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Abstract 

According to the World Health Organization, more than 70 million disabled people in the 

world need a wheelchair to aid their daily mobility needs. Providing access to low cost 

wheelchairs that covers the users basic needs is therefore a societal challenge that not only 

contribute to their well-being but also their dignity. Manual wheelchairs are widespread due to 

their low cost and high maneuverability. In order to mitigate the physical effects of the repeated 

efforts on the push rims, the company Autonomad Mobility developed an electrification kit. 

Among the available features, the so-called gyroscopic mode allows operating the wheelchair 

in an upright position with the caster wheels lifted off the ground. In this thesis, different control 

laws are proposed to swing-up the wheelchair from the grounded position to the unstable 

equilibrium position (gyroscopic mode). The specificity of the control problem is that the user 

is part of the system to be controlled. 

A mathematical model of the wheel chair and the user is built from the mechanical equations 

motion and its parameters are identified through adequate experiments. The wheelchair swing-

up is first casted as a reference tracking problem where the control associated with the trajectory 

is known. The system is modeled as a continuous Takagi-Sugeno descriptor model and the 

closed loop Lyapunov stability is formulated as a set on Linear Matrix Inequalities to be solved. 

The reference control and state trajectories are computed as a solution to an optimal control 

problem. The tuning of the criterion allows to tune the compromise between the control 

amplitude and the deviation from the wheelchair target position. Simulation and experimental 

results are provided and analyzed. Experimental results are globally similar to the simulations, 

thus demonstrating the validity of the model and the effectiveness of the control approach. Even 

though the trajectory is actually followed by the wheelchair, the quantification of some sensor 

readings combined with the numerical implementation of the continuous control law on a 

discrete system leads to some degradation of the control performances. 

To make improvements on the above control strategy, a second control approach, using a 

discrete time controller, is suggested. The wheelchair dynamics is formulated as an uncertain 

discrete time Takagi-Sugeno discrete descriptor model that accounts for different users' 

characteristics. The tracking problem is formulated and again, the control approach consists in 

tracking a given state trajectory but now it is generated by an a priori chosen model stabilized 

by an appropriate state feedback. The robust stabilization conditions are provided as a set of 

Linear Matrix Inequalities. Finally, simulation and experimental results are provided. Videos 
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of the experiments are provided to illustrate the robustness of the control law to different users 

and the closed loop behavior when the user voluntary rocks its upper body. 

Keywords: Wheelchair, Self-balancing, Takagi-Sugeno models, Lyapunov stability, 

Linear Matrix Inequalities, Optimal control, Euler-Lagrange, Mean Value Theorem 
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Résumé 

D'après l'Organisation Mondiale de la santé, plus de 70 millions de personnes à mobilité 

réduite ont besoin d'un fauteuil roulant pour assurer leurs déplacements quotidiens. Garantir 

l'accès à des fauteuil abordables et capable de couvrir les déplacements de base est un challenge 

sociétal qui contribue non seulement au bien-être des personnes mais également à leur dignité. 

Les fauteuils manuels sont les plus rependus en raison de leur cout modeste et leur grande 

manœuvrabilité. Pour limiter les troubles musculaires liés aux appuis répétés sur les roues, la 

société Autonomad Mobility propose un kit d'électrification. Parmi les différentes 

fonctionnalités proposées, le mode gyroscopique permet à l'utilisateur de se déplacer en 

équilibre sur deux roues, les petites roues avant étant levées. Dans cette thèse, plusieurs lois de 

commande sont proposées pour assurer le passage du mode stable (avec les 4 roues posées sur 

le sol) à la position en équilibre instable du mode gyroscopique. Une des spécificités des lois 

de commandes proposées, est que l'utilisateur fait partie du système piloté.  

Un modèle mathématique du fauteuil et de l'utilisateur est construit en utilisant les lois de la 

mécanique, et ses paramètres sont identifiés grâce à des expérimentations spécifiques. Le 

passage à la position d'équilibre instable est formulé comme un problème de suivi de trajectoire 

où la commande utilisée pour générer la trajectoire est connue. Le système est écrit sous la 

fomre d'un descripteur flou de type Takagi Sugeno et la stabilité de la boucle fermée, au sens 

de Lyapunov, est formulée comme un ensemble d'inégalités linéaires matricielles. La trajectoire 

de référence est calculée comme la solution d'un problème de commande optimale. Les 

pondérations entre les différents termes du critère permettent de choisir le compromis entre 

l'amplitude de commande et le déplacement longitudinal du fauteuil. Les résultats de simulation 

et des expérimentations sont présentés et discutés. Globalement, les résultats expérimentaux 

sont similaires à ceux obtenus en simulation, démontrant ainsi la validité du modèle et la 

pertinence de l'approche utilisée. Même si la trajectoire de référence est bien suivie par le 

fauteuil, la quantification des mesures des capteurs et la mise en œuvre sur un calculateur 

numérique de la loi de commande formulée en temps continue, amène une dégradation des 

performances de la loi de commande. 

Afin d'améliorer les résultats obtenus, une deuxième approche, formulée en temps discret, 

est envisagée. La dynamique du fauteuil roulant est tout d'abord écrite sous la forme d'un 

descripteur flou de type Takagi-Sugeno. Des incertitudes sur les paramètres permettent de 
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prendre en compte la morphologie de différents utilisateurs. Un problème de suivi de trajectoire 

est formulée de sorte à suivre une trajectoire d'état donné, mais cette fois ci, la trajectoire est 

généré en utilisant un modèle fixé a priori et stabilisé via un retour d'état approprié. L'écriture 

de la stabilisation robuste de la boucle fermée se résume à un ensemble d'inégalité matricielles 

linéaires. Finalement, des résultats de simulation et expérimentaux sont discutées. Des vidéos 

des expérimentations sont mises à dispositions. Différents utilisateurs ont testé la loi de 

commande proposée qui a été en mesure de réguler correctement le fauteuil en équilibre instable 

en dépit des brusques mouvement volontaires des utilisateurs. 

Mots clés: Fauteuil roulant, modèles de type Takagi-Sugeno, stabilité de Lyapunov, 

inégalités matricielles linéaires, contrôle optimal, Euler-Lagrange, théorème de la valeur 

moyenne   
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Chapter 1 Introduction 

1.1 Disability 

According to the World Health Organization (WHO) disabilities are classified into three 

areas: impairments, activity limitations, and participation restrictions. Impairments are 

problems in body function, activity limitations are difficulties in executing activities, and 

participation restrictions are problems with involvement in any area of life. Then, the WHO 

defines a disability as difficulties encountered in any of all three of these areas and estimate that 

worldwide over 1 billion people are suffering from a disability (World Health Organization 

2011). 

In the United States it is estimated that over 60 million adults have some type of disability 

and about 20 million adults under 65 years of age are disabled in their mobility (Okoro, et al. 

2018). A disability in mobility includes people that have a hard time walking or climbing stairs. 

Many people with a disability in mobility need an assistance device for aid, such as a 

wheelchair, cane, walker, etc. Among this group people that are using wheelchairs and four 

wheeled electric scooters make up about 1.7 million people (Kaye, Kang and LaPlante 2000). 

1.2 Wheelchair 

Wheelchairs are used to help disabled people that have difficulties walking move around. 

Wheelchairs have been around for a longtime and over the years, many advancements have 

been made. Some believe the first wheelchairs were developed between the 6th and the 4th 

centuries BCE with the development of wheeled furniture and two-wheeled carts, and the first 

self-propelled wheelchair is believed to have been developed by German watchmaker Stephan 

Farfler in 1665 (Watson and Woods 2015).  

 
Fig.  1. Sketch of Farfler using the first known self-propelled wheelchair (Wikipedia contributors 

2020) 
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Self-propelled wheelchairs have advanced considerably since the one developed by Stephan 

Farfler, Fig.  1. Today there are three main classes of wheelchairs: manual, power-assist, and 

electric. Manual wheelchairs are normally cheaper, lightweight, easy to maneuver, and easy to 

transport. These wheelchairs consist of two large rear wheels with hand-rims fixed to them 

which are used to propel the wheelchair Fig.  2.  

 
Fig.  2. Manual wheelchair (left), manual hand-rims (right) 

However, the repetitive motion of pushing the hand-rims can cause the user to get fatigued 

quickly and can lead to long term injuries. The high forces put on the shoulders during this 

repetitive motion increases the chances the user will develop coracoacromial edema and 

coracoacromial ligament thickening (Mercer, et al. 2006). The coracoacromial ligament plays 

an important role in shoulder biomechanics and stability and thickening and stiffening may 

contribute to rotator cuff tear arthropathy and impingement syndrome (Rothenberg, et al. 2017). 

While there are many benefits to using a manual wheelchair there are also risks of long-term 

health problems. In addition, manual wheelchairs have caster wheels in front so the user can 

turn the wheelchair left and right. However, these caster wheels are small and block the 

wheelchair from rolling over obstacles (even small obstacles) Fig.  3. 

 
Fig.  3. Small obstacle blocking caster wheel 
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One of the newer additions to the self-propelled wheelchair market is the power-assisted 

wheelchair. Power-assist wheelchairs in most cases started as a manual wheelchair that gets 

converted to a power-assist wheelchair Fig.  4.  

 
Fig.  4. Power-assisted wheelchair (Autonomad-Mobility) 

To convert a manual wheelchair to a power-assist wheelchair, motors are embedded in the push-

wheels that are powered by a battery. Some wheelchairs come with a control box so the user 

can read battery health, change power settings, etc. Fig.  5. 

 
Fig.  5. Electric motor embedded in wheel (left), battery (center), control box (right) 

In most cases the push-wheels are constructed with a sensor between the wheels and the hand-

rims to detect when the user pushes the hand-rim. These wheelchairs have the maneuvering 

ability of a manual wheelchair and can widely reduce the stress on the shoulders compared to 

a manual wheelchair. They make it easier for the user to travel long distances with less fatigue. 

In addition, the power-assisted propulsion can reduce cardiovascular and respiratory strain 

(Kloosterman, et al. 2012). However, the addition of the electric components add weight to the 

system, and the small caster wheels continue making obstacles a challenge. 
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Lastly is the full electric wheelchair where only the electric motors propel the wheelchair. 

Normally these wheelchairs do not have hand-rims on the rear wheels that the user can push, 

but instead the user controls the wheelchair with a joystick Fig.  6. Electric wheelchairs give 

users that are not able to use the hand-rims mobility in their lives. While there are advantages 

of using a traditional electric wheelchair there are also disadvantages. For example, electric 

wheelchairs are typically larger and less maneuverable. As a result, users have reported 

difficulties such as going through doorways, avoiding obstacles, and using streets and sidewalks 

(Torkia, et al. 2015). In addition, the lack of exercise of electric wheelchair users is an important 

factor which can lead to secondary health conditions. For example, electric wheelchair users 

have exercise barriers such as too few places to exercise, and exercise being harder (Barfield et 

Malone 2013). These barriers can lead to secondary health problems such as obesity. 

 
Fig.  6. Full electric wheelchair 

A different option is to combine manual and electrical mode, in a kind of “hybrid” propulsion 

wheelchair. This solution is available using assistance kits such as the Nomad from Autonomad-

Mobility Fig.  7. The Nomad is a kit that converts a manual wheelchair to an electric wheelchair 

(Mohammad and Guerra 2019). This conversion kit enables the user to choose different levels 

of electrical assistance from the manual mode (no assistance) to full electric mode where the 

motors do the work. In addition, the equipped wheelchair can operate in a 2-wheel self-

balancing mode (so-called gyroscopic mode) Fig.  7. 
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Fig.  7. Nomad from Autonomad-Mobility (Gyroscopic Mode). 

1.3 Autonomad-Mobility 

Autonomad-Mobility (A-M) is a start-up company created by Sami Mohammad located in 

Famars, France. The company specializes in building kits that convert a manual wheelchair to 

electric wheelchair. There are companies that built conversion kits before A-M but, the A-M 

kit is unique because it has an extra operating mode called “Gyroscopic mode” Fig.  7. 

The company started as a project at UVHC-CNRS Research lab LAMIH in January of 2013. 

A-M was such a success that it was considered a top 15 European Biotech Incubator later that 

year, and in June was granted €35k to help the company creation. The next year (2014) the 

company was awarded 2 patents, then in 2015 the first prototypes for DUO and NOMAD were 

built. In June 2015 A-M was the winner of “I-LAB créadev” and Bpifrance granted the 

company € 200k to support its development. Then, by the end of 2015 the company had started 

the commercialization of both DUO and the NOMAD, and only a year later had their first sales. 

In the end of 2017, the company had raised enough money to start to optimize the 

commercialization of DUO and NOMAD, and in 2018 hired its first employees.  

This thesis is part of the investment the company made in 2018 through a CIFRE 

(Conventions Industrielles de Formation par la REcherche) convention. CIFRE is a grant from 

the ministry for research with the double objective “of placing doctoral students in the 

conditions for scientific employment and encouraging research partnerships between the 

academic and business spheres.”  

http://www.anrt.asso.fr/sites/default/files/cifre_plaquette_2019_eng.pdf  
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1.4 Thesis outline 

The thesis structured with three main chapters. 

Chapter 2 starts with a description of the prototype used for testing. Then, the system is 

modeled using the Euler-Lagrange method. Next, the parameters are identified for the model. 

Since the system can only operate in an unstable equilibrium point, the parameters are identified 

in a three steps process. Finally, the model is validated. 

Chapter 3 presents a continuous swing-up algorithm design with a two-step procedure. The 

first part of the chapter recalls some properties of the so-called Takagi-Sugeno models 

belonging to the quasi-LPV family. As the design uses a wheelchair model written in a 

descriptor form, some particular results for this kind of systems are also provided. A controller 

is designed to follow a specified trajectory from the grounded position to the gyroscopic mode. 

An optimal control problem is solved to compute this trajectory in order to minimize 

simultaneously the control amplitudes and the overall wheelchair displacement. Simulation and 

experimental results are discussed. 

Chapter 4 proposes to solve the problem of the wheelchair swing-up in a discrete framework 

in a one-step design, including reference trajectory and robust control. Some fundamentals of 

discrete descriptors models in the Takagi-Sugeno form are given first. The advantages of the 

approach are to have all-in-one (no need to have two different control algorithms) and to derive 

a robust control law that is designed according to uncertainties such as the masses of the 

wheelchair and user. 

Conclusions and some perspectives end the manuscript. 
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Chapter 2 System & Modeling 

2.1 State of the Art 

Wheelchairs are great tools to aid disabled people in their mobility. However, a wheelchair 

still has limitation that impede the mobility of the user. For example, large and heavy 

wheelchairs are hard to transport (in a vehicle) and are difficult to maneuver in crowds or in 

tight hallways and doorways.  

Manual wheelchairs have small caster wheels in the front of the wheelchair so that it can 

turn sharply and move in tight places. The problem with caster wheels is that they are small and 

block the wheelchair from going over small obstacles, but with a manual wheelchair the user 

can accelerate quickly to lift the caster wheels over the obstacle so the user can still pass over 

it Fig.  8 

 
Fig.  8. Manual wheelchair raising front wheels to pass over an obstacle. 

Unlike manual wheelchairs electric wheelchairs may or may not have small caster wheels. 

When an electric wheelchair does not have caster wheels it is more stable going over obstacles, 

however it is difficult to operate in tight areas because it cannot turn sharply. Then, when an 

electric wheelchair has caster wheels the user cannot accelerate quick enough to lift the caster 

wheels to pass over obstacles. A great solution to this problem is to have a wheelchair that can 

turn sharply like it has caster wheels but still be able to pass over obstacles. 

2.1.1 Some solutions on the market 

The iBOT is a novel wheelchair that is aimed to overcome some of the limitations brought 

on by conventional electric and manual wheelchairs. The iBOT is able operate in four different 

modes: standard mode where two caster wheels and two drive wheels touch the ground, 
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balancing mode where the wheelchair balances on two wheels drive wheels Fig.  9, 4-wheel 

mode where four drive wheels touch the ground to climb obstacles, and a stair climbing mode. 

The iBOT was developed by Dean Kamen in 1990 in partnership between DEKA and Johnson 

and Johnson’s (Wikipedia contributors 2020). This wheelchair has many nice options but the 

price tag is $30,000 making impossible to own for many users. 

 
Fig.  9. iBOT in balancing mode with creator Dean Kamen and American President Bill Clinton 
(Wikipedia contributors 2020) 

Another option is the Ninebot by Nano Mobility. The Ninebot is another novel mobility 

device that balances on two wheels (gyroscopic mode), Fig.  10. The user moves the chair 

forward and backward by leaning his/her upper body forward or backward, and then there is 

either a joystick or handlebars to turn the wheelchair. One advantage of the ninebot is that it 

does not have small caster wheels that can prevent it from going over small obstacles. However, 

if the battery runs out or there is another malfunction, the user will not be able to move. This 

wheelchair is much cheaper than the iBOT but still has a large price tag. 

 
Fig.  10. Ninebot by Nano Mobility 
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Then there is the NOMAD by Autonomad-Mobility Fig.  7 which can operate in 3 different 

modes. First, it can operate in conventional manual mode where the user uses the hand-rims to 

accelerate the wheelchair. Next, the wheelchair operates in an electric mode with caster wheels. 

When the wheelchair is in this mode it can maneuver quickly but the caster wheels block it 

from going over obstacles. Then, there is the gyroscopic mode where the wheelchair balances 

on its rear two wheels. In this mode the wheelchair can still make sharp turns and in addition it 

can now pass over obstacles because the caster wheels are raised off the ground. 

2.1.2 Existing research 

Very few works address such a challenging task. In (Ahmad and Tokhi 2008) the process of 

transitioning a 4-wheeled wheelchair to add 2-wheeled wheelchair by lifting the wheelchair up 

(like the iBOT) is proposed in simulation. However, this method adds an extra actuator to the 

system increasing its complexity and uses Fuzzy Logic Control without any stability and 

robustness considerations. Similar to the NOMAD in Fig.  7 (Takahashi, Ishikawa and 

Hagiwara 2003) and (Takahashi et Tsubouchi 2005) discuss the swing up of an electrified 

manual wheelchair. Their solution consists in using a classical Proportional Integer (PI) 

controller with the angle of the pendulum as reference to swing-up the wheelchair. 

Nevertheless, using only the angle of the pendulum as feedback, the displacement of the 

wheelchair cannot be controlled. Apart from this drawback, the stability issues of the closed-

loop and the robustness are not considered. 

2.2 Problem Statement 

A solution for having a better mobility is to be able to travel on 2 wheels in a so-called 

gyroscopic mode. The advantages are clear: the wheelchair can turn sharply like in the 

conventional mode (with the caster wheels on the ground), and it can pass over obstacles, Fig.  

7, because the caster wheels are raised off the ground. The gyroscopic mode gives the user 

many advantages that he/she would not have with a traditional manual/electric wheelchair, 

however the new functionality comes at a cost. 

On an automatic control point of view, it leads to move from a stable open-loop wheelchair 

(4 wheels) to an unstable one (2 wheels) and thus, safety issues are to be considered. The 

wheelchair control, which is rather “simple” for the stable 4-wheels mode, has to be thought in 

terms safety and robustness properties for the 2-wheels or so-called gyroscopic mode.  
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Robustness must be thought for different aspects. First, as the kit is to be used with any kind 

of wheelchairs, the control laws must cope with different mechanical characteristics and 

wheelchair geometries. Second, no extra sensors can be added, not only for costs issues but also 

because it is unrealistic to measure some parameters like the user’s capabilities or the ground 

adherence for example. Therefore, control law of the unstable equilibrium position has to 

consider: the unknown parameters such as mass, inertia… for both the wheelchair and the user, 

ground adherence… Beyond the system safety, the system acceptability by the users is crucial. 

It includes fearless usage, confidence in the system, easy-to-use, and more generally a “good 

feeling” about the system. This part, called thereinafter under the word "comfort" should be 

achieved by control robustness and guaranteed dynamic performances. 

Thus, the automatic control problem to solve resumes to: 

1. Robust trajectory tracking: minimum displacement to swing up/down 

2. Robustness to varying unknown parameters (mass, inertias, etc.) 

3. Comfort (dynamic performances, easy-to-use, smoothness) 

2.3 System Hardware & Software 

The system is a manual wheelchair equipped with an electrical assistance kit developed by 

Autonomad-Mobility, Fig.  11. This kit consists of electric motors embedded in the push-

wheels, a control box, and a socket to connect the battery. 

 
Fig.  11. Electric motor embedded in wheel (left), battery (center), control box (right) 

When this project started the Nomad already had a functioning gyroscopic mode, and the kit 

was being sold on the market. However, the transition from standard mode to gyroscopic mode 

is done manually with the joystick and new users find it difficult to learn this maneuver, so the 

objective is to automate this process. 
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In order to implement new control algorithm, a new control box needs to be installed on the 

wheel since the commercialized version does not allows easy modification of its source code. 

There are some popular products on the market today for doing rapid prototyping such as 

dSpace or SpeedGoat. These companies make systems that can be programmed directly with 

the C code generated by the Simulink Coder which greatly reduces the time from simulation to 

real-time experiments. In addition, these products log data and allow for parameter tuning in 

real-time. The problem with these products is that they are designed for more complicated 

systems, so they are large and expensive. Since the considered Nomad Kit has relatively few 

inputs/outputs and large sample time a Launchpad from Texas Instruments was able to be used 

instead Fig.  12. 

 
Fig.  12. Texas Instrument LAUNCHXL-F28377S & BOOSTXL-SENSORS 

The Launchpad LAUNCHXL-F28377S is a development board based on the 

TMS320F38377S microprocessor. This microprocessor has a 200 MHz  CPU, 1024 kB  flash 

memory, 164 kB  RAM, and communications via I2C, CAN, etc. In addition, the card has addon 

BosterPacks which simply plug onto the top of the card. The BOOSTXL-SENSORS 

BoosterPack has a Bosch BMI160 IMU, Bosch BMM150 magnetometer, Bosch BME280 

environmental sensor, OPT3001 light sensor, and TMP007 temperature sensor. For this system, 

the CAN bus is needed for communicating with the motor cards and the IMU on the 

BoosterPack is needed to measure the angle of the wheelchair in gyroscopic mode. In addition, 

functionalities needed for this system, the Launchpad can also be programmed with the code 

generated from Simulink Coder, and it can communicate with Simulink in real-time to log data 

and tune parameters while the card is running. 
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Fig.  13. Control box design for prototype 

Since the Launchpad is needed for the experiments a new control box was designed to fit the 

card. The Launchpad and a joystick are mounted inside the box, and on the outside of the box 

is a USB connector for the PC, an 8-pin connector to motor cards, and an emergency on/off 

switch. The joystick operates at 5V  but the input for the Launchpad is only 3.3V  so a 

conditioning circuit was built to step down the voltage Fig.  14. 

 

Fig.  14. Conditioning circuit 5 3.3V V  

The motor cards are mounted inside a plastic housing (socket) which is also where the battery 

is mounted, Fig.  11. The battery can be charged up to a maximum of 40V  and the input to the 

motor cards comes from the CAN bus which is connected to the control box. These motor cards 

can operate in two different modes. The first mode denoted as “Voltage mode” is controlling 

the motor in open-loop by applying a PWM signal to the driver. As a result, the average motor 

voltage varies from  0 40 V  according to the PWM duty cycle. The second is the “Current 

mode” where the current in the motors is regulated by a PI controller running in the motor card.  

The motors embedded in the push-wheels are brushless and have a maximum current of 

40I A  for each motor, and can propel the wheelchair at a maximum speed of 12.2y m s  . 

The motor cards measure the position of the motor by counting the phase changes to turn the 

brushless motors. These motors have about 785  pulses per revolution of the wheel which leads 
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to a quantization error 2
785error rd  . This quantization error combined with the fixed 

sampling period make the estimation of the velocity a difficult problem,  Fig.  15. 

 

Fig.  15. Estimated motor angular position (top) and velocity (bottom) for different sampling period sT  

As the sampling time decreases, the maximum position error at every sampling instant does not 

change, however velocity error amplifies. As a result, during the control law synthesis, it will 

be required to pay attention to the controller gains on the velocity signals such the effect of 

these errors on the control signal remains small enough. 

2.4 Modeling 

As stated previously, the objective is to be able for a user to travel in the so-called gyroscopic 

mode. Therefore, a first step is to automate the “swing-up” of the wheelchair, Fig.  16. During 

the swing-up, the wheelchair only needs to move forward-n-backward, turning left-n-right is 

not necessary. As a result, only a longitudinal model is needed to describe the motion of the 

system for the swing-up. 

 
Fig.  16. Swing-up from Standard Mode to Gyroscopic Mode 
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The equations of motion for the system are derived using the Euler-Lagrange method with 

the extended Hamilton’s principal and the Rayleigh’s dissipation function (Cline et Sarkis 

2017). 

 k
k k k

d L L D
Q

dt q q q

   
       

 (1) 

Where L  is the Lagrange function, D  is the Dissipation function, kQ  are the Generalized 

forces, and kq  are the Generalized coordinates. 

Referring to the free-body diagram in Fig.  17, the wheelchair is modeled as if it has only 2 

degrees of freedom and is composed of 2 rigid bodies (the base and the pendulum). The two 

rigid bodies are connected at the pivot of the push-wheel axels. The base of the system is 

composed of the two push wheels and the electric motor stators where the center of mass 

coordinates are by , bz . Then, the pendulum is composed of the chassis, human, and the electric 

motor rotors with center of mass coordinates py , pz .  

 
Fig.  17. Free-Body diagram swing-up model 

The coordinate frame of the body ( , ,b b bx y z ) is equal to the coordinate frame of the wheelchair 

( , ,x y z ), and the coordinate frame ( , ,p p px y z ) rotates around the origin of the body frame. The 

two rigid bodies are linked by the following constraints: 

r

py

pz

0 Y


Z

, bz z

, by y

b
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Where r  is the push-wheel radius and l  is the distance from the body center of mass to the 

pendulum center of mass. Table I gives the description of the parameters. 

Table I. Model parameter description 
Parameter Description 

 bM kg  Mass of user, frame, and stator. 

 2
bJ kg m  Inertia of user, frame, and stator. 

 wM kg  Mass wheel and rotor. 

 2
wJ kg m  Inertia wheel and rotor. 

 r m  Push wheel radius. 

 2g m s  Acceleration of gravity. 

 l m  Distance from pivot to center mass. 

 m N m s    Viscous friction in the motor. 

 1
wg N m s    Viscous friction from wheel and ground. 

 1
t N m AK    Motor torque constant. 

On the wheelchair, the two motor drivers control the electric motors current I  and motor 

torque m  is proportional to it, i.e. m tK I  . When the motors generate torque m , an equal 

and opposite torque is applied to the base (push-wheels) and the pendulum (frame, human) of 

the wheelchair. As a result, the electric motors generate a force on the base 1
y mF r   and 

torque m    on the chassis of the wheelchair. 

Using equation (1) the equations of motion are computed. First, the Lagrangian L  and the 

dissipative function D  are defined: 

 L T V   (3) 

 21
2 i i

i

D d x    (4) 
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Where T  is the kinetic energy, U  is the potential energy, and id  are the coefficients of viscous 

friction of the system. To calculate the equations of motion L , D , Q , and q  must be defined 

for each of the two rigid bodies: 
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Then applying (1), the system of equations for the swing-up is derived: 

     2
wg2 2

2 2 2
2 cos sinw m m t

b w b b

J K
M M y M l y M l I

r r r r

 
                  

   
     (7) 

      2 2
cos 2 sinm

b b b m b t IJ M l M l y y M gl K
r

            (8) 

Let us define the total mass as 
Frameb bM M M   with M  the user mass and 

FramebM  the mass of 

the wheelchair frame (including all the different accessories and components). 
FramebM  can be 

easily measured and M  is user dependent. Similarly, the total inertia is defined as 

Frameb bJ J J   with J  the user’s inertia and 
FramebJ  the wheelchair frame inertia. 

2.5 Parameter identification 

The dynamic model (7)-(8) comprises 6 unknown parameters bJ , wJ , m , wg , tK  and l  

that need to be identified to get an accurate representation of the real system. Of course, the 

gyroscopic mode corresponds to operating around an unstable equilibrium point. Therefore, the 

parameters identification cannot be done around this point, excepted if a control law synthesis 
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has been already realized. Like a pendulum, a 2-wheel stable equilibrium point could be reached 

if a complete rotation could occur, which obviously, at least with a human, is impossible  Fig.  

18. However, a 3-step identification procedure has been conducted to identify the wheelchair 

parameters and is presented thereafter. 

 
Fig.  18. Operating region in gyroscopic mode 

2.5.1 Motor friction m  and torque constant tK  

The idea to identify the motor friction m  and its torque constant tK  was to consider the 

system around its 2-wheel stable equilibrium point by raising the wheelchair to allow its 

complete rotation. Fig.  19 shows the wheelchair tied up and strapped so that the chassis can 

swing freely. 

 
Fig.  19. Identification experiment 1 

Of course, the system dynamics around this stable equilibrium position corresponds to a 

different mathematical model that can be easily derived using Newton’s method. 

    2 2 sin
frame frame frame frameb b b bm tM IMl J gl K          (9) 



31 
 

As usual, the identification procedure consists in building an excitation signal, logging 

sensor data while the excitation signal is applied, estimating the parameters values and 

validating the resulting model. The excitation signal must be sufficiently “rich” to represent the 

frequency and amplitude ranges useful for the system operation. Therefore, to cover these 

ranges, a multisine signal has been defined (Schoukens and Ljung 2019).  

  0
1

( ) cos 2
F

k k
k

u t U kf t 


   (10) 

 
Fig.  20. MultiSine excitation signal 

Equation (10) is used to build the signal in Fig.  20, with spectral resolution 0
ef

Nf  , period 

length N , random amplitude spectrum kU , random phases k  and a length of 3 periods for a 

total of 45s .  



32 
 

 

 
 

15

1
0

0.01

1.30 1.42 0.60 ...

2.73 1.19 2.33 ...

e

e

s

T

T N

k

k

T

N

f

U













 (11) 

When collecting data, there are two ways to measure the position and velocity of the frame: 

using the accelerometer and the gyroscope with the following algorithm (already available by 

the company): 

        
   

1 1

2 2

180
1 tan acc

s gyro
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x z z z
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
 

 
         

  (12) 

where 0.001   is referred to as the “accelerometer-gyroscope”, or by counting the phase 

changes in the brushless motors. As discussed in section 2.3 there are large quantization errors 

when measuring velocity from motor phase changes. Counting the phase changes is analogous 

counting pulses from an encoder, so for now on counting phase changes will be referred to as 

an encoder. 

 
Fig.  21. Encoder, Gyroscope-Accelerometer measurement from pendulum experiment 
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The accelerometer-gyroscope gives much better measurement of the position and velocity Fig.  

21. This is mostly due to non-modeled nonlinearities such as backlash in the motor and 

quantization effects that heavily affect the encoders readings. As a result, the encoder will not 

be used for this experiment. 

 
 Fig.  22. Filtered accelerometer-gyroscope data  

As usual, to eliminate the measurement noise the data was filtered. A zero-phase digital filter 

(implemented in the Matlab filfilt function) with a 40Hz cutoff frequency represents a good 

trade-off  Fig.  22. The filter smooths out the noise in the velocity   without degrading the 

signal. 

A first set of data, Fig.  23. is used to identify the parameters involved in the model dynamics 

(9). The identification procedure is provided by the Matlab identification toolbox and is based 

on a Trust-Region Reflective Newton algorithm to solve the corresponding optimization 

problem. The obtained parameters values are 17.14
framebM kg , 21.44

framebJ kg m   and 

0.29
framebl m , and: 

 12.22 0.85t mK Nm A N m s      (13) 
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Due to non-modeled nonlinearities (backslash, etc.), the model fit of the data is not perfect. 

Nevertheless, the results are sufficiently accurate to capture the essential of the signals and, as 

shown latter on, the robustness of the control laws widely compensate for this imperfection.  

 
Fig.  23. (Pendulum) identified model and recorded data 

The model is further validated on another dataset denoted as Validation, Fig.  24. The 

Normalized Root Mean Squared Error (NRMSE) between simulated and measured signals 

provides insight on the model accuracy: 

  
ˆ

( )
ˆ,N

x
RMSE x

x x

me
x

an x



 (14) 

The RMS value of the angular position error is 0.1857  and the RMS value of the speed error 

is 0.2195 . 
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Fig.  24. Comparison of experimental data and simulation results on the Validation dataset. 

2.5.2 Wheel-ground friction coefficient wg  and wheel inertia wJ  

The second experiment identifies the wheel-ground friction coefficient  wg  and the inertia 

wJ  with the wheelchair in standard mode. The wheel-ground interaction is a complex 

phenomenon that depends on many unmeasurable or unmeasured parameters such as the tire 

slip, wear and temperature, the ground micro-surface, etc. The simplified viscous friction model 

considered in this study is solely used to add a dissipative force in the wheel chair dynamics 

rather than modeling the tire physics. As a result, a very rough approximation of the wheel-

ground friction is expected.  

In this experiment the wheelchair just moves forward in a straight line to prevent any 

disturbance caused by the caster wheels, Fig.  25. Data was collected for 5 different users of 

different mass. 
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Fig.  25. Experiment for the 2.5.2 Wheel-ground friction coefficient wg  and wheel inertia wJ  identification 

A new model needs to be derived for the straight-line grounded motion of the wheelchair: 

    2 2 2
b w w m wg tM 2M 2J 2 2 Kr r r y rIy       (15) 

The experiments were done twice for each different user masses  40,60,80,95.5,115.5M kg  

and equation (15) uses the parameters tK , m  previously identified. Let us recall that the total 

mass is defined as
Frameb bM M M   with 

FramebM  known (measured). For each experiment, the 

excitation signal has the same shape, Fig.  26, however the amplitudes, according to the mass, 

needed to be adjusted so that the wheelchair velocity remains in its admissible bounds. 

 
Fig.  26. Recorded (RT) and filtered (Filt) signals 
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To estimate the speed and acceleration from the quantized encoder readings, the signals are 

filtered using a second order low pass filter with a 12Hz cutoff frequency. The model dynamics 

(15) is linear in the parameters, thus a very classical Least Square fitting has been implemented. 

The Least Square method finds the solution that minimizes the sum of the squares of the errors 

of an over-determined system of linear equations (Boyd and Vandenberghe 2018).  

 
2

minimize Ax b  (16) 

where: 

    2 22

1, 1 ,m n m nAx b A x b A x b       (17) 

and m  being the number of independent variables and n  being the number of linear 

independent observations. Then, a solution to (16) can be written as: 

   1T Tx A A A b


  (18) 

First, the least squares regression is used to identify the wheel inertia wJ . Referring to Fig.  

27 the identified parameter   20.2,0.5wJ kg m   for all experiments. The averaged value of wJ  

is: 

 20.36wJ kg m   (19) 

 

Fig.  27. Identification results for parameter wJ  
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Next, the parameter wg  is considered. Since the parameter wJ  is already known the linear 

regression is preformed again on the experiment data with wJ  being held constant with the 

value in (19).  

 11.79wg N m s     (20) 

In order to validate the resulting model, real time data and open loop simulation results were 

done. As an example, we present a result for a person weighting 95.5 kg . Therefore, the model 

will have the resulting parameters: 112.64bM kg , 4.68wM kg , 20.36wJ kg m  , 

10.85m kg s   , 11.79wg N m s    , 12.22tK N m A    and 0.3r m . 

The results of this open-loop validations are depicted in Fig.  28. Despite the simplicity of 

the considered model, it is sufficiently accurate to capture the essential of the signals and, again, 

as shown latter on, the robustness of the control laws widely compensate for this imperfection. 

Then, using (14) the NRMSE for the position y  is 0.27 , and the NRMSE for the velocity y  

is 0.4007 . 

 
Fig.  28. (Standard) identification open-loop validation 
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2.5.3 Inertia bJ  and length l  

Lastly, as the values for bM , wM , wJ , m , wg , tK  and r  have been previously fixed, only 

the value of bJ  and l  remains unknown yet. 

 

Fig.  29. Identification procedure for parameters &bJ l  

In order to tune the parameters bJ  and l , a person sat on the wheelchair and operated it in 

open-loop. The objective was for the person to “ride a wheely” for as long as possible Fig.  29. 

The model for this experiment is the same as the model for the swing-up (7) and (8).  

By comparing the open loop simulation with the recorded data, it becomes possible to adjust 

the parameters using a direct trial-and-errors procedure.  

 211.99 0.295bJ kg m l m    (21) 

An example of open-loop simulation results and recorded data are plotted in Fig.  30. 

In this experiment, the user manually controls the wheelchair using the joystick from the kit. 

He starts the swing-up sequence by applying a negative current to the motors, thus going 

backward and increasing the absolute value of the longitudinal speed. At time 1.35t s , he 

estimated that the speed was negative “enough” and applied a positive torque to swing-up the 

wheel chair. Then, until time 3.8t s , he tries to balance the wheel chair by applying 

appropriate motor current values. 

Notice that over 2 3s  of balancing the errors become important. This is due mainly to the 

modelling errors accumulation over time. Nevertheless, during the interval 1.35 3.8t s   is 

the most sensitive to the parameters bJ  and l , and is used for their estimation. Fig.  30 shows 

that over this interval the position and angle are subject to integral drifts. 
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Fig.  30. Comparison of simulated (sim) and recorded (real) signals during manual swing-up  

The results of the open-loop validation show that the model closely follows the real system, 

even though the error accumulates over time. When taking the NRMSE (14) of the simulated 

model and recorded data in the time range  0, 3.2t s  the NRMSE for y  is 0.2489 , y  is 

0.2404 ,   is 0.4833 , and   is 0.3345 . 

A validation experiment has been performed. Collected data are shown Fig.  33. The 

obtained results confirm that the model captures the overall system dynamics. The simulated 

longitudinal and rotational speed globally represents the recorded one even though small offsets 

are encountered. As a result, a drift in the longitudinal position and rotational angle is 

experienced. Using (14) the NRMSE for the position y  is 0.8141  , and the NRMSE for the 

velocity y  is 0.4009 ,   is 0.5976 , and   is 0.3522 . 
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Fig.  31. Validation of parameters bJ , and l  

2.6 Conclusion 

This chapter introduced the necessary initial works to obtain a “wheelchair + user” model 

that can be fully exploited for control. Modeling of a wheelchair using Euler-Lagrange method 

and identification of its parameters were presented. The main parameters that need to be 

recovered were obtained in three different steps. The overall system validation had to take into 

account that the system only operates at or close to its unstable equilibrium position. As a result, 

during open-loop validation, the errors in the model accumulate and the model deviates quickly 

when near the equilibrium position. However, a sufficiently good validation of the swing-up 

phase (for example from 0 to 3.2 s , Fig.  30) were obtained. Next chapters will show that the 

model obtained is sufficiently accurate for deriving robust control laws, that compensate for the 

relative uncertainties observed. 
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Chapter 3 Continuous Swing-up Optimal Trajectories 

Wheelchairs are used by people that have disabilities in their mobility, and while a 

wheelchair can be life changing for these people their mobility is still limited. For example, 

wheelchairs are not able to roll over some common obstacles (street curbs) or maneuver on 

terrains like grass or stones. An interesting solution that improves the mobility of a wheelchair 

user is the NOMAD from Autonomad-Mobility Fig.  7. The NOMAD operates in Gyroscopic 

mode (balancing on its rear two wheels) which allows if to roll over small obstacles and 

maneuver in rough terrains. However, from a control point-of-view a crucial issue is that neither 

the ground characteristics nor the Person with Reduced Mobility (PRM) characteristics (height, 

mass) are known and/or even measured. Then, the swing-up results with the wheelchair being 

in an unstable equilibrium position with internal and external unknown parameters. As a result, 

the goal of this chapter is to find a unique solution that will swing-up the wheelchair in a safe, 

secure manner that can cope system unknowns (user mass, height, and wheelchair geometry). 

In particular, the solution for the end-user should be smooth, comfortable. 

This chapter will start off with Takagi-Sugeno Fuzzy modeling using Sector Nonlinearity 

Approach. The modeling includes two classical forms, state-space and descriptor continuous 

models. Then, the stabilization of the state-space and descriptor model is presented. The 

application of such methodology to the swing-up of a wheelchair is presented. A reference 

trajectory model in a descriptor form is first defined, whereas the trajectories are performed 

using optimal control design based on expert admissible trajectories. A robust control based on 

Lyapunov 2nd method and Linear Matrix Inequalities (LMIs) design (Boyd, et al. 1994) is 

obtained. Simulations and real-time experiments are provided to show the effectiveness of the 

proposed approach. 

3.1 Takagi-Sugeno Fuzzy Modeling 

This part quickly describes the fundamentals of Takagi-Sugeno (Tanaka et Wang 2001) 

modeling in two cases: classical state-space models and descriptor form models. 
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3.1.1 “Classical” State-Space Models 

Takagi-Sugeno (TS) models are a collection of local linear models blended by nonlinear 

membership functions (Tanaka et Wang 2001). We restrict our work to the so-called affine-in-

control models: 

 
         

      

1

1

r

i i i
i

r

i i
i

x t h z t A x t B u t

y t h z t C x t






 


 







 (22) 

where   nx t   is the state,   qy t   is the output and   pu t   is the input that only 

appears affinely in (22). r  is the number of local linear models or vertices, sometimes denoted 

as number of rules, for historical reasons. 1i r    n n
iA   are the state matrices of the local 

linear models, n p
iB   the input matrices, q n

iC   the output matrices. The nonlinear 

functions   ih z t  depend on the so-called premises variables  z t  that can be possibly output, 

input, state or external parameters dependent. They are subject to a convex sum constraint: 

   
1

1
r

i
i

h z t


 ,    0ih z t   (23) 

Different approaches can be used to design a TS model from an affine-in-control nonlinear 

model: 

 
         
     

x t A x t B u t

y t C x t

   


 


 (24) 

where   n nA   ,   n pB    and   q nC    are nonlinear matrices and    indicates some 

output, state or external dependency. 

One common approach is to use linearize the nonlinear model (24) around several operating 

points to derive TS model that approximates the nonlinear dynamics (Johansen, Shorten and 

Murray-Smith 2000) (Lendek, Guerra, et al. 2010). Another way is the so-called Sector 

Nonlinearity Approach (SNA) (Ohtake, Tanaka et Wang 2001) which tries to find an exact 

representation of the nonlinear model (24), at least in a compact set of the state variables. 

However, exactness of the TS model comes at the price of an exponential increase of the number 
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of vertices; the number of linear systems being related to 2 NLn  with NLn  the number of 

considered nonlinearities in the original nonlinear model. Keeping the number of nonlinearities 

to be treated using the sector nonlinearity approach low is therefore of particular importance. 

Following this classical approach with SNA, a fuzzy model for the wheelchair model in (7) 

and (8) is constructed (Tanaka et Wang 2001). The goal being to transform each nonlinearity 

into a defined sector depending on their validity domain. First, in (7) and (8) the nonlinearity 

 sin   is substituted with  sin 
   which is equal to  sinc 

   where    sinsinc 
  . Then, 

the equations are expanded to first order equations: 

 

     

      

1 1 1 1

2 2 2 2

1 2 2 2 2 2 2 2 2 2 2 2
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     


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



 (25) 

where: 

 

 
  
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 (26) 

In (25) there are four nonlinearities that are defined to build the vertices: 

 

       
   
   
 
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z t

z

z t
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
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







  



 



 (27) 
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Referring to Fig.  18, the wheelchair operating range is restricted to  60 30     . Next, 

the bounds for each nonlinearity in (27) are defined. 

        min maxi i i iz t z t m M    ,  1, 2,3, 4i  (28) 

From where the SNA defines the membership functions: 

          1 2,i i i i
i i i i

i i i i

z t m M z t
w z t w z t

M m M m

 
 

 
 (29) 

Then, the resulting T-S model will have 42 16  vertices. The vertices are the combinations of 

all  j
i iw z ,  1, 2,3, 4i ,  1, 2j : 

    
4

1

ij
k i i

i

h z w z


 ,  
4

1

2 1i
i

i

k j


   (30) 

For example: 0 1 2 39 1 2 0 2 0 2 1 2         thus:          2 1 1 2
9 1 1 2 2 3 3 4 4h z w z w z w z w z    . 

3.1.2 Descriptor state-space Models 

Many nonlinear systems, such as mechanical systems, can be naturally written as a descriptor 

model, (Guelton, Delprat et Guerra 2008), (Lendek, Nagy and Lauber 2018).: 

 
           
     

E x x t A x x t B x u t

y t Cx t Du t

 


 


 (31) 

where   n nE    is the descriptor matrix, and generally for mechanical systems is well-posed, 

i.e.   1
E

  exists. In this particular case of an invertible  E   matrix, a state space representation 

(24) can be derived from (31) by multiplying by the state dynamic by   1
E

 . As a consequence, 

the resulting TS model (obtained using the sector nonlinearity approach) is likely to have a very 

a number of rules that will be important in the controller design. 

Applying the sector nonlinearity approach to the dynamics of (31) a TS descriptor model is 

derived: 
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            

      
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 




 (32) 

With kE  1 ek r   the local descriptor matrices, kv  are blending functions subject to a convex 

sum constraint similar to (23): 

   
1

1
er

k
k

v z t


 ,    0kv z t   (33) 

The wheelchair model naturally writes as the descriptor model: 

    ,E x A x Bu     (34) 

Where: 
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 (35) 

Following the same SNA strategy as for the classical case for the wheelchair model, a T-S 

descriptor model is obtained. First only three nonlinearities are considered, one in  E   and 

two in  ,A   : 
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 (36) 

With their bounds 
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        min maxi i i iz t z t m M    ,  1, 2,3i  (37) 

From where the SNA defines the membership functions: 
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 
 (38) 

The resulting fuzzy model will have 4 local linear iA  matrices and 2 local linear iE  matrices: 
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Using a descriptor form is common for mechanical systems; specifically, because it is a 

natural way to write equations derived from the Euler-Lagrange method (Guelton, Delprat et 

Guerra 2008), (Lendek, Nagy and Lauber 2018). Generally, in this form the matrix  E x  ends-

up being regular, in particular this is the case for the wheelchair making discussions about the 

singular case such as in (Zhang, Xia et She 2008) useless. As  1E x  exists, a classical state 
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space representation can also be derived from the descriptor model (31). Nevertheless, a first 

key point to reduce conservatism (in term of LMI complexity) is to keep a constant B  matrix 

(Bouarar, Guelton et Manamanni 2010). A second point is that for many problems coming from 

mechanical descriptions, the descriptor formulation (32) have been shown to reduce the 

conservatism of the solutions, i.e. to enlarge the set of feasible solutions (Estrada-Manzo, et al. 

2015), (Lendek, Nagy and Lauber 2018), and (Chadli and Darouach 2012). Therefore, the 

descriptor form (39) of the wheelchair will be kept in the manuscript. 

3.2 Stabilization of T-S models 

Some useful notations that will be used in the following section are defined. 

3.2.1 Notations and useful technical lemmas  

In order to shorten the expressions, the following notation are introduced for single or 

multiple sums: 

  (40) 

And extended for multiple sums:    
1 1

r r

hh i i ij
i i

A h z h z A
 

  or    
1 1

er r

hv i k ki
k i

K h z v z K
 

 ,

hhv  and so on. 

The TS descriptor model (32) can be written as: 
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For a matrix X , TX  denotes its transpose, 0TX X   stands for a symmetric definite 

positive matrix. In a matrix and/or in an expression  *  stands for the term deduced by 
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symmetry, for example 
 * TA A B

B C B C

  
   

   
 or  * TPA PA A P   , and different possible 

combinations such as: 
   * * T TA Q A A Q B

B C B C

      
   

   
. 

Often LMI constraints problems can include multiple sums. For double sums it can be 

necessary to check if    
1 1

0
r r

i j ij
i j

h z h z
 

  , or in a compact form 0hh  . A trivial solution 

is 0ij    , 1,i j r   that ends with conservative results as it does not exploit the fact that 

       i j j ih z h z h z h z . Exploiting this kind of property is known as relaxation schemes. The 

one used thereinafter is due to (Tuan, et al. 2001). 

Sufficient conditions to ensure    
1 1

0
r r

i j ij
i j

h z h z
 

   are: 

 0ii   (42) 

 
2

0
1 ii ij ji i j

r
      


,  , 1,i j r   (43) 

Next, two technical inequalities lemmas are often necessary (Boyd, et al. 1994).  

Lemma 1 (completion of squares):  Consider X , Y  two matrices of appropriate dimension, a 

scalar 0   and a positive definite matrix 0TQ Q  , the following statements hold: 

 1T T T TX Y Y X X X Y Y      (44) 

 1T T T TX Y Y X X QX Y Q Y    (45) 

These results are direct from the inequality    1 0
T

QX Y Q QX Y   . 

Lemma 1 (Schur’s complement): let n nP   be a positive definite matrix 0TP P   and 

m nQ   the following statements are equivalent: 

 1 0TQ X P X   (46) 
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 0
TQ X

X P

 
 

 
 (47) 

3.2.2 Stabilization of TS models 

State-space stabilization of TS models is done generally via Lyapunov functions and so-

called Parallel Distributed Compensation (PDC) schemes (Tanaka et Wang 2001). For example, 

with (24) in a TS form (22), a quadratic Lyapunov function generally applies: 

       0,T TV t x t Px t P P    (48) 

Together with the PDC that shares the same SNA as the model: 

    1
hu t F P x t  (49) 

It renders the state close-loop model: 

      1
h h hx t A B F P x t   (50) 

And after some classical manipulation, the derivative of (48) along the trajectories of the closed-

loop (50) is negative if:  1 0*h h hA P B F P    or equivalently using the sums: 

    
1 1

0
r r

i j ij
i j

h z h z
 

  ,    *
T

ij i i j i i j i i jA P B F A P B F A P B F         (51) 

Thus a LMI constraints problem can be proposed: 

LMI T-S Stabilization Problem:  *ij i i jA P B F     

 Find 0TP P   and iF ,  1,i r   such that conditions (42) and (43) hold. (52) 

3.2.3 Stabilization of TS descriptor models 

Now, consider the descriptor model (41) written in its compact form: 

 
     

   
v h h

h

E x t A x t B u t

y t C x t

 




 (53) 
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The usual way to cope with such descriptor form is to introduce an extended vector 
x

x
x

 
  
 




  

(Taniguchi, Tanaka and Wang 2000). It allows to rewrite (53) as: 

 
     

   
hv h

h

Ex t A x t B u t

y t C x t

 



 
   (54) 

where:      
1 1

err

hv i k ik
i k

A h z t v z t A
 


 

,   
1

r

h i i
i

B h z t B



 

,   
1

r

h i i
i

C h z t C



 

 and: 

0

0 0

I
E

 
  
 


, 

0
hv

h v

I
A

A E

 
   


, 

0
h

h

B
B

 
  
 


. 

The quadratic Lyapunov function used writes: 

      TV x x t E X x t
 

 (55) 

As  V x  is definite positive, we need symmetry: TEX X E
 

 and   0V x  , 0x  , thus the 

form of X  is (Taniguchi, Tanaka and Wang, Fuzzy descriptor systems and nonlinear model 

following control 2000): 

 1

3 4

0X
X

X X

 
  
 

, 1 1 0TX X   (56) 

Then the following control law, corresponding to an extended PDC scheme can be used with 

1
1 1P X  : 

    1
1hvu t F P x t  (57) 

The descriptor closed-loop writes: 

      1
1v h hh vF P x tE x t A B    (58) 

And in its extended form: 

    1
1

0

h h hv v

x t x t
EA B

I
E

F P

 
    

 


 (59) 
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Now, considering the derivative of the Lyapunov function      2 T TV x x t X E x t
    along the 

trajectories leads to: 

 
   

1
1

11
3 4

00
* 0

h h

T

hv v

IP

X A PBX F E





  
        




 (60) 

And multiplying right with: 1

3 4

0P
P

P P

 
  
 

 and left TP , such that T TXP P X I   gives: 

  1
1

1 3 4

0
0 0

*
hv vh h

I P

F P E PA B P

  
 

 
  




 (61) 

Or equivalently (Taniguchi, Tanaka and Wang 2000): 

 
 3 3

1 3 4 4 4

0
*T

T T T
hv v vh vh

P P

P F E PA PB E P P E

 
 

   


 
 (62) 

A refinement is possible with extra slack variables introducing 3hP  and 4hP  in place of 3P  

and 4P  to get (Guerra, Bernal and Kruszewski, et al. 2007 ):  

 
 3 3

1 3 4 4 4

0
*T

h h
T T T

hvh v h h v h h vh

P P

P F E P P E PA B P E

 
 

    



 (63) 

From (63), a LMI constraint problem can be derived via the relaxation (43): 

LMI Descriptor T-S Stabilization Problem: 
 3 3

1 3 4 4 4

*T
j jk

ij T T T
jk i j j i j j ii i

P P

P F E P P E EA P PB

 
    

      
 

Find 1 1 0TP P  , 3 jP , 4 jP , and jkF   , 1,i j r  ,  1, ek r  such that: 

 
 
   

0 1,
2

, 1, , 1,0
1

k
ii

e

k k k
eii ij ji

k r

i j r i j k r
r

  

       



 

  (64) 

With these “basic” results being recalled, the application to the wheelchair is presented. 



53 
 

3.3 Application 

The objective is to bring the wheelchair form the grounded standard-position (SP) where 

g   to the self-balancing mode (SBM) where 0 rd   with the following constraints: 

smoothness, safety when transitioning from SP to SBM and minimum displacement. To achieve 

this goal, a controller is designed to follow predefined reference trajectories. The predefined 

trajectories are computed using the optimal control framework. 

 
Fig.  32. Tracking feedback loop (continuous control) 

Fig.  32 shows a diagram of the control strategy. The reference state rx  is an optimal 

trajectory computed off-line using the plant rG  and the (optimal) reference input ru .Therefore, 

the control u  has to minimize the effect of the error between the reference state rx  and x  the 

state vector corresponding to the real plant G . The synthesis and the expression of the feedback 

part  F   is presented subsection 3.3.3. With      re t x t x t  , the resulting diagram leads 

to the control law: 

        ru t u t F e t    (65) 

3.3.1 Reference Tracking Model 

The model (34),    ,E x A x Bu    , presents several nonlinearities depending on   

and  . There are many possibilities to take them into account such as (39), the choice adopted 

consists in isolating the nonlinearities of  ,A    in a vector  ,   . This way is interesting 

because it prevents the use of classical Lipschitz conditions that ends with convergence in a ball 

(Ichalal and Mammar 2015), (Zemouche, Mohamed and Bara 2008). Therein, using this vector 



54 
 

allows with the help of the Mean Value Theorem (MVT) to prove an asymptotic convergence 

property (Ichalal and Guerra 2019). Therefore, (34) is written as: 

    ,E x Ax Bu        (66) 

where 

  
 
 

2wg 2

2 2
0 sin

, , sin2
2 0

0
0 1 0

m m

b

bm
m

Mr r
M gl

l

A

r

 
 

   


     
   

       





 


  (67) 

Thus, (66) is the generic model used to derive the control law and the reference model following 

the same principle (with similar matrices as (67)) writes: 

    ,r r r r r rE x Ax Bu        (68) 

Now, considering that  E  , equation (35), is well-defined, i.e. invertible for every  , 

proving the convergence of   0E e   ensures the convergence of the error 0e  . 

Therefore, let us write: 

     rE e E x x      (69) 

which can be expanded to: 

          r r r rE e E x E x E E x              (70) 

Then substituting (66) and (68) into (70): 

          r r rE e Ae B u u E E x           
   (71) 

where 

      
   
   

2 2sin sin

, sin sin

0

,

b r r

br rr

M l

M gl

   

   

 
 





  
       



  
 
 





  (72) 
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And introducing the vector: 

      
   
   

cos cos

cos cos

0

b r

r r

r

b r r

M l

Mx yE lE

 

 





    



       

 



 


   (73) 

The equation (70) is equivalent to: 

        rE e Ae B u u         . (74) 

In (74), if     and     are treated via Lipschitz conditions (Ichalal and Mammar 2015), 

(Zemouche, Mohamed and Bara 2008), the convergence can be only ensured inside a ball whose 

radius depends directly on the Lipschitz constants. Another way ensuring the convergence to 

the equilibrium point is to take profit of the Differential Mean Value Theorem (DMVT) (Zill 

and Write 2011), (Guerra, Márquez, et al. 2018). 

Lemma 3: (Zill and Write 2011) Differential Mean Value Theorem: Let   : nf x    and 

, na b . If  f x  is a differentiable function on  ,a b , then, there exists a vector nc  with 

 ,i i ic a b ,  1, ,i n   such that 

       f b f a f c b a    (75) 

where    f c
f c

x


 


 and  ,i ia b  means the open interval between ia  and ib . 

DMVT can be applied to equations (72) and (73) using the intermediate variables 

   0 2 3, , min , ,max ,r r          and    1 min , , max ,r r          . For (72) 

       0sin sin cosr r        (76) 

        2 2
2

2
1 1 2sin sin icos 2 s n r

r
r r

 
    


  


 

       



 

   (77) 

which leads to 
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    
   

 

2
1 2 1 2

*
0

0 2 sin cos

0 0 cos

0 0 0
be M l eg

   


 
        
 
 

 (78) 

For (73): 

       3cos cos sinr r         (79) 

which leads to 

    
 
 

3

3
*

0 0 sin

0 0 sin

0 0 0

b r

b r

M l

M eye l

 


 
       












  (80) 

Now defining      * * *
0 1 2 3 ,,, , , r rA Ay            , the estimation error dynamic 

(74) becomes: 

      *
0 1 2 3, , , , , r rrE e A e B uy u           (81) 

with 

  

     

   

2
1 2 1 2

*

0

wg 32

3

sin cos

cos si

2 2
2 sin

2 n
2

0 1 0

m m
r

m
m r

b b

b

r
A

M l M l

M l g

r

y
r

   



 
 

  

       
 

      
 










  (82) 

Then applying the control law (65): 

       *
0 1 2 3, , ,, , r rE e A BF ey           (83) 

However, before describing the procedure to find  F   that ensures the convergence of (83) 

reference trajectories are to be defined, in order to ensure not only stability but also comfort. 

3.3.2 Reference Trajectories 

To analyze the way a swing-up is managed, a manual reference swing-up is presented Fig.  

33; it has been performed by an expert at the company Autonomad-Mobility using the hand-
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rims. The strategy is decomposed in 2 moves; first, a move in the reverse direction then a 

forward acceleration that swings up the wheelchair. This strategy backward-forward helps to 

reduce the displacement of the wheelchair needed for the swing-up. The black dashed line in 

Fig.  33 show the start of the transition from reverse velocity to forward velocity which is when 

the swing-up starts. 

 
Fig.  33. Manual swing-up trajectories 

The reference trajectory starts with the wheelchair grounded  0r g  , an initial negative 

velocity to be determined, and ends when the wheelchair is in the upright position   0r ft  . 

With ft  the free final time, the criterion to be minimized is: 

       
0

min ,
f

r

t

r r ru
J u l u y d     (84) 
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with    22
0 target

1
,

2r r r rl u y u q y y   . The first term in l  allows limiting the control amplitude 

while the second terms allows simultaneously reducing the swing-up time and enforcing a final 

position  r fy t  near to targety ; 0 0q   is a weighting factor. 

Then, writing the model equations from (7) and (8) as a set of first order equations, the state 

dynamics can be written as: 

          r r r r rx t f x t B x t u t   (85) 

Where 

          T

r r r r ry t tx y tt t         

  

     

      

1 1 1
2 2 2 2 2 2 2 2 2 2 2

2 2 2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 cos

2 2 2 cos

r r r

b b w b w b w w b r

r r r

b b w b w b w w b r

r

r

r

f

a y b c

M M l r J l J r M l r J M r J M l r

a y b c

r M M l r J l J r M l r J M r J M l r

y

x t

 


 






 
 
 
 
 
 
 
 
 

  
     

 

 

     








 

  

     

      

1
2 2 2 2 2 2 2 2 2 2 2

2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 cos

2 2 2 cos

0

0

b b w b w b w w b r

b b w b w b w w b

r r

r

B

d

M M l r J l J r M l r J M r J M l r

d

M

x

r M l r J l J r M l r J M r l

t

J M r







 
 
 
 
 
 
 
 
 

     



    







 

With 

  2 2 2 2
1 wg wg2 2 2 cosb b m b b m b m ra M l r M l J r J M lr           

   2
1 2 cosm b b b rb M l J M lrr     
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       2 2 2 2 2
1 cos sinc r

b b b r b rc M lr M l r J r M l rg 
     

   2
1 cost b b b rd K M l J M lrr     

    2 2 3
2 wg4 2 4 2 cos cosw m b m w m b m r b ra J M r M r M l r M l r          

   2
2

22 2 2 cosm b w w b rb r M r M r J M lr      

       2 2 22 2 3
2 2 2 cos sinc r

b b w w b r rc M M r J M r M rr lgl 
       

   2 2
2 2 2 cost b w w b rd K M r M r J M lr r      

The control saturation is: 

  r r ru u t u    (86) 

The initial condition corresponds to a longitudinal position arbitrarily fixed to 0 with a free 

initial velocity and a grounded wheel chair, so  0 gr  . The final condition corresponds to 

a free longitudinal position, with null longitudinal and angular speeds. 

Hence, the boundary conditions are: 

  0 gr  ,          0 0 0fr r r f fy y t t t         (87) 

    0r rfy t y free   (88) 

To facilitate the numerical implementation and to cope with the free final time, the following 

change of variable is considered: 

  0,1
f

t
z

t
   (89) 

z  now being the independent variable, and the optimal control to be solved is: 

       
1

0

min ,
r

r r ru
J u l u z y z dz   (90) 
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          r

r r r r f

dx z
f x z B x z u z t

dz
    (91) 

  r r ru u t u    (92) 

  0 gr  ,          0 1 1 0 1 0r r ry y          (93) 

    0r rfy t y free   (94) 

In order to derive optimality conditions using Pontryagin’s Minimum Principle (PMP) 

(Naidu 2003), (Kirk 2004), let us first define the Hamiltonian associated with the optimal 

control problem: 

         , , , T
r r r r r r r r fH x u l y u f x B x u t     (95) 

with           4, , , ,
T

dy d yz z z z z           the co-state vector. PMP provides 

optimality conditions along an optimal trajectory. The optimal co-state dynamics are: 

 
 , ,r r rH x u d

x dz

 
 


 (96) 

The optimal control minimizes the Hamiltonian: 

    arg min , ,
r r

r r
u v u

u t H x v 
  

  (97) 

The Hamiltonian is a second order of the control ru : 

   2
0 1

1
, ,

2r r r rH x u a a u u     (98) 

with    2

0 0 target
T

r r fa q y y f x t    1
T

r r fa B x t  . 

The Hamiltonian being convex with respect to the scalar control ru , its unconstrained minimum 

is : 

  uc T
r r ru B x   (99) 
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The optimality control policy  ,r ru x   , solution of (97), is obtained by considering the 

control saturation (86): 

     , max ,min , uc
r r r rx u u u   (100) 

For each free initial or final state in (94), the corresponding co-state value is null: 

    1 0 0y dy    (101) 

The final time ft  being free, the final Hamiltonian value is null (Geering 2007). 

       1 , 1 , 1 0r r rH x u    (102) 

The final time being a constant, the following dynamics is considered: 

 
 

0fdt z

dz
  (103) 

Let us denote , ,
TT T

r fY x t    . The optimal control problem is thus reduced to the following 

boundary value problem: 

 
 

    0 , 1 0

r
r

r r

dY
F Y

dt

G Y Y

 

 

 (104) 

With  

       
 

 ,

,

, ,

0
r r

r r r

r r r
r

u x

f x t B x t x

H x u
F Y

x








  
 
 

   
 
 
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and  iG G ,     

 
 
 

 
 
 
 
 

      ,

0

0

0

0

1

0

1

1

,

1

1

1

, 1

r

r

r

r

r r f r

r

r r

y

r

dy

r

g

r

G Y Y t

H

y

u

y

x





 









 
 
 
 
 
 




 
 
 
 
 
 
 
 

 






. 

The boundary value problem (104) can be solved using colocation approach, for instance 

using the bvp4c solver (Kierzenka and Shampine 2001). To compute a solution, two parameters 

needs to be fixed : 0q  and targety  used in the criterion (84). According to the swing-up 

experiments performed in manual mode, Fig.  33, the target position targety  has been set to 

0.34 m  and only 0q  remains unfixed. To illustrate its effect on the optimal solutions, two of 

them are computed for 0 100q   and 0 2000q  , and depicted in Fig.  34. Two signals are of 

particular interest: the longitudinal position y  and the wheel chair angle  . Small 0q  values 

generate solutions that take longer and have no position overshoot. Large 0q  values lead to 

more dynamic solutions with overshoots on position, angle and control signals. These solutions 

have also smaller ft  values. 
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Fig.  34 : Comparison of optimal solutions for two 0q  values 

In order to generate safe and comfortable trajectories, the value of 0q  is chosen such that the 

generated reference trajectories are close enough to the one recorded during swing-up 

performed by an expert. Let us denote with subscript m  the data recorded during the manual 

operation and let yJ  be the normalized root mean squared deviation between the optimized 

trajectory position ry  and my . Similarly, criterions J , dyJ , dJ   are also defined for the 

angular position, the longitudinal velocity and the angular speed. Fig.  35 summarizes the 

obtained values as a function of 0q . 

The generated longitudinal motion  ,r ry y  are closer to the recorded one for 0q  between 

700 and 800. The generated angle and angular speed are closer to the recorded one for small 

values. As a result, a compromise, 0 405q   has to be found between the longitudinal and 

rotational behavior. 
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Fig.  35 : Considered criterions as a function of 0q . The red stars depict the best values. 

The optimal solution obtained for the chosen 0q  value is depicted in Fig.  36 along with the 

signals recorded during manual operation. The global behavior of the manual operation is well 

captured, the shape of the different signals being overall similar. The amplitudes of the signals 

are in the same range, even when looking carefully, the optimal solution has a slightly lower 

longitudinal speed and slightly higher angular speed. The obtained final time 4.61ft s  is 

much longer than the manual swing-up duration which is approximately 2.25 s . In the vicinity 

of the target position, the optimal trajectory converges very slowly and at 2.25t s , the 

wheelchair is almost at steady state. In practice, the encountered difference is not noticeable.  

 
Fig.  36. Comparison between manual operations (red) and optimal solutions (blue) 
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3.3.3 Reference Tracking Controller Design 

With the optimal trajectories being defined, a stable controller (65) is synthesized using the 

quasi-LPV framework (Tanaka et Wang 2001) and Linear Matrix Inequalities (LMIs) 

constraints (Boyd, et al. 1994). Since the model of the tracking error is in a descriptor form (83)

we will consider as a basis the LMI Descriptor T-S Stabilization Problem (64) and extend it for 

robustness issues. Following the same path as for (64), the extended form of (83) is. 

 

 

     *
ˆ

ˆˆ ˆˆ ˆ ˆ

0

0

0 0ˆ,ˆ ,
0

I
A B

A

Ex A x Bu

I

E
E

B
   



  

 
   


       



 (105) 

The goal is now to write (105) as an uncertain T-S model. Considering the definition of 

 *A   in (82) and remembering that the intermediate variables i ,  0,1,2,3i  are bounded 

but unknown, we will use their bounds to define an uncertain description. Considering: 

 
   

   
0 2 3

1

, , min , , max ,

min , ,max ,

r r

r r

      

    

  
     

, (106) 

it is possible to find the centers and radii for the uncertainties. For the parameters 0 , 2  and 

3 , the validity domains are direct from the wheelchair mechanical restrictions due to the caster 

wheels and the anti-tippers. Validity domain of 1  is related to safety and comfort of the swing-

up and results from real time experiments and company experts’ experience. Thus, the 

minimum and maximum bounds for the uncertainties result in the worst-case combinations of 

the validity domains that correspond to: 

        
1 2 1 2

1 2 0 0 1 2 1 2, ,
2 sin min sin max sin2b bM l M l

   
             

 (107) 

 
      

         
1 2 23 31

3
2
1 2 1 1

2 2
1 2

,
3 31 2, , ,, ,

sin

sin

cos

min cos ma c ss inx o
r r

r rb

rbM l

M l
      

 

  

 

   

  

   
 




 



 
 (108) 

 
    

         
3 30 0

0 2 2

0 0
,

3
, ,,

3

3

cos sin

min cos sin max cos sin
r r

r

y

b

r r
y

b

M l g

M l g g

y

y y
 



 



 

     
      



 
 (109) 
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Therefore, trivially we can define the centers:  1
2i i ic     and the radii  1

2i i ir     

 1, 2,3i . Now the expression of  *A   (82) in (105) can be written as: 

    *A A H t J     (110) 

with:  
 

 
 

0

1

2

0 0

0 0

0 0

t

t t

t

 
    
  

,   1i t  ,  1, 2,3i  and: 

 

wg 0 12
0 1

2
2

2 2
0 0 1 0

, 0 0 , 0 0 12
2

0 0 0 0 0 1
0 1 0

m m

m
m

A

c c r rr r
H r J

c
r

 


 

        
                      
 

 (111) 

And for (105) 

      
0ˆ I

A
A H t J E 

 
      

 (112) 

As   is measured, we can consider a quasi-LPV description of (112) via a decomposition 

of  E   in the validity domain of ,g g       for the nonlinearity    cos cos ,1 .g      

This so-called Sector Nonlinearity Approach (Tanaka et Wang 2001), corresponds to: 

        1 2cos cos 1g v v        (113) 

Where  
   

     1 2 1

cos cos
, 1

1 cos

g

g

v v v
 

  



  


 

Thus, we define: 

        1 2 1v gE vEv E     (114) 

vE  represents a polytope with two vertices  gE   and  1E , and perfectly coincides with 

 E   when ,g g      . Following classical PDC scheme (49), the control writes: 
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           1
1 1

21 11v gF F P Fv Pv F       (115) 

Therefore, we have a quasi-LPV extended description with uncertainties of (83) as: 

   1
1

ˆ 0
ˆ ˆ

v v

I
e

F
Ee

A H t J B P E

 
 


   

  (116) 

Then, using the Lyapunov function candidate (55),      * * * *TV e e t E Xe t , where: 

1

3 4

0X
X

X X

 
  
 

, 1 1 0TX X  , and following the same path transforms directly expression (62) 

into:  

 
    

 
13 3

1 3 4 4 4 1

0*
0

0

TT

T T T
v v v v

H t JPP P

P F E P P E P P E H t JA PB

   
           

 (117) 

Considering the 2nd term in (117), the sum 0v  , with 1 2,    and the classical completion 

of square property (44) (Boyd, et al. 1994): 

         1
1 110 0 0

*
0 0

0

TT T T

v
T

vP
P J P J

t J t t
H H H

          
            

        
  (118) 

And since   1i t  ,  1, 2,3i : 
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1
3 3 1

1 3 4 4 4
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T
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T

v

P PP P

AP BF E P P E P P E
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HH
   

 
     

 (119) 

Then applying a Schur’s complement (47) on the first entry of (119) gives: 

  
1

3 3

1 3 4 4

1

4

0

* 0
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v
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vv

I P
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HH E

 
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      

 (120) 

Therefore, the LMI constraints problem corresponds to: 
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LMI Descriptor T-S Robust Stabilization Problem:  

Find 1 1 0TP P  , 3P , 4P  and vF   1, 2v , 1 2,    such that: 

  1

1

3 3

1 3 4 4 4

0

* 0
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v
T

i
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v v
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vv v
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,  1, 2v  (121) 

Then, since the initial conditions are known we can enforce a constraint on the command 

 
2

u t   for all 0t   (Tanaka et Wang 2001) if the LMIs hold: 
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v

P Mx

M Ix P 

   
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 (122) 

3.3.4 Reference Tracking Simulation 

The set of parameters identified in chapter 2 are used to design the controller for the 

simulations with the following values 95.5 17.14 112.64
frameb bM M M kg     , 

211.99bJ kg m  , 4.68wM kg , 20.36wJ kg m  , 0.3r m , 29.81g kg m , 0.295l m , 

0.85m kg s  , 1.79wg kg s  , 2.22tK Nm A . 

The resulting optimal reference trajectories are depicted in Fig.  37, Fig.  38. With 

 min 0.181y   ,  max 4.96y  ,  min 7.04   , and  max 1.03  ; following (107), 

(108), and (109) the bounds are: 0 52   , 0 52  , 1 92   , 1 214  , 2 235   and 

2 365  ; that results to the centers 0 0c  , 1 61c  , 2 300c   and radii 0 52r  , 1 153r  , 

2 65r  . Then, for input constraints    0 0.45,0,0.34
T

x    and 80  .  

Thus, the matrices involved in the LMI constraints problem (121) are: 

 1

130.05 33.22 0

33.22 21.79 0

0 0 1

E

 
   
 
 

, 2

130.05 30.60 0

30.60 21.79 0

0 0 1

E

 
   
 
 
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20.73 5.68 61.0

5.68 1.70 300.0

0 1 0

A

 
   
 
 

  and 

7.39

2.22

0

B

 
   
 
 

. 

In the top of Fig.  37 is the lateral position of the base of the wheelchair and the curve below 

is the velocity. The maximum displacement of y  is about 0.32 m  which is one of the goals of 

the swing-up. Then, the top 2 curves in Fig.  38 are the angular position and angular velocity of 

the pendulum. The angular position   starts at 0.35rd and ends at 0 rd in about 1s which is 

comparable to the manual swing up in Fig.  33. In both Fig.  37, Fig.  38 the optimal reference 

command is given in the bottom. Also, these trajectories were calculated with 0 405q  .  

 

Fig.  37. Optimal swing-up trajectories ,y y  
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Fig.  38. Optimal swing-up trajectories ,   

Solving LMI Descriptor T-S Robust Stabilization Problem (121) using YALMIP (Lofberg 

2004 ) gives the following result: 

 1

220.83 4.44 2.51

4.44 7.79 1.20

2.51 1.20 0.56

P

  
    
   

, 1

2

1.13

1.07



   

   
  

 

  1 3.32 29.29 113.23F  ,  2 3.24 29.69 111.54F   

Then, the control law (65) is tested in simulations, and the results of the simulation can be 

seen in Fig.  39, Fig.  40. The simulations were carried out with one control algorithm for 2 

different masses  80,100M kg  or  97.14,117.14bM kg . There is no simulation for the 

nominal mass 95.5M kg  because the curves will exactly match the reference line since the 

reference trajectories and controller were designed from the same nonlinear model. 
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Fig.  39. Simulation continuous swing-up trajectories ,y y  

 

Fig.  40. Simulation continuous swing-up trajectories  
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In the top of Fig.  39 are the trajectories for ,y y , the position and velocity of the base of the 

wheelchair, and in Fig.  40 are the trajectories for the angular position and velocity for the 

pendulum of the wheelchair. Even though the trajectories deviate from the reference trajectories 

the control law can still swing-up and stabilize the wheelchair. 

Fig.  39, Fig.  40, presented the “nice” nominal results in the sense that compared to the real-

time system there is no noise, no uncertainties, no quantization issues. Therefore, in order to 

validate the controller, conditions that are closer to “reality” are considered in the next 

simulation tests, Fig.  41, Fig.  42: noise and quantization errors are added to the feedback 

signals as well as a zero-order hold. 

 

Fig.  41. Simulation continuous swing-up with noise trajectories ,y y  
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Fig.  42. Simulation continuous swing-up with noise trajectories ,   

The red curve 100bM kg  is the nominal mass and should have followed closely the 

reference but the non-modelled conditions make the trajectories differ from the reference. 

Referring to the trajectory   in Fig.  42 we see that the simulation trajectories reach 0 rd  faster 

than the reference trajectory which we see the same effect on the real-time results. With that 

being said, the robustness of the controller is still able so swing-up the wheelchair with mass 

variations of 20 kg  form the nominal mass. 

3.3.5 Reference Tracking Real-Time Test 

The real-time controller design followed the two-step strategy presented above. A video is 

also available at the following address https://pod.uphf.fr/video/2758-chapter-3-continuous-

swing-up-optimal-trajectories/. Frame captures of the video are provided in Fig.  43. 

Fig.  45 and Fig.  44 presents the real-time results of one of the experiments, where the black 

dashed lines are the reference trajectories, and the blue and red solid lines are the real-time data. 

The vertical green lines represent time instants a to d of Fig.  43. Between instant a and b, a 

reverse movement (Fig.  43.a) is done. The initial speed is reached at instant b and the control 

law (65) activated. Reference trajectory is depicted with dashed-black curves (Fig.  43.b-e).  
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A positive motor torque is applied. As a consequence, the wheelchair swings-up with little 

forward speed until instant c . Then, to increase the wheelchair angle closer to the equilibrium 

position, the wheelchair speed y  is increased until the equilibrium is reached at instant d  and 

rests almost standstill (only counteracting the human movements). At the instant d  when the 

wheelchair is balancing at equilibrium is the end of the swing-up, at this point the control unit 

switches to a different algorithm that allows the user to drive the wheelchair (with joystick) in 

self-balancing mode. 

The most important signal for the swinging-up phase is the wheelchair angle  . As depicted 

in the upper graph of Fig.  44, the system reaches self-balancing position in less than 2 seconds. 

Even though   and   show oscillations between b  and d  the algorithm still provides a 

smooth operation for the user. Overall, the   and   signals are similar to the one obtained in 

simulation with sensor noise, Fig.  42. 

Then, in Fig.  45 we see that the swinging up operation is performed over 45 cm of 

longitudinal motion, which allows to perform the swing-up in small areas. 

 
Fig.  43. Real-time snapshots continuous controller no obstacle.  
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Fig.  44. Continuous swing-up real-time results trajectories ,  . The green vertical lines correspond to the 

video snapshots in Fig.  43 

 

Fig.  45. Continuous swing-up real-time results trajectories ,y y . The green vertical lines correspond to the 

video snapshots in Fig.  43 
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Next, a swing-up experiment over an obstacle has been performed, Fig.  46. The wheelchair 

is initially standing on a wood plank and a swing-up maneuver is performed. Investigating the 

control law behavior in such situations is important because, in practice, the user may operate 

the wheelchair on various uneven grounds. This experiment corresponds to the second part of 

the video is available here: https://pod.uphf.fr/video/2758-chapter-3-continuous-swing-up-

optimal-trajectories/ 

 
Fig.  46. Real-time snapshots continuous controller obstacle. 

The collected data are depicted in Fig.  44 and Fig.  48. Again, the user operated the 

wheelchair manually to reach the requested initial speed. At time b, this initial speed is reached 

while the wheelchair fall of the obstacle, inducing some disturbances on the angle signal  , 

Fig.  44. As the wheel was touching the obstacle, the wheel chair lifting required more active 

control to lift the wheel chair between instant b and c. Finally, in order to reach the equilibrium 

point at time 13t s  while crossing the obstacle, the wheelchair speed increased significantly. 

The whole maneuver required approximatively 1.5 m . 
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Fig.  47. Continuous swing-up real-time results trajectories ,  . The green vertical lines correspond to the 

video snapshots in Fig.  46. 

 

Fig.  48. Continuous swing-up real-time results trajectories ,y y . The green vertical lines correspond to the 

video snapshots in Fig.  46. 
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Finally, robustness tests are performed by comparing the closed loop behavior when two 

different users operate the wheelchair. Results are depicted in Fig.  49 and Fig.  50. The two 

users have different morphologies: height: 2 m vs 1.65m, weight: 80 kg vs 100kg. The control 

law parameters were kept to the nominal values for both users.  

Overall, it can be seen that the control law behavior remains quite similar therefore 

demonstrating the robustness of the control law to the user's parameters.   

 

Fig.  49. Continuous swing-up real-time results trajectories ,  .: robustness experiment 
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Fig.  50. Continuous swing-up real-time results trajectories ,y y : robustness experiment 

3.4 Conclusion 

First, the wheelchair dynamics has been formulated using a TS-descriptor model.  A control 

law has been proposed to track a state reference in the particular case of a known reference 

input. A two steps controller synthesis was suggested.  

First, the state and input trajectories have been computed as a solution to an optimal control 

problem in order to ensure a swing-up with a small wheelchair displacement while minimizing 

the control amplitude. The compromise between these two criteria has been tuned in such a way 

that the generated trajectories mimic the one performed by a professional user. 

Second, the control law was designed to ensure global stability of the system in a secure way 

to follow the optimal trajectories. The stability of the closed-loop system was ensured by 

classical Lyapunov method and Differential Mean Value theorem to write the solution as a LMI 

constraints problem.  

Lastly, the controller was tested in simulation and real-time to show the controller 

effectiveness. The real-time experiments demonstrated the control law capability to deal with 
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small grounded obstacles. The control law robustness was tested by different users and similar 

results were obtained, demonstrating the good sensitivity of the closed loop to user's parameters. 
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Chapter 4 Discrete Robust Swing-up  

The previous chapter proposed a continuous framework mixing optimal control strategy and 

T-S control synthesis using LMI constraints problems, this chapter focuses on discrete robust 

control including mass uncertainties. The goal is to propose a solution that is fully using a quasi-

LPV formulation both for the trajectories and the robust control. 

The discrete framework has been chosen in this part, it is closer to an application level for 

embedded systems and it presents some advantages for the controller design methodology such 

as more degrees of freedom for the Lyapunov functions. The descriptor discrete model is first 

presented as well as its exact T-S form. Some basis of the LMI constraints design for descriptor 

models is recalled after. Then, a robust control law is designed to swing-up and stabilize the 

system. To generate a problem that includes the trajectories, they are designed using a discrete 

linearized model of the system. The idea is that the trajectories delivered will be admissible by 

the nonlinear system. As they are computed together with the control, stability and 

performances will be guaranteed. In addition, the system will be written considering the non-

measured uncertainty due to the mass bM  (both user and wheelchair) and a robust control law 

capable to swing-up for an important variation of bM  will be designed. Lastly, the controller 

has been tested extensively in both simulation and real-time experiments and some of the results 

are presented to show the effectiveness of the approach. Some limitations conclude the chapter. 

4.1 Discrete Modeling 

The interest of working using discrete model and discrete control synthesis is to have a 

controller directly compatible with the embedded system. Of course, the first step is to derive a 

discrete model of the wheelchair that is representative of the continuous one (34) in the adequate 

bandwidth. Several ways of discretization are possible, we took the classical forward Euler 

method   1 kkx x
x t

s
 

 . The interest is to keep the continuous model structure and the state 

space vector signification.  

Notations: for the matrices and vectors expressions the subscript d  stands for “discrete”, k  

is the sample number, s  the sampling period,  kx x k s   and   1 1kx x k s    . When there 
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is no ambiguity, the subscript k  is omitted to lighten the expressions, for example the angle 

 k k s     . Moreover, to simplify the expressions and make them readable, the 

arguments are omitted and replaced with   , i.e.    ,c cA A    . For Takagi-Sugeno models 

we recall the corresponding classical notations:  
1

r

h i i
i

X h z X


 , with iX   1, ,i r   

matrices of appropriate dimensions, z  the so-called premise vector and the nonlinear functions 

  0ih z   sharing the convex sum property:  
1

1
r

i
i

h z


 ; and  
1

1

1

r

h i i
i

X h z X






   
 
 . Finally, 

when the sample 1k   is necessary, a minus subscript can be used in some place to simplify the 

expression, for example:          1
1

1
r

hh i i ih k h k
i

X X h z k h z k X 


   . 

The continuous descriptor model (34) is written in a quasi-LPV (Ohtake, Tanaka et Wang 

2001) form under the compact set: 

   2, , ,x k k k k             (123) 

with 0.4rd   and 4 rd s  . Each nonlinear term of (34) is therefore transformed via the 

so-called Sector Nonlinearity approach (SNA) (Ohtake, Tanaka et Wang 2001). (34) with 3 

nonlinearities will correspond to an exact LPV model in x  with 32 8  vertices. This number 

can be reduced to 4 considering that the functions  cos k  and  sinc k   nearly coincide in 

 0.4,0.4  since    sinc cos 3.8%k k     (Guerra, Bernal et Blandeau 2018). Over the 

considered compact set x , the two remaining nonlinearities can be exactly rewritten using the 

membership functions 0v , 1v , 0w  and 1w : 

        0 1 1cos cosv v      (124) 

    2 2
0 10w w          (125) 

With    
   0 1

1 cos

1 o
0,

c s
v








 ,    

2

0 2
1 0,1w




  



,    1 01v v    and 

   1 01w w    . The resulting quasi-LPV model is: 
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            
1 1 1

0 0 0
i ci i j cij

i i j

v E x t v w A x t Bu t  
  

     (126) 

Where:  0c cE E  ,   1 0c cE E ,  00 ,0c cA A  ,  10 0,0c cA A ,  01 ,c cA A     

 11 0,c cA A   , cB B  And: 

 

 
2 2

2 20 1

2 2
2 cos 0 2 0

cos 0 0

0 0 1 0 0 1

w w
b w b b w b

b b b b b b
c c

J J
M M M l M M M l

r r
M l M l J M l M

E E
l J





         
   

    
   
   

   

 

 

 

wg wg2 2

00 10

wg wg2 2

01 11

2 2 2 2

2 2
2 cos 2

0 0

0 0

g g

1

0 0

2 2 2
cos

2
2 cos

0

1 1

0

g

m m m m

c cm m
m b m b

m m m
b

c cm
m b

r r r r
A

M l l
A

M
r r

M
r

r

l

l

r r
A A

M

   
 

   

     


 

               
      

    
   
      
   
        

  
  
 
  
 

 2

2

10

g2

0

m
b

m
m b

M
r

M

l

l
r

 




 
  

  
 
 
  
 


 

Thus with the Euler’s discretization   1 kkx x
x t

s
 

  and with: d cE E , d c cA sA E  , and 

d cB sB , the resulting model is a discrete representation of the continuous model. Then, (126) 

discretized becomes: 

       
1 1 1

1
0 0 0

i ci k i j cij ci k c kk k
i j

k
i

v E x v w sA E x sB u  
  

      (127) 

then with the compact notation: 

 1v k vw k kE x A x Bu    (128) 

Where  
1

0
v i ci

i
kE v E



 ,     
1 1

0 0
vw i j cik

j
k j ci

i

A v w sA E 
 

   , and cB sB . 



84 
 

4.2 Descriptor T-S stabilization 

Before starting, let us recall some useful properties. 

Property 1: let 0TQ Q   and R  be matrices of appropriate dimensions. The following 

expression holds: 

    1 10
T T TR Q Q R Q R Q R R R Q         (129) 

Property 2 (Finsler’s lemma (Skelton, Iwasaki et Grigoriadis 1998)): let nx , 

T n nQ Q    and m nR   such that  rank R n ; the following expressions are equivalent: 

 0Tx Qx  ,  : 0, 0nx x x Rx      

 n mM   , 0T TQ MR R M    (130) 

Considering that the descriptor we are interested in has the property of having an input matrix 

B  constant, we will restrict the results to this case.  

 1 kv k vw kE x A x Bu    (131) 

This part proposes the basis for the control of such models following the work of (Estrada-

Manzo, et al. 2015). Extensions to robustness are provided in the next section. To begin with, 

let us consider a general control law, with  F   and  H   to be defined further on: 

     
1

k ku F H x
    (132) 

The subscripts    are voluntarily kept, as the dependence of the different variables is related 

to the degree of freedom set by the designer and coming from the LMI constraints problems to 

solve (see expressions (139) and (140)). Therefore, the closed-loop, control law (132) applied 

to (131) writes:  

     1
1 kv k vwE Hx A BF x  

       
1

1

0w
k

k
v v

x
A B H E

x
F 


 

        
 (133) 
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Considering a Lyapunov function    
1

k k k
TV x x P x

  ,     0TP P     , again    depends on 

the LMI design; its variation writes: 

    

 

1

1

0
0

0 k
k

T

k

k k
Px x

V x
x xP


 


 

    
      
     

 (134) 

Using the Finsler’s lemma, Property 2 (Skelton, Iwasaki et Grigoriadis 1998), (134) under 

equality constraint (133) is equivalent to: 

 
 

 

 

 
     

1

1

1
*

0
0

0
vw vA

MP
F H

N
B E

P


  










   
    
   

 





  (135) 

Setting the free matrix 
 

   
1

0M

JN






   
   
     

 (Estrada-Manzo, et al. 2015) and using the property of 

congruence with the block-diagonal matrix 
 

 

0

0

H

J





 
 
  

, (135) is satisfied if: 
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  (136) 

Using Property 1 on the first entry of (136)      
1TH HP 


   renders a sufficient condition for (135) 

to hold: 
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             
1

0
*

w

T

T T T
v vv

H

A H B

H P

J J E JF P J E

 




 

    

  
  
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
 (137) 

At last, a Schur’s complement (47) is applied to transform      
1TJ JP 


 , as  

1 0P
   to give the 

final result: 
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 
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 

  
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 
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

   



 (138) 
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To determine the dependence of the variables   , a goal is to derive conditions with the 

“less” LMI constraints according to the problem we are faced to. Especially, as the input matrix 

is constant, we can avoid the cross terms (using twice the same premise by multiplication, the 

choice vwH  for example will imply vw vwA H ) and the associated relaxations (Sala et Arino 2007) 

(see discussions in (Estrada-Manzo, et al. 2015)). For our work, we can distinguish 2 cases. 

1st case: quadratic stability:  P P  , therefore, a good choice for the variables is:   ,vwF F   

  wJ J   and  H H   to get a double-sum LMI conditions: 

 

 
 
0

0

0
vw vw

T
v w w

w

T

T
v

H P

J

J

E
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A H BF E J




 



 



 

 

   (139) 

and the control writes: 1
kvwk Fu H x . 

2nd case: non quadratic stability using for example:   vwP P  , therefore, a good choice for 

the variables is:   vwv w
F F    ,   wv w

J J     and   v w
H H     to get a 4-sum LMI conditions: 

 

 
    0

0

0
v w v w v w
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T
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P

H

H E J

J

     

     

 






   


  
  

  

 (140) 

and the control writes: 1
kv wk wv w v

u HF x   
 .  

4.3 Application 

While the wheelchair is in self-balancing mode, it can overcome obstacles and navigates in 

rough terrain e.g. grass, stony ground, sand. However, the switching between the standard mode 

to the self-balancing mode safely and smoothly is a challenge. The objective of this section is 

to design a discrete robust controller that can swing-up the wheelchair from standard mode to 

self-balancing mode. 
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4.3.1 Discrete Robust Tracking Method 

Fig.  51 exhibits the overall strategy. A predefined tracking reference rkx  is generated via a 

simplified model rT  of the wheelchair. The idea is to generate potentially feasible trajectories 

in the state space. From these trajectories, a robust controller, implemented in blocks F  and 

G , ensures the stability of the nonlinear model, the robustness to the mass variation and 

smoothness of the trajectories. 

In this chapter, the reference trajectories are defined using a linear descriptor model whose 

matrices, state and input vectors are denoted with a subscript r : 

 1 kr rk r rk rE x A x Bu    (141) 

where the matrix rE  is nonsingular. The reference input is computed using a state feedback: 

 rk r rku F x  (142) 

The descriptor (141) and control (142) being linear, rF  can be obtained using any 

appropriate method. Either a descriptor form (141) can be used or a classical linear model using 

the well-defined 1
rE , 1 1

1rk r r rrk rkx E A x E Bu 
   . Synthesis can come at hand with for example 

pole placement, Linear Quadratic design or LMI constraints problem such as (139) in its linear 

form. With rF  derived to ensure the desired trajectory performances the reference closed-loop 

is written as: 

  1r rk r r rBFrk rkE x A BF x A x     (143) 

 
Fig.  51. Robust tracking control law diagram 
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Combining (128) and (143) allows the tracking error k k rke x x   to be written as: 

  1 1
1 1k rk v vw r rBk Fk rkx x E A x Bu E A x 
      (144) 

And using k rk kx x e   (144) is transformed as: 

  1
1v k vw vw v rBk r F rk kE Bee A A E E A x u
      (145) 

Combining (143) and (145) allows writing an extended problem taking into account both the 

reference tracking and the control law to design: 

 
1

1
1 00 0

0
rk r

k
r BF

v vw v r v

rk

k r kBF w

E A
u

E A E E A

x x

e A e B





         
                   

 (146) 

Let us now introduce the following control: 

      
1 rk

k
k

x
u F G H

e



 
      

 
 (147) 

As previously, matrices  F  ,  G   and  H   will be defined later on as well as their arguments 

  . Regularity of  H   will also be discussed. Thus, the reference and system in closed-loop 

writes as: 

   1v k vw kE x A BF x     (148) 

With: : 
0

0
r

v
v

E
E

E

 
  
 

, 1

0rBF
vw

vw v r rBF vw

A
A

A E E A A

 
   

, 
0

B
B

 
  
 

,        
1F F G H 
      

and 
k

k
rkx

x

e

 
 
 

. 

Using conditions (139) or (140) together with matrices defined in (148) allows formulating 

directly an LMI constraints problem for the nominal case.  

Nevertheless, in order to derive generic control laws, the uncertainty on the mass is a crucial 

issue that must be considered in the control synthesis. This mass uncertainty is related both to 

the users that may use an identical wheelchair and to the different sorts of wheelchairs that 

could possibly be equipped with the kit. Thus, we introduce the mass uncertainty in the 

definition of the matrices in (127) as: 
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    
 

  2
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Similarly, the quasi-LPV form in (145) is updated using: 

 

1 0

, 0 1
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v v v v vbE E E E M

 
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with: 
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Using the quasi-LPV model definition in (126) with the definition of uncertainties (151) and 

(152), the extra term     has to be added to the nominal problem (138) written with extended 

model (148): 
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With: 
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 (153) 

Now considering the classical decomposition of uncertainties, we can write: 
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And it is direct to write (153) as: 
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 (154) 

Let us define the maximum of the mass variation as  max bm M   and introduce a slack 

matrix 2 2 0S   . Thus, applying the completion of square property (45), equation (154) is 

bounded by: 
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 (155) 
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At the end, using a Schur’s complement (47) on (155) renders a polytopic form that linearly 

depends on the variables to search (156): 
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 (156) 

From the first entry of (156), if the condition is satisfied then      
TH H P    . Thus  

1H 
  

always exists and the control (147) is well-defined. The choices of the subscripts    follow 

exactly the ones described previously to get the LMI constraints problem using a quadratic 

Lyapunov function  (139) or a NQ one (140).  

Moreover, it is important to introduce some elements of performances. For example, it is 

interesting to have the possibility to act on the norm of the gains in order to be able to increase 

or to smooth the signals. This is done via a design parameter and using classical tools (Boyd, et 

al. 1994).  

Considering that      
TH H P     , fixing a minimum bound on  P   will directly act on  H   

and we can work on      
1F G P

      instead of      
1F G H 
      to get a LMI constraint 

formulation. Thus, we can impose:      
 
 

1
T

T

F
F G P I

G


 

 
        

 and P I  , and the 

parameter 0   will directly be a parameter that acts on the norm of the gains. Thus, 2 LMI 

constraints are added, the first one obtained using a Schur’s complement (47): 
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   (157) 
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We can now write the LMI constraints problem. For the Quadratic case (139), case 1, we set 

 P P  ,   vwF F  ,   wJ J   and  H H   to get: 

LMI Quadratic Discrete Descriptor T-S Robust Stabilization Problem:  

Chose 0  ; and find symmetric matrices TP P , T
ij ijS S  and matrices H , jJ , ijF  and ijG  

 , 1, 2i j ,  such that: 
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With: 
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4.3.2 Discrete Simulation 

The controller will be designed for a person with 95.5M kg  and the following identified 

parameters for the simulations, where 
frameb bM M M  . 112.64bM kg , 4.68wM kg , 

211.99bJ kg m  , 20.36wJ kg m   0.85m kg s  , 1.79wg kg s  , 0.3r m , 

0.295l m , 2.22tK Nm A . Matrices from reference model (141) are: 

 

130.05 33.22 0

33.22 21.79 0

0 0 1
rE

 
   
  

 

129.01 33.50 0

33.50 21.70 16.30

0 0.05 1
rA

 
   
  

 

0.37

0.11

0
rB

 
   
  

  

First of all, the definition of the reference trajectories has to be done, that resumes to finding 

the linear gain rF  for the control law (142). A pole placement has been used corresponding to 
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a smooth trajectory. The corresponding gain is  22.58 37.52 168.79rF   and it fixes the 

closed-loop reference trajectory matrices  ,r rBFE A  in (158).  

Then the uncertain description of the descriptor model is set with the bounds 0.4 rd  , 

4 rd s  , and  max 20bM kg  , thus  92.64 132.64bM kg  and mass of the person is 

 75.5 115.5M kg . The resulting matrices of the model are: 

0

187.96 30.60 0

30.60 21.79 0

0 0 1

E

 
   
  

, 1

187.96 33.22 0

33.22 21.79 0

0 0 1

E

 
   
  

 

00

186.93 30.88 0

30.88 21.70 15.01

0 0.05 1

A

 
   
  

, 10

186.93 33.51 0

33.51 21.70 16.30

0 0.05 1

A

 
   
  

,  

01

186.93 30.88 22.1

30.88 21.70 15.01

0 0.05 1

A

 
   
  

, 11

186.93 33.51 26.58

33.51 21.70 16.30

0 0.05 1

A

 
   
  

 

00

1.0 0.27 0

0.27 0.09 0.13

 
   

 
, 10

1.0 0.29 0

0.29 0.09 0.14

 
   

 
,  

01

1.0 0.27

0

2

. .

0.

1

2

27 0 09 0. 3

 
   

 
, 11

1 0.29 0.24

0.29 0.09 0.14

 
   

 
 

0

1.0 0.27 0

0.27 0.09 0

 
   

 
, 1

1.0 0.29 0

0.29 0.09 0

 
   

 
 

At last, the robust quasi-LPV controller is designed using the LMI Quadratic Discrete 

Descriptor T-S Robust Stabilization Problem (158) with 230   set after several trials. The 

resulting matrices of the control law (147), i.e.   1 rk
k vw vw

k

x
u F G H

e
  

  
 

 are: 
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1.59 5.12 0.98 1.22 4.14 0.78

5.18 20.70 4.30 4.48 17.41 3.59

0.99 4.33 0.97 0.87 3.71 0.83

1.22 4.42 0.85 1.42 4.20 0.76

4.15 17.25 3.66 4.21 17.36 3.68

0.79 3.58 0.82 0.77 3.69 0.86

H

   
    
   

     
   
 
   

 

 00 1.40 5.72 1.42F   ,   10 1.48 2.00 0.32F   , 

 01 1.11 2.59 0.04F    ,  11 4.05 11.59 1.47F    , 

 00 4.21 6.66 0.15G   ,  10 1.07 4.01 1.92G    , 

 01 2.63 4.61 0.15G   ,  11 0.64 3.82 1.38G   . 

 

Fig.  52. Simulation discrete swing-up trajectories ,y y  

Fig.  52 and Fig.  53 present 3 swing-up trials in simulation according to the nominal mass 

95.5 kg and the two extreme human masses 75.5 kg  and 115.5 kg . Of course, the model 

considered for simulations is the full nonlinear model in continuous. The reference trajectory is 

the dotted dark curve. As it is a state reference trajectory based on a linearization of the model, 
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none of the simulation signals match exactly the state reference trajectory. Nevertheless, the 

approach guaranteeing stability, robustness and performances, even though the reference model 

cannot be followed exactly, the controller capabilities of the control to swing-up the system 

with 20 kg  mass variations are clearly demonstrated. 

 

Fig.  53. Simulation discrete swing-up trajectories ,   

Following the same way-of-doing of the previous chapter for the trials, to enhance the 

simulation validity, a nonlinear continuous model closer to “reality” is used. It includes the 

quantization error from the encoders and the gyroscopes measurement noise (previously 

recorded on hardware). Results are depicted in Fig.  54, Fig.  55 and corresponds to the swing-

up of the wheelchair: the black curves represent the reference trajectory and the other colors, 2 

different users weighting respectively 80 kg  and 100 kg . These masses are used because the 

results can be compared with real-time tests with such users, Fig.  56 and Fig.  57. 
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Fig.  54. Simulation discrete swing-up with noise for trajectories ,y y  

 

Fig.  55. Simulation discrete swing-up with noise for trajectories ,   
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4.3.3 Discrete real-time 

The real-time tests were performed with the experimental systems of Autonomad-Mobility. 

A video showing a set of real-time trials can be found at the following address: 

https://pod.uphf.fr/video/1583-discrete-reference-tracking-control-to-swing-up-an-electric-

wheelchair/. 

The unique robust controller was designed for a nominal mass of 95.5M kg  and then 

tested with users’ masses  80,100M kg  or model parameter  97.14,117.14bM kg  where 

frameb bM M M  . Fig.  56 and Fig.  57 show the swing-ups for both users. y ,  ,   trajectories 

are presented as well as the control u  obtained from (147). The dashed black curves are the 

reference trajectories and the solid red and blue curves correspond to the 2 trials.  

 

Fig.  56. Discrete swing-up real-time results for trajectories ,y y  
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Fig.  57. Discrete swing-up real-time results for trajectories ,   

These experiments show that the controller can bring the wheelchair from the standard mode 

to gyroscopic mode in a smooth and safe manner. The reader can also see on the video the 

robustness obtained when the user is voluntarily rocking in the wheelchair. This effect can be 

seen partly on Fig.  57 right part for the 80 kg  user (red curve), the shaking start after about 

3.5t s . The other smaller oscillations, as expected, are caused both by the encoder 

quantization error present on y  and the gyroscopic measurement   noise. 

This control law can swing-up and stabilize safely the system even for unmeasured 

uncertainties like as the user and/or wheelchair masses. The robustness performances around 

the unstable equilibrium point are excellent when looking to the movements made by the users 

in the video, independently from the weight. For now, to gain more performances, the 

quantization error should be decreased and the possible sampling period increased. This would 

lead to be able, potentially, to use higher gains that would reduce the time to swing-up and 

moreover, to reduce the oscillations seen during the swing-ups, for example, Fig.  56, Fig.  57 

at about 0.5t s . Simulations study has been done and show the relevance of these remarks. 
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4.4 Conclusion 

The objective was to discretize the model to find a control law that would automate the 

process of transitioning safely a wheelchair from standard mode to gyroscopic mode in a 

smooth manner while being robust to different wheelchair + user masses. Differently from the 

previous chapter the choice was to use a unique formulation and control synthesis, the LMI 

constraints framework. In order to propose such a solution, the idea of coupling tracking 

reference (acting as a feedforward part) and uncertainty description in a quasi-LPV framework 

was used. The adequate LMI constraints problems were derived with the possibility of having 

design parameters to settle a safe and performant strategy. Intensive simulations and 

experiments were conducted, some of them presented or available at the given previous video 

address in the previous section.  
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Chapter 5 Conclusion and Future Research 

The objective was to find a control algorithm that could safely and comfortably swing-up a 

power-assisted electrical wheelchair. This project was proposed by the company Autonomad-

Mobility in the context of a CIFRE convention with the LAMIH UMR 8201 at Université 

Polytechnique Hauts-de-France. 

5.1 Prototype 

Since Autonomad-Mobility already designed and sold the electrical assistance kit so-called 

NOMAD (self-balancing wheelchair), the focus of this part was to design a new control box 

including an embedded system compatible with actual software such as MATLAB / Simulink. 

The control box is the housing for the joystick, the electronic card, and the IMU (gyroscopic 

and accelerometer). With the new electronic card Simulink programs can be uploaded directly 

into the card without any coding in C and Simulink as well as log data and display it in real-

time. The control box was designed in Solidworks and 3D printed in the shop. The wheelchair 

prototype included two brushless wheels embedded in the push-wheels, a socket for the battery, 

and the battery.  

5.2 Modeling & Identification 

Since we were mainly concerned with the swing-up of the wheelchair we did not need a 

model that moved in 3D space. The 2D model has 2 degrees of freedom; a translation of the 

base in y  and a rotation of the body in  . In order to derive the equations of motion the 

classical Euler-Lagrange method was used.  

Then, identification of the main parameters have to be done, taking into account that there 

was no need to get a precise modeling but a model that would be compatible with robustness 

of the control laws to be designed. Moreover, as we wanted to operate on a 2-Wheels mode, 

identification was a little more complicated than usual due to the unstable behavior of the 

system around its equilibrium point. Nevertheless, the proposition of a 3-steps procedure was 

made to end with the adequate parameters and the results were validated through real-time 

experiments. 
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5.3 Continuous swing-up 

The mechanical system being naturally in a descriptor form, this form was kept into its exact 

representation using quasi-LPV or so-called T-S fuzzy descriptor model. From the model 

designed a continuous time controller was designed to track reference trajectories to swing-up 

with a two-step process.  

First the reference trajectories were computed by using the optimal control framework. The 

objective is to find the trajectories that are smooth and comfortable for the user while still 

minimizing the distance needed to perform the swing-up. The tradeoff between comfort and 

minimizing the distance was decided by comparing the optimal trajectories to the trajectories 

generated by a professional user doing the swing-up manually. 

Once the reference trajectories set up, a robust controller is designed to compensate for the 

state space error between the system outputs and the references. The design uses first the 

Differential Mean Value theorem to derive asymptotic convergence of the error. From classical 

uncertain model framework, a classical Lyapunov 2nd method allowed to design a LMI 

constraints problem, the solution of which ensures stability and performances.  

Lastly, the controller was extensively tested in simulation and in real-time. 

5.4 Discrete swing-up 

The goal of this chapter was to propose a unique framework to solve the swing-up problem 

taking into account non-modelled uncertainties such as the masses of the user and the 

wheelchair. The discrete space was chosen and therefore, the continuous fuzzy descriptor model 

discretized. Forward Euler’s method was chosen as it keeps the same the signification of the 

state space vector.  

From this model, the idea was to build potentially “feasible” state space trajectories using a 

linearization of the model. Therefore, as for the continuous law, the feedback part has only to 

compensate for state trajectory errors. A robust design using LMI constraints problem was made 

accounting for masses variations and including performances requirements. 

Lastly, the controller was extensively tested in simulation and in real-time. 
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5.5 Future work 

This was an exciting project from my point-of-view with a realization that goes from 

specifications to a final prototype intensively tested. Robustness and performances were the 

first goals, in order for the company to have a control that is at most “user and wheelchairs 

independent”.  

Next steps would be to introduce, for the discrete framework, the position of the basis 

wheelchair y , in order to act (more than control) on the distance for swing-up. The idea here 

is that y  is not the main variable to be controlled, it is just an added performance to swing-up 

on the smallest distance the wheelchair. Another important reflection is the interest of getting 

more flexibility on the sampling period and reducing the quantization effects, both things should 

require another hardware to design. Nevertheless, it would help to attain larger feasible 

solutions to the LMI constraints problems. Increasing the set of solutions would allow 

increasing the performances and robustness issues. 

Two other points can be of high importance, taking into account the motor saturations into 

the theoretical framework and to introduce also the ground uncertainties. Both extensions are 

feasible in a reasonable time. The latter one corresponds to increase the uncertainty matrices 

such as    , equation (154). The former, concerning the input saturations, can be held 

including LMI constraints such as (Tingshu and Zongli 2001) 

Of course writing the LMI constraints is one thing, getting solutions and, even more, getting 

solutions of “quality” (robustness and performances) another, and the fact of adding constraints 

leads to reduce the set of admissible solutions. These points will have to be explored.  

Even if the swing-down phase is less crucial, in the sense that the wheelchair goes from the 

unstable 2-Wheels equilibrium to its stable 4-Wheels position, making a smooth and user-

friendly transition is also important. A solution can be provided with identical tools. After that, 

swing-up and swing-down can be challenged if the ground is not horizontal, the slope being 

“far” from 0 , swinging-up in a climb (positive slope) or swinging-down in a descent have to 

be thought with strong safety issues. At last, maximum height and/or form of the obstacles 

could be also taken into account. What could be the maximum security / safety levels that could 

be attained and guaranteed, function of some parameters such as the mass of user + wheelchair, 
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ground conditions etc. Of course, robustness of the control laws should certainly be adapted, 

and extensive campaign tests realized.  

On a much larger and long-time horizon, several improvements can be thought. A 

“balancing” chair for example, in order that whatever is the position of the body of the 

wheelchair, the user keeps a horizontal position. This would imply mechanical developments 

and would end with a supplementary degree of freedom to control, but a real plus for the user’s 

comfort and security feeling. Taking into account the journey, if a long trip is planned could 

also be added. Navigation could be thought not only in time or minimum path but also in a way 

the wheelchair minimizes the number of swing-up and down, minimizes the energy 

consumption, or more generally increases the global user’s comfort. As the wheelchair as an 

excellent capability of mobility (rough terrains, small obstacles crossing), a connection with 

cell phone apps could come at hand (GPS, interactive maps, for example) for solving these 

optimization problems. 
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Abstract 

According to the World Health Organization, more than 70 million disabled people in the 

world need a wheelchair to aid their daily mobility needs. In order to mitigate the physical 

effects of the repeated efforts on the push rims, the Autonomad Mobility developed an 

electrification kit. In this thesis, different control laws are proposed to swing-up the wheelchair 

from the grounded position to the unstable equilibrium position (gyroscopic mode). The system 

is modeled as a continuous Takagi-Sugeno descriptor model and a reference trajectory tracking 

problem is proposed. The closed loop Lyapunov stability is formulated as a set on Linear Matrix 

Inequalities to be solved. The reference control and state trajectories are computed as a solution 

to an optimal control problem. A second control law is formulated in discrete time and account 

for model uncertainties. Both simulation and experimental results are discussed. 

Résumé 

D'après l'Organisation Mondiale de la santé, plus de 70 millions de personnes à mobilité 

réduite ont besoin d'un fauteuil roulant pour assurer leurs déplacements quotidiens. Pour limiter 

les troubles musculaires liés aux appuis répétés sur les roues, la société Autonomad Mobility 

propose un kit d'électrification. Dans cette thèse, plusieurs lois de commande sont proposées 

pour assurer le passage du mode stable (avec les 4 roues posées sur le sol) à la position en 

équilibre instable du mode gyroscopique. Un modèle mathématique à temps continu du fauteuil 

et de l'utilisateur est construit en utilisant les lois de la mécanique. Le passage à la position 

d'équilibre instable est formulé comme un problème de suivi de trajectoire. Le système est écrit 

sous la forme d'un descripteur flou de type Takagi Sugeno et la stabilité de la boucle fermée est 

formulée comme un ensemble d'inégalités linéaires matricielles. Une deuxième loi de 

commande, formulée en temps discret, est également proposée et permet de prendre en compte 

les incertitudes sur les paramètres du modèle. Les résultats obtenus en simulation et lors des 

expérimentations avec les deux lois de commandes sont discutées. 


