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préparée à l’École nationale supérieure de techniques avancées
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Résumé

Cette thèse s’intéresse aux modèles d’ordre réduit (ROM) pour les vibrations non linéaire

géométrique de structures minces.

Les structures minces, comme les poutres, les plaques, les coques, se retrouvent dans de très

nombreux domaines applicatifs de l’ingénierie, on peut citer par exemple l’aéronautique [1,

2], les systèmes de production d’énergie comme par exemple les éolienne [3], ou encore les

systèmes micro-électro-mécaniques (MEMS) [4, 5]). Dans beaucoup des problèmes cités, la

non-linéarité géométrique joue un rôle dont l’importance a tendance à croitre, avec la concep-

tion de structures de plus en plus minces et souples, qui peuvent atteindre plus facilement des

grandes amplitudes vibratoires. Bien que la réponse non linéaire de telles structures puisse être

étudiée expérimentalement, de nombreux efforts sont consacrés à la prédiction de la réponse

non linéaire en utilisant la simulation par éléments finis (EF) (e.g. [6]). Dans ce cadre-là, le

coût de calcul associé est important en particulier à cause de la discrétisation spatiale et tem-

porelle fine qui est requise afin de rendre compte des dynamiques non linéaires observées. Ainsi

l’analyse prédictive par le calcul de solutions complètes est quasiment hors de portée, ce qui

impose une limitation claire en termes d’analyse et de conception paramétrique. Afin de traiter

le problème, on peut transformer le modèle d’ordre complet par des méthodes de réduction de

modèle, conduisant à des modèles d’ordre réduit dont la complexité de calcul est moindre, avec

l’idée de conserver la même finesse prédictive. Les techniques de réduction sont de plus en

plus utilisées de nos jours en tant qu’outil efficace permettant d’accélérer le calcul des modèles

éléments finis complets.

Modèle d’ordre réduit

Le but des modèles d’ordre réduit est de pouvoir prédire avec précision les propriétés et car-

actéristiques non linéaires du modèle complet, avec un modèle beaucoup plus léger, comportant

moins d’inconnues, et dont la résolution numérique se fait en un temps de calcul plus rapide

et avec des accès mémoire moins gourmands. Concernant l’application de ces techniques aux

modèles élément fini, il convient de souligner deux problématiques particulières liées à la mise

en équation du problème, et à la variétyé de solutions apparaissant dès qu’une dynamique non

linéaire entre en jeu.
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Le premier problème est de calculer efficacement les forces internes non linéaires dans la

base réduite. A cette fin, il est aussi important de distinguer, au niveau de la technique de

réduction, les méthodes appelées intrusives et non-intrusives, qui seront discutées plus en détail

dans la section 2.2. Par méthode non-intrusive, nous entendons une méthode de calcul qui utilise

les sorties communes de tout code EF standard (commercial) (tel que les calculs statiques par

exemple) pour établier le modèle d’ordre réduit. A contrario, une méthode intrusive nécessite

que l’utilisateur insère ses propres lignes de calcul au sein du code EF, ce qui nécessite un accès

complet à un code ouvert.

Le deuxième problème important est lié à la dynamique non linéaire, qui fait apparaitre des

phénomènes tels que des instabilités, des bifurcations, pouvant mener à des solutions quasipériodiques

et chaotiques. Ainsi, les modèle d’ordre réduit doivent pouvoir récupérer ces caractéristiques

non linéaires. À cette fin, l’optimisation de la base de réduction, qui doit être à la fois de pe-

tite taille et conserver les caractéristiques linéaires et non linéaires les plus importantes de la

réponse, devient un problème important [7]. En ce qui concerne le type de base impliquée dans

les modèles EF, les méthodes de réduction non intrusives peuvent être généralement classées

en deux familles. La première famille comprend les méthodes linéaires, comme par exemple

la méthode POD [8, 9, 10], la projection de mode linéaire et utilisant la condensation statique

[11, 12] avec les coefficients non linéaires calculés par un calcul annexe [13]. Ces méthodes

sont les plus utilisées ces dernières années avant le début de cette thèse, en raison de leur facilité

de calcul et de leur signification physique claire [14, 15]. La deuxième famille est constituée des

méthodes non linéaire, par exemple, la méthode ICE [16, 17, 18, 19, 4] et les dérivées modales

(MD) [20, 21].

Mode non linéaire et variétés invariantes

Le concept de modes normaux non linéaires (NNM) est considéré ici comme un excellent

outil pour construire des modèles d’ordre réduit. Les NNM ont été introduits pour la première

fois dans les années 1960 par Rosenberg [22, 23]. Il offre un cadre conceptuel clair pour com-

prendre l’organisation de la dynamique dans l’espace des phases et interpréter une large classe

de phénomènes dynamiques non linéaires. Bien que de nombreuses définitions différentes

des NNM aient été données dans le passé, la plupart d’entre elles partagent des propriétés

équivalentes dans un cadre conservatif. Un certain nombre de travaux antérieurs considèrent
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les NNM comme une famille d’orbites périodiques, ce qui permet de trouver une relation entre

la relation amplitude-fréquence et l’organisation des orbites dans l’espace des phases [22, 24].

Une proposition alternative est de considérer une NNM comme une variété invariante dans

l’espace des phases, tangente aux espaces propres linéaires près de l’origine [25]. Cette pro-

priété d’invariance de la variété est un point clé dans la perspective de la réduction du modèle,

qui garantit que les trajectoires du modèle réduit existeront également pour le système complet.

La principale difficulté concernant le calcul des NNMs pour les problème discrétisés en

éléments finis est que le calcul des NNMs pour les modèles de grande taille est coûteux, en

particulier pour les non-linéarités distribuées. De plus, toutes les applications antérieures de

la méthode considèrent comme point d’entrée le système exprimé dans sa base modale, avec

accès à l’ensemble des coefficients de couplage non linéaire modaux, ce qui est la plupart du

temps inatteignable en pratique. Au début de cette thèse, il y avait donc un manque identifié

dans la littérature pour développer des applications plus directes de techniques basées sur les

variétés invariantes pour produire des modèles réduits précis, spécifiquement adapté au cas de

la discrétisation par éléments finis. L’un des objectifs de cette thèse était donc d’explorer cette

direction de recherche.

Contribution scientifique

Ce manuscrit de thèse est organisée de la manière suivante :

Après ce premier chapitre introductif, un état de l’art sur le calcul des modèles d’ordre réduit

est présenté dans la partie I, en insistant sur les connaissances disponibles au début de la thèse.

L’accent est délibérément mis sur les structures discrétisées avec la méthode des éléments finis

comme cadre d’étude, et la portée est limitée aux non-linéarités géométriques. Les méthodes

linéaires et non linéaires sont passées en revue au cours des chapitres 3 et 4.

La partie II présente la première contribution de cette thèse, qui consiste en un analyse

poussée de la relation existant entre la méthode de condensation implicite (méthode ICE selon

la dénomination anglaise Implicit COndensation and Expansion) et la réduction en utilisant

les variétés invariantes du système. PLus précisément, les qualités et limites de la méthode

ICE sont analysées en comparant directement avec l’utilisation de variétés invariantes comme

référence au calcul de sous-espaces réduits (Chapitre 5). Ensuite, le chapitre 6 s’intéresse à la

méthode de réduction utilisant une variété quadratique construite à partir de dérivées modales.
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De nouveau, une comparaison aux variétés invariantes est fournie afin de bien en comprendre

les intérêts et limites. A titre illustratif, deux exemples sont ensuite présentés. Le premier exem-

ple, de nature académique, est le cas d’une poutre linéaire reposant sur uen fondation élastique

non linéaire. Il permet de montrer comment les différents traitements des non-linéarités quadra-

tiques par ces méthodes peuvent affecter les prédictions. Le second exemple est le cas d’une

coque sphérique peu profonde à bord libre, dont les vibrations sont modélisées à l’aide des

hypothèses cinématiques de von Kármán .

La partie III contient de nombreux exemples numériques permettant d’illustrer le comporte-

ment des différentes méthodes de réduction non linéaire, en se focalisant désormais sur le cas

des structures discrétisées avec la méthode des éléments finis. Au chapitre 7, trois méthodes de

réduction non linéaire pour les poutres minces vibrant avec de grandes amplitudes sont com-

parées : la méthode ICE, les méthodes utilisant une variété quadratique construite à partir de

dérivées modales (et utilisant soit les dérivées modales complètes, soit les dérivées modales sta-

tiques), et la méthode de la forme normale, permettant une réduction directe sur les variétés in-

variantes du système. Les exemples sléectionnés permettent de montrer comment els différentes

méthodes sont capables de gérer l’ajout de courbure, une résonance interne 1:1 ou encore la

non-liénarité inertielle en utilisant une poutre encastrée-libre. Au chapitre 8, des structures plus

complexes (coques) sont étudiées de la même manière. La coque est étudiée avec différentes

dimensions, et la prédiction du type de non-linéarité obtenue par différentes méthodes est com-

parée et étudiée.

La troisième contribution de la thèse est présentée dans la partie IV : l’étude de la forme

normale pour un système non linéaire présentant une résonance 1:2 et une non-linéarité cu-

bique. Ce travail conclut d’abord qu’avec une résonance 1:2 dans la réduction de forme nor-

male, de nouveaux termes cubiques apparaissent dans les coordonnées liées aux variétés invari-

antes, la relation non linéaire entre ces nouvelles coordonnées et les coordonnées physiques sera

également affectée (Chapitre 9). Ensuite, au chapitre 10, le calcul a été fait sur le changement de

non-linéarité du système au croisement de la divergence due à la présence de la résonance 1:2.

La méthode des échelles multiples a été utilisée pour calculer les relation amplitude/fréquence

du système conservatif, et le comportement raidissant/assouplissant pour le cas d’un désaccord

important et au voisinage de la résonance 1:2 a été étudié. Enfin, la réponse non linéaire des

poutres encastrées avec une discrétisation EF au voisinage de la résonance 1:2 est étudiée.
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A la fin de la thèse, une conclusion et des discussions sur les travaux futurs permettent de

conclure.
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Chapter 1

Introduction

This thesis is concerned with the reduced-order models (ROM) for geometrically nonlinear

vibration of thin structures.

Thin structures, like beams, plates, shells, have a large range of applications (e.g. aircraft

[1, 2], wind energy systems [3], micro electro-mechanical systems (MEMS) [4, 5]). In their de-

sign procedure, geometric nonlinearity plays an important role because of their large deflection

and leads to complicated motions with typical nonlinear phenomena. Although the nonlinear

response of such structures can be investigated experimentally, many efforts are devoted to pre-

dict the nonlinear response by using finite element (FE) simulation (e.g. [6]). Consequently,

a large number of expansion functions is needed for the discretization of the structure for ob-

taining convergence through the Galerkin method [26]. As a consequence, full-order nonlinear

analysis of complex structures featuring important nonlinearity is computational expensive, set-

ting a clear limitation in terms of analysis and parametric design. In order to deal with the

problem, one can transform the full-order model by reduction methods, leading to a ROM with

less computational complexity. ROM techniques become more and more attractive nowadays

as an efficient tool to speed up the computation of FE models.

1.1 Reduced-order model

A ROM is generally desired to be able to accurately capture the nonlinear properties and

characteristics with only a small approximation error as compared to the full-order model, also,

it is needed to be computationally efficient and robust. With regard to building ROM for com-
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plex geometrically nonlinear structures with FE discretization, there are two most important

issues.

The first issue is to efficiently compute the reduced nonlinear internal forces, and based on

the way of doing this, ROM techniques for FE discretization are generally divided into two

groups: intrusive and non-intrusive methods, which will be discussed in Section 2.2. By non-

intrusive method, we mean a computational method which uses the common outputs of any

standard (commercial) FE package (such as static computations) to derive the ROM. On the

other hand, an intrusive method needs the user to insert his own computation at the elementary

level, such that a full access to the code is needed.

The second important issue is that in the nonlinear dynamics stage, one can observe non-

linear dynamical phenomenon like instabilities, bifurcations, arising more complex dynamics

including quasiperiodic solutions, chaotic solutions and even wave turbulence. Thus the ROMs

need to be able to retrieve these nonlinear features. For that purpose, optimization of the re-

duction basis, which is required to be both of limited size and convey the most important linear

and nonlinear features of the response, becomes a significant problem [7]. With regard to the

type of basis involved in FE models, the non-intrusive reduction methods can be generally clas-

sified into two families. The first family is the methods with linear basis, for example, the POD

method [8, 9, 10], the projection of linear mode and using static condensation [11, 12] with the

nonlinear coefficients computed by STiffness Evaluation Procedure (STEP) [13]. These meth-

ods are much more used in the past years before the start of this thesis, because of their ease

of computation and their clear physical meaning [14, 15]. The second family is the methods

with nonlinear mapping, for instance, the ICE method [16, 17, 18, 19, 4] and modal derivatives

(MD) [20, 21]. However, recently it is found that deriving a nonlinear manifold can give a better

representation of the dynamics instead of adding new vectors in the basis, such that it is worth

investigating further about their theoretical foundation and their advantages and disadvantages.

1.2 Nonlinear normal mode and invariant manifold methods

The concept of nonlinear normal modes (NNMs) is considered here as an excellent tool

for building ROM. NNMs have been first introduced in the 1960s by Rosenberg in order to

deal with numerous vibratory problems [22, 23]. It offers a sound conceptual framework in
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order to understand the organization of the dynamics in the phase space and interpreting a wide

class of nonlinear dynamical phenomena. Although many different definitions of NNMs have

been given in the past, most of them share equivalent properties in a conservative framework.

A number of previous work consider NNMs as a family of periodic orbits, which allows one

to find a relationship between the backbone curve and the organization of orbits in phase space

[22, 24]. An alternative proposal is to consider an NNM as an invariant manifold in phase space,

tangent at the linear eigenspaces near the origin [25]. This invariance property of the manifold

is a key point in the perspective of model reduction, which ensures the trajectories of the ROM

will also exist for the full system.

The main difficulty of generating NNMs for FE problem is that the calculation of NNMs

for large-scale models is expensive, particularly for distributed nonlinearities, and the reason

lies in the fact that application of the method as it was presented in [27, 25, 28] needs as input

the nonlinear modal coupling coefficients. This difficulty impedes a large application of such

methods for FE problem such that at the start of this PhD, most of the examples in the literature

dealt with simplified structural models defined by a partial differential equation. Three years

ago, there was thus an identified lack in the literature to develop more direct applications of

invariant-based techniques to produce accurate ROMs for FE structure. One of the objective of

this thesis was thus to investigate this research direction.

1.3 Outline and scientific contribution

This thesis is organized as follows:

After this introductory Chapter 1, the state of the art in the computation of ROMs for ge-

ometrically nonlinear structures is surveyed in Part I. A special focus on the ROM with the

geometrical nonlinear FE structures (Chapter 2) and the methods with the linear modal basis

for the reduction of nonlinear systems are subsequently introduced (Chapter 3) with a clamped

plate example. At last, the reduction methods with nonlinear mapping are reviewed (Chapter

4).

Part II presents the first contribution of the thesis, that is to analyse the relationship between

the stress manifold produced by the implicit condensation and expansion (ICE) method and

the invariant manifolds defining NNMs (Chapter 5), also the relationship between quadratic
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manifold built from modal derivatives and the direct normal form approach (Chapter 6), thus,

to assess the quality and merits of each method in producing efficient ROMs for geometrically

nonlinear structures. For illustrative reason, two examples are subsequently shown, the methods

were first compared on an academic, analytical example, a linear beam resting on a nonlinear

elastic foundation, in order to analyze how the different treatments of quadratic nonlinearities

by these methods can affect the predictions. Then, A free-edge shallow shell modelled with von

Kármán assumption is investigated for extending the conclusion to a more complex structure.

All these achievements will help the scholars or engineers, who want to build the ROMs for

their problem, to know the advantage and drawbacks of each method and to select the methods

they will use.

Part III contains numerous numerical examples for illustrating the assessment and compar-

ison of the nonlinear reduction methods and lead to the second contribution that offers a more

complete picture of the advantages and drawbacks of each method and validate the theoretical

comparison results among the reduction methods. In Chapter 7, three nonlinear reduction meth-

ods for thin beam structures vibrating with large amplitudes were compared: the ICE method,

the quadratic manifold (QM) methods using either full modal derivatives (MDs) or only static

modal derivatives (SMDs), and the direct normal form (DNF) method. The FE-based beam

examples were selected in order to emphasize the ability of the methods to handle curvature (on

a curved beam), 1:1 internal resonance (on a clamped-clamped beam with two polarizations),

and inertia nonlinearity (on a cantilever beam). In Chapter 8, more complex structures (shells)

have been investigated in the same manner. The shell is studied with different dimensions,

and the prediction of the type of nonlinearity obtained by different methods are compared and

investigated.

The third contribution of the thesis is shown in Part IV: the investigation of normal form

for nonlinear system with 1:2 resonance and cubic nonlinearity. This work first concludes that

with 1:2 resonance in the normal form reduction, extra new cubic terms will come up in the

coordinates that are linked to the invariant manifolds, also the nonlinear relation between these

new coordinates and the physical coordinates will be affected (Chapter 9). Then, In Chapter 10,

the computation has been done on the change of nonlinearity of the system at the cross of 1:2

divergence. The multiple scales method has been employed for computing the backbone curves

of the conservative system, and the hardening/softening behaviour for the case of large detuning
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and in the vicinity of 1:2 resonance have been researched respectively. Finally, the nonlinear

response of the clamped-clamped beams with FE discretization in the neighbourhood of 1:2

internal resonance is investigated, and the detuning between the resonant modes is parametrized

by changing the extent of curvature.

At the end of the thesis, a conclusion and discussions of future works will be given.
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Part I

State of art
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Chapter 2

Reduced-order model with nonlinear finite

element model

2.1 Nonlinear finite element model

Thin structures experiencing large displacements are considered, so that geometrical non-

linearities are excited. The usual framework assumes also small strains and a linear behaviour

law, so that the relationship between the second Piola Kirchhoff stress tensor S and the the

Green-Lagrange strain tensor G reads, following the Saint-Venant Kirchhoff law [29, 30] :

S = A : G, with G =
1

2

(
∇u +∇tu +∇u · ∇tu

)
, (2.1.1)

where A is the tensor of constant stiffness terms describing the material law, and u the three-

dimensional displacement. The weak form is then written in the reference configuration and

reads:∫
Ω0

ρü ·wdΩ +

∫
Ω0

P : ∇twdΩ =

∫
Ω0

ρF̂ ·wdΩ +

∫
S0

f ·wdS, ∀ w ∈ C0, (2.1.2)

where w is a continuous test function, P is the first Piola-Kirchhoff stress tensor, P = (1 +

∇u) · S, ρ is the density in the reference configuration, and ρF̂ and f are respectively volumic

and surface external forces exerted on the body occupying the domain Ω0 with boundary surface

S0.

Most of the developments in this thesis are concerned with a space discretization relying on

the finite element (FE) procedure. In that context, the equivalent semi-discrete, finite dimen-
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sional expression of Eq. (2.1.2), generally reads:

Mq̈ + Kq + Γ̂(q) = F, (2.1.3)

with q the vector of generalized displacements (displacements at the nodes) with dimension N ,

M the mass matrix, K the tangent stiffness matrix, Γ̂(q) representing the nonlinear restoring

force and F the external forces. It can be shown in particular that in the context of geometrically

nonlinear structures, the nonlinear part of the stiffness Γ̂(q) is polynomial, more precisely, with

3D element the nonlinear restoring force contains only quadratic and cubic terms [31, 32],

and for shell/plate elements, it is possible to have higher order terms due to the extra physical

assumptions.

The linear modal basis is defined by the vectors φi such that

Kφi = ω2
iMφi. (2.1.4)

In the modal basis, the equations of motion can be rewritten, using the linear change of coordi-

nates q = PφX, with Pφ the matrix of eigenvectors and X the modal coordinates :

Ẍp + ω2
pXp +

N∑
i=1

N∑
j≥i

gpijXiXj +
N∑
i=1

N∑
j≥i

N∑
k≥j

hpijkXiXjXk = F̃p, ∀p = 1, ..., N. (2.1.5)

with F̃ = Pt
φF the vector of modal forcings, gpij and hpijk the quadratic and cubic nonlinear

modal coupling coefficients.

The main problem when using the FE approach is that the nonlinear coupling coefficients

are a priori not available, and require an additional direct or indirect method to obtain them

[31, 32, 33]. Also, the number of modes can be prohibitively large to derive reduced-order

models, as underlined in e.g. [12, 11]. Consequently, ad-hoc methods are proposed in the

literature in order to overcome these problems and directly propose reduced-order models with

a limited number of selected coordinates and number of coupling coefficients to compute.

2.2 Non-intrusive/intrusive methods

Based on the method of computing the reduced nonlinear internal forces, nonlinear ROM

techniques for FE structures are generally classified into indirect and direct methods, also called

non-intrusive and intrusive method.

10



The intrusive methods are the methods that can be used in any standard FE code (even

commercial FE packages) with its already existing capacities in order to build a ROM [31], this

is because the nonlinear restoring forces are computed without entering inside the programs at

the elementary level and generally by a direct projection of the full-order equations to a reduced

eigenspace by using a prescribed reduction basis. On the other hand, when applying a direct

method, one needs to enter inside the program to write new lines of computation in order to

obtain the needed quantities to build ROMs, however, this may be difficult for most commercial

FE software since the complete access to the code is not available.

The following Fig. 2.2.1 shows the classification of the reduction methods and only the

non-intrusive methods were considered throughout this work. As shown in the figure, one can

divide roughly the reduction techniques proposed in the literature into two different categories:

the first one use the linear change of coordinates and is reviewed in Section 3, while the second

family with nonlinear mappings is discussed in Section 4.

Figure 2.2.1: The classification of the reduction methods.
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Chapter 3

Non-intrusive reduction methods with

linear mapping

In the past decades, numerous methods have been proposed that rely on a linear change

of coordinates. They can be roughly divided into two groups: Simulation-based methods and

simulation-free methods.

3.1 Simulation-based methods

Many reduction methods share the common points that simulations of the full, high dimen-

sional system are run in a first step, of which the results are analysed in a second step to build

the reduced basis for the nonlinear system, such kind of methods are so-called simulation-based

method. One of the most widely used simulation-based methods is the Proper Orthogonal De-

composition (POD) [8, 9, 10], which is a multivariate statistical method that aims at obtaining a

compact representation of the data. The POD method optimally extracts the spatial information

necessary to characterize the spatio-temporal complexity and inherent dimension of a system,

from a set of temporal snapshots of the response, gathered from either numerical simulations

or experimental data. The key idea of the POD is to reduce a large number of interdependent

variables to a much smaller number of uncorrelated variables while retaining as much as pos-

sible of the variation in the original variables. An orthogonal transformation to the basis of

the eigenvectors of the sample covariance matrix is performed, and the data are projected onto

the subspace spanned by the eigenvectors corresponding to the largest eigenvalues. The most
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beneficial characteristic of the POD is that it optimally minimizes the average squared distance

between the original signal and its reduced linear representation.

There are also other simulation-based methods, like Proper Generalized Decomposition

(PGD) method [34, 35] and so on. However, these methods share the same drawback that

they need a full order simulation at the first step, which may be difficult when dealing with the

system in a very large number of degree of freedoms.

Among all the reduction methods with linear mapping, except for simulation-based meth-

ods, there are also simulation-free methods that based on using linear mapping, for example,

the simple projection of the modes and static condensation. These methods have the advantage

that full-order modal analysis is not needed when developing ROMs, instead, one has to com-

pute the nonlinear coupling coefficients, which are shown in Eq. (2.1.5), of all the modes on the

modal basis. For that purpose, one widely used approach is the STiffness Evaluation Procedure

(STEP).

3.2 Stiffness evaluation procedure

The STiffness Evaluation Procedure (STEP) was first proposed by Muravyov and Rizzi [13].

In the method, selected static displacements are prescribed to the FE model, the FE procedure

then computes the required reaction forces induced by the statically assigned displacements and

the nonlinear coefficients are obtained by solving a set of linear equations given by the input

displacements and output nonlinear restoring forces. It should be noted that STEP is generally

seen as a non-intrusive procedure for computing the nonlinear coefficients of the FE model.

Now the procedure is given as follows. The total restoring force FT in physical coordinates

is given by the summation of nonlinear nodal restoring force and linear restoring force as:

FT = FL + FNL = Kqc + Γ̂(qc). (3.2.1)

By prescribing nodal displacement qc as the input, the total nodal force FT in the nonlinear

static solution (which could be directly solved by FE software) and the linear force FL = Kqc

in the linear static solution could be solved, thus, the nonlinear nodal force FNL is determined

by:

FNL = FT − FL = ΦTΓ(qc), (3.2.2)
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the nonlinear nodal force FNL for rth mode could also be expressed as

F r
NL =

N∑
i=1

N∑
j=i

grijXiXj +
N∑
i=1

N∑
j=i

N∑
k=j

hrijkXiXjXk. r = 1, 2, ..., N. (3.2.3)

To illustrate the technique, one can begin by prescribing the displacement fields from each

single generalized coordinate while all other coordinates are zero

qc = φiXi and qc = −φiXi. (3.2.4)

The nonlinear nodal force contributions F r
NL are determined by using Eq. (3.2.2), these may be

written in modal coordinates as

F̂NL1 = ΦTFNL1 = ΦTΓ(φiXi) = [grii]X
2
i + [hriii]X

3
i ,

F̂NL2 = ΦTFNL2 = ΦTΓ(−φiXi) = [grii]X
2
i − [hriii]X

3
i .

(3.2.5)

Note that the other nonlinear terms do not appear in equation (3.2.5) since Xj = 0 for j 6= i.

All the stiffness coefficients corresponding to only one mode can be determined , i.e., grii and

hriii, r = 1, 2, ..., N . Then, prescribing the displacement fields as:

qc = φiXi + φjXj, qc = −φiXi − φjXj and qc = φiXi − φjXj, j > i, (3.2.6)

results in the following equations

F̂NL1 = ΦTΓ(φiXi + φjXj),

F̂NL2 = ΦTΓ(−φiXi − φjXj),

F̂NL3 = ΦTΓ(φiXi − φjXj).

(3.2.7)

Summing the F̂NL1 and F̂NL2 , subtracting F̂NL1 and F̂NL3 , subtracting F̂NL2 and F̂NL3 respec-

tively, results in

F̂ r
NL1

+ F̂ r
NL2

= 2griiX
2
i + 2grjjX

2
j + 2grijXiXj,

F̂ r
NL1
− F̂ r

NL3
= 2hrjjjX

3
j + 2grijXiXj + 2hriijX

2
iXj,

F̂ r
NL2
− F̂ r

NL3
= −2hriiiX

3
i − 2grijXiXj − 2hrijjXiX

2
j ,

(3.2.8)

from above equations, all coefficients of the type grij, h
r
ijj and hriij, j > i, r = 1, 2, ..., N can be

found. For the case of coefficients with three unequal lower indices, i.e. hrijk, can be determined

by prescribing the displacement field

qc = φiXi + φjXj + φkXk, k > j > i, (3.2.9)
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and resulting equation

F̂NL =ΦTΓ(φiXi + φjXj + φkXk)

=[grii]X
2
i + [grjj]X

2
j + [grkk]X

2
k + [grij]XiXj + [grik]XiXk + [grjk]XjXk

+ [hriii]X
3
i + [hrjjj]X

3
j + [hrkkk]X

3
k + [hrijj]XiX

2
j + [hrikk]XiX

2
k + [hrjkk]XjX

2
k

+ [hriij]X
2
iXj + [hriik]X

2
iXk + [hrjjk]X

2
jXk + [hrijk]XiXjXk.

(3.2.10)

In Eq. (3.2.10), hrijk, r = 1, 2, ..., N can be found in this manner because all the other types

of coefficients have already been solved. In practice, for using the STEP, these values for qc

must be large enough to trigger geometric nonlinearity in the system, but not too large, in

order to avoid the convergence problem of the solution in the FE model and excitation of large

rotation, thus, Xi should be properly chosen when applying the STEP. A detailed study on the

selection of Xi had been presented in [12], shows that the solution of coefficients is converged

when 0.0001h < max |φi|Xi < 1h, and it is recommanded that Xi are chosen as 1/20 of the

thickness of the investigated structures:

max |φi|Xi ≈
1

20
h. (3.2.11)

To compute the nonlinear coefficients with this STEP for the number of N modes, Eqs. (3.2.4),

(3.2.6) and (3.2.9) indicate the number of different displacements needed as the inputs in the

STEP, thus, the total number of operations could be computed by

OPs = 2N + 3

 N

2

+

 N

3

 , (3.2.12)

where the binomial coefficients is  n

k

 =
n!

k!(n− k)!
. (3.2.13)

3.3 STEP with tangent stiffness matrix

The STEP is an important computation tool for building ROM in the framework of the linear

eigenspace and attracts much attention from the academics and industry. There are contribu-

tions proposed for optimizing the STEP in order to speed up the calculation for obtaining the

nonlinear coupling coefficients.
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One of the enhanced STEP, which computes the nonlinear coefficients with a tangent stiff-

ness matrix, is proposed in [36] and introduced here. For the FE model, in which the nonlinear

model is developed, the tangent stiffness matrix could be released out of a nonlinear static anal-

ysis by the FE package. The tangent stiffness matrix of the full-order model from a nonlinear

static solution is then mapped into the reduced space of generalized coordinates using the pre-

viously defined reduction basis, i.e., by prescribing nodal displacement qc as the input,

K̂t(X) = ΦTKt(qc)Φ, (3.3.1)

where K̂t and Kt are the tangent stiffness matrices for the modal space and model FE degree

of freedom space, respectively. The tangent stiffness matrix is the Jacobian of the nonlinear

restoring force vector with respect to generalized coordinates, given by

K̂t = JFT
(X) =


∂F 1

T

X1
· · · ∂F 1

T

XN

... . . . ...
∂FN

T

X1
· · · ∂FN

T

XN

 , (3.3.2)

where F r
T is given by

F r
T = F r

L + F r
NL = ω2

rXr +
N∑
i=1

N∑
j=i

grijXiXj +
N∑
i=1

N∑
j=i

N∑
k=j

hrijkXiXjXk, (3.3.3)

and the (r, n) component of tangent stiffness matrix is given by

K̂t
(r,n) =

∂F r
T

∂Xn

=
∂

∂Xn

[ω2
rXr +

N∑
i=1

N∑
j=i

grijXiXj +
N∑
i=1

N∑
j=i

N∑
k=j

hrijkXiXjXk]

= ω2
rδrn +

n−1∑
j=1

grjnXj + 2grnnXn +
N∑

j=n+1

grnjXj

+ 2
n−1∑
j=1

hrjnnXnXj + 2
N∑

j=n+1

hrnnjXnXj +
n−1∑
j=1

hrjjnX
2
j +

N∑
j=n+1

hrnjjX
2
j + 3hrnnnX

2
n

+
n−1∑
j=1

n−1∑
k=j

hrjknXjXk +
n−1∑
j=1

N∑
k=n+1

hrjnkXjXk +
N∑

j=n+1

N∑
k=j

hrnjkXjXk.

(3.3.4)

When prescribing the displacement fields from each single generalized coordinate while all

other coordinates are zero:

qc = φiXi, (3.3.5)
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such that in Eq. (3.3.4), Xj = 0 for j 6= i, thus, one can rewrite Eq. (3.3.4) as:

K̂t
(r,n) = ω2

rδrn + grniXi + hrniiX
2
i , i > n,

K̂t
(r,n) = ω2

rδrn + 2griiXi + 3hriiiX
2
i , i = n,

K̂t
(r,n) = ω2

rδrn + grinXi + hriinX
2
i , i < n.

(3.3.6)

Repeat the last step with qc = −φiXi, Eqs. (3.3.6) would change to

K̂t
(r,n) = ω2

rδrn − grniXi + hrniiX
2
i , i > n,

K̂t
(r,n) = ω2

rδrn − 2griiXi + 3hriiiX
2
i , i = n,

K̂t
(r,n) = ω2

rδrn − grinXi + hriinX
2
i , i < n.

(3.3.7)

By considering the simultaneous formulas (3.3.6) and (3.3.7), all the coefficient corresponding

to no more than two modes could be solved. Then, the prescribed displacement fields read:

qc = φiXi + φjXj, j > i, (3.3.8)

such that in Eq. (3.3.4), only two generalized coordinates will not be zero, i.e. Xi 6= 0, Xj 6= 0.

Specifically, for n > j > i, one has

K̂t
(r,n) = ω2

rδrn + grinXi + grjnXj + hriinX
2
i + hrjjnX

2
j + hrijnXiXj. (3.3.9)

The above equation could be used to determine cubic terms like hrijn. To compute the nonlinear

coefficients with tangent stiffness matrix for the number of N modes, from Eqs. (3.3.5) and

(3.3.8), the total number of operations could be computed by

OPt = 2N +

 N

2

 . (3.3.10)
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Figure 3.3.1: The relationship between the number of operations and the size of modal basis for the

original version of STEP (blue) and STEP with tangent stiffness matrix (red).

Fig. 3.3.1 shows the comparison on the number of operation needed for using ordinary STEP

and STEP with tangent stiffness matrix, with different size of modal basis. As compared to the

ordinary STEP, it is shown that smaller number of operation are required by using STEP with

tangent stiffness matrix for computing coefficients, especially when large number of modes is

involved. It should be noted that the STEP with tangent stiffness matrix takes more time in each

operation in the FE model, but it can significantly reduce time and storage cost when calculating

a large number of coefficients.

Tab. 3.3.1 shows the computation times with different number of modes by the two proce-

dures on a simply supported rectangular plate meshed with 2D DKT elements for 441 nodes.

The computation is run by Code Aster [37] on the 12-core processor computer with 16 GB of

RAM and CPU @ 2.20GHz. It is shown that the ordinary STEP is more appealing when a small

number of modes are involved in the modal basis, and in the context of computing coefficients

with a large number of modes , it is suggested to using the STEP with tangent stiffness matrix.

Procedure
Number of modes

10 modes 15 modes 20 modes

STEP 1.5 minutes 6 minutes 76 minutes

STEP-TSM 4 minutes 11 minutes 28 minutes

Table 3.3.1: The time for computing the nonlinear coefficients by applying STEP or STEP with tangent

stiffness matrix (STEP-TSM).
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There are also many other kinds of STEP that have been proposed, for example the E-STEP

[38]. Relying on STEP, many methods, which give the optimal approximating linear manifold

in the configuration space, are frequently applied to nonlinear problems. The linear nature of

the methods are appealing because the theory of linear operators is available, but it also exhibits

its major limitation that it may fail to retrieve most of the nonlinear phenomenons with even a

large modal basis [39]. In the next section, an application of a circular plate is shown for giving

a more illustrative view of these reduction methods with linear mapping.

3.4 Example: Application to a clamped circular plate

In order to better illustrate the reduction methods on linear modal basis, the case of a

clamped circular plate was first investigated by the author of the thesis in [11] and recalled

here. The plate has a radius R = 0.3 m, a thickness h = 0.005m, and the material properties

are: density ρ = 7800 kg/m3, Young’s modulus E = 210 GPa and Poisson ratio v = 0.3. For

computing all the modes and applying the different proposed methodologies, a coarse mesh is

chosen. The plate is discretized with 540 HEX20 elements on the face and 2 HEX20 elements

in the thickness, with a total of 1931 nodes and 4928 degrees of freedom.

3.4.1 Static condensation

In the plate case with 3D element discretization, the eigenmodes can be separated into two

groups. The first group is the bending modes with lower frequencies, and their deformed shapes

are dominated by transverse displacements. The second group gathers all the other modes,

called non-bending modes, which generally have higher frequencies. The bending coordinates

(m ∈ {1, NB}), which are directly excited by the external forcing, can be considered of the

order magnitude of a small parameter ε: Xm = o(ε), while the non-bending coordinates (s ∈

{NB + 1, N}) are not directly excited and should vibrate at a lower order of magnitude, are

assumed to scale as ε2: Ps = o(ε2). In the context of investigating a flat and symmetric structure

(like the plate in this case), one can insert these two scaling into Eq. (2.1.5) with damping C

included and keeping only the leading order, and thus obtain the following equation of motion
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with (a) for the bending modes and (b) for non-bending modes [11]:

Ẍm + ω2
mXm + CmẊm +

NB∑
i=1

N∑
l=NB+1

gmil XiPl +

NB∑
i=1

NB∑
j=i

NB∑
k=j

hmijkXiXjXk = F̃m, (3.4.1a)

P̈s + ω2
sPs + CsṖs +

NB∑
i=1

NB∑
j=i

gsijXiXj = 0. (3.4.1b)

with N the number of dofs and NB the number of non-bending modes.

In the context where the dynamics are dominated by the bending modes, the static con-

densation can be applied for generating ROMs. Because the non-bending modes have natural

frequencies very large as compared with the excited bending modes, i.e. ωs � ωm, the dynam-

ical part of Eq. (3.4.1b) can be neglected, and thus, one can directly express the non-bending

coordinate as:

Ps = −
NB∑
i=1

NB∑
j=i

gsij
ω2
s

XiXj. (3.4.2)

Substituting Eq. (3.4.2) into Eq. (3.4.1a), the nonlinear dynamics of the plate can be rewritten

with involving only bending coordinates:

Ẍm + ω2
mXm + CmẊm +

NB∑
i=1

NB∑
j=i

NB∑
k=j

Υm
ijkXiXjXk = F̃m, (3.4.3)

where Υm
ijk read

Υm
ijk = hmijk −

N∑
s=NB+1

Ĉms
ijk , (3.4.4)

and Ĉms
ijk is expressed by:

Ĉms
ijk =



gmisg
s
jk+gmjsg

s
ik+gmksg

s
ij

ω2
s

, i < j < k,

gmisg
s
ik+gmksg

s
ii

ω2
s

, i = j < k,

gmisg
s
kk+gmksg

s
ik

ω2
s

, i < j = k,

gmisg
s
ii

ω2
s
, i = j = k.

(3.4.5)

In this example, a ROM, with modal basis including a single bending mode and all the other

non-bending modes, is considered, such that the nonlinear cubic term of Eq. (3.4.4) simply

reduces to:

Υm
mmm = hmmmm −

N∑
s=NB+1

Ĉms
mmm, (3.4.6)
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where the correction factors now read:

Ĉms
mmm =

gmmsg
s
mm

ω2
s

=
2(gsmm)2

ω2
s

. (3.4.7)

With the coefficients gsmm and hmmmm computed by the STEP, the static condensation technique

can be used and building the ROMs with nonlinear dynamics given in Eq. (3.4.3).

3.4.2 Modal coupling

A convergence study on the modal coupling is investigated for the first axisymmetric bend-

ing mode (0,1) having no nodal line and one nodal circle, and the first asymmetric (1,0) mode

with one nodal line and no nodal circle. The case of the first axisymmetric mode is less complex

as compared with the asymmetric mode for symmetry reasons.
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Figure 3.4.1: (a) Normalised modal correction factor for the clamped circular plate, as a function of the

normalised mode number (normalization by the number of dofs), for the first asymmetric (1,0) mode of

the plate. (b) The correction factors are now sorted by decreasing values, and two cases are shown : the

case of the first asymmetric mode, corresponding to sorting (a), and the case of the first axisymmetric

mode, showing a faster convergence. Grey points are negligible modes in terms of coupling, magenta

points are the important in-plane coupled modes while blue points are the important thickness modes.

Fig. 3.4.1(a) shows the behaviour of the normalised modal correction factor, i.e., the cor-

rection factor given in Eq. (3.4.7) normalized by the cubic coefficients hmmmm, expressed by

2(gnmm/ωn)2/hmmmm, where m refers to the master mode (m = 1 is the fundamental axisym-

metric (0,1) mode, m = 2 is the asymmetric (1,0) mode) and n ∈ {1, N}. In Fig. 3.4.1(a) only
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the case of the first asymmetric mode (m = 2) is shown for the sake of brevity, but the trend

of first axisymmetric mode was very similar. It is shown that a strong coupling with numerous

non-bending modes in high-frequency regime is observed, consequently, the normalised modal

correction factors show a very slow convergence. Table 3.4.1 shows the deformed shape of the

first nine modes, sorted according to their correction factor, which are thus the most important

in the coupling with the bending (1,0) mode. These modes are all in high frequency range,

two purely in-plane modes are found in (e) and (h), and all the other ones involve important

deformation in the thickness of the plate, and thus called thickness modes, their presence being

the direct consequence of 3D effects.

Fig. 3.4.1(b) shows the normalized correction factor now sorted by order of decreasing

values, and for the two cases of the axisymmetric fundamental mode and first asymmetric mode.

It shows in particular that the convergence on the corrected cubic coefficient is more rapidly

achieved for the axisymmetric mode, where less than 10% of the modes are needed. On the

other hand, the convergence is more difficult for the first asymmetric mode. Concerning the

coupling with high-frequency modes and thickness modes for these two first bending modes,

it is interesting to note that the subset of coupled modes is almost exactly the same in the two

cases, showing in particular that the coupling with the thickness modes is not very dependent

on the selected bending mode. In fact, the two cases investigated here share more than 90% of

the same coupled modes.
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(a1) (b) (c) (d) (e)

(a2) (f) (g) (h) (i)

Table 3.4.1: Mode shapes of the 9 most relevant modes coupled with the first flexural asymmetric (1,0)

mode. Only two of them are in-plane modes: (e) and (h), while all the others are thickness modes. (a2)

is a side view of the top view (a1) of the first thickness mode, in order to show the strong dependence on

thickness deformation.

3.4.3 Results and discussion

Corrected cubic Coefficients

Υ2
222 Υ4

222 Υ4
224 Υ2

444 Υ4
444

M-STEP 6.4763e+10 -2.8539e+09 1.5374e+11 -57.3021 3.8776e+11

Static condensation 6.4762e+10 -2.8535e+09 1.5372e+11 5.3298e+03 3.8775e+11

Table 3.4.2: Corrected cubic coefficient Υp
ijk, for two flexural modes, i.e. i, j, k,m = 2 or 4, where 2

refers to the first (1,0) asymmetric mode while 4 refers to the second (2,0) asymmetric mode; anf for

two different methods : the modified STEP, and the static condensation where all the coupled modes are

statically condensed.

Now we are shortly introducing the modified STEP so called M-STEP [40, 11]. Different

from the STEP that imposes displacement to the entire physical subspaces, when applying the
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M-STEP, displacements are imposed on selected degrees of freedom only, normally on the mid-

dle line/plane of the structures, the idea is to include automatically the effects of non-bending

modes (slave modes), by a kind of implicit condensation of their motion, embedded into the pre-

scribed displacement on the middle line/plane. The interested reader can find the formulation

and the quality indicator for the convergence of the method in [11].

The numerical results for the corrected cubic coefficient Υp
ijk are shown in Table 3.4.2, with

the expression given in Eq. (3.4.4) with m = 2 for the first asymmetric (1,0) mode and m = 4

for the second asymmetric (2,0) mode (the bending modes being sorted by increasing frequen-

cies, m = 1 is the fundamental axisymmetric (0,1) mode, m = 2, 3 for the two configurations

of the asymmetric (1,0) mode andm = 4, 5 for the second asymmetric (2,0) mode). This choice

has been guided by the fact that these two asymmetric modes are coupled [41] and thus cubic

nonlinear coefficients are important when deriving a ROM. The two methods presented: M-

STEP and static condensation of all the linear modes, give the same results, except for Υ2
444

shows a different result for the M-STEP, however the value is very small as compared to the

other ones so that this coefficient is negligible.

In the example, we have shown that in the case of 3D elements, a strong coupling with

non-bending mode occurred, especially the thickness modes, thus it is difficult to achieve the

convergence of the ROM derived by using linear basis. It is also shown that by using simple

projection of modes or static condensation, with the coefficient calculated by the STEP, is some-

times really inefficient, also, the computation of all the linear modes, including the thickness

modes appearing at very high frequencies, is generally out of reach. The M-STEP works well

in this case since it leads to an accurate ROM with only two master coordinates, however, it

should be noted that the method has a disadvantage that it only can be used when the structures

are flat and symmetry.

This example indicates the difficulty of building ROM by using linear basis, that is the

modal basis can be difficult to be determined and has a large size for some cases. On the other

hand, reduction methods with nonlinear mapping on phase space will not have such drawback

and are reviewed in the next section.
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Chapter 4

Reduction methods with nonlinear

mapping

4.1 Nonlinear mappings applied to modal equations

In this section, reduction methods applied to modal equations for generating the NNMs are

reviewed. The NNMs are defined as invariant manifolds in phase space, which are tangent

to their linear counterpart at the origin, aimed at extending the usual linear decomposition to

non-linear regimes [42], thus, NNM is a valuable concept for interpreting certain essentially

nonlinear dynamic phenomenon that have no counterpart in linear theory and cannot be analysed

by linearised methods.

An important advantage of the reduction methods deriving NNMs is that the invariant prop-

erty is kept during the computation and the trajectories of the ROMs will also exist for the full

system [43, 44, 45]. Based on the styles of parametrization [46], these methods for deriving

the invariant manifold can be roughly divided into two groups: invariant manifold approach by

Shaw and Pierre (the graph style) and the normal form.

4.1.1 Invariant manifold approach by Shaw and Pierre

In this section, we use the definition of NNMs as proposed by Shaw and Pierre [27, 25, 47,

48]. The method relies on the center manifold theorem [49, 50], and allows a clear conceptual

definition of an NNM as an invariant manifold in phase space, tangent to the linear eigenspaces
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at the origin. One of the main advantages of the method is to provide a clear continuation of

linear eigenspaces to nonlinear regimes, as well as giving efficient reduced-order subspaces for

building ROMs since the key property of invariance is conserved. The drawback is that the

solution of the graph style is restricted in amplitude, because the method is not able to go on the

possible foldings of the invariant manifolds [46]. The main procedure of applying the method

is shown as the following:

For the sake of simplicity, the modal Eq. (2.1.5) can also be rewritten as:

Ẍp + ω2
pXp + fp(X1, X2, ..., XN) = F̃p, (4.1.1)

and the starting point is to put Eq. (4.1.1) in first-order form (dynamical system), for the rth

mode:
Ẋr = Yr,

Ẏr = −ω2
rXr − fr(X1, ..., XN).

(4.1.2)

The invariant manifold is defined by functional relationships as and bs relating the slave coor-

dinates to the master ones by, ∀ s ∈ [m+ 1, N ]:

Xs =as(X1, Y1, ..., Xm, Ym), (4.1.3a)

Ys =bs(X1, Y1, ..., Xm, Ym), (4.1.3b)

where the master coordinates Xµ, Yµ with µ = 1, ...,m represent the coordinates in nonlinear

reduction basis, and the slave coordinates Xs, Ys are the coordinates that are coupled with the

master ones. Following the guidelines of the center manifold theorem, one arrives at the two

following equations, describing the geometry of the 2(N −m) dimensional invariant manifold

in phase space :

m∑
t=1

(
∂as
∂Xt

Yt +
∂as
∂Yt

[
−ω2

tXt − ft
])

= bs, (4.1.4a)

m∑
t=1

(
∂bs
∂Xt

Yt +
∂bs
∂Yt

[
−ω2

tXt − ft
])

= −ω2
sas − fs. (4.1.4b)

Once the unknown functions as and bs have been obtained, the dynamics of the ROM reads:

∀ t ∈ [1,m], Ẍt+ω
2
tXt+ft(X1, ..., Xm, am+1(X1, Y1, ..., Xm, Ym), ..., aN(X1, Y1, ..., Xm, Ym)) = 0.

(4.1.5)

28



4.1.2 Normal form approach

In this section, The NNMs are computed by using the normal form theory, as defined in [51,

52]. The main idea is to define a nonlinear change of coordinates, from the modal coordinates to

new ones defined as the normal coordinates. The nonlinear mapping is inherited from Poincaré

and Poincaré-Dulac theorems [53, 54], based on the idea of finding out a nonlinear change of

coordinate capable of eliminating as much as possible of nonlinear terms. In the best case, when

no nonlinear resonance exists, the system can be linearized (Poincaré theorem). When nonlinear

resonance is present, some monomials cannot be cancelled and stay in the so-called normal form

of the system, obtained after applying the nonlinear change of coordinates (Poincaré-Dulac

theorem). In the framework of mechanical systems, explicit computation of the normal form

for geometrically nonlinear systems encompassing quadratic and cubic nonlinearities have been

provided in [51, 52]. In this section, only the main results are recalled, the interested reader is

referred to these publications [51, 52, 55, 56] for more theoretical details.

Normal form theory allows definition of new co-ordinates that describe invariant manifolds,

as well as the nonlinear relationship between these new normal coordinates and the initial modal

ones. The nonlinear change of coordinates is identity-tangent, at third order, it reads:

Xp = Rp +
N∑
i=1

N∑
j≥i

(apijRiRj + bpijSiSj) +
N∑
i=1

N∑
j≥i

N∑
k≥j

rpijkRiRjRk +
N∑
i=1

N∑
j=1

N∑
k≥j

upijkRiSjSk,

(4.1.6a)

Yp = Sp +
N∑
i=1

N∑
j=1

γpijRiSj +
N∑
i=1

N∑
j≥i

N∑
k≥j

µpijkSiSjSk +
N∑
i=1

N∑
j=1

N∑
k≥j

νpijkSiRjRk, (4.1.6b)

where N is the number of retained modes in the linear analysis, Xp, Yp is the modal coordi-

nate and the modal velocity respectively, (Rp, Sp) is the new normal coordinates, and all the

coefficients of rpijk, u
p
ijk, γ

p
ij, µ

p
ijk, ν

p
ijk are analytic and their expressions are given in [51].

The dynamics in phase space spanned by invariant manifolds is then given, up to the third
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order, by:

∀p = 1, ..., N :

Rp = Ṡp (4.1.7a)

Sp = −ω2
p − (Apppp + hpppp)R

3
p −Bp

pppRpS
2
p

−Rp

[
N∑
j>p

[(Apjpj + Appjj + hppjj)R
2
j +Bp

pjjS
2
j ] +

∑
j<p

[(Apiip + Appii + hpiip)R
2
i +Bp

piiS
2
i ]

]

− Sp

[
N∑
j>p

Bp
jpjRjSj +

∑
j<p

Bp
iipRiSi

]
. (4.1.7b)

Coefficients Apijk, B
p
ijk arise from the cancellation of non-resonant quadratic terms. Now Eqs.

(4.1.7) contain the invariance property, and it is possible to truncate the system to a low-

dimensional subspace without neglecting interactions.

It should be noted that the method as presented here is limited by the fact that starting point

are modal equation, so a direct computation from physical space is needed.

4.2 Methods directly applicable to finite element model

Two non-intrusive methods are shortly reviewed in this section. Different from the methods

developing the invariant manifold, the nonlinear mappings derived by these methods do not have

the invariance property, they are widely used mainly because they can be directly computed

from the FE model. The first one is the implicit condensation and expansion method that leads

to the stress manifold, and the second one is the (static) modal derivatives with the quadratic

manifold derived.

4.2.1 Implicit condensation and expansion method

The implicit condensation and expansion (ICE) method has been first introduced by McE-

wan, Gordon and Hollkamp [16, 17, 18, 19], and recently used by Kuether et al. [57], and

Frangi and Gobat [4]. It is sometimes also called the applied force method (AMF) since it relies

on applying a set of selected static forces on the FE model as a first step for deriving the ROM.

In the processing using the ICE method, a stress manifold is built from the set of prescribed

applied loads [4]. This explains in particular why the coefficients from the ICE method strongly
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depends on the amplitude of the applied load, since following the curvature of the stress mani-

fold.

Let us briefly recall the main steps needed for deriving the ICE method. The interested

reader is referred to [19, 4, 58] for further details. The first step is to impose body forces

Q that are proportional to the inertia of a number of selected linear modes, Q = βiMφi in

Eq. (2.1.3), with i = 1...m, m being the number of master coordinates retained in the ROM. A

static problem is then solved with the FE code, and the obtained displacement field is projected

onto the eigenmodes in order to get the modal displacements Xp corresponding to the imposed

force, for p = 1...m. A mapping is thus constructed with entries βi and outputs Xp. Assuming

that the functional relationship is invertible, one obtains Xp(βi), from which the ROM can be

built. At the last step, a fitting procedure is executed in order to derive functional forms from

the computed clouds of points, to obtain the β(X) from the map X(β).

The reduced-order dynamics derived by ICE method is m-dimensional and reads:

Ẍ + Ω2X + CẊ + β(X) = F, (4.2.1)

One main advantage is that the method takes implicitly into account the axial-bending nonlin-

ear coupling that causes geometric nonlinearities, it is thus particularly appealing when working

with thin flat structures. The main drawback of the method is the fact that a fitting procedure

is needed after the application of the forces in order to get the nonlinear restoring force on the

stress manifold. Although this is not problematic when working with a single master coordi-

nates, using of more and more master modes cause difficulty to implement the method in a

general m-dimensional case.

4.2.2 Modal derivatives

Modal derivatives have been first introduced in [59] with the idea of accounting for the

variation of the eigenmodes with amplitude. In that respect, let us denote as φ̃i(q) the amplitude-

dependent eigenvector. The ij-th modal derivative Θij is thus introduced as the derivative of φ̃i

with respect to the j-th coordinate used for the reduced basis so that one can write [20, 21, 60,

61]:

Θij
.
=
∂φ̃i(q)

∂Xj

∣∣∣∣
q=0

. (4.2.2)
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In order to derive an explicit problem from which the MD will be solution of, it is convenient

to rewrite the eigenvalue system defined in Eq. (2.1.4) and stating the explicit dependence of

mode shape and eigenfrequency on amplitude u, thus obtaining:(
∂F (q)

∂q
− ω̃2

i (q)M

)
φ̃i(q) = 0, (4.2.3)

where the tangent stiffness matrix K has been replaced by the derivative of the full nonlinear

restoring force F with respect to amplitude. Note also that it has been assumed that the mass

matrix is not amplitude-dependent. Expanding Eq. (4.2.3) in Taylor series for small vibration,

one can observe that the first term will reproduce the usual linear eigenproblem while the next

term will make appear the modal derivative Θij . Since the frequency dependence on amplitude

also appears, a second equation is used to close the problem, and the developments shown

in [20, 21, 60] advocate to use the mass normalization equation: φ̃Ti Mφ̃i = 1. Expanding also

in Taylor series produces a second equation; finally grouping the two gives the system from

which one can compute MD as:K − ω2
iM −Mφi

−φTi M 0

Θij

∂ω2
i

∂Xj

 =

−2G(φj, φi)

0

 . (4.2.4)

The solution of Eq. (4.2.4) is generally difficult to obtain because of the singularity of the

K − ω2
iM at the eigenmode directions. Also, obtaining all the terms in Eq. (4.2.4) with a FE

software is not straightforward since some of them do not correspond to standard operations.

Consequently, most of the results one can found in the literature with MD simplify the problem

given by Eq. (4.2.4) by neglecting the inertia, thus defining the so-called static modal derivatives

(SMD), which are the solution of the simpler problem

KΘij = −2G(φj, φi). (4.2.5)

As remarked in [20, 21, 61], the computation of this SMD can be performed in a non-intrusive

manner with a standard FE code.

The main advantage of MDs, the same as the ICE method, is that it also does not require

manual selection of membrane-dominated modes demanded to accurately develop the nonlinear

ROM. Instead, the most important nonlinear features of the full-order response are conveyed

by non-intrusive MDs, which are systematically derived from the originating vibration modes

and are easy to compute. Another advantage, in contrary to the ICE method, is that the MDs
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are selected in a load-independent manner and render the ROM valid for a range of loading

conditions.
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Part II

Comparisons and assessments of nonlinear

reduction methods
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Chapter 5

Comparison of Implicit condensation and

invariant manifold

The main idea of this chapter is to propose a comparison between two methods to derive

reduced-order models (ROM) for geometrically nonlinear structures. The implicit condensation

and expansion (ICE) method relies on a series of applied static loadings, from this set, a stress

manifold is constructed for building the ROM. On the other hand, nonlinear normal modes rely

on invariant manifold theory in order to keep the key property of invariance for the reduced

subspaces. In the course of the development, the problem related to the fitting procedure in the

ICE method will be illustrated in the case where a large number of master modes is selected. A

simplified procedure, relying on normal form theory and identification of only resonant mono-

mial terms in the nonlinear stiffness, is proposed and contrasted with the current method. All

the findings are illustrated on beams and plates examples. These contents have been published

as a journal paper, and this Chapter is organized as follows: Section 5.1 recalls the theoretical

settings and explains the ICE method and the invariant manifold approach. In particular, it is

shown that in the specific case where all the coefficients of the model are fully known, then the

ICE method simplifies to the standard static condensation of current use to simplify the high-

frequency components of a vibrating structure. From a theoretical point of view, contrasting the

two methods is then equivalent to comparing static condensation with NNM-based reduction.

It is then shown in a general framework that if one assumes a slow/fast decomposition between

the master and slave coordinates, then the static condensation approach reduces to the invariant

manifold approach, at the leading order. Section 5.2 confirms these general findings by sim-
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plifying to a two degrees-of-freedom (dofs) system, for which explicit analytical expressions

can be derived thanks to asymptotic expansions, leading to an accurate term-by-term compari-

son. Section 5.3 extends the results to the case of continuous structures. Beam examples with

plate/shell and three-dimensional elements are tested, as well as a plate with simply supported

boundary conditions. In this section, a thorough discussion on the construction of multi-mode

ROMs with the ICE method is given, and a proposition in order to reduce the burden of the

fitting procedure, is developed. Using normal form theory and the recognition that only reso-

nant monomial terms have a strong influence on the dynamics, it is proposed to fit only these

resonant monomials in the nonlinear restoring force.

5.1 Theoretical settings

5.1.1 ICE method and stress manifold

The Implicit Condensation and Expansion (ICE) method [16, 17, 18, 19, 57, 4] has been

first introduced in Section 4.2.1, more details are now given in order to draw out more accu-

rate description and comparison. As compared to the STEP method, where a series of static

prescribed displacements are used in order to get the values of the modal coupling coefficients

gpij and hpijk given in Eq. (2.1.5), the ICE method relies on a series of applied static forcings.

Whereas the STEP method gives a direct access to the modal coupling coefficients, the values

obtained with the ICE method are different and depend on the level of applied force and are

thus load dependent. This is directly related to the fact that the coordinates used to build ROMs

from the ICE method are not the modal coordinates. Instead, a stress manifold is built from

the series of applied loads, and new coordinates are used to describe the dynamics onto this

manifold. In other words, ICE method allows to directly pass from the physical space (nodes of

the FE structure) to the curved stress manifold and the reduced variables describe the dynamics

onto this stress manifold; without resorting to an intermediate step where modal coordinates

are needed. Since the stress manifold is curved and amplitude-dependent, it is fully logical to

obtain coefficients that are load-dependent. On the other hand, if one refers to the STEP ap-

plied to eigenmodes, then the computed coupling coefficients should not depend on amplitude

since related to planar linear eigensubspaces. This explains why the coefficients from STEP do
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not depend upon amplitude in the large range where the nonlinearity is correctly excited, see

e.g. [12] for a quantitative analysis of this behaviour. Using applied forces instead of prescribed

displacements allows one to get a better track of how the nonlinear couplings generated by the

nonlinear internal force transfer energies between oscillators. But the drawback of the method

relies on the fact that a fitting procedure is needed after application of the forces in order to get

the nonlinear restoring force on the stress manifold.

The procedure is as follows. First one imposes body forces F that are proportional to the

inertia of the linear modes, F = βiφi(x) in Eq. (2.1.3), for a selected number i of modes,

i = 1...m, where m is the number of modes selected in the final ROM. A static problem is then

solved and the obtained displacement field is projected onto the eigenmodes in order to get the

modal displacements Xp corresponding to the imposed force. A mapping is thus constructed

with entries βi and outputs Xp. Assuming that the functional relationship can be inverted, one

obtains Xp(βi), from which the ROM can be built. For this last step, a fitting procedure is

needed so as to derive functional forms from the computed clouds of points.

As noted by different authors [19, 57], the method allows to make an implicit condensation

of the non modeled degrees of freedom. The procedure is thus particularly appealing when

working with thin structures, in order to implicitly take into account the axial-bending nonlinear

coupling that gives rise to geometric nonlinearities. One may also notice that, in the specific

cases of small models where the equations of motion are fully known (i.e. if one is able to get

the full-model equations as in (2.1.5) for all the degrees of freedom, which is generally out of

reach for complex structures meshed with FE), the implicit condensation becomes explicit, so

that the method is equivalent to the usual static condensation.

In the context of drawing out a full comparison of ICE method with NNMs, we will first use

full models where all coefficients are known, so that ICE method reduces to static condensation.

Let us first separate the degrees of freedom of the modal displacement X between the first m

master coordinatesX1, ..., Xm, and the remaining slave coordinatesXm+1, ..., XN , such that the

modal equations (2.1.5) for master coordinatesXt and slave coordinates Xs can be rewritten as:

Ẍt + ω2
tXt + ft(X1, X2, ..., XN) = F̃t,

Ẍs + ω2
sXs + fs(X1, X2, ..., XN) = F̃s.

(5.1.1)

Let us also assume that for the slave coordinate s ∈ [m+ 1, N ], inertia Ẍs can be neglected.

This hypothesis is generally justified by the fact that the slave coordinates correspond to high-
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frequency modes with fast oscillations. The method then assumes that a functional relationship

cs exists between the master coordinates and the slave coordinates:

∀ s ∈ [m+ 1, N ], Xs = cs(X1, X2, ..., Xm). (5.1.2)

These relationships define the stress manifold in phase space, and only depend on the displace-

ments. The functions cs are determined from:

∀ s ∈ [m+1, N ], ω2
scs(X1, ..., Xm)+fs(X1, ..., Xm, cm+1(X1, ..., Xm), ..., cN(X1, ..., Xm)) = 0,

(5.1.3)

then, the reduced-order model for the master coordinates reads:

∀ t ∈ [1,m], Ẍt + ω2
tXt + ft(X1, ..., Xm, cm+1(X1, ..., Xm), ..., cN(X1, ..., Xm)) = 0.

(5.1.4)

5.1.2 Invariant manifolds

In this section, the NNMs is parametrized in graph style as proposed by Shaw and Pierre [27,

25, 47, 48], as introduced in Section 4.1.1. The starting point is to put Eq. (5.1.1) in first-order

form (dynamical system), for the rth mode:

Ẋr = Yr,

Ẏr = −ω2
rXr − fr(X1, ..., XN).

(5.1.5)

The invariant manifold is defined by functional relationships as and bs relating the slave coor-

dinates to the master ones by, ∀ s ∈ [m+ 1, N ]:

Xs =as(X1, Y1, ..., Xm, Ym), (5.1.6a)

Ys =bs(X1, Y1, ..., Xm, Ym). (5.1.6b)

From Eqs. (5.1.6), the derivation of Xs, Ys read as:

Ẋs =
m∑
t=1

(
∂as
∂Xt

Ẋt +
∂as
∂Yt

Ẏt

)
,

Ẏs =
m∑
t=1

(
∂bs
∂Xt

Ẋt +
∂bs
∂Yt

Ẏt

)
.

(5.1.7)
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Such that by following the guidelines of the center manifold theorem, one arrives at the two

following equations, describing the geometry of the 2(N −m) dimensional invariant manifold

in phase space :
m∑
t=1

(
∂as
∂Xt

Yt +
∂as
∂Yt

[
−ω2

tXt − ft
])

= bs, (5.1.8a)

m∑
t=1

(
∂bs
∂Xt

Yt +
∂bs
∂Yt

[
−ω2

tXt − ft
])

= −ω2
sas − fs. (5.1.8b)

The solutions of these partial differential equations are generally difficult to obtain. No analyti-

cal solutions exist and the early developments proposed asymptotic expansions in order to com-

pute the first nonlinear dependences of invariant manifolds upon amplitudes [27, 25, 47, 48].

Numerical methods have also been formulated to get effective ROMs based on invariant man-

ifolds up to very large amplitudes [28, 62, 63, 64]. Whatever the method, once the unknown

functions as and bs have been obtained, the dynamics of the ROM reads:

∀ t ∈ [1,m], Ẍt+ω
2
tXt+ft(X1, ..., Xm, am+1(X1, Y1, ..., Xm, Ym), ..., aN(X1, Y1, ..., Xm, Ym)) = 0.

(5.1.9)

One can note that the static condensation and invariant manifold approaches share similar-

ities in the way reduced-order models are derived. However, this general presentation shows

that the invariant manifold approach appears to be more general. Indeed, whereas static con-

densation works out only on displacements, the invariant manifold approach includes also the

velocities as independent variables, so that two unknown functions are to be found, each of

which depending on two master coordinates. Furthermore, no assumption on neglecting any

inertia is introduced when computing the NNMs. This suggests that the two methods should

have similarities only in the case where a clear slow/fast decomposition (defined in the next

section) holds between slave and master coordinates, and that the stress manifold would not be

able to take into account internal resonance relationship, a key feature in nonlinear vibrations.

Finally, the NNM approach allows conserving the key property of invariance for the reduced

subspaces, an attribute that is not embedded in the stress manifold.

5.1.3 Slow/fast decomposition

Let us assume that a slow/fast decomposition of the system is at hand, which means that

the slave coordinates Xs, for s ∈ [m + 1, N ], have a radian eigenfrequency ωs which is much
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larger than those of the master coordinates Xt, for t ∈ [1,m]: ωs � ωt. In order to take the

assumption into account in the equations of motion, one can introduce a small parameter ε and

scale the linear and nonlinear restoring forces of the slave variables by 1/ε in order to express

the fact that the slave coordinates are much more stiff and thus corresponds to fast oscillations.

Therefore the dynamics of the system (5.1.1) without external forcing, can be rewritten as:

∀ t ∈ [1,m], Ẍt + ω2
tXt + ft(X1, X2, ..., XN) = 0, (5.1.10a)

∀ s ∈ [m+ 1, N ], Ẍs +
1

ε
ω2
sXs +

1

ε
fs(X1, X2, ..., XN) = 0. (5.1.10b)

With this formulation, Eq. (5.1.10b) justifies the assumption of neglecting the inertia of the fast

variable so that one arrives easily at Eq. (5.1.3) allowing the computation of the stress manifold.

The equations describing the geometry of the invariant manifold, Eqs. (5.1.8), rewritten with

the slow/fast assumption, read:
m∑
t=1

(
∂as
∂Xt

Yt +
∂as
∂Yt

[
−ω2

tXt − ft
])

= bs, (5.1.11a)

m∑
t=1

(
∂bs
∂Xt

Yt +
∂bs
∂Yt

[
−ω2

tXt − ft
])

= −1

ε
ω2
sas −

1

ε
fs. (5.1.11b)

Eq. (5.1.11b) shows that thanks to the slow/fast assumption, as is, at first order, solution of the

following, obtained by neglecting the ε terms:

∀ s ∈ [m+ 1, N ], ω2
sas(X1, Y1, ..., Xm, Ym) + fs (X1, ..., Xm, am+1, ..., aN) = 0. (5.1.12)

This equation is completely equivalent to Eq. (5.1.3), showing that with the slow/fast assump-

tion, the function as shall thus tend to the cs obtained with the static condensation, the only

difference being the dependence on the velocities of as, that is not assumed for the cs functions.

Based on this observation, one can also assume that the as, as being solutions of the same prob-

lem as the cs, will not depend on the velocities, so that ∀ t ∈ [1,m], ∂as/∂Yt = 0. Reporting

this in Eq. (5.1.11a) shows that a simple relationship should hold between as and bs as:

bs =
m∑
t=1

∂as
∂Xt

Yt. (5.1.13)

All these relationships shows that static condensation and invariant manifolds should pro-

pose equivalent results when a slow/fast decomposition of the system can be assumed. However,

if the slave modes are not stiff as compared to the master, then the ICE method should be used

with care, and a better approach is to use invariant manifolds in order to propose efficient ROMs.
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5.1.4 Type of nonlinearity

In this section, we compare how both methods allow predicting the type of nonlinearity,

defined as the hardening/softening dependence of the oscillation frequency upon amplitude.

Indeed, the ability of a method to correctly predict the backbone curve of a nonlinear oscillator

is key, and reduced-order models need to be able to give a correct prediction at least to the first

order. For that purpose, let us assume that a single master coordinate, labelled p, is retained,

all other coordinates for s 6= p belonging to the slave variables. The reduced-order model will

then consist of a single oscillator equation from which one can derive the type of nonlinearity.

Also, the leading order term that dictates the hardening/softening behaviour can be found from

a perturbative solution where the single nonlinear oscillator equation is truncated to the cubic

order [14, 51]. Consequently the general equations describing the stress manifolds, the invariant

manifolds, and the dynamics within them, can be truncated up to order three.

In the case of the static condensation, one has to solve Eq. (5.1.2) up to quadratic term only

since, when replacing in Eq. (5.1.4), the slave coordinates are at least of second order. The

first-order term for Eq. (5.1.2) is easy to derive and one can write immediately, for all s 6= p

Xs = cs(Xp) ' −
gspp
ω2
s

X2
p +O(X3

p ). (5.1.14)

Consequently the dynamics of the master mode on the stress manifold reads

Ẍp + ω2
pXp + gpppX

2
p +

hpppp − N∑
s=1
s 6=p

gppsg
s
pp

ω2
s

X3
p +O(X4

p ) = 0 (5.1.15)

The frequency-amplitude relationship can be derived from this equation by a perturbative ap-

proach, see e.g. [14, 51]. One arrives at the following generic formula

ωNL = ωp

(
1 + Γp[M ]a

2
)
, (5.1.16)

where ωNL is the nonlinear frequency, depending on amplitude a, and Γp[M ] is a coefficient

dictating the type of nonlinearity (hardening oscillator for Γp[M ] > 0, softening for Γp[M ] < 0)

with [M ] refers to the method (SC, IM). Applying the first-order formula from a perturbation

method to Eq. (5.1.15), the type of nonlinearity for the static condensation approximation ΓpSC

reads

ΓpSC =
1

8ω2
p

3hpppp −
10(gppp)

2

3ω2
p

−
N∑
s=1
s 6=p

3gppsg
s
pp

ω2
s

 . (5.1.17)

43



In the case of the invariant manifold approach, Eqs. (5.1.6) can be rewritten with the as-

sumption of a single master NNM, for all s 6= p, and up to the second order:

Xs = as(Xp, Yp) = Aps,1X
2
p + Aps,2XpYp + Aps,3Y

2
p , (5.1.18a)

Ys = bs(Xp, Yp) = Aps,4X
2
p + Aps,5XpYp + Aps,6Y

2
p . (5.1.18b)

where the individual expressions of the coefficients can be found in [25, 48, 65], and read:

Aps,1 =
(ω2

s − 2ω2
p)

ω2
s(4ω

2
p − ω2

s)
gspp, (5.1.19a)

Aps,3 =
−2

ω2
s(4ω

2
p − ω2

s)
gspp, (5.1.19b)

Aps,5 =
2

4ω2
p − ω2

s

gspp, (5.1.19c)

Aps,2 = Aps,4 = Aps,6 = 0. (5.1.19d)

Consequently the reduced-order dynamics writes

Ẍp + ω2
pXp + gpppX

2
p +

hpppp +
N∑
s=1
s 6=p

gppsA
p
s,1

X3
p +

 N∑
s=1
s 6=p

gppsA
p
s,3

XpY
2
p = 0, (5.1.20)

and the type of nonlinearity is dictated by ΓpIM (where IM stands for invariant manifold):

ΓpIM =
1

8ω2
p

3hpppp −
10(gppp)

2

3ω2
p

−
N∑
s=1
s 6=p

3ω2
s − 8ω2

p

ω2
s − 4ω2

p

gppsg
s
pp

ω2
s

 . (5.1.21)

Comparing the two predictions given by Eqs. (5.1.17) and (5.1.21), one can observe that

the only difference relies in the summed term, taking into account the important contributions

of the slave modes to the type of nonlinearity. Interestingly, one can notice that under the

slow/fast assumption, if for all s, ωs � ωp, then the asymptotic value of ΓpIM is equal to ΓpSC.

More precisely, assuming that a single slave mode s is present in order to decompose their

contributions, the ratio R between the summed terms appearing in (5.1.17) and (5.1.21) simply

writes

R =
ω2
s − 8

3
ω2
p

ω2
s − 4ω2

p

=
ρ2 − 8

3

ρ2 − 4
, (5.1.22)

where the ratio ρ = ωs/ωp has been introduced. Fig. 5.1.1 shows the variations of R as a

function of ρ. Firstly, as noted in previous articles, the formula obtained from the invariant
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Figure 5.1.1: Correction factor R defined in Eq. (5.1.22) as a function of ρ = ωs/ωp the ratio between

the eigenfrequencies of the slave mode s and the master mode p. From this figure, one can conclude that

the static condensation gives a correct prediction on the type of nonlinearity when ωs > 6ωp.

manifold approach is correct, mainly because the reduction subspace is a NNM having the

property of invariance embedded in its definition, so that trajectories simulated in the reduced

subspace also exist for the complete system. Consequently Fig. 5.1.1 shows how the prediction

given by static condensation diverge from the correct prediction when R is different to 1. One

can observe that the static condensation does not take into account 2:1 internal resonance. In this

region, when ρ ' 2, a strong coupling between the two modes exist and it becomes meaningless

to define Γ since no single-mode motions exist anymore [51].

From Fig.5.1.1, a quantitative criterion can be derived in order to set the minimal frequency

gap between master and slave eigenfrequencies such that ICE method could be applied safely.

One can observe that with static condensation 10% of error is predicted when ωs > 4ωp, and

4% of error when ωs > 6ωp. Of course this is not meant to be understood as a strict lower

bound. A quantified rule of thumb can be stated as: eigenfrequencies of the slave modes should

be six times large than those of the master.

5.2 Slow/fast decomposition in a two dofs system

In this section, we first begin by giving more insights to the general formulas. By restricting

on a two dofs system and using asymptotic expansions to derive the first terms of the solution of

the invariant manifold and the static condensation, one can realize a term-by-term comparison

and contrast the similarities between the two methods.
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5.2.1 Asymptotic expansions

Restricting to two degrees of freedom, the initial system simply writes:

Ẍ1 + ω2
1X1 + f1(X1, X2) = 0,

Ẍ2 + ω2
2X2 + f2(X1, X2) = 0,

(5.2.1)

where fp(X1, X2) are the nonlinear internal force for p = 1, 2, which are of the polynomial

type with quadratic and cubic terms so that their general expressions read:

fp(X1, X2) = gp11X
2
1 +gp12X1X2+gp22X

2
2 +hp111X

3
1 +hp112X

2
1X2+hp122X1X

2
2 +hp222X

3
2 . (5.2.2)

Let us assume that X1 is the master coordinate and X2 the slave. Applying static condensa-

tion, one looks for a relationship X2 = c(X1), where c is solution of Eq. (5.1.3) which can be

rewritten here as:

ω2
2c(X1)+g2

11X
2
1 +g2

12X1c(X1)+g2
22c(X1)2+h2

111X
3
1 +h2

112X
2
1c(X1)+h2

122X1c(X1)2+h2
222c(X1)3 = 0.

(5.2.3)

The solution for c can be found based on an asymptotic expansion:

X2 = c(X1) = k2X
2
1 + k3X

3
1 + k4X

4
1 + ...+ k9X

9 +O(X9), (5.2.4)

which is stopped here at order 9 but no maximal order of the polynomial expansion can be

inferred from Eq. (5.2.4) which produces new order each time the expansion for c is pushed

further. Term-by-term identification of the coefficients of same power gives a direct analytical

solution for the ki coefficients introduced in (5.2.4). The quadratic and cubic coefficients read:

k2 =
−g2

11

ω2
2

, (5.2.5a)

k3 =
−h2

111ω
2
2 + g2

12g
2
11

ω4
2

, (5.2.5b)

k4 =(−g2
11(g2

12)2 − (g2
11)2g2

22 + g2
12h

2
111ω

2
2 + g2

11h
2
112ω

2
2)/ω6

2, (5.2.5c)

k5 =(g2
11(g2

12)3 + 3(g2
11)2g2

12g
2
22 − (g2

12)2h2
111ω

2
2 − 2g2

11g
2
22h

2
111ω

2
2 − 2g2

11g
2
12h

2
112ω

2
2

− (g2
11)2h2

122ω
2
2 + h2

111h
2
112ω

4
2)/ω8

2, (5.2.5d)

while the other k6 to k9 coefficients are too complexed, are thus given in Appendix A.

For the invariant manifolds, general expressions for the coefficients of the asymptotic ex-

pansions have already been derived in [25, 48, 65]. The two unknown functions describing the
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geometry of the invariant manifold can be written up to order three as:

X2 = a2(X1, Y1) = A1
11X

2
1 + A1

12X1Y1 + A1
22Y

2
1 +B1

111X
3
1 +B1

112X
2
1Y1 +B1

122X1Y
2

1 +B1
222Y

3
1 ,

(5.2.6a)

Y2 = b2(X1, Y1) = A2
11X

2
1 + A2

12X1Y1 + A2
22Y

2
1 +B2

111X
3
1 +B2

112X
2
1Y1 +B2

122X1Y
2

1 +B2
222Y

3
1 .

(5.2.6b)

where the general expressions for the quadratic terms and the cubic coefficients can be derived

from Eqs. (5.1.19), with the full expressions read:

A1
11 =

(ω2
2 − 2ω2

1)

ω2
2(4ω2

1 − ω2
2)
g2

11, (5.2.7a)

A1
22 =

−2

ω2
2(4ω2

1 − ω2
2)
g2

11, (5.2.7b)

A2
12 =

2

4ω2
1 − ω2

2

g2
11, (5.2.7c)

A1
12 = A2

11 = A2
22 = 0, (5.2.7d)

while the cubic coefficients of the invariant manifold asymptotic expansion write:

B1
111 =

ω2
2(4ω2

1 − ω2
2)(7ω2

1 − ω2
2)h2

111 + (9ω2
1ω

2
2 − 18ω4

1 − ω4
2)g2

11g
2
12 + (2ω4

2 − 12ω4
1 − 10ω2

1ω
2
2)g1

11g
2
11

ω2
2(4ω2

1 − ω2
2)(ω2

2 − ω2
1)(ω2

2 − 9ω2
1)

,

(5.2.8)

B1
122 =

6ω2
2(4ω2

1 − ω2
2)h2

111 + (8ω2
2 − 18ω2

1)g2
11g

2
12 − 20ω2

2g
1
11g

2
11

ω2
2(4ω2

1 − ω2
2)(ω2

2 − ω2
1)(ω2

2 − 9ω2
1)

, (5.2.9)

B2
112 =

3ω2
2(4ω2

1 − ω2
2)(3ω2

1 − ω2
2)h2

111 + (11ω2
1ω

2
2 − 3ω4

2 − 18ω4
1)g2

11g
2
12 − 10ω2

2(3ω2
1 − ω2

2)g1
11g

2
11

ω2
2(4ω2

1 − ω2
2)(ω2

2 − ω2
1)(ω2

2 − 9ω2
1)

,

(5.2.10)

B2
222 = B1

122, (5.2.11)

B2
111 = B2

122 = B1
112 = B1

222 = 0. (5.2.12)

Higher-order terms can also be found for the invariant manifold approach but their deriva-

tion leads to difficult and lengthy expressions needing for a symbolic computation processor.

Comparing the expressions up to order three, one can observe that the coefficientsA1
11, A

1
22, A

2
12

derived from the invariant manifold approach show singularities when internal resonances exist

between the eigenfrequencies (ω2 ≈ 2ω1), also B1
111, B

1
122, B

2
112, B

2
222 show singularities when

ω2 ≈ ω1, ω2 ≈ 2ω1, and ω2 ≈ 3ω1, and this feature, i.e., the singularity of the coefficients,

is not expressed in the static condensation. In the next section we will show how a slow/fast

assumption reveals the similarities between the two approaches.
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5.2.2 Slow-fast decomposition

The general expressions given in the previous section can be simplified and directly com-

pared if one assumes that a slow/fast decomposition is at hand between the two degrees of

freedom of the system, i.e. if ω2 � ω1. All expansions are also compared up to the third-order

for consistency. The geometry of the stress manifold as given by the ICE method is obtained

from Eq. (5.2.4) up to cubic terms and reads:

X2 = c(X1) =
−g2

11

ω2
2

X2
1 +
−h2

111ω
2
2 + g2

12g
2
11

ω4
2

X3
1 (5.2.13)

The dependence on the eigenfrequencies is much more pronounced in the expressions giving

the geometry of the invariant manifold in phase space, as a consequence that the inertia of the

slave coordinate is not abruptly neglected. Assuming a slow/fast decomposition, i.e. ω2 � ω1

for this two-dofs system, we give here the limited values of all the coefficients Apij and Bp
ijk

(i, j, k, p = 1, 2) appearing in Eqs. (5.2.6). We begin with the quadratic coefficients Apij:

A1
11

ω2�ω1−−−−→ −g
2
11

ω2
2

, (5.2.14a)

A1
22

ω2�ω1−−−−→ 2g2
11

ω4
2

, (5.2.14b)

A1
12

ω2�ω1−−−−→ −2g2
11

ω2
2

, (5.2.14c)

A1
12 = A2

11 = A2
22 = 0. (5.2.14d)

For the cubic coefficients we have :

B1
111

ω2�ω1−−−−→ −ω
2
2h

2
111 + g2

11g
2
12 − 2g1

11g
2
11

ω4
2

, (5.2.15a)

B1
122

ω2�ω1−−−−→ 6ω2
2h

2
111 − 8g2

11g
2
12 + 20g1

11g
2
11

ω6
2

, (5.2.15b)

B2
112

ω2�ω1−−−−→ −3ω2
2h

2
111 + 3g2

11g
2
12 − 10g1

11g
2
11

ω4
2

, (5.2.15c)

B2
222 = B1

122, (5.2.15d)

B2
111 = B2

122 = B1
112 = B1

222 = 0. (5.2.15e)

Consequently the nonlinear relationships between slave and master coordinates simplifies
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to :

X2 =
−g2

11

ω2
2

X2
1 +

2g2
11

ω4
2

Y 2
1 +
−ω2

2h
2
111 + g2

12g
2
11 − 2g1

11g
2
11

ω4
2

X3
1 +

6ω2
2h

2
111 − 8g2

11g
2
12 + 20g1

11g
2
11

ω6
2

X1Y
2

1 ,

(5.2.16a)

Y2 = −2g2
11

ω2
2

X1Y1 +
−3ω2

2h
2
111 + 3g2

11g
2
12 − 10g1

11g
2
11

ω4
2

X2
1Y1 +

6ω2
2h

2
111 − 8g2

11g
2
12 + 20g1

11g
2
11

ω6
2

Y 3
1 .

(5.2.16b)

Now comparing Eqs. (5.2.13) with (5.2.16a), one can see that the quadratic terms in X2
1 are

the same. As announced, no dependence on the velocity master variable Y1 exists for the stress

manifold, however this dependence is proportional to 1/ω4
2 in (5.2.16a) for the quadratic term

in Y 2
1 , and can thus be considered as negligible as compared to the term in X2

1 , scaling as

1/ω2
2 . For the cubic term in X3

1 , one can see that the coefficient is almost the same in the two

expressions. Rewriting the difference in the last two terms in the X3
1 coefficient in (5.2.16a) as

g2
11(g2

12 − 2g1
11), and recalling that the slow/fast assumption should also hold for the nonlinear

stiffness so that g2
12 � g1

11, one thus meet the conclusion that both X3
1 coefficients tends to have

the same values assuming the slow/fast decomposition. Finally the last cubic term in X1Y
2

1 in

(5.2.16a) is also one order of magnitude smaller, scaling as 1/ω4
2 , and can thus be neglected.

Consequently, the conclusion drawn in Section 5.1.3 holds, and the present developments

show that the results given by the static condensation tend to those given by the invariant man-

ifold approach if a slow/fast decomposition is present. The dependence on the velocity also

tends to disappear, being one order of magnitude smaller. One can also see that Eq. (5.1.13),

given in the general case and now specifying to

b2 '
∂a2

∂X1

Y1, (5.2.17)

also holds, if and only if one also assumes g2
12 � g1

11, which is the case if the slow/fast dynamics

is assumed.

Finally one can also compare the reduced-order dynamics given by the two methods, up to

order three, if ω2 � ω1. The dynamics of the master coordinate X1 with the static condensation

method is given by Eq. (5.1.4) and reads:

Ẍ1 + ω2
1X1 + g1

11X
2
1 +

(
h1

111 −
g1

12g
2
11

ω2
2

)
X3

1 = 0. (5.2.18)
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On the other hand, the dynamics on the invariant manifold is given by:

Ẍ1+ω2
1X1+g1

11X
2
1 +

(
(ω2

2 − 2ω2
1)

ω2
2(4ω2

1 − ω2
2)
g1

12g
2
11 + h1

111

)
X3

1 +

(
−2

ω2
2(4ω2

1 − ω2
2)
g1

12g
2
11

)
X1Y

2
1 = 0,

(5.2.19)

which simplifies to the following with ω2 � ω1:

Ẍ1 + ω2
1X1 + g1

11X
2
1 +

(
h1

111 −
g1

12g
2
11

ω2
2

)
X3

1 +
2g1

12g
2
11

ω4
2

X1Y
2

1 = 0, (5.2.20)

Comparing Eq. (5.2.20) with (5.2.18), one can observe that the cubic term in X3
1 is exactly

the same, confirming again that the stress manifold should be able to give reliable results only

under the slow/fast assumption. The supplementary term in X1Y
2

1 for the invariant manifold

based ROM scales as 1/ω4
2 and should thus be negligible. The next section will illustrate all

these findings on an example system.

5.2.3 Example system

In order to illustrate the previous results, the system composed of a mass connected to two

nonlinear springs is selected, as shown in Fig.5.2.1. Note that the idea of using this system

as a benchmark has been first proposed by B. Cochelin in 2002, it then has been used in a

number of studies so that numerous results are already present in the literature on this example

[51, 52, 64, 45, 66].

Figure 5.2.1: A mass connected to two nonlinear springs.

The equation of motion for the system reads:

Ẍ1 + ω2
1X1 +

ω2
1

2
(3X2

1 +X2
2 ) + ω2

2X1X2 +
ω2

1 + ω2
2

2
X1(X2

1 +X2
2 ) = 0,

Ẍ2 + ω2
2X2 +

ω2
2

2
(3X2

2 +X2
1 ) + ω2

1X1X2 +
ω2

1 + ω2
2

2
X2(X2

1 +X2
2 ) = 0.

(5.2.21)
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An advantage of the present two-dofs system is that the coefficients are fully parameterized

by the two eigenfrequencies ω1 and ω2 only, since the expressions of the quadratic and cubic

coupling nonlinear terms simply writes as functions of ω1 and ω2. The aim of this section is

to compare the results provided by the static condensation with those obtained using NNMs, in

terms of geometry of the manifold used to reduce the dynamics, and expression of the dynamics

onto this reduced subspace. As we are in a case where the model is fully known, then the ICE

method is equivalent to the static condensation.

Figure 5.2.2: Comparison of stress manifold obtained with static condensation (light blue), and invariant

manifold obtained from numerical continuation of periodic orbits (yellow) in phase space (X1, Y1, X2)

for the two-dofs system of Eq. (5.2.21). In each figure, ω1 = 1 while ω2 is increased to meet the slow/fast

assumption. (a) ω2 = 2.5, (b) ω2 = 5, (c) ω2 = 10 and (d): ω2 = 100.

Fig. 5.2.2 shows a comparison of the stress manifold obtained from the static condensation

with the invariant manifold obtained from the definition of an NNM as a collection of periodic

orbits in phase space. The stress manifold has been obtained by solving numerically Eq. (5.1.3)

for s = 2, with X1 the master coordinate. The numerical solution of this nonlinear equation
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allows obtaining an exact expression for the stress manifold, without any assumption on am-

plitudes. On the other hand, the invariant manifold is also computed numerically without any

approximation so that the exact NNM is represented. The manifold is computed using numerical

continuation of periodic orbits from the original system given by Eqs. (5.2.21). The continua-

tion method uses an asymptotic-numerical method implemented in the software Manlab [67],

where the unknowns are represented thanks to the harmonic balance method [68, 69, 70]. In

order to ensure convergence, the computation has been realized with 30 harmonics.

In order to compare the results when the frequency gap between the two eigenfrequencies is

increased so as to meet the slow/fast assumption, four cases are tested and reported in Fig. 5.2.2.

In each case ω1 is set to 1 while ω2 is increased. As already underlined, the stress manifold does

not depend on the velocity of the master variable Y1 so that the curvatures in this direction are not

well approximated. When ω2 = 2.5 and ω2 = 5, Figs. 5.2.2(a-b) clearly shows that the shape of

the invariant manifold can be very complex with numerous foldings, a feature that is completely

missed by the static condensation. On the other hand, from ω2 = 10, the slow/fast assumption

is sufficiently met so that the geometry of the two reduced spaces tends to be equivalent. These

figures allow confirming the limit exhibited in Section 5.1.4 on the type of nonlinearity, with

a factor 6 between slave and master eigenfrequencies. Note that the shape of the invariant

manifolds in Figs. 5.2.2(c-d) is obtained by continuation of periodic orbits and the computation

has been made up to very large amplitudes where the periodic orbits saturate to the specific

shape shown. This figure, obtained with the exact stress and invariant manifolds, evidences

the fact that when the slow/fast assumption is verified, then the two reduction subspaces tend

to share the same geometry. Note however that the geometry in phase space does not give

precise information on the frequencies of the periodic orbits living inside, an issue that will be

investigated later.

In order to gain more insight, further comparisons are made using the asymptotic expansions

obtained in the previous section. The static condensation gives the following formula for the

stress manifold up to the third order :

X2 = c2(X1) = −1

2
X2

1 +
ω2

1

2ω2
2

X3
1 . (5.2.22)

The expansion up to order 9 can be computed using the formulas given in Appendix A which

are not analytically detailed because of the lengthy expressions. In order to draw out a compar-
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ison, the geometry of the invariant manifold can be explicited by replacing in Eqs. (5.2.6) the

coefficients by their values. Focusing solely on X2 = a2(X1, Y1) for the sake of comparison in

the plane (X1, X2), the first equation describing the geometry of the manifolds reads

X2 = a2(X1, Y1) = A1
11X

2
1 + A1

22Y
2

1 +B1
111X

3
1 +B1

122X1Y
2

1 . (5.2.23)

The coefficients A1
11, A1

22, B1
111 and B1

122 are given below, together with their approximate value

when one considers the slow/fast assumption ω2 � ω1:

A1
11 =

ω2
2 − 2ω2

1

2(4ω2
1 − ω2

2)

ω2�ω1−−−−→ −1

2
,

A1
22 =

−1

4ω2
1 − ω2

2

ω2�ω1−−−−→ 1

ω2
2

,

B1
111 =

(ω4
2 − 18ω4

1 − 3ω2
1ω

2
2)ω2

1ω
2
2

ω2
2(4ω2

1 − ω2
2)(ω2

2 − ω2
1)(ω2

2 − 9ω2
1)

ω2�ω1−−−−→ ω2
1

−ω2
2

,

B1
122 =

(−11ω2
2 − 9ω2

1)ω2
1ω

2
2

ω2
2(4ω2

1 − ω2
2)(ω2

2 − ω2
1)(ω2

2 − 9ω2
1)

ω2�ω1−−−−→ 11ω2
1

ω2
2

.

(5.2.24)

These expressions show clearly that the invariant manifold approach method gives more general

results that tend to retrieve those given by static condensation at the leading order only, when a

slow/fast assumption holds. Indeed, replacing the values of the coefficients A1
11, A1

22, B1
111 and

B1
122 obtained with the slow/fast assumption in (5.2.23), one obtains

X2 = a2(X1, Y1) ' −1

2
X2

1 +
1

ω2
2

Y 2
1 −

ω2
1

ω2
2

X3
1 +

11ω2
1

ω2
2

X1Y
2

1 , (5.2.25)

an expression that can be directly compared to (5.2.22), showing that additional terms imply-

ing the velocities are present in the invariant manifold, but scales according to 1/ω2
2 which is

assumed to be negligible. Also the cubic term in X3
1 is not the same for the two methods but

again is scaling according to 1/ω2
2 and is thus negligible. Consequently, the leading order term

is the first quadratic term in Eqs. (5.2.22) and (5.2.25) so that a cut of both stress and invariant

manifold in the plane (X1, X2), and in the slow/fast limit, should show a parabola scaling as

−1
2
X2

1 .

This result is illustrated in Fig. 5.2.3. In the first panel, Fig. 5.2.3(a), the two eigenfrequen-

cies are set as ω1 = 1 and ω2 = 2.5. The cut in the (X1, X2) plane clearly shows that only

the invariant manifold method up to order three is able to recover the correct curvature of the

exact invariant manifold for moderate amplitudes of vibrations, while the static condensation

gives an erroneous geometry whatever the amplitude. When increasing ω2 so as to meet the
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Figure 5.2.3: Comparisons of stress and invariant manifolds in the plane (X1, X2) for the two-dofs

system of Eq. (5.2.21). The static condensation up to order 3 (red dashed curve) and up to order 9

(continuous violet line) is compared to the exact invariant manifold obtained from numerical continuation

of periodic orbits (black thick line, reference solution) and its third-order analytical approximation (blue

dash-dotted curve). Increasing values of the frequency ratio are considered in order to meet the slow/fast

assumption, with ω1 = 1, and (a): ω2 = 2.5, (b): ω2 = 5, (c) ω2 = 10 and (d): ω2 = 100.

slow/fast assumptions, Figs. 5.2.3(b-d) shows that all curves collapses to the same parabola fol-

lowing the first-order term underlined before : X2 = −1
2
X2

1 . The results also clearly show that

static condensation up to order three is as accurate as the invariant manifold up to order three

when ω2 � ω1. However a better accuracy on the geometry can be obtained when pushing

the development of the static condensation up to order 9, a calculation which is far easier to

conduct as getting up to order 9 for the invariant manifold. We can also underline that in the

range of amplitudes considered (corresponding to large amplitudes and complicated nonlinear

dynamics for this system), the static condensation up to order 9 is completely equivalent to the
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exact value obtained by numerically solving the equation defining c2. The exact curve for the

static condensation has not been reported in Fig. 5.2.3 since it was fully merged with the ninth

order approximation.

To conclude this analysis we now compare the results given by the reduced-order dynamics.

Indeed, projecting the equations of motion on the correct subspace is one important point but

of utmost importance is also how the periodic orbits and their frequencies are predicted by the

reduced models. Using static condensation up to order three, Eq. (5.2.22), leads to the following

reduced-order dynamics :

Ẍ1 + ω2
1X1 +

3ω2
1

2
X2

1 +
ω2

1

2
X3

1 = 0. (5.2.26)

This equation can be compared to the reduced dynamics given by the invariant manifold ap-

proach, Eq. (5.2.19), which reads, by replacing the quadratic and cubic coefficients by their

values :

Ẍ1 + ω2
1X1 +

3ω2
1

2
X2

1 +
ω2

1(4ω2
1 + ω2

2)

2(4ω2
1 − ω2

2)
X3

1 +
ω2

2

ω2
2 − 4ω2

1

X1Y
2

1 = 0. (5.2.27)

Using now the slow/fast assumption in Eq. (5.2.27), one obtains :

Ẍ1 + ω2
1X1 +

3ω2
1

2
X2

1 −
ω2

1

2
X3

1 +X1Y
2

1 = 0. (5.2.28)

Consequently even with the slow/fast assumption, one can observe in this case that the reduced-

order dynamics given by the two methods, Eqs. (5.2.26) and (5.2.28) differ one from another.

Again, static condensation does not give rise to any velocity-dependent terms. Since a term-

by-term comparison could be misleading about the dynamics produced by the two ROMs, a

better idea is to compare the outcomes of the two methods, focusing on the prediction of the

type of nonlinearity, as already exemplified in Section 5.1.4. Using the value of ΓpSC given in

Eq. (5.1.17) and replacing the quadratic coefficients by their values, one arrives at ΓpSC = −3/4

for static condensation, i.e. a constant value that do not depend on the parameter of the system.

On the other hand, using Eq. (5.1.21) shows that

ΓIM =
−3ω2

1 + ω2
2

4ω2
1 − ω2

2

. (5.2.29)

Interestingly, the type of nonlinearity predicted by the invariant manifold approach has a di-

vergence at the 2:1 internal resonance, a classical feature due to the strong coupling arising in
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the two modes in this region, and tends to -1 when ω2 � ω1. This means that even if the two

approaches tend to the same reduced subspaces when the slow/fast assumption holds, a persis-

tent error in the prediction of the type of nonlinearity is given by the static condensation. This

conclusion is a bit different from the one obtained in Section 5.1.4, which is due to the partic-

ular values of the quadratic coefficients gpij . Indeed, being fully dependent on ω1 and ω2, their

relative values when applying the slow/fast assumption has a direct consequence on the results.

Note also that whereas the static condensation always predicts a softening behaviour, there is

a small tongue of hardening behaviour since ΓpIM can reach positive values. This feature thus

cannot be correctly predicted by the static condensation.
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Figure 5.2.4: Comparison of backbone curves for the two-dofs system and different reduced-order mod-

els, computed with direct continuation on the equations of motion. The exact solution from the full

model, Eqs. (5.2.21) (black curve with unstable part dashed), is compared to the predictions given by the

static condensation up to order three, Eq. (5.2.26) (red curve) and up to order 9 (purple curve), as well

as the invariant manifold approach up to order 3, Eq. (5.2.27) (blue line). Also shown as an eyeguide are

the first-order backbone curves from the type of nonlinearity coefficients ΓSC = −3/4 (dashed green

line) and ΓIM given by Eq. (5.2.29) (brown dash-dotted line). The parameters are set as ω1 = 1 and ω2:

(a): ω2 = 2.5, (b): ω2 = 5, (c): ω2 = 10 and (d): ω2 =
√

3.5.

These findings are illustrated in Fig. 5.2.4. One can clearly see that even with the slow/fast

assumption, there is a persistent small error induced by using static condensation in order to pre-

dict the amplitude-frequency relationship, whereas the invariant manifold approach is always

able to catch the first-order curvature of the backbone accurately. One can also remark that in

each of the case studied, the backbone predicted using invariant manifold is close to the refer-

ence solution, except in Fig. 5.2.4(a) where the discrepancy is more prominent and increases
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with amplitude. The reason for that is connected to the appearance of a more complex be-

haviour including a 1:2 internal resonance. Indeed, Fig. 5.2.4(a) refers to the case with ω1 = 1

and ω2 = 2.5. Since the behaviour is softening, nonlinear frequencies are decreasing and upon

increasing amplitudes one tends to meet 1:2 condition between the two nonlinear frequencies.

This results in a change of behaviour of the full model solution that is not caught by the reduced

order model since it is built outside such a resonance condition. Taking properly the internal

resonance into account would need to have two master coordinates. Note that in Fig. 5.2.4(d),

the invariant manifold and full model predict a hardening behaviour while static condensation

predicts softening behaviour for such case. It also should be noted that here invariant manifold

is limited to order 3, and the change from hardening to softening is due to the truncation, to

obtain more accurate results one needs to compute the invariant manifold to higher-order (at

least order 5).

5.3 Numerical examples on continuous structures

In this section, the comparison between the implicit condensation and expansion (ICE)

method and the invariant manifold is further discussed on typical beam and plate examples

discretized with the finite element method, so that a better assessment of the advantages and

drawbacks of each method can be proposed. First a beam example is selected, and reduction

to a single mode is achieved with either 2D or 3D elements. Then a simply supported plate

is studied, and the question of increasing the number of master modes in the ICE method is

investigated. A proposition is tested in order to decrease severely the number of coefficients to

be fitted when considering an important number of master modes.

5.3.1 A clamped-clamped beam

In this section, a clamped-clamped beam is investigated as a first test example. Material

properties are selected as: density ρ = 7800kg.m−3, Young modulus E = 2.1e+11 Pa, whereas

the Poisson ratio is selected as ν = 0 in order to better mimic the assumptions of the theory of

beams (see e.g. [4]).

To begin with, a simple case of a single master mode (the fundamental bending mode) is

investigated, and the comparison between the ICE method and the NNM approach is discussed.
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The ICE method is derived by first applying a set of static loadings along the master mode

of interest. Denoting φ1 the fundamental mode, a set of body forces proportional to the first

mode, F = β1φ1, for increasing values of the parameter β1, are imposed to the structure, i.e.

to Eq. (2.1.3). One can retrieve the modal displacement by projecting the solution of the finite

element procedure along φ1, so that a nonlinear relationship between the displacement and the

scaling factors β1 is numerically obtained. Fitting this relationship allows one to retrieve the

nonlinear restoring force for the reduced-order model. In this paper, all the calculations have

been realized with the open-source finite element software Code Aster. Two different cases

are selected: a thin beam meshed with 2D DKT elements, and a thick beam meshed with 3D

elements, in order to underline the differences between using either surface or volume finite

elements.

A thin beam discretized with DKT plate elements We first investigate the case of a thin

beam, discretized with DKT elements. The dimensions are selected as: length L = 1m, width

b = 0.05m and thickness h = 0.001m. The beam has been meshed with 100 elements in the

length and 4 elements in the width, so as to guarantee the convergence of the first 10 eigenfre-

quencies of the structure. Previous investigations using the STEP method, see e.g. [12, 11, 71],

show that a suitable reduced-order model can be obtained by selecting the first bending mode

together with the first three even axial modes (modes number 2, 4 and 6). Indeed, the fundamen-

tal bending mode is quadratically coupled to in-plane modes and the symmetry of the problem

imposes that coupling occurs only with even in-plane modes. Next, after generating this 4-mode

reduced-order model with the STEP method, one can also apply either static condensation or

invariant manifold approach in order to reduce the dynamics to a single dof.

The construction of the reduced model with the ICE method is illustrated in the insert in

Fig. 5.3.1, where the fitting procedure for a single coordinate is shown. A total of 50 values of β1

have been selected, where the load scales β1 as defined from the ICE method, see section 5.1.1,

are chosen to obtain displacements in the range of ±1.5 times of thickness. The curve is fitted

with a polynomial expansion so that the ROM given by the ICE method reads

Ẍ1 + ω2
1X1 + γ1

111X
3
1 = F1, (5.3.1)

with γ1
111 = 5.2310e+09. Note that since the beam is a flat, symmetric structure, only the cubic

term appears for symmetry reasons.
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Figure 5.3.1: (a): Comparison of ROMs for a clamped-clamped beam, statically excited at the center

with an increasing load. The FE solution (black line) is compared to three reduced order models: a

single mode obtained with the ICE method (blue line with circle), a four mode projection using the

STEP method (red line with cross), and the reduction to a single NNM from this four mode solution

(green line). Insert: illustration of the fitting procedure for the ICE method: blue stars represent the

outputs obtained from static applied force on the FE model, red curve is the fitted polynomial of order

3. (b): Frequency response curves of a clamped-clamped beam in the vicinity of the fundamental eigen-

frequency, for three different amplitudes of the forcing: 0.00525N (blue), 0.00875N (black), 0.01225N

(red), with pointwise excitation located at center. A ROM constructed with the ICE method, Eq. (5.3.1)

gives the predictions plotted with continuous lines obtained by numerical continuation, and is compared

to direct time integration on the full FE model (stars).

Application of the STEP method using the four linear modes described above allows com-

puting the associated quadratic and cubic coefficients. Quadratic coefficients appear due to

the membrane/bending coupling [12]. Next one can apply static condensation, leading to an

equation having the form of Eq. (5.3.1), with a computed coefficient now reading

γ̃1
111 = h1

111 −
4∑
p=2

g1
1pg

p
11

ω2
p

, (5.3.2)

where the h and g are the modal coupling nonlinear coefficients computed from the STEP

method. In this case one has γ̃111 = 5.2308e + 09, clearly showing the equivalence between

implicit and explicit condensation. Finally, starting from the ROM obtained with the STEP

method, one can apply the reduction to a single NNM, thus obtaining a reduced dynamics

reading

Ẍ1 + ω2
1X1 + γ̄1

111X
3
1 +B1

111X1Ẋ
2
1 = F1, (5.3.3)
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where γ̄1
111 = 5.2308e + 09 and B1

111 = 1.2506. Comparing the values of the coefficients ap-

pearing in the reduced dynamics, on can conclude that the three methods give exactly the same

results, which is in line with the findings of the previous section. Indeed, in-plane modes have

very high eigenfrequencies so that the slow/fast assumption definitely holds. This is illustrated

in Fig. 5.3.1 (a) with a static test, where the displacement resulting from a static force applied at

the center of the beam is computed with the three reduced models, and compared to the result

given by the full FE solution, showing a good agreement up to 1.5 times the thickness.

A dynamical test is also performed by computing the nonlinear frequency response curve in

the vicinity of the first eigenfrequency. Fig. 5.3.1 (b) shows the obtained results, where the full

FE solution have been obtained using direct numerical integration (resulting in dotted points),

whereas the response of the reduced models has been obtained by numerical continuation using

Manlab. A Rayleigh damping of the form Cs = 1.34M has been selected, corresponding to a

damping ratio of 2 percent for the first mode.

A thick beam discretized with 3D elements The second example addresses a thick beam

meshed with 3D elements, in order to illustrate some of the problems one can encounter when

using 3D elements in a STEP method, and how the ICE method circumvents these issues. The

convergence problems of the STEP method with 3D elements has been fully analyzed in [11].

The selected beam has the following dimensions: length L = 1m, width b = 0.03m, thickness

h = 0.03m, and is discretized with 40 elements in the length and 4 elements in the cross-section,

with three-dimensional hexahedral 20 nodes finite elements. A static test with an applied force

at the center of the beam is used to compare the different methods. The results are shown in

Fig. 5.3.2, where the full order solution is compared with different reduced-order models, in a

range of displacements up to 2.5 times the thickness.

In order to illustrate the convergence problems encountered when using the linear eigen-

modes as basis functions with 3D elements, a first ROM is built by using the fundamental

bending mode, plus the same 3 in-plane modes identified in the previous section as the most

meaningful for rendering the transverse/in-plane coupling in the case of 2D elements (axial

modes 2, 4 and 6). This ROM is composed of a single oscillator equation obtained from explicit

static condensation of these axial modes, where all the nonlinear coefficients are computed us-

ing the STEP method. The results plotted in red dashed line show that the ROM fails to retrieve
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Figure 5.3.2: Static response of a thick beam discretized with 3D elements: displacement at x = 0.5L

versus the amplitude of the force in Newton. The reference solution, obtained with the full FE model

(black line), is compared to two models using explicit static condensation: the first one composed of four

eigenmodes (fundamental flexural, in-plane modes number 2,4 and 6, red dashed line), the second one

composed of 87 eigenmodes (fundamental bending plus static condensation of 86 strongly coupled non-

bending modes including thickness modes, red solid line); and a model obtained with the ICE method

(single mode, blue solid line).

the correct nonlinear stiffness of the beam, putting in evidence that in the case of 3D elements

other major couplings arise with other non-bending modes. Indeed, as fully analyzed in [11],

strong interactions occur with thickness modes having very high frequencies. Identifying these

high-frequency modes is still possible in this simple case of a clamped-clamped beam with a

coarse mesh, but would become impractical with more complex geometries and refined mesh.

In order to achieve convergence in this case, a set of 86 non-bending modes (including in-plane

and thickness modes) are needed, and the explicit static condensation of these to the first flex-

ural mode allows retrieving the correct stiffness. On the other hand, the ICE method, which

performs implicit condensation and derives coefficients up to third order in the example, allows

finding out directly the correct result. This examples clearly stresses the main advantage of

using implicit condensation, since a very rapid convergence is obtained without requiring major

efforts in identifying all the coupled modes.
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5.3.2 A simply supported rectangular plate

In this section we investigate a simply supported rectangular plate with the aim of devel-

oping ROMs with the ICE method including a large number of modes. Indeed, the previous

section has shown the main advantage of the ICE method which, thanks to the implicit con-

densation, guarantees a fast convergence. However a drawback of the method consists in the

multidimensional fitting procedure which is required once the set of applied static loadings have

been computed. While in the case of a single master mode the fitting is easy and gives good

results, when switching to a larger number of master modes two main issues arise: first, the

loadings must be selected with care; second, a multivariate function has to be fitted on a multi-

dimensional cloud of points. The objective of this section is to investigate these two issues on

the illustrative example of the plate. In the course of the section, the dimensions of the plate are:

length Lx = 0.254m, width Ly = 0.3556m, thickness h = 0.00102m, with material properties:

density ρ = 2763kg/m3, Young modulus E = 7.3e+10 Pa, and Poisson ratio v = 0.3. For

the FE model, the plate was discretized with 20 elements in the length and 20 elements in the

width.

Construction of multivariate ROMs based on the ICE method In order to build a ROM

with m master modes, a combination of loads associated to these is needed. The force vector

to be applied in the static computation generally reads F = ±β1φ1 ± ...± βtφt ± ...± βmφm,

but numerous practical questions need to be solved for selecting the correct combinations with

meaningful amplitudes. Previous studies advocated that a third-order polynomial is a correct

choice in this multivariate procedure [16, 17, 19, 57]. However, a number of different methods

can be used for performing this STEP, as for example local interpolations. Also, deriving a

functional relationship is not mandatory and a purely numerical fitting can also be used. To

reduce the number of tests, we select here third-order polynomials for this fitting procedure and

refer to previous studies for some details, see e.g. [57].

A key point for the computational burden is the number of static loads one has to perform

before the fitting procedure. When a cubic polynomial fitting is targeted, then one can simply

use, in the force vectors to be applied, combinations with only one mode, F = ±βtφt, two

modes, F = ±βtφt ± βsφs, or three modes can be used, since this is sufficient in order to fit
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quadratic and cubic polynomial terms. The number n of operation associated is :

n = 2m+ 4× C2
m + 8× C3

m, (5.3.4)

where Cp
m =

 m

p

 is the binomial coefficient and m the number of master coordinates

retained in the ROM. Note that n scales as m3 and can be rapidly out of reach if ones targets

ROMS with, let say, 20 to 50 modes.

Another key point is also the amplitude of the factors βp to be selected. As discussed in

numerous studies, these amplitudes need not be too small so that the nonlinearity is excited, but

not too large also since the FE static computation may then encounter convergence issues. Here

we follow the prescription given by [19, 57, 4]. One main idea is to select the βp’s such that the

resulting displacement of the structure is in a good range to excite sufficiently the nonlinearity,

and the larger the value is (before having convergence issues), the better it is. A last point

discussed in [57] is to add reduction factors (1/2 for combinations with two modes, and 1/3 for

combinations with three modes), in order to achieve a coherent range of amplitudes for each

loading case. This method will be tested next and we will refer to these as the correction factors.
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Figure 5.3.3: Illustration of the fitting procedure with two master modes, for the case of the simply

supported plate. The red points represent the outputs obtained from static forces applied on the FE

model with 44 load cases derived by different combination of ±β1φ1 ± β4φ4, with β values as 0, 0.3,

0.5, 0.8, 1. The surface represents the fitted polynomial of order 3.

The fitting procedure is illustrated in Fig. 5.3.3, for the case m = 2, and for the simply sup-

ported plate studied in this section. It shows how a third-order multivariate polynomial is fitted
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from the points obtained from the static load cases. Augmenting the number of variables makes

the problem more and more difficult, since the number of load cases is increasing drastically,and

the fitting procedure is more and more sensitive to small variations.

When increasing the number of modes with a third-order polynomial representation of the

restoring force, a specific problem is related to the number of cubic coefficients that have to

be fitted (and consequently the number of applied loads needed). Indeed, the number of cubic

coefficients for m master modes is equal to m × (C3
m + 2 × C2

m + m). This number scales as

m4 and thus dramatically increases with the number of master modes. In order to reduce the

computing cost, one possibility would be to identify only the monomials corresponding to the

resonant terms. As known from normal form theory [72, 51, 55], not all the monomial terms

in the restoring force do have the same importance, and one can distinguish between resonant

terms, that will have a strong influence on the nonlinear dynamics and bifurcations of the prob-

lems, and non-resonant monomials that could be easily cancelled thanks to a nonlinear change

of coordinates. Among the resonant terms, one can also separate the trivially resonant terms,

always present since linked to a trivial resonance relationship, from the resonant terms linked

to an internal resonance relationship, see [51, 55] for more details. Trivially resonant terms are

all the monomials of the form XpX
2
i , for the p-th oscillator equation, with i ranging from 1 to

m. Counting only the trivially resonant terms, one can see that the number of coefficients that

have to be identified scales as m2, a drastic reduction with respect to the global estimate. This

also has an implication on the number of static loads ñ to apply which reduces to:

ñ = 2m+ 4× C2
m, (5.3.5)

which now scales as m2. Of course identifying only the resonant monomial terms will have

drastic consequences on the fine representation of the nonlinear restoring force. However, nor-

mal form theory ensures that these monomials are the most important from the dynamical sys-

tems point of view, so that even if less precise fittings could be awaited, one is sure that no

important bifurcation or nonlinear phenomena will be missed. And since the number of opera-

tions is so importantly decreased to build the ROM, it is worth testing the behaviour of such a

ROM as compared to the one with all the nonlinear terms retained.

In the next sections we will discuss the choice of the scaling factors and the identification of

the complete set of nonlinear terms as opposed to the reduced set of resonant ones.
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Simply supported rectangular plate, static excitation The first numerical example consid-

ers the case of the simply supported plate with a static force applied at the center. This test

is more challenging than the beam case, since the number of eigenmodes needed to represent

correctly the static bending of the rectangular plate is far larger. In the beam case most of the

energy is concentrated in the first bending mode, while this is not the case for the plate. Indeed

figure. 5.3.4 (a) shows the modal amplitudes for a static load of 70 N applied at the center of

the plate and clearly points out that, although most of the energy is concentrated in the funda-

mental mode, all other ones have a meaningful contribution. As a consequence, a large number

of master modes are needed to achieve convergence in the reduced-order model, making this

test example interesting for testing different computational strategies.

ROMs with a maximum of 8 master modes have been tested. The number of static loads

to be applied and the number of coefficients to identify are given in Table 5.3.1 for 3, 5 and 8

master modes, and for the two different strategies proposed (fitting either all the monomials up

to cubic order, or only the resonant terms), showing that the computational burden is already

important for 8 modes, especially in the offline phase where one has to apply numerous load

cases to the FE model. On the other, fitting only resonant terms leads to a drastic reduction.

Number of load set cases Number of coefficients

3 modes: 26 48

All terms 5 modes: 130 175

8 modes: 576 960

Only 3 modes: 18 9

resonant 5 modes: 50 25

terms 8 modes: 128 64

Table 5.3.1: The number of load cases and the number of coefficients to be fitted with the

different fitting strategies proposed, with either all the monomials, or only the resonant terms.

Also, two different strategies for selecting the βi’s coefficients in the applied load cases,

have been tested, and shown in Table 5.3.2 gathering these coefficients for the first 8 modes

of interest, sorted by order of increasing frequencies, and selected according to Fig. 5.3.4(a).

For load case 1, the amplitudes βi have been selected such that for a linear plate, the corre-
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sponding maximal displacement for each applied force on a single mode, is equal to 2.4 times

the thickness. In the simulation and due to the nonlinear restoring force, the computed static

displacement is a bit smaller than the targeted one. Also in load case 1, the reduction factors

(1/2 if the forcing is a combination of two modes, and 1/3 if a combination of three modes) have

been applied, so that the resulting displacements from combinations of 2 and three modes are

not too large. For load case 2, a different strategy has been used, without reduction factors, and

with decreasing targeted linear resulting displacements, ranging from 1.5h for the first mode to

0.5h for mode 23.

Scalar

weighting β1 β4 β8 β11 β12 β19 β22 β23 Reduction

factors βi factors

Load

case 1

5.24e-5 1.95e-4 3.32e-4 4.73e-4 4.80e-4 7.56e-4 8.91e-4 9.07e-4 yes

Load

case 2

3.28e-5 9.75e-5 1.38e-4 1.77e-4 1.60e-4 2.20e-4 2.23e-4 1.88e-4 no

Table 5.3.2: Scalar weight factors βi [m], selected for the two different load cases tested, for the simply

supported plate.

Fig. 5.3.4(b) shows the results obtained with ROMs generated by the ICE method with an

increasing number of bending master modes selected in the basis. The results are given for ICE

method fitted with all nonlinear terms (solid lines), or retaining only the resonant monomial

terms (dotted lines). The results given by the two strategies for the load cases 1 and 2 reported

in Table 5.3.2 have not been reported since they were not distinguishable, showing in this case

that the effect of the selection of the βi coefficients is negligible, once the amplitude is large

enough to excite the nonlinearity.

As expected, the figure highlights the slow convergence of the method. When all the non-

linear terms are fitted in the polynomial, the convergence trend is clear and the restoring force

tends slowly to that of the full model. As in the case of the beam, a comparison with the STEP

method has also been drawn for the plate, showing again the advantage of the implicit conden-

sation. Indeed, in order to achieve the same accuracy as the ROM given by the ICE method
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Figure 5.3.4: (a): Amplitudes of the first 100 modal coordinates Xp as a function of the mode number,

for a static load of 70 N applied at center of the simply supported plate. (b): Comparisons of ROMs on

the static force applied at center. reference solution (full FE model, black line) is compared to the ICE

method fitting with all terms (solid lines), or only with resonant terms (dashed lines). Convergence study,

ICE method with all terms with 1 mode (red line), 5 modes (modes 1, 4, 8, 11 and 12, purple line) and 8

modes (adding modes 19, 22 and 23, blue line). With only resonant terms, ROM with 3 modes (1, 4 and

8, red dashed line), 5 modes (purple dashed line) and 8 modes (blue dashed line).

with 4 master modes, it was necessary to include 141 membrane modes in the STEP method,

resulting in a model with 145 modes.

The behaviour of the ROM built with only resonant terms fitted in the ICE procedure is

different. First its convergence is not clearly stated with the test realized, and a larger number

of master modes should be used. The conclusion is that this ROM is softer than the one with

all the nonlinear terms, which appears logical. Even though most of the nonlinear terms are

not meaningful in terms of the dynamical behaviour of the structure with respect to the most

important phenomena such as bifurcations, retaining less terms in the polynoms leads to a softer

nonlinear restoring force as that of the full model. Hence one has to keep in mind that fitting

only resonant terms will produce a model that is generally not as stiff as it should be, but would

be able to reproduce qualitatively the dynamics of the structure. Coming back to Fig. 5.3.4(b),

it seems clear that the ROM with only resonant monomials converges to a behaviour where the

internal force of the structure is not stiff enough as compared to the reference. In order to further

analyze this point, the next section is devoted to dynamical simulations.
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Simply supported rectangular plate, dynamic response In this last section, we try to gain

more insight on the ICE method and an increasing number of dofs focusing on the dynamic

response obtained by numerical integration, for the specific case of the free vibrations of the

plate when dynamically excited. The input force is applied at (0.4Lx, 0.35Ly) and its time

variation is defined by

F (t) =

 Fmax

2
[1 + cos(π(t− t0)/Twid)], if |t− t0| ≤ Twid,

0, if |t− t0| > Twid.
(5.3.6)

The temporal content F (t) of the excitation is illustrated in Fig. 5.3.5 and depends on two

parameters: Fmax is the maximum amplitude of the strike force (in Newton), and is used to

calibrate the level of geometric nonlinearities excited in the response. In the simulations, the

values selected for Fmax are 7 N, 15 N and 50 N. Twid is the interaction time, and is used as a

parameter to control the number of modes directly excited by the strike force. Indeed, denoting

as fm = 1/Twid the frequency associated to this interaction time, all the modes below fm are

thus directly excited by the strike force. Two values of Twid have been selected: Twid = 0.005 s

and Twid = 0.0025 s, so as to excite the first three and eight bending eigenmodes, respectively.

The first eight eigenfrequencies of the plate are listed in Table 5.3.3.

Mode 1st 2nd 3rd 4th 5th 6th 7th 8th

Frequency[Hz] 58.25 117.30 174.10 215.94 233.00 331.33 353.77 367.19

Table 5.3.3: Natural frequencies of the first eight modes of the simply supported plate.

In order to test the sensitivity of the ROM constructed with ICE method to the scaling factors

βi used to define the load sets, we have also selected three different strategies summarized in

Table 5.3.4. Load case 1 has been selected as in the previous section, based on the advice given

in [57], with a targeted linear displacement equal to 2.4 times the thickness. Note however

that in the dynamic response the first eight modes (at least) are participating to the vibration

so that the ROM is built for these master coordinates. Load case 2 and 3 have been selected

so as to obtain the largest resulting static displacement possible in the full FE model without

encountering convergence issues due to the appearance of large rotations. The difference lies in

the use of reduction factors or not, when a combination of modes is used in the applied force.

69



Finally, three families of ROMs are constructed, with either 3, 5 or 8 master modes, in order to

test the robustness of the method with respect to an increasing number of modes.

Scalar

weighting β1 β2 β3 β4 β5 β6 β7 β8 Reduction

factors βt factors

Load

case 1

4.34e-5 8.82e-5 1.31e-4 1.62e-4 1.75e-4 2.49e-4 2.67e-4 2.77e-4 no

Load

case 2

3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 no

Load

case 3

9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 9e-4 yes

Table 5.3.4: Scalar weighting factors βi used for computing the ROM with ICE method for the simply

supported plate, for the case of the dynamical response.

The two strategies proposed in order to fit the nonlinear multivariate restoring force, i.e.

by identifying only the resonant monomials or all the nonlinear terms, have been tested and

compared. Note also that apart from the trivially resonant terms that always need to be taken into

account in the reduced model, whatever the relationships between the eigenfrequencies, some

additional monomials shall also be taken into account if the eigenfrequencies of the studied

structure present internal resonance relationships. Note that since a flat symmetric structure

is studied, only the third-order internal resonance relationships need to be verified, since the

restoring force shall not contain quadratic terms. For the selected rectangular plate with simply

supported boundary conditions, whose first eight eigenfrequencies are given in Table 5.3.4, one

can observe that the following third-order relationships of closeness to internal resonance are
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verified:

ω3 ≈ 3ω1 (5.3.7a)

ω3 ≈ 2ω2 − ω1 (5.3.7b)

ω5 ≈ 2ω1 + ω2 (5.3.7c)

ω5 ≈ 2ω3 − ω2 (5.3.7d)

ω5 ≈ ω2 + ω3 − ω1, (5.3.7e)

ω6 ≈ 2ω1 + ω4 (5.3.7f)

ω6 ≈ ω3 + ω4 − ω1 (5.3.7g)

ω6 ≈ ω4 + ω5 − ω2 (5.3.7h)

ω7 ≈ 3ω2 (5.3.7i)

This means in particular that all the resonant monomial terms corresponding to these relation-

ships need to be added to the ROM. For example from ω3 ≈ 3ω1, one has to take into account

a term of the form h3
111X

3
1 in the equation for X3, and a term h1

113X
2
1X3 in the equation for X1.

If the relationships involves three eigenfrequencies like ω3 ≈ 2ω2 − ω1, then three additional

terms are needed: h3
122X1X

2
2 in the equation for X3, h1

223X
2
2X3 in the equation for X1, and

h2
123X1X2X3 in the equation for X2. Finally four terms are needed if the internal resonance re-

lationship involves 4 eigenfrequencies. Consequently, in the ROM composed of 8 master mode,

a number of 28 more monomials have been added.

All these choices for running the simulations resulted in a series of 108 time simulations (3

values for the force amplitude, 2 values for the interaction time, 3 load cases to construct the

ROM, 3 cases with different number of master modes, and two different strategies with either

all nonlinear terms or only the resonant monomial terms) that have been thoroughly analyzed

with different indicators, in the time and frequency domain, to understand the quality of the

ROMS obtained. In all the simulation, the time step is set to be 0.0001s, the simulation time

is 0.5s, the damping of the ROM is selected as Cs = 5 + 0.00001ω2
s , while in the FE model

a Rayleigh damping matrix is used with C = 5M + 0.00001K, leading to damping ratios ζ

between about 0.8 and 1.3 percent for all eight modes in the excitation band.

In the next paragraph, we show only two representative examples of the results obtained and

give our comments based on the analysis of the 108 simulations.
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Figure 5.3.5: (a): Temporal content of the striking force given in Eq.(5.3.6), for the two different values

of Twid and three different amplitude Fmax used in the simulations. (b): Time response of the plate

subjected to a strike force. The full model (reference FE solution) is plotted in black. Displacements of

two ROMS with 8 master modes and either all the nonlinear terms fitted (red curve), or only the resonant

terms (blue curve). (c): Fundamental frequency variation in the case of fitting with all the terms (red)

and with only resonance terms (blue); the black curve shows the reference FE solution.

Example 1: Fmax = 7N, Twid = 0.0025s, 8 master modes The first example is a case of

small excited nonlinearity (Fmax = 7N) resulting in a maximal amplitude displacement of 0.6h

with h the thickness of the plate. A small Twid is selected so that the first 8 modes are directly

excited by the load, consequently two ROMs with 8 master modes are compared : one with

all the polynomial terms fitted, and one with only the resonant terms. For both ROMs, load

case 3 is analyzed in the following. The results are shown in Fig.5.3.5(b) for the time series

of the displacement, while Fig.5.3.5(c) shows the evolution of the fundamental frequency of

each displacements (full model versus the two tested ROMs), obtained directly with the yin

algorithm [73]. In this case of moderate nonlinearity, it can be observed that the two ROMs
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are able to recover finely the temporal dynamics. The nonlinear frequency shift decreases from

66 to 58.2 Hz (hardening behaviour) is also very well recovered by the two ROMs. And the

fact that only resonant terms are selected has no clear visible effects since the two ROMs gives

hardly the same result. Regarding the different results obtained when changing the load cases

reported in Table 5.3.4, it has been found that when all the terms are fitted, the three methods

gives almost the same result, with a small deviation for load case 2. When fitting only the

resonant monomials, load case 3 gave the best result. The variability of the resulting ROMs

with respect to load cases was more important when fitting only resonant terms, mainly because

the geometric nonlinearity in the restoring force is a little less excited in this case.
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Figure 5.3.6: (a,c): Time response of the plate subjected to a strike force. (b)-(d) : variation f the

fundamental frequency. (a-b): 3 master modes in the ROMS, (c-d) : 8 master modes. Comparison of

the full FE (reference) solution in black, ROM with all the nonlinear terms fitted (red) and only resonant

terms (blue).
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Example 2: Fmax = 50N, Twid = 0.005s, 3 or 8 master modes The second example con-

siders a stronger nonlinearity, with Fmax = 50N, resulting in a maximum displacement of two

times the thickness. A larger Twid = 0.005s is selected, so that only the first three modes are di-

rectly excited by the load, however since the nonlinearity is strongly excited, energy exchanges

occur and other modes are then excited via nonlinear couplings. Consequently two results are

reported: Fig. 5.3.6(a-b) is concerned with a ROM composed of 3 master modes, while 8 mas-

ter modes are taken into account in Fig. 5.3.6(c-d). One can first observe on the time series

of the displacements that whatever the ROM used, it has not been found possible to retrieve

exactly the result of the full model. However the global trends are recovered in term of maxi-

mum amplitude, global decrease in time, frequency content. The decrease of the fundamental

frequency is now much more pronounced with an impressive frequency shift of 50%. Fitting

with 3 modes, Fig. 5.3.6(a-b) shows that the non-resonant terms can be easily discarded to the

ROM since the results are fully comparable. But none of the ROM is able to recover exactly the

frequency shift.

Increasing the number of master modes to 8 shows that the two ROMs depart in the solution

they compute, and the ROM with all nonlinear terms performs better, in particular with regard

to the variation of the fundamental frequency. In each of these cases, the load case 3 from

Table 5.3.4 has been used. It has been found that whatever the fitted model, load case 2 has the

best results but very close to load case 3 used in the figure, while load case 1 gives the worst

predictions.

Based on the full analysis of the 108 simulations (where also indicators on decay time,

accuracy of frequency spectrum, indicators on time series and phases of the signals, have been

analysed) the results show that the methods are very sensitive to either the load case, or the

model used. No clear trends have been found, since some load cases could give better results

for the estimation of the phase, but not on the decay time, just to give an example. The only

clear trend found is that as long as the nonlinearity is small (example 1), and that a small

number of modes (typically 3) are concerned, then all the methods converge and are able to

finely recover the dynamical solutions. Increasing either the nonlinearity, and/or the number

of modes involved in the dynamics, then all methods depart slowly from the full-order model

solution. Even though all methods give generally good qualitative predictions, quantitative

discrepancies appear and have a strong dependence on the input parameters and load cases. A
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general conclusion also is that even though fitting only the resonant terms does not give the

best results when increasing the nonlinearity and the number of master modes, the results are

qualitatively acceptable. Since the computational burden is so drastically reduced, the method

still presents an advantage.

Our final conclusion on all these simulations is that the main drawback of the ICE method

relies in this fitting procedure, which is very sensitive to a number of parameters that are difficult

to control, so that it appears difficult to give clear advice on a best strategy that would work in

any case and would be able to retrieve all the nonlinear characteristics of a full system.

5.4 Conclusion

This Chapter addressed the understanding of the implicit condensation and expansion (ICE)

method, with detailed comparisons to the results provided using nonlinear normal modes (de-

fined as invariant manifolds in phase space) so as to better understand the advantages and draw-

backs of the method. One of the main advantage is to propose an implicit condensation of the

non-modeled degrees of freedom (or slave variables), which has very important consequences

when dealing with structures discretized with the FE approach, and for which there is no direct

and simple access to the full expression of the restoring force. This main advantage leads to the

fact that using the ICE method is much more efficient than using the STEP method. Indeed,

the STEP method allows computing the nonlinear modal coupling coefficients, which are not

dependent of the amplitude of the prescribed displacement. But the drawback is that, using the

modal basis, all the known problems related to its very slow convergence for nonlinear struc-

tures, are present. This point has been clearly underlined in this contribution, in line with the

results already presented by previous authors.

A second important conclusion is that the ICE method, being an implicit condensation,

can not, in any case, perform better than the usual static condensation. This fact has been

analysed by comparing the geometry of the reduction subspaces in phase space, together with

the predictions of hardening/softening behaviour. The stress manifold, used in the ICE method

to fit the nonlinear restoring force, does not depend on the velocities, and is not invariant.

These two features are of great importance for producing accurate ROMS, and are embedded

in the definition of NNM as invariant manifold, which produces better ROMs. In particular,
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our theoretical analysis shows that if a slow/fast assumption is at hand, then the results of the

static condensation tend to those given by invariant manifold at the leading order only. Based

on the prediction of the type of nonlinearity, a quantification of the slow/fast assumption has

been proposed, with a ratio of 6 between the eigenfrequencies of master and slave coordinates.

Several numerical experiments have been addressed to better understand the behaviour of

the ROMs produced with ICE method with regard to two important problems at hand when

increasing the number of master modes: the strategies used to impose the prescribed forces,

and the fitting procedure. In particular, it has been proposed to derive lighter ROMs by fitting

only the resonant terms in the polynomial expression of the restoring force, thus drastically re-

ducing the associated computational burden. Our main conclusion from all these experiments

is that the method is generally very sensitive to the numerous parameters involved in the pro-

cess (selection of βi coefficient, fitting procedure). Even though the obtained ROMs perform

qualitatively well, quantitative differences are unavoidable, and are increasing with the level of

nonlinearity and the number of master modes. For all these reasons, our results clearly point

out that the main drawback of the method is in this fitting procedure, which needs a particular

and dedicated attention. Also, all of our tests show that there is no clear guideline of which

method can be used safely as giving always better results. Depending on the nonlinear charac-

teristics one wants to reproduce accurately with a ROM (which can be for example: a correct

static behaviour, a correct estimate of the nonlinear frequency shift, an accurate prediction of

an important bifurcation point, a correct reproduction of the nonlinear couplings, etc ...), all the

tested methods have shown to give, for some indicators, good results, but not for some other.

All these findings argue for using ROMs derived from the general theorems from dynamical

system theory. Indeed, they are not dependent on a putative assumption of slow/fast separation

between master and slave coordinates, and can be directly computed from the model, so that

they belong to the class of simulation-free methods (which is not the case for e.g. POD or PGD

based methods). Also, recent contributions propose their derivation in a setting that fits to the

FE formulation, see e.g. the derivations with either the spectral submanifold method [74] or the

normal form approach [75, 76]. In particular, general formula are given for an arbitrary number

of master modes in [76]. As a consequence, these methods bypass the fitting procedure of the

ICE method which is its main drawback, particularly when increasing the number of master

modes.
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Chapter 6

Comparison of quadratic manifold and

direct normal form

6.1 Direct normal form

6.1.1 Foreword

Before the author starts the thesis, application of the method for deriving NNMs to full

FE models has been rarely discussed in the literature, see e.g. [77] for an example. The main

reason lies in the fact that application of the method as it was presented in [27, 25, 28] needs

as input the nonlinear coupling coefficients, obtained for example from a STEP. However, re-

cent developments overcome this limitation, see e.g. [74] for a direct approach using spectral

submanifolds (with general third-order formula equivalent to the ones given with the invariant

manifold method proposed by Shaw and Pierre), and [75, 76] for a direct method based on

normal form.

The work presented in this Section comes from a collaborative project with Imperial College

London and ENSAM Lille starting from January 2019. This part of the work was processed

during Vizzaccaro was visiting the IMSIA, before, the author of this thesis had a one-week

scientific exchange in Imperial College London. The development of direct normal form (DNF)

approach was mainly done by Vizzaccaro [75, 76], then, the approach is used and assessed by

the author [78, 79]. The subsequent text is to simply explain the method.
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6.1.2 Nonlinear mapping and reduced dynamics

The Direct normal form (DNF) approach allows direct computation of the nonlinear map-

ping enabling to pass from the physical space (dofs of the FE mesh) to the invariant manifolds

of the system that are tangent to their linear counterpart at the origin (Nonlinear Normal Modes

in the sense of Shaw and Pierre [27, 25]). The method builds on earlier results where the normal

form was computed from the problem expressed in the modal basis, i.e., the equation of motion

of the initial model expressed as Eq. (2.1.5) [51, 52], such that develops a nonlinear mapping up

to the third-order, which has been presented in Section 4.1.2. The main advantage of the direct

approach proposed in [76] is to bypass the step of eigenmode projection, since this can be out

of reach in complex FE mesh with millions of dofs. Instead, the method uses as a starting point

Eq. (2.1.3), i.e. the physical space and the dofs of the FE mesh. The equations of motion in

physical coordinates are given here again:

Mq̈ + Kq + Γ̂(q) = F, (6.1.1)

where the internal force vector reads Γ̂(q) = G(q,q) + H(q,q,q). The detailed expressions

of the quadratic and cubic polynomial terms, i.e. G(q,q) and H(q,q,q), representing the

nonlinear internal restoring force are given by:

G(q,q) =
N∑
r=1

N∑
s=1

Grsqrqs, (6.1.2)

H(q,q,q) =
N∑
r=1

N∑
s=1

N∑
t=1

Hrstqrqsqt, (6.1.3)

where Grs and Hrst are the N-dimensional vectors of coefficients Gp
rs and Hp

rst, for p =

1, ..., N . Using the matrix of eigenvectors, this problem can be rewritten in the modal basis

as in Eq. (2.1.5), using similar notations for the quadratic and cubic tensors of coefficients. The

p-th modal equation thus writes:

Ẍp + 2ζpωpẊp + ω2
pXp +

N∑
i=1

N∑
j=i

gpijXiXj +
N∑
i=1

N∑
j=i

N∑
l=j

hpijlXiXjXl = Fp, (6.1.4)

and the relationships between G and g, H and h reads:

gij = PT
φG(φi,φj), (6.1.5a)

hijk = PφH(φi,φj ,φk), (6.1.5b)

78



where Pφ is the matrix of eigenvectors φi.

Two versions of the DNF are presented in [76], a second-order and a third-order develop-

ment. Also, a method to take into account Rayleigh damping is proposed so that one can get a

reduced dynamics where the losses of the reduced dynamics do not neglect those of the slave

modes. At present, the inclusion of the Rayleigh damping in the form of C = ζMM + ζKK

is only possible with the second-order DNF. For that reason, the presentation retained here will

focus to the case of the second-order DNF with inclusion of damping.

The nonlinear mapping up to second-order reads:

u =
n∑
i

φiXi +
n∑
i=1

n∑
j=1

āijXiXj +
n∑
i=1

n∑
j=1

b̄ijẊiẊj +
n∑
i=1

n∑
j=1

c̄ijXiẊj, (6.1.6)

where n is the number of master modes used to build the ROM, andXi together with its velocity

Yi = Ẋi are the coordinates used to span the i-th invariant manifold. In Eq. (6.1.6), φi is the

eigenvector and āij , b̄ij and c̄ij are second-order tensors, the full expressions are given in [76]

and expressed as:

āij =
1

2
(Z̄dij + Z̄sij), (6.1.7a)

b̄ij =
1

2ωiωj
(Z̄dij − Z̄sij), (6.1.7b)

c̄ij =(ζM + 3ω2
i ζK)b̄ij − (2ζK)āij + (−ζM + 2ω2

i ζK)(Z̄ssij + Z̄ddij)

+ (−ζM + 2ω2
j ζK)(ωi/ωj)(Z̄ssij − Z̄ddij), (6.1.7c)

where

Z̄ssij = ((+ωi + ωj)
2M−K)−1MZ̄sij, (6.1.8a)

Z̄ddij = ((−ωi + ωj)
2M−K)−1MZ̄dij, (6.1.8b)

and

Z̄sij = ((+ωi + ωj)
2M−K)−1G(φi,φj), (6.1.9a)

Z̄dij = ((−ωi + ωj)
2M−K)−1G(φi,φj). (6.1.9b)

With the nonlinear mapping up to second-order, the normal form is able to give the reduced

dynamics up to the third-order. For the nonlinear mapping in third-order, the interested reader
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can find the details in [21]. By taking into account the Rayleigh damping with an assumption

of small damping ratios on the master modes, the nonlinear dynamics reads, ∀ p = 1, ...m:

R̈p+(ζM+ζKω
2
p)Ṙp+ω

2
pRp+

m∑
i=1

m∑
j=1

m∑
k=1

[(Apijk+h
p
ijk)RiRjRk+B

p
ijkRiṘjṘk+C

p
ijkRiRjṘk] = Fp,

(6.1.10)

where the coefficients Apijk, B
p
ijk, C

p
ijk arise from the cancellation of non-resonant quadratic

terms, their full expression reads [76]:

Apijk = 2φTp G(φi, ājk), (6.1.11a)

Bp
ijk = 2φTp G(φi, b̄jk), (6.1.11b)

Cp
ijk = 2φTp G(φi, c̄jk). (6.1.11c)

The reduced dynamics given in (6.1.10) is expressed on the 2m dimensional invariant man-

ifold. For that reason, there is no need of fulfilling a slow/fast assumption to produce correct

predictions.

Also, the reduction to a single master coordinate is able to predict the correct harden-

ing/softening behaviour, in such context, the reduced dynamics reads as:

R̈p + (ζM + ζKω
2
p)Ṙp + ω2

pRp + (Apppp + hpppp)R
3
p +Bp

pppRpṘ
2
p + Cp

pppR
2
pṘp = Fp. (6.1.12)

This result has been applied for analyzing the type of nonlinearity of shallow spherical-cap

shells in [41, 79].

6.2 Reduction with quadratic manifold

In this section, the quadratic manifold (QM) method, which is first introduced in [20, 21]

based on modal derivatives reviewed in Section 4.2.2, is presented. The main idea is to derive

a nonlinear mapping, using the modal derivatives, as a quadratic dependence on the master

coordinates, to pass from the FE nodes to a reduced subspace built on a quadratic manifold. In

the section, we explain how the quadratic manifold is built.

The modal derivatives have been first introduced with the aim of completing the linear mode

basis with additional vectors in order to take into account the new spanning directions given by

the curvature of the invariant manifold in phase space, and have been used as such in numerous
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context, see e.g. [71]. However it then appeared logical to embed these added vectors in a

nonlinear mapping. Indeed, from the definition of the modal derivatives, it is possible to define

a nonlinear mapping from the initial physical dofs to the master coordinates, stating that the

quadratic part of the mapping is conveyed by the introduced MD or SMD. Following [20, 21,

61], one can write such a relationship in a compact form as

q = Ξ(X) = ΦX +
1

2
Θ̄(X,X) =

m∑
i=1

φiXi +
1

2

m∑
i=1

m∑
j=1

Θ̄ijXiXj, (6.2.1)

where Ξ stands for the quadratic nonlinear mapping, with Φ the N ×m matrix of the master

eigenvectors only, i.e. it is the restriction of Pφ to the m selected master modes; and Θ̄ij =

(Θij + Θji)/2 is the symmetrized MD. The reduced-order dynamics is obtained by applying

the second-order nonlinear mapping (6.2.1) to the original equations of motion (2.1.3). To

that purpose, one can introduce the tangent space of the manifold PΞ as the derivative of the

nonlinear mapping with respect to displacements, thus reading [20, 21]:

PΞ =
∂Ξ

∂X
(6.2.2)

where PΞ is a matrix whose k-th column [PΞ]k writes

[PΞ]k =
∂Ξ

∂Xk

= φk +
m∑
j=1

Θ̄jkXj. (6.2.3)

Derivating (6.2.1) two times with respect to t leads to:

q̇ = Ξ̇ = PΞẊ, (6.2.4a)

q̈ = Ξ̈ = PΞẌ +

(
∂PΞ

∂X
Ẋ

)
Ẋ. (6.2.4b)

Substituting for these in Eq. (2.1.3), the reduced-order dynamics reads :

Pt
ΞMΞ̈ + Pt

ΞCΞ̇ + Pt
ΞKΞ + Pt

ΞG(Ξ,Ξ) + Pt
ΞH(Ξ,Ξ,Ξ) = Pt

ΞQ. (6.2.5)

One can note in particular that the quadratic and cubic terms G(Ξ,Ξ) and H(Ξ,Ξ,Ξ) will pro-

duce higher orders (up to power four for the first and power six for the second), and these higher

orders will not be balanced by additional terms taken into account in the nonlinear mapping,

which is a common feature in such asymptotic developments. Consequently it might appear
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more reasonable to truncate also Eq. (6.2.5) to the third order to maintain consistency. Follow-

ing [61], one finally obtains, in full indicial notation, and by including Rayleigh damping, the

third-order reduced dynamics, reading ∀p = 1, ...,m:

Ẍp + ω2
pXp + (ζM + ζKω

2
p)Ẋp

+
m∑

i,j=1

(
(gpij +

ω2
p

2
θ̄pij)XiXj + θ̄pij(ẊiẊj +XiẌj) + θ̄jpi(ω

2
jXiXj +XiẌj)

)

+ζM

m∑
i,j,k=1

(
2(θ̄pij)ẊiXj +

m∑
s=1

(θ̄spkθ̄
s
ij)ẊiXjXk

)
+ ζKω

2
p

m∑
i,j,k=1

(
2(θ̄pij)ẊiXj +

m∑
s=1

(θ̄spkθ̄
s
ij)ẊiXjXk

)

+
m∑

i,j,k=1

((
hpijk +

m∑
s=1

(
gpisθ̄

s
jk(g

s
ij +

ω2
s

2
θ̄sij)

))
XiXjXk +

m∑
s=1

(θ̄spkθ̄
s
ij)(ẊiẊjXk + ẌiXjXk)

)
= Fp.

(6.2.6)

In these equations, gpij and hpijk are the modal coupling coefficients that can be obtained by

applying the STEP, and θ̄ij is the symmetrized expression of the MD in the modal space, which

is connected to the MD via:

Θ̄ij = Pφθ̄ij =
N∑
s=1

φsθ̄
s
ij. (6.2.7)

In the right-hand side of Eq. (6.2.6), only Fp appears since it has been assumed that for the

case under study, the forcing term is oriented along a master coordinate that is orthogonal to the

symmetrized MD Θ̄.

Assuming that only mode p is present as reduced coordinates, thus Xi = 0, for all i 6= p,

Eq. (6.2.6) simplifies to the single dof reduction, read as:

Ẍp + ω2
pXp + (ζM + ζKω

2
p)Ẋp + (gpij +

ω2
p

2
θpij)X

2
p + θpij(ẊiẊj +XiẌj) + θjpi(ω

2
jXiXj +XiẌj)

+hpppp +
n∑
s=1

(
gppsθ

s
ppX

3
p + (gspp +

ω2
s

2
θspp)X

3
p + (θspp)

2(Ẋ2
pXp + ẌpX

2
p )

)
= Fp.

(6.2.8)

6.3 Comparisons on the nonlinear dynamics and prediction

of the type of nonlinearity

Theoretical comparison between NF and MDs on modal equations was first done by Vizza-

ccaro et al [61], then, further numerical comparisons between DNF and MDs on the FE model
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applications have been done by the author [78]. This section gives the comparison of the two

nonlinear mappings, and the reduced-order dynamics as well as prediction of type of nonlin-

earity are the interested characteristic of the ROMs derived by the two methods. Only the main

conclusions presented here aims to make the research framework more complete, for more de-

tails, one can find in the articles [61, 79].

The restriction to a single master dof is provided in Eqs. (6.1.12) for DNF and (6.2.8) for

MD/SMD, so that one could draw out a term-by-term comparison between the reduced-order

dynamics provided by the two methods. On the reduced-order dynamics for each of the meth-

ods, the general nonlinear oscillator equation describing the dynamics on the reduced subspace

can be written under the general form as: In each case, the dynamics is reduced to a single-

degree of freedom equation from which one can infer the hardening/softening behaviour. Let

p be the master mode of interest, one can show that the reduced dynamics given by the three

(MD, SMD, NF) methods, and also the static condensation (SC) for comparison reason, writes:

R̈ + ω2
pRp + C1R

2
p + C2

Ṙ2
p

ω2
p

+ C3
R̈pRp

ω2
p

+ C4R
3
p + C5

Ṙ2
pRp

ω2
p

+ C6

R̈pR
2
p

ω2
p

= 0, (6.3.1)

where the expression of C1 to C6 are different depending on the method, and are recalled in

Tab. 6.3.1.

C1 C2 C3 C4 C5 C6

MD gppp 0 0 hpppp −
∑n

s=1
s 6=p

2(gspp)2(ω2
s−2ω2

p)

(ω2
s−ω2

p)2

∑n
s=1
s 6=p

4(gspp)2ω2
p

(ω2
s−ω2

p)2

∑n
s=1
s 6=p

4(gspp)2ω2
p

(ω2
s−ω2

p)2

SMD −2gppp −2gppp −4gppp hpppp −
∑n

s=1

2(gspp)2

ω2
s

∑n
s=1

4(gspp)2ω2
p

ω4
s

∑n
s=1

4(gspp)2ω2
p

ω4
s

NF 0 0 0 hpppp −
∑n

s=1

2(gspp)2(ω2
s−2ω2

p)

ω2
s(ω2

s−4ω2
p)2

∑n
s=1

4(gspp)2ω2
p

ω2
s(ω2

s−4ω2
p)2

0

SC gppp 0 0 hpppp −
∑n

s=1

2(gspp)2

ω2
s

0 0

Table 6.3.1: Table of coefficients of the reduced dynamics given by the four methods: MD for modal

derivatives, SMD for static modal derivatives, NF for normal form and SC for static condensation.

From Tab. 6.3.1, it is shown that the normal form approach is able to cancel the quadratic

nonlinearity and produce a cubic-order reduced dynamics, depending on two separate coeffi-

cients only.

Most importantly, when a slow/fast assumption is fulfilled (ωs � ωp), one can observe

that the coefficients provided by the normal form and the MD method tend to equal to the
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values given by the SMD approach. More specifically, normal form has only two coefficients

C4 and C5, and their expressions exactly match those from the SMD and MD in the case of

slow/fast decomposition, withCSF
4 = hpppp−

∑n
s=1

2(gspp)2

ω2
s

andCSF
5 =

∑n
s=1

4(gspp)2ω2
p

ω4
s

, so that the

only difference, between the reduced-order dynamics given by invariant manifold and quadratic

manifold, lies in the additional terms C1, C2, C3 and C6.

Because the meaning of the reduced variables is not the same, to better understand the dif-

ferences on the reduced-order dynamics, a further comparison has been done on the predictions

of type of nonlinearity given by each reduction method. A first-order perturbative development

allows definition of the angular frequency of free oscillations ωNL, the expression is shown in

Eq. (5.1.16) and recalled here: ωNL = ωp(1 + Γp[M ]a
2), where a is the amplitude of the response

of the pth master coordinate, ωp is the nature frequency, and Γp[M ] the coefficient governing the

type of non-linearity with [M ] refers to the method. Γp[M ] > 0 indicates the hardening behaviour

while Γp[M ] < 0 implies softening behaviour. The general expression for Γp[M ] with all the Ci

coefficients read as:

Γp[M ] = − 1

24ω4
p

(10C2
1 +10C1C2+4C2

2−7C2C3+C2
3−11C1C3)+

1

8ω2
p

(3C4+C5−3C6). (6.3.2)

with C1 to C6 different coefficients, which values are summarized in Tab. 6.3.1 for the these

different methods. For the QM method based on MD and SMD, general formula have been

derived in [61]. The Γ coefficients for these two cases read, first assuming a QM build on full

modal derivatives:

ΓpMD = − 5

12ω2
p

(
gppp
ωp

)2 +
3

8ω2
p

hpppp − N∑
s=1
s 6=p

2(
gspp
ωs

)2

(
1 +

ω2
p(4ω

2
s − 3ω2

p)

3(ω2
s − ω2

p)
2

) . (6.3.3)

If the QM is built from the simplified expression given by SMD, then the formula simplifies to:

ΓpSMD = − 5

12ω2
p

(
gppp
ωp

)2 +
3

8ω2
p

hpppp − N∑
s=1
s 6=p

2(
gspp
ωs

)2

(
1 +

4ω2
p

3ω2
s

) . (6.3.4)

Finally for the DNF, since in that case the initial problem has been projected onto the linear

modes, then the full expressions of normal form given in [51, 56] allows writing directly the
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ΓpIM coefficient, which is already given in Eq. (5.1.21) and can be rewritten as:

ΓpIM = − 5

12ω2
p

(
gppp
ωp

)2 +
3

8ω2
p

hpppp − N∑
s=1
s 6=p

2(
gspp
ωs

)2

(
1 +

4ω2
p

3(ω2
s − 4ω2

p)

) . (6.3.5)

From Eqs. (6.3.3) to (6.3.5), one can notice that the summed terms, with the form of one plus

a term at the end of the right-hand side, provide the only differences among the three equations.

In order to be more illustrative, the ΓpSC of static condensation is also given with considering the

symmetry relationship of coefficients gpps = 2gspp [13]:

ΓpSC = − 5

12ω2
p

(
gppp
ωp

)2 +
3

8ω2
p

hpppp − N∑
s=1
s 6=p

(gspp)
2

ω2
s

 . (6.3.6)

Introducing CMD, CSMD and CNF as the correction factors, i.e. the term in the summation,

given by each method, and the correction term obtained by using static condensation is given

following

CSC = 2(
gspp
ωs

)2. (6.3.7)

By making all correction factors divide by CSC, such that the gspp is vanishing and one can then

draw a comparison about the terms with expression depending only on the eigenfrequencies.

Assuming that there is only one slave mode s and letting ρ = ωs/ωp be the ratio between the

eigenfrequency of the slave modes and that of the master mode, one then obtains:

CMD

CSC

= 1 +
4

3

ρ2 − 3/4

3(ρ2 − 1)2
, (6.3.8a)

CSMD

CSC

= 1 +
4

3ρ2
, (6.3.8b)

CNF

CSC

= 1 +
4

3(ρ2 − 4)
. (6.3.8c)

One can observe that these formulas show that all the methods predict the same first two terms

in the expansion. Furthermore, with a slow/fast assumption (ρ → ∞) fulfilled, the ratios tends

to 1 in this case such that the static condensation also tends to the same results. For illustrative

purpose, Fig. 6.3.1 shows the ratio of the correction factors expressed in Eq. (6.3.8), It is found

that CMD

CSC
and CSMD

CSC
tend to equal to CNF

CSC
when ρ is increasing, with more detail, the error between

the results derived from MD and NF is about 10% when ρ = 4 and less than 1% when ρ =
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6. Generally, one can conclude that all methods are almost converged in terms of type of

nonlinearity when ωs > 4ωp.

0 2 4 6 8

-2

0

2

4

6

8

C
[M

]
/C

S
C

MD

SMD

SC

NF

Figure 6.3.1: The ratios
C[M]

CSC
with respect to the ratio of eigenfrequencies ρ, as expressed in Eq. (6.3.8).

Blue: CSMD
CSC

, brown: CMD
CSC

, purple: CSC
CSC

, and black: CNF
CSC

. This figure is first shown in [61].

6.4 Example: A linear beam on a nonlinear elastic founda-

tion

In order to give a first illustration of the capabilities of the different methods, an academic,

analytical example is first used: a simply supported linear beam resting on a nonlinear elastic

foundation. This example has already been studied in e.g. [80, 81, 56], in order to underline the

use of invariant manifolds for producing accurate reduced-order models. The nonlinear elastic

foundation being composed of quadratic and cubic power law, simple analytical formula are

easily derived allowing full computation of modal coupling coefficients, so that a comprehen-

sive comparison on the ability of the different reduction methods to predict the correct type of

nonlinearity can be achieved.

6.4.1 Model equations and type of nonlinearity

In non-dimensional form, the undamped transverse vibrations of the linear beam on a non-

linear elastic foundation are governed by [80, 81, 56]:
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∂2w

∂t2
+
∂4w

∂x4
+ α2w

2 + α3w
3 = 0, (6.4.1)

where w(x, t) is the transverse displacement, and α2 and α3 are the two free parameters that

balance the relative importance of quadratic and cubic couplings. Simply supported boundary

conditions are assumed, reading:

w(x, t) = 0,
∂2w

∂x2
= 0, for x = 0, 1. (6.4.2)

The eigenmodes and the eigenfrequencies are easily computed as:

φn(x) =
√

2 sin(nπx), ωn = n2π2. (6.4.3)

Denoting as Xp the modal co-ordinate associated to the p-th linear mode, modal projection

yields the equation of motion in the form of Eq. (2.1.5), where individual quadratic and cubic

modal coupling coefficients respectively read:

gpij = α2

∫ 1

0

φi(x)φj(x)φp(x)dx,

hpijk = α3

∫ 1

0

φi(x)φj(x)φk(x)φp(x)dx.

(6.4.4)

The reduction methods (ICE, MD, SMD, NF) will be compared on their ability to correctly

predict the type of nonlinearity (hardening/softening behaviour), when reducing the dynamics

to a single master coordinate. Depending on the reduction method used, different values of Γ

are obtained, which are already expressed in Eqs. (6.3.3) to (6.3.6) and reading as:

ΓpMD = − 5

12ω2
p

(
gppp
ωp

)2 +
3

8ω2
p

hpppp − N∑
s=1
s 6=p

2(
gspp
ωs

)2

(
1 +

ω2
p(4ω

2
s − 3ω2

p)

3(ω2
s − ω2

p)
2

) . (6.4.5a)

ΓpSMD = − 5

12ω2
p

(
gppp
ωp

)2 +
3

8ω2
p

hpppp − N∑
s=1
s6=p

2(
gspp
ωs

)2

(
1 +

4ω2
p

3ω2
s

) . (6.4.5b)

ΓpIM = − 5

12ω2
p

(
gppp
ωp

)2 +
3

8ω2
p

hpppp − N∑
s=1
s 6=p

2(
gspp
ωs

)2

(
1 +

4ω2
p

3(ω2
s − 4ω2

p)

) . (6.4.5c)

ΓpSC = − 5

12ω2
p

(
gppp
ωp

)2 +
3

8ω2
p

hpppp − N∑
s=1
s 6=p

(gspp)
2

ω2
s

 . (6.4.5d)
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Apart from the methods mentioned above, for this example we will also consider the prediction

given if one reduces the dynamics to the eigenmode subspace. Assuming only linear modal

coordinate p present in the dynamics (i.e. Xi = 0 for all i 6= p), and denoting as ΓpLN the

coefficient for that case, one arrives easily at [51, 56]:

ΓpLN = − 5

12ω2
p

(
gppp
ωp

)2 +
3

8ω2
p

hpppp. (6.4.6)

By comparing the coefficients ΓpLN, ΓpICE, ΓpNNM, ΓpMD, ΓpSMD respectively given by Eqs. (6.4.5)

and (6.4.6), it is obvious that regions of hardening or softening behaviour in the parameter plane

(α2,α3) are different so that all the studied methods will predict different results. The aim of the

next section is to highlight this and compare the predictions to a full-order solution in order to

understand the ability of the reduction methods to correctly retrieve the first important nonlinear

characteristics in nonlinear oscillations.

6.4.2 Results

Fig. 6.4.1 shows the hardening/softening regions for the first three modes of the beam as

predicted by the different methods proposed, in the parameter space (α2, α3). Only the sign

of the prediction (hardening/softening) is reported, the lines showing the points of cancellation

where the formulas Eqs. (6.4.5) and (6.4.6) are vanishing. In each case, the upper left part of

the plane (corresponding to large values of the cubic nonlinearity α3) are linked to a hardening

behaviour since a large cubic positive term is dominating. On the other hand, in the lower right

part of the figure (large values of quadratic nonlinearity α2), a softening behaviour is at hand.

The continuous line denotes the hardening/softening transition as predicted by the different

methods. Five curves are compared each time. The first one corresponds to the reduction

to a single linear normal mode, Eq. (6.4.6). Although this simplification is known from a

long time to produce incorrect predictions in most of the cases, it is reported here for the sake

of completeness. The prediction given by static condensation (ICE method), Eq. (6.4.5d) is

reported in purple, while both predictions using MD or SMD QM, Eqs. (6.4.5a)-(6.4.5b), are

given in brown and blue. Finally the prediction given by the normal form approach, Eq. (6.4.5c),

is in red. As known from theoretical results, see e.g. [51, 56], at first-order the prediction given

by normal form gives the correct result, so that all the other methods can be compared to this

reference. This will be again confirmed numerically next, by comparing to full-order solutions.
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Figure 6.4.1: Hardening/softening regions in the parameter plane (α2,α3) for the first three modes of a

simply supported beam resting on a nonlinear elastic foundation. In the legend, LN: single linear mode;

ICE: implicit condensation and expansion; MD: QM with full modal derivatives; SMD: QM with static

modal derivatives; DNF: single nonlinear normal mode built from normal form.

For the first mode, one can observe that the predictions given by all five methods are fully

coincident. This means in particular that the first invariant manifold shows only very slight

curvature and is very close to the linear eigensubspace, such that restriction to a single linear

mode is already correct. In that context, one also understands easily that all other reduction

methods are able to catch back a simple linear behaviour and thus offers a good prediction.

Only the ICE method gives a very slight departure which remains however negligible. For

mode 1, one can also observe that the slow/fast assumption is well retrieved, since the ratio

ω2/ω1 is equal to 4, meaning that all the slave modes fulfill the criteria given in [61, 58] about

slow/fast assumption for ICE and QM methods.

For all the other modes, all the methods gives very different predictions, as shown in

Fig. 6.4.1 for modes 2 and 3. As already reported in [56], restriction to a single linear mode

gives a completely erroneous prediction, meaning that the invariant manifolds have important

curvatures and strongly depart from the linear subspace. This feature is well illustrated by

Fig. 6.4.2, one can observe that the first mode is almost not coupled with mode 3 since the man-

ifold is almost flat as shown in Fig. 6.4.2(a), that is the reason all the reduction methods work

well and give the same correct prediction in the case of mode 1, as shown in Fig. 6.4.1(a). While

the third mode is strongly coupled with the first mode, leading to a curved manifold as shown
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in Fig. 6.4.2(b), and the coupling relationship cannot be retrieved by other methods because of

slow/fast assumption is not fulfilled, such that in Fig. 6.4.1(c) only the DNF gives the correct

prediction.

Figure 6.4.2: The invariant manifold of the full model obtained from numerical continuation of periodic

orbits in phase space (a): (X1, Y1, X3) and (b): (X3, Y3, X1). The parameters of the system are chosen

as α2 = 12, α3 = 0.5.

Regarding the slow/fast assumption, one can now easily understands, by forming the ratio

ωn/ω2 and ωn/ω3 for modes 2 and 3 as shown in Tab. 6.4.1, that the assumption is not fulfilled

anymore. For mode 2 one has for example ω1/ω2 = 1/4 and ω3/ω2 = 2.25: two slave modes

do not meet the slow/fast assumption. For mode 3, 4 slave modes do not fulfill the constraint

since the ratio between the master mode and slave modes are smaller than 4. Consequently, all

the three reduction methods that need this frequency separation (ICE, QM with either MD or

SMD), fail to accurately predict the type of nonlinearity.

In order to give more insight to these results, four specific points corresponding to selected

values of (α2, α3), are retained, and the backbone curves are compared with a reference solution,

obtained by keeping ten linear modes in the truncation, a number sufficiently large to achieve

comfortable convergence. The four points are denoted with diamonds and letters a, b, c, and d in

Fig. 6.4.1. Point a is selected for mode 2, while points b, c and d refers to mode 3. Their specific

locations have been selected in order to underline the different possible predictions given by

all tested methods. The backbone curves have been obtained numerically with a continuation

method using asymptotic-numerical method combined with harmonic balance, implemented

in the software Manlab. The reference solution is obtained by using the nonlinear equation

90



1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

ωi 9.87 39.48 88.83 157.91 246.74 355.30 483.61 631.65 799.44 986.96

ωi/ω1 1 4 9 16 25 36 49 64 81 100

ωi/ω2 0.25 1 2.25 4 6.25 9 12.25 16 20.25 25

ωi/ω3 0.11 0.44 1 1.78 2.78 4 5.44 7.11 9 11.11

ωi/ω4 0.06 0.25 0.56 1 1.56 2.25 3.06 4 5.06 6.25

Table 6.4.1: Natural frequencies of the modes and the corresponding ratio as the criteria of the

slow/fast assumption.

of motion of the full-order model (as shown in Eq. (2.1.5)) with ten modes. On the other

hand, the reduction methods used the reduced dynamics as given in Eq. (4.2.1) for the ICE

method, Eq. (6.2.6) for QM MD and SMD (discarding damping), and Eq. (6.1.10) for DNF

(again without damping).

Fig. 6.4.3 reports the obtained results. Fig. 6.4.3(a), corresponding to point a in Fig. 6.4.1,

has been selected since only DNF and QM-SMD method should predict softening behaviour,

while QM-MD and ICE method should predict hardening. This is verified by the numerical

computation. One can observe that only normal form is able to catch the correct behaviour.

The softening behaviour computed by QM-SMD is overestimated while MD and ICE method

predict an unreliable solution. One can observe that this case corresponds to a quite large value

of α2 as compared to α3, meaning that quadratic terms are dominating the cubic ones. This

example thus clearly illustrates that ICE and QM, with slow/fast assumption not fulfilled, offers

an incorrect processing of quadratic terms, finally leading to an incorrect prediction of the type

of nonlinearity.

Fig. 6.4.3(b), corresponding to point b in Fig. 6.4.1, shows a case where only QM-SMD pre-

dicts a softening behaviour, all other methods giving a hardening one. This result is effectively

verified by the numerical computation. The solution given by DNF method is close to the refer-

ence solution, but finally departs at large amplitude, as a consequence of the fact that the DNF

method is an asymptotic expansion up to order three. In this specific case, even if the slow/fast

assumption is not met for mode 3, the prediction given by ICE and QM-MD is good. Even if

the exact correct curvature of the backbone is not retrieved at small amplitudes, the prediction
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Figure 6.4.3: Backbone curves for the linear beam on nonlinear elastic foundation. (a) second mode,

α2 = 12, α3 = 0.5, (b) third mode, α2 = 12, α3 = 3, (c) third mode, α2 = 12, α3 = 0.5. (d) third

mode, α2 = 0.5, α3 = 12. Reference solution (black thick line): continuation on a solution built from

10 linear modes retained.
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remains no too far from the reference up to a comfortable amplitude.

Fig. 6.4.3(c) reports a case that is close to Fig. 6.4.3(a) but now for mode 3, underlining

again how incorrect predictions can be obtained. Finally, Fig. 6.4.3(d) shows a case where the

cubic nonlinearity dominates the quadratic one. In that case one clearly observes that all the

methods are able to produce a correct solution.

As a conclusion on this simple analytical example, it has been shown that when the slow/fast

assumption is not met, ICE and QM method based on MD or SMD can predict incorrect results

for the type of nonlinearity. The incorrect treatment of the quadratic terms by these methods has

been also specifically underlined, another concern that is different from the slow/fast assumption

involving the eigenfrequencies. It has been shown on selected examples that when the quadratic

nonlinearity is dominant, ICE and QM methods can predict incorrect results, e.g. a hardening

behaviour instead of softening, or too large values of the curvature of the backbone as compared

to the reference. On the other hand the DNF method always produces the first-order correct

assumption, and can only fail at large amplitudes due to its limitation related to the third-order

asymptotic expansion.

6.5 Example: Prediction of the type of nonlinearity of free

spherical shells

The aim of this section is to compare three different methods, the quadratic manifold (QM)

built from (static) modal derivatives, the stress manifold built form ICE method and the normal

form approach, on a shell example. More particularly, the ability of the three methods in the

prediction of the type of nonlinearity (i.e. the first term in the amplitude-frequency relation-

ship that dictates the hardening or softening behaviour), is investigated. In nonlinear vibrations,

predicting the correct type of nonlinearity is the first characteristic that needs to be correctly

given by a ROM since being a fundamental property of the nonlinear oscillations. This general

result is here illustrated on the specific case of a shallow spherical shell with increasing curva-

ture. For that purpose, the von Kármán model, assuming shallowness, neglecting in-plane and

rotary inertia and using an Airy stress function, is used [82], such that geometrically nonlinear

vibrations of the shell are described by partial differential equations. Thus, the full shell model

can be reduced into a single degree of freedom equation by using different reduction methods
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and thus leading to ROMs that can be applied to predict the type of nonlinearity of the shell.

It should be noted that the comparison of NF and (S)MDs on the prediction of the type of

nonlinearity of the two dofs system (spring-mass system shown in Fig. 5.2.1) in the previous

chapter is given in [61], here the investigation is extended to the thin shell.

6.5.1 Modelling

A free-edge spherical shell, made of a homogeneous isotropic material of density ρ, Pois-

son’s ratio ν and Young’s modulus E is considered, with the dimension of thickness h, radius of

curvature R and outer diameter 2a (see Fig. 6.5.1). Large transverse deflections and moderate

rotations are considered, so that the model is a generalization of von Kármán’s theory for large

deflection of plates [82].

The shell is assumed to be thin so that h/a � 1 and h/R � 1, and shallow: a/R � 1.

Since we are interested in predicting the type of nonlinearity, damping and forcing are not

considered. The equations of motion read [82, 83, 84, 85]:

D∆∆w +
1

R
∆F + ρhẅ = L(w,F ), (6.5.1a)

∆∆F − Eh

R
∆w = −Eh

2
L(w,w), (6.5.1b)

where w is the displacement, F the the Airy stress function, ∆ the Laplacian, L is a quadratic

bi-linear operator and D = Eh3/12(1 − v2) is the flexural rigidity, t indicates the time vari-

able and the double dot (•̈) the second derivative with respect to time. The problem is made

nondimensional by introducing r = ar̄, t = a2
√

ρh
D
t̄, w = hw̄, and F = Eh3F̄ . Thus, sub-

stituting the above definitions in equations of motion, Eq. (6.5.1), and dropping the overbars in

the results, one obtains:

∆∆w + εq∆F + ẅ = εcL(w,F ), (6.5.2a)

∆∆F −
√
κ∆w = −1

2
L(w,w). (6.5.2b)

where the two nondimensional coefficients are εq = 12(1−v2)
√
κ, and εc = 12(1−v2), making

also appear the aspect ratio κ of the shell as κ = a4

R2h2
.

The complete linear analysis has been tackled in [82]. As an important result, the behaviour

of the eigenfrequencies with respect to the aspect ratio κ is shown in Fig. 6.5.2. One can
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Figure 6.5.1: Geometry of the free-edge shallow spherical shell.

observe in particular that purely asymmetric modes (k, 0), with k nodal diameters and no nodal

circle, show a very slight dependence upon κ. On the other hand, axisymmetric modes (0, n)

without nodal diameters, as well as mixed mode (k, n) with both k 6= 0 and n 6= 0, show

a huge dependence on curvature. These results are important in order to analyze the type of

nonlinearity, depending on the mode considered.

In order to predict the type of nonlinearity, Eqs. (6.5.2) are projected onto the natural basis

of the eigenmodes. After projection, the semi-discretized equations of motion read as given in

Eq.(2.1.5) without external forcing [82]:

Ẍp + ω2
pXp +

+∞∑
i=1

+∞∑
j=1

gpijXiXj +
+∞∑
i=1

+∞∑
j=1

+∞∑
k=1

hpijkXiXjXk = 0, (6.5.3)

where Xp refers to the modal amplitude of the pth transverse mode, and ωp its radian eigenfre-

quency. The nonlinear coupling coefficients write:

gpij = −εq
∫∫

ϕ⊥

φpL(φi, ψj)dS −
εq
2

+∞∑
b=1

1

ξ4
b

∫∫
ϕ⊥

L(φi, φj)ΥbdS

∫∫
ϕ⊥

φp∆ΥbdS, (6.5.4a)

hpijk = εc

+∞∑
b=1

1

ξ4
b

∫∫
ϕ⊥

L(φi, φj)ΥbdS

∫∫
ϕ⊥

φiL(φk,Υb)dS. (6.5.4b)

φi refers to transverse eigenmodes while ψj are obtained from the diagonalization of the Airy

stress function. ξn and eigenfunction Υn are zeros from the eigenproblem, the interested reader

can find their detailed expression in [82]. ϕ⊥ is the domain defined by (r, θ) ∈ [0 1] × [0 2π].

Eqs. (6.5.3) describe the dynamics of the shell and the trend of nonlinearity can be inferred from

these equations.
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Figure 6.5.2: Dimensionless natural frequencies ωkn of the shell as a function of the aspect ratio κ (figure

reprinted from [41]). κ = 0 corresponds to the flat plate case.

6.5.2 Analytical Prediction of the Type of Nonlinearity

In this section, we compare the prediction of the type of nonlinearity using the semi-

analytical derivation obtained from von Kármán model. Three different predictions are con-

trasted. The first one is given by the normal form approach, and has already been reported

in [41]. As known from theoretical results [51], this prediction is correct thanks to the invari-

ance property of nonlinear normal modes (NNMs). Three other solutions are compared to this

reference solution, two obtained from the QM approach developed in [20, 21], the first one us-

ing full MD, and the second one static modal derivatives (SMD), the last one obtained from the

stress manifold derived by ICE method.

As the said in the last section, the MD, SMD and ICE methods are awaited to give correct

results only if a slow/fast assumption between master and slave coordinates is at hand. This
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slow/fast assumption has been quantified in previous section. If ρ > 4, the slow/fast assumption

is fulfilled, while ρ < 3 means that QM and ICE method will probably fail. In order to analyze

the fulfilment of this slow/fast assumption, let us introduce ρp for spherical shells as:

ρp = min
n∈Es

(
ωn
ωp

), (6.5.5)

where Es is the set of all the slave modes, i.e. all the modes except the master coordinate p. The

coupling relationship is given in [41], as shown in Tab. 6.5.1.

Master mode Slave modes Es

(2,0) (4,0), (4,1), (4,2), (0,1), (0,2), (0,3) and (0,4),

(3,0) (6,0), (6,1), (6,2), (0,1), (0,2), (0,3) and (0,4),

(4,0) (8,0), (8,1), (0,1), (0,2) and (1,1),

(0,1) (0,2), (0,3), (0,4), (0,5), (0,6) and (0,7),

(0,2) (0,1), (0,3), (0,4), (0,5), (0,6) and (0,7),

(2,1) (4,0), (4,1), (4,2), (4,3), (4,4), (0,1), (0,3), (0,4), (0,5), (0,6) and (0,7),

Table 6.5.1: The investigated master mode with its corresponding coupled slave modes. Where (k, 0)

are the purely asymmetric modes, (0, n) are the axisymmetric modes and (k, n) are the mixed modes.

The results are shown for 6 different master modes in Fig. 6.5.3 [86, 79]. The first three cases

are purely asymmetric modes, (2,0), (3,0) and (4,0); then the first two axisymmetric modes are

considered, and finally a mixed mode (2,1) is selected. In the figures, the reference solution is

given by the normal form approach (NNM) in magenta. The prediction given by QM MD is in

red, QM SMD in yellow and ICE in blue. The figures have two y-axis allowing to also report

the variations of ρp for the mode of interest, as function of κ.

For mode (2,0), one can observe that MD, SMD and ICE methods fail to recover 1:2 reso-

nance leading to a change of behaviour of the type of nonlinearity. On the other hand, when κ

is larger than 20, then ρp increases and is close to 4, the slow/fast assumption is retrieved and

the three methods give the same results. Modes (3,0) and (4,0) show another important feature,

already noted in [61]: the MD method has a divergence in the case of 1:1 resonance, which has

no physical explanation and is interpreted as a failure of the method. For purely asymmetric

modes, since they show a very slight dependence on curvature, this means that all the slave
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Figure 6.5.3: Type of nonlinearity for 6 modes of the shell: modes (2,0), (3,0), (4,0), (0,1), (0,2), (2,1).
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modes have strongly increasing eigenfrequencies with κ. Consequently for all these modes the

slow/fast assumption is always finally retrieved, but sometimes at large values of curvature.

Mode (0,1) has the particularity to be very well predicted by using a single linear mode,

as shown in [41]. Consequently the MD, SMD, ICE and NF methods behave correctly, even

though ρ is decreasing with κ so that slow/fast does not hold. As a matter of fact, for all

axisymmetric and mixed modes, the behaviour of their eigenfrequencies shown in Fig. 6.5.2

underlines that slow/fast assumption will never been met. Consequently the prediction of the

type of nonlinearity given by MD, SMD and ICE methods completely fails.

6.6 Conclusion

Now, a short summary about the comparison between normal form and modal derivatives is

given.

These two methods share two common points: they both introduce nonlinear mapping when

building a ROM, also, they are both non-intrusive and simulation-free method. However, it is

more interesting to see the differences between these two method. Firstly, in the nonlinear

change of coordinate aspect, the quadratic manifold only contains the displacements as un-

knowns, while the normal form approach takes into account displacements and velocities, which

is logical since displacements and velocities have to be considered as independent variables in a

dynamical system’s perspective, thus, normal form gives a more complete link to the geometry

in phase space. Secondly, the quadratic manifold is defined up to the second-order while the

expressions of normal form are up to order three and are able to touch higher orders easily.

Thirdly, as said before, normal form theory relies of firm mathematical theorems, ensuring a

clean conceptual framework, while modal derivatives appear as an ad-hoc, yet efficient, method

used in the vibration community, and it has been proved that the modal derivatives works only

when slow/fast assumption fulfilled, more details can be found in [61].

The subsequent examples have illustratively demonstrated the comparison of the these meth-

ods. The type of nonlinearity for linear beam with elastic foundation and free-edge shallow

spherical shells have been studied with a special emphasis on comparing different models and

methods. These reduction methods have been contrasted in their ability to correctly predict the

type of nonlinearity. For the beam case, the backbone curves obtained by different reduction
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methods are also compared. For the shell case, the von Kármán model has been used to illustrate

how the reduction methods can give different predictions. These results underline that same as

the ICE method, modal derivatives approaches also need a slow/fast assumption in order to

yield a correct prediction. For numerous modes of the shallow spherical shell, the slow/fast

assumption is never met so that the methods (using either MD, SMD or ICE) completely fail in

predicting correctly the hardening/softening behaviour, whereas the normal form always gives

the correct prediction.
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Part III

Applications of reduced order models to

continuous structures
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Chapter 7

Beams

In Part II, the stress manifold and quadratic manifold are theoretically compared with the

invariant manifold, and the comparisons show that these nonlinear mappings without invariant

property only work when a slow/fast assumption is fulfilled. In this Part, large FE models are

investigated instead of small models, and a special emphasis will put on the numerical solutions

of the ROMs, no analytical comparisons will be given anymore. The aim of the Part is to

present numerical comparisons of model-order reduction methods for geometrically nonlinear

structures in the general framework of FE procedures, i.e., comparing the outcomes provided by

the ROMs derived by these methods, in order to offer a more complete picture of the advantages

and drawbacks of the methods.

In this Chapter, the reduction methods are compared on finite element beam structures, and

all the calculations have been realized with the open-source finite element software Code Aster.

Three different beam examples are selected, in order to test the accuracy of the methods in dif-

ferent contexts. The first example is a clamped-clamped beam becoming an arch by increasing

curvature. The second example is a straight beam with 1:1 internal resonance between the two

possible polarization of the fundamental mode, selected in order to test the methods on a case

where two internally resonant master modes are needed. Finally a cantilever beam is selected

so as to illustrate the behaviour of the methods when inertia nonlinearity is important.
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7.1 A clamped-clamped beam with increasing curvature

The first example is a clamped-clamped beam, initially straight (case 1), for which two

different levels of curvature are added to the neutral line in order to transform the beam to a

shallow arch (case 2) and then to a non-shallow arch (case 3). Note that this example has first

been introduced in [61], where the comparison between the normal form result and the QM-

MD and SMD methods were compared on the backbone curves only. In this section, we extend

these results by first adding the ICE method in the comparisons, and second by considering a

frequency-response function with damping and forcing. The geometry of the beams and the

mesh retained are shown in Fig. 7.1.1. The straight beam has a length L=0.7m, and square

cross-section with equal thickness h and width b, h = b = 5cm. The material is linear elastic

(Young modulus E = 124 GPa, Poisson’s ratio ν = 0.3 and density ρ = 4400 kg.m−3). The

height of the static deflection of the shallow arch is 5.5cm, while that of the non-shallow arch

is 25cm. Three-dimensional hexahedral finite elements with 20 nodes are used in each case.

For the straight beam, 60 elements (4 in the section and 15 in the length), resulting in a total

number of 1287 dofs have been selected, while for the arches a total of 96 solid elements (4 in

the section and 24 in the length), resulting in 2097 dofs are used.

Figure 7.1.1: The three beams under investigation with the mesh used and the deformed shape of the

bending mode under study. Flat beam with 60 elements, arches with increasing curvature and 96 ele-

ments.

In each case, reduction to a single master mode is targeted, considering the nonlinear vibra-

tions of the first bending mode. For the straight beam, the eigenfrequency of the first bending

mode is f1=545.60 Hz. For the shallow arch, the first bending appears as the second mode (by

order of increasing frequency), with an eigenfrequency f2=372.28 Hz, and for the non-shallow

arch it appears in fourth position, with f4=1004 Hz. Let us first illustrate on this case how the

ICE method is used to retrieve the nonlinear stiffness. Fig. 7.1.2 shows the nonlinear relation-

ship found by applying a static load of amplitude β on the first bending mode, and its fitting by
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polynomial laws of order 3, 5 and 7. A total of 100 values of applied loads have been selected

for the flat beam and the shallow arch cases, and 122 for the non-shallow arch. The load scales,

as defined from the ICE method, see e.g. [19, 4, 57, 58], are chosen to obtain displacements

around the range of±1.4 times of thickness for the beam case,−2h to 3.8h for the shallow arch

and −2.74h to 1.56h for the non-shallow arch. In each case, the application of the static force

gives the displacement as a function of β, from which the fits allow inverting the relationship. In

particular, one can observe the appearance of strong even powers in the polynomial expansion

for the last two cases, with a non-symmetric restoring force. In these last two cases also, the

third-order approximation is not sufficient to correctly retrieve the stiffness behaviour law, and

order 5 is at least needed.
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Figure 7.1.2: Illustration of the fitting procedure for the ICE method: blue stars ∗ represent the outputs

obtained from static applied force on the FE model, the dashed curve is the fitted polynomial, black:

order 3, red: order 5, blue: order 7. (a) straight beam, (b) shallow arch for which the first bending mode

appears as the second mode, (c) non-shallow arch (first bending mode in fourth position).

Fig. 7.1.3 displays the backbone curves obtained for the three beams with increasing cur-

vature. A reference solution is obtained via numerical continuation on all the degrees of free-

dom, using a code with parallel implementation of harmonic balance method and pseudo arc-

length [87]. On the other hand, the reduced dynamics being composed of a single master mode,

the backbones are obtained numerically by continuation using a method combining harmonic

balance and asymptotic-numerical method implemented in Manlab.

In Fig. 7.1.3(a) for the straight clamped-clamped beam, the slow/fast assumption is very

well fulfilled and all methods easily catch the correct nonlinear behaviour. The shallow arch

results are shown in Fig. 7.1.3(b). In that case, the slow/fast assumption is just below the limit

proposed in [61], since the ratio of eigenfrequencies between the first and the third bending

modes is equal to 3.44. Also, quadratic nonlinear couplings between bending modes have
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appeared. For this main reason, the QM-SMD method fails to predict the correct nonlinear

behaviour of the backbone, as already remarked in [61]. The QM-MD and DNF reduction give

an almost equivalent result in terms of the backbone, which is close to the reference solution but

slightly departs when the amplitudes are becoming large. Finally in that case, the ICE method

provides the best approximation to the reference solution, mostly because the fitting procedure

is able to retrieve correctly the quadratic nonlinearity, and that the slow/fast assumption is not

strongly violated. Note that for all the figures, the ICE method has been used in the reduction

with the seventh-order fitted polynomial. Consequently the order in the asymptotics is larger

than the other methods, which could also explain its better performance in that case.
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Figure 7.1.3: The backbone curves for (a) the straight beam, (b) the shallow arch, and (c) the non-shallow

arch. reference solution with numerical continuation in black. Comparison of reduction methods with a

single master coordinate, purple: ICE method, blue: QM-SMD, brown: QM-MD and red: DNF.

In the case of the non-shallow arch, Fig. 7.1.3(c), the frequency ratio between third and first

bending is 1.66, meaning that the slow/fast assumption is strongly broken. The consequence is

that three methods are not able to retrieve the correct softening nonlinearity anymore: QM-MD

and QM-SMD, as well as ICE method, even though the ICE method is still pushed to seventh

order. In that case the unfulfillment of the slow/fast assumption is stronger so that whatever the

order in the ICE method, it won’t converge to the correct value. On the other hand, DNF still

predicts the correct nonlinear behaviour, and shows a slight departure at larger amplitude, the

only known limitation of the method linked to its asymptotic development.

A further insight is given to these results by computing the frequency-response functions

(FRFs) for the three tested beams. In each case, a pointwise harmonic forcing is considered,

located at the center of the beam, with an excitation frequency in the vicinity of the first bending

mode. Rayleigh damping is added to the FE model, and a stiffness proportional damping is

taken into account, such that the damping matrix reads C = ζKK. The value of the coefficient
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Figure 7.1.4: The FRF for the beam, shallow arch, and non-shallow arch. Red: DNF, Blue: SMD,

Brown: MD, Purple: ICE method, Black: reference solution.

b has been selected such that a damping ratio of 0.5% for the first bending mode is at hand,

which leads to the following numerical values: ζK = 2.91e − 06s for the straight beam, ζK =

4.27e− 06s for the shallow arch, and ζK = 1.58e− 06s for the non-shallow arch.

Fig. 7.1.4 shows the obtained results where the four reduction methods are compared to

the reference. Note that the treatment of the damping factor is strongly different in each case.

The ICE method is the less efficient method for treating out the damping. Indeed, working on

the fitting procedure of the nonlinear stiffness only, the method does not provide any method

to include the damping of the slave modes in the reduced dynamics. Consequently only the

damping of the master mode is considered, which generally leads to strongly underestimate

the losses in the ROM. This is particularly true for the straight beam case in Fig. 7.1.4(a). On

the other hand, for the two arches, the level of damping in the master mode is sufficient to

approximately predict the correct maximum value in the FRF.

The other nonlinear reduction methods, QM and DNF, takes the damping of the slave modes

in the reduction process thanks to the nonlinear mapping. This leads to a perfect match with

the reference solution in the beam case. For the arches, the problems already underlined in the

backbone persist for the FRF. In particular the QM-SMD method is not able to predict a correct

FRF for the two arches, while QM-MD gives a correct computation for the shallow arch, but

departs in the non-shallow arch case. The DNF method generally gives a correct approximation

but misses some slight quantitative informations for the two arches, mainly due to the two

approximations used to build the ROM: the asymptotics at second-order only, and the treatment

of the forcing, not strictly aligned with the nonlinear direction of the manifold but simply to the

linear eigenspace. ICE method with order seven has been used in each case, giving an excellent

result in the shallow arch case, but generally is awaited to underpredict the losses, as observed
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in the beam and non-shallow arch cases.

The results of this example exactly agree and validate the conclusion given by the theoret-

ical comparisons among these reduction methods in the last Part, i.e., ICE and QM methods

need the fulfilment of the slow/fast assumption between master and slave modes in order to

predict correct results. Also, incorrect treatment of the quadratic nonlinear terms in the QM-

SMD method leads to problematic results once the second-order terms in the restoring force

are important. Furthermore, by investigating this numerical example, one can observe that ICE

method is able to rapidly propose a ROM with possible higher orders, but fails as soon as the

slow/fast assumption is violated. Also, the method is not able to take into account the losses

of the slave mode in the dynamics of the master mode, while DNF always proposes the correct

trend in terms of hardening/softening behaviour, is able to take properly the damping of the

slave modes into account, and is only limited to its fundamental assumptions linked to the used

asymptotic and the treatment of the forcing.

7.2 Clamped beams with 1:1 resonance

The second example is a straight clamped-clamped beam that is allowed to vibrate in the

two bending directions, leading to different polarizations and consequently a 1:1 internal reso-

nance. The objective of the comparison is to illustrate the ability of the methods in handling a

more complex case with two master modes and bifurcations due to the presence of the internal

resonance, with the existence of coupled and uncoupled solutions [88, 89].

Two different cases are investigated, where the constant parameters are: the length of the

beam, L = 1m, the density ρ = 4400kg/m3, the Young modulus E = 1.04e11Pa, and the

Poisson’s ratio v = 0.3. For the space discretization, 3D hexahedral 20 nodes brick elements,

with 40 elements in the length and 4 in the cross-section, have been used. The difference

between the two beams is on their relative values of width b and thickness h. A first case with

perfect square section with h = b = 3cm gives no detuning between the eigenfrequencies of

the two polarizations of the first bending modes which are perfectly equal. On the other hand, a

second case with h = 3cm and b = 3.15cm allows creating a detuning of 4.92% between these

two eigenfrequencies. Table 7.2.1 summarizes the geometrical parameters, and Fig. 7.2.1 shows

the mesh retained and the two polarizations of the fundamental bending mode (displacements
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along these two direction are noted u and v, and w is the in-plane motion).

Case length(m) thickness(m) width(m) ω1(rad/s) ω2(rad/s) detuning ε

a 1 0.03 0.03 941.37 941.40 0.0

b 1 0.03 0.0315 941.47 987.83 4.92%

Table 7.2.1: Dimensions and eigenfrequencies of the clamped beams with and without detuning,

where ε = (ω2 − ω1)/ω1.

Figure 7.2.1: The beam mesh and the two polarizations of the first bending mode.

Since the reduced dynamics contains two master coordinates, the fitting procedure for the

ICE method first needs to create the two-dimensional stress manifold, from which the nonlinear

restoring force is deduced. The fitting procedure is illustrated in Fig. 7.2.2. 44 static load

cases with different values of (β1, β2) are selected where βi is the modal force amplitude factor

applied on mode i. From these, the modal displacements (X1, X2) are retrieved from the static

deformation, and a stress manifold is obtained, shown in space (X1, X2, β1) in Fig. 7.2.2. The

load scales are chosen so as to obtain amplitudes of displacements in the range of ±1 times

of thickness. The perfect and detuned case are considered showing a clear symmetric stress

manifold.

7.2.1 Backbone curves

We first report the computation of the backbone curves in the two selected cases, with and

without detuning. As in the previous section, a reference solution is derived thanks to nu-

merical continuation on the full-order model, and is compared to the ROMs with two master

coordinates. The analytical solution derived in [89] allows for a better understanding of the

awaited results. In particular, when a detuning is present, an uncoupled solution with the low-

est frequency mode only excited exist until a pitchfork bifurcation point, where this solution

becomes unstable in favour of a coupled solution corresponding to an elliptic mode.
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Figure 7.2.2: Illustration of the fitting procedure in ICE method, with two master modes, for the case of

the clamped beam without detuning ε = 0 (left), and with detuning ε = 4.92% (right).
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Figure 7.2.3: Backbone curves of the clamped-clamped beam in 1:1 resonance. First row: without

detuning, second row: with detuning. Left column: first polarization in u direction, center column:

zoom, right column: second polarization in v direction. Comparison of reference full-order solution

(black line) to ROMs with two master modes, purple: ICE, blue: QM-SMD, brown: QM-MD, red: DNF.

Green curve represents the analytical solution. PF: pitchfork bifurcation point.

Fig. 7.2.3 shows the obtained results. The first row corresponds to the case without detuning

while the second row with detuning. In order to correctly represent the two vibration polariza-

tions, the displacements at center of the beam in the two u and v directions (see Fig. 7.2.1)

are reported. When there is no detuning, from the first row of Fig. 7.2.3, one can observe that
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two types of backbone curves are numerically retrieved. A unstable solution, corresponding to

an uncoupled mode where only the displacement along u is excited (such that v = 0), and a

stable coupled solution with both u 6= 0 and v 6= 0, which represents that the energy of the

excited mode is transformed to the corresponding resonant mode. With the detuning, from the

second row of Fig. 7.2.3, it can be observed that the backbone curve is stable until arriving at

a pitchfork bifurcation point, then, the solution is separated into the uncoupled solution and

coupled solution branches where the resonant mode starts to be excited (v 6= 0) [89]. The main

conclusion is that all the methods are able to correctly retrieve the unforced and undamped dy-

namics of this problem, with all the specific analytical features in terms of existence, stability

and bifurcations of the 1:1 internally resonant dynamics. This is easily explained by looking at

the reduced dynamics computed by each of the methods, for the sake of brevity, the equations

are given only in the case without detuning, and for undamped-unforced case.

Using the ICE method, the polynomial third-order fitting from the set of imposed forcings

allows retrieving the following reduced dynamics:

R̈1 + 8.8618e5R1 + 4.3527e8R3
1 + 4.5018e8R1R

2
2 = 0, (7.2.1a)

R̈2 + 8.8624e5R2 + 4.3575e8R3
2 + 4.4893e8R2

2R1 = 0. (7.2.1b)

Note that, in the fitting procedure, only the nonlinear terms are assessed. The linear ones are

given as known from the eigenanalysis. The small difference between the two squared eigen-

frequency is the consequence of the small difference in the computed eigenfrequencies reported

in Tab 7.2.1, which is due to numerical roundoff. Only four monomial terms are needed and

they correspond to the ones studied in [89].

The ROM computed with the DNF method reads:

R̈1 + 8.8618e5R1 + 4.5659e8R3
1 + 4.5657e8R1R

2
2 + 0.1265R1Ṙ

2
1 + 0.0042R2Ṙ1Ṙ2 + 0.1224R1Ṙ

2
2 = 0,

(7.2.2a)

R̈2 + 8.8624e5R2 + 4.5657e8R2
1R2 + 4.5659e8R3

2 + 0.1265R2Ṙ
2
2 + 0.0042R1Ṙ1Ṙ2 + 0.1224R2Ṙ

2
1 = 0.

(7.2.2b)

The linear part is left unchanged (identity-tangent nonlinear mapping). One can observe that

the additional monomials (involving squared velocities) are obviously negligible as compared

to the four resonant cubic terms already present in Eqs. (7.2.1). This clearly underlines that the
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dynamics is completely driven by the most simple system with only four resonant monomial

terms corresponding to 1:1 internal resonance.

Using the QM-SMD method, a different nonlinear mapping is introduced. As already ob-

served in [61], the QM-SMD method produces much more monomial terms in the reduced

dynamics, with additional terms involving the accelerations. The reduced dynamics now reads:

R̈1 + 8.8618e5R1 + 4.5670e8R3
1 + 4.5668e8R1R

2
2 + 0.1263R2

1R̈1 + 0.1243R1R2R̈2 + 0.0021R2
2R̈1

(7.2.3a)

+ 0.1263Ṙ2
1R1 + 0.1243Ṙ1Ṙ2R2 + 0.0021Ṙ2

2R1 = 0,

R̈2 + 8.8624e5R2 + 4.5670e8R3
2 + 4.5668e8R2

2R1 + 0.1263R2
2R̈2 + 0.1243R2R1R̈1 + 0.0021R2

1R̈2

(7.2.3b)

+ 0.1263Ṙ2
2R2 + 0.1243Ṙ2Ṙ1R1 + 0.0021Ṙ2

1R2 = 0.

Again, one can observe that in this particularly simple case of a straight beam, all the added

terms have negligible coefficients. Again the dynamcis is driven by the simple system composed

of only four cubic terms. The same is also observed when applying the QM-MD method,

leading to the following reduced dynamics:

R̈1 + 8.8618e5R1 + 4.5670e8R3
1 + 4.5668e8R1R

2
2 + 0.1264R2

1R̈1 + 0.1243R1R2R̈2 + 0.0021R2
2R̈1

(7.2.4a)

+ 0.1264Ṙ2
1R1 + 0.1243Ṙ1Ṙ2R2 + 0.0021Ṙ2

2R1 = 0,

R̈2 + 8.8624e5R2 + 4.5670e8R3
2 + 4.5668e8R2

2R1 + 0.1264R2
2R̈2 + 0.1243R2R1R̈1 + 0.0021R2

1R̈2

(7.2.4b)

+ 0.1264Ṙ2
2R2 + 0.1243Ṙ2Ṙ1R1 + 0.0021Ṙ2

1R2 = 0.

In this particular case, the reduced dynamics given by QM-SMD and QM-MD are completely

equivalent, explaining that the methods produce exactly the same predictions. Note however

that this result is specific to the studied case and more complex structure generally leads to

different formulations for MD and SMD approaches.

As a matter of fact, the dynamical equations contains only the four resonant monomial terms

that are also retained in the analytical developments provided in [89]. All the other terms are
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negligible. The slow/fast assumption is very well fulfilled, and no quadratic terms are present.

Consequently all the methods are able to retrieve such a dynamics which is fully driven by only

four cubic terms, without invariant-breaking terms.

7.2.2 Frequency response curves

The forced-damped dynamics is now investigated by computing the FRFs. A forcing term

aligned with direction u is imposed at the center of the beam in order to excite one polarization,

and observe the nonlinear coupling with the second polarization along v. A Rayleigh damping

of the form C = ζKK is selected, with ζK = 1.0622e − 5s, corresponding to a damping

ratio of 0.5 percent for the first mode. The reduction methods are compared to the full-order

reference solution, all of them being obtained by numerical continuation. Note however that the

continuation method implemented in [87] is not able yet to perform the stability computation,

neither to locate pitchfork bifurcation points. In order to circumvent the second limitation,

a small forcing in the v direction, with an amplitude selected as 1% the amplitude in the u

direction, is also applied. Consequently the solution is perturbed with a non-zero solution in the

v direction, allowing the continuation method to retrieve the coupled branch. On the other hand,

the reduced dynamics FRFs are computed with Manlab, which reports stability and detects

pitchfork bifurcations.

Let us first illustrate the results found in the case without detuning, shown in Fig. 7.2.4,

where the amplitude of the forcing is set at 300N. The topology of the solution, already reported

in other cases (see e.g. [52]), is characterized by a pitchfork bifurcation point from which the

branch of coupled solutions arise. Along this solution branch, two Neimark-Sacker bifurcation

points exist, leading to quasiperiodic solutions in this area. Importantly, all the methods are able

to retrieve all these important dynamical features. Small quantitative differences are observable.

The ICE method strongly underestimate the damping in the reduced dynamics. This is again

a consequence of the treatment of the losses by the reduction method, which is not able to

take into account the damping factors of the slave modes. On the other hand, QM and DNF

methods produce a very satisfactory prediction of the full dynamics. QM-MD and SMD gives

completely equivalent results in this case, the curves being fully overlapped. Indeed, as reported

in Eqs. (7.2.1) to (7.2.4) in this particular case, using either MD or SMD in the reduction

method for building the quadratic manifold, produces exactly the same equations for the reduced
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Figure 7.2.4: Frequency-response functions for the beam with 1:1 resonance without detuning. Left

column is the solution in u direction (driven mode), and right column in v direction (second polarization,

companion mode). The full-order reference solution (black, without stability) is compared to different

ROMs. (a)-(b): ICE method (purple) and DNF (red). (c)-(d): QM-SMD (blue). PF: pitchfork bifurcation

point. NS: Neimark-Sacker bifurcation. Solid curves: stable part, dashed curve : unstable solution,

dash-dotted curve: unstable solution between the NS points (quasiperiodic solution).
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dynamics. Consequently in this section, only the results of QM-SMD are shown in the figures.

A slightly better quantitative prediction is given by DNF on the second polarization (companion

mode), this difference being in any case small. One can also remark that the trick used to get the

coupled solution for the full-order model is visible close to the imperfect pitchfork bifurcation

points for the second polarization.

For illustrative purpose, the numerical time integration is also given in Fig. 7.2.5. For both

full-order solution and ROM solution, Newmark-β scheme is used with β = 0.25 and γ = 0.5,

and the time step is set to be τ = 0.0002s that corresponds to a sampling rate of 5 kHz, which

fully ensures accuracy for the modes that we are investigating with 25 points per period. In each

case, the initial conditions correspond to the structure at rest in u and w direction, but has a very

small displacement in v direction with 1e− 4m, such that the response of the beam can depart

more easily from the uncoupled unstable solution.

From the figure, the ROM derived by the DNF method can perfectly catch the 1:1 internal

resonance, more importantly, as compared with the full-order solution, the amplitude in the

steady state and also the time needed for the second oscillator v to go from zero up to the steady

state are perfectly well reproduced by the time simulation on the ROM. The gains in using

ROMs for time integration are very important. The full-order analysis is run by Code Aster for

approximately 5 hours on the 12-core processor computer with 16 GB of RAM and CPU @

2.20GHz, and the construction as well as utilization of the ROM only takes about 2 minutes for

the same simulation.

The results for the beam with detuning ε = 4.92% is shown in Fig. 7.2.6, where the Rayleigh

damping is now mass-proportional and has been set to C = ζMM with ζM = 9.4147s−1 (still

following the rule of 0.5 percent for the first mode), and the amplitude of the forcing is 1500N,

a large value needed in order to enter correctly the coupled branch solution, reaching vibration

amplitudes close to 2 times the thickness. One can note that in this case all methods give

very close results. In particular, using mass-proportional damping creates damping ratios that

decreases with increasing frequencies. Consequently the damping values of the slave modes are

smaller and smaller. The consequence is that most of the losses is given by the modal damping

factor of the master modes, so that the ICE method is now able to give a correct prediction as

compared to the other methods. QM-MD and SMD are again perfectly overlapped for the same

reason as before, consequently only QM-SMD curve is shown. The branch of coupled solutions
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Figure 7.2.5: Time evolution of the displacement of the point at the center the beam, in response to an

applied concentrated force with temporal content f(t) = 300N sin(1.02ω1t). Reference solution (in

black) compared to the ROM built with DNF method (in blue) corresponding to the first two master

coordinates. (a) displacement in u direction. (b) displacement in v direction.
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Figure 7.2.6: Frequency-response functions for the beam with 1:1 resonance with detuning 4.92%. (a) u

direction (driven mode), (b): v direction (companion mode). (c)-(d) close-up views. Reference full-order

solution (black) compared to ROMs obtained with ICE method (purple), DNF (red), QM-SMD (blue).
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arise a pitchfork bifurcation, and two Neimark-Sacker bifurcation points exist along this branch,

leading to quasiperiodic solutions. Once again, these dynamical features can be retrieved by all

the methods .

As a conclusion on this case, one can observe that all the methods are able to well reproduce

the 1:1 internally resonant dynamics, by taking into account two master modes. The main reason

resides in the fact that the reduced dynamics is only driven by four resonant monomial terms

that are easy to retrieve, whatever the method used. Also the slow/fast assumption is very well

verified, so that ICE and QM methods can predict correct results. All these conclusions should

be different in the case of a shell with 1:1 internal resonance, since in this case the slow/fast

assumption and the appearance of strong quadratic couplings would completely change the

picture. A preliminary result in this direction is reported in [79], where it is observed that for

a spherical-cap shell, QM method is not able to retrieve the correct type of nonlinearity due to

the violation of the slow/fast assumption.

7.3 Cantilever beam

The last of the investigated example is a cantilever beam with length L = 1m, cross-section

with width b = 0.05m and thickness h = 0.02m. The material parameters used are density

ρ = 4400kg/m3, the elastic modulus E = 1.04e11Pa, and Poisson’s ratio ν = 0.3. The

beam is discretized with 3D hexahedral 20 nodes element. 50 elements in the length and 4

elements in the cross-section are used. For this last example, the backbone curve of the fun-

damental mode is under study, together with time domain simulations with multi-frequency

forcings, in order to test the ability of the ROMs to retrieve the correct type of nonlinearity and

their accuracy with more than one master modes in the reduction basis. The first five radian

eigenfrequencies of the cantilever beam are ω1 = 99.00(rad/s), ω2 = 246.79(rad/s), ω3 =

619.31(rad/s), ω4 = 1529.1(rad/s), ω5 = 1729.3(rad/s), showing no obvious internal reso-

nance relationship among them.

Let us first illustrate the computation of the backbone curve of the fundamental bending

mode. The ICE procedure is illustrated in Fig. 7.3.1, using a single master coordinate. A total

of 100 values of applied load cases have been selected to obtain displacements at the tip of the

cantilever in the range of±0.47m, meaning that very large displacements, up to almost one half
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the length, have been considered. One can observe that the fitting with the third-order is not

accurate enough, needing for a higher order. In the remainder of the computations, the ROM

obtained with ICE method is considered up to order 7.

-0.5 0 0.5

1

max
X

1
[m]

-500

0

500

1
[N

]

order 3

order 5

order 7

Figure 7.3.1: Illustration of the fitting procedure for the ICE method on the cantilever beam. Blue

stars represent the outputs obtained from static applied force on the FE model, the dashed curve is the

fitted polynomial, black: order 3, red: order 5, blue: order 7. The range of displacements in the x-axis

corresponds to half the length of the cantilever beam.
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Figure 7.3.2: Backbone curves of the fundamental mode of the cantilever beam. Comparison of refer-

ence solution (black) to single-mode reduced dynamics given by ICE method with fitting up to order

7 (purple), DNF (red), QM-MD (dotted brown), QM-SMD (dashed blue) and QM-SMD-f (solid blue).

Black stars: reference solution obtained with the geometrically exact beam model (GEBM) taken from

Fig. 8 of [90].

Figure (7.3.2) shows the backbone curves. Apart from the classical analytical model initially

119



proposed in [91] and asymptotically truncated to the third order, for which the backbone curves

of the first bending modes have been computed for instance in [92, 93], very few numerical

attempts to accurately compute those backbone curves for very large amplitudes have been

proposed, the only reference being [90], which is based on a geometrically exact beam model

(GEBM). Fig. 7.3.2 reports those results with black stars, labelled GEBM, this computation

has been made by O. Thomas and in the figure the points are directly taken from [90]. Each

point corresponds to the time integration of the beam model, discretized with 20 Timoshenko

first order finite elements, under harmonic driving in the steady state at the nonlinear resonance

(the point at which the amplitude is maximal), which is very close to the phase resonance

corresponding to the backbone curve (see [90] for details about the geometrically exact beam

model and [94] for the phase resonance). This reference solution attests a slight hardening

behaviour, up to very large amplitudes, equivalent to more than half the length of the beam.

The results of this beam model are very close to the reference full-order solution, obtained with

the present 3D finite element model of the beam, the slight difference being attributed to the

difference in the models (3D and beam model).

Comparing the ROMs, the ICE method gives the most incorrect result with a strong over-

prediction of the hardening behaviour. The method being essentially static, it is known that it

faces important failures when an inertia nonlinearity is present, However, It should be noted

that recently Nocolaidou et al [95] proposed an improvement for the ICE method to overcome

such limitation, this will not be introduced in the thesis and one can refer to the article [95]

for more details. The DNF method gives the correct behaviour up to a vibration amplitude of

approximately 0.2m, meaning that the method is reliable up to 1/5 the beam’s length. Then the

solution strongly departs from the reference. This limitation is due to the order-three dynamics

of the reduction method, and taking into account higher orders would improve the result.

The QM methods, using either MD or SMD, give again identical reduced dynamics in this

case. Importantly, it offers the best solution for this specific case, with vibration amplitudes

up to more than 0.6 times the length of the beam. One can note that the result presented here

is different from the one reported in [21], where the QM-SMD method was found to fail in a

similar cantilever case. In order to understand this discrepancy, another implementation of the

QM-SMD method has been applied to the same case, and is referred to as ”QM-SMD-f” case

(where the added letter -f refers to ”full” QM SMD approach). In this version, the reduced
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dynamics used to compute the backbone curve is the untruncated one, given by Eq. (6.2.5),

with polynomial terms up to order 7, which is the one used in [21], that is different from the

one we used throughout the paper, where all reduced dynamics given by QM method have

been truncated to order three. Interestingly, the full implementation of the QM-SMD method

gives very incorrect results, following the conclusions drawn in [21]. On the other hand, our

implementation of the QM method with dynamics truncated up to order three gives an excellent

result, underlining that unbalanced higher-order terms have a huge effect on the prediction of

the reduced dynamics in this specific case.

In order to further illustrate the comparison, time responses have been computed with har-

monic forcings with two and three driving frequencies and located at the free tip of the can-

tilever, in order to test the ability of the different methods with either two or three master

modes. In this last comparison, only QM-based methods and DNF are studied. Indeed, as

already reported in [57, 58], the fitting procedure in the ICE method with an increasing number

of master modes becomes more and more difficult and subject to important variations depend-

ing on the load scales selected. Second, the computations reported in [40] underlines the limits

of the ICE method for tackling a problem including inertia nonlinearity as in the present case

of a cantilever beam. Finally, the incorrect result found with only one master mode, as well

as preliminary computations with two master modes, clearly underlines that the ICE methods

gives result that are too far from the reference. Therefore, the results of the ICE method would

no longer be shown in this case.

For the numerical time integration, Newmark-β scheme with β = 0.25, and γ = 0.5, has

been selected. The time step τ = 0.0001s corresponds to a sampling rate of 10 kHz, with

20 points per period, ensuring accuracy up to mode number 6. Also this value is large as

compared to the selected forcing frequency, exciting the low-frequency modes in the range

[15, 300] Hz. A mass-proportional Rayleigh damping, with Cf = 2M (in s−1), is taken into

account, corresponding to a damping ratio of 1 percent for the first mode. In each case, the

initial conditions correspond to the structure at rest.
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Figure 7.3.3: Time evolution of the vertical displacement of a point at the tip end of the cantilever

beam, in response to an applied concentrated force with temporal content f(t) = F0(sin(1.21ω1t) +

sin(0.97ω3t)). Reference solution (in black compared) to three different ROMs built with two modes

corresponding to master coordinates 1 and 3: blue: QM-SMD, brown: QM-MD, red: DNF. Also shown

in green is the full-order model assuming linear restoring force. (a) F0 = 400N. (b) F0 = 800N. (c)

Frequency content of the time signals shown in (b) for F0 = 800N.

The first case considers a two-frequency harmonic excitation, with driving frequencies in

the vicinity of the first and third eigenfrequencies of the structure. More precisely, the temporal

content of the external force reads f(t) = F0(sin(1.21ω1t) + sin(0.97ω3t)), and two different
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amplitudes of the forcing are tested, F0 = 400N and F0 = 800N, in order to reach vibration am-

plitudes respectively up to 0.2m (1/5 the length of the cantilever) and 0.4m. Fig. 7.3.3 shows the

obtained results, where the full-order solution assuming a linear restoring force is also shown

in green. Neglecting the nonlinear terms in Eq. (8.1.1) allows directly assessing the level of

excited nonlinearity. In Fig. 7.3.3(a) with F0 = 400N, the level of nonlinearity is too small

and all vibrations data are very close to each other, for the reduced models as well as for the

linear assumption. This is not the case anymore for F0 = 800N, and Figs. 7.3.3(b-c) shows both

the temporal and frequency content. The importance of the nonlinearities is particularly well

assessed in Figs. 7.3.3(c) where one can observe that the linearized system is not able to repro-

duce the important frequency content outside the excitation frequencies. Now comparing the

reduction methods, the QM-MD and SMD methods offer the best comparison to the reference

full-order solution, with time traces and spectra that are very close. On the other hand, the DNF

method slightly departs from the reference solution. This is again attributed to the second-order

truncation used in the present DNF approach, and higher orders should be able to recover better

results. However one can note the correct predictive behaviour of the DNF method, which fails

to accurately reproduce details in the time trace, but remains very close to the reference in terms

of frequency content, meaning that only slight phase problems are present.

The gains in using ROMs for time integration are very important. The full-order analysis is

run by Code Aster for approximately 24 hours on the 12-core processor computer with 16 GB

of RAM and CPU @ 2.20GHz, and the construction as well as utilization of the reduced-order

models only takes about 3 minutes for the same simulation.

The last case under study is an excitation with three driving frequencies and temporal con-

tent selected as f(t) = sin(1.21ω1t) + sin(0.97ω3t) + sin(0.98ω5t), and amplitude 400N.

The ROMs have been built with three master coordinates corresponding to modes 1, 3 and

5. Fig. 7.3.4 shows the obtained results, both in the time and frequency domain. In this case

the nonlinearity is sufficiently excited with a forcing amplitude of 400N and very important

differences already appear between time traces and frequency content. Regarding the ROMs,

one can observe that the QM-based methods gives excellent results, almost coincident with the

full-order model. On the other hand, the DNF method shows a slight departure to the refer-

ence solution. One can note however that this departure is moderate, with small shifts in the

time domain but a very good recovery of the frequency content. The full-order analysis is run
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Figure 7.3.4: Vibration response of the cantilever beam to an applied concentrated force at the tip, with

amplitude 400N and temporal content f(t) = sin(1.21ω1t)+sin(0.97ω3t)+sin(0.98ω5t). (a) full view

of the time response in the first 0.7s, (b) close-up view. (c) Fourier spectrum of the vibration up to 500Hz,

(d) and (e) close-up views of the first frequency peak (mode 1) and second frequency peak corresponding

to mode 3. Reference solution in black compared to three different ROMs built with three modes: blue:

QM-SMD, brown: QM-MD, red: DNF. Full-order model with linear restoring force in green.

by Code Aster for approximately 20 hours on the same computer mentioned previously, the

construction as well as utilization of the reduced-order models still only takes about 3 minutes.

To conclude on this example, the three reduction methods (ICE, QM and DNF) have been

tested on a cantilever beam. The ICE method is not able to handle successfully this case, mainly

due to the importance of the nonlinear inertia effects that are missed in the construction of the

ROM. DNF gives good results up to an amplitude of 1/5 the length of the cantilever, in line

with the results reported in [76] on a clamped-free fan blade. One advantage of the method is

to always predict the correct hardening/softening behaviour at first-order, and to rely on invari-

ant manifolds theory. On the other hand, when reaching very large amplitudes, the limitation

of using a third-order asymptotic comes into play. The QM methods have given excellent re-
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sults in this case, be it used with either full or static modal derivatives. This is in contrast

with [21] where an untruncated version of the reduced dynamics was used for that case, such

that the higher-order terms introduced in the dynamics by the quadratic part have not been bal-

anced by higher-order terms in the nonlinear mapping. On the other hand, our computations

show that, when limited to the third-order, the QM methods give excellent predictions in the

cantilever case. This result would need further investigations for offering a complete under-

standing. Indeed, at present there is no theoretical arguments supporting a better behaviour of

the QM method. As demonstrated in [61], QM methods does not project the problem on an

invariant manifold, and needs the slow/fast assumption to retrieve correct results. Even though

the slow/fast separation is well fulfilled in this case, there is no explanation that the methods

could provide such perfect predictions up to very large amplitudes. A reason might come from

the acceleration terms that are produced by the method in the reduced dynamics.
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Chapter 8

Shells

8.1 Free shallow spherical shells with 1:1 internal resonance

A free-edge spherical shell, which has been analytically investigated in Section 6.5 with von

Kármán model, is now studied on the FE model. The schematic of the shell is shown again as

Fig. 8.1.1.

Figure 8.1.1: Geometry of the free-edge shallow spherical shell.

8.1.1 FE Prediction of the Type of Nonlinearity

In this section, a FE procedure is undertaken in order to analyze the type of nonlinearity of

shallow spherical shells. For that purpose, free-edge shallow shells have been meshed with both

2D shell elements and 3D brick elements. These meshes will be used in order to highlight the

validity of von Kármán’s assumption in order to predict hardening/softening behaviour.

For the geometrically nonlinear structures, the equations of motion stemming from the FE
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discretization write as shown in Eq. (2.1.3), and given again here:

MẌ + KX + G(X,X) + H(X,X,X) = 0, (8.1.1)

where X is the vector of generalized displacements at the nodes, M is the mass matrix, K is the

tangent stiffness matrix, and finally, G(X,X) and H(X,X,X) represents quadratic and cubic

nonlinear couplings.

This section is devoted to compute the type of nonlinearity from FE models. For that pur-

pose, one has first to select a number of specific cases of curvature since continuous increasing

of κ is out of reach. Tab. 8.1.1 summarizes the selected case, where a constant value of radius

a=0.15m has been retained. Varying the radius of curvatureR and the thickness h gives rise to a

number of κ values that can be directly compared with the predictions obtained in the previous

section.

In the FE model, the material properties of the shell are the following: ρ = 4400kg/m3,

E = 1.04e + 11Pa, ν = 0.3. Two types of elements are used in the analysis. In the first

case, DKT shell/plate element are used and a mesh composed of 12000 degrees of freedom

(dofs), has been built, with three different thicknesses: 1mm, 3mm and 5mm. In the second

case, quadratic 3D element are selected and a mesh composed of approximately 50000 dofs,

with the thickness 3mm, has been created. A careful convergence study has underlined that the

eigenfrequencies need to be finely computed in order to obtain a reliable result for the type of

nonlinearity.

a(m) 0.15

R(m) 3.5 2.5 1.5 0.9 0.8 0.7 0.6 0.5 0.4 0.3

κ(h = 0.001m) 41.3 81.0 225.0 625 791 1033.16 1406.25 2025 3164.06 5625

κ(h = 0.003m) 4.59 9 25 69.44 87.89 114.80 156.25 225 351.56 625.00

κ(h = 0.005m) 1.65 3.24 9 25 31.64 41.32 56.25 81 126.56 225.00

Table 8.1.1: Dimensions of the selected shells for the FE analysis with the corresponding κ values.

In order to predict the hardening/softening behaviour for the FE shell models, the direct

normal form (DNF) introduced in [76] is used. The type of nonlinearity can be computed from
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Γ̂pDNF that reads in this case:

Γ̂pDNF =
1

8ω̂2
p

[3(Âpppp + ĥpppp) + ω̂2
pB̂

p
ppp]. (8.1.2)

In this equation, ĥpppp is the nonlinear cubic coefficient that can be directly computed with a

single STEP operation [13]. The other correcting terms Âpppp and B̂p
ppp can be directly computed

from the FE model thanks to the DNF approach, that allows to go directly from the physical

space (nodes of the FE mesh) to the invariant-based span of the phase space, thanks to the

nonlinear mapping given by the normal form approach. The complete expressions for leading

these computations are explicit in [76], here we recall the values of the needed coefficients as

given by Eqs. (6.1.11):

Âpppp = 2φTp G(φp, āpp), B̂p
ppp = 2φTp G(φp, b̄pp), (8.1.3)

where the expression of āpp, b̄pp can be found in Eq. (6.1.7).

In order to draw out the comparison with the results obtained in the previous sections (von

Kármán model) where a nondimensionalisation was carried out, the relationship between the co-

efficient computed from FE model Γ̂pDNF and dimensionless ΓpD is explicit as: ΓpD = Γ̂pDNFh
2v2,

where v is the mode shape scaling factor, which is chosen to obtain the same maximal amplitude

for the analytical and FE mode shapes, i.e. φ̂p = φpv, with φp normalized by
∫∫

ϕ⊥
φ2
pdS = 1 in

analytical von Kármán model.

Fig. 8.1.2 compares the analytical result given by von Kármán model and normal form onto

the analytical coefficients, to those obtained from the direct computation on the FE model,

where again two different types of elements (DKT shell/plate element and 3D elements) have

been used. The same mode as in Fig. 6.5.3 are used. A perfect matching is obtained between

the two methods, underlining that the von Kármán model, even though relying on numerous as-

sumptions, is sufficient in order to correctly predict the type of nonlinearity of shallow spherical

shell. The results also underlines the efficiency of the DNF approach for computing accurate

ROMs for shell models.
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Figure 8.1.2: Type of nonlinearity for 6 modes of the shell: modes (2,0), (3,0), (4,0), (0,1), (0,2), (2,1).

Comparison of analytical results from von Kármán model (continuous lines) to numerical predictions

obtained by combining FE procedure with DNF.
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8.1.2 Backbone curves

The backbone of asymmetric modes of the shells are investigated on the FE models with the

same material and mesh given in last section. Two examples have been investigated: a flat plate

and a shallow shell with the dimensions shown in the following Tab. 8.1.2, and for each of the

case, the first three asymmetric modes will be investigated. The idea is to extend the beam case

with 1:1 resonance, as shown in Section 7.2, to the shell and hence draw a comparison of the

performance of all the reduction methods when quadratic nonlinearity is involved.

Case Radius of curvature R(m) thickness h(m) radius a(m) κ

Flat plate ∞ 0.003 0.15 0

Shallow shell 1.5 0.003 0.15 25

Table 8.1.2: The dimensions of investigated shells.

However, there is a problem of this test cases, that is we are not able to find the reference

solution currently. On the one hand, the thin shells are investigated, such that in FE package

the shell/plate elements have to be employed instead of using 3D elements, in such context, we

do not have the full-order FE solution yet. On the other hand, there is no analytical solution

for such shell test cases, since the normal form for the shell is more complex than for the beam

and results of [89] are not available. Consequently, only prelimination results are given in this

section.

In Example 1, the flat circular plate with artificial detuning 0.4% is investigated (κ = 0) such

that there is no quadratic nonlinearity between the bending modes and the slow/fast assumption

is fulfilled well. The plate is researched with artificial detuning 0.4% by slightly transforming

the shape from circular to be elliptical, in order to offer more practical meaning to the exam-

ple. The backbone curves computed by the ROMs derived from different reduction methods are

shown in Fig. 8.1.3. One can observe that for the first three asymmetric modes, the backbone

curves computed on the ROM derived by the SMD, MD and DNF are agree well with each

other, also, the results have the same characteristics as compared with the cases of the clamped

beam with two polarizations, in another words, the 1:1 resonance and pitchfork bifurcations

have been retrieved well by the ROMs derived from all the reduction methods, this example

validate again the conclusion obtained from the beam case with 1:1 resonance, that is, when
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slow/fast assumption at hand, the stress manifold and quadratic manifold tend to equal to in-

variant manifold and thus work well. In Example 2, however, the three methods show different

results with increasing of the curvature of the shells, as shown in Fig. 8.1.4. Take the backbone

curves of mode (3,0) shown the second row of Fig. 8.1.4 as the example, one can observe that

the DNF predicts the hardening behaviour while the prediction given by SMD and MD shows

softening behaviour. The reason for arising such difference is that the slow/fast assumption is

not fulfilled any more, as the consequence, the results predicted by quadratic manifold (derived

by either SMD or MD) should not be correct. Also, it should be noted that these three methods

are limited to the third-order asymptotic, and a higher order is needed to retrieve the correct

backbone curves. Because of the lack of referencer solution, no more comments will be made

and this example is awaited to be investigated in the future.

132



Example 1: κ = 0 (free-edge circular plate, with artificial detuning 0.4%), modes (2,0),

(3,0), (4,0)
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Figure 8.1.3: Backbone curves (red: NNM, blue: QM-SMD, brown: QM-MD) for the mode (2,0)(top),

(3,0)(middle), (4,0)(bottom), with unstable part dashed and stable part in solid.
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Example 2: κ = 25, modes (2,0), (3,0), (4,0)
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Figure 8.1.4: Backbone curves (red: NNM, blue: QM-SMD, brown: QM-MD) for the mode (2,0)(top),

(3,0)(middle), (4,0)(bottom), with unstable part dashed and stable part in solid.
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Chapter 9

Conclusion of the numerical tests on the

large FE models

In this contribution, three nonlinear reduction methods for thin continuous structures vi-

brating with large amplitudes were compared: the implicit condensation and expansion (ICE)

method, the quadratic manifold (QM) methods using either full modal derivatives (MDs) or

only static modal derivatives (SMDs), and the direct normal form (DNF) method. From the the-

oretical point of view, the three methods propose a reduction of a curved subspace, a feature that

is needed to take the nonlinear couplings into account. Only the last two propose a nonlinear

mapping to go from the physical space to the reduction space, and only the DNF method relies

on invariant manifolds, which is a key feature in order to produce accurate and reliable ROMs.

Indeed, when the reduction subspaces are not invariant, the trajectories produced by the ROM

do not correspond to any trajectory of the full system, which might be problematic. An impor-

tant consequence shown in [96, 61, 58] is that the ICE and QM-based methods need a slow/fast

separation between the master and slave coordinates in order to predict the correct results.

In Chapter 7, FE-based beam examples were selected in order to offer a more complete

picture of the advantages and drawbacks of the methods. In the first example, the curvature was

added to a straight clamped–clamped beam, enforcing important nonlinear quadratic couplings

together with an unfulfillment of the slow/fast assumption. Similar conclusions to those from

the academic, analytical example were drawn. A straight beam with two polarizations was then

studied, showing that all of the tested methods were able to correctly retrieve these 1:1 internally

resonant dynamics. Finally, a cantilever beam was investigated, showing that ICE method could
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not catch the correct behavior from the small amplitudes, whereas the DNF method allowed

correct prediction of up to 1/5 of the length of the beam, and the QM methods gave excellent

results up to larger amplitudes, more than 1/2 of the length for the backbone of the fundamental

mode. It has been underlined that these results need further investigation, as they are different

from the results reported in [21], and there is no theoretical support yet that can explain such

good results.

Chapter 8 aims at enlarging the scope to include more complex structures, more specifically,

the case of shells, where the differences between the methods are more pronounced. Firstly, the

type of non-linearity for free-edge shallow spherical shells has been studied with a special em-

phasis on comparing different models (von Kármán model and FE model). For that purpose, the

DNF approach has been used, allowing to directly compute and predict the type of nonlinearity

from FE models. Both models have been found to give the same predictions, underlining that

the assumptions of the von Kármán model are well fulfilled so that the predictions given are

correct. Further comparisons on the backbone curves await to be investigated.

As a summary of the different methods, one can underline the following results. For the

ICE method, the main advantage resides in its ease of use and in the rapid and correct results it

might give when only one master mode is considered and the slow/fast assumption is verified.

On the other hand, it is not reliable when the slow/fast assumption is not valid anymore, and as

it is a static method in essence, it encounters strong difficulties in a case such as the cantilever

beam. Finally, the treatment of the damping is elementary, and the loss factors of the slave

modes are not taken into account in the reduced dynamics, generally leading to underprediction

of the losses in the reduced dynamics.

The QM methods also need the slow/fast assumption and fail in predicting the correct type

of nonlinearity when it is not fulfilled. The QM–SMD method proposes a treatment of the

quadratic nonlinearity that can lead to erroneous predictions. On the other hand, the QM-MD

method generally gives better results. The QM methods propose an improvement as compared

to the ICE method, as shown in the numerous examples derived in this section. In particular, the

treatment of the damping is more robust and takes the slave modes into account. Further insight

is needed in the case of the cantilever to better understand the behavior of the reduction method.

The DNF method has the invariance property embedded and generally includes the most

appealing theoretical features without needing any extra assumptions for its use. It is limited
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to its third-order asymptotic, so the results are expected to deteriorate at very large amplitudes,

which was clearly observed in the cantilever beam example. It offers a general treatment of

damping that includes the slave modes. Other limitations are linked to the assumption made to

take into account the forcing, which might need further developments.
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Part IV

Analysis of the dynamics of a system with

1:2 internal resonance and cubic

nonlinearity
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Chapter 10

Derivation of the normal form

In this part, two nonlinear oscillators, featuring 1:2 internal resonance (their eigenfrequen-

cies being such that ω2 ≈ 2ω1) and cubic nonlinearity, are studied. A particular goal is to revisit

the change of hardening/softening behaviour in the crossing of 1:2 resonance, as shown in [41].

The idea is to reuse the example as shown in Fig. 6.5.3 with a complete 2 dofs system, instead

of a single dof approximation, to discover if there is an augmented representation that could

smooth the diverging behaviour. For that purpose, the starting point is the nonlinear system

under its real normal form. Note that in earlier calculation of real normal form presented in

[51, 52], the case of second-order internal resonance was not fully tackled. In particular, in the

process of the computation, the presence of quadratic resonant monomials creates new cubic

coefficients that had not been calculated before. The first step of this chapter is thus to derive

the complete real norm form with 1:2 resonance and up to the cubic terms. Then, the normal

form dynamics is analysed with a multiple scale approach, and computation of backbone curves

and behaviour of hardening/softening is investigated with varying detuning, i.e. the equations

will be analysed in the vicinity of 1:2 resonance but also very far from it, which is not a common

practice.

Rewriting the equations of motion of the system shown in Eq. (2.1.5), the generalized coor-

dinates for the displacement and the velocity read:

Ẋp = Yp,

Ẏp = −ω2
pXp −

N∑
i=1

N∑
j≥i

gpijX
p
iX

p
j −

N∑
i=1

N∑
j≥i

N∑
k≥j

hpijkX
p
iX

p
jX

p
k .

(10.0.1)

In order to better present the results, in this Chapter the computation is started on a two dofs
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nonlinear system, such that Eq. (10.0.1) is rewritten as:

Ẋ1 = Y1,

Ẏ1 = −ω2
1X1 − g1

11X
2
1 − g1

12X1X2 − g1
22X

2
2 − h1

111X
3
1 − h1

112X
2
1X2 − h1

122X1X
2
2 − h1

222X
3
2 ,

Ẋ2 = Y2,

Ẏ2 = −ω2
2X2 − g2

11X
2
1 − g2

12X1X2 − g2
22X

2
2 − h2

111X
3
1 − h2

112X
2
1X2 − h2

122X1X
2
2 − h2

222X
3
2 ,

(10.0.2)

The following sections give the procedure of elimination of the quadratic and cubic terms by

using normal form theory and building the reduced nonlinear dynamics.

10.1 Elimination of the quadratic terms

In the section, the nonlinear coordinate change has been defined for cancelling all the non-

resonant quadratic terms, since this processing does not involve cubic terms, the system (10.0.2)

is truncated to the following equation:

Ẋ1 = Y1,

Ẏ1 = −ω2
1X1 − g1

11X
2
1 − g1

12X1X2 − g1
22X

2
2 ,

Ẋ2 = Y2,

Ẏ2 = −ω2
2X2 − g2

11X
2
1 − g2

12X1X2 − g2
22X

2
2 .

(10.1.1)

by changing the coordinates (Xp, Yp) to (Up, Vp), and from the previous calculation [51, 56, 55],

there is no term in the form of UpVp in the expression of Xp, and UpUp, VpVp in the expression

of Yp. Thus, one can obtain the relationship between coordinates as:

X1 = U1 + a1
11U

2
1 + a1

12U1U2 + a1
22U

2
2 + b1

11V
2

1 + b1
12V1V2 + b1

22V
2

2 ,

Y1 = V1 + γ1
11U1V1 + γ1

12U1V2 + γ1
21U2V1 + γ1

22U2V2,

X2 = U2 + a2
11U

2
1 + a2

12U1U2 + a2
22U

2
2 + b2

11V
2

1 + b2
12V1V2 + b2

22V
2

2 ,

Y2 = V2 + γ2
11U1V1 + γ2

12U1V2 + γ2
21U2V1 + γ2

22U2V2,

(10.1.2)

such that the non-resonant quadratic terms in Eq. (10.1.1) can be cancelled by using the nonlin-

ear change of variables by combining Eqs. (10.1.1) and (10.1.2) and taking assumption of

U̇p = Vp + o(U2
p , V

2
p ) and V̇p = −ω2

pUp + o(U2
p , V

2
p ) for p = 1, 2. (10.1.3)
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The coefficients of apij, b
p
ij, γ

p
ij (for i, j, p=1 or 2) in Eq. (10.1.2) are solved, and read as:

a1
11 =

g1
11

−3ω2
1

, b1
11 =

2g1
11

−3ω4
1

, γ1
11 =

g1
11

−3ω2
1

,

a1
22 =

(2ω2
2 − ω2

1)g1
22

−(4ω2
1ω

2
2 − ω4

1)
, b1

22 =
2g1

22

−(4ω2
1ω

2
2 − ω4

1)
, γ1

22 =
−2ω2

1g
1
22

−(4ω2
1ω

2
2 − ω4

1)
,

a2
22 =

g2
22

−3ω2
2

, b2
22 =

2g2
22

−3ω4
2

, γ2
22 =

g2
22

−3ω2
2

,

a2
12 =

g2
12

(ω2
1 − 4ω2

2)
, b2

12 =
g2

12

ω2
1(ω2

1 − 4ω2
2)
, γ2

12 =
−g2

12

(ω2
1 − 4ω2

2)
, γ2

21 =
(ω2

1 − 2ω2
2)g2

12

ω2
1(ω2

1 − 4ω2
2)
.

(10.1.4)

However, the solution of the terms a1
12, b

1
12, γ

1
12, γ

1
21, a

2
11, b

2
11, γ

2
11 have component of (ω2 − 2ω1)

in their denominator, read:

a1
12 =

ω2
2g

1
12

−ω2
2(2ω1 − ω2)(2ω1 + ω2)

, b1
12 =

2g1
12

−ω2
2(2ω1 − ω2)(2ω1 + ω2)

,

γ1
12 =

(ω2
2 − 2ω2

1)g1
12

−ω2
2(2ω1 − ω2)(2ω1 + ω2)

, γ1
21 =

−ω2
2g

1
12

−ω2
2(2ω1 − ω2)(2ω1 + ω2)

,

a2
11 =

(2ω2
1 − ω2

2)g2
11

−ω2
2(2ω1 − ω2)(2ω1 + ω2)

, b2
11 =

2g2
11

−ω2
2(2ω1 − ω2)(2ω1 + ω2)

, γ2
11 =

2g2
11

4ω2
1 − ω2

2

,

(10.1.5)

thus their solution can be infinity instead of a certain value, and has to be replaced by 0. In such

context, by inserting Eq. (10.1.2) into Eq. (10.1.1) and let terms a1
12, b

1
12, γ

1
12, a

2
11, b

2
11, γ

2
11 equal

to 0, one can obtain the nonlinear dynamics with new coordinates (U, V ) by:

U̇1 = V1,

V̇1 = −ω2
1U1 − g1

12U1U2 − o(U3
i , V

3
i ),

U̇2 = V2,

V̇2 = −ω2
2U2 − g2

11U
2
1 − o(U3

i , V
3
i ).

(10.1.6)

Eq. (10.1.6) is the real normal form at order two, which is different from the case without 1:2

resonance. Comparing Eq. (10.1.6) to Eq. (10.1.3), there are two quadratic resonant terms that

can not be cancelled. Now inserting Eqs. (10.1.1) into (10.1.2) and let terms a1
12, b

1
12, γ

1
12, a

2
11, b

2
11, γ

2
11
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equal to 0, the following equations are obtained:

U̇1 + 2a1
11U1V1 + 2a1

22U2V2 + 2b1
11V1V̇1 + 2b1

22V2V̇2 = V1 + γ1
11U1V1 + γ1

22U2V2, (10.1.7a)

V̇1 + γ1
11V

2
1 + γ1

11U1V̇1 + γ1
22V

2
2 + γ1

22U2V̇2 (10.1.7b)

= −ω2
1(U1 + a1

11U
2
1 + a1

22U
2
2 + b1

11V
2

1 + b1
22V

2
2 )− g1

11U
2
1 − g1

12U1U2 − g1
22U

2
2 ,

U̇2 + a2
12V1U2 + a2

12U1V2 + 2a2
22U2V2 + b2

12V̇1V2 + b2
12V1V̇2 + 2b2

22V2V̇2 (10.1.7c)

= V2 + γ2
12U1V2 + γ2

21U2V1 + γ2
22U2V2,

V̇2 + γ2
12V1V2 + γ2

12U1V̇2 + γ2
21V2V1 + γ2

21U2V̇1 + γ2
22V

2
2 + γ2

22U2V̇2 (10.1.7d)

= −ω2
2(U2 + a2

12U1U2 + a2
22U

2
2 + b2

12V1V2 + b2
22V

2
2 )− g2

11U
2
1 − g2

12U1U2 − g2
22U

2
2 ,

Inserting Eqs. (10.1.6), instead of (10.1.3), into Eq. (10.1.7), and then sorting out the equations,

one obtains:

U̇1 = V1+2b1
11g

1
12U1U2V1 + 2b1

22g
2
11U

2
1V2, (10.1.8a)

V̇1 = −ω2
1U1 − g1

12U1U2+γ1
11g

1
12U

2
1U2 + γ1

22g
2
11U

2
1U2, (10.1.8b)

U̇2 = V2+b2
12g

1
12U1U2V2 + b2

12g
2
11V1U

2
1 + 2b2

22g
2
11U

2
1V2, (10.1.8c)

V̇2 = −ω2
2U2 − g2

11U
2
1 +γ2

12g
2
11U

3
1 + γ2

21g
1
12U1U

2
2 + γ2

22g
2
11U

2
1U2. (10.1.8d)

Eqs. (10.1.8) show the dynamics with the new cubic terms due to the resonant quadratic terms.

To obtain the normal form dynamics of the system, new coordinateW is introduced in order

to simplify the equations, and expressed as:

W1 = V1 + 2b1
11g

1
12U1U2V1 + 2b1

22g
2
11U

2
1V2,

W2 = V2 + b2
12g

1
12U1U2V2 + b2

12g
2
11V1U

2
1 + 2b2

22g
2
11U

2
1V2,

(10.1.9)

the Eq. (10.1.8) can thus be rewritten as:

U̇1 =W1,

Ẇ1 =− ω2
1U1 − g1

12U1U2 + γ1
11g

1
12U

2
1U2 + γ1

22g
2
11U

2
1U2

+ 2b1
11g

1
12(W1U2W1 + U1W2W1 − U1U2U1ω

2
1) + 2b1

22g
2
11(2U1W1W2 − U2

1U2ω
2
2) + o(U4

i ,W
4
i ),

U̇2 =W2,

Ẇ2 =− ω2
2U2 − g2

11U
2
1 + γ2

12g
2
11U

3
1 + γ2

21g
1
12U1U

2
2 + γ2

22g
2
11U

2
1U2

+ b2
12g

1
12(W1U2W2 + U1W2W2 − U1U2U2ω

2
2) + b2

12g
2
11(−ω1U

3
1 + 2U1W

2
1 )

+ 2b2
22g

2
11(2U1W1W2 − U2

1U2ω
2
2) + o(U4

i ,W
4
i ).

(10.1.10)
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It can be found that all the non-resonant quadratic terms have been cancelled in the dynamics

given in Eq. (10.1.10), only two quadratic terms kept and new cubic terms created because of

1:2 resonance.

10.2 Elimination of the cubic terms

Now, the calculation for eliminating the cubic terms with the new coordinates is presented.

Firstly, replacing the (Xi, Yi) by (Ui, Vi), i.e. substituting Eq. (10.1.2) to Eq. (10.0.2), then

combining with Eq. (10.1.9) such that the coordinate transformation from (Ui, Vi) to (Ui,Wi)

is made, thus, the system with third order terms now reads as:

U̇1 = W1,

Ẇ1 = −ω2
1U1 − h1

111U
3
1 − h1

112U
2
1U2 − h1

122U1U
2
2 − h1

222U
3
2

− g1
11(2a1

11U
3
1 + 2a1

22U
2
2U1 + 2b1

11U1W
2
1 + 2b1

22U1W
2
2 )

− g1
12(U1U2 + a2

12U
2
1U2 + a2

22U1U
2
2

+ b2
12U1W1W2 + b2

22U1W
2
2 + a1

11U2U
2
1 + a1

22U
3
2 + b1

11U2W
2
1 + b1

22U2W
2
2 )

− g1
22(2a2

12U1U
2
2 + 2a2

22U
3
2 + 2b2

12U2W1W2 + 2b2
22U2W

2
2 )

+γ1
11g

1
12U

2
1U2 + γ1

22g
2
11U

2
1U2 + 2b1

11g
1
12(W 2

1U2 + U1W2W1 − U2
1U2ω

2
1) + 2b1

22g
2
11(2U1W1W2 − U2

1U2ω
2
2),

U̇2 = W2,

Ẇ2 = −ω2
2U2 − h2

111U
3
1 − h2

112U
2
1U2 − h2

122U1U
2
2 − h2

222U
3
2

− g2
11(U2

1 + 2a1
11U

3
1 + 2a1

22U
2
2U1 + 2b1

11U1W
2
1 + 2b1

22U1W
2
2 )

− g2
12(a2

12U
2
1U2 + a2

22U1U
2
2 + b2

12U1W1W2 + b2
22U1W

2
2 + a1

11U2U
2
1 + a1

22U
3
2 + b1

11U2W
2
1 + b1

22U2W
2
2 )

− g2
22(2a2

12U1U
2
2 + 2a2

22U
3
2 + 2b2

12U2W1W2 + 2b2
22U2W

2
2 )

+γ2
12g

2
11U

3
1 + γ2

21g
1
12U1U

2
2 + γ2

22g
2
11U

2
1U2

+b2
12g

1
12(W1U2W2 + U1W

2
2 − U1U

2
2ω

2
2) + b2

12g
2
11(−ω1U

3
1 + 2U1W

2
1 ) + 2b2

22g
2
11(2U1W1W2 − U2

1U2ω
2
2).

(10.2.1)
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Sorting out above Eq. (10.2.1), one obtains:

U̇1 =W1,

Ẇ1 =− ω2
1U1 − g1

12U1U2 − (h1
111 + A1

111)U3
1 − (h1

112 + A1
112 −D1

112)U2
1U2 − (h1

122 + A1
122)U1U

2
2

− (h1
222 + A1

222)U3
2 −B1

111U1W
2
1 −B1

122U1W
2
2 − (B1

112 − E1
112)U1W1W2

− (B1
211 − E1

211)U2W
2
1 −B1

212U2W1W2 −B1
222U2W

2
2 ,

U̇2 =W2,

Ẇ2 =− ω2
2U2 − g2

11U
2
1 − (h2

111 + A2
111 −D2

111)U3
1 − (h2

112 + A2
112 −D2

112)U2
1U2

− (h2
122 + A2

122 −D2
122)U1U

2
2 − (h2

222 + A2
222)U3

2 − (B2
111 − E2

111)U1W
2
1

− (B2
122 − E2

122)U1W
2
2 − (B2

112 − E2
112)U1W1W2 −B2

211U2W
2
1

− (B2
212 − E2

212)U2W1W2 −B2
222U2W

2
2 ,

(10.2.2)

where the terms Apijk, B
p
ijk, (i, j, k, p = 1, 2) are expressed as:

Ap111 = 2a1
11g

p
11,

Ap112 = a1
11g

p
12 + a2

12g
p
12,

Ap122 = 2a1
22g

p
11 + a2

22g
p
12 + 2a2

12g
p
22,

Ap222 = 2a2
22g

p
22 + a1

22g
p
12,

Bp
111 = 2b1

11g
p
11,

Bp
112 = b2

12g
p
12,

Bp
122 = b2

22g
p
12 + 2b1

22g
p
11,

Bp
211 = b1

11g
p
12,

Bp
212 = 2b2

12g
p
22,

Bp
222 = 2b2

22g
p
22 + b1

22g
p
12.

(10.2.3)

It should be noted that the notation is kept the same as the case without internal resonance (e.g.

[51, 52]), the same formula can be used, the only difference being that some coefficients shown

in Eq. (10.1.5) are now zero. The new extra terms D,E, due to 1:2 resonance, are expressed
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by:

D1
112 = γ1

11g
1
12 + γ1

22g
2
11 − 2b1

11g
1
12ω

2
1 − 2b1

22g
2
11ω

2
2,

D2
111 = γ2

12g
2
11 − b2

12g
2
11ω

2
1,

D2
112 = γ2

22g
2
11 − 2b2

22g
2
11ω

2
2,

D2
122 = γ2

21g
1
12 − b2

12g
1
12ω

2
2,

E1
112 = 2b1

11g
1
12 + 4b1

22g
2
11,

E1
211 = 2b1

11g
1
12,

E2
111 = 2b2

12g
2
11,

E2
122 = b2

12g
1
12,

E2
112 = 4b2

22g
2
11,

E2
212 = b2

12g
1
12.

(10.2.4)

Let us change the coordinates again and try to cancel the cubic terms as many as possible,

the following cubic polynomials are introduced for p = 1, 2:

Up = Rp +
2∑
i=1

2∑
j≥i

2∑
k≥j

rpijkRiRjRk +
2∑
i=1

2∑
j=1

2∑
k≥j

upijkRiSjSk,

Wp = Sp +
2∑
i=1

2∑
j≥i

2∑
k≥j

µpijkSiSjSk +
2∑
i=1

2∑
j=1

2∑
k≥j

νpijkSiRjRk.

(10.2.5)

Notice that in the dynamics Eq. (10.2.2) two resonant quadratic terms U1U2 and U2
1 can not be

cancelled, and inserting them into Eq. (10.2.5), they will be expressed as the following:

U1U2 = R1R2 + o(R4
i , S

4
i ) and U2

1 = R2
1 + o(R4

i , S
4
i ), (10.2.6)

consequently, it is clear that this two quadratic terms can only have effects on the normal

form dynamics at least on the fourth order in the processing of the coordinate transforma-

tion from (Up,Wp) to (Rp, Sp). Combining the Eqs. (10.2.1) and (10.2.5), the quadratic terms

g1
12U1U2, g

2
11U

2
1 lead to unbalance between the two sides of the equals sign, thus has to be ig-

nored when calculating the cubic coefficients rpijk, u
p
ijk, µ

p
ijk, ν

p
ijk and then they should be added

at the final stage.
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10.3 Nonlinear reduced dynamics

After following the processing of the previous sections, a nonlinear transform can be found

in order to cancel the maximum number of quadratic and cubic coupling terms present in the

original system. The nonlinear transformation for p = 1, 2 up to order three reads:

Xp = Rp +
2∑
i=1

2∑
j≥i

apijRiRj +
2∑
i=1

2∑
j≥i

bpijSiSj +
2∑
i=1

2∑
j≥i

2∑
k≥j

rpijkRiRjRk +
2∑
i=1

2∑
j=1

2∑
k≥j

upijkRiSjSk,

Yp = Sp +
2∑
i=1

2∑
j=1

γpijRiSj +
2∑
i=1

2∑
j≥i

2∑
k≥j

µpijkSiSjSk +
2∑
i=1

2∑
j=1

2∑
k≥j

νpijkSiRjRk,

(10.3.1)

where the quadratic coefficients apij, b
p
ij, γ

p
ij are given by Eq (10.1.4). For the cubic coefficients

rpijk, u
p
ijk, µ

p
ijk, ν

p
ijk, with i, j, k, p = 1, ..., 2, their expressions are not directly given here because

they are too complex, fortunately, as compared with expressions of the coefficients given in

[51] with the assumption of no resonance between eigenvalues, the only difference is that for

the resonant modes, the new cubic terms given in Eq. (10.2.4) should be considered during

the computation. For example, if one wants to obtain terms r2
112, u

2
112, u

2
211, µ

2
112, ν

2
112, ν

2
211, one

need to replace (A2
112 +A2

211 +h2
112) in the equations given in Appendix A of [51] to be (A2

112 +

A2
211 + h2

112 −D2
112) and B2

112 to be (B2
112 − E2

112).

After the coordinate transformation, the invariant-breaking terms are vanishing, and the

dynamics of the system with the new coordinates (Rp, Sp) should be written as:

Ṙ1 =S1,

Ṡ1 =− ω2
1R1 − g1

12R1R2 − (h1
111 + A1

111)R3
1 − (h1

122 + A1
122)R1R

2
2

−B1
111R1S

2
1 −B1

122R1S
2
2 −B1

212R2S1S2,

Ṙ2 =S2,

Ṡ2 =− ω2
2R2 − g2

11R
2
1 − (h2

112 + A2
112 −D2

112)R2
1R2 − (h2

222 + A2
222)R3

2

− (B2
112 − E2

112)R1S1S2 −B2
211R2S

2
1 −B2

222R2S
2
2 .

(10.3.2)

The calculation has been extended to a system of N oscillators where only two of them present-

ing 1:2 resonance, this calculation is presented in Appendix B.
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Chapter 11

Change of nonlinearity at crossing 1:2

resonance

11.1 Multiple scales solution

Starting from Eq. (10.3.2) and sorting non-linearities using the book-keeping parameter ε

[14, 97], one obtains:

R̈1 + ω2
1R1 =− ε[g1

12]R1R2 − ε2[H1
111R

3
1 +H1

122R1R
2
2

+ V 1
111R1Ṙ1

2
+ V 1

122R1Ṙ2
2

+ V 1
212R2Ṙ1Ṙ2],

R̈2 + ω2
2R2 =− ε[g2

11]R2
1 − ε2[H2

112R
2
1R2 +H2

222R
3
2

+ V 2
112R1Ṙ1Ṙ2 + V 2

211R2Ṙ1
2

+ V 2
222R2Ṙ2

2
].

(11.1.1)

The eigenfrequencies are related through: ω2 = 2ω1 + εσ, where σ is a detuning parameter. To

make the equation to be shorter and clear, hereHp
ijk are introduced with regard to termsRiRjRk,

and V p
ijk for RiSjSk, and model coordinate R is replaced to be q. The method of multiple scales

expresses the solution as a composition of different time scales such that Tj = εjt for j = 0, 1, 2

and then holds

qi(t) = qi0(T0, T1, T2) + εqi1(T0, T1, T2) + ε2qi2(T0, T1, T2) +O(ε3), (11.1.2)
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with i = 1, 2. Applying the multiple scales approach and considering the change of variables,

the derivatives with respect to time follow the expressions:

∂

∂t
=

∂

∂T0

+ ε
∂

∂T1

+ ε2 ∂

∂T2

= D0 + εD1 + ε2D2,

∂2

∂t2
= D2

0 + 2εD0D1 + ε2(D2
1 + 2D0D2),

(11.1.3)

thus, the equation of motion is rewritten as

(D2
0 + 2εD0D1 + ε2(D2

1 + 2D0D2))(q10 + εq11 + ε2q12) + ω2
1(q10 + εq11 + ε2q12)

= −εg1
12(q10 + εq11 + ε2q12)(q20 + εq21 + ε2q22)− ε2(H1

111(q10 + εq11 + ε2q12)3...),

(D2
0 + 2εD0D1 + ε2(D2

1 + 2D0D2))(q20 + εq21 + ε2q22) + ω2
2(q20 + εq21 + ε2q22)

= −εg2
11(q10 + εq11 + ε2q12)2 − ε2(H2

111(q10 + εq11 + ε2q12)3...).

(11.1.4)

We split the resulting terms using ε as sorting parameter. In this way we get three systems

of equations:

ε0 :

D2
0q10 + ω2

1q10 = 0, (11.1.5a)

D2
0q20 + ω2

2q20 = 0. (11.1.5b)

ε1 :

D2
0q11 + ω2

1q11 = −2D0D1q10 − g1
12q10q20, (11.1.5c)

D2
0q21 + ω2

2q21 = −2D0D1q20 − g2
11q

2
10. (11.1.5d)

ε2 :

D2
0q12 + ω2

1q12 = −(D2
1 + 2D0D2)q10 − 2D0D1q11 − [g1

12q11q20 + g1
12q10q21 (11.1.5e)

+H1
111q

3
10 +H1

122q10q
2
20 + V 1

111q10(D0q10)2 + V 1
122q10(D0q20)2 + V 1

212q20(D0q10)(D0q20)],

D2
0q22 + ω2

2q22 = −(D2
1 + 2D0D2)q20 − 2D0D1q21 − [2g2

11q10q11 (11.1.5f)

+H2
222q

3
20 +H2

112q
2
10q20 + V 2

222q20(D0q20)2 + V 2
112q10(D0q10)(D0q20) + V 2

211q20(D0q10)2].

Eqs. (11.1.5a,b) give the solution of:

q10 = A1(T1, T2)exp(iω1T0) + c.c.,

q20 = A2(T1, T2)exp(iω2T0) + c.c.,
(11.1.6)
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where c.c. stands for complex conjugate. Near resonance some terms give secular solutions,

to get rid of them we define the so-called solvability condition. In this way, also fixing the

book-keeping parameter ε = 1, for Eq. (11.1.5c,d) we get the conditions:

g1
12A2Ā1e

iT0ω1+iT1σ + 2iω1D1A1e
iT0ω1 = 0, (11.1.7a)

A2
1g

2
11e

2iT0ω1 + 2(2ω1i+ σi)D1A2e
2iT0ω1+iT1σ = 0. (11.1.7b)

Solving above equation for D1A1 and D1A2

D1A1 =
ig1

12A2Ā1e
iT1σ

2ω1

, (11.1.8a)

D1A2 =
iA2

1g
2
11

2(2ω1 + σ)eiT1σ
, (11.1.8b)

at the meanwhile, when above equation is set up, one also could obtain the complex conjugate

of Eqs. (11.1.7), reads as:

g1
12A1Ā2e

−iT0ω1−iT1σ − 2iω1D1Ā1e
−iT0ω1 = 0, (11.1.9a)

Ā2
1g

2
11e
−2iT0ω1 − 2(2ω1i+ σi)D1Ā2e

2iT0ω1+iTiσ = 0, (11.1.9b)

and substituting the results into the first-order equation Eq. (11.1.5c,d), one obtains:

D2
0q11 + ω2

1q11 = −g1
12(A1A2e

iT0(ω1+ω2) + Ā1Ā2e
−iT0(ω1+ω2)), (11.1.10a)

D2
0q21 + ω2

2q21 = −g2
11(2A1Ā1). (11.1.10b)

From the Eq. (11.1.10), it is found that the expression of q11, q21 can be divided into two parts:

homogeneous solution q(h)
11 , q

(h)
21 , and particular solution q(p)

11 , q
(p)
21 , the latter one for (11.1.10a)

should in the form of Q1e
i(ω1+ω2)T0 + c.c. and for (11.1.10b) should in the expression of Q2,

where Q1, Q2 are constants. To set up the Eq. (11.1.10), Q1, Q2 can be solved and the particular

solution is expressed by:

q
(p)
11 =

−g1
12

ω2
1 − (ω1 + ω2)2

A1A2e
i(ω1+ω2)T0 + c.c., (11.1.11a)

q
(p)
21 =

−g2
11

ω2
2

A1Ā1 + c.c, (11.1.11b)

The homogeneous part is the solution that makes the following equations set up:

D2
0q

(h)
11 + ω2

1q
(h)
11 = 0, (11.1.12a)

D2
0q

(h)
21 + ω2

2q
(h)
21 = 0, (11.1.12b)
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because the solutions of (11.1.12) can be determined within an arbitrary constant Pp multiple

the eiωpT0 , (p = 1, 2), read as:

q
(h)
11 = P1e

iω1T0 + c.c., (11.1.13a)

q
(h)
21 = P2e

iω2T0 + c.c.. (11.1.13b)

However, we don’t want to introduce a new amplitude for the homogeneous solutions, to deter-

mine constant Pp and express them byA1, A2, the velocity z is here introduced, and the relation-

ship between z and q is given by: (zp0 +εzp1 +ε2zp2) = (D0 +εD1 +ε2D2)(qp0 +εqp1 +ε2qp2),

p = 1, 2, such that

z11 = D0q11 +D1q10, (11.1.14a)

z21 = D0q21 +D1q20, (11.1.14b)

and the linear relationships existing between the homogeneous part of z(h)
p1 and q(h)

p1 [98], reads:

z
(h)
p1 = −iωpq(h)

p1 or z
(h)
p1 = −D0q

(h)
p1 , for p = 1, 2, (11.1.15)

thus, combining Eqs. (11.1.14) and (11.1.15), the homogeneous solution of q11, q21 can be found

by the equation:

D1q
(h)
p0 + 2D0q

(h)
p1 = 0, for p = 1, 2. (11.1.16)

Solving above equations, one obtains the expression of P1 and P2 in homogeneous solution:

P1 =
−g1

12

4ω2
1

A2Ā1e
iT1σ, (11.1.17a)

P2 =
−g2

11

4ω2
2

A2
1e
−iT1σ, (11.1.17b)

Combining homogeneous solution with particular solutions given in Eq. (11.1.11), the expres-

sion of q11, q21 can be written as

q11 =
−g1

12

4ω2
1

A2Ā1e
iT0ω1+iT1σ +

−g1
12

ω2
1 − (ω1 + ω2)2

A1A2e
i(ω1+ω2)T0 + c.c., (11.1.18a)

q21 =
−g2

11

4ω2
2

A2
1e
i(2ω1)T0 +

−g2
11

ω2
2

A1Ā1 + c.c.. (11.1.18b)

Substituting the Eqs. (11.1.18) into the Eqs. (11.1.5e,f), the resonant terms will appear, causing
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secular terms in the solution, thus, one has to impose again solvability conditions, which yields:

[2iω1D2A1 −
9

4ω2
2

g1
12g

2
11A

2
1Ā1 − (

1

ω2
1 − (ω1 + ω2)2

+
1

4ω2
1

)(g1
12)2A1A2Ā2 (11.1.19a)

+ 3H1
111A

2
1Ā1 + 2H1

122A1A2Ā2 + V 1
111A

2
1Ā1(−i2ω2

1) + 2V 1
122A1A2Ā2(−i2ω2

2)]ei(T0ω1+T1σ) = 0,

[2iω2D2A2 − 2(
1

ω2
1 − (ω1 + ω2)2

+
1

4ω2
1

)g1
12g

2
11A2A1Ā1 + 3H2

222A
2
2Ā2 (11.1.19b)

+ 2H2
112A1A2Ā1 + V 2

222A
2
2Ā2(−i2ω2

2) + 2V 2
211A2A1Ā1(−i2ω2

1)]eiT0(2ω1+εσ) = 0,

thus, the modulation equations governing the dependence of the complex-valued amplitudes A1

and A2 on the scale T2 in the form:

2iω1D2A1 = K1
11A

2
1Ā1 +K1

12A1A2Ā2, (11.1.20a)

2iω2D2A2 = K2
22A

2
2Ā2 +K2

12A2A1Ā1, (11.1.20b)

where

K1
11 =

9

4ω2
2

g1
12g

2
11 − 3H1

111 − V 1
111ω

2
1, (11.1.21a)

K1
12 = (

1

ω2
1 − (ω1 + ω2)2

+
1

4ω2
1

)(g1
12)2 − 2H1

122 − 2V 1
122ω

2
2, (11.1.21b)

K2
22 = −3H2

222 − V 2
222ω

2
2, (11.1.21c)

K2
12 = 2(

1

ω2
1 − (ω1 + ω2)2

+
1

4ω2
1

)(g1
12g

2
11)− 2H2

112 − 2V 2
211ω

2
1. (11.1.21d)

Using the method of reconstitution [99, 100, 14], we can express the derivative of A with

respect to time t as Ȧ = D1A + εD2A..., therefore, substituting (11.1.8), (11.1.20) into this

equation, one obtains the modulation equations up to second order as:

2iω1Ȧ1 = −g1
12A2Ā1e

iT1σ +K1
11A

2
1Ā1 +K1

12A1A2Ā2, (11.1.22a)

2iω2Ȧ2 = −A2
1g

2
11e
−iT1σ +K2

22A
2
2Ā2 +K2

12A2A1Ā1. (11.1.22b)

To solve the above system one needs to expand Ai in polar form, i.e.

A1(T1, T2) =
a1(T1, T2)

2
exp(iθ1(T1, T2)),

A2(T1, T2) =
a2(T1, T2)

2
exp(iθ2(T1, T2)),

(11.1.23)

where ai, θi are unknown amplitude and phase. Also, let us transform Eqs. (11.1.6) and (11.1.18)
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into polar form, we can thus express the first- and second-order generalized coordinates as

q10 = a1 cos(ω1T0 + θ1),

q20 = a2 cos(ω2T0 + θ2),

q11 =
1

2

g1
12

4ω2
1

a1a2 cos((ω2 − ω1)T0 + θ2 − θ1) +
1

2

g1
12

ω2
1 − (ω2 + ω1)2

a1a2 cos((ω2 + ω1)T0 + θ2 + θ1),

q21 =
1

2
a2

1

g2
11

4ω2
2

cos 2(ω1T0 + θ1) +
1

2
a2

1

g2
11

ω2
2

.

(11.1.24)

To determine a1, a2, θ1, θ2, let us split the real and imaginary part of Eqs. (11.1.22) and rewrite

the equations in polar form, one obtains:

∂a1

∂T1

+
∂a1

∂T2

=− a1a2g
1
12

4ω1

sin(θ2 − 2θ1 + T1σ), (11.1.25a)

a1(
∂θ1

∂T1

+
∂θ1

∂T2

) =
a1a2g

1
12

4ω1

cos(θ2 − 2θ1 + T1σ)− a3
1K

1
11 + a1a

2
2K

1
12

8ω1

, (11.1.25b)

∂a2

∂T1

+
∂a2

∂T2

=
a2

1g
2
11

4ω2

sin(2θ1 − θ2 − T1σ), (11.1.25c)

a2(
∂θ2

∂T1

+
∂θ2

∂T2

) =
a2

1g
2
11

4ω2

cos(2θ1 − θ2 − T1σ)− a3
2K

2
22 + a2

1a2K
2
12

8ω2

. (11.1.25d)

Considering the coupled solutions with both a1 and a2 different from zero, such that dividing

the both sides of (11.1.25b) by a1 and (11.1.25d) by a2, in this case the solvability condition

can be simplified in:

∂a1

∂T1

+
∂a1

∂T2

=− a1a2g
1
12

4ω1

sin(θ2 − 2θ1 + T1σ), (11.1.26a)

∂θ1

∂T1

+
∂θ1

∂T2

=
a2g

1
12

4ω1

cos(θ2 − 2θ1 + T1σ)− a2
1K

1
11 + a2

2K
1
12

8ω1

, (11.1.26b)

∂a2

∂T1

+
∂a2

∂T2

=
a2

1g
2
11

4ω2

sin(2θ1 − θ2 − T1σ), (11.1.26c)

∂θ2

∂T1

+
∂θ2

∂T2

=
a2

1g
2
11

4ω2a2

cos(2θ1 − θ2 − T1σ)− a2
2K

2
22 + a2

1K
2
12

8ω2

. (11.1.26d)

Eq.(11.1.26) is a non-autonomous system and one can introduce the change of variables to get

an autonomous one:

γ1 = θ1, (11.1.27a)

γ(p) = 2θ1 − θ2 − T1σ, (11.1.27b)
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then, inserting Eq. (11.1.27) into Eq. (11.1.26), one obtains:

∂a1

∂T1

+
∂a1

∂T2

=
a1a2g

1
12

4ω1

sin(−γ(p)), (11.1.28a)

∂γ1

∂T1

+
∂γ1

∂T2

=
a2g

1
12

4ω1

cos(γ(p))−
a2

1K
1
11 + a2

2K
1
12

8ω1

, (11.1.28b)

∂a2

∂T1

+
∂a2

∂T2

=
a2

1g
2
11

4ω2

sin(γ(p)), (11.1.28c)

∂γ(p)

∂T1

+
∂γ(p)

∂T2

=
a2g

1
12

2ω1

cos(γ(p))−
a2

1K
1
11 + a2

2K
1
12

4ω1

(11.1.28d)

− (
a2

1g
2
11

4ω2a2

cos(γ(p))−
a2

2K
2
22 + a2

1K
2
12

8ω2

)− σ.

Eqs. (11.1.28) admit a solution when sin(γ(p)) = 0 and consequently cos(γ(p)) = ±1 = p.

Above Eqs. (11.1.28) are satisfied only when a1 and a2 are constants. Combining Eq. (11.1.24)

and Eq. (11.1.27), one obtains the expressions of two coordinates:

q1(t) =a1 cos(ω1T0 + γ1) +
1

2

g1
12

4ω2
1

a1a2 cos(ω1T0 + γ1 − γ(p))

+
1

2

g1
12

ω2
1 − (ω2 + ω1)2

a1a2 cos(3ω1T0 + 3γ1 − γ(p)),

q2(t) =a2 cos(2ω1T0 + 2γ1 − γ(p)) +
1

2
a2

1

g2
11

4ω2
2

cos 2(ω1T0 + γ1) +
1

2
a2

1

g2
11

ω2
2

.

(11.1.29)

To sort out the Eq. (11.1.29) by merging the same order terms, one can consider p = 1, that is

γ(p) = 2kπ, (k = 0, 1, 2, ...), the equations are now rewritten as:

q1(t) =(a1 +
1

2

g1
12

4ω2
1

a1a2) cos(ω1T0 + γ1) +
1

2

g1
12

ω2
1 − (ω2 + ω1)2

a1a2 cos(3ω1T0 + 3γ1),

q2(t) =(a2 +
1

2
a2

1

g2
11

4ω2
2

) cos(2ω1T0 + 2γ1) +
1

2
a2

1

g2
11

ω2
2

.

(11.1.30)

and considering p = −1, such that γ(p) = (2k + 1)π, (k = 0, 1, 2, ...), the equations read:

q1(t) =(a1 −
1

2

g1
12

4ω2
1

a1a2) cos(ω1T0 + γ1)− 1

2

g1
12

ω2
1 − (ω2 + ω1)2

a1a2 cos(3ω1T0 + 3γ1),

q2(t) =(
1

2
a2

1

g2
11

4ω2
2

− a2) cos(2ω1T0 + 2γ1) +
1

2
a2

1

g2
11

ω2
2

.

(11.1.31)
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11.2 Backbone curves of the system: p+ mode and p− mode

The fixed points of Eq. (11.1.28) in which a′1 = 0, a′2 = 0, γ′(p) = 0, one calculated and read

as:

∂γ(p)

∂T1

+
∂γ(p)

∂T2

= 0 =
a2g

1
12

2ω1

p− a2
1K

1
11 + a2

2K
1
12

4ω1

− (
a2

1g
2
11

4ω2a2

p− a2
2K

2
22 + a2

1K
2
12

8ω2

)− σ.

(11.2.1)

From the above equation, we obtain the relationship between a1 and a2:

a2
1 = r(a2) =

a2(a2
2K

2
22ω1 − 2a2

2K
1
12ω2 + 4a2g

1
12pω2 + 16ω2

1ω2 − 8ω1ω
2
2)

−a2K2
12ω1 + 2g2

11ω1p+ 2a2K1
11ω2

. (11.2.2)

Solving the ODEs (11.1.28) we get expressions for the phase angles:

γ1 =
a2g

1
12

4ω1

pT1 −
a2

1K
1
11 + a2

2K
1
12

8ω1

T2 + φ1, (11.2.3a)

γ(p) =
a2g

1
12

2ω1

pT1 −
a2

1K
1
11 + a2

2K
1
12

4ω1

T2 − (
a2

1g
2
11

4ω2a2

pT1 −
a2

2K
2
22 + a2

1K
2
12

8ω2

T2)− σT1 + φp.

(11.2.3b)

with φ1 and φ(p) integration constants. Consequently, using Eq. (11.1.27) we get the solution in

the original variables:

θ1 =
a2g

1
12

4ω1

pT1 −
a2

1K
1
11 + a2

2K
1
12

8ω1

T2 + φ1, (11.2.4a)

θ2 =
a2

1g
2
11

4ω2a2

pT1 −
a2

2K
2
22 + a2

1K
2
12

8ω2

T2 + 2φ1 − φ(p). (11.2.4b)

By taking assumption that T0 = T1 = T2 = t [14], such that the nonlinear pulsation can be

expressed as:

ωNL1 =
a2g

1
12

4ω1

p− a2
1K

1
11 + a2

2K
1
12

8ω1

+ ω1, (11.2.5a)

ωNL2 =
a2

1g
2
11

4ω2a2

p− a2
2K

2
22 + a2

1K
2
12

8ω2

+ ω2, (11.2.5b)

and inserting Eq. (11.2.5) into Eq. (11.2.1), one can see that the nonlinear frequencies of these

two modes have a relationship : ωNL2 = 2ωNL1. Combining Eq. (11.2.5a) with Eq. (11.2.2),

the relationship between a2 and ωNL1 reads as:

ωNL1 =(
a3

2(K1
11K

2
22 −K1

12K
2
12) + 2a2

2(g2
11K

1
12 + g1

12K
2
12)p− 4a2g

1
12g

2
11 + 8a2K

2
12ω

2
1 − 16g2

11pω
2
1 − 8a2K

1
11ω

2
2

)
8(a2K2

12ω1 − 2g2
11pω1 − 2a2K1

11ω2)
,

(11.2.6)
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Finally, considering Eq. (11.2.6) and Eq. (11.2.2) together, one can obtain the relationship

among a1, a2 and ωNL1 and draw the backbone curves of the system. Once again, as noted

in previous section, p in the equations could be +1 or −1, the solution obtained with p = 1 is

hence called p+ mode, and p = −1 will lead to the p− mode.

The necessary condition for having solutions of a1 is that the right hand side of Eq. (11.2.2)

is a positive value. The condition of having solution thus change to be

(−a2K
2
12ω1 +2g2

11ω1p+2a2K
1
11ω2)(a2

2K
2
22ω1−2a2

2K
1
12ω2 +4a2g

1
12pω2 +16ω2

1ω2−8ω1ω
2
2) > 0,

(11.2.7)

To better analysis above inequality, the left hand side of Eq. (11.2.7) can be rewritten in the

form of cubic function as:

f(a2) = Aa3
2 +Ba2

2 + Ca2 +D, (11.2.8)

where

A = −(K2
12ω1 − 2K1

11ω2)(K2
22ω1 − 2K1

12ω2),

B = 2p(2g1
12ω2(−K2

12ω1 + 2K1
11ω2) + g2

11ω1(K2
22ω1 − 2K1

12ω2)),

C = 8ω1ω2(g1
12g

2
11p

2 − (2ω1 − ω2)(K2
12ω1 − 2K1

11ω2)),

D = 16g2
11pω

2
1(2ω1 − ω2)ω2.

(11.2.9)

It is found that the backbone curves can be divided into two parts depending on value of D,

more details can be found in the following sections.

11.2.1 Main branch

It is obvious that when D > 0 , there will always be positive values of a2 that can make the

inequality (11.2.7) fulfilled, such that it always has a solution starting with a2 ≈ 0 and ωNL1 ≈

ω1, and thus called the main branch of the backbone, as the red curve shown in Fig. 11.2.1. If

one assumes g2
11 > 0, which is often the case for thin structures, for σ > 0, D will be positive

when p = −1, so the p−mode will be the main branch, and for σ < 0, the p+mode will be the

main branch. Finally, when D = 0, both p+ and p− modes will start from (0, ω1) and to be the

main branches.
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11.2.2 Side branch

For distinguishing from the main branch introduced above, solutions with D < 0 are named

as the side branch of the backbone, when σ < 0, the curve of p− mode is side branch, in con-

trast, when σ > 0, the side branch will be the curve of p+ mode. The blue curve in Fig.11.2.1

shows an example of side branch, which starts from a1 with a certain value.

0.6 0.8 1

NL1

0

0.1

0.2

0.3

0.4

0.5

a
1

Figure 11.2.1: An example of backbone curve with main branch (red) and side branch (blue).

11.3 Behaviour of the system for large detuning

Firstly, let us investigate the behaviour of the system for large detuning, i.e., ω2 is away from

2ω1. In such context, the behaviour of the system is fully dependent on the main branch of the

backbone, and side branch is less important. The idea is to investigate whether the main branch

of backbone curves calculated by normal form with 1:2 internal resonance is close to the results

of a single nonlinear normal mode or not.

The first order nonlinear frequency obtained by a single normal mode reads as:

ωsdofNL = ω1(1 + Γsdofa
2
1), (11.3.1)

where Γsdof , the indicator of hardening/softening behaviour, is expressed by:

Γsdof =
1

8ω2
1

(3h1
111 −

10(g1
11)2

3ω2
1

− 3ω2
2 − 8ω2

1

ω2
2 − 4ω2

1

g1
12g

2
11

ω2
2

). (11.3.2)

For the purpose of comparison, the nonlinear frequency of the full system with 1:2 resonance,
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which is given by the Eq. (11.2.5a), can also be written as:

ωNL1 = ω1(1 + Γ̃1a
2
1 + Γ̃2a

2
2 + Γ̂2a2), (11.3.3)

where Γ are the coefficients dictating the type of nonlinearity:

Γ̃1 = −K
1
11

8ω2
1

, Γ̃2 = −K
1
12

8ω2
1

, Γ̂2 =
g1

12

4ω2
1

p. (11.3.4)

One can also express Eq. (11.3.4) by using coefficients gpij, h
p
ijk, then, one obtains:

Γ̃1 =
1

8ω2
1

(3h1
111 −

10(g1
11)2

3ω2
1

− 9g1
12g

2
11

4ω2
2

), (11.3.5a)

Γ̃2 =
1

8ω2
1

(2h1
122 +

(16ω2
2 − 4ω2

1)g1
22g

1
11

(ω4
1 − 4ω2

1ω
2
2)

− 6g2
22g

1
12

3ω2
2

+
4g2

12g
1
22

ω2
1 − 4ω2

2

− (
(g1

12)2

ω2
1 − (ω1 + ω2)2

+
(g1

12)2

4ω2
1

)),

(11.3.5b)

Γ̂2 =
g1

12

4ω2
1

p. (11.3.5c)

For illustrative propose, the numerical example system has been built, with all the nonlinear

coefficients selected as constants:

g1
12 = g2

12 = 2, g1
11 = g1

22 = g2
11 = g2

22 = 1,

h1
111 = h2

112 = h1
122 = h2

222 = 1, h2
122 = h2

111 = h1
222 = h1

112 = 0.
(11.3.6)

such selection fits the symmetry relationship of coefficients [13]: g1
12 = 2g2

11, g
2
12 = 2g1

22, h
2
112 =

h1
122, and the magnitudes of quadratic and cubic terms are all in a reasonable range.

Fig.11.3.1 compares the main branch of the backbone curves of given by the system with

1:2 resonance and the system reduced to a single dof nonlinear normal modes, with σ far away

from 0. From the coefficients given by Eq. (10.1.4), it should be noted that there is also a

2:1 divergence (ω1 = 2ω2) that needs to be avoid when choosing the value of frequencies. In

Fig.11.3.1 (a), ω1 = 1 and ω2 is set before the divergence (when ω2 = 0.5), the curves of p+

mode (red) show that a2 is very small when a1 is not very large. In Fig.11.3.1 (b), when σ

is increased to be a very large value, the blue curves are also closer to the plane (ωNL1, a1).

From the two figures, it is shown that when ω2 is far away from 2ω1, the main branch starting

at ω1 = 1 tends to a sdof solution with a2 = 0 (the black curves).

To give the explanation of such trend, a2 obtained by Eq. (11.2.6) with regard to ωNL1 is
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Figure 11.3.1: Main branch of backbone curves of the system, with ω1 = 1, the coefficients are given in

Eq. (11.3.6). (a): p+ mode (red) with ω2 as a variable value changing from 0.1 to 0.4 (before 2:1 dev-

ergence). (b): p− mode (blue) with ω2 as a variable value changing from 2 to 10 (after 1:2 divergence).

The purple represent the backbone curves computed by single-mode dynamics.

derived and noted as Da2, reads:

Da2 =
∂a2

∂ωNL1

≈ 4g2
11ω1

p(g1
12g

2
11 + 2K1

11ω2(ω2 − 2ω1))
+ o(a2).

(11.3.7)

Under the assumption that a2 is small, such that Da2 will be expressed as a constant value and

o(a2) can be neglected. A large absolute value of Da2 represent the value of a2 will increase

rapidly when a1 is increasing, such that the main branch of the backbone curve will be more and

more far away from the plane (a1, ωNL1), for example the case ω2 = 0.4 in Fig. 11.3.1(a). From

the Eq. (11.3.7), when ω2 is increasing and in a very large value, the absolute value of Da2 is

decreasing and tend to be 0, and the curves will be closer to the plane (a2 = 0). Apart from

that trend, Fig. 11.3.1 also demonstrates that when the resonant mode was not excited a lot, i.e.

a2 is in a small value, the solution of the main branch match well with the results computed by

single-mode dynamics.

Comparing the Eq. (11.3.2) and (11.3.5), It is found the expression of Γ̃1 are quite close

to Γsdof , however, to find regularity in detail, further comparisons were done in the numerical

examples, with a new term γ[M ] introduced with [M ] represents the different cases. For normal

form of the system with 1:2 resonance: γr = Γ̃1a
2
1 + Γ̃2a

2
2 + Γ̂2a2, and for single normal mode:

γsdof = Γsdof1a
2
1. When γ[M ] is positive, indicates the hardening behaviour of backbone curve,
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and when γ[M ] is negative, implies softening behaviour.
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Figure 11.3.2: Curves are computed by γ[M ] as the function of ω2 and a1, with ω1 = 1, the coefficients

are given in Eq. (11.3.6), and ω2 as a variable value changing from 0.1 to 0.4, 0.6 to 2, and 2 to 4. The

black curves are the results of single NNM and the colourful curves represent the results of NNM with

1:2 resonance.

In order to predict the type of nonlinearity of the system by investigating the indicator of type

of nonlinearity γ[M ], Fig. 11.3.2 shows the results of comparison of the indicator computed by

the normal form reduction with 1:2 resonance results (colourful) and the single NNM (black),

with regard to the amplitude of first mode a1 and the natural frequency of the second mode ω2.

The cases with positive detuning are shown in Fig. 11.3.2(a), where the p− mode is the main
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branch. The results of the case with negative detuning are plotted in Fig. 11.3.2(b) (before 2:1

resonance) and (c) (after 2:1 resonance), where the main branch is p+ mode.

From the figures, it is found that when ω2 is far from 2ω1, the colourful curves match the

corresponding black curves well while when σ is close to 0, the colourful curves match the

corresponding black curves only when a1 is a small value. Furthermore, the differences between

colourful curves and the black curves are remarkable when very near 1:2 divergence and two

curves even may predict the opposite type of nonlinearity. One should also notice that when

ω2 = 2ω1, there is no single normal mode solution for the indicator because of 1:2 divergence.

From this numerical example shown in Fig. 11.3.2, one can conclude that when ω2 � 2ω1

or ω2 � 2ω1, the indicator γ[M ] computed by the normal form reduction with 1:2 resonance

results and the single NNM are the same and predict the same hardening/softening behaviour,

on the other hand, the difference is large in the vicinity of 1:2 divergence, moreover, the single

NNM fails to give the prediction when detuning is 0.

11.4 Behaviour in the vicinity of 1:2 resonance

Now we are investigating the behaviour of the system in the vicinity of 1:2 resonance. In

such a context, the side branch becomes important because it is close to the main one. The works

presented here are related to the results given in [101] without cubic nonlinearity considered,

while further developments are done here by researching the behaviour of the main branch and

the starting point of the side branch, aims to give a clear view of the crossing 1:2 divergence.

11.4.1 Starting point of side branch

The existence of the real and positive solution for the branch of the backbone could be

analysed from the roots of Eq. (11.2.8), which are given by:

ar12 =
−4g1

12pω2 +
√

16(g1
12)2p2ω2

2 − 4(K2
22ω1 − 2K1

12ω2)(16ω2
1ω2 − 8ω1ω2

2)

2(K2
22ω1 − 2K1

12ω2)
, (11.4.1a)

ar22 =
−4g1

12pω2 −
√

16(g1
12)2p2ω2

2 − 4(K2
22ω1 − 2K1

12ω2)(16ω2
1ω2 − 8ω1ω2

2)

2(K2
22ω1 − 2K1

12ω2)
, (11.4.1b)

ar32 =
2g2

11pω1

K2
12ω1 − 2K1

11ω2

. (11.4.1c)
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The third root (11.4.1c) is derived from (−a2K
2
12ω1 + 2g2

11ω1p + 2a2K
1
11ω2) = 0, which is the

denominator of Eq. (11.2.2), so it will lead to divergence and generate an unstable branch of

backbone curves if this root is positive. Such error arises from the truncation of the first order

of multiple scale method computations and the third order asymptotic of the normal form of the

system, so this situation will not be discussed here.

In the context that cubic nonlinearity is not considered [101], the side branch will always

exist and with a starting point ωrNL1 = ω2

2
, ar2 = 2ω1(ω2−2ω1)

g112p
. However, now in the case of

cubic nonlinearity involved, the position of the starting point of the side branch is expected to

be affected and thus change to another position, which theoretically should not be far from the

location computed with only quadratic terms. In order to know the exact starting points of the

side branches, i.e., the branch starts from a2 6= 0 and a1 ≈ 0, Eq. (11.2.1) can thus be rewritten

as
a2g

1
12

2ω1

p− a2
2K

1
12

4ω1

+
a2

2K
2
22

8ω2

− σ = g(a1, a
2
1) ≈ 0. (11.4.2)

Solving the above equation and inserting into Eq. (11.2.6), we thus obtain the value ar12 and ar22

with expression given in Eqs. (11.4.1a,11.4.1b) that lead a1 = 0, and by inserting these two

equations into Eq. (11.2.6), we also obtain the corresponding ωr1NL1 for ar12 and ωr2NL1 for ar22 ,

read:

ωr1NL1 =
1

2(K2
22ω1 − 2K1

12ω2)2
×
(

2(K2
22)2ω3

1 + 4(K1
12)2ω3

2 −K2
22

(
(g1

12)2ω2 + 2K1
12ω1ω2(2ω1 + ω2)

+ g1
12p
√
ω2(2K2

22ω
2
1(−2ω1 + ω2) + ω2((g1

12)2p2 + 8K1
12ω

2
1 − 4K1

12ω1ω2))
))
,

(11.4.3a)

ωr2NL1 =
1

2(K2
22ω1 − 2K1

12ω2)2
×
(

2(K2
22)2ω3

1 + 4(K1
12)2ω3

2 +K2
22

(
− (g1

12)2ω2 − 2K1
12ω1ω2(2ω1 + ω2)

+ g1
12p
√
ω2(2K2

22ω
2
1(−2ω1 + ω2) + ω2((g1

12)2p2 + 8K1
12ω

2
1 − 4K1

12ω1ω2))
))
,

(11.4.3b)

while the third root ar32 may also be a starting/ending point with certain value but without cor-

responding ωr3NL1 and a1 (ωr3NL1 = ±∞, a1 =∞).

The following equation gives the first order nonlinear frequency of the second master mode

of the 2-dofs system:

ωsdofNL2 = ω2(1 + Γsdof2a
2
2). (11.4.4)
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where

Γsdof2 =
−K2

22

8ω2
2

=
1

8ω2
2

(3h2
222 −

10(g2
22)2

3ω2
2

− 3ω2
1 − 8ω2

2

ω2
1 − 4ω2

2

g2
12g

1
22

ω2
1

). (11.4.5)

In the case of a1 ≈ 0, combining above equation with Eq. (11.2.5b), It is found that

2ωrNL1 = ω2(1 + Γsdof2(ar2)2), (11.4.6)

such that the starting points exactly lay on the curve given by 1
2
ωsdofNL2. In the case of two possible

starting points exist: (ar12 , ω
r1
NL1), (ar22 , ω

r2
NL1), the points with a small value of ar2 have also a

ωrNL1 that is an approximate value of the 1
2
ω2 and thus to be the starting point, and the other one

is the ending point.

For illustrative purposes, Fig. 11.4.1 shows the results computed by Eq. (11.2.5a) and 1
2
ωsdofNL2

in the plane of (a2, ωNL1), with the coefficients of the system given in Eq. (11.3.6) and ω1 = 1

and ω2 selected from 1.2 to 2.2. In the figure, The solid curves are computed by Eq. (11.2.5a)

with a1 = 0, and the dashed curves are computed by 1
2
ωsdofNL2. From the figure, the cross point

of the same colour solid and dashed curves gives the starting point of the side branch. Also, in

this case, it is found that the solution of side branch of the multiple scale method will disappear

when σ > 0.24, so in the next section, we will discuss about the existence of the side branch in

the solution of multiple scale method.
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Figure 11.4.1: The solid curves are computed by Eq. (11.2.5a) with a1 = 0, and the dashed curves are

computed by 1
2ω

sdof
NL2. The stars are the cross points of the two curves. The coefficients of the system are

given in Eq. (11.3.6), with ω1 = 1 and ω2 selected every 0.2 (with each kind of colour) from 1.2 to 2.2.
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11.4.2 Existence of side branch

Now we are investigating the condition for the existence of the side branch. From the

Eqs. (11.4.1a,11.4.1b), it is found that

ar12 a
r2
2 (ar12 + ar22 ) =

−32ω1ω
2
2g

1
12pσ

(K2
22ω1 − 2K1

12ω2)2
> 0, (11.4.7)

thus, it is impossible for ar12 and ar22 are negative at the same time. In another words, The side

branches will exist when the ar12 and ar22 are real value such that at least one of them will be

positive and to be a starting point of a branch. In the situation where σ > 0, (ar22 , ω
r2
NL1) will be

the starting point because of ar22 < ar12 , on the other hand, (ar12 , ω
r1
NL1) will be the starting point

when σ < 0. In the case that the side branch is exists, ar12 and ar22 should be the real values and

the following equation should be fulfilled:

16(g1
12)2p2ω2

2 − 4(K2
22ω1 − 2K1

12ω2)(16ω2
1ω2 − 8ω1ω

2
2) > 0, (11.4.8)

thus

σ(K2
22ω1 − 2K1

12ω2) >
−(g1

12)2ω2

2ω1

. (11.4.9)

The following figure shows the restrictions for the existence of the side branches, where ∆ =

−(g112)2ω2

2ω1(K2
22ω1−2K1

12ω2)
. In the yellow and green range, the side branches will have both starting and

ending point, an example shown in (a), while in the blue and orange part, there will be only

starting point for the side branch. The white represents the range that backbone curves have no

side branch, with an example shown in (b) with only p− mode. Besides, in the case of σ > 0

(blue,yellow), the starting point will be (ar22 , ω
r2
NL1), while in the case of σ < 0 (orange,green),

the starting point will be (ar12 , ω
r1
NL1).

It should be noted that the above existence range for the side branch is analysed by the

first order multiple scale methods, in the context of ω2 ≈ 2ω1, so the range shown here is

reliable only when the detuning is not very large. In other words, when the detuning is in a

large value, the multiple scale method fails to catch the solution of the side branch, which really

exists in the original system. Such a counter-example is shown in Fig. 11.4.3, with coefficients

selected as Eq. (11.3.6), with ω1 = 1, ω2 = 2.5. From the figure, one can find that the multiple

scale solution only retrieve the main branch of the backbone and there is no solution for the

side branch, because in such context the left-hand side of Eq. (11.4.8) is negative, while when

using continuation method to calculate the backbone curve of the original full order system,
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Figure 11.4.2: The schematic representation of the side branch existence range, and examples for two

situations. (a): the side branches will have both starting and ending point, (b): Backbone curve has no

side branch.

it is shown that the side branch of backbone should exist. This example shows the range of

existence of the side branch derived by multiple scale solutions are true and reliable only in the

system with not large detuning.
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Figure 11.4.3: The backbone curve computed by the multiple scale method, only main branch exist and

plotted in blue. The black curves are the backbone of original system computed by continuation method

and shows that the side branch exist. The purple is the solution of single NNM.
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11.4.3 Hardening/softening behaviour of the main branch

In this section, the change of hardening/softening behaviour in the crossing of 1:2 diver-

gence is investigated and an augmented representation that can smooth the diverging behaviour

is searched. The backbone curves of the system in the vicinity of 1:2 resonance computed by

multiple scale method on the normal form with 1:2 resonance and the single normal mode are

compared, also, the solution of continuation method is included and taken as the reference in

order to validate the results of multiple scale solution.

The type of nonlinearity of the main branch (in the context of a2 ≈ 0) of the backbone

curves can be found from the derivation of a1 with regard to ωNL1, expressed as following

equation:

d(a1)

d(ωNL1)
=
d(a1)

d(a2)

d(a2)

d(ωNL1)
=

−16ω1ω2σ

g1
12g

2
11p

2 − 4K1
11ω1ω2 + 2K1

11ω
2
2

+ o(a2). (11.4.10)

where d()
d()

is the notation of derivation, d(a1)
d(a2)

is obtained from Eq. (11.2.2), and d(a2)
d(ωNL1)

is

computed by Eq. (11.2.6). When d(a1)
d(ωNL1)

> 0, the system shows a hardening behaviour, if
d(a1)

d(ωNL1)
< 0, the system would be softening. From Eq. (11.4.10), It should be noted that dif-

ferent from the conclusion given by [101] where only quadratic coefficients are considered, the

type of nonlinearity will also depend on the value of coefficients K1
11. To easily investigate the

type of nonlinearity of the system, the following equation is introduced:

F (σ) = −16ω1ω2σ(g1
12g

2
11p

2 − 4K1
11ω1ω2 + 2K1

11ω
2
2), (11.4.11)

which share the same positive or negative characteristic with the Eq. (11.4.10). By inserting

the expression of K1
11 given by (11.1.21) and considering ω2 = 2ω1 + σ, after the first order

truncation, the equation reads:

F (σ) = −32g1
12g

2
11ω

2
1σ + o(σ2). (11.4.12)

It is indicated that when σ is very small, the backbone curves will show a hardening behaviour

when σ < 0 (in such situation the main branch is the p+ mode), while when σ > 0 (in such

case the main branch is the p− mode), the backbone curves show a softening behaviour. Thus,

the results exactly match the conclusion of [101] in the context of σ ≈ 0.

In summary, it is known that for the system with 1:2 resonance and cubic nonlinearity,

when σ ≈ 0, the results will still in the frame of the conclusion given in [101], i.e., in the
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context σ < 0, the p+ mode is the main branch and show a softening behaviour, and when

σ > 0, the p− mode will be the main branch and is hardening. On the other hand, when σ far

from 0, different from the case presented in [101], the type of nonlinearity also depends on the

value of K1
11.

For giving the example, Fig. 11.4.4 shows the backbone curves of the lower frequency

mode, coefficients of system are chosen as Eq. (11.3.6) and the ω1 is selected as 1, and (a)

ω2 = 1.9 such that σ < 0, (b): ω2 = 2 in the case of σ = 0 and (c): ω2 = 2.1, σ > 0.

In the figures, the blue (p− mode) and red (p+ mode) curves represent the backbone curves

computed by multiple scale method with normal form reduction with 1:2 internal resonance,

and for validating the solution, backbone curves of the original system (black) are computed by

continuation method (Manlab).

In Fig. 11.4.4(a), the side branch of backbone curves (blue) show a softening behaviour

when σ = −0.1. On the other hand, in Fig. 11.4.4(c), when σ = 0.1 (the side branch is the

p+ mode which in red), the system shows a hardening behaviour. Such results exactly prove

that when σ is very small, generally the effect of cubic nonlinearity can be neglected and the

hardening/softening behaviour will in the frame of the conclusion given in [101].
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Figure 11.4.4: Backbone curves of the first mode, coefficients of system are chosen as Eq. (11.3.6) and

the ω1 is selected as 1, and the ω2 is chosen to be 1.9 (a), 2 (b) and 2.1 (c). In the figures, the analytical

results of the NF with 1:2 internal resonance are given in blue (p− mode) and red (p+ mode), also the

result of the single NNM is given in purple, and the results of the original system calculated by the

Manlab are shown in black, with the unstable solution dotted.

Also from Fig. 11.4.4, it is found that the multiple scale solutions match well with the full

order solution when the amplitude is not very large, also, it is shown that with considering of 1:2

internal resonance, the solution is more accurate than the result obtained by single normal mode
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as compared to the full order solution. For illustrative purpose, keeping studying the systems

with the same coefficients and detuning, Fig. 11.4.5 shows the comparison of the multiple scale

solution and HBM continuous solution, i.e., comparing the coefficients in Eq. (11.1.30) and

(11.1.31) with corresponding harmonic component computed by Manlab.
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Figure 11.4.5: The comparison of the multiple scale solution (red: p+ mode, blue: p− mode) and

HBM continuous solution (black), i.e., comparing the coefficients in Eq. (11.1.30) and (11.1.31) with

corresponding harmonic component computed by Manlab. Where coefficients of system are chosen as

Eq. (11.3.6) and the ω1 is selected as 1, and the ω2 is chosen to be 1.9 (a), 2 (b) and 2.1 (c). The first row

shows the first harmonic solution for mode 1, the second row represents the second harmonic solution

for mode 2 and the third row is the solution of the part with constant coefficient for mode 2.

From Fig. 11.4.5, for all the harmonic components for amplitudes of the modes a1 and a2,

it is found that backbone curves obtained by the multiple scale methods match well by the

continuation method when the amplitude is not very large, also, it is shown that multiple scale

169



solutions retrieve the starting points of the side branch very well. Also, from Fig. 11.4.5 (a)

and (c), one can observe that the difference of the results between the two methods is smaller

on the calculation of the main branch as compared to the calculation of side one. One should

also notice that the p+ mode in some of the cases, for example (c3), has both a starting point

(ωrNL ≈ 1.05) and an ending point (ωrNL ≈ 1). In a 3D plot of (a1, a2, ωNL1) as shown in

Fig 11.4.4(c), the ending point has a large value of a2. However, because the multiple scale

method is applied in the first order such that can be trusted only at the beginning of the backbone

curves, the prediction of the ending point here is unreliable.

Fig. 11.4.6 shows another two cases, the idea now is to investigate the system with consid-

erable value of K1
11 and not a small detuning σ, hence, to highlight the difference of the results

between the case with cubic nonlinearity considered and the system with only quadratic non-

linearity, as presented in [101]. Different detuning situation is studied here, in the first case,

coefficients of system are given in Eq. (11.3.6), ω1 = 1, and ω2 = 1.5 (σ > 0). In the second

case, coefficients of system are given in Eq. (11.4.13) with ω1 = 1, and ω2 = 2.5 (σ < 0).

g1
12 = g2

12 = 2, g1
11 = g1

22 = g2
11 = g2

22 = 1;

h1
111 = h2

112 = h2
122 = h2

222 = 5, h2
122 = h2

111 = h1
222 = h1

112 = 0.
(11.4.13)
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Figure 11.4.6: Backbone curves of the system, (a): coefficients are chosen as Eq. (11.3.6) and ω1 =

1, ω2 = 1.5 (σ < 0), (b): coefficients are chosen as Eq. (11.4.13) and the ω1 = 1, ω2 = 2.5 (σ > 0).

(c): Top view of plot (a), with the brown curve is computed by Eq. (11.2.5a) with a1 = 0, the cyan curve

is computed by 1
2ω

sdof
NL2, and the green curve presents the 1

2ω
sdof
NL2 computed on the ROM with continuous

computation tool. In the figure, the analytical results of the normal form with 1:2 internal resonance are

given in blue (p− mode) and red (p+ mode), also the result of single NNM is in purple, and the results

of the original system calculated by the Manlab are shown in black, with the unstable solution dotted.
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In Fig. 11.4.6 (a): p− mode shows hardening behaviour when it is the main branch in the

case of σ > 0 and (b): p+ mode shows softening behaviour when it is the main branch in

the case of σ < 0. The cases that shown as the counter-example illustrate the difference and

complexity when the cubic terms involved in multiple scale solution of the system with 1:2

resonance, instead of only quadratic terms are considered [101]. In (a) and (b), one can find

the starting point of side branch is not well retrieved, to be specific, ωrNL is correct but ar2

shows little error as compared to the solution of the continuation method, such error is arisen

from the detuning is large and the multiple scale solution for the side branch is not accurate

enough in such context. In Fig. 11.4.6(c), it is clear that the starting point of the side branch

lay exactly on the cross point of the brown and the cyan curve. Also, it is found that the side

branch computed from the original system start with a point of the green curve that given by the

nonlinear frequency of the second mode divided by 2, i.e. 1
2
ωsdofNL2. Thus, the example validates

again the conclusion obtained in Section 11.4.1.

Fig. 11.4.7 shows the indicator of type of nonlinearity predicted by single NNM with regard

to σ (black), the function of Da2 (pink) given in Eq. (11.3.7) and starting position ar2 for the

side branch (blue). It is shown that when σ tends to be 0, the nonlinear frequency of starting

point of the side branch will be close to the ω1 and thus will approach the main branch, also,

from the trend of changing of Da2, It is clear that from σ < 0 to σ > 0 (cross 1:2 divergence),

the side branch will first approach the main branch and then leave away, the Da2 also show

a divergence, which represents the main branch switched the type of nonlinearity at a certain

point, and the value of Da2 will be large when σ ≈ 0, it is because the main branch switches

from p+ mode when σ < 0 to p− mode when σ > 0. The figure show a inside view of 1:2

divergence of the result of signal NNM, the change of nonlinearity at crossing 1:2 resonance

can be considered as the switch of the main branch and the side branch of the backbone curves

such that producing the divergence.

11.5 Application: curved beams with FE discretization

In all previous numerical test cases, the coefficients are chosen freely, in this section, we

are going to investigate a more realistic case, i.e., the nonlinear coefficients are obtained from

real FE structures thanks to the DNF, instead of ideal values. For that purpose, the nonlinear
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Figure 11.4.7: The indicator γ of type of nonlinearity predicted by single NNM with regards to σ (black),

and the function of Da2 (pink) for the main branch and starting position ar2 for the side branch (blue).

The coefficients of the system are given in Eq. (11.3.6), with ω1 = 1 and ω2 selected from 0.1 to 15.

response of the clamped-clamped beams with rectangular cross-section in the neighbourhood

of 1:2 internal resonance are investigated, and in order to draw different detuning of the two

resonance eigenfrequencies, the investigation is performed on the beams with different curva-

tures. In the FE model, these beams are discretized with the 3D hexahedral 20 nodes element

with 40 elements in the length and 4 elements in the cross-section. The schematic of the beam

mesh and the corresponding modes are shown in Fig.11.5.1. Material properties are selected as:

density ρ = 4400kg/m3, Young modulus E = 1.04e11Pa, and Poisson’s ratio v = 0.3. The di-

mensions of the beams with its corresponding response frequencies are shown in the following

Tab.11.5.1:

Case length(m) thickness(m) width(m) height(m) ω1(Hz) ω2(Hz) ratio ε

a 1 0.02 0.05 0.12 407.95 674.91 1.65

b 1 0.02 0.05 0.15 393.84 773.25 1.96

c 1 0.02 0.05 0.18 368.28 845.5 2.30

Table 11.5.1: The dimensions and the resonance frequencies of the clamped beams, where ε = ω2/ω1.
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Figure 11.5.1: The schematic of the beam mesh (the left) and the modes (the middle and right).

Fig. 11.5.2 shows the backbone curves of the first transverse mode in the curved direction

of the curved beam, as shown in the middle of Fig. 11.5.1. In the figure, the analytical results

of the NF with 1:2 internal resonance are given in blue (p− mode) and red (p+ mode), and the

backbone curves of the two NNMs derived by normal form calculated by Manlab are shown in

black, with the unstable solution dotted.

In the figures, it is found that for the main branch of the backbone, the multiple scale solution

matches the results obtained by the continuation method well when the amplitude a1 is not very

large. One can also observe that when detuning is small, as shown in the middle plot, the

side branch obtained by these two methods agrees well at the beginning of the branch. While

it should be noted here that in the left and right plots when detuning is not very small, it is

difficult to find the side branch of the result computed by continuation method because of the

convergence problem. This is acceptable since in the test cases we are more concerned about the

behaviour in the vicinity of 1:2 resonance, also, in the context of the system has large detuning,

only the main branch of the backbone curve is investigated.
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Figure 11.5.2: The backbone curves computed by using normal form reduction with 1:2 resonance of the

curved beams. The left: case a, the middle: case b, the right: case c. The blue and the red curves are p−

and p+ modes respectively computed by multiple scale method, and the black curves are the solution

obtained from continuation method.
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11.6 Conclusion

In this section, the nonlinear dynamics and nonlinear coordinate transformation under the

normal form framework of the system with 1:2 resonance and cubic nonlinearity are investi-

gated. Then, the analytical results for the nonlinear oscillators with 1:2 resonance have been

developed by applying the multiple scale method with both quadratic and cubic nonlinearities

considered. At last, the first-order analytical results for the backbone curves and the change of

nonlinearity at crossing 1:2 resonance of the system have been investigated.

Numerous numerical examples have been done with the different selection of parameters,

mainly focusing on the detuning of the resonance eigenfrequencies of two modes, and the situa-

tion can thus be divided into two parts with regard to the detuning. Firstly, when the system has

a large detuning, it is clearly found that the main branch of the backbone curve will tend to the

result obtained by the single normal mode, and when detuning gets smaller and smaller, one can

observe that the difference between the first-order results provided by NNM with 1:2 resonance

and single NNM will become considerable. Secondly, in the vicinity of 1:2 resonance, for the

backbone curve, it is found that the side branch is closed to the main one, also, the starting

point of the side branch is investigated and determined analytically. This is meaningful since

the starting point gets close to the main branch when ω2 tends to equal to 2ω1, and then the side

branch becomes the main one after crossing the ω2 = 2ω1, consequently, the type of nonlin-

earity will switch from one to another leading to 1:2 divergence. The analytical solution has

been validated by comparing the results provided by numerical continuation procedures (Man-

lab). In the end, a realistic case has been searched, the ROMs of curved beams on FE model

with different detuning has been developed thanks to DNF, and one can observe a good agree-

ment between the analytical solution given by multiple scale method and solution by applying

continuous computation on the ROM developed by DNF.

The first contribution of this part is to give the nonlinear dynamics and nonlinear mapping

under the normal form framework of the system with 1:2 resonance and cubic nonlinearity. In

the past, the analysis shows that the system with such resonance condition can not be linearised,

and the corresponding quadratic terms can not be cancelled because it is resonant through the

eigenvalue relationship, and thus the two modal coordinates are strongly coupled. In this work,

1:2 resonance condition has been analysed with cubic nonlinearity also considered, and thus
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draw a clear map about how the quadratic resonant terms will affect the cancellation of cubic

terms and nonlinear mapping of the normal form.

The second contribution of this part is to make a comparison between the backbone curves

obtained by normal form dynamics with 1:2 resonance and by single dof NNM. From the view

of the modal amplitude aspect, in the case of ω2 � 2ω1 or ω2 � 2ω1, when the first mode

is strongly excited, the second mode (with higher eigenfrequencies) just respond a little thus

will have a small amplitude, the solution with considering 1:2 resonance should return the same

nonlinear features as compared with results obtained by single dof case. While in the context

of ω2 ≈ 2ω1, in the vicinity of the ω1, the resonant modes are excited at the same time and thus

to be remarkable, such that the backbone curves and the type of nonlinearity of the system will

be so different from if only consider single dof NNM.

The third contribution of this part is to clearly explain the resource of 1:2 divergence on the

prediction of the hardening/softening behaviour, with analytically investigate the main branch

and side branch of the backbone curves. The starting point of the side branches are always

getting close to the main one when detuning gets smaller, and they share the same starting point

when ω2 = 2ω1. Thus, the change of nonlinearity at crossing 1:2 resonance can be considered

as the switch of the main branch and the side branch of the backbone curves such that producing

the divergence.
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Part V

Conclusion and future work
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Chapter 12

Conclusion and future work

In this thesis, reduced-order models as well as reduction methods are investigated for geo-

metrically nonlinear dynamics of thin structures. This chapter discusses the main results of the

thesis and emerging research topics for future work.

12.1 Conclusion

In part I, numerous reduction methods have been shortly reviewed. It is found that the

non-intrusive methods with linear mapping are sometimes difficult to retrieve the nonlinear

phenomena when building ROM, and the problem mainly comes from the implicit coupling re-

lationship between the linear modes. As demonstrated in the circular plate example, the master

modes can be coupled with modes in the very high frequency range. Hence, it is found that

the methods with nonlinear mapping are more efficient because they introduce a connection be-

tween the linear coordinate and the nonlinear one, thus can be used to build ROMs with a small

size of modal basis since the curved reduction subspace can retrieve the coupling relationship.

The nonlinear reduction methods can be divided into two groups, the first contains these meth-

ods relies on invariant manifold theory, for example the normal form approach developed from

the Poincaré and Poincaré-Dulac theorem. The second group include the methods that derive a

nonlinear mapping without invariant property (the ICE method and the MDs).

In part II, Charter 5 shows a theoretical comparison between the ICE methods with stress

manifold and invariant manifold approach, and thus to draw a conclusion that the stress man-

ifold derived by the ICE method theoretically tend to the invariant manifold when a slow/fast
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assumption fulfilled. Then, the ICE method has been deeply investigated and assessed theo-

retically and numerically. The beam examples well demonstrate that the ICE method appears

particularly appealing when reducing to a single mode since allowing easily a higher-order

polynomial fitting, and also in such case the method can follow backbone curves up to larger

amplitudes than methods limited to third-order expansions. However, the subsequent plate ex-

amples show drawbacks of using ICE method due to the fitting procedure. More specifically,

the applied loading scales of the input are difficult to determine, and the result of ROM built by

ICE method would to a large extent depend on the fitted curved manifold and thus to be not ro-

bustness, also, it is found that the computational burden of using the ICE methods will dramatic

increase when the number of master modes is getting large. Chapter 6 of part II introduces the

DNF approach, which can directly compute the invariant manifold on the FE model and accu-

rately predict the nonlinear features due to the trajectories of ROM existing in the full system.

Modal derivatives is shortly reintroduced after, and a theoretical comparison had been made

between these two methods, with special emphasis that was put on the nonlinear dynamics and

prediction of type of nonlinearity given by the ROMs. Two simple analytical examples are then

used in order to analyse how the different treatments of quadratic nonlinearities by the three

methods can affect the predictions. The examples prove again that the ICE and MDs work well

only with a slow/fast assumption at hand, while the DNF method always produces the correct

first-order assumption as long as the amplitudes are not too large.

In part III, applications of ROMs build by the nonlinear reduction methods (ICE, MDs,

DNF) on continuous structures have been done in order to give a full illustrative view of the

advantages and drawbacks of each reduction methods. Firstly, flat beam, arch and non-shallow

arch are used to emphasize the ability of the methods to handle curvature, and it is found the

error of the results obtained by using ICE method and the MDs will get larger with the in-

creasing of the curvature of the beam, but DNF always works well. On the next example (a

clamped-clamped beam with two polarizations), it is shown that all the three methods are able

to retrieve the 1:1 internal resonance and pitchfork bifurcation. Finally, a cantilever beam with

inertia nonlinearity is investigated, and the result shows the MDs gives the best prediction of

the nonlinear response, the reason still not very clear and needs further investigation. From all

the numerical test cases, one conclude that the DNF works well in the most of situation thanks

to the derived invariant manifold, and the other two methods has a drawback that a slow/fast
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assumption is needed.

In part IV, normal form reduction has been investigated on the nonlinear dynamics of the

system with 1:2 resonance and cubic nonlinearity. The second-order internal resonance has the

effect on the quadratic nonlinearity, and now it is known that in the nonlinear dynamics, not only

the resonant quadratic terms have to be kept, but two new correction cubic terms are introduced.

Also, in the nonlinear mapping, the corresponding resonant cubic terms will be slightly modified

due to the change of the cancellation procedure of quadratic terms. Apart from that, with the

nonlinear dynamics obtained by previous contribution, the first-order results of the backbone

curve and the changing of nonlinearity at crossing of 1:2 resonance have also been researched by

using the multiple scale method, as the result, the first order multiple scale solution agrees well

with the solution of the continuation method. The hardening/softening behaviour of the system

with regards to the detuning of 1:2 resonance has also been investigated, as the conclusion, it is

found that when the detuning is large, the results tends to the solution obtained by single normal

mode, on the other hand, when the detuning is approaching 1:2 divergence, one can observe the

side branch of the backbone curve is also getting close to the main one. This work is helpful for

whom wants to build ROM of the system with 1:2 resonance by using normal form reduction.

In summary, a comprehensive view of the reduced-order models for geometrically nonlinear

vibrations of thin structures has been given in the thesis, and the non-intrusive reduction meth-

ods with nonlinear mapping are mainly investigated. Theoretical comparison and numerical

tests clearly show the advantages and disadvantages of the ICE method and MDs, and the new

introduced DNF approach is found to be very efficient tool to build the accurate ROM on the

FE package.

12.2 Future work

This section discusses open problems related to the methods for building ROM for the non-

linear dynamics of structures, in order to describe possible further developments and future

work.

The first is to investigate using DNF to building ROM with multiple master modes. It is

known that the direct normal form can build accurate ROMs with one or two master coordinates,

and it is worth to use the method to tackle more complex dynamics involving a larger number
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of master modes. For that purpose, a big issue for using the normal form to generate the ROM

is that one need discover potential internal resonance situation in the first stage. This can be

complexed especially when large amplitudes and multi master modes are considered.

Secondly, although directly normal form approach on the FE model are based invariant

manifold theory and thus perform well in the most of situation, but currently it is limited to its

third-order asymptotic, so the results are expected to deteriorate at very large amplitudes, which

was clearly observed in the cantilever beam example in Part III. To enlarge the application of

the methodologies, the theoretical efforts should be devoted into the higher order computation.

Thirdly, in the thesis, the research was mainly focused on the geometrically nonlinear struc-

tures, so the nonlinearities were typical expressed as the polynomial terms. So further investi-

gations are planned to deal with different physical problems, like the structures with different

types of nonlinearities, for example material nonlinearity, physical configuration nonlinearities;

and with different types of nonlinear forces, for instance, the piezoelectric couplings [102] of-

ten used in energy-harvesting problems, electrostatic forces in MEMs dynamics, thermal effects

[103], nonlinear aeroelastic forces, centrifugal and Coriolis effects in rotating systems with ap-

plications to blades, fluid-structure interaction.
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Appendix A

Analytical coefficients of asymptotic

expansions for the static condensation

In this section we give the exact analytical expressions of the coefficients obtained in the

asymptotic expansion for the static condensation of a two degrees of freedom system. The

functional relationship between the slave coordinate X2 and the master one X1 write X2 =

c(X1), and c is expanded in polynomial form up to order 9 following Eq. (5.2.4). Identification
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of like powers term give the following values for the coefficients k2 to k9:
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Appendix B

Derivation of normal form on the N dofs

system with 1:2 resonance and cubic

nonlinearity

In this appendix, the contribution shown in the Chapter 10 is extended to the N dofs non-

linear systems, and the nonlinearly coupled oscillators in the vicinity of 1:2 internal resonance

(ωn ≈ 2ωm) are considered, as the conclusion, the transformation of coordinates and reduced

nonlinear dynamics are given. The equations of motion of the system with quadratic and cubic

nonlinearity read as:

Ẋp = Yp,

Ẏp = −ω2
pXp −

N∑
i=1

N∑
j≥i

gpijX
p
iX

p
j −

N∑
i=1

N∑
j≥i

N∑
k≥j

hpijkX
p
iX

p
jX

p
k .

(B.0.1)

After following the same manner processing shown in Chapter 10, a nonlinear transform can be

found in order to cancel the maximum number of quadratic and cubic coupling terms present in

the original system. The nonlinear transformation up to order three reads:

Xp = Rp +
N∑
i=1

N∑
j≥i

apijRiRj +
N∑
i=1

N∑
j≥i

bpijSiSj +
N∑
i=1

N∑
j≥i

N∑
k≥j

rpijkRiRjRk +
N∑
i=1

N∑
j=1

N∑
k≥j

upijkRiSjSk,

Yp = Sp +
N∑
i=1

N∑
j=1

γpijRiSj +
N∑
i=1

N∑
j≥i

N∑
k≥j

µpijkSiSjSk +
N∑
i=1

N∑
j=1

N∑
k≥j

νpijkSiRjRk,

(B.0.2)
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where the quadratic coefficients of apij, b
p
ij, γ

p
ij are given by:

∀i = 1, ..., N, ∀j ≥ i, ..., N :

apij =
ω2
i + ω2

j − ω2
p

Dijp

gpij(1− δmpδmiδnj)(1− δnpδmiδmj)

bpij =
2

Dijp

gpij(1− δmpδmiδnj)(1− δnpδmiδmj)

γpii =
2

4ω2
i − ω2

p

gpii(1− δnpδmi)

∀i = 1, ..., N, ∀j > i, ..., N :

γpij =
ω2
j − ω2

i − ω2
p

Dijp

gpij(1− δmpδmiδnj)

γpji =
ω2
i − ω2

j − ω2
p

Dijp

gpij(1− δmpδmiδnj)

(B.0.3)

with δij Dirac delta function andDijp = (ωi+ωj−ωp)(ωi+ωj+ωp)(ωi−ωj+ωp)(ωi−ωj−ωp).

For the cubic coefficients rpijk, u
p
ijk, µ

p
ijk, ν

p
ijk, with i, j, k, p = 1, ..., N , their expressions are

also not directly given here because they are too complexed, fortunately, as compared with

expressions of the coefficients given in [51] with the assumption of no resonance between

eigenvalues, the only difference is that for m and nth resonant modes, the external new cubic

terms should be considered during the computation. For example, if one want to obtain terms

rnmmn, u
n
mmn, u

n
nmm, µ

n
mmn, ν

n
mmn, ν

n
nmm, one need to replace (Anmmn + Annmm + hnmmn) in the

equations given in [51] to be (Anmmn+Annmm+hnmmn−Dn
mmn) andBn

mmn to be (Bn
mmn−En

mmn).
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The new external terms D,E only with regard to the resonance modes are given by:

Dm
mmn = γmmmg

m
mn + γnnng

n
mm − 2bmmmg

m
mnω

2
m − 2bmnng

n
mmω

2
n

Dn
mmm = γnmng

n
mm − bnmngnmmω2

m

Dn
mmn = γnnng

n
mm − 2bnnng

n
mmω

2
n

Dn
mnn = γnnmg

m
mn − bnmngmmnω2

n

Em
mmn = 2bmmmg

m
mn + 4bmnng

n
mm

Em
nmm = 2bmmmg

m
mn

En
mmm = 2bnmng

n
mm

En
mnn = bnmng

m
mn

En
mmn = 4bnnng

n
mm

En
nmn = bnmng

m
mn.

(B.0.4)

After the coordinate transformation, the nonlinear dynamics, up to third order, of the system

with the new coordinates (Rp, Sp) should be written as:

Ṙp =Sp,

Ṡp =− ω2
pRp − gmmnRmRnδmp − (hpppp + Apppp)R

3
p −Bp

pppRpS
2
p

−Rp

[
N∑
j>p

[(Apjpj + Appjj + hppjj)R
2
j +Bp

pjjS
2
j ] +

∑
i<p

[(Apiip + Appii + hpiip)R
2
i +Bp

piiS
2
i ]

]

− Sp

[
N∑
j>p

Bp
jpjRjSj +

∑
i<p

Bp
iipRiSi

]
+ (Dn

mmnR
2
mRn + En

mmnRmSmSn − gnmmR2
m)δnp

(B.0.5)

where the terms Apijk, B
p
ijk, (i, j, k, p = 1, ..., N) are expressed as:

Apijk =
N∑
l≥i

gpila
l
jk +

∑
l≤i

gplia
l
jk,

Bp
ijk =

N∑
l≥i

gpilb
l
jk +

∑
l≤i

gplib
l
jk.

(B.0.6)
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[51] C. Touzé, O. Thomas, and A. Chaigne. Hardening/softening behaviour in non-linear

oscillations of structural systems using non-linear normal modes. Journal of Sound and

Vibration, 273(1-2):77–101, 2004.
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Titre: Modèles d’ordre réduit pour les vibrations non linéaires géométriquesde structures minces

Mots clés: modèles à ordre réduit, non-linéarité géométrique, formes normales, mode normal non linéaire

Résumé: Lorsqu’elles vibrent avec de grandes am-
plitudes, les structures minces montrent un com-
portement non linéaire géométrique, provenant de
la relation non linéaire entre les déformations et les
déplacements. Les analyses des systèmes complets
font appel à des calculs extrêmement couteux de telle
sorte que l’établissement de modèles d’ordre réduit
efficaces est un sujet d’intérêt majeur pour le calcul
prédictif de vibrations de structures minces.
Dans cette thèse, des méthodes non linéaires de
réduction de modèle pour les structures discrétisées
par la méthode des éléments finis et comportant
une non-linéarité géométrique, sont étudiées. Trois
méthodes non intrusives sont plus particulièrement
examinées et systématiquement comparées : la
méthode de condensation implicite, la méthode des
dérivées modales, et la réduction sur variétés invari-
antes du système. Les analyses théoriques montrent
que les deux premières méthodes ne peuvent don-
ner de résultats fiables que sous hypothèse d’une
séparation spectrale entre les fréquences propres
des modes maitres et celles des modes esclaves.
La méthode de réduction sur variétés invariantes
permet quant à elle d’avoir une méthode directe,
ne nécessitant pas de pré-calculs, ni d’hypothèses

préalables sur les fréquences propres des modes es-
claves, afin de fournir des résultats corrects.
De nombreuses applications et de comparaisons
numériques sont montrées sur diverses structures
discrétisées avec la méthode des éléments finis.
Pour appliquer la méthode des variétés invariantes,
une méthode récemment développée, permet de
proposer un calcul direct de la forme normale du
problème, à partir de la base physique et donc des
degrés de liberté du maillage éléments finis. Les
exemples montrent clairement les avantage et in-
convénients de chaque méthode, validant aussi les
résultats théoriques montrés précédemment.
Dans la dernière partie de la thèse, la dynamique
non linéaire d’un système présentant une relation de
résonance interne 1:2 est analysée, en tenant compte
des termes cubiques. La forme normale réelle du
problème est d’abord établie. Ensuite les branches
de solution du problème sont analysées et comparées
avec celles du modèle plus simple négligeant la non-
linéarité cubique. Le comportement divergent ob-
servé lorsqu’on réduit le problème à un seul mode et
que l’on cherche à prédire le comportement raidissant
ou assouplissant, est ensuite étudié avec ce modèle
plus complet.

Title: Reduced-order models for geometrically nonlinear vibrations of thin structures

Keywords: reduced-order models, geometric nonlinearity, normal forms, nonlinear normal mode

Abstract: When vibrating with large amplitudes, thin
structures experience geometric nonlinearity due to
the nonlinear relationship between strains and dis-
placements. Because full-order nonlinear analysis on
geometrically nonlinear models are computationally
very expensive, the derivation of efficient reduced-
order models (ROMs) has always been a topic of in-
terest.
In this thesis, nonlinear reduction methods for build-
ing ROMs with geometric nonlinearity in the frame-
work of the Finite Element (FE) procedure, are investi-
gated. Three non-intrusive nonlinear reduction meth-
ods are specifically investigated and systematically
compared. They are: implicit condensation and ex-
pansion (ICE), modal derivatives (MD), and the reduc-
tion to invariant manifold. Theoretical analysis shows
that the first two methods can give reliable results
only if a slow/fast assumption between slave and mas-
ter coordinates holds. On the other hand, reduction
to invariant manifolds allows proposing a simulation-
free reduction method that can be applied without re-
stricting assumptions on the frequencies of the slave

modes.
Numerical comparisons and numerous applications to
continuous structures discretized with the FE proce-
dure, are given subsequently. For application of the
invariant manifold-based method, the computation is
based on a direct application of the normal form to
the physical space and hence to the nodes of the FE
mesh, a method recently developed. The examples
show the advantages and drawbacks of each reduc-
tion method when deriving ROM, and the results of
the theoretical comparison are validated.
Finally, the analysis of the dynamics of a system
with 1:2 internal resonance and cubic nonlinearity is
given in the last part of the thesis. The real nor-
mal form of the problem is first derived. Then the
solution branches of the problem are investigated
and compared to simpler solutions with the dynam-
ics truncated at order two. The divergent behaviour
of the hardening/softening characteristics for single-
mode reduction is investigated with this more com-
plete model.
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