
HAL Id: tel-03352421
https://theses.hal.science/tel-03352421

Submitted on 23 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the role of Actions and Machine Learning in
Artificial Agent Perception.

Hugo Caselles-Dupré

To cite this version:
Hugo Caselles-Dupré. On the role of Actions and Machine Learning in Artificial Agent Perception..
Machine Learning [cs.LG]. Institut Polytechnique de Paris, 2021. English. �NNT : 2021IPPAE006�.
�tel-03352421�

https://theses.hal.science/tel-03352421
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
1I

P
PA

E
00

6

On the role of Actions and Machine
Learning in Artificial Agent Perception

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à École nationale supérieure de techniques avancées

École doctorale n◦626 École Doctorale de l’Institut Polytechnique de Paris (ED IPP)
Spécialité de doctorat : Informatique, Données, IA

Thèse présentée et soutenue à Paris, le 10 Juin 2021, par

HUGO CASELLES-DUPRÉ

Composition du Jury :

Olivier Sigaud
Professor, Sorbonne Université, Institut des Systèmes Intelligents et
de Robotique

Président

Sylvain Argentieri
Associate Professor, Sorbonne Université, Institut des Systèmes
Intelligents et de Robotique

Rapporteur

Jean-Baptiste Mouret
Director of Research, INRIA (équipe LARSEN) Rapporteur

Irina Higgins
Research Scientist, DeepMind Examinateur

Alessandro Lazaric
Research Scientist, Facebook Artificial Intelligence Research Examinateur

David Filliat
Professor, ENSTA Paris (U2IS) Directeur de thèse

Michaël Garcia Ortiz
Lecturer, City of London University Co-directeur de thèse

2

Acknowledgements

Je suis heureux et nostalgique de conclure mon doctorat. Ces trois années
furent une expérience humaine forte et enrichissante, qui, j’en suis conscient,
influencera beaucoup ma personnalité et mes futures décisions. Je dois ad-
mettre que contrairement à beaucoup d’histoires que l’on raconte, ma thèse
fut agréable et peu stressante. Je me suis toujours rendu compte que j’avais
la chance de pouvoir prendre trois années pour me consacrer pleinement
à une activité de recherche, avec très peu de contraintes intelectuelles, et
un salaire correct. Cette chance là, je la dois à beaucoup de personnes, et
j’aimerais profiter de cette section de mon thèse pour les remercier.

Premièrement j’aimerais remercier mes parents, François et Anne-Marie,
et mon frère Paul pour m’avoir fourni une éducation qui m’a permis de
développer curiosité, sens critique et ouverture d’esprit, trois atouts nécéssaires
au travail de chercheur.

Deuxièmement j’aimerais remercier David et Michael, mes deux super-
viseurs, qui ont endossé leur rôle à merveille dans cette thèse. Ils m’ont
grandement aidé à poursuivre ma thèse en étant toujours à l’écoute et sans
jamais me mettre de pression inutile. Cela m’a permis de travailler en toute
détente, dans des conditions idéales.

Je tenais à remercier mes collègues et collaborateurs de l’ENSTA, en
particulier Timothée, René, Vyshakh et Antonin, qui m’ont donné un envi-
ronnement de travail avec le juste équilibre entre calme et stimulation. Je
remercie aussi mes collègues de Softbank, avec qui j’ai beaucoup échangé,
notamment Alban, ce qui a contribué à l’aboutissement de mes projets de
recherche. J’en profite aussi pour remercier mes collègues de l’INRIA Bor-
deaux, notamment Cédric et Adrien, avec qui j’ai passé d’excellents moments
en conférence partout dans le monde.

Je voudrais aussi remercier mes amis (la boite, bt et le J, l’asint, ...) car
c’est grâce à eux que la vie est sympathique et donne envie d’être vécue.
Merci aussi pour toutes les surprises que vous m’avez fait pour la fin de ma
thèse, ça m’a beaucoup touché.

Je me dois de faire une mention très spéciale à mes gavas d’Obvious,
Gauthier et Pierre, sans qui cette thèse aurait sûrement été bien plus com-
pliquée. Je suis heureux d’avoir trouvé un équilibre entre mes activités de
recherche et nos activités d’artiste. Au delà d’un équilibre, ces deux activités

3

se sont révélées très complementaires: notre expérience ensemble est si forte
qu’elle m’a permis de relativiser sur à peu près tout, et gagner un recul qui
m’aide énormément dans la recherche, mais aussi dans la vie. Merci !

Finalement j’aimerais remercier Marine, mon bruhbruh, pour m’avoir
accompagné durant ces trois années. C’est rigolo de se dire que la thèse nous
effrayait un peu pour notre couple, alors que c’est passé comme une lettre à la
poste. Mais c’est surement grâce à ta patience, ton attention et ton support
quotidien. Je te remercie de m’avoir écouté lorsque je te racontais des choses
concernant mes recherches qui ne t’interessait pas forcément, et aussi d’avoir
partagé les moments de joies avec moi, comme lorsque j’ai appris pour le
papier NeurIPS en vacances ensemble. Ces trois ans ne représentent qu’une
fraction de notre histoire qui dure depuis beaucoup plus longtemps. J’espère
qu’elle continuera beaucoup plus longtemps encore, et j’ai hâte de la vivre
avec toi !

4

Contents

1 Introduction 1

1.1 The role of Automation . 1

1.1.1 Historical perspective 2

1.1.2 Robots in Human Environments 3

1.2 The problem of perception . 4

1.2.1 Hypothesis . 4

1.2.2 The role of action in perception 4

1.2.3 Learning instead of programming 5

1.3 Research directions for the problem of perception 5

1.3.1 Machine Learning approaches 5

1.3.2 Embodied agent approaches and developmental robotics 8

1.4 Limitations as a starting point for undertaken research 9

1.4.1 Problem simplification and the choice of simulations . 9

1.4.2 Task-specific knowledge 10

1.4.3 Technological locks . 10

1.4.4 Lack of development 11

1.5 Contributions . 11

1.6 Publications . 12

1.6.1 Conferences . 12

1.6.2 Workshops . 12

1.7 Outline . 13

2 The problem of learning perception 15

2.1 Perception: problem definition and hypotheses 15

2.1.1 Perception problem definition 16

2.1.2 Hypothesis: unsupervised learning 16

2.1.3 Hypothesis: agents and environments 17

2.1.4 Hypothesis: innate vs acquired 18

2.1.5 Related work . 19

2.2 Experimental setups . 20

2.2.1 Real robots, a problem 20

2.2.2 Simulations . 22

2.3 Conclusion. 25

5

3 Representation learning for perception and applications 27
3.1 Background on Representation Learning methods 28

3.1.1 Image models . 28
3.1.2 Forward and inverse models 32
3.1.3 Reinforcement learning algorithms 33
3.1.4 Continual Learning . 34
3.1.5 Contributions to the field 35

3.2 Contribution: S-TRIGGER 36
3.2.1 Abstract . 36
3.2.2 Introduction and contributions 36
3.2.3 Related work . 38
3.2.4 Continual State Representation Learning with Self-

Triggered Generative Replay 39
3.2.5 Experimental setting 41
3.2.6 Experiment 1: Proof of concept 41
3.2.7 Experiment 2: Robustness tests 44
3.2.8 Conclusion . 47

3.3 Contribution: DisCoRL . 47
3.3.1 Abstract . 47
3.3.2 Introduction and contribution 47
3.3.3 Related work . 48
3.3.4 Methods . 50
3.3.5 Experimental setup . 52
3.3.6 Results . 54
3.3.7 Discussion . 58
3.3.8 Conclusion . 59

3.4 Conclusion on Representation Learning 59

4 The role of Actions in Disentangled Representation Learn-
ing 61
4.1 On the importance of disentanglement 61
4.2 Symmetry-based Disentangled Representation Learning . . . 62
4.3 Contribution: SBDRL requires interaction with environments 64

4.3.1 Abstract . 64
4.3.2 Introduction . 64
4.3.3 Symmetry-Based Disentangled Representation Learn-

ing requires interaction with environments 65
4.3.4 Considered environment 68
4.3.5 Theoretical analysis 68
4.3.6 Symmetry-Based Disentangled Representation Learn-

ing in practice . 69
4.3.7 Using (L)SB-disentangled representations for down-

stream tasks . 74
4.3.8 Discussion . 77

6

4.4 Conclusion . 77

5 Sensory commutativity of action sequences: theory 79
5.1 Introduction . 79
5.2 Sensory commutativity of action sequences: motivation 80
5.3 Commutative properties of action sequences 81

5.3.1 Formalism choice . 81
5.3.2 Group structure of the set of action sequences Seq(M) 82
5.3.3 Philipona’s conjecture 84
5.3.4 SC-experiment definition 84

5.4 Sensory commutativity probability of an action sequence . . . 85
5.4.1 SCP definition . 85
5.4.2 SCP computation . 85

5.5 SCP experimental analysis . 86
5.5.1 2D experimental setup 86
5.5.2 3D realistic experimental setup 87
5.5.3 Results . 88

5.6 Conclusion . 90

6 Sensory commutativity of action sequences: applications 93
6.1 SCOD: Object Detection using Sensory Commutativity . . . 94

6.1.1 Introduction . 94
6.1.2 Related work . 97
6.1.3 Object discovery method 98
6.1.4 Experimental setup . 100
6.1.5 Results . 102
6.1.6 Discussion and conclusion 108

6.2 Sensory Commutativity for efficient RL 108
6.2.1 Experimental setup . 108
6.2.2 Results . 109

6.3 Conclusion . 110

7 Conclusion and perspectives 111
7.1 Conclusion . 111
7.2 Perspectives and discussion 112

7.2.1 State Representation Learning 112
7.2.2 Reinforcement Learning 113
7.2.3 Continual Learning . 114
7.2.4 Perception theories combined with contemporary ML 114
7.2.5 Sensory Commutativity 115
7.2.6 Robots and simulations 116

7

8

List of Figures

1.1 Automation illustration . 3

1.2 The Reinforcement Learning framework 6

1.3 The State Representation Learning framework 7

2.1 Example of an embodied agent 18

2.2 Grid-world and arcade environment examples 22

2.3 Control and 3D mazes environment examples 24

2.4 The Flatland environment for 2D embodied agents 25

3.1 Multi-Layered Perceptron illustration 29

3.2 Convolutional Neural Network illustration 29

3.3 The Variational Auto-Encoder architecture 31

3.4 The Generative Adversarial Network architecture 32

3.5 Overview of S-TRIGGER . 37

3.6 S-TRIGGER: Experiment 1 42

3.7 RL evaluation of Experiment 1 44

3.8 S-TRIGGER: Experiment 2 45

3.9 RL evaluation of Experiment 2 46

3.10 Tasks considered in DisCoRL 48

3.11 Overview of our full pipeline for DisCoRL 50

3.12 Data generation strategies for DisCoRL 55

3.13 DisCoRL results . 56

3.14 DisCoRL main results . 57

4.1 Environment considered for SBDRL 65

4.2 Options for learning (L)-SB representations 70

4.3 Forward-VAE architecture for LSB representation learning . . 71

4.4 Downstream tasks evaluation of disentangled representations 76

5.1 Example of action sequences that do not commute 83

5.2 2D environment for SCP . 86

5.3 iGibson simulator . 87

5.4 SCP results on Flatland . 88

5.5 SCP results on iGibson . 89

9

6.1 Intuition for our approach SCOD for object discovery 94
6.2 Overview of our approach SCOD for object discovery 96
6.3 Training set and inference results with the mask predictor for

SCOD . 99
6.4 Generalization study of SCOD 100
6.5 Immovable object detection with SCOD 103
6.6 Object detection and tracking pipeline. We first use SCOD to

detect an object, and use the learned mask to track it using
STM, a semi-supervised video object segmentation algorithm. 104

6.7 Algorithm design alternatives for SCOD 105
6.8 Comparison of mask predictions between Flownet and RAFT 106
6.9 Object detection on Turtlebot using SCOD 107
6.10 RL task and results for SCP experiment 109

7.1 The Fetch Robot . 116
7.2 The Spot Robot . 117
7.3 The iGibson simulator . 118

10

List of Tables

3.1 S-TRIGGER: error reconstruction evaluation 43
3.2 DisCoRL: mean normalized performance with different distil-

lation losses . 55

6.1 Quantitative results of SCOD using different mask predictors
algorithms . 105

11

12

List of abbreviations

• ML Machine Learning

• NLP Natural Language Processing

• CL Continual Learning

• DL Deep Learning

• NN Neural Network

• CNN Convolutional Neural Network

• MLP Multi Layer Perceptron

• RL Reinforcement Learning

• SRL State Representation Learning

• SC Sensory Commutativity

• SCP Sensory Commutativity Probability

• SCOD Sensory Commutativity Object Detection

• SMCT SensoriMotor Contingencies Theory

• ALE Arcade Learning Environment

• DOF Degree Of Freedom

• GAN Generative Adversarial Networks

• VAE Variational AutoEncoder

• MDP Markov Decision Process

• EWC Elastic Weight Consolidation

• S-TRIGGER Self-Triggered Generative Replay

• PPO Proximal Policy Optimization

13

• SBDRL Symmetry-Based Disentangled Representation Learning

• AOD Active Object Detection

14

English summary

Automation is the medium by which the human species can free itself from
the burden of tasks it has already solved. Such tasks are omnipresent in our
daily lives, at home or in a professional context. A great quest in research
is to build agents that can act and reason in the real-world, automating
those solved tasks. For that, agents have to build a perception of their
environments, just like humans do.

Directly programming those agents is infeasible because of the complex-
ity of the world and its interaction. That is why learning-based approaches
have been prevalent in research for the past 20 years. While supervised
learning of algorithms using labeled data has provided numerous useful ap-
plications, having agents that perceive the world as well as biological agents
do would require prohibitive amounts of labeled data. Research has thus
opted for an unsupervised or weakly-supervised approach for building soft-
ware algorithms that learn from data and can then be embedded in real
robots that solve tasks in the real world. Most of the time those algo-
rithms are trained in simulation for computational reasons (parallelization
and higher speed than real-life).

On this concept, several learning approaches have been created for build-
ing agent perception. We have Machine Learning-based approaches that
benefit from the Deep Learning revolution which allow the construction of
hierarchical representation of data that can be used for task solving.

Among the Machine Learning approaches, we have several sub-fields that
each tackle different aspects of perception that agents should have. State
Representation Learning (SRL) focuses on learning representations of what
the agents experience. SRL tries to mimic the ability of humans to sum-
marize complex scenes into compositional objects and concepts. Continual
Learning (CL) aims at solving the infamous catastrophic forgetting problem
of neural networks, which forget everything they learned when presented
with new data. Humans do not suffer from this problem as we have mem-
ory and selective forgetting mechanisms that allow us to continually learn
throughout our lives. We finally have Reinforcement Learning (RL), which
aims at learning to solve a task by maximizing the reward associated to it,
a mechanism that is also present among biological agents.

On the other hand, we also have more original approaches that do

15

not necessarily have the same performances but are based on promising
paradigms that could allow breakthroughs. Developmental robotics (Dev-
Rob) is a sub-field of robotics which aims at developing biological-inspired
methods for learning on real robots. We also have what we shall call in
this manuscript the Embodied Agent approaches, which are theoretical and
practical considerations based on theories of perception developed in psy-
chology. In these theories, the role of actions is crucial in the development
of perception. We will use this as a basis for most of our contributions.

In this thesis we contribute to those sub-fields of research by developing
theoretical insights and application algorithms which aim at creating agents
with deeper levels of perception of their bodies and the environment. Specif-
ically, we develop two novel approaches for Continual SRL and Continual RL
with applications to real robots. We extend a theory on disentanglement for
Representation Learning, by showing the crucial role of actions in learning.
We finally propose a novel learning mechanism for embodied agents based
on the sensory commutativity of action sequences: we take inspiration from
EA theories and develop theoretical insights as well as learning algorithms
for object detection and self-body discovery.

To conclude, in this thesis we hope to have shed light on promising ways
of developing agent perception using learning mechanisms.

16

Résumé en français

L’automatisation est le moyen par lequel l’espèce humaine peut se libérer
du fardeau des tâches qu’elle a déjà résolues. Ces tâches sont omniprésentes
dans notre vie quotidienne, à la maison ou dans un contexte professionnel.
Une grande ambition dans la recherche est de créer des agents capables d’agir
et de raisonner dans le monde réel, en automatisant des tâches résolues. Pour
cela, nous supposons que les agents doivent construire une perception de leur
environnement, tout comme les humains.

La programmation directe de ces agents est impossible en raison de la
complexité du monde et de ses interactions. C’est pourquoi les approches
fondées sur l’apprentissage ont prévalu dans la recherche au cours des 20
dernières années. Alors que l’apprentissage supervisé des algorithmes util-
isant des données étiquetées a fourni de nombreuses applications utiles, avoir
des agents qui perçoivent le monde aussi bien que des agents biologiques exig-
erait des quantités prohibitives de données étiquetées. La recherche a ainsi
opté pour des approches non supervisées ou faiblement supervisées pour
construire des algorithmes qui apprennent à partir des données et peuvent
ensuite être intégrés dans de vrais robots qui résolvent des tâches dans le
monde réel. La plupart du temps, ces algorithmes sont entrâınés en simula-
tion pour des raisons de coûts de calcul (parallélisation et vitesse plus élevée
que dans la vie réelle).

Sur ce concept, plusieurs approches d’apprentissage ont été créées pour
la perception des agents de construction. Nous avons des approches basées
sur le Machine Learning qui bénéficient de la révolution Deep Learning qui
permettent la construction d’une représentation hiérarchique des données
pouvant être utilisée pour la résolution de tâches.

Parmi les approches d’apprentissage automatique, nous avons plusieurs
sous-domaines qui abordent chacun différents aspects de la perception que
les agents devraient avoir. L’apprentissage de répresentations d’états (ARE)
se concentre sur l’apprentissage des représentations de l’expérience des agents.
Le ARE essaie d’imiter la capacité des humains à résumer des scènes com-
plexes en objets et concepts de composition. L’apprentissage continu vise
à résoudre le célèbre problème d’oubli catastrophique des réseaux de neu-
rones, qui oublient tout ce qu’ils ont appris lorsque de nouvelles données leur
sont présentées. Les humains ne souffrent pas de ce problème car nous avons

17

une mémoire et des mécanismes d’oubli sélectifs qui permettent d’apprendre
continuellement tout au long de notre vie. Nous avons enfin l’apprentissage
par renforcement, qui vise à apprendre à résoudre une tâche en maximisant
la récompense qui lui est associée, mécanisme qui est également présent chez
les agents biologiques.

D’un autre côté, nous avons aussi des approches plus originales qui n’ont
pas forcément les mêmes performances mais reposent sur des paradigmes
prometteurs qui pourraient permettre des progrès de recherche. La robo-
tique développementale est un sous-domaine de la robotique qui vise à
développer des méthodes d’apprentissage inspirées de la biologie sur de vrais
robots. Nous avons aussi ce que nous appelons dans ce manuscrit les ap-
proches de l’agent incarné, qui sont des considérations théoriques et pra-
tiques basées sur les théories de la perception développées en psychologie,
philosophie et sciences cognitives. Dans ces théories, le rôle des actions est
crucial dans le développement de la perception. Nous utiliserons cela comme
base pour la plupart de nos contributions.

Dans cette thèse, nous contribuons à ces sous-domaines de recherche en
développant des connaissances théoriques et des algorithmes d’application
qui visent à créer des agents avec des niveaux plus profonds de perception
de leur corps et de l’environnement. Plus précisément, nous développons
deux approches novatrices pour l’apprentissage de représentation d’états
et l’apprentissage continu avec des applications à de vrais robots. Nous
étendons une théorie sur la désintrication pour l’apprentissage de représentation,
en montrant le rôle crucial des actions dans l’apprentissage. Nous proposons
enfin un nouveau mécanisme d’apprentissage des agents incarnés basé sur
la commutativité sensorielle des séquences d’action: nous nous inspirons
des théories sur la perception et développons des connaissances théoriques
ainsi que des algorithmes d’apprentissage pour la détection d’objets et la
découverte du corps.

Pour conclure, dans cette thèse, nous espérons avoir mis en lumière
des moyens prometteurs de développer la perception des agents à l’aide
de mécanismes d’apprentissage.

18

Chapter 1

Introduction

Contents

1.1 The role of Automation 1

1.1.1 Historical perspective 2

1.1.2 Robots in Human Environments 3

1.2 The problem of perception 4

1.2.1 Hypothesis . 4

1.2.2 The role of action in perception 4

1.2.3 Learning instead of programming 5

1.3 Research directions for the problem of perception 5

1.3.1 Machine Learning approaches 5

1.3.2 Embodied agent approaches and developmental robotics 8

1.4 Limitations as a starting point for undertaken
research . 9

1.4.1 Problem simplification and the choice of simulations 9

1.4.2 Task-specific knowledge 10

1.4.3 Technological locks 10

1.4.4 Lack of development 11

1.5 Contributions . 11

1.6 Publications . 12

1.6.1 Conferences . 12

1.6.2 Workshops . 12

1.7 Outline . 13

1.1 The role of Automation

Humanity benefits greatly from automation. Automation is the medium
by which the human species can free itself from the burden of tasks it has

1

already solved. By solved we mean that given the current knowledge, achiev-
ing the task is doable within a reasonable budget.

1.1.1 Historical perspective

Historically, humans have automated a large number of tasks, and by this
means they have improved their lives. For instance in agriculture: first, the
wheel allowed us to transport heavy objects. Then came more elaborate ma-
chines that allowed us to automate the watering of fields, and finally today
we have complex machines that automate the whole process of agriculture
almost totally. Thanks to this automation, the human species has more food
at its disposal, which allows it to grow in other domains without having to
focus on the burden of agriculture.

Tasks that are automatable are omnipresent in our daily lives, at home
or in a professional context. At home, all chores are repeated every so
often. At work, a large class of actual actions in the workflow require a
low intellectual effort, while being essential for accomplishing greater goals.
These tasks are often considered a burden for the person. While this is a
complex question when considering all the social and economical context, it
is logical to believe that such tasks should be automated. As a disclaimer,
we do not make any political, social or economical considerations in this
purely scientific work. Those considerations are crucial for the application
of automation mechanisms such as the one discussed in this thesis.

Think of it this way: most of the processes we know in our lives would
radically change if a multi-purpose learning robot was available at a rea-
sonable price. Only a restricted amount of activities would not be affected.
Those which require high-level intellectual effort and are non-plannable in
advance: creativity, strategy, brainstorming. The present work does not con-
sider automating those tasks. We consider agents able to solve repetitive
and unpleasant tasks such as domestic chores or cashier work.

This question of how to create a multi-purpose robot has been studied
from various points of view during the last 50 years. Softbank for instance
has invested in several robotics startups including Softbank Robotics Europe
(SBRE, formerly known as Aldebaran, the company financing this thesis in
the CIFRE framework) or Boston Dynamics. This PhD is partly supported
by industry (SBRE) and academia (ENSTA Paris - INRIA Flowers), which
shows that both side of research have interest in the field. SBRE produces
the robot Pepper, which is a robot that allows navigation and manipulation
in human environments. However, the robot is far from being able to be
autonomous. We now ask: how can such a robot be created? Accordingly,
in the thesis, we will focus on the algorithms, i.e. the software, and will not
discuss the making of robots, i.e. the hardware.

2

Figure 1.1: Automation: having machines do unpleasant work instead of us.

1.1.2 Robots in Human Environments

In a factory, the environment is precisely controlled, all actions can be pre-
dicted perfectly and there are no surprise items for the robot to interact with.
Moreover, these environments never change so that a pre-programmed robot
can continue performing well for extended periods of time. Otherwise, if the
task changes, the robots need reprogramming. Hence, the robots do not
need to have very detailed perception of their environment.

We are interested in having robots act in human environments. Con-
trary to a clean warehouse, or a robotic line in a factory, the environments
humans use are complex and designed for human perception. Those envi-
ronments are cluttered, dynamic and ever-changing. The number of objects
to interact with is high, and objects vary in sizes, shapes, textures and col-
ors. The background always changes, the weather changes daily and the
season changes over a longer period of time, etc. Everything considered, the
number of factors influencing perception and action is enormous.

A robot in a human environment thus needs to understand very complex
scenes to plan for actions that fulfill tasks. It should know how to adapt to
the changes that are continually applied to the environment. As a solution,
we could equip the environments with cameras and motion sensors, and per-
ceive the full scene not from the point of view of the robot. However, in our
research, and for easier deployment in general, we want an agent to be able
to act and learn in any new environment, without depending on equipping
this environment further. This type of robots should have first person sen-
sors, to avoid the need of preparing the environment everywhere we want
to have a robot, and enough degrees of freedom to allow manipulation and
navigation. We end up with a complex task: how can such a robot perceive
these human environments?

3

1.2 The problem of perception

Perception is the medium by which agents organize and interpret sensory
stimuli, in order to reason and act in an environment using their available
actions [73]. Although perception is often reduced to a data processing
problem in Computer Science, where perception (images) and action (motor
commands) are separate standalone problems, many theories of perception
insist on the role of action in the problem of perception. Perception is about
learning how sensations change given actions.

1.2.1 Hypothesis

As an hypothesis, we are considering agents which we call embodied: they
are situated in an environment, equipped with a body that allows movement,
navigation and manipulation. Another hypothesis we state is that agents
should build a perception of their environments close to ours, to easily learn
to act in them. That is to say if an agent perceives the world as we do, in a
compositional manner and in high-level terms (concepts of objects, scenes,
and not pixel-level information), it will be much easier for it to solve the
required tasks. This leads us naturally to the question of visual perception
for embodied agents, and how to develop it using learning algorithms.

To have a perception close to a biological agent, embodied agents should
for example: recognize the different elements and agents in the world (other
agents, objects and their properties, the environment, etc), be aware of space
and time and how physics work, be capable of navigation and manipulation
in the environment and have a conceptual understanding of the relation
between cause and effects. This list is not exhaustive but gives a sense of
how complex the problem of perception is. In this thesis, we tackle sub-
problems like object detection, representation learning or continual learning
and aim at making progress on one particular question at a time.

1.2.2 The role of action in perception

More specifically, in this thesis, we are interested in the role of action in the
emergence of perception. Theories of perception like Sensorimotor Contin-
gencies Theory [123] or Gibson’s visual perception theory [53] put forward
the crucial role of actions in the construction of perception. In our contri-
butions, we highlight this role by showing that invariants can emerge from
the combination of observations and motor commands data, i.e. the sensori-
motor stream of data, that agents experience. From those invariant we can
deduce learning mechanisms that can be applied using Machine Learning
models.

4

1.2.3 Learning instead of programming

Directly programming robots to act in the real world is infeasible because
of the complexity of the world and its interaction. Indeed, the world is very
diverse, and one person’s bedroom will typically not be visually similar to
another person’s bedroom, although it will most likely contain the same
element: a bed, a desk, a wardrobe, etc. It is thus impossible to directly
program an agent to tidy a bedroom using RGB-images without having
access to a mechanism that understands the high-level aspect of the visual
scene. That is why learning-based approaches have been prevalent in this
research field for the past 20 years.

While supervised learning of algorithms using labeled data has provided
numerous useful applications, having agents that perceive the world as bi-
ological agents do would require prohibitive amounts of labeled data. It
seems unfeasible to label enough data to make an agent learn everything
about the world. Research has thus opted for an unsupervised or weakly-
supervised approach for building algorithms that learn from data and can
then be embedded in real robots that solve tasks in the real world. More-
over, as highlighted above, perception learning can benefit from actions,
which can’t be exploited in a static dataset, thus requiring learning directly
on the real robot. However, most of the time those algorithms are trained in
simulation for computational reasons (parallelization and higher speed than
real-life).

We will therefore describe current approaches for building algorithms
that help artificial agents understand their surroundings, and propose new
approaches for doing so, that we will test in simulation.

1.3 Research directions for the problem of percep-
tion

Various approaches have been investigated along the two research directions
we have highlighted. The work presented in this thesis will develop along
those two lines following particular approaches that are described thereafter.

1.3.1 Machine Learning approaches

The Deep Learning revolution which started in the 2010s has led to a
plethora of novel approaches in the Machine Learning field to the problem
of perception and common sense. With the hope brought by the astounding
results in image recognition, text-to-speech, automatic translation and sev-
eral other fields, a large part of research lab around the world has focused on
developing these approaches, eventually becoming the standard approach to
any AI-related problem. This naturally also applies to the problem of learn-
ing perception for agents. We focus on three current standard approaches.

5

Figure 1.2: The Reinforcement Learning framework.

Reinforcement Learning

Reinforcement learning (RL) is an area of machine learning concerned with
how software agents ought to take actions in an environment in order to
maximize the notion of cumulative reward [113, 161]. The paradigm is il-
lustrated in Fig.1.2. Reinforcement learning is one of three basic machine
learning paradigms, alongside supervised learning and unsupervised learn-
ing. Reinforcement learning differs from supervised learning in not needing
labelled input/output pairs be presented. Instead the focus is on finding
a balance between exploration (of uncharted territory) and exploitation (of
current knowledge). The environment is typically stated in the form of a
Markov decision process (MDP).

RL is interesting in our work because with Deep Reinforcement Learning,
it is now possible to apply RL to large state spaces such as images, and
therefore learn to interpret these sensations while learning to solve a task,
thus strongly relating perception to action.

State Representation Learning

Representation learning algorithms are designed to learn abstract features
that characterize data. State representation learning (SRL) [96, 136] fo-
cuses on a particular kind of representation learning where learned features
are in low dimension, evolve through time, and are influenced by actions
of an agent. The paradigm is illustrated in Fig.1.3. The representation is
learned to capture the essence and variations in the environment generated
by the agent’s actions; this kind of representation is particularly suitable for
robotics and control scenarios. In particular, the low dimension characteris-
tic of the representation helps to overcome the curse of dimensionality, pro-
vides easier interpretation and utilization by humans and can help improve
performance and speed in policy learning algorithms such as reinforcement
learning.

Disentanglement is also a property of SRL that is investigated in the
problem of building perception using SRL. It’s an unsupervised learning

6

Figure 1.3: The State Representation Learning paradigm is decoupled in
two phases: first learn a representation model for collected sensory states
ot, then feed the state representations st as input to a policy πt = π(st),
which is optimized to solve a task using RL for example. Previous work
[136] has shown this can be more efficient than using directly sensory states
for RL.

technique that breaks down, or disentangles, each feature into narrowly
defined variables and encodes them as separate dimensions. The reasoning
behind this approach is to make it easier to extract useful information when
building classifiers or other predictors. Several definitions of this intuitive
concept have been proposed [104, 68, 10].

Typically, SRL states (with or without disentanglement techniques) are
learned and then fed to RL algorithms, as presented in Fig.1.3. Instead
of directly learning on the raw observations that are often high-dimensional
and complex, it’s easier for the RL algorithms to learn efficient policies when
it only has to act on a restricted dimension space that corresponds to the
factors of variation of the data that the agent receives, which SRL aims at
building.

Continual Learning

The long term goal of creating agents capable of learning during extended
periods of time, without constant supervision, will require the capability of
continually learning about their environment. Indeed, learning about the
world is inherently a progressive/incremental task, since the data distribu-
tion experienced by the agent can change both spatially (e.g. countries) and
temporally (e.g. seasons). Classic ML approaches are not designed to han-
dle this case, where the data distribution evolves through time. The field
of Continual Learning has emerged to alleviate these problems and create
algorithms that can learn continually as data evolves [125, 97].

In the case of the perception problem, this can involve learning visual
features from an agent’s surroundings, and continually updating these fea-

7

tures as its life progresses and the environment evolves, without forgetting
the important features of the past.

1.3.2 Embodied agent approaches and developmental robotics

Aside from Machine Learning approaches presented above, there exists other
approaches that tackle the problem of perception. These approaches are
notably less popular, because they do not benefit from the exceptional per-
formances and demonstrations that deep learning has. This does not mean
that the ideas developed are not original, interesting, and worth pursuing. In
this thesis, we will present such promising ways to progress on the problem
of perception.

Embodied perception theories

In order to build agents that perceive the world as we do, we can take inspi-
ration from theories of perception developed in the field of psychology and
neuroscience. In this manuscript, we particularly focus on two approaches:
Sensorimotor contingencies theory (SMCT) and Gibson’s theory of visual
perception. These approaches aim at understanding how perception emerges
in embodied agents placed in the world.

Sensorimotor contingencies theory (SMCT) [123] is a theory of visual
perception developed by J. Kevin O’Regan that gives a center role to actions
in the development of visual awareness. The theory of perception proposed
by Gibson [53] aims at answering the infamous question: ”how do we see the
world as we do?”. The theory involves empirical research on real humans,
a thorough description of the human environment, and how the individual
experiences said environment.

SMCT and Gibson’s visual perception theory differ on certain aspects of
perception. In this manuscript, starting with inspirations and concepts from
those two theories, we conceptualized and studied the sensory commutativity
of action sequences. This paradigm aims at extracting information about
the agent and its surroundings by comparing the different outcomes that
result from playing an action sequence in different orders from the same
starting point. Based on this, we developed application algorithms for object
detection and self-discovery.

Developmental robotics

Although robotics is of course related to the problem of learning percep-
tion, it is not directly aimed at solving it. Robotics approaches therefore
usually make use of a lot of knowledge about the robot and the environ-
ment, such as pre-programmed complex movements, positions (agents and
objects), augmented visual sensors (depth cameras, 3D scans).

8

In the present thesis, we are interested in the emergence of perception
from raw visual observations and primitive low-level actions, without the
addition of engineered a priori knowledge. This is in line with a particular
approach to robotics called developmental robotics which applies, among
others, to the problem of perception. Developmental robotics [108], or
epigenetic robotics, is a scientific field which aims at studying the devel-
opmental mechanisms, architectures and constraints that allow lifelong and
open-ended learning of new skills and new knowledge in embodied machines.
As in human children, learning is expected to be cumulative and of pro-
gressively increasing complexity, and to result from self-exploration of the
world in combination with social interaction. The typical methodological
approach consists in starting from theories of human and animal develop-
ment elaborated in fields such as developmental psychology, neuroscience,
developmental and evolutionary biology, and linguistics, then to formalize
and implement them in robots.

1.4 Limitations as a starting point for undertaken
research

While the current approaches have made significant progress in the last
decade, the problem of perception is still largely unsolved for a number of
reasons we list here. The hurdles identified here are starting points for the
research and contributions presented in this thesis.

1.4.1 Problem simplification and the choice of simulations

In the problem of perception of embodied agents in human environments,
the ideal platform would probably be a real robot, but for many practical
reasons it is still very difficult to conduct long term experiments with real
robots. A lot of study therefore resort to simulations, but the choice of
simulation is crucial and this issue is currently largely overlooked.

For example, one of the most popular RL benchmark is the Arcade
Learning Environment (ALE) [9], which consists of Atari 2600 arcade video
games like Breakout or Pong. However, ALE is not intended to help create
a multi-purpose learning robot by using Pong as a testbed. ALE is designed
for developing ”domain-independent” learning algorithms. The problem of
perception is precisely domain-dependent: the world we live in is very spe-
cific and is governed by rules that living beings learn to understand in order
to strive and our aim is to have artificial agents that understand our world,
just like living beings do.

ALE is a single example of a larger trend. Most simulations that are used
lack important features of the real life experience of a biological being. In
ML: Mujoco [167], DeepmindLab [8], AI Habitat [147], etc... all miss crucial

9

features, and even in real robotics, robots that cannot displace themselves
are extremely common. While these setups (robotics arms in general) reduce
the problem to make progress, it is still hard to develop perception in these
setups.

Research papers that propose methods and algorithms related to the
problem of perception in which the simulations used do not satisfy basic
criteria like first person partial observability, or coherent physics are useful
for building the stepping stones with which more elaborated agents will be
created. However, the missing features in the simulation used might also
slow down progress on the core issues to face for real-life perception.

1.4.2 Task-specific knowledge

Compared to our generic objective of learning perception, RL algorithms
only learn task-specific knowledge. When an agent is asked to solve a par-
ticular task in an environment, it specializes in this particular task, and is
not able to learn general knowledge about the environment. This prevents
the agent from re-using previous knowledge for solving new tasks rapidly,
i.e. performing transfer learning. While many approaches in ML bene-
fit from transfer learning, like neural network pre-training on ImageNet for
Computer Vision applications, or Transformers pre-training for Natural Lan-
guage Processing applications, this does not seem to be directly applicable to
RL. We have yet to see any RL algorithm that shows such transfer learning
properties.

The promise of State representation learning is closer to what we want
as the learned features can depend on the environment, the perception and
action capacities of the agent, but can be relatively task independent. How-
ever, most work forget the actions, and only learn using the observations.
Actions and observations are tied, and understanding the contingencies is
crucial for perception emergence, as many works have already suggested.

1.4.3 Technological locks

In addition to the aforementioned intrinsic problems of the current ap-
proaches, there are technological locks that prevent researchers from making
progress.

A good example of this is Continual learning and memory with neural
nets in general. The field still has a long way to go before providing useful
tools. For now many propositions are still applied to prevent catastrophic
forgetting on the MNIST dataset. The field is still lacking proper bench-
marks to quantitatively assess performances, which slows down progress,
even if recent propositions go in this direction [41].

Sample efficiency in RL is also an important issue. While RL does not
learn general knowledge about the environment and how it works, it is still

10

the best approach the field came up with to this day for behavior learning.
However the best applications still require a prohibitive amount of compu-
tation and time to learn such behaviour. Most algorithms require millions
of timesteps in the environment before solving tasks.

1.4.4 Lack of development

Many of the above mentioned approaches are also lacking practical develop-
ment.

For example, investigating the learning of disentangled representation
looks promising, at least intuitively. However the proper definition of dis-
entanglement is still debated. To this date, no definition has been widely
accepted. Moreover, disentanglement is mostly viewed as another ML task,
and thus suffers from the same design issue: it is based on offline static
datasets, while the problem we tackle is online.

Approaches based on embodied agents theories of perception is a field
with promising ideas that have been largely developed by psychologists and
philosophers. It is currently under-developed from a modern computer sci-
ence perspective. It needs theoretical and practical development in hard
science to show its full potential.

1.5 Contributions

After setting up the problem of perception learning for artificial agents, we
noticed the shortcomings of current approaches. In this thesis, we have made
several efforts to overcome those shortcomings, and explore under-developed
research directions. We, of course, did not solve the problem of perception
(we would be much too rich to write this thesis), but we believe we asked
relevant research questions and placed them in the context of the current
research landscape. We hope that we shed light on novel scenarios and
proposed interesting algorithms to make progress in promising directions.

The contributions of this thesis are:

• Novel approaches for state representation learning and continual learn-
ing for the embodied agent scenario.

• Theoretical contributions on a theory of disentanglement based on
symmetries.

• Theoretical formalization of sensory commutativity for embodied agents:
a novel approach for the problem of perception learning.

• Application of sensory commutativity: SCP, i.e. Sensory Commuta-
tivity Probability (automatic learning of the importance of each degree
of freedom for an embodied agent).

11

• Application of sensory commutativity: SCOD, i.e. Sensory Commuta-
tivity Object Detection (active object detection for embodied agents).

1.6 Publications

Our work has resulted in the following publications:

1.6.1 Conferences

• ”On the Sensory Commutativity of Action Sequences for Em-
bodied Agents”, H. Caselles-Dupré, M. Garcia-Ortiz, D. Filliat,
International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS) 2021, Extended Abstract, Online. [27]

• ”Symmetry-Based Disentangled Representation Learning re-
quires Interaction with Environments”, H. Caselles-Dupré, M.
Garcia-Ortiz, D. Filliat, Neural Information Processing Systems (NeurIPS)
2019, Vancouver, Canada. [26]

• ”Generative Models from the perspective of Continual Learn-
ing”, H. Caselles-Dupré*, T. Lesort*, M. Garcia-Ortiz, J-F. Goudou,
D. Filliat, International Joint Conference on Neural Networks (IJCNN)
2019, Budapest, Hungary. [95]

• ”S-TRIGGER: Continual State Representation Learning via
Self-Triggered Generative Replay”, H. Caselles-Dupré, M. Garcia-
Ortiz, D. Filliat, International Joint Conference on Neural Networks
(IJCNN) 2021, Online.

1.6.2 Workshops

• ”Object Detection for Embodied Agents using Sensory Com-
mutativity of Action Sequences”, H. Caselles-Dupré, M. Garcia-
Ortiz, D. Filliat, NeurIPS 2020 Workshop on BabyMind. [27]

• ”On the Sensory Commutativity of Action Sequences for Em-
bodied Agents”, H. Caselles-Dupré, M. Garcia-Ortiz, D. Filliat,
RSS’20 Workshop on Self-Supervised Robot Learning & ICML 2020
Workshop on Learning in Artificial Open Worlds. [28]

• ”Continual Reinforcement Learning deployed in Real-life us-
ing Policy Distillation and Sim2Real Transfer”, R. Traoré*,
H. Caselles-Dupré*, T Lesort*, T. Sun, N. Dı́az-Rodŕıguez, D. Fil-
liat, Workshop on “Multi-Task and Lifelong Reinforcement Learning”,
International Conference on Machine Learning (ICML) 2019, Long
Beach, USA. [168]

12

• ”Symmetry-Based Disentangled Representation Learning re-
quires Interaction with Environments”, H. Caselles-Dupré, M.
Garcia-Ortiz, D. Filliat, Workshop on “Structure & Priors in Rein-
forcement Learning”, International Conference on Learning Represen-
tations (ICLR) 2019, New Orleans, USA. [26]

• ”Continual State Representation Learning for Reinforcement
Learning using Generative Replay”, H. Caselles-Dupré, M. Garcia-
Ortiz, D. Filliat, Workshop on Continual Learning, Neural Informa-
tion Processing Systems (NeurIPS) 2018, Montréal, Canada. [24]

• ”Generative Models from the perspective of Continual Learn-
ing”, H. Caselles-Dupré*, T. Lesort* M. Garcia-Ortiz, J-F. Goudou,
D. Filliat, Workshop on Continual Learning, Neural Information Pro-
cessing Systems (NeurIPS) 2018, Montréal, Canada. [95]

• ”Flatland: a Lightweight First-Person 2-D Environment for
Reinforcement Learning”, H. Caselles-Dupré, L. Annabi, O. Ha-
gen, M. Garcia-Ortiz, D. Filliat, Workshop on Continual Unsuper-
vised Sensorimotor Learning, ICDL-EpiRob 2018, Tokyo, Japan. [23]

1.7 Outline

The rest of this manuscript is organized in the following chapters:

• Chapter 2 defines the problem of perception and introduces the hy-
pothesis we use for our work on perception for embodied agents.

• Chapter 3 describes Representation Learning approaches for the prob-
lem of perception and our contribution on Representation Learning,
Continual Learning and Reinforcement Learning for embodied agents.

• Chapter 4 presents our contributions to symmetry-based disentangle-
ment in Representation Learning.

• Chapter 5 introduces our work inspired from perception theories on
Sensory Commutativity and presents our theoretical contributions in
Sensory Commutativity for embodied agents.

• Chapter 6 presents our practical approaches based on Sensory Com-
mutativity: active object detection and improving sample-efficiency in
RL.

• Chapter 7 takes a step back and discusses the merits and shortcomings
of the research undertaken in the thesis, proposes future works and
concludes.

13

14

Chapter 2

The problem of learning
perception

Contents

2.1 Perception: problem definition and hypotheses 15

2.1.1 Perception problem definition 16

2.1.2 Hypothesis: unsupervised learning 16

2.1.3 Hypothesis: agents and environments 17

2.1.4 Hypothesis: innate vs acquired 18

2.1.5 Related work . 19

2.2 Experimental setups 20

2.2.1 Real robots, a problem 20

2.2.2 Simulations . 22

2.3 Conclusion. 25

In this chapter we define the problem of learning perception, and present
the selected hypotheses used for our research in the context of this thesis.

2.1 Perception: problem definition and hypothe-
ses

Perception is the medium by which agents organize and interpret sensory
stimuli, in order to reason and act in an environment using their available
actions [73]. Sensory stimuli usually come in various forms for biological
agents: light, sound, physical contact, etc. In this thesis we focus on visual
perception, i.e. the perception that emerges from visual sensory information
and stimuli.

Thereafter, we propose the definition of the problem of visual percep-
tion considered in this thesis. All the contributions of the thesis aim at
progressing in the understanding and learning of perception in this sense.

15

2.1.1 Perception problem definition

Perception is a puzzling concept that has been widely studied by philoso-
phers, psychologists and cognitive scientists. How come we experience life
and reality as we do? How do babies go from relatively limited and helpless
beings to intelligent adults? These questions are intriguing to humans in
general, and to researchers in AI in particular, as answering these questions
could hold part of the answers of the question of the emergence of artificial
intelligence.

Philosophers developed thought experiments to characterize perception
and its role in our experience of life. Psychologists have developed theories
supported by empirical evidence from experiments with humans or animals
to propose models of perception. Today cognitive sciences and neuroscience
are developing this path by experimenting on a more deeper level the mech-
anisms of perception in our brains.

These research fields aim at explaining how high-level concepts are formed
by the brain using vision. From the high-dimensional sensor apparatus we
have in our ocular system, we are able to extract meaningful and action-
able information about our surroundings. We also observe that animals and
humans are able to transfer to new settings, and we assume that it is be-
cause they acquire transferable knowledge and skills (such as, for example,
common sense, a notion of intuitive physics, of objects, ...). This knowledge
supposedly allows humans and animals to make sense of the world, and this
common-sense allows for generalization across a huge variety of situations.
Humans build on this knowledge to create even more advanced knowledge by
combining other skills like social communication, counter-factual thinking,
etc.

This knowledge is obvious to us and biological beings in general, because
we are well-designed learning agents. The research question is thus: how
can an artificial agent learn common sense?

Hence, there are a number of hypotheses we have to state in order to
study the problem of perception. We will use them after for our contribu-
tions on the study of perception.

2.1.2 Hypothesis: unsupervised learning

In order to build a multi-purpose robot, a naive idea would be to hard-code
it to solve all the tasks we want it to solve. However, it is generally not
feasible to do so: a program to solve all the tasks in the real-world would be
incredibly complex. Sensors are high-dimensional, classical locomotion and
manipulation approaches require a model of the body for planning, and the
world itself has too many interactions to take into account (objects of all
sizes and shapes, a large range of terrains and landscapes, etc). The learning
paradigm is a natural way of alleviating those difficulties to create agents

16

that can reason and act in the world. In addition, biological agents do learn,
and it is the only successful example of intelligence we can observe.

Supervised learning, where humans use labeled data to create software
that can solve tasks is an approach that has many applications such as face
recognition, automatic diagnostics or sorting in supply chains. However it is
not feasible to use this technique for learning generic perception because of
the compositional nature of the world and the variety of the environment:
you can always encounter a scene that you never encountered before. The
technique is not applicable to learning common sense and to the emergence
of agents with strong generalizable skills. Common-sense is associated with
meaning, and there is no meaning without grounding the knowledge in real
experiences.

In order to be able to adapt quickly to any task, agents have to learn on
their own or from a weakly supervised source of data. For instance children
learn by themselves with few, but extremely helpful and precise, feedback
from their parents. We will consider agents that are situated in environ-
ments in which they can act through motor commands, and simultaneously
receive observations using their sensory apparatus. Using this stream of
data and possibly extraneous information or feedback, we want agents to
autonomously learn relevant and re-usable information for task solving like
navigation, manipulation, identification of objects, etc.

2.1.3 Hypothesis: agents and environments

For the problem we consider, there are requirements that need to be met in
experiments so that we are able to study visual perception. In particular,
we only consider a specific set of agent-environment setups for our study of
perception, which we will justify thereafter.

First, an agent should be able to actively select the data it sees [53],
a procedure often called active perception. This is linked to research [53,
131, 134] that argue that perception and common sense emerges from the
relation between sensors and actuators. Perception is not something that
has an objective reality outside of the agent, but only a byproduct of an
agent trying to make sense and survive using its sensors and actuators.

The second aspect is the environment of the agent. In all of the the-
ories of perception mentioned before, it is a critical aspect often studied
deeply. The theories aim at explaining the emergence of perception from
the relationship between the agent and its environment. The very nature of
the environment; its rules, properties and characteristics are precisely what
the philosophers/psychologists/cognitive scientists exploit to explain per-
ception. A change in the environment rules and properties could radically
change perception, and thus life as beings know it. The intelligence and skills
learned by agents are conditioned and constrained by what the agents can
perceive. Poincaré [134], for example, already mentions it in a manuscript

17

in 1895 where he gives an example of a world where light properties are
different, with the supposed consequences that humans would perceive the
world as 4D.

We thus consider an agent-environment experimental setup as viable if
different required features are present. The agent should have a body with
enough degrees of freedom to allow large-scale movement like navigation
and also finer skills like manipulation. The agent should have partial ob-
servations of the environments, using embodied sensors (like eyes/camera).
The environment rules should be similar to those of our world: the world
is composed of objects that obey physical laws. Objects can be movable or
not, collide with each other and agents. The environment should respect
the rules of temporal continuity and causality, ... We call this the embodied
scenario, illustrated in Fig.2.1. The goal is to understand, predict, analyze
the sensorimotor flow of data that an embodied agent receives.

Figure 2.1: Example of an embodied agent. The robot sees the world
through its embodied camera, and has 10 degrees of freedom that allow
navigation and manipulation.

2.1.4 Hypothesis: innate vs acquired

A robotic agent facing deployment in the world would need to learn from
their own experience and continually update their knowledge about the
world. The world changes over time, and our ability to accommodate those
changes is a crucial aspect of our survival and prosperity. Then, equipping
the agent with pre-computed knowledge of the world doesn’t seem suited for
our ever-changing and unpredictable world. By adding prior and assump-
tions in the system, you project your own understanding and pre-conceived

18

ideas about how perception occurs. This is a double-edge sword, as you
greatly reduce the search space, but you might reduce it too much and con-
strain your system too much. This is why we tend to limit the a priori
knowledge given to the agent. This concerns the sensors and motors of the
agent.

About sensors, we aim at making perception emerge from the same sen-
sors that receive biological agents. Robots in uncharted environments can
only rely on particular sensors (rgb camera, lidar, depth, ...). The most sta-
ble is RGB images as observations, and it is also the closest to the human
sensor. We choose to focus on this one for our experiments, however the
underlying principles hold independently on the kind of sensor you would
consider. Hence, we do not give additional information in the observation
received by the agent, such as direct access to depth, position in the en-
vironment, or any information that a biological agent might not have. We
acknowledge that this hypothesis is not necessary: we could construct better
agents using additional information that, whether we like it or not, is at our
disposal. However, this hypothesis is interesting to apply in our case since
we want to understand perception from purely visual information. In this
case it is relevant to restrain the observations of the agent to RGB-images
in order to emulate a scenario encountered by a real robot in the world.
The sense of depth for instance could be learned from interaction with the
environment. In some case, we decide to equip the agent with a basic abil-
ity, like the ability to compare images and telling if they are the same or
different, see our work on object detection using sensory commutativity of
action sequences (Chapter6). We consider this rather primitive ability as
something not necessary to learn, but just a mechanism that allows learning.

About motors, we believe that the agent should learn to control its body
on its own and not receive precise geometric models or pre-defined com-
mands for high level actions like grabbing items for manipulations. Babies
and animals have to learn to control their own bodies, and this learning
experience definitely helps them understand the world [36, 76] and how it
functions. We thus restrict the movements that the agent can already do
when spawning in the environment.

2.1.5 Related work

We illustrate our hypotheses and our research by presenting some related
work that achieves progress in the quest of agent perception.

The learning of affordances is a good example of perception learning in
artificial agents. Affordances is a term created by Gibson [53] that describes
the opportunity for action that elements in the environment provide to an
agent. Depending on the situation, an object can have different affordances,
for instance a chair can be used as a seat or as something to stand on to
reach for objects that are high in altitude. Affordances require a relationship

19

in which the environment and the animal can work together. Recent work
have focused on creating labeled dataset for affordance learning [117, 115],
and with that came several deep learning algorithms that provide methods
for the automatic inference of affordances [116, 87, 39, 30, 46, 181]. By
leveraging the capability of novel deep learning algorithms to map images
to classes, researchers are able to estimate affordances based on images of
an object, eventually leading to the implementation of new perceptual skills
for artificial agents.

Another example is creating an agent’s understanding of the 3D structure
of the environment. By using work by Poincaré and O’Reagan [134, 123]
that suggest that the Euclidean structure of space induces invariants in an
agent’s raw sensorimotor experience, Laflaquière et al. [90] use the ML
paradigm and neural networks to learn a 3D understanding of the world
using raw observation of an agent, in an unsupervised fashion. While these
insights have been present in the literature for decades, even centuries, the
advent of ML research has allowed novel useful implementations of these
ideas.

In the same vein, we have research work that takes inspiration from the
study of intrinsic curiosity among children for developing learning mecha-
nisms for autonomous behaviour and task solving [124, 74, 7]. Babies are
known to play with their environments not randomly, but by trying to au-
tonomously create order, like stacking cubes in a playground [6]. They create
goals for themselves autonomously, and cognitive sciences have discovered
that this learning mechanism helps them develop their perception of the
world. Several implementations of this idea have been made in artificial
systems [128, 32].

2.2 Experimental setups

We now describe the different experimental setups that are available for
implementing algorithms for the problem of perception. In order to test
and validate our idea, we need to pick from the vast possibilities offered in
the research landscape in terms of robots, simulators, tasks, environments
and agents. We first review the (real) robots setup and explain why it
is a problem currently for ML research. We then describe the simulators
available at the moment, and we use our hypothesis presented above to
select which one seems appropriate for the scientific questions of perception
we would like to answer.

2.2.1 Real robots, a problem

The best experimental setup for the problem of perception is obviously a
real-life setup. Having a real robot setup, where the robot can move and

20

manipulate the environment just like a biological agent, is costly and com-
plex. First of all, the state of the art in robot manufacturing shows that
having a high-quality robot, with many Degrees of Freedom (DOF), precise
movements and development features is a monumental challenge in itself.
Low-cost robots are often buggy, fragile and thus cannot really be used for
ML research. High-quality robots are usually expensive (X00,000$+) and
still very slow in general, in order to avoid damages. There exist cheap
low-end robots that allow for cheaper experiments but are limited in what
they can accomplish, like the Pepper robot of SBRE. Recently, Boston Dy-
namics have shown impressive progress with the Spot robot, which is more
affordable given how high-end it is. They also showcased communications
videos of humanoid robots that look impressive but it is still unsure if these
products will be commercialized and engineered for facilitating AI research.

There is a need for cheap robots with enough DOF for complex interac-
tions with their environment, such as unconstrained manipulations in human
environments. This is a challenge faced by the robotics industry, and even
if companies like Softbank Robotics Europe have tried pushing in this direc-
tion with Pepper and Nao robots, there is still a long way to go before having
a proper AI robotic benchmark. In our thesis we were planning on experi-
menting with the Pepper robot but we were not able to do so because of the
limitation of the robot software and what it can accomplish in terms of nav-
igation. This issue inhibits progress towards real-life applications of robots.
With a common benchmark of proper perception tasks on the same acces-
sible robot, the ML research community could make tremendous progress,
just like we saw with the ImageNet challenge (resulted in CNNs and all
computer vision applications), NLP benchmarks (resulted in Transformers
and all NLP+computer vision applications), protein folding competitions
(resulted in AlphaFold which has many potential applications).

In practice, in classical robotics, we often use a controlled robotic setup
with a robotic arm or a mobile robot where we utilize external information
about the agent and the environment, such as position, joint parameters,
object positions, and annotated data. This allows the experimenter to distill
its knowledge in the form of priors into the system (e.g. knowledge of the
workspace in the case of a robot interacting with objects on a table). How-
ever, this information might not be available in the general case. Instead,
in nature, children and animals do not have access to this information when
they are born. They start from a relatively naive setup, and then build
perception via interaction with the environment. We aim at developing the-
ories and applications for this tabula-rasa case where the agent is naive: it
can only actuate its motors (without any description of what they do) and
receive observations through its sensors.

All of these issues make the real-life setup hard to work with. That
is why most researchers in agent perception choose to use simulations to

21

accelerate progress before moving on to real-life deployment. This is also
linked to the fact that we are dealing with statistical learning, which requires
huge quantities of data, thereby increasing again the stress on the platforms.

2.2.2 Simulations

We now describe the simulation benchmarks used in ML research for the
problem of perception, and divide them into two simple categories: the ones
that do satisfy the requirements outlined above for studying the problem,
and the ones that do not.

Figure 2.2: Left: a grid world environment. Right: Atari 2600 arcade
video games.

Grid worlds

The simplest environments, which are often used for prototyping algorithms
and proof of concepts, are called grid worlds. Those worlds are populated
by virtual agents that do not even have a body (only a mathematical entity
equipped with high-level actions), but are rather incarnated by a position
on a given finite 2D map of states. The agent can move discretly on the
map. Depending on the implementation, events can occur when the ”agent”
visits a state, like rewards or penalties.

These environments are useful for understanding novel concepts and vi-
sualization, but they cannot possibly be acceptable benchmarks for the prob-
lem of perception, for obvious reasons (discrete, no agent). We illustrate an
example of Grid World in Fig.2.2 (left). The agent is defined by its position
on the map and can move up, down, left or right. It has the goal to reach
the star position.

22

Retro video games

A very popular RL benchmark is the Arcade Learning Environment (ALE)
[9], which consists of Atari 2600 arcade video games like Breakout or Pong.
Retro video game environments are rampant: VizDoom [82] (Doom game),
Retro Gym [119] (30 SEGA Genesis games) or OpenAI Gym [16] (retro-like
games). We illustrate the Atari suite of games on Fig.2.2 (right).

First, all of these environments have agents ruled by high-level actions
such as jump or go left/right. Reality is not quite as easy: biological agents
have to learn to master their motor commands in order to do crucial fine
manipulation of their environment that allows, for example, to detect moving
objects. This is not modeled after retro games. Moreover, most of these
worlds are 2D and do not possess the same basic properties of real-life such
as first person view or movable objects.

Control environments

Usually developed for robotics setup, control environments aim at learning
fine manipulation with a complex body such as a legged robot or a robotic
hand. Simulators include Mujoco [167], DeepMind’s Control Suite [162],
PyBullet [37]. Fig.2.3 illustrates the MuJoCo suite (left), with 4 different
locomotion tasks. Each agent has a different body and needs to learn to
displace it.

All of them allow precise simulation of realistic movements. However
environments are nonexistent. The agents are placed in void spaces, with one
or two possible interactions with exterior elements at best. Moreover, the
problem is often to learn a policy that maximizes an outcome like reaching
a position fast. The agent is given its position and motor commands. There
are no sensory observations, no image from the eye. This is why the agent
cannot learn anything about interaction with the world, and thus cannot
build perception.

3D mazes with low action space

These environments refer to a 3D world where the agent experiences the
world in first-person, but does not have a proper body with several motors.
Its actions are restricted to move left/right, jump, etc. These environments
are often used for studying navigation and reasoning. Examples are Deep-
Mind Lab [8], VizDoom [82] or AI Habitat [147]. Fig.2.3 illustrates the
DeepMind Lab environment (left), where the agent needs to collect apples
in a maze.

For the same reasons as retro games, since the agents do not have any
bodies, these simulators are not suitable for studying the problem of percep-
tion. Agents should learn to coordinate low-level actions to create high-level
actions. Otherwise fine manipulation of the world is not possible.

23

Figure 2.3: Left: MuJoCo control tasks. Right: the DeepMind Lab envi-
ronment.

3D realistic environments

iGibson is a simulation environment for robotics providing fast visual ren-
dering and physics simulation. It is packed with a dataset with hundreds of
large 3D environments reconstructed from real homes and offices, and inter-
active objects that can be pushed and actuated. The simulator offers a wide
variety of realistic agents with numerous DOF, like the Fetch robot. Fetch
is originally a 10-DOF real robot [174] equipped with a 7-DOF articulated
arm, a base with two wheels, and a liftable torso. In iGibson and in real-life,
Fetch perceives the environment through a camera placed in its head. The
environment and agent setup is illustrated on Fig.2.1.

iGibson is very well suited for studying the problem of perception, be-
cause of how it models most problems a biological agent faces when learning
to manipulate its world. Still, it has many bugs, which is expected as it is
currently being developed and improved. Also, the speed of the simulation
can be prohibitive for large-scale experiments, such as million-frames RL
experiments.

2D realistic environments

To alleviate the problem of computing power requirements, we developed
Flatland [23]. It is a simple, lightweight environment for fast prototyping
and testing. It is of lower complexity compared to similar 3D platforms
(e.g. iGibson), but emulates physical properties of the real world, such
as continuity, multi-modal partially-observable states with first-person view
and coherent physics. We propose to use it as an intermediary benchmark
for problems related to perception. Flatland is highly customizable and
offers a wide range of task difficulty to extensively evaluate the properties
of artificial agents. An example of a Flatland environment is illustrated on
Fig.2.4. The agent has two 2-DOF arms, a base that can spin and move

24

forward or backward, and a head fixed on the base that can pivot. The
agent observes a field of view that is in front of it. It can interact with
moving, movable, or fixed objects, and activate traps or rewards.

Usually, in our experiments, we first prototype our algorithms on Flat-
land, and then move on to iGibson to show that they are robust to more
complex realistic environments.

Figure 2.4: The Flatland environment is an example of a 2D experimental
setup suited for studying the problem of perception.

2.3 Conclusion.

In this chapter we described the setup and context for the problem of learn-
ing perception in artificial agents and the main hypothesis we believe are
important for studying this problem. We then reviewed the potential plat-
forms for such work and we focused on 2D and 3D environments that have
the requirements for studying the problem. We believe it is an important
step towards creating agents that learn to face the difficulties of a real-life
setup.

Now, Chapters 3 to 6 will present the different approaches and algorithms
that have been developed and investigated in this thesis.

25

26

Chapter 3

Representation learning for
perception and applications

Contents

3.1 Background on Representation Learning methods 28

3.1.1 Image models . 28

3.1.2 Forward and inverse models 32

3.1.3 Reinforcement learning algorithms 33

3.1.4 Continual Learning 34

3.1.5 Contributions to the field 35

3.2 Contribution: S-TRIGGER 36

3.2.1 Abstract . 36

3.2.2 Introduction and contributions 36

3.2.3 Related work . 38

3.2.4 Continual State Representation Learning with Self-
Triggered Generative Replay 39

3.2.5 Experimental setting 41

3.2.6 Experiment 1: Proof of concept 41

3.2.7 Experiment 2: Robustness tests 44

3.2.8 Conclusion . 47

3.3 Contribution: DisCoRL 47

3.3.1 Abstract . 47

3.3.2 Introduction and contribution 47

3.3.3 Related work . 48

3.3.4 Methods . 50

3.3.5 Experimental setup 52

3.3.6 Results . 54

3.3.7 Discussion . 58

27

3.3.8 Conclusion . 59

3.4 Conclusion on Representation Learning 59

In this Chapter, we introduce the field of Representation Learning. Rep-
resentation learning is a broad term for all learning methods that create
intermediary representations of data, which can be used to solve tasks effi-
ciently. This approach has received an exponentially rising amount of inter-
est in the last decade, as Deep Learning basically provides efficient methods
for Representation Learning from raw data. Representation Learning can
thus also be applied to the problem of perception, since biological agents
learn abstract concepts from raw data and learn to associate them. When
applied to an agent-environment setup, Representation Learning methods
are often referred to as State Representation Learning methods (SRL).

We now provide an overview of the successful approaches in Represen-
tation Learning for agent perception, and then present our contributions to
this field.

3.1 Background on Representation Learning meth-
ods

3.1.1 Image models

The promise of deep learning is to discover rich, hierarchical models that
represent probability distributions over the kinds of data encountered in
artificial intelligence applications, such as natural images, audio waveforms
containing speech, and symbols in natural language corpora. In this thesis,
we focus on vision approaches. These models are divided into discriminative
models and generative models.

Discriminative models

Discriminative models aim at classifying data into various categories. This
has historically been done with models like bag of features associated with
SVMs [18]. Then came the Deep Learning revolution, where the advent of
neural networks help automatically determine important features of data for
classification.

Neural networks learn by processing data examples, each of which con-
tains a known ”input” and ”output,” forming probability-weighted associa-
tions between the two. The training of a neural network from a given data
example is usually conducted by determining the distance between the pro-
cessed output of the network (the prediction) and the target output, the
value of this distance being the error. As deep Neural Networks models are
fully differentiable, we can calculate the contribution of each parameter to
the error, and change the value of the parameters in the direction which

28

diminishes the error (gradient descent). Successive adjustments will cause
the neural network to produce output which is increasingly similar to the
target output. After a sufficient number of these adjustments the training
can be terminated based upon certain criteria. This is known as supervised
learning. Among many hyper-parameters, the architecture of the neural net-
work is crucial for the quality of training. The basic architecture is a neural
network where all neurons from one layer are connected to all neurons of the
previous and next layer: this is called a Multi Layered Perceptron (MLP),
illustrated on Fig.3.1.

Figure 3.1: A Multi Layered Perceptron with 2 hidden layers.

Convolutional Neural Networks (CNNs) depart from this basic architec-
ture to leverage local properties of images and hierarchical combinations
of features. Instead of connecting all neurons from a layer to all previous
and next layers, they use convolutions to inspect patches of images locally,
and then slide this convolution across the input images. Multiple layers of
such convolution allow the construction of hierarchical representations of
images more easily since images are spatially coherent. The architecture is
illustrated on Fig.3.2.

Figure 3.2: A Convolutional Neural Network.

Around 2012, CNNs enjoyed a huge surge in popularity after a CNN
achieved state-of-the-art performance labeling pictures in the ImageNet chal-

29

lenge. Since Alex Krizhevsky et al. published the paper “ImageNet Classi-
fication with Deep Convolutional Neural Networks” [89] describing the win-
ning AlexNet model, a plethora of research has extended the breakthrough,
with notable models like ResNet [66] for image classification or YOLO [13]
for object detection. Throughout the past several years, CNNs have achieved
excellent performance describing natural images (including ImageNet [38],
COCO [100], and VisualGenome [88]), performing facial recognition (includ-
ing CelebA [102]), and analyzing medical images (including chest x-rays and
photos of skin lesions).

Discriminative models like CNNs learn features about the images that
are related to interesting semantic information about the data, but they
require enormous amounts of labeled data for training. However, these fea-
tures can be re-purposed for other related tasks where less data is available,
which has extensively been done with pre-trained image models on Ima-
geNet, and with great success.

Generative models

Contrary to discriminative models, generative models aim at modelling the
distribution of the data source in order to be able to generate new data
examples. Learning a generative model is a complex task that supposedly
requires understanding abstract concepts in the data, quite like the famous
quote says: what I cannot create I cannot understand. From pretrained
generative models, we can supposedly extract those abstract concepts about
data, which could be used by an agent to understand its surroundings and
improve its perception of the world. We now present the two most popular
frameworks for generative models, Variational Auto-Encoders (VAEs) and
Generative Adversarial Networks (GANs).

VAEs [84] are a particular kind of auto-encoder that learns to map their
input into continuous latent representation, in order to learn the marginal
likelihood of the data x given the latent representation z. This is illustrated
on Fig. 3.3. VAEs learn to reconstruct the input data by compressing it into
the latent space that is of much lower dimension. The optimization process
thus aims at copying the input data by only having access to a summary of
it.

This optimization can be written as the sum of two terms, which then
can be used to derive a tractable lower bound objective to the true objective
called the Evidence Lower Bound (ELBO):

log(pθ(x|z)) ≥ ELBO(φ, θ, x, z) = Eqφ(z|x)[log(pθ(x|z))]−DKL(qφ(z|x)‖p(z))
(3.1)

where DKL is the Kullback-Lieber Divergence between the true and ap-
proximate posterior, and φ, θ respectively represent the weights of the en-
coder and decoder (see Fig. 3.3). In practice, this objective is maximized

30

Figure 3.3: The Variational Auto-Encoder architecture.

using assumptions: the prior p(z) and posterior qφ(z|x) distributions are
parametrized as isotropic unit Gaussians, and the so-called ”reparameter-
ization trick” is used to estimate the gradients of the objective function.
VAEs also have been extended to Conditional-VAEs (or CVAEs) to support
class-conditional generation. More elaborated versions of the VAE have been
proposed such as VAEs that learn disentangled representation of data like
Beta-VAE [69] or CCI-VAE [19], which we use in our research. In those vari-
ations, authors change the loss function of the VAE to induce the learning
of a constrained latent space, which they show can help to learn represen-
tations that are more interpretable and thus better suited for downstream
tasks.

GANs [56] are a framework of generative models, where the learning
process is a minimax game between two neural networks, a generator G and
a discriminator D. The goal of D is to discriminate between the real and
generated (i.e., fake) data, whilst the goal of G is to map a noise distribu-
tion to the real data distribution. The architecture and training process is
illustrated on Fig.3.4.

Generated samples aim to maximally confuse the discriminator, through
the following objective function:

min
G

max
D

Ex∼pdata [logD(x))] + Ez∼pz [log(1−D(G(z)))], (3.2)

where pdata and pz are the real data distribution and noise distribution,
respectively.

First introduced in [56], many follow-up works have extended and im-
proved upon the original model. Among these, GANs have been extended
to Conditional-GANs (or CGANs) to support class-conditional generation
[112], and a plethora of papers [3, 12, 120, 58] have focused on modifying
the objective function (eq. 3.2) to stabilize training and improve the genera-
tion quality. One of the model we evaluate, the Wasserstein GAN (WGAN)

31

Figure 3.4: The Generative Adversarial Network architecture.

[3], try to address training issues by enforcing a Lipschitz constraint on the
discriminator, which stabilizes training and avoids mode collapse (a collapse
problem where the GAN only generates slight variation of one single image).

Generative models are commonly used for State Representation Learn-
ing, as they can successfully learn compressed and useful representations of
visual images. When trained on an agent’s sensory inputs, they provide a
vectorial representation of what the agent experience. They have recently
shown promising results as State Representation models for RL [60, 171].
They can also generate data, i.e. generate sensory states that the agent
could have experienced.

3.1.2 Forward and inverse models

Another class of algorithms that are more directly applicable to the environment-
agent scenario are forward and inverse models. They are particularly in-
teresting because they can be trained using self-supervision using only se-
quences of images and actions recorded as the agent acts, without any human
annotation.

Forward models aim at predicting future states given current and
past states, as well as current and past actions. Thus, the model learns the
dynamics of the world, as the agent experiences it. As a byproduct of this
learning, we can hope that the representations learned for prediction are
relevant for perception.

Simple feed-forward (in the fully observable case) or recurrent networks
(in partially observable cases where memory is required) [96] can in principle
be implemented to learn the dynamics of the world. However, in most cases
they are not expressive enough to model the complex interactions that exist
in the world’s dynamics, especially when the scenario is realistic. Hence,
researchers have been developing novel approaches for forward models, with
the intent of building a general-purpose forward model that can be applied

32

to various scenarios.

For modelling the dynamics of the world, there usually needs to be a
memory component that can remember the particular setup and events that
took place in the environment. If the agent-environment setup is Markovian
like in the MDP framework, memory is not needed.

World models [60] is an approach that combines generative models and
memory architecture to create vision and memory modules that form a for-
ward model when combined. Other approaches have been developed for
particular benchmarks such as Atari [9], Chess, Go and Shogi [150]. Most
recently, a single architecture of the forward model has been successfully
trained on all those benchmarks [77]. Using the learned model, planning
can be applied to solve the benchmarks, showing the powerfulness of such
an approach. The real problem is them shifted to building a forward model,
not solving the task.

For embodied agents however, less progress has been made. There is no
general well performing architecture that works on a setup with an agent
that has multiple degrees of freedom and is placed in a realistic environment.
The closest we have is MERLIN [171], which is an architecture that learns
a forward model for a body-less agent in realistic mazes and rooms. The
result is that the agent is able to memorize and reason in its world, and thus
solve complex tasks.

Inverse models are designed to take two consecutive states in an
agent-environment setup and predict the associated action that leads to
the transition between the two states. These models help understand the
consequences of actions in the environment, and thus help understanding
how the agent interacts with the environment. They are usually more simple
than forward models, as the output (actions) is of lower dimension than for
forward models (states or images), but also make it possible to learn relevant
features.

3.1.3 Reinforcement learning algorithms

The most used environment-agent setup is the RL framework. In this frame-
work, the agent has a set of actions A and the set of possible states of the
world is noted as S. Regarding the dynamics of the world, given a state
s ∈ S and an action a ∈ A, the probability of transitioning to another state
s′ is noted Pa(s′, s) = P[s′|s, a] and forms a transition matrix Pa. On top
of this, each transition is associated with a (possibly null) reward noted
Ra(s′, s) and forms a reward matrix Ra. The whole framework is called a
Markov Decision Process (MPD) (S,A,Pa,Ra because each transition and
reward only depends on the last state and not the whole trajectory, i.e. it
has the Markov property. The associated problem with this framework is
expected reward maximization. It asks: what is the policy, i.e. a function
Π(s ∈ S) ∈ A, that gives for each state the action maximizing the expected

33

discounted accumulated reward:

max
Π

E[
∞∑
t=0

γtRat(st, st+1)]

This framework is general because it can model environment-agent worlds
of various nature: games, grid-world, control problems. Hence, efficient al-
gorithms for this problem can in theory be directly applied to all scenarios
modeled by the MDP.

The development of algorithms for solving the RL problem has bloomed
in recent years, thanks to the development of Deep Learning. Powerful func-
tion approximators directly find application in RL, because of mathematical
objects that have been constructed to answer the RL problem. The value
function and Q-function are essential tools for finding optimal policies. In-
tuitively, the value function estimates ”how good” it is to be in a given
state, while the Q-function estimates the quality of a state–action combina-
tion with respect to the reward. From the approximation of those functions
we can derive policies that provably converge to optimal policies that max-
imizes the reward signal. DL has brought powerful function approximators
that can estimate these functions and thus estimate well-performing policies.
Another type of approaches are policy-based methods that try to directly
estimate the optimal policy.

Whether they use a value-based [113, 67] or policy-based [151, 61] al-
gorithm, the function approximators are always deep neural networks that
learn representation of the input data hierarchically, so RL algorithms al-
most always qualify as Representation Learning algorithms.

Regarding the inputs given to RL algorithms, there are two approaches:
learning from raw observations or learning from learned representations: an
approach called State Representation Learning (SRL) [96]. In SRL, a model
that takes raw observations as input and output representation is trained
without supervision on observations collected by the agent. Then, this model
is used as input to the RL algorithm to learn a policy. The goal of SRL is
to learn a powerful representation model of the world, for example using a
forward model, before trying to solve particular tasks with RL benefiting
from the transfer of the learned representation. The SRL should therefore
learn general knowledge about the world and its dynamics so that it can be
re-used for a wide range of tasks.

3.1.4 Continual Learning

Learning in a continual fashion is a key aspect for cognitive development
among biological species [45]. Humans have a remarkable ability to contin-
ually learn and adapt to new scenarios over the duration of their lifetime
[158]. This ability is referred to as never ending learning, also known as con-
tinual learning or lifelong learning. Never-ending learning is the constant

34

development of increasingly complex behaviors and the process of building
complicated skills on top of those already developed [143], while being able
to reapply, adapt and generalise its abilities to new situations. The promise
of CL is thus to create agents that learn behaviors and skills while solving
its tasks and reuse these skills later as stepping stones.

In Machine Learning, such a learning scenario has been formalized as
a Continual Learning (CL) setting [160, 118, 154, 156, 153]. The goal of
CL is to learn from a data distribution that changes over time without
forgetting crucial information. Unfortunately, neural networks trained with
back-propagation are unable to retain previously learned information when
the data distribution changes, an infamous problem called ”catastrophic
forgetting” [49]. Successful attempts at CL with neural networks have to
overcome the inexorable forgetting happening when tasks change.

There are 4 main approaches for continual learning:

The first approach, referred to as rehearsal, is to keep samples from
previous tasks. The samples may then be used in different ways to overcome
forgetting. The method can not be used in a scenario where data from
previous tasks is not available, but it remains a competitive baseline [140,
118]. Furthermore, the scalability of this method can also be questioned
because the memory needed to store samples grows linearly with the number
of tasks.

The second approach employs regularization. Regularization constraints
weight updates in order to maintain knowledge from previous tasks and thus
avoid forgetting. Elastic Weight Consolidation (EWC) [85] has become the
standard method for this type of regularization. It estimates the weights’
importance and adapt the regularization accordingly. Extensions of EWC
have been proposed, such as online EWC [153]. Another well known regular-
ization method is distillation, which transfers previously learned knowledge
to a new model. Initially proposed by [72], it has gained popularity in CL
[99, 140, 176, 156] as it enables the model to learn about previous tasks and
the current task at the same time.

The third approach is the use of a dynamic architecture to maintain
past knowledge and learn new information. Remarkable approaches that
implement this method are Progressive Networks [144], Learning Without
Forgetting (LWF) [98] and PathNet [47].

The fourth and more recent approach is generative replay [156], where a
generative model is trained alongside each task, and used when a new task
arrives to produce samples from previous tasks in order to not forget them.
This approach has also been referred to as pseudo-rehearsal.

3.1.5 Contributions to the field

In the remainder of this chapter, we will present two contributions we made
to the Representation Learning field during the thesis. The first one is S-

35

TRIGGER, which aims at proposing a model for building a state represen-
tation model for control, in a continual learning setting using the generative
replay approach. The second one is DisCoRL, a method for RL in a con-
tinual learning setup, with applications to real robots using the distillation
approach.

3.2 Contribution: S-TRIGGER

3.2.1 Abstract

We consider the problem of building a state representation model for con-
trol, in a continual learning setting. As the environment changes, the aim
is to efficiently compress the sensory state information without losing past
knowledge, and then use Reinforcement Learning on the resulting features
for efficient policy learning. To this end, we propose S-TRIGGER, a general
method for Continual State Representation Learning applicable to Varia-
tional Auto-Encoders and its many variants. The method is based on Gen-
erative Replay, i.e. the use of generated samples to maintain past knowledge.
It comes with a statistically sound method for environment change detec-
tion, which self-triggers the Generative Replay. Our experiments on VAEs
show that S-TRIGGER learns state representations that allow fast and high-
performing Reinforcement Learning, while avoiding catastrophic forgetting.
The resulting system has a bounded size and is capable of autonomously
learning new information without using past data.

3.2.2 Introduction and contributions

The long term goal of creating agents capable of learning during extended
periods of time, without constant supervision, will require the capability of
continually learning about their environment. Indeed, learning about the
world is inherently a progressive/incremental task, since the data distribu-
tion experienced by the agent can change both spatially and temporally.
This involves building a model of an agent’s surroundings, with visual fea-
tures, and continually updating this model as its life progresses and the
environment evolves, without forgetting.

Recent advances in representation learning [10] have brought successful
tools for learning a model of the surroundings of the agent, a field known
as State Representation Learning (SRL) [96]. Once trained, these repre-
sentation models are used to learn policies using Reinforcement Learning
(RL) more efficiently [60] than when using raw sensors. However, previous
approaches have mostly been limited to scenarios where the environment
stays fixed. Since the models used are often neural networks trained us-
ing stochastic gradient descent (or any variant), they forget past knowledge
when the training data distribution changes. In Continual SRL, the training

36

Figure 3.5: Overview of our proposed method S-TRIGGER for Continual
State Representation Learning for RL. As the agent lives in environment 1,
it collects sensory states (i.e. vision) to learn a state representation model
(here, a VAE). We test this model by using it to solve, in an on-policy fash-
ion, a RL task in environment 1. The agent is now moved to environment 2.
Our method automatically detects this change, and uses the VAE trained
on environment 1 to generate images corresponding to environment 1, that
are joined to collected sensory states of environment 2 to learn a state rep-
resentation model for both environments. We test this state representation
model by learning, in a on-policy fashion, to efficiently solve a task in en-
vironment 1 and 2. The procedure continues as the agent encounters new
environments. Best viewed in color.

data distribution changes as the environment evolves, which can happen in a
discrete or continuous way. In our experiments, we consider sudden discrete
changes of environment.

We propose a general method for Continual SRL for agents behaving
in a changing environment, termed Self-TRIGgered GEnerative Replay (S-
TRIGGER for short), with the aim of learning representations useful for RL.
Our approach is compatible with any type of State Representation model
that is generative and reconstructs the input, which includes Varational
Autoencoders (VAEs) and its many variants (e.g. β-VAE [69], ACN [57]
and others) that are widely used for SRL. Previous work has shown that
VAEs can learn continually using generated samples from previous tasks, a
method called Generative Replay [95]. S-TRIGGER uses Generative Replay
to remember information relative to previously encountered envi-
ronments. With the goal of an autonomous agent in mind, we complement
our approach with a general method for automatic detection of envi-
ronment change, based on the reconstruction error distribution of VAEs.
This detection method allows the VAE to self-trigger the Generative Re-

37

play when a new environment is encountered, without the need for the user
to specify environment changes. Finally, our approach respects important
Continual Learning (CL) desiderata: no access to past data and bounded
system size. Fig.3.5 presents an overview of S-TRIGGER.

We focus on settings where the agent has only access to sensory states
(here, vision) that contain partial information about the environment, simi-
larly to an embodied agent. The agent should be able to use learned knowl-
edge to facilitate policy learning with RL. Hence, we test our approach on
a 2-D first-person simulator with coherent physics, in two scenarii where
the environment changes over time. The first scenario is a proof of concept
with 2 environments, with minimal change between the two. We then test
the robustness of our approach in a more challenging setting: sequences
of randomly generated mazes. We test whether the learned features pro-
vide efficient and high-performing RL training on a navigation task. We
also measure the ability of our method to retain past knowledge, using re-
construction error and visualization. Our results show that our approach
avoids catastrophic forgetting, provides features that enable efficient RL and
detects environment changes almost perfectly.

3.2.3 Related work

We review previous work related to Continual State Representation Learning
for RL.

Generative models, e.g. VAEs, are widely used for SRL. Hence, one ap-
proach for Continual SRL is to apply a CL strategy developed for generative
models. While most work in CL is focused on discriminative models, there is
a recent interest in CL approaches for generative models [1, 118]. Proposed
methods often rely on using generated samples to avoid forgetting [175, 95].
This technique, which we use in this contribution, is termed Generative Re-
play. For instance it is used in the algorithm VASE [1], where the authors
propose a representation model that can, similarly to S-TRIGGER, learn
continually and detect changes in the data distribution. VASE dynamically
allows spare representation capacity to account for newly acquired infor-
mation. While their approach is promising, the learned features were not
tested on a RL setting, for which our approach is specifically designed and
tested. Previous work [136] has demonstrated that learning state represen-
tation that performs well for policy learning is not straightforward. In our
experiments, we demonstrate that S-TRIGGER can indeed continually learn
features that allow fast and high-performing policy learning.

Other types of continual learning strategies for generative models could
be investigated. We decided to select Generative Replay because it respects
important desiderata for CL: bounded system size, no access to previous
data. We found no previous work on applying these CL approaches to State
Representation Learning for RL.

38

Another line of work on Continual SRL for RL is presented in DARLA
[70], which circumvents the problem of catastrophic forgetting by learning
disentangled representations with a specific VAE architecture. Their ap-
proach learns factored features that are robust to minimal modifications of
the factors of the environment, ours continually update features as environ-
ment changes are detected. They show that learning a policy in a source
domain with their representation as input can lead to zero-shot transfer by
using the same policy in a target domain (similar to the source domain). The
idea of learning one state representation model that generalizes to environ-
ments similar to previously encountered ones is important and compelling,
but it is not clear how this model could handle heavy environment changes
such as new objects appearing. In our experiments we shed light on the
failure cases of this approach. However, both approaches are compatible so
any progress on one side complements the other.

3.2.4 Continual State Representation Learning with Self-Triggered
Generative Replay

We now present our method for Continual State Representation Learning,
S-TRIGGER, which is designed for settings where the environment changes
discretely over time.

Learning continually with Generative Replay

The considered problem is twofold: build a State Representation model
which can continually learn, i.e. without forgetting. We use VAEs’ encoding
property to handle the State Representation and the generative ability of
VAEs to generate states of previously seen environments to avoid forgetting,
a technique known as Generative Replay [156]. In our case, we encode the
sensory state received by the agent.

Once an environment change is detected, we generate states using the
latent space of the VAE trained on previous environments, and add those
generated samples to states collected in the new environment. Then, we
train the same VAE on the joint data. This procedure is illustrated in
Fig.3.5. The environment changes are detected automatically, as described
thereafter.

This option does not re-use past data. Additionally, it is more scalable
than a rehearsal method where samples from each previous environment
would be maintained in memory, which amounts to scaling linearly in mem-
ory cost. Indeed, as new environments are encountered, we only need to
maintain one VAE for all previously encountered environments, which makes
Generative Replay a bounded system size solution in terms of memory cost.

In theory, the training cost should scale linearly in number of environ-
ment changes. However, in our experiments, we use a fixed number n of

39

generated samples for each environment change, and we consider up to two
environment changes (i.e. sequence of three environments). n is of the same
order of magnitude as the number of collected samples in the environment.

Self-Trigger: Automatic environment change detection

Since we aim at constructing an autonomous agent, we complement the
proposed method with automatic detection of changes in the environment.
Once an environment change is detected, Generative Replay is triggered, as
described previously, which is why we refer to our method as Self-TRIGgered
GEnerative Replay (S-TRIGGER for short).

The detection method is based on statistical hypothesis testing on VAE
reconstruction error distribution. The intuition is: if the VAE reconstruc-
tion error distribution suddenly changes, then the environment must have
changed.. To formalize this intuition, we use Welch’s t-test [173] to test the
hypothesis H0 that two sets x1, x2 of randomly sampled VAE reconstruc-
tion errors have equal mean. We choose this test over the standard t-test
because we do not have reasons to assume that the two samples’ variance
are equal. The statistic t is, under H0, distributed as a Student distribution
with a number of degrees of freedom ν that can be approximated using the
Welch-Satterthwaite equation:

t =
x1 − x2√

(s2
1 + s2

2)/N
, ν ≈ (N − 1)(s2

1 + s2
2)2

(s4
1 + s4

2)
, (3.3)

with N being the number of samples (assumed equal for both sets), and
s1, s2 being the empirical standard deviations of samples 1 and 2, respec-
tively. The decision of the test is based on a chosen significance level of α for
the test, by using the p-value. If the p-value is below α, it suggests that the
observed data is sufficiently inconsistent with H0 that H0 may be rejected
and thus an environment change is detected.

Using the p-value on a statistical test is preferable for decision over using
a threshold-based method directly on the error distribution. The threshold
method is based on an arbitrary scale which depends on the considered se-
quence of environments. On the contrary, the test is a more general approach
based on statistical principles and thus agnostic to scales. The p-value pro-
vides an interpretable parameter for controlling the detection method’s re-
call, which is not possible with the threshold method. Additionally, we
choose to use VAE reconstruction error distribution over the actual state
distribution because we are interested in changes of the environment that
require the VAE to be updated. For instance, if we add an already existing
obstacle to the environment, the state distribution shifts, while the VAE
reconstruction error distribution does not change because the VAE needs
not to be updated. The test is lightweight and can thus be continually
performed.

40

3.2.5 Experimental setting

Our experimental environments are developed in Flatland [23] presented in
section 2.2.2.

Methods. For the State Representation model, we experiment with
CCI-VAE [19], the state-of-the-art VAE model for learning disentangled
representations.

For our RL experiments, we learn to solve navigation tasks using features
from the trained VAE. The policies are trained in an on-policy fashion. At
each time-step t we receive the sensory state input ot, pass it through the
SRL model (i.e. the VAE) to obtain the state representation st, and feed it
to a policy π(st) optimized with an RL algorithm, as described in Fig.1.3.
For the RL algorithm, we selected the Proximal Policy Optimization (PPO)
algorithm [151] of SRL Toolbox [137], which in our case employs an actor-
critic network that both predicts the value function and a policy. We selected
this method as it is a state-of-the-art policy gradient method, commonly
used and robust to hyperparameter configurations. Policies are trained on-
policy for 2M timesteps. Results are averaged over 5 seeds, and we test the
significance of our results with statistical hypothesis testing. To compare
learning curves, we present smoothed (moving average) and normalized (by
the maximum performance) mean reward curves.

Evaluation. First, we evaluate whether the VAE successfully learned
to reconstruct states, generate realistic states using sampling in the latent
space and avoid catastrophic forgetting. We use visualization to measure
performance. We also use the Mean Squared Error (MSE) to evaluate recon-
struction quality and catastrophic forgetting over time as the environment
changes.

Then, we evaluate the VAE ability to provide a state representation that
enables efficient RL training, by measuring the performance of an RL agent
using VAE features as input. The aim of SRL here is to have features that
enable efficient behaviour learning hence the need to evaluate with RL. We
use several baselines for comparison with S-TRIGGER (policy inputs are
features of a VAE trained with our approach): Fine-tuning (policy inputs
are features of a VAE sequentially fine-tuned), Source Only (policy inputs
are features of a VAE trained only on first environment) and Upperbound
(policy inputs are features of a VAE trained on data from all environment
at once).

3.2.6 Experiment 1: Proof of concept

In this experiment we test S-TRIGGER on a continual learning setting with
minimal changes between two environments. This experiment allows us to
easily visualize the failure mode of fine-tuning on this setting, and provides
insights on how our method solves the presented issues.

41

Description of the environments

Figure 3.6: Experiment 1: Top: The two environments considered in
Experiment 1. Bottom: Reconstruction comparison of sensory states from
environment 1 between a VAE fine-tuned on environment 2 against a VAE
trained with S-TRIGGER, followed by visualization of real and generated
sensory states of a VAE trained in Environment 1.

We use two environments displayed in Fig.3.6. Most elements are iden-
tical between the two worlds: both are rooms of the same size with 3 fixed
obstacles, 10 randomly placed round blue obstacles and 10 randomly placed
round edible items. The only variation is the color of the edibles items. The
environment changes once the representation model is finished training on
the first environment. The navigation task consists in collecting as many
edible items as possible in 500 timesteps. The input is the vision of the
agent, i.e. a 1-D image corresponding to what the agent sees in front of it.

Results

Reconstruction evaluation We present in Fig.3.6 a qualitative evalua-
tion of Fine-tuning and S-TRIGGER methods on VAE. Models are sequen-

42

tially trained on the first and then the second environment. Fine-tuning
of VAE on the second environment leads to forgetting of the ability to re-
construct states from the first environment. On the contrary, S-TRIGGER
successfully avoids this problem and the resulting VAE is able to properly
reconstruct all elements of both environments, hence successful continual
learning. Quantitatively, the MSE of reconstruction over 500 samples is
similar for both methods on environment 2, whereas S-TRIGGER is one
order of magnitude better than Fine-tuning on environment 1 (Table 3.1).
This confirms our initial qualitative observations. We also present generated
samples after the VAE is trained on the first environment in Fig.??. The
VAE is able to generate realistic sensory states that are used by S-TRIGGER
to remember past environments.

Table 3.1: Mean Squared Error (MSE) of reconstruction.

Strategy MSE (environment 1) MSE (environment 2)

Fine-tuning 1.3 · 10−3 9.3 · 10−4

S-TRIGGER (Ours) 3.3 · 10−4 6.4 · 10−4

Detection of environment change. Regarding environment change
detection, our method tests whether a VAE trained on the first environment
has a mean reconstruction error statistically different between states of en-
vironments 1 and 2. The reconstruction error mean is significantly higher
on frames of environment 2, since the VAE has only been trained on frames
from environment 1. We take advantage of this observation as we use a
Welch’s t-test to compare two batches of mean VAE reconstruction error,
computed on randomly collected states from each environment. The null
hypothesis is rejected if the p-value is greater than 0.01. We repeat this
experiment 5000 times. The test is 100% successful when it should detect
an environment change, and 99.5% successful when it should not detect a
change. Any chosen critical p-value between 0.05 and 0.0001 provides similar
results.

RL evaluation. Learning curves and final performances are pre-
sented in Fig.3.7. We can observe catastrophic forgetting with Fine-tuning,
as its performance is significantly inferior to other models on Environment
1. Indeed, this is expected since we previously showed that the model has
forgotten how to reconstruct states of Environment 1. We also observe that
VAE’s features support a form of zero-shot transfer. Indeed, using features
of a VAE trained on the first environment only (see Source Only curve in
Fig.3.7) to learn to solve Task 2 is remarkably efficient.

On Task 1, our method S-TRIGGER performs on par with a model
trained only on Environment 1, which shows the absence of forgetting en-
abled by Generative Replay. On Task 2, the difference between models is
less significant. However, S-TRIGGER still performs better or on par with
Fine-Tuning.

43

0 1000 2000 3000 4000
Episodes

0.2

0.4

0.6

0.8

1.0
Re

wa
rd

s (
no

rm
al

ize
d)

Environment 1

Fine-tuning
S-TRIGGER
Source Only

0 1000 2000 3000 4000
Episodes

0.2

0.4

0.6

0.8

1.0

Re
wa

rd
s (

no
rm

al
ize

d)

Environment 2

Figure 3.7: Smoothed normalized mean reward and standard error over
5 runs of RL evaluation using PPO with different inputs. Each method
is described in Sec.3.2.5. Dots indicates significance when testing against
Fine-tuning with a Welch’s t-test at level α = 0.05.

3.2.7 Experiment 2: Robustness tests

In this experiment, we test the robustness of S-TRIGGER on a scenario
with sequences of randomly generated mazes. The setting is more chal-
lenging compared to Experiment 1 because of both the extended number of
environments (3 sequential environments) and the heavier changes between
them (changes of color, location, size of all elements).

Description of the environments

We use sequences of three randomly generated mazes. The mazes are com-
posed of rooms and corridors, and randomly placed edibles: fruits (+10
reward) and poisons (−10 reward). Fruits share the same color, different
from poisons. In the sequence, rooms and corridors change location, size and
color. The size of edibles gradually increase in the sequence, and their color
changes as well. The environment changes once the representation model
is finished training. In each of the three environments, the RL task is to
learn how to collect fruits while avoiding poisons. The setting is illustrated
in Fig.3.8.

Results

We first evaluate the reconstruction error and the environment change de-
tection on a set of 100 sequences of 3 randomly generated mazes. Then, we
present the Reinforcement Learning evaluation on one sequence of 3 mazes.

Reconstruction evaluation. In this experiment, we compare S-
TRIGGER and Fine-tuning by sequentially training a VAE on sequences of
3 randomly generated mazes, using randomly collected sensory states. We
repeat the process 100 times with different mazes each time. As in the previ-

44

Figure 3.8: Experiment 2: Top: One of the sequences of 3 randomly
generated mazes considered in Experiment 2. Bottom: Reconstruction of
sensory states by a VAE sequentially trained with S-TRIGGER on the 3
mazes presented at the top, followed by visualization of real and generated
sensory states of a VAE trained in Maze 1.

ous experiment, contrary to Fine-tuning, S-TRIGGER does not forget how
to reconstruct sensory states, and performs one order of magnitude better
on previously encountered environments, i.e. Mazes 1 and 2. Qualitatively,
we can observe how S-TRIGGER avoids catastrophic forgetting in Fig.3.8:
after encountering Maze 3, the VAE reconstruction is satisfactory on all 3
mazes, hence the state information has been successfully compressed and
this information has been kept over time. Also, the generation quality is
still satisfactory, as seen in Fig.3.8 (bottom).

Notice that the reconstruction is as satisfactory on Maze 1 as Maze 2
(5.82 ·10−3 vs. 5.24 ·10−3), even though Maze 1 has been experienced by the
agent more learning steps in the past than Maze 2. The VAE is still able to
generate enough samples of Maze 1, and with a sufficient generation quality,
to learn a satisfactory representation when Maze 3 is encountered. Also,
since we obtained successful results on 100 different sequences of 3 mazes,

45

0 1000 2000 3000 4000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd
s (

no
rm

al
ize

d)

Maze 1

0 1000 2000 3000 4000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd
s (

no
rm

al
ize

d)

Maze 2

0 1000 2000 3000 4000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd
s (

no
rm

al
ize

d)

Maze 3

Fine-tuning
S-TRIGGER
Upperbound

Figure 3.9: Randomly generated mazes: smoothed normalized mean re-
ward and standard error over 5 runs of RL evaluation using PPO with VAE
features as inputs. Each method is described in Sec.3.2.5. Dots indicate
significance when testing against Fine-tuning with a Welch’s t-test at level
α = 0.05.

we can infer that S-TRIGGER is successful on any sequence of 3 randomly
generated mazes. Our method is thus robust to the considered continual
learning scenario.

Detection of environment change. As for the environment change
detection method of S-TRIGGER, we test it on the 100 sequences, by ar-
tificially creating 400 transitions between environments per sequence (200
with a change, 200 without a change), which sums up to 40000 different
transitions. The method performs quasi-perfectly well, with at least 99%
precision and recall. Considering the fact that it can be ran continuously
for a low computational cost, the method is well suited for the considered
setting.

RL evaluation. For experiments in this section, we randomly se-
lected one sequence on 3 randomly generated mazes, and kept it fixed for
all experiments. VAE and policies are all trained on this same sequence of
mazes, presented in Fig.3.8. We compare performance of policies trained on-
policy with the RL algorithm PPO. Policies are trained using VAE features
as inputs. VAEs are trained with three different strategies: Fine-tuning,
S-TRIGGER (both sequentially trained) and Upperbound (jointly trained
on data from the three mazes, not sequential). Learning curves and final
performances are presented in Fig.3.9.

S-TRIGGER performs at least twice better than Fine-tuning on Maze
1 and 2, and performs optimally w.r.t Upperbound on Maze 1 and 3. In-
deed, Upperbound has access to all data at once, which makes it an optimal
solution w.r.t to using VAE features for policy learning in the considered
Continual learning scenario. While S-TRIGGER cannot always reach the
performance of this Upperbound (it does on Maze 1, but not on Maze 2),
it clearly improves Continual SRL: the learned representation model allows
fast and more efficient policy learning with a standard RL algorithm by

46

limiting forgetting of previously seen environments.

Compared to Experiment 1, Fine-tuning performs worse on previously
seen environments, due to the increased difference between encountered en-
vironments. Since the size of edibles increase for each new maze, a VAE
is sequentially trained with Fine-tuning until Maze 3 is not trained to see
small objects in Maze 1, which makes the agent almost entirely blind in
Maze 1. On the contrary, S-TRIGGER allows the VAE to see objects in
all mazes, which contributes to having faster and better-performing learned
policies. Fine-tuning has one of the expected shortcomings of approaches
like DARLA [70]. When there is too much change between environments,
learning a sufficiently general representation that can transfer to all environ-
ments is not feasible. The representation model needs to be updated when
a new environment is encountered.

3.2.8 Conclusion

We described S-TRIGGER, a Continual State Representation Learning method
capable of learning as the environment changes discreetly. Our method auto-
matically detects changes and relies on using generated samples of previous
environments, with a fixed-size system. It learns a unique representation
model that compresses information of each encountered environment, which
can be used to train policies with RL, efficiently and with high-performance.

3.3 Contribution: DisCoRL

3.3.1 Abstract

In multi-task reinforcement learning there are two main challenges: at train-
ing time, the ability to learn different policies with a single model; at test
time, inferring which of those policies applying without an external signal.
In the case of continual reinforcement learning a third challenge arises: learn-
ing tasks sequentially without forgetting the previous ones. In this section,
we tackle these challenges by proposing DisCoRL, an approach combin-
ing state representation learning and policy distillation. We experiment on
a sequence of three simulated 2D navigation tasks with a 3 wheel omni-
directional robot. Moreover, we tested our approach’s robustness by trans-
ferring the final policy into a real life setting. The policy can solve all tasks
and automatically infer which one to run, as shown in the supplementary
video: https://youtu.be/mzUigGWEfbU.

3.3.2 Introduction and contribution

In this contribution, we propose to address a continual learning problem
of reinforcement learning. In this continual learning setting, each learning

47

https://youtu.be/mzUigGWEfbU

Figure 3.10: Image of the three tasks, in simulation (top) and in real life
(bottom) sequentially experienced. Learning is performed in simulation, real
life is only used at test time.

experience is called a task and a task solution is a policy. Our goal is
to propose a learning setting compatible with a real autonomous agent. To
this end, we propose three simulated robotics tasks and propose an approach
that will solve such tasks sequentially. At each task, the agent should learn
a policy based on a reward function and a RL algorithm.

In order to fit reinforcement learning into a continual setting, we use
a method called policy distillation [145] that allows the transfer of several
policies learned sequentially into a single model. To validate our approach,
we evaluate the final results on the three simulated learning settings but also
in a real life setting similar to the simulation (Figure 3.10). It is important
to note that, at test time, the agent does not have access to a task label to
determine which policy to run, and thus, it needs to figure it out by itself
from its observations.

Our contribution is to propose DisCoRL (Distillation for Continual Re-
inforcement learning): a modular, effective and scalable pipeline for contin-
ual RL. This pipeline uses policy distillation for learning without forgetting,
without access to previous environments, and without task labels. Our re-
sults show that the method is efficient and learns policies transferable into
real life scenarios.

3.3.3 Related work

Multi-task RL: The objective of Multi-task learning (MTL) [22] is to
learn several tasks simultaneously; generally by training tasks in parallel
with an unique model. Therefore, multi-task RL aims at constructing one
single policy that can solve a number of different tasks. Note how in classi-

48

fication this problem is quite simple, as data from all tasks just have to be
shuffled randomly and can then be learned all together at once. However,
in RL environments, data is sampled on sequences that can not be shuf-
fled randomly with all other environments because the environments are
not accessible simultaneously. Learning multiple tasks at once is thus more
complicated.

Policy distillation [145] can be used to merge different policies into one
single module/network. This approach uses two models, a trained policy
(the teachers) to annotate data with soft-annotations, and a model to learn
from the former (the student). The student is trained in a supervised manner
with the soft-labels. The soft-annotation is supposed to help the student to
learn faster than the teacher did [51]. Policy distillation can be used then to
learn several policies separately and simultaneously, and distill them into a
single model as in the distral algorithm [164]. In our approach, we also use
distillation but we do not keep the teacher model, we just label a set of data
and then delete the teacher. Furthermore, tasks are learned sequentially,
and not simultaneously. Other approaches such as SAC-X [142] or HER [2]
take advantage of Multi-task RL by learning auxiliary tasks in order to help
learning a main task. This approach is extended in the CURIOUS algorithm
[33]. It selects tasks to be learned that improve an absolute learning progress
metric the most.

Continual Learning in RL: In the context of continual RL, several
approaches have been proposed, such as the use of Progressive Nets in [146],
Elastic Weight Consolidation (EWC) [85], Progress And Compress (P&C)
[153], or CRL-Unsup [106]. However they either need a task indicator at test
time to choose which policies to run or, they have some hyper-parameter
difficult to tune during a continual learning training, such as the importance
of the Fisher information matrix in EWC. Our method does not add any
new hyper-parameter to tune during the sequence of tasks and does not need
a task label at test time.

RL in Robotics: Applying RL to real-life scenarios such as robotics
is a major challenge that has been studied widely. One of the major problems
in this setting is that sampling data and fortiori learning is costly. Therefore
sample efficiency and stability in learning are highly valuable. One common
approach to reduce training cost is training policies in simulation and then
deploying them in real-life, hoping that they will successfully transfer, con-
sidering the gap in complexity between simulation and the real world. Such
approaches are termed Sim2Real [55], and have been successfully applied
[29, 111] in many scenarios. One of these approaches is Domain Randomiza-
tion [166], which we use in this contribution. This technique trains policies
in numerous simulations that are randomly different from each other (dif-
ferent background, colors, etc.). Using this technique, the transfer to real
life is easier.

Others have tried to train a policy directly on real robots, facing the

49

Figure 3.11: Overview of our full pipeline for Continual Reinforcement
Learning. White cylinders are for datasets, gray squares for environments,
and white squares for learning algorithms, whose name corresponds to the
model trained. Each task i is learned sequentially and independently by
first generating a dataset DR,i with a random policy to train a state repre-
sentation with an encoder Ei with an SRL method (1), then we use Ei and
the environment to learn a policy πi in the state space (2). Once trained,
πi is used to create a distillation dataset Dπi that acts as a memory of the
learned behaviour. All policies are finally compressed into a single policy
πd:1,..,i by merging the current dataset Dπi with datasets from previous tasks
Dπ1 ∪ ... ∪Dπi−1 and using distillation (3).

hurdle of the lack of sample efficiency of RL algorithms. SAC-X [142] is one
example that takes advantage of multi-task learning to improve efficiency,
by simultaneously learning the policy and a set of auxiliary tasks to explore
its observation space - in search for sparse rewards of the externally defined
target task.

In the literature, most approaches focus on the single-task or simultane-
ous multi-task scenario. In this contribution, we attempt to train a policy
on several tasks sequentially and deploy it in real life by combining policy
distillation, training in simulation and state representation learning.

3.3.4 Methods

In this section we present our approach towards continual reinforcement
learning for a sequence of vision based tasks. We assume that observations
visually allow us to recognize the current task from other tasks. We first
explain how we learn a single task by combining state representation learning
(SRL) and reinforcement learning (RL), then how each task is incorporated
in the continual learning pipeline. Finally, we present how we evaluate the
full pipeline.

50

Learning one task

Each task i is solved by first learning a state representation encoder Ei
in order to compress input images into a representation of the important
underlying factor of variation. This step reduces the input space for the
reinforcement learning algorithm and makes it learn more efficiently [136].
To train this encoder, as shown in Fig. 3.11 (left), we sample data from
the environment Envi with a random policy. We call this dataset DR,i.
DR,i is then used to train the SRL model composed of an inverse model
and an auto-encoder. The inverse model is trained to predict the action at
that led to transition from state st to st+1, both extracted from respective
observations ot and ot+1 by the auto-encoder using Ei. The auto-encoder is
additionally trained to reconstruct the observations from the encoded states.
The architecture is motivated by the results from [136].

Once the SRL model is trained, we use its encoder Ei to provide features
as input to a policy πi trained using RL. We also experimented to learn the
policy directly in the raw pixel space but, as shown in [136], it was much
less sample efficient.

Once πi is learned, we use it to generate sequences of on-policy observa-
tions with associated actions, which will eventually be used for distillation
(Fig. 3.11, right). We call this the distillation dataset Dπi . We generate
Dπi the following way: we randomly sample a starting position and then
let the agent generate a trajectory. At each step we save both the observa-
tion and associated action probabilities. We collect the shortest sequences
maximizing the reward for an episode.

We also experiment to generate Dπi with a regular sampling and a ran-
dom policy to generate the states that we annotate with πi to compare
results, as detailed in section 3.3.6 below.

From each task we only keep the dataset Dπi . As soon as we change the
task, DR,i and Envi are not available anymore. Dπi is split into a training
set and a validation set.

Learning continually

To learn continually, we adapt policy distillation [145] to a continual learning
setting. The distillation consists of training a student policy to imitate a
teacher policy. In our case, a student model learns from a teacher policy
the action probability associated with each observation. Each dataset Dπi

allows to distill the policy πi (the teacher model) into a new network πd:i

(the student model). In classic distillation, both data and models need
to be saved, however saving just soft-annotated data is a lighter solution
adapted to a continual setting.

With the aggregation of several distillation datasets Dπi , we can distill
several policies into the same network that can achieve all tasks (Fig.3.11,

51

bottom right). By extension of the previous nomenclature, we denote πd:1,..,n

a model where policies π1 ... πn have been distilled in. When distilling all
policies into the student, we select our best models with early stopping, and
test later in simulation and in real life settings.

Since we assume that observations visually allow us to recognize the
current task, πd:1,..,n is able to choose the right action for the current task
without a task indicator.

The method, termed DisCoRL for Distillation for Continual Reinforce-
ment learning, allows us to continually learn several policies while minimiz-
ing forgetting. Regarding scalability, saving data from all past experiments
may not look ideal if there is a high number of tasks. However, this solution
is highly effective for remembering and letting the reinforcement learning
algorithm be absolutely free to learn a new policy without regularization.
It is worth mentioning that RL is the real bottleneck in the whole process:
Dataset Dπi contains approximately 10k samples per task, which allows to
perform the distillation quickly, relative to how long and computationally
expensive RL is (few minutes needed to learn πd:i while several hours are
needed to learn πi). Thus, in this context, it is better not to curb RL
with regularization. Indeed, as explained in Section 3.3.6, we tried several
regularization based approaches that were not successful.

Evaluation

The first evaluation is the performance of the final policy on the simulated
environment. This evaluation can then be compared with the performance
of each teacher policy. For the second evaluation we test if the policy is
robust to the reality gap and can be adapted into a real life scenario. The
simulation is voluntarily close to the real life setting but the reality gap is
notoriously problematic.

To get an insight on the evolution of the distilled model, we also save
distillation datasets at different checkpoints while learning each task. By
distilling and evaluating at several time steps, we assess catastrophic forget-
ting on previous tasks when fine tuning on new tasks.

3.3.5 Experimental setup

We apply our approach to learn continually three 2D navigation tasks ap-
plicable in real life. The software related to our experimental setting is
available online1.

1https://github.com/anonymous-authors-2018/CoRL

52

https://github.com/anonymous-authors-2018/CoRL

Robotic setup

The experiments consisted of 2D navigation tasks using a 3 wheel omni-
directional robot similar to the 2D mobile navigation in [137]. The input
image is a top-down view of the floor and the robot is identified by a black
QR code. The room where the real-life robotic experiments are performed
is lit by surrounding windows and artificial illumination and is subject to
illumination changes depending on the weather and time of the day. The
robot uses 4 high level discrete actions (move left/right, move up/down in
a cartesian plane relative to the robot) rather than motor commands.

We simulate the experiment to increase sampling and learning speed.
The simulation is performed by artificially moving the robot picture inside
the background image according to the chosen actions. We use domain
randomization [166] to improve the stability and facilitate transfer to the real
world : during RL training, at each timestep, the color of the background
is randomly changed.

Continual learning setup

Our continual learning scenario is composed of three similar environments,
where the robot is rewarded according to the associated task (Fig. 3.10). In
all environments, the robot is free to navigate for up to 250 steps, performing
only discrete actions within the boundaries identified by a red line. Each
task is associated with a visual target, which color depends on the task.
This way, the controller can automatically infer which policy it needs to run
and thus, does not need task labels at test time.

Task 1. The task of environment 1 is named Target Reaching (TR).
The robot gets at each timestep t a positive reward +1 for reaching the
target (red square), a negative reward −1 for bumping into the boundaries,
and no reward otherwise.

Task 2. The task of environment 2 is named Target Circling (TC).
The robot gets at each timestep t a reward Rt defined in Eq. 3.4 (where
zt is the 2D coordinate position with respect to the center of the circle)
designed for agents to learn the task of circling around a central blue tag.
This reward is highest when the agent is both in the circle (red (first) part
in Eq. 3.4), and has been moving for the previous k steps (blue, second
part). An additional penalty term of −1 is added to the reward function in
case of bumping the boundaries (last, green part). A coefficient λ = 10 is
introduced to balance the behaviour.

Rt = λ∗ (1− λ(‖zt‖ − rcircle)2) ∗ ‖zt − zt−k‖22 +λ2∗ Rt,bump

(3.4)

53

Task 3. The task of environment 3 is named Target Escaping (TE).
Robot A is being chased down by another robot B with an orange tag. Robot
B is hard-coded to follow robot A, and robot A has to learn to escape using
RL. Robot A gets at each timestep t a reward of +1 if it’s far enough from
robot B, otherwise, if it is in the range of robot B, it gets a reward of −1.
Additionally, robot A gets a negative reward of −1 for bumping into the
boundaries.

All RL tasks are learned with PPO [152] and the same state represen-
tation learning (SRL) model, as described in section 3.3.4. We select the
model architecture as in [137] for RL and SRL. The input observations of
all models are RGB images of size 224 ∗ 224 ∗ 3.

3.3.6 Results

We first present our design choices for the distillation process: loss functions
and data sampling strategies. We then use these choices to present our main
result: the distillation of three tasks continually into a single policy that
can achieve the three tasks both in simulation and real-life. We provide a
supplementary video2 of this policy deployed in real-life on the robot showing
the successful behaviors. We also present the different strategies we tried
but that did not work in our setting.

Evaluation of distillation

Distillation strategies: Distillation is done with a loss function that
minimizes the difference between the student model’s output and the teacher
model’s output for the same input. As in the policy distilation paper [145],
we investigate variations of the loss function : Mean Squared Error loss

LMSE(x, y) = E[||x− y||22]

Kullback-Lieber divergence, and Kullback-Lieber divergence with tempera-
ture smoothing

LKL,τ (p|q) = E[softmax(
p

τ
)ln(

softmax(pτ)

softmax(q)
))]

We run a performance comparison of the different losses by computing
the mean normalized performance of a student policy trained to perform all
three tasks (Tab.3.2). Using the Kullback-Lieber divergence loss function
with temperature smoothing with τ = 0.01 performed the best, and opti-
mizing the temperature parameter yields a small performance boost. This
result is coherent with [145] where they reach the same conclusion.

2https://youtu.be/mzUigGWEfbU

54

https://youtu.be/mzUigGWEfbU

Distillation loss Student performance (± std)

MSE 0.71 (± 0.22)

KL (τ = 1) 0.76 (± 0.14)

KL (τ = 0.1) 0.68 (± 0.18)

KL (τ = 0.01) 0.77 (± 0.13)

Table 3.2: Mean normalized performance.

Figure 3.12: Representation of data generation strategies to distill the
teacher policy. Left, on policy sampling. Right, grid sampling.

Data sampling strategies: We evaluate the effect of three different
sampling strategies to create Dπi for policy distillation. Data sampling is a
key component as the sampled dataset should be as small as possible but
contain sufficient information for student model training. The strategies
involved for data generation are:

- On-policy generation (Fig.3.12, left): We start an episode from a ran-
dom point, then at each timestep t, we collect an observation ot and perform
the action aπi,t of the teacher policy.

- Off-policy generation from a grid walker (Fig.3.12, right): at each
timestep t, we collect an observation ot by performing an action agrid,t of
a grid walker exhaustively exploring the space of the arena. However, for
each ot we save the probability of action p(aπi,t | ot) that would have been
taken by the teacher policy. The goal of this strategy is to provide a more
exhaustive sampling of the space of robot positions.

- Off-policy generation from a random walker : similar to the previous
strategy, but with an untrained policy, i.e. from a policy with random
weights with input in the raw pixels’ space, instead of a grid walker.

Dπi is thus composed of tuples (ot, p(aπi,t | ot)), with p(aπi,t | ot) the
action probability associated to the action aπi,t taken by the teacher, i.e., a
soft label, since we use the Kullback-Lieber divergence loss.

55

Performance of policies distilled using such strategies (see Fig. 3.13)
show that on-policy generation (i.e., demonstrations) suffice to reproduce
performance close to those of teacher policies on every task individually,
with reasonable stability. In particular cases, see Fig. 3.13 for task TC, this
strategy even provides a small boost in performance in the student policy
over the teacher policy.

On the contrary, using off-policy data generation from a grid walker for
distillation results in either unstable or poorly performing policies, especially
in tasks defined by a reward function requiring the agent to move actively
(TC task, blue part of eq. 3.4) or anticipate the behaviour of another agent
(TE task). In this case, the resulting policy reaches the performance of a
lower-bound baseline obtained by distilling from trajectories of an untrained
policy (see Student on off-policy data with a random walker in fig. 3.13),
i.e. from a policy with random weights with input in the raw pixels’ space.

Figure 3.13: Efficiency (normalized rewards w.r.t the best teacher perfor-
mance) of policies distilled on 8 seeds using various data generation strategies
for each task separately. Each evaluated policy is distilled on 15k tuples of
sampled observations and action probabilities, for 4 epochs.

56

Main result

We present our final results in Fig. 3.14. We used on policy data generation
and training using KL divergence loss with τ = 0.01. We show box plots
over 10 episodes of reward performances for teacher policies in each task,
and for the distillation of the same three teachers into a single student using
DisCoRL. Each policy is evaluated in simulation and also in real-life on the
robot. As a reference, we also show the performance of a random agent in
each task. Our approach is effective in a continual reinforcement learning
setting: the performance of teachers and students are similar.

More precisely, there are two main challenges to overcome in our setting:
learning a behaviour via distillation by using only a limited number of ex-
amples, and the reality gap which can notoriously [166] introduce variations
that may lead the policy to fail. Fig. 3.14 demonstrates the efficiency of our
approach at overcoming both of these issues: only a small fraction of per-
formance is lost from teacher to student, and from simulation to reality. We
can see that the single student distilled policy achieves close to maximum
rewards in all tasks, in real-life.

Target Reaching (TR)

200

100

0

100

200

Re
w

ar
ds

1

2
3 4 5

Target Circular (TC)
25000

20000

15000

10000

5000

0

1

2 3 4 5

Target Escape (TE)

200

100

0

100

200

1

2
3 4 5

Figure 3.14: Main result: distillation in a continual learning setting of three
teacher policies into a single student policy. The resulting policy is able
to perform all three tasks both in simulation and in the real world, while
minimizing forgetting.

57

Negative results

While distillation is effective for policy transfer, we also tested other alter-
natives worth mentioning.

Elastic Weight Consolidation (EWC) [85] was implemented as a
continual learning baseline to compare with the distillation method. EWC
has the appealing advantage of not re-using any data from previous tasks.
However, in all cases we found the method unsuccessful.

Tuning the λ parameter that controls the trade-off between weight pro-
tection and learning the new task showed that either λ is too low and catas-
trophic forgetting happens, or λ is too high and nothing new is learned (i.e.,
the full network is frozen). A λ value providing a proper balance in between
both effects could not be found for such sequential tasks to be learned.

Progress and Compress (P&C) [153] was tested but as EWC, we
had problems with the importance factor λ and we were not able to learn
three policies into a single model with this method.

Adding task labels for distillation. Even if all tasks contain a vi-
sually differentiating identifier, they remain visually similar. In cases, we
found that a distilled policy trained to perform well on several tasks can
mix up tasks and thus not perform adequately. Hence, either adding tasks
labels directly, or adding a module in the network that predicts the task
label could be a way to improve the efficiency of distillation. However, none
of the approaches were successful in practice, yielding the same results with
or without task labels.

3.3.7 Discussion

Continual learning is a complex field: every setting is different and expecta-
tions may vary from one algorithm to another. For example it is not easy to
compare results with and without a task indicator. Task labels always add
information to learn or test, and thus, they often improve results. However
in a realistic setting they may be lacking.

Otherwise, the scalability vs stability trade-off is a difficult question.
Learning online in a single model or a dual architecture scales well to a
high number of tasks. However, this solution is often unstable, in particular
because if a task fails, there is a high risk of forgetting everything that has
been learned previously. For example, in generative replay, the generator is
used as a memory. However, if at some moment it diverges while learning,
all data from the past is destroyed.

The approach we propose uses soft-labelled samples as a memory, simi-
larly to rehearsal methods, which will grow the memory continually. Com-
pared to S-TRIGGER, where the generative model acts as memory and thus
allows to keep a bounded system size, DisCoRL is less memory-efficient.
However, rehearsal brings no risk of forgetting or destroying past knowl-

58

edge. With generative models, compounding errors might accumulate, and
we might lose accuracy as more and more environments and tasks are pre-
sented.

Nevertheless, even if we believe this work proposes a stable and scal-
able framework for continual reinforcement learning, several possibilities for
improvement exist. Future work includes having not only a policy learned
in a continual way, but also the SRL model associated. We would need to
update the SRL model as new tasks are presented sequentially. One possible
approach would be to use Continual SRL methods like S-TRIGGER [25] or
VASE [1]. Moreover, we would like to optimize more the memory needed to
save samples by reducing their number and their size.

Finally, training policies on real robot experiences without the use of
simulation would be desirable. However, at the moment, this is more a
RL challenge than a CL challenge. One promising approach would be to
use model-based RL while learning the state representation learning (SRL)
model to improve sample efficiency. Though nowadays approaches still do
not offer solutions that work in a reasonable amount of time.

3.3.8 Conclusion

In this contribution we presented DisCoRL, an approach for continual re-
inforcement learning. The method consists of summarizing sequentially
learned policies into a dataset to distill them into a student model. It al-
lows to learn sequential tasks in a stable pipeline without forgetting. Some
loss in performance may occur while transferring knowledge from teacher to
student, or while transferring a policy from simulation to real life. Never-
theless, our experiments show promising results in simulated environments
and real life settings.

3.4 Conclusion on Representation Learning

In this chapter, we proposed several approaches to the learning of perception
using various techniques from the machine learning community. We showed
in particular that SRL and RL can be extended to Continual Learning setups
where the environments, or the tasks change and the agent has to remember
past events and scenes, just like what an agent in a human environment
would have to do.

However, these approaches still suffer from many limitations for our goal
of learning a perception similar to humans. For example, reinforcement
learning is not trained for general understanding of the environment and
perception, but for finding a viable solution that maximizes the accumu-
lated reward on a particular task. In most cases, the algorithm learns a
representation of data which is not general: if the environment changes
slightly, the policy will not work anymore for maximizing reward. Indeed,

59

the learned representation, and basically what the policy has learned, is not
general. Thus, what is learned during RL cannot be easily re-used for other
tasks. Concerning Continual Learning, the literature still mostly focuses on
static datasets like MNIST. In our contributions, we tried to go beyond this
static dataset setup but this progress is hard because there are no bench-
marks in the RL setup. This is because there are numerous possible tasks in
the continual learning setup for reinforcement learning. In the environment,
objects could change, or the background, or additional objects can appear,
or new agents can appear. Otherwise the agent can change as well, in terms
of sensors, or in terms of motors, or both. All these possibilities need to
be summarized and organized in a common widely accepted benchmark for
progress to be made. Until then, much progress has to be made before CL
can really deliver on its promises: a never-ending learning agent that learns
continually just like humans do.

Finally, there is the additional issue of disentanglement with all the pre-
viously mentioned approaches. Disentanglement is the study of the organi-
zation of latent spaces. All the previous approaches learn representations of
data in a vectorial format, but the organization of this latent space is crucial
for using it on downstream tasks. Essentially, if we understand the structure
of the latent space, it is intuitively easier to manipulate it and re-purpose
it. A disentangled latent space would isolate high-level features of data on
one or few dimensions of the latent space, allowing easy manipulation of
data and interpretability, which could in turn help solve new tasks that
might be harder with entangled latent spaces. We investigate this question
of disentanglement for latent spaces in the next Chapter.

60

Chapter 4

The role of Actions in
Disentangled Representation
Learning

Contents

4.1 On the importance of disentanglement 61

4.2 Symmetry-based Disentangled Representation Learn-
ing . 62

4.3 Contribution: SBDRL requires interaction with
environments . 64

4.3.1 Abstract . 64

4.3.2 Introduction . 64

4.3.3 Symmetry-Based Disentangled Representation Learn-
ing requires interaction with environments 65

4.3.4 Considered environment 68

4.3.5 Theoretical analysis 68

4.3.6 Symmetry-Based Disentangled Representation Learn-
ing in practice . 69

4.3.7 Using (L)SB-disentangled representations for down-
stream tasks . 74

4.3.8 Discussion . 77

4.4 Conclusion . 77

4.1 On the importance of disentanglement

How can intelligent agents solve a diverse set of tasks in a data-efficient man-
ner? The disentangled representation learning approach posits that such
an agent would benefit from separating out (disentangling) the underlying

61

structure of the world into disjoint parts of its representation, reflecting the
compositional nature of the world. Previous work [70, 136] in this field of
research has shown that agents capable of learning disentangled representa-
tions can perform more data-efficient policy learning. More generally, dis-
entangling the different elements of a scene is an intuitive ability of humans
and animals. Intelligent agents isolate the factors of variations of the world
in order to manipulate them for achieving tasks and goals. For a software
agent, this skill does not emerge automatically, hence the need for algorithms
that create disentangled understanding of the world. In usual representation
learning without disentanglement, the algorithm will just learn a sufficient
representation to solve the particular task it is asked to learn, and will not
purposely create a re-usable representation that generalizes to many tasks.

However, there is no generally accepted formal definition of disentangle-
ment in Representation Learning, which prevents significant progress in this
emerging field. Recent efforts have been made towards finding a proper def-
inition [105]. In this thesis we focus on the definition proposed by Higgins
et al. [68]: Symmetry-based Disentangled Representation Learning. We
extend their theory and provide practical guidelines for implementation.

4.2 Symmetry-based Disentangled Representation
Learning

Higgins et al. [68] define Symmetry-Based Disentangled Representation Learn-
ing (SBDRL), by taking inspiration from the successful study of symmetry
transformations in Physics. Their definition focuses on the transformation
properties of the world. They argue that transformations that change only
some properties of the underlying world state, while leaving all other prop-
erties invariant, are what gives exploitable structure to any kind of data.
For instance, a ball might be moving in many directions but will not usually
change shape often, and will even less often change colors.

They distinguish between linear and non-linear disentangled representa-
tions, which models whether the transformation affects the representation
in a linear or non-linear way. Supposedly, linearity might be more useful for
downstream tasks such as Reinforcement Learning or auxiliary prediction
tasks, since they model the action of the transformations on the represen-
tation in a simpler and interpretable way that what might be learned in
non-linear way. Their definition is intuitive and provides principled resolu-
tions to several points of contention regarding what disentanglement is. For
clarity, we refer to a representation as SB-disentangled if it is disentangled
in the sense of SBDRL, and as LSB-disentangled if linearly disentangled.

62

Mathematical formalization

The core idea is that SB-disentanglement of a representation is defined with
respect to a particular decomposition of the symmetries of the environment.
Symmetries are transformations of the environment that leave some aspects
of it unchanged. For instance, for an agent on a plane, translations of the
agent on the y-axis leave its x coordinate unchanged. They formalize this
using group theory. Groups are composed of these transformations, and
group actions are the effect of the transformations on the state of the world
and representation. We now recall the formal definition of a SB-disentangled
representation w.r.t to this group decomposition. We advise the reader to
refer to the detailed work of [68] for any clarification.

The proposed definition of SB-disentanglement supposes that the sym-
metries of the environment are formally defined as a group G (equipped with
composition) that can be decomposed into a direct product G = G1×..×Gn.
Let W be a set of world-states W = (w1, .., wm) ∈ Rm×d, where each state
wi is a d-dimensional vector. We suppose that there is a generative pro-
cess b : W → O leading from world-states to observations (these could be
pixel, retinal, or any other potentially multi-sensory observations), and an
inference process h : O → Z leading from observations to an agent’s repre-
sentations. We consider the composition f : W → Z, f = h ◦ b. Suppose
also that there is a group G of symmetries acting on W via a group action
·W : G ×W → W . A world is thus defined by (W, ·W). We would like to
find a corresponding group action ·Z : G × Z → Z so that the symmetry
structure of W is reflected in Z. We also want the group action ·Z to be
disentangled, which means that applying Gi to Z leaves all sub-spaces of Z
unchanged but the one corresponding to the transformation Gi. Formally,
the representation Z is SB-disentangled with respect to the decomposition
G = G1 × ..×Gn if:

1. There is a group action ·Z : G× Z → Z.

2. The map f : W → Z is equivariant between the group actions on W
and Z:

3. There is a decomposition Z = Z1 × ..× Zn such that each Zi is fixed
by the action of all Gj , j 6= i and affected only by Gi.

63

This definition of SB-disentangled representations does not make any
assumptions on what form the group action should take when acting on
the relevant disentangled vector subspace. However, many subsequent tasks
may benefit from a SB-disentangled representation where the group actions
transform their corresponding disentangled subspace linearly. Such repre-
sentations are termed linear SB-disentangled representations, which we refer
to as LSB-disentangled representations.

4.3 Contribution: SBDRL requires interaction with
environments

4.3.1 Abstract

Finding a generally accepted formal definition of a disentangled representa-
tion in the context of an agent behaving in an environment is an important
challenge towards the construction of data-efficient autonomous agents. [68]
recently proposed Symmetry-Based Disentangled Representation Learning,
a definition based on a characterization of symmetries in the environment
using group theory. We build on their work and make observations, theoret-
ical and empirical, that lead us to argue that Symmetry-Based Disentangled
Representation Learning cannot only be based on static observations: agents
should interact with the environment to discover its symmetries. Our ex-
periments can be reproduced in Colab 1 and the code is available2.

4.3.2 Introduction

We build on the work of [68] and make observations, theoretical and empir-
ical, that lead us to argue that SBDRL requires interaction with environ-
ments. The necessity of having interaction has been suggested before [165].
We propose a proof for SBDRL.

As in the original work, we base our experiments on a simple environ-
ment, where we can formally define and manipulate a SB-disentangled rep-
resentation. This simple environment is 2D, composed of one circular agent
on a plane that can move left-right and up-down (Figure 4.1). We show
that current approaches to learn (L)SB-disentangled representation are not
designed to model the effect of the world’s symmetries on the representation,
a key aspect of SBDRL which we present later. We thus ask: how is one
supposed to, in practice, learn a (L)SB-disentangled representation?

We propose two approaches that arise naturally, one where representa-
tion and world symmetries effect on it are learned separately and one where
they are learned jointly.

1https://colab.research.google.com/drive/1KVlSV24c687N_

4TLJWwGTkjt3sh9ufWW
2https://github.com/Caselles/NeurIPS19-SBDRL

64

https://colab.research.google.com/drive/1KVlSV24c687N_4TLJWwGTkjt3sh9ufWW
https://colab.research.google.com/drive/1KVlSV24c687N_4TLJWwGTkjt3sh9ufWW
https://github.com/Caselles/NeurIPS19-SBDRL

Figure 4.1: Environment studied in this chapter.

For both scenarios, we formally define what could be a proper represen-
tation to learn, using the formalism of SBDRL. We propose empirical im-
plementations that are able to successfully approximate these analytically
defined representations. Both empirical approaches make use of transitions
(ot, at, ot+1) rather than still observations ot, which validates the main point
of this contribution: Symmetry-Based Disentangled Representation Learn-
ing requires interaction with the environment.

Ultimately, the goal of such representations is to facilitate the learning
of downstream tasks. We study the efficiency of (L)SB-disentangled rep-
resentation on a particular downstream task: learning an inverse model.
Our results suggest that (L)SB-disentangled indeed facilitates the learning
of such downstream tasks.

Our contributions are therefore the following:

• We prove that interaction with the environment, i.e. the use of tran-
sitions, is necessary for SBDRL, and illustrate it empirically.

• We propose two alternatives for learning linear and non-linear SB-
disentangled representation in practice, both using transitions rather
than still observations. Using a simple environment, we describe both
solutions theoretically and validate them empirically.

• We empirically demonstrate the efficiency of using SB-disentangled
representation for a downstream task (learning an inverse model).

4.3.3 Symmetry-Based Disentangled Representation Learn-
ing requires interaction with environments

In this section we prove the main claim of this contribution: SBDRL requires
interaction with environments. By “interaction with environments” we refer

65

to the fact that in order to learn a SB-disentangled representation, one
should not use a training set composed of still samples (ot, ot+1, ...), but
rather transitions ((ot, at, ot+1), (ot+1, at+1, ot+2), ...).

We begin by observing that SBDRL definition is actually two-fold. The
definition of a SB-disentangled representation w.r.t the decomposition G =
G1 × ..×Gn is composed of two main properties:

1. There is a group action ·Z : G× Z → Z.

2. The map f : W → Z is equivariant between the
group actions on W and Z.


Definition of a
Symmetry-Based
representation.

3. There is a decomposition Z = Z1× ..×Zn such
that each Zi is fixed by the action of allGj , j 6= i
and affected only by Gi.


Disentanglement
property.

The first two points define what a SB representation is. It’s a represen-
tation for which the effect of group actions on the world state is the same
as the effect on the representation itself. The third point characterizes what
disentanglement is for a SB representation.

In practice, it seems natural to first know how to learn a representation
that satisfies the first two points, i.e. a SB representation. Based on this,
we can develop methods that enforce disentanglement.

Hence we ask, how can one learn a SB representation? This task involves
knowledge about how the group action affects Z. The group action is defined
to be the effect of symmetries on the representation. These symmetries can
be spatial translations, rotations, time translations, etc. In a Machine Learn-
ing paradigm, we would design an algorithm that learns from examples. We
thus need, in practice, a way to apply these transformations on observations
of the world (ot)t=1..n and observe the result (gt ·Z ot = ot+1)t=1..n.

We thus make an analogy between the effect of a symmetry g (by the
group action ·W) on the environment (o1, g, g ·W o1 = o2), and a transition
that uses the dynamics f of the environment (ot, at, f(ot, at) = ot+1). It
allows us to consider a more realistic scenario where we have an agent in
an environment, and we can apply the group actions to this agent. In our
analogy we simply say that o1 = ot, o2 = ot+1 and at = g and ·W = f .

However, we do not make a total confusion between symmetries and
regular actions that can be found in any environment. A symmetry is an
element of a group (in the mathematical sense) of functions g : W → W ,
and the binary operation of the group is composition. In that sense, these
functions can effectively be considered as actions, because actions take the
environment from one state to another through the dynamics f , and sym-
metries take the environment from one state to another through the group
action ·W .

66

It is important to mention that not all actions are symmetries, for in-
stance the action of eating a collectible item in the environment is not part of
any group of symmetries of the environment because it might be irreversible.

More formally, Theorem 1 provides a mathematical proof that we need
interaction with environments.

Theorem 1. Suppose we have a SB representation (f, ·Z) of a world W0 =
(W = (w1, .., wm) ∈ Rm×d, ·W0) w.r.t to G = G1 × ...×Gn using a training
set T of unordered observations of W0. Let Wk be the set of possible values
for the kth dimension of w ∈W .
Then:

1. There exists at least kW,G = n[(mink(card(Wk))!]−1 worlds (W1, ..,WkW,G)
equipped with the same world states Wi = (w1, .., wm) and symmetries
G, but different group actions ·Wi.

2. For these worlds, (f, ·Z) is not a SB representation.

3. These worlds can produce exactly the same training set T of still im-
ages.

Proof. We prove the three points.
1. For each symmetry Gi, we can shuffle the order of states along each

axis of W . For instance, if the symmetry is translation along a cyclic hue
axis composed of three colors (red, green, blue). Then one can consider two
worlds where translating right from red moves the agent in blue (world 1)
or green (world 2).

We provide a lower bound to the number of possible worlds. For a sym-
metry Gi, the minimal number of possible visited states is mink(card(Wk)).
It is the case if all symmetries affect only one axis of W and all axes of W
have the same number of possible values (= mink(card(Wk)). The num-
ber of possible worlds is then given by the number of permutations of a set
composed of mink(card(Wk)) elements, which is mink(card(Wk))!.

There are n symmetries in G = G1 × .. × Gn, hence there are at least
kW,G = n[(mink(card(Wk))!]−1 possible worlds (W1, ..,WkW,G) that are not
W0 but share the same state space W and symmetries G. They differ by
the action ·Wi of G on the world Wi.

2. For any different world Wi than W0, there exists a state and a
symmetry (g, w ∈ G ×W) such that the action of g on w is not the same
on the two worlds. Thus, f is not equivariant between the group actions on
W and Z w.r.t to both W0 and Wi. Hence (f, ·Z) is necessarily not a SB
representation w.r.t to any of the worlds (W1, ..,WkW,G) and G.

Formally, let i ∈ [|1..kW,G|]. Wi 6=W0 =⇒ ∃(g, w ∈ G×W), g ·Wi w 6=
g ·W0 w. Necessarily, f(g ·Wi w) 6= f(g ·W0 w). Yet, (f, ·Z) is SB w.r.t W0:
f(g ·W0 w) = g ·Z f(w). Hence, f(g ·Wi w) 6= g ·Z f(w), i.e. for world Wi,
(f, ·Z) is not equivariant between the group actions on W and Z.

67

3. (W0, ..,WkW,G) all share the same state space. Hence they can
theoretically produce any training set of still images collected in W0.

Using Theorem 1, we can deduce that for a given dataset of still images
collected in a world, it is impossible to describe the action of symmetries on
the world. The dataset could come from a number of different worlds where
symmetries act differently. Hence the need for transitions. For example, in
a world where the agent can change color along a hue axis, the succession of
colors can be (red, green, blue, red, ...), or (red, blue, green, red, ...). Then
the world states are identical, the symmetries also. Yet, the effect of the
symmetries are not the same, i.e. ·1,W 6= ·2,W .

Still, it is not clear how to discover the symmetries G of a world. [68]
propose to use active perception or causal manipulations of the world to
empirically determine them. Having this in mind, we note that high-level
actions in an environment often correspond to symmetries, such as trans-
lations along cartesian axis, rotations, changes of color, changes related to
time (no-op action). Actions could then be used as replacements to symme-
tries, and one could learn SB representations using traditional transitions
(ot, at, ot+1)t=1..n that are readily available in most environments. In the
rest of the chapter, we validate this approach empirically.

4.3.4 Considered environment

We consider a simplification of the environment studied in [68]. This envi-
ronment is 2D, composed of one circular agent on a plane that can move
left-right and up-down, see Fig.4.1.

Whenever the agent steps beyond the boundary of the world, it is placed
at the opposite end (e.g. stepping up at the top of the grid places the
object at the bottom of the grid). The world-states can be described in
two dimensions: (x, y) position of the agent. All of our experimental results
are based on this environment. It is simple, yet presents the basis for a
navigation environment in 2D. We chose this environment because we are
able to theoretically define SB-disentangled representations, without making
any approximation. We implement this simple environment using Flatland
[23]. The code is available in Colab3 and Github4.

4.3.5 Theoretical analysis

We first provide a theoretical analysis of what can be learned in the con-
sidered environment, in the formalism of SBDRL. Learning a non-linear

3https://colab.research.google.com/drive/1KVlSV24c687N_

4TLJWwGTkjt3sh9ufWW
4https://github.com/Caselles/NeurIPS19-SBDRL

68

https://colab.research.google.com/drive/1KVlSV24c687N_4TLJWwGTkjt3sh9ufWW
https://colab.research.google.com/drive/1KVlSV24c687N_4TLJWwGTkjt3sh9ufWW
https://github.com/Caselles/NeurIPS19-SBDRL

SB-disentangled representation of dimension 2 is possible. If (x, y) is the
position of the object, then learning these two coordinates as well as the
cyclical effect of translations is enough to create a SB-disentangled repre-
sentation of dimension 2.

However, this is not the case for LSB-disentangled representations. We
provide a theorem that proves it is impossible to learn a LSB-disentangled
representation of dimension 2 in the environment presented in Sec.4.3.4 (the
result also applies to the environment considered in [68]). The key element
of the proof is that the two actual dimensions of the environment are not
linear but cyclic. Hence the impossibility of modelling two cyclic dimensions
using two linear dimensions.

Based on this, we show next how to learn, in practice, a SB-disentangled
representation of dimension 2 and a LSB-disentangled representation of di-
mension 4.

4.3.6 Symmetry-Based Disentangled Representation Learn-
ing in practice

We now consider the problem of learning, in practice, SB-disentangled and
LSB-disentangled representations for the world considered in Sec.4.3.4. For
that, we propose two approaches, either decoupled or end-to-end.

We illustrate each method by learning a SB-disentangled representation
with the decoupled approach, and learning a LSB-disentangled representa-
tion with the end-to-end approach.

Decoupled approach (illustrated on SB-disentangled representa-
tion)

We propose to learn the representation first, and then the group action of G
on Z using a separate model. This way, we have a complete description of the
SB-disentangled representation. This approach is effectively decoupling the
learning of physics from vision as in [60], where there is a vision component
that describes and summarizes what the agent sees, a forward module that
allows to predict future observations given actions, and a controller module
that learns a policy that solves the specified task.

We consider learning a 2-dimensional SB-disentangled representation.
We started by reproducing the results in [68]: we used a variant of the cur-
rent state-of-the-art disentangled representation learning model CCI-VAE
[69]. It is a modification of the VAE objective that encourages disentan-
glement by constraining the shape of the learned latent space to have more
efficient representation. The learned representation corresponds (up to a
scaling factor) to the world-state W , i.e. the (x, y) position of the agent.
This intuitively seems like a reasonable approximation to a disentangled
representation.

69

However, once the representation is learned, we have no idea how the
group action of symmetries affect the representation, even though it is at the
core of the definition of SBDRL. This is where the necessity for transitions
(ot, at, ot+1)t=1..n rather than still observations (ot)t=1..n comes into play.
We learn the group action on Z ·Z : G × Z → Z, such that f = h ◦ b is an
equivariant map between the actions on W and Z.

Figure 4.2: Left: First option: decoupled learning of representation and
group action, here applied to learning a non-linear SB-disentangled repre-
sentation. Latent traversal spanning from -2 to 2 over each of the repre-
sentation’s dimensions, followed by the predicted effect of the group action
associated with each action (left, right, down, up). Right: Second option:
joint learning of representation and group action, here applied to learning a
non-linear LSB-disentangled representation. The representation is complex:
latent traversal over the phase of each of the representation’s dimensions,
followed by the predicted linear effect of the group action associated with
each action (down, left, up, right).

In practice, we learn h : O → Z with a variant of CCI-VAE as explained
above, and then use a multi-layer perceptron to learn the group action on Z.
The results are presented in Fig.4.2, where we observe that the learned group
action correctly approximates the cyclical movement of the agent. We thus
have learned a properly SB-disentangled representation of the world, w.r.t to
the group decompositionG = Gx×Gy (decomposition of the transformations
possible in the world by the agent as translations along the x and y axis).

End-to-end approach (illustrated on LSB-disentangled represen-
tation)

In the decoupled approach, the learned representation is identical to a setting
where we would have ignored the group action. Hence, a preferable approach
would be to jointly learn the representation and the group action. We study
such an approach on the task of learning a LSB-disentangled representation.

To accomplish this, we start with a theoretically constructed LSB-disentangled

70

Figure 4.3: Proposed architecture for learning a LSB-disentangled represen-
tation in the environment at the left as presented in section 4.3.6.

representation. It is based on an example given in [68]. The representation
is defined as following, using 4 dimensions:

• f : R2 → C2 is defined as f(x, y) = (e2iπx/N , e2iπy/N)

• ρ(g) : C2 → C2 is defined as

{
ρ(gx)(zx, zy) = (e2iπnx/Nzx, zy)

ρ(gy)(zx, zy) = (zx, e
2iπny/Nzy)

In this representation, the (x, y) position is mapped to two complex num-
bers (zx, zy). For each translation (on the x-axis or y-axis), the associated
group action on Z is a rotation on a complex plane associated with the
specific axis. This representation linearly accounts for the cyclic symmetry
present in the environment. It means that the operator that represents the
action of the group is linear. Using CCI-VAE with 4 dimensions fails to
learn this representation: we verified experimentally that only 2 dimensions
were actually used when learning (for encoding the (x, y) position), and the
two remaining were ignored.

In order to learn the LSB-disentangled representation, we generate a
dataset of transitions, and use it to learn the 4-dimensional LSB-disentangled
representation with a specific VAE architecture we term Forward-VAE. This
architecture allows to jointly learn the representation and the group action
on it. Here, we want the group action on Z to be linear, so we enforce
linearity in transitions in the representation space.

We begin by re-writing the complex-valued function ρ(g) : C2 → C2 as

71

a real-valued function:

ρ(g) :
R4 → R4

v → ρ(g)(v) = A∗(g) · v
(4.1)

where A∗(g) is a 4x4 block-diagonal matrix, composed of 2x2 rotation
matrices. Let’s consider the environment in Sec.4.3.4. The agent has 4
actions: go left, right, up or down. We associate each action with a corre-
sponding matrix with trainable weights.

For instance, if g = gx ∈ Gx is a translation on the x-axis, the cor-
responding matrix is A∗(gx) and we associate actions go right/left with
corresponding matrices Â(at), where · are trainable parameters:

A∗(gx) =


cos(nx) − sin(nx) 0 0
sin(nx) cos(nx) 0 0

0 0 1 0
0 0 0 1

 and Â(gx) =


· · 0 0
· · 0 0
0 0 1 0
0 0 0 1

.

We would like the representation model that we learn to satisfy ρ(g)(vt) =
Â(g) · vt = vt+1. We thus enforce the representation to satisfy it in our
Forward-VAE architecture, as illustrated in Fig.4.3. The training procedure
is presented in Algorithm 1 thereafter.

For each image in a batch, we compute f(ot) = zt and f(ot+1) = zt+1

using the encoder part of the VAE. Then we decode zt with the decoder and
compute the reconstruction loss Lreconstruction and annealed KL divergence
LKL as in [25]. Then we compute Â(at) · zt and compute the forward loss,
which is the MSE with zt+1: Lforward = (Â(at) · zt − zt+1)2. We then
backpropagate w.r.t to the full loss function of Forward-VAE:

LForward−V AE = Lreconstruction + γt · LKL + Lforward (4.2)

The results are presented in Fig.4.2. Forward-VAE correctly learns a
representation where the two complex dimensions correspond to the position
(x, y) of the agent. Plus, we observe that the learned matrices (Âi)i=1..4 are
very good approximation of the ideal matrices (A∗i)i=1..4 defined above, with
nx ≈ π

3 . The mean squared difference is very small (order of 10−4).

Remarks

Note that we could have applied this joint learning approach to learning non-
linear SB-disentangled representation. However it is not possible to apply
the decoupled approach to learning a LSB-disentangled representation.

We used inductive bias given by the theoretical construction of a LSB-
disentangled representation theory to design the action matrices and its
trainable weights. This construction is specific to this example. However,
the idea of having an action matrix for each action is extendable. If each
action is high-level and associated with a symmetry, then SBDRL can be

72

Algorithm 1 Pseudo-code for training procedure of Forward-VAE

1: batch = ((ot, .., ot+k), (at, .., at+k−1)) = (o,a)
2: for batch in dataset do
3:

— Forward model Loss—

4:

5: z← encoder mean(batch)
6: zbefore ← z[: −1]
7: zafter ← z[1 :] # targets
8: Â← [Â(at), .., Â(at+k−1)] # actions matrices corresponding to given

action sequence
9: zprediction ← Â · zbefore # predictions

10: Lforward(batch)←MeanSquaredError(zprediction, zafter)
11:

— VAE Loss (reconstruction and KL) —

12:

13: z← encoder sample(batch)
14: ô← decoder(z)
15: Lrecon(batch)←MeanSquaredError(ô,o)
16: LKL(batch)← KL divergence(z,N (0, 1))
17:

— Backpropagation —

18:

19: LForward−V AE(batch) ← Lrecon(batch) + LKL(batch) +
Lforward(batch)

20: encoder, decoder, (Â1, .., Âj)← Backpropagation(LForward−V AE(batch))

73

performed. Still, it requires high level actions that represent these symme-
tries. One potential way to find these actions is through active search [159],
as suggested in [68].

In our Forward-VAE architecture we indeed explicitly design the model
such that the resulting representation is Linear SB-disentangled, because
we enforce linearity, force the representation to be SB (see points 1 and 2
in the definition in Sec.3) and by design have two separate subspaces for
each symmetry. A more general approach would have been not to have
those two separated subspaces and learn the entire action matrices, and
thus we won’t have the guarantee that the representation will satisfy the
disentangled property. We ran this experiment and obtained the expected
result: the learned representation is Linear-SB but not disentangled. This
means that the x and y coordinates are not properly disentangled w.r.t
to the considered group decomposition (i.e. a latent traversal over each
dimension would not result in only a movement of the agent along the x or
y coordinate). However, the learned action matrices are able to describe how
the symmetries affect the representation in a linear way. Hence enforcing
disentanglement is the only viable option we found for LSB-disentanglement
with this architecture.

It is important to note that an instability in Forward-VAE training can
be expected due to the different contributions of the loss: at each training
steps the goal of the forward part of the loss is to have a latent space that
is suited for predicting zt+1 using zt. The rest of the loss is the VAE,
which tries to learn a latent space that allows reconstruction. Hence the
balance between these two seemingly unrelated objectives might be a source
of instability. However it worked in practice, without any re-weighting of
the objectives, which was a surprise.

4.3.7 Using (L)SB-disentangled representations for downstream
tasks

Is using (L)SB-disentangled representations beneficial for subsequent tasks?
This remains to be demonstrated, as other work has already challenged
the benefit of learning disentangled representations over non-disentangled
ones [105]. In this section we wish to answer the following question: is
it increasingly better to use non-disentangled / non-linear SB-
disentangled / LSB-disentangled representation for downstream
tasks? We define better in terms of final performance, under different
settings (restricted capacity classifiers/restricted amount of data).

For the choice of downstream tasks, we select the task of learning an in-
verse model, which consists in predicting the action at from two consecutive
states (st, st+1).

As a LSB-disentangled representation models the interaction with the
environment linearly, it intuitively should be increasingly easier to learn an

74

inverse model from: a non-disentangled representation, a non-linear SB-
disentangled representation, and a LSB-disentangled representation.

Experimental protocol

In order to test this hypothesis, we selected a well-established implemen-
tation (Scikit-learn [129]) of a well-studied classifier (Random Forest [15]).
We collect 10k transitions (ot, at, ot+1). We train the following models and
baselines to compare:

• LSB-disentangled representation of dimension 4: Forward-VAE trained
as in Sec.4.3.6.

• SB-disentangled representation of dimension 2: CCI-VAE variant trained
as in Sec.4.3.6.

• Non-disentangled representation of dimension 2: Auto-encoder, non-
disentangled baseline.

• SB-disentangled representation of dimension 4: CCI-VAE trained as
in Sec.4.3.6 but with 4 dimensions, baseline to control for the effect of
the size of the representation.

For each model, once trained, we created a dataset of transitions in
the corresponding representation space (st, at, st+1). We then report (Fig-
ure 4.4) the 10-fold cross-validation mean accuracy as a function of the
maximum depth parameter of random forest, which controls the capacity of
the classifier.

Results

We first observe that in all cases, either LSB or SB-disentangled represen-
tations are performing best. In terms of final performance, all models meet
at the upper 100% accuracy limit, given enough data and a classifier with
enough capacity.

However, if we consider a constraint in training set size and a fixed high
capacity classifier (see Fig. 4.4(a)), we can see that using a SB-disentangled
representation is superior to other options. We refer to the capacity of the
classifier as ”high” if increasing the capacity parameter does not lead to an
increase in validation accuracy.

Moreover, if we consider a fixed large training set size and a constraint
on the classifier’s capacity, using LSB-disentangled representation is the best
option (see Fig. 4.4(b)).

As a conclusion, we observed that it is easier for a small capacity classifier
to solve the task using a LSB-disentangled representation and it is easier to
solve the task using less data with a SB-disentangled representation. This

75

2 4 6 8 10 12 14
Max depth of Random Forest classifier

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
va

lid
at

io
n

ac
cu

ra
cy

 (1
0-

fo
ld

 c
ro

ss
 v

al
id

at
io

n)

CCI-VAE (non-linear disentangled, dim=2)
CCI-VAE (non-linear disentangled, dim=4)
Auto-Encoder (non-disentangled, dim=2)
Forward-VAE (linear disentangled, dim=4)

(a) Dataset size: 1k samples

2 4 6 8 10 12 14
Max depth of Random Forest classifier

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
va

lid
at

io
n

ac
cu

ra
cy

 (1
0-

fo
ld

 c
ro

ss
 v

al
id

at
io

n)

(b) Dataset size: 10k samples

Figure 4.4: Downstream task evaluation of representation models: inverse
model prediction. Mean 10-fold cross validation accuracy as functions of
dataset size and classifier capacity (max depth parameter of Random For-
est). LSB and SB-disentangled representation perform best.

indicates that (L)SB-disentanglement is indeed useful for downstream task
solving.

Remarks

It’s worth noting that the advantage is not very substantial, which is ex-
pected due to the simplicity of the task. Our results on usefulness of (L)SB-

76

disentangled representations for downstream tasks are preliminary; it would
be interesting as future work to compare to more baselines and on more
tasks. Other related works such as [169, 103] also study the usefulness
of disentangled representations for downstream tasks, and respectively find
them useful for performance in abstract visual reasoning tasks and for en-
couraging fairness when sensitive variables are not observed.

More generally, we need large-scale evaluations of representations’ use-
fulness for downstream tasks in the disentanglement representation learning
literature, like the study proposed in [169]. Such studies are needed to vali-
date the intuition that disentanglement is useful in practice for subsequent
tasks.

4.3.8 Discussion

The benefit of using transitions rather than still observations for represen-
tation learning in the context of an agent acting in an environment has been
proposed, discussed and implemented in previous work [165, 136]. In this
work however, we emphasize that using transitions is not only a beneficial
option, but is compulsory in the context of the current definition of SBDRL
for an agent acting in an environment, as Theorem 1 proves it.

Applying SBDRL to more complex environments is not straightforward.
For instance, consider that we add an object in the environment studied in
this chapter. Then the group structure of the symmetries of the world are
broken when the agent is close to the object. However, the symmetries are
conserved locally. One approach could be to start from this local property
to learn an approximate SB-disentangled representation.

4.4 Conclusion

In this chapter, we studied and proved the necessity of actions for disentan-
glement in Symmetry-Based Disentangled Representation Learning. More
generally, the need for actions is advocated in most theories of perception.
Since disentanglement is a supposed feature of our perception, it is logical
to find the need for actions in disentanglement learning. We were able to
prove it for SBDRL, and provide empirical evidence of the usefulness of such
disentangled representation for downstream tasks.

In the next chapter, we will continue by taking inspirations from two the-
ories of visual perception that put an emphasis on the crucial role of actions
in the learning of perception. From these two theories we will introduce the
concept of sensory commutativity of action sequences, which describes the
commutative properties of action sequences with respect to sensory infor-
mation received by the agent. We will first study it theoretically, and then
provide concrete application algorithms.

77

78

Chapter 5

Sensory commutativity of
action sequences: theory

Contents

5.1 Introduction . 79

5.2 Sensory commutativity of action sequences: mo-
tivation . 80

5.3 Commutative properties of action sequences . . 81

5.3.1 Formalism choice 81

5.3.2 Group structure of the set of action sequences Seq(M) 82

5.3.3 Philipona’s conjecture 84

5.3.4 SC-experiment definition 84

5.4 Sensory commutativity probability of an action
sequence . 85

5.4.1 SCP definition . 85

5.4.2 SCP computation 85

5.5 SCP experimental analysis 86

5.5.1 2D experimental setup 86

5.5.2 3D realistic experimental setup 87

5.5.3 Results . 88

5.6 Conclusion . 90

5.1 Introduction

In the rest of this thesis, we present approaches that are inspired from the
theories of embodied perception, and implemented using or thanks to recent
ML advances. This approach is a natural progress in the quest for solving
the problem of perception: new tools and learning mechanisms are available

79

in the literature, and they can thus be used to implement intuitions or
concepts that have been developed concurrently in philosophy, psychology
or cognitive sciences.

We now present our contribution to this effort. We take inspiration from
the Sensorimotor contingencies theory (SMCT) theory [123] and Gibson’s
visual perception theory [134, 132, 53] to develop theoretical insights on per-
ception and learning algorithms based on the concept of commutativity of
action sequences with respect to sensory information received by the agents
while they act in the environment. Chapter 5 presents our theoretical find-
ings while Chapter 6 introduces our proposed learning algorithms based on
the theory developed.

5.2 Sensory commutativity of action sequences: mo-
tivation

Sensorimotor contingencies theory (SMCT) [123] is a theory of visual per-
ception developed by J. Kevin O’Regan that gives a center role to actions
in the development of visual awareness. Many current neurophysiological,
psychophysical, and psychological approaches to vision rest on the idea that
when we see, the brain produces an internal representation of the world.
The activation of this internal representation is assumed to give rise to the
experience of seeing. O’Reagan proposes that seeing is a way of acting. He
claims that activity in internal representations does not generate the expe-
rience of seeing. In his theory, the outside world serves as its own, external,
representation. The experience of seeing occurs when the organism mas-
ters what he calls the governing laws of sensorimotor contingencies. This
approach has the advantage to provide a natural and principled way of ac-
counting for visual consciousness, and for the differences in the perceived
quality of sensory experience in the different sensory modalities. Several
lines of empirical evidence have brought support to the theory, in particular
evidence from experiments in sensorimotor adaptation, visual “filling in,” vi-
sual stability despite eye movements, change blindness, sensory substitution,
color perception, and space awareness [91, 93, 92, 90, 132, 131, 133, 28, 27].
Moreover, in this theory, sensory compensability of actions is a key to the
understanding of the concept of space.

The idea of compensability of actions was already put forward by Poincaré
[134], who suggested that the set of compensable transformations of the envi-
ronment together with the composition operation forms a group. Philipona
et al. [131] further attempted at describing this group, by noticing that
some transformations can commute while others don’t. Using action se-
quences and their commutative property, the authors suggested that spatial
transformations and non-spatial transformations can be disentangled. More-
over, these intuitions and remarks are linked to the study of symmetry-based

80

disentanglement, that works by separating transformations in groups as well.

We observed that these three perspectives on perception (Poincaré, Philipona,
SBDRL) all point to a mathematical formalism using groups, compensabil-
ity/commutativity, and action sequences. While Poincare and Philipona
proposed intuitions without actual implementations, SBDRL demonstrated
that the intuition was valid on toy examples. We build on these intuitions
to study whether they can transfer to practical applications in the domain
of representation learning.

In this chapter, we formalize a measure for sensory commutativity. We
then notice that we can deduce practical applications from the study of the
commutatitive properties of action sequences. This work is novel since these
comments we take inspiration from were not formalized as research work,
but rather cited as intuitions that could be interesting.

We thus consider the set of action sequences, termed Seq(M), and their
commutative properties. We will now study the group and sub-group prop-
erties of Seq(M).

5.3 Commutative properties of action sequences

5.3.1 Formalism choice

In the SMCT theory, the agent sensory motor experience is described as
follows:

st = φ(mt, εt) (5.1)

This formalism, while close to the RL formalism, is centered around the
agent and its perception. At a time t, the agent is in a particular motor
state mt. This means that its motors are in a particular setup called mt (e.g.
the actuator’s torque and angle). The environment is defined by everything
that’s not the agent. It’s thus an entity that is in a state εt, e.g. a room
with 6 walls plus light sources and objects placed in different locations. The
agent can perceive the world through its sensorimotor dependencies φ: a
function that takes as input mt and εt and produces sensory inputs from its
sensors st.

Next, we would like to describe the dynamics of the world. This descrip-
tion is generally not present in SMT theory. Thus Eq.5.1 is not sufficient to
support the description of the dynamics of the world. We propose to model
these dynamics with the following equation:

mt+1, εt+1 = f(mt, εt,∆
m′t+1
mt ,∆

ε′t+1
εt) (5.2)

The agent can operate motor commands ∆
m′t+1
mt , which will in turn change

it’s sensory inputs to st+1 through the function φ. The environment can

81

change also and influence the agent, represented by ∆
ε′t+1
εt . Taking the initial

states and changes as inputs, the function f yields the new motor command
m′t+1, and a new configuration of the environment ε′t+1. We don’t generally
have that εt+1 = ε′t+1 or mt+1 = m′t+1 since the agent can affect the envi-
ronment configuration through its motor commands or the environment can
force movements on the agent.

In summary, by combining Eq.5.1 and Eq.5.2, we obtain an equation
that includes the dynamics of the world in classical SMT formulation:

st+1 = φ(mt+1, εt+1) = φ(f(mt, εt,∆
m′t+1
mt ,∆

ε′t+1
εt))

5.3.2 Group structure of the set of action sequences Seq(M)

We will now formalize groups and sub-groups of symmetries in the case of an
agent moving in its environment. We study the set of motor command (or
action) sequences of finite length, referred to as Seq(M), and will attempt
to describe its structure.

Philipona [131] first defined a relation between action sequences: h ∼ g if
and only if h and g affect the sensors in the same way. Using our formalism,
we can translate this concept into an equality.

Definition 1. Let (h, g) ∈ Seq(M). h is equivalent to g under (mt, εt),
noted h ∼mt,εt g if and only if they produce the same sensory states when
applied from the same starting situation of the agent (mt) and the environ-
ment (εt):

h ∼mt,εt g ⇐⇒ φ(f(mt, εt, h,∆
εt+1
εt)) = φ(f(mt, εt, g,∆

ε′t+1
εt))

Intuitively, two action sequences are equivalent for a particular motor
state and environment state if applying them leads to the same sensory
state. For instance in the case of a multiple-joint arm moving freely in
an empty space, there are multiple different ways of moving the arm from
one motor state to another. This yields action sequences (h1, .., hn) which
are equivalent in this situation (mt, εt), we thus have h ∼mt,εt g. However
in other situations these action sequences can become not equivalent, for
instance if there are objects on the way as illustrated in Fig. 5.1.

For convenience and clarity, we will drop the notation for dependence
on (mt, εt) and thus write h ∼ g whenever there are no ambiguities in the
context. We now consider the structure of Seq(M) under composition ◦
with respect to the equivalence ∼.

Proposition 1 (Structure of (Seq(M), ∼, ◦)). The following properties
hold:
1. ∼ is an equivalence, i.e. it is reflexive, transitive and symmetric.

82

Figure 5.1: Example of action sequences that do not commute. Starting
from a common situation, the action sequence played in two different orders
does not lead to the same sensory state.

2. (Seq(M), ◦) is a group w.r.t ∼.
3. ◦ is not commutative with respect to ∼.

Proof. 1. = is an equivalence, thus ∼ is an equivalence as well.

2. All 4 properties of the group definition are satisfied. (i) For two action
sequences (h, g) ∈ Seq(M), the composition of h and g is still an
action sequence h ◦ g ∈ Seq(M). (ii) ◦ is associative with respect to
=, i.e. g ◦ (h◦k) = (g ◦h)◦k thus it follows that g ◦ (h◦k) ∼ (g ◦h)◦k.
(iii) The identity element is the no-op action. (iv) If we suppose that
there are no irreversible phenomenons in the environment, then for a
fixed (mt, εt), all action sequences can be inverted.

3. ◦ is not commutative, as we can always explicitly find two action se-
quences that do not commute. For instance, once there exists a mov-
able object in the environment: if the agent is placed left to the object,
then let h be moving right and g be moving left. h and g do not com-
mute (Fig. 5.1).

(Seq(M), ◦) is thus a group w.r.t ∼. This structure is consistent with
the intuitions in SBRL and SMT theories. In the following, we build on the
observation that composing action sequences is not generally commutative
and we can measure to which degree they commute. We will show how this
property can lead the agent to organize and interpret its motor space and
discover objects in the environment.

83

5.3.3 Philipona’s conjecture

Philipona [131] already studied how action sequences commute with respect
to the sensory information received by the agent. Notably, Philipona de-
fined commutative residues. Suppose that an agent doing h1 ◦ h2 leads to
a different outcome in observations than doing h2 ◦ h1, then a commutative
residue g is an action sequence that the agent has to do to compensate the
difference in sensory experience.

Definition 2. g is a commutative residue of (h1, h2) if and only if h1◦h2 ∼s
h2 ◦h1 ◦ g. If g is equivalent to no-op (no action), then h1 and h2 commute.

Starting from this definition, he conjectured that all action sequences
that are not displacements commute with any action sequences. For in-
stance, moving your arms (displacement action) then opening the eyes (non-
displacement action) will always commute whereas two displacement actions
will not necessarily commute, depending on which starting situation s is se-
lected.

Conjecture 1 (Philipona’s conjecture). Let Seq(M) be the set of action
sequences. The subset of Seq(M) composed of non-displacements action
sequences is the sub-group of Seq(M) that commutes.

We will illustrate this conjecture with experiments in Sec. 5.5.3.

5.3.4 SC-experiment definition

Based on Philipona’s conjecture, we derive a criterion for characterizing
how much each degree of freedom of the agent affects the world, computable
using only sensorimotor data. We define ”degree of freedom” (DOF) as a
dimension of the multidimensional continuous action space of the agent. We
also define what we term a sensory commutativity experiment: for an action
sequence h, the agent plays it in two different orders starting from the same
situation.

Definition 3 (Sensory commutativity experiment (SC-experiment)). Let h
be an action sequence of finite length. Let hp be a random permutation of h
(same sequence but different order).

We define a sensory commutativity experiment (SC-experiment) as play-
ing h and hp from the same starting point and comparing the two resulting
observations in the agent’s sensors.

84

5.4 Sensory commutativity probability of an ac-
tion sequence

5.4.1 SCP definition

Using Philipona’s conjecture, we have that for an SC-experiment, the agent
can experience two different sensory outcomes only if the action sequence h
is composed of at least one displacement action (an action that affects the
environment such as moving limbs or going forward).

However, not all displacement actions are equivalent. The agent is more
likely to observe two different outcomes if the action sequence is composed
of displacement actions that affect the environment a lot. Consider moving
your forearm (elbow joint) compared to moving your whole arm (shoulder
joint): the latter is more likely to move things around in the environment
and thus induce sensory non-commutativity when played in two different
orders (i.e. having two different sensory outcomes). Actions on an elbow
joint should therefore have a higher probability to lead to non-commutativity
than a shoulder joint.

We formalize this intuition by defining the Sensory Commutativity Prob-
ability (SCP) of a degree of freedom, averaged over all starting situations s:

Definition 4 (Sensory commutativity probability of a degree of freedom).
Let Seq(Mk) be the set of motor commands (or action) sequences of fi-
nite length for the kth degree of freedom of M (motor state space). Let
h ∈ Seq(Mk) and let hp be a random permutation of h (same sequence but
different order).

The Sensory Commutativity Probability of the kth degree of freedom SCP (Mk)
is defined as:

SCP (Mk) = Ps,h[h ∼s hp]

5.4.2 SCP computation

We propose a straightforward procedure to estimate the SCP of each degree
of freedom of the agent. We initialize the SCP value to 0 (SCP←0). We then
repeat the following process n times for each DOF:

- Sample an action sequence using the selected degree of freedom (a
sequence of action where each action is a value between -1 and 1).

- Play it in 2 different orders starting from the same randomly chosen
state and save the two final sensor images s1 and s2. Compute the distance
between the two images d(s1, s2).

- Count one (SCP+=1) if d(s1, s2) ≤ τ , zero otherwise.

Finally, the estimator of the SCP is the average over the number of trials
(SCP←SCP/n).

85

The parameters of the algorithm are the selected distance function d that
allows comparing the agent’s observations, the threshold τ , and the number
of iterations n. Note that using a simulation allows playing the two action
sequences of different orders from the exact same starting position.

5.5 SCP experimental analysis

In this experimental section, we compute and interpret the SCP in 2D and
3D embodied agent scenarios. In order to study the properties of SCP
and how it relates to the emergence of the notion of objects, we use sim-
ulation environments that have the following properties: embodied agent,
navigable space with objects to interact with, first-person high-dimensional
observations, low-level high-dimensional action space, and coherent physics,
as described in Chapter 2.

5.5.1 2D experimental setup

Figure 5.2: Simulation used for our experiments. The agent Polyphemus
has a 8 DOF motor space, receives an image of it’s only eye, and is placed
in a room with fixed, movable and moving elements.

Simulation description. Our first experiment uses Flatland [23].
We construct an agent called Polyphemus (a Cyclop from the Greek mythol-
ogy), that has a base that can move forward and rotate, a rotatable head
and two 2-DOF arms. The agent sees through its unique eye that has an
activable eyelid, for a total of 8 DOF. The observation received by the agent
is a 64x3 line of RGB pixels (as the world is 2D), which corresponds to
the field of view of 90 degrees. This agent is placed in a room with fixed,
moving, or movable entities, all of different colors. It can move around and

86

physically interact with these entities. Its point of view can change through
base movement, rotation, and head rotation. Our simulation is illustrated
in Fig. 5.2. For each degree of freedom, an action or motor command cor-
responds to a change in the longitudinal/angular velocity of the degree of
freedom.

SCP computation. In order to compute the SCP of each of the
8 agent’s degrees of freedom, we have to select a distance and threshold
as mentioned in Sec. 5.4.2. The distance selected here is simply the mean
squared error between s1 and s2, the observations resulting from the two
sequences of actions of a SC experiment. Because there is no noise in the
dynamics of the environment and the sensor, the future of the agent is
deterministic. Therefore, in this particular case we can use a threshold of 0.
This means that we consider that two action sequences sensory commutes
if and only if applying the two action sequences from the same initial state
lead to exactly the same sensors. This hard constraint will be relaxed in
subsequent experiments (Sec. 5.5.2).

Baselines. The SCP criterion derived in this thesis estimates how
much each degree of freedom affects the environment in an embodied agent
scenario. We tried two alternatives to this approach in order to estimate the
same quantity. A straightforward approach to this problem, which we call
the naive alternative, is to play action sequences of each degree of freedom
and quantify how much the sensors change. A more involved approach is
to use prediction on the sensory change caused by each degree of freedom,
a common approach used to improve exploration in RL [17, 128]. We call
this alternative the prediction error approach. The DOF that are harder to
predict could be the ones affecting the environment the most, and thus the
most important for manipulation and navigation.

5.5.2 3D realistic experimental setup

We also compute and interpret the SCP for a realistic embodied agent sce-
nario using the interactive Gibson environment (iGibson) [177].

Figure 5.3: Left: External view of the iGibson simulator where the Fetch
robot is in a living room. Right: Fetch’s first person view.

Simulation description. In our experiments, we use the Rs envi-
ronment from iGibson, which is basically a regular apartment. We place the

87

Fetch robot in this environment (Fig. 5.3, left). Fetch is a 10-DOF real robot
[174] equipped with a 7-DOF articulated arm, a base with two wheels, and
a liftable torso. Fetch perceives the environment through a camera placed
in its head (Fig. 5.3, right).

SCP computation. In the Flatland environment, two action se-
quences commuted only if the sensory result of applying both from the
same starting situation were perfectly equal. We relax the strict equality
condition to compute the SCP for Fetch. Indeed, with real images, only
an offset of one pixel would render the two action sequences non-sensory
commutative. Instead of using the mean squared error as a distance, we use
a perceptual distance using the VGG16 [157] features of each observation.
We thus have d(s1, s2) = ||V GG16(s1) − V GG16(s2)||22. The choice of the
threshold τ is partly arbitrary, as we are interested in relative comparisons
between degrees of freedom. We verify in our experiments that our results
and conclusions are valid for a large range of τ .

5.5.3 Results

Figure 5.4: Results for the experiments in Flatland. Left: Sensory Commu-
tativity Probability for each degree of freedom. Middle: Naive alternative.
Right: Prediction error alternative.

In the Flatland environment, Fig. 5.4 (Left) shows that only two ac-
tions have an SCP of 1: eyelid and head rotation. All other actions have
an SCP inferior to 1. This is consistent with Philipona’s conjecture
(Sec. 5.3.3): eyelid and head rotation are the two degrees of freedom that
are not associated with displacements, thus action sequences composed of
actions of these type commute with respect to the sensors. On the contrary,
all other degrees of freedom are associated with displacements, and thus will
eventually induce non-zero commutation residues when played in different
orders from the same starting situation. We observe the same results in
iGibson, presented in Fig. 5.5: the torso lift DOF is not associated with
displacement in the environment, so it has an SCP of 1, i.e. it always sen-
sory commutes. Hence the results are consistent with the conjecture and

88

can be used by the agent to autonomously discover which of its actions are
associated with displacements or not.

Figure 5.5: SCP computed for each of Fetch’s degrees of freedom.

Qualitatively, SCP is inversely proportional to how each de-
gree of freedom affects the environment. By that we mean that from
the computation of the SCP, we obtain a hierarchical organization of the
action space in which the more important dimensions for manipulation and
navigation are separated from the dimensions that are not crucial for such
tasks. For instance, we hypothesized that shoulders should have a lower SCP
than elbows since activating the shoulder joint is more likely to induce non-
commutativity by moving things around or hitting walls/obstacles. This
intuition is verified by our results. Shoulders and base movement have a
lower SCP than elbows which in turn have a lower SCP than eyelid and
head rotation, as observed in Fig. 5.4. Without having any prior knowledge
about the simulation, we can automatically organize the agent’s degrees of
freedom in a hierarchy. Moreover, the symmetry of the action space is kept,
as elbow 1 and 2 have equal SCP, and so do shoulder 1 and 2. We reach the
same conclusions on iGibson (see Fig. 5.5). The wheels have the lowest SCP
since they provide longitudinal movement and rotations for the robot. Then
comes the first DOF of the articulated arm, i.e. the ones that are closer to
its base (like shoulders vs. elbows in the Flatland experiments). Finally, the
highest SCP values correspond to the arm DOF that is further on its arm
and the torso lift. Once again, we obtain a hierarchical organization of the
action space in which the less important dimensions for manipulation and
navigation are separated from the dimensions that are not crucial for such
tasks.

About the choice of the threshold to compute the SCP, we tried a range of
values for τ , from 20 to 100, and in each case, we obtain the same hierarchy
and thus the same conclusion, only the nominal values change, which is

89

irrelevant for the use of SCP.

We verified the robustness of these results. We computed the SCP for
8 different combinations of agents and environments (longer/smaller arms,
more/fewer objects) and confirmed our intuitions on the interpretation of
SCP described above. We also verified the robustness of these results in
iGibson by computing the SCP for a different type of robot called JackRab-
bot [110]. We reach the same conclusions as with the Fetch robot.

Alternative methods are not adapted. Results are illustrated in
Fig. 5.4. Both approaches fail to replace the SCP criterion. We see that
for the naive approach, rotating the head of the agent changes dramatically
what the agent sees, even though this degree of freedom does not affect the
environment. For the prediction error alternative, we see the same problem
with head rotation and a great difference between the two base movements
(rotation and longitudinal movement) while they affect the environment
in similar ways. Indeed, it’s harder to predict what’s outside the field of
view of the agent so rotation is harder to predict compared to longitudinal
movement. To conclude, the proposed alternatives could not yield the same
organization of the agent’s DOF.

5.6 Conclusion

In this chapter, we introduced Sensory Commutativity of action sequences,
a concept derived from the SMCT theory that studies the commutative
properties of action sequences with respect to sensory information received
by the agent.

We formalized the notion of sensory commutativity, and characterized
the properties that emerge from that. The set of action sequences equipped
with the equivalence operation and the composition operation is a non-
commutative group.

We then translated Philipona’s conjecture in our formalism: it states
that the subset of action sequences that are not displacements is the sub-
group of the set of action sequences that commutes.

We introduced the SC-experiment, which allows testing of sensory com-
mutativity in simulators. It consists in playing an action sequence in two
different orders from the same starting point, and then comparing the out-
comes in observations.

We finally introduced SCP, a criterion that allows to hierarchically sort
the DOF of an agent by relative importance regarding displacements. By us-
ing Flatland and iGibson, respectively a 2D and 3D simulation that respects
the required features for the study of perception as presented in Chapter 2,
we showed that SCP indeed allows to empirically validate the properties
described in this Chapter and characterize the motor space of the embodied
agent, based only on naive exploration of the environment.

90

We will now present our implementations of the SCP, its interest for
speeding up RL, as well as an object detection method based on SC-experiment
called SCOD.

91

92

Chapter 6

Sensory commutativity of
action sequences:
applications

Contents

6.1 SCOD: Object Detection using Sensory Com-
mutativity . 94

6.1.1 Introduction . 94

6.1.2 Related work . 97

6.1.3 Object discovery method 98

6.1.4 Experimental setup 100

6.1.5 Results . 102

6.1.6 Discussion and conclusion 108

6.2 Sensory Commutativity for efficient RL 108

6.2.1 Experimental setup 108

6.2.2 Results . 109

6.3 Conclusion . 110

In order to illustrate all the concepts introduced in the previous chapter,
the experiments presented now are organized as follows: we show how we can
use SC-experiments to learn about immovable and movable objects in real-
istic robotics setups. Finally, we show how SCP can be used for improving
sample-efficiency in RL.

93

12/4/2020 Sensory Commutativity (all figures) (1).svg

file:///home/gohu/Downloads/Sensory Commutativity (all figures) (1).svg 1/1

Figure 6.1: Intuition for our approach SCOD for object discovery. 3 scenar-
ios are possible after a SC-experiment (i.e. playing an action sequence in two
different orders from the same starting point), depending on the surround-
ings of the agent. If the agent is surrounded by free-space then the two final
observations obs1 and obs2 will be identical, whereas if it is surrounded by
immovable objects (walls, sofa) then obs1 and obs2 will probably be different
(because of the different interactions with the immovable objects). If the
agent is surrounded by movable objects, obs1 and obs2 will be identical up
to moved objects that have been interacted with in different manners in the
two action sequences.

6.1 SCOD: Object Detection using Sensory Com-
mutativity

6.1.1 Introduction

The role of active movement in object discovery is crucial in the cognitive
development of children [36, 76] and is considered a key aspect in theories
of perception [53]. Children and animals gradually learn about the objects
of the environment, relying on basic mechanisms such as eye movement and
motor babbling [5].

We will now present an object discovery method for embodied agents
termed SCOD (Sensory Commutativity Object Discovery), based on the
analysis of SC-experiment results.

We assess commutativity properties by comparing the two final observa-
tions (obs1, obs2) obtained after each sequence of the SC-experiment. Based
on previous work that study sensory commutativity [133, 131], we posit that
there are three potential outcomes when comparing obs1 and obs2: they are
either completely different, identical, or identical up to moved objects (these
scenarios are illustrated in Fig. 6.1):

94

• obs1 and obs2 are different: the two action sequences from this starting
position do not commute, because the robot interacted with immov-
able objects. Consider for instance the robot in a still stance with its
arm straight such that the robot stands with a wall at its right. Ro-
tating the base of the robot to the left then to the right would end up
with observation obs1, which is the same observation as the starting
situation. Now if the robot rotates its base right then left, since it’s
blocked by the wall from trying to right first, the robot will end up left
to where it started, and it will observe obs2 6= obs1. Using the position
of the agent, we can now map immovable objects in the environment.

• obs1 and obs2 are identical: the two action sequences from this starting
position commute, because the robot did not interact with anything
in the environment (free movement). An example would be the same
situation as in the last paragraph, but with a starting position where
the robot is not next to a wall, and stands in a place where there is
free space. Rotating left then right, or right then left yields the same
observations obs1 = obs2. Using the position of the agent, we know
that there are no objects in the current space around the robot.

• obs1 and obs2 are identical except for an object that has been moved:
it’s the case where the robot has interacted with a movable object that
did not block the robot’s movement. An example would be having the
robot with a movable object to its right in its sight. Rotating left
then right would leave no changes in observations, while rotating right
then left would push the object out of its sight. Hence, the two action
sequences did commute, except for the object that has been moved.
We can learn to detect this moving object and track it.

We therefore posit that from these outcomes, the robot can discover and
map immovable and movable objects in the environment.

We provide the agent with a basic ability: being able to compare two
images. The agent acquires this skill in a pre-training phase where a mask
predictor is learned, whose architecture is based on optical flow prediction.
Studies in cognitive science indicate that children are capable of doing this
differentiation at a very young age (1 month old) [81, 76], so equipping the
naive agent with this basic ability is a reasonable assumption. The mask
predictor takes two images as input, and outputs two masks corresponding
to what has moved between the two observations. Combining the mask pre-
dictor and the SC-experiments allows the agents to discover immovable and
movable objects in their surroundings. The intuition behind the approach
is presented in Fig. 6.2 and on the supplementary video1.

We use the iGibson interactive environment [155] for simulating this
embodied agent scenario. We control the 10-DOF robot Fetch [174], in

1https://youtu.be/Bc5fwZH-CQU

95

https://youtu.be/Bc5fwZH-CQU

12/2/2020 Figures SCP (3).svg

file:///home/gohu/Downloads/Figures SCP (3).svg 1/1

Figure 6.2: Overview of our approach SCOD for object discovery. The agent
plays an action sequence in two different orders from the same starting point
(SC-experiment). From the two resulting final observations (obs1, obs2), we
aim at learning about objects in the surroundings of the agent, see Fig. 6.1
for the reasoning behind this idea. For that, a mask predictor is pretrained
on procedurally generated data, and applied on (obs1, obs2). The mask pre-
dictor outputs two binary ”difference” masks that represent the semantic
difference between (obs1, obs2): either identical (all zeros), completely dif-
ferent (all ones) or identical up to moved objects (segmentation masks).

iGibson’s 3D scenes reconstructed from real homes. Our results qualitatively
and quantitatively showcase the accuracy and generalization properties of
SCOD. We also provide a review on object detection and discovery, and
compare our work to current state-of-the-art object detection methods, video
object segmentation and tracking methods and methods from the robotics
literature.

Our contributions are the following:

• We propose SCOD, a novel object discovery method based on sensory
commutativity of action sequences.

• We demonstrate the accuracy and generalization properties of SCOD
on 3D realistic robotic setups by using the Fetch robot in the iGibson
interactive simulator. We also provide real-life generalization exam-
ples.

• We compare SCOD to the current landscape of object detection meth-
ods. We provide analysis and comparisons to better understand how
novel the approach is.

96

6.1.2 Related work

Passive object detection

Object detection on still images. Passive object detection methods
rely on largely annotated databases of object classes that allow to train
fast and accurate predictive models for bounding boxes and segmentation
masks. Pascal VOC [44] and COCO [101] are examples of the most used
datasets, and popular methods like Mask R-CNN [65] or YOLO [141] and
their variants have shown to be very efficient at solving object detection and
segmentation tasks.

These models are by far the most used in practice: they are extremely
useful for a number of real-life applications. Yet, these methods are not
suited for open-ended object detection for an agent. The methods are not
object-agnostic: they detect objects based on their similarity to objects seen
during training. Objects exist in various shapes, colors and sizes in open-
world exploration, and while sufficiently large datasets might do the trick,
this design does not seem suited for this type of experience.

Video object segmentation and tracking (VOST). VOST aims
at expanding the former methods to video data rather than still images.
With that comes a number of challenges, such as occlusion, deformation, mo-
tion blur, and scale variation. Similarly, researchers have developed strong
benchmarks such as DAVIS [130] and Youtube-VOS [180]. The tasks can
be summarized as follows: given an input video containing multiple objects,
each pixel has to be uniquely assigned to a specific object instance or to the
background.

Most well performing methods that have been developed, such as Un-
OVOST [107] or MOTS [170], rely on propagating the mask of the first
frame, which is obtained via passive object detection methods. Thus, the
issues mentioned in the previous section also apply to most VOST methods.
Few VOST methods try to move away from this paradigm, like STEm-
Seg [4], however they still rely on largely annotated datasets, which lead to
the same issues mentioned before.

Active object detection

In robotics, there is a large body of work on active object detection (AOD) [14],
which is closer to SCOD. The goal is generally to perform active movements,
such as poking and pushing in order to learn about movable objects. AOD
methods are either based on fix viewpoint or first-person viewpoint.

AOD with fixed viewpoint. In the fix viewpoint scenario, we usu-
ally find a robotic arm (without a body or head) in front of a table with
multiple objects to interact with [149, 59, 109, 54, 42]. This particular setup
is the most common in AOD, as it has many real-life applications (in logis-
tics for instance). However, it comes with constraints that do not apply to

97

embodied agents, who face first-person viewpoints with partial observability
of scenes.

AOD with first-person viewpoint. This setup is the closest to
ours. The most common strategy is for the agent to push an object and
then update its knowledge of movable objects [11, 148]. This movement is
complex for a robot with multiple DOF, which is why this movement is pre-
programmed in those methods. In SCOD, we propose an alternative that
only relies on random movements and does not make assumptions about
available manipulation movements. Also, some methods do not use RGB as
input for the object detection methods, but instead 3D cameras [179]. This
enhanced input allows to perform object detection in real time, which might
be useful for application but does not resolve the problem of learning visual
perception from RGB images.

6.1.3 Object discovery method

In order to verify the intuition presented in the introduction, the robot
needs to be able to perform an SC-experiment and then detect: 1) if the
two resulting observations are identical or not, 2) if they are identical except
for the parts of an image corresponding to an object that moved. For that,
we equip the agent with a vision system that gets two observations as input
and outputs two masks which will be all zeros if the two observations are
identical, all ones if they are different, and the mask of an object if this
object moves.

Mask predictor training. We thus train a neural network (whose
architecture is discussed in the next section) with generated data to predict
those two masks with two observations as input. We refer to this model as
the ”mask predictor”. The data to train this model is collected by starting at
a random position in the environment (observation obs1) and then collecting
data for the three possible outcomes.

• no difference: it suffices to keep the same observation and the corre-
sponding masks are all zeros. The data is (obs1 + all zeros mask, obs1

+ all zeros mask).

• completely different: we move the robot and get a different observation
obs2, the corresponding masks are all ones. The data is (obs1 + all
ones mask, obs2 + all ones mask).

• no difference except moved objects: we randomly disturb the orienta-
tion and position of some movable objects and get a new observation
obs2 identical to obs1 up the moved objects. The data is (obs1 +
moving objects mask, obs2 + moving objects mask)

The resulting dataset is illustrated in Fig. 6.3.

98

Figure 6.3: Top: dataset for training the mask predictor. Bottom: infer-
ence results on data collected with SC-experiments (each image is the result
of one action sequence). The dataset is procedurally generated to simulate
the three possible scenarii resulting from a SC-experiment. Left: scenario
where there are no changes in the observations. Middle: scenario where
the observations are different. Right: scenario where the observations are
identical up to moved objects.

Object discovery inference. Once the mask predictor is trained,
we place the agent in a random position in the environment and perform SC-
experiments where we let it play an action sequence in different orders from
the same starting point. Then, the goal is for the agent to detect immovable
and movable objects using the generated data from the SC-experiments and
the mask predictor.

To summarize, our object discovery method SCOD is divided in two
steps:

• Step 1: Train the mask predictor on procedurally generated data.

• Step 2: Discover movable and immovable objects by letting the agent
perform SC-experiments and use the trained mask predictor on the
resulting observations.

99

Figure 6.4: Generalization study of movable object detection using SCOD
with a mask predictor trained in the Placida environment. In all scenarios,
our method correctly predicts the mask object. Upper left: Object and
environment not seen during training. Lower left: Object, environment
and field of view not seen during training. Upper and lower right: Field
of view not seen during training.

6.1.4 Experimental setup

Simulation and environment

We again use the iGibson interactive environment for simulating this em-
bodied agent scenario. In our experiments, we control the Fetch robot [174]
equipped with a 7-DOF articulated arm, a base with two wheels, a liftable
torso and a RGB camera in its eye.

Mask predictor training (step 1)

Architecture choice reasoning. Predicting the masks given the obser-
vations is a process similar to predicting the optical flow of two consecutive
frames in a video. In this problem, the state-of-the-art neural network ar-
chitecture predicts the optical flow field (2 ∗W ∗H) using two consecutive
RGB frames of a video as input (2 ∗ 3 ∗W ∗ H). The optical flow field is
a projection of the motion field, i.e. the real world 3D motion between the
two frames. Thus, the optical flow field corresponds to the displacement
of pixels between the two frames. This type of architecture is adapted to
our problem since we aim at predicting two binary masks (2 ∗W ∗H), us-
ing the two final observations (obs1, obs2) from the SC-experiment as input

100

(2 ∗ 3 ∗W ∗H). The mask predictor estimates the displacement of objects
between the two frames, a similar goal as in optical flow prediction.

For selecting the architecture, we first tested the FlowNet-S architec-
ture [48], a popular baseline for optical flow prediction, as a proof of concept.
We then adopted the state-of-the-art RAFT model [163], which performed
better. We provide comparisons of the two model performances in the ex-
periments.

Datasets. For training the mask predictor, we procedurally generate
40k training data in the format of tuples (obs1, obs2,mask1,mask2), as de-
scribed in Sec.6.1.3. We use the Placida environment, augmented with 40
objects from the YCB object benchmark [21].

Training. For both the Flownet and RAFT model, we train the
models using the same architecture and optimization process as proposed
by their authors, except for the loss function and the output activation
function. We change the loss function to a binary cross-entropy loss between
the ground truth mask and the output mask of the network. We select the
sigmoid function as output activation function so that the model outputs
binary masks instead of the original optical flow map output (2∗W ∗H). All
training details are available in the original open-source implementations we
used2.

Object discovery using SC-experiments (step 2)

SC-experiments. The second part of our object discovery pipeline is
to compute SC-experiments and use the trained mask predictor. For the
SC-experiments, we play an action sequence in two different orders from the
same starting point. We do this by resetting the environment between two
action sequences.

To illustrate our results, the action sequences we consider are composed
of random (sign, amplitude) motor commands for the DOF of the arm that
is closest to the body of the agent. Each action is applied for 1

10th of a
second, and the length of action sequences is set to 20. Note that the choice
of DOF is arbitrary, and any other DOF would have worked also. Yet, for
illustrative purposes, this DOF empirically allows a well balanced mix of all
the three possible scenarios of the SC-experiments.

We test our object discovery method in the Placida environment, as well
as different environments not seen during training, such as the Bolton or RS
environment. Similarly, in the object discovery step, the objects to detect
are not necessarily seen during training, and come from the YCB object
benchmark [21].

Evaluation. For qualitative and quantitative evaluation, we manu-
ally create a test set with 50 tuples (obs1, obs2,mask1,mask2) of the three

2Link to RAFT and link to FlowNet implementations

101

https://github.com/princeton-vl/RAFT
https://github.com/ClementPinard/FlowNetPytorch

possible scenarios resulting from a SC-experiment. We cannot construct
this dataset automatically, as the mask has to be manually created by ei-
ther assessing if the two observations are different or identifying which object
has moved between the two observations. Using this dataset, we can first
assess the prediction accuracy among the three possible outcomes of a SC-
experiment.

In the case where an object has moved (see example in lower right corner
of Fig. 6.3), we can further analyze the accuracy of the predicted mask
using the Jaccard index, or Intersection over Union (IoU), which is usually
used in object segmentation literature [4]. It quantifies the overlap between
predicted (p1, p2) and ground-truth (gt1, gt2) masks. It is defined as:

IoUi =
|pi ∩ gti|
|pi ∪ gti|

.

6.1.5 Results

Our results are best illustrated in video, which is available online3. We now
present a qualitative and quantitative evaluation of the results.

Qualitative results

Can SCOD detect movable objects? Results presented in Fig. 6.3 &
6.4 illustrate that using the mask detector with the outcome of these SC-
experiments can detect objects that have been moved. Note that the mask
detector only detects objects that have moved between the two resulting
observations, rightfully ignoring the other potential objects that were not
moved.

Can SCOD detect immovable objects and free spaces? Re-
sults presented in Fig. 6.3 illustrate that the mask predictor is also able to
accurately predict when the observations are different or identical. By iso-
lating those two cases from the case where only one or a few objects have
moved, we can map the starting position of the agent with the probabil-
ity that an SC-experiment will commute. In Fig. 6.5, each dot represents
a starting position, and the dot’s color is the probability of observing the
outcome ”different” when playing a SC-experiment at this position (darker
is higher). Regions with dark dots correspond to regions where there are
walls and immovable objects in the way of Fetch’s arm, whereas regions with
white dots correspond to free spaces.

Indeed, in the kitchen part (room at the top), the space is cramped and
so most of the positions indicate low commutation probability (less than 0.4)
because of the interactions induced with the furniture. In the living room

3https://youtu.be/Bc5fwZH-CQU

102

https://youtu.be/Bc5fwZH-CQU

Figure 6.5: Immovable object detection using SCOD. Each dot represents
the probability of observing the outcome ”different” when playing a SC-
experiment at this position (darker is higher). Free spaces are filled with
white dots and cramped spaces with darker dots.

(main room) and the bedroom (at the left), most empty spaces show high
probability (around 0.8 and 1.0). We thus obtain a mapping of immovable
objects and free spaces using SCOD predictions.

Object tracking after detection. After movable object detection,
we can then use semi-supervised tracking algorithms in order to track the
detected object. Fig.6.6 illustrates the detection and tracking pipeline using
SCOD and Space-Time memory networks (STM) [121]. We predict the first
mask using SCOD, and then track the detected object using STM. We obtain
a quasi-perfect automatic tracking of the detected object.

Algorithm design alternatives

We question design choices in the SCOD algorithm. First, we question the
use of SC-experiments compared to simpler alternatives such as just playing

103

Figure 6.6: Object detection and tracking pipeline. We first use SCOD
to detect an object, and use the learned mask to track it using STM, a
semi-supervised video object segmentation algorithm.

an action sequence and comparing the first and last observations. This
method would rarely detect objects because most experiments would result
in a complete image change where the SC-experiments would highlight only
a particular object, as illustrated in Fig. 6.7. Another alternative would be
to start in a position, play an action sequence, and then go back to this
starting point and compare what’s changed. While this approach would
be comparable for movable object detection, this would not allow detecting
immovable objects and free-space.

Second, an alternative to the use of a mask predictor would be to use a
naive image subtraction between the two observations resulting from the SC-
experiment. However, if one object has moved, the naive image subtraction
results in two masks (one for each position of the object that has moved).
These masks can overlap, and thus be hard to distinguish. Then if more
than one object has moved, the subtraction will prove difficult to interpret.
This issue is illustrated in Fig. 6.7. We initially tried this, and then switched
to the mask predictor which ended up being more efficient.

Quantitative results

We present the quantitative results on the manually collected test set in
Tab. 6.1 (see non-generalization test set column). With the RAFT archi-
tecture for the mask predictor, we reach an average Jaccard index of 0.97
for movable object detection and respectively 90.4% and 96.1% for immov-
able object and freespace detection. These results highlight the efficiency of
SCOD for all three tasks.

104

Figure 6.7: Algorithm design alternatives for SCOD. Comparing first and
last observations fails, or replacing the mask predictor by naive subtraction
are not viable options, which justifies the use of SC-experiments and mask
predictor in SCOD. For comparison we provide the masks computed by
SCOD over the final observations.

Table 6.1: Quantitative results for movable objects, immovable objects and
free space detection using Flownet and RAFT architecture for the mask
predictor. Both methods are tested on a test set for training, and on a test
set for generalization to unseen environments and objects.

No generalization test set Generalization test set

Mask Movable Immovable Free Movable Immovable Free
predictor object object space object object space

Flownet 0.86 (IoU) 61.9% (acc.) 95.8% (acc.) 0.61 (IoU) 75.0% (acc.) 99.3% (acc.)
RAFT 0.97 (IoU) 90.4% (acc.) 96.1% (acc.) 0.84 (IoU) 90.9% (acc.) 98.6% (acc.)

Regarding the choice of mask predictor architecture, RAFT overall per-
formance is significantly better than FlowNet. This justifies the adoption of
RAFT as the mask predictor. In Fig.6.8, we provide a qualitative compar-
ison between object mask prediction of Flownet and RAFT. Both models
are able to detect the moved object, hence they are suited for the SCOD
method. However, the quantitative gap shown in Tab.6.1 is explained by
the higher accuracy of RAFT over Flownet. The exact shape of the objects
is not perfectly captured by Flownet. On the contrary, RAFT is often able
to predict the exact shape of the moved objects.

Generalization study

Does SCOD generalize to unseen environments and objects? In
principle, this movable and immovable object detection method is designed

105

Figure 6.8: Comparison of mask predictions between Flownet and RAFT.
While Flownet is able to roughly predict the object mask, RAFT has a
better accuracy.

to work in any environment, any objects and any field of view. Indeed,
it only relies on having a precise mask predictor, which we show can be
achieved. We thus performed a generalization study of our method. We
manually created a generalization test set (150 instances) with data consist-
ing of objects, environments and field of view that were not shown during
training. For this study, we selected the Bolton environment, 20 objects from
the YCB benchmark that were not shown during training, and a bigger field
of view (90 versus 45 for training).

In Fig. 6.4 and Tab. 6.1, we show results for the generalization study,
which indicate that the mask predictor can indeed be used with environ-
ments, objects, and field of view that have been not shown during training.

Qualitatively, the mask predictor is able to precisely predict which ob-
jects have moved, regardless of the shape of the object, and of the na-
ture of the background and field of view. Quantitatively, the precision of
SCOD shows strong generalization. We reach an average Jaccard index
of 0.84 for movable object detection. For immovable object detection and
freespace detection, the performance is similar between the generalization
and non-generalization test set. Hence, the low performance drop between

106

Figure 6.9: Object detection on Turtlebot using SCOD: the robot performed
a SC-experiment which led to a moved object that is detected by SCOD, see
supplementary video. We present the two resulting observations from the
SC-experiment, and the predicted masks below. The algorithm has solely
been trained on synthetic images, and generalizes to real-life scenarios.

in-distribution and out-of-distribution test sets allows us to conclude that
SCOD generalizes to new environments, objects and fields of view.

Real robot generalization. As a last generalization test, we per-
formed SC-experiments in real-life by using a Turtlebot robot. Qualitative
results are presented on Fig. 6.9 and illustrated on the supplementary video4.
We use the same mask predictor, which has been trained on synthetic im-
ages solely, and we obtain satisfying qualitative results. The methods seem
able to bridge the reality gap.

4https://youtu.be/Bc5fwZH-CQU

107

https://youtu.be/Bc5fwZH-CQU

6.1.6 Discussion and conclusion

We deployed SC-experiments in real-life with Turtlebot as a demonstration,
but there are a few difficulties for a more advanced real-life deployment
of SCOD. We need the agent to play two action sequences from the same
starting point. In real-life, the method has to overcome stochasticity and
irreversible actions (e.g. breaking a glass) which break that assumption.
Also, if an object is moved, you would have to place it back to its original
position.

However, this could be overcomed by learning an accurate forward model
of the environment that allows the agent to predict what will happen when
it plays an action sequence. The forward model would act as a proxy for one
of the sequences, and the robot would perform the other sequence in real
life, therefore performing SC-experiments by comparing real experience with
imagination. Recent works have made significant progress in this direction
[60, 63]. We believe this is an important future work for using sensory
commutativity to build perception for artificial agents.

6.2 Sensory Commutativity for efficient RL

We now illustrate how SCP can be used for unsupervised exploration, by
using it to improve sample-efficiency in an RL setup. For computational
reasons, we experiment with the Flatland simulator.

6.2.1 Experimental setup

We use the PPO2 [151] implementation from Stable-Baselines [71]. The
policy is composed of a 1D convolutional feature extractor followed by a
recurrent policy. We consider the same agent, Polyphemus, for which we
computed the SCP criterion in Fig. 5.4. The input of the policy is the
RGB image of what Polyphemus’ eye sees. The environment considered is
a square room with 3 dead zones (which terminate the episode with a -20
reward) and a goal zone (which terminates the episode with a +50 reward),
illustrated in Fig. 6.10. We propose two methods that take advantage of
the SCP to modify the action space of the agent. The goal is to improve
sample-efficiency when learning to solve a task in this embodied scenario.

SCP-truncated action space. We propose to focus exploration on
the degrees of freedom that have a high impact on the environment, by
fixating degrees of freedom corresponding to high SCP. We implement this
by halving the dimension of the action space, keeping only the degrees of
freedom that have the most effect on the environment, i.e. lower SCP value.
We thus keep the base movement and rotation, and the shoulders joint, while
discarding the elbow joints, head rotation, and eyelid activation. We refer to
this method as SCP-truncated action space. This action space reduction will

108

Figure 6.10: Left: RL task. Right: Results.

simplify the RL task, as long as the necessary actions such as base motion
are selected by the SCP criteria.

SCP-adapted action space. A less involved proposition is to modify
the action sampling interval according to the SCP value, for each degree
of freedom. This method will modify the exploration dynamics to favor
important actions. Suppose that the sampling interval for each dimension
of the action space is [−1, 1]. If a dimension has high SCP, i.e. it does not
affect the environment a lot, we then reduce the interval from which actions
are sampled [−1 · l(SCP), 1 · l(SCP)]. The function l maps the highest SCP
to 0 and lowest SCP to 1, then we use a linear interpolation between those
two points to deduce values for SCP ∈]− 1, 1[. We refer to this method as
SCP-adapted action space.

Comparison protocol. We compare those two strategies to a base-
line policy trained to solve the task with the complete action space. We
average the result of each policy over 30 trials initialized with different ran-
dom seeds, and we test the statistical significance of our results according
to the guidelines provided by [34].

6.2.2 Results

The results are displayed on Fig. 6.10 (right). First, we notice that all
strategies are viable to solve the task. We now compare sample-efficiency
between the strategies. The policy trained with SCP-truncated action space
can learn how to solve the task more than twice as fast as the baseline
policy. The discarded degrees of freedom are not crucial in this navigation
task, hence the agent is still able to solve the task using only the degrees
of freedom that have the lowest SCP value. The policy trained with SCP-
adapted action space is less sample-effective than the SCP-truncated but
still learns significantly faster than the baseline policy.

109

6.3 Conclusion

In this Chapter, we proposed and evaluated two algorithms based on the
properties of Sensory Commutativity. We showed that SCP allows to train
RL agents faster by truncating or adapting the action space using the SCP
criterion.

We also presented SCOD, an object detection method for embodied
agents based on an analysis of the potential outcomes of a SC-experiment.
By using architectures based on optical flow prediction, SCOD permits an
active object detection based on random exploration of the environment.

110

Chapter 7

Conclusion and perspectives

Contents

7.1 Conclusion . 111

7.2 Perspectives and discussion 112

7.2.1 State Representation Learning 112

7.2.2 Reinforcement Learning 113

7.2.3 Continual Learning 114

7.2.4 Perception theories combined with contemporary
ML . 114

7.2.5 Sensory Commutativity 115

7.2.6 Robots and simulations 116

7.1 Conclusion

The aim of this thesis was to study agent perception using modern Machine-
Learning methods.

We first defined in Chapter 1 the problem of agent perception learning,
and drew the different relations with the current state-of-the-art of ML
research. The problem we consider is an embodied agent equipped with
first person sensors and a body with several DOF that allow navigation and
manipulation. The environments we consider are realistic looking, share
as many features with the real world as possible: physics laws, temporal
continuity, different sources of illuminations, etc.

In Chapter 2, we defined the problem of perception which is studied in
this thesis, and introduced the hypothesis that we use as the basis to our
work. We reviewed the most common experimental setups: robots and simu-
lators, and assessed their features regarding the question of agent perception
as we defined it.

111

We then went over the sub-fields of ML that research the question of
agent perception in Chapter 3. They are all related to Representation
Learning: the hierarchical learning of representations of data. We have
approaches that aim at building a model of the environment from the point
of view of the agent, we have RL that aims at learning about the world by
trying to solve tasks, we have Continual Learning that aims at learning over
extended periods of time where the data distribution can evolve. We also
presented our contributions to those sub-fields: S-TRIGGER (a Continual
State Representation Learning method that uses generative models and an
automatic environment change detection method) and DisCoRL (a Contin-
ual Reinforcement Learning method that can be deployed on real robots).
We continued in Chapter 4 by studying a crucial aspect of Representation
Learning: disentanglement. We investigated a recently proposed approach
for disentanglement and provided theoretical and practical contributions for
applying this method of disentanglement.

Chapters 5 and 6 presented our contributions in a novel approach for
agent perception: the study of sensory commutativity of action sequences.
We presented theoretical motivations and contributions for this work. We
then illustrated the usefulness of this study by providing a method for au-
tomatic characterization of body degrees of freedom called SCP (Sensory
Commutativity Probability), and an active object detection method called
SCOD (Sensory Commutativity Object Detection).

We hope that this manuscript and our contributions can help progress
on the long-standing quest of having agents that perceive our world as we
do, and can help us live better lives.

7.2 Perspectives and discussion

We discuss the perspectives of the approaches presented in this thesis for the
problem of perception. We shed light on potential interesting future work.

7.2.1 State Representation Learning

The large field of Representation Learning is evolving very fast, as novel
representation learning methods are invented everyday. These methods can
often be applied to State Representation Learning directly. The contribu-
tions we made in SRL are based on the representation learning models that
were available at the time. Hence, progress in Representation Learning often
translates into progress in SRL.

Regarding generative models, tremendous progress has happened since
VAEs and GANs have been proposed and developed in the early 2010s.
Back then, having a generative model to sample high-resolution images was
impossible and today these models are common. Stylegan 1 [79] and 2 [80]

112

(and the recent Stylegan2-ADA variant [78]) allows to generate photoreal-
istic images of high resolution (1024*1024 pixels) with a dataset of a few
thousands images. These models build on the improvements made to the
GAN loss function for improved stability of training, as well as scaling in
the number of parameters and general architecture to allow better sampling
quality. VQ-VAEs (VQ-VAE [122] and VQ-VAE2 [139]) [64] are the most
recent development of VAEs and also allow to match the quality of genera-
tion seen with the best GANs (but with the additional encoding ability that
comes with VAEs). They use discrete representation of data instead of con-
tinuous ones, which allows them to scale to high resolution images without
loss of sampling quality. Transformers are also recently making their way in
the realm of images, departing from the sole application to NLP [40, 127],
with exceptional results and SOTA performances. The challenge in applying
Transformers to images is avoiding the quadratic nature of the attention op-
eration, which is usually circumvented using sparse or localized attention to
reduce the computational overload, just like going from densely connected
neural networks to convolutions. Their general way of learning on text and
images even allows modeling heterogeneous data jointly. DALL-E [138] is
one example of this: a transformer based architecture is used for generating
images based on a text and image prompt, with promising results.

A promising approach for research in State Representation Learning is
to apply those novel representation learning models to agent-environment
setups rather than still datasets for which the method was designed, which
already showed some interesting results [126]. As these models get better
we hope to also progress in agent perception, and eventually come closer to
having agents that have general and transferable knowledge in a wide range
of environments.

7.2.2 Reinforcement Learning

Model-free reinforcement learning has been the most popular approach in
the 2010s, and we are now seeing the limits of such approaches because it
is not easy to learn general and transferable knowledge in this setup. This
is why we are seeing more and more model-based approaches, which aim at
learning a model of the world and then use it to solve tasks with planning
algorithms [63].

Other approaches are getting traction like Language-Conditioned RL
[31, 172], where the agent gets additional signals in the form of natural
language or symbolic feedback. This allows them to depart from the setup
where the agent has the reward as the sole signal for learning, which is one
the reason RL has not been sample-efficient enough to be applied to real-life
scenarios easily. Another approach that seems promising for RL is the multi-
task/multi-goal setup [35], where the agent can learn to solve a large number
of tasks using the same experience. This is another form of augmenting the

113

information in the learning signal that the algorithm uses. By doing so,
RL agents learn more robust knowledge about their environment and thus
improve their perception.

Still, research in RL is very active at the moment, and we can expect
to see novel breakthroughs in the near future. In DisCoRL, these novel
algorithms could be applied to speed the process of learning.

7.2.3 Continual Learning

Progress in CL is important for the problem of perception since novel meth-
ods of CL developed could be used and adapted to this agent-environment
scenario. The long term goal is being able to produce an agent that contin-
uously learns in an autonomous manner. If the agent can selectively forget
non-crucial skills and knowledge, while still evolving its acquired skills, this
would be great help toward the development of autonomous agents that act
and learn in the real-world.

While the Continual Learning community is growing fast, it is hard to
assess the progress that has been made over the last years, because of a lack
of standard benchmark. There is a current effort to classify and organize all
the different tasks and learning scenarios in CL, whether it is in the RL setup
[83] or in the supervised/unsupervised setup [94]. The supervised learning
setup gets the most progress currently [62, 20, 75], but there are worrying
signs that might show that progress is not as fast as we might consider it is.
For instance, we have the GDumb paper [135], that shows some benchmarks
are too oversimplified, which leads to seeing naive baselines as good as state-
of-the-art algorithms. GDumb simply greedily stores samples in memory as
they come and; at test time, trains a model from scratch using samples only
in the memory. The fact that these baseline models perform so well on
commonly accepted benchmarks does show that there is a long way to go
before having robust benchmarks for CL.

However, with its large community and strong presence in tier-1 confer-
ences workshops and main track, CL is inexorably getting more and more
attention which accelerates progress in the field. 3

Better CL methods means that methods like DisCoRL or S-TRIGGER
can be improved. Those methods introduce a continual learning concept,
and then the experiments are based on a particular instantiation of the
algorithms available at the time of the experiments. It would be interesting
to evaluate how these methods can perform using novel generative models,
novel continual learning algorithms, etc.

7.2.4 Perception theories combined with contemporary ML

There is an ongoing effort of applying interdisciplinary research to the ques-
tion of embodied perception, by bringing together research in Computer Sci-

114

ence, Cognitive Science, Psychology, Brain Science, Developmental Robotics
and various other related fields. This effort aims at answering important
questions that become more deeply studied in the field of Machine Learn-
ing: How far is the state-of-the-art machine intelligence from babies? How
does a baby learn from their own interactions and experiences? What sort
of insights can we acquire from the baby’s mind? How can those insights
help us build smart machines with baby-like intelligence?

Because human babies gradually make sense of the environment through
their experiences, a process known as learning by doing, this approach might
avoid the problem of requiring a vast amount of labeled data to train ML
algorithms. Biological agents actively engage with their surroundings and
explore the world through their own interactions. They gradually acquire
the abstract concept of objects and develop the ability to generalize prob-
lems. Thus, if we understand how a biological agent’s mind develops, we
can imitate those learning processes in machines and thereby solve previ-
ously unsolved problems such as domain generalization and overcoming the
stability-plasticity dilemma.

In this field we have several sub-fields such as neuro-cognitive learning
systems, curiosity-driven self-supervised learning, Active learning based on
a perception-cognition-action cycle, Embodied concept learning from real-
world interactions, object-centric representation and concept learning, devel-
opmental / cognitive robotics or Social and emotional development systems.
Each of these subfields take inspiration from perception theories in an inter-
disciplinary effort to make progress on the question of artificial perception.

7.2.5 Sensory Commutativity

In this thesis, we formally introduced the notion of Sensory Commutativ-
ity of action sequences and provided algorithms that show how to use the
concept to learn about the agent and the environment.

Sensory Commutativity-based algorithms can be improved in several
ways. First, the core component of the algorithms proposed in our con-
tributions is the SC-experiment. While the SC-experiment is feasible in
simulation, it is still a challenge to perform it efficiently in real-life. For
now, a human experimenter would have to reset the scene between two
trajectories. Future work can improve on the implementation of such ex-
periments in controlled settings, or with the use of forward models to avoid
the resetting of objects between the two action sequences. Examples such as
[63] were not available at the beginning of our research work, and could be
implemented in our setup in order to improve on the real-world deployment
of SC-experiments.

Also, the idea of using Sensory Commutativity to learn about the envi-
ronment and the agent can be extended in multiple ways. We showed how
to perform object detection, and learn about the relative importance of the

115

degrees of freedom of the agent, but the use of SC is surely not limited to
this. For instance one could experiment with affordance detection using an
extended version of SCOD. Basically SC provides a new learning mechanism
for the problem of environment and agent discovery.

Finally, SC could be associated with other learning mechanisms like in-
trisic curiosity or other clever exploration methods to further enhance the
performance and efficiency of SC-based methods.

7.2.6 Robots and simulations

Robots. The development of physical robots has steadily progressed
for the past 50 years. It is of course a complex field with different actors:
research scientists, and industry conceptors. There are very different in-
centives that push folks to create robots. In this thesis we are interested
in robots that can navigate and solve tasks using their body (e.g. through
manipulation) in human environments. So they have to be mobile, and also
have finer controls with a robotic arm and fingers for instance. Examples of
recently created robots in research environments that satisfy those criteria
are the Rollin’ Justin robot [50], the TORO robot [43], the Fetch robot [174]
(which we use in our simulation experiments in Chapter 6, and illustrate in
Fig.7.1).

Figure 7.1: The Fetch robot, which allows navigation with a mobile base,
and manipulation with its 10-DOF articulated arm. The robot has first-
person embedded sensors (camera).

In the industry, we can cite the Spot robot of Boston Dynamics, which
looks promising for navigation, and can even manipulate the environment
when it is equipped with an arm, see Fig.7.2. This robot could be a promis-
ing testbed for a multi-purpose learning robot. By shipping ML-based meth-
ods in the robot, we could see progress towards having real robots learning
in the real world, adapting to new situations and solving tasks.

116

Figure 7.2: The Spot robot from Boston Dynamics, equipped with an artic-
ulated arm that allows manipulation. The robot has first-person embedded
sensors (camera).

Simulators for embodied perception. Simulators for embodied
perception hav developed fast in the recent years. These simulators include
iGibson [155] (illustrated on Fig.7.3), AI2Thor [86], AI Habitat [147], Isaac
Sim [114], Sapien [178] and TDW [52]. Most of these simulations allow
navigation, manipulation and reasoning with embodied agents in realistic
environments like indoor or outdoor places. Even though not all simulations
have all the required aspects for studying the embodied perception problem
(as described in Chapter 2), most of them are pushing in an interesting
direction for open-access, reproducibility and benchmarks for the research
on perception.

As for benchmarks, a workshop on embodied AI at the Conference on
Computer Vision and Pattern Recognition (CVPR) is happening in 20211,
and illustrates well the tremendous progress being made in the creation of
benchmarks for this research area. The competition track offers 13 different
tasks, including visual navigation, object rearrangement, embodied ques-
tion answering, simulation-to-real transfer and embodied vision & language
tasks. The simulations used in this workshop are Isaac Sim, iGibson, AI
Habitat and AI2-Thor. This effort is promising because it gives a chance
for a proper embodied perception benchmark to emerge, where research can
compete fairly, since everyone has access to the same simulation. More gen-

1https://embodied-ai.org/

117

https://embodied-ai.org/

Figure 7.3: The iGibson simulator is one of the simulators that allows re-
search progress in embodied perception. By using simulated robots that
actually exist in real life and realistic indoor environments, the simulation-
to-real transfer is easier while allowing researchers to compare themselves
easily on the same setup.

erally, the competition, these tasks and simulations in general put a great
importance on the embodied aspect. This is in line with the main argu-
ment of this thesis on embodied perception so we believe that this effort is
promising.

118

Bibliography

[1] Alessandro Achille, Tom Eccles, Loic Matthey, Christopher P Burgess,
Nick Watters, Alexander Lerchner, and Irina Higgins. Life-long disen-
tangled representation learning with cross-domain latent homologies.
arXiv preprint arXiv:1808.06508, 2018.

[2] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider,
Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, Ope-
nAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In Advances in neural information processing systems, pages
5048–5058, 2017.

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein
gan. arXiv preprint arXiv:1701.07875, 2017.

[4] Ali Athar, Sabarinath Mahadevan, Aljoša Ošep, Laura Leal-Taixé, and
Bastian Leibe. Stem-seg: Spatio-temporal embeddings for instance
segmentation in videos. arXiv preprint arXiv:2003.08429, 2020.

[5] Renee Baillargeon, Elizabeth S Spelke, and Stanley Wasserman. Ob-
ject permanence in five-month-old infants. Cognition, 20(3):191–208,
1985.

[6] Gianluca Baldassarre, Tom Stafford, Marco Mirolli, Peter Redgrave,
Richard M Ryan, and Andrew Barto. Intrinsic motivations and open-
ended development in animals, humans, and robots: an overview.
Frontiers in psychology, 5:985, 2014.

[7] Andrew G Barto. Intrinsic motivation and reinforcement learning. In
Intrinsically motivated learning in natural and artificial systems, pages
17–47. Springer, 2013.

[8] Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Mar-
cus Wainwright, Heinrich Küttler, Andrew Lefrancq, Simon Green,
Vı́ctor Valdés, Amir Sadik, et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

119

[9] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling.
The arcade learning environment: An evaluation platform for general
agents. Journal of Artificial Intelligence Research, 47:253–279, 2013.

[10] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representa-
tion learning: A review and new perspectives. IEEE transactions on
pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

[11] Christian Bersch, Dejan Pangercic, Sarah Osentoski, Karol Hausman,
Zoltan-Csaba Marton, Ryohei Ueda, Kei Okada, and Michael Beetz.
Segmentation of textured and textureless objects through interactive
perception. 2012.

[12] David Berthelot, Thomas Schumm, and Luke Metz. Began: bound-
ary equilibrium generative adversarial networks. arXiv preprint
arXiv:1703.10717, 2017.

[13] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.
Yolov4: Optimal speed and accuracy of object detection. arXiv
preprint arXiv:2004.10934, 2020.

[14] Jeannette Bohg, Karol Hausman, Bharath Sankaran, Oliver Brock,
Danica Kragic, Stefan Schaal, and Gaurav S Sukhatme. Interactive
perception: Leveraging action in perception and perception in action.
IEEE Transactions on Robotics, 33(6):1273–1291, 2017.

[15] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv
preprint arXiv:1606.01540, 2016.

[17] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov.
Exploration by random network distillation. arXiv preprint
arXiv:1810.12894, 2018.

[18] Christopher JC Burges. A tutorial on support vector machines for
pattern recognition. Data mining and knowledge discovery, 2(2):121–
167, 1998.

[19] Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick
Watters, Guillaume Desjardins, and Alexander Lerchner. Understand-
ing disentangling in β-vae. arXiv preprint arXiv:1804.03599, 2018.

[20] Massimo Caccia, Pau Rodriguez, Oleksiy Ostapenko, Fabrice Nor-
mandin, Min Lin, Lucas Caccia, Issam Laradji, Irina Rish, Alexande
Lacoste, David Vazquez, et al. Online fast adaptation and knowledge
accumulation: a new approach to continual learning. arXiv preprint
arXiv:2003.05856, 2020.

120

[21] Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter
Abbeel, and Aaron M Dollar. Benchmarking in manipulation research:
The ycb object and model set and benchmarking protocols. arXiv
preprint arXiv:1502.03143, 2015.

[22] Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75,
Jul 1997.

[23] Hugo Caselles-Dupré, Louis Annabi, Oksana Hagen, Michael Garcia-
Ortiz, and David Filliat. Flatland: a lightweight first-person 2-d envi-
ronment for reinforcement learning. arXiv preprint arXiv:1809.00510,
2018.

[24] Hugo Caselles-Dupré, Michael Garcia-Ortiz, and David Filliat. Con-
tinual state representation learning for reinforcement learning using
generative replay. arXiv preprint arXiv:1810.03880, 2018.

[25] Hugo Caselles-Dupré, Michael Garcia-Ortiz, and David Filliat. S-
trigger: Continual state representation learning via self-triggered gen-
erative replay. arXiv preprint arXiv:1902.09434, 2019.

[26] Hugo Caselles-Dupré, Michael Garcia-Ortiz, and David Filliat.
Symmetry-based disentangled representation learning requires inter-
action with environments. arXiv preprint arXiv:1904.00243, 2019.

[27] Hugo Caselles-Dupré, Michael Garcia-Ortiz, and David Filliat. Object
detection for embodied agents using sensory commutativity of action
sequences. NeurIPS 2020 workshop on BabyMind, 2020.

[28] Hugo Caselles-Dupré, Michael Garcia-Ortiz, and David Filliat. On the
sensory commutativity of action sequences for embodied agents. arXiv
preprint arXiv:2002.05630, 2020.

[29] Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor
Blackwell, Joshua Tobin, Pieter Abbeel, and Wojciech Zaremba.
Transfer from simulation to real world through learning deep inverse
dynamics model. arXiv preprint arXiv:1610.03518, 2016.

[30] Ching-Yao Chuang, Jiaman Li, Antonio Torralba, and Sanja Fidler.
Learning to act properly: Predicting and explaining affordances from
images. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 975–983, 2018.

[31] Cédric Colas, Ahmed Akakzia, Pierre-Yves Oudeyer, Mohamed
Chetouani, and Olivier Sigaud. Language-conditioned goal genera-
tion: a new approach to language grounding for rl. arXiv preprint
arXiv:2006.07043, 2020.

121

[32] Cédric Colas, Pierre Fournier, Mohamed Chetouani, Olivier Sigaud,
and Pierre-Yves Oudeyer. Curious: intrinsically motivated modular
multi-goal reinforcement learning. In International conference on ma-
chine learning, pages 1331–1340. PMLR, 2019.

[33] Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. CURIOUS:
Intrinsically Motivated Multi-Task, Multi-Goal Reinforcement Learn-
ing. arXiv preprint arXiv:1810.06284, 2018.

[34] Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. How many
random seeds? statistical power analysis in deep reinforcement learn-
ing experiments. arXiv preprint arXiv:1806.08295, 2018.

[35] Cédric Colas, Tristan Karch, Olivier Sigaud, and Pierre-Yves Oudeyer.
Intrinsically motivated goal-conditioned reinforcement learning: a
short survey, 2020.

[36] John Colombo. The development of visual attention in infancy. Annual
review of psychology, 52(1):337–367, 2001.

[37] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics
simulation for games, robotics and machine learning. 2016.

[38] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[39] Thanh-Toan Do, Anh Nguyen, and Ian Reid. Affordancenet: An end-
to-end deep learning approach for object affordance detection. In 2018
IEEE international conference on robotics and automation (ICRA),
pages 5882–5889. IEEE, 2018.

[40] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

[41] Arthur Douillard and Timothée Lesort. Continuum: Simple man-
agement of complex continual learning scenarios. arXiv preprint
arXiv:2102.06253, 2021.

[42] Andreas Eitel, Nico Hauff, and Wolfram Burgard. Learning to sin-
gulate objects using a push proposal network. In Robotics Research,
pages 405–419. Springer, 2020.

122

[43] Johannes Englsberger, Alexander Werner, Christian Ott, Bernd
Henze, Maximo A Roa, Gianluca Garofalo, Robert Burger, Alexan-
der Beyer, Oliver Eiberger, Korbinian Schmid, et al. Overview of the
torque-controlled humanoid robot toro. In 2014 IEEE-RAS Interna-
tional Conference on Humanoid Robots, pages 916–923. IEEE, 2014.

[44] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI
Williams, John Winn, and Andrew Zisserman. The pascal visual ob-
ject classes challenge: A retrospective. International journal of com-
puter vision, 111(1):98–136, 2015.

[45] Joël Fagot and Robert G Cook. Evidence for large long-term memory
capacities in baboons and pigeons and its implications for learning
and the evolution of cognition. Proceedings of the National Academy
of Sciences, 103(46):17564–17567, 2006.

[46] Kuan Fang, Te-Lin Wu, Daniel Yang, Silvio Savarese, and Joseph J
Lim. Demo2vec: Reasoning object affordances from online videos. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2139–2147, 2018.

[47] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols,
David Ha, Andrei A. Rusu, Alexander Pritzel, and Daan Wierstra.
Pathnet: Evolution channels gradient descent in super neural net-
works. CoRR, abs/1701.08734, 2017.

[48] Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip Häusser, Caner
Hazırbaş, Vladimir Golkov, Patrick Van der Smagt, Daniel Cremers,
and Thomas Brox. Flownet: Learning optical flow with convolutional
networks. arXiv preprint arXiv:1504.06852, 2015.

[49] Robert M. French. Catastrophic forgetting in connectionist networks.
Trends in Cognitive Sciences, 3(4):128–135, 1999.

[50] Matthias Fuchs, Ch Borst, P Robuffo Giordano, Andreas Baumann,
Erich Kraemer, Jörg Langwald, Robin Gruber, Nikolaus Seitz, Georg
Plank, Klaus Kunze, et al. Rollin’justin-design considerations and
realization of a mobile platform for a humanoid upper body. In 2009
IEEE International Conference on Robotics and Automation, pages
4131–4137. IEEE, 2009.

[51] Tommaso Furlanello, Zachary C Lipton, Michael Tschannen, Laurent
Itti, and Anima Anandkumar. Born again neural networks. arXiv
preprint arXiv:1805.04770, 2018.

[52] Chuang Gan, Jeremy Schwartz, Seth Alter, Martin Schrimpf, James
Traer, Julian De Freitas, Jonas Kubilius, Abhishek Bhandwaldar, Nick

123

Haber, Megumi Sano, et al. Threedworld: A platform for interactive
multi-modal physical simulation. arXiv preprint arXiv:2007.04954,
2020.

[53] James J Gibson. The ecological approach to visual perception: classic
edition. Psychology Press, 2014.

[54] Leni K Le Goff, Oussama Yaakoubi, Alexandre Coninx, and Stephane
Doncieux. Building an affordances map with interactive perception.
arXiv preprint arXiv:1903.04413, 2019.

[55] Florian Golemo. How to Train Your Robot - New Environments for
Robotic Training and New Methods for Transferring Policies from the
Simulator to the Real Robot. Theses, Université de Bordeaux, Decem-
ber 2018.

[56] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets. In Advances in neural information pro-
cessing systems, pages 2672–2680, 2014.

[57] Alex Graves, Jacob Menick, and Aaron van den Oord. Associative
compression networks. arXiv preprint arXiv:1804.02476, 2018.

[58] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin,
and Aaron C Courville. Improved training of wasserstein gans. In
Advances in Neural Information Processing Systems, pages 5767–5777,
2017.

[59] Megha Gupta and Gaurav S Sukhatme. Using manipulation primitives
for brick sorting in clutter. In 2012 IEEE International Conference
on Robotics and Automation, pages 3883–3889. IEEE, 2012.

[60] David Ha and Jürgen Schmidhuber. Recurrent world models facili-
tate policy evolution. In Advances in Neural Information Processing
Systems, pages 2450–2462, 2018.

[61] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine.
Soft actor-critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018.

[62] Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pas-
canu. Embracing change: Continual learning in deep neural networks.
Trends in Cognitive Sciences, 2020.

[63] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy
Ba. Mastering atari with discrete world models, 2020.

124

[64] William Harvey, Saeid Naderiparizi, and Frank Wood. Image comple-
tion via inference in deep generative models, 2021.

[65] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask
r-cnn. In Proceedings of the IEEE international conference on com-
puter vision, pages 2961–2969, 2017.

[66] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. CoRR, abs/1512.03385, 2015.

[67] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg
Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar,
and David Silver. Rainbow: Combining improvements in deep rein-
forcement learning. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 32, 2018.

[68] Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic
Matthey, Danilo Rezende, and Alexander Lerchner. Towards a defini-
tion of disentangled representations. arXiv preprint arXiv:1812.02230,
2018.

[69] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier
Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Ler-
chner. beta-vae: Learning basic visual concepts with a constrained
variational framework. 2016.

[70] Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher
Burgess, Alexander Pritzel, Matthew Botvinick, Charles Blundell, and
Alexander Lerchner. Darla: Improving zero-shot transfer in reinforce-
ment learning. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1480–1490. JMLR. org, 2017.

[71] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Rene Traore,
Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol,
Matthias Plappert, Alec Radford, et al. Stable baselines, 2018.

[72] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowl-
edge in a neural network. arXiv preprint arXiv:1503.02531, 2015.

[73] Donald D Hoffman. The interface theory of perception. Stevens’ Hand-
book of Experimental Psychology and Cognitive Neuroscience, 2:1–24,
2018.

[74] Andrew Jaegle, Vahid Mehrpour, and Nicole Rust. Visual novelty, cu-
riosity, and intrinsic reward in machine learning and the brain. Current
opinion in neurobiology, 58:167–174, 2019.

125

[75] Khurram Javed and Martha White. Meta-learning representations for
continual learning. arXiv preprint arXiv:1905.12588, 2019.

[76] Scott P Johnson. How infants learn about the visual world. Cognitive
Science, 34(7):1158–1184, 2010.

[77] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski,
Roy H Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn,
Piotr Kozakowski, Sergey Levine, et al. Model-based reinforcement
learning for atari. arXiv preprint arXiv:1903.00374, 2019.

[78] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko
Lehtinen, and Timo Aila. Training generative adversarial networks
with limited data. arXiv preprint arXiv:2006.06676, 2020.

[79] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator
architecture for generative adversarial networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4401–4410, 2019.

[80] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko
Lehtinen, and Timo Aila. Analyzing and improving the image quality
of stylegan. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8110–8119, 2020.

[81] Franz Kaufmann. Development of motion perception in early infancy.
European Journal of Pediatrics, 154(4):S48–S53, 1995.

[82] Micha l Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and
Wojciech Jaśkowski. Vizdoom: A doom-based ai research platform
for visual reinforcement learning. In Computational Intelligence and
Games (CIG), 2016 IEEE Conference on, pages 1–8. IEEE, 2016.

[83] Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup.
Towards continual reinforcement learning: A review and perspectives,
2020.

[84] Diederik P Kingma and Max Welling. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

[85] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness,
Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan,
Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national
academy of sciences, page 201611835, 2017.

[86] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca
Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Abhinav Gupta,

126

and Ali Farhadi. Ai2-thor: An interactive 3d environment for visual
ai. arXiv preprint arXiv:1712.05474, 2017.

[87] Hema Swetha Koppula, Rudhir Gupta, and Ashutosh Saxena. Learn-
ing human activities and object affordances from rgb-d videos. The
International Journal of Robotics Research, 32(8):951–970, 2013.

[88] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata,
Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A
Shamma, et al. Visual genome: Connecting language and vision us-
ing crowdsourced dense image annotations. International journal of
computer vision, 123(1):32–73, 2017.

[89] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. Advances in
neural information processing systems, 25:1097–1105, 2012.

[90] Alban Laflaquière. Unsupervised emergence of spatial structure from
sensorimotor prediction. arXiv preprint arXiv:1810.01344, 2018.

[91] Alban Laflaquiere, Sylvain Argentieri, Olivia Breysse, Stéphane Genet,
and Bruno Gas. A non-linear approach to space dimension perception
by a naive agent. In 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3253–3259. IEEE, 2012.

[92] Alban Laflaquière, J Kevin O’Regan, Sylvain Argentieri, Bruno Gas,
and Alexander V Terekhov. Learning agent’s spatial configuration
from sensorimotor invariants. Robotics and Autonomous Systems,
71:49–59, 2015.

[93] Alban Laflaquiere, Alexander V Terekhov, Bruno Gas, and J Kevin
O’Regan. Learning an internal representation of the end-effector con-
figuration space. In 2013 IEEE/RSJ International Conference on In-
telligent Robots and Systems, pages 1230–1235. IEEE, 2013.

[94] Timothée Lesort. Apprentissage continu : S’attaquer à l’oubli foudroy-
ant des réseaux de neurones profonds grâce aux méthodes à rejeu de
données. Theses, Institut Polytechnique de Paris, June 2020.

[95] Timothée Lesort, Hugo Caselles-Dupré, Michael Garcia-Ortiz, Andrei
Stoian, and David Filliat. Generative models from the perspective of
continual learning. arXiv preprint arXiv:1812.09111, 2018.

[96] Timothée Lesort, Natalia Dı́az-Rodŕıguez, Jean-François Goudou, and
David Filliat. State representation learning for control: An overview.
Neural Networks, 2018.

127

[97] Timothée Lesort, Vincenzo Lomonaco, Andrei Stoian, Davide Maltoni,
David Filliat, and Natalia Dı́az-Rodŕıguez. Continual learning for
robotics: Definition, framework, learning strategies, opportunities and
challenges. Information fusion, 58:52–68, 2020.

[98] Zhizhong Li and Derek Hoiem. Learning without forgetting. In ECCV,
2016.

[99] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2017.

[100] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross
Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence
Zitnick, and Piotr Dollár. Microsoft coco: Common objects in context,
2015.

[101] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-
ona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft
coco: Common objects in context. In European conference on com-
puter vision, pages 740–755. Springer, 2014.

[102] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning
face attributes in the wild. In Proceedings of International Conference
on Computer Vision (ICCV), December 2015.

[103] Francesco Locatello, Gabriele Abbati, Tom Rainforth, Stefan Bauer,
Bernhard Schölkopf, and Olivier Bachem. On the fairness of disentan-
gled representations. arXiv preprint arXiv:1905.13662, 2019.

[104] Francesco Locatello, Stefan Bauer, Mario Lucic, Sylvain Gelly, Bern-
hard Schölkopf, and Olivier Bachem. Challenging common assump-
tions in the unsupervised learning of disentangled representations.
arXiv preprint arXiv:1811.12359, 2018.

[105] Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Syl-
vain Gelly, Bernhard Schölkopf, and Olivier Bachem. Challenging
common assumptions in the unsupervised learning of disentangled rep-
resentations. In International Conference on Machine Learning, pages
4114–4124, 2019.

[106] Vincenzo Lomonaco, Karan Desai, Eugenio Culurciello, and Davide
Maltoni. Continual reinforcement learning in 3d non-stationary envi-
ronments. CoRR, abs/1905.10112, 2019.

[107] Jonathon Luiten, Idil Esen Zulfikar, and Bastian Leibe. Unovost:
Unsupervised offline video object segmentation and tracking. In The
IEEE Winter Conference on Applications of Computer Vision, pages
2000–2009, 2020.

128

[108] Max Lungarella, Giorgio Metta, Rolf Pfeifer, and Giulio Sandini. De-
velopmental robotics: a survey. Connection science, 15(4):151–190,
2003.

[109] Natalia Lyubova, Serena Ivaldi, and David Filliat. From passive to
interactive object learning and recognition through self-identification
on a humanoid robot. Autonomous Robots, 40(1):33–57, 2016.

[110] Roberto Mart́ın-Mart́ın, Hamid Rezatofighi, Abhijeet Shenoi, Mi-
hir Patel, JunYoung Gwak, Nathan Dass, Alan Federman, Patrick
Goebel, and Silvio Savarese. Jrdb: A dataset and benchmark for vi-
sual perception for navigation in human environments. arXiv preprint
arXiv:1910.11792, 2019.

[111] Jan Matas, Stephen James, and Andrew J Davison. Sim-to-real rein-
forcement learning for deformable object manipulation. arXiv preprint
arXiv:1806.07851, 2018.

[112] Mehdi Mirza and Simon Osindero. Conditional generative adversarial
nets. arXiv preprint arXiv:1411.1784, 2014.

[113] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[114] Filipe Figueredo Monteiro, Andre Luiz Buarque Vieira, João Marcelo
Xavier Natário Teixeira, Veronica Teichrieb, et al. Simulating real
robots in virtual environments using nvidia’s isaac sdk. In Anais Es-
tendidos do XXI Simpósio de Realidade Virtual e Aumentada, pages
47–48. SBC, 2019.

[115] Austin Myers, Ching L Teo, Cornelia Fermüller, and Yiannis Aloi-
monos. Affordance detection of tool parts from geometric features.
In 2015 IEEE International Conference on Robotics and Automation
(ICRA), pages 1374–1381. IEEE, 2015.

[116] Anh Nguyen, Dimitrios Kanoulas, Darwin G Caldwell, and Nikos G
Tsagarakis. Detecting object affordances with convolutional neural
networks. In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2765–2770. IEEE, 2016.

[117] Anh Nguyen, Dimitrios Kanoulas, Darwin G Caldwell, and Nikos G
Tsagarakis. Object-based affordances detection with convolutional
neural networks and dense conditional random fields. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 5908–5915. IEEE, 2017.

129

[118] Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner.
Variational continual learning. arXiv preprint arXiv:1710.10628, 2017.

[119] Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John
Schulman. Gotta learn fast: A new benchmark for generalization in
rl. arXiv preprint arXiv:1804.03720, 2018.

[120] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Train-
ing generative neural samplers using variational divergence minimiza-
tion. In Advances in Neural Information Processing Systems, pages
271–279, 2016.

[121] Seoung Wug Oh, Joon-Young Lee, Ning Xu, and Seon Joo Kim. Video
object segmentation using space-time memory networks. In Proceed-
ings of the IEEE International Conference on Computer Vision, pages
9226–9235, 2019.

[122] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neu-
ral discrete representation learning. arXiv preprint arXiv:1711.00937,
2017.

[123] J Kevin O’Regan and Alva Noë. A sensorimotor account of vision and
visual consciousness. Behavioral and brain sciences, 24(5):939–973,
2001.

[124] Pierre-Yves Oudeyer. Computational theories of curiosity-driven
learning. arXiv preprint arXiv:1802.10546, 2018.

[125] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan,
and Stefan Wermter. Continual lifelong learning with neural networks:
A review. Neural Networks, 2019.

[126] Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar
Gulcehre, Siddhant Jayakumar, Max Jaderberg, Raphael Lopez Kauf-
man, Aidan Clark, Seb Noury, et al. Stabilizing transformers for rein-
forcement learning. In International Conference on Machine Learning,
pages 7487–7498. PMLR, 2020.

[127] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam
Shazeer, Alexander Ku, and Dustin Tran. Image transformer. In Inter-
national Conference on Machine Learning, pages 4055–4064. PMLR,
2018.

[128] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell.
Curiosity-driven exploration by self-supervised prediction. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops, pages 16–17, 2017.

130

[129] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830, 2011.

[130] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool,
Markus Gross, and Alexander Sorkine-Hornung. A benchmark dataset
and evaluation methodology for video object segmentation. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 724–732, 2016.

[131] David Philipona. Développement d’un cadre mathématique pour une
théorie sensorimotrice de l’expérience sensorielle. 2008.

[132] David Philipona, J Kevin O’Regan, and J-P Nadal. Is there something
out there? inferring space from sensorimotor dependencies. Neural
computation, 15(9):2029–2049, 2003.

[133] David Philipona, Jk O’regan, J-P Nadal, and Olivier Coenen. Percep-
tion of the structure of the physical world using unknown multimodal
sensors and effectors. In Advances in neural information processing
systems, pages 945–952, 2004.

[134] Henri Poincaré. L’espace et la géométrie. 1895.

[135] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A
simple approach that questions our progress in continual learning. In
European Conference on Computer Vision, pages 524–540. Springer,
2020.

[136] Antonin Raffin, Ashley Hill, Kalifou René Traoré, Timothée Lesort,
Natalia Dı́az-Rodŕıguez, and David Filliat. Decoupling feature ex-
traction from policy learning: assessing benefits of state representa-
tion learning in goal based robotics. arXiv preprint arXiv:1901.08651,
2019.

[137] Antonin Raffin, Ashley Hill, René Traoré, Timothée Lesort, Na-
talia Dı́az-Rodŕıguez, and David Filliat. S-rl toolbox: Environments,
datasets and evaluation metrics for state representation learning.
arXiv preprint arXiv:1809.09369, 2018.

[138] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea
Voss, Alec Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-
to-image generation, 2021.

131

[139] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Gener-
ating diverse high-fidelity images with vq-vae-2. arXiv preprint
arXiv:1906.00446, 2019.

[140] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and
Christoph H Lampert. icarl: Incremental classifier and representa-
tion learning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2001–2010, 2017.

[141] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
779–788, 2016.

[142] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert,
Jonas Degrave, Tom Van de Wiele, Volodymyr Mnih, Nicolas Heess,
and Jost Tobias Springenberg. Learning by playing-solving sparse
reward tasks from scratch. arXiv preprint arXiv:1802.10567, 2018.

[143] Mark B Ring. Child: A first step towards continual learning. In
Learning to learn, pages 261–292. Springer, 1998.

[144] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell. Progressive Neural
Networks. ArXiv e-prints, June 2016.

[145] Andrei A. Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guil-
laume Desjardins, James Kirkpatrick, Razvan Pascanu, Volodymyr
Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy distillation, 2016.

[146] Andrei A. Rusu, Matej Vecerik, Thomas Rothörl, Nicolas Heess, Raz-
van Pascanu, and Raia Hadsell. Sim-to-real robot learning from pixels
with progressive nets. CoRR, abs/1610.04286, 2016.

[147] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao,
Erik Wijmans, Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun,
Jitendra Malik, et al. Habitat: A platform for embodied ai research.
In Proceedings of the IEEE International Conference on Computer
Vision, pages 9339–9347, 2019.

[148] David Schiebener, Aleš Ude, and Tamim Asfour. Physical interaction
for segmentation of unknown textured and non-textured rigid objects.
In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 4959–4966. IEEE, 2014.

[149] David Schiebener, Aleš Ude, Jun Morimoto, Tamim Asfour, and
Rüdiger Dillmann. Segmentation and learning of unknown objects

132

through physical interaction. In 2011 11th IEEE-RAS International
Conference on Humanoid Robots, pages 500–506. IEEE, 2011.

[150] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Si-
monyan, Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lock-
hart, Demis Hassabis, Thore Graepel, et al. Mastering atari, go, chess
and shogi by planning with a learned model. Nature, 588(7839):604–
609, 2020.

[151] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[152] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. CoRR,
abs/1707.06347, 2017.

[153] Jonathan Schwarz, Jelena Luketina, Wojciech M Czarnecki, Agnieszka
Grabska-Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia Had-
sell. Progress & compress: A scalable framework for continual learning.
arXiv preprint arXiv:1805.06370, 2018.

[154] Ari Seff, Alex Beatson, Daniel Suo, and Han Liu. Continual learning
in generative adversarial nets. arXiv preprint arXiv:1705.08395, 2017.

[155] Bokui Shen*, Fei Xia*, Chengshu Li*, Roberto Mart́ın-Mart́ın*, Linxi
Fan, Guanzhi Wang, Shyamal Buch, Claudia D’Arpino, Sanjana Sri-
vastava, Lyne P Tchapmi, Kent Vainio, Li Fei-Fei, and Silvio Savarese.
igibson, a simulation environment for interactive tasks in large realistic
scenes. arXiv preprint arXiv:2012.02924, 2020.

[156] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Con-
tinual learning with deep generative replay. In Advances in Neural
Information Processing Systems, pages 2990–2999, 2017.

[157] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[158] Linda Smith and Michael Gasser. The development of embodied cog-
nition: Six lessons from babies. Artificial life, 11(1-2):13–29, 2005.

[159] Stefano Soatto. Steps towards a theory of visual information: Ac-
tive perception, signal-to-symbol conversion and the interplay between
sensing and control. Technical report, 2011.

[160] Rupesh K Srivastava, Jonathan Masci, Sohrob Kazerounian, Faustino
Gomez, and Jürgen Schmidhuber. Compete to compute. In C. J. C.

133

Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 26, pages
2310–2318. Curran Associates, Inc., 2013.

[161] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[162] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li,
Diego de Las Casas, David Budden, Abbas Abdolmaleki, Josh Merel,
Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

[163] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms
for optical flow. arXiv preprint arXiv:2003.12039, 2020.

[164] Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James
Kirkpatrick, Raia Hadsell, Nicolas Heess, and Razvan Pascanu. Dis-
tral: Robust multitask reinforcement learning. In Advances in Neural
Information Processing Systems, pages 4496–4506, 2017.

[165] Valentin Thomas, Jules Pondard, Emmanuel Bengio, Marc Sarfati,
Philippe Beaudoin, Marie-Jean Meurs, Joelle Pineau, Doina Pre-
cup, and Yoshua Bengio. Independently controllable features. arXiv
preprint arXiv:1708.01289, 2017.

[166] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech
Zaremba, and Pieter Abbeel. Domain randomization for transfer-
ring deep neural networks from simulation to the real world. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 23–30. IEEE, 2017.

[167] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics
engine for model-based control. In Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, pages 5026–
5033. IEEE, 2012.

[168] René Traoré, Hugo Caselles-Dupré, Timothée Lesort, Te Sun, Natalia
Dı́az-Rodŕıguez, and David Filliat. Continual reinforcement learning
deployed in real-life using policy distillation and sim2real transfer.
arXiv preprint arXiv:1906.04452, 2019.

[169] Sjoerd van Steenkiste, Francesco Locatello, Jürgen Schmidhuber, and
Olivier Bachem. Are disentangled representations helpful for abstract
visual reasoning? arXiv preprint arXiv:1905.12506, 2019.

[170] Paul Voigtlaender, Michael Krause, Aljosa Osep, Jonathon Luiten,
Berin Balachandar Gnana Sekar, Andreas Geiger, and Bastian Leibe.

134

Mots: Multi-object tracking and segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages
7942–7951, 2019.

[171] Greg Wayne, Chia-Chun Hung, David Amos, Mehdi Mirza, Arun
Ahuja, Agnieszka Grabska-Barwinska, Jack Rae, Piotr Mirowski,
Joel Z Leibo, Adam Santoro, et al. Unsupervised predictive mem-
ory in a goal-directed agent. arXiv preprint arXiv:1803.10760, 2018.

[172] Nicholas Waytowich, Sean L Barton, Vernon Lawhern, Ethan Stump,
and Garrett Warnell. Grounding natural language commands to star-
craft ii game states for narration-guided reinforcement learning. In
Artificial Intelligence and Machine Learning for Multi-Domain Opera-
tions Applications, volume 11006, page 110060S. International Society
for Optics and Photonics, 2019.

[173] Bernard L Welch. The generalization ofstudent’s’ problem when
several different population variances are involved. Biometrika,
34(1/2):28–35, 1947.

[174] Melonee Wise, Michael Ferguson, Derek King, Eric Diehr, and David
Dymesich. Fetch and freight: Standard platforms for service robot
applications. 2016.

[175] Chenshen Wu, Luis Herranz, Xialei Liu, Yaxing Wang, Joost van de
Weijer, and Bogdan Raducanu. Memory replay gans: learning to gen-
erate images from new categories without forgetting. arXiv preprint
arXiv:1809.02058, 2018.

[176] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu,
Yandong Guo, Zhengyou Zhang, and Yun Fu. Incremental classi-
fier learning with generative adversarial networks. arXiv preprint
arXiv:1802.00853, 2018.

[177] Fei Xia, William B Shen, Chengshu Li, Priya Kasimbeg, Micael Ed-
mond Tchapmi, Alexander Toshev, Roberto Mart́ın-Mart́ın, and Silvio
Savarese. Interactive gibson benchmark: A benchmark for interactive
navigation in cluttered environments. IEEE Robotics and Automation
Letters, 5(2):713–720, 2020.

[178] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu,
Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan, He Wang,
Li Yi, Angel X. Chang, Leonidas J. Guibas, and Hao Su. Sapien: A
simulated part-based interactive environment, 2020.

[179] Kai Xu, Hui Huang, Yifei Shi, Hao Li, Pinxin Long, Jianong Caichen,
Wei Sun, and Baoquan Chen. Autoscanning for coupled scene re-

135

construction and proactive object analysis. ACM Transactions on
Graphics (TOG), 34(6):1–14, 2015.

[180] Ning Xu, Linjie Yang, Yuchen Fan, Jianchao Yang, Dingcheng
Yue, Yuchen Liang, Brian Price, Scott Cohen, and Thomas Huang.
Youtube-vos: Sequence-to-sequence video object segmentation. In
Proceedings of the European Conference on Computer Vision (ECCV),
pages 585–601, 2018.

[181] Andy Zeng, Shuran Song, Kuan-Ting Yu, Elliott Donlon, Francois R
Hogan, Maria Bauza, Daolin Ma, Orion Taylor, Melody Liu, Eudald
Romo, et al. Robotic pick-and-place of novel objects in clutter with
multi-affordance grasping and cross-domain image matching. In 2018
IEEE international conference on robotics and automation (ICRA),
pages 3750–3757. IEEE, 2018.

136

Titre : Du rôle des Actions et de l’Apprentissage Automatique dans la Perception des Agents Artificiels

Mots clés : Perception, Apprentissage de Représentations, Actions, Apprentissage par Renforcement

Résumé : L’automatisation est le moyen par lequel
l’espèce humaine peut se libérer du fardeau des
tâches qu’elle a déjà résolues. Ces tâches sont om-
niprésentes dans notre vie quotidienne, à la maison
ou dans un contexte professionnel. Une grande am-
bition dans la recherche est de créer des agents ca-
pables d’agir et de raisonner dans le monde réel, en
automatisant ces tâches résolues. Pour cela, nous
supposons les agents doivent construire une percep-
tion de leur environnement, tout comme les humains.
La programmation directe de ces agents est impos-
sible en raison de la complexité du monde et de
ses interaction. C’est pourquoi les approches fondées
sur l’apprentissage ont prévalu dans la recherche au
cours des 20 dernières années. Parmi les approches
d’apprentissage automatique, nous avons plusieurs
sous-domaines qui abordent chacun différents as-
pects de la perception que les agents devraient avoir.
L’apprentissage de répresentations d’états (ARE) se
concentre sur l’apprentissage des représentations de
l’expérience des agents. L’apprentissage continu vise
à résoudre le célèbre problème d’oubli catastrophique
des réseaux de neurones, qui oublient tout ce qu’ils
ont appris lorsque de nouvelles données leur sont
présentées. Nous avons enfin l’apprentissage par
renforcement, qui vise à apprendre à résoudre une

tâche en maximisant la récompense qui lui est as-
sociée, mécanisme qui est également présent chez
les agents biologiques.
D’un autre côté, nous avons aussi des approches plus
originales qui n’ont pas forcément les mêmes per-
formances mais reposent sur des paradigmes pro-
metteurs qui pourraient permettre des progrès de re-
cherche. La robotique développementale est un sous-
domaine de la robotique qui vise à développer des
méthodes d’apprentissage inspirées de la biologie sur
de vrais robots. Nous avons aussi ce que nous ap-
pellerons dans ce manuscrit les approches de l’agent
incarné, qui sont des considérations théoriques et
pratiques basées sur les théories de la perception
développées en psychologie, philosophie et sciences
cognitives. Dans ces théories, le rôle des actions est
crucial dans le développement de la perception. Nous
utiliserons cela comme base pour la plupart de nos
contributions.
Dans cette thèse, nous contribuons à ces sous-
domaines de recherche en développant des connais-
sances théoriques et des algorithmes d’application
qui visent à créer des agents avec des niveaux plus
profonds de perception de leur corps et de l’environ-
nement.

Title : On the role of Actions and Machine Learning in Artificial Agent Perception

Keywords : Perception, Representation Learning, Actions, Reinforcement Learning

Abstract : Automation is the medium by which the hu-
man species can free itself from the burden of tasks
it has already solved. Such tasks are omnipresent in
our daily lives, at home or in a professional context. A
great quest in research is to build agents that can act
and reason in the real-world, automating those solved
tasks. For that, agents have to build a perception of
their environments, just like humans do.
Directly programming those agents is infeasible be-
cause of the complexity of the world and its inter-
action. That is why learning-based approaches have
been prevalent in research for the past 20 years.
Among the Machine Learning approaches, we have
several sub-fields that each tackle different aspects
of perception that agents should have. State Repre-
sentation Learning (SRL) focuses on learning repre-
sentations of what the agents experience. Continual
Learning (CL) aims at solving the infamous catastro-
phic forgetting problem of neural networks, which for-
get everything they learned when presented with new
data. We finally have Reinforcement Learning (RL),

which aims at learning to solve a task by maximizing
the reward associated to it, a mechanism that is also
present among biological agents.
On the other hand, we also have more original ap-
proaches that do not necessarily have the same per-
formances but are based on promising paradigms that
could allow breakthroughs. Developmental robotics
(Dev-Rob) is a sub-field of robotics which aims at de-
veloping biological-inspired methods for learning on
real robots. We also have what we shall call in this
manuscript the Embodied Agent approaches, which
are theoretical and practical considerations based on
theories of perception developed in psychology. In
these theories, the role of actions is crucial in the de-
velopment of perception. We will use this as a basis
for most of our contributions.
In this thesis we contribute to those sub-fields of re-
search by developing theoretical insights and appli-
cation algorithms which aim at creating agents with
deeper levels of perception of their bodies and the en-
vironment.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Introduction
	The role of Automation
	Historical perspective
	Robots in Human Environments

	The problem of perception
	Hypothesis
	The role of action in perception
	Learning instead of programming

	Research directions for the problem of perception
	Machine Learning approaches
	Embodied agent approaches and developmental robotics

	Limitations as a starting point for undertaken research
	Problem simplification and the choice of simulations
	Task-specific knowledge
	Technological locks
	Lack of development

	Contributions
	Publications
	Conferences
	Workshops

	Outline

	The problem of learning perception
	Perception: problem definition and hypotheses
	Perception problem definition
	Hypothesis: unsupervised learning
	Hypothesis: agents and environments
	Hypothesis: innate vs acquired
	Related work

	Experimental setups
	Real robots, a problem
	Simulations

	Conclusion.

	Representation learning for perception and applications
	Background on Representation Learning methods
	Image models
	Forward and inverse models
	Reinforcement learning algorithms
	Continual Learning
	Contributions to the field

	Contribution: S-TRIGGER
	Abstract
	Introduction and contributions
	Related work
	Continual State Representation Learning with Self-Triggered Generative Replay
	Experimental setting
	Experiment 1: Proof of concept
	Experiment 2: Robustness tests
	Conclusion

	Contribution: DisCoRL
	Abstract
	Introduction and contribution
	Related work
	Methods
	Experimental setup
	Results
	Discussion
	Conclusion

	Conclusion on Representation Learning

	The role of Actions in Disentangled Representation Learning
	On the importance of disentanglement
	Symmetry-based Disentangled Representation Learning
	Contribution: SBDRL requires interaction with environments
	Abstract
	Introduction
	Symmetry-Based Disentangled Representation Learning requires interaction with environments
	Considered environment
	Theoretical analysis
	Symmetry-Based Disentangled Representation Learning in practice
	Using (L)SB-disentangled representations for downstream tasks
	Discussion

	Conclusion

	Sensory commutativity of action sequences: theory
	Introduction
	Sensory commutativity of action sequences: motivation
	Commutative properties of action sequences
	Formalism choice
	Group structure of the set of action sequences Seq(M)
	Philipona's conjecture
	SC-experiment definition

	Sensory commutativity probability of an action sequence
	SCP definition
	SCP computation

	SCP experimental analysis
	2D experimental setup
	3D realistic experimental setup
	Results

	Conclusion

	Sensory commutativity of action sequences: applications
	SCOD: Object Detection using Sensory Commutativity
	Introduction
	Related work
	Object discovery method
	Experimental setup
	Results
	Discussion and conclusion

	Sensory Commutativity for efficient RL
	Experimental setup
	Results

	Conclusion

	Conclusion and perspectives
	Conclusion
	Perspectives and discussion
	State Representation Learning
	Reinforcement Learning
	Continual Learning
	Perception theories combined with contemporary ML
	Sensory Commutativity
	Robots and simulations

