According to the World Health Organization, more than 70 million disabled people in the world need a wheelchair to aid their daily mobility needs. Providing access to low cost wheelchairs that covers the users basic needs is therefore a societal challenge that not only contribute to their well-being but also their dignity. Manual wheelchairs are widespread due to their low cost and high maneuverability. In order to mitigate the physical effects of the repeated efforts on the push rims, the company Autonomad Mobility developed an electrification kit.

Among the available features, the so-called gyroscopic mode allows operating the wheelchair in an upright position with the caster wheels lifted off the ground. In this thesis, different control laws are proposed to swing-up the wheelchair from the grounded position to the unstable equilibrium position (gyroscopic mode). The specificity of the control problem is that the user
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A mathematical model of the wheel chair and the user is built from the mechanical equations motion and its parameters are identified through adequate experiments. The wheelchair swingup is first casted as a reference tracking problem where the control associated with the trajectory is known. The system is modeled as a continuous Takagi-Sugeno descriptor model and the closed loop Lyapunov stability is formulated as a set on Linear Matrix Inequalities to be solved.

The reference control and state trajectories are computed as a solution to an optimal control problem. The tuning of the criterion allows to tune the compromise between the control amplitude and the deviation from the wheelchair target position. Simulation and experimental results are provided and analyzed. Experimental results are globally similar to the simulations, thus demonstrating the validity of the model and the effectiveness of the control approach. Even though the trajectory is actually followed by the wheelchair, the quantification of some sensor readings combined with the numerical implementation of the continuous control law on a discrete system leads to some degradation of the control performances.

To make improvements on the above control strategy, a second control approach, using a discrete time controller, is suggested. The wheelchair dynamics is formulated as an uncertain discrete time Takagi-Sugeno discrete descriptor model that accounts for different users' characteristics. The tracking problem is formulated and again, the control approach consists in tracking a given state trajectory but now it is generated by an a priori chosen model stabilized by an appropriate state feedback. The robust stabilization conditions are provided as a set of Linear Matrix Inequalities. Finally, simulation and experimental results are provided. Videos of the experiments are provided to illustrate the robustness of the control law to different users and the closed loop behavior when the user voluntary rocks its upper body.

Keywords: Wheelchair, Self-balancing, Takagi-Sugeno models, Lyapunov stability, Linear Matrix Inequalities, Optimal control, Euler-Lagrange, Mean Value Theorem Résumé D'après l'Organisation Mondiale de la santé, plus de 70 millions de personnes à mobilité réduite ont besoin d'un fauteuil roulant pour assurer leurs déplacements quotidiens. Garantir l'accès à des fauteuil abordables et capable de couvrir les déplacements de base est un challenge sociétal qui contribue non seulement au bien-être des personnes mais également à leur dignité.

Les fauteuils manuels sont les plus rependus en raison de leur cout modeste et leur grande manoeuvrabilité. Pour limiter les troubles musculaires liés aux appuis répétés sur les roues, la société Autonomad Mobility propose un kit d'électrification. Parmi les différentes fonctionnalités proposées, le mode gyroscopique permet à l'utilisateur de se déplacer en équilibre sur deux roues, les petites roues avant étant levées. Dans cette thèse, plusieurs lois de commande sont proposées pour assurer le passage du mode stable (avec les 4 roues posées sur le sol) à la position en équilibre instable du mode gyroscopique. Une des spécificités des lois de commandes proposées, est que l'utilisateur fait partie du système piloté.

prendre en compte la morphologie de différents utilisateurs. Un problème de suivi de trajectoire est formulée de sorte à suivre une trajectoire d'état donné, mais cette fois ci, la trajectoire est généré en utilisant un modèle fixé a priori et stabilisé via un retour d'état approprié. L'écriture de la stabilisation robuste de la boucle fermée se résume à un ensemble d'inégalité matricielles linéaires. Finalement, des résultats de simulation et expérimentaux sont discutées. Des vidéos des expérimentations sont mises à dispositions. Différents utilisateurs ont testé la loi de commande proposée qui a été en mesure de réguler correctement le fauteuil en équilibre instable en dépit des brusques mouvement volontaires des utilisateurs.

Mots clés: Fauteuil roulant, modèles de type Takagi-Sugeno, stabilité de Lyapunov, inégalités matricielles linéaires, contrôle optimal, Euler-Lagrange, théorème de la valeur moyenne In the United States it is estimated that over 60 million adults have some type of disability and about 20 million adults under 65 years of age are disabled in their mobility [START_REF] Okoro | Prevalence of Disabilities and Health Care Access by Disability Status and Type Among Adults -United States, 2016[END_REF]. A disability in mobility includes people that have a hard time walking or climbing stairs.
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Many people with a disability in mobility need an assistance device for aid, such as a wheelchair, cane, walker, etc. Among this group people that are using wheelchairs and four wheeled electric scooters make up about 1.7 million people [START_REF] Kaye | Mobility Device Use in the United States[END_REF].

Wheelchair

Wheelchairs are used to help disabled people that have difficulties walking move around.

Wheelchairs have been around for a longtime and over the years, many advancements have been made. Some believe the first wheelchairs were developed between the 6 th and the 4 th centuries BCE with the development of wheeled furniture and two-wheeled carts, and the first self-propelled wheelchair is believed to have been developed by German watchmaker Stephan Farfler in 1665 [START_REF] Watson | History of the wheelchair[END_REF]. However, the repetitive motion of pushing the hand-rims can cause the user to get fatigued quickly and can lead to long term injuries. The high forces put on the shoulders during this repetitive motion increases the chances the user will develop coracoacromial edema and coracoacromial ligament thickening [START_REF] Mercer | Shoulder joint kinetics and pathology in manual wheelchair users[END_REF]). The coracoacromial ligament plays an important role in shoulder biomechanics and stability and thickening and stiffening may contribute to rotator cuff tear arthropathy and impingement syndrome [START_REF] Rothenberg | The Coracoacromial Ligament: Anatomy, Function, and Clinical Significance[END_REF].

While there are many benefits to using a manual wheelchair there are also risks of long-term health problems. In addition, manual wheelchairs have caster wheels in front so the user can turn the wheelchair left and right. However, these caster wheels are small and block the wheelchair from rolling over obstacles (even small obstacles) Fig. 3. One of the newer additions to the self-propelled wheelchair market is the power-assisted wheelchair. Power-assist wheelchairs in most cases started as a manual wheelchair that gets converted to a power-assist wheelchair Fig. 4. To convert a manual wheelchair to a power-assist wheelchair, motors are embedded in the pushwheels that are powered by a battery. Some wheelchairs come with a control box so the user can read battery health, change power settings, etc. Fig. 5. In most cases the push-wheels are constructed with a sensor between the wheels and the handrims to detect when the user pushes the hand-rim. These wheelchairs have the maneuvering ability of a manual wheelchair and can widely reduce the stress on the shoulders compared to a manual wheelchair. They make it easier for the user to travel long distances with less fatigue.

In addition, the power-assisted propulsion can reduce cardiovascular and respiratory strain [START_REF] Kloosterman | A systematic review on the pros and cons of using a pushrim-activated power-assisted wheelchair[END_REF]. However, the addition of the electric components add weight to the system, and the small caster wheels continue making obstacles a challenge.

Lastly is the full electric wheelchair where only the electric motors propel the wheelchair.

Normally these wheelchairs do not have hand-rims on the rear wheels that the user can push, but instead the user controls the wheelchair with a joystick Fig. 6. Electric wheelchairs give users that are not able to use the hand-rims mobility in their lives. While there are advantages of using a traditional electric wheelchair there are also disadvantages. For example, electric wheelchairs are typically larger and less maneuverable. As a result, users have reported difficulties such as going through doorways, avoiding obstacles, and using streets and sidewalks [START_REF] Torkia | Power wheelchair driving challenges in the community: a users' perspective[END_REF]. In addition, the lack of exercise of electric wheelchair users is an important factor which can lead to secondary health conditions. For example, electric wheelchair users have exercise barriers such as too few places to exercise, and exercise being harder [START_REF] Barfield | Perceived exercise benefits and barriers among power wheelchair soccer players[END_REF]. These barriers can lead to secondary health problems such as obesity. A different option is to combine manual and electrical mode, in a kind of "hybrid" propulsion wheelchair. This solution is available using assistance kits such as the Nomad from Autonomad-Mobility Fig. 7. The Nomad is a kit that converts a manual wheelchair to an electric wheelchair [START_REF] Mohammad | Wheelchair propulsion method, kit, and wheelchair implementing such a method[END_REF]. This conversion kit enables the user to choose different levels of electrical assistance from the manual mode (no assistance) to full electric mode where the motors do the work. In addition, the equipped wheelchair can operate in a 2-wheel selfbalancing mode (so-called gyroscopic mode) Fig. 7. 

Autonomad-Mobility

Autonomad-Mobility (A-M) is a start-up company created by Sami Mohammad located in Famars, France. The company specializes in building kits that convert a manual wheelchair to electric wheelchair. There are companies that built conversion kits before A-M but, the A-M kit is unique because it has an extra operating mode called "Gyroscopic mode" Fig. 7.

The company started as a project at UVHC-CNRS Research lab LAMIH in January of 2013.

A-M was such a success that it was considered a top 15 European Biotech Incubator later that year, and in June was granted €35k to help the company creation. The next year (2014) the company was awarded 2 patents, then in 2015 the first prototypes for DUO and NOMAD were built. In June 2015 A-M was the winner of "I-LAB créadev" and Bpifrance granted the company € 200k to support its development. Then, by the end of 2015 the company had started the commercialization of both DUO and the NOMAD, and only a year later had their first sales.

In the end of 2017, the company had raised enough money to start to optimize the commercialization of DUO and NOMAD, and in 2018 hired its first employees.

This thesis is part of the investment the company made in 2018 through a CIFRE (Conventions Industrielles de Formation par la REcherche) convention. CIFRE is a grant from the ministry for research with the double objective "of placing doctoral students in the conditions for scientific employment and encouraging research partnerships between the academic and business spheres."

http://www.anrt.asso.fr/sites/default/files/cifre_plaquette_2019_eng.pdf

Thesis outline

The thesis structured with three main chapters.

Chapter 2 starts with a description of the prototype used for testing. Then, the system is modeled using the Euler-Lagrange method. Next, the parameters are identified for the model.

Since the system can only operate in an unstable equilibrium point, the parameters are identified in a three steps process. Finally, the model is validated.

Chapter 3 presents a continuous swing-up algorithm design with a two-step procedure. The first part of the chapter recalls some properties of the so-called Takagi-Sugeno models belonging to the quasi-LPV family. As the design uses a wheelchair model written in a descriptor form, some particular results for this kind of systems are also provided. A controller is designed to follow a specified trajectory from the grounded position to the gyroscopic mode.

An optimal control problem is solved to compute this trajectory in order to minimize simultaneously the control amplitudes and the overall wheelchair displacement. Simulation and experimental results are discussed.

Chapter 4 proposes to solve the problem of the wheelchair swing-up in a discrete framework in a one-step design, including reference trajectory and robust control. Some fundamentals of discrete descriptors models in the Takagi-Sugeno form are given first. The advantages of the approach are to have all-in-one (no need to have two different control algorithms) and to derive a robust control law that is designed according to uncertainties such as the masses of the wheelchair and user.

Conclusions and some perspectives end the manuscript.

Chapter 2 System & Modeling

State of the Art

Wheelchairs are great tools to aid disabled people in their mobility. However, a wheelchair still has limitation that impede the mobility of the user. For example, large and heavy wheelchairs are hard to transport (in a vehicle) and are difficult to maneuver in crowds or in tight hallways and doorways.

Manual wheelchairs have small caster wheels in the front of the wheelchair so that it can turn sharply and move in tight places. The problem with caster wheels is that they are small and block the wheelchair from going over small obstacles, but with a manual wheelchair the user can accelerate quickly to lift the caster wheels over the obstacle so the user can still pass over it Fig. 8 Fig. 8. Manual wheelchair raising front wheels to pass over an obstacle.

Unlike manual wheelchairs electric wheelchairs may or may not have small caster wheels.

When an electric wheelchair does not have caster wheels it is more stable going over obstacles, however it is difficult to operate in tight areas because it cannot turn sharply. Then, when an electric wheelchair has caster wheels the user cannot accelerate quick enough to lift the caster wheels to pass over obstacles. A great solution to this problem is to have a wheelchair that can turn sharply like it has caster wheels but still be able to pass over obstacles.

Some solutions on the market

The iBOT is a novel wheelchair that is aimed to overcome some of the limitations brought on by conventional electric and manual wheelchairs. The iBOT is able operate in four different modes: standard mode where two caster wheels and two drive wheels touch the ground, balancing mode where the wheelchair balances on two wheels drive wheels Fig. 9, 4-wheel mode where four drive wheels touch the ground to climb obstacles, and a stair climbing mode.

The iBOT was developed by Dean Kamen in 1990 in partnership between DEKA and Johnson and Johnson's (Wikipedia contributors 2020). This wheelchair has many nice options but the price tag is $30,000 making impossible to own for many users. Another option is the Ninebot by Nano Mobility. The Ninebot is another novel mobility device that balances on two wheels (gyroscopic mode), Fig. 10. The user moves the chair forward and backward by leaning his/her upper body forward or backward, and then there is either a joystick or handlebars to turn the wheelchair. One advantage of the ninebot is that it does not have small caster wheels that can prevent it from going over small obstacles. However, if the battery runs out or there is another malfunction, the user will not be able to move. This wheelchair is much cheaper than the iBOT but still has a large price tag. Then there is the NOMAD by Autonomad-Mobility Fig. 7 which can operate in 3 different modes. First, it can operate in conventional manual mode where the user uses the hand-rims to accelerate the wheelchair. Next, the wheelchair operates in an electric mode with caster wheels.

When the wheelchair is in this mode it can maneuver quickly but the caster wheels block it from going over obstacles. Then, there is the gyroscopic mode where the wheelchair balances on its rear two wheels. In this mode the wheelchair can still make sharp turns and in addition it can now pass over obstacles because the caster wheels are raised off the ground.

Existing research

Very few works address such a challenging task. In [START_REF] Ahmad | Forward and backward motion control of wheelchair two wheels[END_REF] the process of transitioning a 4-wheeled wheelchair to add 2-wheeled wheelchair by lifting the wheelchair up (like the iBOT) is proposed in simulation. However, this method adds an extra actuator to the system increasing its complexity and uses Fuzzy Logic Control without any stability and robustness considerations. Similar to the NOMAD in Fig. 7 [START_REF] Takahashi | Soft raising and lowering of front wheels for inverse pendulum control wheel chair robot[END_REF] and [START_REF] Takahashi | Modern control approach for robotic wheelchair with inverse pendulum control[END_REF] discuss the swing up of an electrified manual wheelchair. Their solution consists in using a classical Proportional Integer (PI) controller with the angle of the pendulum as reference to swing-up the wheelchair.

Nevertheless, using only the angle of the pendulum as feedback, the displacement of the wheelchair cannot be controlled. Apart from this drawback, the stability issues of the closedloop and the robustness are not considered.

Problem Statement

A solution for having a better mobility is to be able to travel on 2 wheels in a so-called gyroscopic mode. The advantages are clear: the wheelchair can turn sharply like in the conventional mode (with the caster wheels on the ground), and it can pass over obstacles, Fig. 7, because the caster wheels are raised off the ground. The gyroscopic mode gives the user many advantages that he/she would not have with a traditional manual/electric wheelchair, however the new functionality comes at a cost.

On an automatic control point of view, it leads to move from a stable open-loop wheelchair (4 wheels) to an unstable one (2 wheels) and thus, safety issues are to be considered. The wheelchair control, which is rather "simple" for the stable 4-wheels mode, has to be thought in terms safety and robustness properties for the 2-wheels or so-called gyroscopic mode.

Robustness must be thought for different aspects. First, as the kit is to be used with any kind of wheelchairs, the control laws must cope with different mechanical characteristics and wheelchair geometries. Second, no extra sensors can be added, not only for costs issues but also because it is unrealistic to measure some parameters like the user's capabilities or the ground adherence for example. Therefore, control law of the unstable equilibrium position has to consider: the unknown parameters such as mass, inertia… for both the wheelchair and the user, ground adherence… Beyond the system safety, the system acceptability by the users is crucial.

It includes fearless usage, confidence in the system, easy-to-use, and more generally a "good feeling" about the system. This part, called thereinafter under the word "comfort" should be achieved by control robustness and guaranteed dynamic performances.

Thus, the automatic control problem to solve resumes to:

1. Robust trajectory tracking: minimum displacement to swing up/down 2.

Robustness to varying unknown parameters (mass, inertias, etc.)

3.

Comfort (dynamic performances, easy-to-use, smoothness)

System Hardware & Software

The system is a manual wheelchair equipped with an electrical assistance kit developed by Autonomad-Mobility, Fig. 11. This kit consists of electric motors embedded in the pushwheels, a control box, and a socket to connect the battery. When this project started the Nomad already had a functioning gyroscopic mode, and the kit was being sold on the market. However, the transition from standard mode to gyroscopic mode is done manually with the joystick and new users find it difficult to learn this maneuver, so the objective is to automate this process.

In order to implement new control algorithm, a new control box needs to be installed on the wheel since the commercialized version does not allows easy modification of its source code.

There are some popular products on the market today for doing rapid prototyping such as dSpace or SpeedGoat. These companies make systems that can be programmed directly with the C code generated by the Simulink Coder which greatly reduces the time from simulation to real-time experiments. In addition, these products log data and allow for parameter tuning in real-time. The problem with these products is that they are designed for more complicated systems, so they are large and expensive. Since the considered Nomad Kit has relatively few inputs/outputs and large sample time a Launchpad from Texas Instruments was able to be used instead Fig. 12. environmental sensor, OPT3001 light sensor, and TMP007 temperature sensor. For this system, the CAN bus is needed for communicating with the motor cards and the IMU on the BoosterPack is needed to measure the angle of the wheelchair in gyroscopic mode. In addition, functionalities needed for this system, the Launchpad can also be programmed with the code generated from Simulink Coder, and it can communicate with Simulink in real-time to log data and tune parameters while the card is running. 

Modeling

As stated previously, the objective is to be able for a user to travel in the so-called gyroscopic mode. Therefore, a first step is to automate the "swing-up" of the wheelchair, Fig. 16. During the swing-up, the wheelchair only needs to move forward-n-backward, turning left-n-right is not necessary. As a result, only a longitudinal model is needed to describe the motion of the system for the swing-up. The equations of motion for the system are derived using the Euler-Lagrange method with the extended Hamilton's principal and the Rayleigh's dissipation function [START_REF] Cline | Variational principles in classical mechanics[END_REF].
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Where L is the Lagrange function, D is the Dissipation function, k Q are the Generalized forces, and k q are the Generalized coordinates.

Referring to the free-body diagram in Fig. 17, the wheelchair is modeled as if it has only 2 degrees of freedom and is composed of 2 rigid bodies (the base and the pendulum). The two rigid bodies are connected at the pivot of the push-wheel axels. The base of the system is composed of the two push wheels and the electric motor stators where the center of mass coordinates are b y , b z . Then, the pendulum is composed of the chassis, human, and the electric motor rotors with center of mass coordinates p y , p z . x y z ) is equal to the coordinate frame of the wheelchair ( , , x y z ), and the coordinate frame ( , , Where r is the push-wheel radius and l is the distance from the body center of mass to the pendulum center of mass. Table I gives the description of the parameters. 

  r m

Push wheel radius.

  2 g m s   Acceleration of gravity.

  l m

Distance from pivot to center mass.

  m N m s   
Viscous friction in the motor.

 

1 wg N m s    
Viscous friction from wheel and ground.

 

1 t N m A K    Motor torque constant.
On the wheelchair, the two motor drivers control the electric motors current I and motor Using equation ( 1) the equations of motion are computed. First, the Lagrangian L and the dissipative function D are defined:

L T V   (3) 2 1 2 i i i D d x    (4)
Where T is the kinetic energy, U is the potential energy, and i d are the coefficients of viscous friction of the system. To calculate the equations of motion L , D , Q , and q must be defined for each of the two rigid bodies:
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Then applying (1), the system of equations for the swing-up is derived:
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Let us define the total mass as 

Parameter identification

The dynamic model ( 7)-( 8) comprises 6 unknown parameters b J , w J , m  , wg  , t K and l that need to be identified to get an accurate representation of the real system. Of course, the gyroscopic mode corresponds to operating around an unstable equilibrium point. Therefore, the parameters identification cannot be done around this point, excepted if a control law synthesis has been already realized. Like a pendulum, a 2-wheel stable equilibrium point could be reached if a complete rotation could occur, which obviously, at least with a human, is impossible Fig.

18. However, a 3-step identification procedure has been conducted to identify the wheelchair parameters and is presented thereafter. The idea to identify the motor friction m  and its torque constant t K was to consider the system around its 2-wheel stable equilibrium point by raising the wheelchair to allow its complete rotation. Fig. 19 shows the wheelchair tied up and strapped so that the chassis can swing freely. Of course, the system dynamics around this stable equilibrium position corresponds to a different mathematical model that can be easily derived using Newton's method.

    2 2 sin frame frame frame frame b b b b m t M I M l J gl K            (9)
As usual, the identification procedure consists in building an excitation signal, logging sensor data while the excitation signal is applied, estimating the parameters values and validating the resulting model. The excitation signal must be sufficiently "rich" to represent the frequency and amplitude ranges useful for the system operation. Therefore, to cover these ranges, a multisine signal has been defined [START_REF] Schoukens | Nonlinear System Identification: A User-Oriented Road Map[END_REF]. When collecting data, there are two ways to measure the position and velocity of the frame: using the accelerometer and the gyroscope with the following algorithm (already available by the company):
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where 0.001

 
is referred to as the "accelerometer-gyroscope", or by counting the phase changes in the brushless motors. As discussed in section 2.3 there are large quantization errors when measuring velocity from motor phase changes. Counting the phase changes is analogous counting pulses from an encoder, so for now on counting phase changes will be referred to as an encoder. The accelerometer-gyroscope gives much better measurement of the position and velocity Fig. 21. This is mostly due to non-modeled nonlinearities such as backlash in the motor and quantization effects that heavily affect the encoders readings. As a result, the encoder will not be used for this experiment. , and:

1 2.22 0.85 t m K Nm A N m s        (13)
Nevertheless, the results are sufficiently accurate to capture the essential of the signals and, as shown latter on, the robustness of the control laws widely compensate for this imperfection. 

  ˆ( ) , N x RMSE x x x me x an x    (14) 
The RMS value of the angular position error is 0.1857 and the RMS value of the speed error is 0.2195 . 

Wheel-ground friction coefficient wg

 and wheel inertia w J

The second experiment identifies the wheel-ground friction coefficient wg  and the inertia w J with the wheelchair in standard mode. The wheel-ground interaction is a complex phenomenon that depends on many unmeasurable or unmeasured parameters such as the tire slip, wear and temperature, the ground micro-surface, etc. The simplified viscous friction model considered in this study is solely used to add a dissipative force in the wheel chair dynamics rather than modeling the tire physics. As a result, a very rough approximation of the wheelground friction is expected.

In this experiment the wheelchair just moves forward in a straight line to prevent any disturbance caused by the caster wheels, Fig. 25. Data was collected for 5 different users of different mass. 
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The experiments were done twice for each different user masses The Least Square method finds the solution that minimizes the sum of the squares of the errors of an over-determined system of linear equations [START_REF] Boyd | Introduction to applied linear algebra: vectors, matrices, and least squares[END_REF].

2 minimize Ax b  (16) 
where:
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and m being the number of independent variables and n being the number of linear independent observations. Then, a solution to ( 16) can be written as:

  1 T T x A A A b   (18)
First, the least squares regression is used to identify the wheel inertia w J . Referring to Fig. 

    , 1 1.79 wg N m s      , 1 2.22 t K N m A     and 0.3 r m  .
The results of this open-loop validations are depicted in Fig. 28. Despite the simplicity of the considered model, it is sufficiently accurate to capture the essential of the signals and, again, as shown latter on, the robustness of the control laws widely compensate for this imperfection.

Then, using ( 14) the NRMSE for the position y is 0.27 , and the NRMSE for the velocity y  is 0.4007 . The model for this experiment is the same as the model for the swing-up ( 7) and ( 8).

By comparing the open loop simulation with the recorded data, it becomes possible to adjust the parameters using a direct trial-and-errors procedure. In this experiment, the user manually controls the wheelchair using the joystick from the kit.

He starts the swing-up sequence by applying a negative current to the motors, thus going backward and increasing the absolute value of the longitudinal speed. the most sensitive to the parameters b J and l , and is used for their estimation. Fig. 30 shows that over this interval the position and angle are subject to integral drifts. 

Conclusion

This chapter introduced the necessary initial works to obtain a "wheelchair + user" model that can be fully exploited for control. Modeling of a wheelchair using Euler-Lagrange method and identification of its parameters were presented. The main parameters that need to be recovered were obtained in three different steps. The overall system validation had to take into account that the system only operates at or close to its unstable equilibrium position. As a result, during open-loop validation, the errors in the model accumulate and the model deviates quickly when near the equilibrium position. However, a sufficiently good validation of the swing-up phase (for example from 0 to 3.2 s , Fig. 30) were obtained. Next chapters will show that the model obtained is sufficiently accurate for deriving robust control laws, that compensate for the relative uncertainties observed.

Chapter 3 Continuous Swing-up Optimal Trajectories

Wheelchairs are used by people that have disabilities in their mobility, and while a wheelchair can be life changing for these people their mobility is still limited. For example, wheelchairs are not able to roll over some common obstacles (street curbs) or maneuver on terrains like grass or stones. An interesting solution that improves the mobility of a wheelchair user is the NOMAD from Autonomad-Mobility Fig. 7. The NOMAD operates in Gyroscopic mode (balancing on its rear two wheels) which allows if to roll over small obstacles and maneuver in rough terrains. However, from a control point-of-view a crucial issue is that neither the ground characteristics nor the Person with Reduced Mobility (PRM) characteristics (height, mass) are known and/or even measured. Then, the swing-up results with the wheelchair being in an unstable equilibrium position with internal and external unknown parameters. As a result, the goal of this chapter is to find a unique solution that will swing-up the wheelchair in a safe, secure manner that can cope system unknowns (user mass, height, and wheelchair geometry).

In particular, the solution for the end-user should be smooth, comfortable.

This chapter will start off with Takagi-Sugeno Fuzzy modeling using Sector Nonlinearity Approach. The modeling includes two classical forms, state-space and descriptor continuous models. Then, the stabilization of the state-space and descriptor model is presented. The application of such methodology to the swing-up of a wheelchair is presented. A reference trajectory model in a descriptor form is first defined, whereas the trajectories are performed using optimal control design based on expert admissible trajectories. A robust control based on Lyapunov 2 nd method and Linear Matrix Inequalities (LMIs) design [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]) is obtained. Simulations and real-time experiments are provided to show the effectiveness of the proposed approach.

Takagi-Sugeno Fuzzy Modeling

This part quickly describes the fundamentals of Takagi-Sugeno (Tanaka et Wang 2001) modeling in two cases: classical state-space models and descriptor form models.

"Classical" State-Space Models

Takagi-Sugeno (TS) models are a collection of local linear models blended by nonlinear membership functions (Tanaka et Wang 2001). We restrict our work to the so-called affine-incontrol models:

                    1 1 r i i i i r i i i x t h z t A x t B u t y t h z t C x t                (22)
where   n

x t   is the state,   q y t   is the output and   p u t   is the input that only appears affinely in ( 22). r is the number of local linear models or vertices, sometimes denoted as number of rules, for historical reasons. 

1 i r    n n i A   
    1 1 r i i h z t    ,     0 i h z t  (23) 
Different approaches can be used to design a TS model from an affine-in-control nonlinear model:

                x t A x t B u t y t C x t             ( 24 
)
where One common approach is to use linearize the nonlinear model ( 24) around several operating points to derive TS model that approximates the nonlinear dynamics (Johansen, Shorten and Murray-Smith 2000) [START_REF] Lendek | Stability Analysis and Nonlinear Observer Design Using Takagi-Sugeno Fuzzy Models[END_REF]). Another way is the so-called Sector Nonlinearity Approach (SNA) (Ohtake, Tanaka et Wang 2001) which tries to find an exact representation of the nonlinear model ( 24), at least in a compact set of the state variables.

  n n A     ,   n p B    and   q n C    
However, exactness of the TS model comes at the price of an exponential increase of the number of vertices; the number of linear systems being related to 2 NL n with NL n the number of considered nonlinearities in the original nonlinear model. Keeping the number of nonlinearities to be treated using the sector nonlinearity approach low is therefore of particular importance.

Following this classical approach with SNA, a fuzzy model for the wheelchair model in ( 7)

and ( 8) is constructed (Tanaka et Wang 2001). The goal being to transform each nonlinearity into a defined sector depending on their validity domain. First, in ( 7) and ( 8) the nonlinearity

  sin  is substituted with   sin    which is equal to   sinc    where     sin sinc    
. Then, the equations are expanded to first order equations:

              1 1 1 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 cos 2 2 2 cos x x x x b b w b w b w w b x x x x b b w b w b w w b a y b c d I x M M l r J l J r M l r J M r J M l r a y b c d I x r M M l r J l J r M l r J M r J M l r x                                      (25)
where: 

                      1 1 1 1 2 2 2 2 2 2
K M l J M lr a J M r M r M l r M l r b r M r r M                                                            2 2 3 2 2 2 2 2 2 2 2 2 cos 2 2 cos sinc 2 2 cos w b x b b w w b x t b w w b J M lr c M M r J M r M l r d K M r M r J M l g r r r l                  (26) 
In ( 25) there are four nonlinearities that are defined to build the vertices:

                  2 2 2 2 2 2 2 2 2 2 2 2 1 2 3 4 2 2 2 cos cos sinc 1 b b w b w b w w b z M M l r J l J r M l r J M r t J M l r t z t z z t                 (27) 
Referring to Fig. 18, the wheelchair operating range is restricted to

  60 30      . Next,
the bounds for each nonlinearity in (27) are defined.

          min max i i i i z t z t m M      ,   1, 2,3, 4 i  (28)
From where the SNA defines the membership functions:

            1 2 , i i i i i i i i i i i i z t m M z t w z t w z t M m M m       (29) 
Then, the resulting T-S model will have 4 2 16  vertices. The vertices are the combinations of all  

j i i w z ,   1, 2,3, 4 i  ,   1, 2 j  :     4 1 i j k i i i h z w z    ,   4 1 2 1 i i i k j     (30) 
For example:

0 1 2 3 9 1 2 0 2 0 2 1 2         thus:           2 1 1 2 9 1 1 2 2 3 3 4 4 h z w z w z w z w z     .

Descriptor state-space Models

Many nonlinear systems, such as mechanical systems, can be naturally written as a descriptor model, [START_REF] Guelton | An alternative to inverse dynamics joint torques estimation in human stance based on a Takagi-Sugeno unknown inputs observer in the descriptor form[END_REF], [START_REF] Lendek | Local stabilization of discrete-time TS descriptor systems[END_REF].:

                  E x x t A x x t B x u t y t Cx t Du t           (31)
where   n n the resulting TS model (obtained using the sector nonlinearity approach) is likely to have a very a number of rules that will be important in the controller design.

Applying the sector nonlinearity approach to the dynamics of (31) a TS descriptor model is derived:

                        1 1 1 e r r k k i i i k i r i i i v z t E x t h z t A x t B u t y t h z t C x t                  (32)
With k E 1 e k r   the local descriptor matrices, k v are blending functions subject to a convex sum constraint similar to (23):

    1 1 e r k k v z t    ,     0 k v z t  (33) 
The wheelchair model naturally writes as the descriptor model:

    , E x A x Bu        (34) 
Where:

            2 2 2 wg 2 2 2 cos 0 cos 0 0 0 1 2 2 sinc , 2 2 si 0 1 0 0 nc w b w b b b b m m t b m t m b E J M M M l r M l M l J B K M l r r r K M gl x r y A                                                                                 (35) 
Following the same SNA strategy as for the classical case for the wheelchair model, a T-S descriptor model is obtained. First only three nonlinearities are considered, one in  

E  and two in   , A   :           2 1 2 3 cos sinc z t z t z t         (36) With their bounds           min max i i i i z t z t m M      ,   1, 2,3 i  (37)
From where the SNA defines the membership functions:

            1 2 , i i i i i i i i i i i i z t m M z t w z t w z t M m M m       (38) 
The resulting fuzzy model will have 4 local linear i A matrices and 2 local linear i E matrices:

            2 4 1 1 1 , k k i i i k i w E x t h A x t B u t            (39) 2 1 1 2 2 1 2 2 1 1 2 2 2 0 2 0 0 0 0 0 1 0 0 1 w w b w b b w b b b b b b b E E J J M M M lm M M M lM r r M lm M l J M lM M l J                                 3 1 2 3 wg 2 3 wg 2 3 2 2 3 3 wg 2 3 wg 2 3 2 2 4 2 2 2 2 2 2 2 2 0 1 0 0 1 0 2 2 2 2 2 2 2 2 0 1 0 m m m m b b m m m b m b m m m m b b m m m b m b A g M lm m M lM m r r r r M glm M glm r r M lm M M lM M r r r r M glM M r r A A A                                                                               3 0 1 0 lM               0 t t B K r K              
Using a descriptor form is common for mechanical systems; specifically, because it is a natural way to write equations derived from the Euler-Lagrange method [START_REF] Guelton | An alternative to inverse dynamics joint torques estimation in human stance based on a Takagi-Sugeno unknown inputs observer in the descriptor form[END_REF], [START_REF] Lendek | Local stabilization of discrete-time TS descriptor systems[END_REF]. Generally, in this form the matrix   E x endsup being regular, in particular this is the case for the wheelchair making discussions about the singular case such as in [START_REF] Zhang | New bounded real lemma for discrete-time singular systems[END_REF] useless. As

  1 E x  exists, a classical state
space representation can also be derived from the descriptor model ( 31). Nevertheless, a first key point to reduce conservatism (in term of LMI complexity) is to keep a constant B matrix [START_REF] Bouarar | Robust fuzzy Lyapunov stabilization for uncertain and disturbed Takagi-Sugeno descriptors[END_REF]. A second point is that for many problems coming from mechanical descriptions, the descriptor formulation (32) have been shown to reduce the conservatism of the solutions, i.e. to enlarge the set of feasible solutions [START_REF] Estrada-Manzo | Controller Design for Discrete-Time Descriptor Models: A Systematic LMI Approach[END_REF], [START_REF] Lendek | Local stabilization of discrete-time TS descriptor systems[END_REF], and [START_REF] Chadli | Novel bounded real lemma for discrete-time descriptor systems: Application to H∞ control design[END_REF]. Therefore, the descriptor form (39) of the wheelchair will be kept in the manuscript.

Stabilization of T-S models

Some useful notations that will be used in the following section are defined.

Notations and useful technical lemmas

In order to shorten the expressions, the following notation are introduced for single or multiple sums:

(40)

And extended for multiple sums:

    1 1 r r hh i i ij i i A h z h z A     or     1 1 e r r hv i k ki k i K h z v z K     , hhv
 and so on.

The TS descriptor model (32) can be written as:

          v h h h E x t A x t B u t y t C x t                      1 1 1 1 1 , , e r r r v k k h i i h i i k i i E v z t E A h z t A X h z t E                  (41) 
For a matrix X , T X denotes its transpose, 0 T X X   stands for a symmetric definite positive matrix. In a matrix and/or in an expression   * stands for the term deduced by symmetry, for example

  * T A A B B C B C              or   * T PA PA A P   
, and different possible combinations such as:

    * * T T A Q A A Q B B C B C                  .
Often LMI constraints problems can include multiple sums. For double sums it can be necessary to check if

    1 1 0 r r i j ij i j h z h z      , or in a compact form 0 hh   . A trivial solution is 0 ij    
, 1, i j r   that ends with conservative results as it does not exploit the fact that

        i j j i h z h z h z h z  .
Exploiting this kind of property is known as relaxation schemes. The one used thereinafter is due to [START_REF] Tuan | Parameterized linear matrix inequality techniques in fuzzy control system design[END_REF].

Sufficient conditions to ensure

    1 1 0 r r i j ij i j h z h z      are: 0 ii   (42) 2 0 1 ii ij ji i j r         ,   , 1, i j r   (43) 
Next, two technical inequalities lemmas are often necessary [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF].

Lemma 1 (completion of squares): Consider X , Y two matrices of appropriate dimension, a scalar 0   and a positive definite matrix

0 T Q Q   , the following statements hold: 1 T T T T X Y Y X X X Y Y       (44) 1 T T T T X Y Y X X QX Y Q Y     (45) 
These results are direct from the inequality    

1 0 T QX Y Q QX Y     .
Lemma 1 (Schur's complement): let 

1 0 T Q X P X    (46) 50 0 T Q X X P        (47)

Stabilization of TS models

State-space stabilization of TS models is done generally via Lyapunov functions and socalled Parallel Distributed Compensation (PDC) schemes (Tanaka et Wang 2001). For example, with (24) in a TS form ( 22), a quadratic Lyapunov function generally applies:

      0 , T T V t x t Px t P P    (48) 
Together with the PDC that shares the same SNA as the model:

    1 h u t F P x t   (49) 
It renders the state close-loop model:

      1 h h h x t A B F P x t     (50) 
And after some classical manipulation, the derivative of (48) along the trajectories of the closedloop (50) is negative if:

  1 0 * h h h A P B F P    
or equivalently using the sums:

    1 1 0 r r i j ij i j h z h z      ,     * T ij i i j i i j i i j A P B F A P B F A P B F         (51) 
Thus a LMI constraints problem can be proposed: 42) and (43) hold.

LMI T-S Stabilization Problem:   * ij i i j A P B F     Find 0 T P P   and i F ,   1, i r   such that conditions (
(52)

Stabilization of TS descriptor models

Now, consider the descriptor model (41) written in its compact form:

          v h h h E x t A x t B u t y t C x t     (53) 
The usual way to cope with such descriptor form is to introduce an extended vector [START_REF] Taniguchi | Fuzzy descriptor systems and nonlinear model following control[END_REF]. It allows to rewrite (53) as:

x x x          ( 
          hv h h Ex t A x t B u t y t C x t            (54) 
where:

        1 1 e r r hv i k ik i k A h z t v z t A       ,     1 r h i i i B h z t B      ,     1 r h i i i C h z t C      and: 0 0 0 I E         , 0 hv h v I A A E          , 0 h h B B         .
The quadratic Lyapunov function used writes:

      T V x x t E X x t     (55) 
As   V x is definite positive, we need symmetry:

T EX X E   
and   0 V x  , 0 x  , thus the form of X is (Taniguchi, Tanaka and Wang, Fuzzy descriptor systems and nonlinear model following control 2000):

1 3 4 0 X X X X        , 1 1 0 T X X   (56) 
Then the following control law, corresponding to an extended PDC scheme can be used with

1 1 1 P X   :     1 1 hv u t F P x t   (57) 
The descriptor closed-loop writes:

      1 1 v h h h v F P x t E x t A B     (58)
And in its extended form:

    1 1 0 h h hv v x t x t E A B I E F P               (59) Now, considering the derivative of the Lyapunov function       2 T T V x x t X E x t       along the trajectories leads to:     1 1 1 1 3 4 0 0 * 0 h h T hv v I P X A P B X F E                     (60)
And multiplying right with:  

1 1 1 3 4 0 0 0 * hv v h h I P F P E P A B P                (61) 
Or equivalently [START_REF] Taniguchi | Fuzzy descriptor systems and nonlinear model following control[END_REF]:

  3 3 1 3 4 4 4 0 * T T T T hv v v h v h P P P F E P A P B E P P E              (62) 
A refinement is possible with extra slack variables introducing 3h P and 4h P in place of 3 P and 4 P to get [START_REF] Guerra | A way to improve results for the stabilization of continuous-time fuzzy descriptor models[END_REF] ):

  3 3 1 3 4 4 4 0 * T h h T T T hv h v h h v h h v h P P P F E P P E P A B P E              (63) 
From ( 63), a LMI constraint problem can be derived via the relaxation (43):

LMI Descriptor T-S Stabilization Problem:   3 3 1 3 4 4 4 * T j j k ij T T T jk i j j i j j i i i P P P F E P P E E A P P B                 Find 1 1 0 T P P   , 3 j P , 4 j P , and jk F   , 1, i j r   ,   1, e k r   such that:       0 1, 2 , 1, , 1, 0 1 k ii e k k k e ii ij ji k r i j r i j k r r                 (64) 
With these "basic" results being recalled, the application to the wheelchair is presented.

Application

The objective is to bring the wheelchair form the grounded standard-position (SP) where smoothness, safety when transitioning from SP to SBM and minimum displacement. To achieve this goal, a controller is designed to follow predefined reference trajectories. The predefined trajectories are computed using the optimal control framework. 

        r u t u t F e t    (65) 

Reference Tracking Model

The model (34

),     , E x A x Bu       
, presents several nonlinearities depending on  and  . There are many possibilities to take them into account such as (39), the choice adopted consists in isolating the nonlinearities of  

, A   in a vector   ,     .
This way is interesting because it prevents the use of classical Lipschitz conditions that ends with convergence in a ball [START_REF] Ichalal | On Unknown Input Observers for LPV Systems[END_REF], [START_REF] Zemouche | Observers for a class of Lipschitz systems with extension to H-infinity performance analysis[END_REF]. Therein, using this vector allows with the help of the Mean Value Theorem (MVT) to prove an asymptotic convergence property [START_REF] Ichalal | Decoupling Unknown Input Observer for nonlinear quasi-LPV systems[END_REF]. Therefore, (34) is written as:

    , E x Ax Bu           (66) 
where

      2 wg 2 2 2 0 sin , , sin 2 2 0 0 0 1 0 m m b b m m M r r M gl l A r                                            (67) 
Thus, ( 66) is the generic model used to derive the control law and the reference model following the same principle (with similar matrices as ( 67)) writes:

    , r r r r r r E x Ax Bu           (68) 
Now, considering that   E  , equation ( 35), is well-defined, i.e. invertible for every  , proving the convergence of

  0 E e  
 ensures the convergence of the error 0 e   .

Therefore, let us write:

     r E e E x x        (69) 
which can be expanded to:

          r r r r E e E x E x E E x                  (70) 
Then substituting ( 66) and ( 68) into (70):

          r r r E e Ae B u u E E x                   (71) 
where

              2 2 sin sin , sin sin 0 , b r r b r r r M l M gl                                             (72) 
And introducing the vector:

              cos cos cos cos 0 b r r r r b r r M l M x y E l E                                           (73) 
The equation ( 70) is equivalent to:

        r E e Ae B u u             . ( 74 
)
In ( 74), if     and     are treated via Lipschitz conditions [START_REF] Ichalal | On Unknown Input Observers for LPV Systems[END_REF], [START_REF] Zemouche | Observers for a class of Lipschitz systems with extension to H-infinity performance analysis[END_REF], the convergence can be only ensured inside a ball whose radius depends directly on the Lipschitz constants. Another way ensuring the convergence to the equilibrium point is to take profit of the Differential Mean Value Theorem (DMVT) (Zill and Write 2011), [START_REF] Guerra | Hinf LMI Based Observer Design for Nonlinear Systems via Takagi-Sugeno Models With Unmeasured Premise Variables[END_REF].

Lemma 3: (Zill and Write 2011) Differential Mean Value Theorem

: Let   : n f x    and , n a b   . If   f x is a differentiable function on   , a b , then, there exists a vector n c   with   , i i i c a b  ,   1, , i n   such that        f b f a f c b a     ( 75 
)
where

    f c f c x     and   , i i
a b means the open interval between i a and i b .

DMVT can be applied to equations ( 72) and ( 73) using the intermediate variables

    0 2 3 , , min , , max , r r             and     1 min , , max , r r               . For (72)        0 sin sin cos r r         (76)         2 2 2 2 1 1 2 sin sin i cos 2 s n r r r r                               (77) which leads to           2 1 2 1 2 * 0 0 2 sin cos 0 0 cos 0 0 0 b e M l e g                      (78) 
For ( 73):

       3 cos cos sin r r          (79) which leads to         3 3 * 0 0 sin 0 0 sin 0 0 0 b r b r M l M e y e l                        (80) Now defining       * * * 0 1 2 3 , , , , , r r A A y               
, the estimation error dynamic (74) becomes:

      * 0 1 2 3 , , , , , r r r E e A e B u y u              (81) with             2 1 2 1 2 * 0 wg 3 2 3 sin cos cos si 2 2 2 sin 2 n 2 0 1 0 m m r m m r b b b r A M l M l M l g r y r                                              (82)
Then applying the control law (65):

        * 0 1 2 3 , , , , , r r E e A BF e y              (83)
However, before describing the procedure to find   F  that ensures the convergence of ( 83) reference trajectories are to be defined, in order to ensure not only stability but also comfort.

Reference Trajectories

To analyze the way a swing-up is managed, a manual reference swing-up is presented Fig. 33; it has been performed by an expert at the company Autonomad-Mobility using the hand-rims. The strategy is decomposed in 2 moves; first, a move in the reverse direction then a forward acceleration that swings up the wheelchair. This strategy backward-forward helps to reduce the displacement of the wheelchair needed for the swing-up. The black dashed line in Fig. 33 show the start of the transition from reverse velocity to forward velocity which is when the swing-up starts. With f t the free final time, the criterion to be minimized is:

        0 min , f r t r r r u J u l u y d      (84) with     2 2 0 target 1 , 2 r r r r l u y u q y y   
. The first term in l allows limiting the control amplitude while the second terms allows simultaneously reducing the swing-up time and enforcing a final position   r f y t near to target y ; 0 0 q  is a weighting factor.

Then, writing the model equations from ( 7) and ( 8) as a set of first order equations, the state dynamics can be written as:

            r r r r r x t f x t B x t u t    ( 85 
)
Where 

          T r r r r r y t t x y t t t                               1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 cos 2 2 2 cos
c M M l r J l J r M l r J M r J M l r a y b c r M M l r J l J r M l r J M r J M l r y x t                                                                      1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 cos 2 2 2 cos 0 0 b b w b w b w w b r b b w b w b w w b r r r B d M M l r J l J r M l r J M r J M l r d M x r M l r J l J r M l r J M r l t J M r                                     With   2 2 2 2 1 wg wg 2 2 2 cos b b m b b m b m r a M l r M l J r J M lr                2 1 2 cos m b b b r b M l J M lr r              2 2 2 2 2 1 cos sinc r b b b r b r c M lr M l r J r M l r g             2 1 cos t b b b r d K M l J M lr r         2 2 3 2 wg 4 2 4 2 cos cos w m b m w m b m r b r a J M r M r M l r M l r                 2 2 2 2 2 2 cos m b w w b r b r M r M r J M lr               2 2 2 2 2 3 2 2 2 cos sinc r b b w w b r r c M M r J M r M r r l gl              2 2 2 2 2 cos t b w w b r d K M r M r J M l r r     
The control saturation is:

  r r r u u t u    (86) 
The initial condition corresponds to a longitudinal position arbitrarily fixed to 0 with a free initial velocity and a grounded wheel chair, so

  0 g r  
 . The final condition corresponds to a free longitudinal position, with null longitudinal and angular speeds.

Hence, the boundary conditions are:

  0 g r    ,           0 0 0 f r r r f f y y t t t            (87)     0 r r f y t y free    (88)
To facilitate the numerical implementation and to cope with the free final time, the following change of variable is considered:

  0,1 f t z t   (89)
z now being the independent variable, and the optimal control to be solved is:

        1 0 min , r r r r u J u l u z y z dz   (90)               r r r r r f dx z f x z B x z u z t dz    (91)   r r r u u t u    (92)   0 g r    ,           0 1 1 0 1 0 r r r y y            (93)     0 r r f y t y free    (94) 
In order to derive optimality conditions using Pontryagin's Minimum Principle (PMP) [START_REF] Naidu | Optimal control systems[END_REF], [START_REF] Kirk | Optimal control theory: an introduction[END_REF]), let us first define the Hamiltonian associated with the optimal control problem:

          , , , T r r r r r r r r f H x u l y u f x B x u t      (95) with           4 , , , , T dy d y z z z z z            
  the co-state vector. PMP provides optimality conditions along an optimal trajectory. The optimal co-state dynamics are:

  , , r r r H x u d x dz       ( 96 
)
The optimal control minimizes the Hamiltonian:

    arg min , , r r r r u v u u t H x v      ( 97 
)
The Hamiltonian is a second order of the control r u :

  2 0 1 1 , , 2 r r r r H x u a a u u     (98) with     2 0 0 target T r r f a q y y f x t       1 T r r f a B x t   .
The Hamiltonian being convex with respect to the scalar control r u , its unconstrained minimum is : For each free initial or final state in ( 94), the corresponding co-state value is null:

  uc T r r r u B x    ( 
    1 0 0 y dy     (101)
The final time f t being free, the final Hamiltonian value is null (Geering 2007).

        1 , 1 , 1 0 r r r H x u   (102)
The final time being a constant, the following dynamics is considered:

  0 f dt z dz  (103) 
Let us denote , ,

T T T r f Y x t       .
The optimal control problem is thus reduced to the following boundary value problem:

        0 , 1 0 r r r r dY F Y dt G Y Y        (104) With                 , , , , 0 r r r r r r r r r u x f x t B x t x H x u F Y x                         and   i G G  ,                               , 0 0 0 0 1 0 1 1 , 1 1 1 , 1 r r r r r r f r r r r y r dy r g r G Y Y t H y u y x                                              .
The boundary value problem ( 104) can be solved using colocation approach, for instance using the bvp4c solver [START_REF] Kierzenka | A BVP solver based on residual control and the Maltab PSE[END_REF]. To compute a solution, two parameters needs to be fixed : 0 q and target y used in the criterion (84). According to the swing-up experiments performed in manual mode, Fig. 33, the target position target y has been set to 0.34 m and only 0 q remains unfixed. To illustrate its effect on the optimal solutions, two of them are computed for 0 100 q  and 0 2000 q  , and depicted in Fig. 34. Two signals are of particular interest: the longitudinal position y and the wheel chair angle  . Small 0 q values generate solutions that take longer and have no position overshoot. Large 0 q values lead to more dynamic solutions with overshoots on position, angle and control signals. These solutions have also smaller f t values. In order to generate safe and comfortable trajectories, the value of 0 q is chosen such that the generated reference trajectories are close enough to the one recorded during swing-up performed by an expert. Let us denote with subscript m the data recorded during the manual operation and let y J be the normalized root mean squared deviation between the optimized trajectory position r y and m y . Similarly, criterions J  , dy J , d J  are also defined for the angular position, the longitudinal velocity and the angular speed. Fig. 35 summarizes the obtained values as a function of 0 q .

The generated longitudinal motion   , r r y y  are closer to the recorded one for 0 q between 700 and 800. The generated angle and angular speed are closer to the recorded one for small values. As a result, a compromise, 0 405 q  has to be found between the longitudinal and rotational behavior. The optimal solution obtained for the chosen 0 q value is depicted in Fig. 36 wheelchair is almost at steady state. In practice, the encountered difference is not noticeable. 

Reference Tracking Controller Design

With the optimal trajectories being defined, a stable controller (65) is synthesized using the quasi-LPV framework (Tanaka et Wang 2001) and Linear Matrix Inequalities (LMIs) constraints [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]). Since the model of the tracking error is in a descriptor form (83)

we will consider as a basis the LMI Descriptor T-S Stabilization Problem (64) and extend it for robustness issues. Following the same path as for (64), the extended form of ( 83) is.

        * ˆˆˆ0 0 0 0 , ˆ, 0 I A B A Ex A x Bu I E E B                              ( 105 
)
The goal is now to write (105) as an uncertain T-S model. Considering the definition of 82) and remembering that the intermediate variables i

  * A  in (
 ,   0,1, 2,3 i  are bounded
but unknown, we will use their bounds to define an uncertain description. Considering:

        0 2 3 1 , , min , , max , min , , max , r r r r 
                          , (106) 
it is possible to find the centers and radii for the uncertainties. For the parameters 0  , 2  and 3  , the validity domains are direct from the wheelchair mechanical restrictions due to the caster wheels and the anti-tippers. Validity domain of 1  is related to safety and comfort of the swingup and results from real time experiments and company experts' experience. Thus, the minimum and maximum bounds for the uncertainties result in the worst-case combinations of the validity domains that correspond to: 

          1 2 1 2 1 2 0 0 1 2 1 2 , , 2 sin min sin max sin 2 b b M l M l                        (107)                     1 2 2 3 3 1 3 2 1 2 1 1 2 2 1 2 , 3 3 1 2 , , , , , sin sin cos 
min cos ma c s s in x o r r r r b r b M l M l                                       (108)                   3 3 0 0 0 2 2 0 0 , 3 , , ,
                               (109) 
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Therefore, trivially we can define the centers: 105) can be written as:

  1 2 i i i c     and the radii   1 2 i i i r       1, 2,3 i  . Now the expression of   * A  (82) in (
    * A A H t J     (110) with:         0 1 2 0 0 0 0 0 0 t t t t                ,   1 i t   ,   1, 2,3 i  and: wg 0 1 2 0 1 2 2 2 2 0 0 1 0 , 0 0 , 0 0 1 2 2 0 0 0 0 0 1 0 1 0 m m m m A c c r r r r H r J c r                                               (111) 
And for ( 105)

      0 ˆI A A H t J E             (112) 
As  is measured, we can consider a quasi-LPV description of (112) via a decomposition of   E  in the validity domain of ,

g g          for the nonlinearity     cos cos ,1 . g       
This so-called Sector Nonlinearity Approach (Tanaka et Wang 2001), corresponds to:

        1 2 cos cos 1 g v v         (113) Where             1 2 1 cos cos , 1 1 cos g g v v v            Thus, we define:         1 2 1 v g E v E v E        (114) 
v E represents a polytope with two vertices   g E  and   1 E , and perfectly coincides with

  E  when , g g          .
Following classical PDC scheme (49), the control writes:

            1 1 1 2 1 1 1 v g F F P F v P v F            (115) 
Therefore, we have a quasi-LPV extended description with uncertainties of (83) as:

  1 1 ˆ0 ˆv v I e F Ee A H t J B P E              (116) 
Then, using the Lyapunov function candidate (55),

      * * * * T V e
e t E Xe t  , where:

1 3 4 0 X X X X        , 1 1 0 T X X  
, and following the same path transforms directly expression (62) into:

        1 3 3 1 3 4 4 4 1 0 * 0 0 T T T T T v v v v H t JP P P P F E P P E P P E H t J A P B                         (117) 
Considering the 2 nd term in (117), the sum 0 v   , with 1 2 ,     and the classical completion of square property (44) [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]:

         1 1 1 1 0 0 0 * 0 0 0 T T T T v T v P P J P J t J t t H H H                                        (118) And since   1 i t   ,   1, 2,3 i  :     1 1 3 3 1 1 3 4 4 4 * 0 T v T T T v v T v v T v P P P P AP BF E P P E P P E J J HH                  (119) 
Then applying a Schur's complement (47) on the first entry of (119) gives:

  1 3 3 1 3 4 4 1 4 0 * 0 0 v T T T T v v v T T v v I P P P AP BF E P P E P P J P J HH E                     (120) 
Therefore, the LMI constraints problem corresponds to:

LMI Descriptor T-S Robust Stabilization Problem:

Find 1 1 0

T P P   , 3 P , 4 P and v F   1, 2 v  , 1 2 ,      such that:   1 1 3 3 1 3 4 4 4 0 * 0 0 v T i T T T v v T v v v T J P E J H F H I P P P AP B E P P E P P                       ,   1, 2 v  (121) 
Then, since the initial conditions are known we can enforce a constraint on the command

  2 u t   for all 0 t  (Tanaka et Wang 2001) if the LMIs hold:     1 2 1 1 0 0 0 0 T T v v P M x M I x P                  (122) 

Reference Tracking Simulation

The set of parameters identified in chapter 2 are used to design the controller for the simulations with the following values 95.5 17.14 112.64 

E            , 2
130.05 30.60 0 30.60 21.79 0

0 0 1 E           
20.73 5.68 61.0 5.68 1.70 300.0

0 1 0 A               and 7.39 2.22 0 B             .
In the top of Fig. 37 is the lateral position of the base of the wheelchair and the curve below is the velocity. The maximum displacement of y is about 0.32 m which is one of the goals of the swing-up. Then, the top 2 curves in Fig. 38 are the angular position and angular velocity of the pendulum. The angular position  starts at 0.35 rd and ends at 0 rd in about 1s which is comparable to the manual swing up in Fig. 33. In both Fig. 37, Fig. 38 the optimal reference command is given in the bottom. Also, these trajectories were calculated with 0 405 q  . is the nominal mass and should have followed closely the reference but the non-modelled conditions make the trajectories differ from the reference.

P                  , 1 2 1.13 1.07                 
Referring to the trajectory  in Fig. 42 we see that the simulation trajectories reach 0 rd faster than the reference trajectory which we see the same effect on the real-time results. With that being said, the robustness of the controller is still able so swing-up the wheelchair with mass variations of 20 kg  form the nominal mass.

Reference Tracking Real-Time Test

The real-time controller design followed the two-step strategy presented above. A video is also available at the following address https://pod.uphf.fr/video/2758-chapter-3-continuousswing-up-optimal-trajectories/. Frame captures of the video are provided in Fig. 43. A positive motor torque is applied. As a consequence, the wheelchair swings-up with little forward speed until instant c . Then, to increase the wheelchair angle closer to the equilibrium position, the wheelchair speed y  is increased until the equilibrium is reached at instant d and rests almost standstill (only counteracting the human movements). At the instant d when the wheelchair is balancing at equilibrium is the end of the swing-up, at this point the control unit switches to a different algorithm that allows the user to drive the wheelchair (with joystick) in self-balancing mode.

The most important signal for the swinging-up phase is the wheelchair angle  . As depicted in the upper graph of Fig. 44, the system reaches self-balancing position in less than 2 seconds.

Even though  and  show oscillations between b and d the algorithm still provides a smooth operation for the user. Overall, the  and  signals are similar to the one obtained in simulation with sensor noise, Fig. 42.

Then, in Fig. 45 we see that the swinging up operation is performed over 45 cm of longitudinal motion, which allows to perform the swing-up in small areas. The whole maneuver required approximatively 1.5 m . Overall, it can be seen that the control law behavior remains quite similar therefore demonstrating the robustness of the control law to the user's parameters. 

Conclusion

First, the wheelchair dynamics has been formulated using a TS-descriptor model. A control law has been proposed to track a state reference in the particular case of a known reference input. A two steps controller synthesis was suggested.

First, the state and input trajectories have been computed as a solution to an optimal control problem in order to ensure a swing-up with a small wheelchair displacement while minimizing the control amplitude. The compromise between these two criteria has been tuned in such a way that the generated trajectories mimic the one performed by a professional user.

Second, the control law was designed to ensure global stability of the system in a secure way to follow the optimal trajectories. The stability of the closed-loop system was ensured by classical Lyapunov method and Differential Mean Value theorem to write the solution as a LMI constraints problem.

Lastly, the controller was tested in simulation and real-time to show the controller effectiveness. The real-time experiments demonstrated the control law capability to deal with small grounded obstacles. The control law robustness was tested by different users and similar results were obtained, demonstrating the good sensitivity of the closed loop to user's parameters.

Chapter 4 Discrete Robust Swing-up

The previous chapter proposed a continuous framework mixing optimal control strategy and T-S control synthesis using LMI constraints problems, this chapter focuses on discrete robust control including mass uncertainties. The goal is to propose a solution that is fully using a quasi-LPV formulation both for the trajectories and the robust control.

The discrete framework has been chosen in this part, it is closer to an application level for embedded systems and it presents some advantages for the controller design methodology such as more degrees of freedom for the Lyapunov functions. The descriptor discrete model is first presented as well as its exact T-S form. Some basis of the LMI constraints design for descriptor models is recalled after. Then, a robust control law is designed to swing-up and stabilize the system. To generate a problem that includes the trajectories, they are designed using a discrete linearized model of the system. The idea is that the trajectories delivered will be admissible by the nonlinear system. As they are computed together with the control, stability and performances will be guaranteed. In addition, the system will be written considering the nonmeasured uncertainty due to the mass b M (both user and wheelchair) and a robust control law capable to swing-up for an important variation of b M will be designed. Lastly, the controller has been tested extensively in both simulation and real-time experiments and some of the results are presented to show the effectiveness of the approach. Some limitations conclude the chapter.

Discrete Modeling

The interest of working using discrete model and discrete control synthesis is to have a controller directly compatible with the embedded system. Of course, the first step is to derive a discrete model of the wheelchair that is representative of the continuous one (34) in the adequate bandwidth. Several ways of discretization are possible, we took the classical forward Euler method  

1 k k x x x t s    
. The interest is to keep the continuous model structure and the state space vector signification.

Notations: for the matrices and vectors expressions the subscript d stands for "discrete", k is the sample number, s the sampling period, . For Takagi-Sugeno models we recall the corresponding classical notations:

  k x x k s   and     1 1 k x x k s     .
  1 r h i i i X h z X    , with i X   1, , i r  
matrices of appropriate dimensions, z the so-called premise vector and the nonlinear functions   0 i h z  sharing the convex sum property:

  1 1 r i i h z    ; and   1 1 1 r h i i i X h z X            . Finally,
when the sample 1 k  is necessary, a minus subscript can be used in some place to simplify the expression, for example:

            1 1 1 r hh i i i h k h k i X X h z k h z k X        .
The continuous descriptor model ( 34) is written in a quasi-LPV (Ohtake, Tanaka et Wang 2001) form under the compact set: 

    2 , , , x k k k k                (123) 



. Each nonlinear term of ( 34) is therefore transformed via the so-called Sector Nonlinearity approach (SNA) (Ohtake, Tanaka et Wang 2001). ( 34) with 3 nonlinearities will correspond to an exact LPV model in x  with 3 2 8  vertices. This number can be reduced to 4 considering that the functions [START_REF] Guerra | Reducing the number of vertices in some Takagi-Sugeno models: example in the mechanical field[END_REF]. Over the considered compact set x  , the two remaining nonlinearities can be exactly rewritten using the membership functions 0 v , 1 v , 0 w and 1 w :

  cos k  and   sinc k   nearly coincide in   0.4,0.4  since     sinc cos 3.8% k k      (
        0 1 1 cos cos v v        (124)     2 2 0 1 0 w w            (125) With         0 1 1 cos 1 o 0, c s v        ,     2 0 2 1 0,1 w          ,     1 0 1 v v     and     1 0 1 w w       . The resulting quasi-LPV model is:             1 1 1 0 0 0 i ci i j cij i i j v E x t v w A x t Bu t             (126) 
Where: 

  0 c c E E   ,   1 0 c c E E  ,   00 , 0 c c A A   ,   10 0, 0 c c A A  ,   01 , c c A A       11 0, c c A A    , c B B  And:     2 2 2 2 0 1 2 2 2 cos 0 2 0 cos 0 0 0 0 1 0 0 1 w w b w b b w b b b b b b b c c J J M M M l M M M l r r M l M l J M l M E E l J                                        
                                                                                                     2 2 1 0 g 2 0 m b m m b M r M l l r                         



Thus with the Euler's discretization   

        1 1 1 1 0 0 0 i ci k i j cij ci k c k k k i j k i v E x v w sA E x sB u              (127)
then with the compact notation:

1 v k vw k k E x A x Bu    (128) Where   1 0 v i ci i k E v E     ,       1 1 0 0 vw i j ci k j k j ci i A v w sA E         , and c B sB  .

Descriptor T-S stabilization

Before starting, let us recall some useful properties.

Property 1: let 0 T Q Q   and R be matrices of appropriate dimensions. The following expression holds:

    1 1 0 T T T R Q Q R Q R Q R R R Q          (129) 
Property 2 (Finsler's lemma [START_REF] Skelton | A Unified Algebraic Approach to Linear Control Design[END_REF]

): let n x   , T n n Q Q     and m n R    such that   rank R n  ; the following expressions are equivalent: 0 T x Qx  ,   : 0, 0 n x x x Rx       n m M     , 0 T T Q MR R M    (130) 
Considering that the descriptor we are interested in has the property of having an input matrix B constant, we will restrict the results to this case.

1 k v k vw k E x A x Bu    (131) 
This part proposes the basis for the control of such models following the work of [START_REF] Estrada-Manzo | Controller Design for Discrete-Time Descriptor Models: A Systematic LMI Approach[END_REF]. Extensions to robustness are provided in the next section. To begin with, let us consider a general control law, with   F  and   H  to be defined further on:

    1 k k u F H x     (132) 
The subscripts    are voluntarily kept, as the dependence of the different variables is related to the degree of freedom set by the designer and coming from the LMI constraints problems to solve (see expressions ( 139) and ( 140)). Therefore, the closed-loop, control law (132) applied to (131) writes:

      1 1 k v k vw E H x A BF x            1 1 0 w k k v v x A B H E x F                  (133) Considering a Lyapunov function     1 k k k T V x x P x     ,     0 T P P       , again  
 depends on the LMI design; its variation writes:

      1 1 0 0 0 k k T k k k P x x V x x x P                                (134) 
Using the Finsler's lemma, Property 2 [START_REF] Skelton | A Unified Algebraic Approach to Linear Control Design[END_REF], (134) under equality constraint ( 133) is equivalent to:

              1 1 1 * 0 0 0 vw v A M P F H N B E P                                     (135) 
Setting the free matrix [START_REF] Estrada-Manzo | Controller Design for Discrete-Time Descriptor Models: A Systematic LMI Approach[END_REF] and using the property of congruence with the block-diagonal matrix

      1 0 M J N                      ( 
    0 0 H J           , (135) is satisfied if:                     1 1 0 0 0 0 * T T vw v H A H B E J J H P F I J P                                     (136) 
Using Property 1 on the first entry of ( 136)

      1 T H H P      
renders a sufficient condition for (135)

to hold:

                      1 0 * w T T T T v v v H A H B H P J J E J F P J E                            (137) At last, a Schur's complement (47) is applied to transform       1 T J J P     , as   1 0 P    to give the final result:                       0 0 0 vw v T T T v H P F J E P H A H B E J J                                 (138) 
To determine the dependence of the variables    , a goal is to derive conditions with the "less" LMI constraints according to the problem we are faced to. Especially, as the input matrix is constant, we can avoid the cross terms (using twice the same premise by multiplication, the choice vw H for example will imply vw vw A H ) and the associated relaxations [START_REF] Sala | Relaxed Stability and Performance Conditions for Takagi-Sugeno Fuzzy Systems With Knowledge on Membership Function Overlap[END_REF] (see discussions in [START_REF] Estrada-Manzo | Controller Design for Discrete-Time Descriptor Models: A Systematic LMI Approach[END_REF]). For our work, we can distinguish 2 cases.

1 st case: quadratic stability:   P P   , therefore, a good choice for the variables is:

  , vw F F     w J J   and   H H  
to get a double-sum LMI conditions:

    0 0 0 vw vw T v w w w T T v H P J J E P H A H BF E J                     (139) 
and the control writes:

1 k vw k F u H x   .
2 nd case: non quadratic stability using for example:

  vw P P  
, therefore, a good choice for the variables is:

  vwv w F F     ,   wv w J J     and   v w H H    
to get a 4-sum LMI conditions:

      0 0 0 v w v w v w vw v v w vwv w wv w v T vw w w H P F A B P H H E J J                                    (140) 
and the control writes:

1 k v w k wv w v u H F x       .

Application

While the wheelchair is in self-balancing mode, it can overcome obstacles and navigates in rough terrain e.g. grass, stony ground, sand. However, the switching between the standard mode to the self-balancing mode safely and smoothly is a challenge. The objective of this section is to design a discrete robust controller that can swing-up the wheelchair from standard mode to self-balancing mode.

Discrete Robust Tracking Method

Fig. 51 exhibits the overall strategy. A predefined tracking reference rk x is generated via a simplified model r T of the wheelchair. The idea is to generate potentially feasible trajectories in the state space. From these trajectories, a robust controller, implemented in blocks F and G , ensures the stability of the nonlinear model, the robustness to the mass variation and smoothness of the trajectories.

In this chapter, the reference trajectories are defined using a linear descriptor model whose matrices, state and input vectors are denoted with a subscript r :

1 k r rk r rk r E x A x Bu    (141) 
where the matrix r E is nonsingular. The reference input is computed using a state feedback:

rk r rk u F x  (142) 
The descriptor (141) and control (142) being linear, r F can be obtained using any appropriate method. Either a descriptor form (141) can be used or a classical linear model using 

  1 1 1 1 k rk v vw r rB k F k rk x x E A x Bu E A x         (144) 
And using k rk k

x x e   (144) is transformed as:

  1 1 v k vw vw v rB k r F rk k E B e e A A E E A x u       (145) 
Combining ( 143) and ( 145) allows writing an extended problem taking into account both the reference tracking and the control law to design:

1 1 1 0 0 0 0 rk r k r BF v vw v r v rk k r k BF w E A u E A E E A x x e A e B                                     (146) 
Let us now introduce the following control:

      1 rk k k x u F G H e                (147) 
As previously, matrices   F  ,   G  and   H  will be defined later on as well as their arguments    . Regularity of   H  will also be discussed. Thus, the reference and system in closed-loop writes as:

    1 v k vw k E x A BF x     (148) 
With: : 0

0 r v v E E E        , 1 0 rBF vw vw v r rBF vw A A A E E A A          , 0 B B        ,         1 F F G H           and k k rk x x e        .
Using conditions (139) or ( 140) together with matrices defined in (148) allows formulating directly an LMI constraints problem for the nominal case.

Nevertheless, in order to derive generic control laws, the uncertainty on the mass is a crucial issue that must be considered in the control synthesis. This mass uncertainty is related both to the users that may use an identical wheelchair and to the different sorts of wheelchairs that could possibly be equipped with the kit. Thus, we introduce the mass uncertainty in the definition of the matrices in (127) as:

        2 0 cos c 0 o 0 0 0 s 1 c c b l E E M l l                   (149)         2 0 0 sinc 0 , , sinc 0 0 0 0 c b c l M gl A A                             (150) 
Similarly, the quasi-LPV form in ( 145) is updated using:

1 0 , 0 1 0 0 v v v v v b E E E E M                   (151) 
with:

          0 1 0 0 2 1 0 cos co 1 0 s k k k k v l v v l l                  1 0 , 0 1 0 0 vw vw vw vw b vw M A A A A                   (152)             2 2 1 1 0 0 cos sinc cos sin 1 c vw i j ij i k j k l sl l l sgl v w                          
Using the quasi-LPV model definition in (126) with the definition of uncertainties ( 151) and

(152), the extra term     has to be added to the nominal problem (138) written with extended model (148):

                        0 0 0 vw v T T T v H A H J B E P J H F E P J                                    With:           1 0 * 0 0 0 0 0 0 0 0 0 0 vw v r rBF vw v H J A E E A A E                                         (153) 
Now considering the classical decomposition of uncertainties, we can write:

    3 2 1 1 2 6 0 0 1 0 0 1 0 0 0 b vw v r rBF vw vw v r rBF vw H E A H A E E M A A                                                   And:           3 2 2 6 0 0 0 1 0 * 0 * 0 0 1 0 0 v v b J M J E                                       
And it is direct to write (153) as: 

         
                                              (155) 
At the end, using a Schur's complement (47) on (155) renders a polytopic form that linearly depends on the variables to search (156): 

                                         
                                                                                     (156)
From the first entry of (156), if the condition is satisfied then       Moreover, it is important to introduce some elements of performances. For example, it is interesting to have the possibility to act on the norm of the gains in order to be able to increase or to smooth the signals. This is done via a design parameter and using classical tools [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF].

Considering that 

      1 F G P          instead of       1 F G H         
to get a LMI constraint formulation. Thus, we can impose:

          1 T T F F G P I G                   
and P I   , and the parameter 0   will directly be a parameter that acts on the norm of the gains. Thus, 2 LMI constraints are added, the first one obtained using a Schur's complement (47): 

          0, T T I F G P I F P G                                 ( 
                                                                             

Discrete Simulation

The controller will be designed for a person with 95.5 M kg  and the following identified parameters for the simulations, where This control law can swing-up and stabilize safely the system even for unmeasured uncertainties like as the user and/or wheelchair masses. The robustness performances around the unstable equilibrium point are excellent when looking to the movements made by the users in the video, independently from the weight. For now, to gain more performances, the quantization error should be decreased and the possible sampling period increased. This would lead to be able, potentially, to use higher gains that would reduce the time to swing-up and moreover, to reduce the oscillations seen during the swing-ups, for example, Fig. 56, Fig. 57 at about 0.5 t s 

. Simulations study has been done and show the relevance of these remarks.

Conclusion

The objective was to discretize the model to find a control law that would automate the process of transitioning safely a wheelchair from standard mode to gyroscopic mode in a smooth manner while being robust to different wheelchair + user masses. Differently from the previous chapter the choice was to use a unique formulation and control synthesis, the LMI constraints framework. In order to propose such a solution, the idea of coupling tracking reference (acting as a feedforward part) and uncertainty description in a quasi-LPV framework was used. The adequate LMI constraints problems were derived with the possibility of having design parameters to settle a safe and performant strategy. Intensive simulations and experiments were conducted, some of them presented or available at the given previous video address in the previous section.

ground conditions etc. Of course, robustness of the control laws should certainly be adapted, and extensive campaign tests realized.

On a much larger and long-time horizon, several improvements can be thought. A "balancing" chair for example, in order that whatever is the position of the body of the wheelchair, the user keeps a horizontal position. This would imply mechanical developments and would end with a supplementary degree of freedom to control, but a real plus for the user's comfort and security feeling. Taking into account the journey, if a long trip is planned could also be added. Navigation could be thought not only in time or minimum path but also in a way the wheelchair minimizes the number of swing-up and down, minimizes the energy consumption, or more generally increases the global user's comfort. As the wheelchair as an excellent capability of mobility (rough terrains, small obstacles crossing), a connection with cell phone apps could come at hand (GPS, interactive maps, for example) for solving these optimization problems.
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 15 Fig. 15. Estimated motor angular position (top) and velocity (bottom) for different sampling period s T

Fig. 16 .

 16 Fig. 16. Swing-up from Standard Mode to Gyroscopic Mode

Fig. 17 .

 17 Fig. 17. Free-Body diagram swing-up model

  ) rotates around the origin of the body frame. The two rigid bodies are linked by the following constraints:

.

  When the motors generate torque m  , an equal and opposite torque is applied to the base (push-wheels) and the pendulum (frame, human) of the wheelchair. As a result, the electric motors generate a force on the base the chassis of the wheelchair.

  the wheelchair frame (including all the different accessories and components).

  M is user dependent. Similarly, the total inertia is defined as

Fig. 18 .

 18 Fig. 18. Operating region in gyroscopic mode

Fig. 19 .

 19 Fig. 19. Identification experiment 1

Fig. 20 .

 20 Fig. 20. MultiSine excitation signal

Fig. 21 .

 21 Fig. 21. Encoder, Gyroscope-Accelerometer measurement from pendulum experiment

Fig. 22 .

 22 Fig. 22. Filtered accelerometer-gyroscope data

Fig. 23

 23 Fig. 23. (Pendulum) identified model and recorded data

Fig. 24 .

 24 Fig. 24. Comparison of experimental data and simulation results on the Validation dataset.

Fig. 25 .

 25 Fig. 25. Experiment for the 2.5.2 Wheel-ground friction coefficient wg  and wheel inertia w J identification

  equation (15) uses the parameters t K , m  previously identified. Let us recall that the total mass is defined as ). For each experiment, the excitation signal has the same shape, Fig.26, however the amplitudes, according to the mass, needed to be adjusted so that the wheelchair velocity remains in its admissible bounds.

Fig. 26 .

 26 Fig. 26. Recorded (RT) and filtered (Filt) signals

Fig. 28

 28 Fig. 28. (Standard) identification open-loop validation

Fig

  Fig. 29. Identification procedure for parameters

  open-loop simulation results and recorded data are plotted in Fig.30.

Fig. 30 .

 30 Fig. 30. Comparison of simulated (sim) and recorded (real) signals during manual swing-up The results of the open-loop validation show that the model closely follows the real system, even though the error accumulates over time. When taking the NRMSE (14) of the simulated model and recorded data in the time range

Fig. 31 .

 31 Fig. 31. Validation of parameters b J , and l

  are the state matrices of the local linear models, depend on the so-called premises variables   z t that can be possibly output, input, state or external parameters dependent. They are subject to a convex sum constraint:

  are nonlinear matrices and    indicates some output, state or external dependency.

  is the descriptor matrix, and generally for mechanical systems is well-posed, this particular case of an invertible   E  matrix, a state space representation (24) can be derived from (31) by multiplying by the state dynamic by  

Fig. 32 .

 32 Fig. 32. Tracking feedback loop (continuous control)

Fig. 33 .

 33 Fig. 33. Manual swing-up trajectories

Fig. 34 :

 34 Fig. 34 : Comparison of optimal solutions for two 0 q values

Fig. 35 :

 35 Fig. 35 : Considered criterions as a function of 0 q . The red stars depict the best values.

  along with the signals recorded during manual operation. The global behavior of the manual operation is well captured, the shape of the different signals being overall similar. The amplitudes of the signals are in the same range, even when looking carefully, the optimal solution has a slightly lower longitudinal speed and slightly higher angular speed. The obtained final time 4the manual swing-up duration which is approximately 2.25 s . In the vicinity of the target position, the optimal trajectory converges very slowly and at 2

Fig. 36 .

 36 Fig. 36. Comparison between manual operations (red) and optimal solutions (blue)

Fig. 37 .

 37 Fig. 37. Optimal swing-up trajectories , y y 

  control law (65) is tested in simulations, and the results of the simulation can be seen in Fig.39, Fig.40. The simulations were carried out with one control algorithm for will exactly match the reference line since the reference trajectories and controller were designed from the same nonlinear model.

Fig. 39 .

 39 Fig. 39. Simulation continuous swing-up trajectories , y y 

Fig. 41 .

 41 Fig. 41. Simulation continuous swing-up with noise trajectories , y y 

Fig. 45 and

 45 Fig. 45 and Fig. 44 presents the real-time results of one of the experiments, where the black dashed lines are the reference trajectories, and the blue and red solid lines are the real-time data. The vertical green lines represent time instants a to d of Fig. 43. Between instant a and b, a reverse movement (Fig. 43.a) is done. The initial speed is reached at instant b and the control law (65) activated. Reference trajectory is depicted with dashed-black curves (Fig. 43.b-e).

Fig. 43 .

 43 Fig. 43. Real-time snapshots continuous controller no obstacle.

Fig. 45 .

 45 Fig. 45. Continuous swing-up real-time results trajectories , y y  . The green vertical lines correspond to the video snapshots in Fig. 43

  Fig. 46. Real-time snapshots continuous controller obstacle.

Fig. 47 .

 47 Fig. 47. Continuous swing-up real-time results trajectories ,   . The green vertical lines correspond to the video snapshots in Fig. 46.

  tests are performed by comparing the closed loop behavior when two different users operate the wheelchair. Results are depicted in Fig. 49 and Fig. 50. The two users have different morphologies: height: 2 m vs 1.65m, weight: 80 kg vs 100kg. The control law parameters were kept to the nominal values for both users.

Fig. 49 .

 49 Fig. 49. Continuous swing-up real-time results trajectories ,   .: robustness experiment

  When there is no ambiguity, the subscript k is omitted to lighten the expressions, for example the angle Moreover, to simplify the expressions and make them readable, the arguments are omitted and replaced with    , i.e.

  Fig. 51. Robust tracking control law diagram

  the control (147) is well-defined. The choices of the subscripts    follow exactly the ones described previously to get the LMI constraints problem using a quadratic Lyapunov function (139) or a NQ one (140).



  First of all, the definition of the reference trajectories has to be done, that resumes to finding the linear gain r F for the control law (142). A pole placement has been used corresponding to a smooth trajectory. The corresponding gain is At last, the robust quasi-LPV controller is designed using the LMI Quadratic Discrete Descriptor T-S Robust Stabilization Problem (158) with 230   set after several trials. The resulting matrices of the control law (147), i.e.

Fig. 52 .

 52 Fig. 52. Simulation discrete swing-up trajectories , y y 

Fig. 54 .

 54 Fig. 54. Simulation discrete swing-up with noise for trajectories , y y 
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	Chapter 1 Introduction
	1.1 Disability
	According to the World Health Organization (WHO) disabilities are classified into three
	areas: impairments, activity limitations, and participation restrictions. Impairments are
	problems in body function, activity limitations are difficulties in executing activities, and
	participation restrictions are problems with involvement in any area of life. Then, the WHO
	defines a disability as difficulties encountered in any of all three of these areas and estimate that
	worldwide over 1 billion people are suffering from a disability (World Health Organization
	2011).

Table I

 I 

					. Model parameter description
	Parameter		Description
	  M kg b		Mass of user, frame, and stator.
	 J kg m b 	2		Inertia of user, frame, and stator.
	  M kg w		Mass wheel and rotor.
	 J kg m w 	2	

Inertia wheel and rotor.

  157) 92We can now write the LMI constraints problem. For the Quadratic case (139), case 1, we set

	  P   ,   P F  	vw F	,   J  	J	w	and   H  	H	to get:
	LMI Quadratic Discrete Descriptor T-S Robust Stabilization Problem:
	Chose	0   ; and find symmetric matrices	T  , P P	ij S S 	T ij	and matrices H , j J , ij F and ij G
	, i j 	  1, 2	, such that:		

Un modèle mathématique du fauteuil et de l'utilisateur est construit en utilisant les lois de la mécanique, et ses paramètres sont identifiés grâce à des expérimentations spécifiques. Le passage à la position d'équilibre instable est formulé comme un problème de suivi de trajectoire où la commande utilisée pour générer la trajectoire est connue. Le système est écrit sous la fomre d'un descripteur flou de type Takagi Sugeno et la stabilité de la boucle fermée, au sens de Lyapunov, est formulée comme un ensemble d'inégalités linéaires matricielles. La trajectoire de référence est calculée comme la solution d'un problème de commande optimale. Les pondérations entre les différents termes du critère permettent de choisir le compromis entre l'amplitude de commande et le déplacement longitudinal du fauteuil. Les résultats de simulation et des expérimentations sont présentés et discutés. Globalement, les résultats expérimentaux sont similaires à ceux obtenus en simulation, démontrant ainsi la validité du modèle et la pertinence de l'approche utilisée. Même si la trajectoire de référence est bien suivie par le fauteuil, la quantification des mesures des capteurs et la mise en oeuvre sur un calculateur numérique de la loi de commande formulée en temps continue, amène une dégradation des performances de la loi de commande. Afin d'améliorer les résultats obtenus, une deuxième approche, formulée en temps discret, est envisagée. La dynamique du fauteuil roulant est tout d'abord écrite sous la forme d'un descripteur flou de type Takagi-Sugeno. Des incertitudes sur les paramètres permettent de

none of the simulation signals match exactly the state reference trajectory. Nevertheless, the approach guaranteeing stability, robustness and performances, even though the reference model cannot be followed exactly, the controller capabilities of the control to swing-up the system with 20 kg  mass variations are clearly demonstrated. The objective was to find a control algorithm that could safely and comfortably swing-up a power-assisted electrical wheelchair. This project was proposed by the company Autonomad-Mobility in the context of a CIFRE convention with the LAMIH UMR 8201 at Université Polytechnique Hauts-de-France.

Prototype

Since Autonomad-Mobility already designed and sold the electrical assistance kit so-called NOMAD (self-balancing wheelchair), the focus of this part was to design a new control box including an embedded system compatible with actual software such as MATLAB / Simulink.

The control box is the housing for the joystick, the electronic card, and the IMU (gyroscopic and accelerometer). With the new electronic card Simulink programs can be uploaded directly into the card without any coding in C and Simulink as well as log data and display it in realtime. The control box was designed in Solidworks and 3D printed in the shop. The wheelchair prototype included two brushless wheels embedded in the push-wheels, a socket for the battery, and the battery.

Modeling & Identification

Since we were mainly concerned with the swing-up of the wheelchair we did not need a model that moved in 3D space. The 2D model has 2 degrees of freedom; a translation of the base in y and a rotation of the body in  . In order to derive the equations of motion the classical Euler-Lagrange method was used.

Then, identification of the main parameters have to be done, taking into account that there was no need to get a precise modeling but a model that would be compatible with robustness of the control laws to be designed. Moreover, as we wanted to operate on a 2-Wheels mode, identification was a little more complicated than usual due to the unstable behavior of the system around its equilibrium point. Nevertheless, the proposition of a 3-steps procedure was made to end with the adequate parameters and the results were validated through real-time experiments.

Continuous swing-up

The mechanical system being naturally in a descriptor form, this form was kept into its exact representation using quasi-LPV or so-called T-S fuzzy descriptor model. From the model designed a continuous time controller was designed to track reference trajectories to swing-up with a two-step process.

First the reference trajectories were computed by using the optimal control framework. The objective is to find the trajectories that are smooth and comfortable for the user while still minimizing the distance needed to perform the swing-up. The tradeoff between comfort and minimizing the distance was decided by comparing the optimal trajectories to the trajectories generated by a professional user doing the swing-up manually.

Once the reference trajectories set up, a robust controller is designed to compensate for the state space error between the system outputs and the references. The design uses first the Differential Mean Value theorem to derive asymptotic convergence of the error. From classical uncertain model framework, a classical Lyapunov 2 nd method allowed to design a LMI constraints problem, the solution of which ensures stability and performances.

Lastly, the controller was extensively tested in simulation and in real-time.

Discrete swing-up

The goal of this chapter was to propose a unique framework to solve the swing-up problem taking into account non-modelled uncertainties such as the masses of the user and the wheelchair. The discrete space was chosen and therefore, the continuous fuzzy descriptor model discretized. Forward Euler's method was chosen as it keeps the same the signification of the state space vector.

From this model, the idea was to build potentially "feasible" state space trajectories using a linearization of the model. Therefore, as for the continuous law, the feedback part has only to compensate for state trajectory errors. A robust design using LMI constraints problem was made accounting for masses variations and including performances requirements.

Lastly, the controller was extensively tested in simulation and in real-time.

Future work

This was an exciting project from my point-of-view with a realization that goes from specifications to a final prototype intensively tested. Robustness and performances were the first goals, in order for the company to have a control that is at most "user and wheelchairs independent".

Next steps would be to introduce, for the discrete framework, the position of the basis wheelchair y , in order to act (more than control) on the distance for swing-up. The idea here is that y is not the main variable to be controlled, it is just an added performance to swing-up on the smallest distance the wheelchair. Another important reflection is the interest of getting more flexibility on the sampling period and reducing the quantization effects, both things should require another hardware to design. Nevertheless, it would help to attain larger feasible solutions to the LMI constraints problems. Increasing the set of solutions would allow increasing the performances and robustness issues.

Two other points can be of high importance, taking into account the motor saturations into the theoretical framework and to introduce also the ground uncertainties. Both extensions are feasible in a reasonable time. The latter one corresponds to increase the uncertainty matrices such as     , equation ( 154). The former, concerning the input saturations, can be held including LMI constraints such as [START_REF] Tingshu | Control Systems with Actuator Saturation[END_REF] Of course writing the LMI constraints is one thing, getting solutions and, even more, getting solutions of "quality" (robustness and performances) another, and the fact of adding constraints leads to reduce the set of admissible solutions. These points will have to be explored.

Even if the swing-down phase is less crucial, in the sense that the wheelchair goes from the unstable 2-Wheels equilibrium to its stable 4-Wheels position, making a smooth and userfriendly transition is also important. A solution can be provided with identical tools. After that, swing-up and swing-down can be challenged if the ground is not horizontal, the slope being "far" from 0 , swinging-up in a climb (positive slope) or swinging-down in a descent have to be thought with strong safety issues. At last, maximum height and/or form of the obstacles could be also taken into account. What could be the maximum security / safety levels that could be attained and guaranteed, function of some parameters such as the mass of user + wheelchair,

Abstract

According to the World Health Organization, more than 70 million disabled people in the world need a wheelchair to aid their daily mobility needs. In order to mitigate the physical effects of the repeated efforts on the push rims, the Autonomad Mobility developed an electrification kit. In this thesis, different control laws are proposed to swing-up the wheelchair from the grounded position to the unstable equilibrium position (gyroscopic mode).