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General Introduction

Collective behavior is universal in nature: from molecules to cells, from tissues to
organs, from one bird to a flock of birds, from a single node to a network, simple
interactions can give rise to complex system behaviors; likewise, slight changes of
conditions can lead to different phenomena. These phenomena can often be well
modeled by statistical mechanics and they are open to mathematical analysis. In some
cases where the analytical approaches fail, computational methods and numerics can
provide the missing pieces of knowledge. Computation has been applied to many of
the aforementioned, such as non-linear dynamics, high-dimensional integration, etc.

The Monte Carlo method uses random samplings to approach the “actual” prob-
ability distribution or an integration of the observable function in high dimensions,
via simulations and experiments. The throwing pins experiment by Comte de Buf-
fon in the evaluation of π [1] is the earliest Monte Carlo calculation on record. The
idea of modern Monte Carlo method using random numbers generators and com-
puters comes from J. von Neumann and S. Ulam [2], and proceeded by S. Ulam, N.
Metropolis, et al. [3, 4] This method is widely applied in modern research, including
physics [5], chemistry [6], biology [7], computer science [8] and many more. Theories
and applications of the Monte Carlo methods have been progressing since some 70
years, and they still provide us with surprises, such as the irreversible Markov chains
presented in this thesis.

Since its invention in 2009 [9], the “event-chain” Monte Carlo (ECMC) has proven
to be a general method based on irreversible Markov chains. It was successfully ex-
tended from hard spheres [9] to general interaction potentials for particle systems [10]
and for spin models [11, 12]. It has been instrumental in research on melting in two
dimensions (both for the hard-sphere models [9, 13, 14] and for soft potentials [15]). It
is now used for the extremely efficient simulation of particle systems with long-range
interactions [16]. For the SPC/Fw (simple point charge with flexible variant) water
model, a staple in molecular simulation, it is currently being benchmarked against
the molecular-dynamics code (LAMMPS), that has been developed over decades.

This PhD thesis concerns the different dynamical properties of the event-chain al-
gorithm in different physical systems, and attempts to optimize and unify the dynam-
ics. It reviews the work during my PhD studies at Laboratoire de Physique Statistique
since September 2015.

Chapter 1 reviews some basics of probability theory, Markov chains, and of sta-
tistical physics. In chapter 2, based on the general “global-balance” condition of
Markov chains, we discuss a particular irreversible Markov chain using the concepts
of “lifting” and replicas, together with the “factorized Metropolis filter” for continu-
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ous Boltzmann-distributed systems. These concepts contribute to a full construction
of the “event-chain” algorithm.

Chapter 3 summarizes the Publication II [17]. It studies irreversible Markov chains
for the one-dimensional hard-sphere model, based on the previous framework of clas-
sification of algorithms, including the TASEP and the lifted TASEP [18]. We obtain an
exact result for the mixing time in a continuous case, and relate this dynamics to the
coupon-collector problem [19]. It explains the mixing property of ECMC of previous
findings [18]. This chapter furthermore proposes a “particle-swap” approach, which
renders possible the sequential lifted Metropolis algorithm and sequential “event-
chain” algorithm. These two algorithms accelerate mixing further, and this approach
remains valid in higher dimensions.

Chapter 4 summarizes the Publication I [12]. It presents the dynamics of the
“event-chain” algorithm with the factorized Metropolis filter for continuous spin mod-
els in the presence of topological excitations, based on the previous work [11]. The
local nature of the Markov-chain dynamics leads to a slow “vortex” mode and a fast
“spin-wave” mode in the two-dimensional XY model. We identify the probability
distribution of the maximum vortex-pair distance as a Fréchet distribution, with a
shape parameter α determined by the temperature. Other topological defects such as
the monopoles in the three-dimensional Heisenberg model are also described. With a
good understanding that the ECMC reaches equilibrium with an exponent z = 0 for
the spin-wave mode (that has z= 2 in local reversible MC simulations), we expect this
result to carry over to the relaxation of phonon modes in higher-dimensional particle
systems.

Chapter 5 presents the submitted Publication III. It explains the reason that ECMC
has a dynamics scaling than other local reversible Markov chains (and even faster
than molecular dynamics), and proposes an optimization of the event-chain algo-
rithm for general particle models, by introducing a “factor field”. Simulations on the
one-dimensional Lennard-Jones model indicate a much improved value of the dy-
namical scaling exponent for the autocorrelation time, and a super-diffusive motion
of “lifting index” in the “event-chain” algorithm for general one-dimensional mod-
els. It may help explain the high speed of dynamics and lead to the design of new
algorithms.
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Chapter 1

Probability Theory and Markov
Chains

Markov chains, a special type of stochastic processes, were first studied by A. Markov
in 1906, and then named after him [20]. Einstein’s 1905 work on diffusion, which
applied a similar idea to the Brownian motion, attracted the attention of physicists
and statisticians almost at the same time [21]. Tens of years later, A. Kolmogorov
established the axiomatic system of probability theory (including the continuous-time
theory of Markov process) as a solid foundation of statistics. [22]. Since then, many
other mathematicians, including M. Fréchet and P. Lévy, contributed to this field and
extended the theory of stochastic processes.

In this chapter, we will start from some aspects of probability theory and the
theory of Markov chains, focus on their convergence and relaxation, discuss a few
mathematical problems, and relate them to the dynamics and numerical algorithms
in statistical physics.

1.1 Some Aspects of Probabilities

The idea of probability originates from the uncertainty in the world with unknown
description (though quantum physics tells us the probability is an essential property
of any matter, which we will not investigate in detail). The mathematical theory of
probability was initiated by P. Laplace in the 19th century [23] and built into an axiom
system by A. N. Kolmogorov in 1933 [22].

Thermodynamics and statistical mechanics were developed in the 19th century,
before the foundation of the axiom system of probability theory. Nowadays, statis-
tical physics is largely based on probability theory, nevertheless the terminology of
mathematics is sometimes ambiguous to physicists due to historical reasons, and the
arbitrary descriptions in physics confuse mathematicians on the other hand.

In this section, we will provide simple definitions of some mathematical terms1,
followed by examples of physical models related to the work in the thesis as illustra-

1We refer to Probability I by A. N. Shiryaev [24].
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Chapter 1. Probability Theory and Markov Chains

tions. We only collect and present the mathematical statements needed in the remain-
der of the thesis, without the goal of completeness or full rigor.

1.1.1 Probability Space and Random Variables
The sample space (or event space) U of a finite experiment or a random trial is the set of
all possible outcomes or results of that experiment or trial. The elements inside the
sample space have to be mutually exclusive and collectively exhaustive, as no two
results will occur in one single trial, and after a trial there must be one result found
in U . (It is usually denoted by S, U or Ω. Most physicists use Ω for the “state space”
which will be explained later, so we pick U , indicating “universe”.)

For example, there are two results from throwing a coin once: the head and the
tail. The sample space is:

U = {H,T}.
In throwing a coin n times, or throwing n distinguishable coins all at once, the sample
space is:

U = {H,T}n.
If we assume there are n magnetic coins with interaction, and they are thrown t times
(for physicists, this corresponds to the simulation of Ising model, which is introduced
in section 4.1.1), the sample space is

U = {H,T}nt.

As we see, the sample space depends on the definition of the “experiment”: it can
describe an experiment that happens once, as well as the one that repeats multiple
times, regardless of the connection between the results of different times. In the fol-
lowing, unless otherwise stated, the sample space is always considered as the results
from all the experiments.

An event is a subset of the sample space. It can be restricted by rules, such as
“heads appear three times more than the tails do”, “only one head in the sixth test”,
or can be even more arbitrary by selecting none or one or more elements from the
sample space. For a more precise definition of events, σ-algebra, an algebraic structure
on the sample space U , is needed. It is closed under complement, countable unions
and countable intersections, in other words, if {Ai} is a set of countable events, then
U\Ai,(∪Ai) and (∩Ai) are all events as well. (For example, the power set of a finite
U , namely 2U , is a σ-algebra, and also the largest one, having all the other σ-algebra
as its subsets.)

Now we can define “probability”. Mathematically it is a measure (using the mea-
sure theory), which indicates a function µ : E(U)→ R (here E(U) is the set of all pos-
sible events, or the corresponding σ-algebra of U ) with the following properties:

• Non-negativity: ∀S ∈ E(U),µ(S)≥ 0;

• Null empty set: µ(∅) = 0;

• Countable additivity: For countable collections of {Si} that ∀i, j : Si∩Sj = ∅, we
have µ(∪Si) =∑

µ(Si).

14



1.1. Some Aspects of Probabilities

The probability function needs a normalization other than these three points, that
µ(U) = 1. Hence, one defines the probability as the function P : E(U)→ [0,1]. The
sample space U , the σ-algebra E(U) splitting events and the probability measure P,
they construct the well-defined probability space or probability triple.

A random variable (or stochastic variable, in the context of a stochastic process) is a
mapping:

ξ : U → ξ(U),

where the domain is the sample space U and the range ξ(U) is a subset of R. If ξ(U)
is discrete, the (discrete) probability distribution of a random variable ξ is a mapping
Pξ : ξ(U)→ R:

Pξ(x) = P{ω : ξ(ω) = x}. (1.1.1)

And this mapping can also be extended to the subset of ξ(U):

Pξ(A) = P{ω : ξ(ω) ∈A}. (1.1.2)

The cumulative distribution function (or distribution function) Fξ : ξ(U)→ [0,1] is defined
as:2

Fξ(x) = P{ω : ξ(ω)≤ x}, (1.1.3)

and the probability density function is defined as the first derivative of the cumulative
distribution function, if Fξ(x) is “absolutely continuous” [24]

fξ(x) = dFξ(x)
dx . (1.1.4)

In some occasions concerning a continuous distribution, fξ(x) is written as pξ(x) (or
even as p(x)). The probability distribution Pξ(x) is used for discrete ξ and the proba-
bility density function fξ(x) is used for continuous ξ. In some cases they can be con-
nected with Dirac’s δ function. In the limit of continuous U ,∑

x∈ξ(U)
Pξ(x)O(x)∼

∫
ξ(U)

fξ(x)O(x)dx∼ E[O]

for a continuous function O(x) well-defined on ξ(U) (and this term E[O] is defined
as the expectation of the function/random variable O). We will base most mathema-
tical discussions on the discrete U in the following sections, and one may derive the
corresponding equations in the continuous case.

The σ-algebra and the measure construct important parts in the axiomatic system
of probability theory and guarantee its consistence. Nevertheless, we will not dis-
cuss anymore about them in the remainder of the thesis, as the sample space of most
physical models is either a finite discrete one or a continuous Lebesgue measurable
subspace of Rn, with well-defined measure.

2Following the formalism of probability theory, the distribution function is introduced before defin-
ing the measure (Lebesgue), and the discrete probability distribution is a special case [24]. Here we state
the facts in a more comprehensible way (which may not be rigorous in mathematics).
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Chapter 1. Probability Theory and Markov Chains

In physics, the term “observable” has a similar property as “random variables” in
mathematics, in the context of “one experiment”. For example in one experiment
of throwing multiple magnetic coins, the difference between the numbers of heads
and tails of one test is an observable (random variable). (The physical analogy is
the magnetization of the Ising model, as mentioned in section 4.1.3.) More generally,
some physical observables are n-vectors, which be regarded as n (dependent) random
variables. Most observables are functions of one or multiple configurations, which
corresponds to an element in the sample space of a single or multiple tests. We will
continue the discussion in section 1.2.1.

1.1.2 Stability and Max-stability
Stability in mathematics is usually a property of being invariant under some non-
trivial transformations. In probability theory, a stable distribution is invariant under
linear combinations and a max-stable distribution is invariant under maximum selec-
tions.

The stability of distributions leads to the central limit theorem in statistics. It also
characterizes the behavior of the random walk, which is discussed in section 1.5.3 and
then applied in section 5.3. Max-stability, describing the properties of extreme events,
is applied in our discussions in sections 1.5.1 and 4.3.2.

We assemble them in this section, for these two theories share many similarities in
the definitions, the statements of theorems, and their significance within probability
theory. 3

Partial Sums and Stability

Definition of stable distributions: For a sequence of independent and identically dis-
tributed random variables {Xi}, i = 1,2, . . . , we assume they have the same distribu-
tion as X . X follows a stable distribution if there exist two sequences of real numbers
{ci},(ci > 0) and {di} that:

P(Sn−dn
cn

= x) = P(X = x), (1.1.5)

where

Sn =
n∑
i=1

Xi,

is known as the partial sum of the sequence {X1, ...,Xn, ...}.
The characteristic function of a random variable ξ is defined as:

ϕξ(t) =
∫
R

eitxfξ(x)dx= E(eitξ). (1.1.6)

3In this section, we refer to Limit Distributions for Sums of Independent Random Variables by B. V. Gne-
denko and A. N. Kolmogorov [25, chapter 6] for the discussion of the partial sums and the stability (with
some modification of the notation), and refer to Extreme Value Theory: An Introduction by L. de Haan [26,
chapter 1] for the discussion of the partial maxima and the max-stability.
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1.1. Some Aspects of Probabilities

For the sum of independent variables Ξ =∑n
i=1 ξi:

ϕΞ(t) = E(eitΞ) =
n∏
i=1

E(eitξi) =
n∏
i=1

ϕξi(t). (1.1.7)

The distributions of the ξi need not be identical as long as they are independent. This
result is very useful in the later discussion of single-particle sampling in section 3.2.1.

For a stable distribution, its characteristic function should be somehow “invari-
ant” under multiplications with itself. The Gaussian distribution and the Cauchy
distribution are well-known examples of stable distributions. The class of all stable
distributions will be provided in the following.

Generalized Central Limit Theorem

The Lévy–Khinchin Representation [27, 28] tells that all stable distributions have their
characteristic functions as

φ(t;α,β,c,µ) = eitµ−|ct|α(1−iβsign(t)Φ(α,t)), (1.1.8)

where β ∈ [−1,1] (as skewness parameter), α ∈ (0,2], µ is the shift, c provides the scale,
and

Φ(α,t) =
{

tan(πα2 ) if α 6= 1,
− 2
π log |t| if α= 1.

(1.1.9)

The family of distributions is called Lévy alpha-stable distribution family.
In eq. (1.1.5), the scaling factors cn is n1/α in Lévy alpha-stable distributions. This

leads us to the generalized central limit theorem, which describes the partial average of
a sequence of N copies of a variable X :

• If the distribution of X has a finite variance, the partial averages converge to a
Gaussian distribution (N (µ,σ)) as α= 2, with the standard deviation σ ∼N− 1

2 ,
which is the classical central limit theorem;

• If the distribution of X has a heavy tail, that limx→∞ p(x) ∼ 1
|x|1+α ,1 < α ≤ 2),

it scales as the corresponding Lévy α distribution, with the standard deviation
σ ∼N 1

α
−1, and converges to the true mean value;

• If the distribution of X has a heavy tail, that lim|x|→∞ p(x) ∼ 1
|x|1+α , α ≤ 1, it

scales as the correspondingα distribution, but it does not converge to the “mean”
(in the sense of Cauchy principal value), with a diverging standard deviation.

These stable distributions provide the basis for stable processes, which we will present
in section 1.5.3 and use in section 5.3.

Partial Maxima and Max-stability

Definition of max-stable distributions: For a sequence of independent and identically
distributed random variables {Xi}, i= 1,2, . . . , we assume they have the same distri-
bution as X . X follows a max-stable distribution if there exist two sequences of real
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Chapter 1. Probability Theory and Markov Chains

numbers {ai},(ai > 0) and {bi} that:

P(Dn− bn
an

≤ x) = P(X ≤ x), (1.1.10)

where
Dn = max

i=1,...,n
({Xi}),

is the partial maximum of a sequence {X1, ...,Xn, ...}.
Similar to the treatment with partial sums using the characteristic functions, a

cumulative distribution function itself shows the stable behavior:

P(max
n
{Xi} ≤ x) =

n∏
i

P(Xi ≤ x). (1.1.11)

All possible non-trivial max-stable distributions form a class, which will be discussed
in the following.

Fisher–Tippett–Gnedenko Theorem

For a sequence of independent and identically distributed random variables {Xi}, i=
1,2, . . . , we assume they have the same distribution asX , and the cumulative distribu-
tion function of X is F (x). If there exist two sequences of real numbers {ai} (ai > 0)
and {bi}, such that the regulated variable maxn({Xi})−bn

an
has a non-degenerate limit

distribution as n→∞:
lim
n→∞

[F (anx+ bn)]n =G(x). (1.1.12)

Then all the possible distributions with the cumulative distribution function as G(x)
are called the extreme value distribution4, which plays the same role as the Lévy alpha-
stable distribution. The following theorem has the equivalent status in extreme-value
theory as the central limit theorem in statistics.
Fisher–Tippett–Gnedenko Theorem (M. Fréchet (1927) [29], R. Fisher and L. Tippett (1928)
[30], B. V. Gnedenko (1943) [31]): The family of all extreme value distributions is in
the form of Gγ(ax+ b), where a > 0, b are real parameters, and

Gγ(x) = exp
(
−(1 +γx)−1/γ

)
. (1.1.13)

When γ = 0, the right-hand side can take the limit as G0(x) = exp(−e−x). The class of
distributions is divided into three types according to the value of γ (in the following
three cases, µ is the shift factor, s is the scale factor and α= 1/γ):

1. γ > 0, known as the Fréchet distribution, is usually written as

P (µ <X < x) = exp
[
−
(
x−µ
s

)−α]
. (1.1.14)

It is bounded on the left side (x = µ), and it has a heavy tail (p(x) = O(x−1−α))
on the right side. We will see a physical example in section 4.3.2.

4This name is used in Extreme Value Theory: An Introduction by L. de Haan [26].
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1.2. Markov Chains and Master Equations

2. γ = 0, known as the Gumbel distribution, is usually written as

P (X < x) = e−e−(x−µ)/s
. (1.1.15)

It has a double-exponential shape, with light tails (p(x) = O(e−|x|/s)) on both
sides. For example, the largest element of a sequence of exponentially dis-
tributed random variables follows a Gumbel distribution with γ = 0, in the limit
of an infinite sequence (which we use in section 1.5.1).

3. γ < 0, known as the reverse-Weibull distribution, is usually written as

P (X < x) = e−(−x−µ
s

)α . (1.1.16)

It is bounded on the right side (x = µ), and it has a light tail on the left side
(p(x) = O(e−(−x)/s)). For example, the largest element of a sequence of uni-
formly distributed random variables follows a reverse-Weibull distribution with
γ =−1, in the limit of an infinite sequence.

Different values of γ imply different scaling behaviors, as the scaling factor an = nγ

in eq. (1.1.10). (E(X)∝ bn and var(X)∝ a2
n = n2γ , if they are well defined.)

1.2 Markov Chains and Master Equations

1.2.1 Stochastic Processes and Markov Chains
For two events A and B, the conditional probability of B given A is

P(B|A) = P(A∩B)
P(A) ,

where (B|A) is interpreted as the event B on condition of A. If P(A) = 0, then
P(B|A) = 0 as well. Considering two random variables X and Y instead of events A
and B, the conditional probability distribution of Y given the occurrence of the value x
of X is

P(Y = y|X = x) = PY (y|X = x) = P(Y = y∩X = x)
P(X = x) , (1.2.1)

and the marginal probability distribution of Y is

P(Y = y) = PY (y) =
∑
x∈Ωx

P(Y = y∩X = x) =
∑
x∈Ωx

P(Y = y|X = x)P(X = x). (1.2.2)

These are useful for a time-ordered stochastic process.
A stochastic process is defined as an ordered sequence of random variables, e.g. a

random variables sequence (ξ1, ξ2, .., ξn). There are some special processes that are
usually discussed in mathematics:

• If
E(ξk+1|ξ1, ξ2, ...ξk) = ξk, (1.2.3)

then the sequence {ξi} is a martingale;
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Chapter 1. Probability Theory and Markov Chains

• If
P(ξk+1 = ak+1|ξ1, ξ2, ..., ξk) = P(ξk+1 = ak+1|ξk), (1.2.4)

then the sequence {ξi} is a Markov chain.

The concept of a martingale leads to the optional stopping theorem [32], which deter-
mines the mean value of a martingale at an arbitrary bounded stopping time. This
theorem is useful in calculations, and we will use it in section 1.5.1. (We present the
“martingale” in the thesis only to facilitate some calculations, and it is irrelevant to
the other chapters.)

In a stochastic process, its future states are usually conditional on both past and
present states. A Markov chain holds the Markov property that the conditional prob-
ability distribution of future states depends only upon the present state, meaning that
the process is memoryless of all its previous history.

For a Markov chain (ξ1, ξ2, . . . , ξn), we may associate it to a time series (t1, t2, . . . , tn)
(t1 < t2 < ... < tn). Characterizing the random variable by time (ξ(t1) = ξ1) facilitates
the descriptions of a continuous process. The domain of each random variable ξi or
ξ(ti) (which is denoted by the set Ω), is named state space (if Ω is discrete) or phase space
(if Ω is continuous). If there are no other events, the sample space can be written as
Ωn. It can be extended for an infinite sequence of {ti}, or generalized for t ∈ [0,+∞).
In physical processes, such random variables ξi are also called observables.

In the following, we will write the probability distribution as “P (xi)” or “P (x(ti))”
instead of P(ξ(ti) = xi) or Pξ(ti)(xi), if it cannot be confused with the probability den-
sity functions. Hence, eq. (1.2.4) is rewritten as

P (xn|x1,x2, . . . ,xn−1) = P (xn|xn−1). (1.2.5)

Following the definition of the conditional probability distribution and that of the
marginal distribution, we have

P (x3,x1) =
∑
x2∈Ω

P (x3,x2,x1)

=
∑
x2∈Ω

P (x3|x2,x1)P (x2|x1)P (x1)

=
∑
x2∈Ω

P (x3|x2)P (x2|x1)P (x1).

(1.2.6)

By dividing P (x1) on both sides:

P (x3|x1) =
∑
x2∈Ω

P (x3|x2)P (x2|x1), (1.2.7)

which is known as the Chapman–Kolmogorov Equation, characterizing the master equa-
tion of a Markov chain.

In a model of an experiment that forms a Markov chain, we start from the initial
distribution p0(x) = P(ξ1 = x) and evolve with P (xk,xk−1) = P(ξk = xk|ξk−1 = xk−1),
known as the matrix of transition probabilities at time k (or tk). If it is k-independent
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1.2. Markov Chains and Master Equations

(or it is only dependent of the time interval tk− tk−1), it is called the transition matrix5,
and this Markov chain is called a homogeneous Markov chain.

1.2.2 Transition Matrix and Master Equation
The transition matrix in a homogeneous Markov chain is denoted by:

P (x,t3|y,t2) = Tx,y(t3− t2). (1.2.8)

Homogeneity is a natural prerequisite for the physical systems with time translation
symmetry. In the form of T , the Chapman–Kolmogorov Equation eq. (1.2.7) is:

Tx1,x3(t3− t1) =
∑
x2∈Ω

Tx1,x2(t2− t1)Tx2,x3(t3− t2). (1.2.9)

By taking {xi} as their indices, eq. (1.2.9) matches the law of matrix multiplication; in
matrix form, it is equivalent to:

T(τ1 + τ2) = T(τ1) ·T(τ2). (1.2.10)

In this formalism, a probability distribution of all possible states forms a vector π

π = (π(x1),π(x2), · · ·),

and the transition matrix acts as a right operator on it:

π(t+ τ) = π(t)T(τ). (1.2.11)

For Markov chains in discrete time (we may pick the unit time interval as “1”, and
use the notation T(1) = T for short):

T(τ) = Tτ (1) = Tτ . (1.2.12)

It is proven that all homogeneous transition matrices have the exponential form. In
the limit of continuous time, the transition matrix T of an infinitesimal time difference
is expanded:

T(t) = 1+ tW +o(t), (1.2.13)

where the matrix W corresponds to the first-order term of the time in the expansion.
The off-diagonal terms in W stand for the non-negative transition rate from one state
to another, whose sum compensates the diagonal terms:

Wx,x =
∑

y∈Ω,y 6=x
Wx,y. (1.2.14)

According to eq. (1.2.10), T(t) is written as:

T(t) = lim
ε→0

(1+ εW)
t
ε = etW. (1.2.15)

5This term is sometimes confused with another term transfer matrix. Transfer matrix is a technique in
treating some special partition functions, e.g. the partition function of the one-dimension Ising model
[33].
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The term o(t) in eq. (1.2.13) plays no role in eq. (1.2.15). We will not go too far in the
continuous form of matrix, but it will be very extensively used in section 2.3.2.

By replacing T in Chapman–Kolmogorov Equation 1.2.9 with eq. (1.2.13), we have

T τ+t
x1,x3 =

∑
x2∈Ω

T τx1,x2 (δx2,x3 + tWx2,x3) , (1.2.16)

where δx1,x2 is the Kronecker delta. After taking the derivative of t, eq. (1.2.16) is
transformed into:

∂T tx1,x3

∂t

∣∣∣∣∣
t=τ

=
∑

x2∈Ω,x2 6=x3

T τx1,x2Wx2,x3−T τx1,x3

∑
x∈Ω,x 6=x3

Wx3,x (1.2.17)

=
∑

x2∈Ω,x2 6=x3

[
T τx1,x2Wx2,x3−T τx1,x3Wx3,x2

]
. (1.2.18)

By taking x1 as the initial state, we have a partial differential equation of the distribu-
tion, based on the transition rate:

∂P (x,t)
∂t

=
∑

x′∈Ω,x′ 6=x

[
P (x′, t)Wx′,x−P (x,t)Wx,x′

]
. (1.2.19)

This partial differential equation is the master equation of the Markov process that de-
scribes the dynamics throughout the evolution of distribution, even in the discrete
time case. By summing up different states, the conservation of probability in transi-
tions is verified. It is the fundamental formula providing the cornerstone of Monte
Carlo methods, which we will discuss later.

1.3 Convergence Theory

In statistical physics, most systems end up in a “macroscopic steady state”, which cor-
responds to a certain probability distribution. We will then discuss the convergence
in the dynamics determined by Markov chains.

1.3.1 Steady State and Irreducibility

With the notation of transition matrix, the time evolution of the distribution π(t) is
given by

π(t) = π(t−1)T, (1.3.1)

in its explicit form:

π(t)(x) =
∑
x′

π(t−1)(x′)T (x′→ x). (1.3.2)

If
π = πT, (1.3.3)
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1.3. Convergence Theory

then π is the steady state. As eq. (1.3.3) iterates, it is expected that the distribution
would converge to a single one starting from any initial distribution of states π(0), for
most physical processes:

lim
t→∞

π(t) = π. (1.3.4)

The uniqueness of the steady state is guaranteed by Perron–Frobenius theorem6. For an
n×n strictly positive matrix A = (aij) that ∀1≤ i, j ≤ n, aij > 0:

• There exists a positive real number r as the unique eigenvalue with the largest
(strictly) absolute value;

• All the elements of the left eigenvector ~v and the right one ~w of r are strictly
positive, and

lim
t→∞

~vAt = rt~v, (1.3.5)

lim
t→∞

At ~w = rt ~w; (1.3.6)

• The largest eigenvalue r satisfies mini
∑
j aij ≤ r ≤minj

∑
iaij .

The first two statements indicate the existence of the steady-state distribution, on the
condition that the transition matrix T has the largest eigenvalue as 1, which is then
verified by the third statement. A positive transition matrix can always lead any
initial distribution to the steady one. For a non-negative matrix A = (aij),aij ≥ 0 :
∀1 ≤ i, j ≤ n, the theorem is not valid for general cases. But if A is irreducible and
aperiodic, the theorem is applicable.

Irreducibility in Markov chain presents a non-zero probability of transition from
any subset of the phase space to any other subset, in one or more steps. It is closely re-
lated to the connectivity of the space. An irreducible Markov chain has an irreducible
transition matrix A, which is not conjugated into a block upper triangular form by
permutation. (A more illustrative interpretation is that the graph GA associated with
the matrix A, whose number of vertices is the size of A, and each oriented weighted
line represents the corresponding element in A, is strongly connected, as illustrated in
Fig. 1.1.)

In an irreducible non-negative matrix, the group of the eigenvalues {λl} with the
absolute maximum r are in the form of

λl = re2πil/h, l = 0,1, . . . ,h−1.

Aperiodicity restricts the period h to 1, and guarantees the existence of a single absolute
maximum eigenvalue.

As a summary, the irreducible aperiodic non-negative matrices (or primitive matri-
ces [34]) follows the same convergence theorem as the positive matrices, and an ir-
reducible aperiodic non-negative transition matrix uniquely determines a stationary
distribution, starting from any initial ones.

6We refer the theorem and the terminology to Matrix analysis and applied linear algebra by C. D. Meyer
[34, chapter 8]
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Figure 1.1: Graph representation of Markov chains. Each node represents a state,
and each oriented edge (green and red) connecting two nodes represents a transition
between states. (a) In a strongly connected graph whose corresponding transition
matrix is irreducible, one can explore all the states starting from any of them. (b) In
a weakly connected graph, one will be trapped in a subset (the node D′) of all the
nodes. The transition matrices of weakly connected graphs as in (b) and those of
unconnected graphs are reducible.

1.3.2 Global Balance and Detailed Balance

Towards a single stationary distribution there exist multiple transition matrices. As
the master equation already provides us with a general dynamical framework, we
will then explore the conditions these matrices preserve. In analogy to Liouville’s
theorem, the master equation eq. (1.2.19) presents the conservation of the probability
of one state. On its right-hand side is the probability flow:

F (x′→ x,t) = P (x′, t)Wx′,x. (1.3.7)

We name the positive components “incoming flow” and the negative ones “outgoing
flow”:

Fin(x,t) =
∑

x′∈Ω,x′ 6=x
F (x′→ x,t),

Fout(x,t) =
∑

x′∈Ω,x′ 6=x
F (x→ x′, t).

(1.3.8)

The net probability flow, defined as the difference between Fin(x,t) and Fout(x,t) in
eq. (1.3.8), is 0 in the steady state:

0 = Fin(x)−Fout(x)
=

∑
x′∈Ω,x′ 6=x

[
π(x′)Wx′,x−π(x)Wx,x′

]
, (1.3.9)

where π(x) is probability distribution of the state x in the steady state. This is the
global-balance condition, a necessary condition of convergence to the steady state (so
are irreducibility and aperiodicity, but all of them three are sufficient), where the in-
coming and outgoing flows compensate, resulting in no macroscopic change of dis-
tribution.
A further detailed-balance condition requires that the net probability flow between any
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two states in the stationary distribution vanishes:

π(x′)Wx′,x = π(x)Wx,x′ , (1.3.10)
F (x′→ x) = F (x→ x′), (1.3.11)

which is more restrictive than the global balance. The transition matrix preserving the
detailed-balance condition is a reversible transition matrix, and such a Markov chain is
a reversible Markov chain. Many algorithms, such as the famous Metropolis–Hastings
algorithm, which we will introduce in section 1.6.2, are based on the detailed-balance
condition.

On the contrary, the relative freedom provided by the global-balance condition
gives enormous possibilities for the construction of Monte Carlo algorithms. These
delicate schemes will be presented in detail in chapter 2, and used in all later chapters.

1.4 Characterizing the Speed of Markov Chains
In the study of the dynamics of the Markov chains, an important property is its speed
of convergence. In this section, without losing any universality, we consider discrete-
time Markov chains to quantify this property.

1.4.1 Relaxation Time
As the transition matrix contains all the information of the Markov chain7, we will
evaluate its time scale from its eigenvalues. Given a reversible transition matrix T, a
symmetric matrix A is constructed

A(x′,x) = [π(x′)]
1
2Tx′,x[π(x)]−

1
2 , (1.4.1)

according to eq. (1.3.11). Hence, all the eigenvalues of a reversible transition matrix
T are real. The eigenvalues can be listed in a decreasing order:

1 = λ1 > λ2 ≥ ...≥ λ|Ω| ≥−1, (1.4.2)

and the spectral gap is defined by:

γ = 1−λ∗, (1.4.3)

where λ∗ = max{λ2, |λ|Ω||}, and γ is a positive number.
If the Markov chain is irreversible but irreducible and aperiodic, the eigenvalues may

not be real, but the one with the largest absolute value λ∗ is real according to the
discussion in section 1.3.1. The spectral gap is defined the same as in eq. (1.4.3).
The relaxation time of Markov chains is defined as:

trel = 1
γ
, (1.4.4)

7We refer to Markov Chains and Mixing Times by D. A. Levin et al. [35, chapter 4] for the discussion of
the eigenvalues of a reversible transition matrix and the relaxation time.
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which characterizes the slowest time scale of the dynamics in the limit of convergence.
Any probability distribution of the states in Ω (denoted by a) can be written as a

linear combination of the left eigenfunctions of the transition matrix (denoted by ai):

a =
|Ω|∑
i=1

ciai, (1.4.5)

then

aTn =
|Ω|∑
i=1

ciλ
n
i ai

=
|Ω|∑
i=1

cieinArgλien log |λi|ai.

(1.4.6)

Except for λ1 = 1 which corresponds to the steady state π, all the other eigenvalues
have exponential decreasing coefficients. The slowest one of them corresponds to λ∗,
in the limit λ∗→ 1−, logλ∗→ γ.

1.4.2 Autocorrelation Time

Relaxation times describe the converging speed of Markov chains from the aspect of
the tail in long-time evolution. Nevertheless, building the full transition matrix or
fully characterizing the probability distribution in the phase space is an enormous
job. In the alternative, measuring the “autocorrelation times” of the observables is a
more pragmatic option.

From each configuration, we can obtain an “observable”, which is a scalar (or a
vector) characterizing some features of the system, as we indicated in section 1.2.1.
The observable also forms a sequence in the Markov chain, and it has a steady-state
distribution as well.

In order to see the correlation between two sequences of observables {X},{Y },
we use the correlation function:

corr(X,Y ) = cov(X,Y )
σXσY

=
〈

(X− X̄)(Y − Ȳ )
σXσY

〉
. (1.4.7)

whose range is [−1,1]. corr(X,Y ) = ±1 indicates a linear relationship between these
two variables, while corr(X,Y ) = 0 is a necessary but not sufficient condition to de-
termine that {X},{Y } are independent.

By choosing the sequence {Y } as a “shifted” {X}, the autocorrelation function of
{X} is defined as:

Cx(τ) =
〈

(Xt−µX)(Xt+τ −µX)
σ2
X

〉
t

. (1.4.8)

In analogy to the correlation of two different sequences {X},{Y }, if Cx(τ) is close
enough to 0, it means that the configuration is almost independent of its history τ
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steps ago. Here we define the exponential autocorrelation time of an observable f8:

τexp(f) = lim
t→∞

sup 1
− log |Cf (t)| , (1.4.9)

and the integrated autocorrelation time:

τint(f) = 1
2

t=+∞∑
t=−∞

Cf (t). (1.4.10)

The difference of these two autocorrelation times is up to a constant coefficient, only
in the case that Cf (t) is purely exponential.

As a surjective function of the state, an observable can not decorrelate faster than
the state. For all possible observables, the exponential autocorrelation time of the
Markov chain is

τexp = sup
f
τexp(f), (1.4.11)

which is almost in the same order as the relaxation time trel (τexp = 1
log(1−γ) , γ is the

spectral gap) [37].

1.4.3 Total Variation Distance and Mixing Times
The total variation distance (TVD)9 is used to characterize the difference between
two probability distributions in the same state space. The TVD of two probability
distributions µ and ν (whose probability density functions are fµ and fν respectively)
on the state space Ω is defined as:

‖µ−ν‖TV = 1
2
∑
x∈Ω
|µ(x)−ν(x)| (for discrete Ω) (1.4.12)

= 1
2

∫
Ω
|fµ(x)−fν(x)|dx (for continuous Ω) (1.4.13)

= max
A⊆Ω
|µ(A)−ν(A)|. (1.4.14)

Eq. (1.4.14) is obtained by partitioning Ω into two subsets S+ and S−, that µ(x) ≥
ν(x),∀x ∈ S+ and analogously in S−. The difference of the two probability distri-
butions over S+ in eqs (1.4.12) and (1.4.13) equals the corresponding one over S−,
because of the normalization of probability, and it accounts for the prefactor of 1

2 in
these two equations. Eq. (1.4.14) reaches its maximum when A= S+ or S−.
As a distance defined on the space for all the probability distributions on Ω, it is
non-negative, it satisfies the triangular relation, and ‖µ− ν‖TV = 0 if and only if
µ(x)−ν(x) = 0 almost everywhere on Ω.

In a Markov chain, we pick µ = π(t) as the probability distribution of states after
a certain number of steps and ν = π, the distribution of steady state. As the Markov

8The following discussions, including exponential and integral autocorrelation time, are largely
based on Monte Carlo methods in statistical mechanics: foundations and new algorithms by A. D. Sokal [36].

9We refer to Markov Chains and Mixing Times by D. A. Levin et al. [35, chapter 12] for the discussions
of total variance distance, convergence theorem and mixing times.

27



Chapter 1. Probability Theory and Markov Chains

chain converges, the TVD goes to 0 as time goes to infinity. Similar to the exponential
decay of the fluctuations in the discussion of the relaxation time, there is a convergence
theorem, in the language of TVD: for an irreducible and aperiodic transition matrix T
with the stationary distribution π, there exist constants α ∈ (0,1) and C > 0, that

max
x∈Ω
‖δ(x)Tt−π‖TV ≤ Cαt, (1.4.15)

where δ(x) is the distribution of one single initial state x ∈ Ω.
For a given positive number ε, the mixing time tmix(ε) is defined as the minimum

of the time needed to have TVD≤ ε, from any initial distribution:

tmix(ε) = min{t : TVD(t)≤ ε}. (1.4.16)

According to the above convergence theorem, it is deduced that

tmix(ε)∝− log ε, for small ε.

The mixing time tells the time needed for convergence from the worst possible ini-
tial state, while the relaxation time tells the slowest decreasing speed. Though their
definitions are different, there is a connection between the two in reversible Markov
chains in discrete state space, concerning the limit of small ε and large t [35]:

(trel−1) log
( 1

2ε

)
≤ tmix(ε)≤ log

( 1
eπmin

)
trel,where πmin = min

x∈Ω
{π(x)} (1.4.17)

In more general cases (e.g. irreversible Markov chain and continuous phase space),
their connection is not very clear, and in chapters 3, 4, and 5 we will see that the
mixing times and autocorrelation times can be very different.

For a relatively large ε (e.g., ε = 1/4), the TVD sometimes exhibits a cut-off in the
tmix; it drops to zero very fast, as if tmix is independent of ε [38]. This phenomenon is
not implied in the convergence theorem. Hence, the mixing process is more complex
than an exponential convergence. In section 1.5 we will illustrate it with the example
of the “coupon collector”.

1.5 Simple Problems of Markov Chains
In this section some models of Markov chains are presented. These “toy models”
carry non-trivial ideas which will shed light on the physical models that we will study
in chapters 3, 4 and 5.

1.5.1 Coupon-collector Problem
Discrete-time Representation

In a set of n coupons, at the time t = 1,2, . . . , one of them is marked randomly. We
now determine the probability that all the coupons are marked after a period T , or
the probability distribution of the first-complete-collection time T1.
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1.5. Simple Problems of Markov Chains

In probability theory, the stopping time is the time (also a random variable) that some
(well-defined) events are met in the stochastic process. Clearly, T1 in this question is
a stopping time.

The problem is simple but also related to many processes in statistical models, and
it plays an important role in chapter 3. We first calculate the mean time of a complete
collection. Having collected k different coupons, the probability of collecting a new
one next time is

pi = n−k
n

,

which means on average after 1/pi pickings, a new coupon is collected. As the time
interval between the first collection of the next new coupon is independent, we have:

E(T1) = E(τ1) +E(τ2) + · · ·+E(τn)

= 1 + n

n−1 + n

n−2 + · · ·+ n

1
= n(1 + 1

2 + · · ·+ 1
n

) = nHn

= n(logn+γ) + 1
2 +O(1/n)

(1.5.1)

where Hn is the n-th harmonic number, and γ ≈ 0.5772156649 . . . is known as the Eu-
ler–Mascheroni constant. Hence, the expected first-complete-collection time isO(n logn).

The event that the complete collection is not achieved at time t (or T1 > t) is de-
noted by A, and the event that the coupon i is not marked during all the t times is Ai,
then:

P(A) = P(∪iAi)<
∑
i

P(Ai). (1.5.2)

By taking t= n logn+ cn,

P(T1 > n logn+ cn)< n(1− 1
n

)n logn+cn < ne−(logn+c) = e−c. (1.5.3)

By subtracting the intersections between Ai, a more precise evaluation is given by P.
Erdös and A. Rényi [19], that

P(T1 < n logn+ cn)∼ e−e−c . (1.5.4)

The problem can be generalized for multiple complete collections [19], that

P(Tm < n logn+ (m−1)n log logn+ cn)∼ e−e−c/(m−1)!. (1.5.5)

where Tm is the first time that each coupon is marked m times. The estimations of T1
and Tm in eqs (1.5.4) and (1.5.5) are extensively used in section 3.2.2. There are other
generalizations such as the coupons with non-uniform probabilities of being collected
[39], which we will not discuss in further detail.
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Continuous-time Representation

Another representation of the coupon-collector problem is described with a continuous-
time Poisson process. Suppose there are n coins, each of which flips at the rate of 1, in
other words, the time to the next flip τ is given by

τ ∼ Exp(1); pτ (x) = e−x,

so that the flipping of each coin is independent of the condition of others and its
previous history. We now study, firstly, the expected time t1 that all coins are flipped
at least once; and secondly, the number of flips (of all the coins) during this period.

For the first question, t1 is equivalent to the maximum of n independent exponen-
tially distributed random variables, whose cumulative distribution function is given
in section 1.1.2

Ft1(x;n) =
(
1− e−x

)n
, (1.5.6)

and the expectation is E(t1) =Hn (the n-th harmonic number).
For the second question, the total number of flips from the beginning to time t

is denoted by N(t), which is a random variable with 〈N(t)〉 = nt. According to the
optional stopping theorem, the expectation of a martingale (as [N(t)−nt]) does not de-
pend on the stopping time, as long as the stopping time is bounded or has a finite
expectation [40]. Hence,

E[N(t1)−nt1] =N(0)−0 = 0, E[N(t1)] = nE(t1), (1.5.7)

which shows 〈N(t1)〉= nHn, the same as the calculation in the discrete time version.
Furthermore, as a max-stable statistic, in the limit n→∞, the distribution of t1

converges to the Gumbel distribution with µ=Hn in eq. (1.1.15), as described in sec-
tion 1.1.2. This explains the Gumbel-tail in the estimation of P. Erdös (eq. (1.5.4)).

If no two coins flip at the same time, the times when a flip occurs {tflip
1 , t

flip
2 , . . .}

form a sequence, which maps exactly to the sequence {1,2, . . .}. The probability
of more than two flips occurring at the same time is zero (in measure), hence the
continuous-time and the discrete-time models are essentially the same (almost every-
where).

The continuous-time representation is commonly used in the calculation of the mix-
ing times, such as the single-particle random walk in section 1.5.2 and the multi-
particle random walk in section 1.5.4. The expected number of events in one time
unit is n in the continuous-time representation, while in the discrete-time represen-
tation, one event occurs exactly after one time step: their difference brings a factor
of n in the calculations. In our later discussion of irreversible Markov chains (as in
chapter 3), we mainly use the notation of the discrete-time representation.

1.5.2 Random Walk on the Vertices of a Hypercube
The coupon-collector model is a good example of Markov chains, however, at first
sight it is not directly linked to a steady distribution of random variables (or there is
only one steady state: all coupons are collected). We propose a modification to the
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process as following:
Suppose there are n coins on the ground, either showing their heads or tails. Each
time a random coin is picked up and tossed. (The model is equivalent to the simu-
lation of an Ising model at T =∞, whose state is pace is Ω = {−1,1}n.) A more mathe-
matical statement is a random walk on the vertices of a n-dimensional hypercube, that
at each time the walker randomly picks a dimension and randomly chooses to move
or stay. We now study the time that it reaches the steady state (equal probability on
each state), and how the TVD evolves.

In this set of problems, in analogy to the coupon-collector problem, the steady
state is achieved after the first-complete-collection time T1 that all the coins are picked
(the moves on all the dimensions are proposed at least once). In the theory of Markov
chains, there is a similar argument of a strong stationary time, after which the proba-
bility distribution of states no longer depends on time, such as T1 in this process. The
strong stationary time itself is a random variable and has its own distribution, which
does not contradict with the exponential convergence of Markov chains.

If the walking occurs as a Poisson process with the rate 1
n on each dimension, an

exact expression of TVD is given by [41]:

TVD(t) = 2−n−1
n∑
k=0

(
n

k

)∣∣∣(1− e−2t/n)n−k(1 + e−2t/n)k−1
∣∣∣ . (1.5.8)

The cut-off occurs precisely at time tmix = 1
4n logn.

This model provides some ideas between the cut-off phenomenon in the evolution
of TVD and the coupon-collector problem, as the mixing time is O(n logn), while the
distribution of the strong stationary time has a tail of e−t/n. The two different time
scalings indicate unusual behavior, which we will discuss in section 1.5.5.

1.5.3 Single Random Walker
More generally, a random walk describing a path that consists of a succession of ran-
dom steps can be defined on a more general discrete or continuous space other than
the vertices of a hypercube in section 1.5.2. The steady state is a uniform distribution
of the walker on each site, if the space is finite.

Random Walk on Zd

For a random walker starting from the origin, each step it has an equal probability of
choosing one direction and moving to its neighbor site. The sequence of displacement
{~Si} is both a martingale and a Markov chain. We may take the displacement of each
step { ~Xi} as random variables, the total displacement is then

~Sn =
n∑
i=1

~Xi.

As the direction of each step is random, the correlation between any two different
steps is 0: 〈

~Xi · ~Xj

〉
= δi,j ,
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where δi,j is the Kronecker delta. The mean-square distance is:

〈~S2
n〉=

n∑
i=1

n∑
j=1
〈 ~Xi · ~Xj〉= n. (1.5.9)

For more general random walks with randomized step size, the mean-square distance
behaves as:

〈~S(t)2〉 ∝ ta. (1.5.10)

If a= 1, this process is called a diffusion, which is the random walk in a discrete space
we just discussed. In the similar way, it is named a super-diffusion if a > 1 and a sub-
diffusion if a < 1. We will continue this discussion in the following, and it will be used
in section 5.3.

Random Walk on R

We generalize the random walk in section 1.5.3 to continuous time (t ∈ R) and space
(x ∈ Rn), with continuous probability distribution of the step ~X and the total dis-
placement ~S. According to the discussion in section 1.1.2, every step must follow a
stable distribution, if the process is homogeneous and infinitely divisible in time and
space. Such a stochastic process with continuous path is called stable process, with
zero-shift it is called Lévy process. The special case of α = 2 is a Wiener process, also
known in physics as a Brownian-motion process. [5]

From the discussion of partial sums in section 1.1.2, we see that for a Lévy process

〈S(t)2〉 ∝ t2/α. (1.5.11)

Hence, α= 2 corresponds to a diffusion process, α< 2 corresponds to a super-diffusion
process, and a sub-diffusion is not compatible with Lévy processes.

Pólya’s recurrence theorem states that the expected total times of returning to the
origin is infinite for a random walk in the discrete lattice, if the dimension of the
space is ≤ 2, and it is only finite otherwise [42]. For one-dimensional Lévy process,
similarly, the walker will return to the origin an infinite number of times if 1< α≤ 2,
but if α ≤ 1 it will only return a finite number of times. One may find its relation
to the law of large numbers in section 1.1.2. In chapter 5, we will study the return
times of random processes in fairly complicated models, for which we have to rely on
numerical simulations.

Random Walk on a loop

If the walker is restricted on a loop, such as ZL or a circle (S1) of length L, the mixing
time is proportional to Lα. (For example, α = 2 in the discrete case where the walker
only move to its neighbor site.)

We will use the special case of a continuous loop and α= 2 (Wiener’s process) for
example. The probability distribution after one step (which follows the distribution
N (0,σ2)) is

P (x) = 1√
2πσ

∞∑
k=−∞

e−
(x+kL)2

2σ2 = ϑ3(πx/L,e−2π2σ2/L2), (1.5.12)
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where

ϑ3(x,q) = 1 + 2
∞∑
n=1

qn
2 cos(2nx) (1.5.13)

is the Jacobi ϑ function. Agreeing well with its first-order approximation (see Fig. 3.6
(b)), the TVD decays exponentially with t = σ2. In this case, there is no the cut-off in
the mixing time.

The case of α < 2 (super-diffusive) would lead to a faster convergence in the simi-
lar calculation. However a random variable with an infinite variance may get uncon-
trollable in the evaluation of errors [5], which we try to avoid in simulations.

1.5.4 Multiple Random Walkers

The dynamics and analysis become much more complex with an increasing number
of random walkers, if a walker can block the others from passing through. In this
section we will start with the random walks on a discrete space (e.g. lattice), that an
occupied site does not allow a second walker (later we refer it as a “particle”) to get
in or get through, and then discuss the continuous case.

In the symmetric simple exclusion process (SEP), every particle attempts to move to
all its neighbor sites with equal probabilities at a given rate, and the movement is
accepted only if the neighbor site is empty, as illustrated in Fig. 1.2 (a). (One may
interpret as a graph with vertices occupied by two kinds of indistinguishable “balls”,
the black for the particles and the white for the “holes”. Each time the two balls on
the endpoints of an edge switch their positions.) The mixing time of SEP in a one-
dimensional lattice with L sites and n particles under periodic boundary condition
is L3 logn/(4π2) single steps, obtained by H. Lacoin in 2016 [43]; for a d-dimensional
lattice, the relaxation time is O(L3 logd) [44]. The difference between the mixing time
and the relaxation time is seen once again, which we will discuss in section 1.5.5.

a) b)

Figure 1.2: The dynamics of SEP and TASEP, the red arrow indicates time. (a) In SEP
dynamics, each time a random particle attempts to move to its neighbor site, and it is
accepted if it is empty, or rejected if it is occupied. (b) In TASEP dynamics, each time a
random particle attempts to move to its right-hand-side neighbor, and the acceptance
criterion is the same as SEP.
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If each particle has larger probabilities for moving in some directions than the others,
the process is called asymmetric simple exclusion process (ASEP) [45]; in the extreme
case that it only attempts to move in one direction (on each dimension), the process
is known as totally asymmetric simple exclusion process (TASEP) [46, 47], as shown in
Fig. 1.2 (b).

TASEP is usually studied without periodic boundary conditions, and with im-
posed flows through the lattice. It has very rich phase behavior, such as a transition
between an empty phase and a jammed phase [48]. Under periodic boundary condi-
tion, TASEP preserves the global-balance condition. It was proved by J. Baik and Z.
Liu in 2016 that the mixing time is O(L5/2) on one-dimensional periodic lattice [49].
These recent exact results of the mixing times of SEP and TASEP demonstrate that
irreversible Markov chains can gain an acceleration over reversible ones.

A variant of TASEP, namely the “lifted TASEP” [18] (the term “lift” will be ex-
plained in details in chapter 2), that the next active particle is determined by the last
move. This process is deterministic, but if the active particle is reset after a randomly
distributed period, the mixing time is O(n2 logn).

In a continuous space, a point-like walker can hardly block the others if the di-
mension is higher than one. For a Glauber dynamics of multiple walkers on a one-
dimensional interval (or circle), D. Randall and P. Winkler proved in 2005 that the
mixing time isO(n3 logn) on an interval [50], and betweenO(n3) andO(n3 logn) on a
circle [51] (simulations [18] considering the relaxation from a specific initial configu-
ration agree with the latter bound as also stated in chapter 3, though the TVD cannot
be directly calculated). The mixing times of these processes are similar to that of SEP
on a one-dimensional lattice.

These processes set up different classes of dynamics (see Table 3.1), which help us
to categorize the algorithms in chapter 3.

1.5.5 The Cut-off of Mixing Time

Based on the discussion in sections 1.5.2 and 1.5.4, we see that the scale of the mixing
time is not necessarily the same as that of the relaxation time (and the scale of mixing
time is always larger or equal).

The cut-off does not universally exist in the evolution of the TVD: in the random
walk of a single particle on a one-dimensional interval, the TVD exhibits an exponen-
tial decay with time, and the mixing time has the same scale as the relaxation time.

In some cases, we relate the cut-off behavior of the mixing time to the effect of
coupon-collector, as in the example of random walk on the vertices of a hypercube
section 1.5.2:

• Before n steps, a complete collection is impossible. The expectation value claims
a mixing time of n logn steps;

• After n logn steps, the stationary time has an exponentially decaying tail (P (t <
T1)∝ e−t/n, from Erdös and Rényi’s estimation [19]), indicating a relaxation time
of n.
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In more general cases, the cut-off in the mixing time is a result of the different sca-
lings of mixing time (starting from the least favorable case) and relaxation time (the
long-term exponential decay). For example in the dynamics of SEP, it is shown that
the cut-off does not exist in the evolution of TVD, if the initial configuration is well-
chosen [43].

Another interpretation of the reason of the cut-off is the high multiplicity of the
second largest eigenvalue (often in the order of the system size n) [38]. It is a general
property for the process with permutation symmetry, such as in the coupon-collecting
process, each coupon could be the last collected, leading to a multiplicity of n. We will
continue the discussion of coupon collection and mixing processes in section 3.2.2.

1.6 Statistical Physics and Monte Carlo Methods

So far in the current chapter we discussed the properties of Markov chains. As a direct
application, Markov-chain Monte Carlo is aimed at providing a good sampling of the
model in high dimensions.

Monte Carlo is an application of the weak law of large numbers, that the partial
average of a sample of independent and identically distributed random variables will
approach its expectation, as the sample size goes to infinity:

E(X) = lim
n→∞

1
n

n∑
i=1

Xi. (1.6.1)

In simulations, a random number generator is capable of generating a random (float)
number ξ uniformly distributed in (0,1]. For an arbitrary distribution, once the cumu-
lative distribution function F (x) and the probability density function f(x) are given,
one may establish a connection between ξ and x:

∫ 1

0
dξ =

∫ +∞

−∞
f(x)dx=

∫ 1

0
dF (x), (1.6.2)

that a given ξ ∈ (0,1] can be interpreted as F (x) and the corresponding x can be found.
For the expectation of a random variable g(x):

E[g(x)] =
∫ +∞

−∞
g(x)f(x)dx=

∫ 1

0
g(x)dF (x) =

∫ 1

0
g(F−1(ξ))dξ =

〈
g(F−1(ξ))

〉
ξ
.

(1.6.3)
According to the law of large numbers, multiple samples of g(F−1(ξ)) provide a good
evaluation of E[g(x)], and the error is determined by the variance of the probability
distribution and the number of samples.

Markov-chain Monte Carlo uses Markov chains in the sampling process to avoid
high rejection rate in a general phase space. In the following we will begin with
statistical physics (whose phase space may be complicated) and find its connection
with Markov process.
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1.6.1 Ensembles and Boltzmann Distribution
As mentioned in the beginning of this chapter, we introduced the probability theory
using the mathematical axiomatic system. In practice, there are two common inter-
pretations of probabilities: frequencies and degrees of beliefs. In the frequency inter-
pretation (the “frequentist”), the probability is the long run proportion of times that
an event happens in repetitions; in the degree-of-belief interpretation (the “Bayesian
schools”), the probability measures the observer’s strength of belief that an event hap-
pens [52]. For the evaluation of integrals, as partition functions and physical observ-
ables, the frequentist interpretation is appropriate, and the difference between these
two interpretations does not matter too much in the philosophy of statistical physics
(unless we talk about statistical inference).

In physics when we consider a system, an ensemble is an idealization consisting of
numerous virtual copies of such a system, considered all at once, and each of them
represents a possible state that the real system might be in. [53] In other words, an
ensemble is a probability distribution of the state of the system given a set of para-
meters.

Physical ensembles are categorized to several types with respect to the set of para-
meters. Inside a system of a fixed number of particlesN , a fixed volume V , and a fixed
total energy E, every possible state has an equal probability to show up. The total
number of states inside the system (as the cardinality of the state space) is denoted by
|Ω(N,V,E)|, and this type of distribution of states (or ensemble) is the micro-canonical
ensemble. The entropy of this ensemble S, as an extensive observable, is defined as:

S = kB log |Ω|, (1.6.4)

where kB is the Boltzmann constant. The state/phase space in physical models is
often given by the generalized coordinates and momenta with their metric, that Ω =
{ω : ω = (~x1, . . . ,~xN , ~p1, . . . , ~pN )}. In the continuous limit, each state occupies a volume
of hdN in the d-dimensional space, where h is the Planck constant.

We now think of a small system without degeneracy of energy (that each value of
energy only matches one state in the state space), connected to a huge heat reservoir.
The energy of the system can be exchanged until the equilibrium is achieved, then:

Ps(ε|Etotal) = Pres(Etotal− ε|Etotal).

On the right hand, the probability is proportional to the number of states, as the reser-
voir is approximated by a micro-canonical ensemble. For the probability distribution
of states of the small system, we have

Ps(E1|Etotal)
Ps(E2|Etotal)

= |Ωres(Etotal−E1)|
|Ωres(Etotal−E2)| ≈ exp

( 1
kB

[ 1
T

(E2−E1)
])
, (1.6.5)

where T = ∂E
∂S is the temperature of the whole system in equilibrium. Hence:

Ps(E1)
Ps(E2) = e−β(E1−E2), β = 1

KBT
. (1.6.6)

The canonical ensemble describes the distribution of the states of the system with a
group of parameters (N,V,T ), where N is the number of particles, V is the volume
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of the system and T is the temperature. In such ensembles, each state of energy E
has a weight of e−βE in its distribution. The partition function (generating function
in mathematics) of this ensemble is:

Z =
∑
Ω

e−βE =
∫
ρ(E)e−βEdE, (1.6.7)

where ρ(E) is the degeneracy/density of states of energy E. This is the Boltzmann
distribution, a description of the physical ensembles.

There are more ensembles obtained by changing the state parameter, such as the
grand-canonical ensemble with (µ,V,T ), and the ones with constant pressure instead of
volume. They all have similar forms of distribution. Using ensembles and Boltzmann
distribution, it becomes feasible to design a Markov chain in physical models.

1.6.2 Monte Carlo of Detailed Balance
In Markov-chain Monte Carlo, the procedure of algorithm usually goes as following:
a move from the old configuration x to a new one x′ is proposed, the acceptance
probability of this move P acc(x′→ x) is calculated, a random number is generated to
decide whether this move is accepted, and so on and so forth. The detailed-balance
condition provides detached equations between any two states, generally simplifying
the implementation.

As suggested in eq. (1.3.10), in all reversible dynamics:

π(x′)P acc(x′→ x) = π(x)P acc(x→ x′), (1.6.8)

whereP acc is the acceptance probability. Based on this equation, we have the Metropo-
lis dynamics and the Glauber dynamics.

Metropolis Dynamics

As the earliest proposed computational Monte Carlo algorithm, the Metropolis algo-
rithm inaugurates the age of numerical analysis in physics. It is the first construction
of general Markov chains with irreducibility for physical system under the detailed-
balance condition. [4]

In eq. (1.3.10), both sides of the equation stand for the probability flows in the
system, which drive the whole system towards its steady-state distribution. As P acc

can not be larger than 1, we have

P acc
Metro(x→ x′) = min

(
1, π(x′)
π(x)

)
, (1.6.9)

in order to maximize the probability flow between any two states. It is verified with
eq. (1.6.8).

A generalization of Metropolis algorithm was given by Hastings [54], by intro-
ducing a priori conditional probability of proposal. The equation is written as:

P acc
Metro(x→ x′) = min

(
1, π(x′)g(x|x′)
π(x)g(x′|x)

)
, (1.6.10)
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where g(x′|x) is the probability of proposing the new configuration x′ starting from
the configuration x, which follows the normalizing condition:

1 =
∫
g(x′|x)dx′. (1.6.11)

By choosing the proposing probability g(x′|x) and sampling the next configuration
x′ wisely, high rejection rate can be avoided in the simulations. This is known as
the Metropolis–Hastings algorithm. In the case of a symmetric proposal that g(x′|x) =
g(x|x′), we recover the normal Metropolis algorithm.

Glauber Dynamics

As an alternative of Metropolis Dynamics, Glauber Dynamics was first developed
by A. Barker in the study of a proton-electron plasma [55], and then widely used
in the mathematical study of Markov chains. It is also adapted by Hastings in the
improvement of Metropolis algorithm [54].

The idea of this dynamics is to sample directly in a subspace of Ω each time. The
subspace Ωi(x) generated from the old configuration x only has one degree of free-
dom on the dimension i:

Ωi(x) = {x′|x′j = xj , if j 6= i}. (1.6.12)

An integration in the subspace Ωi(x) will give the distribution of x′i, and a new con-
figuration x′ can be obtained from direct sampling in Ωi(x).

It is the extreme case of Hastings’ proposal: P acc = 1 if g(x′|x) is perfectly given by
direct sampling. The dynamics is reversible, as the probabilities of (x(1) = x,x(2) = x′)
and of (x(1) = x′,x(2) = x) are the same.

As the dynamics equilibrates the subspace ω(x,v), the algorithm is also known
as the “heat-bath algorithm” or the “Gibbs sampler”. This algorithm does not max-
imize the probability flows, but instead proposes the most reasonable choice of the
next step. In some special cases, this method has a simpler form than the Metropolis
algorithm. In the following we show an example of multiple balls attached to an elas-
tic string.
As illustrated in Fig. 1.3, the energy of a harmonic string (we take k= 1 for simplicity)
is:

E({Xi}) =
N∑
i=0

1
2(Xi+1−Xi)2, (1.6.13)

withX0 = 0,XN+1 =L fixed. In order to sample this model from a given configuration
~x= (x1, ...,xn), both algorithms propose a move on site i:

• In the Metropolis algorithm, a move x′i = xi+ δx is proposed (where δx follows
some symmetric distribution), and the new configuration is accepted with the
probability:

P acc
Metro(x→ x′) = min(1,e−

β
2 [(xi+1−x′i)

2−(xi+1−xi)2+(x′i−xi−1)2−(xi−xi+1)2])
= min(1,eβδx(xi+1+xi+1−2xi−δx)).

(1.6.14)
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• In the heat-bath algorithm, we know:

E(xi;xi−1,xi+1) = 1
2[(xi+1−xi)2 + (xi−xi−1)2]

= x2
i −xi(xi−1 +xi+1) + 1

2(x2
i−1 +x2

i+1),

p(xi|xi−1,xi+1) = e−βE(xi;xi−1,xi+1)

Zi

=
√
β

π
e−β(xi−

xi−1+xi+1
2 )2

.

(1.6.15)

Hence x′i ∼N (xi−1+xi+1
2 , 1

2β ) in the subspace.

(a)

(b)

Figure 1.3: Multiple balls attached to a harmonic chain. (a) In the Metropolis algo-
rithm, a movement is proposed with a uniform distribution (other distributions are
possible). It will be either accepted or rejected by comparing a random number and
the corresponding element in the transition matrix. (b) In the heat bath algorithm,
given the position of its neighbors, the next position of the ball follows a Gaussian
distribution, which enable directing sampling with no rejection.

This process is then totally rejection-free in sampling. However, it is not as effi-
cient as Hastings’ proposal, if the phase space is discrete, as there is a finite chance of
staying. Another difficulty comes from the one dimensional integration: it does not
always have such a simple form. As a result, Glauber dynamics is the most consid-
ered in mathematical discussions, while the Metropolis–Hastings algorithm is more
widely used in practice.

1.6.3 Dynamic Scaling law of Monte Carlo Methods
In section 1.5, we presented some temporal properties of Markov chains in simple
models. Physical models are usually more complex, especially when a phase tran-
sition is involved. For example, in the first-order phase transition (also known as dis-
continuous phase transition) concerning two coexisting phases and a latent heat (e.g.
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evaporation of water), the difficulty in the simulation is due to the interface tension
created by two separated phases, which leads to an energy barrier of E = σLD−1 (σ
is the interface tension). It will take O(eβσLD−1) time to get over the barrier on av-
erage. New approaches such as multi-canonical simulations have been developed to
overcome this problem. [56]

In some physical models, the spatial correlation decreases exponentially, charac-
terized by the correlation length ξ. [57] It concerns many other observables, such as
the magnetization, the susceptibility and the specific heat in spin systems. A signifi-
cant feature in the second-order phase transition is a divergent correlation length:

ξ ∝ |1− T

Tc
|−ν , (1.6.16)

where Tc is the transition temperature.
In the dynamical evolution, the system can be regarded as “almost independent”

blocks of the size ξd. The time needed to sample the whole system (counted in
sweeps) is almost the time needed to sample each small block. Then the relaxation
time is only dependent of ξ. However near the critical point:

trel ∝ ξz ∝
∣∣∣∣1− T

Tc

∣∣∣∣−νz , (1.6.17)

where z is the dynamical critical exponent. At the critical point, the divergent spatial
correlation will lead to a divergent temporal correlation, which is known as the critical
slowing down, while in numerical simulation, as the correlation length is restricted
by system size, we have

trel ∝ Lz. (1.6.18)

z is independent of the static exponents such as ν, but it is dependent of the dynamics,
as Metropolis and Glauber dynamics usually have z ≥ 2, and optimized algorithms
(such as the cluster algorithm introduced below) can have z ≈ 0.

Reversely and notably, many pure mathematical non-deterministic polynomial
time (known as “NP-complete”) problems (such as Boolean satisfiability problem)
also exhibit transition-like “phase boundary” induced by the input parameters, above
which the computing time increases from polynomial to exponential [58]. The con-
nection between phase transition and computational complexity is even more streng-
thened. Nevertheless, for some models, faster and more optimal methods are de-
signed based on their physical properties, as introduced in the following.

1.6.4 Non-local Algorithms

Critical slowing down in the second-order phase transition is often due to the diver-
ging correlation length, which makes the whole system an unbreakable cluster. One
idea is to evolve the whole cluster instead of single particles or sites, which leads to
the rise of non-local Monte Carlo methods. In the following we will introduce some
non-local methods applied in various systems.
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Spin Systems

In the two-dimensional Ising model, below the critical temperature Tc = 2
log(1+

√
2) [59],

the system is more likely to have non-zero magnetization. We consider a configura-
tion in a square lattice, with the spins in the left half all pointing upwards, and the
ones in the right half pointing downwards. This configuration should have a small
weight in the partition function at low temperature, however the spin near the inter-
face can hardly flip, since there are always more neighbors with the same orientation.
Local Monte Carlo methods will be trapped in this local minimum of energy.

A generalization of the Ising model is the Potts model, which has more than 2
states on each site. R. Swendsen and J. Wang proposed a non-local algorithm based
on the Fortuin-Kasteleyn scheme, which maps the Potts model to a percolation model
via a duality transformation of vertices and edges [60, 61]. The Swendsen-Wang al-
gorithm builds a cluster as percolated blocks, and flip the whole cluster each time.
As the size of the cluster grows as large as the correlation length, the time needed for
equilibrating is much reduced.

A more advanced algorithm for spin systems (even with continuous phase space)
was proposed by U. Wolff. [62] The idea begins with the selection of an axis of rotation
(indicated by a unit vector r) and the construction of a cluster C from a random site,
by accepting the adjacent sites with a certain probability (Pr(σx,σy), depending on
the axis and the spins). Once the construction is finished, a new configuration is
obtained by flipping the whole cluster along the axis. The transition matrix fulfills
the detailed-balance condition

W ({σx}→ {σ′x}|C,r)
W ({σ′x}→ {σx}|C,r) = π({σ′x})

π({σx})
, (1.6.19)

where {σx} and {σ′x} indicate the two configurations connected by the rotation of the
cluster c along r. The expansion of the left gives

W ({σx}→ {σ′x}|C,r)
W ({σ′x}→ {σx}|C,r) =

∏
{x,y}∈∂C

1−Pr(σx,σy)
1−Pr(σ′x,σy)

, (1.6.20)

while the right is

π({σ′x})
π({σx})

= e−βE({σ′x})

e−βE({σx})
=

∏
{x,y}∈∂C

e−β[V (σ′x,σy)−V (σx,σy)], (1.6.21)

where {x,y} ∈ ∂C indicates a two neighbor sites x,y with x inside the cluster C and
y outside. The detailed balance is perfectly matched by choosing

Pr(σx,σy) = max(0,1− eβ(V (σx,σy)−V (Rrσx,σy))), (1.6.22)

where Rr is the rotation operator.
In the case of O(n), where σx is an n-dimensional unit vector, the probability has

a simple form:
Pr(σx,σy) = max(0,1− eβσx·(1−Rr)σy). (1.6.23)

41



Chapter 1. Probability Theory and Markov Chains

This algorithm also works beyond the O(n) model, as long as only the closest two-
body interaction is considered on the lattice. For example in Villain’s model [63] (a
modified version of the two-dimensional XY model, which is mentioned and studied
in chapter 4), whose partition function is

Z = [
∏
i

∫ π

−π
dφi]

∏
〈i,j〉

∞∑
ni,j=∞

e−β(φi−φj−2πnij)2

=
( 1

2
√
πβ

)nd
[
∏
i

∫ π

−π
dφi]

∏
〈i,j〉

ϑ3(φi−φj2 ,e
− 1

4β ),
(1.6.24)

(φi ∈ R, ϑ3 is the Jacobi’s ϑ function in eq. (1.5.13)) the corresponding acceptance rate
is

Pr(φx,φy) = max(0,1−eβσx·(1−Rr)σy) = max(0,1− ϑ3((Rrφx−φy)/2,e−
1

4β )
ϑ3((φx−φy)/2,e−

1
4β )

). (1.6.25)

Wolff’s algorithm has a very small relaxation time (z ≤ 0.1 in XY model) [62],
which facilitates the evaluation of the critical behaviors of Kosterlitz-Thouless transi-
tion in chapter 4. The algorithm also works very well in Villain’s model [64], however
it does not show significant advantage over the other algorithms in spin glass system
[65].

Geometric Cluster Algorithms

The idea of rotation around a pivot, or reflection along an axis, is also applied in many
other systems, e.g, in the dimer model and in the hard-sphere model. These methods
are known as geometrical cluster algorithms, which also concern global movements.

a) b)

Figure 1.4: Dimer model as a Domino tiling problem. (a) The blue dimer initiates
the flipping in the original fully covered configuration. (b) After flipping the other
dimers (green) and forming a loop, the new configuration is obtained.

The dimer model has attracted people’s attention for a long time. In this model, every
site is paired with only one of its neighbor site, forming a dimer. Via a simple duality
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of vertices and blocks, the dimer model is equivalent to the Domino tiling problem
in combinatorics, which uses 1× 2 and 2× 1 Domino cards to cover an area with-
out overlapping (see Fig. 1.4). The partition function is analytically calculated when
the configuration is fully covered by the dimers [66]. In limit of few dopings, the
sampling using local Monte Carlo meets a high rejection rate, while the geometrical
cluster algorithm [67] works well. It performs as following:

• One of the diagonals (it will be generalized in periodic boundary condition) of
the lattice is chosen as the axis, and the initial dimer is flipped with respect to
the diagonal;

• If it overlaps with other dimers, flip the dimer overlapped with respect to the
diagonal again, the process proceeds until no overlapping.

A similar strategy is implemented in hard sphere systems, with the rotation around a
pivot [68]. For a given pivot and an initially selected sphere, the sphere is displaced to
the symmetric position of the pivot. If it overlaps with other spheres, the overlapped
spheres are displaced in the similar way, until there is no more overlapping. This
method is useful in the simulation of polydisperse models [69].

Nevertheless, the methods based on the characteristics and symmetries of the sys-
tems may not apply to the all the cases, such as the glass systems. With the develop-
ment of technology and hardware, new algorithms such as parallel tempering [70],
and Monte Carlo with unsupervised machine learning [71] are invented to speed up
the simulations and solve the physical problems.

1.7 Conclusion
In this chapter, we reviewed some aspects of the probability theory and the the-
ory of Markov chains, analyzed the condition of convergence and time scales of a
Markov chain. We discussed a few examples of Markov chains related to the coupon-
collector problem, which helps explain the difference between the term “relaxation
time” and “mixing time”, and the cut-off phenomenon in the mixing time. Based on
the detailed-balance condition, we presented several reversible Markov-chain Monte
Carlo methods such as the Metropolis-Hastings algorithm and the heat-bath algo-
rithm, that are applied in many physical systems, and some optimized non-local
methods such as Wolff’s cluster algorithm to overcome the limit of phase transitions.
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Chapter 2

Irreversible Markov Chains and the
Factorized Metropolis Filter

In chapter 1 we discussed algorithms based on the detailed-balance condition: from
local algorithms to cluster algorithms, the modern Markov chains have much acceler-
ated the speed of sampling and to overcome the critical limit of the physical system.

Irreversible Markov chains, based on a weaker but more general global-balance
condition, are able to mix the system faster than reversible ones (e.g. the circular
flow construction method in section 2.1). Although global-balance algorithms were
used in the physics literature (such as sequential-sweep updates for particle systems
and spin models), a general irreversible algorithm with fast-mixing properties hasn’t
shown up for long, until the pioneering work using “lifting schemes” proposed by
P. Diaconis et al [72]. In this work, a standard method of irreversible Markov Chain
construction came to be known.

In the present chapter, we introduce the concept of“lifting schemes”, generalize it
to multi-dimensional and multi-particle systems, and eventually, introduce the “fac-
torized Metropolis filter” for Boltzmann sampling.

2.1 General Irreversible Markov Chains
According to eq. (1.3.3), an aperiodic irreducible transition matrix T of a discrete-time
Markov chain satisfies the global-balance condition:

π = πT, or equivalently,

π(x) =
∑
x′

π(x′)T (x′→ x)≡Fx, (2.1.1)

where Fx is the total probability flow into the state x (including the portion from
itself). It can be split into two contributions, namely the “accepted” flow from other
states x′ 6= x

A(x′→ x) = π(x′)T (x′→ x), (2.1.2)

and the “rejected” flow from x itself

R(x) = π(x)T (x→ x). (2.1.3)
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The rejected flow comes either from the rejection of an attempted move (to other
states), or from the probability it proposes to stay. As staying will not help the evolu-
tion of the system,R(x) is usually minimized in Monte Carlo, such as the Metropolis
algorithm in section 1.6.2 (sometimes we keep it in a considerably small value to break
the periodicity). On the other hand, the outgoing probability flows should be as large
as possible.

The detailed-balance condition is given by

A(x′→ x) =A(x→ x′). (2.1.4)

In much of the work of Markov-chain Monte Carlo we have discussed up to now, the
design of algorithms consists in checking for any pair of states x and x′ that eq. (2.1.4)
is satisfied. In contrast, to satisfy the global-balance condition, one has to check that
the sum of the rejected and accepted flow into x equals π(x) (while the sum of the out-
going flow is guaranteed by the normalization of marginal distribution), as implied
in eq. (2.1.1). As the most basic equation of global balance, eq. (2.1.1) will be used
throughout the thesis, in the examination of the validity of an irreversible Markov
chain.

Sequential-sweep Updates

As we mention in 1.5.1, the effect of “coupon-collector” can lead to a (logn) factor
in the mixing time. One may naturally think of applying the Metropolis algorithm
sequentially on each particle in each sweep, instead of randomly picking. This leads
to the simplest irreversible Markov chain in Monte Carlo sampling.

This algorithm has a long history: it was discussed by N. Metropolis et al. in 1953,
as they proposed the reversible Metropolis algorithm for the first time [4]. Compared
to the reversible one it has a different autocorrelation time, nevertheless, this method
does not reduce the mixing time largely, as the difference is only up to a constant
factor [73].

Though not very effective, it is an example showing that steady-state distribution
is reachable without the detailed-balance condition. The algorithms with “swap”,
which we will introduce in section 3.2.3 and 3.3.2, also use a similar idea in the opti-
mization.

Probability Flow Construction

Reversible Markov chains usually lead to a “diffusion” in the graph of states, while
a “propagation” possibly transmits the information about the stationary probability
distribution much faster. It gives rise to the idea of creating a non-zero macroscopic
net flow inside the graph associated to the state space.

One basic idea of acceleration is to minimize the probability of staying and reject-
ing. If we construct several loops with optimal flow in the exploration of phase space,
the algorithm may have a better convergence. The problem is then transformed into
a decomposition of the overall probability flow into multiple circular flows. For the
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circular flows with the weight {fi}, we have:

π(x) = Fx =
∑
i

n(i,x)fi, (2.1.5)

where n(i,x) is the number of times that the probability flow i crosses the state x. An
example is showed in Fig. 2.1, which satisfies the global-balance condition.

Furthermore, to satisfy irreducibility, there exists at least one loop connecting one
state from a side to the other in any bipartitions of the state space; as for aperiodicity,
one may introduce the probability of a “staying” proposal.

However, this algorithm is not universal: (1) Before the construction we need to
know every detailed state and manipulate its connections, which is no less work than
a direct integral; (2) The probability of staying is tricky to choose. We will try to
solve the first question by the construction of a general scheme in the present chapter.
The second one is equivalent to the “optimal stopping times” problem and will be
discussed in chapter 3.

= + +

(a)

(b)

Figure 2.1: One construction of probability flows in the sampling of a particle on a 3×
3 square lattice. (a) The total probability flow is decomposed into four loops, and each
of them (green, red and blue) carries a weight fi = 1/2 (and they do not compensate
each other). (b) The actual total probability flow is obtained by summing all the loops
(which indicates the element in the transition matrix). The Markov chain satisfies
the global balance, with the uniform steady-state distribution. The irreducibility is
guaranteed by the blue and red flows, and the periodicity is broken by the green
“rejection” (or “staying”) flow.

2.2 Lifting Schemes
The lifting scheme based on global balance is proposed for general systems to over-
come the limitations of the probability-flow construction in section 2.1. The key of
the scheme is building up multiple replicas, and constructing non-zero net circular
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probability flows inside each of them. We will start with a simple example of a single
random walker, following the work of P. Diaconis et al.[72].

2.2.1 Single One-dimensional Random Walker
For a single random walker on a bounded one-dimensional lattice R, we may use
the trick as shown in the Fig. 2.2, by “gluing” the original lattice with its replica to
construct a circle. The new periodic lattice R′ consists of R′1 and R′2.

1 2 L-1 L...

1' 2' L-1' L'...

Figure 2.2: The “gluing” trick that convert a bounded one-dimensional lattice R to a
periodic one R′. A random walk of a single walker in R′ is surjected onto a single-
particle random walk in R.

For the steady-state distribution on each site of R, we have

π(x) = π′1(x) +π′2(x), (2.2.1)

where π(x) is the steady-state probability of state x in R, π′i(x) is the steady-state
probability in R′i ⊂R′. One may check that the “projected” random walk in R′ is also
a random walk in R. For bounded systems, the “gluing trick” can be applied to create
a “loop” with a non-zero net probability flow.

Here, without loss of universality, we will use a periodic one-dimensional lattice
of size L (Ω = ZL) to simplify the discussion. (However, in the case of multiple ran-
dom walkers, the mixing on a bounded interval is very different from that on a circle
[50, 51].) As shown in Fig. 2.3 (a), we consider a uniform steady distribution on ZL:

π(x) = 1
L
,x= 1,2, . . . ,L.

For a random walk, at each time step the walker has a probability of one half to move
to the left or to the right. The transition matrix is:

T (x→ y) =
{

0.5 if y = x−1,
0.5 if y = x+ 1.

(2.2.2)

When L is odd, the relaxation time of the dynamics is O(L2), while the transition
matrix is periodic if L is even (the periodicity can be broken with a “staying” proba-
bility).

In the lifting scheme (see Fig. 2.3 (b)), the state space is extended to two replicas.
In one of them (denoted by the replica σ =−1), the walker preferentially moves to its
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left, while in the other (denoted by σ = +1) it moves to the right symmetrically. The
transition matrix is:

T ({x,σ1}→ {y,σ2}) =


1−α if y = x+σ1,σ1 = σ2,

α if y = x,σ1 6= σ2

0 other cases,

(2.2.3)

where α ∈ [0,1]. In this case, the detailed-balance condition no longer holds true:
inside the lifting scheme, the movement {x,σ} → {x+ σ,σ} is not reversible. The
irreversibility acts as a persistence of the motion in the original physical model.

a) b)

Figure 2.3: Random walk of a single particle on the one-dimensional lattice with pe-
riodic boundary. (a) In the normal scheme, the particle (green) moves either to the
left or to the right, with equal probability. This process mixes in O(L2) moves. (b)
In the lifted scheme, there are two replicas of the original lattice. The walker moves
anti-clockwisely in the red replica, or clockwisely in the blue replica (indicated by the
round solid arrows), with the same probability of (1−α), and hops to the correspond-
ing site in the other replica with the probability of α (indicated by the dashed arrows
between the replicas).

By choosing α = 0, although the internal flow is maximized, the dynamics is
purely deterministic and periodic; if α = 1/2, it leads to a random walk as discussed
before. In the case where α= 1/L, the relaxation time and mixing time of this dynam-
ics both are O(L) [72], which exhibits a propagative behavior in mixing rather than
diffusive.

Continuous Limit

In the limit L→∞, we think of a continuous rescaled interval of [0,1) instead of
ZL. When α = 1/L, the distance ` between 2 turnings (which is also called a “chain
length”) follows an exponential distribution:

p(`) = e−`, (2.2.4)

and the number of turning points during a period follows a Poisson distribution with
λ = 1. In this process the mixing time (proportional to the total distance) of O(1) is
somehow self-evident, in agreement with the mixing time ofO(L) in the discrete case.
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Nevertheless, an exponentially distributed “chain length” l is not the whole story.
Rather than moving back and forth, a walker moving only forward at a randomized
stopping time will bring similar dynamics, which we will explain in section 3.2.

Non-uniform Random Walk

This algorithm also applies to non-uniform steady-state distribution π, by introducing
a priori acceptance probabilities.

Given the stationary distribution π(x),x∈ZL, the transition matrix of the Metropo-
lis algorithm is:

T (x→ y) =


1
2 min(1, π(x−1)

π(x) ) if y = x−1,
1
2 min(1, π(x+1)

π(x) ) if y = x+ 1,
1−T (x→ x−1)−T (x→ x+ 1) if y = x.

(2.2.5)

In the lifting scheme, any rejection will trigger a hopping between replicas:

T ({x,σ1}→ {y,σ2}) =


(1−α)min(1, π(x+σ1)

π(x) ) if y = x+σ1,σ1 = σ2,

1− (1−α)min(1, π(x+σ1)
π(x) ) if y = x,σ1 6= σ2,

0 other cases,

(2.2.6)

and the global-balance condition is once again preserved.
The optimal α ∝ 1

L works in the uniform case, while in this non-uniform case, its
value depends on the explicit form of the steady-state distribution. We will discuss
the limit of the efficiency in non-uniform case in section 2.4.2.

So far we have discussed the “lifting scheme” on a one-dimensional lattice, where
the original model is expanded to two replicas with a “lifting variable” (σ). The
probability-flow circuits are constructed on the replicas, with a certain probability
to “lift” from one to the other. In the later models, the concept of lifting variable is
much generalized, with more replicas built for fast mixing.

2.2.2 Lifting Schemes with Multiple Variables
For a single-particle random walk on a more general strongly connected graph than
the one-dimensional lattice, multiple lifting variables can be introduced depending
on the dimension of the graph.

The lifting schemes and the probability-flow construction in section 2.1 share some
similarities in dividing the flows. More specifically, in lifting schemes, the states are
weakly connected following eq. (2.1.1) inside each replica (with the set of lifting vari-
ables fixed), and each replica has a similar structure. The sum of probability flows in
all the replicas (some of them will compensate) in the one-dimensional single-particle
random walk in section 2.2.1 is

Ã(x′→ x) =
∑
σ

πσ(x′)Tσ(x′→ x), (2.2.7)
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which preserves the detailed-balance condition in eq. (2.1.4), ensuring the conformity
with the conventional Monte Carlo method. (In more general cases, eq. (2.2.7) is not
necessary. In section 2.4.1, as well as in chapter 3, 4 and 5, the lifting schemes we
propose only concern the global balance.)

Lifting schemes for random walks can be generalized to multiple dimensions with
multiple lifting variables. For example, we may use 2×d lifting variables/replicas for
a d-dimensional lattice of size Ld, with the lifting scheme [74]. The mixing in each di-
mension takes a period ofO(L), and the total mixing time is expected to beO(Ld logd)
(with random-hopping between d pairs of replicas). By hopping sequentially in all the
dimensions, the mixing time will be reduced to O(Ld). In chapter 3 we will discuss
the constructions in more detail.

2.3 Lifting Scheme in Multi-particle Systems

The lifting scheme discussed in section 2.2 implies a faster dynamics of exploration
of phase space. For more general physical systems concerning interactions and exter-
nal fields, with the Boltzmann distribution as the stationary distribution, algorithms
with lifting schemes are proposed [75], but an effective acceleration requires optimal
connections of different schemes.

In the following, we will introduce the event-chain algorithm [9, 76] and a general
factorized Metropolis filter [10, 11, 74] for the systems of multiple interacting particles.

2.3.1 Lifting Variable: Active Particle

We will continue with sampling of N particles on a one-dimensional lattice of L sites
under periodic boundary condition. As in each replica a single particle moves in a sin-
gle direction, we need at least 2N replicas to include all possible active particles and
directions. In the following discussion, two lifting variables are denoted by {a,σ},
where a= 1,2, . . . ,N identifies the active particle, and σ =±1 indicates the direction.

In section 2.2, the hopping between replicas is triggered either spontaneously (as
in the uniform case) or by rejection (as in the non-uniform case). In the present model,
the blocking by the particle in front will also trigger a hopping. However, if such a
hopping only results in inverting the moving direction (σ) of the same active particle
a as we discussed before, the mixing process will be confined to the interval created
by two neighboring particles, and finally reduces to a local Glauber dynamics.

In expectation of a fast-mixing dynamics, we propose a scheme where the rejection
triggers a “lifting” of the parameter a instead of σ (in other words, the one who rejects
is activated in the next step). The Monte Carlo method based on this scheme, also
known as “event-chain” Monte Carlo, was first used in the two-dimensional hard-
disk model [9, 76], which shows advantage over the Metropolis method, and helps
identify the liquid-hexatic phase transition [13] (as we will discuss in section 3.3.1).

The transition matrix consists of a shuffling process of the lifting variables {a,σ},
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and a propagative sampling as a generalization of the single-particle model:

Tshuffle({x;a1,σ1}→ {x;a2,σ2}) = 1
2n for σ1,σ2 =±1,and a1,a2 = 1,2, . . . ,N ;

Tpropagate({x;a1,σ}→ {y;a2,σ}) =
1 if xa1+σ 6= xa1 +σ,a1 = a2,ya1 = xa1 +σ,yi = xi|i 6=a1 ,

1 if xa1+σ = xa1 +σ,a1 +σ = a2,x = y,
0 if others.

T = αTshuffle + (1−α)Tpropagate.

(2.3.1)

In eq. (2.3.1), the first case of Tpropagate indicates no rejection, in which the active
particle continues moving in the same direction; the second case implies that the next
particle is activated if this move is rejected, as illustrated in Fig. 2.4. Tshuffle can be
modified in many ways as long as it preserves the global-balance condition (e.g. σ
and a can be treated separately, or the lifting variables (σ,a) must change their values
after a shuffle). This method also applies to the hard-sphere system in continuous
space (see section 3.2.2), and it can be proved that this dynamics has a mixing time of
O(NL logN) by choosing α= 1

L .
The scheme can be generalized for the non-uniform probability distribution as in

section 2.2.1, and eventually for a continuous phase space as we will discuss below.

2.3.2 Factorized Metropolis Filter
For a system with other than the hard-core interactions, the idea of lifting also helps
in the mixing process. As an important distinction from the hard-sphere problem,
in general physical systems each valid configuration does not share the same weight
in the steady-state distribution. K. S. Turitsyn et al. made an early effort in the ir-
reversible sampling of an Ising model (we will introduce this model in section 4.1.1)
based on the Metropolis-Hasting-Glauber method, by a lifting on the parameter σ
[75]. However, as we discussed in section 2.3.1, changing directions σ alone fails to
improve mixing times; the active particle a is also a key to the faster Monte Carlo
dynamics.

In order to achieve the Boltzmann distribution, a similar method named "factor-
ized Metropolis filter" [10, 11, 74], sharing similarities with the Metropolis algorithm
in detailed balance is proposed. For a system of interacting particles, the energy re-
lated to one particle i is denoted by

Ei =
∑
j 6=i

Eij .

According to eq. (1.6.6) and eq. (1.6.9), for a proposed move, the Metropolis filter
accepts the move with the probability

P acc
Metro(δEi) = min(1,e−β(δEi)) = min

1,
∏
j 6=i

e−β(δEij)

 , (2.3.2)
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2.3. Lifting Scheme in Multi-particle Systems

Figure 2.4: Random walk of N particles on the one-dimensional lattice under peri-
odic boundary condition ZL (not drawn explicitly). The scheme has 2N groups of
replicas, corresponding to the directions (the red for moving forward and the blue for
moving backward) and the active particles (the replicas with the same active particle
are grouped by columns). In each step, the state will either (1) reshuffle the active par-
ticle (as the states inside the green boxes) and the direction (indicated by the dashed
arrows), with a probability of α, or (2) move the active particle forward or trigger
the one in front to be the new active one (indicated by the solid arrows, which is the
time-line), with a probability of 1−α. Global balance is ensured in this scheme, and
this system mixes in O(NL logN) moves if α= 1/L.

where δE indicates the change of energy.
The “factorized Metropolis filter” provides another rate of acceptance:

P acc
FacMetro({δEij}) =

∏
j 6=i

min(1,e−β(δEij)) =
∏
j 6=i

P acc
Metro(δEij)< P acc

Metro(δEi), (2.3.3)

where the detailed-balance condition eq. (1.6.8) is satisfied for a symmetrically pro-
posed move. Since the Metropolis algorithm maximizes the probability flow between
different configurations, this “factorized version” performs no better in reversible
Markov chains; the importance of factorization comes along with the option of “lift-
ing”.

The “event-chain” algorithm using the factorized Metropolis filter is described as
follows (the current active particle a= i):

• A move of particle i is proposed, the factorized acceptance rate P acc
Metro(δEij) is

calculated with respect to all the other particles, and a group of random num-
bers {ηj ∼ unif[0,1)} is generated to determine the acceptance.
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• If
ηj ≤ P acc

Metro(δEij), ∀j,
then this move is accepted; if there exists only one j such that

ηj > P acc
Metro(δEij),

then this move is rejected, and j is the active particle in the next move.

We try to avoid multiple rejections at the same time, which means the step size should
be small enough.

We consider the transition matrix of the event-chain algorithm, in the limit of an
infinitesimal step ε, where

e−β(δEij(ε)) ∼ 1−βδEij(ε).

(In the limit of matrix exponential, only the linear term determines the long-term
properties, as shown in eq. (1.2.15).) For a general d- dimensional system of N parti-
cles, we need at least 2dN replicas. The transition matrix again consists of a shuffling
matrix and a propagating matrix:

Tshuffle({x;σ1,a1}→ {x;σ2,a2}) = 1
2Nd,∀σ2 ∈ {±e1,±e2, . . . ,±ed},∀a2 ∈ {1,2, . . . ,N};

T εpropagate({x;σ,a1}→ {y;σ,a2});

=


1−β∑j max[0, δEa1j(ε)] if a2 = a1,ya1 = xa1 +σε,yi = xi|i 6=a1 ,

βmax[0, δEa1a2(ε)] if a2 6= a1,y = x,
0 if others;

Tε = α(ε)Tshuffle + [1−α(ε)]Tε
propagate.

(2.3.4)
An optimalα(ε)∼ ε

L is estimated from previous discussions. This infinitesimal scheme
preserves the conservation of probability and the global balance in the limit ε→ 0, but
it is somehow difficult to implement directly.

With the theory of the infinitesimal movement, we can then directly sample the
distance in each step. Following E. Peters and G. de With [77], we define the cumula-
tive positive energy:

E+
ij (xi−xj) =

∫ xi−xj

r0
max(0, dEij(r)dr )dr, (2.3.5)

where (xi,xj) are the positions of the particle pair (i, j) (in one dimension), r0 is a
constant. The factorized Metropolis filter is then written as:

P acc
FacMetro(xi→ xi+ δxi) =

∏
j 6=i

e−β(E
+
ij(xi+δxi−xj)−E

+
ij(xi−xj)). (2.3.6)

Inside each factor, we can directly sample ∆E+
ij , and then find δx.

1 = β

∫ ∞
0

e−β∆E+d∆E+ = 1
β

∫ ∞
0

e−β∆E+ dE+

dx dx. (2.3.7)
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As dE+

dx is non-negative, E+(x) is monotonically non-decreasing, there exists an in-
verse function of E+(x)

f(E) = max{x|E+(x) = E}.
Hence, using the idea of Bortz-Kalos-Lebowitz (BKL) algorithm [78], the event chain
method in the continuous scheme is described as follows:

• In the current replica, the active particle i moves in the direction σ. For each
other particle j that interacts with i, an energy fluctuation ξj is generated from
the random number generator

ξj =− 1
β

logran(0,1], (2.3.8)

and its corresponds to a proposed move

δxi|j = f(Eij + ξj)−f(Eij). (2.3.9)

After the particle i goes through the shortest displacement δxi|k, the first rejec-
tion is triggered, and the next active particle k is determined (the probability of
triggering multiple particles simultaneously is extreme small):

δxi|k = min{δxi|j ,∀j 6= i}. (2.3.10)

This process continues and forms one “chain”.

• Each “chain length” (total displacement of all particles) follows an exponential
distribution. Once it reaches the limit, the particle stops (before a new event is
triggered), and the lifting parameters (the active particle a and the direction σ)
are shuffled.

This dynamics is named as “event-chain” algorithm as the rejection events form a
chain in the simulation. In chapter 4 an illustration of the algorithm in the XY model
is shown (Fig. 4.1).

2.4 Global Balance in Lifting and Stopping Times
In the algorithms of section 2.2 and 2.3, replicas are shuffled with a certain probability
at each step. This leads to a Poisson process in the continuous limit. The transition
matrix of this procedure is Tshuffle in eqs (2.3.1) and (2.3.4), which obeys the global-
balance condition of eq. (2.1.1), and so does the other transition matrix Tpropagate.

For any two transition matrices T1 and T2 following the global-balance condi-
tion in eq. (2.1.1), their normalized linear combinations and multiplications as new
transition matrices, also preserve the same global-balance condition:

π = π[αT1 + (1−α)T2], where α ∈ (0,1),
π = πT1T2.

(2.4.1)

Irreducibility and aperiodicity are not specified in the equations: even the identity
matrix 1 can be taken as a transition matrix, though it does not help in the mixing.
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We consider a dynamics:

π(
∑

ti) = π(0)Tt1
propagateTshuffleTt2

propagateTshuffle . . . (2.4.2)

where {ti} is a sequence of stopping times that determines the “chain length” in the
event-chain algorithm, following some configuration-independent distribution (e.g.
the exponential distribution in all previous lifting schemes). For certain distributions
of stopping times, the mixing process could be even faster with respect to the system,
which we will present in section 3.2.1. The dynamics also applies to discrete time
evolution, which we will discuss in chapter 3.

2.4.1 Weaker Condition: Infinite Chain
In the model of multiple one-dimensional random walkers, the transition matrix
Tpropagate preserves the global balance condition. However, it alone does not gua-
rantee the irreducibility: it may only explore a one-dimensional subspace of Ω. The
resampling of directions and active particles (Tshuffle) provides better decorrelation
and necessarily preserves the irreducibility.

In some special periodic systems with one-dimensional continuous random vari-
ables where the Tpropagate is irreducible, the event chain is able to lead the system to
its steady-state distribution in an infinite run. This applies to the harmonic model, the
XY model [11] and many others, which we will show in chapter 4 and 5.

Nevertheless, there are examples that the “infinite chain” does not converge to the
stationary distribution: in the one-dimensional hard-sphere model, the infinite event-
chain will result in a Newtonian movement with elastic collisions, and the distance
between particles is kept unchanged (as shown in section 3.1.3). With the “factor
field” technique introduced in chapter 5, the irreducibility of an infinite chain is pre-
served in such systems.

2.4.2 Speed Limit of Irreversible Markov Chains
In order to achieve fast mixing, irreversible Markov chains including the probability-
flow construction and lifting scheme, aim for the maximization of the net probability
flow in all the states, or the “conductance”/“bottleneck ratio” of the graph associated
to the state space 1 .
For a non-trivial subset S ⊂Ω, the stationary probability of S is defined as the “capac-
ity”:

π(S) =
∑
i∈S

πi.

With the transition matrix T, the “ergodic flow” out of S (or the “edge measure” from
S to S̄) is defined as

F (S)≡
∑

i∈S,j∈S̄

πiTij ,

1In this section we refer to Approximate Counting, Uniform Generation and Rapidly Mixing by A. Sinclair
& M. Jerrum [79] and Markov Chains and Mixing Times by D. Levin, Y. Peres & E. Wilmer [35, section 7.2].
The notations of the same term are sometimes different in these two materials, we will mention both of
them in the text.
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where S̄ is the complement set of S. It is self-evident that F (S) = F (S̄). The “conduc-
tance”/“bottleneck ratio” of S is defined as

Φ(S)≡ F (S)/π(S),

and the global conductance/bottleneck ratio of the Markov chain (denoted by Φ) is
the minimum Φ(S) of all possible S, which determines the slowest probability-flow
exchange between all the states:

Φ≡ min
S∈E(Ω), π(S)≤1/2

Φ(S).

This is the term we tried to maximize throughout this chapter with the lifting schemes,
and it is closely related to the relaxation and mixing times of Markov chains. It is
shown that

1−2Φ≤ λ∗ < 1− Φ2

2 ,

for reversible Markov chains [80], and

tmix(1/4)≥ 1
4Φ ,

for general Markov chains [35].
The global flow is limited by the conductance, as well as the smallest capacity of

system
π0 = min

x∈Ω
{π(x)}.

The upper limit of mixing time in a Markov chain is bounded to a factor ofO( 1
π0

) [80].
One example showing the importance of conductance is a “bottleneck” in a graph

(as in Fig. 2.5 (a)): due to the probability-flow limit of the “bottleneck”, any local
Markov chain will encounter a slowing down, which is not solved by the lifting
scheme.

...

...

a) b)

Figure 2.5: (a) An illustration of a “bottleneck” configuration. The thin path in be-
tween constrains the conductance of the graph. (b) Lifting in a non-uniform one-
dimensional lattice Z2L, described by eq. (2.4.3). The odd sites (x = 1,3, . . . ) play the
roles of bottlenecks, and the main flows (red) are restricted to local circuits (hopping
between replicas on the same site), resulting in a non-directional diffusive walk.
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In an extreme case of the random walk on a graph with non-uniform weight as men-
tioned in section 2.2.1, a one-dimensional lattice Z2L has the following steady state:

π(x) =
{ 1
L2 for x= 1,3, . . . ,
L−1
L2 for x= 2,4, . . . .

(2.4.3)

The probability flow will be mostly trapped on the sites x = 2,4, . . . in the lifting
scheme, and the lifted Markov chain will once again fall into a diffusive process (see
Fig. 2.5 (b)).

Though these types of limits can not be overcome with local Markov chains, a
well-designed lifting scheme with an optimal stopping rule has a general advantage
over the conventional reversible methods [81]. In the following chapters of the thesis,
we will continue to explore such algorithms .

2.5 Conclusion
In the present chapter we discussed the algorithms based on the global-balance condi-
tion, and presented lifting schemes which construct probability-flow circuits in state
space by introducing a set of lifting variables. Such a scheme has a mixing time of
O(L) in the one-dimensional single-particle random walk, and it is generalized to the
“event-chain” algorithm in the multi-dimensional systems of multiple particles with
interaction. The “factorized Metropolis filter” applied in the event-chain algorithm
can accelerate the mixing process with a Boltzmann stationary distribution. In the
end, we discussed the role of global conductance in Markov chains and its connec-
tion to lifting schemes.

In the remainder of the thesis (chapters 3, 4 and 5), we will apply the lifting scheme
and the event-chain algorithm presented in this chapter, to hard-sphere systems, spin
systems and soft-sphere systems, in order to study their mixing and dynamical scal-
ing properties.
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Chapter 3

Irreversible Markov Chains in
Hard-sphere Models

In chapter 2 we introduced the “lifting” concept to one-dimensional sampling and to
the Metropolis algorithm for canonical ensembles, and presented the “event-chain”
algorithm for general systems. This method has been widely applied to physical sys-
tems, although there is no exact description of its mixing and equilibration time scales.

In this chapter, we will present an exact calculation of the mixing time of the event-
chain Monte Carlo algorithm with special stopping times in the one-dimensional
hard-sphere model. Related results also help characterize mixing properties of the
lifted Metropolis algorithm and improve its speed. It leads us to a new variant of the
event-chain algorithm as well, which is applicable to higher-dimensional hard-sphere
models.

3.1 Global Balance in One-dimensional Hard Disks
We begin with a one-dimensional mono-disperse hard-sphere system of size L un-
der periodic boundary condition with the N spheres of diameter d, as illustrated in
Fig. 3.1 (a). In this dynamics no hopping over the neighbors is allowed (the order of
spheres is kept unchanged). The positions of the centers of the spheres, {x1, . . . ,xN}
in one configuration are N ordered random variables.

A mapping exists between the model of hard spheres on a circle of length L and
the model of the same number of points on a smaller circle of size L̃ = (L−Nd)
(see Fig. 3.1 (b)). There are (N − 1) degrees of freedom in this model other than a
global shift. We may choose the free distance between 2 neighboring spheres {δi, i=
1, . . . ,N −1} to describe the configuration, with the notation

δi = xi−xi−1−d, (3.1.1)

which also corresponds to the distance between the particle i−1 and i.
Assuming that the relaxation from a compact configuration (e.g. δi = 0, i= 1, . . . ,N−

1) indicates the mixing time of a local algorithm, we introduce ui = ∑N/2
i=1 δi as the

“half-system distance” (its probability distribution is discussed in section 3.2.2). In
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this chapter, the numerical evaluations of the so-defined mixing times are provided
with the evaluation of half-system distance.

(a) (b)

Figure 3.1: One-dimensional hard-sphere models with periodic boundary conditions.
(a): N spheres of diameter d on a ring of length L. (b): N volume-less particles on a
ring of length L̃= (L−Nd). The dynamics are equivalent for both representations, as
long as no hopping is allowed. 2

The dynamics based on the global-balance condition concerns the conservative
probability flows in the steady-state distribution, as indicated in section 2.1 (eq. (2.1.1)
to 2.1.3). In hard-sphere system, every valid configuration (without overlapping) has
equal statistical weight, and any invalid configuration has the probability of zero. We
omit the normalization weight and take the probability of each valid configuration as

π({δj}) = 1,

in the steady-state distribution, and then focus on the relation between the transition
matrix and the probability flows. 3

We consider the probability flow F({δj}) into a specific configuration {δj},

F({δj}) =
N∑
i=1

P(a= i)Fi({δj}),
N∑
i=1

P(a= i) = 1, (3.1.2)

where a is the label of the active sphere (we use the same notation as in section 2.2),
and Fi({δj}) stands for the probability flow coming from an attempted move of the
active sphere i to this configuration (on the condition a = i). (In the following, we
omit the notation of {δj}when it cannot be confused with other configurations.)

With the notations of accepted and rejected flows in eqs (2.1.2) and (2.1.3), each Fi
can be split into four parts, namely the forward/backward accepted/rejected flows
(see Fig. 3.2),

Fi =
∑
σ=±1

(Aσi +Rσi ), (3.1.3)

where σ is a random variable indicating the direction of the attempted move.

2This figure is taken from Fig. 1 in Publication II [17].
3The discussion of the following dynamics, including the sequential Metropolis algorithm, forward

Metropolis algorithm, lifted forward Metropolis algorithm with and without restarts, is largely based
on [18]. However, the notation is changed for a more general probability distribution of a step ε, and the
probability flow set-up in the lifting scheme is consistent with chapter 2 but different from [18].
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Figure 3.2: The probability flow into a configuration via an attempted move of the
sphere i (green). A±i are the forward/backward accepted probability flows, and each
of them is obtained by an accepted displacement of the sphere i. R±i stands for the
forward/backward rejected probability flows respectively, and it is obtained by a re-
jected attempt of the sphere i, from the current configuration. δi indicates the free
space between sphere i−1 and i. 5

The proposal of each step ε follows a probability distribution, with the probabi-
lity density p(x). (We assume p(0) is finite, so P(ε = 0) = 0. Generally p(x) can be
conditional on the current configuration and the active sphere as p(x;{δj},a = i). In
the discussion of the Metropolis algorithm, we assume it is independent of these two
factors). For a given step of ε, we have the weights for the probability flows:

A+
i (ε) = Θ(δi− ε), A−i (ε) = Θ(δi+1 + ε),

R+
i (ε) = Θ(ε− δi+1), R−i (ε) = Θ(−ε− δi),

(3.1.4)

where Θ is the Heaviside function. The accepted flows are given by the integrals:

A+
i =

∫ ∞
0

p(x)A+
i (x)dx, A−i =

∫ 0

−∞
p(x)A−i (x)dx, (3.1.5)

and similarly for the rejected flows.
Based on these notations, a reversible Markov chain, for example the heat-bath

algorithm (or the Glauber dynamics) in section 1.6.2 which randomly picks a sphere and
places it between its neighbors with a uniform distribution, preserves the detailed-
balance condition:

P(a= i)p(x;{δj},a= i)Ai(x;{δj}) = P(a= i)p(−x;{δ′j},a= i)Ai(−x;{δ′j}). (3.1.6)

where {δ′j} is the configuration obtained from {δj} after the move (+x,a = i). The
heat-bath algorithm has a mixing time6 ofO(N3 logN), and belongs to the “SEP class”
in section 1.5.4.

In the following, we will discuss the global-balance algorithms for the system.
These algorithms also have similar properties in the further applications to soft-sphere
systems.

5This is a remake of Fig. 2 in [18].
6The result is not rigorously known. The mixing time O(N3 logN) is proven in fixed boundary

condition, but it is proven between O(N3) and O(N3 logN) in periodic boundary condition [50, 51].
The numerical result indicates the latter [18].
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3.1.1 Sequential Algorithms
Metropolis Algorithm with Symmetric Proposal

From eqs (3.1.4) and (3.1.5), we see that

R−i =
∫ 0

−∞
p(x)Θ(−x− δi)dx=

∫ ∞
0

p(−x)Θ(x− δi)dx

=
∫ ∞

0
p(−x)[1−A+

i (x)]dx=
∫ 0

−∞
p(x)dx−Ã+

i ,

(3.1.7)

where Ã+
i =A+

i if p(x) = p(−x). (In the derivation of eq. (3.1.7), we used the identity
equation: Θ(x− δ) + Θ(δ−x) = 1.)
In other words, if p(x) is even (that p(x) = p(−x)), we have

Rsym−
i +Asym+

i = P(ε < 0) = 1/2, Rsym+
i +Asym−

i = P(ε > 0) = 1/2.

Hence,
F sym
i =Rsym−

i +Asym+
i +Rsym+

i +Asym−
i = 1. (3.1.8)

According to eq. (3.1.2),

F sym =
N∑
i=1
F sym
i P(a= i) =

N∑
i=1

P(a= i) = 1, (3.1.9)

so that the total probability flow is always 1, for all possible probability distribution
of the active sphere P(a = i). It also implies a preservation of the global-balance
condition for any sequence of the active sphere labels {a(t), t = 1,2, . . .}, as long as
the distribution of each step ε is symmetric. (Nevertheless there are other conditions
to guarantee the irreducibility, e.g. each sphere will be picked infinite times in the
process.)

In a special case that the active sphere is picked from 1 to N periodically, it is
the sequential Metropolis algorithm that we mentioned in section 2.1. Empirically, it is
faster than the reversible Metropolis algorithm, but only by a constant factor [73]. It is
observed to mix inO(N3 logN) steps, and it belongs to the “SEP class” in section 1.5.4,
just as the Glauber dynamics.

Sequential Heat-bath Algorithm

In the Glauber dynamics, the distribution of ε has dependence on the configuration:

p(x;a= i) =


1

δi+δi+1
if − δi+1 ≤ x≤ δi,

0 otherwise.
(3.1.10)

We have
RGlauber−
i =RGlauber−

i = 0,
FGlauber
i =AGlauber+

i +AGlauber−
i = 1.

(3.1.11)

The total probability flow in eq. (3.1.2) equals 1, for any P(a = i). Hence a sequential
heat-bath algorithm is valid as well, which also mixes inO(N3 logN) steps and belongs
to the “SEP class” in section 1.5.4.
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3.1.2 Forward Metropolis
If the p(x) has a bias on either side,Fi = 1 no longer holds true for a general configura-
tion {δi}, and an arbitrary choice of the active sphere may lead toF 6= 1. Nevertheless,
if P(a= i) is chosen wisely, the probability flows coming from different active spheres
may compensate.

We now search for the appropriate flows satisfying eq. (3.1.2). It is deduced from
eq. (3.1.4):

A+
i (ε) +R+

i−1(ε) = 1, A−i (ε) +R−i+1(ε) = 1,
A+
i +R+

i−1 = P(ε > 0), A−i +R−i+1 = P(ε < 0),
A+
i +R+

i−1 +A−i +R−i+1 = 1.
(3.1.12)

Hence, if we take P(a= i) = 1/N,i= 1, . . . ,N :

Fequ = 1
N

N∑
i=1

(A+
i +R+

i +A−i +R−i ) = 1
N

N∑
i=1

(A+
i +R+

i−1 +A−i +R−i+1) = 1. (3.1.13)

The total probability flow is 1 again. Similar to the previous discussion, global balance
is preserved for any probability distributions p(x) or any sequence of the probability
distributions {p(t)(x)} (p(t)(x) is the distribution of ε at time t, and it is independent
of the label of the active sphere i), as long as each sphere has equal probability to be
activated. (Nevertheless there are other conditions to guarantee the irreducibility, e.g.
p(x) is not a countable sum of Dirac’s δ functions.)

The forward Metropolis algorithm corresponds to the special case where the spheres
only move in the positive direction (P(ε < 0) = 0, see Fig. 3.3). Empirically, its mixing
time is O(N 5

2 ) [18], and belongs to the “TASEP” class indicated in section 1.5.4.
As a completement to our discussion, the sequential variant in section 3.1.1 is not

compatible with the forward Metropolis algorithm; in other words, a “sequential for-
ward Metropolis algorithm” that chooses the active sphere sequentially and proposes
it to move forward at each time does not preserve the global-balance condition, as the
probability flow coming from the single active sphere i does not necessarily equal 1
in general cases:

Fi =A+
i +R+

i +A−i +R−i 6= 1.

3.1.3 Lifted Forward Metropolis (without restarts)
Based on the discussion in chapter 2, eq. (3.1.12) is considered with the lifting scheme
in section 2.3.1, where a rejection triggers a lifting in the replicas, namely the activa-
tion of the rejecting sphere. Similar to eq. (3.1.2), we divide the total probability flow
into:

F =
∑
s=±1

N∑
i=1
F(a= i,σ = s), (3.1.14)

where F(a = i,σ = s) (it may be denoted as F(i,s) if it cannot be confused with the
other probability flows) stands for the probability flow arriving at the same configu-
ration ({δj}), with i as the current active sphere and s as the current moving direction.
It can also be viewed as the probability flow in the replica denoted by (a = i,σ = s).
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Time Configuration
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Figure 3.3: The scheme of forward Metropolis algorithm. At each time step, a random
sphere (the green one) attempts to move forward. This move is rejected if it overlaps
or goes beyond the next one (as at time t and t+1), and it is accepted otherwise (as at
t+ 2, t+ 3 and t+ 4).

(F(a= i) is different from Fi in sections 3.1.1 and 3.1.2, where i indicates the previous
active sphere.)
In the lifting scheme without shuffles, σ is always a constant. Without loss of univer-
sality, in the following discussion we assume that σ = 1, P(ε > 0) = 1. Using the same
notation from eq. (2.2.1)

π({δj}) =
N∑
i=1

π({δj},a= i,σ = +1),

we assume that each replica has the same weight (π({δj},a= i) = 1/N ). As the rejec-
tion of the sphere (a−σ) triggers the activation of the sphere a, we have

F(i,1) = π(a= i)A+
i +π(a= i−1)R+

i−1 = 1
N

P(ε > 0) = π(a= i), (3.1.15)

the probability flows in the lifting scheme preserve global-balance condition as well.
This algorithm is known as lifted forward Metropolis algorithm, at each time step

the active sphere i is proposed to move forward with a distance of ε. If the sphere
i overlaps with the next, then this move is rejected and the next sphere i+ 1 is acti-
vated; otherwise the move is accepted, and the sphere i remains active. The process
is illustrated in each single row of Fig. 3.4.

It is seen in the simulations that the lifted forward Metropolis algorithm (without
restarts) mixes in a time of O(N5/2) [18]. Hence, similar to the forward Metropolis
algorithm, it is expected to belong to the “TASEP class” in the discrete space.

8This figure is adapted from the Fig. 6 in Publication II [17].
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Time Configuration Chain length

1

1

1

1

1

1 Final

Figure 3.4: The scheme of the lifted forward Metropolis algorithm with restarts. At
each time step a random sphere (the green one) attempts to move forward. This
move is rejected and triggers the next sphere if it overlaps/goes beyond the next one
(indicated by the curved arrows and dashed spheres), or accepted if not (indicated by
the straight arrows and the shady spheres). The randomized stopping time for shuffle
is denoted as “chain length” in the figure. 8

Irreducibility of Lifted Forward Metropolis Algorithm

In the special case of infinitesimal move ε in the lifted forward Metropolis algo-
rithm, the dynamics becomes a deterministic infinite event chain (mentioned in sec-
tion 2.4.1), as a prime example for an algorithm that satisfies global-balance condition,
but violates irreducibility. Nevertheless, the lifted forward Metropolis algorithm pre-
serves irreducibility, even if ε has a cut-off εmax in the tail of its distribution:

P(ε > εmax) = 0, 0< εmax < L̃.

In the following, we will prove this argument with the model of volume-less particles,
whose dynamics is identical to that of hard spheres. The positions of the particles
(x1, . . . ,xN ) follow the restriction x1 ≤ ·· · ≤ xN ≤ x1 + L̃.

We will firstly show that there exists a route to reach a “condensed” state (x1 =
· · · = xN ) from any possible initial configuration (x1, . . . ,xN ), if ε has a continuous
distribution between 0 and any finite εmax. Without loss of generality, we assume the
first particle is active in the initial configuration, and the distance between the near-
est neighbors is larger than εmax (the route can be generalized without this restric-
tion). In this route, the first one stops at the position x2 − εmax, and the second
one stops at the position x3 − εmax, so on and so forth, in the end a configuration
(x2− εmax, . . . ,xN − εmax,x1) is reached (which is (x1,x2− εmax, . . . ,xN − εmax) after a
translation), while the particle at x1 is active. The new configuration is similar to the
initial one, with all the other particles “moved backwards” to x1. After finite similar
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Chapter 3. Irreversible Markov Chains in Hard-sphere Models

iterations, a configuration

(x1,x1,x
′
3 = x3− (x2−x1), . . . ,x′N = xN − (x2−x1))

is obtained. Again, the second one stops at x′3− εmax, the third one stops at x′4− εmax,
so on and so forth, the one before the last stops at x′N − εmax, and the last one stops at
x1: the positions of the other particles are shifted to x1 by the same distance εmax as
before, and 3 particles meet at x1 eventually. The similar procedure can be done for
all the other (N −3) particles, and in the end a condensed configuration is achieved.

On the other hand, due to the time reversibility of the dynamics shown in Fig. 3.5,
any possible configuration is reachable from a condensed configuration, if it can col-
lapse to a condensed one. For a lifted Metropolis process moving in the positive
direction (as Fig. 3.5 (a)), its time reversal is also a lifted Metropolis process, with the
same acceptance and rejection on each move but in the negative direction (as Fig. 3.5
(b)). If we apply a space reflection to the time reversal, a lifted Metropolis process
moving in the positive direction is constructed (as Fig. 3.5 (c)), which has the initial
state as the final state of (a) (reflected) and vice versa. Since the condensed configura-
tion is invariant under reflection, its connectivity to any other states is verified by our
first argument.

t t' t'

a) b) c)

Figure 3.5: The route construction by time reversal. (a): A dynamics in lifted forward
Metropolis algorithm moving in the positive direction. (b): The time reversal of (a),
is a lifted forward Metropolis dynamics moving in the negative direction. (c): The
reflection of (b), as a lifted forward Metropolis dynamics moving in the positive di-
rection, with the final state as the initial one in (a) and the initial state as the final one
in (a).

Using the condensed configuration as a special “node” in the graph of the states, we
prove that each state is strongly connected to this configuration; then any two states
are strongly connected, which indicates the irreducibility of the algorithm. Neverthe-
less, in the event-chain dynamics where εmax = 0, restarts are needed essentially. We
will continue this discussion in the following.

3.1.4 Lifted Metropolis (with restarts) and Event-chain Algo-
rithm

As we proposed in section 2.4, if there are multiple transition matrices preserving the
global-balance condition, their linear combinations and multiplications will do the
same.
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3.2. Mixing in One Dimension

Mixing time Discrete Continuous
O(N3 logN) SEP*[43] Metropolis, sequential Metropolis,

Glauber dynamics*[50, 51]
O(N5/2) TASEP*[49] forward Metropolis[18],

lifted forward Metropolis[18]
O(N2 logN) lifted TASEP [18] lifted forward Metropolis (w/restarts)[18, 17],

(w/restarts) event-chain algorithm (w/restarts)*,[18, 17]
lifted sequential forward Metropolis

(w/swaps & restarts)[17],
O(N2) event-chain algorithm (w/swaps & restarts)* [17]

Table 3.1: The classification of algorithms according to their mixing time. Rigorous
results are indicated with an asterisk (*).

The “shuffle” process of the active particle or the moving directions preserves the
global-balance condition, as:

π(a,σ) =
N∑
i=1

∑
s=±1

π(i,s)Tshuffle[(i,s)→ (a,σ)], (3.1.16)

which works for any non-negative transition matrix Tshuffle. We may choose

Tshuffle[(i,s)→ (i,s)] = 0,

to force the lifting parameters to change.
Global balance is preserved if the transition matrix of shuffling is mixed with those

of the lifted Metropolis algorithm (see Fig. 3.4). In the lifted Metropolis algorithm
with restarts, the mixing time is O(N2 logN), when ε ∼ L̃/N and the “chain length”
(the number of steps between two shuffles) is best chosen as l ∼N [18].

In its continuous limit, the event-chain algorithm with restarts also has the mixing
time of O(N2 logN), if the chain length l ∼ L̃. These two dynamics belong to the
“lifted TASEP class” mentioned in section 1.5.4.9

So far, we have explored a number of global-balance-based algorithms, and cate-
gorized them in Table 3.1 (it includes the algorithms we will introduce in section 3.2.3).
In the following sections we will study these algorithms with a specific stopping rule,
and analyze their convergence.

3.2 Mixing in One Dimension
In this section, we will analyze the mixing properties of the lifted dynamics. To sim-
plify the problem, we will start from its continuous limit, the event-chain algorithm.

9These classes are specified in [18]. However, the existence of the definite classes is not clear. For
example, the discrete and the continuous algorithms with swaps in section 3.2.3 have different time
scale, although they are linked by a continuous change of parameters.

67



Chapter 3. Irreversible Markov Chains in Hard-sphere Models

We designate the normalized partial sums of the sequence {δi} in eq. (3.1.1) by

si =
∑i
j=1 δj

L−Nd =
∑i
j=1 δj

L̃
, (3.2.1)

where {si} corresponds to an ordered sequence of random variables on the interval
[0,1). (e.g. in Fig. 3.1 (b), the perimeter of the circle is 1.)

In equilibrium without ordering (all (N−1)! permutations of {si} are considered),
every particle in Fig. 3.1 (b) has an independent uniform distribution on the domain.
We base the following discussions on the stationary distribution.

3.2.1 Single-particle Case
In the simplest case where the exact calculation of the TVD is possible, we firstly
consider the sampling of a single particle. In section 1.5.3 we discussed the random
walk/Brownian walk of a single particle in a loop, and in section 2.2.1 we presented
the lifted walk with an exponentially distributed “chain length”. Here we will con-
tinue the calculation of the mixing time of a single one-dimensional walker in event-
chain dynamics with a more general chain length.

The chain length is denoted by εi (i= 1,2, . . . , which is proportional to the stopping
time), and different chains have the identical distribution (the probability density is
written as pε(x) or simply p(x)) for their lengths.

Walk in a Fixed Direction

To begin with, we consider the total displacement in only one direction as the “infinite
chain” in section 2.4.1 (hence Tshuffle(σ) in eq. (2.3.1) becomes an identity transforma-
tion). In this case, the dynamics is deterministic, as there is only one possible state at
any given time. Optionally we use a randomized stopping rule to evaluate the proba-
bility distribution after a given number of stops (instead of a given period of time).
The total displacement after the nth chain is denoted by:

xn =
n∑
j=1

εj . (3.2.2)

The probability density of the random variable xn is denoted by Pn(x).
For the sums of independent random variables, we can use the method of the

characteristic functions in section 1.1.2. Here we use the Fourier transformation of
p(x) with an extra factor of 2π (so it matches the periodic domain of [0,1)):

f(t) = F [p(x)] =
∫ ∞
−∞

p(x)e2πixtdx= Eε(e2πiεt). (3.2.3)

The characteristic function of xn is

fn(t) = F [Pn(x)] =
∫ ∞
−∞

Pn(x)e2πixtdx, (3.2.4)
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3.2. Mixing in One Dimension

using eq. (1.1.7). To simplify eq. (3.2.4), we take |f(t)|= |f(−t)|=A(t), arg[f(t)] = θ(t).
Since

|f(t)| ≤
∫ ∞
−∞
|p(x)e2πixt|dx= 1, (3.2.5)

there is a restriction of the domain that |A(t)| ≤ 1 (A(t) = 1 if and only if p(x) is a delta
function), θ(t) ∈ [0,2π).
Without loss of generality, we assume that in the initial configuration, the particle is
sited in X0 = 0, and the corresponding probability density of the particle is

π(0)(x) = δ(x),

due to the translational symmetry of the system. As the domain is periodic on [0,1),
the final position Xn after n stops, as a random variable, has the following relation
with xn:

Xn = mod (xn,1),
Pmod
n (x) =

∑
m∈Z

Pn(x+m). (3.2.6)

where Pmod
n (x) is the probability density of Xn. The normalization of probability is

verified: ∫ ∞
−∞

Pn(x)dx=
∑
m∈Z

∫ m+1

m
Pn(x)dx=

∑
m∈Z

∫ 1

0
Pn(x+m)dx

=
∫ 1

0

∑
m∈Z

Pn(x+m)dx=
∫ 1

0
Pmod
n (x)dx= 1.

(3.2.7)

After n steps, the total variance distance (TVD) between the current state and the
steady state is

TVD(n) =
∫ 1

0

∣∣∣Pmod
n (x)−1

∣∣∣dx, (3.2.8)

according to the definition of TVD in eq. (1.4.14)
The Poisson Summation Formula [82, Section 5.4] states that, for a real integrable

function h:
+∞∑

m=−∞
h(m) =

+∞∑
t=−∞

∫ +∞

−∞
h(x)e2πitxdx. (3.2.9)

By replacing h(x) with Pn(x+m), we have:∑
k∈Z

fn(k)e2πikx =
∑
m∈Z

Pn(x+m) = Pmod
n (x), (3.2.10)

which gives the Fourier expansion of Pmod
n (x). With the earlier notation, it equals:

Pmod
n (x) =

∑
k∈Z

fn(k)e2πikx =
∑
k∈Z

An(k)ei(nθ(k)+2πkx)

= 1 +
∑
k∈N+

2An(k)cos(nθ(k) + 2πkx)

= 1 +
∑
k∈N+

2en logA(k) cos(nθ(k) + 2πkx),

(3.2.11)
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and

TVD(n) =
∫ 1

0

∣∣∣∣∣∣
∑
k∈N+

2en logA(k) cos(nθ(k) + 2πkx)

∣∣∣∣∣∣dx, (3.2.12)

according to eq. (3.2.8). In this equation, A(k) < 1,∀k ∈ N+ is a necessary condition
for exponential convergence. If p(x) has a continuous distribution in a subset of the
domain, the convergence is guaranteed; on the other hand, if p(x) is a sum of a (count-
able) series of Dirac δ functions, the TVD will never decrease to zero.

If the phases are “random” for each k, the largest amplitude determines the fluc-
tuation, which corresponds to the relaxation time and decays at the scale:

τ = max
k∈N+

[
− 1

logA(k)

]
. (3.2.13)

Walk with Turning-back

We may now think of the process with turning-back after each chain, as discussed
in section 2.2.1. In this case, we can split the total displacement as n chains in the
positive direction and n′ chains in the negative direction (n′ = n− 1 or n, depending
on the total number of chains).

For the distribution of the backward displacement, its Fourier transformation is
f(−t). Still, we have:

fn(t)fn′(−t) = F [Pn+n′(x)] ,∑
m∈Z

Pn+n′(x+m) =
∑
k∈Z

fn(k)fn′(−k)e2πikx

= 1 +
∑
k∈N+

2An+n′(k)cos
(
(n−n′)θ(k) + 2πkx

)
,

(3.2.14)

indicating that the TVD decays at the same speed as eq. (3.2.13).

Some Special Stopping Times

In the walk in a fixed direction, if the probability density function of ε is shifted by a
constant:

pε(x) = pold
ε (x−x0),

the convergence property will remain unchanged, due to the translational invariance
of the TVD.

Based on this derivation, the distribution centered at zero would reduce the total
displacement |xn| in eq. (3.2.2). In the following discussion, we will shift the center of
the symmetric pε(x) to the origin for simplicity.

If ε∼ unif[λ2 ,−λ
2 ), according to eqs (3.2.11) and (3.2.12), we have:

∞∑
k=−∞

P unif
n (x+k)−1 =

∑
k∈N+

2
[sin (πkλ)

πkλ

]n
cos(2πkx),

TVDunif(n;λ)≈ 2
π

(sin(πλ)
πλ

)n.
(3.2.15)
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It shows that with an increasing λ, the time scale would decay algebraically with os-
cillations (see Fig. 3.6 (a)). When λ ∈N+, the target distribution of unif[0,1) is reached
within a single chain.

If ε∼N (0,σ2), similarly we have
∞∑

k=−∞
PGauss
n (x+k)−1 = ϑ3

[
πx,e−2π2nσ2]−1

= 2
∞∑
k=1

exp
(
−2k2π2nσ2

)
cos (2kπx) ,

TVDGauss(n;σ)≈ 2
π

exp
(
−2π2nσ2

)
,

(3.2.16)

which is already discussed in section 1.5.3. As shown in Fig. 3.6 (b), its first-order
approximation describes the evolution of TVD very well.
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Figure 3.6: TVD for a single sphere on a ring with uniform and Gaussian distri-
butions of displacements. (a): TVD after n displacements ε ∼ unif[0,λ). The TVD
trivially vanishes for integer λ. Peaks decay as 2

π (πλ)−n (for n→∞). (b): TVD for
n Gaussian displacements with standard deviation σ, compared with its first-order
approximation from the Jacobi ϑ function (see eq. (3.2.16)). The inset illustrates the
good agreement of the approximation on a logarithmic scale.11

If ε ∼ Exp(1/λ) (pε(x) = λe−x/λ), which corresponds to the Poisson process used
in chapter 2,

A(k) = 1√
1 + (2πkλ)2 , θ(k) = tan−1(2πkλ). (3.2.17)

It shows a similar decay as eq. (3.2.15) in the uniform case with the growth of λ, but
without oscillations.

Generally, for a continuous distribution of ε with a variance ∼ 1, the mixing time
is O(1). If the size of the system scales as L̃, ε should have a variance ∼ L̃2 for an
efficient mixing.

11This figure is taken from the Fig. 5 in Publication II [17].
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3.2.2 Multi-particle Case
According to the mapping between the positions of spheres and those of the particles,
their dynamics are exactly the same when we consider {δi} (or {si}, see Fig. 3.1).
In the event-chain dynamics, each collision will lead two particles to exchange their
momentum (the lifting parameter of the active state).

As all the particles are volume-less and indistinguishable, we may assume that
the positions and the lifting parameters of the particles are exchanged in one collision.
Effectively, only one particle is sampled throughout one chain as illustrated in Fig. 3.7.

The distribution of the position of the “effective particle” is only dependent of
that of the chain length ε, as we discussed in the single particle case. Hence, the mix-
ing of a one-dimensional hard-sphere system is regarded as the independent mixing
processes of different “effective particles” in the event-chain dynamics.

1 2 3 54

1 2 3 54

1' 2' 3' 4' 5'

2' 3' 4' 5'1'

a)

b)

1' 2' 3' 4' 5'

1'2' 3' 4' 5'

Figure 3.7: The process of one chain in the event-chain dynamics in (a) the hard-
sphere model, and in (b) the model of volume-less particles. The dynamics of these
two models map to each other. For the model of volume-less particles (b), if we look
at the labels with prime (the “effective particle”), only one particle (1′) is effectively
sampled in the process, while all the others stay at their former positions. It also
means that in the hard-sphere model (a), only one disk (1′) is sampled in a chain.

“Perfect Sampling” of Multiple Particles

We begin with the simplest case, that the chain length ε follows the uniform distribu-
tion between [0,1).12 After one chain, one “effective” particle i (its position is denoted
by as yi) is perfectly sampled, having triggered at most N − 1 events. If a random
particle is picked after a chain is finished (which corresponds to the “shuffle” process

12For a more general distribution of ε, we can not obtain the exact result in the limit N →∞. Never-
theless, the discussion of ε∼ unif[0,1) provides a lower bound and an estimation of the mixing time for
other distributions.
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in section 2.3.1), then the problem matches perfectly to the coupon-collector problem
in section 1.5.1.
In formal presentation, every particle is at the origin in the initial configuration. The
initial probability density is a product of Dirac δ functions:

π(0)({yi}) =
N∏
i=1

δ(yi), TVD(0) = 1. (3.2.18)

If there is at least 1 “effective” particle not moved, the TVD is still 1 due to the δ
functions; once all the particles are moved, the TVD is reduced to 0. From the phase
space Ω = [0,1)N , we take a subset

A= {y | ∃ i with yi = 0}. (3.2.19)

Using the equation eq. (1.4.14),

‖π(n)−π‖TV = max
A′⊆Ω

|π(n)(A′)−1|= π(n)(A), (3.2.20)

which means all the particles are perfectly sampled, once probability density does not
contain a Dirac δ function. Hence, there is a mapping between the strong stationary
time (defined in section 1.5.2) of this system and the “first-complete-collection time”
T1 of coupon collection in section 1.5.1:

‖π(n)−π‖TV = P(T1 > n)

∼ 1− exp
[
−exp

(
−n−N logN

N

)]
.

(3.2.21)

The mean collection time is

E(T1)≈N(logN +γ),

so the mixing time is O(N logN) chains. As each chain triggers (N/2) events on
average and (N − 1) events at most, the mixing time counted in single events is
O(N2 logN).

General Chain Length ε

For a more general distribution of the chain length ε, the “perfect sampling” can not
be reached with finite chains. Eq. (3.2.20) is then rewritten as:

‖π(n)−π‖TV = max
A′⊆Ω

|π(n)(A′)−1|> π(n)(A) = P(T1 > n). (3.2.22)

The lower bound of the mixing time is O(N logN) chains.
According to the discussions in section 3.2.1, the TVD of a single (“effective”) particle
decreases exponentially with time (if var(ε)∼ 1). We presume that the TVD is limited
by the “effective particle” moved the fewest times. We assume that the number of
times is denoted by m, then the problem is similar to an “mth-complete-collection
time” in section 1.5.1.
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P. Erdös and A. Rényi provided an estimation of its tails [19],

P(Tm > n)∼ exp(−Υ/(m−1)!) , (3.2.23)

with
Υ = exp

[
−n−N logN − (m−1)N log logN

N

]
. (3.2.24)

The mean mth-complete-collection time is still O(N logN) (if m is small compared to
logN/ log logN ):

E(Tm)∼N logN + (m−1)N log logN.

The number of chains to pick each of the N particles at least m times only adds an
N log logN correction to the general N logN scale of chains. The mixing time is esti-
mated O(N2 logN) events as the “perfect sampling” case, based on the assumption
of mth complete collection.

This argument also applies to the lifted Metropolis with restarts. Due to the ran-
domness introduced by the Metropolis move, we suggest that the distribution of the
number of events in one chain has a standard deviation of αN , and the distribu-
tion of the step size is of the order 1

αN , where α is some constant larger than 1. The
mixing-time evaluation in Fig. 3.11(c)(d) confirms our estimation that the mixing time
is O(N logN).

Heuristic Mixing-time Evaluation via the Mid-system Variance

For completeness, we compute the exact steady-state distribution of one of theN hard
spheres (with ordering) on the ring. In view of the mapping of Fig. 3.1, we only need
to calculate for volume-less particles in a ring of length 1.

We estimate the steady probability distribution of

ui =
N/2∑
k=0

δi+k = si+N/2−si, (3.2.25)

which we used to examine the steady state in sections 3.1 and 3.2.3. As the system
is periodic, ui has the identical distribution for all the i (though they are not inde-
pendent). In the following we will consider the probability distribution of u without
specifying i.
Firstly we consider a group of random variables {yi, i = 1, . . . ,N − 1}. Each of them
follows an independent uniform distribution unif[0,1). If we sort {yi} by its order, it
has the same distribution as {si, i = 1, . . . ,N − 1}. On the condition that yN

2
= x, the

probability of having half of the rest of {yi} larger than x and the other half smaller
than x is:

P(yN
2

is in the middle|yN
2

= x)

=
(
N −2
N/2−1

)
P(y1 ≤ x) · · ·P(yN

2 −1 ≤ x)P(yN
2 +1 ≥ x) · · ·P(y(N−1) ≥ x)

= (N −2)!
[(N/2−1)!]2x

(N/2−1)(1−x)(N/2−1).

(3.2.26)

74



3.2. Mixing in One Dimension

(a) (b)
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Figure 3.8: (a): An illustration of the process from a compact initial configuration to
equilibrium. The “half-system distance” u= xi+N/2−xi is defined as the free distance
between the two spheres i and i+N/2. (b): The probability density function pu(x) of
u. It is symmetric with respect to x= 1/2 (〈x〉= 1/2), with var(u) = 1

4(N+1) . The width
of the distribution narrows (∼ 1√

N
) as N increases.

Considering the permutation of yi as yN
2

, the probability density function of u is cal-
culated with a marginal distribution,

pu(x) = (N −1)!
[(N/2−1)!]2 (x−x2)(N/2−1), (3.2.27)

and its mean and its variance are

〈u〉= 1/2, var(u) = 1
4(N + 1) . (3.2.28)

The probability density function is shown in Fig. 3.8 (b).
In a compact initial configuration, all particles are restricted in a small part of

the interval, 〈(ui− 1
2)2〉 ∼ 1. In contrast, in the equilibrium condition/steady-state

distribution, it is equal to 1
4(N+1) . This provides us a good criterion in the evaluation of

the mixing time by measuring 〈(ui− 1
2)2〉. In the discussion of section 3.1, the mixing

time of different derivations of Metropolis algorithm is evaluated in this way [18].
However, this method remains naïve: it provides only a lower bound and may not
sufficiently guarantee convergence in general cases.

3.2.3 Swap Labeling in Algorithms
Based on the discussion of section 3.2.2, the logarithmic limit of the coupon collector
can be overcome, if each “effective particle” is moved at most once before they are all
moved. As the “effective particle” changes its label after a collision, we need to track
the “effective particles” together with the positions.
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i

i

i

Figure 3.9: The probability flow into a configuration ({δj},{Pj}= {j, i,k},a= i) for a
lifted forward Metropolis with swaps14. A rejected move, by a displacement εR (up-
per case), entails a swap and contributes RεR . An accepted move, by a displacement
εA (lower case), contributes AεA . For any ε > 0, one of the flow is 0, and the other
flows equals π({δj}).

Here we introduce a “swap” algorithm: each particle is marked with a “label” for
the “effective particle”, and any rejection of a proposed move will lead to a swap of
the labels between the active particle and the one who rejects. In this scheme, each
configuration is characterized by ({δj},{Pj}), where {Pj} stands for a permutation of
labels. We assume that all these configurations have the same weight, and we may
omit the notation of {Pj} in the distribution for simplicity.

In the special case where ε > 0 as in Fig. 3.9 (it also applies to a generally dis-
tributed ε), we have

F({δj}|a= i) =
∫ ∞

0
dεp(ε) [Aε({δj}|a= i) +Rε({δj}|a= i)]︸ ︷︷ ︸

=1 (see Fig. 3.9)

= 1 = π({δj}|a= i),

(3.2.29)
where F({δj}|a = i) is the probability flow in to the configuration {δj} on the con-
dition that the active particle is i. Similar to the discussion in section 3.1.1, for any
probability distribution of the labels of active particle {P(a= i), i= 1,2, . . . ,N}, or for
any sequence of the labels of the active particle {a(t), t= 1,2, . . .}, we have

F({δj}) =
N∑
a=i
F({δj}|a= i)P(a= i)

=
N∑
a=i

π({δj}|a= i)P(a= i) = π({δj}),
(3.2.30)

the global-balance condition is preserved.
In the special case that ε > 0 and the label is picked sequentially by the end of each

chain:

. . . , i, i, . . . , i, i︸ ︷︷ ︸
chain n

,(i+ 1),(i+ 1), . . . ,(i+ 1),(i+ 1)︸ ︷︷ ︸
chain n+ 1

,(i+ 2),(i+ 2), . . . ,(i+ 2),(i+ 2)︸ ︷︷ ︸
chain n+ 2

, . . . ,

(3.2.31)

14This figure is taken from the Fig. 2 in Publication II [17].
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3.2. Mixing in One Dimension

we have a sequential lifted forward Metropolis algorithm with swaps, as illustrated in
Fig. 3.10. In its continuous limit, the event-chain algorithm with swaps mixes the sys-
tem in O(N) chains instead of O(N logN). (In the special case that the chain length
follows a uniform distribution on [0,1), it mixes exactly in N chains.)

The sequential lifted forward Metropolis algorithm with swaps mixes faster than
the (random) lifted forward Metropolis algorithm, as shown in Fig. 3.11. For a given
discretization 2/α, the sequential lifted forward algorithm mimics the O(N2) mixing
of the sequential event-chain algorithm with swaps, that it decreases every N chains
(N2 steps). However, for large N it is unable to keep the TVD small enough after N
chains (see Fig. 3.11 (a)), and it begins to cross over into O(N2 logN) mixing as the
(random) lifted forward Metropolis algorithm. In order to reduce TVD, one needs
more detailed discretization as shown in Fig. 3.11 (b). After all, this approach is not
able to mix in the time of O(N2) steps. It then belongs to the “lifted TASEP class” as
the random version, with a mixing time of O(N2 logN) steps (they are summarized
in Table 3.1).

Time Configuration Chain length

1

1

1

1

1

(1)

(3)(2)

(4)

(1)
(2)

(3)

(1)

(3)(2)

(1)

(1)

(2)

1 Final

Figure 3.10: Sequential lifted forward Metropolis algorithm (with swaps). Configura-
tions xt, . . . ,xt+13 sampled through five chains with active sphere 1,2, . . . ,5 are shown.
Chain lengths are l1 = 3, . . . , l5 = 2. Each sphere displacement εt > 0 is either accepted
or rejected: if it is accepted, it remains active; if it is rejected, it induces a swap of
the labels with the one who rejects. So the same label remains active throughout a
chain.16

16This figure is taken from the Fig. 6 in Publication II [17].
18This figure is taken from the Fig. 7 in Publication II [17].
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Figure 3.11: Crossover from the discrete lifted algorithm to the event-chain algo-
rithm, via the variance of the mid-system distance u (see section 3.2.2), started from
compact initial condition. Discrete step size with ε ∼ unif[0, 1

Nα), and chain length
t ∼ unif[α,αN) (a): Sequential lifted Metropolis algorithm with constant α = 10 for
different N : the cross-over from perfect sampling for small N at a time scale O(N2)
towards O(N2 logN) appears evident. (b): Sequential algorithm for N = 8192, with
increasing α: O(N2) mixing scale emerges for large α. (c): Random lifted Metropo-
lis algorithm with α = 10 for different N (legend as in (a)): O(N2 logN) mixing time
scale. (d): Random lifted forward Metropolis algorithm: limited role of α (color code
for α as in (b)).18
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3.3 From One Dimension to Higher Dimensions
In section 2.3, we generalized the event-chain algorithm to higher dimensions, where
it preserves irreducibility, aperiodicity and continues to satisfy the global-balance
condition. Based on previous discussions, a randomized stopping rule can acceler-
ate the mixing process in higher dimensions.

As presented before, there is no phase transition in the one-dimensional hard-
sphere model. However, the two-dimensional case is much different: various phases
appear in this model such as liquid, hexatic and solid phases, depending on the den-
sity [5].

3.3.1 Liquid, Solid and Hexatic Phases
There has been evidence of phase transition in the hard-disk model since 1962 [83].
There are at least 2 phases: a solid phase where each particle has the fixed neighbors,
and a liquid phase where the neighbors of one particle can travel infinitely far after a
long time. This transition happens in canonical ensembles of a fixed volume, which
depends on the density instead of the temperature.

For a multiple particle system with an initial configuration of a lattice structure,
we use the bases of lattice Ri to label the particles. The position of a particle can be
divided to the lattice base Ri and a vector field of displacement u(Ri):

ri = Ri+u(Ri). (3.3.1)

The behavior of the positional correlation function (|k| ∼ 1/L)

Cposition(R) = 〈exp{ik[r(R)−r(0)]}〉

determines the position order of the system, and similarly, for a given unit lattice vector
a, the orientation order is evaluated by the orientational correlation function:

Corient(R) = 〈exp{ik[r(R +a)−r(R)]}〉 .

For these correlation functions (denoted by C(R) in general), in the limit that R→∞
(ξ is the correlation length discussed in section 1.6.3):

• If C(R)∼O(A+ e−R/ξ), where A is non-zero, it is long-range order.

• If C(R)∼O(R−ν), it is quasi-long-range order.

• If C(R)∼O(e−R/ξ), it is short-range order.

The long-range positional order is impossible in two dimensions, but the long-range
orientational order is possible [84]. Later in 1972 [85], the two-dimensional phase
transition was once again proposed, with more specified phases and more accurate
descriptions, as shown in Table 3.2.

The quasi-long-range position order/long-range orientational order of the solid
phase is broken by the pairs of dislocations as large as the system size, and the quasi-
long-range orientational order is broken by the disclinations, as illustrated in Fig. 3.12.
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Phase Position order Orientation order
Solid quasi-long-range long-range

Hexatic short-range quasi-long-range
Liquid short-range short-range

Table 3.2: The different phases in a two-dimensional mono-disperse model and their
corresponding spatial correlation properties.

a) b)

Figure 3.12: In the figures the red cell has 5 neighbors and the blue cell has 7 neigh-
bors. The arrow inside each cell indicates its ψ6 parameter. (a): a pair of dislocations
that distort the local orientation. (b): a “negative” disclination, that the orientation
winds by −2π around the blue cell. A “positive” one can be constructed similarly.20

An order parameter ψ6 is introduced to characterize the phases. It is defined as

ψ6
j = 1

nj

∑
〈j,k〉

ei6φj,k , (3.3.2)

where nj is the number of neighbors of the disk j, 〈j,k〉 indicates all the neighbors k
with respect to the Voronoi cells, and φj,k is the angle of the vector from the center of
j to k, with respect to the x-axis. This function has a modulus of 1 when the disk j has
6 neighbors equally spaced. The correlations of ψ6 is density-dependent, especially
near the critical point.

For a global observable Ψ6 defined as the mean of ψ6,

Ψ6 = 1
N

N∑
j=1

ψ6
j , (3.3.3)

it has different type of distribution in different phases. As shown in Fig. 3.14, the
distribution is always symmetric. In the solid phase, the distribution forms a ring (or
several detached clusters far from the centers), while in the liquid phase, it forms a
circle concentrated in the center.

20This figure is taken from Fig. (1.11) and (1.12) in the thesis of E. Bernard [76].
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3.4. Conclusion

According the KTHNY theory [85, 86, 87], there exists an infinite-order topological
phase transition in the two-dimensional melting process, similar to the one in two-
dimensional XY model that we introduce in chapter 4. Further research with event-
chain algorithm identifies a first-order phase transition between the liquid phase and
the hexatic phase in the hard-disk model [13], and liquid-hexatic coexistence in soft-
disk melting [15].

In the following, we will apply the idea of “swapping” optimization of event-
chain algorithm to two-dimensional hard disks near the transition point, and compare
its result with that of the conventional method.

3.3.2 Swap Labeling in Two Dimensions
Based on the discussions in section 2.4, the event-chain algorithm is applied in general
systems, with “shuffles” at the “stopping” time, as long as the “shuffle” process pre-
serves the global balance (for example, sequentially picking the active labels). Hence,
this label-swapping event-chain algorithm is also valid in higher dimensions.

We consider a lifted TASEP in a two-dimensional square lattice (see Fig. 3.13). It
resembles the one-dimensional case in each row and each column. As each “effective”
particle needs to be sampled in both dimensions, and the mixing time is at least twice
as much as that of the one-dimensional case. In order not to miss any dimension, we
put one label on each dimension, as discussed in section 3.2.3 to get over the coupon-
collecting limitation.

Here we propose a general scheme for of the label-swapping event-chain algo-
rithm: each disk is equipped with two labels (i1, i2), i1, i2 = 1, . . . ,N , and each collision
leads to a swap of the labels. A collision can trigger the swap of all the labels (then
effectively only one label is needed, see Fig. 3.13 (a)), or only the swap of the label
in the corresponding dimension, as in Fig. 3.13 (b). After one chain, the new chain
will begin with the particle of the next “active label”. The “active dimension” can be
picked randomly or sequentially one after the other.

However, there is no more “perfect” choice of the stopping time as in the one-
dimensional uniform case. Based on the efficiency analysis in [9, 76], we take the
distribution of stopping time as unif[−

√
Nλ/2,

√
Nλ/2), where λ is about three times

the mean free space near the transition point.
In Fig. 3.14, we see that the distributions of Ψ6 obtained via the conventional event-

chain Monte Carlo, the event-chain Monte Carlo with single-labeling, and the one
with double-labeling are the same, in agreement with previous studies [9, 76]. The
autocorrelation of Ψ6 indicates an acceleration by using single labeling and sequen-
tially choosing the active dimensions (see Fig. 3.15). However, as the dynamics in
high density is relatively slow, the increase in the mixing speed appears to be only a
constant factor.

3.4 Conclusion
In this chapter we analyzed the dynamics of multiple variants of the Metropolis al-
gorithm (including sequential Metropolis algorithm, forward Metropolis algorithm,
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Figure 3.13: Two-dimensional label-swapping lifted TASEP. In each configuration, the
green disk is the active one with a randomized chain length. The label-swapping is
indicated with red arrows, and the active direction is picked sequentially one after the
other. (a) The labels are swapped in both dimensions, then effectively we only need
one label; (b) The labels are swapped only in the active dimension, the last moved
disk is colored yellow.

a) b) c)

Figure 3.14: Scatter plot of Ψ6 for 256 disks in a square under periodic boundary con-
dition (the density is 0.700, near the liquid and the hexatic phases). (a) conventional
event-chain algorithm, (b) single label method as in Fig. 3.13 (a), (c) two labels as in
Fig. 3.13 (b). In (b) (c), the orange data points are provided by sequentially choosing
the active dimension, and the blue data points are provided by random choosing the
active dimension. We see that they all converge to the same distribution, and

〈
Ψ6〉= 0

for a square box.
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Figure 3.15: The absolute autocorrelation function of Ψ6 for 256 disks in a square
under periodic boundary condition (the density is 0.700, near the boundary of the
liquid and hexatic phases). The green curve of the event-chain Monte Carlo with
a single label and the active dimension sequentially chosen, appears faster than the
others.

lifted forward Metropolis algorithm with and without restarts in Table 3.1) in the one-
dimensional hard-disk model based on the global-balance condition.

We calculated the mixing times of a single particle in an interval, and generalized
it to describe the mixing of a one-dimensional system of particles and hard spheres. In
the case of “perfect sampling”, the mixing time is directly related to the first-complete
collection time in the coupon-collector problem. We also discussed the mixing time
for a general distributed chain length, which provided a good estimation of the lifted
forward Metropolis algorithm with restarts.

To overcome the logarithmic limit induced by the coupon-collector problem, we
proposed a “swap” algorithm. It mixes in O(N2) single steps in the event-chain al-
gorithm, but when it is applied to the lifted sequential forward Metropolis algorithm,
there is a cross-over of O(N2 logN) mixing time with the conventional methods.
We also generalized the “swapping” algorithm to two-dimensional hard-disk model.
It is valid, and shows an acceleration slightly below the critical point.
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Chapter 4

Event-chain Dynamics in Spin
Models

As mentioned in chapter 2, the event-chain algorithm was extended from hard-core
interactions to continuous potential, and sometimes an “infinite chain” can replace a
sequence of finite event chains, to form an irreducible Markov-chain algorithm. How-
ever, the steady-state distributions and the dynamics become complex once again,
and it is hard to evaluate the mixing time rigorously. Earlier work hinted at the possi-
bility that the event-chain algorithm would lead to a significant speed-up of autocor-
relations [11] and even had the potential for a decreased dynamical critical exponent
[88].

In the present chapter we will start from the XY and Heisenberg spin models in
two and three dimensions, focus on the different dynamics of patterns (spin wave
and vortices) in event-chain Monte Carlo, analyze the Fréchet distribution of the max-
imum vortex–anti-vortex pair distance, and provide an estimation of the autocorre-
lation time. We believe that the dynamics of the spin waves here can be translated
mutatis mutandis to the phonons in particle systems (as the fast dynamics is brought
out in the simplified harmonic model).

We will understand the speed-up of the irreversible method to primarily act on
the spin-wave degrees of freedom, whereas the relaxation of topological excitations
(which are absent in one-dimensional models) remains unchanged. At low temper-
ature, the topological excitations are strongly bounded. The speed-up of spin-wave
excitations leads to improved dynamical exponents.

4.1 Event-chain Algorithm in Spin Systems
Spin systems and their second-order phase transitions have attracted people’s atten-
tion since the discovery of Curie point in 1895 [89]. In the 1970s, with the devel-
opment of Kosterlitz–Thouless theory [90], the infinite-order phase transition of the
two-dimensional XY model started a new era of solid-state physics. Monte Carlo
methods played an important role in exhibiting this phase transitions [91], and in
characterizing the monopole excitations of the three-dimensional Heisenberg model
[92].
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4.1.1 Spin Models
The Hamiltonian of a spin model is given by:

H =−
∑

1≤i<j≤N
Jij ~Si · ~Sj , (4.1.1)

where {Jij} are coupling constants, ~Si represents the spin on the ith site. Depending
on the number of dimensions of each spin, the Hamiltonian can describe the Ising
model (O(1))

HIsing =−
∑

1≤i<j≤N
Jijsisj ,

sk ∈ {−1,1}, k = 1, . . . ,N,
(4.1.2)

the XY model (O(2))

HXY =−
∑

1≤i<j≤N
Jij ~Si · ~Sj ,

~Si = (Six,Siy) = (cosφi,sinφi) , 0≤ φi ≤ 2π,
(4.1.3)

and the Heisenberg model (O(3))

HHeisenberg =−
∑

1≤i<j≤N
Jij ~Si · ~Sj ,

~Si = (Six,Siy,Siz) = (sinθi cosφi,sinθi sinφi,cosθi), 0≤ θi ≤ π, 0≤ φi ≤ 2π,
(4.1.4)

respectively.
The setting of Jij determines the system’s behavior: if Jij ≥ 0, the system is ferro-

magnetic, that all the spins tend to the same orientation at low temperature, resulting
a non-zero magnetization1; if Jij ≤ 0 the system is anti-ferromagnetic at low tempera-
ture (for non-frustrated cases, such as square and hexagonal lattices), with nearly zero
magnetization; if Jij is given randomly, the system may become a spin glass [94].

Magnetic systems usually have short-range interactions (Jij = o(r−2
ij )). For such

systems there is no long-range order in the one-dimensional Ising model [33], or in
other continuous model with dimension lower than two [93, 84], which indicates no
ferromagnetic phase transition. However, the two-dimensional case is a special one
with the existence of a quasi-long-range order. It is broken into short-range order at
high temperature, with the emergence of topological defects, resulting in an infinite-
order phase transition [95, 90].

In the following we study the ferromagnetic model with the nearest-neighbor in-
teraction (Jij = 1 on the neighboring sites i, j and 0 for the others). For example, in
the XY model, the Hamiltonian can also be written as

HXY =−
∑
〈i,j〉

cos(φi−φj), (4.1.5)

where 〈i, j〉 indicates a pair of neighbors.

1To be accurate, a stable ferromagnetic phase only exists in the dimension higher than two for the
Ising model, or higher than three for the other continuous models, if the interaction decays fast enough,
as a statement of Mermin-Wagner theorem [93].
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4.1.2 Event-chain Algorithm in Spin Models
According to section 2.3.2, the event-chain algorithm (with the factorized Metropolis
filter) in the XY model follows [11]:

• The simulation starts from an initial configuration, with an active site i;

• The thermal fluctuation of the interaction between i and its neighbor site j is
given by

ξij =− 1
β

logran(0,1).

A proposed displacement is given by:

∆dj = f−1(Eij + ξij)−f−1(Eij), (4.1.6)

where

f(d) =
∫ d

0
max[sin(x),0]dx

=
{

2d d2π e if d≥ 2πb d2π c+π,

2b d2π c+ 1− cos(d−2πb d2π c) if d < 2πb d2π c+π,

(4.1.7)

is a monotonic function of the energy and f−1(E) is its inverse function.

• ∆djmin = min{∆dj} triggers the next event. We update φi with φi + ∆djmin , and
the site jmin is the next active site. Then the process goes back to step 2 and
iterates, creating a chain as shown in Fig. 4.1.

In a general lifting algorithm, the direction of rotation and the active site need to be
resampled after a period of time to ensure irreducibility (the number of events ∼ N ,
as discussed in sections 3.1.4 and 3.2.2). The XY model is a special case that the event-
chain Monte Carlo algorithm works well without restarting. We will discuss more
about it in chapter 5.

This algorithm can be generalized to arbitrary coupling {Jij}, including the cases
of anti-ferromagnetic spin models and spin glasses. For the Heisenberg model, its
Hamiltonian can be written with {θi,φi}:

H =−J
∑
〈i,j〉

cos(θi)cos(θj) + sin(θi)sin(θj) [cos(φi)cos(φj) + sin(φi)sin(φj)]

=−J
∑
〈i,j〉

cos(θi)cos(θj) + sin(θi)sin(θj)cos(φi−φj).
(4.1.8)

It can be regarded as an XY model with the coupling constants determined by {θi}.
In the event-chain Monte Carlo algorithm, eq. (4.1.8) can be treated in the same way
as in eq. (4.1.5), by choosing θ’s as the fixed parameters and φ’s as the variables. The
irreducibility of the algorithm is ensured by alternating the axes in cycles

(x,y,z)→ (y,z,x)→ (z,x,y)→ (x,y,z),

and the event-chain algorithm for Heisenberg model is constructed in the following
[88]:
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Figure 4.1: An illustration of the event-chain in the two-dimensional XY model. The
earliest rejection determines the angle of rotation, and triggers the lifting of the active
site. Rotation in only one direction without reshuffling the active site also guarantees
irreducibility in this model.

• The coordinates (d1,d2,d3) is chosen from {(x,y,z),(y,z,x),(z,x,y)}. For a given
set of coordinates (d1,d2,d3), {θi,φi} are calculated as following:

θi = arccossd3; φi = sign(sd2)arccossd1. (4.1.9)

• By taking the coupling constants Jij = sin(θi)sin(θj) and the angles of spins as
{φi} , the event-chain algorithm for XY spin glass is applied on this model;

• Once a chain is finished, the process goes back to the first step, the coordinates
(d1,d2,d3) is switched to another, and the event-chain algorithm continues.

4.1.3 The Dynamics of Susceptibility
In this complex system, an explicit calculation of spectral gap or TVD is inaccessible.
To evaluate the speed of the algorithm, the autocorrelation time of a conventional
order parameter is measured. For example the susceptibility χ in ferromagnetism is

χ= ||
~M ||2
N

, (4.1.10)

with ~M being the magnetization of the system:

~M =
N∑
i=0

~Si. (4.1.11)

As a rotational invariant observable, the susceptibility χ usually has a longer auto-
correlation time than the magnetization. In event-chain algorithm, the autocorrelation
function of χ at T ≤ TKT has two time scales [11], a fast decay followed by a much
slower one, as shown in Fig. 4.2 (a). (The same behavior of the autocorrelation time is
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4.2. The Dynamics of Spin Waves

found in Villain’s model as well.) Also, the annealing process of a random state at low
temperature varies much from sample to sample (see Fig. 4.2 (b)). These phenomena
indicate a complicated dynamics.

In the following sections, we will start from the low-temperature approximation
of the XY model, as a simple harmonic model, to explore its dynamics, and relate the
second scaling to the vortices in the model.
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Figure 4.2: Time evolution of the spin susceptibility in the XY model on a 64× 64
square lattice (time t measured in sweeps). (a) Susceptibility autocorrelations below
TKT. A 2-level scaling is clear in the autocorrelation function. (b) Individual suscep-
tibility evolutions at T/TKT = 0.93 starting from random initial configurations (auto-
correlation time τ ) lead to large sample-to-sample fluctuations.3

4.2 The Dynamics of Spin Waves

4.2.1 Quadratic Approximation
The quadratic approximation is used in the limit of low temperature, where the higher-
order terms in the polynomial expansion are neglected. For example, with the cos
term in the XY model approximated by

cos(∆φ)≈ 1− 1
2∆φ2,

the quadratic Hamiltonian is:

H({φi}) =−
∑
〈i,j〉

cos(φi−φj)

∼
∑
〈i,j〉

(1
2(φi−φj)2−1

)
.

(4.2.1)

3This is a remake of the Fig. 1 in the Publication I [12].
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The partition function of this system is a high-dimensional Gaussian integral, and
once the quadratic form is diagonalized, all the details in this model are revealed. For
the Heisenberg model with the quadratic approximation, {θi} and {φi} are totally
decoupled, so that they behave as two replicas of the XY model. In the following we
will concentrate on the Hamiltonian in eq. (4.2.1).

The harmonic model, even on a general lattice (such as triangular or hexagonal
ones) with long-range interaction, is exactly solvable using Fourier transformation.4

Without loss of universality, we use the square lattice and the nearest neighbor inter-
actions. From eq. (4.2.1), by omitting the constants, we have

H({φi}) = 1
2

∑
~r∈Lat,1≤i≤d

[φ(~r)−φ(~r+~ei)]2

= 1
2

∑
~k∈FBZ,1≤i≤d

[2−2 · cos(~k ·~ei)]φ̂(~k)φ̂(−~k)

=
∑

~k∈ 1
2 FBZ,1≤i≤d

[1− cos(~k ·~ei)][ψ2
1(~k) +ψ2

2(~k)]

=
∑

~k∈ 1
2 FBZ

[d−
∑

1≤i≤d
cos(~k ·~ei)][ψ2

1(~k) +ψ2
2(~k)]

=
∑

~k∈ 1
2 FBZ

ε(~k)[ψ2
1(~k) +ψ2

2(~k)]

(4.2.2)

where “Lat” indicates all sites on the lattice, “FBZ” is the first Brilluoin Zone of the
reciprocal lattice, and “1

2FBZ” is one half of the first Brilluoin Zone. The Fourier trans-
formation is:

φ̂(~k) = 1√
N

∑
~r∈Lat

φ(~r)e−i~k~r, φ(~r) = 1√
N

∑
~k∈FBZ

φ̂(~k)ei~k~r, (4.2.3)

with the change of variables:

ψ1(~k) = 1√
2

(φ̂(~k) + φ̂(−~k)) =
√

2
N

∑
~r∈Lat

φ(~r)cos~k~r,

ψ2(~k) = 1√
2i

(φ̂(~k)− φ̂(−~k)) =
√

2
N

∑
~r∈Lat

φ(~r)sin~k~r,

ε(~k) = d−
∑

1≤i≤d
cos(~ki~ei).

(4.2.4)

The partition function is then:

Z =
∫ ∏
~k∈ 1

2 FBZ

dψ1(~k)dψ2(~k)e−βε(~k)[ψ1(~k)2+ψ2(~k)2]. (4.2.5)

4The following calculations are done in [96]. However, we write the terms more explicitly, which
facilitates a numerically exact approach.
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4.2. The Dynamics of Spin Waves

As we see, ψ1(~k),ψ2(~k) are independent variables in Z, and each of them follows
a Gaussian distribution. However, there is a restriction on ψ1(~k),ψ2(~k) due to their
symmetry in the first Brilluoin Zone. We rewrite eq. (4.2.2) as:

H({φi}) =
∑

~k∈ 1
2 FBZ

ε(~k)[ψ2
1(~k) +ψ2

2(~k)] (4.2.6)

=
∑

~k∈reduced FBZ

ε(~k)[n1(~k)ψ2
1(~k) +n2(~k)ψ2

2(~k)], (4.2.7)

where “reduced FBZ” includes only one of ~k and −~k for all ~k ∈ FBZ, unless ~k =
mod (−~k,2π). In other words,

• if ~k 6= mod (−~k,2π), then n1(~k) = n2(~k) = 1;

• if ~k = mod (−~k,2π), then n1(~k) = 1/2,n2(~k) = 0.

The second case only includes the vertices of the first Brilluoin Zone, which is negli-
gible compared with the first one. In general, we have〈

ψi(~k1)ψj(~k2)
〉

= δi,jδ~k1,~k2

1
2ni(~k1)βε(~k1)

. (4.2.8)

As presented in section 1.6.3, the spatial correlation is closely related to the phase
transition. It is given by:

g(~r) = 〈~m0 ~m~r〉= 〈cos(φ(~r)−φ(0))〉= exp
(
−1

2
〈

[φ(~r)−φ(0)]2
〉)

. (4.2.9)

The right-hand side of eq. (4.2.9) is obtained as [φ(~r)−φ(0)] follows Gaussian distri-
bution:

φ(~r)−φ(0) = Re( 1√
N

∑
~k∈FBZ

φ̂(~k)(exp
(
i~k ·~r

)
−1))

=
√

2
N

∑
~k∈Reduced FBZ

n1(~k)(cos~k ·~r−1)ψ1(~k) +n2(~k)sin~k ·~rψ2(~k).
(4.2.10)

Its variance is calculated using eq. (4.2.8):

〈[φ(~r)−φ(0)]2〉=
∑

~k∈Reduced FBZ

n1(~k)(cos~k ·~r−1)2 +n2(~k)(sin~k ·~r)2

Nβε(~k)
. (4.2.11)

In the continuous limit of the reciprocal lattice (infinite large lattice), the finite vertices
are neglected, and the summation is replaced by an integral:

〈[φ(~r)−φ(0)]2〉=
∫
~k∈Reduced FBZ

n1(~k)(cos~k ·~r−1)2 +n2(~k)(sin~k ·~r)2

Nβε(~k)

=
∫
~k∈FBZ

2sin2(~k ·~r/2)
Nβ(d−∑1≤i≤d cos(~ki~ei))

dd~k.
(4.2.12)
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In the limit of large ~r and ~kmin~r ∼ 1, the divergence of the integration appears when
the dimension is lower than 3, as a basic conclusion of the Mermin–Wagner theorem
[93]:

〈[φ(~r)−φ(0)]2〉 ∝


r if d= 1,
logr if d= 2,
1 if d≥ 3.

(4.2.13)

Combining the result with eq. (4.2.9), we then find the spatial correlation has a short-
range order in the one-dimensional case, a quasi-long-range order in the two-dimen-
sional case, and a long-range order in the cases of dimension higher than three. After
all, there does not exist any phase transition by reducing temperature.

This result was obtained by F. Wegner in 1967, but at the time it was not clear
whether the behavior found in the harmonic model would translate to the XY model.
The logarithmic correlations of XY model at low temperature were proven by J. Fröh-
lich and T. Spencer in 1981 [97]. The logarithm term in eq. (4.2.13) is of the same order
of magnitude as the famous single-vortex contribution to the free energy, which we
will then introduce in section 4.3.

4.2.2 Event-chain Dynamics in Spin-wave Mode
The spatial correlation provides a good approach in evaluating the dynamics. In the
following, we consider the spatial correlation of the most distant sites as the slowest
random variable in a local dynamics. We suppose there are two distant sites located
at ~0 and ~r, at the time t0, φ(~0, t0) < φ(~r, t0). If a new configuration needs to fully
decorrelate with the former one at the time t0, the event φ(~0, t) > φ(~r, t) should be
achieved at least once.

In the event-chain algorithm, the step size is mainly determined by the temper-
ature, if most of the sites are equilibrated (see section 5.1.3 for further details). In
the case that φ(~r, t0)−φ(~0, t0) is much larger the average step sizes, it will take a few
moves on the site ~0 until its φ(0)∼ φ(~r).

We think of an “out of equilibrium” state, with φ(~0, t0) = min~R{φ(~R,t0)} and
φ(~r, t0) = max ~R{φ(~R,t0)}. Before φ(~0) gets close enough to φ(~r, t0), the sites with
smaller φ tends to move more times than the ones with larger φ, as shown in Fig. 4.3.
We call this dynamics “water-level” as it tends to fill the gap before ascending to the
top. In the end, at a given temperature, the number of sweeps needed is

t∝ [φ(~r, t0)−φ(~0, t0)]. (4.2.14)

In the harmonic model, the domain of φ is (−∞,∞). With an event-chain dynamics
of a fixed direction, each point in this domain can be reached at most once, while the
irreducibility is guaranteed by the translational symmetry of the system. The mixing
time can be infinite according to eq. (4.2.14), as the initial distortion can go to infinity.
The autocorrelation time has the following behavior:

tcor(L)∝ σeq(L)∝


√
L if d= 1,√
logL if d= 2,

1 if d≥ 3,
(4.2.15)
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4.2. The Dynamics of Spin Waves

Figure 4.3: The evolution of the configuration in the event-chain algorithm in two-
dimensional harmonic model. The distortion in the initial configuration (red) is much
larger than the amplitude of thermal fluctuations. It can be seen that the event-chain
dynamics tends to move the lower ones (on the corners) before the global fluctuation
gets small enough.

where

σeq(L) = max
~r∈Lat

√〈
[φ(~r)−φ(0)]2

〉
,

based on eqs (4.2.13) and (4.2.14). This relation is verified by the autocorrelation time
of the “structure factor” of the lowest Fourier mode (see Fig. 4.4).

We use the square of the amplitude of the ~k mode as the observable:

|φ̂(~k)|2 = φ̂(~k)φ̂( ~−k) = 1
N

∑
~r∈Lat

φ(~r)e−i~k~r
∑

~r∈Lat

φ(~r)e+i~k~r


= 1
N

∑
~r∈Lat

φ(~r)cos~k~r

2

+ 1
N

∑
~r∈Lat

φ(~r)sin~k~r

2

= 1
2[ψ2

1(~k) +ψ2
2(~k)].

(4.2.16)

It shares a similar form with the structure factor in particle systems, in the limit of
small ~q:

S(~q) = 1
N

∣∣∣∣∣∑
a

ei~q· ~Ra
∣∣∣∣∣
2

= 1
N

(∑
a

cos~q · ~Ra
)2

+ 1
N

(∑
a

sin~q · ~Ra
)2
. (4.2.17)

As ψi(~k) follows the Gaussian distribution, the square of the amplitude follows χ2
2

distribution (exponential distribution):

P|φ̂(~k)|2(x) = 1
σ2(k)e

−x/σ2(k), (4.2.18)
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ECMC
k = (1,0)

ECMC
k = 1

LMC
k = 1

LMC
k = (1,0)

Figure 4.4: Equilibrium autocorrelation functions C(t) of the squared amplitude
|φ̂(~k)|2 of the lowest Fourier mode in the harmonic model for the event-chain algo-
rithm (ECMC) and for local Monte Carlo (LMC). Upper: C(t) for the Fourier mode
k = 1 in 1D. Lower: C(t) for the Fourier mode k = (1,0) in 2D. Data are in agreement
with the scaling of eq. (4.2.15).

with its mean and variance 〈
|φ̂(~k)|2

〉
= σ2(k) = 1

2βε(k) ,

var(|φ̂(~k)|2) = σ4(k) = 1
4β2ε2(k) ,

(4.2.19)

where σ(k) = 1√
2βε

is the variance of ψ1(k) and ψ2(k) (we take n1 = n2 = 1).

Although we can not calculate the time-dependence of the event-chain Monte Carlo
algorithm for the harmonic model, we believe that the evolution of |φ̂(~k)|2 provides
the slowest time scale. In Fig. 4.4, we see that the equilibrium auto-correlation time of
the event-chain algorithm grows proportionally to σeq(L). In sharp contrast, the local
Metropolis method has a diffusive O(L2) autocorrelation time.

In the XY model at low temperature, there is a bounded phase difference between
two neighbors

∆φ≤ π,

then the distortion is bounded by the size of the system L. Hence, the mixing time of
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4.3. Vortices in the Two-Dimensional XY Model

the spin-wave mode is expected to be:

tmix =O(L). (4.2.20)

The equilibrium autocorrelation has the same time scale as the harmonic model. We
relate the first fast scaling in Fig. 4.2 to the harmonic “spin-wave” mode.

4.2.3 From the Spin Wave to the Vibrations in Solids
The systems at low temperature and high pressure behave similarly, for example the
mechanical dynamics of solids can also be approximated by the quadratic interaction.
Now we consider the harmonic solid model, whose Hamiltonian on a lattice is

H({Xi}) =
∑
〈i,j〉

k

2 ( ~Xi− ~Xj +~rij)2, (4.2.21)

where ~Xi is the displacement of the particle i from the origin, ~rij is the mean displace-
ment of equilibrium from site i to j, 〈i, j〉 indicates the closest neighbors. Assuming
that ~rij = ~rj−~ri, the Hamiltonian is transformed into:

H({Xi}) =
∑
〈i,j〉

k

2 ( ~Xi− ~Xj +~rij)2 =
∑
〈i,j〉

k

2
(
( ~Xi−~ri)− ( ~Xj−~rj)

)2

=
∑
〈i,j〉

k

2 (~ui−~uj)2 =
∑
〈i,j〉,x

k

2 (ui,x−uj,x)2.

(4.2.22)

where ~ui is the displacement of the particle i from the position ~ri. The components of
(~ui− ~uj)2 on all the dimensions are decoupled in the Hamiltonian, as the quadratic
approximation of Heisenberg model we discussed before [98].

The fast scaling in the event-chain method can be extended to a lattice model with
phonon mode, and to even more general cases with certain optimization. We will
continue this discussion in chapter 5.

4.3 Vortices in the Two-Dimensional XY Model
In the quadratic approximation of two-dimensional XY model, there is a quasi-long-
range order of the field φ [96]. However, the existence of short-range correlations is
proven mathematically in the two-dimensional XY model at high temperature [99].
The physics changed by the harmonic approximation is that the phase space of a
circle S1 is replaced with the linear space R, while the mapping between two spaces
with different topological structures will involve singularities, such as the mapping
from R2 (the coordinates) to S1 in two-dimensional XY model. Within field theory, a
singularity appears as a “vortex”. For a closed region, we use the winding number
(or “charge”) q to measure the number of vortices:

2πq =
∮
∂C
~∇φ(~r) ·d~l, (4.3.1)
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and in the discrete lattice:

q(C) =
∑
k∈∂C

[ mod (φk−φk+1,2π)−π]/2π. (4.3.2)

q = +1 corresponds to a vortex and q = −1 stands for an anti-vortex. On a square
lattice, the position of vortices are restricted on a plaquette with four spins on the
corners. We assume that the vortices are positioned in the centers of these plaquettes
in our later discussion.

The energy of a single vortex diverges if the system is infinitely large (∝ logL)
or infinitely divisible (∝ (− loga)). The inferior cut-off (the lattice parameter a) and
the superior cut-off (the size of the system L) restrict the energy of the system with a
single vortex:

Ev = 1
2JR

∫ L

a
2πr 1

r2 dr+Ec

= πJR log L
a

+Ec,

(4.3.3)

where JR is the renormalized coupling constant (which may change with the lattice
type and temperature), Ec is the core energy that counts for the contribution from
r < a.

In a similar model (Villain’s model, see section 1.6.4 and [63]), the vortex mode
and spin-wave mode can be separated in the Hamiltonian via a duality transforma-
tion. The “vortex part” of the Hamiltonian exhibits an interaction between vortices
isomorphic to that of the two-dimensional Coulomb gas:

Uij(~r) =−πJRqiqj log r
a

+ 2Ec, (4.3.4)

where r is the distance between two vortices, q1 and q2 are their charges. Different
from the case of a single free vortex, the energy of a pair is no longer bounded by the
size of the system.

The Kosterlitz–Thouless theory on the two-dimensional XY model attributes the
short-range correlation at high temperature to the appearance of free vortices. The
free energy of a single vortex is:

Fv = Ev−TSv

∼ πJR log L
a
−T log L

2

a2

= (πJR−2T ) log L
a
.

(4.3.5)

As the system size increases, the existence of free vortices is probable only if Fv stays
around 0. This argument then predicts the critical temperature

TKT = πJR
2 or βKT = 2

πJR
, (4.3.6)

above which free vortices are likely to appear. This phase transition is known as an
infinite-order phase transition, that the derivative of the free energy of all the orders
are continuous [90], the same as the solid-hexatic phase transition in section 3.3.1.
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4.3.1 Vortex-pair Distance
According to eq. (4.3.4), the energy of a vortex–anti-vortex pair is bounded by its size
instead of the system size. In analogy with eq. (4.3.5), the free energy of a vortex–anti-
vortex pair is:

Fvp(d) = U(d)−TSvp

∼ πJR log d
a
−2T log L

a
.

(4.3.7)

From the equation we see that, at any given temperature (even below the critical one),
the size of the vortex–anti-vortex pair can go to infinity as the system size increases in-
finitely. A phenomenological relation between the vortex–anti-vortex pair’s distance
and its corresponding system size is deduced:

d∝ L
2T
πJR . (4.3.8)

On the other hand, the net charge of all the vortices and anti-vortices inside a system
under the periodic boundary condition is zero,∑

vi∈C
qvi +

∑
ai∈C

qai = 0,

as the integral in eq. (4.3.1) compensates on the periodic boundaries ∂C. The charge
inside a plaquette of a two-dimensional square lattice is either ±1 or 0 (which means
qvi = 1 and qai =−1), according to eq. (4.3.2). Based on these facts, we will consider a
method to classify the N vortices and N anti-vortices to N vortex–anti-vortex pairs,
on a two-dimensional square lattice under the periodic boundary condition.

The physical system at low temperature tends to minimize its energy by alter-
nating the alignment of the surrounding spins, as we see in Fig. 4.5. The first-order
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Figure 4.5: The configurations of two pairs of vortices. From left to right, the vortex
and anti-vortex in the center get closer, and the orientation of the surrounding spins
suggests that the pairing is changing from 2 symmetric ones to a large one and a small
one. The color code is as in Fig. 4.6.

approximation of the total energy is the energy of the vortex–anti-vortex pairs, ac-
cording to eq. (4.3.4):

E({~di}) =
N∑
i

Uvi,ai(di) = πJR

N∑
i

log di
a

+ 2NEc. (4.3.9)
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Regarding the principle of minimum energy, we provide a simple yet practical algo-
rithm, by minimizing the objective function ε:

ε({vi,aPi}) =
N∑
i=1

log |~Rvi− ~RaPi |, (4.3.10)

where {Pi} is obtained by a permutation P on the sequence {1, . . . ,N}, ~Rvi and ~Rai
denote the positions of the vortex vi and anti-vortex ai. The optimal pairing is given
by:

{vi,api}= argminP∈SN ε({vi,aPi}), (4.3.11)

for all possible P from the permutation group SN . The optimal assignment of the
N vortex–anti-vortex pairs can be solved with the “Hungarian method” [100] for
weighted matching problems. This method recursively reduces the size of the cost
array and identifies the pairing of minimal ε, in the complexity of O(N3). An exam-
ple of the assignment is shown in Fig. 4.6.

+

(b)(a)

Figure 4.6: Vortices in the XY model. (a): A configuration with 5 vortices (“+”) and 5
antivortices (“-”). The lines indicate matched vortex–anti-vortex pairs in the optimal
assignment (see eq. (4.3.10)), and the length of the longest line (shown in white) equals
the max-distance. A subsystem containing the max-distance pair is highlighted. (b)
from above: The color code for the spin orientations, vortex, anti-vortex, and neutral
plaquette configuration. 6

6This is a remake of the Fig. 2 in the Publication I and [12].
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In the optimal assignment, the pair (vi,api) of the largest separation defines the
max-distance dmax of the configuration. It is noticed that the existence of large vortex–
anti-vortex pairs and reduced susceptibility are strongly correlated (see Fig. 4.7). This
is explained with the distortion of spin alignment by a vortex–anti-vortex pair: the
larger pair it is, the wider domain in the configuration will be affected. In the follow-
ing, we will use dmax to study the event-chain dynamics.
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Figure 4.7: Time-evolution of the vortex–anti-vortex max-distance in the 384× 384
XY model at T/TKT = 0.933 compared to that of the susceptibility (smoothed over a
small time window). The inset illustrates the correlation between max-distance and
susceptibility in greater detail. 8

4.3.2 Maximum Vortex-pair Distribution
As an observable, the maximum vortex–anti-vortex pair distance has its own distribu-
tion in equilibrium, and autocorrelation time in event-chain dynamics. We again face
the problem of defining the “worst” initial configuration for an empirical approach to
the mixing time.

In analogy with the “out-of-equilibrium” study of the spin-wave mode in sec-
tion 4.2.2, we begin with the evolution of the maximum vortex–anti-vortex pair dis-
tance in the extreme cases, such as Fig. 4.8 (a): in the initial configuration there are
four widely separated vortices and anti-vortices (or a quadrupole) of size L

2 . We mea-
sure the time τconv (counted in sweeps) when the susceptibility reaches its mean value
at a given temperature, which can be seen as a “poor-man’s” approximation to deter-
mining a mixing time. In Fig. 4.8 (b), at low temperature the mean time to reach

8This is a remake of the Fig. 3 in the Publication I and [12].
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equilibrium τconv is proportional to the square of the vortex–anti-vortex pair’s size.
Hence, the time to reach equilibrium of a vortex–anti-vortex pair in event-chain dy-
namics is proportional to its size’s square (and independent of the system’s size), as

τconv(d)∝ d2. (4.3.12)
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Figure 4.8: (a) The initial configuration used for the measurement of the τconv (which
is similar to the mixing time). (b) The scaling of τconv (measured in sweeps) at different
temperatures below TKT. It is seen that the time grows as L2 at low temperatures.

In the worst case, when the size of the vortex–anti-vortex pair is in the scale of the
system L, it will takeO(L2) to annihilate. However, a vortex–anti-vortex pair as large
as the system at a temperature below TKT is rarely found since they are closely bound
[90]; according to eq. (4.3.4), the distribution of its distance has a polynomial tail:

P (~d) = 1
Z

e−βEp(d)

= 1
Z

e−2βEc (d/a)−πβJR ∝ d−πβJR ,
(4.3.13)

which means the probability decreases algebraically with the growth of the vortex–
anti-vortex pair distance. This conclusion also applies to the maximum vortex–anti-
vortex pair distance.

The maximum vortex–anti-vortex pair distance, as the maximum of a group of ran-
dom variables, should have some max-stable property as mentioned in section 1.1.2.
We consider a L×L system, which can be divided into n2 practically “independent”
subsystems of size L/n×L/n (L� na). The max-distance of the large system is the
maximum of n2 “independent” max-distances of the smaller systems, if no vortex–
anti-vortex pair is separated in the partition. (In the limit of infinite L, for any n, the
ratio of being separated by the partition is going to zero.)
In other words, if

di ∼ P (x;β,L), and D = max
1≤i≤n2

{di},
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then
D ∼ P (x;β,nL),

where D is the max-distance of the whole system, and di is the max-distance of each
subsystem i.

We assume that the distribution of max-distance will converge to a stable one, in
the limit of infinite L at a temperature below TKT. Then it belongs to the extreme value
distribution family discussed in section 1.1.2. The polynomial tail in eq. (4.3.13) leads
to the Fréchet distribution, specifically:

fdmax(x) = α

s

(
x

s

)−1−α
exp

[
−
(
x

s

)−α]
, (4.3.14)

with its cumulative distribution

Fdmax(x) = exp
[
−
(
x

s

)−α]
. (4.3.15)

α describes the power-law decay of the max-distance distribution, and s sets its L-
dependent scale. The minimum value of the max-distance is strictly 0, so there is no
shift factor, and the scaling factor is proportional to n1/α = L2/α.
If α> 2, the mean, the median and the mode of the Fréchet distribution grows slower
than L, and the probability in the cut-off P(x>

√
2L) becomes negligible when L goes

to infinity. Hence, we conjecture that the Fréchet distribution is the exact distribution
of max-distance in the limit of large L, using eq. (4.3.10) for the objective function in
the vortex–anti-vortex assignment.

Slightly below TKT, the Fréchet distribution already provides a good fit for the
max-distance distribution (see Fig. 4.9). By extracting the dependence of L from the
scaling factor s, the Fréchet distribution of the dmax is then characterized by para-
meters (α,L2/αs0), where α and s0 are both dependent on the temperature, but not
on the system size L (as shown in the inset of Fig. 4.9).

The scale parameter α of Fréchet distribution can be evaluated via 〈dmax〉, as

〈dmax(L,β)〉 ∝ s(L,β) = s0(β)L2/α. (4.3.16)

The log–log plot of dmax−L is a straight line, as shown in the inset of Fig. 4.10. By
comparing eq. (4.3.16) to eq. (4.3.8), qualitatively we find:

α∝ JR/T. (4.3.17)

The renormalized coupling constant JR converges to a constant when T ≈ 0, so the
relation between α and 1/T is approximately linear at low temperature, as plotted in
Fig. 4.10.

In the end, we note that for α= 2, the distribution of dmax scales with s∝L. This is
observed for T/TKT→ 1−. Above TKT, the Fréchet distribution no longer describes the
maximum vortex–anti-vortex pair distribution, as its heavy tail is cut by the size of
the system, but the distribution of the max-distance is still self-similar after rescaling.
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Figure 4.9: Cumulative max-distance distribution in the XY model at L = 256 and
T/TKT = 0.965 fitted with the Fréchet distribution in eq. (4.3.15) with α = 2.80 and
s = 4.79 (s0 = 0.0913). The inset shows that the fitting parameters α and s0 are inde-
pendent of L.

4.3.3 Autocorrelation Time of the Vortex Mode
At low temperatures (< TKT), dmax scales as L2/α� L (α > 2). According to our dis-
cussion in the beginning of the last section, it will take the time ∝ d2

max to merge the
vortex–anti-vortex pair in the event-chain dynamics. Hence, the autocorrelation time
is expected to scale as s2 = L4/αs2

0. By combining the previous discussions, we have:

tcor ∼ L4/α ∼
{
L2 for T → T−KT,
Lconst T for T → 0.

(4.3.18)

The dynamical scaling parameter z = 4/α of the event-chain algorithm is thus con-
nected to the scale parameter of a Fréchet distribution, and it is predicted to vanish
in the zero-temperature limit. This relation z = 4/α is consistent with the autocorre-
lation of the susceptibility χ below the critical temperature (see Fig. 4.11). So far, we
identify the second mode as the vortex mode.

The local Monte Carlo method takes a time of O(L2) to recover from the least
“preferable” state (which we presume to correspond to the mixing time) for both the
spin-wave mode and the vortex mode. At low temperature the dynamical scaling of
the local Monte Carlo is given by the harmonic model. The Wolff cluster algorithm
has a much faster scaling, which we will discuss in section 4.4.3.

On the contrary, in the event-chain algorithm, the time to merge the largest vortex–
anti-vortex pair (which corresponds to the mixing time in a rigorous context) isO(L2),
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Figure 4.10: Scaling of the Fréchet parameter α with the inverse temperature β
demonstrating that α→∞ for β→∞ (Our theoretical model indicates α ∝ β at low
temperature). The inset shows 〈dmax〉 with respect to system size L, from which α is
obtained.

and the autocorrelation time is O(L4/α)>O(
√

logL). It indicates that at any temper-
ature T > 0, the autocorrelation exhibits two scales.

4.4 Other Topological Excitations
A vortex in a two-dimensional plane is arguably the simplest topological excitation.
Many other topological excitations exist in field theory, and here we will only list a
few of them that are frequently seen in condensed-matter theory, with special event-
chain dynamics.

In the three-dimensional Heisenberg model, evidence shows that the autocorre-
lation time of event-chain dynamics is O(L) at the critical temperature [88] (and it
decreases quickly to O(1) off the critical temperature). As we proved that the spin-
wave mode in three-dimensional lattice has a correlation timeO(1), the disagreement
once again leads us to investigate the topological excitations.

4.4.1 Monopoles in the 3D Heisenberg Model

Monopole is a topological defect in the mapping from R3 to S2. In field theory, the
winding number/charge is defined as:

Q= 1
4π

∮
∂C

d2x(~s · (∂1~s×∂2~s)) , (4.4.1)
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Figure 4.11: Susceptibility autocorrelation at T = 0.93TKT for different system sizes in
the two-dimensional XY model. The inset shows their equilibrium correlation time,
compared with the scaling z obtained by Minimum Mean Square Error method and
the fitting using z(T ) = 4/α(T ) from Fig. 4.10. The result of Fréchet theory of the
vortex distribution agrees with the autocorrelation of the susceptibility.

where C is a bulk in R3, ∂C is its surface. ~s(~x) is an O(3) field with ~s2 = 1, Q is
the winding number/charge of the monopole enclosed in C. In the lattice model,
the integral can be replaced by the summation on all the surfaces, and each surface is
triangularized to multiple oriented components. Here, the charge inside each triangle
(~s1,~s2,~s3) has a relation:

ei2̇πq(~s1,~s2,~s3) = 1 +~s1 ·~s2 +~s2 ·~s3 +~s3 ·~s1 + i~s1 · (~s2×~s3)√
2(1 +~s1 ·~s2)(1 +~s2 ·~s3)(1 +~s3 ·~s1)

,

|q(~s1,~s2,~s3)|= 1
2π arccos

(
1 +~s1 ·~s2 +~s2 ·~s3 +~s3 ·~s1√

2(1 +~s1 ·~s2)(1 +~s2 ·~s3)(1 +~s3 ·~s1)

)
,

(4.4.2)

where the sign of q is determined by

sign(q(~s1,~s2,~s3)) = sign[~s1 · (~s2×~s3)].

The charge on the surface is proportional to the signed area of the spherical triangle
with corners of (~s1,~s2,~s3), and their summation around a closed bulk is an integer.
[101]

Evidence has shown an abundance of monopoles near the critical temperature
[92]. On the other hand, the energy of a monopole–anti-monopole pair is proportional
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to its size [102, 103],
E(R) =O(R).

It is very unlikely to have a large monopole–anti-monopole pair in equilibrium, as it
would cost less energy by breaking them into two smaller pairs.

As a non-local topological defect, a large monopole–anti-monopole pair will not
vanish easily with local algorithms. We prepare the initial configuration of four mono-
poles and four anti-monopoles (namely an octupole) and find the time to merge them
is at least proportional to distance of a pair at low temperatures in the event-chain
algorithm:

tmerge(d)∝ d.

It is faster than the vortex mode, as the interaction between monopoles is stronger.
Hence, the mixing time from the most unfavorable configuration to equilibrium is
O(L) sweeps.

4.4.2 Bloch Mode
In the previous discussion we mentioned that vortices appear in the mapping from
R2 to S1. In the simulation with periodic boundary condition, another topologi-
cal defect, which is called a “Bloch mode”, merges in the mapping from T2 (two-
dimensional lattice under periodic boundary condition, like a torus) to S1. It is illus-
trated in Fig. 4.12, and described with the equation:

φ(x) = 2π x
L
. (4.4.3)

This mode is topologically non-trivial: if we select the contour ∂C in eq. (4.3.1) wind-
ing across the periodic boundary (e.g. from x= L/2 to x= L, across x= 0 and ending
at x = L/2), the integration will give a non-zero charge. In other words, it is an ex-
treme case of the vortex, which cannot be wiped out by a sequence of local moves.

The Bloch mode is a slow mode of the XY model in two and three dimensions, for
both the event-chain algorithm and the local Monte Carlo method, although it would
have to be considered for an analysis of the mixing time. Both algorithms take a time
scale of O(L2) at low temperature. However, this mode has too few degrees of free-
dom; it is too “clean” to appear at low temperature, while at higher temperature the
vortex will destroy its alignment. Therefore, it plays less of a role in our discussions.
This mode is unstable in Heisenberg model, because the extra dimension of θ permits
it to bypass the barrier without any increase in the energy.

4.4.3 Comparison with Other Algorithms
Based on the discussions before, we summarize the dynamics of event-chain algo-
rithm of 2D XY model in Table 4.1.

9However, we are not able to verify the autocorrelation time in the simulation of local Monte Carlo
(as it is impossible to split the vortex mode from the spin-wave mode, if they have the same scaling).
Here we put our conjecture.
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a) b)

Figure 4.12: (a) An illustration of the Bloch mode in a two-dimensional XY model,
according to eq. (4.4.3). (b) A relaxation from the Bloch mode in (a) using the event-
chain algorithm at T = 0.75TKT. The pattern is changed very little. The color code is
as in Fig. 4.6.

Algorithm Mode Mixing time Autocorrelation time

ECMC
spin wave O(L) O(

√
logL)

vortex O(L2) O(L4/α)
Bloch mode O(L2) -

LMC
spin wave O(L2) O(L2)

vortex9 O(L2) O(L4/α)
Bloch mode O(L2) -

Table 4.1: The time scaling of event-chain Monte Carlo and local Monte Carlo.

The mixing time and the autocorrelation time of the spin-wave mode in local
Metropolis dynamics areO(L2), as shown in Fig. 4.4. For the vortex mode, the mixing
time also takes about O(L2) sweeps. These lead to a fact that we cannot distinguish
the vortex mode from the spin-wave mode in the autocorrelation.

The topological defect can evolve faster with non-local dynamics. For example,
Wolff’s cluster algorithm in section 1.6.4 [62] provides the vortices in two-dimensional
XY model a chance to “hop” from one side of the cluster to another side by flipping
it, resulting in a much shorter mixing time and equilibrium autocorrelation time:

tWolff
mix ∼O(1), tWolff

cor ∼O(1).

The fast dynamics also applies to the Bloch modes, and also to the monopole–anti-
monopole pairs in three-dimensional Heisenberg model.
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4.5 Conclusion
In this chapter, we observed a large speed-up for the relaxation of spin-wave excita-
tions (z ∼ 0) of the event-chain algorithm compared to the local Monte Carlo algo-
rithm (z ∼ 2). We also studied the relaxation of the topological excitations, includ-
ing vortex–anti-vortex pairs in the two-dimensional XY model and monopole–anti-
monopole pairs in three-dimensional Heisenberg model. We identified the distribu-
tion of the maximum vortex–anti-vortex pair distance dmax as a Fréchet distribution.
In the XY model, the potential of a vortex–anti-vortex pair is weak, which leads to a
d2

max relaxation time, and an L2 mixing time at the worst case. Nevertheless, the auto-
correlation time scale indicated by the Fréchet parameter α(T ) is smaller, which goes
to O(L0) at the low-temperature limit. These results agree with the autocorrelation
of the susceptibility in previous studies [11], as the spin-wave mode outspeeds the
vortex mode, resulting in a two-scale phenomenon.

Furthermore, in the particle system, a fast-relaxing phonon mode in event-chain
algorithm is expected in analogy with the spin-wave mode. In chapter 5 we will
discuss such systems (e.g. Lennard-Jones systems), with the goal of achieving fast
dynamics.
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Chapter 5

Event-chain Algorithm with Factor
Fields

In chapters 3 and 4, we studied two distinct Markov-chain dynamics of the event-
chain algorithm in one-dimensional models. Depending on the precise algorithm, the
hard-sphere system was found to have a mixing time ofO(N2 logN) for an appropri-
ately chosen distribution of chain length (see Table 3.1). On the other hand we have
reasons to believe that the harmonic spin-wave/lattice-wave system has an autocor-
relation time of O(N3/2) events (listed in Table 4.1). For a system with an interaction
between these two classes (e.g. the Lennard-Jones potential, which reduces to the har-
monic interaction at high density with a bounded attraction at long range), we also
expect a dynamics between these two, O(N3/2) and O(N2 logN).

In the present chapter, we will begin with the lifting scheme of multiple particles
and multiple types of interactions, introduce the optimization with a factor field, and
analyze the behavior of the event-chain algorithm in the optimal dynamics. The final
result will be that, although irreversible Markov chains accelerate mixing-time scales
with respect to the reversible Markov chains, their behavior can be improved even
further by tuning them to a special point corresponding to the harmonic model.

5.1 Factor Fields in Event-chain Dynamics

5.1.1 General Lifting Scheme of Interacting Systems
In chapter 4 we discussed spin models with nearest-neighbor interactions, such as the
XY model and Heisenberg model. For a general system of N interacting particles, all
the interactions are split into a set of factorsM 1, that

M= {(IM ,TM )|IM ∈ P({1,2, . . . ,N}),TM ∈ T )}, (5.1.1)

where P is the power set of the indices (consisting of single ones, pairs, triplets and
more), and T is the set of interaction types. For the total potential energy, we have

E({ri}) =
∑
M∈M

EM ({ri : i ∈ IM}), (5.1.2)

1This paragraph of discussion is largely based on the work by M. Faulkner et al. [16, Section II].
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where EM has the interaction of type TM , depends on the factor indices IM . Accord-
ing to the factorized Metropolis filter discussed in section 2.3.2, the acceptance rate of
a move

P acc
FacMetro({δE+

M |M ∈M}) =
∏

M∈M
e−β(δE+

M ) = exp
(
−β

∑
M∈M

δE+
M

)
, (5.1.3)

where δE+ equals δE if it is positive, and equals zero otherwise, as previously defined
in eq. (2.3.5). A rejection-activation lifting scheme is given: if the move is rejected
by the factor of δEM , then i ∈ IM can be chosen as the next active particle, which
is uniquely determined if the factor comprises only two particles or spins (it can be
generalized for the factor sets containing more elements).

5.1.2 One-dimensional Lennard-Jones Model
Now we consider a one-dimensional particle system with nearest-neighbor Lennard-
Jones interactions. The potential is

VLJ(r) = 1
r12 −

1
r6 , (5.1.4)

where we choose the natural unit, for which the two terms on the right-hand side of
eq. (5.1.4) indicate a repulsive potential at close range and an attractive potential at
long range. The minimum energy is reached at r0 = 2 1

6 ≈ 1.122, with VLJ(r0) =−1/4.
The interaction is attractive if r > r0, otherwise it is repulsive.

With the discussion of the section 5.1.1, the factor set is

MLJ = {({i, i+ 1},LJ) : i ∈ 1, . . . ,N}. (5.1.5)

An alternative is more widely used

M12+6 = {({i, i+ 1},LJ12),({i, i+ 1},LJ6) : i ∈ 1, . . . ,N}, (5.1.6)

where LJ12 and LJ6 stand for the repulsion and attraction respectively:

VLJ12(r) = 1
r12 ;VLJ6(r) =− 1

r6 .

An active particle i moving in the positive direction will trigger the rejection with
either the factor ((i, i+1),LJ12) or ((i, i−1),LJ6) inM12+6, as illustrated in Fig. 5.1(a).

It is observed that in the special case where L=Nr0, the event-chain Monte Carlo
with the factor setMLJ has an autocorrelation time of O(N3/2) single steps, the same
as the spin-wave mode in section 4.2. However, if there is a slight change of the
density (e.g. L = 0.99Nr0), the autocorrelation time increases to O(N2) single steps
again. In the case of L = 0.99Nr0 at high temperature T ∼ |VLJ(r0)|, the event-chain
algorithm is fast with the factor setMLJ in eq. (5.1.5), and its autocorrelation time is
O(N2) single steps (a dynamical exponent z = 1 with restarts, see Fig. 5.1(b)), agree-
ing with the dynamics of the lifted forward Metropolis algorithm in one-dimensional

3This figure is taken from our submitted manuscript in Publication III.
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c)

Figure 5.1: (In this figure all measurements are taken in number of sweeps, so that one sweep
∼N events.) (a) illustrates the dynamics of the event-chain algorithm with the factor
sets MLJ and M6+12. (b) and (c) show the integrated autocorrelaton times of the
structure factor (of the lowest Fourier component, see eq. (4.2.17)) as a function of
system size N , for the one-dimensional periodic Lennard-Jones model (〈r〉 = 0.99r0).
The autocorrelation times of reversible local Markov-chain dynamics (red), the event-
chain Monte Carlo with restarts (blue) and molecular dynamics (yellow) are plotted.
(b): β|VLJ(r0)| = 0.1, the event-chain Monte Carlo with MLJ (the result of M12+6 is
similar). (v): β|VLJ(r0)|= 10, the event-chain Monte Carlo withM12+6. In both cases,
the scaling of the event-chain Monte Carlo and Molecular dynamics is z = 1, while in
reversible local Markov-chain dynamics z = 2.3

hard-sphere model in section 3.1.4. At low temperature, the event-chain Monte Carlo
with the factor set ofM12+6 slows down largely, but keeps the scaling of z = 1 (see
Fig. 5.1(c)). In the following, we will find the reason behind the different scalings in
the event-chain dynamics.

5.1.3 Another Visit to the Harmonic-solid Model

As the one-dimensional Lennard-Jones model in the low-temperature limit is de-
scribed by its quadratic approximation, we expect to recover the superior autocor-
relation times discussed in section 4.2 in this model also. To this aim, we investigate
the one-dimensional harmonic chain in section 4.2.3. The interaction between two
particles is k

2 (∆x− a)2, where a is the lattice parameter. It could be either attractive
(∆x > a) or repulsive (∆x < a).

In more general cases, we assume that the energy between two particles is

Eharm(∆x;b) = k

2 (∆x− b)2, (5.1.7)

where the equilibrated distance between particles is b. Then the total energy of a chain
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of length L with N particles under the periodic boundary condition is

EHarm({xi};b) = k

2 (x2−x1− b)2 + · · ·+ k

2 (xN −xN−1− b)2 + k

2 (x1 +L−xN − b)2

= EHarm({xi};0)−kbL+ 1
2Nkb

2

= EHarm({xi};0) + 1
2Nk(b−L/N)2−kL2/(2N).

(5.1.8)
It means that the parameter b is irrelevant: any b simply shifts the ground-state energy,
and the minimum is reached at b = L/N . In other words, different EHarm’s have the
same derivatives (the same force on each particle):

∂EHarm({xi};b)
∂xi

= k(xi−xi−1− b) +k(xi+1−xi− b) = ∂EHarm({xi};0)
∂xi

, (5.1.9)

which shows that the mechanical property of the model is unchanged. Both molecular-
dynamics and reversible Monte Carlo algorithms are insensitive to b (as we will show,
this is however not the case for the event-chain Monte Carlo approach). This argu-
ment also works for fixed boundary conditions.

In an extreme case, even if the interaction is purely attractive (b = 0), the steady
state will stay the same, which is verified by all Monte Carlo methods, including
Metropolis, heat-bath and event-chain algorithms. Metropolis and Glauber dynamics
are identical for any b according to eq. (5.1.9). However, in the event-chain algorithm,
the dynamics is largely determined by the form of interactions. The speed and even
the time scale would be changed by b.

The value of b firstly determines the step size. For a system in equilibrium (xi+1−
xi ≈ L/N ) with b′ = b−L/N = 0, it is estimated that

1
2ks

2 ≈ T ;〈s〉 ≈
√

2T
k
, (5.1.10)

where s is the step size. But in the case b′� 〈s〉,

1
2k
(
(s+ b′)2− b′2

)
= k

2s
2 +kb′s≈ T,

s < T/kb′� T/k 〈s〉 ,
(5.1.11)

as illustrated in Fig. 5.1.3. The mean step size 〈s〉 increases as |b′| decreases, which
leads to an acceleration of the speed.

On the other hand, we attribute the influence on the scaling to the nearly deter-
ministic triggering. In the case that b′ < 0 (as b = 0 in Fig. 5.1.3 (a)), the probability
of triggering the left is much larger; as b′ (b) increases, the left side is less biased, and
finally when b′ = 0 (b = L/N ), the lifting index on particle i has equal probability to
move in both the directions, as shown in Fig. 5.1.3 (c). This is a key of fast dynamics
which will be used in the general optimization. We will continue the discussion of
the special motion of the lifting index in section 5.3.
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Figure 5.2: Triggering of particles attached to a harmonic string in the event-chain dy-
namics. The green particle is in the middle of the red and the blue. (a) shows the case
of b = 0 (pure attraction), the red and blue curves indicate the harmonic interactions
of the corresponding particles. In (b) b increases, and finally in (c) b = L/N , the har-
monic interactions of the two corresponding particles overlap. The proposed moves
are indicated by the solid colored arrows, with respect to the temperature T (vertical
dashed lines). In (a), the displacement s in eq. (5.1.11) is the determined by the shorter
of the two (the red, δxi−1). In (b) s increases, and in (c) it reaches its maximum, with
the same size of proposed moves on both sides.
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5.1.4 Factor Fields and Pair-wise Decomposition
The shift of harmonic model in eq. (5.1.8) is a compensation of linear terms. For more
general models, a shift can be added similarly. We suppose the energy of the system
is:

E({xi}) = V (x1−x0) +V (x2−x1) + · · ·+V (xn−xn−1). (5.1.12)

In the periodic boundary condition we have x0 = xn−L, and in the fixed boundary
condition x0 (xn) has a fixed value. The energy is rewritten as :

E({xi}) = V (x1−x0) +V (x2−x1) + · · ·+V (xn−xn−1)
+h [(x1−x0) + (x2−x1) + · · ·+ (xn−xn−1)]−hL
= Ṽ (x1−x0) + Ṽ (x2−x1) + · · ·+ Ṽ (xn−xn−1)−hL,

(5.1.13)

where Ṽ (r) = V (r) +hr, h is a constant, namely the “factor field”. By choosing an
appropriate h, one may eliminate the linear term in V (r) near the ground state to
have a fast dynamics.

We take the Lennard-Jones model for example. The potential is expanded to its
quadratic term:

VLJ(r) = 1
r12 −

1
r6 =

( 1
∆12 −

1
∆6

)
+ 6(−2 + ∆6)

∆13 (r−∆) +
( 78

∆14 −
21
∆8

)
(r−∆)2 + . . . .

(5.1.14)
By choosing the factor field as

hLJ =−6(−2 + ∆6)
∆13 , (5.1.15)

where ∆ = L/N , the linear term in the expansion is compensated in the simulations.
With this optimization, it is observed that the autocorrelation time of the structure

factor in the Lennard-Jones chain isO(N3/2) single steps, the same as the scaling of the
spin-wave. At higher temperature, the factor field replaced by the pressure helps the
relaxation in more general cases. For its mechanism, we will explain in the following
section.

5.2 Generalized Factor Fields
The factor field was initially introduced to compensate the linear term of interaction.
However, without being necessarily equal to the linear term, it can still accelerate the
dynamics largely in practice. We will begin with the example of hard spheres where
the interaction has no linear term, and identify the optimal value of factor field.

5.2.1 Factor Fields in the Hard-sphere Model
This factor field optimization of eq. (5.1.13) applies to all one-dimensional interacting
systems including the hard spheres. ForN volume-less particles on a periodic interval
[0,1) with a given factor field h (we assume Lfree = 1), the dynamics is simple:
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• The proposed displacement of particle i follows an exponential distribution:

δx∼ Exp(βh) (E(δx) = 1
βh

).

• if xi+1− xi > δx, xi is updated to xi + δx, and the particle (i− 1) is triggered;
otherwise xi is updated to xi+1, and the particle (i+ 1) is triggered.

We choose h=N/β (which is also the pressure of the system [104]), so the step size is
proportional to 1/N .

a) b)

Figure 5.3: The mixing process in hard spheres. (a): The evolution of normalized
u2 (u = xi+N/2− xi− 0.5). The values of different systems all converge after about
N2 events, indicating a mixing time (1± 0.005)N2. The inset illustrates the initial
configuration and the measurement of u. (b): The position of the active particle as a
function of time with a compact initial configuration (N = 4096,a= 1/(2N),L= 1, the
interval [−1/2,0] is fully occupied with disks as illustrated). The end of the system
relaxes via oscillations of the active particle between the (right-most) free end and the
(left-most) compact starting point. The left inset shows the movement of the active
particle on a larger time scale, that after N2 events the active particle performs a Lévy
walk (see Fig. 5.4 (b) for details); the right curve shows the position of the active
particle fitted to a parabola, which agrees with the N2 scaling. The transition point
between the different behaviors agrees with the mixing-time estimate in (a). 5

This algorithm is different from the previous ones in section 3.1, as it is possible to
trigger in both directions, and an infinite chain preserves irreducibility. The study of
the structure factor again shows an autocorrelation time of O(N3/2) single steps, the
same as those in the harmonic model and the Lennard-Jones model. Nevertheless, in
the mixing process starting from a compact initial configuration, the estimation based
on the “half-system distance”(see section 3.2.2) indicates a mixing time of N2 single

5We record in sweeps (when the total displacement reaches a given amount) instead of events, be-
cause the configuration after an event is very special (e.g. a collision of particles) in the event-chain
algorithm. These figures are taken from our submitted manuscript in the Publication III.
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steps in Fig. 5.3 (a). It agrees with the estimation of the harmonic model with an upper
bound of the difference between neighbors (see eq. (4.2.20)).
Moreover, in the investigation of the movement of the active particle, it is seen that
the compact configuration expands to the full system as the active particle extends
the boundary on the positive direction, and drags the others left behind with the
factor field, which forms an oscillation between the two sides (see Fig. 5.3 (b)). In this
optimal dynamics, the mean displacement of the active particle is zero, as predicted
in section 5.1.3. After the mixing process, the active particle will move much longer
in the same direction, as we will present in section 5.3.1.

5.2.2 Pressure as the Optimal Factor Field
We find the optimal factor field and the fast dynamics coincidentally in the hard
spheres, by choosing the factor field as the mean pressure of the system. The dynamical
scaling (z = 1/2 or tcor =O(N3/2) in dimension one) is also seen in other models with
the optimal factor field.

We conjecture that the optimal factor field is the mean pressure in all the systems,
with which the active particle has equal probabilities to trigger its neighbors in both
directions. The mean pressure in a canonical ensemble is:

〈p(N,T )〉=−∂F (N,L,T )
∂L

, where F =− 1
β

∂ logZ(N,T,L)
∂β

. (5.2.1)

In the example of biased harmonic model, the pressure is

〈pharm(b)〉= k(b−L/N). (5.2.2)

which equals the force exerted by the particle to a(n) (imaginary) boundary. The
system with b = L/N satisfies pharm = 0. Similar calculations can be done for one-
dimensional hard spheres and Lennard-Jones model. In more general cases, the virial
expression provides a better clue.

Virial of the Pressure

In the canonical ensemble, the virial expression of the pressure is:

βp= ρ+ 1
V

〈∑
〈i,j〉

(xj−xi)
β∂Eij(ri−rj)

∂xi

〉
. (5.2.3)

In the event-chain algorithms with lifting schemes, the average is taken from the repli-
cas with different active particles. By summing up the lifting events in a chain, it is
obtained that:

βp= ρ

〈
xfinal−xinitial

l

〉
chains

, (5.2.4)

where xinitial and xfinal indicate the coordinates of the active particle in the initial and
final configuration, and l is the total length of the chain. The eq. (5.2.4) is deduced
from hard-sphere models and examined with continuous potential [10], stating that
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the mean displacement of the active particle is proportional to the pressure of the
system.

By introducing the factor field h= p, the effect of pressure in eq. (5.2.4) is compen-
sated: the mean displacement of the active particle (xfinal−xinitial) is zero. This result
agrees with the dynamics in Fig. 5.3 (b) and the argument of equal probabilities of
triggering in all directions in section 5.1.3. Hence we conjecture h = p is the optimal
condition in general cases of event-chain dynamics.

5.3 Dynamics of Lifting Index in Event-chain Algo-
rithm

The event-chain dynamics in hard spheres and the Lennard-Jones model with the
optimal factor field accelerates the convergence even faster than the algorithms dis-
cussed in chapter 3. We attribute the dynamics to the “reversible triggering”, that the
neighbors in all the directions have the same probability to be activated. It shows an
advantage over the “propagative triggering” (such as the algorithms in the TASEP
and lifted TASEP classes in Table 3.1, whose lifting index always moves in the "for-
ward" direction).

The movement of the lifting index was investigated in the multi-dimensional XY
models by K. Kimura et al. in 2017, which exhibits some super-diffusive behavior
at the critical temperature [105]. However, the mechanism was not well explained.
As the same scaling of the autocorrelation time (O(N3/2)) is seen in harmonic model
and hard spheres (in section 5.2.1, we will then investigate the dynamics of the lifting
index in general cases.

5.3.1 Triggering in One-Dimensional Models
The movement of the lifting index of the system is denoted by a random variable s(t)
(t indicates the number of events in an infinite chain):

s(t) =
{

+1 if +x is triggered,
−1 if −x is triggered.

(5.3.1)

For example, in the one-dimensional hard-sphere model (without the factor field),
s(t) is always 1; in the harmonic model (b= L/N in eq. (5.1.8)), we have 〈s(t)〉t = 0.

As shown in Fig. 5.4, the autocorrelation of s(t) of shows an algebraic decay with
time in the one-dimensional models with the optimized factor field:

〈s(τ)s(t+ τ)〉τ ∝ t−2/3. (5.3.2)

This relation is verified both in the one-dimensional Lennard-Jones model and in the
one-dimensional hard spheres (see Fig. 5.4 (a) (b)).

7This figure is taken from our submitted manuscript in the Publication III.
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a)

b)

Figure 5.4: Autocorrelation functions of s(t) in the event-chain Monte Carlo with the
optimal factor field in one-dimensional models. (a): Lennard-Jones chain; (b): Hard-
sphere chain. The autocorrelation decays algebraically with time (Cs(t)∝ t−2/3).7

The total displacement of the lifting index is

S(t) =
t∑

t′=1
s(t′).

More generally, if
〈s(τ)s(τ + t)〉τ ∝ t−γ , γ > 0 for t� 1,

the mean-square displacement is

〈
S(t)2

〉
=

t∑
t′=1

t∑
t′′=1

〈
s(t′)s(t′′)

〉∼ t2−γ . (5.3.3)

With the notation of Lévy walk in section 1.5.3, we find that the case γ = 2/3 corre-
sponds to a super-diffusive process.

This super-diffusive characteristic is closely related to the fast relaxation of the
event-chain algorithm. Similar to the “water-level” discussion in section 4.2.2, each
particle needs to be activated at least once in order to fully decorrelate with its previ-

ous configuration. As |S| ∼ t1−γ/2, we need at least the time T ∼ N
1

1−γ/2 . By taking
γ = 2/3, this conjecture implies a time scale of N3/2, which agrees with the autocorre-
lation time of O(N3/2).

In another aspect, as we discussed in the “water-level” dynamics in section 4.2.2,
the autocorrelation time (O(N3/2)) is determined by the mean deviation of a particle
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from its equilibrated position. The “half-system distance” in hard spheres plays the
similar role, and its standard deviation is also proportional to

√
L̃ (u ∼

√
L̃ if L̃ ∝N )

as in the harmonic model, so the autocorrelation time is proportional to N3/2.
A general argument of the instability of one-dimensional systems is made by R.

Peierls in 1936 [106], that the mean deviation of a particle is always larger than O(1).
Hence, the autocorrelation time of the event-chain dynamics in such systems is larger
than O(N1) single steps. (On the other hand, as the distortion is usually restricted by
the system size, the autocorrelation hardly exceeds O(N2).)

Return Probabilities

The number of times nl(t) that the original active particle is activated in t events is a
random variable known as the local time, which is determined by the random walk of
the lifting index. For example it follows a half-gaussian distribution for nl > 0, with
E(nl)∝

√
t in a Brownian walk [107][108].

In the event-chain dynamics with the optimal factor field, it is observed that the
E(nl)∝ tγ/2 = t1/3 as shown in Fig. 5.5, and the distribution is invariant under a rescal-
ing (see the inset). This result agrees with our argument of the super-diffusion of the
lifting index.
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Figure 5.5: ECMC with factor field for a 1D Lennard-Jones system (N = 8192, T/ε=
1). Probability p(n; t) to return n times to the original active particle during t events
(for t = 2500 and t = 10000). Mean and standard deviation of p(n; t) both grow as
nγ/2 ∼ t1/3 (see the inset). Inset: data collapse using scaling variables p(n; t)t1/3 vs.
n/t1/3.9
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5.3.2 Triggering in Two-Dimension Models
In the two-dimensional square lattice, the movement of the lifting index s(t) takes 4
values. We assign the triggering in y directions with imaginary number:

s(t) =
{
±1 if ±x is triggered,
±i if ±y is triggered.

(5.3.4)

The autocorrelation is a complex function, where the real part describes the random
drifting, and the imaginary part indicates the turning/rotation. As shown in Fig. 5.6,
the autocorrelation indicates γ ∼ 5/4. Because 〈S(t)S∗(t)〉 has a lower bound when
γ > 1 (〈s(t)s∗(t′)〉 |t′=t = 1), it will not spread slower than a diffusion:

〈S(t)S∗(t)〉 ∼ t. (5.3.5)
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N=192
N=256
N=384
t 5/4

Figure 5.6: Autocorrelation function (absolute value) of s(t) in two-dimensional har-
monic model. We find Cs(t)∝ t−5/4 for large t.

As |S| ∼ t1/2, at least the time T ∼ L2 = N is needed for each site to be activated
once. This argument is consistent with the autocorrelation time of O(N

√
logN) in

Table 4.1 and section 4.2.2. The diffusive behavior of the lifting index agrees with the
observation of the two-dimensional XY model below the critical temperature [105].

5.4 Conclusion
In this chapter, we combined the dynamics in chapters 3 and 4 to study one-dimensional
systems as the Lennard-Jones model and again, the hard spheres. We analyzed their

9This figure is taken from our submitted manuscript in the Publication III.
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differences and proposed a “factor field” which accelerates the relaxation of general
systems in the event-chain dynamics. Furthermore, we attributed fast relaxation to
the Lévy walk of the lifting index (of the active particle) in the event-chain dynamics,
which is super-diffusive in dimension one and diffusive in dimension two. Its close
relation to the critical phases [105] may provide ideas of critical dynamics and opti-
mization of algorithms in higher dimensions.
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General Conclusion

In the past 70 years, the Markov-chain Monte Carlo methods have been applied
widely to many fields of studies. From the Metropolis-Hastings algorithm [4, 54]
to the cluster algorithms [62], numerous methods based on the detailed balance were
proposed with the goal of fast convergence. In the recent decades, with the “lifting
scheme” [72], irreversible Markov chains began attracting attentions. Based on the
global balance, they have proven to mix faster than the reversible Markov chains [81].
One of the irreversible Markov chains, the “event-chain” Monte Carlo algorithm, is
applied in a wide range of physical systems, including hard spheres [9], particle sys-
tems [10, 16], spin models [11, 12], etc.

During my thesis, I began with the study of the event-chain algorithm two types of
models, the hard-sphere systems [17] and spin systems [12]. They have very different
dynamics in the mixing process from extreme conditions and in equilibrium: in the
hard-sphere model, the event-chain dynamics strictly depends on the distribution of
the chain lengths, and it has a mixing time of O(N2 logN) in one dimension; while
in the spin-wave model, the dynamics has little dependence of the chain length, and
exhibits an autocorrelation time of O(N3/2) in one dimension.

In the one-dimensional hard-sphere model, an exact calculation of the mixing time
is related to the coupon-collector problem, based on randomized stopping times and
“perfect sampling” on an interval. It provides theoretical estimations of the mixing
times in some other cases, and leads to a general “swap” algorithm in both one and
two dimensions.

In the two-dimensional XY model, a slow “vortex mode” is identified in compari-
son with the fast “spin-wave” mode. Following the Fréchet distribution, the maxi-
mum vortex–anti-vortex pair distance gives (what we believe) the slowest time sca-
ling of the system. Other topological defects in the spin systems are also studied,
although they play less of the role.

The fast dynamics of the harmonic (spin-wave) model provides a general method
of optimization of the event-chain Monte Carlo by introducing an factor field, which
considerably reduces the autocorrelation time in the one-dimensional systems such
as Lennard-Jones model, and even hard spheres. The super-diffusive Lévy walk of
the lifting index (the active particle) is related to the fast dynamics in one dimension.

Since the irreversible factorized paradigm was proposed, trials have been made
[105] to explain its complex dynamical property [74]. This thesis succeeds in explain-
ing the dynamics in several models and utilizing the special fast dynamics to optimize
the others. However, there are some questions left open:
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• The super-diffusion and oscillation dynamics in the event-chain algorithm with
the optimal factor field may lead to certain universal groups of special dynami-
cal scaling. To identify the groups, we need to find preciser formula as descrip-
tions.

• The optimization using factor field in general systems of multiple dimensions
is yet to study, when the “shuffle” of the active dimension is necessary. The
optimal stopping rule will be explored.

• The connection between the diffusion of the lifting index and the fast relaxation
in more general cases (e.g. in the multi-dimensional XY models [105]) needs a
further clarification.

• A general optimization of the event-chain algorithm (or even a new algorithm)
treating the topological defects (vortices and dislocations) without using non-
local method is still a challenge.

We expect these problems would be solved in our future work.
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Publication I:
Irreversible Markov chains in spin models:
Topological excitations
Publication I

Ze Lei and Werner Krauth
Europhysics Letters 121, p. 10008 (2018)

This article studies the event-chain dynamics in spin models, specially the 2D XY
model, and identifies a fast converging spin-wave mode and a slow vortex mode.
Further discussions based on the distribution of the vortex and points out that the
influence of vortex will be negligible at low temperature. (See chapter 4.)
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Abstract – We analyze the convergence of the irreversible event-chain Monte Carlo algorithm
for continuous spin models in the presence of topological excitations. In the two-dimensional XY
model, we show that the local nature of the Markov-chain dynamics leads to slow decay of vortex-
antivortex correlations while spin waves decorrelate very quickly. Using a Fréchet description of
the maximum vortex-antivortex distance, we quantify the contributions of topological excitations
to the equilibrium correlations, and show that they vary from a dynamical critical exponent z ∼ 2
at the critical temperature to z ∼ 0 in the limit of zero temperature. We confirm the event-chain
algorithm’s fast relaxation (corresponding to z = 0) of spin waves in the harmonic approximation
to the XY model. Mixing times (describing the approach towards equilibrium from the least
favorable initial state) however remain much larger than equilibrium correlation times at low
temperatures. We also describe the respective influence of topological monopole-antimonopole
excitations and of spin waves on the event-chain dynamics in the three-dimensional Heisenberg
model.

Copyright c© EPLA, 2018

Introduction. – Classical spin models have played a
crucial role in the theory of critical phenomena and in
the formulation of topological phases and their associated
transitions. The analysis of vortices and their interactions
in the two-dimensional XY model has led, in particular,
to the development of the Kosterlitz-Thouless theory [1],
which initiated the era of topology in condensed-matter
physics. Likewise, spin models have been instrumental
in the continued development of the Markov-chain Monte
Carlo method, and especially in the invention of advanced
sampling methods. Cluster Monte Carlo algorithms [2]
were of prime importance to show that Kosterlitz-Thouless
theory actually applied to the phase transition in the two-
dimensional XY-model [3]. Monte Carlo methods also elu-
cidated the role of topological excitations in other models,
such as the three-dimensional Heisenberg model [4].

In recent years, irreversible Monte Carlo algorithms
have increasingly come into focus. In these methods, the
asymptotic steady state (reached in the long-time limit)

(a)E-mail: ze.lei@ens.fr
(b)E-mail: werner.krauth@ens.fr

still corresponds to thermodynamic equilibrium, but it is
realized with non-zero probability flows. The event-chain
Monte Carlo algorithm [5,6], in particular, implements the
global balance condition in a maximally asymmetric way.
It relies on the concept of lifted Markov chains [7]. Be-
sides short-range and long-range particle systems [8–10],
the event-chain algorithm applies to continuous spin mod-
els such as the 2D and 3D XY model [11,12] and the 3D
Heisenberg model [13]. Improved convergence time scales
were generally observed.

In this paper, we discuss the influence of topological
excitations and of spin waves on the convergence of the
event-chain algorithm, mostly concentrating on the two-
dimensional XY model with its energy

E = −J
∑

〈i,j〉
Si · Sj , (1)

with two-dimensional unit spins Sk = (Sx
k , Sy

k) =
(cos φk, sin φk) on a square lattice with N = L × L
sites. In eq. (1), the bracket 〈, 〉 denotes nearest neigh-
bors. A rotation-invariant observable in this model is the
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susceptibility:

χ =

(∑

i

Si

)2

. (2)

Its autocorrelation function,

Cχ(τ) =
〈χ(t + τ)χ(t)〉t

〈χ2(t)〉t
, (3)

characterizes the time evolution of the system.
For the XY model, the event-chain algorithm (see [11])

rotates a given active spin Si in positive sense in a se-
quence of infinitesimal moves until further rotation is ve-
toed through the factorized Metropolis algorithm [11].
More, precisely, the motion of the active spin Si is in-
fluenced by all its neighbors Sj :

– For each of the neighboring j, a single random number
allows one to determine θi,j , the hypothetical angle of
rotation of Si before it would get vetoed by spin Sj .

– k = arg min{j}{θi,j} determines the total rotation of
Si, namely θi,k, and the next active spin, namely Sk.

(See ref. [11] for a full discussion, and for proof that
this algorithm converges towards the Boltzmann distri-
bution, although it only rotates spins in positive sense.)
The event-chain algorithm violates the detailed-balance
condition, but respects global balance. The latter is
necessary to ensure convergence towards the equilib-
rium Boltzmann distribution. We also consider the har-
monic approximation of the XY model [14], where in
the energy of eq. (1) each term Si · Sj = cos(φi − φj)
is approximated by 1 − 1

2 (φi − φj)
2, and, finally, the

three-dimensional Heisenberg model, where the spins
Si are three-dimensional unit vectors. The XY model
features vortex excitations and it is the unbinding of
vortex-antivortex pairs which take place at the critical
temperature Tc = 0.893J . Below the critical tempera-
ture, however, the large-scale excitations of the XY model
are spin waves. We will argue that the two-stage suscep-
tibility autocorrelation at low temperature (see fig. 1(a))
corresponds in fact to the fast decay of spin waves under
event-chain dynamics and to the slow decay of the vortex-
antivortex pairs. For T/Tc → 0, where vortices are tightly
bound, the event-chain algorithm is asymptotically fast
(z ≈ 0), as we corroborate by simulations. However, the
equilibrium correlations do not give the complete picture
of the time behavior of the Markov chain under considera-
tion. Indeed, one may study the relaxation to equilibrium
after a quench from another temperature (typically from
T = ∞ to T < Tc). Here, a wide spectrum of relax-
ation times becomes relevant, and equilibration can take
much longer than the equilibrium correlation time τ (see
fig. 1(b)). The quench dynamics is sensitive to the mix-
ing time, which quantifies the approach towards equilib-
rium from the most unfavorable initial configuration [15].
Although the equilibrium correlations are described by a
dynamical critical exponent z ∼ 0 as T/Tc → 0, we will
argue that the mixing time remains at z ∼ 2.

Fig. 1: (Color online) Time evolution of the spin susceptibility
in the XY model on a 64 × 64 square lattice (time t measured
in sweeps). Left: susceptibility autocorrelations below Tc.
Right: individual susceptibility evolutions at T/Tc = 0.93
starting from random initial configurations (equilibrium au-
tocorrelation time τ). Large sample-to-sample fluctuations are
apparent.

(b)(a)

Fig. 2: (Color online) Vortices in the XY model. Left: configu-
ration with 5 vortices (“+”) and 5 antivortices (“−”). The lines
indicate matched vortex-antivortex pairs in the optimal assign-
ment (see eq. (4)), and the length of the longest line (shown
in white) equals the max-distance. A subsystem containing
the max-distance pair is highlighted. Right, from above: color
code for the spin orientations, vortex, antivortex, and neutral
plaquette configuration.

Vortex-antivortex pairs, max-distances. – For the
XY model on a square lattice, vortices or antivortices, lo-
cated on plaquettes delimited by four spins, are signalled
by differences of neighboring spins that do not sum to
zero when going around the plaquette in positive sense,
but rather to 2π (vortex) or to −2π (antivortex) (see
fig. 2(b)). With periodic boundary conditions, vortices
and antivortices appear in pairs. In a configuration with
n such pairs, the vortices (v1, v2, . . . , vn) can be paired
up with the antivortices (aP1

, aP2
, . . . , aPn

) according to
one of the n! permutations P . We suppose that the
physically relevant pairing corresponds to the minimum
of the Kosterlitz-Thouless vortex-antivortex-pair energy
πJR log(R/a) + 2Ec (we use a lattice parameter a = 1 in
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Fig. 3: (Color online) Time evolution of the vortex-antivortex
max-distance in the 384 × 384 XY model at T/Tc = 0.933
compared to that of the susceptibility (smoothed over a small
time window). The inset illustrates the correlation between
max-distance and susceptibility in greater detail.

the later discussion), where the core energy Ec is the same
for all configurations of n pairs and where the value of
the renormalized stiffness JR of Kosterlitz-Thouless theory
does not influence the minimum [1]. We thus neglect in-
teractions between different vortex-antivortex pairs. The
proper association of each vortex vi with its antivortex
aPi

defines an assignment problem (see fig. 2(a)) aimed at
minimizing the objective function ε:

ε({vi, aPi
}) =

n∑

i=1

log |Rvi
− RaPi

|. (4)

The optimal assignment of the n vortex-antivortex pairs
can be determined with a standard algorithm [16], known
as the “Hungarian method” for weighted matching prob-
lems. This O(n3) method recursively reduces the size of a
cost array and identifies a pairing of minimal ε. In the opti-
mal assignment, the pair (vi, aPi

) of largest separation de-
fines the configuration’s max-distance dmax. Remarkably,
the time evolution of the max-distance during a compu-
tation mimics that of the susceptibility (see fig. 3). Large
vortex-antivortex pairs (indicated by dmax � a) and small
susceptibilities are particularly well correlated, and both
persist on long time scales (see inset of fig. 3).

We suggest that at low temperature the max-distance
length scale determines the relaxation time scale. To show
this, we prepare initial configurations with only two vor-
tex pairs arranged in a square of length dmax = d (such
a configuration can be constructed with periodic bound-
ary conditions). We then track the time needed for the
susceptibility to reach the equilibrium value (within a few
percent). At temperature T ∼ Tc, the system quickly
generates many vortices that screen the distribution of
the initial scale. In contrast, at low temperature, vortex-
antivortex pairs at distance d must approach each other
before they can be annihilated. Indeed, we find that the
time to converge the square-shaped configuration of fixed

d is independent of the system size L, and proportional
to O(d2). Taking d = O(L), this implies that the mixing
time τmix (the time to reach equilibrium from the most
unfavorable initial condition [15]), is at least O(L2).

For L → ∞, the probability to have a vortex-antivortex
pair spaced by d is

P (d) =
1

Z
e−βEp(d)

=
1

Z
e−2βEc(d/a)−πβJR (5)

∝ d−πβJR ,

where Ep is the pair energy of Kosterlitz-Thouless the-
ory [1]. Because of eq. (5), the distribution of the max-
distance for n vortices must be polynomial for dmax → ∞.
For T/Tc → 0, the power-law exponent must diverge as the
vortex-antivortex pairs are more and more tightly bound.

Fréchet distribution, vortex max-distance. – At
temperatures below Tc, for L → ∞, vortex-antivortex
pairs are bound [1], so that the equilibrium max-distance
dmax is much smaller than the system size, and its prob-
ability distribution p(dmax) decays algebraically for large
arguments (see eq. (5)). The L × L system can be di-
vided into n2 practically independent subsystems of size
L/n×L/n. The max-distance of the large system at scale
L is the maximum of n2 independent max-distances on a
scale L/n. Extreme-value statistics [17] allows one to con-
nect the distribution p(dmax) at scale L with the one at
L/n. It must correspond to the Fréchet distribution (with
zero minimum value), specifically:

p(dmax) =
α

s

(
dmax

s

)−1−α

exp

[
−

(
dmax

s

)−α
]

(6)

with its cumulative distribution

P (dmax) = exp

[
−

(
dmax

s

)−α
]

. (7)

Here, α describes the power-law decay of the max-distance
distribution for large arguments (which is the same on
scales L and L/n), and s sets its L-dependent scale. The
maximum of N independent samples of a Fréchet distri-
bution with parameters (α, s) is distributed following a
Fréchet distribution with parameters (α,N1/αs). It then
follows that the Fréchet distribution of the max-distance
in a system of size L must be described by parameters
(α,L2/αs0), where both α and s0 depend on β, but not
on L, for large L. Slightly below Tc already, the Fréchet
distribution provides an excellent fit for the max-distance
distribution and the fitting parameters α and s0 are indeed
independent of L for a given temperature (see fig. 4). Also,
we note that for α = 2, the distribution of dmax scales
with s ∝ L. This is observed for T/Tc → 1−. At low tem-
peratures, we observe α ∝ 1/T (see fig. 5) in agreement
with eq. (5).
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Fig. 4: (Color online) Cumulative max-distance distribution in
the XY model at L = 256 and T/Tc = 0.965 fitted with the
Fréchet distribution with α = 2.80 and s = 4.79 (s0 = 0.0913).
The inset illustrates that the fitting parameters α and s0 are
independent of L.

Fig. 5: (Color online) Scaling of the Fréchet parameter α with
inverse temperature β demonstrating that α → ∞ for β → ∞
(Our theoretical model indicates α ∝ β at low temperature).
The inset shows 〈dmax〉 vs. system size L, from which α is
obtained.

Below Tc, dmax scales as ∼ L2/α 
 L as α > 2 (which
means dmax/L2/α is an L-independent quantity) and we
expect the equilibrium correlation time to scale with s2 =
L4/αs2

0:

τvortex
corr ∼ L4/α ∼

{
L2, for T → T−

c ,

LconstT , for T → 0.
(8)

The effective dynamical scaling parameter z = 4/α of the
event-chain algorithm is thus connected to the scale pa-
rameter of a Fréchet distribution and it is predicted to
vanish in the zero-temperature limit.

This relation between the scaling factor z and the
Fréchet parameter α in eq. (8) is consistent with the scal-
ing of the autocorrelation of the susceptibility below the
critical temperature, as in fig. 6.

Harmonic model, spin waves. – The ansatz of
eq. (8) for the equilibrium correlations only describes the

Fig. 6: (Color online) Susceptibility autocorrelation below the
critical temperature (T = 0.93Tc) for different system sizes in
the XY model. The inset shows their correlation time, com-
pared with the scaling z obtained by Minimum Mean Square
Error method and the fitting using z(T ) = 4/α(T ) from fig. 5.
Note the agreement between the Fréchet theory of the vortex
distribution and the relaxation of the susceptibility.

relaxation of topological excitations, parametrized by the
max-distance. We now consider spin waves which, below
Tc, are the dominant large-distance excitations for local
Monte Carlo dynamics, where they take O(L2) sweeps to
relax. In the event-chain algorithm, they relax in O(L0)
sweeps, so that our ansatz is indeed consistent. To show
this, we study the harmonic model, an approximation to
the XY Hamiltonian, where the spin variables φ interact
as follows:

E =
J

2

∑

〈i,j〉
(φi − φj)

2. (9)

This model is exactly solved by taking Fourier modes as
the independent variables [14]. The two-dimensional har-
monic model has algebraically decaying spin correlations
with an exponent that approaches zero as T/Tc → 0. From
the exact solution of the harmonic model, it follows that
the difference of φ on sites distant by O(L) is on a scale

σeq(L) ∝

⎧
⎪⎨
⎪⎩

√
L, if d = 1,

√
log L, if d = 2,

1, if d ≥ 3.

The event-chain algorithm for the harmonic model can
only increase the value of φi. We find that in one sweep
(O(N) events), the mean value 〈φi〉 of a configuration in-
creases by O(1). The correlation time of the algorithm is
reached when the mean increase per site is on the order of
the equilibrium correlation σeq. This implies the relation

τharm
corr ∼ σeq(L). (10)

Equation (10) predicts a dynamical scaling exponent of
1/2 for the 1D harmonic model, and an exponent z = 0 in
higher dimensions. This fast dynamical scaling, in sharp
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Fig. 7: (Color online) Equilibrium auto-correlation functions
C(t) of the lowest Fourier modes in the harmonic model for
the event-chain algorithm (ECMC) and for local Monte Carlo
(LMC). Top: C(t) for the Fourier mode k = 1 in 1D. Bottom:
C(t) for the Fourier mode k = (1, 0) in 2D. Data are in agree-
ment with the scaling of eq. (10).

contrast to the behavior of the local Metropolis algorithm
(with z ∼ 2) is verified for the autocorrelation times for
Fourier modes with small k (see fig. 7).

In the XY model below Tc, the two types of excitations
generate two time scales for the equilibrium autocorrela-
tion function of the event-chain algorithm. This corre-
sponds to what is observed in the susceptibility, where
we thus associate the fast initial decay with spin waves
(τharm

corr ∼ const), and the slow decay with topological exci-
tations (vortex–antivortex pairs, τvortex

corr ∼ LconstT at low
temperature and τvortex

corr ∼ L2 for T/Tc → 1−) (see fig. 1).

Monopoles, Bloch waves. – Topological excitations
also play a prominent role in other spin models, for ex-
ample the 3D Heisenberg model. Low-temperature exci-
tations in that model can also be described by spin waves
in addition to topological excitations. In the event-chain
algorithm, spin waves again come with a dynamical criti-
cal exponent ∼ 0. Heisenberg-model monopoles and anti-
monopoles are again located on the dual lattice, and they
can be identified using a well-defined algorithm [18].

In the 3D Heisenberg model, monopole-antimonopole
pairs proliferate near the critical point [4]. Their excita-
tion energy increases with the separation d as O(d) [19,20].
The event-chain algorithm, at low temperature, again
moves each monopole or antimonopole by O(1) per sweep.
From initial configurations with pairs separated on a scale
O(L), we find that relaxation towards equilibrium takes
O(L) sweeps (rather than O(L2), as for the XY model).
Configurations with widely separated pairs play no role
at low temperature, and the spin waves are again treated
efficiently in the event-chain algorithm, so that z → 0 for
T/Tc → 0. Nevertheless, the mixing time scale for the ap-
proach to equilibrium from an unfavorable configuration
is O(L) sweeps.

Finally, there are other types of topological excitations,
besides the point-like ones (vortices, monopoles) discussed
here. Bloch modes, in the XY model with periodic bound-
ary conditions, correspond for example to a state in which
the spins rotate by 2π as one coordinate, say x, goes from
0 to L. Bloch waves are a slow mode in the event-chain
algorithm for the XY model (but not in the Heisenberg
model), and stable on a time scale O(L2) at low temper-
ature in both 2D and 3D.

Conclusions. – In this paper, we exhibited a consider-
able speed-up for the relaxation of spin-wave excitations
of the event-chain algorithm compared to the local Monte
Carlo algorithm. Indeed, in the harmonic model, which
has only spin waves, the event-chain algorithm equilibrates
in a constant number of sweeps for d > 1, whereas the
local algorithm equilibrates with z ∼ 2. We have also
studied the relaxation of topological excitations, namely
the vortex-antivortex pairs in the 2D XY model and the
monopole-antimonopole pairs in the Heisenberg model. In
the XY model, below the critical temperature, vortex-
antivortex pairs are bound, and we parametrize this bind-
ing with a single parameter, the max-distance dmax that
can be computed with a combinatorial-optimization algo-
rithm. We find that the probability distribution of dmax is
a Fréchet distribution (with zero minimum value). In the
XY model, the vortex-antivortex potential is very weak,
leading to a d2

max relaxation time and, at worst, an L2 mix-
ing time. However, equilibrium-correlation time scales are
much smaller. In the event-chain algorithm, these vortex-
antivortex excitations are no longer concealed by the spin
waves, and they in fact constitute the slowest dynamical
modes. It is thus found to have a smaller dynamical expo-
nent than the local Monte Carlo algorithm for all temper-
atures below Tc. In particle systems, we likewise expect
the fast relaxation of phonon modes (which, in analogy
to the spin waves of this paper, are also described by a
harmonic model) to be key to the success of the event-
chain algorithm at high densities [8]. However, the funda-
mental difference between mixing times (needed to reach
equilibrium from the most unfavorable initial condition)
and equilibrium correlation times (needed to move to a
new independent configuration from an equilibrium start-
ing configuration) appears clearly [15]. It will certainly
have to be taken into account in applications.

∗ ∗ ∗
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Abstract – We study the approach to equilibrium of the event-chain Monte Carlo (ECMC) algo-
rithm for the one-dimensional hard-sphere model. Using the connection to the coupon-collector
problem, we prove that a specific version of this local irreversible Markov chain realizes perfect
sampling in O(N2 log N) single steps, whereas the reversible local Metropolis algorithm requires
O(N3 log N) single steps for mixing. This confirms a special case of an earlier conjecture about
O(N2 log N) scaling of mixing times of ECMC and of the lifted forward Metropolis algorithm, its
discretized variant. We also prove that sequential ECMC (with swaps) realizes perfect sampling
in O(N2) single events. Numerical simulations indicate a cross-over towards O(N2 log N) mixing
for the sequential forward swap Metropolis algorithm, that we introduce here. We point out open
mathematical questions and possible applications of our findings to higher-dimensional models.

Copyright c© EPLA, 2018

Sampling, mixing, perfect sampling, stopping
rules. – Ever since the 1950s [1], Markov-chain Monte
Carlo (MCMC) methods have ranked among the most
versatile approaches in scientific computing. Monte Carlo
algorithms strive to sample a probability distribution π.
For an N -particle system in statistical mechanics, with
particle i ∈ {1, . . . , N} described by coordinates xi, sam-
pling π corresponds to generating configurations x =
{x1, . . . , xN} distributed with the Boltzmann probability
π(x) ∝ exp[−βE(x)], where E is the system energy and
β the inverse temperature. For problems where x lies in
a high-dimensional discrete or continuous space Ω, this
sampling problem can usually not be solved directly [2,3].

MCMC consists instead in sampling a probability dis-
tribution π(t) that evolves with a time t = 0, 1, 2, . . .. The
initial probability distribution, at time t = 0, π(t=0), can
be sampled directly. Often, it is simply composed of a
single configuration, so that π(0) is a δ-function on an
explicitly given configuration {x1, . . . , xN}. In the limit
t → ∞, the distribution π(t) approaches the target prob-
ability distribution π = limt→∞ π(t). The key challenges
in MCMC are the development of fast algorithms and the
estimation of the time scale on which π(t) becomes close

(a)E-mail: ze.lei@ens.fr
(b)E-mail: werner.krauth@ens.fr

to π, for any initial distribution π(0). This program has
met with considerable success in some models of statisti-
cal physics, as for example in the local Glauber dynamics
in the two-dimensional Ising model [4,5].

The difference between two (normalized) probability
distributions π and π̃ can be quantified by the total vari-
ation distance (TVD) [6,7],

‖π̃ − π‖tv =
1

2

∫

Ω

|π̃(x) − π(x)|dx (1)

=

∫

S+

[π̃(x) − π(x)]dx (2)

= max
A⊆Ω

∣∣∣∣
∫

A
[π̃(x) − π(x)]dx

∣∣∣∣
= max

A⊆Ω
|π̃(A) − π(A)|, (3)

which satisfies 0 ≤ ‖π̃ − π‖tv ≤ 1. (Here, Ω is partitioned
into two subsets S+ and S−, with π̃(x) ≥ π(x),∀x ∈ S+

and analogously for S−. The integral over S+ in eq. (2)
equals the corresponding one over S−, because of the nor-
malization of probability, and it accounts for the prefactor
of 1

2 in eq. (1). Equation (3) reaches its maximum when
A = S+ or S−.) The mixing time of a Monte Carlo algo-
rithm is defined as the time t after which the TVD (with
π̃ ≡ π(t) in eq. (3)) is smaller than a given threshold ǫ,
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for any initial distribution π(0). Although it is of great
conceptual importance, the TVD cannot usually be com-
puted. Because of this difficulty, practical simulations
often carry systematic uncertainties that are difficult to
quantify. Also, heuristic convergence criteria abound for
the approach towards equilibrium in MCMC [3,8,9]. They
most often involve time-correlation functions of observ-
ables, rather than the probability distribution itself (as in
eqs. (1) and (3)).

In rare cases, MCMC algorithms allow for the definition
of a stopping rule (based on the concept of a strong sta-
tionary time [6]), that yields a simulation-dependent time
tex at which the configuration is sampled exactly from the
distribution π. The value of tex depends on the realization
of the Markov chain (that is, the sampled moves and, ul-
timately, the drawn random numbers). Nevertheless, the
distribution of tex has an exponential tail, so the overall
TVD still decays exponentially. For example, to random-
ize the configuration of N coins, at each time a random
coin may be picked up and tossed with equal probability
on either face. The time tex is when each coin was tossed at
least once so that the reached configuration is exactly ran-
dom. This example is equivalent to the “coupon-collector”
problem for a model of N coupons. Now, at each time,
one random coupon is marked. At the “coupon-collector”
time, tex, all the coupons have been marked. This problem
will be discussed in detail later. The time tex is related to
the mixing time [6]. Stopping rules exist for quite intricate
models, as for the Ising model, using the coupling-from-
the-past framework [3,10].

Most Markov-chain Monte Carlo algorithms are re-
versible: They satisfy the detailed-balance condition.
Prominent examples are the Metropolis and the heat-bath
algorithms [1,3]. In recent years, however, irreversible
MCMC methods based on the global-balance condition
have shown considerable promise [11–15]. In these
algorithms, π(t) approaches π for long times, but the
net probability flow no longer vanishes. One of them,
the event-chain Monte Carlo (ECMC) algorithm [13,14],
has proven useful for systems ranging from hard-sphere
models [16] to spin systems [17], polymers [18,19] and to
long-range interacting ensembles of molecules, such as wa-
ter [20], where the Coulomb interaction plays a dominant
role [21]. However, no exact results were known for the
mixing behavior of ECMC, except for the case of a single
particle [22].

In the present paper, we rigorously establish ECMC
mixing times and stopping rules of the model of N hard
spheres on a one-dimensional line with periodic boundary
conditions (a circle). Reversible MCMC algorithms for
this model and its variants were analyzed rigorously [23,24]
and irreversible MCMC algorithm were discussed in de-
tail [15]. The 1D hard-sphere model and reversible and
irreversible MCMC algorithms are closely related to the
symmetric exclusion process (SEP) on a periodic lat-
tice [25] and to the totally asymmetric simple exclusion
process (TASEP) [26–28]. For ECMC, an algorithm that

Fig. 1: (Color online) 1D hard-sphere model with periodic
boundary conditions. (a) N spheres of diameter d on a
ring of length L. (b) N point particles on a ring of length
Lfree = L − Nd. Configurations and local MCMC algorithms
are equivalent for both representations.

is closely related to the lifted Metropolis algorithm [15], we
compute the TVD in a special case, and obtain the mixing
times as a function of the parameter ǫ. We confirm the
O(N2 log N) single-step mixing time that had been conjec-
tured on the basis of numerical simulations [15]. Further-
more, we obtain a stopping rule for ECMC. We moreover
present sequential variants of the forward Metropolis algo-
rithm and the ECMC algorithm. For the latter, we prove
an O(N2) exact-sampling result that seems however not
to generalize to the discretized version of the algorithm.

Hard spheres in 1D, reversible Monte Carlo. –
The mixing and convergence behavior of Markov chains for
particle systems has been much studied. For hard spheres
in 2D and above, no rigorous results exist for the mix-
ing times of local Markov chains. In the past, there was
considerable controversy about the nature of the phase
transition [16]. The mixing times of non-local MCMC al-
gorithms could be clarified only at low densities [29,30].
We thus restrict our attention to the 1D hard-sphere model
with periodic boundary conditions.

The 1D hard-sphere model can be represented as N
spheres of diameter d on a line of length L with periodic
boundary conditions (on a ring, see fig. 1(a)). A valid
configuration a of N spheres has unit statistical weight
π(a) = 1. Spheres do not overlap: The distance be-
tween sphere centers, and in particular between neighbor-
ing spheres, is larger than d. Each configuration of N hard
spheres is equivalent to a configuration of N point parti-
cles on a ring of length Lfree = L−Nd > 0 (see fig. 1(b)).

We only consider local Markov chains, where moves of
sphere i are accepted or rejected based on the position
of i’s neighbors only. To do so, we implement locality by
rejecting a move of sphere i if the displacement would gen-
erate an overlap, but also if sphere i would hop over one of
its neighbors. In this way, any local Monte Carlo move of
spheres on a circle corresponds to an equivalent move in
the point-particle representation (for which there are no
overlaps and moves are rejected only because they repre-
sent a hop over a neighbor). The dynamics of both models
is thus the same. In this paper, following [15], we count
time steps in single displacements. This is more conve-
nient because in our algorithms, new displacements build
on previous ones (they form chains). Although we will
study Markov chains that relabel spheres, we consider only
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the relaxation of quantities that can be expressed through
the unlabeled distances between neigboring spheres. This
excludes the mixing in permutation space of labels or the
self-correlation of a given sphere with itself (or another
labeled sphere) at different times.

Detailed balance consists in requiring

π(a)p(a → b) = π(b)p(b → a), (4)

where p(a → b) is the conditional probability to move
from configuration a to configuration b and π(a)p(a → b)
is the equilibrium probability flow from a to b. Equa-
tion (4) states that in equilibrium, the net probability
flow between any two configurations vanishes. The heat-
bath algorithm is a local reversible MCMC algorithm.
At each time step, it replaces a sampled sphere i ran-
domly in between its neighbors. The heat-bath algorithm
mixes in at least O(N3) and at most O(N3 log N) sin-
gle steps [24]. Numerical simulations favor the latter
possibility (O(N3 log N)) [15]. For the one-dimensional
hard-sphere model on a line without periodic boundary
condition, the mixing time of O(N3 log N) single steps
(corresponding to O(N2 log N) “sweeps” of N steps) is
rigorously proven [23].

Analogous to the heat-bath algorithm, the reversible
Metropolis algorithm also satisfies the detailed-balance
condition: At each time step, a randomly chosen sphere
i attempts a move by ǫ taken from some probability dis-
tribution. The move is rejected if the proposed displace-
ment ǫ is larger than the free space in the direction of
the proposed move (xi+ − xi − d for ǫ > 0) or behind
it (xi − xi− − d for ǫ < 0) (where we suppose that i+
is the right-hand-side neighbor of i, etc., and imply peri-
odic boundary conditions). In the point-particle model,
the equivalent move is rejected if the particle would hop
over one or more of its neighbors and is accepted oth-
erwise. Rigorous results for mixing times are unknown
for the Metropolis algorithm, but numerical simulations
clearly identify mixing in O(N3 log N) single steps as for
the heat-bath algorithm [15]. In the discrete 1D hard-
sphere model on the circle with L sites and N particles,
the Metropolis algorithm is implemented in the so-called
simple exclusion process (SEP), where at each time step,
a randomly chosen particle attempts to move with equal
probability to each of its two adjacent sites. The move
is rejected if that site is already occupied. The mixing
time of the SEP is ∼ (4π2)−1NL2 log N single steps (for
L ≥ 2N) [25].

From the forward Metropolis to the event-chain
algorithm. – Irreversible Monte Carlo algorithms violate
the detailed-balance condition of eq. (4) but instead satisfy
the weaker global-balance condition

∑

b

π(b)p(b → a) = π(a). (5)

Together with the easily satisfiable aperiodicity and ir-
reducibility conditions [6], the global-balance condition

Fig. 2: (Color online) Probability flow of the forward swap
Metropolis algorithm into a configuration (a, i) (the active
sphere i is shown in green). A rejected sphere move, by a dis-
placement ǫR (upper case), entails a swap and contributes RǫR .
An accepted sphere move, by a displacement ǫA (lower case),
contributes AǫA . For any ǫ, one of the probability flows equals
one, and the other zero [(Rǫ,Aǫ) ∈ {(0, 1), (1, 0)}].

ensures that the steady-state solution corresponds to the
probability π, but without necessarily cancelling the net
probability flow π(a)p(a → b) − π(b)p(b → a) between
configurations a and b (cf. eq. (4)). Here, we take up
the forward Metropolis algorithm studied earlier, in a new
variant that involves swaps. This allows us to arrive at an
exact mixing result.

In the forward swap Metropolis algorithm1, at each time
step, a randomly chosen sphere i attempts to move by a
random displacement ǫ with a predefined sign (that for
clarity, we take to be positive). If the move is rejected
(the displacement ǫ does not yield a valid hard-sphere con-
figuration), the sphere swaps its label with the sphere re-
sponsible for the rejection (see the upper move in fig. 2).
Else, if the displacement ǫ is accepted, the sphere i sim-
ply moves forward (see the lower move in fig. 2). The
total probability flow into a configuration (a, i) (that is,
the N -sphere configuration a with the active sphere i) is

F(a, i) =

∫ ∞

0

dǫp(ǫ) [Aǫ(a, i) + Rǫ(a, i)]︸ ︷︷ ︸
=1 (see fig. 2)

= 1 = π(a), (6)

so that the algorithm satisfies global balance. The swap
allows both the rejected and the accepted moves into the
configuration (a, i) to involve the sphere i only. The
forward swap Metropolis algorithm is equivalent (up to
relabeling) to the forward Metropolis algorithm treated
earlier if at each time step the active sphere i is sam-
pled randomly (see fig. 3). The mixing time of this algo-
rithm was conjectured to be O(N5/2) single steps, based
on numerical simulations [15]. This agrees with the proven
mixing-time scale of the totally asymmetric simple exclu-
sion process (TASEP) [28].

The forward swap Metropolis algorithm satisfies global
balance for any choice of the sphere i and any step-size
distribution p(ǫ). This implies that the active-sphere in-
dex i need not be sampled randomly for the algorithm
to remain valid. This distinguishes it from the forward
Metropolis algorithm (without the swaps) treated in pre-
vious work [15]. In particular, the sphere i remains active

1The forward Metropolis algorithm introduced earlier [15] did not
feature swaps.
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Fig. 3: (Color online) Forward swap Metropolis algorithm, with
configurations xt, . . . ,xt+5. The active sphere is sampled ran-
domly at each time step so that the swaps merely relabel the
spheres.

for several chains in a row. The forward swap Metropo-
lis algorithm, run with the following sequence of active
spheres:

. . . , i, i, . . . , i, i︸ ︷︷ ︸
chain n

, j, j, . . . , j, j︸ ︷︷ ︸
chain n+1

, k, k, . . . , k, k︸ ︷︷ ︸
chain n+2

, . . . , (7)

is equivalent to the lifted forward Metropolis algorithm
studied earlier [15], if the active spheres i, j, k, . . . in eq. (7)
are sampled randomly. The algorithm naturally satisfies
the global-balance condition, and again, each individual
move attempts a displacement by a distance ǫ sampled
from a given distribution p(ǫ) that vanishes for negative ǫ,
and the chain lengths (number of repetitions of i, j, k, . . .)
n, n + 1, . . . are sampled from a distribution. Numerical
simulations have lead to the conjecture that this algorithm
mixes in O(N2 log N) single steps [15], that is, much faster
than the local reversible Markov chains.

ECMC is a general algorithm formulated in continuous
time and space. In its hard-sphere version [13], only a
single sphere moves, in a fixed direction. This “active”
sphere continues to move until it is stopped (rejected) by
another sphere (which indicates a “lifting”), and the re-
jecting sphere becomes the active one. This process re-
peats until the total displacement reaches a given “chain
length” ℓ. The algorithm has been very successful [16] in
higher dimensions. The sequence of “lifting” events forms
the eponymous event chain. ECMC is the continuous-time
limit of the lifted forward Metropolis algorithm, with the
simultaneous limits ǫ → 0 and l → ∞, but (〈ǫ〉l) → ℓ,
where the chain length ℓ on the scale Lfree, is again sam-
pled from a given probability distribution. In the point-
particle representation of fig. 1(b), one “event” chain of
the ECMC algorithm simply moves the active particle i
from its initial position xi to xi + ℓ. It advances the time
as t → t + ℓ, and increments the number of chains as
n → n + 1. The number of ECMC events (the number of
changes of the active sphere) then grows approximately as
∼ (ℓ/Lfree)N . When ℓ ∼ unif(0, Lfree), this places particle
i at a random position on a ring. For this special uniform
distribution of chain lengths, a perfect sample is clearly
obtained once all particles were at least once picked as

the active particle. This situation will now be analyzed in
terms of the coupon-collector problem (see [31,32]).

For the ECMC with ℓ ∼ unif(0, Lfree), the TVD can be
expressed by the probability that at least one particle has
never been picked as an active particle of a chain. Without
restriction, we suppose that the initial configuration is the
compact state x = {0, 0, . . . , 0}. We also measure time in
the number of chains n (which means t(n) = (〈ℓ〉/Lfree)Nn
number of events). In eq. (3), the set A is

A = {x | ∃ i with xi = 0}. (8)

Also, clearly, π(n)(A) equals the probability that at least
one particle has never been picked as an active particle
of a chain, whereas π(A) = 0, as it is a lower-dimensional
subset of Ω. This then becomes the coupon-collector prob-
lem introduced before. The expected time to have them
all marked at least once is

〈n1〉 = NHN = N log N + γN +
1

2
+ O(1/N), (9)

where HN = 1
1 + 1

2 + · · · + 1
N is the N -th harmonic

number and γ = 0.5772 . . . is the Euler-Mascheroni con-
stant. The tail distribution (the probability that the
complete-collection time n1 is larger than a given time
T = N log N + cN) is smaller than the sum of probabili-
ties for each single coupon to not have been marked from
the beginning:

P (n1 > N log N + cN) < N(1 − 1

N
)N(log N+c)

= N exp(− log N − c) = exp(−c). (10)

The naive estimation of eq. (10) was improved [31] by
removing the intersection of events:

P (n1 < N log N + cN) ∼ exp[− exp(−c)]. (11)

This can be generalized to multiple complete collections
(see eq. (14) and fig. 4).

From eqs. (1), (3), and (11), we obtain, for N → ∞,

||π(n) − π‖tv ∼ 1 − exp

[
− exp

(
−n − N log N

N

)]
. (12)

Rather than computing the difference between π(n) and
π at a fixed number n of chains, one can simply run
ECMC (with ℓ ∼ unif(0, Lfree)) until the time tex at which
chains with all of the N particles as active ones have com-
pleted. The expected number of chains is given by eq. (9),
and in both ways, we see that mixing takes place after
O(N log N) chains (corresponding to O(N2 log N) single
events), confirming, for a special distribution of ℓ, an ear-
lier conjecture [15]. The discussed mixing behavior of
ECMC can more generally be obtained for distributions
ℓ ∼ unif(c, c + Lfree) with arbitrary (and even with nega-
tive) c. In our special case, choosing c = −Lfree/2 would
lead to the smallest number of individual events. In view
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Fig. 4: (Color online) Cumulative probability of the coupon col-
lector problem (m = 1), and of the m-coupon collector problem
for m = 2 and m = 3. Numerical simulations (the colored his-
tograms) for N = 220 particles are compared to the asymptotic
tail probability of eq. (14) (the dashed curves).

of the practical applications of ECMC, it appears impor-
tant to understand whether this dependence on the dis-
tribution of ℓ (rather than on its mean value) has some
relevance for the simulation of discrete 1D models, and
whether it survives in higher dimensions, and for continu-
ous (non-hard-sphere) potentials.

We next consider more general distributions, namely
the uniform distribution ℓ ∼ unif(0, λLfree), as well as the
Gaussian distribution N (μ, σ2), where μ is the mean value
and σ the standard deviation. Again, particles are ef-
fectively independent and we conjecture the mixing time
(which can now never lead to perfect sampling) to be gov-
erned by the particle which has moved the least number,
m, of times. This is equivalent to the generalization of m-
complete-collection in the coupon-collector problem [31],
whose tail probability is given by

P (nm < T ) ∼ exp(−Υ/(m − 1)!) (13)

with

Υ = exp

[
−T − N log N − (m − 1)N log log N

N

]
(14)

(see fig. 4). This means that the number of chains to
collect each of the N coupons at least m times only adds
an N log log N correction to the general N log N scale of
chains.

To gain intuition about the general mixing process with
an arbitrary distribution of the chain length, we now com-
pute the TVD for the single-particle problem (for which
ℓ ≡ ǫ). For simplicity, we set Lfree = 1 (measure the
displacements in units of Lfree). Because of periodic
boundary conditions, particle positions x are defined only
modulo 1. Its probability distribution after m chains is
therefore given by the sum over the different windings k:

π(m)(x) =

+∞∑

k=−∞
pm(x + k), (15)

where pm(x) is the distribution of the sum of m chain
lengths. The TVD for chain lengths ℓi ∼ unif(0, λ), as dis-
cussed, equals the one for ℓi ∼ unif(−λ/2, λ/2). punif

m (x)
then follows the distribution using the characteristic

Fig. 5: (Color online) TVD for a single sphere on a ring with
uniform and Gaussian distributions of ℓ ≡ ǫ. (a) TVD after
m displacements ǫ ∼ unif(0, λLfree). The TVD trivially van-
ishes for integer λ. Peaks decay as 2

π
(πλ)−m (for m → ∞).

(b) TVD for m Gaussian displacements with standard devia-
tion σ, compared with its first-order approximation from the
Jacobi ϑ function (see eq. (20)). The inset illustrates the good
agreement of the approximation on a logarithmic scale.

function:

punif
m (x) =

∫ ∞

−∞
dte−2πitx

[
sin(πλt)

πλt

]m

. (16)

Using the Poisson summation formula and subtracting the
equilibrium distribution π(x) = 1, we find

∞∑

k=−∞
punif

m (x + k) − 1 =
∑

k∈N+

2

[
sin(πkλ)

πkλ

]m

cos (2πkx).

The TVD for chain lengths ℓi ∼ unif(0, λ) thus satisfies

‖π(m) − π‖TV =

∫ 1

0

dx

∣∣∣∣
∑

k∈N+

[
sin(πkλ)

πkλ

]m

cos (2πkx)

∣∣∣∣

∼ 2

π

∣∣∣∣
sin(πλ)

πλ

∣∣∣∣
m

(for m → ∞). (17)

The TVD trivially vanishes for integer λ (see fig. 5(a)).
Its peaks decay as 2

π (πλ)−m.
For Gaussian-distributed chain lengths ℓi ∼ N (μ, σ2),

the sum of m chains is distributed as
m∑

i=1

ℓi ∼ N (mμ,mσ2). (18)

With ϑ3 the Jacobi theta function, we now have

∞∑

k=−∞
pGauss

m (x + k) − 1 = ϑ3

[
π(x + μ), e−2π2mσ2

]
− 1

= 2
∞∑

k=1

exp(−2k2π2mσ2) cos [2kπ(x + mμ)] . (19)

The TVD for the distribution of eq. (18) satisfies

‖π(m) − π‖TV =

∫ 1

0

dx

∣∣∣∣
∞∑

k=1

exp(−2k2π2mσ2) cos(2kπx)

∣∣∣∣

∼ 2

π
exp(−2π2mσ2) (for mσ2 → ∞)

(20)

(see fig. 5(b)).
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Fig. 6: (Color online) Sequential lifted forward Metropolis al-
gorithm (with swaps). Configurations xt, . . . ,xt+13 sampled
through five chains with active sphere 1, 2, . . . , 5 are shown.
Chain lengths are l1 = 3, . . . , l5 = 2. Each sphere displacement
ǫt > 0 is either accepted or, if rejected, it induces a swap, so
that the same sphere remains active throughout a chain.

Both for the uniform and the Gaussian distribution, the
single-sphere TVD decreases exponentially with the num-
ber m of displacements (which are equivalent to single-
particle chains). We expect the same behavior for the
N -sphere problem, where m is now the number of chains
for the m-complete-collection problem.

Sequential forward Metropolis, sequential
ECMC. – ECMC, with randomly sampled initial
spheres and a standard deviation of the chain-length
distribution σ ∼ Lfree, mixes in O(N2 log N) events (cor-
responding to O(N log N) chains). In the label-switching
framework of ECMC, each chain consists in advancing
the particle i by a distance ℓ times, and both the ECMC
and the forward Metropolis versions are correct. Instead
of sampling the active sphere for each chain, so that
the coupon-collector aspect necessarily brings in the
log N factor in the scaling of mixing times, we may also
sequentially increment the active-sphere index for each
chain (see fig. 6):

. . . , i, . . . , i︸ ︷︷ ︸
chain i

, i + 1, . . . , i + 1︸ ︷︷ ︸
chain i+1

, i + 2, . . . , i + 2︸ ︷︷ ︸
chain i+2

, . . . , (21)

(where particle numbers are implied modulo N). Sequen-
tial ECMC, with a distribution ℓi ∼ unif(0, Lfree) pro-
duces an exact sample in O(N2) events (corresponding to
exactly N chains).

Evidently, the analysis of eqs. (17) and (20) can be
applied to the sequential ECMC with distributions such
as unif(0, λLfree) and, more generally, distributions with
σ ∼ Lfree. After each “sweep” of chains, the TVD
factorizes, and we expect mixing to take place after O(N)
chains (corresponding to O(N2) events).

ECMC is the limit of the lifted forward Metropolis algo-
rithm, and the sequential ECMC the limit of the sequen-
tial lifted forward Metropolis algorithm for step sizes much
smaller than the mean free space between spheres (〈ǫ〉 =
Lfree/(2Nα) with α ≫ 1). For a given discretization 2/α,
and for small N , the sequential lifted forward algorithm

Fig. 7: (Color online) Crossover from the discrete lifted
algorithm to ECMC, via the variance of the mid-system
distance xi+N/2 − xi for ordered xi, started from com-
pact initial condition (see [15]). Discrete step size with
ǫ ∼ unif(0, Lfree/N/α), and chain length l ∼ unif{α, αN} (a)
Sequential lifted Metropolis algorithm with constant α = 10
for different N : The cross-over from perfect sampling for small
N at a time scale O(N2) towards O(N2 log N) appears evi-
dent. (b) Sequential algorithm for N = 8192, with increasing
α: O(N2) mixing scale emerges for large α. (c) Random lifted
Metropolis algorithm with α = 10 for different N (legend as in
(a)): O(N2 log N) mixing time scale (conjectured earlier [15]).
(d) Random lifted forward Metropolis algorithm: Limited role
of α (color code for α as in (b)).

mimics the O(N2) mixing of the sequential ECMC, but
for large N , it seems to cross over into O(N2 log N) mix-
ing (see fig. 7(a)). O(N2) mixing also emerges at fixed
N for large α (see fig. 7(b)). (This is obtained using the
heuristic mid-system variance xi+N/2 − xi for ordered xi,
see [15].) In contrast, the random lifted forward Metropo-
lis algorithm shows O(N2 log N) mixing (see fig. 7(c)), as
discussed earlier [15]. This scaling is little influenced by
the discretization (see fig. 7(d)). It thus appears that the
N → ∞ limit of the sequential lifted forward Metropolis
algorithm does not commute with the small-discretization
limit α → ∞.

Conclusions. – In this paper we have proven that for
1D hard spheres, ECMC with a uniform distribution of
chain length ℓ ∼ [0, Lfree], with Lfree = L − Nd realizes a
perfect sample in O(N2 log N) single steps (events) that
correspond to O(N log N) chains. This confirms, in a spe-
cial case, an earlier conjecture [15] for the mixing time of
ECMC. This also proves that ECMC can be much faster
than local reversible Monte Carlo algorithms. We com-
puted the TVD but also indicated a stopping rule for the
time tex after which the configuration is exactly in equi-
librium. We have also provided numerical evidence that
the N2 log N mixing prevails for other distributions of ℓ,
namely for the uniform distribution unif(0, λLfree) and the
Gaussian, and used the coupon-collector problem to jus-
tify this approximation. We have furthermore discussed a
sequential ECMC algorithm which mixes in O(N2) events.
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This algorithm uses “particle swaps”, but it remains local.
The discrete version of this algorithm (the sequential lifted
forward Metropolis algorithm) crosses over, for large N ,
to O(N2 log N) mixing.

The lessons from our analysis of 1D hard-sphere sys-
tems are threefold. First, irreversible Markov chains can
be proven to mix on shorter time scales than reversible al-
gorithms. Second, the speed of ECMC was proven to de-
pend on the whole distribution of the chain lengths ℓ, but
to be independent of its mean value. Third, sequential-
update algorithms (that remain valid in higher dimen-
sions) can be shown to mix on faster time scales than
random-update versions. It will be important to un-
derstand whether the design and the analysis of ECMC
algorithms in higher-dimensional particle models will be
influenced by these lessons, that were overlooked in all
previous work on ECMC.
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We study one-dimensional interacting-particle models using the event-chain Monte
Carlo algorithm. We show that a slowdown of the method (rooted in the mismatch
of potential differences) is overcome by the introduction of factor fields. The method
is motivated for the harmonic chain, and further tested for Lennard-Jones interacting
particles and for hard spheres in one diemension, by choosing the optimal factor field
as the pressure of the system. Generalizations to higher dimensions are outlined. (See
chapter 5.)
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We study the dynamics of one-dimensional (1D) interacting particles simulated with the event-
chain Monte Carlo algorithm (ECMC). We argue that previous versions of the algorithm suffer from
a mismatch in the factor potential between different particle pairs (factors) and show that in 1D
models, this mismatch is overcome by factor fields. ECMC with factor fields is motivated, in 1D, for
the harmonic model, and validated for the Lennard-Jones model as well as for hard spheres. In 1D
particle systems with short-range interactions, autocorrelation times generally scale with the second
power of the system size for reversible Monte Carlo dynamics, and with its first power for regular
ECMC and for molecular-dynamics. We show, using numerical simulations, that they grow only
with the square root of the systems size for ECMC with factor fields. Mixing times, which bound
the time to reach equilibrium from an arbitrary initial configuration, grow with the first power of
the system size.

I. INTRODUCTION

The dynamics of physical systems plays an important
role in numerous fields of science. The study of dynam-
ics aims at elucidating equilibrium and non-equilibrium
phenomena, including correlation functions, coarsening
dynamics after a quench, and manifestly non-equilibrium
phenomena such as turbulence. In computational statis-
tical physics, Markov chain Monte Carlo (MCMC) [1–3]
and molecular-dynamics (MD) algorithms [4] are often
employed to generate equilibrated samples and to de-
termine thermodynamic averages and correlations. The
non-equilibrium aspect then consists in characterizing
the approach to equilibrium from an arbitrary, atypi-
cal, initial condition. This is quantified by the mixing
time [2], an important figure of merit for MCMC. The
other important time scale characteristic of a physical
system is the autocorrelation times of the underlying
Markov process given by the inverse gap of the transi-
tion matrix.

In reversible Markov chains (as used in the vast major-
ity of MCMC algorithms), the requirement that the long-
time steady state corresponds to thermodynamic equi-
librium is expressed through the detailed-balance con-
dition, which assures that all the net probability flows
vanish in equilibrium. In recent years, however, irre-
versible Markov chains have been found to show consider-
able promise [5–8]. They feature a steady state with non-
vanishing net probability flows if a weaker global-balance
condition is satisfied. Global balance corresponds to an
incompressibility condition in configuration space: the
steady-state flows into each configuration sum to the
flows out of it.

∗ ze.lei@ens.fr
† werner.krauth@ens.fr
‡ anthony.maggs@espci.fr

An example of an irreversible Markov chain is the
event-chain algorithm (ECMC) [9, 10]. This algorithm
has been successfully applied to many problems from
hard-sphere and soft-sphere melting [11–13] to spin mod-
els [14, 15] and quantum-field theory [16]. In this pa-
per, we study the relaxation times of ECMC in one-
dimensional (1D) models of N particles with local in-
teractions [17, 18]. We analyze in detail the relaxation of
both Lennard-Jones and hard-sphere models, study the
statistical properties of ECMC trajectories and show how
to greatly accelerate known algorithms by the introduc-
tion of a “factor field”, which compensates the system
pressure, P , without influencing physical properties.

A. Characteristic times of Markov chains

Irreversible MCMC algorithms can be faster than
their reversible counterparts. A particularly interesting
case is the 1D hard-sphere model of N spheres (rods).
For this model, the local heat-bath algorithm mixes in
O
(
N3 logN

)
moves [19] on an interval with fixed bound-

ary conditions. The mixing time for the same model
with periodic boundary conditions is between O

(
N3
)

and O
(
N3 logN

)
[20]: Simulations favor the latter [17].

The reversible Metropolis algorithm has a similar mixing
behavior. Various local irreversible Markov chains mix in
O
(
N5/2

)
moves (forward Metropolis algorithm [17]), in

O
(
N2 logN

)
steps (lifted forward Metropolis algorithm

and ECMC [17, 18]) and even O
(
N2
)

single moves with
a re-labeling ECMC [18].

The lifted forward Metropolis algorithm in continuous
space with infinitesimal movements constitutes ECMC.
For hard spheres, it is deterministic without restarts, but
then mixes in O

(
N2 logN

)
steps at randomized stop-

ping times [18]. Although ECMC is irreversible under a
transformation of the time t 7→ −t, under the combined
transformation of times and positions (t, x) 7→ (−t,−x),
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the dynamics runs backwards in time. The irreducibility
of the lifted forward Metropolis algorithm can be shown
using this time-reversal property. It may also explain
why ECMC is typically as fast as MD.

Previous work has also explored the autocorrelation
times (rather than the mixing times) under ECMC dy-
namics in the D-dimensional harmonic-solid model, of
which the equilibrium properties can also be obtained
exactly (see [21]). In 1D, the dynamic exponent of the
autocorrelations under ECMC dynamics takes the strik-
ingly low value of z = 1/2, corresponding to an equilib-
rium autocorrelation time involving O(N3/2) moves or
τ ∼ O(N1/2) sweeps. This is N1/2 times smaller (faster)
than the best autocorrelation time found in the hard-
sphere system.

The present paper starts from the similarity between
the dynamics of the 1D harmonic-solid model and that
of the Lennard-Jones model at low temperature T . We
generalize this favorable scaling of the harmonic model
to all T in the Lennard-Jones model as well as the hard-
sphere model. We expect that this concept can also be
generalized for higher-dimensional models [22, 23].

B. 1D particle systems, algorithms

We consider a 1D system of N particles i ∈ {1, . . . , N}
with xi < xi+1 on an interval of length L with peri-
odic boundary conditions in N and in L. In the re-
versible local Metropolis algorithm, at each iteration,
a randomly chosen particle i is proposed to move as
xi → xi + ran[−ε, ε], where ran is a random number uni-
formly distributed between −ε and ε. For hard spheres,
the move is accepted if the new sphere position does not
lead to overlaps with spheres i− 1 and i+ 1, and in ad-
dition does not induce a change of the ordering. In the
presence of a potential U , the move is accepted with prob-
ability min(1, exp(−∆U/T )), where ∆U is the change in
potential for the proposed move. The amplitude ε is cho-
sen to maximize the speed of the method. In the heat-
bath algorithm the distribution of the particle i is fully
resampled in the potential of its neighbors at each time
step.

ECMC, for one-dimensional hard spheres [9, 17], con-
sists in moving spheres in a chain-like manner. Up to
a restart time, sphere i moves with unit velocity until
it collides with sphere i + 1, at which moment it stops,
and sphere i + 1 moves forward. For each of the sub-
sequent “chains” (the displacements between restarts),
the starting sphere is randomly chosen, and the length
of the chain (the time until the next restart) is sampled
from a distribution on the length scale L. For a more
general interaction potential, ECMC breaks up the to-
tal system potential up into separate “factor potentials”,
each of which is treated independently [10, 24]. A factor
potential provides for a randomized stopping time. For
a given move involving particle i, the smallest stopping
time of all factors provides the next event time. The next

particle to move is determined through a lifting scheme
[22, 25] from the factor triggering the event. With po-
tentials more general than hard spheres, restarts are no
longer required to ensure irreducibility of ECMC.

In ECMC, path statistics in equilibrium and pressure
P are linked by

P/T ∝ 1

t

〈
xi(t) − xi(0)

〉
, (1)

where xi(t) is the position of the particle that is active at
time t [10, eq.(20)]. Eq. (1) holds for all time intervals t.
It is very convenient as an unbiased estimator of the pres-
sure, and has been much used [13]. The factor fields of
the present paper will allow us to exactly compensate the
pressure without affecting the physical properties of the
system, and lead to greatly accelerated ECMC methods.

In many-particle simulations, MD algorithms generally
feature smaller relaxation time scales than MCMC meth-
ods. In essence this is because momentum conservation
(present in MD, but absent in MCMC) allows for faster
transport of inhomogeneities in the velocity and position
fields ([26, 27]). In our comparisons with ECMC, MD
simulations are performed using the leapfrog or Verlet
algorithm coupled to a Langevin thermostat for the ve-
locity. The integration time step δt is adjusted by finding
the stability limit of the integrator, then reducing δt by
an order of magnitude. Inverse error analysis shows that
the effective Hamiltonian is close to that of the original
model, with a systematic shift of O(δt2) in the effective
Hamiltonian [28]. We choose the strength of coupling to
the Langevin thermostat so that the longest wavelength
mode is close to critically damped.

We concentrate our measurements on the dynamics of
the structure factor of the lowest Fourier coefficient

S(q) =
1

N

∣∣∣∣∣∣

N∑

j=1

eiq·xj

∣∣∣∣∣∣

2

, (2)

with q = 2π/L, which is sensitive to large-scale motion
of particles. The integrated autocorrelation times τ of
S( 2π

L ) are measured in “sweeps”, that is, a constant time
interval for all N particles in MD, N attempted displace-
ments in MCMC, or N events in ECMC (in comparing
the methods, we compensate for the different implemen-
tation speeds of a sweep in MD, MCMC, ECMC). We
use the blocking method [29] to quantify the algorithm
speed.

C. ECMC for harmonic interactions

We first consider a harmonic potential with a minimum
at a separation b between neighboring particles:

Uharm(xi+1 − xi; b) =
k

2
[(xi+1 − xi)− b]2 , (3)

where periodic boundary conditions for the particle sep-
aration xi+1 − xi are taken. They are also implied for
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the particle indices. The total potential of the system of
a fixed length L is

Uharm({xi}; b) =
k

2

N∑

i=1

(xi+1 − xi − b)2 (4)

=Uharm({xi}; 0)− kbL+
1

2
Nkb2, (5)

where periodic boundary conditions in N and L are again
understood. Because of the periodic boundary condi-
tions, the choice of the equilibrium separation b sim-
ply shifts the ground-state potential, without changing
the stationary distribution and equilibrium correlations.
Nevertheless, the ground-state potential is dependent on
L and it determines some thermodynamic properties,
such as the pressure:

Pharm(b) = k(b− L/N). (6)

The system with b = L/N satisfies Pharm = 0.
In a periodic system, MD and the reversible Metropo-

lis algorithm are strictly independent of b, as they only
rely on the forces (identical derivatives of eqs (4) and (5)
with respect to the xi) or potential differences between
configurations. However, the explicit form of the pairwise
interaction influences the ECMC dynamics, as the factor
potentials are treated independently. One such factor
potential may thus contain the single term Uharm(xi+1−
xi; b) with its explicit dependence on b. In the following
we consider such factors between all neighboring pairs of
particles. For b = 0, the harmonic interactions on parti-
cle i from its neighbors is attractive if xi−1 < xi < xi+1.
It implies that for an active particle i with a positive dis-
placement, the particle i− 1 is likely to trigger the next
event in ECMC (and to be the next active particle) (see
Fig. 1a). The displacement δx per event is:

δx ∼ T

k(L/N − b) , if T � k

2
(L/N − b)2. (7)

As b increases, the triggering probability is less biased
and the displacement gets larger, and eventually reaches
the maximum:

δx ∼
√

2T

k
, when b = L/N, (8)

with symmetric triggering probabilities in both directions
(see Fig. 1c).

At low T , the displacement per event in eq. (7) is much
smaller than that in eq. (8). We expect that the case
b = L/N leads to larger amplitude movements of the ac-
tive particle i, at the same time the transfer of activity is
equally often toward i+ 1 and toward i− 1, and charac-
terizes the detailed ECMC dynamics. The case b = L/N
indeed gives rise to the exceptionally fast dynamics, char-
acterized by z = 1/2 [21]. The aim of the present paper is
to generalize this fast relaxation to arbitrary potentials.

FIG. 1. ECMC dynamics in the harmonic model. Particle i is
active, and the red and blue curves indicate the interactions
with particles i − 1 and i + 1, respectively. The proposed
moves are indicated by solid colored arrows, with respect to
the temperature T (vertical dashed lines). a: For b = L/N ,
the interractions with particles i − 1 and i + 1 overlap. b:
For b = L/(2N), the potential with i − 1 proposes a smaller
displacement than i + 1. Particle i − 1 is more likely to be
activated. c: For b = 0, the moves proposed by i− 1 and by
i+ 1 are balanced.

II. LINEAR LENNARD-JONES MODEL WITH
ECMC

We study now the Lennard-Jones potential

ULJ(r) =
1

r12
− 1

r6
, (9)

where r = xi+1−xi, with periodic booundary conditions.
The minimum is ULJ(rmin) = −1/4 for rmin = 21/6,
which sets a typical potential scale of the system ε =
|ULJ(rmin)|. In previous work [22] we proposed multiple
factor sets within ECMC. Here we take into considera-
tion two distinct factor setsMLJ andM6+12: the former
groups the terms 1/r6 and 1/r12 into a single Lennard-
Jones factor, while the latter treats them separately as
two factors which independently trigger events.

As the particles always move in the positive direction
(xi is always increasing), the active particle i, with the
factor set M6+12, will either trigger the particle (i + 1)
by the repulsive contribution 1/r12 or the particle (i −
1) by the attractive contribution 1/r6. The factor set
MLJ can lead to a trigger from (i + 1) or (i − 1) since
the Lennard-Jones interaction has both increasing and
decreasing branches.

In the following, we will show that the large-scale dy-
namics of ECMC are very sensitive to the choice of factor
sets, even if all choices lead to the same equilibrium state.
Good choices are crucial in the creation of efficient algo-
rithms.
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A. Simulations of 1D Lennard-Jones models

We simulate a slightly compressed (P > 0) linear
Lennard-Jones model with periodic boundary conditions
with average separation between particles equal to ∆ =
1.06 < rmin and use the reversible local Metropolis
MCMC method, MD, as well as ECMC with the factor
set MLJ (see Fig. 2a). Metropolis MCMC is asymptot-
ically the slowest method for N → ∞: the autocorre-
lation time (measured in sweeps) increases as Nz with
z = 2 characteristic of the diffusion of density fluctu-
ations. MD is better behaved, due to the propagative
compressional waves which more efficiently sample long-
wavelength modes. MD is however disadvantaged by the
necessity of using a small integration time step δt to sta-
bly explore the dynamics. The result from ECMC is very
favorable, we see a low dynamic exponent (z = 1) com-
bined with a small prefactor in the scaling: the algorithm
makes a large leap (without systematic errors) for each
iteration.

However, ECMC can also be less efficient than MD,
in certain implementations (see Fig. 2b). Here we use
the factor set M6+12, at low T . Here an analogous phe-
nomenon occurs to that displayed in Fig. 1, in a form
which is amplified by the splitting of the 1/r6 and 1/r12

contributions to the potential. The algorithm advances
with the use of steps which are too small to efficiently
explore the local environment. This slowdown of ECMC
at low T was pointed out previously [30]. We now study
analytically the Lennard-Jones interaction in eq. (9) at
low T , and make contact with the harmonic model in
order to eliminate this slowdown.

102 104
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104

106
Metropolis

MD

ECMC

a

102 104
100
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104

106
Metropolis

MD
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ECMC

FIG. 2. Equilibrium autocorrelation times τ vs. system size
N , for the 1D periodic Lennard-Jones model. Reversible lo-
cal Markov-chain dynamics, ECMC with restarts and MD. a:
T/ε = 10, combined factors, MLJ . b: T/ε = 0.1, separate
factors, M6+12. Scalings τ ∼ N and τ ∼ N2 are indicated
with dotted lines.

A straightforward expansion of the potential ULJ(r) of
eq. (9) to second order around a generic position r = ∆
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ECMC no-restart

ECMC restart

a T/ =10
T/ =0.01

10-2 100
100

101
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FIG. 3. Equilibrium autocorrelation timess τ vs. system size
N , for the 1D periodic Lennard-Jones system with factor
fields. a: Reversible local Metropolis dynamics and ECMC
with and without restarts, at high T , T/ε = 10 and low T ,

T/ε = 0.01. Scalings τ ∼ N1/2, τ ∼ N , and τ ∼ N2 are
indicated with dotted lines. b: Pressure P (T ) and its T → 0
limit (see eq. (13)).

yields

ULJ(r) = ULJ(∆)− hLJ(∆)(r −∆) (10)

+
1

2
kLJ(∆)(r −∆)

2
+ . . . . (11)

This validates the (obvious) fact that the 1D Lennard-
Jones model, in the limit T → 0, is described by a har-
monic model with, in analogy to eq. (5), a “stiffness”

1

2
kLJ(∆) =

(
78

∆14
− 21

∆8

)
(12)

and a linear coefficient

hLJ(∆) = −6(−2 + ∆6)/∆13. (13)

Summed over the N pairs (i, i+1) (with periodic bound-
ary conditions), the constant (ULJ(∆)) and the first-order
term in eq. (11) are without incidence on the constant-
volume thermodynamics and the stationary distribution.

Analogously to eq. (5), we may add a temperature-
dependent factor-field interaction

U fact
LJ = hfactLJ (T )

N∑

i=1

(xi+1 − xi) (14)

to the total Lennard-Jones potential
∑
i ULJ(xi+1 − xi).

The model defined by ULJ +U fact
LJ differs from the model

given by ULJ alone (in the presence of periodic boundary
conditions), as the two have different pressures. Nev-
ertheless, the samples obtained from the two associated
Boltzmann distributions are the same, and therefore also
all probability distributions and correlation functions at
constant L. We choose a factor field to exactly compen-
sate the linear term in the interaction in the limit T → 0:

hfactLJ (T ) = hLJ(∆) (for small T ). (15)
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This clearly eliminates the inefficiencies of ECMC at low
temperatures. In the model defined by eq. (15), the pres-
sure P vanishes as T → 0. Because of the connection
between the pressure and the path statistics expressed
in eq. (1), the ECMC trajectories are then without a
drift term, and the expected displacement vanishes. As
we now confirm numerically, we can speed up ECMC at
arbitrary T by adopting a factor potential that exactly
compensates for P .

We start by performing a set of short simulations to
measure P from eq. (1) (see Fig. 3b). The function P (T ),
thus obtained, recovers the T → 0 limit. We then fix the
value of the factor field in longer simulations to charac-
terize the dynamics (see Fig. 3a). Indeed, both at low
and at high T , ECMC remains efficient, and the dynami-
cal exponent z = 1/2 corresponds to the harmonic model
for b = L/N . This was tested for temperatures as high as
T/ε = 10 where the interactions for Lennard-Jones par-
ticles are dominated by the short-ranged repulsive core.
The ansatz hfact = P for the factor field thus holds at
temperatures at which the harmonic approximation of
the potential no longer applies. Maximum efficiency is
found for ECMC without restarts only: restarting the
chain after ∼ N events leads to a larger dynamic expo-
nent.

For the Lennard-Jones system, ECMC with factor
fields requires finding roots to the equations

1

r12
− 1

r6
± Pr = ∆U. (16)

We use the iterative Halley method [31], a higher-order
generalization of Newton’s method. It has the advantage
of stability when starting an iteration near a stationary
point of the function eq. (16). We start the iteration with
a guess obtained with one of two methods. For small
∆E we make a harmonic approximation to the left-hand
side of eq. (16). For large ∆E, the starting point is ap-
proximated as a root to the equation 1/r12 = ∆E. The
iteration converges to machine precision within three it-
erations. The relative speeds shown in Fig. 3a account
for this slow, iterative step through an appropriate pro-
portionality factor for each algorithm. Alternatives to
root finding may including thinning methods (as used in
the cell-veto algorithm [32]) which compare rates derived
from eq. (16) to an analytically tractable bound.

B. Extensions: Alternative factor sets

ECMC allows for many other choices for factors and
also for lifting schemes. We may generalize the factor
field method to the M6+12 factor set by introducing
one factor field each for 1/r6 and for 1/r12 interactions
(checking the convergence of the method for multiple cor-
relation functions), but we did not explore fully the opti-
mal choice of the two factor fields. We also studied factor
sets which contain all the interactions of the model. This

scheme is particularly interesting because the active par-
ticle i simultaneously explores the potential due to both
i − 1 and i + 1, without the need for an explicit factor
field. Again, this scheme uses an iterative solver. The full
system factors also require a more sophisticated lifting
scheme – generalizations of the “inside first” and “out-
side first” methods [22]. Particles with positive factor
derivatives and particles with negative factor derivative
are aligned in index order (see for instance [22, Fig. 10]).
The lifting dynamics corresponds to the alignment of fac-
tors vertically. In such schemes, factors contain O (N)
terms. Efficient alignment of the lifting diagram requires
the use of a tree structure for bookkeeping with an effort
O (log(N)). We found this method however to be less ef-
ficient than the factor field, and so do not report further
on speed measurements.

III. FACTOR FIELDS FOR 1D HARD SPHERES

FIG. 4. ECMC dynamics with factor fields (indicated by in-
clined straight lines) for 1D hard spheres. The moves of the
active sphere i proposed by the factors with i+1 and i−1 are
indicated by horizontal arrows and dashed sphere positions.
In the optimal dynamics, the slopes of the factor fields equal
±P in eq. (17).

To illustrate the generality of factor fields, we now
consider their application to the 1D hard-sphere model,
where the potential can no longer be expanded as a power
series (as in eq. (11)). Nevertheless, the model has a
well-defined pressure, that is computed from the parti-

tion function Z = (L−Nσ)
N

. This gives for the free en-
ergy, at temperature T , F = −T logZ = −NT logLfree,
with Lfree = L−Nσ and therefore [33]

P =
NT

Lfree
. (17)

A. Implementation, autocorrelation times

The implementation of ECMC with factor fields for
hard spheres does not require numerical root finding: an
active particle i, moving to the right, generates two pos-
sible events, a hard-sphere collision with the particle i+1
or else a trigger due to the factor field of particle i − 1
(see Fig. 4). The latter path length is sampled from an
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exponential distribution

ρ(x) =
P

T
e−xP/T . (18)

The smaller of the two proposed displacements yields the
next event, and it defines the lifting, as the new active
particle is the one that has triggered the event. Irre-
ducibility is guaranteed in the dynamics with an infinite
event chain, and restarts are no longer needed, unlike for
hard-sphere ECMC without the factor field.

We study the autocorrelation time in sweeps (see
Fig. 5a) and compare with the reversible local Metropo-
lis algorithm as well as ECMC without a factor field.
Again, we note the acceleration brought by the addition
of a factor field with a dynamic exponent z = 1/2, just
as for the linear Lennard-Jones and the harmonic mod-
els. Non-optimal factor fields slow down the dynamics of
the longest wavelength modes, an effect which becomes
stronger for larger N (see Fig. 5b).
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FIG. 5. Autocorrelation time τ (in sweeps) for 1D hard
spheres. a: Reversible local Metropolis MCMC, ECMC
(with restarts) and without factor field and ECMC (without

restarts) with optimal factor field, hfact. Scalings τ ∼ N1/2,
τ ∼ N , and τ ∼ N2 are indicated with dotted lines. b: τ
from ECMC vs. factor field (ECMC, without restarts).

B. Evaluation of mixing times

We have so far considered the equilibrium autocorrela-
tion time, which is only one of the two relevant measures
for the speed of an algorithm; it measures the time to
move from one configuration (taken in equilibrium) to
another independent one. The mixing time, in contrast,
considers the time it takes to reach a first equilibrium
configuration from an arbitrary non-equilibrium state.
The scaling with N of the equilibrium autocorrelation
time and of the mixing time differs for many MCMC
algorithms in 1D particle systems (see [2] for a mathe-
matical discussion of mixing times and equilibrium auto-
correlation times, and [18] for a discussion in the context
of ECMC.)

To determine the mixing time for the hard-sphere
model with factor fields, we use a discretized version of
the smallest Fourier coefficient of the structure factor in
eq. (2), namely the variance var(w) of the “half-system
distance”

w = xi+N/2 − xi −Nσ/2 (19)

from a compact initial configuration [17] where var(w) ∝
N2 to the (exactly known) equilibrium value, which is
∝ N . Tracking the variance signals a mixing time very
close to N sweeps, a value that we conjecture to be
exact (see Fig. 6). This is a faster scaling than the
O (N logN) sweep mixing-time behavior of ECMC with
restarts (without factor field) [18].

Relaxation occurs in the following manner from a com-
pact configuration: First, the active particle is driven
to the right end of the system which over-relaxes (see
Fig. 6). This drives the activity back into the bulk, to
the boundary with the compact interior. A series of cy-
cles of increasing amplitude relaxes the end of the system
with penetration into the compact region following a law
in
√
t. We note that the mixing time is longer than the

equilibrium autocorrelation time (see the discussion in
Section IV).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
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FIG. 6. Variance of the half-system distance w (see eq. (19))
vs. time for various N (hard-sphere model with factor fields
(without restarts)). The observable relaxes to its equilibrium
value at the mixing time (1.000 ± 0.005) × N sweeps for the
hard-sphere model with factor fields (without restarts).

IV. ACTIVE-PARTICLE DYNAMICS

The choice of factor fields, even if it is without in-
cidence on spatial correlation functions and thermody-
namic properties at constant L, strongly influences the
ECMC dynamics. In this section, we consider the large-
scale motion of the particle i(t) that is active at time t, in
order to probe how the exponent z = 1/2 arises from the
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FIG. 7. Position xi of the active sphere i vs. time t
(N = 4096, σ = L/(2N)). At t = 0, the interval [−L/2, 0] is
close packed, the interval [0, L/2] is empty. The physical ex-
tent expands through oscillations, growing as

√
t, and reaches

[x1, xN ] ' L at t ' N . The inset illustrates the position of xi
(without periodic wrapping) on a larger time interval.

local active-particle dynamics. It is convenient to take
into consideration discrete “event times” s = 0, 1, 2, . . . ,
rather than the continuous time t of the Markov process.
Because of the ordering of indices, we have i(s+1) = i±1,
with “event steps” u(s) as i(s + 1) = i(s) + u(s) and
u(s) ∈ {−1, 1}. It follows from eq. (1) that 〈u〉 > 0
and 〈u〉 < 0 for P > 0 and P < 0, respectively, which
means that the ECMC trajectory is described by a for-
ward drift (for P > 0) or a backward drift (for P < 0).
With a factor field equal to P , the drift terms vanish, and
ECMC trajectories feature positive and negative event
steps (liftings i(s+ 1) = i(s) + 1 and i(s+ 1) = i(s)− 1)
with equal probabilities [34]. To better characterize the
time series u(s) in this case, for both hard spheres and
Lennard-Jones particles, we compute the event-step au-
tocorrelation 〈u(0)u(s)〉 (see Fig. 8). We find that for
large N , the autocorrelation decays as a power law:

〈u(0)u(s)〉 ∼ s−γ . (20)

(This scaling applies on times shorter than those required
to explore the whole system. On longer time scales the
correlation in eq. (20) decays exponentially.)

The active particle at event time s (without periodic
wrapping) is given by

i(s) = i(s = 0) +
s∑

s′=1

u(s′). (21)

We now follow a trajectory which starts with i(s =
0) = 0. For vanishing long-range correlations in the
event steps u(s), the motion of the activity, character-
ized by the second moment of i(s), would be diffusive
(
〈
i2(s)

〉
∼ s. Rather, we find for large s, using eq. (20)

with γ < 1:

〈
i2(s)

〉
=

s∑

s′=1

s∑

s′′=1

〈u(s′)u(s′′)〉 ∼ s2−γ . (22)

The position of the active particle is thus characterized
by super-diffusive behavior. The observed value γ = 2/3
(see Fig. 8) implies

〈
i2
〉
∼ s4/3 or |i| ∼ s2/3. (23)

The dynamics of the active particle has long-time mem-
ory for N →∞. The trajectories contain long runs sep-
arated by changes of the direction of motion, so that the
average motion is undirected, as required by eq. (1).

FIG. 8. Equilibrium autocorrelation of event steps u ∈
{−1, 1} with event time s for ECMC with factor field (no
restarts). a: 1D Lennard-Jones model shows monotonic de-
cay. b: 1D hard spheres display oscillatory behavior with a
power-law envelope. The scaling 〈u(0)u(s)〉 ∼ s−2/3 is indi-
cated with dotted lines (see eq. (20)).

A. Scaling for the active-particle dynamics

The discrete event time s = 0, 1, 2, . . . grows with the
time t of the Markov process (that we measure in sweeps)
as s ∝ Nt. The same argument applies to the autocor-
relation event time, in events, and the autocorrelation
time τ , in sweeps, sauto ∝ Nτ(N). The super-diffusive
motion constrains the dynamic exponent z which relates
complexity to system size:

sauto ∼ N (1+z). (24)

A configuration can decorrelate from its previous history
only if the super-diffusive walk visits each sphere at least
once. Thus we require:

|i(τ)| ∼ sauto1−γ/2 ∼ N (1+z)(1−γ/2) ≥ N, (25)
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implying that z ≥ γ/(2 − γ). If we take γ = 2/3, we
find z ≥ 1/2 compatible with the autocorrelation scaling
reported previously for the harmonic model [18], and also
compatible with the data in Figs 2 and 5.

A supplementary physical hypothesis of perfect local
equilibration during the ECMC motion leads to a definite
prediction for γ: the equalibrium fluctuations in particle
separation in a system section of length |i| increase as

∆xp ∼ |i|1/2. (26)

After s events the active label visits particles in a volume
|i| ∼ s1−γ/2, so that on average each particle moves

∆xγ =
s

|i| ∼ s
γ/2 ∼ |i|γ/(2−γ) (27)

times. If we assume that the motion of the particles
is comparable to that required to resample the internal
states of the section of length |i| we find ∆xp ∼ ∆xγ so
that γ = 2/3, and z = 1/2.

For this mechanism to work, the correlated random
motion of the active particle must behave in a special
way: both the mean and the standard deviation of the
distribution of ∆xγ must have identical scaling with s.
(If only the mean increases the spheres will be displaced
uniformly without re-equilibrating the internal degrees of
freedom.)

B. Active-particle return probabilities

The distribution of eq. (27)) allows for a rapid decay
of autocorrelation functions. We consider the dynamics
of a particle which is active at time s = 0. This particle
can only move forward a large distance if the active label
returns to it frequently, that is, if for many times s, one
has i(s) = i(s = 0). We thus study in greater detail the
returns to the origin of the active label, in the presence
of factor fields.

We generate an equilibrated configuration of the
Lennard-Jones system and from the signal i(s) calculate
the distribution of the number n of returns to the ori-
gin within s events (see Fig. 9). For Brownian walks of
length s, n is related to the “local time” [35, 36], and the
local-time distribution p(n, s) is half-gaussian defined for
n > 0. In ECMC, the probability p(n, s) of returns of
the active-particle label to the origin (which gives the
number of forward steps) is also maximum at zero, and
decays monotonically with n. The mean and standard
deviation of the number of steps drawn from such a
distribution grow in the same way with s (see inset of
Fig. 9). Even though the whole system moves forward
in an ECMC simulation the dynamics is spatially hetero-
geneous. Widely separated particles move forward with
different numbers of steps so that the internal modes of
the system are efficiently resampled as is needed for the
ansatz in eq. (27) to apply.
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FIG. 9. ECMC with factor fields for a 1D Lennard-Jones
system (N = 8192, T/ε = 1). Probability p(n, s) to return
n times to the original active particle during s events (for
s = 2500 and s = 10000). Mean and standard deviation of

p(n, s) both grow as sγ/2 ∼ s1/3 (see eq. (27)). Inset: data

collapse using scaling variables p(n, s)s1/3 vs. n/s1/3.

V. CONCLUSIONS

We have compared in detail the dynamics of three sim-
ulation methods (reversible MCMC, MD and ECMC)
for 1D systems with local interactions. We have shown
that in many situations ECMC displays the same dy-
namic scaling (z = 1) as molecular dynamics. Both are
asymptotically faster than the diffusive behavior found in
MCMC (z = 2). With a good choice of factors, ECMC
is much faster than MD, since it does not need to use
a small integration time step to stably explore config-
urations. Furthermore, unlike MD, ECMC is exact to
machine precision, as it is free from time-discretization
errors.

Generalizing from the 1D harmonic model, we map
1D systems onto thermodynamically equivalent systems
at zero pressure with periodic boundary conditions. This
leads to further acceleration of ECMC for both smooth
and discontinuous potentials. We have found in this case
a remarkably low dynamic exponent (z = 1/2), better
than MD. This acceleration is associated with a mod-
ification of the dynamics of the event steps (as a con-
sequence of eq. (1)). Rather than displaying directed
motion, the signal i(s) becomes super-diffusive and op-
timally explores local density fluctuations, being driven
forward in regions of high density, and back in regions
of low density. A scaling hypothesis predicts a super-
diffusive law of the form 〈i2(s)〉 ∼ s4/3 for the dynamics
of the active label as well as an explanation for the emer-
gence of the exponent z = 1/2.

There is a clear interest in generalizing these results
to higher-dimensional models. Already a two and three-
dimensional harmonic model has been shown [18] to dis-
play accelerated convergence in the ECMC algorithm. In
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geometries which remain fixed, such as the XY model or
fixed harmonic networks (without disorder) it appears
possible to implement generalized factor fields. With
fluctuating neighbor relations, for instance in a fluid, the
generalization of factor fields will represent an interesting

challenge [37].
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Résumé
Cette thèse étudie la chaîne de Markov irréversible dans les systèmes de spin et les
systèmes de particules, explique théoriquement leurs spécialités dynamiques, pro-
pose une amélioration des méthodes de Monte Carlo en ce qui concerne les propriétés
systématiques.

Les deux premiers chapitres examinent la théorie des probabilités, la chaîne de
Markov et la méthode de Monte Carlo. La chaîne de Markov irréversible, avec le
schéma de «lifting» et le filtre Metropolis factorisé, augmente la vitesse de mélange à
une échelle supérieure dans de nombreux modèles.

Le troisième chapitre étudie le modèle de la sphère dure. À partir du résultat ex-
act obtenu à partir du modèle unidimensionnel dans la limite continue, l’algorithme
de «event-chain» est lié au problème du collecteur de coupons dans l’évaluation du
temps de mélange. Un algorithme séquentiel de «event-chain» est proposé pour
accélérer le processus de mélange, ce qui est également valable dans les cas plus
généraux de dimensions supérieures. Pour les algorithmes Metropolis plus généraux
avec «lifting», leur croisement avec l’algorithme de «event-chain» est discuté.

Le quatrième chapitre présente la dynamique de la chaîne de Markov irréversible
pour les modèles de spin continu utilisant le filtre de Metropolis, en présence d’excitations
topologiques. La nature locale de la dynamique de la chaîne de Markov conduit à un
mode lent de vortex et à un mode rapide d’onde de spin dans le modèle XY. La cor-
rélation à l’équilibre est quantifiée pour varier de z ≈ 2 à la température critique à
z ≈ 0 à la limite de basse température, et l’influence respective sur le modèle tridi-
mensionnel de Heisenberg est également décrite.

Le cinquième chapitre, basé sur la connaissance des deux chapitres précédents,
propose une optimization du filtre de Metropolis pour les modèles de particules
généraux, en introduisant un champ auxiliaire. Les simulations sur une chaîne uni-
dimensionnelle de Lennard-Jones montrent une accélération évidente en tant que
mode de spin-wave. D’autres études vérifient le comportement super-diffusif de
l’algorithme de «event-chain», ce qui peut expliquer la vitesse haute de la dynamique.
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Abstract
This thesis studies the irreversible Markov chain in the spin systems and particle sys-
tems, theoretically explains their dynamical specialties, proposes an improvement to
the Monte Carlo methods with respect to the systematic properties.

The first two chapters review the probability theory, Markov chain and Monte
Carlo method. The irreversible Markov chain, with the “lifting” scheme and factor-
ized Metropolis filter, increases the mixing speed at a higher scale in many models.

The third chapter studies the hard sphere model. From the exact result obtained
from the one-dimensional model in the continuous limit, the “event-chain” algorithm
is related to the coupon-collector problem, in the evaluation of mixing time. A se-
quential “event-chain” algorithm is proposed to accelerate the mixing process, which
is also valid in more general cases of higher dimensions. For more general Metropo-
lis algorithms with “lifting”, their crossover with the “event-chain” algorithm is dis-
cussed.

The fourth chapter presents the dynamics of the irreversible Markov-chain for
continuous spin models using Metropolis filter, in the presence of topological excita-
tions. The local nature of the Markov-chain dynamics leads to a slow vortex mode
and a fast spin-wave mode in the XY model. The equilibrium correlation varies from
z ≈ 2 at the critical temperature to z ≈ 0 at the low temperature limit, and the respec-
tive influence on three-dimensional Heisenberg model is also described.

The fifth chapter, based on the knowledge of the previous two chapters, proposes
an optimization of Metropolis filter for general particle models, by introducing an
auxiliary field. Simulations on one dimensional Lennard-Jones chain exhibit an ob-
vious acceleration as the spin-wave mode. Further studies verify a super-diffusive
behavior of the “event-chain” algorithm, which may explain the high speed of the
dynamics.
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Résumé
Cette thèse étudie les chaînes de Markov irréver-
sibles pour les modèles de spin et les systèmes de
particules. Il analyse leur convergence vers l’équi-
libre dans un certain nombre de cas et propose
de nouveaux algorithmes aux propriétés amélio-
rées. Les deux premiers chapitres examinent cer-
tains aspects de la théorie des probabilités et de
la théorie des chaînes de Markov. Une chaîne
de Markov irréversible particulière, utilisant le
concept de « lifting » et employant le filtre fac-
torisé Metropolis, est discutée. On constate qu’il
accélère le mélange dans de nombreux modèles.
Le troisième chapitre étudie les chaînes de Mar-
kov irréversibles pour le modèle 1D à sphère-
dure. Nous obtenons un résultat exact dans un
cas de « event-chain » continu. Nous associons
ce problème et ses solutions au problème des
« collecteurs de coupons ». Il a été prouvé qu’un
nouvel algorithme séquentiel « event-chain » ac-
célérait encore le mélange, et reste également
valable dans les dimensions supérieures. Pour les
algorithmes Metropolis plus généraux avec « lif-
ting », leur croisement avec l’algorithme « event-
chain » est discuté. Le quatrième chapitre pré-
sente la dynamique des chaînes de Markov irré-
versibles pour les modèles de spin continu uti-
lisant le filtre factorisé Metropolis, en présence
d’excitations topologiques. La nature locale de la
dynamique de la chaîne de Markov conduit à un
mode lent de « vortex » et à un mode rapide de
« l’onde de spin » dans le modèle 2D de XY. La
corrélation à l’équilibre varie de z ≈ 2 à T = Tc à
z ≈ 0 à T ≈ 0. Le cas du modèle 3D de Heisen-
berg est également décrit. Le cinquième chapitre
propose une optimisation du filtre factorisé Me-
tropolis pour les modèles de particules généraux,
en introduisant un champ moléculaire de com-
pensation. Les simulations sur des chaînes de
Lennard-Jones unidimensionnelles indiquent une
accélération considérable. On pense qu’un com-
portement super-diffusif de l’algorithme «chaîne
d’événements» explique la vitesse élevée de la
dynamique.

Mots clés
Méthode de Monte Carlo, Chaîne de Markov ir-
réversible, Modèle XY, Excitations topologiques,
Modèle des disques durs, Modèle de Lennard-
Jones

Abstract
This thesis studies irreversible Markov chains for
spin models and particle systems. It analyzes
their convergence towards equilibrium in a num-
ber of cases, and it proposes new algorithms with
improved properties. The first two chapters re-
view some aspects of probability theory, and of
the theory of Markov chains. A particular irrever-
sible Markov chain, making use of the “lifting”
concept and employing the factorized Metropolis
filter is discussed, which speeds up the mixing in
many models. The third chapter studies irrever-
sible Markov chains for the 1D hard-sphere mo-
del. We obtain an exact result in a continuous
“event-chain” case. We relate this problem, and
its solutions, to the coupon-collector problem.
A new sequential “event-chain” algorithm fur-
ther accelerates mixing, and remains valid in hi-
gher dimensions. For general Metropolis algo-
rithms with “lifting”, their crossover with the
“event-chain” algorithm is discussed. The fourth
chapter presents the dynamics of the irreversible
Markov-chains for continuous spin models using
the factorized Metropolis filter, in the presence
of topological excitations. The local nature of
the dynamics leads to a slow “vortex” mode and
a fast “spin-wave” mode in the 2D XY model.
The correlation varies from z ≈ 2 at T = Tc to
z ≈ 0 at T ≈ 0. The case of the 3D Heisenberg
model is also described. The fifth chapter pro-
poses an optimization of the factorized Metro-
polis filter for general particle models, by intro-
ducing a compensating molecular field. Simula-
tions on one-dimensional Lennard-Jones chains
indicate a considerable acceleration. A super-
diffusive behavior of the “event-chain” algorithm
is thought to explain the speed of dynamics.

Mots clés
Monte Carlo method, Irreversible Markov chain,
XY model, Topological excitations, Hard-disk
model, Lennard-Jones model
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