GENERAL INTRODUCTION

Context

Many practical decision-making problems involve selecting a subset of objects from a set of candidate objects such that the selected objects optimize a given objective while satisfying some constraints. Knapsack problems (KP) [START_REF] Kellerer | Knapsack problems[END_REF] are general models that allow such decision-making problems to be conveniently formulated. In this thesis, we focus on two representative knapsack problems: the set-union knapsack problem (SUKP) [START_REF] Goldschmidt | Note: On the set-union knapsack problem[END_REF] and the disjunctively constrained knapsack problem (DCKP) [START_REF] Yamada | Heuristic and exact algorithms for the disjunctively constrained knapsack problem[END_REF]. As a variant of the popular KP, SUKP is to find a subset of candidate items (an item is composed of several distinct weighted elements) such that a profit function is maximized while a knapsack capacity constraint is satisfied. DCKP consists in packing a subset of pairwisely compatible items in a capacity-constrained knapsack in a way that the total profit of the selected items is maximized while satisfying the knapsack capacity. These two generalized knapsack problems can formulate additional relevant applications such as database partitioning [START_REF] Navathe | Vertical partitioning algorithms for database design[END_REF], flexible manufacturing [START_REF] Goldschmidt | Note: On the set-union knapsack problem[END_REF], key-pose caching [START_REF] Daniel Lister | A Key-Pose Caching System for Rendering an Animated Crowd in Real-Time[END_REF], public key prototyping [START_REF] Schneier | Applied cryptography -protocols, algorithms, and source code in C[END_REF], data allocating [START_REF] Wei | Kernel based tabu search for the Set-union Knapsack Problem[END_REF] and public transportation [START_REF] Hifi | A parallel large neighborhood search-based heuristic for the disjunctively constrained knapsack problem[END_REF].

Given their theoretical and practical significance, a number of solution methods have been developed including exact, approximation and heuristic algorithms and considerable progresses have been continually made since the introduction of these two problems. Meanwhile, given the N P-hard nature of the problems, more powerful algorithms are always useful to push the limits of existing methods. In this work, we aim at advancing the state-of-the-art of solving these two problems effectively and robustly. From a perspective of performance assessment, we show the competitiveness of the proposed algorithms compared to the state-of-the-art algorithms on a variety of benchmark instances commonly used in the literature. We also perform additional experiments to shed lights on the roles of the key composing ingredients of the algorithms.

Objectives

This thesis is devoted to designing and implementing efficient heuristic and metaheuristic algorithms as well as verifying the effectiveness for solving the SUKP and the DCKP. The main objectives of this thesis can be summarized as follows.

-Study the specific features of these two problems and the weaknesses of the existing methods. -Design discrete optimization approaches based on stochastic local search which directly operates in the binary search space. -Evaluate the meaningfulness of the idea of kernel for solving difficult binary optimization problems. -Investigate the parameter-free solution-based tabu search method to enhance a strongly intensified examination of the search. -Integrate the threshold search technique with a population-based memetic framework to ensure a suitable balance between intensification and diversification. -Evaluate the performance of the proposed algorithms on a wide range of benchmark instances and show computational results in comparison with state-of-the-art algorithms. -Analyze the ingredients of the proposed methods to get useful insights about their impacts on the performances of the algorithms.

Contributions

The main contributions of this thesis are summarized below.

-For the SUKP, we have proposed three heuristic algorithms and achieved the following results:

-First, we propose an iterated two-phase local search algorithm (I2PLS). We show for the first time that stochastic local search, which directly operates in the binary search space, can be a highly effective approach for solving the SUKP. We report improved best results for 18 large instances and equal best results for the 12 remaining instances. We also investigate for the first time the interest of the general mixed integer programming solver CPLEX for solving the SUKP. This work has been published in Future Generation Computer Systems. -Second, we present the kernel based tabu search algorithm (KBTS), which combines for the first time the notion of kernel with the powerful tabu search method. Computational study performed on two sets of 60 benchmark instances indicated that the proposed algorithm dominates the current best SUKP algorithms in terms of solution quality, robustness and computation time. This work has been published in Expert Systems with Applications.

-Third, we investigate for the first time a multistart solution-based tabu search algorithm (MSBTS) for solving the SUKP. The proposed algorithm, which is parameter-free, combines a solution-based tabu search procedure with a multistart strategy to ensure an effective examination of candidate solutions. We demonstrate the interest of the MSBTS algorithm to deal with large instances and report new lower bounds for 7 large and difficult instances. This work has been published in Applied Soft Computing. -For the DCKP, we introduce a threshold search based memetic algorithm (TS-BMA) which combines the memetic framework with threshold search to find high quality solutions. Extensive computational assessments on two sets of 6340 benchmark instances in the literature demonstrate that the proposed algorithm is highly competitive compared to the state-of-the-art methods. This work is being revised for Computers & Operations Research.

Organization

The organization of the thesis is summarized as follows.

-In the first chapter, we start with the introduction of the general 0/1 knapsack problem and its variants. Then, we give the definitions of the two knapsack problems considered in this thesis and recall a number of real-life applications related to these two problems. We also provide an overview of the existing approaches in the literature for solving them, including exact algorithms, approximation algorithms, heuristic and metaheuristic algorithms. Moreover, we introduce the benchmark instances commonly tested in the literature. -In the second chapter, we propose an effective iterated two-phase local search algorithm which relies on two innovative and complementary search components specially designed for the SUKP. Then we show the competitiveness of the proposed algorithm compared to the state-of-the-art algorithms on the set of 30 benchmark instances commonly used in the literature. We also show that the general mixed integer programming solver can find some optimal solutions based on a simple 0/1 linear programming model. Finally, we perform an analysis of the parameters and the ingredients of the proposed algorithm to investigate their impacts on its performance. -In the third chapter, we present another heuristic algorithm called kernel based tabu search algorithm to solve the SUKP. We detail the three complementary search components used to perform an effective examination of the search space.

That is, a local search procedure is used to find various local optima, a kernel search method is employed to discover additional high-quality solutions within particular areas, and a non-kernel search method is applied to ensure a guided diversification. In the following, we perform an extensive evaluation of our algorithm and comparisons with state-of-the-art SUKP algorithms. Meanwhile, we analyze the parameters used in the proposed algorithm and the kernel based components. -In the fourth chapter, we advance the state-of-the-art of solving the SUKP by proposing the first multistart solution-based tabu search algorithm. We first present its main scheme and then describe its components including the greedy randomized initialization procedure and the solution-based tabu search procedure. Then we carry out computational experiments and a time-to-target analysis to evaluate the performance of the proposed algorithm compared to the reference algorithms based on two sets of 60 benchmark instances. Finally, we provide additional analysis to investigate the influences of the main ingredients of our algorithm. -In the fifth chapter, we investigate for the first time the population-based memetic framework to solve the DCKP and present an effective algorithm mixing threshold based local optimization and crossover based solution recombination. Then we show extensive computational results and comparisons with state-of-the-art DCKP algorithms based on two sets of 6340 benchmark instances. Finally, we analyze two essential components of the proposed algorithm: the importance of the threshold search and the contribution of the operation-prohibiting mechanism. -In the last chapter, we summarize the contributions of this thesis and provide some perspectives for future research.

Knapsack problems

Knapsack problems are very general and useful models able to formulate numerous real-world problems in a variety of fields. For instance, suppose that a firm has a fixed global budget envelope for project investment as well as a number of candidate projects. Suppose also that each candidate project requires a budget and its implementation implies a gain. One important decision problem is then to select a subset of projects from the candidate set such that the total gain of the retained projects is maximized and the total budget allocated to the retained projects is no more than the available budget envelope. This practical problem as well as many other similar problems can conveniently be formulated with the following general 0/1 knapsack problem (KP) [START_REF] Kellerer | Knapsack problems[END_REF].

Given a knapsack with a positive weight capacity C, and a set N = {1, . . . , n} of items where each item i = {1, . . . , n} has a weight w i > 0 and a profit p i > 0. The KP involves selecting a subset S ⊆ N of items in a way that the total profit of the selected items is maximized, while the weight sum of S does not exceed the knapsack capacity. Let x i be a binary variable such that x i = 1 if item i is selected, x i = 0 otherwise. Formally, the KP can be stated as follows [START_REF] Kellerer | Knapsack problems[END_REF]. x i ∈ {0, 1}, i = 1, . . . , n.

(

As indicated in [START_REF] Kellerer | Knapsack problems[END_REF], the KP can be used to model many real-world decisionmaking problems such as selection of investments and portfolios, generating keys for cryptosystems, and finding the least wasteful way to cut raw materials.

The decision version of the KP is known to be N P-complete in [START_REF] Karp | Reducibility among combinatorial problems[END_REF]. As a basic model, the KP formulation has a variety of variations and extensions, such as:

-Subset sum problem (SSP)

Given a knapsack with a positive weight capacity C and a set N = {1, . . . , n} of items where each item i = {1, . . . , n} has a weight w i > 0, the SSP is to select a subset of items S from N such that the total weight is maximized while satisfying the knapsack capacity C. By introducing a decision variable x i to indicate whether item i is selected, the SSP can be defined as follows.

(SP P) Maximize f (S) = n i=1 w i x i (1.4) subject to W (S) = n i=1 w i x i ≤ C, S ⊆ N, (1.5) x i ∈ {0, 1}, i = 1, . . . , n.

(1.6)

It is easy to observe that the KP is equivalent to the N P-hard SSP when the profit of each item is equal to the weight. The SSP model can be used to formulate practical applications, such as public-key cryptosystems [START_REF] Merkle | Hiding information and signatures in trapdoor knapsacks[END_REF] and scheduling problems [START_REF] Adzer Hoogeveen | New lower and upper bounds for scheduling around a small common due date[END_REF]. Moreover, the SSP is also closely related to other important problems [START_REF] Venceslau | An efficient solution to the subset-sum problem on GPU[END_REF], such as traveling salesman problem, satisfiability problem, factorization problem, integer programming problem. For solution methods of this problem, including dynamic programming algorithms, approximation algorithms and hybrid algorithms, see [START_REF] Kellerer | Knapsack problems[END_REF][START_REF] Toth | Knapsack problems: algorithms and computer implementations[END_REF]. -Quadratic knapsack problem (QKP)

Let C be the positive knapsack capacity and N = {1, . . . , n} be a set of items, where each item i = {1, . . . , n} has a profit p ii > 0 and a weight w i > 0. In addition, each pair of items i and j (1 ≤ i = j ≤ n) has a pairwise profit p ij if both of them are selected. Then QKP involves determining a subset of items S ⊆ N to maximize the total profit of S while ensuring that the total weight of the items of S does not exceed the knapsack capacity C. Suppose a binary variable x j is set to 1 if item j is selected, or x j = 0 otherwise. Then the QKP can be written as follows.

(QKP) Maximize f (S) = x j ∈ {0, 1}, j = 1, . . . , n.

(1.9)

The QKP can be reduced to the KP by restricting all the pairwise profit p ij to 0.

QKP is N P-hard in the strong sense [START_REF] Caprara | Exact solution of the quadratic knapsack problem[END_REF] and thus is computationally difficult. As indicated in [START_REF] Kellerer | Knapsack problems[END_REF], the QKP is a useful model for a number of real-world applications, such as selecting locations for satellite stations, airports and railway stations. Over the past decades, various solution methods have been proposed in the literature for solving the QKP [CH17; KPP04], including exact algorithms and heuristic algorithms.

-Multiple knapsack problem (MKP)

Let N = {1, . . . , n} be a set of items and M = {1, . . . , m} be a set of knapsacks.

Each item i = {1, . . . , n} has a profit p i > 0 and a weight w i > 0. Each knapsack j = {1, . . . , m} has capacity C j . Then the MKP aims to assign some items to the m knapsacks in a way that the overall profit of the assigned items is maximized while the capacity constraint of each knapsack is satisfied. Let S ⊆ N be a subset of items, x ij be a binary variable such that x ij = 1 if item i is assigned to knapsack j, x ij = 0 otherwise. Then the MKP can be formalized as follows. x ij ≤ 1, j = 1, . . . , m, (1.12)

x ij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , m.

(1.13)

It is obvious that the MKP reduces to the KP when the number of knapsacks is set to 1. As introduced in [EC71; FMW96; SAR17], the N P-hard MKP has numerous applications, such as cargo loading, designing processors for mainframe computers, designing layout of electronic circuits, sugar cane alcohol production and selfsufficient system for military operations. The solution methods of the MKP are introduced in [Del+19; KPP04; TM90], including exact algorithms, approximation algorithms and heuristic algorithms.

-Multiple-choice knapsack problem (MCKP)

Given m disjoint sets N 1 , . . . , N m of items, where each item j ⊆ N i has a profit p ij > 0 and a weight w ij > 0. The MCKP is to pack exactly one item from each item set N into a capacity (C) constrained knapsack to maximize the total profit of the selected items. By introducing a decision variable to indicate whether item j is inserted the knapsack, the MCKP can be defined as follows.

(M CKP) Maximize f (S) = m i=1 j∈N i p ij x ij (1.14) subject to W (S) = m i=1 j∈N i w ij x ij ≤ C, (1.15) j∈N i x ij = 1, i = 1, . . . , m, (1.16)
x ij ∈ {0, 1}, i = 1, . . . , n, j ∈ N i .

(1.17)

MCKP is a generalization of the conventional KP and has a variety of practical applications [Loj+20; Nau78; SZ79], such as capital budgeting, menu planning, product line pricing, and fault-tolerant system designing. The existing approaches for solving MCKP are introduced in [GL98; He+16; KPP04].

-Multi-dimensional knapsack problem (MMKP)

Given a set M = {1, . . . , m} of knapsacks, where each knapsack has a positive weight capacity C j . Let N = {1, . . . , n} be a set of items, where each item i has a profit p i and consumes a given weight w ij for each knapsack j. Then the MMKP involves finding a subset of S ⊆ N items such that the total profit of the selected items is maximized while their weights do not exceed the knapsack capacity. By introducing a binary decision variable x i to indicate whether item j is packed in the knapsack, the MCKP can be defined as follows.

(M M KP) Maximize f (S) = n i=1 p i x i (1.18) subject to W (S) = n i=1 w ij x i ≤ C j , j = 1, . . . , m, (1.19)
x i ∈ {0, 1}, i = 1, . . . , n.

(1.20)

The MMKP is a useful model able to formulate a number of real-life applications [Fré04; Gav82; GG66; Shi79], including resource allocation, cargo loading, cutting stock problem and capital budgeting. However, the MMKP is computationally difficult given that it belongs to the class of N P-hard problems. Due to its relevance, a variety of solution methods have been devised for solving the MMKP [Fré04; FH05; KPP04], including exact algorithms, approximation algorithms and heuristic algorithms. -Set-union knapsack problem (SUKP)

The SUKP is to find a subset of candidate items (an item is composed of several distinct weighted elements) such that a profit function is maximized while a knapsack capacity constraint is satisfied. Since this thesis is devoted to designing effective approaches for solving the SUKP, more details about the SUKP will be introduced in Section 1.

-Disjunctively constrained knapsack problem (DCKP)

The DCKP consists in packing a subset of pairwisely compatible items in a capacityconstrained knapsack such that the total profit of the selected items is maximized while satisfying the knapsack capacity. The introduction of the DCKP will also be given in Section 1.3.

Set-union knapsack problem 1.2.1 Problem introduction

Given a set of elements U = {1, . . . , n} and a set of items V = {1, . . . , m}, each element has a weight w j > 0 and each item has a profit p i > 0. The items and elements are associated by a relation matrix R ij [m × n] such that each item i corresponds to a subset of elements U i ⊆ U . Let C be the capacity of a given knapsack. Then the set-union knapsack problem is to select a subset of items S from V such that the total profit of S is maximized, while the total weight of the covered elements does not exceed the knapsack capacity C. Formally, the SUKP can be stated as follows. It is worth noting that for a given subset S of items, the weight w j of an element j is counted only once in W (S) even if the element belongs to more than one selected items. One notices that the conventional knapsack problem is a special case of the SUKP. Indeed, the SUKP reduces to the KP when we set m = n and V = U . The SUKP also generalizes the N P-hard densest k-subhypergraph problem (DkSH) that aims to determine a set of k nodes of a hypergraph to maximize the number of hyperedges of the subhypergraph induced by the set of the selected nodes [START_REF] Chlamtác | The densest k-subhypergraph problem[END_REF]. In fact, the SUKP reduces to the DkSH when we consider the elements and items as the nodes and hyperedges of a hypergraph respectively, with unit weights and unit profits as well as a capacity of k.

We also propose a 0/1 linear programming model that is solved by the general integer linear programming (ILP) solver CPLEX. Our model is based on the mathematical model of the SUKP introduced in [START_REF] He | A novel binary artificial bee colony algorithm for the set-union knapsack problem[END_REF] (see the detailed description of this model in Section 2, page 78 of this reference), which is, however, inapplicable by the CPLEX solver. We introduce below the modified 0/1 linear programming model that is suitable for the solver. For an arbitrary non-empty item set S ⊂ V represented by its binary vector S = (y 1 , . . . , y m) such that y i = 1 (i = 1, . . . , m) if item i is selected in S, and y i = 0 otherwise. Let R be a m × n binary relation matrix such that R ij = 1 if element j belongs to item i, and R ij = 0 otherwise. Furthermore, for each element j (j = 1, . . . , n), define

L j = m i=1
y i R ij that counts the number of appearances of element j in the items of S. Let

x j be a binary variable such that x j = 1 if L j > 0, and x j = 0 otherwise, that is, x j indicates whether element j is involved in calculating the total weight of S. Then our 0/1 linear programming model for the SUKP is defined as follows.

x j =     
1, if L j > 0; 0, otherwise.

(1.25)

L j = m i=1 y i R ij , j = 1, . . . , n (1.26)
y i ∈ {0, 1}, i = 1, . . . , m.

(1.27) Constraints 1.24-1.26 jointly ensure that the weight w j of an element j is counted only once in W (S) even if the element appears in more than one selected items and the capacity constraint is satisfied. Constraint 1.27 guarantees that each item is selected at most once. Equation (1.23) maximizes the total profit of the selected items.

Applications

Like other knapsack models, the SUKP has a number of practical applications. As an example, we consider the following decision-making problem to optimally allocate data in large cyber systems [START_REF] Tu | System resilience enhancement through modularization for large scale cyber systems[END_REF]. Given a centralized cyber system with a memory of fixed capacity holding a set of services (or requests) with profits, where each service contains a set of data objects. Each data object will consume a certain amount of memory when it is invoked, and multiple use of the same data object will not cause additional memory consumption. The goal is to select a subset of services, among the candidate services, such that the total profit of the selected services is maximized while the total memory consumed by the underlying data objects meets the memory capacity of the cyber system. This application can be conveniently formulated by the SUKP model where an item corresponds to a service with its profit and an element corresponds to a data object with its memory consumption (element weight). Then, solving the data allocation problem is equivalent to finding the optimal solution to the resulting SUKP problem.

The SUKP has other relevant applications related to decision-making and intelligent systems, including database partitioning [START_REF] Navathe | Vertical partitioning algorithms for database design[END_REF], flexible manufacturing [START_REF] Goldschmidt | Note: On the set-union knapsack problem[END_REF], keypose caching [START_REF] Daniel Lister | A Key-Pose Caching System for Rendering an Animated Crowd in Real-Time[END_REF], financial decision making [START_REF] Kellerer | Knapsack problems[END_REF], and public key prototyping [START_REF] Schneier | Applied cryptography -protocols, algorithms, and source code in C[END_REF].

Related work

In terms of computational complexity theory, the decision version of the SUKP is known to be N P-complete [START_REF] Goldschmidt | Note: On the set-union knapsack problem[END_REF]. Therefore, from the perspective of solution methods, solving the SUKP is a highly challenging task. Given its practical and theoretical relevance, a number of algorithms for the SUKP have been introduced in the literature. The existing approaches for solving the SUKP can be classified into three categories as follows.

-Exact and approximation algorithms These algorithms are theoretically able to find the optimal solutions or solutions of guaranteed quality. [START_REF] Goldschmidt | Note: On the set-union knapsack problem[END_REF] introduced the SUKP for the first time and proved the SUKP is still N Phard even in very restricted cases. Based on the general dynamic programming method, an exact algorithm for solving the SUKP was devised, which is bounded by an exponential function corresponding to the cut width of the item-adjacency hypergraph. Sufficient conditions for the proposed methods to run in polynomial time was also presented. [START_REF] Arulselvan | A note on the set union knapsack problem[END_REF] proposed a greedy algorithm that is based on a previous approximation algorithm for the related budgeted maximum coverage problem. The algorithm provides a (1 -e -1 d) approximation for the SUKP with the additional restriction that the number of items in which an element is present is bounded by a constant d.

[Tay16] designed an approximation algorithm using results of the related densest ksubhypergraph problem. The proposed algorithm is shown to achieve, for any given

> 0, an approximation ratio of at most O(n αm+) for α m = 2 3 [m -1 -2m-2 m2+m-1]
, where the subsets have at most m elements. Focusing on theoretical aspects of the SUKP, these studies do not show computational results.

-Population-based hybrid algorithms

These algorithms are based on various bio-inspired metaheuristics operating with a population of solutions and associated search operators.

[He+18] devised the first binary artificial bee colony algorithm (BABC) for solving the SUKP. Since this approach inevitably generates infeasible solutions, a greedy repairing and optimization procedure (named S-GROA) is proposed to handle infeasible solutions. To assess the proposed algorithm, large scale experiments were performed based on a set of 30 new benchmark instances (with 85 to 500 items and elements). Comparisons with three other population-based algorithms (genetic algorithm, continuous artificial bee colony algorithm and differential evolution strategies) showed the competitiveness of the BABC algorithm.

[OB19] presented a binary swarm intelligence algorithm (gPSO) that combines the genetic algorithm with particle swarm optimization. The proposed algorithm employs a developed optional mutation operator that exponentially decreases the diversity of the population, which can avoid local optima at earlier iterations. The gPSO algorithm has the advantage of requiring no transfer function. Computational results and statistical tests on 30 benchmark instances indicate that the proposed approach outperforms the previously reported algorithms.

[HW18] introduced a group theory-based optimization algorithm (GTOA) for knapsack problems including the SUKP. By applying the algebraic group operations and the greedy repairing and optimization procedure (S-GROA), both the feasible and infeasible search space is examined by the GTOA. The computational results on 30 benchmark instances demonstrate that the proposed GTOA algorithm performs better than the existing evolutionary algorithms such as genetic algorithm, binary particle swarm optimization, binary artificial bee colony, and their improved variations.

[BOS18] developed a modified weighted superposition attraction algorithm (WSA) for stationary binary optimization problems including the SUKP. With the help of the proposed modification, WSA does not require any transfer functions. The dedicated step sizing function is beneficial to avoid premature convergence and local optima traps. [START_REF] Burcin | Artificial search agents with cognitive intelligence for binary optimization problems[END_REF] applied the learning mechanisms to find near-optima solutions of the SUKP. The proposed swarm-based optimization algorithm (intAgents) uses artificial search agents with individual cognitive intelligence to diversify the search. Each search agent is guided by the information-sharing techniques to explore new search regions. Extensive experiments on 30 benchmark instances show the effectiveness of the proposed algorithm.

[FAG19; FYW19] presented two versions of moth search algorithms (MS and EMS) for solving the SUKP. These algorithms adopt an empirical transfer function to map the continuous space to the discrete space and maintain both continuous and discrete solutions during the search. The MS algorithm employed twelve transfer functions to solve 15 SUKP benchmark instances and achieved good results. The EMS algorithm enhances the previous moth search algorithm by introducing an enhanced interaction operator (EIO) to replace the Lévy flight operator in the original MS and shows better performance than MS.

[WH20b] presented a hybrid Jaya algorithm (DHJaya) based on the differential evolution crossover operator and Cauchy mutation strategy. A double coding mechanism is introduced for the proposed Jaya algorithm and an improved repairoptimization strategy (MS-GROA) is employed to handle the infeasible solutions.

Experimental results on 30 benchmark instances show that the proposed DHJaya algorithm is superior to the original Jaya algorithm and the basic differential evolution algorithm.

[LH19] combined the estimation of distribution algorithm based on Lévy flight (LFEDA) with a quadratic greedy repair and optimization approach (Q-GROA).

The LFEDA algorithm has the advantage of increasing the diversity of the population and escaping from the local optima trap. Computational testing on 30 benchmark instances shows that the proposed algorithm is more robust than the previous algorithms for solving the SUKP.

[GO20] designed a binary grey wolf optimization algorithm (GWO) which based on the warm intelligence framework. The GWO algorithm employs the evolutionary and adaptive inheritance mechanisms to operate in the binary spaces directly. A multi-parent crossover operation and an adaptive mutation are presented to avoid premature convergence. Evaluated on 30 benchmark instances, the proposed GWO algorithm is shown to be effective in finding high quality solutions.

In terms of computational performances, these approaches achieved interesting results. However, these algorithms are rather complex in design and most of them solve the binary SUKP problem indirectly by searching a continuous space. -Local search algorithms Contrary to the above population algorithms, local search algorithms solve the binary SUKP problem directly by examining candidate solutions in a discrete search space.

[Lin+19] applied a local search procedure (tabu search) into the binary particle swarm optimization framework (HBPSO/TS) to solve the SUKP. The proposed HBPSO/TS algorithm explores both the feasible and infeasible search space by using an adaptive penalty function. A tabu based mutation procedure is also employed to guide the search to promising regions. Experimental results on 30 benchmark instances indicate that HBPSO/TS performs much better than the previously reported algorithms according to the solution quality.

Computational results indicated that the local search approaches represent the current state-of-the-art in the literature. In this thesis, we propose three different local search algorithms to advance the state-of-the-art of solving the SUKP, which are proved to be highly effective in terms of both solution quality and computational efficiency.

Benchmarks

For the SUKP, the benchmark instances can be divided into two sets 1 as follows.

-Set I (30 instances): Introduced in [START_REF] He | A novel binary artificial bee colony algorithm for the set-union knapsack problem[END_REF], this set of instances have 85 to 500 items and elements with the following features. For each instance with m items and n elements, the items and elements are associated by a m × n binary relation matrix R, where R ij = 1 indicates that item i includes element j. Each instance is further characterized by two parameters: α represents the density of R ij = 1 in the relation matrix R (i.e., α = (m i=1 n j=1 R ij)/(mn)), β denotes the ratio of knapsack capacity C to the total weight of the elements (i.e., β = C/ n j=1 w j). Thus, each SUKP instance can be designated as m_n_α_β. These instances are widely tested in the literature.

-Set II (30 instances): Introduced in [START_REF] Wei | Kernel based tabu search for the Set-union Knapsack Problem[END_REF], this set of instances have the same characteristics as those of Set I, but are large in size with 585 to 1000 items and elements. Following [START_REF] He | A novel binary artificial bee colony algorithm for the set-union knapsack problem[END_REF], the profit and weight values of these instances are generated randomly in [START_REF]Input: Input solution S o , threshold T , the maximum number of iterations IterM ax, hash[END_REF]500].

To facilitate the presentation of our computational results in the following chapters, these two sets of 60 benchmark instances are divided into three classes according to the relationship between the number of items and elements and denoted by F1-F20 (m > n), S1-S20 (m = n) and T1-T20 (m < n), respectively. The ID of each instance are shown in Table 1.1.

Disjunctively constrained knapsack problem 1.3.1 Problem introduction

Let V = {1, . . . , n} be a set of n items, where each item i = {1, . . . , n} has a profit p i > 0 and a weight w i > 0. Let G = (V, E) be a conflict graph, where V is the set of n items and an edge {i, j} ∈ E defines the incompatibility of items i and j. Let C > 0 be the capacity of a given knapsack. Then the DCKP involves finding a subset S of pairwisely compatible items of V to maximize the total profit of S while ensuring that the total weight of S does not surpass the knapsack capacity C. Let x i be a binary variable such that x i = 1 if item i is selected, x i = 0 otherwise. Formally, the DCKP can be stated as

p i x i (1.28) subject to W (S) = n i=1 w i x i ≤ C, S ⊆ V, (1.29) x i + x j ≤ 1, ∀(i, j) ∈ E, (1.30) x i ∈ {0, 1}, i = 1, . . . , n. (1.31)
Objective function (1.28) commits to maximize the total profit of the selected item set S. Constraint (1.29) ensures that the knapsack capacity constraint is satisfied. Constraints (1.30), called disjunctive constraints, guarantee that two incompatible items are never selected simultaneously. Constraint (1.31) forces that each item is selected at most once.

Applications

It is easy to observe that the DCKP reduces to the N P-hard KP when G is an empty graph. The DCKP is equivalent to the N P-hard maximum weighted independent set problem [START_REF] Garey | Computers and intractability: A guide to the theory of NP-completeness[END_REF] when the knapsack capacity is unbounded. Moreover, the DCKP is closely related to other combinatorial optimization problems, such as the multiple-choice knapsack problem [START_REF] Kellerer | Knapsack problems[END_REF], and the bin packing problem with conflicts [START_REF] Jansen | An approximation scheme for bin packing with conflicts[END_REF].

In addition to its theoretical significance, the DCKP is a useful model for practical applications where the resources with conflicts cannot be used simultaneously while a given budget envelope cannot be surpassed. As an example, we consider the following practical project investment scenario. Given a set of projects where each project has a budget and a gain. The goal is to select a subset of projects in a way that the total gain is maximized, while the total budget does not surpass the global budget envelope. This problem can be conveniently formulated by the KP model, where a project corresponds to an item and the budget envelope corresponds to the knapsack capacity. However, the project investment problem may involve other constraints in real-life applications. A typical situation is that some projects can not be invested simultaneously due to the practical limits, such as locations, project lifecycle, facilities requirement, human resources, laws and regulations etc. Then the project investment problem is to find the optimal subset of projects while satisfying both the budget constraint and the disjunctive constraints, which can be conveniently formulated by the DCKP model.

As indicated in [Hif+14; QW17a], a number of practical applications can be formulated by the DCKP model, including resource allocation, loading of vehicles, public transportation, and scheduling problems.

Related work

Due to its relevance, the DCKP has received considerable attention in the past two decades. As the literature review shown in this section, considerable progresses have been continually made since the introduction of the problem. Existing solution methods can be roughly classified into two categories as follows.

-

Exact and approximation algorithms

These algorithms are able to guarantee the quality of the solutions they find.

[YKW02] introduced the DCKP for the first time and proposed an implicit enumeration algorithm to find upper bounds by relaxing the disjunctive constraints in a Lagrangean way. The proposed algorithm is able to solve the DCKP instances up to 1000 items by integrating an interval reduction method with some pruning techniques. These instances are generated randomly with uncorrelated profits and weights (range from 1 to 100, independently) and very small conflict graph densities (range from 0.001 to 0.02).

[HM07] presented three versions of an exact algorithm based on a local reduction strategy. The proposed exact approach starts its search from a lower bound obtained by a reactive local search procedure, and then applies the reduction strategies to fix some decision variables to their optimum. Then the first version of the algorithm adopts an exact branch and bound algorithm to solve the reduced problem. The second version of the algorithm accelerates the search by combining a dichotomous search strategy with a reduction procedure. Based on a modified dichotomous search algorithm, the third version of the algorithm is introduced to solve the DCKP instances with large densities.

[PS09] devised a pseudo-polynomial time and space algorithm for solving three special cases of the DCKP, including trees, graphs with bounded treewidth and chordal graphs, and proved the DCKP is strongly N P-hard on perfect graphs. Then the fully polynomial time approximation schemes (FPTAS) can be obtained by the proposed algorithm.

[Sal+18] divided the DCKP into two subproblems: binary knapsack problem and the independent set problem, and discussed the valid inequalities of these problems. Then a branch-and-cut algorithm is developed that combines a greedy clique generation procedure with a separation procedure. Experimental study is carried out to compare the proposed algorithm with the CPLEX solver.

[BCM17] presented a new branch-and-cut algorithm (BCM) to solve the DCKP optimally. The branching procedure solves the binary knapsack problem optimally by a dynamic programming algorithm while neglecting the disjunctive constraints. The upper bounding procedure considers both the knapsack constraint and the disjunctive constraints by using the weighted clique cover bound applied for the maximum weight stable set problem. Extensive experiments on 4800 benchmark instances indicate that BCM outperforms the previous algorithms for solving the DCKP, however, it is not particularly effective for solving the DCKP instances with small densities.

[PS17] applied the approximation methods of modular decompositions and clique separators for solving the DCKP, and showed complexity results for the DCKP on special graph classes, including general graph, bounded treewidth graph, chordal graph, weakly chordal graph, planar graph and perfect graph. The existence of a polynomial time approximation scheme (PTAS) for H-minor free conflict graphs is proved.

[GR19] designed a dynamic programming algorithm that based on a tree-structure to represent the conflict graph. The pseudo-polynomial solutions of co-graphs were obtained and then extended to conflict graphs of bounded clique-width. Finally, the FPTAS can be achieved for the DCKP on conflict graphs of bounded clique-width.

[CFS21] presented a new and efficient branch-and-bound algorithm (CFS) based on an n-ary branching scheme and solved the integer linear programming formulation of the DCKP by using the CPLEX solver. Given the high pruning potential of CFS and the low computational effort required by branch-and-bound procedure, the proposed algorithm performs better than previous exact algorithms in terms of both solution quality and computational time for most of the 6240 instances tested.

-Heuristic algorithms

These algorithms aim to find good near-optimal solutions.

[YKW02] proposed a greedy algorithm to generate an initial solution with good quality and a 2-opt neighborhood search algorithm to improve the obtained solution. The proposed algorithm is able to obtain a lower bound within a reasonable time for instances of large size.

[HM06] reported a reactive local search algorithm (RLS) for the DCKP, which combines a complementary constructive procedure to improve the initial solution and a degrading procedure to diversify the search. A memory list (tabu list) is employed to avoid revisiting previous encountered solutions. Experimental results on a set of 50 new instances with 500 and 1000 items disclose that the proposed RLS algorithm is able to obtain some high-quality solutions within a reasonable time.

[AHM11] presented three versions of local algorithms based on the local branching techniques. The first version starts with a feasible solution provided by the basic rounding solution procedure (BRSP) and then uses the standard local branching technique to solve the DCKP. The second version applies a two-phase solution procedure (TPSP) including a rounding procedure to fix a subset of the items and a truncated exact procedure to solve the reduced problem. The third version enhances the TPSP by introducing a diversification strategy.

[HO11] proposed a first level scatter search (SS) algorithm with the following procedures: 1) a starting solution-generator procedure to generate an initial solution; 2) a diversification generation procedure to generate diverse solutions; 3) an improvement procedure to improve or repair the current solution; 4) a reference update procedure to produce the reference set for the next step; 5) a subset generator procedure to generate groups of candidate solutions; 6) a solution combination procedure to produce offspring solutions. Computational comparisons indicate that the SS outperforms other previous algorithms as well as the CPLEX solver.

[HO12] reported another two versions of the SS algorithm based on the solution combination method. The first version of the SS employs a greedy combination method that takes into account both the structure and the relative profit per weight-degree values associated with each item. The second version of the SS adopts an alternative combination method that includes a variant of the 3-opt procedure.

Computational experience discloses that the proposed algorithm is efficient for the DCKP instances of medium and large size. [QW17b] presented a parallel neighbor algorithm (PNS) for the DCKP, which is characterized by a random local search, a cooperation procedure, a tabu search procedure and an adaptive large neighborhood search procedure. The proposed PNS algorithm employs 10 to 400 processors to explore the search space and is able to achieve remarkable results on the 100 benchmark instances tested. Computational experience discloses that PNS performs better than the two linear programming solvers, i.e., CPLEX and GLPK.

According to the computational results reported in the literature, the parallel neighborhood search algorithm [START_REF] Quan | Design and evaluation of a parallel neighbor algorithm for the disjunctively constrained knapsack problem[END_REF], the cooperative parallel adaptive neighborhood search algorithm [START_REF] Quan | Cooperative parallel adaptive neighbourhood search for the disjunctively constrained knapsack problem[END_REF], and the probabilistic tabu search algorithm [START_REF] Mariem | Probabilistic Tabu search with multiple neighborhoods for the Disjunctively Constrained Knapsack Problem[END_REF] can be regarded as the state-of-the-art methods for the 100 instances of Set I (see Section 1.3.4). For the 6240 instances of Set II (see Section 1.3.4), the branch-and-bound algorithms presented in [BCM17; CFS21] and the integer linear programming formulations solved by the CPLEX solver [START_REF] Coniglio | A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts[END_REF] showed the best performance.

Benchmarks

For the DCKP, the benchmark instances can be divided into two sets2 as follows (see Tables 1.2 and 1.3 for the main characteristics of these instances).

- and expanded in 2020 [START_REF] Coniglio | A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts[END_REF]. For the four correlated instance classes C1 to C15 (denoted by CC) and four random classes R1 to R15 (denoted by CR), the number of items n is from 60 to 1000, the capacity C is from 150 to 15000, and the density η is from 0.10 to 0.90. Each of these eight classes contains 720 instances. For the correlated instance class SC and the random instance class SR of the sparse graphs, the number of items n is from 500 to 1000, the capacity C is from 1000 to 2000, and the density η is from 0.001 to 0.05. Each of these two classes contains 240 DCKP instances. More details about this set of instances can be found in [START_REF] Coniglio | A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts[END_REF].

Chapter conclusion

In this chapter, we presented a brief overview of the well-known knapsack problem and several common variants of the KP. We also introduced the two variants of the KP considered in this thesis and gave a number of applications related to these problems. Then we discussed the existing solution approaches for solving the SUKP and the DCKP, including exact algorithms, approximation algorithms, heuristic and metaheuristic algorithms. Finally, the benchmark instances tested in this thesis are given in the last section.

ITERATED TWO-PHASE LOCAL SEARCH FOR THE SET-UNION KNAPSACK PROBLEM

In this chapter, we present an effective iterated two-phase local search algorithm for the SUKP. The proposed algorithm iterates through two complementary search phases: a local optima exploration phase to discover local optimal solutions, and a local optima escaping phase to drive the search to unexplored regions. We show the competitiveness of the algorithm compared to the state-of-the-art methods in the literature. Specifically, the algorithm discovers 18 improved best results (new lower bounds) for the 30 benchmark instances and matches the best-known results for the 12 remaining instances. We also report the first computational results with the general CPLEX solver, including 6 proven optimal solutions. Finally, we investigate the impacts of the key ingredients of the algorithm on its performance. The content of this chapter is based on an article published in Future Generation Computer Systems.

Introduction

Given its theoretical and practical significance, the SUKP has received more and more attention. As the review in Chapter 1.2.3 shows, various search methods have been proposed in the literature, including exact, approximation and metaheuristic algorithms. In particular, recent studies focused on metaheuristic algorithms which aim to find satisfactory solutions as fast as possible, without optimality guarantee of the attained solutions. These algorithms are especially useful to handle large and difficult problem instances when they cannot be solved by exact approaches. We observe that the state-of-the-art algorithms such as [FAG19; He+18; OB19] all adopted swam optimization metaheuristics. However, given that these methods are initially designed for solving continuous problems, the swam optimization based algorithms for the SUKP simulate discrete optimization via continuous search operators, instead of exploring the discrete space directly. As such, applying swam optimization to the SUKP requires various adaptations to cope with the binary feature of the SUKP. In particular, these algorithms must adopt an empirical transfer function to map the continuous space to the discrete space and maintain both continuous and discrete solutions during the search. Moreover, as indicated in [START_REF] He | A novel binary artificial bee colony algorithm for the set-union knapsack problem[END_REF], these approaches inevitably generate infeasible solutions, and therefore need a repairing procedure to handle these infeasible solutions.

In this chapter, we show for the first time that stochastic local search, which directly operates in the binary search space, can be a highly effective approach for solving the SUKP. The chapter is motivated by two considerations. First, stochastic local search has been quite successful in solving numerous challenging combinatorial problems [START_REF] Holger | Stochastic Local Search: Foundations & Applications[END_REF] [START_REF] Avci | A multi-start iterated local search algorithm for the generalized quadratic multiple knapsack problem[END_REF]. Second, given that the SUKP is basically a constrained subset selection problem with binary variables, it is natural to investigate solution methods that explore the binary search space and focus on feasible solutions. Indeed, as we show in this chapter, our discrete optimization approach based on stochastic local search is quite valuable for the SUKP.

The contributions of this chapter are summarized as follows.

-From a perspective of algorithm design, the proposed iterated two-phase local search algorithm relies on two innovative and complementary search components specially designed for the SUKP. The intensification-oriented component (first phase) employs a combined neighborhood search strategy to discover local optimal solutions. The diversification-oriented component (second phase) helps the search process to explore unvisited regions. The combination of these two complementary search phases enables the algorithm to perform an effective examination of the search space.

-From a perspective of computational performance, we show the competitiveness of the proposed algorithm compared to the state-of-the-art algorithms on the set of 30 benchmark instances commonly used in the literature. In particular, we report improved best results for 18 large instances and equal best results for the 12 remaining instances. The improved best results (new lower bounds) are useful for future studies on the problem, e.g., they can serve as references for evaluating existing and new SUKP algorithms. -Third, we investigate for the first time the interest of the general mixed integer programming solver CPLEX for solving the SUKP. We show that while CPLEX (version 12.8) can find the optimal solutions for the 6 small benchmark instances (with 85 to 100 items and elements) based on a simple 0/1 linear programming model, it fails to exactly solve the other 24 instances. These outcomes provide strong motivations for developing effective approximate algorithms to handle problem instances that cannot be solved exactly. -This work demonstrates that the discrete optimization approach based on stochastic local search is quite valuable and effective for solving the SUKP. This work invites thus more investigations in this direction, in addition to the swarm optimization based approaches.

The remaining part of this chapter is organized as follows. In Section 2.2, we present the general framework of the proposed algorithm as well as its composing ingredients. Computational results and comparisons with the best-performing algorithms and CPLEX are reported in Section 2.3. In Section 2.4, we analyze the parameters and components of the algorithm and show their effects on its performance. In the last section, we summarize the present work and discuss future research directions.

Iterated two-phase local search for the SUKP

This section is dedicated to the presentation of the proposed iterated two-phase local search algorithm (I2PLS) for the SUKP. We first show its general scheme, and then explain the composing ingredients.

General algorithm

As shown in Algorithm 1, I2PLS is composed of two complementary search phases: a local optima exploration phase (Explore) to find new local optimal solutions of increasing quality and a local optima escaping phase (Escape) to displace the search to unexplored regions.

Algorithm 1 Iterated two-phase local search for the SUKP The algorithm starts from a feasible initial solution (line 3, Alg. 1) that is obtained with a greedy construction procedure (Section 2.2.3). Then it enters the 'while' loop to iterate the 'Explore' phase and the 'Escape' phase (lines 5-11, Alg. 1) to seek solutions of improving quality. At each iteration, the 'Explore' phase (line 6, Alg. 1) first performs a variable neighborhood descent (VND) search to locate a new local optimal solution within two neighborhoods N 1 and N 2 and then runs a tabu search (TS) to explore additional local optima with a different neighborhood N 3 (Section 2.2.4). When the 'Explore' phase is exhausted, I2PLS switches to the 'Escape' phase (line 10, Alg. 1), which uses a frequencybased perturbation to displace the search to an unexplored region (Section 2.2.5). These two phases are iterated until a stopping condition (in our case, a given time limit t max) is reached. During the search process, the best solution found is recorded in S * (lines 7-8, Alg. 1) and returned as the final output of the algorithm at the end of the algorithm.

One notices that the general scheme of the I2PLS algorithm for the SUKP shares ideas of breakout local search [START_REF] Benlic | Breakout local search for the quadratic assignment problem[END_REF], three-phase local search [START_REF] Fu | A three-phase search approach for the quadratic minimum spanning tree problem[END_REF] and iterated local search [START_REF] Lourenço | Iterated local search[END_REF]. Meanwhile, to ensure its effectiveness for solving the SUKP, the proposed algorithm integrates dedicated search components tailored for the considered problem, which are described below.

Solution representation, search space, and evaluation function

Given a SUKP instance composed of m items V = {1, . . . , m}, n elements U = {1, . . . , n} and knapsack capacity C. The search space Ω includes all non-empty subsets of items such that the capacity constraint is satisfied, i.e., Ω = {S ⊂ V : S = ∅,

j∈∪ i∈S U i w j ≤ C}.
For any candidate solution S of Ω, its quality is assessed by the objective value f (S) = i∈S p i that corresponds to the total profit of the selected items.

Notice that a candidate solution S of Ω can be represented by S =< A, Ā > where A is the set of selected items and Ā are the non-selected items. Equivalently S can also be coded by a binary vector of length m where each binary variable corresponds to an item and its value indicates whether the item is selected or not selected.

The goal of our I2PLS algorithm is to find a solution S ∈ Ω with the objective value f (S) as large as possible.

Initialization

The I2PLS algorithm starts its search with an initial solution, which is generated by a simple greedy procedure in three steps. First, we calculate the total weight w i of each item i in O(mn). Second, based on the given profit p i of each item, we obtain the profit ratio r i of each item by r i = p i /w i and sort all items in the descending order according to r i in O(log(m)). Third, we add one by one the items to S by following this order until the capacity of the knapsack is reached in O(m). The time complexity of the initialization procedure is thus O(mn). From an initial solution, the 'Explore' phase (see Algorithm 2) aims to find new local optimal solutions of increasing quality. This is achieved by a combined strategy mixing a variable neighborhood descent (VND) procedure (line 6, Alg. 2, see Section 2.2.4) and a tabu search (TS) procedure (line 7, Alg. 2, see Section 2.2.4). For each VND-TS run (each 'while' iteration), the VND procedure exploits, with the best-improvement strategy, two neighborhoods N 1 and N 2 to locate a local optimal solution. Then from this solution, the TS procedure is triggered to examine additional local optimal solutions with another neighborhood N 3 . At the end of TS, its best solution (S c) is used to update the recorded best solution (S b) found during the current VND-TS run, while its last solution (S) is used as the new starting point of the next iteration of the 'Explore' phase. The 'Explore' phase terminates when the best solution (S b) found during this run cannot be updated during λ max consecutive iterations (λ max is a parameter called exploration depth).

Local optima exploration phase

Variable neighborhood descent search

Following the general variable neighborhood descent search [START_REF] Mladenović | Variable neighborhood search[END_REF], the VND procedure (Algorithm 3) relies on two neighborhoods (N 1 and N 2 , see Sections 2.2.4) to explore the search space. Specifically, VND examines the neighborhood N 1 at first and iteratively identifies a best-improving neighbor solution in N 1 to replace the current solution. When Algorithm 3 Variable Neighborhood Descent -VND

Output: Set N - 2 of sampled solutions from N 2 (S) 3: N - 2 ← ∅ 4: for each S ∈ N 2 (S) do 5: if random() < ρ then 6: N - 2 ← N - 2 ∪ {S } 7:
end if 8: end for 9: return N -

Move operators, neighborhoods and VND exploration

To explore candidate solutions of the search space, the I2PLS algorithm employs the general swap operator to transform solutions. Specifically, let S =< A, Ā > be a given solution with A and Ā being the set of selected and non-selected items. Let swap(q, p) denote the operation that deletes q items from A and adds p other items from Ā into A. By limiting q and p to specific values, we introduce two particular swap(q, p) operators.

The first operator swap 1 (q, p) (q ∈ {0, 1}, p = 1) includes two customary operations as described in the literature [LHY19; WH15; ZHG17]: the Add operator and the Exchange operator. Basically, swap 1 (q, p) either adds an item from Ā into A or exchanges one item in A with another item in Ā while keeping the capacity constraint satisfied.

The second operator swap 2 (q, p) (3 ≤ q + p ≤ 4) covers three different cases: delete two items from A and add one item from Ā into A; delete one item from A and add two items from Ā into A; exchanges two items of A against two items of Ā. These three operations are subject to the capacity constraint.

On the basis of these two swap operators, we define the neighborhoods N w 1 and N w 2 induced by swap 1 and swap 2 as follows.

N w 1 (S) = {S : S = S ⊕ swap 1 (q, p), q ∈ {0, 1}, p = 1,

j∈∪ i∈S U i w j ≤ C} (2.1) N w 2 (S) = {S : S = S ⊕ swap 2 (q, p), 3 ≤ q + p ≤ 4, j∈∪ i∈S U i w j ≤ C} (2.2)
where S = S ⊕ swap k (q, p) (k = 1, 2) is the neighbor solution of the incumbent solution S obtained by applying swap 1 (q, p) or swap 2 (q, p) to S.

N w 1 and N w 2 are bounded in size by O(|A| × | Ā|) and O(2 |A| × 2 | Ā|
) respectively. Given the large sizes of these neighborhoods, it is obvious that exploring all the neighbor solutions at each iteration will be very time consuming. To cope with this problem, we adopt the idea of a filtering strategy that excludes the non-promising neighbor solutions from consideration [START_REF] Lai | Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem[END_REF]. Specifically, a neighbor solution S qualifies as promising if f (S) > f (S b) holds, where S b is the best solution found so far in Algorithm 3. Using this filtering strategy, we define the following reduced neighborhoods N 1 and N 2 .

N 1 (S) = {S ∈ N w 1 (S) : f (S) > f (S b)} (2.3) N 2 (S) = {S ∈ N w 2 (S) : f (S) > f (S b)} (2.4)
As explained in Section 2.2.4 and Algorithm 3, the VND procedure successively examines solutions of these two neighborhoods N 1 and N 2 . Notice that swap 2 leads generally to a very large number of neighbor solutions such that even the reduced neighborhood N 2 can still be too large to be explored efficiently. For this reason, the VND procedure explores a sampled portion of N 2 at each iteration, according to the sampling procedure shown in Algorithm 4.

Tabu search

Algorithm 5 Tabu Search -TS To discover still better solutions when the VND search terminates, we trigger the tabu search (TS) procedure (Algorithm 5) that is adapted from the general tabu search metaheuristic [START_REF] Glover | Tabu search[END_REF]. To explore candidate solutions, TS relies on the swap 3 (q, p) (1 ≤ p + q ≤ 2) operator, which extends swap 1 used in VND by including the case q = 1, p = 0, which corresponds to the drop operation (i.e., deleting an item from A without adding any new item). One notices that swap 3 (1, 0) always leads to a neighbor solution of worse quality, which can be usefully selected for search diversification. We use N 3 to denote the neighborhood induced by swap 3 .

N 3 (S) = {S : S = S ⊕ swap 3 (q, p), 1 ≤ p + q ≤ 2, j∈∪ i∈S U i w j ≤ C} (2.5)
As shown Algorithm 5, the TS procedure iteratively makes transitions from the incumbent solution S to a selected neighbor solution S in N 3 . At each iteration, TS selects the best neighbor solution S in N 3 (or one of the best ones if there are multiple best solutions) that is not forbidden by the so-called tabu list (tabu_list) (line 6, Alg. 5, see below). Notice that if no improving solution exists in N 3 (S), the selected neighbor solution S is necessarily a worsening or equal-quality solution relative to S. It is this feature that allows TS to go beyond local optimal traps. To prevent the search from revisiting previously encountered solutions, the tabu list is used to record the items involved in the swap operation. And each item i of the tabu list is then forbidden to take part in any swap operation during the next T i consecutive iterations where T i is called the tabu tenure of item i and is empirically fixed as follows.

T i =      0.4 × |A|, if i ∈ A; 0.2 × | Ā| × (100/m), if i ∈ Ā.
(2.6)

TS terminates when its best solution cannot be further improved during ω max consecutive iterations (ω max is a parameter called the tabu search depth).

Frequency-based local optima escaping phase

The 'Explore' phase aims to diversify the search by exploring new search regions. For this purpose, the algorithm keeps track of the frequencies that each item has been displaced and uses the frequency information to modify (perturb) the incumbent solution. Particularly, we adopt an integer vector F of length m whose elements are initialized to zero. Each time an item i is displaced by a swap operation, F i is increased by one. Thus, items with a low frequency are those that are not frequently moved during the 'Explore' phase. Then when the 'Explore' phase terminates and before the next round of the 'Explore' phase starts, we modify the best solution S b =< A b , Āb > as follows. We delete the top η × |A b | least frequently moved items from A b (η is a parameter called perturbation strength and adds to A b randomly select items from Āb until the knapsack capacity is reached. This perturbed solution serves as the new starting solution S 0 of the next iteration of the algorithm (see line 10, Alg. 1). In Section 2.4.3, we study the usefulness of this perturbation strategy.

Experimental results and comparisons

This section presents a performance assessment of the I2PLS algorithm. We show computational results on the Set I of 30 benchmark instances (See Section 1.2.4) commonly used in the literature, in comparison with three state-of-the-art algorithms for the SUKP. We also present the first results from the CPLEX solver.

Experimental setting and reference algorithms

The proposed algorithm was implemented in C++ and compiled using the g++ compiler with the -O3 option. The experiments were carried on an Intel Xeon E5-2670 processor with 2.5 GHz and 2 GB RAM under the Linux operating system. Table 2.1 shows the setting of parameters used in our algorithm, whose values were discussed in Section 2.4.1. Given the stochastic nature of the algorithm, we ran 100 times (like in [He+18; OB19]) with different random seeds to solve each instance, with a cut-off time of 500 seconds per run.

For the comparative studies, we use as reference algorithms the following three very recent algorithms: BABC (binary artificial bee colony algorithm) (2018), which is the best performing among five population-based algorithms tested in [START_REF] He | A novel binary artificial bee colony algorithm for the set-union knapsack problem[END_REF], gPSO (binary particle swarm optimization algorithm) (2019) [START_REF] Burcin | A swarm intelligence-based algorithm for the set-union knapsack problem[END_REF] and MS (discrete moth search algorithm) (2019) [START_REF] Feng | The importance of transfer function in solving set-union knapsack problem based on discrete moth search algorithm[END_REF]. Among these reference algorithms, we obtained the code of BABC. So for BABC, we report both the results listed in [START_REF] He | A novel binary artificial bee colony algorithm for the set-union knapsack problem[END_REF] as well as the results obtained by running the BABC code on our computer under the same time limit of 500 seconds. For gPSO and MS, we cite the results reported in the corresponding papers. The results of these reference algorithms have been obtained on computing platforms with the following features: an Intel Core i5-3337u processor with 1.8 GHz and 4 GB RAM for BABC, an Intel Core i7-4790K 4.0 GHz processor with 32 GB RAM for gPSO, and an Intel Core i7-7500 processor with 2.90 GHz and 8.00 GB RAM for MS.

Additionally, we notice that until now, no result has been reported by using the general integer linear programming (ILP) approach to solve the SUKP. Therefore, we include in our experimental study the results achieved by the ILP CPLEX solver (version 12.8) under a time limit of 2 hours based on the 0/1 linear programming model presented in Section 1.2.1.

Computational results and comparisons

The computational results1 of I2PLS on the three sets of benchmark instances are reported in Tables 2.2-2.4, together with the results of the reference algorithms (BABC [START_REF] He | A novel binary artificial bee colony algorithm for the set-union knapsack problem[END_REF], gPSO [START_REF] Burcin | A swarm intelligence-based algorithm for the set-union knapsack problem[END_REF], MSO4 [START_REF] Feng | The importance of transfer function in solving set-union knapsack problem based on discrete moth search algorithm[END_REF]) where BABC* corresponds to the results by running the BABC code as explained in Section 2.3.1 and MSO4 is the best MS version among all twelve MS algorithms studied in [START_REF] Feng | The importance of transfer function in solving set-union knapsack problem based on discrete moth search algorithm[END_REF]. The first column of each table gives the name of each instance. Column 2 (Best_Known) indicates the best known value reported in the literature and compiled from [FAG19; He+18; OB19]. The best lower bound (LB) and upper bound (UB) achieved by the CPLEX solver are given in columns 3 and 4. Column 5 lists respectively the four performance indicators: best objective value (f best), average objective value over 100 runs (f avg), standard deviations over 100 runs (std), and average run times t avg in seconds to reach the best objective value. Columns 6 to 9 present the computational statistics of the compared algorithms. The best values of f best and f avg among the results of the compared algorithms are highlighted in bold and the equal values are indicated in italic. Entries with "-" mean that the results are not available.

Given the fact that the compared algorithms were run on different computing platforms and they report solutions of various quality, it is not meaningful to compare the computation times. Therefore, the comparisons are mainly based on the quality, while run times (when they are available) are included only for indicative purposes.

Finally, Table 2.5 provides a summary of the compared algorithms on all 30 benchmark instances where rows #Better, #Equal and #W orse indicate the number of instances for which each algorithm obtains a better, equal or worse f best value compared to the best-known values in the literature (Best_Known). Moreover, to further analyze the performance of our I2PLS algorithm, we use the non-parametric Wilcoxon signed-rank test to check the statistical significance of the compared results between I2PLS and each reference algorithm in terms of f best values. The outcomes of the Wilcoxon tests are shown in the last row of Table 2.5 where a p-value smaller than 0.05 implies a significant performance difference between I2PLS and its competitor.

From Tables 2.2 to 2.4, we observe that our I2PLS algorithm performs extremely well compared to the state-of-the-art results on the set of 30 benchmark instances. In particular, I2PLS improves on the best-known results of the literature for 18 out of 30 instances, while matching the best-known results for the remaining 12 instances. Notice that among these 12 instances, 6 instances with 85 and 100 items are solved to optimality by CPLEX (LB=UB), which are indeed not challenging for the other algorithms. Compared to the reference algorithms (BABC/BABC*, gPSO, MS), I2PLS reports better or equal f best values for all the tested instances without exception. In terms of the average results (f avg), I2PLS also performs very well by reporting better or equal f best values for all instances except three cases (100_85_0.15_0.85, 100_100_0.15_0.85 and 85_100_0.15_0.85) for which BABC* has better values. Moreover, I2PLS has smaller standard deviations of its f best values (f best values often better than the compared results), suggesting that our algorithm is highly robust.

The small p-values (< 0.05) of Table 2.5 from the Wilcoxon signed-rank test (2.14e-4, 4.00e-6, 2.89e-5 and 1.43e-4) confirm that the results of our algorithm are significantly better than those of the compared results (best known in the literature, BABC, BABC* and gPSO).

Finally, we complete the above presentation by showing graphical comparisons of I2PLS against BABC, BABC*, and gPSO on the three sets of 30 instances. We ignore MS of [START_REF] Feng | The importance of transfer function in solving set-union knapsack problem based on discrete moth search algorithm[END_REF] since no result is available for half of the 30 instances. The plots of Fig. 2.1 concern the best and average objective values of the compared algorithms while the plots of Fig. 2.2 are based on the standard deviations. These figures clearly indicate the dominance of the proposed I2PLS algorithm over the reference algorithms in terms of the considered indicators.

Analysis and insights

In this section, we perform an analysis of the parameters and the ingredients of the algorithm to get useful insights about their impacts on its performance.

Analysis of parameters

As shown in Table 2.1, I2PLS requires four parameters: exploration depth λ max (Section 2), neighborhood sampling probability ρ (Section 2.2.4), tabu search depth ω max (Section 2.2.4), perturbation strength η (Section 2.2.5). To analyze the sensibility and tuning of the parameters, we select 8 out of the 30 benchmark instances, i.e., 185_200_0.15_0.85, 200_185_0.15_0.85, 200_200_0.15_0.85, 300_285_0.15_0.85, 400_385_0.15_0.85, 500 _485_0.10_0.75, 500_485_0.15_0.85 and 500_500_0.15_0.85. According to Tables 2.2-2.4, the compared algorithms have a larger standard deviation for most of these instances than for other instances, implying that they are rather difficult to solve. We exclude the instances with 85 and 100 items since they can be solved exactly by the CPLEX and are thus too easy to be used for our analysis.

In this experiment, we studied each parameter independently by varying its value in a pre-determined range while fixing the other parameters to the default values shown in Table 2.1. We then ran I2PLS with each parameter setting 30 times to solve each of the 8 selected instances with the same cut-off time as in Section 2.3.2. Specifically, the exploration depth λ max takes its values in {1, 2, . . . , 10} with a step size of 1, the sampling probability ρ varies from 0.01 to 0.10 with a step size of 0.01, the tabu search depth ω max takes its values in {100, 200, . . . , 1000} with a step size of 100, and the perturbation strength η varies from 0.1 to 1 with a step size of 0.1. Fig. 2.3 shows the average of the best objective values (f best) obtained by I2PLS with the four parameters on the 8 instances. Fig. 2.3 indicates I2PLS achieves better results when λ max = 2, ρ = 0.05 (the f avg value is better when ρ = 0.05 than ρ = 0.04), ω max = 100, η = 0.5, respectively. This justifies the adopted settings of parameters as shown in Table 2.1. In addition, for each parameter, we used the non-parametric Friedman test to compare the f best values reached with each of the alternative parameter values. The resulting p -value (> 0.05) of the parameters λ max and ω max show that the differences from alternative parameter settings are not statistically significant, implying that I2PLS is not sensitive to these two parameters.

Effectiveness of the variable neighborhood descent search strategy

The VND procedure explores two neighborhoods N 1 and N 2 with a sampling probability ρ applied to N 2 . To investigate the impact of this sampling strategy, we performed an experiment by setting ρ ∈ {0.05, 0.0, 1.0}, where ρ = 0.05 is the adopted value as shown in Table 2.1, ρ = 0.0 indicates that only the neighborhood N 1 is used during the descent search while N 2 is disabled, and ρ = 1.0 indicates that the entire neighborhoods N 1 and N 2 are explored.

We denote these three VND variants by VND 0.05 , VND 0.0 and VND 1.0 respectively. Recall that the VND procedure adopts the best-improvement strategy at each iteration. However, it is interesting to observe the effect of adopting the f irst-improvement strategy in N 2 , So we included a fourth VND variant with the f irst-improvement strategy and ρ = 1.0 (denoted as VND f 1.0). We ran these four VND variants to solve the 30 benchmark instances under the condition of Section 2.3.2 and report the results in terms of f best in Table 2.6 (the best of the f best values in bold). The rows #Better, #Equal and #W orse respectively indicate the number of instances for which VND 0.0 , VND 1.0 and VND f 1.0 attain a better, equal and worse result compared to the result obtained by VND 0.05 (which is the default strategy of I2PLS). Table 2.6 shows that VND 0.05 performs the best with the setting ρ = 0.05. Compared to VND 0.05 , VND 0.0 obtains worse results on 3 instances, and equal results on the other 27 instances. VND 1.0 reaches the same results as VND 0.05 on 25 instances, and worse results on 5 instances. VND 1.0 f obtains worse results on 4 instances, and equal results on the other 26 instances. Moreover, we observe that when exploring the whole neighborhood N 2 , neither the best-improvement strategy nor the f irst-improvement strategy performs well. This can be explained by the fact that given the large size of N 2 , a thorough examination of this neighborhood becomes very expensive. Within the cut-off time, the VND search cannot perform many iterations, decreasing its chance of encountering high-quality solutions. Finally, the p -value of 4.18e-2 from the Friedman test indicates a significant difference among the compared VND strategies. This implies that the adopted VND strat-egy and sampling technique of the I2PLS algorithm are relevant for its performance.

Effectiveness of the frequency-based local optima escaping strategy

The frequency-based local optima escaping strategy of I2PLS perturbs the locally best solution S b = (A, Ā) by replacing the first η×|A| (in I2PLS, η is set to 0.5) least frequently moved items of A with items that are randomly chosen from Ā. In this experiment, we compared I2PLS against two variants with alternative perturbation strategies. In the first variant (denoted by I2PLS random), we replace 0.5 × |A| items randomly selected items of A while in the second variant (denoted by I2PLS strong) and we perform a very strong perturbation by replacing all the items of A with items of Ā (i.e., setting η to 1). We ran I2PLS, I2PLS random and I2PLS strong 30 times to solve each of the 30 benchmark instances. The computational results of this experiment are shown in Table 2.7 where in addition to the best f best values of each compared algorithm (the best of the f best values in bold), the last three rows indicate the number of instances for which I2PLS random and I2PLS strong has a better, equal and worse result compared to that of I2PLS.

Table 2.7 shows that I2PLS with its frequency-based local optima escaping strategy performs slightly better than the two variants with alternative perturbation strategies. Indeed, even if the compared strategies lead to equal results for 28 instances, I2PLS achieves a better result on two of the most difficult instances (500_485_0.10_0.75 and 500_485_0.15_0.85). This experiment tends to indicate that the frequency-based local optima escaping strategy is particularly helpful for solving difficult instances. The pvalue of 1.35e-1 from the Friedman test indicates that the compared strategies differ only marginally.

Chapter conclusion

In this chapter, we introduce the first local search approach for solving the SUKP that directly operates in the discrete search space. The proposed algorithm combines a local optima exploration phase and a local optima escaping phase based on frequency information within the iterated local search framework.

The proposed algorithm has been tested on three sets of 30 benchmark instances commonly tested in the literature and showed a high competitive performance compared to the state-of-the-art SUKP algorithms. Specifically, our algorithm has improved on the best-known results (new lower bounds) for 18 out of the 30 benchmark instances, while matching the best-known results for the remaining 12 instances. Moreover, we have investigated for the first time the interest of the general mixed integer linear programming solver CPLEX for solving the SUKP, showing that the optimal solutions can be reached only for 6 small instances. Furthermore, we have analyzed the impacts of parameters and the main components of the algorithm on its performance.

In the next chapter, we will introduce a kernel based tabu search algorithm, which features original kernel-based search components and an effective local search procedure.

KERNEL BASED TABU SEARCH FOR THE

SET-UNION KNAPSACK PROBLEM

In this chapter, we will introduce a competitive heuristic algorithm to advance the state-of-the-art for solving the SUKP. The proposed kernel based tabu search algorithm (KBTS) features original kernel-based search components and an effective local search procedure. Specifically, KBTS relies on a local search procedure to attain various local optima and a kernel search procedure to perform an additional exploration of promising search regions. Then, the non-kernel search procedure is employed to drive the search to a faraway new region. Extensive computational assessments on 60 benchmark instances demonstrate the high performance of the algorithm. We show different analyses to get insights into the influences of its algorithmic components. The content of this chapter is based on an article published in Expert Systems with Applications.

Introduction

The literature review (see Section 1.2.3) shows that the existing algorithms have a number of limitations. First, the performances of these algorithms lack stability and robustness (computational results with large standard deviations) even when solving small benchmark instances (with 85 to 100 items and elements). Second, their performances generally decrease when they are used to solve large instances (with at least 500 items and elements). Third, they consume a substantial amount of computation time to reach their reported results. Finally, most existing algorithms require a non-negligible number of parameters (e.g., 4 and 7 parameters for two leading algorithms I2PLS [START_REF] Wei | Iterated two-phase local search for the Set-Union Knapsack Problem[END_REF] and HBPSO/TS [START_REF] Lin | A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem[END_REF], respectively), making it difficult to control their performances and understand their behaviors.

In this chapter, we aim at advancing the state-of-the-art of solving the SUKP effectively and robustly in particular when large problem instances are considered. For this purpose, we investigate the first kernel based approach that overcomes the limitations mentioned above. This work is also motivated by another important consideration. In fact, the general idea of kernel has proved to be quite useful for several binary optimization problems (e.g., [START_REF] Vasquez | A "logic-constrained" knapsack formulation and a tabu algorithm for the daily photograph scheduling of an earth observation satellite[END_REF][START_REF] Wang | Backbone guided tabu search for solving the UBQP problem[END_REF][START_REF] Zhang | Configuration landscape analysis and backbone guided local search.: Part I: Satisfiability and maximum satisfiability[END_REF]). This work demonstrates for the first time its benefit for solving the SUKP, whose contributions are summarized as follows.

First, to evaluate the meaningfulness of the idea of kernel for solving the SUKP, we investigate the distribution of items among high-quality solutions. This investigation reveals the existence of kernels, which lays the basis for adopting the kernel concept to design our search algorithm. Indeed, the proposed kernel based tabu search algorithm (KBTS) integrates three complementary search components to perform an effective examination of the search space. That is, a local search procedure is used to find various local optima, a kernel search method is employed to discover additional high-quality solutions within particular areas, and a non-kernel search method is applied to ensure a guided diversification.

Second, we show the competitiveness of the proposed algorithm by comparing it with the state-of-the-art algorithms on 60 benchmark instances. We provide new lower bounds for several benchmark instances that can contribute to future research on the SUKP. Third, we make the code of our KBTS algorithm publicly available, which can help researchers and practitioners to better solve various problems that can be formulated as the SUKP.

Finally, the kernel based search components of the proposed algorithm rely on general principals that can be advantageously adapted to other binary optimization problems.

The rest of the chapter is structured as follows. Section 3.2 presents the proposed algorithm as well as its components. Section 3.3 shows computational results and comparisons with the state-of-the-art algorithms. Section 3.4 shows several analyses to shed lights on the understanding of the key ingredients of the algorithm. Conclusions are provided in the last section.

Kernel based tabu search for the SUKP

In this section, we present the KBTS algorithm for solving the SUKP. We first present its main scheme and then describe its components. The KBTS algorithm follows the flow chart shown in Fig. 3.1 and is described in Algorithm 6.

Main scheme

Start

The algorithm starts from a feasible initial solution generated by a dynamic profit-ratio mechanism (line 3, Alg. 6, and Section 3.2.3). Then it enters a 'while' loop to execute the main search process. Specifically, the input solution is improved by an iterative process (the 'repeat' loop), which includes a tabu search procedure, a kernel search procedure and a direct perturbation procedure. At each iteration of this process, the tabu search procedure (line 10, Alg. 6) is first invoked to obtain a high-quality solution with the neighborhood N f (Section 3.2.4). During tabu search, a kernel solution (S k) as well as a non-kernel solution (Sk) are created using information from a frequency counter Φ. Then the kernel search procedure (line 11, Alg. 6, and Section 3.2.5) uses the neighborhood N k to perform an intensified search around the kernel solution to seek other high-quality solutions. After that, the direct perturbation procedure (Section 3. the last local optimum found (controlled by the parameter δ), which is then used to start the next iteration of the process. This process ends when γ max consecutive iterations are reached without further improving the local best solution S b . At this point, the search is judged to be exhausted with the current search region and switches to the non-kernel search procedure (Section 3.2.7) to explore a distant and unexplored region. Finally, the whole algorithm terminates when the given time limit t max is reached and returns the overall best solution S * found during the search.

Solution representation, search space, and evaluation function

The search of the KBTS algorithm is limited to the feasible solution space Ω F satisfying the knapsack constraint. By reference to the item set V with m items, a candidate solution S of Ω F can be conveniently represented by S = (y 1 , . . . , y m) where each y i is a binary variable: y i = 1 if item i is selected, y i = 0 otherwise. A solution S can also be represented by S =< A, Ā > where A ⊆ V is the set of selected items and Ā = V \ A is the set of the remaining items. The quality of S is measured by its objective value f (S) = m i=1 p i y i .

Dynamic initialization

The KBTS algorithm adopts an original initialization procedure using a dynamic profit-ratio of non-selected items. This procedure is based on the fact that for a given solution S, the weight of each element is counted only once. When a new item k is added to S, only the new elements of k that do not belong to the subset S will impact the total weight. Therefore, in our initialization procedure, the profit-ratio of non-selected items will be recalculated according to the elements belonging to the current solution S after adding a new item into S. The dynamic profit-ratio r * k of a non-selected item k is then given by r

* k = p k / j∈U k ∧j / ∈∪ i∈S U i w j .
From an empty subset S, the dynamic initialization procedure operates as follows. First, we calculate the dynamic profit-ratio r * k of non-selected items. Second, we identify the item k with the highest r * k value and add the item into S. We iterate these two steps until the knapsack constraint is reached.

Note that the dynamic profit-ratio refines the static profit-ratio used in [START_REF] Wei | Iterated two-phase local search for the Set-Union Knapsack Problem[END_REF] and generally leads to solutions of better quality.

Tabu search procedure

The KBTS algorithm adopts the well-known tabu search (TS) metaheuristic [START_REF] Glover | Tabu search[END_REF] to explore local optima within a restricted neighborhood. As a general search method, TS needs to be adequately adapted to the specific optimization problem under consideration. One notices that TS is quite successful to solve several knapsack problems (e.g., quadratic multiple knapsack [START_REF] Qin | Hybridization of tabu search with feasible and infeasible local searches for the quadratic multiple knapsack problem[END_REF], multidimensional knapsack [GK96; Lai+18a], set-union knapsack problem [Lin+19; WH19]) and other optimization problems (e.g., [Dıéa+17; LHG20]).

Our tabu search procedure is shown in algorithm 7, whose particular features tailored to the SUKP are discussed below. Given an input solution S, the TS procedure explores the neighborhood N f (S) induced by the swap operator (see Section 3.2.4) to make transitions from the current solution to neighbor solutions. Specifically, for each 'while' iteration (lines 5-11, Alg. 7), TS selects the best neighbor solution with the neighborhood search Algorithm 7 Tabu Search procedure, which is shown in Algorithm 8. If the new selected solution S is better than the best solution S l found during tabu search, S l is updated by S. Meanwhile, the frequency counter Φ i of each selected item i in S is updated by Φ i = Φ i +1, The main search ('while' loop) terminates when the neighborhood N f (S) becomes empty (see Algorithm 8). Then the kernel solution S k and non-kernel solution Sk are created based on the frequency counter Φ, which will be presented in Sections 3.2.5 and 3.2.7.

Algorithm 8 Neighborhood Search

Move operator and neighborhood structure

From the current solution, a neighbor solution is generated by applying the popular swap operator [START_REF] Wei | Iterated two-phase local search for the Set-Union Knapsack Problem[END_REF]. Specifically, given a solution S =< A, Ā > where A ⊆ V is the set of selected items and Ā = V \ A, a swap(q, p) operation exchanges q items in A with p items in Ā, leading to a neighbor solution designated by S ⊕ swap(q, p). Note that q and p refer to the number of items involved in the swap operator. In our case, the candidate values for q and p are 0 or 1. Therefore, the swap operator includes three different operations: the Add operation with q = 0 and p = 1 (add one item from Ā into A), the Delete operation with q = 1 and p = 0 (delete one item from A) and the Exchange operation with q = 1 and p = 1 (exchange one item of A against one item of Ā). Then the basic neighborhood induced by the swap operator includes all feasible solutions obtained by S ⊕ swap(q, p).

To enhance the computational efficiency of the KBTS algorithm, we define a restricted neighborhood by using a neighborhood filtering strategy [Lai+18a; WH19] to exclude unpromising neighbor solutions. With this strategy, only neighbor solutions S of reasonable quality verifying f (S) > f (S b) are considered where S b is the best solution found so far in the current tabu search run. Formally, the filter-based neighborhood N f (S) is defined as follows.

N f (S) = {S : S = S ⊕ swap(q, p), q ∈ {0, 1}, p ∈ {0, 1}, f (S) > f (S b)} (3.1)
Furthermore, to ensure the computational efficiency when evaluating a feasible neighbor solution, we adopt the so-called gain updating strategy [Lin+19; WH19]. Specifically, we use a vector G of length n where G j (G j ∈ {0, 1 . . . , n}) records the number of appearances of element j in a solution S. Thus, only the elements that change values in G after performing swap(q, p) will be considered when calculating the total weight of a new neighbor solution S ⊕ swap(q, p). That is, for each element j, if its G j value changes from zero to non-zero, the total weight of the new solution is increased by w j ; if G j changes from non-zero to zero, then total weight of the new solution is decreased by w j . In other cases, the weight of the neighbor solution remains unchanged.

Tabu list management and aspiration criterion

Our TS procedure employs a tabu list to avoid revisiting previous encountered solutions. When a swap operation is performed, each item i involved in the swap is added in the tabu list and forbidden to move away from their respective item set for the next T i consecutive iterations, where T i is called the tabu tenure. Inspired by the tabu list management proposed in [START_REF] Vasquez | A "logic-constrained" knapsack formulation and a tabu algorithm for the daily photograph scheduling of an earth observation satellite[END_REF], our tabu tenure T i is set to the number of times item i is moved by the swap operation. As such, items with a high (low) move frequency will be forbidden for a longer (shorter) time. When no admissible move is available in the neighborhood (i.e., N f (S) = ∅), the TS procedure automatically stops.

During the tabu search, a best neighbor solution among those that are allowed by the tabu list is selected to replace the current solution. Notice that a neighbor solution is always selected if it is better than the best solution found during the TS procedure even if the solution is forbidden by the tabu list. This is the so-called aspiration criterion in tabu search [START_REF] Glover | Tabu search[END_REF].

Kernel search procedure

The tabu search procedure is able to explore different local optimal solutions with the help of the tabu list. Still, some interesting zones with better solutions may be overlooked. The kernel search procedure is introduced to perform an additional examination of particular regions identified by the so-called kernel solution.

Definition 1 Let S be a set of feasible solutions, k an integer, and Φ i the frequency of item i appearing in the solutions of S, then the kernel solution (or simply kernel) S k is the set of top k items with the highest frequencies such that Φ i ≥ Φ k and the total weight of S k does not exceed the knapsack capacity.

In the KBTS algorithm, we employ the frequency counter Φ i to keep track of the number of times each item i appears in high-quality solutions. As mentioned in Section 3.2.4 (line 9, Alg. 7), each time a better solution is found during the tabu search procedure, the frequency counter Φ i of the selected item i is updated by Φ i = Φ i + 1. Then at the end of the TS procedure, we generate the kernel S k in two steps (line 12, Alg. 7). First, we sort all items in descending order according to the values of Φ. Second, we add the top ε × |S l | most frequently appearing items to S k , where ε is a parameter called kernel coefficient and |S l | is the number of the selected items in the best solution found during tabu search. Then S k serves as the input solution S for the kernel search (KS) procedure shown in Algorithm 9.

The kernel search procedure shares the same framework with the TS procedure and employs the same neighborhood search procedure (see Algorithm 8), the same tabu list management and aspiration criterion. However, the KS procedure performs its search with the kernel based neighborhood N k (S) which is composed of neighbor solutions induced by the swap operator applied to the items of S excluding those of the kernel S k . In other words, the items belonging to the kernel S k remain fixed during the kernel search and do not take part in any swap operation. By freezing the items of the kernel during the search, the KS procedure ensures a strongly intensified examination around the kernel.

The KS procedure ends if no admissible move is available in the kernel based neighborhood N k (S). At this point, the region around the kernel is considered to be sufficiently examined and the algorithm needs to move to a new region to continue its search. For this, we employ a direct perturbation strategy that is explained in the next section. The kernel search procedure is inspired by the work presented in [START_REF] Vasquez | A "logic-constrained" knapsack formulation and a tabu algorithm for the daily photograph scheduling of an earth observation satellite[END_REF] where the notion of kernel was introduced for solving a logic-constrained knapsack problem. The KS procedure is also related to the notion of backbone which was successfully applied to solve several binary optimization problems such as satisfiability [START_REF] Zhang | Configuration landscape analysis and backbone guided local search.: Part I: Satisfiability and maximum satisfiability[END_REF] and unconstrained binary quadratic programming [START_REF] Wang | Backbone guided tabu search for solving the UBQP problem[END_REF]. This is the first application of this idea to the SUKP. Notice that given the particular feature of the SUKP, our way of defining (and identifying) kernels remains unique compared to previous studies.

Algorithm 9 Kernel Search

Direct perturbation procedure

The direct perturbation procedure aims to diversify the TS-KS process, by modifying the input local optimum S l to generate a new starting solution for the next round of the TS-KS process. Specifically, the perturbation performs δ random swap(q,p) (q ∈ {0, 1}, p ∈ {0, 1}, and excluding swap(q, p) with q = p = 0) operations to transform the input solution while ensuring the feasibility of the resulting solution, where δ is a parameter called direct perturbation strength. It is clear that larger δ values lead to more important changes of the input solution.

Non-kernel search procedure

When the TS and KS procedures (lines 9-19, Alg. 6) terminate, we employ a global diversification strategy to definitively drive the search to a faraway new region. To identify this new region, we refer to the kernel solution S k = {y 1 , . . . , y m } (described in Section 3.2.5) and define its opposite solution Sk = {x 1 , . . . , x m } such that x i = 1 -y i (i = 1, . . . , m). Then a feasible solution S is created from Sk and used as the input of the nonkernel search procedure. In order to obtain the feasible input solution S, we randomly select items from Sk and add them to S until the knapsack constraint is reached. The nonkernel search procedure follows the same search scheme (Algorithm 10) as TS and KS, but explores a different neighborhood Nk defined as follows. Specifically, during the non-kernel search, a swap operation is constrained to items that do not belong to the kernel S k . In other words, items of S k are never selected to become a part of a neighbor solution. As such, the non-kernel search has a strong diversification effect. The NKS procedure stops when the neighborhood becomes empty and the best solution found is used to initiate the next iteration of the whole KBTS algorithm.

Algorithm 10 Non-Kernel Search

Time complexity

We first consider the dynamic initialization procedure, which can be divided into two steps. The first step of updating dynamic prof it-ratio can be achieved in O(m 2 n), and the second step of finding the non-selected item with the highest r * k value is bounded by O(m 2), where m is the number of items and n is the number of elements. Thus the time complexity of the dynamic initialization procedure is O(m 2 n). Now we evaluate one iteration of the main loop of the proposed algorithm. As shown in Algorithm 6, the tabu search procedure (TS), the kernel search procedure (KS) and the non-kernel search procedure (NKS) all adopt the Neighborhood_Search (NS) framework. Given the current solution S =< A, Ā > (see Section 3.2.4), the kernel solution S k (see Section 3.2.5), and the non-kernel solution Sk (see Section 3.2.7), the corresponding complexity of one round of NS during the three procedures is O([(m

+ |A| × | Ā|)] × n), O([(m-|S k |)+(|A|-|S k |)×| Ā|]×n) and O([| Sk |+|A|×(| Sk |-|A|)]×n).
The complexity of the direct perturbation procedure is O [START_REF]Input: Input solution S o , threshold T , the maximum number of iterations IterM ax, hash[END_REF]. Let R max be the total maximum rounds of NS invoked by the TS, KS and NKS procedures. Then, the time complexity of one loop of KBTS is O(m 2 n × R max).

Let I max be the maximum number of the iterations of the KBTS algorithm (which is determined by the cut-off time t max). Then, the overall time complexity of KBTS is O(m 2 n × R max × I max). In Sections 3.3.2 and 3.4.4, we investigate the implications on the practical use of the above theoretical time complexity in terms of computational efficiency compared to existing SUKP algorithms.

Discussions

To highlight the novelties and contributions of the KBTS algorithm, we discuss below the main original features integrated in its search components.

First, the initialization procedure of Section 3.2.3 relies on an original dynamic profitratio. This strategy exploits the particular feature of SUKP that the elements of selected items can be reused regardless how many times they appear in the selected items of the current solution. The dynamic profit-ratio is thus a refined criterion compared to the static profit-ratio used in [START_REF] Wei | Iterated two-phase local search for the Set-Union Knapsack Problem[END_REF] and indeed favors the creation of high-quality initial solutions.

Second, the tabu search procedure of Section 3.2.4 has several special features that are different from other TS methods for the SUKP [Lin+19; WH19]. KBTS uses a parameterfree automatic tabu list strategy, while some parameters are required to control the tabu list and the tabu search termination in previous TS algorithms. Also, KBTS adopts an aspiration criterion to ensure that the best solution encountered is never overlooked, while no aspiration criterion is used in previous studies [Lin+19; WH19]. Third, although the general idea of kernel (or backbone) is known in the literature, we investigate for the first time the benefit of applying this idea to solve the SUKP and propose a new way of identifying and using the kernel with the KBTS algorithm. Specifically, we extract the most frequent items from a set of high-quality solutions and use them to form a kernel solution (S k). We additionally employ a parameter (kernel coefficient) to flexibly control the size of S k within a proper range, which allows the kernel search procedure of Section 3.2.5 to intensively examine a given search region delimited by the kernel.

Fourth, the non-kernel search procedure of Section 3.2.7 relies on the opposite solution Sk of the kernel S k . This is an original diversification strategy and has the advantage of diversifying the search in a guided manner. To our knowledge, such a strategy is not employed in the literature on the SUKP.

Finally, as we demonstrate in the next section, the KBTS algorithm equipped with these innovative features is able to compete very favorably with the current best algorithms for the SUKP in the literature.

Computational results and comparisons

This section is dedicated to an extensive evaluation of our KBTS algorithm and comparisons with state-of-the-art SUKP algorithms. We report computational results on two sets of 60 benchmark instances (see Section 1.2.4), available at http://www.info. univ-angers.fr/pub/hao/SUKP_KBTS.html.

Experimental protocol and reference algorithms

Computing platform. Our KBTS algorithm is programmed in C++ 1 and compiled with the g++ compiler with the -O3 option. To ensure a fair comparison, all the experiments mentioned in this work were performed on an Intel Xeon E5-2670 processor (2.5 GHz CPU and 2 GB RAM) running under the Linux operating system.

Parameter settings. The KBTS algorithm employs three parameters, whose descriptions and values are presented in Table 3.1. The effects and calibration of these parameters are presented in Section 3.4.1. The values of Table 3.1 can be considered to be the default setting and are used consistently to solve all 60 instances presented in Section 1.2.4 without any further fine-tuning.

Reference algorithms. We adopt three recent state-of-the-art algorithms: hybrid jaya algorithm (DHJaya) [START_REF] Wu | Solving the set-union knapsack problem by a novel hybrid Jaya algorithm[END_REF], hybrid binary particle swarm optimization with tabu search (HBPSO/TS) [START_REF] Lin | A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem[END_REF] and iterated two-phase local search algorithm (I2PLS) [START_REF] Wei | Iterated two-phase local search for the Set-Union Knapsack Problem[END_REF]. We also include the first binary artificial bee colony algorithm (BABC) [START_REF] He | A novel binary artificial bee colony algorithm for the set-union knapsack problem[END_REF] as a base reference. To ensure a fair comparison, we run the source codes of these algorithms (kindly provided by their authors) as well as our KBTS algorithm on our computing platform under the same stopping condition.

Stopping condition. Following [WH19], we run our KBTS algorithm and each reference algorithm to solve each of the 30 instances of Set I with a cut-off time of 500 seconds. For the 30 new large instances of Set II, the cut-off time is set to 1000 seconds. Given the stochastic nature of the compared algorithms, each instance is independently solved by each algorithm 100 times with different random seeds.

Computational results and comparisons

Tables 3.2 and 3.3 present the detailed computational results2 of the compared algorithms achieved on the two sets of benchmark instances. Column 1 gives the names of the tested instances while the asterisk (*) indicates the optimal value that are proved by CPLEX and reported in [START_REF] Wei | Iterated two-phase local search for the Set-Union Knapsack Problem[END_REF]. The best objective value (f best), the average objective value over 100 runs (f avg), standard deviation over 100 runs (std) and the average run time (to reach the f best value, denoted by t avg) of each compared algorithm are reported in the remaining columns. In addition, the last row #Avg of Tables 3 From the results of Table 3.2 on the instances of Set I, we observe that our KBTS algorithm is very competitive compared to the reference algorithms in terms of f best , f avg and std. Also, KBTS has a better average performance and very small standard deviations, indicating its high robustness. The high competitiveness of our KBTS algorithm becomes even more evident when we check the results of Table 3.3 for the 30 large instances of Set II. Indeed, KBTS dominates all the reference algorithms in all performance indicators. Moreover, KBTS requires less computation times to attain better solutions with small standard deviations, indicating its high computational efficiency and robustness. the five competing algorithms on the two sets of instances in terms of the best objective values, the average objective values and the standard deviations. The X-axis in each subfigure indicates the 30 instances of each set and the Y-axis gives the f best , f avg and std values of the compared algorithms. The plots of Fig. 3.2 clearly indicate the dominance of our KBTS algorithm over the reference algorithms and its particular advantage on the set of large instances.

Finally, Table 3.4 summarizes the comparative results between the KBTS algorithm and each reference algorithm. This table focuses on the f best and f avg indicators and shows the number of instances achieved by KBTS to obtain a better, an equal or a worse result (#Wins, #Ties and #Losses) compared to each reference algorithm. To verify the statistical significance of the comparisons of KBTS against the reference algorithms, the p-values from the non-parametric Wilcoxon signed-rank test are shown in the last column. And a p-value less than 0.05 implies a significant difference between KBTS and its competitor, while 'NA' means that the two sets of compared results are exactly the same. This summarized comparison clearly confirms the high performance of our KBTS algorithm. Indeed, for a majority of the tested instances, KBTS always reports better or equal results in terms of f best and f avg . Such a performance was never attained by any reference algorithm.

Analysis

In this section, we present an analysis of the parameters used in the proposed algorithm and the kernel based components.

Analysis of parameters

The proposed KBTS algorithm requires three parameters: kernel coefficient ε, local search depth γ max and direct perturbation strength δ. We first carry out a factorial experiment [START_REF] Montgomery | Design and analysis of experiments[END_REF] to gain insights into the effect of parameters on the algorithm performance and then perform a one-at-a-time sensitivity analysis [START_REF] David | A review of techniques for parameter sensitivity analysis of environmental models[END_REF] to calibrate the parameters. For these experiments, we select eight representative instances from Set II: 785_800_0.15_0.85, 800_785_0.15_0.85, 800_800_0.15_0.85, 885_900_0.15_0.85, 900_885_0.15_0.85, 985_1000 _0.10_0.75, 1000_985_0.10_0.75 and 1000_1000_0.10_0.75.

These instances are difficult since the results reported by different algorithms (see Table 3.3) show large standard deviations. We employ a 2-level full factorial experiment to observe the interaction effects between the parameters. The levels of the three parameters are shown in Table 3.5. For this ex-3.4. Analysis periment, each instance was independently solved 20 times with different combinations of parameters. Then we consider the average value of the best objective values (f best) obtained on the eight instances for each parameter combination. We verify the normality of data distributions and the variance homogeneity. We show the main effects of the parameters in Fig. 3.3 and the analysis of the variances in Table 3 From Fig. 3.3, we can observe that the effects of the parameter kernel coefficient and local search depth are positive, while the effect of direct perturbation strength is negative.

The p-values (< 0.05) in columns 2-3 of Table 3.6 indicate that the performance of the algorithm is sensitive to the setting of kernel coefficient and local search depth. Moreover, it makes sense to check the interaction effects between the parameters. From Table 3.6, we can observe that the p-values of the last four columns are all greater than 0.05, which indicates that the interaction effects among the parameters are not statistically significant. Now we perform a one-at-a-time sensitivity analysis to determine a suitable value for each parameter. Based on a reasonable range of parameter values: ε ∈ {0.1, 0.2, ..., 1}, γ max ∈ {1, 2, ..., 10} and δ ∈ {1, 2, ..., 10}, we test the values of each parameter independently while keeping the other parameters fixed to the values of Table 3.1. For this, we run the algorithm with each parameter setting 30 times to solve each instance. Fig. 3.4 shows the average of the best objective values (f best) attained by KBTS with different parameter settings. The X-axis indicates the ranges of the three parameters, i.e., 1 to 10 for γ max and δ, 0.1 to 1 for ε. From Fig. 3.4, we observe that KBTS reaches its best performance with ε = 0.6, γ max = 3 and δ = 3. These values are thus used to define the default parameter setting shown in Table 3.1 of Section 3.3.1.

Impact of kernel search and non-kernel search

The proposed KBTS algorithm relies on the notion of kernel and the associated kernel search and non-kernel search procedures. To assess the usefulness of these components, we create a KBTS variant (denoted by KBTS -) by disabling the kernel search procedure (i.e., removing line 11 in Alg. 1) and replacing the non-kernel search procedure with a random strategy (i.e., we generate randomly a feasible solution S of line 23 in Alg. 1). We run KBTS and KBTS -30 times according to the experimental protocol given in Section 3.3.1 to solve each instance of Set II and report the results in Table 3.7. In this table, we show the f best , f avg and std values. The row #Avg indicates the average value of each column and the row #Best shows the number of instances for which an algorithm achieves the best results between the two set of results.

The results show that compared to KBTS, the KBTS -variant obtains worse f best values for 7 instances, and worse f avg values for 5 instances, leading to worse #Avg values of these performance indicators. Table 3.7 also indicates that KBTS -deteriorates the results of KBTS for the most difficult instances (with 785 to 1000 items and elements), which reveals that the kernel search procedure is particularly useful for solving difficult instances. Furthermore, the Wilcoxon signed-rank tests in terms of f best (p-value < 0.05) confirm that the performance differences between KBTS and KBTS -are statistically significant.

Distribution of high-quality solutions and rationale of kernel search

To understand why the notion of kernel is pertinent, we present a study on distributions of items in high-quality solutions. This study is based on a selection of four representative instances: 500_485_0.15_0.85, 500_500_0.15_0.85, 1000_1000_0.10_0.75, 1000_1000_0.15_0.85. For each instance, we run KBTS 30 times to obtain 30 high-quality solutions and then extract frequency statistics of selected items in these solutions, as shown in Fig. 3.5. The X-axis in each sub-figure indicates the number of selected items and the Y-axis refers to the frequency that one item appears in these solutions. We also present the number of items corresponding to each frequency on the right side of the Y-axis and the bottom value in this column corresponds to the number of items with a frequency of 0. Since this bottom value is much larger than the other values corresponding to the frequencies in the range {1, ..., 30}, we don't draw its corresponding plot for the convenience of observation. From Fig. 3.5, we observe that the frequency of most items being selected in a solution is polarized, that is, these items are either selected many times or are rarely selected. In particular, almost 90% of the items in each of these four instances never belong to a high-quality solution. This experiment thus indicates that high-quality solutions often contain several identical items (which form a kernel), providing a supporting argument for the usefulness of the kernel based components of the KBTS algorithm.

Time-to-target analysis

To further assess the computational efficiency of the proposed KBTS algorithm with respect to the reference algorithms (BABC, DHJaya, HBPSO/TS, I2PLS, and KBTS), we present a time-to-target (TTT) analysis [ARR07; RRV12]. Basically, TTT shows the computation time required by an algorithm to attain a given target objective value. This analysis is based on four representative instances of Set II, i.e., 585_600_0.10_0.75, 600_600_0.15_0.85, 800_785_0.15_0.85, 1000_985_0.10_0.75. For each instance, we set the target value to be a value, which can be reached by all the compared algorithms (10000, 8800, 8700 and 9000, respectively) and record the time (over 100 runs) of each algorithm to reach a solution with an objective value at least as good as the given target value. The time-to-target plots are shown in Fig. 3.6, where the time required to achieve the target value and the corresponding cumulative probability are displayed on the X-axis and Y-axis, respectively.

! !"# !"$!"% !"& !"' !"(!") !"* !"+ # ! #!! $!! %!! &!! '!! (!!)!! *!! +!! #!!! !"#$%$&'&()
*&+, (# (%"-,(.%'/, #0 1/2345654788489:8489;5

!"!# $%&'(' %!)*+ ,-).* /!0* ! !"# !"$!"% !"& !"' !"(!") !"* !"+ # ! #!! $!! %!! &!! '!! (!!)!! *!! +!! #!!! !"#$%$&'&()
*&+, (# (%"-,(.%'/, #0 1/2347884788489:548965

!"!# $%&'(' %!)*+ ,-).* /!0* ! !"# !"$!"% !"& !"' !"(!") !"* !"+ # ! #!! $!! %!! &!! '!! (!!)!! *!! +!! #!!! !"#$%$&'&()
*&+, (# (%"-,(.%'/, #0 1/2345664758469:846958

!"!# $%&'(' %!)*+ ,-).* /!0* ! !"# !"$!"% !"& !"' !"(!") !"* !"+ # ! #!! $!! %!! &!! '!! (!!)!! *!! +!! #!!! !"#$%$&'&()
*&+, (# (%"-,(.%'/, #0 1/234:6664;58469:646978 From Fig. 3.6, we observe that our KBTS algorithm has a very high computational efficiency, surpassing all the reference algorithms according to the cumulative probability. The lines of KBTS strictly runs above the lines of the reference algorithms, revealing that our algorithm has always a higher probability to reach the given target value.

!"!# $%&'(' %!)*+ ,-).* /!0*

Chapter conclusion

In this chapter, we presented the kernel based tabu search algorithm, which combines for the first time the notion of kernel with the powerful tabu search method. Our computational study performed on two sets of 60 benchmark instances indicated that the proposed algorithm dominates the current best SUKP algorithms in the literature in terms of solution quality, robustness and computation time. This dominance was particularly evidenced on large and difficult benchmark instances with at least 500 items and elements. Compared to the existing SUKP algorithms, the proposed algorithm requires only three parameters, making it more suitable to use in practice. Given that the SUKP has a number of interesting applications, the proposed algorithm provides a valuable tool for solving these real world problems. The availability of the source code of our algorithm and its high computational efficiency certainly facilitates such applications.

In the next chapter, we will carry on studying the SUKP and propose a multistart solution-based tabu search algorithm for solving the problem.

Introduction

The tabu search technology [START_REF] Glover | Tabu search[END_REF] has been successfully applied to solve many difficult optimization problems. Although most studies rely on the popular and well-known attribute-based tabu search (ABTS) as exemplified by the studies of [Lin+19; Lu+18; PB19; WH20a; Zho+20], recent studies indicated that the solution-based tabu search (SBTS) [CB96; WZ93] is a highly competitive approach for solving several notoriously difficult binary optimization problems such as 0/1 multidimensional knapsack [START_REF] Lai | A two-phase tabu-evolutionary algorithm for the 0-1 multidimensional knapsack problem[END_REF], multidemand multidimensional knapsack [START_REF] Lai | Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem[END_REF], minimum differential dispersion [START_REF] Wang | Effective metaheuristic algorithms for the minimum differential dispersion problem[END_REF], and maximum min-sum dispersion [START_REF] Lai | Solution-based tabu search for the maximum min-sum dispersion problem[END_REF] and obnoxious p-median [START_REF] Chang | Parallel iterative solution-based tabu search for the obnoxious p-median problem[END_REF]. Compared to the ABTS method, SBTS has the advantage of avoiding the use of tabu tenure and simplifying the determination of tabu status. Moreover, the intensification ability of SBTS tends to be stronger than that of ABTS. In addition, the study reported in [START_REF] Lai | Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem[END_REF] on SBTS and our study (see Section 4.4.3) reveal that SBTS is more suitable than ABTS for solving a number of binary optimization problems. However, SBTS requires more resources (to record all the encountered solutions) than ABTS. More information on the SBTS approach can be found in recent studies such as [Cha+21; LHY19; Lai+18b; WWG17], while some interesting studies using ABTS are provided in [Lu+18; NY19; PB19; SA21; Zho+20].

To the best of our knowledge, no study has been reported in the literature investigating the interest of the SBTS approach for solving the SUKP. In this work, we fill the gap by introducing the first multistart solution-based tabu search algorithm (MSBTS) for the SUKP and provide additional indications of the benefits of the SBTS approach for binary optimization. The main contributions of this work are summarized as follows.

First, the proposed MSBTS algorithm integrates a dedicated solution-based tabu search approach and a multistart mechanism to ensure an effective and efficient examination of candidate solutions. During the search, each visited solution is recorded in a tabu list implemented with the help of a hash function based method such that the tabu status of a candidate solution can be easily determined in constant time. The multistart mechanism is employed to escape local optima traps. The algorithm is simple in design and frees the user from the delicate task of calibrating parameters. Second, we report new best-known results (improved lower bounds) for 7 large instances, which are useful for future research on the SUKP. Third, we will make the code of our algorithm publicly available, which can be used by researchers and practitioners to solve various problems that can be formulated by the SUKP model.

The rest of the paper is structured as follows. In Section 4.2, we describe the general solution approach of the proposed algorithm and its main components. Section 4.3 is devoted to the performance assessment and comparisons with state-of-the-art algorithms. We analyze in Section 4.4 the influences of important components of the algorithm, followed by conclusions in the last section.

Multistart solution-based tabu search for the SUKP

Search space, solution representation, and evaluation function

Given a SUKP instance composed of m items, n elements, and knapsack capacity C, the proposed MSBTS algorithm explores the feasible search space Ω F which includes all feasible candidate solutions corresponding to non-empty subsets of items satisfying the knapsack constraint, i.e., Ω F = {y ∈ {0, 1} m :

j∈U i w j ≤ C, U i = {i : y i = 1}, 1 ≤ i ≤ m, 1 ≤ j ≤ n} (4.1)
Thus, a candidate solution S in Ω F can be expressed by a m-dimensional binary vector S = (y 1 , . . . , y m), where y i takes 1 if item i is selected, and 0 otherwise. Let A = {q : y q = 1 in S} and Ā = {p : y p = 0 in S}, a candidate solution can be equivalently represented by S =< A, Ā >.

Additionally, the quality of a candidate solution S is determined by the objective function value f (S) (Equation 1.21) of SUKP. Since SUKP is a maximization problem, a larger f value indicates a better solution.

Main framework

The MSBTS algorithm follows the flow chart shown in Fig. 4.1 and is described in Algorithm 11.

The basic idea of the MSBTS algorithm (see Alg. 11) is to repeat a greedy randomized initialization procedure (Section 4.2.3) followed by a solution-based tabu search procedure

Greedy randomized initialization

The quality of initial solutions may impact the performance of the algorithm. In this work, we adopt a greedy randomized initialization procedure to generate initial solutions of good quality.

Let W (S) be the total weight of the current solution S and W k be the additional weight of a non-selected item k, where W k is defined by

W k = j∈U k ∧j / ∈∪ i∈S U i w j .
Then the feasible non-selected items can be expressed by R(x) = {k ∈ Ā : W k + W (S) ≤ C}, where Ā is the set of non-selected items. Following [START_REF] Chen | An iterated "hyperplane exploration" approach for the quadratic knapsack problem[END_REF], we employ a restricted candidate list (denoted by RCL) to record rcl feasible non-selected items belonging to R(x), where rcl is the maximum size of RCL. A too large rcl value will make many items to be recorded in RCL and thus result in an initial solution of poor quality, while a too small rcl value will limit the possible choices and lead to insufficient diversity of the initialization procedure.

In our case, we set empirically rcl = max{m, n}, where m and n are the number of items and elements respectively. Considering the fact that the number of items in R(x) may be less than rcl, we finally set the size of RCL by |RCL| = min{rcl, |R(x)|}. Now, we build the restricted candidate list as follows. For each item k of R(x), we calculate its dynamic profit ratio r * k = p k /W k . Then we identify the top |RCL| items with the largest r * values to form RCL. As the result, RCL contains the feasible non-selected items whose dynamic profit ratio is larger than the other non-selected items. Finally, each item k in RCL is selected with probability P k , which is given by

P k = r * k / |RCL| l=1 r * l .
Algorithm 12 Greedy Randomized Initialization As shown in Algorithm 12, starting from an empty solution S, the initialization procedure randomly and adaptively adds feasible items k into S at each iteration of the 'while' loop (lines 5-11). Specifically, the initial solution is generated by four steps. First, we calculate the additional weight W k of each non-selected item k (line 6), and add all items k with W k = 0 into the current solution S, which means adding this item will not increase the total weight of S (lines 7). Second, we calculate the dynamic profit ratio r * k of each item k in R(x) with W k = 0 (line 8). Third, we calculate the selection probability P k of each item k (line 9). Fourth, we randomly add one item from RCL into S according to P k (line 10). These four steps are repeated until the knapsack capacity is reached. As shown in Fig. 4.2, we present a numerical example to illustrate the main steps of the greedy randomized initialization procedure. Given a set of six items (I i , i = 1, . . . , 6) with a profit of 1 to 6 respectively and a set of 6 elements (E j , j = 1, . . . , 6) with a weight of 1 to 6 respectively. Let the capacity of knapsack be equal to 16. At the step shown in the left figure, two items I 1 and I 2 are already added into the knapsack. We calculate additional weight W i of each non-selected item i and find that W 3 = 0 (the elements E 1 and E 5 corresponding to item I 3 are already selected). Then we add the item I 3 into the knapsack and obtain the new solution shown in the right figure. Next, we calculate the dynamic profit ratio of the non-selected items and identify items I 4 and I 5 as belonging to RCL (in this case, |RCL| = 2). Finally, we add one of the two items into the knapsack according to the probability P k .

Solution-based tabu search

Tabu search (TS) is a general and powerful metaheuristic for combinatorial optimization [START_REF] Glover | Tabu search[END_REF]. Typically, TS examines candidate solutions by iteratively transitioning from the current solution to a nearby (neighbor) solution by following a neighborhood. Each solution transition is performed by selecting the best admissible candidate among the neighboring solutions within the neighborhood. The key distinguishing feature of TS compared to other local optimization approaches is its tabu list strategy, which prevents the search from revisiting previously encountered solutions. With the so-called solution-based tabu search [CB96; WZ93], the tabu list is implemented with hash vectors and associated hash functions. Contrary to the popular attribute-based tabu search approach which typically needs some parameters for tabu list management, solution-based tabu search has the advantage of eliminating such parameters.

In the context of solving the SUKP, the best-performing algorithms are all based on the conventional attribute-based TS approach [Lin+19; WH19; WH20a]. This work adopts for the first time the solution-based tabu search approach for solving the SUKP, which leads to an effective algorithm while avoiding the difficulty of tuning parameters.

Algorithm 13 shows the general scheme of our solution-based tabu search (SBTS) procedure. After initializing the best solution found so far (line 3) and the associated hash vectors (i.e., tabu list, line 4), the SBTS procedure iteratively improves the current solution S (lines 6-20) until 1) no admissible neighboring solution (i.e., feasible and nontabu neighboring solution) exists, or 2) the allowed cut-off time t max is reached. Given the optimization function f , the neighborhood structure N (Section 4.2.4) and the tabu list management strategy (Section 4.2.4), the current solution S is replaced by a best admissible neighboring solution at each iteration of the SBTS procedure. And then the tabu list is updated with the newly obtained solution S. The best solution found during this procedure is recorded in S b (lines 14-16) and returned as the output of SBTS. Note that the best admissible neighboring solution S is not necessarily better than S b , but it will still be selected to replace the current solution S. In this way, the search can keep moving forward to discover better solutions without being trapped in local optima.

The SBTS procedure terminates under one of the two following conditions: (1) the overall cut-off time is reached; (2) no admissible neighboring solution can be found in the neighborhood, i.e., N (S) = ∅ where N (S) ⊆ N (S) is the set of the admissible neighboring solutions not forbidden by the tabu list. Upon the termination of the SBTS procedure, two cases are considered: the overall cut-off time is reached and then the whole algorithm terminates. Otherwise, the algorithm re-starts its search by using the greedy randomized initialization procedure to creating a new starting solution, which is used to seed the next round of the SBTS procedure.

Next, we present the main ingredients of SBTS, including the move operator, the neighborhood structure and the tabu list strategy.

Move operator and neighborhood structure

Our SBTS procedure relies on two popular move operators, i.e., the f lip operator and the swap operator to explore candidate solutions. Specifically, given a solution S = (y 1 , . . . , y m) as described in Section 4.2.1, the f lip(i) operator changes the value of a variable y i to its opposite value 1 -y i . Similarly, given a solution S =< A, Ā >, the swap(q, p) operator exchanges one item in A against one item in Ā, where q and p rep- (S) and N s (S) induced by f lip(i) and swap(q, p) are defined as follows, respectively.

N f (S) = {S : S = S ⊕ f lip(i) : 1 ≤ i ≤ m, f (S) > f (S b)} (4.2) N s (S) = {S : S = S ⊕ swap(q, p) : q ∈ A, p ∈ Ā, f (S) > f (S b)} (4.3)
In this work, we employ a union neighborhood that covers both neighborhoods N f (S) and N s (S), i.e., N (S) = N f (S) ∪ N s (S). Moreover, we also apply a streamlining gain updating strategy to quickly evaluate the weight of each neighboring solution (see [START_REF] Lin | A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem[END_REF][START_REF] Wei | Kernel based tabu search for the Set-union Knapsack Problem[END_REF] for more details).

Tabu list management strategy using hash functions

During the SBTS procedure, the current solution S is iteratively replaced by the best admissible neighboring solution S , which is identified according to the objective function value and the tabu list strategy described in this section. Unlike the traditional attributebased tabu search, where the tabu list records the performed moves, our solution-based tabu search uses hash vectors and hash functions to implement the tabu list.

Following previous studies [Lai+18a; LHY19; Lai+18b; WWG17], our tabu list management strategy relies multiple hash vectors and hash functions, which helps significantly reduce the probability of wrong identification of the tabu status. Specifically, we adopt three hash vectors H v (v = 1, 2, 3) of length L, where each position takes a binary value which contributes to the definition of the tabu status of candidate solutions. The hash vectors are initialized to 0, indicating that no candidate solution is classified as tabu. Once a candidate solution is selected to replace the current solution S, the corresponding positions in the three hash vectors will be set to 1 (i.e.,

H v [h v (S)] ← 1, v = 1, 2, 3).
Given a candidate solution S = (y 1 , . . . , y m) where y i = 1 if item i is selected, and y i = 0 otherwise, the hash values h v (S) (v = 1, 2, 3) are calculated by

h v (S) = (m i=1 W v i × y i) mod L (4.4)
where L is the length of the hash vectors and is set to 10 8 . And W v i is a pre-computed weight that satisfies the following relation:

W v i = i γv (v = 1, 2, 3 and i = 1, . . . , m)
, where γ v is a parameter that takes different values for the three hash functions (γ v = 1.2, 1.6, 2.0). To reduce the possible collisions that occur with hash functions, we randomly shuffle the order in the pre-computed weight vector W v in order to ensure an extended distribution of hash values of the solutions. Fig. 4.3 shows an illustrative example of this shuffling operation with five items and γ v being set to 1.2, 1.6, 2.0, respectively. The left figure indicates the pre-computed weights W v i (v = 1, 2, 3, and i = 1, . . . , 5). Then the order of each of the three weight vectors W v is randomly shuffled to obtain a new weight vector shown in the right figure. Our preliminary experiment indicates that this random shuffling operation helps to reduce the error rates of the hash functions. We present the rationale for the setting of γ v and an analysis of the hash functions in Section 4.4.1. The hash-based tabu list management strategy works as follows. Given a candidate solution S = (y 1 , . . . , y m), we first calculate the three hash values h v (S) that are the indexes of the hash vectors. Then, the tabu status of solution S is determined according to the values of the hash vectors H v [h v (S)]. Specifically, S is determined as a forbidden solution (i.e., already visited) when

H 1 [h 1 (S)]∧H 2 [h 2 (S)]∧H 3 [h 3 (S)] = 1.
Otherwise, S is classified as an unforbidden solution that has not been visited by this round of SBTS and is eligible for solution transition. In this way, we can quickly determine the tabu status of a neighboring solution in O(1), and this is the main advantage of the hash-based tabu list management strategy. For the illustrative example shown in Fig. 4.4, solution S is classified as tabu and thus is excluded for solution transition.

Computational complexity and discussion

From an empty subset S, the greedy randomized initialization procedure (Section 4.2.3 and Algorithm 12) creates a solution in four steps. The first step calculates additional weights in O(m × n), where m is the number of items and n is the number of elements. The second step calculates the dynamic profit ratio and identifies the top items with a complexity of O(m × log(m)). The third step of calculating probability can be realized in O(|RCL|) and the fourth step of adding one item can be achieved in O [START_REF]Input: Input solution S o , threshold T , the maximum number of iterations IterM ax, hash[END_REF]. Then the time complexity of the initialization procedure is O(m × n × K 1), where K 1 is the maximum iterations of the initialization procedure. For the main solution-based tabu search procedure (Section 4.2.4 and Algorithm 13), we can evaluate its complexity as follows. Let S =< A, Ā > be a given input solution, the complexity of one iteration of the SBTS procedure is O((m

+ | Ā| × |A|) × n). Let K 2 be the maximum iterations of SBTS. Then the time complexity of SBTS is O((m + | Ā| × |A|) × n × K 2).
Now we discuss the relations between our algorithm and the existing tabu search algorithms for the SUKP [Lin+19; WH19; WH20a]. First, MSBTS is the first solutionbased tabu search algorithm for the SUKP, while the existing TS algorithms are based on the conventional attribute-based TS approach. Second, MSBTS employs a new tabu list management strategy that avoids tuning the tabu tenure. Third, unlike the previous TS algorithms that uses a perturbation procedure, MSBTS does not need such specific diversification strategies. Yet, it achieves remarkable results, as it is shown in Section 4.3.

Finally, it is worth mentioning that the solution-based tabu search approach has led to highly effective algorithms for several NP-hard binary problems such as 0-1 multidimensional knapsack [START_REF] Lai | A two-phase tabu-evolutionary algorithm for the 0-1 multidimensional knapsack problem[END_REF], multidemand multidimensional knapsack [START_REF] Lai | Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem[END_REF], minimum differential dispersion [START_REF] Wang | Effective metaheuristic algorithms for the minimum differential dispersion problem[END_REF] and maximum min-sum dispersion [START_REF] Lai | Solution-based tabu search for the maximum min-sum dispersion problem[END_REF] and obnoxious p-median [START_REF] Chang | Parallel iterative solution-based tabu search for the obnoxious p-median problem[END_REF]. Our study of using solution-based tabu search for the SUKP further confirms the usefulness of this approach for binary optimization.

Computational results and comparisons

This section is devoted to a computational assessment of the proposed MSBTS algorithm, in comparison with three best-performing SUKP algorithms in the literature based on two sets of 60 benchmark instances available at http://www.info.univ-angers.fr/ pub/hao/SUKP_MSBTS.html.

Benchmark instances

The SUKP benchmark instances adopted in our experiments were commonly tested in the literature, which can be divided into Set I and Set II. The Set I instances were proposed in [START_REF] He | A novel binary artificial bee colony algorithm for the set-union knapsack problem[END_REF] with 85 to 500 items and elements, while the Set II instances were introduced in [START_REF] Wei | Kernel based tabu search for the Set-union Knapsack Problem[END_REF] with 585 to 1000 items and elements. These 60 instances share the same characteristics. An instance is defined by m items, n elements and an associated binary relation matrix R ij [m × n], where R ij = 1 means that item i contains element j. Each instance is further characterized by two parameters: the density α of R ij = 1 in the relation matrix R (i.e., α = (m i=1 n j=1 R ij)/(mn)) and the ratio β of knapsack capacity C to the total weight of the elements (i.e., β = C/ n j=1 w j). As indicated in [He+18; WH20a], for the 60 instances tested in this study, α is equal to 0.10 or 0.15, while β is equal to 0.75 or 0.85.

Experimental settings

The proposed MSBTS algorithm was implemented in C++ and compiled using the g++ compiler with the -O3 option. All the experiments were carried out on an Intel Xeon E5-2670 processor (2.5 GHz CPU and 2 GB RAM) running under the Linux operating system. The MSBTS algorithm used the same stopping conditions for the reference algorithms (see below), i.e., 500 seconds for the Set I instances and 1000 seconds for the Set II instances. Each instance was solved 100 times independently with different random seeds. Note that contrary to the existing algorithms, our algorithm eliminates the need for tuning parameters.

Among the existing algorithms for the SUKP in the literature, we identify four best performing algorithms according to the reported computational results: hybrid jaya algorithm [START_REF] Wu | Solving the set-union knapsack problem by a novel hybrid Jaya algorithm[END_REF] (DHJaya, 2019), hybrid binary particle swarm optimization with tabu search algorithm [START_REF] Lin | A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem[END_REF] (HBPSO/TS, 2019), iterated two-phase local search algorithm [WH19] (I2PLS, 2019) and the kernel based tabu search algorithm [START_REF] Wei | Kernel based tabu search for the Set-union Knapsack Problem[END_REF] (KBTS, 2020). We thus use them as the reference algorithms for our comparative study. Since the results of these algorithms were obtained in [START_REF] Wei | Kernel based tabu search for the Set-union Knapsack Problem[END_REF] on the same computing platform and under the same stopping condition as in this work, we directly adopt these results in our study.

Computational results

The computational results of our MSBTS algorithm and the reference algorithms on the SUKP instances of Set I and Set II are reported in Table 4.1 and 4.2, respectively 1 . The first column of these two tables gives the name of each instance, where the asterisk (*) denotes that the optimal value proved by CPLEX [START_REF] Wei | Iterated two-phase local search for the Set-Union Knapsack Problem[END_REF]. The remaining columns report the following information: the best objective value (f best), the average objective value (f avg), the standard deviations over 100 runs (std) and the average run times t avg (to obtain the f best value) of each involved algorithm. The row #Avg shows the average value of each column. Furthermore, the bold entries highlight the dominating values among the compared results, while the italic entries indicate the equal best values.

Comparing the results of Table 4.1 leads to the following comments. First, in terms of the best performance indicator, MSBTS can attain all the best-known f best results on all the 30 instances of Set I, thus dominating DHJaya and matching the performance of the best algorithms I2PLS and KBTS. Second, in terms of the average performance indicator, our MSBTS algorithm dominates DHJaya and competes favorably with HBPSO/TS and I2PLS, while performing marginally worse than KBTS even if MSBTS has better f avg results on five large instances with 485 to 500 items and elements. It is difficult to further compare the competing algorithms on Set I, since the p-values in Table 4.3 from the non-parametric Wilcoxon signed-rank test don't show a statistical difference at 0.05 significance level between MSBTS and the reference algorithms except DHJaya. So we focus on Set II for a more detailed comparison. Table 4.2 on the 30 instances of Set II discloses that our MSBTS algorithm outperforms the reference algorithms on large size instances. Specifically, MSBTS matches the bestknown f best values for the remaining 23 instances, and remarkably, finds 7 new bestknown results (improved lower bounds). Most of these 7 instances have 985 to 1000 items, which demonstrates the advantage of our algorithm on the most difficult instances. When considering the average performance, MSBTS remains highly competitive compared to the reference algorithms. On the other hand, MSBTS has a zero std value on 20 instances while the reference algorithms achieve less zero std values (0 for DHJaya, 1 for HBPSO/TS, 2 for I2PLS and 6 for KBTS), which shows the robustness of our algorithm. Moreover, the smallest #Avg value of the corresponding t avg entries obtained by MSBTS demonstrates that our algorithm is more computational efficient than the reference algorithms on this set of SUKP instances. We show a detailed time-efficiency comparison of our MSBTS algorithm with the reference algorithms in Section 4.3.4.

In order to better highlight the advantage of the proposed MSBTS algorithm, we summarize the comparative results between MSBTS and each reference algorithm in Table 4.3. The first two columns of the table give the pairs of two compared algorithms and the corresponding instance sets, respectively. Columns #Wins, #Ties and #Losses show the number of instances for which MSBTS obtains a better, equal and worse result according to the f best and f avg indicators. The last column indicates the p-values from the Wilcoxon signed-rank test, where 'NA' implies that two underlying groups of results are exactly the same. From Table 4.3, we can observe that MSBTS achieves better or equal results in terms of f best on all the tested instances, while being better in terms of f avg on most instances. Note that KBTS reports more f avg values better than MSBTS for Set I (13 vs 6). However, the Wilcoxon signed-rank test in Table 3 (p-value = 9.10e-2 > 0.05) indicates that there is no statistically significant difference. Furthermore, as shown in the last column, the p-values (< 0.05) obtained between MSBTS and each compared algorithm on the instances of Set II confirm the statistically significant difference of the compared results.

Time-to-target analysis

We now present a time-to-target analysis (TTT) to evaluate the computational efficiency of the proposed MSBTS algorithm compared to the reference algorithms. For this, we compare the time required for each algorithm to obtain a solution at least as good as a given target value and measure the empirical probability distributions. More details about TTT can be found in [ARR07; RRV12]. Specifically, we run each compared algorithm 100 times to solve each instance of Set II with the setting shown in Section 4.3.2 and recorded the time to achieve an objective value at least as good as the given target value (the algorithm stops immediately when it reaches the target value). Then we sorted the times in increasing order and calculated the probability ρ i = (i -0.5)/100 with each time T i , where T i corresponds to the ith smallest time.

Table 4.4 shows the experimental results of DHJaya, HBPSO/TS, I2PLS, KBTS and MSBTS on the instances of Set II. The first two columns give the name of each instance and the corresponding target value, respectively. The remaining columns report the best time (T best) in seconds to achieve the target value and the average time (T avg) in seconds to reach the target value over 100 runs. The row (#Avg) indicates the average value of each column. And the row #Best shows the number of instances for which an algorithm obtains the smallest T best value among the compared algorithms. Moreover, to check whether there exists a significant difference between the proposed MSBTS algorithm and the compared algorithms in terms of T best and T avg , we report the p-values from the Wilcoxon signedrank test in the last row. From Table 4.4, we observe that the proposed MSBTS algorithm is very competitive compared to the reference algorithms in terms of T best and T avg . In particular, MS-BTS attains the smallest T best values for 22 instances (out of 30) against 0 for DHJaya, HBPSO/TS, I2PLS and 8 for KBTS. Also, MSBTS has a better average performance according to the #Avg values in the last row. The p-values (< 0.05) from the Wilcoxon signed-rank test clearly indicate that differences between MSBTS and the compared algorithms are statistically significant.

To further illustrate the computational efficiency of MSBTS compared to the reference algorithms, we plot the points (T i , ρ i) based on two SUKP instances of Set II and show the time-to-target plots in Fig. 4.5. The X-axis in each sub-figure indicates the time to achieve the target value, and the Y-axis is the cumulative probability of reaching the given target value. We observe that the cumulative probability of each algorithm increases with the run-time. However, MSBTS (also KBTS) attains a high probability (over 90%) in a very short computation time (less than 20 seconds) on both instances, while the other algorithms perform poorly. Regarding MSBTS and KBTS, in order to attain a probability of 99.5% of reaching the target value, MSBTS requires about 12 seconds on both instances, while KBTS consumes around 42 seconds and 26 seconds. Note that DHJaya failed to obtain the probability of 99.5% within the time limit of 1000s on both instances. This experiment demonstrates the computational efficiency of the proposed MSBTS algorithm.

Analysis

In this section, we perform additional experiments to investigate the influences of the main ingredients of the MSBTS algorithm. Specifically, we study the effect of the parameter γ v of the hash functions (Section 4.4.1), the error rates of hash functions (Section 4.4.2) and the benefit of the solution-based tabu search strategy (Section 4.4.3).

Sensitivity analysis of hash functions

Hash functions are the key ingredients of the MSBTS algorithm. Now, we analyze the influence of the parameter γ v (v = 1, 2, 3) involved in the hash functions (see Section 4.2.4) on the performance of the MSBTS algorithm. As indicated in [START_REF] Wang | Effective metaheuristic algorithms for the minimum differential dispersion problem[END_REF], the proper settings of γ v should satisfy two conditions: (1) the hash values of each candidate solution should be no more than the allowed maximum integer to avoid overflow;

(2) the distribution of hash values of different candidate solutions should be wide enough to reduce possible collisions. We have carried out preliminary experiments for γ v used in the hash functions. Experimental results show that a large γ v value (> 2.8) will lead to integer overflow for instances with more than 985 items or elements. On the other hand, a small γ v value (< 1.0) will lead to the same values of W v i (W v i = i γv) for adjacent items, increasing the probability of collisions. For example, assuming γ v =0.9, the W v i values of the adjacent items 501 and 502 are both 269 (W 501 = 501 0.9 = 269.06, W 502 = 502 0.9 = 269.55). Given two neighboring solutions S 1 and S 2 = S 1 ⊕swap(500, 501) where the swap operator was defined in Section 4.2.4, they will get the same hash value. As we focus on the ranges (1.0, 2.8) to analyze the influence of the parameter γ v .

For this purpose, we tested 20 groups of parameters (γ 1 , γ 2 , γ 3) (see Table 4.5) on 10 representative SUKP instances, i.e., 785_800_0.15_0.85, 800_785_0.10_0.75, 800_785_0.15 _0.85, 885_900_0.15_0.85, 900_885_0.15_0.85, 985_1000_ 0.10_0.75, 985_1000_0.15_0.85, 1000_985_0.10_0.75, 1000_985_0.15_0.85, 1000_1000_0.15_0.85. These 10 instances are denoted by the ID shown in Table 1.1, respectively. For the experiment, we performed 30 independent runs for each setting of parameters on each instance with the cut-off time of 1000 seconds, and recorded the average objective values (f avg). In fact, we do not provide the best object values (f best) here, since most of the f best values obtained with different groups of parameters (γ 1 , γ 2 , γ 3) are exactly the same. Table 4.5 displays the comparative results of this experiment, where the first row shows the label of each tested instance and the first column indicates the setting of the parameters (γ 1 , γ 2 , γ 3). The f avg values of each group of γ v are shown in rows 2 to 21, respectively. In addition, the last row #std gives the standard deviation of each column and the last column #Avg presents that the average values of each row. 4.5, we observe that the parameter γ v is not sensitive for our algorithm.

First, the results obtained from different groups of parameters are very similar in terms of #Avg values. Specially, there are 12 out of 20 groups of parameters that obtained the same f avg value on instance T 18 . Second, the small #std values of each column indicate that the standard deviations of the results shown in the columns are relatively low. The p-value of 0.633 (> 0.05) from the Friedman statistical test again confirms that there are no significant differences among the tested results. This analysis indicated that any γ v value in the interval (1.0, 2.8) is suitable for the proposed algorithm.

Error rates of hash functions

An error occurs when an unvisited solution is wrongly forbidden by the hash functions and the associated hash vectors. To calculate the error rates of hash functions, we ran our SBTS procedure for 10 4 iterations on two SUKP instances: 1000_1000_0.10_ 0.75, 1000_1000_0.15_0.85. During the search, each encountered solution is recorded in a pool P OP . We use a counter c 1 to count the number of solutions forbidden (classified as tabu) by the hash functions. Another counter c 2 (error counter) will be incremented by 1 if the solution is not included in P OP . Then the error rate is obtained by c 2 /c 1 . We perform additional experiments to investigate two factors that affect the error rates of the hash functions: 1) the length L of the hash functions, and 2) the number of the hash vectors. The role of the length L is to ensure that the hash vectors are long enough to be able to record the sampled solutions. A proper setting of L should not only avoid memory overflow, but also keep the error rates at a low level. The results of preliminary experiments indicate that a large L value (> 10 8) leads to memory overflow. Thus we carried out an experiment to check the error rates of the hash vectors with L ranging from 10 5 to 10 8 . The error rate plots are shown in Fig. 4.6, where the iterations of the SBTS procedure and the corresponding error rates are displayed on the X-axis and the Y -axis, respectively. Fig. 4.6 shows that our algorithm can keep the error rate at a low level (< 0.07) with L ranging from 10 6 to 10 8 . In particular, when the values of L are 10 7 and 10 8 , the corresponding curves almost overlap and stay under 0.02. The error rates increase dramatically (more than 0.5) as the number of iterations increases for L ≤ 10 5 . Considering that the time complexity of evaluating a neighboring solution is O(1), a large L value will not significantly affect the computation time. Thus any L value in the interval [10 6 , 10 8] is suitable for the proposed algorithm (L = 10 8 in the MSBTS algorithm).

! !"# !"$!"% !"& !"' !"(!") !"* !"+ # ! $!!! &!!! (!!! *!!! #!!!! !""#" "$%&' (%&"$%)#*' #*+,-./+)*'%$*0&+1222312223241232456+ !" # " $ % & ' !" # " $ % & (!" # " $ % &) !" # " $ % & * ! !"# !"$!"% !"& !"' !"(!") !"* !"+ # ! $!!! &!!! (!!! *!!! #!!!! !""#" "$%&' (%&"$%)#*' #*+,-./+)*'%$*0&+1222312223241532465+ !" # " $ % & ' !" # " $ % & (!" # " $ % &) !" # " $ % & *
! !"# !"$!"% !"& !"' !"(!") !"* !"+ # ! $!!! &!!! (!!! *!!! #!!!!
!""#" "$%&' (%&"$%)#*' #*+,-./+)*'%$*0&+1222312223241232456+

!" # $ % & ' % $ () * + , -# * ' !%.//$%&'%$()*+,-#*' ! !"# !"$!"% !"& !"' !"(!") !"* !"+ # ! $!!! &!!! (!!! *!!! #!!!!
!""#" "$%&' (%&"$%)#*' #*+,-./+)*'%$*0&+1222312223241532465+

!" # $ % & ' % $ () * + , -# * ' !%.//$%&'%$()*+,-#*' The role of the hash vectors is to record the solutions encountered during the search, and the number of the hash vectors can significantly affect the error rates. We performed another experiment to analyze the error rates when using two or three hash vectors. As the error rate plots in Fig. 4.7 show, the SBTS procedure has an error rate of nearly 0.9 with two hash vectors over 10 4 iterations. The error rate with one hash vector will be naturally higher than that with two hash vectors for the same number of iterations. On the contrary, the error rate remains very low (< 0.02) with three hash vectors over 10 4 iterations. So three hash vectors can effectively identify the previously encountered solutions, which justifies the use of three hash vectors in MSBTS.

Analysis of solution-based tabu search

The solution-based tabu search strategy is the most innovative component of the MSBTS algorithm. To understand its influence on the algorithm, we created a MSBTS variant; named MABTS where the solution-based tabu search procedure is replaced by an attribute-based tabu search procedure. For this experiment, we employed the attributebased tabu search method introduced in [START_REF] Wei | Kernel based tabu search for the Set-union Knapsack Problem[END_REF], which is one of the best SUKP algorithms. Thus, except the tabu search procedure, MABTS shares the other components of MSBTS. Considering that our algorithm mainly shows its superiority on the large instances, we carried out this experiment based on Set II, where each instance was independently solved by each algorithm 30 times, each run being limited to 1000 seconds.

The experimental results are reported in Table 4.6. The first column shows the names of the instances. The results of the two compared algorithms are respectively presented in columns 2 to 7, including the best objective value (f best), the average objective value (f avg), the standard deviation over 30 runs (std). To facilitate the comparison, we also provide the similar #Avg, #Best and p-values as described in Section 4.3.4. Table 4.6 shows that MSBTS significantly outperforms MABTS, achieving better f best values (marked in bold) for 17 out of the 30 instances and equal results for the remaining 13 instances. When comparing the f avg values, MSBTS again dominates MABTS for all the instances. Moreover, the std values of MSBTS are very small, indicating that MSBTS is highly robust. Furthermore, the small p-values (< 0.05) show that there is a significant difference between MSBTS and MABTS. This experiment confirms that the solutionbased tabu search strategy constitutes one key ingredient of our algorithm.

Conclusions

The Set-Union Knapsack Problem attracts more and more attention in recent years due to its theoretical and practical interest. Inspired by the fact that the solution-based tabu search has been successfully applied to solve several difficult binary optimization problems, we devised the first multistart solution-based tabu search algorithm for solving the SUKP. The proposed MSBTS algorithm uses its solution-based tabu search procedure to find high-quality local optima and the multistart mechanism to overcome deep local optima traps. MSBTS has several desirable features such as simple design and implementation as well as absence of parameters.

We performed extensive experimental assessments of the proposed algorithm on two sets of 60 benchmark instances. The comparisons with the state-of-the-art algorithms demonstrated the high competitiveness of our algorithm in terms of solution quality, computational efficiency and robustness. In particular, we demonstrated the interest of the MSBTS algorithm to deal with large instances and reported new lower bounds for 7 large and difficult instances (with 585 to 1000 items and elements).

This work thus provides a useful tool for solving the general Set-Union Knapsack Problem. Moreover, since a number of real-world applications can be conveniently formulated by SUKP, the proposed algorithm can be hopefully applied to these practical problems. The availability of the code of the MSBTS algorithm will facilitate such applications.

In the next chapter, we will focus on the disjunctively constrained knapsack problem which is also a variant of the popular knapsack problem. A threshold search based memetic algorithm will be introduced for solving this problem.

Introduction

As the literature review shown in Section 1.3.3, existing studies have significantly contributed to better solving the DCKP. However, given the N P-hard nature of the problem, more powerful algorithms are still needed to push the limits of existing methods.

In this chapter, we investigate for the first time the population-based memetic framework [START_REF] Moscato | Memetic algorithms: A short introduction[END_REF] for solving the DCKP and design an effective algorithm mixing threshold based local optimization and crossover based solution recombination. The threshold search procedure ensures the main role of search intensification by finding high quality local optimal solutions. The specialized backbone crossover generates promising offspring solutions for search diversification. The algorithm uses also a distance-and-quality strategy for population management. The algorithm has the advantage of avoiding the difficult task of parameter tuning.

From a perspective of performance assessment, we apply the proposed algorithm to solve the two sets of DCKP benchmark instances in the literature. The results show that for the 100 instances of Set I (optimality still unknown) which were commonly tested by heuristic algorithms, our algorithm discovers 24 new best-known results (new lower bounds) and matches the best-known results for the 76 remaining instances. For the 6240 instances of Set II which were tested by exact algorithms, our algorithm finds 354 improved best lower bounds on the difficult instances whose optimal values are unknown and attains the known optimal results on most of the remaining instances.

The rest of the chapter is organized as follows. Section 5.2 presents the proposed algorithm. Section 5.3 shows computational results of our algorithm and provides comparisons with the state-of-the-art algorithms. Section 5.4 analyzes essential components of the algorithm. Finally, Section 5.5 summarizes the chapter.

Threshold search based memetic algorithm for the DCKP

Our threshold search based memetic algorithm (TSBMA) for the DCKP is a populationbased algorithm combining evolutionary search and local optimization. In this section, we first present the general procedure of the algorithm and then describe its components.

Solution representation, search space, and evaluation function

The DCKP is a subset selection problem. Thus, a candidate solution for a set V = {1, . . . , n} of n items can be conveniently represented by a binary vector S = (x 1 , . . . , x n), such that x i = 1 if item i is selected, and x i = 0 otherwise. Equivalently, S can also be represented by S =< A, Ā > such that A = {q : x q = 1 in S} and Ā = {p : x p = 0 in S}.

Let G = (V, E) be the given conflict graph and C be the knapsack capacity. Our TSBMA algorithm explores the following feasible search space Ω F satisfying both the disjunctive constraints and the knapsack constraint.

Ω F = {x ∈ {0, 1} n : n i=1 w i x i ≤ C; x i + x j ≤ 1, ∀{i, j} ∈ E, 1 ≤ i, j ≤ n, i = j} (5.1)
The quality of a solution S in Ω F is determined by the objective value f (S) of the DCKP (Equation 1.28).

Population initialization

The TSBMA algorithm builds each of the |P | initial solutions of the population P in two steps. First, it randomly adds one by one non-selected items into an individual solution S i (i = 1, . . . , |P |) until the capacity of the knapsack is reached, while keeping the disjunctive constraints satisfied. Second, to obtain an initial population of reasonable quality, it improves the solution S i by a short run of the threshold search procedure (Section 5.2.4) by setting IterM ax = 2n.

It is worth mentioning that the population size |P | is determined according to the number of candidate items n of the given instance, i.e., |P | = n/100 + 5. This strategy is based on two considerations. First, since the TSBMA algorithm is powerful enough to solve the instances of small size, a smaller population size can help to reduce the initialization time. Second, the instances of large size are more challenging, a larger population size helps to diversify the search.

Local optimization using threshold search

The local optimization procedure of the TSBMA algorithm relies on the threshold accepting method [START_REF] Gunter | Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing[END_REF]. To explore a given neighborhood, the method accepts both improving and deteriorating neighbor solutions so long as the solution satisfies a quality threshold. One notices that this method has been successfully applied to solve several knapsack problems (e.g., quadratic multiple knapsack problem [START_REF] Chen | Iterated responsive threshold search for the quadratic multiple knapsack problem[END_REF], multi-constraint knapsack problem [START_REF] Dueck | Threshold accepting algorithms for 0-1 knapsack problems[END_REF] and multiple-choice knapsack problem [START_REF] Zhou | Algorithm for stochastic multiplechoice knapsack problem and application to keywords bidding[END_REF]) and other combinatorial optimization problems (e.g., [CS96; CH19; TKV04]). In this chapter, we adopt for the first time this method for solving the DCKP and devise a multiple neighborhood threshold search procedure reinforced by an operation-prohibiting mechanism.

Main scheme of the threshold search procedure

As shown in Algorithm 15, the threshold search procedure (TSP) starts its process from an input solution and three empty hash vectors (used for the operation-prohibiting mechanism, lines 3-5, Alg. 15). It then performs a number of iterations to explore three neighborhoods (Section 5.2.4) to improve the current solution S. Specifically, for each 'while' iteration (lines 9-25, Alg. 15), the TSP procedure explores the neighborhoods N 1 , N 2 and N 3 in a deterministic way as explained in the next section. Any sampled nonprohibited neighbor solution S (i.e., H 1 [h 1 (S)] ∧ H 2 [h 2 (S)] ∧ H 3 [h 3 (S)] = 0) is accepted immediately if the quality threshold T is satisfied (i.e., f (S) ≥ T). Then the hash vectors are updated for solution prohibition and the best solution found during the TSP procedure is recorded in S b (lines 18-20, Alg. 15). The main search ('while' loop) terminates when 1) no admissible neighbor solution (i.e., non-prohibited and satisfying the quality threshold) exists in the neighborhoods N 1 , N 2 and N 3 , or 2) the best solution S b cannot be further improved during IterM ax consecutive iterations. Specifically, the quality threshold T is determined adaptively by f (S b) -n/10 (n is the number of items of each instance) while IterM ax is set to (n/500 + 5) × 10000.

Algorithm 15 Threshold search procedure the following dynamic neighborhood filtering strategy inspired by [LHY19; WH19]. Let S be a neighbor solution in the neighborhood currently under examination, and S c be the best neighbor solution encountered during the current neighborhood examination. Then S is excluded for consideration if it is no better than S c (i.e., f (S) ≤ f (S c)). By eliminating the unpromising neighbor solutions, TSP increases the efficiency of its neighborhood search. Specifically, the associated neighborhoods induced by add, swap and drop are defined as follows.

add(p): This move operator expands the selected item set A by one non-selected item p from the set Ā such that the resulting neighbor solution is feasible. This operator induces the neighborhood N 1 .

N 1 (S) = {S : S = S ⊕ add(p), p ∈ Ā} (5.2)

swap(q, p): This move operator exchanges a pair of items (q, p) where item q belongs to the selected item set A and p belongs to the non-selected item set Ā such that the resulting neighbor solution is feasible. This operator induces the neighborhood

N 2 .
N 2 (S) = {S : S = S ⊕ swap(q, p), q ∈ A, p ∈ Ā, f (S) > f (S c)} (5.3)

drop(q): This operator displaces one selected item q from the set A to the nonselected item set Ā and induces the neighborhood N 3 .

N 3 (S) = {S : S = S ⊕ drop(q), q ∈ A, f (S) > f (S c)} (5.4)
One notices that the add operator always leads to a better current solution with an additional eligible item, and thus the neighborhood filtering is not needed for N 1 . The drop operator always deteriorates the quality of the current solution, and the feasibility of a neighbor solution is always ensured. The swap operator may either increase or decrease the objective value and the feasibility of a neighbor solution needs to be verified. For N 2 and N 3 , neighborhood filtering excludes uninteresting solutions that can in no way be accepted during the TSP process.

The TSP procedure examines the neighborhoods N 1 , N 2 , and N 3 in a token-ring way [START_REF] Di | Neighborhood portfolio approach for local search applied to timetabling problems[END_REF] to explore different local optimal solutions. For N 1 , as long as there exists a non-prohibited neighbor solution, TSP selects such a neighbor solution to replace the current solution (ties are broken randomly). Once N 1 becomes empty, TSP moves to N 2 , if there exists a non-prohibited neighbor solution S satisfying f (S) ≥ T , TSP selects S to become the current solution and immediately returns to the neighborhood N 1 . When N 2 becomes empty, TSP continues its search with N 3 and explores N 3 exactly like with N 2 . When N 3 becomes empty, TSP terminates its search and returns the best solution found S b . TSP may also terminate if its best solution remains unchanged during IterM ax consecutive iterations.

Operation-prohibiting mechanism

During the TSP procedure, it is important to prevent the search from revisiting a previously encountered solution. For this purpose, TSP utilizes an operation-prohibiting (OP) mechanism that is based on the tabu list strategy [START_REF] Glover | Tabu search[END_REF]. To implement the operationprohibiting (OP) mechanism, we adopt the solution-based tabu search technique [START_REF] Woodruff | Hashing vectors for tabu search[END_REF], which has shown its effectiveness on other decision-making problems [Lai+18a; LHY19; Lai+18b]. Specifically, we employ three hash vectors H v (v = 1, 2, 3) of length L (|L| = 10 8) to record previously visited solutions. Given a solution S = (x 1 , . . . , x n) (x i ∈ {0, 1}), we pre-compute for each item i, the weight W v i = i γv (v = 1, 2, 3), where γ v is equal to 1.2, 1.6, 2.0, respectively. Then the hash functions h v (v = 1, 2, 3) are defined as follows.

h v (S) = (n i=1 W v i × x i) mod |L| (5.5)
The hash value of a neighbor solution S from the add, swap or drop operator can be efficiently computed as follows (x ∈ A, y ∈ Ā, Section 5.2.2).

h v (S) =            h v (S) + W y ,
for the add operator

h v (S) -W x + W y , for the swap operator h v (S) -W x ,
for the drop operator (5.6)

Starting with the hash vectors set to 0, the corresponding positions in the three hash vectors H v is updated by 1 whenever a new neighbor solution S is accepted to replace the current solution S (lines 12-16, Alg. 15). For each candidate neighbor solution S , its hashing value h v (S) is calculated with Equation (5.6) in O [START_REF]Input: Input solution S o , threshold T , the maximum number of iterations IterM ax, hash[END_REF]. Then, this neighbor solution S is previously visited if H 1 [h 1 (S)]∧H 2 [h 2 (S)]∧H 3 [h 3 (S)] = 1 and is prohibited from consideration by the TSP procedure.

Crossover operator

The crossover operator generally creates new solutions by recombining two existing solutions. For the DCKP, we adopt the idea of the double backbone-based crossover (DBC) operator [START_REF] Zhou | Memetic search for identifying critical nodes in sparse graphs[END_REF] and adapt it to the problem.

Given two solutions S i and S j , we use them to divide the set of n items into three subsets: the common items set X 1 = S i ∩S j , the unique items set X 2 = (S i ∪S j)\(S i ∩S j) and the unrelated set X 3 = V \(S i ∪S j). The basic idea of the DBC operator is to generate an offspring solution S o by selecting all items in set X 1 (the first backbone) and some items in set X 2 (the second backbone), while excluding items in set X 3 .

As shown in Algorithm 16, from two randomly selected parent solutions S i and S j , the DBC operator generates S o in three steps. First, we initialize S o by setting all the variables x o a (a = 1, . . . , n) to 0 (line 3, Alg. 16). Second, we identify the common items set X 1 and the unique items set X 2 (line 4-10, Alg. 16). Third, we add all items belonging to X 1 into S o and randomly add items from X 2 into S o until the knapsack constraint is reached (line 11-17, Alg. 16). Note that the knapsack and disjunctive constraints are always satisfied during the crossover process.

Since the DCKP is a constrained problem, the DBC operator adopted for TSBMA has several special features to handle the constraints, which is different from the DBC operator introduced in [START_REF] Zhou | Memetic search for identifying critical nodes in sparse graphs[END_REF]. First, we iteratively add an item into S o by selecting one item from the unique items set X 2 randomly until the knapsack constraint is reached, while each item in X 2 is considered with a probability p 0 (0 < p 0 < 1) in [START_REF] Zhou | Memetic search for identifying critical nodes in sparse graphs[END_REF]. Second, unlike [START_REF] Zhou | Memetic search for identifying critical nodes in sparse graphs[END_REF] where a repair operation is used to achieve a feasible offspring solution, our DBC operator ensures the satisfaction of the problem constraints during the offspring generation process.

Population updating

Once a new offspring solution is obtained by the DBC operator in the last section, it is further improved by the threshold search procedure presented in Section 5.2.4. Then we adopt a diversity-based population updating strategy [JH16; JH19; Lai+18a] to decide whether the improved offspring solution should replace an existing solution in the population. This strategy is beneficial to balance the quality of the offspring solution and Algorithm 16 The double backbone-based crossover operator To accomplish this task, we temporarily insert the improved offspring solution into the population and compute the distance (Hamming distance) between any two solutions in the population. Then we obtain the goodness score of each solution in the same way as proposed in [START_REF] Lai | A two-phase tabu-evolutionary algorithm for the 0-1 multidimensional knapsack problem[END_REF]. Finally, the worst solution in the population is identified according to the goodness score and deleted from the population.

Time complexity

As shown in Section 5.2.3, the population initialization procedure includes two steps. Given a DCKP instance with n items, the first step of random selection takes time O(n). Given an input solution S =< A, Ā > (see Section 5. Parameter settings. The TSBMA algorithm does not require parameter tuning (it is parameter-free). However, for the 6240 instances of Set II (with a wide range of densities and number of items), we adjusted the threshold T (see Section 5.2.4) to T = M inP + rand(20), where M inP is the minimum profit value for each instance tested.

Stopping condition. For the 100 DCKP instances of Set I, the TSBMA algorithm adopted the same cut-off time as the reference algorithms (PNS, CPANS and PTS), i.e., 1000 seconds. Note that for the instances 11Iy to 20Iy, PNS used a much longer limit of 2000 seconds. Given its stochastic nature, TSBMA was performed 20 times independently with different random seeds to solve each instance. For the 6240 instances of Set II, the cut-off time was set to 600 seconds as in the CFS algorithm and the number of repeated runs was set to 10.

Computational results and comparisons

In this section, we first present summarized comparisons of the proposed TSBMA algorithm against each reference algorithm on the 100 instances of Set I, and then show the comparative results on the 6240 DCKP instances of Set II. The detailed computational results of our algorithm and the reference algorithms on the instances of Set I are shown in the Appendix, while our solution certificates for these 100 instances are available at the webpage indicated in footnote 1. For the 6240 instances of Set II, we report their objective values at the same website.

Comparative results on the 100 benchmark instances of Set I

The comparative results of the TSBMA algorithm and each reference algorithm are summarized in Table 5.1. Column 1 indicates the pairs of compared algorithms and column 2 gives the names of instance class. Column 3 shows the quality indicators: the best objective value (f best) and the average objective value (f avg) (when the average results are available in the literature). The following columns #Wins, #Ties and #Losses present the number of instances for which TSBMA achieves a better, equal and worse result according to the indicators. To further analyze the performance of our algorithm, we carried out the Wilcoxon signed-rank test to verify the statistical significance of the compared results between TSBMA and each compared algorithm in terms of the f best and f avg values (when the average results are available in the literature). The outcomes of the Wilcoxon tests are shown in the last column, where 'NA' means that the two sets of compared results are exactly the same.

From Table 5.1, one observes that the TSBMA algorithm competes very favorably with all the reference algorithms by reporting improved or equal results on all the instances. Compared to the probabilistic tabu search algorithm (PTS) [START_REF] Mariem | Probabilistic Tabu search with multiple neighborhoods for the Disjunctively Constrained Knapsack Problem[END_REF] which reported results only on the first 50 instances of classes 1Iy to 10Iy, TSBMA finds 8 (45) better f best (f avg) values, while matching the remaining results. Compared to the two parallel algorithms (PNS) [START_REF] Quan | Design and evaluation of a parallel neighbor algorithm for the disjunctively constrained knapsack problem[END_REF] and (CPANS) [START_REF] Quan | Cooperative parallel adaptive neighbourhood search for the disjunctively constrained knapsack problem[END_REF] that reported only the f best values, TSBMA obtained 35 and 29 better f best results, respectively. The small p-values (< 0.05) from the Wilcoxon tests between TSBMA and its competitors indicate that the performance differences are statistically significant. Finally, it is remarkable that our TSBMA algorithm discovered 24 new lower bounds on the instances 11Iy to 20Iy (see the detailed results shown in the Appendix). To complete the assessment, we provide the performance profiles [START_REF] Dolan | Benchmarking optimization software with performance profiles[END_REF] of the four compared algorithms on the 100 instances of Set I. Basically, the performance profile of an algorithm shows the cumulative distribution for a given performance metric, which reveals the overall performance of the algorithm on a set of instances. In our case, the plots concern the best objective values (f best) of the compared algorithms since the average results of some reference algorithms are not available in the literature. Given a set of algorithms (solvers) S and an instance set P, the performance ratio is given by r p,s = fp,s min{fp,s:s∈S} , where f p,s is the f best value of instance p of P obtained by algorithm s of S. The performance profiles are shown in Figure 5.2, where the performance ratio and the percentage of instances solved by each compared algorithm are displayed on the Xaxis and Y -axis, respectively. When the value of X-axis is 1, the corresponding value of Y -axis indicates the fraction of instances for which algorithm s can reach the best f best value of the set S of the compared algorithms.

From Figure 5.2, we observe that our TSBMA algorithm has a very good performance on the 100 benchmark instances of Set I compared to the reference algorithms. For the 50 instances 1Iy to 10Iy, TSBMA and CPANS are able to reach 100% best f best values on these 50 instances, while PTS and PNS fail on around 15% of the instances. When considering the 50 instances 11Iy to 20Iy, the plot of TSBMA strictly runs above the plots of PNS and CPANS, revealing that our algorithm dominates the reference algorithms on these 50 instances. These outcomes again confirm the high performance of our TSBMA algorithm.

! ! !"# !"$!"% !"& ' ' '"!!' '"!!# '"!!('"!!$ '"!!) '"!!% !"#$"%&'(")* +%,&'%$", ,)-."/ 0! !"#$ 1 !"#*)#2'%$" #'&+))% +%,&'%$", 34" &) 354" !"# !$# %!&$# "#'(& ! ! !"# !"$!"% !"& ' ' '"!!# '"!!$ '"!!% '"!!& '"!' !"#$"%&'(")* +%,&'%$", ,)-."/ 0! !"#$ 1 !"#*)#2'%$" #'&+))% +%,&'%$", 334" &) 564" !"# $!%"# &#'(%

Comparative results on the 6240 benchmark instances of Set II

Table 5.2 summarizes the comparative results of our TSBMA algorithm on the 6240 instances of Set II, together with the three reference algorithms mentioned in 5.3.1. Note that three ILP formulations were studied in [START_REF] Coniglio | A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts[END_REF], we extracted the best results of these formulations in Table 5.2, i.e., the results on instances CC and CR (conflict graph density from 0.10 to 0.90) with ILP 2 and the results on very sparse instances SC and SR (conflict graph density from 0.0001 to 0.005) with ILP 1 . Columns 1 and 2 of Table 5.2 identify each instance class and the total number of instances of the class. Columns 3 to 5 indicate the number of instances solved to optimality by the three reference algorithms. Column 6 shows the number of instances for which our TSBMA algorithm reaches the optimal solution proved by exact algorithms. The number of new lower bounds (denoted by NEW LB in Table 5.2) found by TSBMA is provided in column 7. The best results of the compared algorithms are highlighted in bold. In order to further evaluate the performance of our algorithm, we summarize the available comparative results between MSBTS and the main reference algorithm CFS in columns 8 to 10. The last three rows provide an additional summary of the results for each column.

From Table 5.2, we observe that TSBMA performs globally very well on the instances of Set II. For the 5760 CC and CR instances, TSBMA reaches most of the proved optimal solutions (5381 out of 5389) and discovers new lower bounds for 323 difficult instances whose optima are still unknown. For the 240 very sparse SC instances, TSBMA matches 195 out of 200 proved optimal solutions and finds 24 new lower bounds for the remaining instances. Although TSBMA successfully solves only 9 out of the 229 solved very sparse SR instances, it discovers 7 new lower bounds. The high performance of TSBMA is further evidenced with the comparison with the best exact algorithm CFS (last three columns).

Notice that the performance of CPLEX with ILP 1 is better than TSBMA as well as the two reference algorithms BCM and CFS on the two classes of very sparse instances (SC and SR). As analyzed in [START_REF] Coniglio | A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts[END_REF], one of the main reasons is that the LP relaxation of ILP 1 provides a very strong upper bound, which makes the ILP 1 formulation very suitable for solving very sparse instances. The disjunctive constraints become very weak when the conflict graph is very sparse. For these two classes of instances, the pure branchand-bound CFS algorithm is more effective on extremely sparse instances with densities up to 0.005. On the contrary, our TSBMA algorithm is more suitable for solving sparse instances with densities between 0.01 and 0.05. In fact, the new lower bounds found by TSBMA all concern instances with a density of 0.05. Finally, the TSBMA algorithm remains competitive on the 240 correlated sparse instances SC, even if the density is the smallest (0.001), which means that only the random sparse instance class SR is challenging for TSBMA.

In summary, our TSBMA algorithm is computational efficient on a majority of the 6240 benchmark instances of Set II and is able to discover new lower bounds on 354 difficult DCKP instances, whose optimal solutions are still unknown.

Analysis and discussions

In this section, we analyze two essential components of the TSBMA algorithm: the importance of the threshold search and the contribution of the operation-prohibiting mechanism. The studies in this section are based on the 50 benchmark instances 11Iy to 20Iy of Set I.

Contribution of the operation-prohibiting mechanism

TSBMA avoids revisiting previously encountered solutions with the OP mechanism introduced in Section 5.2.4. To assess the usefulness of the OP mechanism, we created a TSBMA variant (denoted by TSBMA -) by disabling the OP component and keeping the other components unchanged. We ran TSBMA -to solve the 50 11Iy to 20Iy instances according to experimental settings given in Section 5.3.1 and reported the results in Table 5.3. The first column gives the name of each instance and the remaining columns show the best objective values (f best), the average objective values (f avg) and the standard deviations (std). Row #Avg presents the average value of each column and row #Best indicates the number of instances for which an algorithm obtains the best values between the two sets of results. The last row shows the p-values from the Wilcoxon signed-rank test. The best results of the compared algorithms are highlighted in bold.

From Table 5.3, we observe that TSBMA -performs worse than TSMBA. TSBMA - obtains worse f best values for 35 out of the 50 instances and worse f avg values for 48 instances. Considering the std values, TSBMA -shows a much less stable performance than TSMBA. Moreover, the small p-values (< 0.05) from the Wilcoxon tests confirm the statistically significant difference between the results of TSMBA and TSBMA -. This experiment demonstrates the effectiveness and robustness of the operation-prohibiting mechanism employed by the TSMBA algorithm.

Chapter conclusion

The disjunctively constrained knapsack problem is a well-known N P-hard model. Given its practical significance and intrinsic difficulty, a variety of exact and heuristic algorithms have been designed for solving the problem. In this chapter, we proposed the threshold search based memetic algorithm that combines for the first time threshold search with the memetic framework.

Extensive evaluations on a large number of benchmark instances in the literature (6340 instances in total) showed that the algorithm performs competitively with respect to the state-of-the-art algorithms. Our approach is able to discover 24 new lower bounds out of the 100 instances of Set I and 354 new lower bounds out of the 6240 instances of Set II. These new lower bounds are useful for future studies on the DCKP. The algorithm also attains the best-known or known optimal results on most of the remaining instances. We carried out additional experiments to investigate the two essential ingredients of the algorithm (the threshold search technique and the operation-prohibiting mechanism).

an effective examination of the search space, especially the space around the kernel solutions. The proposed KBTS algorithm integrates three complementary search components: a tabu search procedure to attain different local optimal solutions, a kernel search procedure performs an additional examination of promising regions around the local optima, a non-kernel search procedure to drive the search to a new and distant region. Evaluated on two sets of 60 benchmark instances, the proposed KBTS algorithm is demonstrated to be very competitive compared to the reference algorithms in terms of solution quality, robustness and computation time. In particular, for the large SUKP instances with at least 500 items and elements, KBTS dominated all the reference algorithms in all performance indicators. Furthermore, we also analyzed the influence of the parameters used in the proposed algorithm as well as the kernel based components to the performance of the proposed algorithm.

In Chapter 4, we introduced the solution-based tabu search approach to deal with the difficult binary optimization problems. The proposed multistart solution-based tabu search algorithm (MSBTS) algorithm relies on a dedicated solution-based tabu search procedure to discover high-quality solutions. MSBTS eliminates the need for tuning parameters for tabu list management by using three hash vectors and associated hash functions to record the previously encountered solutions. To escape from local optima traps, we employed a simple multistart mechanism based on a greedy randomized initialization procedure. We assessed the performance of the MSBTS algorithm in terms of solution quality, computational efficiency and robustness on the two sets of 60 benchmark instances. MSBTS performs well by finding 7 new best-known results (new lower bounds) and matching the best-known results for the remaining instances. In particular, most of the 7 instances are of large size (with 985 to 1000 items and elements), which reveals that TSBMA is effective for solving the most difficult SUKP instances. We also performed an additional time-to-target analysis (TTT) to confirm the high computational efficiency of the proposed algorithm.

In Chapter 5, we developed a threshold search based memetic algorithm (TSBMA) for the disjunctively constrained knapsack problem (DCKP). This is the first approach that combines the threshold based local optimization with crossover based solution recombination to solve the DCKP. The local optimization procedure relies on a multiple neighborhood threshold search procedure reinforced by an operation-prohibiting mechanism. Then the dedicated double backbone based crossover (DBC) operator is employed to generate promising offspring solutions. Extensive experimental assessments on two sets of 6340 benchmark instances with a wide range of densities and number of items indicate that the proposed TSBMA algorithm was superior to the state-of-the-art algorithms. In particular, TSBMA is able to discover 24 new lower bounds for Set I (100 instances) and 354 new lower bounds for Set II (6240 instances), and match the best-known or known optimal results on most of the remaining instances. Furthermore, we studied the influence of the threshold search technique and the operation-prohibiting mechanism and verified the importance of these two essential ingredients to the performance of the proposed algorithm.

Perspectives

In this thesis, we proposed several effective heuristic algorithms for solving two knapsack problems. For future work, we identify the following perspectives.

For the SUKP, the following three aspects can be considered to improve the current work. First, even if the proposed algorithms apply the filtering mechanism or the sampling technique to reduce the neighborhoods, evaluating a given neighbor solution remains time-consuming, especially when the size of the instances increases. To speed up the search process, it is useful to seek some powerful techniques to reduce the complexity of neighborhood evaluation, for example streamlining techniques, new variable-fixing techniques, or pruning techniques. Second, considering the potential strong correlations of constituent elements between different items, a hybrid approach combining local search and population-based search could be helpful to break search barriers and traps. It would also be interesting to investigate mixed search strategies that explore both feasible and infeasible solutions. Third, for the KBTS algorithm proposed in Chapter 3, one can investigate other ways to obtain the kernel solution, e.g., by using frequent pattern mining technology.

For the DCKP, there are at least three possible directions for future work. First, TSBMA performed badly on most random sparse instances of SR. It would be interesting to improve the algorithm to better handle such instances. Second, the proposed approach could be further improved by designing more efficient crossover operators as well as other dedicated population updating strategies. Third, given the good performance of the adopted approach, it is worth investigating its underlying ideas to solve related problems (especially with disjunctive constraints) discussed in the introduction.

Finally, both the SUKP and the DCKP belong to the large family of knapsack prob-lems, it would be interesting to investigate whether the proven techniques and strategies designed for these two problems remain useful for solving other variants of knapsack problem. Abstract: This thesis considers two generalized knapsack problems: the set-union knapsack problem (SUKP) and the disjunctively constrained knapsack problem (DCKP). These two problems are useful models to formulate numerous practical applications. Given that they belong to the family of N P-hard problems, it is computationally challenging to solve them in the general case. This thesis is devoted to advancing the state-of-the-art for solving these relevant problems. Specifically, we introduce an iterated two-phase local search algorithm, a kernel based tabu search algorithm, a multistart solution-based tabu search algorithm to solve the SUKP and a threshold search based memetic algorithm to solve the DCKP. Computational studies performed on a wide range of benchmark instances indicate that all the proposed approaches compete favourably with state-of-the-art algorithms. Additional experiments show the roles of the key composing ingredients of our algorithms, including the frequency-based local optima escaping strategy, the kernel search heuristic, the solution-based tabu search technique for the SUKP and the dedicated threshold search method for the DCKP.

w

 i x i ≤ C, S ⊆ N, (1.2)

(w

 i x ij ≤ C j , i = 1, . . . , n, (1.11) n i=1

(

 to W (S) = j∈∪ i∈S U i w j ≤ C, S ⊆ V.(1.22)

(

 SU KP) Maximize f (S) =

1 :

 1 Input: Input solution S, Neighborhood N 3 , tabu search depth ω max 2: Output: The best solution S b found during tabu search, the last solution S of tabu search. 3: S b ← S /*S b records the best solution found so far*/ 4: ω ← 0 /*ω counts the number of consecutive non-improving iterations */ 5: while ω < ω max do 6: S ← argmax{f (S) : S ∈ N 3 (S) and S is not forbidden by the tabu_list} 7: if f (S) > f (S b) then 8: S b ← S /* Update the best solution S b found so far *14: end while 15: return (S b , S)

Figure 2 . 2 -

 22 Figure 2.2 -The standard deviations of BABC, BABC*, gPSO and I2PLS for solving three sets of instances.

Figure 2 . 3 -

 23 Figure 2.3 -Average of the best objective values (f best) on the 8 instances obtained by executing I2PLS with different values of the four parameters.

Figure 3 . 1 -

 31 Figure 3.1 -Flow chart of the KBTS algorithm.

1 :

 1 Input: Input solution S, flag Continue, neighborhood N . 2: Output: Continue, best solution S found. 3: Find admissible neighbor solutions N (S) 4: if N (S) = ∅ then 5: S ← argmax{f (S) : S ∈ N (S)} /* Attain the best neighbor solution S */ 6: U pdate tabu_list 7: Continue = T rue 8: else 9: Continue = F alse 10: end if 11: return (Continue, S)

 .2 and 3.3 indicates the average value of each column. Finally, dominating values of f best and f avg among the compared results are indicated in bold, and equal best values are shown in italic.

Figure 3 . 2 -

 32 Figure 3.2 -Best objective values, average objective values and standard deviations of BABC, DHJaya, HBPSO/TS, I2PLS and KBTS on the 30 instances of Set I (left) and the 30 instances of Set II (right).

Fig. 3 .

 3 Fig. 3.2 additionally shows a graphical representation of the comparative results of

Figure 3 . 3 -

 33 Figure 3.3 -Effects of the three parameters on the performance of the KBTS algorithm.

6 Figure 3 . 4 -

 634 Figure 3.4 -Average of the best objective values (f best) corresponding to different parameter settings obtained by the one-at-a-time sensitivity analysis.

Figure 3 . 5 -

 35 Figure 3.5 -Distributions of high-quality solutions corresponding to different item frequencies.

Figure 3 . 6 -

 36 Figure 3.6 -Time-to-target plots of the compared algorithms on four SUKP instances.

Figure 4 . 1 -

 41 Figure 4.1 -Flow chart of the proposed MSBTS algorithm.

Figure 4 . 2 -

 42 Figure 4.2 -An illustrative example of the main steps of the greedy randomized initialization procedure.

Figure 4 . 3 -

 43 Figure 4.3 -An illustrative example of the random shuffling operation.

Figure 4 . 4 -

 44 Figure 4.4 -An example of a solution forbidden by the hash functions and the associated hash vectors.

!!Figure 4 . 5 -

 45 Figure 4.5 -Cumulative probability distributions for the time to reach a target value.

Figure 4 . 6 -

 46 Figure 4.6 -Impact of the length L of hash vectors on the error rate of the solution-based tabu search procedure.

Figure 4 . 7 -

 47 Figure 4.7 -Impact of the number of hash vectors on the error rate of the solution-based tabu search procedure.

 2.2), the complexity of one iteration of the TSP procedure is O((n + |A| × | Ā|)). Then the second step of the initialization procedure can be realized in O([(n + |A| × | Ā|)] × IterM ax), where IterM ax is set to 2n in the initialization procedure. The complexity of the population initialization procedure is O(n 3). Now we consider the four procedures in the main loop of the TSBMA algorithm: parent selection, crossover operator, the TSP procedure and population updating. The parent selection procedure is realized in O(1). The crossover operator takes time O(n). The complexity of the TSP procedure is O([(n + |A| × | Ā|)] × IterM ax), where IterM ax

Figure 5 . 2 -

 52 Figure 5.2 -Performance profiles of the compared algorithms on the 100 DCKP instances of Set I.

Figure 5 . 3 -

 53 Figure 5.3 -Performance profiles of the compared algorithms on the 50 DCKP instances 11Iy to 20Iy.

Table 1 .

 1 1 -Summary of main characteristics of the 100 SUKP instances of Set I.

	Set Instance	ID	Instance	ID	Instance	ID
	I	100_85_0.10_0.75	F 1	100_100_0.10_0.75	S1	85_100_0.10_0.75	T 1
	I	100_85_0.15_0.85	F 2	100_100_0.15_0.85	S2	85_100_0.15_0.85	T 2
	I	200_185_0.10_0.75	F 3	200_200_0.10_0.75	S3	185_200_0.10_0.75	T 3
	I	200_185_0.15_0.85	F 4	200_200_0.15_0.85	S4	185_200_0.15_0.85	T 4
	I	300_285_0.10_0.75	F 5	300_300_0.10_0.75	S5	285_300_0.10_0.75	T 5
	I	300_285_0.15_0.85	F 6	300_300_0.15_0.85	S6	285_300_0.15_0.85	T 6
	I	400_385_0.10_0.75	F 7	400_400_0.10_0.75	S7	385_400_0.10_0.75	T 7
	I	400_385_0.15_0.85	F 8	400_400_0.15_0.85	S8	385_400_0.15_0.85	T 8
	I	500_485_0.10_0.75	F 9	500_500_0.10_0.75	S9	485_500_0.10_0.75	T 9
	I	500_485_0.15_0.85	F 10 500_500_0.15_0.85	S10 485_500_0.15_0.85	T 10
	II	600_585_0.10_0.75	F 11 600_600_0.10_0.75	S11 585_600_0.10_0.75	T 11
	II	600_585_0.15_0.85	F 12 600_600_0.15_0.85	S12 585_600_0.15_0.85	T 12
	II	700_685_0.10_0.75	F 13 700_700_0.10_0.75	S13 685_700_0.10_0.75	T 13
	II	700_685_0.15_0.85	F 14 700_700_0.15_0.85	S14 685_700_0.15_0.85	T 14
	II	800_785_0.10_0.75	F 15 800_800_0.10_0.75	S15 785_800_0.10_0.75	T 15
	II	800_785_0.15_0.85	F 16 800_800_0.15_0.85	S16 785_800_0.15_0.85	T 16
	II	900_885_0.10_0.75	F 17 900_900_0.10_0.75	S17 885_900_0.10_0.75	T 17
	II	900_885_0.15_0.85	F 18 900_900_0.15_0.85	S18 885_900_0.15_0.85	T 18

II 1000_985_0.10_0.75 F 19 1000_1000_0.10_0.75 S19 985_1000_0.10_0.75 T 19 II 1000_985_0.15_0.85 F 20 1000_1000_0.15_0.85 S20 985_1000_0.15_0.85 T 20 follows. (DCKP) Maximize f (S) = n i=1

Set I (100 instances): These

	instances are grouped into 20 classes (each with 5
	instances) and named by xIy (x = {1, . . . , 20} and y = {1, . . . , 5}). The first 50
	instances (1Iy to 10Iy) were introduced in 2006 [HM06] and have the following
	features: number of items n = 500 or 1000, capacity C = 1800 or 2000, and density
	η going from 0.05 to 0.40. Note that the density is given by 2m/n(n -1), where m
	is the number of disjunctive constraints (i.e., the number of edges of the conflict
	graph). These instances have an item weight w i uniformly distributed in [1, 100]
	and a profit p i = w i + 10. For the instance classes 11Iy to 20Iy introduced in 2017
	[QW17a], the number of items n is set to 1500 or 2000, the capacity C is set to
	4000, and the density η ranges from 0.04 to 0.20. These instances have an item
	weight w i uniformly distributed in [1, 400] and a profit p i equaling w i + 10.
	-Set

II (6240 instances): This

 set of instances was introduced in 2017[START_REF] Bettinelli | A branchand-bound algorithm for the knapsack problem with conflict graph[END_REF]

Table 1 .

 1 2 -Summary of main characteristics of the 100 DCKP instances of Set I.

	Class	Total	n	C	η	Class	Total	n	C	η
	1Iy	5	500	1800	0.10	11Iy	5	1500	4000	0.04
	2Iy	5	500	1800	0.20	12Iy	5	1500	4000	0.08
	3Iy	5	500	1800	0.30	13Iy	5	1500	4000	0.12
	4Iy	5	500	1800	0.40	14Iy	5	1500	4000	0.16
	5Iy	5	1000	1800	0.05	15Iy	5	1500	4000	0.20
	6Iy	5	1000	2000	0.06	16Iy	5	2000	4000	0.04
	7Iy	5	1000	2000	0.07	17Iy	5	2000	4000	0.08
	8Iy	5	1000	2000	0.08	18Iy	5	2000	4000	0.12
	9Iy	5	1000	2000	0.09	19Iy	5	2000	4000	0.16
	10Iy	5	1000	2000	0.10	20Iy	5	2000	4000	0.20

Table 1 .

 1 3 -Summary of main characteristics of the 6240 DCKP instances of Set II.

	Class	Total	n		C		η	
			Min	Max	Min	Max	Min	Max
	C1	720	60	1000	150	1000	0.10	0.90
	C3	720	60	1000	450	3000	0.10	0.90
	C10	720	60	1000	1500	10000	0.10	0.90
	C15	720	60	1000	15000	15000	0.10	0.90
	R1	720	60	1000	150	1000	0.10	0.90
	R3	720	60	1000	450	3000	0.10	0.90
	R10	720	60	1000	1500	10000	0.10	0.90
	R15	720	60	1000	15000	15000	0.10	0.90
	SC	240	500	1000	1000	2000	0.001	0.05
	SR	240	500	1000	1000	2000	0.001	0.05

1 :

 1 Input: Instance I, cut-off time t max , neighborhoods N 1 -N 3 , exploration depth λ max , sampling probability ρ, tabu search depth ω max , perturbation strength η.

	2: Output: The best solution found S * .	
	3: /* Generate an initial solution S 0 in a greedy way, §2.2.3	*/
		S 0 ← Greedy_Initial_Solution(I)	
	4: S * ← S 0	/* Record the overall best solution S * found so far */
	5: while T ime ≤ t max do	
	6:	/* Local optima exploration phase using VND and TS, §2.2.4	*/
		S b ←VND-TS(S 0 , N 1 -N 3 , λ max , ρ, ω max)	
	7:	if f (S b) > f (S *) then	
	8:	S * ← S b	/* Update the best solution S * found so far */
	9:	end if	
	10:	/* Local optima escaping phase using frequency-based perturbation, §2.2.5	*/
		S 0 ←Frequency_Based_Local_Optima_Escaping(S b , η)
	11:		

end while 12: return S *

1 :

 1 Input: Input solution S, neighborhoods N 1 and N 2 , sampling probability ρ.

	2: Output: The best solution S b found during the VND search.
	3: S b ← S	/*S b record the best solution found so far*/
	4: Improve ← T rue	
	5: while Improve do	
	6:	S ← argmax{f (S) : S ∈ N 1 (S)}	
	7:	if f (S) > f (S b) then	
	8:	S b ← S	/*Update the best solution found so far*/
	9:	Improve = T rue	
	10:	else	
	11: 12:	N -2 ← Sampling(N 2 , S, ρ) S ← argmax{f (S) : S ∈ N -2 (S)}	
	13:	if f (S) > f (S b) then	
	14:	S b ← S	/*Update the best solution found so far*/
	15:	Improve ← T rue	
	16:	else	
	17:	Improve = F alse	
	18:	end if	
	19:	end if	
	20: end while	
	21: return S b	
	a local optimal solution is reached within N 1 , VND switches to the neighborhood N 2 .
	As we explain in Section 2.2.4, given the large size of N 2 , VND only examines a subset
	N -2 which is composed of ρ × |N 2 | randomly solutions of N 2 (ρ is a parameter called
	sampling probability and Algorithm 4 shows the sampling procedure where random() is a
	random real number in [0,1]). If an improving neighbor solution is detected in N -2 , VND
	switches back to	

N 1 . VND terminates when no improving solution can be found within both neighborhoods. In Section 2.4.2, we study the influence of this sampling strategy. Algorithm 4 Sampling Procedure 1: Input:

 Input solution S, neighborhood N 2 , sampling probability ρ. 2:

Table 2 .

 2 1 -Settings of parameters.

	Parameters Sect. Description	Value
	λmax	2	Exploration depth	2
	ρ	2.2.4	Sampling probability for VND	5
	ωmax	2.2.4	Tabu search depth	100
	η	2.2.5	Perturbation strength in escaping phase	0.5

Table 2 .

 2 2 -Computational results and comparison of the proposed I2PLS algorithm with the reference algorithms on the first set of instances (m > n).

	Instance	Best_Known LB	UB	Results BABC BABC*	gPSO	MSO4	I2PLS
	100_85_0.10_0.75 *	13283	13283 13283	f best	13251	13283	13283	13283	13283
					favg 13208.5 13283 13050.53 13062	13283
					std	92.63	0	37.41	-	0
					tavg	0.210	51.102	-	1.398	3.094
	100_85_0.15_0.85 *	12274	12479 12479	f best	12238	12479	12274	-	12479
					favg	12155	12479 12084.82	-	12335.13
					std	53.29	0	95.38	-	98.78
					tavg	0.223	24.032	-	-	103.757
	200_185_0.10_0.75	13521	11585 27055.82 f best	13241	13402	13405	13521	13521
					favg 13064.4 13260.16 13286.56 13193	13521
					std	99.57	38.98	93.18	-	0
					tavg	1.562	253.693	-	7.901	71.984
	200_185_0.15_0.85	14044	11017 29625.82 f best	13829	14215	14044	-	14215
					favg 13359.2 14026.18 13492.60	-	14031.28
					std	234.99	151.55	328.72	-	131.46
					tavg	1.729	241.932	-	-	180.809
	300_285_0.10_0.75	11335	9028 43937.51 f best	10428	10572	11335	11127	11563
					favg 9994.76 10466.45 10669.51 10302 11562.02
					std	154.03	61.94	227.85	-	3.94
					tavg	5.281	315.240	-	24.912	181.248
	300_285_0.15_0.85	12245	6889 53164.23 f best	12012	12245	12245	-	12607
					favg 10902.9 12019.28 11607.10	-	12364.55
					std	449.45	85.76	477.80	-	83.03
					tavg	5.673	226.818	-	-	240.333
	400_385_0.10_0.75	11484	8993 66798.30 f best	10766	11021	11484	11435	11484
					favg 10065.2 10608.91 10915.87 10411	11484
					std	241.45	138.07	367.75	-	0
					tavg	12.976 293.560	-	56.838	31.801
	400_385_0.15_0.85	10710	5179 77480.39 f best	9649	9649	10710	-	11209
					favg 9135.98 9503.65 9864.55	-	11157.26
					std	151.90	94.69	315.38	-	87.29
					tavg	13.359 270.813	-	-	141.525
	500_485_0.10_0.75	11722	7202 86166.50 f best	10784	10927	11722	11031	11771
					favg 10452.2 10628.31 11184.51 10716 11729.76
					std	114.35	70.31	322.98	-	6.59
					tavg	25.372 486.210	-	124.378 349.545
	500_485_0.15_0.85	10022	4762 97218.01 f best	9090	9306	10022	-	10238
					favg 8857.89 9014.01 9299.56	-	10133.94
					std	94.55	64.06	277.62	-	94.72
					tavg	26.874 482.740	-	-	369.375

Table 2 .

 2 3 -Computational results and comparison of the proposed I2PLS algorithm with the reference algorithms on the second set of instances (m = n).

	Instance	Best_Known LB	UB	Results BABC BABC*	gPSO	MSO4	I2PLS
	100_100_0.10_0.75 *	14044	14044	14044	f best	13860	14044	14044	14044	14044
					favg 13734.9 14040.87 13854.71 13649	14044
					std	70.76	11.51	96.23	-	0
					tavg	0.213	169.848	-	1.646	38.245
	100_100_0.15_0.85 *	13508	13508	13508	f best	13508	13508	13508	-	13508
					favg 13352.4 13508 13347.58	-	13451.50
					std	155.14	0	194.34	-	126.49
					tavg	0.244	6.795	-	-	70.587
	200_200_0.10_0.75	12522	11187 29394.32	f best	11846	12350	12522	12350	12522
					favg 11194.3 11953.11 11898.73 11508	12522
					std	249.58	97.57	391.83	-	0
					tavg	1.633	183.130	-	8.112	54.780
	200_200_0.15_0.85	12317	9258 30610.99	f best	11521	11929	12317	-	12317
					favg	10945 11695.21 11584.64	-	12280.07
					std	255.14	78.33	275.32	-	57.77
					tavg	1.819	147.930	-	-	238.348
	300_300_0.10_0.75	12736	11007 45191.75	f best	12186	12304	12695	12598	12817
					favg 11945.8 12202.80 12411.27 11541	12817
					std	127.80	67.81	225.80	-	0
					tavg	5.315	202.515	-	28.612	66.403
	300_300_0.15_0.85	11425	7590 51891.53	f best	10382	10857	11425	-	11585
					favg 9859.69 10383.64 10568.41	-	11512.18
					std	177.02	75.79	327.48	-	73.15
					tavg	6.019	113.380	-	-	220.100
	400_400_0.10_0.75	11531	7910 68137.98	f best	10626	10869	11531	10727	11665
					favg 10101.1 10591.65 10958.96 10343	11665
					std	196.99	105.83	274.90	-	0
					tavg	12.805 298.970	-	58.433	18.733
	400_400_0.15_0.85	10927	4964 77719.78	f best	9541	10048	10927	-	11325
					favg 9032.95 9602.13 9845.17	-	11325
					std	194.18	142.77	358.91	-	0
					tavg	12.953 386.555	-	-	76.000
	500_500_0.10_0.75	10888	7500 85184.48	f best	10755	10755	10888	10355	11249
					favg 10328.5 10522.56 10681.46 9919 11243.40
					std	94.62	70.17	125.36	-	27.43
					tavg	27.735 194.490	-	121.622 134.186
	500_500_0.15_0.85	10194	3948 101964.36 f best	9318	9601	10194	-	10381
					favg 9180.74 9334.52 9703.62	-	10293.89
					std	84.91	40.59	252.84	-	85.53
					tavg	27.813 135.130	-	-	237.894

Table 2 .

 2 4 -Computational results and comparison of the proposed I2PLS algorithm with the reference algorithms on the third set of instances (m < n).Figure 2.1 -The best objective values (left) and mean objective values (right) of BABC, BABC*, gPSO and I2PLS for solving three sets of instances.

	Instance	Best_Known LB	UB	Results BABC BABC*	gPSO	MSO4	I2PLS
	85_100_0.10_0.75 *	12045	12045	12045	f best	11664	12045	12045	11735	12045
					favg 11182.7 11995.12 11486.95 11287	12045
					std	183.57	53.15	137.52	-	0
					tavg	0.188	206.570	-	1.354	2.798
	85_100_0.15_0.85 *	12369	12369	12369	f best	12369	12369	12369	-	12369
					favg 12081.6 12369 11994.36	-	12315.53
					std	193.79	0	436.81	-	62.60
					tavg	0.217	0.531	-	-	17.47
	185_200_0.10_0.75	13696	12264 25702.48	f best	13047	13647	13696	13647	13696
					favg 12522.8 13179.14 13204.26 13000 13695.60
					std	201.35	100.78	366.56	-	3.68
					tavg	1.502	202.560	-	7.642	124.136
	185_200_0.15_0.85	11298	8608 26289.16	f best	10602	10926	11298	-	11298
					favg 10150.6 10749.46 10801.41	-	11276.17
					std	152.91	97.24	205.76	-	83.78
					tavg	1.948	259.050	-	-	139.865
	285_300_0.10_0.75	11568	9421 44274.85	f best	11158	11374	11568	11391	11568
					favg 10775.9 11143.69 11317.99 10816	11568
					std	116.80	76.90	182.82	-	0
					tavg	5.450	426.680	-	24.539	25.128
	285_300_0.15_0.85	11517	7634 51440.30	f best	10528	10822	11517	-	11802
					favg 9897.92 10396.60 10899.20	-	11790.43
					std	186.53	128.63	300.36	-	27.51
					tavg	5.571	192.575	-	-	206.422
	385_400_0.10_0.75	10483	9591 59917.77	f best	10085	10110	10483	9739	10600
					favg	9537.5 9926.18 10013.43 9240 10536.53
					std	184.62	87.43	202.40	-	56.08
					tavg	13.012 203.870	-	57.000	234.475
	385_400_0.15_0.85	10338	5810 73409.01	f best	9456	9659	10338	-	10506
					favg 9090.03 9444.34 9524.98	-	10502.64
					std	156.69	46.40	286.16	-	23.52
					tavg	13.724 177.910	-	-	129.505
	485_500_0.10_0.75	11094	5940 84239.56	f best	10823	10835	11094	10539	11321
					favg 10483.4 10789.57 10687.62 10190 11306.47
					std	228.34	27.29	168.06	-	36.00
					tavg	27.227 299.260	-	114.066 207.118
	485_500_0.15_0.85	10104	4325 100374.77 f best	9333	9380	10104	-	10220
					favg 9085.57 9258.82 9383.28	-	10179.45
					std	115.62	58.72	241.01	-	46.97
					tavg	28.493	49.170	-	-	238.630

Table 2 .

 2 5 -Summary of numbers of instances for which each algorithm reports a better, equal or worse f bst value compared to the best-known value in the literature and p-values of the Wilcoxon singned-rank test on f best values over all instances between I2PLS and each reference algorithm including the best-known values.

	Instance Best_Known BABC BABC* gPSO MSO4 I2PLS
	# Better	-	0	2	0	0	18
	# Equal	-	2	6	28	3	12
	# Worse	-	28	22	2	12	0
	p-value	2.14e-4	4.00e-6 2.89e-5 1.43e-4 2.52e-3	-

Table 2 .

 2 6 -Influence of the VND search strategy on the performance of the I2PLS algorithm.

	Instance/Setting	VND 0.05 VND 0.0 VND 1.0 VND f 1.0
	100_85_0.10_0.75	13283	13283	13283	13283
	100_85_0.15_0.85	12479	12479	12479	12479
	200_185_0.10_0.75 13521	13521	13521	13521
	200_185_0.15_0.85 14215	14215	14215	14215
	300_285_0.10_0.75 11563	11563	11563	11563
	300_285_0.15_0.85 12607	12500	12332	12332
	400_385_0.10_0.75 11484	11484	11484	11484
	400_385_0.15_0.85 11209	11209	11209	11209
	500_485_0.10_0.75 11771	11729	11746	11729
	500_485_0.15_0.85 10238	10194	10194	10194
	100_100_0.10_0.75 14044	14044	14044	14044
	100_100_0.15_0.75 13508	13508	12238	13508
	200_200_0.10_0.75 12522	12522	12522	12522
	200_200_0.15_0.85 12317	12317	12317	12317
	300_300_0.10_0.75 12817	12817	12817	12817
	300_300_0.15_0.85 11585	11585	11502	11585
	400_400_0.10_0.75 11665	11665	11665	11665
	400_400_0.15_0.85 11325	11325	11325	11325
	500_500_0.10_0.75 11249	11249	11249	11249
	500_500_0.15_0.85 10381	10381	10381	10381
	85_100_0.10_0.75	12045	12045	12045	12045
	85_100_0.15_0.85	12369	12369	12369	12369
	185_200_0.10_0.75 13696	13696	13696	13696
	185_200_0.15_0.85 11298	11298	11298	11298
	285_300_0.10_0.75 11568	11568	11568	11568
	285_300_0.15_0.85 11802	11802	11802	11802
	385_400_0.10_0.75 10600	10600	10600	10600
	385_400_0.15_0.85 10506	10506	10506	10506
	485_500_0.10_0.75 11321	11321	11321	11321
	485_500_0.15_0.85 10220	10220	10220	10208
	# Better	-	0	0	0
	# Equal	-	27	25	26
	# Worse	-	3	5	4

Table 2 .

 2 7 -Impact of the frequency-based local optima escaping strategy on the performance of the I2PLS algorithm.

	Instance/Setting	I2PLS	I2PLS random I2PLSstrong
	100_85_0.10_0.75	13283	13283	13283
	100_85_0.15_0.85	12479	12479	12479
	200_185_0.10_0.75 13521	13521	13521
	200_185_0.15_0.85 14215	14215	14215
	300_285_0.10_0.75 11563	11563	11563
	300_285_0.15_0.85 12607	12607	12607
	400_385_0.10_0.75 11484	11484	11484
	400_385_0.15_0.85 11209	11209	11209
	500_485_0.10_0.75 11771 11729	11729
	500_485_0.15_0.85 10238 10194	10194
	100_100_0.10_0.75 14044	14044	14044
	100_100_0.15_0.75 13508	13508	13508
	200_200_0.10_0.75 12522	12522	12522
	200_200_0.15_0.85 12317	12317	12317
	300_300_0.10_0.75 12817	12817	12817
	300_300_0.15_0.85 11585	11585	11585
	400_400_0.10_0.75 11665	11665	11665
	400_400_0.15_0.85 11325	11325	11325
	500_500_0.10_0.75 11249	11249	11249
	500_500_0.15_0.85 10381	10381	10381
	85_100_0.10_0.75	12045	12045	12045
	85_100_0.15_0.85	12369	12369	12369
	185_200_0.10_0.75 13696	13696	13696
	185_200_0.15_0.85 11298	11298	11298
	285_300_0.10_0.75 11568	11568	11568
	285_300_0.15_0.85 11802	11802	11802
	385_400_0.10_0.75 10600	10600	10600
	385_400_0.15_0.85 10506	10506	10506
	485_500_0.10_0.75 11321	11321	11321
	485_500_0.15_0.85 10220	10220	10220
	# Better	-	0	0
	# Equal	-	28	28
	# Worse	-	2	2

 2.6) is applied to modify Algorithm 6 Kernel Based Tabu Search for the SUKP 1: Input: Instance I, cut-off time t max , neighborhoods N f , N k , Nk , local search depth γ max , kernel coefficient ε, direct perturbation strength δ. 2: Output: The best solution found S * .

	3: S ← Dynamic_Initialization(I)	/* Generate an initial solution S, Sect. 3.2.3 */
	4: S * ← S	/* Record the overall best solution S * */
	5: while T ime ≤ t max do	
	6:	Φ ← Frequency_Initialization()	/* Initialize frequency counter Φ to 0 */
	7:	S b ← S	/* Record the best solution S b found so far */
	8:	γ ← 0	/*γ counts the number of consecutive non-improving rounds*/
	9:	repeat	
	10:	/* Record the local optimum S l found by tabu search */ (S l , S k , Sk) ← Tabu_Search (S, N f , Φ, ε)	/* Sect. 3.2.4 */
	11:	S l ← Kernel_Search(S k , S l , N k)	/* Sect. 3.2.5 */
	12:	S ←Direct_Perturbation(S l , δ)	/* Sect. 3.2.6 */
	13:	if f (S l) > f (S b) then	
	14:	S b ← S l	/* Update the local best solution S b found so far */
	15:	γ ← 0	
	16:	else	
	17:	γ ← γ + 1	
	18:	end if	
	19:	until γ = γ max	
	20:	if f (S /
	22:	end if	
	23:	S ← Non-Kernel_Search(Sk , Nk)		/* Sect. 3.2.7 */
	24: end while	
	25: return S *	

b) > f (S *) then 21: S * ← S b /* Update the overall best solution S * found so far *

1 :

 1 Input: Input solution S, neighborhood N f , frequency counter Φ, kernel coefficient ε. 2: Output: Best solution S l found during tabu search, kernel solution S k , non-kernel solution Sk .

	3: S l ← S	/* Record the best solution S l found during tabu search */
	4: Continue ← T rue	
	5: while Continue do	
	6:	(Continue, S) ← Neighborhood_Search(S, N 1 , Continue)	/* Algorithm 8 */
	7:	if f (S) > f (S l) then	
	8:	S l ← S	/* Update the best solution found during tabu search */
	9:	Φ ← Update_Frequency(Φ)	
	10:	end if	
	11: end while	
	12: S k ← Create_Kernel(Φ, ε) 13: Sk ← Create_Non_Kernel(S k)	
	14: return (S	

l , S k , Sk)

1 :

 1 Input: Input kernel solution S k , attained local optimum S l , neighborhood N k . 2: Output: Best solution S l during kernel search.

	8:	S l ← S	/* Update the best solution found during kernel search */
	9:	end if	
	10: end while	
	11: return S l	

3: S ← S k /* Generate a new solution by S k */ 4: Continue ← T rue 5: while Continue do 6: (Continue, S) ← Neighborhood_Search(S, N k , Continue) 7: if f (S) > f (S l) then

 Input non-kernel solution Sk , neighborhood Nk . 2: Output: Best solution S c found during non-kernel search.

	3: S ← Random(Sk)	/* Generate a feasible solution from Sk */
	4: S c ← S	/*S c records the best solution found during non-kernel search */
	5: Continue ← T rue	
	6: while Continue do	
	7:	(Continue, S) ← Neighborhood_Search(S, Nk , Continue)
	8:	if f (S) > f (S c) then	
	9:	S c ← S	/* Update the best solution found during non-kernel search */
	10:	end if	
	11: end while	
	12: return S c	

1: Input:

Table 3 .

 3 1 -Parameters settings of KBTS.

	Parameters	Section	Description	Value
	γmax	3.2.1	local search depth	3
	ε	3.2.5	kernel coefficient	0.6
	δ	3.2.6	direct perturbation strength	3

Table 3 .

 3 2 -Computational results and comparison of the KBTS algorithm with the reference algorithms on the SUKP instances of Set I.

	Instance BABC DHJaya HBPSO/TS I2PLS (Best_Known) KBTS	f best favg std tavg(s) f best favg std tavg(s) f best favg std tavg(s) f best favg std tavg(s) f best favg std tavg(s)	F 1 * 13283 13283 0 51.102 13283 13283 0 9.477 13283 13283 0 0.098 13283 13283 0 3.094 13283 13283 0 4.082	F 2 * 12479 12479 0 24.032 12479 12479 0 24.414 12479 12403.15 98.97 101.122 12479 12335.13 98.78 103.757 12479 12479 0 42.992	F 3 13402 13260.16 38.98 253.693 13521 13498.22 26.10 258.213 13521 13521 0 0.490 13521 13521 0 71.984 13521 13521 0 6.988	F 4 14215 14026.18 151.55 241.932 14215 14215 0 83.129 14215 14177.38 70.84 72.041 14215 14031.28 131.46 180.809 14215 14209.87 29.17 107.407	F 5 10572 10466.45 61.94 315.240 11385 11167.77 129.98 174.335 11563 11563 0 38.355 11563 11562.02 3.94 181.248 11563 11563 0 28.841	F 6 12245 12019.28 85.76 226.818 12402 12248.42 22.12 316.767 12607 12607 0 24.967 12607 12364.55 83.03 240.333 12607 12536.02 87.51 235.450	F 7 11021 10608.91 138.07 293.560 11484 11325.88 38.65 229.370 11484 11484 0 10.870 11484 11484 0 31.801 11484 11484 0 0.296	F 8 9649 9503.65 94.69 270.813 10710 10293.96 173.85 241.068 11209 11209 0 16.478 11209 11157.26 87.29 141.525 11209 11209 0 72.020	F 9 10927 10628.31 70.31 486.210 11722 11675.51 55.53 226.604 11771 11746.19 57.98 293.514 11771 11729.76 6.59 349.545 11771 11755.47 19.74 206.199	F 10 9306 9014.01 64.06 482.740 10194 9703.56 114.852 383.021 10194 10163.76 82.11 92.121 10238 10133.94 94.72 369.375 10238 10202.90 16.25 293.140	S1 * 14044 14040.87 11.51 169.848 14044 14044 0 1.374 14044 14044 0 0.518 14044 14044 0 38.245 14044 14044 0 0.023	S2 * 13508 13508 0 6.795 13508 13508 0 1.572 13508 13508 0 2.923 13508 13451.50 126.49 70.587 13508 13508 0 33.403	S3 12350 11953.11 97.57 183.130 12522 12480.62 65.05 207.667 12522 12522 0 0.8125 12522 12522 0 54.780 12522 12522 0 48.206	S4 11929 11695.21 78.33 147.930 12317 12217.81 93.361 229.824 12317 12317 0 0.950 12317 12280.07 57.77 238.348 12317 12317 0 72.495	S5 12304 12202.80 67.81 202.515 12736 12676.78 35.20 241.774 12817 12806.44 15.39 29.074 12817 12817 0 66.403 12817 12817 0 74.247	S6 10857 10383.64 75.79 113.380 11425 11260.25 103.95 152.329 11585 11585 0 5.985 11585 11512.18 73.15 220.100 11585 11584.17 8.26 141.464	S7 10869 10591.65 105.83 298.970 11569 11301.56 74.88 322.143 11665 11484.20 72.95 45.025 11665 11665 0 18.733 11665 11665 0 64.126	S8 10048 9602.13 142.77 386.555 10927 10721.45 221.38 77.037 11325 11325 0 5.902 11325 11325 0 76.000 11325 11325 0 17.591	S9 10755 10522.56 70.17 194.490 10943 10871.22 39.93 41.383 11109 11026.24 51.62 340.958 11249 11243.40 27.43 134.186 11249 11248.96 0.40 146.040	S10 9601 9334.52 40.59 135.130 10214 10069.33 103.33 101.926 10381 10213.25 71.30 220.328 10381 10293.89 85.53 237.894 10381 10362.63 52.25 156.331	T 1 * 12045 11995.12 53.15 206.570 12045 12045 0 17.199 12045 12045 0 0.056 12045 12045 0 2.798 12045 12045 0 0.075	T 2 * 12369 12369 0 0.531 12369 12369 0 0.342 12369 12369 0 0.088 12369 12315.53 62.60 17.470 12369 12369 0 10.175	T 3 13647 13179.14 100.78 202.560 13696 13667.63 26.56 244.205 13696 13696 0 0.489 13696 13695.60 3.68 124.136 13696 13696 0 5.851	T 4 10926 10749.46 97.24 259.050 11298 11298 0 38.439 11298 11298 0 0.486 11298 11276.17 83.78 139.865 11298 11298 0 6.373	T 5 11374 11143.69 76.90 426.680 11568 11563.80 10.41 203.874 11568 11568 0 13.630 11568 11568 0 25.128 11568 11568 0 30.618	T 6 10822 10396.60 128.63 192.575 11714 11436.93 101.85 463.466 11802 11802 0 2.135 11802 11790.43 27.51 206.422 11802 11799.27 9.95 168.904	T 7 10110 9926.18 87.43 203.870 10483 10287.36 80.61 53.459 10600 10552.73 74.68 100.155 10600 10536.53 56.08 234.475 10600 10600 0 73.087	T 8 9659 9444.34 46.40 177.910 10302 10184.09 138.00 230.077 10506 10472.40 67.20 168.870 10506 10502.64 23.52 129.505 10506 10506 0 58.240	T 9 10835 10789.57 27.29 299.260 11036 10883.19 48.58 66.029 11321 11142.27 62.51 223.387 11321 11306.47 36.00 207.118 11321 11318.81 10.95 121.494	T 10 9380 9258.82 58.72 49.170 10104 9665.70 142.57 49.438 10220 10208.96 3.26 143.999 10220 10179.45 46.97 238.630 10220 10219.76 1.68 118.564	#Avg 11484.37 11279.18 69.08 216.769 11873.83 11748.07 61.56 156.332 11967.47 11938.10 24.29 65.194 11973.60 11932.39 40.54 138.476 11973.60 11968.56 7.87 78.16

Table 3 .

 3 3 -Computational results and comparison of the KBTS algorithm with the reference algorithms on the SUKP instances of Set II.

	#Avg 8800.37 8668.40 54.33 458.009 9196.67 9041.40 62.54 482.096 9280.33 9105.91 85.91 499.248 9310.10 9202.09 57.96 473.031 9352.30 9303.10 23.95 379.479	T 20 8071 8066.53 15.17 486.522 8453 8425.27 48.74 503.976 8172 7958.24 121.56 350.640 8528 8233.05 119.98 283.901 8528 8488.13 33.47 450.711	T 19 8914 8741.25 101.76 739.861 9067 8994.48 44.99 313.094 9113 8938.38 66.64 967.315 9047 8917.48 126.37 89.760 9193 9105.84 74.76 319.356	T 18 7610 7518.04 50.51 869.729 8217 7881.44 65.84 140.935 8277 7900.57 131.65 296.061 8425 8268 104.34 484.859 8425 8311.68 46.80 625.829	T 17 8938 8897.58 30.23 587.200 9137 9079.09 46.70 590.376 9232 9121.24 48.92 455.104 9232 9106.31 62.28 452.360 9318 9236.16 21.32 281.632	T 16 8249 8021.86 117.07 577.037 8556 8482.33 51.45 604.625 8572 8322.17 57.53 665.514 8663 8558.51 79.51 586.047 8746 8643.93 47.92 467.334	T 8658.45 54.33 869.031 8885.09 54.14 316.494 9163.90 70.91 339.415 9236.10 95.56 576.738 136.173	T 14 8453 8424.87 4.83 958.748 9102 8860.79 106.42 159.976 9176 8936.47 135.64 645.153 9176 9139.18 52.80 461.051 9176 9176 0 140.151	T 13 9796 9627.40 73.18 248.733 10070 9953.55 49.02 430.180 10121 9909 30.82 123.012 10121 9979.70 86.13 540.289 10121 10114.96 31.87 230.918	T 12 8689 8623.79 28.52 461.850 9031 8944.22 61.72 616.631 9256 9256 0 103.637 9256 9256 0 264.876 9256 9256 0 84.359	T 11 9768 9677.80 81.90 535.874 10300 10161.45 72.81 98.186 10393 10191.01 102.35 729.422 10393 10366.15 29.83 499.311 10393 10393 0 89.785	S20 7867 7627.80 44.88 635.003 8330 8037.92 71.87 932.614 8134 7872.84 95.76 97.909 8379 8206.49 68.52 632.334 8474 8376.20 27.12 500.435	S19 9030 8891.34 39.01 657.972 9348 9250.80 53.65 542.187 9509 9273.64 82.57 802.652 9544 9255.73 142.33 876.669 9544 9431.47 60.84 510.660	S18 8118 8114.48 9.20 150.984 8718 8492.88 62.31 702.655 8916 8617.20 210.54 665.798 8916 8916 0 116.694 8990 8918.96 14.50 672.574	S17 9290 9272.99 14.56 460.026 9526 9462.86 37.83 670.990 9745 9639.60 51.13 598.520 9745 9660.12 36.68 341.110 9745 9729.51 30.06 368.807	S16 8444 8163.77 132.71 376.695 8961 8774.18 59.78 161.688 8907 8732.94 160.07 590.883 8961 8909.50 10.91 27.170 9101 8936.12 39.55 321.859	S15 9517 9305.40 56.76 418.476 9890 9656.38 51.42 567.090 9932 9823.17 113.20 607.506 9932 9685.79 72.06 868.227 9932 9930.56 14.33 214.286	S14 8614 8290.22 77.62 126.818 9121 8985.51 65.90 507.656 9177 9003.15 138.46 659.194 9229 9155.79 18.61 445.194 9229 9187.55 20.70 486.304	S13 9078 9056.52 21.89 224.370 9512 9409.01 28.70 809.836 9786 9679.56 72.51 215.910 9786 9742.73 40.87 383.700 9786 9786 0 97.316	S12 8621 8361.77 101.30 455.481 8910 8785.64 43.46 571.965 9024 8902.33 27.27 214.261 9062 9022.97 46.28 456.386 9062 9061.16 4.78 255.342	S11 10207 9939.38 47.52 66.660 10507 10504.25 19.67 321.196 10518 10517.89 1.09 60.254 10524 10520.70 2.99 513.537 10524 10521.72 2.91 404.697	F 20 8133 8099.10 25.37 648.215 8433 8280.52 90.87 312.589 8448 8129.08 92.71 564.848 8448 8268.18 135.55 541.606 8453 8448.05 0.50 941.565	F 19 9276 9254.19 27.89 640.529 9424 9306.86 45.01 309.873 9668 9278.50 125.80 620.436 9580 9221.23 103.18 329.743 9668 9496.63 74.35 487.925	F 18 8072 7881.17 88.49 228.388 8418 8244.47 87.93 316.604 8481 8208.22 108.56 332.102 8481 8426.36 44.76 541.670 8620 8526.55 48.37 274.653	F 17 8953 8837.18 103.15 471.428 9455 9249.53 109.14 687.150 9611 9560.93 89.43 514.922 9611 9537.61 61.42 511.245 9725 9616.70 24.85 609.811	F 16 8447 8366.50 71.97 254.293 8797 8649 63.01 236.798 8907 8872.84 84.36 418.033 8907 8780.32 43.34 674.231 9024 8955.29 49.07 474.643	F 15 9275 9192.36 20.27 253.268 9771 9540.08 47.95 637.331 9837 9736.89 46.11 777.755 9822 9678.89 80.67 719.986 9837 9808.86 20.42 483.384	F 14 8671 8397.36 87.65 302.624 9106 8894.09 140.48 426.088 9135 8940.65 109.78 689.759 9163 9135.27 4.90 671.132 9163 9138.36 9.10 524.799	F 13 9311 9176.28 46.93 363.381 9790 9602 55.96 543.236 9881 9792.23 51.06 881.999 9881 9819.24 38.74 363.945 9881 9844.96 11.88 455.713	F 12 8736 8540.46 20.51 172.475 9187 8998.45 79.17 881.295 9357 9174.16 143.19 413.157 9357 9324.62 16.67 457.807 9357 9354.52 9.18 263.684	F 11 9098 9026.05 34.87 498.591 9640 9449.97 60.22 690.489 9741 9724.60 7.68 576.260 9750 9734.74 13.39 479.356 9914 9914 0 209.679	f best favg std tavg(s) f best favg std tavg(s) f best favg std tavg(s) f best favg std tavg(s) f best favg std tavg(s)	Instance BABC DHJaya HBPSO/TS I2PLS KBTS

Table 3 .

 3 4 -Summarized comparisons of the KBTS algorithm against each reference algorithm with the p-values of the Wilcoxon signed-rank test over the two sets of benchmark instances.

	Algorithm pair	Instance set Indicator #Wins #Ties #Losses p-value
	KBTS vs. BABC	Set I (30)	f best	23	7	0	2.70e-5
			favg	26	4	0	8.30e-6
		Set II (30)	f best	30	0	0	1.73e-6
			favg	30	0	0	1.73e-6
	KBTS vs. DHJaya	Set I (30)	f best	16	14	0	4.38e-4
			favg	22	7	1	3.53e-5
		Set II (30)	f best	30	0	0	1.73e-6
			favg	30	0	0	1.73e-6
	KBTS vs. HBPSO/TS Set I (30)	f best	2	28	0	1.80e-1
			favg	12	15	3	7.60e-3
		Set II (30)	f best	18	12	0	8.85e-5
			favg	29	1	0	2.56e-6
	KBTS vs. I2PLS	Set I (30)	f best	0	30	0	NA
			favg	20	10	0	1.51e-3
		Set II (30)	f best	13	17	0	1.32e-4
			favg	29	1	0	2.56e-6

Table 3 .

 3 5 -Parameter levels for the 2-level full factorial experiment.

		Low level High level
	kernel coefficient ε	0.3	0.6
	local search depth γmax	3	6
	direct perturbation strength δ	3	6

Table 3 .

 3 .6. 6p-values for the analysis of variances with the significance level 0.05.

	Source of variation	ε	γmax	δ	ε * γmax ε * δ γmax * δ ε * γmax * δ
	p-value	3.70e-2 1.80e-2 1.25e-1 3.90e-1 1.47e-1 1.92e-1	8.41e-1

Table 3 .

 3 7 -Comparison between KBTS (with the kernel components) and KBTS -(without the kernel components) on the instances of Set II.

	Instance/Setting		KBTS			KBTS -	
		f best	favg	std	f best	favg	std
	600_585_0.10_0.75	9914	9914	0	9914	9800.70	77.56
	600_585_0.15_0.85	9357	9353.47	11.29	9357	9356.40	3.23
	700_685_0.10_0.75	9881	9845	12	9881	9851.47	17.36
	700_685_0.15_0.85	9163	9137.80	8.40	9163	9138.73	9.52
	800_785_0.10_0.75	9837	9810.80	16.56	9829	9806.57	17.10
	800_785_0.15_0.85	9024	8944	43.36	9024	8935.07	45.08
	900_885_0.10_0.75	9725	9614.80	20.46	9725	9614.80	20.46
	900_885_0.15_0.85	8620	8534.57	54.15	8588	8541.73	54.39
	1000_985_0.10_0.75	9668	9512.13	74.70	9668	9477.40	56.68
	1000_985_0.15_0.85	8448	8448	0	8448	8448	0
	600_600_0.10_0.75	10524	10521.60	2.94	10524	10521.60	2.94
	600_600_0.15_0.75	9062	9061.07	5.03	9062	9060.73	6.82
	700_700_0.10_0.75	9786	9786	0	9786	9786	0
	700_700_0.15_0.85	9229	9185.60	19.51	9177	9177	0
	800_800_0.10_0.75	9932	9932	0	9932	9932	0
	800_800_0.15_0.85	9101	8935.83	40.92	9101	8928.77	39.09
	900_900_0.10_0.75	9745	9731.40	29.25	9745	9741.03	16.24
	900_900_0.15_0.85	8990	8920.93	18.46	8916	8916	0
	1000_1000_0.10_0.75	9544	9424	55.68	9544	9424.37	51.06
	1000_1000_0.15_0.85	8474	8379.33	24.19	8438	8374.33	20.79
	585_600_0.10_0.75	10393	10393	0	10393	10393	0
	585_600_0.15_0.85	9256	9256	0	9256	9256	0
	685_700_0.10_0.75	10121	10112.80	35.87	10121	10121	0
	685_700_0.15_0.85	9176	9176	0	9176	9176	0
	785_800_0.10_0.75	9384	9384	0	9384	9384	0
	785_800_0.15_0.85	8746	8650.43	48.04	8663	8645.60	27.77
	885_900_0.10_0.75	9318	9239.47	26.88	9318	9233.57	17.29
	885_900_0.15_0.85	8425	8312.43	47.17	8425	8319.97	46.16
	985_1000_0.10_0.75	9193	9086.07	77.58	9186	9083.90	69.38
	985_1000_0.15_0.85	8528	8497.93	33.15	8528	8484.83	36.00
	#Avg	9352.13	9303.35	23.52	9342.40	9297.69	21.16
	#Best	30	22	-	23	17	-
	p-value	-	-	-	1.80e-2	2.31e-1	-

 Instance I, cut-off time t max , neighborhoods N , hash vectors H 1 , H 2 , H 3 , length of hash vectors L, hash functions h 1 , h 2 , h 3 .

		far */
	9:	end if
	10: end while
	11: return S *

1: Input: 2: Output: The best solution found S * . 3: S * ← ∅ /* Initialize the overall best solution S * (i.e., f (S *) = 0)*/ 4: while T ime ≤ t max do 5: S ← Greedy_Randomized_Initialization(I) 6: /* Record the best solution S b found during tabu search */ S b ← Solution_Based_T abu_search(S) 7: if f (S b) > f (S *) then 8: S * ← S b /* Update the overall best solution S * found so

 Algorithm 13 Solution-based tabu search 1: Input: Input solution S, neighborhood N , hash vectors H 1 , H 2 , H 3 , hash functions h 1 , h 2 , h 3 , cut-off time t max , length of hash vectors L. 2: Output: Best solution S b found during tabu search. 3: S b ← S /* Record the best solution S b found during tabu search */ 4: (H 1 , H 2 , H 3) ← Initialize_Hash_V ectors(H 1 , H 2 , H 3 , L)

			/* (i.e., tabu list) */
	5: F ind ← T rue	/* Track the admissible neighboring solution */
	6: while F ind ∧ T ime ≤ t max do	
	7:	Find admissible neighboring solutions N (S) in N (S)
	8:	if N (S) = ∅ then	
	9:	/* Attain the best admissible neighboring solution S */
		S ← argmax{f (S) : S ∈ N (S)}	
	10:	F ind ← T rue	
	11:	else	
	12:	F ind ← F alse	
	13:	end if	
	14:	if f (S) > f (S b) then	
	15:	f (S b) ← f (S)	/* Update the best solution S b found during tabu search */
	16:	end if	
		/* Update the hash vectors with S */
	17:	H 1 [h 1 (S)] ← 1	
	18:	H 2 [h 2 (S)] ← 1	
	19:	H 3 [h 3 (S)] ← 1	
	20: end while	
	21: return S b	
	resent items in sets A and Ā respectively. Meanwhile, a neighborhood filtering strategy
	[WH19; WH20a] is applied in both move operators to reduce the neighborhood size. So
	the neighborhoods N f	

Table 4 .

 4 1 -Computational results of the MSBTS algorithm and the reference algorithms on the 30 benchmark instances of Set I.

	MSBTS	favg std tavg(s)	13283 0 12.770	12413.78 79.79 184.323	13521 0 22.528	13946.15 153.67258.541	11563 0 37.877	12430.51 73.86 216.465	11484 0 7.643	11209 0 46.800	11771 0 31.171	10205.6216.33 389.536	14044 0 6.639	13508 0 55.103	12518.28 21.15 70.411	
	KBTS [WH20a]	favg std tavg(s) f best	13283 0 4.082 13283	12479 0 42.992 12479	13521 0 6.988 13521	14209.87 29.17107.407 14215	11563 0 28.841 11563	12536.02 87.51235.450 11563	11484 0 0.296 11484	11209 0 72.020 11209	11755.47 19.74206.199 11771	10202.90 16.25293.140 10238	14044 0 0.023 14044	13508 0 33.403 13508	12522 0 48.206 12522	
	I2PLS [WH19]	favg std tavg(s) f best	13283 0 3.094 13283	12335.1398.78 103.757 12479	13521 0 71.984 13521	14031.28131.46180.809 14215	11562.023.94 181.248 11563	12364.5583.03 240.333 12607	11484 0 31.801 11484	11157.2687.29 141.525 11209	11729.766.59 349.545 11771	10133.9494.72 369.375 10238	14044 0 38.245 14044	13451.50126.4970.587 13508	12522 0 54.780 12522	
	DHJaya [WH20b] HBPSO/TS [Lin+19]	f best favg std tavg(s) f best favg std tavg(s) f best	13283 13283 0 9.477 13283 13283 0 0.098 13283	12479 12479 0 24.414 12479 12403.1598.97101.122 12479	13521 13498.2226.10 258.213 13521 13521 0 0.490 13521	14215 14215 0 83.129 14215 14177.3870.8472.041 14215	11385 11167.77129.98 174.335 11563 11563 0 38.355 11563	12402 12248.4222.12 316.767 12607 12607 0 24.967 12607	11484 11325.8838.65 229.370 11484 11484 0 10.870 11484	10710 10293.96173.85 241.068 11209 11209 0 16.478 11209	11722 11675.5155.53 226.604 11771 11746.1957.98293.514 11771	10194 9703.56 114.852383.021 10194 10163.7682.1192.121 10238	0.518 14044 14044 14044 0 1.374 14044 14044 0	2.923 13508 13508 13508 0 1.572 13508 13508 0	0.8125 12522 12522 12480.6265.05 207.667 12522 12522 0	12317 12217.8193.361 229.824 12317 12317 0
	Instance		F1 *	F2 *	F3	F4	F5	F6	F7	F8	F9	F10	S1 *	S2 *	S3	S4

Table 4 .

 4 2 -Computational results of the MSBTS algorithm and the reference algorithms on the 30 benchmark instances of Set II.

	#Avg 9196.679041.40 62.54 482.096 9280.339105.91 85.91 499.248 9310.109202.09 57.96 473.031 9352.309303.10 23.95379.479 9362.939351.597.22 280.940	T20 8453 8425.27 48.74 503.976 8172 7958.24 121.56350.640 8528 8233.05 119.98283.901 8528 8488.13 33.47450.711 8612 8578.2032.47628.435	T19 9067 8994.48 44.99 313.094 9113 8938.38 66.64 967.315 9047 8917.48 126.3789.760 9193 9105.84 74.76319.356 9234 9193.1513.26855.645	T18 8217 7881.44 65.84 140.935 8277 7900.57 131.65296.061 8425 8268 104.34484.859 8425 8311.68 46.80625.829 8425 8411.729.88 573.526	T17 9137 9079.09 46.70 590.376 9232 9121.24 48.92 455.104 9232 9106.31 62.28 452.360 9318 9236.16 21.32281.632 9318 9318 0 81.932	T16 8556 8482.33 51.45 604.625 8572 8322.17 57.53 665.514 8663 8558.51 79.51 586.047 8746 8643.93 47.92467.334 8746 8684.5836.41720.765	T15 8885.09 54.14 316.494 9163.90 70.91 339.415 9236.10 95.56 576.738 136.173 9382.68 9.24 210.315	T14 9102 8860.79 106.42159.976 9176 8936.47 135.64645.153 9176 9139.18 52.80 461.051 9176 9176 0 140.151 9176 9176 0 96.859	T13 10070 9953.55 49.02 430.180 10121 9909 30.82 123.012 10121 9979.70 86.13 540.289 10121 10114.9631.87230.918 10121 10121 0 9.229	T12 9031 8944.22 61.72 616.631 9256 9256 0 103.637 9256 9256 0 264.876 9256 9256 0 84.359 9256 9256 0 99.163	S11 10300 10161.4572.81 98.186 10393 10191.01102.35729.422 10393 10366.1529.83 499.311 10393 10393 0 89.785 10393 10393 0 73.093	S20 8330 8037.92 71.87 932.614 8134 7872.84 95.76 97.909 8379 8206.49 68.52 632.334 8474 8376.20 27.12500.435 8538 8497.3928.46505.954	S19 9348 9250.80 53.65 542.187 9509 9273.64 82.57 802.652 9544 9255.73 142.33876.669 9544 9431.47 60.84510.660 9551 9551 0 142.712	S18 8718 8492.88 62.31 702.655 8916 8617.20 210.54665.798 8916 8916 0 116.694 8990 8918.96 14.50672.574 8990 8990 0 237.865	S17 9526 9462.86 37.83 670.990 9745 9639.60 51.13 598.520 9745 9660.12 36.68 341.110 9745 9729.51 30.06368.807 9745 9745 0 45.950	S16 8961 8774.18 59.78 161.688 8907 8732.94 160.07590.883 8961 8909.50 10.91 27.170 9101 8936.12 39.55321.859 9101 9101 0 129.395	S15 9890 9656.38 51.42 567.090 9932 9823.17 113.20607.506 9932 9685.79 72.06 868.227 9932 9930.56 14.33214.286 9932 9932 0 21.032	S14 9121 8985.51 65.90 507.656 9177 9003.15 138.46659.194 9229 9155.79 18.61 445.194 9229 9187.55 20.70486.304 9229 9229 0 96.472	S13 9512 9409.01 28.70 809.836 9786 9679.56 72.51 215.910 9786 9742.73 40.87 383.700 9786 9786 0 97.316 9786 9786 0 64.868	S12 8910 8785.64 43.46 571.965 9024 8902.33 27.27 214.261 9062 9022.97 46.28 456.386 9062 9061.16 4.78 255.342 9062 9062 0 224.626	S11 10507 10504.2519.67 321.196 10518 10517.891.09 60.254 10524 10520.702.99 513.537 10524 10521.722.91 404.697 10524 10524 0 16.377	F20 8433 8280.52 90.87 312.589 8448 8129.08 92.71 564.848 8448 8268.18 135.55541.606 8453 8448.05 0.50 941.565 8455 8453.360.77 634.006	F19 9424 9306.86 45.01 309.873 9668 9278.50 125.80620.436 9580 9221.23 103.18329.743 9668 9496.63 74.35487.925 9689 9632.5929.56671.192	F18 8418 8244.47 87.93 316.604 8481 8208.22 108.56332.102 8481 8426.36 44.76 541.670 8620 8526.55 48.37274.653 8620 8566.7131.18978.573	F17 9455 9249.53 109.14687.150 9611 9560.93 89.43 514.922 9611 9537.61 61.42 511.245 9725 9616.70 24.85609.811 9725 9725 0 192.213	F16 8797 8649 63.01 236.798 8907 8872.84 84.36 418.033 8907 8780.32 43.34 674.231 9024 8955.29 49.07474.643 9024 8986.2525.38486.666	F15 9771 9540.08 47.95 637.331 9837 9736.89 46.11 777.755 9822 9678.89 80.67 719.986 9837 9808.86 20.42483.384 9937 9937 0 259.160	F14 9106 8894.09 140.48426.088 9135 8940.65 109.78689.759 9163 9135.27 4.90 671.132 9163 9138.36 9.10 524.799 9163 9163 0 102.379	F13 9790 9602 55.96 543.236 9881 9792.23 51.06 881.999 9881 9819.24 38.74 363.945 9881 9844.96 11.88455.713 9881 9881 0 28.474	F12 9187 8998.45 79.17 881.295 9357 9174.16 143.19413.157 9357 9324.62 16.67 457.807 9357 9354.52 9.18 263.684 9357 9357 0 59.382	F11 9640 9449.97 60.22 690.489 9741 9724.60 7.68 576.260 9750 9734.74 13.39 479.356 9914 9914 0 209.679 9914 9914 0 181.952	f best favg std tavg(s) f best favg std tavg(s) f best favg std tavg(s) f best favg std tavg(s) f best favg std tavg(s)	Instance DHJaya [WH20b] HBPSO/TS [Lin+19] I2PLS [WH19] KBTS [WH20a] MSBTS

Table 4 .

 4 3 -Summarized comparisons of the MSBTS algorithm against each reference algorithm over the two sets of benchmark instances.

	Algorithm pair	Instance setIndicator#Wins#Ties#Lossesp-value
	MSBTS vs. DHJaya [WH20b]	Set I (30) f best	16	14	0	4.82e-4
		favg	23	6	1	1.37e-4
		Set II (30) f best	30	0	0	1.82e-06
		favg	30	0	0	1.86e-09
	MSBTS vs. HBPSO/TS [Lin+19] Set I (30) f best	2	28	0	1.80e-1
		favg	11	12	7	1.33e-1
		Set II (30) f best	20	10	0	5.96e-5
		favg	29	1	0	2.56e-6
	MSBTS vs. I2PLS [WH19]	Set I (30) f best	0	30	0	NA
		favg	19	5	6	2.64e-2
		Set II (30) f best	15	15	0	8.83e-5
		favg	29	1	0	2.56e-6
	MSBTS vs. KBTS [WH20a]	Set I (30) f best	0	30	0	NA
		favg	6	11	13	9.10e-2
		Set II (30) f best	7	23	0	1.80e-2
		favg	24	5	1	1.57e-5

Table 4 .

 4 4 -Time-to-target analysis on the SUKP instances of Set II.

	Instance/Algorithm	Target	DHJaya	HBPSO/TS	I2PLS	KBTS	MSBTS
			T best (s) Tavg(s) T best (s) Tavg(s) T best (s) Tavg(s) T best (s) Tavg(s) T best (s) Tavg(s)
	600_585_0.10_0.75		100.079 523.459 3.470	9.353	3.741	11.927	0.213	0.618	0.654	1.297
	600_585_0.15_0.85		65.826	566.872 67.883	382.176 6.599	59.784	3.486	12.187	1.244	9.123
	700_685_0.10_0.75		270.577 561.072 11.334	133.119 11.657	66.970	1.216	7.799	0.858	5.310
	700_685_0.15_0.85		106.614 427.274 123.888 526.406 9.663	178.041 1.647	42.561	1.370	23.398
	800_785_0.10_0.75		160.885 650.605 18.534	132.560 25.917	241.929 1.272	15.965	1.325	7.600
	800_785_0.15_0.85		151.590 516.174 68.445	323.062 15.246	102.963 5.448	55.774	2.492	7.798
	900_885_0.10_0.75		313.696 560.054 37.409	271.706 13.254	295.578 1.530	28.776	3.346	8.834
	900_885_0.15_0.85		221.799 400.128 499.176 652.865 13.318	459.241 2.592	60.691	2.139	9.243
	1000_985_0.10_0.75		291.897 421.090 9.114	97.051	13.008	150.602 1.061	21.855	0.639	16.614
	1000_985_0.15_0.85		293.618 574.331 678.089 820.440 530.745 530.745 6.685	116.893 10.870 25.255
	600_600_0.10_0.75		67.558	369.584 16.691	51.810	5.938	31.448	2.589	58.678	1.041	5.271
	600_600_0.15_0.75		68.179	560.449 6.067	131.515 5.670	40.425	1.170	5.538	0.697	5.450
	700_700_0.10_0.75		654.112 743.459 9.297	163.108 9.090	99.874	1.769	12.083	0.721	4.817
	700_700_0.15_0.85		105.922 521.651 111.166 690.543 23.306	265.033 4.807	29.800	2.098	19.571
	800_800_0.10_0.75		573.460 576.004 180.088 549.453 866.553 866.553 9.431	213.756 6.618	21.098
	800_800_0.15_0.85		162.727 575.454 114.424 508.682 15.821	131.655 1.385	27.487	2.459	8.224
	900_900_0.10_0.75		220.422 603.266 33.222	261.629 11.589	46.073	1.275	8.965	2.809	6.297
	900_900_0.15_0.85		235.578 459.369 50.142	554.410 12.601	84.906	1.033	10.397	0.912	8.208
	1000_1000_0.10_0.75		327.772 784.859 76.998	560.236 30.069	412.291 2.125	149.036 18.468 43.389
	1000_1000_0.15_0.85		294.562 530.699 76.860	548.614 25.684	225.339 2.132	24.634	1.218	8.561
	585_600_0.10_0.75		64.865	245.444 15.053	83.161	6.935	17.042	1.614	5.787	0.746	2.510
	585_600_0.15_0.85		65.337	528.534 8.954	63.449	7.319	96.275	1.033	21.288	1.005	21.108
	685_700_0.10_0.75		333.101 472.050 137.383 171.016 108.642 484.414 13.512 235.948 2.818	5.230
	685_700_0.15_0.85		154.648 514.173 189.391 531.964 19.709	299.990 3.127	45.425	1.370	29.075
	785_800_0.10_0.75		155.496 484.831 9.029	96.090	11.278	104.360 0.756	7.486	0.765	2.847
	785_800_0.15_0.85		150.938 607.258 679.254 679.254 27.872	358.703 10.115 155.450 2.401	22.656
	885_900_0.10_0.75		222.106 619.250 30.648	425.582 36.186	415.666 6.096	73.726	4.159	17.378
	885_900_0.15_0.85		346.018 631.780 228.520 564.195 28.099	209.716 1.941	17.235	1.746	7.186
	985_1000_0.10_0.75		300.232 540.491 278.500 651.225 36.254	428.971 12.316 113.230 9.698	48.404
	985_1000_0.15_0.85		281.460 437.529 109.148 276.985 47.763	287.634 1.088	12.129	0.997	10.208
	#Avg		225.369 533.573 129.272 363.722 65.984	233.472 3.482	53.040	2.923	13.732
	#Best	-	0	0	0	0	0	0	8	2	22	28
	#p-value	-	1.86e-09 1.86e-09 1.86e-09 1.86e-09 1.86e-09 1.86e-09 2.48e-2 9.31e-09 -	-

Table 4 .

 4 5 -Influence of the hash functions on the average performance of MSBTS algorithm.

	(γ 1 , γ 2 , γ 3)/ Instance	T 16	F 15	F 16	T 18	F 18	T 19	T 20	F 19	F 20	S 20	#Avg
	(1.1,1.3,1.5) 8665.77 9930.33 9004	8408.87 8578.23 9190.07 8579.50 9647.67 8453.80 8491.90 8895.01
	(1.1,1.5,1.9) 8687.90 9937	8985.50 8411	8577.10 9191.87 8575.17 9627.50 8453.27 8490.07 8893.64
	(1.2,1.4,1.8) 8687.90 9937	8983.67 8412.20 8579.27 9190.73 8583.83 9638.50 8453.60 8487.93 8895.46
	(1.2,1.6,2.0) 8693.43 9937	8992.83 8413.80 8576.07 9192.53 8579.50 9631.60 8453.20 8500.37 8897.03
	(1.3,1.5,1.7) 8671.30 9937	9000.17 8411.67 8581.43 9192.93 8577.33 9636.10 8453.43 8490.77 8895.21
	(1.3,1.7,2.1) 8690.67 9937	8985.50 8413.80 8566.33 9189.03 8577.33 9631.60 8453.13 8491.70 8893.61
	(1.4,1.6,2.0) 8687.90 9933.67 8994.67 8411.47 8582.53 9191.80 8573	9626.13 8453.27 8486.93 8894.14
	(1.5,1.7,1.9) 8679.60 9937	8989.17 8412.20 8568.43 9189.73 8573	9631	8453.33 8496.10 8892.96
	(1.5,1.9,2.3) 8685.13 9933.67 8983.67 8412.20 8571.67 9191.80 8579.50 9636.80 8453.40 8492.47 8894.03
	(1.6,1.8,2.2) 8679.60 9937	8989.17 8412.20 8568.43 9189.73 8573	9631	8453.33 8496.10 8892.96
	(1.7,1.9,2.1) 8685.13 9933.67 8985.50 8412.20 8573.90 9190.50 8573	9637.50 8453.40 8492.47 8893.73
	(1.7,2.1,2.5) 8682.37 9933.67 8981.83 8412.20 8573.90 9191.57 8575.17 9637.50 8453.40 8492.47 8893.41
	(1.8,2.0,2.4) 8685.13 9933.67 8983.67 8412.20 8571.67 9191.80 8579.50 9636.80 8453.40 8492.47 8894.03
	(1.9,2.1,2.3) 8682.37 9933.67 8981.83 8412.20 8573.90 9191.57 8577.33 9637.20 8453.40 8492.47 8893.59
	(1.9,2.3,2.7) 8682.37 9933.67 8981.83 8412.20 8573.90 9191.57 8577.33 9637.50 8453.40 8492.47 8893.62
	(2.0,2.2,2.6) 8685.13 9933.67 8985.50 8412.20 8573.90 9190.50 8573	9637.50 8453.40 8492.47 8893.73
	(1.1,1.2,2.7) 8693.43 9937	8983.67 8410.60 8568.40 9191.20 8573	9636.67 8453.40 8494.33 8894.17
	(1.1,1.8,2.7) 8679.60 9933.67 8985.50 8412.73 8571.73 9191.57 8573	9643	8453.40 8490.33 8893.45
	(1.1,2.0,2.7) 8676.83 9933.67 8981.83 8412.20 8573.90 9191.57 8575.17 9637.20 8453.40 8492.47 8892.82
	(1.1,2.5,2.7) 8676.83 9933.67 8981.83 8412.20 8571.73 9191.57 8575.17 9637.20 8453.33 8492.47 8892.60
	#std	6.93	1.96	6.30	1.04	4.35	0.99	3.10	4.94	0.14	2.88	-
	From Table										

Table 4 .

 4 6 -Comparison between MSBTS and MABTS on the instances of Set II.

	Instance/Setting		MSBTS			MABTS	
		f best	favg	std	f best	favg	std
	600_585_0.10_0.75	9914	9914	0	9914	9801.57	72.65
	600_585_0.15_0.85	9357	9357	0	9357	9329.40	23.76
	700_685_0.10_0.75	9881	9881	0	9841	9814.37	34.83
	700_685_0.15_0.85	9163	9163	0	9135	9126.67	14.16
	800_785_0.10_0.75	9937	9937	0	9811	9679.73	61.37
	800_785_0.15_0.85	9024	8992.83	27.25 9024	8892.53	51.21
	900_885_0.10_0.75	9725	9725	0	9611	9503.63	53.57
	900_885_0.15_0.85	8620	8576.07	27.14 8499	8459.87	26.51
	1000_985_0.10_0.75	9689	9631.60	28.92 9580	9411.37	58.09
	1000_985_0.15_0.85	8455	8453.20	0.60	8448	8359.30	106.74
	600_600_0.10_0.75	10524	10524	0	10524	10519.67 3.54
	600_600_0.15_0.75	9062	9062	0	9062	9058.20	11.40
	700_700_0.10_0.75	9786	9786	0	9786	9770.20	37.93
	700_700_0.15_0.85	9229	9229	0	9177	9145.20	30.65
	800_800_0.10_0.75	9932	9932	0	9932	9734.87	64.12
	800_800_0.15_0.85	9101	9101	0	8956	8907.10	14.88
	900_900_0.10_0.75	9745	9745	0	9660	9629.20	36.02
	900_900_0.15_0.85	8990	8990	0	8916	8911.03	17.49
	1000_1000_0.10_0.75 9551	9551	0	9357	9269.87	92.10
	1000_1000_0.15_0.85 8538	8500.37	28.65 8381	8282.20	73.08
	585_600_0.10_0.75	10393	10393	0	10393	10325.43 34.75
	585_600_0.15_0.85	9256	9256	0	9256	9256	0
	685_700_0.10_0.75	10121	10121	0	10121	9944.10	59.12
	685_700_0.15_0.85	9176	9176	0	9176	9144.97	31.29
	785_800_0.10_0.75	9384	9384	0	9384	9229.37	93.68
	785_800_0.15_0.85	8746	8693.43	40.00 8663	8526.57	59.71
	885_900_0.10_0.75	9318	9318	0	9232	9158.57	40.38
	885_900_0.15_0.85	8425	8413.80	7.33	8425	8276.07	42.39
	985_1000_0.10_0.75	9234	9192.53	14.12 9193	9030.77	54.53
	985_1000_0.15_0.85	8612	8579.50	32.50 8461	8384.43	75.03
	#Avg	9362.93 9352.61	6.88	9309.17 9229.41	45.83
	#Best	30	30	-	13	0	-
	p-value	2.93e-4	2.563e-06 -	-	-	-

 Algorithm 14 Main framework of threshold search based memetic algorithm for the DCKP 1: Input: Instance I, cut-off time t max , population P , the maximum number of iterations IterM ax, neighborhoods N 1 , N 2 , N 3 . 2: Output: The overall best solution S * found.

	3: S * ← ∅	/* Initialize S * (i.e., f (S *) = 0)*/
	4: P OP = {S 1 , . . . , S |P | } ← P opulation_Initialization(I)	/* Section 5.2.3 */
	5: S * ← argmax{f (S k)|k = 1, . . . , p}	
	6: while T ime ≤ t max do	
	7:	Randomly pick two solutions S i and S j from the population POP
	8:	S o ← Crossover_Operator(S i , S j)		/* Section 5.2.5 */
	9:	S b ← T hreshold_Search(S o , N 1-3 , IterM ax)	/* Section 5.2.4 */
	10:	/* Record the best solution S b found during threshold search */
	11:	if f (S b) > f (S *) then	
	12:	S * ← S b	/* Update the overall best solution S * found so far */
	13:	end if	
	14:	P OP ← P ool_U pdating(S b , P OP)		/* Section 5.2.6 */
	15: end while	
	16: return S *	

1 :

 1 Input: Two parent solutions S i = (x i

	1 , x i 2 , . . . , x i n) and S j = (x j 1 , x j 2 , . . . , x j n). 2: Output: An offspring solution S o = (x o 1 , x o 2 , . . . , x o n). 3: S o ← ∅ /* Initialize S o (i.e., f (S o) = 0)*/
	4: for a ← 1 to n do	
	5:	if x i a = 1 and x j a = 1 then	
	6:	X 1 ← a	/* X 1 is the common items set */
	7:	else if x i a = 1 or x j a = 1 then	
	8:	X 2 ← a	/* X 2 is the unique items set */
	9:	end if	
	10: end for	
	11: S o ← X 1	/* Add all items belonging to X 1 into S o */
	12: Randomly shuffle all items in X 2 ;	
	13: for each a ∈ X 2 do	
	14: 15:	if S o ∪ (x o a = 1) is a feasible solution then x o a ← 1	/* The second backbone */
	16:	end if	
	17: end for	
	18: return S o	
	its distance from the population.	

Table 5 .

 5 1 -Summarized comparisons of the TSBMA algorithm against each reference algorithm with the p-values of the Wilcoxon signed-rank test on the 100 DCKP instances of Set I.

	Algorithm pair	Instance	Indicator #Wins #Ties #Losses p-value
	TSBMA vs. PTS [Sal+17]	1Iy -10Iy (50)	f best	8	42	0	1.40e-2
			favg	45	5	0	5.34e-9
	TSBMA vs. PNS [QW17b]	1Iy -10Iy (50)	f best	9	41	0	8.91e-3
		11Iy -20Iy (50)	f best	26	24	0	8.25e-6
	TSBMA vs. CPANS [QW17a] 1Iy -10Iy (50)	f best	0	50	0	NA
		11Iy -20Iy (50)	f best	29	21	0	2.59e-6

Table 5 .

 5 3 -Comparison between TSBMA -(without the OP mechanism) and TSBMA (with the OP mechanism) on the instances 11Iy to 20Iy.

	Instance		TSBMA -			TSBMA	
		f best	favg	std	f best	favg	std
	11I1	4960	4960	0.00	4960	4960	0.00
	11I2	4940	4940	0.00	4940	4940	0.00
	11I3	4950	4949.45	2.18	4950	4950	0.00
	11I4	4930	4924	4.42	4930	4930	0.00
	11I5	4920	4916.35	4.68	4920	4920	0.00
	12I1	4685	4676.95	4.99	4690	4687.65	2.22
	12I2	4670	4668.70	3.10	4680	4680	0.00
	12I3	4690	4685.45	4.20	4690	4690	0.00
	12I4	4680	4669.80	6.36	4680	4679.50	2.18
	12I5	4670	4664.50	4.57	4670	4670	0.00
	13I1	4525	4511.20	8.55	4539	4534.80	3.60
	13I2	4521	4509.25	7.29	4530	4528	4.00
	13I3	4520	4515.40	4.55	4540	4531	3.00
	13I4	4520	4507.10	6.94	4530	4529.15	2.29
	13I5	4530	4513.65	6.51	4537	4534.20	3.43
	14I1	4429	4413.55	7.41	4440	4440	0.00
	14I2	4420	4413.55	4.47	4440	4439.40	0.49
	14I3	4420	4415.20	4.70	4439	4439	0.00
	14I4	4420	4412.40	4.57	4435	4431.50	2.06
	14I5	4420	4413.85	4.27	4440	4440	0.00
	15I1	4359	4346.15	5.06	4370	4369.95	0.22
	15I2	4359	4344.10	6.22	4370	4370	0.00
	15I3	4359	4341.85	6.54	4370	4369.25	1.84
	15I4	4350	4341.05	7.78	4370	4369.85	0.36
	15I5	4360	4346.10	5.47	4379	4373.15	4.29
	16I1	5020	5013.75	4.93	5020	5020	0.00
	16I2	5010	5003.30	5.60	5010	5010	0.00
	16I3	5020	5010.65	5.33	5020	5020	0.00
	16I4	5020	5008.95	8.24	5020	5020	0.00
	16I5	5060	5052.85	8.37	5060	5060	0.00
	17I1	4730	4707.50	7.51	4730	4729.70	0.64
	17I2	4716	4704.50	6.27	4720	4719.50	2.18
	17I3	4720	4705.10	6.68	4729	4723.60	4.41
	17I4	4722	4701.20	9.68	4730	4730	0.00
	17I5	4720	4706.20	8.37	4730	4726.85	4.50
	18I1	4555	4539.75	6.31	4568	4565.80	3.40
	18I2	4540	4532.20	4.64	4560	4551.40	3.01
	18I3	4570	4545.20	8.58	4570	4569.40	2.20
	18I4	4550	4539.30	6.75	4568	4565.20	3.12
	18I5	4550	4542.50	5.32	4570	4567.95	3.46
	19I1	4432	4424.65	4.71	4460	4456.65	3.48
	19I2	4443	4430.85	6.06	4460	4453.25	4.17
	19I3	4440	4428.15	6.01	4469	4462.05	4.04
	19I4	4450	4431.25	5.63	4460	4453.20	3.89
	19I5	4449	4435.65	5.42	4466	4460.75	1.61
	20I1	4364	4358.95	2.80	4390	4383.20	3.36
	20I2	4360	4356.85	4.25	4390	4381.80	3.78
	20I3	4370	4360.45	5.11	4389	4387.90	2.77
	20I4	4370	4359.75	5.78	4389	4380.40	1.98
	20I5	4366	4357.45	4.78	4390	4386.40	4.05
	#Avg	4603.08	4593.13	5.56	4614.14	4611.83	1.80
	#Best	15/50	2/50	-	50/50	50/50	-
	p-values	2.51e-7	1.68e-9	-	-	-	-

Table 6 .

 6 1 -Computational results of the TSBMA algorithm with the reference algorithms on the 50 DCKP instances of Set I (1Iy to 10Iy).

	Instance	BKV	PNS [QW17b]	CPANS [QW17a]	PTS [Sal+17]		TSBMA (this work)	
			f best	f best	tavg(s)	f best	favg	f best	favg	std	tavg(s)
	1I1	2567	2567	2567	17.133	2567	2567	2567	2567	0.00	163.577
	1I2	2594	2594	2594	12.623	2594	2594	2594	2594	0.00	19.322
	1I3	2320	2320	2320	14.897	2320	2320	2320	2320	0.00	6.060
	1I4	2310	2310	2310	13.063	2310	2310	2310	2310	0.00	10.969
	1I5	2330	2330	2330	20.757	2330	2321	2330	2330	0.00	63.663
	2I1	2118	2118	2118	21.710	2118	2115.2	2118	2117.70	0.46	330.797
	2I2	2118	2112	2118	129.390	2110	2110	2118	2111.60	3.20	705.755
	2I3	2132	2132	2132	23.820	2119	2112.4	2132	2132	0.00	210.108
	2I4	2109	2109	2109	31.377	2109	2105.6	2109	2109	0.00	14.182
	2I5	2114	2114	2114	20.040	2114	2110.4	2114	2114	0.00	99.133
	3I1	1845	1845	1845	34.683	1845	1760.3	1845	1845	0.00	3.780
	3I2	1795	1795	1795	107.993	1795	1767.5	1795	1795	0.00	3.029
	3I3	1774	1774	1774	22.490	1774	1757	1774	1774	0.00	3.585
	3I4	1792	1792	1792	27.953	1792	1767.4	1792	1792	0.00	3.275
	3I5	1794	1794	1794	34.820	1794	1755.5	1794	1794	0.00	9.159
	4I1										

Table 6 .

 6 2 -Computational results and comparison of the TSBMA algorithm with the reference algorithms on the 50 DCKP instances of Set I (11Iy to 20Iy). Problème de sac à dos, Recherche locale, Métaheuristiques, Optimisation combinatoire. Cette thèse considère deux problèmes de sac à dos généralisés : le problème de sac à dos ensemble-union (SUKP) et le problème de sac à dos à contraintes disjonctives (DCKP). Ces deux problèmes sont un modèle utile pour formuler de nombreuses applications pratiques. Etant donné qu'ils appartiennent à la famille des problèmes N Pdifficiles, il est difficile de les résoudre dans le cas général. Cette thèse est consacrée à l'avancement de l'état de l'art pour résoudre ces problèmes pertinents. Plus précisément, nous introduisons un algorithme de recherche locale en deux phases itéré, un algorithme de recherche tabou basé sur le noyau, un algorithme de recherche tabou basé sur une so-lution à redémarrages répétés pour résoudre le SUKP et un algorithme mémétique basé sur une recherche de seuil pour résoudre le DCKP. Des études expérimentales réalisées sur un large éventail d'instances de référence indiquent que toutes les approches proposées concurrencent favorablement les algorithmes de référence. En outre, les expériences supplémentaires montrent les rôles des ingrédients clés de nos algorithmes, y compris la stratégie d'échappement des optima locaux basée sur la fréquence, l'heuristique de recherche du noyau, la technique de recherche tabou basée sur la solution pour le SUKP et le méthode de recherche de seuil dédié pour le DCKP.

	Instance	BKV	PNS [QW17b]	CPANS [QW17a]		TSBMA (this work)	
			f best	f best	tavg(s)	f best	favg	std	tavg(s)
	11I1	4950	4950	4950	333.435	4960	4960	0.00	4.594
	11I2	4940	4940	4928	579.460	4940	4940	0.00	14.305
	11I3	4925	4920	4925	178.400	4950	4950	0.00	69.236
	11I4	4910	4890	4910	320.067	4930	4930	0.00	139.197
	11I5	4900	4890	4900	222.053	4920	4920	0.00	100.178
	12I1	4690	4690	4690	230.563	4690	4687.65	2.22	416.088
	12I2	4680	4680	4680	502.600	4680	4680	0.00	224.000
	12I3	4690	4690	4690	229.116	4690	4690	0.00	215.103
	12I4	4680	4680	4676	367.330	4680	4679.50	2.18	256.300
	12I5	4670	4670	4670	487.563	4670	4670	0.00	79.190
	13I1	4533	4533	4533	395.985	4539	4534.80	3.60	415.880
	13I2	4530	4530	4530	573.718	4530	4528	4.00	361.229
	13I3	4540	4530	4540	901.620	4540	4531	3.00	498.622
	13I4	4530	4530	4530	315.076	4530	4529.15	2.29	366.951
	13I5	4537	4537	4537	343.240	4537	4534.20	3.43	425.064
	14I1	4440	4440	4440	483.156	4440	4440	0.00	205.733
	14I2	4440	4440	4440	735.505	4440	4439.40	0.49	438.190
	14I3	4439	4439	4439	614.733	4439	4439	0.00	146.119
	14I4	4435	4435	4434	533.908	4435	4431.50	2.06	106.389
	14I5	4440	4440	4440	473.448	4440	4440	0.00	160.900
	15I1	4370	4370	4370	797.125	4370	4369.95	0.22	321.296
	15I2	4370	4370	4370	676.703	4370	4370	0.00	181.021
	15I3	4370	4370	4370	612.792	4370	4369.25	1.84	315.575
	15I4	4370	4370	4370	649.398	4370	4369.85	0.36	424.873
	15I5	4379	4379	4379	678.354	4379	4373.15	4.29	359.003
	16I1	4980	4980	4980	286.130	5020	5020	0.00	205.964
	16I2	4990	4990	4980	232.825	5010	5010	0.00	342.824
	16I3	5009	5000	5009	199.880	5020	5020	0.00	155.070
	16I4	5000	4997	5000	831.750	5020	5020	0.00	86.324
	16I5	5040	5020	5040	982.970	5060	5060	0.00	32.837
	17I1	4730	4730	4721	422.640	4730	4729.70	0.64	388.541
	17I2	4710	4710	4710	248.770	4720	4719.50	2.18	300.275
	17I3	4720	4720	4720	454.317	4729	4723.60	4.41	343.016
	17I4	4720	4720	4720	432.900	4730	4730	0.00	288.961
	17I5	4720	4720	4720	102.468	4730	4726.85	4.50	366.752
	18I1	4566	4566	4566	225.010	4568	4565.80	3.40	269.545
	18I2	4550	4550	4550	288.862	4560	4551.40	3.01	13.884
	18I3	4570	4570	4570	328.555	4570	4569.40	2.20	466.748
	18I4	4560	4560	4560	511.527	4568	4565.20	3.12	264.931
	18I5	4570	4570	4570	651.887	4570	4567.95	3.46	572.589
	19I1	4460	4460	4460	506.945	4460	4456.65	3.48	459.570
	19I2	4459	4459	4459	666.900	4460	4453.25	4.17	307.224
	19I3	4460	4460	4460	608.913	4469	4462.05	4.04	485.550
	19I4	4450	4450	4450	476.755	4460	4453.20	3.89	430.824
	19I5	4460	4460	4460	508.730	4466	4460.75	1.61	40.752
	20I1	4389	4389	4388	957.410	4390	4383.20	3.36	929.372
	20I2	4390	4390	4387	756.908	4390	4381.80	3.78	299.673
	20I3	4389	4383	4389	966.010	4389	4387.90	2.77	568.988
	20I4	4388	4388	4380	993.630	4389	4380.40	1.98	657.694
	20I5	4389	4389	4389	772.495	4390	4386.40	4.05	646.570
	#Avg	4608.54	4606.88	4607.58	513.011	4614.14	4611.83	1.80	303.390

Titre : Algorithmes d'optimisation pour deux problèmes de sac à dos Mot clés : Résumé : Title: Optimization algorithms for two knapsack problems Keywords: Knapsack problems, Local search, Metaheuristics, Combinatorial optimization.

1.3. Disjunctively constrained knapsack problem

They are available at: http://www.info.univ-angers.fr/pub/hao/DCKP_TSBMA.html.

Our solution certificates and the code of I2PLS are available at: http://www.info.univ-angers. fr/pub/hao/SUKP_I2PLS.html.

The code of our KBTS algorithm is available at: http://www.info.univ-angers.fr/pub/hao/ SUKP_KBTS.html.

Our solution certificates are available at: http://www.info.univ-angers.fr/pub/hao/SUKP_ KBTS.html.

Our solution certificates are available at: http://www.info.univ-angers.fr/pub/hao/SUKP_ MSBTS.html.

The code of our TSBMA algorithm will be available at: http://www.info.univ-angers.fr/pub/ hao/DCKP_TSBMA.html.

Chapter 4

MULTISTART SOLUTION-BASED TABU SEARCH FOR THE SET-UNION KNAPSACK PROBLEM

In this chapter, we investigate for the first time a multistart solution-based tabu search algorithm for solving the problem. The proposed algorithm, which is parameter-free, combines a solution-based tabu search procedure with a multistart strategy to ensure an effective examination of candidate solutions. We report computational results on 60 benchmark instances from the literature, including new best results (improved lower bounds) for 7 large instances. We show additional experiments to shed lights on the roles of the key composing ingredients of the algorithm. The content of this chapter is based on an article published in Applied Soft Computing.

Chapter 5

A THRESHOLD SEARCH BASED MEMETIC ALGORITHM FOR THE DISJUNCTIVELY CONSTRAINED KNAPSACK PROBLEM

In this chapter, we present a threshold search based memetic algorithm for solving the DCKP that combines the memetic framework with threshold search to find high quality solutions. Extensive computational assessments on two sets of 6340 benchmark instances in the literature demonstrate that the proposed algorithm is highly competitive compared to the state-of-the-art methods. In particular, we report 24 and 354 improved best-known results (new lower bounds) for Set I (100 instances) and for Set II (6240 instances), respectively. We analyze the key algorithmic components and shed lights on their roles for the performance of the algorithm. The content of this chapter is based on an article that is being revised for Computers & Operations Research.

General procedure

The TSBMA algorithm relies on the general memetic algorithm framework [START_REF] Moscato | Memetic algorithms: A short introduction[END_REF] and follows the design principles recommended in [START_REF] Hao | Memetic algorithms in discrete optimization[END_REF][START_REF] Zhou | Memetic search for composing medical crews with equity and efficiency[END_REF]. The flowchart of TSBMA and its pseudo-code are shown in Figure 5.1 and Algorithm 14, respectively. The algorithm starts from a set of feasible solutions of good quality that are generated by the population initialization procedure (line 4, Alg. 14, and Section 5.2.3). The best solution is identified and recorded as the overall best solution S * (line 5, Alg. 14). Then the algorithm enters the main 'while' loop (lines 6-15, Alg. 14) to perform a number of generations. At each generation, two solutions are randomly picked and used by the crossover operator to create an offspring solution (line 7-8, Alg. 14, and Section 5.2.5). Afterwards, the threshold search procedure is triggered to perform local optimization with three neighborhoods N 1 , N 2 and N 3 (line 9, Alg. 14, and Section 5.2.4). After conditionally updating the overall best solution S * (lines 11-13, Alg. 14), the diversity-based pool updating procedure is applied to decide whether the best solution S b found during the threshold search should be inserted into the population (line 14, Alg. 14, and Section 5.2.6). Finally, when the given time limit t max is reached, the algorithm returns the overall best solution S * found during the search and terminates.

Neighborhoods and their exploration

The TSP procedure examines candidate solutions by exploring three neighborhoods induced by the popular move operators: add, swap and drop. Let S be the current solution and mv is one of these operators. We use S = S ⊕ mv to denote a feasible neighbor solution obtained by applying mv to S and N x (x = 1, 2, 3) to represent the resulting neighborhoods. To avoid the examination of unpromising neighbor solutions, TSP employs is determined in Section 5.2.4. The population updating procedure can be achieved in O(n|P |), where |P | is the population size. Then, the complexity of one iteration of the main loop of the TSBMA algorithm is O(n 2 × IterM ax).

Computational results and comparisons

In this section, we assess the proposed TSBMA algorithm by performing extensive experiments and making comparisons with state-of-the-art DCKP algorithms. The benchmark instances of the DCKP tested in our experiments were widely used in the literature, which can be divided into two sets (see Section 1.3.4 for the main characteristics of these instances). We report computational results on two sets of 6340 benchmark instances.

Experimental settings

Reference algorithms. For the 100 DCKP instances of Set I that were widely tested by heuristic algorithms, we adopt as our reference methods three state-of-the-art heuristic algorithms: parallel neighborhood search algorithm (PNS) [START_REF] Quan | Design and evaluation of a parallel neighbor algorithm for the disjunctively constrained knapsack problem[END_REF], cooperative parallel adaptive neighborhood search algorithm (CPANS) [START_REF] Quan | Cooperative parallel adaptive neighbourhood search for the disjunctively constrained knapsack problem[END_REF], and probabilistic tabu search algorithm (PTS) [START_REF] Mariem | Probabilistic Tabu search with multiple neighborhoods for the Disjunctively Constrained Knapsack Problem[END_REF]. Note that PTS only reported results of the 50 instances 1Iy to 10Iy, since the other 50 instances of 11Iy to 20Iy were designed later. For the 6240 DCKP instances of Set II that were only tested by exact algorithms until now, we cite the results of three best performing methods: branch-and-bound algorithms BCM [START_REF] Bettinelli | A branchand-bound algorithm for the knapsack problem with conflict graph[END_REF] and CFS [START_REF] Coniglio | A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts[END_REF]) as well as the integer linear programming formulations solved by the CPLEX solver (ILP) [START_REF] Coniglio | A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts[END_REF].

Computing platform. The proposed TSBMA algorithm was written in C++ 1 and compiled using the g++ compiler with the -O3 option. All experiments were carried out on an Intel Xeon E5-2670 processor (2.5 GHz CPU and 2 GB RAM) under the Linux operating system. The results of the main reference algorithms have been obtained on computing platforms with the following features: an Intel Xeon processor with 2×3.06 GHz for CPANS and PNS, an Intel Pentium i5-6500 processor with 3.2 GHz and 4 GB RAM for PTS, and an Intel Xeon E5-2695 processor with 3.00GHz for CFS. Note that the parallel algorithms PNS and CPANS used 10 to 400 processors to obtain the results.

Importance of the threshold search

The threshold search procedure of the TSBMA algorithm is the first adaptation of the threshold accepting method to the DCKP. To assess the importance of this component, we compare TSBMA with two TSBMA variants by replacing the TSP procedure with the f irst-improvement descent procedure and best-improvement descent procedure. In other words, these variants (named as MA1 and MA2) use, in each iteration, the first and the best improving solution S in the neighborhood to replace the current solution, respectively. We carried out an experiment by running the two variants to solve the 50 instances 11Iy to 20Iy with the same experimental settings of Section 5. From Figure 5.3, we can clearly observe that TSBMA dominates MA1 and MA2 according to the cumulative probability obtained by the f best and f avg values. The plots of TSBMA strictly run above the plots of MA1 and MA2, indicating TSBMA performs always better than the two variants. This experiment implies that the adopted threshold search procedure of TSBMA is relevant for its performance.

Part III

Conclusions

CONCLUSIONS

This thesis focuses on developing effective approaches for solving two knapsack problems: the set-union knapsack problem and the disjunctively constrained knapsack problem, which have received increasing attention in recent years. As the literature review shown in Chapter 1, considerable progresses have been continually made since the introduction of these two problems. Meanwhile, given the N P-hard nature and practical significance of these problems, more powerful algorithms are still needed to push the limits of existing methods. In this thesis, we aim at advancing the state-of-the-art of solving the SUKP and the DCKP effectively and robustly. Extensive experimental assessments on multiple sets of well-known benchmark instances commonly tested in the literature demonstrate that the proposed algorithms perform competitively with respect to the state-of-the-art algorithms.

In Chapter 2, we presented the first stochastic local search algorithm to directly operate the binary search space of the SUKP. The proposed iterated two-phase local search algorithm (I2PLS) adopts two complementary search components to achieve an appropriate balance between intensification and diversification. The local optima exploration phase (first phase) attains different local optimal solutions by performing a variable neighborhood descent search (VND) procedure and a tabu search procedure. The local optima escaping phase (second phase) examines the unexplored regions by employing a frequency-based perturbation procedure. Experimental assessments on the 30 benchmark instances confirmed the performance of the proposed I2PLS algorithm. Specifically, I2PLS is able to achieve improved best results (new lower bounds) for 18 instances and match the best-known results for the remaining 12 instances. The first computational results with the general CPLEX solver show that the optimal solutions can be reached only for 6 small instances. The VND search strategy and the frequency-based local optima escaping strategy are investigated to shed light on their influence on the performance of the proposed I2PLS algorithm.

In Chapter 3, after investigating the distribution of items among high-quality solutions, we observe that high-quality solutions often contain several identical items (kernel). For this reason, we designed a kernel based tabu search algorithm (KBTS) to perform In this appendix, we report the detailed computational results of the TSBMA algorithm and the reference algorithms (PNS [START_REF] Quan | Design and evaluation of a parallel neighbor algorithm for the disjunctively constrained knapsack problem[END_REF], CPANS [START_REF] Quan | Cooperative parallel adaptive neighbourhood search for the disjunctively constrained knapsack problem[END_REF] and PTS [START_REF] Mariem | Probabilistic Tabu search with multiple neighborhoods for the Disjunctively Constrained Knapsack Problem[END_REF]) on the 100 DCKP instances of Set I (see Tables 6.1 and 6.2).

The first two columns of the two tables give the name of each instance and the bestknown objective values (BKV) ever reported in the literature. We employ the following four performance indicators to present our results: best objective value (f best), average objective value over 20 runs (f avg), standard deviations over 20 runs (std), and average run time t avg in seconds to reach the best objective value. However, some of the performance indicators of the reference algorithms are not available in the literature (i.e., f avg , t avg and std). Note that for [START_REF] Quan | Design and evaluation of a parallel neighbor algorithm for the disjunctively constrained knapsack problem[END_REF] (PNS) and [START_REF] Quan | Cooperative parallel adaptive neighbourhood search for the disjunctively constrained knapsack problem[END_REF] (CPANS), the authors reported several groups of results obtained by using different numbers of processors (range from 10 to 400). To make a fair comparison, we take the best f best value of each instance in these groups of results as the final result. We use the average of the t avg values in these groups as the final average run time. The last row #Avg indicates the average value of each column. The 24 new lower bounds discovered by our TSBMA algorithm are highlighted in bold.

LIST OF PUBLICATIONS

Published/accepted papers