
HAL Id: tel-03352388
https://theses.hal.science/tel-03352388

Submitted on 23 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization algorithms for two knapsack problems
Zequn Wei

To cite this version:
Zequn Wei. Optimization algorithms for two knapsack problems. Optimization and Control
[math.OC]. Université d’Angers, 2021. English. �NNT : 2021ANGE0001�. �tel-03352388�

https://theses.hal.science/tel-03352388
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE ANGERS
COMUE UNIVERSITÉ BRETAGNE LOIRE

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Zequn WEI
Optimization algorithms for two knapsack problems

Thèse présentée et soutenue à « Université d’Angers », le « 26 Mars 2021 »
Unité de recherche : LERIA
Thèse No :

Rapporteurs avant soutenance :

M. Djamal HABET Professeur à Université d’Aix-Marseille
M. Mhand HIFI Professeur à Université de Picardie Jules Verne

Composition du Jury :
Président :
Examinateurs : M. Djamal HABET Professeur à Université d’Aix-Marseille

M. Mhand HIFI Professeur à Université de Picardie Jules Verne
Mme. Béatrice DUVAL Professeur à Université d’Angers
M. Jin-Kao HAO Professeur à Université d’Angers
M. Xiangjing LAI Professeur à Nanjing University of Posts and Telecommunications

Dir. de thèse : M. Jin-Kao HAO Professeur à Université d’Angers

TABLE OF CONTENTS

General Introduction 7

I Introduction 11

1 Introduction 13
1.1 Knapsack problems . 14
1.2 Set-union knapsack problem . 18

1.2.1 Problem introduction . 18
1.2.2 Applications . 20
1.2.3 Related work . 20
1.2.4 Benchmarks . 24

1.3 Disjunctively constrained knapsack problem 24
1.3.1 Problem introduction . 24
1.3.2 Applications . 26
1.3.3 Related work . 26
1.3.4 Benchmarks . 31

1.4 Chapter conclusion . 31

II Contributions 33

2 Iterated two-phase local search for the set-union knapsack problem 35
2.1 Introduction . 36
2.2 Iterated two-phase local search for the SUKP 38

2.2.1 General algorithm . 38
2.2.2 Solution representation, search space, and evaluation function . . . 39
2.2.3 Initialization . 39
2.2.4 Local optima exploration phase . 40
2.2.5 Frequency-based local optima escaping phase 44

3

TABLE OF CONTENTS

2.3 Experimental results and comparisons . 45
2.3.1 Experimental setting and reference algorithms 45
2.3.2 Computational results and comparisons 46

2.4 Analysis and insights . 47
2.4.1 Analysis of parameters . 52
2.4.2 Effectiveness of the variable neighborhood descent search strategy . 53
2.4.3 Effectiveness of the frequency-based local optima escaping strategy 54

2.5 Chapter conclusion . 56

3 Kernel based tabu search for the set-union knapsack problem 61
3.1 Introduction . 62
3.2 Kernel based tabu search for the SUKP . 63

3.2.1 Main scheme . 63
3.2.2 Solution representation, search space, and evaluation function . . . 64
3.2.3 Dynamic initialization . 65
3.2.4 Tabu search procedure . 65
3.2.5 Kernel search procedure . 68
3.2.6 Direct perturbation procedure . 69
3.2.7 Non-kernel search procedure . 70
3.2.8 Time complexity . 70
3.2.9 Discussions . 71

3.3 Computational results and comparisons . 72
3.3.1 Experimental protocol and reference algorithms 72
3.3.2 Computational results and comparisons 73

3.4 Analysis . 78
3.4.1 Analysis of parameters . 78
3.4.2 Impact of kernel search and non-kernel search 80
3.4.3 Distribution of high-quality solutions and rationale of kernel search 80
3.4.4 Time-to-target analysis . 83

3.5 Chapter conclusion . 84

4 Multistart solution-based tabu search for the set-union knapsack prob-
lem 85
4.1 Introduction . 86
4.2 Multistart solution-based tabu search for the SUKP 87

4

TABLE OF CONTENTS

4.2.1 Search space, solution representation, and evaluation function . . . 87
4.2.2 Main framework . 87
4.2.3 Greedy randomized initialization 88
4.2.4 Solution-based tabu search . 90
4.2.5 Computational complexity and discussion 94

4.3 Computational results and comparisons . 95
4.3.1 Benchmark instances . 95
4.3.2 Experimental settings . 96
4.3.3 Computational results . 96
4.3.4 Time-to-target analysis . 98

4.4 Analysis . 103
4.4.1 Sensitivity analysis of hash functions 103
4.4.2 Error rates of hash functions . 105
4.4.3 Analysis of solution-based tabu search 106

4.5 Conclusions . 108

5 A threshold search based memetic algorithm for the DCKP 111
5.1 Introduction . 112
5.2 Threshold search based memetic algorithm for the DCKP 112

5.2.1 General procedure . 113
5.2.2 Solution representation, search space, and evaluation function . . . 114
5.2.3 Population initialization . 114
5.2.4 Local optimization using threshold search 115
5.2.5 Crossover operator . 119
5.2.6 Population updating . 119
5.2.7 Time complexity . 120

5.3 Computational results and comparisons . 121
5.3.1 Experimental settings . 121
5.3.2 Computational results and comparisons 122

5.4 Analysis and discussions . 125
5.4.1 Importance of the threshold search 126
5.4.2 Contribution of the operation-prohibiting mechanism 127

5.5 Chapter conclusion . 129

5

TABLE OF CONTENTS

III Conclusions 130

Conclusions 131

List of Figures 136

List of Tables 138

IV Appendix 139

6 Appendix 141
6.1 Computational results on the 100 DCKP instances of Set I 141

List of Publications 144

Bibliography 145

6

GENERAL INTRODUCTION

Context

Many practical decision-making problems involve selecting a subset of objects from a
set of candidate objects such that the selected objects optimize a given objective while sat-
isfying some constraints. Knapsack problems (KP) [KPP04] are general models that allow
such decision-making problems to be conveniently formulated. In this thesis, we focus on
two representative knapsack problems: the set-union knapsack problem (SUKP) [GNY94]
and the disjunctively constrained knapsack problem (DCKP) [YKW02]. As a variant of
the popular KP, SUKP is to find a subset of candidate items (an item is composed of
several distinct weighted elements) such that a profit function is maximized while a knap-
sack capacity constraint is satisfied. DCKP consists in packing a subset of pairwisely
compatible items in a capacity-constrained knapsack in a way that the total profit of the
selected items is maximized while satisfying the knapsack capacity. These two generalized
knapsack problems can formulate additional relevant applications such as database parti-
tioning [Nav+84], flexible manufacturing [GNY94], key-pose caching [LLD10], public key
prototyping [Sch96], data allocating [WH20a] and public transportation [Hif+14].

Given their theoretical and practical significance, a number of solution methods have
been developed including exact, approximation and heuristic algorithms and consider-
able progresses have been continually made since the introduction of these two problems.
Meanwhile, given the NP-hard nature of the problems, more powerful algorithms are al-
ways useful to push the limits of existing methods. In this work, we aim at advancing the
state-of-the-art of solving these two problems effectively and robustly. From a perspective
of performance assessment, we show the competitiveness of the proposed algorithms com-
pared to the state-of-the-art algorithms on a variety of benchmark instances commonly
used in the literature. We also perform additional experiments to shed lights on the roles
of the key composing ingredients of the algorithms.

7

General Introduction

Objectives

This thesis is devoted to designing and implementing efficient heuristic and meta-
heuristic algorithms as well as verifying the effectiveness for solving the SUKP and the
DCKP. The main objectives of this thesis can be summarized as follows.

— Study the specific features of these two problems and the weaknesses of the existing
methods.

— Design discrete optimization approaches based on stochastic local search which
directly operates in the binary search space.

— Evaluate the meaningfulness of the idea of kernel for solving difficult binary opti-
mization problems.

— Investigate the parameter-free solution-based tabu search method to enhance a
strongly intensified examination of the search.

— Integrate the threshold search technique with a population-based memetic frame-
work to ensure a suitable balance between intensification and diversification.

— Evaluate the performance of the proposed algorithms on a wide range of bench-
mark instances and show computational results in comparison with state-of-the-art
algorithms.

— Analyze the ingredients of the proposed methods to get useful insights about their
impacts on the performances of the algorithms.

Contributions

The main contributions of this thesis are summarized below.
— For the SUKP, we have proposed three heuristic algorithms and achieved the fol-

lowing results:
— First, we propose an iterated two-phase local search algorithm (I2PLS). We

show for the first time that stochastic local search, which directly operates
in the binary search space, can be a highly effective approach for solving the
SUKP. We report improved best results for 18 large instances and equal best
results for the 12 remaining instances. We also investigate for the first time the
interest of the general mixed integer programming solver CPLEX for solving the
SUKP. This work has been published in Future Generation Computer Systems.

— Second, we present the kernel based tabu search algorithm (KBTS), which

8

General Introduction

combines for the first time the notion of kernel with the powerful tabu search
method. Computational study performed on two sets of 60 benchmark instances
indicated that the proposed algorithm dominates the current best SUKP algo-
rithms in terms of solution quality, robustness and computation time. This work
has been published in Expert Systems with Applications.

— Third, we investigate for the first time a multistart solution-based tabu search
algorithm (MSBTS) for solving the SUKP. The proposed algorithm, which is
parameter-free, combines a solution-based tabu search procedure with a mul-
tistart strategy to ensure an effective examination of candidate solutions. We
demonstrate the interest of the MSBTS algorithm to deal with large instances
and report new lower bounds for 7 large and difficult instances. This work has
been published in Applied Soft Computing.

— For the DCKP, we introduce a threshold search based memetic algorithm (TS-
BMA) which combines the memetic framework with threshold search to find high
quality solutions. Extensive computational assessments on two sets of 6340 bench-
mark instances in the literature demonstrate that the proposed algorithm is highly
competitive compared to the state-of-the-art methods. This work is being revised
for Computers & Operations Research.

Organization

The organization of the thesis is summarized as follows.
— In the first chapter, we start with the introduction of the general 0/1 knapsack

problem and its variants. Then, we give the definitions of the two knapsack prob-
lems considered in this thesis and recall a number of real-life applications related to
these two problems. We also provide an overview of the existing approaches in the
literature for solving them, including exact algorithms, approximation algorithms,
heuristic and metaheuristic algorithms. Moreover, we introduce the benchmark
instances commonly tested in the literature.

— In the second chapter, we propose an effective iterated two-phase local search
algorithm which relies on two innovative and complementary search components
specially designed for the SUKP. Then we show the competitiveness of the proposed
algorithm compared to the state-of-the-art algorithms on the set of 30 benchmark
instances commonly used in the literature. We also show that the general mixed

9

General Introduction

integer programming solver can find some optimal solutions based on a simple
0/1 linear programming model. Finally, we perform an analysis of the parameters
and the ingredients of the proposed algorithm to investigate their impacts on its
performance.

— In the third chapter, we present another heuristic algorithm called kernel based
tabu search algorithm to solve the SUKP. We detail the three complementary
search components used to perform an effective examination of the search space.
That is, a local search procedure is used to find various local optima, a kernel search
method is employed to discover additional high-quality solutions within particular
areas, and a non-kernel search method is applied to ensure a guided diversifica-
tion. In the following, we perform an extensive evaluation of our algorithm and
comparisons with state-of-the-art SUKP algorithms. Meanwhile, we analyze the
parameters used in the proposed algorithm and the kernel based components.

— In the fourth chapter, we advance the state-of-the-art of solving the SUKP by
proposing the first multistart solution-based tabu search algorithm. We first present
its main scheme and then describe its components including the greedy randomized
initialization procedure and the solution-based tabu search procedure. Then we
carry out computational experiments and a time-to-target analysis to evaluate the
performance of the proposed algorithm compared to the reference algorithms based
on two sets of 60 benchmark instances. Finally, we provide additional analysis to
investigate the influences of the main ingredients of our algorithm.

— In the fifth chapter, we investigate for the first time the population-based memetic
framework to solve the DCKP and present an effective algorithm mixing threshold
based local optimization and crossover based solution recombination. Then we
show extensive computational results and comparisons with state-of-the-art DCKP
algorithms based on two sets of 6340 benchmark instances. Finally, we analyze two
essential components of the proposed algorithm: the importance of the threshold
search and the contribution of the operation-prohibiting mechanism.

— In the last chapter, we summarize the contributions of this thesis and provide some
perspectives for future research.

10

Part I

Introduction

11

Chapter 1

INTRODUCTION

13

Part I, Chapter 1 – Introduction

1.1 Knapsack problems

Knapsack problems are very general and useful models able to formulate numerous
real-world problems in a variety of fields. For instance, suppose that a firm has a fixed
global budget envelope for project investment as well as a number of candidate projects.
Suppose also that each candidate project requires a budget and its implementation implies
a gain. One important decision problem is then to select a subset of projects from the
candidate set such that the total gain of the retained projects is maximized and the
total budget allocated to the retained projects is no more than the available budget
envelope. This practical problem as well as many other similar problems can conveniently
be formulated with the following general 0/1 knapsack problem (KP) [KPP04].

Given a knapsack with a positive weight capacity C, and a set N = {1, . . . , n} of items
where each item i = {1, . . . , n} has a weight wi > 0 and a profit pi > 0. The KP involves
selecting a subset S ⊆ N of items in a way that the total profit of the selected items is
maximized, while the weight sum of S does not exceed the knapsack capacity. Let xi be a
binary variable such that xi = 1 if item i is selected, xi = 0 otherwise. Formally, the KP
can be stated as follows [KPP04].

(KP) Maximize f(S) =
n∑
i=1

pixi (1.1)

subject to W (S) =
n∑
i=1

wixi ≤ C, S ⊆ N, (1.2)

xi ∈ {0, 1}, i = 1, . . . , n. (1.3)

As indicated in [KPP04], the KP can be used to model many real-world decision-
making problems such as selection of investments and portfolios, generating keys for
cryptosystems, and finding the least wasteful way to cut raw materials.

The decision version of the KP is known to be NP-complete in [Kar72]. As a basic
model, the KP formulation has a variety of variations and extensions, such as:

— Subset sum problem (SSP)
Given a knapsack with a positive weight capacity C and a set N = {1, . . . , n} of
items where each item i = {1, . . . , n} has a weight wi > 0, the SSP is to select a
subset of items S from N such that the total weight is maximized while satisfying
the knapsack capacity C. By introducing a decision variable xi to indicate whether

14

1.1. Knapsack problems

item i is selected, the SSP can be defined as follows.

(SPP) Maximize f(S) =
n∑
i=1

wixi (1.4)

subject to W (S) =
n∑
i=1

wixi ≤ C, S ⊆ N, (1.5)

xi ∈ {0, 1}, i = 1, . . . , n. (1.6)

It is easy to observe that the KP is equivalent to the NP-hard SSP when the
profit of each item is equal to the weight. The SSP model can be used to formulate
practical applications, such as public-key cryptosystems [MH78] and scheduling
problems [HOV94]. Moreover, the SSP is also closely related to other important
problems [CS16], such as traveling salesman problem, satisfiability problem, fac-
torization problem, integer programming problem. For solution methods of this
problem, including dynamic programming algorithms, approximation algorithms
and hybrid algorithms, see [KPP04; TM90].

— Quadratic knapsack problem (QKP)
Let C be the positive knapsack capacity and N = {1, . . . , n} be a set of items,
where each item i = {1, . . . , n} has a profit pii > 0 and a weight wi > 0. In
addition, each pair of items i and j (1 ≤ i 6= j ≤ n) has a pairwise profit pij if both
of them are selected. Then QKP involves determining a subset of items S ⊆ N to
maximize the total profit of S while ensuring that the total weight of the items of
S does not exceed the knapsack capacity C. Suppose a binary variable xj is set
to 1 if item j is selected, or xj = 0 otherwise. Then the QKP can be written as
follows.

(QKP) Maximize f(S) =
n∑
i=1

n∑
j=i

pijxixj (1.7)

subject to W (S) =
n∑
j=1

wjxj ≤ C, S ⊆ N, (1.8)

xj ∈ {0, 1}, j = 1, . . . , n. (1.9)

The QKP can be reduced to the KP by restricting all the pairwise profit pij to 0.

15

Part I, Chapter 1 – Introduction

QKP isNP-hard in the strong sense [CPT99] and thus is computationally difficult.
As indicated in [KPP04], the QKP is a useful model for a number of real-world
applications, such as selecting locations for satellite stations, airports and railway
stations. Over the past decades, various solution methods have been proposed in
the literature for solving the QKP [CH17; KPP04], including exact algorithms and
heuristic algorithms.

— Multiple knapsack problem (MKP)
Let N = {1, . . . , n} be a set of items and M = {1, . . . ,m} be a set of knapsacks.
Each item i = {1, . . . , n} has a profit pi > 0 and a weight wi > 0. Each knapsack
j = {1, . . . ,m} has capacity Cj. Then the MKP aims to assign some items to the
m knapsacks in a way that the overall profit of the assigned items is maximized
while the capacity constraint of each knapsack is satisfied. Let S ⊆ N be a subset
of items, xij be a binary variable such that xij = 1 if item i is assigned to knapsack
j, xij = 0 otherwise. Then the MKP can be formalized as follows.

(MKP) Maximize f(S) =
n∑
i=1

m∑
j=i

pixij (1.10)

subject to W (S) =
m∑
j=1

wixij ≤ Cj, i = 1, . . . , n, (1.11)

n∑
i=1

xij ≤ 1, j = 1, . . . ,m, (1.12)

xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . ,m. (1.13)

It is obvious that the MKP reduces to the KP when the number of knapsacks is set
to 1. As introduced in [EC71; FMW96; SAR17], the NP-hard MKP has numerous
applications, such as cargo loading, designing processors for mainframe comput-
ers, designing layout of electronic circuits, sugar cane alcohol production and self-
sufficient system for military operations. The solution methods of the MKP are
introduced in [Del+19; KPP04; TM90], including exact algorithms, approximation
algorithms and heuristic algorithms.

— Multiple-choice knapsack problem (MCKP)
Given m disjoint sets N1, . . . , Nm of items, where each item j ⊆ Ni has a profit
pij > 0 and a weight wij > 0. The MCKP is to pack exactly one item from each

16

1.1. Knapsack problems

item set N into a capacity (C) constrained knapsack to maximize the total profit
of the selected items. By introducing a decision variable to indicate whether item
j is inserted the knapsack, the MCKP can be defined as follows.

(MCKP) Maximize f(S) =
m∑
i=1

∑
j∈Ni

pijxij (1.14)

subject to W (S) =
m∑
i=1

∑
j∈Ni

wijxij ≤ C, (1.15)

∑
j∈Ni

xij = 1, i = 1, . . . ,m, (1.16)

xij ∈ {0, 1}, i = 1, . . . , n, j ∈ Ni. (1.17)

MCKP is a generalization of the conventional KP and has a variety of practical
applications [Loj+20; Nau78; SZ79], such as capital budgeting, menu planning,
product line pricing, and fault-tolerant system designing. The existing approaches
for solving MCKP are introduced in [GL98; He+16; KPP04].

— Multi-dimensional knapsack problem (MMKP)
Given a set M = {1, . . . ,m} of knapsacks, where each knapsack has a positive
weight capacity Cj. Let N = {1, . . . , n} be a set of items, where each item i has a
profit pi and consumes a given weight wij for each knapsack j. Then the MMKP
involves finding a subset of S ⊆ N items such that the total profit of the selected
items is maximized while their weights do not exceed the knapsack capacity. By
introducing a binary decision variable xi to indicate whether item j is packed in
the knapsack, the MCKP can be defined as follows.

(MMKP) Maximize f(S) =
n∑
i=1

pixi (1.18)

subject to W (S) =
n∑
i=1

wijxi ≤ Cj, j = 1, . . . ,m, (1.19)

xi ∈ {0, 1}, i = 1, . . . , n. (1.20)

The MMKP is a useful model able to formulate a number of real-life applications
[Fré04; Gav82; GG66; Shi79], including resource allocation, cargo loading, cutting

17

Part I, Chapter 1 – Introduction

stock problem and capital budgeting. However, the MMKP is computationally
difficult given that it belongs to the class of NP-hard problems. Due to its rel-
evance, a variety of solution methods have been devised for solving the MMKP
[Fré04; FH05; KPP04], including exact algorithms, approximation algorithms and
heuristic algorithms.

— Set-union knapsack problem (SUKP)
The SUKP is to find a subset of candidate items (an item is composed of sev-
eral distinct weighted elements) such that a profit function is maximized while a
knapsack capacity constraint is satisfied. Since this thesis is devoted to designing
effective approaches for solving the SUKP, more details about the SUKP will be
introduced in Section 1.2.

— Disjunctively constrained knapsack problem (DCKP)
The DCKP consists in packing a subset of pairwisely compatible items in a capacity-
constrained knapsack such that the total profit of the selected items is maximized
while satisfying the knapsack capacity. The introduction of the DCKP will also be
given in Section 1.3.

1.2 Set-union knapsack problem

1.2.1 Problem introduction

Given a set of elements U = {1, . . . , n} and a set of items V = {1, . . . ,m}, each
element has a weight wj > 0 and each item has a profit pi > 0. The items and elements
are associated by a relation matrix Rij[m × n] such that each item i corresponds to a
subset of elements Ui ⊆ U . Let C be the capacity of a given knapsack. Then the set-union
knapsack problem is to select a subset of items S from V such that the total profit of S is
maximized, while the total weight of the covered elements does not exceed the knapsack
capacity C. Formally, the SUKP can be stated as follows.

(SUKP) Maximize f(S) =
∑
i∈S

pi (1.21)

subject to W (S) =
∑

j∈∪i∈SUi

wj ≤ C, S ⊆ V. (1.22)

It is worth noting that for a given subset S of items, the weight wj of an element j is

18

1.2. Set-union knapsack problem

counted only once in W (S) even if the element belongs to more than one selected items.
One notices that the conventional knapsack problem is a special case of the SUKP. Indeed,
the SUKP reduces to the KP when we set m = n and V = U . The SUKP also generalizes
the NP-hard densest k-subhypergraph problem (DkSH) that aims to determine a set
of k nodes of a hypergraph to maximize the number of hyperedges of the subhypergraph
induced by the set of the selected nodes [Chl+18]. In fact, the SUKP reduces to the DkSH
when we consider the elements and items as the nodes and hyperedges of a hypergraph
respectively, with unit weights and unit profits as well as a capacity of k.

We also propose a 0/1 linear programming model that is solved by the general inte-
ger linear programming (ILP) solver CPLEX. Our model is based on the mathematical
model of the SUKP introduced in [He+18] (see the detailed description of this model
in Section 2, page 78 of this reference), which is, however, inapplicable by the CPLEX
solver. We introduce below the modified 0/1 linear programming model that is suitable
for the solver. For an arbitrary non-empty item set S ⊂ V represented by its binary vector
S = (y1, . . . , ym) such that yi = 1 (i = 1, . . . ,m) if item i is selected in S, and yi = 0
otherwise. Let R be a m×n binary relation matrix such that Rij = 1 if element j belongs
to item i, and Rij = 0 otherwise. Furthermore, for each element j (j = 1, . . . , n), define
Lj =

m∑
i=1

yiRij that counts the number of appearances of element j in the items of S. Let
xj be a binary variable such that xj = 1 if Lj > 0, and xj = 0 otherwise, that is, xj
indicates whether element j is involved in calculating the total weight of S. Then our 0/1
linear programming model for the SUKP is defined as follows.

(SUKP) Maximize f(S) =
m∑
i=1

piyi (1.23)

s.t. W (S) =
n∑
j=1

wjxj ≤ C (1.24)

xj =

1, if Lj > 0;

0, otherwise.
(1.25)

Lj =
m∑
i=1

yiRij, j = 1, . . . , n (1.26)

yi ∈ {0, 1}, i = 1, . . . ,m. (1.27)

19

Part I, Chapter 1 – Introduction

Constraints 1.24–1.26 jointly ensure that the weight wj of an element j is counted
only once in W (S) even if the element appears in more than one selected items and the
capacity constraint is satisfied. Constraint 1.27 guarantees that each item is selected at
most once. Equation (1.23) maximizes the total profit of the selected items.

1.2.2 Applications

Like other knapsack models, the SUKP has a number of practical applications. As
an example, we consider the following decision-making problem to optimally allocate
data in large cyber systems [TX16]. Given a centralized cyber system with a memory
of fixed capacity holding a set of services (or requests) with profits, where each service
contains a set of data objects. Each data object will consume a certain amount of memory
when it is invoked, and multiple use of the same data object will not cause additional
memory consumption. The goal is to select a subset of services, among the candidate
services, such that the total profit of the selected services is maximized while the total
memory consumed by the underlying data objects meets the memory capacity of the cyber
system. This application can be conveniently formulated by the SUKP model where an
item corresponds to a service with its profit and an element corresponds to a data object
with its memory consumption (element weight). Then, solving the data allocation problem
is equivalent to finding the optimal solution to the resulting SUKP problem.

The SUKP has other relevant applications related to decision-making and intelligent
systems, including database partitioning [Nav+84], flexible manufacturing [GNY94], key-
pose caching [LLD10], financial decision making [KPP04], and public key prototyping
[Sch96].

1.2.3 Related work

In terms of computational complexity theory, the decision version of the SUKP is
known to be NP-complete [GNY94]. Therefore, from the perspective of solution meth-
ods, solving the SUKP is a highly challenging task. Given its practical and theoretical
relevance, a number of algorithms for the SUKP have been introduced in the literature.
The existing approaches for solving the SUKP can be classified into three categories as
follows.

— Exact and approximation algorithms

20

1.2. Set-union knapsack problem

These algorithms are theoretically able to find the optimal solutions or solutions
of guaranteed quality.
[GNY94] introduced the SUKP for the first time and proved the SUKP is still NP-
hard even in very restricted cases. Based on the general dynamic programming
method, an exact algorithm for solving the SUKP was devised, which is bounded
by an exponential function corresponding to the cut width of the item-adjacency
hypergraph. Sufficient conditions for the proposed methods to run in polynomial
time was also presented.
[Aru14] proposed a greedy algorithm that is based on a previous approximation
algorithm for the related budgeted maximum coverage problem. The algorithm
provides a (1 − e− 1

d) approximation for the SUKP with the additional restriction
that the number of items in which an element is present is bounded by a constant
d.
[Tay16] designed an approximation algorithm using results of the related densest k-
subhypergraph problem. The proposed algorithm is shown to achieve, for any given
ε > 0, an approximation ratio of at most O(nαm+ε) for αm = 2

3 [m − 1 − 2m−2
m2+m−1],

where the subsets have at most m elements.
Focusing on theoretical aspects of the SUKP, these studies do not show computa-
tional results.

— Population-based hybrid algorithms
These algorithms are based on various bio-inspired metaheuristics operating with
a population of solutions and associated search operators.
[He+18] devised the first binary artificial bee colony algorithm (BABC) for solving
the SUKP. Since this approach inevitably generates infeasible solutions, a greedy
repairing and optimization procedure (named S-GROA) is proposed to handle in-
feasible solutions. To assess the proposed algorithm, large scale experiments were
performed based on a set of 30 new benchmark instances (with 85 to 500 items and
elements). Comparisons with three other population-based algorithms (genetic al-
gorithm, continuous artificial bee colony algorithm and differential evolution strate-
gies) showed the competitiveness of the BABC algorithm.
[OB19] presented a binary swarm intelligence algorithm (gPSO) that combines
the genetic algorithm with particle swarm optimization. The proposed algorithm
employs a developed optional mutation operator that exponentially decreases the
diversity of the population, which can avoid local optima at earlier iterations. The

21

Part I, Chapter 1 – Introduction

gPSO algorithm has the advantage of requiring no transfer function. Computa-
tional results and statistical tests on 30 benchmark instances indicate that the
proposed approach outperforms the previously reported algorithms.
[HW18] introduced a group theory-based optimization algorithm (GTOA) for knap-
sack problems including the SUKP. By applying the algebraic group operations and
the greedy repairing and optimization procedure (S-GROA), both the feasible and
infeasible search space is examined by the GTOA. The computational results on
30 benchmark instances demonstrate that the proposed GTOA algorithm performs
better than the existing evolutionary algorithms such as genetic algorithm, binary
particle swarm optimization, binary artificial bee colony, and their improved vari-
ations.
[BOS18] developed a modified weighted superposition attraction algorithm (WSA)
for stationary binary optimization problems including the SUKP. With the help
of the proposed modification, WSA does not require any transfer functions. The
dedicated step sizing function is beneficial to avoid premature convergence and
local optima traps.
[Ozs19] applied the learning mechanisms to find near-optima solutions of the SUKP.
The proposed swarm-based optimization algorithm (intAgents) uses artificial search
agents with individual cognitive intelligence to diversify the search. Each search
agent is guided by the information-sharing techniques to explore new search re-
gions. Extensive experiments on 30 benchmark instances show the effectiveness of
the proposed algorithm.
[FAG19; FYW19] presented two versions of moth search algorithms (MS and EMS)
for solving the SUKP. These algorithms adopt an empirical transfer function to
map the continuous space to the discrete space and maintain both continuous and
discrete solutions during the search. The MS algorithm employed twelve transfer
functions to solve 15 SUKP benchmark instances and achieved good results. The
EMS algorithm enhances the previous moth search algorithm by introducing an
enhanced interaction operator (EIO) to replace the Lévy flight operator in the
original MS and shows better performance than MS.
[WH20b] presented a hybrid Jaya algorithm (DHJaya) based on the differential
evolution crossover operator and Cauchy mutation strategy. A double coding mech-
anism is introduced for the proposed Jaya algorithm and an improved repair-
optimization strategy (MS-GROA) is employed to handle the infeasible solutions.

22

1.2. Set-union knapsack problem

Experimental results on 30 benchmark instances show that the proposed DHJaya
algorithm is superior to the original Jaya algorithm and the basic differential evo-
lution algorithm.
[LH19] combined the estimation of distribution algorithm based on Lévy flight
(LFEDA) with a quadratic greedy repair and optimization approach (Q-GROA).
The LFEDA algorithm has the advantage of increasing the diversity of the pop-
ulation and escaping from the local optima trap. Computational testing on 30
benchmark instances shows that the proposed algorithm is more robust than the
previous algorithms for solving the SUKP.
[GO20] designed a binary grey wolf optimization algorithm (GWO) which based on
the warm intelligence framework. The GWO algorithm employs the evolutionary
and adaptive inheritance mechanisms to operate in the binary spaces directly. A
multi-parent crossover operation and an adaptive mutation are presented to avoid
premature convergence. Evaluated on 30 benchmark instances, the proposed GWO
algorithm is shown to be effective in finding high quality solutions.
In terms of computational performances, these approaches achieved interesting
results. However, these algorithms are rather complex in design and most of them
solve the binary SUKP problem indirectly by searching a continuous space.

— Local search algorithms
Contrary to the above population algorithms, local search algorithms solve the bi-
nary SUKP problem directly by examining candidate solutions in a discrete search
space.
[Lin+19] applied a local search procedure (tabu search) into the binary particle
swarm optimization framework (HBPSO/TS) to solve the SUKP. The proposed
HBPSO/TS algorithm explores both the feasible and infeasible search space by
using an adaptive penalty function. A tabu based mutation procedure is also em-
ployed to guide the search to promising regions. Experimental results on 30 bench-
mark instances indicate that HBPSO/TS performs much better than the previously
reported algorithms according to the solution quality.

Computational results indicated that the local search approaches represent the current
state-of-the-art in the literature. In this thesis, we propose three different local search
algorithms to advance the state-of-the-art of solving the SUKP, which are proved to be
highly effective in terms of both solution quality and computational efficiency.

23

Part I, Chapter 1 – Introduction

1.2.4 Benchmarks

For the SUKP, the benchmark instances can be divided into two sets 1 as follows.
— Set I (30 instances): Introduced in [He+18], this set of instances have 85 to 500

items and elements with the following features. For each instance with m items
and n elements, the items and elements are associated by a m× n binary relation
matrix R, where Rij = 1 indicates that item i includes element j. Each instance
is further characterized by two parameters: α represents the density of Rij = 1
in the relation matrix R (i.e., α = (∑m

i=1
∑n
j=1Rij)/(mn)), β denotes the ratio of

knapsack capacity C to the total weight of the elements (i.e., β = C/
∑n
j=1wj).

Thus, each SUKP instance can be designated as m_n_α_β. These instances are
widely tested in the literature.

— Set II (30 instances): Introduced in [WH20a], this set of instances have the same
characteristics as those of Set I, but are large in size with 585 to 1000 items and
elements. Following [He+18], the profit and weight values of these instances are
generated randomly in [1,500].

To facilitate the presentation of our computational results in the following chapters,
these two sets of 60 benchmark instances are divided into three classes according to the
relationship between the number of items and elements and denoted by F1−F20 (m > n),
S1−S20 (m = n) and T1−T20 (m < n), respectively. The ID of each instance are shown
in Table 1.1.

1.3 Disjunctively constrained knapsack problem

1.3.1 Problem introduction

Let V = {1, . . . , n} be a set of n items, where each item i = {1, . . . , n} has a profit
pi > 0 and a weight wi > 0. Let G = (V,E) be a conflict graph, where V is the set of n
items and an edge {i, j} ∈ E defines the incompatibility of items i and j. Let C > 0 be the
capacity of a given knapsack. Then the DCKP involves finding a subset S of pairwisely
compatible items of V to maximize the total profit of S while ensuring that the total
weight of S does not surpass the knapsack capacity C. Let xi be a binary variable such
that xi = 1 if item i is selected, xi = 0 otherwise. Formally, the DCKP can be stated as

1. They are available at: http://www.info.univ-angers.fr/pub/hao/SUKP_KBTS.html.

24

http://www.info.univ-angers.fr/pub/hao/SUKP_KBTS.html.

1.3. Disjunctively constrained knapsack problem

Table 1.1 – Summary of main characteristics of the 100 SUKP instances of Set I.

Set Instance ID Instance ID Instance ID
I 100_85_0.10_0.75 F1 100_100_0.10_0.75 S1 85_100_0.10_0.75 T1
I 100_85_0.15_0.85 F2 100_100_0.15_0.85 S2 85_100_0.15_0.85 T2
I 200_185_0.10_0.75 F3 200_200_0.10_0.75 S3 185_200_0.10_0.75 T3
I 200_185_0.15_0.85 F4 200_200_0.15_0.85 S4 185_200_0.15_0.85 T4
I 300_285_0.10_0.75 F5 300_300_0.10_0.75 S5 285_300_0.10_0.75 T5
I 300_285_0.15_0.85 F6 300_300_0.15_0.85 S6 285_300_0.15_0.85 T6
I 400_385_0.10_0.75 F7 400_400_0.10_0.75 S7 385_400_0.10_0.75 T7
I 400_385_0.15_0.85 F8 400_400_0.15_0.85 S8 385_400_0.15_0.85 T8
I 500_485_0.10_0.75 F9 500_500_0.10_0.75 S9 485_500_0.10_0.75 T9
I 500_485_0.15_0.85 F10 500_500_0.15_0.85 S10 485_500_0.15_0.85 T10
II 600_585_0.10_0.75 F11 600_600_0.10_0.75 S11 585_600_0.10_0.75 T11
II 600_585_0.15_0.85 F12 600_600_0.15_0.85 S12 585_600_0.15_0.85 T12
II 700_685_0.10_0.75 F13 700_700_0.10_0.75 S13 685_700_0.10_0.75 T13
II 700_685_0.15_0.85 F14 700_700_0.15_0.85 S14 685_700_0.15_0.85 T14
II 800_785_0.10_0.75 F15 800_800_0.10_0.75 S15 785_800_0.10_0.75 T15
II 800_785_0.15_0.85 F16 800_800_0.15_0.85 S16 785_800_0.15_0.85 T16
II 900_885_0.10_0.75 F17 900_900_0.10_0.75 S17 885_900_0.10_0.75 T17
II 900_885_0.15_0.85 F18 900_900_0.15_0.85 S18 885_900_0.15_0.85 T18
II 1000_985_0.10_0.75 F19 1000_1000_0.10_0.75 S19 985_1000_0.10_0.75 T19
II 1000_985_0.15_0.85 F20 1000_1000_0.15_0.85 S20 985_1000_0.15_0.85 T20

follows.

(DCKP) Maximize f(S) =
n∑
i=1

pixi (1.28)

subject to W (S) =
n∑
i=1

wixi ≤ C, S ⊆ V, (1.29)

xi + xj ≤ 1,∀(i, j) ∈ E, (1.30)

xi ∈ {0, 1}, i = 1, . . . , n. (1.31)

Objective function (1.28) commits to maximize the total profit of the selected item set
S. Constraint (1.29) ensures that the knapsack capacity constraint is satisfied. Constraints
(1.30), called disjunctive constraints, guarantee that two incompatible items are never
selected simultaneously. Constraint (1.31) forces that each item is selected at most once.

25

Part I, Chapter 1 – Introduction

1.3.2 Applications

It is easy to observe that the DCKP reduces to the NP-hard KP when G is an
empty graph. The DCKP is equivalent to the NP-hard maximum weighted independent
set problem [GJ79] when the knapsack capacity is unbounded. Moreover, the DCKP is
closely related to other combinatorial optimization problems, such as the multiple-choice
knapsack problem [KPP04], and the bin packing problem with conflicts [Jan99].

In addition to its theoretical significance, the DCKP is a useful model for practical
applications where the resources with conflicts cannot be used simultaneously while a
given budget envelope cannot be surpassed. As an example, we consider the following
practical project investment scenario. Given a set of projects where each project has a
budget and a gain. The goal is to select a subset of projects in a way that the total gain
is maximized, while the total budget does not surpass the global budget envelope. This
problem can be conveniently formulated by the KP model, where a project corresponds
to an item and the budget envelope corresponds to the knapsack capacity. However, the
project investment problem may involve other constraints in real-life applications. A typi-
cal situation is that some projects can not be invested simultaneously due to the practical
limits, such as locations, project lifecycle, facilities requirement, human resources, laws
and regulations etc. Then the project investment problem is to find the optimal subset
of projects while satisfying both the budget constraint and the disjunctive constraints,
which can be conveniently formulated by the DCKP model.

As indicated in [Hif+14; QW17a], a number of practical applications can be formulated
by the DCKP model, including resource allocation, loading of vehicles, public transporta-
tion, and scheduling problems.

1.3.3 Related work

Due to its relevance, the DCKP has received considerable attention in the past two
decades. As the literature review shown in this section, considerable progresses have been
continually made since the introduction of the problem. Existing solution methods can
be roughly classified into two categories as follows.

— Exact and approximation algorithms
These algorithms are able to guarantee the quality of the solutions they find.
[YKW02] introduced the DCKP for the first time and proposed an implicit enu-
meration algorithm to find upper bounds by relaxing the disjunctive constraints in

26

1.3. Disjunctively constrained knapsack problem

a Lagrangean way. The proposed algorithm is able to solve the DCKP instances
up to 1000 items by integrating an interval reduction method with some prun-
ing techniques. These instances are generated randomly with uncorrelated profits
and weights (range from 1 to 100, independently) and very small conflict graph
densities (range from 0.001 to 0.02).
[HM07] presented three versions of an exact algorithm based on a local reduc-
tion strategy. The proposed exact approach starts its search from a lower bound
obtained by a reactive local search procedure, and then applies the reduction strate-
gies to fix some decision variables to their optimum. Then the first version of the
algorithm adopts an exact branch and bound algorithm to solve the reduced prob-
lem. The second version of the algorithm accelerates the search by combining a
dichotomous search strategy with a reduction procedure. Based on a modified di-
chotomous search algorithm, the third version of the algorithm is introduced to
solve the DCKP instances with large densities.
[PS09] devised a pseudo-polynomial time and space algorithm for solving three
special cases of the DCKP, including trees, graphs with bounded treewidth and
chordal graphs, and proved the DCKP is strongly NP-hard on perfect graphs.
Then the fully polynomial time approximation schemes (FPTAS) can be obtained
by the proposed algorithm.
[Sal+18] divided the DCKP into two subproblems: binary knapsack problem and
the independent set problem, and discussed the valid inequalities of these prob-
lems. Then a branch-and-cut algorithm is developed that combines a greedy clique
generation procedure with a separation procedure. Experimental study is carried
out to compare the proposed algorithm with the CPLEX solver.
[BCM17] presented a new branch-and-cut algorithm (BCM) to solve the DCKP
optimally. The branching procedure solves the binary knapsack problem optimally
by a dynamic programming algorithm while neglecting the disjunctive constraints.
The upper bounding procedure considers both the knapsack constraint and the
disjunctive constraints by using the weighted clique cover bound applied for the
maximum weight stable set problem. Extensive experiments on 4800 benchmark
instances indicate that BCM outperforms the previous algorithms for solving the
DCKP, however, it is not particularly effective for solving the DCKP instances
with small densities.
[PS17] applied the approximation methods of modular decompositions and clique

27

Part I, Chapter 1 – Introduction

separators for solving the DCKP, and showed complexity results for the DCKP on
special graph classes, including general graph, bounded treewidth graph, chordal
graph, weakly chordal graph, planar graph and perfect graph. The existence of a
polynomial time approximation scheme (PTAS) for H-minor free conflict graphs
is proved.
[GR19] designed a dynamic programming algorithm that based on a tree-structure
to represent the conflict graph. The pseudo-polynomial solutions of co-graphs were
obtained and then extended to conflict graphs of bounded clique-width. Finally, the
FPTAS can be achieved for the DCKP on conflict graphs of bounded clique-width.
[CFS21] presented a new and efficient branch-and-bound algorithm (CFS) based on
an n−ary branching scheme and solved the integer linear programming formulation
of the DCKP by using the CPLEX solver. Given the high pruning potential of
CFS and the low computational effort required by branch-and-bound procedure,
the proposed algorithm performs better than previous exact algorithms in terms
of both solution quality and computational time for most of the 6240 instances
tested.

— Heuristic algorithms
These algorithms aim to find good near-optimal solutions.
[YKW02] proposed a greedy algorithm to generate an initial solution with good
quality and a 2-opt neighborhood search algorithm to improve the obtained solu-
tion. The proposed algorithm is able to obtain a lower bound within a reasonable
time for instances of large size.
[HM06] reported a reactive local search algorithm (RLS) for the DCKP, which
combines a complementary constructive procedure to improve the initial solution
and a degrading procedure to diversify the search. A memory list (tabu list) is
employed to avoid revisiting previous encountered solutions. Experimental results
on a set of 50 new instances with 500 and 1000 items disclose that the proposed
RLS algorithm is able to obtain some high-quality solutions within a reasonable
time.
[AHM11] presented three versions of local algorithms based on the local branching
techniques. The first version starts with a feasible solution provided by the basic
rounding solution procedure (BRSP) and then uses the standard local branching
technique to solve the DCKP. The second version applies a two-phase solution
procedure (TPSP) including a rounding procedure to fix a subset of the items

28

1.3. Disjunctively constrained knapsack problem

and a truncated exact procedure to solve the reduced problem. The third version
enhances the TPSP by introducing a diversification strategy.
[HO11] proposed a first level scatter search (SS) algorithm with the following proce-
dures: 1) a starting solution-generator procedure to generate an initial solution; 2)
a diversification generation procedure to generate diverse solutions; 3) an improve-
ment procedure to improve or repair the current solution; 4) a reference update
procedure to produce the reference set for the next step; 5) a subset generator pro-
cedure to generate groups of candidate solutions; 6) a solution combination proce-
dure to produce offspring solutions. Computational comparisons indicate that the
SS outperforms other previous algorithms as well as the CPLEX solver.
[HO12] reported another two versions of the SS algorithm based on the solution
combination method. The first version of the SS employs a greedy combination
method that takes into account both the structure and the relative profit per
weight-degree values associated with each item. The second version of the SS adopts
an alternative combination method that includes a variant of the 3-opt procedure.
Computational experience discloses that the proposed algorithm is efficient for the
DCKP instances of medium and large size.
[Hif14] devised an iterative rounding search-based algorithm (IRS) that uses a
rounding strategy to perform a linear relaxation of the fractional variables and
a neighborhood search procedure to improve the current solutions. Experimental
results show that the proposed IRS algorithm outperforms the CPLEX solver and
discovers new best-known results for most of the 50 instances tested.
[HSW14] proposed a fast large neighborhood search-based heuristic (LNSBH),
which combines a two-phase procedure to generate an initial solution with good
quality and a large neighborhood search procedure to diversify the search. The per-
formance of the proposed algorithm is confirmed by experiments on 50 benchmark
instances.
[Hif+14] introduced the first parallel algorithm (PLNSH) for the DCKP with a
large neighborhood search heuristic (LNSH). The proposed PLNSH algorithm ex-
plores the neighborhoods simultaneously with 5 or 10 processors, where each pro-
cessor applies a LNSH procedure to improve the current solution. Experimental
results indicate that PLNSH is effective on most of the 50 instances tested.
[HSW15] presented a hybrid algorithm (HGNS) that combines the deterministic
local search and the random local search. The deterministic local search improves

29

Part I, Chapter 1 – Introduction

the current solution by alternating between a building procedure and an exploring
procedure. The random local search diversifies the search by a modified ant colony
optimization system. Extensive experiments disclose that the proposed HGNS al-
gorithm is very efficient.
[Sal+17] designed a probabilistic tabu search algorithm (PTS) that operates with
multiple neighborhoods. PTS starts from an initial solution obtained by a greedy
procedure, and then it enters the tabu search procedure to explore different neigh-
borhoods by using four types of candidate list strategies. Experimental evaluation
on 50 benchmark instances demonstrates the effectiveness of the PTS algorithm.
[QW17a] devised a cooperative parallel adaptive neighborhood search algorithm
(CPANS) which combines a cooperative algorithm (cooperative search stage) with
a multi-neighborhood search procedure (individual search stage). The cooperative
stage employs a team manager to record and share solutions, and a crowd of team
members to explore the search space. The individual stage adopts a descent local
search and an adaptive large neighborhood search to find local optimal solutions.
Computational results on a set of 50 previous benchmark instances and a new set
of 50 DCKP large instances with 1500 and 2000 items show that the proposed
CPANS algorithm is highly competitive.
[QW17b] presented a parallel neighbor algorithm (PNS) for the DCKP, which is
characterized by a random local search, a cooperation procedure, a tabu search pro-
cedure and an adaptive large neighborhood search procedure. The proposed PNS
algorithm employs 10 to 400 processors to explore the search space and is able to
achieve remarkable results on the 100 benchmark instances tested. Computational
experience discloses that PNS performs better than the two linear programming
solvers, i.e., CPLEX and GLPK.

According to the computational results reported in the literature, the parallel neighbor-
hood search algorithm [QW17b], the cooperative parallel adaptive neighborhood search
algorithm [QW17a], and the probabilistic tabu search algorithm [Sal+17] can be regarded
as the state-of-the-art methods for the 100 instances of Set I (see Section 1.3.4). For the
6240 instances of Set II (see Section 1.3.4), the branch-and-bound algorithms presented in
[BCM17; CFS21] and the integer linear programming formulations solved by the CPLEX
solver [CFS21] showed the best performance.

30

1.4. Chapter conclusion

1.3.4 Benchmarks

For the DCKP, the benchmark instances can be divided into two sets 2 as follows (see
Tables 1.2 and 1.3 for the main characteristics of these instances).

— Set I (100 instances): These instances are grouped into 20 classes (each with 5
instances) and named by xIy (x = {1, . . . , 20} and y = {1, . . . , 5}). The first 50
instances (1Iy to 10Iy) were introduced in 2006 [HM06] and have the following
features: number of items n = 500 or 1000, capacity C = 1800 or 2000, and density
η going from 0.05 to 0.40. Note that the density is given by 2m/n(n− 1), where m
is the number of disjunctive constraints (i.e., the number of edges of the conflict
graph). These instances have an item weight wi uniformly distributed in [1, 100]
and a profit pi = wi + 10. For the instance classes 11Iy to 20Iy introduced in 2017
[QW17a], the number of items n is set to 1500 or 2000, the capacity C is set to
4000, and the density η ranges from 0.04 to 0.20. These instances have an item
weight wi uniformly distributed in [1, 400] and a profit pi equaling wi + 10.

— Set II (6240 instances): This set of instances was introduced in 2017 [BCM17]
and expanded in 2020 [CFS21]. For the four correlated instance classes C1 to C15
(denoted by CC) and four random classes R1 to R15 (denoted by CR), the number
of items n is from 60 to 1000, the capacity C is from 150 to 15000, and the density
η is from 0.10 to 0.90. Each of these eight classes contains 720 instances. For the
correlated instance class SC and the random instance class SR of the sparse graphs,
the number of items n is from 500 to 1000, the capacity C is from 1000 to 2000,
and the density η is from 0.001 to 0.05. Each of these two classes contains 240
DCKP instances. More details about this set of instances can be found in [CFS21].

1.4 Chapter conclusion

In this chapter, we presented a brief overview of the well-known knapsack problem and
several common variants of the KP. We also introduced the two variants of the KP consid-
ered in this thesis and gave a number of applications related to these problems. Then we
discussed the existing solution approaches for solving the SUKP and the DCKP, includ-
ing exact algorithms, approximation algorithms, heuristic and metaheuristic algorithms.
Finally, the benchmark instances tested in this thesis are given in the last section.

2. They are available at: http://www.info.univ-angers.fr/pub/hao/DCKP_TSBMA.html.

31

http://www.info.univ-angers.fr/pub/hao/DCKP_TSBMA.html.

Part I, Chapter 1 – Introduction

Table 1.2 – Summary of main characteristics of the 100 DCKP instances of Set I.

Class Total n C η Class Total n C η

1Iy 5 500 1800 0.10 11Iy 5 1500 4000 0.04
2Iy 5 500 1800 0.20 12Iy 5 1500 4000 0.08
3Iy 5 500 1800 0.30 13Iy 5 1500 4000 0.12
4Iy 5 500 1800 0.40 14Iy 5 1500 4000 0.16
5Iy 5 1000 1800 0.05 15Iy 5 1500 4000 0.20
6Iy 5 1000 2000 0.06 16Iy 5 2000 4000 0.04
7Iy 5 1000 2000 0.07 17Iy 5 2000 4000 0.08
8Iy 5 1000 2000 0.08 18Iy 5 2000 4000 0.12
9Iy 5 1000 2000 0.09 19Iy 5 2000 4000 0.16
10Iy 5 1000 2000 0.10 20Iy 5 2000 4000 0.20

Table 1.3 – Summary of main characteristics of the 6240 DCKP instances of Set II.

Class Total
n C η

Min Max Min Max Min Max
C1 720 60 1000 150 1000 0.10 0.90
C3 720 60 1000 450 3000 0.10 0.90
C10 720 60 1000 1500 10000 0.10 0.90
C15 720 60 1000 15000 15000 0.10 0.90
R1 720 60 1000 150 1000 0.10 0.90
R3 720 60 1000 450 3000 0.10 0.90
R10 720 60 1000 1500 10000 0.10 0.90
R15 720 60 1000 15000 15000 0.10 0.90
SC 240 500 1000 1000 2000 0.001 0.05
SR 240 500 1000 1000 2000 0.001 0.05

32

Part II

Contributions

33

Chapter 2

ITERATED TWO-PHASE LOCAL SEARCH

FOR THE SET-UNION KNAPSACK

PROBLEM

In this chapter, we present an effective iterated two-phase local search algorithm for
the SUKP. The proposed algorithm iterates through two complementary search phases:
a local optima exploration phase to discover local optimal solutions, and a local optima
escaping phase to drive the search to unexplored regions. We show the competitiveness
of the algorithm compared to the state-of-the-art methods in the literature. Specifically,
the algorithm discovers 18 improved best results (new lower bounds) for the 30 bench-
mark instances and matches the best-known results for the 12 remaining instances. We
also report the first computational results with the general CPLEX solver, including 6
proven optimal solutions. Finally, we investigate the impacts of the key ingredients of the
algorithm on its performance. The content of this chapter is based on an article published
in Future Generation Computer Systems.

35

Part II, Chapter 2 – Iterated two-phase local search for the set-union knapsack problem

2.1 Introduction

Given its theoretical and practical significance, the SUKP has received more and more
attention. As the review in Chapter 1.2.3 shows, various search methods have been pro-
posed in the literature, including exact, approximation and metaheuristic algorithms. In
particular, recent studies focused on metaheuristic algorithms which aim to find satisfac-
tory solutions as fast as possible, without optimality guarantee of the attained solutions.
These algorithms are especially useful to handle large and difficult problem instances
when they cannot be solved by exact approaches. We observe that the state-of-the-art al-
gorithms such as [FAG19; He+18; OB19] all adopted swam optimization metaheuristics.
However, given that these methods are initially designed for solving continuous problems,
the swam optimization based algorithms for the SUKP simulate discrete optimization
via continuous search operators, instead of exploring the discrete space directly. As such,
applying swam optimization to the SUKP requires various adaptations to cope with the
binary feature of the SUKP. In particular, these algorithms must adopt an empirical
transfer function to map the continuous space to the discrete space and maintain both
continuous and discrete solutions during the search. Moreover, as indicated in [He+18],
these approaches inevitably generate infeasible solutions, and therefore need a repairing
procedure to handle these infeasible solutions.

In this chapter, we show for the first time that stochastic local search, which di-
rectly operates in the binary search space, can be a highly effective approach for solv-
ing the SUKP. The chapter is motivated by two considerations. First, stochastic local
search has been quite successful in solving numerous challenging combinatorial problems
[HS04], including several knapsack problems such as multidimensional knapsack prob-
lem [GK96; Lai+18a; VH01b], multidemand multidimensional knapsack problem [CT05;
LHY19], multiple-choice multidimensional knapsack problem [CH14; HMS06], quadratic
knapsack problem [CH17; YWC13], quadratic multiple knapsack problem [CH15; Pen+16]
and generalized quadratic knapsack problem [AT17]. Second, given that the SUKP is
basically a constrained subset selection problem with binary variables, it is natural to
investigate solution methods that explore the binary search space and focus on feasible
solutions. Indeed, as we show in this chapter, our discrete optimization approach based
on stochastic local search is quite valuable for the SUKP.

The contributions of this chapter are summarized as follows.

— From a perspective of algorithm design, the proposed iterated two-phase local

36

2.1. Introduction

search algorithm relies on two innovative and complementary search components
specially designed for the SUKP. The intensification-oriented component (first
phase) employs a combined neighborhood search strategy to discover local op-
timal solutions. The diversification-oriented component (second phase) helps the
search process to explore unvisited regions. The combination of these two comple-
mentary search phases enables the algorithm to perform an effective examination
of the search space.

— From a perspective of computational performance, we show the competitiveness
of the proposed algorithm compared to the state-of-the-art algorithms on the set
of 30 benchmark instances commonly used in the literature. In particular, we re-
port improved best results for 18 large instances and equal best results for the
12 remaining instances. The improved best results (new lower bounds) are useful
for future studies on the problem, e.g., they can serve as references for evaluating
existing and new SUKP algorithms.

— Third, we investigate for the first time the interest of the general mixed integer pro-
gramming solver CPLEX for solving the SUKP. We show that while CPLEX (ver-
sion 12.8) can find the optimal solutions for the 6 small benchmark instances (with
85 to 100 items and elements) based on a simple 0/1 linear programming model, it
fails to exactly solve the other 24 instances. These outcomes provide strong motiva-
tions for developing effective approximate algorithms to handle problem instances
that cannot be solved exactly.

— This work demonstrates that the discrete optimization approach based on stochas-
tic local search is quite valuable and effective for solving the SUKP. This work
invites thus more investigations in this direction, in addition to the swarm opti-
mization based approaches.

The remaining part of this chapter is organized as follows. In Section 2.2, we present
the general framework of the proposed algorithm as well as its composing ingredients.
Computational results and comparisons with the best-performing algorithms and CPLEX
are reported in Section 2.3. In Section 2.4, we analyze the parameters and components of
the algorithm and show their effects on its performance. In the last section, we summarize
the present work and discuss future research directions.

37

Part II, Chapter 2 – Iterated two-phase local search for the set-union knapsack problem

2.2 Iterated two-phase local search for the SUKP

This section is dedicated to the presentation of the proposed iterated two-phase local
search algorithm (I2PLS) for the SUKP. We first show its general scheme, and then explain
the composing ingredients.

2.2.1 General algorithm

As shown in Algorithm 1, I2PLS is composed of two complementary search phases: a
local optima exploration phase (Explore) to find new local optimal solutions of increasing
quality and a local optima escaping phase (Escape) to displace the search to unexplored
regions.

Algorithm 1 Iterated two-phase local search for the SUKP
1: Input: Instance I, cut-off time tmax, neighborhoods N1 − N3, exploration depth λmax, sampling

probability ρ, tabu search depth ωmax, perturbation strength η.
2: Output: The best solution found S∗.
3: /* Generate an initial solution S0 in a greedy way, §2.2.3 */
S0 ← Greedy_Initial_Solution(I)

4: S∗ ← S0 /* Record the overall best solution S∗ found so far */
5: while Time ≤ tmax do
6: /* Local optima exploration phase using VND and TS, §2.2.4 */

Sb ←VND-TS(S0, N1 −N3, λmax, ρ, ωmax)
7: if f(Sb) > f(S∗) then
8: S∗ ← Sb /* Update the best solution S∗ found so far */
9: end if
10: /* Local optima escaping phase using frequency-based perturbation, §2.2.5 */

S0 ←Frequency_Based_Local_Optima_Escaping(Sb, η)
11: end while
12: return S∗

The algorithm starts from a feasible initial solution (line 3, Alg. 1) that is obtained
with a greedy construction procedure (Section 2.2.3). Then it enters the ‘while’ loop to
iterate the ‘Explore’ phase and the ‘Escape’ phase (lines 5-11, Alg. 1) to seek solutions of
improving quality. At each iteration, the ‘Explore’ phase (line 6, Alg. 1) first performs a
variable neighborhood descent (VND) search to locate a new local optimal solution within
two neighborhoods N1 and N2 and then runs a tabu search (TS) to explore additional
local optima with a different neighborhood N3 (Section 2.2.4). When the ‘Explore’ phase is
exhausted, I2PLS switches to the ‘Escape’ phase (line 10, Alg. 1), which uses a frequency-
based perturbation to displace the search to an unexplored region (Section 2.2.5). These
two phases are iterated until a stopping condition (in our case, a given time limit tmax) is

38

2.2. Iterated two-phase local search for the SUKP

reached. During the search process, the best solution found is recorded in S∗ (lines 7-8,
Alg. 1) and returned as the final output of the algorithm at the end of the algorithm.

One notices that the general scheme of the I2PLS algorithm for the SUKP shares
ideas of breakout local search [BH13], three-phase local search [FH15] and iterated local
search [LMS03]. Meanwhile, to ensure its effectiveness for solving the SUKP, the proposed
algorithm integrates dedicated search components tailored for the considered problem,
which are described below.

2.2.2 Solution representation, search space, and evaluation func-
tion

Given a SUKP instance composed of m items V = {1, . . . ,m}, n elements U =
{1, . . . , n} and knapsack capacity C. The search space Ω includes all non-empty subsets of
items such that the capacity constraint is satisfied, i.e., Ω = {S ⊂ V : S 6= ∅, ∑

j∈∪i∈SUi

wj ≤

C}.
For any candidate solution S of Ω, its quality is assessed by the objective value f(S) =∑

i∈S
pi that corresponds to the total profit of the selected items.

Notice that a candidate solution S of Ω can be represented by S =< A, Ā > where A
is the set of selected items and Ā are the non-selected items. Equivalently S can also be
coded by a binary vector of length m where each binary variable corresponds to an item
and its value indicates whether the item is selected or not selected.

The goal of our I2PLS algorithm is to find a solution S ∈ Ω with the objective value
f(S) as large as possible.

2.2.3 Initialization

The I2PLS algorithm starts its search with an initial solution, which is generated by
a simple greedy procedure in three steps. First, we calculate the total weight wi of each
item i in O(mn). Second, based on the given profit pi of each item, we obtain the profit
ratio ri of each item by ri = pi/wi and sort all items in the descending order according
to ri in O(log(m)). Third, we add one by one the items to S by following this order until
the capacity of the knapsack is reached in O(m). The time complexity of the initialization
procedure is thus O(mn).

39

Part II, Chapter 2 – Iterated two-phase local search for the set-union knapsack problem

2.2.4 Local optima exploration phase

Algorithm 2 Local Optima Exploration Phase - VND-TS
1: Input: Starting solution S, neighborhoods N1 − N3, exploration depth λmax, sampling probability
ρ, tabu search depth ωmax,

2: Output: The best solution Sb found by VND-TS.
3: Sb ← S /*Sb records the best solution found so far during VND-TS */
4: λ← 0 /*λ counts the number of consecutive non-improving rounds*/
5: while λ < λmax do
6: /* Attain a new local optimum S by VND with N1 and N2, see Alg. 3 */

S ←VND(S,N1, N2, ρ)
7: /* Explore nearby optima around the new S by TS with N3, see Alg. 5 */

(Sc, S)←TS(S,N3, ωmax) /*Sc is the best solution found so far during TS */
8: if f(Sc) > f(Sb) then
9: Sb ← Sc /* Update the best solution Sb found so far */
10: λ← 0
11: else
12: λ← λ+ 1
13: end if
14: end while
15: return Sb

From an initial solution, the ‘Explore’ phase (see Algorithm 2) aims to find new local
optimal solutions of increasing quality. This is achieved by a combined strategy mixing
a variable neighborhood descent (VND) procedure (line 6, Alg. 2, see Section 2.2.4) and
a tabu search (TS) procedure (line 7, Alg. 2, see Section 2.2.4). For each VND-TS run
(each ‘while’ iteration), the VND procedure exploits, with the best-improvement strategy,
two neighborhoods N1 and N2 to locate a local optimal solution. Then from this solution,
the TS procedure is triggered to examine additional local optimal solutions with another
neighborhood N3. At the end of TS, its best solution (Sc) is used to update the recorded
best solution (Sb) found during the current VND-TS run, while its last solution (S) is
used as the new starting point of the next iteration of the ‘Explore’ phase. The ‘Explore’
phase terminates when the best solution (Sb) found during this run cannot be updated
during λmax consecutive iterations (λmax is a parameter called exploration depth).

Variable neighborhood descent search

Following the general variable neighborhood descent search [MH97], the VND proce-
dure (Algorithm 3) relies on two neighborhoods (N1 and N2, see Sections 2.2.4) to explore
the search space. Specifically, VND examines the neighborhood N1 at first and iteratively
identifies a best-improving neighbor solution in N1 to replace the current solution. When

40

2.2. Iterated two-phase local search for the SUKP

Algorithm 3 Variable Neighborhood Descent - VND
1: Input: Input solution S, neighborhoods N1 and N2, sampling probability ρ.
2: Output: The best solution Sb found during the VND search.
3: Sb ← S /*Sb record the best solution found so far*/
4: Improve← True
5: while Improve do
6: S ← argmax{f(S′) : S′ ∈ N1(S)}
7: if f(S) > f(Sb) then
8: Sb ← S /*Update the best solution found so far*/
9: Improve = True
10: else
11: N−2 ← Sampling(N2, S, ρ)
12: S ← argmax{f(S′) : S′ ∈ N−2 (S)}
13: if f(S) > f(Sb) then
14: Sb ← S /*Update the best solution found so far*/
15: Improve← True
16: else
17: Improve = False
18: end if
19: end if
20: end while
21: return Sb

a local optimal solution is reached within N1, VND switches to the neighborhood N2.
As we explain in Section 2.2.4, given the large size of N2, VND only examines a subset
N−2 which is composed of ρ × |N2| randomly solutions of N2 (ρ is a parameter called
sampling probability and Algorithm 4 shows the sampling procedure where random() is a
random real number in [0,1]). If an improving neighbor solution is detected in N−2 , VND
switches back to N1. VND terminates when no improving solution can be found within
both neighborhoods. In Section 2.4.2, we study the influence of this sampling strategy.

Algorithm 4 Sampling Procedure
1: Input: Input solution S, neighborhood N2, sampling probability ρ.
2: Output: Set N−2 of sampled solutions from N2(S)
3: N−2 ← ∅
4: for each S′ ∈ N2(S) do
5: if random() < ρ then
6: N−2 ← N−2 ∪ {S′}
7: end if
8: end for
9: return N−2

41

Part II, Chapter 2 – Iterated two-phase local search for the set-union knapsack problem

Move operators, neighborhoods and VND exploration

To explore candidate solutions of the search space, the I2PLS algorithm employs the
general swap operator to transform solutions. Specifically, let S =< A, Ā > be a given
solution with A and Ā being the set of selected and non-selected items. Let swap(q, p)
denote the operation that deletes q items from A and adds p other items from Ā into A.
By limiting q and p to specific values, we introduce two particular swap(q, p) operators.

The first operator swap1(q, p) (q ∈ {0, 1}, p = 1) includes two customary operations as
described in the literature [LHY19; WH15; ZHG17]: the Add operator and the Exchange
operator. Basically, swap1(q, p) either adds an item from Ā into A or exchanges one item
in A with another item in Ā while keeping the capacity constraint satisfied.

The second operator swap2(q, p) (3 ≤ q + p ≤ 4) covers three different cases: delete
two items from A and add one item from Ā into A; delete one item from A and add
two items from Ā into A; exchanges two items of A against two items of Ā. These three
operations are subject to the capacity constraint.

On the basis of these two swap operators, we define the neighborhoods Nw
1 and Nw

2

induced by swap1 and swap2 as follows.

Nw
1 (S) = {S ′ : S ′ = S ⊕ swap1(q, p), q ∈ {0, 1}, p = 1,

∑
j∈∪i∈S′Ui

wj ≤ C} (2.1)

Nw
2 (S) = {S ′ : S ′ = S ⊕ swap2(q, p), 3 ≤ q + p ≤ 4,

∑
j∈∪i∈S′Ui

wj ≤ C} (2.2)

where S ′ = S ⊕ swapk(q, p) (k = 1, 2) is the neighbor solution of the incumbent solution
S obtained by applying swap1(q, p) or swap2(q, p) to S.

Nw
1 and Nw

2 are bounded in size by O(|A| × |Ā|) and O(
(

2
|A|

)
×
(

2
|Ā|

)
) respectively.

Given the large sizes of these neighborhoods, it is obvious that exploring all the neigh-
bor solutions at each iteration will be very time consuming. To cope with this problem, we
adopt the idea of a filtering strategy that excludes the non-promising neighbor solutions
from consideration [LHY19]. Specifically, a neighbor solution S ′ qualifies as promising if
f(S ′) > f(Sb) holds, where Sb is the best solution found so far in Algorithm 3. Using this
filtering strategy, we define the following reduced neighborhoods N1 and N2.

N1(S) = {S ′ ∈ Nw
1 (S) : f(S ′) > f(Sb)} (2.3)

42

2.2. Iterated two-phase local search for the SUKP

N2(S) = {S ′ ∈ Nw
2 (S) : f(S ′) > f(Sb)} (2.4)

As explained in Section 2.2.4 and Algorithm 3, the VND procedure successively exam-
ines solutions of these two neighborhoods N1 and N2. Notice that swap2 leads generally
to a very large number of neighbor solutions such that even the reduced neighborhood
N2 can still be too large to be explored efficiently. For this reason, the VND procedure
explores a sampled portion of N2 at each iteration, according to the sampling procedure
shown in Algorithm 4.

Tabu search

Algorithm 5 Tabu Search - TS
1: Input: Input solution S, Neighborhood N3, tabu search depth ωmax

2: Output: The best solution Sb found during tabu search, the last solution S of tabu search.
3: Sb ← S /*Sb records the best solution found so far*/
4: ω ← 0 /*ω counts the number of consecutive non-improving iterations */
5: while ω < ωmax do
6: S ← argmax{f(S′) : S′ ∈ N3(S) and S′ is not forbidden by the tabu_list}
7: if f(S) > f(Sb) then
8: Sb ← S /* Update the best solution Sb found so far */
9: ω ← 0
10: else
11: ω ← ω + 1
12: end if
13: Update the tabu_list
14: end while
15: return (Sb, S)

To discover still better solutions when the VND search terminates, we trigger the
tabu search (TS) procedure (Algorithm 5) that is adapted from the general tabu search
metaheuristic [GL97]. To explore candidate solutions, TS relies on the swap3(q, p) (1 ≤
p+q ≤ 2) operator, which extends swap1 used in VND by including the case q = 1, p = 0,
which corresponds to the drop operation (i.e., deleting an item from A without adding
any new item). One notices that swap3(1, 0) always leads to a neighbor solution of worse
quality, which can be usefully selected for search diversification. We use N3 to denote the
neighborhood induced by swap3.

N3(S) = {S ′ : S ′ = S ⊕ swap3(q, p), 1 ≤ p+ q ≤ 2,
∑

j∈∪i∈S′Ui

wj ≤ C} (2.5)

43

Part II, Chapter 2 – Iterated two-phase local search for the set-union knapsack problem

As shown Algorithm 5, the TS procedure iteratively makes transitions from the in-
cumbent solution S to a selected neighbor solution S ′ in N3. At each iteration, TS selects
the best neighbor solution S ′ in N3 (or one of the best ones if there are multiple best
solutions) that is not forbidden by the so-called tabu list (tabu_list) (line 6, Alg. 5, see
below). Notice that if no improving solution exists in N3(S), the selected neighbor solu-
tion S ′ is necessarily a worsening or equal-quality solution relative to S. It is this feature
that allows TS to go beyond local optimal traps. To prevent the search from revisiting
previously encountered solutions, the tabu list is used to record the items involved in the
swap operation. And each item i of the tabu list is then forbidden to take part in any swap
operation during the next Ti consecutive iterations where Ti is called the tabu tenure of
item i and is empirically fixed as follows.

Ti =

0.4× |A|, if i ∈ A;

0.2× |Ā| × (100/m), if i ∈ Ā.
(2.6)

TS terminates when its best solution cannot be further improved during ωmax consec-
utive iterations (ωmax is a parameter called the tabu search depth).

2.2.5 Frequency-based local optima escaping phase

The ‘Explore’ phase aims to diversify the search by exploring new search regions.
For this purpose, the algorithm keeps track of the frequencies that each item has been
displaced and uses the frequency information to modify (perturb) the incumbent solution.
Particularly, we adopt an integer vector F of length m whose elements are initialized
to zero. Each time an item i is displaced by a swap operation, Fi is increased by one.
Thus, items with a low frequency are those that are not frequently moved during the
’Explore’ phase. Then when the ‘Explore’ phase terminates and before the next round of
the ‘Explore’ phase starts, we modify the best solution Sb =< Ab, Āb > as follows. We
delete the top η × |Ab| least frequently moved items from Ab (η is a parameter called
perturbation strength and adds to Ab randomly select items from Āb until the knapsack
capacity is reached. This perturbed solution serves as the new starting solution S0 of
the next iteration of the algorithm (see line 10, Alg. 1). In Section 2.4.3, we study the
usefulness of this perturbation strategy.

44

2.3. Experimental results and comparisons

2.3 Experimental results and comparisons

This section presents a performance assessment of the I2PLS algorithm. We show
computational results on the Set I of 30 benchmark instances (See Section 1.2.4) commonly
used in the literature, in comparison with three state-of-the-art algorithms for the SUKP.
We also present the first results from the CPLEX solver.

2.3.1 Experimental setting and reference algorithms

The proposed algorithm was implemented in C++ and compiled using the g++ com-
piler with the -O3 option. The experiments were carried on an Intel Xeon E5-2670 pro-
cessor with 2.5 GHz and 2 GB RAM under the Linux operating system.

Table 2.1 – Settings of parameters.

Parameters Sect. Description Value
λmax 2 Exploration depth 2
ρ 2.2.4 Sampling probability for VND 5

ωmax 2.2.4 Tabu search depth 100
η 2.2.5 Perturbation strength in escaping phase 0.5

Table 2.1 shows the setting of parameters used in our algorithm, whose values were
discussed in Section 2.4.1. Given the stochastic nature of the algorithm, we ran 100 times
(like in [He+18; OB19]) with different random seeds to solve each instance, with a cut-off
time of 500 seconds per run.

For the comparative studies, we use as reference algorithms the following three very
recent algorithms: BABC (binary artificial bee colony algorithm) (2018), which is the
best performing among five population-based algorithms tested in [He+18], gPSO (binary
particle swarm optimization algorithm) (2019) [OB19] and MS (discrete moth search
algorithm) (2019) [FAG19]. Among these reference algorithms, we obtained the code of
BABC. So for BABC, we report both the results listed in [He+18] as well as the results
obtained by running the BABC code on our computer under the same time limit of 500
seconds. For gPSO and MS, we cite the results reported in the corresponding papers. The
results of these reference algorithms have been obtained on computing platforms with the
following features: an Intel Core i5-3337u processor with 1.8 GHz and 4 GB RAM for
BABC, an Intel Core i7-4790K 4.0 GHz processor with 32 GB RAM for gPSO, and an
Intel Core i7-7500 processor with 2.90 GHz and 8.00 GB RAM for MS.

45

Part II, Chapter 2 – Iterated two-phase local search for the set-union knapsack problem

Additionally, we notice that until now, no result has been reported by using the general
integer linear programming (ILP) approach to solve the SUKP. Therefore, we include in
our experimental study the results achieved by the ILP CPLEX solver (version 12.8)
under a time limit of 2 hours based on the 0/1 linear programming model presented in
Section 1.2.1.

2.3.2 Computational results and comparisons

The computational results 1 of I2PLS on the three sets of benchmark instances are
reported in Tables 2.2-2.4, together with the results of the reference algorithms (BABC
[He+18], gPSO [OB19], MSO4 [FAG19]) where BABC* corresponds to the results by
running the BABC code as explained in Section 2.3.1 and MSO4 is the best MS version
among all twelve MS algorithms studied in [FAG19]. The first column of each table gives
the name of each instance. Column 2 (Best_Known) indicates the best known value
reported in the literature and compiled from [FAG19; He+18; OB19]. The best lower
bound (LB) and upper bound (UB) achieved by the CPLEX solver are given in columns
3 and 4. Column 5 lists respectively the four performance indicators: best objective value
(fbest), average objective value over 100 runs (favg), standard deviations over 100 runs
(std), and average run times tavg in seconds to reach the best objective value. Columns
6 to 9 present the computational statistics of the compared algorithms. The best values
of fbest and favg among the results of the compared algorithms are highlighted in bold
and the equal values are indicated in italic. Entries with "-" mean that the results are not
available.

Given the fact that the compared algorithms were run on different computing plat-
forms and they report solutions of various quality, it is not meaningful to compare the
computation times. Therefore, the comparisons are mainly based on the quality, while
run times (when they are available) are included only for indicative purposes.

Finally, Table 2.5 provides a summary of the compared algorithms on all 30 benchmark
instances where rows #Better, #Equal and #Worse indicate the number of instances
for which each algorithm obtains a better, equal or worse fbest value compared to the
best-known values in the literature (Best_Known). Moreover, to further analyze the per-
formance of our I2PLS algorithm, we use the non-parametric Wilcoxon signed-rank test to
check the statistical significance of the compared results between I2PLS and each reference

1. Our solution certificates and the code of I2PLS are available at: http://www.info.univ-angers.
fr/pub/hao/SUKP_I2PLS.html.

46

http://www.info.univ-angers.fr/pub/hao/SUKP_I2PLS.html
http://www.info.univ-angers.fr/pub/hao/SUKP_I2PLS.html

2.4. Analysis and insights

algorithm in terms of fbest values. The outcomes of the Wilcoxon tests are shown in the
last row of Table 2.5 where a p-value smaller than 0.05 implies a significant performance
difference between I2PLS and its competitor.

From Tables 2.2 to 2.4, we observe that our I2PLS algorithm performs extremely well
compared to the state-of-the-art results on the set of 30 benchmark instances. In particu-
lar, I2PLS improves on the best-known results of the literature for 18 out of 30 instances,
while matching the best-known results for the remaining 12 instances. Notice that among
these 12 instances, 6 instances with 85 and 100 items are solved to optimality by CPLEX
(LB=UB), which are indeed not challenging for the other algorithms. Compared to the
reference algorithms (BABC/BABC*, gPSO, MS), I2PLS reports better or equal fbest val-
ues for all the tested instances without exception. In terms of the average results (favg),
I2PLS also performs very well by reporting better or equal fbest values for all instances
except three cases (100_85_0.15_0.85, 100_100_0.15_0.85 and 85_100_0.15_0.85) for
which BABC* has better values. Moreover, I2PLS has smaller standard deviations of
its fbest values (fbest values often better than the compared results), suggesting that our
algorithm is highly robust.

The small p-values (< 0.05) of Table 2.5 from the Wilcoxon signed-rank test (2.14e-4,
4.00e-6, 2.89e-5 and 1.43e-4) confirm that the results of our algorithm are significantly
better than those of the compared results (best known in the literature, BABC, BABC*
and gPSO).

Finally, we complete the above presentation by showing graphical comparisons of
I2PLS against BABC, BABC*, and gPSO on the three sets of 30 instances. We ignore
MS of [FAG19] since no result is available for half of the 30 instances. The plots of Fig.
2.1 concern the best and average objective values of the compared algorithms while the
plots of Fig. 2.2 are based on the standard deviations. These figures clearly indicate the
dominance of the proposed I2PLS algorithm over the reference algorithms in terms of the
considered indicators.

2.4 Analysis and insights

In this section, we perform an analysis of the parameters and the ingredients of the
algorithm to get useful insights about their impacts on its performance.

47

Part II, Chapter 2 – Iterated two-phase local search for the set-union knapsack problem

Table 2.2 – Computational results and comparison of the proposed I2PLS algorithm with
the reference algorithms on the first set of instances (m > n).

Instance Best_Known LB UB Results BABC BABC* gPSO MSO4 I2PLS
100_85_0.10_0.75∗ 13283 13283 13283 fbest 13251 13283 13283 13283 13283

favg 13208.5 13283 13050.53 13062 13283
std 92.63 0 37.41 - 0
tavg 0.210 51.102 - 1.398 3.094

100_85_0.15_0.85∗ 12274 12479 12479 fbest 12238 12479 12274 - 12479
favg 12155 12479 12084.82 - 12335.13
std 53.29 0 95.38 - 98.78
tavg 0.223 24.032 - - 103.757

200_185_0.10_0.75 13521 11585 27055.82 fbest 13241 13402 13405 13521 13521
favg 13064.4 13260.16 13286.56 13193 13521
std 99.57 38.98 93.18 - 0
tavg 1.562 253.693 - 7.901 71.984

200_185_0.15_0.85 14044 11017 29625.82 fbest 13829 14215 14044 - 14215
favg 13359.2 14026.18 13492.60 - 14031.28
std 234.99 151.55 328.72 - 131.46
tavg 1.729 241.932 - - 180.809

300_285_0.10_0.75 11335 9028 43937.51 fbest 10428 10572 11335 11127 11563
favg 9994.76 10466.45 10669.51 10302 11562.02
std 154.03 61.94 227.85 - 3.94
tavg 5.281 315.240 - 24.912 181.248

300_285_0.15_0.85 12245 6889 53164.23 fbest 12012 12245 12245 - 12607
favg 10902.9 12019.28 11607.10 - 12364.55
std 449.45 85.76 477.80 - 83.03
tavg 5.673 226.818 - - 240.333

400_385_0.10_0.75 11484 8993 66798.30 fbest 10766 11021 11484 11435 11484
favg 10065.2 10608.91 10915.87 10411 11484
std 241.45 138.07 367.75 - 0
tavg 12.976 293.560 - 56.838 31.801

400_385_0.15_0.85 10710 5179 77480.39 fbest 9649 9649 10710 - 11209
favg 9135.98 9503.65 9864.55 - 11157.26
std 151.90 94.69 315.38 - 87.29
tavg 13.359 270.813 - - 141.525

500_485_0.10_0.75 11722 7202 86166.50 fbest 10784 10927 11722 11031 11771
favg 10452.2 10628.31 11184.51 10716 11729.76
std 114.35 70.31 322.98 - 6.59
tavg 25.372 486.210 - 124.378 349.545

500_485_0.15_0.85 10022 4762 97218.01 fbest 9090 9306 10022 - 10238
favg 8857.89 9014.01 9299.56 - 10133.94
std 94.55 64.06 277.62 - 94.72
tavg 26.874 482.740 - - 369.375

48

2.4. Analysis and insights

Table 2.3 – Computational results and comparison of the proposed I2PLS algorithm with
the reference algorithms on the second set of instances (m = n).

Instance Best_Known LB UB Results BABC BABC* gPSO MSO4 I2PLS
100_100_0.10_0.75∗ 14044 14044 14044 fbest 13860 14044 14044 14044 14044

favg 13734.9 14040.87 13854.71 13649 14044
std 70.76 11.51 96.23 - 0
tavg 0.213 169.848 - 1.646 38.245

100_100_0.15_0.85∗ 13508 13508 13508 fbest 13508 13508 13508 - 13508
favg 13352.4 13508 13347.58 - 13451.50
std 155.14 0 194.34 - 126.49
tavg 0.244 6.795 - - 70.587

200_200_0.10_0.75 12522 11187 29394.32 fbest 11846 12350 12522 12350 12522
favg 11194.3 11953.11 11898.73 11508 12522
std 249.58 97.57 391.83 - 0
tavg 1.633 183.130 - 8.112 54.780

200_200_0.15_0.85 12317 9258 30610.99 fbest 11521 11929 12317 - 12317
favg 10945 11695.21 11584.64 - 12280.07
std 255.14 78.33 275.32 - 57.77
tavg 1.819 147.930 - - 238.348

300_300_0.10_0.75 12736 11007 45191.75 fbest 12186 12304 12695 12598 12817
favg 11945.8 12202.80 12411.27 11541 12817
std 127.80 67.81 225.80 - 0
tavg 5.315 202.515 - 28.612 66.403

300_300_0.15_0.85 11425 7590 51891.53 fbest 10382 10857 11425 - 11585
favg 9859.69 10383.64 10568.41 - 11512.18
std 177.02 75.79 327.48 - 73.15
tavg 6.019 113.380 - - 220.100

400_400_0.10_0.75 11531 7910 68137.98 fbest 10626 10869 11531 10727 11665
favg 10101.1 10591.65 10958.96 10343 11665
std 196.99 105.83 274.90 - 0
tavg 12.805 298.970 - 58.433 18.733

400_400_0.15_0.85 10927 4964 77719.78 fbest 9541 10048 10927 - 11325
favg 9032.95 9602.13 9845.17 - 11325
std 194.18 142.77 358.91 - 0
tavg 12.953 386.555 - - 76.000

500_500_0.10_0.75 10888 7500 85184.48 fbest 10755 10755 10888 10355 11249
favg 10328.5 10522.56 10681.46 9919 11243.40
std 94.62 70.17 125.36 - 27.43
tavg 27.735 194.490 - 121.622 134.186

500_500_0.15_0.85 10194 3948 101964.36 fbest 9318 9601 10194 - 10381
favg 9180.74 9334.52 9703.62 - 10293.89
std 84.91 40.59 252.84 - 85.53
tavg 27.813 135.130 - - 237.894

49

Part II, Chapter 2 – Iterated two-phase local search for the set-union knapsack problem

Table 2.4 – Computational results and comparison of the proposed I2PLS algorithm with
the reference algorithms on the third set of instances (m < n).

Instance Best_Known LB UB Results BABC BABC* gPSO MSO4 I2PLS
85_100_0.10_0.75∗ 12045 12045 12045 fbest 11664 12045 12045 11735 12045

favg 11182.7 11995.12 11486.95 11287 12045
std 183.57 53.15 137.52 - 0
tavg 0.188 206.570 - 1.354 2.798

85_100_0.15_0.85∗ 12369 12369 12369 fbest 12369 12369 12369 - 12369
favg 12081.6 12369 11994.36 - 12315.53
std 193.79 0 436.81 - 62.60
tavg 0.217 0.531 - - 17.47

185_200_0.10_0.75 13696 12264 25702.48 fbest 13047 13647 13696 13647 13696
favg 12522.8 13179.14 13204.26 13000 13695.60
std 201.35 100.78 366.56 - 3.68
tavg 1.502 202.560 - 7.642 124.136

185_200_0.15_0.85 11298 8608 26289.16 fbest 10602 10926 11298 - 11298
favg 10150.6 10749.46 10801.41 - 11276.17
std 152.91 97.24 205.76 - 83.78
tavg 1.948 259.050 - - 139.865

285_300_0.10_0.75 11568 9421 44274.85 fbest 11158 11374 11568 11391 11568
favg 10775.9 11143.69 11317.99 10816 11568
std 116.80 76.90 182.82 - 0
tavg 5.450 426.680 - 24.539 25.128

285_300_0.15_0.85 11517 7634 51440.30 fbest 10528 10822 11517 - 11802
favg 9897.92 10396.60 10899.20 - 11790.43
std 186.53 128.63 300.36 - 27.51
tavg 5.571 192.575 - - 206.422

385_400_0.10_0.75 10483 9591 59917.77 fbest 10085 10110 10483 9739 10600
favg 9537.5 9926.18 10013.43 9240 10536.53
std 184.62 87.43 202.40 - 56.08
tavg 13.012 203.870 - 57.000 234.475

385_400_0.15_0.85 10338 5810 73409.01 fbest 9456 9659 10338 - 10506
favg 9090.03 9444.34 9524.98 - 10502.64
std 156.69 46.40 286.16 - 23.52
tavg 13.724 177.910 - - 129.505

485_500_0.10_0.75 11094 5940 84239.56 fbest 10823 10835 11094 10539 11321
favg 10483.4 10789.57 10687.62 10190 11306.47
std 228.34 27.29 168.06 - 36.00
tavg 27.227 299.260 - 114.066 207.118

485_500_0.15_0.85 10104 4325 100374.77 fbest 9333 9380 10104 - 10220
favg 9085.57 9258.82 9383.28 - 10179.45
std 115.62 58.72 241.01 - 46.97
tavg 28.493 49.170 - - 238.630

50

2.4. Analysis and insights

Figure 2.1 – The best objective values (left) and mean objective values (right) of BABC,
BABC*, gPSO and I2PLS for solving three sets of instances.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

9000

10000

11000

12000

13000

14000

15000

B
e
s
t
o
b
je

c
ti
ve

 v
a
lu

e

The first set of instances (m>n)

BABC

BABC*

gPSO

I2PLS

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

8000

9000

10000

11000

12000

13000

14000

15000

M
e
a
n
 o

b
je

c
ti
ve

 v
a
lu

e

The first set of instances (m>n)

BABC

BABC*

gPSO

I2PLS

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

9000

10000

11000

12000

13000

14000

15000

B
e
s
t
o
b
je

c
ti
ve

 v
a
lu

e

The second set of instances (m=n)

BABC

BABC*

gPSO

I2PLS

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

9000

10000

11000

12000

13000

14000

15000

M
e
a
n
 o

b
je

c
ti
ve

 v
a
lu

e

The second set of instances (m=n)

BABC

BABC*

gPSO

I2PLS

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

9000

10000

11000

12000

13000

14000

B
e
s
t
o
b
je

c
ti
ve

 v
a
lu

e

The third set of instances (m<n)

BABC

BABC*

gPSO

I2PLS

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

9000

10000

11000

12000

13000

14000

M
e
a
n
 o

b
je

c
ti
ve

 v
a
lu

e

The third set of instances (m<n)

BABC

BABC*

gPSO

I2PLS

51

Part II, Chapter 2 – Iterated two-phase local search for the set-union knapsack problem

Table 2.5 – Summary of numbers of instances for which each algorithm reports a better,
equal or worse fbst value compared to the best-known value in the literature and p-values
of the Wilcoxon singned-rank test on fbest values over all instances between I2PLS and
each reference algorithm including the best-known values.

Instance Best_Known BABC BABC* gPSO MSO4 I2PLS
Better - 0 2 0 0 18
Equal - 2 6 28 3 12
Worse - 28 22 2 12 0
p-value 2.14e-4 4.00e-6 2.89e-5 1.43e-4 2.52e-3 -

2.4.1 Analysis of parameters

As shown in Table 2.1, I2PLS requires four parameters: exploration depth λmax (Sec-
tion 2), neighborhood sampling probability ρ (Section 2.2.4), tabu search depth ωmax (Sec-
tion 2.2.4), perturbation strength η (Section 2.2.5). To analyze the sensibility and tuning
of the parameters, we select 8 out of the 30 benchmark instances, i.e., 185_200_0.15_0.85,
200_185_0.15_0.85, 200_200_0.15_0.85, 300_285_0.15_0.85, 400_385_0.15_0.85, 500
_485_0.10_0.75, 500_485_0.15_0.85 and 500_500_0.15_0.85. According to Tables 2.2-
2.4, the compared algorithms have a larger standard deviation for most of these instances
than for other instances, implying that they are rather difficult to solve. We exclude the
instances with 85 and 100 items since they can be solved exactly by the CPLEX and are
thus too easy to be used for our analysis.

In this experiment, we studied each parameter independently by varying its value in
a pre-determined range while fixing the other parameters to the default values shown
in Table 2.1. We then ran I2PLS with each parameter setting 30 times to solve each of
the 8 selected instances with the same cut-off time as in Section 2.3.2. Specifically, the
exploration depth λmax takes its values in {1, 2, . . . , 10} with a step size of 1, the sampling
probability ρ varies from 0.01 to 0.10 with a step size of 0.01, the tabu search depth ωmax
takes its values in {100, 200, . . . , 1000} with a step size of 100, and the perturbation
strength η varies from 0.1 to 1 with a step size of 0.1. Fig. 2.3 shows the average of
the best objective values (fbest) obtained by I2PLS with the four parameters on the 8
instances.

Fig. 2.3 indicates I2PLS achieves better results when λmax = 2, ρ = 0.05 (the favg value
is better when ρ = 0.05 than ρ = 0.04), ωmax = 100, η = 0.5, respectively. This justifies
the adopted settings of parameters as shown in Table 2.1. In addition, for each parameter,
we used the non-parametric Friedman test to compare the fbest values reached with each

52

2.4. Analysis and insights

of the alternative parameter values. The resulting p − value (> 0.05) of the parameters
λmax and ωmax show that the differences from alternative parameter settings are not
statistically significant, implying that I2PLS is not sensitive to these two parameters.

2.4.2 Effectiveness of the variable neighborhood descent search
strategy

The VND procedure explores two neighborhoods N1 and N2 with a sampling probabil-
ity ρ applied to N2. To investigate the impact of this sampling strategy, we performed an
experiment by setting ρ ∈ {0.05, 0.0, 1.0}, where ρ = 0.05 is the adopted value as shown
in Table 2.1, ρ = 0.0 indicates that only the neighborhood N1 is used during the descent
search while N2 is disabled, and ρ = 1.0 indicates that the entire neighborhoods N1 and
N2 are explored.

We denote these three VND variants by VND0.05, VND0.0 and VND1.0 respectively.
Recall that the VND procedure adopts the best-improvement strategy at each iteration.
However, it is interesting to observe the effect of adopting the first-improvement strategy
in N2, So we included a fourth VND variant with the first-improvement strategy and
ρ = 1.0 (denoted as VNDf

1.0). We ran these four VND variants to solve the 30 benchmark
instances under the condition of Section 2.3.2 and report the results in terms of fbest in
Table 2.6 (the best of the fbest values in bold). The rows #Better, #Equal and #Worse

respectively indicate the number of instances for which VND0.0, VND1.0 and VNDf
1.0 attain

a better, equal and worse result compared to the result obtained by VND0.05 (which is
the default strategy of I2PLS).

Table 2.6 shows that VND0.05 performs the best with the setting ρ = 0.05. Compared
to VND0.05, VND0.0 obtains worse results on 3 instances, and equal results on the other 27
instances. VND1.0 reaches the same results as VND0.05 on 25 instances, and worse results
on 5 instances. VND1.0f obtains worse results on 4 instances, and equal results on the
other 26 instances. Moreover, we observe that when exploring the whole neighborhood
N2, neither the best-improvement strategy nor the first-improvement strategy performs
well. This can be explained by the fact that given the large size of N2, a thorough exam-
ination of this neighborhood becomes very expensive. Within the cut-off time, the VND
search cannot perform many iterations, decreasing its chance of encountering high-quality
solutions. Finally, the p− value of 4.18e-2 from the Friedman test indicates a significant
difference among the compared VND strategies. This implies that the adopted VND strat-

53

Part II, Chapter 2 – Iterated two-phase local search for the set-union knapsack problem

egy and sampling technique of the I2PLS algorithm are relevant for its performance.

Table 2.6 – Influence of the VND search strategy on the performance of the I2PLS algo-
rithm.

Instance/Setting VND0.05 VND0.0 VND1.0 VNDf
1.0

100_85_0.10_0.75 13283 13283 13283 13283
100_85_0.15_0.85 12479 12479 12479 12479
200_185_0.10_0.75 13521 13521 13521 13521
200_185_0.15_0.85 14215 14215 14215 14215
300_285_0.10_0.75 11563 11563 11563 11563
300_285_0.15_0.85 12607 12500 12332 12332
400_385_0.10_0.75 11484 11484 11484 11484
400_385_0.15_0.85 11209 11209 11209 11209
500_485_0.10_0.75 11771 11729 11746 11729
500_485_0.15_0.85 10238 10194 10194 10194
100_100_0.10_0.75 14044 14044 14044 14044
100_100_0.15_0.75 13508 13508 12238 13508
200_200_0.10_0.75 12522 12522 12522 12522
200_200_0.15_0.85 12317 12317 12317 12317
300_300_0.10_0.75 12817 12817 12817 12817
300_300_0.15_0.85 11585 11585 11502 11585
400_400_0.10_0.75 11665 11665 11665 11665
400_400_0.15_0.85 11325 11325 11325 11325
500_500_0.10_0.75 11249 11249 11249 11249
500_500_0.15_0.85 10381 10381 10381 10381
85_100_0.10_0.75 12045 12045 12045 12045
85_100_0.15_0.85 12369 12369 12369 12369
185_200_0.10_0.75 13696 13696 13696 13696
185_200_0.15_0.85 11298 11298 11298 11298
285_300_0.10_0.75 11568 11568 11568 11568
285_300_0.15_0.85 11802 11802 11802 11802
385_400_0.10_0.75 10600 10600 10600 10600
385_400_0.15_0.85 10506 10506 10506 10506
485_500_0.10_0.75 11321 11321 11321 11321
485_500_0.15_0.85 10220 10220 10220 10208
Better - 0 0 0
Equal - 27 25 26
Worse - 3 5 4

2.4.3 Effectiveness of the frequency-based local optima escaping
strategy

The frequency-based local optima escaping strategy of I2PLS perturbs the locally best
solution Sb = (A, Ā) by replacing the first η×|A| (in I2PLS, η is set to 0.5) least frequently

54

2.4. Analysis and insights

Table 2.7 – Impact of the frequency-based local optima escaping strategy on the perfor-
mance of the I2PLS algorithm.

Instance/Setting I2PLS I2PLSrandom I2PLSstrong

100_85_0.10_0.75 13283 13283 13283
100_85_0.15_0.85 12479 12479 12479
200_185_0.10_0.75 13521 13521 13521
200_185_0.15_0.85 14215 14215 14215
300_285_0.10_0.75 11563 11563 11563
300_285_0.15_0.85 12607 12607 12607
400_385_0.10_0.75 11484 11484 11484
400_385_0.15_0.85 11209 11209 11209
500_485_0.10_0.75 11771 11729 11729
500_485_0.15_0.85 10238 10194 10194
100_100_0.10_0.75 14044 14044 14044
100_100_0.15_0.75 13508 13508 13508
200_200_0.10_0.75 12522 12522 12522
200_200_0.15_0.85 12317 12317 12317
300_300_0.10_0.75 12817 12817 12817
300_300_0.15_0.85 11585 11585 11585
400_400_0.10_0.75 11665 11665 11665
400_400_0.15_0.85 11325 11325 11325
500_500_0.10_0.75 11249 11249 11249
500_500_0.15_0.85 10381 10381 10381
85_100_0.10_0.75 12045 12045 12045
85_100_0.15_0.85 12369 12369 12369
185_200_0.10_0.75 13696 13696 13696
185_200_0.15_0.85 11298 11298 11298
285_300_0.10_0.75 11568 11568 11568
285_300_0.15_0.85 11802 11802 11802
385_400_0.10_0.75 10600 10600 10600
385_400_0.15_0.85 10506 10506 10506
485_500_0.10_0.75 11321 11321 11321
485_500_0.15_0.85 10220 10220 10220
Better - 0 0
Equal - 28 28
Worse - 2 2

55

Part II, Chapter 2 – Iterated two-phase local search for the set-union knapsack problem

moved items of A with items that are randomly chosen from Ā. In this experiment, we
compared I2PLS against two variants with alternative perturbation strategies. In the first
variant (denoted by I2PLSrandom), we replace 0.5× |A| items randomly selected items of
A while in the second variant (denoted by I2PLSstrong) and we perform a very strong
perturbation by replacing all the items of A with items of Ā (i.e., setting η to 1). We ran
I2PLS, I2PLSrandom and I2PLSstrong 30 times to solve each of the 30 benchmark instances.
The computational results of this experiment are shown in Table 2.7 where in addition to
the best fbest values of each compared algorithm (the best of the fbest values in bold), the
last three rows indicate the number of instances for which I2PLSrandom and I2PLSstrong
has a better, equal and worse result compared to that of I2PLS.

Table 2.7 shows that I2PLS with its frequency-based local optima escaping strategy
performs slightly better than the two variants with alternative perturbation strategies.
Indeed, even if the compared strategies lead to equal results for 28 instances, I2PLS
achieves a better result on two of the most difficult instances (500_485_0.10_0.75 and
500_485_0.15_0.85). This experiment tends to indicate that the frequency-based local
optima escaping strategy is particularly helpful for solving difficult instances. The p −
value of 1.35e-1 from the Friedman test indicates that the compared strategies differ only
marginally.

2.5 Chapter conclusion

In this chapter, we introduce the first local search approach for solving the SUKP
that directly operates in the discrete search space. The proposed algorithm combines a
local optima exploration phase and a local optima escaping phase based on frequency
information within the iterated local search framework.

The proposed algorithm has been tested on three sets of 30 benchmark instances
commonly tested in the literature and showed a high competitive performance compared
to the state-of-the-art SUKP algorithms. Specifically, our algorithm has improved on
the best-known results (new lower bounds) for 18 out of the 30 benchmark instances,
while matching the best-known results for the remaining 12 instances. Moreover, we have
investigated for the first time the interest of the general mixed integer linear programming
solver CPLEX for solving the SUKP, showing that the optimal solutions can be reached
only for 6 small instances. Furthermore, we have analyzed the impacts of parameters and
the main components of the algorithm on its performance.

56

2.5. Chapter conclusion

In the next chapter, we will introduce a kernel based tabu search algorithm, which
features original kernel-based search components and an effective local search procedure.

57

Figure 2.2 – The standard deviations of BABC, BABC*, gPSO and I2PLS for solving
three sets of instances.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

BABC

BABC*

gPSO

I2PLS

0

100

200

300

400

500

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

The first set of instances (m>n)
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

BABC

BABC*

gPSO

I2PLS

0

100

200

300

400

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

The second set of instances (m=n)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

BABC

BABC*

gPSO

I2PLS

0

100

200

300

400

500

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

The third set of instances (m<n)

Figure 2.3 – Average of the best objective values (fbest) on the 8 instances obtained by
executing I2PLS with different values of the four parameters.

A
ve

ra
g

e
 o

f
b

e
s
t

o
b

je
c
ti
ve

 o
n

 8
 i
n

s
ta

n
c
e

s

1 2 3 4 5 6 7 8 9 10

11720

11725

11730

11735

11740

11745

11750

11755

Exploration depth

A
ve

ra
g

e
 o

f
b

e
s
t

o
b

je
c
ti
ve

 o
n

 8
 i
n

s
ta

n
c
e

s

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

11720

11725

11730

11735

11740

11745

11750

Sampling probability

A
v
e

ra
g

e
 o

f
b

e
s
t

o
b

je
c
ti
ve

 o
n

 8
 i
n

s
ta

n
c
e

s

100 200 300 400 500 600 700 800 900 1000

11720

11725

11730

11735

11740

11745

11750

11755

Tabu search depth

A
v
e

ra
g

e
 o

f
b

e
s
t

o
b

je
c
ti
ve

 o
n

 8
 i
n

s
ta

n
c
e

s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

11600

11650

11700

11750

Perturbation strength

Chapter 3

KERNEL BASED TABU SEARCH FOR THE

SET-UNION KNAPSACK PROBLEM

In this chapter, we will introduce a competitive heuristic algorithm to advance the
state-of-the-art for solving the SUKP. The proposed kernel based tabu search algorithm
(KBTS) features original kernel-based search components and an effective local search
procedure. Specifically, KBTS relies on a local search procedure to attain various local
optima and a kernel search procedure to perform an additional exploration of promising
search regions. Then, the non-kernel search procedure is employed to drive the search to
a faraway new region. Extensive computational assessments on 60 benchmark instances
demonstrate the high performance of the algorithm. We show different analyses to get
insights into the influences of its algorithmic components. The content of this chapter is
based on an article published in Expert Systems with Applications.

61

Part II, Chapter 3 – Kernel based tabu search for the set-union knapsack problem

3.1 Introduction

The literature review (see Section 1.2.3) shows that the existing algorithms have a
number of limitations. First, the performances of these algorithms lack stability and ro-
bustness (computational results with large standard deviations) even when solving small
benchmark instances (with 85 to 100 items and elements). Second, their performances
generally decrease when they are used to solve large instances (with at least 500 items
and elements). Third, they consume a substantial amount of computation time to reach
their reported results. Finally, most existing algorithms require a non-negligible number
of parameters (e.g., 4 and 7 parameters for two leading algorithms I2PLS [WH19] and
HBPSO/TS [Lin+19], respectively), making it difficult to control their performances and
understand their behaviors.

In this chapter, we aim at advancing the state-of-the-art of solving the SUKP effec-
tively and robustly in particular when large problem instances are considered. For this
purpose, we investigate the first kernel based approach that overcomes the limitations
mentioned above. This work is also motivated by another important consideration. In
fact, the general idea of kernel has proved to be quite useful for several binary optimiza-
tion problems (e.g., [VH01a; Wan+13; Zha04]). This work demonstrates for the first time
its benefit for solving the SUKP, whose contributions are summarized as follows.

First, to evaluate the meaningfulness of the idea of kernel for solving the SUKP, we in-
vestigate the distribution of items among high-quality solutions. This investigation reveals
the existence of kernels, which lays the basis for adopting the kernel concept to design
our search algorithm. Indeed, the proposed kernel based tabu search algorithm (KBTS)
integrates three complementary search components to perform an effective examination
of the search space. That is, a local search procedure is used to find various local op-
tima, a kernel search method is employed to discover additional high-quality solutions
within particular areas, and a non-kernel search method is applied to ensure a guided
diversification.

Second, we show the competitiveness of the proposed algorithm by comparing it with
the state-of-the-art algorithms on 60 benchmark instances. We provide new lower bounds
for several benchmark instances that can contribute to future research on the SUKP.

Third, we make the code of our KBTS algorithm publicly available, which can help
researchers and practitioners to better solve various problems that can be formulated as
the SUKP.

62

3.2. Kernel based tabu search for the SUKP

Finally, the kernel based search components of the proposed algorithm rely on general
principals that can be advantageously adapted to other binary optimization problems.

The rest of the chapter is structured as follows. Section 3.2 presents the proposed algo-
rithm as well as its components. Section 3.3 shows computational results and comparisons
with the state-of-the-art algorithms. Section 3.4 shows several analyses to shed lights on
the understanding of the key ingredients of the algorithm. Conclusions are provided in
the last section.

3.2 Kernel based tabu search for the SUKP

In this section, we present the KBTS algorithm for solving the SUKP. We first present
its main scheme and then describe its components.

3.2.1 Main scheme

Start

Dynamic

initialization

Tabu

search

Kernel

search

Direcrt

perturbation
�=�max

Non-kernel

search
t=tmax

Stop�=�+1

No

Yes

No

Yes

Figure 3.1 – Flow chart of the KBTS algorithm.

The KBTS algorithm follows the flow chart shown in Fig. 3.1 and is described in
Algorithm 6.

The algorithm starts from a feasible initial solution generated by a dynamic profit-ratio
mechanism (line 3, Alg. 6, and Section 3.2.3). Then it enters a ‘while’ loop to execute the
main search process. Specifically, the input solution is improved by an iterative process
(the ‘repeat’ loop), which includes a tabu search procedure, a kernel search procedure
and a direct perturbation procedure. At each iteration of this process, the tabu search
procedure (line 10, Alg. 6) is first invoked to obtain a high-quality solution with the
neighborhood Nf (Section 3.2.4). During tabu search, a kernel solution (Sk) as well as a
non-kernel solution (S̄k) are created using information from a frequency counter Φ. Then
the kernel search procedure (line 11, Alg. 6, and Section 3.2.5) uses the neighborhood
Nk to perform an intensified search around the kernel solution to seek other high-quality
solutions. After that, the direct perturbation procedure (Section 3.2.6) is applied to modify

63

Part II, Chapter 3 – Kernel based tabu search for the set-union knapsack problem

Algorithm 6 Kernel Based Tabu Search for the SUKP
1: Input: Instance I, cut-off time tmax, neighborhoods Nf , Nk, N̄k, local search depth γmax, kernel

coefficient ε, direct perturbation strength δ.
2: Output: The best solution found S∗.
3: S ← Dynamic_Initialization(I) /* Generate an initial solution S, Sect. 3.2.3 */
4: S∗ ← S /* Record the overall best solution S∗*/
5: while Time ≤ tmax do
6: Φ← Frequency_Initialization() /* Initialize frequency counter Φ to 0 */
7: Sb ← S /* Record the best solution Sb found so far */
8: γ ← 0 /*γ counts the number of consecutive non-improving rounds*/
9: repeat
10: /* Record the local optimum Sl found by tabu search */

(Sl, Sk, S̄k)← Tabu_Search (S,Nf ,Φ, ε) /* Sect. 3.2.4 */
11: Sl ← Kernel_Search(Sk, Sl, Nk) /* Sect. 3.2.5 */
12: S ←Direct_Perturbation(Sl, δ) /* Sect. 3.2.6 */
13: if f(Sl) > f(Sb) then
14: Sb ← Sl /* Update the local best solution Sb found so far */
15: γ ← 0
16: else
17: γ ← γ + 1
18: end if
19: until γ = γmax

20: if f(Sb) > f(S∗) then
21: S∗ ← Sb /* Update the overall best solution S∗ found so far */
22: end if
23: S ← Non-Kernel_Search(S̄k, N̄k) /* Sect. 3.2.7 */
24: end while
25: return S∗

the last local optimum found (controlled by the parameter δ), which is then used to start
the next iteration of the process. This process ends when γmax consecutive iterations are
reached without further improving the local best solution Sb. At this point, the search
is judged to be exhausted with the current search region and switches to the non-kernel
search procedure (Section 3.2.7) to explore a distant and unexplored region. Finally, the
whole algorithm terminates when the given time limit tmax is reached and returns the
overall best solution S∗ found during the search.

3.2.2 Solution representation, search space, and evaluation func-
tion

The search of the KBTS algorithm is limited to the feasible solution space ΩF satisfying
the knapsack constraint. By reference to the item set V withm items, a candidate solution
S of ΩF can be conveniently represented by S = (y1, . . . , ym) where each yi is a binary

64

3.2. Kernel based tabu search for the SUKP

variable: yi = 1 if item i is selected, yi = 0 otherwise. A solution S can also be represented
by S =< A, Ā > where A ⊆ V is the set of selected items and Ā = V \A is the set of the
remaining items. The quality of S is measured by its objective value f(S) =

m∑
i=1

piyi.

3.2.3 Dynamic initialization

The KBTS algorithm adopts an original initialization procedure using a dynamic
profit-ratio of non-selected items. This procedure is based on the fact that for a given
solution S, the weight of each element is counted only once. When a new item k is added
to S, only the new elements of k that do not belong to the subset S will impact the total
weight. Therefore, in our initialization procedure, the profit-ratio of non-selected items
will be recalculated according to the elements belonging to the current solution S after
adding a new item into S. The dynamic profit-ratio r∗k of a non-selected item k is then
given by r∗k = pk/

∑
j∈Uk∧j /∈∪i∈SUi

wj.

From an empty subset S, the dynamic initialization procedure operates as follows.
First, we calculate the dynamic profit-ratio r∗k of non-selected items. Second, we identify
the item k with the highest r∗k value and add the item into S. We iterate these two steps
until the knapsack constraint is reached.

Note that the dynamic profit-ratio refines the static profit-ratio used in [WH19] and
generally leads to solutions of better quality.

3.2.4 Tabu search procedure

The KBTS algorithm adopts the well-known tabu search (TS) metaheuristic [GL97]
to explore local optima within a restricted neighborhood. As a general search method,
TS needs to be adequately adapted to the specific optimization problem under con-
sideration. One notices that TS is quite successful to solve several knapsack problems
(e.g., quadratic multiple knapsack [Qin+16], multidimensional knapsack [GK96; Lai+18a],
set-union knapsack problem [Lin+19; WH19]) and other optimization problems (e.g.,
[Dıéa+17; LHG20]).

Our tabu search procedure is shown in algorithm 7, whose particular features tailored
to the SUKP are discussed below. Given an input solution S, the TS procedure explores
the neighborhood Nf (S) induced by the swap operator (see Section 3.2.4) to make transi-
tions from the current solution to neighbor solutions. Specifically, for each ‘while’ iteration
(lines 5-11, Alg. 7), TS selects the best neighbor solution with the neighborhood search

65

Part II, Chapter 3 – Kernel based tabu search for the set-union knapsack problem

Algorithm 7 Tabu Search
1: Input: Input solution S, neighborhood Nf , frequency counter Φ, kernel coefficient ε.
2: Output: Best solution Sl found during tabu search, kernel solution Sk, non-kernel solution S̄k.
3: Sl ← S /* Record the best solution Sl found during tabu search */
4: Continue← True
5: while Continue do
6: (Continue, S)← Neighborhood_Search(S, N1, Continue) /* Algorithm 8 */
7: if f(S) > f(Sl) then
8: Sl ← S /* Update the best solution found during tabu search */
9: Φ← Update_Frequency(Φ)
10: end if
11: end while
12: Sk ← Create_Kernel(Φ, ε)
13: S̄k ← Create_Non_Kernel(Sk)
14: return (Sl, Sk, S̄k)

procedure, which is shown in Algorithm 8. If the new selected solution S is better than the
best solution Sl found during tabu search, Sl is updated by S. Meanwhile, the frequency
counter Φi of each selected item i in S is updated by Φi = Φi+1, The main search (‘while’
loop) terminates when the neighborhood Nf (S) becomes empty (see Algorithm 8). Then
the kernel solution Sk and non-kernel solution S̄k are created based on the frequency
counter Φ, which will be presented in Sections 3.2.5 and 3.2.7.

Algorithm 8 Neighborhood Search
1: Input: Input solution S, flag Continue, neighborhood N .
2: Output: Continue, best solution S found.
3: Find admissible neighbor solutions N(S)
4: if N(S) 6= ∅ then
5: S ← argmax{f(S′) : S′ ∈ N(S)} /* Attain the best neighbor solution S */
6: Update tabu_list
7: Continue = True
8: else
9: Continue = False
10: end if
11: return (Continue, S)

Move operator and neighborhood structure

From the current solution, a neighbor solution is generated by applying the popular
swap operator [WH19]. Specifically, given a solution S =< A, Ā > where A ⊆ V is the
set of selected items and Ā = V \ A, a swap(q, p) operation exchanges q items in A

with p items in Ā, leading to a neighbor solution designated by S ⊕ swap(q, p). Note

66

3.2. Kernel based tabu search for the SUKP

that q and p refer to the number of items involved in the swap operator. In our case,
the candidate values for q and p are 0 or 1. Therefore, the swap operator includes three
different operations: the Add operation with q = 0 and p = 1 (add one item from Ā

into A), the Delete operation with q = 1 and p = 0 (delete one item from A) and the
Exchange operation with q = 1 and p = 1 (exchange one item of A against one item
of Ā). Then the basic neighborhood induced by the swap operator includes all feasible
solutions obtained by S ⊕ swap(q, p).

To enhance the computational efficiency of the KBTS algorithm, we define a restricted
neighborhood by using a neighborhood filtering strategy [Lai+18a; WH19] to exclude un-
promising neighbor solutions. With this strategy, only neighbor solutions S ′ of reasonable
quality verifying f(S ′) > f(Sb) are considered where Sb is the best solution found so far
in the current tabu search run. Formally, the filter-based neighborhood Nf (S) is defined
as follows.

Nf (S) = {S ′ : S ′ = S ⊕ swap(q, p), q ∈ {0, 1}, p ∈ {0, 1}, f(S ′) > f(Sb)} (3.1)

Furthermore, to ensure the computational efficiency when evaluating a feasible neigh-
bor solution, we adopt the so-called gain updating strategy [Lin+19; WH19]. Specifically,
we use a vector G of length n where Gj (Gj ∈ {0, 1 . . . , n}) records the number of ap-
pearances of element j in a solution S. Thus, only the elements that change values in G
after performing swap(q, p) will be considered when calculating the total weight of a new
neighbor solution S⊕ swap(q, p). That is, for each element j, if its Gj value changes from
zero to non-zero, the total weight of the new solution is increased by wj; if Gj changes
from non-zero to zero, then total weight of the new solution is decreased by wj. In other
cases, the weight of the neighbor solution remains unchanged.

Tabu list management and aspiration criterion

Our TS procedure employs a tabu list to avoid revisiting previous encountered solu-
tions. When a swap operation is performed, each item i involved in the swap is added
in the tabu list and forbidden to move away from their respective item set for the next
Ti consecutive iterations, where Ti is called the tabu tenure. Inspired by the tabu list
management proposed in [VH01a], our tabu tenure Ti is set to the number of times item
i is moved by the swap operation. As such, items with a high (low) move frequency will
be forbidden for a longer (shorter) time. When no admissible move is available in the

67

Part II, Chapter 3 – Kernel based tabu search for the set-union knapsack problem

neighborhood (i.e., Nf (S) = ∅), the TS procedure automatically stops.
During the tabu search, a best neighbor solution among those that are allowed by the

tabu list is selected to replace the current solution. Notice that a neighbor solution is
always selected if it is better than the best solution found during the TS procedure even
if the solution is forbidden by the tabu list. This is the so-called aspiration criterion in
tabu search [GL97].

3.2.5 Kernel search procedure

The tabu search procedure is able to explore different local optimal solutions with
the help of the tabu list. Still, some interesting zones with better solutions may be over-
looked. The kernel search procedure is introduced to perform an additional examination
of particular regions identified by the so-called kernel solution.

Definition 1 Let S be a set of feasible solutions, k an integer, and Φi the frequency of
item i appearing in the solutions of S, then the kernel solution (or simply kernel) Sk is
the set of top k items with the highest frequencies such that Φi ≥ Φk and the total weight
of Sk does not exceed the knapsack capacity.

In the KBTS algorithm, we employ the frequency counter Φi to keep track of the
number of times each item i appears in high-quality solutions. As mentioned in Section
3.2.4 (line 9, Alg. 7), each time a better solution is found during the tabu search procedure,
the frequency counter Φi of the selected item i is updated by Φi = Φi + 1. Then at the
end of the TS procedure, we generate the kernel Sk in two steps (line 12, Alg. 7). First,
we sort all items in descending order according to the values of Φ. Second, we add the
top ε × |Sl| most frequently appearing items to Sk, where ε is a parameter called kernel
coefficient and |Sl| is the number of the selected items in the best solution found during
tabu search. Then Sk serves as the input solution S for the kernel search (KS) procedure
shown in Algorithm 9.

The kernel search procedure shares the same framework with the TS procedure and
employs the same neighborhood search procedure (see Algorithm 8), the same tabu list
management and aspiration criterion. However, the KS procedure performs its search with
the kernel based neighborhood Nk(S) which is composed of neighbor solutions induced
by the swap operator applied to the items of S excluding those of the kernel Sk. In other
words, the items belonging to the kernel Sk remain fixed during the kernel search and

68

3.2. Kernel based tabu search for the SUKP

do not take part in any swap operation. By freezing the items of the kernel during the
search, the KS procedure ensures a strongly intensified examination around the kernel.

The KS procedure ends if no admissible move is available in the kernel based neigh-
borhood Nk(S). At this point, the region around the kernel is considered to be sufficiently
examined and the algorithm needs to move to a new region to continue its search. For
this, we employ a direct perturbation strategy that is explained in the next section.

Algorithm 9 Kernel Search
1: Input: Input kernel solution Sk, attained local optimum Sl, neighborhood Nk.
2: Output: Best solution Sl during kernel search.
3: S ← Sk /* Generate a new solution by Sk */
4: Continue← True
5: while Continue do
6: (Continue, S)← Neighborhood_Search(S, Nk, Continue)
7: if f(S) > f(Sl) then
8: Sl ← S /* Update the best solution found during kernel search */
9: end if
10: end while
11: return Sl

The kernel search procedure is inspired by the work presented in [VH01a] where the
notion of kernel was introduced for solving a logic-constrained knapsack problem. The
KS procedure is also related to the notion of backbone which was successfully applied to
solve several binary optimization problems such as satisfiability [Zha04] and unconstrained
binary quadratic programming [Wan+13]. This is the first application of this idea to the
SUKP. Notice that given the particular feature of the SUKP, our way of defining (and
identifying) kernels remains unique compared to previous studies.

3.2.6 Direct perturbation procedure

The direct perturbation procedure aims to diversify the TS-KS process, by modifying
the input local optimum Sl to generate a new starting solution for the next round of the
TS-KS process. Specifically, the perturbation performs δ random swap(q,p) (q ∈ {0, 1},
p ∈ {0, 1}, and excluding swap(q, p) with q = p = 0) operations to transform the input
solution while ensuring the feasibility of the resulting solution, where δ is a parameter
called direct perturbation strength. It is clear that larger δ values lead to more important
changes of the input solution.

69

Part II, Chapter 3 – Kernel based tabu search for the set-union knapsack problem

3.2.7 Non-kernel search procedure

When the TS and KS procedures (lines 9-19, Alg. 6) terminate, we employ a global
diversification strategy to definitively drive the search to a faraway new region. To identify
this new region, we refer to the kernel solution Sk = {y1, . . . , ym} (described in Section
3.2.5) and define its opposite solution S̄k = {x1, . . . , xm} such that xi = 1 − yi (i =
1, . . . ,m). Then a feasible solution S is created from S̄k and used as the input of the non-
kernel search procedure. In order to obtain the feasible input solution S, we randomly
select items from S̄k and add them to S until the knapsack constraint is reached. The non-
kernel search procedure follows the same search scheme (Algorithm 10) as TS and KS, but
explores a different neighborhood N̄k defined as follows. Specifically, during the non-kernel
search, a swap operation is constrained to items that do not belong to the kernel Sk. In
other words, items of Sk are never selected to become a part of a neighbor solution. As
such, the non-kernel search has a strong diversification effect. The NKS procedure stops
when the neighborhood becomes empty and the best solution found is used to initiate the
next iteration of the whole KBTS algorithm.

Algorithm 10 Non-Kernel Search
1: Input: Input non-kernel solution S̄k, neighborhood N̄k.
2: Output: Best solution Sc found during non-kernel search.
3: S ← Random(S̄k) /* Generate a feasible solution from S̄k */
4: Sc ← S /*Sc records the best solution found during non-kernel search */
5: Continue← True
6: while Continue do
7: (Continue, S)← Neighborhood_Search(S, N̄k, Continue)
8: if f(S) > f(Sc) then
9: Sc ← S /* Update the best solution found during non-kernel search */
10: end if
11: end while
12: return Sc

3.2.8 Time complexity

We first consider the dynamic initialization procedure, which can be divided into two
steps. The first step of updating dynamic profit-ratio can be achieved in O(m2n), and
the second step of finding the non-selected item with the highest r∗k value is bounded by
O(m2), where m is the number of items and n is the number of elements. Thus the time
complexity of the dynamic initialization procedure is O(m2n).

70

3.2. Kernel based tabu search for the SUKP

Now we evaluate one iteration of the main loop of the proposed algorithm. As shown
in Algorithm 6, the tabu search procedure (TS), the kernel search procedure (KS) and the
non-kernel search procedure (NKS) all adopt the Neighborhood_Search (NS) framework.
Given the current solution S =< A, Ā > (see Section 3.2.4), the kernel solution Sk

(see Section 3.2.5), and the non-kernel solution S̄k (see Section 3.2.7), the corresponding
complexity of one round of NS during the three procedures is O([(m + |A| × |Ā|)] × n),
O([(m−|Sk|)+(|A|−|Sk|)×|Ā|]×n) and O([|S̄k|+ |A|×(|S̄k|−|A|)]×n). The complexity
of the direct perturbation procedure is O(1). Let Rmax be the total maximum rounds of
NS invoked by the TS, KS and NKS procedures. Then, the time complexity of one loop
of KBTS is O(m2n×Rmax).

Let Imax be the maximum number of the iterations of the KBTS algorithm (which
is determined by the cut-off time tmax). Then, the overall time complexity of KBTS is
O(m2n×Rmax× Imax). In Sections 3.3.2 and 3.4.4, we investigate the implications on the
practical use of the above theoretical time complexity in terms of computational efficiency
compared to existing SUKP algorithms.

3.2.9 Discussions

To highlight the novelties and contributions of the KBTS algorithm, we discuss below
the main original features integrated in its search components.

First, the initialization procedure of Section 3.2.3 relies on an original dynamic profit-
ratio. This strategy exploits the particular feature of SUKP that the elements of selected
items can be reused regardless how many times they appear in the selected items of the
current solution. The dynamic profit-ratio is thus a refined criterion compared to the static
profit-ratio used in [WH19] and indeed favors the creation of high-quality initial solutions.

Second, the tabu search procedure of Section 3.2.4 has several special features that are
different from other TS methods for the SUKP [Lin+19; WH19]. KBTS uses a parameter-
free automatic tabu list strategy, while some parameters are required to control the tabu
list and the tabu search termination in previous TS algorithms. Also, KBTS adopts an
aspiration criterion to ensure that the best solution encountered is never overlooked, while
no aspiration criterion is used in previous studies [Lin+19; WH19].

Third, although the general idea of kernel (or backbone) is known in the literature,
we investigate for the first time the benefit of applying this idea to solve the SUKP
and propose a new way of identifying and using the kernel with the KBTS algorithm.
Specifically, we extract the most frequent items from a set of high-quality solutions and

71

Part II, Chapter 3 – Kernel based tabu search for the set-union knapsack problem

use them to form a kernel solution (Sk). We additionally employ a parameter (kernel
coefficient) to flexibly control the size of Sk within a proper range, which allows the kernel
search procedure of Section 3.2.5 to intensively examine a given search region delimited
by the kernel.

Fourth, the non-kernel search procedure of Section 3.2.7 relies on the opposite solution
S̄k of the kernel Sk. This is an original diversification strategy and has the advantage of
diversifying the search in a guided manner. To our knowledge, such a strategy is not
employed in the literature on the SUKP.

Finally, as we demonstrate in the next section, the KBTS algorithm equipped with
these innovative features is able to compete very favorably with the current best algo-
rithms for the SUKP in the literature.

3.3 Computational results and comparisons

This section is dedicated to an extensive evaluation of our KBTS algorithm and
comparisons with state-of-the-art SUKP algorithms. We report computational results on
two sets of 60 benchmark instances (see Section 1.2.4), available at http://www.info.
univ-angers.fr/pub/hao/SUKP_KBTS.html.

3.3.1 Experimental protocol and reference algorithms

Computing platform. Our KBTS algorithm is programmed in C++ 1 and compiled
with the g++ compiler with the -O3 option. To ensure a fair comparison, all the exper-
iments mentioned in this work were performed on an Intel Xeon E5-2670 processor (2.5
GHz CPU and 2 GB RAM) running under the Linux operating system.

Parameter settings. The KBTS algorithm employs three parameters, whose descrip-
tions and values are presented in Table 3.1. The effects and calibration of these parameters
are presented in Section 3.4.1. The values of Table 3.1 can be considered to be the de-
fault setting and are used consistently to solve all 60 instances presented in Section 1.2.4
without any further fine-tuning.

Reference algorithms. We adopt three recent state-of-the-art algorithms: hybrid
jaya algorithm (DHJaya) [WH20b], hybrid binary particle swarm optimization with tabu
search (HBPSO/TS) [Lin+19] and iterated two-phase local search algorithm (I2PLS)

1. The code of our KBTS algorithm is available at: http://www.info.univ-angers.fr/pub/hao/
SUKP_KBTS.html.

72

http://www.info.univ-angers.fr/pub/hao/SUKP_KBTS.html
http://www.info.univ-angers.fr/pub/hao/SUKP_KBTS.html
http://www.info.univ-angers.fr/pub/hao/SUKP_KBTS.html.
http://www.info.univ-angers.fr/pub/hao/SUKP_KBTS.html.

3.3. Computational results and comparisons

Table 3.1 – Parameters settings of KBTS.

Parameters Section Description Value
γmax 3.2.1 local search depth 3
ε 3.2.5 kernel coefficient 0.6
δ 3.2.6 direct perturbation strength 3

[WH19]. We also include the first binary artificial bee colony algorithm (BABC) [He+18]
as a base reference. To ensure a fair comparison, we run the source codes of these algo-
rithms (kindly provided by their authors) as well as our KBTS algorithm on our computing
platform under the same stopping condition.

Stopping condition. Following [WH19], we run our KBTS algorithm and each refer-
ence algorithm to solve each of the 30 instances of Set I with a cut-off time of 500 seconds.
For the 30 new large instances of Set II, the cut-off time is set to 1000 seconds. Given the
stochastic nature of the compared algorithms, each instance is independently solved by
each algorithm 100 times with different random seeds.

3.3.2 Computational results and comparisons

Tables 3.2 and 3.3 present the detailed computational results 2 of the compared algo-
rithms achieved on the two sets of benchmark instances. Column 1 gives the names of
the tested instances while the asterisk (*) indicates the optimal value that are proved by
CPLEX and reported in [WH19]. The best objective value (fbest), the average objective
value over 100 runs (favg), standard deviation over 100 runs (std) and the average run
time (to reach the fbest value, denoted by tavg) of each compared algorithm are reported
in the remaining columns. In addition, the last row #Avg of Tables 3.2 and 3.3 indicates
the average value of each column. Finally, dominating values of fbest and favg among the
compared results are indicated in bold, and equal best values are shown in italic.

From the results of Table 3.2 on the instances of Set I, we observe that our KBTS
algorithm is very competitive compared to the reference algorithms in terms of fbest, favg
and std. Also, KBTS has a better average performance and very small standard deviations,
indicating its high robustness. The high competitiveness of our KBTS algorithm becomes
even more evident when we check the results of Table 3.3 for the 30 large instances of Set
II. Indeed, KBTS dominates all the reference algorithms in all performance indicators.

2. Our solution certificates are available at: http://www.info.univ-angers.fr/pub/hao/SUKP_
KBTS.html.

73

http://www.info.univ-angers.fr/pub/hao/SUKP_KBTS.html.
http://www.info.univ-angers.fr/pub/hao/SUKP_KBTS.html.

Part II, Chapter 3 – Kernel based tabu search for the set-union knapsack problem

Moreover, KBTS requires less computation times to attain better solutions with small
standard deviations, indicating its high computational efficiency and robustness.

9000

10000

11000

12000

13000

14000

15000

B
e

s
t

o
b

je
c
ti
ve

 v
a

lu
e

Instances of Set I

BABC
DHJaya
HBOPSO/TS
I2PLS
KBTS

7000

8000

9000

10000

11000

B
e

s
t

o
b

je
c
ti
ve

 v
a

lu
e

Instances of Set II

BABC
DHJaya
HBOPSO/TS
I2PLS
KBTS

9000

10000

11000

12000

13000

14000

15000

A
ve

ra
g

e
 o

b
je

c
ti
ve

 v
a

lu
e

Instances of Set I

BABC
DHJaya
HBOPSO/TS
I2PLS
KBTS

7000

8000

9000

10000

11000
A

ve
ra

g
e

 o
b

je
c
ti
ve

 v
a

lu
e

Instances of Set II

BABC
DHJaya
HBOPSO/TS
I2PLS
KBTS

0

50

100

150

200

250

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Instances of Set I

BABC
DHJaya
HBOPSO/TS
I2PLS
KBTS

0

50

100

150

200

250

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Instances of Set II

BABC
DHJaya
HBOPSO/TS
I2PLS
KBTS

Figure 3.2 – Best objective values, average objective values and standard deviations of
BABC, DHJaya, HBPSO/TS, I2PLS and KBTS on the 30 instances of Set I (left) and
the 30 instances of Set II (right).

Fig. 3.2 additionally shows a graphical representation of the comparative results of

74

3.3. Computational results and comparisons
Ta

bl
e
3.
2
–
C
om

pu
ta
tio

na
lr

es
ul
ts

an
d
co
m
pa

ris
on

of
th
e
K
BT

S
al
go
rit

hm
w
ith

th
e
re
fe
re
nc
e
al
go
rit

hm
s
on

th
e
SU

K
P

in
st
an

ce
s
of

Se
t
I.

In
st

an
ce

B
A

B
C

D
H

Ja
ya

H
B

P
SO

/T
S

I2
P

LS
(B

es
t_

K
no

w
n)

K
B

T
S

f
b
e

s
t

f
a

v
g

st
d

t a
v

g
(s

)
f

b
e

s
t

f
a

v
g

st
d

t a
v

g
(s

)
f

b
e

s
t

f
a

v
g

st
d

t a
v

g
(s

)
f

b
e

s
t

f
a

v
g

st
d

t a
v

g
(s

)
f

b
e

s
t

f
a

v
g

st
d

t a
v

g
(s

)
F

1∗
13
28
3

13
28
3

0
51

.1
02

13
28
3

13
28
3

0
9.

47
7

13
28
3

13
28
3

0
0.

09
8

13
28
3

13
28
3

0
3.

09
4

13
28
3

13
28
3

0
4.

08
2

F
2∗

12
47
9

12
47
9

0
24

.0
32

12
47
9

12
47
9

0
24

.4
14

12
47
9

12
40

3.
15

98
.9

71
01

.1
22

12
47
9

12
33

5.
13

98
.7

8
10

3.
75

71
24
79

12
47
9

0
42

.9
92

F
3

13
40

2
13

26
0.

16
38

.9
8

25
3.

69
31

35
21

13
49

8.
22

26
.1

0
25

8.
21

31
35
21

13
52
1

0
0.

49
0

13
52
1

13
52
1

0
71

.9
84

13
52
1

13
52
1

0
6.

98
8

F
4

14
21
5

14
02

6.
18

15
1.

55
24

1.
93

21
42
15

14
21

5
0

83
.1

29
14
21
5

14
17

7.
38

70
.8

47
2.

04
1

14
21
5

14
03

1.
28

13
1.

46
18

0.
80

91
42
15

14
20

9.
87

29
.1

71
07

.4
07

F
5

10
57

2
10

46
6.

45
61

.9
4

31
5.

24
01

13
85

11
16

7.
77

12
9.

98
17

4.
33

51
15
63

11
56
3

0
38

.3
55

11
56
3

11
56

2.
02

3.
94

18
1.

24
81

15
63

11
56
3

0
28

.8
41

F
6

12
24

5
12

01
9.

28
85

.7
6

22
6.

81
81

24
02

12
24

8.
42

22
.1

2
31

6.
76

71
26
07

12
60

7
0

24
.9

67
12
60
7

12
36

4.
55

83
.0

3
24

0.
33

31
26
07

12
53

6.
02

87
.5

12
35

.4
50

F
7

11
02

1
10

60
8.

91
13

8.
07

29
3.

56
01

14
84

11
32

5.
88

38
.6

5
22

9.
37

01
14
84

11
48
4

0
10

.8
70

11
48
4

11
48
4

0
31

.8
01

11
48
4

11
48
4

0
0.

29
6

F
8

96
49

95
03

.6
5

94
.6

9
27

0.
81

31
07

10
10

29
3.

96
17

3.
85

24
1.

06
81

12
09

11
20
9

0
16

.4
78

11
20
9

11
15

7.
26

87
.2

9
14

1.
52

51
12
09

11
20
9

0
72

.0
20

F
9

10
92

7
10

62
8.

31
70

.3
1

48
6.

21
01

17
22

11
67

5.
51

55
.5

3
22

6.
60

41
17
71

11
74

6.
19

57
.9

82
93

.5
14

11
77
1

11
72

9.
76

6.
59

34
9.

54
51

17
71

11
75

5.
47

19
.7

42
06

.1
99

F
10

93
06

90
14

.0
1

64
.0

6
48

2.
74

01
01

94
97

03
.5

6
11

4.
85

23
83

.0
21

10
19

4
10

16
3.

76
82

.1
19

2.
12

1
10
23
8

10
13

3.
94

94
.7

2
36

9.
37

51
02
38

10
20

2.
90

16
.2

52
93

.1
40

S
1∗

14
04
4

14
04

0.
87

11
.5

1
16

9.
84

81
40
44

14
04
4

0
1.

37
4

14
04
4

14
04
4

0
0.

51
8

14
04
4

14
04
4

0
38

.2
45

14
04
4

14
04
4

0
0.

02
3

S
2∗

13
50
8

13
50
8

0
6.

79
5

13
50
8

13
50
8

0
1.

57
2

13
50
8

13
50
8

0
2.

92
3

13
50
8

13
45

1.
50

12
6.

49
70

.5
87

13
50
8

13
50
8

0
33

.4
03

S
3

12
35

0
11

95
3.

11
97

.5
7

18
3.

13
01

25
22

12
48

0.
62

65
.0

5
20

7.
66

71
25
22

12
52
2

0
0.

81
25

12
52
2

12
52
2

0
54

.7
80

12
52
2

12
52
2

0
48

.2
06

S
4

11
92

9
11

69
5.

21
78

.3
3

14
7.

93
01

23
17

12
21

7.
81

93
.3

61
22

9.
82

41
23
17

12
31
7

0
0.

95
0

12
31
7

12
28

0.
07

57
.7

7
23

8.
34

81
23
17

12
31
7

0
72

.4
95

S
5

12
30

4
12

20
2.

80
67

.8
1

20
2.

51
51

27
36

12
67

6.
78

35
.2

0
24

1.
77

41
28
17

12
80

6.
44

15
.3

92
9.

07
4

12
81
7

12
81
7

0
66

.4
03

12
81
7

12
81
7

0
74

.2
47

S
6

10
85

7
10

38
3.

64
75

.7
9

11
3.

38
01

14
25

11
26

0.
25

10
3.

95
15

2.
32

91
15
85

11
58

5
0

5.
98

5
11
58
5

11
51

2.
18

73
.1

5
22

0.
10

01
15
85

11
58

4.
17

8.
26

14
1.

46
4

S
7

10
86

9
10

59
1.

65
10

5.
83

29
8.

97
01

15
69

11
30

1.
56

74
.8

8
32

2.
14

31
16
65

11
48

4.
20

72
.9

54
5.

02
5

11
66
5

11
66
5

0
18

.7
33

11
66
5

11
66
5

0
64

.1
26

S
8

10
04

8
96

02
.1

3
14

2.
77

38
6.

55
51

09
27

10
72

1.
45

22
1.

38
77

.0
37

11
32
5

11
32
5

0
5.

90
2

11
32
5

11
32
5

0
76

.0
00

11
32
5

11
32
5

0
17

.5
91

S
9

10
75

5
10

52
2.

56
70

.1
7

19
4.

49
01

09
43

10
87

1.
22

39
.9

3
41

.3
83

11
10

9
11

02
6.

24
51

.6
23

40
.9

58
11
24
9

11
24

3.
40

27
.4

3
13

4.
18

61
12
49

11
24

8.
96

0.
40

14
6.

04
0

S
10

96
01

93
34

.5
2

40
.5

9
13

5.
13

01
02

14
10

06
9.

33
10

3.
33

10
1.

92
61

03
81

10
21

3.
25

71
.3

02
20

.3
28

10
38
1

10
29

3.
89

85
.5

3
23

7.
89

41
03
81

10
36

2.
63

52
.2

51
56

.3
31

T
1∗

12
04
5

11
99

5.
12

53
.1

5
20

6.
57

01
20
45

12
04
5

0
17

.1
99

12
04
5

12
04
5

0
0.

05
6

12
04
5

12
04
5

0
2.

79
8

12
04
5

12
04
5

0
0.

07
5

T
2∗

12
36
9

12
36
9

0
0.

53
1

12
36
9

12
36
9

0
0.

34
2

12
36
9

12
36
9

0
0.

08
8

12
36
9

12
31

5.
53

62
.6

0
17

.4
70

12
36
9

12
36
9

0
10

.1
75

T
3

13
64

7
13

17
9.

14
10

0.
78

20
2.

56
01

36
96

13
66

7.
63

26
.5

6
24

4.
20

51
36
96

13
69
6

0
0.

48
9

13
69
6

13
69

5.
60

3.
68

12
4.

13
61

36
96

13
69
6

0
5.

85
1

T
4

10
92

6
10

74
9.

46
97

.2
4

25
9.

05
01

12
98

11
29
8

0
38

.4
39

11
29
8

11
29
8

0
0.

48
6

11
29
8

11
27

6.
17

83
.7

8
13

9.
86

51
12
98

11
29
8

0
6.

37
3

T
5

11
37

4
11

14
3.

69
76

.9
0

42
6.

68
01

15
68

11
56

3.
80

10
.4

1
20

3.
87

41
15
68

11
56
8

0
13

.6
30

11
56
8

11
56
8

0
25

.1
28

11
56
8

11
56
8

0
30

.6
18

T
6

10
82

2
10

39
6.

60
12

8.
63

19
2.

57
51

17
14

11
43

6.
93

10
1.

85
46

3.
46

61
18
02

11
80

2
0

2.
13

5
11
80
2

11
79

0.
43

27
.5

1
20

6.
42

21
18
02

11
79

9.
27

9.
95

16
8.

90
4

T
7

10
11

0
99

26
.1

8
87

.4
3

20
3.

87
01

04
83

10
28

7.
36

80
.6

1
53

.4
59

10
60
0

10
55

2.
73

74
.6

81
00

.1
55

10
60
0

10
53

6.
53

56
.0

8
23

4.
47

51
06
00

10
60

0
0

73
.0

87
T

8
96

59
94

44
.3

4
46

.4
0

17
7.

91
01

03
02

10
18

4.
09

13
8.

00
23

0.
07

71
05
06

10
47

2.
40

67
.2

01
68

.8
70

10
50
6

10
50

2.
64

23
.5

2
12

9.
50

51
05
06

10
50

6
0

58
.2

40
T

9
10

83
5

10
78

9.
57

27
.2

9
29

9.
26

01
10

36
10

88
3.

19
48

.5
8

66
.0

29
11
32
1

11
14

2.
27

62
.5

12
23

.3
87

11
32
1

11
30

6.
47

36
.0

0
20

7.
11

81
13
21

11
31

8.
81

10
.9

51
21

.4
94

T
10

93
80

92
58

.8
2

58
.7

2
49

.1
70

10
10

4
96

65
.7

0
14

2.
57

49
.4

38
10
22
0

10
20

8.
96

3.
26

14
3.

99
91

02
20

10
17

9.
45

46
.9

7
23

8.
63

01
02
20

10
21

9.
76

1.
68

11
8.

56
4

#
Av

g
11

48
4.

37
11

27
9.

18
69

.0
8

21
6.

76
91

18
73

.8
31

17
48

.0
76

1.
56

15
6.

33
21

19
67

.4
71

19
38

.1
02

4.
29

65
.1

94
11
97
3.
60

11
93

2.
39

40
.5

4
13

8.
47

61
19
73
.6
0

11
96

8.
56

7.
87

78
.1

6

75

Part II, Chapter 3 – Kernel based tabu search for the set-union knapsack problem
Table

3.3
–
C
om

putationalresults
and

com
parison

ofthe
K
BT

S
algorithm

w
ith

the
reference

algorithm
s
on

the
SU

K
P

instances
ofSet

II.

Instance
B

A
B

C
D

H
Jaya

H
B

P
SO

/T
S

I2P
LS

K
B

T
S

f
b
e

s
t

f
a

v
g

std
t
a

v
g (s)

f
b
e

s
t

f
a

v
g

std
t
a

v
g (s)

f
b
e

s
t

f
a

v
g

std
t
a

v
g (s)

f
b
e

s
t

f
a

v
g

std
t
a

v
g (s)

f
b
e

s
t

f
a

v
g

std
t
a

v
g (s)

F
11

9098
9026.0534.87

498.5919640
9449.97

60.22
690.4899741

9724.60
7.68

576.2609750
9734.74

13.39
479.3569914

9914
0

209.679
F

12
8736

8540.4620.51
172.4759187

8998.45
79.17

881.2959357
9174.16

143.19413.1579357
9324.62

16.67
457.8079357

9354.52
9.18

263.684
F

13
9311

9176.2846.93
363.3819790

9602
55.96

543.2369881
9792.23

51.06
881.9999881

9819.24
38.74

363.9459881
9844.96

11.88455.713
F

14
8671

8397.3687.65
302.6249106

8894.09
140.48426.0889135

8940.65
109.78689.7599163

9135.27
4.90

671.1329163
9138.36

9.10
524.799

F
15

9275
9192.3620.27

253.2689771
9540.08

47.95
637.3319837

9736.89
46.11

777.7559822
9678.89

80.67
719.9869837

9808.86
20.42483.384

F
16

8447
8366.5071.97

254.2938797
8649

63.01
236.7988907

8872.84
84.36

418.0338907
8780.32

43.34
674.2319024

8955.29
49.07474.643

F
17

8953
8837.18103.15471.4289455

9249.53
109.14687.1509611

9560.93
89.43

514.9229611
9537.61

61.42
511.2459725

9616.70
24.85609.811

F
18

8072
7881.1788.49

228.3888418
8244.47

87.93
316.6048481

8208.22
108.56332.1028481

8426.36
44.76

541.6708620
8526.55

48.37274.653
F

19
9276

9254.1927.89
640.5299424

9306.86
45.01

309.8739668
9278.50

125.80620.4369580
9221.23

103.18329.7439668
9496.63

74.35487.925
F

20
8133

8099.1025.37
648.2158433

8280.52
90.87

312.5898448
8129.08

92.71
564.8488448

8268.18
135.55541.6068453

8448.05
0.50

941.565
S

11
10207

9939.3847.52
66.660

10507
10504.2519.67

321.19610518
10517.891.09

60.254
10524

10520.702.99
513.53710524

10521.72
2.91

404.697
S

12
8621

8361.77101.30455.4818910
8785.64

43.46
571.9659024

8902.33
27.27

214.2619062
9022.97

46.28
456.3869062

9061.16
4.78

255.342
S

13
9078

9056.5221.89
224.3709512

9409.01
28.70

809.8369786
9679.56

72.51
215.9109786

9742.73
40.87

383.7009786
9786

0
97.316

S
14

8614
8290.2277.62

126.8189121
8985.51

65.90
507.6569177

9003.15
138.46659.1949229

9155.79
18.61

445.1949229
9187.55

20.70486.304
S

15
9517

9305.4056.76
418.4769890

9656.38
51.42

567.0909932
9823.17

113.20607.5069932
9685.79

72.06
868.2279932

9930.56
14.33214.286

S
16

8444
8163.77132.71376.6958961

8774.18
59.78

161.6888907
8732.94

160.07590.8838961
8909.50

10.91
27.170

9101
8936.12

39.55321.859
S

17
9290

9272.9914.56
460.0269526

9462.86
37.83

670.9909745
9639.60

51.13
598.5209745

9660.12
36.68

341.1109745
9729.51

30.06368.807
S

18
8118

8114.489.20
150.9848718

8492.88
62.31

702.6558916
8617.20

210.54665.7988916
8916

0
116.6948990

8918.96
14.50672.574

S
19

9030
8891.3439.01

657.9729348
9250.80

53.65
542.1879509

9273.64
82.57

802.6529544
9255.73

142.33876.6699544
9431.47

60.84510.660
S

20
7867

7627.8044.88
635.0038330

8037.92
71.87

932.6148134
7872.84

95.76
97.909

8379
8206.49

68.52
632.3348474

8376.20
27.12500.435

T
11

9768
9677.8081.90

535.87410300
10161.4572.81

98.186
10393

10191.01102.35729.42210393
10366.1529.83

499.31110393
10393

0
89.785

T
12

8689
8623.7928.52

461.8509031
8944.22

61.72
616.6319256

9256
0

103.6379256
9256

0
264.8769256

9256
0

84.359
T

13
9796

9627.4073.18
248.73310070

9953.55
49.02

430.18010121
9909

30.82
123.01210121

9979.70
86.13

540.28910121
10114.96

31.87230.918
T

14
8453

8424.874.83
958.7489102

8860.79
106.42159.9769176

8936.47
135.64645.1539176

9139.18
52.80

461.0519176
9176

0
140.151

T
15

8765
8658.4554.33

869.0319123
8885.09

54.14
316.4949384

9163.90
70.91

339.4159384
9236.10

95.56
576.7389384

9384
0

136.173
T

16
8249

8021.86117.07577.0378556
8482.33

51.45
604.6258572

8322.17
57.53

665.5148663
8558.51

79.51
586.0478746

8643.93
47.92467.334

T
17

8938
8897.5830.23

587.2009137
9079.09

46.70
590.3769232

9121.24
48.92

455.1049232
9106.31

62.28
452.3609318

9236.16
21.32281.632

T
18

7610
7518.0450.51

869.7298217
7881.44

65.84
140.9358277

7900.57
131.65296.0618425

8268
104.34484.8598425

8311.68
46.80625.829

T
19

8914
8741.25101.76739.8619067

8994.48
44.99

313.0949113
8938.38

66.64
967.3159047

8917.48
126.3789.760

9193
9105.84

74.76319.356
T

20
8071

8066.5315.17
486.5228453

8425.27
48.74

503.9768172
7958.24

121.56350.6408528
8233.05

119.98283.9018528
8488.13

33.47450.711
#

Avg
8800.378668.4054.33

458.0099196.679041.40
62.54

482.0969280.339105.91
85.91

499.2489310.109202.09
57.96

473.0319352.30
9303.10

23.95379.479

76

3.3. Computational results and comparisons

the five competing algorithms on the two sets of instances in terms of the best objective
values, the average objective values and the standard deviations. The X-axis in each sub-
figure indicates the 30 instances of each set and the Y-axis gives the fbest, favg and std

values of the compared algorithms. The plots of Fig. 3.2 clearly indicate the dominance
of our KBTS algorithm over the reference algorithms and its particular advantage on the
set of large instances.

Finally, Table 3.4 summarizes the comparative results between the KBTS algorithm
and each reference algorithm. This table focuses on the fbest and favg indicators and
shows the number of instances achieved by KBTS to obtain a better, an equal or a worse
result (#Wins, #Ties and #Losses) compared to each reference algorithm. To verify
the statistical significance of the comparisons of KBTS against the reference algorithms,
the p-values from the non-parametric Wilcoxon signed-rank test are shown in the last
column. And a p-value less than 0.05 implies a significant difference between KBTS and
its competitor, while ‘NA’ means that the two sets of compared results are exactly the
same. This summarized comparison clearly confirms the high performance of our KBTS
algorithm. Indeed, for a majority of the tested instances, KBTS always reports better or
equal results in terms of fbest and favg. Such a performance was never attained by any
reference algorithm.

Table 3.4 – Summarized comparisons of the KBTS algorithm against each reference algo-
rithm with the p-values of the Wilcoxon signed-rank test over the two sets of benchmark
instances.

Algorithm pair Instance set Indicator #Wins #Ties #Losses p-value
KBTS vs. BABC Set I (30) fbest 23 7 0 2.70e-5

favg 26 4 0 8.30e-6
Set II (30) fbest 30 0 0 1.73e-6

favg 30 0 0 1.73e-6
KBTS vs. DHJaya Set I (30) fbest 16 14 0 4.38e-4

favg 22 7 1 3.53e-5
Set II (30) fbest 30 0 0 1.73e-6

favg 30 0 0 1.73e-6
KBTS vs. HBPSO/TS Set I (30) fbest 2 28 0 1.80e-1

favg 12 15 3 7.60e-3
Set II (30) fbest 18 12 0 8.85e-5

favg 29 1 0 2.56e-6
KBTS vs. I2PLS Set I (30) fbest 0 30 0 NA

favg 20 10 0 1.51e-3
Set II (30) fbest 13 17 0 1.32e-4

favg 29 1 0 2.56e-6

77

Part II, Chapter 3 – Kernel based tabu search for the set-union knapsack problem

3.4 Analysis

In this section, we present an analysis of the parameters used in the proposed algorithm
and the kernel based components.

3.4.1 Analysis of parameters

The proposed KBTS algorithm requires three parameters: kernel coefficient ε, local
search depth γmax and direct perturbation strength δ. We first carry out a factorial ex-
periment [Mon17] to gain insights into the effect of parameters on the algorithm per-
formance and then perform a one-at-a-time sensitivity analysis [Ham94] to calibrate
the parameters. For these experiments, we select eight representative instances from
Set II: 785_800_0.15_0.85, 800_785_0.15_0.85, 800_800_0.15_0.85, 885_900_0.15_0.85,
900_885_0.15_0.85, 985_1000 _0.10_0.75, 1000_985_0.10_0.75 and 1000_1000_0.10_0.75.
These instances are difficult since the results reported by different algorithms (see Table
3.3) show large standard deviations.

Table 3.5 – Parameter levels for the 2-level full factorial experiment.

Low level High level
kernel coefficient ε 0.3 0.6
local search depth γmax 3 6
direct perturbation strength δ 3 6

Figure 3.3 – Effects of the three parameters on the performance of the KBTS algorithm.

We employ a 2-level full factorial experiment to observe the interaction effects between
the parameters. The levels of the three parameters are shown in Table 3.5. For this ex-

78

3.4. Analysis

periment, each instance was independently solved 20 times with different combinations
of parameters. Then we consider the average value of the best objective values (fbest)
obtained on the eight instances for each parameter combination. We verify the normal-
ity of data distributions and the variance homogeneity. We show the main effects of the
parameters in Fig. 3.3 and the analysis of the variances in Table 3.6.

Table 3.6 – p-values for the analysis of variances with the significance level 0.05.

Source of variation ε γmax δ ε * γmax ε * δ γmax * δ ε * γmax * δ
p-value 3.70e-2 1.80e-2 1.25e-1 3.90e-1 1.47e-1 1.92e-1 8.41e-1

From Fig. 3.3, we can observe that the effects of the parameter kernel coefficient and
local search depth are positive, while the effect of direct perturbation strength is negative.
The p-values (< 0.05) in columns 2-3 of Table 3.6 indicate that the performance of the
algorithm is sensitive to the setting of kernel coefficient and local search depth. Moreover,
it makes sense to check the interaction effects between the parameters. From Table 3.6,
we can observe that the p-values of the last four columns are all greater than 0.05, which
indicates that the interaction effects among the parameters are not statistically significant.

9000

9010

9020

9030

9040

9050

1 2 3 4 5 6 7 8 9 10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
g

e
 o

f
b

e
s
t

o
b

je
c
ti
ve

 v
a

lu
e

Setting of parameter

Kernel cofficient
Local search depth
Direct perturbation strength

γmax =3, δ =3 ε =0.6

Figure 3.4 – Average of the best objective values (fbest) corresponding to different param-
eter settings obtained by the one-at-a-time sensitivity analysis.

Now we perform a one-at-a-time sensitivity analysis to determine a suitable value for
each parameter. Based on a reasonable range of parameter values: ε ∈ {0.1, 0.2, ..., 1},
γmax ∈ {1, 2, ..., 10} and δ ∈ {1, 2, ..., 10}, we test the values of each parameter indepen-
dently while keeping the other parameters fixed to the values of Table 3.1. For this, we

79

Part II, Chapter 3 – Kernel based tabu search for the set-union knapsack problem

run the algorithm with each parameter setting 30 times to solve each instance. Fig. 3.4
shows the average of the best objective values (fbest) attained by KBTS with different
parameter settings. The X-axis indicates the ranges of the three parameters, i.e., 1 to
10 for γmax and δ, 0.1 to 1 for ε. From Fig. 3.4, we observe that KBTS reaches its best
performance with ε = 0.6, γmax = 3 and δ = 3. These values are thus used to define the
default parameter setting shown in Table 3.1 of Section 3.3.1.

3.4.2 Impact of kernel search and non-kernel search

The proposed KBTS algorithm relies on the notion of kernel and the associated kernel
search and non-kernel search procedures. To assess the usefulness of these components,
we create a KBTS variant (denoted by KBTS−) by disabling the kernel search procedure
(i.e., removing line 11 in Alg. 1) and replacing the non-kernel search procedure with a
random strategy (i.e., we generate randomly a feasible solution S of line 23 in Alg. 1). We
run KBTS and KBTS− 30 times according to the experimental protocol given in Section
3.3.1 to solve each instance of Set II and report the results in Table 3.7. In this table,
we show the fbest, favg and std values. The row #Avg indicates the average value of each
column and the row #Best shows the number of instances for which an algorithm achieves
the best results between the two set of results.

The results show that compared to KBTS, the KBTS− variant obtains worse fbest
values for 7 instances, and worse favg values for 5 instances, leading to worse #Avg values
of these performance indicators. Table 3.7 also indicates that KBTS− deteriorates the
results of KBTS for the most difficult instances (with 785 to 1000 items and elements),
which reveals that the kernel search procedure is particularly useful for solving difficult
instances. Furthermore, the Wilcoxon signed-rank tests in terms of fbest (p-value < 0.05)
confirm that the performance differences between KBTS and KBTS− are statistically
significant.

3.4.3 Distribution of high-quality solutions and rationale of ker-
nel search

To understand why the notion of kernel is pertinent, we present a study on distri-
butions of items in high-quality solutions. This study is based on a selection of four
representative instances: 500_485_0.15_0.85, 500_500_0.15_0.85, 1000_1000_0.10_0.75,
1000_1000_0.15_0.85. For each instance, we run KBTS 30 times to obtain 30 high-quality

80

3.4. Analysis

Table 3.7 – Comparison between KBTS (with the kernel components) and KBTS− (with-
out the kernel components) on the instances of Set II.

Instance/Setting
KBTS KBTS−

fbest favg std fbest favg std

600_585_0.10_0.75 9914 9914 0 9914 9800.70 77.56
600_585_0.15_0.85 9357 9353.47 11.29 9357 9356.40 3.23
700_685_0.10_0.75 9881 9845 12 9881 9851.47 17.36
700_685_0.15_0.85 9163 9137.80 8.40 9163 9138.73 9.52
800_785_0.10_0.75 9837 9810.80 16.56 9829 9806.57 17.10
800_785_0.15_0.85 9024 8944 43.36 9024 8935.07 45.08
900_885_0.10_0.75 9725 9614.80 20.46 9725 9614.80 20.46
900_885_0.15_0.85 8620 8534.57 54.15 8588 8541.73 54.39
1000_985_0.10_0.75 9668 9512.13 74.70 9668 9477.40 56.68
1000_985_0.15_0.85 8448 8448 0 8448 8448 0
600_600_0.10_0.75 10524 10521.60 2.94 10524 10521.60 2.94
600_600_0.15_0.75 9062 9061.07 5.03 9062 9060.73 6.82
700_700_0.10_0.75 9786 9786 0 9786 9786 0
700_700_0.15_0.85 9229 9185.60 19.51 9177 9177 0
800_800_0.10_0.75 9932 9932 0 9932 9932 0
800_800_0.15_0.85 9101 8935.83 40.92 9101 8928.77 39.09
900_900_0.10_0.75 9745 9731.40 29.25 9745 9741.03 16.24
900_900_0.15_0.85 8990 8920.93 18.46 8916 8916 0
1000_1000_0.10_0.75 9544 9424 55.68 9544 9424.37 51.06
1000_1000_0.15_0.85 8474 8379.33 24.19 8438 8374.33 20.79
585_600_0.10_0.75 10393 10393 0 10393 10393 0
585_600_0.15_0.85 9256 9256 0 9256 9256 0
685_700_0.10_0.75 10121 10112.80 35.87 10121 10121 0
685_700_0.15_0.85 9176 9176 0 9176 9176 0
785_800_0.10_0.75 9384 9384 0 9384 9384 0
785_800_0.15_0.85 8746 8650.43 48.04 8663 8645.60 27.77
885_900_0.10_0.75 9318 9239.47 26.88 9318 9233.57 17.29
885_900_0.15_0.85 8425 8312.43 47.17 8425 8319.97 46.16
985_1000_0.10_0.75 9193 9086.07 77.58 9186 9083.90 69.38
985_1000_0.15_0.85 8528 8497.93 33.15 8528 8484.83 36.00
#Avg 9352.13 9303.35 23.52 9342.40 9297.69 21.16
#Best 30 22 - 23 17 -
p-value - - - 1.80e-2 2.31e-1 -

81

Part II, Chapter 3 – Kernel based tabu search for the set-union knapsack problem

solutions and then extract frequency statistics of selected items in these solutions, as
shown in Fig. 3.5. The X-axis in each sub-figure indicates the number of selected items
and the Y-axis refers to the frequency that one item appears in these solutions. We also
present the number of items corresponding to each frequency on the right side of the
Y-axis and the bottom value in this column corresponds to the number of items with a
frequency of 0. Since this bottom value is much larger than the other values corresponding
to the frequencies in the range {1, ..., 30}, we don’t draw its corresponding plot for the
convenience of observation.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

F
re

q
u
e
n
c
y
 o

f
it
e
m

s
 i
n
 3

0
 r

u
n
s

sukp_500_485_0.15_0.85

447
0
0
12
0
0
15
0
0
3
0
0
0
0
0
0
0
0
0
0
0
11
0
0
7
0
0
3
0
0
2

0 5 10 15 20 25 30

0

5

10

15

20

25

30

F
re

q
u
e
n
c
y
 o

f
it
e
m

s
 i
n
 3

0
 r

u
n
s

sukp_500_500_0.15_0.85

454
0
0
16
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
12
0
0
3
0
0
10

0 5 10 15 20 25 30

0

5

10

15

20

25

30

F
re

q
u
e
n
c
y
 o

f
it
e
m

s
 i
n
 3

0
 r

u
n
s

sukp_1000_1000_0.10_0.75

938
22
5
1
4
1
2
3
3
1
0
0
0
0
0
0
0
0
0
0
0
2
4
3
4
0
1
1
2
0
3

0 5 10 15 20 25 30

0

5

10

15

20

25

30

F
re

q
u
e
n
c
y
 o

f
it
e
m

s
 i
n
 3

0
 r

u
n
s

sukp_1000_1000_0.15_0.85

936
29
1
3
8
4
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
12
3
1
0
2
0
0

Figure 3.5 – Distributions of high-quality solutions corresponding to different item fre-
quencies.

From Fig. 3.5, we observe that the frequency of most items being selected in a solution
is polarized, that is, these items are either selected many times or are rarely selected. In
particular, almost 90% of the items in each of these four instances never belong to a high-

82

3.4. Analysis

quality solution. This experiment thus indicates that high-quality solutions often contain
several identical items (which form a kernel), providing a supporting argument for the
usefulness of the kernel based components of the KBTS algorithm.

3.4.4 Time-to-target analysis

To further assess the computational efficiency of the proposed KBTS algorithm with
respect to the reference algorithms (BABC, DHJaya, HBPSO/TS, I2PLS, and KBTS),
we present a time-to-target (TTT) analysis [ARR07; RRV12]. Basically, TTT shows the
computation time required by an algorithm to attain a given target objective value.
This analysis is based on four representative instances of Set II, i.e., 585_600_0.10_0.75,
600_600_0.15_0.85, 800_785_0.15_0.85, 1000_985_0.10_0.75. For each instance, we set the
target value to be a value, which can be reached by all the compared algorithms (10000,
8800, 8700 and 9000, respectively) and record the time (over 100 runs) of each algorithm
to reach a solution with an objective value at least as good as the given target value.
The time-to-target plots are shown in Fig. 3.6, where the time required to achieve the
target value and the corresponding cumulative probability are displayed on the X-axis
and Y-axis, respectively.

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

! #!! $!! %!! &!! '!! (!!)!! *!! +!! #!!!

!
"#
$
%$
&'
&(
)

*&+, (# (%"-,(.%'/, #0 1/2345654788489:8489;5

!"!#

$%&'('

%!)*+

,-).*

/!0*

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

! #!! $!! %!! &!! '!! (!!)!! *!! +!! #!!!

!
"#
$
%$
&'
&(
)

*&+, (# (%"-,(.%'/, #0 1/2347884788489:548965

!"!#

$%&'('

%!)*+

,-).*

/!0*

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

! #!! $!! %!! &!! '!! (!!)!! *!! +!! #!!!

!
"#
$
%$
&'
&(
)

*&+, (# (%"-,(.%'/, #0 1/2345664758469:846958

!"!#

$%&'('

%!)*+

,-).*

/!0*

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

! #!! $!! %!! &!! '!! (!!)!! *!! +!! #!!!

!
"#
$
%$
&'
&(
)

*&+, (# (%"-,(.%'/, #0 1/234:6664;58469:646978

!"!#

$%&'('

%!)*+

,-).*

/!0*

Figure 3.6 – Time-to-target plots of the compared algorithms on four SUKP instances.

From Fig. 3.6, we observe that our KBTS algorithm has a very high computational

83

Part II, Chapter 3 – Kernel based tabu search for the set-union knapsack problem

efficiency, surpassing all the reference algorithms according to the cumulative probability.
The lines of KBTS strictly runs above the lines of the reference algorithms, revealing that
our algorithm has always a higher probability to reach the given target value.

3.5 Chapter conclusion

In this chapter, we presented the kernel based tabu search algorithm, which com-
bines for the first time the notion of kernel with the powerful tabu search method. Our
computational study performed on two sets of 60 benchmark instances indicated that
the proposed algorithm dominates the current best SUKP algorithms in the literature in
terms of solution quality, robustness and computation time. This dominance was partic-
ularly evidenced on large and difficult benchmark instances with at least 500 items and
elements. Compared to the existing SUKP algorithms, the proposed algorithm requires
only three parameters, making it more suitable to use in practice. Given that the SUKP
has a number of interesting applications, the proposed algorithm provides a valuable tool
for solving these real world problems. The availability of the source code of our algorithm
and its high computational efficiency certainly facilitates such applications.

In the next chapter, we will carry on studying the SUKP and propose a multistart
solution-based tabu search algorithm for solving the problem.

84

Chapter 4

MULTISTART SOLUTION-BASED TABU

SEARCH FOR THE SET-UNION KNAPSACK

PROBLEM

In this chapter, we investigate for the first time a multistart solution-based tabu search
algorithm for solving the problem. The proposed algorithm, which is parameter-free, com-
bines a solution-based tabu search procedure with a multistart strategy to ensure an effec-
tive examination of candidate solutions. We report computational results on 60 benchmark
instances from the literature, including new best results (improved lower bounds) for 7
large instances. We show additional experiments to shed lights on the roles of the key
composing ingredients of the algorithm. The content of this chapter is based on an article
published in Applied Soft Computing.

85

Part II, Chapter 4 – Multistart solution-based tabu search for the set-union knapsack problem

4.1 Introduction

The tabu search technology [GL97] has been successfully applied to solve many diffi-
cult optimization problems. Although most studies rely on the popular and well-known
attribute-based tabu search (ABTS) as exemplified by the studies of [Lin+19; Lu+18;
PB19; WH20a; Zho+20], recent studies indicated that the solution-based tabu search
(SBTS) [CB96; WZ93] is a highly competitive approach for solving several notoriously
difficult binary optimization problems such as 0/1 multidimensional knapsack [Lai+18a],
multidemand multidimensional knapsack [LHY19], minimum differential dispersion [WWG17],
and maximum min-sum dispersion [Lai+18b] and obnoxious p-median [Cha+21]. Com-
pared to the ABTS method, SBTS has the advantage of avoiding the use of tabu tenure
and simplifying the determination of tabu status. Moreover, the intensification ability
of SBTS tends to be stronger than that of ABTS. In addition, the study reported in
[LHY19] on SBTS and our study (see Section 4.4.3) reveal that SBTS is more suitable
than ABTS for solving a number of binary optimization problems. However, SBTS requires
more resources (to record all the encountered solutions) than ABTS. More information
on the SBTS approach can be found in recent studies such as [Cha+21; LHY19; Lai+18b;
WWG17], while some interesting studies using ABTS are provided in [Lu+18; NY19;
PB19; SA21; Zho+20].

To the best of our knowledge, no study has been reported in the literature investigating
the interest of the SBTS approach for solving the SUKP. In this work, we fill the gap by
introducing the first multistart solution-based tabu search algorithm (MSBTS) for the
SUKP and provide additional indications of the benefits of the SBTS approach for binary
optimization. The main contributions of this work are summarized as follows.

First, the proposed MSBTS algorithm integrates a dedicated solution-based tabu
search approach and a multistart mechanism to ensure an effective and efficient exam-
ination of candidate solutions. During the search, each visited solution is recorded in a
tabu list implemented with the help of a hash function based method such that the tabu
status of a candidate solution can be easily determined in constant time. The multistart
mechanism is employed to escape local optima traps. The algorithm is simple in design
and frees the user from the delicate task of calibrating parameters. Second, we report
new best-known results (improved lower bounds) for 7 large instances, which are useful
for future research on the SUKP. Third, we will make the code of our algorithm publicly
available, which can be used by researchers and practitioners to solve various problems

86

4.2. Multistart solution-based tabu search for the SUKP

that can be formulated by the SUKP model.
The rest of the paper is structured as follows. In Section 4.2, we describe the general

solution approach of the proposed algorithm and its main components. Section 4.3 is de-
voted to the performance assessment and comparisons with state-of-the-art algorithms.
We analyze in Section 4.4 the influences of important components of the algorithm, fol-
lowed by conclusions in the last section.

4.2 Multistart solution-based tabu search for the SUKP

4.2.1 Search space, solution representation, and evaluation func-
tion

Given a SUKP instance composed of m items, n elements, and knapsack capacity C,
the proposed MSBTS algorithm explores the feasible search space ΩF which includes all
feasible candidate solutions corresponding to non-empty subsets of items satisfying the
knapsack constraint, i.e.,

ΩF = {y ∈ {0, 1}m :
∑
j∈Ui

wj ≤ C,Ui = {i : yi = 1}, 1 ≤ i ≤ m, 1 ≤ j ≤ n} (4.1)

Thus, a candidate solution S in ΩF can be expressed by a m-dimensional binary
vector S = (y1, . . . , ym), where yi takes 1 if item i is selected, and 0 otherwise. Let
A = {q : yq = 1 in S} and Ā = {p : yp = 0 in S}, a candidate solution can be equivalently
represented by S =< A, Ā >.

Additionally, the quality of a candidate solution S is determined by the objective
function value f(S) (Equation 1.21) of SUKP. Since SUKP is a maximization problem, a
larger f value indicates a better solution.

4.2.2 Main framework

The MSBTS algorithm follows the flow chart shown in Fig. 4.1 and is described in
Algorithm 11.

The basic idea of the MSBTS algorithm (see Alg. 11) is to repeat a greedy randomized
initialization procedure (Section 4.2.3) followed by a solution-based tabu search procedure

87

Part II, Chapter 4 – Multistart solution-based tabu search for the set-union knapsack problem

Figure 4.1 – Flow chart of the proposed MSBTS algorithm.

(Section 4.2.4). Specifically, after initializing the overall best solution S∗ (line 3), the
algorithm performs a ‘while’ loop (lines 4-10) to execute the main search process. At each
round of this process, MSBTS first runs the greedy randomized procedure to generate a
starting solution S (line 5), which is used as the input solution of the solution-based tabu
search procedure. The solution-based tabu search procedure (line 6) iteratively improves
the input solution S and returns the local best solution Sb encountered. After conditionally
updating the overall best solution S∗, the algorithm moves to the next round of its search
by re-starting the greedy randomized procedure. The main search process is terminated
and returns the overall best solution S∗, when the cut-off time (tmax) is reached.

Algorithm 11 Multistart solution-based tabu search for the SUKP
1: Input: Instance I, cut-off time tmax, neighborhoods N , hash vectors H1, H2, H3, length of hash

vectors L, hash functions h1 , h2 , h3.
2: Output: The best solution found S∗.
3: S∗ ← ∅ /* Initialize the overall best solution S∗ (i.e., f(S∗) = 0)*/
4: while Time ≤ tmax do
5: S ← Greedy_Randomized_Initialization(I)
6: /* Record the best solution Sb found during tabu search */

Sb ← Solution_Based_Tabu_search(S)
7: if f(Sb) > f(S∗) then
8: S∗ ← Sb /* Update the overall best solution S∗ found so far */
9: end if
10: end while
11: return S∗

4.2.3 Greedy randomized initialization

The quality of initial solutions may impact the performance of the algorithm. In this
work, we adopt a greedy randomized initialization procedure to generate initial solutions
of good quality.

Let W (S) be the total weight of the current solution S and Wk be the additional
weight of a non-selected item k, where Wk is defined by Wk = ∑

j∈Uk∧j /∈∪i∈SUi

wj. Then the

88

4.2. Multistart solution-based tabu search for the SUKP

feasible non-selected items can be expressed by R(x) = {k ∈ Ā : Wk +W (S) ≤ C}, where
Ā is the set of non-selected items. Following [CH17], we employ a restricted candidate list
(denoted by RCL) to record rcl feasible non-selected items belonging to R(x), where rcl
is the maximum size of RCL. A too large rcl value will make many items to be recorded in
RCL and thus result in an initial solution of poor quality, while a too small rcl value will
limit the possible choices and lead to insufficient diversity of the initialization procedure.
In our case, we set empirically rcl =

√
max{m,n}, where m and n are the number of

items and elements respectively. Considering the fact that the number of items in R(x)
may be less than rcl, we finally set the size of RCL by |RCL| = min{rcl, |R(x)|}. Now,
we build the restricted candidate list as follows. For each item k of R(x), we calculate its
dynamic profit ratio r∗k = pk/Wk. Then we identify the top |RCL| items with the largest
r∗ values to form RCL. As the result, RCL contains the feasible non-selected items whose
dynamic profit ratio is larger than the other non-selected items. Finally, each item k in
RCL is selected with probability Pk, which is given by Pk = r∗k/

∑|RCL|
l=1 r∗l .

Algorithm 12 Greedy Randomized Initialization
1: Input: Instance I.
2: Output: The initial solution S.
3: /* Get the knapsack capacity C and restricted candidate list length rcl */

(C, rcl)← Read_instance(I)
4: W (S)← 0 /* Initialize the total weight of S */
5: while W (S) ≤ C do
6: Calculate additional weight Wk of each non-selected item k
7: Add all items i with Wi = 0 into current solution S
8: r∗ ← Calculate_dynamic_profit_ratio(W, |RCL|)
9: P ← Calculate_probability(r∗, |RCL|)
10: S ← Add_one_item(P, S)
11: end while
12: return S

As shown in Algorithm 12, starting from an empty solution S, the initialization proce-
dure randomly and adaptively adds feasible items k into S at each iteration of the ‘while’
loop (lines 5-11). Specifically, the initial solution is generated by four steps. First, we
calculate the additional weight Wk of each non-selected item k (line 6), and add all items
k withWk = 0 into the current solution S, which means adding this item will not increase
the total weight of S (lines 7). Second, we calculate the dynamic profit ratio r∗k of each
item k in R(x) with Wk 6= 0 (line 8). Third, we calculate the selection probability Pk of
each item k (line 9). Fourth, we randomly add one item from RCL into S according to
Pk (line 10). These four steps are repeated until the knapsack capacity is reached.

89

Part II, Chapter 4 – Multistart solution-based tabu search for the set-union knapsack problem

Figure 4.2 – An illustrative example of the main steps of the greedy randomized initial-
ization procedure.

As shown in Fig. 4.2, we present a numerical example to illustrate the main steps of
the greedy randomized initialization procedure. Given a set of six items (Ii, i = 1, . . . , 6)
with a profit of 1 to 6 respectively and a set of 6 elements (Ej, j = 1, . . . , 6) with a weight
of 1 to 6 respectively. Let the capacity of knapsack be equal to 16. At the step shown
in the left figure, two items I1 and I2 are already added into the knapsack. We calculate
additional weight Wi of each non-selected item i and find that W3 = 0 (the elements E1

and E5 corresponding to item I3 are already selected). Then we add the item I3 into the
knapsack and obtain the new solution shown in the right figure. Next, we calculate the
dynamic profit ratio of the non-selected items and identify items I4 and I5 as belonging
to RCL (in this case, |RCL| = 2). Finally, we add one of the two items into the knapsack
according to the probability Pk.

4.2.4 Solution-based tabu search

Tabu search (TS) is a general and powerful metaheuristic for combinatorial optimiza-
tion [GL97]. Typically, TS examines candidate solutions by iteratively transitioning from
the current solution to a nearby (neighbor) solution by following a neighborhood. Each
solution transition is performed by selecting the best admissible candidate among the
neighboring solutions within the neighborhood. The key distinguishing feature of TS com-
pared to other local optimization approaches is its tabu list strategy, which prevents the
search from revisiting previously encountered solutions. With the so-called solution-based
tabu search [CB96; WZ93], the tabu list is implemented with hash vectors and associated
hash functions. Contrary to the popular attribute-based tabu search approach which typ-
ically needs some parameters for tabu list management, solution-based tabu search has
the advantage of eliminating such parameters.

90

4.2. Multistart solution-based tabu search for the SUKP

In the context of solving the SUKP, the best-performing algorithms are all based on the
conventional attribute-based TS approach [Lin+19; WH19; WH20a]. This work adopts
for the first time the solution-based tabu search approach for solving the SUKP, which
leads to an effective algorithm while avoiding the difficulty of tuning parameters.

Algorithm 13 shows the general scheme of our solution-based tabu search (SBTS)
procedure. After initializing the best solution found so far (line 3) and the associated
hash vectors (i.e., tabu list, line 4), the SBTS procedure iteratively improves the current
solution S (lines 6-20) until 1) no admissible neighboring solution (i.e., feasible and non-
tabu neighboring solution) exists, or 2) the allowed cut-off time tmax is reached. Given
the optimization function f , the neighborhood structure N (Section 4.2.4) and the tabu
list management strategy (Section 4.2.4), the current solution S is replaced by a best
admissible neighboring solution at each iteration of the SBTS procedure. And then the
tabu list is updated with the newly obtained solution S. The best solution found during
this procedure is recorded in Sb (lines 14-16) and returned as the output of SBTS. Note
that the best admissible neighboring solution S is not necessarily better than Sb, but it
will still be selected to replace the current solution S. In this way, the search can keep
moving forward to discover better solutions without being trapped in local optima.

The SBTS procedure terminates under one of the two following conditions: (1) the
overall cut-off time is reached; (2) no admissible neighboring solution can be found in
the neighborhood, i.e., N ′(S) = ∅ where N ′(S) ⊆ N(S) is the set of the admissible
neighboring solutions not forbidden by the tabu list. Upon the termination of the SBTS
procedure, two cases are considered: the overall cut-off time is reached and then the whole
algorithm terminates. Otherwise, the algorithm re-starts its search by using the greedy
randomized initialization procedure to creating a new starting solution, which is used to
seed the next round of the SBTS procedure.

Next, we present the main ingredients of SBTS, including the move operator, the
neighborhood structure and the tabu list strategy.

Move operator and neighborhood structure

Our SBTS procedure relies on two popular move operators, i.e., the flip opera-
tor and the swap operator to explore candidate solutions. Specifically, given a solution
S = (y1, . . . , ym) as described in Section 4.2.1, the flip(i) operator changes the value of
a variable yi to its opposite value 1 − yi. Similarly, given a solution S =< A, Ā >, the
swap(q, p) operator exchanges one item in A against one item in Ā, where q and p rep-

91

Part II, Chapter 4 – Multistart solution-based tabu search for the set-union knapsack problem

Algorithm 13 Solution-based tabu search
1: Input: Input solution S, neighborhood N , hash vectors H1, H2, H3, hash functions h1, h2, h3, cut-off

time tmax, length of hash vectors L.
2: Output: Best solution Sb found during tabu search.
3: Sb ← S /* Record the best solution Sb found during tabu search */
4: (H1, H2, H3)← Initialize_Hash_V ectors(H1, H2, H3, L) /* (i.e., tabu list) */
5: Find← True /* Track the admissible neighboring solution */
6: while Find ∧ Time ≤ tmax do
7: Find admissible neighboring solutions N ′(S) in N(S)
8: if N ′(S) 6= ∅ then
9: /* Attain the best admissible neighboring solution S */

S ← argmax{f(S′) : S′ ∈ N ′(S)}
10: Find← True
11: else
12: Find← False
13: end if
14: if f(S) > f(Sb) then
15: f(Sb)← f(S) /* Update the best solution Sb found during tabu search */
16: end if

/* Update the hash vectors with S */
17: H1[h1(S)]← 1
18: H2[h2(S)]← 1
19: H3[h3(S)]← 1
20: end while
21: return Sb

resent items in sets A and Ā respectively. Meanwhile, a neighborhood filtering strategy
[WH19; WH20a] is applied in both move operators to reduce the neighborhood size. So
the neighborhoods Nf (S) and Ns(S) induced by flip(i) and swap(q, p) are defined as
follows, respectively.

Nf (S) = {S ′ : S ′ = S ⊕ flip(i) : 1 ≤ i ≤ m, f(S ′) > f(Sb)} (4.2)

Ns(S) = {S ′ : S ′ = S ⊕ swap(q, p) : q ∈ A, p ∈ Ā, f(S ′) > f(Sb)} (4.3)

In this work, we employ a union neighborhood that covers both neighborhoods Nf (S)
and Ns(S), i.e., N(S) = Nf (S) ∪ Ns(S). Moreover, we also apply a streamlining gain
updating strategy to quickly evaluate the weight of each neighboring solution (see [Lin+19;
WH20a] for more details).

92

4.2. Multistart solution-based tabu search for the SUKP

Tabu list management strategy using hash functions

During the SBTS procedure, the current solution S is iteratively replaced by the best
admissible neighboring solution S ′, which is identified according to the objective function
value and the tabu list strategy described in this section. Unlike the traditional attribute-
based tabu search, where the tabu list records the performed moves, our solution-based
tabu search uses hash vectors and hash functions to implement the tabu list.

Following previous studies [Lai+18a; LHY19; Lai+18b; WWG17], our tabu list man-
agement strategy relies multiple hash vectors and hash functions, which helps significantly
reduce the probability of wrong identification of the tabu status. Specifically, we adopt
three hash vectors Hv (v = 1, 2, 3) of length L, where each position takes a binary value
which contributes to the definition of the tabu status of candidate solutions. The hash
vectors are initialized to 0, indicating that no candidate solution is classified as tabu.
Once a candidate solution is selected to replace the current solution S, the corresponding
positions in the three hash vectors will be set to 1 (i.e., Hv[hv(S)]← 1, v = 1, 2, 3).

Given a candidate solution S = (y1, . . . , ym) where yi = 1 if item i is selected, and
yi = 0 otherwise, the hash values hv(S) (v = 1, 2, 3) are calculated by

hv(S) = (
m∑
i=1
bWv

i × yic) mod L (4.4)

where L is the length of the hash vectors and is set to 108. AndWv
i is a pre-computed

weight that satisfies the following relation: Wv
i = iγv (v = 1, 2, 3 and i = 1, . . . ,m), where

γv is a parameter that takes different values for the three hash functions (γv = 1.2, 1.6, 2.0).
To reduce the possible collisions that occur with hash functions, we randomly shuffle the
order in the pre-computed weight vector Wv in order to ensure an extended distribution
of hash values of the solutions. Fig. 4.3 shows an illustrative example of this shuffling
operation with five items and γv being set to 1.2, 1.6, 2.0, respectively. The left figure
indicates the pre-computed weights Wv

i (v = 1, 2, 3, and i = 1, . . . , 5). Then the order of
each of the three weight vectors Wv is randomly shuffled to obtain a new weight vector
shown in the right figure. Our preliminary experiment indicates that this random shuffling
operation helps to reduce the error rates of the hash functions. We present the rationale
for the setting of γv and an analysis of the hash functions in Section 4.4.1.

93

Part II, Chapter 4 – Multistart solution-based tabu search for the set-union knapsack problem

Figure 4.3 – An illustrative example of the random shuffling operation.

The hash-based tabu list management strategy works as follows. Given a candidate
solution S = (y1, . . . , ym), we first calculate the three hash values hv(S) that are the
indexes of the hash vectors. Then, the tabu status of solution S is determined according
to the values of the hash vectors Hv[hv(S)]. Specifically, S is determined as a forbidden
solution (i.e., already visited) when H1[h1(S)]∧H2[h2(S)]∧H3[h3(S)] = 1. Otherwise, S is
classified as an unforbidden solution that has not been visited by this round of SBTS and
is eligible for solution transition. In this way, we can quickly determine the tabu status
of a neighboring solution in O(1), and this is the main advantage of the hash-based tabu
list management strategy. For the illustrative example shown in Fig. 4.4, solution S is
classified as tabu and thus is excluded for solution transition.

Figure 4.4 – An example of a solution forbidden by the hash functions and the associated
hash vectors.

4.2.5 Computational complexity and discussion

From an empty subset S, the greedy randomized initialization procedure (Section 4.2.3
and Algorithm 12) creates a solution in four steps. The first step calculates additional
weights in O(m × n), where m is the number of items and n is the number of elements.
The second step calculates the dynamic profit ratio and identifies the top items with a
complexity of O(m × log(m)). The third step of calculating probability can be realized

94

4.3. Computational results and comparisons

in O(|RCL|) and the fourth step of adding one item can be achieved in O(1). Then
the time complexity of the initialization procedure is O(m × n × K1), where K1 is the
maximum iterations of the initialization procedure. For the main solution-based tabu
search procedure (Section 4.2.4 and Algorithm 13), we can evaluate its complexity as
follows. Let S =< A, Ā > be a given input solution, the complexity of one iteration of the
SBTS procedure is O((m+ |Ā| × |A|)× n). Let K2 be the maximum iterations of SBTS.
Then the time complexity of SBTS is O((m+ |Ā| × |A|)× n×K2).

Now we discuss the relations between our algorithm and the existing tabu search
algorithms for the SUKP [Lin+19; WH19; WH20a]. First, MSBTS is the first solution-
based tabu search algorithm for the SUKP, while the existing TS algorithms are based
on the conventional attribute-based TS approach. Second, MSBTS employs a new tabu
list management strategy that avoids tuning the tabu tenure. Third, unlike the previous
TS algorithms that uses a perturbation procedure, MSBTS does not need such specific
diversification strategies. Yet, it achieves remarkable results, as it is shown in Section 4.3.

Finally, it is worth mentioning that the solution-based tabu search approach has led to
highly effective algorithms for several NP-hard binary problems such as 0-1 multidimen-
sional knapsack [Lai+18a], multidemand multidimensional knapsack [LHY19], minimum
differential dispersion [WWG17] and maximum min-sum dispersion [Lai+18b] and ob-
noxious p-median [Cha+21]. Our study of using solution-based tabu search for the SUKP
further confirms the usefulness of this approach for binary optimization.

4.3 Computational results and comparisons

This section is devoted to a computational assessment of the proposed MSBTS algo-
rithm, in comparison with three best-performing SUKP algorithms in the literature based
on two sets of 60 benchmark instances available at http://www.info.univ-angers.fr/
pub/hao/SUKP_MSBTS.html.

4.3.1 Benchmark instances

The SUKP benchmark instances adopted in our experiments were commonly tested
in the literature, which can be divided into Set I and Set II. The Set I instances were
proposed in [He+18] with 85 to 500 items and elements, while the Set II instances were
introduced in [WH20a] with 585 to 1000 items and elements. These 60 instances share

95

http://www.info.univ-angers.fr/pub/hao/SUKP_MSBTS.html
http://www.info.univ-angers.fr/pub/hao/SUKP_MSBTS.html

Part II, Chapter 4 – Multistart solution-based tabu search for the set-union knapsack problem

the same characteristics. An instance is defined by m items, n elements and an associated
binary relation matrix Rij[m × n], where Rij = 1 means that item i contains element j.
Each instance is further characterized by two parameters: the density α of Rij = 1 in the
relation matrix R (i.e., α = (∑m

i=1
∑n
j=1Rij)/(mn)) and the ratio β of knapsack capacity

C to the total weight of the elements (i.e., β = C/
∑n
j=1wj). As indicated in [He+18;

WH20a], for the 60 instances tested in this study, α is equal to 0.10 or 0.15, while β is
equal to 0.75 or 0.85.

4.3.2 Experimental settings

The proposed MSBTS algorithm was implemented in C++ and compiled using the
g++ compiler with the -O3 option. All the experiments were carried out on an Intel Xeon
E5-2670 processor (2.5 GHz CPU and 2 GB RAM) running under the Linux operating
system. The MSBTS algorithm used the same stopping conditions for the reference al-
gorithms (see below), i.e., 500 seconds for the Set I instances and 1000 seconds for the
Set II instances. Each instance was solved 100 times independently with different random
seeds. Note that contrary to the existing algorithms, our algorithm eliminates the need
for tuning parameters.

Among the existing algorithms for the SUKP in the literature, we identify four best
performing algorithms according to the reported computational results: hybrid jaya al-
gorithm [WH20b] (DHJaya, 2019), hybrid binary particle swarm optimization with tabu
search algorithm [Lin+19] (HBPSO/TS, 2019), iterated two-phase local search algorithm
[WH19] (I2PLS, 2019) and the kernel based tabu search algorithm [WH20a] (KBTS,
2020). We thus use them as the reference algorithms for our comparative study. Since the
results of these algorithms were obtained in [WH20a] on the same computing platform
and under the same stopping condition as in this work, we directly adopt these results in
our study.

4.3.3 Computational results

The computational results of our MSBTS algorithm and the reference algorithms on
the SUKP instances of Set I and Set II are reported in Table 4.1 and 4.2, respectively 1.
The first column of these two tables gives the name of each instance, where the asterisk

1. Our solution certificates are available at: http://www.info.univ-angers.fr/pub/hao/SUKP_
MSBTS.html.

96

http://www.info.univ-angers.fr/pub/hao/SUKP_MSBTS.html.
http://www.info.univ-angers.fr/pub/hao/SUKP_MSBTS.html.

4.3. Computational results and comparisons

(*) denotes that the optimal value proved by CPLEX [WH19]. The remaining columns
report the following information: the best objective value (fbest), the average objective
value (favg), the standard deviations over 100 runs (std) and the average run times tavg
(to obtain the fbest value) of each involved algorithm. The row #Avg shows the average
value of each column. Furthermore, the bold entries highlight the dominating values
among the compared results, while the italic entries indicate the equal best values.

Comparing the results of Table 4.1 leads to the following comments. First, in terms of
the best performance indicator, MSBTS can attain all the best-known fbest results on all
the 30 instances of Set I, thus dominating DHJaya and matching the performance of the
best algorithms I2PLS and KBTS. Second, in terms of the average performance indica-
tor, our MSBTS algorithm dominates DHJaya and competes favorably with HBPSO/TS
and I2PLS, while performing marginally worse than KBTS even if MSBTS has better
favg results on five large instances with 485 to 500 items and elements. It is difficult to
further compare the competing algorithms on Set I, since the p-values in Table 4.3 from
the non-parametric Wilcoxon signed-rank test don’t show a statistical difference at 0.05
significance level between MSBTS and the reference algorithms except DHJaya. So we
focus on Set II for a more detailed comparison.

Table 4.2 on the 30 instances of Set II discloses that our MSBTS algorithm outperforms
the reference algorithms on large size instances. Specifically, MSBTS matches the best-
known fbest values for the remaining 23 instances, and remarkably, finds 7 new best-
known results (improved lower bounds). Most of these 7 instances have 985 to 1000 items,
which demonstrates the advantage of our algorithm on the most difficult instances. When
considering the average performance, MSBTS remains highly competitive compared to the
reference algorithms. On the other hand, MSBTS has a zero std value on 20 instances while
the reference algorithms achieve less zero std values (0 for DHJaya, 1 for HBPSO/TS, 2
for I2PLS and 6 for KBTS), which shows the robustness of our algorithm. Moreover, the
smallest #Avg value of the corresponding tavg entries obtained by MSBTS demonstrates
that our algorithm is more computational efficient than the reference algorithms on this
set of SUKP instances. We show a detailed time-efficiency comparison of our MSBTS
algorithm with the reference algorithms in Section 4.3.4.

In order to better highlight the advantage of the proposed MSBTS algorithm, we
summarize the comparative results between MSBTS and each reference algorithm in Table
4.3. The first two columns of the table give the pairs of two compared algorithms and the
corresponding instance sets, respectively. Columns #Wins, #Ties and #Losses show the

97

Part II, Chapter 4 – Multistart solution-based tabu search for the set-union knapsack problem

number of instances for which MSBTS obtains a better, equal and worse result according
to the fbest and favg indicators. The last column indicates the p-values from the Wilcoxon
signed-rank test, where ‘NA’ implies that two underlying groups of results are exactly
the same. From Table 4.3, we can observe that MSBTS achieves better or equal results
in terms of fbest on all the tested instances, while being better in terms of favg on most
instances. Note that KBTS reports more favg values better than MSBTS for Set I (13
vs 6). However, the Wilcoxon signed-rank test in Table 3 (p-value = 9.10e-2 > 0.05)
indicates that there is no statistically significant difference. Furthermore, as shown in
the last column, the p-values (< 0.05) obtained between MSBTS and each compared
algorithm on the instances of Set II confirm the statistically significant difference of the
compared results.

4.3.4 Time-to-target analysis

We now present a time-to-target analysis (TTT) to evaluate the computational effi-
ciency of the proposed MSBTS algorithm compared to the reference algorithms. For this,
we compare the time required for each algorithm to obtain a solution at least as good
as a given target value and measure the empirical probability distributions. More details
about TTT can be found in [ARR07; RRV12].

Specifically, we run each compared algorithm 100 times to solve each instance of Set
II with the setting shown in Section 4.3.2 and recorded the time to achieve an objective
value at least as good as the given target value (the algorithm stops immediately when it
reaches the target value). Then we sorted the times in increasing order and calculated the
probability ρi = (i− 0.5)/100 with each time Ti, where Ti corresponds to the ith smallest
time.

Table 4.4 shows the experimental results of DHJaya, HBPSO/TS, I2PLS, KBTS and
MSBTS on the instances of Set II. The first two columns give the name of each instance
and the corresponding target value, respectively. The remaining columns report the best
time (Tbest) in seconds to achieve the target value and the average time (Tavg) in seconds to
reach the target value over 100 runs. The row (#Avg) indicates the average value of each
column. And the row #Best shows the number of instances for which an algorithm obtains
the smallest Tbest value among the compared algorithms. Moreover, to check whether there
exists a significant difference between the proposed MSBTS algorithm and the compared
algorithms in terms of Tbest and Tavg, we report the p-values from the Wilcoxon signed-
rank test in the last row.

98

4.3. Computational results and comparisons
Ta

bl
e
4.
1
–
C
om

pu
ta
tio

na
lr
es
ul
ts

of
th
e
M
SB

T
S
al
go
rit

hm
an

d
th
e
re
fe
re
nc
e
al
go
rit

hm
so

n
th
e
30

be
nc
hm

ar
k
in
st
an

ce
s

of
Se
t
I.

In
st

an
ce

D
H

Ja
ya

[W
H

20
b]

H
B

P
SO

/T
S

[L
in

+
19

]
I2

P
LS

[W
H

19
]

K
B

T
S

[W
H

20
a]

M
SB

T
S

f
b
e

s
t

f
a

v
g

st
d

t a
v

g
(s

)
f

b
e

s
t

f
a

v
g

st
d

t a
v

g
(s

)
f

b
e

s
t

f
a

v
g

st
d

t a
v

g
(s

)
f

b
e

s
t

f
a

v
g

st
d

t a
v

g
(s

)
f

b
e

s
t

f
a

v
g

st
d

t a
v

g
(s

)
F

1∗
13
28
3

13
28
3

0
9.

47
7

13
28
3

13
28
3

0
0.

09
8

13
28
3

13
28
3

0
3.

09
4

13
28
3

13
28
3

0
4.

08
2

13
28
3

13
28
3

0
12

.7
70

F
2∗

12
47
9

12
47
9

0
24

.4
14

12
47
9

12
40

3.
15

98
.9

71
01

.1
22

12
47
9

12
33

5.
13

98
.7

8
10

3.
75

71
24
79

12
47
9

0
42

.9
92

12
47
9

12
41

3.
78

79
.7

9
18

4.
32

3
F

3
13
52
1

13
49

8.
22

26
.1

0
25

8.
21

31
35
21

13
52
1

0
0.

49
0

13
52
1

13
52
1

0
71

.9
84

13
52
1

13
52
1

0
6.

98
8

13
52
1

13
52
1

0
22

.5
28

F
4

14
21
5

14
21

5
0

83
.1

29
14
21
5

14
17

7.
38

70
.8

47
2.

04
1

14
21
5

14
03

1.
28

13
1.

46
18

0.
80

91
42
15

14
20

9.
87

29
.1

71
07

.4
07

14
21
5

13
94

6.
15

15
3.

67
25

8.
54

1
F

5
11

38
5

11
16

7.
77

12
9.

98
17

4.
33

51
15
63

11
56
3

0
38

.3
55

11
56
3

11
56

2.
02

3.
94

18
1.

24
81

15
63

11
56
3

0
28

.8
41

11
56
3

11
56
3

0
37

.8
77

F
6

12
40

2
12

24
8.

42
22

.1
2

31
6.

76
71

26
07

12
60

7
0

24
.9

67
12
60
7

12
36

4.
55

83
.0

3
24

0.
33

31
26
07

12
53

6.
02

87
.5

12
35

.4
50

11
56
3

12
43

0.
51

73
.8

6
21

6.
46

5
F

7
11
48
4

11
32

5.
88

38
.6

5
22

9.
37

01
14
84

11
48
4

0
10

.8
70

11
48
4

11
48
4

0
31

.8
01

11
48
4

11
48
4

0
0.

29
6

11
48
4

11
48
4

0
7.

64
3

F
8

10
71

0
10

29
3.

96
17

3.
85

24
1.

06
81

12
09

11
20
9

0
16

.4
78

11
20
9

11
15

7.
26

87
.2

9
14

1.
52

51
12
09

11
20
9

0
72

.0
20

11
20
9

11
20
9

0
46

.8
00

F
9

11
72

2
11

67
5.

51
55

.5
3

22
6.

60
41

17
71

11
74

6.
19

57
.9

82
93

.5
14

11
77
1

11
72

9.
76

6.
59

34
9.

54
51

17
71

11
75

5.
47

19
.7

42
06

.1
99

11
77
1

11
77

1
0

31
.1

71
F

10
10

19
4

97
03

.5
6

11
4.

85
23

83
.0

21
10

19
4

10
16

3.
76

82
.1

19
2.

12
1

10
23
8

10
13

3.
94

94
.7

2
36

9.
37

51
02
38

10
20

2.
90

16
.2

52
93

.1
40

10
23
8

10
20

5.
62

16
.3

3
38

9.
53

6
S1
∗

14
04
4

14
04
4

0
1.

37
4

14
04
4

14
04
4

0
0.

51
8

14
04
4

14
04
4

0
38

.2
45

14
04
4

14
04
4

0
0.

02
3

14
04
4

14
04
4

0
6.

63
9

S2
∗

13
50
8

13
50
8

0
1.

57
2

13
50
8

13
50
8

0
2.

92
3

13
50
8

13
45

1.
50

12
6.

49
70

.5
87

13
50
8

13
50
8

0
33

.4
03

13
50
8

13
50
8

0
55

.1
03

S3
12
52
2

12
48

0.
62

65
.0

5
20

7.
66

71
25
22

12
52
2

0
0.

81
25

12
52
2

12
52
2

0
54

.7
80

12
52
2

12
52
2

0
48

.2
06

12
52
2

12
51

8.
28

21
.1

5
70

.4
11

S4
12
31
7

12
21

7.
81

93
.3

61
22

9.
82

41
23
17

12
31
7

0
0.

95
0

12
31
7

12
28

0.
07

57
.7

7
23

8.
34

81
23
17

12
31
7

0
72

.4
95

12
31
7

12
31

6.
21

7.
86

92
.1

55
S5

12
73

6
12

67
6.

78
35

.2
0

24
1.

77
41

28
17

12
80

6.
44

15
.3

92
9.

07
4

12
81
7

12
81
7

0
66

.4
03

12
81
7

12
81
7

0
74

.2
47

12
81
7

12
81

3.
70

9.
90

16
5.

61
8

S6
11

42
5

11
26

0.
25

10
3.

95
15

2.
32

91
15
85

11
58
5

0
5.

98
5

11
58
5

11
51

2.
18

73
.1

5
22

0.
10

01
15
85

11
58

4.
17

8.
26

14
1.

46
41

15
85

11
58
5

0
15

6.
33

3
S7

11
56

9
11

30
1.

56
74

.8
8

32
2.

14
31

16
65

11
48

4.
20

72
.9

54
5.

02
5

11
66
5

11
66
5

0
18

.7
33

11
66
5

11
66
5

0
64

.1
26

11
66
5

11
65

7.
08

10
.5

6
90

.4
23

S8
10

92
7

10
72

1.
45

22
1.

38
77

.0
37

11
32
5

11
32
5

0
5.

90
2

11
32
5

11
32
5

0
76

.0
00

11
32
5

11
32
5

0
17

.5
91

11
32
5

11
30

9.
20

11
2.

46
12

5.
95

0
S9

10
94

3
10

87
1.

22
39

.9
3

41
.3

83
11

10
9

11
02

6.
24

51
.6

23
40

.9
58

11
24
9

11
24

3.
40

27
.4

3
13

4.
18

61
12
49

11
24

8.
96

0.
40

14
6.

04
01

12
49

11
24

9
0

29
.9

05
S1

0
10

21
4

10
06

9.
33

10
3.

33
10

1.
92

61
03
81

10
21

3.
25

71
.3

02
20

.3
28

10
38
1

10
29

3.
89

85
.5

3
23

7.
89

41
03
81

10
36

2.
63

52
.2

51
56

.3
31

10
38
1

10
36

5.
52

49
.4

1
16

9.
08

4
T

1∗
12
04
5

12
04
5

0
17

.1
99

12
04
5

12
04
5

0
0.

05
6

12
04
5

12
04
5

0
2.

79
8

12
04
5

12
04
5

0
0.

07
5

12
04
5

12
04
5

0
3.

11
7

T
2∗

12
36
9

12
36
9

0
0.

34
2

12
36
9

12
36
9

0
0.

08
8

12
36
9

12
31

5.
53

62
.6

0
17

.4
70

12
36
9

12
36
9

0
10

.1
75

12
36
9

12
36
9

0
26

.2
40

T
3

13
69
6

13
66

7.
63

26
.5

6
24

4.
20

51
36
96

13
69
6

0
0.

48
9

13
69
6

13
69

5.
60

3.
68

12
4.

13
61

36
96

13
69
6

0
5.

85
1

13
69
6

13
69
6

0
7.

08
9

T
4

11
29
8

11
29
8

0
38

.4
39

11
29
8

11
29
8

0
0.

48
6

11
29
8

11
27

6.
17

83
.7

8
13

9.
86

51
12
98

11
29
8

0
6.

37
3

11
29
8

11
29
8

0
30

.6
89

T
5

11
56
8

11
56

3.
80

10
.4

1
20

3.
87

41
15
68

11
56
8

0
13

.6
30

11
56
8

11
56
8

0
25

.1
28

11
56
8

11
56
8

0
30

.6
18

11
56
8

11
56

7.
70

2.
99

17
.7

06
T

6
11

71
4

11
43

6.
93

10
1.

85
46

3.
46

61
18
02

11
80

2
0

2.
13

5
11
80
2

11
79

0.
43

27
.5

1
20

6.
42

21
18
02

11
79

9.
27

9.
95

16
8.

90
41

18
02

11
79

8.
88

10
.5

8
18

6.
68

5
T

7
10

48
3

10
28

7.
36

80
.6

1
53

.4
59

10
60
0

10
55

2.
73

74
.6

81
00

.1
55

10
60
0

10
53

6.
53

56
.0

8
23

4.
47

51
06
00

10
60

0
0

73
.0

87
10
60
0

10
59

9.
70

1.
71

15
0.

50
5

T
8

10
30

2
10

18
4.

09
13

8.
00

23
0.

07
71

05
06

10
47

2.
40

67
.2

01
68

.8
70

10
50
6

10
50

2.
64

23
.5

2
12

9.
50

51
05
06

10
50

6
0

58
.2

40
10
50
6

10
50

4.
23

16
.0

8
13

3.
34

0
T

9
11

03
6

10
88

3.
19

48
.5

8
66

.0
29

11
32
1

11
14

2.
27

62
.5

12
23

.3
87

11
32
1

11
30

6.
47

36
.0

0
20

7.
11

81
13
21

11
31

8.
81

10
.9

51
21

.4
94

11
32
1

11
32

1
0

54
.1

78
T

10
10

10
4

96
65

.7
0

14
2.

57
49

.4
38

10
22
0

10
20

8.
96

3.
26

14
3.

99
91

02
20

10
17

9.
45

46
.9

7
23

8.
63

01
02
20

10
21

9.
76

1.
68

11
8.

56
41

02
20

10
21

9.
04

3.
26

12
3.

05
2

#
Av

g
11

87
3.

83
11

74
8.

07
61

.5
6

15
6.

33
21

19
67

.4
71

19
38

.1
02

4.
29

65
.1

94
11
97
3.
60

11
93

2.
39

40
.5

4
13

8.
47

61
19
73
.6
0

11
96

8.
56

7.
87

78
.1

6
11
97
3.
60

11
95

3.
72

18
.9

87
96

.7
29

99

Part II, Chapter 4 – Multistart solution-based tabu search for the set-union knapsack problem
Table

4.2
–
C
om

putationalresultsofthe
M
SBT

S
algorithm

and
the

reference
algorithm

son
the

30
benchm

ark
instances

ofSet
II.

Instance
D

H
Jaya

[W
H

20b]
H

B
P

SO
/T

S
[Lin+

19]
I2P

LS
[W

H
19]

K
B

T
S

[W
H

20a]
M

SB
T

S

f
b
e

s
t

f
a

v
g

std
t
a

v
g (s)

f
b
e

s
t

f
a

v
g

std
t
a

v
g (s)

f
b
e

s
t

f
a

v
g

std
t
a

v
g (s)

f
b
e

s
t

f
a

v
g

std
t
a

v
g (s)

f
b
e

s
t

f
a

v
g

std
t
a

v
g (s)

F
11

9640
9449.97

60.22
690.4899741

9724.60
7.68

576.2609750
9734.74

13.39
479.3569914

9914
0

209.6799914
9914

0
181.952

F
12

9187
8998.45

79.17
881.2959357

9174.16
143.19413.1579357

9324.62
16.67

457.8079357
9354.52

9.18
263.6849357

9357
0

59.382
F

13
9790

9602
55.96

543.2369881
9792.23

51.06
881.9999881

9819.24
38.74

363.9459881
9844.96

11.88455.7139881
9881

0
28.474

F
14

9106
8894.09

140.48426.0889135
8940.65

109.78689.7599163
9135.27

4.90
671.1329163

9138.36
9.10

524.7999163
9163

0
102.379

F
15

9771
9540.08

47.95
637.3319837

9736.89
46.11

777.7559822
9678.89

80.67
719.9869837

9808.86
20.42483.3849937

9937
0

259.160
F

16
8797

8649
63.01

236.7988907
8872.84

84.36
418.0338907

8780.32
43.34

674.2319024
8955.29

49.07474.6439024
8986.25

25.38486.666
F

17
9455

9249.53
109.14687.1509611

9560.93
89.43

514.9229611
9537.61

61.42
511.2459725

9616.70
24.85609.8119725

9725
0

192.213
F

18
8418

8244.47
87.93

316.6048481
8208.22

108.56332.1028481
8426.36

44.76
541.6708620

8526.55
48.37274.6538620

8566.71
31.18978.573

F
19

9424
9306.86

45.01
309.8739668

9278.50
125.80620.4369580

9221.23
103.18329.7439668

9496.63
74.35487.9259689

9632.59
29.56671.192

F
20

8433
8280.52

90.87
312.5898448

8129.08
92.71

564.8488448
8268.18

135.55541.6068453
8448.05

0.50
941.5658455

8453.36
0.77

634.006
S11

10507
10504.2519.67

321.19610518
10517.891.09

60.254
10524

10520.702.99
513.53710524

10521.722.91
404.69710524

10524
0

16.377
S12

8910
8785.64

43.46
571.9659024

8902.33
27.27

214.2619062
9022.97

46.28
456.3869062

9061.16
4.78

255.3429062
9062

0
224.626

S13
9512

9409.01
28.70

809.8369786
9679.56

72.51
215.9109786

9742.73
40.87

383.7009786
9786

0
97.316

9786
9786

0
64.868

S14
9121

8985.51
65.90

507.6569177
9003.15

138.46659.1949229
9155.79

18.61
445.1949229

9187.55
20.70486.3049229

9229
0

96.472
S15

9890
9656.38

51.42
567.0909932

9823.17
113.20607.5069932

9685.79
72.06

868.2279932
9930.56

14.33214.2869932
9932

0
21.032

S16
8961

8774.18
59.78

161.6888907
8732.94

160.07590.8838961
8909.50

10.91
27.170

9101
8936.12

39.55321.8599101
9101

0
129.395

S17
9526

9462.86
37.83

670.9909745
9639.60

51.13
598.5209745

9660.12
36.68

341.1109745
9729.51

30.06368.8079745
9745

0
45.950

S18
8718

8492.88
62.31

702.6558916
8617.20

210.54665.7988916
8916

0
116.6948990

8918.96
14.50672.5748990

8990
0

237.865
S19

9348
9250.80

53.65
542.1879509

9273.64
82.57

802.6529544
9255.73

142.33876.6699544
9431.47

60.84510.6609551
9551

0
142.712

S20
8330

8037.92
71.87

932.6148134
7872.84

95.76
97.909

8379
8206.49

68.52
632.3348474

8376.20
27.12500.4358538

8497.39
28.46505.954

S11
10300

10161.4572.81
98.186

10393
10191.01102.35729.42210393

10366.1529.83
499.31110393

10393
0

89.785
10393

10393
0

73.093
T

12
9031

8944.22
61.72

616.6319256
9256

0
103.6379256

9256
0

264.8769256
9256

0
84.359

9256
9256

0
99.163

T
13

10070
9953.55

49.02
430.18010121

9909
30.82

123.01210121
9979.70

86.13
540.28910121

10114.9631.87230.91810121
10121

0
9.229

T
14

9102
8860.79

106.42159.9769176
8936.47

135.64645.1539176
9139.18

52.80
461.0519176

9176
0

140.1519176
9176

0
96.859

T
15

9123
8885.09

54.14
316.4949384

9163.90
70.91

339.4159384
9236.10

95.56
576.7389384

9384
0

136.1739384
9382.68

9.24
210.315

T
16

8556
8482.33

51.45
604.6258572

8322.17
57.53

665.5148663
8558.51

79.51
586.0478746

8643.93
47.92467.3348746

8684.58
36.41720.765

T
17

9137
9079.09

46.70
590.3769232

9121.24
48.92

455.1049232
9106.31

62.28
452.3609318

9236.16
21.32281.6329318

9318
0

81.932
T

18
8217

7881.44
65.84

140.9358277
7900.57

131.65296.0618425
8268

104.34484.8598425
8311.68

46.80625.8298425
8411.72

9.88
573.526

T
19

9067
8994.48

44.99
313.0949113

8938.38
66.64

967.3159047
8917.48

126.3789.760
9193

9105.84
74.76319.3569234

9193.15
13.26855.645

T
20

8453
8425.27

48.74
503.9768172

7958.24
121.56350.6408528

8233.05
119.98283.9018528

8488.13
33.47450.7118612

8578.20
32.47628.435

#
Avg

9196.679041.40
62.54

482.0969280.339105.91
85.91

499.2489310.109202.09
57.96

473.0319352.309303.10
23.95379.4799362.939351.59

7.22
280.940

100

4.3. Computational results and comparisons

Table 4.3 – Summarized comparisons of the MSBTS algorithm against each reference
algorithm over the two sets of benchmark instances.

Algorithm pair Instance setIndicator#Wins#Ties#Lossesp-value
MSBTS vs. DHJaya [WH20b] Set I (30) fbest 16 14 0 4.82e-4

favg 23 6 1 1.37e-4
Set II (30) fbest 30 0 0 1.82e-06

favg 30 0 0 1.86e-09
MSBTS vs. HBPSO/TS [Lin+19]Set I (30) fbest 2 28 0 1.80e-1

favg 11 12 7 1.33e-1
Set II (30) fbest 20 10 0 5.96e-5

favg 29 1 0 2.56e-6
MSBTS vs. I2PLS [WH19] Set I (30) fbest 0 30 0 NA

favg 19 5 6 2.64e-2
Set II (30) fbest 15 15 0 8.83e-5

favg 29 1 0 2.56e-6
MSBTS vs. KBTS [WH20a] Set I (30) fbest 0 30 0 NA

favg 6 11 13 9.10e-2
Set II (30) fbest 7 23 0 1.80e-2

favg 24 5 1 1.57e-5

From Table 4.4, we observe that the proposed MSBTS algorithm is very competi-
tive compared to the reference algorithms in terms of Tbest and Tavg. In particular, MS-
BTS attains the smallest Tbest values for 22 instances (out of 30) against 0 for DHJaya,
HBPSO/TS, I2PLS and 8 for KBTS. Also, MSBTS has a better average performance
according to the #Avg values in the last row. The p-values (< 0.05) from the Wilcoxon
signed-rank test clearly indicate that differences between MSBTS and the compared al-
gorithms are statistically significant.

To further illustrate the computational efficiency of MSBTS compared to the reference
algorithms, we plot the points (Ti, ρi) based on two SUKP instances of Set II and show
the time-to-target plots in Fig. 4.5. The X-axis in each sub-figure indicates the time to
achieve the target value, and the Y-axis is the cumulative probability of reaching the given
target value. We observe that the cumulative probability of each algorithm increases with
the run-time. However, MSBTS (also KBTS) attains a high probability (over 90%) in a
very short computation time (less than 20 seconds) on both instances, while the other
algorithms perform poorly. Regarding MSBTS and KBTS, in order to attain a probability
of 99.5% of reaching the target value, MSBTS requires about 12 seconds on both instances,
while KBTS consumes around 42 seconds and 26 seconds. Note that DHJaya failed to
obtain the probability of 99.5% within the time limit of 1000s on both instances. This
experiment demonstrates the computational efficiency of the proposed MSBTS algorithm.

101

Part II, Chapter 4 – Multistart solution-based tabu search for the set-union knapsack problem

Table 4.4 – Time-to-target analysis on the SUKP instances of Set II.

Instance/Algorithm Target
DHJaya HBPSO/TS I2PLS KBTS MSBTS

Tbest(s) Tavg(s) Tbest(s) Tavg(s) Tbest(s) Tavg(s) Tbest(s) Tavg(s) Tbest(s) Tavg(s)
600_585_0.10_0.75 9500 100.079 523.459 3.470 9.353 3.741 11.927 0.213 0.618 0.654 1.297
600_585_0.15_0.85 9100 65.826 566.872 67.883 382.176 6.599 59.784 3.486 12.187 1.244 9.123
700_685_0.10_0.75 9700 270.577 561.072 11.334 133.119 11.657 66.970 1.216 7.799 0.858 5.310
700_685_0.15_0.85 9100 106.614 427.274 123.888 526.406 9.663 178.041 1.647 42.561 1.370 23.398
800_785_0.10_0.75 9500 160.885 650.605 18.534 132.560 25.917 241.929 1.272 15.965 1.325 7.600
800_785_0.15_0.85 8700 151.590 516.174 68.445 323.062 15.246 102.963 5.448 55.774 2.492 7.798
900_885_0.10_0.75 9400 313.696 560.054 37.409 271.706 13.254 295.578 1.530 28.776 3.346 8.834
900_885_0.15_0.85 8400 221.799 400.128 499.176 652.865 13.318 459.241 2.592 60.691 2.139 9.243
1000_985_0.10_0.75 9000 291.897 421.090 9.114 97.051 13.008 150.602 1.061 21.855 0.639 16.614
1000_985_0.15_0.85 8300 293.618 574.331 678.089 820.440 530.745 530.745 6.685 116.893 10.870 25.255
600_600_0.10_0.75 10500 67.558 369.584 16.691 51.810 5.938 31.448 2.589 58.678 1.041 5.271
600_600_0.15_0.75 8800 68.179 560.449 6.067 131.515 5.670 40.425 1.170 5.538 0.697 5.450
700_700_0.10_0.75 9500 654.112 743.459 9.297 163.108 9.090 99.874 1.769 12.083 0.721 4.817
700_700_0.15_0.85 9100 105.922 521.651 111.166 690.543 23.306 265.033 4.807 29.800 2.098 19.571
800_800_0.10_0.75 9800 573.460 576.004 180.088 549.453 866.553 866.553 9.431 213.756 6.618 21.098
800_800_0.15_0.85 8800 162.727 575.454 114.424 508.682 15.821 131.655 1.385 27.487 2.459 8.224
900_900_0.10_0.75 9500 220.422 603.266 33.222 261.629 11.589 46.073 1.275 8.965 2.809 6.297
900_900_0.15_0.85 8600 235.578 459.369 50.142 554.410 12.601 84.906 1.033 10.397 0.912 8.208
1000_1000_0.10_0.75 9300 327.772 784.859 76.998 560.236 30.069 412.291 2.125 149.036 18.468 43.389
1000_1000_0.15_0.85 8000 294.562 530.699 76.860 548.614 25.684 225.339 2.132 24.634 1.218 8.561
585_600_0.10_0.75 10000 64.865 245.444 15.053 83.161 6.935 17.042 1.614 5.787 0.746 2.510
585_600_0.15_0.85 9000 65.337 528.534 8.954 63.449 7.319 96.275 1.033 21.288 1.005 21.108
685_700_0.10_0.75 10000 333.101 472.050 137.383 171.016 108.642 484.414 13.512 235.948 2.818 5.230
685_700_0.15_0.85 9000 154.648 514.173 189.391 531.964 19.709 299.990 3.127 45.425 1.370 29.075
785_800_0.10_0.75 8900 155.496 484.831 9.029 96.090 11.278 104.360 0.756 7.486 0.765 2.847
785_800_0.15_0.85 8500 150.938 607.258 679.254 679.254 27.872 358.703 10.115 155.450 2.401 22.656
885_900_0.10_0.75 9100 222.106 619.250 30.648 425.582 36.186 415.666 6.096 73.726 4.159 17.378
885_900_0.15_0.85 8000 346.018 631.780 228.520 564.195 28.099 209.716 1.941 17.235 1.746 7.186
985_1000_0.10_0.75 8900 300.232 540.491 278.500 651.225 36.254 428.971 12.316 113.230 9.698 48.404
985_1000_0.15_0.85 8100 281.460 437.529 109.148 276.985 47.763 287.634 1.088 12.129 0.997 10.208
#Avg 9073 225.369 533.573 129.272 363.722 65.984 233.472 3.482 53.040 2.923 13.732
#Best - 0 0 0 0 0 0 8 2 22 28
#p-value - 1.86e-09 1.86e-09 1.86e-09 1.86e-09 1.86e-09 1.86e-09 2.48e-2 9.31e-09 - -

102

4.4. Analysis

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

! #!! $!! %!! &!! '!! (!!)!! *!! +!! #!!!

!
"#
$
%$
&'
&(
)

*&+, (# (%"-,(.%'/, #0 123! &45(%46,
789:8;;:;<=;:;<79

!"#$"

%#$"

&'()"

*#("+,$"

-*./0/

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

! #!! $!! %!! &!! '!! (!!)!! *!! +!! #!!!

!
"#
$
%$
&'
&(
)

*&+, (# (%"-,(.%'/, #0 123! &45(%46,
>;;:>;;:;<=;:;<79

!"#$"

%#$"

&'()"

*#("+,$"

-*./0/

Figure 4.5 – Cumulative probability distributions for the time to reach a target value.

4.4 Analysis

In this section, we perform additional experiments to investigate the influences of
the main ingredients of the MSBTS algorithm. Specifically, we study the effect of the
parameter γv of the hash functions (Section 4.4.1), the error rates of hash functions
(Section 4.4.2) and the benefit of the solution-based tabu search strategy (Section 4.4.3).

4.4.1 Sensitivity analysis of hash functions

Hash functions are the key ingredients of the MSBTS algorithm. Now, we analyze
the influence of the parameter γv (v = 1, 2, 3) involved in the hash functions (see Sec-
tion 4.2.4) on the performance of the MSBTS algorithm. As indicated in [WWG17], the
proper settings of γv should satisfy two conditions: (1) the hash values of each candi-
date solution should be no more than the allowed maximum integer to avoid overflow;
(2) the distribution of hash values of different candidate solutions should be wide enough
to reduce possible collisions. We have carried out preliminary experiments for γv used
in the hash functions. Experimental results show that a large γv value (> 2.8) will lead
to integer overflow for instances with more than 985 items or elements. On the other
hand, a small γv value (< 1.0) will lead to the same values of bWv

i c (Wv
i = iγv) for ad-

jacent items, increasing the probability of collisions. For example, assuming γv=0.9, the
bWv

i c values of the adjacent items 501 and 502 are both 269 (W501 = 5010.9 = 269.06,
W502 = 5020.9 = 269.55). Given two neighboring solutions S1 and S2 = S1⊕swap(500, 501)
where the swap operator was defined in Section 4.2.4, they will get the same hash value.
As we focus on the ranges (1.0, 2.8) to analyze the influence of the parameter γv.

103

Part II, Chapter 4 – Multistart solution-based tabu search for the set-union knapsack problem

For this purpose, we tested 20 groups of parameters (γ1, γ2, γ3) (see Table 4.5) on 10
representative SUKP instances, i.e., 785_800_0.15_0.85, 800_785_0.10_0.75, 800_785_0.15
_0.85, 885_900_0.15_0.85, 900_885_0.15_0.85, 985_1000_ 0.10_0.75, 985_1000_0.15_0.85,
1000_985_0.10_0.75, 1000_985_0.15_0.85, 1000_1000_0.15_0.85. These 10 instances are
denoted by the ID shown in Table 1.1, respectively. For the experiment, we performed 30
independent runs for each setting of parameters on each instance with the cut-off time of
1000 seconds, and recorded the average objective values (favg). In fact, we do not provide
the best object values (fbest) here, since most of the fbest values obtained with different
groups of parameters (γ1, γ2, γ3) are exactly the same.

Table 4.5 displays the comparative results of this experiment, where the first row
shows the label of each tested instance and the first column indicates the setting of the
parameters (γ1, γ2, γ3). The favg values of each group of γv are shown in rows 2 to 21,
respectively. In addition, the last row #std gives the standard deviation of each column
and the last column #Avg presents that the average values of each row.

Table 4.5 – Influence of the hash functions on the average performance of MSBTS algo-
rithm.

(γ1, γ2, γ3)/
T16 F15 F16 T18 F18 T19 T20 F19 F20 S20 #Avg

Instance
(1.1,1.3,1.5) 8665.77 9930.33 9004 8408.87 8578.23 9190.07 8579.50 9647.67 8453.80 8491.90 8895.01
(1.1,1.5,1.9) 8687.90 9937 8985.50 8411 8577.10 9191.87 8575.17 9627.50 8453.27 8490.07 8893.64
(1.2,1.4,1.8) 8687.90 9937 8983.67 8412.20 8579.27 9190.73 8583.83 9638.50 8453.60 8487.93 8895.46
(1.2,1.6,2.0) 8693.43 9937 8992.83 8413.80 8576.07 9192.53 8579.50 9631.60 8453.20 8500.37 8897.03
(1.3,1.5,1.7) 8671.30 9937 9000.17 8411.67 8581.43 9192.93 8577.33 9636.10 8453.43 8490.77 8895.21
(1.3,1.7,2.1) 8690.67 9937 8985.50 8413.80 8566.33 9189.03 8577.33 9631.60 8453.13 8491.70 8893.61
(1.4,1.6,2.0) 8687.90 9933.67 8994.67 8411.47 8582.53 9191.80 8573 9626.13 8453.27 8486.93 8894.14
(1.5,1.7,1.9) 8679.60 9937 8989.17 8412.20 8568.43 9189.73 8573 9631 8453.33 8496.10 8892.96
(1.5,1.9,2.3) 8685.13 9933.67 8983.67 8412.20 8571.67 9191.80 8579.50 9636.80 8453.40 8492.47 8894.03
(1.6,1.8,2.2) 8679.60 9937 8989.17 8412.20 8568.43 9189.73 8573 9631 8453.33 8496.10 8892.96
(1.7,1.9,2.1) 8685.13 9933.67 8985.50 8412.20 8573.90 9190.50 8573 9637.50 8453.40 8492.47 8893.73
(1.7,2.1,2.5) 8682.37 9933.67 8981.83 8412.20 8573.90 9191.57 8575.17 9637.50 8453.40 8492.47 8893.41
(1.8,2.0,2.4) 8685.13 9933.67 8983.67 8412.20 8571.67 9191.80 8579.50 9636.80 8453.40 8492.47 8894.03
(1.9,2.1,2.3) 8682.37 9933.67 8981.83 8412.20 8573.90 9191.57 8577.33 9637.20 8453.40 8492.47 8893.59
(1.9,2.3,2.7) 8682.37 9933.67 8981.83 8412.20 8573.90 9191.57 8577.33 9637.50 8453.40 8492.47 8893.62
(2.0,2.2,2.6) 8685.13 9933.67 8985.50 8412.20 8573.90 9190.50 8573 9637.50 8453.40 8492.47 8893.73
(1.1,1.2,2.7) 8693.43 9937 8983.67 8410.60 8568.40 9191.20 8573 9636.67 8453.40 8494.33 8894.17
(1.1,1.8,2.7) 8679.60 9933.67 8985.50 8412.73 8571.73 9191.57 8573 9643 8453.40 8490.33 8893.45
(1.1,2.0,2.7) 8676.83 9933.67 8981.83 8412.20 8573.90 9191.57 8575.17 9637.20 8453.40 8492.47 8892.82
(1.1,2.5,2.7) 8676.83 9933.67 8981.83 8412.20 8571.73 9191.57 8575.17 9637.20 8453.33 8492.47 8892.60

#std 6.93 1.96 6.30 1.04 4.35 0.99 3.10 4.94 0.14 2.88 -

From Table 4.5, we observe that the parameter γv is not sensitive for our algorithm.

104

4.4. Analysis

First, the results obtained from different groups of parameters are very similar in terms
of #Avg values. Specially, there are 12 out of 20 groups of parameters that obtained the
same favg value on instance T18. Second, the small #std values of each column indicate
that the standard deviations of the results shown in the columns are relatively low. The
p-value of 0.633 (> 0.05) from the Friedman statistical test again confirms that there are
no significant differences among the tested results. This analysis indicated that any γv

value in the interval (1.0, 2.8) is suitable for the proposed algorithm.

4.4.2 Error rates of hash functions

An error occurs when an unvisited solution is wrongly forbidden by the hash functions
and the associated hash vectors. To calculate the error rates of hash functions, we ran
our SBTS procedure for 104 iterations on two SUKP instances: 1000_1000_0.10_ 0.75,
1000_1000_0.15_0.85. During the search, each encountered solution is recorded in a pool
POP . We use a counter c1 to count the number of solutions forbidden (classified as tabu)
by the hash functions. Another counter c2 (error counter) will be incremented by 1 if the
solution is not included in POP . Then the error rate is obtained by c2/c1. We perform
additional experiments to investigate two factors that affect the error rates of the hash
functions: 1) the length L of the hash functions, and 2) the number of the hash vectors.

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

! $!!! &!!! (!!! *!!! #!!!!

!
""
#
"
"$
%&
'

(%&"$%)#*' #*+,-./+)*'%$*0&+1222312223241232456+

!"#"$%&'

!"#"$%&(

!"#"$%&)

!"#"$%&*

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

! $!!! &!!! (!!! *!!! #!!!!

!
""
#
"
"$
%&
'

(%&"$%)#*' #*+,-./+)*'%$*0&+1222312223241532465+

!"#"$%&'

!"#"$%&(

!"#"$%&)

!"#"$%&*

Figure 4.6 – Impact of the length L of hash vectors on the error rate of the solution-based
tabu search procedure.

The role of the length L is to ensure that the hash vectors are long enough to be
able to record the sampled solutions. A proper setting of L should not only avoid memory
overflow, but also keep the error rates at a low level. The results of preliminary experiments
indicate that a large L value (> 108) leads to memory overflow. Thus we carried out an

105

Part II, Chapter 4 – Multistart solution-based tabu search for the set-union knapsack problem

experiment to check the error rates of the hash vectors with L ranging from 105 to 108.
The error rate plots are shown in Fig. 4.6, where the iterations of the SBTS procedure and
the corresponding error rates are displayed on the X-axis and the Y -axis, respectively.

Fig. 4.6 shows that our algorithm can keep the error rate at a low level (< 0.07) with
L ranging from 106 to 108. In particular, when the values of L are 107 and 108, the corre-
sponding curves almost overlap and stay under 0.02. The error rates increase dramatically
(more than 0.5) as the number of iterations increases for L ≤ 105. Considering that the
time complexity of evaluating a neighboring solution is O(1), a large L value will not
significantly affect the computation time. Thus any L value in the interval [106, 108] is
suitable for the proposed algorithm (L = 108 in the MSBTS algorithm).

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

! $!!! &!!! (!!! *!!! #!!!!

!
""
#
"
"$
%&
'

(%&"$%)#*' #*+,-./+)*'%$*0&+1222312223241232456+

!"#$%&'%$()*+,-#*'

!%.//$%&'%$()*+,-#*'

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

! $!!! &!!! (!!! *!!! #!!!!

!
""
#
"
"$
%&
'

(%&"$%)#*' #*+,-./+)*'%$*0&+1222312223241532465+

!"#$%&'%$()*+,-#*'

!%.//$%&'%$()*+,-#*'

Figure 4.7 – Impact of the number of hash vectors on the error rate of the solution-based
tabu search procedure.

The role of the hash vectors is to record the solutions encountered during the search,
and the number of the hash vectors can significantly affect the error rates. We performed
another experiment to analyze the error rates when using two or three hash vectors. As
the error rate plots in Fig. 4.7 show, the SBTS procedure has an error rate of nearly
0.9 with two hash vectors over 104 iterations. The error rate with one hash vector will
be naturally higher than that with two hash vectors for the same number of iterations.
On the contrary, the error rate remains very low (< 0.02) with three hash vectors over
104 iterations. So three hash vectors can effectively identify the previously encountered
solutions, which justifies the use of three hash vectors in MSBTS.

4.4.3 Analysis of solution-based tabu search

The solution-based tabu search strategy is the most innovative component of the
MSBTS algorithm. To understand its influence on the algorithm, we created a MSBTS

106

4.4. Analysis

variant; named MABTS where the solution-based tabu search procedure is replaced by an
attribute-based tabu search procedure. For this experiment, we employed the attribute-
based tabu search method introduced in [WH20a], which is one of the best SUKP algo-
rithms. Thus, except the tabu search procedure, MABTS shares the other components of
MSBTS.

Table 4.6 – Comparison between MSBTS and MABTS on the instances of Set II.

Instance/Setting
MSBTS MABTS

fbest favg std fbest favg std

600_585_0.10_0.75 9914 9914 0 9914 9801.57 72.65
600_585_0.15_0.85 9357 9357 0 9357 9329.40 23.76
700_685_0.10_0.75 9881 9881 0 9841 9814.37 34.83
700_685_0.15_0.85 9163 9163 0 9135 9126.67 14.16
800_785_0.10_0.75 9937 9937 0 9811 9679.73 61.37
800_785_0.15_0.85 9024 8992.83 27.25 9024 8892.53 51.21
900_885_0.10_0.75 9725 9725 0 9611 9503.63 53.57
900_885_0.15_0.85 8620 8576.07 27.14 8499 8459.87 26.51
1000_985_0.10_0.75 9689 9631.60 28.92 9580 9411.37 58.09
1000_985_0.15_0.85 8455 8453.20 0.60 8448 8359.30 106.74
600_600_0.10_0.75 10524 10524 0 10524 10519.67 3.54
600_600_0.15_0.75 9062 9062 0 9062 9058.20 11.40
700_700_0.10_0.75 9786 9786 0 9786 9770.20 37.93
700_700_0.15_0.85 9229 9229 0 9177 9145.20 30.65
800_800_0.10_0.75 9932 9932 0 9932 9734.87 64.12
800_800_0.15_0.85 9101 9101 0 8956 8907.10 14.88
900_900_0.10_0.75 9745 9745 0 9660 9629.20 36.02
900_900_0.15_0.85 8990 8990 0 8916 8911.03 17.49
1000_1000_0.10_0.75 9551 9551 0 9357 9269.87 92.10
1000_1000_0.15_0.85 8538 8500.37 28.65 8381 8282.20 73.08
585_600_0.10_0.75 10393 10393 0 10393 10325.43 34.75
585_600_0.15_0.85 9256 9256 0 9256 9256 0
685_700_0.10_0.75 10121 10121 0 10121 9944.10 59.12
685_700_0.15_0.85 9176 9176 0 9176 9144.97 31.29
785_800_0.10_0.75 9384 9384 0 9384 9229.37 93.68
785_800_0.15_0.85 8746 8693.43 40.00 8663 8526.57 59.71
885_900_0.10_0.75 9318 9318 0 9232 9158.57 40.38
885_900_0.15_0.85 8425 8413.80 7.33 8425 8276.07 42.39
985_1000_0.10_0.75 9234 9192.53 14.12 9193 9030.77 54.53
985_1000_0.15_0.85 8612 8579.50 32.50 8461 8384.43 75.03
#Avg 9362.93 9352.61 6.88 9309.17 9229.41 45.83
#Best 30 30 - 13 0 -
p-value 2.93e-4 2.563e-06 - - - -

Considering that our algorithm mainly shows its superiority on the large instances,
we carried out this experiment based on Set II, where each instance was independently

107

Part II, Chapter 4 – Multistart solution-based tabu search for the set-union knapsack problem

solved by each algorithm 30 times, each run being limited to 1000 seconds.
The experimental results are reported in Table 4.6. The first column shows the names

of the instances. The results of the two compared algorithms are respectively presented
in columns 2 to 7, including the best objective value (fbest), the average objective value
(favg), the standard deviation over 30 runs (std). To facilitate the comparison, we also
provide the similar #Avg, #Best and p-values as described in Section 4.3.4.

Table 4.6 shows that MSBTS significantly outperforms MABTS, achieving better fbest
values (marked in bold) for 17 out of the 30 instances and equal results for the remaining
13 instances. When comparing the favg values, MSBTS again dominates MABTS for all
the instances. Moreover, the std values of MSBTS are very small, indicating that MSBTS
is highly robust. Furthermore, the small p-values (< 0.05) show that there is a significant
difference between MSBTS and MABTS. This experiment confirms that the solution-
based tabu search strategy constitutes one key ingredient of our algorithm.

4.5 Conclusions

The Set-Union Knapsack Problem attracts more and more attention in recent years due
to its theoretical and practical interest. Inspired by the fact that the solution-based tabu
search has been successfully applied to solve several difficult binary optimization problems,
we devised the first multistart solution-based tabu search algorithm for solving the SUKP.
The proposed MSBTS algorithm uses its solution-based tabu search procedure to find
high-quality local optima and the multistart mechanism to overcome deep local optima
traps. MSBTS has several desirable features such as simple design and implementation as
well as absence of parameters.

We performed extensive experimental assessments of the proposed algorithm on two
sets of 60 benchmark instances. The comparisons with the state-of-the-art algorithms
demonstrated the high competitiveness of our algorithm in terms of solution quality,
computational efficiency and robustness. In particular, we demonstrated the interest of
the MSBTS algorithm to deal with large instances and reported new lower bounds for 7
large and difficult instances (with 585 to 1000 items and elements).

This work thus provides a useful tool for solving the general Set-Union Knapsack Prob-
lem. Moreover, since a number of real-world applications can be conveniently formulated
by SUKP, the proposed algorithm can be hopefully applied to these practical problems.
The availability of the code of the MSBTS algorithm will facilitate such applications.

108

4.5. Conclusions

In the next chapter, we will focus on the disjunctively constrained knapsack problem
which is also a variant of the popular knapsack problem. A threshold search based memetic
algorithm will be introduced for solving this problem.

109

Chapter 5

A THRESHOLD SEARCH BASED MEMETIC

ALGORITHM FOR THE DISJUNCTIVELY

CONSTRAINED KNAPSACK PROBLEM

In this chapter, we present a threshold search based memetic algorithm for solving the
DCKP that combines the memetic framework with threshold search to find high quality
solutions. Extensive computational assessments on two sets of 6340 benchmark instances
in the literature demonstrate that the proposed algorithm is highly competitive compared
to the state-of-the-art methods. In particular, we report 24 and 354 improved best-known
results (new lower bounds) for Set I (100 instances) and for Set II (6240 instances),
respectively. We analyze the key algorithmic components and shed lights on their roles
for the performance of the algorithm. The content of this chapter is based on an article
that is being revised for Computers & Operations Research.

111

Part II, Chapter 5 – A threshold search based memetic algorithm for the DCKP

5.1 Introduction

As the literature review shown in Section 1.3.3, existing studies have significantly
contributed to better solving the DCKP. However, given the NP-hard nature of the
problem, more powerful algorithms are still needed to push the limits of existing methods.

In this chapter, we investigate for the first time the population-based memetic frame-
work [Mos99] for solving the DCKP and design an effective algorithm mixing threshold
based local optimization and crossover based solution recombination. The threshold search
procedure ensures the main role of search intensification by finding high quality local opti-
mal solutions. The specialized backbone crossover generates promising offspring solutions
for search diversification. The algorithm uses also a distance-and-quality strategy for pop-
ulation management. The algorithm has the advantage of avoiding the difficult task of
parameter tuning.

From a perspective of performance assessment, we apply the proposed algorithm to
solve the two sets of DCKP benchmark instances in the literature. The results show that
for the 100 instances of Set I (optimality still unknown) which were commonly tested
by heuristic algorithms, our algorithm discovers 24 new best-known results (new lower
bounds) and matches the best-known results for the 76 remaining instances. For the
6240 instances of Set II which were tested by exact algorithms, our algorithm finds 354
improved best lower bounds on the difficult instances whose optimal values are unknown
and attains the known optimal results on most of the remaining instances.

The rest of the chapter is organized as follows. Section 5.2 presents the proposed
algorithm. Section 5.3 shows computational results of our algorithm and provides com-
parisons with the state-of-the-art algorithms. Section 5.4 analyzes essential components
of the algorithm. Finally, Section 5.5 summarizes the chapter.

5.2 Threshold search based memetic algorithm for
the DCKP

Our threshold search based memetic algorithm (TSBMA) for the DCKP is a population-
based algorithm combining evolutionary search and local optimization. In this section, we
first present the general procedure of the algorithm and then describe its components.

112

5.2. Threshold search based memetic algorithm for the DCKP

5.2.1 General procedure

The TSBMA algorithm relies on the general memetic algorithm framework [Mos99]
and follows the design principles recommended in [Hao12; Zho+20]. The flowchart of
TSBMA and its pseudo-code are shown in Figure 5.1 and Algorithm 14, respectively.

Initialize the population and

record the best solution S*

Randomly pick two parent

solutions from the population

Crossover operator

Threshold serach

Update the best solution S*

Output the best solution S*

Update the population

t<tmax?
yes

no

Figure 5.1 – Flowchart of the proposed TSBMA algorithm.

The algorithm starts from a set of feasible solutions of good quality that are gener-
ated by the population initialization procedure (line 4, Alg. 14, and Section 5.2.3). The
best solution is identified and recorded as the overall best solution S∗ (line 5, Alg. 14).
Then the algorithm enters the main ‘while’ loop (lines 6-15, Alg. 14) to perform a number
of generations. At each generation, two solutions are randomly picked and used by the
crossover operator to create an offspring solution (line 7-8, Alg. 14, and Section 5.2.5).
Afterwards, the threshold search procedure is triggered to perform local optimization
with three neighborhoods N1, N2 and N3 (line 9, Alg. 14, and Section 5.2.4). After con-
ditionally updating the overall best solution S∗ (lines 11-13, Alg. 14), the diversity-based
pool updating procedure is applied to decide whether the best solution Sb found during
the threshold search should be inserted into the population (line 14, Alg. 14, and Section
5.2.6). Finally, when the given time limit tmax is reached, the algorithm returns the overall
best solution S∗ found during the search and terminates.

113

Part II, Chapter 5 – A threshold search based memetic algorithm for the DCKP

Algorithm 14 Main framework of threshold search based memetic algorithm for the
DCKP
1: Input: Instance I, cut-off time tmax, population P , the maximum number of iterations IterMax,

neighborhoods N1, N2, N3.
2: Output: The overall best solution S∗ found.
3: S∗ ← ∅ /* Initialize S∗ (i.e., f(S∗) = 0)*/
4: POP = {S1, . . . , S|P |} ← Population_Initialization(I) /* Section 5.2.3 */
5: S∗ ← argmax{f(Sk)|k = 1, . . . , p}
6: while Time ≤ tmax do
7: Randomly pick two solutions Si and Sj from the population POP
8: So ← Crossover_Operator(Si, Sj) /* Section 5.2.5 */
9: Sb ← Threshold_Search(So, N1−3, IterMax) /* Section 5.2.4 */
10: /* Record the best solution Sb found during threshold search */
11: if f(Sb) > f(S∗) then
12: S∗ ← Sb /* Update the overall best solution S∗ found so far */
13: end if
14: POP ← Pool_Updating(Sb, POP) /* Section 5.2.6 */
15: end while
16: return S∗

5.2.2 Solution representation, search space, and evaluation func-
tion

The DCKP is a subset selection problem. Thus, a candidate solution for a set V =
{1, . . . , n} of n items can be conveniently represented by a binary vector S = (x1, . . . , xn),
such that xi = 1 if item i is selected, and xi = 0 otherwise. Equivalently, S can also be
represented by S =< A, Ā > such that A = {q : xq = 1 in S} and Ā = {p : xp = 0 in S}.

Let G = (V,E) be the given conflict graph and C be the knapsack capacity. Our
TSBMA algorithm explores the following feasible search space ΩF satisfying both the
disjunctive constraints and the knapsack constraint.

ΩF = {x ∈ {0, 1}n :
n∑
i=1

wixi ≤ C;xi + xj ≤ 1,∀{i, j} ∈ E, 1 ≤ i, j ≤ n, i 6= j} (5.1)

The quality of a solution S in ΩF is determined by the objective value f(S) of the
DCKP (Equation 1.28).

5.2.3 Population initialization

The TSBMA algorithm builds each of the |P | initial solutions of the population P

in two steps. First, it randomly adds one by one non-selected items into an individual

114

5.2. Threshold search based memetic algorithm for the DCKP

solution Si (i = 1, . . . , |P |) until the capacity of the knapsack is reached, while keeping
the disjunctive constraints satisfied. Second, to obtain an initial population of reasonable
quality, it improves the solution Si by a short run of the threshold search procedure
(Section 5.2.4) by setting IterMax = 2n.

It is worth mentioning that the population size |P | is determined according to the
number of candidate items n of the given instance, i.e., |P | = n/100 + 5. This strategy is
based on two considerations. First, since the TSBMA algorithm is powerful enough to solve
the instances of small size, a smaller population size can help to reduce the initialization
time. Second, the instances of large size are more challenging, a larger population size
helps to diversify the search.

5.2.4 Local optimization using threshold search

The local optimization procedure of the TSBMA algorithm relies on the threshold
accepting method [GT90]. To explore a given neighborhood, the method accepts both
improving and deteriorating neighbor solutions so long as the solution satisfies a quality
threshold. One notices that this method has been successfully applied to solve several
knapsack problems (e.g., quadratic multiple knapsack problem [CH15], multi-constraint
knapsack problem [DW91] and multiple-choice knapsack problem [ZN08]) and other com-
binatorial optimization problems (e.g., [CS96; CH19; TKV04]). In this chapter, we adopt
for the first time this method for solving the DCKP and devise a multiple neighborhood
threshold search procedure reinforced by an operation-prohibiting mechanism.

Main scheme of the threshold search procedure

As shown in Algorithm 15, the threshold search procedure (TSP) starts its process
from an input solution and three empty hash vectors (used for the operation-prohibiting
mechanism, lines 3-5, Alg. 15). It then performs a number of iterations to explore three
neighborhoods (Section 5.2.4) to improve the current solution S. Specifically, for each
‘while’ iteration (lines 9-25, Alg. 15), the TSP procedure explores the neighborhoods N1,
N2 and N3 in a deterministic way as explained in the next section. Any sampled non-
prohibited neighbor solution S ′ (i.e., H1[h1(S ′)]∧H2[h2(S ′)]∧H3[h3(S ′)] = 0) is accepted
immediately if the quality threshold T is satisfied (i.e., f(S ′) ≥ T). Then the hash vectors
are updated for solution prohibition and the best solution found during the TSP procedure
is recorded in Sb (lines 18-20, Alg. 15). The main search (‘while’ loop) terminates when 1)

115

Part II, Chapter 5 – A threshold search based memetic algorithm for the DCKP

no admissible neighbor solution (i.e., non-prohibited and satisfying the quality threshold)
exists in the neighborhoods N1, N2 and N3, or 2) the best solution Sb cannot be further
improved during IterMax consecutive iterations. Specifically, the quality threshold T is
determined adaptively by f(Sb)− n/10 (n is the number of items of each instance) while
IterMax is set to (n/500 + 5)× 10000.

Algorithm 15 Threshold search procedure
1: Input: Input solution So, threshold T , the maximum number of iterations IterMax, hash vectors
H1, H2, H3, hash functions h1, h2, h3, length of hash vectors L, neighborhoods N1, N2, N3.

2: Output: The best feasible solution Sb found by threshold search procedure.
3: for i← 0 to L− 1 do
4: H1[i]← 0; H2[i]← 0; H3[i]← 0; /* Initialization of hash vectors */
5: end for
6: Sb ← So /* Sb record the best solution found */
7: S ← So /* S record the current solution */
8: iter ← 0
9: while iter ≤ IterMax do
10: Examine the neighborhoods N1(S), N2(S), N3(S) in turn; /* Section 5.2.4 */

/* Each non-prohibited neighbor solution S′ satisfies H1[h1(S′)]∧H1[h1(S′)] = 0∧H1[h1(S′)] = 0
*/

11: for Each non-prohibited S′ of N1(S) or N2(S) or N3(S) do
12: if f(S′) ≥ T then
13: S ← S′

14: /* Update the hash vectors with S, Section 5.2.4 */
H1[h1(S)]← 1; H2[h2(S)]← 1; H3[h3(S)]← 1

15: break;
16: end if
17: end for
18: if f(S) > f(Sb) then
19: Sb ← S /* Update the best solution Sb found during threshold search */
20: iter ← 0
21: else
22: iter ← iter + 1
23: end if
24: end while
25: return Sb

Neighborhoods and their exploration

The TSP procedure examines candidate solutions by exploring three neighborhoods
induced by the popular move operators: add, swap and drop. Let S be the current solution
and mv is one of these operators. We use S ′ = S ⊕ mv to denote a feasible neighbor
solution obtained by applying mv to S and Nx (x = 1, 2, 3) to represent the resulting
neighborhoods. To avoid the examination of unpromising neighbor solutions, TSP employs

116

5.2. Threshold search based memetic algorithm for the DCKP

the following dynamic neighborhood filtering strategy inspired by [LHY19; WH19]. Let
S ′ be a neighbor solution in the neighborhood currently under examination, and Sc be
the best neighbor solution encountered during the current neighborhood examination.
Then S ′ is excluded for consideration if it is no better than Sc (i.e., f(S ′) ≤ f(Sc)).
By eliminating the unpromising neighbor solutions, TSP increases the efficiency of its
neighborhood search.

Specifically, the associated neighborhoods induced by add, swap and drop are defined
as follows.

— add(p): This move operator expands the selected item set A by one non-selected
item p from the set Ā such that the resulting neighbor solution is feasible. This
operator induces the neighborhood N1.

N1(S) = {S ′ : S ′ = S ⊕ add(p), p ∈ Ā} (5.2)

— swap(q, p): This move operator exchanges a pair of items (q, p) where item q belongs
to the selected item set A and p belongs to the non-selected item set Ā such that
the resulting neighbor solution is feasible. This operator induces the neighborhood
N2.

N2(S) = {S ′ : S ′ = S ⊕ swap(q, p), q ∈ A, p ∈ Ā, f(S ′) > f(Sc)} (5.3)

— drop(q): This operator displaces one selected item q from the set A to the non-
selected item set Ā and induces the neighborhood N3.

N3(S) = {S ′ : S ′ = S ⊕ drop(q), q ∈ A, f(S ′) > f(Sc)} (5.4)

One notices that the add operator always leads to a better current solution with an
additional eligible item, and thus the neighborhood filtering is not needed for N1. The
drop operator always deteriorates the quality of the current solution, and the feasibility of
a neighbor solution is always ensured. The swap operator may either increase or decrease
the objective value and the feasibility of a neighbor solution needs to be verified. For N2

and N3, neighborhood filtering excludes uninteresting solutions that can in no way be
accepted during the TSP process.

The TSP procedure examines the neighborhoods N1, N2, and N3 in a token-ring way
[DS06] to explore different local optimal solutions. For N1, as long as there exists a non-

117

Part II, Chapter 5 – A threshold search based memetic algorithm for the DCKP

prohibited neighbor solution, TSP selects such a neighbor solution to replace the current
solution (ties are broken randomly). Once N1 becomes empty, TSP moves to N2, if there
exists a non-prohibited neighbor solution S ′ satisfying f(S ′) ≥ T , TSP selects S ′ to
become the current solution and immediately returns to the neighborhood N1. When
N2 becomes empty, TSP continues its search with N3 and explores N3 exactly like with
N2. When N3 becomes empty, TSP terminates its search and returns the best solution
found Sb. TSP may also terminate if its best solution remains unchanged during IterMax

consecutive iterations.

Operation-prohibiting mechanism

During the TSP procedure, it is important to prevent the search from revisiting a pre-
viously encountered solution. For this purpose, TSP utilizes an operation-prohibiting (OP)
mechanism that is based on the tabu list strategy [GL97]. To implement the operation-
prohibiting (OP) mechanism, we adopt the solution-based tabu search technique [WZ93],
which has shown its effectiveness on other decision-making problems [Lai+18a; LHY19;
Lai+18b]. Specifically, we employ three hash vectors Hv (v = 1, 2, 3) of length L (|L| =
108) to record previously visited solutions. Given a solution S = (x1, . . . , xn) (xi ∈ {0, 1}),
we pre-compute for each item i, the weight Wv

i = iγv (v = 1, 2, 3), where γv is equal to
1.2, 1.6, 2.0, respectively. Then the hash functions hv (v = 1, 2, 3) are defined as follows.

hv(S) = (
n∑
i=1
bWv

i × xic) mod |L| (5.5)

The hash value of a neighbor solution S ′ from the add, swap or drop operator can be
efficiently computed as follows (x ∈ A, y ∈ Ā, Section 5.2.2).

hv(S ′) =


hv(S) +Wy, for the add operator

hv(S)−Wx +Wy, for the swap operator

hv(S)−Wx, for the drop operator

(5.6)

Starting with the hash vectors set to 0, the corresponding positions in the three hash
vectors Hv is updated by 1 whenever a new neighbor solution S ′ is accepted to replace
the current solution S (lines 12-16, Alg. 15). For each candidate neighbor solution S ′,
its hashing value hv(S ′) is calculated with Equation (5.6) in O(1). Then, this neighbor
solution S ′ is previously visited ifH1[h1(S ′)]∧H2[h2(S ′)]∧H3[h3(S ′)] = 1 and is prohibited

118

5.2. Threshold search based memetic algorithm for the DCKP

from consideration by the TSP procedure.

5.2.5 Crossover operator

The crossover operator generally creates new solutions by recombining two existing
solutions. For the DCKP, we adopt the idea of the double backbone-based crossover (DBC)
operator [ZHG18] and adapt it to the problem.

Given two solutions Si and Sj, we use them to divide the set of n items into three
subsets: the common items set X1 = Si∩Sj, the unique items set X2 = (Si∪Sj)\(Si∩Sj)
and the unrelated set X3 = V \(Si∪Sj). The basic idea of the DBC operator is to generate
an offspring solution So by selecting all items in set X1 (the first backbone) and some
items in set X2 (the second backbone), while excluding items in set X3.

As shown in Algorithm 16, from two randomly selected parent solutions Si and Sj,
the DBC operator generates So in three steps. First, we initialize So by setting all the
variables xoa (a = 1, . . . , n) to 0 (line 3, Alg. 16). Second, we identify the common items
set X1 and the unique items set X2 (line 4-10, Alg. 16). Third, we add all items belonging
to X1 into So and randomly add items from X2 into So until the knapsack constraint
is reached (line 11-17, Alg. 16). Note that the knapsack and disjunctive constraints are
always satisfied during the crossover process.

Since the DCKP is a constrained problem, the DBC operator adopted for TSBMA
has several special features to handle the constraints, which is different from the DBC
operator introduced in [ZHG18]. First, we iteratively add an item into So by selecting
one item from the unique items set X2 randomly until the knapsack constraint is reached,
while each item in X2 is considered with a probability p0 (0 < p0 < 1) in [ZHG18]. Second,
unlike [ZHG18] where a repair operation is used to achieve a feasible offspring solution,
our DBC operator ensures the satisfaction of the problem constraints during the offspring
generation process.

5.2.6 Population updating

Once a new offspring solution is obtained by the DBC operator in the last section, it
is further improved by the threshold search procedure presented in Section 5.2.4. Then
we adopt a diversity-based population updating strategy [JH16; JH19; Lai+18a] to de-
cide whether the improved offspring solution should replace an existing solution in the
population. This strategy is beneficial to balance the quality of the offspring solution and

119

Part II, Chapter 5 – A threshold search based memetic algorithm for the DCKP

Algorithm 16 The double backbone-based crossover operator
1: Input: Two parent solutions Si = (xi

1, x
i
2, . . . , x

i
n) and Sj = (xj

1, x
j
2, . . . , x

j
n).

2: Output: An offspring solution So = (xo
1, x

o
2, . . . , x

o
n).

3: So ← ∅ /* Initialize So (i.e., f(So) = 0)*/
4: for a← 1 to n do
5: if xi

a = 1 and xj
a = 1 then

6: X1 ← a /* X1 is the common items set */
7: else if xi

a = 1 or xj
a = 1 then

8: X2 ← a /* X2 is the unique items set */
9: end if
10: end for
11: So ← X1 /* Add all items belonging to X1 into So */
12: Randomly shuffle all items in X2;
13: for each a ∈ X2 do
14: if So ∪ (xo

a = 1) is a feasible solution then
15: xo

a ← 1 /* The second backbone */
16: end if
17: end for
18: return So

its distance from the population.
To accomplish this task, we temporarily insert the improved offspring solution into

the population and compute the distance (Hamming distance) between any two solutions
in the population. Then we obtain the goodness score of each solution in the same way as
proposed in [Lai+18a]. Finally, the worst solution in the population is identified according
to the goodness score and deleted from the population.

5.2.7 Time complexity

As shown in Section 5.2.3, the population initialization procedure includes two steps.
Given a DCKP instance with n items, the first step of random selection takes time O(n).
Given an input solution S =< A, Ā > (see Section 5.2.2), the complexity of one iteration
of the TSP procedure is O((n + |A| × |Ā|)). Then the second step of the initialization
procedure can be realized in O([(n+ |A| × |Ā|)]× IterMax), where IterMax is set to 2n
in the initialization procedure. The complexity of the population initialization procedure
is O(n3).

Now we consider the four procedures in the main loop of the TSBMA algorithm:
parent selection, crossover operator, the TSP procedure and population updating. The
parent selection procedure is realized in O(1). The crossover operator takes time O(n).
The complexity of the TSP procedure is O([(n+ |A| × |Ā|)]× IterMax), where IterMax

120

5.3. Computational results and comparisons

is determined in Section 5.2.4. The population updating procedure can be achieved in
O(n|P |), where |P | is the population size. Then, the complexity of one iteration of the
main loop of the TSBMA algorithm is O(n2 × IterMax).

5.3 Computational results and comparisons

In this section, we assess the proposed TSBMA algorithm by performing extensive
experiments and making comparisons with state-of-the-art DCKP algorithms. The bench-
mark instances of the DCKP tested in our experiments were widely used in the literature,
which can be divided into two sets (see Section 1.3.4 for the main characteristics of these
instances). We report computational results on two sets of 6340 benchmark instances.

5.3.1 Experimental settings

Reference algorithms. For the 100 DCKP instances of Set I that were widely tested
by heuristic algorithms, we adopt as our reference methods three state-of-the-art heuristic
algorithms: parallel neighborhood search algorithm (PNS) [QW17b], cooperative parallel
adaptive neighborhood search algorithm (CPANS) [QW17a], and probabilistic tabu search
algorithm (PTS) [Sal+17]. Note that PTS only reported results of the 50 instances 1Iy
to 10Iy, since the other 50 instances of 11Iy to 20Iy were designed later. For the 6240
DCKP instances of Set II that were only tested by exact algorithms until now, we cite the
results of three best performing methods: branch-and-bound algorithms BCM [BCM17]
and CFS [CFS21]) as well as the integer linear programming formulations solved by the
CPLEX solver (ILP) [CFS21].

Computing platform. The proposed TSBMA algorithm was written in C++ 1 and
compiled using the g++ compiler with the -O3 option. All experiments were carried out
on an Intel Xeon E5-2670 processor (2.5 GHz CPU and 2 GB RAM) under the Linux
operating system. The results of the main reference algorithms have been obtained on
computing platforms with the following features: an Intel Xeon processor with 2×3.06
GHz for CPANS and PNS, an Intel Pentium i5-6500 processor with 3.2 GHz and 4 GB
RAM for PTS, and an Intel Xeon E5-2695 processor with 3.00GHz for CFS. Note that
the parallel algorithms PNS and CPANS used 10 to 400 processors to obtain the results.

1. The code of our TSBMA algorithm will be available at: http://www.info.univ-angers.fr/pub/
hao/DCKP_TSBMA.html.

121

http://www.info.univ-angers.fr/pub/hao/DCKP_TSBMA.html.
http://www.info.univ-angers.fr/pub/hao/DCKP_TSBMA.html.

Part II, Chapter 5 – A threshold search based memetic algorithm for the DCKP

Parameter settings. The TSBMA algorithm does not require parameter tuning
(it is parameter-free). However, for the 6240 instances of Set II (with a wide range of
densities and number of items), we adjusted the threshold T (see Section 5.2.4) to T =
MinP + rand(20), where MinP is the minimum profit value for each instance tested.

Stopping condition. For the 100 DCKP instances of Set I, the TSBMA algorithm
adopted the same cut-off time as the reference algorithms (PNS, CPANS and PTS), i.e.,
1000 seconds. Note that for the instances 11Iy to 20Iy, PNS used a much longer limit of
2000 seconds. Given its stochastic nature, TSBMA was performed 20 times independently
with different random seeds to solve each instance. For the 6240 instances of Set II, the
cut-off time was set to 600 seconds as in the CFS algorithm and the number of repeated
runs was set to 10.

5.3.2 Computational results and comparisons

In this section, we first present summarized comparisons of the proposed TSBMA
algorithm against each reference algorithm on the 100 instances of Set I, and then show
the comparative results on the 6240 DCKP instances of Set II. The detailed computational
results of our algorithm and the reference algorithms on the instances of Set I are shown
in the Appendix, while our solution certificates for these 100 instances are available at
the webpage indicated in footnote 1. For the 6240 instances of Set II, we report their
objective values at the same website.

Comparative results on the 100 benchmark instances of Set I

The comparative results of the TSBMA algorithm and each reference algorithm are
summarized in Table 5.1. Column 1 indicates the pairs of compared algorithms and column
2 gives the names of instance class. Column 3 shows the quality indicators: the best
objective value (fbest) and the average objective value (favg) (when the average results are
available in the literature). The following columns #Wins, #Ties and #Losses present the
number of instances for which TSBMA achieves a better, equal and worse result according
to the indicators. To further analyze the performance of our algorithm, we carried out
the Wilcoxon signed-rank test to verify the statistical significance of the compared results
between TSBMA and each compared algorithm in terms of the fbest and favg values (when
the average results are available in the literature). The outcomes of the Wilcoxon tests
are shown in the last column, where ‘NA’ means that the two sets of compared results

122

5.3. Computational results and comparisons

are exactly the same.
From Table 5.1, one observes that the TSBMA algorithm competes very favorably with

all the reference algorithms by reporting improved or equal results on all the instances.
Compared to the probabilistic tabu search algorithm (PTS) [Sal+17] which reported re-
sults only on the first 50 instances of classes 1Iy to 10Iy, TSBMA finds 8 (45) better
fbest (favg) values, while matching the remaining results. Compared to the two parallel
algorithms (PNS) [QW17b] and (CPANS) [QW17a] that reported only the fbest values,
TSBMA obtained 35 and 29 better fbest results, respectively. The small p-values (< 0.05)
from the Wilcoxon tests between TSBMA and its competitors indicate that the perfor-
mance differences are statistically significant. Finally, it is remarkable that our TSBMA
algorithm discovered 24 new lower bounds on the instances 11Iy to 20Iy (see the detailed
results shown in the Appendix).

Table 5.1 – Summarized comparisons of the TSBMA algorithm against each reference
algorithm with the p-values of the Wilcoxon signed-rank test on the 100 DCKP instances
of Set I.

Algorithm pair Instance Indicator #Wins #Ties #Losses p-value
TSBMA vs. PTS [Sal+17] 1Iy − 10Iy (50) fbest 8 42 0 1.40e-2

favg 45 5 0 5.34e-9
TSBMA vs. PNS [QW17b] 1Iy − 10Iy (50) fbest 9 41 0 8.91e-3

11Iy − 20Iy (50) fbest 26 24 0 8.25e-6
TSBMA vs. CPANS [QW17a] 1Iy − 10Iy (50) fbest 0 50 0 NA

11Iy − 20Iy (50) fbest 29 21 0 2.59e-6

To complete the assessment, we provide the performance profiles [DM02] of the four
compared algorithms on the 100 instances of Set I. Basically, the performance profile of
an algorithm shows the cumulative distribution for a given performance metric, which
reveals the overall performance of the algorithm on a set of instances. In our case, the
plots concern the best objective values (fbest) of the compared algorithms since the average
results of some reference algorithms are not available in the literature. Given a set of
algorithms (solvers) S and an instance set P , the performance ratio is given by rp,s =

fp,s

min{fp,s:s∈S} , where fp,s is the fbest value of instance p of P obtained by algorithm s of
S. The performance profiles are shown in Figure 5.2, where the performance ratio and
the percentage of instances solved by each compared algorithm are displayed on the X-
axis and Y -axis, respectively. When the value of X-axis is 1, the corresponding value of
Y -axis indicates the fraction of instances for which algorithm s can reach the best fbest
value of the set S of the compared algorithms.

123

Part II, Chapter 5 – A threshold search based memetic algorithm for the DCKP

From Figure 5.2, we observe that our TSBMA algorithm has a very good performance
on the 100 benchmark instances of Set I compared to the reference algorithms. For the
50 instances 1Iy to 10Iy, TSBMA and CPANS are able to reach 100% best fbest values
on these 50 instances, while PTS and PNS fail on around 15% of the instances. When
considering the 50 instances 11Iy to 20Iy, the plot of TSBMA strictly runs above the plots
of PNS and CPANS, revealing that our algorithm dominates the reference algorithms on
these 50 instances. These outcomes again confirm the high performance of our TSBMA
algorithm.

!

!

!"#

!"$

!"%

!"&

'

' '"!!' '"!!# '"!!('"!!$ '"!!) '"!!%

!
"#
$"
%
&'
(
"
)
*
+%
,&
'%
$"
,
,)
-.
"/
0!
!
"
#
$1

!"#*)#2'%$" #'&+))% +%,&'%$", 34" &) 354"

!"#

!$#

%!&$#

"#'(&

!

!

!"#

!"$

!"%

!"&

'

' '"!!# '"!!$ '"!!% '"!!& '"!'

!
"#
$"
%
&'
(
"
)
*
+%
,&
'%
$"
,
,)
-.
"/
0!
!
"
#
$1

!"#*)#2'%$" #'&+))% +%,&'%$", 334" &) 564"

!"#

$!%"#

&#'(%

Figure 5.2 – Performance profiles of the compared algorithms on the 100 DCKP instances
of Set I.

Comparative results on the 6240 benchmark instances of Set II

Table 5.2 summarizes the comparative results of our TSBMA algorithm on the 6240
instances of Set II, together with the three reference algorithms mentioned in 5.3.1. Note
that three ILP formulations were studied in [CFS21], we extracted the best results of
these formulations in Table 5.2, i.e., the results on instances CC and CR (conflict graph
density from 0.10 to 0.90) with ILP2 and the results on very sparse instances SC and SR
(conflict graph density from 0.0001 to 0.005) with ILP1. Columns 1 and 2 of Table 5.2
identify each instance class and the total number of instances of the class. Columns 3 to
5 indicate the number of instances solved to optimality by the three reference algorithms.
Column 6 shows the number of instances for which our TSBMA algorithm reaches the
optimal solution proved by exact algorithms. The number of new lower bounds (denoted
by NEW LB in Table 5.2) found by TSBMA is provided in column 7. The best results
of the compared algorithms are highlighted in bold. In order to further evaluate the
performance of our algorithm, we summarize the available comparative results between

124

5.4. Analysis and discussions

MSBTS and the main reference algorithm CFS in columns 8 to 10. The last three rows
provide an additional summary of the results for each column.

From Table 5.2, we observe that TSBMA performs globally very well on the instances
of Set II. For the 5760 CC and CR instances, TSBMA reaches most of the proved optimal
solutions (5381 out of 5389) and discovers new lower bounds for 323 difficult instances
whose optima are still unknown. For the 240 very sparse SC instances, TSBMA matches
195 out of 200 proved optimal solutions and finds 24 new lower bounds for the remaining
instances. Although TSBMA successfully solves only 9 out of the 229 solved very sparse
SR instances, it discovers 7 new lower bounds. The high performance of TSBMA is further
evidenced with the comparison with the best exact algorithm CFS (last three columns).

Notice that the performance of CPLEX with ILP1 is better than TSBMA as well as
the two reference algorithms BCM and CFS on the two classes of very sparse instances
(SC and SR). As analyzed in [CFS21], one of the main reasons is that the LP relaxation
of ILP1 provides a very strong upper bound, which makes the ILP1 formulation very
suitable for solving very sparse instances. The disjunctive constraints become very weak
when the conflict graph is very sparse. For these two classes of instances, the pure branch-
and-bound CFS algorithm is more effective on extremely sparse instances with densities
up to 0.005. On the contrary, our TSBMA algorithm is more suitable for solving sparse
instances with densities between 0.01 and 0.05. In fact, the new lower bounds found by
TSBMA all concern instances with a density of 0.05. Finally, the TSBMA algorithm
remains competitive on the 240 correlated sparse instances SC, even if the density is the
smallest (0.001), which means that only the random sparse instance class SR is challenging
for TSBMA.

In summary, our TSBMA algorithm is computational efficient on a majority of the
6240 benchmark instances of Set II and is able to discover new lower bounds on 354
difficult DCKP instances, whose optimal solutions are still unknown.

5.4 Analysis and discussions

In this section, we analyze two essential components of the TSBMA algorithm: the im-
portance of the threshold search and the contribution of the operation-prohibiting mech-
anism. The studies in this section are based on the 50 benchmark instances 11Iy to 20Iy
of Set I.

125

Part II, Chapter 5 – A threshold search based memetic algorithm for the DCKP

Table 5.2 – Summarized comparisons of the TSBMA algorithm against each reference
algorithm on the 6240 DCKP instances of Set II.

Class Total
ILP1,2 [CFS21] BCM [BCM17] CFS [CFS21] TSBMA TSBMA vs. CFS

Solved Solved Solved Solved New LB #Wins #Ties #Losses
C1 720 720 720 720 720 0 0 720 0
C3 720 584 720 720 716 0 0 716 4
C10 720 446 552 617 617 91 91 629 0
C15 720 428 550 600 600 117 117 603 0
R1 720 720 720 720 717 0 0 717 3
R3 720 680 720 720 720 0 0 720 0
R10 720 508 630 670 669 37 37 681 2
R15 720 483 590 622 622 78 78 641 1
SC 240 200 109 156 195 24 70 165 5
SR 240 229 154 176 9 7 43 8 189
Total on CC and CR 5760 4569 5201 5389 5381 323 323 5427 10
Total on SC and SR 480 429 263 332 204 31 113 173 194
Grand total 6240 4998 5424 5721 5585 354 436 5600 204

5.4.1 Importance of the threshold search

The threshold search procedure of the TSBMA algorithm is the first adaptation of the
threshold accepting method to the DCKP. To assess the importance of this component,
we compare TSBMA with two TSBMA variants by replacing the TSP procedure with
the first-improvement descent procedure and best-improvement descent procedure. In
other words, these variants (named as MA1 and MA2) use, in each iteration, the first
and the best improving solution S ′ in the neighborhood to replace the current solution,
respectively. We carried out an experiment by running the two variants to solve the
50 instances 11Iy to 20Iy with the same experimental settings of Section 5.3.1. The
performance profiles of TSBMA and these TSBMA variants are shown in Figure 5.3
based on the best objective values (left sub-figure) and the average objective values (right
sub-figure).

From Figure 5.3, we can clearly observe that TSBMA dominates MA1 and MA2
according to the cumulative probability obtained by the fbest and favg values. The plots
of TSBMA strictly run above the plots of MA1 and MA2, indicating TSBMA performs
always better than the two variants. This experiment implies that the adopted threshold
search procedure of TSBMA is relevant for its performance.

126

5.4. Analysis and discussions

!

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

#"!' #"# #"#' #"$

!
"#
$"
%
&'
(
"
)
*
+%
,&
'%
$"
,
,)
-.
"/
0!
!
"
#
$1

!"#*)#2'%$" #'&+)

!"#

!"$

%&'!"

!

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

#"!' #"# #"#' #"$

!
"#
$"
%
&'
(
"
)
*
+%
,&
'%
$"
,
,)
-.
"/
0!
!
"
#
1

!"#*)#2'%$" #'&+)

!"#

!"$

%&'!"

Figure 5.3 – Performance profiles of the compared algorithms on the 50 DCKP instances
11Iy to 20Iy.

5.4.2 Contribution of the operation-prohibiting mechanism

TSBMA avoids revisiting previously encountered solutions with the OP mechanism
introduced in Section 5.2.4. To assess the usefulness of the OP mechanism, we created a
TSBMA variant (denoted by TSBMA−) by disabling the OP component and keeping the
other components unchanged. We ran TSBMA− to solve the 50 11Iy to 20Iy instances
according to experimental settings given in Section 5.3.1 and reported the results in Table
5.3. The first column gives the name of each instance and the remaining columns show
the best objective values (fbest), the average objective values (favg) and the standard
deviations (std). Row #Avg presents the average value of each column and row #Best
indicates the number of instances for which an algorithm obtains the best values between
the two sets of results. The last row shows the p-values from the Wilcoxon signed-rank
test. The best results of the compared algorithms are highlighted in bold.

From Table 5.3, we observe that TSBMA− performs worse than TSMBA. TSBMA−

obtains worse fbest values for 35 out of the 50 instances and worse favg values for 48
instances. Considering the std values, TSBMA− shows a much less stable performance
than TSMBA. Moreover, the small p-values (< 0.05) from the Wilcoxon tests confirm
the statistically significant difference between the results of TSMBA and TSBMA−. This
experiment demonstrates the effectiveness and robustness of the operation-prohibiting
mechanism employed by the TSMBA algorithm.

127

Part II, Chapter 5 – A threshold search based memetic algorithm for the DCKP

Table 5.3 – Comparison between TSBMA− (without the OP mechanism) and TSBMA
(with the OP mechanism) on the instances 11Iy to 20Iy.

Instance TSBMA− TSBMA

fbest favg std fbest favg std
11I1 4960 4960 0.00 4960 4960 0.00
11I2 4940 4940 0.00 4940 4940 0.00
11I3 4950 4949.45 2.18 4950 4950 0.00
11I4 4930 4924 4.42 4930 4930 0.00
11I5 4920 4916.35 4.68 4920 4920 0.00
12I1 4685 4676.95 4.99 4690 4687.65 2.22
12I2 4670 4668.70 3.10 4680 4680 0.00
12I3 4690 4685.45 4.20 4690 4690 0.00
12I4 4680 4669.80 6.36 4680 4679.50 2.18
12I5 4670 4664.50 4.57 4670 4670 0.00
13I1 4525 4511.20 8.55 4539 4534.80 3.60
13I2 4521 4509.25 7.29 4530 4528 4.00
13I3 4520 4515.40 4.55 4540 4531 3.00
13I4 4520 4507.10 6.94 4530 4529.15 2.29
13I5 4530 4513.65 6.51 4537 4534.20 3.43
14I1 4429 4413.55 7.41 4440 4440 0.00
14I2 4420 4413.55 4.47 4440 4439.40 0.49
14I3 4420 4415.20 4.70 4439 4439 0.00
14I4 4420 4412.40 4.57 4435 4431.50 2.06
14I5 4420 4413.85 4.27 4440 4440 0.00
15I1 4359 4346.15 5.06 4370 4369.95 0.22
15I2 4359 4344.10 6.22 4370 4370 0.00
15I3 4359 4341.85 6.54 4370 4369.25 1.84
15I4 4350 4341.05 7.78 4370 4369.85 0.36
15I5 4360 4346.10 5.47 4379 4373.15 4.29
16I1 5020 5013.75 4.93 5020 5020 0.00
16I2 5010 5003.30 5.60 5010 5010 0.00
16I3 5020 5010.65 5.33 5020 5020 0.00
16I4 5020 5008.95 8.24 5020 5020 0.00
16I5 5060 5052.85 8.37 5060 5060 0.00
17I1 4730 4707.50 7.51 4730 4729.70 0.64
17I2 4716 4704.50 6.27 4720 4719.50 2.18
17I3 4720 4705.10 6.68 4729 4723.60 4.41
17I4 4722 4701.20 9.68 4730 4730 0.00
17I5 4720 4706.20 8.37 4730 4726.85 4.50
18I1 4555 4539.75 6.31 4568 4565.80 3.40
18I2 4540 4532.20 4.64 4560 4551.40 3.01
18I3 4570 4545.20 8.58 4570 4569.40 2.20
18I4 4550 4539.30 6.75 4568 4565.20 3.12
18I5 4550 4542.50 5.32 4570 4567.95 3.46
19I1 4432 4424.65 4.71 4460 4456.65 3.48
19I2 4443 4430.85 6.06 4460 4453.25 4.17
19I3 4440 4428.15 6.01 4469 4462.05 4.04
19I4 4450 4431.25 5.63 4460 4453.20 3.89
19I5 4449 4435.65 5.42 4466 4460.75 1.61
20I1 4364 4358.95 2.80 4390 4383.20 3.36
20I2 4360 4356.85 4.25 4390 4381.80 3.78
20I3 4370 4360.45 5.11 4389 4387.90 2.77
20I4 4370 4359.75 5.78 4389 4380.40 1.98
20I5 4366 4357.45 4.78 4390 4386.40 4.05
#Avg 4603.08 4593.13 5.56 4614.14 4611.83 1.80
#Best 15/50 2/50 - 50/50 50/50 -
p-values 2.51e-7 1.68e-9 - - - -

128

5.5. Chapter conclusion

5.5 Chapter conclusion

The disjunctively constrained knapsack problem is a well-known NP-hard model.
Given its practical significance and intrinsic difficulty, a variety of exact and heuristic
algorithms have been designed for solving the problem. In this chapter, we proposed the
threshold search based memetic algorithm that combines for the first time threshold search
with the memetic framework.

Extensive evaluations on a large number of benchmark instances in the literature (6340
instances in total) showed that the algorithm performs competitively with respect to the
state-of-the-art algorithms. Our approach is able to discover 24 new lower bounds out
of the 100 instances of Set I and 354 new lower bounds out of the 6240 instances of Set
II. These new lower bounds are useful for future studies on the DCKP. The algorithm
also attains the best-known or known optimal results on most of the remaining instances.
We carried out additional experiments to investigate the two essential ingredients of the
algorithm (the threshold search technique and the operation-prohibiting mechanism).

129

Part III

Conclusions

130

CONCLUSIONS

This thesis focuses on developing effective approaches for solving two knapsack prob-
lems: the set-union knapsack problem and the disjunctively constrained knapsack problem,
which have received increasing attention in recent years. As the literature review shown
in Chapter 1, considerable progresses have been continually made since the introduction
of these two problems. Meanwhile, given the NP-hard nature and practical significance
of these problems, more powerful algorithms are still needed to push the limits of existing
methods. In this thesis, we aim at advancing the state-of-the-art of solving the SUKP
and the DCKP effectively and robustly. Extensive experimental assessments on multiple
sets of well-known benchmark instances commonly tested in the literature demonstrate
that the proposed algorithms perform competitively with respect to the state-of-the-art
algorithms.

In Chapter 2, we presented the first stochastic local search algorithm to directly
operate the binary search space of the SUKP. The proposed iterated two-phase local
search algorithm (I2PLS) adopts two complementary search components to achieve an
appropriate balance between intensification and diversification. The local optima explo-
ration phase (first phase) attains different local optimal solutions by performing a variable
neighborhood descent search (VND) procedure and a tabu search procedure. The local
optima escaping phase (second phase) examines the unexplored regions by employing a
frequency-based perturbation procedure. Experimental assessments on the 30 benchmark
instances confirmed the performance of the proposed I2PLS algorithm. Specifically, I2PLS
is able to achieve improved best results (new lower bounds) for 18 instances and match
the best-known results for the remaining 12 instances. The first computational results
with the general CPLEX solver show that the optimal solutions can be reached only for
6 small instances. The VND search strategy and the frequency-based local optima escap-
ing strategy are investigated to shed light on their influence on the performance of the
proposed I2PLS algorithm.

In Chapter 3, after investigating the distribution of items among high-quality solu-
tions, we observe that high-quality solutions often contain several identical items (kernel).
For this reason, we designed a kernel based tabu search algorithm (KBTS) to perform

131

an effective examination of the search space, especially the space around the kernel solu-
tions. The proposed KBTS algorithm integrates three complementary search components:
a tabu search procedure to attain different local optimal solutions, a kernel search proce-
dure performs an additional examination of promising regions around the local optima,
a non-kernel search procedure to drive the search to a new and distant region. Evaluated
on two sets of 60 benchmark instances, the proposed KBTS algorithm is demonstrated
to be very competitive compared to the reference algorithms in terms of solution quality,
robustness and computation time. In particular, for the large SUKP instances with at
least 500 items and elements, KBTS dominated all the reference algorithms in all perfor-
mance indicators. Furthermore, we also analyzed the influence of the parameters used in
the proposed algorithm as well as the kernel based components to the performance of the
proposed algorithm.

In Chapter 4, we introduced the solution-based tabu search approach to deal with
the difficult binary optimization problems. The proposed multistart solution-based tabu
search algorithm (MSBTS) algorithm relies on a dedicated solution-based tabu search
procedure to discover high-quality solutions. MSBTS eliminates the need for tuning pa-
rameters for tabu list management by using three hash vectors and associated hash func-
tions to record the previously encountered solutions. To escape from local optima traps,
we employed a simple multistart mechanism based on a greedy randomized initialization
procedure. We assessed the performance of the MSBTS algorithm in terms of solution
quality, computational efficiency and robustness on the two sets of 60 benchmark in-
stances. MSBTS performs well by finding 7 new best-known results (new lower bounds)
and matching the best-known results for the remaining instances. In particular, most of
the 7 instances are of large size (with 985 to 1000 items and elements), which reveals that
TSBMA is effective for solving the most difficult SUKP instances. We also performed an
additional time-to-target analysis (TTT) to confirm the high computational efficiency of
the proposed algorithm.

In Chapter 5, we developed a threshold search based memetic algorithm (TSBMA)
for the disjunctively constrained knapsack problem (DCKP). This is the first approach
that combines the threshold based local optimization with crossover based solution re-
combination to solve the DCKP. The local optimization procedure relies on a multiple
neighborhood threshold search procedure reinforced by an operation-prohibiting mecha-
nism. Then the dedicated double backbone based crossover (DBC) operator is employed
to generate promising offspring solutions. Extensive experimental assessments on two sets

132

of 6340 benchmark instances with a wide range of densities and number of items indicate
that the proposed TSBMA algorithm was superior to the state-of-the-art algorithms. In
particular, TSBMA is able to discover 24 new lower bounds for Set I (100 instances) and
354 new lower bounds for Set II (6240 instances), and match the best-known or known
optimal results on most of the remaining instances. Furthermore, we studied the influence
of the threshold search technique and the operation-prohibiting mechanism and verified
the importance of these two essential ingredients to the performance of the proposed
algorithm.

Perspectives

In this thesis, we proposed several effective heuristic algorithms for solving two knap-
sack problems. For future work, we identify the following perspectives.

For the SUKP, the following three aspects can be considered to improve the cur-
rent work. First, even if the proposed algorithms apply the filtering mechanism or the
sampling technique to reduce the neighborhoods, evaluating a given neighbor solution
remains time-consuming, especially when the size of the instances increases. To speed up
the search process, it is useful to seek some powerful techniques to reduce the complex-
ity of neighborhood evaluation, for example streamlining techniques, new variable-fixing
techniques, or pruning techniques. Second, considering the potential strong correlations
of constituent elements between different items, a hybrid approach combining local search
and population-based search could be helpful to break search barriers and traps. It would
also be interesting to investigate mixed search strategies that explore both feasible and
infeasible solutions. Third, for the KBTS algorithm proposed in Chapter 3, one can in-
vestigate other ways to obtain the kernel solution, e.g., by using frequent pattern mining
technology.

For the DCKP, there are at least three possible directions for future work. First,
TSBMA performed badly on most random sparse instances of SR. It would be inter-
esting to improve the algorithm to better handle such instances. Second, the proposed
approach could be further improved by designing more efficient crossover operators as well
as other dedicated population updating strategies. Third, given the good performance of
the adopted approach, it is worth investigating its underlying ideas to solve related prob-
lems (especially with disjunctive constraints) discussed in the introduction.

Finally, both the SUKP and the DCKP belong to the large family of knapsack prob-

133

lems, it would be interesting to investigate whether the proven techniques and strategies
designed for these two problems remain useful for solving other variants of knapsack
problem.

134

LIST OF FIGURES

2.1 The best objective values (left) and mean objective values (right) of BABC,
BABC*, gPSO and I2PLS for solving three sets of instances. 51

2.2 The standard deviations of BABC, BABC*, gPSO and I2PLS for solving
three sets of instances. 58

2.3 Average of the best objective values (fbest) on the 8 instances obtained by
executing I2PLS with different values of the four parameters. 59

3.1 Flow chart of the KBTS algorithm. 63
3.2 Best objective values, average objective values and standard deviations of

BABC, DHJaya, HBPSO/TS, I2PLS and KBTS on the 30 instances of Set
I (left) and the 30 instances of Set II (right). 74

3.3 Effects of the three parameters on the performance of the KBTS algorithm. 78
3.4 Average of the best objective values (fbest) corresponding to different pa-

rameter settings obtained by the one-at-a-time sensitivity analysis. 79
3.5 Distributions of high-quality solutions corresponding to different item fre-

quencies. 82
3.6 Time-to-target plots of the compared algorithms on four SUKP instances. . 83

4.1 Flow chart of the proposed MSBTS algorithm. 88
4.2 An illustrative example of the main steps of the greedy randomized initial-

ization procedure. 90
4.3 An illustrative example of the random shuffling operation. 94
4.4 An example of a solution forbidden by the hash functions and the associated

hash vectors. 94
4.5 Cumulative probability distributions for the time to reach a target value. . 103
4.6 Impact of the length L of hash vectors on the error rate of the solution-

based tabu search procedure. 105
4.7 Impact of the number of hash vectors on the error rate of the solution-based

tabu search procedure. 106

135

5.1 Flowchart of the proposed TSBMA algorithm. 113
5.2 Performance profiles of the compared algorithms on the 100 DCKP in-

stances of Set I. 124
5.3 Performance profiles of the compared algorithms on the 50 DCKP instances

11Iy to 20Iy. 127

136

LIST OF TABLES

1.1 Summary of main characteristics of the 100 SUKP instances of Set I. . . . 25
1.2 Summary of main characteristics of the 100 DCKP instances of Set I. . . . 32
1.3 Summary of main characteristics of the 6240 DCKP instances of Set II. . . 32

2.1 Settings of parameters. 45
2.2 Computational results and comparison of the proposed I2PLS algorithm

with the reference algorithms on the first set of instances (m > n). 48
2.3 Computational results and comparison of the proposed I2PLS algorithm

with the reference algorithms on the second set of instances (m = n). . . . 49
2.4 Computational results and comparison of the proposed I2PLS algorithm

with the reference algorithms on the third set of instances (m < n). 50
2.5 Summary of numbers of instances for which each algorithm reports a better,

equal or worse fbst value compared to the best-known value in the literature
and p-values of the Wilcoxon singned-rank test on fbest values over all
instances between I2PLS and each reference algorithm including the best-
known values. 52

2.6 Influence of the VND search strategy on the performance of the I2PLS
algorithm. 54

2.7 Impact of the frequency-based local optima escaping strategy on the per-
formance of the I2PLS algorithm. 55

3.1 Parameters settings of KBTS. 73
3.2 Computational results and comparison of the KBTS algorithm with the

reference algorithms on the SUKP instances of Set I. 75
3.3 Computational results and comparison of the KBTS algorithm with the

reference algorithms on the SUKP instances of Set II. 76
3.4 Summarized comparisons of the KBTS algorithm against each reference

algorithm with the p-values of the Wilcoxon signed-rank test over the two
sets of benchmark instances. 77

137

3.5 Parameter levels for the 2-level full factorial experiment. 78
3.6 p-values for the analysis of variances with the significance level 0.05. . . . 79
3.7 Comparison between KBTS (with the kernel components) and KBTS−

(without the kernel components) on the instances of Set II. 81

4.1 Computational results of the MSBTS algorithm and the reference algo-
rithms on the 30 benchmark instances of Set I. 99

4.2 Computational results of the MSBTS algorithm and the reference algo-
rithms on the 30 benchmark instances of Set II. 100

4.3 Summarized comparisons of the MSBTS algorithm against each reference
algorithm over the two sets of benchmark instances. 101

4.4 Time-to-target analysis on the SUKP instances of Set II. 102
4.5 Influence of the hash functions on the average performance of MSBTS

algorithm. 104
4.6 Comparison between MSBTS and MABTS on the instances of Set II. . . . 107

5.1 Summarized comparisons of the TSBMA algorithm against each reference
algorithm with the p-values of the Wilcoxon signed-rank test on the 100
DCKP instances of Set I. 123

5.2 Summarized comparisons of the TSBMA algorithm against each reference
algorithm on the 6240 DCKP instances of Set II. 126

5.3 Comparison between TSBMA− (without the OP mechanism) and TSBMA
(with the OP mechanism) on the instances 11Iy to 20Iy. 128

6.1 Computational results of the TSBMA algorithm with the reference algo-
rithms on the 50 DCKP instances of Set I (1Iy to 10Iy). 142

6.2 Computational results and comparison of the TSBMA algorithm with the
reference algorithms on the 50 DCKP instances of Set I (11Iy to 20Iy). . . 143

138

Part IV

Appendix

139

Chapter 6

APPENDIX

6.1 Computational results on the 100 DCKP instances
of Set I

In this appendix, we report the detailed computational results of the TSBMA algo-
rithm and the reference algorithms (PNS [QW17b], CPANS [QW17a] and PTS [Sal+17])
on the 100 DCKP instances of Set I (see Tables 6.1 and 6.2).

The first two columns of the two tables give the name of each instance and the best-
known objective values (BKV) ever reported in the literature. We employ the following
four performance indicators to present our results: best objective value (fbest), average
objective value over 20 runs (favg), standard deviations over 20 runs (std), and average run
time tavg in seconds to reach the best objective value. However, some of the performance
indicators of the reference algorithms are not available in the literature (i.e., favg, tavg and
std). Note that for [QW17b] (PNS) and [QW17a] (CPANS), the authors reported several
groups of results obtained by using different numbers of processors (range from 10 to 400).
To make a fair comparison, we take the best fbest value of each instance in these groups
of results as the final result. We use the average of the tavg values in these groups as the
final average run time. The last row #Avg indicates the average value of each column.
The 24 new lower bounds discovered by our TSBMA algorithm are highlighted in bold.

141

Table 6.1 – Computational results of the TSBMA algorithm with the reference algorithms
on the 50 DCKP instances of Set I (1Iy to 10Iy).

Instance BKV PNS [QW17b] CPANS [QW17a] PTS [Sal+17] TSBMA (this work)

fbest fbest tavg(s) fbest favg fbest favg std tavg(s)
1I1 2567 2567 2567 17.133 2567 2567 2567 2567 0.00 163.577
1I2 2594 2594 2594 12.623 2594 2594 2594 2594 0.00 19.322
1I3 2320 2320 2320 14.897 2320 2320 2320 2320 0.00 6.060
1I4 2310 2310 2310 13.063 2310 2310 2310 2310 0.00 10.969
1I5 2330 2330 2330 20.757 2330 2321 2330 2330 0.00 63.663
2I1 2118 2118 2118 21.710 2118 2115.2 2118 2117.70 0.46 330.797
2I2 2118 2112 2118 129.390 2110 2110 2118 2111.60 3.20 705.755
2I3 2132 2132 2132 23.820 2119 2112.4 2132 2132 0.00 210.108
2I4 2109 2109 2109 31.377 2109 2105.6 2109 2109 0.00 14.182
2I5 2114 2114 2114 20.040 2114 2110.4 2114 2114 0.00 99.133
3I1 1845 1845 1845 34.683 1845 1760.3 1845 1845 0.00 3.780
3I2 1795 1795 1795 107.993 1795 1767.5 1795 1795 0.00 3.029
3I3 1774 1774 1774 22.490 1774 1757 1774 1774 0.00 3.585
3I4 1792 1792 1792 27.953 1792 1767.4 1792 1792 0.00 3.275
3I5 1794 1794 1794 34.820 1794 1755.5 1794 1794 0.00 9.159
4I1 1330 1330 1330 37.307 1330 1329.1 1330 1330 0.00 1.967
4I2 1378 1378 1378 40.827 1378 1370.5 1378 1378 0.00 3.926
4I3 1374 1374 1374 100.183 1374 1370 1374 1374 0.00 2.431
4I4 1353 1353 1353 26.930 1353 1337.6 1353 1353 0.00 4.167
4I5 1354 1354 1354 81.113 1354 1333.2 1354 1354 0.00 6.196
5I1 2700 2694 2700 122.637 2700 2697.9 2700 2700 0.00 78.215
5I2 2700 2700 2700 111.160 2700 2699 2700 2700 0.00 57.300
5I3 2690 2690 2690 73.640 2690 2689 2690 2690 0.00 18.566
5I4 2700 2700 2700 130.913 2700 2699 2700 2700 0.00 52.807
5I5 2689 2689 2689 279.377 2689 2682.7 2689 2687.65 3.21 289.966
6I1 2850 2850 2850 104.623 2850 2843 2850 2850 0.00 57.997
6I2 2830 2830 2830 93.887 2830 2829 2830 2830 0.00 76.883
6I3 2830 2830 2830 203.677 2830 2830 2830 2830 0.00 157.597
6I4 2830 2824 2830 160.587 2830 2824.7 2830 2830 0.00 328.817
6I5 2840 2831 2840 112.947 2840 2825 2840 2833.10 4.22 378.393
7I1 2780 2780 2780 186.970 2780 2771 2780 2779.40 1.43 483.465
7I2 2780 2780 2780 161.117 2780 2769.8 2780 2775.50 4.97 372.935
7I3 2770 2770 2770 136.310 2770 2762 2770 2768.50 3.57 393.018
7I4 2800 2800 2800 123.957 2800 2791.9 2800 2795.50 4.97 162.060
7I5 2770 2770 2770 149.933 2770 2763.6 2770 2770 0.00 290.591
8I1 2730 2720 2730 472.153 2720 2718.9 2730 2724 4.90 484.264
8I2 2720 2720 2720 109.373 2720 2713.6 2720 2720 0.00 214.760
8I3 2740 2740 2740 112.847 2740 2731.5 2740 2739.55 1.96 207.311
8I4 2720 2720 2720 253.230 2720 2712 2720 2715.35 4.85 518.579
8I5 2710 2710 2710 115.777 2710 2705 2710 2710 0.00 67.003
9I1 2680 2678 2680 134.023 2670 2666.9 2680 2679.70 0.71 316.210
9I2 2670 2670 2670 158.397 2670 2661.7 2670 2669.90 0.44 238.149
9I3 2670 2670 2670 123.280 2670 2666.5 2670 2670 0.00 161.176
9I4 2670 2670 2670 137.690 2663 2657.3 2670 2668.90 2.49 522.294
9I5 2670 2670 2670 131.247 2670 2662 2670 2670 0.00 98.124
10I1 2624 2620 2624 244.020 2620 2613.7 2624 2621.45 1.72 348.617
10I2 2642 2630 2630 144.867 2630 2620.8 2630 2630 0.00 182.474
10I3 2627 2620 2627 198.050 2620 2614.5 2627 2621.40 2.80 326.099
10I4 2621 2620 2620 148.997 2620 2609.7 2620 2620 0.00 105.609
10I5 2630 2627 2630 170.620 2627 2617.6 2630 2629.50 2.18 307.851
#Avg 2403.68 2402.36 2403.42 112.508 2402.18 2393.26 2403.42 2402.47 0.96 179.244

142

Table 6.2 – Computational results and comparison of the TSBMA algorithm with the
reference algorithms on the 50 DCKP instances of Set I (11Iy to 20Iy).

Instance BKV PNS [QW17b] CPANS [QW17a] TSBMA (this work)

fbest fbest tavg(s) fbest favg std tavg(s)
11I1 4950 4950 4950 333.435 4960 4960 0.00 4.594
11I2 4940 4940 4928 579.460 4940 4940 0.00 14.305
11I3 4925 4920 4925 178.400 4950 4950 0.00 69.236
11I4 4910 4890 4910 320.067 4930 4930 0.00 139.197
11I5 4900 4890 4900 222.053 4920 4920 0.00 100.178
12I1 4690 4690 4690 230.563 4690 4687.65 2.22 416.088
12I2 4680 4680 4680 502.600 4680 4680 0.00 224.000
12I3 4690 4690 4690 229.116 4690 4690 0.00 215.103
12I4 4680 4680 4676 367.330 4680 4679.50 2.18 256.300
12I5 4670 4670 4670 487.563 4670 4670 0.00 79.190
13I1 4533 4533 4533 395.985 4539 4534.80 3.60 415.880
13I2 4530 4530 4530 573.718 4530 4528 4.00 361.229
13I3 4540 4530 4540 901.620 4540 4531 3.00 498.622
13I4 4530 4530 4530 315.076 4530 4529.15 2.29 366.951
13I5 4537 4537 4537 343.240 4537 4534.20 3.43 425.064
14I1 4440 4440 4440 483.156 4440 4440 0.00 205.733
14I2 4440 4440 4440 735.505 4440 4439.40 0.49 438.190
14I3 4439 4439 4439 614.733 4439 4439 0.00 146.119
14I4 4435 4435 4434 533.908 4435 4431.50 2.06 106.389
14I5 4440 4440 4440 473.448 4440 4440 0.00 160.900
15I1 4370 4370 4370 797.125 4370 4369.95 0.22 321.296
15I2 4370 4370 4370 676.703 4370 4370 0.00 181.021
15I3 4370 4370 4370 612.792 4370 4369.25 1.84 315.575
15I4 4370 4370 4370 649.398 4370 4369.85 0.36 424.873
15I5 4379 4379 4379 678.354 4379 4373.15 4.29 359.003
16I1 4980 4980 4980 286.130 5020 5020 0.00 205.964
16I2 4990 4990 4980 232.825 5010 5010 0.00 342.824
16I3 5009 5000 5009 199.880 5020 5020 0.00 155.070
16I4 5000 4997 5000 831.750 5020 5020 0.00 86.324
16I5 5040 5020 5040 982.970 5060 5060 0.00 32.837
17I1 4730 4730 4721 422.640 4730 4729.70 0.64 388.541
17I2 4710 4710 4710 248.770 4720 4719.50 2.18 300.275
17I3 4720 4720 4720 454.317 4729 4723.60 4.41 343.016
17I4 4720 4720 4720 432.900 4730 4730 0.00 288.961
17I5 4720 4720 4720 102.468 4730 4726.85 4.50 366.752
18I1 4566 4566 4566 225.010 4568 4565.80 3.40 269.545
18I2 4550 4550 4550 288.862 4560 4551.40 3.01 13.884
18I3 4570 4570 4570 328.555 4570 4569.40 2.20 466.748
18I4 4560 4560 4560 511.527 4568 4565.20 3.12 264.931
18I5 4570 4570 4570 651.887 4570 4567.95 3.46 572.589
19I1 4460 4460 4460 506.945 4460 4456.65 3.48 459.570
19I2 4459 4459 4459 666.900 4460 4453.25 4.17 307.224
19I3 4460 4460 4460 608.913 4469 4462.05 4.04 485.550
19I4 4450 4450 4450 476.755 4460 4453.20 3.89 430.824
19I5 4460 4460 4460 508.730 4466 4460.75 1.61 40.752
20I1 4389 4389 4388 957.410 4390 4383.20 3.36 929.372
20I2 4390 4390 4387 756.908 4390 4381.80 3.78 299.673
20I3 4389 4383 4389 966.010 4389 4387.90 2.77 568.988
20I4 4388 4388 4380 993.630 4389 4380.40 1.98 657.694
20I5 4389 4389 4389 772.495 4390 4386.40 4.05 646.570
#Avg 4608.54 4606.88 4607.58 513.011 4614.14 4611.83 1.80 303.390

143

LIST OF PUBLICATIONS

Published/accepted papers
— Zequn WEI, Jin-Kao HAO. Iterated two-phase local search for the set-union knap-

sack problem. Future Generation Computer Systems 101 (2019): 1005-1017.
— Zequn WEI, Jin-Kao HAO. Kernel based tabu search for the set-union knapsack

problem. Expert Systems with Applications 165 (2021): 113802.
— Zequn WEI, Jin-Kao HAO. Multistart solution-based tabu search for the set-union

knapsack problem. Applied Soft Computing 105 (2021): 107260.

Submitted papers
— Zequn WEI, Jin-Kao HAO. A threshold search based memetic algorithm for the

disjunctively constrained knapsack problem. Computers & Operations Research,
Revision, March, 2021.

144

REFERENCE

[ARR07] Renata M. Aiex, Mauricio G.C. Resende, and Celso C. Ribeiro, « TTT plots:
a perl program to create time-to-target plots », in: Optimization Letters 1.4
(2007), pp. 355–366 (cit. on pp. 83, 98).

[AHM11] Hakim Akeb, Mhand Hifi, and Mohamed Elhafedh Ould Ahmed Mounir,
« Local branching-based algorithms for the disjunctively constrained knap-
sack problem », in: Computers & Industrial Engineering 60.4 (2011), pp. 811–
820 (cit. on p. 28).

[Aru14] Ashwin Arulselvan, « A note on the set union knapsack problem », in: Dis-
crete Applied Mathematics 169 (2014), pp. 214–218 (cit. on p. 21).

[AT17] Mustafa Avci and Seyda Topaloglu, « A multi-start iterated local search al-
gorithm for the generalized quadratic multiple knapsack problem », in: Com-
puters & Operations Research 83 (2017), pp. 54–65 (cit. on p. 36).

[BOS18] Adil Baykasoğlu, Fehmi Burcin Ozsoydan, and M. Emre Senol, « Weighted
superposition attraction algorithm for binary optimization problems », in:
Operational Research (2018), pp. 1–27 (cit. on p. 22).

[BH13] Una Benlic and Jin-Kao Hao, « Breakout local search for the quadratic as-
signment problem », in: Applied Mathematics and Computation 219.9 (2013),
pp. 4800–4815 (cit. on p. 39).

[BCM17] Andrea Bettinelli, Valentina Cacchiani, and Enrico Malaguti, « A branch-
and-bound algorithm for the knapsack problem with conflict graph », in:
INFORMS Journal on Computing 29.3 (2017), pp. 457–473 (cit. on pp. 27,
30, 31, 121, 126).

[CT05] Paola Cappanera and Marco Trubian, « A local-search-based heuristic for the
demand-constrained multidimensional knapsack problem », in: INFORMS
Journal on Computing 17.1 (2005), pp. 82–98 (cit. on p. 36).

145

[CPT99] Alberto Caprara, David Pisinger, and Paolo Toth, « Exact solution of the
quadratic knapsack problem », in: INFORMS Journal on Computing 11.2
(1999), pp. 125–137 (cit. on p. 16).

[CB96] William B. Carlton and J. Wesley Barnes, « A note on hashing functions and
tabu search algorithms », in: European Journal of Operational Research 95.1
(1996), pp. 237–239 (cit. on pp. 86, 90).

[CS96] Diane Castelino and Nelson Stephens, « Tabu thresholding for the frequency
assignment problem », in: Meta-Heuristics, Springer, 1996, pp. 343–359 (cit.
on p. 115).

[Cha+21] Jian Chang, Lifang Wang, Jin-Kao Hao, and Yang Wang, « Parallel itera-
tive solution-based tabu search for the obnoxious p-median problem », in:
Computers & Operations Research 127 (2021), p. 105155 (cit. on pp. 86, 95).

[CH14] Yuning Chen and Jin-Kao Hao, « A “reduce and solve”approach for the
multiple-choice multidimensional knapsack problem », in: European Journal
of Operational Research 239.2 (2014), pp. 313–322 (cit. on p. 36).

[CH15] Yuning Chen and Jin-Kao Hao, « Iterated responsive threshold search for the
quadratic multiple knapsack problem », in: Annals of Operations Research
226.1 (2015), pp. 101–131 (cit. on pp. 36, 115).

[CH17] Yuning Chen and Jin-Kao Hao, « An iterated “hyperplane exploration” ap-
proach for the quadratic knapsack problem », in: Computers & Operations
Research 77 (2017), pp. 226–239 (cit. on pp. 16, 36, 89).

[CH19] Yuning Chen and Jin-Kao Hao, « Dynamic thresholding search for minimum
vertex cover in massive sparse graphs », in: Engineering Applications of Ar-
tificial Intelligence 82 (2019), pp. 76–84 (cit. on p. 115).

[Chl+18] Eden Chlamtác, Michael Dinitz, Christian Konrad, Guy Kortsarz, and George
Rabanca, « The densest k-subhypergraph problem », in: SIAM Journal on
Discrete Mathematics 32.2 (2018), pp. 1458–1477 (cit. on p. 19).

[CFS21] Stefano Coniglio, Fabio Furini, and Pablo San Segundo, « A new combinato-
rial branch-and-bound algorithm for the Knapsack Problem with Conflicts »,
in: European Journal of Operational Research 289.2 (2021), pp. 435–455 (cit.
on pp. 28, 30, 31, 121, 124–126).

146

[CS16] Vitor Venceslau Curtis and Carlos Alberto Alonso Sanches, « An efficient
solution to the subset-sum problem on GPU », in: Concurrency and Compu-
tation: Practice and Experience 28.1 (2016), pp. 95–113 (cit. on p. 15).

[Del+19] Mauro Dell’Amico, Maxence Delorme, Manuel Iori, and Silvano Martello,
« Mathematical models and decomposition methods for the multiple knap-
sack problem », in: European Journal of Operational Research 274.3 (2019),
pp. 886–899 (cit. on p. 16).

[DS06] Luca Di Gaspero and Andrea Schaerf, « Neighborhood portfolio approach for
local search applied to timetabling problems », in: Journal of Mathematical
Modelling and Algorithms 5.1 (2006), pp. 65–89 (cit. on p. 117).

[Dıéa+17] Juan A. Dıéaz, Dolores E. Luna, José-Fernando Camacho-Vallejo, and Martha-
Selene Casas-Ramıérez, « GRASP and hybrid GRASP-Tabu heuristics to
solve a maximal covering location problem with customer preference order-
ing », in: Expert Systems with Applications 82 (2017), pp. 67–76 (cit. on
p. 65).

[DM02] Elizabeth D. Dolan and Jorge J. Moré, « Benchmarking optimization soft-
ware with performance profiles », in:Mathematical Programming 91.2 (2002),
pp. 201–213 (cit. on p. 123).

[DW91] Gunter Dueck and Jens Wirsching, « Threshold accepting algorithms for 0–1
knapsack problems », in: Proceedings of the Fourth European Conference on
Mathematics in Industry, Springer, 1991, pp. 255–262 (cit. on p. 115).

[EC71] Samuel Eilon and Nicos Christofides, « The loading problem », in: Manage-
ment Science 17.5 (1971), pp. 259–268 (cit. on p. 16).

[FAG19] Yanhong Feng, Haizhong An, and Xiangyun Gao, « The importance of trans-
fer function in solving set-union knapsack problem based on discrete moth
search algorithm », in: Mathematics 7.1 (2019), p. 17 (cit. on pp. 22, 36,
45–47).

[FYW19] Yanhong Feng, Jiao-Hong Yi, and Gai-Ge Wang, « Enhanced Moth Search
Algorithm for the Set-Union Knapsack Problems », in: IEEE Access 7 (2019),
pp. 173774–173785 (cit. on p. 22).

147

[FMW96] Carlos E. Ferreira, Alexander Martin, and Robert Weismantel, « Solving mul-
tiple knapsack problems by cutting planes », in: SIAM Journal on Optimiza-
tion 6.3 (1996), pp. 858–877 (cit. on p. 16).

[Fré04] Arnaud Fréville, « The multidimensional 0–1 knapsack problem: An overview »,
in: European Journal of Operational Research 155.1 (2004), pp. 1–21 (cit. on
pp. 17, 18).

[FH05] Arnaud Fréville and SaÏd Hanafi, « The multidimensional 0-1 knapsack prob-
lem—bounds and computational aspects », in: Annals of Operations Research
139.1 (2005), p. 195 (cit. on p. 18).

[FH15] Zhang-Hua Fu and Jin-Kao Hao, « A three-phase search approach for the
quadratic minimum spanning tree problem », in: Engineering Applications of
Artificial Intelligence 46 (2015), pp. 113–130 (cit. on p. 39).

[GJ79] Michael R. Garey and David S. Johnson, Computers and intractability: A
guide to the theory of NP-completeness, W.H. Freeman, 1979 (cit. on p. 26).

[Gav82] Bezalel Gavish, « Allocation of databases and processors in a distributed
computing system », in: Management of Distributed Data Processing (1982),
pp. 215–231 (cit. on p. 17).

[GL98] George Gens and Eugene Levner, « An approximate binary search algorithm
for the multiple-choice knapsack problem », in: Information Processing Let-
ters 67.5 (1998), pp. 261–265 (cit. on p. 17).

[GG66] P.C. Gilmore and Ralph E. Gomory, « The theory and computation of knap-
sack functions », in: Operations Research 14.6 (1966), pp. 1045–1074 (cit. on
p. 17).

[GK96] Fred Glover and Gary A. Kochenberger, « Critical event tabu search for
multidimensional knapsack problems », in: Meta-heuristics, Springer, 1996,
pp. 407–427 (cit. on pp. 36, 65).

[GL97] Fred Glover and Manuel Laguna, Tabu search, Springer Science+Business
Media New York, 1997 (cit. on pp. 43, 65, 68, 86, 90, 118).

[GO20] İlker Gölcük and Fehmi Burcin Ozsoydan, « Evolutionary and adaptive in-
heritance enhanced Grey Wolf Optimization algorithm for binary domains »,
in: Knowledge-Based Systems (2020), p. 105586 (cit. on p. 23).

148

[GNY94] Olivier Goldschmidt, David Nehme, and Gang Yu, « Note: On the set-union
knapsack problem », in: Naval Research Logistics (NRL) 41.6 (1994), pp. 833–
842 (cit. on pp. 7, 20, 21).

[GT90] Dueck Gunter and Scheuer Tobias, « Threshold accepting: A general pur-
pose optimization algorithm appearing superior to simulated annealing », in:
Journal of Computational Physics 90.1 (1990), pp. 161–175 (cit. on p. 115).

[GR19] Frank Gurski and Carolin Rehs, « Solutions for the knapsack problem with
conflict and forcing graphs of bounded clique-width », in:Mathematical Meth-
ods of Operations Research 89.3 (2019), pp. 411–432 (cit. on p. 28).

[Ham94] David M. Hamby, « A review of techniques for parameter sensitivity analysis
of environmental models », in: Environmental monitoring and assessment
32.2 (1994), pp. 135–154 (cit. on p. 78).

[Hao12] Jin-Kao Hao, « Memetic algorithms in discrete optimization », in: Handbook
of Memetic Algorithms, Springer, 2012, pp. 73–94 (cit. on p. 113).

[He+16] Cheng He, Joseph Y.T. Leung, Kangbok Lee, and Michael L. Pinedo, « An
improved binary search algorithm for the Multiple-Choice Knapsack Prob-
lem », in: RAIRO-Operations Research 50.4-5 (2016), pp. 995–1001 (cit. on
p. 17).

[HW18] Yichao He and Xizhao Wang, « Group theory-based optimization algorithm
for solving knapsack problems », in:Knowledge-Based Systems (2018), p. 104445
(cit. on p. 22).

[He+18] Yichao He, Haoran Xie, Tak-Lam Wong, and Xizhao Wang, « A novel binary
artificial bee colony algorithm for the set-union knapsack problem », in: Fu-
ture Generation Computer Systems 78 (2018), pp. 77–86 (cit. on pp. 19, 21,
24, 36, 45, 46, 73, 95, 96).

[Hif14] Mhand Hifi, « An iterative rounding search-based algorithm for the disjunc-
tively constrained knapsack problem », in: Engineering Optimization 46.8
(2014), pp. 1109–1122 (cit. on p. 29).

[HM06] Mhand Hifi and Mustapha Michrafy, « A reactive local search-based algo-
rithm for the disjunctively constrained knapsack problem », in: Journal of
the Operational Research Society 57.6 (2006), pp. 718–726 (cit. on pp. 28,
31).

149

[HM07] Mhand Hifi and Mustapha Michrafy, « Reduction strategies and exact algo-
rithms for the disjunctively constrained knapsack problem », in: Computers
& Operations Research 34.9 (2007), pp. 2657–2673 (cit. on p. 27).

[HMS06] Mhand Hifi, Mustapha Michrafy, and Abdelkader Sbihi, « A reactive local
search-based algorithm for the multiple-choice multi-dimensional knapsack
problem », in: Computational Optimization and Applications 33.2-3 (2006),
pp. 271–285 (cit. on p. 36).

[Hif+14] Mhand Hifi, Stephane Negre, Toufik Saadi, Sagvan Saleh, and Lei Wu, « A
parallel large neighborhood search-based heuristic for the disjunctively con-
strained knapsack problem », in: 2014 IEEE International Parallel & Dis-
tributed Processing Symposium Workshops, IEEE, 2014, pp. 1547–1551 (cit.
on pp. 7, 26, 29).

[HO11] Mhand Hifi and Nabil Otmani, « A first level scatter search for disjunc-
tively constrained knapsack problems », in: 2011 International Conference
on Communications, Computing and Control Applications (CCCA), IEEE,
2011, pp. 1–6 (cit. on p. 29).

[HO12] Mhand Hifi and Nabil Otmani, « An algorithm for the disjunctively con-
strained knapsack problem », in: International Journal of Operational Re-
search 13.1 (2012), pp. 22–43 (cit. on p. 29).

[HSW14] Mhand Hifi, Sagvan Saleh, and Lei Wu, « A fast large neighborhood search for
disjunctively constrained knapsack problems », in: International Symposium
on Combinatorial Optimization, Springer, 2014, pp. 396–407 (cit. on p. 29).

[HSW15] Mhand Hifi, Sagvan Saleh, and Lei Wu, « A hybrid guided neighborhood
search for the disjunctively constrained knapsack problem », in: Cogent En-
gineering 2.1 (2015), p. 1068969 (cit. on p. 29).

[HOV94] Johannes Adzer Hoogeveen, Henricus Oosterhout, and S. L. Van de Velde,
« New lower and upper bounds for scheduling around a small common due
date », in: Operations Research 42.1 (1994), pp. 102–110 (cit. on p. 15).

[HS04] Holger H. Hoos and Thomas Stützle, Stochastic Local Search: Foundations &
Applications, Elsevier / Morgan Kaufmann, 2004 (cit. on p. 36).

150

[Jan99] Klaus Jansen, « An approximation scheme for bin packing with conflicts »,
in: Journal of Combinatorial Optimization 3.4 (1999), pp. 363–377 (cit. on
p. 26).

[JH16] Yan Jin and Jin-Kao Hao, « Hybrid evolutionary search for the minimum sum
coloring problem of graphs », in: Information Sciences 352 (2016), pp. 15–34
(cit. on p. 119).

[JH19] Yan Jin and Jin-Kao Hao, « Solving the Latin square completion problem by
memetic graph coloring », in: IEEE Transactions on Evolutionary Computa-
tion 23.6 (2019), pp. 1015–1028 (cit. on p. 119).

[Kar72] Richard M. Karp, « Reducibility among combinatorial problems », in: Com-
plexity of computer computations, Springer, 1972, pp. 85–103 (cit. on p. 14).

[KPP04] Hans Kellerer, Ulrich Pferschy, and David Pisinger,Knapsack problems, Springer,
2004 (cit. on pp. 7, 14–18, 20, 26).

[LHG20] Xiangjing Lai, Jin-Kao Hao, and Fred Glover, « A study of two evolution-
ary/tabu search approaches for the generalized max-mean dispersion prob-
lem », in: Expert Systems with Applications 139 (2020), p. 112856 (cit. on
p. 65).

[Lai+18a] Xiangjing Lai, Jin-Kao Hao, Fred Glover, and Zhipeng Lü, « A two-phase
tabu-evolutionary algorithm for the 0–1 multidimensional knapsack prob-
lem », in: Information Sciences 436 (2018), pp. 282–301 (cit. on pp. 36, 65,
67, 86, 93, 95, 118–120).

[LHY19] Xiangjing Lai, Jin-Kao Hao, and Dong Yue, « Two-stage solution-based tabu
search for the multidemand multidimensional knapsack problem », in: Euro-
pean Journal of Operational Research 274.1 (2019), pp. 35–48 (cit. on pp. 36,
42, 86, 93, 95, 117, 118).

[Lai+18b] Xiangjing Lai, Dong Yue, Jin-Kao Hao, and Fred Glover, « Solution-based
tabu search for the maximum min-sum dispersion problem », in: Information
Sciences 441 (2018), pp. 79–94 (cit. on pp. 86, 93, 95, 118).

[Lin+19] Geng Lin, Jian Guan, Zuoyong Li, and Huibin Feng, « A hybrid binary par-
ticle swarm optimization with tabu search for the set-union knapsack prob-
lem », in: Expert Systems with Applications 135 (2019), pp. 201–211 (cit. on
pp. 23, 62, 65, 67, 71, 72, 86, 91, 92, 95, 96, 99–101).

151

[LLD10] Wayne Daniel Lister, R.G. Laycock, and A.M. Day, « A Key-Pose Caching
System for Rendering an Animated Crowd in Real-Time », in: Computer
Graphics Forum 29.8 (2010), pp. 2304–2312 (cit. on pp. 7, 20).

[LH19] Xue-Jing Liu and Yi-Chao He, « Estimation of Distribution Algorithm Based
on Lévy Flight for Solving the Set-Union Knapsack Problem », in: IEEE
Access 7 (2019), pp. 132217–132227 (cit. on p. 23).

[Loj+20] Jakub Lojda, Jakub Podivinsky, Ondrej Cekan, Richard Panek, Martin Kr-
cma, and Zdenek Kotasek, « Automatic Design of Reliable Systems Based on
the Multiple-choice Knapsack Problem », in: 2020 23rd International Sympo-
sium on Design and Diagnostics of Electronic Circuits & Systems (DDECS),
IEEE, 2020, pp. 1–4 (cit. on p. 17).

[LMS03] Helena R. Lourenço, Olivier C. Martin, and Thomas Stützle, « Iterated local
search », in: Handbook of Metaheuristics, Springer, 2003, pp. 320–353 (cit. on
p. 39).

[Lu+18] Yinhao Lu, Buyang Cao, Cesar Rego, and Fred Glover, « A Tabu Search
based clustering algorithm and its parallel implementation on Spark », in:
Applied Soft Computing 63 (2018), pp. 97–109 (cit. on p. 86).

[MH78] Ralph Merkle and Martin Hellman, « Hiding information and signatures in
trapdoor knapsacks », in: IEEE Transactions on Information Theory 24.5
(1978), pp. 525–530 (cit. on p. 15).

[MH97] Nenad Mladenović and Pierre Hansen, « Variable neighborhood search », in:
Computers & Operations Research 24.11 (1997), pp. 1097–1100 (cit. on p. 40).

[Mon17] Douglas C. Montgomery, Design and analysis of experiments, John wiley &
sons, 2017 (cit. on p. 78).

[Mos99] Pablo Moscato, « Memetic algorithms: A short introduction », in: New Ideas
in Optimization (1999), pp. 219–234 (cit. on pp. 112, 113).

[Nau78] Robert M. Nauss, « The 0–1 knapsack problem with multiple choice con-
straints », in: European Journal of Operational Research 2.2 (1978), pp. 125–
131 (cit. on p. 17).

[Nav+84] Shamkant Navathe, Stefano Ceri, Gio Wiederhold, and Jinglie Dou, « Verti-
cal partitioning algorithms for database design », in: ACM Transactions on
Database Systems 9.4 (1984), pp. 680–710 (cit. on pp. 7, 20).

152

[NY19] Elias David Nino-Ruiz and Xin-She Yang, « Improved Tabu Search and Sim-
ulated Annealing methods for nonlinear data assimilation », in: Applied Soft
Computing 83 (2019), p. 105624 (cit. on p. 86).

[Ozs19] Fehmi Burcin Ozsoydan, « Artificial search agents with cognitive intelligence
for binary optimization problems », in: Computers & Industrial Engineering
136 (2019), pp. 18–30 (cit. on p. 22).

[OB19] Fehmi Burcin Ozsoydan and Adil Baykasoglu, « A swarm intelligence-based
algorithm for the set-union knapsack problem », in: Future Generation Com-
puter Systems 93 (2019), pp. 560–569 (cit. on pp. 21, 36, 45, 46).

[Pen+16] Bo Peng, Mengqi Liu, Zhipeng Lü, Gary Kochengber, and Haibo Wang, « An
ejection chain approach for the quadratic multiple knapsack problem », in:
European Journal of Operational Research 253.2 (2016), pp. 328–336 (cit. on
p. 36).

[PS09] Ulrich Pferschy and Joachim Schauer, « The Knapsack Problem with Con-
flict Graphs », in: Journal Graph Algorithms and Applications 13.2 (2009),
pp. 233–249 (cit. on p. 27).

[PS17] Ulrich Pferschy and Joachim Schauer, « Approximation of knapsack problems
with conflict and forcing graphs », in: Journal of Combinatorial Optimization
33.4 (2017), pp. 1300–1323 (cit. on p. 27).

[PB19] Iwona Polak and Mariusz Boryczka, « Tabu Search in revealing the internal
state of RC4+ cipher », in: Applied Soft Computing 77 (2019), pp. 509–519
(cit. on p. 86).

[Qin+16] Jin Qin, Xianhao Xu, Qinghua Wu, and T.C.E. Cheng, « Hybridization of
tabu search with feasible and infeasible local searches for the quadratic mul-
tiple knapsack problem », in: Computers & Operations Research 66 (2016),
pp. 199–214 (cit. on p. 65).

[QW17a] Zhe Quan and Lei Wu, « Cooperative parallel adaptive neighbourhood search
for the disjunctively constrained knapsack problem », in: Engineering Opti-
mization 49.9 (2017), pp. 1541–1557 (cit. on pp. 26, 30, 31, 121, 123, 141–
143).

153

[QW17b] Zhe Quan and Lei Wu, « Design and evaluation of a parallel neighbor algo-
rithm for the disjunctively constrained knapsack problem », in: Concurrency
and Computation: Practice and Experience 29.20 (2017), e3848 (cit. on pp. 30,
121, 123, 141–143).

[RRV12] Celso C. Ribeiro, Isabel Rosseti, and Reinaldo Vallejos, « Exploiting run time
distributions to compare sequential and parallel stochastic local search algo-
rithms », in: Journal of Global Optimization 54.2 (2012), pp. 405–429 (cit. on
pp. 83, 98).

[Sal+17] Mariem Ben Salem, Saıd Hanafi, Raouia Taktak, and Hanêne Ben Abdal-
lah, « Probabilistic Tabu search with multiple neighborhoods for the Dis-
junctively Constrained Knapsack Problem », in: RAIRO-Operations Research
51.3 (2017), pp. 627–637 (cit. on pp. 30, 121, 123, 141, 142).

[Sal+18] Mariem Ben Salem, Raouia Taktak, A. Ridha Mahjoub, and Hanêne Ben-
Abdallah, « Optimization algorithms for the disjunctively constrained knap-
sack problem », in: Soft Computing 22.6 (2018), pp. 2025–2043 (cit. on p. 27).

[Sch96] Bruce Schneier, Applied cryptography - protocols, algorithms, and source code
in C, 2nd Edition, John Wiley & Sons, 1996 (cit. on pp. 7, 20).

[SA21] Masoud Shahmanzari and Deniz Aksen, « A Multi-Start Granular Skewed
Variable Neighborhood Tabu Search for the Roaming Salesman Problem »,
in: Applied Soft Computing 102 (2021), p. 107024 (cit. on p. 86).

[Shi79] Wei Shih, « A branch and bound method for the multiconstraint zero-one
knapsack problem », in: Journal of the Operational Research Society 30.4
(1979), pp. 369–378 (cit. on p. 17).

[SAR17] Jay Simon, Aruna Apte, and Eva Regnier, « An application of the multi-
ple knapsack problem: The self-sufficient marine », in: European Journal of
Operational Research 256.3 (2017), pp. 868–876 (cit. on p. 16).

[SZ79] Prabhakant Sinha and Andris A. Zoltners, « The multiple-choice knapsack
problem », in: Operations Research 27.3 (1979), pp. 503–515 (cit. on p. 17).

[TKV04] Christos D. Tarantilis, Chris T. Kiranoudis, and Vassilios S. Vassiliadis, « A
threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle
routing problem », in: European Journal of Operational Research 152.1 (2004),
pp. 148–158 (cit. on p. 115).

154

[Tay16] Richard Taylor, « Approximations of the densest k-subhypergraph and set
union knapsack problems », in: arXiv preprint arXiv:1610.04935 (2016) (cit.
on p. 21).

[TM90] Paolo Toth and Silvano Martello, Knapsack problems: algorithms and com-
puter implementations, John Wiley & Sons Ltd., 1990 (cit. on pp. 15, 16).

[TX16] Manghui Tu and Liangliang Xiao, « System resilience enhancement through
modularization for large scale cyber systems », in: 2016 IEEE/CIC Interna-
tional Conference on Communications in China (ICCC Workshops), IEEE,
2016, pp. 1–6 (cit. on p. 20).

[VH01a] Michel Vasquez and Jin-Kao Hao, « A “logic-constrained” knapsack formu-
lation and a tabu algorithm for the daily photograph scheduling of an earth
observation satellite », in: Computational Optimization and Applications 20.2
(2001), pp. 137–157 (cit. on pp. 62, 67, 69).

[VH01b] Michel Vasquez and Jin-Kao Hao, « A hybrid approach for the 0-1 multidi-
mensional knapsack problem », in: IJCAI, 2001, pp. 328–333 (cit. on p. 36).

[Wan+13] Yang Wang, Zhipeng Lü, Fred Glover, and Jin-Kao Hao, « Backbone guided
tabu search for solving the UBQP problem », in: Journal of Heuristics 19.4
(2013), pp. 679–695 (cit. on pp. 62, 69).

[WWG17] Yang Wang, Qinghua Wu, and Fred Glover, « Effective metaheuristic algo-
rithms for the minimum differential dispersion problem », in: European Jour-
nal of Operational Research 258.3 (2017), pp. 829–843 (cit. on pp. 86, 93, 95,
103).

[WH19] Zequn Wei and Jin-Kao Hao, « Iterated two-phase local search for the Set-
Union Knapsack Problem », in: Future Generation Computer Systems 101
(2019), pp. 1005–1017 (cit. on pp. 62, 65–67, 71, 73, 91, 92, 95–97, 99–101,
117).

[WH20a] Zequn Wei and Jin-Kao Hao, « Kernel based tabu search for the Set-union
Knapsack Problem », in: Expert Systems with Applications 165 (2020), p. 113802
(cit. on pp. 7, 24, 86, 91, 92, 95, 96, 99–101, 107).

[WZ93] David L. Woodruff and Eitan Zemel, « Hashing vectors for tabu search », in:
Annals of Operations Research 41.2 (1993), pp. 123–137 (cit. on pp. 86, 90,
118).

155

[WH20b] Congcong Wu and Yichao He, « Solving the set-union knapsack problem by
a novel hybrid Jaya algorithm », in: Soft Computing 24.3 (2020), pp. 1883–
1902 (cit. on pp. 22, 72, 96, 99–101).

[WH15] Qinghua Wu and Jin-Kao Hao, « A review on algorithms for maximum clique
problems », in: European Journal of Operational Research 242.3 (2015), pp. 693–
709 (cit. on p. 42).

[YKW02] Takeo Yamada, Seija Kataoka, and Kohtaro Watanabe, « Heuristic and exact
algorithms for the disjunctively constrained knapsack problem », in: Journal
of Information Processing Society of Japan 43.9 (2002) (cit. on pp. 7, 26, 28).

[YWC13] Zhen Yang, Guoqing Wang, and Feng Chu, « An effective grasp and tabu
search for the 0–1 quadratic knapsack problem », in: Computers & Operations
Research 40.5 (2013), pp. 1176–1185 (cit. on p. 36).

[Zha04] Weixiong Zhang, « Configuration landscape analysis and backbone guided
local search.: Part I: Satisfiability and maximum satisfiability », in: Artificial
Intelligence 158.1 (2004), pp. 1–26 (cit. on pp. 62, 69).

[Zho+20] Qing Zhou, Jin-Kao Hao, Zhe Sun, and Qinghua Wu, « Memetic search for
composing medical crews with equity and efficiency », in: Applied Soft Com-
puting (2020), p. 106440 (cit. on pp. 86, 113).

[ZHG18] Yangming Zhou, Jin-Kao Hao, and Fred Glover, « Memetic search for identi-
fying critical nodes in sparse graphs », in: IEEE Transactions on Cybernetics
49.10 (2018), pp. 3699–3712 (cit. on p. 119).

[ZHG17] Yi Zhou, Jin-Kao Hao, and Adrien Goëffon, « PUSH: A generalized operator
for the maximum vertex weight clique problem », in: European Journal of
Operational Research 257.1 (2017), pp. 41–54 (cit. on p. 42).

[ZN08] Yunhong Zhou and Victor Naroditskiy, « Algorithm for stochastic multiple-
choice knapsack problem and application to keywords bidding », in: Pro-
ceedings of the 17th International Conference on World Wide Web, 2008,
pp. 1175–1176 (cit. on p. 115).

156

Titre : Algorithmes d’optimisation pour deux problèmes de sac à dos

Mot clés : Problème de sac à dos, Recherche locale, Métaheuristiques, Optimisation combi-

natoire.

Résumé : Cette thèse considère deux pro-
blèmes de sac à dos généralisés : le pro-
blème de sac à dos ensemble-union (SUKP)
et le problème de sac à dos à contraintes dis-
jonctives (DCKP). Ces deux problèmes sont
un modèle utile pour formuler de nombreuses
applications pratiques. Etant donné qu’ils ap-
partiennent à la famille des problèmes NP -
difficiles, il est difficile de les résoudre dans
le cas général. Cette thèse est consacrée à
l’avancement de l’état de l’art pour résoudre
ces problèmes pertinents. Plus précisément,
nous introduisons un algorithme de recherche
locale en deux phases itéré, un algorithme de
recherche tabou basé sur le noyau, un algo-
rithme de recherche tabou basé sur une so-

lution à redémarrages répétés pour résoudre
le SUKP et un algorithme mémétique basé
sur une recherche de seuil pour résoudre le
DCKP. Des études expérimentales réalisées
sur un large éventail d’instances de référence
indiquent que toutes les approches proposées
concurrencent favorablement les algorithmes
de référence. En outre, les expériences sup-
plémentaires montrent les rôles des ingré-
dients clés de nos algorithmes, y compris la
stratégie d’échappement des optima locaux
basée sur la fréquence, l’heuristique de re-
cherche du noyau, la technique de recherche
tabou basée sur la solution pour le SUKP et le
méthode de recherche de seuil dédié pour le
DCKP.

Title: Optimization algorithms for two knapsack problems

Keywords: Knapsack problems, Local search, Metaheuristics, Combinatorial optimization.

Abstract: This thesis considers two general-
ized knapsack problems: the set-union knap-
sack problem (SUKP) and the disjunctively
constrained knapsack problem (DCKP). These
two problems are useful models to formulate
numerous practical applications. Given that
they belong to the family of NP-hard prob-
lems, it is computationally challenging to solve
them in the general case. This thesis is de-
voted to advancing the state-of-the-art for solv-
ing these relevant problems. Specifically, we
introduce an iterated two-phase local search
algorithm, a kernel based tabu search algo-
rithm, a multistart solution-based tabu search

algorithm to solve the SUKP and a threshold
search based memetic algorithm to solve the
DCKP. Computational studies performed on a
wide range of benchmark instances indicate
that all the proposed approaches compete
favourably with state-of-the-art algorithms. Ad-
ditional experiments show the roles of the key
composing ingredients of our algorithms, in-
cluding the frequency-based local optima es-
caping strategy, the kernel search heuristic,
the solution-based tabu search technique for
the SUKP and the dedicated threshold search
method for the DCKP.

	General Introduction
	I Introduction
	Introduction
	Knapsack problems
	Set-union knapsack problem
	Problem introduction
	Applications
	Related work
	Benchmarks

	Disjunctively constrained knapsack problem
	Problem introduction
	Applications
	Related work
	Benchmarks

	Chapter conclusion

	II Contributions
	Iterated two-phase local search for the set-union knapsack problem
	Introduction
	Iterated two-phase local search for the SUKP
	General algorithm
	Solution representation, search space, and evaluation function
	Initialization
	Local optima exploration phase
	Frequency-based local optima escaping phase

	Experimental results and comparisons
	Experimental setting and reference algorithms
	Computational results and comparisons

	Analysis and insights
	Analysis of parameters
	Effectiveness of the variable neighborhood descent search strategy
	Effectiveness of the frequency-based local optima escaping strategy

	Chapter conclusion

	Kernel based tabu search for the set-union knapsack problem
	Introduction
	Kernel based tabu search for the SUKP
	Main scheme
	Solution representation, search space, and evaluation function
	Dynamic initialization
	Tabu search procedure
	Kernel search procedure
	Direct perturbation procedure
	Non-kernel search procedure
	Time complexity
	Discussions

	Computational results and comparisons
	Experimental protocol and reference algorithms
	Computational results and comparisons

	Analysis
	Analysis of parameters
	Impact of kernel search and non-kernel search
	Distribution of high-quality solutions and rationale of kernel search
	Time-to-target analysis

	Chapter conclusion

	Multistart solution-based tabu search for the set-union knapsack problem
	Introduction
	Multistart solution-based tabu search for the SUKP
	Search space, solution representation, and evaluation function
	Main framework
	Greedy randomized initialization
	Solution-based tabu search
	Computational complexity and discussion

	Computational results and comparisons
	Benchmark instances
	Experimental settings
	Computational results
	Time-to-target analysis

	Analysis
	Sensitivity analysis of hash functions
	Error rates of hash functions
	Analysis of solution-based tabu search

	Conclusions

	A threshold search based memetic algorithm for the DCKP
	Introduction
	Threshold search based memetic algorithm for the DCKP
	General procedure
	Solution representation, search space, and evaluation function
	Population initialization
	Local optimization using threshold search
	Crossover operator
	Population updating
	Time complexity

	Computational results and comparisons
	Experimental settings
	Computational results and comparisons

	Analysis and discussions
	Importance of the threshold search
	Contribution of the operation-prohibiting mechanism

	Chapter conclusion

	III Conclusions
	Conclusions
	List of Figures
	List of Tables

	IV Appendix
	Appendix
	Computational results on the 100 DCKP instances of Set I

	List of Publications
	Bibliography

