < r 1 ≤ • • • ≤ r b , π i,x 0 is an irreducible tempered representation of GL n i (F x 0 ) for 1 ≤ i ≤ b and π 0,x 0 is an irreducible tempered representation of SO * 2n 0 (F x 0 ). Then L(s, π x 0 × τ x 0 ) is holomorphic on Re s ≥ 1.
The following proof is an adaptation of [29, Proposition 4.9] to our case.

Proof. As before we input the definition of the normalized operator in the right hand side of the formula (4.1.2) to get

M (s, σ, w0 )f = x∈S\{x 0 } A(sα, σ x , w0 )f x • 2 i=1 L(is, σ x 0 , r i,x 0 ) L(1 + is, σ x 0 , r i,x 0 ) N (s, σ x 0 , w0 ) ε(is, σ x 0 , r i,x 0 , ψ) f x 0 • 2 i=1 L S (is, σ, r i ) L S (1 + is, σ, r i ) x ∈S f • x . Now let N 0 ≥ 2 be big enough so that L(1 + s, σ x 0 , r 1 ) has no poles on Re(s) ≥ N 0 . This gives us that, if Re(s) ≥ N 0 -1, then L(is, σ x 0 , r i,x 0 ) ε(is, σ x 0 , r i,x 0 , ψ)L(1 + is, σ x 0 , r i,x 0 )
is non-zero. Secondly, since τ x 0 is tempered, we have that L(s, σ x 0 , r 2,x 0 ) = L(s, τ x 0 , ∧ 2 ρ m ) is holomorphic on Re s ≥ 1 and

2 i=1 L(is, σ x 0 , r i,x 0 ) ε(is, σ x 0 , r i,x 0 , ψ)L(1 + s, σ x 0 , r i,x 0 )
is non-zero on Re(s) ≥ N 0 -1. Thirdly, using Corollary 4.2.1 for T = ∅, we get that 1.4 gives us that M (s, σ, w0 ) is holomorphic on Re(s) ≥ 0. Lastly, using that A(sα, σ x 0 , w0 ) is non-zero and the equality at the beginning of the proof, we have that N (s, σ x 0 , w0 ) is holomorphic on Re s ≥ N 0 -1. Now thanks to τ x 0 being tempered, π x 0 being unramified and of the form (4.2.5), and Remark 2.10.3, we have that σ x 0 = τ x 0 ⊗ πx 0 satisfies the hypothesis of Proposition 2.11.5. Thus we have that N (s, σ x 0 , w0 ) is also non-zero in on Re(s) ≥ N 0 -1. Hence L(s, π x 0 × τ x 0 ) has no poles on Re(s) ≥ N 0 -1. Arguing inductively, we conclude that L(s, π x 0 × τ x 0 ) is holomorphic on Re(s) ≥ 1.

2 i=1 L(is, σ x 0 , r i,x 0 ) ε(is, σ x 0 , r i,x 0 , ψ)L(1 + is, σ x 0 , r i,x 0 ) 2 i=1 L S (is, σ, r i ) L S (1 + is, σ, r i ) is non-zero on Re(s) ≥ N 0 -1. Since w0 σ ∼ = σ, Lemma 4.
When we study the image of the functorial transfer of generic automorphic representations from the quasi-split special orthogonal group to general linear groups, it will be essential to have holomorphicity and non-vanishing results for L-functions in the case of Siegel Levi subgroups [START_REF] Lomelí | Rationality and holomorphy of Langlands-Shahidi L-functions over function fields[END_REF]Corollary 6.4], which relies on the work of L. Lafforgue on the Ramanujan conjecture in the GL n case. Proof. Let S be a finite subset of |F |, such that σ x is unramified for x ∈ S, as in the proof of Proposition 4.1.5. From (4.1.2) and Proposition 4.1.5, we have that

mr i=1 L S (is, σ, r i ) L S (1 + is, σ, r i ) is holomorphic on Re(s) > 1. As L S (s, σ, r 2 ) = L S (s, τ, ∧ 2 ρ m ) is holomorphic and non- zero on Re(s) > 1 [39, Corollary 6.4], we can conclude that L S (s, σ, r 1 ) L S (1 + s, σ, r 1 )
is holomorphic on Re(s) > 1.

On the other hand, as [41, Proposition II.1.7]

E P (s, f, g, P) = U(F )\ U(A F ) E(s, f, ug, P)du = f (g) + M (s, σ, w0 )f (g)
and Proposition 4.1.5, we have that the poles of the constant terms E P (s, f, g, P) are contained in Re s ≤ 1. Since U(F )\ U(A F ) is compact, the formula (4.1.3) and that L S (s, σ, r 2 ) = L S (s, τ, ∧ 2 ρ m ) is holomorphic and non-zero on Re(s) > 1, we conclude that L S (1 + s, σ, r 1 ) -1 is holomorphic and non-vanishing on Re(s) > 1. Thus L S (s, σ, r 1 ) is holomorphic on Re(s) > 1.

Finally, we have that the poles of the global intertwining operator are all simple [41, Proposition IV.1.11, (c)]. Then, by (4.1.2) and the non-zeroness of A(s, π x , w0 ), the quotient L S (s, σ, r 1 )L S (2s, σ, r 2 )

L S (1 + s, σ, r 1 )L S (1 + 2s, σ, r 2 )
has at most a simple pole at s = 1. From [39, Corollary 6.4], L S (2, σ, r 2 ) = L S (2, τ, r 2 ) and L S (3, σ, r 2 ) = L S (3, τ , r 2 ) are non-zero. Thus, L(s, σ, r 1 ) has at most a simple pole at s = 1.

Chapter 5 Functoriality Conjecture

In this chapter, we introduce the main language and basic results to establish the main objective of this work. We introduce the notions of Langlands parameters [4] and Weil-Deligne representations [START_REF] Benedict | Arithmetic invariants of discrete Langlands parameters[END_REF]. Then we follow [START_REF] Langlands | Representations of Abelian Algebraic Groups[END_REF], to obtain a Langlands correspondence for tori. We introduce the notion of Satake parameter and the functoriality conjecture. We finish with the construction of the L-homomorphism, for which we will answer the generic functoriality conjecture.

Let G be a quasi-split (connected) reductive group over a field F and F s a separable closure of F . As before Γ F = Gal(F s /F ), and we let I F be the intertia subgroup of Γ F .

Weil group.

Suppose that F is a non-archimedean local field. For each finite extension F ⊂ E ⊂ F s , let k E be the residue field of E and q E := #k E . Let k = ∪ E k E be the residue field of F s . We denote by W F the dense subgroup of Γ F consisting of the elements τ ∈ Γ F which induce on k the map x → x q n F for some n ∈ Z. By definition we have that the inertia subgroup

I F is a subgroup of W F . Let r E : E × ∼ -→ W ab E ⊂ Γ ab E & ϕ : W F → Γ F
be the norm residue symbol [43, IV. (6.

3)] and the inclusion, where W c F is the closure of the commutator group of W F and [55, (1.4.1)]. In particular, for E a (finite) Galois extension, the extension

W ab F := W F /W c F . We follow Deligne's convention [14, (2.3)], r E (a) induces x → x |a| E in k. The triple (W F , ϕ, {r E } E ) is a Weil group
W E/F = W F /W c E given by 1 → E × r E -→ W E/F ϕ -→ Gal(E/F ) → 1,
where r E and ϕ are the induced by r E and ϕ. They correspond to the canonical class

α E/F in H 2 (Gal(E/F ), E × ) [55, (1.2) 
].

Langlands parameters. Suppose that F is non-archimedean and fix a geometric

Frobenius element Fr ∈ W F . Let L G be the L-group of G and L G 0 = G(C) its identity component (Section 1.3). We denote by Φ(G) the set of group morphisms [4, Section 8] φ :

W F = W F × SL 2 (C) → L G, such that φ(Fr) is semi simple, φ| I F is continuous, φ| SL 2 (C)
is algebraic and φ is relevant, i.e. if the image of φ is contained in a Levi subgroup of L G then it is the L-group of a Levi subgroup of G, modulo L G • -conjugacy classes of parameters. Moreover, when φ| I F and φ| SL 2 (C) are trivial, φ will be called unramified. We denote by Φ unr (G) the set of these classes.

From the definition we have the following injection

Φ(G) →H 1 cts (W F , L G 0 ), (5.2.1) 
φ →[g → φ 0 (g)]
where L G 0 has the action of W F induced by the action of Γ F and φ 0 is the composition of φ with the projection of

L G to L G 0 = G(C) and H 1 cts (W F , L G 0 ) is the set of continuous 1-cocycles modulo the continuous 1-coboundaries [4, Section 8.2].
We can present this data, in another way: A Weil-Deligne representation of L G is a pair (ρ, N ), where ρ :

W F → L G, is continuous on I F , ρ(Fr) is semi simple and N is a nilpotent element of Lie( L G) such that Ad ρ(w)N = qN for all w ∈ W F .
The map that sends φ to the pair (ρ, N ) such that

ρ| I F = φ| I F , ρ(Fr) = φ(Fr) • φ q -1/2 0 0 q 1/2 , N = dφ 0 1 0 0 , ( 5.2.2) 
induces a bijection between the equivalences classes (with the natural notion of equivalence) of Weil-Deligne representations and the L G • -conjugacy classes of parameters [17, Proposition 2.2].

5.3 Tori. Suppose that F is a non-archimedean local field. Let T be a torus that splits over a finite separable extension K ⊂ F s and write T = T(F ) and T K the base change to K from F of T. The inflation morphism and (5.2.1) gives us a bijection

H 1 cts (W K/F ; T(C)) Inf -→ H 1 cts (W F ; T(C)) = Φ(T ). (5.3.1) 
The evaluation map

H 1 cts (W K/F ; T(C)) × H 1 (W K/F ; X * (T)) → C × , (f , x) → w∈W K/F ϕ(w), x(w) ,
where •, • is the pairing associated to

Hom Z (X * (T K ), C × ) × X * (T K ) → C ×
is a perfect pairing and thus we get an isomorphism [36, p. 234]

H 1 cts (W K/F ; T(C)) → Hom cts (H 1 (W K/F ; X * (T K )), C × ).
Now one can prove that the corestriction map

H 1 (W K/F ; X * (T K )) → H 1 (K × , X * (T K )) Gal(K/F ) (5.3.2)
is an isomorphism [36, p. 241]. Finally by definition of H 1 and T we have

H 1 (K × ; X * (T K )) Gal(K/F ) = (X * (T K ) ⊗ K × ) Gal(K/F ) = Hom(X(T K ), K × ) Gal(K/F ) = T(K) Gal(K/F ) = T(F )
Thus we obtain a bijection [36, Theorem 2]

Φ(T ) ∼ = Π(T ) φ → π φ
where Π(T ) is the set of smooth characters χ : T → C × .

(Split case). In the split case we have that K = F and thus W K/F = F × . Using the identifications

T(F ) = Hom(X(T), F × ) & T(C) = Hom(X * (T), C × ),
we can write this bijection as the following bijection between sets of continuous group homomorphisms,

Hom grp-cts (Hom(X(T), F × ), C × ) → Hom grp-cts (F × , Hom(X * (T), C × )) π → (w → [ λ → π(λ → w λ, λ )]).
(Restriction and Norm). The restriction, the corestriction and the norm map N can be put in the following commutative diagram [36, p. 235]

H 1 (K × ; X * (T K )) H 1 (W K/F ; X * (T K )) N (H 1 (K × ; X * (T K ))) H 1 (K × ; X * (T K )) Gal(K/F ) Cor N Res .
This gives us the commutative diagram

T(K) T(F ), C × π φ K × N π φ (5.3.3)
As the inclusion S ⊂ T induces an isomorphism [4, Section 9.5, (

X (T ) = L S 0 , we also have that

L S 0 /W = X (T )/W → Π K-un (G). (5.4.1) 
Thus we also obtain a bijection

Π K-un (G) → Φ un (G).
π → φ π 5.5 Conjecture. Suppose that F is a global field with set of places |F |. We put for x ∈ |F |, G x := G Fx the group obtained from G by extending scalars along the inclusion F → F x . We choose a separable closure F x,s of F x and an embedding

F s → F x,s for each x ∈ |F | that extends F → F x . We write Γ F = Gal(F s /F ) and Γ Fx = Gal(F x,s /F x ) for each x ∈ |F |. These choices give us an injection Γ Fx → Γ F [43, (9.6)]. 

Now the restriction along

Γ Fx → Γ F induces a (continuous) group homomorphism from L G x to L G, that fits into a commutative diagram L G x L G. Γ Fx Γ F Now given an L-homomorphism ρ : L G → L H (Section 1.
3), we can form, for every place x, an L-homomorphism ρ x : L G x → L H x .

(Functoriality Conjecture). Let

ρ : L G → L H
be an L-homomorphism. Suppose that H and G are connected reductive quasi-split groups over F . For every cuspidal automorphic representation τ = x τ x of G(A F ), there exists an automorphic representation π = π x of H(A F ), sometimes called a (weak) lift or transfer, such that for all places x such that H x , G x , τ x and π x are unramified, we have the following commutative diagram

L G x L H x W Fx ρx φτ x φπ x
5.6 L-groups and L-homomorphisms. Let E ⊂ F s be a quadratic separable extension of F and Gal(E/F ) = {1, σ}. Let us consider the split special orthogonal group SO 2n over C. We choose a split maximal torus T n and a Borel subgroup B n in the following way

T n (C) = {t = diag(t 1 , . . . , t n , t -1 n , . . . , t -1 1 ) : t i ∈ C × , 1 ≤ i ≤ n} and B n = T n {M (u)h(L) : v(L t J) t v = 0 for all v ∈ C n },
the subgroup of upper triangular matrices in SO 2n , where J is the n × n matrix with 1's along the anti-diagonal and, for upper triangular unipotent u ∈ GL n and L ∈ Mat n ,

M (u) = u 0 n 0 n J(u t ) -1 J & h(L) := 1 n L 0 n 1 n .
We observe that the root datum associated to (SO 2n , T n ) is isomorphic to the dual root datum R ∨ of (SO(q E,n ) Fs , T Fs ). We choose a pinning of (SO 2n , T n , B n ) corresponding to the based root datum (R ∨ , ∆ ∨ ) in the following manner,

X α ∨ i = E i,i+1 0 n 0 n -E i,i+1 ∈ Lie(B n ) for 1 ≤ i ≤ n -1
where E i 0 ,j 0 = (δ i 0 ,j 0 (h, k)) i,j ∈ Mat n , with δ the Kronecker's delta, and

X α ∨ n = h     0 n-2 1 0 0 -1     ∈ Lie(B n ).
Finally, following the equivalence of categories given in [12, Theorem 6.1.17], we can identify SO 2n to G and their Γ F -actions (1.3.1), so also SO 2n Γ F and L G. We thus fix this identification.

(The * -action). We denote

w =       1 n-1 0 1 1 0 1 n-1       .
We note that (g → wgw -1 ) ∈ Aut(SO 2n , T n , {X a } a∈∆ ∨ ) corresponds, via the equivalence of categories [12, Theorem 6.1.17], to the non-trivial automorphism in Aut(R ∨ , ∆ ∨ ), obtaining thus an explicit expression of the construction (1.3.1)

Γ F → Aut(SO 2n ) τ →    (g → wgw -1 ) if τ ∈ Gal(F s /E) (g → g) if τ ∈ Gal(F s /E) .
(L-homomorphism). Finally, we define the L-homomorphism needed to state our main result as follows

ρ * 2n : SO 2n (C) Γ F → GL 2n (C) × Γ F (g, τ ) →    (gw, τ ) if τ ∈ Gal(F s /E) (g, τ ) if τ ∈ Gal(F s /E) .
(5.6.1)

Chapter 6

Generic Functoriality

In this chapter, we establish all the main steps to prove the functoriality conjecture under consideration for globally generic cuspidal automorphic representations of adelic SO * 2n . The strategy is inspired from [START_REF] Cogdell | Functoriality for the Quasisplit Classical Groups[END_REF] and [START_REF] Lomelí | The Langlands-Shahidi method over function fields: Ramanujan Conjecture and Riemann Hypothesis for the unitary groups[END_REF]. In particular, we construct and give a description of the lifts and prove the relations between its γ-factors, L-functions and ε-factors. Finally, assuming property (2.11.1) we verify all the hypotheses of the twisted version of the converse Theorem 3.2.1 and construct a (weak) lift.

Let F be a global field of positive characteristic, F s a separable closure of F and E ⊂ F s a quadratic separable extension of F . After fixing E, we let

SO * 2n = SO(q E,n ).
We let Γ F = Gal(F s /F ). For every x ∈ |F |, we choose a separable closure F x,s of F x and also an embedding F s → F x,s that extends F → F x . We let Γ Fx = Gal(F x,s /F x ) for every x ∈ |F | and Gal(E/F ) = {1, σ}. These choices give us an injection Γ Fx → Γ F .

We want to check the functoriality via ρ * 2n (5.6.1) of a globally generic cuspidal automorphic representation π = ⊗ x π x of SO * 2n (A F ), unramified outside of a finite nonempty S ⊂ |F |. We also fix ψ = ⊗ x ψ x a non-trivial character of A F /F , unramified outside S.

6.1 Lift. For every place x we choose a character λ x of T(F x ) such that for x unramified it is a character obtained by the Satake parametrization (5.4.1) and for x ramified, i SO * 2n (Fx) P 0 (λ x ) has an (irreducible) generic subquotient π λx = π x with the same central character as π x (see for example [START_REF] Cogdell | Functoriality for the Quasisplit Classical Groups[END_REF]Section 4.2]). Applying the local Langlands correspondence for tori (Section 5.3), from λ x we get φ λx : W Fx → T n (C) Γ Fx .

Let i x : T n (C) Γ Fx → SO 2n (C) Γ Fx be the inclusion homomorphism. Then, applying the local Langlands correspondence for general linear groups to

ρ * 2n,x • i x • φ λx : W Fx → GL 2n (C) × Γ Fx ,
we find an admissible representation Π x of GL 2n (F x ). We put Π = ⊗ x Π x , which is an irreducible admissible representation of GL 2n (A F ). We call Π (resp. Π x ) a lift or transfer of π (resp. π x ).

(Expression for Π x ). First, let us note that by definition

SO * 2n (F x ) = SO(q Ex,n )(F x ),
where E x := E ⊗ F F x is a degree two étale algebra over F x . Thus, it is either a product of two (separable) fields extensions or a (separable) field extension over F x . Let us concentrate on the case when E x is a quadratic (separable) extension of F x (i.e. x is an inert place), for which we have an embedding E x → F x,s , coming from the one fixed in the beginning of this chapter

F s → F x,s . Now let us consider T = G 2n-2 m × Res Ex/Fx (G m ).
We have an isomorphism

E x ⊗ Fx F x,s ∼ = σ∈Hom(Ex,Fx,s) F x,s .
This leads us to an isomorphism

X * (T Fs,x ) = X * (G 2n-2 m ) × X * (Res Ex/Fx (G m ) Fs,x ) ∼ = Z 2n-2 × Z 2 ,
where the non-trivial action of the second factor, Z 2 , is given by

Γ Fx → Aut(Z 2 ) τ →    (a 1 , a 2 ) → (a 2 , a 1 ) if τ ∈ Gal(F x,s /E x ) (a 1 , a 2 ) → (a 1 , a 2 ) if τ ∈ Gal(F x,s /E x ) .
If we denote by D 2n ⊂ GL 2n the maximal diagonal torus, we can identify

D 2n (C) Γ Fx ∼ = L T x ,
where the action on the left hand side is given by conjugation by w.

Now thanks to this description we can construct the following embeddings

ι x : T n (C) Γ Fx → D 2n (C) Γ Fx ∼ = L T x (t, τ ) → ((t, t -1 ), τ )
and

D 2n (C) Γ Fx → GL 2n (C) × Γ Fx (d, τ ) →    (dw, τ ) if τ ∈ Gal(F x,s /E x ) (d, τ ) if τ ∈ Gal(F x,s /E x ) .
We can thus factor ρ *

x,2n • i x , L T x GL 2n (C) × Γ Fx . L T x
The definition of the lift and this factorization leads us to look at

Φ(T x ) Φ(T x ) Φ(GL 2n,x ) Π(T x ) Π(T x ) Π(GL 2n,x ), 1 2 
where first two vertical arrows are the ones given by Section 5.3, the third one is given by the local Langlands correspondence for the general linear group and the upper horizontal arrows are the ones obtained from composition with ρ * 2n,x • i x (and its factorization). Let

λ x = (χ 1,x , . . . , χ n-1,x , χ n,x ) be a character of T(F x ) = (F × x ) n-1 × SO * 2 (F x ). The image of 1 is Λ x = (χ 1,x , . . . , χ n-1,x , µ n,x , χ -1 n-1,x , . . . , χ -1 1,x ), where µ n,x : E × x → C × is the character obtained from χ n,x : E 1 x → C × via Φ(SO * 2 ) → Φ(Res Ex/Fx G m ).
To specify µ n,x , let φ x be the parameter of χ n,x = π φx . From (5.3.3), we have

π (φ x,Ex ) : SO * 2 (E x ) Norm ---→ SO * 2 (F x ) π φx --→ C × .
After the identification in Section 1.5 between SO * we get an isomorphism [4, Proposition 8.4 (Shapiro's Lemma)]

Φ(Res Ex/Fx G m ) → Φ(G m,Ex ) (W F → I Γ Fx Γ Ex G m (C) Γ Fx ) → (W E → G m (C) × Γ Ex ). The image of ι x • φ x ∈ Φ(Res Ex/Fx G m ) through this isomoprhism is φ x,Ex ∈ Φ(G m,Ex ).
Therefore, we have that µ n,x = π (φ x,Ex ) . Now for the second square, first we look at the image of the parameter corresponding to µ n,x via Φ(Res Ex/Fx G m ) → Φ(GL 2 ).

First, using again the identification given above,

Φ(Res Ex/Fx G m ) → Φ(G m,Ex ) → Π(E × ),
we have that via (5.2.2), the image of µ n,x corresponds to the Weil-Deligne representation (Ind Ex/Fx (µ n • ar Ex ), 0),

where ar Ex = r -1 Ex is the reciprocity map [43, IV. (6.

3)] and Ind Ex/Fx is the smooth induction functor from Γ Fx to Γ Ex . Now using the (tame) local Langlands correspondence for GL 2 ([8, Chapter 8]), we get our representation in Π(GL 2 ):

Π µn,x =    i GL 2 B 2 (ν n,x , κ x ν n,x ) If µ n,x = ν n,x • N Ex/Fx , for some ν n,x ∈ Π(F × x ) π µn,x
otherwise, (6.1.1)

where κ x = det(Ind Ex/Fx 1 Ex ).

Putting all this together we get an expression for Π x . In particular for λ x = (χ 1,x , . . . , χ n-1,x , 1) unramified (Section 5.4) we have that Π x is the one obtained in (5.4.1), i.e the constituent of

i G B (χ 1,x , . . . , χ n-1,x , 1, κ x , χ -1 n-1,x , . . . , χ -1 1,x ), (6.1.2) 
that has a nonzero vector fixed under the special maximal compact subgroup GL 2n (O x ).

Finally, we note that this construction give us that the central character of Π x is

κ x µ n,x | F × x = κ x . Thus, the global character κ = ⊗ x κ x , (6.1.3)
is trivial on F × .

6.2 L-functions. We recall that in the case where we consider a maximal Levi Fsubgroup M = GL m × SO * 2n of SO * 2(m+n) , the adjoint action decomposes as

r 1 ⊕ r 2 ,
where r 1 = ρ m ⊗ ρ * 2n and r 2 = ∧ 2 ρ m (2.5.2). Using the Langlands-Shahidi method for r 1,x , when x is an inert place (i.e. E ⊗ F F x is a field), we obtained the Langlands-Shahidi L-functions

L(s, π x × τ x ) = L(s, τ x ⊗ πx , r 1,x ) & L(s, τ, ∧ 2 ρ m ) = L(s, , τ x ⊗ πx , r 2,x ).
for π x a generic representation of SO * 2n (F x ) and τ x a generic representation of GL m (F x ). In what follows, we will only focus on the inert case, as for the split case analogous results are valid thanks to [START_REF] Lomelí | Functoriality for the Classical Groups over Function Fields[END_REF]Section 8].

(Unramified case). The definitions of π x and Π x in the unramified case give us that

L(s, π x , ρ * x,2n ) = L(s, Π x ) ε(s, π x , ρ * x,2n ) = ε(s, Π x ).
Furthermore, we have Proposition 6.2.1. Let π x be an unramified generic irreducible representation of SO * 2n (F x ) and Π x a lift as in Section 6.1. Then for a generic irreducible representation τ x of GL m (F x ) we have the following

L(s, π x × τ x ) = L(s, Π x × τ x ) ε(s, π x × τ x , ψ x ) = ε(s, Π x × τ x , ψ x ). (6.2.2) 
(Ramified case). Proposition 6.2.3. Let π x be an irreducible generic representation of SO * 2n (F x ) and Π x a lift as in Section 6.1. Then for any sufficiently ramified enough character η x of F × x , we have that

L(s, π x × (τ x • η x )) = L(s, Π x × (τ x ⊗ η x )) ε(s, π x × (τ x • η x ), ψ x ) = ε(s, Π x × (τ x ⊗ η x ), ψ x ), (6.2.4) 
for every unramified irreducible representation τ x of GL m (F x ).

Proof. First, making η x sufficiently ramified to obtain (2.10.4)

L(s, π x × (τ x • η x )) ≡ 1 ≡ L(s, Π x × (τ x ⊗ η x )). (6.2.5)
Using the relation between L-functions, ε-factors and γ-factors in the tempered case (Section 2.10, property vii) and the definition of the ε-factors, we are left to prove the corresponding identity for the γ-factors. Now, as π x is generic (Section 6.1) we can use the stability of the gamma factors (Theorem 2.8.2). By this result, if we make η x ramified enough, the following identity also holds γ(s,

π x × (τ x • η x ), ψ x ) = γ(s, π x × (τ x • η x ), ψ x ).
On the other hand, using Section 2.9 we have

γ(s, π x × η x , ψ x ) = γ(s, χ n,x × η x , ψ x ) n-1 i=1 γ(s, χ i,x η x , ψ)γ(s, χ -1 i,x η x , ψ x ) = γ(s, Π µn,x × η x , ψ x ) n-1 i=1 γ(s, χ i,x η x , ψ)γ(s, χ -1 i,x η x , ψ x ) = γ(s, Π x × η x , ψ x ) (6.2.6)
Now, since τ x is unramified, it is a subquotient of an induced representation of the form i

GLm(Fx) Bm(Fx) (| • | b 1 Fx ⊗ • • • ⊗ | • | bm Fx )
, where b i ∈ R. Using multiplicativity of γ-factors, we have

γ(s, π x × (τ x • η x ), ψ x ) = m i=1 γ(s -b i , π x × η x ) and γ(s, Π x × (τ x • η x )) = m i=1 γ(s, Π x × (| • | b i x • η x )) = m i=1 γ(s -b i , Π x × η x ).
Comparing these two, using (6.2.6), we obtain the desired identity.

Remark 6.2.7. We remark that using once more the stability property of γ-factors of GL 2n , we can get the same result but with a representation Π x that has the same central character as Π x , i.e. equal to κ x (6.1.3).

(Global case). Using the equalities (6.2.2) twisted by any character and (6.2.4), we have the following result. Corollary 6.2.8. Let π = ⊗ x π x be a globally generic cuspidal automorphic representation of SO * 2n (A F ), unramified outside of a non-empty S ⊂ |F | and let Π a lift of π as in Section 6.1. Then, for a character η = ⊗ x η x , sufficiently ramified in x ∈ S, (so as to satisfy (6.2.4)), we have

L(s, π × τ ) = L(s, Π × τ ) ε(s, π × τ ) = ε(s, Π × τ ) (6.2.9)
for every τ ∈ T (S; η) (as in 3.2).

Application of converse theorem.

We know that a lift Π of π is irreducible and admissible and that its central character is trivial on F × (6.1.3), but we do not necessarily have that it is automorphic. For that we use the converse theorem (Theorem 3.2.1). Hence, we need to make sure that L(s, π × τ ) is a polynomial for τ ∈ T (S; η), for some character η of A × F trivial on F × . (Polynomial condition). We can find as in [START_REF] Lomelí | Rationality and holomorphy of Langlands-Shahidi L-functions over function fields[END_REF]Proposition 4.1] a sufficiently ramified character η x 0 , with x 0 ∈ S (nonempty by definition), such that ω0 (π ⊗ τ • η) ∼ = π ⊗ τ • η. From Corollary 6.2.8 and (6.2.5)

L(s, Π × τ ) = L(s, π × τ ) = x ∈S L(s, π x × τ x ).
Assume (2.11.1) for every inert x 0 / ∈ S. Namely, the unramified representation π x 0 satisfies that it is the full induced representation

π x 0 = i SO * 2l (Fx 0 ) P 1 (π b,x 0 | det | r b ⊗ • • • ⊗ π 1,x 0 | det | r 1 ⊗ π 0,x 0 ), where 0 < r 1 ≤ • • • ≤ r b , π i,x 0 is an irreducible tempered representation of GL n i (F x 0 )
for 1 ≤ i ≤ b and π 0,x 0 is a generic tempered representation of SO * 2n 0 (F x 0 ). Using Proposition 4.2.4 we obtain that L(s, π x 0 × τ x 0 ) is holomorphic on Re s ≥ 1. This allows us to use Proposition 2.11.6 to obtain the condition needed for Proposition 2.11.8. Thus, after using Proposition 2.11.8, we obtain that the normalized operator N (s, τ x 0 ⊗ πx 0 , w0 ) is holomorphic and non-zero on Re s ≥ 1/2. Now, combining this and the known split case SO 2n [37, Section 7], we apply Proposition 4.2.1 to obtain that L(s, π × τ ) =

x ∈S L(s, π x × τ x ) is holomorphic on Re s ≥ 1/2. Finally using the Langlands-Shahidi functional equation (2.10.2), we get that L(s, π × τ ) is entire. In addition, using the rationality property of L-functions [START_REF] Lomelí | Rationality and holomorphy of Langlands-Shahidi L-functions over function fields[END_REF]Theorem 1.2] we see that L(s, Π × τ ) is a polynomial.

(Trivial on F × ). Choosing characters ν x for x ∈ S sufficiently ramified as in the polynomial condition and in the ramified case of Section 6.2, we can find a character η of A × F trivial on F × [1, X, Theorem 5] and which satisfies η x = ν x for x ∈ S.

6.4 Isobaric sums and Transfer. As we have checked all the hypothesis of the converse Theorem 3.2.1 in the previous section, we find an irreducible automorphic representation Π of GL 2n such that Π x = Π x for x / ∈ S.

We recall that from [START_REF] Langlands | On the notion of an automorphic representation[END_REF]Proposition 2], every automorphic representation Π of GL 2n arises as a subquotient of a representation induced from cuspidal representations,

i GL 2n (A F ) P(A F ) (Π 1 , • • • , Π d ), (6.4.1) 
where P is a parabolic subgroup of GL 2n containing the Borel subgroup of GL 2n consisting of upper triangular matrices, and with every Π i a cuspidal automorphic representation of GL N i . Now, starting from the fact that Π i is globally generic, the results on the classification of automorphic representations for general linear groups [24, (4.3)] give us that there exists a unique generic subquotient of (6.4.1). We call this representation a transfer of π via ρ and we denote it T ρ (π). We observe that its central character is given by (6.1.3), because it coincides with it at almost every place. Finally, we also recall that Langlands' isobaric sum gives us another construction of a subquotient of (6.4.1) [34, Section 2], that we denote

Π 1 • • • Π d .
Proof. As we are assuming (2.11.1), we can apply the converse theorem as in Section 6.3 to construct Π. Furthermore, by construction Π is a transfer of π and its central character is given by (6.1.3). We now show the properties of Π i . Let S be a finite set of |F | such that π is unramified outside of S.

(Unitarity). We write

Π i = | det | n i Π i , where Π i is unitary for every 1 ≤ i ≤ d and n d ≥ • • • ≥ n 1 .
Given that the central character of Π is unitary, we have that n 1 ≤ 0. By (6.2.2) and the multiplicativity property of Rankin-Selberg L-functions we have

L S (s, π × Π1 ) = L S (s, Π × Π 1 ) = j L S (s, Π j × Π 1 ) = j L S (s + n j , Π j × Π 1 ).
Since the left hand side has at most a pole at s = 1 and it is holomorphic and nonvanishing for Re s > 1 by Theorem 4.2.6, we must have that n 1 = 0. Recursively we can check that n i = 0 for all i. Thus Π i is unitary for all i.

As a consequence we have that Π is equal to the isobaric sum of the Π's, as each Π i is unitary and thus Π is the full induced representation.

(Distinct). As before we consider

L S (s, π × Π i ) = L S (s, Π × Πi ) = j L S (s, Π j × Πi ) = j L S (s, Π j × Πi )
Arguing as above, we must have Π i ∼ = Π j for i = j, because otherwise the right hand side would not have a simple pole by Section 7.1.

(Self-dual). First observe that linear map w0 of Q F,n+m (see Section 1.5), given by w0 e i = e 2(n+m)-(n-i) for 1 ≤ i ≤ n, w0 e i = e i for n + 1 ≤ i ≤ 2m + n, trivial on l and w0 e i = e i-n-2m for n + 2m + 1 ≤ i ≤ 2n + 2m is in SO * 2n+2m (F ) and is a representative of

w 0 = w l,G w l,M ∈ W G , where M ∼ = GL m × SO * 2n . The action of w0 on (g 1 , g 2 ) ∈ M(A F ) is ( t g -1
1 , g 2 ). Furthermore, w0 (σ) = Πi ⊗ π. Assume that Π i not selfdual. In that we would have σ ∼ = w0 (σ). In that case, Corollary 4.2.1 implies that the left hand side

L S (s, π × Πi ) = L S (s, Π × Πi ) = j L S (s, Π j × Πi ) = j L S (s, Π j × Πi )
is holomorphic on Re(s) > 1/2. But the right hand side has a pole coming from L(s, Π i × Πi ) (Section 7.1). A contradiction, thus the Π i 's are self-dual. Remark 7.2.2. Conjecturally the image is characterised by the condition in the theorem and the fact that L T (s, Π i , Sym 2 ) has a pole at s = 1 for any sufficiently large finite set of places T containing all archimedean places. This is established in the work of J. Cogdell, I. Piatetski-Shapiro and F. Shahidi over number fields [START_REF] Cogdell | Functoriality for the Quasisplit Classical Groups[END_REF].

Local lift.

In this section, we explore the local behavior of this transfer. We recall that we also have a non-trivial character ψ = ⊗ x ψ x of A F /F , unramified outside of S. Theorem 7.3.1. Let Π x := T ρ (π) x and τ x be an irreducible generic unitary representation of GL m (F x ). Then γ(s,

π x × τ x , ψ x ) = γ(s, Π x × τ x , ψ x ) (7.3.2)
Proof. We first note that this is true when π x is unramified, i.e when x ∈ S (6.2.2).

Let us fix x 0 ∈ |F | and suppose first that τ x 0 is cuspidal. Then there is a cuspidal automorphic representation τ = ⊗τ x of GL m (A F ) that is τ x 0 at x 0 and such that τ x is unramified for x ∈ S [39, Lemma 3.1]. Furthermore, thanks to the Grunwald-Wang theorem [1, X, Theorem 5] and Remark 6.2.7 (central character of Π x is κ x ), we can choose a character η = ⊗η x such that η x is sufficiently ramified for x ∈ S and x = x 0 so that γ(s,

π x × (τ x • η x ), ψ x ) = γ(s, Π x × (τ x ⊗ η x ), ψ x )
and η x 0 = 1.

On the other hand the Langlands-Shahidi functional equation of Section 2.7, property vi) gives us that

L S (s, π × (τ • η)) = γ(s, π x 0 × (τ x 0 • η x 0 ), ψ x 0 ) x∈S-{x 0 } γ(s, π x × (τ x • η x ), ψ x )L S (1 -s, π × (τ • η)).
Similarly for the Rankin-Selberg L-functions

L S (s, Π × (τ • η)) = γ(s, Π x 0 × τ x 0 , ψ x 0 ) x∈S-{x 0 } γ(s, Π x × (τ x • η x ), ψ x )L S (1 -s, Π × ( τ • η)).
Thus, after simplifying we get

γ(s, π x 0 × τ x 0 , ψ x 0 ) = γ(s, Π x 0 × τ x 0 , ψ x 0 ),
obtaining thus the relation for the cuspidal representation τ x .

For a generic unitary representation we use that τ x can be expressed as [START_REF] Tadić | Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case)[END_REF]Section 7] i

GLm(Fx) P(Fx) (δ 1 ν t 1 ⊗ • • • ⊗ δ d ν t d ⊗ δ d+1 ⊗ • • • ⊗ δ d+k ⊗ δ d ν -t d ⊗ • • • ⊗ δ 1 ν -t 1 ),
where P is a parabolic subgroup containing the Borel subgroup of GL m consisting of upper triangular matrices, the δ i 's are generic unitary discrete series representation of

GL m i (F x ), 0 < t 1 ≤ • • • ≤ t d < 1/2 and ν = | det |.
Using the multiplicativity property of γ-factors (Section 2.7) we get

γ(s, π x × τ x , ψ x ) = k i=1 γ(s, π x × δ d+i , ψ x ) d i=1 γ(s + t i , π x × δ i , ψ x )γ(s -t i , π x × δ i , ψ x ).
Similarly,

γ(s, Π x × τ x , ψ x ) = k i=1 γ(s, Π x × δ k+i , ψ x ) d i=1 γ(s + t i , Π x × δ i , ψ x )γ(s -t i , Π x × δ i , ψ x ).
We thus have reduced the problem to the case of unitary generic discrete series representation δ x of GL m (F x ). But in this case we can write δ x as the generic irreducible subquotient of [START_REF] Zelevinsky | Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n)[END_REF]Section 9.3] i

GLm(Fx) Q(Fx) (ρν -t-1 2 ⊗ • • • ⊗ ρν t-1 2 ),
where Q is a parabolic subgroup containing the Borel subgroup of GL m consisting of upper triangular matrices, ρ is a cuspidal representation of GL h (F x ), h divides m, and t is a positive integer. Then using once again the multiplicativity property of γ-factors and that we know the relation when the representation is cuspidal, we obtain

γ(s, π x × δ x , ψ x ) = t-1 l=0 γ(s - t -1 2 + l, π x × ρ, ψ x ) = t-1 l=0 γ(s - t -1 2 + l, Π x × ρ, ψ x ) = γ(s, Π x × δ x , ψ x ).
Now we would like to check the analogous relation, but for the L-functions and ε-factors, at least in the following situation. 

(F x ). Then, if π x is tempered, we have that L(s, π x × τ x , ψ x ) = L(s, Π x × τ x ) ε(s, π x × τ x , ψ x ) = ε(s, Π x × τ x , ψ x ). (7.3.4)
Proof. We can reduce to proving (7.3.4) for discrete series representations τ x . In order to do this, we write τ x as i GLm(Fx) P(Fx)

(δ 1 ν t 1 ⊗ • • • ⊗ δ d ν t d ⊗ δ d+1 ⊗ • • • ⊗ δ d+k ⊗ δ d ν -t d ⊗ • • • ⊗ δ 1 ν -t 1 )
where P is a parabolic subgroup containing the Borel subgroup of GL m consisting of upper triangular matrices, the δ i 's are unitary discrete series representations of

GL m i (F x ), 0 < t 1 ≤ • • • ≤ t d < 1/2 and ν = | det |. Let us write τ 0 the induced of δ d+1 ⊗ • • • ⊗ δ d+k .
Using the multiplicativity properties viii) and ix) of Section 2.10, we obtain

L(s, π x × τ x ) = L(s, π x × τ 0 ) d i=1 L(s + t i , π x × δ i )L(s -t i , π x × δ i ) ε(s, π x × τ x ) = ε(s, π x × τ 0 , ψ x ) d i=1 ε(s + t i , π x × δ i , ψ x )ε(s -t i , π x × δ i , ψ x ).
On the other hand, we use the Langlands classification to express π x as a Langlands quotient of i

SO * 2n (Fx) Q(Fx) (π 1 ⊗ • • • ⊗ π e ⊗ π 0 ),
where Q is a parabolic subgroup containing P 0 (See Section 1.5), π i is a quasi-tempered representation (i.e. a tempered representation twisted by an unramified character) of GL n i (F x ), for 1 ≤ i ≤ e and π 0 is a tempered representation of SO * 2n 0 (F x ). Now, again using property ix) of Section 2.10, we have

L(s, π x × τ 0 ) = L(s, π 0 × τ 0 ) e i=1 L(s, π i × τ 0 )L(s, πi × τ 0 ) ε(s, π x × τ 0 , ψ x ) = ε(s, π 0 × τ 0 , ψ x ) e i=1 ε(s, π i × τ 0 , ψ x )ε(s, πi × τ 0 , ψ x )
All the representations involved in the previous two equations are quasi-tempered. From property vii) of Section 2.10, the multiplicativity of γ-factors (Section 2.7) and (7.3.2), we get

L(s, π x × τ 0 ) = k l=1 L(s, π x × δ d+l ), ε(s, π x × τ 0 , ψ x ) = k l=1 ε(s, π x × δ d+l , ψ x ).
Finally, using a similar analysis, but with the Rankin-Selberg L-functions, on the right hand side we get the reduction to discrete series. Now that we have reduced to the case where τ x is a discrete series, let us write Π x as the parabolic induced representation of i GL 2n (Fx)

P 1 (Fx) (ξ 1 ν t 1 ⊗ • • • ⊗ ξ d ν t d ⊗ ξ d+1 ⊗ • • • ⊗ ξ d+k ⊗ ξ d ν -t d ⊗ • • • ⊗ ξ 1 ν -t 1 ),
where P 1 is a parabolic subgroup containing the Borel subgroup of GL 2n consisting of upper triangular matrices, the ξ i 's are unitary discrete series representations of GL n i (F x ) and 0 < t 1 ≤ • • • ≤ t d < 1/2. Now thanks to (7.3.2) and the multiplicativity of Rankin-Selberg γ-factors, we have

γ(s, π x × τ x ) = k i=1 γ(s, ξ f +i × τ x , ψ x )• d j=1 γ(s -t j , ξ j × τ x , ψ x )γ(s + t j , ξ j × τ x , ψ x ).
As ξ j and τ x are discrete series representations, hence tempered, we can write the right hand side in the following formal rational expression ε(q -s Fx )

P (q -s Fx ) Q(q -s Fx )
, where

P (q -s Fx ) -1 = k i=1 L(s, ξ f +i × τ x ) d j=1 L(s + t j , ξ j × τ x )L(s -t j , ξ j × τ x ) & Q(q -s Fx ) -1 = k i=1 L(1 -s, ξf+i × τx ) d j=1 L(1 -s -t j , ξj × τx )L(1 -s + t j , ξj × τx ),
and ε(q -s Fx ) is a monomial in q -s Fx . As each L(s, ξ j × τ x ) has no poles on Re(s) > 0, and since t j < 1/2 for each j, the regions where P (q -s Fx ) and Q(q -s Fx ) are zero do not intersect. Therefore, there are no cancellations involving the numerator and denominator of this formal expression. We can then conclude by the construction of Langlands-Shahidi L-functions [START_REF] Lomelí | The Langlands-Shahidi method over function fields: Ramanujan Conjecture and Riemann Hypothesis for the unitary groups[END_REF]Section 5] and multiplicativity of the Rankin-Selberg L-functions that 

L(s, π x × τ x ) = 1 P (q -s Fx ) = L(s, Π x × τ x ).
(π) = Π is the isobaric sum Π = Π 1 • • • Π e ,
where each Π i is a unitary self-dual cuspidal automorphic representation of GL N i (A F ), and Π i ∼ = Π j for i = j. By [33, Th éor ème VI.10], each Π i,x is tempered.

If π x is unramified, we may consider the semisimple conjugacy class

diag(α 1 , • • • , α n-1 , 1) Fr x .
Then, by definition, the semisimple conjugacy class of Π x is given by

diag(α 1 , • • • , α n-1 , 1, 1, α -1 n-1 , • • • , α -1 1 )
Each α j or α -1 j is the Satake parameter for one of the representations Π i,x , which are unramified. But in the case GL n i , we have that

|α i | = 1.
copy), and preserving l as well. It is the centralizer of the maximal split torus S, the subtorus of T acting trivially on l. We let B be the Borel subgroup of G preserving the flag of subspaces V i of V , where V i for i = 1, . . . , n -1 has the basis (e 1 , . . . , e i ); we write U for its unipotent radical. One identifies T to G n-1 m,k × T , where T is the kernel of the norm map from Res l/k G m,l to G m,k , with (x 1 , . . . , x n-1 ) in G n-1 m,k acting by x i on ke i , by its inverse on ke 2n+1-i for i = 1, . . . , n -1, and trivially on l, and h ∈ T (k) acting by multiplication on l, and trivially on the e i 's. To get a matrix picture, one can choose a basis (e n , e n+1 ) of l over k, thus yielding a k-basis of V which we order as e 1 , . . . , e n-1 , e n , e n+1 , e n+2 , . . . , e 2n , and then B appears as a group of upper triangular block diagonal matrices in GL 2n , and T as its subgroup of block diagonal matrices, with blocks of size 1 except the central one of size 2; the group S is the subgroup of T with trivial central block. For SO * 4 , the matrix picture of B is following: we write l = k(α) and we take the k-basis e 2 = 1 and e 3 = α of l. If Tr l/k is the trace map, then

B(k) =                  t 1 * * * 0 a -bN l/k (α) * 0 b a + b Tr l/k (α) * 0 0 0 t -1 1       : t 1 ∈ k × , a, b ∈ k, N l/k (a + αb) = 1            . Remark A.1.2. Over an extension k of k splitting l, k ⊗ k l is isomorphic to k 2 , each component corresponding to a k-embedding ι of l into k , with y ⊗ u going to yι(u).
Then G k is split, indeed T k is isomorphic to G m,k acting via x goes to (x, x -1 ), and T k is isomorphic to G n m,k using the action on e 1 , . . . , e n-1 , e n , where (e n , e n+1 ) is the canonical basis of k 2 .

The absolute root datum attached to G is of type D n , the relative root datum of type B n-1 . More precisely let us choose a separable closure k a of k, and call ι and ι the two conjugate embeddings of l/k into k a /k. Then as explained above k a ⊗ k l is isomorphic to k a × k a by sending y ⊗ u to (yι(u), yι (u)); that gives a k a -basis (e n , e n+1 ) of k a ⊗ k l, and T k a is isomorphic to (G m,k a ) n via its action on e 1 , . . . , e n . We use the corresponding coordinates x 1 , . . . , x n on T k a . The simple roots of T k a with respect to B k a are the characters α 1 , . . . , α n-1 , α n , where α j (x 1 , . . . , x n-1 , x n ) = x j /x j+1 for j < n and α n (x 1 , . . . , x n ) = x n-1 x n . Thus the Galois group of k a /k fixes α i for i < n -1 and exchanges α n-1 and α n . The simple relative roots are then the restrictions β i to S of those simple absolute roots, α n-1 and α n having the same restriction β n-1 = β n . For SO * 4 , we have the following matrix pictures:

α 1       t 1 0 0 0 0 t 2 0 0 0 0 t -1 2 0 0 0 0 t -1 1       = t 1 /t 2 , α 2       t 1 0 0 0 0 t 2 0 0 0 0 t -1 2 0 0 0 0 t -1 1       = t 1 t 2 , β 1       t 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 t -1 1       = t 1 .
We can pin the root subgroup corresponding to α i , for i < n, by sending t in k a to the endomorphism Id + tA i of k a ⊗ k V , where A i acts trivially on all elements e j except e i+1 and e 2n+1-i , and sends e i+1 to e i , also e 2n+1-i to -e 2n-i . For i < n -1, the relative root subgroup corresponding to β i is pinned (over k) by using the same formula. The root subgroup corresponding to α n is pinned by sending t in k a to the endomorphism Id + tA n , where A n acts trivially on the e i 's except e n+1 and e n+2 , and sends e n+1 to e n-1 , and e n+2 to -e n . For SO 4 , we have the following matrix pictures:

Id + tA 1 =       1 t 0 0 0 1 0 0 0 0 1 -t 0 0 0 1       , Id + tA 2 =       1 0 t 0 0 1 0 -t 0 0 1 0 0 0 0 1       .
Correspondingly, there is a kind of pinning, by Res l/k G a,l , of the relative root subgroup corresponding to β n-1 = β n ; that pinning sends u in l to A(u), where A(u) is the endomorphism of V acting trivially on the e i 's for i < n and i > n + 2, and sending y in l to Tr l/k (uy)e n-1 , also e n+2 to (-uue n-1 , -u) in ke n-1 ⊕ l, where bar indicates conjugation in l/k. Indeed, going over to k a , and identifying k a ⊗ k l with k a × k a as above, β n translates to sending (t, t ) to (Id + tA n-1 )(Id + t A n ). For SO * 4 , we have the following matrix picture: if {e 2 , e 3 } is a ordered basis of l, then

Id + A(u) =       1 Tr l/k (e 2 u) Tr l/k (e 3 u) -N l/k (u) 0 1 0 -ū 1 0 0 1 -ū 2 0 0 0 1      
, where ū = ū1 e 2 + ū2 e 3 .

We can use the additive character Ψ of A k to get an additive character θ Ψ of U(A k ) sending Id + tA i to Ψ(t) for i < n -1 and t in A k , and sending Id + A(u) to Ψ • tr l/k (u) for u in A l . Since Ψ is non-trivial, θ Ψ is a non-degenerate character of U(A k ). A general non-degenerate character θ of U(A k ) sends Id + tA i to Ψ(a i t) for i < n -1 and t in A k , and Id + A(u) to Ψ • Tr l/k (bu) for u in A l , for some a i 's in k × and b in l × . We fix such a character θ. Now if v is a place of k, the restriction θ v of θ to U(k v ) is a non-degenerate character, and if π is a cuspidal θ-generic automorphic representation of G(A k ) then at a place v its component π v is generic with respect to θ v . For all places v except finitely many, the conductor of Ψ v is O kv (meaning that Ψ v is trivial on O kv but not on larger fractional ideals), and the a i 's and b are units, so that θ v is trivial on U(O v ) but not on U(I) for any larger fractional ideal I of O v . Furthermore, we have another positive integer m, and we consider the quadratic form

Q on W = k m ⊕ V ⊕ k m given by Q (y 1 , . . . , y m , v, y m+1 , . . . , y 2m ) = Q(v) + y 1 y 2m + • • • + y m y m+1 .
The connected component H of the automorphism group of Q is again a quasi-split group over k, of type SO * 2m+2n . We consider the parabolic subgroup P of H stabilizing the first component k m ; it has the Levi subgroup stabilizing all three components, which is isomorphic to GL m × G, with GL m acting on the first component and G on V . Again, at a place w split in l, H w is split.

We are also given a unitary cuspidal automorphic representation τ of GL m (A k ) and a unitary θ-generic cuspidal automorphic representation π of G(A k ). At a given place v of k, τ v is tempered (by Laurent Lafforgue's result), and π v is unitary and θ v -generic.

A. 2 We are interested in places v of k which are split in l (in particular unramified), such that Ψ v has conductor O kv , with the a i 's and b units at v, and such that furthermore τ v and π v are unramified. Such places form a set of density 1/2, so there is a plethora of them. We want to show that if Re(s) > 1 then the unramified component of the representation of H(k v ) parabolically induced from ν s τ v ⊗ π v cannot be unitary, where unramified means with non-zero vectors fixed by H(O kv ), and ν denotes the character of GL m (k v ) given by the absolute value of the determinant character.

The proof requires a comparison with local fields of characteristic 0, so we change notation, and take as our base field a locally compact non-Archimedean field F , of arbitrary characteristic, and write O F for its ring of integers, P F for the maximal ideal of O F , val F for the normalized valuation of F , and q F for the cardinality of its residue field k F . We consider the split groups G = SO 2n and H = SO 2m+2n with the standard Borel pairs as above, and GL m × G seen, also as above, as a Levi subgroup of a parabolic subgroup P of H. We call unramified a smooth irreducible representation of G(F ) with non-zero vectors fixed by G(O F ), and similarly for H and GL m . Genericity will not play a role in the following result, which implies what is needed for Proposition 4.1.5.

Proposition A.2.1. Let τ be a tempered smooth irreducible unramified representation of GL m (F ) and π a unitary smooth irreducible unramified representation of G(F ). Let s be a complex parameter with Re(s) > 1. Then the unramified component of Ind

H(F ) P (F ) (ν s τ ⊗ π) is not unitary.
The proof relies on known classifications, for GL m (F ), G(F ) and H(F ): that of smooth irreducible unramified representations and that of unitary unramified ones. For G(F ) and H(F ), the first classification is established only when the characteristic of F is not 2, and the second one only for F of characteristic 0. Presumably the available proofs can be made to work in all positive characteristics as well, but that has not been done yet. So we proceed in two independent steps. On the one hand we use a comparison of local fields à la Kazhdan to show that if the result is true for F of characteristic 0, then it is true in general. On the other hand we prove the result when F has characteristic 0 using the known classifications.

Let us first recall the usual parametrization of smooth irreducible unramified representations of G(F ) via unramified characters of T(F ). That parametrization holds for unramified groups over F of any characteristic. If ξ is an unramified character of T(F ), then Ind G(F ) B(F ) (ξ) has a unique unramified irreducible component π(ξ), and all irreducible unramified smooth representations of G(F ) are obtained in this way, with a character ξ which is unique up to the action of the Weyl group of T in G. Concretely ξ sends (x 1 , . . . , x n ) in T(F ) to the product of z val F (x i ) i , i running from 1 to n, for some non-zero complex numbers z i , and the tuple (z 1 , . . . , z n ) is determined by π(ξ) up to permutation of the coordinates and sending z i to its inverse for an even number of indices i; we write π(ξ) = π(z 1 , . . . , z n ). Such a description applies to GL m (F ), using unramified characters of its diagonal torus A, and to H(F ), using unramified characters of its maximal split torus A × T. An unramified character of A(F ) is given by an m-tuple of non-zero complex numbers (y 1 , . . . , y m ), and we write τ (y 1 , . . . , y m ) for the corresponding unramified irreducible component; similarly an unramified character of H(F ) is given by an (m + n)-tuple of non-zero complex numbers (y 1 , . . . , y m , z 1 , . . . , z n ), and gives the unramified irreducible component π(y 1 , . . . , y m , z 1 , . . . , z n ). Since the representation τ of GL m (F ) is supposed to be tempered, it has the form π(y 1 , . . . , y m ) where the y j have modulus 1, and τ is the full parabolically induced representation.

The representation π is supposed to be unitary. To interpret that condition concretely, in terms of the parameters with π = π(z 1 , . . . , z n ), we now assume F of characteristic 0, to be able to use the results of Muic [3] and Muic-Tadic [4]. Note that in those papers the notion of unramified representation refers to the same choice of hyperspecial maximal compact subgroup as ours, viz. the group SO 2n (O F ).

In [3] Muic gives a finer description of unramified smooth irreducible representations of G(F ), which obviously also applies to H(F ), in three stages: strongly negative representations, negative representations (which are unitary), general case. The classification of unitary unramified representations in [4] uses the classification of [3]. However we have to be careful in that both references consider the group O 2n instead of our group SO 2n , and an irreducible smooth representation of O 2n (F ) is called unramified if it has non-zero fixed vectors under O 2n (O F ).

The major difference with SO 2n occurs already when n = 1, and concerns the re-ducibility of (unramified) principal series. Indeed SO 2 (F ) is a split torus, and a principal series is simply a character ξ, in particular irreducible; but O 2 (F ) -SO 2 (F ) acts on SO 2 (F ) by inversion, so ξ induces irreducibly to O 2 (F ), (to a unitary representation if and only if ξ is unitary), unless its square is trivial, in which case ξ induces to the direct sum of its two extensions to O 2 (F ), which are both unitary and can be distinguished by their value on the transposition matrix, which is a sign. But O 2 (O F ) contains that transposition matrix, so if ξ is unramified there is indeed a unique unramified component in the induced representation, where the transposition matrix acts trivially.

That phenomenon persists for all positive integers n. Indeed the normalizer of T in O 2n is twice bigger than the normalizer in SO 2n ; for example it contains the transposition matrix σ which exchanges e n and e n+1 , and acts on an unramified character ξ of T(F ) by changing z n to its inverse in the parameter of ξ, yielding a character ξ σ . We can inflate ξ to B(F ), induce first to SO 2n (F ), where the induced representation I(ξ) has a line of SO 2n (O F )-fixed vectors and a unique unramified irreducible component π(ξ), and then induce further to a representation I + (ξ) of O 2n (F ). It is clear that the restriction of I + (ξ) to SO 2n (F ) is the direct sum of I(ξ) and I(ξ σ ), with the two lines of SO 2n (O F )-fixed vectors, exchanged by σ. But O 2n (O F ) is generated by SO 2n (O F ) and σ, hence I + (ξ) has a unique line of O 2n (O F )-fixed vectors. Also the direct sum of π(ξ) and π(ξ σ ) occurs as a subquotient of I + (ξ), with the two factors exchanged by σ. If those two factors are not isomorphic then the direct sum is an irreducible component π + (ξ) of I + (ξ), the unique unramified such. If they are isomorphic, then π(ξ) extends to O 2n (F ); there are two such extensions, one being the twist of the other by the nontrivial character of O 2n (F ) trivial on SO 2n (F ), but only one of them, which we call π + (ξ), is unramifiedit is the only unramified irreducible component of I + (ξ). Note that if η is an unramifed character of T(F ) then π + (ξ) = π + (η) if and only if π(η) is equal to π(ξ) or π(ξ σ ). It follows that ξ goes to π + (ξ) gives all unramified irreducible smooth representations of O 2n (F ), and that π + (ξ) determines ξ up to the action of the normalizer of T(F ) in O 2n (F ), which acts on the parameters (z 1 , . . . , z n ) by permutation of the indices and sending some of the z i 's to their inverses. It is clear that π + (ξ) can be unitary only if π(ξ) is; if that is the case, then π(ξ σ ) is also unitary, and so is π + (ξ). This means that a classification of unitary smooth irreducible unramified representations of O 2n (F ) can be directly applied to SO 2n (F ) instead. Moreover, a criterion of irreducibility of π(ξ) in terms of ξ has to be unsensitive to replacing ξ with ξ σ .

We now recall what we need of the classifications of [3] and [4], following the introduction of [4] specialized to our case of O 2n (F ). The classification of general smooth irreducible unramified representations of O 2n (F ) in terms of negative ones will be enough for us.

By [3] (see [4] definition 0-6 and surrounding comments) that general case is as follows: one considers a multiset E of triples (r, ξ, α) where r is a positive integer, ξ a unitary unramified character of F × and α a positive real number, and a negative representation ρ of O 2a (F ), so that a plus the sum of the r's equals n. Then one attaches to those data the unique irreducible unramified component π(E, ρ) of the representation of O 2n (F ) parabolically induced from tensor (over triples) (ν α ξ)(r) ⊗ ρ, where η(r) for a character η of F × is the character η •det of GL r (F ). In that manner we get all irreducible unramified representations π of O 2n (F ), up to isomorphism (the way we order the triples to construct the tensor product does not matter), and the representation π determines ρ (up to isomorphism) and the multiset of triples E. Now if π(E, ρ) is unitary, then ( [4], second assertion of Theorem 0-8 and definition 0-7) for all triples (r, ξ, α) in E we have α < 1. ( [4] gives necessary and sufficient conditions for π(E, ρ) to be unitary, but we do not need them). Now we are in position to give the proof of the proposition when the characteristic of F is zero.

Proof of the Proposition when char F = 0. Our representation π of SO 2n (F ) has the form π(ξ) for some unramified character ξ of T(F ) and the corresponding representation π + (ξ) of O 2n (F ) (which is unramified unitary) has the preceding form π(E, ρ). We have also the unramified tempered representation τ of GL m (F ) given by m unramified unitary characters, and we want to consider the unramified irreducible component π of the representation of O 2m+2n parabolically induced by ν s τ ⊗ π + (ξ), where t = Re(s) > 1. We see ν s τ as given by ν t η 1 , . . . , ν t η m for unitary unramified characters η j of F × . Then π is simply π(E , ρ) where E is obtained from E by adding the triples (1, η i , t) for i = 1 to m. Indeed using parabolic induction in stages, we see that π(E , ρ) is the unramified component of the induction of ν s τ ⊗ π(E, ρ). It follows that π does not satisfy the condition above, so cannot be unitary, and the components of the restriction of π to SO 2n (F ) cannot be unitary either, which is what we wanted to prove.

A. 3 Now that we have proved what we want for F of characteristic 0, we need to transfer it to the positive characteristic case, possibly 2. We operate that transfer using close local fields à la Kazhdan, and for convenience our reference is [2], although some earlier references could have been used in places.

We change notation a bit, and use G for a split connected group over Z; that will be applied to SO 2n , SO 2m+2n and GL m . We fix a Borel subgroup B = T U. We have two non-Archimedean local fields of the same residue characteristic, one of them is our characteristic p local field F , the other one F of characteristic 0, and we put a prime to indicate that we use over F the notation over F . We have the maximal hyperspecial subgroup K = G(O F ) of G(F ), and the Iwahori subgroup I which is the inverse image in K of the subgroup B(k F ) of G(k F ) seen as a quotient of G(O F ). We write H for the Hecke algebra (with complex coefficients) of I in G(F ). It is known that taking fixed points under I yields an equivalence between the category of smooth representations of G(F ) generated by their I-fixed vectors and the category of (right) modules over H. Moreover a smooth irreducible representation π of G(F ) is unitary if and only if the corresponding H-module π I is unitary ([1, Corollary 1.3]; in fact the case of the Iwahori subgroup had been obtained previously by D. Barbasch and A. Moy). Since unramified principal series have K-fixed vectors, they can be detected by the corresponding Hmodule, and their unitarity as well. But we also need compatibilities with parabolic induction.

We say that F and F are r-close (for a positive integer r) if there is a ring isomorphism of O F /P r F with O F /P r F . For r = 1, this means q F = q F . If F and F are 1-close, then there is an algebra isomorphism ι of H with H , sending the characteristic function of K to the characteristic function of K (that is classical, see [2, Section 3], especially Theorem 3.13, for a generalization to the Hecke algebra relative to congruence subgroups of I). An irreducible smooth unramified representation π of G(F ) gives a H-module π I with non-zero vectors fixed by the characteristic function of K, which yields via ι a H -module with non-zero vectors fixed by the characteristic function of K ; that module has the from π I for an irreducible smooth unramified representation π of G(F ) (unique up to isomorphism), and π is unitary if and only if π is. Proof of the Proposition when char F > 0. We now choose F of characteristic 0 such that F and F are 4-close (that is possible), and apply those considerations to the ambient group H = SO 2m+2n (instead of G) with the Levi subgroup GL m (F ) × SO 2n (F ) (instead of the group M). We have the representation τ of GL m (F ) and the representation π of SO 2n (F ), and corresponding representations τ and π obtained via the previous process. We also have the complex number s with Re(s) > 1 and our goal is to show that the unramified irreducible component of the representation of SO 2m+2n (F ) parabolically induced from ν s τ ⊗ π is not unitary. By the first part of our proof, the result is true over the characteristic 0 field F , and it is enough to show that the hypotheses on τ and π transfer to the corresponding hypotheses on τ and π , and that the result over F transfers back to F . That we do presently. The representation τ is tempered, parabolically induced from the unitary character ξ = (ξ 1 , . . . , ξ m ) of A(F ), and the compatibility with parabolic induction recalled above shows that τ is induced from the unitary character (ξ 1 , . . . , ξ m ) with ξ i taking the same value as ξ on uniformizers. Moreover multiplying τ by ν s corresponds to multiplying τ by ν s , since twisting by ν s amounts to multiplying all ξ i 's by the character ν s of F × . The representation π is smooth irreducible unitary unramified, and then π is also smooth irreducible unitary unramified. Finally the representation I parabolically induced from ν s τ ⊗ π corresponds to the representation I parabolically induced from ν s τ ⊗ π , and the unramified irreducible component of I corresponds to the unramified irreducible component of I . By the result over F , that for I is not unitary, hence that for I is not unitary either, which is what we wanted.

S

  ks a = 1} and by k ∆ the image of ∆ -∆ 0 in Σ. It can be proven that it is a basis of Σ [13, Theorem C.2.15]. The restriction map does give rise to a Γ k -invariant map ∆ → k ∆ ∪ {0}.

  See Section 1.5, for notations), we are in the case of ( 2 D n -1) [47, p. 565]. We obtain the following decomposition of the adjoint representation r = r 1 ⊕ r 2 , (2.5.2) where r 1 = ρ m ⊗ ρ * 2n and r 2 = ∧ 2 ρ m ⊗ 1 SO * 2n . Here ρ m = Id GLm is the standard representation of L GL m (C), ρ * 2n the representation of L SO * 2n (C) constructed in (5.6.1) below and 1 SO * 2n is the trivial representation of L SO * 2n (C).

  vi) (Functional equation) Let k be a global field of positive characteristic, with field of constants F q and G a quasi-split reductive k-group. Let ψ = ⊗ x ψ x be a nontrivial character of A k /k and π = x π x be a globally generic cuspidal automorphic representation of M (A k ) (see Section (4.1.1)) such that both π and ψ are unramified outside a finite subset S of places of k, where M is the Levi k-subgroup of a maximal parabolic subgroup of G , containing a Borel subgroup P 0 . Let L S (s, π, r i ) =

2. 10 L

 10 -Functions & ε-factors. The construction of γ-factors leads us to the construction of L-functions and ε-factors, for a general generic representation.

Remark 2 . 10 . 3 .

 2103 Let us consider the case of a maximal Levi subgroup M = GL m × SO * 2n ⊂ SO * 2(n+m) and a tempered representation τ ⊗ π of M(F ), where π is an unramified representation of SO * 2n (F ).

1 2 ,Lemma 2 . 11 . 4 .

 22114 -1 [38,Section 5]. Let π be a generic tempered representation, for which property (T) is true. Then N (s, π, w0 ) is holomorphic on Re(s) ≥ 0 and non-zero on Re(s) > 0.

Lemma 2 . 11 . 6 .

 2116 [START_REF] Moeglin | Le spectre r ésiduel de GL(n). Annales scientifiques de l[END_REF] Proposition I.10] Let τ, τ be two tempered representations of GL n (F ) and GL l (F ), respectively. Then N (s, τ ⊗ τ , w0 ) is holomorphic and non-zero on Re(s) > -1.

Proposition 4 . 1 . 5 .

 415 Let G = SO * 2(m+n) , let P = M N be a parabolic subgroup containing P 0 with Levi subgroup M isomorphic to GL m × SO * 2n and w0 ∈ G(F ) is a representative of w 0 ∈ W G . Let σ = τ ⊗ π be a unitary generic cuspidal automorphic representation of M(A F ). Then M (s, σ, w0 ) is holomorphic on Re(s) > 1.

Proposition 4 . 2 . 4 .

 424 Let G = SO * 2(m+n) and let P = M N be a parabolic subgroup with Levi subgroup M isomorphic to GL m × SO * 2n . Let σ = τ ⊗ π be a generic cuspidal automorphic representation of M(A F

Theorem 4 . 2 . 6 .

 426 Suppose that G = SO * 2(m+n) , and P = M N parabolic subgroup with Levi subgroup M isomorphic to GL m × SO * 2n . Let σ = τ ⊗ π be a generic cuspidal automorphic representation of M(A F ). Then L S (s, σ, r 1 ) is holomorphic and non-vanishing on Re(s) > 1 and has at most a simple pole at s = 1.

Proposition 7 . 3 . 3 .

 733 Let x ∈ |F |. Assume Property (T ) from Section 2.10 at x. Let Π x := T ρ (π) x and τ x be an irreducible generic unitary representation of GL m

Finally

  let us deal with parabolic induction. Following [2, Section 4.3], we assume that F and F are 4-closed, and choose a ring isomorphism of O F /P 4 F onto O F /P 4 F , and uniformizers t, t of F , F compatible with L. Let P be a parabolic subgroup of G containing B, and M its Levi subgroup containing T, N its unipotent radical (provisionally those letters do not stand for integers). Then I M = I ∩ M(F ) is an Iwahori subgroup of M(F ), with Hecke algebra H M and K M = K ∩ M(F ) a hyperspecial maximal compact subgroup of M(F ). Again we put primes for the corresponding objects over F . Let τ be a smooth irreducible representation of M(F ) with I M fixed vectors, and τ the corresponding representation of M(F ), obtained by the above process applied to M(F ), via an isomorphism of τ I M onto τ I M . Then there is an isomorphism of vector spaces of (Ind G(F ) P(F ) τ ) I onto (Ind G(F ) P(F ) τ ) I , which is moreover compatible with the natural actions of H and H ([2, Lemma 4.10 & Theorem 4.14]). Now, we can prove the Proposition when the characteristic of F positive.

  .3.2)

2.4 Places and restricted products. Suppose F is a global field of positive characteristic. In this case we set up some global notations. We denote by |F | the set of places of F . We denote by F x the local field at x, O x the ring of integers of F x and A F = x F x the ring of ad èles. Let M be an algebraic group over F (finite type group scheme over F ). The group M(A F ) is the restricted product Kx M(F x ) with respect to certain compact open subgroups K x of M(F x ) [53, Section 4.10].

  to our case.

	Proposition 2.11.8. Let π be generic unramified representation of SO * 2n (F ) such that it
	is the full induced representation
	SO * 2n (F ) i P

  2 the condition, thanks to Lemma 2.11.6.

	ii) For the case SO * 2l × GL k ⊂ SO * 2(l+k) , we note that Re(s ± t d ) ≥ 0 for Re(s) ≥ 1/2.
	As π 0 is tempered and unramified it satisfies property (T) (Remark 2.10.3) and thus
	thanks to Lemma 2.11.4, we get our condition.

iii) Finally for the case GL l-1 ⊂ SO * 2l (l ≥ 3), we use Lemma 2.11.3 as in [27, Lemma 3.3, Proposition 3.4] to conclude.

  Assume (2.11.1). Let π = ⊗ x π x be a globally generic cuspidal representation of SO * 2n (A F ). If π x is unramified, then its Satake parameter has absolute value 1.Proof. Let us fix x ∈ |F | an inert place (the split case is obtained from[START_REF] Lomelí | Functoriality for the Classical Groups over Function Fields[END_REF] Theorem 9.14]). Using Theorem 7.2.1, we have that T ρ

	Theorem 7.4.1.

7.4 Ramanujan Conjecture. We finish by using this study to prove the unramified Ramanujan conjecture for globally generic cuspidal representations of SO * 2n .

Como en Cogdell, Kim, Piatetski-Shapiro y Shahidi y Lomelí, el m étodo de la demostraci ón usa el teorema del recíproco y funciones L para construir una representaci ón automorfa de GL n (A F ): proveemos una versi ón alabeada del teorema del recíproco de Cogdell y Piatetski-Shapiro. Para aplicar el teorema del recíproco, uno necesita propiedades analíticas de las funciones L de Langlands-Shahidi, y para establecerlas adoptamos los argumentos de Lomelí en nuestro nuevo caso. Así, uno obtiene una transferencia d ébil, la cual tiene las propiedades deseadas en casi todo lugar. M ás propiedades de las funciones L parciales, nos da una transferencia que es una suma isob árica de representaciones automorfas cuspidales unitarias. Finalmente, demostramos la compatibilidad entre los factores gamma locales de π y los de la transferencia Π.

1.3 L-group. Let R = (X(T ks ), Φ, X * (T ks ), Φ ∨ ) be the absolute root datum associated to G. Consider a pinning (Φ + , {X a } a∈∆ ) on (G ks , T ks ) i.e. a choice of basis of g a for each

2.2The Langlands quotient. Suppose that F is a non-archimedean local field. Let P = M N be a parabolic subgroup of G containing a fixed minimal parabolic subgroup

and the norm one elements of Res Ex/Fx G m , we getπ (φ x,Ex ) : E × x → C × x → χ n,x (xσ(x) -1 ).On the other hand, we recall that we have a natural isomorphism [4, Section 5] of Γ Fx -groupsRes Ex/Fx G m (C) ∼ = I Γ Fx Γ Ex G m (C) = {f : Γ Fx → G m (C) : f (a a) = a • f (a), a ∈ Γ Ex , a ∈ Γ Fx },where I Γ Fx Γ Ex is the (non-smooth) induction functor from Γ Fx to Γ Ex and the action of Γ Fx is given by right multiplication: (a • f )(x) = f (xa) for x, a ∈ Γ Fx . Combining this isomorphism, along the restriction W E ⊂ W F and the morphismI Γ Fx Γ Ex G m (C) → G m (C) f → f (1 Γ Fx ),

globalmente gen érica de SO * 2n (A F ). Entonces, si π x es no ramificada, sus par ámetros de Satake tienen valor absoluto 1.

where φ K × is the parameter of T(K) obtained via the identification (5.3.1) and restriction to K × via r K : K × → W K/F (Section 5.1).

Satake parametrization & Parameters.

In this section we follow [4]. We suppose that F is a non-archimedean local field and G is unramified, i.e. it is quasi-split and splits over an unramified extension of F .

Let S be a maximal split subtorus of G, T its centralizer (as G quasi-split, is a maximal torus) and W = N G (S)(F )/ T(F ) the Weyl group. Let P 0 be a minimal parabolic subgroup containing S.

We note that W can be identified as the subgroup of W (G Fs , T Fs ) = N G(Fs) (T(F s ))/ T(F s ) that fixes the subgroup S Fs of T Fs [4,Section 6]. We denote F N the subgroup of L G 0 , which is the pre-image of the subgroup W of W ( G, T) = W (G Fs , T Fs ) under the natural projection homomorphism

In this section we consider the action of

The set equivalences classes will be denoted by

We have a natural bijection [4, Section 9.5]

We also have the following bijection, induced by restriction [4,Lemma 6.4] 

Furthermore, one can also show that the inclusion ( L T 0 Fr) → ( L G 0 Fr) ss induces a bijection

On the other hand, choose a hyperspecial maximal compact subgroup K in good position of G(F ) and let Π K-un (G) be the set of equivalence classes of irreducible representations of G(F ) with a non-zero vector fixed by K. Now for a character χ of T trivial on T ∩ K = T 1 = χ∈X(T) ker |χ| F (i.e. in X (T ) of Section 2.1), the representation i G P 0 χ has a unique irreducible non-zero K-invariant factor. This builds a bijection ([2, Section 9.2] and [3, Section 4.9])

Chapter 7

Image of functoriality

In this chapter, we conclude with the main result of our work, Theorem 7.2.1. Inspired by [START_REF] Lomelí | Rationality and holomorphy of Langlands-Shahidi L-functions over function fields[END_REF] and [START_REF] Soudry | On Langlands functoriality from classical groups to GL n . Formes Automorphes[END_REF], we prove that the cuspidal factors of the isobaric sum are distinct, unitary and self dual, in positive characteristic. We check that this lift respects the arithmetic information coming from γ-factors. We finish by proving, as an application, the unramified Ramanujan conjecture for globally generic cuspidal automorphic representations of SO * 2n (A F ). 

is holomorphic on Re s ≥ 1 if r < r. If r = r it has at most simple poles, they occur if and only if there exists a real number h such that Π ∼ = Π ⊗ | det | ih and, in this case, we get poles at s = -ih and s = 1 -ih. Moreover, L S (s, Π × Π ) is non-vanishing on Re(s) ≥ 1. Then, π transfers to the irreducible automorphic representation Π := T ρ (π) of GL 2n (A F ) constructed in Section 6.4. Its central character is given by (6.1.3) and Π can be expressed as an isobaric sum

where each Π i is a unitary self-dual cuspidal automorphic representation of GL N i (A F ), and Π i ∼ = Π j for i = j.

Appendices Appendix by Guy Henniart

In this appendix, we complete the proof of Proposition 4.1.5 which concerns the split group SO 2n .

A. 1 The result is local, but the setting comes form a global situation. Let us first recall that global setting. We have a global function field k, and a connected reductive group G over k, which is quasi-split but non-split, in fact a group of type SO * 2n relative to a quadratic separable extension l/k. Such a group is unique up to isomorphism; for definiteness we consider on the k-vector space V = k n-1 ⊕ l ⊕ k n-1 the quadratic form Q sending (x 1 , . . . , x n-1 , y, x n+2 , . . . , x 2n ) to x 1 x 2n + x 2 x 2n-1 + ... + x n-1 x n+2 + N l/k (y), where the x i 's are in k, y in l, and N l/k is the norm map. We take G to be the connected component of the group of automorphisms of Q.

Remark A.1.1. If we allow for l the split k-algebra k 2 , with coordinates x n and x n+1 , and use the same recipe for Q and G, we obtain a split group SO 2n : indeed N k 2 /k (x n , x n+1 ) = x n x n+1 . Consequently our group G over k splits if we base change to l, hence any extension of l.

For every place v of k, let k v be the completion of k with respect to v and G v be the base change to k v from k of G. Then G v is the connected component of the group of automorphisms of the quadratic form

From the global setting we also inherit Whittaker data. That involves a pinning of a root datum attached to G, and a choice of non-trivial character Ψ of A k trivial on k. We let T be the maximal torus of G preserving each line ke i (where (e 1 , . . . , e n-1 ) is the canonical basis of the first copy of k n-1 in V , and (e n+2 , . . . , e 2n ) that of the second Abstract : In this thesis, we are concerned with the Langlands functioriality conjecture for the even quasi-split non-split special orthogonal groups in positive characteristic. Cogdell, Kim, Piatetski-Shapiro and Shahidi proved functioriality conjecture in the case of a globally generic cuspidal automorphic representation for the split classical groups, unitary groups or even quasi-split special orthogonal groups in characteristic zero. Lomelí extends this result to split classical groups and unitary groups in positive characteristic. . We prove in this thesis the conjecture in the case of a globally generic cuspidal automorphic representation for the even quasi-split non-split special orthogonal groups in positive characteristic. As an application of this result, we prove the compatibility of the local factors and the unramified Ramanujan conjecture.