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0.1 Abstract - French Version

Dans les réseaux de communication, un ordonnanceur décide quelles ressources
doit être attribuée à quel utilisateur. Les ressources disponibles étant limitées
et les besoins des utilisateurs étant hétérogènes, le choix de l’ordonnanceur
joue un rôle important dans la conception du réseau. Avec l’augmentation de
la demande en ressources réseaux, due à l’utilisation croissante d’appareils
mobiles et notamment à l’émergence des véhicules connectés, ce problème
d’ordonnancement devient à la fois plus critique et plus complexe. Les or-
donnanceurs utilisés actuellement allouent le canal en considérant son état
actuel, et éventuellement ses états passés, mais sans tenir compte de ses états
futurs. Ceci conduit à une allocation sous-optimale des ressources, ce qui
peux avoir un effet néfaste sur les performances du réseau dans les périodes
de congestion. Dans cette thèse, nous proposons un ensemble d’algorithmes
d’ordonnancement qui exploitent l’information sur les états futurs du canal
pour améliorer l’utilité totale du réseau. Le premier ensemble d’algorithmes
est conçu comme une amélioration de l’ordonnanceur à équité proportion-
nelle dont l’objectif est de maintenir un certain équilibre entre d’une part un
débit total élevé et d’autre part une certaine équité entre utilisateurs garan-
tissant à chacun un niveau proportionnelle de service. Le deuxième ensemble
d’algorithmes effectuent conjointement contrôle de puissance et allocation du
canal, toujours dans le but de maximiser une fonction d’utilité basée sur le
concept d’équité proportionnelle. Les expériences numériques réalisées avec
des modèles simples de mobilité ainsi qu’avec des traces générées en utilisant
l’environnement SUMO montrent que les algorithmes proposés améliorent
l’utilité, à la fois lorsque le réseau comporte une seule station de base et
lorsqu’il en comporte plusieurs. Un des inconvénients des algorithmes pro-
posés est qu’à chaque instant de décision il est nécessaire de résoudre un
problème d’optimisation convexe de grande dimension, ce qui peut être rédhi-
bitoire pour certains scénarios. C’est pourquoi, dans la dernière partie de la
thèse, nous explorons une méthode basée sur un réseau de neurones profond
pour apprendre les décisions des algorithmes proposés. Cette méthode per-
met de générer des décisions beaucoup plus rapidement tout en ayant une
faible erreur d’approximation.
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0.2 Abstract - English Version

In communication networks, a scheduler decides which network resources are
allocated to which user. Due to limited available resources and heteroge-
neous user requirements, the choice of the scheduler plays an important role
in network design. The increasing use of mobile devices, and in particular
connected vehicles, is expected to drive the demand for network resources
even higher making the scheduling problem more critical and complex. The
current generation of schedulers base their decisions mainly on the past and
the current channel state information but do not take into account the fu-
ture channel state information. This leads to a sub-optimal allocation of
resources which can then have a significant and adverse impact on network
performance during periods of saturation. In this thesis, we propose a set
of scheduling algorithms based on future channel state information with the
objective of improving the total network utility. The first set of algorithms
are designed as an improvement to the proportional fair scheduler whose ob-
jective is to maintain the balance between getting high total throughput and
guarantee everyone getting a proportionally level of service. The second set
of algorithms perform joint power control and channel allocation again with
the objective of maximizing the proportional fair utility. Numerical exper-
iments conducted with simple mobility models as well as traces generated
using the SUMO mobility environment show that the proposed algorithms
improve the utility in both single and multi-base stations networks. One of
the downside is that, at each decision instant, the proposed algorithms need
to solve a high dimensional convex optimization problem that may be com-
putationally prohibitive in some real-time scenarios. In the final part of the
thesis, we explore a deep neural network based method to learn the decisions
of the proposed algorithms. This method is able to generate decisions much
faster while maintaining a low approximation error.
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Chapter 1

Introduction

1.1 Motivation of the thesis

When a connected vehicle moves on the road, it needs internet connectivity
for exchanging a high volume of information for services such as security,
driving conditions, local information, infotainment, etc. Due to mobility,
wireless connectivity is the only communication solution that is possible.
Compared to wireline networks, wireless resources are much more scarce
and expensive which makes resource allocation decisions more important in
wireless networks, especially for vehicular networks.

In cellular networks, proportional fairness is the de-facto standard cri-
terion that guarantees each user a proportional level of service while main-
taining a high system throughput. Recently in 3G and 4G networks, oppor-
tunistic schedulers have been incorporated in order to maximize proportional
fairness [12]. Proportional fair (PF) scheduling algorithms [37] are typical
in those opportunistic schedulers. The PF algorithm allocates resources to
users based on current and past information and has been proven asymptot-
ically optimal when the wireless channel follows a stationary process and the
sojourn time of users are long. However, those assumptions do not neces-
sarily hold for vehicular traffic where the channel state is not stationary due
to mobility and the sojourn time is not enough long to get asymptotically
property. Therefore, PF algorithms are not necessary optimized for vehicular
systems.

With the connected vehicle technology [25, 30, 71], future information can
be accessed to improve efficiency of the schedulers, since the more information
we have, the better the scheduling decisions that can be made. One of the
main difficulty for wireless scheduling is that the exact data rate of a wireless
link can be very difficult to predict even on short-time scales due to various

9



10 CHAPTER 1. INTRODUCTION

phenomenon (fading, shadowing, e.g.) that are specific to wireless networks.
However, it is possible to obtain a partial information on the future channel
conditions in the form of estimations. For example, the future positions of
a user can be predicted over a short time period if the user accepts to share
information about his travel itinerary. Another possibility for estimating the
future positions of a user is to compute his most probable path by combining
up-to-date information on road traffic conditions with historical data on past
travel itineraries of the user [36, 31]. Position of the users may not give the
exact data rate, but still it can be useful in the sense that if a user is far
from the Base Station (BS), he should get a lower data rate and conversely
if he is close to the BS, he should get a higher rate with a high probability.
In this thesis, we shall assume that the mean of channel gains, or the mean
data rate can be obtained thanks to users’ predicted future paths.

1.2 Problems addressed in the thesis

In this thesis, we consider two scheduling problems for vehicular systems.
The first problem is channel allocation, and the second one is a joint problem
of channel allocation and power control. Both problems share the same
objective which is to maximize the proportional fairness between users. We
shall assume that the future positions of the users are predicted over a short
time period (some next seconds) and from that we assume the means of future
data rates (or means of future channel gains) are known for that period. We
take that partial information on the future channel condition into account to
improve allocation decisions.

1.3 Thesis contributions

The contributions of this thesis can be divided into three main parts which
are presented in three chapters: Chapter 3 which is based on [51], Chapter
4 which is based on [52] and Chapter 5.

The first part of the contributions, which is presented in Chapter 3, deals
with channel allocation for improving the proportional fairness between users
using partial knowledge on future channel condition. In more details, we as-
sume that the future positions of moving users are predictable over the next
few seconds. Combining the positions with the Signal-to-Noise-Ratio (SNR)
maps, the mean of future data rates can be computed. We present two
heuristics using the short-time future information to improve fairness utility.
We also propose an idea that mixes two types of time scaling to reduce the
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dimension of the original optimization problme. We then compare the per-
formance of the two heuristics against other existing algorithms using SUMO
which is an open-source road traffic simulator. The simulation results show
that the heuristics outperform other algorithms. However, the computation
times of the heuristics are quite heavy comparing to the other algorithms
since they require solving a convex optimization problem frequently.

The second contribution, which is discussed in Chapter 4, concerns a
joint problem of channel allocation and power control. Again based on a
partial view of future channel conditions, we propose two heuristics which
are based on those proposed in 3. We then evaluate the heuristics on three
types of model: stationary channel gains with fixed mean, slowly-varying
channel gains and mobility model where the channel gains vary in every
channel allocation slot. For the above three models, the heuristics are shown
to outperform the other existing algorithms in which future information is
not available. However, the same problem of high computational times for
one of the heuristics forces us to omit it out from numerical evaluations for
mobility model.

The last part of the contributions is presented in Chapter 5 in which
we propose using a machine learning based method, and more specifically a
Deep Feedforward Neural Network (DFNN), to learn one of the allocation
heuristics (the STO1 heuristic, the one that requires more computational
time) in order to have an approximate algorithm which is many times faster.
A Deep Feedforward Neural Network (DFNN) can approximate a continu-
ous function with low error, but we provide a counter-example proving that
unfortunately STO1 is not continuous. We then characterize the set of all
discontinuities, and propose several ordering schemes to reduce the impact
of these discontinuities on the learning time. Numerical results show that
the proposed ordering schemes enable to converge faster. Although STO1 is
not continuous, we show that the dual values of the problem are continuous
with the input features. We thus propose learning the dual values instead of
the primal ones. Numerical results shows learning with dual values is faster.

1.4 Thesis organization

In Chapter 2, we provide background material on resource allocation in wire-
less network. That includes connected vehicle technology, basics concepts
for scheduling and resource allocation in wireless networks (SNR, Shannon
channel capacity, fading effects, data rate, throughput, fairness, utility maxi-
mization, etc.). In addition to a short reminder about the mathematical tools
used in this thesis (Deep Feed-forward neural networks, KKT condition, etc),
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we also present a short review of previous works on channel allocation and
power control, including potential methods and explanation for why we use
or not use them.

In Chapter 3, we consider channel allocation problem for vehicular net-
works in a multiple BS setting. In that chapter, we first state the assumptions
and define the objective function. We then discuss some existing algorithms
that we shall use for comparison. After that we present our heuristic algo-
rithms that use a partial view of future channel information for improved
proportional-fair utility. Finally, we employ SUMO for evaluation of the
heuristics and the existing algorithms.

In Chapter 4, we consider the joint channel allocation and power control
problem for a single BS in three settings: stationary channel, slower time scale
varying channel and mobility model where the channel gains vary at a faster
time scale. We first state the problem and assumptions, and then present an
existing algorithm that does not take future information into account. We
then describe our heuristic algorithms that use future information to improve
proportional-fair utility. The numerical comparisons for the three settings for
both existing and heuristics are shown at the end.

In Chapter 5, we present a supervised learning based method for learning
one of our heuristic algorithms. We first recall the resource allocation prob-
lem that we consider in Chapter 3 in a single BS case, then we recall STO1
algorithm and state the learning problem that we want to do in this chap-
ter. We define input-output for the DFNN model, then discuss about the
continuity of that setting and how to reduce discontinuity. Numerical results
are shown after that. At the end we discuss several research directions that
can be done in the future including a reinforcement learning based approach,
that we did not succeed in but is nevertheless interesting to discuss.

Finally, some conclusions are drawn in Chapter 6, where we also discuss
possible extensions of this work and future research directions.



Chapter 2

Background material

2.1 Connected Vehicle Technology

Connected vehicle technology enables vehicles and infrastructures to com-
municate and share transportation information using wireless technology.
Thanks to a high-speed wireless connection, a connected car can carry on-
board many applications to improve traffic safety, security and comfort (such
as infotainment, parking assistance).

The connected vehicle concept refers to not only the vehicles and the
infrastructure but also to applications, services, and technologies that enable
a vehicle to interact with its environment.

There are five ways a vehicle can connect to the surroundings and com-
municate with them:

• connecting to the infrastructure (V2I), which lets the vehicle be aware
of the infrastructure surrounding it and also lets the infrastructure
obtain information from the vehicle.

• communicating between vehicles (V2V), the purpose of this is to share
information about speed, position, etc. between neighbouring vehicles
in order to reduce congestion, avoid accidents and increase positive
impact on the surroundings.

• exchanging information with the Cloud (V2C), this allows the vehicle
to exchange information about and for applications (such as driving
assistance, infotainment, and vehicle maintenance).

• communicating with personal mobile devices with the Pedestrian (V2P)
to perceive the environment in order to improve safety and mobility.

13
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• interconnecting with Everything (V2X) including other connected ve-
hicles, infrastructure and personal mobile devices.

Such types of connectivity help a connected vehicle and the system be
better aware of each other and of the surroundings in order to have more
intelligent decision during its mobility.

2.1.1 eHorizon project by Continental Digital Service
in France

Electronic Horizon is an embedded software for cloud-based virtual sensor
network for exchanging detailed road network information (map data, vehi-
cle’s mobility model and the road ahead) between the cloud and the vehicles
to help the vehicle make intelligent decisions. It has been a subject of several
academic papers [25], [30],[71] and practical tests [1].

With the Electronic Horizon project (eHorizon), Continental wants to
make mobility safer, proper and smarter. Continental perceives digital trans-
formation as a tremendous lever to strengthen its contribution to these three
objectives. This relates to the transformation of the manufacturing and use
of automotive systems, but beyond the whole mobility experience.

Continental Digital Services France1 (CDSF) is a new subsidiary of Con-
tinental Automotive France which was created to address these opportunities
around connected vehicles, autonomous vehicles and mobility services. The
goal is to merge on-board intelligence with that of the in-house platform
”in-the-cloud”. For each connected vehicle, a cloud assistant can access in-
formation in real time far beyond the horizon of its on-board sensors. On
a larger scale, it makes possible global analysis on the history of movement
flows of all vehicles, while preserving user confidentiality.

The new services considered in the eHorizon project of the automotive
supplier Continental thus integrate ever more numerous and important inter-
actions between vehicles that have become connected and their environment.
These new interactions will link various pieces of equipment in the vehicle,
and in particular important components for passenger safety such as brakes,
steering or obstacle detection radars, with signaling elements (traffic lights,
solid lines non-crossing, level crossings, etc.) or other users of the traffic
network (other vehicles, cyclist, pedestrians, speed bump, etc.).

Among the new services, some, such as engine monitoring or increased
visibility, will be critical. However, they will have to share the available

1This thesis is supported by a contract with Continental Digital Services in France.
It is in the eHorizon project which is about connected vehicles, autonomous vehicles and
mobility services.
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bandwidth with non-critical applications such as multimedia and infotain-
ment. By definition, critical services require a higher quality of service than
non-critical services for whom the quality can be adjusted according to the
circumstances. A vehicle will be driven in very varied environments - urban
environment, traffic jams, highways, tunnels, remote areas. Each of these en-
vironments has a different effect on the quality of communication between the
vehicle and the infrastructure, which can lead to large variations in through-
put. Despite these variations, critical services and applications should be
as accessible as possible in all of these environments. However, since the
communication channels will be shared between the different services and
applications, if no particular protection measure is taken, critical services,
for which it is important to ensure a minimum quality, will suffer from these
variations as much as the non-critical services.

The eHorizon as described above is a complex system that creates numer-
ous potential challenges. In [25] the author presents nine big challenges that
need to be solved before eHorizon can be released. In this thesis, we address
two of these nine problems: how to distribute information efficiently and how
to establish fair access to resources. The first objective of this thesis is to
design an efficient resource allocation algorithms (with and without power
control) by using predicted future path provided by the eHorizon infrastruc-
ture. The information on the future path will be used to derive a partial
view of future channel conditions and improve scheduling decisions. The sec-
ond objective is to make the algorithms simpler by using machine learning
based methods that are fast and that can be potentially implemented in real
vehicles.

2.2 Wireless connectivity solutions for con-

nected cars

Connected vehicles are expected to interact closely with their environment
by exchanging a large volume2 of information related to security, driving
conditions, local information or infotainment. Due to vehicular mobility,
wireless connectivity is the only solution for the electronic horizon described
above.

Wireless channels have several characteristics that distinguish them from
wired channels. First, the bandwidth provided by current wireless technolo-
gies is much smaller and much more expensive than wired technologies, and
second, the data rate of a wireless link can be unpredictable even on short-

24TB per day per autonomous car [2].
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time scales due to various phenomenon (fading, shadowing, e.g.) that are
specific to wireless communication. A consequence of the unpredictability
is that the channel allocation decisions can be much inefficient in wireless
networks.

One novel feature of connected vehicles is that the itinerary of a vehicle
will be known in advance to the scheduler based on a program allowing
future path prediction. From that itinerary, we can compute the distance of
the vehicle to the BS and obtain a partial view of future channel conditions.
With this additional information on the channel conditions, improvements
can be expected in the scheduling efficiency. In chapters 3 and 4, we shall
present algorithms which profit from the future channel information and
improve.

In the following sections, we present an overview of resource allocation in
wireless networks as well as some concepts of convex optimization, Markov
decision processes and machine learning which will prove to be useful is the
next chapters.

2.3 Basics concepts for resource allocation in

wireless networks

2.3.1 Channel Capacity and Signal-to-noise ratio (SNR)

Channel capacity is the maximum achievable rate at which information can
be transmitted over a communications channel. It is the highest information
rate that can be attained with arbitrary small error.

Following the model in [70], the Shannon channel capacity and Signal-to-
noise ratio (SNR) (in additive white Gaussian noise case) of a moving user
can be computed as:

C = B log2 (1 + SNR) = B log2

(
1 +

P · d(t)−γ

N ·B

)
,

where C is the Shannon capacity of the user, B is the bandwidth of the
channel, P is the transmit power of the BS, d is the distance of the user to
the BS, N is power of the noise and interference over the bandwidth, and γ
is the path loss exponent.

2.3.2 Fading effects

Fading is the variation of the channel strength in wireless communications
which can be divided into two types: large-scale fading and small-scale fading.
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Large-scale fading is caused by path loss of signal due to the distance to the
BS and shadowing by large objects such as building, hills, etc. Large-scale
fading is typically independent of the frequency. Small scale is the deviation
of the signal strength considered over very small distances due to multi-path
effects. When the signal is sent, it can reach the user via many different paths
due to reflection, diffraction and scattering. Small scale fading is frequency
dependent. For more details about fading and the many models proposed to
capture fading we refer to [69].

Fading makes the SNR (and Channel Capacity) become random process.
In our work, we will assume SNR is a random process by multiplying with a
random number as follow:

γ(t) = η · f(d(t))

where γ(t) is SNR at time t, d is distance to the BS and η is a random number
between (1− ε, 1 + ε) where ε stands for noise level and is a number in (0, 1).
The noise in the SNR needs not be necessarily multiplicative as above, we
use it for our numerical results and believe it works for other types of noise
as well as the mean of SNR is known to the scheduler.

2.3.3 Data rate, Throughput

Data rate is the potential rate of data (bits per second) that can be transmit-
ted. It is not the actual amount of data that is transmitted every time but
the theoretical amount that can be sent or received on a link. Throughput
is the practical amount of data (bits per second) that the link can achieve.
For example, the throughput is often less than data rate since the user may
not be served in some time-slots due to the presence of other users. In our
problem, we shall use the term ’maximizing throughput’, it actually means
’maximizing total throughput of all users over a long time horizon’.

2.3.4 Maximum Utility and Generally Fair Scheduling
Problem

Maximum Utility Scheduling Problem

In this thesis, we shall focus on the network utility maximization problem
for connected vehicles. For wired networks, this problem was formulated in
[45] and has been applied in various wireless settings [10], [66]. In brief, each
user stays in the system for a certain duration during which the scheduler
assigns it some bandwidth. This allocation can either be continuous in time
or in blocks. The utility of the user is defined as some function of the total
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Figure 2.1: Simple scenario illustrating the trade-off between network
throughput and user fairness.

bandwidth it receives. The network utility maximization problem is to assign
bandwidth or to schedule users in such a way so as to maximize the sum
of the utilities of all the users. In [45], a large class of polynomial utility
functions parameterized by the degree of the polynomial were introduced.
They generalized the log utility function [32], [33].

Formally, a network utility maximization problem amounts to finding a
vector x∗ = (x∗s)s which is an optimal solution of the optimization problem

(U)

{
max

∑
s Us(xs)

subject to x ∈ X ,

where xs is the rate allocated to user s and Us is the utility function of
that user. As the objective function represents the total utility of all users,
problem (U) is often referred to as the maximum utility problem.

In general, the feasible set X is defined as the set of all non-negative
vectors x ≥ 0 satisfying a capacity constraint of the form Ax ≤ C. In this
constraint, C is a vector specifying the capacity of each resource j, and A is an
incidence matrix such that aj,s = 1 if user s uses resource j, and 0 otherwise.
To illustrate these notations, let us consider the simple example depicted in
Figure 2.1. In this example, there are 2 links of capacities C1 = C2 = 1.5
Mbps and 3 users (or flows). User 1 uses only link 1, user 2 uses only
link 2, while user 3 uses both links. As a consequence, an allocation is a
vector (x1, x2, x3) ≥ 0 satisfying the capacity constraints x1 + x3 ≤ 1.5 and
x2 + x3 ≤ 1.5.

Of course, the optimal rate allocation x∗ depends on the utility functions
Us. What is an appropriate choice for these functions? As we shall see below,
the answer depends on the properties that we expect for the rate allocation.
To illustrate this, let us consider different choices of the utility functions.
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Allocation maximizing the total network throughput

A somehow natural choice for the utility functions is Us(xs) = xs, in which
case the utility of a user s is the rate xs allocated to it, and the objective
function of problem (U) represents the total network throughput

∑
s xs. The

optimal allocation can then be computed as the solution of the following
linear program {

max
∑

s xs
subject to Ax ≤ C, x ≥ 0.

This choice of the utility functions however often raises fairness issues
between users, as can be illustrated with the example of Figure 2.1. Indeed,
for this example, we look for a vector (x1, x2, x3) ≥ 0 maximizing x1 +x2 +x3

subject to the constraints x1+x3 ≤ 1.5 and x2+x3 ≤ 1.5. It turns out that the
optimal solution of this simple linear program is x1 = x2 = 3

2
and x3 = 0. In

other words, the optimal allocation gives the maximum possible rate to users
1 and 2, and nothing to user 3. This is of course not something acceptable
in a real setting, where a certain fairness between users is required.

Max-min fair allocation

The concept of max-min fairness was introduced in [57]. A max-min fair
allocation is defined as follows.

Definition 2.3.1 (Max-min fairness). A feasible allocation x of resource to
the users is max-min fair if for each user s, xs cannot be increased without
decreasing the allocation xs′ of another user s′ such that xs′ ≤ xs.

The max-min fair allocation can be easily computed using a simple water-
filling algorithm. Initially, the algorithm assigns to all users the same rate r,
that is, xs = r for all s. Starting from the value r = 0, the algorithm increases
the value of r until the capacity constraint

∑
s aj,sxs = r

∑
s aj,s ≤ Cj is

satisfied as an equality for one of the resource j. The water-filling algorithm
then set the rates of all users using this resource j to Cj/

∑
s aj,s, and starts

a new iteration with the other users, until the rates of all users are set.
For the example in Figure 2.1, the water filling algorithm starts from

x1 = x2 = x3 = r, and then increases r until either x1 + x3 = 2r = 1.5 or
x2 + x3 = 2r = 1.5. In this simple case3, the solution is of course x1 = x2 =
x3 = 3

4
. This solution is particularly fair to the users since they all get the

3If the capacity of the second link was C2 = 2 Mbps instead of C2 = 1.5 Mbps, the
water-filling algorithm would need another iteration, and the solution would be x1 = x3 =
3
4 and x2 = 5

4 .
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same rate, but this greater fairness is obtained at the price of a lower network
throughput. Indeed, the total network throughput is only 3× 3

4
= 2.25 with

the max-min fair allocation, instead of 2 × 3
2

+ 0 = 3 with the allocation
maximizing the total network throughput.

Proportional Fair (PF) allocation

Between the two extreme allocations discussed above, there are in fact many
other allocations making a trade-off between network throughput and user
fairness. A particularly appealing allocation is the Proportional Fair (PF)
allocation, which was defined by F. Kelly in [32] as follows.

Definition 2.3.2. A feasible allocation x of resource to the users is said
proportionally fair if for any other feasible allocation x′ we have:∑

s

x′s − xs
xs

≤ 0.

Equivalently, the PF allocation can be defined as the solution of the
following optimization problem:

(PF )

{
maxs

∑
s log (xs)

subject to Ax ≤ C, x ≥ 0

As a consequence, when Us(xs) = log(xs), the maximum utility problem
(U) is called the PF scheduling problem. We note that the logarithm forbids
to allocate nothing to a user, and at the same time it makes it non profitable
to allocate too much capacity to a single user (concavity).

For the example in Figure 2.1, the PF allocation is a vector (x1, x2, x3) ≥ 0
maximizing log(x1)+log(x2)+log(x3) subject to the constraints x1+x3 ≤ 1.5
and x2 +x3 ≤ 1.5. The optimal solution of this simple non-linear program is
x1 = x2 = 1 and x3 = 1

2
, yielding a network throughput equals to 2×1+ 1

2
=

2.5. This allocation is less fair than the max-min fair allocation (the user
using two resources has half the rate of the other users), but it yields a greater
network throughput.

α-Fair allocation

The concept of α-fairness was proposed in [45] as an attempt to unify all
previously proposed fairness concepts. Given α ≥ 0, an α-fair allocation is
the solution of the maximum utility problem (U) in which the utility Us(x)
is defined for x ≥ 0 as follows
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Us(x) =

{
x1−α

(1−α)
if α 6= 1, α ≥ 0,

log(α) if α = 1.

The formula of Us(x) is continuous both in x and α. Obviously, the
PF allocation is a special case of the α-fair allocation obtained when α = 1.
When α tends to 0+, the α-fair allocation tends to maximize the total network
throughput. When α tends to 2, some delay can be reduced. Finally, when
α goes to +∞, the α-fair allocation tends to the max-min fair allocation, as
proven in [45].

For a detailed discussion about network fairness, utility and resource al-
location, we refer to [60]. In this thesis, we shall concentrate only on the PF
scheduling problem.

2.4 Channel Allocation and Power Control

2.4.1 Some proposed problems in scheduling

The first works on dynamic scheduling for wireless channels appeared in early
90s [67, 68]. By dynamic, we mean that the scheduler uses the information
on the channel conditions and the queue-length of the nodes. In [67], the
scheduling problem was to determine which wireless nodes to activate based
on the queue-length information of the nodes. The wireless channel induced
the constraint that certain nodes could not be simultaneously activated due to
the interference generated by the transmissions. They proposed an algorithm
of type MaxWeight that activates the set of nodes that have the highest
weight, where the weight of subset of nodes is a linear combination of the
queue-length and the data rates of the nodes in the subset. The advantage of
this algorithm is that it has maximal stability, that is, as long as the arrival
rates to the nodes are within the capacity region of the system, the queues
will be stable. In [68] similar results for parallel link and binary channels that
could be active or inactive were shown for the policy Longest Queue First
(LQF). In general, such optimality results do not carry over to more general
topologies as was shown in [46]. However, they show that MaxWeight does
better than backpressure in terms of message delays in networks of large size.
Due to difficulty in the exact analysis of such algorithms, some works turned
towards asymptotic analysis. In [61], it was shown that a generalized version
of MaxWeight minimized corresponding polynomial cost on the queue-length
in the heavy-traffic regime. A bound, independent of the number of nodes,
on the message delay as a function of the load was obtained in [50]. The
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above mentioned studies were concerned primarily with stability or with
bounds on performance. Besides, there are many other different objectives
and algorithms have been proposed [49], [32], [45], [53], [29]. In [49], the
author consider the problem that makes a trade-off between minimal energy
and queue length of network delay. In [53] the maximizing total probability
of departure of users is considered. In [29], the authors consider a joint
optimization of channel allocation and transmit power control problem for
multiplexing schemes OFDM.

Another line of research has investigated fairness which can be under-
stood as follows: when the resource is not sufficient for all demand, it should
be allocated fairly to all users and this discipline should be the fundamental
principle in resource allocation [59]. However, there are many ways to define
fairness for resource allocation [57], [32], [45]. The definition of proportional
fair scheduling was first proposed in [32] and then was generalized to α-fair
in [45] as mentioned above. The concept of max-min fairness, which was also
discussed in Section 2.3.4, has been proposed in [57].

Regarding the time horizon, there are two categories that are short-term
objective [39], [14] and long-term objective [29], [62]. Short-term fairness tries
to optimize over a short time period, while long-term tries to optimize over
longer horizon or until the end of the users’ sojourn. Short-term objective
can be good for QoS guarantee since it concentrates on solving the current
QoS and also good for real time processing since it solves a smaller dimension
problem comparing to long-term objective. But when the resource is insuffi-
cient for the demand, short term objective is difficult to be satisfied. Another
disadvantage of short term fairness is total throughput (over whole horizon)
may not be high. Beside resource allocation, the transmission power levels
can also be assigned differently for users to increase the network efficiency
[29, 52, 39]. In [29], a joint optimization of channel allocation and transmit
power control in long term horizon problem for multiplexing schemes OFDM
is considered, in which the power is the same for every time-slot but can be
divided for many users and many sub-channels. In [52], the power can be var-
ied and so can be different between time-slots but have to satisfy an average
constraint. For detailed discussions about fair scheduling, we refer to these
surveys [60], [48]. In this thesis, we shall restrict ourselves to proportional
fair scheduling for a long-term horizon, with two problems: the first one is
for only resource allocation and the second one is for joint power control and
resource allocation.

Proportionally fair scheduling has been studied extensively in the past
both for stationary [33], [37] and non stationary channel system [43], [3].
Many results have been proposed for both types of system. In [37] the authors
presented an algorithm named PF and then proved asymptotic optimality of
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the algorithm in stationary environment. Many authors have studied for PF
[37, 26, 41, 4, 22]. In [37] (2004) H. Kushner and P. Whiting give an analysis
for PF algorithm behavior. It is proved that the PF algorithm is asymptot-
ically optimal in stationary environment. Before [26]. J. Holtzman proved
a similar result but restricting for two classes of users with different fading
characteristics. In [41] (2008) the authors give a raw analysis (there are some
reasonable guesses without proof) for PF scheduling gain comparing to RR
(round robin scheduler) in stationary environment. They assume that the
instantaneous data rate follows Gaussian distribution with the mean and de-
viation depending on SINR (signal to interference-plus-noise ratio). In [4]
(2012) the authors also considered PF scheduler in stationary environment
but more general situation with in OFDMA systems for bursty traffic con-
ditions. They used the method that presented in [41] to infer the analytical
closed-form expressions for the average throughput, Jain’s fairness index, and
packet delay. In [22] (2018) the authors compute analytically a lower bound
for competitive ratio of two primal-dual algorithms (that covers PF schedul-
ing) for a class of online convex optimization problems. The classes of α-fair
objective functions satisfy their sufficient condition and they show that the
lower bound for worst case competitive ratio of PF to the optimal is equal to
1/2. However, it is also shown in many papers that PF may not be optimal
work for mobile systems [43], [51]. In [43], a real-time implementation of
the proportional fair based on predicted future data rates of the users was
proposed. In [3], the rate is assumed to be accurately predicted in every
time-slots, then an optimization problem with shorter horizon over that the
rate can be predicted is solved.

2.4.2 Models and Methods proposed in Scheduling

Many models and methods has been proposed for scheduling in the past. In
this section, we list the methods in our knowledge and explain why we use
or not use them.

Whittle index based method for multi-armed bandits has been proposed
for scheduling in Wireless Network [5], [53]. In [53], the authors model the
scheduling problem as a restless multi-armed bandits where each user in-
side the system can be considered as a bandit, then employ Whittle index
method to have an heuristic index based algorithm. The main assumptions
are straight road (which is simple topology map) and same velocity for every
user. These assumptions are strict, but they help to simplify the model, to
show indexability and to formulate Whittle index. Although the objective
considered in the paper is not proportional fair, the method can applied for
the proportional-fair scheduling problem. However in general, the Whittle
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index formula is not easy to compute [5], [9]. The complexity of finding
Whittle index makes it become hardly possible for complex system with het-
erogeneous users in much more complex map rather than straight road.

Gradient based method has been proposed in several papers, both not
using future information [33] and using future information [43]. In [43] the
authors consider the PF scheduling, and propose an algorithm using a method
looks like gradient based, it is an index policy with index of an user equals
to the ratio of its current rate over the sum of past rate and current rate
and estimated future rate. The estimated future rate is computed based
on estimated future allocations. The authors propose three way to estimate
it: (i) round-robin, (ii) blind search and (iii) local search. We shall discuss
below only round-robin because blind search is in fact the same as the PF
scheduler which chooses the one that maximizes the ratio of its current rate
over the sum of past rate and current rate. Finally, in each time slot, local
search iteratively computes until T and then allocates according to the index
policy making it a computationally expensive method. Also in the paper, the
authors indicate that for local search to be effective, the prediction error has
to be low for the whole horizon. If the prediction error is high then local
search can be worse than round robin. The method based on round robin
estimation is simpler and is showed to work well compared to the current PF
scheduler. The formula, is in fact, one step gradient descent with starting
point equal to round robin. It could be better if we do more iteration rather
than stop at one step to come closer to the optimal. Also, gradient based
can be applied for simple constraints such as choosing one user at one time
slot, but difficult for more constraints such as average power control as the
one we consider in [52].

In [3], the authors consider a long-term fairness which is the same ob-
jective function with us. But they assume the rate is accurately predicted
in every time-slots. An optimization problem with shorter horizon over that
the rate can be predicted is solved. There are two restrictions for using this
method: firstly, exactly prediction in every small time slot is hard especially
for fast fading; secondly, solving the optimization with original size (one slot
equals to 2 ms in 3G networks, 500 slots in every seconds, thus of the order
of thousands in dimension for each user if considered in some next seconds)
makes a large dimension problem and requires exhaustive calculation, espe-
cially if we have to repeat it in every small time-slot.

Deep Reinforcement Learning is also proposed for scheduling for mobile
users [78], [6]. In [6], the authors consider a RSU scheduling problem in V2I
communication with the objective having an efficient scheduler that preserves
the battery power and extends the network’s lifetime while promoting the
safety of the driving environment and satisfying acceptable QoS levels. Then,
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deep reinforcement learning is applied to produce a well-performing policy.
In our first problem with resource allocation (without power control), we
also model our system as a Markov decision process and apply reinforcement
learning to propose heuristic algorithms. The heuristic works well when the
dimension is small but not so well when the dimension is large. Two main
disadvantages of our problem if using reinforcement learning is that, firstly,
we do not have a terminal state; secondly, the state space is extremely large.
Detailed discussion about this is placed in the chapter 5.

Scheduling problems are often convex optimization problems and there-
fore decomposition methods [54] can be applied. There, the constraints can
be added into the objective function with a multiplier to reduce the num-
ber of constraints. The dual multiplier can be considered as a penalty. We
have tried but observed that it works for stationary channel but not for non-
stationary channel. It is worth investigating how to design a good penalty
(multiplier) for mobile system.

2.5 Technical parts

2.5.1 KKT conditions for solution of Convex Optimiza-
tion Problem

In this section, we consider a property of a solution of a convex optimization
problem, that is Karush-Kuhn-Tucker conditions recalled in [21]. We will use
it to discuss about the continuity of the STO1 function which is one of our
heuristic algorithms. Consider this following convex optimization:

maxO(α)
subject to gm(α) ≥ 0, m = 1, . . . ,M
and hn(α) = 0, n = 1, . . . , N

(CO)

where O is the concave function and the feasible set defined by {gm}m are
differential concave functions and {hn}n are affine functions.
For our problem later, the objective function isO(α) =

∑K
i=1 log

(∑T
j=1 αijrij

)
,

the inequality constraints are αij ∈ [0, 1] and the equality constraints are∑K
i=1 αij = 1, j = 1, . . . , T , which satisfy the strong duality via Slater’s con-

dition, since there exist α0 in the feasible set such that gm(α0) > 0 for any m
and hn(α0) = 0 for any n. Now we can characterize the solution of the above
optimization problem, through Karush-Kuhn-Tucker (KKT) conditions in
the following theorem:

Theorem 2.5.1. Suppose that α∗ ∈ RT , λ∗ ∈ RM and µ∗ ∈ RN satisfy the
following conditions:
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1. (Primal feasibility) gm(α∗) ≥ 0,m = 1, ...,M and hn(α∗) = 0, n =
1, ..., N ,

2. (Dual feasibility) λ∗m ≥ 0,m = 1, ...,M,

3. (Complementary slackness) λ∗mgm(α∗) = 0,m = 1, ...,M, and

4. (Lagrangian stationary)∇α

(
O(α∗)+

∑M
m=1 λ

∗
mgm(α∗)+

∑N
n=1 µ

∗hn(α∗)
)

=
0.

Then α∗ is an optimal solution of (CO). Furthermore, if strong duality holds,
then any optimal solution of (CO) α∗ must satisfy the conditions 1 - 4 with
some constants λ∗ ∈ RM

+ and µ∗ ∈ RN .

2.5.2 Supervised learning with Deep Feedforward Neu-
ral Networks

In this section, we briefly present the background of supervised learning with
DFNN which we will use in Chapter 5, for more detail about this method we
refer to [23], [75].

According to Wikipedia [75], supervised learning is a learning task that
is to learn the relation of output as a function of input based on a bunch
of examples of pairs input-and-output which is called training data. The
relation can be derived from those examples by analyzing the training data
and an inferred function will be then produced. A learning algorithm is
considered as good if it can generalize the relation of input and output, i.e,
it is able to determine outputs of unseen inputs with small error. So the
objective here is to find the function representing as well as possible the
relation of input-output.

Mathematically, denote by X ,Y the space of input and output respec-
tively. Let f ∗ be the true function that represents the relation between input
and output. However, if the true function is unknown, our task is to find
an approximate function f that is inferred from examples taken from train-
ing data (xn, yn)Nn=1. Our objective is thus to find f such that it minimizes
empirical risk:

Rerm(f) =
1

N

N∑
n=1

l(yn, f(xn)),

where l is a loss function which measures how far yn is from f(xn), l is not
necessarily a distance but it looks like a distance in the meaning that it
is small if the difference between yn and f(xn) is small. Deep Feedforward
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Figure 2.2: Graph of a DFNN.
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Figure 2.3: Computational Graph of a neural (unit) in a single layer percep-
tron.

Neural Networks (DFNN) or multi-layer perceptrons are the typical mod-
els4 in deep learning. DFNN refers to a class of function which is of this
form f(x) = f (n)(f (n−1)(· · · f (2)(f (1)(x))) · · · ) where each f (k), k = (1, n) is
a singer feedforward neural networks or single-layer perceptron, which is a
combination of a linear and non-linear function (often called activation as
well). Each f (k) will be called kth-layer, and n will be called number layers
or the depth of the model. The layer of f (k) for k = (1, n− 1) is called hidden
layer since it is not shown in the output. The last layer f (n) is called the
output layer. The graph of a DFNN is shown in figure 2.2. Each single layer
contains many neurals (units), the computational graph of one such neural
is shown in figure 2.3.

Finding a good DFNN function means finding a good architecture (how
many layers, which linear and non linear function in each layer, and the

4we shall use model and function to mean the approximate function interchangeably.



28 CHAPTER 2. BACKGROUND

width of each layer) and then their weights (parameters). Finding a good
architecture is not an easy job [64]. In our result we shall compare some
architectures by doing experiments. After fixing the architecture, we have to
find good parameters, by minimizing Rerm(f) defined above.

2.5.3 Deep Reinforcement Learning by Modeling as a
Markov Decision Process (MDP)

We shall also model the problem as an MDP and use Deep Q Networks
(DQN) approach. So the following part is dedicated to defining a MDP (see
[55], [8] for more details). Even though we were not successful with this
model to produce a good heuristic algorithm, it is nevertheless interesting to
discuss about it. The main discussion will be placed in section 5.8.

Markov Decision Problem Formulation

We are concerned with a control model which can be defined by the five-tuple
(X,A, A(x)x∈X , P

a
x,y, r(x, a)) as follows:

1. X is a state space, which is the set of all states of the system under
observation;

2. A Borel space A, called the action space;

3. A family (A(x), x ∈ X) of non-empty measurable subsets A(x) of A,
where A(x) denotes the set of actions or decisions available to the
controller when the state of the system is x ∈ X.
Let K := {(x; a)|x ∈ X, a ∈ A(x)} be the set of all feasible state-action
pairs.

4. A measurable real-valued function r(x, a) on K, called the one step
reward function, which is assumed to be measurable in a ∈ A(x) for
each fixed x ∈ X.

5. P a
x,y is the transition probability from state x to state y if action a is

chosen for state x at the beginning of period;

At time n = 1, 2, 3, ..., the history hn = x1, a1, ..., xn−1, an−1, xn is observed
and the action an is selected.
A policy π is a sequence π1, π2, .... of regular transition probabilities πn from
Hn = (X × A)n−1 ×X to A such that

πn(A(xn)|x1, a1, ..., xn−1, an−1, xn) = 1.
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For any initial state x and any policy π define a probability measure P π
x on

((X×A)∞,B((X×A))∞) and the expectation with respect to P π
x is denoted

by Eπx.

Definition 2.5.2. A policy ϕ is called Markov, if decisions are non-randomized
and depend only on the current state and time, an = ϕn(xn). A policy ϕ is
called stationary if decisions are non-randomized and depend only on the
current state (not depend on time), an = ϕ(xn).

In our work, we consider only stationary policies. Below we present the
discount-factor reward and value iteration which is a method to find the
optimal policy by iterating the value function. In fact, in our formulation
we consider an average reward instead of discounted total reward. But dis-
counted reward makes the formula easier to update, and we shall see that
when the discount factor is large enough, the optimal policy does not change
compared with that of the average reward although it takes long time to
converges to the optimal.

Definition 2.5.3. (Reward criterion) With initial state x and policy π we
define the finite-horizon expected total reward as the following:

V π
γ,n(x) =

n∑
t=1

γtEπx(r(xt, at))

where xt, at are state and decision at time t, and γ ≥ 0 is a discount factor.
Infinite-horizon expected total reward is defined by:

V π
γ (x) =

∞∑
t=1

γtEπx(r(xt, at))

where 0 ≤ γ < 1.
Average expected reward per time is defined by:

V π(x) = lim sup
n→∞

1

n

n∑
t=1

Eπx(r(xt, at)).

For any objective function gπ(x), define g(x) = supπ∈Π g
π(x) be the value

function. A policy π is called optimal, if gπ(x) = g(x) for any x ∈ X.
Value function for infinite-horizon expected total rewards Vα(x) satisfies the
Bellman equation:

Vγ(x) = max
a∈A(x)

{r(x, a) + γ
∑
y∈X

P a
x,yVγ(y)}, for any x ∈ X.
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And vice-versa, if the policy π is such that V π
γ (x) satisfies the above equation

then π is the optimal policy.
We define the action-state function of policy π- Qπ as follows: Given a

policy π we define:

Qπ(x, a) = E
(
r(x, a) + γr1 + γr2 + · · ·

)
= r(x, a) + γ

∑
x′

Pa(x, x
′)Qπ(x′, π(x′))

= r(x, a) + γ
∑
x′

Pa(x, x
′)Vπ(x′)

And define the Q-Action and state function (depends on the state and
action) as follows:

Q(x, a) = max
π

Qπ(x, a)

= r(x, a) + γmax
π

∑
x′

Pa(x, x
′)Q(x′, π(x′))

= r(x, a) + γmax
π

∑
x′

Pa(x, x
′)Vπ(x′)

= r(x, a) + γ
∑
x′

Pa(x, x
′)V (x′)

Intuitively, Q function give us: how good the action a is in state x.
Because V (x) = maxa′ Q(x, a′) so we have Bellman’s equation for Q:

Q(x, a) = r(x, a) + γ
∑
x′

Pa(x, x
′) max

a′
Q(x, a′)

The iterations of value function and Q function cost too much memory
when the state space is large. Therefore, we will not apply the traditional
methods to update Q. Instead, we learn an approximate function Q(x, a, θ) of
Q by find the good parameters for θ. The algorithm to find this approximate
function in our work is Deep Q-learning which is presented later.

Some algorithms that we will apply
The update rule that we tried for Q-learning is based on temporal difference
(TD) learning, which is used for both V-learning and Q-learning.
Update rule for value learning:

V (s)←− V (s) + α[r + γV (s′)− V (s)]

Update rule for action value learning:

Q(a, s)←− Q(a, s) + α[r + γQ(a′, s′)−Q(a, s)]
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where α is learning rate, γ is discount factor.
The reason we use that rule is that:

• From Monte Carlo methods which try to estimate the average returns

Vn+1 :=

∑n
k=1 wkGk

Cn
= Vn +

wn
Cn

(Gn − Vn) (2.1)

where Cn =
∑n

k=1wk, (Gi) is a sequence of returns starting at the same
state (i.e many trials)

• Vn is average return after n trials.

• Replace Gn by r+γV (s′) i.e current reward and next state reward with
discount factor.

Now we explain the algorithms in detail.

1. Traditional Q-learning, [65] (which is Off-policy learning)

ALGORITHM 1: Traditional Q-learning

Result: action value function Q.
Initialize Q.;
for each episode do

initialize state x;
for each step, x is not terminal state do

play and observe r, x′;
Q(a, x)←− Q(a, x) + α[r + γmaxa′ Q(a′, x′)−Q(a, x)];

end

end

Difficulty of this algorithm: Because of large state space, there is
not enough memory to store the table of Q(x, a) for all (x, a). Therefore
we will try another way to find an approximate function for Q in the
below algorithm.
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2. Deep Q-Network (DQN)

ALGORITHM 2: Deep Q-Network (DQN)

Result: Approximate function for Q (denote by Q(x, a, θ))
Initialize memory D;
Initialize action-value function;
for each episode do

Initialize s1 = {x1} and φ1 = φ(s1);
for t = 1, T do

choose action a-action follows ε−greedy;
at = maxaQ(φ(st), a; θ);
play at and observe rt, xt+1;
st+1 = st, at, xt+1 then φt+1 = φ(st+1);
Store (φt, at, rt, φt+1) in D;
Sample random minibatch from D, (φj , aj , rj , φj+1);

yj =

{
rj for terminal
rj + γmaxa′ Q(φj+1, a

′; θ−) otherwise
;

Perform a gradient descent step on (yj −Q(φj , aj ; θ))
2;

end

end



Chapter 3

CHANNEL ALLOCATION

In this chapter, we shall assume the transmit power of the BS is fixed and
shall consider the channel allocation problem for improved proportional-
fairness for vehicular users. As the channel conditions experienced by ve-
hicular users in cellular networks vary as they move due to distance and
fading effects as described in 2.3.1, we investigate how proportional fairness
could be improved by knowing a partial information of future data rates in
mobile system which is a non-stationary environment. Based on electronic
horizon (described in 2.1.1), we shall assume the future positions of vehic-
ular users are known in some next seconds, since either the users agree to
share their itineraries or it can be predicted based on their moving history.
Combining that information with Signal-to-Noise Ratio (SNR) maps, we as-
sume the mean future rates are known. Using the information, we propose
two algorithms which predict future allocation over a short-term horizon at
regular time intervals, and then uses this extra-knowledge for improved on-
line channel allocation. The prediction of future allocation is obtained by
solving a relaxed version of the shorter horizon problem based on a projected
gradient method. Using event-driven simulations, we compare the perfor-
mance of the proposed algorithm against those of other channel allocation
algorithms, including the Proportional Fair (PF) scheduler, which is known
to be optimal in stationary environments, and the (PF)2S scheduler, which
was devised for mobiles nodes in non-stationary environments. The simu-
lated scenarios include scenarios with multiple base stations and are based
on realistic mobility traces generated using the road traffic simulator SUMO.
Simulation results show that the proposed algorithms outperform the other
algorithms and that exploiting the knowledge of future radio conditions al-
lows a significantly better channel allocation.

33
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3.1 Introduction

A central and challenging problem in cellular networks is channel allocation,
that is, to decide which mobile user the base station (BS) should serve in
each time slot. To this end, the BS gathers the channel state information
(CSI) from users in order to know their radio conditions, which are mainly
determined by their distances to the BS and by fading effects. As maxi-
mizing the overall throughput would lead to the starvation of distant users
(those with the worst potential data rates), today cellular networks allocates
the channel to the user with the highest potential rate proportionally to
its time-average throughput1. With this strategy, users with comparatively
low allocated throughput are assigned a higher priority even when they are
in worse channel conditions. This scheduling algorithm, which is known as
the Proportional Fair (PF) scheduler, provides a fair and efficient sharing of
bandwidth between users in the sense that it maximizes the aggregate log-
arithmic utility of obtained throughput in a fixed population of permanent
users [32].

A number of studies have been devoted to the analysis of the performance
of PF scheduling in wireless networks [10, 66, 11, 79, 80, 13], assuming either
a static population of permanent users, or a dynamic setting in which ran-
dom finite-size data transfers come and go over time. In both cases, it was
shown that PF scheduling strikes a good balance between the overall network
throughput and the degree of fairness among users. However, most of the lit-
erature is based on the assumption that users experience stationary channel
conditions. This was partly motivated by the fact that a simple index-based
allocation algorithm had been shown to be optimal for stationary channels
[37]. Thus, even if they take into account the fast channel variations due
to multi-path propagation, most studies ignore the variations of the channel
conditions on slower time scale dues to user mobility. Taking into account
such slow fading effects is particularly important for vehicular users as the
mean of the Signal-to-noise ratio (SNR) improves as a vehicle comes closer
to a BS and then worsens as it moves away. Another usual assumption which
is not realistic for vehicular users is the assumption of long sojourn times.
Indeed, a vehicle typically stays in the coverage range of a BS for only a few
minutes.

In this article, we investigate to which extent the quality of channel alloca-
tion could be improved by exploiting information on future radio conditions
in non-stationary environments. Our main motivation comes from connected

1The throughput is different from the data rate. While the latter is potential rate at
which a user can be served, the former can be smaller since in some slots a user may not
be served due to the presence of other users.
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vehicles which will use cellular networks to exchange informations related to
security and driving conditions with their environment. If the trajectory of
a car is known or can be estimated from historical travel data and/or obser-
vations of the surrounding environment, then one can obtain good statistical
predictions of the SNR that will be experienced by the car in the near future.
In turn, these predictions could be used by the BS to achieve a channel allo-
cation with a higher utility than that of the PF algorithm. In this chapter,
we propose a channel allocation policy exploiting this extra knowledge and
evaluate the improvement in utility that it yields in non-stationary environ-
ments. Note that such an improvement in utility is not possible under the
assumption of a stationary channel as knowing the car trajectory does not
bring any new information on the future data rates.

The idea of using information on future radio conditions for channel al-
location was already explored in [7]. It uses future information by looking
at channel state of users in a few small time-slots. Different from their ap-
proach, we do not look at the predicted channel state in few time slots which
may be different between users and difficult to predict correctly due to fast
fading. Instead, we base our allocation on average rate the user will experi-
ence during the time interval this user stays inside the coverage range of the
BS.

Another closely related work is [43] in which, using SNR maps obtained
by measurements, the authors first show that PF scheduling may perform
poorly in the presence of slow fading. They then propose a scheduling algo-
rithm which is similar to PF in that the channel is allocated to the user with
the highest potential rate proportionally to its total throughput. This new
algorithm, which is called (PF)2S differs however from PF in that the total
throughput includes an estimation of the future throughput whereas PF con-
siders only the already allocated throughput. In order to estimate the future
throughput, the authors proposed three methods: round-robin, blind esti-
mation, and a local search heuristic. it was shown that even with this rough
estimation of the future throughput, this new index leads to an improved
utility compared to the PF algorithm in non-stationary environments. The
channel allocation policy proposed in this chapter is similar to the (PF)2S
scheduling policy except that we use a different method for estimating future
throughputs of vehicles. For the purposes of numerical comparisons, we shall
assume in this chapter that (PS)2S uses the round-robin policy. It was stated
in [43] that, out of the three estimation methods, round-robin is the most
robust to prediction errors.
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3.1.1 Contributions

We present a heuristic algorithm for non stationary channels that improves
the total utility of users compared to the PF and the (PF)2S algorithms. Our
heuristic is similar to the (PF)2S algorithm, except that instead of computing
an estimation of future throughput from a round-robin allocation, we com-
pute it as the solution of a utility maximization problem over a short-term
horizon assuming that the means of the future data rates are known over this
short horizon.

The original utility maximization problem being computationally com-
plex, we employ three techniques to obtain a lower complexity heuristic: (i)
we relax the integer constraints of the original problem; (ii), we shorten the
time horizon over which the problem is solved; and (iii) we compute the so-
lution over macroscopic time slots instead of microscopic ones that helps the
algorithm run in real time. The relaxation turns the problem into a convex
one and allows for its efficient resolution. Shortening of the time horizon
and solving over macroscopic slots reduces the number of variables in the
problem and decreases the computation time.

We compare the performance of the proposed algorithm against those
of other channel allocation algorithms using event driven simulations. The
simulated scenarios include scenarios with multiple base stations and are
based on realistic mobility traces generated using the open-source road traf-
fic simulator SUMO with vehicles moving at either equal or different speeds.
Simulation results show that the proposed algorithm outperform other algo-
rithms and that exploiting the knowledge of future radio conditions allows a
significantly better channel allocation.

A preliminary version of the chapter limited to scheduling in a single
base station setting and not including experiments with SUMO appeared in
ASMTA2019 [51].

3.1.2 Organisation

In Section 3.3, we state the assumptions and define the objective function.
In Section 3.4, we give some background on PF and (PF)2S algorithms.
In Section 3.5, we present our heuristic for improving the utility based on
estimations of future average data rate. Section 3.6 contains the numerical
results for scenarios with homogeneous as well as heterogeneous vehicles.
Finally, we end the chapter in Section 3.7 with a few open problems.
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3.2 Background

3.2.1 Projection on simplex

Let S ⊂ RK be a a-simplex, i.e,

S := {x = (x1, x2, ..., xK)
∣∣ K∑
i=1

xi = a, xi ≥ 0 ∀i = 1, 2, ..., K}.

It is obvious that S is a convex set, therefore the projection on S is unique. In
[17], the authors present several ways to compute the projection, we shall use
one of them as the following. Let y = (y1, y2, ..., yn) be a point in RK , then
its projection on simplex x can be computed following the below algorithm.

ALGORITHM 3: The Projection on Simplex Algorithm

1. Sort y into u: u1 ≥ 1 ≥ u2 · · · ≥ uK .
2. Set H := max{h|1 ≤ h ≤ K,

(∑h
r=1 ur − a

)
/h < uh}.

3. Set τ :=
(∑H

h=1 uh − a
)
/H.

4. For i = 1, 2, ...,K, xi = max{yi − τ, 0}.

3.2.2 Projection on feasible set D

Denote by D =
{
α ∈ [0, 1]K×T :

∑K
i=1 αij = 1, j = 1, 2, ..., T

}
the feasible

set of the relaxed problem that we shall present in (I) in section 3.5. The
set D is not a simplex, therefore we cannot apply directly the algorithm in
3.2.1. However, for every j the feasible set of allocations is indeed a simplex.
We can therefore obtain a projection on D by projecting independently on
simplexes corresponding to each of the time-steps. Indeed, the set D is a
Cartesian product of J simplexes: D = D1 ×D2 · · · ×DJ where

Dj = {aj = (αij)i=1,K ∈ [0, 1]K ,
K∑
i=1

αij = 1}

for all j = 1, 2, ..., J .
Since (Dj)j are simplexes, we can compute the projection on Dj following
3.2.1. The projection on D can thus be computed by the simple following
lemma:
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Lemma 3.2.1. If Y = (yij)i=1,K,j=1,J ∈ RK×J , then

ΠD(Y ) = ΠD1(Y1)× ΠD2(Y2)× · · · × ΠDJ (YJ),

where Yj = (yij)i=1,K.

Proof. (of the lemma 3.2.1) Denote by Z = ΠD1(Y1)×ΠD2(Y2)×· · ·×ΠDJ (YJ).
It is easy to check that for any X ∈ DK×J then 〈Y − Z,X − Z〉 ≤ 0.

As described in [17], the complexity of finding ΠDj is equal to K log(K)
by observation in practice, and equal to O(K2) in the worst case. Therefore
the complexity of finding projection on D = D1 × D2 · · · × DJ is equal to
JK log(K) in practice.

3.3 Problem formulation

We consider a geographical region with a network of roads that is served by
a set of M base stations {B1, B2, ..., BM}. The region is partitioned into M
non-overlapping sub-regions each of which represents the coverage area of a
base station. Users (vehicles, bicycles, pedestrians, etc) enter the network,
move along different routes, and leave the network. Figure 3.1 shows an
area within the city of Toulouse which will be later used in the numerical
experiments. In the figure, the width of the box is approximately 1 km, and
the height is around 0.65 km. The data for BS location can be found on the
website2 of the French Frequency Agency (ANFR), which manages all radio
frequencies in France.

Every δ = 2 ms each BS has to decide which user to serve in a decentral-
ized fashion. We shall assume that the data rate received by a user depends
on the distance between the BS and that user. The data rate depends upon
the SNR which itself can vary along the road. In our numerical experiments,
we assume that the data rate decays exponentially as in formula (3.1) below

rm(x) =

{
0 if d(x,Bm) > dm,

1 + κ e−d(x,Bm)/σ otherwise,
(3.1)

where x is the position of the user, Bm is the position of BS m, d(x,Bm) is the
Euclidean distance between positions Bm and x, and κ and σ are adjustable
parameters. The scheduling algorithm we propose does not however require
this assumption to work.

Denote by T the time horizon over which the scheduling decisions are
made, and let K be total number of users who pass through the considered

2https://data.anfr.fr/anfr/portail

https://data.anfr.fr/anfr/portail
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Figure 3.1: A selected area of Toulouse which is covered by three BSs
(LTE1800) of the French mobile network operator Free Mobile.

region during that time. For simplicity, we assume that T is a multiple of δ.
Our objective is to achieve the proportional-fairness between users, which is
described by the following optimization problem (see, e.g., [10, 43, 3]):



maximize O(α) =
K∑
i=1

log

(
M∑
m=1

T∑
j=1

αmij r
m
ij

)
subject to ∑K

i=1 α
m
ij = 1, j = 1, . . . , T, m = 1, . . . ,M,∑M

m=1 α
m
ij ≤ 1, j = 1, . . . , T, i = 1, . . . , K,

αmij ∈ {0, 1}, j = 1, . . . , T, , i = 1, . . . , K, m = 1, . . . ,M.

(I)
where:

• αmij is a binary decision variable which is equal to 1 if the channel of
BS m is allocated to user i at time j, and 0 otherwise.

• rmij is the potential data rate of user i at time j if it served by BS m.
This potential data rate is given by rmij = rm(xij), where xij is the
position of the user at time j and the rate function rm(x) is defined in
formula (3.1).

Constraints
∑K

i=1 α
m
ij = 1 imply that each BS serves exactly one user at

each time j. Constraints
∑M

m=1 α
m
ij ≤ 1 imply that each user i is served

by at most one base station at each time j. Finally, the last constraints
αmij ∈ {0, 1} imply that a feasible solution is a binary vector α. To make

the problem easier to solve, we will remove the constraints
∑M

m=1 α
m
ij ≤ 1 by

assuming that a user can only be served by the closest BS.



40 CHAPTER 3. CHANNEL ALLOCATION ALGORITHMS

3.4 Existing Algorithms

In this section, we present some of the existing heuristics for channel alloca-
tion. These heuristics will be later compared with the heuristics we propose
in this chapter.

3.4.1 Greedy allocation

In the greedy scheme, the channel is always allocated to the vehicle with the
maximum rate, that is, at each time-slot j the channel of BS m is allocated
to a vehicle i∗m ∈ argmaxi(r

m
i,j).

3.4.2 Proportional Fair (PF) allocation

Remark that problem (I) is a discrete problem. Even though the number
of options is finite, it is NP-hard to find the optimal solution (see, e.g.,
[43]). Nevertheless, a simple heuristic, called PF-EXP [37], is known to be
optimal when the number of users is fixed and that the data rates rmi,j are
time stationary and ergodic, that is, there is no correlation between rmi,j and
rmi,j+1.

The PF algorithm chooses the user with the highest ratio of the current
rate to the observed throughput, that is, it chooses the user i who maximizes
the ratio rmi,j/Ai(j − 1), where

Ai(j) = Ai(0) +

j∑
t=1

M∑
m=1

rmi,jα
m
i,j,

is the total allocated rate to user i up to time j (Ai(0) is the initial value for
each user). In the long-run when T goes to ∞, this algorithm was shown to
be optimal for a stationary and ergodic channel and for a fixed number of
users [37].

As already mentioned, the stationarity assumption is not necessarily true
for road traffic when all users always move instead of resting in the same
place. As can be seen in Fig. 3.1, when users move on a given path, their
rate can vary with the distance to the BSs. Thus, the rate process observed
by vehicles need not be stationary, and the PF-EXP algorithm need not be
optimal for vehicles moving in a network.

3.4.3 Predictive Finite-horizon PF Scheduling ((PF)2S)

In [43], a modified PF algorithm based on predicted future rate was proposed.
This algorithm works as follows:
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• It predicts future data rates r̂mi,j of cars in every future slot,

• it estimates future channel allocations α̂m based on the data rate pre-
dictions. As mentioned in Sec. 3.1, the estimations can be computed
using either a round-robin policy, a blind estimation, or a local-search
method. It is stated in [43] that, out of these three, round-robin is
more robust to prediction errors. Given this, we shall use Round Robin
Estimation (RRE) as the estimation policy for (PS)2S in the numeri-
cal comparisons. As a reminder, RRE assumes that future time slots
are allocated in a round-robin manner and each user receives an equal
number of slots.

• for each time slot j, the BS m chooses the user who maximizes Mm
i,j,

where

Mm
i,j =

rmi,j∑j−1
t=1 α

m
i,tri,t + α̂mi,jri,j +

∑T
t=j+1 α̂

m
i,tr̂

m
i,t

. (3.2)

The index Mm
i,j looks similar to that of the PF-EXP algorithm but includes

the future allocation. It is related to the gradient of the utility function in
(I). In the case of one BS (so that we can omit the index m), provided the
future channel allocations α̂ can be predicted correctly, an optimal solution
to problem (I) can be obtained, as stated in Proposition 3.4.1.

Proposition 3.4.1. If there exist α∗ satisfying α∗i∗,j = 1 and α∗i,j = 0,∀i 6= i∗j ,
where

i∗j ∈ arg max
i∈{1,2,...K}

ri,j∑j−1
t=1 α

∗
i,tri,t + α∗i,jri,j +

∑
t=j+1 α

∗
i,tri,t

, (3.3)

then α∗ is the optimal solution of problem (I).

The proof of proposition 3.4.1 is placed after the proof of proposition
3.5.1, since we shall use proposition 3.4.1 as a corollary of 3.5.1.

Note that Condition (3.3) is a sufficient condition for α∗ to be an optimal
solution of problem (I), but not a necessary condition.

In the next section, we present our heuristic. The motivation for the
heuristic comes from the observation that the formula of (PF)2S looks like
one-step of the gradient descent with starting point chosen according to the
round robin policy when the Round Robin Estimation is used. We may
expect to get a better allocation if we do more iterations instead of only one,
ensuring that in every iteration the allocation is in the feasible set. To do this
we employ a projected gradient algorithm, as described in the next section.
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3.5 Projected gradient approach

We shall assume that each BS allocates the channel independently, that is,
in a decentralized manner and without coordination with the other BSs.
The channel allocation is done by the BS by taking into account the future
data rates of the users currently attached to this BS. Since each BS decides
independently, we omit the index m of the BS for simplicity.

We propose two heuristic algorithms, Short Term Objective 1 (STO1) and
Short Term Objective 2 (STO2), which are presented in the following. The
two heuristics use a different method (to be explained below) for estimating
the future throughput than the round-robin used in the (PF)2S algorithm.
This estimate is based on optimizing the objective with the future mean
channel gains as an estimate for the actual realizations. This is similar in
spirit to Stochastic Model Predictive Control [44]. The two heuristics differ
in the time-scale on which updated future information is used as well as in
the dimension of the optimization problem solved at each decision epoch.

Before describing the two heuristics, we explain the ideas common to
them. The first step is to relax the integer constraints on the allocation
variables in optimization problem (I), so as to obtain the following convex
optimization problem

maximize O(α) =
K∑
i=1

log

(
T∑
j=1

αijrij

)
subject to ∑K

i=1 αij = 1, j = 1, . . . , T,
αij ∈ [0, 1], j = 1, . . . , T, i = 1, . . . , K,

(II)

which is very similar to the original problem, except that αij can now be
non-integer in [0, 1]. The relaxed problem (I) can be solved efficiently using
the projected-gradient algorithm based on the formula for the projection on
a simplex as described below.

Denote by D =
{
α ∈ [0, 1]K×T :

∑K
i=1 αij = 1, j = 1, 2, ..., T

}
the fea-

sible set of the relaxed problem. We can obtain a projection on D by pro-
jecting independently on simplexes corresponding to each of the time-steps.
The procedure for computing the projection ΠD on the set D is formalized
in 3.2.2.

The projected gradient algorithm then works as follows. Starting from an
arbitrary initial solution α0 ∈ D, the algorithm computes at each iteration
n = 1, 2, . . . a new feasible solution using the formula

αn+1 = ΠD(αn + εn∇O(αn)), (3.4)
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where ∇O(αn) is the gradient of the objective function at iteration n and
εn ∈ (0, 1) is the step size at that iteration. A new feasible solution is
computed until convergence is reached. In our numerical examples, we have
however limited the number of iterations to 20.

Denote by ∇̃O(α) = ΠD(α+ε∇O(α))−α with the step size ε ∈ (0, 1) small
enough. Proposition 3.5.1 below says that if the iterations (3.4) converge,
then the resulting allocation is optimal.

Proposition 3.5.1. If α∗ ∈ D and ∇̃O(α∗) = 0 then α∗ is the optimal value
of the relaxed problem (I).

Proof. (proof of Proposition 3.5.1) The optimal is obtained by proving that
for any α ∈ D,

∇O(α∗)(α∗ − α) ≤ 0.

From lemma 3.2.1, it follows that it is sufficient to prove the above property
on D1. Assuming O is convex function on D1, we shall prove that if α∗ =
(α∗i )i=1,...,K ∈ D1 satisifes

ΠD1(α
∗ + ε∇(α∗)) = α∗ (3.5)

where ε positive, then

∇O(α∗)(α∗ − α) ≥ 0, for any α ∈ D1

i.e, α∗ is global optimal of O. Indeed, without loss of generality, we assume
that

α∗1 + ε
∂O

∂α∗1
≥ α∗2 + ε

∂O

∂α∗2
≥ ... ≥ +α∗M + ε

∂O

∂α∗M
≥ ... ≥ α∗K + ε

∂O

∂α∗K

where M is the largest index such that

1

M

M∑
i=1

(
α∗i + ε

∂O

∂α∗i
− 1
)
≤ α∗M + ε

∂O

∂α∗M .

Denote by τ = 1
M

∑M
i=1

(
α∗i + ε ∂O

∂α∗i
− 1
)
, by proposition 10 in [17] we have:

ΠD1(α
∗+ε ·∇(α∗)) =

(
α∗1 +ε ∂O

∂α∗1
−τ, α∗2 +ε ∂O

∂α∗2
−τ, ..., α∗M +ε ∂O

∂α∗M
−τ, 0, ..., 0

)
.

Using (3.5) to compare term by term we get:

1. α∗M+1 = · · · = α∗K = 0,

2. α∗M+1 + ε ∂O
∂α∗M+1

≤ τ, · · · , α∗K + ε ∂O
∂α∗K
≤ τ . Now, from the first item we

have α∗M+1 = · · · = α∗K = 0. It implies ε ∂O
∂α∗M+1

≤ τ, · · · , ε ∂O
∂α∗K
≤ τ ,
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3. ε ∂O
∂α∗1

= · · · = ε ∂O
∂α∗M

= τ .

Thus,

ε∇O(α∗)(α∗ − α) =
K∑
i=1

ε
∂O

∂α∗i
(α∗i − αi)

=
M∑
i=1

ε
∂O

∂α∗i
(α∗i − αi) +

K∑
i=M+1

ε
∂O

∂α∗i
(α∗i − αi),

=
M∑
i=1

τ(α∗i − αi) +
K∑

i=M+1

ε
∂O

∂α∗i
(α∗i − αi),

=
K∑
i=1

τα∗i −
K∑
i=1

ταi +
K∑

i=M+1

(
ε
∂O

∂α∗i
− τ
)
(α∗i − αi),

= τ − τ +
K∑

i=M+1

(
ε
∂O

∂α∗i
− τ
)
(0− αi)

≥ 0.

The last sum is less than 0 since all its terms are greater than or equal to
0.

Proof. (proof of Proposition 3.4.1) In fact the condition (3.3) implies that
∇̃O(α∗) = 0 and from Proposition 3.5.1 we can conclude.

Solving (I) using the projected gradient algorithm (3.4) requires the knowl-
edge of all the future arrivals which may not be available. Further, the hori-
zon T could be potentially large (tens of minutes giving roughly of the order
of 300000 small slots). This means the BS will have to solve a very high
dimensional problem every 2 ms.

For the heuristics, we circumvent these two issues as follows. First, we
solve (I) for only cars that are actually present in the coverage range and
ignore the future arrivals. Second, we reduce the computational complexity
in two ways: (i) we solve the problem over a shorter horizon; and (ii) we
compute the future allocations on a larger time-scale rather than the short
time-scale of channel allocation slots δ, which is usually in the order of a
few milliseconds. The distance travelled in δ ms by a vehicle is typically too
small to observe large changes in the mean channel conditions. Therefore,
we define the notion of a big-slot over which there is noticeable change in
the mean channel conditions. For example, a big-slot can be 500× δ, giving
a value of 1 second for the big-slot when δ = 2 ms. The exact value of a
big-slot is an adjustable parameter that can be set by the system designer.
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past small-slots 

Future big-slots
Current

small-slot

small-slots

Figure 3.2: Small-slot and Big-slot in STO1.

Next, we describe the two heuristics.

3.5.1 Projected gradient short term objective algorithm
(STO1)

Let ∆ be the size of the big-slot in absolute time units and let m = ∆/δ be
the number of small slots in a big-slot. If r̄ij is the average rate in slot j for
user i, then ρ̄iτ =

∑τm+t
j=(τ−1)m+t+1 r̄ij, is the total average data rate that user

i will get in big-slot τ . Define ᾱiτ to be the allocation in future big slot τ .
These allocations can be interpreted as the fraction of small slots that user i
will be allocated in the big-slot τ . We illustrate these two types of time slot
in figure 3.2

In small time slot t, let ai(t) =
∑t

j=1 αijrij be the cumulative allocated
rate of user i until time slot t, and K(t) be the number of users inside the
coverage range.

The STO1 heuristic works in two steps. At each small slot t, it first
solves the allocation for the current small slot and the future big-slots. In
the second step, it allocates the channel to the user with the largest fractional
allocation for the current slot. These steps are described below:

• Step 1– solve the following optimization problem over a short-term
horizon of J big-slots using the projected gradient algorithm:

maximize

K(t)∑
i=1

Ui

subject to ∑K(t)
i=1 αit = 1,∑K(t)
i=1 ᾱiτ = 1, τ = 1, . . . , J

αit, ᾱiτ ∈ [0, 1], , τ = 1, . . . , J, i = 1, . . . , K,

(III)

where

Ui = log

(
ai(t− 1) + αitrit +

J∑
τ=1

ᾱiτ ρ̄iτ

)
.
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The decision variables in Problem (III) are the allocations in the current
small slot, αit, and the allocations in the future big-slots, ᾱiτ . Since
the future allocations are only computed on the time-scale of big-slots,
there is reduction of factor m in the number of variables in (III).

• Step 2 – allocate the channel to the user who has the largest allocation
computed by (αit)i=1,K(t) that is one user which is arg maxi αit.

The complexity of numerically optimal α computed in step 2 is equal to
20(J + 1)K̄ log(K̄) where 20 is the number of iteration steps of projected
gradient in Step 1, K̄ is average number of users inside the coverage range,
J is the number of big slots.

3.5.2 Projected gradient short term objective algorithm
2 (STO2)

In STO2, we further reduce the complexity by recomputing the future alloca-
tions only at the beginning of a big-slot. The future allocation thus computed
is then used until the end of this big-slot. If one new user arrives to the sys-
tem in the middle of big-slot, we just ignore it for this big-slot and wait until
the beginning of next big-slot to update the state . Once the allocations for
future big-slots are computed, then in every small slot of this big-slot, we
apply an index-based policy as in (3.2).

The steps for STO2 are:

• Step 1 – In each big slot τ , solve the following problem using projected
gradient:

maximize

K(τ)∑
i=1

Ui

subject to ∑K(τ)
i=1 ᾱiτ = 1, τ = 1, . . . , J,

ᾱiτ ∈ [0, 1], τ = 1, . . . , J, i = 1, . . . , K,

(IV)

where

Ui = log

(
ai ((τ − 1)m) +

J∑
τ=1

ᾱiτ ρ̄iτ

)
.

Here ai((τ − 1)m) is the total data rate received by user i up to big
slot τ . The other quantities are the same as for algorithm STO1.
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• Step 2 – Inside a big-slot, in each small slot j, compute Mij as in (3.2)
where the future allocation α̂ is the solution ᾱ of (IV).

Note that Step 1 in STO2 is computed only once every big-slot unlike
m times in every big-slot as in STO1. By doing this, we further reduce the
number of computations almost by a factor of m times since we calculate ᾱ
in each big-slot only.

3.6 Numerical results

We now compare the utility of the proposed heuristics with the PF-EXP,
(PF)2S and a greedy algorithm. For the (PF)2S the future allocation was
done using the round robin algorithm.

Denote by

OA =
K∑
i=1

log

(
T∑
j=1

αAijrij

)
,

the total reward of algorithm A and by ŌA = 1
K
OA its average reward over

K users. Given two algorithms A and B, the ratio between A and B equals
exp(ŌA − ŌB). The percentage of improvement of algorithm A over B is
computed as (exp(ŌA − ŌB)− 1) · 100%.

Due to the logarithm in the objective function, taking a different unit of
measure for the rate will give a different percentage of improvement between
algorithms. Although logarithm is an increasing function, we can know which
algorithm is better than the other, but we will not get a consistent percentage
of improvement across different units of measure. Therefore, by taking the
difference as above we construct a consistent criterion for comparison.

3.6.1 One road network

In the first set of simulations, there is only one base station and one straight
road. The road length is taken to be L = 1000 m with 0 at the leftmost edge.
The closest point on the road to the BS is at x = 500 m. The data rate at
position x along the road is given by:

r(x) = η · (1 + κ exp (|x− 500|/σ) , (3.6)

where κ ≥ 0 is a real number and η is uniform random variable whose range
will be in [0.7, 1.3] unless stated otherwise.

Remark 3.6.1. The method for generating the noise η need not be necessarily
multiplicative as in (3.6). Our heuristics can be used as long as the means
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of the future data rate are known. In this chapter, we limit the numerical
evaluation to the form in (3.6).

A sample path of r(x) is shown in Fig. 3.3,3.4. This function has the
highest mean at the mid-point of the segment and the lowest mean at the
two end points. We emphasize the algorithm itself is independent of the rate
function. We chose the above rate function for convenience.

Figure 3.3: κ = 1. Figure 3.4: κ = 4.

Figure 3.5: Sample path of data rate at various positions along the road.
σ = 100, and η ∈ [0.7, 1.3].

The time horizon T was 4, 000, 000 small time slots which corresponds to
8000 seconds (slightly more than two hours). The big slot length ∆ for our
projected gradient short term objective algorithm was taken as 1 second or
equivalently 500 small time slots.

Homogeneous vehicle velocities

First, we show the results when all vehicles move with the same velocity
which is taken to be v = 25 m/s. That is, there are N = 20, 000 spatial
small slots in the coverage range and J = 40 seconds. A new car enters
through the left edge in every second with probability p.

Figure 3.6 shows the average utility obtained by a vehicle for each of the
four algorithms as a function of the arrival probability p. Figure 3.7 shows
the percentage of improvement of the three other algorithms compared to
PF-EXP. The proposed algorithm does better than PF-EXP and more im-
portantly better than (PF)2S. Although, we have shown the greedy algorithm
for comparison, we emphasize that greedy is not practically implemented be-
cause it can be very unfair to users that have heterogeneous rates. In the
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simulated scenario, all vehicles move along the same road and observe sta-
tistically identical but position-dependent radio conditions during their stay.
These conditions are rather favorable for the greedy algorithm.

Figure 3.6: Average reward per car.
Homogeneous velocities.

Figure 3.7: Percentage of improve-
ment over PF-EXP. Homogeneous
velocities.

Comparison with the upper bound

Next, again for homogeneous velocities, we also include the solution of the
relaxed problem (I) but for a smaller road length and shorter horizon because
it is computationally expensive. The parameters for this setting are: L = 100
m, J = 40 s, T = 500 s, and the other parameters are the same as in the
homogeneous case. We assume that the relaxed algorithm knows the future
arrivals as well as the future data rates exactly whereas the other algorithms
do not know this information. The solution to the relaxed problem gives an
upper bound on the optimal solution of the original problem (I).

Figures 3.8 and 3.9 plot the average reward per car and percentage im-
provement for the five algorithms with respect to PF-EXP. It can be observed
that the proposed algorithm is quite close to the upper bound in this scenario.

In the following, unless otherwise specified, the parameters are chosen as
follows: κ = 4, σ = 100, big slot ∆ = 1s and the short-term horizon J is
the maximal remaining staying time of the users that are currently inside
the system. We calculate the allocation plan every one second. From now
on, we do not compare STO 1 because STO 1 takes much longer to run and
may not be computationally interesting on small time-scales. Also, we also
do not show the performance of greedy here since some users may starve in
a greedy allocation leading to a value of −∞.
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Figure 3.8: Average reward per car.
Includes the upper bound from the
solution of (II). Small setting of ho-
mogeneous velocities.

Figure 3.9: Percentage of improve-
ment over PF-EXP. Small setting of
homogeneous velocities.

3.6.2 Network simulation with SUMO

Simulation of Urban MObility application (SUMO) [42] is an open source
software designed for simulating mobility of vehicles in large traffic networks.
One of the features of this simulator is that we can import maps of different
cities and simulate realistic mobility traces. We use this application to simu-
late the complex driving dynamic systems in a specific region of Toulouse city
to have an objective comparison of our heuristics against existing algorithms
in realistic scenarios.

The performance evaluation of heuristics in done in two steps: in the first
step SUMO is used for generating the mobility traces of vehicles. These traces
are then fed to a Python script which implements the different heuristics and
computes the value of the objective function.

A simple network with 1 BS

Let us consider the network presented in in Figure 3.10. There are two classes
of users: one that arrives from A then moves along the long road to B and D
(the blue one), and another one that arrives from A then moves to B and then
to C (the red one). If we apply the greedy heuristic in this situation, then
many users of the second class are never allocated the channel. This is the
reason we do not show performance of the greedy algorithm for this scenario.
Figure 3.11 shows the numerical results for this case. In this scenario, it was
observed that PF-EXP always gives priority to the new arrivals no matter
what the initial value is. This leads to a higher sub-optimality of PF-EXP
since the other heuristics focus on users that are closer to the base station
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and have a higher quality channel.

A B

C

D

Figure 3.10: Utility Comparison:
STO, (PS)2S and PF-EXP.

Figure 3.11: Utility Comparison:
STO, (PS)2S and PF-EXP.

Place Wilson (Toulouse) scenario with 2 BSs

In this scenario, we evaluate the algorithms on users moving in the Place
Wilson area of Toulouse with two BSs as shown in Fig. 3.12. The average
utilities of the different heuristics are shown in Fig. 3.13. The various param-
eters for the rate function are the same as those indicated at the beginning
of this section. It took 219 seconds, 229 seconds, 433 seconds and 833 sec-
onds respectively to run greedy, PF-EXP, (PS)2S and STO2 for simulating
1.07 hours of traffic with 483 users (including cars, buses, and bicycles). The
staying times of the users varied from 2s to 361s. We do not show greedy
in the utility comparison since there were several starving users in this case.
As expected, there is a trade-off between the quality of the solution and the
computation time. STO2 takes longer to solve but gives a better allocation.
Now, we change some of the parameters to see how the performance of the
heuristic is influenced by these parameters.

Figure 3.14a, 3.14b, 3.14c plot the average utilities for different values
of κ with the same H and ∆. The gap between STO2 and (PS)2S become
larger when κ increases. Figure 3.15a, 3.15b, 3.15c and 3.15d illustrate the
average utilities for different values of J with same κ,∆. Remark that we
assume (PS)2S and STO2 use the same information, so in (PS)2S the future
information is estimated until J as well. It is seen that the more information
we have, the better (PS)2S and STO2 perform.

Figure 3.16a, 3.16b, 3.16c illustrate for different values of big-slot ∆ with
the same values of J and κ. The performance of STO2 is almost the same
for these different values of ∆ but the running time is significant faster.
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Figure 3.12: Place Wilson, Toulouse
with 2 Free Mobile BSs 4G.

Figure 3.13: Utility Comparison:
STO2, (PS)2S and PF-EXP.

Jardin de Plantes (Toulouse) scenario with 4 BSs

In the final set of simulations, we take another area of Toulouse called Jardin
des Plantes with four BSs as shown in Fig. 3.17. The average utilities for this
scenario are plotted in Fig. 3.18. It took 976 seconds, 1009 seconds, 1502
seconds and 3403 seconds to run greedy, PF-EXP, (PS)2S and STO2 for a 1.05
hours of traffic with 740 users (including cars, buses, motorbikes, bicycles and
pedestrian). Again, we do not show greedy in the utility comparison since
there are several starving users in this case.

3.7 Summary

We proposed two heuristics that use future mean channel gain information
to improve the utility of users in cellular networks. In order to reduce the
computational complexity, they solve the problem over a shorter time horizon
as well as on a larger time-scale. It was shown on numerical experiments
carried out on traces generated from realistic mobility patterns that these
heuristics give better utility compared to PF as well as (PS)2S algorithms.
However, the power control has been missing in the problem in this chapter,
therefore in chapter 4, we shall consider the joint of channel allocation and
power control problem.

Regarding the computation time, as we mentioned above, STO1 requires
a large computation time and may not be possible to run in real-time. And
STO2 is also heavy when the system is large. It opens another direction of
research that is how to reduce the computation time of the two algorithms.
In chapter 5 we shall learn STO1 algorithm using DFNN based method to
have a faster algorithm which performs close to these proposed algorithms.
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(a) κ = 2. (b) κ = 4.

(c) κ = 6.

Figure 3.14: Place Wilson, utility comparison for different κ.
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(a) J = 20s. (b) J = 60s.

(c) J = 120s.
(d) J = maximum remain time in term of
big-slot of all users inside the system.

Figure 3.15: Place Wilson, utility comparison for different short time horizon
J . Here we assume that (PS)2S and STO2 use the same information, so in
(PS)2S the future information is estimated until J as well.
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(a) ∆ = 2s. (833s to run STO2). (b) ∆ = 4s (568s to run STO2).

(c) ∆ = 6s (438s to run STO2).

Figure 3.16: Place Wilson, utility comparison for different ∆. The per-
formance are almost the same, but the running time is much faster when
increasing big-slot.
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Figure 3.17: Jardin de Plantes,
Toulouse with 4 BSs (Free and SFR)
type 4G.

Figure 3.18: Utility Comparison:
STO2, (PS)2S and PF-EXP.



Chapter 4

JOINT POWER CONTROL
AND CHANNEL
ALLOCATION

In this chapter, we consider the joint channel allocation and power control
problem on the downlink, that is the transmit power of the BS can be var-
ied subject to an average power constraint that does not exceed a certain
available power budget to the BS. The objective is to design algorithms that
work well for system with mobile users in order to improve proportional fair-
ness. We propose two downlink scheduling algorithms that take advantage
of partial information on future channel conditions, that is the mean of the
channel gains based on predicted future positions of the users, for improv-
ing the sum utility. The scheduling model allows for both power control and
channel allocation. The objective of the scheduler is the long-term utility un-
der an average power constraint. The two algorithms incorporate the channel
predictions in their decisions. The STO1 algorithm computes the decision
in each slot based on the means of future channel gains. Depending on the
horizon considered, this can require solving a large-dimensional problem in
each slot. The STO2 algorithm reduces the dimensionality by operating on
two time-scales. On the slower scale it computes an estimation over a larger
horizon, and in the faster scale of a slot, it computes the decision based on
a shorter horizon. Numerical experiments with both fixed number of users
as well as a dynamic number of users show that the two algorithms provide
gains in utility compared to agnostic ones.

57
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4.1 Introduction

Downlink scheduling and power control has been widely investigated for wire-
less networks [39, 14, 29, 40]. In each time-slot, one or multiple base-stations
have to decide the users to serve and the transmit powers with the objective
of maximizing the sum of the utilities of the users. Two different types of util-
ities can be defined: (i) opportunistic [39, 14]; and (ii) long-term[29, 62]. In
the opportunistic model, the utility function operates on the rate obtained
in a time-slot whereas in the long-term model, the utility operates on the
average rate obtained over an horizon.

The focus of this chapter is on the long-term utility model. When trans-
mit powers cannot be varied, the celebrated Proportional-Fair algorithm (see
[37] and references therein) is known to work well when the utilities are log-
arithmic functions of the total rate. This algorithm belongs to the class of
gradient-based algorithms that choose the user that maximizes the marginal
utility or the gradient of the utility function. In [29] the gradient-based solu-
tion was then extended to the setting in which joint power control and user
scheduling is possible.

We revisit this problem in the context of vehicles which share their
itineraries with the decision maker. With the availability of SINR maps
in urban zones, the decisions can now be based also upon the future channel
conditions of the users (or vehicles) [43]. The future channel conditions are,
however, not known exactly as the they vary randomly in time. The SINR
maps are assumed to give the expected values of the channel gains on the
routes takes by the users. With this additional information on the future ex-
pected channel gains, performance improvements can be expected compared
to the setting when this information is not available.

We consider a downlink scheduling and power control problem for one
base station with an average power constraint. The objective is the sum
utility of the users, and the dependence of the utility function on the channel
allocation and transmit power is similar to that in [29] with only one sub-
channel and we do not have queues. In that respect, our model is a special
case of that in [29]. However, the scheduling algorithms that we propose
can be extended to the multiple sub-channel case though for this chapter we
restrict ourselves to the simpler case of one sub-channel. There are two dif-
ference with the models studied previously. The first, and the main difference
is that the base station is also aware of the mean channel gains in the future
slots, and the second one is that we include an average power constraint over
time in the optimization problem.
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4.1.1 Contributions

We propose two heuristics for that use information on future channel con-
ditions in order to improve the total utility. Both the heuristics were first
proposed in [51] in a setting without power control. The first one optimizes
over future time-slots in every current slot whereas the second one reduces
the complexity by optimizing over the future time-slots only once in a certain
number of slots. The performance of these heuristics will be evaluated on
three types of stochastic models for the channel gain processes. In the first,
the channel gains are a stationary process with fixed mean channel gains
(which can be different for different users) whereas in the second model, the
mean channel gains are themselves varying on a slower time-scale to that of
the channel gains themselves. Finally in the third model, the mean chan-
nel gains vary in every slot. For three models, these heuristics are shown
to perform better than the other setting in which future information is not
available.

4.1.2 Related work

Scheduling on the downlink but with fixed power examined in numerous pa-
pers [11, 66, 13]. For a logarithmic utility function, the Proportional-Fair
(PF) scheduler has been known to be optimal for stationary channel condi-
tions [37] and its performance has been analyzed in both static and dynamic
user scenarios [10]. A restless bandit framework for network utility maxi-
mization for channel states modeled as partially observable Markov chains is
proposed in [40].

In [3], future rates are assumed to be known accurately over the optimiza-
tion horizon and improvement in data rates and fairness is compared with
algorithms such as greedy (or max-rate) and equal share. Proportional-Fair
algorithms with partial information on future channel conditions have been
proposed in [7] (on short-time scales) and [43] (on longer-time scales). The
algorithm in [43] is based on SINR maps that can be obtained from vehicles
or users that were present earlier. They proposed a PF-like index algorithm
that takes into account the future rate allocations using round-robin or a few
other heuristics. In [51], we proposed two heuristics that solve in each time-
slot the utility maximization problem over a short-term horizon assuming
that the means of the future rates are known over this short horizon.

The joint optimization of channel allocation and transmit power control
has been investigated for different multiplexing schemes such as like CDMA
[62] and OFDM [29]. The proposed algorithms based their decisions on
the current channel conditions and previous decisions. In the context of
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high-speed trains, [77] solves the opportunistic utility maximization problem
assuming all the future rates are known and with average power constraints.

4.2 Problem formulation

Consider a base station with K mobile users in its coverage range. In time-
slot t, the base station transmits to user i with power pi(t). Assume that
user i has a channel gain of γi(t) in slot t. These gains will be assumed to
stochastic and independent between vehicles but not necessarily stationary
for each user.

The received data rate for user i is computed according to the Shannon
formula:

ri(t) = xi(t) log

(
1 +

γi(t)pi(t)

xi(t)

)
, (4.1)

where xi(t) is the fraction of the channel assigned to user i is slot t. User i
gets a utility of Ui(z) when it obtains an average rate of z. In order to keep
the notation light, we will write ri(t) as a shorthand for ri(x, p, γ). Let S be
the appropriate dimensional simplex. We shall the use the notation

[xi(t)] ∈ S (4.2)

to mean that the vector [x1(t), . . . , xK(t)] ∈ S, where S is the K-dimensional
simplex.

The utility function will be assumed to concave and differentiable. A
widely-used class of utility functions is that of the α-fair functions [45] that
are parameterized by α ≥ 0:

Ui(z) =

{
z1−α

1−α , α 6= 1;

log(z), α = 1.

The special case of α = 1 is also known as the proportional-fair utility func-
tion.

The objective of the base station is to choose the power and the channel
allocation so as to maximize the total utility of these K users over a horizon
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of T time slots. That is, the base station solves the optimization problem:

maximize
K∑
i=1

[
Ui

(
1

T

T∑
t=1

ri(t)

)]
(OPT)

subject to [xi(t)] ∈ S,∀t; (4.3)

1

T

∑
t

∑
i

pi(t) ≤ P̄ ; (4.4)∑
i

pi(t) ≤ Pmax ∀t. (4.5)

Here P̄ is the average transmit power budget available to the base station,
and (4.4) is the average power constraint. This constraint also makes the
problem different from that in [29] where there was no constraint on the
average power.

Remark 4.2.1 (Short-term fairness). A drawback of the utility function de-
fined on the average rate is that if the scheduler knows that, for a particular
user, the channel gain may be very high some time in the future then it might
wait until this time to serve this user. This user may be starved of allocations
in the short-term and the solution may be unfair to this user on short-time
scales. One way to resolve the short-term unfairness is to introduce addi-
tional quality of service constraints such as requiring each user be scheduled
at least once every given number of slots. This constraint was imposed in,
for example, [43]. We can also include this constraint in the optimization
problem. For simplicity, we do not impose it. We believe the results will be
similar as long as this constraint is not very restrictive.

Remark 4.2.2 (Fractional channel allocation). In (OPT) we have allowed
for fractional channel allocations. If the system imposes a binary constraint,
that is only one user on one channel in any given slot, then these constraints
can be imposed in OPT as well as in the algorithms we propose. In the
experiments with a logarithmic utility function, we observed that allocations
were mostly binary. So, we expect the qualitative conclusions will be valid
whether allocations are binary or not.

Remark 4.2.3 (Maximum power constraint). For conciseness, we shall not
write the maximum power constraint explicitly in the optimization problems
that we will define from now on. This constraint will be implicit and assumed
to be applicable in all slots.

The current literature mostly solves (OPT) when the base station is aware
of only the channel gains in the current slot1. For vehicles sharing their

1We shall use slot and time-slot interchangeably to mean the decision making instants.
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Figure 4.1: Mobility model.

itineraries, partial information on the future channel conditions could also
be available to the decision maker in the current time-slot. We assume that
this partial information is in the form of the mean of the channel gains in the
future slots. One would expect to improve the value of the objective when
this information is incorporated in the decision-making.

4.2.1 Channel gains

The heuristics will be evaluated on three different stochastic models for chan-
nel gains: (i) the stationary model in which, for each vehicle i, γi(t) are inde-
pendent and identically distributed across t with mean γ̄i; (ii) non-stationary
and slowly varying model in which, for each vehicle i, the mean of the chan-
nel gains varies on a slow time-scale. For example, for a time-slot of 2 ms,
the means may vary every 100 slot or 200 ms; and (iii) a mobility model on
a stretch of road, where cars can come and leave as shown in Fig. 4.1. For
this model γi(t) are non-stationary, and also the mean of γi(t) changes every
slot.

Partial information on future channel conditions will be shown to be
helpful for the second model and the third model. Nevertheless, the first (or
the stationary) model will still be useful to illustrate the benefits of being
able to vary the allocated power under an average power constraint.

4.3 Algorithms

In this section, we present the three algorithms that will be evaluated in
the numerical experiments. The first one is the standard gradient-based
scheduling which will be taken as the baseline. The other two are the ones
we propose in this chapter.



4.3. ALGORITHMS 63

4.3.1 Locally optimal algorithm

The locally optimal algorithm is a special case of the one in [29] for the
scenario in which there is only one sub-channel and the power budget is P̄
in each slot. We remark that the algorithm can be handle the multiple sub-
channel case but that in this chapter our focus is on the single sub-channel
case. When there is no average-power constraint as in [29], this algorithm
chooses maximizes the objective function computed without the knowledge
of the future scheduling decisions. That is, in slot t, the scheduler solves

maximize
K∑
i=1

[
Ui

(
1

t

t∑
t=1

ri(t)

)]
(LA)

subject to [xi(t)] ∈ S,∀t; (4.6)∑
i

pi(t) ≤ P̄ ,∀t. (4.7)

Here, the past rate ri(s) for s = 1, 2, ..., t − 1 are known to the scheduler,
so the decision variables are the channel allocations xi(t) and the transmit
powers pi(t) in slot t. The maximum power constraint is set to P̄ in order to
make the comparison fair with algorithms which are subject to the average
power constraint of P̄ . For the logarithmic utility function, we shall call this
the Proportion Fair (PF) solution.

4.3.2 Short-term Objective 1 (STO1)

We begin by defining a big-slot to be B consecutive time-slots. The first
heuristic we propose uses future mean channel gains to improve the objective.
It includes in its decisions the future channel allocations and transmit powers
but only on the scale of big-slots. In each time-slot, the allocations are
recomputed for the current time-slot as well as the future big-slots. The
intuition behind this is to maximize in each slot the long-term objective
based on the best information available. We explain its workings in the
context of the non-stationary slowly varying channel model and the mobility
model.

For the slowly varying model, B will be the number of time-slots during
which mean channel gain remains constant whereas in for the mobility model
B can be set by the system designer depending on how fast the mean channel
gains vary. Let T̂ = T/B be the number of big-slots in the horizon, and let
τ̂t ∈ {1, . . . , T̂} be the big-slot to which time-slot t belongs to, and let θt be
the number of slots remaining in big-slot τt not including t, that is

θt = (τt + 1)B − t.



64 CHAPTER 4. POWER CONTROL AND CHANNEL ALLOCATION

We shall use the notation x̂ for a quantity that is computed over a big-slot.
For example p̂i(τ) will denote the power used in all the slots inside big-slot
τ . Similarly,

r̂i(τ) = Bx̂i(τ) log

(
1 +

γ̄i(τ)p̂i(τ)

x̂i(τ)

)
(4.8)

is the total rate obtained by vehicle i in big-slot τ when it is served x̂i(τ)
fraction of time at a transmit power of p̂i(τ). Note that here the rate is
computed assuming that the channel gain is its mean value in big-slot τ .
With slight abuse of notation,

r̂i(τt) = θtx̂i(τt) log

(
1 +

γ̄i(τt)p̂i(τt)

x̂i(τt)

)
, (4.9)

shall denote the total rate in the remaining slots in current big-slot τt. Also,
define

Pt = T P̄ −
K∑
i=1

t−1∑
s=1

pi(s)

to be the total remaining power available to the scheduler in slot t.
In each slot, STO1 maximizes

K∑
i=1

Ui

 1

T

 t−1∑
s=1

ri(s) + ri(t) +
T̂∑

τ=τt

r̂i(τ)

 (STO1)

subject to

[xi(t)] ∈ S; [x̂i(τ)] ∈ S, τ = τ̂t, . . . , T̂ ; (4.10)

K∑
i=1

pi(t) + θtp̂i(τt) +
T̂∑

τ=τt+1

Bp̂i(τ)

 ≤ Pt. (4.11)

The variables in this problem are [pi(t)] and [p̂i(τ)], τ = τt . . . T̂ , and the
corresponding channel allocations. In (4.11), the LHS is the total transmit
power starting from the current slot which has to be less than the remaining
power Pt.

For the mobile model, instead of solving (STO1-Opt) over the whole
horizon T , we solve it on a shorter horizon, which is equal to the maximum
staying time of the users currently inside the system. This shorter time
horizon can vary from one slot to another, and it explains the words ’short-
term objective’ in the name of the algorithm. The advantages of this is to
reduce the computation time which can be helpful when the algorithm has
to be executed every 1ms.
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4.3.3 Short-term Objective 2 (STO2)

The STO1 algorithm recomputes in each time slot the optimal solution of the
future big-slots. In STO2, we recompute the solution of the future big-slots
only at the beginning of each big-slot. Inside a big-slot, we compute only the
solution for the current slot assuming the solution for the future big-slots to
be the same as that computed at the the start of the current big-slot. That
is if t ≡ 1 (mod B), STO2 first maximizes

K∑
i=1

Ui

 1

T

 t−1∑
s=1

ri(s) +
T̂∑

τ=τt

r̂i(τ)

 (STO2-Big)

subject to

[x̂i(τ)] ∈ S, τ = τ̂t, . . . , T̂ (4.12)

B
K∑
i=1

T̂∑
τ=τt

p̂i(τ) ≤ Pt. (4.13)

The variables in this problem are [x̂i(τ)] and [p̂i(τ)], τ = τt . . . T̂ .
Next, in each slot t, we compute the optimal allocation and transmit

power assuming that the allocations and transmit powers in the future big-
slots are those computed from solving (STO2-Big). In slot t, STO2 maxi-
mizes

K∑
i=1

Ui

 1

T

 t−1∑
s=1

ri(s) + ri(t) +
T̂∑

τ=τt

r̂i(τ)

 (STO2-Small)

subject to

[xi(t)] ∈ S, [x̂i(τt)] ∈ S; (4.14)

K∑
i=1

(pi(t) + θtp̂i(τt)) ≤ Pt −
K∑
i=1

T̂∑
τ=τt+1

Bp̂i(τ). (4.15)

The variables in this problem are [xi(t)], [pi(t)], [x̂i(τt)] and [p̂i(τt)]. As
can be seen, in a slot the dimension of the problem is no bigger than the one
for STO1. As in STO1, for the mobile model, STO2 solves (STO2-Big) and
(STO2-Small) over a shorter horizion which is the maximum staying time
of the users currently in the coverage range. The pseudo code for STO2 is
shown in Algorithm 4.

In terms of computational effort, compared to STO1, STO2 solves a lower
dimensional problem in each slot except at the starting of every big-slot where
the dimension is same as for STO1. Thus, one can except it to be faster but
further from the optimal solution.
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ALGORITHM 4: The STO2 algorithm

t← 1
while t ≤ T do

if t ≡ 0 mod B then
Solve (STO2-Big) and obtain x̂(τ) and p̂(τ).
Solve (STO2-Small)

else
Solve (STO2-Small)

end

end

4.4 Numerical experiments

The numerical experiments were run in Python, and all optimization prob-
lems were solved using the python package CVXPY [20] and the solver
MOSEK. The results will be presented according to the channel-gain models.
For the stationary and slowly varying channel models, we assume that the
number of users is fixed. The third model will be evaluated in a dynamic
setting in which users will arrive and leave the network.

In all the experiments, P̄ is set to 15 and Pmax is set to 30. Whenever we
show any performance measure of the optimal solution, it will be assumed
to mean that the optimal is computed assuming all the future channel gains
are known exactly.

4.4.1 Stationary channel

For the first experiment, we take K = 4, that is four users, and a logarithmic
utility function for every user. The vector of means [γ̄i] = [6.76, 5.45, 4.35, 1.31].
The channel gain in slot t for user i is generated as follows:

γi(t) = γ̄iAi(t; η) (4.16)

Here Ai(t; η) is a sequence of i.i.d. uniform random variable in the range
[1− η, 1 + η]. We shall refer to η as the noise level. It is assumed that Ai(t)
and Aj(t) are assumed to be independent for i 6= j. Varying η from 0 to 1
changes the variance of Ai(t) from low to high. For η = 0, the channel gains
become deterministic and known to the decision maker.

Remark 4.4.1. The method for generating γi(t) need not be necessarily mul-
tiplicative as in (4.16). Our heuristics can be used as long as the means of
the future channel gains are known. In this chapter, we limit the numerical
evaluation to the form in (4.16).
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Figure 4.2: Total utility as a function of noise level. Channel is stationary.
Log utility function.

Figure 4.2 shows the total utility as a function of the noise level η. The
time horizon T was taken to be 500 with 5 big-slots, that is, one big-slot has
B = 100. If the scheduling slot is 1 ms as in 4G [19], then the scheduling
horizon is of 500 ms. Five sample paths for channel gains were generated,
and the plot shows the average of these 5 samples. The label PF is for the
local optimization algorithm. The suffix FP attached to STO1 means that
STO1 was run wilth a fixed power budget of P̄ in each slot.

As expected, allowing for an average transmit power constraint and using
future information (even if it is just the mean channel gains) improves the
utility. When η = 0, all the algorithms are equivalent and give the same
utility since the channel gain is the same is every time slot and is known.
Further, performance improvement is more when the noise variance is higher
which is again to be expected.

4.4.2 Slowly varying channel

Next, we conduct experiments with the slowly varying channel model. It is
assumed that the channel means are constant during B = 100 slots. The
optimization horizon is T = 2000, that is there are 20 big-slots in each run.
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The mean channel gains were first determined for each big-slot. Within a
big-slot, the channel gains were then generated using the same method as for
the stationary case and given in (4.16). The number of users was again set
to 4.

In the first experiment, the mean channel gains are relatively homoge-
neous with an empirical average of the mean channel gains being [5.98, 5.55,
4.69, 5.30]. Figure 4.3a, plots the total utility as a function of the noise level
while Fig. 4.3b shows the total transmit power in a slot as a function of
time-slot. The data in the latter plot was obtained on a separate run with
B = 50, η = 1, and only STO2 and OPT are shown so as to have a more
readable figure.

We observe that all algorithms except PF are close to optimal almost
throughout. Since the total transmit power in a slot is not far from P̄ ,
STO1FP is almost as good as STO1. However, in this scenario prediction is
still useful as PF is away from OPT even for η = 0, that is when there is no
noise.

The mean channel gains in the second experiment are widely varying with
the empirical average of the mean channel gains being [2.63, 10.3, 3.76, 0.009].
One user is in a very bad channel state, whereas another one has much better
mean channel gains than the others. The plots for the total utility and total
transmit power in a slot are shown in Fig. 4.4. Again, the total power was
computed from a separate run.

This time we observe that both power control and channel prediction
result in improvements. Due to one user being much worse than the others,
the optimal transmit power varies much more than in the previous experiment
and hits the maximum constraint quite often. Since the fixed-power version
is inflexible in this respect, it performs worse for all noise levels.

4.4.3 Mobility Model

Consider a stretch of road of length 1 km covered by one base station, in which
vehicles enter from the left and leave on the right (Fig. 4.1). To simplify for
illustration, we assume they move with same velocity v = 25 m/s, but the
algorithms presented in Sec. 4.3 do not depend on this assumption. So they
stay in the coverage range of the base station in 40 seconds. New vehicles
can enter the network only at the start of the big-slots. The length of a
big-slot is set to 1 sec. The probability of a new arrival in a big-slot is set
to p = 0.3. For each value of noise level (η) we simulate this network for 800
seconds. In this model, the channel gain of mobile user is non-stationary and
varies every time slot (1 ms), STO1 and STO2 solves over an horizon of 40
seconds which is the staying time of users in the network. These two aspects
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Figure 4.3: Slowly varying channel. Log utility function. Experiment 1.
η = 1.
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Figure 4.4: Slowly varying channel. Log utility function. Experiment 2.
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Figure 4.5: Channel gain for two cases: with noise (η = 0.2) and without
noise.

make this model different from the two first models. Since the dimension of
(OPT) is very large in this case, we do not compute the optimal solution
in the experiments. Also, since STO1 solves a high dimensional problem in
every slot compared to STO2, it is much slower when the horizon is large.
So, we show only the performance of STO2 and PF.

Fig. 4.5 illustrates the channel gain curve in the noise and no noise cases.
Here, the rate is a function of users’ position which is in fact a function of the
distance to the base station. Let us take the left margin of the road be 0, and
the right margin be 1000, then for position x ∈ [0, 1000] inside the coverage
range, the channel gain is equal to f(x) = β(1 + κ exp(|500 − x|/σ). Here,
β, κ, σ are adjustable parameters; in our experiment β = 0.01, κ = 40, σ =
200.

Fig. 4.6 illustrates the numerical results for the above mobile system.
The total allocated power is shown only for a small interval of time. Again,
we observe that channel prediction leads to a better total utility. Further, by
observation, STO2 allocates more power when there are many users (than
usual) close to the peak where channel gains are good with high probability.

4.5 Summary

We proposed two heuristics for joint power control and channel allocation
that exploit partial information future channel conditions to improve the
utility. Even little information such as mean channel gains is sufficient to
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observe improvement compared to when no information is used.
The heuristics are well performed but they are quite heavy since they

have to solve an optimization problem frequently (every time-slot for STO1
and every big slot for STO2). In chapter 5 we shall use machine learning
based method to learn STO1 to produce an approximate algorithm with less
computing time.
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Chapter 5

LEARNING THE CHANNEL
ALLOCATION ALGORITHM

5.1 Abstract

In Chapter 3 and Chapter 4, we have introduced two heuristic scheduling
algorithms that can be applied to general networks. However, in those algo-
rithms, an optimization problem needs to be solved frequently which requires
a costly computation and thus may impair real-time processing for large net-
works. In this chapter, we propose to use Deep Feedforward Neural Networks
(DFNN) for learning the relation between inputs and outputs of one of those
algorithms. It yields an approximate solution with much less computation
time.

5.2 Introduction

Due to the limited availability of resources and to the heterogeneity of user
requirements, a proper scheduler plays an important role for an effective
sharing of network resources between users and for improving the quality of
service. Solving the scheduling problem often amounts to solving a large-scale
optimization problem [62], [43]. As has been shown numerically in Chapter
3 and Chapter 4, we can improve the user allocation by taking into account
all the available information (that is, past and current information as well
as a partial future information) and then solving an optimization problem
based on this information. This is what is done by the STO1 algorithm.
However, solving large-scale optimization problems so frequently (i.e. every
few milliseconds) poses a new challenge: real time processing.

In this chapter, we propose a machine learning-based approach to obtain

75
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an approximate solution to the scheduling problem with much less compu-
tation time as compared to the STO1 algorithm. The key idea is to use a
function of DFNN form to express approximately the relation between the
inputs and the outputs of STO1.

5.2.1 Related works

The theory of approximation for DFNN has been studied in many papers.
Motivated by Komogorov’s superposition theorem [35] in 1957, many approx-
imation results have proven the approximation capabilities of feed-forward
neural networks for the class of continuous functions such as [18],[28],[47].
In his theorem, Komogorov proved that any continuous function can be rep-
resented as a superposition of continuous functions of one variable. In [18]
(1989), Cybenko proved that any multivariate continuous function with sup-
port in a hypercube can be uniformly approximated by a linear finite combi-
nations of compositions of a sigmoidal functions and a set of affine functions.
This representation is in fact a feed-forward neural networks with sigmoidal
activation function. Independently with the work of Cybenko, Hornik [28]
(1989) also proved a similar result. Two years later, Hornik [27] showed
that multi-layer feed-forward neural networks with arbitrary bounded and
non-constant activation function can approximate arbitrary well real-valued
continuous functions on compact subsets of Rn as long as sufficiently many
hidden layers are available. The word ”deep” in ”deep learning” thus simply
means many layers.

Learning an algorithm to produce an approximate algorithm in order to
reduce computation time has been proposed in several recent research papers
[24], [63]. In [24], the authors consider a Sparse Coding problem which is used
for extracting features from raw data. The problem is that Sparse Coding is
often too slow for real-time processing in several applications such as pattern
recognition. The authors propose a method using a non linear, feed-forward
function to learn Sparse Coding to produce an approximate algorithm with
10 times less computation.

Learning an algorithm for wireless resource management by DFNN has
been proposed in [63]. In that work, the authors used DFNN to learn an
algorithm for the interference channel power control problem. They obtain
an almost real time algorithm, since passing the input through a DFNN to
get the output only requires a small number of simple operations as com-
pared to an iterative optimization algorithm. They show that, by choosing
an appropriate initialization, the initial power control algorithm performs a
continuous mapping which can be efficiently learnt.

In this chapter, we use DFNNs for learning a channel allocation algorithm
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maximizing the proportional fairness between vehicular users. The proposed
method is however potentially applicable to other convex optimization prob-
lems.

5.2.2 Contributions

We first propose a machine learning based method for learning the STO1
algorithm introduced in Chapter 3 and Chapter 4. We compare different
DFNN architectures and different loss functions to find the most appropriate
ones for our problem.

As discussed in Section 5.2.1, any continuous function can be approxi-
mated arbitrary well by a DFNN. However, discontinuous functions are much
more difficult to learn. Unfortunately, as we show with a simple example, the
input-output mapping realized by the STO1 algorithm is discontinuous. This
makes the model slower to learn due to oscillations at discontinuity points.

We then characterize these discontinuity points of STO1 by explicitly
indicating the set where they reside. In a small dimension, we use this
characterization to propose a simple user ordering scheme and a method for
choosing the output when the solution is not unique which make the STO1
mapping continuous, and thus hopefully easier to learn. Unfortunately, in
larger dimensions, finding an appropriate order requires to solve the original
optimization problem which we are trying to avoid solving. We thus propose
several heuristic ordering schemes. Although they do no necessarily result
in a continuous function, numerical results show that these heuristic orders
allow to reduce the learning time. However, these heuristic orders do not
always increase accuracy.

Finally, we propose another approach which amounts to learning the dual
values, which are proven mathematically to be continuous. Numerical results
in section 5.6.5 show that learning dual values is faster and has better per-
formance in comparison with learning the primal values.

5.2.3 Organization

In Section 5.3, we recall the resource allocation problem introduced in Chap-
ter 3 in the case of a single Base Station (BS). We also remind the reader
of the STO1 algorithm and state the learning problem we address in this
chapter. In Section 5.4, we formally define the input-output relationship for
the DFNN model. We discuss about the continuity of this input-output map-
ping in Section 5.5 and then propose to learn dual values as well as several
user ordering schemes for reducing the discontinuity of the original mapping.
Numerical results are presented in Section 5.6. We compare the computing
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Figure 5.1: The different types of time slots in the STO1 algorithm.

times of the DFNN-based prediction algorithm against those of the original
algorithm in Section 5.7 to evaluate the reduction in computing times. In
Section 5.8, we discuss another approach for learning the optimal channel
allocation which is based on reinforcement learning. Although we did not
obtain good results with the latter approach, we believe it is worth present-
ing it. Finally, in Section 5.9 we discuss several research directions that can
be followed in future work.

5.3 Problem Formulation

5.3.1 Optimization problem and the STO1 algorithm

We recall in the following the optimization problem for a single Base Station.
The methods proposed in this chapter can be applied for scenarios with
multiple BSs, but we shall focus on a single BS since it is faster to produce
numerical results. We consider the relaxed form of the channel allocation
problem [51], which we recall below:

maximize O(α) =
K∑
i=1

log

(
T∑
j=1

αijrij

)
subject to ∑K

i=1 αij = 1, j = 1, . . . , T,
αij ≥ 0, j = 1, . . . , T, i = 1, . . . , K.

(I)

Here α can be non integer.

Remark 5.3.1 (Joint power control and channel allocation). For brevity, we
give the problem formulation only for the channel allocation problem treated
in Chapter 3. A similar formulation can be done for the joint power con-
trol and channel allocation problem studied in Chapter 4. In the rest of the
chapter, a remark shall be made wherever the treatment of the two problems
differs in order to highlight their differences.
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Let ∆ be the size of the big-slot in absolute time units and let m = ∆/δ
be the number of small slots in a big-slot (see Figure 5.1). Denote by r̄ij the
mean rate in slot j for user i (we shall assume it is a function of distance
from the user to the BS). At each small-slot t, with a slight abuse of notation,

we shall denote by ρ̄i,0 =
∑(m−(t mod m))+t

j=t+1 r̄ij the total rate for user i in the
remaining channel allocation slots of the current big-slot τ = 0, where t
mod m denotes the remainder when dividing t by m. We also define ᾱi,0 as
the corresponding allocation for the current big-slot τ = 0.

Denote by ρ̄iτ =
∑τm+A

j=(τ−1)m+A+1 r̄ij where A =
(⌊

t
m

⌋
+ 1
)
m, is the total

average data rate that user i will get in the future big-slot τ (τ = 1, 2, ..., J−
1), where big slot τ starts after the current big-slot, and J is the short time
horizon in term of big slots over which we can estimate the mean future rate.
We also define ᾱiτ as be the corresponding allocation for user i in future big
slot τ . These allocations ᾱiτ can be interpreted as the fraction of small slots
that user i will be allocated in the big-slot τ .

Note that this definition is slightly different from definition in chapter 3.
The differences are as follows: in chapter 3, there is no current big slot and
the future big-slot starts just after the current small slots, but it does not
change much. The above definition of two time slot types corresponds in fact
to the ones introduced in Chapter 4.

Denote by ai(t) =
∑t

j=1 αijrij the total throughput allocated to user i up
to time slot t, and let K(t) be the number of users inside the coverage range
of the BS at time t.

The algorithm STO1 contains two steps which are as follows:

• Step 1– solve the following optimization problem over a short-term
horizon of J big-slots:

maximize

K(t)∑
i=1

log

(
ai(t− 1) + αitrit +

J∑
τ=1

ᾱiτ ρ̄iτ

)
subject to ∑K(t)

i=1 αit = 1,∑K(t)
i=1 ᾱiτ = 1, τ = 0, . . . , J − 1,

αit, ᾱiτ ∈ [0, 1], , τ = 0, . . . , J − 1, i = 1, . . . , K(t).
(STO1-Opt)

The decision variables in Problem (STO1-Opt) are the channel alloca-
tions in the current small slot, αit, and the channel allocations in the
current and future big-slots, ᾱiτ . Since the future allocations are only
computed on the time-scale of big-slots, there is a reduction by factor
m in the number of variables in (STO1-Opt).



80 CHAPTER 5. LEARNING ALGORITHM

Figure 5.2: The Carmes borough in Toulouse, with one BS (Free Mobile type
LTE1800). The actual size is 200m× 400m.

• Step 2 – allocate the channel to the users with the fraction αit of
computed allocation in the current small-slot t.

Here in step 2, we consider the relaxed solution which is different from
STO1 in Chapter 3 (which rounds the relaxed solution to obtain an integer
solution) since we want to use the properties of convex optimization prob-
lems to investigate the continuity of the solution. After learning the optimal
(fractional) allocation, we will come back to an integer solution by allocating
the channel to the user with the largest fraction αit. Actually, we observed
that the solutions of (I) and (STO1-Opt) are integer with high probability.
Figure 5.3 shows STO1 with integer version and STO1 with relaxed version
for a scenario generated with SUMO using the map shown in Figure 5.2
with 244 users in around 61.7 minutes (the other parameters are identical to
those used in Section 5.6.1). We can notice that the behaviors are not much
different.

Remark 5.3.2. (STO1-Opt) is solved thanks to the python package CVXPY
[20] and the solver MOSEK. In Chapter 3, we solve this optimization problem
using a projected gradient algorithm, since this method allows to approximate
solution of a convex optimization problem by iterations when the feasible set is
of simplex form (i.e, a simplex or a Cartesian product of simplex), no matter
how complex the objective function is as long as it is smooth and convex. But
here we employ CVXPY [20] since it can be used to generalize this idea to
other convex optimization problems, with more complex constraints such as
power control constraints or others QoS constraints (e.g. delay constraints).
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Figure 5.3: Comparison of integer and relaxed versions of STO1.

5.3.2 Learning STO1 with DFNN

As presented in Chapter 3 and Chapter 4, STO1 and STO2 are better than
the other existing algorithms. However they have to solve an optimization
problem with a large number of variables and constraints frequently (every
small slot for STO1 or every big slot for STO2), so even if their performance is
good, their computations are heavy. When the system is large and requires
many more QoS contraints, they may not be able to run in real time. In
addition, even when they are able to run in real time, it is good to reduce the
computation time without reducing too much the quality of the allocation.

Therefore in this chapter, we want to learn the STO1 algorithm using
Deep Feedforward Neural Networks to obtain a new algorithm that behaves
like STO1 but with a significantly reduced computation time. In other words,
we want to learn the input-output relationship of STO1, by approximating
the input-output mapping of STO1 with a DFNN. Here we focus only on
STO1, but a similar approach is expected to work for STO2. After getting
the approximation function (that is, the DFNN), the output can be computed
by feeding the DFNN with the input value, instead of solving an optimization
problem. This simpler method is expected to work faster than the original
algorithm.

Obviously, the same idea could be used for other problems in order to
obtain an approximate method which performs almost as well as the original
algorithm but requires much less computing time. In short, the approach is
as follows:

1. Design a well-performing algorithm based on the best available infor-
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Figure 5.4: An example of Deep Feed-forward Neural Network.

mation;

2. Learn it by an approximate algorithm which behaves closely to the
original one and has less computation.

The background on supervised learning with DFNN was presented in
Section 2.5.2. The basic idea can be summarized as follows. The STO1
algorithm can be seen as a function F that maps an input X ∈ X (a problem
instance) to an output Y ∈ Y (a channel allocation), where X and Y denote
the input and output spaces of STO1, respectively. Unfortunately, STO1 is
too complicated to get the exact formula of F . Therefore here we want to
approximate it by another function F̂ : X → Y which is in the form of a
DFNN (an example of DFNN is illustrated in Figure. 5.4).

A DFNN is composed of many linear functions (sum of matrix multipli-
cations and bias vectors) and non-linear functions (relu, sigmoid, softmax,
etc [76]), and inside linear functions there are many parameters. So finding
a good DFNN function means finding a good architecture, that is: the way
the linear and non-linear functions are combined, the linear and non-linear
functions in each layer, the size (number of units in each hidden layer) and
then their parameters. Finding a good architecture is in general not an easy
task [64]. In this chapter, we shall empirically compare some architectures
through experiments presented in Section 5.6.2. After fixing the architecture,
we have to find appropriate parameters by minimizing the empirical risk as
described in Section 2.5.2.
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5.4 System Setup for learning

Recall that, in STO1, we have two types of time scales: one is the big slot ∆
and the other one is the small slot δ. In STO1, we solve problem (STO1-Opt)
with variables of size (1+J)∗K every small slot, where J is the time horizon
in terms of big slots and K is the number of users in the system. The size
of the allocation vector for each user is equal to 1 + J since it contains the
allocation for the current small slot, αit, and the average allocation ᾱiτ for the
subsequent J big slots (including the current big slot). The input of STO1 is
a data rate vector of size (1+J)∗K and the total allocated throughput for the
K users. The output of STO1 is the current allocation vector (αit)i=1,...,K

which is of size K, since we shall only use current allocation for making
decision.

As it is defined at the moment, STO1 is not well suited to be modelled
as a learning problem for the two reasons stated below.

Firstly, since K can vary over time, the dimension of the input vector
will also vary. To circumvent this problem and to properly define STO1 as
a function, we have to fix the size of the state. To do that, we extend the
real state of the system by adding some pseudo users. Let us assume that
there are at most KM users inside the system. We will then add KM − K
pseudo users, where K is the number of real users in the system at time t.
We will actually learn an extended version of STO1 which is STO1 when
we restrict it to K users. There are many ways to extend STO1, but here
we try to define an extended version that preserves as much as possible the
continuity of STO1. When we mention ”learning STO1”, it means ”learning
the extended function” of STO1.

Secondly, the output of STO1 as defined above is the solution of an opti-
mization problem. So in fact STO1 is a set-valued mapping since the solution
need not be unique. But by using the CVXPY package to solve the convex
optimization problem (STO1-Opt), we agree with the way it determines one
of the solutions. This makes STO1 becomes a function (instead of set-valued
mapping). However, the way the solution is chosen when it is not unique can
make the function become continuous or discontinuous. In [63], the authors
show that a mapping can be made continuous by choosing an appropriate
initial point for the algorithm. We shall discuss the continuity of the STO1
function and how to choose the solution when it is not unique in order to
obtain a continuous mapping in a small dimension in Section 5.5.

Remark 5.4.1 (Joint power control and channel allocation). For the joint
power control and channel allocation problem, the state needs to be augmented
by the remaining total power. The output of the DFNN will now give the
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transmit power to each user as well as the fraction of the channel it gets
allocated.

5.4.1 State

We define a state as a matrix of size (2+J)×KM , where KM is the maximum
number of users in the system. There are thus 2 + J rows, and each row has
KM elements. The interpretation is as follows:

• The first row gives the current rates of the K users. We fill in the
K positions on the left hand side with these current rates, and the
remaining KM −K positions are filled with −1.

• The next J rows (from 2, .., J + 1) give the average rates of the users
in the next J big slots. For pseudo users (the KM −K columns on the
right hand side), we use the value (−1) · (∆/δ − (t mod ∆/δ)) for the
current big slot and the value (−1) ·∆/δ for the other big slots.

• The last row gives the total allocated throughput of the K users. For
pseudo users, we use a large enough value which is significantly greater
than the total allocated throughput of real users.

By observing how STO1 works, we remark, as expected, that STO1 gives
priority to users with a low allocated throughput and a high current rate.
Therefore, the way we define the state (that is, by using by negative numbers
for the current and future rates of pseudo users, and extremely large values
for their allocated throughput) is intended to help the model ignore quickly
the pseudo users.

Remark 5.4.2. Remark that the real K users in the system at present time.
Therefore, the K places of the real users in the first row which give the current
rates of those users have to be strictly positive. The future rates (from the
second row to the (J + 1)-th row) can be zero.

5.4.2 Target

We remind the reader that we want to learn only the current allocation, not
the future allocation. Therefore, the target will be a vector of size KM , where
the first K positions represent the fractional allocation αit of the K users as
computed by STO1, and the last positions are filled with zero. Since in
the optimization problem, the sum of allocation should be equal to 1, when
there is no user in the system (all positions correspond to pseudo users), the
allocation vector will be set to (1/KM , ..., 1/KM) by convention.
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Figure 5.5: Input and output of the DFNN model.
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Figure 5.6: Two connected components of Ei,1∀i.

Figure 5.5 illustrates the input and output of the DFNN model as de-
scribed above.

Remark 5.4.3. From now on, we shall denote by F the input-output map-
ping realized by STO1 when its output is restricted to the current allocation
vector (αit)i=1,...,K . One could of course learn the full allocation matrix (that
is, including future allocations ᾱiτ over the big slots), in which case the output
would be of size (J + 1) ∗KM instead of size KM . By doing that, the output
provides more information than the way it was defined above. However, as
STO1 is not a continuous function as we shall shortly discuss, the definition
proposed here eases the characterization of discontinuity points.

5.5 Discussion about the continuity of the

STO1 function

As defined above, F is a mapping from
∏i=KM ,j=J+2

i=1,j=1 Ei,j to SKM , where SKM
is the simplex of size KM and

• For j = 1 and i = 1, . . . , KM , Ei,1 = (0,+∞] ∪ {−1},

• For j = 2, . . . , J+1 and i = 1, . . . , KM , Ei,j = [0,+∞]∪{−1,−2, ...,−∆/δ},

• For j = J + 2 and i = 1, . . . , KM , Ei,J+2 = [0,+∞].

We can see that the pseudo users and real users lie in different connected
components (see Figure 5.6), from which it follows that the continuity of its
extension depends only on STO1. We shall thus concentrate on the continuity
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of the STO1 function on the connected component corresponding to the K
real users. Unfortunately, STO1 itself is not a continuous function. Let us
take a simple example illustrating the discontinuity. Assume that K = 2,
J = 1, ∆ = δ and consider the following sequence of states:

Rn =

r +
(

1
n

)
· (−1)n r −

(
1
n

)
· (−1)n

r −
(

1
n

)
· (−1)n r +

(
1
n

)
· (−1)n

0 0

 .

Then it is easy to show that Rn → R̄, where

R̄ =

r r
r r
0 0

 .

However

F (Rn) =

{
[1, 0] if n = 2k,

[0, 1] if n = 2k + 1.

This simple example shows that the STO1 function is not continuous.
The discontinuities make the learning problem much more difficult since near
discontinuity points, the DFNN model does not know which direction of the
output its parameters should follow. For example, as illustrated in the above
2-dimension example, near R̄, the target (output) oscillates between [0, 1]
and [1, 0]. Since a DFNN-based function is a composition of many continuous
functions, it is also a continuous function. Trying to fit every target near R̄
into the DFNN model can make its parameters conflict and result in a slower
convergence. Therefore in the remainder this section we shall characterize
the discontinuity points of the STO1 function and discuss how to derive a
continuous function from STO1.

Above we showed one discontinuity point (R̄) when K = 2, J = 1. Now,
our objective is to characterize the set containing all discontinuity points.
Before doing that, let us analyze the property of an optimal solution resulting
from the KKT conditions (which are necessary and sufficient conditions in
our case as presented in section 2.5.1). To simplify the notation, let us assume
that a big slot is equal to a small slot, that is, ∆ = δ (the proof is however
still valid if a big slot is equal to multiple small slots). With ∆ = δ, we can
write (STO1-Opt) as follows:

maximize

K(t)∑
i=1

log

(
t+J∑
j=t

αijrij + ci

)
∑K(t)

i=1 αij = 1, j = t, t+ 1, ..., t+ J,
αij ∈ [0, 1], j = t, t+ 1, ..., t+ J, i = 1, . . . , K(t).

(IR)
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Let us denote by rij the rate of user i at time j, and let ci be the total
throughput allocated to user i up to present time. Consider the state R
defined by

R =


r1t r2t · · · rKM t
· · · · · · · · · · · ·
r1,t+J r2,t+J · · · rKM ,t+J
c1 c2 · · · cKM

 ,

in which the ith column provides all the information available for user i. We
denote the above optimization problem by (IR) to emphasize that it depends
on R.

The Lagrange function of this convex optimization problem is L = O(α)+∑
j λj(1−

∑
i αij) +

∑
i,j ρi,jαij where O(α) =

∑K(t)
i=1 log

(∑t+J
j=t αijrij + ci

)
.

The KKT conditions for problem (IR) are as follows:


1, Primal feasibility:

∑
i α
∗
ij = 1 ∀j, and α∗ij ≥ 0 ∀i, j,

2, Dual feasibility: ρ∗ij ≥ 0 ∀i, j,
3, Complementary slackness: α∗ijρ

∗
ij = 0 ∀i, j,

4, Lagrange stationary:
ri,j

ci+
∑
k α
∗
ikrik

= λ∗j − ρ∗ij ∀i, j.

(KKT)

The last condition is implied by ∇αL(α∗) = 0.
From (KKT), it follows that if ρ∗ij > 0, then α∗ij = 0 and

ri,j
ci+

∑
k α
∗
ikrik

=

λ∗j−ρ∗ij < λ∗j . It implies that α∗ij is positive only when ρ∗ij = 0 and in this case
the ratio

ri,j
ci+

∑
k α
∗
ikrik

= λ∗j represents the maximum ratio one user i can get

in slot j. Since
∑

i α
∗
ij = 1, there exists at least one user who gets a strictly

positive allocation in time slot j, i.e, there exists at least one user i for which
ρ∗ij = 0. The output that we consider is only the current allocation in time
slot t, therefore we shall discuss only the continuity of the allocation at time
t. Let denote by It(R) the set of users who are able to have a strictly positive
allocation in current slot, i.e, It(R) = {i | ρ∗it(R) = 0}. By defining It(R),
we implicitly claim that ρ∗it is defined uniquely by R and we shall prove later
this uniqueness property. Consider the following sets

A = {R|#It(R) = 1} ,B = {R|#It(R) ≥ 2} .

ThenA and B represent a partition of the whole input space since #It(R) ≥ 1
for all states R as explained above. The set A is the set of problem instances
for which there is exactly only one user having a strictly positive allocation at
time t, that user thus get full allocation and others get nothing. The set B is
the complement. Proposition 5.5.1 below states two fundamental properties
of the set A.
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Proposition 5.5.1. • On A, α∗t = (α∗it)
K
i=1 is uniquely defined by R.

• F : R 7→ α∗t = (α∗it)
K
i=1 is continuous on A, i.e, all potential discontinu-

ities lie in B.

Remark 5.5.2. Note that we do not claim that all points in the set B are
points of dicontinuity. We just claim that any discontinuity point necessarily
belongs to the set B.

Before proving Proposition 5.5.1, we need a lemma, in which we shall
consider the following equivalent problem: maximize

K(t)∑
i=1

log (Ci)

C ∈ C
, (IIR)

where

C = {C = (C1, . . . , CK) | Ci =
t+J∑
j=t

αijrij + ci ∀i,
∑
i

αij = 1∀j, αij ≥ 0 ∀i, j}.

Then (IIR) is equivalent to (IR), and C is a convex set. Let C∗ be the
optimal solution of (IIR).

Lemma 5.5.3. The optimal solution C∗ is uniquely defined by R and con-
tinuous in R.

Proof. Indeed since (IIR) is a convex optimization problem, we have for any
C ∈ C:

∇OC(C∗)(C−C∗)T ≤ 0. (5.1)

where O(C) =
∑

i log(Ci). Let us take R′ close to R, with |R′−R|∞ = ε and
assume that C′∗ is solution corresponding to the matrix R′. By definition of
the set C, there exists α∗ and α′∗ such that:

C∗i =
t+J∑
j=t

α∗ijrij + ci, ∀i,

C ′∗i =
t+J∑
j=t

α′∗ijr
′
ij + c′i, ∀i.

(5.2)
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It is obvious that C∗i , C
′∗
i are strictly positive ∀i. From (5.1) we obtain

K∑
i=1

Ci
C∗i
≤ K ∀C = (C1, C2, ...CK) ∈ C. (5.3)

It follows that∣∣∣∣∣
K∑
i=1

C ′∗i
C∗i

∣∣∣∣∣ =

∣∣∣∣∣
K∑
i=1

∑t+J
j=t α

′∗
ijr
′
ij + c′i∑t+J

j=t α
∗
ijrij + ci

∣∣∣∣∣
=

∣∣∣∣∣
K∑
i=1

(∑
j α
′∗
ijrij + ci

)
+
(∑t+J

j=t α
′∗
ij(r

′
ij − rij) + (c′i − ci)

)∑t+J
j=t α

∗
ijrij + ci

∣∣∣∣∣
≤

∣∣∣∣∣
K∑
i=1

Ci
C∗i

∣∣∣∣∣+

∣∣∣∣∣
K∑
i=1

(∑t+J
j=t α

′∗
ij(r

′
ij − rij) + (c′i − ci)

)∑t+J
j=t α

∗
ijrij + ci

∣∣∣∣∣
≤

∣∣∣∣∣
K∑
i=1

Ci
C∗i

∣∣∣∣∣+ A1ε

≤ K + A1ε,

(5.4)

where Ci =
∑

j α
′∗
ijrij+ci for all i and A1 =

∑K
i=1

(J+1)+1
C∗i

is a positive number

which does not depend on ε.
The fourth implication follows from |R′ −R| = ε and 0 ≤ α′∗ij ≤ 1,

whereas the last implication follows from (5.3) and the fact that C = (Ci)i ∈
C. So from (5.4) we get

∑K
i=1

C′∗i
C∗i
≤ K +A1ε. Similarly, we have

∑K
i=1

C∗i
C′∗i
≤

K + A2ε, where A2 is also a positive number not depending on ε. It implies

that
∑K

i=1

(
C∗i
C′∗i

+
C′∗i
C∗i

)
≤ 2K + (A1 + A2)ε. Combining this with the fact

that for each i we have
(
C∗i
C′∗i

+
C′∗i
C∗i

)
≥ 2 (this is implied by the AM–GM

inequality which claims that a + b ≥
√
ab for all a ≥ 0 and b ≥ 0), we can

derive
(
C∗i
C′∗i

+
C′∗i
C∗i

)
≤ 2 + (A1 + A2)ε for all i. Defining by ti =

C∗i
C′∗i

we have

ti > 0 and ti + 1/ti ≤ 2 + (A1 + A2)ε. This is a quadratic inequality, and
solving it we get

1 +Dε−
√

(Dε)2 + 2Dε ≤ ti ≤ 1 +Dε+

√
(Dε)2 + 2Dε, (5.5)

for all i, where D = A1+A2

2
> 0 does not depend on ε.

From (5.4) and (5.5) we have that:

• From (5.4), if we take R′ = R, the last inequality becomes
∑K

i=1
C′∗i
C∗i
≤

K, and also
∑K

i=1
C∗i
C′∗i
≤ K. Similarly to above implications, this implies
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ti + 1/ti = 2 for all i. It implies that ti = 1 for all i, i.e, C∗i = C ′∗i for
all i, which shows the uniqueness of the solution of (IIR).

• From (5.5), we obtain that

lim
ε→0

C ′∗i
C∗i

= 1 ∀i, (5.6)

i.e limε→0C
′∗
i = Ci for all i, which proves the continuity of C∗ in R.

Proof. (proof of proposition 5.5.1) Recall that A = {R|#It(R) = 1}, i.e,
given R ∈ A, there exists an unique i0 such that ρi0t = 0 and for every i 6= i0
we have ρit > 0. It yields

ri0t
C∗i0

= λ∗t > λ∗t − ρ∗it =
rit
C∗i
, ∀i 6= i0, (5.7)

and α∗i0t = 1, whereas α∗it = 0 for all i 6= i0. This means that the allocation
α∗t is unique for every input state R in A.

Consider R ∈ A and R′ close to R: |R′ − R|∞ = ε. Since we consider
the continuity of the current allocation only, our objective is to prove that
α′∗t = (α′∗it)i is close to α∗t = (α∗it)i. In fact we have that α′∗t = α∗t if ε is small

enough. Indeed, from claim (5.5) in Lemma 5.5.3, we have
C′∗i
C∗i

= 1 +O(
√
ε)

(0 < limε→0
O(
√
ε)

ε
< +∞) , where (C∗i )i and (C ′∗i )i are the solutions of (IIR)

corresponding to inputs R and R′, respectively. Since R ∈ A, there exists i0

such that
ri0t
C∗i0

>
rit
C∗i

for all i 6= i0. It implies that
r′i0t
C′∗i0

>
r′it
C′∗i

for all i 6= i0 if ε

is small enough. In turn, this implies that α′∗i0t = 1 and α′∗it = 0 for all i 6= i0,
that is, α∗t = α′∗t .

Proposition 5.5.1 shows that for all problem instances R ∈ A, there exists
a unique allocation αt, and moreover that this allocation is continuous in
R. However, the allocation is not necessarily unique for problem instances
R ∈ B, and it may even be discontinuous in this set, as shown with our simple
example. Interestingly, it turns out that the dual variables of problem of (IR)
are continuous in R, as proved in Corollary 5.5.4, which directly follows from
Lemma 5.5.3.

Corollary 5.5.4. The optimal solution of the dual problem is such that:

1. λ∗ = (λt, λt+1, ..., λt+J) is uniquely defined by R and continuous in R.

2. ρ∗ = (ρ∗ij)
i=K,j=t+J
i=1,j=t is uniquely defined by R and continuous in R.
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Proof. We first prove the first assertion. From the third condition of (KKT),
for each time slot j, there exists at least one i0 such that ρ∗i0j = 0. Combining
with the fourth condition of (KKT) we obtain that λ∗j = maxi

rij
C∗i

, that is,

the maximum is attained because of the existence of i0. Since C∗ is unique
and continuous in R, it implies the uniqueness and continuity of λ∗.

Regarding the second assertion, it follows from the fourth condition of
(KKT) that

ρ∗ij = λ∗j −
rij
C∗i
. (5.8)

Since C∗ and λ∗ are unique and continuous in R, it implies the uniqueness
and continuity of ρ∗.

5.5.1 Learning with the dual value

As shown above, the solution α∗t of (IR) is not continuous in the input R,
but the dual variables λ∗ and ρ∗ are. We thus propose the following idea.
Instead of learning the allocation vector α∗t , we could learn the dual variable
ρ∗. As mentioned above, the users who get a positive fraction of allocation
αi,t > 0 all belong to the set It(R). Therefore, after learning the dual values
(ρ∗ij), we propose to choose the current allocation as follows: α∗i∗(t),t = 1 and

α∗i,t = 0 for all i 6= i∗(t), where i∗(t) is an index in It(R). If there are more
than one index in It(R) we choose arbitrarily an index in that set. This is
equivalent to first learn C∗ = (C∗1 , C

∗
2 , ..., C

∗
KM

) and then choose arbitrarily
an index in the set argmax rit

C∗i
.

5.5.2 Example in a small dimension

As stated in Proposition 5.5.1, F is continuous on A, so the set of all discon-
tinuities is a subset of B. It is difficult to provide further information on this
set for the general case. Therefore, we shall consider in this section a small
2-dimension example for which the analysis is easier, in order to understand
better the behaviour of the output of F and how to make it continuous.

We restrict ourselves to the case K = 2, J = 1 and t = 1 and we further
assume that the total allocated throughput of each one of the two users is
equal to 0. It follows that the input R is of the following form:

R =

r11 r21

r12 r22

0 0


Figure 5.7 shows the structure of the sets A and B, which is proven in

Proposition 5.5.5.



92 CHAPTER 5. DISCUSSION ABOUT CONTINUITY OF STO1

1

1

Figure 5.7: 2-dimension illustration for the sets A and B.

Proposition 5.5.5. With the axes shown in figure 5.7, we have the following
claims:

• B contains the lines r22
r21

= r12
r11

and the box defined by 0 ≤ r22
r21
≤ 1 and

0 ≤ r12
r11
≤ 1.

• On A, the optimal current allocation is unique, continuous and integer.

• On the open box defined by 0 ≤ r22
r21

< 1 and 0 ≤ r12
r11

< 1, the optimal
current allocation is unique, continuous but not integer, except for the
inputs R on the line r22

r21
= r12

r11
. On the segment defined by r22

r21
= 1 and

r12
r11

< 1, and on the segment defined by r12
r11

= 1 and r22
r21

< 1, the optimal
current allocation is unique, continuous and integer.

• On the line r22
r21

= r12
r11

, the optimal current allocation is not unique and
not continuous, no matter how we choose the current allocation among
the set of optimal allocations.

Proof. Let us characterize the set B = {R|#I1(R) ≥ 2}. The set A will be
the complement. Since we have 2 users,

ρ∗11 = ρ∗21 = 0. (5.9)

Combining with the fourth condition in (KKT) we have:

r11

C∗1
=
r21

C∗2
. (5.10)

There are three possible cases:
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Figure 5.8: The output of STO1 in 2-dimension.

• Case 1: α∗12 ∈ (0, 1), which implies that α∗22 ∈ (0, 1).

• Case 2: α∗12 = 0, which implies that α∗22 = 1.

• Case 3: α∗12 = 1, which implies that α∗22 = 0.

Case 1: α∗12 ∈ (0, 1) and therefore α∗22 ∈ (0, 1). From the second condition
in (KKT), it implies ρ∗12 = ρ∗22 = 0. Combining with the fourth condition in
(KKT) we have:

r12

C∗1
=
r22

C∗2
. (5.11)

Dividing (5.11) by (5.10) side by side we get:

r12

r11

=
r22

r21

. (5.12)

Conversely, if r12
r11

= r22
r21

, we shall prove that the solution of (IR) is of the form[
α∗11 α∗21

α∗12 α∗22

]
=

[
a 1− a

1+t
2t
− a

t
t−1
2t

+ a
t

]
,

for any a ∈ [max(0, 1−t
2

),min(1, 1+t
2

)], where t = r12
r11

= r22
r21

. Indeed, problem
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(IR) is equivalent to the following problem:

max [log(α11 + tα12) + log(α21 + tα22)]

⇔max [log(α11 + tα12) + log((1− α11) + t(1− α12))]

⇔max [log(X) + log ((1 + t)−X)] (where X = α11 + tα12)

⇔max [X ((1 + t)−X)] .

(5.13)

We have

X ((1 + t)−X) ≤ (X + ((1 + t)−X))2

4
=

(1 + t)2

4
,

and the equality occurs if only if X = 1+t
2

, i.e, if α12 = 1+t
2t
− α11

t
. So, we get

α∗ =

[
a 1− a

1+t
2t
− a

t
t−1
2t

+ a
t

]
,

with a ∈ [max(0, 1−t
2

),min(1, 1+t
2

)] to guarantee that every value in the matrix
is in [0, 1].
Conclusion for case 1: on the line r12

r11
= r22

r21
, the solution is not unique, the

solutions are of the above form.
Case 2: α∗12 = 0 and therefore α∗22 = 1. This implies

ρ∗22 = 0.

Therefore:
r22

C∗2
= λ∗2 ≥ λ∗2 − ρ∗12 =

r12

C∗1
. (5.14)

Combining with (5.10), we get

r22

r21

≥ r12

r11

. (5.15)

On the other hand, in this case Problem (IR) amounts to finding the
maximum of

[log(r11α11) + log(r21(1− α11) + r22)] := f(α11).

f ′(α11) = 0⇔ α11 =
1

2

(
1 +

r22

r21

)
. (5.16)

Let us check whether the optimal α∗11 is on the boundary or is the above
stationary point. On the boundary we have:

f(0) = −∞,

f(1) = log(r11) + log(r22) > f(0).

For the stationary, we have two cases:



95

• If α11 = 1
2

(
1 + r22

r21

)
∈ [0, 1], i.e r22 ≤ r21, then we have:

f

(
1

2

(
1 +

r22

r21

))
= log

(
r11

r21 + r22

2r21

)
+ log

(
r21 + r22

2

)
(5.17)

≥ log(r11) + log(r22)(since r22 ≤ r21) (5.18)

= f(1) (5.19)

So in this case the optimal solution is given by α11 = 1
2

(
1 + r22

r21

)
and

the matrix input has to satisfy r22
r21
≤ 1.

• If α11 = 1
2

(
1 + r22

r21

)
> 1 then we get r22

r21
> 1 and f attains its maximum

at α11 = 1 (and therefore α21 = 0). But it can not happens in the set
B with ρ∗11 = ρ∗21 = 0. Indeed, in this case, C∗1 = r11, C

∗
2 = r22, and

λ∗1 = max

(
r11

C∗1
,
r21

C∗2

)
= max

(
1,
r21

r22

)
= 1. (5.20)

Combining with the fourth condition of (KKT), we get

ρ∗21 = λ∗1 −
r21

C∗2
= 1− r21

r22

> 0. (5.21)

That is a contradiction.

Conversely, if r22
r21

> r12
r11

(here we consider only the strict inequality since
the equality has been already considered in case 1) and 0 ≤ r22

r21
≤ 1. Then

the solution of (IR) is this form:[
α∗11 α∗21

α∗12 α∗22

]
=

[
1
2

(
1 + r22

r21

)
1
2

(
1− r22

r21

)
0 1

]
.

Indeed, from r22
r21

> r12
r11

and (5.10) we obtain that

r22

C∗2
>
r12

C∗1
=⇒ ρ∗12 = λ∗2 −

r12

C∗1
> λ∗2 −

r22

C∗2
= ρ∗22 ≥ 0. (5.22)

So ρ∗12 > 0
KKT
===⇒ α∗12 = 0 and therefore α∗22 = 1. Therefore, (IR) becomes

an optimization problem of one variable α11, and by solving it we get α∗11 =
1
2

(
1 + r22

r21

)
∈ (1

2
, 1] and therefore α∗21 = 1

2

(
1− r22

r21

)
∈ [0, 1

2
). From these

values we can compute the dual value:

r11

C∗1
=
r21

C∗2
=

2r21

r21 + r22

( therefore = λ∗1) =⇒ ρ∗11 = ρ∗21 = 0. (5.23)
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Conclusion for case 2: The region in this case is equal to the region
defined by r22

r21
≥ r12

r11
and 0 ≤ r22

r21
≤ 1. On the triangle defined by r22

r21
> r12

r11
(strictly inequality here) and 0 ≤ r22

r21
≤ 1, the solution is unique, and is given

by

α11 =
1

2

(
1 +

r22

r21

)
.

The formula shows the continuity on the interior of the triangle. In this
region, except on the segment defined by r22

r21
= 1 ≥ r12

r11
, the solution is not

integer.
Case 3: Similar to case 2, if α∗12 = 1, then R has to satisfy: 0 ≤ r12

r11
≤ 1

and r12
r11
≥ r22

r21
. When 0 ≤ r12

r11
≤ 1 and r12

r11
> r22

r21
, the solution is unique and

given by [
α∗11 α∗21

α∗12 α∗22

]
=

[
1
2

(
1− r12

r11

)
1
2

(
1 + r12

r11

)
1 0

]
.

Conclusion for case 3: The region in this case is equal to the region defined
by r22

r21
≤ r12

r11
and 0 ≤ r12

r11
≤ 1. On the triangle defined by r22

r21
< r12

r11
and

0 ≤ r12
r11
≤ 1, the solution is unique, and is given by

α11 =
1

2

(
1− r12

r11

)
. (5.24)

The formula shows the continuity on the interior of the triangle. In this
region, except on the segment r12

r11
= 1 ≥ r22

r21
, the solution is not integer.

The above analysis characterizes the structure of the set B. Since A is
the complement of B, it contains two connected components: one defined by
r12
r11

> 1 and r12
r11

> r22
r21

; and the other one defined by r22
r21

> 1 and r12
r11

< r22
r21

.
Recall that on A we have: #I1(R) = 1, i.e at time slot 1 only one user

gets a full allocation while the other one gets nothing. There are thus only
two options: either (α∗11, α

∗
21) = (0, 1) or (α∗11, α

∗
21) = (1, 0). As stated in

Proposition 5.5.1, (α∗11, α
∗
21) is continuous on A. Together with the fact that

there are only two possible options for the output which is of discrete type,
this implies that F must be equal to a constant (either (0, 1) or (1, 0)) in
each connected component. Therefore, to know which value of the output
corresponds to each connected component, we just need to choose one point
in that connected component of A and solve the optimization problem for
that point.

Let use consider the first connected component of A which is defined by
r12
r11

> 1 and r12
r11

> r22
r21

. In this region, (α∗11, α
∗
21) = (0, 1). Indeed, let us choose

one input point in this connected component such that it satisfies r11 > 1.
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Since either α∗11 = 0 or α∗11 = 1, we just need to compare maxO|α11=1(α12)
and maxO|α11=0(α12). We have

O|α11=1 = log(r11 + α12r12) + log((1− α12)r22) := g(α12). (5.25)

This is a function of one variable α12, we have:

g′(α12) = 0⇐⇒ α12 =
1− r11

1 + r12

. (5.26)

We have α12 = 1−r11
1+r12

< 0 since r11 > 1. Therefore the optimal α∗12 is stay in
the boundary, i.e,

maxO|α11=1 = max
(
O|α11=1,α12=1, O|α11=1,α12=0

)
(5.27)

= max (log(r11) + log(r22),−∞) (5.28)

= log(r11) + log(r22). (5.29)

On the other hand,

O|α11=0 = log(α12r12) + log(r21 + (1− α12)r22). (5.30)

Combining with the condition r12
r11

> r22
r21

we obtain

O|α11=0,α12=1 = log(r12) + log(r21) (5.31)

> log(r11) + log(r22) (5.32)

= maxO|α11=1. (5.33)

This implies α∗11 = 0 in this case.
Similarly, for the connected component defined by r22

r21
> 1 and r12

r11
< r22

r21
we

have α∗11 = 1.

Conclusion:

• B contains the box restricted by 0 ≤ r12
r11
≤ 1 and 0 ≤ r22

r21
≤ 1 and the

line r22
r21

= r12
r11

. A is the remaining.

• As proven in Proposition 5.5.1, F is continuous that onA, and moreover

– on the region defined by r12
r11

> 1 and r12
r11

> r22
r21

, α∗11 = 0,

– on the region defined by r22
r21

> 1 and r12
r11

< r22
r21

, α∗11 = 1.

Combining with the formulas obtained in the three above cases for the
set B, we can see that the set of all discontinuities is the line r12

r11
= r22

r21
.

• (α∗11, α
∗
21) is uniquely defined except on the line r22

r21
= r12

r11
.

Figure 5.8 illustrates Proposition 5.5.5 by showing the different regions
and the optimal solution in each region.



98 CHAPTER 5. DISCUSSION ABOUT CONTINUITY OF STO1

Figure 5.9: Choosing solution in the line to obtain a continuous function in
2-dimension.

5.5.3 Proposed method to obtain a continuous func-
tion

In the above 2-dimension case, the set of discontinuities (the line) is a small
set in the sense that it has Lebesgue measure equal to 0. However it makes
the model difficult to learn when the matrix input is near the line, since it
oscillates between α∗1 = (0, 1) and α∗1 = (1, 0) out side the box and oscillates
between α∗1 = (1

2
− 1

2
x, 1

2
+ 1

2
x) and α∗1 = (1

2
+ 1

2
y, 1

2
− 1

2
y) (x ≈ y and

x, y > 0) inside the box. In order to make a continuous function, we propose
to choose the optimal allocation when it is not unique as illustrated in Figure
5.9. Define H(a1, a2) = (max(a1, a2),min(a1, a2)). If we choose the solution
as described in Figure 5.9, H ◦F is a continuous function. It is reasonable to
hope that learning H ◦F is easier than learning the non-continuous function
F directly.

In general, choosing an order in order to have a continuous function is
not an easy task, since to choose an order as above we actually have to solve
an optimization problem. We instead propose several heuristic orders, that
are either based on current rate, based on the ratio between current rate and
cumulative (the PF index), or based on (PS)2S index. The numerical results
of these heuristic orders are shown in Section 5.6.4.

5.5.4 Loss, DFNN architecture, initial parameters and
optimizer

We will try several different loss functions and architectures and compare
them in the numerical section. The initial paramters (weights) of the DFNN
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will be chosen as proposed in [38], which allows the initial parameters to
be not too big and not too small. The optimizer is Adam first introduced
in [34] which is a stochastic first-order gradient-based optimization. The
convergence of Adam is proven in [58].

5.6 Numerical Comparisons

In this section, we do simulations to evaluate the influence of many factors on
the behavior of the DFNN model (loss functions, architecture of the DFNN,
ordering scheme and learning with dual value). We use the keras library [16]
to implement our code and follow the instructions in [15].

There are actually a lot of factors that can have an impact on the be-
havior of the learning procedure such as: initial learning rate, learning rate
decay, optimizer, initial weight, number of parameters, activation functions
in layers... Here we are not able to justify all our choices, but we focus on
the factors which have the most significant impact on the learning algorithm
in our opinion. The initial learning rate is chosen equal to 0.0015 and after
each epoch, this learning rate decays by a factor 0.998.

5.6.1 An Unified Data Generator for Comparison

To support the comparisons in this section, the data (both for training and
validation) is generated as follows. The number of users is generated ran-
domly from 0 to KM = 10. The sojourn time of each user is generated in
(0, 400) seconds. This value could of course be increased, but here in order to
reduce the learning time and be able to make many comparisons, we consider
only small scenarios. The transmission rate in each small slot is generated
randomly between 0 and 5 ∗ δ/∆. The rate we use for evaluating in SUMO
scenarios are given by

r(x) = η
(
1 + κ e−d(x,BS)/σ

)
, (5.34)

where d(x,BS) is the distance from position x to the BS, and η represents
the noise level. For the SUMO scenarios in Section 5.6.5, we use κ = 3,
σ = 100 and η ∼ Uniform(0.7, 1.3). The others parameters are equal to
J = 10,∆ = 1 s, δ = 2 ms.

5.6.2 Comparison of different DFNN architectures

In this part, we will consider 4 different architectures of the DFNN model
and compare their performances. For the 4 models, the activation function
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Figure 5.10: Model 1 architecture.

used in hidden layers is the relu function, whereas the output layer uses the
softmax function since we want the sum of the allocations to be equal to 1.
In this comparison, we use the same loss function for all models, the huber
loss [74].

Model 1

The first model used in this section contains 2 layers which are 1 hidden layer
and 1 output layer. The hidden layer contains 500 units, and in total the
model has 67, 510 parameters. The architecture of this model is illustrated
in Figure 5.10.

Model 2

As the first model, the second model contains 2 layers: 1 hidden layer and
1 output layer. However, the hidden layer contains 1000 units, and in total
the model has 135, 010 parameters. We take the same number of layers as in
model 1 (but more units in hidden layers) in order to compare whether it is
better to have more parameters.

Model 3

As the two previous models, the third model contains 2 layers (1 hidden
layer and 1 output layer). The hidden layer contains 100 units, and we have
13, 510 parameters in total. We take the same number of layers as in model
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1 (but fewer units in hidden layers) to compare whether it is better to have
fewer parameters.

Model 4

The last model contains 10 layers which are 9 hidden layers and 1 output
layer. Each hidden layer contains 82 units, and in total the model contains
67, 496 parameters. We take a model has almost the same number of param-
eters with the model 1, to compare whether it is better to have more layers
or fewer layers.

Remark 5.6.1 (Joint power control and channel allocation). For the joint
power control and channel allocation problem, we still compare the four above
models except that the output layer of each model will be modified since it
includes not only the channel allocation but also the power.

Figure 5.11a illustrates the loss of the 4 models on training and validation
data. Figure 5.11b plots loss and absolute error of the 4 models on the same
axis on validation set. The same quantities but for the problem of joint power
control and channel allocation are shown in Figure 5.12a and Figure 5.12b
respectively.

From these figures, we observe that for the model without power control:

• Having almost the same number of parameters, model 1 with few layers
is better than model 4.

• Having the same layers, model 1 and model 2 with more parameters
are better than model 3.

• Model 1 and model 2 behave similarly and have the same number of
layers. However model 1 has less parameters than model 2 so it is less
costly from a computational point of view. Therefore from now on we
shall use model 1 for other comparisons in the sequel.

For the model with power control:

• Having almost the same number of parameters, model 1 with few layers
is slightly better than model 4, but the difference is quite small in this
case.

• Having the same layers, model 1, 2 and 3 are almost the same but
model 3 has fewer parameters.
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(a) Loss on training set and validation set of each model

(b) Plot on same axis for loss and absolute error on validation set of all the four
models

Figure 5.11: Comparison of the 4 DFNN models.
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(a) Loss on training set and validation set of each model

(b) Plot on same axis for loss and absolute error on validation set of all the four
models

Figure 5.12: Comparison of the 4 DFNN models for the joint power control
and channel allocation problem.
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(a) Absolute error on training and validation set of the two losses

(b) Plot on same axis of the absolute error on validation of the two losses

Figure 5.13: Comparison of Loss functions.
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5.6.3 Comparisons of different loss functions

To compare the quality of the learning model obtained using different loss
functions, we use the same model, that is model 1. Figure 5.13 presents the
results obtained with the huber loss [74], with the sum of binary cross-entropy
[72] and dice loss (which equals to 1− dice coefficient [73]). The second loss
function is denoted by bce dice loss. From the figures, the bce dice loss
function is better in this case. So for the next comparisons, we shall use
model 1 and bce dice loss.

5.6.4 Comparisons of different ordering schemes

As mentioned above, we shall use model 1 and bce dice loss for this compar-
ison. We compare the results obtained with 4 different ordering schemes: no
order, current rate order, PF order and (PS)2S order. Figure 5.14 presents
our numerical results. (PS)2S order seems the best one among the 4 ordering
schemes.

5.6.5 Comparisons of learning the channel allocation
against learning dual values

In this section, we compare learning dual values against learning directly the
allocation. As mentioned above, for learning the allocation, we use model 1
and bce dice loss. Since the value of the dual need not lie in [0, 1], we cannot
use and a softmax activation function in the output layer and bce dice loss
directly. We shall normalize the dual values by dividing each element by the
sum of all elements before fitting it into the DFNN model. This normalization
is continuous, therefore we still have a continuous mapping. Finally, we can
use sofmax and bce dice loss. The absolute error of the different learning
schemes are shown in Figure 5.15.

Since the values of the allocation and the dual are different, it is not
possible to compare the losses or absolute errors directly as before. We shall
instead compare three different learning schemes (learning allocation without
order, learning allocation with (PS)2S order and learning the dual values) on
two different scenarios created with SUMO. The first scenario contains 244
users and lasts in 61.7 minutes inside the coverage of one BS. The map of
this scenario is shown in Figure 5.2. The results obtained with the different
learning schemes on this scenario are shown in Figure 5.17. The second
scenario contains 214 users and lasts 62.4 minutes. The map of this scenario
is shown in Figure 5.16. The results obtained with the different learning
schemes on this scenario are shown in Figure 5.18.
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(a) Loss on training and validation set

(b) Plot on same axis of the loss and absolute error on validation set

Figure 5.14: Comparison of 4 different types of ordering schemes.
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Figure 5.15: Comparisons of Absolute Error of the Learning Allocation and
Learning Dual Value.
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Figure 5.16: Duroux, one BS type LTE1800, operator SFR. The actual size
is around 350*500m.

We see that learning dual values outperforms the two other learning
schemes: it is more stable, provides a better allocation and it converges
faster than learning directly the allocation without any ordering scheme. It
costs the same time for prediction as the other two approaches since they
are using the same architecture (i.e, model 1). However learning directly
allocation with a user ordering scheme requires to compute in addition the
order, which consumes more computing time than the other two approaches.

5.7 Computing times

The computing time of STO1 depends on the convex optimization solver
used, whereas the learning algorithm has only to feed the DFNN model with
the input matrix. We consider the same setting as in Section 5.6.2, that is
K = 10 (there are 10 users in the system) and the short term horizon is
J = 10 seconds. For these values, the average computing time of mosek is
around 43.7 ms, whereas the prediction with the DFNN model (model 1)
takes only 0.65 ms on average. These computing times are averages over
10000 samples, and both are measured on a machine using GPU (graphics
processing unit) which allows computing many calculations in parallel.
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Figure 5.17: Comparisons of evaluated on Carmes scenario created by SUMO
of Allocation and Dual Value.

5.8 Discussion on a reinforcement learning

based approach for learning Optimal Pol-

icy

In this section, we shall discuss about learning the optimal policy by using
Deep Q Network (DQN) learning. The background of DQN is recalled in
2.5.3. To do that, it requires the state of the system follows a Markov process.
To simplify, we consider a straight road only in this discussion.

Assume that every time-slot, at most one arrival enters the system and
the new arrival comes independently and with probability p. Now we define
the tuple of state, action, reward one-step and transition matrix to get a
Markov Decision Problem (MDP).

State and action: A state is a matrix 2-D size N × 2 (N is number of
small slots in coverage range), where:

• first row is vector of 0 and 1 to indicate whether there is a car in that
place or not.

• second row is a vector of corresponding cumulative data.
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cumulative data of every user is initialized with d0 where d0 is a very small
number to avoid log of zero. If there is no user in a place, the cumulative
data for that place is filled by d0 by convention. Here the future rate is not
taken into account in the state, but the Q function is expected to learn it
by learning the data rate map during iterations, since here we restrict the
learning on a specific map that is a straight road. So, in this setting, after
getting the Q function, the algorithm will work only for this specific map (this
is different from the supervised learning that was done for STO1 where the
model is trained on a general system and therefore will work on an arbitrary
network).

Action space A = {1, 2, ..., N}, if action a = k it means the car in place
k is chosen.

Reward one-step is defined:

R(X, a) = log(xa,2 + r(a))− log(xa,2),

where r is the rate function, r(a) means rate at position a and xa,2 is the
element in position a of the second row of the matrix X.

Transition matrix: As a new arrival can enter with probability p and
the vector of cumulative data can be changed, if we are currently in state
X = (xi,j)i=1,2,j=1,2,...N , it can be turned into new state as follows:

• with probability p it goes to state Y = (yi,j)i=1,2,j=1,2,...N where:

? y1,1 = 1, y1,2 = d0,

? and yi+1,1 = xi,1, yi+1,2 = xi,2 if user in place i is not chosen and
otherwise yi+1,2 = xi,2 +r(i) where r(i) stands for the rate at place
i, for all i = 2, 3, .., N − 1.

• with probability 1− p it goes to state Y = (yi,j)i=1,2,j=1,2,...N where:

? y1,1 = 0, y1,2 = d0,

? and yi+1,1 = xi,1, yi+1,2 = xi,2 if user in place i is not chosen and
otherwise yi+1,2 = xi,2 +r(i) where r(i) stands for the rate at place
i, for all i = 2, 3, .., N − 1.

Objective: We want to build a potential function, which takes state X
as an input and gives us suggestion for the good action a, that is Q-function
Q(X, a).

By value iteration, we get the optimal solution for this MDP when N
small. In value iteration, we need to store the table of the value function of
all states which is not possible when N large. One of the methods people use
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Figure 5.20: Deep Q learning comparing to Q learning and Optimal Policy,
N = 3, p = 0.5, discounted factor γ = 0.9.

to deal with large state space is to learn Q function instead of V by using
function approximation.

Fig. 5.20 illustrates the comparison of three algorithms: Optimal Policy
got by value iteration, Q learning and Deep Q learning. In that numerical
result, in each episode, we do the same 2000 iterations both for DQN and
Q learning. Here we can see even with N = 3 it takes so long time (75
episodes) to see the convergence of the DQN and DQN even converges quite
far from the true value got by Value Iteration. There are two disadvantages of
this method. Firstly, when N increases, the size of the state-space increases
exponentially. In fact, N should be of the order of thousands, which makes a
very huge state space. Secondly, by the way we defined the model above, we
do not have a terminal state. Those two things may make both of Q learning
and Deep Q learning more difficult to converge to the true value.

5.9 Summary and Discussion

We have proposed machined learning based method for learning one of our
heuristics (the STO 1) introduced in chapter 3 and chapter 4 in order to
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produce an approximate solution which can process many times faster. We
have proved that the primal values used in STO 1 are not continuous in the
input. We then proposed some ordering methods to reduce the discontinuity
of the primal values. We also proved that the dual values are continuous,
we thus proposed to learn the duals instead of the primals. The ordering
methods help the model converges faster but not always increases the per-
formance, while the dual method helps the model learn faster and perform
better. We also presented another approach using reinforcement learning.
Different from Supervise Learning approach, Reinforcement Learning works
for specific topology maps, needs long time to converge even for very small
scenario.

The way we define the state for the DFNN here makes the model can learn
on a general network, not only for specific topology map. There are several
directions of research that can be investigated to improve the learning, such
as better generator of data, better loss function, better architecture DFNN
model, and other thing such as optimizer, learning rate, etc.
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Chapter 6

Discussion and Future Works

In this thesis, we have investigated two different resource allocation problems.
The first one deals with the channel allocation to vehicular users in cellular
networks, whereas the second one is the joint channel allocation and power
control problem in cellular networks. For each problem, we have proposed
two heuristic algorithms which assume that the mean future rates of vehic-
ular users can be predicted over a few seconds. The main originality of our
algorithms is that they combine this information on future radio conditions
with the information on present channel channel conditions to compute what
should be the optimal allocation in the next few seconds. This is done by
solving a relaxed version of a utility maximization problem over a short-term
horizon. This extra-knowledge on future allocations can then be used for
improved online channel allocation and/or power control. Our algorithms
can be applied to general network topologies and are shown numerically to
outperform other existing algorithms. In the last part of the thesis , we have
also presented a machine learning-based method for obtaining approximate
algorithms that mimic our resource allocation algorithms but can be run
many times faster. Numerical results show that the approximate algorithms
are well suited to real-time processing and that the degradation of the chan-
nel allocation quality is very small. Below, we discuss some open research
directions that could be followed to extend our work.

There are several directions in which our work can be extended. One
avenue is to implement a centralized and coordinated version for the multiple
BSs case of our heuristics. On the analytical side, obtaining sub-optimality
bounds for our heuristics would also be worth investigating. It would be also
interesting to study the robustness of our heuristic algorithms with respect
to errors in future information. The dual-decomposition methods presented
in [54] could also be applied to get another heuristic algorithm but with a
penalty term instead of the average power constraint.
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For both problems, it would be interesting to extend our work to different
utility functions and to problems in which users have QoS requirements (e.g.,
latency or jitter). We also note that the joint channel allocation and power
control problem could be studied on the up-link, and that similar algorithms
could be investigated for the opportunistic utility model.

Finally, another interesting extension would be to consider settings in
which the information available on users is heterogeneous. We particularly
have in mind the two following settings:

• a setting in which future information is not available for some users
which are unpredictable. For instance, the future positions of pedes-
trians are probably more difficult to predict than those of cars moving
along a highway. An idea that could be applied in this case is to apply
PF scheduling for those ”unpredictable” users, and to use our heuristics
for the other users,

• a setting in which the positions of some users can be predicted with
higher accuracy and over a longer time period than those of the other
users. For example, compared to the individual users, the public trans-
ports (bus, tram, metro,...) may be easier to predict in longer time
period and with higher accuracy. Another example is the case of vehic-
ular users agreeing to share the information on their itinerary. An idea
that could be applied in these situations is that the estimated future
rate can be equal to expectation over all possibilities of the future path
prediction.
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