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Abstract 

 
Towards a smart prediction and optimization model in the context of Physical Internet 
Supply Chain Network 
 

Supply chain networks are recently complex and stochastic systems. Currently, 

logistics managers, which are the main actors in supply chain networks, face two main 

problems: increasingly diverse and variable customer demand. These problems make the 

prediction difficult. Classical forecasting methods implemented in many business units have 

limitations with the fluctuating demand and the complexity of fully connected supply chains. 
Moreover, the connection’s complexity affects both upstream and downstream parties, such as 

inventory management and transportation routing. Physical Internet (PI) is a new paradigm that 

is implemented to solve the complexity of the supply chain network. Many studies 

implemented this principle in different areas, such as inventory replenishment, product 

distribution and encapsulation. Also, few studies mention demand forecasting in the supply 

chain network. Based on the forecasting trend nowadays, Machine Learning methods have 

been proposed to improve prediction in many business fields, particularly in the supply chain 

context.  

This thesis proposes a smart prediction model in the context of the PI supply chain 

network. The case study of agricultural products in Thailand is considered. This thesis focuses 

on Demand forecasting and PI distribution aspects. In the first aspect, two main contributions 

are proposed. Firstly, a Long Short-Term Memory (LSTM), is proposed for demand 

forecasting in the PI supply chain network. Secondly, a hybrid genetic algorithm and scatter 

search are proposed to automate tuning of the LSTM hyperparameters. Accuracy and 

coefficient of determination were the key performance indicators used to compare the proposed 

method's performance with other supervised learnings: Auto-regressive Integrated Moving 

Average with exogenous factors (ARIMAX), Support Vector Regression (SVR), and Multiple 

Linear Regression (MLR). The results prove that the forecasting efficiency of the LSTM 

method is better with continuous fluctuating demand, whereas the other methods offer high 

performance with less varied demand. The performance of hybrid metaheuristics is higher than 

the trial-and-error method. Furthermore, the forecasting model results are useful in 

transportation and holding costs in the PI distribution process.   

Since the first aspect has been developed to improve forecasting demand efficiency, the 

second aspect will be implemented to reduce the complexity of full connection in the PI 
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network. In the second aspect, the dynamic clustering method and the vehicle routing problem 

with the simultaneous pickup and delivery (VRPSPD) are proposed to reduce the PI supply 

chain's complexity. The main objective is to minimize the size of the PI-node’s connection and 

total distribution costs of the feasible routes in each area. The forecasting results from the first 

aspect were implemented as an experimental dataset in this approach. Furthermore, this 

approach also relates to the main objectives in the PI context's transportation: reduce empty 

trips and share transportation resources between PI-hubs and retailers. For minimizing the size 

of the PI-node’s connection, the concept of partitional clustering is implemented. Mixed 

Integer Programming (MIP) is proposed to formulate and solve the problem in smaller 

instances for optimizing the total distribution cost. A Random Local Search (RLS) and a 

Simulated Annealing (SA) are proposed to solve larger instances with outstanding quality. 

These solutions are benchmarked to the insertion-based heuristic from previous research in the 

literature. This approach is evaluated by total costs, computational times, and the gap between 

the classical supply chain and PI in all solutions. Also, the calculation of CO2 emission is used 

as an additional benchmark to validate the sustainability applied to the PI. The result shows 

that SA provides the best solution in total distribution cost and provides a good result of holding 

cost and transportation cost after comparing with the insertion-based heuristic. The total costs 

and the percentage of gaps are closed to the optimal point in MIP. 

Based on the analysis and discussion of the results, this approach demonstrates that the 

integration between the smart prediction model and the constructive clustering and routing 

solutions can enhance the PI network's production and distribution processes' efficiency. If the 

future demand has a good quality in the prediction process, it will also positively affect the 

supply chain network's overall performance. Moreover, the proposed approaches in this thesis 

can be applied to many case studies in different areas. 

 
Keyword: Demand forecasting, Machine learning, Recurrent neural network, Physical 
Internet, Transportation routing, Metaheuristics, Simultaneous Pickup-Delivery  
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Résumé 

 
Vers un modèle de prédiction et d'optimisation intelligent dans le contexte de l'Internet 
Physique 
 

De nos jours, les réseaux de chaînes d'approvisionnement sont des systèmes de plus en 

plus complexes et stochastiques. Les gestionnaires de ces réseaux sont confrontés à deux 

problèmes majeurs concernant la demande client : elle est aléatoire et de plus en plus 

diversifiée. Ces problèmes rendent la prédiction difficile. En effet, les méthodes de prévision 

classiques, mises en œuvre dans de nombreuses industries, ont atteint leurs limites. Ils ne 

peuvent suivre les fluctuations de la demande ni tenir compte de la complexité des réseaux de 

chaînes d'approvisionnement, de plus en plus connectés. La qualité de la prédiction affecte tous 

les flux aussi bien en amont qu'en aval et son impact est amplifié par la complexité des 

connexions au sein de la chaîne. Elle conditionne la gestion des stocks, l’acheminement des 

produits et les interactions entre les partenaires de la chaîne. L'Internet physique (IP) est un 

nouveau paradigme introduit pour résoudre cette complexité de la chaîne d’approvisionnement. 

De nombreuses études ont mis en œuvre ce principe dans différents domaines, tels que la 

gestion des stocks et la distribution. Cependant, peu d'études traitent la problématique de la 

prévision de la demande dans ce contexte. En même temps, la tendance actuelle des méthodes 

de calcul de prévisions, dans de nombreux domaines d'activité, est tournée vers les approches 

d'apprentissage automatique. 

Cette thèse propose un modèle de prédiction intelligent dans le contexte de l'IP. Elle 

introduit un modèle de prédiction capable de tenir compte de la complexité et le caractère 

stochastique de la demande et qui répond aux besoins d'un réseau ouvert et totalement 

connectés tel que l'IP. De plus, sur la base de ces prédictions, la thèse propose des outils et 

approches pour simplifier la complexité de la distribution dans l'IP. Une étude de cas sur des 

produits agricoles en Thaïlande est considérée pour illustrer les approches proposées.  

La thèse se concentre sur les volets de la prévision de la demande et de la distribution 

dans l'IP. Dans le premier volet, deux contributions principales sont apportées. Tout d'abord, 

un réseau de neurones récurrents LSTM (Long short-term memory) est proposé pour la 

prévision de la demande. Deuxièmement, un algorithme génétique hybride utilisant la 

recherche dispersée (Scatter Search) est proposé pour automatiser le réglage des 

hyperparamètres du LSTM. Nous avons comparés les performances de notre approche de 

prédiction avec les modèles les plus connus comme : les modèles autorégressifs et moyenne 
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mobile avec facteurs exogènes (ARIMAX), les machines à vecteurs de support pour la 

régression (SVR) et régression linéaire multiple (MLR). Les résultats prouvent l'efficacité de 

prévision de la méthode LSTM. Elle est meilleure avec une demande fluctuante continue, alors 

que les autres méthodes offrent des performances élevées avec une demande moins variée. De 

plus, pour le réglage des hyperparamètres, les performances de notre algorithme hybride sont 

supérieures à celles de la méthode essais erreurs. En outre, nous avons illustré la qualité de nos 

prévisions en étudiant leur impact sur les coûts de transport et de stockage dans un réseau IP. 

Le deuxième volet est mis en œuvre quant à lui pour réduire la complexité du réseau 

IP. Dans ce volet, nous combinons le partitionnement dynamique du réseau au problème de 

tournées de véhicules avec collecte et livraison simultanée (VRPSPD). L'objectif principal est 

de minimiser le nombre de connexions ainsi que les coûts totaux de distribution dans chaque 

zone (cluster). Les résultats des prévisions du premier volet ont été exploités dans cette 

problématique de distribution. Cette approche répond, également, aux principaux objectifs du 

transport dans le contexte de l'IP : réduire les trajets à vide et partager les ressources de transport 

entre les PI-hubs et les détaillants. Une fois le partitionnement réalisé, les problèmes de 

tournées mixtes sont modélisés sous forme d'un programme mixte programmé en nombres 

entiers (MIP). Un solveur est utilisé pour des instances de petite taille et une recherche locale 

aléatoire (RLS) et un recuit simulé (SA) sont proposés pour résoudre des instances plus 

grandes. Les résultats sont excellents et nous avons comparé nos solutions à celles produites 

par une heuristique d'insertion issue de la revue de littérature. L'analyse des résultats porte sur 

les coûts totaux, les temps de calcul et l'écart entre les cas de chaînes d'approvisionnement 

classique et l'IP. De plus, le calcul des émissions de CO2 est utilisé comme référence 

supplémentaire pour valider la durabilité appliquée à l'IP. Le résultat montre que SA fournit la 

meilleure solution en termes de coût de distribution total et fournit un bon résultat de coût de 

stockage et de coût de transport après comparaison avec l'heuristique d'insertion.  

Sur la base de l'analyse et de la discussion des résultats, notre approche démontre que 

l'intégration entre le modèle de prédiction intelligente et les solutions de clustering et de 

distribution (tournées de véhicules) peut améliorer l'efficacité des processus de production et 

de distribution du réseau IP. Si la prévision de la demande future est de bonne qualité, nous 

maîtrisons nos activités et l’effet est également positif sur les performances globales du réseau 

de la chaîne d'approvisionnement. De plus, les approches proposées dans cette thèse peuvent 

être appliquées à de nombreuses études de cas dans différents domaines. 
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Mot-clé : Prévision de la demande, Machine learning, Réseau neuronal récurrent, Internet 
physique, Routage, Métaheuristique, Livraison et ramassage simultanés  
  



 
 

10 

Table of Contents 

ACKNOWLEDGEMENT ..................................................................................................................................... 3 
REMERCIEMENTS ............................................................................................................................................. 4 
ABSTRACT ............................................................................................................................................................ 5 
RESUME ................................................................................................................................................................ 7 
LIST OF FIGURES ............................................................................................................................................. 12 
LIST OF TABLES ............................................................................................................................................... 14 
LIST OF ABBREVIATIONS ............................................................................................................................. 15 
INTRODUCTION ............................................................................................................................................... 16 

1. BACKGROUND ............................................................................................................................................... 16 
2. RESEARCH QUESTION .................................................................................................................................... 17 
3. CONTRIBUTION .............................................................................................................................................. 17 
4. THESIS STRUCTURE ........................................................................................................................................ 18 

CHAPTER 1 GENERAL CONTEXT IN SUPPLY CHAIN AND PHYSICAL INTERNET ...................... 22 
1.1 INTRODUCTION ............................................................................................................................................ 22 
1.2 BACKGROUND AND PROBLEMATIC IN THE SUPPLY CHAIN ............................................................................ 22 
1.3 DEMAND FORECASTING IN THE SUPPLY CHAIN MANAGEMENT ..................................................................... 24 
1.4 THE PHYSICAL INTERNET (PI) ...................................................................................................................... 26 
1.5 THE RELATIONSHIP BETWEEN DEMAND FORECASTING AND PI NETWORK .................................................... 32 
1.6 SUMMARY .................................................................................................................................................... 33 

CHAPTER 2 LITERATURE REVIEWS .......................................................................................................... 34 
2.1 INTRODUCTION ............................................................................................................................................ 34 
2.2 DEMAND FORECASTING ............................................................................................................................... 34 

2.2.1 Regression models ............................................................................................................................... 36 
2.2.2 Neural Network models ....................................................................................................................... 40 

2.3 THE DISTRIBUTION PROCESS ........................................................................................................................ 48 
2.3.1 The distribution process in supply chain ............................................................................................. 49 
2.3.2 The distribution process in PI ............................................................................................................. 50 
2.3.3 Clustering method ............................................................................................................................... 52 
2.3.4 Vehicle Routing Problem in supply chain ........................................................................................... 53 
2.3.5 Pickup and delivery problems in PI context ........................................................................................ 56 
2.3.6 Solving methods in the Simultaneous Pickup and Delivery problem .................................................. 57 

2.4 LITERATURE DISCUSSION ............................................................................................................................ 62 
2.5 SUMMARY .................................................................................................................................................... 63 

CHAPTER 3  DEMAND FORECASTING IN THE PI CONTEXT .............................................................. 65 
3.1 INTRODUCTION ............................................................................................................................................ 65 
3.2 DEMAND FORECASTING PROBLEMS AND PROPOSED APPROACHES ............................................................... 65 

3.2.1 Demand forecasting problems in PI context ....................................................................................... 65 
3.2.2 Proposed demand forecasting approaches ......................................................................................... 67 

3.3 THE IMPLEMENTATION IN THE PI CONTEXT ................................................................................................. 69 
3.3.1 The implementation of the forecasting model ..................................................................................... 69 
3.3.2 The automated hyperparameters tuning with a hybrid metaheuristic ................................................ 73 
3.3.3 Simulation model in the PI context with demand forecasting ............................................................. 76 

3.4 SUMMARY .................................................................................................................................................... 78 
CHAPTER 4  PROPOSED APPROACHES FOR THE DISTRIBUTION PROBLEMS IN THE 
PHYSICAL INTERNET ..................................................................................................................................... 80 

4.1 INTRODUCTION ............................................................................................................................................ 80 
4.2 PI DISTRIBUTION PROBLEMS AND PROPOSED APPROACHES .......................................................................... 80 

4.2.1 Specific PI distribution problems ........................................................................................................ 80 
4.2.2 Proposed PI distribution approaches ................................................................................................. 81 



 
 

11 

4.3 THE IMPLEMENTATION IN THE PI NETWORK ................................................................................................ 85 
4.3.1 The proposed clustering methods ........................................................................................................ 86 
4.3.2 Integer Linear Program (ILP) for assigning retailers to clusters ...................................................... 86 
4.3.3 The implementation of PI distribution network for VRPSPD ............................................................. 87 

4.4 SUMMARY .................................................................................................................................................... 95 
CHAPTER 5  CASE STUDY AND RESULT ANALYSIS, MANAGERIAL INSIGHT ............................. 96 

5.1 INTRODUCTION ............................................................................................................................................ 96 
5.2 THE OVERVIEW OF CASE STUDY: AGRICULTURAL PRODUCTS IN THAILAND ................................................ 96 

5.2.1 Demand forecasting ............................................................................................................................ 97 
5.2.2 PI distribution ..................................................................................................................................... 99 

5.3 THE DEMAND FORECASTING ....................................................................................................................... 101 
5.3.1 Evaluation of the forecasting model performance ............................................................................ 102 
5.3.2 Performance analysis of the simulation model in the PI context ...................................................... 111 
5.3.3 Managerial insight discussion on forecasting approaches ............................................................... 114 

5.4 THE PI DISTRIBUTION ................................................................................................................................. 115 
5.4.1 Performance analysis of PI-hubs clustering ..................................................................................... 116 
5.4.2 Performance analysis of VRPSPD in PI distribution network .......................................................... 118 
5.4.3 Managerial insight discussion on PI-distribution approaches ......................................................... 126 

5.5 SUMMARY .................................................................................................................................................. 127 
CHAPTER 6 CONCLUSION AND FUTURE PERSPECTIVE ................................................................... 129 

6.1 CONCLUSION .............................................................................................................................................. 129 
6.2 FUTURE PERSPECTIVE ................................................................................................................................ 130 

6.2.1 Short-term improvement .................................................................................................................... 130 
6.2.2 Long-term improvement .................................................................................................................... 131 

REFERENCE ..................................................................................................................................................... 133 

  



 
 

12 

List of Figures 

FIGURE 1. THE OVERVIEW OF THESIS STRUCTURE .................................................................................................. 18 
FIGURE 2. THE EXAMPLE OF SUPPLY CHAIN FLOW FROM UPSTREAM TO DOWNSTREAM PARTIES ............................ 23 
FIGURE 3. THE FLOW CHART OF FOUNDATIONS OF THE PHYSICAL INTERNET ( MONTREUIL, MELLER, AND BALLOT 

2013) ............................................................................................................................................................. 26 
FIGURE 4. THE EXAMPLE OF PI-CONTAINERS EMBEDDED SMART OBJECTS (SALLEZ ET AL., 2016) ........................ 27 
FIGURE 5. THE LAYER OF OSI, INTERNET, AND OLI MODELS (ADAPTED FROM MONTREUIL, BALLOT, AND 

FONTANE 2012) ............................................................................................................................................ 28 
FIGURE 6. THE EXAMPLE OF INVENTORY DISTRIBUTION FLOW BETWEEN CLASSICAL SUPPLY CHAIN AND PI 

CONTEXT IN FMCG PRODUCT (YANG ET AL., 2017A) ................................................................................... 29 
FIGURE 7. THE EXAMPLE OF HYPERCONNECTED TRANSPORTATION AND DISTRIBUTION NETWORK (CRAINIC & 

MONTREUIL, 2016) ....................................................................................................................................... 30 
FIGURE 8. THE FORECASTING MODEL CHART IN THIS THESIS .................................................................................. 35 
FIGURE 9. (A) FEED-FORWARD NEURAL NETWORK (BRILLIANT, 2018); (B) RECURRENT NEURAL NETWORK 

(MATHWORKS, 2000) ................................................................................................................................... 41 
FIGURE 10. THE STRUCTURE OF THE LSTM BLOCK (SAGHEER & KOTB, 2019) ..................................................... 42 
FIGURE 11. THE EXAMPLE STRUCTURE OF GA STEPS (BLANCO ET AL., 2000) ........................................................ 44 
FIGURE 12. THE EXAMPLE STRUCTURE OF SS STEPS (CANO-BELMÁN ET AL., 2010) .............................................. 46 
FIGURE 13. THE EXAMPLE OF ROUTING CONSTRUCTION BETWEEN CLASSICAL SUPPLY CHAIN AND PI NETWORKS 

(BEN MOHAMED ET AL., 2017) ..................................................................................................................... 50 
FIGURE 14. THE EXAMPLE OF PARTITIONAL CLUSTERING (GUNAWARDENA, 2016) ............................................... 52 
FIGURE 15. THE EXAMPLE OF THE MDVRP STRUCTURE (MONTOYA-TORRES ET AL., 2015) ................................. 54 
FIGURE 16. THE EXAMPLE OF THE OVRP STRUCTURE (V. F. YU & LIN, 2015) ...................................................... 55 
FIGURE 17. THE EXAMPLE OF TRANSPORTATION FLOW WITH THE SIMULTANEOUS PICKUP AND DELIVERY 

(IASSINOVSKAIA ET AL., 2017) ...................................................................................................................... 58 
FIGURE 18. THE ALGORITHM OF TABU SEARCH (BOUSSAÏD ET AL., 2013) ............................................................. 59 
FIGURE 19. THE ALGORITHM OF SIMULATED ANNEALING (BOUSSAÏD ET AL., 2013) ............................................. 59 
FIGURE 20. THE OVERVIEW OF MAIN PROBLEMS IN DEMAND FORECASTING APPROACH ......................................... 65 
FIGURE 21. THE STRUCTURE OF THE PROPOSED FORECASTING APPROACH ............................................................. 68 
FIGURE 22. THE PROCEDURE FLOW OF DEMAND FORECASTING PROCESS ............................................................... 69 
FIGURE 23 THE PROCESS FLOW OF THE HYBRID METAHEURISTIC ........................................................................... 74 
FIGURE 24. PROCESS OVERVIEW OF A HYBRID GENETIC ALGORITHM AND SCATTER SEARCH (A); EXAMPLE 

NETWORK STRUCTURES IN SELECTION, CROSSOVER, AND MUTATION (B) ..................................................... 75 
FIGURE 25. SCREENSHOT OF THE SIMULATION MODEL IN THE PI SUPPLY CHAIN (NETLOGO SIMULATOR) ............. 77 
FIGURE 26. THE OVERVIEW OF SPECIFIC PROBLEMS IN THE DISTRIBUTION APPROACH ........................................... 80 
FIGURE 27. THE STRUCTURE OF THE PROPOSED PI DISTRIBUTION APPROACHES .................................................... 82 
FIGURE 28. THE PI NETWORK OF PICK-UP DELIVERY PROBLEM .............................................................................. 85 
FIGURE 29. THE EXAMPLE OF HUBS CLUSTERING BASED RETAILER DEMAND ON EACH DAY .................................. 86 
FIGURE 30. THE ITERATED RANDOM HEURISTIC FOR GENERATING THE INITIAL SOLUTION ................................... 92 
FIGURE 31. THE RANDOM LOCAL SEARCH PROCESS FLOW .................................................................................... 93 
FIGURE 32. THE CONSTRUCTIVE RANDOM HEURISTIC WITH SIMULATED ANNEALING PROCESS ........................... 94 
FIGURE 33. EXAMPLE OF A DISTRIBUTION NETWORK IN THE PI CONTEXT IN THE LOWER NORTHERN REGION OF 

THAILAND ..................................................................................................................................................... 98 
FIGURE 34. THE EXAMPLE OF PI-HUB AND RETAILER LOCATIONS ........................................................................ 101 
FIGURE 35. COMPARISON OF THE TRENDS IN THE FORECAST AND REAL DEMAND USING LSTM AND SVR MODELS 

WITH TIME LAG6 (A); ADF STATISTIC SCORE OF LSTM DEMAND FORECASTING WITH TIME LAG6 (B) ...... 106 
FIGURE 36. COMPARISON OF THE TRENDS IN THE FORECAST AND REAL DEMAND USING LSTM AND ARIMAX 

MODELS WITH TIME LAG4 (A); THE ADF STATISTIC SCORE FOR LSTM DEMAND FORECASTING WITH TIME 
LAG4 (B) ..................................................................................................................................................... 108 

FIGURE 37. COMPARISON OF THE TRENDS IN THE FORECAST AND REAL DEMAND USING LSTM AND MLR MODELS 
WITH TIME LAG6 (A); THE ADF STATISTIC SCORE FOR LSTM DEMAND FORECASTING WITH TIME LAG6 (B)
 .................................................................................................................................................................... 110 

FIGURE 38. COMPARISON OF HOLDING COSTS (A) AND TRANSPORTATION COSTS (B) BETWEEN FORECAST AND 
REAL DEMAND OVER 31 DAYS; DEVIATION IN HOLDING COST AND TRANSPORTATION COST BETWEEN 
FORECAST AND REAL DEMAND OVER 31 DAYS (C) ...................................................................................... 113 

FIGURE 39. THE INTEGRATED SUPPLY CHAIN PLANNING FLOW (BANKER, 2018) ............................................... 115 
FIGURE 40. THE BEST CLUSTER PERFORMANCE OF 5 PI-HUBS BASED ON K-MEANS (ON THE LEFT SIDE) AND K-

MEDOID (ON THE RIGHT SIDE) OF 30 DAYS .................................................................................................. 116 



 
 

13 

FIGURE 41. THE BEST CLUSTER PERFORMANCE OF 5 PI-HUBS BASED ON K-MEANS (ON THE LEFT SIDE) AND K-
MEDOID (ON THE RIGHT SIDE) OF 60 DAYS .................................................................................................. 117 

FIGURE 42. THE EXAMPLE OF TRANSPORTATION ROUTES BETWEEN PI-HUBS AND RETAILERS ............................. 119 
FIGURE 43. COMPARING TOTAL COSTS BETWEEN PI AND CLASSICAL SC IN MIP, RLS, SA, AND INSERTION 

HEURISTIC ................................................................................................................................................... 122 
FIGURE 44. THE FIVE REPLICATIONS FOR EACH INSTANCE AND FOR EACH METAHEURISTIC OF TOTAL DISTRIBUTION 

COST (A-B) ................................................................................................................................................. 123 
FIGURE 45. THE CALCULATION OF CO2 EMISSION BETWEEN CLASSICAL SUPPLY CHAIN AND PI WITH MIP, RLS, 

SA, AND INSERTION HEURISTIC ................................................................................................................... 125 
FIGURE 46. THE FLOW OF THE DECISION SUPPORT SYSTEM FOR MANAGERIAL INSIGHT ....................................... 127 
 
  



 
 

14 

List of Tables 

TABLE 1. COMPARISON OF FORECASTING MODEL CHARACTERISTICS ..................................................................... 48 
TABLE 2. THE DISTRIBUTION CONCEPT BETWEEN CLASSICAL & PI ...................................................................... 51 
TABLE 3. THE PICKUP AND DELIVERY CONCEPT BETWEEN CLASSICAL & PI ........................................................ 56 
TABLE 4. THE SUMMARY OF SOLVING SOLUTIONS IN THE VRPSPD PROBLEM ....................................................... 61 
TABLE 5. THE SUMMARY OF RELEVANT LITERATURE LISTS IN THIS THESIS ............................................................ 63 
TABLE 6. THE RESULT COMPARISON BETWEEN EACH MODEL WITH RMSE AND U2 VALUE ................................. 102 
TABLE 7. THE RESULT COMPARISON BETWEEN EACH CONDITION IN LSTM ......................................................... 103 
TABLE 9. EXAMPLES OF REAL AND FORECAST DAILY DEMAND WITH RELEVANT FORECASTING MODELS FOR 

PINEAPPLE WITH TIME LAG2 (A); PERFORMANCE OF THE FORECASTING MODEL FOR FUTURE DEMAND OF 
PINEAPPLE (B)-(C) ...................................................................................................................................... 105 

TABLE 10. PERFORMANCE OF THE FORECASTING MODEL FOR FUTURE DEMAND OF CASSAVA (A)-(B) ................ 107 
TABLE 11. PERFORMANCE OF THE FORECASTING MODEL FOR FUTURE DEMAND OF CORN (A)-(B) ...................... 109 
TABLE 12. THE BEST PERFORMANCES OF THE FORECASTING MODELS FOR FUTURE DEMAND OF ALL COMMODITY 

CROPS AND RELEVANT CONDITIONS ............................................................................................................ 111 
TABLE 13. COMPARISON OF HOLDING COSTS AND TRANSPORTATION COSTS BETWEEN FORECAST AND REAL 

DEMAND OVER 16 DAYS (A); DEVIATION IN HOLDING COST AND TRANSPORTATION COST BETWEEN 
FORECAST AND REAL DEMAND OVER 16 DAYS AND 31 DAYS (B) ................................................................ 112 

TABLE 14. THE CLUSTER PERFORMANCE OF 5 PI-HUBS OF 30 DAYS WITH HOPKINS EQUAL 0.73 ......................... 116 
TABLE 15. THE CLUSTER PERFORMANCE OF 5 PI-HUBS OF 60 DAYS WITH HOPKINS EQUAL 0.84 ......................... 117 
TABLE 16. THE COMPARISON OF CLUSTER PERFORMANCE OF 5 PI-HUBS AND 10 PI-HUBS .................................. 117 
TABLE 17. THE EXAMPLES OF 10 PI-HUBS(A), 5 PI-HUBS(B), AND RETAILERS(C) ASSIGNED IN EACH CLUSTER FOR 

7 DAYS ........................................................................................................................................................ 118 
TABLE 18. THE DETAILS OF ALL SCENARIOS ......................................................................................................... 119 
TABLE 19. COMPARING TOTAL COSTS BETWEEN PI AND CLASSICAL SC IN MIP, RLS, SA, AND INSERTION 

HEURISTIC ................................................................................................................................................... 120 
TABLE 20. COMPARING THE COMPUTATIONAL TIMES BETWEEN CLASSICAL SUPPLY CHAIN AND PI WITH MIP, RLS, 

SA, AND INSERTION HEURISTIC ................................................................................................................... 124 
TABLE 21. THE CALCULATION OF CO2 EMISSION BETWEEN CLASSICAL SUPPLY CHAIN AND PI WITH MIP, RLS, SA, 

AND INSERTION HEURISTIC .......................................................................................................................... 124 
TABLE 22. THE DETAILS OF ALL SCENARIOS OF RANDOM INSTANCES .................................................................. 125 
TABLE 23. COMPARING TOTAL COSTS BETWEEN PI AND CLASSICAL SC FOR RANDOM INSTANCES ...................... 125 
 
  



 
 

15 

List of Abbreviations 

 
ADF   Augmented-Dickey Fuller test 

ARIMA  Auto-regressive Integrated Moving Average 

ARIMAX  Auto-regressive Integrated Moving Average with exogeneous factor 

FFNN   Feed-Forward Neural Networks 

GA        Genetic Algorithm 

ILP   Integer Linear Program 

IRH   Iterated Random Heuristic 

K-NN   K-Nearest Neighbor 

LM   Levenberg-Marquardt 

LSTM   Long Short-Term Memory 

MAE   Mean Absolute Error 

MAPE   Mean Absolute Percentage Error 

MASE   Mean Absolute Scale Error 

MSE   Mean Squared Error 

MDVRP  Multiple Depots Vehicle Routing Problem 

MIP   Mixed Integer Programming 

MILP   Mixed Integer Linear Programming 
MLP   Multilayer Perceptron 

MLR   Multiple Linear Regression 

NNS   Nearest Neighbor Search 

OLI   Open Logistics Interconnection 

OSI   Open System Interconnection 

OVRP   Open Vehicle Routing Problem 

PI                       Physical Internet 

RLS   Random Local Search 

RMSE   Root Mean Squared Error 

RNN   Recurrent Neural Network 

SA   Simulated Annealing 

SS   Scatter Search 

SVR   Support Vector Regression 

TS   Tabu Search 

VRPSPD  Vehicle Routing Problem with simultaneous pickup delivery  



 
 

16 

Introduction 

1. Background 

Supply chains in all business units face the challenge of achieving efficiency, reliability, 

and availability of their services. Moreover, customer demands nowadays are varying and 

uncertain demands. There are many solutions to meet these challenges, such as proposing a 

good replenishment policy, improving transportation routing in the network, and enhancing the 

Lean manufacturing concept's production process. One of the most exciting solutions to 

improve the overall performance of the supply chain from upstream to downstream sides is 

demand forecasting. Demand forecasting is one of the powerful approaches to enhance the 

supply chain's efficiency in many organizations. Also, demand forecasting has several 

advantages to drive performance in all business units. For instance, demand forecasting can 

help supply chain managers to plan the production capacity and goods inventory to serve 

enough customer demands. The excellent prediction will also have a positive effect on the total 

cost in all business units.  Besides, demand forecasting can reduce the bullwhip effect in all 

relevant parties in the supply chain. Several research pieces had worked on the demand 

forecasting approach, particularly in the classical supply chain context. However, stakeholder’s 

connection in the supply chain nowadays is more complicated. It means that all parties in the 

network can be fully connected. Since the concept of Physical Internet (PI) has been introduced 

since the year 2011 to solve the supply chain's complexity, many studies implement this 

paradigm to improve operational decisions, such as inventory managing, product transporting, 

product packaging, and some related operations, in the supply chain. However, few studies 

mention demand forecasting strategy. Regarding the efficiency of demand forecasting in the 

classical supply chain, it could work well and enhance the PI network’s performance. 

Moreover, when the stakeholder's connection is more dynamic, it is compulsory to improve 

demand forecasting for better resource planning in the supply chain. 

This thesis proposes a smart prediction model to solve resource planning in the PI 

context regarding all the above reasons. Two primary issues are covered in this thesis. Firstly, 

this thesis proposes a novel method to improve the demand forecasting performance and 

compare results with existing methods. Secondly, this thesis also proposes a smart 

methodology to reduce the PI network's complexity based on demand forecasting. These novel 

perspectives would help supply chain managers meet the resource planning’s requirement 

according to the complicated and dynamic connection in the supply chain.       
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2. Research question 

Considering the background mentioned earlier and the fact that the implementation of 

a smart prediction model can improve the performance of a fully connected supply chain 

network, there are two main research questions: 

• How can demand forecasting efficiency be improved to predict appropriate customer 

demand in the fully connected supply chain as PI?  

• How to reduce the complexity of the full connection between all nodes in the PI 

network’s distribution?  

Based on these questions above, the quality of demand forecasting is essential to 

improve the complex supply chain network’s performance. Also, reducing the complexity of 

goods distribution is compulsory to propose excellent strategies to solve this problem. All 

guidelines for new approaches are demonstrated in the next section. 

3. Contribution 

This thesis's main objective is to improve the quality of demand forecasting in the fully 

connected network as PI and enhance transportation routing efficiency with demand 

forecasting. The main contributions are covered by two sections: The demand forecasting 

section and the PI distribution section. 

• Demand forecasting:  This section proposes an innovative solution to improve the 

quality of the forecasting method. In the beginning, this thesis implements the LSTM, 

which is one of the most potent machine learnings to forecast time-series data. The 

performance of this forecasting model is also benchmarked with other classical models: 

ARIMAX, Support Vector Regression (SVR), and Multiple Linear Regression (MLR). 

Then, the LSTM method will improve the forecasting quality via automated 

hyperparameters tuning. In this thesis, the concept of hybrid metaheuristics, Genetic 

Algorithm (GA), and Scatter Search (SS), are proposed to solve this problem. The 

proposed approaches have experimented with the dataset of multiple agricultural 

products in Thailand. In addition, this section will demonstrate how demand forecasting 

enhances the PI network’s efficiency via the PI simulation.  

• PI distribution: This section proposes a novel solution to reduce the complex 

connection among PI-nodes. PI-hubs and retailers are considered as PI-nodes in this 

thesis. There are two main approaches to enhance the distribution performance in the 

PI network. Firstly, the Dynamic clustering method is proposed to reduce the size of 
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PI-nodes in each cluster. K-Mean and K-Medoid are implemented to cluster PI-hubs. 

Also, an Integer Linear Program (ILP) is applied to determine the number of retailers 

inside each cluster. Secondly, the concept of vehicle routing problem with simultaneous 

pickup delivery (VRPSPD) is applied to improve the transportation routing between 

PI-nodes in the cluster. The VRPSPD will be formulated using Mixed Integer 

Programming (MIP) and solved using metaheuristics. Besides, the forecast demand 

from the demand forecasting section is considered as an input variable for this section. 

This approach also concerns the environmental aspect. It proves that the PI context 

provides a more sustainable transportation solution in the distribution process. 

4. Thesis structure 

As it can be seen in Figure 1, the structure of this thesis is as follows. There are six 

chapters with two main contributions: Forecasting contribution with green color, and PI 

distribution contribution with yellow color.  

 

 

 
 

 
 

 
 

 

 

 

 

 

Figure 1. The overview of thesis structure 

 

Chapter 1, entitled “General Context in Supply Chain and Physical Internet”, 

introduces the supply chain's general background and problems. This chapter will also describe 

the general aspect of demand forecasting and its importance in the supply chain. Besides, the 

concept of the PI will be described in this chapter. Finally, the combination concept between 
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demand forecasting and the PI network will be introduced in this chapter. This aspect will be 

the starting point of the contribution to this thesis.  
 

Chapter 2, entitled “Literature reviews”, reviews the literature concerning forecasting 

techniques and the distribution process's relevant methodologies in the supply chain. Firstly, 

the literature of two main forecasting groups will be presented in this chapter: Regression and 

Neural Network. The concept of metaheuristics will also be proposed according to the 

improvement process of forecasting techniques. Secondly, the distribution process literature 

will focus on the general concept of the classical supply chain and PI distribution processes. 

Two main concepts of the distribution process: clustering methods, the vehicle routing 

problem, will be demonstrated in this chapter.  The end of this chapter will present the research 

gaps of existing works. This part will lead to propose new approaches to this thesis. 

 
Chapter 3, entitled “Demand forecasting in the PI context”, is the first crucial part of 

this thesis. The demand forecasting problems and proposed approaches will be presented in 

this chapter. Besides, this chapter will present how demand forecasting can enhance the 

efficiency of the PI network via the PI simulation. All proposed approaches will be focused on 

two aspects: the LSTM forecasting model and the hybrid metaheuristics (GA and SS). These 

approaches will enhance the forecasting performance's quality. At the end of this chapter, the 

usage of demand forecasting will be demonstrated on the PI network in the simulation.  

 
Chapter 4, entitled “Proposed approaches for the distribution problems in the Physical 

Internet”, is the second crucial part of this thesis. The PI distribution problems and proposed 

approaches will be presented in this chapter. All proposed approaches will focus on two 

aspects: The clustering approach and the transportation routing approach. The objective is to 

reduce the distribution's complexity and construct feasible transportation routes in the PI 

network. These approaches will be implemented via dynamic clustering and the multiple 

depots and open vehicle routing concepts. Besides, these approaches will improve resource 

planning and transportation in the PI network. 

 
Chapter 5, entitled “Case study and result analysis, managerial insight”, illustrates the 

validation of proposed approaches’ implementation. In the beginning, the overview case study 

will be presented. Next, the result and discussion of each approach will be demonstrated. The 

comparative results between LSTM and regression models will be presented in the forecasting 

section. Also, the clustering and transportation routing performances will be presented in the 
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PI distribution section. The discussion of real-life application will be proposed in the 

managerial insight at the end of each section.  

 

Chapter 6, entitled “Conclusion and future perspective”, summarizes the conclusion of 

proposed approaches both demand forecasting and PI distribution aspects. Furthermore, the 

positive suggestions that can continually improve this thesis will be proposed.    

 

The works presented in all chapters are also presented in the following articles: 

 

International Conference paper: 

 

• Kantasa-ard, Anirut, Abdelghani Bekrar, Abdessamad Ait El Cadi, and Yves 

Sallez. 2019. “Artificial Intelligence for Forecasting in Supply Chain 

Management: A Case Study of White Sugar Consumption Rate in Thailand.” In 

9th IFAC Conference on Manufacturing Modelling, Management and Control 

MIM 2019Berlin, Germany. Berlin: IFAC 

 

• Kantasa-Ard, Anirut, Maroua Nouiri, Abdelghani Bekrar, Abdessamad Ait El 

Cadi, and Yves Sallez. 2019. “Dynamic Clustering of PI-Hubs Based on 

Forecasting Demand in Physical Internet Context.” In Studies in Computational 

Intelligence, 853:27–39. Springer Verlag. https://doi.org/10.1007/978-3-030-

27477-1_3. 

 

• Kantasa-ard, Anirut, Tarik Chargui, Abdelghani Bekrar, Abdessamad Ait El 

Cadi, and Yves Sallez. 2021. “Dynamic Multiple Depots Vehicle Routing in the 

Physical Internet Context.” In INCOM Conference. Budapest, Hungary: IFAC. 
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International Journal paper: 

• Kantasa-ard, Anirut, Maroua Nouiri, Abdelghani Bekrar, Abdessamad Ait El 

Cadi, and Yves Sallez. 2020. “Machine Learning in Forecasting in the 

Physical Internet: A Case Study of Agricultural Products in Thailand.” 

International Journal of Production Research. 

https://doi.org/10.1080/00207543.2020.1844332. 

 

• Kantasa-ard, A., Chargui, T., Bekrar, A., Ait El Cadi, A., & Sallez, Y. (2021). 

Dynamic Sustainable Multiple Depots Vehicle Routing Problem with 

Simultaneous Pickup-Delivery in the Physical Internet context. Submitted.  
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Chapter 1 

General context in supply chain and Physical Internet 

1.1 Introduction 

This chapter aims to provide the general supply chain context and the problem of this 

thesis. This chapter will also propose an exciting perspective and lead to construct the proposed 

approaches. Four main sections are considered in this introductive chapter. Firstly, the main 

ideas and general problems are proposed in the background and problematic in the supply chain 

section. Secondly, demand forecasting's specific problems are identified in the section 

“Demand forecasting in the supply chain management.” Thirdly, the new paradigm of the 

innovative supply chain "Physical Internet" is demonstrated in the Physical Internet section. 

This section presents the main concept of Physical Internet (PI), the implementation of PI in 

the distribution network, and how to manage inventory with the PI context. Fourthly, the 

relationship between demand forecasting and the PI network section presents that demand 

forecasting is essential for the PI supply chain network. Lastly, the summary will conclude all 

details that are mentioned in the previous four sections. 

1.2 Background and problematic in the supply chain 

Supply chain management is crucial in many business organizations nowadays. There 

are plenty of definitions to describe the supply chain and its essential in the organization 

(Janvier-James, 2011). In general, the supply chain is the group of suppliers, manufacturers, 

distributors, retailers, and relevant logistics service providers to transfer finished goods and 

services to customers (Chow et al., 1994; Chow & Heaver, 1999). An example of the supply 

chain flow is shown in Figure 2. The supply chain flow is composed of demand and supply 

flows. In demand flow, customers require the finished goods and services via retailers. Then, 

retailers will transfer all requests to wholesalers or distributors directly. If they have the 

products in their places, they will supply the customer via the supply flow. Otherwise, they 

will order the manufacturer to produce and deliver products to them. Moreover, if 

manufacturers do not have any on-hand products, they will order raw materials from their 

suppliers. The supply chain flow does not focus only on demand and supply orders between 

upstream and downstream parties; it also deals with cash flow and information flow with 

diverse connections in the supply chain network (Janvier-James, 2011).

 



 
 

23 

 

Figure 2. The example of supply chain flow from upstream to downstream parties 

 

Logistics and supply chain organizations must improve their services' efficiency, 

reliability, and availability to be more competitive. One of the reasons is that customer behavior 

changes rapidly and is more customized (Amirkolaii et al., 2017; G. Wang, 2012). Moreover, 

organizations can face many problems if they do not improve supply chain efficiency. For 

instance, products are inefficiently distributed due to the varying demands from customers. The 

inventory level can be exceeded or shortage regarding poor communication and 

synchronization between parties.  

Many studies indicate that sales forecasting, effective demand planning, and related 

activities significantly impact efficiency at every stage throughout the supply chain recently. 

For example, the authors (F. Chen et al., 2000) proposed that demand forecasting and order 

lead time with centralized customer demand information will positively reduce the bullwhip 

effect problem. The authors (Aburto & Weber, 2007) implemented a forecasting model to 

forecast future customer demand trends to support inventory planning in the Chilean 

supermarket. Bala (2010) proposed the hybrid forecasting method between the decision tree 

and the ARIMA model to enhance the demand forecasting performance and reduce inventory 

level in the Indian retail industry's supply chain. The authors (Amirkolaii et al., 2017) 

implement the ABC classification concept to select the best forecasting model for uncertain 

demand in the aircraft spare part supply chain. They found that a good forecasting model can 

reduce the total inventory costs both exceeding and underestimated inventories. The authors 

(Oger et al., 2021) also developed a new decision support system to improve the capacity 

planning dynamically in a complex supply chain of pharmaceutical and cosmetic products.  

Based on the above examples, many activities, such as demand forecasting and inventory 
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planning, are linked to the supply chain performance. If some activities have problems, they 

could impact other stages in the whole chain.  

Moreover, the supply chain must deal with sustainability due to the increasing 

importance of economical, social, and environmental aspects (Janvier-James, 2011). As we can 

see now, many problems in the supply chain are required to be solved. Also, most of the 

problems deal with these three aspects. For instance, in the economical aspect, the 

transportation costs rapidly grow up and erode to the cost-saving in the distribution process 

(Group, 2015), while other parties in the supply chain try to control the cost by securing 

customer satisfaction. In the social aspect, over-utilized transportation in the road network 

proposed stress to people due to noise, air pollution, and accidents (Maibach et al., 2008). The 

environmental aspect suggests that each country should reduce the carbon (CO2) and 

greenhouse gas emissions from both industrial and transportation sectors within 2025 (Mirzaei 

& Bekri, 2017; S. Yu et al., 2018). The main goal is to avoid global warming and climate 

change phenomena.  

Regarding these problems, if the organizations would not fix the problem in one sector, 

the distribution process and remaining sectors can be appropriately affected. The concerns, as 

mentioned previously, affect the logistics cost directly in the supply chain. Also, the logistics 

cost is one of the highest proportions of all costs. Therefore, reducing logistics costs is an 

exciting solution to improve the distribution's efficiency and the overall supply chain. 

Reducing logistics costs is also a priority for many logistics companies nowadays. 

There are several solutions to reduce the total logistics costs of the supply chain. One of the 

interesting solutions that usually implements in business organizations is demand forecasting. 

The details of demand forecasting in the supply chain are proposed in the next section. 

1.3 Demand forecasting in the supply chain management 

Demand forecasting is an important issue and a fundamental step in supply chain 

management. It consists of estimating the consumption of products or services for the 

upcoming periods, making it possible to plan activities, reduce delivery times, adjust stock 

levels, and optimize operating costs (Marien, 1999). However, forecasting is not easy, 

especially for dynamic, open systems such as the Physical Internet. There is no safe and reliable 

method, and forecasting can affect many decisions, especially with uncertain demand. 

Moreover, poor control of this process can result in incorrect predictions and lousy production 

and distribution planning decisions. The challenge of demand forecasting is the customer 

demand's complexity from various supply chain network nodes. 



 
 

25 

The complexity of the demand forecasting process results from fluctuating customer 

behavior. The pattern of customer demand is varied and non-linear (Aburto & Weber, 2007). 

Some studies have focused on demand forecasting in the supply chain. For instance, the authors 

(Amirkolaii et al., 2017) demonstrated that appropriate forecasting methods would positively 

affect inventory cost for varying demands in the aircraft spare parts supply chain. They found 

that forecast demand with more accuracy will reduce exceeding or underestimating inventory 

costs. The authors (Punia et al., 2020) proposed a new hybrid model between Long Short-Term 

Memory (LSTM) neural network and Random Forest (RF) to forecast the multivariate dataset 

from multi-channel retailers. They proved that this novel method is robust and compatible with 

the customer demand after comparing it with other existing solutions. The authors (Chien et 

al., 2020) illustrated that a suitable forecasting technique could decrease the negative impact 

of fluctuation demand in the semiconductor component industry. Another example, the authors 

(Brintrup et al., 2020) proposed a new machine learning technique to predict supplier 

disruption in a real case study of complex asset manufacturing. The results showed that 

choosing appropriate features would be able to improve the accuracy rate of forecast demand. 

Most of these works implemented machine learning and deep learning with different 

techniques. The objective is to forecast the demand from both customer and supplier sides 

based on the supply chain's complexity. These works also proved that good forecasting will 

positively affect supply chain performance, such as cost reduction and better resource planning, 

with uncertain demand. However, these works still focused on the classical supply chain 

context. They did not propose how demand forecasting affects the supply chain's relevant 

activity costs compared to real demand. It is crucial to focus on the relationship between 

demand forecasting and the efficiency of relevant parties, such as procurement, production, 

and distribution, in the complex supply chain.  

Regarding the complexity of the supply chain in industry 4.0, an innovative paradigm, 

“ Physical Internet,” was proposed in 2011 to solve the complexity and increase global logistics 

performance (Montreuil, Meller, and Ballot 2013). Therefore, the demand forecasting in this 

research will be based on the Physical Internet context. The Physical Internet concept and 

inventory management issue are proposed in the next section. 
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1.4 The Physical Internet (PI) 

The Physical Internet (PI) network represents an open global logistics supply chain 

based on physical, digital, and operational interconnectivity through international standards, 

interfaces, and protocols ( Montreuil, Meller, and Ballot 2013). The PI concept is shown in 

Figure 3 below. This chart demonstrates the relationship between the operational decisions of 

physical objects and the open global logistics system. Also, the object movement among 

relevant parties is independent of respecting the supply chain network constraints. Each 

movement in the physical objects interacts with each application in the logistics web, which is 

the set of interconnections among actors in the networks. For example, the mobility web aims 

to serve the needs of all physical object movements, such as raw materials, finish goods, and 

transportation means. In another example, the distribution web aims to serve the needs of object 

storing in any places based on the replenishment policy. The logistics web will make all 

physical activities continuous, efficient, and reliable. 

 

Figure 3. The flow chart of foundations of the Physical Internet ( Montreuil, Meller, and 
Ballot 2013) 

 

Moreover, the PI concept is stated as one of the innovative paradigms to enhance the 

supply chain performance in the industry 4.0 era (Frazzon et al., 2019). As shown in Figure 3, 

PI aims to form an efficient, resistant, adaptable, and flexible open global logistics network. 

The PI concept also deals with sustainability, which concerns economical, environmental, and 

social aspects. For instance, from an economical aspect, the PI must increase the efficiency of 

global sourcing, production, distribution, and other supply chain operations. At the same time, 
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the PI must reduce energy consumption, greenhouse gas emission, and other pollutions in the 

environmental aspect. Also, the PI should increase the life quality of relevant stakeholders, 

such as drivers and distributors, in the social aspect. Benoit Montreuil (2011) illustrated that 

PI's concept could solve the unsustainability problem in the supply chain, such as eliminating 

empty-return trips, reducing not fully loaded truck capacity, managing the storage at 

distribution hubs, and decreasing the congestion of goods transportation. These problems were 

solved by PI solutions, such as smart PI-containers embedded smart objects, smart automation 

system for real-time tracking and tracing the supply chain operations, and smart storage and 

handling system for PI-containers. The example of PI-containers with smart objects and 

notifications is shown in Figure 4. All problem notifications and operational decisions in each 

PI-container can illustrate via the activeness function (Sallez et al., 2016). The activeness 

function does not only deal with event triggering on PI-containers, but it also interacts with the 

PI management system, handling tools, and relevant agents. 

 

Figure 4. The example of PI-containers embedded smart objects (Sallez et al., 2016) 
 

Besides, the concept of interconnection in the PI network is imitated from the open 

system interconnection model in the digital network (B. Montreuil et al., 2012). As it can be 

seen in Figure 5, there are seven layers in both open system interconnection (OSI) and open 

logistics interconnection (OLI) models. The difference is that OSI deals with data and service 

transmissions from one point to another point with different protocols. Meanwhile, OLI focuses 

on the physical object transmission from one node to another node in the supply chain network. 
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There are some comparative examples to display the relationship between OSI and OLI 

models. For example, the physical layer in OSI deals with the transaction in a transmission 

medium. OLI deals with the operational movement of physical objects, such as PI-containers 

and PI-trucks, with the same concept. Another example is that both OSI and OLI models focus 

on the detection of unpredictable events of the physical layer. OSI model will detect data 

transmission error, while OLI will detect the error of PI-container transmission. Even though 

the concept of OLI is almost the same as OSI, there are still some different points between 

object transmission. The physical object transmission in the supply chain network does not 

only deal with goods transportation. It also deals with digital information, budget, and relevant 

stakeholders in the network.      

 

Figure 5. The layer of OSI, Internet, and OLI models (Adapted from Montreuil, Ballot, and 
Fontane 2012) 

 

 Since the supply chain network is more complicated recently, on the one hand, the 

concept of PI could be helpful to improve the performance of relevant activities, such as 

sourcing, production, and distribution processes, to be better. On the other hand, the total 

supply chain costs can be reduced based on this paradigm's implementation. Since the PI 

concept was already deployed in the supply chain distribution network, the details of the PI 

implementation are described in the next paragraph. 

There are three main components in the PI network: supplier plants, distribution hubs, 

and point-of-sales (Pan et al., 2015; Yang et al., 2017a). Supplier plants are the initial points to 

distribute all products to distribution hubs after finishing manufacturing. These plants can 
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distribute products to any hubs based on the replenishment policy. Distribution hubs or PI-hubs 

are combinations of warehouses and distribution centers. It means that all products can store 

and distribute in hubs, while the classical distribution network separates the role of storing and 

distributing the product. Moreover, distribution hubs can source their raw materials and 

products directly from the plants or other hubs nearby based on the available stocks. All hubs 

in the PI network can be managed their stocks by the same or different logistics service 

providers. The point of sales can send their requests to any distribution hubs that provide the 

available stocks. All components are identified as PI-nodes in the supply chain network (B 

Montreuil et al., 2010). More details will be described in the distribution flow of goods. 

In general, the distribution flow of goods always starts from the customer demand in 

the supply chain even though real-time or forecasting aspects propose the demand. Since 

customer demands are transferred to suppliers, they will fabricate and deliver finished goods 

to their customers via distributors’ hierarchical structure (Waller et al., 1999). Moreover, each 

distributor manages and controls its stock individually (Chopra, 2003). It means that each 

distributor will replenish its stock by requesting from suppliers directly. In contrast, when PI's 

interconnectivity concept is considered, all open PI-hubs in this context can share their stocks 

and transportation facilities. Each customer can also request products from various hubs in the 

network (Yang et al., 2017a).  An example of inventory distribution flow between the classical 

supply chain and PI is shown in Figure 6. 

 

Figure 6. The example of inventory distribution flow between classical supply chain and PI 
context in FMCG product (Yang et al., 2017a) 
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Regarding Figure 6, in the classical supply chain (a), we can see that each warehouse 

can request its stocks from its plant individually, and each distribution center distributes its 

finished goods to its retailers based on the hierarchical structure. However, as shown in (b), the 

PI distribution proposes the combination of warehouses and distribution centers, which calls 

“PI-hubs.” Each PI-hub can store and control its stocks the same as the warehouse and 

independently distribute its products to different retailers. There are two different main points 

between these two figures. Firstly, PI-hubs can receive raw materials or work-in-process 

products from different plants or hubs in the network based on the distribution conditions, such 

as distance, available stocks, and total cost. In contrast, all warehouses and distribution centers 

in the classic hierarchical structure are fixed. Secondly, PI-hubs in the network can share their 

facilities, such as trucks, drivers, stock levels, and space utilization. Each hub can also 

distribute its products to all retailers without any restrictions other than the classical supply 

chain. Furthermore, when the network is more extensive, the connection among PI-nodes will 

be fully hyperconnected. It means that all nodes can share the resources globally. The example 

of a hyperconnected network is shown in Figure 7. 

 

Figure 7. The example of hyperconnected transportation and distribution network (Crainic & 
Montreuil, 2016) 
 

Some examples of supply chain activities are studied in the PI context. Pan et al. (2015) 

proposed dynamic source selection for inventory control and replenishment in the PI network. 

Also, they stated that stock levels could be divided among share hubs in the network. Walha et 

al. (2016) proposed a new allocation approach to minimize the number of trucks and distance 
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travelled of each container to reach an appropriate dock. The authors (Kim, N., & Montreuil, 

2017), for instance, implemented the concept of a hyperconnected mixing center to distribute 

products from multiple manufacturers to multiple retailers in the supply chain. Manufacturers 

can distribute products independently based on the replenishment policy and decrease the 

average capacity requirement. Another example, the authors (Oger, R., Lauras, M., Montreuil, 

B., Benaben, F., & Salatge, 2017) proposed resource requirement planning in the PI (PI-RRP) 

to plan and manipulate the varieties of resources in the network. The authors (Yang et al., 

2017a, 2017b) proposed that open multiple-sourcing options would support both on-demand 

and uncertainty orders in the PI network. Their PI inventory model outperforms the classical 

inventory model. Lastly, the authors (Oger, R., Montreuil, B., Lauras, M., 2018) demonstrated 

the flow of information sharing between internal and external stakeholders, such as production 

capacities, customer demands, and stock levels, to improve the planning capability in the PI 

network. Although the PI has already been implemented in many operations in the supply 

chain, few demand forecasting studies are in this context (Qiao et al., 2019). Also, demand 

forecasting is essential for inventory management in the PI network. Suppose the supply chain 

managers have an efficient model to forecast the customer demand. They can plan the adequate 

inventory to replenish at distribution hubs and distribute to the end customers without any 

inventory problems. Simultaneously, the company can reduce the holding cost of exceeding 

inventories or the backlog cost of inadequate inventories at distribution hubs. The details of 

inventory management in PI are described in the next paragraph.  

Inventory management is one of the essential parts of the PI network (B Montreuil, 

2011; Pan et al., 2015). If the supply network has good strategies to manage inventory at each 

PI-node, it will positively affect the supply chain performance.  Some studies have proposed 

inventory management solutions in the PI context (Pan et al., 2015; Yang et al., 2017a, 2017b). 

These studies have already proven that PI's dynamic and flexible replenishment can help reduce 

inventory holding costs. Most of them also focus on real demand at a recent time to define the 

inventory levels at distribution hubs. However, some products, such as agriculture products, 

need to plan because of the long production and harvesting processes. Therefore, the demand 

forecasting can fulfill the gaps by planning the storage space at the distributors, the estimated 

budget of related activities in the distribution process, the number of transportation trucks, and 

the number of retailers to distribute the products based on the proposed replenishment policy, 

as mentioned in previous works. The demand forecasting does not only affect the inventory 

control in the distribution process, but it also perturbs the other parties in the supply chain. 
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Then, the relationship between demand forecasting and the PI network is described in the next 

section. 

1.5 The relationship between demand forecasting and PI network 

As mentioned previously, PI supply chain structures are large, complex, and fully 

connected. Also, they make the demand forecasting problem more complicated. In the PI 

complex network, fluctuations in demand can induce heavy perturbations (e.g., sold out in 

warehouse, bullwhip effect for all parties, overstocking in distribution centers) (Janvier-James, 

2011). Suppose the PI network does not have an efficient forecasting model. In that case, the 

supply chain's overall performance could affect higher total supply chain costs, the decreasing 

of customer satisfaction, and the disruption in the planning process from both upstream and 

downstream sides. Moreover, demand forecasting can help ensure an adequate quantity of raw 

materials for the production process and enough distributors' goods to serve customers. For 

instance, the authors (Oger et al., 2021) considered demand forecasting impacts the supply 

chain capacity planning in their novel conceptual framework. 

The forecasting problem is more complex and critical, as predictions for each node in 

the network need to be considered. This concept's challenging point is the complexity of all the 

parties' connections: suppliers, distributors, and customers. As the PI paradigm is still fresh, 

the demand forecasting problem in PI supply chain networks still requires further investigation. 

Besides, in this thesis, we are interested in how demand forecasting affects inventory 

management and transportation routing in the PI distribution process. We also proposed the 

word “smart” in this thesis to insist the smart demand forecasting and optimization models. It 

means that demand forecasting using the artificial intelligent techniques can plan and optimize 

the fluctuation of real-time inventory levels and transportation planning in the supply chain 

network (Comi et al., 2018; Zhu et al., 2019).   

This thesis also implemented the sustainability concept, such as the CO2 emission 

calculation, to control the pollution of goods transportation. This characteristic is quite 

significant for the concept of PI distribution for the environmental aspect. All definitions and 

relevant studies in the demand forecasting and the PI distribution aspects will be described in 

the literature review sections. Besides, the literature section will illustrate the gap of existing 

works proposed before, especially in the PI context. 
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1.6 Summary 

This chapter discussed the background and problems in the supply chain. Logistics and 

supply chain networks recently require increasing the efficiency in every perspective from 

upstream to downstream sides. The main goal is to reduce the total supply chain costs and 

improve customer satisfaction with the sustainability aspect. Several solutions are proposed to 

reduce the total costs, and one of the most effective solutions is demand forecasting. Demand 

forecasting can increase productivity, inventory control, and the planning of goods 

transportation routing. Many studies demonstrate the potential of demand forecasting with the 

different areas in the classical supply chain network. However, few cases mention this aspect 

in the PI context. Since the PI was implemented in real cases to solve complex supply chain 

networks, demand forecasting is still new in this context. Also, the PI network's complexity 

could make the demand forecasting more complicated due to the fully connected network and 

various demands from PI-nodes. Therefore, this thesis will study demand forecasting in the PI 

context. It will recognize the relationship between demand forecasting and relevant activities 

in the PI distribution process. Furthermore, this thesis will present how demand forecasting 

impacts the PI distribution network’s efficiency. In the next chapter, the literature review of 

demand forecasting and the PI network distribution process is proposed.  

 
 



Chapter 2 

Literature Reviews 

2.1 Introduction  

This chapter focuses on the literature of demand forecasting and the distribution 

concept in the Physical Internet (PI) context. The literature review is structured as follows. 

Firstly, some forecasting models are presented with their advantages and limitations. There are 

two main groups of forecasting models mentioned in this thesis: Regression and Neural 

Network models. Additionally, the main metaheuristics used to improve the forecasting models 

are reviewed, especially those used to tune the model hyperparameters. Secondly, the concept 

of the distribution process in the PI supply chain network is mentioned. This section will 

present an overview of relevant theories and existing cases in the PI distribution. This section 

also focuses on how demand forecasting affects inventory management and transportation 

routing in the PI context. Thirdly, the research gaps of the existing literature are presented in 

the last section of this chapter. Since previous demand forecasting and distribution concepts 

were proposed, there are still some gaps in these concepts to fulfill by innovative approaches.  

A short description of demand forecasting and relevant applications for each model are 

presented in the next section. 

2.2 Demand forecasting 

Since the importance of demand forecasting was already described in the previous 

chapter, this chapter will focus on the forecasting methodology. Moreover, it will illustrate 

each method's positive and negative aspects, and a summary of all forecasting methods will be 

presented at the end of this section.  

Forecasting models are primarily based on quantitative methods, qualitative methods, 

or both. Quantitative methods can be based on the historical sequence of observed demand, 

which are times-series models, some exogenous parameters that can affect the model's 

performance (causal model), or both. Qualitative methods depend on the subjective opinion of 

one or more experts with some limited data.  

Furthermore, many forecasting models are implemented and tested with time-series 

data. Classical methods such as Moving Average, Naïve Approach, or Exponential Smoothing 

are easily proposed to forecast trends in time-series data (Box & Jenkins, 1970). However, 
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some machine learning techniques can perform better to forecast non-linear trends than 

classical methods (Carbonneau et al., 2008).  

Time-series models are typically developed using existing historical values. They are 

easy to model, provide predictions over a specific period, and use the difference between the 

forecast and real values in the immediate past to tune the model parameters. However, some 

models do not capture the effect of other factors that could affect demand, such as demand at 

other nodes in the PI network, stock levels in PI hubs, and each product's unitary price.  

Neural Networks (NN) are designed to learn the relationship between these factors and 

demand in a non-statistical approach. NN-based methodologies do not require any predefined 

mathematical models, but model tuning is costly. If there are any patterns embedded in the 

data, NN comes up with minimum errors. Other statistical methods have the advantage of 

providing relatively inexpensive statistical forecasting models with historical data. However, 

these models' prediction accuracy drops significantly when the time horizon is extended, when 

the trends are not linear, or in the presence of some exogenous factors. 

Two main groups of forecasting models are considered: Regression and Neural 

Network models. These models compare and demonstrate the prediction performance for an 

open logistics system in the PI context. The structure chart of forecasting models is shown in 

Figure 8. 

 

Figure 8. The forecasting model chart in this thesis 
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2.2.1 Regression models 

The main regression models (Auto-regressive Integrated Moving Average (ARIMA), 

Support Vector Regression (SVR), and Multiple Linear Regression (MLR)) are detailed 

successively in this subsection. These three models are highlighted because they outperform 

the others in predicting non-linear trends in customer demands by considering only existing 

recorded demand or including the effect of exogenous factors. In this research, single and 

multiple factors are considered in the predicting process. Furthermore, they have been widely 

used and implemented in real cases. For example, the authors (Carbonneau et al., 2008) 

implemented SVR and MLR as benchmark models with a Recurrent Neural Network to predict 

foundry data in Canada. The authors (Aburto & Weber, 2007; Ryu et al., 2016) implemented 

an ARIMA model as a benchmark with a neural network model to train and predict customer 

demands. The mathematical formulation and relevant applications are mentioned in this 

section. 

 

Auto-regressive Integrated Moving Average (ARIMA) 
 

This model forecasts the demand with the concept of autoregressive (AR) and moving 

average (MA) and works well with seasonal and non-seasonal demand. The data must be 

preprocessed by differencing order before estimating the forecasting model (Zhang & Qi, 

2005) to make it stationary. This model is one of the powerful models with time-series 

prediction. Moreover, there is another model, which is called the ARIMAX. ARIMAX is an 

extension of the ARIMA model (Box and Jenkins 1970) with exogenous factors, which are 

extra factors that could affect the predicted parameter (Aburto & Weber, 2007; Supattana, 

2014). Some works have implemented these models. For example, Aburto and Weber (2007) 

proposed the hybrid forecasting model between ARIMAX and neural networks to forecast the 

future trend of customer demands for a Chilean supermarket. The model predicted the trend 

based on the variation in historical daily demand with some relative factors. Cools et al. (2009) 

investigated the daily traffic variation taking into account seasonal and holiday effects at 

various sites via ARIMA and ARIMAX models. Bala (2010) investigated that the hybridization 

between decision tree and ARIMA with seasonal and non-seasonal models provides the best 

demand forecasting performance compared to other models. Also, his approach was better for 

inventory management. In another example, the author (Supattana, 2014) demonstrated the 

performance between ARIMA and ARIMAX with the forecasting of monthly steel price index 

from 2009 until 2014. This paper found that ARIMAX, with two exogenous factors, crude oil 
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price, iron ore price, provides better performance based on Root Mean Square Error (RMSE), 

Mean Absolute Percentage Error (MAPE), and Theil’s U statistic.  

Regarding the research mentioned above, ARIMA and ARIMAX models propose good 

performance with demand forecasting in different areas. However, it is necessary to pre-

process data to be stationary by removing the trend and seasonal before forecasting. 

Additionally, these models are compatible with more linear trends than other models, 

especially in complex problems (Benkachcha et al., 2015). The details of the mathematical 

formulation are mentioned below. 

 

Mathematical formulation: The ARIMAX model combines the ARIMA model with exogenous 

variables. It is composed of three parts: the autoregressive (AR) model, the moving average 

(MA) model, and a linear model of the exogenous part (EX). The used notation 

𝐴𝑅𝐼𝑀𝐴𝑋(𝑝, 𝑞, 𝑑) refers to a model with 𝑝 AR terms, 𝑞 MA terms, and 𝑑 EX terms. One of the 

mathematical formulations of the ARIMAX model is given in equation (1), where 𝑌! is the 

value to predict at time 𝑡, in our case the demand, 𝜀! is the error at time 𝑡, and 𝑋!is the vector 

value of the exogenous factors at time 𝑡. The first monomial in this equation (at the left side of 

the equal sign) represents the AR model, the second monomial (first after the equal sign) 

represents the MA model, and the third monomial (second after the equal sign) represents the 

EX model. The parameters of these models are respectively {𝜑", 𝜑#… ,𝜑$}, {𝜃", 𝜃#… , 𝜃%},and 

{𝜂", 𝜂#… , 𝜂&} and the operator 𝐿 is the lag operator. 

𝜑(𝐿)	𝑌! = 𝜃(𝐿)	𝜀! 	+ 𝜂(𝐿)	𝑋!
𝑤𝑖𝑡ℎ: 𝜑(𝐿) = 1 − ∑ 𝜑'𝐿'

$
'("

𝜃(𝐿) = 1 + ∑ 𝜃'𝐿'
%
'("

𝜂(𝐿) = ∑ 𝜂'𝐿'&
'("

                             (1) 

 
Support Vector Regression (SVR) 
 

Support Vector Regression (SVR), which is part of the Support Vector Machine 

(SVM), is one of the most popular models used in the literature to predict time-series data in 

the supply chain (G. Wang, 2012). A Support Vector Machine uses hyperplanes to classify 

data. The SVM computes the equation of the hyperplane that divides the dataset into classes. 

SVR extends the approach to forecasting. SVR is used in many forecasting problems, in 

particular, to forecast customer demand. Carbonneau et al. (2008) implemented SVR to predict 

the customer demand based on past orders with approximately 200 days of data in a 

manufacturing context. The results obtained demonstrated that this model offers high 
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performance equivalent to that obtained with another model using recurrent neural networks. 

Wang (2012) implemented this model to forecast mass customization demand in the Shoe 

industry in China. He also illustrated the forecasting performance with the Relative Mean 

Square Error and found the performance was better than the Radial Basis Function (RBF) 

neural network. The authors (Mahdavinejad et al., 2018) proposed that SVR is one of the most 

frequently used machine learning techniques for intelligent data analysis by using the internet 

of things. In another paper, the authors (Cao et al., 2019) proposed this model to be another 

benchmark with other forecasting models in stock market price forecasting. The accuracy 

performance is also excellent and acceptable when compared to the proposed model in that 

paper. Regarding all works, as mentioned previously, SVR is another attractive forecasting 

model to forecast the demand and also a good benchmark for other models in different areas. 

The details of the mathematical formulation are mentioned below. 

 

Mathematical formulation: The SVR uses the same principles as the SVM, with only a few 

minor differences. In the regression, a margin of tolerance 𝜀 is set in approximation to the 

SVM. For the linear case, the main idea is to find the hyperplanes that minimize error (Saed 

2018). Equation (2) summarizes the SVR model in the linear case: 𝑌 is the value to predict, in 

our case the demand, 𝜀 is the error, and 𝑋 is the vector value of the factors. The part between 

parenthesis (𝑤	𝑋 + 𝑏) is the hyperplane equation to be determined, 𝑤 is its normal vector and 

𝑏 its bias parameter. For the non-linear cases, equation (2) is adapted through the use of kernel 

functions. 

																																																																								𝑌 = 	 (𝑤	𝑋 + 𝑏) + 𝜀                 (2) 
 
Multiple Linear Regression (MLR) 
 

Linear Regression is widely used to estimate the linear relationship between the forecast 

and real data in many contexts. Also, this model is a proper statistical technique (Navya, 2011). 

There are two main groups: Simple Linear Regression (SLR) and Multiple Linear Regression 

(MLR). SLR is implemented with a single independent variable, while MLR is an extension of 

the SLR model using multiple independent variables to train the model (Carbonneau et al., 

2008). Some research has implemented this model as a benchmark against a neural network. 

For example, Carbonneau et al. (2008) proposed MLR as a forecasting model with a neural 

network. Benkachcha, Benhra, and El Hassani (2008) compared MLR with an artificial neural 

network for predicting future sales based on multiple independent variables in the supply chain. 

The results obtained with the two forecasting models were similar when compared using the 
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MAPE. Navya (2011) implemented MLR as another benchmark to forecast the future trading 

volumes of selected agricultural products and compared its performance with Neural Network 

and ARIMA models. Ramanathan (2012) implemented MLR to predict the trend of soft drink 

demand in the company case study in the UK for improving promotional sales accurately. MLR 

is one of the efficient forecasting models to forecast the trends in many products. However, 

there are some limitations to forecast the complex problem, particularly with the non-linear 

trend. The details of the mathematical formulation are mentioned below. 

Mathematical formulation: The general mathematical formulation of the MLR is a linear 

equation as shown in equation (3). In this equation, 𝑌 is the predicted value, in our case the 

customer demand, 𝜀 is the error, and 𝑋 is the vector value of the factors. The model aims to 

find the parameters vectors 𝛽) and 𝛽 such a likelihood function is maximized; in general, the 

target to minimize is the sum of the squares of the deviations. 

																																																																							𝑌 = 	𝛽) + 𝛽𝑋 + 𝜀	 																																																							(3) 
 
 
 
Other regression models 
 

Another attractive regression model is K-Nearest Neighbor (K-NN) regression. This 

regression is one of the simplest models compared to other machine learning techniques. 

Besides, this model is a type of instance-based learning without making a strong assumption 

in the regression shape (Altman, 1992). This model is useful for estimating univariate input. 

Exponential Smoothing (ETS) (Shahin, 2016; Taylor, 2010) and Random Walk (Nag & Mitra, 

2002; Tyree & Long, 1995) models are also the same. However, the experiments in this thesis 

will focus on both univariate and multivariate factors. Also, multivariate factors will be able to 

have different magnitudes. Some examples implemented the concept of K-NN regression. The 

authors (Shafiullah et al., 2008) developed an energy-efficient model for sensor network 

applications using K-NN regression and compared the performance model with other 

regression models. Farahnakian et al. (2013) also predicted the utility rate of future resources 

in each server to support the dynamic consolidation algorithm via K-NN regression. Besides, 

Kück and Freitag (2021) implemented K-NN regression in their forecasting model to calculate 

future time-series for production planning. Due to the Regression model's overview, the 

following models will be useful forecasting tools to predict the customer demand in the supply 

chain. 
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ARIMA, SVR, and MLR are frequently compared to neural network-based approaches 

in time-series data for benchmarking purposes.  Also, Recurrent Neural Network provides good 

performance for demand forecasting in time-series. Details are provided in the next section. 

2.2.2 Neural Network models 

Neural networks (NNs) are modelling techniques with a wide range of applications in 

many areas such as logistics, transportation, and automation control. The NN approach deals 

with discrete classification, learning, pattern recognition, control systems, statistical modelling, 

and often used in forecasting. NNs have the main advantage of learning the data patterns and 

the relationship between inputs and outputs using a non-statistical approach. NN-based 

approaches in forecasting do not require any predefined mathematical models. They try to 

capture, memorize, and use inner patterns or relationships to make predictions.  

NNs mimic how biological neurons operate, communicate, and learn. A NN is made of 

several layers of interconnected neurons. A specific learning algorithm governs the learning 

process. This training process changes the weights across the network until the network is 

identified as an optimal model that explains the variables' patterns and links. NN models are 

recently trained by backpropagation (BP) and extreme learning machines (ELM) (Lolli et al., 

2017). The results revealed that the BP proposes better performance even though it consumes 

higher computational time during the training stage based on the same experimental datasets.  

NN models are one of the most popular models for non-linear forecasting behavior in 

supply chains (Carbonneau et al., 2008). NN's concept estimates the forecast output by using 

the sum of multiplication among input values, input weights and bias, and processing via 

hidden layers. The output layer results will also be squashed by activation functions such as 

sigmoid or rectified linear unit functions (Navya, 2011). There are many types of NNs 

implemented in various studies, such as feed-forward neural networks (FFNN), recurrent 

neural networks (RNN), and convolutional neural networks (CNN) (Carbonneau et al., 2008; 

Liu et al., 2017). However, FFNN and RNN are mainly implemented to forecast future demand 

in many industrial case studies for time-series data. These example structures of these two 

neural networks are mentioned in Figure 9. 
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(A)                                                                          (B) 

Figure 9. (A) Feed-Forward Neural Network (Brilliant, 2018); (B) Recurrent Neural Network 
(MathWorks, 2000) 
 

These two NN models consist of three main layers: the input layer, hidden layer, and 

output layer. However, the different point between these models is the flow of neural 

activation. For the FFNN, the flow of neural activation moves from input to output layers in 

one direction only (layer-by-layer). Simultaneously, the RNN allows some neuron units' output 

signals to flow back and support as input signals to other neuron units in the same layer or 

previous layers (Carbonneau et al., 2008). 

Moreover, RNNs exhibit good performances with complex forecasting problems such 

as financial data, production capacity, retailer transactions, or complex time-series data. Long 

Short-Term Memory (LSTM) is one of the highest performing RNN models. In LSTM, a 

memory cell concept (Greff et al., 2017; Sagheer and Kotb 2019) builds the neural network 

structure. 

 
Long Short-Term Memory (LSTM) Neural Networks 
 

LSTM Neural Networks are the most successful RNN architectures. They have enjoyed 

enormous popularity in many applications and domains, including forecasting problems. Both 

LSTM and RNN are fundamentally different from traditional direct-acting neural networks, as 

mentioned in FFNN. They are formed by backpropagation through time (BPTT) (Werbos, 

1990). These sequence-based models can establish temporal correlations between the previous 

information and the current circumstances. This characteristic is ideal for demand forecasting 

problems, as the effects of past demand and historical values of exogenous factors on future 

demand can be modelled. In a supply chain, demand depends on past values and the present 
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and past values of other factors in the chain. The details of the LSTM formulation are described 

below. 

 

Mathematical formulation: 

To overcome the problem of disappearance or explosion of the gradient (which limits, 

in general, RNNs) (Yoshua Bengio, Patrice Simard, and Paolo Frasconi 1994; Kolen and 

Kremer 2001), LSTM contains a memory cell (𝑐 in Figure 10) introduced at their creation, by 

Hochreiter and Schmidhuber (1997), then improved, by (Gers et al., 2000), with an additional 

forgetting door (𝑓 in Figure 10). Thus, LSTMs can learn long-term and short-term time 

correlations. For a more exhaustive review of LSTM, the reader can consult the work of (Lipton 

et al., 2015), who presented a detailed review of the overall structure of the LSTM and the 

latest developments.  

Figure 10 illustrates how the LSTM cell can process data sequentially and keep its 

hidden state through time. In this figure, the operations graph is detailed for the step time 𝑡. 

Weights and biases are not shown. The idea is that each computational unit is linked to both a 

hidden state 𝑠 and a cell state c that plays the role of memory. The passage from 𝑐!*" to 𝑐! is 

done by transfer with constant gain, equal to 1. In this way, the errors propagate to the previous 

steps without the gradient's disappearance phenomenon. The cell state can be modified through 

a door that authorizes or blocks the update (input gate, 𝑖!). Similarly, a gate controls whether 

the cell status is communicated at the LSTM unit's output (output gate 𝑜!). The most 

widespread version of LSTM also uses a door allowing the reset of the cell state (forget gate, 

𝑓!), as shown in Figure 10. 

 
 

Figure 10. The structure of the LSTM block (Sagheer & Kotb, 2019) 
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In Figure 10: 𝑋! is the input at time t and, generally, represent the exogenous factors; 

The operator ⊕ symbolizes the pointwise addition; The operator ⊗ symbolizes the matrix 

product of Hadamard (product term to term); The 𝜎 and 𝜏 symbols respectively represent the 

sigmoid function and the hyperbolic tangent function, although other activation functions are 

possible. Firstly, the forget gate decides which information must be left out from the gate. 

Secondly, the input gate decides which information must be admitted to the LSTM cell state. 

Next, the cell state value is updated. Then, the output gate filters which information in the cell 

state should be produced as output. After that, the value of the hidden state is constructed. 

Much research has implemented RNNs, especially LSTM models, for predictions with 

time-series data. Chen et al. (2015) implemented this model to predict the trend of China stock 

market. The accuracy rate was so increased from 14 percent to 27 percent compared to the 

Random Forecasting Method. Simoncini et al. (2018) used it to classify the vehicle types with 

the Global Positioning System (GPS) data of each vehicle. Sagheer and Kotb (2019) proposed 

an LSTM to forecast future production rates of petroleum products. Long et al. (2019) 

compared the performance of their proposal (multi-filter neural network) with those of the 

LSTM to predict stock price movements. The authors (Punia et al., 2020) proposed the 

combination model between this model and Random Forest to improve the forecasting quality 

in the dataset of multi-channels of retailers. Based on the research works above, LSTM is an 

efficient forecasting model implemented in various cases, particularly with demand forecasting 

in supply chain and logistics. However, LSTM requires a more extended training period 

compared to the other models. Besides, to improve prediction, it is necessary to tune 

hyperparameters in the model to reduce the error gap between the predicted and real values 

(Ojha et al., 2017). Therefore, an automated hyperparameters tuning method is needed. In the 

following, some metaheuristics that could speed-up the tuning phase are presented. 

 
Hyperparameters tuning for Neural Network 
 

Trial-and-error is most used for hyperparameters tuning in forecasting models. 

However, it takes longer to find an appropriate set of hyperparameters for the model. 

Furthermore, there is no guarantee that the solution will be better (Kim & Shin, 2007). 

Metaheuristics are an interesting way of reducing the time spent on hyperparameters tuning. 

For instance, Ojha and his research team proposed that some metaheuristics such as genetic 

algorithms, particle swarm optimization, and ant colony optimization are acceptable 

exploitation and exploration tools for hyperparameters tuning in FFNNs (Ojha et al., 2017). 



 
 

44 

However, no single method can handle all tuning problems correctly. Therefore, the hybrid 

metaheuristic puts forward to improve the performance of the tuning phase. Indeed, the tuning 

problem is complex for NN in general, and more specifically, RNN. There are many behaviors 

to be extracted, and collaboration between two or more heuristics should be beneficial. In the 

following, the focus is on two metaheuristics: Genetic Algorithm and Scatter Search. 

 
Genetic Algorithm (GA) 
 

Genetic Algorithm (GA) is one of the most well-known and popular metaheuristics 

used, particularly in the supply chain context (Altiparmak et al. 2006). GA is a stochastic search 

method inspired by the biological evolution of living beings (Goldberg, 1989; Melanie, 1999). 

It belongs to the family of evolutionary algorithms, and the goal is to obtain an approximate 

solution in a reasonable time.  

The main steps of GA: (1) Selection: To determine which individuals are more inclined 

to obtain the best results, a selection is made. This process is analogous to natural selection; 

the most adapted individuals win the reproduction competition while the least adapted die 

before reproduction. (2) Crossing or recombination: During this operation, two individuals 

exchange parts of their DNA for giving new ones. (3) Mutations: Randomly, a gene can be 

substituted for another. In the same way as for crossovers, a mutation rate is defined during 

population changes. The mutation is used to avoid premature convergence of the algorithm. 

An example structure of GA steps is shown in Figure 11. 

 

Figure 11. The example structure of GA steps (Blanco et al., 2000)  
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In general, we start with a base population, which is most often generated randomly. 

Each of the solutions is assigned a score that corresponds to its adaptation to the problem. Then, 

a selection is made within this population. The algorithm will iterate until a certain convergence 

is obtained or a stopping criterion is reached. To allow problem-solving, GA uses the 

ingredients above and a representation of a solution. This representation is called the solution's 

Coding; it has, also, an impact on the GA performances. The convergence of GA is rarely 

proven in practice. Nevertheless, the crossing operator very often makes all the genetic 

algorithm's richness compared to other methods. 

Some research implements GA to optimize the machine learning structure. Blanco et 

al. (2000) optimized the RNN structure of grammatical inference using this metaheuristic. Kim 

and Shin (2007) implemented GA to define a stock market prediction model (e.g., time delays, 

network structure factors). This method performed better than the trial-and-error method. 

Sagheer and Kotb (2019) also implemented GA to tune hyperparameters in an LSTM (e.g., 

number of hidden neural units, number of epochs, and lag size).  

These studies demonstrate the performance of GA in optimizing the structure of neural 

networks, but some problems remain. NN hyperparameters, for instance, are chosen randomly 

from the hyperparameters dictionary. As the network hyperparameters are generated from 

similar components in the dictionary, premature convergence or local minima can occur before 

reaching the best solution (Dib et al., 2017). Therefore, constructing a hybrid method would be 

a great choice to increase the network structure's performance and prevent premature 

convergence. Thus, Scatter Search is a promising metaheuristic and is described in the next 

section. 

 
Scatter Search (SS) 
 

Scatter Search (SS) is another metaheuristic to construct new solutions based on 

integrating existing or reference solutions (Laguna & Marti, 2003). The purpose is to improve 

the solutions generated with the various elements in the solution space. This algorithm is 

flexible and able to implement many problems based on sophistication. The main ingredients 

for implementing scatter search, generally, are:  

1. A Diversification Generation Method to generate a random set of trial solutions,  

2. An Improvement Method is applied to the trial solutions to create an enhanced one. 

3. A Reference Set Update Method builds and maintains a reference set consisting of the 

“best” solutions found. Solutions gain membership to the reference set according to their 

quality or their diversity. 
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4. A Subset Generation Method operates on the reference set to produce a subset of its 

solutions as a basis for creating combined solutions. 

5. A Solution Combination Method transforms a given subset of solutions produced by the 

Subset Generation Method into one or more collaborative solutions. 

Repeat the process (Elements 2 to 5) until the reference set does not change. Use 

element 1, Diversification Generation Method, to diversify. Stop when reaching a specified 

iteration limit or stopping criteria. The notion of “best” in step 3 is not limited to a measure 

given exclusively by the fitness function. A solution may be added to the reference set if the 

diversity of the set improves. The example of SS steps is shown in Figure 12. 

 

Figure 12. The example structure of SS steps (Cano-Belmán et al., 2010) 
 

Many studies propose this heuristic to improve their NN. For example, Laguna and 

Martí (2006) implemented the concept of SS to train a single hidden layer of a feed-forward 

neural network. They also compared the SS performance with the classical BP and extended 

Tabu Search methods for around 15 instances. The results showed that SS performs better with 

a higher number of instances. Cuéllar, Delgado, and Pegalajar (2007) benchmarked their hybrid 

training method of the RNN against the SS. Their method produced the same good results as 

the scatter search.    

The SS potential is exploited in this research to build a hybrid metaheuristic with GA 

for tuning the hyperparameters of the LSTM. The results of implementing SS and GA will also 

present in the case studies and result analysis section. 
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As stated before, plenty of forecasting studies focus on the classical supply chain and 

logistics context. However, few studies deal with the forecasting problem in the PI context, 

especially using NN techniques. The authors (Qiao et al., 2019), for example, proposed a 

dynamic pricing model based on forecasting the quantity of transported requests in the next 

auction periods. The objective was to maximize the total profit of the transportation rounds.  

The literature is full of studies on forecasting techniques, mainly quantitative methods. 

Of these methods, the most important in classical regression are MLR, ARIMA, and SVR. Of 

the NN-based methods, LSTM performs best (K. Chen et al., 2015; Sagheer & Kotb, 2019). 

Table 1 summarizes the characteristics of these models. The first column provides the model 

name, followed by its group in the second column. The third column recaps the model 

characteristics. The last three columns provide a comparison of the models according to the 

most commonly encountered criteria in the literature (Cao, Li, and Li 2019; Aburto and Weber 

2007; Carbonneau, Laframboise, and Vahidov 2008): performance with complex data, training 

period, and performance with a non-linear trend. Performance with complex data concerns the 

accuracy as well as the ability of the model to handle many factors. The training period relates 

to a computational time during the training phase. The performance with a non-linear trend 

shows how a model can capture the data patterns, significantly non-linear relations. The 

number of “+” in Table 1 shows the quality of each indicator. These three indicators are 

highlighted because of the characteristics of the agricultural datasets used in this thesis.  
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Table 1. Comparison of forecasting model characteristics 
Forecasting Model Model 

Group 
Characteristics Com

plex 
data 

Training 
period 

Non-
linear 
trend 

ARIMA 

(Aburto & Weber, 2007; Cools 

et al., 2009; Navya, 2011; 

Supattana, 2014) 

Regression This model was developed 

from the ARIMA model but 

also considers exogenous 

factors 

++ ++ + 

SVR 

(Cao et al., 2019; Carbonneau 

et al., 2008; G. Wang, 2012) 

Regression This model is a part of the 

support vector machine 

model 

+++ +++ ++ 

MLR 

(Benkachcha et al., 2008; 

Carbonneau et al., 2008; 

Ramanathan, 2012) 

Regression This model is an extension 

of simple linear regression 

++ +++ + 

LSTM 

(Cao et al., 2019; K. Chen et 

al., 2015; Punia et al., 2020; 

Sagheer & Kotb, 2019) 

Neural 

Network 

This model is based on the 

concept of a memory cell 

++++ + +++ 

  

As exhibited in Table 1, the LSTM model is particularly suited to deal with complex 

data and non-linear trends, even though the training period is more extended than other models. 

Also, implementing the automated tuning of hyperparameters, as mentioned previously, could 

be useful for forecasting performance in the LSTM model.  

In addition, this thesis does not only focus on improving the efficiency of demand 

forecasting. It also monitors how demand forecasting can improve the distribution process’s 

quality, such as optimizing inventory and transportation costs and provides the appropriate 

transportation solutions for distributors. The concept and relevant works in the distribution 

process are proposed in the next section. 

2.3 The distribution process  

Since the literature reviews of the demand forecasting perspective were presented in 

the previous section, another important point is how to enhance the performance of the 

distribution process with demand forecasting in the PI context. In this section, the concept of 

the supply chain's distribution process and relevant literature are presented with more details. 

They are composed of five main parts. The first part mentions the general ideas of the 

distribution process in the supply chain. Secondly, the PI distribution network is described 
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more as both the principal and relevant research. This thesis also compares the distribution 

process between the classical supply chain and PI context. Since the number of customers and 

PI-hubs is large and increasing continuously, all parties' connections will be more complicated. 

Then, the clustering method is mentioned to solve this problem in the third part. Clustering is 

the method to group the number of PI-hubs based on each hub’s various characters and 

customer demands. After grouping PI-hubs and customers in the same cluster, the next step is 

to connect PI-hubs and customers for goods transportation. The fourth part then proposes the 

concept of pickup and delivery vehicle routing problems in the PI distribution network. Lastly, 

in the fifth part, the concept of solving methods for the pickup and delivery problem is 

demonstrated.     

2.3.1 The distribution process in supply chain  

Since the general aspect of the distribution process was already described in the 

previous chapter, this chapter will focus on the essential things for the supply chain's 

distribution process. One of the essential things to enhance the efficiency of the supply chain's 

distribution process is the quality of routing construction. Suppose the set of all connected 

routes is feasible and respects the distribution network constraints. In that case, the total 

distribution cost and computational time will be reduced, and customer satisfaction will be 

higher. Several previous works have studied the vehicle routing problem in the classical 

distribution network. For instance, Felipe et al. (2012) implemented an adapted heuristic with 

Variable Neighborhood Search (VNS) to optimize transportation routes for pickup and delivery 

operations. The authors (Guemri et al., 2016) proposed a GRASP-based heuristic to solve the 

transportation routing and inventory control problems for multiple products and vehicles. The 

research also compared its performance with the other two reference algorithms. The authors 

(Vilhelmsen et al., 2016) proposed a hybrid method, which is the combination of heuristic and 

optimality-based methods, to manage appropriate cargoes in maritime bulk shipping. The 

computational times were proposed to evaluate the solutions’ performance in the research. 

According to previous works, there are many solutions in the Vehicle Routing Problem (VRP) 

implemented in the different areas of the supply chain. Also, many VRP cases have focused on 

multiple depots' vehicle routing problem (MDVRP) and open vehicle routing problem 

(OVRP). The details of MDVRP and OVRP, including implementing it with the real cases in 

the classical supply chain and PI, are mentioned in section 2.3.4. Moreover, the example of 

routing construction between classical supply chain and PI networks is shown in Figure 13. 
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Figure 13. The example of routing construction between classical supply chain and PI 
networks (Ben Mohamed et al., 2017) 

 

Since the general aspect of the distribution process was proposed, we can understand 

the classical and PI distribution processes' different perspectives. In the next section, several 

relevant studies are proposed to justify the benefits of PI distribution. 

2.3.2 The distribution process in PI 

Many research works have studied the distribution process in the context of the PI 

supply chain. Firstly, Fazili (2014) proved the performance of PI logistics by comparing 

Conventional (Door-to-Door) and Hybrid (Mixed between Conventional & PI) logistics 

concepts based on the road network. He found that the hybrid method provides the best 

solution. Venkatadri, Krishna, and Ülkü (2016) developed the dispatched model between pairs 

of cities based on the PI context and compared it with the traditional logistics system. Caballini 

et al. (2017) defined and modeled a road network to minimize total transport costs, exploit 

truck capacity, and reduce empty trips from one node to another. Gontara, Boufaied, and 

Korbaa (2019) also constructed the routes from PI-hubs to PI-hubs for transporting PI-

containers based on road transportation. The concept of Border Gateway Protocol (PI-BGP) 

was implemented in the PI network. However, this case was not considered the demand and 

inventory in the network.  

These research works mainly formulated and solved the distribution problem via Mixed 

Integer Programming (MIP) models. The general concept of distribution problem in these 
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works studied the movement between source and destination nodes, such as hubs to hubs or 

suppliers to customers. On the one hand, they performed well with the small instances. On the 

other hand, they proposed some future aspects to fulfill the research gap. For instance, the 

authors (Caballini et al., 2017; Fazili, 2014) suggested developing heuristics for larger 

instances and implement the concept of PI-routing constructed with the realistic urban, 

including loading size in a PI-container.  

Moreover, some suggestions consider the standard modular container size proposed 

(Fazili, 2014; Venkatadri et al., 2016). The interesting point is that those different PI-container 

units can integrate into a truck container. Regarding the description of the distribution process 

in classical supply chain and PI, the summary of the comparison between these two concepts 

is described in Table 2. This table illustrates the various details of each aspect between classical 

and PI supply chains.  

Table 2. The Distribution Concept Between Classical & PI 
Relevant perspective Classical Supply Chain PI Supply Chain 
Distribution concept Hierarchical delivery from plant to end 

customers (Waller et al., 1999) 
Interconnected for all parties (Yang et al., 
2017a) 

Distribution flow between 
distributors and plants 

Each distributor loads its products from a 
fixed plant (Chopra, 2003) 

Each distributor can load its products from 
different plants independently (B. Montreuil et 
al., 2012) 

The interconnectivity between 
distributors 

Each distributor manages its stock and 
does not share with other distributors 
(Chopra, 2003) 

All distributors share their stocks and support 
each other (Yang et al., 2017a) 

The relation between 
customers and distributors 

One customer can receive products only 
from his partner distributors (Waller et al., 
1999) 

One customer can receive products from 
different distributors in the network (Pal & 
Kant, 2016; Pan et al., 2017; Yang et al., 
2017a) 

MDVRP and OVRP 
implementation between 
distributors and end-
customers 

Several cases are implemented in MDVRP 
and OVRP (Cornillier et al., 2012; Kek et 
al., 2008; Montoya-Torres et al., 2015, 
2016)   

Few cases are implemented in MDVRP (Ben 
Mohamed et al., 2017). For OVRP, there is no 
information on how it is implemented in the 
literature 

 

According to the examples of PI distribution networks in previous studies, few PI-hubs 

and customers are involved. However, if the number of PI-hubs and customers increase, the 

full connection among them will be more complex and take more computational time to 

discover the feasible routing solution of each connection. Therefore, to reduce the complexity 

of full connections in the supply chain, the clustering method is another attractive solution to 

solve this problem. The clustering method, definition, relevant literature will be demonstrated 

in the next section. 
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2.3.3 Clustering method 

One of the most exciting solutions, which would reduce the complexity of a large 

amount of data, is the clustering method (Nananukul, 2013). There are many clustering 

methods: partitional clustering, hierarchical clustering, fuzzy clustering, etc. (Kassambara, 

2018).  In this thesis, partitional clustering is considered because of lower computational 

processing time with large datasets than other methods (Murray et al., 2015). This clustering 

is an appropriate tool to group the number of PI-hubs based on similar customer demands.  

Partitional clustering clusters the dataset into k groups, where k is the number of pre-

specified groups due to many qualitative and quantitative data (MacQueen, 1967). This 

clustering method is appropriate for many data with similar demands (Murray et al., 2015). 

The example of partitional clustering is shown in Figure 14. According to this example, two 

main components are established in each group: a center point (C1 – C3) and various data points. 

 

Figure 14. The example of partitional clustering (Gunawardena, 2016) 

 

Two partitional clustering methods are considered in this thesis, which are K-Means 

and K-Medoid. K-Means is a clustering technique that groups a set of n data points into k 

groups with a mean or average point of each cluster (MacQueen, 1967). K-Medoid also has a 

similar concept with K-Means, but it will use the representative point to center each cluster 

instead of the mean value. Both techniques are easy to implement and lower computational 

time. However, K-Means is more sensitive to anomalous data than K-Medoid due to the 

performance comparison (Kassambara, 2018). Some previous works have implemented the 

concept of the partitional clustering method. The authors  (Chang et al., 2009) implemented 

the partitional clustering to manage taxi fleets in each location due to customer’s high-density 

demand. Liao, Chen, and Deng (2010) proposed K-Means to compress customer’s raw input 

into a manageable set of sub-clusters before merging sub-clusters with Hierarchical clustering. 
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Murray, Agard, and Barajas (2015) proposed K-Means to identify customer segments with 

similar demand behaviors based on historical data. As mentioned previously, K-Means 

frequently appears in several works on partitional clustering, and this method is chosen as a 

tool for PI-hubs clustering. Besides, this method is also compared the clustering performance 

with K-Medoid in this research. The relative key performance indicators are established in the 

next paragraph.  

Hopkins statistic and Silhouette width are applied to evaluate the cluster performance 

(Banerjee & Rajesh N., 2004). Hopkins statistic measures the dataset's quality before doing a 

cluster, and the value should be closed to one regarding the dataset behavior. Silhouette width 

score measures the average distance between a representative node such as centroids for K-

Means and other nodes in a cluster. The range starts from (-1), which is a poor cluster, to 1, 

which is an excellent cluster performance. The principal component analysis (PCA) is another 

indicator of the cluster performance (Pasini, 2017). If the combination produced from the 

original components of the new dimension X and Y plots is between 80 and 90 percent, each 

cluster's data projection is perfect. Since plenty of research has implemented the clustering 

method to cluster the dataset into small groups, few works mentioned the various demands in 

each period and focused on developing distributors' clustering based on forecast demand. 

Therefore, this thesis emphasizes how to cluster PI-hubs' segments based on different forecast 

demands each day, called "Dynamic Clustering." Dynamic clustering can simplify the 

complexity of solving the transportation routing problem.  

Since the clustering method was implemented to cluster the small groups of PI-hubs for 

supporting various customers' variant demands, it would be essential to focus on developing 

interconnected links among all parties in the network. The vehicle routing problem would be 

implemented to construct feasible routes between PI-hubs and customers in the cluster. The 

following section will provide more details on the supply chain's vehicle routing problem in 

classical supply chain and PI contexts. 

2.3.4 Vehicle Routing Problem in supply chain 

Several variants are implemented in the concept of Vehicle Routing Problem (VRP) to 

find the optimal solution of goods transportation in the classical supply chain, especially the 

Multiple Depot Vehicle Routing Problem (MDVRP). The MDVRP concept is similar to the 

vehicle routing problem with a single depot. However, it focuses on more than one depot in 

the network (Montoya-Torres et al., 2015). The objective is to optimize the routing construction 
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and transportation cost of each depot based on customer demands. The example of the MDVRP 

structure is shown in Figure 15. 

 

Figure 15. The example of the MDVRP structure (Montoya-Torres et al., 2015) 
 

Some relevant works have studied the MDVRP concept. The authors (Kek et al., 2008), 

for instance, proposed a MIP and a branch-and-bound method to find the optimal solution of 

transportation routing with a fixed fleet and flexible fleet. The flexible fleet proposed that the 

starting depot and ending depot can be different based on the customer demand and travel time 

constraints. The authors (Cornillier et al., 2012) proposed the Mixed Integer Linear 

Programming (MILP) model to define the set of feasible trips to deliver petroleum products 

from many depots to many petroleum stations with maximum net revenue. The authors (B. Yu 

et al., 2013) proposed a distance-based clustering approach and an improved ant colony 

optimization to allocate and design connected routes between customers and nearest depots in 

each area. This work was also compared its performance with other methods using 

computational time. Also, Lam and Mittenthal (2013) demonstrated that the capacitated 

hierarchical clustering heuristic provides better performance with lower total costs than other 

heuristics. Lastly, the authors (Ramos et al., 2020) proposed a two-commodity flow 

formulation using MILP to enhance the MDVRP performance with the heterogeneous fleet and 

the maximum routing time. These works are examples of MDVRP implementation. However, 

the following examples have the experiment with a few numbers of depots. The ending depot 

position is also fixed even though the ending depot can be different from the starting depot in 

some cases.  
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     MDVRP is not only implemented in the classical supply chain. It is also implemented 

in the PI context. Few works in the PI context have implemented the MDVRP concept to solve 

the fully connected routing problem and minimize transportation cost. For instance, the authors 

(Ben Mohamed et al., 2017) implemented this concept to find a feasible solution to the 

operational urban transportation problem. This paper focused on picked-up and delivery 

operations among distribution centers “PI-hubs” and pickup-delivery points in the network. 

Some constraints, such as multiple periods, multi-zone urban coverage, heterogeneous fleets, 

and multiple trips, were considered. However, each truck was forced to return to the initial hub.  

Furthermore, the pickup and delivery problems do not only focus on the distribution 

problem with Multiple depots. This problem studied is a bit also similar to the Open Vehicle 

Routing Problem (OVRP).  In classical VRP literature, OVRP is the most related problem to 

the PI pickup and delivery problem in this thesis. The OVRP concept presents that the starting 

node and the ending node in a route should not be the same. It means that after finished goods 

transportation at the last customer, a truck does not need to return to its original depot (Li et 

al., 2007). The example of the OVRP structure is shown in Figure 16.  

 

Figure 16. The example of the OVRP structure (V. F. Yu & Lin, 2015)  

 

Several cases implement the concept of OVRP. The authors (Li et al., 2007) proposed 

the Record-to-Record travel algorithm to solve the OVRP problem of home delivery products 
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with a test case (200 - 480 customers) and compare them with existing heuristic methods in the 

classical supply chain. Besides, authors (Atefi et al., 2018) implemented the decoupling point 

for each route to increase transportation profit. The idea is that each truck will start to distribute 

products to all customers and change a new one when it arrives at the decoupling point. The 

objective is to minimize the cost for an extended traveling period. These two papers are good 

examples to demonstrate how to solve the routing construction with a vast number of customer 

nodes via OVRP in the classical supply chain. In contrast, there is no information on how to 

implement OVRP in the PI context based on the literature reviews to the best of our knowledge. 

     As mentioned previously, the concept of MDVRP and OVRP helps find the near-

optimal solution of goods transportation between PI-hubs and retailers in the network. Since 

the principle and some relevant examples of the pickup and delivery problem in the classical 

supply chain were proposed, the following section focuses more on this problem in the PI 

context. Several examples in the next section would increase understanding of how to 

implement the pickup and delivery problem in the PI distribution network.  

2.3.5 Pickup and delivery problems in PI context 

As mentioned earlier, there are some differences between classical and PI pickup and 

delivery contexts. Main differences are summarized in Table 3. 

Table 3. The Pickup and Delivery Concept Between Classical & PI 
Classical Supply Chain PI Supply Chain 
Each vehicle loads its products from a 
fixed distribution hub (Chopra, 2003). 
Also, each distribution hub manages its 
stock and does not share with other 
distributors. 

Each vehicle can pick up and deliver raw 
materials or finished goods from different 
distribution hubs (Ballot et al., 2012; Ben 
Mohamed et al., 2017). All hubs can share their 
resources together within the network. 
 

Each vehicle will pick up and deliver 
product covered by pallets and carton 
boxes (Landschützer et al., 2015; Russell 
D et al., 2012)  

Each vehicle will pick up and deliver product 
covered by PI-containers. PI-containers are 
standardized and can fit in all vehicles after 
comparing with pallet packaging (Pach et al., 
2014; Sallez et al., 2016). 
 

Real-time order tracking is difficult 
because of the lack of connection between 
retailers and manufacturers (Chopra, 
2003). 

The PI pickup and delivery can be tracked and 
traced real-time with RFID, while it does not 
sound practical for classical once (Sallez et al., 
2016). 
 

 

In this sub-section, we will mainly cover the literature on pickup and delivery problems 

in the PI context. Authors (Rougès & Montreuil, 2014) demonstrated how the concept of 

interconnectedness in the PI could solve the limitations of current crowdsourcing, which are 

less flexible networks and processing parcels between point to point individually. The authors 
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presented that PI supports crowdsourcing delivery. In yet another example, the authors (Pal & 

Kant, 2016) proposed a mechanism for decreasing empty miles of the truck and the carbon 

footprint by sharing infrastructures, such as hubs, trucks, and handling tools, for the fresh food 

distribution network. The concept of a PI network is implemented to fill the traditional 

distribution process gap in fresh food.  

Furthermore, the local distribution and long-distance between hubs are determined by 

inter-domain delivery strategies. The authors (Faugère & Montreuil, 2020, 2017) proposed a 

hyperconnected supply chain to pick up and deliver smart lockers in the PI network and the 

smart locker’s design optimization based on uncertainty demand. This concept made the pickup 

and delivery processes faster and more convenient for customers. Lastly, the authors (Ben 

Mohamed et al., 2017) proposed an innovative approach to enhance the pickup and delivery 

process for interconnected city logistics. This work was also implemented in multiple hubs and 

zones in an urban area in France. Besides, most pickup and delivery activities implement PI-

containers as parcels to contain their products. Each container is equipped with equipment 

(RFID technology, for example) to monitor and control products along traveling. The standard 

modular containers also aggregate smaller PI-containers and embed them in various vehicles 

after transshipment at PI-hubs (Sallez et al., 2016).   

Many studies focus on the concept of pickup and delivery problems in the PI context. 

However, there are few studies in pickup and delivery with multiple depots, as mentioned 

earlier. Besides, no case focuses on the OVRP concept. Therefore, the vehicle routing problem 

with simultaneous pickup and delivery (VRPSPD) will be implemented in this thesis to make 

the pickup and delivery flow continuously. There are several examples of the VRPSPD 

implementation in the classical supply chain. Also, recent cases of the pickup and delivery 

problem in the PI context are mentioned in VRPSPD. All details will be described in the next 

section. 

2.3.6 Solving methods in the Simultaneous Pickup and Delivery problem 

This section provides more details for different solutions to solve the simultaneous 

pickup and delivery problem. The example of transportation flow with simultaneous pickup 

and delivery is shown in Figure 17. This example displays the transportation flow between 

pickup and delivery operations of returnable transport items (RTIs) from producer to 

customers. 
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Figure 17. The example of transportation flow with the simultaneous pickup and delivery 
(Iassinovskaia et al., 2017) 

 

Many works in the classical supply chain and few works in the PI context have 

formulated the problem with MIP and implemented heuristics to solve the routing problem in 

larger instances. In this section, the two main metaheuristics, Tabu Search and Simulated 

Annealing are mentioned in the classical supply chain. These two metaheuristics are the most 

popular methods implemented in the VRPSPD. Some heuristics and metaheuristics, such as 

insertion heuristic and GA, are mentioned in the PI context. The details of the methodology 

and some relevant works would be described.  

 
Classical Supply Chain 
 

In the survey of VRPSPD (Parragh et al., 2008), most of the researches are implemented 

by Tabu Search. Tabu Search (TS) is one of the most popular metaheuristics proposed to solve 

the following problem. The TS algorithm is shown in Figure 18. The solution will be 

considered based on results from a tabu list (Boussaïd et al., 2013). The tabu list can help to 

avoid the struggle of finding the near-optimal solution at the local minima. However, it takes 

longer computational time than other methods, such as insertion-based heuristics (Montané & 

Galvão, 2006) or local search (Bianchessi & Righini, 2007). The algorithm will always check 

the existing solutions in the tabu list before implementing them. The results gap between tabu 

search and comparative methods are slight differences. Even though Tabu Search has good 

performance in finding the near-optimal solution, another metaheuristic called “Simulated 

Annealing” is another choice that has similar performance and shorter computational time 

(Boussaïd et al., 2013).  
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Figure 18. The algorithm of Tabu Search (Boussaïd et al., 2013) 

Simulated Annealing (SA) provides fast convergence when the temperature is reduced. 

It tends to accept all solutions at the beginning of a local search because it can reach the best 

solution during the search process (Boussaïd et al., 2013). The SA algorithm is shown in Figure 

19. Some VRPSPD problems implement the SA method. For example, SA proposed a better 

quality solution than exact approaches (V. F. Yu & Shin-Yu Lin, 2016). The authors (C. Wang 

et al., 2015) illustrated that SA proposes lower travel distances with some instances after 

comparing with the GA. The authors (V. F. Yu & Lin, 2015) presented that SA provides the 

optimal total transport cost around ten instances from 18 instances after benchmarking with the 

values from CPLEX. Lastly, the authors (Mu et al., 2016) implemented the parallel-SA with 

the datasets from Salhi and Nagy (1999), Dethloff (2001), and  Montané and Galvão (2006). 

They found that this method has a good performance in total transport costs and computational 

time than other benchmarks. These works illustrate that SA proposes good performance after 

comparing with other exact or metaheuristic methods. These methods work well with classical 

supply chain cases and also provide good performance with the PI. All details in the PI context 

will be demonstrated in the next section. 

 
Figure 19. The algorithm of Simulated Annealing (Boussaïd et al., 2013) 
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Physical Internet 
 

Since the SA and TS were implemented in previous VRPSPD problems of the classical 

supply chain, a few numbers of VRPSPD works in the PI context are present. Generally, most 

of the research is formulated and implemented by MILP (Caballini et al., 2017; Fazili, 2014; 

Venkatadri et al., 2016). However, some examples implemented the metaheuristic to increase 

the efficiency of transportation. For instance, the authors (Pal & Kant, 2016) proposed a GA to 

maximize product delivery and delivery quality of all fresh food transportation packages. When 

moving to VRPSPD in the PI context, fewer examples have studied in this context. For 

example, Ben Mohamed et al. (2017) formulated the simultaneous pickup and delivery problem 

in urban transportation by MILP. They improved the solution's quality by implementing the 

constructive greedy as the initial solution. Then, the insertion heuristic is implemented to 

reduce non-service orders' postponement. However, they suggested the solution’s 

improvement via metaheuristics. Regarding all perspectives of VRPSPD in previous works, 

some exciting suggestions are proposed for future works:  

• Firstly, they recommended implementing heuristics or metaheuristics for large 

instances.  

• Secondly, they suggested that the future authors focus more on the order size and the 

modular container size.  

• Thirdly, they recommended studying more about the PI-routing construction with 

realistic urban transportation. 

 

Moreover, the summary table of solving solutions in the VRPSPD problem is 

demonstrated in Table 4. Besides, this thesis will focus more on routing construction between 

hubs and retailers in the PI context.  
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Table 4. The summary of solving solutions in the VRPSPD problem 
VRPSPD paper Type of supply 

chain 
Research context Solving solution 

Bianchessi and 
Righini (2007) 

Classical Heuristics for vehicle routing problem 
with the simultaneous pick-up delivery 

TS, local search 

Montané and 
Galvão (2006) 

Classical TS with three types of movements; 
relocation, interchange, crossover 

TS, insertion-based heuristics 

Yu and Shin-Yu Lin 
(2016) 

Classical The location-routing problem in the 
simultaneous pick-up delivery 

SA, Exact methods 

C. Wang et al. 
(2015) 

Classical Implemented parallel-SA for VRPSPD 
during specific time windows 

parallel-SA, Exact method, 
GA 

Yu and Lin (2015) Classical The SA heuristic for the open location-
routing problem 

SA, Exact method 

Mu et al. (2016) Classical Implemented parallel-SA for VRPSPD in 
different datasets from Dethloff, Salhi and 
Nagy, and Montane and Galvao 

SA, parallel-SA,  

Pal and Kant (2016) PI Proposed mechanism for decreasing 
empty miles of the truck and the carbon 
footprint in the fresh food distribution 
network 

Exact method, GA 

Ben Mohamed et al. 
(2017) 

PI The simultaneous pickup delivery for 
interconnected city logistics 

Exact method, insertion-
based heuristics 

 

According to the summary in Table 4, many studies implemented the exact and 

metaheuristic methods to construct transportation routes in the classical supply chain network. 

However, few studies focused on the PI context. Regarding all previous works in the literature, 

the concept of multiple depots and open vehicle routing problems should be implemented in 

the pickup and delivery routing for PI networks in this thesis. Besides, for the metaheuristic, 

SA is chosen because of less computational time and fast convergence even though the quality 

of acceptable solutions is similar to TS and GA (Boussaïd et al., 2013).  

Since the PI network prioritizes sustainability and full collaboration in the 

transportation network, the carbon (CO2) emission calculation and the concept of sharing 

infrastructure will be implemented in terms of sustainability and cost optimizing perspectives. 

Some relevant studies proposed reasonable solutions for PI transportation with respecting 

sustainability. For example, authors (Pan et al., 2013) demonstrated that the pooling supply 

chain network could reduce road and rail transport modes' CO2 emissions. Another work (Yao, 

2017) proposed that a one-stop delivery mode in online shopping can reduce unnecessary 

logistics activities for goods transportation, from manufacturers to customers. The reduction of 

the transportation process between parties affects total CO2 emission in the network. These 

works can prove that PI has a positive impact on the environmental aspect. The VRPSPD 

concept in this thesis is inspired by Ben Mohamed et al. (2017). It will be implemented in the 

distribution process for agricultural products in Thailand. Besides, the concept of 
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metaheuristics, as mentioned previously, is implemented to improve routing construction 

quality.  

A summary of all literature in demand forecasting and distribution process will be 

proposed in the next section. The research gaps discovered by existing works will also be 

mentioned in the following section. 

2.4 Literature Discussion 

 
Regarding the presented literature, as shown in Table 5, several studies in demand 

forecasting and distribution aspects are in the classical supply chain. Some of them propose the 

integration of these two aspects. However, as the PI concept is still a novel paradigm, few 

works are in demand forecasting (Qiao et al., 2019) and the distribution process. Also, few 

studies are in inventory management (Pan et al., 2015; Yang et al., 2017a, 2017b) and 

transportation routing (Ben Mohamed et al., 2017; Pal & Kant, 2016). Most PI research works, 

as shown in Table 5, focus on each aspect individually. No relevant studies work on integrating 

demand forecasting and the PI distribution network's improvement process. Therefore, this 

thesis focuses on increasing demand forecasting capability via machine learning. Then, it will 

demonstrate how demand forecasting enhances the performance of PI distribution networks. 

For the distribution performance, this thesis will focus on both inventory and transportation 

dimensions. All literature pieces above would help to discover new methodologies and 

algorithms to fulfill all perturbations' gap, as mentioned earlier, in the PI supply chain network. 
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Table 5. The summary of relevant literature lists in this thesis 
Literature list Type of supply 

chain network 
Problem classification 

Classical PI Forecasting Distribution 
Inventory Transportation 

Montané and Galvão (2006) X    X 
Aburto and Weber (2007) X  X   
Bianchessi and Righini 
(2007) 

X    X 

Li, Golden, and Wasil 
(2007) 

X    X 

Benkachcha, Benhra, and El 
Hassani (2008) 

X  X   

Kek, Cheu, and Meng 
(2008) 

X    X 

Carbonneau, Laframboise, 
and Vahidov (2008) 

X  X   

Bala (2010) X  X X  
Cornillier, Boctor, and 
Renaud (2012) 

X    X 

Ramanathan (2012) X  X   
C. Wang et al. (2015) X    X 
Montoya-Torres et al. 
(2015) 

X    X 

Pan et al. (2015)  X  X  
Yu and Lin (2015) X    X 
Mu et al. (2016) X    X 
Pal and Kant (2016)  X   X 
Amirkolaii et al. (2017) X  X X  
Ben Mohamed et al. (2017)  X  X X 
Yang, Pan, and Ballot 
(2017a, 2017b) 

 X  X  

Atefi et al. (2018) X    X 
Priore et al. (2019) X  X X  
Qiao, Pan, and Ballot (2019)  X X  X 
Punia et al. (2020) X  X   
Chien, Lin, and Lin (2020) X  X   
Brintrup et al. (2020) X  X   

2.5 Summary 

 
This chapter has two main literature aspects: demand forecasting and distribution 

process in the PI context. Two groups of forecasting approaches are proposed: Regression and 

Neural Network models. These forecasting models are frequently used in the time-series data, 

particularly in the supply chain. LSTM is proposed as a recurrent neural network model in this 

thesis. Furthermore, this section also mentions forecasting performance improvement by 

automated hyperparameters tuning in the neural network model. Genetic Algorithm and Scatter 

Search are implemented in the hyperparameters tuning process. For the distribution process, 

the general concept of supply chain distribution is introduced. Then, the concept of the 

distribution process with relevant works in the PI is proposed. The clustering and VRPSPD 

methods for the PI network are described. Besides, the comparison of several pieces of 
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literature in the distribution process, both classical and PI supply chains, are proposed. 

However, in the literature discussion section, we discover a research gap on demand 

forecasting and distribution process in the PI context. Few works focus on the integration of 

demand forecasting and the PI distribution.  

For that reason, this thesis will study more demand forecasting and distribution in the 

PI. All relevant works in this chapter help to determine demand forecasting problems in the PI 

context and innovative approaches to solve them. Besides, the proposed approaches will be 

implemented using novel algorithms and tools. The objective is to demonstrate the importance 

of demand forecasting and how demand forecasting can enhance the PI network’s efficiency. 

All details will be described in chapter 3.  

Furthermore, some relevant works in this chapter also determine the distribution 

problems in the PI context and innovative approaches to solving them. All details will be 

described in chapter 4. The objective is to show how the approaches can solve the distribution 

problem in the complex network as PI using the forecast demand.  
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Chapter 3  

Demand forecasting in the PI context  

3.1 Introduction  

In the literature review, several issues concerning the supply chain were raised. Among 

them, the problem of demand forecasting is the most critical issue. To solve this issue, demand 

forecasting efficiency improvement is the most effective solution as it improves forecasting 

performance, controls inventory levels, and reduces total supply chain cost. Demand 

forecasting can also ascertain an adequate stock of raw materials and finished goods for 

relevant parties in the complex network. In the PI context, the use of demand forecasting is a 

fairly novel idea. It is interesting to investigate the impact on the PI distribution network 

efficiency by using demand forecasting. Thus, to do so, in this chapter, we will present various 

problems and approaches concerning the usage of demand forecasting in the PI context. 

Besides, we will demonstrate how to implement the approaches using novel methodologies, 

algorithms, and tools. All details will be described in sections 3.2 and 3.3. 

3.2 Demand forecasting problems and proposed approaches 

In this section, we discuss demand forecasting problems in the PI context and our 

proposed approaches to solve them. Section 3.2.1 focuses on demand forecasting problems that 

were already addressed in the literature. We group them into three main problems. Section 

3.2.2 focuses on enhancing the performance of demand forecasting with our proposed 

approaches. All details are described below. 

3.2.1 Demand forecasting problems in PI context 

A forecasting approach faces three main problems as shown in Figure 20. 
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Figure 20. The overview of main problems in the demand forecasting approach 
The three main problems are described as follow: 
 

• Firstly, customer demand nowadays fluctuates frequently and changes over time 

(Aburto & Weber, 2007; Amirkolaii et al., 2017; G. Wang, 2012). This situation leads 

to last-minute changes in customer demands before confirming stock levels at 

distribution centers or PI-hubs in the PI context. 

• Secondly, raw materials are under or overestimated on the production lines. The 

finished goods at distribution centers also face the same problem. This problem is 

occurred by an inefficient prediction of customer demands in the PI network (Bala, 

2010; Brintrup et al., 2020; Oger et al., 2021).  
• Thirdly, all the supply chain parts connections nowadays are complex (Ben Mohamed 

et al., 2017; Crainic & Montreuil, 2016; Benoit Montreuil et al., 2013). Since the 

forecasting problem is critical, each node’s prediction needs to be considered. In this 

case, predictions are calculated at destination nodes, which are retailers. 
These problems above illustrate why demand forecasting is essential to control and 

manage the supply chain network’s stock level, especially with the complex PI network. If 

appropriate approaches can solve these problems, the total costs and the bullwhip effect in the 

network will be reduced. Besides, the performance of the distribution process will increase.  

Regarding the reasons above, these problems lead to constructing novel approaches in 

the forecasting aspect. These last are mentioned in the next section.   
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3.2.2 Proposed demand forecasting approaches  

Given the increasing variety and fluctuation of the demand, this thesis has adopted 

innovative and hybrid methods. As classical forecasting techniques have shown their limits in 

the literature, a new forecasting approach is proposed based on machine learning techniques. 

As it can be seen in Figure 21, our forecasting approach is composed of two stages. The first 

stage is the initial stage, and the second stage is the improvement stage. All details are described 

below. 

 
Initial stage 
 

This first stage proposes the Long Short-Term Memory (LSTM) (item #1 in Figure 21), 

which is implemented to predict the future demand. This stage also experiments with a single 

product. For the product, we consider both the single and multiple input variables to train a 

model and predict the future demand.  This stage aims to predict customer demands based on 

the historical data from various parties in the PI network. For example, the forecast demands 

come from various retailers in the PI network. Besides, the LSTM model compares its 

performance with other classical regression models.  

To improve the LSTM performance, it is necessary to perform the hyperparameters 

tuning. Trial-and-error is the only solution to choose the appropriate hyperparameters of the 

model in this stage. However, based on the trial-and-error solution, it takes a long time to 

choose appropriate hyperparameters configuration. Therefore, the improvement stage aims to 

improve the efficiency of the hyperparameters tuning.  

 
Improvement stage 
 

This stage proposes the improvement process of the hyperparameters tuning in an 

LSTM model, as mentioned earlier. The forecast demand in this stage is forecasted by the 

historical daily demand and relevant factors from various products. This stage also illustrates 

how to implement the forecast demand in the PI network, with various PI-hubs and retailers.  

Automated tuning of the relevant hyperparameters is proposed to improve the 

forecasting model's performance (item #2 in Figure 21). The hybrid metaheuristic used in this 

stage is constructed using a combination of a Genetic Algorithm (GA) and a Scatter Search 

(SS). The performance of this hybrid metaheuristic is compared to the trial-and-error method. 
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Figure 21. The structure of the proposed forecasting approach 

 

After forecasting customer demands with hyperparameters tuning, the forecasting 

output will be implemented as input in a PI network simulation. The PI network simulation is 

conducted to investigate how to plan resources in a complex supply chain (item #3 in Figure 

21). The simulation also assesses the forecast data's effectiveness on both holding and 

transportation costs. Moreover, Figure 21 describes a practical approach for the decision-

makers in the PI production and distribution systems. For the production system, the manager 

can compute the inventory level to support each distribution hub based on the daily forecast 

demand generated by the LSTM model. Besides, the manager can determine the best 

transportation route between distribution hubs and customers (retailers) or within distribution 

hubs for the distribution system. Besides, customers can send their requests to any distribution 

hub that provides their requirements. High-quality forecasting will increase production and 

distribution planning efficiency, particularly with the complex supply chain in the PI network.  
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Since the forecasting approach's main structure was proposed, we move to describe 

more details of this approach in the next section. The next section will describe how to 

implement the demand forecasting approach in the PI context. 

3.3 The implementation in the PI context 

 There are three primary contexts considered in this section: the implementation of the 

forecasting model, the automated hyperparameters tuning with a hybrid metaheuristic, and 

simulation model in the PI context with demand forecasting. All details are described below.  

3.3.1 The implementation of the forecasting model 

As shown in Figure 22, five steps are distinguished in this context: data gathering, data 

pre-processing, implementing the forecasting models, data post-processing, and model 

evaluation. These steps are also developed using Python programming language, which is 

widely used for machine learning and data analytics (Raschka, 2015). Python has simpler and 

more concise syntax than other programming languages, such as Java, C#, or C++. Also, 

Python has many useful add-on libraries (e.g., Keras, Sci-kit, Tensorflow) for developing the 

forecasting model. 

 
Figure 22. The procedure flow of demand forecasting process  
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Data gathering 
 

For data gathering, two datasets have experimented with this step. Firstly, the forecast 

data is predicted by the existing monthly data of a single product. Secondly, the forecast data 

is predicted by the daily data from various products. These two datasets will be described in 

more detail in the case study section later. In this thesis, the daily data is generated from the 

monthly historical data due to the limitation of experimental data. Also, to see the performance 

of neural network models, it is compulsory to test the performance with the largest possible 

data amounts. The dataset is generated using the Dirichlet distribution, which is a multivariate 

probability distribution (Bouguila et al., 2003). This distribution method works well for 

estimating uncertainty probabilities for all variables in a model in both symmetric and 

asymmetric modes. In our case, let (X1,…, XN) denote a collection of N monthly data, and each 

Xi is assumed to have the dimension of daily data. For example, Xi equals (Xi1,…,Xi31) for 

daily data in January or any 31 days month. The total probability of daily data in each month 

must be equal to one. The function numpy.random.dirichlet from Python is implemented to 

generate daily data (Doell & Borgelt, 2019). These datasets are prepared and imported using a 

CSV format. Once gathered, the prepared data in these two datasets are paramount to pre-

process the data before carrying out any predictions. The data pre-processing will be described 

in the next step. 

 
Data pre-processing  
 

This step consists of data cleaning and data transformation. The data cleaning makes 

the data applicable to the forecasting models (Cadavid et al., 2019). For example, in our case, 

we check all missing values and typographical errors in the dataset. For data transformation, 

there are many solutions to transform the data before training a model. Data normalization is 

one of the data transformation solutions (Cadavid et al., 2019). The data normalization will 

transform all raw data to be scaled data. The fit_transform method in the MinMaxScaler 

function from Python is implemented to normalize data. The data transformation can reduce 

noise and increase the performance when training a model and predicting future demands with 

machine learning techniques (Zhang and Qi 2005; Cao, Li, and Li 2019). In addition, the 

dataset is then separated into two sets: 80 percent for the training set and 20 percent for the 

testing set. According to the trial-and-error experiment conducted with different percentages, 

this ratio is chosen as it provided the best accuracy.  
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Implementing the forecasting models 
 

After finishing the previous step, forecasting models will be applied to the pre-process 

data. An LSTM and benchmark models (ARIMAX, SVR, and MLR) are implemented in this 

step. These models are applied to two datasets: monthly data and the generated daily data of 

various products. These datasets consist of input variables (X) and forecast outputs (Y). The 

input variables (X) focus on both single and multiple input factors. The output variable is the 

forecast output of all the products for the next period. The LSTM and other models are also 

implemented using Python with Keras and Sci-kit libraries. 

 
Data post-processing 
 

When finished training and predicting processes, all forecast data will be converted 

from scaled data using the data denormalization method. The scaled data is converted to raw 

data of expected daily demand using the inverse_transform method in the MinMaxScaler 

function. The objective is to see exact volumes or quantities of forecast demands. 

 

Model evaluation 
 

Once the forecast has been computed, the performance of the forecasting model is 

assessed using the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE), and Mean Absolute Scale Error (MASE) scores (see 

equations (4)-(7)). 
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where : 	𝑋' : the real demand for product i 
            		𝑌' : the forecast demand for product i 
  	𝑛  : the forecasting period 
     𝑇 : the training period 

These scores measure the accuracy between the real and the forecast values (Acar & 

Gardner, 2012; Bala, 2010; Shafiullah et al., 2008). If these scores are small, the deviation 
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between the real and the forecast values is small too. RMSE is the square root of the Mean 

Squared Error (MSE). RMSE and MAE display the error score, which is on the same scale as 

the data (Hyndman & Koehler, 2006). These two indicators display the error score in terms of 

products’ quantities or items in this experiment. MAPE and MASE are frequently used to 

measure forecasting performance with different datasets and scales (Acar & Gardner, 2012; 

Hyndman & Koehler, 2006). Also, they are less sensitive to outliers and easy to interpret the 

forecasting performance. In this experiment, MAPE and MASE present the error score in terms 

of product percentages and scales. 

R-Squared (R2), another evaluation factor, measures the degree of association between 

two variables in such a model (Cao et al., 2019). In this thesis, R2 measures how predicted 

values of the model close to real values. A higher R2 score means that the forecast demands 

are very closed to real demands. As aforementioned, the equation variables are the real and 

predicted values (see equation (8)).  

                                                          R2 = 1- ∑ 	(,!*
#
! -!)"

∑ 	(,!*,7!)"#
!

                                     (8) 

 
Moreover, the Theil’U coefficient (U2) is another indicator to measure the forecasting 

quality and compare it with benchmark models (Brown & Rozeff, 1978; Theil, 1966). If the 

U2 score is closed to zero, it means that the forecasting quality is better than other benchmark 

models. Many research papers have proposed the U2 value to measure the performance of their 

models. For example, Navya (2011) evaluated the forecasting model of future trading volumes 

for the agricultural commodity using RMSE and U2 scores. Another work (Supattana, 2014) 

also measured the performance of steel price index forecasting between ARIMA and ARIMAX 

with U2 and other indicators. As the results mentioned in these papers, U2 is an exciting 

indicator of the forecasting model performance (see equation (9)). 
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Lastly, the unit root score obtained using the Augmented-Dickey Fuller (ADF) test 

determines if the forecast data is stationary or non-stationary (Dickey & Fuller, 1979, 1981). 

The null hypothesis of ADF is 𝐻):	𝜌 = 1, which means the sequence is non-stationary if root 

𝜌 is equal to one. The alternative hypothesis (𝐻::	𝜌 < 1) shows that the time series is 

stationary. Therefore, to reject the null hypothesis or make the data stationary, the root 𝜌 should 

be less than one, and the ADF score should be more negative. 
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Now, we understand more details of the forecasting models’ implementation from data 

gathering to model evaluation. Another essential task to consider is the tuning of the 

hyperparameters for machine learning or the NN model. The objective is to improve demand 

forecasting's accuracy and reliability, mainly through the neural network model. The details of 

the automated hyperparameters tuning will be described in the next section. 

3.3.2 The automated hyperparameters tuning with a hybrid metaheuristic 

As described previously, a relevant process for tuning the LSTM model's 

hyperparameters (number of hidden layers, number of neural units in each layer, activation 

function, and optimizer function) is needed to optimize its efficiency. It takes a long time to 

choose appropriate hyperparameters for each model. Hyperparameters are generally chosen 

based on the trial-and-error solution. It means trying all possible solutions to tune the 

hyperparameters in the forecasting model structure. This solution is the initial solution 

implemented in the initial stage. However, it takes a long time to choose appropriate 

hyperparameters. Then, metaheuristics are proposed in the improvement stage. Some studies, 

as mentioned earlier, have proposed metaheuristics to tune neural network hyperparameters. In 

this thesis, Genetic Algorithm (GA) and Scatter Search (SS) are chosen to build a hybrid 

metaheuristic. 

The flow of the hybrid metaheuristic implementation, which are GA and SS, is shown 

in Figure 23, and the details are outlined below. Besides, the GA is motivated by (Harvey, 

2017). The input data (e.g., historical daily demand and unit price of each product) and the 

forecast outputs (e.g., daily demand for the next period) are used to choose the 

hyperparameters. 
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Figure 23 The process flow of the hybrid metaheuristic  

 

Firstly, the algorithm starts the solution encoding by randomly generating the 

population of LSTM hyperparameter network structures. In this case, four hyperparameters are 

considered to construct the network structure: the number of hidden layers, the number of 

neural units in each layer, activation functions, and optimizer functions. These hyperparameters 

are the main parameters affecting the performance of the forecasting model. Once the set of 

hyperparameter networks has been generated, all networks are trained, and the algorithm 

returns a fitness score. A loss value calculates the fitness score for each network. In this case, 

the loss value is Mean Squared Error (MSE), which was described in the previous section. The 

lower is the loss the better is the fitness score. The network structures are then displayed in 

descending order starting with the highest fitness score. The algorithm also checks whether the 

process runs until the last network generation is reached or not. If the generation is not the last 

one, all the networks’ performance will be improved through the selection, crossover, and 

mutation processes. Details of the genetic algorithm are provided in Figure 24. 
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(A) 

 
(B) 

Figure 24. Process overview of a Hybrid Genetic Algorithm and Scatter Search (A); Example 
network structures in selection, crossover, and mutation (B) 
  

In Figure 24 (A), after initializing the network structures' population, the algorithm 

chooses a subset of them, starting with the highest fitness value. The reasonable probability of 

population selection is usually from 0.5 to 1 (Blanco et al., 2000). Then, in the crossover 

process, the parents’ chromosome is chosen randomly to produce a set of children. Finally, 
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some children from the list are chosen to randomly mutate the parameter in the mutation 

process, as shown in Figure 24 (B). Besides, one-point crossover and mutation methods are 

considered for GA parameter’s tuning in this experiment (Poli & Langdon, 1998; Wright, 

1991). 

However, the difference between classical GA and Hybrid GA lies in an intensification 

step via the SS technique. For the hybrid method, the Diversification Generation Method 

gathers the list of hyperparameter networks from the crossover process. Then, the following 

networks improve the performance using the concept of improvement method. It means that 

some hyperparameters in the network are updated with different values after the crossover. In 

this experiment, the average number of hidden layers and the average number of neural units 

from the parent networks construct a novel value of the network parameters. This perspective 

was also implemented in convolutional neural networks to improve the neural network 

structures' performance (Araújo et al., 2017). Once the algorithm has finished improving the 

hyperparameter networks, the most recent networks are trained again. The set of networks is 

trained and adjusted to the network parameters’ values until the last generation has been 

completed.  

Once this final generation has been trained, the algorithm returns the top five 

hyperparameter networks based on the fitness scores. The best network to train and predict 

future demands in each dataset is then chosen.  

3.3.3 Simulation model in the PI context with demand forecasting 

A simulation model is proposed to assess the performance of the proposed forecasting 

approach. Firstly, the simulation model simulates using the forecasted retailer demand (output 

of the LSTM). Secondly, the real demand is also simulated in the same model. Then, we 

compare the holding and transportation costs between forecast and real demands. A slight 

deviation in costs shows that the demands are predicted well. The simulator's inputs are the 

forecast or real demands of retailers, the Reorder Point (ROP), the distance between all nodes, 

and the stock levels at each hub.  

The example of PI network simulation, as shown in Figure 25, is comprised of five 

nodes: one production line, three PI-hubs, and two retailers. Also, the simulation provides the 

daily variation in both holding and transportation costs.   
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Figure 25. Screenshot of the simulation model in the PI supply chain (Netlogo simulator) 
 

The simulation is performed using the NetLogo multi-agent platform, which is inspired 

by (Nouiri et al., 2018). The NetLogo is a multi-agent simulator for modelling complex 

problems (Tisue & Wilensky, 2004). It is designed for both research and education and is used 

across a wide range of different research levels. The NetLogo is easy to model and manipulate 

the interaction between decisional entities in the network. The Netlogo has four types of agents. 

The first is ‘‘turtles’’, which are decisional entities. The second is ‘‘patches’’, which provide a 

grid representation of the environment. The third is ‘‘links’’, which are agents that connect two 

turtles. The last one is ‘‘the observer’’ who provides instructions to other agents. Besides, 

breeds are an agent set of turtles. In this thesis, the supply chain components are modeled with 

turtles, breeds, and links.  

As the PI concept is based on the full connectivity between PI-hubs, a replenishment 

rule needs to be chosen. In the simulation model, the replenishment policy is the same in both 

experiments (forecast and real demands). The closest hub is always selected as a suitable 

replenishment node to accomplish retailer demand. There are three main assumptions for the 

simulation:  

• The order quantity of each retailer on each day is equal to daily demand. 

• Each distribution hub has its trucks and manages them separately. 

• The stock levels at PI-hubs are sufficient for all orders (e.g., the initial stock level 

at each hub is greater than the total forecast quantity). 

The daily forecast demand of two retailers is used to calculate the transportation and 

holding costs for the daily forecast demand in the simulation. After the delivery of retailer 

orders, the stock levels at the hub are updated daily. The distance travelled by the trucks during 

delivery is also updated. The holding and transportation costs are calculated and updated using 
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equations (10)-(15) below, where T is a daily period. Then, the holding and transportation costs 

of real and forecast demands are compared. A slight deviation between the forecast and real 

demands proves the effectiveness of our proposed approach. Besides, all configuration values 

will be described later in the case study section. 

Holding cost: 

• total_holding_cost =  ∑ (𝑑𝑎𝑖𝑙𝑦_ℎ𝑜𝑙𝑑𝑖𝑛𝑔_𝑐𝑜𝑠𝑡_ℎ𝑢𝑏);
!("                    (10) 

• daily_holding_cost_hub  =  Inventory stock * unit holding cost            (11) 
 

Transportation cost: 

• total_transportation_cost =  ∑ (𝑑𝑎𝑖𝑙𝑦_𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡_𝑡𝑟𝑢𝑐𝑘);
!("            (12) 

• daily_Transportation_cost_truck = travelled_distance * Demand_Quantity *  
unit transportation cost                 (13) 

Deviation Percentage: 

• DP_holding_cost  =  ABS(total_forecast_holding_cost – 
total_real_holding_cost)/total_real_holding_cost              (14) 

• DP_transportation_cost  =  ABS(total_forecast_transportation_cost – 
total_real_transportation_cost)/total_real_transportation_cost            (15) 
 

This section evaluates the PI distribution performance via holding and transportation 

costs in the PI network simulation. We experiment using forecast and real demands with the 

small number of PI-nodes (PI-hubs and retailers), as shown in Figure 25. However, if the 

number of PI-nodes is large, the distribution network will be more complicated with full 

connectivity. Also, the problem of extra costs and inventory management can occur. For that 

reason, we investigate the distribution problem in the PI network when the number of PI-nodes 

increases. Then, we demonstrate how to enhance the complex PI network’s efficiency via our 

proposed approaches. Several distribution problems in the PI network and the proposed 

approaches to solve them will be described in the next chapter. 

3.4 Summary 

This chapter's main idea is to demonstrate demand forecasting problems, which affect 

the managerial side in both stock levels and total costs in the PI network. In addition, this 

chapter presents the demand forecasting approach and how to implement it in the PI context. 

In this thesis, we propose an innovative forecasting approach based on machine learning 

techniques. The proposed approach is applied in three contexts: the implementation of the 
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forecasting models, the automated hyperparameters tuning with a hybrid metaheuristic, and the 

simulation model in the PI context with demand forecasting.  

To build our forecasting model, we consider an LSTM as a proposed forecasting model. 

The performance of this model has been evaluated with regressions once both accuracy and 

correlation aspects. Next, automated hyperparameters tuning is proposed to improve 

forecasting performance. In this thesis, GA and SS are implemented as a hybrid metaheuristic 

in hyperparameters tuning. The hybrid metaheuristic makes an automated choosing appropriate 

values of hyperparameters in the forecasting model. The forecasting results from LSTM are 

implemented in the PI network simulation. The objective is to evaluate the total distribution 

cost (holding and transportation costs) performance and compares them with the real demand. 

If the gap between forecast and real demands has a slight deviation, the PI network simulation 

can consider the forecast demand to plan the budget for the total distribution cost. 

According to the demand forecasting approach and the implementation of forecast 

demand in the PI network simulation, we understand the importance of demand forecasting, 

and how the forecast demand impacts the PI network. However, the complexity of the PI 

network will be higher when the number of PI-nodes increases. Thus, to do so, the distribution 

problems and innovative approaches to solving them in the PI context will be proposed in the 

next chapter. 
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Chapter 4  

Proposed approaches for the distribution problems in the Physical Internet 

4.1 Introduction 

This chapter will present the distribution problem in the PI context and the proposed 

approaches to solve them. This chapter also provides algorithms and tools to support the 

proposed approaches. The objective is to demonstrate the performance improvement of the PI 

distribution network via novel algorithms, such as dynamic clustering and dynamic 

transportation routing. The previous chapter's forecast demand is considered an input variable 

for the proposed approaches in this chapter.  Moreover, several key performance indicators 

(total distribution costs and computational times) are proposed for the PI distribution’s 

performance measurement. More details are described in this chapter. 

4.2 PI distribution problems and proposed approaches 

In this section, we discuss specific PI distribution problems and our proposed 

approaches to solve them. Section 4.2.1 focuses on the specific PI distribution problems that 

were already addressed in the literature. We group them into three main problems. Section 

4.2.2 focuses on enhancing the PI distribution process’s efficiency with our proposed 

approaches. All details are described below.  

4.2.1 Specific PI distribution problems 

Three main problems, as shown in Figure 26, are linked to the distribution approach in the PI 
context. 

 
Figure 26. The overview of specific problems in the distribution approach 
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The three main problems are described as follow: 
 

• Firstly, the quantity of customer demands affects the number of relevant nodes in the 

supply chain network. For example, when customer demands increase, it is compulsory 

to adjust the number of PI-nodes such as PI-hubs and retailers to support all demands 

(Crainic & Montreuil, 2016; Pal & Kant, 2016). This problem leads to the large 

amounts of fully connected PI-nodes in the region. 

• Secondly, the PI-hub network and connected routes between PI-hubs and retailers are 

complicated because of the large number of interconnections (Pan et al., 2015; Yang et 

al., 2017a, 2017b). Therefore, this problem makes it more difficult to manage 

stakeholders’ resources, such as inventory levels and transportation routes, than the 

classical supply chain network. 

• Thirdly, the PI network's total distribution cost is high due to the high levels of 

inventory at PI-hubs, the number of connections, and distances in the network (Ben 

Mohamed et al., 2017; Qiao et al., 2019). 

All problems above describe how the complex connection links between all nodes 

affect the distribution process's efficiency. To improve the distribution process's efficiency and 

optimize the total cost based on the PI network’s complexity, we proposed two approaches that 

we describe in the next section.  

4.2.2 Proposed PI distribution approaches 

In this section, two approaches for enhancing the efficiency of the PI distribution 

process are proposed. For that reason, we focus on the decision support system as shown in 
Figure 27. Our first approach is a part of the clustering module. Also, our second approach is 

a part of the routing module. All details are described below. 
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Figure 27. The structure of the proposed PI distribution approaches 
 

Clustering approach 

We propose a clustering approach to decrease the complexity of PI-hubs’ connection. 

For that, we apply a partitional clustering to group PI-hubs with smaller sizes and reduce the 

connection’s complexity. In this thesis, we choose K-Mean and K-Medoid as partitional 

clustering. Also, three main assumptions are considered to support this approach.   

• Assumption#1: There are fully connected networks of all PI-nodes in the PI context. 

Different PI-hubs can replenish retailers in the network. 

• Assumption#2: Retailer demands are predicted based on historical demands.  

• Assumption#3: When retailers’ assignment to PI-hubs is established, the 

distribution is carried using a shared fleet of trucks.  

 The clustering approach has two steps. Firstly, all PI-hubs are grouped into each cluster 

based on their characteristics. The characteristics are inventory levels of each PI-hub, PI-hubs’ 

physical location, and other relevant factors (e.g., production supply, import-export quantities).  

Each cluster contains different PI-hubs each day. Secondly, retailers are assigned to different 
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clusters in a single day. Also, each day will redo the retailer’s assignment based on the clusters’ 

specification (Inventory levels inside a cluster, distance between retailers, and clusters’ 

centroid). This part will be modeled using Integer Linear Program (ILP) and solved using 

CPLEX. All details will be described in section 4.3. 

After finishing all processes above, we will get the clusters of PI-hubs and retailers, as 

shown in Figure 27. Now, we can plan the relevant resources, such as the number of trucks, 

drivers, PI-hubs’ inventory levels, to support enough retailer demands in each cluster. 

However, we still require knowing how to construct the transportation route between PI-nodes 

(PI-hubs and retailers) inside a cluster. Therefore, the next section will provide more details 

about how to construct transportation routes. 

 

Transportation routing approach 

A transportation routing approach is proposed to construct feasible routes between PI-

hubs and retailers.  This approach also deals with the vehicle routing problem in simultaneous 

pickup and delivery (VRPSPD) (Ben Mohamed et al., 2017). Mixed Integer Programming 

(MIP) model and metaheuristics are proposed to minimize the distribution cost in all connected 

routes. Firstly, the VRPSPD is formulated using the MIP model. The objective of MIP is to 

formulate the problem and find the optimal solution with small instances, which include the 

small number of PI-hubs and retailers. Secondly, the routing constructions are improved by the 

Iterated Random Heuristic (IRH) and metaheuristics. The IRH is developed by combining an 

initial random heuristic and the nearest neighbor search. Then, The IRH will improve the 

solution’s quality by metaheuristics. Random Local Search (RLS) and Simulated Annealing 

(SA) are the used metaheuristics in this approach. The metaheuristics are implemented to find 

a suitable solution for large instances.  

In addition, this approach will be implemented in multiple depots and open vehicle 

routing problems. Nine assumptions are considered to support the approach. 

• Assumption#1: Different PI-hubs can fulfill the retailer’s stocks in the cluster.  

• Assumption#2: The experiment is based on one-day period.  

• Assumption#3: The inventory levels for the PI network nodes are calculated using 

the inventory conservation rule (updated inventory levels = previous inventory 

levels + quantity produced at plants – delivery demand in a day) for inventory 

managing (Darvish et al., 2016).  

• Assumption#4: The transportation networks are constructed based on the 

connection from PI-hubs to retailers and between retailers. 
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• Assumption#5: Trucks do not have any time window constraints during 

transportation in a day. 

• Assumption#6: The retailer demands in this experiment are predicted from the 

historical demands. 

• Assumption#7: All delivery and pickup demands are encapsulated with PI 

containers. 

• Assumption#8: The quantity of delivery demands at each retailer is less than or 

equal to the pickup demands.  

• Assumption#9: Each hub has different holding costs 

• Assumption#10: All PI-hubs can share their means of transportation (trucks, 

drivers) among them based on the number of PI-hubs and retailers. 

• Assumption#11: PI-hubs cover all retailer demands in a cluster. 

 

These nine assumptions are considered when constructing a goods transportation route 

in each cluster.  Each route contains the starting hub, list of retailers, and the ending hub. 

Besides, all routes are constructed based on the daily pickup and delivery demands of all 

retailers in a cluster. PI-containers encapsulate all demands. The "PI-containers to deliver" are 

considered as the new products to distribute to retailers. In contrast, the "PI-containers to pick 

up" are the returnable products such as products’ packaging or incompatible products, which 

must be returned to the PI-hubs.  

The transportation route begins with the starting hub to visit several retailers in the 

cluster. After finishing all pickup and delivery processes, the last hub is assigned as the end of 

the route. In the classical supply chain, all trucks must return to their starting point after 

finishing all transactions. However, in the PI context, the starting point and ending point can 

be different regarding sharing infrastructure (trucks, drivers, containers). The example of 

routing construction is shown in Figure 28. For route #1 [H1-R3-R4-H2] in blue color, the 

starting hub is H1, and the retailers are R3 and R4. The pickup and delivery process will be 

done at the same time in each retailer. After completing all transactions, a truck will transport 

the pickup PI-containers to the last hub, H2. The context of route #2 [H3-R2-R1-R5-H2] in red 

color is the same as route #1, but the number of retailers is different because of the truck 

capacity and daily demands.  
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Figure 28. The PI network of pick-up delivery problem 
 

Regarding all details earlier, our clustering approach will reduce a large number of all 

PI-nodes’ connections (PI-hubs and retailers) for each area. Besides, our transportation routing 

approach provides a solution for routing connections between PI-hubs and retailers in the PI 

network. Moreover, sustainability is considered to be implemented in this approach due to the 

PI network’s environmental aspect. All methodology details to support our approaches will be 

described in the next section. 

4.3 The implementation in the PI network 

This section focuses on the performance improvement of the PI network with a large 

number of PI-hubs and retailers. Since the PI network was more complex with a higher number 

of PI-nodes, it is compulsory to enhance the distribution performance. Also, the total 

distribution cost and computational time will be lower if the PI network is less complicated. 

Three main parts (the proposed clustering methods, Integer Linear Program (ILP) for assigning 

retailers to clusters, and the implementation of PI distribution network for VRPSPD) are 

described in this section based on our innovative approaches, as mentioned earlier.  
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4.3.1 The proposed clustering methods 

Since the number of PI-hubs and the routing connection are very large, the clustering 

methods are proposed to group PI-hubs with smaller sizes and reduce the connection’s 

complexity. The clustering methods are developed using the package in R programming 

language (Flynt & Dean, 2016; Malika et al., 2014). The R package has many valuable libraries 

(e.g., cluster, clustertend, NbClust) for developing the clustering methods.  In this thesis, three 

main steps are required to cluster the PI-hubs. Firstly, the forecast data will be pre-processed 

by removing some missing values and scaling data due to different input variables scales. 

Secondly, the dataset clusterability is checked using Hopkins statistic and p-value. The dataset 

is clusterable if the Hopkins statistic is closed to one; the p-value should be less than 0.05 for 

a confident level of 95%. The cluster’s quality is also determined based on the Silhouette score. 

Moreover, NbClust (Malika et al., 2014) in the R package is applied to find the optimal number 

of clusters. Thirdly, after checking the dataset clusterability, K-Means and K-Medoid are 

chosen as the clustering methods. K-Means calls kmeans function, and K-Medoid calls pam 

functions in the cluster library from the R package. Euclidean and Manhattan are also used to 

measure the distance between the representative member and other cluster members. The 

chosen clustering methods are applied to group PI-hubs. The results of the clustering 

experiment will be discussed in the results and analysis section. 

4.3.2 Integer Linear Program (ILP) for assigning retailers to clusters 

 After finishing the data clustering process, this step focuses on assigning retailers to 

the clusters. Also, ILP is applied to determine the appropriate number of retailers in each 

cluster. According to the clustering description in the previous section, these clusters, as shown 

in Figure 29, are called “Dynamic clustering.”  

 

 
 
 
 
 
 
 
 

 

Figure 29. The example of hubs clustering-based retailer demand on each day 
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The retailer assigning criteria focuses on the minimum distance from retailers to the 

cluster centroid, and total inventory level from all PI-hubs in the same cluster. The ILP model, 

which is inspired by the allocation problem (Montoya-Torres et al., 2016), is implemented to 

solve the retailer-cluster assignment problem. The mathematical model is shown below: 

Notations: 

� r: number of retailers 

� c: number of cluster centroids 

� 𝑑'<: distance matrix from retailer i to cluster centroid j  

� 𝐷': demand of retailer i 

� 𝑄<: total PI-hub inventory levels in cluster j 

Decision Variables: 
 
� 𝑋'<: 1, if a route from retailer i to cluster centroid j is selected, 0, otherwise 

 

                          Min ∑ ∑ 𝑑'<𝑋'<=
<("

>
'("                                                                              (16) 

    Subject to: 

 
																																								 ∑ 𝑋'<=

<(" = 1, ∀𝑖 ∈ {1, … , 𝑟} 																																			                        (17)                                    
																																												∑ 𝐷'𝑋'<>

'(" ≤	𝑄< , ∀𝑗 ∈ {1, … , 𝑐}
																																	
																																	                    (18) 

                                                                                                                                                     
In the ILP model, equation (16) represents the objective function; it minimizes the total 

distance from retailers to clusters. Equation (17) ensures that each retailer is assigned to only 

one cluster. Equation (18) guarantees that the total quantity in each cluster covers the total 

demand of the assigned retailer. 

When retailers are assigned to each cluster, the improvement of routing construction 

between PI-hubs and retailers will be considered in the next section. The vehicle routing 

problem with simultaneous pickup and delivery (VRPSPD) will be implemented to solve the 

routing problem in this thesis. 

4.3.3 The implementation of PI distribution network for VRPSPD 

Regarding the introduction of VRPSPD, as mentioned in the literature and 

transportation routing approach, this section demonstrates how to construct the feasible routes 

in each cluster and the improvement solution via a heuristic and metaheuristics. Four main 
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solutions are proposed: Mixed Integer Programming (MIP), Iterated Random Heuristic (IRH), 

Random Local Search (RLS), and Simulated Annealing (SA). All details are described below. 

 

Mixed Integer Programming (MIP) 

This model is motivated by the Multiple depots’ Vehicle Routing problem (MDVRP) 

in (Montoya-Torres et al., 2015) and (Montoya-Torres et al., 2016) to solve the transportation 

routing problem between PI-hubs and retailers. The inspired models from two references above 

are designed to support the collaborative scenarios of goods transportation in the city logistics.  

However, some new constraints and variables have been added to support the simultaneous 

pickup and delivery process in the PI context. This problem is defined over a graph G = (V, A) 

where V is PI-nodes (PI-hub and retailer nodes), and A is the set of arcs between PI-nodes. The 

following mathematical model is used: 

Notations: 

• H: number of PI-hubs 

• R: number of retailers 

• K: number of trucks 

• N: number of pick-up and delivery points, which are PI-hubs and retailers 

• Speed: truck speed (km/hr) 

• Driving_hr: driving hour in a day 

• d1ij: distance matrix from retailer i to retailer j   

• d2hi: distance matrix from hub h to retailer i   

• Sh: initial inventory levels at hub h 

• INCh: inventory unit cost at hub h 

• D1i: delivery demand at retailer i 

• D2i: pickup demand at retailer i 

• Tk: the capacity of truck k 

• TC: fixed unit transportation cost per kilometer 
 
Decision Variables: 
 
• Yhik: 1, if vehicle k goes from hub h to retailer i. 0, otherwise 

• Xijk: 1, if vehicle k goes from retailer i to retailer j. 0, otherwise 

• Zihk: 1, if vehicle k goes from retailer i to hub h. 0, otherwise 

• qnk: loading quantity of truck k after visiting the pick-up and delivery point n 
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• posnk: the position of truck k at the pick-up and delivery point n 

• Invh: the remaining inventory levels at hub h after distributing goods to all pick-up and 
delivery points 

• Starting_pk: the starting point of truck k  

• Ending_pk: the ending point of truck k 

• qphk: loading quantity of truck k at a starting hub h  

Min  

TC*(∑ ∑ ∑ 𝑑2?'@
A("

B
'("

C
?(" *𝑌?'A+∑ ∑ ∑ 𝑑1'<@

A("
B
<("

B
'(" *𝑋'<A+∑ ∑ ∑ 𝑑2?'@

A("
B
'("

C
?(" *𝑍'?A)+

∑ (𝐼𝑁𝐶? ∗C
?(" 	𝐼𝑛𝑣?)                            (19) 

Subject to: 

R * ∑ ∑ 𝑌?'AB
'("

C
?(" ≥ ∑ ∑ 𝑋'<AB

<("
B
'(" , ∀𝑘Î{1, … , 𝐾}                (20)

  

R *∑ ∑ 𝑍'?AB
'("

C
?(" ≥ ∑ ∑ 𝑋'<AB

<("
B
'(" , ∀𝑘Î{1, … , 𝐾}                (21) 

∑ ∑ 𝑌?'A@
A("

C
?("  + ∑ ∑ 𝑋<'A@

A("
B
<(" 	= 1 , ∀𝑖Î{1, … , 𝑅}                (22) 

∑ 𝑌?'AC
?(" +∑ 𝑋<'AB

<(" 	= ∑ 𝑍'?AC
?(" +∑ 𝑋'<AB

<("  ,∀𝑘	Î{1, … , 𝐾}, ∀𝑖Î{1, … , 𝑅}                 (23) 

𝑋''A 	= 0 , ∀𝑘	Î{1, … , 𝐾}, ∀𝑖Î{1, … , 𝑅}                 (24) 

𝑈'- 𝑈<+ 𝑅 ∗ 𝑋'<A ≤ R-1, ∀𝑘	Î{1, … , 𝐾}, ∀𝑖, 𝑗Î{1, … , 𝑅}               (25) 
 
𝑞)A 	 ≤  Tk , ∀𝑘	Î{1, … , 𝐾}                     (26) 
 
𝑞)A = (∑ ∑ 𝐷1' ∗ 𝑌?'AC

?("
B
'(" )+(∑ ∑ 𝐷1< ∗ 𝑋'<A)B

<("
B
'("                 (27) 

 
𝑋)<A = ∑ 𝑌?<AC

?("  , ∀𝑘	Î{1, … , 𝐾}, ∀𝑗Î{1, … , 𝑅}                  (28) 
 
𝑝𝑜𝑠"A 	= ∑ 𝑗 ∗ 𝑋)<AB

<("  , ∀𝑘	Î{1, … , 𝐾}                             (29) 
 
𝑖𝑓	(𝑝𝑜𝑠/A = 𝑗)	𝑡ℎ𝑒𝑛	(𝑝𝑜𝑠/9",A 	= ∑ 𝑙 ∗ 𝑋<EA)B

E("  ,	∀𝑘	Î{1, … , 𝐾}, ∀𝑗Î{1, … , 𝑅},
∀𝑛Î{1, … , 𝑁 − 1}                       (30) 
 
𝑖𝑓	(𝑝𝑜𝑠/A = 0)	𝑡ℎ𝑒𝑛	(𝑝𝑜𝑠/9",A 	= 0) , ∀𝑘	Î{1, … , 𝐾}, ∀𝑛Î{1, … , 𝑁 − 1}               (31) 
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𝑖𝑓	(𝑝𝑜𝑠/A = 0)	𝑡ℎ𝑒𝑛	(𝑞/A 	= 0) , ∀𝑘	Î{1, … , 𝐾}, ∀𝑛Î{1, … , 𝑁}	                    (33) 
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𝑖𝑓	(𝑌?'A = 1)	𝑡ℎ𝑒𝑛	(𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔$A = ℎ), ∀𝑘	Î{1, … , 𝐾}, ∀𝑖Î{1, … , 𝑅}, ∀ℎÎ{1, … , 𝐻}       (35) 
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𝑖𝑓	(𝑍'?A = 1)	𝑡ℎ𝑒𝑛	(𝐸𝑛𝑑𝑖𝑛𝑔$A = ℎ), ∀𝑘	Î{1, … , 𝐾}, ∀𝑖Î{1, … , 𝑅}, ∀ℎÎ{1, … , 𝐻}         (36) 
 
𝑖𝑓	(𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔_𝑝A = ℎ)	𝑡ℎ𝑒𝑛	(𝑞𝑝?A = 𝑞)A), ∀𝑘	Î{1, … , 𝐾}, ∀ℎÎ{1, … , 𝐻}              (37) 
 
𝑖𝑓	(𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔_𝑝A ≠ ℎ)	𝑡ℎ𝑒𝑛	(𝑞𝑝?A = 0), ∀𝑘	Î{1, … , 𝐾}, ∀ℎÎ{1, … , 𝐻}              (38) 
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?(" *𝑍'?A) /	𝑆𝑝𝑒𝑒𝑑 ≤ 𝐷𝑟𝑖𝑣𝑖𝑛𝑔_ℎ𝑟  

, ∀𝑘	Î{1, … , 𝐾}                    (41) 
 

In the MIP model, equation (19) represents the objective function; it minimizes the total 

distribution costs, which are transportation cost from the starting hub to the first retailer, 

retailers to retailers, and the last retailer to the ending hub, and holding cost after finishing the 

goods distribution. Equations (20) and (21) denote that every route should start and finish at a 

hub. The starting hub and ending hub can be the same or different hubs. Equation (22) denotes 

that all retailers must be visited only once. Equation (23) presents the flow conservation, inflow 

equal to outflow, of transportation between hubs and retailers. Equation (24) states that the 

vehicle must move from one retailer to another different retailer or the ending hub. Equation 

(25) eliminates sub-tours in each route. This equation is inspired by (Montoya-Torres et al., 

2016). Also, equations (26) and (27) ensure that the initial quantity at the first node must be 

equal to all retailers' total demand in a route. Equation (28) ensures that the vehicle k at the 

first node of each route goes from the starting hub to the first retailer in the route. Equations 

(29) – (31) calculate the position of the retailers in a route. The maximum number of retailers 

for each route is based on the truck capacity. The loading quantity of each truck is calculated 

after visiting the pickup and delivery point n. Equation (32) ensures that the total loading 

quantity at the pickup and delivery point n is less than the truck capacity. Equation (33) 

guarantees that the update of the total loading quantity stops after visiting all retailers. Equation 

(34) – (36) denote that each route's starting point is the starting hub, and the ending point is the 

ending hub after visiting all retailers in a route. Equations (37) – (39) initialize each truck's 

loading quantity before leaving the starting hub. The total loading quantity in all trucks should 

respect the inventory level at the starting hub. Equation (40) calculates the updated inventory 

after distributing goods to retailers on all routes. Lastly, equation (41) ensures that each truck's 

total driving time should respect the maximum driving hour in a day. In addition, there is 

another constraint to specify the difference between the Physical Internet and the classical 
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distribution network. Equation (42) guarantees that each truck must return to the initial hub 

after finishing all retailers' deliveries. This situation only happens in the classical distribution 

network.  

𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔_𝑝A= 𝐸𝑛𝑑𝑖𝑛𝑔_𝑝A , ∀𝑘	Î{1, … , 𝐾}                    (42) 
 

For the MIP model, we use it to formulate the problem and generate the routing solution 

in small instances. However, the MIP model will take a long time to generate the solution from 

large instances. Also, it can run out of memory when the number of PI-nodes increases. The 

Iterated Random Heuristic and two metaheuristics are proposed to improve the routing solution 

for large instances. All details are mentioned in the next section. 

 
Iterated Random Heuristic (IRH) 
 

This section proposes an initial heuristic, which is called “Iterated Random Heuristic 

(IRH).” In the beginning, an initial solution is generated by a random heuristic. This heuristic 

generates the set of routes based on chosen PI-hubs and retailers randomly while respecting 

the truck capacity. However, each route's total cost is still high, and the total distance among 

all nodes in each route is too long. Then, to improve routing construction's efficiency, the 

Nearest Neighbor Search (NNS) is used in this thesis. The NNS selects the next node based on 

the previous node's shortest distance (Du & He, 2012). In this experiment, after initializing the 

first retailer node in each route, the NNS selects the starting hub node, remaining retailer nodes, 

and the ending hub node based on the shortest distance from the previous node. This heuristic 

generates the set of routes until visited by all retailers in the cluster. Moreover, the iteration 

condition filters the best initial solution regarding the total distribution cost comparison 

between existing and new solutions. The process flow of generating an initial solution shows 

in Figure 30.  
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Figure 30. The Iterated Random Heuristic for generating the initial solution 
 
Random Local Search (RLS) 
 

This metaheuristic is proposed to improve the initial solution, as described in Figure 30 

before. Once the initial solution is generated, the local search starts the procedure. In this thesis, 

two local search moves are considered to improve the IRH solution: Insertion and Swap. A 

random retailer is selected from a different random route in the insertion move. Then, the 

random retailer will be inserted in the chosen route's best position without exceeding the truck 

capacity. For the swap move, two random retailers are selected from different routes and then 

No 

No 

Start 

Initialize empty list of temporary and best 
routes and transport costs 

Set all PI-hubs and retailers 

Generate a solution with new routes, new 
transport costs 

Store routes and transport costs in 
temporary list 
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Calculate the total cost of all routes in 
temporary list 

total cost < best cost? 
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list 

Complete all 
iterations? 
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Return the set of routes in the best list 

End 
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swapped after verifying the truck capacity constraint. These two local search moves are made 

at each iteration with the same probability (p = 0.5). The improvement solution (Ben Mohamed 

et al., 2017) is similar to this local search move, but it focuses only on the insertion part. After 

finishing the local search, the new solution (S’) is compared to the existing solution (Sbest). If 

the new solution (S’) has a lower distribution cost, the existing solution (Sbest) will be replaced 

and updated. Otherwise, the proposed solution is rejected, and the local search will be 

continued until complete all iterations. The RLS process flow is shown in Figure 31. 

 
Figure 31. The Random Local Search process flow 
 

RLS will generate the new solution based on the process flow in Figure 31 and present 

the total distribution cost (transportation cost and holding cost). The objective of RLS is to 

generate the solution near-optimal point for the large instance (the instance with a large number 

of PI-nodes). However, there is another metaheuristic that can improve the solution’s quality. 

Simulated Annealing, as described in the literature, is an efficient metaheuristic for solving 

VRPSPD cases. Thus, to do so, Simulated Annealing is applied to improve the solution’s 
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quality in this thesis. The implementation of Simulated Annealing is described in the next 

section. 

 

Simulated Annealing (SA) 
 

This metaheuristic has a similar process to RLS. However, there are some different 

points after comparing it with the proposed metaheuristic in Figure 31. Firstly, SA requires 

initializing temperature T before starting the local search. Secondly, there are two possibilities 

to accept the new solution after finishing the local search. If the new solution (S’) provides a 

lower distribution cost, then the existing solution (Sbest) will be updated. Otherwise, the new 

solution will be accepted with the probability p(T, S’, Sbest) depending on the temperature T and 

a random value between 0 and 1. The probability p is calculated by 𝑒(F-*F./0')/;. The result of 

the probability is compared to the random value. After a certain number of iterations, the 

temperature is reduced. This metaheuristic will still find a suitable solution until the 

temperature is equal to zero. All details are mentioned in Figure 32.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 32. The Constructive Random Heuristic with Simulated Annealing process 
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4.4 Summary 

This chapter presents the distribution problems and proposed approaches in the PI 

context. Also, the implementation of novel algorithms and tools to support all approaches are 

proposed. This chapter proposes a clustering approach to solve the complexity of PI-nodes’ 

connection by grouping PI-hubs and retailers based on daily customer demands. Firstly, we 

group the number of PI-hubs using the partitional clustering method. Secondly, the retailers 

are assigned to each cluster using the ILP model.  After finishing the clustering process, a 

transportation routing approach is applied to construct goods transportation routes between PI-

hubs and retailers inside each cluster. The VRPSPD is considered as a vehicle routing problem 

in this approach. We use the MIP model to formulate the VRPSPD problem. Also, the MIP 

model will generate the appropriate transportation routes for small instances. Then, 

metaheuristics (RLS and SA) are developed to generate transportation routes for large 

instances.  

Since all relevant approaches and methodologies in both demand forecasting and 

distribution in the PI context were proposed, the result and discussion analysis, including the 

managerial insight, will be demonstrated via the case studies of agricultural products in the 

next chapter. 
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Chapter 5  

Case study and result analysis, managerial insight 

5.1 Introduction 

This chapter demonstrates the result analysis and managerial insight based on the case 

study context regarding all methodologies mentioned previously. In this thesis, the demand 

forecasting of agriculture products in Thailand is chosen as a case study. Also, the forecasting 

results are implemented in the Physical Internet (PI) distribution network. The objective is to 

evaluate the performance of the distribution process in the fully connected network. The result 

analysis and discussion are presented via demand forecasting and distribution network in the 

PI context. All details are mentioned below.  

5.2 The overview of case study: Agricultural products in Thailand 

Thailand’s economy is mainly driven by agricultural production since the government 

had proposed the agricultural development plan in 2012. Also, the development plan will cover 

all commodity crops until 2021 (FAO, 2018). Many commodity crops (e.g., rice, sugar cane, 

corn, and cassava) are produced to satisfy domestic and foreign countries. Moreover, the 

government developed the plan to improve commodity crops' production and increase 

competitiveness with other countries (FAO, 2018). There are many possibilities to enhance the 

production's efficiency. One of the exciting solutions is supply chain cost reduction. There are 

several solutions to reduce the supply chain cost. One possible solution is demand forecasting 

with an excellent approach and the quality improvement of goods transportation.  

Since now, the connection among all parties in the supply chain is complicated. Several 

studies (see section 1.4 and chapter 2) have already proposed the PI to solve and reduce the 

supply chain network's complexity, including cost reduction. However, after reviewing the 

literature, to the best of our knowledge, we could not find research works on PI implementation 

in the supply chain of agricultural products. For that reason, we are interested in investigating 

the problems and approaches to enhance the supply chain performance of agricultural products 

via the PI context.  

For the PI context in this thesis, we focus on demand forecasting and goods 

transportation aspects. This section will describe the overview of these aspects via the supply 

chain of agricultural products. We chose Thailand as a case study. 
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5.2.1 Demand forecasting  

Many superstore companies in Thailand have both their distribution centers and 

retailers recently. Also, these superstores manage their transportation among their connections. 

For example, there are many suppliers, distribution centers, and retailers in Thailand's northern 

region. For instance, the Big C, one of the superstore companies in Thailand,1 has many 

distribution centers and small retailers in the northern region. However, the connections 

between the distribution centers and the retailers are based on each city or sub-region. The 

situation recently showed that it is not practical to balance the customer demand and stock 

levels at the distribution centers in the region. The research question is how to balance the 

customer demand and stock levels between fully connected distribution centers and retailers in 

the supply chain. Also, the concept of PI has never been implemented in the context of the 

agricultural product supply chain in Thailand. Therefore, the quantity of commodity crops is 

required to anticipate enough to serve retailers in the region, based on the proposed forecasting 

model. Furthermore, the distribution flow of demand forecasting with agricultural products is 

simulated by implementing PI’s concept.  

As aforementioned in the demand forecasting context, two experimental datasets are 

provided in this case study.  

 

First dataset: Monthly data of white sugar consumption rate 

The monthly white sugar consumption rates from January 2015 to September 2018 are 

considered for the first dataset.  They are gathered from the Office of The Cane and Sugar 

Board of Thailand (OCSB Thailand, 2018). The consumption rate is the main factor for demand 

forecasting. The customer demand, for the assumption, is covered by the monthly consumption 

rates. The input variables are the historical consumption rate and relevant factors such as 

production supply, inventory stock, import-export rates. The output variable is the prediction 

of the consumption rate for the next period.  

 

Second dataset: The generated daily data for three commodity crops 

For the second dataset, the historical daily demand in a specific region is considered an 

experiment. The data is obtained from the Thai Office of Agriculture from January 2010 to 

December 2017 (OAE Thailand, 2019). The daily data of three commodity products: 

 
1 reference: https://corporate.bigc.co.th/ 
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pineapple, cassava, and corn, is proposed. Also, there are approximately 3,000 observation 

days for each product. The input variables are the historical daily demand and unit price of 

each product. The output variable is the prediction of all products for the next period. Besides, 

we are interested in how the historical demand in previous time-steps affects the forecasting 

performance. The lag time, one of the most powerful methods to estimate the transit time 

between the historical data and the predicted data in the experiment, is also considered (Delhez 

& Deleersnijder, 2008). Lag times of 2, 4, and 6 days are considered in this dataset. The lag 

time principle is that the historical data in the previous period affected the data in the future  

(Delhez and Deleersnijder 2008). Furthermore, the Long Short-Term Memory (LSTM) model 

works well with a long lag time (Hochreiter and Schmidhuber 1997).  

In addition, two main assumptions for the customer demand in this dataset are 

proposed.  

• Firstly, daily demand is generated randomly from the monthly quantity of 

commodity crops, as mentioned earlier. 

• Secondly, the total daily demand generated is equal to the monthly quantity of 

commodity crops based on an equal probability each day. The customer demand, in 

this experiment, included all retailers in the northern region. 

 

Moreover, this dataset has a linkage with the idea of PI distribution flow. In the example 

network presented in Figure 33, it is assumed that there is one production line, three PI-hubs, 

and two retailers in the lower northern region of Thailand. All of the components (production 

line, PI-hubs, retailers) are interconnected.  

 

Figure 33. Example of a distribution network in the PI context in the lower northern region of 
Thailand 
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This section also proposes the details of simulation configuration to calculate both 

holding and transportation costs in the example of PI distribution flow, as shown in Figure 33. 

 

Details of the configuration values in the PI simulation model:  

Regarding the formulation of holding and transportation costs, as mentioned 

previously, the unit holding cost is equal to 180 THB or €5.20 per m3 (based on the Integrated 

Logistics Services Thailand 2019). The unit transportation cost is equal to 1.85 THB or €0.053 

per km per ton (based on the Bureau of Standards and Evaluation 2016). The simulation model 

is tested based on the forecast demand over 16 days and over 31 days. The results (holding and 

transportation costs based on forecast demand) are compared to the real demand costs for the 

same period. The main reason for focusing on 16 days and 31 days is to validate the deviation 

between forecast and real demands based on different daily demand volumes. 

Since the forecasting results have been implemented in the PI network simulation, the 

comparative results between forecast and real demands will demonstrate the total performance, 

which is total holding and transportation costs. We can evaluate the PI distribution network 

performance via the PI network simulation. However, in the simulation, the number of PI-

nodes (PI-hubs and retailers) are small and short connections. If the number of PI-nodes is 

larger than the simulation, the connection between all parties in the network will be more 

complex.  

For that reason, it is essential to study how to improve the distribution network's 

performance with complex connections.  Based on the real case study with a higher number of 

PI-hubs and retailers, the overview of PI-node’s connection and how to optimize goods 

transportation in the supply chain of agriculture products will be presented in the next section. 

5.2.2 PI distribution  

Many studies have implemented the concept of new technologies and innovative 

methods to enhance the performance of agriculture supply chains recently (Lezoche et al., 

2020; Mejjaouli & Babiceanu, 2018; Panetto et al., 2020). However, few works focused on the 

distribution process of Agricultural products, especially in Thailand. Most of the previous 

works were in the classical supply chain. For instance, the authors (Chiadamrong & 

Kawtummachai, 2008) implemented the Mixed Integer Programming (MIP) and Genetic 

Algorithm to define the best inventory position and transportation routing for the sugar export 

process. The authors (Timaboot & Suthikarnnarunai, 2017) formulated linear programming to 

minimize total transportation costs in the cassava supply chain. Finally, the authors 
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(Luangpaiboon, 2017) proposed an alternative solution to minimize the imbalance truckloads, 

such as no-back load or delayed pickup and delivery, on multi-zones dispatching of the One 

Tambon One Product (OTOP) products in Thailand. These works focused on the pickup and 

delivery process in the classical supply chain and formulated the problem based on MIP 

models. However, no relevant works focused on the pickup and delivery in the PI context.  

For that reason, we are interested in studying more about the pickup and delivery 

process in the PI context with an agricultural product case study in Thailand. Based on the 

proposed methods, as mentioned earlier, this section will explain more details of the 

experimental data and configuration for the case study in this thesis. 

 

Experimental data and configuration: 
 

The experimental data are constructed by the forecast demand of agricultural products 

from the demand forecasting section. Besides, for the routing construction, each retailer's daily 

demand is randomly generated from the total forecasting daily data of agricultural products in 

Thailand's northern region. The demand interval of each retailer is the range [15,30] tons, and 

the stock interval of each hub is the range [50,100] tons. Pineapples are the unique agricultural 

product that is distributed by PI-containers in this case study. In the delivery process, fresh 

pieces are conveyed to retailers, while overripe ones are picked up back to PI-hubs during the 

pickup process. Both retailers and PI-hubs represent respectively some random supermarkets 

and main cities in the northern region as presented via Google Maps in Figure 34.   

According to (Kantasa-ard et al., 2020), we assume that transportation unit price is 

equal to 0.053€, and holding costs unit prices are equal to [5.2,2.6,1.3] € for all hubs based on 

the area of hub points. The total carbon (CO2) emission formula is involved in this case study 

to reflect the sustainability aspect and is given by the following equation inspired by (Hoen et 

al., 2010). 

                            EMtotal = FE * FC * D                                                                  (43) 

Where FE represents the fuel emission rate which is equal to 2621 g/l, FC the fuel 

consumption rate that is equal to 0.3462 l/km based on 70-80% load in rural areas (Hoen et al., 

2010), and finally, the total distance D, which is the summation of the distance from PI-hubs 

to retailers and from retailers to retailers. 

The case study's experiments are validated on an Intel Core i5 CPU-based machine with 

4GB of RAM DDR3. IBM CPLEX Solver (Version 12.8) has been used for the MIP model 

resolution with a global time calculation limit fixed to 7200 seconds. CPLEX can convert “if-
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then” conditions from the MIP model by generating equivalent linear constraints and run them. 

Heuristic and metaheuristic approaches have been implemented using Java programming 

language to perform five test replications from which the average values are presented.  

According to the case study's background and dataset, each model's results, including 

the performance comparisons between the classical supply chain and PI, will be mentioned in 

the result analysis and discussion section. Therefore, the proposed methodologies and 

algorithms mentioned previously are implemented to solve inventory control and 

transportation routing problems in the case study. Furthermore, the result analysis and 

discussion are demonstrated in two approaches: the demand forecasting and the PI distribution 

approaches. 

 

 
Figure 34. The example of PI-hub and retailer locations 

5.3 The demand forecasting  

 
In this section, two main parts are presented: In the first part, the evaluation of the 

forecasting model performance is mentioned, and two datasets of demand forecasting are 

considered in this part. Then, the performance of automated hyperparameters tuning in the 

proposed approach is detailed and compared to the trial-and-error method. In the second part, 

the performance of the PI network is calculated after implementing the forecasting results. 

Then, both total holding and total transportation costs are proposed and compared to the real 

demand.  
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5.3.1 Evaluation of the forecasting model performance 

  According to the forecasting approaches above, two demand forecasting datasets can 

be distinguished: monthly data of white sugar consumption rate and the generated daily data 

for three commodity products. 

First dataset: Monthly data of white sugar consumption rate 

  In this dataset, two main conditions are considered: The first treats the forecasting 

performance with a single factor, where the consumption rate is the main factor, while the 

second focuses on the performance with multiple factors, as mentioned in section 5.2.1. The 

first condition results are compared in Table 6 as well as different forecasting models and the 

LSTM model. The first two columns show the forecasting model and the model group. Root 

Mean Square Error (RMSE) and Theil’U (U2) scores are introduced at the beginning to 

measure the accuracy and quality performance of the concerned models. This experiment also 

demonstrates the results of both training and testing datasets. The reason is to show that these 

models are best-fitting or not. The third and fourth columns display the evaluation result of 

training and testing data with RMSE score. The last column shows the evaluation result of 

these models with U2 value. 

Table 6. The result comparison between each model with RMSE and U2 value 
Forecasting Model Model Group RMSE 

(Training) 
RMSE 
(Testing) 

U2 value 

ARIMA Regression 36004.691 16971.23 0.00324 

LSTM Neural Network 9790.82 12182.51 0.00013 

LM Neural Network 6395.16 14417.72 0.00274 

K-NN Regression Regression 8683.99 13221.44 0.00093 

SVR Regression 9790.28 12792.82 0.00005 

MLP Neural Network 9966.13 12828.93 0.00001 

 

Regarding the results in Table 6, there are six forecasting models: ARIMA, LSTM, 

LM, K-NN Regression, SVR, and MLP. The results demonstrate that the best forecasting 

model is LSTM because of the best-fitting with RMSE scores in the testing dataset. Moreover, 

U2 value of LSTM is very small, which is similar to SVR and MLP models. Besides, the 

concerned configuration of LSTM hyperparameters (two hidden layers, 100 neuron units of 

each layer, Tanh activation function, and 100 epoch iterations) provides the best performance.  
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Based on the best performance in the LSTM model in the first condition, the second 

condition is proposed to improve the forecasting model's accuracy and reliability. The 

experiments are accomplished for this condition (the sugar consumption rate and other factors) 

after the trial-and-error with all combinations of relevant parameters, including reducing the 

chosen optimizer's learning rate. The results show that the best performance is LSTM with 

Sigmoid activation function, 500 epoch iterations, two hidden layers, 100 neuron units of each 

layer, and Adam optimizer with a learning rate equal to 0.0005. The performance of the second 

condition is presented in Table 7.  This table then compares the result between the two 

conditions. The results express that the second condition, combined with the existing 

consumption rate and other relevant factors, provides the best performance. It means that the 

accuracy rate is better after integrating other relevant factors to train and predict the model.  

On the other hand, with multiple factors, the model is verified by randomly generated 

daily data for approximately 1340 days. The result is relatively better than the best case of 

monthly data. Indeed, the RMSE of the training set is 239.31, and the testing set is 439.69 with 

a similar U2 score. 

Table 7. The result comparison between each condition in LSTM  
Condition No. of 

Hidden 
layer, 
neural 
units per 
layer 

Activation Optimizer Iteration 
(epoch) 

RMSE 
(Training) 

RMSE 
(Testing) 

U2 value 

Consumption 
rate only 

2, 100 Tanh adam 100 9790.82 12182.5 0.000128 

Combine 
consumption 
rate with 
other factors 

2, 100 Sigmoid adam 500 9461.98 10194.41 0.000008 

 

Since the forecasting results of white sugar consumption were done, the experiment 

illustrates that the forecast demand with multiple factors proposed better performance than 

considering only consumption rate. However, hyperparameters in the LSTM model are tuned 

by the trial-and-error method. It takes long computational times to define the appropriate 

hyperparameters for the dataset. Therefore, automated hyperparameters tuning are proposed in 

this thesis. Regarding the relevant methodologies and algorithms mentioned in section 3.3.2, 

the result analysis between the existing solution and proposed approaches is demonstrated in 

Table 8. 
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Comparing the different tuning methods is based on the LSTM model’s performance 

in the first dataset. The hyperparameters tuning with a hybrid method, a combination of a 

Genetic Algorithm (GA) and a Scatter Search (SS), offers the best solution than the classical 

genetic algorithm and trial-and-error methods. The results show that the hybrid method 

provides the lowest RMSE and MAPE scores in training and testing datasets. Furthermore, the 

execution time is faster than other tuning methods. The epoch iteration of each tuning solution 

is equal to 500.  

 

Table 8. Comparison of the performance of the LSTM hyperparameter tuning methods 
Tuning 

Solution 

Hyperparameter 

(No. of layers, 

Neural units, 

Activation, 

Optimizer) 

Execution 

Time 

(minutes) 

Prediction Performance 

RMSE 

(Training) 

RMSE 

(Testing) 

MAPE 

(Training) 

MAPE 

(Testing) 

Trial-and-

error 
(2,100,sigmoid,adam) 480 239.31 439.69 2.68 7.08 

GA (1,128,elu,rmsprop) 58 144.38 333.3 2.5 6.37 

Hybrid GA & 

SS 
(2,64,elu,rmsprop) 23 143.41 317.82 2.5 6.13 

 

Based on the results in Table 8, the hyperparameter structure of the LSTM will be 

constructed using the hybrid metaheuristic method for the experiments in the second dataset.  

 

Second dataset: The generated daily data for three commodity crops 

The LSTM model is also implemented with datasets for three commodity crops: 

pineapple, cassava, and corn. Since LSTM had good performance with predicting multiple 

factors in the previous product, this dataset also predicts the future demand based on multiple 

factors, which are historical demand and unit price. Besides, the LSTM model compares 

against other forecasting models: Multiple Linear Regression (MLR), Support Vector 

Regression (SVR), and Auto-regressive Integrated Moving Average with exogenous factor 

(ARIMAX). Five means of evaluation are considered in this section: RMSE, MAE, MAPE, 

and MASE for accuracy and R-squared (R2) for the degree of association between the predicted 

and real outputs. Furthermore, the Augmented-Dickey Fuller (ADF) score is used to assess if 

the forecast demand is stationary. Details of all the evaluation tools are provided in section 
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4.2.1 above. The first prediction concerns pineapple production; the results are presented in 

Table 9 (A-C) 

Table 9. Examples of real and forecast daily demand with relevant forecasting models for 

pineapple with time lag2 (A); Performance of the forecasting model for future demand of 

pineapple (B)-(C) 

 

Day Real 
demand LSTM ARIMAX SVR MLR 

0 1194.92 1203.92 1208.16 1241.61 1193.82 
1 1271.00 1168.39 1179.93 1148.77 1151.10 
2 1046.42 1228.89 1243.15 1228.11 1229.33 
3 1204.37 1157.14 1142.08 1137.31 1107.48 
4 924.50 1116.25 1172.98 1132.39 1139.39 
5 1285.43 1079.12 1062.06 1038.25 1006.81 
6 1137.67 1151.09 1187.99 1139.51 1153.65 
7 1360.33 1098.63 1170.77 1208.80 1168.79 
8 1250.50 1390.81 1254.63 1251.89 1267.26 
9 1279.55 1208.25 1249.99 1301.39 1266.15 
10 1278.62 1237.26 1239.64 1261.31 1250.31 
11 1223.95 1226.49 1246.64 1274.72 1258.91 
12 1400.18 1173.53 1217.75 1247.82 1222.93 
13 1165.68 1402.03 1299.19 1306.89 1320.61 
14 1324.80 1141.39 1216.87 1282.06 1223.43 
15 1184.08 1340.30 1246.00 1245.50 1252.95 

(A) 

Forecasting 
Model 

Data with time lag2 
RMSE 
Train 

RMSE 
Test 

MAPE 
Train 

MAPE 
Test 

MAE 
Train 

MAE 
Test 

MASE 
Train 

MASE 
Test 

SVR 179.86 152.31 13.01 11.15 105.19 100.46 0.890 0.850 

MLR 187.58 153.04 13.01 11.25 109.04 101.87 0.923 0.862 
ARIMAX  189.19 331.29 12.9 41.98 108.78 103.11 0.921 0.873 

LSTM 173.92 158.45 11.91 12.18 102.5 106.9 0.868 0.905 

Forecasting 
Model 

Data with time lag4 
RMSE 
Train 

RMSE 
Test 

MAPE 
Train 

MAPE 
Test 

MAE 
Train 

MAE 
Test 

MASE 
Train 

MASE 
Test 

SVR 177.14 150.92 12.75 11.11 101.75 98.38 0.861 0.832 
MLR 185.78 150.25 12.85 11 107.58 99.71 0.910 0.843 

ARIMAX  186.36 150.26 12.75 11.04 107.5 99.82 0.909 0.844 
LSTM 178.04 150.91 14.61 11.18 107.69 99.52 0.911 0.842 

Forecasting 
Model 

Data with time lag6 
RMSE 
Train 

RMSE 
Test 

MAPE 
Train 

MAPE 
Test 

MAE 
Train 

MAE 
Test 

MASE 
Train 

MASE 
Test 

SVR 177.21 151.14 12.71 11.1 101 98.35 0.854 0.831 
MLR 185.7 150.16 12.85 10.97 107.45 99.56 0.908 0.841 

ARIMAX  186.27 150.15 12.75 11 107.32 99.75 0.907 0.843 
LSTM 185.43 149.24 14.04 10.97 109.18 98.05 0.923 0.829 

(B) 
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Forecasting 
Model 

Data with time lag2 Data with time lag4 Data with time lag6 
R2 Train R2 Test R2 Train R2 Test R2 Train R2 Test 

SVR 0.93 0.91 0.93 0.91 0.93 0.91 
MLR 0.92 0.9 0.92 0.91 0.92 0.91 

ARIMAX  0.92 0.57 0.92 0.91 0.93 0.91 
LSTM 0.94 0.9 0.93 0.91 0.93 0.92 

(C) 

 
 

 

 

 

 

 

 

 (A) 

ADF statistic: -4.097 
Confidence level Critical val. 

95% -2.867 
90% -2.569 

 

 

 

(B) 

Figure 35. Comparison of the trends in the forecast and real demand using LSTM and SVR 
models with time lag6 (A); ADF statistic score of LSTM demand forecasting with time lag6 
(B) 

 

As shown in Table 9, both LSTM and SVR perform well in accuracy and the degree of 

association between forecast and real demands. Regarding accuracy, as mentioned in Table 9 

(B), LSTM predominantly performs better due to its ability to transfer the forecasting pattern 

to minimize the error in the test dataset with lag6. However, SVR has the best forecasting 

performance with time lag2 and lag4. For the degree of association in Table 9 (C), LSTM 

provides the best performance with time lag6. Furthermore, when each dataset's performance 

is considered, datasets are more effective with time lag6 according to the accuracy and 
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coefficient of determination values, as shown in Figure 35. Besides, the forecast demand with 

time lag6 is stationary based on the ADF score. The ADF score is equal to -4.097, which is 

lower than the critical value of -2.867. Therefore, at the 95 % confidence level, the null 

hypothesis of a unit root is rejected. Also, all correlations are small and closed to zero.  It means 

that LSTM can work well with more time-series data. Next, the experiments with other 

commodity crops will be presented.  

Table 10. Performance of the forecasting model for future demand of cassava (A)-(B) 

Forecasting 
Model 

Data with time lag2 
RMSE 
Train 

RMSE 
Test 

MAPE 
Train 

MAPE 
Test 

MAE 
Train 

MAE 
Test 

MASE 
Train 

MASE 
Test 

SVR 4262.6 11848.73 97.00 4673.00 2288.9 8808.87 1.128 4.341 

MLR 4252.25 4458.47 25.00 34.39 1961.47 1825.98 0.967 0.900 

ARIMAX  4291.83 6112.61 22.21 419.42 2000.98 3654.29 0.986 1.801 

LSTM 4266.33 4979.95 55.34 81.65 2119.41 2574.58 1.044 1.269 

Forecasting 
Model 

Data with time lag4 
RMSE 
Train 

RMSE 
Test 

MAPE 
Train 

MAPE 
Test 

MAE 
Train 

MAE 
Test 

MASE 
Train 

MASE 
Test 

SVR 4294.44 8845.33 109.78 3363.86 2360.21 6563.01 1.165 3.239 

MLR 4250.66 4445.96 24.63 26.55 1955.66 1810.97 0.965 0.894 

ARIMAX  4272.16 4449.83 24.47 25.3 1965.69 1808.88 0.970 0.893 

LSTM 4245.34 4699.5 47.77 48.49 2077.09 2392.05 1.025 1.180 

Forecasting 
Model 

Data with time lag6 
RMSE 
Train 

RMSE 
Test 

MAPE 
Train 

MAPE 
Test 

MAE 
Train 

MAE 
Test 

MASE 
Train 

MASE 
Test 

SVR 4241.51 7919.86 110.8 2802.22 2339.93 5776.72 1.157 2.855 

MLR 4243.79 4496.93 24.4 23.1 1953.51 1829.13 0.966 0.904 

ARIMAX  4237.65 5431.77 24.83 69.42 1955.94 2243.67 0.967 1.109 

LSTM 4256.19 4779.04 60.19 89.46 2121.73 2421.65 1.049 1.197 

(A) 

Forecasting Model Data with time lag2 Data with time lag4 Data with time lag6 
R2 Train R2 Test R2 Train R2 Test R2 Train R2 Test 

SVR 0.95 0.7 0.95 0.83 0.96 0.86 

MLR 0.96 0.95 0.96 0.95 0.96 0.96 
ARIMAX  0.96 0.92 0.96 0.96 0.96 0.94 

LSTM 0.96 0.95 0.96 0.95 0.96 0.95 

(B) 
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(A) 

 

ADF statistic: -3.191 
Confidence level Critical val. 

95% -2.867 
90% -2.57 

 

 

 

 

 

(B) 

Figure 36. Comparison of the trends in the forecast and real demand using LSTM and 
ARIMAX models with time lag4 (A); The ADF statistic score for LSTM demand forecasting 
with time lag4 (B) 

 

The performance evaluation in Table 10 shows that LSTM performs well even though 

MLR and ARIMAX are better in terms of accuracy and degree of association between forecast 

and real demands. Table 10 (A) shows that accuracy scores for LSTM are similar to those of 

the MLR model with time lag2, whereas ARIMAX performs better with time lag4 and lag6. 

Regarding the degree of association, as shown in Table 10 (B), the LSTM scores are very good 

with all the time lags compared to the ARIMAX and MLR models' best scores. In addition, the 

forecast demand with time lag4 is stationary based on the ADF score. The ADF score is equal 

to -3.191, which is lower than the critical value of -2.867. Therefore, at the 95 % confidence 

level, the null hypothesis of a unit root is rejected. Also, all correlations are small and closed 

to zero. The best performance of the LSTM model is the prediction pattern with time lag4, as 

shown in Figure 36. 
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Table 11. Performance of the forecasting model for future demand of corn (A)-(B) 

Forecasting 
Model 

Data with time lag2 
RMSE 
Train 

RMSE 
Test 

MAPE 
Train 

MAPE 
Test 

MAE 
Train 

MAE 
Test 

MASE 
Train 

MASE 
Test 

SVR 1873.48 2447.49 53.03 91.57 1066.26 1312.98 1.027 1.264 

MLR 1912.62 2384.45 20.06 28.09 986.79 1069.35 0.950 1.030 
ARIMAX  1901.65 2407.09 19.49 24.34 975.99 1062.43 0.940 1.023 

LSTM 1912.48 2329.84 35.2 53.18 1017.05 1155.15 0.979 1.112 

Forecasting 
Model 

Data with time lag4 
RMSE 
Train 

RMSE 
Test 

MAPE 
Train 

MAPE 
Test 

MAE 
Train 

MAE 
Test 

MASE 
Train 

MASE 
Test 

SVR 1864.16 2438.99 54.44 93.42 1064.91 1334.2 1.022 1.280 
MLR 1909.91 2373.01 19.47 26.77 981.4 1045.92 0.942 1.004 

ARIMAX  1906.17 2997.26 19.47 25.65 997.17 1361.22 0.957 1.306 
LSTM 1904.34 2397.96 37.35 59.46 1039.32 1226.47 0.997 1.177 

Forecasting 
Model 

Data with time lag6 
RMSE 
Train 

RMSE 
Test 

MAPE 
Train 

MAPE 
Test 

MAE 
Train 

MAE 
Test 

MASE 
Train 

MASE 
Test 

SVR 1853.44 2465.06 55.12 92.89 1055.28 1341.78 1.012 1.287 

MLR 1907.17 2380.15 19.39 26.27 980.82 1055.7 0.941 1.013 
ARIMAX  1906.2 2383.93 19.45 26.62 978.43 1056.88 0.939 1.014 

LSTM 1877.36 2365.03 40.15 61.68 1029.08 1146.26 0.987 1.099 

(A) 

Forecasting Model Data with time lag2 Data with time lag4 Data with time lag6 
R2 Train R2 Test R2 Train R2 Test R2 Train R2 Test 

SVR 0.96 0.94 0.96 0.94 0.96 0.94 
MLR 0.96 0.94 0.96 0.94 0.96 0.95 

ARIMAX  0.96 0.94 0.96 0.91 0.96 0.94 
LSTM 0.96 0.95 0.96 0.94 0.96 0.95 

(B) 
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(A) 

ADF statistic: -3.73 
Confidence level Critical val. 

95% -2.867 
90% -2.57 

 

 

 

 

 

(B) 

Figure 37. Comparison of the trends in the forecast and real demand using LSTM and MLR 
models with time lag6 (A); The ADF statistic score for LSTM demand forecasting with time 
lag6 (B) 
 

The results of the performance evaluation are shown in Table 11. The RMSE and R² 

scores demonstrate the excellent performance of the LSTM model for forecast demand with 

time lag2 and lag6. Table 11 (A) shows that the accuracy scores are better with the ARIMAX 

model with time lag2 and the MLR model with time lag4 and lag6. In addition, the forecast 

demand with time lag6 is stationary based on the ADF score. The ADF score is equal to -3.73, 

which is lower than the critical value of -2.867. Therefore, at the 95 % confidence level, the 

null hypothesis of a unit root is rejected. Also, all correlations are small and closed to zero. 

Moreover, the best performance of the LSTM model is the prediction pattern with time lag6, 

as shown in Figure 37.  

The overall performance of the forecasting models implemented for three commodity 

crops with different dataset conditions is summarized. An overview is shown in Table 12 

below. 
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Table 12. The best performances of the forecasting models for future demand of all 

commodity crops and relevant conditions 
Dataset Pineapple Cassava Corn 

Accuracy Degree of 

Association 

Accuracy Degree of 

Association 

Accuracy Degree of 

Association 

Time lag2 SVR SVR MLR 

 

MLR, 

LSTM 

ARIMAX LSTM 

Time lag4 SVR, 

MLR 

LSTM, 

SVR 

ARIMAX  ARIMAX 

 

MLR  

 

SVR, MLR, 

LSTM 

Time lag6 LSTM 

 

LSTM MLR 

 

MLR 

 

MLR MLR, 

LSTM 

 

 When considering these models' overall performance, the performance of LSTM is 

similar to MLR and SVR with the pineapple dataset, particularly with time lag6. For the 

cassava and corn datasets, MLR and ARIMAX are more accurate. LSTM achieves remarkable 

data correlation with both the training and testing datasets for all the products, especially 

pineapple and corn, regarding the degree of association. Besides, looking at each product's 

graph, LSTM performs well with continuous fluctuation, whereas MLR and ARIMAX perform 

well with discrete fluctuation. Moreover, the LSTM hyperparameters tuning enhances the 

training and prediction performance more than the trial-and-error technique.  

Regarding the prediction characteristics, all the product graphs are seasonal. However, 

each product's trends are different. Pineapple is non-linear, whereas the other products are 

mostly linear. For this reason, LSTM performs well with forecast demand for pineapple, and 

other regression models are suitable for forecast demand for cassava and corn. 

Once the forecasting process was finished, the LSTM prediction results were used to 

calculate the PI simulation model's total cost. The total cost calculation will be mentioned in 

the next section. The main objective is to demonstrate the performance of the distribution flow 

after implementing demand forecasting. 

5.3.2 Performance analysis of the simulation model in the PI context 

Based on the simulation model's assumptions stated before, the simulation model 

proposed by (Nouiri et al., 2018) is adapted to simulate the PI network's distribution flow 

inspired by the distribution centers in Thailand's northern region. In the original model (Nouiri 

et al., 2018), demand was randomly generated, and the simulation was implemented to estimate 

the total distribution cost.  
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The pineapple forecast demand given by the LSTM model is compared to the real 

demand via the multi-agent simulator. The holding and transportation costs are used as Key 

performance indicators (KPIs). These costs are also compared to those obtained when 

considering real demand, as mentioned in Table 13. The configuration details, the calculation 

of deviation percentage, and the simulation assumptions are described before, and the PI 

distribution flow is shown in Figure 33 above. 

The service level is based on sufficient stock levels to cope with daily demand at each 

retailer. The holding and transportation costs are detailed in Table 13.  

Table 13. Comparison of holding costs and transportation costs between forecast and real 

demand over 16 days (A); Deviation in holding cost and transportation cost between forecast 

and real demand over 16 days and 31 days (B) 

 

Day 
Forecast Demand Real Demand 

Total 
Demand  

Holding 
Cost 

Transportation 
Cost 

Total 
Demand  

Holding 
Cost 

Transportation 
Cost 

0 1203.92 152578.8 5933.68 1194.92 152647.2 5890.60 

1 1168.39 143434.8 5759.10 1271.00 142700.4 6264.70 

2 1228.89 133815.6 6058.39 1046.42 134510.4 5158.24 

3 1157.14 124758.0 5704.68 1204.37 125085.6 5935.95 

4 1116.25 116020.8 5502.89 924.50 117849.6 4557.39 

5 1079.12 107575.2 5319.23 1285.43 107791.2 6335.00 

6 1151.09 98568.0 5672.93 1137.67 98888.4 5607.18 

7 1098.63 89917.2 5414.45 1360.33 88243.2 6704.58 

8 1390.81 79088.4 6854.23 1250.50 78458.4 6162.68 

9 1208.25 69631.2 5956.36 1279.55 68443.2 6307.80 

10 1237.26 59947.2 6099.20 1278.62 58435.2 6303.26 

11 1226.49 50349.6 6044.77 1223.95 48855.6 6033.44 

12 1173.53 41166.0 5784.03 1400.18 37897.2 6901.84 

13 1402.03 30193.2 6910.91 1165.68 28774.8 5745.49 

14 1141.39 21261.6 5625.31 1324.80 18406.8 6530.00 

15 1340.30 10771.2 6607.08 1184.08 9140.4 5836.19 

Total 19323.49 1329076.8 95247.24 19532.00 1316127.6 96274.34 

(A) 

Duration 
(day) 

Forecast Demand Real demand Deviation Percentage 
Holding 
Cost 

Transporta
tion Cost 

Holding 
Cost 

Transportat
ion Cost 

Holding 
Cost 

Transporta
tion Cost 

16 days 1329076.8 95247.24 1316127.6 96274.34 0.98 1.07 

31 days 4788446.4 187134.07 4788018.0 186583.28 0.09 0.3 
(B) 
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(B) 

 

 

 

 

 

 

 

 

 

(C) 

Figure 38. Comparison of holding costs (A) and transportation costs (B) between forecast and 
real demand over 31 days; Deviation in holding cost and transportation cost between forecast 
and real demand over 31 days (C) 
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Regarding the results in Table 13 and Figure 38, we can see that the forecast demand 

can be higher and lower in some periods because it is predicted from the generated daily 

demand as explained in section 5.2.1. As shown in Table 13, the holding cost will decrease 

when the demand is more distributed to retailers. Based on the demand of 16 days, for example, 

the holding cost of day1 is less than the holding cost of day0 because the inventory level is 

reduced after distributing the products based on retailer demand on day0 and day1. It is 

calculated by daily demand for transportation costs. Moreover, in some periods, such as day1 

or day4, the gap between forecast demand and real demand is wider. Then, the deviation 

percentage of transportation cost is more varied.  The slight deviation of 0.98% and 0.09 % in 

the holding cost and 1.07 % and 0.3% in the transportation cost over 16 days and 31 days, 

respectively, means that the forecasting model is effective even if the dataset is large. These 

results prove that the deviation percentage is more decreased with good prediction when the 

time horizon is longer.  These results can help companies plan the budget for storing and 

transporting goods based on forecast demand. 

5.3.3 Managerial insight discussion on forecasting approaches 

As depicted in Figure 39, forecasting is crucial to the demand planning process. If the 

forecasting is more accurate and reliable, it will positively impact demand planning and other 

stages (e.g., inventory planning, replenishment planning) in the sales and operation planning. 

Moreover, the authors (Acar & Gardner, 2012) stated that demand forecasting affects 

production, inventory, and transportation plans in the supply chain. Good forecasting can 

reduce the total supply chain costs. In this thesis, an efficient forecasting model is proposed to 

support decision-making in distribution planning, reducing transportation and holding costs in 

the PI context. This approach is proposed for Thailand’s supply chain managers to make better 

decisions to distribute agricultural products. It will help decision-makers to manage the 

inventory stock and reduce logistics costs. The proposed model can be applied to other case 

studies. 
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Figure 39. The Integrated Supply Chain Planning Flow (Banker, 2018) 
 

The forecasting results with the proposed approach demonstrate how to improve 

production and distribution processes via the PI network simulation. The performance 

measurement is also presented via the accuracy and degree of association for the forecasting 

aspect and total relevant costs in the supply chain aspect. As explained above, the quality of 

forecast demand affects inventory control and goods transportation efficiency. The quality of 

forecast demand will also help the supply chain manager to control the total cost in the complex 

supply chain network as PI. 

However, the proposed results are based on a network with small PI-nodes. If the 

number of PI-nodes in the network is large, the supply chain flow will be more complex, 

particularly with the distribution process. For that reason, we are interested in investigating 

more details in the PI distribution issue. Since the PI distribution issue was fixed via the 

proposed methodologies and algorithms in the previous chapter, the analysis, and discussion 

of the results will be described in the next section.   

5.4 The PI distribution  

 
Three main parts are illustrated in this section: the performance analysis of PI-hubs 

clustering, the performance analysis of the vehicle routing problem with simultaneous pickup 

and delivery (VRPSPD) in the PI distribution network, the managerial insight discussion on 

PI-distribution approaches. All details are mentioned below. 
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5.4.1 Performance analysis of PI-hubs clustering 

The results from clustering performance are based on the PI-hubs’ dataset of 30 days 

and 60 days. The PI-hubs’ dataset in the experiment is constructed from the total forecast 

demand of the first dataset, as mentioned earlier. The dataset performance is evaluated via the 

Hopkins statistic and the p-value, and the internal cluster performance with the average 

silhouette value. The details are described in Table 14 and Figure 40 for the PI-hubs dataset of 

30 days, and Table 15 and Figure 41 for the PI-hubs dataset of 60 days. Moreover, the p-value 

of these datasets is less than 0.05. 

 
Figure 40. The best cluster performance of 5 PI-hubs based on K-Means (on the left side) and 
K-Medoid (on the right side) of 30 days 

 

Table 14. The cluster performance of 5 PI-hubs of 30 days with Hopkins equal 0.73 

 
Method K-Mean K-Medoid 
Distance Euclidean Manhattan Euclidean Manhattan 
No.of cluster 3 8 2 3 8 2 2 3 4 2 3 4 
Silhouette 0.15 0.16 0.18 0.15 0.16 0.18 0.19 0.18 0.16 0.15 0.18 0.17 

 

 Table 14 illustrates the best performance of the clustering dataset of 5 PI-hubs from K-

Medoid with Euclidean distance. The number of clusters is equal to two clusters, with the 

highest average silhouette equal to 0.19. The Principle Component Analysis (PCA) method is 

implemented to visualize the clusters, as shown in Figure 40 (Dim1 at 33.7% and Dim2 at 

22.6%). This figure shows the clustering result for the case with two clusters. On the left side 

is K-Means, on the other side is K-Medoid. As it can be seen, K-Medoid performs better than 

K-Means. After that, the PI-hubs dataset of 60 days will focus on the next step. 
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Figure 41. The best cluster performance of 5 PI-hubs based on K-Means (on the left side) and 
K-Medoid (on the right side) of 60 days 

 

Table 15. The cluster performance of 5 PI-hubs of 60 days with Hopkins equal 0.84 
 
 
 
 
 

Table 15 illustrates the best performance of the clustering dataset of 5 PI-hubs from K-

Medoid with Manhattan distance. Clusters are equal to two clusters, with the highest average 

silhouette equal to 0.73. Also, when the PCA method is implemented to visualize the clusters, 

Figure 41 (Dim1 at 74.3% and Dim2 at 17.9%) is shown. As it can be noticed, K-Medoid 

performs better than K-Means. It can conclude that the dataset of 5 PI-hubs of 60 days has 

greater performance than 30 days due to the Hopkins statistic, Silhouette width, and PCA value. 

After completing the experiment of 5 PI-hubs, we move to the experiment with the dataset of 

10 PI-hubs. Furthermore, the comparison results between the dataset of 5 PI-hubs and 10 PI-

hubs, as shown in Table 16, are proposed. 

Table 16. The comparison of Cluster performance of 5 PI-hubs and 10 PI-hubs 

 
Nb Hubs Data 

period 
Hopkins 
statistic 

Method Distance Nb 
cluster 

Silhouette 

5 Hubs 60 days 0.84 K-Medoid Manhattan 2 0.73 
10 Hubs 60 days 0.85 K-Medoid Euclidean 2 0.73 

 

Table 16 illustrates the best performance of the clustering dataset of 10 PI-hubs is from 

K-Medoid with Euclidean distance. Clusters are equal to two clusters based on the highest 

Method K-Mean K-Medoid 
Distance Euclidean Manhattan Euclidean Manhattan 
No.of cluster 2 3 4 2 3 4 2 3 4 2 3 4 
Silhouette 0.64 0.48 0.37 0.64 0.48 0.37 0.64 0.51 0.37 0.73 0.52 0.31 
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average silhouette equal to 0.73, and Hopkins statistic equal to 0.85. Moreover, the example of 

assigning PI-hubs and retailers to which cluster is mentioned below in Table 17. This figure is 

divided into three tables. The first two tables are examples of clustering problems for 10 PI-

hubs (A) and 5 PI-hubs (B). PI-hubs in these two tables are assigned to clusters no.1 and 2. The 

third table (C) is retailers’ assignment to each cluster. These example results are based on 7 

days. 

Table 17. The examples of 10 PI-hubs(A), 5 PI-hubs(B), and retailers(C) assigned in each 

cluster for 7 days 

 
 
 
 
 
 
 
         

       
 
          (A)                                            (B)                                               (C) 
 

 
The complexity of the PI-node’s connection is solved by the clustering method. Then, 

each retailer will be assigned to each cluster (based on the inventory level at a cluster and the 

shortest distance from a retailer to a cluster centroid). After PI-nodes are clustered into small 

groups, we will consider the performance improvement of transportation routing in the next 

step. In this thesis, the PI network's vehicle routing problem is solved based on the VRPSPD 

concept. 

5.4.2 Performance analysis of VRPSPD in PI distribution network 

In this section, the performance of transportation routing in the PI network is described. 

The transportation routing in this experiment focuses on the VRPSPD concept. Ten scenarios 

are implemented to calculate the total distribution cost in this model. Distribution cost 

considers the summation of both total transportation cost and total holding cost. The total CO2 

emission, as mentioned previously, is also considered in this experiment.  Besides, the MIP 

model and two metaheuristics (RLS, SA) are implemented based on these scenarios. All 

metaheuristics will also compare the performance with the insertion heuristic (Ben Mohamed 
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et al., 2017). The details of all scenarios are mentioned in Table 18. Also, the details of 

experimental data are mentioned in section 5.2.2. 

Table 18. The details of all scenarios 

 
Scenarios Number of Hubs Number of Retailers Number of Trucks 
1 2 4 2 
2 3 6 3 
3 3 8 4 
4 3 12 6 
5 4 8 4 
6 4 12 6 
7 6 12 6 
8 6 18 12 
9 6 24 12 
10 8 24 12 

 
Moreover, we choose the second scenario as an example to demonstrate how to 

construct routes from PI-hubs to retailers. They are composed of 3 hubs (H1,H2,H3) and 6 

retailers (R1,R2,R3,R4,R5,R6). Each route contains the starting hub to load full delivery 

containers, retailers, and the ending hub to unload pickup containers from retailers. According 

to truck capacities and retailer demands, the algorithm can construct three routes in a cluster 

with the condition “one truck per one route”. The first route is [H3-R3-R2-H1], the second 

route is [H1-R1-R5-H2], and the third route is [H2-R6-R4-H2]. The example of these three 

routes is shown in Figure 42. 

 

Figure 42. The example of transportation routes between PI-hubs and retailers 
There are two possibilities in the concerned routes. In the PI context, the starting hub 

and last hub are either the same or different based on the last retailers' position. For that reason, 

all hubs can share their resources (trucks, drivers, and containers) between PI-hubs, while, for 
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the classical supply chain, the starting hub and ending hub should always be at the same point 

after visiting all retailers as called a fixed fleet (Kek et al., 2008). The results are demonstrated 

in Table 19-21 and Figure 43-45, as shown below. 

Abbreviation: 
Sc: Scenario 
%Gp: Gap between classical and PI conditions 
MIP: Mixed Integer Programming 
RLS: Random Local Search  
SA: Simulated Annealing 
(*): Best solution found within the global time limit (non-optimal) 
(-): CPLEX run out of memory 
(Bold): Lowest cost after comparing with other metaheuristics 
 

Table 19. Comparing total costs between PI and classical SC in MIP, RLS, SA, and Insertion 

heuristic 

 
Sc. Total distribution cost 

MIP RLS SA Insertion heuristic (Ben 
Mohamed et al., 2017) 

Classical PI % 
Gp 

Classical PI % 
Gp 

Classical PI % 
Gp 

Classical PI % 
Gp 

1 43.84 41.26 5.9 43.84 43.03 1.8 43.88 42.10 4.0 43.86 42.95 2.1 
2 80.10 76.25 4.8 89.96 81.19 9.8 92.71 91.22 1.6 90.83 90.12 0.8 
3 140.84 127.75 9.3 160.92 159.11 1.1 161.27 160.10 0.7 160.76 160.10 0.4 
4 164.97 149.47 9.4 211.26 176.98 16.2 204.35 185.50 9.2 195.85 170.92 12.7 
5 344.94 339.32 1.6 418.98 402.02 4.0 436.88 390.73 10.6 421.21 419.07 0.5 
6 323.57 308.07 4.8 581.43 529.86 8.9 531.14 467.19 12.0 565.30 513.05 9.2 
7 190.54* 206.73* 8.5 206.56 194.66 5.8 197.77 191.35 3.2 203.45 189.39 6.9 
8 - - - 385.12 355.81 7.6 374.97 344.96 8.0 358.04 352.46 0.3 
9 - - - 350.45 330.97 5.6 354.87 340.89 3.9 345.44 331.72 4.0 
10 - - - 1169.67 1164.41 0.4 1163.76 1124.43 3.4 1188.20 1140.71 4.0 

(A) 
 
 

Sc. Total holding cost 
MIP RLS SA Insertion heuristic (Ben 

Mohamed et al., 2017) 
Classical PI % 

Gp 
Classic
al 

PI % 
Gp 

Classical PI % 
Gp 

Classical PI % 
Gp 

1 37.70 36.40 3.4 37.70 37.44 0.7 37.18 37.18 0.0 37.44 36.92 1.4 
2 63.70 63.70 0.0 76.18 75.40 1.0 79.04 78.26 1.0 76.96 77.74 1.0 
3 123.50 105.30 14.7 149.50 149.50 0.0 149.50 149.50 0.0 148.98 148.98 0.0 
4 111.80 111.80 0.0 169.26 142.22 16.0 164.84 151.32 8.2 155.48 134.16 13.7 
5 327.60 319.80 2.4 406.12 391.56 3.6 421.20 380.64 9.6 408.72 408.20 0.1 
6 270.40 270.40 0.0 543.66 504.64 7.2 494.00 434.72 12.0 531.96 482.82 9.2 
7 137.80* 135.20* 1.9 153.40 151.32 1.4 144.30 150.14 4.0 149.76 149.50 0.2 
8 - - - 288.34 285.22 1.1 281.06 280.28 0.3 290.68 288.60 0.1 
9 - - - 279.76 271.18 3.1 278.46 277.42 0.4 271.18 274.56 1.2 
10 - - - 1096.94 1103.96 0.6 1094.34 1065.22 2.7 1120.60 1078.74 3.7 

(B) 
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Sc. Total transportation cost 
MIP RLS SA Insertion heuristic (Ben 

Mohamed et al., 2017) 
Classical PI % 

Gp 
Classical PI % 

Gp 
Classical PI % 

Gp 
Classical PI % 

Gp 
1 6.14 4.86 20.8 6.14 5.59 9.0 6.70 4.92 26.5 6.42 6.03 6.1 
2 16.40 12.55 23.5 13.78 11.79 14.5 13.67 12.96 5.2 14.07 12.38 12.0 
3 17.34 22.45 29.5 11.94 9.61 19.5 11.77 10.60 9.9 11.78 11.12 5.6 
4 53.17 37.67 29.2 42.00 34.76 17.3 39.51 34.18 13.5 40.37 36.76 8.9 
5 17.34 19.52 12.6 12.86 10.46 18.7 15.68 10.09 35.7 12.49 10.87 12.9 
6 53.17 37.67 29.2 37.77 31.16 17.5 36.96 32.48 12.1 33.34 30.23 9.3 
7 52.74* 71.53* 35.6 53.16 43.34 18.5 53.47 41.07 23.2 53.69 39.89 25.7 
8 - - - 96.78 70.59 27.1 93.91 64.68 31.1 67.36 63.86 5.2 
9 - - - 70.69 59.79 15.4 76.41 63.47 16.9 74.26 57.16 23.0 
10 - - - 72.73 60.45 16.9 69.42 59.21 14.7 67.60 61.97 8.3 

(C) 
 

As shown in Table 19 (A) and Figure 43 (A), the total distribution cost in the PI context 

is lower than the classical supply chain in all cases. SA provides the best performance of the 

total distribution cost. For holding cost in Table 19 (B) and transportation cost in Table 19 (C), 

SA has similar performance to Insertion heuristic with small gaps. On the one hand, the gap of 

total cost between classical supply chain and PI in the MIP is around 1.6-9.4% for distribution 

cost, 20.8-35.6% for transportation cost, and less than 15% for holding cost for small instances. 

These results show that the transportation cost has a higher effect on the total distribution cost 

after implementing the approach. Thus, well-connected routes with PI can reduce the total 

distribution cost significantly. The MIP model can solve the problem with small-medium 

instances, as shown in scenarios 1-7 from Table 19 (A)-(C).  

On the other hand, the total cost gap with metaheuristics is less than 17% for 

distribution cost and holding cost, and less than 36% for transportation cost. When considering 

SA, the range of gap between classical and PI conditions is less than 12%, which is lower than 

other methods. we can conclude that the transportation routing in the PI context can reduce 

total distribution cost by more than 20% compared to the classical supply chain network. 
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(B)                                              (C) 

Figure 43. Comparing total costs between PI and classical SC in MIP, RLS, SA, and Insertion 
heuristic 

 

Moreover, Table 19 and Figure 43 demonstrate that the results in all metaheuristics are 

presented by the average values produced by five replications in each instance. The five 

replications of each instance are shown in a boxplot graph of Figure 44.  

Indeed, Figure 44 (A) presents the results of RLS, SA, and Insertion heuristic of 

scenarios 1-5. For scenarios 6 -10, they are presented via Figure 44 (B). As seen from the 

boxplots, the results show that all metaheuristics provide stable results for most instances. 
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(A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(B) 
 
Figure 44. The five replications for each instance and each metaheuristic of total distribution 
cost (A-B) 
 

Even though the MIP model provides the optimal value of total distribution cost in 

many scenarios, it takes a long time when the number of PI-nodes (PI-hubs and retailers) 

increases. As shown in Table 20, it takes approximately less than 5 seconds for a small number 

of PI-nodes, and more than 7200 seconds for a large number of PI-nodes, to get the optimal 

result in some scenarios. Besides, in scenarios 8-10, due to the large number of PI-nodes, the 

MIP model runs out of memory. In contrast, other metaheuristics generate a solution of less 

than one second in all scenarios. Therefore, it could be better to implement metaheuristics when 

the number of PI-nodes increases. 
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Table 20. Comparing the computational times between classical supply chain and PI with 

MIP, RLS, SA, and Insertion heuristic 

 
Sc. Computational time (second) 

MIP RLS SA Insertion heuristic 
(Ben Mohamed et al., 
2017) 

Classical PI Classical PI Classical PI Classical PI 
1 3.73 3.73 0.010 0.012 0.011 0.011 0.007 0.007 
2 3.24 3.00 0.015 0.010 0.015 0.013 0.008 0.011 
3 3120 3120 0.013 0.009 0.017 0.019 0.010 0.011 
4 7200 7200 0.001 0.001 0.014 0.014 0.010 0.007 
5 1800 1884 0.021 0.013 0.035 0.027 0.051 0.019 
6 3600 7200 0.021 0.013 0.015 0.054 0.025 0.017 
7 7200 7200 0.019 0.012 0.001 0.009 0.008 0.018 
8 7200 7200 0.090 0.226 0.213 0.134 0.174 0.068 
9 7200 7200 0.075 0.156 0.158 0.109 0.127 0.174 
10 7200 7200 0.075 0.075 0.082 0.065 0.073 0.116 

 

For the total CO2 emission in Table 21 and Figure 45, the calculation of CO2 emission 

is from the total transportation cost. Most PI cases provide lower CO2 emissions than the 

classical supply chain. After comparing among metaheuristics, SA provides the lowest CO2 

emission with 84.233 kg in the smallest instance and 1013.777 kg in the largest instance.  It 

means that the routing construction in the PI context is more sustainable and respectful with 

the environment based on lower distance. 

Table 21. The calculation of CO2 emission between classical supply chain and PI with MIP, 

RLS, SA, and Insertion heuristic 

 
Sc. Total emission (kg) 

MIP RLS SA Insertion heuristic 
(Ben Mohamed et al., 
2017) 

Classical PI Classical PI Classical PI Classical PI 
1 105.052 83.206 109.880 95.704 114.639 84.233 109.880 103.169 
2 280.709 214.829 235.956 201.783 234.038 221.814 240.886 211.918 
3 296.939 384.425 204.385 164.460 201.441 181.444 201.715 190.346 
4 910.318 644.898 719.098 595.043 676.434 585.147 691.123 629.318 
5 296.939 334.245 220.239 179.081 268.416 172.681 213.802 186.169 
6 910.318 644.898 646.610 533.545 632.811 556.008 570.800 517.521 
7 902.887* 1224.600* 910.129 742.005 915.437 703.176 919.272 682.871 
8 - - 1656.997 1208.507 1607.724 1107.427 1153.207 1093.251 
9 - - 1210.253 1023.639 1308.251 1086.608 1271.442 978.646 
10 - - 1245.179 1034.973 1118.544 1013.777 1157.316 1060.893 

 
 
 
 
 
 



 
 

125 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 45. The calculation of CO2 emission between classical supply chain and PI with MIP, 
RLS, SA, and Insertion heuristic 

 

Based on all instances, SA is outperformed by another metaheuristic, and the 

performance is quite close to the insertion-based heuristic from the literature. Also, all 

metaheuristics provide near-optimal results with lower computational times. 

Moreover, we also do the experiment with the random generated data to justify our 

proposed approach. The delivery and pickup demands are generated randomly with three 

scenarios based on different PI-hubs, retailers, and trucks. The scenarios and experimental 

results are shown below in Table 22-23. 

Table 22. The details of all scenarios of random instances 

 
Scenarios Number of Hubs Number of Retailers Number of Trucks 
R1 3 6 3 
R2 4 12 6 
R3 3 8 4 

Table 23. Comparing total costs between PI and classical SC for random instances 
Sc. Total distribution cost 

MIP RLS SA Insertion heuristic (Ben 
Mohamed et al., 2017) 

Classical PI % 
Gp 

Classical PI % 
Gp 

Classical PI % 
Gp 

Classical PI % 
Gp 

R1 139.0 136.4 1.9 179.7 183.3 2.0 179.6 176.3 1.8 179.7 179.3 0.2 
R2 471.4 453.9 3.7 733.9 681.3 7.2 738.3 628.8 14.8 737.4 663.3 10.1 
R3 100.3 92.7 7.5 147.3 151.4 2.8 135.0 124.3 8.0 166.6 142.5 14.4 

  

The experimental results show that the MIP model still provides the optimal value of 

total cost for these random instances. Also, based on metaheuristic performance, SA still 

outperforms after comparing with other metaheuristics. 
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5.4.3 Managerial insight discussion on PI-distribution approaches 

Regarding all results previously, we demonstrate the PI distribution performance in 

both clustering and transportation routing aspects. For the clustering aspect, the results show 

that K-Medoid is outperformed to cluster the number of PI-hubs, both small and large sizes of 

PI-hub datasets. The clustering concept can help the supply chain manager reduce the 

complexity of PI-nodes’ connection by grouping the appropriate number of PI-hubs in each 

cluster. Also, all retailers are assigned to each cluster based on the cluster's characteristics. The 

characteristics are inventory levels in each cluster and distances between retailers and each 

clusters' centroid.  For the transportation routing part, all performance indicators (e.g., total 

cost, computational time, and the total CO2 emission) can help the supply chain managers make 

better decisions and manage the capability of relevant resources in the PI distribution process.  

As illustrated in the managerial flow of Figure 46, our proposed metaheuristic will be 

implemented in a decision support system. Firstly, the forecast data transfers from PI-hubs and 

retailers to the decision support system. Then, the supply chain managers can make the 

operational decision in the PI network with this system. The feasible transportation routing and 

total distribution cost are the two primary outputs using the MIP model via CPLEX or 

metaheuristics. For the metaheuristic, SA is chosen due to its outstanding performance (total 

costs and computational time). The decision support system (DSS) will choose the MIP model 

or metaheuristics based on the evaluation of solution’s quality and the size of instances. The 

solution quality is trade-off between total distribution cost and computational time. This 

flowchart can be adapted and applied to other case studies. 
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Figure 46. The flow of the decision support system for managerial insight 

5.5 Summary 

 
This chapter demonstrates the results analysis and discussion of demand forecasting 

and how to implement demand forecasting in the PI distribution network via a case study. The 

case study of agricultural products in Thailand is represented as a used case. Besides, we assess 

the forecasting performance via accuracy and degree of association between forecast and real 

demands. The ADF score is also implemented to measure the stationary of forecast demand. 

Moreover, the forecast demand is used as the input in the PI network simulation. The objective 

is to see the forecasting’s quality via holding and transportation costs compared to the real 

demand. Based on the results above, the LSTM model proposes the best customer demand 

solution with a non-linear trend, while other regressions provide a better solution with a linear 

trend. The forecasting’s quality is acceptable due to the small gaps in holding and 

transportation costs compared to the real demand in the simulation. 

Since the forecasting performance has been evaluated, the PI distribution performance 

is considered in the next step. In this thesis, the efficiency of transportation routing between 
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PI-nodes is considered in the PI distribution network. The clustering and the VRPSPD concepts 

are proposed to solve the PI network's complexity. The results show that the goods 

transportation in the PI context provided a better solution than the classical supply chain. 

Besides, the results of total CO2 emission are presented as an indicator of the sustainability 

perspective. Finally, the obtained results demonstrate that the demand forecasting and PI 

distribution network approaches can be efficiently implemented in a real-life application. We 

can see this idea in the managerial insight section. Based on the result analysis above, the 

conclusion and future perspective to support all approaches will be presented in the next 

section.  

  



 
 

129 

Chapter 6 

Conclusion and future perspective 

 
This chapter has two parts: the conclusion and future perspective of this thesis. Section 

6.1 summarizes all the main ideas from our proposed approaches, including relevant 

methodologies, results analysis, and discussion. Section 6.2 describes the future improvements 

of this thesis in both short-term and long-term aspects. All details are presented below. 

6.1 Conclusion 

 This thesis focuses on two aspects: Demand forecasting and PI distribution network. 

All methodologies and results analysis of these aspects were extremely important for the supply 

chain performance measurement in the PI context, particularly in the real case study. Moreover, 

all proposed approaches were investigated to prove better performance in the PI supply chain 

network. The supply chain performance was presented via excellent demand forecasting and 

the goods transportation approaches.  

In the demand forecasting approach, there are three main contributions in this thesis. 

Firstly, the proposed LSTM model performed well for demand forecasting compared to 

existing machine learning methods, even though the ARIMAX and MLR models performed 

better for some products in terms of accuracy. Also, the overall performance was not 

statistically different from the regression models. The prediction capability of LSTM was good 

with continuous fluctuation, such as with the white sugar and pineapple datasets, whereas the 

regression models were reasonably good with discrete fluctuation. In terms of the degree of 

association, LSTM captured future demand patterns better than other models based on the 

coefficient of determination. Since the results of all models are very closed between each other, 

it will be an interesting solution to do the sensitivity analysis for the future extension, such as 

Anova technique. Secondly, a hybrid metaheuristic was proposed to automate the 

hyperparameters tuning in the LSTM model. The accuracy and the computational time were 

better than with the trial-and-error method. Finally, for the total distribution cost in the PI 

simulation, the holding cost varied by approximately 0.09 to 1 percent between forecast and 

real demand. The transportation cost varied from 0.3 to 1.07 percent. Therefore, demand 

forecasting was effective, leaded to good resource planning, and optimized the total supply 

chain cost in the PI context.  
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However, if the number of PI-nodes (PI-hubs and retailers) is large, PI-nodes' 

connection will be more complicated. Existing techniques, such as the MIP model, will take 

high computational time to discover the feasible solution for goods transportation in the 

network. Then, the second approach was proposed to improve the performance of goods 

transportation in terms of dynamic clustering of PI-nodes and transportation planning. Based 

on the assumptions and methodologies, the results showed that the total distribution cost in the 

PI context is lower than the classical supply chain in many scenarios (both small and large 

number of PI-nodes). Even though the MIP model proposed the optimal value of total 

distribution cost, it took long processing times with a higher number of PI-nodes. In some 

scenarios, such as scenarios 8-10, the solver ran out of memory. Therefore, in these scenarios, 

SA and RLS could be applied to generate solutions. We evaluated the use of SA and found that 

it outperforms other metaheuristics in total distribution cost. Besides, the performance was 

slightly close to the insertion heuristic for holding and transportation costs. Considering the 

total carbon (CO2) emission, the PI proposed a better solution than the classical supply chain 

regarding the lower rate of CO2 emission. Although the results analysis and discussion part are 

sufficient to support all proposed approaches, some points in this thesis can be improved for 

operational decisions. All details will be mentioned in the future perspective. 

6.2 Future perspective 

In this section, we discuss the short-term and long-term perspectives of our research. 

Section 6.2.1 focuses on the technical perspective, such as the hybrid forecasting methodology, 

input variables’ selection, and novel routing techniques. Section 6.2.2 focuses on the 

managerial perspective. All details are described below.  

6.2.1 Short-term improvement 

As a short-term improvement, we vision four perspectives: Hybrid forecasting, 

Hyperparameters tuning, considering extra factors, and Artificial Intelligence. All details are 

described below. 

 

Hybrid forecasting: 

It will be more interesting to focus on the hybrid forecasting models for the future 

aspects of demand forecasting because a single model cannot complete all requirements. 

Regarding the experiment results, we can see that some models outperformed with the linear 

trend, while few models were good with the non-linear trend. Therefore, the hybrid forecasting 
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model can fulfill each model's gap (Chen et al., 2015). For instance, the LSTM model concept 

with other regression models can be implemented to improve the customer demand prediction 

in the supply chain, both linear and non-linear trends.  

Hyperparameters tuning: 

Other metaheuristics (Ojha et al., 2017) could be applied to improve the network 

structure's performance. Since the concept of Genetics Algorithm and Scatter Search were 

implemented in this thesis, we still believe that other metaheuristics could be implemented in 

the experiment. In addition, some metaheuristics, such as Evolution Strategy, and Estimation 

of distribution algorithms, have similar performance with Genetics Algorithm (Boussaïd et al., 

2013).   

 

Considering extra factors: 

In this thesis, the conducted experiments assumed a limited number of input factors. 

However, other input variables, such as the product’s growth rate, weather, and exchange rate, 

can be considered to improve the forecasting performance.  

 

Artificial Intelligence: 

In the future aspects of PI distribution, some alternative ways of transportation routing 

improvement can be considered. For example, artificial intelligence techniques, such as deep 

neural networks, and the internet of things, can be considered to reduce further distribution 

costs in the PI network. The solution of transportation routes can be improved by implementing 

hybrid metaheuristics.  

 

Besides, in addition to technical improvements, the future perspective could also focus 

on enhancing the organization's supply chain performance by implementing this thesis. This 

aspect will be mentioned in the long-term improvement section. 

6.2.2 Long-term improvement 

As a long-term improvement, we vision three perspectives: Operational and Managerial 

decisions, Sustainability, and Optimization model for multimodal transportation. All details 

are described below. 
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Operational and Managerial decision: 

Our approaches can enhance the potential of product planning and distributing both 

operational and managerial aspects in many fields, especially agricultural products. Moreover, 

our approaches demonstrated how to implement demand forecasting and routing optimization 

with various PI-nodes in the network. If the distribution network is more complex than our 

experiment, our approaches can still be helpful to implement and reduce the network’s 

complexity. Also, the concept of demand-driven supply chain (DDSC) can improve the 

efficiency of demand forecasting using real-time information on existing demand and 

inventory levels (Budd et al., 2012; Hadaya & Cassivi, 2007).  The right distribution strategies 

will sufficiently allocate vehicles, drivers, distribution centers, and relevant resources. 

However, it is essential to understand the supply chain context of each business before 

implementing our approaches. 

 

Sustainability: 

Although the sustainability concept was already implemented in this thesis by 

considering the CO2 emission rate control, our model was limited to a truck as the main 

transportation research. Therefore, to extend this work, another type of transportation, such as 

an electric truck or train, should be considered to add as another constraint in the model. Also, 

future researchers can consider other indicators, such as electrical power consumption rate, to 

assess the energy usage in the goods transportation network. 

 

Optimization model for multimodal transportation: 

Our proposed optimization model covered only the simultaneous pickup and delivery 

in the single transportation mode. However, multimodal transportation is an interesting 

direction to consider by including different transportation modes (rail-road, water-road, water-

rail). Future researchers can extend our model based on the mentioned limitation by 

considering multimodal transportation as another constraint.  
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