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Introduction (version française)

Cette thèse est consacrée à l’approximation de la solution d’équations aux dérivées
partielles (EDPs) en grande dimension, éventuellement paramétrées. La résolution
d’EDPs est un domaine très vaste et très ancien des mathématiques : les EDPs ont
été analysées depuis la fin du 17ème siècle par Newton et Leibniz. Alors qu’à cette
époque, seuls des modèles simples avec des solutions analytiques étaient étudiés,
les récents développements en informatique ont ouvert la possibilité d’aborder des
EDPs plus compliquées par le biais de méthodes numériques. Plus récemment, les
EDPs dépendant des paramètres ont été considérées pour étudier des problèmes
plus complexes en optimisation, contrôle, analyse de sensibilité ou quantification
d’incertitude.

La solution d’une EDP est une fonction multivariée u(x) dépendant de certaines vari-
ables physiques (spatiales, temporelles) x dans Rd. Pour les EDPs paramétrées, la so-
lution u(x; y) dépend de variables supplémentaires y ∈ Y ⊂ Rp, appelées paramètres.

Les problèmes concrets pour lesquels les EDPs sont utilisées proviennent de différents
domaines, par exemple en physique, en biologie ou en finance. Ces applications né-
cessitent généralement de pouvoir approcher avec une certaine précision la solution u
d’une EDP. Pour les EDPs paramétrées, des approximations précises de u(·; y) pour
de nombreuses valeurs y des paramètres sont généralement requises. Des approxi-
mations précises signifient généralement des modèles numériques fins, donc coûteux.

De plus, la complexité numérique de l’approximation des fonctions u(x) ou u(x; y)
peut augmenter de manière exponentielle avec les dimensions d ou p. C’est ce qu’on
appelle la malédiction de la dimension [88, 23]. Cette malédiction peut parfois
être évitée, par exemple en utilisant les méthodes de Monte-Carlo pour l’estimation
d’intégrales [85]. Lorsqu’il s’agit d’approximation de fonctions, qui est un problème
plus difficle qu’un problème d’intégration, il n’est pas toujours possible d’éviter cette
malédiction en utilisant des méthodes aléatoires [72].

Les EDPs en grande dimension donnent donc lieu à des problèmes d’approximation
difficiles, aussi bien dans des cas indépendants des paramètres que dans des cas
paramétrés. Pour les EDPs paramétrées, une solution consiste à utiliser un méta-
modèle, également appelé modèle de substitution, qui approche u et dont l’évaluation
est peu coûteuse par rapport au coût d’évaluation du modèle numérique initial. Il
est particulièrement pertinent d’utiliser des modèles de substitution lorsque des éval-
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uations de u(·; y) pour de nombreuses valeurs de y sont demandées. La construction
d’un métamodèle pour les fonctions en grande dimension est aujourd’hui un sujet
de grand intérêt, par exemple en quantification d’incertitude (UQ) [97], pour des
problèmes de contrôle ou d’optimisation.

De ce qui précède, au moins deux questions émergent, que nous aborderons dans ce
manuscrit :

• Comment approcher la solution u(x) d’une EDP lorsque d est grand ?

• Comment approcher la variété des solutions M := {u(·; y) : y ∈ Y } par des
sous-espaces de faible dimension lorsque p est grand ?

Pour aborder ces questions, nous supposerons que la solution u admet une certaine
représentation probabiliste, connue sous le nom de représentation de Feynman-Kac,
qui trouve son origine dans les travaux de Richard Feynman et Mark Kac dans les
années 1960 [65]. Cette représentation est au cœur des contributions de cette thèse.

EDPs en grande dimension
Nous nous concentrons d’abord sur l’approximation de la solution u(x) d’une EDP
en grande dimension. Nous sommes donc dans le cas où u : O ⊂ Rd → R est une
fonction en grande dimension (d � 1), avec O un domaine physique (spatial, ou
spatio-temporel).

Les méthodes numériques standards pour résoudre les EDPs comprennent notam-
ment la méthode des éléments finis (FEM) [104], les différences finies [96] ou en-
core les volumes finis. Ces méthodes permettent d’approcher la solution globale
u : O → R de l’EDP. Elles sont très efficaces pour résoudre des problèmes en di-
mension faible (disons d ≤ 3). Cependant, elles nécessitent souvent l’utilisation
d’une discrétisation fine du domaine physique O, ce qui rend impossible leur utili-
sation pour les problèmes en grande dimension même pour les ordinateurs actuels.
D’autres approches sans maillage ont été introduites plus récemment, comme [39].
Cependant, à notre connaissance, elles n’ont pas encore été adaptées pour des prob-
lèmes en grande dimension.

Pour lutter contre la malédiction de la dimension, des méthodes d’approximation
par réseaux de tenseurs ou réseaux de neurones ont été proposées [4, 70, 56]. Des
méthodes d’approximation parcimonieuses ont également été développées [19]. Ces
techniques ont été exploitées pour la résolutions d’EDPs en grande dimension, voir
par exemple [94, 95].

Pour en venir à des techniques approximation plus locales, par opposition aux tech-
niques globales, nous rappelons qu’il est possible d’obtenir des évaluations ponctuelles
de la solution en utilisant une représentation probabiliste de celle-ci. La représenta-
tion dite de Feynman-Kac mentionnée précédemment fait partie de ces représenta-
tions probabilistes. De plus, il n’y a pas de malédiction de la dimension à affronter
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puisque nous nous concentrons uniquement sur l’obtention d’évaluations ponctuelles.
Cette représentation existe pour plusieurs classes d’EDP linéaires et non linéaires
[47]. Elle permet d’écrire la solution u sous la forme

u(x) = E [Q(Xx)] , ∀x ∈ O,(1)

où Q est une fonction dépendant des données de l’EDP et d’un certain processus
de diffusion stochastique Xx dépendant de l’EDP et du point auquel la solution u
est évaluée. En utilisant une estimation de Monte-Carlo traditionnelle basée sur M
échantillons i.i.d. de Xx, nous avons accès à des évaluations ponctuelles bruitées de
u en différents points x ∈ O. Une analyse standard montre que la précision de ces
évaluations ponctuelles se comporte généralement en O(

√
M−1 + ∆tα) pour un cer-

tain α > 0, où ∆t est un paramètre d’intégration temporelle pour l’approximation
du processus stochastique Xx [71]. Lorsque l’on souhaite approcher précisément u,
par exemple jusqu’à la précision machine, les coûts de calcul deviennent dès lors
trop élevés, même pour les ordinateurs actuels.

Différentes méthodes permettent de réduire la variance des évaluations ponctuelles
de la solution, parmi lesquelles on peut citer [44, 76]. Les auteurs dans [48] ont
introduit une méthode de réduction de variance par variables de contrôle globales
en utilisant la représentation de Feynman-Kac. Dans [49] ils ont décrit et analysé
plus précisément l’utilisation de ces variables de contrôle. Ils construisent d’abord
une approximation globale ũ de u dans un espace d’approximation de dimension
finie P . Ils utilisent par exemple pour cela des méthodes d’interpolation reposant
sur des estimations d’évaluations ponctuelles de u sur une grille unisolvante ΓP pour
P , obtenues par des méthodes de Monte-Carlo pour la représentation probabiliste
(1). Montrant ensuite que l’erreur e = u − ũ admet également une représentation
probabiliste, les auteurs construisent une approximation globale ẽ de e basée sur des
estimations d’évaluations ponctuelles obtenues par des méthodes de Monte-Carlo.
Le processus peut ensuite être itéré plusieurs fois pour ũ + ẽ. Il en résulte des
évaluations ponctuelles approchées de u sur la grille ΓP avec une erreur qui dépend
de l’erreur d’intégration temporelle de l’erreur d’approximation dans P de la solution
exacte u [49].

Première Contribution
Lorsque d � 1, l’espace d’approximation P dans lequel vivent ũ et ẽ, et la grille
associée ΓP doivent être bien choisis. Ici, nous combinons la méthode des variables
de contrôle de [49] avec la stratégie d’interpolation parcimonieuse adaptative de
[22] qui construit de manière adaptative l’espace d’approximation P et en même
temps la grille unisolvante associée ΓP . Nous proposons deux versions adaptatives
de l’algorithme de [49]. Étant donné une approximation globale ũk de u, notre pre-
mier algorithme construit au pas k une interpolation adaptative parcimonieuse ẽk de
l’erreur u−ũk dans l’espace d’approximation Pk (en utilisant sa grille d’interpolation
associée ΓPk). Notre deuxième contribution est un algorithme d’interpolation adap-
tative perturbée basé sur [22], où à chaque étape k de l’algorithme, nous calculons
une approximation ũ de u en utilisant l’algorithme utilisant des variables de contrôle
de [49], plutôt que l’interpolation sur Pk de la solution exacte. Ce travail a été publié
dans [11].

17



Introduction (version française)

EDPs paramétrées et Optimisation Discrète

Nous nous concentrons désormais sur l’approximation de y ∈ Y 7→ u(·; y) ∈ H, qui
est la solution d’une certaine EDP paramétrée, où H est un espace de Hilbert de
fonctions définies sur le domaine O. Les méthodes de réduction de modèle visent à
réduire la complexité des modèles numériques complexes. Parmi ces méthodes, on
retrouve les méthodes de base réduite qui sont très pertinentes pour certaines classes
d’EDPs paramétrées et qui exploitent une bonne approximabilité de la variété des
solutionsM := {u(y) : y ∈ Y } par des espaces de faible dimension [22, 24, 26].

Les méthodes de base réduite construisent des sous-espaces Hn de dimension n dans
H tels que la distance entre Hn et M est proche de la n-largeur de Kolmogorov
[90] qui caractérise la plus petite distance entre un sous-espace de dimension n de
H etM, c’est-à-dire la meilleure erreur d’approximation qui peut être atteinte par
les outils d’approximation linéaire. Nous nous concentrons en particulier sur les
algorithmes gloutons pour les méthodes de base réduite [13, 18].

Dans un cadre idéalisé, les algorithmes gloutons construisent de manière adaptative
une séquence imbriquée d’espaces réduits (Hn)n≥1 selon la procédure suivante. À une
étape n ≥ 1, l’espace réduit courant Hn−1 est enrichi avec un snapshot u(yn) qui est
sélectionné parmi toutes les éléments deM dont la distance à Hn−1 est maximale.
Cette distance est en pratique estimée à l’aide d’une estimation d’erreur a posteriori
[92] peu coûteuse à calculer. Pour les EDPs paramétrées, une estimation d’erreur
standard utilise la norme du résidu [54, 53]. De telles estimations d’erreur dégradent
généralement la performance de l’algorithme glouton, qui se transforme alors en un
algorithme glouton sous-optimal [32]. Pour certains problèmes paramétrés, les méth-
odes d’estimation d’erreur basées sur le résidu donnent de mauvais résultats dans la
construction de l’espace réduit. Des techniques alternatives ont donc été proposées,
comme le préconditionnement [103] ou l’estimation d’erreur sans résidu [20].

Cependant, pour des applications pratiques, la maximisation de l’erreur d’approximation
sur un ensemble continu Y reste impossible. C’est pourquoi on considère générale-
ment des ensembles d’apprentissage discrets Ξ ⊂ Y et la sélection des snapshots est
faite parmi les élements de la variété discrète des solutionsMΞ := {u(ξ) : ξ ∈ Ξ}.
Le choix de ces ensembles d’apprentissage discrets est particulièrement difficile pour
les espaces de paramètres de grande dimension, c’est-à-dire lorsque p� 1. La sélec-
tion aléatoire de ces ensembles d’apprentissage semble être une technique intéres-
sante lorsque la variété des solutions M peut être bien approchée par des espaces
de faible dimension [27]. Il en résulte un algorithme glouton probabiliste.

La norme de l’erreur dans les algorithmes gloutons peut être écrite comme une
espérance utilisant une représentation de Feynman-Kac de ladite erreur. Dans ce
contexte, afin d’enrichir l’espace réduit avec un snapshot sélectionné à l’aide d’un
algorithme glouton, nous devons résoudre un problème d’optimisation discrète du
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type suivant

max
ξ∈Ξ

E[Z(ξ)],(2)

où, dans le contexte des méthodes de base réduite, les (Z(ξ))ξ∈Ξ sont des variables
aléatoires dépendant de l’espace réduit. De tels problèmes d’optimisation discrète
ont déjà été largement étudiés depuis les années 1950 [91, 73], initialement pour
des applications médicales. Les algorithmes de bandit utilisent des estimations de
Monte-Carlo et des inégalités de concentration afin de fournir une solution quasi-
optimale de (2) avec une probabilité élevée. Le résultat de tels algorithmes est un
paramètre ξ̂ dans Ξ qui est probably approximately correct (PAC) [38] dans un sens
absolu, ce qui signifie que

P
(
E[Z(ξ?)]− E

[
Z(ξ̂)

]
≤ ε

)
≥ 1− λ,

pour des valeurs prescrites de ε dans (0, 1) et λ dans (0, 1), avec ξ? ∈ arg maxξ∈Ξ E[Z(ξ)].

Seconde contribution
Les algorithmes de bandits existants ont besoin d’estimer intelligement ε afin de
pouvoir être utilisés pour la maximization de l’erreur à posteriori dans des algo-
rithmes gloutons. Pour contourner l’estimation de ε, la deuxième contribution de
cette thèse est un algorithme probablement approximativement correct (PAC) en
précision relative qui combine des estimations de Monte-Carlo avec une précision
relative garantie [79] avec un algorithme PAC [38]. Cet algorithme fournit ξ̂ dans Ξ
qui satisfait

P
(
E [Z(ξ?)]− E

[
Z(ξ̂)

]
≤ ε|E[Z(ξ?)|

)
≥ 1− λ,(3)

pour des valeurs prescrites de ε dans (0, 1) et λ dans (0, 1), avec ξ? ∈ arg maxξ∈Ξ E[Z(ξ)].

Troisième contribution
La troisième contribution de cette thèse combine les méthodes de base réduite) avec
une sélection de snapshots basée sur le nouvel algorithme PAC en précision rela-
tive. En réinterprétant l’erreur d’approximation dans un algorithme glouton comme
une espérance, nous pouvons sélectionner un snapshot pour enrichir la base réduite
en utilisant l’algorithme PAC en précision relative. Il en résulte un algorithme
glouton probabiliste. En combinant cet algorithme avec l’utilisation d’ensembles
d’apprentissage aléatoires [27], qui sont adaptés au cas p � 1, nous proposons un
deuxième algorithme glouton probabiliste qui consiste à choisir aléatoirement un
snapshot quasi-optimale parmi des ensembles d’apprentissage aléatoires en utilisant
l’algorithme PAC en précision relative que nous avons proposé.
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Plan du Manuscrit
Cette thèse est composée de cinq chapitres.

Dans un premier temps, nous nous concentrons sur la résolution d’EDPs en grande
dimension à l’aide de méthodes probabilistes, ce qui correspond à notre première
contribution, publiée dans [11]. Un aperçu des méthodes probabilistes pour les EDPs
linéaires est présenté dans le Chapitre 1 tandis que notre contribution est présentée
dans le Chapitre 2.

Le Chapitre 3 traite d’un problème d’optimisation discrète pour une fonction définie
comme une espérance, et introduit notre deuxième contribution. Ce travail a été
soumis comme [12].

Enfin, nous étudions les EDPs paramétrées. Dans le Chapitre 4, nous donnons un
aperçu des méthodes de base réduite pour ces modèles. Le Chapitre 5 introduit deux
algorithmes gloutons probabilistes pour les méthode de base réduite, qui utilisent
l’algorithme d’optimisation discrète introduit dans le Chapitre 3.
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This thesis is devoted to the approximation of the solution of high-dimensional par-
tial differential equations (PDEs), possibly parameter-dependent. Approximating
the solution of PDEs is a vast and quite old field of mathematics: PDEs have been
analysed since the late 17th century by Newton and Leibniz. While at this time
only simple models with analytical solutions were studied, the recent developments
in computer science have opened up the possibility to address more complicated
PDEs through numerical methods. More recently parameter-dependent PDEs have
been considered to study more complex problems in optimization, control, sensitiv-
ity analysis or uncertainty quantification.

The solution of a PDE is formally defined as a multi-variable function u(x) depend-
ing on some physical (spatial, temporal) variables x in Rd. For parameter-dependent
PDEs, the solution u(x; y) depends on additional variables y ∈ Y ⊂ Rp.

The concrete problems for which PDEs are used arise in various fields, for example
in physics, biology or finance. These applications usually require to be able to ap-
proximate up to some precision the solution u of a PDE. For parameter-dependent
PDEs, precise approximations of u(·; y) for many instances y of the parameters are
usually required. Precise approximations usually means fine, thus costly, numerical
models.

Moreover, the numerical complexity to approximate functions u(x) or u(x; y) might
increase exponentially with the dimensions d or p. This is known as the curse of
dimensionality [88, 23]. This curse can sometimes be avoided, for example using
Monte-Carlo methods for the estimation of integrals [85]. When it comes to func-
tion approximation, which is a more complex problem than integration, avoiding
this curse is not always possible using random methods [72].

High-dimensional PDEs thus result in difficult approximation problems, in both
parameter-independent and parameter-dependent cases. For parameter-dependent
PDEs, a solution is to use a metamodel, also known as surrogate model, which ap-
proximates u and is cheap to evaluate compared to the initial numerical model. It is
particularly relevant to use surrogates when evaluations of u(·; y) for many values of
y are required. The building of metamodel for high-dimensional functions is nowa-
days a matter of high interest, e.g. in uncertainty quantification (UQ) [97], control
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or optimisation.

From the foregoing, at least two questions arise, that we will address in this manuscript:

• How to approximate the solution x ∈ Rd 7→ u(x) of a PDE when d is large ?

• How to approximate the solution manifold M := {u(·; y) : y ∈ Y ⊂ Rp} by
low-dimensional subspaces of H when p is large ?

To tackle these questions, we will assume that the solution u admits some probabilis-
tic representation, known as the Feynman-Kac representation, that originates in the
work from Richard Feynman and Mark Kac in the 1960s [65]. This representation
is at the core of the contributions of this thesis.

High-Dimensional PDEs
First we focus on the approximation of the solution u(x) to some high-dimensional
PDE. We are thus in the case where u : O ⊂ Rd → R is a high-dimensional function
(d� 1), with O a physical domain (spatial or spatio-temporal).

Standard numerical methods for solving PDEs include Finite Element Method (FEM)
[104], finite differences [96] or finite volumes. Such methods approximate the global
solution u : O → R. They are really efficient for solving low-dimensional problems
(say d ≤ 3). However they often require the use of a fine discretization of the physical
domain O, which makes them intractable for high-dimensional problems, even for
today’s computers. Other meshless approaches have been introduced more recently,
such as [39]. However they still have not been considered, up to our knowledge, for
high-dimensional problems.

To tackle the curse of dimensionality, methods based on tensor networks or neural
networks have been proposed [4, 70, 56]. Sparse approximation methods have also
been developped [19] and exploited to solve high-dimensional PDEs, see e.g. [94, 95].

Moving to local approximation methods, we recall that it is possible to get point-
wise evaluations of the solution using a probabilistic representation. The so-called
Feynman-Kac representation mentioned earlier is such a probabilistic representa-
tion. There is no curse of dimensionality to tackle since we only focus on getting
a few pointwise evaluations. This representation exists for several classes of linear
and non-linear PDEs [47] and yields an expression of the solution of the form

u(x) = E [Q(Xx)] , ∀x ∈ O,(4)

where Q is a functional depending on the data of the PDE and some stochastic
diffusion process Xx depending on the PDE and on the point at which the solution
u is evaluated. Using a traditional Monte-Carlo estimate based on M i.i.d. samples
of Xx, we have access to noisy pointwise evaluations of u in different points x ∈ O.
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A standard analysis shows that the precision of these pointwise evaluations gener-
ally behaves as O

(√
M−1 + ∆tα

)
for some α > 0, where ∆t is a time-integration

parameter for the approximation of the stochastic process [71]. When we wish to
approximate precisely u, e.g. up to machine precision, the computational costs are
too high, even for today’s computers.

Different methods allow to reduce the variance of the pointwise evaluations of the
solution, among them we mention [44, 76]. The authors in [48] introduced a variance
reduction method with global control variates using the Feynman-Kac representa-
tion. In [49], they described and analysed more precisely the use of these control
variates. First they build a global approximation ũ of u in some finite-dimensional
approximation space P . They use for example interpolation methods relying on
estimations of pointwise evaluations of u on an unisolvent grid ΓP for P , obtained
by Monte-Carlo methods for the probabilistic representation (4). Showing then
that the error e = u − ũ admits a probabilistic representation, the authors build a
global approximation ẽ of e based on estimations of pointwise evaluations obtained
by Monte-Carlo methods. Updating ũ to ũ + ẽ, the process can be then iterated
multiple times. It results in approximate pointwise evaluations of u on the grid ΓP
with an error depending on the time integration error of the approximation error in
P of the exact solution u [49].

First contribution
When d� 1, the approximation space P in which lives ũ and ẽ, and the associated
grid ΓP must be well-chosen. Here we combine the control variate method from [49]
with the adaptive interpolation strategy from [22] which builds adaptively and at
the same time the approximation space P and the adapted unisolvent grid ΓP . We
propose two adaptive versions of the algorithm of [49]. Being given a global approx-
imation ũk of u, our first algorithm builds at step k a sparse adaptive interpolation
ẽk of the error u− ũk in the approximation space Pk (and its associated grid ΓPk).
Our second contribution is a perturbed adaptive interpolation algorithm based on
[22], where at each step k of the algorithm, we compute an approximation ũ of u
using the control variate algorithm from [49], rather than the exact interpolation on
Pk. This work can be found in [11].

Parameter-Dependent PDEs and Discrete Optimiza-
tion

We focus on approximating the map y ∈ Y 7→ u(·; y) ∈ H, which is the solution of
some parameter-dependent PDE, with H a Hilbert space of functions defined on O.
Model order reduction (MOR) methods aim at reducing the complexity of complex
numerical models. Among MOR we can find reduced basis methods (RBM) that are
highly relevant for some classes of parameter-dependent PDEs and exploit a good
approximability of the solution manifoldM := {u(y) : y ∈ Y } by low-dimensional
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spaces [22, 24, 26].

RBM build n-dimensional subspaces Hn ofH such that the distance between Hn and
M is close to the Kolmogorov n-width [90] that characterizes the smallest distance
between a n-dimensional subspace of H andM, that is the best approximation error
that can be achieved by linear approximation tools. We focus particularly on greedy
algorithms for RBM [13, 18].

In an idealized framework, greedy algorithms adaptively build a nested sequence of
reduced space (Hn)n≥1 according to the following procedure. At each step n ≥ 1,
the current reduced space Hn−1 is enriched with a snapshot u(yn) which is selected
among all the elements fromM whose distance to Hn−1 is maximal. This distance
is in practice estimated using an a posteriori error estimate [92] inexpensive to com-
pute. For parameter-dependent PDEs, a traditional error estimate is based on the
norm of the residual [54, 53]. Such error estimates usually deteriorate the perfor-
mance of the greedy algorithm, that turns into a weak-greedy algorithm [32]. For
some parameter-dependent problems (with low decay of the Kolmogorov n-width of
their solution manifold) residual-based error estimates may yield a poor quality of
the reduced space. Thus alternative techniques have been proposed, such as pre-
conditioning [103] or residual-free error estimate [20].

However, in practical applications, maximizing the approximation error over a con-
tinuous set Y remains impossible. This is why discrete training sets Ξ ⊂ Y are
usually considered and the selection of the snapshots is made among elements of the
discretized solution manifold MΞ := {u(ξ) : ξ ∈ Ξ}. The choice of these discrete
training sets is particularly challenging for high-dimensional parameter spaces, i.e.
when p � 1. A random selection of these training sets seems an interesting tech-
nique when the solution manifoldM can be well-approximated by low dimensional
spaces [27]. This results in a probabilistic greedy algorithm.

The norm of the a posteriori error estimate in greedy algorithms can be written as
an expectation using a Feynman-Kac representation of the error. In this context, in
order to enrich the reduced space with a snapshot selected using a greedy procedure,
we need to solve a discrete optimization problem of the following type

max
ξ∈Ξ

E[Z(ξ)],(5)

where, in the context of reduced basis methods, the (Z(ξ))ξ∈Ξ are random variables
depending on the reduced space. Such discrete optimization problems have already
been widely studied since the 1950s [91, 73] and were originally mentioned in med-
ical applications. Bandit algorithms use Monte-Carlo estimates and concentration
inequalities in order to provide a quasi-optimal solution of (5) with high probability.
The result of such algorithms is a parameter ξ̂ in Ξ that is probably approximately
correct (PAC) [38] in an absolute sense, which means

P
(
E[Z(ξ?)]− E

[
Z(ξ̂)

]
≤ ε

)
≥ 1− λ,

for some prescribed values of ε in (0, 1) and λ in (0, 1), with ξ? ∈ arg maxξ∈Ξ E[Z(ξ)].
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Second contribution
Existing bandit algorithms would need a careful estimation of ε in order to preserve
guarantees of weak-greedy algorithms. To circumvent the estimation of ε, the second
contribution of this thesis is a probably approximately correct (PAC) algorithm in
relative precision which combines Monte-Carlo estimates with guaranteed relative
precision [79] with probably approximately correct (PAC) algorithm [38]. It returns
ξ̂ in Ξ which satisfies

P
(
E [Z(ξ?)]− E

[
Z(ξ̂)

]
≤ ε|E[Z(ξ?)|

)
≥ 1− λ,(6)

for some prescribed values of ε in (0, 1) and λ in (0, 1), with ξ? ∈ arg maxξ∈Ξ E[Z(ξ)].

Third contribution
The third contribution of this thesis combines reduced basis methods (RBM) with
a snapshot selection based on the new PAC algorithm in relative precision. By
reinterpretating the approximation error in a greedy algorithm as an expectation,
we can select a snapshot to enrich the reduced basis using the PAC algorithm in
relative precision. This results in a probabilistic greedy algorithm. Combining
this algorithm with the use of random training sets [27], that are adapted to the
case p � 1, we propose a second probabilistic greedy algorithm that consists in
randomly choosing a quasi-optimal snapshot among random training sets using the
PAC algorithm in relative precision we proposed.

Thesis’ Outline
This thesis is composed of five chapters.

First we focus on solving high-dimensional PDEs using probabilistic methods, which
corresponds to our first contribution, published in [11]. A survey of probabilistic
methods for linear parameter-independent PDEs is presented in Chapter 1 while the
contribution is presented in Chapter 2.

In Chapter 3 we consider a discrete optimization problem for a function defined
as an expectation, and introduces to our second contribution. This work has been
submitted as [12].

Finally we study parameter-dependent PDEs. In Chapter 4, we survey reduced basis
methods for parameter-dependent PDEs. Chapter 5 introduces two probabilistic
greedy algorithms for reduced basis methods based on the discrete optimization
algorithm from Chapter 3.
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Chapter 1

Probabilistic Methods for PDEs: a
Survey

This chapter first introduces probabilistic representation for parameter-independent
partial differential equations (PDEs) on bounded domains. Then numerical methods
to simulate pointwise evaluations of the solution of parameter-independent PDEs
using their probabilistic representation are surveyed.

Contents
1.1 Stochastic Differential Equations . . . . . . . . . . . . . . 29
1.2 Feynman-Kac Representation . . . . . . . . . . . . . . . . 31

1.2.1 Backward Parabolic Boundary Value Problem . . . 32
1.2.2 Elliptic Boundary Value Problem . . . . . . . . . . 33

1.3 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . 34
1.3.1 Approximation of Diffusion Processes . . . . . . . . 35
1.3.2 Monte-Carlo Methods . . . . . . . . . . . . . . . . 35
1.3.3 Statistical Error for the Simulation of Pointwise Eval-

uations . . . . . . . . . . . . . . . . . . . . . . . . . 36

We consider either elliptic or parabolic partial differential equations (PDEs) defined
on a physical domain O ⊂ Rd. This physical domain is an open bounded spatial
domain, denoted by D ⊂ Rd with a boundary ∂D, in the elliptic case. In the
parabolic case O corresponds to a spatio-temporal domain, typically [0, T ] × D ⊂
R×Rd. The space variable is denoted by x = (x1, . . . , xd). In the parabolic case, the
time variable is denoted by t. We denote by L a linear differential operator taken
under the non-divergence form

L(u)(t, x) = 1
2

d∑
i,j=1

(σ(t, x)σ(t, x)T )ij∂2
xixj

u(t, x)

+
d∑
i=1

bi(t, x)∂xiu(t, x),
(1.1)

where b = (b1, . . . , bd) : [0, T ]×D → Rd and σ : [0, T ]×D → Rd×d.
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Chapter 1. Probabilistic Methods for PDEs

With these notations, the backward parabolic boundary-value problem is composed
of the following equations satisfied by the unknown solution u : [0, T ]×D → R

∂tu+ L(u)− ku+ g = 0 in [0, T )×D,(1.2)
u(T, x) = f(T, x) for x ∈ D,(1.3)
u(t, x) = f(t, x) for (t, x) ∈ [0, T )× ∂D.(1.4)

Equation (1.2) is a parabolic PDE. We have k : [0, T ]×D → R, and f : [0, T ]×D → R
represents both the terminal and boundary conditions (respectively (1.3) and (1.4)).
The function g : [0, T ] × D → R is the source term of the PDE. In the literature,
the set of equations (1.2)-(1.4) is also referred to as the Cauchy-Dirichlet problem.

We study also elliptic problems, where the time variable does not appear. It is
composed of the following equations satisfied by the unknown solution u : D → R

−L(u) + ku = g in D,(1.5)
u = f on ∂D.(1.6)

Equation (1.6) stands for a Cauchy boundary condition. The functions k : D → R,
f : ∂D → R and g : D → R are not time dependent in this case. Neither are
the functions b : D → Rd and σ : D → Rd×d defining the coefficients of the linear
differential operator (1.1).

Remark 1.1. The backward formulation in the parabolic case arises from problems
in finance. In physics, forward problems are more common, where the terminal
condition (1.3) is replaced by an initial condition. The references in the literature
on theoretical results for PDEs usually treat the forward parabolic case. However,
using the change of variable t→ T − t, it is easy to derive theoretical results for the
backward case. Moreover, both elliptic and parabolic problems can also be considered
on unbounded domains. In order to simplify our study we will not consider PDEs
on unbounded domains here and we refer the reader to the following non-exhaustive
literature [28, 41, 68, 47] for more details.

No assumption were given yet on the different functions involved in the definition of
the problems (1.2)-(1.4) and (1.5)-(1.6). For both parabolic and elliptic problems,
uniqueness of the solution can be obtained using the so-called maximum-principle.
We refer to [36, Chapter 2.3, Theorem 5] for the parabolic problem and to [36,
Chapter 2.2, Theorem 5] for the elliptic problem. In these results, the uniqueness
relates to classical solutions that are solutions in C([0, T ] × D) ∩ C1,2([0, T ] × D),
which means continuous over its domain of definition with continuous derivatives.
It ensures that equation (1.2) is well-defined. Existence of classical solutions can be
obtained too and we refer to [41, Chapter 6, Theorem 3.6] and references therein for
the forward parabolic problem and to [41, Chapter 6, Theorem 2.4] and references
therein for the elliptic problem.

Remark 1.2. A weaker notion of solution exists. It is related to the weak formula-
tion of PDEs. We mention this aspect in Section 4.3.1
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This chapter is a survey of probabilistic methods for both elliptic and parabolic
problems defined above. We recall that such methods give access to pointwise eval-
uations of the solution u, i.e. to u(t, x) for chosen values of (t, x) in [0, T ] × D
in the parabolic case, and to u(x) for chosen values of x in D in the elliptic case.
Stochastic Differential Equations (SDEs) are at the core of the probabilistic meth-
ods introduced hereafter. We first introduce in Section 1.1 the notion of SDE. Then
we show in Section 1.2 how to express the solution of a PDE as the expectation,
depending on a diffusion process solution of a well-chosen SDE, related to data of
the problem. This being done, we present numerical methods allowing to estimate
pointwise evaluations of the solution u. Since the numerical methods are similar
for both elliptic and parabolic problems, we present them in the parabolic case in
Section 1.3 and adapt this presentation for the elliptic case in Section 2.2.

1.1 Stochastic Differential Equations
Stochastic calculus originates in the description of Brownian motion in the early
19th century by Robert Brown, which characterizes a particle with erratic move-
ments. These observations have led to the introduction of the notions of stochastic
process and stochastic integrals that are at the core of the Itô calculus, introduced
in the 1940s. Such notions give a rigorous framework for the definition of an SDE.
We recall the most important ones here and refer the reader to [46] and references
therein for more details. First, we introduce a probability space (Ω,F ,P), where Ω
is a sample space, F a σ-algebra on Ω and P a probability function on F .

Definition 1.3 (Stochastic process with values in Rd). Let T be a subset of R.
A stochastic process indexed by T is a family (Xt)t∈T of random variables defined
on the probability space (Ω,F ,P). The random variables Xt may be valued in any
measurable space (Rd,G), where G is a σ-algebra on Rd.

Then we define a measurable (stochastic) process.

Definition 1.4 (Measurable and adapted process). A real-valued stochastic process
(Xt)t∈T is measurable if X : (t, ω) ∈ (T × Ω,B(T) ⊗ F) → Xt(ω) ∈ (Rd,B(Rd)) is
(B(T)⊗F ,B(Rd))-measurable.
Recalling that a filtration is a family (Ft)t∈T ⊂ F such that

t1 ≤ t2 ⇒ Ft1 ⊂ Ft2 ,

(Xt)t∈T is said to be adapted to the filtration (Ft)t∈T if, for all t ≥ 0, Xt : (Ω,Ft)→
(Rd,B(Rd)) is (Ft,B(Rd))-measurable.

Now we give a definition of the (standard) Brownian motion in dimension one, which
is a particular stochastic process indexed by T = R+.

Definition 1.5 (One-dimensional Brownian motion). A (standard one-dimensional)
Brownian motion is a real-valued stochastic process (Wt)t∈R+, with continuous tra-
jectories, such that
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1. W0 = 0 ;

2. any time increment Wt −Ws (0 ≤ s < t) has the distribution N (0, t− s) ;

3. for any 0 = t0 < t1 < . . . < tn, the increments {Wti+1 −Wti ; 0 ≤ i ≤ n − 1}
are independent.

From this definition, we can deduce the main properties of the Brownian motion. It
includes the symmetry property (if W is a Brownian motion, so is −W ). We refer
the reader to [47, Chapter IV.1] for additional properties.

The extension to obtain a d-dimensional Brownian motion consists simply in con-
sidering W = (W1, . . . ,Wd), where each Wi is a one-dimensional Brownian motion,
each one being independent from the others. In what follows, we will denote by
(Ft)t∈R+ the natural filtration of the Brownian motion. Unless otherwise specified,
any adapted process will now be meant adapted to (Ft)t∈R+ . We can then introduce
the set of adapted and square-integrable processes indexed by T = [0, T ], which is
defined by

H2
T := H2

[0,T ] = {φ adapted to (Ft)t∈[0,T ] such that ‖φ‖2
H2
T

:= E

[∫ T

0
|φt|2dt

]
<∞}.

We also define the set of elementary processes, Helem, which contains the processes
(φt)0≤t≤T , such that φt = φti for all ti < t ≤ ti+1, where t1 < t2 < . . . is any time
grid. We now introduce the notion of Stochastic Differential Equation (SDE) and
conditions for existence and uniqueness of a solution to this SDE.

Theorem 1.6 (Existence and uniqueness of a solution to a SDE). Let W be a d-
dimensional Brownian motion. Take s ∈ R+ and s < S < +∞. Let b : [s, S]×Rd →
Rd and σ : [s, S] × Rd → Rd×d be two continuous functions satisfying the following
conditions for a constant Cb,σ

∀(t, x, y) ∈[s, S]× Rd × Rd

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ Cb,σ|x− y|;
(A1)

sup
s≤t≤S

|b(t, 0)|+ |σ(t, 0)| ≤ Cb,σ.(A2)

For a given xs ∈ Rd and for any s ≤ t ≤ S we consider the following SDE

Xt = xs +
∫ t

s
b(r,Xr)dr +

∫ t

s
σ(r,Xr)dWr. (1.7)

There exists a unique process (Xt)t∈[s,S] satisfying eq. (1.7), adapted to (Ft)t∈[s,S] and
in H2

[s,S], which moreover satisfies E(sups≤t≤S |Xt|2) < C(1+ |xs|2) for some constant
C depending on S − s and Cb,σ.

The last integral in (1.7) is defined in the sense of Ito. In particular for processes φ
in H2

T ∩ Helem we have ∫ T

0
φrdWr =

∑
ti≤T

φti
(
WT∧ti+1 −Wti

)
.(1.8)
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This definition can be extended for processes in H2
T . We refer the reader to [47,

Chapter IV.2] for this extension and we recommend [68] for a complete presentation
on stochastic integration.

1.2 Feynman-Kac Representation
Our goal here is to present the links between SDEs and PDEs. To do so, we intro-
duce the notion of Ito process and the Ito formula.

Definition 1.7 (Ito process). Let (bt)t≥0 : R+ → Rd and (σt)t≥0 = ((σ1,t, . . . , σd,t))t≥0 :
R+ → Rd×d be two adapted processes satisfying

∫ s
0 (|br|+ |σr|)2dr < +∞ almost surely

for all s ≥ 0. The Ito process (Xt)t≥0, starting at x0, with drift coefficient b and
diffusion coefficient σ is the d-dimensional stochastic process defined by

Xt = x0 +
∫ t

0
brdr +

∫ t

0
σrdWr.(1.9)

Remark 1.8. The process (σt)t≥0 can be taken more generally with values in Rd×q,
for some q ∈ N possibly different from d, the space dimension. We focus in this
manuscript on the case q = d. Moreover, the definition of the Ito process has been
taken using s = 0 as a time reference even if it is still possible to make it start at
any time s, just like the stochastic process solution of (1.7). However, we stick to
this time origin to avoid introducing too much notation.

Theorem 1.9 (Ito formula). Let G be a real-valued function in C1,2(R+ × Rd) and
(Xt)t≥0 the d-dimensional Ito process defined by (1.9). Thus the process (Yt =
G(t,Xt))t≥0 is a 1-dimensional Ito process given by

G(t,Xt) =G(0, x0) +
∫ t

0
∂tG(s,Xs)ds+

∫ t

0
∇xG(s,Xs)bsds

+
∫ t

0
∇xG(s,Xs)σsdWs + 1

2

∫ t

0

d∑
k,l=1

∂2
xk,xl

G(s,Xs)[σsσTs ]klds.
(1.10)

Ito formula allows to introduce probabilistic representations for PDEs, also known
as Feynman-Kac representations. It originates in the 1940s, with the PhD work
of Richard Feynman, then developed by Mark Kac, in particular in [65]. Such a
representation is obtained by seeing the differential operator (1.1) as an infinitesimal
generator of the d-dimensional diffusion process X t,x solution of the following SDE

X t,x
s = X t,x

t +
∫ s

t
b(r,X t,x

r )dr +
∫ s

t
σ(r,X t,x

r )dWr, X t,x
t = x ∈ D,(1.11)

whose coefficients are defined using the coefficients of L. Here W is a d-dimensional
Brownian motion. The stochastic process X t,x is uniquely defined, under suitable
assumptions such as (A1) and (A2), by its value x at time t and the functions b and σ.
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Chapter 1. Probabilistic Methods for PDEs

Remark 1.10. In the elliptic case, the different functions involved are not time-
dependent and we take the time origin at t = 0 in (1.11). When there is no ambi-
guity, we simplify our notation with the convention X0,x = Xx.

Applying now the Ito formula to a well-chosen function of X t,x, it is possible to
obtain the Feynman-Kac representation of the solution of the considered problem
(either (1.2)-(1.4) or (1.5)-(1.6)).

1.2.1 Backward Parabolic Boundary Value Problem
The following Feynman-Kac representation comes from [47, Theorem IV.4.5].

Theorem 1.11 (Feynman-Kac formula for backward parabolic PDE on bounded
domain). Set T > 0 and assume that

(P1) assumptions (A1) and (A2) are satisified,

(P2) D ⊂ Rd is a bounded domain and we define τ t,x = inf{s > t : X t,x
s /∈ D} as the

first exit time of X t,x from D,

(P3) the boundary ∂D is regular for X t,x in the sense that

∀t ∈ [0, T ],∀x ∈ ∂D,P(τ t,x = 0) = 1,(1.12)

(P4) the functions f, g, k : [0, T ]×D → R are continuous,

(P5) there exists a continuous function u : [0, T ]×D → R, of class C1,2 on all open
subset of [0, T [×D verifying (1.2)-(1.4).

Then u admits the following probabilistic representation

u(t, x) = E[G(u,X t,x)],(1.13)

where, setting τ t,xT = τ t,x ∧ T , we have

G(u,X t,x) = f(τ t,xT , X t,x

τ t,xT
) exp

(
−
∫ τ t,xT

t
k(r,X t,x

r )dr
)

+
∫ τ t,xT

t
g(s,X t,x

s ) exp
(
−
∫ s

t
k(r,X t,x

r )dr
)
ds.

Assumption (P5) could be replaced by suitable assumptions on the coefficients of
the PDE and the linear operator L, see e.g. [41, Chapter 6, Theorem 3.6], that
ensure the existence of a classical solution to (1.2)-(1.4). An essential regularity
assumption is needed on the boundary. In some Feynman-Kac representations (see
e.g. [41, Chapter 6, Theorem 5.2]), a high regularity is required for ∂D in order to
get rid of assumption (P5). However, in many practical examples (e.g. on polygonal
domains) this regularity for the boundary is not verified. In order to avoid these
assumptions, it is possible to refer to existence and uniqueness theorem [41, Chapter
6, Theorem 3.6]. The only needed assumption on the boundary ∂D in this theorem
is the existence of a barrier at every point of (0, T ) × ∂D. This condition ensures
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a certain regularity of the boundary and thus the existence of a classical solution.
Other conditions exist, such as the exterior cone condition, also called Zaremba’s
cone condition, see [68, Chapter 4.2.C] for a discussion on regularity conditions of
∂D. Other works have been conducted linking these conditions [77], but we will not
develop them further in this manuscript.

1.2.2 Elliptic Boundary Value Problem
For the elliptic problem, we recall the following notation Xx = X0,x (see Re-
mark 1.10). The following result is taken from [28, Theorem 2.4].

Theorem 1.12 (Feynman-Kac formula for elliptic PDE on bounded domain). As-
sume that

(E1) D is an open connected bounded domain of Rd, regular in the sense that, if
τx = inf {s > 0 : Xx

s /∈ D} is the first exit time of D for the process Xx,
solution of (1.11), we have

P(τx = 0) = 1, x ∈ ∂D,

(E2) b, σ are Lipschitz functions over D,

(E3) f is continuous on ∂D, g and k ≥ 0 are Hölder-continuous functions on D,

(E4) (uniform ellipticity assumption) there exists c > 0 such that

d∑
i,j=1

(
σ(x)σ(x)T

)
ij

ΥiΥj ≥ c
d∑
i=1

Υ2
i , Υ ∈ Rd, x ∈ D.

Then, there exists a unique solution of (1.5) in C
(
D
)
∩ C2 (D), which satisfies for

all x ∈ D

u(x) = E [F (u,Xx)](1.14)

where

F (u,Xx) = u(Xx
τx) exp

(
−
∫ τx

0
k(Xx

t )dt
)

+
∫ τx

0
A(u)(Xx

t ) exp
(
−
∫ t

0
k(Xx

s )ds
)
dt,

with u(Xx
τx) = f(Xx

τx) and A(u)(Xx
t ) = g(Xx

t ).

Proof. We refer the reader to [41] and references therein for a proof of the existence
of a classical solution.

Using now the Ito formula for the product of the Ito process Ys and the function Zs
defined by (where bY and σY are scalar drift and diffusion coefficients of the SDE
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satisfied by Y )

Ys = Y0 +
∫ s

0
bYr dr +

∫ s

0
σYr dWr

Zs = e
∫ s

0 crdr

we obtain

YsZs = Y0 +
∫ s

0
e
∫ r

0 cs1ds1(crYr + bYr )dr +
∫ s

0
e
∫ r

0 cs1ds1σYr dWr

Taking Ys = u(Xx
s ) with Xx

s the solution process, starting from x at time 0, of
the SDE (1.11) whose infinitesimal generator is L (whose drift coefficient is b and
diffusion coefficient is σ) and cs = −k(Xx

s )1s>0 and using the fact that u is the
solution of (1.5)-(1.6), we get

u(x) =u(Xx
s )e−

∫ s
0 k(Xx

r )dr +
∫ s

0
e−
∫ r

0 k(Xx
s1 )ds1g(Xx

r )dr

−
∫ s

0
e−
∫ r

0 k(Xx
s1 )ds1∇xu(Xx

r )σ(Xx
r )dWr.

Choosing the stopping time as an exit time

τxn = inf
{
s > 0 : d(Xx

s , ∂D) 6 1
n

}
,

we have for s = τxn , taking at the same time the expectation in the previous formula
(the second integral has a zero-valued expectation)

u(x) = E

(
u(Xx

τxn
)e−

∫ τxn
0 k(Xx

r )dr +
∫ τxn

0
e−
∫ r

0 k(Xx
s )dsg(Xx

r )dr
)

With τxn → τx we take the limit and we get (1.14) by continuity on D of u, g and
k.

Compared to Theorem 1.11, Theorem 1.12 does not assume the existence of a clas-
sical solution: this existence is already ensured by the assumptions of the theorem.
Among the other assumptions, (E2) ensure the uniqueness of the solution to the
SDE, while (E4) ensures that the exit time τx is almost surely finite for every x in
D (see [40, Lemma 3.3.1]).

1.3 Numerical Methods
In this section, we first detail the numerical tools we will use to estimate pointwise
evaluations of the solution of (1.2)-(1.4) using the Feynman-Kac formula (1.13). It
includes time-integration schemes in order to simulate the diffusion process X t,x and
Monte-Carlo methods for expectation estimation. Finally, after a brief analysis of
the error resulting from the numerical tools we use. We present in Section 1.3.3 a
complexity analysis of these numerical tools together with a survey on techniques
reducing this complexity.
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1.3.1 Approximation of Diffusion Processes
The process X t,x is traditionally approximated by a time-integration scheme S de-
signed according to the SDE satisfied by X t,x. Letting tn = t + n∆t, n ∈ N, X t,x

is approximated by a piecewise constant process X t,x,∆t, where X t,x,∆t
s = X t,x,∆t

tn for
s ∈ [tn, tn+1[ and

X t,x,∆t
tn+1 = S(X t,x,∆t

tn , b, σ, tn,∆Wn,∆t).(1.15)

Here ∆Wn = Wtn+1 −Wtn is an increment of the standard Brownian motion. In
particular the Euler-Maruyama (see Section 2.2.1) time-integration schemes is the
most basic way to simulate trajectories of X t,x,∆t.

Remark 1.13. Piecewise constant is not mandatory in the definition of X t,x,∆t. For
example in [5] the authors use piecewise affine trajectories (which are continuous).
In our analysis we chose piecewise constant approximations for a sake of simplicity.

Using a time-integration scheme, we can also estimate the exit time τ t,x by

τ t,x ≈ τ t,x,∆t := min
{
tn > 0 : X t,x,∆t

tn /∈ D
}
.(1.16)

To quantify the accuracy of the stochastic process X t,x,∆t (one can show that X t,x,∆t

is a Ito process, see e.g. [47, Theorem V.1.2]) as an approximation of X t,x defined
by (1.11), we will introduce in Section 1.3.3 the notion of time-integration error.

1.3.2 Monte-Carlo Methods
We can use Monte-Carlo approach to approximate the time-integrated solution

u∆t(t, x) = E
[
G(u,X t,x,∆t)

]
.(1.17)

Thus, denoting by (X t,x,∆t(ωm))m=1...M a family of M independent trajectories of
the stochastic process X t,x,∆t (simulated using time-integration schemes introduced
in section 1.3.1) we have

u∆t(t, x) ≈ u∆t,M(t, x) = 1
M

M∑
m=1

G(u,X t,x,∆t(ωm)),(1.18)

where G(u,X t,x,∆t(ωm)) can be computed by the rectangle quadrature formula with
left point (which is exact here sinceX t,x,∆t is a piecewise constant stochastic process),

G(u,X t,x,∆t(ωm)) =f(tL(ωm), X t,x,∆t
tL(ωm)(ωm))

L(ωm)−1∏
l=0

exp
(
−k(tl, X t,x,∆t

tl )∆t
)

+
L(ωm)−1∑
l=0

g(tl, X t,x,∆t
tl )

l∏
j=0

exp
(
−k(tj, X t,x,∆t

tj )∆t
)
,

(1.19)

with L a random variable such that tL = τ t,x,∆t ∧ T .

Remark 1.14. Using the rectangle quadrature formula with right point is possible
but when tL(ωm) = τ t,x,∆t(ωm), some quantities in (1.19) are not well-defined, since
X t,x,∆
tL(ωm) is almost surely not in D, the space domain where f, g, k are defined.
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1.3.3 Statistical Error for the Simulation of Pointwise Eval-
uations

The estimation error ε∆t,M is defined as

ε∆t,M(t, x) := u(t, x)− u∆t,M(t, x).(1.20)

It naturally depends on two parameters, the time-integration discretization param-
eter ∆t and the number of Monte-Carlo samples M . The error can be decomposed
in two terms

ε∆t,M(t, x) = E [ε∆t,M(t, x)] + ε∆t,M(t, x)− E [ε∆t,M(t, x)] .(1.21)

We notice that E [ε∆t,M(t, x)] := u(t, x)− u∆t(t, x). This error will be referred to as
the time-integration error and be denoted ε∆t(t, x). The remaining term is due to
the Monte-Carlo method and will be noted εMC(t, x). We notice that it corresponds
to u∆t(t, x)−u∆t,M(t, x) and that its variance is equal to the variance of the estimate.

On one hand, the time-integration error ε∆t is due to the time-integration scheme
(1.15) we use. To quantify the precision of the time-integration scheme, we study
its strong convergence.

Definition 1.15 (Strong convergence of time-integrated stochastic process). A dis-
crete time approximation X t,x,∆t converges strongly with order γ, on [t, T ], towards
X t,x when there exists a positive constant C, independent of ∆t, such that, for all
0 < ∆t ≤ ∆tlim, we have

E

[
sup
t≤s≤T

‖X t,x
s −X t,x,∆t

s ‖
]
≤ C∆tγ.(1.22)

Under assumptions slightly stronger than (A1) and (A2) on the coefficients b and
σ of (1.11), it has been proven in [47, Theorem V.2.1] that the Euler-Maruyama
scheme (presented in Section 1.2.2 in the stationary case) has a strong order of
convergence γ = 1

2 . Other numerical schemes, assuming stronger conditions on the
coefficients of the SDE defining X t,x, have been proposed to improve the order of
convergence. We refer to [71, Chapter 10-12] for explicit time-integration schemes
of higher order.

Remark 1.16. An interesting point is that, when the coefficients b and σ involved
in the definition of the infinitesimal generator of X t,x, see (1.11), are constant,
the Euler-Maruyama scheme does not differ from these high-order schemes: the
corrective terms added to increase the order of convergence depend on the derivatives
of b and σ. In this situation, other techniques exist to improve the convergence order.
We will present them later.

However, the strong convergence order does not allow to study the behaviour of ε∆t
directly. In particular, assumptions on the functional involved in the Feynman-Kac
representation have to be made. For example, recalling

ε∆t(t, x) = E[G(u,X t,x)]− E[G(u,X t,x,∆t)]
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and assuming G(u, ·) is Lipschitz, we can show that |ε∆t(t, x)| . ∆t1/2 when we use
the Euler-Maruyama time-integration scheme. However this is a really naive way to
study ε∆t. A more advanced way is often referred to as the weak error study and
can be made independently from the strong error.

On the other hand, the Monte-Carlo error εMC can be controlled in probability
non-asymptotically using concentration inequalities (see [42] in the parabolic case
on unbounded domain where G(u,X t,x,∆t) = f(T,X t,x,∆t

T ) for a deterministic value
of T ) which means that for all ε > 0, it exists C, not depending on ε or M , such
that

P (|u∆t(t, x)− u∆t,M(t, x)| > ε) ≤ 2 exp
(
−Mε2C

)
.

From this, we can deduce confidence intervals with length behaving in M−1/2 as
expected for Monte-Carlo methods.

In light of these results and the error decomposition (1.21), a balance has to be found
between a fine time-discretization parameter ∆t and a high number of Monte-Carlo
samples M . This balance depends naturally on the order of convergence of ε∆t with
respect to ∆t (equal to 1

2 here) and also on the order of convergence of εMC with 1/M
(also equal to 1

2 here). If we denote by ε the target accuracy we aim at reaching for
our pointwise evaluations, we have to take M = O(ε−2) and ∆t = O(ε2), due to the
order of convergence of the time-integration error and the Monte-Carlo error that
are in both cases equal to 1

2 . The complexity being O(M∆t−1), as function of the
wanted precision it behaves like O(ε−4). Thus, for very precise pointwise evaluations,
the complexity becomes too high. A solution to overcome these accuracy limitations
is to improve the order of convergence of both the time-integration technique and
the Monte-Carlo method. We recall hereafter a few ways to enhance these orders. In
Section 1.3.3.1 we survey high-order time-integration methods while Section 1.3.3.2
is devoted to enhanced Monte-Carlo methods.

1.3.3.1 Time-Integration Error ε∆t

It has been proven in [47, Theorem V.3.1] that for a parabolic Cauchy problem
on unbounded domains, i.e. when no exit-time has to be estimated, the time-
integration error with an Euler-Maruyama scheme behaved as O(∆t). Combined
with classical Monte-Carlo methods this would allow an overall complexity inO(ε−3).
However, the assumptions on the coefficients of the PDE were very strict to obtain
this result (C1,4([0, T ]×D), plus the existence of a classical solution with the same
regularity). For a simpler but classical study case (parabolic on unbounded domain
with g ≡ k ≡ 0), the time-integration error E[f(X t,x

T )] − E[f(X t,x,∆t
T )] has been

studied in [99, 5] while using the Euler-Maruyama time-integration scheme. In [99],
taking f and the coefficients of the SDE driving X t,x to be smooth functions, the
authors give an expansion of the error in term of powers of ∆t

E[f(X t,x
T )]− E[f(X t,x,∆t

T )] =
R∑
r=1

ar∆tr +O(∆tR+1),(1.23)
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where the coefficients (ar)R+1
r=1 do not depend on ∆t. In [5], a similar expansion

is obtained when f is only measurable and under non-degeneracy assumption on
the infinitesimal generator of X t,x. Such expansions are then useful to propose
new approximations (of higher order) for E[f(X t,x

T )] by the principle of Romberg
extrapolation, that we present here when R = 1 in (1.23). In this case we can notice
that

E[f(X t,x
T )]−

(
2E[f(X t,x,∆t/2

T )]− E[f(X t,x,∆t
T )]

)
= O(∆t2),(1.24)

and then we have a time-integrated approximation whose order of convergence is 2.
This technique can be extended to any order R+ 1 if we have an expansion of order
R. For more generalities on the subject, see for example [99, Section 2.3] or [89].

Remark 1.17. Such a technique can be used to propose high-order approximation
in the case where the coefficients b and σ are constant (see Remark 1.16).

These techniques, even if interesting in practice, cannot be used for any function
f (for which the existence of an expansion might be harder to prove), and we still
have to use time-integration schemes with time-integration parameter lower than
∆t (∆t/2 for example when using the Romberg extrapolation technique to get an
order 2 approximation), which is numerically costly.

Another major concern, not treated by the already presented literature, is the exit-
time estimation which introduces also a bias: we easily notice that τ t,x,∆t ≥ τ t,x

which introduces a bias in O(
√

∆t) according to [50, Theorem 4]. To deal with
this overestimation it is proposed in [50, Theorem 5] to consider a slightly modified
exit-time to regain a time-integration error in o(

√
∆t): this exit time is

τ t,x,∆t1 := inf{s > t : X t,x,∆t /∈ D∆t},

where D∆t = {x ∈ D : d(x, ∂D) > C
√

∆t} is a smaller domain of D, see Figure 1.1.
This technique is very useful in practice since it is easy to implement. However the
resulting convergence has only been proved to behave like o(∆t1/2), the exact order
has not been explicited yet.

In the general parabolic case (1.2)-(1.4), high order of convergence are difficult
to reach using traditional techniques without very restrictive assumptions on the
PDE. This is due to the complicated form of the Feynman-Kac functional in (1.13).
However, for easier study cases, interesting alternatives can be proposed. In fact one
can notice that the simulation of stochastic processes’ trajectories is complicated. If
we were considering problems for which the simulation of a whole trajectory is not
needed, we could investigate better precision without higher numerical complexity.
Here we consider two different elliptic problems (1.5)-(1.6) for which we do not need
the simulation of the entire trajectory. A first one where k ≡ b ≡ g ≡ 0, f ≡ σ ≡ 1.
In this simplified case, known as the Poisson problem, the Feynman-Kac formula
becomes

u(x) = E[f(Xx
τx)],(1.25)
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Figure 1.1: Comparison between the estimation of the exit time τ t,x,∆t of D and the
estimation of the exit time τ t,x,∆t1 of D∆t [50], illustrated for a particular trajectory
of X t,x,∆t. The domain D∆t (delimited by - - -) allows to estimate an exit position
(and exit time) with a bias lower than the one using D (delimited by —).

where τx = τ 0,x by convention. This problem consist here in estimating the exit
point of the domain D. A second one where k ≡ b ≡ 0, f ≡ g ≡ σ ≡ 1. The
Feynman-Kac formula thus becomes

u(x) = E[f(Xx
τx) + τx].(1.26)

Here we have to estimate both the exit point and the exit time of the domain D.

Figure 1.2: Comparison between Walk on Sphere (left) and Green Function First
Passage (right) techniques [62]. Both procedures work the same, until the selection
of x5. When x4 has been drawn, it lays at a distance to the boundary smaller than
δGFFP . So we can use the GFFP method and draw the next point on the intersection
of a sphere and the boundary (in bold on the left). The WOS draws the next sample
still on a sphere (in bold on the right) and stops since the next sample x5 lays at a
distance lower than δWOS of the boundary.

A groundbreaking technique has been theoretically introduced in [82] to solve (1.25):
the Walk-On-Sphere (WOS) procedure. It is based on the observation that the exit
position of a sphere, for a Brownian motion starting in the center of this sphere, is
uniformly distributed over the sphere. Then, consider procedure described here
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1. Start in x0 = x and set k = 0.

2. Find the largest sphere, centered in xk, contained in D. Draw according to
the uniform distribution a point xk+1 on this sphere. If this point is on ∂D,
stop.

3. Otherwise, increment k and repeat the procedure from step 2.

It returns a point on ∂D and this point has the same distribution as Xx
τx . How-

ever, this procedure almost surely does not stop. Simply modifying it by stopping
when the point xk+1 is closer than some parameter δWOS from the boundary, [80]
analyzes the numerical error resulting from this technique. It gives then a result
on the average number N(δWOS) of spheres before stopping: it is bounded, up to a
constant, by | log(δWOS)|. Under regularity assumptions on the boundary, the error
of such method is in O(δWOS) [76]. Thus, the complexity (to get one sample) as a
function of the precision ε behaves in O(log(ε−1)) which is better than techniques
whose complexity is a power of ε−1. The WOS procedure has then been adapted to
rectangular domains in [29]. It has been later improved under the name of Green
Function First Passage (GFFP) [45] in order to avoid the absorption layer of size
δWOS and then to simulate exactly τx. An illustrated comparison of GFFP and
WOS methods can be found on Figure 1.2, see [62] for a comparison in term of com-
plexity of the two methods. This GFFP method thus requires the exact simulation
of the exit time over domains intersected with spheres (see Figure 1.2). An improve-
ment of GFFP, called the Simulation-Tabulation method has even been proposed in
[63]. These techniques are however difficult to extend to non-classical domain D (or
to high dimensional problems on complicated domain) since it is necessary to get
samples according to the distribution of the exit time of a Brownian motion from
domain more complicated than spheres (see [45, Appendix] among other references).
Moreover, it is only available for the Poisson equation, when the diffusion process is
in fact the Brownian motion.

All these techniques to estimate the exit position from a bounded domain of the
Brownian motion have been completed more recently by the study of the exit time
of other one-dimensional stochastic processes [57, 58, 59]. This new class of algo-
rithms, made to estimate (1.26), are called the Walk-On-Moving-Spheres (WOMS)
algorithms [30].

Another field of interest consists in studying PDEs with non-regular coefficients,
which differs from the classical presentation adopted in Theorem 1.11 or Theo-
rem 1.12. We refer the reader to [15] and references therein for an overview for
estimating (1.26) with such coefficients.

Promising numerical results allow to exactly simulate trajectories of diffusion pro-
cesses in the case d = 1 [9, 34, 35]. They are presented as allowing to reach higher
precision for the same numerical complexity. However, up to our knowledge, such
methods have not yet been employed for solving PDEs.
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As a conclusion for this part, we summarize all the literature presented above in
Table 1.1.

Problem studied Technique used Advantages/Drawbacks Complexity
(1.14) or (1.13) Euler-Maruyama

scheme
Easy to implement and to apply
to any diffusion process but low
convergence order

O(ε−1) or O(ε−2)
depending on the
regularity for the
functions in (1.14)

High-order
schemes [71]

High convergence order com-
pared to Euler-Maruyama
scheme but not available when
the SDE has constant coeffi-
cients, less easy to implement in
high-dimension

O(ε−γ), γ ∈ (0, 1]
depending on the
order of the scheme

Boundary shifting
[50]

Easy to implement O(ε−1)

Poisson equation on
unbounded domain

Romberg extrapo-
lation [99, section
2.3]

Allow high-order of convergence
even when the SDE has constant
coefficients but difficult to ex-
tend to complex function of Xt,x

O(ε−γ), γ ∈ (0, 1]
depending on the
order of the expan-
sion

(1.25), small d WOS and GFFP
[62]

High convergence order but dif-
ficult to extend to complex or
high-dimensional space domain
or to other diffusion processes

O(log(ε−1))

(1.26), small d WOMS [30] or [58,
59]

High convergence order but dif-
ficult to extend to more com-
plex or high-dimensional space
domain or to other diffusion pro-
cesses

O(log(ε−1))

(Xt,x
s )0≤s≤T , d = 1 [34, 35] Exact simulation of trajectories

but the diffusion coefficient has
to be equal to 1

Lower complexity
at given precision
compared to stan-
dard simulation of
trajectories.

Table 1.1: Summary of the advantages and drawbacks of each numerical time-
integration technique. The complexity column corresponds to the complexity to
reach a precision of ε for ε∆t.

1.3.3.2 Monte-Carlo Error εMC

Regarding the Monte-Carlo error εMC , the order of convergence of the error, with
respect to the number of Monte-Carlo samplesM , behaves in O(M−1/2). This order
is difficult to reduce, except using multilevel Monte-Carlo methods that we will
present later. However it is possible to improve the estimate u∆t,M(t, x) by using
variance reduction techniques. In order to see the interest of these techniques, we
introduce

V [u∆t,M(t, x)] = V[G(u,X t,x,∆t)]
M

.(1.27)

When the variance V[G(u,X t,x,∆t)] is large, the estimation using the classic Monte-
Carlo estimate is not adapted for precise estimation of u(t, x). It is thus possible
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to use variance reduction techniques, e.g. antithetic sampling. Suppose that X t,x,∆t

and X̃ t,x,∆t have the same law. In particular since their expectations are equal, we
have

u∆t(t, x) = E[G(u,X t,x,∆t)]

= E[G(u, X̃ t,x,∆t)] = E[G(u,X t,x,∆t) +G(u, X̃ t,x,∆t)]
2

Using the last equality, it is possible to propose the following estimate

ũ∆t,M(t, x) = 2
M

M/2∑
m=1

G(u,X t,x,∆t(ωm)) +G(u, X̃ t,x,∆t(ω̃m))
2 ,(1.28)

where the X t,x,∆t(ωm) are i.i.d. samples of X t,x,∆t and the X̃ t,x,∆t(ω̃m) are i.i.d. sam-
ples of X̃ t,x,∆t. This estimate is better than u∆t,M(t, x) when we can prove that the
covariance Cov

[
G(u,X t,x,∆t), G(u, X̃ t,x,∆t)

]
< 0. This variance reduction technique

is particularly relevant and easy to implement in some cases here since when X t,x,∆

is the standard discretized Brownian motion, then so is −X t,x,∆. Other variance re-
duction techniques exist and we refer the reader to [47, Chapter III] for a complete
presentation.

We focus now on multilevel methods [44]. In some cases, these techniques also
allow to improve the convergence rate of εMC with reference to M . If we want to
estimate E[ZL] but ZL is costly to sample, it might me better, if we have access to
an approximation ZL−1 of ZL which is less costly to sample but also less precise, to
use the following equality

E[ZL] = E[ZL−1] + E[ZL − ZL−1],

in order to propose the following estimate

Ê[ZL] =
∑M1
m=1 ZL−1(ω1

m)
M1

+
∑M2
m=1 ZL(ω2

m)− ZL−1(ω2
m)

M2
,(1.29)

where the Zj(ωi) are independent samples drawn according to the law of Zj. It is
important to make sure that the samples used in the difference ZL(ω2

m)−ZL−1(ω2
m)

are drawn according the same underlying elementary event ω2
m. This multilevel

Monte-Carlo method with two levels can then be generalized to a L level multilevel
Monte-Carlo method using the following equality

E[ZL] =
L−1∑
l=0

E[ZL−l − ZL−l−1], Z0 = 0,(1.30)

just assuming that we have access to a sequence of approximation with decreasing
cost and precision (ZL−l)Ll=1. Multilevel methods are particularly relevant for the
simulation of Feynman-Kac representation, e.g. [61], since it is easy to have access
to the different levels required to use them: each level l corresponds to a Euler-
Maruyama time-integration scheme of parameter ∆tl, with ∆tl that decreases with
l. Of course an optimization has to be made for the choice of the number of samples
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Ml to be used at each level l, as well as the choice of the different Zl, i.e. of ∆tl,
when this choice can be driven. Improved non-asymptotic confidence intervals have
been proposed for the multilevel method [64]. The Monte-Carlo error εMC using
these multilevel methods behaves at most and under additional assumptions, as a
function of the reached precision ε, in O(ε log(ε−1)) (see among others [47, Theorem
IV.3.1]).
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Chapter 2

Probabilistic Methods for Solving
High-Dimensional Elliptic PDEs

This chapter introduced our first contribution. It consists in an algorithm to ap-
proximate up to any precision the solution of a high-dimensional elliptic partial
differential equation (PDE) on a bounded domain.
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As we have seen in Section 1.3.3, the complexity as a function of the reached preci-
sion ε behaves polynomially in ε−1. Taking a closer look at this complexity, reaching
low precision, e.g. machine precision, through these methods would cost a high
number of Monte-Carlo samples together with time-integration schemes with very
fine parameter ∆t. While it may be possible to conduct such techniques for a single
pointwise evaluation, such an approach are not relevant in a multi-query context,
which is when several pointwise evaluations are required. Particularly since de-
terministic methods are relevant in this context for low-dimensional problems, i.e.
when d is small.

Moreover the most efficient time-integration techniques presented in Section 1.3.3
mainly for low-dimensional problems are difficult to implement or to extend to high-
dimensional problems. Thus it is particularly costly to reach machine precision for
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pointwise evaluations of high-dimensional problems.

In this chapter, we present work that has already been published in [11]. We consider
high-dimensional PDEs, i.e. d � 1, and in the multi-query context. We propose
two algorithms combining global approximation techniques with the probabilistic
methods for PDEs seen in Chapter 1. These algorithms provide heuristics allowing
to reach machine precision while approximating the solution of a high-dimensional
PDE on bounded domain.

Title: Probabilistic methods for solving high-dimensional PDEs.
Authors: Marie Billaud-Friess ♣, Arthur Macherey ♣,♠, Anthony Nouy ♣ and Clé-
mentine Prieur ♠.
♣ Centrale Nantes, LMJL, UMR CNRS 6629, 1 rue de la Noë, 44321 Nantes
♠ Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP*, LJK, 38000 Grenoble, France
*Institute of Engineering Univ. Grenoble Alpes

Abstract: We propose algorithms for solving high-dimensional partial differential
equations (PDEs) that combine a probabilistic interpretation of PDEs, through
Feynman-Kac representation, with sparse interpolation. Monte-Carlo methods and
time-integration schemes are used to estimate pointwise evaluations of the solution
of a PDE. We use a sequential control variates algorithm, where control variates
are constructed based on successive approximations of the solution of the PDE.
Two different algorithms are proposed, combining in different ways the sequential
control variates algorithm and adaptive sparse interpolation. Numerical examples
will illustrate the behavior of these algorithms.

2.1 Introduction
We consider the solution of an elliptic partial differential equation

A(u) = g in D,
u = f on ∂D,

(2.1)

where u : D → R is a real-valued function, and D is an open bounded domain in
Rd. A is an elliptic linear differential operator and f : ∂D → R, g : D → R are
respectively the boundary condition and the source term of the PDE.

We are interested in approximating the solution of (2.1) up to a given precision.
For high dimensional PDEs (d � 1), this requires suitable approximation formats
such as sparse tensors [19, 94] or low-rank tensors [87, 52, 55, 4, 84]. Also, this
requires algorithms that provide approximations in a given approximation format.
Approximations are typically provided by Galerkin projections using variational for-
mulations of PDEs. Another path consists in using a probabilistic representation of
the solution u through Feynman-Kac formula, and Monte-Carlo methods to provide
estimations of pointwise evaluations of u (see e.g., [47]). This allows to compute
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approximations in a given approximation format through classical interpolation or
regression [8, 101, 7]. In [48, 49], the authors consider interpolations on fixed poly-
nomial spaces and propose a sequential control variates method for improving the
performance of Monte-Carlo estimation. In this paper, we propose algorithms that
combine this variance reduction method with adaptive sparse interpolation [21, 22].

The outline is as follows. In Section 2.2, we recall the theoretical and numerical
aspects associated to probabilistic tools for estimating the solution of (2.1). We also
present the sequential control variates algorithm introduced in [48, 49]. In Section
2.3 we introduce sparse polynomial interpolation methods and present a classical
adaptive algorithm. In Section 2.4, we present two algorithms combining the se-
quential control variates algorithm from Section 2.2 and adaptive sparse polynomial
interpolation. Finally, numerical results are presented in Section 2.4.

2.2 Probabilistic Tools for Solving PDEs
We consider the problem (2.1) with a linear partial differential operator defined by
A(u) = −L(u) + ku, where k is a real valued function defined on D, and where

(2.2) L(u)(x) = 1
2

d∑
i,j=1

(σ(x)σ(x)T )ij∂2
xixj

u(x) +
d∑
i=1

bi(x)∂xiu(x)

is the infinitesimal generator associated to the d-dimensional diffusion process Xx

solution of the stochastic differential equation

(2.3) dXx
t = b(Xx

t )dt+ σ(Xx
t )dWt, Xx

0 = x ∈ D,

where W is a d-dimensional Brownian motion and b := (b1, . . . , bd)T : Rd → Rd and
σ : Rd → Rd×d stand for the drift and the diffusion respectively.

2.2.1 Pointwise Evaluations of the Solution
The following theorem recalls the Feynman-Kac formula (see [28, Theorem 2.4] or
[41, Theorem 2.4] and the references therein) that provides a probabilistic represen-
tation of u(x), the solution of (2.1) evaluated at x ∈ D.

Theorem 2.1 (Feynman-Kac formula for elliptic PDE on bounded domain). As-
sume that

(E1) D is an open connected bounded domain of Rd, regular in the sense that, if
τx = inf {s > 0 : Xx

s /∈ D} is the first exit time of D for the process Xx,
solution of (2.3), we have

P(τx = 0) = 1, x ∈ ∂D,

(E2) b, σ are Lipschitz functions over D,

(E3) f is continuous on ∂D, g and k ≥ 0 are Hölder-continuous functions on D,
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(E4) (uniform ellipticity assumption) there exists c > 0 such that

d∑
i,j=1

(
σ(x)σ(x)T

)
ij

ΥiΥj ≥ c
d∑
i=1

Υ2
i , Υ ∈ Rd, x ∈ D.

Then, there exists a unique solution of (2.1) in C
(
D
)
∩ C2 (D), which satisfies for

all x ∈ D

u(x) = E [F (u,Xx)](2.4)

where

F (u,X) = u(Xx
τx) exp

(
−
∫ τx

0
k(Xx

t )dt
)

+
∫ τx

0
A(u)(Xx

t ) exp
(
−
∫ t

0
k(Xx

s )ds
)
dt,

with u(Xx
τx) = f(Xx

τx) and A(u)(Xx
t ) = g(Xx

t ).

Note that F (u,Xx) in (2.4) only depends on the values of u on ∂D and A(u) on
D, which are the given data f and g respectively. A Monte-Carlo method can then
be used to estimate u(x) using (2.4), which relies on the simulation of independent
samples of an approximation of the stochastic process Xx. This process is here
approximated by an Euler-Maruyama scheme. More precisely, letting tn = n∆t,
n ∈ N, Xx is approximated by a piecewise constant process Xx,∆t, where Xx,∆t

t =
Xx,∆t
tn for t ∈ [tn, tn+1[ and

Xx,∆t
tn+1 = Xx,∆t

tn + ∆t b(Xx,∆t
tn ) + σ(Xx,∆t

tn ) ∆Wn,

Xx,∆t
0 = x.

(2.5)

Here ∆Wn = Wtn+1−Wtn is an increment of the standard Brownian motion. For de-
tails on time-integration schemes, the reader can refer to [71]. Letting {Xx,∆t(ωm)}Mm=1
be independent samples of Xx,∆t, we obtain an estimation u∆t,M(x) of u(x) defined
as

u∆t,M(x) := 1
M

M∑
m=1

F
(
u,Xx,∆t(ωm)

)

= 1
M

M∑
m=1

[
f(Xx,∆t

τx,∆t(ωm)) exp
(
−
∫ τx,∆t

0
k(Xx,∆t

t (ωm))dt
)

+
∫ τx,∆t

0
g(Xx,∆t

t (ωm)) exp
(
−
∫ t

0
k(Xx,∆t

s (ωm))ds
)
dt

]
(2.6)

where τx,∆t is the first exit time of D for the process Xx,∆t(ωm), given by

τx,∆t = inf
{
t > 0 : Xx,∆t

t /∈ D
}

= min
{
tn > 0 : Xx,∆t

tn /∈ D
}
.
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Remark 2.2. In practice, f has to be defined over Rd and not only on the boundary
∂D. Indeed, although Xx

τx ∈ ∂D with probability one, Xx,∆t
τx,∆t ∈ Rd\D with probability

one.

The error can be decomposed in two terms

u(x)− u∆t,M(x) =

ε∆t︷ ︸︸ ︷
u(x)− E

[
F
(
u,Xx,∆t

)]
+ E

[
F
(
u,Xx,∆t

)]
− 1
M

M∑
m=1

F
(
u,Xx,∆t(ωm)

)
︸ ︷︷ ︸

εMC

,
(2.7)

where ε∆t is the time integration error and εMC is the Monte-Carlo estimation error.
Before discussing the contribution of each of both terms to the error, let us introduce
the following additional assumption, which ensures that D does not have singular
points[1].

(E5) Each point of ∂D satisfies the exterior cone condition which means that, for
all x ∈ ∂D, there exists a finite right circular cone K, with vertex x, such that
K ∩ D = {x}.

Under assumptions (E1)-(E5), it can be proven [49, §4.1] that the time integration er-
ror ε∆t converges to zero. It can be improved to O(∆t1/2) by adding differentiability
assumptions on the boundary [50]. The estimation error εMC is a random variable
with zero mean and standard deviation converging as O(M−1/2). The computa-
tional complexity for computing a pointwise evaluation of u∆t,M(x) is in O (M∆t−1)
in expectation for ∆t sufficiently small[2], so that the computational complexity for
achieving a precision ε (root mean squared error) behaves as O(ε−4). This does not
allow to obtain a very high accuracy in a reasonable computational time. The con-
vergence with ∆t can be improved to O(∆t) by suitable boundary corrections [50],
therefore yielding a convergence in O(ε−3). To further improve the convergence,
high-order integration schemes could be considered (see [71] for a survey). Also,
variance reduction methods can be used to further improve the convergence, such
as antithetic variables, importance sampling, control variates (see [47]). Multilevel
Monte-Carlo [44] can be considered as a variance reduction method using several
control variates (associated with processes Xx,∆tk using different time discretiza-
tions). Here, we rely on the sequential control variates algorithm proposed in [48]
and analyzed in [49]. This algorithm constructs a sequence of approximations of u.
At each iteration of the algorithm, the current approximation is used as a control
variate for the estimation of u through Feynman-Kac formula.

[1]Note that together with (E2), assumption (E5) implies (E1) (see [49, §4.1] for details), so that
the set of hypotheses (E1)-(E5) could be reduced to (E2)-(E5).

[2]A realization of Xx,∆t over the time interval [0, τx,∆t] can be computed in O
(
τx,∆t∆t−1).

Then, the complexity to evaluate u∆t,M (x) is in O(E(τx,∆t)M∆t−1) in expectation. Under (E1)-
(E5), it is stated in the proof of [49, Theorem 4.2] that supx E[τx,∆t] ≤ C with C independent of
∆t for ∆t sufficiently small.
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2.2.2 A Sequential Control Variates Algorithm
Here we recall the sequential control variates algorithm introduced in [48] in a general
interpolation framework. We let VΛ ⊂ C2(D) be an approximation space of finite
dimension #Λ and let IΛ : RD → VΛ be the interpolation operator associated with
a unisolvent grid ΓΛ = {xν : ν ∈ Λ}. We let (lν)ν∈Λ denote the (unique) basis
of VΛ that satisfies the interpolation property lν(xµ) = δνµ for all ν, µ ∈ Λ. The
interpolation IΛ(w) = ∑

ν∈Λ w(xν)lν(x) of function w is then the unique function in
VΛ such that

IΛ(w)(xν) = w(xν), ν ∈ Λ.

The following algorithm provides a sequence of approximations (ũk)k≥1 of u in VΛ,
which are defined by ũk = ũk−1 + ẽk, where ẽk is an approximation of ek, solution of

A(ek)(x) = g(x)−A(ũk−1)(x), x ∈ D,
ek(x) = f(x)− ũk−1(x), x ∈ ∂D.

Note that ek admits a Feyman-Kac representation ek(x) = E(F (ek, Xx)), where
F (ek, Xx) depends on the residuals g − A(ũk−1) on D and f − ũk−1 on ∂D. The
approximation ẽk is then defined as the interpolation IΛ(ek∆t,M) of the Monte-Carlo
estimate ek∆t,M(x) of ek∆t(x) = E(F (ek, Xx,∆t)) (using M samples of Xx,∆t). For

Algorithm 2.1 Sequential Control Variates Algorithm [49]
1: Set ũ0 = 0, k = 1 and S = 0.
2: while k ≤ K and S < ns do
3: Compute ek∆t,M(xν) for xν ∈ ΓΛ.
4: Compute ẽk = IΛ(ek∆t,M) = ∑

ν∈Λ e
k
∆t,M(xν)lν(x).

5: Update ũk = ũk−1 + ẽk.
6: If ‖ũk − ũk−1‖2 ≤ εtol‖ũk−1‖2 then S = S + 1 else S = 0.
7: Set k = k + 1.
8: end while

practical reasons, Algorithm 2.1 is stopped using an heuristic error criterion based
on stagnation. This criterion is satisfied when the desired tolerance εtol is reached
for ns successive iterations (in practice we chose ns = 5).

Now let us provide some convergence results for Algorithm 2.1. To that goal, we
introduce the time integration error at point x for a function h

(2.8) e∆t(h, x) = E[F (h,Xx,∆t)]− E[F (h,Xx)].

Then the following theorem [49, Theorem 3.1] gives a control of the error in expec-
tation.

Theorem 2.3. Assuming (E2)-(E5), it holds

sup
ν∈Λ

∣∣∣E [ũn+1(xν)− u(xν)
]∣∣∣ 6 C(∆t,Λ) sup

ν∈Λ
|E [ũn(xν)− u(xν)]|+ C1(∆t,Λ)
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with C(∆t,Λ) = sup
ν∈Λ

∑
µ∈Λ
|e∆t(lµ, xν)| and C1(∆t,Λ) = supν∈Λ

∣∣∣e∆t(u− IΛ(u), xν)
∣∣∣.

Moreover if C(∆t,Λ) < 1, it holds

(2.9) lim sup
n→∞

sup
ν∈Λ
|E [ũn(xν)− u(xν)]| 6

C1(∆t,Λ)
1− C(∆t,Λ) .

The condition C(∆t,Λ) < 1 implies that in practice ∆t should be chosen suffi-
ciently small [49, Theorem 4.2]. Under this condition, the error at interpolation
points uniformly converges geometrically up to a threshold term depending on time
integration errors for interpolation functions lν and the interpolation error u−IΛ(u).

Theorem 2.3 provides a convergence result at interpolation points. Below, we provide
a corollary to this theorem that provides a convergence result in L∞(D). This result
involves the Lebesgue constants in L∞-norm associated to IΛ, defined by

(2.10) LΛ = sup
v∈C0(D)

‖IΛ(v)‖∞
‖v‖∞

,

and such that for any v ∈ C0(D),
(2.11) ‖v − IΛ(v)‖∞ ≤ (1 + LΛ) inf

w∈VΛ
‖v − w‖∞.

Throughout this article, we adopt the convention that supremum exclude elements
with norm 0. We recall also that the L∞ Lebesgue constant can be expressed as
LΛ = supx∈D

∑
ν∈Λ |lν(x)|.

Corollary 2.4 (Convergence in L∞).
Assuming (E2)-(E5), it holds

(2.12) lim sup
n→∞

‖E [ũn − u] ‖∞ 6
C1(∆t,Λ)

1− C(∆t,Λ)LΛ + ‖u− IΛ(u)‖∞.

Proof. By triangular inequality, we have
‖E [ũn − u] ‖∞ 6 ‖E [ũn − IΛ(u)] ‖∞ + ‖IΛ(u)− u‖∞.

We can build a continuous function w such that w(xν) = E [ũn(xν)− u(xν)] for all
ν ∈ Λ, and such that

‖w‖∞ = sup
ν∈Λ
|w(xν)| = sup

ν∈Λ
|E [ũn(xν)− u(xν)]| .

We have then
‖E [ũn − IΛ(u)] ‖∞ = ‖IΛ(w)‖∞ ≤ LΛ‖w‖∞.

The result follows from the definition of the function w and Theorem 2.3.

Remark 2.5. Since for bounded domains D, we have
‖v‖2 ≤ |D|1/2‖v‖∞,

for all v in C0(D), where |D| denotes the Lebesgue measure of D, we can deduce the
convergence results in L2 norm from those in L∞ norm.
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2.3 Adaptive Sparse Interpolation
We here present sparse interpolation methods following [21, 22].

2.3.1 Sparse Interpolation

For 1 ≤ i ≤ d, we let {ϕ(i)
k }k∈N0 be a univariate polynomial basis, where ϕ(i)

k (xi) is
a polynomial of degree k. For a multi-index ν = (ν1, . . . , νd) ∈ Nd

0, we introduce the
multivariate polynomial

ϕν(x) =
d∏
i=1

ϕ(i)
νi

(xi).

For a subset Λ ⊂ Nd, we let PΛ = span{ϕν : ν ∈ Λ}. A subset Λ is said to be
downward closed if

∀ν ∈ Λ, µ ≤ ν ⇒ µ ∈ Λ.

If Λ is downward closed, then the polynomial space PΛ does not depend on the
choice of univariate polynomial bases and is such that PΛ = span{xν : ν ∈ Λ}, with
xν = xν1

1 . . . xνdd .
In the case where D = D1 × . . .×Dd, we can choose for {ϕ(i)

k }k∈N0 an orthonormal
basis in L2(Di) (i.e. a rescaled and shifted Legendre basis). Then {ϕν}ν∈Nd0

is an
orthonormal basis of L2(D). To define a set of points ΓΛ unisolvent for PΛ, we can
proceed as follows. For each dimension 1 ≤ i ≤ d, we introduce a sequence of
points {z(i)

k }k∈N0 in Di such that for any p ≥ 0, Γ(i)
p = {z(i)

k }
p
k=0 is unisolvent for

Pp = span{ϕ(i)
k : 0 ≤ k ≤ p}, therefore defining an interpolation operator I(i)

p . Then
we let

ΓΛ = {zν = (z(1)
ν1 , . . . , z

(d)
νd

) : ν ∈ Λ} ⊂ D.

This construction is interesting for adaptive sparse algorithms since for an increas-
ing sequence of subsets Λn, we obtain an increasing sequence of sets ΓΛn , and the
computation of the interpolation on PΛn only requires the evaluation of the func-
tion on the new set of points ΓΛn \ ΓΛn−1 . Also, with such a construction, we have
the following property of the Lebesgue constant of IΛ in L∞-norm. This result is
directly taken from [22, Section 3].

Proposition 2.6. If for each dimension 1 ≤ i ≤ d, the sequence of points {z(i)
k }k∈N0

is such that the interpolation operator I(i)
p has a Lebesgue constant Lp ≤ (p+ 1)s for

some s > 0, then for any downward closed set Λ, the Lebesgue constant LΛ satisfies

(2.13) LΛ ≤ (#Λ)s+1 .

Leja points or magic points [75] are examples of sequences of points such that the in-
terpolation operators I(i)

p have Lebesgue constants not growing too fast with p. For
a given Λ with ρi := maxν∈Λ νi, it is possible to construct univariate interpolation
grids Γ(i)

ρi
with better properties (e.g., Chebychev points), therefore resulting in bet-

ter properties for the associated interpolation operator IΛ. However for Chebychev
points, e.g., ρi ≤ ρ′i does not ensure Γ(i)

ρi
⊂ Γ(i)

ρ′i
. Thus with such univariate grids,

an increasing sequence of sets Λn will not be associated with an increasing sequence
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of sets ΓΛn , and the evaluations of the function will not be completely recycled in
adaptive algorithms. However, for some of the algorithms described in Section 2.4,
this is not an issue as evaluations can not be recycled anyway.
Note that for general domains D which are not the product of intervals, the above
constructions of grids ΓΛ are not viable since it may yield to grids not contained
in the domain D. For such general domains, magic points obtained through greedy
algorithms could be considered.

2.3.2 Adaptive Algorithm for Sparse Interpolation
An adaptive sparse interpolation algorithm consists in constructing a sequence of
approximations (un)n≥1 associated with an increasing sequence of downward closed
subsets (Λn)n≥1. According to (2.11), we have to construct a sequence such that the
best approximation error and the Lebesgue constant are such that

LΛn inf
w∈PΛn

‖u− w‖∞ −→ 0 as n→∞

for obtaining a convergent algorithm. For example, if

(2.14) inf
w∈PΛn

‖u− w‖∞ = O((#Λn)−r)

holds[3] for some r > 1 and if LΛn = O((#Λn)k) for k < r, then the error ‖u−un‖∞ =
O(n−r′) tends to zero with an algebraic rate of convergence r′ = r−k > 0. Of course,
the challenge is to propose a practical algorithm that constructs a good sequence of
sets Λm.
We now present the adaptive sparse interpolation algorithm with bulk chasing pro-
cedure introduced in [21]. Let θ be a fixed bulk chasing parameter in (0, 1) and
let EΛ(v) = ‖PΛ(v)‖2

2, where PΛ is the orthogonal projector over PΛ for any subset
Λ ⊂ Nd

0. At iteration n, Algorithm 2.2 selects a subset of multi-indices Nn in the

Algorithm 2.2 Adaptive Interpolation Algorithm [22]
1: Set Λ1 = {0d} and n = 1.
2: while n ≤ N and εn−1 > ε do
3: ComputeMΛn .
4: Set Λ?

n = Λn ∪MΛn and compute IΛ?n(u).
5: Select Nn ⊂MΛn the smallest such that ENn(IΛ?n(u)) ≥ θEMΛn

(IΛ?n(u))
6: Update Λn+1 = Λn ∪Nn.
7: Compute un+1 = IΛn+1(u) (this step is not necessary in practice).
8: Compute εn.
9: Update n = n+ 1.

10: end while

reduced margin of Λn defined by

MΛn = {ν ∈ Nd \ Λn : ∀j s.t. νj > 0, ν − ej ∈ Λn},

where (ej)k = δkj. The reduced margin is such that for any subset S ⊂ MΛn ,
Λn ∪ S is downward closed. This ensures that the sequence (Λn)n≥1 generated by

[3]see e.g. [24] for conditions on u ensuring such a behavior of the approximation error.

53



Chapter 2. Probabilistic Methods for Solving High-Dimensional Elliptic PDEs

the algorithm is an increasing sequence of downward closed sets. Finally, Algorithm
2.2 is stopped using a criterion based on

εn = EMn(IΛ?n(u))
EΛ?n(IΛ?n(u)) .

2.4 Combining Sparse Adaptive Interpolation with
Sequential Control Variates Algorithm

We present in this section two ways of combining Algorithm 2.1 and Algorithm
2.2. First we introduce a perturbed version of Algorithm 2.2 and then an adaptive
version of Algorithm 2.1. At the end of the section, numerical results will illustrate
the behavior of the proposed algorithms.

2.4.1 Perturbed Version of Sparse Interpolation
As we do not have access to exact evaluations of the solution u of (2.1), Algorithm
2.2 can not be used for interpolating u. So we introduce a perturbed version of this
algorithm, where the computation of the exact interpolant IΛ(u) is replaced by an
approximation denoted ũΛ, which can be computed for example with Algorithm 2.1
stopped for a given tolerance εtol or at step k. This brings the following algorithm.

Algorithm 2.3 Perturbed adaptive sparse interpolation algorithm
1: Set Λ1 = {0d} and n = 1.
2: while n ≤ N and ε̃n−1 > ε do
3: ComputeMΛn .
4: Set Λ?

n = Λn ∪MΛn and compute ũΛ?n .
5: Select Nn as the smallest subset ofMΛn such that ENn(ũΛ?n) ≥ θEMΛn

(ũΛ?n)
6: Update Λn+1 = Λn ∪Nn.
7: Compute ũΛn+1 .
8: Compute ε̃n.
9: Update n = n+ 1.
10: end while

2.4.2 Adaptive Version of Sequential Control Variate Algo-
rithm

As a second algorithm, we consider the sequential control variates algorithm (Algo-
rithm 2.1) where at step 4, an approximation ẽk of ek is obtained by applying the
adaptive interpolation algorithm (Algorithm 2.3) to the function ek∆t,M , which uses
Monte-Carlo estimations ek∆t,M(xν) of ek(xν) at interpolation points. At each itera-
tion, ẽk therefore belongs to a different approximation space PΛk . In the numerical
section, we will call this algorithm adaptive Algorithm 2.1.
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2.4.3 Numerical Results
In this section, we illustrate the behavior of algorithms previously introduced on
different test cases. We consider the simple diffusion equation

(2.15) −4u(x) = g(x), x ∈ D,
u(x) = f(x), x ∈ ∂D,

were D =]−1, 1[d. The source terms and boundary conditions will be specified later
for each test case.
The stochastic differential equation associated to (2.15) is the following

(2.16) dXx
t =
√

2dWt, Xx
0 = x,

where (Wt)t≥0 is a d-dimensional Brownian motion.
We use tensorized grids of magic points for the selection of interpolation points
evolved in adaptive algorithms.

Small dimensional test case. We consider a first test case (TC1) in dimension d = 5.
Here the source term and the boundary conditions in problem (2.15) are chosen such
that the solution is given by

(TC1) u(x) = x2
1 + sin(x2) + exp(x3) + sin(x4)(x5 + 1), x ∈ D.
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Figure 2.1: (TC1) Algorithm 2.1 for fixed Λ : evolution of ‖u − ũkΛ6‖ with respect
to k for various M (left figure), and various ∆t (right figure).

We first test the influence of ∆t and M on the convergence of Algorithm 2.1 when
Λ is fixed. In that case, Λ is selected a priori with Algorithm 2.2 using samples of
the exact solution u for (TC1), stopped for ε ∈ {10−6, 10−8, 10−10}. In what follows,
the notation Λi stands for the set obtained for ε = 10−i, i ∈ {6, 8, 10}. We represent
on Figure 2.1 the evolution of the absolute error in L2-norm (similar results hold
for the L∞-norm) between the approximation and the true solution with respect to
step k for Λ = Λ6. As claimed in Corollary 1, we recover the geometric convergence
up to a threshold value that depends on ∆t. We also notice faster convergence as
M increases and when ∆t decreases. We fix M = 1000 in the next simulations.
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Figure 2.2: (TC1) Algorithm 2.1 for fixed Λi: evolution of ‖u− ũkΛi‖2 with respect
to k for i = 8 (left figure), and i = 10 (right figure).

We study the impact of the choice of Λi on the convergence of Algorithm 2.1. Again
we observe on Figure 2.2 that the convergence rate gets better as ∆t decreases.
Moreover as #Λ increases the threshold value decreases. This is justified by the fact
that interpolation error decreases as #Λi increases (see Table 2.1). Nevertheless,
we observe that it may also deteriorate the convergence rate if it is chosen too large
together with ∆t not sufficiently small. Indeed for the same number of iterations
k = 10 and the same time-step ∆t = 2.5 · 10−3, we have an approximate absolute
error equal to 10−7 for Λ8 against 10−4 for Λ10.

Λn #Λn εn ||u− un||2 ||u− un||∞
1 6.183372e-01 1.261601e+00 4.213566e+00
10 2.792486e-02 1.204421e-01 3.602629e-01
20 2.178450e-05 9.394419e-04 3.393999e-03

Λ6 26 9.632815e-07 4.270457e-06 1.585129e-05
30 9.699704e-08 2.447475e-06 8.316435e-06

Λ8 33 4.114730e-09 2.189518e-08 9.880306e-08
40 1.936050e-10 6.135776e-10 1.739848e-09

Λ10 41 1.008412e-11 9.535433e-11 4.781375e-10
50 1.900248e-14 1.004230e-13 4.223288e-13
55 7.453467e-15 2.905404e-14 1.254552e-13

Table 2.1: Algorithm 2.2 computed on the exact solution of (TC1): evolution of
#Λn, error criterion εn and interpolation errors in norms L2 and L∞ at each step n.

We present now the behavior of Algorithm 2.3. Simulations are performed with a
bulk-chasing parameter θ = 0.5. At each step n of Algorithm 2.3, we use Algorithm
2.1 with (∆t,M) = (10−4, 1000), stopped when a stagnation is detected. As shown
on the left plot of Figure 2.3, for #Λn = 55 we reach approximately a precision of
10−14 as for Algorithm 2.2 performed on the exact solution (see Table 2.1). Accord-
ing to the right plot of Figure 2.3, we also observe that the enrichment procedure
behaves similarly for both algorithms (ε̃n and εn are almost the same). Here using
the approximation provided by Algorithm 2.1 has a low impact on the behavior of
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Algorithm 2.2.
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Figure 2.3: (TC1) Comparison of Algorithm 2.2 applied to exact solution and Al-
gorithm 2.3 : (left) absolute error in L2-norm (right) evolution of εn and ε̃n with
respect to #Λn.

We present then results provided with the adaptive Algorithm 2.1. The parameters
chosen for the adaptive interpolation are ε = 5 · 10−2, θ = 0.5. K = 30 ensures
the stopping of Algorithm 2.1. As illustrated by Figure 2.4, we recover globally
the same behavior as for Algorithm 2.1 without adaptive interpolation. Indeed as
k increases, both absolute errors in L2-norm and L∞-norm decrease and then stag-
nate. Again, we notice the influence of ∆t on the stagnation level. Nevertheless, the
convergence rates are deteriorated and the algorithm provides less accurate approxi-
mations than Algorithm 2.3. This might be due to the sparse adaptive interpolation
procedure, which uses here pointwise evaluations based on Monte-Carlo estimates,
unlike Algorithm 2.3 which relies on pointwise evaluations resulting from Algorithm
2.1 stopping for a given tolerance.

Finally in Table 2.2, we compare the algorithmic complexity of these algorithms to
reach a precision of 3 · 10−5 for (∆t,M) = (10−4, 1000). For adaptive Algorithm
2.1, Λk refers to the set of multi-indices considered at step k of Algorithm 2.1. For
Algorithm 2.3, Nn stands for the number of iteration required by Algorithm 2.1 to
reach tolerance εtol at step n. Finally, Algorithm 2.1 is run with full-grid Λ = Λmax

where Λmax = {ν ∈ Nd : νi ≤ 10} is the set of multi-indices allowing to reach the
machine precision. In this case, N stands for the number of steps for this algorithm
to converge.

Adaptive Algorithm 2.1 Algorithm 2.3 Full-grid Algorithm 2.1
Th. Complexity M(∆t)−1(∑k #Λk) M(∆t)−1(∑n #ΛnNn) M(∆t)−1#ΛmaxN
Est. Complexity 4 · 109 operations 16 · 109 operations 1012N operations

Table 2.2: (TC1) Comparison of the algorithmic complexity to reach the precision
3 · 10−5, with (∆t,M) = (10−4, 1000).

We observe that both the adaptive version of Algorithm 2.1 and Algorithm 2.3 have
a similar complexity, which is better than for the full-grid version of Algorithm 2.1.
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Moreover, we observed that while adaptive version of Algorithm 2.1 stagnates at a
precision of 3 · 10−5, Algorithm 2.3, with the same parameters ∆t and M , converges
almost up to the machine precision. This is why the high-dimensional test cases will
be run only with Algorithm 2.3.
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Figure 2.4: (TC1) Adaptive Algorithm 2.1: evolution of ‖u−ukΛk‖2 (continuous line)
and ‖u− ukΛk‖∞ (dashed line) with respect to step k and ∆t.

Higher-dimensional test cases. Now, we consider two other test cases noted respec-
tively (TC2) and (TC3) in higher dimension.

(TC2) As second test case in dimension d = 10, we define (2.15) such that its solution
is the Henon-Heiles potential

u(x) = 1
2

d∑
i=1

x2
i + 0.2

d−1∑
i=1

(
xix

2
i+1 − x3

i

)
+ 2.5 10−3

d−1∑
i=1

(
x2
i + x2

i+1

)2
, x ∈ D.

We set (∆t,M) = (10−4, 1000) and K = 30 for Algorithm 2.1.

(TC3) We also consider the problem (2.15) whose exact solution is a sum of non-
polynomial functions, like (TC1) but now in dimension d = 20, given by

u(x) = x2
1 + sin(x12) + exp(x5) + sin(x15)(x8 + 1).

Here, the Monte-Carlo simulations are performed for (∆t,M) = (10−4, 1000)
and K = 30.

Since for both test cases the exact solution is known, we propose to compare the
behavior of Algorithm 2.3 and Algorithm 2.2. Again, the approximations ũn, at each
step n of Algorithm 2.3, are provided by Algorithm 2.1 stopped when a stagnation
is detected. In both cases, the parameters for Algorithm 2.3 are set to θ = 0.5 and
ε = 10−15.

In Table 2.3 and Table 2.4, we summarize the results associated to the exact and
perturbed sparse adaptive algorithms for (TC2) and (TC3) respectively. We observe
that Algorithm 2.3 performs well in comparison to Algorithm 2.2, for (TC2). Indeed,
we get an approximation with a precision below the prescribed value ε for both
algorithms.
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#Λn εn ‖u− un‖∞ ‖u− un‖2 #Λn ε̃n ‖u− ũΛn‖∞ ‖u− ũΛn‖2

1 4.0523e-01 3.0151e+00 1.2094e+00 1 3.9118e-01 8.3958e-01 6.9168e-01
17 1.6243e-01 1.8876e+00 5.9579e-01 17 1.6259e-01 5.2498e-01 3.4420e-01
36 5.4494e-02 7.0219e-01 2.0016e-01 36 5.4699e-02 1.9209e-01 1.2594e-01
46 1.2767e-02 1.6715e-01 4.9736e-02 46 1.2806e-02 4.6904e-02 2.8524e-02
53 9.6987e-04 2.9343e-02 4.8820e-03 53 1.0350e-03 7.8754e-03 2.8960e-03
60 7.6753e-04 1.5475e-02 4.1979e-03 61 7.0354e-04 3.0365e-03 1.7610e-03
71 3.2532e-04 8.4575e-03 2.1450e-03 71 3.1998e-04 2.3486e-03 1.2395e-03
77 1.7434e-16 3.9968e-15 1.5784e-15 77 7.3621e-16 6.2172e-15 1.2874e-15

Table 2.3: (TC2) Comparison of Algorithm 2.2 (first four columns) and Algorithm
2.3 (last four columns).

Similar observation holds for (TC3) in Table 2.4 and this despite the fact that the
test case involves higher dimensional problem.

#Λn εn ‖u− un‖∞ ‖u− un‖2 #Λn ε̃n ‖u− ũΛn‖∞ ‖u− ũΛn‖2

1 7.0155e-01 3.9361e+00 1.2194e+00 1 5.5582e-01 7.2832e-01 7.0771e-01
6 1.4749e-01 2.2705e+00 5.4886e-01 6 7.4253e-02 2.7579e-01 5.1539e-01
11 2.1902e-02 2.8669e-01 1.0829e-01 11 1.4929e-02 4.4614e-02 4.1973e-02
15 7.6086e-03 1.6425e-01 4.7394e-02 15 1.2916e-02 1.5567e-02 2.5650e-02
20 2.2275e-04 2.7715e-03 7.2230e-04 20 3.4446e-04 5.6927e-04 5.3597e-04
24 1.4581e-05 1.5564e-04 7.5314e-05 24 1.6036e-05 2.5952e-05 3.0835e-05
30 1.8263e-06 8.0838e-06 2.1924e-06 30 9.0141e-07 2.8808e-06 1.9451e-06
35 3.9219e-09 8.9815e-08 2.4651e-08 35 8.1962e-09 2.1927e-08 1.5127e-08
40 1.7933e-10 2.0152e-09 6.9097e-10 40 1.6755e-10 2.8455e-10 2.6952e-10
45 5.0775e-12 2.4783e-10 4.1600e-11 45 1.4627e-11 3.3188e-11 1.7911e-11
49 1.7722e-14 4.6274e-13 8.5980e-14 49 1.7938e-14 8.6362e-14 5.0992e-14
54 3.9609e-15 2.2681e-13 3.1952e-14 54 3.2195e-15 4.8142e-14 2.6617e-14
56 4.5746e-16 8.4376e-15 3.0438e-15 56 8.2539e-16 8.4376e-15 6.3039e-15

Table 2.4: (TC3) Comparison of Algorithm 2.2 (first four columns) and Algorithm
2.3 (last four columns).

2.5 Conclusion
In this paper we have introduced a probabilistic approach to approximate the so-
lution of high-dimensional elliptic PDEs. This approach relies on adaptive sparse
polynomial interpolation using pointwise evaluations of the solution estimated using
a Monte-Carlo method with control variates.
Especially, we have proposed and compared different algorithms. First we proposed
Algorithm 2.1 which combines the sequential algorithm proposed in [48] and sparse
interpolation. For the non-adaptive version of this algorithm we recover the con-
vergence up to a threshold as the original sequential algorithm [49]. Nevertheless it
remains limited to small-dimensional test cases, since its algorithmic complexity re-
mains high. Hence, for practical use, the adaptive Algorithm 2.1 should be preferred.
Adaptive Algorithm 2.1 converges but it does not allow to reach low precision with
reasonable number of Monte-Carlo samples or time-step in the Euler-Maruyama
scheme. Secondly, we proposed Algorithm 2.3. It is a perturbed sparse adaptive
interpolation algorithm relying on inexact pointwise evaluations of the function to
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approximate. Numerical experiments have shown that the perturbed algorithm (Al-
gorithm 2.3) performs well in comparison to the ideal one (Algorithm 2.2) and better
than the adapted Algorithm 2.1 with a similar algorithmic complexity. Here, since
only heuristic tools have been provided to justify the convergence of this algorithm,
the proof of its convergence, under assumptions on the class of functions to be
approximated, should be addressed in a future work.
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Chapter 3

A PAC Algorithm in Relative
Precision for Bandit Problem with
Costly Sampling

This chapter introduces our second contribution. It consists in a discrete optimiza-
tion algorithm whose output is probably quasi-optimal in relative precision, with
controlled probability and relative quasi-optimality.
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We present in this chapter a contribution that has been submitted as [12] in Math-
ematical Methods of Operations Research and is currently under review.

This contribution is about discrete optimization for functions defined using a expec-
tation. The probably approximately correct (PAC) algorithm in relative precision
presented and analysed in this chapter will then be used in Chapter 5 as a tool to
select a quasi-optimal snapshot to enrich the reduced space.

Title: A PAC algorithm in relative precision for bandit problem with costly sam-
pling
Authors: Marie Billaud-Friess ♣, Arthur Macherey ♣,♠, Anthony Nouy ♣ and Clé-
mentine Prieur ♠.
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Abstract: This paper considers the problem of maximizing an expectation function
over a finite set, or finite-arm bandit problem. We first propose a naive stochastic
bandit algorithm for obtaining a probably approximately correct (PAC) solution
to this discrete optimization problem in relative precision, that is a solution which
solves the optimization problem up to a relative error smaller than a prescribed
tolerance, with high probability. We also propose an adaptive stochastic bandit
algorithm which provides a PAC-solution with the same guarantees. The adaptive
algorithm outperforms the mean complexity of the naive algorithm in terms of num-
ber of generated samples and is particularly well suited for applications with high
sampling cost.

3.1 Introduction
We consider an optimization problem

(3.1) max
ξ∈Ξ

E[Z(ξ)],

where E[Z(ξ)] is the expectation of a random variable Z(ξ), and where we assume
that the set Ξ is finite. Such a problem is encountered in different fields such as
reinforcement learning [98] or robust optimization [10].

To solve (3.1), classical optimization methods include random search algorithms [51,
102], stochastic approximation methods [33, 83] and bandit algorithms [73, 2, 3, 43].
In this paper, we focus on unstructured stochastic bandit problems with a finite
number of arms where "arms" stands for "random variables" and corresponds here
to the Z(ξ), ξ ∈ Ξ (see, e.g., [73, Section 4]). Stochastic means that the only way
to learn about the probability distribution of arms Z(ξ), ξ ∈ Ξ is to generate i.i.d.
samples from it. Unstructured means that knowledge about the probability distri-
bution of one arm Z(ξ) does not restrict the range of possibilities for other arms
Z(ξ′), ξ′ 6= ξ.

Additionally, we suppose here it is numerically costly to sample the random variables
Z(ξ), ξ ∈ Ξ. Our aim is thus to solve (3.1) by sampling as few as possible the random
variables Z(ξ), ξ ∈ Ξ. However, it is not feasible to solve (3.1) almost surely using
only a finite number of samples from the random variables Z(ξ), ξ ∈ Ξ. Thus, it is
relevant to adopt a probably approximately correct (PAC) approach (see e.g. [37]).
For a precision τabs and a probability λ ∈ (0, 1), a (τabs, λ)-PAC algorithm returns ξ̂
such that

(3.2) P
(
E[Z(ξ?)]− E[Z(ξ̂)] ≤ τabs

)
≥ 1− λ, ξ? ∈ arg max

ξ∈Ξ
E[Z(ξ)].

Until recently, one of the main focus of bandit algorithms was the best arm (random
variable) identification [2], through the use of Successive Rejects algorithm or Up-
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per Confidence Bounds algorithms. Such algorithms are (0, λ)-PAC algorithms, as
stated in [37]. Racing algorithms [3] were designed to solve the best arm identifica-
tion problem too and are mainly analyzed in a finite budget setting, which consists
in fixing a maximum number of samples that can be used. While trying to identify
the best arm, bandit algorithms also aim at minimizing the regret [1, 17, 43]. More
recently, other focuses have emerged, such as the identification of the subset of Ξ
containing the m best arms [66, 69] or the identification of "good arms" (also known
as thresholding bandit problem) that are random variables whose expectation is
greater or equal to a given threshold [67, 100, 81, 74].

The (τabs, λ)-PAC algorithms mentioned above measure the error in absolute preci-
sion. However, without knowing E[Z(ξ?)], providing in advance a relevant value for
τabs is not an easy task. In this work, we rather consider (τ, λ)-PAC algorithms in
relative precision that return ξ̂ ∈ Ξ such that

(3.3) P
(
E[Z(ξ?)]− E[Z(ξ̂)] ≤ τ |E[Z(ξ?)]|

)
≥ 1− λ,

where τ and λ are set in advance in (0, 1). We introduce two algorithms that yield
a solution ξ̂ satisfying (3.3). The first algorithm builds an estimate precise enough
for each expectation E[Z(ξ)]. This naive approach drives a majority of the budget
on the random variables with the lowest expectations in absolute value. In order
to avoid this drawback and thus to reduce the number of samples required to reach
the prescribed relative precision, we propose a second algorithm which adaptively
samples random variables exploiting confidence intervals obtained from an empirical
Berstein concentration inequality.

The outline of the paper is as follows. In section 3.2, we present a Monte-Carlo
estimate for the expectation of a single random variable that has been proposed in
[78]. It provides an estimation of the expectation with guaranteed relative precision,
with high probability. In section 3.3, we introduce two new algorithms that rely
on these Monte-Carlo estimates and yield a solution to (3.3). Then, we study
numerically the performance of our algorithms and compare them to algorithms
from the literature, possibly adapted to solve (3.3).

3.2 Monte-Carlo Estimate with Guaranteed Rel-
ative Precision

In what follows, we consider a random variable Z defined on probability space
(Ω,F ,P). We denote by Zm the empirical mean of Z and by V m its empirical
variance, respectively defined by

Zm = 1
m

m∑
i=1

Zi and V m = 1
m

m∑
i=1

(
Zi − Zm

)2
,

where (Zi)i≥1 is a sequence of i.i.d. copies of Z. The aim is to provide an estimate
Ê[Z] of E[Z] which satisfies

(3.4) P
(
|Ê[Z]− E[Z]| ≤ ε|E[Z]|

)
≥ 1− δ,
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with (ε, δ) ∈ (0, 1)2 given a priori. For that, we will rely on Theorem 3.1 hereafter.

Theorem 3.1. If Z takes its values in a bounded interval [a, b], for any m ∈ N and
x ∈ (0, 1), we have

(3.5) P

∣∣∣Zm − E[Z]
∣∣∣ ≤

√
2V m log(3/x)

m
+ 3(b− a) log(3/x)

m

 ≥ 1− x.

Proof. We simply apply [1, Theorem 1] to Z−a which is a positive random variable
whose values are lower than b− a.

Based on Theorem 3.1, several estimates for E(Z) have been proposed in [78, 79].
We focus in this paper on the estimate introduced in [78, Equation (3.7)].

3.2.1 Monte-Carlo Estimate
Considering a sequence (dm)m≥1 in (0, 1), we introduce the sequence (cm)m≥1 defined,
for all m ≥ 1, by

cm =
√

2V m log(3/dm)
m

+ 3(b− a) log(3/dm)
m

.(3.6)

Using Theorem 3.1, we see that cm stands for the half-length of a confidence interval
of level 1− dm for E[Z], i.e.

(3.7) P(|Zm − E[Z]| ≤ cm) ≥ 1− dm.

Let M be an integer-valued random variable on (Ω,F ,P), such that

(3.8) cM ≤ ε|ZM |,

with ε ∈ (0, 1). Then, we define the following estimate

ÊM [Z] = ZM − ε sign(ZM)cM .(3.9)

Proposition 3.2. Let ε, δ ∈ (0, 1). Assume that Z takes its values in a bounded
interval [a, b] and that (dm)m≥1 satisfies

(3.10)
∑
m≥1

dm ≤ δ.

Then the estimate ÊM [Z] defined by (3.9), with M satisfying (3.8), is such that

(3.11) P
(∣∣∣ÊM [Z]− E[Z]

∣∣∣ ≤ ε|E[Z]|
)
≥ 1− δ.
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Proof. We have

P
(
|ZM − E[Z]| ≤ cM

)
≥ P

(
∩m≥1

{
|Zm − E[Z]| ≤ cm

})
≥ 1−

+∞∑
m=1

P
(
|Zm − E[Z]| > cm

)
.

(3.12)

Then using (3.7) and (3.10), we deduce that

P
(
|ZM − E[Z]| ≤ cM

)
≥ 1−

+∞∑
m=1

dm ≥ 1− δ.(3.13)

It remains to prove that {|ZM − E[Z]| ≤ cM} implies {|ÊM [Z] − E[Z]| ≤ ε|E[Z]|}.
In the rest of the proof, we assume that |ZM − E[Z]| ≤ cM holds. Let us recall that
cM ≤ ε|ZM |. Then, since ε < 1, we have

|ZM − E[Z]| ≤ cM ≤ ε|ZM | < |ZM |,

which implies that E[Z], ZM and ÊM [Z] have the same sign. Therefore,

|ÊM [Z]− E[Z]| =
∣∣∣|ZM | − εcM − |E[Z]|

∣∣∣ .
It suffices to consider the case E[Z] > 0 and we have

E[Z] ≥ ZM − cM ≥
1− ε
ε

cM .

Therefore

ÊM [Z]− E[Z] = ZM − E[Z]− εcM ≤ (1− ε)cM ≤ εE[Z].

Also
E[Z] ≤ ZM + cM ≤ (1 + ε)ZM ,

and

ÊM [Z]− E[Z] ≥ (1− ε2)ZM − E[Z] ≥ (1− ε)E[Z]− E[Z] = −εE[Z],

which concludes the proof.

In practice, the computation of the estimate given by (3.9) requires a particular
choice for the random variable M and for the sequence (dm)m≥1. A natural choice
for M which satisfies (3.8) is

(3.14) M = min
{
m ∈ N? : cm ≤ ε|Zm|

}
.

If the sequence (dm)m≥1 is such that

(3.15) log(3/dm)/m −→
m→+∞

0,

we have that cm converges to 0 almost surely. Moreover if E[Z] 6= 0, it is sufficient
to ensure that M < +∞ almost surely.

Remark 3.3. When choosing M as in (3.14), the estimate defined by (3.9) is the
one proposed in [78, equation (3.7)]. A variant of this estimate can be found in [79].
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3.2.2 Complexity Analysis
In this section, we state a complexity result. Following [78], we focus on a particular
sequence (dm)m≥1 defined by

(3.16) dm = δcm−p, c = p− 1
p

,

which satisfies (3.10) and (3.15), for any p > 1. The following result extends the
result of [78, Theorem 2] stated for random variables Z with range in [0, 1].

Proposition 3.4. Let 0 < δ ≤ 3/4 and let Z be a random variable taking values
in a bounded interval [a, b], with expectation µ = E[Z] and variance σ2 = V[Z]. If
µ 6= 0 and (dm)m≥1 satisfies (3.16), then M defined by (3.14) satisfies M < +∞
almost surely and

(3.17) P
(
M >

⌈2
ν

(
p log

(2p
ν

)
+ log

( 3
cδ

))⌉)
≤ 4δ/3,

where d·e denotes the ceil function and

ν = min
(

max(σ2, ε2µ2)
(b− a)2 ,

ε2µ2

(1 + ε)2 max(σ2, ε2µ2)γ

)
,

with γ = (
√

2 + 2
√

2 + 2/3 + 3)2. Moreover,

E(M) ≤
⌈2
ν

(
p log

(2p
ν

)
+ log

( 3
cδ

))⌉
+ 4δ/3.

Proof. See Appendix.

Remark 3.5. The result from Proposition 3.4 helps in understanding the influence
of parameters (ε, δ) appearing in (3.4) on M . Indeed, we deduce from this result
that for δ < 1/2,

E(M) . ν−1 log(ν−1) + (ν−1 + 1) log(δ−1).

We first observe a weak impact of δ on the average complexity. When ε → 0, we
have ν ∼ ε2 µ2

σ2γ
. Then for fixed δ and ε → 0, the bound for E(M) is in O(ε−2 σ2

µ2 ).
As expected, the relative precision ε has a much stronger impact on the average
complexity.

3.3 Optimization Algorithms with Guaranteed Rel-
ative Precision

In this section we consider a finite collection of bounded random variables Z(ξ) on
(Ω,F ,P), indexed by ξ ∈ Ξ, and such that E[Z(ξ)] 6= 0. Each random variable Z(ξ)
takes its values in a bounded interval [a(ξ), b(ξ)], which is assumed to be known.
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We denote by Z(ξ)m the empirical mean of Z(ξ) and V (ξ)m its empirical variance,
respectively defined by

(3.18) Z(ξ)m = 1
m

m∑
i=1

Z(ξ)i and V (ξ)m = 1
m

m∑
i=1

(
Z(ξ)i − Z(ξ)m

)2
,

where {(Z(ξ)i)i≥1 : ξ ∈ Ξ} are independent i.i.d. copies of {Z(ξ) : ξ ∈ Ξ}. We also
introduce #Ξ different sequences

cξ,m =
√

2V (ξ)m log(3/dm)
m

+ 3 (b(ξ)− a(ξ)) log(3/dm)
m

,

where (dm)m≥1 is a positive sequence, independent from ξ, such that ∑m≥1 dm ≤ δ.
Taking ε in (0, 1), for each ξ in Ξ, we define, as in (3.14),

(3.19) m(ξ) = min
{
m ∈ N? : cξ,m ≤ ε|Z(ξ)m|

}
.

Then defining s(ξ) := sign(Z(ξ)m(ξ)), we propose the following estimate for E[Z(ξ)]:

(3.20) Êm(ξ)[Z(ξ)] = Z(ξ)M(ξ) − ε s(ξ)cξ,m(ξ).

These notation being introduced, we propose below two algorithms returning ξ̂ in Ξ
such that

(3.21) P
(
E[Z(ξ?)]− E[Z(ξ̂)] ≤ τ |E[Z(ξ?)]|

)
≥ 1− λ, ξ? ∈ arg max

ξ∈Ξ
E[Z(ξ)],

for given (τ, λ) in (0, 1)2.

3.3.1 Non-Adaptive Algorithm

We first propose a non-adaptive algorithm that provides a parameter ξ̂ satisfying
(3.21), by selecting the maximizer of independent estimates Êm(ξ)[Z(ξ)] of E[Z(ξ)]
over Ξ.

Algorithm 3.1 Non-Adaptive PAC Algorithm in Relative Precision
Require: τ , λ, {Z(ξ)}ξ∈Ξ.
Ensure: ξ̂
1: Set ε = τ

2+τ and δ = λ/#Ξ.
2: for all ξ ∈ Ξ do
3: Build an estimate Êm(ξ)[Z(ξ)] of E[Z(ξ)] using (3.20) with ε and δ as above.
4: end for
5: Select ξ̂ such that

ξ̂ ∈ arg max
ξ∈Ξ

Êm(ξ) [Z(ξ)] .
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Proposition 3.6. Let (τ, λ) ∈ (0, 1)2. We assume that, for all ξ ∈ Ξ, Z(ξ) is a
bounded random variable with E[Z(ξ)] 6= 0. Moreover we assume that the sequence
(dm)m≥1 is such that

(3.22)
+∞∑
m=1

dm ≤
λ

#Ξ := δ and log(3/dm)/m →
m→+∞

0.

Then, for all ξ in Ξ, the estimate Êm(ξ)[Z(ξ)] is well defined and satisfies

(3.23) P
(∣∣∣E[Z(ξ)]− Êm(ξ)[Z(ξ)]

∣∣∣ ≤ ε |E[Z(ξ)]|
)
≥ 1− δ,

with ε = τ
2+τ . Moreover, the value ξ̂ returned by Algorithm 3.1 satisfies (3.21).

Proof. The assumptions on (dm)m≥1 in (3.22) combined with E[Z(ξ)] 6= 0 ensure
that for all ξ in Ξ , M(ξ) is almost surely finite. Then, for all ξ in Ξ, the estimate
Êm(ξ)[Z(ξ)] is well defined. Applying Proposition 3.2 for each Z(ξ) with δ = λ/#Ξ
and ε = τ

2+τ , we obtain (3.23).
Now let A(ξ) =

{∣∣∣E [Z(ξ)]− Êm(ξ) [Z(ξ)]
∣∣∣ ≤ ε |E [Z(ξ)]|

}
. By (3.23), P(A(ξ)) ≥ 1 −

λ
#Ξ and by a union bound argument, P(∩ξ∈ΞA(ξ)) ≥ 1−λ. To prove that ξ̂ satisfies
(3.21), it remains to prove that ∩ξ∈ΞA(ξ) implies E [Z(ξ?)]−E[Z(ξ̂)] ≤ τ |E [Z(ξ?)]|.
In what follows we suppose that ∩ξ∈ΞA(ξ) holds. Since ε < 1, E[Z(ξ)], Êm(ξ)[Z(ξ)]
and Z(ξ)m(ξ) have the same sign, that we denote by s(ξ). Since A(ξ?)∩A(ξ̂) holds,
we have

E [Z(ξ?)]− E[Z(ξ̂)] ≤ E [Z(ξ?)]−
Êm(ξ̂)[Z(ξ̂)]
1 + s(ξ̂)ε

≤ E [Z(ξ?)]− Êm(ξ?) [Z(ξ?)]
1 + s(ξ̂)ε

≤ E [Z(ξ?)]− 1− s(ξ?)ε
1 + s(ξ̂)ε

E [Z(ξ?)]

= ε(s(ξ?) + s(ξ̂))
1 + s(ξ̂)ε

E [Z(ξ?)] .

Then we deduce

(3.24) E [Z(ξ?)]− E[Z(ξ̂)] ≤ 2ε
1− ε |E[Z(ξ?)]| = τ |E[Z(ξ?)]|,

which ends the proof.

Remark 3.7. If E[Z(ξ?)] > 0, we can prove that s(ξ̂) = s(ξ?) = 1, so that the
inequality (3.24) becomes

E [Z(ξ?)]− E[Z(ξ̂)] ≤ 2ε
1 + ε

|E[Z(ξ?)]|.

Therefore, we can set ε = τ
2−τ in Algorithm 3.1 to lower the complexity and still

guarantee that ξ̂ satisfies (3.21).

Algorithm 3.1 provides for each random variable an estimate Êm(ξ)[Z(ξ)] that satis-
fies (3.23). However, as will be illustrated later, this algorithm tends to use many
samples for variables with a low expectation in absolute value. We propose in the
next subsection an adaptive algorithm avoiding this drawback by using confidence
intervals, which results in a lower overall complexity.
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3.3.2 Adaptive Algorithm
The idea of the adaptive algorithm is to successively increase the number of samples
m(ξ) of a subset of random variables Z(ξ) that are selected based on confidence
intervals of E[Z(ξ)] deduced from the concentration inequality of Theorem 3.1. This
algorithm follows the main lines of the racing algorithms [79, section 4]. However
racing algorithms do not allow to sample again a random variable discarded in an
earlier step of the algorithm. The adaptive algorithm presented hereafter allows it.

In order to present this adaptive algorithm, for each ξ, we introduce the confidence
interval [β−m(ξ)(ξ), β+

m(ξ)(ξ)], with

(3.25) β−ξ,m(ξ) = Z(ξ)m(ξ) − cξ,m(ξ) and β+
ξ,m(ξ) = Z(ξ)m(ξ) + cξ,m(ξ).

From (3.7), we have that

(3.26) P
(
β−ξ,m(ξ) ≤ E(Z(ξ)) ≤ β+

ξ,m(ξ)

)
≥ 1− dm(ξ).

We define εξ,m(ξ) by
εξ,m(ξ) = cξ,m(ξ)

|Z(ξ)m(ξ)|

if Z(ξ)m(ξ) 6= 0, or εξ,m(ξ) = +∞ otherwise. Letting s(ξ) := sign(Z(ξ)m(ξ)), we use
as an estimate for E[Z(ξ)]

(3.27) Êm(ξ)[Z(ξ)] =
{
Z(ξ)m(ξ) − εξ,m(ξ) s(ξ)cξ,m(ξ) if εξ,m(ξ) < 1,
Z(ξ)m(ξ) otherwise.

If εξ,m(ξ) < 1, we note that

Êm(ξ)[Z(ξ)] = (Z(ξ)m(ξ) ∓ cξ,m(ξ))
(
1± s(ξ)εξ,m(ξ)

)
,

so that

(3.28) Êm(ξ)[Z(ξ)]
1± s(ξ)εξ,m(ξ)

= β∓ξ,m(ξ).

The adaptive algorithm is described in Algorithm 3.2. At each iteration n, one
sample of Z(ξ) is drawn for each ξ in a subset Ξn selected according to (3.29). In
the next proposition, we prove that the algorithm returns a solution to (3.21) under
suitable assumptions.

Proposition 3.8. Let (τ, λ) ∈ (0, 1)2. We assume that (dm)m≥1 is a positive se-
quence that satisfies

(3.30)
+∞∑
m=1

dm ≤
λ

#Ξ and log(3/dm)/m →
m→+∞

0.

Moreover, we assume that, for all ξ in Ξ, Z(ξ) is a bounded random variable with
E[Z(ξ)] 6= 0. Then, it holds almost surely that Algorithm 3.2 stops and ξ̂ satisfies
(3.21).
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Algorithm 3.2 Adaptive PAC Algorithm in Relative Precision
Require: τ , λ, {Z(ξ)}ξ∈Ξ.
Ensure: ξ̂.
1: Set n = 0, Ξ0 = Ξ, εξ,0 = +∞ and m(ξ) = 0 for all ξ ∈ Ξ.
2: while #Ξn > 1 and max

ξ∈Ξn
εξ,m(ξ) >

τ

2 + τ
do

3: for all ξ ∈ Ξn do
4: Sample Z(ξ), increment m(ξ) and update εξ,m(ξ).
5: Build the estimate Êm(ξ)[Z(ξ)] using (3.27).
6: end for
7: Increment n and put in Ξn every ξ ∈ Ξ such that

(3.29) β+
ξ,m(ξ) ≥ max

ν∈Ξ
β−ν,m(ν)(ν).

8: end while
9: Select ξ̂ such that

ξ̂ ∈ arg max
ξ∈Ξn

Êm(ξ) [Z(ξ)] .

Proof. Let mn(ξ) denote the number of samples of Z(ξ) at iteration n of the algo-
rithm. We first prove by contradiction that Algorithm 3.2 stops almost surely. Let
us suppose that Algorithm 3.2 does not stop with probability η > 0, that means

(3.31) P
(
∀n > 0, #Ξn > 1 and max

ξ∈Ξn
εξ,mn(ξ) >

τ

2 + τ

)
= η > 0.

Since (Ξn)n≥1 is a sequence from a finite set, we can extract a constant subsequence,
still denoted (Ξn)n≥1, equal to Ξ? ⊂ Ξ, with Ξ? 6= ∅ such that

(3.32) P
(
∀n > 1, max

ξ∈Ξ?
εξ,mn(ξ) >

τ

2 + τ

)
≥ η > 0.

Since log(3/dm)/m → 0 as m → +∞ and E[Z(ξ)] 6= 0 for all ξ, we have that
εξ,m

a.s→
m→+∞

0 for all ξ in Ξ. Yet, since at each iteration n (from the subsequence),
we increase mn(ξ) for all ξ in Ξ?, we have that mn(ξ) → ∞ as n → ∞ for all
ξ ∈ Ξ?. Therefore, limn→+∞maxξ∈Ξ? εξ,mn(ξ) = 0 holds almost surely, which contra-
dicts (3.32).

We now prove that ξ̂ satisfies (3.21). For clarity, we remove the index n from mn(ξ).
Defining A(ξ) =

{
|Z(ξ)m(ξ) − E[Z(ξ)]| ≤ cξ,m(ξ)

}
for all ξ in Ξ, we proceed as in

(3.13) to obtain
P (A(ξ)) ≥ 1− λ/#Ξ.

Thus, by a union bound argument

P (∩ξ∈ΞA(ξ)) ≥ 1− λ.

It remains to prove that ∩ξ∈ΞA(ξ) implies E[Z(ξ?)]− E[Z(ξ̂)] ≤ τ |E[Z(ξ?)]| in order
to prove that ξ̂ satisfies (3.21). In the rest of the proof, we suppose that ∩ξ∈ΞA(ξ)
holds. First, for all ξ /∈ Ξn, using (3.25), we have

(3.33) E[Z(ξ)] ≤ β+
ξ,m(ξ) < max

ν∈Ξ
β−ν,m(ν) ≤ max

ν∈Ξ
E[Z(ν)] = E[Z(ξ?)],
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that implies ξ? ∈ Ξn. If the stopping condition is #Ξn = 1, we then have ξ̂ = ξ?. If
the stopping condition is maxξ∈Ξn εξ,m(ξ) ≤ τ

2+τ < 1, it means that, for all ξ in Ξn,
εξ,m(ξ) ≤ τ

2+τ < 1. Then for all ξ ∈ Ξn, using Proposition 3.2 with ε = εξ,m(ξ) < 1
and δ = λ/#Ξ < 1 and the fact that ∩ξ∈ΞA(ξ) holds, we obtain that the estimate
Êm(ξ)[Z(ξ)] satisfies

(3.34)
∣∣∣Êm(ξ)[Z(ξ)]− E[Z(ξ)]

∣∣∣ ≤ εξ,m(ξ)|E[Z(ξ)]|.

We have that εξ,m(ξ) < 1 and (3.28) hold for all ξ ∈ Ξn. In particular, since ξ̂, ξ? ∈ Ξn

we get

E [Z(ξ?)]− E[Z(ξ̂)] ≤ E [Z(ξ?)]−
Êm(ξ̂)[Z(ξ̂)]

1 + s(ξ̂)εξ̂,m(ξ̂)
≤ E [Z(ξ?)]− Êm(ξ?) [Z(ξ?)]

1 + s(ξ̂)εξ̂,m(ξ̂)

≤ E [Z(ξ?)]− 1− s(ξ?)εξ?,m(ξ?)

1 + s(ξ̂)εξ̂,m(ξ̂)
E [Z(ξ?)]

=
s(ξ?)εξ?,m(ξ?) + s(ξ̂)εξ̂,m(ξ̂)

1 + s(ξ̂)εξ̂,m(ξ̂)
E [Z(ξ?)] .

Then we deduce

(3.35) E [Z(ξ?)]− E[Z(ξ̂)] ≤ 2τ/(2 + τ)
1− τ/(2 + τ) |E[Z(ξ?)]| = τ |E[Z(ξ?)]|,

which ends the proof.

Remark 3.9. As for Algorithm 3.1 (see Remark 3.7), if E[Z(ξ?)] > 0, we can set
ε = τ

2−τ in Algorithm 3.2 to lower the complexity and still guarantee that ξ̂ satisfies
(3.21).

Remark 3.10. A variant of Algorithm 3.2 using batch sampling would generate
several samples of Z(ξ) at step 4. The result of Proposition 3.8 also holds for the
algorithm with batch sampling. An optimal choice of the number of samples should
depend on sampling costs.

3.4 Numerical Results
In this section, we propose a numerical study of the behaviour of our algorithms on
a toy example. We consider the set of random variables Z(ξ) = f(ξ) +U(ξ), ξ ∈ Ξ,
where f(ξ) = sin(ξ) + sin(10ξ/3), the U(ξ) are i.i.d. uniform random variables over
(−1/20, 1/20), and Ξ = {3 + 4i/100 : 0 ≤ i ≤ 100}. The numerical results are
obtained with the sequence (dm)m≥1 defined by (3.16) with p = 2. We set τ = 0.1
and λ = 0.1.

We first compare our algorithms with two existing ones. The first one is the Median
Elimination (ME) algorithm (see [37] for a description of the algorithm), that solves
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problem (3.2). We take τabs = τ |E[Z(ξ?)]| to ensure ME algorithm provides a so-
lution that also guarantees (3.3). Of course, this is not feasible in practice without
knowing the solution of the optimization problem or at least a bound of |E[Z(ξ?)]|.
The second algorithm which we compare to our algorithms is the UCB-V Algorithm
(see [1, section 3.1]). It consists in only resampling the random variable whose con-
fidence interval has the highest upper bound. To do so, we replace Steps 3 to 6 of
Algorithm 3.2 by:

Compute ξ+ = arg max
ξ∈Ξn

β+
ξ,m(ξ),

Sample Z(ξ+), increment m(ξ+) and update εξ+,m(ξ+).

We choose these algorithms to perform the comparison because i) ME Algorithm
ensures theoretical guarantees similar to ours (although in absolute precision) and
ii) the UCB-V Algorithm is optimal, in a sense that we will define later, for solving
the optimization problem (3.1).
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Figure 3.1: Final state of each algorithm after one run with τ = 0.1, λ = 0.1 and
τabs = τ |E[Z(ξ?)]| for ME Algorithm. Left scale : values of the estimates Êm(ξ)[Z(ξ)]
together with the associated confidence intervals of level 1 − dm(ξ). Right scale :
values of m(ξ).

We illustrate on Figure 3.1 the behavior of algorithms. The results that we show on
Figure 3.1 are the ones of a single run of each algorithm. On the left scale, we plot
the estimates Êm(ξ)[Z(ξ)] as defined in (3.27) and the associated confidence intervals
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[β−ξ,m(ξ), β
+
ξ,m(ξ)] of level 1 − dm(ξ) given by (3.26). The estimates and confidence

intervals for ξ ∈ Ξn are drawn in blue, while the ones for ξ /∈ Ξn are drawn in
red. On the right scale, we plot the number of samples m(ξ) generated for each
ξ ∈ Ξ. We observe that Algorithm 3.1 samples too much the random variables with
low expectation in absolute value. This is responsible for the three peaks on m(ξ)
observed on Figure 3.1a. Algorithm 3.2 avoids this drawback as it does not try
to reach the condition εξ,m(ξ) < 1 for all random variables. The UCB-V algorithm
samples mostly the two random variables with highest expectations (more than 99%
of the samples are drawn from these random variables). Other random variables are
not sufficiently often sampled for reaching rapidly the stopping condition based on
confidence intervals. The Median Elimination Algorithm oversamples all random
variables in comparison with other algorithms.

Complexity. To perform a quantitative comparison with existing algorithms in
the case of costly sampling, a relevant complexity measure is the total number of
samples generated after a single run of the algorithm

M =
∑
ξ∈Ξ

m(ξ).

Table 3.1 shows the average complexity E(M) estimated using 30 independent runs
of each algorithm. We observe that the expected complexity of Algorithm 3.2 is far
below the one of the other algorithms. It means that, for the complexity measure
E(M), the adaptive algorithm we have proposed performs the best.

ME Alg. Alg. 3.1 Alg. 3.2 UCB-V Alg.
2.0 · 107 1.4 · 108 1.9 · 103 1.9 · 108

Table 3.1: Average complexity E(M), estimated using 30 runs for each algorithm,
with τ = 0.1, λ = 0.1 and τabs = τ |E[Z(ξ?)]| for ME algorithm.

We now compare the four algorithms in terms of expected runtime, that is a mea-
sure of complexity taking into account the sampling cost and the cost of all other
operations performed by the algorithms. Denoting by t? the time (assumed con-
stant) for generating one sample from a distribution, the runtime of an algorithm
is a random variable T = Mt? + N , where Mt? is the sampling time, and N is
the (random) time taken by all other operations. The expected runtime is then
E(T ) = E(M)t? + E(N ). From the values of E(N ) and E(M), estimated over 30
runs of the algorihms, we deduce Table 3.2, which shows the average runtime E(T )
for different values of t?. We observe that Algorithm 3.2 has the smallest average
runtime whatever the sampling cost. The first line corresponds to E(N ) and shows
that Algorithm 3.2 performs the best when sampling cost t? = 0 (or negligible). The
impressive gain for large sampling costs t? is due to the small value of the average
number of samples E(M) required by the algorithm.
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t? ME Alg. Alg. 3.1 Alg. 3.2 UCB-V Alg.
0 2.5911 5.0 · 101 3 · 10−3 1.2 · 103

10−6 2.0 · 101 1.9 · 102 3.8 · 10−3 1.4 · 103

10−4 2.0 · 103 1.9 · 104 3.8 · 10−1 1.4 · 105

10−2 2.0 · 105 1.9 · 106 3.8 · 101 1.4 · 107

1 2.0 · 107 1.9 · 108 3.8 · 103 1.4 · 109

Table 3.2: Estimated runtime T (in seconds) for different values of t?, with τ = λ =
0.1 and τabs = τ |E[Z(ξ?)]| for ME algorithm.
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Figure 3.2: Evolution of Ξn and number of samples mn(ξ) with n for Algorithm 3.2
with τ = λ = 0.1.

Behavior of Algorithm 3.2. Now, we illustrate the behavior of Algorithm 3.2
on Figure 3.2 and show the evolution with n of Ξn and mn(ξ) for a single run of
Algorithm 3.2, where mn(ξ) denotes the total number of samples from Z(ξ) gener-
ated from iteration 1 to iteration n. When n = 1, the algorithm has sampled every
random variable once, which is not enough to distinguish some confidence intervals.
So Ξ1 is equal to Ξ. When n = 10, some confidence intervals can be distinguished
and the algorithm has identified two groups of values where a quasi-maximum could
be. These two groups correspond to the two groups of random variables in Ξ10.
When n = 21, the algorithm has identified the main peak of the function. However,
the values of εξ,m(ξ) for ξ in Ξ21 are not small enough for the algorithm to stop. Then
the algorithm continues sampling the random variables in Ξn, updating Ξn when it
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is necessary. εξ,m(ξ) for ξ in Ξn decreases since m(ξ) is increasing for these values of
ξ and the algorithm stops at n = 214 when max

ξ∈Ξ211
εξ,m(ξ) <

τ
2+τ .

Figure 3.3 shows the influence of τ and λ on the average complexity E(M) of Algo-
rithm 3.2. We observe that τ has a much bigger impact than λ. This observation is
consistant with the impact of ε = τ/(2 + τ) and δ = λ/#Ξ on the expected number
of sampling E(M) to build an estimate ÊM [Z] of E[Z(ξ)] with relative precision ε
with probability 1− δ (see Remark 3.5).
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λ/τ = 1 and τ varies

Figure 3.3: Average complexity E(M) of Algorithm 3.2 with respect to τ and λ (in
log-log scale).

3.A Intermediate Results
Here we provide intermediate results used thereafter for the proof of Proposition 3.4
in section 3.B. We first recall a version of Bennett’s inequality from [1, Lemma 5].

Lemma 3.11. Let U be a random variable defined on (Ω,F ,P) such that U ≤ b
almost surely, with b ∈ R. Let U1, . . . , Um be i.i.d. copies of U and U ` = 1

`

∑`
i=1 Ui.

For any x > 0, it holds, with probability at least 1− exp(−x), simultaneously for all
1 ≤ ` ≤ m

(3.36) `
(
U ` − E [U ]

)
≤
√

2mE [U2]x+ b+x/3,

with b+ = max(0, b).

Now, the following result provides a bound with high probability for the estimated
variance of an i.i.d. sequence of bounded random variables.

Lemma 3.12. Let X be a bounded random variable defined on (Ω,F ,P), such that
a ≤ X ≤ b almost surely, with a < b two real numbers. Let X1, . . . , Xm be i.i.d.
copies of X and V m = 1

m

∑m
i=1(Xi −Xm)2 where Xm = 1

m

∑m
i=1Xi. Then, for any
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x > 0

(3.37) P

V m ≤ V[X] +
√

2V[X] (b− a)2x

m
+ x(b− a)2

3m

 ≥ 1− exp(−x).

Proof. Let us define U = (X − E[X])2 which satisfies U ≤ (b − a)2 almost surely.
Applying Lemma 3.11 with U defined previously with ` = m gives for any x > 0

P

(
m
(
Um − E[U ]

)
≤
√

2mE[U2]x+ x(b− a)2

3

)
≥ 1− exp(−x).

Moreover, as Um = V m + (Xm − E[X])2 and using the boundedness of U we get

P

V m ≤ E[U ] +
√

2E[U ] (b− a)2x

m
+ x(b− a)2

3m

 ≥ 1− exp(−x),

which ends the proof since E[U ] = V[X].

We recall a second result in the line of [78, Lemma 3].

Lemma 3.13. Let q, k be positive real numbers. If t > 0 is a solution of

(3.38) log qt
t

= k,

then

(3.39) t ≤ 2
k

log 2q
k
.

Moreover, if t′ is such that

(3.40) t
′ ≥ 2

k
log 2q

k
,

then

(3.41) log qt′

t′
≤ k.

Proof. Let t > 0 be a solution of (3.38). Since the function log is concave, it holds
for all s > 0

kt = log(qt) ≤ log(qs) + t− s
s

.

In particular, for s = 2
k
> 0 we get

(3.42) t ≤ 2
k

(
log 2q

k
− 1

)
≤ 2
k

log 2q
k
,
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which yields (3.39).
Now, let ϕ : s 7→ log(qs)

s
defined for s > 0. This function is continuous, strictly

increasing on (0, e
q
] and strictly decreasing on [ e

q
,∞) so it admits a maximum at

t = e
q
. The existence of a solution t > 0 of (3.38) implies k ≤ q

e
. If k = q

e
then t = e

q

and ϕ(t) is the maximum of ϕ. For any t′ > 0, in particular satisfying (3.40), we
have ϕ(t′) ≤ ϕ(t) = k which is (3.41). If 0 < k < q

e
, there are two solutions t1, t2 to

(3.38) such that 0 < t1 <
e
q
< t2. By (3.39) and (3.40) we have t′ ≥ t2 >

e
q
and since

ϕ is stricly discreasing on [ e
q
,∞) it holds ϕ(t′) ≤ ϕ(t2) = k , that is (3.41).

3.B Proof of Proposition 3.4
Let us define the two events A = ⋂

m≥1Am and B = ⋂
m≥1Bm with

Am =
{
V m ≤ σ2 +

√
2σ2(b− a)2 log(3/dm)/m+ log(3/dm)(b− a)2/3m

}
,

and
Bm =

{
|Zm − µ| ≤ cm

}
.

Applying Lemma 3.12 with x = log(3/dm) for Am,m ≥ 1 together with a union
bound argument leads to P(A) ≥ 1− δ/3. Similarly, using a union bound argument
and Theorem 3.1 with x = log(3/dm), for Bm,m ≥ 1, gives P(B) ≥ 1 − δ. By
gathering these two results we have

(3.43) P (A ∩B) ≥ 1− (P(Ac) + P(Bc)) ≥ 1− 4δ
3 ,

where Ac and Bc correspond respectively to the complementary events of A and B.
It remains to prove that A ∩B implies

(3.44) M ≤
⌈2
ν

[
log

( 3
δc

)
+ p log(2p

ν
)
]⌉
,

which will prove (3.17). In what follows, we suppose that A ∩B holds.
First we derive an upper bound for V m. Since A holds, we have

(3.45) V m ≤ σ2 +
√

2σ2(b− a)2 log(3/dm)/m+ log(3/dm)(b− a)2/3m.

Lemma 3.13 with k = σ2

p(b−a)2 and q =
(

3
δc

)1/p
gives for any integer m ≥Mσ2

(3.46) (b− a)2

m
log 3

dm
≤ σ2,

where
Mσ2 = 2(b− a)2

σ2

(
p log

(
2p(b− a)2

σ2

)
+ log

( 3
cδ

))
.

Again, Lemma 3.13 with k = ε2µ2

p(b−a)2 and q =
(

3
δc

)1/p
gives for any integerm ≥Mε2µ2

(3.47) (b− a)2

m
log 3

dm
≤ ε2µ2,
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where
Mε2µ2 = 2(b− a)2

ε2µ2

(
p log

(
2p(b− a)2

ε2µ2

)
+ log

( 3
cδ

))
.

For all m ≥ min (Mσ2 ,Mε2µ2), i.e. m ≥ Mσ2 or m ≥ Mε2µ2 , we obtain from (3.45)
and (3.46), or (3.45) and (3.47), that

(3.48) V m ≤ (1 +
√

2 + 1/3) max(σ2, ε2µ2).

In what follows, we define M = min (Mσ2 ,Mε2µ2). Now, we deduce from (3.48) an
upper bound for cm. By definition,

cm =
√

2V m log(3/dm)
m

+
√

9(b− a)2 log(3/dm)2

m2 ,

then for all integer m ≥M and using either (3.46), or (3.47), we have

(3.49) cm ≤
√
α log(3/dm)

m
,

with α := (
√

2 + 2
√

2 + 2/3 + 3)2 max(σ2, ε2µ2).

Now, using (3.49), we seek a bound forM , the smallest integer such that cM ≤ ε|ZM |.
To that aim, let us introduce the integer M?,

(3.50) M? = min
m ∈ N∗ : m ≥M,

√
α log(3/dm)

m
≤ ε|µ|

1 + ε

 ,
and the integer valued random variable M+

(3.51) M+ = min
{
m ∈ N∗ : cm ≤

ε|µ|
1 + ε

}
.

If M ≥M+ then M? ≥M+.

Otherwise, M < M+ and we have M+ = min
{
m ≥M : cm ≤

ε|µ|
1 + ε

}
. Moreover, as

(3.49) holds for all m ≥M , we get the inclusionm ∈ N∗ : m ≥M,

√
α log(3/dm)

m
≤ ε|µ|

1 + ε

 ⊂
{
m ∈ N∗ : m ≥M, cm ≤

ε|µ|
1 + ε

}
.

Taking the min leads again toM? ≥M+. Moreover, since B holds, |µ|−cM+ ≤ |ZM+|
and using (3.51) it implies that cM+ ≤ ε|ZM+|. By definition of M we get M+ ≥M .
Hence, we have M? ≥M . To conclude the proof, it remains to find an upper bound
for M?. Applying again Lemma 3.13 with k = ε2µ2

(1+ε)2αp
and q =

(
3
δc

)1/p
gives for any

integer m ≥Mf

(3.52) α log(3/dm)
m

≤ ε2µ2

(1 + ε)2
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with
Mf = 2(1 + ε)2α

ε2µ2

(
p log

(
2p(1 + ε)2α

ε2µ2

)
+ log

( 3
cδ

))
.

If Mf ≤M , (3.50) and (3.52) imply M? = dMe, where d·e denotes the ceil function.
Otherwise Mf > M and we obtain M? ≤ dMfe. Thus, it provides the following
upper bound

M? ≤ max (dMe, dMfe) = dmax (M,Mf )e.

Introducing ν = min
(

max(σ2,ε2µ2)
(b−a)2 , ε2µ2

(1+ε)2α

)
we have from the definition of Mσ2 ,Mε2µ2

and Mf

(3.53) M? ≤
⌈2
ν

(
p log

(2p
ν

)
+ log

( 3
cδ

))⌉
.

SinceM? ≥M and A∩B implies (3.53), we deduce that A∩B implies (3.44), which
concludes the proof of the first result.
Let us now prove the result in expectation. Let K :=

⌈2
ν

(
p log

(2p
ν

)
+ log

( 3
cδ

))⌉
.

We first note that

E(M) =
∞∑
k=0

P(M > k) ≤ K +
∞∑
k=K

P(M > k).

If M > k, then ck > ε|Z̄k|. For k ≥ K, we would like to prove that ck > ε|Z̄k|
implies (Ak ∩Bk)c, or equivalently that Ak ∩Bk implies ck ≤ ε|Z̄k|. For k ≥ K, Ak
implies (3.49) and (3.52), and therefore ck ≤ ε|µ|

1+ε . Also, Bk implies |Z̄k| ≥ |µ| − ck.
Combining the previous inequalities, we easily conclude that Ak ∩ Bk implies ck ≤
ε|Z̄k|. For k ≥ K, we then have P(M > k) ≤ P(ck > ε|Z̄k|) ≤ P((Ak ∩ Bk)c) ≤
P(Ack) + P(Bc

k) ≤ 4dk/3, and then

E(M) ≤ K +
∞∑
k=K

4dk/3 ≤ K + 4δ/3,

which ends the proof.
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Chapter 4

Reduced Basis Methods

This chapter surveys reduced basis methods (RBM) for parameter-dependent prob-
lems with a particular focus on parameter-dependent partial differential equations
(PDEs).

Contents
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4.1.2 Greedy Algorithm . . . . . . . . . . . . . . . . . . . 83
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In this chapter we consider a set of parameters Y ⊂ Rp and a bounded set O ⊂ Rd

of variables (either spatial or spatio-temporal). We consider a parameter-dependent
problem of the following type

S(u(·, y), y) = 0,(4.1)

where the unknown is a real-valued function u : O × Y → R. The operator
S : H × Y → W is a map defined on H × Y with values in W , where H := H(O)
and W := W(O) are two Hilbert spaces of functions defined on O, e.g. L2(O) the
set of square-integrable functions or the Sobolev space H1

0 (O). In what follows, we
lighten our notation and use u(y) to refer to u(·, y) : O → R.

We assume that the problem (4.1) is well-posed in H, which means that for all
instance y ∈ Y , there exists a unique solution u(y) ∈ H that satisfies (4.1). The
map u is defined on a high-dimensional set O × Y ⊂ Rd × Rp, which causes some
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difficulties when it comes to approximation. We have seen in Chapter 2 that approx-
imation of parameter-independent high-dimensional problems is challenging. When
it comes to high-dimensional parameter-dependent problems, we can imagine that
other problems arise.

We focus here on a particular context to introduce these solutions. It is usually
referred as the multi-query context, see e.g. [53], where many snapshots, i.e. u(y)
for many different values of y in Y , are required. In such a context, one cannot
only approximate the solution, e.g. using an algorithm such as Algorithm 2.3, as
many times as the number of required snapshots: it would be too costly. One has to
try to use already computed snapshots in order to reduce computational cost. This
is what reduced basis methods (RBM) and more generally model order reduction
(MOR) methods do. Our particular focus is on RBM that build a reduced space
Hn using snapshots u(y1), . . . , u(yn) (offline phase) and then project at low compu-
tational cost any desired snapshot u(y) onto Hn (online phase). This offline-online
decomposition is particularly relevant in many applications, see e.g. [93], where cal-
culus has to be made in real-time with a possible pre-computation of some needed
quantities (here the snapshots). Of course, such techniques are particularly relevant
when the solution manifoldM := {u(y), y ∈ Y } can be well-approximated by low-
dimensional subspaces of H.

We discuss theoretical aspects for reduced basis methods in Section 4.1, recalling an
existing ideal algorithm to build a space Hn with good approximation properties.
Then in Section 4.2 we discuss practical implementation of the ideal algorithm. We
finish our survey by considering in Section 4.3 the particular case of parameter-
dependent PDEs.

4.1 Idealized RBM
We present here basic notions related to RBM from a theoretical point of view. Then
we recall a first algorithm to build reduced spaces together with first approximation
results.

4.1.1 Solution Manifold and Kolmogorov Width
As we mentioned earlier, RBM are particularly relevant for problems where the
solution manifoldM defined below

M = {u(y) : y ∈ Y } ⊂ H,(4.2)

can be well-approximated by low-dimensional spaces Hn.

We assume here that M is compact. Compactness can be obtained under some
assumptions on Y and P , see e.g. [25]. Since we will focus on linear approxima-
tion tools, we recall the notion of Kolmogorov n-width for a compact setM noted

82



Chapter 4. Reduced Basis Methods

dn(M)H and defined by

dn(M)H := inf
dim(W )=n

dist(M,W )H,(4.3)

where dist(M,W )H := supu∈M d(u,W )H and d(u,W )H := infw∈W ‖u−w‖H. Other
widths [90] can be considered when it comes to non-linear approximation, which is
not our concern here, but for which we refer to [31].

Problems for which it can be interesting to use RBM are thus the ones where the
Kolmogorov n-width ofM decreases quickly with n [90]. However, these theoretical
decays can be impacted by the dimension d, which can cause troubles when d� 1,
even for smooth functions [86]. As an example of the impact of the dimension, we
recall a result from [24], that gives an estimate of the n-width of the unit ball K of
Cm([−1, 1]d) in L∞-norm

cdn
−m/d ≤ dn(K)L∞ ≤ Cdn

−m/d

where cd and Cd are constants that grow exponentially with the dimension d. We
thus observe that the dimension d impacts negatively the decay of the width, a
phenomenon known as the curse of dimensionality, while the regularity improves
this decay, phenomenon known as the blessing of regularity. However, for some
other classes of more structured functions it is possible to circumvent the curse of
dimensionality [24].

4.1.2 Greedy Algorithm
We give a first ideal algorithm for building reduced spaces. To that end, we first
recall that in a Hilbert space we have

inf
w∈W
‖u− w‖H = ‖u− PWu‖H(4.4)

where PW stands for the H-orthogonal projection onto W . We can now describe the
greedy algorithm for RBM in Algorithm 4.1. We fix a finite number of steps n > 0
for this algorithm. Other stopping criteria exist, such as stopping when the desired
approximation precision is reached [27].

Algorithm 4.1 Greedy Algorithm for Reduced Basis Methods [32]

1: Set H0 = {0}.
2: for i = 1 . . . n do
3: Select yi ∈ Y such that

‖u(yi)− PHi−1u(yi)‖H ≥ γ sup
y∈Y
‖u(y)− PHi−1u(y)‖H.(4.5)

4: Compute u(yi) and update Hi = span{u(y1), . . . , u(yi)}.
5: end for
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Readers should notice that when γ = 1, Algorithm 4.1 corresponds to the strong
greedy algorithm described for example in [18]. Otherwise, when 0 < γ < 1, Al-
gorithm 4.1 corresponds to a γ-weak-greedy algorithm such as the one described in
[13]. We introduce the following notation

σn(M)H = dist(M, Hn)H,(4.6)

where Hn has been constructed with Algorithm 4.1. We distinguish different results
for the study of σn(M)H. First of all, indirect comparison results assume a particu-
lar kind of upper bound for dn(M)H in order to derive an upper bound for σn(M)H.
For a γ-weak-greedy algorithm when H is a Hilbert space, we have the following
existing result.

Theorem 4.1. [32, Corollary 3.3] Assume thatM is a compact set included in the
unit ball of H. Assume moreover that, for all n ≥ 1,

dn(M)H ≤ C exp(−cnα)

with α > 0. Then, for all n ≥ 1,

σn(M)H ≤ C1 exp(−c1n
α),

C1 =
√

2Cγ−1 and c1 = 2−1−2αc.

Second of all, direct comparisons compare directly dn(M)H and σn(M)H for any
compact manifoldM. Those direct comparison results are usually more pessimistic
than indirect comparisons results, due to less strong assumptions. Still in the case
of a γ-weak-greedy algorithm whenH is a Hilbert space, we have the following result.

Theorem 4.2. [32, Corollary 3.3] For any compact setM included in the unit ball
of H and for any n ≥ 1, we have

σn(M)H ≤
√

2γ−1 min
1≤m≤n

(dm(M)H)
n−m
n .(4.7)

It gives in particular, for all n ≥ 1

σ2n(M)H ≤
√

2γ−1
√
dn(M)H.(4.8)

4.1.3 Snapshot-Based Reduced Spaces
Algorithm 4.1 builds a reduced basis using snapshots u(y) in M, that are usually
ortho-normalized for practical reasons. However, nothing indicates that optimal
subspace for the Kolmogorov n-width can be generated by snapshots. We recall a
result here from [13] showing a relatively small loss when building of the reduced
spaces using snapshots.
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Theorem 4.3. [13, Theorem 4.1] Let

dn(M)H = inf
W∈Wn(M)

sup
y∈Y
‖u(y)− PWu(y)‖H,

where Wn(M) is composed of all n-dimensional spaces spanned by n snapshots from
M. For any compact setM and any n ≥ 0

dn(M)H ≤ (n+ 1)dn(M)H.

Moreover, for any n > 1 and ε > 0, there exists a setM1 such that

dn(M1)H ≥ (n− 1− ε)dn(M1)H.

When the decay of dn(M)H is too slow, e.g. polynomial in n with a degree lower or
equal to 1, building a good reduced spaceHn with a greedy algorithm is not necessar-
ily feasible. However, due to Theorem 4.2, the loss in the decay of the Kolmogorov
n-width resulting from the use of snapshots to build the reduced spaces is much
smaller than the loss resulting from the use of greedy algorithm. Moreover since
we have dn(M)H ≤ σn(M)H, any upper bound for σn(M)H (see e.g. Theorem 4.1)
holds also for dn(M)H.

4.2 Feasible Version of RBM
Algorithm 4.1 is impossible to implement in practice for several reasons. First, the
exact solution u is in general inaccessible since it resides in an infinite-dimensional
Hilbert space H. From this arise some limitations: 1) the impossibility to compute
exactly a snapshot 2) the impossibility to provide an error estimate for ‖u(y) −
PHi−1u(y)‖H that takes as a reference the exact solution u and thus the impossibility
to solve the optimization problem maxy∈Y ‖u(y) − PHi−1u(y)‖H. Other problems
arise. Among others 3) the impossibility to compute an exact orthogonal projection
PHi−1 (which is an even more important limitation when u is not accessible) and
4) the difficulty to solve the optimization problem over a continuous set Y . The
last point is due to the complete absence of knowledge on properties (convexity,
continuity ...) of y → ‖u(y)−PHi−1u(y)‖H. To circumvent these problems, we recall
a realistic framework for RBM in Section 4.2.1 before showing how it is possible to
derive a weaker version of Algorithm 4.1 in Section 4.2.4.

4.2.1 Truth Approximation
Since the exact solution u is inaccessible, we rather use an accurate approximation
uN of u, called the truth approximation. This approximation lives in some high-
dimensional space HN , called the truth space, and can be computed by traditional
approximation methods for the approximation of the solution of high-dimensional
PDEs (see Chapter 2). We assume that it approximates u at some precision ε ∈
(0, 1), which means that for any y in Y we have

‖u(y)− uN (y)‖H ≤ ε.(4.9)
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Two different possibilities exist for the space HN . Either the space HN ⊂ H of
dimension N is fixed and large, i.e. N � 1. Either the space HN (y) ⊂ H depends
on y, e.g. through a dependence of its dimension N = N (y). In the first case
HN ensures that, for any y in Y , the solution u(y) in H can be well represented
by elements in HN . An example of such space is a finite element approximation
space with N degrees of freedom. In the second case, the dependence on y allows
important computational savings when it comes to the computation of the truth
approximation of some snapshot up to some given precision ε, see (4.9). While more
flexible, the second case is more difficult to describe in a few lines. Thus, for the
sake of clarity, we stick to the first case in our presentation.

In the rest of our presentation, we assume that the exact and approximated so-
lution coincide, which means that we take ε � 1 of the order of magnitude of
the machine precision for example. It allows us to neglect the differences between
the high-dimensional and high-fidelity truth approximation uN and the exact so-
lution u. Considering the truth approximation rather than the exact solution is
not problematic when ε � 1. In this case we can prove in a similar way as we
will prove Theorem 4.4 that the behavior of both Kolmogorov n-width if M and
MN := {uN (y) : y ∈ Y } are similar up to a small threshold 2ε.

4.2.2 Feasible Projection
The truth approximation answers problem 1). In order to answer 3), we avoid using
the exact orthogonal projection PHi−1 for the benefit of an approximated projection
ui−1 := uHi−1 of u, that is easy to compute and that presents interesting properties,
such as a quasi-optimality property. Quasi-optimality means that there exists a
constant C > 0, such that for any y in Y we have

‖u(y)− ui−1(y)‖H ≤ C‖u(y)− PHi−1u(y)‖H.(4.10)

The independence of C on y or n and the existence of such projection are important
points that we will discuss in Section 4.2.4 for parameter-dependent PDEs.

4.2.3 Discrete Training Set
In order to answer 4), we have to come up with an optimization strategy to solve
maxy∈Y ‖u(y) − PHi−1u(y)‖H. A commonly used technique is to discretize the so-
lution manifold, which means considering a finite discrete set Ξ ⊂ Y and solve the
optimization problem over this so-called training set. Thus the optimization prob-
lem becomes a discrete optimization problem which is possible to solve if we know
how to compute ‖u(y)− PHi−1u(y)‖H for a finite number of values of y in Y which
corresponds to Ξ. Then, denoting byMΞ the following discrete solution manifold

MΞ = {u(ξ) : ξ ∈ Ξ},(4.11)

we can derive the following result.
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Theorem 4.4. Assume that the map u : Y → H is Hölder-continuous with reference
to y, which means

‖u(y1)− u(y2)‖H ≤ L‖y1 − y2‖αRD ,

for some α ∈]0, 1], some norm ‖ · ‖RD on RD and a constant L independent of y1

and y2. Moreover, assume that Ξ is an ε-net of Y , which means Ξ is a finite subset
of Y such that for all y in Y there exists a ξ in Ξ satisfying

‖y − ξ‖RD ≤ ε.

Then we have

dn(MΞ)H ≤ dn(M)H ≤ dn(MΞ)H + 2Lεα.

Proof. We have

dn(MΞ)H = inf
dim(W )=n

sup
ξ∈Ξ
‖u(ξ)− PWu(ξ)‖H ≤ dn(M)H.

Then we notice that for all y in Y and all space W ⊂ H

‖u(y)− PWu(y)‖H ≤ ‖u(y)− u(ξ)‖H + ‖u(ξ)− PWu(ξ)‖H
+ ‖PWu(ξ)− PWu(y)‖H,

for any ξ in Ξ. In particular, for ξy such that ‖ξy − y‖RD ≤ ε (that exists by
assumption), it brings

‖u(y)− PWu(y)‖H ≤ 2Lεα + ‖u(ξy)− PWu(ξy)‖H.

Taking the supremum over Y and the infimum over W , we obtain the second in-
equality.

Theorem 4.4 ensures that if an ε-net Ξ is dense enough in Y ⊂ Rp we can expect
similar behavior between dn(M)H and dn(MΞ)H, up to a threshold depending on
the parameter ε. However when the parametric dimension p is large, i.e. p � 1,
the number of points of ε-net of Y is too large since it grows exponentially with the
dimension p: this is another phenomenon illustrating the curse of dimensionality.

To avoid using an ε-net, the authors of [27] have proposed to use random training
sets, introducing at the same time the notion of probabilistic greedy algorithm. This
contribution will be discussed further in Chapter 5. Another contribution [60] has
first investigated ways to avoid computing at each step of a greedy algorithm the
error ‖u(ξ) − PHi−1u(ξ)‖H over the whole training set Ξ: this technique reduces
the computational cost of using large training sets but not necessarily the storage
problem. The authors proposed in the same paper a heuristic method to avoid
considering too big training sets by safety checking the approximation error of the
reduced space they had built on random points outside of the training set. They
came up with many numerical experiments illustrating the interest of their method.
They also allowed their algorithm to remove and add points to the training set,
which thus changes with the number of steps.
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4.2.4 Practical Greedy Algorithm
Using the tools introduced in Section 4.2.1, we can now propose a realistic version
of Algorithm 4.1 in the sense that it is possible to implement. This is a weak-greedy
algorithm for (4.1) over Y which means that, at each step i of the algorithm, we
add a snapshot u(yi) such that yi is the training set and satisfies

‖u(yi)− PHi−1u(yi)‖H ≥ γ sup
y∈Y
‖u(y)− PHi−1u(y)‖H(4.12)

for some fixed γ ∈ (0, 1). An algorithm for which the parameter γ does not change
from one step to another is called a γ-weak-greedy algorithm over Y .

In order to make Algorithm 4.2 entirely practical, and thus to tackle problem 3), we
assume that we have access to some error estimate ∆(ui−1(y)) for ‖u(y)−ui−1(y)‖H
for all y in Y , which is necessary since theH-norm might be hard to compute exactly.
We moreover assume that this estimate satisfies

c1‖u(y)− ui−1(y)‖H ≤ ∆(ui−1(y)) ≤ C1‖u(y)− ui−1(y)‖H,(4.13)

for some constants c1 and C1 independent from y and i.

Algorithm 4.2 Practical Greedy Algorithm for RBM

1: Set X0 = {0}.
2: for i = 1 . . . n do
3: Select ξi ∈ Ξ such that

ξi ∈ arg max
ξ∈Ξ

∆(ui−1(ξ)).(4.14)

4: Compute uN (ξi) and update Hi = span{uN (ξ1), . . . , uN (ξi)}.
5: end for

The following theorem shows that Algorithm 4.2 is a weak-greedy algorithm under
suitable assumptions.

Theorem 4.5. Assume that Ξ is a training set and u = uN is the finite-dimensional
solution to (4.1). Moreover assume that (4.13) and (4.10) hold. Then we have for
all i = 1, . . . , n that

‖u(ξi)− PHi−1u(ξi)‖H ≥ γmax
ξ∈Ξ
‖u(ξ)− PHi−1u(ξ)‖H,(4.15)

where γ = c1
C1C

. Thus Algorithm 4.2 is a γ-weak-greedy algorithm for (4.1) over Ξ.

Proof. We take 1 ≤ i ≤ n. We have using (4.14) and(4.13)

∆(ui−1(ξi)) = max
ξ∈Ξ

∆(ui−1(ξ))

≥ c1 max
ξ∈Ξ
‖u(ξ)− ui−1(ξ)‖H

≥ c1 max
ξ∈Ξ
‖u(ξ)− PHi−1u(ξ)‖H.
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We have also from (4.10) and (4.13)

∆(ui−1(ξi)) ≤ C1‖u(ξi)− ui−1(ξi)‖H
≤ C1C‖u(ξi)− PHi−1u(ξi)‖H

which concludes the proof.

Using this result and if we further satisfy

max
ξ∈Ξ
‖u(ξ)− PHi−1u(ξ)‖H ≥ γ1 max

y∈Y
‖u(y)− PHi−1u(y)‖H,(4.16)

we obtain a γ1γ-weak-greedy algorithm over Y . In this case, all results seen in
Section 4.1.2 apply to study the consequences of approximatingM using the reduced
space Hn built by Algorithm 4.2.

4.3 RBM for Parameter-Dependent PDEs
We consider the particular case of parameter-dependent PDEs. In order to directly
consider practical methods, we consider the discrete solution manifold defined in
(4.11) and work with Ξ rather than Y . Such parameter-dependent problems are
particularly interesting since, for several types of parameter-dependent PDEs, it is
possible to circumvent the curse of dimensionality mentioned before [23, 25].

4.3.1 Weak-Formulation
We consider the following parameter-dependent weak-formulation of a PDE:
For any ξ in Ξ, the goal is to find u(ξ) in H such that

a(u(ξ), v; ξ) = f(v; ξ), ∀v ∈ H,(4.17)

with H some function space. For all ξ in Ξ, a(·, ·; ξ) is a bilinear form while f(·; ξ)
is a linear form. We assume the existence of positive constants α(ξ) ≤ αmax < ∞
such that

a(w, v; ξ) ≤ α(ξ)‖w‖H‖v‖H, ∀(w, v, ξ) ∈ H ×H× Ξ.(4.18)

We also assume the existence of constants β(ξ) ≥ βmin > 0 such that, for all ξ in Ξ

a(v, v; ξ) ≥ β(ξ)‖v‖2
H ≥ βmin‖v‖2

H.(4.19)

In this context, the traditional truth space consists in Galerkin projections of u(ξ)
onto some high-dimensional space HN . The Galerkin projection of u(ξ) onto a space
HN , denoted by uN (ξ) is defined for each ξ in Ξ as the unique solution of

a(uN (ξ), v; ξ) = f(v; ξ), ∀v ∈ HN .(4.20)

Galerkin projection has the following property (Céa’s lemma)

‖u(ξ)− uN (ξ)‖H ≤
αmax

βmin ‖u(ξ)− PHNu(ξ)‖H.(4.21)

Having a basis for HN , we can solve (4.20) for a fixed value of ξ by solving a high-
dimensional linear system (see e.g. discrete reduced basis in [53]). We show now how
to use the Galerkin projection to propose an efficient offline-online decomposition.
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4.3.2 Affine Decomposition and Empirical Interpolation Method
We assume now that the forms a and f admit an affine decomposition of the following
type

a(w, v; ξ) =
Qa∑
i=1

Θa
i (ξ)ai(w, v),(4.22)

f(v; ξ) =
Qf∑
i=1

Θf
i (ξ)fi(v),(4.23)

where Θa
i , Θf

i are parameter-dependent functions, ai, fi are parameter-independent
forms and Qa, Qf are strictly positive integers.

Once the snapshots (uN (ξj))ni=1 are computed, it is possible to compute the Galerkin
projection uNn (ξ) of u(ξ) onto Hn = span

{
uN (ξ1), . . . , uN (ξn)

}
at low cost by pre-

computing the matrices Aj = [aj(uN (ξi), uN (ξk))]j,k for all j, the vectors fj =
[fj(uN (ξk))]nk=1. Using (4.22) and (4.23), we end up with a linear system

An(ξ)un(ξ) = fn(ξ), where

An(ξ) =
Qa∑
i=1

Θa
i (ξ)Ai and fn(ξ) =

Qf∑
i=1

Θf
i (ξ)fi,

where the vector un(ξ) contains the coefficients of the Galerkin projection onto Hn

expressed in the basis of the snapshots (uN (ξj))ni=1. Since the system size does not
depend on N , the computational cost for solving these systems (in O(nκ)) is much
smaller than the computational cost to obtain a truth snapshot (in O(N κ) for some
κ > 1). It justifies the interest of such methods when α and β are of the same order
of magnitude. The values of α and β depend on the nature (sparse, tridiagonal . . . )
of the linear system to solve.

When the affine decomposition of a or f is not obvious, the empirical interpolation
method (EIM) [6] provides such a decomposition. It allows then an efficient offline-
online decomposition as we have seen before.

4.3.3 Error Estimation
There is still one missing piece to propose a practical version of Algorithm 4.1 for
parameter-dependent PDEs: the estimation of the error ‖u(ξ)−PHi−1u(ξ)‖H, where
Hi−1 is the already built reduced space. A common approach in the literature is to
propose an estimator based on the residual. We define the residual for all v ∈ H as
ri−1(v; ξ) := a(u(ξ)− ui−1(ξ), v; ξ). We obtain that

ri−1(v; ξ) = f(v; ξ)− a(ui−1(ξ), v; ξ), ∀v ∈ H.

Then we have the following inequalities

β(ξ)‖ei−1(ξ)‖H ≤ ‖ri−1(·; ξ)‖H′ (O) ≤ α(ξ)‖ei−1(ξ)‖H,(4.24)
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where ‖ri−1(·; ξ)‖H′ (O) := supv∈H
ri−1(v;ξ)
‖v‖H

and ei−1(ξ) = u(ξ)−ui−1(ξ). The quantity

∆(ui−1(ξ)) :=
‖ri−1(·; ξ)‖H′ (O)

βmin(4.25)

is an upper bound of the true error ‖ei−1(ξ)‖H and is usually taken as an error
estimate. With this choice we have the following result.

Theorem 4.6. We assume that (4.18), (4.19) and (4.24) hold and that the error
estimate is as in (4.25). Then Algorithm 4.2 adapted to parameter-dependent PDEs
is a γ-weak-greedy algorithm over any training set Ξ with γ = (βmin)2

(αmax)2 .

The use of an error estimate based on the residual degrades the performance of
the practical weak-greedy algorithm for parameter-dependent PDEs. It would be
more interesting to directly deal with the approximation error ‖u(ξ) − ui−1(ξ)‖H,
particularly for problems with small βmin. We present a new technique to avoid
using residual-based error estimate in Chapter 5.
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Probabilistic Reduced Basis
Methods

In this chapter we present our third contribution. This contribution consists in two
probabilistic greedy algorithms for reduced basis methods (RBM). In order to
present these algorithms, we first provide a Feynman-Kac representation of the
approximation error which allows us interpret its squared norm as an expectation
and thus to use Monte-Carlo methods to estimate this squared norm. Then
combining this Monte-Carlo estimation with the probably approximately correct
(PAC) algorithm from Chapter 3 we come up with a new technique to adaptively
select snapshots for the construction of the reduced basis.
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We consider, as in Chapter 4, a set of parameters Y ⊂ Rp, e.g. Y = [−1, 1]p and the
following parameter-dependent problem

S(u(.; y); y) = 0(5.1)

where the unknown is a real-valued function u(y) := u(·; y) belongs to some Hilbert
space H.

In Chapter 4 traditional deterministic reduced basis methods (RBM) were presented
for (5.1). Here we present probabilistic reduced basis methods where probabilis-
tic methods are considered to select the snapshot that enriches the reduced space.
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Our problems of interest are parameter-dependent PDEs whose solution u(y) ad-
mits a probabilistic representation, which means that there exists some parameter-
dependent functional Qy : Rd → R, depending on the data from (5.1), and some
random variable Xy defined on a probability space (Ω,F ,P) such that

u(y) = E [Qy(Xy)] .(5.2)

This probabilistic representation of the solution is motivated by the Feynman-Kac
representation of solutions of partial differential equations (PDEs). We give in
Section 5.1 two guiding examples of such representations for solutions of elliptic
and parabolic parameter-dependent PDEs. Those are extensions to parameter-
dependent PDEs of the probabilistic representations given in Chapter 1. In Sec-
tion 5.2 we use this probabilistic representation of the solution to derive a proba-
bilistic representation of the approximation error u(y)−un(y) for any y in Y , where
un : Y → Hn is an approximation of u onto the finite dimensional (reduced) space
Hn ⊂ H. In particular we will reinterpret the H-norm of the approximation error
as an expectation. It allows to propose a first probabilistic greedy algorithm to
construct the reduced space Hn that is analyzed in Section 5.3.1. Then our second
probabilistic greedy algorithm combines the first algorithm with random training
sets from [27] which allows us to treat parameter-dependent problems with high-
dimensional parametric dimension.

5.1 Probabilistic Representation for Parameter-
Dependent PDEs

We extend the Feynman-Kac representation from Chapter 1 to parameter-dependent
PDEs.

5.1.1 Elliptic Parameter-Dependent PDEs
We consider an elliptic parameter-dependent PDE on a open bounded domain D ⊂
Rd. For any y in Y , let

−Lyu(x; y) = g(x; y) x ∈ D,
u(x; y) = f(x; y) x ∈ ∂D,

(5.3)

where the partial differential operator is defined as follow

Ly = 1
2

d∑
i,j=1

(σ(x; y)σ(x; y)T )ij∂2
xixj

+
d∑
i=1

bi(x; y)∂xi

while g : D × Y → R is the source term and f : ∂D × Y → R is the boundary
condition. The differential operator Ly is also the infinitesimal generator of the
stochastic process Xx;y which is solution of the following Stochastic Differential
Equation (SDE)

Xx;y
t = Xx;y

0 +
∫ t

0
b(s,Xx;y

s ; y)ds

+
∫ t

0
σ(s,Xx;y

s ; y)dWs, Xx;y
0 = x ∈ D.

(5.4)
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For a fixed value of y in Y , we can then state a similar result as Theorem 1.12 that
applies to (5.3).

Theorem 5.1 (Feynman-Kac formula for an elliptic parameter-dependent PDE on
bounded domain). Assume that, for all y in Y

(EP1) D is an open connected bounded domain of Rd, regular in the sense that, if
τx;y = inf {s > 0 : Xx;y

s /∈ D} is the first exit time of D for the process Xx;y,
solution of (5.4), we have

P(τx;y = 0) = 1, x ∈ ∂D,

(EP2) b(·; y), σ(·; y) are Lipschitz functions over D,

(EP3) f(·; y) is continuous on ∂D, g(·; y) is Hölder-continuous on D,

(EP4) (uniform ellipticity assumption) there exists c > 0 such that
d∑

i,j=1

(
σ(x; y)σ(x; y)T

)
ij

ΥiΥj ≥ c
d∑
i=1

Υ2
i , Υ ∈ Rd, x ∈ D.

Then, for all y in Y , there exists a unique solution u(·; y) of (5.3) in C(D)∩C2(D).
It satisfies for all x ∈ D

u(x; y) = E

[
f(Xx;y

τx;y ; y) +
∫ τx;y

0
g(Xx;y

t ; y)dt
]
.(5.5)

5.1.2 Parabolic Parameter-Dependent PDEs
We consider a parabolic parameter-dependent PDE. For any y in Y

Ayu(t, x; y) + g(t, x; y) = 0 (t, x) ∈ [0, T )×D,
u(T, x; y) = f(T, x; y) x ∈ D,
u(t, x; y) = f(t, x; y) (t, x) ∈ [0, T )× ∂D,

(5.6)

where Ay = ∂t + Ly, with the differential operator Ly is defined as follow

Ly = 1
2

d∑
i,j=1

(σ(t, x; y)σ(t, x; y)T )ij∂2
xixj

+
d∑
i=1

bi(t, x; y)∂xi ,

while g : [0, T ]×D×Y → R is the source term and f : [0, T ]×D×Y → R represents
both the terminal and boundary condition. In the parabolic case, Ly can also been
seen as the infinitesimal generator of the stochastic process X t,x;y which is solution
of the following Stochastic Differential Equation (SDE)

X t,x;y
s = X t,x;y

t +
∫ s

t
b(r,X t,x;y

r ; y)dr

+
∫ s

t
σ(r,X t,x;y

r ; y)dWr, X t,x;y
t = x ∈ D.

(5.7)
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Theorem 5.2 (Feynman-Kac formula for a backward parabolic parameter-depen-
dent PDE on bounded domain). Let T > 0 and assume that, for all y in Y

(PP1) assumptions (A1) and (A2) are satisfied for b(·; y) and σ(·; y),

(PP2) D ⊂ Rd is a bounded domain,

(PP3) the boundary ∂D is regular for X t,x;y in the sense that

∀t ∈ [0, T ],∀x ∈ ∂D,P(τ t,x;y = 0) = 1,(5.8)

with τ t,x;y = inf{s > t : X t,x;y
s /∈ D} the first exit time of X t,x;y from D,

(PP4) the functions f(·; y), g(·; y) : [0, T ]×D → R are continuous,

(PP5) there exists a continuous function u(·; y) : [0, T ]×D → R, of class C1,2 on all
open subsets of [0, T )×D verifying (5.6).

Then u(·; y) admits the following probabilistic representation

u(t, x; y) = E

[
f(τ t,x;y

T , X t,x;y
τ t,x;y
T

; y) +
∫ τ t,x;y

T

t
g(s,X t,x;y

s ; y)ds
]

(5.9)

where τ t,x;y
T = τ t,x;y ∧ T .

5.2 Error Estimation using Probabilistic Repre-
sentation

In the context of RBM, a greedy algorithm consists, at each step i + 1 ≥ 1, in
seeking y that maximizes the approximation error to enrich the current reduced
space Hi ⊂ H. This optimization problem usually takes the following form

sup
y∈Y
‖u(y)− ui(y)‖H,(5.10)

where ui(y) : O → R is some approximation of u(y) in some space Hi (e.g. obtained
by interpolation, least-squares or Galerkin projection). We assume all along this
section that both the approximation ui and the space Hi are deterministic. In
this section, we propose to interpret the squared norm of the approximation error
‖u(y)− ui(y)‖2

H as an expectation using probabilistic representations introduced in
Section 5.1. We assume here that, for any y in Y , we have

ui(y) =
i∑

j=1
αj(y)φj,(5.11)

where the family of functions (φj)j=1...i is a basis of Hi, obtained from snapshots
u(yj) selected for example by a greedy algorithm.
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5.2.1 Parameter-Dependent Elliptic PDEs
Assuming that ui(y) is regular enough (see Theorem 5.3) for all y in Y (through the
choice of the reduced basis functions φj), we have that ei(y) := u(y) − ui(y) is the
unique solution, for all y in Y , of

−Lyei(y) = gi(y) on D,
ei(y) = fi(y) on ∂D,

(5.12)

where fi(y) := f(y)− ui(y) and gi(y) = g(y) + Lyui(y). Applying Theorem 5.1, we
obtain the following probabilistic representation for ei(y) for any y in Y :

Theorem 5.3 (Feynman-Kac formula for ei(y) = u(y) − ui(y) for elliptic parame-
ter-dependent PDEs). Assume that, for all y in Y , (EP1)- (EP3) hold and ui(y) is
of class C(D) ∩ C2(D) such that Lyui(y) is Hölder-continuous on D.
Then, for all y in Y , ei(y) is the unique solution of (5.12) in C(D) ∩ C2(D) and
satisfies for all x ∈ D

ei(x; y) = E [Fi(x,Xx;y; y)]

:= E

[
fi(Xx;y

τx;y ; y) +
∫ τx;y

0
gi(Xx;y

t ; y)dt
]
.

(5.13)

In what follows we suppose that H ⊂ L2(D) is equipped with the L2-norm over D.
Using the probabilistic representation of ei(y), we prove the following reinterpreta-
tion of ‖ei(y)‖2

L2 .

Theorem 5.4 (Reinterpretation of ‖ei(y)‖2
L2). Taking V ∼ U(D) uniformly dis-

tributed on D, we have for any y in Y

‖ei(y)‖2
L2 = |D|E

[
Fi(V,XV ;y; y)Fi(V, X̃V ;y; y)

]
,(5.14)

where Xx;y and X̃x;y are two i.i.d random processes for any x ∈ D and |D| is the
Lebesgue measure of D.

Proof. We first recall

‖ei(y)‖2
L2 =

∫
D

(ei(x; y))2dx

= |D|E
[
(ei(V ; y))2

]
.

Then, by the tower property

E
[
(ei(V ; y))2

]
= E

[
E
[
Fi(V,XV ;y; y))|V

]2]
= E

[
E
[
Fi(V,XV ;y; y)|V

]
E
[
Fi(V, X̃V ;y; y)|V

]]
.

Then, by independence of XV ;y|V and X̃V ;y|V we can write

E
[
(ei(V ; y))2

]
= E

[
E
[
Fi(V,XV ;y; y)Fi(V, X̃V ;y; y)|V

]]
.

Finally, by the law of iterated expectation, we get (5.14).
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Remark 5.5. Assuming the existence of probabilistic representations for the gradi-
ent of u(y) and ui(y), it would be possible to consider probabilistic interpretation of
other squared norms of the approximation error, such as the H1-norm. Such prob-
abilistic representations have been derived in simple cases, see e.g. [47, Corollary
IV.5.2].

5.2.2 Parameter-Dependent Parabolic PDEs
Here the functions u(y), ui(y), f(y), g(y) and ei(y) depend on t and x, which we
will not precise when there is no ambiguity. In this section, the L2-norm is taken
over [0, T ]×D.

Assuming that ui(y) is regular enough (see Theorem 5.6) for all y in Y (through
the choice of the reduced basis functions φi), we have that the approximation error
ei(y) := u(y)− ui(y) satisfies, for all y in Y , the following equations

Ayei(y) + gi(y) = 0 on [0, T )×D,
ei(y) = fi(y) on {T} × D,
ei(y) = fi(y) on [0, T )× ∂D,

(5.15)

where fi(y) := f(y) − ui(y) and gi(y) = g(y) + Ayui(y). Applying Theorem 5.2,
we obtain the following probabilistic representation for the unknown ei(y) = u(y)−
ui(y).

Theorem 5.6 (Feynman-Kac formula for ei(y) = u(y)−ui(y) for parabolic param-
eter-dependent PDEs). Assume that, for all y in Y , (PP1)-(PP5) hold and assume
moreover that ui(y) is continuous on [0, T ] × D, of class C1,2 on all open sets of
[0, T )×D and such that Ayui is continuous on [0, T ]×D.
Then, for all y in Y , ei(·, y) admits the following probabilistic representation

ei(t, x; y) = E[Fi(t, x,X t,x;y; y)]

:= E

[
fi(τx;y, X t,x;y

τx;y ; y) +
∫ τx;y

t
gi(s,X t,x;y

s ; y)ds
]
.

(5.16)

Using the above probabilistic representation, we prove the following expression of
the squared L2-norm of the approximation error, following the proof of Theorem 5.4.

Theorem 5.7 (Reinterpretation of ‖ei(y)‖2
L2). Taking V ∼ U(D) uniformly dis-

tributed on D and T ∼ U(0, T ) uniformly distributed on [0, T ], we have for any y in
Y

‖ei(y)‖2
L2 = T |D|E

[
Fi(T, V,XT,V ;y; y)Fi(T, V, X̃T,V ;y; y)

]
,

where X t,x;y and X̃ t,x;y are two i.i.d random processes for any (t, x) ∈ [0, T ]×D.
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5.2.3 Probably Approximately Correct Algorithm
As explained in Chapter 4, solving the global optimization problem (5.10) is not
realistic when Y is not a discrete set. We rather consider the following discretized
optimization problem

max
ξ∈Ξ
‖u(ξ)− ui(ξ)‖H,(5.17)

where Ξ ⊂ Y is a finite set of parameters. Thus, using Theorem 5.4 or Theorem 5.7
when ‖ · ‖H = ‖ · ‖L2 , (5.17) becomes a discrete optimization problem where the
quantity to optimize is the expectation of some parameter-dependent random vari-
able.

We describe the procedure to sample XW ;ξ (with W = V for the elliptic case or
W = (T, V ) for the parabolic case):

1. draw a sample w according to the distribution of W ;

2. simulate using a time-integration scheme an approximate trajectory of the
diffusion process Xw;ξ that will be denoted X∆t,w;ξ, see (1.15).

These samples are used to provide Monte-Carlo estimates of ‖u(ξ) − ui(ξ)‖2
L2 for

different values of ξ in Ξ. However our goal is not to provide precise estimates
for ‖u(ξ) − ui(ξ)‖2

L2 for every value ξ in Ξ, which would require a high number of
samples from X∆t,W ;ξ. We rather use the PAC algorithm from Chapter 3 to solve
(5.17) in high probability with a guaranteed relative quasi-optimality, sampling less
the random variables Zi+1(ξ) = |O|Fi(W,XW,ξ; ξ)Fi(W, X̃W,ξ; ξ) (|O| is Lebesgue
measure of the physical domain O and is equal to|D| in the elliptic case and to T |D|
in the parabolic case). This algorithm returns ξi+1 in Ξ such that

P
(
E[Zi+1(ξi+1,?)]− E[Zi+1(ξi+1)] ≤ εE[Zi+1(ξi+1,?)]

)
≥ 1− λ,(5.18)

for any prescribed threshold ε in (0, 1) and probability of failure λ in (0, 1), where
ξi+1,? ∈ arg maxξ∈Ξ E[Zi+1(ξ)].

Remark 5.8. For parabolic parameter-dependent PDEs, the random variables Zi+1(ξ)
are bounded for all ξ in Ξ since τ t,x;ξ

1 ≤ T , see (5.9). This is not the case for elliptic
parameter-dependent PDEs since we usually cannot provide a deterministic bound
for the exit time τx;ξ (see (5.5)).

Remark 5.9. We chose here not to consider

Z∆t
i+1(ξ) = |O|Fi(W,X∆t,W ;ξ; ξ)Fi(W, X̃∆t,W ;ξ; ξ)

instead of Zi+1(ξ) in order to avoid dealing with the time-integration error.
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5.3 Probabilistic Greedy Algorithms
We present in Section 5.3.1 a first greedy algorithm using probabilistic error esti-
mate. Then we recall in Section 5.3.2 another greedy algorithm from [27] using
random training sets. Then these algorithms are combined in Algorithm 5.3.

A similar contribution can be found in [16], where the authors proposed a vari-
ance reduction algorithm using the reduced basis paradigm for parameter-dependent
stochastic differential equations. The analysis of this algorithm can be found in [14].

One has to be careful in this section, since neither the approximation ui nor the
reduced space Hi are deterministic. They depend on the previous (probabilistic)
steps of the greedy algorithms. We have thus to make a distinction between what
is simulated before stage i and at stage i in order to analyse these algorithms. We
will define appropriate conditional expectations before presenting each one of them.

In this section, we consider the L2-norm in order to reuse the probabilistic interpre-
tation of the error proposed in Section 5.2.

5.3.1 With Probabilistic Error Estimate
We describe a first probabilistic greedy algorithm that selects randomly the snap-
shot to enrich the reduced space using the probabilistic representation of the error
introduced in Section 5.2.

Algorithm 5.1 Probabilistic Greedy Algorithm for RBM

Require: (λi)1≤i≤n ∈ (0, 1), ε ∈ (0, 1), Ξ a discrete training set.
1: Set H0 = {0}.
2: for i = 1 . . . n do
3: Select ξi using PAC algorithm to solve maxξ∈Ξ E[Zi(ξ)] with relative precision

ε and probability greater than 1− λi.
4: Compute u(ξi) and update Hi = span{u(ξ1), . . . , u(ξi)}.
5: end for

Theorem 5.10. Take (λi)1≤i≤n ∈ (0, 1) such that ∑n
i=1 λi < 1, ε ∈ (0, 1) and Ξ a

discrete training set. Assume moreover that for all i = 1, . . . , n

‖u(y)− ui−1(y)‖L2 ≤ C‖u(y)− PHi−1u(y)‖L2 ,(5.19)

for some constant C independent from Hi−1 and y. Then, with probability at least
1 − ∑n

i=1 λi, Algorithm 5.1 is a weak-greedy algorithm of parameter
√

1−ε
C

over Ξ,
which means that for all i = 1, . . . , n

‖u(ξi)− PHi−1u(ξi)‖L2 ≥
√

1− ε
C

max
ξ∈Ξ
‖u(ξ)− PHi−1u(ξ)‖L2 .(5.20)

100



Chapter 5. Probabilistic Reduced Basis Methods

Proof. In order to analyse Algorithm 5.1, we define here the following conditional
expectation, for any i ≥ 1 and any random variable on (Ω,F ,P)

Ei[·] = E
[
·|Z<i

]
,(5.21)

where Z<i is the random variables Zj,k(ξ) for ξ in Ξ and j < i, where Zj,k(ξ) are
i.i.d. copies of Zj(ξ) generated by PAC algorithm at step j of the greedy algorithm.
Then for any element A in F , we let

Pi(A) = Ei [1A] .(5.22)

Using these notations we can write, in the case where ui is randomly determined by
the steps before i, that

‖ei(y)‖2
L2 = ‖u(y)− ui(y)‖2

L2 = Ei+1 [Zi+1(ξ)] .(5.23)

These notations being introduced, we define the following event A = ∩ni=1Ai, each
Ai being defined as

Ai :=
{
Ei[Zi(ξi,?)]− Ei[Zi(ξi)] ≤ εEi[Zi(ξi,?)]

}
.

We have Pi(Ai) ≥ 1 − λi almost surely. Now, for all ω ∈ Ω such that A is verified,
we have for any i ≥ 1

‖u(ξi)− PHi−1u(ξi)‖2
L2 ≥

1
C2‖u(ξi)− ui−1(ξi)‖2

L2

= 1
C2 Ei[Zi(ξi)]

≥ 1− ε
C2 Ei[Zi(ξi,?)]

= 1− ε
C2 max

ξ∈Ξ
Ei[Zi(ξ)]

= 1− ε
C2 max

ξ∈Ξ
‖u(ξ)− ui−1(ξ)‖2

L2

≥ 1− ε
C2 max

ξ∈Ξ
‖u(ξ)− PHi−1u(ξ)‖2

L2

Taking the square root of the obtained inequality, we obtain (5.20). We now estimate
P(A)

P(A) = 1− P(A) ≥ 1−
n∑
i=1

P(Ai)

= 1−
n∑
i=1

E
[
1Ai

]
= 1−

n∑
i=1

E[E
[
1Ai |Z

<i
]

︸ ︷︷ ︸
Pi(Ai)

]

≥ 1−
n∑
i=1

λi,

where the last inequality derives from the selection procedure of ξi, see step 3 of
Algorithm 5.1. It gives us the desired result.
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5.3.2 With Random Training Sets
We consider now a Hilbert space H. We have not mentioned how we choose Ξ so
far. For low-dimensional parameter spaces Y ⊂ Rp, i.e. when p is relatively small,
it is possible to take for Ξ some ε-net of Y with a small ε. However when p is too
high, this choice for Ξ is not reasonable since the number of parameters in Ξ grows
exponentially with p. The authors in [27] proposed a solution when p is large, by
using random training sets. We recall in Algorithm 5.2 the greedy algorithm using
these random training sets whose analysis in made in Theorem 5.11.

Algorithm 5.2 Greedy Algorithm with Random Training Sets [27]

Require: (Ξi)i=1...m2 a collection of discrete training sets.
1: Set i = 0, H0 = {0} and σ̂0 = ε

8m .
2: while σ̂i ≥ ε

8m and i < m2 do
3: Increment i← i+ 1.
4: Select ξi ∈ Ξi such that

ξi ∈ arg max
ξ∈Ξi
‖u(ξ)− PHi−1u(ξ)‖H,

and σ̂i = maxξ∈Ξi ‖u(ξ)− PHi−1u(ξ)‖H.
5: Compute u(ξi) and update Hi = span{u(ξ1), . . . , u(ξi)}.
6: end while

Before presenting the analysis of this algorithm, we recall a few notations. We
introduce the polynomial space PΛ := span{y 7→ yν := ∏p

j=1 y
νj
j : ν ∈ Λ} where ν is

a multi-index and Λ a downward closed set of multi-indices. Then QΛ := H⊗PΛ is
the set of functions from Y to H that can be written u(y) = ∑

ν∈Λ cνy
ν with cν ∈ H.

We also define Σm := ∪#Λ=mQΛ the set of functions from Y to H that admits a
m-term expansion on the monomial basis {yν : ν ∈ Np}. With these notations, the
class of functions Ar := Ar((Σm)m≥1) is composed of all the functions v : Y → H
in L∞(Y,H) such that

δm(u) := inf
P∈Σm

sup
y∈Y
‖u(y)− P (y)‖H ≤ Cm−r, m ≥ 1.(5.24)

The norm ‖ · ‖Ar can be defined on Ar by ‖v‖Ar := max{‖v‖L∞(Y,H), |v|Ar}, where
|v|Ar is defined as the smallest C such that δm(v) ≤ Cm−r.

Theorem 5.11. [27, Theorem 2] Take η, ε in (0, 1). Assume that

• y 7→ u(y) belongs to Ar for some r > 2 ;

• ‖u‖Ar ≤M0 for some M0 > 0 ;

• m is the smallest integer such that 32M0m
−r+2 ≤ ε and 24r+2m−r ≤ 1 ;

• N is the smallest integer such that (1− 3
4m2 )N ≤ η

m2 ;

• (Ξi)i=1...m2 ⊂ Y is a collection of discrete training sets obtained from N sam-
ples drawn according to the uniform distribution over Y = [−1, 1]d.
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Then, with probability greater than 1−η, Algorithm 5.2 is a γ-weak-greedy algorithm
with γ = 1/8m over Y , which means that at each step before the stopping of the
algorithm

‖u(ξi)− PHi−1u(ξi)‖H ≥ γ sup
y∈Y
‖u(y)− PHi−1u(y)‖H.(5.25)

Moreover, denoting by Hf the reduced space built at the end of Algorithm 5.2, we
have dist(M, Hf ) := supy∈Y ‖u(y) − PHfu(y)‖H ≤ ε with probability greater than
1− η.

Proof. We only repeat here the proof of [27, Theorem 4.1] for the first part of the
proof, with some details useful for the next results.

We define the following event B = ∩fi=1Bi where f is when Algorithm 5.2 stops and
Bi is defined by

Bi = {σ̂i ≥ γσi(M)H} ,
where σi(M)H = dist(M, Hi−1)H. We recall σ̂i = maxξ∈Ξi ‖u(ξ)−PHi−1u(ξ)‖H. We
observe B ⊃ ∩m2

i=1Bi. Thus we can write

P(B) = 1− P(B) ≥ 1−
m2∑
i=1

P(Bi)

= 1−
m2∑
i=1

E
[
1Bi

]

= 1−
m2∑
i=1

E
[
E
[
1Bi |Ξ1, . . . ,Ξi−1

]]
.

For fixed training sets Ξ1, . . . ,Ξi−1, Hi−1 is fixed and [27, Lemma 3.1] gives

E
[
1Bi|Ξ1, . . . ,Ξi−1

]
= P(Bi|Ξ1, . . . ,Ξi−1) ≤ η

m2 ,

which concludes our proof.

Algorithm 5.1 and Algorithm 5.2 can be combined to give Algorithm 5.3 that we
analyze in Theorem 5.12. In order to do so, we take H = L2(O) and suppose that
we consider only the L2-norm.

Algorithm 5.3 Full Probabilistic Greedy Algorithm

Require: (λi)1≤i≤m2 ∈ (0, 1), (Ξi)i=1...m2 a collection of discrete training sets.
1: Set i = 0, H0 = {0} and σ̂0 = ε

8m .
2: while σ̂i ≥ ε

8m and i < m2 do
3: Increment i← i+ 1.
4: Select ξi using PAC algorithm to solve maxξ∈Ξi E[Zi(ξ)] with relative precision

ε and probability greater than 1− λi.
5: Set σ̂i = maxξ∈Ξi

√
E[Zi(ξ)].

6: Compute u(ξi) and update Hi = span{u(ξ1), . . . , u(ξi)}.
7: end while
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Theorem 5.12. Under assumptions of Theorem 5.10 and Theorem 5.11, we have
that Algorithm 5.3 is a γ-weak-greedy algorithm over Y with γ =

√
1−ε

8mC , and with
probability greater than 1− η −∑m2

i=1 λi.

Proof. In order to analyse Algorithm 5.3, we define here the following conditional
expectation, for any i ≥ 1 and any random variable on (Ω,F ,P)

Ei[·] = E
[
·|Z<i

]
,(5.26)

where Z<i is the Ξj for j < i and the random variables Zj,k(ξ) for ξ in Ξj and j < i,
where Zk,j(ξ) are i.i.d. copies of Zj(ξ) generated by PAC algorithm at step j of
the greedy algorithm. Using these notations we can write, in the case where ui is
randomly determined by the steps before i, that

‖ei(y)‖2
L2 = ‖u(y)− ui(y)‖2

L2 = Ei+1 [Zi+1(ξ)] .(5.27)

Taking f the final step of the algorithm, let A = ∩fi=1Ai and B ∩
f
i=1 Bi with

Ai :=
{
Ei[Zi(ξi,?)]− Ei[Zi(ξi)] ≤ εEi[Zi(ξi,?)]

}
,

Bi = {σ̂i ≥ γσi(M)L2} ,

where σi(M)H = dist(M, Hi−1)H. We recall σ̂i = maxξ∈Ξi ‖u(ξ)−PHi−1u(ξ)‖H. We
first observe, that for all ω in Ω such that A ∩B is verified, we have for any i

‖u(ξi)− PHi−1u(ξi)‖L2 ≥
√

1− ε
C

max
ξ∈Ξi
‖u(ξ)− PHi−1u(ξ)‖L2 =

√
1− ε
C

σ̂i

≥
√

1− ε
8mC σi(M)L2 =

√
1− ε

8mC max
y∈Y
‖u(y)− PHi−1u(y)‖L2 .

Using A ⊃ ∩m2
i=1Ai and B ⊃ ∩m

2
i=1Bi, we can write

P(A ∩B) = 1− P(A ∪B) ≥ 1−
m2∑
i=1

P(Ai)−
m2∑
i=1

P(Bi)

= 1−
m2∑
i=1

E
[
1Ai

]
−

m2∑
i=1

E
[
1Bi

]

= 1−
m2∑
i=1

E
[
E
[
1Ai |Z

<i,Ξi

]]

−
m2∑
i=1

E
[
E
[
1Bi |Z

<i
]]
.

Then we proceed as in the proofs of Theorem 5.10 and Theorem 5.11 to conclude
the proof.

Remark 5.13. We keep the same stopping criterion as in Algorithm 5.2 for Al-
gorithm 5.3. However this stopping criterion would not be available for a practical
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implementation of Algorithm 5.3 since we cannot compute or give any precise esti-
mation of maxξ∈Ξi ‖u(ξ)− PHi−1u(ξ)‖L2 =

√
maxξ∈Ξi E[Zi(ξ)]. However, e.g. using

the bounds of the confidence intervals provided for the estimates of the expectations
by PAC algorithm, it is possible to give a practical stopping criterion that can be
used for Algorithm 5.3 while ensuring the reaching of a given precision.
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In Chapter 1 we have surveyed standard probabilistic methods for partial differ-
ential equations (PDEs), including the probabilistic representation for the solution
of a PDE and Monte-Carlo methods coupled with time-integration techniques to
get pointwise estimations of this solution. Then, in Chapter 2, we have proposed
two algorithms to approximate the global solution of high-dimensional PDEs whose
solution admits a probabilistic interpretation. These algorithms combine an adap-
tive sparse interpolation method from [22] with a control variates technique from
[49]. Our first algorithm uses the adaptive sparse interpolation method from [22]
to build adaptively the control variate from [49]. This first algorithm is not very
stable and the approximation it builds is not precise compared to the one resulting
from our second algorithm. This second algorithm is a perturbed version of the
adaptive sparse interpolation method from [22]. At each step of the algorithm, we
compute the approximation resulting from the control variates technique from [49]
on the interpolation basis rather than the interpolation of the exact solution on this
interpolation basis. Both algorithms were illustrated theoretically and numerically.
We have in particular showed how the second algorithm does not only allow to get
precise estimations of the solution on a fixed interpolation grid, such as it has been
done in [49], but on the entire domain of definition of the solution. An approxima-
tion up to machine precision was built by the second algorithm for an elliptic PDE
in dimension 20.

Other adaptive approximation techniques, such as adaptive least-squares, can be
used instead of adaptive interpolation techniques. Together with a precise study of
the time-integration error for some functional of a stochastic process, it might lead
to more advanced results of the study of the convergence of our algorithms.

Then we have studied in Chapter 3 an optimization problem over a discrete set of
random variables where the quantity to optimize is their expectation. We have com-
bined expectation estimation in relative precision [79] with a probably approximately
correct algorithm in absolute precision [38] to propose two probably approximately
correct algorithms in relative precision. The first one naively builds precise esti-
mates for each expectation to finally select the random variable with the highest
estimate. The second one adaptively samples each random variable and relies on
confidence intervals for these estimates to decide which random variable to continue
sampling and which random variable to stop sampling. Both algorithms provide
the same theoretical guarantees for their output. However the second algorithm
allows important savings in terms of number of samples used compared to the first
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algorithm.

These discrete optimization techniques could have been considered as remote from
the original interest of this thesis, which is partial differential equations. However,
such optimization techniques could be adapted to find extrema of the solution of
a PDE. Indeed, when a solution admits a probabilistic representation, it can be
written as an expectation of some random process, as we have seen in Chapter 1.

Moreover this probably approximately correct algorithm in relative precision can
be used in reduced basis methods. We have surveyed first in Chapter 4 standard
reduced basis methods with a particular focus on parameter-dependent PDEs. Then
we have proposed two probabilistic greedy algorithms based on a probabilistic inter-
pretation of the squared norm of the a posteriori approximation error. This squared
norm written as an expectation allows to select the next snapshot to enrich the cur-
rent reduced space using the adaptive probably approximately correct algorithm in
relative precision presented in Chapter 3. Our first algorithm used PAC algorithm
for snapshots’ selection on a fixed training set. Our second algorithm used PAC
algorithm for snapshots’ selection on random training sets [27]. Both algorithms
offer a probabilistic selection of the snapshots and the second one is promising for
high-dimensional parameter-dependent PDEs.

Further outlooks include goal-oriented reduced basis methods, such as it can be
encountered in Uncertainty Quantification (UQ) when we look into some quantity
of interest depending on the solution and not the solution itself. Using probabilis-
tic interpretation of the solution to derive probabilistic goal-oriented reduced basis
methods could be of high interest when the quantity of interest can be estimated
using Monte-Carlo methods. It includes in particular quantities of interest such as
integrals of the solution in a deterministic setting or statistical moments of some
functional of the solution in a stochastic setting.
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Titre : Approximation et réduction de modèle pour les équations aux dérivées partielles avec
interprétation probabiliste

Mot clés : équations aux dérivées partielles, approximation en grande dimension, méthodes
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Résumé : Nous nous intéressons dans cette
thèse à la résolution numérique de modèles
régis par des équations aux dérivées par-
tielles admettant une interprétation probabi-
liste.
Dans un premier temps, nous considérons
des équations aux dérivées partielles en
grande dimension. En nous basant sur une
interprétation probabiliste de la solution qui
permet d’obtenir des évaluations ponctuelles
de celle-ci via des méthodes de Monte-Carlo,
nous proposons un algorithme combinant une
méthode d’interpolation adaptative et une mé-
thode de réduction de variance pour appro-
cher la solution sur tout son domaine de dé-
finition.

Dans un deuxième temps, nous nous intéres-
sons aux méthodes de bases réduites pour
les équations aux dérivées partielles paramé-
trées. Nous proposons deux algorithmes glou-
tons reposant sur une interprétation probabi-
liste de l’erreur. Nous proposons également
un algorithme d’optimisation discrète probably
approximately correct en précision relative qui
nous permet, pour ces deux algorithmes glou-
tons, de sélectionner judicieusement un snap-
shot à ajouter à la base réduite en se basant
sur la représentation probabiliste de l’erreur
d’approximation.

Title: Approximation and model reduction for partial differential equations with probabilistic
interpretation

Keywords: partial differential equations, high-dimensional approximation, reduced basis meth-
ods, adaptive strategies, Monte-Carlo methods, discrete optimization

Abstract: In this thesis, we are interested in
the numerical solution of models governed by
partial differential equations that admit a prob-
abilistic interpretation.
In a first part, we consider partial differential
equations in high dimension. Based on a prob-
abilistic interpretation of the solution which al-
lows to obtain pointwise evaluations of the
solution using Monte-Carlo methods, we pro-
pose an algorithm combining an adaptive in-
terpolation method and a variance reduction
method to approximate the global solution.

In a second part, we focus on reduced ba-
sis methods for parametric partial differential
equations. We propose two greedy algorithms
based on a probabilistic interpretation of the
error. We also propose a discrete optimiza-
tion algorithm probably approximately correct
in relative precision which allows us, for these
two greedy algorithms, to judiciously select a
snapshot to add to the reduced basis based
on the probabilistic representation of the ap-
proximation error.
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