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Résumé

La présente thèse de doctorat a pour objectif d’améliorer la modélisation du phénomène
de rupture dans les matériaux fragiles. Elle porte une attention particulière aux mécanismes
de rupture des objets célestes. L’un des problèmes posant le plus de défis aux scientifiques
spécialisés dans l’étude de la mécanique de la rupture est la propagation d’une fissure dans
un maillage éléments finis, et ce pour des chemins arbitraires. Dans cette étude, ce problème
est abordé en utilisant une technique de remaillage avancée utilisant des éléments finis cohésifs
permettant la propagation de fissures suivant des directions arbitraires et indépendantes du
maillage. La direction de la fissure est calculée suivant le critère du taux de restitution d’énergie
maximal, implémentée à l’aide d’un modèle éléments finis et de la méthode Gθ. Les effets de
différents paramètres numériques et physiques relatifs à la fissure ou à l’énergie libérée lors de
la rupture sont investigués.

Bien que différentes preuves de fissures et/ou fragments à la surface de corps célestes de
notre système solaire induits par des variations cycliques de la température ont été détaillées, la
compréhension de ces mécanismes de propagation dans des objets célestes reste très parcellaire.
La fracturation thermique de roches en surface associée à l’impact de micro-météorites peut
éventuellement conduire à la rupture complète de fragments de matière et à la production
de régolithes. Cette dernière est définie comme la couche de matériau non consolidée qui
recouvre la surface des planètes. Afin de comprendre ces mécanismes, l’étude s’attarde sur
un exemple précis, celui de l’astéroïde (101955) Bennu. Pour ce faire, elle utilise un modèle
thermoélastique couplé avec un modèle linéaire élastique de mécanique de la rupture permettant
de considérer les variations cycliques de température liées aux alternances jour/nuit. En utilisant
cette méthodologie, il a été observé que les fissures se propagent préférentiellement dans les
directions : Nord vers Sud, Nord-Est vers Sud-Ouest et Nord-Ouest vers Sud-Est. Finalement,
une analyse de fatigue est effectuée afin d’estimer la vitesse de croissance de la fissure.

Les méthodes détaillées précédemment ont été implémentées dans Cimlib, une librairie C++
dévelopée au CEMEF. Au sein de cette librairie, une méthode permettant la propagation d’une
ou plusieurs fissures, suivant des directions arbitraires, en 2D et au sein d’un environnement
de calcul en parallèle est à présent disponible. Concernant l’extension de cette méthode à des
problèmes 3D, une première approche a été mise au point. Elle permet de propager un front
de fissure suivant une direction arbitaire. La structure développée permet d’ouvrir de nouvelles
possibilités pour de nombreuses applications, telles que l’étude de la rupture de matériaux
composites à l’échelle mesoscopique.

Mots clés: Propagation de fissure; Direction de croissance de fissure; Modèle à zone
cohésive; Éléments cohésifs indépendants du maillage; Insertion dynamique; Techniques de re-
maillage; Astéroïde Bennu; Modèle thermoélastique; Croissance de fissure induite par la fatigue
thermique.
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Abstract

The present PhD thesis aims at providing a better modeling of fracture phenomenon in
brittle materials, with special attention focused on fracture processes taking place in astro-
nomical bodies. One of the most challenging issues in computational fracture mechanics is the
propagation of a crack through a finite element mesh for arbitrary crack paths. In this work,
this problem is approached by means of an advanced remeshing technique that propagates a
crack using cohesive elements through arbitrary directions (mesh-independent). The crack di-
rection is computed using the maximal energy release rate criterion which is implemented using
finite elements and the Gθ method. The effects of different numerical and physical parameters
regarding the crack path and fracture energy have been investigated.

Even though it has been shown that temperature cycles on airless bodies of our Solar System
can cause damaging of surface materials (Thermal cracking), propagation mechanisms in the
case of space objects are still poorly understood. Thermal cracking of surface rocks, in addition
to the impact of micrometeorties, can eventually lead to rocks’ breakup and produce fresh
regolith, the latter being the layer of unconsolidated material that covers planetary surfaces.
For this reason, the present work combines a thermoelasticity model together with linear elastic
fracture mechanics theory to predict fracture propagation in the presence of thermal gradients
generated by diurnal temperature cycling and under conditions similar to those existing on
asteroid (101955) Bennu. Using the implemented methodologies, it is found that in asteroid
Bennu, cracks preferentially propagate in the North to South (N-S), in the North-East to South-
West (NE-SW) and in the North-West to South-East (NW-SE) directions. Finally, thermal
fatigue analysis was performed in order to estimate the crack growth rate.

Aforementioned methodologies have been implemented in Cimlib, a C++ in-house finite
element library developed at CEMEF. Inside Cimlib, a methodology allowing two-dimensional
crack propagation through arbitrary directions with the option of handling multiple cracks in
the domain and inside a parallel environment was developed. Regarding three-dimensional
scenario, a first approach where a crack front was propagated through an arbitrary direction
was achieved. Concerning numerical modeling of crack propagation, the developed framework
opens new possibilities for various applications such as composites cracking at the meso-scale.

Keywords: Crack propagation; Crack growth direction; Cohesive zone models; Mesh-
independent cohesive elements; Dynamic insertion; Remeshing techniques; Asteroid Bennu;
Thermoelastic model; Thermal fatigue crack growth.
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Context

The identification of the most likely mode of failure and the application of a suitable failure
criterion are crucial in the design of structures and machine components. Material damage is
in general understood in terms of nucleation and propagation of fractures (cracks). In addi-
tion, crack growth modeling plays an essential role in the assessment of engineering structures
regarding more accurate prediction of structural damage and failure that can prevent catas-
trophic failures. The fracture mechanics community recognizes the role of inherent structural
flaws (also called cracks or fractures) that affect component’s performance and life. These in-
evitable defects result in high stress concentrations that can lead to failure and threaten safety
in both engineering structures [Erdogan, 2000,Zerbst et al., 2015] and natural structures, e.g.,
domes [Collins et al., 2018] and cliffs [Collins and Stock, 2016]. The presence of fracture and
their development can be investigated using laboratory experiments, analytical studies and nu-
merical simulations. The first option is usually expensive, but always necessary at least for
getting reliable input data and for the purpose of the validation of the analytical, empirical and
numerical models. Analytical studies are typically restricted to simple configurations. There-
fore, numerical simulations are often an effective strategy to deal with most complex cases [Liao
et al., 2018].

Regarding materials science and engineering, fracture mechanics is thus an active and essen-
tial research field. Even though it has been studied for more than 100 years, it still has plenty
of open questions waiting to be solved. Fracture is a really complex and very material-specific
problem. For this reason, the improvement of fracture initiation and growth prediction, in ex-
isting as well as in new materials, is highly worthwhile. Fracture process can take place under
static or dynamic conditions, as well as under monotonic or cyclic loadings. When occurring
under cyclic loading, the fracture process is known as fatigue. When fracture takes place with
no visible prior plastic deformation, it is known as brittle fracture. Meanwhile, if the fracture
occurs after a considerable plastic deformation, it is named as ductile fracture. The present
study is dedicated to fracture process taking place in brittle materials under both monotonic
and cyclic loadings. A suited and proven approach for the study of fracture mechanics is the
finite element method (FEM). Over the last years, computers computational power has sig-
nificantly increased, allowing the study of more and more complex problems like damage and
fracture prediction for different real scenarios. Such scenarios often require the application of
non-linear finite element (FE) codes in order to solve the physical problem immersed there.

The fracture process can be decomposed into two steps: crack initiation and crack propa-
gation. The first one is essential but not easy. If the goal is to describe this process for a body
without an initial pre-crack, damage-based numerical models should be used. These models
study the evolution of damage in a continuous way and, at a critical damage value, the crack
is initiated as a result of a nucleation process [Alessi et al., 2015,Marigo et al., 2016, Tanné
et al., 2018, Eldahshan et al., 2021]. In the fracture mechanics field, the simulation of crack
initiation is a challenging task and for this reason, this process is often disregarded. Efforts
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are often oriented towards the study of the evolution of pre-existing cracks [Bouchard et al.,
2003]. In this case, crack propagation introduces a displacement discontinuity. Dealing with
this discontinuity in a finite element mesh is fundamental in fracture mechanics. For this rea-
son, many approaches have been developed to handle it. Proposed approaches range from
simple procedures like element erosion [Wulf et al., 1996], where elements are removed once
their load carrying capacity has been eroded, to more complex methodologies using enriched
finite element methods [Belytschko and Black, 1999,Moës et al., 1999,Jirásek, 2000,Oliver et al.,
2006,Fries and Belytschko, 2010] and/or remeshing operations [Bittencourt et al., 1996,Carter
et al., 2000,Bouchard et al., 2003,Branco et al., 2015].

The fracture phenomena are not restricted only to man-made structures; they also occur in
natural ones like mountains and rocks. Around the world, for example, rockfalls phenomena
in steep terrains are common and hazardous. For a long time, different mechanisms such
as precipitation, seismic activity, and freezing conditions were thought to be the exclusively
triggers of these fracture phenomena. Recently, it has been shown that rockfalls also occur
during periods when these triggers are absent. The above has left the door open to a new
theory, that these rockfalls may occur as a result of outward expansion due to the solar heating
of rock surfaces [Collins and Stock, 2016]. [Collins et al., 2018] showed that thermal stresses,
which have been largely neglected in the formation of rocks, can play a key role in triggering
fracture phenomena such as exfoliation. The understanding of these fracture phenomena is
of vital importance, for example, in locations where infrastructure is commonly supported, as
well as for studies of landscape erosion and rockfall hazards [Terzaghi, 1962,Collins and Stock,
2016,Collins et al., 2018].

Thanks to improved technology and observations we can carefully observe these structures
not only on earth but also on space objects (planetary objects) such as Mars [Eppes et al.,
2015, Viles et al., 2010], our Moon [Ruesch et al., 2020, Li et al., 2017], asteroids [Dombard
et al., 2010,Lauretta et al., 2019b,Walsh et al., 2019,DellaGiustina et al., 2019,Molaro et al.,
2020a], the nuclei of comets [Attree et al., 2018, Matonti et al., 2019, El Maarry et al., 2]
and meteorites [Delbo et al., 2014]. In particular, the small bodies were thought to be kind of
pristine [Lauretta et al., 2019b,Libourel et al., 2019]. Small bodies such as asteroids and comets
can be considered relicts of the early stages of solar system evolution. This is due to the fact
that their material composition as well as their structure are relatively primitive compared to
those composing the planets. Therefore, they can provide valuable information of the earliest
stages of planet formation [Wada et al., 2018].

All planetary bodies covered with a hard surface are prone to damage via a series of process
that determine crack initiation and growth, e.g., quakes, tides, impacts, release of internal
stresses, exhumation, thermal effects. It is worth mentioning that thermal cracking effects have
been largely underestimated. Therefore, it is interesting to study their effect on the surface
evolution of planetary bodies. Nevertheless, fatigue cracking is only one aspect of fracturing on
planetary bodies. For instance, [Matonti et al., 2019] showed that surface and interior of the
comet 67P/Churyumov-Gerasimenko exhibit shear-fracture and fault networks, ranging from
tens to hundreds of meters.

It has been shown that temperature cycles on airless bodies of our Solar System can cause
damaging of surface materials [Delbo et al., 2014]. This damaging process, known as thermal
cracking, consists in the nucleation and growth of micro-fractures inside the material due to the
mechanical stresses induced by the diurnal temperature cycles. In the case of airless bodies, the
thermal cracking phenomenon was also neglected, and it is still not well understood. Figure 1
shows a schematic representation of this cycling process. While the celestial body (i.e., asteroids,
the nuclei of comets, meteorites) is orbiting the sun, it is rotating around its own axis, leading
to strong temperature gradients as well as cyclic thermal loading conditions.

As an example, Figure 2 shows tremendous temperature variation in short period of time
on asteroid (101955) Bennu, which rotation period is only 4.28 hours. The diurnal temperature
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Figure 1: Schematic representation of diurnal temperature cycles

curves are shown for the regions with the lowest and highest thermal inertia on the surface of
Bennu. The computation of these temperature curves is well described in [Rozitis et al., 2020].

Figure 2: Diurnal temperature curves computed in regions with the lowest and highest
thermal inertia on the surface of (101955) Bennu. TI → thermal inertia and θ → surface

roughness. Figure reproduced from [Rozitis et al., 2020].

In the work of [Ballouz et al., 2020], Bennu’s lifetime in near-Earth space since it dynamically
and collisionally decoupled from the main asteroid belt (i.e., its age) is estimated to be 1.7
Myr. Following this idea, an interesting question is what would happen to materials like those
composing Bennu if they are exposed for very long time to temperature variations like those
shown in Figure 2? Will they exhibit any sign of thermal cracking?

Thermal cracking of surface rocks, in addition to the impact of micrometeorites, can even-
tually lead to rocks’ breakup and produce fresh regolith, the latter being the layer of uncon-
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solidated material that covers planetary surfaces [Yano et al., 2006,Veverka et al., 2001,Delbo
et al., 2014,Murdoch et al., 2015]. Furthermore, several studies propose that also macroscopic
fractures, mass-wasting, and material breakdown on asteroids and cometary nuclei could be ex-
plained as a consequence of thermal effects [Delbo et al., 2014,Dombard et al., 2010,El Maarry
et al., 2,Alí-Lagoa et al., 2015]. For all the reasons above, thermal cracking is now considered
an important space weathering mechanism. Figure 3 shows some in situ images of fractures
observed on the nucleus of the comet 67P/Churyumov-Gerasimenko. According to [Poulet
et al., 2016], these fractures are best explained by thermal insolation leading to thermal fatigue
and/or to loss of volatile materials. Images shown in Figure 3 were acquired by the CIVA
cameras on-board PHILAE, the landers of ESA’s Rosetta mission [Poulet et al., 2016].

Figure 3: Close-up from CIVA no. 1 showing the fractured block. The left image was
stretched to emphasize the fractures. The two red arrows indicate the limits of the fracture
having the maximum length (537.6 mm at 1 mm pix−1 resolution or 752.6 mm at 1.4 mm

pix−1 resolution). Figure reproduced from [Poulet et al., 2016].

Regarding astronomical bodies (i.e., comets, asteroids) fracture processes are still poorly
understood. This is the context in which this project started. Current work is a collabo-
ration project between CEMEF (Center for Material Forming) - MINES ParisTech and the
LAGRANGE laboratory - Observatoire de la Côte d’Azur. This project combines concepts
from fracture mechanics theory together with computational mechanics, thermoelasticity, fa-
tigue theory and planetary science. It aims at achieving crack propagation in brittle materials
through arbitrary directions combining remeshing operations and dynamic insertion of cohesive
elements either in 2D or 3D. This study also tries to provide theoretical foundation for some
fracture processes that have been observed in astronomical bodies. Such observed phenomena
are thought to be the result of a thermal fatigue induced by the temperature changes driven
by the day/night cycles on them. In a particular way, this work tries to analyze and inter-
pret fracture directions on small asteroids with properties similar to those of asteroid (101955)
Bennu.

Bennu has recently become the center of important studies because it is the target of the
OSIRIS-REx mission [Lauretta et al., 2014,Lauretta et al., 2017]. One of the main objectives
of the mission is to return a pristine sample of Bennu to Earth [Lauretta et al., 2019b]. Bennu
is also believed to represent objects that may have brought prebiotic molecules and volatiles
like water to Earth [Lauretta et al., 2019b]. Bennu is a near-Earth asteroid considered as a
rubble-pile and covered in many boulders of varying size [DellaGiustina et al., 2019]. In situ
disaggregation and exfoliation of many of these boulders have been shown, pointing out the im-
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portant role of thermal fatigue in its landscape evolution. The study of the fatigue phenomenon
on Bennu’s surface can provide a better understanding of the interaction of the aforementioned
landscape evolution with other surface processes such as micrometeoroid impacts [Molaro et al.,
2020b]. Another important factor to mention about thermal fatigue is that, its magnitude can
be several orders faster than micrometeorite impacts in fragmenting such small rocks on small
airless bodies, which further encourages its study [Delbo et al., 2014,El Mir et al., 2019].

With the aim of providing a better understanding of cracking on brittle materials, and
particularly on planetary bodies, first, a methodology to tackle one of the most challenging
issues in computational fracture mechanics was developed: the propagation of a crack through
a finite element mesh for arbitrary crack paths. To overcome this issue, a numerical strategy
capable of achieving crack propagation through arbitrary directions (mesh-independent) was
implemented inside the in-house finite element (FE) library Cimlib [Digonnet et al., 2007]. This
strategy combines advanced remeshing techniques together with dynamic insertion of cohesive
elements. The latter ensure that the energy released due to the fracture process is controlled.
Next, to understand if and how the surface of dark asteroids (e.g., Bennu) could be cracked
by thermal effects driven by the day/night cycles, the developed methodology was combined
with a thermoelastic model. To better understand this phenomenon, an attempt was made to
numerically reproduce some directions of crack propagation observed in the near-Earth asteroid
(101955) Bennu.

• Chapter 1 is devoted to the literature review used as reference for the present work.
Basic notions as well as the current state-of-the-art regarding fracture phenomena on
solar system small bodies are presented. Some fracture mechanics concepts and the most
common crack propagation strategies to deal with the fracture phenomenon using the
finite element method are then reviewed.

• Chapter 2 presents in detail the existing finite element formulation as well as all the
implementations that were carried out inside Cimlib to achieve crack propagation for
arbitrary crack paths in both two- and three-dimensional scenarios (e.g., cohesive zone
models, thermoelasticity model, remeshing strategies).

• Crack propagation through a finite element mesh for arbitrary crack paths is a challenging
task in computational fracture mechanics. The developed methodology that allows crack
propagation using remeshing operations and dynamic insertion of cohesive elements in a
mesh-independent way, in both 2D and 3D is presented in Chapter 3.

• Aiming at providing theoretical foundation for the analysis and interpretation of some
fracture directions observed on small asteroids, and that are believed to be generated
by diurnal temperature cycling, Chapter 4 presents the results obtained when applying
the developed and implemented thermo-elastic fracture mechanics model to the case of
asteroid (101955) Bennu.

• Finally, some concluding remarks as well as perspectives are presented in Chapter 5.

• Appendix A contains additional details regarding all the implementations performed inside
Cimlib.
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2 Introduction

This introduction chapter is dedicated to the literature review which is used as reference
for the present work. This chapter gives a brief overview on the theory required to understand
both fracture phenomenon and the different ways it has been approached in the literature. As
already stated in the context section, the thermal cracking phenomenon in the case of airless
bodies has been neglected for long time and it is still not well understood. The current work
aims at understanding if and how, the surface of solar system small bodies, such as dark asteroid
(101955) Bennu, could be cracked by thermal effects driven by diurnal temperature variations.
For this reason, in section 1.1 some basic notions on space bodies are presented, as well as
an overview of the current state-of-the-art regarding fracture phenomena on airless bodies. In
order to tackle that problem, section 1.2 describes the basic concepts of fracture mechanics
theory, the two common approaches used to deal with fracture analysis are described: local
approach based on stress intensity factors (SIF) and global (or energetic) approach based on
strain energy release rate. The same section also presents crack growth criteria following both
a local and a global approach as well as fatigue crack growth models. Lastly, in this section
crack kinking criteria are introduced. Then in section 1.3, the most common crack propagation
strategies available in the literature when dealing with propagation of cracks through a finite
element mesh are presented. Finally, some remarks regarding the scope and methodology of
this work are stated.

1.1 Asteroid fracture phenomena
The initiation of fractures and their growth are key processes in man-made structures and

materials. Due to their importance in the everyday life of humans, processes in these structures
are the most commonly studied cases in the literature. But these processes also occur in natural
objects, such as rocks, boulders, and cliffs [Cao et al., 2019,Al-Mukhtar and Merkel, 2015,Wang
et al., 2019,Atkinson, 1982,Vastola, G., 2011,Eppes et al., 2015] and are documented on several
objects of our solar system, including Earth [Collins and Stock, 2016, Collins et al., 2018],
Mars [Eppes et al., 2015,Viles et al., 2010], our Moon [Ruesch et al., 2020,Li et al., 2017], the
nuclei of comets [Attree et al., 2018,Matonti et al., 2019,El Maarry et al., 2], asteroids [Dombard
et al., 2010,Lauretta et al., 2019b,Walsh et al., 2019,DellaGiustina et al., 2019,Molaro et al.,
2020a], and meteorites [Delbo et al., 2014].

The source of the driving forces that provokes crack nucleation and propagation can be very
diverse, ranging from unloading of the pressure stresses under which certain rocks formed in
the deep crust of Earth, tectonic stresses, rapid mechanical stresses from impacts, tides and
thermal stresses. In the latter case, the presence of water can enhance the cracking phenomena
via the known freeze-thaw effect (see e.g. [Hall, 2004] and references therein). The effectiveness
of thermal stresses in cracking rocks and other geological units in the absence of water has been
long debated: a famous laboratory experiment by [Griggs, 1936] argued against earlier claims
that rocks could be fractured by temperature variations only, the process that in general and
hereafter is called thermal cracking. However, thermal cracking gained momentum recently and
came to great attention to planetary scientists thanks to new measurements, modelling, and
observations.

The crack propagation rate is governed, among other variables, by the stress intensity factor
(K) (See section 1.2.3.1). K is proportional to the applied stress (σ) and, in thermal problems,
σ is proportional to temperature changes (∆T ). On asteroids and atmosphere less space bodies
∆T can be very large of ∼100 K [Delbo et al., 2014,Rozitis et al., 2020]. So one could expect
thermal cracking to be very important.

More in details, it has been shown that temperature variations resulting from the cycles
between day and night can damage materials on airless bodies of our Solar System (for references
on this topic, see the introductions of [Molaro et al., 2017,Molaro et al., 2015]). This damaging
process consists in the nucleation and growth of micro-fractures inside the material due to
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the mechanical stresses induced by the diurnal temperature cycles. In general the mechanical
stresses resulting from temperature gradients due to the day and night cycles are smaller than
the strength of the material (see e.g. [Delbo et al., 2014,Ravaji et al., 2019,El Mir et al., 2019,
Hazeli et al., 2018,Molaro et al., 2017]). In this case the crack can still open and grow in a regime
that is said to be sub-critical [Atkinson, 1984]. This phenomenon of sub-critical growth, stable
cracking or quasi-static crack propagation occurs when a crack propagates at speeds much lower
than the body wave speed even when the stress intensity factor (K) is lower than the fracture
toughness (Kc) [Weiss, 2004]. Under this regime, the material is increasingly damaged at each
cycle and it is usually spoken of thermal fatigue. Eventually, the application of a large number of
cycles can produce important crack growth; the crack tip can reach a boundary of the material,
such as a discontinuity or the edge of a rock; this leads to material failure (see e.g. [Dombard
et al., 2010,Delbo et al., 2014] for the case of asteroids and meteorites). For example, [Liang
et al., 2020] studied volumetric stress distribution in an L6 ordinary chondrite’s microstructure
subjected to thermal and mechanical loadings through the combination of experiments and
micromechanical models. It was found that under thermal cycling, the stress concentrates
more uniformly along with particle interfaces. The authors interpret that thermal fatigue crack
propagation could result in the debonding of particles from the surrounding matrix.

Hence, on solar system bodies without an atmosphere, thermal fatigue of surface rocks, in
addition to the impact of micrometeorites, can eventually lead to rocks’ breakup and produce
regolith [Dombard et al., 2010,Delbo et al., 2014], the latter being the layer of unconsolidated
material that covers planetary surfaces [Yano et al., 2006,Veverka et al., 2001,Murdoch et al.,
2015]. In the case of the near-Earth asteroid (101955) Bennu [Lauretta et al., 2019b], [Molaro
et al., 2020b] propose that thermal cracking is also able to eject sub-cm-sized particles away
from the asteroid surface, thereby offering an explanation for the observed activity of this
asteroid [Lauretta et al., 2019a]. Furthermore, several studies also propose that macroscopic
fractures, mass-wasting (i.e., gravity-driven movement of regolith down a slope [Millar, 2013]),
and material breakdown on asteroids and cometary nuclei could be explained as a consequence
of thermal effects [Dombard et al., 2010,El Maarry et al., 2,Alí-Lagoa et al., 2015,Attree et al.,
2018,Molaro et al., 2020a].

For all the reasons above, thermal fatigue cracking is now considered a space weathering
mechanism. On the other hand, direct evidence of thermal cracking on asteroids (and comets)
is still relatively scarce (but strongly growing) and the details of the process in terms of spatial
and temporal scales are still poorly understood. One of the first studies that invokes this
phenomenon to explain certain in situ asteroid observations is the work of [Dombard et al.,
2010]. Using images obtained by NASA’s Shoemaker mission of the surface of the asteroid
(433) Eros, these authors noted boulders that appear to break and erode in place, producing
fragments that fill the inside of craters, creating characteristic “ponds” of regolith. Another
observational evidence, obtained from images of NASA’s OSIRIS-REx mission [Lauretta et al.,
2014], is constituted by the detection of exfoliation sheets on some of the boulders on the asteroid
(101955) Bennu [Molaro et al., 2020a]. The thickness of the exfoliation sheets is consistent with
the depth inside boulders at which thermoelastic simulations show stress concentration as a
result of diurnal temperature variations [Molaro et al., 2020a]. However, it has been shown on
Earth [McFadden et al., 2005] and Mars [Eppes et al., 2015] that one of the most diagnostic
observations of thermal cracking induced by diurnal temperature variations is a preferential
meridional direction (north to south) of the fractures on surface rocks. The reason is very
simple: during the day the Sun moves in the sky from the east to the west. As a consequence,
the temperature gradients are directed essentially in the same direction (west to east). Fractures
mainly propagate in a direction perpendicular to that of maximum principal stress. Therefore,
this direction of propagation is expected to be essentially from the north to the south, when
they are driven by these diurnal temperature cycles. There are hints of predominance of fracture
directed in the north to the south and in the north-west to the south-east on the boulders of the



4 Introduction

asteroid Bennu [Delbo et al., 2019]. However, a modelling of the crack propagation direction in
conditions similar to those existing on Bennu is still lacking. The aim of this work is to provide
theoretical foundation for analysis and interpretation of fracture directions on small asteroids
with properties similar to those of Bennu.

1.1.1 Asteroids
The objects that are orbiting the sun that are neither planets, nor dwarf planets nor natural

satellites are known as small solar system bodies. The group of small solar system bodies whose
members mostly orbit in the so-called asteroid main belt that is located between the orbits of
Mars and Jupiter, at heliocentric distances ranging between about 2.0 and 3.3 Astronomical
Units (AU) are commonly named as asteroids. A wide range of compositions is exhibited by
asteroids which vary from irons to undifferentiated rock. Several asteroids appear to be binary
and have two components that can be held together as one by mutual gravity. Deep fracturing
and even separation of pieces may be caused by impacts, but due to the attraction of mutual
gravity, the asteroid may reassemble [Shoemaker, 2003]. The word asteroid is normally used to
refer to the solid (rocky, carbonaceous, metallic, etc.) bodies that appear star-like at telescopes.
Asteroids have a minimum size above 1 m and they do not exceed a few hundreds of kilometers.
A power law adequately describes the size distribution of the asteroid main belt population.
Thus, the number of asteroids increases rapidly for decreasing size. The study of the small bodies
of our solar system is encouraged by the fact that they can be assumed to be good analogs of the
original planetesimals, or even direct survivors of this early population [Cellino, 2021]. Asteroids
are classified according to how their spectral reflectance changes versus wavelength [Burbine,
2014].

Inside the group of solar system small bodies, asteroids are not the only one existing class.
There are other small objects orbiting the sun. For example, Trans-Neptunian objects (TNO)
or Kuiper-belt objects (KBO), are those orbiting at heliocentric distances comparable with or
larger than the orbit of Neptune. Centaurs are small bodies orbiting between the main asteroid
belt and the orbit of Neptune. There is also another well-known class of solar system small
bodies named comets. Inside this group are the objects having a composition rich in ice and
volatile elements that can sublimate and produce comas (fuzzy atmosphere) and tails when
reaching heliocentric distances sufficiently small [Cellino, 2021,Ye, 2018].

Other kind of objects orbiting the sun are the meteoroids, which are smaller than asteroids
and have a maximum size of 1m. Meteoroids are naturally occurring objects that originate from
the fragmentation of planetary body. They typically came from asteroids, but some originate
from our moon, comets and other planets such as Mars, after their production, meteoroids are on
heliocentric orbits. When they collide with a planet and survive passage through the atmosphere
of a different planetary body and reach their surface, they are called meteorites. In this case, and
when meteorites or their fragments are collected, these are a source of invaluable information
about the composition of the body that produced them. The problem is that it is very difficult to
identify the source of meteorites. So it is not always obvious from which planet/asteroid/comet
they come from. The thermo mechanical model that will be presented in Chapter 4 uses physical
properties from meteorites. For this reason, some information about these objects will be
presented below. The light phenomena created when meteoroids pass through other planetary
bodies’ atmosphere at high speed and burn up are known as meteors [McCoy, 2021, Cellino,
2021].

The top level classification scheme of meteorites presented in [McCoy, 2021] is illustrated
in Figure 1.1. This classification emphasizes the meteorites’ origin, considered as the most
important aspect. In general terms, meteorites can be classified taking into account whether
their planetary parent body experienced igneous differentiation or remained undifferentiated
since accretion. Igneous differentiation or magmatic differentiation is the process that changes
the chemical composition of magmas. The term chondrites is used to refer to undifferentiated
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Figure 1.1: Meteorite classification that divides meteorites based on whether their parent
bodies experienced igneous differentiation or not. Numbers indicate how many classified

meteorites are known in each group. Figure reproduced from [McCoy, 2021].

meteorites. They are called like this because they contain mm-sized igneous spherules called
chondrules.

In the group of chondrites, the most common type are the ordinary chondrites which com-
prise the ∼85% of all meteorites. The ordinary chondrites group is subdivided into H, L and
LL groups, based on total iron (Fe) content. It can also be found the carbonaceous chondrites
which represent ∼4% of all meteorites. Inside this classification there is a variety of groups, but
due to the fact that the earliest-recognized groups CI, CM and CV were carbon-rich, they were
named in this way. Generally, these aforementioned groups are named taking into account type
specimens. For example, CI designation takes its name from the carbonaceous chondrite Ivuna.
There is another classification of chondrites which are known as enstatite chondrites. These
constitute ∼1% of all meteorites, they were formed in an oxygen-poor environment, leading
to the production of essentially free of ferrous oxide (FeO) enstatite. Similar to the ordinary
chondrites, enstatite chondrites are divided into EH and EL chondrites to denote high- and
low-total iron respectively. It is thought that the ordinary, carbonaceous and enstatite clans
represent common chemical properties, as well as possibly nebular regions, while the groups
(e.g., H, CI, EL) represent different parent bodies [McCoy, 2021].
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In the case of differentiated meteorites, they comprise less than ∼10% of all meteorites re-
covered. They are classified as primitive achondrites, achondrites, stony-irons and irons. Even
though the primitive achondrites are few in number, they help to sample the gap between
undifferentiated chondrites and achondrites, and between stony-irons and irons from fully dif-
ferentiated asteroids. Primitive achondrites are named for type specimens (i.e., acapulcoites,
lodranites, winonaites and ureilites). Their bulk chemical composition is broadly chondritic,
but with evidence of melting and melt segregation. Inside the achondrites there are included
the howardite-eucrite-diogenite clan, aubrites, angrites, martian and lunar meteorites. These
represent ∼5% of all meteorites and they are igneous rocks that were crystallized from melts.
There are also the stony-iron pallasites and mesosiderites which are mixtures of metal and
differentiated silicates. They are small in number and their origin is still enigmatic. In the
final part of the classification it is found the irons, they are metal-dominated but often contain
inclusions of sulfides, carbides, phosphides, phosphates and silicates. They represent ∼2% of
all meteorites and include at least 13 well-defined groups (i.e., I-IV, A-F) [McCoy, 2021].

One of the main ideas behind this PhD is to numerically reproduce some observed fractures
on space bodies which are thought to be induced by large amount of thermal cycles. Current
work is specifically focused on asteroid (101955) Bennu, which is depicted in Figure 1.2. As
already mentioned in the context section, solar system small bodies can provide valuable in-
formation of the earliest stages of planet formation, as they can be considered relicts of the
early stages of solar system evolution [Wada et al., 2018]. In the particular case of Bennu,
tremendous temperature variation has been reported [Rozitis et al., 2020]. In addition, Bennu
has been dynamically decoupled from the main asteroid belt for 1.75 Myr [Ballouz et al., 2020],
being this the time that Bennu has been with these temperatures. A natural question would be
what would happen to materials like those composing Bennu, if they are exposed for very long
time to strong temperature variations? Will thermal cracking appear? Furthermore, fatigue
phenomenon on Bennu’s surface can provide a better understanding of landscape evolution
processes [Molaro et al., 2020b].

Asteroid (101955) Bennu is a low-albedo B-type asteroid. Low-albedo means that Bennu
reflects a small amount of the incoming radiation and absorbs the rest. B-type asteroids are
a rare type of asteroids that have been linked spectroscopically to CI or CM carbonaceous
chondrites, where the ‘B’ indicates that they are spectrally blue [Yang and Jewitt, 2010,Alí-
Lagoa et al., 2013]. Its mean diameter is about 490.06 m. Bennu has been linked to organic-
rich hydrated carbonaceous chondrites [Nolan et al., 2013, Lauretta et al., 2019b, Barnouin
et al., 2019]. Bennu’s bulk composition appears to be hydrated. According to its shape and
topography, Bennu’s levels of internal shear strength or cohesion are low [Lauretta et al., 2019b].
Its low density is consistent with a “rubble-pile” structure containing 50% macroporosity when
the particle density characteristic of CM chondrites is assumed. In this way, asteroid Bennu
appears to be a gravitational aggregate. The age of its surface is at 100 million to 1 billion years
old [Walsh et al., 2019]. Morphologies observed in fractured boulders on asteroid Bennu suggest
the influence of impact and thermal processes [Ballouz et al., 2020,Molaro et al., 2020a,Molaro
et al., 2020b]. It has a global geometric albedo of 4.4%, making it one of the darkest objects
in the Solar System. The geometric albedo is defined as the amount of radiation reflected from
a body relative to that from a flat Lambertian surface, which is a diffuse perfect reflector at
all wavelengths [de Pater and Lissauer, 2015]. Magnetite (Fe3O4) is present in Bennu’s surface,
which is an important indicator of past aqueous alteration in the parent body [Yang and Jewitt,
2010,Hergenrother et al., 2013,Clark et al., 2011].

According to the information found in the literature, it is evident that fracture processes
in solar system small bodies are still poorly understood. Fracture phenomena on airless bodies
have been related to temperature variations resulting from the cycles between day and night. It
is possible to find studies that compute thermal stresses on space bodies, or how much a crack



1.2 Fracture mechanics 7

Figure 1.2: Mosaic image of asteroid Bennu composed of 12 PolyCam images collected on
December 2, 2018 by the OSIRIS-REx spacecraft from a range of 15 miles (24 km). Credits:

NASA/Goddard/University of Arizona.

grow due to thermal fatigue. Nevertheless, there are no studies that really give a theoretical
background that allows to explain why some fractures observed on some solar system small
bodies, evolve in one direction or another. This lack of models gives origin to the necessity
of developing an adapted approach. This approach should combine thermoelasticity theory and
fracture mechanics concepts aiming at numerically reproduce some observed fractures on space
bodies induced by large amount of thermal cycles. In this specific case, it will be applied to
asteroid Bennu. In order to implement this adapted approach, several concepts from different
fields should be introduced. A brief overview on fracture mechanics, as well as on the most
common numerical methods for crack propagation will be given.

1.2 Fracture mechanics
In order to study and understand advanced concepts in fracture mechanics, a solid back-

ground in the fundamentals of Linear Elastic Fracture Mechanics (LEFM) is needed. First, this
section describes both the local and global approaches to linear fracture mechanics. Then, some
notions in crack propagation are presented: when and where cracks propagate.

1.2.1 Local approach
In an elastic medium, in the vicinity of cracks, the stress fields may be calculated using linear

elastic stress analysis. In Figure 1.3 the three types of loading that a crack can experience are
shown. These basic fracture modes are (i) Mode I, (ii) Mode II and (iii) Mode III. Mode I is
considered to be the most critical with respect to fracture. The stress state near a crack tip
(Equations 1.2, 1.3 and 1.4) is usually defined through these fracture modes.
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(i) Mode I (ii) Mode II (ii) Mode III

Figure 1.3: Schematic representation of the three fundamental modes of fracture.

A body with a crack can undergo any one of these loading modes, or a combination of
two or three of these modes [Anderson, 2005]. When more than one loading mode is present
(mixed-mode), the individual contributions to a given stress component are additive:

σ
(total)
ij = σ

(I)
ij + σ

(II)
ij + σ

(III)
ij (1.1)

Figure 1.4 depicts a material element placed at a distance r from the crack tip and at an
angle θ with respect to the crack direction. The in-plane stresses of the element are also shown.
The equations describing the stress state close to a crack tip corresponding to Modes I, II
and III [Anderson, 2005] are given respectively by equations (1.2), (1.3) and (1.4). It is worth
mentioning that each loading mode produces a 1√

r
singularity at the crack tip and also that K

depends on the mode, therefore, the stress intensity factor has a subscript used to indicate the
loading mode KI ,KII or KIII .
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Figure 1.4: Stress state near the crack tip. Figure reproduced from [Anderson, 2005].

σxx = KI√
2πr

cos
(
θ

2

)[
1− sin

(
θ

2

)
sin
(3θ

2

)]
σyy = KI√

2πr
cos

(
θ

2

)[
1 + sin

(
θ

2

)
sin
(3θ

2

)]
τxy = KI√

2πr
cos

(
θ

2

)
sin
(
θ

2

)
cos

(3θ
2

)

σzz =
{

0 for plane stress

ν(σxx + σyy) for plane strain

τxz = τyz = 0

(1.2)



1.2 Fracture mechanics 9

σxx = − KII√
2πr

sin
(
θ

2

)[
2 + cos

(
θ

2

)
cos

(3θ
2

)]
σyy = KII√

2πr
sin
(
θ

2

)
cos

(
θ

2

)
cos

(3θ
2

)
τxy = KII√

2πr
cos

(
θ

2

)[
1− sin

(
θ

2

)
sin
(3θ

2

)]

σzz =
{

0 for plane stress

ν(σxx + σyy) for plane strain

τxz = τyz = 0

(1.3)

τxz = − KIII√
2πr

sin
(
θ

2

)
τyz = KIII√

2πr
cos

(
θ

2

) (1.4)

In those equations r is the distance between the crack tip and the element of interest, θ gives the
direction with respect to the crack axis of this element of interest and ν is the Poisson’s ratio. For
example, it should be noted that each one of the stress components of the element in equations
(1.2), (1.3) and (1.4) is proportional to a single constant Ki (i = I, II and III), which is called
the stress intensity factor (SIF). The concept of SIF was originally developed by [Irwin,
1957] based on the work of [Westergaard, 1939] regarding complete solution for the stress field
surrounding a crack. When the SIF is known, the entire stress distribution at the crack tip can
be calculated using the appropriate equation. Fracture will occur at a critical stress intensity
factor KIc, which is an alternative measure of fracture toughness, i.e., a material’s property
describing its capability to resist fracture. Accordingly, fracture occurs when KI = KIc. Here
KI is the driving force for fracture which depends only on the applied load and on the crack
geometrical configuration, and KIc is a material property, i.e., fracture toughness.

Consider the Mode I singular field on the crack plane (i.e., θ = 0), the stresses in the x and
y direction are equal and are given by:

σxx = σyy = KI√
2πr

(1.5)

For the case where θ is equal to 0, the shear stress is zero, which means that the crack
plane is a principal plane for pure Mode I loading. Figure 1.5 shows the behaviour of the
normal stress to the crack plane (σyy) against the distance from the crack tip. Equation (1.5)
is only valid in the vicinity close to the crack tip, where the stress field is dominated by the
1√
r
singularity. Far away from the crack tip, the stresses are dictated by the remote boundary

conditions. For instance in Figure 1.5, if the cracked structure is subjected to a uniform remote
tensile stress, σyy approaches σ∞. A region where equations (1.2), (1.3) and (1.4) describe the
crack-tip field [Anderson, 2005], can be defined as a singularity-dominated zone.

For some configurations the stress intensity factors may be determined based on remote
loads and geometry. Figure 1.6 shows a through-thickness crack in an infinite plate subjected
to a remote tensile stress. Here “infinite” means that the width and height of the plate are
much larger than the length of the crack (>> 2a).

For example, for this configuration the stress intensity factor is equal to:

KI = σ
√

2πa (1.6)

Formulas for calculating the stress intensity factors for different configurations considering
the 3 modes (I, II, III) can be found in [Broek, 1982a,Sun and Jin, 2012a,Radaj, 2013a,Radaj,
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Crack

Singularity Dominated

             Zone

Figure 1.5: Behaviour of stress normal to the crack plane in Mode I with respect to the
distance from crack tip. Figure reproduced from [Anderson, 2005]

Figure 1.6: Infinity plate with a through thickness crack subjected to uniaxial tension. Figure
modified from [Anderson, 2005].

2013b, Brocks, 2018]. For more complex configurations this can be estimated through exper-
iments or numerical simulations [Kobayashi et al., 1964, Tracey, 1971, Blandford et al., 1981].
Since the twentieth century the evolution of fracture mechanics field has been very useful in
the understanding of crack initiation and propagation phenomena. The introduction of the
stress intensity factor concept by the year 1957, allowed the resolution of practical engineering
problems. During the 1960s the linear elastic fracture mechanics (LEFM) had a fast develop-
ment, with applications to brittle fracture and fatigue crack growth. The linear elastic stress
field in the vicinity of a crack tip, including its singularity, can be described through the stress
intensity factor. Characterising the mechanical properties of cracked and uncracked test pieces,
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may be done using, respectively, the stress intensity factors and the stress fields [Paris and Sih,
1965,Pook, 2000,Pook, 2015]. However, analysing fracture through the stress field requires high
accuracy at the crack tip due to the stress singularity. To overcome this issue, an energetic or
global approach has also been developed and will be described now.

1.2.2 Global approach

The basic idea behind this approach is that propagation of cracks requires energy. It means
that fracture (i.e. crack extension) takes place when the energy for crack growth is enough to
overcome the resistance of the material (surface energy, plastic work or others types of energy
dissipation). The energy release rate (G) is defined as the rate of change in potential energy
with the crack area for a linear elastic material. Fracture will take place when the energy release
rate reaches a critical value (Gc), which is known as critical energy release rate and which is a
material parameter.

Going back to Figure 1.6, for this configuration (wide plate in plane stress with a crack of
length 2a) the energy release rate is given by equation (1.7):

G = πσ2a

E
(1.7)

Where E is the Young’s modulus, σ is the applied stress far way from the crack, and a is
the half-crack length. At fracture G = Gc, the critical combination of stress and crack size for
failure may be described through equation (1.8):

Gc =
πσ2

fac

E
(1.8)

From equation (1.8) it should be noted that for a constant value of Gc, failure stress σf
varies according to 1/

√
a. Similar to the stress intensity approach, here the energy release

rate (G) should be understood as the driving force for fracture, while Gc, the critical energy
release rate as an intrinsic property of the material depicting the resistance to fracture. In
the field of fracture mechanics, an essential assumption is that fracture toughness (Gc in this
case), does not depend on the size and geometry of the cracked body. A fracture analysis based
on an energy approach leads to the definition of the strain energy release rate that allows to
characterize the loading on a crack and of the critical energy release rate as a material toughness
property. According to Griffith, a crack extends if the rate of strain energy release per unit of
crack extension (dUsda ), is at least equal to the rate of surface energy requirement (dUγda ):

dUs
da
≥ dUγ

da
(1.9)

Where Uγ is the surface energy, Us is the strain energy and da is the crack length increment.
[Inglis, 1913]’s work states that the increasing of stress at the crack tip dependence was only
on the geometrical shape of the crack and not on its absolute size. Based on this, Griffith
showed that when a double-ended crack of length 2a was introduced in an infinite plate of
unit width, and subjected to a uniformly applied stress σ, the strain energy released obtained
is [Fischer-Cripps, 2007]:

Us = −πσ
2a2

E
Joules (per meter width) (1.10)

Atoms on the free surface and the ones below have to adjust to form an equilibrium thereby
developing strain in the material close to the free surface. Such deformation requires energy.
Such energy is known as surface energy. The total surface energy for 2 surfaces of unit width
and length 2a is:
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Uγ = 4γa Joules (per meter width) (1.11)

In equation (1.11) the factor 4 arises because of there being two crack surfaces of length 2a. γ
is the aforementioned surface energy (fracture surface energy). Commonly γ is larger than the
surface free energy because fracture process involves atoms located at small distance into the
solid away from the surface [Fischer-Cripps, 2007]. Figure 1.7 shows the variation of the energy
when crack length increases. The variation of the strain energy released and the surface energy
required as crack length increases is also shown. Note that cracks with length below ac will
not extend spontaneously. Maximun in the total crack energy (Uγ + Us) denotes an unstable
equilibrium condition.

-

Figure 1.7: Schematic representation of fracture energy balance. Figure reproduced
from [Fischer-Cripps, 2007]

For describing the behavior of cracks two parameters have been introduced. One which
quantifies the net change in potential energy due to an extension of the crack length (energy
release rate), and another that describes the stresses (also the strains and displacements) near
the crack tip. While G describes a global behavior, K is a local parameter. These parameters are
entirely related in a linear elastic material, so combining equations (1.6) and (1.7) the following
relationship can be found:

G = K2
I

E′
+ K2

II

E′
+ K2

III

2µ with


E
′ = E for plane stress

E
′ = E

1−ν2 for plane strain

µ = E
2(1+ν)

(1.12)

Where µ is the shear modulus. Note that in fracture mechanics the energy and stress-intensity
approaches are basically equivalent for linear elastic materials. Equation (1.12) also holds for
Gc and KIc.

So far it has been discussed some basic fracture mechanics concepts, as well as the two com-
monly approaches used when tackling the phenomenon of fracture, mainly in brittle materials.
Next step is to determine whether a crack will propagate or not, and if so, in which direction.
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1.2.3 Crack growth criteria
Once a crack has initiated, one needs to check if the crack is going to propagate or not

(Crack Propagation Criteria), and in which direction (Crack Kinking Criteria). This section
covers these topics.

1.2.3.1 Crack propagation criteria

In order to determine if a crack grows or not, local and global criteria are available. The
former uses the stress intensity factors while the latter uses the energy release rate. Both criteria
use material parameters as reference in order to allow or not crack growth. Another scenario
of crack propagation is when this occurs under conditions of cyclic applied loading. This crack
growth phenomenon due to cyclic loading is called fatigue crack growth. The latter criterion is
important because one of the objectives sought in the current PhD is to be able to perform a
thermo-elastic fatigue analysis on solar system small bodies.

Local or global criteria

Local criteria use information from the neighborhood of the crack tip. Regarding crack
propagation, usually to decide whether the crack will propagate or not, the stress intensity
factors (SIFs), representing the strength of the singularity at the crack tip are used. For example,
in mode I loading, the SIF (KI) is compared against a critical value of a material property (KIc).
When the SIF at the crack tip is greater than the material’s toughness (KI ≥ KIc), propagation
is allowed. Another way to decide if the propagation is allowed or not, is through the use of
an energetic criteria. In this case, the energy release rate (G) is compared against a critical
value of a material parameter (Gc). According to this criteron, the propagation takes place
when the energy release rate reaches a critical value that is related to the material fracture
toughness (G ≥ Gc). The “greater than” symbols used in KI ≥ KIc and G ≥ Gc only satisfy
the computations in a math sense, but they have no physical meaning. The equals signs in
KI = KIc and G = Gc are enough to satisfy the condition of crack growth, which means there
is enough energy to drive crack growth [Zhuang et al., 2014].

If once the propagation starts, the crack arrests and requires more energy to propagate,
we are talking about stable propagation. Conversely, if after initiation of the propagation, the
crack propagates without any additional loading, we are dealing with an unstable propagation.
The latter leads to the complete failure of the material. In the case of stable propagation,
computation of the crack propagation velocity can be performed. Equation 5.2 illustrates the
two possibilities when talking about crack propagation from an energetic point of view. When
G < Gc there is no crack propagation, therefore, there is no crack length increment (ȧ = 0).
Contrary, if G = Gc crack propagation takes place and there is a crack length increment
(ȧ > 0). From these two relationships, it can be inferred that Ġȧ = 0. This relation holds for
both propagation and not propagation.{

if G < Gc then ȧ = 0
if G = Gc then ȧ > 0

⇒ Ġȧ = 0 (1.13)

Where a is the crack length. If G reaches Gc and remains constant (Ġ = 0), there is a crack
length increment (ȧ > 0), and crack propagation velocity for this case can be found. G can
be defined as the decrease in the total potential energy (Wp) during a crack growth (da) (See
section 1.2.4.2). As the total potential energy Wp, G is a function of the length of the crack
a, and of the loading u, the latter also depending on time. Therefore, during a propagation, Ġ
can be computed as follows:

G = −∂Wp

∂a
⇒ Ġ = −∂

2Wp

∂a2 ȧ− ∂2Wp

∂a∂u
u̇ (1.14)



14 Introduction

Finally, using equation (5.2) crack propagation velocity is given by:

ȧ =

− ∂2Wp

∂a∂u u̇
∂2Wp

∂a2

+

=
[
−
∂G
∂u u̇
∂G
∂a

]+

(1.15)

Readers interested in further details regarding crack propagation velocity and crack growth
stability, topics that are out of the scope of the current PhD thesis, can refer to [Suo, 1990] (See
also 5.2.2).

Fatigue crack growth models

Fatigue crack growth is the phenomenon taking place when cracks grow due to cyclic loading
conditions. The fatigue life of a material subjected to a cyclic load can be split into two stages:
(i) a crack initiation and a (ii) crack growth. The first one includes some microcrack growth
but in this stage the fatigue cracks are still invisible due to their small size. In the second
stage, cracks grow until complete failure [Schijve, 2009]. When dealing with cyclic loading,
even if applied loads are far below the critical value, cracks evolve and propagate. Fracture
process under fatigue loading implies degradation of the material strength with accumulated
damage. If preexisting flaws are assumed in the material, fatigue design uses defect-tolerant
approach to define crack propagation life according to empirical crack growth laws based on
fracture mechanics theory. The rate at which a crack grows is driven by a fluctuating stress
intensity. In a material having a crack, the crack length increment (∆a) is the result of applying
a stress intensity range (∆K) for some number of cycles (∆N). The rate of growth with cycles
can be characterized by the ratio ∆a/∆N or, in a continuous way (i.e., for small intervals) by
the derivative of the crack length with respect to the number of cycles da/dN . When stresses
are applied in a cyclic manner, an important quantity is the stress ratio R, which is the ratio
between the minimum stress and the maximum stress (σmin/σmax). R can be also defined as
Kmin/Kmax. For a given ∆K, if R increases, then the crack growth rate also increases and vice
versa [Dowling, 2013].

The characteristic shape of the fatigue crack growth rate curve is shown in Figure 1.8.
Fatigue crack growth rate curve varies between materials. There are three different regimes
or regions of fatigue crack growth, namely I, II and III. The division into this three regions
depends on the curve shape, the mechanisms of crack extension and various influences on the
curve [Janssen et al., 2004]. In Figure 1.8, region I is characterized by the existence of a
threshold stress intensity range (∆Kth), below which cracks either propagate at very low rate
or do not propagate at all. When ∆Kth is known, and in order to avoid fatigue crack growth,
permissible crack lengths and/or applied stresses can be calculated. Above the threshold value
(∆Kth), a rapidly increasing of the crack growth rate takes place when ∆K increases. Inside
region II, the crack growth rate (da/dN) is generally some power function of ∆K, leading to
a linear relation between log(da/dN) and log(∆K) (e.g., Paris’ Law). And lastly in region III,
the crack growth is rapid, unstable and accelerates until the crack tip stress intensity factor
reaches its critical value (Kc) [Farahmand, 2001,Janssen et al., 2004].

Commonly, the curve shown in Figure 1.8 has tails at the upper and lower ends. For small
values of ∆K located in region I, the lower end tail approaches a vertical asymptote known as
the fatigue crack growth threshold (∆Kth). Normally, crack growth does not occur for stress
intensity ranges below the threshold (∆K < ∆Kth). The curve shown in Figure 1.8 has also a
tail at the upper end for large values of ∆K (region III ). In region III, when the stress intensity
ratio R is equal to 0, it corresponds to zero-to-tension loading. In this case, the tail at the upper
end approaches a vertical asymptote which is the critical stress intensity for the material Kc.
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Figure 1.8: Characteristics of the fatigue crack growth rate curve (log(da/dN)vslog(∆K)).
Figure reproduced from [Janssen et al., 2004].

Paris’ law

The most famous method used to predict fatigue crack growth is based on the pioneering
work of [Paris et al., 1961,Paris and Erdogan, 1963]. In Paris’ work, the rate at which the crack
length (a) grows is related to the applied stress intensity factor range (∆K) through a power
law:

da

dN
= C[∆K]n (1.16)

where a is the crack length, N the number of cycles, da
dN the crack growth rate per cycle, ∆K the

range of stress intensity factor, C and n are material properties fitted to experimental fatigue
data. Thus from equation (1.16), a plot of log(da/dN) against log(∆K) should be a straight
line with a slope of n and log(C) is the intercept. The limitation of Paris’ law is that it is only
capable of describing data falling in Region II. When the data displays a threshold (Region I )
or an accelerated growth (Region I ), Paris’ law is not suitable to describe neither region I nor
region II [Beden et al., 2009].

Walker’s law

In order to account for the effect of stress ratio R on crack growth rate, [Walker, 1970]
presented a generalization of the Paris’ law. The Walker’s law takes the following form:

da

dN
= C0

( 1
(1−R)1−γ ∆K

)n
(1.17)

where da
dN the crack growth rate per cycle, R is the stress ratio, ∆K the range of stress intensity

factor, C0, n and γ are material properties. C0 is the intercept constant C for the case of R = 0.
n is the slope on a log-log scale and γ how strongly the crack growth rate in the material is
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affected by the stress ratio R. Walker’s law law is not able to describe the tails at the upper
and lower ends of growth rate curve [Dowling, 2013].

NASGRO equation

One of the most general approach to describe fatigue crack growth is the NASGRO equation
[NASGRO, 2010,Forman and Mettu, 1990]. It accounts for stress ratio R, crack closure and the
tails at both the upper (region III ) and lower (region I ) ends of the crack growth rate curve.
The NASGRO equation takes the following form:

da

dN
= C

[( 1− f
1−R

)
∆K

]n (1− ∆Kth
∆K

)p(
1− Kmax

Kc

)q (1.18)

where da
dN the crack growth rate per cycle, R is the stress ratio, ∆K the range of stress intensity

factor, ∆Kth is the fatigue crack growth threshold, Kmax is the maximum stress intensity
factor during the cycle, Kc is the critical stress intensity value of the material. The shapes of
the asymptotes in the threshold and critical crack growth regions are controlled respectively by
p and q. Finally, f is a crack-opening function empirically formulated by [Newman, 1984].

Once propagation is allowed, next step is to find the direction in which this will take place.
For this purpose, the next section focuses on available methodologies that allow to compute the
crack propagation direction.

1.2.4 Crack kinking criteria
When crack propagation occurs, the direction of propagation must be defined. There are

different criteria to find the direction in which a crack will propagate. Some criteria are based
on the local fields at the crack tip, following a local approach, e.g., the maximum circumferential
stress criterion [Erdogan and Sih, 1963] or the maximum strain criterion [Wu, 1974,Maiti and
Smith, 1984]. Other criteria are based on energetic parameters following a global approach. e.g.,
the strain energy density [Sih and Macdonald, 1974,Sih, 1973] or the maximum energy release
rate criterion [Hussain et al., 1973,Nuismer, 1975]. In the following, two of the aforementioned
criteria will be described: The maximal circumferential stress criterion and the maximum energy
release rate criterion.

1.2.4.1 Maximal circumferential stress criterion (MCSC)

This criterion proposed by [Erdogan and Sih, 1963] states that a crack in an elastic material
is going to propagate in the direction for which the circumferential stress (σθθ) is maximun.
This criterion is local because the direction of propagation is calculated using the stress field
along a small circle of radius r centered at the crack tip. Figure 1.9 shows the representation
the stress state on a cylindrical differential element.

For the general mixed-mode problem shown in Figure 1.9, the asymptotic near-tip stress
field is given by:


σrr
σθθ
σrθ

 = KI
4
√

2πr


5 cos( θ2)− cos(3θ

2 )
3 cos( θ2) + cos(3θ

2 )
sin( θ2) + sin(3θ

2 )

+ KII
4
√

2πr


−5 sin( θ2) + 3 sin(3θ

2 )
−3 sin( θ2)− 3 sin(3θ

2 )
cos( θ2) + 3 cos(3θ

2 )

 (1.19)

Where KI and KII are respectively the stress intensity factors for mode I and mode II, θ is
the angle of the vector that goes from the crack tip to the interest point and r is the distance
between the crack tip and the interest point. Following [Erdogan and Sih, 1963], we proceed to
maximize σθθ in (1.19) by doing:
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Figure 1.9: Stress components near the crack tip in cylindrical coordinates.


∂σθθ
∂θ = 0

∂2σθθ
∂θ2 < 0

(1.20)

Then, from the second row of equation (1.19) one obtains:

∂σθθ
∂θ

= KI

[
sin
(
θ

2

)
+ sin

(3θ
2

)]
+KII

[
cos

(
θ

2

)
+ cos

(3θ
2

)]
= 0 (1.21)

Equation (1.21) can be simplified to:

KI sin θ +KII (3 cos θ − 1) = 0 (1.22)

which can be solved leading to [Nguyen-Xuan et al., 2012]:

θ = 2 arctan

KI −
√
K2
I + 8K2

II

4KII

 (1.23)

where θ is the actual crack propagation direction, the one that maximizes the circumferential
stress in a two-dimensional problem. According to this criterion there is a limit angle corre-
sponding to pure shear: θ = ±70.53◦.

If the stress intensity factors (KI and KII) are provided by the FE software, crack propaga-
tion direction may be computed by direct application of equation (1.23). In the case where SIFs
are not computed by the FE software, the computation of the kinking angle has to be computed
based on the circumferential stress σθθ at each integration point of each one of the elements of
interests, the ones attached to the crack tip (Figure 1.10). Then the crack propagates toward
the integration point that maximises σθθ. Crack propagation will be dictated by the location
of the integration point with respect to the crack tip. According to [Bouchard et al., 2003], if
this method is applied directly, the crack propagation direction would be mesh-dependent due
to the fact that this direction would directly depend on the number of elements attached to the
crack tip. A smooth σθθ field could be constructed based on near crack tip elements but the
final solution would still depend on the mesh refinement at the crack tip.

MCSC is one of the most used criteria in order to compute crack propagation direction
because its implementation is very easy. However, it should be mentioned that for the use
of this criterion, use of elements that are able to capture the singularity of the stress field at
the crack tip is highly recommended. In some cases, the accuracy of the stress field would
require the use of special elements such as the Barsoum (or quarter-point) element [Barsoum,
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Direction of 
Propagation

Figure 1.10: Calculation of the direction of propagation with the maximun circumferential
stress criterion using the elements attached to the crack tip

1976] which accounts for the stress singularity. Without those elements, the use of an energetic
approach may be more appropriate.

1.2.4.2 Maximum energy release rate criterion (MERRC)

According to this criterion, the crack propagation direction will be the one which maximises
the energy release rate (G), i.e., the energy required for a unitary crack increase. This criterion
is evaluated using all virtual and kinematically admissible displacement fields at the crack tip
neighborhood [Hussain et al., 1973,Nuismer, 1975]. The direction of crack propagation (θ0) can
be determined by:


(
dG
dθ

)
θ=θ0

= 0

(
d2G
dθ2

)
θ=θ0

≤ 0
(1.24)

For the computation of G (energy release rate) many techniques are available in the liter-
ature, e.g., real crack extension [Watwood, 1970], J-integral [Rice, 1968b], virtual crack exten-
sion [Parks, 1974,Hellen, 1975], analytical expression [DeLorenzi, 1982,Delorenzi, 1985] and the
Gθ method [Destuynder et al., 1983]. In this work, for the computation of the energy release rate
(G), the numerical technique known as Gθ method [Destuynder et al., 1983] will be used. This
technique was chosen because it is very accurate and completely mesh independent [Bouchard
et al., 2003]. Additionally, its implementation is quite simple and multiple extensions such as
the addition of external forces, loads applied to the crack lips as well as the addition of thermal
strain (which is highly important in this work) are available.

Gθ method

The Gθ method is a Lagrangian approach proposed by [Destuynder et al., 1983] for calculat-
ing the energy release rate. In this method, an infinitesimally small geometrical perturbation of
a body (i.e., crack length increment) is introduced in order to computed G. Figure 1.11 shows
a homogeneous isotropic linearly elastic body Ω that is subjected to the following prescribed
loads: (i) surface tractions fi applied on a portion Γ of body’s boundary (∂Ω), (ii) body forces
Fi and (iii) thermal loads ∆T .
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X3

X2

Virtual Crack Extension

Plane crack
Figure 1.11: Virtual kinematics in the cracked solid Ω.

The Gθ method allows to compute the energy release rate using all virtual and kinemati-
cally admissible displacement fields at the crack tip neighborhood. When Vi is defined as any
kinematically admissible displacement field (KADF), it follows that the stress tensor σij and
the displacement field Ui in the loaded state are unique solutions of the following variational
equations:

σij = Cijkl

[1
2 (Uk,l + Ul,k)− α ∆T δkl

]
(1.25)

∫
Ω
σijVj,i dΩ =

∫
Γ
fiVidΓ +

∫
Ω
FiVi dΩ, ∀Vi ∈ KADF (1.26)

and in equilibrium the total potential energy Wp is given by:

Wp = −1
2

∫
Ω
σijUj,i dΩ− 1

2

∫
Ω
σii α ∆T dΩ (1.27)

where Cijkl is the fourth-order elastic constitutive tensor, Ui,j is the gradient of the displacement
field, Vi,j is the gradient of the virtual displacement field, α is the thermal expansion coefficient
and ∆T is the temperature difference between the current state and the reference configuration,
the latter one being the temperature where there is no strain and δij is the Kronecker delta. To
determine the variation of the total potential energy in the cracked solid Ω shown in (1.27), Qη
is defined as an arbitrary infinitesimal geometrical perturbation (η) in the vicinity of the crack
tip in Ω with no change in its boundary (i.e., no change in the external surface tractions fi):

Qη(Mi) = Mη
i = Mi + ηVi(Mi) (1.28)

where the virtual field Vi gives the location of each point of the perturbated solid using its
initial position (Mi) before the perturbation. For the sake of clarity, we assumed that after this
domain perturbation all physical quantities are designated with a superscript η. Thus, Ωη is
the body in the perturbed state, and, if Mi is the position vector of a point in Ω, Mη

i is the
same point in the body Ωη. Following this convention, F ηi and ∆T η are the body forces and
temperature change in Ωη and σηij and Uηi are respectively, the stress and displacement fields
defined by the following equations:

σηij = Cijkl

[
1
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∂Uηl
∂Mη

k
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∂Mη

l

)
− α ∆T η δkl

]
(1.29)

∫
Ωη
σηij

∂Vj
∂Mη

i

dΩη =
∫

Γ
fiVidΓ +

∫
Ωη
F ηi Vi dΩη, ∀Vi ∈ KADF (1.30)
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As η is defined as an arbitrary infinitesimal geometrical perturbation in the vicinity of the crack
tip in Ω with no change in its boundary (Γ), the external surface tractions fi do not change.
The total potential energy (W η

p ) of the body Ωη is given by:

W η
p = −1

2

∫
Ωη
σηij

∂Uηj
∂Mη

i

dΩη − 1
2

∫
Ωη
σηii α ∆T η dΩη (1.31)

where ∂
∂Mη

i
is the gradient operator with respect to the coordinates of point Mη

i . In this
work, the elasticity tensor (Cijkl) as well as the thermal expansion coefficient (α) are kept
unchanged during the configuration transformation. When the perturbation η is sufficiently
small, [Destuynder et al., 1983] showed that the stress field (σij) and the displacement field (Ui)
on the perturbed configuration may be expressed as:

σηij = σij + ησ1
ij

Uηi = Ui + ηU1
i

(1.32)

where σ1
ij and U1

i are the first order variations of the stress and displacement fields during the
infinitesimal perturbation η on Ω. As the perturbation is infinitesimal, derivatives and integrals
on the perturbed body can be expressed using a first-order limited development in function of
the same operations on the unperturbed body:
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dΩ

(1.33)

Using equation (1.33), all the physical quantities like the stress (σηij), the displacement (Uηi )
and the total potential energy (W η

p ) in the perturbed configuration Ωη can be translated into
the unperturbed configuration Ω (See details in [Destuynder et al., 1983,Suo and Combescure,
1992b]). For example, letW t

p be the image ofW η
p in the unperturbed configuration Ω, it follows

that the variation of the total potential energy due to a small perturbation η in the body’s
geometry is given by:

∂Wp

∂η
= lim

η→0

W t
p −Wp

η
(1.34)

Due to the fact that the strain energy release rate (G) is the decrease in the total potential
energy (wp) during a growth of crack area (dA):

G = dWp

da
= lim

η→0

W t
p −Wp

η
(1.35)

We have that G under the presence of body forces (Fi) and thermal loads (∆T ) may be expressed
as:

G =
∫

Ω
σijUj,kVk,i dΩ− 1

2

∫
Ω
σij (Uj,i − α∆Tδij)Vk,k dΩ

+
∫

Ω
σiiαT,jVj dΩ−

∫
Ω
FiUj,iVj dΩ

(1.36)

where Ui,j is the gradient of the displacement field, Vi is the virtual displacement field, Vi,j is the
gradient of the virtual displacement field, Vi,i is the divergence of the virtual displacement field, α
is the thermal expansion coefficient, ∆T (∆T = T −Tref ) is the temperature difference between
the current state and the reference configuration and T,j is the gradient of the temperature. The
virtual displacement field Vi representing the virtual kinematics of the crack has the following
properties:
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• Vi is parallel to the crack plane.

• Vi is normal to the crack front.

• The support of Vi is only needed in the vicinity of the crack.

• ‖Vi‖ is constant in a defined region around the crack tip.

Readers interested in further details regarding mathematical formulation of the Gθ method
can refer to [Destuynder et al., 1983,Suo, 1990,Suo and Combescure, 1992b,Suo and Combes-
cure, 1993].

After introducing important fracture mechanics concepts, some crucial remarks must be
stated. It is worth mentioning that the available finite element framework at CEMEF (P1+/P1),
which will be detailed in Chapter 2 is not good enough at capturing the singularity of the stress
field at the crack tip. To confidently use a local approach when applying both crack propagation
and crack kinking criteria, it would be necessary to use either a huge mesh refinement or to im-
plement quarter-point elements, thus requiring quadratic elements. Without those strategies, the
use of an energetic or global approach may be more appropriate. The current PhD will therefore
tackle crack propagation problems following an energetic approach. Additionally, and taking
into account that fracture processes driven by thermal effects is one of the settled goals in this
work, crack propagation direction will be computed through an energetic approach (MERRC).
Energy release rate (G) will be computed using the Gθ method, which was chosen because its
implementation is quite simple and multiple extensions like the addition of thermal strain are
available.

It should be also mentioned that due to the fact that systematic fatigue crack growth experi-
ments on solar system small bodies (i.e., asteroids or meteorites) have not been conducted, there
is a lack of information regarding fatigue crack growth on these materials. The latter makes
difficult to have asteroid or meteorite materials properties. For this reason, among all the pre-
sented fatigue crack growth models, Paris’ law was considered to be the most suitable model to
simulate fatigue crack growth. Due to the fact that there is not much information about the ma-
terial, it does not have sense to try to use a more complex law which would require more input
data about the behavior of the material when subjected to fatigue. In order to define the value
of the material’s properties required for using Paris’ law (C, n) a review of the literature was
carried out. It was found that fatigue crack growth data obtained from experiments performed
by [Delbo et al., 2014] on two meteorites (carbonaceous chondrite and ordinary chondrite) were
satisfactorily predicted using the physical parameters computed in Carrara marble by [Migliazza
et al., 2011].

Next step in this work is to review the most remarkable crack propagation numerical method-
ologies available in the literature. This literature review will help choosing the most suitable
numerical technique for this PhD work.

1.3 Numerical methods for crack propagation
When crack propagation takes place, it is desirable to have an extremely accurate stress state

close to the crack tip to apply a failure criterion safely and correctly. As it was already stated,
fracture process can be decomposed into two steps: crack initiation and crack propagation. The
former one is essential but not easy. When aiming at describing this process for a body without
initial pre-crack, damage-based numerical models should be used. These models study the
evolution of damage in a continuous way, and at a critical damage value the crack is initiated,
being the result of a nucleation process [Alessi et al., 2015,Marigo et al., 2016, Tanné et al.,
2018]. For crack initation, several criteria have been proposed in the literature. Generally,
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these criteria depend on the materials studied. Some of them are based on critical values for
mechanical state variables (stress or strain) [Bouchard et al., 2003]. The simulation of crack
initiation process is outside of the scope of this work, for this reason, it is not detailed here, and
the efforts are oriented to study the evolution of a pre-existing crack.

When a pre-existing crack is assumed, its propagation introduces a discontinuity in the sense
of displacements. Dealing with this discontinuity in a finite element mesh is fundamental in
fracture mechanics and different methodologies are available in the literature. These method-
ologies are based on either continuous or discontinuous approaches (e.g., damage-based models,
Multiscale Methods, Enriched Finite Element Methods, remeshing techniques). The present
work is focused on the latter, in the case where crack propagation is considered as a displace-
ment discontinuity. Among the discontinuous approaches group, different numerical techniques
that use or not, remeshing operations when simulating crack propagation can be found. In the
following, the most common crack propagation methodologies available in the literature will be
briefly described.

1.3.1 Element erosion

Element erosion is perhaps the simplest way to take into account discontinuities in finite
element (FE) simulations due to its low computational cost and its straightforward implemen-
tation. Discontinuities in a FE simulation are dynamically introduced by removing elements
from the FE mesh and/or the associated contributions from the FE formulation based on an
appropriate fracture criterion. Element erosion approach is also known as element removal,
element deletion or kill element. In this approach some elements are generally removed once
their load carrying capacity has been eroded over several load increments in order to avoid
convergence problems [Wulf et al., 1996].

For example in the work of [Wulf et al., 1993], when one element fulfills any given failure
criterion, it is not erased from the finite element data base, but the stresses in that element
become zero. When this happens, there is no more physical relevance of the element. Thus, no
more forces will be carried by the element as well as no more contribution to further build-up
of stresses will take place. However, it is worth mentioning that there are people that really
remove the element from the FE simulation. Figure 1.12 shows the elimination of elements
at two different times. The final crack path (shadow red elements) is a straight line without
branching [Song et al., 2008]. Even though its implementation is quite simple, this method also
presents several limitations, such as volume loss and mesh size and element shape sensitivity
issues [Shakoor et al., 2018].

Figure 1.12: 2D crack propagation using element deletion at different time steps. Eliminated
elements are shaded in red. Figure reproduced from [Song et al., 2008].

1.3.2 Element-free Galerkin (EFG) methods

The element-free Galerkin method is an interesting methodology developed by [Belytschko
et al., 1994a]. It belongs to the group of approaches that work without any remeshing operations.
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This method only needs nodal information and boundary descriptions. Thus, the finite element
mesh is totally unnecessary. To construct the trial and test functions for the weak form of
the problem, moving least-squares interpolants (MLS) are used; throughout the whole domain,
dependent variable and its gradient are continuous. To obtain the value of displacements at
any point, a set of linear equations should be solved. The number of nodes that influence the
approximation at the point determines the size of the system that needs to be solved. In EFG
method, the essential boundary condition is enforced through the use of Lagrange multipliers.
According to [Belytschko et al., 1994a], EFG does not exhibit any volumetric locking and it
appears to be very effective for fracture problems. Simulation of progressively evolving cracks
can be simply achieved just by moving the fine mesh of nodes through the rest of the mesh,
which is quite simple task because element connectivities do not need to be developed.

Figure 1.13 shows a schematic repesentation of 2D crack propagation using the EFG method.
It is worth mentioning that the schematic arrangement of nodes presented in this figure, do not
have the usual finite element method connectivity. Indeed, nodal arrangement can be arbitrary,
although the local accuracy is influenced by the arrangement.

(b)

(c)

(a)

Figure 1.13: 2D crack propagation using EFG method. While crack propagation takes place,
at the crack tip, unconnected array of nodal points is adjusted. Figure reproduced

from [Belytschko et al., 1996].

EFG method has proved to be well suited when modelling crack propagation in 2D [Be-
lytschko et al., 1994b] and 3D [Krysl and Belytschko, 1999] because the incorporation into
the model of the arbitrary surfaces across which the displacement function is discontinuous is
straightforward. When there is a crack, it only affects how the nodes influence the displacement
at a given point. In this method, when evaluating the displacement in one point, any node that
is not visible from this point is omitted (visibility criterion). A straightforward implementation
of this criterion results in some interior discontinuities around the crack tip. One of the main
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drawbacks of this method is that the boundary conditions are difficult to impose [Ingraffea and
de Borst, 2017]. Another drawback of the method is its high computational effort. As it uses
MLS, to obtain the displacements at each spatial point a set of linear equations must be solved.
Also MLS approximation sometimes causes ill-conditioned equations [Lu et al., 1995, Hegen,
1997,Meng et al., 2019].

1.3.3 Arbitrary Local Mesh Replacement method (ALMR)

Inside the group of the techniques that do not use mesh adaption, there is another approach
called Arbitrary Local Mesh Replacement method. Introduced by [Rashid, 1998], the main idea
of this method relies on the fact that in the vicinity of the crack tip, the finite element interpolant
is replaced by one that is derived from a moving mesh patch. The boundary of this patch is not
required to be coincident with the edges of the elements in the background-mesh. The ALMR
is a finite-element-based strategy that uses two different meshes: one surrounding the domain
close to the crack tip and that moves with it, and an other one that describes the entire domain.
In order to solve the crack propagation problem with the ALMR method, first, the body without
the crack is discretized into finite elements (background mesh). Then, the crack is represented
by the new-free-surface curve (NFS curve). This curve is defined arbitrarily and independently
of the background mesh, taking typically, the form of a sequence of line segment as shown in
Figure 1.14. This figure also presents the patch mesh, which, in two dimensions, is a circular
disk composed of annular rings of elements. Patch mesh is centered at the crack tip and moves
with it as the crack propagates, but without suffering distortion. In this method, additional
degrees of freedom and a special treatment of partial elements near the patch boundary are
required. A disadvantage of the ALMR method is that it requires the superposition of two
meshes and, therefore, if the number of cracks increases, then the number of needed meshes
also increases. The latter makes more difficult managing automatically the propagation of each
crack [Bouchard et al., 2000].

(b)(a)

Figure 1.14: a) Representation of a typical finite-element discretization when using the ALMR
method. b) Detail of the patch mesh. Figure reproduced from [Rashid, 1998].

1.3.4 Enriched finite element methods

Inside the same group of methodologies that do not perform remeshing in order to propagate
a crack, a family of enriched FE methods have been developed. These methods have been
widely detailed in the literature [Jirásek, 2000,Oliver et al., 2006,Fries and Belytschko, 2010].
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Among these method one can find the Strong Discontinuity Approach (SDA) [Simo et al.,
1993,Garikipati, 1996,Oliver and Huespe, 2004], the Extended Finite Element Method (XFEM)
[Belytschko and Black, 1999,Moës et al., 1999] and the Generalized Finite Element Method
(GFEM) [Duarte and Oden, 1996,Melenk and Babuška, 1996,Melenk, 1995]. When tackling
crack propagation problems, a well-known advantage of enriched methods, is the fact that
discontinuities might be modeled completely independent of the morphology of the finite element
mesh [Belytschko et al., 2009,Shakoor et al., 2018].

As it was already stated, the present of a crack introduces discontinuities, which can be
characterized as jumps in the displacement field across the material. Those jumps are termed
as strong discontinuities. In the Strong Discontinuity Approach (SDA) [Simo et al., 1993,
Garikipati, 1996, Oliver and Huespe, 2004], the displacement jumps due to the presence of
the crack are embedded locally in each cracked finite element without affecting neighbouring
elements. The SDA bridge both continuous and discrete approaches in order to simulate material
failure. In this method, additional degrees of freedom must be added to the finite element model.

According to [Belytschko et al., 2009] the XFEM and GFEM are basically identical methods
based on the partition of unity concept [Melenk and Babuška, 1996]. The difference on their
names relies on the fact that Texas school adopted the name generalized finite element method
(GFEM) in 1995–1996, while in 1999 the Northwestern school coined the name extended finite
element method (XFEM). The most famous method among XFEM and GFEM is the well-
known Extended Finite Element Method (XFEM). In these methods the displacement-based
approximation is enriched near a crack by incorporating both discontinuous and near tip asymp-
totic fields. Figure 1.15 shows two different enriching strategies near the crack tip presented
in [Belytschko and Black, 1999].

Figure 1.15: Enriching strategies near the crack tip: a) The crack passes through the cells and
all the nodes surrounding the whole crack are enriched. b) Part of the crack is explicitly

modelled by the mesh. Nodes near the crack tip including the portion of the crack that is not
explicitly modelled, are enriched. Figure reproduced from [Belytschko and Black, 1999].

Most of the application involving enriched FE methods have been dedicated to simulate
the fracture process in brittle materials. As a disadvantage of such approaches, is the fact
that some burdensome modifications to the finite element code are required [Rabczuk et al.,
2010]. Furthermore, this formulation might not be suitable in the case of large strain loadings.
Actually there are some extensions for ductile fracture but for limited plasticity so that not
remeshing is required.
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1.3.5 Cohesive zone models (CZMs)

Another common alternative without mesh adaption is the family of cohesive zone models
(CZMs) [Barenblatt, 1962, Rice, 1968b]. This approach was developed in order to model the
energy dissipation rate, an issue not tackled by the aforementioned methods. Through CZMs
the fracture process is modelled as the transition from a sound material to a fully broken
one. The physics of the fracture process at the atomic scale is represented through the use of
CZMs that also remove crack tip singularity. When using CZMs, fracture process is treated
like a gradual phenomenon in which material separation across an extended crack tip region
(cohesive zone) takes place. This separation is withstood by cohesive forces. The constitutive
behavior of crack opening is governed by a cohesive traction-separation law while the behavior
of surrounding material is dictated by the bulk stress-strain relation [Jiang, 2010]. CZMs are
independent from the mechanical behavior of the bulk material, the extent of the cracks and
the size of the plastic zone [Ortiz and Pandolfi, 1999]. They also offer other advantages, such
as straightforward implementation inside conventional finite element codes.

When using cohesive elements (CZMs), a common issue is that an artificial reduction of
the stiffness of the material can be induced. This is due to the fact that, in most traction-
separation laws, there is an initial region where the traction increases monotonically from zero
up to a maximum value. This increase can be linear or not depending on the traction-separation
law used. When the traction level increases as a function of the opening displacement, an
artificial stiffness that modifies the macroscopic response of the material is introduced into
the system [Tomar et al., 2004, Blal et al., 2012]. This problem can be solved through the
introduction of Lagrange multipliers in such a way that the opening of the element is only
allowed once a critical traction is achieved [Lorentz, 2008]. This solution has the disadvantage
that it requires the modification of the finite element formulation. Commonly, cohesive zone
models have been used to solve problems involving interfaces, surfaces undergoing decohesion or
problems where the crack path is known a priori [Chaboche et al., 2001,Alfano et al., 2007,Turon
et al., 2010]. In these cases, cohesive elements can be inserted in a limited zone (known crack
path) in the finite element mesh, reducing, but not completely solving the problem regarding
artificial reduction of the stiffness.

Figure 1.16 shows the mesh for a three-point bend test specimen when the potential crack
path is known a priori [Ortiz and Pandolfi, 1999]. In this case, the mid-section of the specimen
is tiled with cohesive elements. When the crack path is not known a priori, some authors use
continuum damage theories in order to account explicitly for individual cracks as they nucleate,
propagate, branch and possibly link up to form fragments. This is done allowing cracks to form
and propagate along element boundaries in accordance with a cohesive-law model. In the work
of [Camacho and Ortiz, 1996], when the cohesive model requires it, new surfaces are created
through the duplication of existing nodes along previously coherent element boundaries. Figure
1.17 depicts the capabilities of the fracture model presented by [Camacho and Ortiz, 1996]. It
should be noted that mesh dependency may appear as a consequence of the fact that cracks
are only able to propagate across boundaries between bulk elements. Therefore, the crack path
depends on the mesh.

1.3.6 Phase field model

One of the most recently developed methods, among techniques without remeshing, is the
phase field model [Francfort and Marigo, 1998,Bourdin et al., 2000,Bourdin et al., 2008]. Even
though this method in its core belongs to the continuous approaches, it is presented here because
of its ability for simulating crack propagation mainly in brittle materials. In the phase field
approach a new variable is included in the problem, the material level of degradation, better
known as damage (d). This variable is a bounded scalar field taking values ranging from 0 to 1.
When d = 0, the material is totally sound and when d = 1, the material is fully damaged [Alessi
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Figure 1.16: Computational mesh for a three-point bend test specimen. The mesh is
composed of 8084 nodes, 4410 tetrahedra and 768 cohesive elements. Figure reproduced

from [Ortiz and Pandolfi, 1999].

Figure 1.17: Capabilities of the fracture model presented by [Camacho and Ortiz, 1996]: crack
initiation at surfaces and in the interior, crack propagation, branching and arrest. Figure

reproduced from [Camacho and Ortiz, 1996].
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et al., 2018]. Phase field model, introduced by [Francfort and Marigo, 1998], is a variational
approach to quasi-static brittle fracture that allows to simulate complex crack topologies as
well as crack initiation and propagation together with other phenomenan like coalescence and
branching. Phase field model does not require any additional ad-hoc criteria [Kuhn and Müller,
2010,Nguyen et al., 2015]. It is worth mentioning that phase field approach is conceptually very
close to non-local damage models.

Phase field approach is a numerical technique to deal with discontinuities based on energy
minimization principles. From a mathematical point of view, this method is based on the
minimization of total energy with respect to the crack geometry and the displacement field
simultaneously [Kuhn and Müller, 2010,Borden et al., 2012,Zhou et al., 2018]. In this method
there is a characteristic length scale (lc) that smears out discontinuities in the interfaces, making
the capturing of the interface easier to handle. In the original approach presented by [Bour-
din et al., 2008], the peak force reached before the onset of fracture depends on the value of
the characteristic length scale (lc). According to this, higher values of lc produce lower peak
forces and viceversa [Egger et al., 2019]. The phase field method has the notable advantage
of avoiding explicit front tracking by making material interfaces spatially diffuse. Another re-
markable advantage is its straightforward implementation. Care must be taken when enforcing
the irreversibility of the process in order to avoid decreasing of the damage variable d. Figure
1.18 illustrates the 2D crack propagation of the well-known symmetric three point bending test
using the phase field method. In this figure, the blue color corresponds to the undamaged ma-
terial, while the red color represents the fully cracked material [Miehe et al., 2010]. Recently,
the phase field method has been successfully used to model the ductile fracture at large scale
plastic strains using adaptive isotropic remeshing [Eldahshan et al., 2021].

Figure 1.18: Crack path for the symmetric three point bending test at different time steps for
two length scales. l1 = 0.06 mm for a), b) and c). l2 = 0.03 mm for d), e) and f). Figure

reproduced from [Miehe et al., 2010].

Even though phase field approach has several advantages, it also presents some limitations
which do not seem to be obvious. Due to the fact that isotropic stiffness degradation is assumed
by a scalar phase field parameter, the anisotropy that is introduced by a crack is not captured
(mesh orientation dependency). In some cases, the phase field approach overestimates the
surface energy of a crack (e.g., short cracks and crack initiation). Another drawback of the
phase field model is its parameter sensitivity (e.g., length scale) [Strobl and Seelig, 2018,Dally
et al., 2020].
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1.3.7 Mesh adaption strategies
Mesh adaption is a very natural and efficient way of handling displacement discontinuity as

well as crack propagation. Mesh adaption, mesh modification or remeshing operations are words
referring to the same concept: they denote global or local adaptive mesh refinement or global
or local remeshing without human intervention. Remeshing operations are quite a suitable tool
in order to keep a good refinement at the crack tip as it evolves. This is really important due to
the fact that crack propagation is highly affected by the mechanical fields in this zone [Bouchard
et al., 2000,Coupez et al., 2013].

Several studies regarding crack propagation using remeshing operation can be found in
the literature. Among them, it is worth mentioning the work done by [Bittencourt et al.,
1996], where a quasi-automatic two-dimensional crack propagation strategy implemented in
FRANC2D (FRacture ANalysis Code 2D) is presented. In this work through the use of an
underlying winged-edge data structure, the mesh can be automatically modified along the
propagation path avoiding the losing of unaffected structural information. In this work crack
propagation is driven by linear elastic fracture mechanics theory, and after each propagation
of the crack, the finite element mesh is locally regenerated. Another remarkable work is the
one presented by [Carter et al., 2000], one of the pioneering works that attempted to model
arbitrary non-planar crack growth in three-dimensional solid and shell structures inside the code
FRANC3D. In this work the evolution of crack growth in a structure is represented using the
computational geometry and topology. This approach is based on the sub-modelling technique,
i.e., a global FE mesh containing the crack is created, as well as a more refined sub-model near
the crack, which is used to extend the crack [Branco et al., 2015].

Another remarkable technique belonging to the approaches using remeshing operations,
is the procedure proposed by [Bouchard et al., 2003]. In this work, through the use of an
advanced remeshing technique combined with nodal relaxation, propagation of the crack is
achieved. The stress singularity at the crack tip was represented using mid-side nodes (quarter
point elements). Figure 1.19 shows a multiple cracks propagation, where the effect of each crack
on the propagation of the other one can be observed [Bouchard et al., 2000].

Figure 1.19: Propagation of two cracks in a planar domain with two holes. Figure reproduced
from [Bouchard et al., 2000].

It is also worth mentioning the work done by [Ooi et al., 2013] where an efficient method-
ology for automatic crack propagation using scaled boundary polygon elements is developed.
In this work the computational domain is discretized using arbitrary n-sided polygons which
lead to flexible mesh generation. Crack growth is determined through the evaluation of gener-
alised dynamic stress intensity factors using standard finite element stress recovery procedures.
Finally, crack propagation is adjusted by a remeshing algorithm applicable to any polygon
mesh. [Dai et al., 2015] also presented an automatic crack propagation remeshing procedure
using the polygon scaled boundary finite element method. The remeshing algorithm presented
in this work is simple but flexible because at each time step only minimal changes are performed
to the global mesh. Figure 1.20 shows an example of crack propagation using scaled boundary
polygon elements. An initial polygon mesh for a rectangular double cantilever beam (RDCB) is
shown in Figure 1.20-a) while in Figure 1.20-b) the final polygon mesh after propagation took
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place is presented .

b)a)
Figure 1.20: Rectangular double cantilever beam subjected to mode-I fracture: a) Initial
polygon mesh and b) Final polygon mesh after some propagations. Figure reproduced

from [Ooi et al., 2013].

Among the disadvantages of the mesh modification techniques, is should be mentioned
that its implementation is difficult, as well as that its computational cost is high. Although
challenging, they look to be quite appropriate for accurately modeling crack propagation when
this phenomenon is decided to be treated as a discontinuity.

1.3.8 Cohesive zone models combined with remeshing operations
Another available approach in the literature to deal with crack propagation combines remesh-

ing operations and cohesive zone models. Inside this group it is worth mentioning the work
of [Pandolfi and Ortiz, 1998,Pandolfi and Ortiz, 2002]. In this work once the effective traction
acting on interior faces initially perfectly coherent reaches the cohesive strength of the material,
cohesive elements are inserted adaptively. The insertion of cohesive elements changes in this
way the geometry of the boundary as well as sometimes the topology of the model. Figure
1.21 shows the dynamic fragmentation of a three-point bend PMMA (Polymethylmethacrylate)
specimen. Initially, the specimen has an initial sharp precrack contained within its symmetry
plane [Pandolfi and Ortiz, 2002].

It is also worth mentioning the work of [Geißler et al., 2010] where an adaptive insertion of
cohesive elements takes place during the simulation, this insertion depends on an extrinsic crack
initiation and propagation criterion. To tackle crack propagation through arbitrary directions,
a mesh adaptive procedure is presented in this work. Crack propagation direction is predicted
using stress-based and energy-based fracture criteria. Another interesting approach is the one
developed by [Chiaruttini et al., 2012]. It presents an approach for the numerical simulation of
crack propagation based on cohesive models, in the case of structures subjected to mixed mode
loadings. In this work, the evolving crack path is remeshed as the crack propagates while special
attention is paid to the fields transfer from the old mesh to the new one. Crack propagation
direction is defined through the stress intensity factors with an integral computation that is
carried out on the crack front. This work has been implemented in the finite element software
Z-set that is jointly developed by Onera and Ecole des Mines. This approach is able to tackle
arbitrary crack paths. Results obtained using the methodology proposed by [Chiaruttini et al.,
2012] are shown in Figure 1.22. The evolution of the crack path on a modified CT specimen
with a rigid steel inclusion in the central region is presented there.

Another recent strategy is presented by [Choi and Park, 2019], in which, through a novel
stress recovery technique, a domain integral and an element splits remeshing procedure, an
accurate crack path under mixed-mode as well as a mesh bias reduction are obtained. In this
method, a virtual mesh around the crack tip is generated in order to get an accurate stress
evaluation to compute the crack propagation direction through the maximum strain energy
release rate. After this, continuum elements are split and cohesive elements are adaptively
inserted.
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Figure 1.21: Fragmentation results of a three-point bend dynamic test in PMMA: a) initial
mesh, b) final configuration and c) Detail of the fracture and fragmentation pattern in the

final configuration. Figure reproduced from [Pandolfi and Ortiz, 2002].

2)1)

4)3)

Figure 1.22: Crack path evolution using the adaptive cohesive zone modelling (von Mises
isovalues). Figure reproduced from [Chiaruttini et al., 2012].
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After describing the most common numerical methods for crack propagation available in
the literature along with their advantages and disadvantages, some important remarks must
be stated. Inside the presented approaches, most of them require deep modifications of the
existing finite element code or even worse, starting an implementation from scratch. Taking into
account that there are different methodologies already implemented (e.g., existing FE framework,
remeshing strategies) that can be combined and complemented with other simple ones and easy to
implement (e.g., cohesive zone models), the use of methodologies that require deep modifications
and/or implementation from scratch was not worth it in the context of the present study.

On the one hand, advanced remeshing techniques have been tested and validated at CEMEF
through different studies showing quite accurate and reliable results [Coupez et al., 2013,Shakoor
et al., 2015, Shakoor et al., 2017]. On the other hand, cohesive zone models (CZMs) offer
interesting advantages regarding fracture energy control and reasonable computational cost. In
addition, the combination of the aforementioned remeshing capabilities with the insertion of
cohesive elements on the fly, i.e., while the crack tip is propagating through the domain, avoids
two well-known strong drawbacks of the CZMs: (i) artificial reduction of the stiffness of the
material and (ii) the mesh dependency. Consequently, in this PhD, it was chosen to implement
a useful and promising methodology, not only capable of addressing the problems defined in
the scope of this thesis but also useful in other applications that require simulation of crack
propagation (e.g., composites cracking).

Considering that the available finite element framework at CEMEF (See Chapter 2) has
some limitations at capturing the singularity of the stress field at the crack tip, in the current
PhD, crack propagation problems will be tackled following an energetic approach. Following the
premise of avoiding burdensome modifications inside the finite element code, I consider that the
most suitable strategy to simulate crack propagation should be based on the methodologies that
combined cohesive zone models with remeshing operations.

The next chapter details the implementations that were carried out inside Cimlib to develop
the desired methodology.

1.4 Summary of Chapter 1
This first chapter is dedicated to the bibliographical background used as a base for the

present work. The first section reviewed basic notions on solar system small bodies. This section
also discussed how the fracture phenomena on airless bodies of our solar system have been
studied, especially when this phenomenon is thought to be the result of temperature gradients
due to the day and night cycles. Taking into account that propagation mechanisms in the case
of space objects are still poorly understood, the lacking of a model allowing the simulation of
crack propagation direction became evident. Asteroid (101955) Bennu will be considered for
application purposes. The reason is that very high spatial resolution observations obtained
by NASA’s OSIRIS-REx mission are available for Bennu. Therefore, reported observational
evidence [Delbo et al., 2019] will be very useful to validate the numerical results obtained with
our developed coupled thermoelastic model with the linear elastic fracture mechanics approach
presented in Chapter 2.

In the second section a theoretical review on fracture mechanics was given. The two com-
mon approaches (i.e., stress intensity factor, energetic) used to perform fracture analyses were
explained. Second section also reviewed crack growth criteria. Two notable strategies used to
compute crack propagation direction were described: The Maximal Circumferential Stress Cri-
terion (MCSC) and the Maximum Energy Release Rate criterion (MERRC). The choice of the
appropriate criterion must consider the accuracy of the computation of either the stress intensity
factors or the strain energy release rate [Bouchard et al., 2003]. Fatigue crack growth models
were also presented in order to attempt to describe fracture process under fatigue loading.
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Finally, the third section reviewed the most common crack propagation strategies available
in the literature when dealing with propagation of cracks through a finite element mesh. Among
all the presented techniques, the simplest in terms of implementation inside an existing finite
element framework is the cohesive zone model approach. Nevertheless, most CZMs approaches
suffer from crack-path mesh dependency [Shakoor et al., 2018]. This drawback can be overcome
by using another technique that has proved to be well suited when modeling crack propagation:
mesh modification strategies. Regarding this point, the remeshing capabilities available at
CEMEF can be extensively exploited.

The drawbacks that arise from combining cohesive zone models together with remeshing
operations will be handled in Chapter 2. This chapter will show that the presented work can
handle crack propagation through arbitrary direction using remeshing operations together with
the dynamic insertion of cohesive elements in a mesh-independent way.

1.5 Résumé en français
Ce premier chapitre synthétise les informations essentielles recueillies dans la littérature pour

positionner ce travail. La première partie passe en revue les notions de base relatives aux petits
corps célestes du système solaire. Elle comprend également une discussion sur les précédentes
études des phénomènes de rupture de corps célestes de notre système solaire. Elle s’attarde
sur les études attribuant l’origine de ces mécanismes aux variations cycliques de température
liées aux alternances jour-nuit. Etant donné que les mécanismes de propagation de fissures
dans ce type d’objets restent méconnus, aucun modèle de ce type de phénomène n’a encore été
proposé. L’astéroide Bennu (101955) est pris comme exemple de référence. Il a été choisi car des
données de très haute résolution spatiale obtenues lors de la mission de la NASA OSIRIS-REx
sont disponibles. Ces observations nous permettront [Delbo et al., 2019] de valider le modèle
numérique de mécanique de la rupture, développé dans le cadre de ce doctorat et présenté dans
le chapitre 2.

La deuxième partie définit les notions essentielles de la mécanique linéaire de la rupture.
Les deux approches communes (énergétiques et basées sur le facteur d’intensité des contraintes)
utilisées pour analyser la cinétique d’une fissure sont décrites. Ensuite, deux stratégies sont
utilisées pour calculer la direction de propagation de la fissure: le critère de la contrainte
circonférentielle maximale et le critère du taux de restitution d’énergie maximal. Le choix
entre l’une de ces deux méthodes doit être fait en considérant la précision de calcul des fautes
d’intensité des contraintes ou de la taux de restitution d’énergie. Des modèles de propagation
de fissures liés à des mécanismes de fatigue sont aussi présentés afin de décrire comment le
phénomène de rupture peut avoir lieu dans ces conditions.

Finalement, la troisième section décrit les stratégies de propagation de fissures les plus
couramments utilisées dans la littérature pour étudier la rupture en utilisant une méthode élé-
ments finis. Parmi toutes les techniques présentées, la plus simple en matière d’implémentation
dans un contexte éléments finis est certainement le modèle à zones cohésives, et ce bien que
la plupart des approches à zones cohésives pâtissent d’une dépendance au maillage [Shakoor
et al., 2018]. En tirant parti des techniques de remaillage disponibles au CEMEF pour modifier
le maillage et insérer dynamiquement des éléments, ce type d’approche représente une solution
viable pour étudier la propagation de fissure. Le principal défi de combiner un modèle à zone
cohésive avec un modèle éléments finis utilisant des stratégies de remaillage sera détaillé dans
le chapitre 2. Le travail présenté permet d’illustrer que l’utilisation d’opérations de remaillage
couplées à l’insertion d’éléments cohésifs permet une étude du problème et ce, indépendamment
du maillage.
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As already said in the Context, the current PhD thesis has two main objectives. First, it
aims at modelling crack propagation through a finite element mesh for arbitrary crack paths
using advanced remeshing techniques and dynamic insertion of cohesive elements. The second
goal is to numerically reproduce some observed fractures on asteroids, which are thought to
have been induced by large amount of diurnal thermal cycles. In order to accomplish these
goals, the mechanical problem describing the fracture phenomenon driven by loading of both
mechanical and thermal nature should be solved.

As presented in Chapter 1, the finite element (FE) method has proved to be very well
suited for fracture mechanics problems. The present chapter details the existing finite element
formulation, as well as all the implementations that were carried out in order to develop a
crack propagation methodology. Section 2.1 presents the equilibrium equations along with the
boundary conditions of the mechanical problem. The weak formulation of this problem in which
velocity and pressure are the unknowns is presented in section 2.2. An implicit finite element
(FE) formulation is used to solve these weak-form equations. In this implicit approach, at each
time increment, a global system of equations should be solved in order to find the unknowns at
each node of the FE mesh that ensure the equilibrium state. As the problem addressed here is
non-linear, a Newton-Raphson method is adopted to find its solution. In order to simulate the
fracture process, the implemented cohesive zone models are then presented in section 2.3. As
one of the main goals of this PhD is to account for thermal effects when dealing with fracture
mechanics problems (i.e., crack propagation direction), the formulation of the implemented
thermoelasticity model is described in section 2.4. After this, section 2.5 details the numerical
implementation of the Gθ method, which is the methodology used in this work to compute the
crack propagation direction in two-dimensional problems. Finally, section 2.6 gives an overview
on the mesh adaptation strategies used in this work to simulate crack propagation through a
finite element mesh in both two- and three-dimensional problems.

2.1 Mechanical problem

In this section, the basic equations governing the physics of the problem of a body undergoing
deformation are described. The theoretical background of this problem relies on the field of
continuum mechanics. This field studies the mechanical behavior of a continuous medium
when subjected to forces or displacements, as well as the subsequent effects of this medium
on its environment. A continuous medium is understood as an infinite set of particles that
will be studied macroscopically, i.e., without considering discontinuities that could be present
at the microscopic level. Let it be Ω ⊂ R3 the domain occupied by a deformable body B in
its reference configuration. Ω is bounded by the border ∂Ω ⊂ R2. Developing the equations
allowing to describe the displacement, stress and strain fields at each instant t is the way to
study the mechanical problem.

2.1.1 Governing equations

The governing equations of a solid occupying the domain Ωt at time t, and undergoing
deformation, are the conservation of momentum and the conservation of mass. The conservation
of momentum can be written as:

∂σij
∂xj

+ fi = ρ
dvi
dt

(2.1)

where σij is the Cauchy stress tensor, ρ density of the material, fi is the volume force and dvi
dt is

the material time derivative of the velocity. The mass conservation equation can be expressed
as:
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∂ρ

∂t
+ ∂(ρvi)

∂xi
= 0 (2.2)

where vi is the velocity and ∂(ρvi)
∂xi

is the divergence of the velocity.

2.1.2 Boundary conditions
In addition to the above-mentioned equations, appropriate boundary conditions must be

used. The boundary ∂Ω of the solid Ω is decomposed in different parts (∂Ω = ∂Ωv+∂Ωt+∂Ωf )
as shown in Figure 2.1. There are two different types of boundary conditons:

1. Imposed velocity boundary condition: vi = ~v0 on ∂Ωv (Dirichlet B.C.)

2. Stress imposed boundary condition: σijnj = ti = ~t0 on ∂Ωt (Neumann B.C.)

Figure 2.1: Continuum Mechanics Problem.

When the inertia and the volume forces are negligible, the conservation of momentum (equa-
tion 2.1) can be reduced to:

∂σij
∂xj

= 0 (2.3)

The Cauchy stress tensor can be decomposed into its deviatoric and spherical components.
Due to this, equation (2.3) can be written as:

∂Sij
∂xj

− ∂p

∂xi
= 0 (2.4)

where Sij is the deviatoric stress tensor and p is the hydrostatic part of the stress tensor.
Continuity equation can be expressed explicitly in terms of the pressure through the intro-

duction of the bulk modulus (κ) (equation (2.5).

κ = ρ
∂p

∂ρ
(2.5)

Expressing the divergence of the velocity as the trace of the strain rate tensor (tr(ε̇) =
ε̇ii), introducing the bulk modulus (κ) and dropping the advection term, under a Lagrangian
configuration, the mass conservation equation can be expressed as:

ε̇ii + 1
κ

∂p

∂t
= 0 (2.6)
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2.2 The finite element formulation
The mechanical problem presented in section 2.1 will be solved using the finite element (FE)

method. The weak formulation required by the FE method will be derived from the strong
form presented previously. The numerical strategy used to solve the problem described by the
weak formulation is implemented in Cimlib, a C++ in-house finite element library developed
at CEMEF [Digonnet et al., 2007]. The available finite element framework in Cimlib is an
implicit formulation (mixed) with first-order elements using linear interpolation functions for
both velocity and pressure.

2.2.1 Weak formulation
The set of equilibrium equations with appropriate boundary conditions presented in equation

(2.7) define the strong form of the mechanical problem:

∂σij
∂xj

= ∂Sij
∂xj
− ∂p

∂xi
= 0

1
κ
∂p
∂t + ε̇ii = 0

vi = ~v0 on ∂Ωv

ti = ~t0 on ∂Ωt

(2.7)

Considering the velocity and the pressure as two variables totally independent, let us define
appropriate functional spaces:

V = {vi ∈ H1(Ω)3, vi|∂Ωv = ~v0}
V0 = {v∗i ∈ H1

0(Ω)3, v∗i |∂Ωv = ~0}
P = L2(Ω)

(2.8)

where V and V0 are functional spaces of kinematically admissible velocity field, P is the func-
tional space of the pressure and d is the space dimension. H1(Ω) and L2(Ω) are respectively,
the Sobolev and the Lebesgue spaces, which are defined by Eqs. (2.9) and (2.10). H1

0(Ω) is the
subspace of H1(Ω)3 such that v∗i = 0 on ∂Ωv

The Lebesgue space: given Ω is a regular and bounding region in R, the L2 space is
defined as:

L2(Ω) = {u : Ω→ R,

∫
Ω
u2dΩ <∞} (2.9)

The Sobolev space:

H1(Ω) = {u ∈ L2(Ω), ∂u
∂xi
∈ L2(Ω)} (2.10)

Lebesgue spaces Lp are normed vector spaces of functions on a measure space, equipped with the
suitable version of the p-norm. For example, L2(Ω) is the space of square integrable functions
over the domain Ω. A Sobolev space is the set of measurable functions which has a weak
derivative up to a given order and which is in Lp(Ω).

The weak formulation of the strong form of the problem described by equation (2.7) can be
obtained by multiplying the equations by the test functions v∗i and p∗ and by integration over
the whole domain Ω together with the use of Green’s theorem. As an example, let’s take the
equation for conservation of momentum (equation 2.3), multiply it by the test function v∗i ∈ V0

and integrate it on the domain Ω:∫
Ω

∂σij
∂xj

v∗i dΩ = −
∫

Ω
σij

∂v∗i
∂xj

dΩ︸ ︷︷ ︸
1

+
∫

Ω

∂(σijv∗i )
∂xj

dΩ︸ ︷︷ ︸
2

= 0 (2.11)
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Using the divergence theorem along with the boundary conditions presented in (2.7), the
integral labeled as 2 in the right side can be written as:∫

Ω

∂(σijv∗i )
∂xj

dΩ =
∫
∂Ω
σijv

∗
i njdΓ =

���
��

���:
0∫

∂Ωv
σijv

∗
i njdΓ +

∫
∂Ωt

tiv
∗
i dΓ = 0 (2.12)

Using the decomposition of the stress tensor into deviatoric (Sij) and volumetric parts (pδij)
presented in equation (2.4), the integral labeled as 1 in the right side can be expressed as:∫

Ω
σij

∂v∗i
∂xj

dΩ =
∫

Ω
Sij(vk)ε̇ij(v∗k)dΩ−

∫
Ω
p
∂v∗i
∂xi

dΩ (2.13)

Replacing Eqs. (2.12) and (2.13) in equation (2.11), it becomes:∫
Ω
Sij(vk)ε̇ij(v∗k)dΩ−

∫
Ω
p
∂v∗i
∂xi

dΩ−
∫
∂Ωt

tiv
∗
i dΓ = 0 (2.14)

Equivalently, the weak form of mass conservation equation (equation 2.6) can be obtained.
Therefore, the associated variational problem is:

find (vi, p) ∈ V × P


∫

Ω Sij(vk)ε̇ij(v∗k)dΩ−
∫

Ω p
∂v∗i
∂xi

dΩ−
∫
∂Ωt tiv

∗
i dΓ = 0∫

Ω

(
ε̇ii + 1

κ
∂p
∂t

)
p∗dΩ = 0

∀(v∗i , p∗) ∈ V0 × P
(2.15)

2.2.2 Spatial discretization
To find the solution to the stated problem, the domain Ω is discretized into different geomet-

rically simplicial elements (i.e., triangles, quadrilaterals, tetrahedra, etc). The combination of
these simplicial elements forms the “triangulation” of the domain, which defines the discretized
domain Ωh:

Ωh =
⋃

e∈Th(Ω)
Ωe (2.16)

where Th(Ω) is a finite element mesh of the domain Ω and Ωe is a simplex of a given mesh size
h. The weak-form equations presented in (2.15) are solved through the finite element method.
Approach consisting in approximating the continuous spaces V and P by the corresponding
discrete vectors Vh and Ph. The approximated spaces are usually included in the continuous
ones:

Vh ⊂ V, Ph ⊂ P | lim
h→0
Vh = V, lim

h→0
Ph = P (2.17)

In the discretized space, equation (2.15) can be written as:

Find (vhi , ph) ∈ Vh × Ph


∫
Ωh Sij(vhk)ε̇ij(v∗hk)dΩh −

∫
Ωh ph

∂v∗hi
∂xi

dΩh −
∫
∂Ωht

tiv
∗
hi
dΓh = 0∫

Ωh

(
ε̇ii + 1

κ
∂ph
∂t

)
p∗hdΩh = 0

∀(v∗hi , p
∗
h) ∈ V0

h × Ph
(2.18)

When discretizing, a continuous problem (Eq. 2.15) is converted into a discrete problem
(Eq. 2.18). An appropriate selection of the interpolation functions associated with the unknown
variables (vi and p) is required in order to ensure efficiency and accuracy of the discrete problem
solution. The interpolation spaces of the velocity and the pressure cannot be chosen arbitrarily.
Compatibility between the two spaces is guaranteed through the Babuška-Brezzi (i.e., inf-sup)
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condition [Arnold et al., 1984,Brezzi and Fortin, 1991]. The latter, being a condition related
to the mathematical convergence characteristics of the finite element formulation. The inf-
sup (Babuška-Brezzi) condition ensures the solvability, stability and optimality of the finite
element solution, as well as allows evaluating whether the problem is well-posed [Bathe, 2001].
A problem is called well-posed if: (i) a solution exists, (ii) the solution is unique and (iii) the
solution depends continuously on the given data (in some reasonable topology) [Hadamard,
1902]. The inf-sup condition can be mathematically expressed as follows:

inf
ph∈Ph

sup
vhi∈Vh

∫
Ωh ph

∂v∗hi
∂xi

dΩh

‖ph‖Ph ‖vhi‖Vh
> C > 0 (2.19)

where ‖ . ‖Ph and ‖ . ‖Vh are respectively, the norms of the approximated spaces Vh and Ph and
C is a constant that is independent of the mesh. The interpolation degree for the two variables
velocity and pressure is imposed by the Babuška-Brezzi condition, as well as it assures the
existence and uniqueness of solutions. When this condition is not respected, spurious numerical
solutions (e.g. shear locking) come out. This compatibility condition excludes certain choices of
interpolation spaces which would seem natural (e.g., P1/P0 or P1/P1). Obviously, the choice
must satisfy this condition. The most common elements satisfying this condition are the MINI
element (P1+/P1) [Arnold et al., 1984], the Taylor-Hood element (P2/P1) [Hood and Taylor,
1974] and the Crouzeix-Raviart element (P2+/P1disc) [Crouzeix and Raviart, 1973]. In our
case, the software CimLib, a C++ in-house finite element library developed at CEMEF [Digonnet
et al., 2007], uses the P1+/P1 mixed velocity-pressure element (Figure 2.2), this is the smallest
interpolation degree among the compatible elements. This element was introduced by [Arnold
et al., 1984] for the computation of Stokes flow. P1+/P1 is an element P1/P1 which does not
satisfy the inf-sup condition (equation 2.19), for this reason the interpolation of the velocity
is enriched by the addition of an extra degree of freedom (DOF) associated with the center of
gravity of each one of the elements of the mesh.

Figure 2.2: Schematic representation of the degrees of freedom in velocity and pressure for the
tetrahedral element P1+/P1.

Inside the MINI element formulation introduced by [Arnold et al., 1984], the pressure field is
defined linear and continuous, while the velocity field is composed of a linear part (vli) associated
with the linear interpolation of the values at the vertices of the element, and a “bubble” part
(bi) corresponding to the additional internal degree of freedom (DOF) added at the center of the
element: vhi = vli + bi. The additional DOF defines a “bubble” which equals unity at element
center and zero at element borders. The interpolation function used for the “bubble”, can be
constructed using a polynomial of degree 4 in the reference tetrahedron [Fortin, 1981]. The
discrete spaces are defined as:
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
Vh = Lh + Bh
Lh = {vli ∈ (C0(Ωh))3, vli|Ωe ∈ (P1(Ωe))3, vli|∂Ωe = ~v0, ∀e ∈ Th(Ω)}
L0
h = {vl∗i ∈ V0 ∩ (C0(Ωh))3, vl∗i |Ωe ∈ (P1(Ωe))3, vl∗i |∂Ωe = ~0,∀e ∈ Th(Ω)}
Ph = {L2(Ωh) ∩ C0(Ωh), ph|Ωe ∈ (P1(Ωe))3∀e ∈ Th(Ω)}

(2.20)

where C0(Ωh) is the space of continuous functions on the domain Ωh, P1(Ωe) is the space of
linear functions on element Ωe. Bh is the interpolation space of the “bubble” function. In the
work of [Coupez, 1996], in order to avoid difficulties in integrating the polynomial of degree 4,
Bh is defined with a piecewise linear function on four sub-tetrahedron Ωei i = 1, 2, 3, 4 in which
the reference tetrahedron Ωe is decomposed (Figure 2.3):

Bh = {bi ∈ (C0(Ωh))3, bi|∂Ωe = ~0, bi|Ωei ∈ (P1(Ωe))3, ∀e ∈ Th(Ω), i = 1, ..., 4} (2.21)
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Figure 2.3: Schematic of the decomposition of reference tetrahedron element (P1+/P1) into 4
sub-tetrahedrons Ωei .

Accounting for the decomposition of the reference tetrahedron element into 4 sub-tetrahedrons
as shown in Figure 2.3, the velocity and pressure fields at a point xi for each element Ωe is given
by:

vhi(xi) =
4∑

R=1
N l
R(xi)vlRi +N b(xi)bi (2.22)

ph(xi) =
4∑

R=1
N l
R(xi)pR (2.23)

where N l
R(xi) ∈ Lh are the interpolation functions of the linear velocity and pressure fields

associated with the node R, vlRi and pR are the linear velocity and pressure at node R, bi
is a nodal value standing for the difference between the velocity at center of enriched linear
tetrahedral element (Ωe) and the normal linear tetrahedron (Ωei). The velocity and pressure
interpolation functions associated with the reference element presented in Figure 2.3, are defined
as: 

N l
1 = ξ

N l
2 = η

N l
3 = ζ

N l
4 = 1− ξ − η − ζ

and

N b = 4ξ
N b = 4η
N b = 4ζ
N b = 4(1− ξ − η − ζ)

in Ωe1

in Ωe2

in Ωe3

in Ωe4

(2.24)
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In the end and taking into account the “bubble” part, the discrete problem presented in
equation (2.18) can be written as:

Find (vli, bi, ph) ∈ Lh × Bh × Ph



∫
Ωh Sij(v

l
k + bk)ε̇ij(vl∗k )dΩh −

∫
Ωh ph

∂vl∗i
∂xi

dΩh −
∫
∂Ωht

tiv
l∗
i dΓh = 0∫

Ωh Sij(v
l
k + bk)ε̇ij(b∗k)dΩh −

∫
Ωh ph

∂b∗i
∂xi
dΩh = 0∫

Ωh

(
∂(vli+bi)
∂xi

+ 1
κ
∂ph
∂t

)
p∗hdΩh = 0

∀(vl∗i , b∗i , p∗h) ∈ L0
h × Bh × Ph)

(2.25)

Due to the fact that the stress deviator depends on the total velocity field (vl∗i + b∗i , which
is the result of the local integration of behavior law), the system of equations to be solved is a
coupled system of two unknown field variables vl∗i and b∗i . From the definition of the interpolation
space of the bubble functions Bh, the following fundamental properties of the “bubble” functions
that helps to decouple the system in equation (2.25) can be deduced [Aliaga, 2000]:

• bi = ~0 on ∂K. This property allows the elimination of the “bubble” from all the
integrations on ∂K.

• For all constant tensor Cij in Ω: ∫
Ω
Cij

∂b∗i
∂xj

dΩ = 0 (2.26)

Leading to the following orthogonal property:∫
Ωh

∂vli
∂xj

∂bi
∂xj

dΩh = 0, ∀bi ∈ Bh, ∀vli ∈ Lh (2.27)

These two properties allow to decouple the unknown fields vli and bi from the discrete
variational formulation in equation (2.25), which becomes:

Find (vli, bi, ph) ∈ Lh × Bh × Ph



∫
Ωh Sij(v

l
k)ε̇ij(vl∗k )dΩh −

∫
Ωh ph

∂vl∗i
∂xi

dΩh −
∫
∂Ωht

tiv
l∗
i dΓh = 0∫

Ωh Sij(bk)ε̇ij(b
∗
k)dΩh −

∫
Ωh ph

∂b∗i
∂xi
dΩh = 0∫

Ωh

(
∂(vli+bi)
∂xi

+ 1
κ
∂ph
∂t

)
p∗hdΩh = 0

∀(vl∗i , b∗i , p∗h) ∈ L0
h × Bh × Ph)

(2.28)

2.2.3 Temporal discretization
The system is supposed to be at equilibrium at time t. Then, equilibrium state is disturbed

by modifying the external loads, so the new problem consists in determining the velocity and
pressure fields that respect the equilibrium at t + ∆t. Through the application of a classical
procedure of the finite element method, the elementary contributions can be calculated from
the discrete formulation presented in equation (2.28). Then, they are assembled in order to
build the matrix system of the problem. The elementary contribution can be written under
the following algebraic form defining a non-linear system of equations of the unknown variables
vli, bi, ph: 

Rle(vlei , phe)
Rbe(bei , phe)
Rpe(vlei , bei , phe)

= Rlle + 0 +Rlpe

= 0 +Rbbe +Rbpe

= Rple +Rpbe +Rppe

= 0
= 0
= 0

(2.29)
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The residuals of the linear velocity, the “bubble” term and the pressure are denoted re-
spectively as Rle, Rbe and Rpe . The sub-index e indicates that the terms are calculated at each
element. The discrete problem presented in equation (2.29) is non-linear. The iterative Newton-
Raphson algorithm, which linearizes the equations by the first order Taylor’s development is
used to solve this non-linear problem. In order to build the local contributions in the linearized
problems, the stiffness matrix is introduced:

Kxy
e = ∂Rxye

∂z
(2.30)

where (xy) ∈ {(ll), (lp), (bb), (bp), (pl), (pb), (pp)}; and z ∈ {vli, bi, ph}. At each iteration of
Newton-Raphson algorithm, the solution of the non-linear discrete problem (vli,bi,ph) is modified
by a correction (δvli,δbi,δph). Such correction is the solution of a global algebraic system obtained
through the assembling of the elementary contributions. The global matrix system can be
written as follows: K ll 0 K lp

0 Kbb Kbp

Kpl Kpb Kpp


δvliδbi
δph

 = −

RlRb
Rp

 (2.31)

The basic functions associated with internal nodes are limited just to one element. The
corresponding degrees of freedom are not linked to any other degree of freedom belonging to
other element different from the considered one. Therefore, this allows to eliminate the degrees
of freedom of the “bubble” at the elementary level before the assembly by condensation. Locally,
the following equation can be derived from the second equation of the system shown in (2.31):

δbie = −(Kbb
e )−1

[
Rbe +Kbp

e δphe

]
(2.32)

Thus, by replacing equation (2.32) in the system shown in equation (2.31), the “bubble”
part can be eliminated from this system leading to:[

K ll
e K lp

e

Kpl
e Kpp

e −Kpb
e (Kbb

e )−1Kbp
e

](
δvlie
δphe

)
= −

(
Rle

Rpe −Kpb
e (Kbb

e )−1Rbe

)
(2.33)

Regrouping Ce = Kpb
e (Kbb

e )−1Kbp
e and Ge = Kpb

e (Kbb
e )−1Rbe, equation (2.33) becomes:[

K ll
e K lp

e

Kpl
e Kpp

e − Ce

](
δvlie
δphe

)
= −

(
Rle

Rpe −Ge

)
(2.34)

where Ce is the local condensation matrix of the “bubble” and Ge is the second member asso-
ciated with the same condensation.

In the system shown in equation (2.34) the degrees of freedom associated with the “bubble”
term have been totally eliminated. Finally, a mixed formulation in terms of velocity and pressure
with only nodal unknowns is obtained: the three components of the velocity field and the
component of the pressure field:[

K ll K lp

Kpl Kpp − C

](
δvli
δph

)
= −

(
Rl

Rp −G

)
(2.35)

At each iteration k, the system shown in (2.35) is solved and the velocity and pressure are
updated: vli+δvli → vli, ph+δph → ph. When converged solutions are obtained, i.e., δvli and δph
< Tol , the iterative algorithm stops. After the global problem is solved, the return mapping
algorithm [Simo and Taylor, 1985,Simo and Taylor, 1986,Cao, 2013] is used at the element level
for the integration of the behavior law. In this work, the adopted constitutive law is purely
elastic for the bulk and the fracture process is controlled through the use of cohesive zone models
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as presented in the next section. Readers interested in further details regarding the mixed finite
element formulation, as well as in stabilization techniques or elastoplastic constitutive laws, can
refer to [Aliaga, 2000,Perchat, 2000,Fayolle, 2008,El Khaoulani, 2010].

2.3 Cohesive zone models
A pioneering perspective stating that fracture is a phenomenon taking place accross an

extended crack tip (cohesive zone) was proposed back in the 60’s [Barenblatt, 1962,Rice, 1968b].
The proposed concept set the ground for cohesive zone models (CZMs). This simple approach
asserts that, at the crack tip, it exists a region of finite size where there is a transition from
a sound material to a fully broken material [Dugdale, 1960]. Figure 2.4 shows a schematic
representation of the cohesive region (process zone), where the fracturing process is taking place
in a brittle material. The cohesive zone corresponds to prospective fracture surfaces ahead of a
crack that are permitted to separate under loading. Atomic or molecular forces are in charge of
preventing the process of separation and creation of crack surfaces [Rice, 1968a]. The force that
exerts a resistance to the opening of new surfaces is known as cohesive force, and it is modeled
through a phenomenological traction-separation law (cohesive law).

Figure 2.4: Schematic representation of the cohesive zone. Red arrows represent the
distribution of traction loading over the cohesive region.

The cohesive region, i.e., the process zone, detailed in Figure 2.4 is a zone located in front
of the crack tip. In this zone, different processes like small-scale yielding, micro-cracking and
void initiation, growth and coalescence take place [de Borst, 2018]. In the modeling of the
fracture process through the use of cohesive zone models, the concept of process zone is highly
important. The accuracy of the computation depends directly on the number of elements
in this zone. Several authors have proposed different definitions for the process zone length
(PZL) [Dugdale, 1960,Barenblatt, 1962,Falk et al., 2001,Turon et al., 2007,Hermes, 2010,Ha
et al., 2015]. In this work, unless otherwise stated, the PZL is defined as:



2.3 Cohesive zone models 45

PZL = GcE

πσ2
c

(2.36)

Where Gc is the critical energy release rate, E is the Young’s modulus and σc is the maximun
cohesive stress. The size of the finite element mesh at the crack tip should be smaller than the
process zone length.

Using CZMs approaches, a possible crack is modeled by two interface areas connected by
cohesive stresses. The degradation process is described by the constitutive law linking the
cohesive traction (t) and the opening (separation) of the cohesive region (δ). In the literature
many different shapes of the cohesive law are described. For example [Dugdale, 1960] noted
that ahead of slits in steel plates subjected to static tension there was a small zone of plasticity,
therefore he proposed the use of a constant cohesive law. Polynomial and exponential models
were first used by [Needleman, 1987, Needleman, 1990] to study the void nucleation at the
interface of particles in matrix metal. [Tvergaard and Hutchinson, 1992] proposed a trapezoidal
shape to study crack growth initiation and subsequent resistance in elastic-plastic materials. In
order to model the propagation of multiple cracks and delaminations in a composite, [Camacho
and Ortiz, 1996] proposed a linear law. [Geubelle and Baylor, 1998] simulate the spontaneous
initiation and propagation of transverse matrix cracks and delamination fronts using a bilinear
model. It is worth mentioning that the available cohesive laws share some characteristics: when
the opening (δ) of the cohesive region increases, the cohesive traction (t) begins to increase
until a critical value (σc) is reached, then it decreases and vanishes after full fracture. Figure
2.5 depicts some examples of available cohesive laws.

b)a) c)

d) e) f)

Figure 2.5: Different shapes of the cohesive law: a) constant [Dugdale, 1960], b)
exponential [Barenblatt, 1962], c) polynomial [Needleman, 1987], d) tri-linear

(trapezoidal) [Tvergaard and Hutchinson, 1992], e) linear [Camacho and Ortiz, 1996] and f)
bi-linear [Geubelle and Baylor, 1998].

The cohesive energy which takes into account the creation of two new surfaces and the
microdamage phenomena is equal to the area under the cohesive traction-separation curve.
Generally, the cohesive energy is equivalent to the fracture energy (G) [Shet and Chandra,
2002]. The critical energy release rate Gc, i.e. the fracture energy required to create the new
free surfaces and break the material can be related to the cohesive law in the following way:

Gc =
∫ ∞

0
tdδ (2.37)
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Where t is a scalar effective traction and δ an effective opening displacement. The total amount
of energy dissipated by the cohesive elements per unit of length can be computed simply using
(2.37). Thus, the degradation process can be fine tuned by picking the mathematical form of t.

An engaging feature of a cohesive approach, is that it does not presuppose a particular type
of constitutive response in the bulk of the material, the extent of crack growth or the size of the
plastic zone. Generally, the cohesive approach assumes that the process zone is located ahead of
the physical crack front (tip). Furthermore, it is worth mentioning that the shape and location
of successive crack fronts are an outcome of the calculations [Ortiz and Pandolfi, 1999,Sun and
Jin, 2012b]. In the following subsections, the two cohesive laws that were implemented in this
work will be presented.

2.3.1 Ortiz and Pandolfi’s cohesive law

From [Ortiz and Pandolfi, 1999] we can obtain a pair of simple and convenient equations
that relate the opening displacement, the maximum cohesive normal traction and the charac-
teristic opening displacement through and irreversible exponential cohesive law. Irreversibility
manifests itself upon unloading. Thus, the maximum reached effective opening displacement
is the appropriate internal variable to describe the loading-unloading process. In this work
the terms loading and unloading are used in the sense of increasing or decreasing the effective
opening displacement, respectively. Ortiz and Pandolfi’s cohesive law can be derived from the
following potential Φ:

Φ = eσcδc

[
1−

(
1 + δ

δc

)
e−

δ
δc

]
(2.38)

where δ is the opening displacement, σc is the maximun cohesive normal traction and δc is the
characteristic opening displacement. The interfacial scalar effective traction is given by:

t = ∂Φ
∂δ

(2.39)

The irreversible exponential cohesive law presented here is depicted in Figure 2.6.

Figure 2.6: Cohesive law in terms of an effective opening displacement δ and effective traction
t (loading-unloading envelop).
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The loading process is described by equation (2.40), and is characterized by the conditions:
δ = δmax and δ̇ ≥ 0. Inversely, the unloading process is described by equation (2.41), and is
characterized by the conditions: δ < δmax or δ̇ < 0. During the unloading process, the relation
between the effective cohesive traction and the effective opening displacement of the interface is
linear. This behavior remains linear during reloading until the effective opening displacement
reaches the value when unloading started.

t = eσc
δ

δc
e−

δ
δc if δ = δmax and δ̇ ≥ 0 (Loading) (2.40)

t = tmax
δmax

δ if δ < δmax or δ̇ < 0 (Unloading) (2.41)

where t is the effective cohesive traction, δ is the opening displacement, σc is the maximun
cohesive normal traction and δc is the characteristic opening displacement. In the above cohesive
law, there is a parameter named β that can be seen as a factor that assigns different weights to
the sliding (δs) and normal (δn) opening displacements (2.44). δs and δn are respectively, the
opening displacement in the tangential and in the normal direction of the cohesive surface. β
can also be seen as the ratio between the shear and the normal critical tractions (2.43).

δ =
√
β2δ2

s + δ2
n (2.42)

t =
√
β−2t2s + t2n (2.43)

Where δ is an effective opening displacement, δs and δn are respectively, the sliding and normal
opening displacements, with t being a scalar effective traction, ts is the shear traction and tn
is the normal traction [Ortiz and Pandolfi, 1999]. In the case of contact (δ < 0) a penalization
technique is implemented, making the cohesive interface acts like a spring with a high constant
(Kpen) and avoiding in this way, the interference and overlap of the adjacent solid elements (See
Figure 2.6):

t = Kpen

(
eσc

δ

δc
e−

δ
δc

)
if δ < 0 (Contact) (2.44)

where Kpen is a penalty coefficient. According to [Roe and Siegmund, 2003], the value of Kpen

should be around 10 in order to have an significant stiffness.
As we are tackling here a non-linear problem through an implicit finite element (FE) ap-

proach, a set of non-linear algebraic equations must be solved. This set of non-linear equations
is solved by the Newton-Raphson method, which linearizes the equations by the first order Tay-
lor’s development. In order to solve this problem, the tangent stiffness matrix (i.e., the Hessian
matrix) for the irreversible exponential cohesive law presented above should be computed. A
detailed calculation of the cohesive stiffness matrix is presented in Appendix A.1.

2.3.2 Xu and Needleman’s cohesive law
According to [Xu and Needleman, 1993], the simplest constitutive relation for an interface

is an elastic one. In this case, the traction through the interface is written as a function of the
displacement jump (opening) through the interface. Due to this, the work of separation is path
independent. So, through the work of separation and the strength in the normal and tangential
directions, and by coupling parameters, the interface can be characterized. The potential φ
from which the cohesive law is derived is:

φ(dn, dt) = φn + φne
− dn

δcn


[
1− r + dn

δcn

] [1− q
r − 1

]
−
[
q +

(
r − q
r − 1

)
dn

δcn

]
e
−
(
dt

δct

)2 (2.45)



48 FE framework for crack propagation

Where φn = σceδcn, φt =
√

e
2τcδct, q = φt/φn, r = d∗n/δcn. dn and dt are respectively, the

normal and tangential components of the separation between the two interfaces. φn and φt are
the normal and tangential energies released by the normal and tangetial crack processes. σc
and τc are the normal and shear criticial stresses. δcn and δct are the normal and tangential
separation when the stresses are at maximum. Finally, d∗n is the value of the normal separation
(dn) after shearing to the state dt = 1

2δct under the condition of zero normal tension (i.e.,
Tn = 0). Generally in the literature r = 0 [Rahulkumar et al., 2000,Roe and Siegmund, 2003].
The interfacial tractions (Tn and T t) are obtained by differentiating Equation 2.45 with respect
to the components of the separation (opening) (δn and δt):

Tn(dn, dt) = − ∂φ

∂δn

T t(dn, dt) = − ∂φ
∂δt

(2.46)

Thus using equations (2.45) and (2.46) we have:

Tn(dn, dt) =
(
φn
δcn

)
e−
(
dn

δcn

) 
(
dn

δcn

)
e
−
(
dt

δct

)2

+
[1− q
r − 1

] 1− e
−
(
dt

δct

)2 [r − dn

δcn

]
T t(dn, dt) =

(
φn
δcn

)(2δcn
δct

)(
dt

δct

){
q +

[
r − q
r − 1

]
dn

δcn

}
e−
(
dn

δcn

)
e
−
(
dt

δct

)2
(2.47)

Figure 2.7 shows the tangential and normal behaviour of the cohesive law in the case of
uncoupled modeling. Figure 2.7a shows the variation of the normal traction (Tn) as a function
of the normal opening (dn) for dt = 0. The variation of the tangential traction (T t) as a function
of the tangential opening (dt) for dn = 0 is shown in Figure 2.7b.

(a) Variation of the normal traction (Tn) as a
function of the normal opening (dn) for dt = 0.

(b) Variation of the tangential traction (T t) as a
function of the tangential opening (dt) for dn = 0.

Figure 2.7: Relative normal and tangential cohesive traction-separation curves for uncoupled
modeling.

For the case where the normal work of separation and the shear work of separation are equal,
Figure 2.8 shows the tangential and normal behaviour of the cohesive law when coupling them
under mixed mode fracture. If the normal opening displacement increases, then the tangential
traction decreases. In the same way, if the tangential opening displacement increases, then the
normal traction decreases.
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increasing

(a) Normal behaviour.

increasing dn

(b) Tangential behaviour.

Figure 2.8: Relative cohesive traction-separation curve for the case of coupled modeling.

Figure 2.9 shows that when unloading takes place, the relation between the cohesive traction
and the opening of the interface is linear, this behavior remains linear during reloading until
the opening reaches the value when unloading started [Roe and Siegmund, 2003].

Figure 2.9: Normal traction (Tn) curve in case of loading and unloading.

Then the interface traction follows the constitutive law governed by equation (2.47). To
determine the linear relation due to loading or unloading accounting also for the crack mode,
three additional variables are computed:

Ψt = |dt|
δct

Ψn = 〈dn〉
δcn

Ψoi = max
p
{Ψi(p)} with i = t or n

(2.48)

Where Ψoi is the maximum value of Ψi during the loading history, p is the time, | dt | is the
absolute value of the tangential opening and 〈dn〉 equal 0 when dn ≤ 0 or dn if dn > 0. The
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linear behavior takes places when Ψi is less than Ψoi. Thus, the constitutive law for the traction
becomes:

T i = di
T i,max

di,max
if Ψi < Ψoi with i = t or n (2.49)

where T i,max and di,max are respectively, the cohesive traction component and the opening of
the interface before unloading begins.

As in the case of Ortiz and Pandolfi’s cohesive law, if there is contact between the cohesive
interfaces (dn < 0), as shown in Figure 2.7a, a penalization term will be added, making the
cohesive interface acts like a spring with a high constant (Kpen):

Tn(dn, dt) =
(
φn
δcn

)
e−
(
dn

δcn

) 
(
dn

δcn

)
e
−
(
dt

δct

)2

+
[1− q
r − 1

] 1− e
−
(
dt

δct

)2 [r − dn

δcn

]
+Kpen σc e

(
dn

δcn

)
e−
(
dn

δcn

)
if dn < 0 (Contact)

(2.50)

whereKpen is a penalty coefficient. Expression of the tangent matrix for the [Xu and Needleman,
1993]’s cohesive law is presented in detail in Appendix A.2.

2.3.3 Viscous regularization
Even though cohesive zone models are very common methods to simulate fracture process

in engineering applications, it is well documented that they can induce some instability called
solution jumps or elastic snap-back [Volokh, 2004, Jiang, 2010,Needleman, 2014, Sepasdar and
Shakiba, 2020]. These instabilities come up just after the peak strength has been reached. When
performing quasi-static finite element simulations in an implicit scheme, combined with certain
cohesive law parameters and mesh size, at the point of instability, simulations are not able to
converge to an equilibrium solution [Gao and Bower, 2004,Hamitouche et al., 2008,Needleman,
2014]. In order to avoid convergence problems in finite element simulations due to displacement
jump, different authors suggested adding some viscosity terms [Chaboche et al., 2001,Gao and
Bower, 2004]. The work of [Gao and Bower, 2004] showed that, although some additional
energy dissipation is introduced into the computations due to the addition of viscosity terms,
convergence in the solution is achieved for a small enough time-step and for any nonzero viscosity
value.

In order to identify whether instabilities will appear in the computation, [Gao and Bower,
2004] introduced a dimensionless parameter (Λ). This parameter relates the stiffness of the
solid with the stiffness of the interface. Λ is equal to:

Λ = Eδc
2aσc

(2.51)

Where E is the Young’s modulus, σc is the maximun cohesive normal traction, δc is the charac-
teristic opening displacement and a is the height of the specimen. [Gao and Bower, 2004] showed
that, for Λ > e−1 the interface separation is smooth, meanwhile for the case when Λ < e−1, the
interface separation is unstable. Here e−1 = exp(−1) ≈ 0.3679.

In order to show the effectiveness of the implemented viscous regularization technique, the
configuration shown in Figure 2.10 will be used. For simulation purposes, the Young’s modulus
(E) depicted in Figure 2.10 will take different values leading to different values of the dimen-
sionless parameter Λ. In the first case, E = 3× 105 N

mm2 and therefore Λ = 1.4545 > 1
e . In this

case, the simulation does not exhibit any convergence problem. Figure 2.11 shows the force-
displacement curve without convergence problems. Then, the following sections briefly present
how to include viscous dissipation in the different implemented cohesive laws.
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Cohesive Interface

Figure 2.10: Geometry and boundary conditions for the test example.

Figure 2.11: Force-displacement curve for the case of a stable simulation.

2.3.3.1 Ortiz and Pandolfi’s cohesive law

When using this kind of exponential cohesive law, [Sepasdar and Shakiba, 2020] proposed
the addition of the following viscosity term:

t = eσc
d

δc
e−

d
δc + ξ

σc
δc
ḋ (2.52)

where ξ is a viscosity-like parameter that governs viscous energy dissipation and ḋ is the deriva-
tive of the effective opening displacement (d) with respect to the time (t): ḋ = dd

dt . The
expression of the tangent stiffness matrix for Ortiz and Pandolfi’s cohesive law when including
viscous dissipation is presented in detail in Appendix A.3.



52 FE framework for crack propagation

The test example presented in Figure 2.10 is used again but, in this case the Young’s modulus
is decreased (E = 4.2× 104 N

mm2 ). When E decreases, then Λ also decreases (Λ = 0.2036 < 1
e ),

making necessary the addition of the terms regarding viscous dissipation.
Figure 2.12 shows the solution of the problem using the aforementioned viscous regulariza-

tion technique when using Ortiz and Pandolfi’s cohesive law. In this figure, the red arrow points
out the instability problem when viscous terms equal zero (black curve). It is also shown that
the higher the value of the viscosity, the higher the effect on the solution.

Figure 2.12: Force-displacement curve for the case of an unstable simulation using Ortiz and
Pandolfi’s cohesive law with viscous dissipation.

2.3.3.2 Xu and Needleman’s cohesive law

When using the exponential cohesive law presented by [Xu and Needleman, 1993], [Gao and
Bower, 2004] proposed the addition of some viscosity term in the following way:

T ∗n(dn, dt) =
(
φn
δcn

)
e−

dn

δcn

{(
dn

δcn

)
e
− d

2t
δ2
ct +

[1− q
r − 1

] [
1− e

− d
2t
δ2
ct

] [
r − dn

δcn

]}{
1 + ξn

d

dt

(
dn

δcn

)}

T ∗t(dn, dt) =
(
φn
δcn

)(2δcn
δct

)(
dt

δct

){
q +

[
r − q
r − 1

]
dn

δcn

}
e−

dn

δcn e
− d

2t
δ2
ct

{
1 + ξt

d

dt

(
dt

δct

)}
(2.53)

Where T ∗n(dn, dt) and T ∗t(dn, dt) are the interfacial tractions when adding some viscosity terms.
ξn and ξt are viscosity-like parameters that govern viscous energy dissipation under normal
and tangential loading, respectively. Expression of the tangent stiffness matrix for Xu and
Needleman’s cohesive law when including viscous dissipation is presented in detail in Appendix
A.4.

As in the previous section, the same test example presented in Figure 2.10 is used (E =
4.2× 104 N

mm2 and Λ = 0.2036). Again in this case Λ < 1
e , making necessary the addition of the

terms regarding viscous dissipation. As it was done previously, the solution for this case using
the implemented viscous regularization technique is computed.

Figure 2.13 shows the solution of the problem taking into account the aforementioned viscous
regularization technique when using Xu and Needleman’s cohesive law. In this figure, the red
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circle highlights instability issues in the curves where the value of the viscosity-like parameter
is too small to overcome the convergence problems. Figure 2.13 also shows that the higher the
value of the viscosity, the higher the effect on the solution. The remarkable difference in the
values of the viscosity-like parameter used here compared with the ones used in Figure 2.12,
could be explained by the way the viscous term was defined in each one of these cases (See
equations (2.52) and (2.53).

Figure 2.13: Force-displacement curve for the case of an unstable simulation using Xu and
Needleman’s cohesive law with viscous dissipation.

Regarding cohesive zone models including viscous regularization technique, the results pre-
sented in this section showed that the performed implementation is appropriate enough when
tackling fracture problems in the presence of numerical difficulties. Even though the two-
dimensional simulations carried out in this PhD thesis did not require the use of the viscous regu-
larization technique, this implementation was performed thinking about future three-dimensional
applications where convergence problems are more common.

2.4 Thermolasticity model
As one of the main applications of the current PhD thesis aims at applying fracture me-

chanics theory in order to study failure phenomenon on airless bodies of the solar system, an
appropriate thermoelasticity model has to be implemented. This is important since it is thought
that observed fractures on these bodies are mainly driven by strong temperature variations re-
sulting from the cycles between day and night. In this section the basic background of the
implemented thermoelastic model will be presented. First, the way thermal and mechanical
equations are related through a weak coupling will be briefly described.

2.4.1 Coupling formulation
Temperature changes (∆T ) produce strains having a nature inherently dilatational (i.e.,

thermal expansion or contraction) and do not cause any shear. To account for these strains in
a mechanical problem, one way is to include the thermal strains originated by the variation of
the temperature into the total strain of the body.

Let’s decompose the strain into two components:
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εij = εelasticij + εthermalij ; (2.54)

where εelasticij and εthermalij are respectively, the elastic and thermal strain tensors. The thermal
strain is proportional to temperature changes and defined as:

εthermalij = α∆Tδij , where ∆T = T − Tref (2.55)

In equation (2.55), α is the thermal expansion coefficient, ∆T is the difference between the
computed temperature and the reference temperature, latter one being the temperature where
there is no strain and δij is the Kronecker delta. This work also assumes an isotropic thermal
expansion coefficient. Using equations (2.54) and (2.55), Hooke’s law can then be written as:

σij = λδij(εkk − 3α∆T ) + 2µ(εij − α∆Tδij) (2.56)

where σij is the stress tensor and λ and µ are respectively, the Lamé’s first and second param-
eters. In this PhD thesis a weak thermomechanical coupling is assumed. This means that the
temperature is initially obtained from the heat problem and then introduced into the mechanics
computation. For the solution of a thermoelastic problem, first, the temperature distribution
inside the body is computed by solving the heat transfer problem. Then, the resulting tempera-
ture distribution is input to the mechanical problem as an initial strain. A schematic illustration
of the steps followed in this work when solving the thermomechanical problem is provided in
Figure 2.14. A theoretical example that allows to validate the implemented model is presented
in Appendix A.5.

Linear thermoelasticity
(weak coupling)

Solve the thermal problem

Compute the thermal strain

Solve mechanical problem 
with the initial thermal strain

Solution

Figure 2.14: Schematic representation of the weak coupling implemented thermoelasticity
model.
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2.5 Gθ method implementation
As it was already stated, crack propagation requires energy. The amount of energy released

during the fracture process is known as energy release rate (G). Commonly, G is widely used
in the literature in order to find the crack propagation direction for a given configuration. It
can be done through the maximum energy release rate criterion (MERRC), which says that the
crack propagation direction will be the one which maximises the energy release rate (G). In this
work, for the computation of G (i.e., crack propagation direction), the well-known and famous
technique named as the Gθ method presented in section 1.2.4.2 will be used. Its numerical
implementation is described below.

The implementation of the Gθ method requires the definition of two contours around the
crack tip (i.e., C1 and C2). These contours divide this region into three domains Cint, Cring
and Cext as shown in Figure 2.15.

Figure 2.15: Contours and domains used to compute G using the Gθ method.

In order to implement the Gθ method, a virtual displacement field, V(v1, v2), representing
the virtual kinematics of the crack should be defined. V(v1, v2) is given by equation (2.57):

V =


v1 =

(
1− AB

AC

)
cos(θ)

v2 =
(
1− AB

AC

)
sin(θ)

(2.57)

Where O is the crack tip, B is an integration point of an element belonging to the ring (Cring),
A and C are the intersections between OB and C1 and C2 respectively (inside and outside
contours of the ring); and θ is the virtual direction of propagation measured with respect to
the crack axis. In simple words, AB is the distance from the inside contour of the ring to the
barycenter of an element belonging to the ring and AC is the width of the ring. G is computed
as a function of θ, then the propagation direction is the value of θ associated with the maximum
value of G. It is worth mentioning that expression (2.58) will be computed multiple times using
different angles searching for the one which maximizes the energy release rate by the crack
extension (See next section).

G =
∫

Ω
σijUj,kVk,i dΩ− 1

2

∫
Ω
σij (Uj,i − α∆Tδij)Vk,k dΩ

+
∫

Ω
σiiαT,jVj dΩ−

∫
Ω
FiUj,iVj dΩ

(2.58)

where Ui is the displacement field, Vi is the virtual displacement field, Fi are the body forces, α
is the thermal expansion coefficient, T is the temperature and ∆T is the temperature difference
between the current state and the reference configuration. Hence the values of V in the three
domains are:
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• The norm of V in Cint is equal to 1.

• The norm of V in Cring varies continuously from 1 to 0.

• The norm of V in Cext is equal to 0.

As is well known, one of the main objectives of this PhD is to carry out crack propagation in
brittle materials with some applications on space bodies. For this reason, an important step is
to find where the crack is going to propagate, not just under loadings of mechanical nature but
also under loadings of thermal nature (space bodies subjected to strong gradient temperatures).
In the following, the Gθ method is presented under two scenarios. First, in the case without any
thermal load applied. Then, the same method is used to tackle the case with thermal strain.

2.5.1 Case 1: Purely mechanical loading conditions
In this case, the Gθ method is used to compute the maximun G (i.e., crack propagation

direction) in the absence of body forces, forces applied directly to the crack faces and thermal
loadings. Under these loading conditions, the energy release rate presented in equation (2.58)
reduces to:

G =
∫
Cring

(
σijUj,kVk,i −

1
2σijUj,iVk,k

)
dA (2.59)

where Ui,j is the gradient of the displacement field, Vi is the virtual displacement field, Vi,j is the
gradient of the virtual displacement field, Vi,i is the divergence of the virtual displacement field
and Cring is the integration region. In Figure 2.16-a, elements belonging to Cring are marked
with a red dot. A discrete set of θ values will be used for a virtual crack propagation. The
θ values are selected inside the range [−70◦, 70◦] [Erdogan and Sih, 1963] with respect to the
crack axis. For each one of the θ values, an associated G value will be computed. In Figure
2.16-a the virtual ring, including the considered integration points, is depicted. Figure 2.16-b
shows that G can be computed for each value of θ, which makes the identification of the θ value
that maximises G(θ) straightforward (Figure 2.16-b). The direction of propagation will be the
value of θ that corresponds to the maximum value of G, i.e., the maximum of the curve G(θ)
in Figure 2.16-b.

b)a)

Figure 2.16: a) Ring of elements around the crack tip. b) G(θ) curve for the maximun energy
release rate criterion.

To validate the implemented methodology, a well-known benchmark example will be used:
An edge-crack under mixed-mode loading. In this benchmark, an edge crack geometry fixed at
the bottom and subjected to a top unit shear load is considered. Geometry, boundary conditions
as well as material properties are given in Figure 2.17.
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Figure 2.17: Geometry of the plate with an edge crack under shear (dimensions in cm).

In order to prove that the computation of the crack propagation direction through the Gθ
method implemented here is accurate, the simulated crack propagation direction was compared
against the direction value computed using the theoretical crack growth methodology based on
the local stress fields at the crack tip (LEFM) (See section 1.2.4.1).

Before presenting the results regarding validation of the Gθ method under loadings of me-
chanical nature, it is worth mentioning that the element size of the mesh at the crack tip
neighborhood is set to a value equal to 4 × 10−6 cm. The most suitable size of the ring of
elements (i.e., thickness) was determined trough a simple sensitivity analysis. According to
this, the inner contour (C1) of the ring of elements was placed at a distance equal to 3 times the
average size of the elements attached to the crack tip. While the outer contour (C2) was placed
at a distance equal to 5 times the average size of the elements attached to the crack tip. Here
it must be recall the fact that the Gθ method is completely mesh independent [Bouchard et al.,
2003]. Additionally, taking into account that the computation of G is carried out far from the
crack tip, it was found that refining the mesh does not strongly affect the results as shown in
Figure 2.18.

In the benchmark example shown in Figure 2.17, the reference values of KI = 34 N cm
−3
2

and KII = 4.55 N cm
−3
2 are taken from [Wilson, 1969,Stern et al., 1976,Nguyen-Xuan et al.,

2012]. Using these values and equation (1.23), the computed exact value of the direction of
propagation is θ = −14.74◦. Using the implemented Gθ method with a θ step variation of
0.01◦, the angle of propagation identified is approximately θ = −14.92◦. Even though this value
differs slightly (0.18◦) from the theoretical one, this is proof that the implemented methodology
is able to compute a quite accurate crack propagation direction. To calculate the aforementioned
value using the approach presented here, only the direction calculated at the first time step once
the crack has reached the threshold that allows its propagation was taken.
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Figure 2.18: Convergence analysis of the crack propagation direction (θ) with respect to the
mesh size at the crack tip neighborhood.

2.5.2 Case 2: Combined mechanical and thermal loading conditions
In this case, the implemented Gθ method is tested through the computation of the stress

intensity factor in mode I loading (KI) under the presence of thermal effects. Under this
scenario, the energy release rate presented in equation (2.58) reduces to:

G =
∫

Ω

(
σijUj,kVk,i −

1
2σij (Uj,i − α∆Tδij)Vk,k + ασiiT,jVj

)
dΩ (2.60)

where Ui,j is the gradient of the displacement field, Vi is the virtual displacement field, Vi,j is
the gradient of the virtual displacement field, Vi,i is the divergence of the virtual displacement
field, α is the thermal expansion coefficient, ∆T (∆T = T − Tref ) is the temperature difference
between the current state and the reference configuration, δij is the Kronecker delta, T,j is the
gradient of the temperature and Ω is the integration region.

In order to validate the implemented Gθ method when thermal strain is present, the work
of [Hellen et al., 1982] was used as reference. In that work the stress intensity factors are
calculated at the crack tip in thermally stressed structures. The problem tackled in [Hellen
et al., 1982] is a plate of length b fixed at opposite ends with an edge crack of length a. A linear
temperature gradient is supposed to exist along the crack direction. KI is computed for different
geometrical relations between the crack length and the plate width (a/b). Geometry, boundary
conditions as well as material properties of the benchmark example are given in Figure 2.19.

In [Hellen et al., 1982]’s work, the stress intensity factor KI is computed using different
methodologies such as the virtual crack extension method (V CE) [Parks, 1974,Hellen, 1975],
an analytical approach using Green’s integral and correction factors (K∗) [Muskhelishvili, 1977,
Hellen and Cesari, 1979], J∗ integral with a suitable correction term for the thermal effects
[Blackburn et al., 1977], as well a analytical approach proposed in [Hellen et al., 1982]. In the
comparison that will be presented below, plane strain conditions were assumed and the stress
intensity factor (KI) was normalized by:

K0 = E T0 α
√
b/(1− ν) (2.61)

where E is the Young’s modulus, ν Poisson’s ratio, α is the thermal expansion coefficient, T0
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is the applied temperature and b is the plate width. The result that is obtained using the
implemented methodology in current work is in terms of the energy release rate (G), for this
reason and assuming plane strain conditions, KI can be computed through equation (2.62) (see
section 1.2):

KI =
√

G E

1− ν2 (2.62)

Figure 2.19: Geometry and boundary conditions (units in m).

Figure 2.20 shows the results obtained in [Hellen et al., 1982] and the results coming from
the approach proposed in this work (Gθ method). According to [Hellen et al., 1982], the results
obtained using the three computational methods (i.e., V CE, K∗, J∗ integral) are in very good
agreement over the range of the considered crack lengths (a/b = 0.1 to 0.8). The foregoing,
according to the authors, implies that the calculated KI values are very accurate. The V CE
and K∗ results are shown together since they always agreed. Regarding the proposed analytical
approach, authors also included this multiplied by a finite width factor presented in [Hellen and
Cesari, 1979]. The authors also say that it shows reasonably good agreement compared with
computational approaches. Additionally, they argue that this factor can be established from
the finite element results. Results obtained using the Gθ method implemented in the current
work are also shown in the same figure. A good agreement over the range of the considered
crack lengths (a/b = 0.1 to 0.8) is observed.

In Figure 2.20 there are some slight differences between the proposed method and the ones
used as reference, which can be attributed to the fact that probably, convergence analysis in the
solution associated with the mesh size was not tackled in [Hellen et al., 1982]. Following these
results, the methodology presented here to compute the stress intensity factor in the presence of
thermal strain can be considered accurate enough. Additionally, the current work compares the
results of the same problem when including or not including the thermal strain terms directly in
the computation of the Gθ method in equation (2.60). This comparison was made to estimate
the influence of the thermal terms on the computation of the energy release rate. It should be
recall that even if the thermal terms are not included in the computation of fracture energy
(G in equation 2.60), they are included in the thermoelasticity model presented in section 2.4.
Figure 2.21 shows that the effect of the direct inclusion of thermal strain is not very strong. It
is practically imperceptible, especially for longer cracks. This can be one of the reasons why
these additional terms are usually neglected in the literature.
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Figure 2.20: Normalized stress intensity factor (KI/K0) in an edge-cracked plate with linear
temperature gradient for various relations between the crack length and the plate width (a/b)

using different approaches.

Figure 2.21: Effect of direct inclusion of thermal terms in the Gθ method.

After describing the implemented methodologies in order to compute crack propagation
direction under loading of different natures, the next section reviews the remeshing procedures
used in this work to ensure mesh-independent crack propagation when using cohesive elements
to simulate the fracture process for arbitrary crack paths.
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2.6 Mesh modification methodology to perform crack propaga-
tion

As it was already stated in this work, when simulating crack propagation through the use of
cohesive zone models (CZMs), the two most common problems arising are: (i) that most CZMs
approaches suffer from crack-path mesh dependency and (ii) when using them, an artificial
reduction of the stiffness of the material can be induced. Common strategies used to overcome
these problems were already reviewed in the literature review section (i.e., section 1.3.5). In the
current section, the remeshing strategy developed in this PhD to propagate a crack exactly over
a computed crack propagation direction will be briefly presented. The methodology that allows
the insertion of cohesive elements between two bulk or normal elements in a finite element mesh
will also be introduced.

2.6.1 Fitting the mesh to the actual direction of propagation in 2D

Thanks to the advanced remeshing techniques available at CEMEF [Gruau and Coupez,
2005, Shakoor et al., 2015], in this work the finite element mesh can be fit to the crack propa-
gation direction computed using the already presented Maximum energy release rate criterion.
When the crack path is unknown, mesh dependency may appear as a consequence of the fact
that cracks are only able to propagate across boundaries between bulk elements. Therefore, the
crack path depends on the mesh. This issue is depicted in Figure 2.22-b, where the predicted
crack path and the actual one are shown in blue dashed line and green line respectively. Once
the direction of propagation (blue dashed line in Figure 2.22-a) is computed using a suitable
criterion, Figure 2.22-b shows the procedure that has been widely used to insert cohesive el-
ements. These are inserted through the closest edges and nodes to the computed direction.
The insertion of cohesive elements in this way exhibits a mesh dependency behaviour, so if the
mesh changes, the crack pattern changes slightly as well [Shakoor et al., 2018]. When the crack
path is unknown, some authors choose to insert cohesive elements on each interface between
bulk elements throughout the material [Xu and Needleman, 1994,Tijssens et al., 2000]. This
approach increases the number of degrees of freedom greatly and makes the predicted crack
path mesh-dependent [Chiaruttini et al., 2012,Geißler et al., 2010].

Figure 2.22-c shows the methodology developed in current work. Before inserting the co-
hesive elements, a local remeshing procedure in the predicted direction is performed [Shakoor
et al., 2015]. In order to perform the fitting of the mesh to the computed direction, a level-set
(LS) [Osher and Sethian, 1988] function should be defined in such a way that computed direction
is represented as an implicit interface, to which the mesh should be fitted. In this implicit rep-
resentation, the interface (i.e., crack propagation direction) is carried by a field stored at mesh
nodes. In simple words, at each node of the mesh, there is a field storing the distance from this
node to the iso-zero value of the level-set (interface). When dealing with two-dimensional crack
propagation, defining the level-set function is straightforward, because it just needs two things:
(i) computed crack propagation direction and (ii) the coordinates of the crack tip. Using this
information, a plane Π representing the implicit interface can be defined. As shown in Figure
2.23, the plane Π can be defined using the normal (~n) to the crack propagation direction (θ)
and the coordinates of the crack tip. Finally, the value of the level-set at each node will be
equal to the distance from the node to the plane.

Returning again to Figure 2.22, it is worth mentioning that contrary to the process shown in
Figure 2.22-b, the one shown here is mesh-independent. Inserting cohesive elements on the fly,
i.e., while the crack tip is propagating through the domain, avoids a well-known strong drawback
in the implementation of cohesive zone models into a FE framework: artificial reduction of the
stiffness of the material. As it was mentioned in section 1.3.5, this drawback can be overcome by
using Lagrange multipliers, but it requires to develop more complex finite element formulations.
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Other implications regarding how cohesive elements can be used to model fracture are discussed
in [Shakoor et al., 2018].

c)

Exact crack path 
using remeshing 

Crack tip

b)

Crack tip

Crack path adjusted to 
closer edges and nodes

a)

Crack tip

Computed 
propagation direction

Figure 2.22: a) Prescribed crack path (blue dashed line). b) Insertion process of cohesive
elements previously developed in the literature. c) Insertion process of cohesive elements used

in this work.

Crack tip

Computed 
propagation direction

Y

X

(Xcrack, Ycrack)

Plane

Figure 2.23: Illustration of the definition of the level-set function which is computed using a
plane Π. This plane is defined using the normal vector to the propagation direction and the

coordinates of the crack tip.

Remeshing procedure introduced by [Shakoor et al., 2015] works well both for 2D and 3D
problems. The topology of a 3D crack is more complex. The 2D crack tip is replaced by a
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3D crack front whereas the 2D crack edges are now 3D crack surfaces. For this reason, the
definition of the level-set function representing the surface over which the crack front will evolve
after fitting the mesh, is not trivial.

2.6.2 Computation of the fracture surface in 3D

In this section, a method for computing the fracture surface in 3D is proposed. For the sake
of simplicity, an arbitrary propagation direction will be used. Due to the configuration of the
loadings, the crack growth direction computed in two nodes located at different positions on
the crack front can be different. But another assumption is made in this work, the propagation
direction prescribed at each one of the nodes belonging to the crack front is the same ∗. When
the crack front is a straight line as the one shown in Figure 2.24-b, the computation of the
level-set function is still straightforward. In order to compute it, a point belonging to the crack
front is picked up, in this case the point p in Figure 2.24-c. Using the coordinates of this point
and the normal vector (~n) to the prescribed direction of propagation (θ), a plane Π containing
all the nodes belonging to the crack front can be recalculated.

a)

Crack front
b)

a

Y

Z

X

Computed 
propagation 
direction

(Xp, Yp, Zp)

Plane

p

c)

Figure 2.24: a) Body with a prescribed crack. b) Bottom half part of the domain that allows
to see the plane of the rectilinear crack front. c) Illustration of how to define a plane Π for the
computation of the level-set function when the crack front is a straight line belonging to Π.

∗The propagation direction prescribed at each node of the crack front can also be different.
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Then, as it was explained before, the distance between each node of the finite element mesh
and the plane or interface (i.e., the iso-zero value of the level-set) is calculated. Next step is to
proceed with the fitting of the mesh to the iso-zero value of the level-set function.

When the crack front is not a straight line but a curvilinear one as shown in Figure 2.25-b,
the procedure to define the level-set function whose iso-zero value represents the interface (crack
propagation direction) over which the crack front will propagate is not as simple as depicted
previously. As it can be seen in Figure 2.25-c, the plane Π defined using the normal vector (~n)
to the crack propagation direction (θ or ~d) does not contain all the nodes belonging to the crack
front. Intersection of the iso-zero value of the level-set function and the plane of the crack front
is shown as a green dashed line, while the crack front is shown as a red dashed curved line.
Plane Π is not anymore the solution we look for in order to define the desired level-set function.
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p

Figure 2.25: a) Body with a prescribed crack. b) Bottom half part of the domain that allows
to see the plane of the curvilinear crack front. c) Illustration of how to define a plane Π for
the computation of the level-set function, in this case, as the crack front is a not straight line

but curvilinear one, the crack front does not completely belong to Π.

Let φ be the distance between each node of the finite element mesh and the iso-zero value
of the level-set function (i.e., plane Π), ~d the direction in which the crack front will propagate
and Γ the crack front. We would like to obtain a level-set such that the following conditions
are fulfilled:
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
|∇φ|= 1 (2.63)
~d . ∇φ = 0 (2.64)
φ|Γ = 0 (2.65)

Equation (2.63) guarantees that the gradient of the level-set function will be a unitary vector,
equation (2.64) guarantees that the crack propagation direction (~d) or iso-zero value of the
level-set and the gradient of the level-set function (∇φ) are perpendicular. Lastly, equation
(2.65) means that the value of the level-set function at the crack front is zero, guaranteeing in
this way that all the nodes belonging to the crack front will be contained in the iso-zero value
of the level-set. It is worth mentioning that the mathematical problem described by equations
(2.63), (2.64) and (2.65) is over-constrained. It means that mathematically, find a function φ
fulfilling all the defined constraints is not possible. In simple words, a level-set function (φ)
completely fulfilling the constraints presented in equations (2.63), (2.64) and (2.65) does not
exist. However, an approximate solution where the error is minimized can be found. To find
this approximate solution, equations (2.63) and (2.64) are combined in a functional, which is
minimized using equation (2.65) as Dirichlet boundary condition.

In order to find φ that satisfies equations (2.63), (2.64) and (2.65), the following constrained
minimization problem should be solved:

F (φ) =
∫

Ω
(|∇φ|−1)2 dΩ + α

∫
Ω

(
~d.∇φ

)2
dΩ (2.66)

Where F (φ) is the functional to minimize, φ is the value of the level-set function at each node
of the mesh, ~d is the crack propagation direction, α > 0 is a weighting parameter controlling
the effect of this term and Ω is the integration domain.

The previous minimization problem can be solved through a mixed finite element (FE)
formulation, which would lead to the introduction of additional variables in the problem (i.e.,
α). Nevertheless, in this problem we are highly interested in completely fulfilling the constraint
described by equation (2.65) and fulfilling as close as possible the second one (2.64). For this
reason, in this case, we allow to relax a little bit the second constraint and, therefore, have only
one unknown variable (φ). Therefore, the goal is to find a function φ satisfying the Dirichlet
boundary condition φ = 0 on Γ (Crack front) and minimizing F :

min
φ∈H1(Ω),
φ|Γ=0

F (φ) (2.67)

A minimun φ∗ is characterized by F (φ∗ + εφ̂) ≥ F (φ∗) for all φ̂ and ε > 0, with φ∗ + εφ̂ in
H1(Ω) (i.e., square integrable derivatives). Thus, a minimum φ∗ must satisfy the Euler-Lagrange
condition for stationarity:

∂F (φ∗ + εφ̂)
∂ε

|ε=0 = 0 ∀φ̂ ∈ H1(Ω) (2.68)

The Euler-Lagrange condition in equation (2.68) is a necessary but not sufficient condition to
characterize a minimum value of (2.66) [Troutman, 1996]. In this work, the variation φ̂ is
allowed such that for sufficiently small ε, the function φ∗+ εφ̂ is admissible for equation (2.67).
To start the minimization process, φ is substituted by φ∗ + εφ̂ in equation (2.66):

F (φ∗ + εφ̂) =
∫

Ω

(
|∇
(
φ∗ + εφ̂

)
|−1

)2

︸ ︷︷ ︸
term 1

dΩ + α

∫
Ω

(
~d.∇

(
φ∗ + εφ̂

))2

︸ ︷︷ ︸
term 2

dΩ (2.69)

Then equation (2.70) is differentiated with respect to ε leading to:
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∂F (φ∗ + εφ̂)
∂ε

= ∂

∂ε

∫Ω

(
|∇
(
φ∗ + εφ̂

)
|−1

)2

︸ ︷︷ ︸
term 1

dΩ + α

∫
Ω

(
~d.∇

(
φ∗ + εφ̂

))2

︸ ︷︷ ︸
term 2

dΩ

 (2.70)

First, the derivative of the term 1 with respect to ε is computed:

∂(term 1)
∂ε

= ∂

∂ε

[(
|∇φ∗ + ε∇φ̂|−1

)2
]

=
2
(
|∇φ∗ + ε∇φ̂|−1

)
|∇φ∗ + ε∇φ̂|

∇φ̂
(
∇φ∗ + ε∇φ̂

)
(2.71)

Then, the derivative of term 2 with respect to ε is computed:

∂(term 2)
∂ε

= ∂

∂ε

[(
~d.∇φ∗ + ε∇φ̂

)2
]

= 2
(
~d.∇φ∗ + ε~d.∇φ̂

)
~d.∇φ̂ (2.72)

Replacing equations (2.71) and (2.72) into (2.70) leads to:

∂F (φ∗ + εφ̂)
∂ε

=
∫

Ω

2
(
|∇φ∗ + ε∇φ̂|−1

)
|∇φ∗ + ε∇φ̂|

∇φ̂
(
∇φ∗ + ε∇φ̂

) dΩ

+α
∫

Ω

(
2
(
~d.∇φ∗ + ε~d.∇φ̂

)
~d.∇φ̂dΩ

) (2.73)

Next, one sets ε = 0:

∂F (φ∗ + εφ̂)
∂ε

|ε=0 =
∫

Ω

2 (|∇φ∗|−1)
|∇φ∗|

∇φ̂∇φ∗dΩ + 2α
∫

Ω
~d.∇φ∗~d.∇φ̂dΩ (2.74)

Through the previous step, the weak or variational form of the problem is obtained: Find φ∗ ∈
H1(Ω) such that:∫

Ω

2 (|∇φ∗|−1)
|∇φ∗|

∇φ̂∇φ∗dΩ + 2α
∫

Ω
~d.∇φ∗~d.∇φ̂dΩ = 0 ∀φ̂ ∈ H1(Ω) (2.75)

Equation (2.75) can be also written as:∫
Ω

[2 (|∇φ∗|−1)
|∇φ∗|

I + 2α~d⊗ ~d

]
:
(
∇φ∗ ⊗∇φ̂

)
dΩ = 0 ∀φ̂ ∈ H1(Ω) (2.76)

where φ∗ is the minimum of (2.66) that is looked for, φ̂ is an arbitrary variation, I is the
identity, ~d is the direction in which the crack front was assumed to propagate and α is a
weighting parameter.
For the sake of simplicity in the notation, from now on:

∂F (φ∗ + εφ̂)
∂ε

|ε=0 = δF (φ∗) = g(φ∗) (2.77)

Additionally, it is also known that:

∆φ∗ = φ∗1 − φ∗0 (2.78)

In order to solve the variational problem presented in (2.76), this is linearized using a first-order
Taylor polynomial approximation:

∂g(φ∗)
∂φ∗

|φ∗0 ∆φ∗ = −g(φ∗) (2.79)
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To solve the linearized problem presented in (2.79), the term ∂g(φ∗)
∂φ∗ (i.e., Hessian matrix) must

be computed. A detailed calculation of Hessian matrix is presented in Appendix A.6. Using
equations (2.76), (2.79) and (A.55), the problem depicted in equation (2.67) can be solved. The
solution of this problem will give, as a result, the level-set function to which the mesh will be
adjusted in order to propagate the crack front. This minimization problem was solved through
the implementation of a non-linear solver in our finite element library CimLib developed at
CEMEF [Digonnet et al., 2007].

In order to prove the robustness and accuracy of the implemented non-linear solver, a simple
test example as the one shown in Figure 2.25-c is used. Given an initial level-set function
that was computed using the plane Π, and whose iso-zero value corresponds to the prescribed
propagation direction (~d), the goal is to find a level-set function that fits the circular crack
front (red dashed line). The iso-zero value of this level-set function should also match as close
as possible the prescribed propagation direction (~d). The solution to this problem is shown in
Figure 2.26.

b)a)

c) d)

Y

Z

X

Figure 2.26: Detail top view close to the area of interest (i.e., crack front) of the example used
as a test case for the implemented solver.
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Figure 2.26 shows a detail view close to the area of interest (i.e., crack front) of the example
used as a test case. Figure 2.26-a shows a top view where the circular crack front can be seen.
Figure 2.26-b shows the initial plane (iso-zero value) which was used to compute the level-set
function that was used as an initial solution of the problem. Figure 2.26-c shows the results
where the iso-zero value of the obtained level-set function fits perfectly the circular crack front.
Finally, Figure 2.26-d shows a zoom-out view of the problem. Now the mesh can be fit to
the iso-zero value of the found level-set function using the remeshing procedures available at
CEMEF [Shakoor et al., 2015].

2.6.3 Insertion process of cohesive elements
Once the remeshing has been performed, the insertion process of cohesive elements can take

place. When either the crack tip in 2D or the crack front in 3D propagates through a finite
element mesh, in order to simulate the fracture process taking place behind the crack tip or
crack front, in this work cohesive elements will be used. They are going to be inserted over
the crack path. Due to the fact that we are using only triangles (2D) and tetrahedra (3D), to
completely separate two bulk or normal elements in 2D or 3D, two or three cohesive elements
must be inserted between them respectively. This is illustrated in Figure 2.27, where cohesive
elements are shown in red, blue and green.

Y

X

a)

2 elements
required

3 elements
required

b)

Y

Z

X

Figure 2.27: Schematic representation of the insertion process of cohesive elements in a) 2D
and b) 3D.

Figure 2.28 depicts the insertion process of cohesive elements for the two-dimensional case.
From this figure some important aspects must be noted. Two neighboring normal or bulk
elements (i.e., non-cohesive) are connected through a shared edge (2D) or face (3D). In order to
separate them, the shared edge should be tagged. When they are completely separated through
the insertion of two cohesive elements between them, the inserted cohesive elements are said to
belong to the same “family”. For example, in Figure 2.28-a), the edge shared by the elements E1
and E2 is shown in red. Once these elements are completely separated, two cohesive elements
(C1 and C2) are inserted between them (Figure 2.28-b)). Elements C1 and C2 belong to the
same cohesive “family”.

Another important remark that has to be mentioned is the fact that the members of a
cohesive “family” are limited, i.e., at some point the cohesive “family” will be completed. In
2D, the “family” is said to be completed when there are two cohesive elements separating two
bulk elements that were initially adjacent (Figure 2.28-b)). All these explained concepts are
very important in order to clearly understand the insertion process of cohesive elements that
was performed in this PhD thesis and that will be explained later on.
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a)

Y

X

shared edge

E1

E2

b)

E1

E2

C1
C2

Figure 2.28: Configuration of two-dimensional bulk elements a) before and b) after the
insertion of cohesive elements.

A graphical illustration of the insertion process implemented in this work is shown in Fig-
ure 2.29. Pragmatically, two neighboring bulk elements are separated by inserting a cohesive
element at their shared face †. This insertion is carried out by duplicating the nodes that form
the separating face and inserting new cohesive elements linking the original nodes to the new
duplicated ones (Figure 2.29-c). In Figure 2.29-a the red dashed line showing the faces that
will be split can be observed. Figure 2.29-b shows the blue dots corresponding to the nodes
that have been duplicated (in this case there are two nodes at the same location). The red
line corresponds to an initially flat cohesive elements. Finally, Figure 2.29-c shows that, after
loading, the new inserted cohesive elements are open.

Initially flat
cohesive elements

Overlayed 
duplicated nodes

b)

Faces
to split

a)

Duplicated nodes: 
old and new

c)

Figure 2.29: Schematic representation of the insertion of cohesive elements.

†We called it face because of 3D but in 2D it refers to an edge.
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As it was already stated, in order to separate two neighboring normal or bulk elements by
the insertion of cohesive elements, the nodes of the shared edge or face should be duplicated. To
check whether or not a node should be duplicated, graph theory will be used. In practical terms,
at each node of the mesh (node i) a graph is defined. To do so, all the elements of the mesh
that contain the node of interest (i.e., patch of elements centered at node i) should be identified.
Figure 2.30 shows an example of a graph that is built using the patch of elements centered at
node i. In simple words, if after evaluating some conditions, the initial graph centered at node
i can be split into two different graphs, node i should be duplicated. Once the graph of node i
has been defined, in order to decide whether or not node i should be duplicated, the following
conditions should be evaluated:

(i) If two neighboring bulk elements of the graph have an edge or face specifically marked to
be separated, the graph should be split at this shared edge or face.

(ii) If there is an incomplete cohesive element (i.e., element belonging to an incomplete cohe-
sive “family”), the graph should be split at this element.

If after evaluating these conditions, the graph can be split into two independent subgraphs,
node i should be duplicated. Let’s see some examples presented in Figure 2.30. Figure 2.30-a
shows the case of a patch of elements composed only of bulk elements, in this case the edge
shared by elements 3 and 4 is marked to be separated. Therefore, the graph should be split
by this edge. Figure 2.30-b shows the case of a patch of elements composed of bulk elements
and one incomplete cohesive element. As in the previous case, the edge shared by elements 3
and 4 is marked to be separated. Additionally, the graph should also be split at the incomplete
cohesive element, and this cohesive element has to be added to any of the two subgraphs. Figure
2.30-c shows the case of a patch of elements composed of bulk elements and two incomplete
cohesive elements from two different “families”. None of the edges shared by the bulk elements
is marked to be separated. But the graph should be split at both of the incomplete cohesive
elements. The two cohesive elements have to be added to any of the two subgraphs. In the
previous three cases, at the end, the initial graph built at node i is split into two independent
subgraphs. Therefore, node i has to be duplicated. Conversely, Figure 2.30-d shows the case
of a patch of elements composed of bulk elements and one incomplete cohesive element. In
this case, none of the edges shared by the bulk elements is marked to be separated. Thus, the
graph is only split at the incomplete cohesive element. But it is not possible to end up with
two independent subgraphs, for this reason the node i must not be duplicated.

A schematic representation of the presented methodology (remeshing and insertion of co-
hesive elements) in a two-dimensional case is depicted in Figure 2.31. Figure 2.31-a shows the
crack tip position at time step n. Also, a red line depicts the computed crack propagation
direction. Figure 2.31-b shows the crack tip position after propagation at time step n + 1. It
also shows a magenta dashed line illustrating the performed remeshing operation and the pre-
vious crack tip position. Finally, Figure 2.31-c shows a zoomed-in view of the inserted cohesive
elements (red) along the crack path.
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Figure 2.30: Graph at node i in 2D: a) Node i should be duplicated. b) Node i should be
duplicated. c) Node i should be duplicated. d) Node i should not be duplicated.

Figure 2.31: a) Crack tip position at time step n. b) Crack tip position at time step n+ 1.
c) Inserted cohesive elements in red.
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The presented methodology is also valid for three-dimensional problems, however the graphic
representation is more complicated. For example, Figure 2.32 depicts the insertion process of
cohesive elements for the three-dimensional case. The same important aspects highlighted in 2D
can be extended to 3D. In Figure 2.32-a), the face shared by the elements E1 and E2 is shown
as a shaded triangle. Once these elements are completely separated, three cohesive elements
(C1, C2 and C3) are inserted between them as shown in Figure 2.32-a). Elements C1, C2 and
C3 belong to the same cohesive “family”. In the three-dimensional case, a cohesive “family” is
said to be completed when there are three cohesive elements separating two bulk elements that
were initially adjacent.

b)

E1

E2

C2

C1

C3

a)

Y

Z

X shared face

E1

E2

Figure 2.32: Configuration of three-dimensional bulk elements a) before and b) after the
insertion of cohesive elements.

Representing a graph is more complex in 3D than in 2D. Figure 2.33 shows the comparison
between the representation of a graph in 2D and 3D. Figure 2.33-a) shows that in 2D, the visual
representation of the graph is simple. As triangle elements are used, the connectivity of the
elements belonging to the patch is not difficult. The case is different in 3D where tetrahedral
elements are used. In this case, as shown in Figure 2.33-b), it is not simple to see the network
formed by the elements belonging to the patch.
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Figure 2.33: Graphic illustration of a graph at node i in both a) 2D and b) 3D.
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Nevertheless, the procedure to check whether a node in a 3D mesh should be duplicated,
is the same as the one explained for the 2D case. Figure 2.34-a) shows the case of a patch of
elements composed only of normal or bulk elements. In this case the faces shared respectively,
by elements 1 and 4 and by elements 6 and 5 are marked to be separated. Therefore, the graph
should be split by these faces. Figure 2.34-b) shows the case of a patch of elements composed of
normal or bulk elements and one incomplete cohesive group of elements from the same “family”
(12 and 11). As in the previous case, the faces shared respectively, by elements 1 and 4 and by
elements 6 and 5 are marked to be separated. Additionally, the graph should also be split at
the incomplete cohesive group of elements, and this group has to be added to any of the two
subgraphs. Figure 2.34-c) shows the case of a patch of elements composed of normal or bulk
elements and two incomplete cohesive group of elements from two different “families” (i.e., 12-11
and 13). None of the faces shared by the normal or bulk elements is marked to be separated.
But the graph should be split at both of the incomplete cohesive groups of elements. The two
cohesive groups of elements have to be added to any of the two subgraphs. In the previous
three cases, at the end, the initial graph built at node i is split into two independent subgraphs.
Therefore, node i has to be duplicated.

Finally, Figure 2.34-d) shows the case of a patch of elements composed of normal elements
and one incomplete cohesive group of elements from the same “family” (i.e., 12-11). None of
the faces shared by the normal elements is marked to be separated. Thus, the graph is just
split at the incomplete cohesive group of elements. But it is not possible to end up with two
independent subgraphs, for this reason the node i must not be duplicated.
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Figure 2.34: Graph at node i in 3D: a) Node i should be duplicated. b) Node i should be
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2.7 Summary of Chapter 2
This chapter presents in detail all the implementations performed inside Cimlib, a C++ in-

house finite element library [Digonnet et al., 2007] in order to achieve crack propagation in both
2D and 3D for arbitrary crack paths.

The first section presented the mechanical problem in which the current work is framed.
This section also introduced the governing equations in terms of velocity and pressure. These
equations will be solved through a mixed FE formulation detailed in the second section.

In the third section of this chapter, the cohesive zone models that were implemented in this
work in order to simulate the fracture process were described: (i) Ortiz and Pandolfi’s as well
as, (ii) Xu and Needleman’s cohesive laws. Additionally, the viscous regularization technique
that was implemented in order to avoid convergence problem when using cohesive elements was
described, specially in three-dimensional problems. Validations examples were presented.

Taking into account that one of the goals of this PhD thesis is to predict fracture propagation
in the presence of thermal gradients generated by diurnal temperature cycling on solar system
small bodies, the fourth section presented in detail the implemented thermoelasticity model in
order to be able to account for thermal strain.

The fifth section presented in detail the numerical implementation of the Gθ method. The
methodology used in this work to compute the energy release rate in two-dimensional problems,
and hence, the crack propagation direction. The implemented Gθ method was validated under
the presence of loadings of mechanical nature, as well as under the presence of loadings of
thermal nature.

Finally, in the sixth section, the mesh modification strategies used in this work in order to
achieve crack propagation through a finite element mesh were described. The methodology used
to fit a finite element mesh to a given propagation direction in order to ensure crack propagation
using remeshing operations and dynamic insertion of cohesive elements in a mesh-independent
way was presented. Computation of the fracture surface was also described for both two- and
three-dimensional problems. Lastly, the insertion process of cohesive elements was described.

2.8 Résumé en français
Ce chapitre présente en détail toutes les implémentations réalisées au sein de Cimlib, une

librairie éléments-finis C++ interne au CEMEF [Digonnet et al., 2007], dans le but de simuler
la propagation de fissures en 2D et 3D pour des directions arbitraires.

La première partie détaille le problème mécanique autour duquel ce travail est construit.
Les équations définissant les évolutions de vitesse et pression qui seront résolues en utilisant une
formulation éléments finis mixte sont présentées.

La troisème partie de ce chapitre décrit les modèles à zone cohésive implémentés puis utilisés
pour simuler le processus de rupture: (i) la loi cohésive établie par Ortiz et Pandolfi et (ii) la
loi cohésive établie par Xu et Needleman. De plus, la technique de régularisation visqueuse
implémentée pour limiter les problèmes de convergence engendrés par l’utilisation d’éléments
cohésifs est décrite, en particulier pour les problèmes à trois dimensions. Des cas de validations
sont finalement explicités.

En considérant que l’un des objectifs de cette thèse de doctorat est de prédire la propagation
de fissure en présence de gradients de température générés par des cycles thermiques jour-nuits
dans des petits objets de notre système solaire, la quatrième partie présente en détails le modèle
thermoélastique utilisé pour prendre en compte la déformation thermique.

La cinquième section, quant à elle, détaille l’implémentation de la méthodeGθ. La méthodolo-
gie utilisée dans ce travail pour calculer le taux de restitution d’énergie et la direction de propa-
gation dans des problèmes à deux dimensions est détaillée. La méthode implémentée est validée
dans le cas de chargements mécaniques mais aussi thermiques.



2.8 Résumé en français 75

Finalement, la dernière partie décrit les stratégies de modification du maillage utilisées pour
permettre la propagation de fissures dans un maillage éléments finis. La méthode utilisée pour
ajuster un maillage éléments finis en fonction d’une direction de propagation de fissure donnée,
à l’aide d’opérations de remaillages et d’insertion dynamique d’éléments cohésifs est présentée.
Le calcul de la surface créée par la rupture est décrite pour des problèmes à deux et trois
dimensions.
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One of the most challenging issues in computational fracture mechanics is the propagation of
a crack through a finite element mesh for arbitrary crack paths. The methodology presented in
this PhD thesis allows crack propagation through the combination of remeshing operations and
dynamic insertion of cohesive elements in a mesh-independent way. This chapter presents the
numerical results concerning crack propagation in both two- and three-dimensional scenarios.
Section 3.1 is focused on the results already published in [Uribe-Suárez et al., 2020]. In this
section, different benchmark problems are considered to assess the proposed crack propagation
methodology. Additionally, the impact of different numerical and physical parameters on the
crack path and fracture energy is studied. Then, in section 3.2, the results of a first three-
dimensional crack propagation attempt through the application of the already validated two-
dimensional methodology are shown. First, a three-dimensional interfacial debonding problem
is depicted. Then a three dimensional single edge notched tensile test is presented. As in this
case, the crack path is known a priori, initially, cohesive elements are inserted along the known
trajectory since the beginning of the simulation to simulate the fracture process. Lastly, the
previous example is used again, but in this case the crack front is propagated through arbitrary
directions, bringing out the promising capabilities of the presented methodology when dealing
with 3D configurations.

3.1 Two-dimensional crack propagation
In the two-dimensional case, the crack direction is computed using the maximal energy

release rate criterion (MERRC) which is implemented using finite elements and the Gθ method.
The remeshing procedure used here is composed of two stages. In the first step, a conforming
mesh is obtained in the computed crack direction, ensuring that edges are placed over the sought
direction. In the second stage, cohesive elements are dynamically inserted at the conforming
edges previously remeshed. The combination of this remeshing technique with dynamic insertion
of cohesive elements, leads to a mesh-independent crack propagation method. In this section,
different benchmark problems are considered to assess the proposed methodology.

In the work presented here, isotropic unstructured triangular meshes that are refined in the
neighborhood of the crack tip are used. All the examples presented here consider an initial notch
or a prescribed crack, initiation is not treated. The simulations performed are quasi-static, and
a single crack is considered. To simulate the fracture process, the already presented Ortiz and
Pandolfi’s cohesive law [Ortiz and Pandolfi, 1999] is used. Although the crack propagation
distance is indeed an important parameter involved in fracture process simulations, here, for
the sake of simplicity, the crack growth distance is set to a fixed value equal to 8 times the
average size of the elements attached to the crack tip. This length size remains small with
respect to the process zone length (PZL = GcE

πσ2
c
, see 3.1.4). The influence of this parameter

will not be studied in this work.
In the first part of this section, an example regarding crack propagation under mixed-mode

loading is examined to show the accuracy of the proposed method in terms of propagation
direction. Then, another example that includes several holes, showing the influence of these on
the crack path is subsequently addressed. Finally, the effects of different numerical and physical
parameters regarding the fracture process are investigated.

3.1.1 Crack propagation of an edge-crack under mixed-mode loading

An edge crack geometry fixed at the bottom and subjected to a top unit shear load is con-
sidered here (Figure 3.1). Material properties are also given in Figure 3.1. This problem was
also solved by [Nguyen-Xuan et al., 2012] and [Liao et al., 2018]. Through the solution of this
benchmark example, it is intended to show the capabilities of the implemented methodology
when calculating a crack path under mixed mode loading conditions. In this case, even though
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the propagation process was carried out under quasi-static conditions, allowing the propagation
only when the energy release rate exceeds its critical value, it can not be said that the prop-
agation is stable. In order to verify the stability of the propagation (out of the scope of this
work), the variation of the energy release rate with respect to the crack length (∂G/∂a) must
be computed (see [Suo, 1990]).

Figure 3.1: Geometry of the plate with an edge crack under shear (dimensions in cm)

Figure 3.2 shows the comparison in terms of crack path between 2 previous works and the
approach presented here. It is shown that this work reproduces the crack path very well which
means that, compared to the results presented in [Nguyen-Xuan et al., 2012,Liao et al., 2018],
a good agreement is obtained here.

3.1.2 Cracked beam with three holes
This case consists in a cracked beam supported at two points and loaded at the center, as

shown in Figure 3.3. The material properties are: Young’s modulus E = 29 × 106 psi,
Poisson’s ratio ν = 0.3. The load P is equal to 1 lb. Here, three cases of the initial crack
length a and its distance b from the left side of the beam are considered. The different values
considered for these parameters are given in Table 3.1.

a (inches) b (inches)
Case I 1.0 4.0
Case II 1.5 5.0
Case III 1.5 6.0

Table 3.1: Gemetrical Configurations

In practical applications holes are common an can affect crack propagation. The proposed
benchmark example aims at dealing with mixed-mode crack paths that are affected by the
presence of holes. This problem has also been addressed by [Nguyen-Xuan et al., 2012,Azócar
et al., 2010, Bittencourt et al., 1996], both numerically and experimentally. Again, in this
example the propagation process was carried out under quasi-static conditions, allowing the
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Figure 3.2: Comparison of crack path of the edge-cracked plate obtained here against different
literature results.

Figure 3.3: Cracked beam supported at two points and loaded at the center. The beam has
three holes to create complex crack paths. (units in inches)

propagation only when the energy release rate exceeds its critical value. But, same as in the
previous benchmark, it cannot be said that the propagation is stable. In order to check the
stability of the propagation (out of the scope of this work), ∂G/∂a must computed [Suo, 1990].

Figure 3.4-a shows the complete crack path for Case I. The crack reaches the second hole from
the lower left side. Figure 3.4-b shows the complete crack path for Case II. Crack propagation
takes place through the material region between the first and second hole. The crack reaches
the second hole from the lower right side. Finally, Figure 3.4-c shows the complete crack path
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for Case III. In this situation the crack reaches the first hole from the lower right side. In all
the three cases the comparison between this work and [Nguyen-Xuan et al., 2012] is shown.
The crack paths predicted in this work show excellent agreement with cited work [Ingraffea
and Grigoriu, 1990, Azócar et al., 2010, Bittencourt et al., 1996]. It is clear that, due to the
presence of holes, the crack path experiences significant changes. The holes attract the crack
path depending on the initial notch geometry.

Figure 3.4: Comparison of the crack path between present work and [Nguyen-Xuan et al.,
2012] for a) Case I, b) Case II and c) Case III. It is shown only a section of the beam in the

region near the holes

These two mixed mode examples validate this new crack propagation method that combines
(i) crack propagation direction (Gθ method), (ii) automatic remeshing and (iii) dynamic inser-
tion of cohesive elements on the crack path. In the following section, a simple mode-I example
describes the ability of the proposed methodology to solve a fracture problem using the CZMs
approach in the traditional way: cohesive elements are inserted over a predefined crack path
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from the beginning of the simulation.

3.1.3 Cohesive elements inserted over a predefined crack path
This section aims at showing the accuracy of the proposed methodology when solving a

fracture problem using the cohesive elements in the classical way they have been widely used in
the literature. The pure mode-I problem whose geometry and boundary conditions are presented
in Figure 3.5 is solved. This benchmark example is tackled using two different methodologies:

(i) Crack propagation using remeshing and dynamic insertion of cohesive elements.

(ii) Due to fact that the problem is pure mode-I, the crack path is known a priori, therefore,
cohesive elements are placed from the beginning in the known direction (crack path is
predefined).

Figure 3.5-b) shows the direction (red) in which the cohesive elements are inserted since
the beginning of the simulation. The material properties are: Young’s modulus E = 3 ×
105 MPa, Poisson’s ratio ν = 0.3, critical cohesive stress σc = 0.2 MPa and critical opening
displacement δc = 1.54 × 10−6 mm. The comparison between the two methodologies is
performed using a force-displacement curve.

b)a)

Figure 3.5: Geometry and boundary conditions for a pure Mode-I problem (dimensions in
mm). The problem was solved using: a) dynamic insertion of cohesive elements and b)

cohesive elements inserted since the beginning of the simulation over a predefined crack path
(red).

Figure 3.6 shows the force-displacement curves for the two simulated cases. The black curve
shows the case where cohesive elements are inserted dynamically as crack propagates. The red
“+” indicates the start of the propagation process. The blue one depicts the case where the
cohesive elements are inserted from the beginning of the simulation along the predefined crack
path. Figure 3.6 clearly shows that when using the dynamic insertion of cohesive elements



3.1 Two-dimensional crack propagation 83

(current approach), the artificial reduction of the stiffness of the material, one well-known
drawback of using cohesive elements is avoided. This is observed in the difference of the slopes
between the black curve and the blue one.

Numerically induced

stiffness reduction

Theoretical stiffness

Figure 3.6: Force-displacement curve for the two applied methodologies.

As presented in the next section, the approach presented in this work has advantages com-
pared to LEFM methodology as well as to classical CZM approach: respectively, fracture energy
control and crack propagation through an arbitrary direction. But it also has disadvantages,
such as a significant dependence on the time step, as well as on the crack growth distance. Nev-
ertheless, when solving a fracture problem using the cohesive elements in the traditional way in
which they have been used in the literature, the dependence on the time step disappears.

In the next section we address a topic which is rarely studied in the literature: the influence
of time step on the numerical solution when performing dynamic insertion of cohesive elements.
A sensitivity analysis to the cohesive law parameters is also presented and discussed.

3.1.4 Influence of numerical and physical parameters
In this section the influence of different numerical and physical parameters on the solution

is studied. This influence is assessed in terms of either the force-displacement curve or the
crack path comparison. Figure 3.7 shows the geometry, boundary conditions as well as material
properties of the test example used in this section. The sensitivity to the mesh size and the
time step are considered. First, aiming to prove the convergence of the solution in terms of the
force-displacement curve as a function of the element size of the mesh, three different meshes
are considered. Table 3.2 shows the element sizes of the different meshes used here. Simulations
using these meshes are performed. Even though, in the present work for the sake of simplicity,
the mesh size of the region containing the crack path is refined, it is worth mentioning that
for more complex problems it is also possible to only remesh the neighborhood of the crack tip
while it evolves.
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Figure 3.7: Geometry of a plate with an edge crack under shear (dimensions in cm)

Far away from the crack tip Crack tip neighborhood
Reference Mesh 1.850 0.231
Mesh 1 1.000 0.125
Mesh 2 0.541 0.068

Table 3.2: Elements size of the different meshes used (mm).

Figure 3.8 shows the force-displacement curve for a case where the mesh size changes. The
red “+” indicates the start of the propagation process. Mesh convergence in the solution is
obtained. The curve up to the red “+”, i.e., when propagation process has not initiated,
exhibits a totally linear relation between force and displacement. This behaviour is linear
because cohesive elements have not been yet inserted into the mesh. Once they are inserted,
the nonlinear behavior appears. Due to the presence of oscillations after the propagation process
has started, the nonlinearity in the force-displacement curve after this point looks smoother.

Figure 3.8 exhibits oscillations after the crack starts its propagation. This is due to the fact
that, in this work, once the energy released rate (G) exceeds its critical value (Gc, equation
(2.37)), the propagation of the crack is allowed. After propagation, cohesive elements are in-
serted leading to a decrease of the stresses around the crack tip, leading to a drop in G. This
drop of G eventually leads to a value lower than Gc and, thus, propagation is momentaneously
stopped. Afterwards, an increase of the loading brings G to a value higher than Gc, the prop-
agation then restarts. This is an essential point (rarely mentioned in the literature) which is
directly related to the space and time discretizations associated with the FE method.

The curve describing the evolution ofG through time for the three simulated cases (Reference
Mesh, Mesh 1 and Mesh 2) is presented in Figure 3.9. The red “+” indicates the starts of the
propagation process which is the same for all cases. This Figure shows that G varies from values
close to 0.25Gc up to values greater than 2Gc. This range of variation is thought to depend
strongly on the time step. Therefore, the time step is the next numerical parameter studied.

Taking into account that mesh convergence is achieved, from now on, and for the sake of
simplicity, the “Reference Mesh" case will be used as a reference for the upcoming comparisons.
It will be referred to as “Reference".

Figure 3.10 shows the force-displacement curve obtained when the time step was decreased
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Figure 3.8: Force-displacement curve for different meshes

Figure 3.9: G-Time curve for different meshes

by half. In this case, the necessary force to start the propagation process (+) is less than
the one required in the "Reference" case. In addition, when half of the time step is used,
crack propagation starts sooner than in the "Reference" case. Also, after crack propagation has
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started, for the same time, using half of the time step, the crack tip has propagated a greater
distance than in the “Reference" case, so less force is needed to continue the propagation process.

Figure 3.10: Force-displacement curve varying time step

The evolution of G through time is presented in Figure 3.11. As a result of using half of the
time step value, the crack propagation process begins sooner and leads to faster propagation
of the crack. It is also evident that decreasing the time step reduces the oscillation range
of G. Thus, the crack propagation process has a strong dependence on the time step. This
phenomenon is due to the fact that the same propagation distance is prescribed once G exceeds
Gc, regardless of the time step used. In other words, this is due to the fact that the crack
velocity is unknown in these computations. If the goal is to avoid time step dependence,
methodologies such as the πθ method (crack growth stability) [Suo and Combescure, 1992a], that
is an extension of the Gθ method, and fatigue analysis (crack growth under cyclic conditions)
[Lemaitre and Desmorat, 2005], that allow computation of the crack velocity, should be used.

In addition to the time step dependence, the current approach also depends on the crack
growth distance. Even though the influence of this parameter was not studied here, the oscilla-
tions observed in the force-displacement curves (Figures 3.8 and 3.10) come from the fact that
crack growth distance was set arbitrarily. The computation of the crack velocity is required if
one wants to define the crack increment distance for a given time step. Compared to LEFM, the
current approach has the advantage of allowing fracture energy control. Compared to CZMs,
the main advantage is that crack propagation proceeds through an arbitrary direction. However
it must be noted that the dynamic insertion of such cohesive elements introduces a numerical
dependence of the crack increment and the associated time step.
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Figure 3.11: G-Time curve varying time step

According to the cohesive law implemented and used in this part of the work [Ortiz and
Pandolfi, 1999], the relevant parameters involved in the model are the maximum cohesive stress
(σc) and the critical opening displacement of the cohesive elements (δc). These values are
directly related through the following equation describing the fracture energy:

Gc = eσcδc (3.1)

Equation (3.1) can also be related to equation (3.2), defining the process zone length (PZL),
as follows [Turon et al., 2007,Hermes, 2010,Ha et al., 2015]:

PZL = GcE

πσ2
c

(3.2)

Aiming at finding the effect on the crack propagation process when the aforementioned co-
hesive parameters are varied, several simulations using different values are performed. Table 3.3
shows the different values that were tested for the cohesive parameters during the simulations.
Apart from the reference case (A), five different simulations were performed. For the first three
cases, B1, B2 and B3 the critical cohesive stress (σc) is varied. The fracture energy (G) was kept
constant, so the new critical opening displacement of the cohesive elements (δc) was computed
in each case using equation (3.1). Variations of the critical cohesive stress (σc) were defined
trying to keep a logical value for the process zone length (PZL).

In the remaining two cases, C1 and C2, the fracture energy was doubled. In the first case,
the critical cohesive stress was doubled, while in the second one, the doubled parameter was the
critical opening displacement. Figure 3.12 shows the different cohesive laws used in this work.

Figure 3.13 shows the different force-displacement curves obtained when cohesive parameters
were varied. It is evident that the variation of these parameters did not lead to significant
changes in the results. When fracture energy is kept constant, the influence of varying the
maximum cohesive stress (σc) and the critical opening displacement (δc) is minimal. In the
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Legend G [MPa.mm] σc [MPa] δc [mm] PZL [mm]
A (Reference) 8.378 × 10−7 0.200 1.541 × 10−6 2.000

B1 8.378 × 10−7 0.141 2.179 × 10−6 4.000
B2 8.378 × 10−7 0.282 1.089 × 10−6 1.000
B3 8.378 × 10−7 0.400 7.705 × 10−7 0.500
C1 1.675 × 10−6 0.400 1.541 × 10−6 1.000
C2 1.675 × 10−6 0.200 3.081 × 10−6 4.000

Table 3.3: Values of the different physical parameters used in the cohesive law.

Figure 3.12: Different cohesive laws used here

other scenario, when fracture energy was doubled through the increasing of either the maximum
cohesive stress or the critical opening displacement, the initiation of the propagation started
later, and the required force for the fracture process was greater. The same remark can be
asserted, if the fracture energy remains constant, variation of cohesive parameters do not lead
to relevant changes in the solution.

When the critical opening displacement (δc) decreases while fracture energy is kept constant,
the slope (stiffness) of the traction-separation law is significantly increased, as can be seen
in Figure 3.12. Numerically, this high stiffness might heavily impact the conditioning of the
linear system and, therefore impact the convergence of the numerical solver. Inversely, when δc
increases, the stiffness is reduced.

The crack paths obtained using the studied cohesive parameters are shown in Figure 3.14. In
terms of crack path, there are no significant differences. According to the results, the insertion
of cohesive elements plays an important role in the crack propagation process. Its influence is in
the energy involved in the propagation rather than in the crack path itself, allowing to simulate
a more realistic fracture process.

Next section will be focused on the extension to 3D configurations of the already imple-
mented and validated two-dimensional methodology.
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Figure 3.13: Force-displacement curves for different cohesive parameters

Figure 3.14: Crack paths comparison for different cohesive parameters.
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3.2 Three-dimensional crack propagation
In order to illustrate the capabilities of the implemented methodology to tackle three-

dimensional crack propagation, three benchmark examples will be presented. It is worth men-
tioning that in this work, an extension of the Gθ method from 2D to 3D was not carried out
due to lack of time. For this reason, this section will be focused in showing the ability of the
proposed approach to propagate a crack front through arbitrarily predefined directions.

Here again, isotropic unstructured tetrahedral meshes that are refined in the neighborhood
of the crack front are used. Unless otherwise said, all the examples presented here consider an
initial notch or a prescribed crack front. The simulations performed are quasi-static. Multiple
crack fronts are not considered. In order to simulate the fracture process, Xu and Needleman’s
cohesive law [Xu and Needleman, 1993] together with a viscous regularization technique [Gao
and Bower, 2004] to avoid convergence issues were used. Same as in the two-dimensional cases
of the previous section, for the sake of simplicity, the crack growth distance is set to a fixed
value less than the process zone length (PZL = GcE

πσ2
c
). Influence of this parameter on the

simulations is not tackled here.
In the first part of this section, a three-dimensional interface debonding problem is presented

to show the accuracy of the implemented cohesive law. Then, a three dimensional single edge
notched tensile test is studied. Here, as the crack path is known a priori, cohesive elements
are inserted since the beginning of the simulation over the crack path. Finally, the same three
dimensional single edge notched tensile test is addressed, but in this case the crack front is
propagated through arbitrary directions to show the robustness of the implemented methodology
when tackling three-dimensional fracture propagation problems.

3.2.1 Interface debonding
To show the accuracy of the implemented Xu and Needleman’s cohesive law [Xu and Needle-

man, 1993] (Chapter 2), the interfacial debonding of two solid parts joined by a cohesive interface
is solved. Geometry, boundary conditions, as well as material properties are given in Figure
3.15.

Figure 3.16 shows the evolution of the stress (σzz) as well as of the opening displacement of
the cohesive elements (δ) through the debonding process. It is possible to see that, initially the
stress close to the interface starts to increase, and then when the critical cohesive stress (σc)
is reached, the stress starts to decrease. Same figure also shows the evolution of the cohesive
elements in terms of opening displacement. While the stress increases at the interface, cohesive
elements open releasing the fracture energy. Looking at the bar scale, it is possible to see that
when uz = 0.00045 mm, the cohesive opening displacement (δ) is greater than the critical value
showed in figure 3.15. Therefore, the cohesive elements have released much of the fracture
energy and the two solid part are almost completely fractured.

Figure 3.17 presents the force-displacement curve describing the fracture process. The curves
relating the force at the top boundary with both the top displacement and the opening dis-
placement of the cohesive elements (δ) are also shown. In this figure it is possible to see that
the theoretical cohesive law (blue dashed line) is almost perfectly reproduced. There is a small
shift between the peaks of the two graphs (force-displacement and force-opening displacement
cohesive elements). This is due to the fact that based on the imposed boundary conditions, the
displacement at the top part of the domain is higher than in the middle.
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Figure 3.15: Geometry, boundary conditions and mechanical properties of the two solid parts
joined by a cohesive interface (units in mm)

uz = 0.00015 mm uz = 0.0003 mm uz = 0.00045 mm

Figure 3.16: Evolution of the stress (σzz) and of the opening displacement of the cohesive
elements (δ) for different displacement values (uz) at the top part of the domain.
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Figure 3.17: Force-displacement curve for the interfacial debonding of two solid parts joined
by a cohesive interface.

3.2.2 Three dimensional single notched plate: predefined crack path
In this benchmark, taking advantage of the fact that the crack path under this loading

configuration is known a priori, cohesive elements are inserted since the beginning of the sim-
ulation over the known direction. This example, like the previous one, helps us validating the
implemented cohesive law. Figure 3.18 shows the geometry, boundary conditions, as well as
material properties of a single edge notched specimen with a mode I crack. In this problem,
the dimensionless constant Λ proposed by [Gao and Bower, 2004] is less than 1

e (Chapter 2),
making necessary the use of a viscous regularization technique in order to avoid convergence
problems.

The evolution of the crack front (i.e., the stress concentration) is depicted in Figure 3.19.
In the same figure, the opening displacement of the cohesive elements (δ) for different top
displacement values (uz) is shown. It is worth noting that once the stress concentration at the
crack front evolves, cohesive elements behind the front have an opening displacement greater
than the critical value shown in Figure 3.18. According to this, those elements are almost
broken, i.e., almost all the fracture energy has been released. On the other hand, the cohesive
elements ahead of the crack front are still closed.

Introduction of cohesive elements since the beginning of the simulation induces one well-
known drawback: reduction of the stiffness of the structure. Nevertheless, this is not a big
issue here, because the goal of this example is to validate the implemented three-dimensional
cohesive law and the insertion methodology of cohesive elements into a finite element mesh
presented in section 2.6.3. This issue will be tackled in the next section. Figure 3.20 shows the
force-displacement curve for the three dimensional single edge notched tensile test describing
the fracture process. It is possible to see the force increase until it reaches the peak, then
it gradually decreases following the post peak softening behaviour. Obtained results are in
agreement with the expected behavior of crack propagation under mode-I.
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Figure 3.18: Geometry, boundary conditions and mechanical properties for the three
dimensional single edge notched tensile test (units in mm).

uz = 0.0147 mm uz = 0.01506 mm uz = 0.01524 mm

Figure 3.19: Evolution of the fracture process though the von Mises stress and the opening
displacement of the cohesive elements (δ) for different displacement values (uz) at the top part

of the domain.
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Figure 3.20: Force-displacement curve for the three dimensional single edge notched tensile
test.

3.2.3 Three dimensional single notched plate: unknown crack path
In this section the capability of the implemented methodology to handle three-dimensional

crack propagation through arbitrary directions is presented. At this point, some important
details of the presented approach must be clarified:

- The extension of the Gθ method to 3D was not carried out (lack of time).

- Consequently, crack propagation directions are arbitrarily prescribed, but cohesive ele-
ments are inserted on the fly once this direction is given.

- Definitely, the extension of the Gθ method to 3D will be investigated in future work.

The benchmark example considered in previous section is used again. The main idea be-
hind this benchmark is to show the promising capabilities of the already tested and validated
two-dimensional approach presented in [Uribe-Suárez et al., 2020] when extending it to three-
dimensional scenarios. Here some aspects of the performed propagation process must be clar-
ified. For the sake of simplicity, at each propagation of the crack front, each one of the nodes
belonging to the front will be propagated the same distance through the same direction. The
propagation distance is set to a fixed value equal to 4 times the size of the elements close to
the crack front (≈ 0.089 mm). This value is less than the process zone length as normally
recommended in the literature [Turon et al., 2007,Hermes, 2010,Ha et al., 2015].

In our three-dimensional case, directions over which the crack front propagates are defined
arbitrarily. Figure 3.21 shows the geometry and boundary conditions of the benchmark case,
as well as the aforementioned arbitrary directions. In order to define and compute the 3D
surface over which the crack front evolves, the procedure described in section 2.6.2 is used. The
remeshing procedure is the same that was previously described for the two-dimensional case.
It is composed of two stages. In the first step, a conforming mesh is obtained in the defined
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direction (surface), ensuring that faces of the tetrahedra are placed over the sought direction
(surface). In the second stage, cohesive elements are dynamically inserted at the conforming
faces previously remeshed. In this case, the crack front will follow a curvilinear trajectory
composed of 6 propagations (i.e., numbers inside the circles in Figure 3.21).
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Figure 3.21: Geometry and boundary conditions for the three dimensional single edge notched
tensile test. It is also shown a zoom view describing the arbitrary path over which the crack

front will propagate.

Figure 3.22 shows the curvilinear crack path. The complexity of the crack path shows
the capabilities of the proposed methodology to tackle three-dimensional crack propagation
problems. It is also shown the opening displacement value of the cohesive elements forming
the crack path, whose maximum value is around 0.0002 mm. This represents 2.44% of the
critical value used in the cohesive law (δc = 8.2× 104 mm). It means that the inserted cohesive
elements are practically still closed. They have released a tiny amount of the fracture energy,
which is quite logical since the time at which they were inserted was arbitrarily defined without
following any proper criteria. As the Gθ method was not extended in this work, the energy
release rate (G) can not be quantified. Therefore, there is no way to define a threshold value to
decide when the cohesive elements must be inserted.

A detailed evolution of the crack front at different time steps is presented in Figure 3.23.
It is worth mentioning that when propagating the crack front from its previous position to the
next one, it is not possible to have anymore a straight line crack front. Some nodes propagate a
distance greater than other nodes. Once the finite element mesh has been fit to the computed
fracture surface in 3D (i.e., when faces of the tetrahedra are placed over the fracture surface),
next step is to propagate over this surface the nodes belonging to the crack front to its new
position. The distance that the nodes are propagated is dictated by the fixed propagation
distance. Even though the mesh size is controlled during the remeshing process, there is not
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way to guarantee that the new crack front is a straight line.

Figure 3.22: Final crack path after 6 propagations. The color map represents the opening
displacement of the cohesive elements (mm) forming the crack path.

It can be seen that the crack front is quite irregular. This can generate some troubles
that will be discussed in the perspectives section. A crack front smoothing technique could be
necessary.

Figure 3.23: Detailed of the crack front propagation.

Due to the fact that the energy release rate is not being quantified and that cohesive elements
are inserted without fulfilling any criterion, it is clear that this simulation does not have any
physical meaning. This simulation is a merely representation of the capabilities of the presented
methodology when simulating three-dimensional crack propagation using remeshing operations
and dynamic insertion of cohesive elements. There are still some drawbacks or limitations that
have to be faced in order to make this promising approach a really useful tool to handle fracture
processes in three-dimensional problems:

(i) Application of a proper criterion to allow crack front propagation: in order to simulate
appropriately the fracture process, a criterion to decide when to allow the propagation of
the crack front (i.e., insertion of cohesive elements) must be defined. An energetic criterion
as the one used in two-dimensional problems would be the most suitable (G > Gc).
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(ii) Computation of the appropriate crack propagation direction: the most suitable technique
to compute the direction of propagation is the Gθ method. This is particularly true
here since the available finite element framework (See Chapter 2) is not good enough at
capturing the singularity of the stress field at the crack front. Thus, the use of an energetic
approach may be more appropriate. Additionally, once G is known, it would be possible
to compare it against Gc to decide whether or not, the crack front propagates.

(iii) Optimal propagation of the crack front: even if the propagation distance is fixed and
equal for all the nodes belonging to the crack front, as shown in Figure 3.23, some nodes
may propagate more than others, making the crack front quite irregular. To overcome
this issue, a possible solution may be to develop a methodology that allows finding the
intersection of the propagated crack front with the finite element mesh (not easy at all).
Another solution could be the development of a crack front smoothing technique similar
to that developed by [Shakoor et al., 2015], where the finite element meshes are adapted
to level-set functions.

3.3 Summary of Chapter 3
This chapter is dedicated to the presentation of the numerical results regarding crack propa-

gation using remeshing operations and dynamic insertion of cohesive elements in both two- and
three-dimensional cases. Section 3.1 introduced the results already published in [Uribe-Suárez
et al., 2020]. Two-dimensional crack propagation was achieved through the combination of a
remeshing technique with dynamic insertion of cohesive elements, leading to a mesh-independent
methodology. The effects of different numerical and physical parameters regarding the crack
path and fracture energy were investigated. The accuracy of the proposed method when calcu-
lating the crack propagation direction under mixed-mode loading was presented. Additionally,
through a cracked beam supported in two points and loaded in the center, the effects on mixed-
mode crack paths due to the presence of holes was also assessed. In the same section, the
impact of different numerical and physical parameters on the crack path and fracture energy
was studied.

Then, section 3.2 presented the results regarding the first attempt to extend the already val-
idated two-dimensional methodology to three-dimensional scenarios. Several cases were tackled
there. First, the debonding of the cohesive interface joining two solid parts were presented.
Then, the crack propagation process of a three dimensional single edge notched tensile test was
shown. In this example, as the crack path was known a priori, cohesive elements were inserted
from the beginning of the simulation over the whole crack path. Finally, in the last part of
this section, the same three dimensional single edge notched tensile test was addressed, but
in this case, the crack front was propagated in arbitrary directions. Latter was done in order
to prove the promising capabilities of the proposed methodology to simulate three-dimensional
crack propagation using remeshing operations and dynamic insertion of cohesive elements.

3.4 Résumé en français
Ce chapitre présente les résultats de simulation numérique de propagation de fissure en

utilisant des opérations de remaillage et d’insertion dynamique d’éléments cohésifs pour des
problèmes à deux et trois dimensions. La partie 3.1 introduit les résultats déjà publiés dans
[Uribe-Suárez et al., 2020]. Dans des cas 2D, la propagation de fissure est réalisée en utilisant des
techniques de remaillage et d’insertion dynamique d’éléments cohésifs, dans le but de développer
une méthode indépendante du maillage. Les effets des paramètres numériques et physiques sur
la direction de propagation et l’énergie de rupture sont étudiés. La précision de la méthode
proposée pour le calcul de la direction de propagation de la fissure dans le cas de chargements
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mixtes est discutée. De plus, en utilisant l’exemple d’une poutre fissurée, supportée en deux
points et chargée en son centre, l’influence de la présence de trous sur la propagation des
fissures est évaluée. L’effet de différents paramètres numériques et physiques sur la direction de
propagation et l’énergie de rupture sont étudiés pour ce cas.

Puis, la section 3.2 présente les résultats concernant une première tentative d’extension de la
méthode pour des cas en trois dimensions. Plusieurs exemples sont détaillés. Le premier traite
de la décohésion d’une interface à la jonction entre deux pièces solides. Ensuite, un exemple
d’une pièce entaillée soumise à un test de traction est présenté. Dans ce cas, la direction de
propagation de la fissure étant connue, les éléments cohésifs sont introduits au début de la
simulation, le long de la fissure. Finalement, dans la dernière partie de ce chapitre, ce cas test
est repris dans le cas d’un front de fissure se propageant selon des directions arbitraires. Cet
exemple a été défini afin d’illuster les capacités de la méthodologie proposée pour simuler des
propagations de fissures en 3D.
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It has been shown that temperature cycles on airless bodies of our Solar System can cause
damaging of surface materials. These cycles are typically caused by the change between day
and night. Nevertheless, propagation mechanisms in the case of space objects are still poorly
understood. As it was mentioned in the beginning of this PhD thesis, one of the main ideas
of this work is to numerically reproduce some observed fractures on space bodies which are
thought to be induced by large amount of thermal cycles. In the present work, efforts are
oriented to model the crack propagation direction in conditions similar to those existing on
asteroid (101955) Bennu. The main motivation comes from the fact that theoretical foundation
for analysis and interpretation of fracture directions on small asteroids with properties similar
to those of Bennu is still lacking. The present chapter is based on the results already published
in [Uribe-Suárez et al., 2021].

Aiming at predicting crack propagation in the presence of thermal gradients generated by
diurnal temperature cycling and under conditions similar to those existing on the asteroid
Bennu, the present work combines a thermoelasticity model together with linear elastic fracture
mechanics theory. To facilitate the understanding of the results presented in this chapter,
section 4.1 introduces the context of this study. Section 4.2 briefly describes the methodology
followed in this work in order to perform a fracture mechanics analysis through the developed
thermo-mechanical model. To show the accuracy of the proposed methodology when calculating
the crack propagation direction due to the presence of thermal gradients, one simple example
is presented in section 4.3. Obtained results are compared against observed crack propagation
directions on asteroid Bennu. Then, a thermal fatigue analysis is performed in order to estimate
the crack growth rate. Finally, section 4.4 discusses the computed crack propagation directions.

4.1 Introduction
The asteroid (101955) Bennu is the center of important studies because it is the target of

the OSIRIS-REx mission [Lauretta et al., 2014, Lauretta et al., 2017]. Bennu is a near-Earth
asteroid. This is a low-albedo B-type asteroid that has been linked to carbonaceous chondrites.
Due to the fact that tremendous temperature variation have been reported on this asteroid,
thermal fatigue is thought to play an important role in its landscape evolution [Ballouz et al.,
2020,Molaro et al., 2020b]. Figure 4.1 shows the geomorphological diversity of the asteroid
Bennu. Consistent with its characterization as a rubble-pile, it is cratered and covered by rocks
with a wide range of sizes [DellaGiustina et al., 2019].

In the present study, the observational evidence reported by [Delbo et al., 2019] is used as
reference. In this work, the authors used a series of images similar to the one presented in
Figure 4.1-b. These images were obtained by the OSIRIS-REx Camera Suite (OCAMS), with
a scale of 5-6 cm pix−1, during the first and third “Baseball Diamond” flybys of the Detailed
Survey mission phase, which occurred on 7 and 21 March 2019, respectively. The authors
used different visualization tools to visually identify and map fractures on boulders. Then, as
shown in Figure 4.2, they drew line segments along each identified fracture. [Delbo et al., 2019]
found that the azimuthal distribution of the identified fractures on the asteroid (101955) Bennu
displays a preferential North-West to South-East (NW-SE) direction. In this work, in order to
be in accordance with the available observational evidence, all the computed crack propagation
directions on Bennu are referenced to the azimuth angle.
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Figure 4.1: Asteroid Bennu imaged by the OSIRIS-REx Camera Suite. a) PolyCam images
from 2 December, 2018 are combined to show four sides of Bennu. When viewed from left to
right these data illustrate one rotation of the asteroid. b) PolyCam images acquired on 1

December, 2018 are combined with MapCam images from 13 December, 2018. These images
are mosaicked into a global equirectangular map of Bennu. North points to the top of the

image. Figure reproduced from [DellaGiustina et al., 2019].

Figure 4.2: Example of fracture mapping on a boulder using a broken line made of several
segments (green). Figure reproduced from [Delbo et al., 2019]



102 Thermal cracking: theoretical model for the asteroid (101955) Bennu

In order to have a better understanding of the results that will be presented in this chapter,
the concept of azimuth angle is introduced. The azimuth is the angle formed between a reference
direction (i.e., North) and a line from the observer (celestial body) to a point of interest on the
same plane as the reference direction. A schematic representation of the azimuth angle is
presented in Figure 4.3.

EastWest
90°

North
0°

South
180°

270°

Azimuth

Observer or 
celestial body

Figure 4.3: Schematic representation of the azimuth angle.

Aiming at a better understanding of one phenomenon (i.e., thermal cracking) that is thought
to be highly important in the landscape evolution process of the asteroid Bennu (e.g., regolith
production), the idea in the following is to try to quantify the predominant direction of the
fractures associated with thermal stresses under fatigue on Bennu.

4.2 Methodology
Primary goal of this study is to compute the direction of crack propagation due to thermal

strain in a geometry corresponding to a typical boulder on the surface of the asteroid (101955)
Bennu, the target of NASA’s sample return mission OSIRIS-REx. This work assumes the
hypothesis that most of the fractures observed on the surface of the boulders by [Lauretta
et al., 2019b], [DellaGiustina et al., 2019], and [Delbo et al., 2019] are due to the growth of
surface cracks. [Molaro et al., 2020b] also discuss stresses inside boulders that could cause
cracking deep inside the rock mass. These inside cracks, albeit possibly present, are not visible
from spacecraft observations.

The geometry of the problem studied here is schematised in Figure 4.4. This Figure shows
a cubic-like boulder extruding from the equator of the asteroid, of which only about half of the
equatorial belt is simulated.

The mesh is divided in triangular facets. A thermophysical model [Delbo et al., 2015] is used
to calculate the temperatures of all facets as a function of time, as described in the following
sections. The temperatures of the boulder facets are then used in a thermoelastic model in order
to compute the strain and stresses as a function of the position in the boulder and time. Next,
fracture mechanics theory is used to estimate the propagation direction of a tiny notch that
is placed on the horizontal (a’, a") face of the cubic boulder. The crack direction is computed
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Figure 4.4: Schematic representation of the cubic-like boulder extruding from the equator of
the asteroid, of which only about half of the equatorial belt is simulated to obtain the

temperature distribution on faces E and W.

using the maximum energy release rate criterion (MERRC), which is implemented using finite
elements and the Gθ method (including thermal extension).

4.2.1 Thermo-physical model

The first step of the presented methodology consists in using a well-established thermophys-
ical model [Spencer et al., 1989,Delbo et al., 2015] to solve the one-dimensional heat diffusion
problem. Temperature is calculated as a function of time for all the surface elements of the
mesh depicted in Figure 4.4. Boundary conditions are given by the variable day/night illumina-
tion including the shadows cast by the local terrain of the mesh on itself, radiation of the heat
in space, conduction in the sub surface, and mutual heating [Rozitis and Green, 2011]. The
physical parameters of the material used in this work are given in Table 4.1. These properties
were taken from [Delbo et al., 2014]. They correspond to the Carbonaceous Chondrite sub-type
CM2 Murchison meteorite. This is considered to be a good analog of asteroids belonging to
the C-complex broad spectroscopic class [DeMeo et al., 2009]. The asteroid Bennu also be-
longs to the C-complex class [Hamilton et al., 2019]. This study assumes that the material is
homogeneous and isotropic.

4.2.2 Thermoelastic model

[Delbo et al., 2019] observed and mapped cracks on boulders on the surface of the asteroid
Bennu using OSIRIS-REx images that can be approximated as parallel to the local surface of
the asteroid. On the other hand [Delbo et al., 2014], [Ravaji et al., 2019] and [El Mir et al.,
2019] considered cracks propagating perpendicularly to the local surface (i.e., fragmentation or
breakdown of asteroid rocks). For this reason, current work is interested in the component of
the crack growth parallel to the local surface of the asteroid, namely the plane perpendicular
to the X-axis of the mesh of Figure 4.4. To study this case, a 2-D model where the initial crack
is placed on the a’ and a" facets of Figure 4.4 is used. These two facets are treated together
in the following as the single planar face that is called “a-face” (Figure 4.5). The separation
of the a-face in two facets is required to make the implemented thermo-phyisical model, that
uses triangular facets only, compatible with the meshing algorithm. The vertical E and W
facets of the 3D mesh of the thermo-physical model (Figure 4.4) are respectively mapped to the
vertical right and left sides of the beam simulated by the proposed thermoelastic and fracture
mechanics model (Figure 4.5). The crack propagation on the a-face is essentially driven by
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Quantity name, symbol Units Value Reference
Rotational period, P s 15,469.2 [1]
Bulk modulus, K MPa 29,000 [2]
Shear modulus, µ MPa 18,000 [2]
Young modulus, E MPa 44,742.857 [2]
Poisson’s ratio, ν 0.2428 [2]
Bulk density, ρ kg m−3 1,662 [2]

Thermal conductivity, λ W mm−1 K−1 5 × 10−4 [2]
Thermal expansion coefficient, α K−1 8.5 × 10−6 [2]

Specific heat capacity, c J kg−1 K−1 500 [2]
Reference temperature, Tref K 250 [3]

Paris pre-factor, C m [MPa
√
m]−n 3 × 10−4 [2]

Paris exponent, n 3.84 [2]

Table 4.1: Thermal and mechanical properties and their default values used in this work for
the simulations of the crack propagation directions on asteroid Bennu. References: [1]

= [Barnouin et al., 2019], [2] = [Delbo et al., 2014], [3] = this work.

the 2D temperature gradient created by the strong temperature mismatch between the E- and
W-face (See section 4.3).

These temperature gradients exist throughout the whole day/night cycles and strongly de-
pend on time. There is also a component of the temperature gradient perpendicular to the
a-face, which causes crack propagation in the sub-surface. This component has been studied
by [Delbo et al., 2014], [El Mir et al., 2019] and [Ravaji et al., 2019] providing laws to estimate
the crack growth rate in that direction.

Figure 4.5: Geometry and boundary conditions for the face of the boulder parallel to the
surface. Crack tip position and crack axis were varied. The length of the a-face is also varied

in our simulations.

Therefore, only the temperature gradient is considered in the a-face in this study. To do
so, the heat diffusion equation is used to calculate the temperature as a function of space and
time in the a-face given as boundary conditions the temperatures on the E- and W-faces, which
are determined by the asteroid thermo-physical model. Once the thermal problem has been
solved, the effect of the temperature variation on the mechanical response of the body (thermal
stresses) is computed through the implemented thermeolasticity model described in section 2.4.
In this model the computation of the thermal strain presented in equation (2.55) requires the
use of a reference temperature (i.e., temperature where there is no strain). The current work
assumes that the reference temperature is the average of the temperatures given in Section 4.3.
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As it was already said in section 2.4, in the presented method a weak thermomechanical cou-
pling is assumed. This means that the temperature is initially obtained from the heat problem
and then introduced into the mechanics computation. This is possible since the characteristic
time scale of the thermal problem is several orders of magnitude greater than the characteristic
time scale of the crack propagation problem. For the solution of a thermoelastic problem, first,
the temperature distribution inside the body is computed by solving the heat transfer problem.
Then, the resulting temperature distribution is used as an input initial strain to the mechanical
problem.

4.2.3 Fracture analysis
Once the thermomechanical problem is solved, the fracture mechanics analysis is carried out.

To compute the crack propagation direction, a criterion based on the azimuthal distribution of
the energy release rate around the crack tip is used. Multiple crack propagation directions are
tested and then the one that maximises G is selected. Namely, in the plane of the a-face, the
azimuth of the maximum energy release rate is identified, as it is known that crack propagation
will take place in that direction. Since thermal strain is accounted for, the Gθ method including
thermal strain (as described in section 2.5) is used to compute the crack propagation direction. A
schematic representation of the sequential solution of the thermomechanical problem presented
in this work is provided in Figure 4.6.

Figure 4.6: Schematic representation for the thermoelastic fracture analysis performed in this
work.

Due to the fact that the present work deals with thermal cyclic stress (tension-compression),
only mode I loading is assumed. Once the energy release rate (G) is known, it is possible to



106 Thermal cracking: theoretical model for the asteroid (101955) Bennu

compute the stress intensity factor (KI). Assuming plane strain conditions, a relation between
G and KI can be stated from equation (1.12):

KI =
√

G E

1− ν2 (4.1)

where KI is the mode I stress intensity factor, G is the energy release rate, E is the Young
modulus and ν is the Poisson’s ratio. In order to perform a thermal fatigue analysis in the case
of asteroid Bennu, Paris’s Law (See section 1.2.3.1) is used.

The beam presented in Figure 4.5, also referred as the a-face in this work, is embedded in
a mesh that is different from the one showed in Figure 4.4. The aforementioned mesh is an
isotropic unstructured triangular mesh, that is refined in the neighborhood of the crack tip.
The thermoelasticity problem is solved on this mesh through the finite element method (FEM).
The developed thermoelastic model has been implemented in Cimlib [Digonnet et al., 2007].
Regarding the thermal problem, the available finite element framework in Cimlib is a classic
one where the variable temperature (T ) is solved through an implicit formulation [Ryan et al.,
2020]. The mechanical problem is solved using a mixed implicit formulation (see section 2.2).

4.3 Results
In this work, the simulations begin by calculating temperatures for the mesh of Figure 4.4

using the asteroid thermophysical model described in section 4.2. The asteroid is placed at a
distance of 1.12 au from the sun. This corresponds to the semi major axis of the orbit of the
asteroid Bennu. The resulting temperatures of the E- and W-faces are shown in Figure 4.7.
Next, these temperatures are used as inputs into the thermo-mechanical model. This second
model predicts the stress over the domain of the a-face as a function of space and time. Since
the presence of cracks highly affects the stress field, different simulations for different crack
positions and orientations for the same temperature fields are run.

Figure 4.7: Temperatures TW (W-face) and TE (E-face) used as thermal boundary conditions.
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The propagation direction for an initial crack in different positions inside the domain of
the a-face is computed, as shown in Figure 4.5. In addition, for each position of each initial
crack, its orientation is varied. When the crack is attached to the W-face the crack propagation
direction is computed for different initial orientations with azimuth angles ranging from 46◦ to
134◦. Azimuth angle is increasing clockwise (i.e. from the north to the east) and is equal to zero
when it is pointing vertical up (i.e. to the north). When the crack is attached to the E-face, the
crack propagation direction is simulated for different initial crack orientations having azimuth
angles ranging from 226◦ to 314◦. Finally, when the crack is attached to the north (top) side of
the a-face (also called beam), the crack propagation direction is simulated for different initial
crack orientations with azimuth angles ranging from 136◦ to 224◦. In all the described cases,
the length and the width of the a-face were fixed to 100 mm and 4 mm respectively. These
values were chosen after studying: (i) the characteristic time of the thermal problem as well
as (ii) the minimum required width of the a-face in order to avoid the boundary effects on the
results and (iii) to avoid a high computational cost. The characteristic time mentioned in (i)
was computed using:

τ = L2

d
(4.2)

where L is the characteristic length of the direction in which the thermal gradient takes place
and d is the thermal diffusivity, which is given by:

d = λ

ρc
(4.3)

with λ the thermal conductivity, c the specific heat capacity and ρ the density. Item (ii)
was determined using trial and error method. In order to keep a low computational cost as
indicated in item (iii), appropriate values for mesh size and time step were defined based on
items (i) and (ii). Due to the fact that there is no temperature gradient in the vertical direction
in the aforementioned simulations, a larger height of the domain does not affect initial crack
propagation direction. Similarly, this work does not intend to study crack evolution with time.

The results are presented using the so-called windrose diagrams, which can be considered as
circular histograms that represent the distribution of the computed crack propagation directions.
When working with angle values, the usual summary statistics, such as the mean or the standard
deviation, may not be the most suitable to present the data. In this case, windrose diagrams
or circular histograms are a powerful tool. In these graphs, the usual histogram is wrapped
around a circle. The windrose diagrams presented in this study are sorted into sixteen equal
arc segments, 22.5◦ each segment. The radius of each of the sixteen segments represents the
amount of cracks that grow in the direction represented by each of these segments. It should
be noticed that the windrose circular histograms are identical for a rotation of 180◦. This is
due to the fact that crack propagation direction (azimuthal angle) has to be independent of
the beginning and ending point of a crack. This means that for each one of the computed
crack propagation directions θ counted in the histogram, the direction θ+ 180◦ is also included.
For the scenario where crack propagation direction is computed for an initial crack tip placed
in different positions inside the domain of the a-face and for different crack orientations, the
windroses are presented separately.

In all the simulations carried out in this study, the position of the crack tip inside the
domain (beam) is fixed. Therefore, when talking about different crack orientations, it refers to
the different cracks showed in dashed lines in Figure 4.5. If the crack tip is fixed inside the
domain, obviously by varying the orientation of the crack, its length will vary. As the variation
of the orientation of the cracks is determined by the azimuth angle, their lengths are given by

a
|sin azimuth| .
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Figure 4.8a shows the windrose diagram for the case of a crack attached to the W-face.
Computed crack propagation directions are preferentially oriented in the North-West to South-
East (NW-SE) direction, regardless of the initial different orientations of the cracks taken into
account. Furthermore, a minimum number of computed crack propagation directions are ori-
ented East (E) to West (W). In Figure 4.8b shows the windrose diagram for the case of a crack
attached to the E-face. In this case the preferential orientation of the computed crack propa-
gation directions is in the North-East to South-West (NE-SW) direction. There are also few
cracks propagating in a direction aligned East (E) - West (W). The last case, where the crack
is attached to the north (top) is shown in Figure 4.8c. According to the windrose diagram, the
preferential orientation of the computed crack propagation directions is in the North to South
(N-S) direction.

(a) W-face (b) E-face

(c) north (top)

Figure 4.8: Windrose diagrams for different crack orientations and cracks attached to a) the
W-face, b) the E-face and to c) the north.
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Finally, in Figure 4.9 a windrose diagram that gathers all the cases described above is
presented. In summary, the distribution of all the computed crack propagation directions are
preferentially oriented in a higher concentration in the North to South (N-S), in the North-West
to South-East (NW-SE) and in the North-East to South-West (NE-SW) directions as it was
already described.

Figure 4.9: Windrose diagram gathering the cases where crack is attached to the W-face, to
the E-face and to the north (top) for different crack orientations.

It must be noted that the cracks simulated up to now have a length considerably smaller
than the ones observed on the boulders on the surface of Bennu [Molaro et al., 2020a,Lauretta
et al., 2019b,DellaGiustina et al., 2019,Walsh et al., 2019,Delbo et al., 2019]. In the following,
the crack propagation direction is studied as a function of the initial crack size. From the
different configurations shown in Figure 4.5, the case for the crack attached to the E-face was
selected. For this, crack propagation direction is computed by placing the crack tip at 3 different
positions inside the domain of the a-face (i.e., the crack length was varied); for each one of this
positions 3 different lengths of the a-face were used; for each one of these cases the orientation
of the crack was varied as it was done in the previous simulations. Figure 4.10 shows that
for a small crack length ( 2

|sin azimuth| mm), increasing the length of the a-face does not play an
important role in the distribution of the computed crack propagation directions. No changes are
observed in the windrose diagrams for these cases. Computed crack propagation directions are
preferentially oriented in the North-East to South-West (NE-SW) direction, with a few amount
of computed crack propagation directions going to the East (E) and to the West (W).
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(a) a-face length: 200 mm (b) a-face length: 500 mm

(c) a-face length: 1000 mm

Figure 4.10: Windrose diagrams for a crack attached to the E-face when crack length equals
to 2
|sin azimuth| mm and the length of the beam was varied for different crack orientations.

In Figure 4.11, it is possible to see that when increasing the length of the a-face for cracks
whose lengths are 20

|sin azimuth| mm, the distribution of the computed crack propagation directions
oriented in the North to South (N-S) direction decreases, while the cracks oriented in the North-
East to South-West (NE-SW) direction increase. It should also be noted that the amount of
cracks directed to the East (E) and the West (W) decreases when increasing the length of the
a-face from 500 mm to 1000 mm.
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(a) a-face length: 200 mm (b) a-face length: 500 mm

(c) a-face length: 1000 mm

Figure 4.11: Windrose diagrams for a crack attached to the E-face when crack length equals
to 20
|sin azimuth| mm and the length of the beam was varied for different crack orientations.

Finally, Figure 4.12 presents the windrose diagrams for a configuration where crack length
is equal to 200

|sin azimuth| mm. Taking into account that the length of the a-face took the values of
200 mm, 500 mm and 1000 mm, for this last case, the configuration of the a-face with a length
equal to 200 mm was not simulated because the length of the a-face and the crack length would
be the same, something without sense. Figure 4.12 shows that when increasing the length of the
a-face from 500 mm to 1000 mm, a redistribution of the computed crack propagation directions
takes place. The initial cracks preferentially oriented in the North-East to South-West (NE-SW)
direction changed their orientation into the North-West to South-East (NW-SE) direction.
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(a) a-face length: 500 mm (b) a-face length: 1000 mm

Figure 4.12: Windrose diagrams for a crack attached to the E-face when crack length equals
to 200
|sin azimuth| mm and the length of the beam was varied for different crack orientations.

Figure 4.13 shows the maximum principal stress for three cracks with different orientations:
attached to the W-face and directed to the East, attached to the north face of the boulder and
directed to the South, and attached to the E-face of the boulder and directed to the West. It is
worth noting that in all the cases, the computed crack propagation direction (black dashed line),
the one that maximises G, is perpendicular to the direction in which the maximum principal
stress takes place (white dashed line). For all cases, the maximum stress near the crack tip over
a temperature cycle exceeds some MPa, which is a significant fraction of the typical strength
of carbonaceous chondrites and even comparable to the strength of boulders on Bennu [Ballouz
et al., 2020]. The stress at the crack tip highly depends on the element size since it is, in fact,
a point where, according to linear elastic fracture mechanics, stress goes to infinity (∞). When
possibly, the use of quarter-point elements [Barsoum, 1976] is recommended for better accuracy
of the stress field.

Another option to study crack propagation can be the typical approach of thermal fatigue.
In this case, the crack growth length per cycle is determined using the Paris’ law. To do so,
the configuration in which the crack is attached to the W-face was chosen. Additionally, it was
selected an orientation of the crack (azimuthal angle) equal to 90◦, i.e. pointing to the east.
In this case, as the maximum energy release rate (Gmax) is known, and assuming plane strain
conditions, it is possible to compute the maximum stress intensity factor (KImax) using equation
(4.1). In this case, Gmax in the thermal cycle is equal to 5.15 × 10−4 [MPa . mm], therefore,
using equation (4.1), KI is equal to 4.95 [MPa . mm0.5]. Due to the fact that this work
deals with stresses generated by thermal cycles, the crack tip is subjected to both tensile and
compressive stresses over a full cycle. Thus, ignoring crack closure [Suresh, 1998,Boussattine,
2018], the lowest stress intensity factor experienced by the crack tip is simply zero. According
to this, it follows that ∆KI is equal to 4.95 [MPa . mm0.5]. The value of the material’s
properties required when using Paris’ law (C, n) was the same used in [Delbo et al., 2014]
(Table 4.1). In this work, fatigue crack growth data obtained from experiments performed on
two meteorites (carbonaceous chondrite and ordinary chondrite), were satisfactorily predicted
using the physical parameters computed in Carrara marble by [Migliazza et al., 2011].

For the case where constant crack growth is assumed, it can be computed that for the
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Figure 4.13: Maximum principal stress (MPa) for a crack attached to a) the W-face, b) the
E-face and to c) the north (top). In all cases, the black dashed line represents the computed
crack propagation direction, while the white dashed line represents the axis associated with

the maximum principal stress.

presented thermal cycle, the crack growth rate is 2.42 × 10−4 [mm . cycle−1], which is of the
order of 0.5 [mm . yr−1] (or ∼ 0.5[m] in thousand years), in good agreement with previous
studies [Delbo et al., 2014]. This indicates that cracks would propagate on Bennu’s boulders
solely due to diurnal thermal stresses. It is cautioned here that crack propagation is a non linear
process, where the rate of propagation is among other parameters a function of the position of
the crack tip with respect to the temperature gradient. This means that a full simulation of the
crack growth from the beginning until its size is comparable to the size of the hosting boulder
should be carried out in order to estimate the time required to fracture the boulder, which is
beyond the scope of this work.

4.4 Discussion
We begin to notice that in Figure 4.8a, 4.8b and 4.8c, the range of computed crack propa-

gation directions is preferentially concentrated in some sectors of the windrose diagrams. This
could be explained by the fact that when a crack orientation is defined, the range of possible
crack propagation directions, is determined by the limit angle corresponding to pure shear de-
fined in the work of [Erdogan and Sih, 1963]. This value is approximately ±70◦ with respect
to the crack axis orientation. It should also be noted that the crack was only placed at three
different places inside the domain, i.e. attached to the East, the West faces and attached to the
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North rim of the domain. This means that not all the angles belonging to the range [0◦, 360◦]
were taken into account. For example, in Figure 4.8b, i.e., for the case of a crack attached to
the E-face, the computed crack propagation directions range from 202.5◦ to 292.5◦. From this
figure, it is worth noting that most of the computed direction are oriented to the South-West
(SW), and due to the already explained symmetry of the wind rose, the preferential orientation
of the computed crack propagation directions is in the North-East to South-West (NE-SW)
direction.

When plotting the windrose diagrams for the three evaluated cases (crack attached to the
E-, W-face and the north rim of the domain) in the same graph, as shown in Figure 4.9, the
sector grouping the majority of the computed directions is the one oriented in the North to
South (N-S) direction, followed by the groups oriented in the North-West to South-East (NW-
SE) and in the North-East to South-West (NE-SW) directions, respectively. Looking at the
results of the three simulated cases, it is worth noting that cracks on asteroid Bennu propagate
mainly in the North-South (N-S) direction.

In Figure 4.13 it should be noticed that the computed crack propagation directions in the
three cases presented here are perpendicular to the axis of the maximum principal stresses,
as stated by the literature. This makes us feel confident about the results coming out from
the coupled thermoelastic model with the linear elastic fracture mechanics approach that was
implemented in this work.

From Figure 4.10 it can be noticed that for short crack lengths, the increasing of the length
of the a-face does not highly affect the tendency of the distribution of the computed crack
propagation directions. Cracks mainly continue propagating oriented in the North-East to
South-West (NE-SW) direction. When increasing the length of the a-face from 500 mm to
1000 mm, a few amount of cracks changed their orientation into the North-West to South-East
(NW-SE) direction. It tells us that even if the temperature gradient along the a-face changes,
cracks of short length are not affected.

According to Figure 4.11, when crack length increases, a redistribution of the computed
directions takes place. It is possible to see two main groups, one oriented almost in the North
to South (N-S) direction and another one oriented almost in the West to East (W-E) direction.
Meanwhile, for the case when the crack length is very long compared with the length of the
a-face, as depicted in Figure 4.12, a marked tendency is clearly observed. Computed crack
propagation directions are preferentially oriented in the North-West to South-East (NW-SE)
direction, which is consistent with the observations performed by [Delbo et al., 2019].

Taking into account that the duration of the thermal cycle used in this work is 4.3 h, and
assuming a constant crack propagation rate, the crack growth rate computed here, whose value
is 2.42 × 10−4 [mm . cycle−1], is equivalent to a crack growth rate of about 0.5 [mm . year−1].
This value is not very different from the one measured by [Delbo et al., 2014] through laboratory
experiments on two meteorites: a carbonaceous chondrite and an ordinary chondrite. However,
as stated in the same study, the crack propagation rate is typically a nonlinear function between
the crack size, the maximum variation of the stress intensity factor over the whole cycle and
material properties. However, considering that this work is a first attempt to describe crack
growth due to thermal fatigue, the results are promising.

4.5 Summary of Chapter 4
One of the main goals of this PhD was to numerically reproduce some observed fractures

on solar system small bodies induced by large amount of thermal cycles. Here, the efforts were
oriented to model the crack propagation direction in conditions similar to those existing on
the asteroid (101955) Bennu. This motivation arose because there is a lack of a theoretical
foundation that allows to carry out analysis and interpretations of fracture directions on small
asteroids with properties similar to those of Bennu. This chapter presented the obtained results
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when applying the developed and implemented thermo-elastic fracture mechanics model for the
case of Bennu. Those results were already published in [Uribe-Suárez et al., 2021].

In section 4.2 the methodology followed in this work to achieve the fracture mechanics analy-
sis in the asteroid Bennu was described. Using the implemented methodology, crack propagation
direction for an initial crack tip in different positions and for different orientations was com-
puted. Through the comparison against available observational evidence, the accuracy of the
proposed methodology when calculating the crack propagation direction due to the presence of
thermal gradients was shown in section 4.3. It was found that cracks preferentially propagate in
the North to South (N-S), in the North-East to South-West (NE-SW) and in the North-West to
South-East (NW-SE) directions. In the same section, a thermal fatigue analysis was performed
in order to estimate the crack growth rate. Computed value is in good agreement with available
experimental evidence. Finally, in Section 4.4 the computed crack propagation directions were
discussed.

4.6 Résumé en français
L’un des objectifs premiers de ce projet de thèse était de reproduire à l’aide de simula-

tions numériques des fissures observées sur des corps célestes dont on suppose qu’elles ont été
causées par la répétition d’un grand nombre de cycles thermiques. Dans ce chapitre, un intérêt
particulier a été apporté à la modélisation de la propagation de fissures dans des conditions
représentatives de celles existantes sur l’astéroïde (101955) Bennu. Cet intérêt est motivé par
le manque de bases théoriques permettant d’interpréter les directions de fissures sur des petits
astéroïdes présentant des propriétés similaires à celles de Bennu. Ce chapitre présente les résul-
tats obtenus via l’application du modèle de fracture mécanique thermoélastique. Ces résultats
ont déjà été publiés dans [Uribe-Suárez et al., 2021].

Dans la section 4.2, la méthodologie utilisée pour réaliser l’analyse mécanique de la rup-
ture dans le cas de l’astéroïde Bennu est décrite. A l’aide de cette méthodologie, la direction
de propagation pour un début de fissure présent à différentes positions et suivant différentes
orientations est calculée. En comparant ces résultats à d’autres observations, la précision de la
méthode peut être évaluée comme cela est montré en section 4.3. Cela a permis de déterminer
que les fissures se propagent de préférence suivant les directions suivantes : Nord vers Sud,
Nord-Est vers Sud-Est et Nord-Ouest vers Sud-Est. Puis, une analyse de fatigue est réalisée
afin d’estimer la vitesse de croissance de la fissure. Les résultats de cette analyse sont en bon
accord avec les observations expérimentales. Finalement, la section 4.4 discute la pertinence
des résultats concernant les directions de propagation des fissures.
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5.1 Conclusions

Fracture mechanics is in charge of the prediction of the conditions when failure is likely to
occur inside a material containing cracks. Numerical simulations are often an effective strategy
to study these problems. Particularly, numerical simulation of crack propagation through a
finite element mesh for arbitrary crack paths has been a challenging issue in computational
fracture mechanics for decades. For this reason, one of the goals of this PhD was focused in
developing a methodology allowing crack propagation in brittle materials through arbitrary
directions combining remeshing operations and dynamic insertion of cohesive elements either in
two- or three-dimensional scenarios.

Regarding the two-dimensional case, a new methodology for crack growth simulations un-
der mixed-mode loading in brittle materials has been developed and presented. It combines an
advanced remeshing technique, that enables remeshing exactly in a computed direction, with dy-
namic insertion of cohesive elements in the remeshed zone. Additionally, the method presented
here allows for an accurate modeling of the energy dissipation rate through a traction-separation
law. It also enables crack propagation using remeshing operations and cohesive elements in a
mesh-independent way. Over the various applications presented in this work, the robustness
and the accuracy of the proposed approach in terms of crack path was shown.

The impact of different numerical and physical parameters on the crack path and fracture
energy was studied. First, by varying the mesh size, it was found that the presented approach
exhibits mesh convergence. Compared to classical crack propagation techniques based on linear
elastic fracture mechanics (LEFM), the current approach offers the possibility of controlling
fracture energy (i.e., modeling the energy dissipation rate due to the fracture process). This
approach improves on classical cohesive zone model (CZM) approaches since it enables to model
configurations with arbitrary crack paths. However, as shown in this work, the dynamic insertion
of cohesive elements introduces oscillations in the post-peak regime. These oscillations are
merely due to the crack increment length and the time step. The aforementioned oscillations
are the result of a dependence of the current approach on the time step, as well as on the constant
crack increment used once G exceeds Gc. In order to overcome this problem, methodologies
that allow for the computation of the crack velocity should be used.

Then, after performing a sensitivity analysis to the cohesive law parameters, an interesting
remark must be stated. Variation of the maximum cohesive stress (σc) and of the critical opening
displacement (δc) while the fracture energy was kept constant, showed that these parameters
play a purely numerical role. Thus, the fracture energy is the most important parameter to take
into account when tuning the model. The results of this first part of the thesis were published
in [Uribe-Suárez et al., 2020].

With respect to the three-dimensional crack propagation, the great capabilities of the im-
plemented approach to propagate a crack front through arbitrary directions was extended to
three-dimensional scenarios. Although the crack front propagations were performed through
arbitrarily predefined directions because the Gθ method has not yet been extended to 3D, the
promising capabilities of current approach to follow complex crack paths (e.g., curvilinear paths)
were shown. The effectiveness of the implemented three-dimensional cohesive zone model, as
well as of the implemented viscous regularization technique in order to avoid convergence prob-
lems when simulating 3D fracture problems was also proved. Nevertheless, there are still a
lot of work to do regarding three-dimensional problems. Attention should be paid to how to
compute the crack propagation direction, as well as how to control the fracture energy. Not less
important, the methodology to propagate the crack front through the finite element mesh must
be improved (see next section).

Due to the recent importance that the asteroid (101955) Bennu has gained by being the
target of the OSIRIS-REx mission, many studies trying to explain different surface processes
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affecting the landscape evolution of Bennu have appeared. One of the most important phenom-
ena that is thought to be responsible of such processes is thermal cracking. The second major
objective of this PhD thesis was, therefore, focused on the development of a methodology able
to numerically reproduce some observed crack patterns on solar system small bodies induced by
a large amount of thermal cycles. Here, efforts were oriented to reproduce observed directions
in which some cracks propagated in asteroid (101955) Bennu.

Regarding this goal, an approach to compute two-dimensional crack propagation direction
under the presence of thermal gradients has been presented. This methodology combines ther-
moelasticity and linear elastic fracture mechanics theories in order to compute crack propagation
directions driven by diurnal temperature cycling and under conditions similar to those existing
on the asteroid (101955) Bennu. Through the different scenarios simulated in this work, the
robustness and the accuracy of the proposed approach in terms of crack propagation direction
was shown.

It was found that the distribution of the computed crack propagation directions for different
configurations on a simple domain simulating Bennu’s boulders, show a preferential direction
from North to South (N-S) and from North-East to South-West (NE-SW) for shorter cracks.
For longer cracks, the preferential direction is from North to South (N-S) and from North-West
to South-East (NW-SE). This conclusion is supported by observations performed by [Delbo
et al., 2019].

Additionally, and according to the results obtained by means of our thermomechanical model
combined with a well-known fatigue model (i.e., Paris’s law) and assuming constant crack
growth length, it was found that on asteroid Bennu cracks grow at rate approximately equal to
0.5 [mm . year−1]. This is a value very similar to the one found on experiments performed in
the work of [Delbo et al., 2014], giving us a good insight of the promising approach proposed.
However, it is cautioned that crack propagation is a highly non-linear process. In order to esti-
mate the time to fracture Bennu’s meter-sized rocks a full-blown simulation shall be performed
to calculate the crack growth rate at different crack growth stages. This is really important
because crack growth rate highly depends on the geometry and on the stress intensity factor at
the crack tip, and those will change as the crack tip evolves trough the domain.

It must also be noted that boulders’ heterogeneity was not accounted for in this study.
Material’s heterogeneity definitely plays a role on local bifurcations and cracks kinematics.

The findings of this PhD can be understood as a theoretical foundation for some fracture
processes that are thought to be the result of a thermal fatigue induced by the temperature
changes driven by the day/night cycles on asteroid (101955) Bennu. Results from this second
part of the PhD were published in [Uribe-Suárez et al., 2021].

The developed methodology also opens new opportunities, as it can be applied to other
applications than thermal fatigue of solar system small bodies, applications such as composites
cracking at the meso-scale.

5.2 Perspectives

Although in the present PhD thesis, comprehensive studies have been performed on numer-
ical modeling of crack propagation in both two- and three-dimensional scenarios, as well as on
thermal cracking on solar system small bodies such as the asteroid (101955) Bennu, there are
still some topics of prime interest that must be faced to enhance the presented methodologies.

Some of these topics are: (i) the inclusion of fatigue phenomenon in the cohesive law, (ii) eval-
uation of crack propagation stability, (iii) extension of the Gθ method to 3D, (iv) improvement
of the methodology developed to propagate crack fronts through a finite element mesh in 3D
and (v) 3D thermal cracking on airless bodies. These topics are presented in more details below.
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5.2.1 Fatigue cohesive law

When working with cyclic loading such as thermal fatigue, the working loads are generally
less than the critical values of the cohesive zone model. In the present study, when solving the
thermal problem on airless bodies, it was observed that if the crack tip was propagated, and
cohesive elements were immediately inserted, these elements were not able to release energy due
to the low level of the cyclic loading. To account for a more realistic simulation of the fracture
process under fatigue, the inclusion of a cohesive zone degradation law (i.e., cyclic cohesive zone
model) is necessary.

For the case of monotonic cohesive zone models (MCZMs), the damage (i.e., material degra-
dation) initiates only when the peak of the traction-separation law (σc) is reached. In the case
of fatigue applications, the cohesive behavior of the material under cyclic loading is of primary
concern because if for example, monotonic CZMs are used under cyclic loading with constant
separation amplitude, an infinite number of repetitions without any accumulation of damage
would be allowed [Nguyen et al., 2001, Roth et al., 2014]. [Springer et al., 2019] developed a
cyclic cohesive zone model (CCZM) based on a hysteresis loop damage formulation to account
for variable amplitude loading. [Springer et al., 2019] used an exponential traction–separation
law to describe the interface behavior. In this work, to develop the cyclic cohesive model, an en-
ergy based damage variable was defined. The evolution of the energy damage variable accounts
for cyclic damage by a Paris’ law like approach.

Mixed–mode delamination growth under cyclic loading was simulated by [Springer et al.,
2019]. In this case, the loading-unloading process may cause some damage at the interface. At
each point ahead of the crack tip, the energy dissipated will be equal to the sum of the energy
dissipated due to the quasi-static loading to reach the maximum load, and the energy dissipated
due to the cyclic loading (Gc = Ws +Wf ). The cohesive zone under fatigue loading is shown in
Figure 5.1.

Figure 5.1: Subcritical delamination growth obtained by cycling loading. The dark grey area
depicts the dissipated energy due to monotonic interface opening, Ws. The light–grey area
indicates the additionally dissipated energy, Wf , caused by the fatigue damage formulation.

Figure reproduced from [Springer et al., 2019].

When implementing this method, the effect on the fracture process of cyclic loads whose
value is below the critical values of the cohesive law will be taken into account. Therefore,
“real” crack propagation through finite element meshes that represent small celestial bodies
could begin to be studied.
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5.2.2 Stability assessment of crack growth (πθ method)

To study the stability of the crack propagation process and to overcome the time step
dependence observed in this work, a possible solution is the implementation of a methodology
such as the πθ method, which is an extension of the Gθ method. The πθ method allows to
assess the stability of crack growth as well as to calculate its velocity.

According to the Griffith energy criterion, crack growth can occur if the energy required
to form an additional crack of size da can just be delivered by the system [Broek, 1982b].
Mathematically, crack extension occurs when G = Gc; but crack growth may be stable or
unstable, depending on how the energy release rate (G) and the fracture energy (Gc) vary with
crack size. Depending on the material, the plastic, viscoelastic, or viscoplastic effects could
be included in the fracture energy. Increasing of the surface area due to crack meandering
and branching can also influence the fracture energy. To clarify stable and unstable behavior,
conveniently Gc can be replaced by R, the material resistance to crack extension. A plot of the
material resistance to crack extension against the crack size (R vs a) is called a resistance curve
or R-curve. The corresponding plot of the energy release rate against the crack size (G vs a) is
known as the driving force curve [Anderson, 2005].

The R-curve of some materials is flat, while others materials exhibit a rising R-curve. The
shape of his curve depends on the material behavior and, to a lesser extent, on the configura-
tion of the cracked structure. Experiments have shown that the crack resistance (R) can be
considered independent of crack length for cracks under plane strain conditions. While in the
case of plane stress, the crack resistance (R) varies with the amount of crack growth [Broek,
1982b]. For a perfectly brittle material the fracture energy is constant and equal to the surface
energy (2γ). For the case of metals, the energy required for a crack to grow is much larger than
the surface energy to create the new free surfaces. In this case, plastic deformation takes place
in front of the crack tip and during the crack growth, energy is consumed by the formation of a
new plastic zone at the tip of the advanced crack [Anderson, 2005]. The R-curve produced by
a crack in a thin sheet tends to be steeper than in a thick plate because there is a low degree
of stress triaxiality (i.e., plane stress) at the crack tip in the thin sheet. In the case of the thick
plate, the material near the tip of the crack may be in a plane strain condition.

Consider a wide plate with a through crack of initial length 2ao as the one shown in Figure
1.6. At a fixed remote stress σ, the energy release rate (G) varies linearly with crack size
according to:

G = πσ2a

E
(5.1)

Figure 5.2 shows the resistance curve or R-curve (R vs a) and the driving force curve (G
vs a) for two types of material behavior. The first case shown in Figure 5.2-a) corresponds
to a flat R-curve, where the material resistance (R) is constant with crack growth. When the
remote stress is equal to σ1, the crack growth does not occur. Contrary, when the remote stress
is equal to σ2 or higher, the crack propagation is unstable because the driving force increases
with crack growth, but the material resistance (R) remains constant. Figure 5.2-b) illustrates
the case with a material with a rising R-curve. When the remote stress is equal to σ1, the crack
growth does not occur. If the stress is equal to σ2, the crack grows a small amount but cannot
grow further unless the stress increases. In this case, the driving force increases at a slower rate
than R. The stable crack propagation continues as the stress increases to σ3. Finally, when the
remote stress is equal to σ4, the driving force curve is tangent to the R-curve. In this case, the
crack propagation in the plate is unstable with further crack growth because the rate of change
in the driving force exceeds the slope of R-curve. Mathematically, the above can be written as
follows:
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
G < R no propagation
G = R and ∂G

∂a <
∂R
∂a stable propagation

G = R and ∂G
∂a ≥

∂R
∂a unstable propagation

(5.2)

Crack Size

Instability

b) Plane stress
Crack Size

a) Plane strain

O O

Figure 5.2: Schematic driving force vs R-curve diagrams for: a) flat R-curve (plane strain)
and b) rising R-curve (plane stress).

Based on the continuum mechanics model, and in order to analyze the stability of a cracked
system, [Suo and Combescure, 1989, Suo, 1990] performed a mathematical formulation for the
second derivative of potential energy with respect to the crack length (∂W 2

p /∂a
2), or the first

derivative of the energy release rate with respect to the crack length (∂G/∂a) in the framework of
linear elasticity. The term ∂G/∂a can be computed using the πθ method proposed by [Suo and
Combescure, 1989, Suo, 1990]. For this, two crowns together with two virtual displacements
fields (θ, π) must be defined around the crack tip as shown in Figure 5.3. The first ring of
elements (θc) is used to compute G = −∂Wp/∂a while the second ring of elements (πc), is used
to compute ∂G/∂a.

Figure 5.3: Schematic representation of the domains (crowns) used to implement the πθ
method.

According to [Suo and Combescure, 1989,Suo, 1990]:

∂G

∂a
=
∫

Ω
Tr(σπ∇U∇θ)dΩ +

∫
Ω
Tr(σ∇Uπ∇θ)dΩ−

∫
Ω
Tr(σ∇Uπ)div(θ)dΩ (5.3)

where (σπ, Uπ) represent the variation of the solution (σ, U) during an evolution of the crack.
σπ and Uπ are the unique solution of the variational problem presented in 5.4. Details of the
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solution of this problem using the finite element method can be found in [Suo, 1990].
σπij = Cijkl

[1
2
(
Uπk,l + Uπl,k

)
− 1

2 (Uk,iπi,l + πl,iUi,k)
]

∫
Ω
σπijVj,i dΩ =

∫
Γ
σijVj,kπk,i dΩ−

∫
Ω
σijVj,iπk,k dΩ

(5.4)

Once ∂G/∂a is computed, we can check whether the propagation is stable or not. Additionally,
as presented in section 1.2.3.1, under stable propagation the crack propagation velocity is given
by:

ȧ =

− ∂2Wp

∂a∂u u̇
∂2Wp

∂a2

+

=
[
−
∂G
∂u u̇
∂G
∂a

]+

(5.5)

where ∂G
∂u u̇ is given by:

∂G

∂u
u̇ =

∫
Ω
Tr(σ̇∇U∇θ)dΩ +

∫
Ω
Tr(σ∇U̇∇θ)dΩ +

∫
Ω
Tr(σ∇U̇)div(θ)dΩ (5.6)

This outlook will allow the analysis of crack growth stability, as well as the computation of the
crack velocity.

To the best of our knowledge, this kind of velocity computation has never been done for
practical applications. In addition, crack propagation in brittle materials can be extremely fast,
which would require a very small time step. In the case of fatigue analysis, crack propagation
laws such as the Paris’ law are preferred and easier to use.

5.2.3 Extension of the Gθ method to 3D
As already mentioned in this work, due to the lack of time, the Gθ method was not extended

to three-dimensional configurations. The Gθ method extended to 3D will allow, first, the
quantification of the energy release rate (G). Therefore, the application of an appropriate
criterion (G > Gc) to decide when to allow the propagation of the crack front (i.e., insertion of
cohesive elements) will be possible. Additionally, as done in the two-dimensional problems, the
Gθ method will allow the computation of the appropriate crack propagation direction.

According to [Brochard and Suo, 1994], in the analysis of structures presenting cracks of
any shape, the knowledge of G at particular points of the crack front where the crack is likely
to start (local value of G) is often required. In two-dimensional problems, G is constant along
the front and is defined by:

G = − 1
B

∂Wp

∂a
(5.7)

where B = 1 because the calculation is carried out for a unit crack width, and ∂a is the increase
of the crack length. [Brochard and Suo, 1994] generalized this definition to three-dimensional
crack fronts. A planar three-dimensional crack is shown in Figure 5.4. In this Figure S,
represents the curvilinear abscissa along the crack front.

The reduction of the total potential energy for a crack advance located on a segment Lc of
the front is related with the local value of the energy release rate G(S) as follows:

δWp = −
∫
Lc
G(S)δl(S)dS (5.8)

where δl(S) is the virtual crack increment normal to the front at the local level. Given a local dis-
placement field (θ) representing the virtual propagation of the crack shown in previous diagram
(Figure 5.4), the integration over the volume (Ω) using the Gθ method allows the computation
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s

Lc

Figure 5.4: Schematic representation of the virtual crack increment normal to the crack front
at the local level.

of the variation of the total potential energy (δWp) during a crack growth corresponding to the
shaded gray area (δA) in Figure 5.4:

− δWp = −
∫

Ω

[
Tr(σ∇U∇θ)− 1

2Tr(σ∇U)div(θ)
]
dΩ (5.9)

δA =
∫
Lc
δl(S)dS =

∫
Lc
θ(S)dS (5.10)

The average value of G on the segment Lc is then:

G = −δWp

δA
(5.11)

Therefore, a piecewise constant function G(S) along the front is obtained. Following the ap-
proaches proposed by [Li et al., 1985, Martin et al., 2019], to define the crack propagation
direction, a possible solution would be to determine at each point of the crack front (e.g.,
Mo(S) in Figure 5.5), the direction which would maximize the local value of the energy release
rate, G(s)). The virtual displacement field θ would be defined in the X1-X2 plane. θ depends
on the distance to the crack front r, the angle φ and the curvilinear abscissa S.

s

X1

X2

X3
Tangent to 
crack front

Perpendicular 
to crack front

Perpendicular 
to plane of crack

Mo(S)
θ(r, ϕ, S)

ϕ

r

Figure 5.5: Definition of local orthogonal Cartesian coordinates at the point Mo(S) on the
crack front. The crack plane is the X1-X3 plane.
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5.2.4 Propagation of the crack front through the finite element mesh
Even though this work presented the promising capabilities of the implemented methodology

to perform three-dimensional crack propagation, as said in Chapter 3 there are still some issues
that must be solved to enhance the methodology. The approach followed in this work is simple.
First, the direction in which the crack front evolves is defined. Then, the finite element mesh is
fitted to the defined direction. After this, the current crack front is updated to its new position,
which is determined by the fixed crack propagation length. The developed methodology to
propagate the crack front sometimes presented some drawbacks. For example, Figure 5.6 shows
a crack path formed by the inserted cohesive elements after several propagations. Some holes
highlighted with red circles can be observed. The origin of these holes could be because, at
some point, some auxiliary variables that are required by the remeshing procedure as input
parameters are not being defined properly. So if the remeshing does not work well, neither does
the insertion of cohesive elements.

Figure 5.6: Crack path with some issues in the remeshing process and in the insertion of
cohesive elements process.

The circumstances under which this problem occurs have not yet been identified. Addition-
ally as mentioned before, Figure 5.6 shows that even if the propagation distance is fixed and
equal for all the nodes belonging to the crack front, some of them may propagate more than
others, making the crack front very irregular. A methodology allowing a smoother propagation
of the crack front must be developed. The combination of methodologies where the fracture
surface is defined by level-set functions with body-fitted mesh adaption techniques could be a
solution [Shakoor et al., 2015,Shakoor et al., 2017].

5.2.5 3D thermal cracking on airless bodies
Until now, most studies of thermal cracking on airless bodies have been performed in simple

geometries such as two-dimensional planar faces, or spherical boulders. Studies on more complex
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geometries are scarce. See for example [Liang et al., 2020], who were among the first that
incorporated a realistic 3D microstructure of an asteroidal rock to study fracture. For this
reason, once the three-dimensional crack propagation methodology is completely tested and
validated, the most logical next step is to tackle the thermal cracking problem on celestial
bodies in 3D.

Due to the fact that the internal structure of space objects is not well known, a big hypothesis
of the current work is that the material was assumed to be homogeneous and isotropic, and
it is well known that asteroidal rocks contain inclusions that have different thermomechanical
properties [El Mir et al., 2019]. This leads to the generation of additional stresses between
the inclusion and the matrix, which in general can affect the stress field, a variable of primary
importance when studying the fracture process. From this and depending on the availability of
information, a possible outlook could be the assumption that the material is heterogeneous and
anisotropic.

Additionally, to perform more accurate simulations regarding thermal fatigue analysis, there
is a need to measure thermomechanical and fracture mechanical properties of space materials.
Analysis of returned samples from different space missions that are currently in progress (e.g.,
NASA’s OSIRIS-REx mission or NASA’s Perseverance Mars Rover mission) will be of great
help to improve this aspect.
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Appendix A
Appendix

A.1 Tangent stiffness matrix for Ortiz and Pandolfi’s cohesive
law

Let be di the opening displacement defined as follow:

di = dti + dni (A.1)

Where di is the opening displacement vector, dti and dni are respectively, the tangential and
normal vectors forming di. From basic math one knows that the dot product between dti and
dni is equal to:

dtid
n
i = 0 (A.2)

It is also known that the vector magnitudes of dti and dni are given by:

dn =
√
dni d

n
i (A.3)

dt =
√
dtid

t
i (A.4)

dti and dni are given by:

dni = dknkni (A.5)

dti = di − dknkni (A.6)
∂dti
∂dj

is computed:

∂dti
∂dj

= ∂

∂dj
[di − dknkni]

= ∂di
∂dj
− ∂

∂dj
[dknkni]

= δij − δkjnkni
∂dti
∂dj

= δij − njni

(A.7)

∂dni
∂dj

is computed:
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∂dni
∂dj

= ∂

∂dj
[dknkni]

= δkjnkni

∂dni
∂dj

= njni

(A.8)

To further simplify the formulation of mixed-mode cohesive laws, we follow [Camacho and
Ortiz, 1996] and introduce an effective opening displacement (d):

d =
√
β2(dt)2 + (dn)2 (A.9)

Where dt and dn are respectively, the sliding (tangential) and normal opening displacements, β
is a factor that assigns different weights to them. Replacing equations (A.3) and (A.4) in (A.9)
it follows:

d =
√
β2dtid

t
i + dni d

n
i (A.10)

As already said in section 2.3.1, in the case of contact (d < 0) a penalization technique is
implemented as shown in equation (2.44).

∂d
∂dj

is computed:

∂d

∂dj
= ∂

∂dj

[√
β2dtid

t
i + dni d

n
i

]
= 1

2
(
β2dtid

t
i + dni d

n
i

)− 1
2 ∂

∂dj

[
β2dtid

t
i + dni d

n
i

]
= 1

2d

[
β2 ∂d

t
i

∂dj
dti + β2dti

∂dti
∂dj

+ ∂dni
∂dj

dni + dni
∂dni
∂dj

]

= 1
2d

[
2β2 ∂d

t
i

∂dj
dti + 2∂d

n
i

∂dj
dni

]
∂d

∂dj
= 1
d

[
β2 ∂d

t
i

∂dj
dti + ∂dni

∂dj
dni

]

(A.11)

Replacing equations (A.7) and (A.8) in (A.11) leads to:

∂d

∂dj
= 1
d

[
β2 (δij − njni) dti + (njni) dni

]
= 1
d

[
β2
(
dtiδij − njnidti

)
+ njnid

n
i

]
= 1
d

[
β2
(
dtj − dtininj

)
+ dni ninj

]
∂d

∂dj
= 1
d

(
β2dtj + dnj

)
(A.12)

Using equation (A.12), it is possible to calculate ∂2d
∂dj∂di

:
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∂2d

∂dj∂di
= ∂

∂di

[
∂d

∂dj

]

= ∂

∂di

[1
d

(
β2dtj + dnj

)]
= 1
d

∂

∂di

[
β2dtj + dnj

]
+ ∂

∂di

[
d−1

] (
β2dtj + dnj

)
∂2d

∂dj∂di
= 1
d

[
β2∂d

t
j

∂di
+
∂dnj
∂di

]
− 1
d2

∂d

∂di

(
β2dtj + dnj

)
(A.13)

Replacing equations (A.7), (A.8) and (A.11) in (A.13) it follows:

∂2d

∂dj∂di
= 1
d

[
β2 (δji − ninj) + ninj

]
− 1
d2

[1
d

(
β2dti + dni

) (
β2dtj + dnj

)]
∂2d

∂dj∂di
= 1
d

[
β2 (δij − ninj) + ninj

]
− 1
d3

(
β2dti + dni

) (
β2dtj + dnj

) (A.14)

Let t be the effective traction defined as:

t = eσc
d

δc
e−

d
δc (A.15)

where t is the effective cohesive traction, d is the effective opening displacement, σc is the
maximun cohesive normal traction and δc is the characteristic opening displacement. The
individual traction (ti) components can be expressed as:

ti = t

d

(
β2dti + dni

)
(A.16)

Using equation (A.15) in (A.16) it follows that:

ti =
eσc

d
δc
e−

d
δc

d

(
β2dti + dni

)
= eσc

δc
e−

d
δc

(
β2dti + dni

)
(A.17)

The tangent modulus matrix (Dij) can be derived as:

Dij = ∂ti
∂dj

(A.18)

Using equation (A.17) in (A.19) it follows that:
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= ∂

∂dj

[
eσc
δc
e−

d
δc

] (
β2dti + dni

)
+ eσc

δc
e−

d
δc

∂

∂dj

[
β2dti + dni

]
Dij =

(
−eσc
δ2
c

e−
d
δc
∂d

∂dj

)(
β2dti + dni

)
+ eσc

δc
e−

d
δc

(
β2 ∂d

t
i

∂dj
+ ∂dni
∂dj

) (A.19)

Replacing equations (A.12), (A.7), (A.8) in (A.19):

Dij =
(
−eσc
δ2
c

e−
d
δc

) 1
d

(
β2dtj + dnj

) (
β2dti + dni

)
+eσc
δc
e−

d
δc

(
β2 (δij − ninj) + ninj

) (A.20)

Where (A.20) is the cohesive stiffness matrix.
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A.2 Tangent stiffness matrix for Xu and Needleman’s cohesive
law

Tangential and normal tractions are defined as follows:

Tn(dn, dt) =
(
φn
δcn

)
e−
(
dn

δcn

) 
(
dn

δcn

)
e
−
(
dt

δct

)2

+
[1− q
r − 1

] 1− e
−
(
dt

δct

)2 [r − dn

δcn

]
T t(dn, dt) =

(
φn
δcn

)(2δcn
δct

)(
dt

δct

){
q +

[
r − q
r − 1

]
dn

δcn

}
e−
(
dn

δcn

)
e
−
(
dt

δct

)2
(A.21)

The traction vector is given by:

Ti = Tn(dn, dt)ni + T t(dn, dt)ti (A.22)

Where ni and ti are the normal and tangential vectors to the cohesive surface. For the sake of
simplicity from now on in this work: Tn(dn, dt) = Tn and T t(dn, dt) = T t. The tangent stiffness
matrix is given by:

Dij = ∂Ti
∂dj

= ∂Tn

∂dn
∂dn

∂dj
ni + ∂Tn

∂dt
∂dt

∂dj
ni + ∂T t

∂dn
∂dn

∂dj
ti + ∂T t

∂dt
∂dt

∂dj
ti (A.23)

In order to calculated the tangent stiffness matrix presented in equation (A.23), it should
be computed the following derivatives: ∂dn

∂dj
, ∂dt∂dj

, ∂Tn∂dn ,
∂Tn

∂dt ,
∂T t

∂dn and ∂T t

∂dt . Let be di the opening
displacement defined as follow:

di = dti + dni (A.24)

Where di is the opening displacement vector, dti and dni are respectively, the tangential and
normal vectors forming di. From basic math one knows that the dot product between dti and
dni is equal to:

dtid
n
i = 0 (A.25)

dni is given by:

dni = dknkni (A.26)

It is also known that the vector magnitud of dni is given by:

dn = dknk (A.27)

As already said in section 2.3.2, if there is contact between the cohesive interfaces (dn < 0),
a penalization term will be added as shown in equation (2.50).

The derivative of equation (A.27) with respect to dj is computed:

∂dn

∂dj
= ∂

∂dj
[dknk]

= δkjnk

∂dn

∂dj
= nj

(A.28)

The magnitud of di is given by:
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‖di‖2 = ‖dni ‖2 + ‖dti‖2

‖dti‖ =
√
‖di‖2 − ‖dni ‖2

(A.29)

dti is given by:

dti = di − dknkni (A.30)

The magnitud of dti is given by:

dt = ‖dti‖ (A.31)

In order to find ‖dti‖, first, it should be computed ‖di‖2 and ‖dni ‖2:

‖di‖2 =
[
(didi)

1
2
]2

= didi

‖dni ‖2 =
[
(dknkdmnm)

1
2
]2

= dknkdmnm

(A.32)

Finally by replacing equation (A.29) and (A.32) in (A.31), the magnitud of dt is obtanied:

dt =
√
didi − dknkdmnm (A.33)

After this, the derivative of equation (A.33) with respect to dj is computed:

∂dt

∂dj
= ∂

∂dj

[√
didi − dknkdmnm

]
= 1

2dt

[
∂

∂dj
(didi)−

∂

∂dj
(dknkdmnm)

]

= 1
2dt [δijdi + δijdi − δkjnkdmnm − dknkδmjnm]

= 1
2dt [2dj − 2dznznj−]

= 1
dt

[
dj − dnj−

]
=
dj − dnj
dt

∂dt

∂dj
= tj

(A.34)

where tj is the tangential vector already introduced in equation (A.22). The derivative of Tn
with respect to dn is also computed:
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∂Tn

∂dn
= ∂

∂dn

{(
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δcn

)
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dn

δcn

{(
dn

δcn

)
e
− d

2t
δ2
ct +
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)(
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e
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e
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)}

=
(
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)( 1
δcn

)
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{(
− d

n

δcn

)
e
− d

2t
δ2
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] [
1− e

− d
2t
δ2
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] [
r − dn

δcn

]}

+
(
φn
δcn

)( 1
δcn

)
e−

dn

δcn

{
e
− d

2t
δ2
ct −

[1− q
r − 1

] [
1− e

− d
2t
δ2
ct

]}
∂Tn

∂dn
=
(
φn
δ2
cn

)
e−

dn

δcn

{(
1− dn

δcn

)
e
− d

2t
δ2
ct −

[1− q
r − 1

] [
1− e

− d
2t
δ2
ct

] [
1 + r − dn

δcn

]}

(A.35)

Then the derivative of Tn with respect to dt is computed:

∂Tn

∂dt
= ∂

∂dt

{(
φn
δcn

)
e−

dn

δcn

{(
dn

δcn

)
e
− d

2t
δ2
ct +

[1− q
r − 1

] [
1− e

− d
2t
δ2
ct

] [
r − dn

δcn

]}}

=
(
φn
δcn

)
e−
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{(
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δcn

)
e
− d

2t
δ2
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(
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)
+
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δcn
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e
− d
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δ2
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−2dt
δ2
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∂Tn
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= 2

(
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δcnδct

)(
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δct
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δcn e
− d

2t
δ2
ct

{
− d

n

δcn
+
[1− q
r − 1

] [
r − dn

δcn
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(A.36)

Next, the derivative of T t with respect to dt is computed:

∂T t

∂dt
= ∂

∂dt

{(
φn
δcn

)(2δcn
δct

)(
dt

δct

){
q +

[
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]
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}
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2t
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}

=
(
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)( 1
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)
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[
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]
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+
(
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)(2δcn
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[
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]
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}
e
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(
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=
(2φn
δ2
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[
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]
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δcn e
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{
1− 2d2t
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}
(A.37)

As well as the derivative of T t with respect to dn:
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∂T t

∂dn
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∂dn
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(A.38)

Finally, by replacing (A.28), (A.34), (A.35), (A.36), (A.37) and (A.38) in equation (A.23),
it is possible to compute the tangent stiffness matrix (Dij) that should be used when using the
cohesive law proposed by [Xu and Needleman, 1993].

A.3 Tangent stiffness matrix for Ortiz and Pandolfi’s cohesive
law when including viscous dissipation

When using this kind of exponential cohesive law, [Sepasdar and Shakiba, 2020] proposed
the addition of the following viscosity term:

t = eσc
d

δc
e−

d
δc + ξ

σc
δc
ḋ (A.39)

where ξ is a viscosity-like parameter that governs viscous energy dissipation and ḋ is the deriva-
tive of the effective opening displacement (d) with respect to the time (t): ḋ = dd

dt . Starting
from the fact that d =

√
β2(dt)2 + (dn)2, equation (A.9), it will be computed dd

dt :

∂d

∂t
= ∂

∂t

[√
β2dtid

t
i + dni d

n
i
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= 1

2d2β2dtiḋ
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2d2dni ḋni
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= 1
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[
β2dtiḋ

t
i + dni ḋ

n
i

]
= ḋ

(A.40)

The definition of the cohesive tangent stiffness matrix (Dij) presented in equation (A.19)
taking into account viscosity term is given by:

Dij = ∂
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[1
d
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ḋ

) (A.41)

Replacing equation (A.40) into equation (A.41) leads to:
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n
i

)

+ σcξ

δc
d−2 ∂

∂dj

[(
β2dtiḋ

t
i + dni ḋ
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(A.42)

Using equations (A.7) and (A.8) and the fact that ḋni = ddni
dt , we have that:

∂ḋni
∂dj

= njni
∆t

∂ḋti
∂dj

= δij−njni
∆t

(A.43)

Replacing equations (A.7), (A.8), (A.12) and (A.43) in (A.42) leads to:
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(A.44)

In equation (A.44) the terms that should be added in order to take into account viscous
dissipation are shown in red.

A.4 Tangent stiffness matrix for Xu and Needleman’s cohesive
law when including viscous dissipation

When using the exponential cohesive law presented by [Xu and Needleman, 1993], [Gao and
Bower, 2004] proposed the addition of some viscosity term in the following way:
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(
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(A.45)
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Where T ∗n(dn, dt) and T ∗t(dn, dt) are the interfacial tractions when adding some viscosity terms.
ξn and ξt are viscosity-like parameters that govern viscous energy dissipation under normal and
tangential loading, respectively. Using the relations presented in equation (A.21), (A.45) can
be arranged as follow:

T ∗n(dn, dt) = Tn(dn, dt)
{

1 + ξn
d

dt

(
dn

δcn

)}
T ∗t(dn, dt) = T t(dn, dt)

{
1 + ξt

d

dt

(
dt

δct

)} (A.46)

Following equation (A.23), the tangent stiffness matrix when including viscous dissipation
terms is given by:

Dij = ∂Ti
∂dj
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The derivative of T ∗n with respect to dn needs to be computed:
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(A.48)

Following a similar procedure, they are computed ∂T ∗n

∂dt , ∂T ∗t∂dn y ∂T ∗t

∂dt :

∂T ∗n

∂dt
= ∂Tn

∂dt

{
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(A.49)

∂T ∗t
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= ∂T t

∂dt
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+ T tξt
1
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(A.50)

∂T ∗t

∂dn
= ∂T t

∂dn

{
1 + ξt

δct

d

dt

[
dt
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(A.51)

Finally, by replacing equations (A.21), (A.28), (A.34), (A.35), (A.36), (A.37), (A.38), (A.48),
(A.49), (A.50) and (A.51) into (A.47), it is possible to compute the tangent stiffness matrix
(Dij) including viscous dissipation terms (red ones).

A.5 Validation case for the thermolasticity model: a fully con-
strained specimen

In order to validate the implemented thermoelasticity model, a specimen which deformations
are fully constrained as depicted in Figure A.1 is considered. For this case the material behavior
is considered isotropic linear elastic with E and ν being the elastic constants, the Young’s
modulus and Poisson’s ratio, respectively. A temperature change (∆T ) is prescribed on the
specimen. Geometry, boundary conditions as well as material properties are given in Figure
A.1.

The analytical solution to this problem in terms of stress is given by equation (2.56), showing
that the theoretical stress in the specimen is equal to:

σij = −65 δij [MPa] (A.52)
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Figure A.1: Geometry and boundary conditions (units in m)

To find the pressure it should be recalled that by definition it is equal to the trace of the
stress tensor:

P = −1
3σii = 65 [MPa] (A.53)

Figure A.2 shows the results obtained using the implemented thermoelasticity model. Ob-
tained results perfectly fit the presented theory. In the results showed in this figure, as well as in
the benchmark example, the only non-zero stresses are the ones related to volume changes. The
stresses related to shape changes are null. The results in terms of pressure also agree perfectly.
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Figure A.2: Numerical solution in terms of stress (σij) and pressure (P ) of the problem
presented in Figure A.1
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A.6 Hessian matrix of the problem of computing the fracture
surface in 3D

The term ∂g(φ∗)
∂φ∗ needs to be computed:
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(A.54)

Equation (A.54) can be also written as:
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=
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(
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