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Summary

The Langlands program plays an important role in Number theory and Representation
Theory. A crucial aspect of this program is the functoriality conjecture, expressed in a
letter of Langlands to Weil in 1967. Let F' be a global field with ring of adéles Ay and
let

p: G — TH,

be a given L-homomorphism between the L-groups of two connected (quasi-split) re-
ductive groups G and H over F. Then, according to this conjecture, for every cuspidal
automorphic representation 7 = ®, 7, of G(Afg), there exists an automorphic repre-
sentation II = ®, I1, of H(Ar) such that, at almost all places = where 7, is unramified,
I1, is unramified and its Satake parameter corresponds to the image under p of the
Satake parameter of 7. Such representation will be called a weak lift or transfer of .
Furthermore that transfer process should respect arithmetic information coming from
~-factors, L-functions and e-factors, and lead to a local version of functoriality at the
ramified places as well.

When G is a classical group, “G has a natural representation into © H for a specific
general linear group H, and that case has been studied by many people. When F'is
a number field, two main tools have been used: converse theorem and trace formulas.
The former was used by Cogdell, Kim, Piatetski-Shapiro and Shahidi in combination
with the Langlands-Shahidi method to prove the conjecture for a globally generic auto-
morphic representation = when G is a quasi-split symplectic, unitary or special orthog-
onal group. For the latter, Arthur and his continuators used trace formulas to get more
complete results, not restricted to quasi-split groups in characteristic zero.

Lomeli extended the converse theorem method to global function fields, getting
functoriality for globally generic automorphic representations of split classical groups
and unitary groups. The present thesis further extends the converse theorem method,
over a function field F', to establish the functoriality conjecture when G is a quasi-split
non-split even special orthogonal group, and 7 a globally generic representation.

Theorem. Let F' be a global function field and = be a globally generic cuspidal auto-
morphic representation of SO, (Ar). Then, = transfers to an irreducible automorphic



representation 11 of GL,,, (Ar). Furthermore, 11 can be expressed as an isobaric sum
=18 BIl,

where each 11, is a unitary self-dual cuspidal automorphic representation of GLy, (Ar)
for some N,;, and where 11, 22 11, for i # j. Moreover if we write I1 = @, I1,, then for 7,
an irreducible generic unitary representation of GL,,,(F},)

’7(377% X Tzvl/}x) = ’Y(&Hm X Tanwx)

where the ~y-factors on the right are obtained by the Rankin-Selberg method and those
on the left by the Langlands-Sahidi method, as extended by Lomeli to positive charac-
teristic.

As in Cogdell, Kim, Piatetski-Shapiro and Shahidi and Lomeli, the method of proof
uses the converse theorem and L-functions to construct an automorphic representation
of GL,,(Ar): we provide a proof of a twisted version in positive characteristic of the
converse theorem of Cogdell and Piatetski-Shapiro. To apply the converse theorem,
one needs analytic properties of the Langlands-Shahidi L-functions, and to establish
them we adapt Lomeli’s arguments to our new case. We first obtain a weak lift which
has the desired properties at almost all places. Then further properties of partial L-
functions give that there is a lift which is an isobaric sum of unitary cuspidal automorphic
representations. We prove the compatibility between the gamma local factors of = and
the lift IT at all places.

As an application of the functoriality and the validity of the Ramanujan conjecture
for general linear groups established by L. Lafforgue, we prove the unramified Ramanu-
jan conjecture for globally generic cuspidal automorphic representations of our classical
group in positive characteristic.

Theorem. Let ™ = Q, 7, be a globally generic cuspidal automorphic representation of
SO;, (Ar). Then, if , is unramified, its Satake parameters have absolute value 1.



Réesume

Le programme de Langlands joue un réle important en théorie des nombres et en
théorie des représentations. Un aspect crucial de ce programme est la conjecture de
fonctorialité, formulée dans une lettre de Langlands a Weil en 1967. Soit F' un corps
global avec son anneau d’adéles A et soit

p: G — TH,

un L-homomorphisme donné entre les L-groupes de deux groupes réductifs quasi-
déployés connexes G et H sur F. Alors, la conjecture dit que pour toute représentation
automorphe cuspidale 7 = ®, 7, de G(Ar), il existe une représentation automorphe
cuspidale IT = QI1I, de H(Ap) telle que, pour presque toute place = ou m, est non-
ramifiée, II, est non ramifiée et son parameétre de Satake corresponds a I'image par
p du parameétre de Satake de w,. Une telle représentation sera appelée le transfert
ou relevement faible de w. Encore plus, elle doit respecter l'information arithmétique
provenant des facteurs ~, fonctions L et facteurs ¢, et donner aussi une version locale
de la fonctorialité en les places ramifiées.

Quand G est un groupe classique, “G a une représentation naturelle dans un L-
groupe LH d’un groupe linéaire général spécifique, et dans ce cas, la conjecture a été
étudiée par diverses personnes. Quand F est un corps de nombres, deux techniques
principales ont été utilisées : la méthode du théoreme réciproque et la formule des
traces. La premiere a été utilisée pour démontrer la conjecture pour les représentations
automorphes cuspidales génériques = quand G est un groupe symplectique, un groupe
unitaire, ou un groupe orthogonal spécial, tous quasi-déployés. La deuxieme a été
utilisée par Arthur et ses continuateurs pour obtenir de résultats plus complets, et non
restreints aux groupes quasi-déployés en caractéristique nulle.

Lomeli étend la méthode du théoréme réciproque au cas des corps de fonc-
tions pour obtenir ces résultats en caractéristique positive pour les groupes classiques
déployés et groupes unitaires. Cette thése étend la méthode du théoréme réciproque,
sur un corps de fonctions F, pour établir la conjecture de fonctorialité quand G(Ar) est
un groupe spécial orthogonal pair quasi-déployé non-déployé, et = une représentation
globalement générique.

Théoreme. Soit F' un corps de fonctions et = une représentation automorphe cuspi-
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dale générique de SO, (Ar). Alors, = se transfere a une représentation automorphe
irréductible T1 de GL.,(Ar). De plus, 11 peut-étre représentée par une somme isobare

M=1,8. . B,

ou chaque 11; est une représentation automorphe cuspidale unitaire et auto-duale de
GLy, (Ar), pour quelque N;, et ou 11, 2 11, pour i # j. Encore plus, si on écrit 11 =
&, 11, alors pour T, une représentation générique unitaire de GL,,(F,), on a

ou les facteurs ~a droite sont obtenus par la méthode de Rankin-Selberg et ceux a
gauche par la méthode de Langlands-Shahidi, étendue par Lomeli a caractéristique
positive.

Comme chez Cogdell, Kim, Piatetski-Shapiro, et Shahidi, et Lomeli, la méthode
de la preuve utilise le théoréme réciproque de Cogdell et Piatetski-Shapiro et les fonc-
tions L pour construire une représentation automorphe de GL,,(Ar) : On donne une
version tordue du théoreme réciproque de Cogdell et Piatetski-Shapiro. Pour appli-
quer le théoreme réciproque, on a besoin de propriétés analytiques des fonctions L
de Langlands-Shahidi, et pour les obtenir nous adaptons les arguments de Lomeli a
notre nouveau cas. Ainsi, on obtient un relevement faible qui satisfait les propriétés
attendues en presque toute place. Des propriétés complémentaires des fonctions L
partielles nous donnent I'existence d’un relevement qui est une somme isobare de
représentations automorphes cuspidales unitaires. Nous démontrons la compatibilité
entre facteurs gamma locaux de 7 avec celles du transfert II.

Comme application de la fonctorialité et de la conjecture de Ramanujan pour les
groupes généraux linéaires, démontrée par L. Lafforgue, on démontre la conjecture de
Ramanujan non-ramifiée pour les représentations automorphes cuspidales génériques
de notre groupe classique quasi-déployé en caractéristique positive.

Théoreme. Soit © une représentation automorphe cuspidale genérique de SO, (Ar).
Alors, si , est non-ramifiée, ses parametres ont valeur absolue 1.



Resumen

El programa de Langlands juega un rol importante en teoria de numeros y en teoria de
representaciones. Un aspecto crucial de este programa es la conjetura de funtorialidad,
formulada en una carta de Langlands a Weil en 1967. Sea F' un cuerpo global con
anillo de adéles Ay y sea

p: G — TH,

un L-homomorfismo dado entre los L-grupos de dos grupos reductivos (cuasi escindi-
dos) G y H sobre F. Entonces, segun esta conjetura, para toda representacion auto-
morfa cuspidal = de G(Ar), existe una representacién automorfa IT de H(A ) tal que,
para casi todo lugar = donde 7, es no ramificada, II, es no ramificada y su parametro
de Satake corresponde al de la imagen por p del parametro de Satake de 7,. Una
tal representacion sera llamada levantamiento débil o transferencia. Mas aln, esta
transferencia debera respetar la informacion aritmética proveniente de los factores ~,
funciones L y factores ¢ y conducir también a una version local de la funtorialidad en
los lugares ramificados.

Cuando G es un grupo clasico, G tiene una representacion natural en “H para
un grupo general lineal especifico H, y en ese caso ha sido estudiado por varias per-
sonas. Cuando F' es un cuerpo de nimeros, dos técnicas principales han sido usadas:
teorema del reciproco y la férmula de trazas. La primera técnica fue usada junto con
el método de Langlands-Shahidi por Cogdell, Kim, Piatetski-Shapiro, y Shahidi para
demostrar la conjetura de funtorialidad de Langlands para representaciones automor-
fas cuspidales globlamente genéricas de grupos simplécticos, unitarios y ortogonales
cuasi escindidos. Con la segunda técnica, Arthur y sus continuadores lograron obtener
resultados mas completos, no restringiéndose a grupos cuasi escindidos en carac-
teristica cero.

Lomeli extiende el método del teorema del reciproco a cuerpos de funciones,
obteniendo asi la funtorialidad para representaciones autormofas cuspidales de gru-
pos clasicos escindidos y grupos unitarios. Esta tesis extiende el método del teorema
del reciproco, sobre un cuerpo de funciones F', para obtener la conjetura de funtoriali-
dad cuando G es un grupo ortogonal especial par cuasi escindido no escindido y = una
representacion globalmente genérica.



Teorema. Sea F' un cuerpo de funciones global y = una representacion automorfa
cuspidal globalmente genérica de SO, (Ar). Entonces, = se transfiere a una rep-
resentacion automorfa irreducible 11 de GL,,(Ar). Ademas, 11 puede ser expresada
como una suma isobarica

=1, 8- - BI,

donde cada 11; es una representacion globalmente genéricas automorfa cuspidal uni-
taria auto dual de GLy,(Ar) para algin N;, y donde 11, ¢ 11, para i # j. Mas aun,
si escribimos 11 = @11, entonces para T, una representacion unitaria genérica de
GL,.(F,)

donde los factores ~ del lado izquierdo son obtenidos usando el método de Rankin-
Selberg y lo del lado derecho es obtenido usando el método de Langlands-Shahidi,
extendido por Lomeli a caracteristica positiva.

Como en Cogdell, Kim, Piatetski-Shapiro y Shahidi y Lomeli, el método de la
demostracion usa el teorema del reciproco y funciones L para construir una repre-
sentacioén automorfa de GL,,(Ar): proveemos una version alabeada del teorema del
reciproco de Cogdell y Piatetski-Shapiro. Para aplicar el teorema del reciproco, uno
necesita propiedades analiticas de las funciones L de Langlands-Shahidi, y para es-
tablecerlas adoptamos los argumentos de Lomeli en nuestro nuevo caso. Asi, uno
obtiene una transferencia débil, la cual tiene las propiedades deseadas en casi todo
lugar. Mas propiedades de las funciones L parciales, nos da una transferencia que
€s una suma isobarica de representaciones automorfas cuspidales unitarias. Final-
mente, demostramos la compatibilidad entre los factores gamma locales de 7 y los de
la transferencia II.

Como aplicacién de la funtorialidad y usando la conjetura de Ramanujan para
los grupos generales lineales demostrada por L. Lafforgue, probamos la conjetura de
Ramanujan no ramificada para representaciones automofas cuspidaldes globamente
genéricas de nuestro grupo clasico cuasi escindido en caracteristica positiva.

Teorema. Sear = @ m, una representacion automorfa cuspidal globalmente genérica
de SO;, (Ar). Entonces, siw, es no ramificada, sus parametros de Satake tienen valor
absoluto 1.
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Introduction

The Langlands program plays an important role in Number Theory and Representa-
tion Theory. A crucial aspect of this program is the Langlands functoriality conjecture.
In [10, 11] Cogdell, Kim, Piatetski-Shapiro and Shahidi prove Langlands functoriality
for globally generic representations from split classical groups, unitary groups or even
quasi-split special orthogonal groups to general linear groups. They have done this in
the context of characteristic zero. Later, Lomeli in [37, 38] extends this result to split
classical groups and unitary groups in positive characteristic. Now the main objective of
this thesis is to establish the functoriality conjecture in the case of the quasi-split (non-
split) special orthogonal group for globally generic representations in positive charac-
teristic (Theorem 7.2.1).

As in Cogdell, Kim, Piatetski-Shapiro and Shahidi over number fields and Lomeli
over function fields, the method of proof uses the converse theorem, which allows us
to use properties of L-functions to construct an automorphic representation of general
linear groups; we provide a proof of a twisted version (Theorem 3.2.1) in positive charac-
teristic of the converse theorem of Cogdell and Piatetski-Shapiro [9]. The L-functions,
related local factors and their basic properties, necessary to apply the converse theo-
rem, are provided by the Langlands-Shahidi method, as extended by Lomeli to positive
characteristic. One first obtains a so-called “weak lift” which has the desired properties
at almost all places, and further properties of partial L-functions give that there is a
lift which is an isobaric sum of unitary cuspidal automorphic representations. As an
application, we prove the Ramanujan conjecture for globally generic cuspidal represen-
tations of our quasi-split classical group (in positive characteristic).

Now we proceed to present the main results obtained in this thesis, by giving a
small exposition of the ideas and tools used in this work to prove them.
Functoriality Conjecture

The functoriality conjecture first appeared in a letter from Langlands to André Weil in
1967. To formulate this conjecture, let F’ be a global field with ring of adeles A and let

p: G — TH,

11



be a given L-homomorphism between the L-groups of two connected (quasi-split) re-
ductive groups G and H over F. Then, according to this conjecture, for every cuspidal
automorphic representation = = ®,m, of G(Ar), there exists an automorphic represen-
tation IT = ®I1I, of H(AF) such that, at almost all places = where 7, is unramified, 11, is
unramified and its Satake parameter corresponds to the image under p of the Satake
parameter of 7,. Furthermore it respects arithmetic information coming from ~-factors,
L-functions and e-factors. This representation I will be called lift or transfer.

This general problem has been central in the work of many people. Now, the
main goal of this thesis is to find a transfer in the case where p is a certain embedding
of the L-group of an even quasi-split special orthogonal group into the L-group of an
appropriate general linear group, and = is globally generic.

Theorem A (7.2.1 & 7.3.1). Let F be a global function field and let = be a globally generic
cuspidal automorphic representation of SO, (Ar). Then, w transfers to an irreducible
automorphic representation 11 of GL,,,(Ar) (Section 6.4). Its central character is given
by (6.1.3) and 11 can be expressed as an isobaric sum

M=T1,8 - B,

where each 11, is a unitary self-dual cuspidal automorphic representation of GLy, (Ar)
for some N;, and where 11; % 11; for i # j. Moreover if we write 11 = ®l11,, then for 7, an
irreducible generic unitary representation of GL,,,(F),)

V(8 T X Ty g) = (8, [y X 7, 02)

where on the left hand side we use Langlands-Shahidi ~-factors.

Next, we explain the different elements of this result and provide the ideas and
tools to prove it.

Special Orthogonal Groups

The group that we will be interested in is the non-split quasi-split even special orthogo-
nal group. We are going to define this group in all characteristics, including two (Section
1.4). In order to define it, we follow the general construction of the special orthogonal
group of even dimensional quadratic forms given in [12].

Having this general construction as a base, we then specialize it to the follow-
ing case. Let E/F be a separable quadratic extension of a field F' and consider the
quadratic form

qE,n(Il7 ey Tp—1,7, xn+27 s 7'1:27L> = T1T2n + -+ xnflxn«kZ + NE/F(:U),

12



*
2n

where each z; € FFand z € E. By SO
special orthogonal group SO(¢z ).

we refer to the non-split quasi-split even

Following the general algebraic properties of these groups, we have that the con-
nected component of the L-group of SO;, is SO,,(C) and we can construct the L-
homomorphism for which we will answer the functoriality conjecture (Section 5.6):

p;n : SOQn(C) X FF — GL2n<C) X FF.

(gw,7) fr&Tlg
(.7) = {(g,T) ifrelg

where
1nfl

To finish our discussion on the algebraic properties of our group, we mention two
cases in Section 1.5, that will be relevant in calculating the central character of the lift,
and also the ~-factor in a special case: when n = 1, SO; is isomorphic to the “norm
one F-torus” associated to F/F; when n = 2, the simply connected cover of SO; is
isomorphic to

Resg/r SLs .

Langlands Parameters

Now that we have our groups and the L-homomorphism, we recall the notion of Lang-
lands parameters. They will be useful in the construction of the candidate lift. First,
if F'is a non-archimedean local field, we fix a geometric Frobenius element Fr € Wp
(Section 5.1). For a connected quasi-split reductive group G over F', we denote by ®(G)
the set consisting of group homomorphism

¢I W}/,w =Wp x SLQ((C) — LG,

such that ¢(Fr) is semi simple, ¢|;,. is continuous, ¢|si,(c) is algebraic and ¢ satisfies
certain relevance condition, modulo ZG°-conjugacy (see Section 5.2). Moreover, in the
case that ¢|;,, and ¢|si,(c) are trivial, ¢ will be called unramified.

With this notion, the local unramified condition in the functoriality conjecture can
be expressed (up to notation) as the commutativity of the following diagram (Section

13



5.4):

S0,,(C) x T'x o GLo,(C) x T's,

k ‘151'[/

W

where ¢, is the unramified parameter associated to the semisimple conjugacy class of
an unramified representation = of SO;, (F) and II’ is the unramified representation of
GL.,(F') associated to the semisimple conjugacy class ¢/ (Fr) = (p,, o ¢ )(Fr).

Furthermore, this setup also tells us how to find the transfer for n = 1 (relative rank
0). Indeed, using a combination of the Langlands correspondence for tori and GL,, we
give a description of it. First, let o be the non-trivial element of Gal(£/F') and ¢z~ the
Langlands parameter of the extension of scalar of SO along £ > F, obtained from a
restriction procedure for ¢ (5.3.3). The description of the transfer is thus obtained using
the commutative diagram

SO, (E) o SO, (F),

wm %

CX

given by naturality of the local Langlands correspondence (¢ +— m,) for tori and the
isomorphism between SO’ and the “norm one F'-torus” associated to £//F mentioned
before (thus for example SO;(E) = E* and SO;(F) = E', and with these identifications
the Norm sends z to zo(z)~'). This allows us to obtain that, for the character 7, =
x: B — C*, associated to the parameter ¢, the representation IT' is given by (6.1.1)

i%L2(y @ ) if u = v o Ng,p, for some smooth character v of F*,
Bs H /
M otherwise,

where pi: EX — C* is given by [x +— x(zo(z)™1)], » is the determinant of the represen-
tation of Wr induced by the trivial representation of W, viewed as character F'* via
the Artin Reciprocity map (Section 5.1), and 7, is a special case of the local Langlands
correspondence for GL, appearing in [8]. Moreover, we note that by construction the
central character of IT' is

xX|px = .

Finally, we also use this construction to produce a principal series with good
enough data at the missing places to complete our unramified data (Section 6.1).

Up to now, we can think of forming a global representation from the local pieces.
However, we need tools to check that these constructions form together an automorphic
form for GL,,. For that, two ingredients are needed: the converse Theorem and the
Langlands-Shahidi method.

14



Converse theorem

The converse theorem gives us a way to prove that an irreducible admissible represen-
tation of GL,,(Ar) is automorphic, whenever we can prove certain properties of appro-
priately twisted families of Rankin-Selberg L-functions and e-factors. This theorem is
a vast generalization of the classical converse theorem of Hecke for modular forms. In
our setup, we will prove and use an adapted version of the converse theorem in positive
characteristic, already stated in [37].

Our proof of the converse theorem will closely follow the arguments appearing in
the version by L. Lafforgue [33]. The differences between his version and ours are
that we will allow a twist and that the representation of GL,, (Ar) is irreducible and
admissible.

Let I be a global field of positive characteristic with field of constants F,, |F| its
set of places and let ¢ be a non-trivial character of Ar/F. For a finite subset S of
|F| and a continuous character n of Ax/F*, we let T(S;n) be the set consisting of
T = 1 ® 1, Where 7 is a cuspidal automorphic representation of GL,,(Ar), such that
o, IS Unramified for every x € S, and m is an integer ranging from 1 < m < n—1. Given
a smooth representation 7, we let 7 denote its smooth contragredient representation.

Theorem B (3.2.1). Letn > 2 be an integer and m = Q¢ | 7. @n irreducible admissible
representation of GL,,(Ar). We suppose that, for a finite set S of places of F, r satisfies
the following properties:

i) The central character x. = &,¢|p| Xx, Of 7 IS invariant by the discrete subgroup F*
of Aj.
iy Forallw € T(S;n), the formal series in q—*

L(s,m x ") and L(s, 7 x 7')
are polynomials in q—* and they satisfy the functional equation

L(s,m x ') =¢e(s, 7 x 7', )L(1 — 5,7 x 7).

Then there exists an irreducible automorphic representation of GL,(Ar), where the
factor at each place x ¢ S such that =, is unramified, is unramified and it corresponds
to the factor w, of w, via the Satake parametrization. This representation is cuspidal if
S = 0.

Let =, be the representation of GL,,, for which r,, is the Langlands quotient (Section
2.2). The representation =, has the following form

= = g (pral det [ @ -+ © i, | det ['re),
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where Q is the parabolic subgroup containing the Borel subgroup of upper triangular
matrices associated to the ordered partition (7, s, ..., 71..) Of n, p;, is an irreducible
tempered representation of GL,, .(F,) and the u,, are real numbers satisfying 0 <
U, < -+ <wuy, .. The representation =, is induced of Whittaker type (Section 3.1).

The first step is to reduce the problem to n = 1. This can be done thanks to the
following general identity: for every pair 7., 7. of induced representations of Whittaker
type of GL, (F,) and GL,,(F},), respectively, we have that

L(s, 1, x (Ta,c ® 1)) = L(s, (T2 @ 1) X 7‘;)

Once we are in the case where n = 1, we can follow the constructions in [33]. That is,
using the Whittaker models, we construct in (3.2.5) a non-zero equivariant homomor-
phism from the admissible representation ®,4¢ =, to [T,45 GL.(F) into the space of
functions on GL,,(F)\ GL,(Ar) that are smooth in the sense of being invariant under
some open compact subgroup of GL,,(Ar) of GL,4,.) acting via the right regular action.
We then proceed to construct the desired automorphic representation. In this way we
can obtain the desired version of the converse theorem. Thus after we locally construct
the lift and form a global representation of GL,,, from the quasi-split Special Orthogonal
Group SO;, using the parameter formalism, we need to check the conditions of the
converse theorem. For that we need to use the following central tool in our work.

Langlands-Shahidi Method

Let P = MN be a (standard, i.e. containing a Borel subgroup) maximal parabolic
subgroup of a connected quasi-split group G over a non-archimedean local field F' of
positive characteristic, where M and N are the Levi and unipotent subgroups, respec-
tively. Let also “n be the Lie algebra of the corresponding unipotent subgroup of the
L-group of G, on which £ M acts via the adjoint action. Fix +) a non-trivial additive char-
acter of F'. The adjoint representation has the following decomposition into irreducible
representations,
r=@@r "M — GL("n).
=1

The Langlands-Shahidi method associates to a generic representation ¢ of M(F') a
rational polynomial in C(¢z*%), called ~-factor

,7(87 g, T4, 1/})

This construction was first developed by Shahidi [46] in characteristic zero. Later Lomeli
[38] developed this in positive characteristic and it will be in this context that we will work.

In our case when G = SO;,, ..\, and the maximal parabolic has Levi subgroup M =
GL,, x SO, , the adjoint representation we consider has the following decomposition

=11 Dry,
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where r; = p,, ® p5, and r, = A%p,, (Section 2.5). Here, p,, is the standard representa-
tion of GL,,,(C) and p;,, is the contragredient the representation pj, , introduced before in
the section titled Special Orthogonal Groups . Now using this general construction we
can specify the first factor appearing in Theorem A. Let = be a generic representation
of 8O;,(F) and 7 a generic representation of GL,,(F). Then ¢ = 7 ® 7 is a generic
representation of M(F') and we denote

Y(s, ™ X T,00) = (8, T QT,1r1,1).

An important feature of this system of y-factors is the multiplicativity property and
its relation with Tate local factors. If m = 1, 7 is a generic constituent of z’ls_-,oogn(xl, ey Xn—1,1)
and 7 is a representation of F'*, these two properties give us the following form for the
~-factors (see (2.9.1)):

n—1
Vs, mx 1,9) = (s, x 7,0) [T 7(s, xam, )y (s, x5 7, 90),
i=1

where ~(s, x;7,v) are Tate factors. The factor v(s,n x 7,4) can be characterised using
the construction of ~-factors and the determination of the simply connected cover of
SO; (see Proposition 2.9.2).

Another essential property of y-factors, is their stability under twists by sufficiently
highly ramified characters (Theorem 2.8.2). This important input comes from the work
of Gan-Lomeli in [16], where they establish this powerful result in positive characteristic.

The Langlands-Shahidi method provides the means to construct local L-functions
and e-factors
5(57777”i7¢) & L(S77T’Ti)

that complete the ones defined in the unramified case and satisfy the expected prop-
erties. For that, a property is needed, whose validity amounts to the Shahidi tempered
L-function conjecture. It is known for arbitrary quasi-split groups in characteristic zero
[21] and for split groups in positive characteristic [39]. In this thesis we prove it in a
special case (Remark 2.10.3), to use it in the construction of the lift. Later, in order to
obtain the full compatibility between the local components of the cuspidal automorphic
representation of SO;,, and those of its transfer, we will assume the property.

Now let us go back to the global situation. Let F' be a global field of positive
characteristic. Then the Langlands-Shahidi method allows us to define for a globally
generic cuspidal automorphic representation = = ®,m, of M(Ar) C G(Ar), the global
Langlands-Shahidi L-functions and s-factors

L(s,mr;) = [ L(s,ms,1i0) & e(s,mry) = [] (s, 70,70, ¥s).

z€|F| z€|F|

They satisfy the crucial functional equation

L(Su 7T7Ti> - 5(‘37 T, T‘Z)L(]. - S7ﬁ7ri)‘
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Global L-functions

Before we continue, we need to study global L-functions in more detail. For this, we
use the constructions in the theory of Eisenstein Series in positive characteristic. They
allow us to establish two main properties we need for the global L-functions. The first
one is the holomorphy for each L-function associated to a generic cuspidal automor-
phic representation = of M(Ar) that satisfies wym 2 = (Corollary 4.2.1), where @ is a
representative of wy = w;gw;m (Section 1.1). The holomorphy of the intertwining op-
erator and the Eisenstein coefficient, for representations that satisfy wor 2% m, gives
us a partial result. We complete it by using a local property on normalized intertwining
operators (2.11.2). We then obtain that

L L(is,m, 1)

11 7 (resp. ﬁL(His,w,n))

e} (1 +is,m,1;) e}

is holomorphic for Res > 1/2 (resp. holomorphic and non-zero for Res > 0). We
conclude by using induction on m,. This discussion is valid for a general quasi-split
reductive group, that satisfies the property on the normalized intertwining operators.
This last property is known as the Kim’s assumption. We will prove it under the as-
sumption that the representations that we are considering, satisfy the standard module
conjecture in a special case (Section 2.11).

The following property is the holomorphy (without twist) of partial L-functions (The-
orem 4.2.6) for a cuspidal representation of

We study the intertwining operator as before. Using that SO(¢r, s, ) is split for a sub-
set of density 1/2 of the unramified places = of E/F and the relation of the intertwining
operator with the residual spectrum, we show that it is holomorphic for Re s > 1 (Propo-
sition 4.1.5). We finish by using the fact that m, = 2, which enables us to arrive at a
Siegel Levi case studied in general in [39], and doing a similar analysis as above we
arrive at the following

Theorem C (4.2.6). LetG = SO, , and letP = MN be a parabolic subgroup of with Levi
subgroup M of the form GL,, x SO;, . Letoc = T @ 7 be a generic cuspidal automorphic
representation of M(A ) unramified outside of a finite set S of places. Then L°(s,o,r;)
is holomorphic and non-vanishing for Re(s) > 1 and has at most a simple pole at s = 1.

This result will play a main role in the study of the image of functoriality.

Functoriality for SO;,

We now have all the ingredients ready to apply them to our problem. Let 7 = ®,7,
be a globally generic cuspidal automorphic representation of SO, (Ar), such that =, is
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unramified outside for x ¢ S. We fix a maximal torus T of SO, P, a Borel subgroup
of 805, containing T and ¢y = ®, a nontrivial character of Ar/F, such that v, is
unramified for z ¢ S.

For every place = such that «, is unramified, we choose a character \, of T(F,)
related to 7, via the Satake parametrization (5.4.1) and for = ramified, the induced rep-
resentation if,f'z"(/\w) has an (irreducible) generic subquotient 7\, = =, with the same
central character of 7,. From \,, we get ¢, : W, — LT,. Now let T, = {t =
diag(ty, ... to,t7%, ..., t7")} be a maximal split torus of SO,,. Then, after composing
these parameters with the inclusion i, : T,(C) x I'r, — S0,,(C) x ', and applying
local Langlands correspondence to

Pz 0ty 0 Ox,: Wi — GLgyn(C) x ',

we find an admissible irreducible representation I/, of GL,,(F,). Finally we put II' =
®.Il,, which is an irreducible admissible representation of GL,,(Ar). Using the con-
struction (6.1.1) mentioned in the section titled Langlands Parameters, we have a de-
scription of these representations and their central characters.

We then use the properties of the Langlands-Shahidi v-factors, L-functions and e-
factors, to prove that we have the following compatibility between the Langlands-Shahidi
and Rankin-Selberg L-functions and e-factors of the lift (Corollary 6.2.8). Namely, there
is a character n of Ay /F*, such that for every cuspidal automorphic representation
T € T(S;n), we have that

L(s,mx 1) = L(s,IT" x 7),
e(s,mx 1,9) =¢e(s, 11" x 7,1).

With these relations, we are in position to check the hypotheses of the converse the-
orem, under the assumption that a special case of the standard module conjecture is
valid (2.11.1). Indeed, using a combination of the holomorphicity of the L-functions after
a twist (in this case by n) and the functional equation, we get the polynomial condition
of the global Rankin-Selberg L-function. Thus after applying the converse theorem, we
are able to find a (weak) automorphic lift IT (Section 6.4) as a subquotient of a repre-
sentation
Ind(IIy, - -, Iy),

where Iy, ..., II; are cuspidal automorphic representations of smaller general linear
groups and Ind is the (global) normalized induction functor from a certain parabolic
subgroup of GL,,, to GL,,,. This settles the existence of the desired lift, but we go further
and we verify additional important properties, that will be useful for further applications.

Theorem D (7.2.1). Letw be a globally unitary generic cuspidal automorphic represen-
tation of SO;, (Ar). Then, 7 transfers to an irreducible automorphic representation 11 of
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GL.,.(Ar). Its central character is given by the quadratic character of Ar/F* defining
E (6.1.3) and 11 can be expressed as an isobaric sum (see Section 6.4)

M=T1,38 - B,

where each 11, is a unitary self-dual cuspidal automorphic representation of GLy, (Ar),
andHZ’ 7’32 Hj fori #]

In fact, combining holomorphy properties of Rankin-Selberg partial L-functions,
Langlands-Shahidi partial L-functions (without twist) and the relation

LS(s,m x 1) = L5(s,11 x 7),

we can prove that the cuspidal factors II; are distinct, unitary and self dual in positive
characteristic. As II; is unitary for every i, Ind(Ily,--- ,I1,) is irreducible and thus II
coincides with the isobaric sum.

Next, we prove the following compatibility between the ~-factors of = and the lift 1I.

Theorem E (7.3.1). Let 7 = @, be a globally generic cuspidal automorphic represen-
tation of SO;, (Ar) and 11 its transfer to GL,,,(Ar). Let x € |F| and m a positive integer.
Then for T, an irreducible generic unitary representation of GL,,(F,)

’7(8771-:2 X Tm7¢w) = 7<S7H:B X Txuwr>‘

In order to prove this for the ~-factors, we use the global functional equation of the
L-functions. The combination of Theorem D and E yield the main result of this thesis
(Theorem A).

Ramanujan Conjecture

Finally, thanks to the validity of the Ramanujan conjecture for GL,, (Ar) established by
L. Lafforgue in [33], we prove the unramified Ramanujan conjecture for SO;,..

Theorem F (7.4.1). Let = be a globally generic cuspidal representation of SO, (Ar).
Then, if r,, is unramified, its Satake parameters have absolute value 1.

Perspectives

Our work relies on the tempered L-function property, where the general case was set-
tled in characteristic 0 by Heiermann and Opdam [21] and by Lomeli for split groups
in characteristic p [39]. However, all of the machinery in positive characteristic is now
available to prove the property for quasi-split groups. Thus, we aim to bridge this gap
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in future work. We observe that arguing as in [20], the tempered L-function property
implies the standard module conjecture and also Kim’s assumption. In particular, we
provide a proof of Kim’s assumption in Section 2.11 under the assumption of a weak
version of the standard module conjecture.

However, we take special care throughout the thesis to give complete proofs that
do not involve the full use of the tempered L-function conjecture, property (T). This
results in the fact that Theorems A, E and F do not use property (T), but do use the
weak version of the standard module conjecture, if the compatibility at all local places
is changed to all unramified places. All other results are unconditional. For example,
we prove Theorem D using partial L-functions, hence property (T) at ramified places is
not required.

The construction of the transfer was made in the context of globally generic cus-
pidal representations of the even quasi-split non-split special orthogonal group. But
now with the work in positive characteristic of V. Lafforgue on the global Langlands
parametrisation and that of the Lafforgue-Genestier on the local Langlands parametri-
sation up to semisimplification, there are new paths to approach the functoriality con-
jecture for non-generic representations.

While we do not use the results of V. Lafforgue and Genestier-Lafforgue in this
thesis, we do make use of the landmark result of L. Lafforgue on the global Langlands
correspondence for general linear groups [33]. In particular, combining our functorial
lift from SO, to GL,, with the results of L. Lafforgue, we establish the Ramanujan
conjecture for SO;,,, at least at every unramified place.
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Chapter 1

Special orthogonal groups

In this chapter we set up, as in [12], the general facts and properties of algebraic groups
that will be useful throughout the thesis. In particular we will define the quasi-split non-
split special orthogonal group. Let & be a field and fix a separable closure k; and denote
I'y = Gal(ks/k). Let us denote by Gy, the base-change to &, of a group G over k.

1.1 Weights and parabolic subgroups. Let H be a smooth connected group over a
field k. We denote

X(H) = Hom(H,G,,) & X.(H) = Hom(G,H).

the set of characters and co-characters of H.

Assume that H is abelian. Then these sets are abelian groups and since Hom(G,,,, G,,,) =
Z we have that the composition

Hom(G,,,H) x Hom(H, G,,) — Hom(G,,,G,,)
(b, v) = vop

induces a natural pairing of abelian groups

XH) x X,(H) > Z
(v, ) = (v, ).

Let S be a k-split subtorus of H. As H acts functorially on b = Lie(H) via the adjoint
action so does S. In this case we define

®(H,S) = {a € X(S) — {0} : h, £ 0} C X(S) @ R,

where b, is the unique subspace of ) characterized be the property that (h,)r = (h, ®x
R) ={vebgr:t-v=a(t)v, t € S(R)}, for every k-algebra R.
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Let G be a connected reductive group over k£, S a maximal k-split torus in Gand T
a maximal k-torus in G containing S. With these choices, we denote

o =0(G,,T.) & T=,0=05G,S).

In this case, these are moreover root systems, which are also called absolute and
relative root system respectively. The dual root system is denoted by &V C X, (T,,) @ R
and XV C X,(S) @ R.

We can relate these informations with each other. Pick a minimal parabolic k-
subgroup P, such that S ¢ T C Py, a Borel k,-subgroup T, € B C Py, and let

ot =3(B,T,) & X =,0%=d(P,,8).

We also denote by A a basis of simple roots of ®*. This set carries an action of
Gal(ks/k) = Ty, called the x-action [13, p.607] and [12, Remark 7.1.2]. The I';-action
on A does not come from the one on X (T, ), though it does if G is quasi-split, i.e has
a Borel subgroup B defined over k. Now thanks to the inclusion S,, C T,, we have a
surjective (restriction) homomorphism

X(Tx,) = X(Si,) = X(S)

which caries @ into X U {0}, hitting all of X. Also it sends ®* into ¥ U {0}, as B C Py,.
Denote by A the set {a € A: Resf;;: a =1} and by ;A the image of A — Aqin X. It can
be proven that it is a basis of ¥ [13, Theorem C.2.15]. The restriction map does give
rise to a I'y-invariant map

(Parabolic subgroup). We can parametrize parabolic subgroups containing a fixed
minimal parabolic subgroup P, that contains S in the following way [13, Proposition
3.5.1]:

{Parabolic subgroups P > Py} — {Parabolic subsets ¥ C ¥ containing ¥}
P— ¢(P,S).

Moreover, the sets on the right hand side are exactly the subsets ,®* U [d], where
0 C yAand [0] = (Z-0)Ny® [6, Ch. VI, §1, n° 7. Proposition 20]. Thus we obtain an
inclusion preserving bijection (in both directions)

{Parabolic subgroups P > Py} <~ {Subsets 6 C A}
Pg —i 0.

(Weyl Group). The Weyl group of G is
We =W(G,S) = Ng(S)(k)/Za(S)(k) € GL(X(S) @ R).
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It can be identified with the Weyl group W (,®) of the root system ,® [13, Theorem
C.2.15]. We denote by w; = w;, o = wg the longest element of WG, Finally, for w € W€,
we denote by w a lift in Ng(S)(k) C G(k).

1.2 Root groups and Levi subgroups. To know more about the structure of reductive
groups and its subgroups, we use the construction in [13, Proposition 3.3.6] that we now
summarize. Let G be a smooth connected affine k-group equipped with an action by a
split k-torus S and let A C X (S) be a semigroup not containing 0. There exists a unique
S-stable smooth connected k-subgroup

U4 (G)

such that Lie(U4(G)) is the span of the a-weight spaces for all « € AN ®(G,S). This
k-group is unipotent and contains any S-stable smooth connected k-subgroup H C G
such that all weights of S on Lie(H) belong to A.

Now this construction allows us to consider the (relative) root groups as follows.
Forany a € X(S)—{0}, let (a) be the semigroup consisting of positive integral multiples
of a. For a € X2, we define the (relative) root group associated to a € ¥ as

Ua = U<a>(G).

(Levi subgroups). These groups can also be used to describe the parabolic sub-
groups. Indeed for any parabolic subgroup P of G containing S, if we denote by W¥p the
subset of ¥ that consists of all the a € ¥ such that —a € ®(P,S), then [13, Proposition
C.2.26]

Ry x(P) = Uy,

where R, (P) is the k-unipotent radical of P. In fact this description enables us to not
only characterize the radical uniponent subgroups of a parabolic subgroup, but also
to find an explicit expression of their Levi subgroups. Let P, be a minimal parabolic
subgroup containing S. Let P, O Py, where 6§ C ,A. Let’s consider
0
Ap,=S;:=(Nkera) CS & Mp, =Za(Sy).

TE

Then, we have the following Levi decomposition
P9 = ZG(SQ) X U‘I’Pe .

As a consequence of this explicit description we get that every parabolic P subgroup
containing S has a unique Levi subgroup Mp > S. Moreover, Mp is the centralizer of
a split subtorus Ap = Amn, C S. For a fixed S, these are often called semi-standard
parabolic subgroup and semi-standard Levi subgroup.

1.3 L-group. Let R = (X(Ty,),®, X.(Tx,), ®") be the absolute root datum associated
to G. Consider a pinning (7, {X,}.ca) on (Gy,, Tx,) i.e. a choice of basis of g, for each
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a € A. The Isomorphism Theorem [12, Theorem 6.1.17] gives that the natural map
Autks (Gks7Tks? {Xa}aeA) — Aut(Ra A)
is bijective.

Let G be the unique pinned connected reductive group (scheme) over C whose
based root datum is equipped with an identification with (RY, AY), where RY = (X, (Tx,),
oV, X (Ty,),®), obtained from the Isomorphism theorem [12, Theorem 6.1.17]. More-
over, as this latter root datum carries the x-action, it defines a composite homomor-

phism ~
p: Tp — Aut(RY, AY) — Aut(G). (1.3.1)

The embedding

~

Aut(RY, AY) — Aut(G)

depends on the choice of pinning of G [12, p 243, (7.1.3)], but the G(C)-conjugacy class
of this homomorphism is independent of this choice. The Langlands dual of G is the
disconnected locally algebraic group

LGk Z:Fk KG,

well-defined up to G(C)-conjugation. We write G, = £ G,(C) and LG} = G,(C) C
L@y. If the context allows us, we just write “G.

If H is another reductive group over k with L-group * H,,, then an L-homomorphism
from LG, to L' Hy, is a continuous group homomorphism p whose restriction to “GY, is
a complex analytic homomorphism of ZG? into L H?, such that the following diagram is

commutative
LGk P L H,
[y

1.4 Special orthogonal groups. We start with the general construction of SO(q), for
an even dimensional non-degenerate quadratic space @ = (V, q). First we recall some
definitions: for a k-algebra R, a R-quadratic space is a pair (V,q) of a finite free R-
module V' and a quadratic form¢: V — Ri.e.

) q(rv) =r*q(v),forallr € Randv €V,
iy the map B,: V xV — R, defined by B,(z,y) = q(z +y) — q(z) — q(y), is R-bilinear.

The orthogonal group O(q) for a general k-quadratic space (V, q) over k, is a closed
subscheme of GL(V'), which represents the functor

R— {g € GL(VR): qr(9z) = qr(x) for all x € Vg}.
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Now, suppose that V' has even dimension n. In this case non-degenerate means that
the bilinear form B,(z,y) is non-degenerate.

Now to define the special orthogonal group, we need for every k-algbera R, the
Clifford algebra given by

C(Vr,qr) = Sym(VRr)/{qr(z) — 2 @ x: x € Vp),

where SymVg denotes the symmetric algebra. The algebra C(Vg,qr) has a Z/2Z-
grading, induced by the Z-grading of Sym V. This algebra satisfies the following struc-
tural property

Proposition 1.4.1. [12, Corollary C.2.2] The R-algebra C(Vx,qr) and its even part
Co(VR,qr) are respectively isomorphic, fppf-locally on R, to M,.,.(R) and a product
of two copies of My -1(R), with the left Cy(Vr, qr)-module Cy(Vg, qr) free of rank 1.

Furthermore, C(Vg,qr) and C;(Vr,qr) (j = 1,2) are R-free and the centers of
C(Vgr, qr) and Cy(Vr, qr) are respectively equal to R and a rank-2 finite étale R-algebra
Z,. Co(Vr, qr) is the centralizer of Z, in C(Vg, qr).

The induced action of O(q)(R) on C(Vg,qr) preserves the grading and, hence
induces an action on Cy(Vg, gr), so finally we obtain an action on Z,,,. Now the auto-
morphism scheme Aut_ /. is uniquely isomorphic to the constant group Z/2Z. Thus we
get a homomorphism [12, C.2.2]

D,: O(q) — Z/2Z,

that is moreover compatible with isomorphisms of quadratic spaces (V, q), i.e. k-linear
isomorphism preserving the quadratic forms. Its formation commutes with extension of
scalars. This allows us to define

SO(q) == ker D,,.

Theorem 1.4.2. [12, Section C.2] The group SO(q) is connected, smooth and reductive
of dimension n(n — 1)/2. Its center is the 2-root of unity us as a group scheme. The
Dickson morphism D, is a smooth surjection, identifying Z/2Z with O(q)/ SO(q).

On the other hand, we also have the determinant homomorphism, that, thanks to
the non-degeneracy property of B,, factors through p

det: O(q) — p2 C Gyy.
Furthermore one can prove [12, Corollary C.3.2],
SO(q) C ker(det)

and that it is an equality if and only if char(k) # 2.
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Remark 1.4.3. There is a similar construction for SO(q) for odd dimensional quadratic
space (V,q) [12, C.2].

We are going to consider two families of these groups: for n > 1 consider the
quadratic space Q,, = (k*", q,), where

qn(l'l, e ,xgn) = T1T2n + -+ LTnLy+1-

We have an orthogonal decomposition ), = H; L --- L H,, for n hyperbolic planes
H; = (ke;®kean—it1, TiTon—it1). INdeed, we note that B, (z,y) = > (x:¥Yan—i+1+Tan—i+1Yi)s
which it is non-degenerate. To simplify the notation, when the base field % is clear from
context, we denote

SO,, = SO(qk.n).

Let [ a separable quadratic extension of &, N;/, the norm, Tr,; ;. the trace and o the non-
trivial element of Gal(l/k). For n > 1 consider the quadratic space Q;,, = (k"' & [ &
k" q.n), where

Un (1, Tne1, T, Ty 2,y - - Ton) = T1&p + - -+ + Tp1Tpq2 + Nyyg().

We have an orthogonal decomposition @Q;,, = Hy L --- L H,—1 L ([,Nyy), forn —1
hyperbolic planes H; = (ke; ® kea,, 11, ;22,—;+1) @and an (anisotropic) non-degenerated
quadratic space (/,N;). Indeed, we note that B, (z,y) = Y (2iyan—i+1 + Ton—iv1¥i) +
Tryx(zo(y)), which it is non-degenerate. To simplify the notation, when the extension !
over k is clear from context, we write

S0;, = SO0(q.,).

1.5 Properties and calculations for SO(¢;,,). The group SO(¢;,,) is a k-form, splitting
over [, of the split group SO,,,, whose absolute root system is D,,.

We let

n—1
S =[] SO(H;) C SO(q;,) & T=SxSO(l,Ny;) C SO(q,).
=1

Since the dimension of S is n — 1 and the dimension of T is n, we get that S € SO(q;,,)
is @ maximal split k-torus and T is a maximal k-torus. Let W = H; 1 --- L H,, ;. Now,
if we write the elements of End(Q;,,) as block matrices

A B

C D)’
with A € End(W), B € Hom(W,l), C € Hom(l,W), and D € End(l), then S can be
identified with the set of block matrices of the form

A 0
0 Id;)’
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with A consisting of matrices
diag(tla e tn—ly t;ih T atl_l)a

with respect to the ordered basis of W given by {eq,..., e, 1,€n10,...,€2,}-

On the other hand, by noticing that ¢, ,, restricted to W L k - 1 is the split form of
2(n — 1) + 1 variables

2
T1Ton + + + Tp1Tpyo + 27,

we get a copy of SOy, ; = SO(W L k-1) inside SO(g, ). Finally, putting these together
we can show that the (relative) root system ®(SO(¢;,,),S) = ®(SO(W L k-1),8) =X =
B,,_1 and moreover

Z6(S)=T.

Let us choose « € [ such that [ = k(«). Let Py be the minimal parabolic subgroup of
SO(¢,) containing S consisting of upper triangular block matrices with respect to the
ordered basis of @;,, given by {eq,...,e,—1,1, 0, €n49,...,e2,}. Then, as Zg(S) =T, we
have

Po =T xRyx(Po),

and that SO(q;,,) is quasi-split. As it will be used later, we study the following low relative
rank cases.

(Relative rank 0). [12, Example C.6.1] Let us choose « € [ such that [ = k(«). We
look at @1, = (I, Ny/;). As dimy (1) = 2 we can check by definition that,

COZCO(lle/k) :Zq:k[l(g)Oé] =] & Ol :Cl(laNl/k) =[.

The algebra C; acts on (1, as [ acts on [, i.e. by multiplication. Furthermore as the
action of SO(N, /) on C; corresponds to the natural one and since its action on Cj is
trivial by definition, we have that the functor of points of SO(N; ;) C GL(!) consists in (-
linear maps that preserve N;/,. Now if we consider the morphism induced by the action
of I on GL,(l), this leads to an immersion of the norm one N'(Res;x G,,) elements of
Res; k(G ), in GL,(1). By definition this corresponds to the i-linear automorphisms that
preserve N;/;, thus we have that

SO(Nl/k) - Nl (Resl/k Grm)

Finally as both tori (smooth and connected) have the same dimension, the inclusion
must be an equality.

(Relative rank 1). We relate Res;;, SL, to the simply connected cover of SO(q;»).
First we note that (), is isomorphic to the quadratic space (E,q) of Hermitian 2 x 2
matrices, with quadratic form ¢ = — det, via

(1,9, ) — <_x1 x) :

o(x) x9
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Furthermore, we have an action of Res;/, SL, on E, via
ar gag®,

where ¢* = 'o(g). We observe that ¢(a) = ¢(gag*) and det(a — gag*) = 1. Thus the
action gives us a morphism

Resl/k SL2 — SO'(q) = ker(det |o(q)).

As Res;/; SL, is connected and O(q)/ SO(q) = Z/2Z, this morphism factors through
SO(q) = SO(q,»2). Finally as the kernel of this morphism is i, and the dimensions of
the groups SO(¢;2) and Res;/ SL, are the same, we have

1— Mo — Resl/k SLQ — SO(QQJ) — 1. (151)

We can also obtain this description using the general theory of orthogonal groups.
Recall that Spin(q) [12, p. 336] is the simply connected central cover of SO(q) [12,
Lemma C.4.1]

1 — py — Spin(q) — SO(q) — 1.

By definition we have that
Spin(q) C Z(Resz, ;1 Co(V,q)™),

where Z(Resz,;x Co(V, q)*) is the derived k-group of Resyz, /. Co(V, ¢)*. Now suppose
V' has dimension 4. We claim that in fact this is an equality. Indeed, as we know,
Co(V,q) is a quaternion algebra over Z, (Proposition 1.4.1), thus Resz,/, Co(V, q)* is an
inner form of GL,(Z,), s0 Z(Resz, ;1 Co(V,q)*) is of dimension 6. On the other hand we
have that Spin(¢) also has dimension 6, and as both are smooth and connected, the
inclusion is an equality.

In the case (V,q) = Q12 = Hi L (I, Ni), we have, from the definition, a graded
isomorphism [31, 1V, (1.3.1)]

C(V,q) = CH)RC(, Ny,).

Furthermore, as C'(H) = M,(k) [31, V, (2.1.6)] and C (I, Nyy,) = 1 ®ul [31,V, (2.2.1)] with
the multiplication rules zu = uo(x) and u* = 1, we also have a graded isomorphism

M, (k)R © ul) — My(l @ ul)

(g e e (),

in particular we get that

ul

Co(V, q) = (il z) c My(l & ul).
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Finally, the map
a®r; bRuxsy ary bo(xs)
H Y
cRury d® xy cxs do(xy)
induces an isomorphism
Co(V,q) = My(1).

This implies that in fact Cy(V, ¢)* = GLy(!) and Z, = [, thus

Spln(q) = Resl/k SL2 .
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Chapter 2

The Langlands-Shahidi Method

In this chapter, we recall some local and global notions. We mainly follow [38], in order
to present the Langlands-Shahidi ~-factors, L-functions and e-factors. We apply this to
the case SO;,. We finish by discussing three foundational conjectures in this theory,
Shahidi’s tempered L-function conjecture, the standard module conjecture and Kim’s
assumption.

Let G be a (connected) reductive group over a non-archimedean local or a global
field I of positive characteristic. Let us fix a separable closure F of F. Finally, let us fix
in G a maximal F'-split subtorus S and P, a minimal parabolic subgroup containing S.

From now on, in order to reduce the size of the indices, we sometimes use the
notation M = M(F'), for the rational points of an algebraic group scheme M over F.

2.1 Basic structures. For a Levi subgroup M containing S (i.e. semi-standard, see
Section 1.2) of G, we let

am=XM)@zR & aye=X(M)&zC.
In the case where My is the Levi subgroup of G associated to § C A (Section 1.2), we
let a; = ay, and aj c = am, c-
Let us recall that, as G is connected reductive, the restriction homomorphism to

Ag (Section 1.2):
Resg,: X(G) = X (Aq)

has finite cokernel and is injective; in particular it induces an isomorphism
ag — X (Ag) ®z R.

Now, let us consider L be a semi-standard Levi subgroup of G containing M. By defini-
tion we have
ALCAycMCL.
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This chain induces the following commutative diagram by the restrictions

Resk
AL

X(L) — X(AL)

Res'l\',I J{ TRes:T

X(M) —= X(Am).

ResAM

Since the horizontal arrows are injections with finite cokernels between torsion free
groups, they become isomorphisms after tensoring them by R. Moreover, we obtain a
split exact sequence

— L

0 — of & app —— (ag)* —— O,

where (af)* := coker(X (L) — X(M)) ®z R. In other words, we have a decomposition,
ap = aj @ (af)".
Analogously, we have for ay = (X(M) ®z R)* the following exact sequence

0 —— aL —— am = (afg) —— 0

and thus a decomposition
am = aL D all\-ll'

By definition (P, Am) (Section 1.1) is a subset of X (An), hence of ay; in fact it lies
in (a$)* and it spans it. In particular xA C ®(P,,S) spans (a$)*. Moreover, for P a
parabolic subgroup of G containing Py, the restriction Ay C Am, = S induces a map

®(P,S) — ®(P, Au) U {0},

such that ®(M, Ap,) maps to 0. Denote by Ap C ay the image of A\®(M, Ay) in
O(P,Ay).
Finally, let

ag ={ve gy, (v,a") > 0,0 € Ap}

ay' = {v €dy, : (r,a') > 0,a € Ap}.

(Unramified character). Now suppose that F' is a non-archimedean local field, with
residue field IF,. For every x € X*(G), we define

Xl = |- |r o x(F): G(F) 25 e 1y g2 e,

where x(F') is group homomorphism between the F-points of G and G,,, induced from
X -
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Let us consider the map
loge: G(F) — ag = Homyz(X(G), R).
9= [x = —log|x|r(9)]

Again, from the restriction map of Ag C G, we have that Im(log,) is contained in the

lattice Homz (X (G), @Z) of ag and has finite index there. We also consider a variant

of this map, where we use log, instead of log, we denote it by
Hg: G(F) — X.(G) = Homyz(X(G), Z).
We put

G' = kerlog, = (N ker|xlr, X(G):= Homz(G(F)/G*,C*).
X€X*(G)

We have a surjection,

K age — Home(agc, C) = Home(Im(logy) ® C, C)
= Homg(Im(logs), C) == Homy(Im(logs), C)
2%, Homy(G(F)/G,C*) = X(G),

which can be also be written as

X®s = [g—IxI%(9)]

with kernel equal to R = ﬁlgq Homgz(Im(logs), Z).

We put
Re X(G) = k(ag) & ImX(G) = k(iag).

We note that « restricts to the following isomorphisms
ag — Re X(G),

and
iag/R — Im X(G).
Let C[G(F)/G"] the group algebra of G(F)/G! over C. The universal property of this
algebra gives us the following natural indentification
Homgz(G(F)/G",C*) = Homc_u,(C[G(F)/G'],C).

In other words, X(G) is the set of rational points of Spec(C[G(F)/G']). As G(F)/G" is
free of some finite rank r, we have a (non-canonical) isomorphism from Spec(C[G(F)/G'])
to G7,, giving us an algebraic structure on X' (G), such that it is isomorphic to (C*)".
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We can also give a real manifold structure on Re X'(G) and Im X' (G), given by the
isomorphism above. In the second case it is a compact torus.

(Inertia classes). The group X (G) acts on the set of equivalences classes of the
smooth irreducible representations of G(F'), Irr(G) :

X [(m,V)]) = [(rox, V)], x¢€X(G),relr(G).
We denote the induced action of ag; ¢ via x by 7, = 7 ® k() and

(v, [(m, V)]) = [(m, Vo).

Using that X (G) is an algebraic complex torus and that the stabilizers of this action are
finite we have that its orbits also have an algebraic complex structure. We denote the
orbit of 7 as O ¢, and let R, ¢ C ag ¢ be the lattice such that

agc/Brc — Orc

is a bijection.

Similarly Im X' (G) acts on the set of equivalences classes of smooth unitary irre-
ducible representations and this allows us to think of its orbits as real manifolds that are
diffeomorphic to real compact tori. We denote the orbit of = as O, and let R, C iag be
the lattice such that

ag/Rx — Oy
is a bijection.

(Induced representation). For a totally disconnected topological group H, we de-
note by Rep(H) the (abelian) category of smooth representations of H.

Let P = MN be a parabolic subgroup of G, with M a Levi subgroup and N its
unipotent radical. Then we denote the normalized parabolic induction functor by

i%: Rep(M) — Rep(G).
If (7,V) € Rep(M) then we let
iG(m, V) = (1%, i%V).
Finally we denote, for a parabolic subgroup P = MN with M > S and v € ay ¢

iIG?(Va (7‘(‘, V)) = (Z'IGD(WV% ngy)

2.2 The Langlands quotient. Suppose that F' is a non-archimedean local field. Let
P = MN be a parabolic subgroup of G containing a fixed minimal parabolic subgroup
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Py, o an irreducible tempered representation of M(F’), and v € ay ¢ such that Re(v) €
ayi”- Then i%(v, 7) has a unique irreducible quotient [45, Théoréme VI1.4.2] called the
Langlands quotient and it is denoted by J(P,v, 7). Moreover, if J(P',v/, 7') = J(P,v, )
then M' = M, Re(v — v/) = 0 and 7, = «/,. Every irreducible smooth representation of
Rep(G(F)) is isomorphic to a Langlands’ quotient.

In the case of M = GL,,, x --- x GL,, xG,,, € G,, where G,, = SO;, (we recall
that we have already fixed a minimal parabolic subgroup in Section 1.5) or SO,,, (we
will also fix a minimal parabolic subgroup in Section 5.6). Notice that the center of G,, is
finite, and Langlands quotients are indeed quotients of representations of the form

i) (] det [ @ - - @ my| det | @ o),
where 0 < r; < --- <1, m; is an irreducible tempered representation of GL,,,(F') for
1 <i < band g is an irreducible tempered representation of G,,, (F') .

2.3 Local Intertwining operator. Suppose that F' is a non-archimedean local field.
Consider two parabolic subgroups P = MU and P’ = MU’ of G, with a common Levi
subgroup M, containing S, and let = be a smooth representation of M(F"). We denote
by P the unique parabolic subgroup G that is opposite to P’ and contains M. We first
define formally the G-invariant operator,

JP/|P(7T): Z}G;.V — Z}GD/V
characterized by

(pp@N@) 0= [ (flg) 5 forall v e V.

If for all & € V this integral converges absolutely and there exits v € V such that this
integral is equal to (v, ¥) for all ¥ € V, we will say that Jpp(m) is defined by convergent
integrals. The vector obtained will be denoted by

Uep@ D) = [ flgydu

(UNU\U

Theorem 2.3.1. [56, Theoreme | V.1.1] Suppose that = is of finite length. Then there
exists R € R such that if (Re(x),a") > R foralla € ®(P, Au)N®(P’, Ay), then Jpp(r®
x) is defined by convergent integrals. Moreover, the operator Jp:|p defined in the region
just described of O,  is rational.

We also introduce a variant of that operator, used by Shahidi. We recall that we
have a parametrization of parabolic subgroups containing P,, by subsets of A (Section
1.1). First, for 6,0' C pA, let

W(0,0) ={we W w®) =0}
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For a representative w € Ng(S)(F') of w € W(0,0') and v € aj,,, as Shahidi, we can
define

Alv,m,0) = Jpypor, () 0 HW@) i, (v, m) — igp, (W(v), w(7)) = i, (@ (), @ (7)),

where (t(w)f)(g) = f(wtg), w(r)(g) = m(w~'gw) and =, is an in Section 2.1. This op-
erator is defined in a suitable cone as in the statement of Theorem 2.3.1 by convergent
integrals as follows

A(v,m,w)f(g) = fo~ ' g)du'. (2.3.2)

/UJUG’UJlngl\UGI

2.4 Places and restricted products. Suppose F' is a global field of positive charac-
teristic. In this case we set up some global notations. We denote by |F| the set of
places of F. We denote by F, the local field at =, O, the ring of integers of F, and
Ap = [I, F, the ring of adéles. Let M be an algebraic group over F (finite type group
scheme over F'). The group M(Ay) is the restricted product [Ty M(F,) with respect to
certain compact open subgroups K, of M(F,) [53, Section 4.10].

For each = € |F)|, let (7,,V,) be an admissible representation of M(F,). Assume
that for some finite subset S, of |F'|, we are given a non-zero vector v, € V, for each
x ¢ Sp. These data define a representation of M(A ) [15, Section 2],

<®m,®vz>,

called the restricted tensor product of the collection {(7,,V,): z € |F|} with respect to
the collection {v, € V,.: & Sy}.

If we assume that these representations satisfy dim V%= = 1 and v, € V5=, then
their isomorphism classes as M(Ar)-modules do not depend on the choice of the set
{v.}, and thus we just write ®, .. The elements of these isomorphism classes will
be called factorizable. Finally, we recall that an irreducible admissible representation of
M(AFr) is factorizable [15, Theorem 3].

2.5 Adjoint representation. Suppose that G is quasi-split. Let P = MN be a maximal
parabolic subgroup of G containing Py, associated to rA — {a}. We denote

1
p=5 > beay & a=(pa’)pecay.
bed(P,An)

For 3 € ¥ = ®(G,S) we denote by 3 € & = ®(Gp,, Tr,) a root such that Resgiz B =p.

We consider the L-group G (Section 1.3). Moreover we extend the pinning { X, }seav,
used to define G, to a Chevalley basis {X,: b € ®'}. Now let us consider the adjoint
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representation r of 2M on fn = Lie(YN). For every positive integer i, we consider the
subrepresentation r; acting on

Vi = Span{Xjv € In:(a, BY|ay) =1}

Thanks to the algebraic arguments in [47, Section 2] valid in all characteristics, there
exists a positive integer m, such that

{(@, 8|ag): B € =%, Xgv € 0} = {L,...,m, }.

In fact these subspaces V; correspond to the space generated by the weight spaces
g,v such that

lv|AL1W = igv|ALM>

and they form an irreducible decomposition of r [47, Proposition 4.11]. Thus we can
write
r=a@m"r "M — GL(*n). (2.5.1)

Let E/F be a quadratic extension in F;. Inthe case when P = MN C SO(¢g n1n) =

S05 (.11, With M = GL,,, x SO,, (See Section 1.5, for notations), we are in the case of

(2D,, — 1) [47, p. 565]. We obtain the following decomposition of the adjoint represen-
tation

r=r ®ry, (2.5.2)

where ry = p,,, ® p5. and r, = A%p,,, ® lso;, - Here p,, = IdgL,, is the standard represen-
tation of ~ GL,,,(C), p3,, the representation of £ SO;, (C) constructed in (5.6.1) below and
lso; . is the trivial representation of * SO;, (C).

(Restriction). Now we recall some properties of the restriction of the adjoint rep-
resentation to smaller Levi subgroups. These properties will play a role in the general
multiplicativity formula of v-factor below (Section 2.7).

Let wy = wy, . awy, . a—{a}- We study the restriction of the representation r; to smaller
Levi subgroups. Let 8 C¢ A — {a}, fix a reduced decomposition wy = w,_1---w;
[46, Lemma 2.1.2] and denote ¢ = wy(f) C pA. Foreach j, 2 < j < n—1, let
w; = wj_1---wy. Setw; = 1. Also, let Q; = 6; U {a,}, where 6§, = 6, 6,, = ¢, and
0jr1 = w;(0;), 1 < j < n—1. Then the group Mg, contains My, Ny, as a maximal
parabolic subgroup.

The L-group © M, acts on V;. Given an irreducible subrepresentation of this action,
there exists a unique j, 1 < 57 < n — 1, which under w, is equivalent to an irreducible
subrepresentation of the action of “1/,, on the Lie algebra of “Ny,. We denote i(j) the
index of this subspace of the Lie algebra of LN@J.. Finally, let S; denote the set of all
such i’s where S;, in general, is a proper subset of 1 <7 <n — 1.
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To shorten some indices we use the following notation. If o be a representation of
M(F) and v € ay, then we denote by o; the representation of Ay, given by w;(o) and
vj =w;(v) € ag,.

2.6 Generic representations. Suppose that G is quasi-split, so P, = B = TU, is
a Borel subgroup and F' is a non-archimedean local field. Let x : Uy(F) — C* be a
character that is generic in the sense that it is non-trivial on U, (F') for every a € pA and
that is trivial on the normal subgroup IT,cs+_a U.(F). Anirreducible admissible repre-
sentation (7, V') is said to be x-generic if there exists a non-zero y-generic Whittaker
functional for 7, i.e a functional A, : V' — C such that

for all w € Uy(F') and v € V. The space of such Whittaker functionals, for an irreducible
admissible representation has dimension at most one [50]. For a generic character x
and a y-generic representation (m, V'), there is a unique non-zero Whittaker functional
V, up to multiplication by a non-zero constant.

2.7 The Langlands-Shahidi Method. Suppose F' is a local field of positive charac-
teristic, with residue field kr, and G quasi-split. Denote ¢ = #kr. Let P = MN be a
maximal parabolic subgroup of G, containing P,. The adjoint representation » decom-
poses intro irreducibile representations (Section 2.5)

r=a@m"r "M — GL(*n).

Let also (7, V) be a (x-)generic representation of M(F) and ¢: FF — C* a smooth
non-trivial character. Then the Langlands-Shahidi method [38, Section 5] constructs
rational functions C(¢—*) called ~-factors that are uniquely determined by the following
properties
i) (Naturality). Let n : FF — F’ be an isomorphism of non-archimedean local fields
and let 7’ be the representation of M(F”) and ¢’ the character of F’, obtained via
n. Then
7(57 URRET ¢) = 7(57 7T/, Ty wl)
i) (Isomorphism) Let 7, and 7, be two isomorphic generic representations of M(F).
Then
7(37 1, T4,y ¢> = 7(87 T2, T4, ¢)
iy (Compatibility with Artin factors) Let = be a generic unramified representation of

M(F). Let o : W}; — LM be the Langlands parameter corresponding to = (Section
5.4). Then

v(s, 7, 15,0) = (8,1 0 0,0).
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iv) (Multiplicativity) Let = be the generic subquotient of the representation of M(F)
given as

i%éoﬂMW(Ja
where 7 is a generic representation My, ('), with 6, C 6. Then
7(57 USRED ¢) = H 7(57 00,55 Ti(5) w)7
JES;
where S;, my; and r;;) are as in the last paragraph Section 2.5.

v) (Dependence on v)) Fora € F*, let y*: FF — C* be a character given by ¢*(x) =
Y(az). Then, there is a real number h; and a rational character t : F* — Z(G)
such that

ni(sfé)

V(s w1, 10") = wr(t(a)) " |al 5 (s, i, ),
where n; = dim V; and w, is the central character of «.

a

vi) (Functional equation) Let k& be a global field of positive characteristic, with field
of constants F, and G’ a quasi-split reductive k-group. Let ¢ = ®,v, be a non-
trivial character of A, /k and 7 = ®, . be a globally generic cuspidal automorphic
representation of M'(A,,) (see Section (4.1.1)) such that both 7 and + are unramified
outside a finite subset S of places of k, where M’ is the Levi k-subgroup of a
maximal parabolic subgroup of G’, containing a Borel subgroup Pj. Let

LS(S,W,Ti) = H L(s, 7y, 7iz),
xS
with L(s, 7, 7:4) = det(Id —qp°ri.(as)) ™, [as] the semisimple conjugacy class in
L@G, associated to 7, (Section 5.4). It is a rational function on ¢~ and

LS(S,W,T’Z') = H V(S Ty Tiy V) - LS(l — 8,7, 7T;).

€S

2.8 Stability of ~-factors for SO;,,.

We apply the construction of the Langlands-Shahidi v-factors to the Levi subgroup
M = GL,, x 80O;, of 8O,,,,,,,.- As we mentioned (Section 2.5), the adjoint representa-
tion gives us two irreducible components r; and r,. Thus we obtain two ~ factors.

The one associated to r; will play a main role in functoriality (Section 6.2). For that
reason, we will use the following notation. Let M = GL,, x 805, C SO, 7 be a
generic representation of SO, (F') and T a generic representation of GL,,,(F). We let ©
denote the contragredient representation of 7. Then 7 ® 7 is a generic representation
of M(F') and we write

’Y(Sv T® 7~T7 1, ’QD) = ’7(3a T™XT, 770)
Among the properties of this factor, we would like to highlight two forms of the multi-
plicativity property. Let M; = GL,, x GL,,, x --- x GL,, x SO;,, C M, and suppose that

2ng
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7 is the generic subquotient of

i (@ @ m ® ),
where P; = M; N, is the parabolic subgroup of SO, , containing Py, 7; is a generic
representation of GL,,, (#') for 1 < i < b and 7, is a generic representation of SO, (F').
Then the multiplicative property gives us

b
’Y(S?W X T, ¢) = ’Y(‘g?/ﬁo X T, w) H’y(sa/ﬂi X T,¢)W(377~Ti X 7',¢),

=1
where ~(s,m; x 7,1) is Rankin-Selberg ~-function (Section 3.1). For the other case, let
M, = GL,,, x --- x GL,,,, x SO;,, C M and suppose that 7 is the generic subquotient of

o (@ @n),

where Q = M, N, is the parabolic subgroup of GL,, containing the upper triangular
matrices, 7; is a generic representation of GL,,,,(F) for 1 <: <b. Then

b

v(s,m X T,0) = H’)/(S,?T X Tiy ).

=1

For r,, we obtain the exterior square representation, that will play a role in the study
of partial L-functions (Section 4.2),

7(57 T® T, T2, ¢) - 7(57 T, /\2Pm7 ¢)

These factors have already been studied in detail [22]. The multiplicative property in
this case has the following form. Let M; = GL,,, x - - - x GL,,,, x SO3, € M and suppose
that 7 is the generic subquotient of

ing(F)(Tb ® - ®T),

where 7; is a generic representation of GL,,,.(F) for 1 < i <b. Then

b
7(87 T, /\2pm7 @D) = H 7(37 Ti, /\2pmia w) H ’7(87 T X Tj, w)
=1 1<j

We now present two stability results for the ~-functions.

Lemma 2.8.1. [49, Main Lemma 1] Let = be a generic representation of SO;,,(F') and
T a generic representation of GL,,,(F'). Then there exists a character x of F’* so that
(s, m x (1 x),%) is a monomial in qz.°, for1 < i < m. Moreover xy can be replaced by
any character of F* whose conductor is larger than that of .

We also have the following important result.
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Theorem 2.8.2. [16, Corollary 6.5] Let m; and 7, be two irreducible generic representa-
tions of SO, (F') having the same central character, and let r be an irreducible generic
representation of GL,,,(F'). Then for a sufficiently highly ramified character x of F*, we
have

Y(s,m % (T X),%) = (s, 72 X (T X), ).

2.9 Principal Series and Relative Rank one. Let F be a separable quadratic ex-
tension of F (local field of positive characteristic) contained in F,, with Galois group
Gal(E/F) ={1,0}. Let (x1, ..., xn—1, X) be a character of the maximal subtorus T(F') of
SO, = SO(qr.)(F) (See Section 1.5, for notations), where y; is a character of F* for
each 1 <i<n—1and x is a character of E'. Then if 7 is the generic subquotient of

.SO3
ip, Qn(le ooy Xm—1, X)

and ¢ a character of F*, the multiplicativity formula gives us

n—1
Y(s,m x &) = (s, x x &) T] (s, xis ) v(s, x5 '€, 1)) (2.9.1)
=1

where the (s, x;£, ) are Tate factors.

Let us study the rank one case. First write 1 = 1) o Trg,/r and let \(E/F,+)) be the
Langlands constant [8, Section 30.4]. Now let us recall that we constructed the simply
connected cover of SO(gg2) (1.5.1):

Resg/r SLy — SO(qg2).
This morphism restricts to
diag(t,t™") = [(z1, 22, 2) = (Ng/r(t)z1, Np/p(t) 2o, to™ (t)x)].
Thus we have the following [38, Proposition 1.3]

Proposition 2.9.2. Let (v, &) be a smooth character of T(F'), and . the character of E*
defined by [t — (x o Ng/r)(t) - £(to~(t))]. Then

V(s X X &) = ME/F,)v(s, 1, V).

2.10 L-Functions & =-factors. The construction of y-factors leads us to the construc-
tion of L-functions and e-factors, for a general generic representation.

Let us start with the following definition: Let = be a tempered generic representa-
tion. Now let P, ,. be the unique polynomial with P, ,,(0) = 1 and such that Py ,,(¢z") is
the numerator of (s, w,7;, ). Then we define

L(S,W7T¢):m~

41



Starting from this definition, we can extend it to general generic representation (see
the properties viii-ix below). In order that this construction has good properties (see
for example properties vii,x), the following property (T), known as Shahidi’s tempered
L-function conjecture, must be valid. It was proved in most cases by Kim, see [30] for a
detailed account, and Heiermann and Opdam in characteristic 0 for arbitrary quasi-split
groups [21], using harmonic analytic tools developed in [19] and [51]. Now, we have
the Langlands-Shahidi method available in positive characteristic [38], and observing
that these harmonic analysis tools are also valid in this situation, it is natural to ex-
pect the validity of property (T) in all characteristic. Furthermore, a proof in positive
characteristic for split reductive groups using the Kazhdan transfer is found in [39].

(T) Let = be a generic tempered representation of M(F'), then L(s, 7, r;) is holomorphic
on Re(s) > 0.

Under the assumption that this property (T) holds, we have
vii)y (Tempered e-factors). Let = be a tempered generic representation of M(F'). Then

L(57 T, TZ')

e(s,m ri, ) = 7(3a7f7ri7¢)m,

is @ monomial in ¢z°.

Moreover, we can extend the definitions of L-functions and e-factors for any generic
representation in such a way that [38, Section 5]

viii) (Twists by unramified characters). Let = be a generic representation of M(F'). Then

L(s + so,m,1i) = L(s, qg<80d7HM(.)> ® m,14),

5(8 + S0, T, T4, 1/1) - 5(57 q;<500~47HM(')> ® ™, T, ¢)

ix) (Langlands’ classification). Let = be a generic representation of M(F'). Let 7 be
a tempered generic representation of My, (F') and x an unramified character of
My, (F') as in (Section 2.2). Suppose that 7 is the Langlands quotient of

i%mM@Wx%

with 7y, = m - x. Note that each =, ; is quasi-tempered i.e. a tempered repre-

sentation twisted by an unramified character. Then

L(s,m,r:) = [ L(s,Top.i> 7))

JES;

8(877T7 rsz) = H €<S7 7T07X7]7r1(j)’w>

JES;

(2.10.1)

x) (Global functional Equation). Let k& be a global field of positive characteristic, with
field of constants F, and G a quasi-split reductive k-group. Let 7 = ®, 7. be a
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globally generic cuspidal automorphic representation of M'(A;) where M’ is the
Levi k-subgroup of a maximal parabolic subgroup of G', containing a Borel sub-
group P;. We define

L(s,m,r;) == [ L(s, 70, 1iz).

z€|k|

It is a rational function in ¢—* and we have the functional equation

L(s,m,r;) =¢e(s,m,r) L(1 — s,7,7;). (2.10.2)

As before, we apply this construction to M = GL,, x 8O;, C 805, ). Let 7 be
a generic representation of SO;,,(F) and 7 a generic representation of GL,,,(F). Then
T ® 7 is a generic representation of M(F') and we denote by

L(s, 7@ 7,r1,v) = L(s,m X T)
e(s, 7 @7, r,Y) =e(s, ™ X T,1).

We also note that these factors satisfy similar multiplicativity formulas, as in the case of
~-factors (Section 2.8).

Remark 2.10.3. Let us consider the case of a maximal Levi subgroup M = GL,, x SO;, C
S05, .., and a tempered representation 7 @ 7 of M(F), where « is an unramified rep-

resentation of SO;,,(F'). As each Satake parameter of = has absolute value 1, property

(T) is true for general linear groups and by property iv) of Section 2.7, we get that

L(s, T @ 7, r;) satisfies property (T).

To finish, we note that it follows from the construction of the L-functions and Lemma
2.8.1 that given any generic representation = of M(F)and 7 a generic representation of
GL,.(F), there exists a character x of F'* so that

L(s,mx (t-x)) = 1. (2.10.4)

2.11 Kim’s assumption. In this section we discuss Kim’s assumption. In general its
proof relies on property (T) and the standard module conjecture. This last conjecture,
follows formally from property (T), as can be seen from [20], the machinery for its proof
being in place.

We provide a proof of a version of Kim’s assumption in Proposition 2.11.8, under
the assumption of a weak version of the standard module conjecture: let = be a generic
non-tempered unramified representation of SO}, (F'). Then it is a full induced represen-
tation of the form

395 E) (rdet | @ - @ | det | @ o), (2.11.1)

where 0 < r; < --- <1, m; is an irreducible tempered representation of GL,,,(F') for
1 <i < band m is an irreducible tempered representation of SO;,, (F').

2ng
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In general the standard module conjecture was proven in characteristic zero [20]
for quasi-split groups using the harmonic analytic tools in [19], which are valid in all
characteristics. Having the Langlands-Shahidi method in positive characteristic, we
plan to look these three interrelated properties, namely, Shahidi’s tempered L-function
conjecture, the standard module conjecture and Kim’s assumption, in future work. For
the moment, we will assume the version of the standard module conjecture in positive
characteristic given above to prove Kim’s assumption in the special case we need.

Let P = MN be a maximal parabolic subgroup of G containing Py, associated to
rA\ {a} and @, € G(F) a representative of wy = w;gu,m € WE (Section 1.1). For 7 a
generic representation of M(F'), we define

my L(is,m, ;)
T(S77T) — H L(1 + 2'3’7]'77‘1')6(7:3,77-,7“2'71/])’

i=1

and the normalized intertwining operator N (s, 7, wy) is defined to be such that
A(s,m, o) = 1(s,m)N(s,m, W), (2.11.2)

as a rational operator in s (See Section 2.3, for definition of A(s, 7, w)). Kim’s assump-
tion then asserts that

(A) Let k£ be a global field. Assume that 7 = ®,¢ 7, is a globally generic unitary
cuspidal automorphic representation of M(A;). Then N(s,r,, @) is holomorphic
and non-zero on Re(s) > 1/2 for all z € |&|.

This assumption has been proven in characteristic 0 in [30] for quasi-split groups, us-
ing the tempered L-function conjecture and the standard module conjecture. We will
prove a version (Proposition 2.11.8) of this assumption, but that will be enough for our
purposes (Section 6.3).

Lemma 2.11.3. Let p be a generic unitary cuspidal representation of M(F'). Then
N (s, p,wo) is holomorphic and non-zero outside of Re(s) = —1/2, —1.

Proof. Indeed from [38, Section 5], T[", L(is, p, ;) ' A(s, p, o) is entire and non-zero.
Therefore the poles of N(s, p, ) are zeros of [[, L(1 + is, p,r;)~", but this does not
have a zero outside of Re(s) = —3, —1 [38, Section 5]. O

Lemma 2.11.4. Let © be a generic tempered representation, for which property (T) is
frue. Then N (s, m,w,) is holomorphic on Re(s) > 0 and non-zero on Re(s) > 0.

Proof. In fact, in this case A(s,, ) is holomorphic and non-zero on Re(s) > 0 [56,
Section 1V, Proposition 2.1 & Equation (10)]. Now thanks to property (T), we conclude
that N (s, m,w,) is holomorphic and non-zero on Re(s) > 0. For Re(s) = 0 we use [58,
Lemma 2], which is also valid in positive characteristic. O
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Let My, be a non-maximal Levi subgroup G, with 8, C A\ {a}. In this case, we
recall that we also have spaces of parameters denoted by aj, - = am, ¢ and aj, = a,,
(Section 2.1). We will need them to state the following non-vanishing result concerning
the normalized intertwining operator.

Proposition 2.11.5. Let © be a generic representation of M(F’). Suppose that
™= iAP/[gOQJVI(Av WO)?

where 0y C pA\ {a}, A € aj, o withRe(A) € ap", ™o is a tempered generic representa-
tion of My, (F'), and assume that L(s, n, j,7;;)) satisfies (T) for every i and j € S;. Then
if N(s, ) is holomorphic at s, € C, it is also non-zero at sy.

This result is [58, Theorem 3] in characteristic zero. We mostly follow his proof with
almost no changes to prove the result in positive characteristic.

Proof. As in [58], we extend the definition of the normalization r(s, 7), to deal with the
non-maximal parabolic subgroup Py,, by

n—1

r(v,m) = H r(Viy To1)s

=1
for v € ag, . This allows us to define

N (v, mg, o) = r(v, Wo)_lA(V, 0, Wo).

From the condition that L(s,m;,7;(;)) satisfies (T) for every i and j € S; and Lemma
2.11.4, we obtain that N(v, 7, ) is non-zero and holomorphic on Re(v) € a;" and
holomorphic on Re(v) € aZ;f. Then arguing as in [58, Theorem 3, p. 393] we conclude
that it is also non-vanishing in the closure. Finally, we can find ¢ € W¢ such that
g(0y) C A, and wy(spa+A) isin a;’(g‘o). Then again thanks to the proof of [58, Theorem 3,
pp. 393-394], we obtain that N (v, my, wy) is non-vanishing at spa+ A, as it is holomorphic
there. Finally as N(so, 7, @) = N(so& + A, T, Wo)li(s.x [29, Proof of Lemma 4.3], we
obtain the non-zeroness. O

Lemma 2.11.6. [40, Proposition I.10] Let t, 7’ be two tempered representations of GL,,(F')
and GL,(F), respectively. Then N (s, @1’ ) is holomorphic and non-zero on Re(s) >
—1.

We adapt the arguments in [28, Lemma 3.3] to our case.

Proposition 2.11.7. Let = be a generic unramified representation of SO;, (F'). Suppose
that L(s, ™ x 7) is holomorphic on Re(s) > 1, for every unitary generic representation t
of GL,,,(F’). Then 7 is the Langlands quotient of

205 ) (my det | @ - - - @ my| det | @ 7o),

where 0 < r; < --- < 1y, With r, < 1, m; IS an irreducible tempered representation of
GL, (F) for1 <i < b andm, is an irreducible tempered representation of SO, (F).

2ng
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Proof. We can suppose that each 7, is a discrete series representation of GL,,, (F'), for
1 <i < b. By property ix) of Section 2.10, L(s — r,, m, X 7,) is a factor of L(s, m x 7). As
L(s —ry,, m, X 7p) is @ Rankin-Selberg L-functions (Remark 3.1.1), it has a pole for s = r,
and L(s,m x 7,) is holomorphic on Re(s) > 1, we have that r, < 1. O

The L-function condition in the previous proposition will be studied in Proposition
4.2.4, for a local component of a cuspidal automorphic representation. The next propo-
sition is a weak version of Kim’s assumption that we will prove under the assumption of
the standard module conjecture in the case (2.11.1). To prove it we adapt the arguments
in [28, Proposition 3.4] to our case.

Proposition 2.11.8. Let = be generic unramified representation of SO;,,(F') such that it
is the full induced representation

iioS"(F) (mp| det |"* @ - - - @ m| det | ® o),

where 0 < r; < --- < 1y, Withry, < 1, m; IS an irreducible tempered representation of
GL, (F) for1 < i < b and m, is an irreducible tempered representation of SOy, (F).
Then N(s,T ® 7,w) is holomorphic and non-zero on Re(s) > 1/2 for every generic
unitary representation r of GL,,,(F).

Proof. We can write 7 as the full induced representation [54, Section 7]
i (il det [ @ - - @ &yl det [0 ® Egp1 ® &gl det | @ - - @ & det [ ),

where Q is a parabolic subgroup containing the Borel subgroup of GL,, consisting of
upper triangular matrices, the &;’s are tempered representations of GL,,,,(F) and 0 <
t < <tg<1/2

Combining the description for = and 7 as induced representations, we obtain that
T®7 is full induced from quasi-tempered datum. This allows us to use multiplicativity of
the normalized intertwining operators (See [30, Proposition 4.6]), in order to reduce to
the following rank one cases GL; x GL; C GL;, SO, x GL; C SOy, and GL; ; C
SO;, (I > 3):

i) Forthe case GL; x GL; C GL,;;, we obtain from Re(s £ r; +¢;) > —1, for Re(s) >
1/2 the condition, thanks to Lemma 2.11.6.

i) For the case SOy x GL;, C SOy, we note that Re(s + t4) > 0 for Re(s) > 1/2.
As 7, is tempered and unramified it satisfies property (T) (Remark 2.10.3) and thus
thanks to Lemma 2.11.4, we get our condition.

iy Finally for the case GL,_; C SOj, (I > 3), we use Lemma 2.11.3 as in [27, Lemma
3.3, Proposition 3.4] to conclude.

]
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Chapter 3

Converse theorem

In this chapter, based on [9] and [33], we provide a proof of the twisted version of the
converse theorem found in [11, Section 2] for an admissible irreducible representation
in positive characteristic. This result is stated in [37, Theorem 8.1], and we now take
the opportunity to provide a proof.

Let F' be a global field of positive characteristic with field of constants F,. We keep
the notations introduced in Section 2.4.

We denote by U,, the radical unipotent subgroup of the Borel F-subgroup B,, of
upper triangular matrices of GL,, and by Z, the center of GL,,.

Let us also write
K= HKm = HGLn(Om).

It is @ maximal open compact subgroup of GL,(Ar), and GL,(Ar) is the restricted
product of GL,,(F,) with respect to the K, = GL,,(O,).

3.1 Rankin-Selberg L-functions.

(Local factors). Let 1, be a non-trivial character of F, and use it to also denote
the (generic) character of the unipotent group U,,(F), that associates to v = (u, ;) the
complex number

n—1
Y (u) = Z Vg (Ui i)
i=1

Let us consider a pair of irreducible smooth representations or induced smooth repre-
sentations of Whittaker type 7, and =, of GL,,(F.,) and GL,,(F.,), respectively. We define
as in [26] the local Rankin-Selberg L-functions, e-factors and ~-factors,

L(s,m xm3), e(s,m X mo,10,) & ~(s,m X m,1,).

They are rational polynomials in C(q~*).
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Let us recall the definition of L-functions for induced representations of Whittaker
type, i.e. representations of the form

gy (Pral det [ @ - @ pp | det [*ne),
where Q is a parabolic subgroup containing B,, associated to a partition (ry ., ..., 7m, =)
of n, p; . is an irreducible square-integrable representation of GL,, , (F.) and the v, , are
real numbers satisfying u,, < --- < u,,, .. Every induced representation of Whittaker
type © admits a (v, )-Whittaker model, i.e the space W(r,,) spanned by functions on
GL, (F},) of the form
9= A (T(9)&),

where )\, is a non-zero Whittaker functional, and &, is a vector of = (See Section 2.6).
Once the non-zero Whittaker functional is fixed, we denote such function by W, .

Now, consider a pair of induced smooth representations 7 of GL,,(F,) and 7’ of
GL,.(F,) of Whittaker type. We define for any W € W(r,v,), W' € W(7',4¢,), and any
compactly supported locally constant function ¢: F — C, the following local integrals,
which define rational functions in C(q:’) [26, Theorem 2.7]. In the case where m < n,

h

for0 < j <n-—m— 1, we denote
U (s: W, W' :/ / wly I, dy |-
n—m-—j

W' ()| det(h)[*~("=™/2qh,
In the case where m = n, we put

U W W', :/ W(g)W'(g)®(eng)| det(g)[*dg.

. ) U (F2)\ GLon (Fi) (9)W'(9)®(eng)| det(g)[*dg

These integrals form Clg;, , ¢-°]-fractional ideals I(r,7’) in the case where n = m, and
I;(r,7'), inthe case where m < n, for0 < j <n—m—1,in C(qz’). The unique generator

of these ideals has the form )

P(q=)
with P(X) € C[X] a polynomial with P(0) = 1. This is the Rankin-Selberg L-function of

Tx 7.

L(s,7x7') =

Remark 3.1.1. We remark that from [23, Corollary 3.8], in the where case where 71, 7y
are generic representations of GL,(F,) and GL,,(F,) respectively, the polynomials
L(s,m X m) and e(s,m X ma, 1) coincide with L(s,m ® 79,7) and e(s, m; ® o, 1, 1),
defined in Section 2.10, where the maximal parabolic subgroup considered contains
B,..., and its Levi subgroup is isomorphic to GL,, x GL,,,.

48



(Global Factors). Let v = @, be a non-trivial character of F\Ar and use it to
also denote the character of the unipotent group U,,(Ar), that associates to u = (u; ;)
the complex number

Y(u) = éw(uzwl)

Let 7 = ® 7, be a factorizable representation of GL,(Ar) and 7’ = ® «/, be a factoriz-
able representation of GL,. (A ). We assume that 7, and =/, are irreducible or induced of
Whitaker type. By definition L(s, r, x 7,) is a rational function such that L(s, m, x 7.)~!
is a polynomial in the variable ¢~ 9°&(®)s  with constant term equal to 1. Furthermore,
e.(s,m, X ., 1),) is @ monomial in the variable ¢ d¢(®)s and is equal to 1 for almost all
x. We can define

L(s,m x «') =[] L(s,m x m,), as a formal power series in ¢~*,
x

e(s,mx ' ) =[] e(s, 7 x ',1,) as @ monomial in ¢,
x

because there are only a finite number of places = with given ¢, .

3.2 Converse Theorem. Let S be a finite subset of |F'|. For each integer m, let
Ao(m) = {7 | 7 is a cuspidal representation of GL,,(Ar)},

and
A5 (m) = {1 € Ay(m) | 7, is unramified for all v € S}.

For n > 2, we set

T(n—1)= nﬂl Ao(m) and T5(n—1)= n]:[l AS(m).

If n is a continuous character of F* \ A%, set
T(S;m) =T n—Nen={r=r@n: 7 eT(n-1)}

Theorem 3.2.1. Letn > 2 be an integer, let 7 = @, p 7, be an irreducible admissible
representation of GL,,(Ar) and letn be a continuous character of A trivial on F*.

We suppose that, for a finite set S of places |F|, = satisfies the following properties:
i) The central character x» = &, p| Xx, Of 7 Iis invariant by the discrete subgroup F*
of Aj.
iy Foralln' € T(S;n), the formal series
L(s,m x «') and L(s, 7t x ©")
are polynomials and they satisfy the functional equation

L(s,m x ') =¢e(s,m x 7', )L(1 — s, x 7).
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Then there exists an irreducible automorphic representation p of GL, (Ar) such that,
for each place x ¢ S such that r, is unramified, p, is unramified and =, = p,. Moreover,
p is cuspidal if S = (.

In order to prove this, we will review some notions.

(Subgroups and Compact subgroups of GL,,). We fix a normal and proper curve
Xr over IF, (unique up to isomorphism) with field of fractions F.

Denote by P,, ¢ GL,, the subgroup of matrices of the form

* *
0 0 1

For every closed subscheme N of X supported on S with the ring of global sec-
tions denoted by Oy, we consider the finite index subgroup K4(N) of Kg = [1,cs GL,.(O.)
of matrices with image in GL,,(Oy) of the form

* *
0 0 1

We denote GL,,(Ar)s(N) the open subgroup of GL,,(Ar) given by the inverse image of
K4(N) under GL,,(Ar) — [I,cs GL,.(F,).

(Whittaker models). Every induced representation of (v, )-Whittaker type =, of
GL,.(F,) with a fixed Whittaker functional, admits a Whittaker model W(r,, 1), which
we recall is a non-zero space spanned by functions W, : GL,(F,) — C, indexed by
vector in the space of m,. Note that each such function W, is right-invariant under
some open subgroups of GL,(F,) and the collection of these functions satisfies the
following relation:

We, (uzgs) = Vo (ug)We, (92), for every g, € GL,(Fy), u, € U, (Fy).

Globally, let 7 = ®, 7, be an admissible representation of GL,,(Ar), where =,
is induced of Whittaker type with fixed Whittaker functional. We can choose K, -fixed
vectors &2, for z outside some finite subset 7" of |F|, such that W € W(n,,v,) is
invariant under right multiplication by the compact open subgroup GL,(O,) and it is
equal to 1 at the identity. Now, for every vector £ = (&;).cir| Of 7, such that &, = £ for
almost all =, we consider the complex valued function on GL,,(Ar) given by

We: g = (ga)e = ] We, (92)- (3.2.2)
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Each such W, is right-invariant under a compact open subgroup of GL,,(Ar) and satis-
fies

Wﬁ(ug) = ¢(U)W§<g)7 for every g GLn(AF)u UAS Un(AF>
This function will be our main ingredient for constructing a non-zero equivariant homo-
morphism to the space of automorphic forms.

(Twist). We have the following relation between Rankin-Selberg L-functions
Proposition 3.2.3. Let £ a non-archimedean local field, n : E* — C* a character and
(r,V), (7", V") two induced representations of Whittaker type of GL,,(E) and GL,,(E),

respectively. Then
L(s, 7 x (T'"®n)) = L(s,(t®n) x 7).

Proof. By definition (Section 3.1), we notice that, after choosing a Whittaker functional
A :V — C of 7, we can compute the function W, € W(r ® n,v) as follows

We(g) = n(det(g))A(7(9)€) = AT @ n(g)§). (3.2.4)

Now, let A: V — C and A’: V' — C be the respective Whittaker functionals of 7 and 7,
and We € W(r,¢) and W, € W(r' @ n,7). Then using the identity (3.2.4) we get that

W (s; We, Wer) = W(s; A(7(-)€), n(det (1)) A'(7'(-)€)),
if n =m, and
W;(s; We, Wer) = W;(s; A(7(-)€), m(det () A'(7'(-)€)),

ifm<nand 0 < j <n—m— 1. As these relations imply by definition the equality of
the ideals, we have proved our desired relations. O

Now we go back to the proof of the converse theorem.

Proof of Theorem 3.2.1. For every x € |F| such that =, unramified, we fix a vector v, €
VK= For every z, let =, be the representation of GL,(F},) that has =, as its unique
Langlands’ quotient. Every =, is of the form

= = g (pral det [ @ -+ © py, | det ['re),

where Q is a parabolic subgroup containing B,, associated to a partition (1., ..., 7m,«)
of n, p; . is an irreducible tempered representation of GL,, ,(F,) and the u,, are real
numbers satistying uy , > -+ > U, 4

We can reduce the theorem to the case n = 1. Indeed, by definition of Rankin-
Selberg L-function (Section 3.1) and using Proposition 3.2.3 we have

L(s,m; X (W; ® 1)) = L(s,Z; X (Elx ® 1))
= L(s,(Z: ® 1) X E;) = L(s, (mz ® 1) ¥ 77;:)’
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we can apply the Theorem 3.2.1, with trivial character, to © ® n. Therefore we have that
there exists an automorphic representation II' such that II!. = 7, ® ) for x ¢ S such that
7, is unramified. Then IT := II' @ ! is automorphic and satisfies that IT, = =, forz & S
such that 7, is uramified.

Suppose that S is not empty. For every x ¢ S for which =, is unramified, =, must
have a unique K, -fixed vector £ which projects to the fixed K,-fixed v, vector of .
From these choices, we can consider for every ¢ = (£,), such that &, = £ for almost all
x ¢ S, the global Whittaker function W, (3.2.2).

Now for every = € S such that 7, is ramified, we can choose £? such that (£9).cs is
K (N)-invariant for some subscheme N of Xz, supported on S, and ([9, Section 8 & p.
203])
Wee (1) = 1.

Thus, for every x € S, & is invariant under right multiplication by (g ?) with h €

GL, 1(0,).
Finally we consider as in [33, Corollaire B.15], the well defined function on GL,,(AF)

Ulg)= > Welvg). (3.2.5)
YEUR (F)\ Pn(F)
Putting these together we are able to consider, for every £ = (&,).¢s completed by
&= (&%, (&)zes), the function Ues on GL,,(Ar) defined by

Ues(9) = Ue(d),
if g can be written as g = ¢’ with v € GL,,(F') and ¢’ € GL,,(Ar)s(N) and, if not, by
Ues(g) = 0.

The map ¢° — Ugs defines a non-zero [9, Lemma 6.3] equivariant homomorphism of
the smooth admissible representation =° = &.gs Es Of H;gs GL,.(F,) to the space of
functions on GL,,(F')\ GL,,(Ar) that are invariant under right multiplication by open com-
pact subgroups of GL,,(Ar) [33, p. 237]. The action of the center Z,,(Ar) of GL,,(AF)
on the span of these functions is according to the central character x,. of «.

Since =° has I1° as its unique irreducible quotient, if we take a vector £¢° which has
a non-zero projection to I1%, then ¢° is a cyclic generator of =Z°. Thus the representation
V of GL,(Ar) generated by the space of U,s is admissible [5, Section 5] and cyclic,
generated by some element f,. Let U be a maximal GL, (Ar)-invariant subspace of V/
not containing fo. Then II" = V/U is a non-zero subquotient of the space of automorphic
forms; II' is automorphic and at every place = ¢ S where 7, is unramified, its Satake
parameter equal that to the one of «, [9, Theorem A].

In the case where S is empty, we just consider (¢ — Ug). As Uy is cuspidal [25,
Proposition 12.3], we can conclude as before. O
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Chapter 4

Global L-functions

In this chapter, we start by recalling the global theory of intertwinining operators and
Eisenstein series, following [41], to have access to certain properties of global L-
functions. More precisely, these properties are the holomorphicity of L-functions after
a twist, that will be essential in the application of the converse theorem construction
to a candidate lift (Section 6.3), and the holomorphicity of partial L-functions without a
twist, that will be used to describe the image of the functoriality (Theorem 7.2.1). These
two properties are obtained following the ideas in [39], in the context of the Langlands-
Shahidi method in positive characteristic.

Let G be a quasi-split (connected) reductive group over a positive characteristic
global field £ with field of constants F, and fix a separable closure F; of F'. Let us fix a
maximal F-split subtorus S and P, = T U, a minimal parabolic subgroup containing S.

4.1 Intertwining operator & Eisenstein Series. We first introduce the intertwining
operator and Eisenstein Series. Then we realize a connection between them using
partial L-functions. We fix a maximal compact open subgroup K = [[, K, of G =
G(Ap), asin [41, Section |.1.4].

Let P = MN be a maximal parabolic subgroup of G containing P, associated to
0 = pA —{a} C pA and let wy = wguim € WE (see Section 1.1). Let 0 = ®,0, a
unitary cuspidal automorphic representation of M(Ar), where the restricted product is
taken with respect to functions {¢}. We write

iS(s,0) = Ri%(s,0,) = R i% (0, @ ¢l@Hea (D)

where the restricted product is taken with respect to the functions f;, € i%(s, 7,) such
that f; (k.) = 5 for all k, € K,. For @, a representative of wy, we define the global
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intertwining operator for Re(s) big enough, as in [39, Section 1.2], by

M (s,0,1): i%(s,0) — i% (wo(s), wo(o))
£ (90, £ 000

where N’ is the radical of P’ = P.,), and the Eisenstein series, for an automorphic
form ®: M(F)N(Ap)\G(Ar) — C

E(s,®,9,P)= Y ,(y9),
~veP(k)\ G(k)

where &, = & . ¢tatreHe()) These two are moreover rational in the variable ¢—* [41,
Proposition 1V.1.12].

Assume that o is globally generic, i.e. that there exist a cusp form ¢ in ¢ such
that, for some generic character y of (MNUy)(F)\(MNUg)(Ar) (i.e. that is non-trivial
on the root subgroups of M associated to the simple roots and trivial on the other root
subgroups, see Section 2.6), p has a non-vanishing x-Fourier coefficient

We(g) = p(ug)x(u)du # 0, (4.1.1)

/(M NUQ)(F)\(MNUg)(Ap)

and unramified outside a finite subset S of places. Then we have the following connec-
tions between the intertwining operator and the partial L-functions. Let f, = fs.® [ €
i (s, m), where [ = ®,¢sfs,. Then [39, Eq. (3.2)]

M L3(is, 0,74)

M T s = Qg A , Og, U x,s ° .
<S7UJ U)())f ® €s (S g wO)f7 z:l_Il LS<1 +7JS7O-7TZ'>

Rags fos, (4.1.2)

where f2(k,) = ¢ for all k, € K, and

L5(s,0,1;) = H L(s,04,Tiz),
xS
with L(s, 7, 7; ) = det(Id —q}jri7x(am))_1, where [a,] the semisimple conjugacy class in
L@, associated to 7, and r; ., the restriction via I'r, — T’z of r; (See Section 5.5 for the
restriction notations).

On the other hand, we also have a connection between the Eisenstein series and
the partial L-functions. Let v = ®,1, be non-trivial character of Ap/F, unramified
outside of S, that we extend to Uy(F)\ Ug(Ar) as in [32, Section 5.3]. We define as in
[39, Section 1.5]

Ey(s,®,9,P) = E(s, ®,ug, P)y(u)du.

/UO(F)\UO(AF)

The Fourier coefficients of these Eisenstein Series are also rational functions on ¢—*
[18, Section 1.6].
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Starting from an automorphic form ¢ = ®p,.: M(F)\ M(Ar) — Cin o, we construct
an automorphic form ®,: M(F')N(Ar)\ G(Ar) — C and an element f,, = @, fr,5 €
i%(s,7) as in [39, Section 1.2 & 1.5]. Then we have the following formula [39, Eq. (1.3)]

Ey(s,®p,9,P) = [[ M (8, 72) (15 (8, 72) (92) frnos) [ [ L7 (1 + s, m,m3) 7, (4.1.3)
€S =1
.G(F;

where )\, is the (non-zero) Whittaker functional of ip .’ )(s ;) constructed in [39, Sec-
tion 2.4].

Lemma 4.1.4. [39, Lemma 3.3] Let P = MN be a parabolic subgroup of G containing
P, with Levi subgroup M and @, € G(F) be a representative of wy, ¢ W®. Leto
be a globally generic unitary cuspidal automorphic representation of M(Ar), such that
woo 2% 0. Then M (s, o0,w,) and E(s,®, g, P) are holomorphic on Re(s) > 0.

We go back to our case. Let £ be a quadratic extension of F' in F,, and we denote
S0;, = SO(¢r.), as usual. We also recall that we have fixed a minimal parabolic
subgroup P, (Section 1.5).

Proposition 4.1.5. Let G = SO, ., let P = MN be a parabolic subgroup containing
P, with Levi subgroup M isomorphic to GL,, x SO;,, and w, € G(F) is a representative
of wy € WE. Leto = 7 ® % be a unitary generic cuspidal automorphic representation of
M(Ar). Then M(s, o, w,) is holomorphic on Re(s) > 1.

Proof. Let S be a finite subset of | F'|, such that o, is unramified for z ¢ S.

Thanks to the work of L. Lafforgue [33, Théoreme VI.10], we know that each local
component of the globally generic cuspidal automorphic representation » = &, 7, of
GL,.(AF) is tempered. Then, for each = ¢ S we have that 7, is of the form

S (X1 @ -+ ® Xomoa)

where x; , is unitary unramified character of F.

On the other hand, for each = such that £, = F®r F, is a product of two fields (z is
split in £), we have the classification of generic unitary representations of SO,,,(F,) =
S0;,(F.) = SO(qg, »)(F.), given in [39, Theorem 5.6]. This gives that for split z, 7, is
of the form

gc/)%(FT)(&,mVrb ® @01,V @ Tog),

where Q' is a parabolic subgroup containing the Borel subgroup of upper triangular
matrices in SO,,, and ¢, , are unitary discrete series representation of GL,,(F,); the
constants r,...,r, € R satisfy

1>rp,>--->1r; >0,
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and 7, is a tempered generic representation of SO, (F).

Now, if s is a pole of M(s, o, ), then some subquotient of i%(sq, o) would be in
the discrete residual spectrum [28, Section 1], thus unitary. Then for such sy, we would
have that for almost every = € |F|, zG(FI)(so, o) is unitary.

We argue by contradiction, and thus we assume that Re(sy) > 1. First, we can
enlarge S, so that ip 59”))(50,01) is unitary. As the set {z € |F|\ S: zis splitin E} has
density 1/2 by Chebotarev’s theorem, we can always some find =, ¢ S split in E. But,
thanks to Proposition A.2.1, we get that the unramified component of ig((ﬁj))(so, o, ) is not

unitary, thus a contradiction. O

4.2 Global Langlands-Shahidi L-functions.

Using the intertwining operator, the Eisenstein Fourier coefficients and the nor-
malized intertwining operator (Section 2.11) on ramified places, we prove the following
result for global L-functions.

Corollary 4.2.1. Let P = MN be a parabolic subgroup of the general quasi-split reduc-
tive group G over F containing P, with Levi subgroup M and w, € G(F') be a represen-
tative of wy € WC. Let o be a generic cuspidal automorphic representation of M(Ar)
such that woo % o. Suppose T C S is a subset with the property that for x € T, the nor-
malized intertwining operator N (s, 0., wy) IS holomorphic and non-zero on Res > 1/2.
Then the partial L-function

LS\T(s,a,ri): H L(s,04,7i4)
zZS\T

is holomorphic on Re s > 1/2 and non-zero on Re s > 1.
Proof. To shorten some notations, we denote, for the finite subset 7" of |F|,

Ly(s,0,r;) = H L(s,0u,1i2) & ep(s,o,r;) H (8,00, Tiz)

zeT zeT

Now, putting the definition of the normalized intertwining operator in the right hand side
of the formula (4.1.2), we get

M(S,U,QI}())‘]C: ® A(S&vam7w0)fx'
zeS\T

I1; Lrlis, 0,7:) ® N(s, 04, 0) [
i=1 l

1+1s,0, TZ')?ET(ZS g, 7’@'71/1) zeT

me L9(is, 0,1;)
HLS(l—l—zs o,7;) ®f '

xS
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Using that M (s, o,) is holomorphic on Re(s) > 0 (Lemma 4.1.4), N(s, 0., o) is holo-
morphic and non-zero on Re(s) > 1/2 and that A(s&, o,, W) [56, p. 283 Equation (10)]
and e7(s, 0,1, 1) are non-vanishing, we have that

me [\ (is, 0, 1)
5 LT (1 +4s,0,1;)

is holomorphic on Re(s) > 1/2. From the fact that L-functions are holomorphic on some
Re(s) > N [4, Section 13.2], we get that

H L5 (is, 0, 1) (4.2.2)

7

is holomorphic on Re(s) > 1/2.

On the other hand, as E(s, @, g, P) is holomorphic on Re(s) > 0 (Lemma 4.1.4) and
the local L-functions are non-vanishing by definition, using the relation (4.1.3) we also
get

[T Lr(1+is,o0m) - T[] L1 +is,o,m) = ] LA (1 +is,0,7;) (4.2.3)
=1 =1 =1
is non-zero on Re s > 0.

Now we proceed by induction on m,, as in [39, Lemma 2.4], to get that L\" (s, o, 7;)
is holomorphic on Re(s) > 1/2 and non-zero on Res > 1. Indeed, for m, = 1 it fol-
lows directly from (4.2.2) and (4.2.3). Now, if we suppose that the statement is true for

LA (s,0,7r;) withi = 2, ..., m,, then [/, L5\ (is, o, ;) is holomorphic and non-zero on
Res > 1/2. Thus by (4.2.2), L%\"(s,0,7;) is holomorphic on Res > 1/2. Similarly, but
using (4.2.3), we get it is non-zero. O

We go back again to our case G = SO,,,,,, and a maximal Levi subgroup M =
GL,, x SO;,,.. The adjoint action decomposes as

T @7"2,

where r;, = p,, @ g5, and 7, = A?p,, (2.5.2). Using the Langlands-Shahidi method for
r . and r,, we obtain the Langlands-Shahidi L-functions

L(s,mp X 7)) = L(8, 7 @ Ty, 1) & L(s,T, Apm) = L(s,, 7, ® Ty T2.1),

for 7, a generic representation of SO;, (F,) and 7, a generic representation of GL,,(F,)
(See Section 2.8 for inert places i.e. when E, = F @ F, is a field and [37, Section 6]
for analogous description for split places, i.e, as in the case where SO;,, is replaced by
the split group S0O,,,).

Proposition 4.24. Let G = SO’Q‘(m +n) @nd let P = MN be a parabolic subgroup with
Levi subgroup M isomorphic to GL,, x SO;,,. Let c = 7 ® 7 be a generic cuspidal
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automorphic representation of M(Ar) such that wyo % o. Suppose that for a fixed inert
place x, 7., is unramified and

S05, (Fiy)

Ty = ip, (Thzo| det | @ -+ - @ Ty g | det | @ 0.4 ) (4.2.5)
where 0 < r < --- <1y, T4, IS an irreducible tempered representation of GL,,(F,)

for 1 < i < b andn., is an irreducible tempered representation of SO, o (Fo). Then
L(s, Ty, X Tz,) IS holomorphic on Re s > 1.

The following proof is an adaptation of [29, Proposition 4.9] to our case.

Proof. As before we input the definition of the normalized operator in the right hand
side of the formula (4.1.2) to get

2 Lz T i, N 205 W
M(S,O’, ’lI)())f - ® A(8&70-x7w0)fx : H (Z870- 0’T7 0) (8’0 07'[1)0) fwo
i=1

zeS\{zo} = L(l + iS, Oz, r’i7$0) E(iS, Oz05 Ti,zo) ¢)
2 LS(iS’ g, ri)

'ELS(st,am@f“

i) ggS

Now let Ny > 2 be big enough so that L(1 + s, 0,,,71) has no poles on Re(s) > Ny. This
gives us that, if Re(s) > Ny — 1, then

L(i8, 040, Tizy)
(1S, Ougs Tizg, W) L(1 + S, Ougy Tiag)

is non-zero. Secondly, since 7., is tempered, we have that L(s, 0., 72.2,) = L(S, Tug, A2 pim)
is holomorphic on Res > 1 and

ﬁ L(is, 040, Tiz)
1=1 E ZS O-x()’rl $0’w) (1 + 870_5007Ti7x0)

is non-zero on Re(s) > Ny — 1. Thirdly, using Corollary 4.2.1 for T' = (), we get that

ﬁ L(is, 040, Tizg) 2 L3(is,0,1;)
i1 €88, 00, Timg, W) L(1 408, 04, T ) =3 L (1 415, 0,7;)

is non-zero on Re(s) > Ny — 1. Since wyo 2 o, Lemma 4.1.4 gives us that M (s, o, @) is
holomorphic on Re(s) > 0. Lastly, using that A(sa, o,,, W) is non-zero and the equality
at the beginning of the proof, we have that N (s, 0,,, ) is holomorphic on Re s > Ny —1.
Now thanks to 7, being tempered, =, being unramified and of the form (4.2.5), and
Remark 2.10.3, we have that o,, = 7,, ® 7., satisfies the hypothesis of Proposition
2.11.5. Thus we have that N(s,o,,, @) is also non-zero in on Re(s) > Ny — 1. Hence
L(s, 7., X T»,) has no poles on Re(s) > Ny — 1. Arguing inductively, we conclude that
L(s,my, X Tz,) IS holomorphic on Re(s) > 1. O
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When we study the image of the functorial transfer of generic automorphic rep-
resentations from the quasi-split special orthogonal group to general linear groups, it
will be essential to have holomorphicity and non-vanishing results for L-functions in
the case of Siegel Levi subgroups [39, Corollary 6.4], which relies on the work of L.
Lafforgue on the Ramanujan conjecture in the GL,, case.

Theorem 4.2.6. Suppose that G = SOy, ), and P = MN parabolic subgroup with
Levi subgroup M isomorphic to GL,, x SO;, . Letoc = 7 ® 7 be a generic cuspidal auto-
morphic representation of M(Ar). Then L°(s,o,r,) is holomorphic and non-vanishing
on Re(s) > 1 and has at most a simple pole at s = 1.

Proof. Let S be a finite subset of |F'|, such that ¢, is unramified for = ¢ S, as in the
proof of Proposition 4.1.5. From (4.1.2) and Proposition 4.1.5, we have that

ﬁ LS(Z'S7U’ Ti)
~5 LS(141s,0,1;)

=1

is holomorphic on Re(s) > 1. As L%(s,0,73) = L°(s, 7, A%p,,) is holomorphic and non-
zero on Re(s) > 1 [39, Corollary 6.4], we can conclude that

LS(87 g, 7(,1)
Ls(l + s, 0, 7’1)

is holomorphic on Re(s) > 1.
On the other hand, as [41, Proposition 11.1.7]

Ep(s, f,9,P) = /U sy 5 19, P = 1(g) 4+ M (s, 0,120) (0
and Proposition 4.1.5, we have that the poles of the constant terms Ep(s, f, g,P) are
contained in Res < 1. Since U(F)\ U(Ar) is compact, the formula (4.1.3) and that
L3(s,0,m3) = L%(s, 7, A’py) is holomorphic and non-zero on Re(s) > 1, we conclude
that L5(1 + s, 0,r)~ ! is holomorphic and non-vanishing on Re(s) > 1. Thus L%(s, o, 1)
is holomorphic on Re(s) > 1.

Finally, we have that the poles of the global intertwining operator are all simple
[41, Proposition 1V.1.11, (c)]. Then, by (4.1.2) and the non-zeroness of A(s, 7., wy), the
quotient

L3(s,0,71)L%(2s,0,75)
LS5(1+s,6,r1)L%(1 + 2s,5,r9)

has at most a simple pole at s = 1. From [39, Corollary 6.4], L%(2,0,73) = L%(2,7,15)
and L°(3,5,7y) = L%(3,7,7,) are non-zero. Thus, L(s,o,r;) has at most a simple pole
ats =1. [
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Chapter 5

Functoriality Conjecture

In this chapter, we introduce the main language and basic results to establish the main
objective of this work. We introduce the notions of Langlands parameters [4] and
Weil-Deligne representations [17]. Then we follow [36], to obtain a Langlands corre-
spondence for tori. We introduce the notion of Satake parameter and the functoriality
conjecture. We finish with the construction of the L-homomorphism, for which we will
answer the generic functoriality conjecture.

Let G be a quasi-split (connected) reductive group over a field F and F, a separable
closure of F. As before I', = Gal(F,/F), and we let I be the intertia subgroup of I'.

5.1 Weil group. Suppose that F' is a non-archimedean local field. For each finite
extension F C E C F,, let kg be the residue field of F and qg := #kg. Let k = Ugkg be
the residue field of F,. We denote by W the dense subgroup of I'r consisting of the
elements 7 € I'r which induce on k the map x — 2% for some n € Z. By definition we
have that the inertia subgroup I is a subgroup of Wp.

Let
rg: BE* SWRCT® & ¢o:Wp—Tp
be the norm residue symbol [43, IV. (6.3)] and the inclusion, where W7 is the closure
of the commutator group of W and W@ = W, /W¢. We follow Deligne’s convention
[14, (2.3)], re(a) induces z — z!%7 in k. The triple (Wg, ¢, {rg}z) is a Weil group [55,
(1.4.1)]. In particular, for £ a (finite) Galois extension, the extension Wg/r = Wgp/W§
given by
1= B 25 Wy p 5 Gal(E/F) — 1,

where 7 and p are the induced by rz and . They correspond to the canonical class
ap/rin H*(Gal(E/F), E*) [55, (1.2)].

5.2 Langlands parameters. Suppose that F' is non-archimedean and fix a geometric

60



Frobenius element Fr € Wy. Let LG be the L-group of G and “G° = G(C) its identity
component (Section 1.3). We denote by ®(G) the set of group morphisms [4, Section
8]

¢: Wi = Wp x SLy(C) — G,

such that ¢(Fr) is semi simple, ¢|;,. is continuous, ¢|si,(c) iS algebraic and ¢ is relevant,
i.e. if the image of ¢ is contained in a Levi subgroup of “G then it is the L-group of
a Levi subgroup of G, modulo £G°-conjugacy classes of parameters. Moreover, when
9|1 and @|sr,(c) are trivial, ¢ will be called unramified. We denote by ®,,,.(G) the set of
these classes.

From the definition we have the following injection

(I)(G> %Ht}ts(W}/WvLGO)’ (521)

¢ g = do(9)]

where LG has the action of 1}, induced by the action of I'» and ¢, is the composition
of ¢ with the projection of “G to LG® = G(C) and H., (W}, “G) is the set of continuous
1-cocycles modulo the continuous 1-coboundaries [4, Section 8.2].

We can present this data, in another way: A Weil-Deligne representation of G is
a pair (p, N), where p: Wy — LG, is continuous on I, p(Fr) is semi simple and N is a
nilpotent element of Lie(*G) such that Ad p(w)N = ¢N for all w € Wr.

The map that sends ¢ to the pair (p, N) such that

g2 0 0 1
IO|IF = ¢|1F7 p(FI') - ¢(Fr) : Qﬁ 0 q1/2 ) N = de 0 0/’ (522)
induces a bijection between the equivalences classes (with the natural notion of equiv-
alence) of Weil-Deligne representations and the “G°-conjugacy classes of parameters
[17, Proposition 2.2].

5.3 Tori. Suppose that F' is a non-archimedean local field. Let T be a torus that splits
over a finite separable extension K C F; and write 7' = T(F") and T the base change
to K from F of T. The inflation morphism and (5.2.1) gives us a bijection

= Inf -

He(Wi/pi T(C)) = Hyo(Wr; T(C)) = (T). (5.3.1)

The evaluation map

~

(Wk/p; T(C)) x Hi(Wgkyr; X.(T)) — C¥,
(f,m) = Y (p(w), z(w)),

UJEWK/F

Hl

cts

where (-, -) is the pairing associated to

HomZ(X*(TK),(CX) X X*(TK) — C*
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is a perfect pairing and thus we get an isomorphism [36, p. 234]

~

H (Wgr; T(C)) = Homes (Hi(Wx/r; Xi(Tk)), C*).

cts
Now one can prove that the corestriction map

HI(WK/F; X, (TK)) — H1 (KX , X*(TK))Gal(K/F) (532)
is an isomorphism [36, p. 241]. Finally by definition of H; and 7" we have

H1<K><;X*(TK))Ga1(K/F) = (X.(Tx) ® K><>Gal(K/F) _ Hom(X(TK>,K><)Gal(K/F)
_ T(K)Gal(K/F)
= T(F)
Thus we obtain a bijection [36, Theorem 2]
O(T) = 1I(T)

gﬁl—>ﬂ¢

where II(7) is the set of smooth characters x : " — C*.

(Split case). In the split case we have that K = F' and thus Wy, = F’*. Using the
identifications

T(F) = Hom(X(T), F*) & T(C) = Hom(X,(T),C*),

we can write this bijection as the following bijection between sets of continuous group
homomorphisms,

Homyg,,— s (Hom (X (T), F*),C*) — Homg,p_cs(F, Hom(X,(T),C*))

T (w e A (e w®V))),

(Restriction and Norm). The restriction, the corestriction and the norm map N can be
put in the following commutative diagram [36, p. 235]

Hy(K*; X.(Tk)) —=— Hi(Wiyp; X.(T))

Y| [re

N(H (K" X.(Tg))) — Hi(K*; X, (Tg))GE/E)

This gives us the commutative diagram

9

T(K) = T(F)
%\ A (5.3.3)
o
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where ¢k is the parameter of T(K') obtained via the identification (5.3.1) and restriction
to K* via 7y : K* — Wg/p (Section 5.1).

5.4 Satake parametrization & Parameters. In this section we follow [4]. We suppose
that F' is a non-archimedean local field and G is unramified, i.e. it is quasi-split and splits
over an unramified extension of F.

Let S be a maximal split subtorus of G, T its centralizer (as G quasi-split, is a
maximal torus) and W = Ng(S)(F')/ T(F) the Weyl group. Let P, be a minimal parabolic
subgroup containing S.

We note that W can be identified as the subgroup of W(Gr,, Tr,) = Ne(r,)(T(F%))/ T(F)
that fixes the subgroup Sy, of Ty, [4, Section 6]. We denote N the subgroup of LG°,
which is the pre-image of the subgroup W of W(G,'T’) = W (GF,, Tr,) under the natural
projection homomorphism

Nigo(*T%) = Nigo(*T°) /T = W(G, T).

In this section we consider the action of N (resp. LG") via conjugation on 70 x
Fr = {(t,Fr) : t € LT} (resp. (!G° x Fr),, = {(g,Fr) : g € LG?, s semisimple}). The set
equivalences classes will be denoted by (“7° x Fr)/ Int pN (resp. (*G° x Fr),,/ Int “G°).

We have a natural bijection [4, Section 9.5]

Dynr(G) — (*T° x Fr)/Int pN.
(Fr — (¢, Fr)) — [t, Fr|

We also have the following bijection, induced by restriction [4, Lemma 6.4]
7 (*T° % Fr)/Int z N — LS°/W.
[t, Fr] = [t]
Furthermore, one can also show that the inclusion (!7° x Fr) — (!G° x Fr),, induces a
bijection
(tT° x Fr)/Int pN — (*G° x Fr),,/ Int “G°.

On the other hand, choose a hyperspecial maximal compact subgroup K in good posi-
tion of G(F') and let I1x.,n(G) be the set of equivalence classes of irreducible represen-
tations of G(F) with a non-zero vector fixed by K. Now for a character x of 7 trivial on
TNK=T"=Nexeker|x|r (i.e. in X(T) of Section 2.1), the representation i x has
a unique irreducible non-zero K-invariant factor. This builds a bijection ([2, Section 9.2]
and [3, Section 4.9])

X(T)/W — Mgun(G).
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As the inclusion S C T induces an isomorphism [4, Section 9.5, (2)]
X(T) ="15s°,
we also have that
LSO/W = x(T) /W — Hgun(G). (5.4.1)
Thus we also obtain a bijection

HK_un(G) — (I)un(G>
T O

5.5 Conjecture. Suppose that F' is a global field with set of places |F'|. We put for
z € |F|, G, = Gf, the group obtained from G by extending scalars along the inclusion
F — F,. We choose a separable closure F, ; of F,, and an embedding F, — F, ; for
each x € |F| that extends ' — F,. We write I'r = Gal(F;/F) and I'p, = Gal(F, s/ F.)
for each = € |F|. These choices give us an injection I'r, — T'r [43, (9.6)].

Now the restriction along I'r, — I'r induces a (continuous) group homomorphism
from LG, to LG, that fits into a commutative diagram

Lq, — L@,

]

I'p, —— I'p

Now given an L-homomorphism p : “‘G — L H (Section 1.3), we can form, for every
place z, an L-homomorphism p, : ‘G, — ' H,.

(Functoriality Conjecture). Let
p: G - TH

be an L-homomorphism. Suppose that H and G are connected reductive quasi-split
groups over F. For every cuspidal automorphic representation 7 = ®, 7. of G(Ap),
there exists an automorphic representation 7 = ® m, of H(Ar), sometimes called a
(weak) lift or transfer, such that for all places = such that H,, G, 7, and =, are unrami-
fied, we have the following commutative diagram

p.
LGI z LHx

.

/
Wg.
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5.6 L-groups and L-homomorphisms. Let £ C F, be a quadratic separable exten-
sion of F and Gal(E/F) = {1,0}. Let us consider the split special orthogonal group
S0,, over C. We choose a split maximal torus T,, and a Borel subgroup B,, in the
following way

T.(C) = {t = diag(ty, ..., tn, ;' ..., t7"): t, €C*, 1< i <n}
and
B, =T, x{M(u)h(L): v(L'J)v =0 forall v € C"},

the subgroup of upper triangular matrices in SO,,,, where J is the n x n matrix with 1’s
along the anti-diagonal and, for upper triangular unipotent » € GL,, and L € Mat,,,

U 0, (1. L
o= (2 0) w1

We observe that the root datum associated to (SO,,,, T,,) is isomorphic to the dual root
datum R of (SO(¢g.)r., Tr,). We choose a pinning of (SO,,, T,,, B,,) corresponding to
the based root datum (RY, AY) in the following manner,

E. .
Xpv = [0t On € Lie(B,)for1 <i<mn-—1
¢ 0, —Ei i

where E; ;, = (6;,,5,(h, k)):; € Mat,,, with ¢ the Kronecker’s delta, and

0n—2
Xoy=h|1 0 € Lie(B,,).
0 —1

Finally, following the equivalence of categories given in [12, Theorem 6.1.17], we can
identify SO,,, to G and their I'--actions (1.3.1), so also SO,, xI' and “G. We thus fix
this identification.

(The x-action). We denote

We note that (g — wgw™') € Aut(SO0s,, T,, {X,}.cav) corresponds, via the equivalence
of categories [12, Theorem 6.1.17], to the non-trivial automorphism in Aut(RY, AY),
obtaining thus an explicit expression of the construction (1.3.1)

'y — Aut(SO,,)
N (g — wgw™) if 7 & Gal(F,/E)
(g g) if - € Gal(F,/E)
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(L-homomorphism). Finally, we define the L-homomorphism needed to state our
main result as follows

Py - 802, (C) ¥ I'p = GLo,(C) x I'p

( T)H{qum) if r ¢ Gal(F,/E)

. . (5.6.1)
(g,7) if 7 € Gal(F/FE)
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Chapter 6

Generic Functoriality

In this chapter, we establish all the main steps to prove the functoriality conjecture
under consideration for globally generic cuspidal automorphic representations of adelic
SO;,,. The strategy is inspired from [11] and [38]. In particular, we construct and give
a description of the lifts and prove the relations between its ~-factors, L-functions and
e-factors. Finally, assuming property (2.11.1) we verify all the hypotheses of the twisted
version of the converse Theorem 3.2.1 and construct a (weak) lift.

Let F' be a global field of positive characteristic, F; a separable closure of F and
E C F, a quadratic separable extension of F. After fixing F, we let

S0O;, = SO(¢g.)-

We let I'r = Gal(F,/F). For every z € |F|, we choose a separable closure F, ; of F,
and also an embedding F; — F, , that extends F' — F,. We let I'p, = Gal(F, ;/F}) for
every z € |F| and Gal(E/F) = {1, c}. These choices give us an injection ', < I'g.

We want to check the functoriality via p}, (5.6.1) of a globally generic cuspidal
automorphic representation 7 = ®, 7, of SO;,,(Ar), unramified outside of a finite non-
empty S C |F|. We also fix ¢ = ®,1, a non-trivial character of Ap/F, unramified
outside S.

6.1 Lift. For every place = we choose a character \, of T(F,) such that for = unram-
ified it is a character obtained by the Satake parametrization (5.4.1) and for = ramified,
z‘f’;?;”(F”)()\x) has an (irreducible) generic subquotient =\, = m with the same central
character as w, (see for example [11, Section 4.2]). Applying the local Langlands cor-
respondence for tori (Section 5.3), from A\, we get ¢,, : Wi, — T,(C) x I'p,.

Leti, : T,(C) x 'y, — S0,,(C) x ', be the inclusion homomorphism. Then,
applying the local Langlands correspondence for general linear groups to

p;n,:p Oy O gb)\m : W},T'z — GLQTL(C) X FFM
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we find an admissible representation I1, of GL,,(F.). We put II = ®,II,, which is an
irreducible admissible representation of GL,,(Ar). We call I1 (resp. I1,) a lift or transfer
of = (resp. 7).

(Expression for 11, ). First, let us note that by definition
S0, (Fz) = SO(qe, n)(F2),

where E, = E ®r F, is a degree two étale algebra over F,. Thus, it is either a product
of two (separable) fields extensions or a (separable) field extension over F,. Let us
concentrate on the case when E, is a quadratic (separable) extension of F, (i.e. x is an
inert place), for which we have an embedding E, — F, ,, coming from the one fixed in
the beginning of this chapter Fy; — F, ;.

Now let us consider T' = G*'2 x Resg, /r, (G.,). We have an isomorphism

E:c ®Fz Fx,s = H Fx,s~
oc€Hom(E,Fy,s)

This leads us to an isomorphism
Xi(Tr,,) = Xo(G' %) x Xu(Resp,/r, (Gu)p.,,) = 2777 X 22,
where the non-trivial action of the second factor, Z?, is given by
I'p, — Aut(Z?)

. (a1,a2) — (ag,a1) if7 & Gal(F, s/ E;)
(a1,a2) — (a1,a2) if 7€ Gal(F, s/ E;)

If we denote by D,,, € GL,, the maximal diagonal torus, we can identify
D2n<(c> X FFI = LT;,

where the action on the left hand side is given by conjugation by w.
Now thanks to this description we can construct the following embeddings

by - Tn(C) X ]_—‘F‘L — Dgn(C) X FFw = LTI,
(t,7)— ((tat_l)ﬂ')

and

DQn((C) X FFJ — GLQn(C) X FF,

(d.7) s (dw,T) if 7 & Gal(F, s/ FEy)
’ (d,7)  ifTeCal(F,./E,)
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We can thus factor p;, ,,, 0 i,

GLQTL X pr
LT/ /

The definition of the lift and this factorization leads us to look at

[ o | o |
(T,) —— I(T,) —— TI(GLy,.),
where first two vertical arrows are the ones given by Section 5.3, the third one is given by

the local Langlands correspondence for the general linear group and the upper horizon-
tal arrows are the ones obtained from composition with p3, . o i, (and its factorization).

Let \x = (X1.0)- -+, Xn—1.05 Xn) D€ @ character of T(F,) = (F)"! x SO,(F,). The

image of D is

A:r: = (Xl,xa ey Xn—1,2) Mnz) X;ilﬂm cee 7X1_,;)a
where p, . : EX — C* is the character obtained from ., : E+ — C* via

®(S0;) — ®(Resg, /r, Gim).

To specify u,, ., let ¢, be the parameter of x,, , = m,,. From (5.3.3), we have

T p): SO3(E,) ~2 SO;(F,) 2% C*.
After the identification in Section 1.5 between SO; and the norm one elements of
Resg, /r, G, We get

ﬂ-((z)z,Ez): E; —> CX
T Xna(wo(z) ™).

On the other hand, we recall that we have a natural isomorphism [4, Section 5] of
', -groups
Resg,/m, Gm(C) 2 [ G, (C)
={f:Tr, = Gu(C): f(da)=d'- f(a), d' €T'p,,a € T},
where [Frgz is the (non-smooth) induction functor from I'r, to 'y, and the action of
I'r, is given by right multiplication: (a - f)(z) = f(za) for ,a € I'r,. Combining this
isomorphism, along the restriction Wz C Wy and the morphism
Irf:Gn(C) = G (C)
[ freg,),
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we get an isomorphism [4, Proposition 8.4 (Shapiro’s Lemma)]

CID(ReSEm/Fw Gm) — (I)(Gm,EI>
(Wr — It G(C) x Tp,) = (Wg — G (C) x Iy, ).
The image of ¢+, 0 ¢, € ®(Resg,,r, G;,) through this isomoprhism is ¢, g, € ®(G, ,)-
Therefore, we have that y,, . = 7(g, , )-

Now for the second square, first we look at the image of the parameter correspond-
ing to p, . via
(I)(ReSEm/FI Gm) — CI)(GLQ)

First, using again the identification given above,
@(RGSEL/FI Gm) — (I)(GWME:() — H(EX),
we have that via (5.2.2), the image of ., ,, corresponds to the Weil-Deligne representa-
tion
(IndET/FT (ﬂn o arEI), 0),

where arp, = T’Ei is the reciprocity map [43, IV. (6.3)] and Indg, /, is the smooth induc-
tion functor from ', to ', . Now using the (tame) local Langlands correspondence for
GL, ([8, Chapter 8]), we get our representation in I1(GL,):

-G Lo X
i Una, # eVns) Wlne=v,,0N , for some v, , € II(F}
Hun,z = { B2 ( ' ' ) Hn, ’ Bo/F ’ (F) (6.1.1)

where s, = det(Indg, ), 15,).

Putting all this together we get an expression for I1,. In particular for A\, = (x1.4, - - -,
Xn—11, 1) unramified (Section 5.4) we have that I, is the one obtained in (5.4.1), i.e the
constituent of

Z%(X17$7 AR 7XTL71,$7 17 %1'7 X’Izil,lﬁ A 7X177i)7 (61 2)
that has a nonzero vector fixed under the special maximal compact subgroup GL,,,(O,.).
Finally, we note that this construction give us that the central character of I1,, is

%a:///n,xlpj”} = Hg.

Thus, the global character
n = R, (6.1.3)

is trivial on F'*.

6.2 L-functions. We recall that in the case where we consider a maximal Levi F-
subgroup M = GL,, x SO;,, of SO;,, ., the adjoint action decomposes as

1 P 1o,
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where r = p,, ® g5, and r, = A?p,, (2.5.2). Using the Langlands-Shahidi method for
.., When z is aninert place (i.e. E®p F, is a field), we obtained the Langlands-Shahidi
L-functions

L(s,mp X 7)) = L(8, 7 @ Ty, 1) & Ls,T, A2pm) = L(s,, Ty @ Ty, T20).

for 7, a generic representation of SO}, (F,) and 7, a generic representation of GL,,,(F,).
In what follows, we will only focus on the inert case, as for the split case analogous
results are valid thanks to [37, Section 8].

(Unramified case). The definitions of =, and II,, in the unramified case give us that

L(Sv Tz, p;2n) = L(S7 Hﬂ?)

(8, ey Pron) = (5, 11,).
Furthermore, we have

Proposition 6.2.1. Let 7, be an unramified generic irreducible representation ofSO;,, (F)
and 11, a lift as in Section 6.1. Then for a generic irreducible representation , of
GL,.(F,) we have the following

L(s, 7y X 1) = L(s,T1, X ;)

(6.2.2)
(8, Ty X Ty, Uy) = (8, Iy X Ty, 1y).

(Ramified case).

Proposition 6.2.3. Let 7, be an irreducible generic representation of SO;,,(F,) and 1,
a lift as in Section 6.1. Then for any sufficiently ramified enough charactern, of F}, we

have that
L(s,7x X (T M) = L(s, 1, X (7, @ M)

(6.2.4)
for every unramified irreducible representation t,, of GL,,(F).
Proof. First, making n, sufficiently ramified to obtain (2.10.4)
L(s,mp X (1, -m2)) =1 = L(s, 1, X (7, @n2)). (6.2.5)

Using the relation between L-functions, e-factors and ~-factors in the tempered case
(Section 2.10, property vii) and the definition of the e-factors, we are left to prove the
corresponding identity for the ~-factors.

Now, as 7, is generic (Section 6.1) we can use the stability of the gamma factors
(Theorem 2.8.2). By this result, if we make 7, ramified enough, the following identity
also holds

7(87 Ty X (Tx : nx)v 77Z)CB) = ’7(87 ﬂjm X (T;r : 7]m>,¢x)
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On the other hand, using Section 2.9 we have

n—1

(s, 7T;/p X e, Ye) = V(8 Xna X T Vy) H V(85 Xia e V) (s, Xz'_,;nma Vz)
=1
n—1

= ’7(57 H,un,z X Nz, Q/}x) H 7(37 Xi,zTzs 1/)>7<S7 X;;nwa %)
=1

= (s, Ly X 12, ¢) (6.2.6)

Now, since 7, is unramified, it is a subquotient of an induced representation of the

form
-GLm(Fz)(’ b1

g ry (R ® @] 7)),
where b; € R. Using multiplicativity of v-factors, we have

m

7(8’71-50 X (TCE ' 7733)7¢x) = H’Y(S - biaﬂ-z X nx)

=1

and
o T (7)) = [T9(s, T 120
= ﬁ7(3 — by, I X 7).
Comparing these two, using (6.2.6), we obtain the desired identity. O

Remark 6.2.7. We remark that using once more the stability property of y-factors of
GL.,, we can get the same result but with a representation I/, that has the same central
character as 11, i.e. equal to s, (6.1.3).

(Global case). Using the equalities (6.2.2) twisted by any character and (6.2.4), we
have the following result.

Corollary 6.2.8. Let 7 = ®,7, be a globally generic cuspidal automorphic representa-
tion of SO, (Ar), unramified outside of a non-empty S C |F| and let 11 a lift of = as in
Section 6.1. Then, for a character n = ®.n,, sufficiently ramified in x € S, (so as to
satisfy (6.2.4)), we have

L(s,mx 1) = L(s,II x 7)

(6.2.9)
e(s,mx 1) ="¢e(s,1I x71)

forevery T € T(S;n) (asin 3.2).

6.3 Application of converse theorem. We know that a lift IT of = is irreducible and
admissible and that its central character is trivial on F* (6.1.3), but we do not necessarily
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have that it is automorphic. For that we use the converse theorem (Theorem 3.2.1).
Hence, we need to make sure that L(s, 7 x 7) is a polynomial for 7 € T(S;n), for some
character n of Ay trivial on F’*.

(Polynomial condition). We can find as in [39, Proposition 4.1] a sufficiently rami-
fied character 7,,, with =y € S (nonempty by definition), such that &g(r®@7-n) Z 77 -7.
From Corollary 6.2.8 and (6.2.5)

L(s,lIx 1) = L(s,m x 1) = [[ L(s, 7z X T2).
&S
Assume (2.11.1) for every inert xy ¢ S. Namely, the unramified representation m,,
satisfies that it is the full induced representation

iso;l (FE() )

Ter = P

(Tz| det | @ -+ - @ Ty g | det | @ 0.4 )s

where 0 < r, < --- <1y, T4, iS an irreducible tempered representation of GL,,(F%,)
for 1 < ¢ < band 7, is a generic tempered representation of SO;, (F,,). Using
Proposition 4.2.4 we obtain that L(s, 7, X 7,,) is holomorphic on Res > 1. This allows
us to use Proposition 2.11.6 to obtain the condition needed for Proposition 2.11.8. Thus,

after using Proposition 2.11.8, we obtain that the normalized operator
N (8, Tug ® Ty, Wo)

is holomorphic and non-zero on Res > 1/2. Now, combining this and the known split
case SO, [37, Section 7], we apply Proposition 4.2.1 to obtain that L(s,7 x 7) =
[l.¢s L(s, 7, x 7.) is holomorphic on Res > 1/2. Finally using the Langlands-Shahidi
functional equation (2.10.2), we get that L(s, 7 x 7) is entire. In addition, using the ratio-
nality property of L-functions [39, Theorem 1.2] we see that L(s,II x 7) is a polynomial.

(Trivial on F*). Choosing characters v, for x € S sufficiently ramified as in the
polynomial condition and in the ramified case of Section 6.2, we can find a character
of A% trivial on F* [1, X, Theorem 5] and which satisfies n, = v, forz € S.

6.4 Isobaric sums and Transfer. As we have checked all the hypothesis of the con-
verse Theorem 3.2.1 in the previous section, we find an irreducible automorphic repre-
sentation II' of GL,,, such that I, = I1, for = ¢ S.

We recall that from [35, Proposition 2], every automorphic representation IT of GL,,
arises as a subquotient of a representation induced from cuspidal representations,

Zg(LAZZSAF) (Hh e 7Hd)7 (641)

where P is a parabolic subgroup of GL,,, containing the Borel subgroup of GL,,, consist-
ing of upper triangular matrices, and with every II; a cuspidal automorphic representa-
tion of GLy,. Now, starting from the fact that II; is globally generic, the results on the
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classification of automorphic representations for general linear groups [24, (4.3)] give
us that there exists a unique generic subquotient of (6.4.1). We call this representation
a transfer of 7 via p and we denote it 7,(7). We observe that its central character is
given by (6.1.3), because it coincides with it at almost every place. Finally, we also recall
that Langlands’ isobaric sum gives us another construction of a subquotient of (6.4.1)
[34, Section 2], that we denote

I, 8---#HIl,.
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Chapter 7

Image of functoriality

In this chapter, we conclude with the main result of our work, Theorem 7.2.1. Inspired by
[39] and [52], we prove that the cuspidal factors of the isobaric sum are distinct, unitary
and self dual, in positive characteristic. We check that this lift respects the arithmetic
information coming from ~-factors. We finish by proving, as an application, the unram-
ified Ramanujan conjecture for globally generic cuspidal automorphic representations
of SO;,,(Ar).

7.1 Rankin-Selberg L-functions and poles. Let [I = QII, and II' = QII/, be two
unitary cuspidal automorphic representations of GL,(Ar) and GL, (Ar) respectively.
Assume that 11, and II/, are unramified for all x ¢ S, where S is a finite subset of | F|.
Then [24, 1l; (3.3), (3.6) and (3.7)]
L3(s, I x IT') = T L(s, 11, x I,
¢S

is holomorphic on Res > 1 if v < r. If r = ¢ it has at most simple poles, they occur
if and only if there exists a real number h such that IT = II' ® | det |* and, in this case,
we get poles at s = —ih and s = 1 — ih. Moreover, L(s,II x II') is non-vanishing on
Re(s) > 1.

7.2 Image.

Theorem 7.2.1. Assume (2.11.1). Let m be a globally generic cuspidal automorphic
representation of SO, (Ar). Then, w transfers to the irreducible automorphic represen-
tation I1 .= T,(w) of GLy,(Ar) constructed in Section 6.4. Its central character is given
by (6.1.3) and 11 can be expressed as an isobaric sum

=18  BI,
where each 11; is a unitary self-dual cuspidal automorphic representation of GLy, (Ar),
andHZ‘ A;lé Hj fori 7éj
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Proof. As we are assuming (2.11.1), we can apply the converse theorem as in Section
6.3 to construct II. Furthermore, by construction I is a transfer of = and its central
character is given by (6.1.3). We now show the properties of II;. Let S be a finite set of
|F'| such that 7 is unramified outside of S.

(Unitarity). We write II; = | det |11}, where II; is unitary for every 1 < i < d and
ng > --- > ny. Given that the central character of II is unitary, we have that n; < 0. By
(6.2.2) and the multiplicativity property of Rankin-Selberg L-functions we have

L3(s,m x ;) = L¥(s, 1T x IT}) = ] L¥(s,T0; x 1I})
j
=1 L°(s +n,, 1 x IT)).
j
Since the left hand side has at most a pole at s = 1 and it is holomorphic and non-
vanishing for Re s > 1 by Theorem 4.2.6, we must have that n; = 0. Recursively we can
check that n; = 0 for all i. Thus II; is unitary for all 7.

As a consequence we have that IT is equal to the isobaric sum of the II's, as each
I1; is unitary and thus IT is the full induced representation.

(Distinct). As before we consider

LS(s,m x 1) = L°(s, 1T x I;) = [] L¥(s, 10 x II)
j
j
Arguing as above, we must have II, # 11, for i # j, because otherwise the right hand
side would not have a simple pole by Section 7.1.

(Self-dual). First observe that linear map w, of Qg+ (See Section 1.5), given by
Woe; = €a(ntm)—(n—i) fOr 1 < i < m, Wpe; = e; forn +1 < i < 2m + n, trivial on [ and
Woe; = €j—p—om fOrn+2m+1<i<2n+2misinS0;, ,  (F)andis a representative of
wy = w.gwim € WS, where M = GL,, x SO;,. The action of @, on (g1, 92) € M(Ar) is
(tgi'!, g2). Furthermore, wy(c) = I, @ #. Assume that II; not selfdual. In that we would
have o % wy(0). In that case, Corollary 4.2.1 implies that the left hand side

L3(s,m x ;) = L%(s, 1T x I1;) = [] L¥(s,T0; x 1I;)
j
j
is holomorphic on Re(s) > 1/2. But the right hand side has a pole coming from L(s, IT; x
I1;) (Section 7.1). A contradiction, thus the II,’s are self-dual. N

Remark 7.2.2. Conjecturally the image is characterised by the condition in the theorem
and the fact that L” (s, II;, Sym®) has a pole at s = 1 for any sufficiently large finite set
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of places T containing all archimedean places. This is established in the work of J.
Cogdell, I. Piatetski-Shapiro and F. Shahidi over number fields [11].

7.3 Local lift. In this section, we explore the local behavior of this transfer. We recall
that we also have a non-trivial character ¢ = ®,1, of Ar/F, unramified outside of S.

Theorem 7.3.1. Letll, .= T,(r), andt, be an irreducible generic unitary representation
of GL,,(F,). Then
(8, Ty X Ty ) = Y(8, 1Ly X 73, 1y) (7.3.2)

Proof. We first note that this is true when 7, is unramified, i.e when = ¢ S (6.2.2).

Let us fix =y € |F| and suppose first that 7., is cuspidal. Then there is a cuspidal
automorphic representation = ®7, of GL,,(Ar) that is 7., at xy and such that 7, is
unramified for x ¢ S [39, Lemma 3.1]. Furthermore, thanks to the Grunwald-Wang
theorem [1, X, Theorem 5] and Remark 6.2.7 (central character of II, is s,), we can
choose a character n = ®n, such that 7, is sufficiently ramified for z € S and = # z, SO
that

7(87 Ty X (Tw ' nw)a ¢I> - 7(87 HI X (Tx ® 77513)7 lba:)
and n,, = 1.
On the other hand the Langlands-Shahidi functional equation of Section 2.7, prop-
erty vi) gives us that

LS<3>7T X (7_ ' 77)) - 7(877(1‘0 X (Txo ’ nﬂﬁo)a'@bxo)

H 7(3777—96 X (Tx'ﬁx),%)LS(l _S7ﬁ X (7~_7~}>>
z€S—{zo}

Similarly for the Rankin-Selberg L-functions

LS(S7HX<T'77)> :V(S,on XTIO71/JSUO) H ’7(57Hx>< (Tx'nx>7¢x)LS(1_svﬂX(%'ﬁ))'
zeS—{zo}

Thus, after simplifying we get

Y(S, Tag X Tag, W) = V(8, Uy X Tay, Vs )

obtaining thus the relation for the cuspidal representation 7.

For a generic unitary representation we use that 7, can be expressed as [54, Sec-
tion 7]

@'g(l-ﬁng)((sthl R RV D1 @ ROk @ MR- @),

where P is a parabolic subgroup containing the Borel subgroup of GL,, consisting of
upper triangular matrices, the §;’s are generic unitary discrete series representation of
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GL,, (F,),0<t <.--- <ty <1/2and v = |det|. Using the multiplicativity property of
~-factors (Section 2.7) we get

k

7(87 Ty X Tg, 1/}90) = H ’Y(Su Ty X 5d+i7 1%)
=1
d

H,Y(S + tiaﬂ—x X 5“7%)7(5 - ti’ﬂ—x X 57”wz)

i=1

Similarly,

7(57 HJE X Ty, wx> 7(37 H:Jc X 5k+i7 wx)

Il
=N

.
Il
a

7(8 + t’MHx X 517¢$)7(8 - t’HHﬂC X 57,7¢x)

We thus have reduced the problem to the case of unitary generic discrete series rep-
resentation 4, of GL,,(F.). But in this case we can write ¢, as the generic irreducible
subquotient of [57, Section 9.3]

‘GL (Foo —t=L =1
ZQ(Fz() )(pu T Q@)

where Q is a parabolic subgroup containing the Borel subgroup of GL,, consisting of
upper triangular matrices, p is a cuspidal representation of GL,(F,), h divides m, and
t is a positive integer. Then using once again the multiplicativity property of ~-factors
and that we know the relation when the representation is cuspidal, we obtain

1 t—1
’7(377Ta: X 5xa¢x) = H’V(S - T + laﬂ-x X p, %)
=0
1 t—1
= H7(8_7+Z7Hx Xp7¢x)
=0 2

= 7(87Hx X 6a:>¢x)
OJ

Now we would like to check the analogous relation, but for the L-functions and
e-factors, at least in the following situation.

Proposition 7.3.3. Let = € |F|. Assume Property (T') from Section 2.10 at x. Let
II, = 1T,(m), and t, be an irreducible generic unitary representation of GL,,,(F,). Then,
if 7, is tempered, we have that

L(s, 7y X Tpyt0z) = L(s, 11, X 73)

(7.3.4)
8(‘9’ Ty X Tg, %) = 5(57 H:v X Tg, @bx)
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Proof. We can reduce to proving (7.3.4) for discrete series representations 7,. In order
to do this, we write 7, as

ingy (O @ @ 6 @ Gag1 @ @ Bagp ® T D @ ST

where P is a parabolic subgroup containing the Borel subgroup of GL,,, consisting of up-
per triangular matrices, the §;’s are unitary discrete series representations of GL,,. (F.,),
0<t;<---<ty<1/2andv = |det|. Let us write 7, the induced of

0dy1 @ -+ ® Ogp-

Using the multiplicativity properties viii) and ix) of Section 2.10, we obtain

d
L(S,ﬂ'x X Tx) = S Tz X To H §+t;, My X 51)L(S — 1, Ty X 52)

d
e(s, 7 X 7)) = &(8, T X T, Uy) Hé(s + b, Ty X 04,y )E(S — i, Ty X 04y 1g).
=1
On the other hand, we use the Langlands classification to express 7, as a Langlands
quotient of

.SO i
g\ (m ® - ® T ® m),

where Q is a parabolic subgroup containing P, (See Section 1.5), 7; is a quasi-tempered
representation (i.e. a tempered representation twisted by an unramified character) of
GL,, (F,), for 1 <i < eand m, is a tempered representation of SO;, (F).

Now, again using property ix) of Section 2.10, we have

L(S,’YT;L« X 7'0) = L(S,TFO X 7'0) H L(S,ﬂ'i X 7'0)L<8,7}2' X To)
i=1

e
5(5771—:5 X 707%) = 8(5,7T0 X TOawx) HS(Saﬂi X To,¢x)€(8,7~ﬁ X To,%)

i=1

All the representations involved in the previous two equations are quasi-tempered.
From property vii) of Section 2.10, the multiplicativity of ~-factors (Section 2.7) and
(7.3.2), we get

=

L(s,my x 19) = || L(s, 70 X 8as1),

o~
I

1

=

5(5771_:6 X TOawm) = 5(577rz X 5d+l7wa:>-

l

Il
—

Finally, using a similar analysis, but with the Rankin-Selberg L-functions, on the right
hand side we get the reduction to discrete series.
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Now that we have reduced to the case where 7, is a discrete series, let us write 11,
as the parabolic induced representation of

g:-(Qg M @ @@€1 @+ D bapp QM@ - @ ETH),

where P, is a parabolic subgroup containing the Borel subgroup of GL,, consisting
of upper triangular matrices, the &’s are unitary discrete series representations of
GL, (F,)and 0 < t; < --- < t; < 1/2. Now thanks to (7.3.2) and the multiplicativity
of Rankin-Selberg y-factors, we have

I

.
Il
—

7(8?71—1 X TI) 7(87€f+i X Txawm)'

—

’7(8 - tjaé.j X Txalbx)V(S + tj7§j X Txawac)‘

<
I
—

As ¢; and 7, are discrete series representations, hence tempered, we can write the right
hand side in the following formal rational expression

w Q(QFI)’
where
k d
P(q;j)_lzn S gf-HXTx H 3+tj>€jXTx)L(S_tj7€jX7—x)
i=1 j=1
&
k d

Q<QEIS)71 = HL(l - Saéeri X 7~—z> H L<1 — S5 = tj7§j X 7::1:)[’(1 —S +tjuéj X %x)a

i=1 j=1

and £(qz°) is a monomial in ¢;".

As each L(s,¢; x 7,,) has no poles on Re(s) > 0, and since t; < 1/2 for each j,
the regions where P(q:") and Q(qz’) are zero do not intersect. Therefore, there are no
cancellations involving the numerator and denominator of this formal expression. We
can then conclude by the construction of Langlands-Shahidi L-functions [38, Section 5]
and multiplicativity of the Rankin-Selberg L-functions that

L(s,mp X 1) = = L(s, 11, x 7).

P(qr’)

]

7.4 Ramanujan Conjecture. We finish by using this study to prove the unramified
Ramanujan conjecture for globally generic cuspidal representations of SO;, ..
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Theorem 7.4.1. Assume (2.11.1). Let = = ®,7, be a globally generic cuspidal repre-
sentation of SO, (Ar). Ifr, is unramified, then its Satake parameter has absolute value
1.

Proof. Let us fix z € |F| an inert place (the split case is obtained from [37, Theorem
9.14]). Using Theorem 7.2.1, we have that 7,(7) = Il is the isobaric sum

M=T1,8 - 01,

where each II; is a unitary self-dual cuspidal automorphic representation of GLy, (Ar),
and II; 2 II; for i # j. By [33, Théoreme VI.10], each II; , is tempered.

If 7, is unramified, we may consider the semisimple conjugacy class
diag(aq, -+, an_1,1) x Fr, .
Then, by definition, the semisimple conjugacy class of I, is given by
-1

. -1
dlag(ala"' aan—lalalaan—lv"' y O )

Each «; or aj‘l is the Satake parameter for one of the representations II, ,, which are
unramified. But in the case GL,,,, we have that

‘Cki‘ = 1.
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Appendix A

Appendix by Guy Henniart

In this appendix, we complete the proof of Proposition 4.1.5 which concerns the split
group SO,,,.

A.1 The result is local, but the setting comes form a global situation. Let us first recall
that global setting. We have a global function field £, and a connected reductive group
G over k, which is quasi-split but non-split, in fact a group of type SO;, relative to
a quadratic separable extension [/k. Such a group is unique up to isomorphism; for
definiteness we consider on the k-vector space V = k"' @ [ ¢ k" ! the quadratic form
Q sending (z1,...,%Tn—1,Y; Tnt2, - - -, Tan) 10 122, + Toon—1 + ... + Tp_1Tpio + Niji(y),
where the z;’s are in k, y in [, and N,/ is the norm map. We take G to be the connected
component of the group of automorphisms of Q.

Remark A.1.1. If we allow for [ the split k-algebra %2, with coordinates z,, and z,,.;, and
use the same recipe for ¢ and G, we obtain a split group SO,,,: indeed Nz (2, Tr11) =
rntae1. Consequently our group G over k splits if we base change to [, hence any
extension of /.

For every place v of k, let k, be the completion of k£ with respect to v and G, be
the base change to k, from k& of G. Then G, is the connected component of the group
of automorphisms of the quadratic form @, on V, = k, ®, V given by the same formula,
with N, /., instead of Ny, and [, = [ ®; k,. The group G, is split if and only if v splits in
[. That group G, is in fact defined, using the quadratic form @, over the ring of integers
O, of k,. When v is unramified in [, the group G, is unramified, and conversely; the
subgroup G,(0,) is then a hyperspecial maximal compact subgroup of G, (k).

From the global setting we also inherit Whittaker data. That involves a pinning of
a root datum attached to G, and a choice of non-trivial character ¥ of A, trivial on k.
We let T be the maximal torus of G preserving each line ke; (where (eq,...,e, 1) is
the canonical basis of the first copy of =1 in V, and (e,;2,. .., e2,) that of the second
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copy), and preserving [ as well. It is the centralizer of the maximal split torus S, the
subtorus of T acting trivially on [. We let B be the Borel subgroup of G preserving the
flag of subspaces V; of V, where V; fori = 1,...,n — 1 has the basis (ey,...,¢;); we
write U for its unipotent radical. One identifies T to G, ' x T, where T’ is the kernel
of the norm map from Res;/;, G,y t0 Gy, jo, With (24,...,2,-1) in G?n‘,kl acting by z; on
ke;, by its inverse on ke, 1; fori = 1,...,n — 1, and trivially on [, and h € T'(k)
acting by multiplication on [, and trivially on the e;’s. To get a matrix picture, one can
choose a basis (e,, e, 1) of [ over k, thus yielding a k-basis of V' which we order as
€1, -5 €En_1,€n, Enil, Enio,-- ., €2, and then B appears as a group of upper triangular
block diagonal matrices in GL;,,, and T as its subgroup of block diagonal matrices, with
blocks of size 1 except the central one of size 2; the group S is the subgroup of T with
trivial central block. For SO}, the matrix picture of B is following: we write [ = k(o) and
we take the k-basis e, = 1 and e3 = a of I. If Ty, is the trace map, then

t1 * * *
0 a —le/k(a) *
B(k) = : 9 _
(k) 0 b a+bTry(a) = ti € k" a,b €k, Nyg(a+ab) =1
0 0 0 tl‘l

Remark A.1.2. Over an extension &’ of k splitting I, ¥’ ®,, [ is isomorphic to k"2, each
component corresponding to a k-embedding . of [ into &/, with y ® u going to yu(u).
Then Gy, is split, indeed T;, is isomorphic to G, acting via = goes to (z,z~'), and
T, is isomorphic to G, ,, using the action on ey,... e, 1,e,, Where (e,,e,1) is the
canonical basis of £”.

The absolute root datum attached to G is of type D,, the relative root datum of
type B,_1. More precisely let us choose a separable closure k* of k, and call . and
' the two conjugate embeddings of [/k into k*/k. Then as explained above k* ®y [ is
isomorphic to k* x k® by sending y ® u to (yc(u), y¢'(u)); that gives a k*-basis (e,, ¢,,.1)
of k* ®4 [, and Tya is isomorphic to (G,, )" via its action on ey, ...,e,. We use the
corresponding coordinates x1,...,x, on Ty.. The simple roots of T,. with respect to
B;. are the characters aq, ..., a,_1,a,, Where oj(xq, ..., 2,1,2,) = x;/xj41 fOr j <n
and «a,(z1,...,%,) = T,_12,. Thus the Galois group of k*/k fixes a; fori < n — 1 and
exchanges «a,,_; and «,. The simple relative roots are then the restrictions g; to S of
those simple absolute roots, «,,_; and «,, having the same restriction 3, ; = 3,. For
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SO;, we have the following matrix pictures:

tt 0 0 0 tt 0 0 0
0 t, 0 0 0 t, 0 0

—t,/t tt
“No o 6t o 1/t “lo 0 4 0 12,
0 0 0 ¢t 0 0 0 ¢t

t 00 0

010 0

= t1.
1o 01 o !
000 ¢!

We can pin the root subgroup corresponding to «;, for i < n, by sending ¢ in £* to the
endomorphism Id + tA; of k* ®; V, where A, acts trivially on all elements e; except
eir1 and ey, 114, and sends e; 1 to ¢;, also ey, 1_; t0 —eq, ;. FOri < n — 1, the relative
root subgroup corresponding to 3; is pinned (over k) by using the same formula. The
root subgroup corresponding to «,, is pinned by sending ¢ in k* to the endomorphism
Id+tA,, where A, acts trivially on the ¢;’s except e,,,; and e, 5, and sends e, to e,,_1,
and e, ., to —e,. For SO, we have the following matrix pictures:

1t 0 0 10t 0
010 0 01 0 —t

Id+tA, = Td+tA, =

T ik 00 1 —t|’ TR =10 01 0
000 1 000 1

Correspondingly, there is a kind of pinning, by Res;/; G, of the relative root subgroup
corresponding to 3,1 = (3,; that pinning sends « in [ to A(u), where A(u) is the endo-
morphism of V' acting trivially on the e;’s for i < n and i > n + 2, and sending y in [ to
Try/k(uy)en—1, alSO e,4o t0 (—ule,_1, =) in ke,_1 & [, where bar indicates conjugation
in I/k. Indeed, going over to k%, and identifying k* ®; [ with k* x k* as above, (3, trans-
lates to sending (¢,t') to (Id +tA,_1)(Id +t'A,). For SO}, we have the following matrix
picture: if {e, e3} is a ordered basis of [, then

1 Trl/k(egu) Trl/k<€3U) —Nl/k(u)

0 1 0 —U
I+ AW = X _Z;

0 0 0 1

where u = Ui€o + Uses.

We can use the additive character ¥ of A, to get an additive character 6y of U(Ay)
sending Id +tA; to ¥(t) fori <n —1andtin A, and sending Id + A(u) to ¥ o try/(u)
for uw in A;. Since ¥ is non-trivial, 6y is a non-degenerate character of U(A). A general
non-degenerate character 6 of U(A;) sends Id + tA; to U(a;t) fori <n —1and tin Ay,
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and Id + A(u) to W o Ty (bu) for u in A, for some ¢;’s in £* and b in [*. We fix such a
character 6.

Now if v is a place of k, the restriction 6, of 6 to U(k, ) is a non-degenerate character,
and if 7 is a cuspidal #-generic automorphic representation of G(A;) then at a place v
its component =, is generic with respect to 0,. For all places v except finitely many,
the conductor of ¥, is Oy, (meaning that ¥, is trivial on Oy, but not on larger fractional
ideals), and the «;’s and b are units, so that 6, is trivial on U(O,,) but not on U(Z) for any
larger fractional ideal Z of O,,.

Furthermore, we have another positive integer m, and we consider the quadratic
formQ on W =km &V @ k™ given by Q' (Y1, - - - Yms Uy Ymss - - - Yom) = Q) + Y1yam +
4+ YmYms1- The connected component H of the automorphism group of @)’ is again
a quasi-split group over k, of type SO;,,.,,. We consider the parabolic subgroup P
of H stabilizing the first component £™; it has the Levi subgroup stabilizing all three
components, which is isomorphic to GL,, x G, with GL,, acting on the first component
and G on V. Again, at a place w splitin I, H,, is split.

We are also given a unitary cuspidal automorphic representation r of GL,,,(A;) and
a unitary 6-generic cuspidal automorphic representation = of G(A;). At a given place v
of k, 7, is tempered (by Laurent Lafforgue’s result), and =, is unitary and #,-generic.

A.2 We are interested in places v of & which are split in [ (in particular unramified),
such that ¥, has conductor Oy, with the a;’s and b units at v, and such that furthermore
7, and m, are unramified. Such places form a set of density 1/2, so there is a plethora
of them. We want to show that if Re(s) > 1 then the unramified component of the
representation of H(k,) parabolically induced from v*7, ® m, cannot be unitary, where
unramified means with non-zero vectors fixed by H(Oy, ), and v denotes the character
of GL,,(k,) given by the absolute value of the determinant character.

The proof requires a comparison with local fields of characteristic 0, so we change
notation, and take as our base field a locally compact non-Archimedean field F', of
arbitrary characteristic, and write O for its ring of integers, Pr for the maximal ideal of
Or, valr for the normalized valuation of F', and ¢ for the cardinality of its residue field
kr. We consider the split groups G = SO,,, and H = SO,,, ,,,, with the standard Borel
pairs as above, and GL,, x G seen, also as above, as a Levi subgroup of a parabolic
subgroup P of H. We call unramified a smooth irreducible representation of G(F') with
non-zero vectors fixed by G(Or), and similarly for H and GL,,. Genericity will not play
a role in the following result, which implies what is needed for Proposition 4.1.5.

Proposition A.2.1. Let T be a tempered smooth irreducible unramified representation of
GL,.(F) and = a unitary smooth irreducible unramified representation of G(F'). Let s be
a complex parameter with Re(s) > 1. Then the unramified component of Indg((g)) (T ®
) IS not unitary.
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The proof relies on known classifications, for GL,,(F), G(F) and H(F): that of
smooth irreducible unramified representations and that of unitary unramified ones. For
G(F) and H(F), the first classification is established only when the characteristic of F'is
not 2, and the second one only for F' of characteristic 0. Presumably the available proofs
can be made to work in all positive characteristics as well, but that has not been done
yet. So we proceed in two independent steps. On the one hand we use a comparison
of local fields a la Kazhdan to show that if the result is true for F' of characteristic 0, then
it is true in general. On the other hand we prove the result when F' has characteristic 0
using the known classifications.

Let us first recall the usual parametrization of smooth irreducible unramified rep-
resentations of G(F') via unramified characters of T(F"). That parametrization holds for
unramified groups over F' of any characteristic. If £ is an unramified character of T(F),
then Indggﬁ)) (¢) has a unique unramified irreducible component 7 (&), and all irreducible
unramified smooth representations of G(F') are obtained in this way, with a character
& which is unique up to the action of the Weyl group of T in G. Concretely £ sends
(z1,...,2,) in T(F) to the product of 2" i running from 1 to n, for some non-zero
complex numbers z;, and the tuple (z1, ..., z,) is determined by 7 (&) up to permutation
of the coordinates and sending z; to its inverse for an even number of indices i; we write
(&) = m(z1,...,2,). Such a description applies to GL,,(F), using unramified charac-
ters of its diagonal torus A, and to H(F’), using unramified characters of its maximal
split torus A x T. An unramified character of A(F) is given by an m-tuple of non-zero

complex numbers (yi, ..., yn), and we write 7(y, . .., y,,) for the corresponding unram-
ified irreducible component; similarly an unramified character of H(F') is given by an
(m + n)-tuple of non-zero complex numbers (yi,...,Ym, 21,---,2,), and gives the un-
ramified irreducible component = (y1,...,Ym, 21, ..., 2,). Since the representation = of

GL,,(F) is supposed to be tempered, it has the form = (y,...,y.,) where the y; have
modulus 1, and 7 is the full parabolically induced representation.

The representation 7 is supposed to be unitary. To interpret that condition con-
cretely, in terms of the parameters with 7 = 7 (zy,..., z,), we now assume [ of char-
acteristic 0, to be able to use the results of Muic [3] and Muic-Tadic [4]. Note that
in those papers the notion of unramified representation refers to the same choice of
hyperspecial maximal compact subgroup as ours, viz. the group SO,,,(OF).

In [3] Muic gives a finer description of unramified smooth irreducible representa-
tions of G(F'), which obviously also applies to H(F'), in three stages: strongly negative
representations, negative representations (which are unitary), general case. The clas-
sification of unitary unramified representations in [4] uses the classification of [3]. How-
ever we have to be careful in that both references consider the group O,,, instead of our
group SO.,,, and an irreducible smooth representation of O, (F') is called unramified if
it has non-zero fixed vectors under O,,,(OF).

The major difference with SO,,, occurs already when n = 1, and concerns the re-
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ducibility of (unramified) principal series. Indeed SO, (F)) is a split torus, and a principal
series is simply a character &, in particular irreducible; but O,(F) — SO, (F') acts on
SO, (F') by inversion, so ¢ induces irreducibly to O,(F), (to a unitary representation if
and only if £ is unitary), unless its square is trivial, in which case ¢ induces to the direct
sum of its two extensions to O, (F'), which are both unitary and can be distinguished by
their value on the transposition matrix, which is a sign. But O,(OF) contains that trans-
position matrix, so if £ is unramified there is indeed a unique unramified component in
the induced representation, where the transposition matrix acts trivially.

That phenomenon persists for all positive integers n. Indeed the normalizer of T in
0., is twice bigger than the normalizer in SO,,,; for example it contains the transposition
matrix o which exchanges e,, and ¢,,,1, and acts on an unramified character ¢ of T(F) by
changing z, to its inverse in the parameter of &, yielding a character £°. We can inflate
¢ to B(F), induce first to SO,,(F), where the induced representation 7(¢£) has a line of
S0.,, (Or)-fixed vectors and a unique unramified irreducible component (&), and then
induce further to a representation 77 (£) of Oy, (F). It is clear that the restriction of 71 (¢)
to SO,,(F) is the direct sum of I(¢) and 1(£7), with the two lines of SO,,,(Or)-fixed
vectors, exchanged by o. But O,,(OF) is generated by SO,,,(O) and o, hence I (&)
has a unique line of O,,(OF)-fixed vectors. Also the direct sum of 7(¢£) and 7 (£7) occurs
as a subquotient of 7*(¢), with the two factors exchanged by o. If those two factors are
not isomorphic then the direct sum is an irreducible component 7*(¢) of I*(¢), the
unique unramified such. If they are isomorphic, then 7(£) extends to O,,(F); there
are two such extensions, one being the twist of the other by the nontrivial character of
0,,.(F) trivial on SO,,(F), but only one of them, which we call 77 (&), is unramified —
it is the only unramified irreducible component of I*(¢). Note that if  is an unramifed
character of T(F) then =7 (¢) = n*(n) if and only if =(n) is equal to #(§) or w(£7). It
follows that ¢ goes to 77 (&) gives all unramified irreducible smooth representations
of Oy,(F), and that 77 (&) determines ¢ up to the action of the normalizer of T(F) in
0,,.(F'), which acts on the parameters (zy,...,z,) by permutation of the indices and
sending some of the z;’s to their inverses. It is clear that 7+ (&) can be unitary only if
7(§) is; if that is the case, then 7(£7) is also unitary, and so is 7 (). This means that
a classification of unitary smooth irreducible unramified representations of O,,(F") can
be directly applied to SO, (F) instead. Moreover, a criterion of irreducibility of 7(£) in
terms of ¢ has to be unsensitive to replacing & with £7.

We now recall what we need of the classifications of [3] and [4], following the intro-
duction of [4] specialized to our case of Oy, (F'). The classification of general smooth ir-
reducible unramified representations of O,,,(F') in terms of negative ones will be enough
for us.

By [3] (see [4] definition 0-6 and surrounding comments) that general case is as
follows: one considers a multiset E of triples (r, &, a) where r is a positive integer, ¢
a unitary unramified character of F’* and « a positive real number, and a negative
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representation p of O,,(F'), so that a plus the sum of the r’s equals n. Then one attaches
to those data the unique irreducible unramified component = (E, p) of the representation
of Oy, (F) parabolically induced from tensor (over triples) (v“¢)(r) ® p, where n(r) for a
character n of F'* is the character nodet of GL,.(F). In that manner we get all irreducible
unramified representations = of O,,,(F’), up to isomorphism (the way we order the triples
to construct the tensor product does not matter), and the representation = determines
p (up to isomorphism) and the multiset of triples E.

Now if 7(E, p) is unitary, then ([4], second assertion of Theorem 0-8 and definition
0-7) for all triples (r,&,«) in E we have a < 1. ([4] gives necessary and sufficient
conditions for 7(E, p) to be unitary, but we do not need them). Now we are in position
to give the proof of the proposition when the characteristic of F' is zero.

Proof of the Proposition when char F' = 0. Our representation 7 of SO,,,(F’) has the form
7(&) for some unramified character ¢ of T(F') and the corresponding representation
7t (€) of Oy, (F) (which is unramified unitary) has the preceding form = (E, p). We have
also the unramified tempered representation = of GL,,(F') given by m unramified uni-
tary characters, and we want to consider the unramified irreducible component =’ of the
representation of O,,,,2, parabolically induced by v*7 ® 71 (¢), where ¢ = Re(s) > 1.
We see v*7 as given by v'ny, ..., v'n,, for unitary unramified characters »; of F*. Then
7" is simply 7 (E’, p) where E’ is obtained from E by adding the triples (1,7;,t) fori =1
to m. Indeed using parabolic induction in stages, we see that 7(E’, p) is the unramified
component of the induction of v*7 @ w(E, p). It follows that 7’ does not satisfy the condi-
tion above, so cannot be unitary, and the components of the restriction of 7’ to SO, (F)
cannot be unitary either, which is what we wanted to prove. O

A.3 Now that we have proved what we want for F' of characteristic 0, we need to transfer
it to the positive characteristic case, possibly 2. We operate that transfer using close
local fields a la Kazhdan, and for convenience our reference is [2], although some
earlier references could have been used in places.

We change notation a bit, and use G for a split connected group over Z; that will
be applied to SO,,,, SO,,..2, and GL,,. We fix a Borel subgroup B = TU. We have
two non-Archimedean local fields of the same residue characteristic, one of them is our
characteristic p local field F’, the other one F’ of characteristic 0, and we put a prime to
indicate that we use over F’ the notation over F. We have the maximal hyperspecial
subgroup K = G(Op) of G(F'), and the Iwahori subgroup I which is the inverse image
in K of the subgroup B(kr) of G(kr) seen as a quotient of G(Or). We write H for the
Hecke algebra (with complex coefficients) of I in G(F'). It is known that taking fixed
points under [ yields an equivalence between the category of smooth representations
of G(F') generated by their /-fixed vectors and the category of (right) modules over
H. Moreover a smooth irreducible representation = of G(F') is unitary if and only if the
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corresponding #-module 7/ is unitary ([1, Corollary 1.3]; in fact the case of the lwahori
subgroup had been obtained previously by D. Barbasch and A. Moy). Since unramified
principal series have K-fixed vectors, they can be detected by the corresponding H-
module, and their unitarity as well. But we also need compatibilities with parabolic
induction.

We say that ' and I are r-close (for a positive integer r) if there is a ring iso-
morphism of Or/Pj. with O%/Pj. For r = 1, this means ¢r = ¢. If ' and F’ are
1-close, then there is an algebra isomorphism . of H with H’, sending the characteristic
function of K to the characteristic function of K’ (that is classical, see [2, Section 3],
especially Theorem 3.13, for a generalization to the Hecke algebra relative to congru-
ence subgroups of I). An irreducible smooth unramified representation 7 of G(F') gives
a H-module 7! with non-zero vectors fixed by the characteristic function of K, which
yields via « a H’-module with non-zero vectors fixed by the characteristic function of K’;
that module has the from 7/’ for an irreducible smooth unramified representation =’ of
G(F’) (unique up to isomorphism), and = is unitary if and only if 7’ is.

Finally let us deal with parabolic induction. Following [2, Section 4.3], we assume
that I and £’ are 4-closed, and choose a ring isomorphism of Or/P4 onto O}/ P4,
and uniformizers ¢, t' of F, F’ compatible with L. Let P be a parabolic subgroup of G
containing B, and M its Levi subgroup containing T, N its unipotent radical (provisionally
those letters do not stand for integers). Then I, = I N M(F) is an Iwahori subgroup of
M(F), with Hecke algebra H,, and K, = K N M(F) a hyperspecial maximal compact
subgroup of M(F). Again we put primes for the corresponding objects over F’. Let 7
be a smooth irreducible representation of M(F") with 7,, fixed vectors, and 7' the cor-
responding representation of M(F"), obtained by the above process applied to M(F"),
via an isomorphism of 7/~ onto 7//». Then there is an isomorphism of vector spaces of
(Indﬁ((f:)) )" onto <1ndS(<§,’; 7)!', which is moreover compatible with the natural actions of
H and H' ([2, Lemma 4.10 & Theorem 4.14]). Now, we can prove the Proposition when
the characteristic of I positive.

Proof of the Proposition when char F' > 0. We now choose F’ of characteristic 0 such
that " and F’ are 4-close (that is possible), and apply those considerations to the am-
bient group H = S0O,,,.5, (instead of G) with the Levi subgroup GL,,(F') x SO,,(F)
(instead of the group M). We have the representation = of GL,,(F) and the repre-
sentation 7 of SO,,,(F'), and corresponding representations 7’ and 7’ obtained via the
previous process. We also have the complex number s with Re(s) > 1 and our goal is
to show that the unramified irreducible component of the representation of SOy, .2, (F)
parabolically induced from v°7 ® 7 is not unitary. By the first part of our proof, the result
is true over the characteristic 0 field F’, and it is enough to show that the hypotheses
on 7 and r transfer to the corresponding hypotheses on 7’ and #’, and that the result
over F’ transfers back to F'. That we do presently. The representation 7 is tempered,
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parabolically induced from the unitary character £ = (&3, ..., &) of A(F'), and the com-
patibility with parabolic induction recalled above shows that 7’ is induced from the uni-
tary character (&1, ..., &) with ¢ taking the same value as & on uniformizers. Moreover
multiplying 7 by v* corresponds to multiplying 7’ by v’¢, since twisting by »* amounts to
multiplying all ¢;’s by the character v* of F*. The representation = is smooth irreducible
unitary unramified, and then 7’ is also smooth irreducible unitary unramified. Finally the
representation I parabolically induced from v*r ® 7 corresponds to the representation
I’ parabolically induced from v*7’ @ =/, and the unramified irreducible component of 1
corresponds to the unramified irreducible component of I’. By the result over F’, that
for I" is not unitary, hence that for I is not unitary either, which is what we wanted. [
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Résumé : Dans cette thése, nous nous intéressons a
la conjecture de fonctorialité de Langlands pour les
groupes spéciaux orthogonales pairs quasi-déployés
non-déployés en caractéristique positive. Cogdell,
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