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Chapter 1

Introduction

“We are all now connected by the
Internet, like neurons in a giant brain.”

Stephen Hawking

The Internet has become the primary communication method for many organizations,
individuals and machines. It is powered by a federation of thousands of network operators,
collaborating to enable fast and resilient communications between any device on earth. The
Internet has in many ways been a resounding success, but it still faces daunting challenges.
In particular, with the rise of global Internet demand and multimedia services o�ering, it is
becoming increasingly di�cult for operators to ensure good consumer quality of experience.
By contrast, the complexity of the network is mostly hidden to end users: troubleshooting
connectivity failures remains di�cult in practice. Recent advances in the �eld of Machine
Learning have shown that data-driven approaches can help understand complex systems such
as the Internet. In this thesis, we show that these approaches can be used for large computer
network modeling, even when the available knowledge is scarce.

1.1 The increasing complexity of computer networks

The demand for faster Internet has globally and sharply increased in the last years. Ac-
cording to the “Facts and Figures” from the International Telecommunication Union (ITU) [1],
more than 50% of world’s population is connected in 2020, compared to less than 30% ten years
ago. In particular, 69% of people aged 15–24 have access to the Internet. The number of house-
holds with broadband access also doubled from 30% in 2010 to 57% in 2019. While the number
of connected peoples grows, the bandwidth each individual requires has also augmented sig-
ni�cantly. This evolution is natural given the advances in media technologies allowing cheap
capture, processing and display of high-de�nition content (e.g. images, music, videos, games,
. . . ). For instance, from Cisco’s estimations [2], the number of 4K televisions doubled between
2018 and 2020. This trend is set to continue as more and more devices are also being connected
to Internet over time: predictions show that more than 13 billion devices may be connected in
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Chapter 1 – Introduction

2023, including bandwidth-eager devices such as autonomous vehicles or cloud-based surveil-
lance cameras. The Covid-19 crisis further ampli�ed broadband tra�c demand due to regional
lockdowns and wider interest for teleworking. (As an example, Italy has seen 44% more tra�c
during the 2020 lockdowns than during the same period in 2019 [1].)

To cope with this rising demand, Internet operators have invested to expand their network:
from 2019 to mid-2020, 200 Tbit/sec of additional capacity were globally added according to
the ITU, up to an estimated total of 700 Tbit/sec. Since 2018, the global average broadband
(resp. mobile) bandwidth of end user connections has climbed at a rate of 20% (resp. 27%)
per year, and will probably reach 110 Mbit/sec by 2023 (resp. 44 Mbit/sec) [2]. While this
means that more intercontinental cables, local �bers and antennas are being deployed, the
strategy used by operators to manage their networks also needed to evolve. One important
change is the shift to Software-De�ned Networking (SDN), where the network control plane
is decoupled from the forwarding (data) plane: this paradigm allows for more adaptability
to the dynamic demands of their customers. In [2], 40% of surveyed operators have already
switched to such networks, with 55% more operators expecting a deployment within two years.
SDN allows in theory to automate most tra�c engineering tasks, yielding optimized network
con�gurations, routing and peering policies between operators. In 5G networks (SDN-enabled
by design), operators are incentivized to deploy network functions “near the edge” to enable
new use cases such as cloud gaming or large-scale telemetry analytics. In practice, this means
deploying signi�cant computing resources in datacenters or even antennas near end users.
Internet services and applications must also adapt their infrastructure to handle the demand,
by deploying distributed systems at multiple world locations for instance. Again, despite a
wide range of cloud-services o�ers, these distributed systems naturally add complexity and
new dependencies into the equation. As an example, Net�ix has deployed delivery servers in
more than 500 locations to cope with the worldwide demand of video streaming [3], allowing
the service to become the largest provider of content in France in 2020 [4], ahead of Google
and its Youtube video service.

All this added complexity may however back�re and lead to severe outages. On July 17,
2020, while attempting to solve a relatively benign network congestion problem, a Cloud�are
engineering team updated a router con�guration. However, this con�guration change con-
tained an error that redirected the entire Cloud�are tra�c through a single network location:
this led to the global outage of most of the 12 million websites served by the company for
about 30 minutes [5]. Automated systems also may fail spectacularly: on August 30, 2020,
CenturyLink/Level3 (one of the biggest network operator according to CAIDA [6]) triggered a
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small change to protect a customer from a cyber attack. A chain of automated events led Cen-
turyLink/Level3 to announce a huge number of routing changes to other network operators,
shutting down a huge portion of the Internet during almost �ve hours [7]. In these examples,
the relations between the initial root cause and the observed symptoms were not obvious—
even to insiders—due to the many dependencies between network components. For external
observers such as researchers or end users, troubleshooting and understanding Internet out-
ages is even more complex, as most of these dependencies are hidden (for technical or business
reasons). While some public information is available through Internet Exchange Points (IXPs),
most of the Internet topology and relations between Internet stakeholders remain di�cult to
infer [8].

1.2 Data-driven approaches for network modeling

Automation, optimization and decision making software programs are widely used by net-
work operators in an attempt to provide a good quality of service for their customers and re-
duce operational costs. Historically based on static decision rules designed by experts, these
programs may struggle to understand the complex dependencies of modern computer net-
works. There is however a growing interest for statistical and data-driven approaches for
network design and operation: machine learning algorithms leverage the large amounts of
data collected by operators to produce relevant models of their networks. Yet, applications of
machine learning techniques to computer networks and Internet remains di�cult in practice
because of the large scale of the managed networks. These networks are indeed di�cult to in-
strument in order to obtain continuous measurements and up-to-date information. Moreover,
with the recent shift to fog- and edge-computing, more management decisions are automati-
cally taken by equipments with a limited knowledge of the full network.

Over the last decade, advances in computational e�ciency enabled breakthrough solutions
with neural network and deep learning models. One very popular example is Google’s AlphaGo,
the �rst software able to beat professional Go players [9] (2016). Other examples include a wide
range of domains, from the historical topic of image analysis to multimedia content synthe-
sis, data-driven translation models or cyber-physical systems analysis for instance. Thanks to
their expressivity, these solutions have proven to be better at modeling complex systems and
dependencies than most traditional approaches. In particular, given enough data, deep learn-
ing models are capable to extract (“learn”) complex hidden relationships in the input data,
leading to more accurate and generalizable solutions.
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Chapter 1 – Introduction

In this thesis, we argue that statistical learning can helpmodeling large computer

networks with complex interdependencies, even with limited information about the

evaluated networks. We demonstrate this claim by applying recent advances in image and
graph processing techniques to computer networks, with data collected from both simulated

and real networks.
Our �ndings advocate for the integration of more data-driven techniques in the design

and management of computer networks. While these networks become increasingly complex
and di�cult to manage, these techniques hold the potential to improve network performances
while reducing downtime risks and operational costs, fundamental metrics for network opera-
tors. On the other end, our contributions also show that external observers may use statistical
learning to study the characteristics of a computer network despite having little prior infor-
mation about it. This is very important for a number of actors, including consumers willing
to evaluate network operators or third-party research campaigns. While we focus this thesis
on computer networks, we believe most contributions can be applied to other domains of in-
terdependent systems with limited changes. For instance, we believe our techniques are likely
to be applicable to any cyber-physical system (e.g. smart grids or industrial control systems),
social and transport networks or chemical and biological processes.

1.3 Research challenges and �ndings

In the remainder of this thesis, we study di�erent problems linked to the claim we made in
the last section. More speci�cally, we mainly di�erentiate problems according to the amount of

available information usable for statistical learning. Indeed, solutions to the considered prob-
lems are actually very di�erent when one has access to the full network topology and internal
components’ characteristics, compared to when only limited measurements are possible, and
the network is considered as a “black box”. This di�erentiation more or less maps to the dis-
parity of knowledge between a network operator (having a relatively good overview of its
network) and external observers. As a consequence, the challenges we consider are di�erent
according to the amount of available knowledge:

— In a �rst challenge (Subsection 1.3.1), we consider the case of a network operator will-
ing to estimate network performance metrics, knowing the network topology and the
characteristics of network components; these topologies and characteristics might be
currently deployed or might concern a planned con�guration change;
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— In Subsection 1.3.2 and Subsection 1.3.3, we ask if the root cause(s) of observed failures
can be pinpointed with statistical learning and limited information about a network. A
solution to this challenge would allow all Internet stakeholders to understand and trou-

bleshoot failures, something very di�cult today with the lack of available information.

Statistical models are usually constructed based on a speci�c environment (i.e. a computer
network), for that same environment. However, practical solutions to the aforementioned
challenges should remain generalizable to any computer network of any size. By proposing
extensible and generalizable models by design, we ensure that our contributions comply with
this requirement.

1.3.1 Network modeling for fast performance prediction

Due to the complex interdependencies between the components of a computer network, it
is usually di�cult to predict how a given network con�guration will perfom in practice. This
is a major problem for network operators willing to optimize their con�gurations without
introducing problems: small changes in one part of the network could lead to drastic perfor-
mance changes in other apparently unrelated parts. Historically, operators have used expert
knowledge and simulations, but these approaches may be inaccurate and slow. In the context
of large-scale dynamic networks, new robust and e�cient solutions are needed today.

The Knowledge-De�ned Networking (KDN) paradigm [10] has been proposed in this re-
gard. It proposes to leverage the combined capabilities of SDN (facilitated metric collection
and network management) and machine learning to design and control large and complex com-
puter networks e�ciently. In KDN, networks need to be modeled from the known network
con�guration so that automated decisions can be applied. One goal of this modeling is to pre-

dict the network performance given con�guration changes in order to make the best decisions.
Inspired by a previous work based on Graph Neural Networks (GNNs) [11], we propose in this
thesis to explicitly model the dependencies between network components in multiple bipartite
graphs. We apply recent GNN techniques on this dependency model and obtain predictions
with very good accuracy for large networks in a few hundreds of milliseconds (by contrast,
simulation tools required several minutes for the same predictions). In particular, our con-
tribution can handle network components with various scheduling policies. We show that it
can be generalized to di�erent network topologies and con�gurations and explore its inner
workings with visualizations of learned representations.
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This work has been performed in the context of a machine learning challenge co-organized
by the ITU and the Barcelona Networking Center [12]. We were honored to win this challenge
and have published our approach in the following report (at the time of writing, additional
submissions are being prepared for SIGCOMM CCR and NeurIPS, see page 149):

Loïck Bonniot, Christoph Neumann, François Schnitzler, and François Taïani. Graph
Neural Networking Challenge 2020 - Steredeg’s solution. 2020. url: https://
github.com/ITU- AI- ML- in- 5G- Challenge/ITU- ML5G- PS- 014-
Steredeg/blob/main/report.pdf

1.3.2 Root Cause Analysis from the edge

Broadband and mobile Internet users regularly encounter performance degradations and
connectivity issues when accessing services over the Internet. During these incidents, it is dif-
�cult for end users to pinpoint the root causes behind the observed symptoms: is it due to bad
wireless coverage? Service downtime? Device miscon�guration? Internet Service Providers
(ISPs) are naturally blamed by users for many perceived degradations, since they are respon-
sible for delivering good Internet connectivity. As a result, their customer support teams are
often called upon for symptoms not actually caused by the ISP. This leads to additional support
costs and damaged customer relationship: TV and Telecom customer services were ranked
among the worst in US in 2018 [14].

End users and ISPs would both bene�t from an automated Root Cause Analysis (RCA) so-
lution, able to pinpoint the most probable origins of failures. Customers would be able to
pinpoint failures quickly while avoiding most time-consuming phone calls, leading to greater
satisfaction (75% of US citizens from youngest generations prefer written communications in
customer service relations [15]); conversely, ISPs would only receive reports for root causes
likely to lie within their area of responsibility. Impacted third-party Internet services would
also bene�t from better customer experience and automatic reports, as even small performance
degradations may lead to lower revenues [16, 17].

In this context, the available knowledge is drastically reduced compared to the previous
problem (Subsection 1.3.1): when doing RCA from the point of view of one user, it is not
possible to have access to the full topology and dependencies of Internet services. To solve
this problem, we propose to leverage a combination of crowdsourced measurements and the
usage of reference (“landmarks”) measurement servers deployed in many Internet locations:
by collecting metrics from these vantage points, we show that it is possible to pinpoint many
root causes, even without ISP collaboration. We leverage a collected dataset with controlled

14
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1.3. Research challenges and �ndings

failures to build root cause models, and show that a Convolutional Neural Network (CNN)
outperforms two alternative solutions derived from typical machine learning algorithms. In
particular, our CNN models are extensible and support dynamic landmark servers by design.
This work has been presented in the following paper:

Loïck Bonniot, Christoph Neumann, and François Taïani. « Towards Internet-
Scale Convolutional Root-Cause Analysis with DiagNet ». In: 35th IEEE Inter-

national Parallel & Distributed Processing Symposium. 2021. doi: 10 . 1109 /
IPDPS49936.2021.00084. url: https://hal.archives-ouvertes.
fr/hal-02534888

1.3.3 Leveraging web browsers for network metrics collection

The third contribution we present in this thesis is related to the collection of metrics rele-
vant for RCA. In this last work, we highlight the need for Quality of Experience (QoE) metrics
in a practical RCA framework, and promote the instrumentation of the execution environment

of end user devices in this regard. More speci�cally, we argue that web browsers are good
platforms for metric collection that can provide accurate estimates of both QoE and network
metrics (Quality of Service (QoS) metrics). We propose a set of methods based on browser
capabilities, taking into account the security restrictions of modern web browsers.

During more than a year, we deployed and collected metrics using our proposed frame-
work and volunteer end users. We highlighted several interesting �ndings from the collected
dataset, including QoE variations over time, tra�c di�erentiation pinpointing or important
Internet routing changes. We also propose a statistical approach to pinpoint faults and re-
lated root causes that we observed in our dataset. This e�ort of data collection is necessary
for any data-driven solution: it allowed us to evaluate the RCA techniques we proposed (Sub-
section 1.3.2) over the Internet with real faults and QoE degradations. As such, because our
dataset is signi�cantly di�erent from the previous dataset we used with controlled faults, we
obtain di�erent results showing that typical machine learning baselines remain interesting for
RCA problem. While the overall performance is lower, our study still demonstrates the inter-
est of statistical learning for RCA and raises a number of interesting questions and research
avenues for future work in this area. A description of our methodology and early �ndings
from our dataset are presented in the following paper:

Loïck Bonniot, Christoph Neumann, and François Taïani. « DiagSys: Network and
Third-Party Web-Service Monitoring from the Browser’s Perspective (Industry
Track) ». In: Proceedings of the 21st International Middleware Conference Industrial
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Track. Association for Computing Machinery, 2020, pp. 16–22. isbn: 978-1-4503-
8201-4. doi: 10.1145/3429357.3430520. url: https://hal.archives-
ouvertes.fr/hal-02967290

1.4 Thesis outline

This thesis follows the synopsis we described in the previous section with each chapter
being written to be self-contained.

— We begin in Chapter 2 by introducing some important de�nitions about computer net-

works, followed by additional background about network modeling and RCA. In Sec-
tion 2.4, we also expose some basic notions behind machine learning, including re-
cent neural network developments such as Convolutional Neural Networks (CNNs) and
Graph Neural Networks (GNNs).

— In Chapter 3, we detail the application of generalizable GNNs for performance predic-
tion over network paths. This chapter includes the details of our results over the GNN
challenge co-organized by the ITU and the Barcelona Neural Networking Center.

— Chapter 4 presents our second contribution, DiagNet, an extensible neural network
model for RCA from end user devices. In particular, we show how DiagNet performs
compared to two other models derived from common statistical learning approaches (i.e.
an extensible Naive Bayes and an extensible Random Forest classi�ers). For our exper-
iment in this chapter, we leverage a dataset collected over a few weeks with injected,
controlled faults.

— In an attempt to evaluate how DiagNet performs with real Internet faults, we designed
and deployed a full measurement platform during more than a year. We present this
platform, DiagSys, in Chapter 5. This last contribution shows that building systems
with real faults is signi�cantly more challenging than with controlled ones. Yet, we
managed to build data-driven RCA models from this dataset, and present our results in
this chapter.

— Finally, we conclude this thesis in Chapter 6, where we also draw perspectives and
promising ideas for network modeling and RCA services in the next few years.
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In this chapter, we provide the necessary background needed to understand the subsequent
chapters, along with relevant related work. We begin by de�ning the important concepts used
in this thesis (Section 2.1), in particular how we de�ne a computer network. We then intro-
duce the network modeling problem in Section 2.2. Following the intuition of our introduction
(distinguishing approaches depending on full versus limited network knowledge), we propose
two di�erent variations of this problem. The �rst variation corresponds to the design time

of a network, when one has access to most low-level characteristics of components: in this
case, the goal is usually to predict the behavior of the network and answer questions such as
“What are the expected delays between components?”, “Is there any saturated component?”
or “What can we do to improve the network?”. The second variation is more suited for oper-
ation time and considers an opposite strategy. From global or macroscopic measurements and
without any prior �ne-grained knowledge of the inner-working of the network, can we infer
low-level properties of network components? These properties are usually unavailable during
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operations, either because they are too costly to obtain or because one party cannot access
them for business reasons. Yet, they are critical for a number of use cases.

We explore one of the aforementioned use cases, root cause analysis, in Section 2.3. Once a
failure or problem has been detected, the goal of root cause analysis is to �nd the component(s)
responsible for the failure. Again, we explore two variations: (1) when one has access to
insightful knowledge about the network (e.g. its topology and low-level properties) and (2)
when information can only be scarcely obtained, requiring approximations and statistics.

Several contributions of this thesis are based on machine learning (Chapters 3 and 4). We
provide the intuition and the basic concepts of machine learning in Section 2.4 to help our
readers fully grasp these contributions. In particular, we detail the standard methodology be-
hind machine learning solutions: dataset collection, model design, training and evaluation.
Finally, we present popular models ranging from simple statistical approaches and decision
trees to more complex neural network models.
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2.1 De�nitions

We begin by de�ning important networking terms and concepts that we will use through-
out this thesis.

Computer networks This thesis focuses on computer networks, as formally de�ned by
Andrew S. Tanenbaum in his book “Computer Networks” [20]: “a collection of autonomous
computers interconnected by a single technology”. More speci�cally, we are interested in the
study of networks of networks, called internetworks (one obvious example being the Internet).
For simplicity, we de�ne every computer within a network as a node, whether personal com-
puter, mobile phone, wearable device, dedicated server, smart car, . . . Two nodes connected by
a link can communicate by exchanging messages using a shared technology (such as Blue-
tooth Low Energy (BLE), or Internet Protocol (IP) over Ethernet or Wi-Fi [21]). Finally, a path
is de�ned as an ordered list of nodes and links and describes a route between two nodes that
may not be directly connected.

Nodes, links and paths form the basic components of every computer network (Fig-
ure 2.1). Thanks to their genericity, these concepts can be easily mapped to other kinds of
networks (e.g. transportation, social, biological networks).

Useful metrics In practice, computer network links are characterized by a latency, a jit-

ter, a loss rate and a capacity. The latency is the average time needed for a message to pass
through the link, while the jitter is the average of the deviation from that latency. The ratio
of lost messages is de�ned by the loss rate. Finally, the capacity de�nes the quantity of in-
formation that can be transmitted through the link per unit of time: it is usually measured in
bits per second. The capacity must not be confused with the available bandwidth, the remain-
ing link capacity when a link is already being used. It is important to note that one cannot
usually measure directly this capacity: we instead measure the throughput or “goodput” of a

A B

Node

Link

Path

Figure 2.1 – Illustration of a computer network with two possible paths from node A to B.
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E-mail service provider Video service provider

Home gateway
Mobile gateway

Home clients

End User

Mobile clients

ISP A ISP B

Network operator

Figure 2.2 – Illustration of roles in a toy Internet-like computer network. End users can use
their clients to access e-mail and video services via the gateway provided by their ISPs. Note
that two clients can directly communicate, e.g. with BLE.

speci�c application, that may be lower than the capacity (e.g. due to lower available band-
width, protocol overheads or retransmissions) and sometimes higher (e.g. due to compression
and bu�ering). Similarly, the latency is mainly estimated using Round Trip Time (RTT), a
simpler approach than One-Way Time that requires precise clock synchronization. Nodes can
be characterized by the additional latency they add when processing messages (modeled by
queue or bu�er parameters).

Roles of network stakeholders The solutions to computer network problems highly de-
pend on the assumptions made about the targeted actors of the networks. Is one solution de-
signed for network administrators and needs complete knowledge about network components?
Or is it designed to work with little knowledge, thus targeting customers of a network?

In order to compare the assumptions made in our contributions to previous work, we de�ne
a generic set of roles based on the Internet architecture [20]. (See Figure 2.2 for an illustration
in a toy network topology.) First of all, each network operator is responsible for the main-
tenance of a part of a network. We assume that network operators have complete knowledge
of nodes and links properties in their area of responsibility. In Internet, we can roughly map
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network operators to Autonomous Systems (ASs) [22]. Internet Service Providers (ISPs),
are a particular kind of operator: they allow their customers to access the global network.
We make the distinction between the following two types of customers:

— Service Providers deploy computers to the network that o�er a dedicated service, such
as audio or video streaming, �le download, e-commerce websites, etc. The deployed
computers are usually called “servers”.

— End Users, on the other end, use their computers to access the aforementioned services
or communicate with other end users. Their computers are called “clients”, as opposed
to servers (not to be confused with the “customer” term).

Keep in mind that this model is an attempt to simplify and generalize internetworks, com-
plex and decentralized systems. For instance, large service providers may act as network op-
erators to optimize their costs and quality of service. Conversely, ISPs usually provide other
useful services such as mailbox or website hosting. Yet we believe our role classi�cation �t
with existing network models while allowing easy comparison of solutions.
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2.2 Network modeling

Modeling a computer network is essential to understand and predict its performances [23,
24, 25]. There are many ways to accomplish this task and we are going to present existing
methods in two subsections. In a �rst subsection, we assume that we solve the problem for
a network operator with full knowledge about the network we want to model. In this case,
modeling methods are typically used during the design of the network. By contrast, the second
subsection discusses methods working with limited knowledge: these methods are best suited
during the operation of a network, or when we solve the problem for non-operators (e.g. end
users).

2.2.1 Modeling from complete network knowledge

We present methods for network modeling when the network topology and most compo-
nent characteristics are known, that can be classi�ed in four broad categories: queuing theory,
petri nets, discrete events simulation and network emulation. We discuss each in turn in the
following.

Queuing Theory The �rst model of a telecommunication network with queues was pro-
posed by Agner K. Erlang in 1917 [26, 27] to estimate average waiting times in automated
telephone exchanges. Queuing theory makes it possible to analytically predict expected queue
behavior according to the arrival rate of “customers”, the distribution of service time and the
number of “servers”. Multiple queues can be linked together in queuing networks [28]. This
theoretical framework has been mapped to computer networks by Leonard Kleinrock [29],
leading to the development of ARPANET (Internet’s ancestor). However, it has been recog-
nized that analytical computations become quickly intractable, especially for queuing policies
more complex than “�rst-in, �rst-out”. In particular, most queuing networks assume indepen-

dence between the arrival rates of queues, an assumption that does not hold in practice [30].
Recent works rely on rate correlation and approximation to analyze relatively small queuing
networks [31, 32, 33, 34].

Petri nets Introduced in 1962, Petri nets [35] augment automata and queuing theories by
modeling dependencies explicitly. They are de�ned by a graph with two types of vertices:
places and transitions. The important constraint is that vertices’ types alternate in a bipartite
graph: no place (resp. transition) is linked directly to another place (resp. transition). Places
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can hold any number of tokens (e.g. communication packets). After being de�ned, a Petri net
can be executed by �ring transitions, allowing tokens to �ow within the network.

As de�ned by Carl Petri, these networks cannot accurately model queuing and delay present
in computer networks. A large body of works have therefore studied timed Petri nets [36], a
variant better suited in this case, with many successful applications [37]. As an additional
variant, queuing Petri nets [38] were proposed to model queuing delays of real networks [39].
Ultimately, these extended Petri nets can be translated to Markov chains, allowing the ana-
lytical analysis of network properties similarly to queuing networks, with similar tractability
limitations.

Discrete events simulation We have seen that realistic computer networks cannot be an-
alytically solved because of the intractable number of states they may exhibit. Yet, one can re-
sort to simulation to predict network performance. In particular, discrete event simulation [40]
is a practical approach taken by the most popular computer network simulators, including
NS-3 [41] and OMNeT++ [42] among others [25]. Within network simulators, events such
as “message received at node x” are processed one after another: the simulator jumps from
events to events since nothing is supposed to happen between consecutive events. Concur-
rent events are avoided by using stochastic durations, and it becomes possible to measure the
performance of a computer network at any point in time, even for complex networks. For
instance, NS-3 provides models for Linux networking stacks and for wireless communication
such as Wi-Fi[21]. Despite extensive optimization, simulators remain however limited by the
underlying computing power available; the cost of simulation increases with the size of the
evaluated network and the number of events, i.e. the number of exchanged messages. Care
should further be taken when setting simulation parameters, as small errors can lead to un-
realistic results [43]. As we shall discuss in Chapter 3, OMNeT++ has for instance been used
to create a dataset of computer network performances given many di�erent con�gurations.
While using this simulator is slow in practice (several minutes of computation are needed
per con�guration), the produced dataset can be extensively used to design and validate other
data-driven approaches.

Emulation A more recent alternative to simulation is emulation: network stacks of real
computers are used to exchange real messages. The challenge in emulation is to replicate a
network model by emulating node and link characteristics. As an example, the Linux kernel
provides netem, a set of tools to add arti�cial latency, loss or bandwidth shaping to received
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or sent messages. The MiniNet emulator [44] leverages netem and process namespaces to em-
ulate an arbitrary computer network on a single host. Recent systems such as Kollaps [45]
or AdvantEdge [46] can build networks spanning multiple hosts thanks to container tech-
nologies and Kubernetes instrumentation [47]. Wireless emulation is possible using dedicated
testbeds [48], although being less practical than simulation in most cases.

Emulation presents many bene�ts: it makes it possible to evaluate existing applications
in an environment close to that of a real network with low overhead, reduces computation
costs signi�cantly and provides an acceptable level of reproducibility [49, 50]. However, some
limitations remain [51]. First, the emulated network is limited by the capacity of the underlying
physical network between emulation computers—e.g. it is not possible to emulate a link with
1 msec of latency over a physical link with 5 msec of latency. Furthermore, concurrent �ows
of messages may be problematic when modeling limited link capacities.

More recently, several works have proposed to model computer networks using machine
learning techniques and quite notably neural networks [11]. We return to this �eld in Subsec-
tion 2.4.5.

2.2.2 Modeling from limited knowledge

During the operation of a network, the available knowledge about a computer network
can be a lot scarcer than during its design. This may be due to operational constraints (e.g.
inability to monitor every link of a network) or to the interplay between the di�erent areas
of responsibility. In Internet, no ISP has a complete knowledge of every component of the
whole network; even managing all characteristics of components in their own ASs is known
to be a di�cult problem [52]. This is even more complex for end users who can only observe
behaviors from the far edge of the computer network. We now review several works that
attempt to discover more information about a network and infer components’ characteristics
from global observations.

Network discovery using probes One frequent issue when dealing with large networks
is the absence of a known topology. The main solution to gather information about a network
topology is to send probes to di�erent nodes and analyze the responses to these probes [53]. The
traceroute tool for instance is widely used to explore IP networks, leveraging packets’ Time
To Live (TTL). When traversing intermediate nodes on a path from the traceroute’s source to
its destination, the TTL header of an IP packet is decreased by one. If it reaches zero, the node
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is expected to send a special Internet Control Messaging Protocol (ICMP) “TTL exceeded” error
back to the initial packet sender. The idea of traceroute is to send successive packets while
increasing the TTL: in theory, the source will receive one ICMP error per intermediate node,
allowing readers to identify links within the probed path. This technique has been exploited for
full topology inference [54], but its accuracy may su�er from missing responses and voluntary
obfuscation from intermediate nodes [55, 56]. Such methods remain an active area of research,
recent works have for instance proposed to exploit parallel probes and stochastic sampling to
considerably improve the e�ciency of traceroute measures [8].

Service dependencies discovery Nodes in a computation network rely on other nodes
(servers) providing services. As such, it is very important for a network operator to understand
the relationships (dependencies) between nodes so the operator can optimize the topology and
characteristics of its network. Another use case for dependency discovery is the root cause

analysis of failures, that consists in determining the origin(s) of encountered faults (we return
to this use case in Section 2.3). This is not a trivial problem, and several methods have been
proposed (Table 2.1), using messages’ metadata [57, 58, 60], packet traces [59, 61, 62] or con-
trolled perturbations [63]. As an example, Sherlock [59] collects packet traces from interme-
diate nodes and estimates the conditional probability of accessing one service A (dependency)
a short time before serving B (dependent). After basic �ltering, this conditional probability
yields the dependency probability between A and B, and is later used for root cause analysis.

Table 2.1 – Selected methods for services dependency inference.

Reference Year Short description

Pinpoint [57] 2002 J2EE communication layer to add tracing in queries.
Tulip [58] 2003 Tracing log written in packets by traversed Internet routers.
Sherlock [59] 2007 Packet traces are extracted from routers and later correlated.
X-Trace [60] 2007 Tasks tagged using metadata.
Orion [61] 2008 Correlation of delays extracted from packet traces.
NetMedic [62] 2009 Instrumented Windows sockets and �rewall.
WebProphet [63] 2010 Perturbated queries using a controlled proxy.
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Network tomography Moshe Y. Vardi formalized the problem of network tomography in
1996 [64, 65]. The goal in tomography is to estimate a set of parameters x from a set of
observations y, knowing a routing matrix A in the following equation:

y = A · x (2.1)

For instance, in the “Origin-Destination” estimation problem [64], one estimates the tra�c
for every path in the network (x) (every origin-destination pair) from reports of tra�c in every
link y. This is essentially an inverse problem that can be solved using iterative algorithms such
as least squares solvers. Another problem is the estimation of link-level characteristics such
as latency and loss (x) from end-to-end path measurements (y). Multicast probes can be used
to solve this problem [66], but they are usually not usable in most real computer networks
where unicast probes are preferred [67, 68]. In topology identi�cation, the A routing matrix
can also be inferred from a forest of possible topologies [69, 70].

However, in most cases A is rank-de�cient, leading to multiple solutions [65, 71]. One way
to ease the resolution of this kind of equations is to identify which network characteristics can
be estimated (“identi�ed”) and place monitors accordingly within a computer network [72, 73,
74]. Other approaches leverage additional statistical knowledge from links [67, 69, 75, 76].
More recently, several methods have been proposed to take into account the e�ects of failures
during tomography [77, 78, 79].
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Server A (unpowered)
Root cause

Server B (powered)
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7

Figure 2.3 – Root Cause Analysis (RCA) example: one end user is unable to access their email
service due to the power failure of “Server A” (the root cause). Other components relying on
this server appear faulty (e.g. the email service).

2.3 Root cause analysis

One famous use case of the models we described in the previous section is the ability to

understand failures. More speci�cally, we focus our research on the localization of the root

causes of failures. We believe failure detection and RCA are two distinct problems with di�er-
ent solutions: detection methods leverage outlier detection to �ag anomalies, while RCA tries
to �nd the anomalies’ origin(s) after their detection.

Figure 2.3 illustrates the challenge of RCA in a simple setup. In this example, one user
encounters fatal errors when trying to access their email. This user may assume that the whole
email service is faulty, or that the links to the service are not working properly. An ideal RCA
system would pinpoint the origin of the failure (usually termed the “fault” [80]). Here, the
origin is a power outage of a critical backend server, making the email service unavailable via
a chain of dependencies. By contrast, fault detectors would highlight problems in all “crossed”
components (7), making troubleshooting more di�cult.

Obtaining the data in practice The type of RCA methods that can be applied largely de-
pends on the type and amount of information that is available; this in turn depends on how the
data and knowledge is obtained in practice. ISPs can use their internal knowledge [81] or SDN
metrics [82, 83, 84] to correctly build dependency graphs between network components. In
most datacenters, the computer network topology is redundant and hierarchical in Clos-like
schemes (e.g. in Facebook [85] or Azure [86], servers are interconnected in a 3-layers scheme
with redundant links between layers). This choice allows further optimizations [86, 87, 88]
and distribution of the RCA between network components. For instance, routers can vote for
suspected faulty components in their rack [85, 89]. Without peeking inside ASs or datacenters,
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end users can still extract some network knowledge from publicly-available data. Traceroutes,
public Border Gateway Protocol (BGP) feeds and IXP databases have been successfully used
for outage detection and localization in [90, 91]. Passive tra�c monitoring is also possible
using Internet background radiation [92]: variations in the tra�c coming to unallocated IP
pre�xes can hint at serious global outages. Yet, with the scarcity of data regarding internal
topologies and ASs peering, greater collaboration between end users and ISPs is required for
�ne-grained RCA [93].

We now review the available RCA solutions according to the amount of available network
knowledge.

2.3.1 RCA from complete network knowledge

Many RCA methods (Table 2.2) require extensive knowledge about the analyzed computer
network. Early attempts proposed to use binary network tomography: with this approach, a
network component is either nominal or faulty. The goal is then to infer which components
are faulty from end-to-end measurements on network paths [98, 99]. This is equivalent to
solving a Minimum hitting set problem, which is known to be NP-hard. Heuristics are thereby
used to obtain a result in practical time [95, 100, 101, 102, 103, 104]. As an example, the
authors of Tomo [95] propose an iterative greedy algorithm: as long as there exist unexplained
failures, Tomo computes a score for every link l as the number of unexplained failures that

can be explained by l being faulty. It then selects the link having the highest score and loops
again. This simple approach fails with dynamic networks and transient failures, making it
di�cult to use for RCA in practice. Later works model probabilities of failure instead of binary
values [105, 106].

In the same vein, Bayesian networks have been used for RCA [59, 94, 97, 107, 108, 109].
These networks—sometimes known as belief networks—are designed to model the conditional
probabilities of dependent random variables in a directed acyclic graph. However, exact infer-
ence in Bayesian networks is also a NP-hard problem [107]: methods di�er in the modeling

of the computer network to the Bayesian network and in the approximations they make. In
a �rst example, SCORE [96, 110] models the observations and possible causes in a bipartite
graph. It then uses Occam’s Razor to select the simplest explanation from the set of possible
causes, using the same score computation as Tomo [95]. In another example, Sherlock (pre-
sented in Section 2.2) creates a detailed Bayesian network from detected dependencies [59].
It then tests every possible root cause by computing a plausibility score, while assuming that
at most k components are faulty. This assumption is quite reasonable for k ≤ 3 and reduces
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Table 2.2 – Summary of RCA methods based on dependency modeling. The presented methods
are designed for di�erent scales (− small network, + enterprise, ++ datacenter/ISP, + + +
Internet) and propose several exploration and ranking strategies. Sorted by date.

Method Scale Model Exploration Ranking

Shrink [94] ++ Bipartite Complete
(3 causes max) Most probable

Tomo /
NetDiagnoser [95] ++ Bipartite Greedy while

unexplained failures remain
Maximizes intersection with

unexplained failures

Sherlock [59] − Multi level Complete
(3 causes max) Most probable

NetMedic [62] − Multi level N/A Abnormality from
known states

SCORE [96] ++ Bipartite Greedy while
unexplained failures remain

Prefers simpler
explanations

Gestalt [97] + 3 levels Partial
(3 causes max) Most probable

Facebook [85] ++
Topology-

based N/A Outlier detection

Kepler [90] +++ BGP / IXP N/A Fraction of
unreachable paths

007 [89] ++ Traceroute Greedy with
score threshold

Number of votes
per link

SDNProbe [83] ++ Bipartite Hopcroft-Karp Hypothesis testing

Deepview [86] ++ Bipartite Lasso Regression Hypothesis testing

Zeno [84] + Provenance N/A Hypothesis testing
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the complexity for n components from O(2n) to O(nk). Finally, Gestalt [97] is a hybrid solu-
tion that classi�es and builds on previous work: it optimizes Sherlock by ignoring non-likely
combinations of failures, giving better results in a fraction of the complete exploration time.

2.3.2 RCA from limited knowledge

Network operators and end users may not have access to the wealth of information re-
quired by the methods we described in previous subsection. However, they may want to un-
derstand why the computer network “does not work” on their end, and if they can do some-
thing to �x the problem on their own. Internet speed checks are the go-to services many end
users visit when looking for root causes: these services allow to quickly test connectivity to-
wards measurement servers, returning average RTT and throughput. (Speedtest [111] alone
announced more than 800 million tests from 220 million unique devices in 2020 [112].) We
now present two families of methods in this space, the �rst one being based on prede�ned

rules, and the second on crowdsourcing.

Diagnosingusing prede�ned rules This is the typical approach to pinpoint failures causes.
The intuition is that automated tests are run in sequence, each test being associated with a po-
tential root cause. One failed test (or failed group of tests) may point the end user to the root
cause explaining the fault. We say that the tests follow prede�ned rules: these rules are usu-
ally determined by experts in networking [113, 114, 115, 116], helped by machine learning
algorithms in some proposals [117, 118, 119, 120, 121].

Most ISPs provide methods for self-diagnostic, either via a dedicated service in their home
gateway, or as a step-by-step documentation on their websites. At the time of writing, the
French ISP Bouygues Telecom provides a set of “Diagnostic” pages in its �ber gateway’s web
server, with live information about tra�c, ICMP, Transport Control Protocol (TCP) and Do-
main Name Service (DNS) latencies. However, these services are best-suited for tech-savvy end
users who know where to �nd them and how to interpret the results; and only target frequent
problems and miscon�guration scenarios in home networks. In the literature, Netalyzr [114],
Fathom [116] and FireLog [122] proposed diagnostic tools that also exploit rules and are based
on web browser extensions. Web browsers can run on most kinds of computers (including mo-
bile platforms), allowing most end users to run reliable RCA. However, modern browsers show
technical and security limitations that prevent the execution of some prede�ned rules (such as
measuring low-level statistics of network communications). We revisit this point in Chapter 5,
where we propose a measurement platform tailored for modern web browsers.
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Pooling knowledge from a crowd Another approach for root cause analysis is to pool
the data collected from multiple vantage points [123] and �nd discrepancies using statistical
methods. This is the basic idea behind the DownDetector website [124], that monitors social
media (the “crowd”) for complaints about web services. When a threshold of complaints is
reached in a given time window, a service is marked as “degraded” or “down”. One of the
earliest proposal, PeerPressure [125, 126], allows the exchange of Windows registry con�gu-

ration keys between end users. It then estimates the probability that each con�guration key
is the root cause of a speci�c fault using a simple Bayesian estimator. Statistical aggregation
can also be performed for computer networks’ metrics [113, 127, 128, 129, 130, 131] to de-
tect and pinpoint root causes. In this case, metrics are often exchanged between end users
in the same geographical or topological regions using a central or distributed store [113, 132].
Popular in peer-to-peer communications, Distributed Hash Tables (DHTs) allow end users to
access information indexed by “hashes” and hosted by other end users [133]. As an example,
DYSWIS [129] publishes metrics at di�erent granularities in a DHT, from home network-level
to AS-level. This allows end users to compare their metrics to their neighbors’ ones.

Historical data can also be used to get more knowledge about a speci�c fault [16, 62, 134,
135, 136, 137]. End users can regularly measure relevant metrics and build historical time

series of these metrics. The assumption made is that if the distribution of a time series changes,
then it is worth looking at the monitored metrics for potential root causes. This problem is
framed as change point detection and localization and can be solved statistically with CUSUM
(CUmulative SUM control chart) [138]. For instance, FChains [135] and Callegari et al. [136]
use CUSUM to detect and localize failures in cloud systems and web browsers, respectively.
In LOUD [137], dependencies between time series are inferred using the Granger causality
test [139]; the authors demonstrated good localization of root causes by �nding central nodes
in the inferred dependency graph.

These crowdsourcing methods give coarser RCA than methods described in Subsection 2.3.1,
but can easily scale to thousands and even millions of vantage points. They have been widely
used to compare ISPs’ performances [140] and detect large-scale outages [92], without the
need for central services. However, they su�er from a number of important limitations. Their
accuracy highly depends on the data shared by peers (or stored in local time series): if a peer is
not identi�ed correctly in the network topology, his data might be incorrectly analyzed [141].
Worse, peers could alter the shared data to make RCA useless, and could even spy on sensitive
troubleshooting information [126]. Time series require regular measurements over time and
are sensible to network dynamicity—this is particularly relevant for mobile end users.
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The quest for ground truth Many of the presented approaches rely on available ground

truth for some observed failures: these examples allow to design and evaluate a RCA method
e�ciently. This is especially true for supervised machine learning, as detailed in the next sec-
tion. While ground truth is easy to obtain in most controlled environments (e.g. labs or data-
centers networks), it is much harder to obtain reliable information at Internet scale: network
operators often hide root causes for business or security reasons. Public status pages, network
experts’ mailing lists and social media sometimes contain relevant information, but collecting
this data is often a manual and laborious task [90, 127].
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2.4 Machine learning

We mentioned the interest for machine learning in network modeling and RCA. In this
section, we describe the general methodology behind machine learning approaches [142] along
with some practical examples. This short primer is intended to provide our readers with all
the necessary tools to understand the contributions proposed in the next chapters.

2.4.1 Methodology

Machine learning denotes a broad range of techniques within the even wider �eld of Ar-
ti�cial Intelligence (AI). At a high level, a machine learning algorithm can be used to build
predictive models related to some dataset. The goal of any said algorithm is to automati-

cally improve the built models according to a performance metric. After the initial training
phase (Figure 2.4), a model can be used to solve a task based on new data (this is the inference
phase).

The importance of data As we just described, machine learning algorithms need data dur-
ing both training and inference. We say that the data is stored as samples in a dataset, usually
partitioned in the following sets (see Figure 2.4 for a visual representation):

— Training set: usually the largest, it is used during the training phase. In practice, each
sample in this set is read and used by the algorithm in sequence or multiple times.

— Validation set: this set is used to con�rm that the trained model is able to perform
well on unknown data. It is possible to choose model hyperparameters such that the
performance is the best on the validation set. If the model’s performance is good on the
training set, but poor on the validation set, we say that the model over�ts: it becomes
specialized on the training set and is not able to generalize to more data.

— Test set (also called evaluation set): after having chosen the best hyperparameters —
thanks to the validation set—and trained a model accordingly, one can evaluate a model
using the test set. Since this �nal set was not used during model design and training, it
should best re�ect the behavior of the �nal model with “fresh” data. In machine learning
challenges, this set is not revealed to participants, such that it is possible to compare
models objectively.

One common assumption is that all sets follow the same probability distribution, but this
cannot be guaranteed in practice: newly-provided data may shift to values unexplored during
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Work�ow: Design Train Validate Test

Dataset: Training set Validation set Test set

Optimize hyperparameters while
performance increases

Figure 2.4 – High level overview of the iterative machine learning work�ow. Each step must
use the correct set of the input data to avoid over�tting.

training. Fortunately, recent algorithms are able to relax this assumption: we exploit this
ability in Chapter 3, we train a machine learning model on two network topologies, then we
validate and test this model on two other, untrained network topologies. We take a similar
approach in Chapter 4, where we feed data coming from vantage points unseen during training

in a network RCA model. These two examples clearly violate the aforementioned assumption,
yet allow us to build more generic models. A word of caution before continuing: there has
been much confusion between validation and test sets in the literature, probably because test
data can easily become validation data if it is used during model design.

De�ning model performance The choice of a speci�c performance metric for a machine
learning algorithm is driven by the task the trained model is expected to solve. We distin-
guish two main classes of tasks: supervised and unsupervised learning. In supervised learning,
each sample in the dataset is associated with a label. This label represents the expected out-

put that the model should return when given the sample’s inputs (also called features). The
performance can then be de�ned from the average error between the expected label (from the
dataset) and the predicted one (from the model’s outputs).

— In regression tasks, the label is a numerical value: the task is to predict that value given
some inputs (e.g. “predict the latency over a link given network characteristics”). Com-
mon error metrics include Mean Absolute Error (MAE) and Mean Square Error (MSE).

— In classi�cation tasks, labels are categorical classes that the model is expected to predict
for every sample (e.g. “predict if a given link is nominal (class 1) or faulty (class 2) given
network characteristics”). In this case, the performance error is often measured by cross
entropy, recall or precision metrics [142].
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However, as we underline in Chapter 5, labels may be unavailable. It may be because it
is too costly to label every sample, or because some critical information cannot be collected.
This problem is tackled by unsupervised approaches, which seeks to identify patterns in the
training data. Data clustering and anomaly detection (mentioned in Section 2.3) are two exam-
ples of unsupervised tasks. With no label available, it is di�cult to assert the performance of
unsupervised algorithms. In most cases, a small number of samples are labelled in the valida-
tion and test sets, allowing for empirical evaluation. This is often a manual process involving
laborious information collection and cross-referencing, as underlined in Subsection 2.3.2 for
RCA within computer networks.

We now provide some examples of machine learning algorithms that have been success-
fully applied to computer networks in recent studies.

2.4.2 Naive Bayes classi�ers

Naive Bayes is one of the simplest family of classi�ers, based on the Bayes theorem [143].
Each sample in the dataset is associated with features x = (xi)i∈{1,...,n} and a class Ck among
K classes. For every class k, we want to estimate the conditional probability that a sample
belongs to class k given its features x. Using the Bayes theorem:

P (Ck | x) =
P (Ck) · P (x | Ck)

P (x)
(2.2)

Now comes the naive part: we assume that features xi are mutually independent. (This
assumption is often not veri�ed, but naive Bayes classi�ers remain surprisingly robust in prac-
tice [143].) When comparing classes, we ignore the denominator in Equation 2.2 since it does
not depend on Ck. We can now estimate the most probable class k̂ as:

k̂ = argmax
k∈{1,...,K}

P (Ck)
n∏

i=1

P (xi | Ck) (2.3)

The prior probability for class Ck can be empirically estimated as the ratio of samples
having this class in the training data. The probability distributions of features are usually
modelled with a normal distribution, but it is possible to build more expressive models with
Kernel Density Estimation (KDE) [144, 145]. Given a set of possible features’ values for a
class Ck, KDE uses a weighted sum of kernels to estimate the distribution of observed values.
Kernels are non-negative functions estimating the probability distribution locally; the standard
normal density function is often used in practice. Naive Bayes classi�ers usually require few
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parameters, even with KDE; this means that they can be trained and stored very e�ciently. In
computer networks, they have been used for fault detection [146, 147, 148] and even network
tomography with beCAUSe [104].

2.4.3 Decision tree learning

Many machine learning algorithms have been proposed to build decision tree models [149].
These models are made of a succession of tests (“branches”) leading to �nal predictions (“leaves”).
One can apply a decision tree model to a sample by following the branches according to the
results of the tests: at every branch, the value of one sample feature is tested. For instance,
one test A could check if a feature is lower than 10; if true then the next test would be B,
otherwise if would be C . At the bottom of the tree, leaves contain a class or a numerical value
for classi�cation or regression problems, respectively. The main advantage of decision trees is
their interpretability: following the tests made in branches, it is easy to understand the reason
behind a prediction.

Since constructing an optimal decision tree is known to be NP-complete, most learning
algorithms recursively �nd the best test, or best split: at every branch, the algorithm estimates
what would be the best test to split the training dataset between di�erent predictions. The
quality of a test is estimated using a loss function on created child branches: for every class
Ck, at child i, let Pi(Ck) be the proportion of samples having class Ck as label. The loss at i
can be estimated using the two popular formulas:

Hi = 1−
∑

Ck

Pi (Ck)
2 (Gini impurity)

Hi = −
∑

Ck

Pi (Ck) log (Pi (Ck)) (Entropy)

Similarly, we can use MAE and MSE as loss functions for regression trees. It is possible
to split the dataset until all leaves contain only one class (or one value); however this could
lead to very large trees and serious over�tting. Most algorithms propose stop criterions such
as “minimum number of training samples per leaf” or “maximum tree depth” to avoid this
issue. Among the learning algorithms, C4.5 [150] and CART [151] have been widely used in
the literature of computer networks. For instance, Ebay and Microsoft use decision trees to
locate failures in their datacenters [119, 152]; mobile streaming issues are diagnosed by a C4.5
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tree in [120]; NetPrints [118] propose con�guration troubleshooting using interpretable trees
and TCP congestion control algorithms are automatically inferred by decision trees in [153].

2.4.4 Ensemble learning

It is possible to combine multiple models to improve machine learning predictions. For
classi�cation problems, one can take the class predicted by the majority of models, while the
average prediction can be used in regression problems. Perhaps the most popular example of
ensemble learning is the random forest approach [154]. With random forests, many simple
decision trees are trained on random subsets of the training dataset; during inference, the
majority prediction over all the small trees is chosen as output. This process is called “bagging”
(for “bootstrap aggregating”) and can be applied with other families of models.

“Boosting” [155] is an alternative ensemble method: new models are successively trained
on samples with invalid predictions from previous models. If the performance function is dif-
ferentiable, gradient boosting [156] can be used to optimize how new models are constructed.
Finally, “Stacking” [157] uses a “meta-model” trained to combine the output of other models
into the �nal prediction.

These simple approaches help to �ght over�tting and works surprisingly well in practice:
ensemble methods usually exhibit the best performance in machine learning challenges [158,
159]. This trend has been veri�ed in many recent computer network problems, including fault
detection and localization [119, 147, 148, 160, 161, 162]. Empirically, ensemble output should be
at least as performant as the best model’s output for a given sample: errors of individual models
are cancelled on average. We con�rm this intuition by averaging multiple machine learning
models in Chapter 3 and Chapter 4. One major drawback is that it is harder to understand the
prediction of an ensemble model (compared to decision trees).

2.4.5 Arti�cial Neural Networks

One of the earliest model of brain neurons interactions is Franck Rosenblatt’s percep-

tron [163]. A perceptron can be described as a binary linear classi�er: it iteratively tries to
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�nd the parameters of a hyperplane allowing the separation of two classes. For n input fea-
tures, this hyperplane is de�ned by weights w ∈ Rn and bias b ∈ R such that the predicted
class ŷi of a sample with features xi is:

ŷi =





1 if w · xi + b > 0,

0 otherwise
(2.4)

Weights are iteratively updated for every sample i in the training dataset, as shown in Equa-
tion 2.5. One important parameter of the training process is the learning rate η ∈ ]0, 1]: large
learning rates speed up the training but make the weights less stable.

∀j ∈ {1, . . . , n} : w′j = wj + η (yi − ŷi)xi,j and b′ = b+ η (yi − ŷi) (2.5)

It has been proven that perceptrons converge if the training set is linearly separable. How-
ever, most datasets are not: this led to the development of more complex models such as
Support Vector Machines (SVMs) and Multilayer Perceptrons (MLPs), the latter more widely
known as “fully-connected neural networks”. In a MLP, multiple perceptrons with non-linear

activation functions are used to create a sequence of layers of any dimension. The �rst layer
corresponds to sample features while the last layer contains the model output(s). Intermediate
layers are often called “hidden layers” and can be of any size—the number of layers and their
sizes becoming the main hyperparameters of the MLP. Activation functions for hidden layers
can be as simple as the Recti�ed Linear Unit (ReLU): f (x) = max (0, x). In contrast, since the
last layer directly maps to the model’s output(s), its activation function is problem-dependent:
for classi�cation tasks with K classes, the softmax function is often used to normalize the K
outputs to a probability distribution.

σ : RK 7→ RK : σ (x)i =
exi∑K
j=0 e

xj
(Softmax activation)

A perceptron transfers the information from a layer Lt of size u to a layer Lt+1 of size v us-
ing its weights (“parameters”) matrix wt ∈ Ru×v. Compared to Equation 2.4, matrix multipli-
cation is used instead of the dot product between a perceptron’s inputs and wt (see Figure 2.5
for an illustration on a neural network with a single hidden layer). The training process is
similar, albeit with many more weights to learn: for each training sample, the algorithm must
compute the gradient of every weight value with respect to the task’s loss function. Backprop-
agation [164] optimizes this process: it starts by computing the gradients of the last perceptron
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Figure 2.5 – A simple MLP with one hidden layer. Values are propagated through the neural
network using matrix multiplications between inputs (x then h) and weights (wk). Activation
functions are denoted fk.

and then backpropagates to the �rst using the chain rule. Weights are then updated according
to their gradients and the chosen learning rate η, a process known as “Stochastic Gradient
Descent”. (Using the full dataset in each iteration being impractical, random samples are se-
lected instead, making the “Stochastic” part of the process.) Other optimization methods and
dynamic learning rate schedulers have been proposed to speed up the training process and
avoid “local loss minima”. Originally designed to run on costly dedicated hardware using po-
tentiometers as weights and motors for updates, arti�cial neural networks can now run on
commodity Control Processing Units (CPUs) and Graphical Processing Units (GPUs). We now
explore several variants of MLPs along with their applications.

CNNs With the rise of available computing power, it has become possible to train neural
networks with high-dimensional data. Images are an example of such data: it is easy to map a
n×m pixels image with c color channels to a n×m× c input vector. Convolutional Neural
Networks (CNNs) [165] have initially been proposed to recognize written numbers in small
images: through a number of convolutional layers, CNNs can recognize patterns in the input
image. One convolutional layer works by convoluting small �lters (or kernels) over the 2-
dimension space of the image. The main advantage of this approach is that it requires way
fewer parameters than fully-connected layers, reducing over�tting. Pooling layers can also
further reduce the number of parameters in hidden layers by “merging neighbor pixels” using
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Figure 2.6 – Example of a 2× 2 convolution followed by a 2× 2 max-pooling operation. The
convolutional and pooling kernels “slide” over the inputs to construct the outputs from left to
right, top to bottom.

e.g. the average or maximum values. Since the same �lters are applied multiple times to cover
an image, CNNs are more robust to translations, and are better at pattern detection.

Figure 2.6 shows a toy CNN example with as input (left) a 4×4 matrix. A two-dimensional
input is used in practice for images; a third dimension can also be used to represent colors (e.g.
for red, green and blue channels). During the 2× 2 convolution, we sequentially compute dot
products between 2× 2 “windows” over the input and the parameterized kernel K =

(
1 0
1 −1

)
,

learned during the training phase. As shown in the �gure, the top-left output is computed by
taking the top-left window in the input (Equation 2.6). The top-center output is then com-
puted (Equation 2.7) by “sliding” the window one cell to the right: this is a convolution with
overlapping windows, leading to an output of size 3× 3.

vec
(

( 1 −1
0 0 )

)
· vec (K) = 1× 1 + (−1)× 0 + 0× 1 + 0× (−1) = 1 (2.6)

vec
(

( −1 0
0 1 )

)
· vec (K) = (−1)× 1 + 0× 0 + 0× 1 + 1× (−1) = −2 (2.7)

Pooling operations helps to reduce the number of dimensions in a CNN: in Figure 2.6,
we apply a 2 × 2 “Max-pooling” operation using a similar sliding window. For instance, the
�nal bottom-right output is computed my taking the maximum value over the bottom-right
window: max

(( −1 2
0 −1

))
= 2.

While early convolution layers detect simple patterns (such as horizontal or vertical lines),
deeper layers are activated by increasingly complex patterns (circles or even human faces). It is
worth noting that best-performing CNNs are extremely deep: the ResNet model [166] won the
ILSVRC2015 image recognition challenge with more than 150 hidden layers. In classi�cation
tasks, �nal layers are usually just fully-connected layers trained with a speci�c dataset. This
leads to an interesting property: it is usually possible to change the classes a model can predict
by only retraining the last layers of a network. Intuitively, convolutional layers extract relevant
features from the raw input while fully-connected layers specialize to the requested prediction.
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Figure 2.7 – Left: simple graph with associated embeddings. Right: using GNN message pass-
ing (Equation 2.8), the procedure to update B’s representation given its neighbors A and C.

Despite an overwhelming adoption in image analysis, there has also been some interest for
CNNs in anomaly detection [147, 167].

RNNs Recurrent Neural Networks (RNNs) [168] are best suited when the model’s input is
made of a sequence of values. This is for instance the case in time-series, audio �les or text
sentences. Compared to previous architectures, recurrent layers maintain an internal state; this
is critical to remember the context between di�erent values in the input sequence. Long Short-
Term Memory (LSTM) [169] is the most used recurrent layer. It has been successfully applied
in automated translation, speech recognition and synthesis, time-series prediction, anomaly
detection, etc. Combining the best of both worlds, ConvLSTM layers [170] add convolutions

to RNNs, enhancing support for more complex inputs such as sequences of radar probes or
movies.

GNNs More recently, Graph Neural Networks (GNNs) were introduced to fully exploit the
topology of graph inputs [171]. This family is particularly interesting to model physical net-
works (city roads, power grids, molecules, etc.) but also dependency networks (e.g. social
graphs). Of course, computer networks can be easily mapped to a graph: GNNs were used for
routing optimization [172], edge anomaly detection [173] and SDN modeling [11]. In many
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popular GNNs, message passing [174] is used to propagate the information signal between ver-
tices. At each layer t, each vertex of a GNN graph is associated with a hidden states xti ∈ Ru

(also called embeddings or representations). Graph edges are also associated with embeddings
eti,j ∈ Rv. For every edge and vertex, embeddings for the next layer are computed using pre-
vious embeddings and neighbor’s embeddings. We illustrate how one can update embeddings
of a 3-vertices graph in Figure 2.7. For every neighbor of the target vertex (here A and C),
we compute messages using φ. Then, we aggregate the messages with � and update the B’s
representation using γ. More generally, embeddings are updated with Equation 2.8 where:

— φ : Ru×u×v 7→ Rw is the message function;

— γ : Ru×w 7→ Ru is the vertex update function;

— � is an aggregation function that can take any number of arguments (e.g. sum, average);

— N (i) returns the set of indices of vertex i’s neighbors;

— γ and φ are usually (simple) neural networks.

xt+1
i = γ

(
xti , �j∈N (i) φ

(
xti , x

t
j , e

t
i,j

) )
(2.8)

This message passing method can be adapted to any graph topology thanks to the aggre-
gation operator �. (Note that the used GNN topology is derived from the studied network
topology, but is not necessarily the same.) Trained weights are only de�ned in γ and φ: any
existing training algorithm can be used to optimize these weights. Again, fully-connected lay-
ers may be used to readout information from constructed embeddings [11, 174] and output the
requested prediction at edge, vertex or graph level.
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2.5 Conclusion

At this point, we have just touched the vast subjects of computer network modeling, root
cause analysis and the fascinating problems and methods of machine learning. There have
been many proposals for computer network modeling, which we have categorized depend-
ing on the amount of information available. In this thesis, we argue that statistical (machine)
learning can be very useful in the modeling of large computer networks with complex interde-
pendencies. To support this claim, we propose three contributions, each of which approaches
the network modeling problem from a di�erent perspective.

In Chapter 3, we start by reviewing how GNNs can be used for network path performance
estimation. Nowadays, simulation and emulation are the most practical approaches to esti-
mate the performance of a network knowing its components’ characteristics. However, these
methods are costly and may not scale to large networks. By contrast, we show that this �rst
contribution allows accurate simulation of networks with dozens of nodes in only a few mil-

liseconds. We detail in particular how we won the �rst place of a GNN challenge co-organized
by the ITU and the Barcelona Neural Networking Center.

Our second contribution (Chapter 4) removes the assumption of complete network knowl-
edge we made previously. It moves to a situation in which some ground truth about faults
and failures is available, but the exact makeup of the network is not fully understood. More
precisely, we rely on network emulation with netem to arti�cially inject failures into a con-
trolled testbed, allowing us to build a dataset of nominal and faulty network metrics involving
diverse cloud providers on multiple continents. We use several machine learning models (a
Naive Bayes and a Random Forest classi�ers, along with an original CNN: DiagNet) on this
dataset in an attempt to model a large scale computer network from the viewpoint of end
users. We specialize these models for RCA: by crowdsourcing active measurements from mul-
tiple end users to various vantage points, they provide automated dependency inference and
diagnosis without needing ISPs collaboration. Compared to typical network tomography, our
solutions do not need precise information about a network’s topology: they leverage the di-

versity of vantage points and output combinations of location and fault family as probable
root causes. We designed our three solutions to be extensible, and show the superiority of the
DiagNet CNN in its capacity to accept new features unseen during training.

In Chapter 5, our goal is to evaluate how the solutions we described in Chapter 4 can be ap-
plied using real measurements and third-party failures. To this end, we �rst describe how we
built a web browser extension and a measurement platform (DiagSys) to collect real network
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metrics from clients. Despite modern security restrictions, this new extension is compatible
with web browsers supporting the WebExtension Application Programming Interface (API).
We collected more than one year of network measurements thanks to the volunteers that
participated in our experiment. We present interesting insights from this dataset and �nally
evaluate how DiagNet performs over it. Compared to the previous contributions, the main
challenge was the labelling of training samples since no ground truth was available for most
observed failures. Aided by our collected dataset, we nonetheless propose a simple statisti-
cal method to label samples with probable root causes as a combination of fault family and
network location.

44



Chapter 3
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Network operators design computer networks to provide good connectivity to their cus-
tomers. As such, they need reliable methods to predict the expected performance even be-
fore deploying the networks’ physical links and appliances or modifying Software-De�ned
Networking (SDN) con�gurations. As we discussed in the previous chapter, there exists two
families of approaches to model a computer network. Network emulation tries to replicate
the modeled network topology over an existing network. With enough available hardware re-
sources, emulation can be very useful to evaluate how the modeled network would perform in
practice. Simulation methods are more �exible, allowing us to model networks with arbitrary
characteristics; this is very useful when the emulation platform is not large enough. However,
given the complexity of network components’ interactions, simulation tools often demand in-
tensive resources or require to simplify the network model drastically. This is problematic in
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the context of large dynamic networks, where the tra�c �ows continuously change over time:
operators need to review and adapt the network topology according to these changes, while
seeking to minimize the impact over the network. Network designers must also be able to test
alternative network con�gurations in a short time. A performant network modeling tool is
thus required to quickly evaluate how the updated network topology would perform with live
network characteristics.

In this chapter, we explore how the detailed performance of a large network model can be
predicted without relying on costly simulations. We extend on early work in this area [11], and
explore how Graph Neural Networks (GNNs) [171] (Subsection 2.4.5) can be trained to produce
performance predictions in a fraction of the time required by a simulation tool. We �rst detail
the motivation behind this work in Section 3.1, along with a presentation of an early GNN so-
lution, RouteNet. We then explain in Section 3.2 how we extend the initial RouteNet approach
to map all the components of a computer network to a GNN. In Section 3.3, we present the
results of our contributions, including the details of our participation to the GNN Challenge
2020 [175], co-organized by the Barcelona Neural Networking Center and the International
Telecommunication Union (ITU) [12]. We were honored to win this challenge with a �rst
approach (A1) leading to an average relative error of just 1.53% over the provided evaluation
dataset. Using a second approach (A2), we obtained a lower relative error of just 1.15% after
the conclusion of the challenge. We also provide in Section 3.3 an ablation study and additional
visualizations of learned representations in an attempt to fully characterize our contributions.

This work has been done with the collaboration of François Schnitzler (InterDigital) and people

from the Barcelona Neural Networking Center. We are especially thankful to José Suárez-Varela

for his availability during the challenge.
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Graph Neural Network
Model

Network topology
Path tra�c

Path ToS
Link capacities

Node queuing policies

Path mean

delays

Figure 3.1 – Illustration of the GNN challenge task: predict delays for network paths from a
given con�guration.

3.1 Context and Motivation

The Barcelona Neural Networking Center organized the GNN Challenge 2020 [175] as part
of the “AI/ML in 5G” Challenge from the ITU [12]. We start by describing the challenge, then
introduce RouteNet, the baseline model that was provided by the organizers as a starting point.

3.1.1 ITU’s 2020 Graph Neural Network challenge

In the SDN context, Rusek et al. [11] showed that GNNs [171] are particularly promising for
computer network modeling. This recent family of machine learning models is well suited to
capture complex interactions between network components. Actually, it has been successfully
used in a wide range of applications, from the analysis of unknown chemical compounds [174]
to tra�c prediction in road networks [176]. One important speci�city of GNNs is that they
can be adapted for any network topology after the initial training phase.

The ITU challenge has been proposed in this context. The task was to provide a GNN
model that, knowing a number of network characteristics (i.e. topology, link capacities, path
Type of Service (ToS) and tra�c, and node queuing/scheduling policies), could predict path
performance (Figure 3.1). In particular, we were asked to build a model that predicts the average
delay over every path, taking into account queuing delays at intermediate nodes. A few rules
were stated: the solutions must use the provided training dataset only, and must be based
on arti�cial neural networks trained “from scratch”. In particular, it was not possible to use
network simulation techniques.

To evaluate the solutions objectively, the challenge’s authors provided an evaluation dataset
(test dataset, see Subsection 3.3.1) with missing path performance metrics. This evaluation
dataset is based on an unknown topology, not present in the provided training and valida-
tion datasets. This choice makes it possible to evaluate how solutions generalize to di�erent
topologies without retraining, a critical property to use the solutions in practice. Using their
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solution, each challenge team had to submit the missing path delays on a dedicated website;
the website then computed the Mean Absolute Percentage Error (MAPE) against the secret,
expected metrics (Equation 3.1). (Note that this score function is valid because expected delays
are always positive.) To avoid excessive numbers of attempts, each team could only submit 20
propositions.

MAPE =
1

n

n∑

i=1

∣∣∣∣
expectedi − predictedi

expectedi

∣∣∣∣ (3.1)

3.1.2 The RouteNet baseline

RouteNet [11] is a message passing GNN (see Subsection 2.4.5) supporting two types of em-
beddings, one for paths and one for links. Knowing network characteristics, RouteNet can pre-
dict average path delays, jitter and loss—important metrics to assert network performance—
making it a good challenge baseline. We now brie�y explain the intuition behind RouteNet:
in the next section, we will formalize and extend this intuition in the presentation of our own
approach. A computer network topology is mapped to the GNN as follows. First, one vertex
of type “link” is created for every link in the network topology. Then, for every path, one
“path” vertex is added and is linked to every “link” vertices that are part of the path. With this
approach, the resulting GNN is essentially a bipartite graph underlining the circular dependen-
cies between links and paths. (See next section for an illustration of this bipartite mapping.)

Embeddings are initialized with corresponding path and link features. Messages are then
iteratively exchanged to update these embeddings: �rst, path embeddings are updated from
the ordered embeddings of its member links. (Internally, this �rst update function uses a RNN
to take path ordering into account.) Then, RouteNet does the opposite: every link embedding
is updated by aggregating the embeddings of all the paths that use this link. To represent
increasing load on links, this aggregation is done by a global sum function, followed by a
simple perceptron. These two circular updates are executed T = 8 times for every sample, both
during training and inference. Given the complex interdependencies between paths and links,
this method mimics an approximated �xed-point iteration. Message passing GNNs departs
from the typical layers of neural networks but the approach is actually similar: successive
non-linear operations lead to new hidden states for paths and links. The path hidden states
are then processed in a standard MLP to readout the expected performance metrics (i.e. average
path delay).
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Limitations As shown in the baseline paper, RouteNet supports arbitrary network topology
and can generalize well to other topologies. Still, this algorithm was initially designed for
a simpler problem without path ToS and node queuing policies. As such, it ignores these
critical features and lead to poor results in the datasets provided for the challenge. For the
evaluation dataset, the challenge organizers announced a baseline MSE of over 46% and a
MAPE over 100% 1. We re-implemented the algorithm in PyTorch [177] and after extensive
tweaking obtained a MAPE below 8% (more on that later in Subsection 3.3.4).

1. Numbers from challenge’s mailing list
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3.2 Our proposal: learn representations for networknodes

Noting the limitations of RouteNet, we propose two di�erent approaches to learn repre-
sentations mapped to network nodes. In a �rst approach (A1), we add dedicated embeddings
for nodes. These new embeddings contribute to the updates of link and path embeddings in an
enhanced version of the baseline algorithm. This �rst approach was proposed during the GNN
challenge and allowed our team to win the competition. We then present a second approach
(A2) that embeds node features within link features. Despite being simpler, we found after the
challenge that this alternative approach further reduced average errors. We start this section
by the common ground between the two approaches, explaining how interdependencies are
modeled and propagated between paths, links and nodes.

3.2.1 Message passing over bipartite graphs for dependencymodeling

We recall that RouteNet models link-path dependencies using a bipartite graph. Directed
bipartite graphs joining types A and B are denoted by GA,B ; as an example, the graph model-
ing the dependencies between paths and nodes in RouteNet is Gp,l. Since we want to add em-
beddings for network nodes (approach A1), we need additional dependency graphs to model
the node-path and the node-link interdependencies. Therefore, we construct Gp,l, Gl,n and
Gp,n, three bipartite graphs as follows:

— Gp,l connects each path to the links it uses,
it is essentially the bipartite graph proposed in RouteNet;

— De�ned similarly, Gp,n connects each path to the nodes it traverses;

— Finally, Gl,n connects each link to its starting and ending nodes.

As an illustration, we show a toy computer network topology in Figure 3.2, along with
the corresponding three bipartite graphs. For clarity, this network topology only holds three
nodes (A, B and C), four links (1 to 4) and six paths (AB, AC, etc.). Routing is trivial in this
topology, since all paths must be routed through node A. As an example, the BC path is made
up of links 2 and 3: Gp,l has therefore an edge between “BC” and “2” vertices and an edge
between “BC” and “3”. Link 2 starts at node B and ends at node A, hence Gl,n connects “2”
with “B” as well as “2” with “A”. To conclude the illustration, note that messages in path BC
are routed as B 7→ A 7→ C. Therefore, three corresponding edges are added in Gp,n: (BC, A);
(BC, B) and (BC, C).
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A

B C
2 3

1 4

(a) Original topology

AB CB CA AC BC BA

1 4 3 2

(b) Bipartite graph Gp,l

1 2 3 4

B A C

(c) Bipartite graph Gl,n

AB BA BC CB AC CA

B A C

(d) Bipartite graph Gp,n

Figure 3.2 – Example of a basic topology leading to the three presented bipartite graphs. Nodes
are denoted by a single letter, links by a number, paths by two letters (XY meaning path from
X to Y).

Let us de�ne NA,B(i) as the forward neighbors of vertex i in the bipartite graph GA,B .
More formally, NA,B(i) = {j ∈ vertices (GA,B) | (j, i) ∈ edges (GA,B)}. Conversely, we de-
�ne ÑA,B(i) as the indices j of vertices where (i, j) is an edge inGA,B . ThisN function (resp.
Ñ ) can be used to immediately identify dependencies. From the previous paragraph, we have
Np,l (3) = {AC,BC}: this means link 3 supports both paths AC and BC. Conversely, the per-
formance of path BC is a�ected by links 2 and 3, hence Ñp,l (BC) = (2, 3). Note that this last
neighbor list can be ordered to capture additional domain information since links are ordered
within each path. Node A is part of every link: Nl,n (A) = {1, 2, 3, 4}. Finally, we can also
provide a neighbor ordering from path-node dependencies, e.g. Ñp,n (BC) = (B,A,C).

Some additional notations and de�nitions

We follow the GNN notations de�ned in our background chapter (Subsection 2.4.5 in par-
ticular). First, we recall in Equation 3.2 a simpli�ed version of the message passing formula.
This formula describes how embeddings xt+1 are updated from their previous value xt and
an aggregation � of neighbors’ embeddings. Compared to the original message passing for-
mula, we omit xtj and eti,j arguments in φ to reduce its complexity since GNN edges have no
embeddings in our approach.

xt+1
i = γ

(
xti , �j∈NA,B(i) φ

(
xtj
) )

(3.2)
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In the following, we will use two di�erent aggregation functions �: one for unordered

inputs and one that is better suited for ordered inputs. In typical GNNs, neighbors are not
ordered: the aggregation function can be as simple as a sum of input embeddings. Some pro-
posals normalize this sum, for example by dividing by the degrees of the involved vertices—this
helps when some vertices have many more neighbors than others. We take another approach
and propose multiple permutation-invariant aggregation functions (e.g. sum, average or max-
imum), all combined through concatenation (denoted ‖).

Agg : X = {x1, . . . ,xn} 7→ ( avg (X ) ‖ sum (X ) ‖ min (X ) ‖ max (X ) ‖ var (X ) )

(Unordered aggregation)
That being said, one could provide the ordering of neighbors for richer aggregation. For

instance, neighbor vertices could be ordered by properties such as distance or chemical in-
teractions. In the challenge case, links are naturally ordered by their position within a path.
We take a similar approach than RouteNet and use RNNs to aggregate ordered sequences of
embeddings.

OrdAgg : X = (x1, . . . ,xn) 7→ RNN (X ) (Ordered aggregation)

In the remaining of this chapter, γ and φ are single-layer perceptrons followed by a non-
linear activation function. We denote the embeddings states for paths, links and nodes as p,
l and n respectively. Intuitively, the latter embeddings n are important to model the nodes’
load based on paths’ tra�c and Type of Service (ToS). However, they introduce signi�cantly
more parameters to learn and might not be needed if there is no interactions between all the
queues on the same node. In the following subsections we explore two approaches: one with
node embeddings n (A1) and one without (A2).

Message passing in detail

Equipped with these notations, we can now apply the de�nition of message passing layers
to our problem (Equation 3.2). Building on our previous example, we update link embeddings
from dependent path embedding: in other words, compute lt+1 from its previous value lt and
relevant pt. This operation is illustrated in Figure 3.3 for “link n.3”. We �rst �nd the paths
that link n.3 supports: from previous paragraph, we know that these paths are AC and BC.
For every path found, we compute a message with the φ function; we then aggregate all these
messages to a single vector using an aggregation function (we chose “Agg”, de�ned in previous

52



3.2. Our proposal: learn representations for network nodes

φt
1

φt
1

γt
1

pt
AC

pt
BC

lt3 lt+1
3

avg
sum
min

Agg
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Figure 3.3 – Updating the embedding of link n.3 with neighbor path hidden states (from our
toy topology). We can see how “messages” are generated and aggregated to update the link
embedding. This is equivalent to lt+1

3 = γt1

(
lt3 , Aggj∈Np,l(3) φ

t
1

(
ptj
) )

.

subsection). Finally, we use the update function γ to compute the new embedding from its
previous value and the aggregation result.

3.2.2 Approach A1: dedicated representation with node embeddings

In this �rst approach, we propose to add a third embedding type for nodes. We thereby
must solve the dependencies between three kinds of embeddings: for paths, links and nodes.
We propose to solve the interdependencies between network components by propagating the
information signal from path embeddings to link embeddings to node embeddings. This strat-
egy is directly derived from the interdependencies one might intuitively expect between these
network components: paths tra�c have a direct impact on links, in turn having a direct im-
pact on nodes. However, congested nodes may cap their throughput over links, later impacting
path performance metrics. Thus, it is also important to propagate dependencies the other way
around: from nodes to links to paths.

We show the interactions between embeddings in Figure 3.4, with the detailed algorithm
available in Algorithm 1. First, we initialize embeddings to their related features: path embed-
dings are initialized with path features along with an additional padding to �t the embedding
dimension. The same operation is applied for links and nodes—this corresponds to step 1

in Figure 3.4 and lines 1 to 3 in Algorithm 1. We then execute a �rst message passing layer to
update link embeddings using the Gp,l bipartite graph and the associated dependencies Np,l
(step 2 , line 5). In a similar way, we update node embeddings in step 3 (line 6) usingGl,n and
messages from freshly-updated link embeddings. We then propagate the information signal
“backward” from nodes to links to paths using the inverse dependencies Ñl,n and Ñp,l. This

53



Chapter 3 – Computer Network Modeling with Graph Neural Networks

Algorithm 1: High-level pseudo-code of proposed GNN approach A1
Input: Features Fp,Fl,Fn; neighbors N and Ñ ; trainable functions φ, γ and FC .
Output: Readout performances of every path
B State initialization, padding with zeroes

1 ∀i ∈ p : pi ← [Fp,i, 0, . . . , 0]
2 ∀i ∈ l : li ← [Fl,i, 0, . . . , 0]
3 ∀i ∈ n : ni ← [Fn,i, 0, . . . , 0]

4 for t← 1 to T do

B Update link embeddings from path embeddings

5 ∀i ∈ l : li ← γt1

(
li,Aggj∈Np,l(i) φ

t
1 (pj)

)

B Update node embeddings from link embeddings

6 ∀i ∈ n : ni ← γt2

(
ni,Aggj∈Nl,n(i) φ

t
2 (lj)

)

B Update link embeddings from node embeddings (“backward operation”)

7 ∀i ∈ l : li ← γt3

(
li,Aggj∈Ñl,n(i) φ

t
3 (nj)

)

B Update path embeddings from link embeddings, two aggregations

8 ∀i ∈ p : p′i ← γt4

(
pi,Aggj∈Ñp,l(i) φ

t
4 (lj)

)
, p′′i ← γt5

(
pi,OrdAggt

j∈Ñp,l(i) φ
t
5 (lj)

)

9 p← FC0 (p′ ‖ p′′)

B Bonus message passing from node to path embeddings

10 ∀i ∈ p : p′i ← γT+1
6

(
pi,OrdAggT+1

j∈Ñp,n(i) φ
T+1
6 (nj)

)

B Start readout from path embeddings and include features back

11 r0 ← (p ‖ p′ ‖ Fp)
12 r1 ← Activation (FC1 (r0))
13 r2 ← Activation (FC2 (r1))
14 r3 ← Activation (FC3 (r2))
15 return FC4 (r3)
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Fp: Tra�c info & ToS Fl: Capacities Fn: Queuing policies

p: Path embeddings

l: Link embeddings

n: Node embeddings
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Figure 3.4 – Visual representation of approach A1, proposed for the GNN challenge. First,
embeddings are initialized from network features 1 . Using message passing operations over
the bipartite GNN graphsGp,l andGl,n, embeddings are updated through steps 2 to 5 , which
are all repeated T times. Path embeddings are �nally updated with Gp,n 6 and we readout
the predicted average delay for each path 7 using a MLP.

corresponds to steps 4 and 5 , lines 7 and 8. For the last message passing from links to paths,
we leverage the ordering of links within paths and exploit two aggregations (line 9).

At this point, all embeddings have been updated at least once. However, only the direct

dependencies have been modeled and propagated by the four successive message passing lay-
ers. To uncover potential cyclic and indirect dependencies, we employ the same strategy as
RouteNet which solves this problem by repeating the message passing cycle T times (lines 5
to 9). Each new iteration propagates the interdependencies one step further, allowing non-
trivial dependencies between network components to be discovered by the algorithm. This
approach has been previously used in message passing GNNs as a �xed-point iteration ap-
proximation. Notice the chosen indices and exponents in the formulas of Algorithm 1: as
an example in line 5, γt1 and φt1 respectively denote the update (resp. message) functions in-
dexed by 1 at iteration t. This means that each iteration (“GNN layer”) holds its own set of

trainable function, i.e. trainable parameters allowing embedding convergence. While RouteNet
used T = 8, we found that T = 3 was a good tradeo� between accuracy and computational
complexity. With an average of three neighbors, one network component could reach up to
34×T other components (i.e. more than enough for embeddings convergence). (In the interest
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Fp: Tra�c info & ToS Fl: Capacities Fn: Queuing policies

p: Path embeddings

l: Link embeddings + tx node
Gp,l

Per-path performance metrics

Readout

Fully-connected layer
Message passing layer
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2
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Figure 3.5 – Visual representation of approach A2, studied after the GNN challenge. Com-
pared to approach A1 (Figure 3.4), link embeddings are completed with the transmitting node’s

features Fn. Steps 3 4 6 are not needed in this approach.

of clarity, we omit the indices of embeddings in the algorithm since we overwrite the previous
embedding values during updates.)

After having performed these T iterations, we use the third bipartite graphGp,n to compute
alternative path embeddings p′ from dependent nodes in step 6 , line 10. This last message
passing operation again exploits the ordering of nodes within each path thanks to the OrdAgg
aggregation function. Our assumption is that this last operation allows the model to leverage
the indirect dependency between paths and nodes, without using links as intermediaries.

Finally comes the “Readout” part of our GNN (step 7 , line 11). We recall that we want to
extract performance metrics from paths; so we need to read out information directly from the
path embeddings p and p′. Path features Fp may have been diluted by the successive message
passing operations. To ensure that they are directly mapped to the model’s output, we add
them in the readout inputs (line 11). Similar to RouteNet’s readout, we use a MLP with three
hidden layers (denoted FC for “fully-connected”) and non-linear activation functions (lines 11
to 15). It is worth noting that this full algorithm is applied both during training and inference,
for every data sample.
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3.2.3 Approach A2: node representation through link embeddings

We studied this second approach after the completion of the challenge. It is a simpli�ed

version of approach A1, where node embeddings are not modeled explicitly, but rather “mixed”
in link embeddings. In the initial network model, each link i is associated with a transmitting

node tx(i) and a receiving node rx(i). We thereby initialize the link embeddings with the
relevant link features and the transmitting node’s features. (We assume that network queues
are only modeled for outbound messages, hence we ignore receiving node’s features in this
approach.)

∀i ∈ l : li ←
[
Fl,i,Fn,tx(i), 0, . . . , 0

]
(Replaces line 2 in Algorithm 1)

Note that here we actually model one set of queues for every link. This departs from the
approach A1, where queues were shared between all outgoing links of every node thanks to
dedicated node embeddings. We note that this method has been used by the second and third
teams of the GNN challenge (Salzburg Research and Fraunhofer HHI). Given the good results
of both teams, we were curious to test their proposal with our own choices of neural network
architecture and training hyperparameters.
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3.3 Evaluation with the datasets of the GNN challenge

We evaluated our contributions using the datasets provided in the context of the GNN
challenge. During the challenge, we only used our �rst approach A1. We begin by presenting
the provided datasets along with a short review of the scores we obtained during the challenge
with this approach (Subsection 3.3.1). Then, we detail in Subsection 3.3.2 and Subsection 3.3.3
the methodology and learning techniques we used to reach these results. In an attempt to char-
acterize the e�ects of our contributions, we provide an ablation analysis in Subsection 3.3.4 in-
cluding results for our second approach A2. Finally, we explore some visualizations of learned
embeddings in Subsection 3.3.5.

3.3.1 Datasets presentation and challenge results

Following the standard methodology of machine learning methods (Subsection 2.4.1), we
had access to three di�erent datasets: one for training, one for validation and �nally one
for evaluation. In these datasets, each sample contains the results of a single OMNeT++ net-
work simulation over a known topology with speci�c component characteristics. The training
dataset contains samples from two di�erent topologies: one from the historical National Science
Foundation Network (NSFNET) with 14 nodes and 21 links, and one from the larger Gigabit
European Advanced Network Technology 2 (GÉANT2) network containing 24 nodes and 37
links. The German Backbone Network (GBN)’s topology (17 nodes and 26 links) is used in
the validation dataset. Finally, the evaluation set provides samples with an unknown topology
having 19 nodes and 31 links.

In the simulation model used to create the samples, links have a limited capacity but zero
latency and they do not drop messages. However, OMNeT++ simulates message queues at
every node: outbound messages are delayed until there is enough link bandwidth available
to send them to the next node. When a packet is put in a full queue, or is delayed for more
than 20 simulation time units, it is dropped. Of course, real computer networks have links with
positive latency. The approach taken in this challenge is nevertheless interesting because it
can simulate bu�ering and congestion problems quite accurately.

Each sample contains the following information:
— The network topology, including path routing information;
— Fp, the features associated with every path, including the amount of generated tra�c

and the ToS;
— Fl, relevant features for links (in practice, the only feature was the link capacity);
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— And Fn, node features (i.e. queue policies and optional queue weights).

Tra�c generation One important simulation parameter is the tra�c matrix, representing
the frequency of messages in each network path. This frequency is de�ned by the λ parameters
of Poisson processes, the expected number of emitted messages in one time unit. (Message
sizes are randomly chosen from a bimodal distribution.) In each sample, there is one path for
every source-destination pair of nodes (e.g. 14 × 13 paths for NSFNET). Additionally, each
path has a randomly-selected ToS (0, 1, or 2, to be combined with queuing policies in nodes).
Since nodes are not directly connected to every other nodes, a routing matrix is also provided:
it is used by intermediate nodes to forward a message to its �nal destination via speci�c links.
Tra�c and routing matrices are both randomly generated for every sample, yielding many
unique network con�gurations.

Queuing policies Compared to the initial RouteNet study [11], the authors introduced path
ToS and node queueing policies. In the simulator, nodes pick the next messages they send to
each link from three distinct �rst-in �rst-out queues. The following policies are used:

— Messages are picked from queues with highest priorities with the Strict Priority policy;

— With Weighted Fair Queuing (WFQ), queues are given a portion of the link capacity;

— Finally, De�cit RoundRobin (DRR) is proposed as a computationally e�cient approx-
imation of Weighted Fair Queuing.

These three proposed policies correspond to widely used scheduling policies, which are
for instance available in the Linux kernel. With the variety of tra�c distribution and queuing
strategies, we believe the proposed simulation model can replicate the behavior of real com-
puter network routers. For every generated network con�guration, the OMNeT++ simulation
measures performance metrics on every path, including the average bandwidth, delay, jitter
and loss rate. A con�guration simulation stops when these metrics reach a stationary state:
in practice, one dataset sample takes from 30 seconds to more than ten minutes of simulation
time—according to provided data.

Challenge results After hyperparameter tuning (see Subsection 3.3.2), we obtained from
our best model (based on A1) a MAPE of 1.66% on the evaluation dataset after 750 000 training
samples. We detail the chosen hyperparameters in Table 3.1. We would like to highlight that
embeddings are signi�cantly larger than the original RouteNet embeddings (400 vs. 8). This
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Table 3.1 – Hyperparameters resulting in best model during the challenge.

Batch size 8
Embeddings size 400 for paths, links and nodes (p, l,n)

RNN size same as embeddings (400)
FC1 size 512
FC2 size 256
FC3 size 256

T 3
Activation Leaky Recti�ed Linear Unit

Total params 11 465 185

Table 3.2 – Summary of hyperparameters used in models for our best submission.

Approach Loss function Hidden state size FC1 size FC2 size FC3 size T

A1 MAPE 400 512 256 256 3
A1 MSE 400 512 256 256 3
A1 MAPE 300 128 128 256 3
A1 MSE 300 128 128 256 3

leads to more expressive models, but also required more computations and storage capacity:
while RouteNet needs less than a day for training, our best model required around four days.

Following the successful approaches in previous machine learning challenges, we tried
di�erent ensemble methods to further improve our score. With the GNN challenge, the most
successful approach was ensemble averaging. We trained di�erent models with slightly modi-
�ed hyperparameters. While each of these models had an error percentage higher than 1.66%
on the evaluation set, averaging their output actually led to a lower error. This can be expected:
combining multiple models generally leads to reduced bias and variance among the results.
Our best solution used the harmonic mean of the output of four models, leading to a MAPE
of 1.53% (see Table 3.2). The advantage of this power mean is that it favors small values—just
like the MAPE—reducing the error in our delay predictions. We also tried stacking as another
ensemble method, without that much success. (Note that the second team from Salzburg Re-
search obtained a MAPE of 1.95%; this last trick was not really signi�cant compared to our
other contributions but could have helped win the challenge.)
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3.3.2 Methodology and implementation details

During the few months of the challenge, we tried a lot of ideas and tested them against the
provided validation dataset. We started small by just adding the node embeddings and a few
additional message passing layers, then tried di�erent GNN �avors and gradually increased
embedding and hidden layers dimensions. As in many challenges, this incremental process
relied on trial and error: we discarded ideas that did not result in a better model after a �xed
training time—giving a better score on the validation dataset. Of course, due to computation
and time constraints, it was not possible to try every combination of options we had. Hy-
perparameters were chosen using intuition, domain knowledge and microbenchmarks in an
incremental process.

Implementation with PyTorch We implemented our algorithm from scratch using Py-
Torch 1.4 [177] and the PyTorch Geometric module [178]. This module contains numerous
primitives for message passing GNNs: in particular, it provides good abstractions and GPU-
accelerated aggregation functions for graphs. To fully exploit PyTorch Geometric, we had to
use a single tensor containing all the embeddings for paths, links and nodes: this required some
additional padding and concatenation operations compared to Algorithm 1. Our algorithm is
implemented in under 500 lines of python code, with double as much for data preprocessing
and evaluation 2.

Features preprocessing Input features exhibit large di�erences between them: for instance,
path tra�c vary from 40 to 2000 while links capacity vary from 10 000 to 100 000. Hence, we
standardize continuous features by removing the mean and scaling to unit variance— this clas-
sic preprocessing alone allowed us to greatly improve on the RouteNet baseline. Furthermore,
node features only have a limited set of values: there are only three possible queuing policies
and �ve combinations of weights for two of these policies, leading to a small total of 11 pos-
sible combinations. We encode these 11 combinations to a 4-dimensional embedding (not to
be mistaken with the network components embeddings p, l,n): this “input embedding” corre-
sponds to the output of a single-layer perceptron optimized during the training process. We
apply another input embedding for the paths ToS, converting the three possible values in a
dimension of size 4.

2. Please contact Christoph Neumann via email (�rstname.lastname@interdigital.com) to request access to
the source code.
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Training duration We ran the algorithm on an internal computing grid with Nvidia Tesla
M60, P100 and V100 GPUs. Each of these GPUs contains between 2048 and 5120 CUDA cores
and either 8 or 16 GB of memory. During hyperparameters search, we limited the training
to 200 000 training samples. This corresponds to half of the provided training samples, but
allowed us to maintain reasonable training durations over the shared computing grid (below
one day on average). One week before the end of the challenge, we focused on what we
believed was the best architecture, and trained it with 750 000 samples (2 epochs). With the
chosen hyperparameters (Subsection 3.3.1), this took around four training days at a speed of
2.7 samples per second on Tesla M60 (to be compared with 4.8 samples per second on P100).

Some remarks on discarded ideas For completeness and future research, we brie�y de-
scribe the ideas that did not result in better scores in our microbenchmarks.

— We tried to use the same message and update functions for all T iterations in the al-
gorithm. We found that this was better to use di�erent functions for every iteration
(thereby di�erent sets of trainable parameters).

— The training dataset includes samples from two di�erent network topologies. We tried
to use only one of these topologies at a time: while the training scores were actually
greatly improved, it was clear that the produced models were unable to generalize to
other network topologies with poor results on the validation set.

— Following the RouteNet approach, we tried to add dropout layers in di�erent locations
of our algorithm. These layers are useful to avoid over�tting and can be further used
for posterior Bayesian estimation. In our algorithm, it seemed that dropout operations
were not useful.

— We tried to augment the training dataset, a technique widely used in the literature. In
particular, we added random gaussian noise to features and removed random nodes,
links and paths from network topologies used for training to increase sample diversity.
This led to poor results over the validation samples, probably because our augmentation
technique introduced too much error in expected performance metrics.

— Finally, we tried to apply several transfer-learning techniques. Our intuition was that
we could train a �rst model on all available performance metrics (including metrics non
evaluated in the challenge). Then, we would use the learned parameters of this �rst
model to train a second model optimized for path delay prediction. However, this only
led to poor results in our evaluations, so we decided to discard this research path.
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Figure 3.6 – Predicted vs. Expected delay for some paths (each dot is a prediction).

3.3.3 Techniques for optimal training strategy

To obtain good models from a machine learning algorithm, it is necessary to provide a good
training strategy. We now review two techniques that allowed us to signi�cantly improve our
score during the challenge.

Using the logarithm in the loss function The challenge uses the MAPE error to evalu-
ate solutions against expected average delays. This metric tends to favor small predictions:
predicting 1 when the expected result is 5 leads to an error of 80%, while predicting 5 when
the expected result is 1 leads to an error of 400%. It seemed important to train our models
on this loss function, but this implies some practical considerations. First, it is not possible
to normalize or standardize the expected model output (a zero value would lead to a division
by zero and negative values do not make sense for MAPE). Then, expected delays range from
0.0075 to 20 simulation time units, with most values staying below 1. To ensure numerical
stability (and since we are interested in relative di�erences in this challenge) we trained our
models over the logarithm of the expected average delays distribution: d′i = log(di + 1) > 0,
were di is the actual delay to be predicted and d′i the transformed value we use for training.

We review the e�ect of this contribution in Figure 3.6, where we compare the predictions
of two models based on the same algorithm (A1). The �rst model (left) has been trained using
original delays, while the second (right) used the logarithm method we just detailed. We can
clearly see that the left model is biased towards low delay predictions; this is not surprising
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Figure 3.7 – Adam’s α value and MAPE loss during the �rst batches of training. We use Py-
Torch’s Cyclic Learning Rate scheduler.

given the de�nition of the MAPE loss. Applying the logarithm function in the loss (right plot)
reduced this undesired bias substantially, because “over”-predictions are less penalized: taking
the previous example, predicting 5 instead of 1 would result in a loss of 159% (instead of 400%).
(Note: we also tried to train over the MSE loss, but as expected this led to poor scores with
respect to the MAPE evaluation.)

Cyclic learning rate scheduling The learning rate of the training procedure is a major
factor to ensure the models actually converge to better parameters. Rates that are too small
slow down training more than necessary, while higher rates may introduce instability in the
results. To avoid these issues, we leveraged the Adam optimizer [179] with its default pa-
rameters. Brie�y speaking, this optimizer works by maintaining an adaptive learning rate for
every trainable parameter, updating this learning rate according to observed variance and a
con�gurable step size α [179]. One popular strategy is to vary the learning rate (resp. α) in
repeating cycles [180]; �rst increasing it up to a de�ned threshold, then decreasing it over the
training batches. To this aim, we used two scheduling policies provided by PyTorch:

1. From sample 0 to 500 000, α cycles between a minimum “base” value of 1× 10−8 and a
maximum of 1× 10−3, with changes performed every 128 samples. The growth phase
spans over 1280 samples while the reduction phase lasts over 102 400 samples, using an
exponential decay factor of 0.999;
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2. From sample 500 000 onward: the same hyperparameters are used except a base value
of 1× 10−10 and a maximum value of 1× 10−4.

We depict the evolution ofα and the observed loss during the training process in Figure 3.7.
The chosen scheduling policy allowed our models to reach lower error values, compared to
monotonically-decreasing schedulers. Intuitively, this policy avoids local minima by “jump-

ing” to unexplored regions in the parameters space. This is clearly visible around batch 100 000:
after a slow decrease, the learning-rate jumps back to around 5× 10−4. The training loss then
increases for about 50 000 batches before reaching lower values. We note that the loss over
the validation dataset follows the loss over the training dataset with a reasonable di�erence,
showing no sign of over�tting.

3.3.4 Ablation analysis

Our GNN approaches include several contributions. To have a better understanding of
the e�ect of each of these contributions, we provide an ablation analysis in this section. The
method is as follows: �rst, we create variants of the most complex approach A1 (presented
in Section 3.2), each variant having one component disabled or slightly modi�ed. Then, we
train these variants with similar hyperparameters and compare their results over a reference
model based on A1. We also compare the variants to the alternative approach A2.

Variants

— Baseline8 andBaseline400: These variants are based on the provided RouteNet model.
We re-implemented RouteNet in our PyTorch framework and used the same learning
hyperparameters than our reference model. (Adam optimizer over the MAPE loss with
logarithm applied, using a cyclic learning rate scheduling.) While the RouteNet model
initially used embeddings of size 8 (Baseline8), we also implemented a Baseline400 vari-
ant with embeddings of size 400. In Baseline400, hyperparameters for readout layers
match A1’s hyperparameters (Table 3.1).

— No log: A simple variant that does not use logarithmic targets in the loss function. We
still standardize features, but use the “raw” target delays from 0 to 20 time units.

— Sum agg: To evaluate the e�ect of our proposed non-ordered aggregation “Agg”, we
replace it with a simpler version that only computes the global sum of its inputs. Note
that in this variant, the sum is applied on the 400 dimensions of the input embeddings. In
the reference model, embeddings are �rst reduced to dimension 80 through a perceptron
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Table 3.3 – Comparison of ablated variants over the evaluation dataset after training with one
million samples. MAPE scores are indicated for the full evaluation dataset (column “all”) and
for large expected delays only (delays over 5 time units, column “>5”).

Variant # Parameters MAPE MAPE MSE R2

(all) (>5)
Reference A1 11 465 185 1.63% 4.23% 0.078 0.983
Approach A2 7 702 305 1.15% 3.63% 0.072 0.984

Baseline8 13 089 7.37% 27.1% 0.840 0.817
Baseline400 2 095 561 4.81% 20.8% 0.808 0.824

No log 11 465 185 1.61% 4.36% 0.134 0.971
Sum agg 13 005 025 1.52% 4.14% 0.082 0.982

No path-node 9 817 185 3.38% 4.83% 0.165 0.964

to allow for the concatenation of the �ve operators. With “Sum agg”, this perceptron is
kept as an additional hidden layer of size 400. This variant has thereby slightly more
parameters than the reference model.

— No path-node: In this variant, we simply remove the message passing step from nodes
to paths (step 6 , line 10). Since the corresponding message passing functions do not
need to be learned, the overall model size is reduced.

Results

We trained each variant over one million samples (250 000 more than during the challenge).
When doing this analysis, and since the challenge was over, we had access to the expected
delays in the evaluation dataset and were able to evaluate the variants over this dataset. (Note
that the results are extremely similar for both training and validation sets, indicating no sign
of over�tting.) We report the MAPE, the MSE and the coe�cient of determination R2 [181]
in Table 3.3. This last coe�cient indicates how much of the prediction variance is explained by
the model: a model returning a constant path delay may have good MAPE and MSE, yet will
obtain a maximum R2 of zero. Conversely, a model �tting perfectly well the data will have
a coe�cient of determination equals to one. Surprisingly, many variants have a lower MAPE

than the model we submitted during the challenge. This is especially true for the approach A2
with only 1.15% of average relative error. We now give the lessons we learned in this study.
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Figure 3.8 – Comparison of ablation variants’ performances while increasing training samples.
Surprisingly, many variants perform actually better than the reference model.
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The baseline can be improved with an optimized learning strategy

By standardizing features and using an advanced optimizer and scheduler, we managed
to obtain a MAPE of just 7.37% for the RouteNet baseline. This result is quite impressive,
since this baseline is unable to use node features (queuing policies and weights). Adding more
parameters to RouteNet speeds up the training (Figure 3.8) and leads to even better results
(4.81%). Our results match the �ndings of the third team of the challenge from Fraunhofer HHI:
by optimizing RouteNet hyperparameters, they were able to score 5.42% during the challenge.

Simpler aggregations might be better in practice

The “Sum agg” variant stays head to head with our reference on both MAPE and MSE
scores. This seems to indicate that single aggregations work better than our proposed com-
posite aggregation with �ve global functions (Agg). Actually, this is not really surprising in
this dataset: delays are additive over links, hence sums are su�cient. It is highly likely that if
we wanted to compute other metrics (such as loss rates), other aggregation functions would be
best-suited. Moreover, in this variant the complete embeddings of size 400 can be summed. In
our reference model, only one �fth of the embeddings are summed (80) due to the computation
of other aggregation functions (avg, min, . . . ).

“Logarithmic delays” lead to less biased results

During our reference model optimization, we found that using the logarithm of the ex-
pected delay led to better MAPE scores. However, this is not entirely clear from our ablation
study: the “No log” variant actually has slightly better MAPE score (0.02% di�erence). When
looking at MSE and R2, we see that our reference model still performs better. This con�rms
that the MAPE loss incentivizes models to favor low delays: despite a slightly worse MAPE
score overall, logarithms help providing better MSE and R2 along with better MAPE for high
expected path delays.

The need for direct message passing

Just removing the direct path-node message passing in “No path-node” variant has a huge
impact in the �nal scores. This clearly con�rms the need for such direct layer between nodes
and paths in our reference model. However, removing node embeddings and the related mes-
sage passing operations (approach A2) actually give the better results in our analysis, both
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Figure 3.9 – Representation of a realistic router with both input and output queues. In this
example, there is some contention between two packets routed to the “A” output link. Ad-
ditionally, despite empty output queues, a packet to link “B” is “head-of-line”-blocked in the
second input queue.

for MAPE, MSE and R2. This trend is visible early in the training process (after just 20 000
samples, Figure 3.8). We have a couple of plausible explanations for that behavior.

— The challenge organizers con�rmed that the simulation used to generate the dataset
models one set of queues for every outgoing port. Node embeddings were introduced
to let the model store some coupling between the queues of a node, for instance due to
some shared resource (CPU, memory, etc.). Figure 3.9 shows an illustration of a standard
router with both input and output queues [182]: in some cases, packets may be delayed
despite empty output queues. In this dataset, this additional node-level status is actually
not needed since queues are only modeled for output ports. This certainly makes the
approach A2 more relevant.

— Updates in A2 are only being made between path and link embeddings. There are fewer
updates through message passing than in the reference model, and no “intermediate”
update between paths and nodes. As underlined by the poor performance of “No path-
node”, direct updates are essential. Future work could focus on learning functions that
take several types of embeddings as input at once; for instance by computing node em-
beddings from related link embeddings and path embeddings at the same time.

3.3.5 Visualization of learned representations

Each path’s predicted delay is extracted from the corresponding path embedding using the
readout fully-connected layers. It is thus interesting to analyze the content of these learned
representations to verify the model’s ability to extract relevant features to our speci�c prob-
lem. To do so in an understandable way, we project the high-dimensional embeddings (i.e.
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Figure 3.10 – 2-components t-SNE visualization of path embeddings, colored by expected path
delay (top left), path type of service (top right), path length in number of links (bottom left)
and average link bandwidth in paths (bottom right). Given the visible clusters, we can say that
these characteristics are correctly embedded in embeddings.

400 dimensions) to an interpretable 2-dimensional space with t-distributed Stochastic Neigh-

bor Embedding (t-SNE), a dimension reduction technique commonly used to visualize high-
dimensional representations. This technique has for instance been used to visualize embed-
dings of video game screens [183] in the literature. In the following, we use the best model we
obtained so far (using approach A2).

Figure 3.10 shows the result of a t-SNE projection over validation samples, with di�erent
coloring maps for relevant features in the case of the delay-prediction problem (each point
represents a path). In the top left plot, we color the paths according to the expected average
delay and we can clearly see a smooth color gradient between low and high latencies, hinting
that the embeddings hold enough information to give good delay predictions. The top right
plot hints that paths with high delays are in part correlated with paths having a ToS of 2. This
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Figure 3.11 – t-SNE visualization of link embeddings colored by their bandwidth (left) and by
the number of paths that use each link (right).

is not surprising: this ToS has the lowest weights for WFQ and DRR queuing policies in the
provided dataset, hence paths with ToS 2 have less priority than other paths. Bottom plots
show that the hidden states also contain information about links making up each path. We
can clearly observe that paths are grouped by their lengths in the bottom left plot and by the
average of their link bandwidths in the right plot, hinting that message passing layers are very
useful to extract important signals. It is worth noting that groups exhibit a clear partitioning
of ToS values.

Results are similar for the embeddings of links, as shown in Figure 3.11. On the left plot, we
can con�rm that information about link bandwidths is preserved despite numerous message
passing updates and aggregations. On the right plot, we depict the number of paths passing
through every link. We can see that links are correctly discriminated between low- and high-
tra�c, which is expected for the path delay estimation task.
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3.4 Conclusion

In this chapter, we have presented and evaluated advanced techniques for computer net-
work modeling using Graph Neural Networks (GNNs). In particular, we contributed a new
model architecture (A1), using several bipartite graphs in message passing layers to model
component interdependencies in computer network knowledge. After hyperparameter opti-
mization, we obtained a machine learning model �tted for the task of path delay prediction
with very good generalization to unknown network topologies. We highlighted in an ablation
study that a simpler approach (A2) can actually give better results than our reference architec-
ture (A1) on the evaluation dataset. The main di�erence between the two approaches is that
A2 does not model dependencies between network queues on the same node explicitly. While
these dependencies were not actually needed in the simulation data we used for the evaluation,
we expect that A1 would perform better on more realistic deployments with shared resources
between network queues. Moreover, while there are still many unknowns in this speci�c prob-
lem, our feeling is that message passing layers can still be improved to compute embeddings
more directly, i.e. by avoiding intermediate message passing steps as in our architecture. We
believe nonetheless that our contributions can both be applied to a wide range of network
modeling problems. Path delay prediction is just an example of what could be predicted in a
fraction of the computing time required by network simulators: our models roughly require
500 msec to compute delays over a full topology while simulators would require tens of min-
utes. As such, the proposed methods in this chapter could be integrated in network simulators
(and emulators) for more e�cient computations, at the cost of some prediction accuracy. A
similar approach has recently been proposed for the simulation of integrated circuits [184].

Our analysis also highlights the clear bene�ts of ablation studies. When designing machine
learning algorithms, it is common that one adds more components than actually needed: as
shown in Subsection 3.3.4, removing one contribution at a time can lead to surprising insights.
Of course, these studies can only show the results over a speci�c dataset: there is no “best”
neural network architecture that can be �tted to every problem. It would be interesting to
evaluate our contributions over more diverse and realistic network deployments, especially to
evaluate the contribution of node embeddings proposed in A1. We revisit the application of
machine learning techniques to real networks in Chapter 5.

This work has been done in the context of a machine learning challenge, where we won the
�rst rank with an average relative error of just 1.53%. The second team from Salzburg Research
had a score of 1.95% while the organizers proposed a solution with 3.88% of error [185].
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In the previous chapter we have explored how we can model arbitrary computer networks
using Graph Neural Networks (GNNs) and extract relevant performance metrics. While the
presented approach yields good results, it requires a very detailed description of the modeled
network: its topology of course, but also the inner characteristics of network components. In
the problem we discussed in Chapter 3, this included link capacities and node queuing poli-
cies for instance. We focus in this chapter on Root Cause Analysis (RCA) of user-perceived
problems occurring in large networks such as the Internet. In these networks, detailed infor-
mation regarding the topology or components is typically not available or di�cult to obtain.
This is especially true for end users, who have a very limited view of the computer network:
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they often just know how to communicate with their ISP’s gateway. As such, and considering
the large size of the considered networks, the techniques we presented in Chapter 3 cannot be
applied.

In particular, there are several challenges that must be tackled when observing the network
from end users (which we return to in more detail in Section 4.1). First, as we just mentioned,
RCA methods should work without needing advanced details about the analyzed network and
the troubleshooted services. Second, they should be able to discriminate between potential
root causes and other unrelated anomalies. Finally, they should be easily extensible, both in
terms of end users, targeted services and root causes diversities.

To overcome these challenges, we propose DiagNet in Section 4.2, a distributed platform
for the RCA of Internet-based services. DiagNet exploits novel convolutional techniques de-
rived from machine learning and image processing [165, 186, 187]. It applies these techniques
to data collected from both 1) end user devices and 2) opportunistically deployed probing
servers that we named landmarks. By relying on a neural network for root cause inference,
DiagNet does not require any knowledge of the low-level network fabric that connects its
target services (such as routers, switches, or peering policies), and can ingest new types of
network measurements without the need for retraining. Doing so, DiagNet can pinpoint root
causes in locations of the Internet it never encountered before, and can easily be adapted to
di�erent types of online services with very little retraining. The principles behind DiagNet
are further not limited to end user problems, and generalize easily beyond Browser-based ser-
vices, to distributed business-to-business APIs.

We carefully evaluate DiagNet in Section 4.3 by injecting controlled faults into a de-
ployment of realistic geodistributed services and clients. Our experiment involves four cloud
providers in ten world regions, interdependent services, and emulated end users running in
automated browsers. We compare DiagNet against state-of-the-art inference methods and
show that it consistently overperforms its competitors in a dynamic context —which is typical
of today’s Internet services. It also delivers close to ideal performances in a static setting. In
our evaluation, DiagNet yields an overall Recall@1 of up to 73.9%.

74



4.1. Challenges of RCA from end users

4.1 Challenges of RCA from end users

Measurements taken from end user devices are inexpensive, but the information they pro-
vide is limited. To infer some accurate diagnosis from this information, we argue that a RCA
system working at Internet-scale should meet four key challenges: (i) network and service

agnosticism, (ii) anomaly disentanglement, (iii) location agnosticism and (iv) root cause extensi-
bility. We discuss each of them in turn in the following.

4.1.1 Network and service agnosticism

Internet-services rely on a wide variety of systems, sub-services, and networks to function
properly. This includes data centers, cloud-providers, Content Delivery Networks (CDNs),
along with diverse operators’ networks. The underlying network topologies and distributed
architectures of these systems are complex, continuously evolving and often unknown. We
argue that an Internet-scale root cause analysis method should not assume any prior knowl-
edge regarding the architecture of its targeted services (e.g. in terms of the cloud regions they
are deployed in, or the CDNs used), or regarding the network topology on which they exe-
cute (e.g. in terms of peering-points), a property that we call network and service agnosticism.
This largely departs from common root cause analysis relying on network tomography [95,
98, 99], bespoke methods for data centers [88, 89] and Software-De�ned-Networking [83, 188],
as detailed in Section 2.3.

Root cause analysis requires however some location information to pinpoint the area (e.g.
cloud region, point of presence, AS) in which a root cause is likely to be located. Our choice in
DiagNet is to rely on landmark servers to provide this location information while eschewing
a precise knowledge of the underlying network. Landmark servers are easy to deploy, cheap
to run and maintain, and can provide a good overview of the network health provided they are
present in multiple and diverse vantage points. The intuition is that if there is a su�ciently
wide deployment of landmarks, some of these landmarks will be located in the topological
vicinity of targeted services, or in the path towards them, thus o�ering indications on the
location and family of the incident impacting a user.

4.1.2 Anomaly disentanglement

By providing measurements from all over the Internet, landmark servers are bound to
record a constant stream of anomalies (a drop in bandwidth here, a high latency there). Most of
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these anomalies will however be unrelated to a particular end user’s problem with a particular
service: long delays between Paris and Brussels are unlikely to explain why a Korean student
cannot access her university’s web-site. An internet-scale root-cause analysis service should
therefore be capable of separating spurious outliers from actual causes when analyzing an
incident, a property we have dubbed anomaly disentanglement.

Disentangling real causes from coincidental e�ects is however far from trivial without
any detailed knowledge of a service’s internal organization (the fact that the Korean web-site
does not use any resource in Europe for instance), or of the network topologies it executes
on (packets circulating in Korea do not normally go through any Paris-Brussels link). Our
intuition in DiagNet is that a learned inference model should be able to autonomously discover
these hidden relationships, by inferring the internal dependencies within a service and within
the network from past observations.

4.1.3 Location agnosticism

Historically, diagnostic tools operating on Wide-Area Networks have exploited the pre-
cise location of every user device (also called client in the following) accessing the service to
pinpoint failures accurately [113], both at a geographical (from neighborhood to country) and
topological level (from subnet to ISP). Obtaining such detailed data from every end-device can
be di�cult and even undesirable as users might refuse to share their location out of privacy
concerns.

In DiagNet, we propose to circumvent the need for precise location information alto-
gether, and argue instead that a root cause analysis model should be location-agnostic: the
same single model should apply to every end user device that participates in the root-cause
analysis service. However, we believe it is acceptable to have distinct models for distinct ser-
vices, since they are de�nitely less numerous than possible client pro�les while being possibly
very diverse. We show in Section 4.2 how this level of expressiveness can be achieved by
revisiting multi-layer perceptrons and convolutions in the context of network diagnosis.

4.1.4 Root cause extensibility

Because we make very few assumptions on the underlying network, and do not use de-
tailed location information of end users, the granularity of the measurements we obtain is
closely related to the deployment of our landmark servers. Many factors can however alter
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the availability of these landmarks (e.g. failures, maintenance or saturated capacity). Con-
versely, if the system contains a very high number of landmarks, individual clients cannot be
expected to probe every landmark in order to keep measurement overheads low. As an ex-
treme example, it would require at least 99,000 landmark servers to cover every autonomous
system 1, a number clearly too high for comprehensive probing.

To address these issues of scale and dynamicity, we require our generic RCA system to be
extensible: trained models should be able to consume measurements from a varying number
of landmarks, depending on their availability at a given time. This property allows for easy
maintenance of the landmarks �eet. Since the location of a plausible root cause is directly in-
ferred from landmarks, the better landmarks cover the Internet the more precise the resulting
inference can be expected to be. A root cause extensible model should still however provide
accurate results even when only a subset of landmarks is available. This implies a number of
choices in the design of our proposal to avoid frequent model retraining.

1. Data from Regional Internet Registries as of January 1, 2021
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Client
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CDN

Backend
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?Analysis
service

Figure 4.1 – Toy example of a topology for an online-service relying on a CDN and a backend
server. Clients can evaluate links (solid lines) by actively probing landmark servers (dashed
lines). Probes are sent to a root cause analysis service, which builds and provides the root
cause inference model.

4.2 Convolutional RCA with DiagNet

We present an overview of DiagNet’s work�ow over a toy network in Figure 4.1. In this
topology, we distinguish between clients (operated by end users), landmark servers (operated
by any network operator) and online-service components (here a CDN and a backend). During
a RCA, end users try to pinpoint the faulty network component(s) within all possible network
links and service components. However, they lack accurate information about the network
and service topologies. In an attempt to solve this issue, clients probe landmarks for network
metrics, and then send the collected metrics to a centralized RCA service. We now describe
the design we propose to realize such a RCA service for Internet-scale networks.

4.2.1 Methodology

We assume that clients continuously probe landmarks, obtaining a stream of network met-
rics. These metrics are combined with ground-truth information about faults to train a root-
cause inference model using machine learning techniques. In this chapter, we assume that we
have access to this ground-truth information during model training through controlled fault
injection. (We will relax this assumption in Chapter 5, where we apply DiagNet to real online
services.) This inference model is then provided to clients through the analysis service, and
used to diagnose failures of the online services consumed by clients. More concretely, each
client produces measurements by actively probing ` landmark servers, implemented as a set of
stateless public services that can be provided by di�erent ISPs or third parties, similarly to the
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Speedtest global network 2. In our implementation, we leverage modern web browser capa-
bilities to fetch TCP statistics, latency and throughput information from the landmark servers
(for a total of k metrics per landmark server and per client), to which we add some local system
features measured on the clients themselves (e.g. client CPU and memory load). We opted to
collect only this limited set of metrics in our prototype, but additional metrics could easily be
added. More details are given in Chapter 5 about our implementation.

Notations The measures collected by a client ci form a vector ofmmeasuresxi = (xi,j)1≤j≤m

∈ Rm (k×`measures from the ` landmark servers, plus the local client metrics). They provide
the features that are fed into the RCA service. (In the following we may use the terms measure

and feature interchangeably.) We assume clients also collect the QoE perceived by their users
through a binary indicator, that records whether a user is experiencing a problem or not for
a given service. This QoE information might be manually provided by users, or automatically
estimated. It can be as simple as a page load time or can rely on a method that calculates
it [189]. From that data, and assuming that a client ci is encountering some QoE degradation,
DiagNet processes the vector xi of measures collected by ci, and outputs a list of probable
root causes using its learned inference model, ranked according to their likely impact on the
incident being diagnosed.

Relation between landmarks and root causes In DiagNet, a root cause diagnosis com-
bines a (possibly coarse-grained) location with a fault family, e.g. “abnormal jitter within the
Amazon Web Services (AWS) US east coast region” or “high latency within local network”.
In practice, we use individual landmarks to represent remote locations (e.g. a landmark de-
ployed in AWS’s east coast region will represent this region), and equate fault families with
the network and local metrics we collect (e.g. “upload bandwidth”, or “CPU load”), as these
metrics capture relatively well the behavior of the infrastructure on which services execute.
As a result, the space of possible root causes of an incident is precisely that of the features we
collect: `× k features represent remote root-causes, made up of a remote location (landmark)
with a network metric, while the local features capture local root causes located at the client’s
end of the network.
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Figure 4.3
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Figure 4.2 – Architecture of DiagNet. 1 Landmark features are �rst separated from local
features and 2 fed in the LandPooling layer with multiple parallel global pooling operations.
3 A hidden fully-connected layer is applied after concatenating the LandPooling output with
local features. 4 The coarse fault prediction is obtained by applying a series of non-linearities.
5 Finally, an attention model is applied on the coarse prediction to return to the feature space
and propose a �ne-grained fault localization.

4.2.2 The DiagNet inference model

At the core of DiagNet’s analysis service lies its inference model, which we implement
using a combination of neural network techniques (notably non-overlapping convolutions and
pooling layers), and an attention mechanism [187, 190, 191], a technique derived from image-
based classi�ers that is able to relate a prediction to its inputs.

DiagNet’s inference model exploits the fact that the root causes we seek to predict corre-
spond to the set of features it consumes. This connection between inputs and outputs allows
us to decompose the prediction process in two simpler steps: In a �rst step, we only predict
the family of encountered fault(s) without any information on their locations (what we call
a coarse prediction in the following). The number of fault families c is �xed (corresponding
to network and local metrics), and the resulting prediction is a small-size vector y ∈ [0, 1]c

of probabilities. We use the following fault families in our prototype: nominal (non-faulty);
uplink latency for gateway malfunctions; remote link latency, link jitter, link loss and link down-

load/upload bandwidth for end-to-end issues not related to the local uplink; and local load for
client device overload. This set of fault families covers all problems generally investigated in
the networking literature that can be linked to metrics obtained by users. As c (the dimension
of coarse predictions) is low (c� m), we can build accurate inference models for fault families

2. https://www.speedtest.net/speedtest-servers
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4.2. Convolutional RCA with DiagNet

with a reasonably low number of ground-truth samples. Intuitively, coarse predictions help us
disentangle features showing hidden relationships. For instance, a high TCP latency can lead
to a degraded throughput [192]: in that case, the coarse prediction should return the latency
as the root cause of the problem (“remote link latency”), rather the bandwidth (“link download
bandwidth” despite the low throughput observed.

In a second step, DiagNet uses the vector y ∈ [0, 1]c of predicted coarse predictions to
return to the input feature space of dimension m and locate the fault, in e�ect equating the
�nal predicted classes with the space of input features. We use an attention mechanism for this
step, a machine learning technique that is able to compute the in�uence of each input feature
in the coarse model’s prediction, usually without the need for any additional training.

The global architecture of DiagNet’s inference engine is depicted in Figure 4.2. The coarse
prediction phase involves the steps of 1 separating landmark features from local features, 2

processing the landmark features with a speci�c type of convolutional neural network (detailed
in Subsection 4.2.3), 3 4 processing all features with a fully-connected network and obtaining
the �nal coarse prediction (detailed in Subsection 4.2.4). The second phase involves the step
of 5 returning back to the input features via attention mechanisms (Subsection 4.2.5).

4.2.3 Non-overlapping convolutions with pooling

In image analysis, CNNs have been used with considerable success to classify images (see
Subsection 2.4.5). Their convolutional layers extract patterns over multiple pixels by applying
small �lters over each pixel and its neighbors. We borrowed this idea of pattern extraction to
extract common patterns between di�erent landmarks, with some notable di�erences.

First, in contrast with image pixels, we want to combine measures of di�erent nature
(linked to “fault families”, such as latency and bandwidth). For a landmark λ, and a client
ci, we note xi[λ] ∈ Rk the vector of measures (e.g. RTT, throughput) recorded by ci w.r.t the
landmark λ. For example, xi,1[λ] might store the RTT from ci to λ, and xi,2[λ] the throughput.
In this �rst phase, we seek to extract recurring patterns from each landmark in isolation. To
this aim, we apply a set of f non-overlapping convolutions to each client/landmark measure
vector xi[λ]. These convolutions are commonly parameterized by a kernel K ∈ Rf×k and a
bias b ∈ Rf . Formally:

∀λ ∈ {1, . . . , `} ,F [λ] = K · xi [λ] + b (4.1)
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Figure 4.3 – Overview of the non-overlapping convolutional layer with pooling (LandPooling).
For each landmark λ, the k features of that landmark xi[λ] are transformed to a new feature
space F[λ] of size f through a shared kernel K. To return a �xed-size output of size f , the
results for the ` landmarks are combined through a global Ω function, such as maximum,
average or others.

At this stage, the ` × k landmark features have been projected into a new feature space
of dimension f (the number of �lters). Since the K and b parameters are shared for every
landmark, we believe that common patterns between landmarks can be learned: our model shall
hopefully extract useful information about the underlying network architecture. Nevertheless,
it is still required to return a vector whose size is independent of the number of available
landmarks. We thus leverage global pooling layers [186], a popular mechanism to support
variable-size inputs and ensure good generalization in image analysis. In our case, we apply a
global function Ω on every landmark’s convolution feature element-wise:

F =

`

Ω
λ=1

K · xi [λ] + b,F ∈ Rf (4.2)

We de�ne this process as a new kind of neural network layer and call it “LandPooling”
by reference to landmarks. An illustration of this landmark-�attening process is depicted
in Figure 4.3. We note that any commutative function that can be applied with a generic
number of arguments can be chosen for Ω: this is actually very similar to the GNN aggregation
functions we described in Section 3.2.1. We explored several combinations of hyperparameters
and kept the best con�guration, listed in Table 4.1.
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Table 4.1 – Notations and hyperparameters in Chapter 4

` Total number of landmarks (10)
f Number of convolutional �lters (24)
k Number of features per landmark (5)
m Number of features per sample (`× k + local features = 55)
c Number of coarse fault families (7)
Ω Global pooling operations (min, max, avg, variance, p10, . . . , p90)
xi = (xi,j)1≤j≤m, input sample of client ci
yi = (yi,j)1≤j≤c, coarse predictions for client ci
γ̂i = (γ̂i,j)1≤j≤m, predicted features usefulness for ci
2 hidden layers (512× 1), (128× 1) with ReLUs;
optimizer: SGD with Nesterov (learning rate = 0.05, decay = 0.001)
Auxiliary model: Random Forest
(Gini impurity criterion, 50 estimators, maximum depth = 10)

4.2.4 Tailoring to speci�c services

Similarly to typical classi�cation tasks relying on convolutional architectures, we add a
Multilayer Perceptron (MLP) after the LandPooling mechanism presented in the previous sub-
section. The main purpose of these additional layers is to increase the expressivity of Diag-
Net, by permitting a non-linear combination of the results of the global pooling and the local
features resulting in coarse fault predictions. As illustrated in Figure 4.2, this MLP (“Fully-
Connected layers”) accepts multiple inputs: the global pooling functions Ω1, . . . ,Ωω along
with the “local features” that are independent of available landmarks. This additional expres-
sivity is necessary to model the dependencies between services and input features.

At this point, DiagNet uses one single general set of �nal fully-connected layers to diag-
nose multiple services. However, such general model could demonstrate irregular performance
if the set of monitored services is very diverse: not all Internet services have the same net-
work requirements and dependencies. For example, while the latency is critical in multiplayer
games, it might intuitively not be the case for video streaming systems where the available
bandwidth is usually the bottleneck. It is thus possible to build one specialized DiagNet model
per service to improve its accuracy, by learning a dedicated set of fully-connected layers for
that service. We detail and evaluate this property in Section 4.3.3.

4.2.5 Fine-grained inference via attention mechanisms

To o�er a fully extensible model, we need a mechanism to evaluate the importance of each
input feature (each possible root cause) in the coarse-grained fault prediction. There exist

83



Chapter 4 – Internet-scale Convolutional Root Cause Analysis

techniques to directly evaluate such importance in simple models (e.g. with decision trees),
but it is well-known that this kind of attention evaluation is non-trivial for neural networks.
While some generic techniques are applicable to any black-box model including ours [190], we
instead propose to compute the gradients of the coarse predictions with respect to the input
features. This method has already been tested in image analysis with great success [187, 191],
and takes advantage of the fact that we can observe the internal weights and architecture of
the coarse model (“white-box setup”). Given a coarse prediction y = (yj)1≤j≤c ∈ Rc (step 4

of Figure 4.2), we �rst compute the ideal label vector y? that would have been given during
the training for the input sample. (For readability, and without ambiguity since we are now
working on a single sample i, we removed the i indices of all notations.)

∀j ∈ {1, . . . , c}, y?j =

{
1 if max(y) = yj

0 otherwise
(4.3)

We useL?(y) = −∑c
j=1 y

?
j log yj = − log yargmax(y) the cross-entropy loss that is minimal

for this ideal label vector. By applying a single backpropagation step—as done during the
training phase— and thanks to the complete knowledge of the coarse model architecture, we
can compute the gradient of this loss function with respect to the input features. We make
here the assumption that each partial derivative ∇j = ∂L?

∂xj
represents the usefulness of each

feature j. It must be normalized according to the absolute value of ∇j to account for both
positive and negative derivatives.

γ̂i,j =
|∇j|∑
k |∇k|

(4.4)

In our early experiments, we observed that the attention mechanism (Equation 4.4) used
alone as a predictor of root causes gave inaccurate results. This is because a “pure” gradient-
based backpropagation does not fully exploit the information provided by the MLP ( 4 in
Figure 4.2). To overcome this problem, we give a bonus to the most relevant root causes that
belong to the same family fault as the most probable coarse cause returned by the coarse
prediction. For instance, if the model predicts a remote link latency problem, we use this hint
to increase the predicted usefulness of every latency-related feature while penalizing other
features. The weighting mechanism is detailed in Algorithm 2.

Given a coarse prediction vector y, the algorithm �rst selects a set of features p related to
the most signi�cant class in y (in practice of the same family) at line 2. In our implementation,
we manually assign each feature to a coarse class. Then, a ratio w is computed between the
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Algorithm 2: Multi-label score weighting using coarse predictions
Input: Predictions γ̂ and coarse predictions y
Output: Tuned predictions γ̂′

B Isolate the best coarse prediction

1 φ← arg max(y)
2 p← {indices of features with same family as φ}
B Compute the relative weight

3 w ← yφ∑
yi

4 s←∑
j∈p γ̂j

5 if s = 0 ∨ s = 1 then B Extreme case

6 γ̂′ ← γ̂

7 else

8 foreach j ∈ p do γ̂j ′ ← γ̂j
w
s

B Bonus

9 foreach j /∈ p do γ̂j ′ ← γ̂j
1−w
1−s B Penalty

model’s con�dence in its coarse prediction and the sum s of the usefulness of related features
(line 4). The tuned γ̂′ are computed in line 8 and line 9. By construction, Algorithm 2 always
returns a probability distribution vector.

Ensemble model averaging

The architecture of DiagNet is designed to naturally extend to new landmarks without
retraining. As a result, however, it loses information compared to more direct methods such
as random forests (Subsection 2.4.4). To further boost our solution, and reap the bene�ts of
both worlds, we use ensemble model averaging as a last optimization step, a popular method
to combine multiple specialized models [193]. (Again, this is similar to what we have done
during the GNN challenge in Chapter 3.) We average the tuned attention predictions with
another prediction from an auxiliary model, designed to be simpler and specialized in known

root causes. We chose a random forest approach as our auxiliary model and give more insights
about this choice in the next section.

We brie�y formalize this last optimization. Let U be the set of unknown landmark’s fea-
tures, not seen during training. Let γ̂′ and α̂ be the prediction obtained from the tuned atten-
tion mechanism and the auxiliary model, respectively. We de�ne wU , the probability that the
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root cause is explained by an unknown landmark’s features, as predicted by the tuned atten-
tion mechanism. Observing that wU ∈ [0, 1] by de�nition, we compute the �nal prediction of
DiagNet after model averaging using:

wU γ̂
′ + (1− wU) α̂ with wU =

∑

j∈U
γ̂′j (4.5)
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Figure 4.4 – Locations of landmarks and services in our multi-cloud experimental deployment.
We deployed emulated clients in every location (region). The East, Grav and Seat landmarks
were hidden during training.

4.3 Evaluation with controlled faults

To evaluateDiagNet, we deployed a multi-cloud geo-distributed network of clients, online
services, and landmark servers. In this section, we present our evaluation methodology and
introduce baselines o�ering similar properties as DiagNet.

4.3.1 Experimental setup

Deployment In order to train and evaluate the root cause analysis models, we deploy one
landmark and multiple clients in each of the ten regions listed in Figure 4.4. Three of these
regions (grav, seat, sing) also host mock-up online services to evaluate the QoE with diverse
setups (Table 4.2). Some services only require a single HTML �le, while others download
resources from distant regions. (Recall that the nature of individual services, and hence the
relations between regions and services are hidden during model training.) Region locations
are chosen to bene�t from both the diversity of a worldwide multi-cloud deployment and the
proximity of co-located regions for fault localization. At the time of writing, our experimental
pipeline was made of roughly 5000 lines of Python and Go code. (We used Tensor�ow 1.13.1
for neural network training [194].)
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Table 4.2 – Online services used in experiments.

Service Description

1. single Static HTML page with no dependency
2. script.far Requires a JS �le in beau
3. script.cdn Requires a JS �le from nearest region
4. image.local Loads a 5MB image from same server

(using the same HTTP connection)
5. image.far Loads a 5MB image from beau
6. image.cdn Loads a 5MB image from nearest region

Table 4.3 – Local and landmark features

Type Name Collection method

Local CPU load Obtained from the operating system
Local Avail. memory Obtained from the operating system
Local Total memory Obtained from the operating system
Local Disk I/O Obtained from the operating system
Local Edge RTT Average ping to �rst traceroute hop
Landmark Landmark RTT Average of WebSocket pings
Landmark Jitter Deviation of WebSocket pings
Landmark Download throughput Measured with large HTTP GET
Landmark Upload throughput Measured with large HTTP POST
Landmark Loss rate Extracted with getsockopt

Table 4.4 – Relation between features and coarse fault families

Fault family Associated fault family

Latency Landmark RTT
Jitter Landmark jitter
Download bandwidth Landmark download throughput
Upload bandwidth Landmark upload throughput
Loss rate Landmark loss rate
Uplink Edge RTT
Load (Other local features)
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Landmark features Live network metrics are obtained by querying each landmark through
web endpoints (Table 4.3). To estimate download and upload bandwidths, we measure the
duration of large GET and POST HTTP requests. We avoid the typical overhead of HTTP
requests for RTT estimation by upgrading the connection to WebSocket. Finally, we use the
getsockopt linux syscall on each landmark server to make raw TCP statistics available to
landmarks’ clients. We mainly extract the ratio of reordered and retransmitted packets from
these statistics. For more details about the collection of landmark features, please refer to Sub-
section 5.1.3.

Fault injection Clients are implemented using automated Chromium browsers that period-
ically fetch network features from landmarks and visit mockup services to evaluate their QoE
from timings returned by the window.performance API. Each client also periodically mea-
sures the RTT to its local network gateway. We inject arti�cial network faults into each cloud
region using Linux tc Network Emulator rules, a realistic and popular emulation method
for reproducible experiments. QoE information is then used to �ag samples as “nominal” or
“faulty” with the (known) root-cause ground-truth as class label for model training. As pre-
sented in Subsection 4.2.4, we �rst train a general DiagNet model based on eight mockup
services, and then build a specialized model for each service by retraining only the last fully-
connected layers. All the scores presented in this evaluation section are computed using the
specialized models. We give more details about this approach in Section 4.3.3, along with an
evaluation of training cost.

Root cause extensibility We train and test root cause models on two di�erent sets of land-
marks to assess the extensibility capabilities. For all experiments in this section, three land-
marks are “hidden” during training: east, grav and seat, named new landmarks and denoted
by ? in this chapter. We chose these landmarks due to their immediate proximity to the mock-
up services and several injected faults, and limit the availability of their features to model
evaluation only. They are opposed to known landmarks (the remaining seven). In doing so, we
reduce the quality of the measures available to training, and make faults located close to the
hidden landmarks particularly hard to detect, as neither these faults, nor the measures they
impact most are used to train the models.

Dataset We ran our experiment during the last two weeks of December 2019, using di�erent
hours of day and days of week to ensure a large coverage of tra�c and congestion patterns
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between cloud providers. 213 000 of “nominal” samples along with 30 000 “faulty” samples
were collected during our experiment. 80% of each kind of samples are used for training and
validation, while the remaining 20% are reserved for evaluation. We injected the following six
families of faults into regions involving services (Seat, Beau, Grav, Amst and Sing), leading
to diverse fault scenarios:

1. Download bandwidth shaping (capped at 8 Mbit/sec)

2. Additional service latency (50 msec)

3. Additional gateway latency (50 msec)

4. Additional jitter (up to 100 msec)

5. Increased packet loss (8%)

6. Large CPU stress (mainly impacts Chromium’s navigation in clients)

Faults are uniformly distributed between regions and families to avoid bias towards more
frequent root causes. In some scenarios, we inject multiple faults at the same time, but at
most one fault is the real root cause for QoE degradation in a given region. In many cases,
we observed that the QoE is not degraded despite the injected fault(s): for instance, the QoE
of a small HTML website is not a�ected by shaped bandwidth or CPU stress. We thereby �ag
these samples as “nominal” despite the injected fault.

As explained just above, three landmarks out of ten are hidden during training: samples
with faults at these landmarks are forced to appear only in the evaluation set. Of these samples
with “hidden faults”, a fraction does not exhibit any QoE degradation, and are therefore �agged
as “nominal”. At the end, 23% of the testing samples with degraded QoE involve root causes
in hidden regions, that are not seen at training time.

4.3.2 Comparison baselines

We propose two baselines that use common classi�cation or outlier detection models and
o�er the same three key properties as DiagNet, namely location and topology agnosticism,
along with root cause extensibility.

e-Random Forest: Extensible Random Forest Classi�er

To train an extensible random forest (Subsection 2.4.4), we naively set the features dimen-
sion to the maximum possible size, and we set to zero the missing landmarks values in each
sample. (This is a common approach when some decision trees’ inputs are not available.) We
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also add a special “unknown” output class, selected when the given sample is classi�ed as
“nominal”. We evenly redistribute the score obtained for this special class to every other class:
this allows non-trained faults to have a non-null score in the �nal prediction. This model
is used as the auxiliary model in the ensemble averaging optimization presented in Subsec-
tion 4.2.5.

e-Naive Bayes: Extensible Naive Bayes Classi�er

We propose another approach for extensibility, based on the merger of several probability
distributions and Naive Bayes classi�ers (Subsection 2.4.2). Compared to standard Naive Bayes
approaches, it is highly probable that one particular root cause Ck has not been seen during
the training phase, and the prior probability for class k is unknown. Thus, we de�ne the
prior probability of each class Ck as P (Ck) = 1 for every root cause. This also has the
positive side-e�ect of canceling bias with unbalanced datasets. Then, we use KDE [144] to
estimate likelihood probabilities P (xi,j | Ck). In contrast with the more common Gaussian
model, the KDE greatly increases the expressivity of this baseline model. Finally, we build
generic aggregate likelihoods for unknown features or new classes. For each measure family
t collected in landmarks (such as uplink latency or download bandwidth), we build a generic

likelihood P (xi,t | Ct), de�ned as the KDE of the union of all measures for every landmark

available during training. This generic likelihood is then used when no speci�c likelihood is
available for a given feature or class.

4.3.3 DiagNet evaluation results with controlled faults

Recall evaluation with the Recall@k metric

The �nal goal of root cause analysis is to return a ranked list of probable causes. We use the
Recall@k metric for model evaluation: for a set of known real causes and a ranking method, the
Recall@k is the number of correctly predicted causes within the �rst k ≥ 1 causes divided by
the total number of actual causes. A high recall would demonstrate that a method of ranking
(model) can be useful to users, being able to quickly pinpoint the real root cause of a QoE
degradation among a set of possible causes. In our setup, we argue that it is acceptable to
return the expected cause within the �rst k ≤ 5 predictions from 55 possible root causes.

Figure 4.5 shows the Recall@k for two types of fault: faults injected near new landmarks in
(a), and faults injected near known landmarks in (b). (As a reminder, new landmarks’ features
are hidden during training.) DiagNet o�ers the best recalls for faults near new landmarks (a),
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Figure 4.5 – Recall@k for failures near new and known landmarks, for di�erent values of k.
DiagNet consistently overperforms its competitors on new landmarks, while delivering close
to ideal performances on known ones. By comparison e-Random Forest works perfectly for
known landmarks, but degrades starkly on new ones, while e-Naive Bayes o�ers reasonable
performance with new landmarks but is lost on known landmarks.

thanks to its attention mechanism that fully exploits the information coming from the new
features without additional training. Our proposal also shows close to ideal results for faults
injected near known landmarks (b), thanks to the “hybrid” mode of operation o�ered by en-
semble averaging (Subsection 4.2.5). The combined Recall@1 for DiagNet (including faults
near known and new landmarks) is 73.9%, a very good score given the high number of proba-
ble root causes. By contrast, e-Random Forest works perfectly for known landmarks, but its
recall degrades dramatically in the case of new landmarks; the described extensible random
forest model essentially gives completely random predictions in this second case. It reaches
nonetheless a combined recall of 77%. Conversely, e-Naive Bayes shows extremely poor re-
sults for known landmarks, with its best score reached for high values of k in (a); its combined
recall is only 5.3%. This is due to a severe bias towards new features that systematically get
high prediction scores even for known failure types.

Figure 4.6 presents each recall per family of fault and per location. We clearly see e-Naive
Bayes’ bias towards some fault families and new landmarks grav and seat. DiagNet is the
only model showing good recalls for every family of fault near both known and new landmarks
regions.
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Figure 4.6 – Recall per fault family (top) and fault region (bottom). Regions hidden during
training are indicated with a star ?. Again, e-Random Forest gives best results for known
landmarks, but DiagNet is the only solution able to adapt to the di�erent scenarios, with
close to optimal results for local faults.
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Figure 4.7 – Performance of the coarse classi�er, with an overall accuracy of 0.70± 0.013 for
faults near new landmarks and 0.85± 0.005 for faults near known landmarks (ratio of correct
predictions over evaluated samples).
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Diving into the performance of the coarse classi�er

To shed light on the results just presented, and validate the design of DiagNet’s convolu-
tional approach, we evaluated the F1 score of DiagNet’s coarse classi�er (corresponding to
step 4 in Figure 4.2) for each fault family (Table 4.4).

F1 =
True positives

True positives + 1
2

(False positives + False negatives)
(4.6)

As explained in Subsection 4.2.5, the output of this coarse classi�er is used by the atten-
tion mechanism and eventually averaged with the random forest classi�er to provide the �nal
classi�cation. Thereby, we expect this coarse classi�er to be critical in the �nal root cause
ranking. Figure 4.7 presents separately the results for samples impacted by faults near known
landmarks and near unknown landmarks. As expected, samples with faults close to known
landmarks are overall better classi�ed than samples with faults close to unknown landmarks.
The F1 scores also show that some fault families are easier to classify than others (Latency,
Uplink and Load). Overall scores demonstrate the value of DiagNet’s convolutional neural
network.

E�ect of client diversity

To validate the location agnosticism property of DiagNet, we gradually increase the lo-
cation diversity of participating clients. (Put di�erently, we vary the number of regions with

active clients submitting samples.) The results of that experiment are shown in Figure 4.8, with
the aggregate Recall@5 for all families of faults near newly-introduced landmarks. For com-
pleteness, we note that we measured the Recall@5 for every possible combination of active
clients to eliminate potential discrepancies between con�gurations. The key take-away is that
DiagNet is able to deliver the best predictions for all scenarios of client diversity, showing
great stability. Our results hint that DiagNet is truly able to distinguish between dissimilar
clients (e.g. clients in America vs. Asia or Europe).

In contrast, the e-Naive Bayes model prefers to handle few regions at a time. This is
explained by the KDE merge process of this baseline: with more diverse clients, merged KDEs
are “�attened” and converge to uniform distributions, biasing the model towards unknown
features as seen in Figure 4.5 and Figure 4.6. e-Random Forest is less sensitive to client
diversity, with only a slight recall increase—probably due to the larger number of available
training samples.
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Figure 4.8 – Comparison of models’ performance for new landmarks with increasing diversity
of clients (we modi�ed the number of regions with active clients). DiagNet can scale very
well for landmarks unseen during training.

Accuracy with simultaneous faults

The critical task of a root cause model is to �nd the correct root cause when multiple
simultaneous anomalies are detected. DiagNet uses specialized models for each web service:
some services might be impacted by a given anomaly, when other services might not. To
evaluate this property, we simultaneously injected two latency faults near the Beau and Grav
regions and quanti�ed the number of predictions towards each region. Figure 4.9 gives the
detailed results for DiagNet’s general model (a) and for the specialized model of each service
(b). The results for the general model are quite poor, with a confusion between Beau and Grav
regions and a lot of other faults predicted. Specialized models provide sharper predictions,
with a recall of 76% for the latency root cause near Beau, 28% for the latency root cause near
Grav—a region unseen during training—and 71% when both faults are actually root causes.
This analysis con�rms the bene�t to specialize models for each monitored service.

Training cost of new service models

To remove the need for the complete retraining of DiagNet when new online services
are being added, we assume that the weights learned in the non-overlapping convolution are
shared between services, as they extract global network features. We also assume that the
�nal layers of DiagNet capture the speci�c “behavior” of each analyzed service. We now give
the details of the DiagNet learning procedure, that has been used in the whole evaluation
section and is based on these assumptions. We �rst train a general model on a subset of eight
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Figure 4.9 – Predicted root causes for general and specialized DiagNet models, with simulta-
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variable). Grav metrics were not used during training (?). Overall, the specialized models
(lower chart) deliver better predictions for all three combinations of relevant faults.
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initial services, taking the union of services’ problems as the expected model output. Then,
we freeze the weights of the non-overlapping convolution, and optimize the weights of the
�nal layer for each of a set of additional services, not contained in the original set. This leads
to one specialized model per additional service. With the hyperparameters from Table 4.1, the
general model must learn 215 312 parameters while specialized models hold 65 664 trainable
parameters. The remaining 149 648 parameters are set to their value in the general model.

Learning losses on training and validation sets are plotted in Figure 4.10 through learning
epochs, for the general model and for a small subset of service models. We consider that the
training is done when the validation loss is no longer decreasing (an indication of over�tting).
Although the training time on the general model is higher (around 20 learning epochs), service
models converge in less than �ve epochs on average. This indicates that specialized service
models per service are easy to learn once one global model exists. The similarity between
training and validation losses also hints that the specialized models o�er good generalization.
We note that while the general model can be trained with a subset of services and landmarks,
it can later be generalized to more landmarks and services with minimal re-training time: on
a commodity laptop using the CPU only, it takes 32 seconds to train the general model and 4
seconds to train each service model. Furthermore, root causes are inferred in 45 ms on average.
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4.4 Conclusion

Root Cause Analysis at the scale of the Internet is recognized as a hard problem given
the decentralized design of the global network. In this chapter, we presented DiagNet, a
generic and extensible RCA method based on active landmark probing. DiagNet does not
depend on any prior knowledge of either the network topology or targeted services, which
makes it practical for clients having a very limited view of the Internet topology past their ISP
gateway. The inference model of DiagNet leverages a special kind of Convolutional Neural
Network (CNN) specially crafted for metric pattern recognition. It also uses a simple attention
mechanism using backpropagation gradients, along with several other optimizations (multi-
label score weighting and ensemble model averaging).

We evaluated our proposal on a geodistributed platform with controlled injected faults,
and compared it to two baselines. While we demonstrated that Random Forest models are
very insightful when diagnosing in a static setting, their accuracy starkly decreases when
landmarks (hence input features) are selected at inference time. Similarly, the other extensible
Naive Bayes classi�er baseline was unable to cope with varying inputs. By contrast, DiagNet
shows good results in all scenarios, i.e. it can diagnose local and remote failures in static and
dynamic network settings, even with very diverse participating clients from across the globe.
This clearly highlights the bene�ts of CNNs for networking applications, a technique that is
mostly known for its applications in image analysis and classi�cation.

While we believe that our proposal answers the Internet-scale RCA challenges we listed
in Section 4.1, this is only a �rst step towards a fully-�edged RCA system. Our evaluation
was actually limited in size and service diversity: this allowed us to control the experiments,
but it might have missed critical observations applicable in larger computer networks. For
instance, we had access to fault ground-truth during the evaluation, but how can we access
and verify real faults’ labels in practice? Can DiagNet scale to thousands of clients, landmarks
and diagnosed services? We attempt to answer these questions in the next chapter.
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Chapter 5

From theory to practice:
Root Cause Analysis from web browsers
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To provide insightful reports, Root Cause Analysis (RCA) solutions should ideally re�ect
the Quality of Experience (QoE) perceived by end users when they use online services such
as websites and web APIs. Because QoE problems are often explained by causes near end
users [121, 195, 196], many RCA solutions have been implemented at the network’s edge, by
taking the viewpoint of either the home gateway, the browser, or by using dedicated tools
running on clients [114, 116, 197]. Although the location of the measuring probes within the
network is critical, we believe that the device used (PC, smartphone . . . ) and the execution

environment (i.e. the web browser or a dedicated application) are also essential to correctly
capture a user’s QoE. As others before us, we therefore argue that any RCA solution should
ideally include parts that directly run on users’ devices to provide accurate QoE measurements.
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This user-facing software should however be particularly easy to deploy and use, remain non-
intrusive and incur a minimal network overhead.

With this goal in mind, we explore in this chapter how modern web browsers can be used
to take RCA measurements while adhering to the above principles, and present the year-long
dataset we have collected using the resulting measurement platform with the help of vol-
unteers. Most on-line services used by end users run within browsers, where measurement
scripts can be easily deployed using JavaScript with little to no user interaction. Moreover, web
browsers make it easy to target a wide range of devices, from PCs to smartphones through
gaming consoles. They however come with a number of technical and security restrictions
that limit measurement capabilities, especially in modern web browsers with limited access to
low-level network primitives.

We begin by detailing how one can still obtain relevant RCA and QoE metrics from modern
browsers in Section 5.1. In practice, we follow the path of Chapter 4 and collect relevant
network metrics using cooperating landmark servers. We complement these network metrics
with service probes to estimate users’ QoE without requiring the cooperation of third-party
online services. We also use landmarks to provide additional insights by actively probing
other landmarks and third-party services with automated web browsers. (This helps to make
up for the intermittent connectivity of end users in practice.) Using these methods, we have
built a dataset of more than two million measurement samples spanning over more than a
year. In Section 5.2, we illustrate the interest of this dataset with some selected case studies,
demonstrating that web browsers can indeed provide a rich platform for live metric collection.

Finally, Section 5.3 explores how DiagNet (presented in Chapter 4) perform on this col-
lected dataset. Our main challenge in this work was to infer the root causes behind real In-
ternet failures: ground truth remains di�cult to obtain in practice, especially when few end
users are impacted. To cope with the general unavailability of ground truth, we propose a
statistical model to label our measurement samples based on the collected RCA and QoE met-
rics. In particular, our model leverages outlier detectors over complete historical data to label
most probable root causes. DiagNet is then evaluated with no access to this historical data.
Although perfectible, we believe this approach o�ers a promising basis for further work and
highlights the experimental challenges that come with the use of live Internet-scale measure-
ments.
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5.1 Data collection from browsers

In order to build RCA systems targeted at end users, it is important to collect network
and QoE metrics close to their home network and computer devices. We �rst review avail-
able techniques for such metric collection and then detail DiagSys, a collection framework
designed for recent web browsers.

5.1.1 Motivation and related work

For network operators, it is relatively easy to deploy servers within the Internet infras-
tructure to measure inter-AS network metrics. Yet, it has been shown that most connectivity
issues are due to the last links towards end user devices [121, 195, 196, 198]. This is not surpris-
ing: these last links are often shared between ISP customers, may use old technologies such as
Digital Subscriber Line (DSL) and are easily a�ected by the environment (weather, road works,
etc.). As an example, during Covid-19 lockdowns, it has been measured that last-mile links suf-
fered from higher congestion levels than before [199], suggesting that these links lack capacity
in general. Wi-Fi [21] is also widely used to connect devices to Internet in home setups, yet
Sunderasan et al. have shown that most setups exhibit poor performance due to unoptimized
access point placement [195]. Monitoring last-mile links is the reason why early works have
focused on capturing network metrics from within home networks. Home gateways [200, 201]
are particularly interesting here: they can be managed by the ISP without user intervention,
are always online and provide a good overview of the whole home network. SamKnows [202]
and BISmark [203] are two examples of academic deployments of instrumented home gate-
ways. They allowed participants to run numerous active and passive measurements that led to
new insights from home networks. The RIPE Atlas [204] deployment takes another approach:
it leverages custom hardware installed in volunteers’ home networks to provide worldwide
measurement campaigns to researchers.

While home network measurement probes can capture last-mile metrics for residential
users, they cannot measure mobile tra�c over broadband networks. Moreover, they can only
infer QoE from network metrics (or “QoS metrics”) as the behavior of �nal applications remains
hidden due to use of cryptography in web tra�c. Some methods have been proposed—for in-
stance inferring live video tra�c QoE [205, 206]—but they remain limited to speci�c services
and cannot generalize to all web services. With the limited available computing power, it
is di�cult to emulate web services in measurement hardware. As an example, Mirage [207]
(deployed in both SamKnows and BISmark) parses web pages and download their resources
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Table 5.1 – Summary of metric collection tools deployed in home networks.

Method Type Location Metrics Status

Glasnot [115] Java Browser QoE Unsupported
Wehe [214] Software Mobile QoE Supported
Acqua [215] Software Mobile QoS, QoE Supported
Netalyzr [114] Java Browser QoS Unsupported
Fathom [116] XPCOM Ext. Browser QoS Unsupported
Mirage [207] Software Gateway QoS, QoE Retired
ATLAS [204] Software Network QoS Supported
HomeNet [208] Software Device QoS Retired
HoBBIT [209] Software Device QoS Retired
HostView [210] Software Device QoE Retired
NDT [197] JavaScript Browser QoS Supported
DiagSys JavaScript Ext. Browser QoS, QoE Supported

to estimate the real QoE; but it gives inaccurate estimations for dynamic web services using
JavaScript. To lift these limitations, it has been proposed to install native measurement services
directlywithin end user devices: this makes it possible to take advantage of the additional com-
puting power and the proximity to applications of user devices. For instance, HomeNet [208]
and HoBBIT [209] provided Java and Qt measurement applications, respectively. This choice
o�ers coverage for a large range of operating systems. System applications further provide
access to low-level network primitives, allowing for �ne-grained QoE estimation[87, 140, 195,
196, 210, 211, 212, 213]. Yet, these software programs require manual installation from end
users and their deployment remain challenging in practice, requiring support for multiple op-
erating systems including mobile operating systems, leading to important maintenance costs
and introducing additional security and privacy risks, etc.

For all these reasons, measurements based on web browsers have gained popularity over
the last decade: most Internet services used by end users run within browsers (including mo-
bile ones), where measurement scripts can be deployed with little to no user interaction. Most
proposals leverage JavaScript APIs to measure the QoS of the connection [197], and several
metrics have been proposed to estimate the web QoE [189, 216]. As an example, Da Hora et
al. [189] propose to monitor the placements of objects within webpages to detect when the vis-
ible objects stop loading, yielding the recognized Above The Fold (ATF) QoE metric. In 2010,
Glasnot [115] used a Java applet to detect tra�c di�erentiation from within browsers; this
choice allowed users to measure di�erentiation in a real web environment. The same approach
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Figure 5.1 – Overview of DiagSys. Landmark metrics are fetched using a user’s browser, while
service probes can only run through a browser extension or client emulation in landmark
servers (dashed lines). A distributed datastore is used to collect experiment samples.

has been taken by Netalyzr [114] for its measurement and debugging service. Fathom [116]
further simpli�es the measurement setup by providing a Firefox XPCOM extension, that does
not require any Java runtime. In modern browser versions, Java applets and XPCOM exten-
sions are no longer available, having been replaced by the WebExtension API standard [217].
While this recent API o�ers researchers a secure way to interact with the web browser, it is
inherently more restricted than its predecessors. For example, it is no longer possible to exe-

cute system commands nor to send custom packets over the network. Yet, this API continues
to make it possible to estimate low-level QoS metrics from browsers, i.e. packet loss rates from
application throughput [218, 219] or congestion detection from requests timing [121]. Other
approaches include using mobile applications: Wehe [214] is for instance the mobile successor
of Glasnot, while the Acqua mobile application [215] uses machine learning models to infer

the expected QoE to popular services from QoS measurements. Yet, these applications re-
main limited to Android and iOS smartphones. We compare the main approaches in Table 5.1,
along with DiagSys, our own framework for browser-based metric collection (with optional
WebExtension), which we present in this chapter.
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Figure 5.2 – Screenshot of a DiagSys report with measurements to four landmarks and �ve
third-party services (the browser extension enabled in this example, enabling QoE measure-
ments to �ve third parties).

5.1.2 Architecture of DiagSys

The DiagSys framework leverages several components to enable metric collection from
web browsers (Figure 5.1). First, it relies on a �eet of landmark servers, acting as reference
points and providing network metrics to web clients. Landmarks are self-contained stateless
public HTTP servers that can be provided by di�erent ISPs, cloud providers or other third
parties in exchange of measurement analytics. (These servers the same we used for met-
ric collection in our DiagNet RCA proposal, presented in Chapter 4.) End users can probe
the landmark servers through any web browser with JavaScript capabilities. We provide two
methods to estimate the QoE of third-party services:

— Landmark servers run headless chrome browsers to evaluate the performance of ser-
vices, relaying this information to end users. This is relevant for landmarks near end
users, speaking in terms of topological proximity; but the measured QoE can actually be
very di�erent from the users’ real QoE.

— To allow third-party QoE measurements from web browsers, we provide an optional

WebExtension that end users can install in their browser. We detail why this extension
is necessary in Subsection 5.1.4.

106



5.1. Data collection from browsers

A distributed datastore provides references to landmarks and services, along with long-term
storage for the collected metrics. Since DiagSys has no strong consistency requirements, we
use CouchDB for asynchronous multi-master replication to provide a highly-available, low-
latency datastore.

5.1.3 QoS measurements provided by landmarks

DiagSys implements browser-based probing in JavaScript, which can be incorporated into
any webpage (an example user interface is shown in Figure 5.2). We assume that JavaScript is
enabled in user browsers to allow custom logic to be executed (this is the default). We begin
by describing the measurement endpoints served by landmarks, then detail how landmark
perform measurements to these endpoints.

Landmark measurement endpoints

In our design, a landmark server does not make any assumption about the underlying
layers under the HTTP application layer: it is possible to serve clients using legacy HTTP/1
over the TCP transport, to more recent clients requiring HTTP/3 over User Datagram Protocol
(UDP) transport. Landmarks provide the following endpoints for metric collection:

— /ping This endpoint �rst upgrades the HTTP connection to WebSocket and respond
immediately with an empty message for each message sent by a client.

— /download Clients can download uncompressed random binary data with a single GET
query. We use a multithreaded pseudo-random number generator to provide the maxi-
mum possible throughput server-side and actually measure the network limit. A waiting
queue is also used to limit to only one download at a time and avoid concurrency be-
tween clients. This design allows us to reliably measure download speeds up to 8 Gb/s
with recent commodity hardware and cloud servers. Clients discard the �rst chunk of
data to avoid delay introduced by the waiting queue, and can download chunks for a
maximum of �ve seconds.

— /upload Clients can upload random binary data using a single POST query. Again, we
rely on a waiting queue to avoid client contention.

— /conn While a client cannot extract transport layer statistics from the available JavaScript
functions, landmarks can provide their own statistics to clients. If the HTTP connection
is supported by a TCP socket (the general case), we use the getsockopt Linux syscall
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on landmark servers to obtain raw TCP statistics, containing among others the number
of retransmissions and the minimum RTT measured by TCP. When available, we also
return the congestion control algorithm used by the server, along with the set of statis-
tics for supported congestion control algorithms. Thanks to the HTTP/1.1 Keepalive
feature, TCP connections are not reset between HTTP calls: one client can thereby re-
trieve the full TCP statistics after having performed the download and upload tests for
in-depth insights on its connectivity towards the landmark.

— /traceroute We also provide two endpoints on each landmark to 1) start a traceroute
from a landmark server to a client public IP and 2) retrieve the result of this traceroute
a few seconds later. This allows a client to start a traceroute asynchronously without
blocking while waiting for the response. To accurately detect Network Address Trans-
lations (NATs) and Equal-cost multi-path (ECMP) routes, we use dublin-traceroute, a
variant of the popular paris-traceroute [220]. We complete the intermediate hops found
with their Domain Name Service pointer record (usually containing relevant operation
and location information).

Latency measurement

Recent browsers (in our case Firefox version 76 and Chromium version 83) expose a stan-
dardized JavaScript API (the Resource Timing interface [221]) to extract each HTTP request’s
delays. This makes it possible to retrieve the connection, wait and download delays with
millisecond precision. However, for privacy considerations, the W3C recommendation states
that these delays can only be available programmatically if the requested resource stays on the
same origin (subdomain) or a suitable Timing-Allow-Origin response header is provided
by the server. For raw network round-trip measurement, another option is to rely on WebSock-
ets [222, 223]. A simple HTTP request is usually accompanied by a text header of more than
100 bytes, forcing the server to download and parse it. Compared to this scheme, an empty
WebSocket message has only an overhead of six bytes [131]. A third option would be to use
WebRTC data channels to measure round-trip times without the TCP overhead. The main is-
sue with that last option is that data channels may require strong permissions from users, such
as microphone or webcam access: this would be questionable for a latency-measurement tool
to request such permissions. We thereby rely on multiple empty WebSocket messages (/ping
endpoint) to estimate the average latency to landmarks (and the associated jitter).
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Figure 5.3 – Distribution of measured download and upload bandwidth per meta-chunk from
the whole DiagSys dataset. Each box denotes the Interquartile Range (IQR) and the median,
while whiskers denote the Q1 − 1.5 IQR and Q3 + 1.5 IQR interval. We can clearly see the
e�ect of TCP slow-start.

Bandwidth measurement

To estimate the available network bandwidth, clients send one HTTP request to sampled
landmarks and measure its throughput. This minimizes the overhead mentioned in the last
paragraph. More speci�cally, we exploit the fact that clients can download (resp. upload)
uncompressed random binary data with single GET (resp. POST) HTTP queries. While test
data is generated server-side for /download measurements, the main challenge is to limit
the overhead imposed by JavaScript browser-side for /upload measurements. In practice, a
pseudo-random number generator is too costly to use, so clients only generate 1024 bytes of
pseudo-random data and repeat them until the desired sample size is reached.

Clients and servers retrieve the result of an HTTP request chunk by chunk. Chunk sizes are
unpredictable, but are usually a few kilobytes worth of data: it is possible to store chunks’ size
and the absolute time at which they are received. To standardize measurements, we aggregate
chunks into eight “meta-chunks” (each having the same number of chunks) and compute the
total time taken to download each meta-chunk. The �nal bandwidth is computed by averaging
meta-chunks after removing the fastest and slowest meta-chunks. This method soothes the
variations of measured throughput and avoid the bias caused by TCP’s slow-start and the
bursts caused by browser and system bu�ers. In Figure 5.3, we show from collected data that
early meta-chunks underestimate the available bandwidth measured by later chunks. Clients
can directly obtain chunk details for download, but they cannot observe how data is split in
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chunks during upload: landmarks are therefore responsible for computing uploaded meta-
chunks and reporting their transmission time to clients.

The special case of CDNs

Content Delivery Networks (CDNs) are widely used as the public-facing component of
many web service [224]: they cache static resources and relay requests to “origin” servers.
The main advantages of such architecture are two-fold. First, a CDN can redirect clients to
the closest Point of Presence (PoP), thus lowering latencies. Second, many CDNs propose
security features to protect the origin server from abnormal tra�c, such as Distributed Denial
of Service attacks or ill-formed requests. DiagSys covers common CDN PoPs by leveraging
their caching mechanisms to serve as degraded landmarks. The basic idea is to host two �les
on a controlled origin server: an empty �le (for degraded latency measurement) and a random
�le of known size (we use 8MB, for throughput measurement). A CDN can be con�gured to
cache the �les inde�nitely: any client accessing one �le will obtain it directly from the PoP
selected by the CDN service. Our assumption is that the chosen PoP only depends on a client’s
location, and will remain the same when downloading a resource from a landmark as when
using an actual web service. We deployed this strategy in Cloud�are and get the selected PoP
from the CF-RAY header.

5.1.4 Third-party QoE monitoring from browsers

The techniques we have just described to obtain network and QoE measurements from
a browser cannot in general be directly implemented as a script in a page, due to the secu-
rity restrictions imposed by modern browser standards. In particular, to protect users from
Cross-Site Scripting (XSS) vulnerabilities, recent browsers block requests to third-party ori-
gins by default. These vulnerabilities happen when a script sends a malicious request to a
domain (“origin”) di�erent from the domain it was downloaded from, leading to imperson-
ation for instance. Cross-origin requests are still possible by using the Cross-Origin Resource
Sharing (CORS) mechanism: third-parties accepting to receive such requests can add special
headers to their HTTP responses to disable some browsers restrictions. This makes it di�cult
for a webpage to probe third-party services’ QoE: every response not having CORS headers
(the default) will be blocked. More speci�cally, when the DiagSys measurement script (with
domain X) tries to fetch the pages of a third-party service (with a di�erent domain Y), the
responses from domain Y will in general not include the CORS header and thus be blocked
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Figure 5.4 – Third-party QoE estimation via a browser extension: due to the default cross-
origin policy 1 , a webpage cannot directly fetch a third-party service’s resources. However,
it is possible to communicate with the background script of an extension via injected content
scripts ( 2 and 3 ). The background script can create background iframes 4 that are allowed
to load the resources of any service 5 .

by the browser. Similarly, one webpage can create tabs and iframes pointing to third-party
services, but accessing the properties of these resources is restricted by browsers.

To circumvent these CORS restrictions, we have implemented the complete version of our
measurement software as a browser extension, based on the WebExtension API [217]. (At the
time of writing, this is the standard method for building extensions for Mozilla Firefox, Google
Chrome and Microsoft Edge.) We recall that the installation of this extension is optional: we
also provide a more limited script that can be included in a standard webpage to obtain a
service QoE estimation as seen from landmarks (Figure 5.1). With the appropriate permissions
set, a WebExtension can intercept and modify web requests sent to any third-party service.
A �rst solution to disable cross-origin security would be to insert the CORS headers in every
response. This would however open a major security hole in the browser’s security model,
as there is no standard method to add these headers only to requests originating from trusted
sources.

Our solution is depicted in Figure 5.4. We �rst inject a WebExtension content script into
trusted webpages (e.g. DiagSys’s homepage). The content script registers itself with the main

webpage script 2 and relays messages from the main script to the extension’s background script
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3 . In this setup, the communication between each script is secured by safe Messaging APIs

provided in WebExtension. When the main script requests a QoE check to a speci�c service,
the background script creates an iframe in the extension background page 4 (this operation
is invisible to users). Iframes are used to fully load a service in the background, from the initial
HTML document to the very last resource load. Another content script is injected in back-
ground iframes to obtain the resources timings and send them back to the main script (via
the reverse path 4 → 3 → 2 ). The requests originating from our extension’s background
iframes can be identi�ed using their unforgeable originUrl. We can thereby safely up-
date CORS HTTP headers of responses corresponding to these requests 5 . More speci�cally,
we remove the X-Frame-Options and Content-Security-Policy headers to allow the
loading of the third-party resources from iframes, and we set Timing-Allow-Origin to *

to enable precise timings measurements. In particular, we obtain an estimation of the QoE of
a third-party service by measuring the corresponding Page Load Time (PLT). Note that some
services detect that they are being loaded from iframes and decide to stop loading or to take
ownership of the parent frame (i.e. the extension background page). Thankfully, iframes can be
sandboxed with a limited set of features which avoids losing control of the background page.
For volunteers that enabled this option, our browser extension run periodic measurements
(every 15 minutes) in the background, helping in the construction of dataset with continuous
measurements.
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Table 5.2 – Extract of third-party services monitored by DiagSys. For comparison with the
�rst services of this list, we deployed some landmarks in Linode and OVH datacenters.

Name Category Hosting provider

Changelog Software Linode
Retargetly Software Linode
Stadiamaps Mapping Linode
E-lyco Education OVH
Sofoot Sport OVH
Systran Translation OVH
Gitlab Software Cloud�are
Mozilla Software Cloud�are
Zoom Communication AWS
CNN News Fastly
Le Monde News Fastly
Bison futé Transport N/A
Discord Communication N/A
Github Software N/A
Inria Research N/A
Parcoursup Education N/A
RATP Transport N/A
SolarLowTech News N/A
Walmart E-commerce N/A
Wikipedia Education N/A

5.2 Insights from our collected dataset

DiagSys ran continuously from October 2019 to March 2021. It allowed the collection of
more than two millions measurement samples containing around �ve million probes to 26
landmark servers and 20 diverse third-party services, listed in Table 5.2 (one probe results
from the interaction with one landmark or one service while one sample may contain sev-
eral probes). More than 300 unique end users have provided measurements, and among them
around 50 have installed our browser extension and produced periodic background measure-
ments. Participants were recruited through community mailing lists, with the guarantee that
no personally identifying information or browsing history was collected. We recall that land-
marks emulate additional users to provide supplementary and more continuous measurement
samples. We �rst present some case studies extracted from this early dataset, then characterize
the faults we observed in practice.
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Figure 5.5 – walmart.com page load time and RTT of �rst HTTP request, as measured by
DiagSys. We observe increases in page load time during Black Friday and Cyber Monday, in
contrast with �rst request timings.

5.2.1 Dataset case studies

The collected dataset contains detailed information captured at a �ne temporal granularity
from a diverse set of viewpoints. This combination of diversity and good temporal resolution
makes it possible to identify problems and phenomena such as varying PLTs, regional di�er-
ences, PoP selection for CDNs or route changes.

Monitoring page load times

Users who run the DiagSys extension provided periodic measures of the PLT of selected
third-party services. This can be used to estimate a web service’s QoE and detect local and
global perturbations. As an example, Figure 5.5 plots the PLT of walmart.com during the
2019 Black Friday with visible slowdown periods during expected tra�c peaks. (The mea-
surements were taken by a landmark in Paris.) We �nd that measuring PLTs provides more
insight than just measuring the �rst request’s RTT, as depicted in the lower part of Figure 5.5:
PLT accounts for every remote resource, including scripts and medias from other third-parties.
Similar highly-correlated patterns have been observed for di�erent landmarks and users, with
di�erent amplitudes. This demonstrates the bene�t of full browser emulation in landmark
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Table 5.3 – Resources fetched by cnn.com for di�erent regions (May 18, 2020 16:35 UTC)

Region Europe USA Japan

HTML Body Size (bytes)

Compressed 156 908 156 911 156 910
Uncompressed 1 132 658 1 132 658 1 132 658
Number of loaded resources

style 20 19 19
script 28 61 61
query 20 53 54
iframe 3 13 14
media 7 48 57
total 78 194 205

servers, as provided by DiagSys, in contrast to only using unitary and simple measurements
such as pings.

Highlighting regional di�erences

The user diversity of DiagSys makes it possible to spot di�erences in content served by
third-party services to di�erent visitors. Table 5.3 shows the number of unique resources
fetched by three landmarks around the globe with identical con�guration measuring cnn.com
around the same time. We notice that the European landmark loads far fewer resources than
its peers, despite receiving the same HTML page (assumed from the identical uncompressed
body size of each response). When we look at the di�erence in loaded resources, we �nd that
non-European visitors load more content related to analytics and ad tracking.

Impact of user mobility

Many users are mobile and use multiple methods to connect their devices to the Internet
(wired, cellular, Wi-Fi, . . . ) [225]. As a result, measurement samples from one user can be very
diverse across time. We evaluate this diversity by using mobility ground truth of a speci�c
volunteer that uses both Wi-Fi and wired connections as provided by their ISP. As expected,
we observe clear di�erences in measured throughput between wired and wireless modes. More
surprisingly, we note that some landmarks needed to retransmit around 10% of packets with
wired connection, compared to zero retransmissions with Wi-Fi. We use BBR as the default
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Figure 5.6 – Repartition of Cloud�are PoPs for various clients, sorted by percentage of mea-
surements for nearest PoP. The following IATA codes are used by Cloud�are: AMS Amster-
dam, CDG Paris, EWR Newark, IAD Washington, KBP Kyiv, LAX Los Angeles, LHR London,
NRT Tokyo, ORD Chicago, SJC San Jose, SYD Sydney, WAW Warsaw, YUL Montreal.

TCP congestion control algorithm in landmarks, and this is certainly the reason why we are
observing this behavior, as previously studied by Cao et al. [226].

Monitoring CDN performance

We measured the diversity of Cloud�are PoPs chosen for each user, and found that most
users always reach the CDN network from the same PoP as illustrated in Figure 5.6 (we recall
that the selected PoP is added in every HTTP response’s header). However, we found that
PoPs were much more dynamic for some regions, and we take as an example one landmark
located in Warsaw’s OVH datacenter. While most (66%) of HTTP responses were served from
Warsaw’s PoP (Figure 5.7) with a median latency of 8ms, the remaining responses were served
from either Kyiv with twice that latency and even Moscow with a median latency of 50ms. Be-
cause this observation spans over two months of measurements taken from a static landmark,
it is possible that this behavior is due to some load-balancing mechanism or non-optimal con-
�guration.
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Figure 5.7 – RTT between a landmark in Warsaw and Cloud�are. Three di�erent PoPs are
regularly serving tra�c with up to 5× more latency from Moscow than from Warsaw.
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network landmark in France. There is a pattern of anomalies during evenings in the �rst time
frame, probably due to congested link.
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Figure 5.9 – RTT and number of hops in traceroute to a landmark hosted in Vultr Singapore
region. We can see a change in routing strategy on 13/05/2020 at midnight with an immediate
decrease of RTT for some regions.

E�ects of network load and routing

DiagSys does not provide any information about network topology and BGP announce-
ments. Yet, the collective knowledge gathered from users and landmarks is su�cient to detect
and analyze changes in Internet paths and links, overcoming the opacity of ISPs networks. As
a �rst example, we study the performance of a landmark hosted in a home network served
by the French ISP “Free”. Figure 5.8 shows the RTT and download throughput of this land-
mark as measured from two other landmarks in France and Canada and one end user from
France. Measures from end users are sparser and noisier: this is expected, as their devices are
not powered continuously and may have less reliable network connections. During the �rst
time frame, we clearly see anomalies during evenings: the landmark’s host con�rmed that he
encountered QoE degradation, which suggests that the root cause came from an overloaded
link in the Free network. After a few months, the anomalies disappeared (second time frame
in Figure 5.8). In a second example (Figure 5.9), we detected an important routing change be-
tween some users and a landmark in Singapore. The RTT to Singapore measured from Warsaw
dropped by 30%, with one less hop in the reverse traceroute. Looking at the traceroute details,
we discovered that the tra�c was redirected from NTT (AS 2914) to GTT (AS 3257)—two Tier
1 networks. We used BGPlay [227], a routing history visualizer and con�rmed this �nding.
The observations are similar for an end user in France, but no change is noticeable for another
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landmark in Paris with already good performance before May 13. It would have been di�cult
to detect this routing change from within browsers using BGP announcements alone.

5.2.2 Dataset faults analysis

Clients and landmarks report any error they encounter when trying to reach third-party
services and other landmarks: over the collected dataset, about 0.6% of measurements to land-
marks and 1% of probes sent to third-party services resulted in failures. More speci�cally, a
measurement is marked as “failed” when HTTP queries have not succeeded within a speci�c
timeout. This timeout is arbitrarily set to �ve seconds for clients and one minute for emulated
clients in landmarks: clients have smaller timeout to avoid excessively long (“stuck”) mea-
surements. Due to JavaScript limitations, it is not possible to have more details about every
timeout failure (i.e. it is not possible to discriminate between connectivity issues, DNS failures
or browser miscon�gurations, among other causes). When services are overloaded, clients can
reach that �ve seconds timeout and mark the measurement as failed. While in this case the
QoE is clearly degraded, it is worth noting that the a�ected service might still work albeit with
extreme latencies. As an example, we monitored the QoE of e-lyco 1, a local school virtual
environment. On April 27, 2020, e-lyco reported degraded website performance. While we
observed a stark increase of measurement failures from end users at that time, there were also
a number of measurements from landmarks showing a PLT of more than 30 seconds with only
degraded performance.

Conversely, QoE estimation might appear good when a third-party service is actually un-
available. In many cases, such unavailable services show an error or maintenance page. How-
ever, some third-party services still return “200 OK” HTTP status code instead of the expected
HTTP error codes that would correctly result in measurement failure. Because DiagSys col-
lects the number and size of all the resources loaded by a third-party service, it is possible
to detect when the number of resources is abnormally low (e.g. indicating an error, redirec-
tion or maintenance page). For instance, we monitored the number of loaded resources from
the bison-futé service 2 showing live tra�c jams and road accidents in France. Because this
service shows a dynamic map, it makes about 200 additional requests for small “tile” images.
We noted frequent service disruptions, with no loaded resource and a page size of less than
500 bytes (compared to usually more than 6000), clearly showing that something was wrong
despite nominal QoE timings.

1. https://www.e-lyco.fr
2. https://www.bison-fute.gouv.fr/maintenant.html
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Figure 5.10 – Work�ow of our labelling process. For each client, we �rst pinpoint outliers for
QoS and QoE metrics. Then, we correlate the outliers in an attempt to �nd the QoS metrics
responsible for QoE degradations. Finally, we �lter-out false positives with a causality test.

These examples advocate for a more accurate labelling of measurements in our dataset, in
order to know which samples represent a nominal and expected QoE, and which ones do repre-
sent QoE degradations and failures. Our �rst approach to perform such labelling was to look
for information published from third-party services (e.g. status pages, social network feeds,
newsletter). However, most QoE degradations are not reported, especially for degradations
a�ecting a limited number of users over a short period. Service status pages are also criti-
cized for being unreliable since updates are usually published manually: for instance, AWS’s
status page is rarely updated, even during obvious global outages [228]. As another extreme
example, the status page for OVH datacenter “SBG2” reported “no server down” during sev-
eral hours on March 10, 2021, well after the �re that destroyed the building on that same
day [229]. Other public sources include specialized forums, troubleshooting websites (like
DownDetector [124]), network operators mailing lists and automated detection systems such
as IODA [230]. Browsing these feeds remain a manual and tedious process: while large ser-
vices and network outages are well documented in practice, we were unable to �nd reliable
reports for most failures found in our dataset.

5.2.3 Our proposal: labelling from historical data

With the objective to build practical RCA models using metrics from end users, we now
propose to label measurements samples with a relatively simple outlier correlation method.
Our work�ow is illustrated in Figure 5.10. The �rst problem to solve is the detection of QoE
degradations for every client: we use a simple outlier detection technique, leveraging historical
data collected over several months. We apply a similar operation to pinpoint anomalies in
QoS metrics, and we correlate found outliers to produce plausible root causes for the observed
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QoE degradations. After an additional �ltering of obvious false-positives, we obtain surrogate

ground-truth labels, that we later use in Section 5.3.

Outliers correlation To overcome the lack of accurate root cause ground truth for the QoE
degradations we measured, we take a statistical approach to label our dataset samples, and
produce a surrogate ground truth which—although imperfect—we can use to evaluate RCA
techniques. We leverage our historical data collected over several months to de�ne nominal

values for every combination of client and metric (at each measurement point, being a land-
mark or third-party service). From these nominal measurements, we identify outlier values:
by marking all values below Q1 − 1.5 IQR and above Q3 + 1.5 IQR as outliers. We pinpoint
outlier samples for both landmark metrics (QoS) and third-party QoE metrics. Then, we la-
bel samples by grouping them by client and time slots of 30 minutes and by correlating QoE
degradations with QoS outliers. Intuitively, this correlation helps in the identi�cation of the
dependencies between QoE and QoS metrics. Grouping samples is necessary in practice, since
clients probe a limited number of landmarks in every measurement sample: 30 minutes slots
allow to collect metrics from ten landmarks per slot on average.

— In a given slot with degraded QoE, if outliers come from more than three di�erent land-
marks, it is likely that the client’s connection to Internet is at fault. Hence we label
samples in this slot with the root cause “uplink failure”.

— If a QoS metric provides the majority of outliers in a slot, this metric is marked as the
root cause for QoE degradations in this slot.

— Finally, when multiple potential root causes remain, we pick the one with the largest
relative di�erence from the IQR threshold.

Note that due to the lack of validation examples, we were unable to map jitter and packet
loss statistics to plausible root causes accurately. As a result, we only consider the latency,

download and upload QoS measurements in our root cause labelling process. With this ap-
proach, the �ve millions measurements of the DiagSys dataset are processed and labelled in a
few hours on a recent laptop. The returned root causes directly map to landmark metrics, in
a similar way than DiagNet (Subsection 4.2.1).

Filtering-out false positives However, one major drawback is that many root causes are
actually false positives an anomalous QoS might not be the cause of a QoE degradation—
correlation does not imply causation. Again using the historical knowledge we collected with
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DiagSys, we propose to eliminate most false positives using conditional probability estima-
tions. Let us de�ne the events Li as “landmark metric i is nominal” and Si as “service QoE
metric i is nominal”. Conversely, Li (resp. Si) indicates that “landmark (resp. service) metric i
is an outlier”. We detect false positives by estimating the conditional probability that a service
metric i does not exhibit a QoE degradation given that a landmark QoS metric j is an out-
lier, i.e. P

(
Si|Li

)
. The closer this probability is to 1, the less plausible that the said landmark

metric can be a root cause for observed the QoE degradation. In the following, we estimate
conditional probabilities empirically using Binomial distributions and the associated Wilson
score for the con�dence interval [231]:

p̂ =
Number of samples where an event occurs

n : Total number of samples

(p−, p+) =

(
p̂+

z2

2n
± z
√
p̂ (1− p̂)

n
+

z2

4n2

)
1

1 + z2

n

(Wilson score interval)

We set z = 2.58 to tolerate an estimation error of 1%. Note that due to the random sampling
of landmarks and services, we do not necessarily have measurements for all pairs of metrics
in all slots. To overcome this limitation, we de�ne the event Xi,j as “in a given slot, metrics i
and j have been measured by the same client”. This leads to the �nal approximation equation:

P (Si|Lj, Xi,j) =
P (Si, Lj|Xi,j)

P (Lj|Xi,j)
≥ p−(Si, Lj|Xi,j)

p+(Lj|Xi,j)
with probability 0.99 (5.1)

We �lter-out false positives by eliminating pairs of metrics with an estimated conditional
probability above 0.80. This value was empirically chosen to �lter most false positives while
retaining interesting correlations. Decreasing it further would signi�cantly reduce the knowl-
edge available for RCA training and evaluation, while increasing it would not �lter enough
false positives. Among the 65 624 potential root causes found with outliers correlation, 28 745
(44%) remain after this �ltering.

Validation We con�rmed that this method returns plausible results by considering reference

services deployed in landmarks: it is clear that a QoS outlier on a landmark metric must trigger
a QoE degradation for the services co-hosted with this landmark. For instance, we periodically
injected arti�cial latency into one landmark hosted in the Beauharnois OVH region. During
these periods, the reference service hosted in the same server showed degraded QoE, with the
surrogate root cause being (correctly) labeled as “latency to OVH Beauharnois”.
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We also veri�ed that services hosted by one provider were correlated with landmarks
hosted in the same providers. As an example, we found that many services have Cloud�are
CDN as possible root causes; this makes sense since these services use Cloud�are’s services.
Conversely, most �ltered root causes were indeed unreasonable, for example we found several
potential root causes localized in south Asia for a reference service hosted in Europe with no
external dependency.
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5.3 Applying DiagNet to DiagSys’s dataset

We presented how we label QoE degradations with potential root causes using a simple
outlier detection mechanism in Subsection 5.2.3: using this mechanism, we were able to label
our dataset of real Internet measurements with a surrogate ground-truth. In this section, we
explore how the RCA methods introduced in Chapter 4 perform on this larger and more diverse
dataset. Our goal is to assess whether the techniques we have proposed generalize to a less
controlled setting, in which the ground truth regarding root causes had to be reconstructed

using statistical methods: it is important to note that our labelling method uses the complete

dataset to pinpoint outliers and root causes. By contrast, when training RCA models, we group
measurements made by every client in 30-minutes time slots, while not feeding the unique
identi�ers of clients as features to the RCA models. Only a few measurements are available
during a RCA inference: we only exploit the landmark QoS measurements made by a single
client during the appropriate 30-minutes slot in which the QoE degradation is observed.

5.3.1 Changes to the RCA approaches

In this experiment, we essentially reuse the RCA implementations from Chapter 4 (namely
the Extensible Naive Bayes, Extensible Random Forest and of course DiagNet), yet with a few
key di�erences.

A �rst di�erence touches on the metrics (features) available for RCA: in the DiagSys
dataset, due to the limitations of browsers (Section 5.1), we did not collect the current pro-

cessing load of clients. We collected jitter and packet loss statistics, but we were unable to
map them as plausible root causes accurately. As a result, for this dataset we consider the
following four root cause families: link latency (49% of faults), local (uplink) failure (39%),
download bandwidth (7%) and upload bandwidth (5%). These families are combined with the 26
landmarks we deployed, yielding a grand total of around 80 possible combinations (to be com-
pared to 55 possible root causes in the controlled dataset of Chapter 4). Despite having more
possible combinations, the DiagSys dataset holds about the same number of faulty samples

than the controlled dataset (≈ 30 000). We therefore substantially increased the expressivity
of the RCA models (i.e. by increasing the number of random forest estimators and the number
of dimensions of hidden layers in DiagNet). We also note that the fault families (and sam-
pled landmarks) are not uniformly distributed in this dataset; we therefore adjust the Random
Forest’s class weights to be inversely proportional to their frequencies.

124



5.3. Applying DiagNet to DiagSys’s dataset

A further complication arises from the fact that the DiagSys dataset is much scarcer than
the controlled dataset we have used in Chapter 4. Each DiagSys sample only contains values
for some of the metrics of the overall metrics set: this is because each client only probes around
ten landmark servers per time slot (on average). This is necessary in a realistic deployment:
measurements take time and resources, and we must �nd an appropriate tradeo� between
measurement accuracy and cost. (In our deployment, we try to always include a landmark
server close to the client according to a database of geographic locations [232].) Moreover, we
masked the metrics of three landmarks during model training, in way similar to what we did
in Chapter 4: one landmark in North America, one in Europe and one in Asia. The masked
metrics are re-enabled during inference (we use 20% of the dataset as evaluation samples).
We leveraged the extensible designs of our three algorithms to support these missing metrics.
(As a reminder, the naive bayes approach uses “shared” KDE, the random forest sets missing
values to zero and DiagNet naturally supports them with convolutions and pooling.)

DiagNetLight: disablingDiagNet’s auxiliary model Early results demonstrated that
DiagNet was heavily biased towards its auxiliary model (Subsection 4.2.5), returning predic-
tions extremely close to the ones of the Random Forest. Therefore, to focus on the evaluation of
DiagNet’s convolutional network alone, we present in this section the results for DiagNet’s
predictions without ensemble model averaging that we call DiagNetLight.

5.3.2 Pinpointing fault families

We begin by evaluating the performance of RCA models with respect to the prediction
of fault families (what we call the coarse prediction). While DiagNetLight already outputs
this prediction by design, we tuned the other two baselines (Naive Bayes and Random Forest
classi�ers) to output such a coarse prediction instead of the �nals, �ne-grained root causes.
We show the results over the evaluation samples in Figure 5.11, distinguishing between “new”
and “known” root causes (compared to training samples with some root causes being masked
on purpose). We also add the results of a “Random” predictor for comparison: it returns a
given class with a probability proportional to the weight of this class in the training dataset.

The Naive Bayes and Random Forest classi�ers o�er good F1 scores (Equation 4.6) for the
majority classes “Latency” and “Local”. However, the minority classes “Download” and “Up-
load” are clearly disadvantaged in this experiment. For new root causes, the Naive Bayes model
have aF1 score of about 0.15, clearly higher than for known root causes. This is expected, since
we noticed the tendency of Naive Bayes to favor unknown metrics (hence unknown causes)
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Figure 5.11 – Coarse prediction evaluation over the DiagSys dataset for new and known root
causes. DiagNetLight demonstrates slightly superior performance for “Download” and “Up-
load” classes, while the other baselines show comparable results for the more frequent “La-
tency” and “Local” classes.

in Section 4.3. The Random Forest classi�er gives good predictions for both types of root
causes. However, this signi�cantly di�ers from the observations of Figure 4.5, where Random
Forest showed extremely good performance over known causes. We can naturally explain this
di�erence by the larger number of missing metrics, compared to the uniform fault distribution
of the controlled dataset.

By contrast, DiagNetLight yields comparable performance for the “Latency” and “Local”
classes, while giving relatively good F1 scores for the “Download” and “Upload” classes. This
is true for both new and known root causes, showing a relative tolerance to skewed datasets.
DiagNetLight provides better results than the random predictor for all classes, but not by a
large margin. Moreover, our results are inferior to the coarse analysis in the controlled dataset
(Figure 4.7) that showed F1 scores over 50% for all classes.

5.3.3 Complete root cause analysis at Internet scale

We now evaluate the prediction of more �ne-grained root causes, modeled as a combi-
nation of a location and fault family. In Chapter 4, we made our evaluations over precise
landmark locations. Since we almost tripled the number of available landmarks, this method
is not practical anymore: it would be extremely di�cult for a RCA model to distinguish faults
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Figure 5.12 – Recall@k evaluation for new and known root causes, for di�erent values of k.
Root causes are grouped by world regions. DiagNetLight shows best results for new root
causes up to k = 3.

between two landmarks in the same city or region. To illustrate this challenge, we found the
Recall@25 to be less than 1% over new root causes for the three considered methods. That is
why we chose to group root causes in seven world regions according to the geographical dis-
tribution of our landmarks (“Europe”, “Asia”, “Australia”, “Eastern US”, “Central US”, “Western
US” and a “global” region for CDNs). We also added one global region for each CDN landmark.
As a result, the predicted root causes could be for instance “latency degradation in Europe”,
“download bandwidth limitation from Australia” or more simply “local uplink failure”. This
approach led to a total of 41 possible root causes, a number comparable to our initial DiagNet
evaluation.

The results of this evaluation are depicted in Figure 5.12, showing key insights for this
dataset. Over new root causes, DiagNetLight o�ers the best recalls for the �rst two predic-
tions (k < 3). However, both Naive Bayes and Random Forest bring in superior results from
the fourth prediction onward and for all predictions over known root causes. Surprisingly,
the two baselines have comparable results for both types of root causes, showing their robust-
ness against unavailable metrics in general. This again di�ers from our previous observation,
where Random Forest performed better on known root causes and Naive Bayes on new root
causes. The random predictor is clearly short of our machine learning models, except for new
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root causes and k = 1 where it approaches DiagNetLight results. This shows that our sta-
tistical methods are making a good contribution for Internet scale RCA, but that important
limitations remain.

5.3.4 Discussion and remaining open questions

Summary The performance of the three studied RCA approaches are signi�cantly di�erent
over the DiagSys dataset than over the dataset with controlled faults from Chapter 4. Overall,
the global performance of models decrease: this is not entirely surprising given the challenges
to pinpoint uncontrolled failures over Internet. Yet, our models remain superior to a random

predictor, showing that statistical learning can indeed help in large computer network mod-
eling. All our approaches have close performances on both known and new root causes: the
added value brought by DiagNet is no longer apparent. Nevertheless, we must note that the
Naive Bayes approach performs surprisingly well, including for known root causes (where it
obtained very poor results in Chapter 4). This behavior is certainly due to its capability to
handle unavailable metrics in its Kernel Density Estimation, something that was not so much
needed and therefore not correctly exploited in our previous study.

Additional experiments The observed results could demonstrate the limitations of our
statistical approaches, our methodology of labelling with surrogate ground truth or most prob-
ably a combination of the two. To tease out the importance of each of these factors, additional
sensibility analysis is required. In particular, it would be interesting to evaluate our mod-
els with di�erent labelling parameters (e.g. durations of time slots, false-positive probability
thresholds) or even di�erent hyperparameters. It would also be interesting to evaluate how
the number of plausible root causes and the choice of “world regions” impact the accuracy of
each model.

Potential avenues for improvements This evaluation also shows that it is actually very
challenging to build reliable RCA models despite a seemingly simple labeling approach with
outlier detectors (Subsection 5.2.3). This di�culty likely stems from the fact that we hide

the client identity to the proposed RCA methods: each client has its own view of the global
network, with speci�c nominal QoS values (it is clear that a latency of a few hundreds of
milliseconds is acceptable between Paris and Tokyo, but not between Paris and Brussels.) In
this Internet-scale dataset, we had an order of magnitude more clients than in the controlled
dataset: providing client identi�ers as input features would quickly be impractical, especially
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since models would need to be retrained for every new client. One alternative could be to
input coarse-grained information about clients (such as their ISP, type of device or rough
location). However, this might be impractical with the lack of reliable information [141] and
recent privacy regulations related to personal data.

Similarly, the Naive Bayes and Random Forest baselines have a signi�cant advantage com-
pared to DiagNet: in their implementation, they can directly distinguish features from two
di�erent landmarks (this is clearly necessary for these methods to work at all). By contrast,
DiagNet can accept measurements from any landmark in any order but without landmark
identi�cation, making it more generalizable. One idea to allow DiagNet to distinguish land-
marks would be to embed landmark identi�ers as input features—something we already pro-
posed for neural networks in processing of the scheduling policies in Chapter 3. However,
this approach would probably cripple DiagNet’s ability to analyze metrics from landmarks
added after training. One more generalizable idea would be to embed landmarks’ geographi-
cal or topological locations as additional features that would be available even for landmarks
unseen during DiagNet’s training. This seems to be important for deployments with even
more landmarks, as our analysis is based on a relatively limited deployment of 26 landmarks.

Finally, we note that we had to disable the auxiliary model to analyze DiagNet’s results
(resulting in the DiagNetLight variant). From our observations, this was because Diag-
Net’s was overly con�dent and ignored new root causes most of the time—thus exclusively
returning the results of the auxiliary model (i.e. a Random Forest). Given the clear bene�ts
of ensemble model averaging we observed in Chapter 4, it appears important to investigate
this path. This is especially true since we discovered that the two other envisaged approaches
actually give good results on DiagSys dataset overall, both for new and known root causes.
While model averaging is probably the simplest ensemble approach, there is no doubt that
more sophisticated approaches (such as those described in Subsection 2.4.4) could lead to more
accurate RCA models.
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5.4 Conclusion

After motivating the need for browser-based measurements for accurate Quality of Ser-
vice (QoS) and Quality of Experience (QoE) estimations, we presented a set of complementary
techniques to implement these measurements in practice. With the security restrictions of
modern web browsers, most solutions from the literature no longer work, including solutions
based on Java or XPCOM browser plugins. Building upon modern JavaScript and WebEx-
tension capabilities, we have proposed a lightweight measurement script to circumvent these
restrictions (including Cross-Origin Resource Sharing (CORS)) while keeping users safe and
incurring minimal overhead.

We have deployed our approach (under the DiagSys name) during more than a year and
collected a valuable amount of measurement samples from hundreds of volunteer users. The
resulting dataset is rich enough to identify noteworthy insights regarding network about web
dynamics. For instance, we provided examples of variations of load times during peaks of traf-
�c, service di�erentiation according to client location, surprising Content Delivery Network
(CDN) load balancing con�gurations and even tra�c pattern changes over time. Of course,
we have just demonstrated some examples of the kind of explorations made possible by our
dataset, which illustrate the potential of the collected data and of our measurement methods;
we are convinced that many interesting results are yet to stem from a deeper exploration of
the DiagSys dataset.

In order to overcome the absence of a reliable ground truth about the Internet and service
failures we observed in our dataset, we proposed a simple measurement labeling method based
on outlier detection and correlation. After some adaptions, we then applied the Root Cause
Analysis (RCA) methods we presented in Chapter 4 to this dataset, and found signi�cantly dif-
ferent results compared to the initial evaluation dataset with controlled faults. This additional
evaluation highlighted the limitations of our statistical learning proposals for RCA (extensi-
ble Naive Bayes, Random Forest and CNN classi�ers), hinting that more work is needed for
Internet scale RCA with uncontrolled QoE degradations. In a discussion, we provided sev-
eral avenues to improve DiagNet’s performance, such as adding geographical and topologi-
cal information for clients and landmarks or combining the presented algorithms with more
sophisticated ensemble approaches.
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Chapter 6

Conclusion

“[. . . ] on Internet governance, we can therefore say that there
are many players, without a clear hierarchy. They sometimes
act in concert, and they often oppose each other. And, when
they act together, it is not always in the interest of the users.”

Translated from “Cyberstructure” [233]

Stéphane Bortzmeyer

In this thesis dissertation, we have reviewed how advanced machine learning techniques
can help building generalizable and extensible inference models of computer networks. We
partitioned the problem space according to the amount of available knowledge over the un-
derlying network: the proposed techniques are indeed di�erent whether one has a complete or
limited knowledge of the network topology and components. In this conclusion chapter, we
�rst review our contributions and highlight immediate future work from the research prob-
lems we uncovered (Section 6.1). Then, in an e�ort to build a more transparent and measurable

Internet, we provide a wider outlook and advocate in Section 6.2 for a greater collaboration
between network operators, service providers, browser developers and end users.

6.1 Summary and future work

In our introduction, we claimed that statistical learning could be used to model com-

plex computer networks, even with narrowed information. We now review how our
contributions back that claim.

6.1.1 Realistic queuing is needed for data-drivenmodeling of networks

We started in Chapter 3 by leveraging knowledge of the network topology and of compo-
nents’ characteristics to predict the (unknown) expected performances over paths. This prob-
lem is known to be di�cult due to the many interdependencies between network paths, links
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and nodes. Emulation and simulation tools can be used to solve this problem, but they are usu-
ally slow and impractical for large networks. Inspired by a proposal from Rusek et al. [11], we
use Graph Neural Networks (GNNs) to improve predictions e�ciency while preserving their
accuracy. Our contribution �rst exploits the topology and routing knowledge to build bipartite

dependency graphs between network paths, links and nodes. Using performance information
from a network simulator, we then train GNNs models over these dependency graphs. In our
evaluation, we showed that the trained models are generalizable to arbitrary network topologies
not seen during model training.

More speci�cally, we proposed two GNN approaches. A �rst one, A1, explicitly maintains
representations for node internal states. We removed this representation in a second approach
(A2), only keeping representations for paths and links: during initialization, node features are
actually embedded in link representations. Surprisingly, this (simpler) second approach was ac-
tually more accurate than A1 in our experiments. The simulator used to generate experimental
data modeled message queues only at outbound node interfaces: our evaluation suggests that
with this choice, internal states for nodes are not required.

This simplistic queuing model might not, however, fully capture the behavior of real routers
with input bu�ering or insu�cient internal bandwidth [182]. As such, realistic queuing mod-
els and simulators are needed in order to apply our contributions to real Internet networks.
Future work could integrate real router speci�cations in training data simulators to verify if
internal states for nodes are bene�cial in such realistic scenario (approach A1). However, it
could be di�cult to exactly simulate real routers, due to unknown hardware constraints and
the large diversity in router implementations. One potential solution to build generic mod-
els that capture all this diversity lies in network emulation: by measuring network perfor-
mances over physical hardware and modifying network characteristics with SDN capabilities,
we could collect diverse and realistic training data. Albeit obviously more complex and costly,
we believe this method is a relevant next step to improve the accuracy of Knowledge-De�ned
Networking (KDN) solutions over real SDN networks.

6.1.2 The ground-truth problem for accurate RCA models

Root Cause Analysis (RCA) is an important problem in computer networks: given an ob-
served service anomaly (the symptom), one may want to uncover the reason(s) behind it (the
cause) to solve the observed anomaly. However, during the lifecycle of a computer network
deployment, it may not be possible to access all its characteristics (due to technical or business
reasons). In particular, it is di�cult to infer the dependencies between services and network
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components—a necessary step for RCA in wide-area networks. Chapter 4 presents how exten-
sible machine learning techniques can be used to solve this problem. Metrics are collected by
clients actively probing reference “landmark” servers, deployed in multiple network locations:
we use these metrics as both features for our machine learning models and as potential root
causes. The challenge consists in determining which metrics are relevant for which services:
because the latency to Tokyo is high does not necessarily mean that the root cause is located
in Tokyo, especially if both the service and the client are located in America. However, it may
be the case if the troubleshooted service has an internal dependency to a provider in Tokyo.

We proposed two extensible baselines based on Naive Bayes and Random Forest classi�ers,
along with a novel Convolutional Neural Network (CNN) design for RCA. Compared to the
baselines, this latter approach (that we called DiagNet) can be extended easily after training:
in an evaluation made over a dataset with controlled faults, we show that DiagNet can pin-
point root causes it has never seen during training (using metrics from untrained landmarks).
Our approach can also be specialized to other services without much re-training. These prop-
erties make it a good candidate for practical, Internet-scale RCA.

In Chapter 5, we attempted to evaluate DiagNet over a dataset of measurements from
real end users and third-party web services. To this end, we implemented a measurement
framework (DiagSys) running within the execution environment of these services, i.e. web
browsers. This choice allows easy installation and maintenance of the measurement frame-
work, but raises some challenges due to the security restrictions of modern browsers. We
were nevertheless able to collect millions of measurements over more than a year, including
network QoS and service QoE, with the help of around 300 unique volunteer end users. We
highlighted several case studies showing the relevance of metrics collected from within the

execution environment of web services.

While we detected obvious degradations in QoE metrics indicating failures within Inter-
net, we had no access the ground-truth root causes behind these degradations: services and
network operators are indeed reluctant to publish such information, especially when failures
impact a limited number of end users. For every pair of end user and metric, we computed
nominal values over the full measurement period: this allowed us to pinpoint anomalies from
outlier measurements. By correlating QoE outliers with QoS ones, we were able to mark each
QoE degradation with a corresponding probable root cause. Training the same statistical mod-
els than previously (i.e. extensible Naive Bayes, extensible Random Forest and DiagNet), we
demonstrated that our three models provide good RCA recalls for trained root causes. Albeit
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close to its competitors DiagNet remains marginally superior when dealing with untrained,
new root causes.

One potential avenue for improving our statistical methods would be to embed slightly
more information about the measurement platform and the analyzed network. For instance,
when feeding landmark metrics to DiagNet, we do not embed the identity or location of each
landmark: adding this information could helpDiagNet di�erentiate between two similar land-
marks, leading to better RCA accuracy. Future work could also embed the known dependencies
between services, and between network components. This could be done in a similar way than
what we proposed in Chapter 3: GNN layers could be added to compute advanced represen-
tations for potential root causes, later aggregated and processed using DiagNet’s extensible
CNN.

6.2 Outlook: towards greater collaboration between ac-

tors

The labels we computed in the dataset of Chapter 5 remain rough and approximate: despite
our attempts to �lter out false-positives, it is clear that our models would bene�t from know-
ing the real ground truth behind observed QoE degradations. Indeed, the quality of the �nal
models necessarily depends on the accuracy of the data they are trained upon. In this section,
we advocate for a better collaboration between Internet stakeholders to improve the wealth of
available data for network modeling.

6.2.1 Better transparency is needed from service providers

It is common knowledge that network and service operators do their best to hide their
internal architecture and dependencies. From a business perspective, this might be necessary
to protect the secrets of trade agreements; and from a technical standpoint it might guard
against industrial spying and adds some additional security through obscurity. However, this
secrecy is in contradiction with the needs of network modeling and RCA as we have shown in
this thesis. Without collaborating with these operators, it is di�cult to �nd the root cause of
the observed QoE degradation with certainty: public status pages and social media feeds are
often too optimistic (see Subsection 5.2.2), inaccurate or may even contain fake information.
On April 6, 2021 (�rst day of a new Covid-19 lockdown for French high-school students), the
remote educational tool “Ma classe à la maison” (“My classroom at home”) was completely
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unavailable for teachers and students. The French ministry of education Jean-Michel Blan-
quer blamed “foreign cyberattacks” and one hosting provider, OVH [234]. However, other
sources (including OVH CEO Michel Paulin [235]) have answered on social media, indicating
that the issue came from the undersizing of the educational tool. This critical event for the
twelve million French high-school students highlights the needs for independent RCA backed
by publicly-available information.

Documented and—more importantly—automated status pages would greatly help in the
understanding of service dependencies. This policy is being implemented by some large ac-
tors: for instance, the GitLab deployment tool allows providers to automatically update a pub-
lic status page according to metrics provided by the monitored service. GitLab itself publishes
detailed reports of failures in a dedicated twitter feed, linking to a public, live metric dash-
board 1. Wikimedia (the non-pro�t foundation hosting the popular Wikipedia encyclopedia)
follows a similar path by publishing all the details of its internal architecture and maintaining
a similar public dashboard 2. However, these transparency e�orts remain the exception rather
than the norm. About network operators, most Internet Exchange Points (IXPs) provide pub-
licly available peering information, a good way to peek into their infrastructure. However,
public peering tra�c remains anecdotal compared to transit and private (hidden) peering [4].
Worse, some network operators deploy deceptive techniques to make active probes useless
(e.g. traceroutes) [236]. As of today, Internet mapping is usually done by independent re-
searchers [8] and may result in inaccuracies due to these e�orts. By incentivizing operators
to publish details about their network, regulators and lawmakers could improve the situation
while empowering Internet users with reliable, independent tools [93].

6.2.2 The way towards standard measurement APIs

There exists several QoS measurement tools based on modern browsers (including Diag-
Sys, our contribution from Chapter 5). However, the results o�ered by these tools might not be
comparable in practice: they may use di�erent types of reference servers or di�erent method-
ologies. Moreover, such tools are inherently limited by the capabilities of web browsers:

— It is not possible to obtain low-level information about a system and its connectivity
(wireless or wired connection type);

1. https://dashboards.gitlab.com
2. https://grafana.wikimedia.org
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Figure 6.1 – Our proposal for a standard browser measurement API: webpage’s scripts could
call this (privileged) API to obtain accurate measurements towardslandmark servers. It could
provide relevant information from available network gateways and the operating system itself.

— Without webcam authorization, measurements must be done over TCP, a protocol known
to be conservative during the slow-start phase (Figure 5.3);

— When measuring large bandwidth, a browser might be limited by its actual computing
power due to the limitations of JavaScript;

— We showed that estimating the QoE of third-party service requires a WebExtension to
bypass CORS protections.

In an attempt to solve the �rst point, the French telecommunication regulator (ARCEP)
proposed a measurement API that all ISP must include in their gateway boxes starting from
2022. This API would allow measurement scripts to access relevant information about one
customer’s connectivity, while ensuring a standardization of measurement scripts [4]. While
the remaining three points may be addressed by using a dedicated software installed by users,
we believe that browsers should provide dedicated APIs for network measurements. For in-
stance, web browsers could provide a APIs (Figure 6.1) for bandwidth estimation using UDP or
QoE estimation of any website using recognized metrics (e.g. ATF). These special capabilities
would run from within browser internals, using optimized and secure system-level features.
This new set of APIs could integrate well in the already existing “Web Performance” JavaScript
module, and could provide standardized and accurate QoS/QoE measurements for end users,
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Measures

???

Figure 6.2 – Overview of a federated RCA service. After performing measurements (geomet-
ric shapes), end users send these measurements to one or several trusted landmark servers.
Through federation, landmarks may now collaborate to build a shared RCA model.

third-party providers, network operators and regulators. For additional security and privacy,
this proposal could be enabled in a dedicated browser prompt, for instance similar to the web-
cam access request: “Do you authorize this website to measure your Internet connectivity?”. This
should prevent most leaks of sensitive information regarding the network con�gurations of
end users.

6.2.3 Crowdsourcing as a potential solution

While waiting for a more transparent Internet, the crowdsourcing of measurements seems
to remain a promising path. That is the strategy we used in DiagNet and DiagSys: end
users and reference servers collaborate by sharing their measurements, in an e�ort to build
a common knowledge about Internet architecture. This strategy is also fostered by public
databases maintained by communities (e.g. RIPE Atlas [204] for measurements or PeeringDB
for IXP data). In this document, we have described network modeling and RCA services as
centralized tools, where clients send their metrics and receive predictions. With this design, all
the relevant metrics are collected in a single point, allowing model training with all available
measurements. However, such a design cannot scale realistically to millions of users and would
pose privacy problems since a central service could track all metrics from all users without
their consent. For instance, it is known that RTT measurements may be su�cient to localize
end users over the globe [237, 238]. When combining several measurements, one rogue RCA
service could even identify users with high precision [239]. In early experiments, we observed
that a basic random forest model could re-identify clients from their QoS metrics with a recall
of 95.5% in a pool of 41 possible clients.
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As an alternative to centralized services, we have started exploring how RCA services
could be federated between di�erent providers. End users would be able to select which RCA
provider(s) they trust—and even host one provider by themselves if they prefer. Figure 6.2
presents a basic overview of a federated DiagNet, where landmarks both provide measure-

ment endpoints and a federated RCA. In this preliminary architecture, users �rst collect mea-
surements from several, untrusted landmarks; then they send all their measurements to one
or several trusted landmarks providing RCA services. The main research challenge is to make
landmarks collaborate to build RCA models from their collective knowledge. We started eval-
uating two approaches for DiagNet:

— Model-sharing approaches usually work in successive rounds, where landmarks (i)
train a local model from their own knowledge, (ii) broadcast this local model to other
landmarks and (iii) update their model from the combination of received models from
other landmarks. This line of work has been initially presented by Google [240] and
has seen a wide development. However, it might su�er from the large network delays
between landmarks, non-uniformity of data [241] and is mainly restricted to neural net-
works.

— By contrast, data-sharing approaches propose to share dataset samples (i.e. user mea-
surements) instead of whole models. The main challenge is to select which samples (or
“meta” information about samples) should be shared with other training agents (i.e. land-
marks). Common solutions include selecting random elements, building coresets [242]
or sending information about the distribution of samples. We evaluated several of these
techniques, and showed that random data sampling was (surprisingly) the solution lead-
ing to the most accurate models in our datasets. Data-sharing approaches can be applied
to any family of machine learning models, since only the training data needs to be shared
between landmarks. Moreover, it is signi�cantly faster than model-sharing approaches
since a single round is needed. The main downside is that it requires landmarks to share

the data assigned by end users.

It is worth noting that the federated approaches we have sketched here remain vulnerable
to a number of attacks on privacy and model integrity. We believe nonetheless that combined
with standard APIs and with a greater transparency from network services and operators,
they pave the path towards the future developments of scalable modeling of large computer
networks.

138



Résumé en Français

L’Internet est devenu la principale méthode de communication pour de nombreuses orga-
nisations, personnes et machines. Il est alimenté par une fédération de milliers d’opérateurs,
qui collaborent pour permettre des communications rapides et résilientes entre n’importe quel
appareil sur terre. L’Internet a été à bien des égards un succès retentissant, mais il doit encore
relever des dé�s de taille. En particulier, avec l’augmentation de la demande mondiale d’Inter-
net et de l’o�re de services multimédias, il est de plus en plus di�cile pour les opérateurs de
garantir une bonne qualité d’expérience aux utilisateurs. Cependant, la complexité du réseau
est le plus souvent cachée aux utilisateurs �naux : le dépannage des pannes de connectivité
reste di�cile en pratique. Les récentes avancées dans le domaine de l’apprentissage automa-
tique ont montré que les approches basées sur les données peuvent aider à comprendre des
systèmes complexes tels que l’Internet. Dans cette thèse, nous montrons que ces approches
peuvent être utilisées pour la modélisation de grands réseaux informatiques, même lorsque
les informations disponibles sont limitées.

La complexité croissante des réseaux informatiques

La demande pour un Internet plus rapide a globalement et fortement augmenté au cours
des dernières années. Selon les “Facts and Figures” de l’ITU [1], plus de 50% de la population
mondiale sera connectée en 2020, contre moins de 30% il y a dix ans. En particulier, 69% des
personnes âgées de 15 à 24 ans ont accès à l’Internet. Le nombre de ménages disposant d’un
accès au haut débit a également doublé, passant de 30% en 2010 à 57% en 2019. Alors que le
nombre de personnes connectées augmente, la bande passante dont chaque individu a besoin
a également augmenté de manière signi�cative. Cette évolution est naturelle compte tenu des
progrès des technologies des médias permettant de capturer, de traiter et d’a�cher à moindre
coût des contenus haute dé�nition (images, musique, vidéos, jeux, etc.). Par exemple, d’après
les estimations de Cisco [2], le nombre de téléviseurs 4K a doublé entre 2018 et 2020. Cette
tendance devrait se poursuivre car de plus en plus d’appareils sont également connectés à
Internet au �l du temps : les prévisions montrent que plus de 13 milliards d’appareils pourraient
être connectés en 2023, y compris des appareils gourmands en bande passante comme les
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véhicules autonomes ou les caméras de surveillance nuagiques. La crise du Covid-19 a encore
ampli�é la demande de tra�c à large bande en raison des blocages régionaux et d’un intérêt
plus large pour le télétravail. (À titre d’exemple, l’Italie a connu 44% de tra�c supplémentaire
pendant les con�nements de 2020 par rapport à la même période en 2019 [1]).

Pour faire face à cette demande croissante, les opérateurs Internet ont investi pour étendre
leur réseau : de 2019 à mi-2020, 200 Tbit/sec de capacité supplémentaire ont été ajoutés au ni-
veau mondial selon l’ITU, portant le total estimé à 700 Tbit/sec. Depuis 2018, la bande passante
moyenne mondiale �xe (resp. mobile) des connexions des utilisateurs a grimpé à un taux de
20% (resp. 27%) par an, et atteindra probablement 110 Mbit/sec en 2023 (resp. 44 Mbit/sec) [2].
Si cela signi�e que davantage de câbles intercontinentaux, de �bres locales et d’antennes sont
déployés, la stratégie utilisée par les opérateurs pour gérer leurs réseaux a également dû évo-
luer. L’un des changements importants est le passage au SDN, où le plan de contrôle du réseau
est découplé du plan d’acheminement (des données) : Ce paradigme permet une plus grande
adaptabilité aux demandes dynamiques de leurs clients. Selon [2], 40% des opérateurs interro-
gés ont indiqué être déjà passés à de tels réseaux, et 55% des autres opérateurs prévoient un
déploiement dans les deux ans. Le SDN permet en théorie d’automatiser la plupart des tâches
d’ingénierie du tra�c, donnant lieu à des con�gurations de réseau optimisées, des politiques
de routage et d’échange de tra�c entre opérateurs. Dans les réseaux 5G (dont la conception
permet le SDN), les opérateurs sont incités à déployer des fonctions réseau “près de la péri-
phérie” pour permettre de nouveaux cas d’utilisation tels que le “cloud gaming” ou l’analyse
télémétrique à grande échelle. En pratique, cela signi�e déployer d’importantes ressources in-
formatiques dans des centres de données ou même des antennes près des utilisateurs �naux.
Les services et applications Internet doivent également adapter leurs infrastructures pour ré-
pondre à la demande, en déployant des systèmes distribués sur plusieurs sites dans le monde,
par exemple. Là encore, malgré un large éventail d’o�res de services nuagiques, ces systèmes
distribués ajoutent naturellement de la complexité et de nouvelles dépendances dans l’équa-
tion. À titre d’exemple, Net�ix a déployé des serveurs de livraison dans plus de 500 points de
présence pour faire face à la demande mondiale de streaming vidéo [3], permettant au service
de devenir le plus grand fournisseur de contenu en France en 2020 [4], devant Google et son
service vidéo Youtube.

Toute cette complexité supplémentaire peut toutefois se retourner contre nous et entraîner
de graves pannes. Le 17 juillet 2020, alors qu’elle tentait de résoudre un problème relativement
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bénin de congestion du réseau, une équipe d’ingénieurs de Cloud�are a mis à jour la con�gu-
ration d’un routeur. Cependant, ce changement de con�guration contenait une erreur qui re-
dirigeait l’ensemble du tra�c de Cloud�are vers un seul emplacement du réseau : cela a conduit
à la panne mondiale de la plupart des 12 millions de sites Web desservis par l’entreprise pen-
dant environ 30 minutes [5]. Les systèmes automatisés peuvent également connaître des échecs
spectaculaires : le 30 août 2020, CenturyLink/Level3 (l’un des plus grands opérateurs de réseau
selon CAIDA [6]) a déclenché une petite modi�cation pour protéger un client contre une cybe-
rattaque. Une chaîne d’événements automatisés a conduit CenturyLink/Level3 à annoncer un
grand nombre de changements de routage à d’autres opérateurs de réseau, mettant ainsi hors
service une grande partie de l’Internet pendant près de cinq heures [7]. Dans ces exemples,
les relations entre la cause racine et les symptômes observés n’étaient pas évidentes, en raison
des nombreuses dépendances entre les composants du réseau. Pour les observateurs externes
tels que les chercheurs ou les utilisateurs �naux, le dépannage et la compréhension des pannes
d’Internet sont encore plus complexes, car la plupart de ces dépendances sont cachées (pour
des raisons techniques ou commerciales). Bien que certaines informations publiques soient dis-
ponibles par le biais des points d’interconnexion (IXPs), la plupart de la topologie de l’Internet
et des relations entre les parties prenantes de l’Internet restent di�ciles à déduire [8].

Approches axées sur les données

Les logiciels d’automatisation, d’optimisation et de prise de décision sont largement uti-
lisés par les opérateurs de réseaux pour tenter d’o�rir une bonne qualité de service à leurs
clients et de réduire les coûts opérationnels. Historiquement basés sur des règles de décision
statiques conçues par des experts, ces programmes peuvent avoir du mal à comprendre les dé-
pendances complexes des réseaux informatiques modernes. On constate cependant un intérêt
croissant pour les approches statistiques et axées sur les données de la conception et de l’ex-
ploitation des réseaux : les algorithmes d’apprentissage automatique tirent parti des grandes
quantités de données recueillies par les opérateurs pour produire des modèles pertinents de
leurs réseaux. Pourtant, les applications des techniques d’apprentissage automatique aux ré-
seaux informatiques et à l’Internet restent di�ciles en pratique en raison de la grande échelle

des réseaux gérés. Ces réseaux sont en e�et di�ciles à instrumenter a�n d’obtenir des mesures
continues et des informations actualisées. De plus, avec l’évolution récente vers le fog- et le
edge-computing, de plus en plus de décisions de gestion sont prises automatiquement par des
équipements ayant une connaissance limitée du réseau complet.
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Au cours de la dernière décennie, les progrès de l’informatique ont permis de développer
des solutions révolutionnaires avec des modèles de réseau neuronal et l’apprentissage profond.
Un exemple très populaire est AlphaGo de Google, le premier logiciel capable de battre des
joueurs de Go professionnels [9] (2016). D’autres exemples concernent un large éventail de
domaines, allant du sujet historique de l’analyse d’images à la synthèse de contenu multimé-
dia, en passant par les modèles de traduction pilotés par les données par exemple (une bonne
partie de ce résumé a d’ailleurs été traduite par un modèle de réseau neuronal !). Grâce à leur
expressivité, ces solutions se sont avérées plus e�caces pour modéliser des systèmes et des
dépendances complexes que la plupart des approches traditionnelles. En particulier, si l’on
dispose de su�samment de données, les modèles d’apprentissage profond sont capables d’ex-
traire (“apprendre”) des relations complexes cachées dans les données d’entrée, ce qui conduit
à des solutions plus précises et généralisables.

Dans cette thèse, nous soutenons que l’apprentissage statistique peut aider à mo-

déliser de grands réseaux informatiques aux interdépendances complexes,mêmeavec

des informations limitées sur les réseaux évalués. Nous démontrons cette a�rmation en
appliquant les récentes avancées des techniques de traitement d’images et de graphes aux
réseaux informatiques, avec des données collectées à partir de réseaux simulés et réels.

Nos résultats plaident en faveur de l’intégration de techniques plus axées sur les données
dans la conception et la gestion des réseaux informatiques. Alors que ces réseaux deviennent
de plus en plus complexes et di�ciles à gérer, ces techniques o�rent la possibilité d’améliorer
les performances des réseaux tout en réduisant les risques de pannes et les coûts opérationnels,
des paramètres fondamentaux pour les opérateurs de réseaux. D’autre part, nos contributions
montrent également que des observateurs externes peuvent utiliser l’apprentissage statistique
pour étudier les caractéristiques d’un réseau informatique malgré le peu d’informations préa-
lables dont ils disposent à son sujet. Ceci est très important pour un certain nombre d’acteurs,
notamment les utilisateurs désireux d’évaluer les opérateurs de réseaux ou les campagnes
de recherche tierces. Bien que nous concentrions cette thèse sur les réseaux informatiques,
nous pensons que la plupart des contributions peuvent être appliquées à d’autres domaines de
systèmes interdépendants avec des changements limités. Par exemple, nous pensons que nos
techniques sont susceptibles de s’appliquer à tout système cyber-physique (par exemple, les
réseaux intelligents ou les systèmes de contrôle industriels), aux réseaux sociaux et de trans-
port ou aux processus chimiques et biologiques.
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Problématiques de recherche et découvertes

Dans cette thèse, nous étudions di�érents problèmes liés à l’a�rmation que nous avons
faite dans la dernière section. Plus précisément, nous di�érencions principalement les pro-
blèmes en fonction de la quantité d’information disponible utilisable pour l’apprentissage sta-
tistique. En e�et, les solutions aux problèmes considérés sont en réalité très di�érentes lorsque
l’on a accès à la topologie complète du réseau et aux caractéristiques des composants internes,
par rapport à celles où seules des mesures limitées sont possibles et où le réseau est considéré
comme une “boîte noire”. Cette di�érenciation correspond plus ou moins à la disparité des
connaissances entre un opérateur de réseau (ayant une vue d’ensemble relativement bonne de
son réseau) et les observateurs externes. En conséquence, les dé�s que nous considérons sont
di�érents en fonction de la quantité de connaissances disponibles :

— Dans un premier problème, nous considérons le cas d’un opérateur de réseau désireux
d’estimer les paramètres de performance du réseau, et connaissant la topologie du ré-
seau et les caractéristiques des composants du réseau ; Ces topologies et caractéristiques
peuvent être actuellement déployées ou concerner un changement de con�guration pla-
ni�é ;

— Ensuite, nous nous demandons si la ou les causes racines des défaillances observées
peuvent être identi�ées avec un apprentissage statistique et des informations limitées
sur un réseau. Une solution à ce second problème permettrait à toutes les parties pre-
nantes de l’Internet de comprendre et de résoudre les défaillances, ce qui est très di�cile
aujourd’hui en raison du manque d’informations disponibles.

Les modèles statistiques sont généralement construits à partir d’un environnement spé-
ci�que (par exemple, un réseau informatique), pour ce même environnement. Cependant, les
solutions pratiques aux dé�s susmentionnés doivent rester généralisables à tout réseau infor-
matique, quelle que soit sa taille. En proposant des modèles extensibles et généralisables par
conception, nous nous assurons que nos contributions répondent à cette exigence.

Modélisation de réseaux pour l’estimation rapide des performances

En raison des interdépendances complexes entre les composants d’un réseau informa-
tique, il est généralement di�cile de prédire comment une con�guration de réseau donnée
se comportera en pratique. Il s’agit d’un problème majeur pour les opérateurs de réseau dé-
sireux d’optimiser leurs con�gurations sans introduire de problèmes : de petits changements
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dans une partie du réseau pourraient entraîner des changements radicaux de performance
dans d’autres parties apparemment sans rapport. Historiquement, les opérateurs ont utilisé
des connaissances d’experts et des simulations, mais ces approches peuvent être imprécises
et lentes. Dans le contexte des réseaux dynamiques à grande échelle, de nouvelles solutions
robustes et e�caces sont aujourd’hui nécessaires.

Le paradigme KDN [10] a été proposé à cet égard. Il propose d’exploiter les capacités com-
binées des réseaux SDN (collecte de métriques et gestion de réseau facilitées) et de l’appren-
tissage automatique pour concevoir et contrôler e�cacement de grands réseaux informatiques
complexes. Avec le KDN, les réseaux doivent être modélisés à partir de la con�guration connue
du réseau a�n que des décisions automatisées puissent être appliquées. Un des objectifs de cette
modélisation est de prédire la performance du réseau en fonction des changements de con�gu-

ration a�n de prendre les meilleures décisions. Inspirés par un travail précédent basé sur les
réseaux neuronaux en graphe (Graph Neural Networks) [11], nous proposons dans cette thèse
de modéliser explicitement les dépendances entre les composants du réseau dans de multiples
graphes bipartis. Nous appliquons des techniques récentes sur ce modèle des dépendances
et obtenons des prédictions avec une très bonne précision pour des réseaux de grande taille
en quelques centaines de millisecondes (en comparaison, les outils de simulation nécessitent
plusieurs minutes pour les mêmes prédictions). En particulier, notre contribution peut suppor-
ter des routeurs avec diverses politiques d’ordonnancement. Nous montrons qu’elle peut être
généralisée à di�érentes topologies et con�gurations de réseau et nous explorons son fonc-
tionnement interne avec des visualisations des représentations apprises. Ce travail a été réa-
lisé dans le cadre d’un dé� d’apprentissage automatique co-organisé par l’ITU et le Barcelona
Networking Center [12].

Analyse des Causes Racines depuis la périphérie

Les utilisateurs de l’Internet �xe et mobile rencontrent régulièrement des dégradations
de performances et des problèmes de connectivité lorsqu’ils accèdent à des services sur In-
ternet. Lors de ces incidents, il est di�cile pour les utilisateurs �naux d’identi�er les causes

racines derrière les symptômes observés : est-ce dû à une mauvaise couverture sans �l ? Une
interruption de service? Une mauvaise con�guration du dispositif ? Les Fournisseurs d’Accès à
Internet (FAI) sont naturellement blâmés par les utilisateurs pour de nombreuses dégradations
perçues, puisqu’ils sont chargés de fournir une bonne connectivité Internet. Par conséquent,
leurs équipes d’assistance clientèle sont souvent sollicitées pour des symptômes qui ne sont
pas réellement causés par eux-mêmes. Cela entraîne des coûts d’assistance supplémentaires
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et une dégradation de la relation client : les services clients des fournisseurs de télévisions et
de télécom ont été classés parmi les pires aux États-Unis en 2018 [14].

Les utilisateurs �naux et les FAIs béné�cieraient tous deux d’une solution automatisée
capable de déterminer l’origine la plus probable des pannes. Les clients seraient alors en mesure
de localiser rapidement les pannes tout en évitant la plupart des appels téléphoniques coûteux
en temps, menant à une plus grande satisfaction (75% des citoyens américains des plus jeunes
générations préfèrent les communications écrites dans les relations avec les services client).
Inversement, les FAIs ne recevraient que les rapports relatifs aux causes racines susceptibles de
relever de leur domaine de responsabilité. Les services Internet tiers impactés béné�cieraient
également d’une meilleure expérience client et de rapports automatiques, car même de petites
dégradations des performances peuvent entraîner une baisse des revenus [16, 17].

Dans ce contexte, les informations disponibles sont drastiquement réduites par rapport au
problème précédent : en faisant l’analyse du point de vue d’un seul utilisateur, il n’est pas
possible d’avoir accès à la topologie complète et aux dépendances des services Internet. Pour
résoudre ce problème, nous proposons d’utiliser une combinaison de mesures participatives et
l’utilisation de serveurs de mesure de référence (“landmarks” ou “mires de test”) déployés dans
de nombreux sites Internet : en collectant des mesures à partir de ces points d’observation, nous
montrons qu’il est possible d’identi�er de nombreuses causes racines, même sans collabora-
tion avec les FAIs. Nous exploitons un ensemble de données collectées avec des défaillances
contrôlées pour construire des modèles de causes racines, et montrons qu’un réseau neuronal
convolutif surpasse deux solutions alternatives dérivées d’algorithmes classiques d’apprentis-
sage automatique. En particulier, nos modèles “Convolutional Neural Network” sont extensibles
et peuvent supporter un nombre dynamique de mires de tests par conception.

Exploitation des navigateurs web pour la collecte de métriques réseau

La troisième contribution que nous présentons dans cette thèse est liée à la collecte de mé-
triques pertinentes pour l’analyse des causes racines. Dans ce dernier travail, nous soulignons
le besoin de métriques sur la qualité d’expérience, et nous plaidons pour l’instrumentation de

l’environnement d’exécution des appareils des utilisateurs �naux à cet égard. Plus précisément,
nous soutenons que les navigateurs web sont de bonnes plateformes pour la collecte de mé-
triques qui peuvent fournir des estimations précises à la fois sur la qualité d’expérience et sur
la qualité de service réseau. Nous proposons un ensemble de méthodes basées sur les capacités
des navigateurs, en tenant compte des restrictions de sécurité des navigateurs web modernes.
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Pendant plus d’un an, nous avons déployé et collecté des mesures en utilisant nos contribu-
tions et avec l’aide d’utilisateurs volontaires. Nous avons mis en évidence plusieurs résultats
intéressants à partir de l’ensemble de données collectées, notamment les variations de qualité
d’expérience dans le temps, le repérage d’une di�érenciation du tra�c ou d’importants chan-
gements dans le routage Internet. Nous proposons également une approche statistique pour
identi�er les défauts et leurs causes racines observés dans notre ensemble de données. Cet ef-
fort de collecte de données est nécessaire pour toute solution axée sur les données : il a permis
d’évaluer les techniques que nous avons proposées avec de vrais défauts et dégradations de
qualité d’expérience. Bien que les performances globales soient plus faibles que lors de l’éva-
luation sur un jeu de données avec des fautes contrôlées, notre étude démontre tout de même
l’intérêt de l’apprentissage statistique pour le problème d’analyse des causes racines et soulève
un certain nombre de questions et de pistes de recherche intéressantes pour les travaux futurs
dans ce domaine.

Plan du document

Cette thèse suit le synopsis que nous avons décrit dans la section précédente, chaque cha-
pitre étant écrit pour être autonome.

— Nous commençons dans le Chapitre 2 en introduisant quelques dé�nitions importantes
sur les réseaux informatiques, suivies d’informations supplémentaires sur la modélisa-
tion de ces réseaux et l’analyse des causes racines. Dans la section 2.4, nous exposons
également certaines notions de base de l’apprentissage automatique, notamment les dé-
veloppements récents des réseaux neuronaux.

— Dans le Chapitre 3, nous détaillons l’application de réseaux neuronaux en graphe gé-
néralisables pour la prédiction de performance sur les chemins du réseau. Ce chapitre
comprend les détails de nos résultats lors du dé� GNN co-organisé par l’ITU et le Bar-
celona Neural Networking Center.

— Le Chapitre 4 présente notre deuxième contribution, DiagNet, un modèle de réseau
neuronal extensible pour l’analyse de causes racines à partir d’équipements d’utilisateur
�nal. En particulier, nous montrons comment DiagNet se comporte par rapport à deux
autres modèles dérivés d’approches d’apprentissage statistique classiques (c’est-à-dire
un classi�eur extensible naïf Bayesien et un classi�eur extensible de forêt aléatoire). Pour
évaluer nos modèles, nous exploitons un ensemble de données collectées sur quelques
semaines avec des fautes injectées et contrôlées.
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— Dans le but d’évaluer comment DiagNet se comporte avec des fautes d’Internet réelles,
nous avons conçu et déployé une plateforme de mesure complète pendant plus d’un an.
Nous présentons cette plateforme, DiagSys, dans le Chapitre 5. Cette dernière contri-
bution montre que la modélisation de réseaux avec des fautes réelles est beaucoup plus
di�cile qu’avec des fautes contrôlées. Cependant, nous avons réussi à construire des mo-
dèles statistiques à partir de cet ensemble de données, et nous présentons nos résultats
dans ce chapitre.

— En�n, nous concluons cette thèse dans le Chapitre 6, où nous détaillons également des
perspectives et des idées prometteuses pour la modélisation des réseaux et les services
d’analyse des causes racines pour les années à venir.
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Acronyms

AI Arti�cial Intelligence
API Application Programming Interface
AS Autonomous System
ATF Above The Fold
AWS Amazon Web Services

BGP Border Gateway Protocol
BLE Bluetooth Low Energy

CDN Content Delivery Network
CNN Convolutional Neural Network
CORS Cross-Origin Resource Sharing
CPU Control Processing Unit

DHT Distributed Hash Table
DNS Domain Name Service
DRR De�cit Round Robin
DSL Digital Subscriber Line

ECMP Equal-cost multi-path

GBN German Backbone Network
GÉANT2 Gigabit European Advanced Net-

work Technology 2
GNN Graph Neural Network
GPU Graphical Processing Unit

ICMP Internet Control Messaging Protocol
IP Internet Protocol
IQR Interquartile Range
ISP Internet Service Provider

ITU International Telecommunication Union
IXP Internet Exchange Point

KDE Kernel Density Estimation
KDN Knowledge-De�ned Networking

LSTM Long Short-Term Memory

MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MLP Multilayer Perceptron
MSE Mean Square Error

NAT Network Address Translation
NSFNET National Science Foundation Net-

work

PLT Page Load Time
PoP Point of Presence

QoE Quality of Experience
QoS Quality of Service

RCA Root Cause Analysis
ReLU Recti�ed Linear Unit
RNN Recurrent Neural Network
RTT Round Trip Time

SDN Software-De�ned Networking
SVM Support Vector Machine

t-SNE t-distributed Stochastic Neighbor Em-
bedding
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TCP Transport Control Protocol

ToS Type of Service

TTL Time To Live

UDP User Datagram Protocol

WFQ Weighted Fair Queuing

XSS Cross-Site Scripting
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Titre : Techniques d’Apprentissage Statistique pour la Modélisation et pour l’Analyse de Causes
Racines de Réseaux Informatiques

Mot clés : Internet, Qualité d’Experience, Réseaux de neurones, Production participative

Résumé : Avec la demande mondiale crois-
sante d’Internet, les opérateurs de réseaux
et les fournisseurs de services doivent gérer
des systèmes de plus en plus complexes et
interdépendants. Dans cette thèse, nous ex-
plorons comment les techniques d’apprentis-
sage statistique peuvent être utilisées pour ai-
der à la modélisation et à la compréhension
des grands réseaux informatiques. Dans une
première contribution, nous proposons et éva-
luons un algorithme de réseau neuronal en
graphe pour la prédiction des performances à
partir de caractéristiques connues du réseau.

Notre deuxième contribution porte sur l’ana-
lyse des causes racines à l’échelle de l’In-
ternet : en tenant compte des connaissances
limitées sur le réseau, nous évaluons trois
techniques d’apprentissage statistique pour
ce problème important, les classifieurs naïf
Bayésien, forêt aléatoire et réseau neuronal
convolutif. Nous montrons les résultats de ces
techniques sur un ensemble de données de
mesures Internet couvrant une année entière,
et collectées avec un ensemble de méthodes
basées sur les navigateurs web.

Title: Computer Network Modeling and Root Cause Analysis with Statistical Learning

Keywords: Internet, Quality of Experience, Neural Networks, Crowdsourcing

Abstract: With the global rising Inter-
net demand, network operators and service
providers need to manage increasingly com-
plex and interdependent systems. In this the-
sis, we explore how statistical learning tech-
niques can be used to help modeling and
understanding large computer networks. In
a first contribution, we propose and evaluate
a Graph Neural Network algorithm for path
performance prediction given known network
characteristics.

Our second contribution focuses on
Internet-scale Root Cause Analysis: given
limited knowledge about the network, we eval-
uate three statistical learning techniques for
this important problem, including Naive Bayes,
Random Forest and Convolutional Neural Net-
work classifiers. We show the results of these
techniques over a year-long dataset of Inter-
net measurements, collected with a set of
methods based on web browsers.
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