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Quel est l'objectif de cette thèse ?

Cette thèse s'inscrit dans l'étude de la sphère brownienne en utilisant le mouvement brownien indexé par l'arbre brownien. Certaines variantes de la sphère brownienne sont apparues dans les dernières années, comme le plan brownien -qui est une version infinie de la sphère brownienneet le disque brownien -qui apparaît comme limite d'échelle des quadrangulations avec frontière. Par analogie avec le mouvement brownien, nous parlerons de géométrie brownienne. L'objectif de cette thèse est de combiner différentes approches de cette théorie afin de développer une étude systématique de propriétés métriques de ces modèles telles que des propriétés de Markov spatiales, des formules explicites concernant des objets géométriques ou des propriétés isopérimétriques.
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INTRODUCTION

Cette introduction sera articulée en trois chapitres.

Dans le chapitre 1, nous présenterons le contexte des cartes aléatoires ainsi que la célèbre bijection de Cori-Vauquelin-Schaeffer afin de définir l'objet central de la géométrie brownienne: la sphère brownienne. Les chapitres 2 et 3 regrouperont nos contributions principales à cette théorie. Nous insisterons principalement sur les techniques et idées développées et renverrons le¨a lecteur¨rice intéressé¨e aux parties ultérieures pour plus de détails. Mentionnons aussi qu'afin de preserver la cohérence de l'introduction, certaines notations utilisées dans cette partie diffèreront des notations des articles associés. Le chapitre 2 sera centré sur nos travaux [START_REF] Gall | Growth-fragmentation processes in Brownian motion indexed by the Brownian tree[END_REF][START_REF] Gall | Spine representations for non-compact models of random geometry[END_REF][START_REF] Riera | Isoperimetric inequalities in the Brownian map and the Brownian plane[END_REF] ; ils représentent le coeur de cette thèse et rassemblent nos résultats liés à des propriétés de Markov spatiales en géométrie brownienne. Finalement le chapitre 3 sera centré sur des formules explicites concernant des quantités géométriques telles que les longueurs de bords ou les volumes en géométrie brownienne. Dans cette partie, nous présenterons notre travail [START_REF] Gall | Some explicit distributions for Brownian motion indexed by the Brownian tree[END_REF] ainsi qu'un chapitre correspondant à un projet en cours, contenant d'autres résultats pouvant être obtenus en utilisant les techniques développées dans nos précédents travaux.

Definition 1. Une carte planaire est la donnée d'un graphe planaire connexe fini enraciné et d'un plongement propre de ce graphe dans la sphère S 2 -ce dernier considéré à homéomorphisme de la sphère conservant l'orientation près.

Le terme enraciné signifie simplement que nous avons distingué une arête orientée. Le sommet duquel part cette arête orientée est appelé sommet racine de la carte. Il peut être interprété comme un point depuis lequel on observe la carte en question. L'avantage d'utiliser les cartes planaires réside dans le fait que le plongement dans la sphère devient fixe, rendant ces objets plus robustes géométriquement que les graphes planaires. De manière générale nous utiliserons la notation m pour nous référer à une carte planaire. Nous noterons respectivement Vpmq et Epmq l'ensemble des sommets et d'arêtes de m. Nous pouvons maintenant aussi définir Fpmq, l'ensemble des faces de m, comme étant l'ensemble des composantes connexes de S 2 après avoir retiré les sommets et arêtes de m. Le degré d'une face est alors défini comme le nombre de demi-arêtes adjacentes à celle-ci. Il est également possible d'interpréter ce nombre comme le périmètre de la face en question. Nous distinguons la face à gauche de l'arête orientée; cette face est appelée la face racine. Un bon exemple de la robustesse des cartes planaires citée précédemment est la célèbre formule d'Euler qui permet de relier le cardinal des ensembles Vpmq, Epmq et Fpmq par la relation:

#Vpmq ´#Epmq `#Fpmq " 2.

(1.1)

De manière peut-être plus imagée, une carte aléatoire peut aussi être définie comme un ensemble fini de polygones recollés le long de leurs arêtes de manière à obtenir topologiquement une sphère (l'un des polygones ayant une arête orientée distinguée). Cette deuxième définition a l'avantage de mettre en évidence le fait que l'ensemble des cartes planaires à n faces est un ensemble fini. Grâce à cette remarque, on voit que les cartes planaires sont des objets adaptés aux probabilités discrètes.

Figure 1.1 -Ces deux objets encodent le même graphe planaire mais sont différents en tant que cartes planaires. La figure de gauche est une quadrangulation.

Modèle de cartes planaires

Un modèle de cartes planaires est un sous-ensemble des cartes planaires vérifiant certaines contraintes combinatoires ou géométriques. On dira par exemple qu'une carte planaire est une p-angulation si toutes ses faces sont de degré p. Pour p " 3 et p " 4 on parlera respectivement de triangulations et de quadrangulations, voir figure 1.1 pour un exemple de quadrangulations.

Remarquons que si m est une p-angulation alors on a #Epmq " p{2 ¨#Fpmq puisque chaque arête est à l'interface de deux faces. Par conséquent, la formule d'Euler (1.1) nous permet aussi d'obtenir

Vpmq " pp{2 ´1q#Fpmq `2. De manière plus conceptuelle et dans le cas des p-angulations, les trois paramètres donnant une notion naturelle de taille #Vpmq, #Epmq et #Fpmq n'ont qu'un seul degré de liberté. Ce petit fait est fondamental lorsque l'on parle d'une grande p-angulation. Les quadrangulations sont parmi les modèles les plus populaires et étudiés, du fait notamment de la bijection de Tutte, qui relie de manière bijective les cartes planaires aux quadrangulations comme suit:

Bijection de Tutte. Soit m une carte planaire. Dans chaque face f de m, on rajoute un sommet que l'on relie par une arête à chaque coin de f de telle manière que les arêtes ne se croisent pas. Puis en effaçant les arêtes de m on obtient une quadrangulation (on distingue l'arête orientée partant du sommet racine et pointant vers le sommet rajouté dans la face racine de m). Le nombre de faces de la quadrangulation obtenue est #Epmq.

De nombreuses propriétés des cartes générales peuvent alors être étudiées par l'intermédiaire des quadrangulations. Une autre bonne raison de considérer des quadrangulations est que ces objets peuvent être comptés très précisément. Notons Q n l'ensemble des quadrangulations à n faces. On a:

#Q n " 2 n `2 3 n 1 n `1 ˆ2n n ˙. (1.2) 
Nous renvoyons au census de Tutte [START_REF] Tutte | A Census of Planar Maps[END_REF] où l'on retrouve cette formule et bien d'autre résultats d'énumération de cartes.

Pourquoi étudier des cartes planaires aléatoires ?

Les cartes planaires comme modèles de géométrie aléatoire Les cartes planaires sont des objets apparaissant dans une multiplicité de problématiques différentes. Une des motivations pour les étudier est, d'une part, que l'espace de toutes les cartes planaires est un espace dénombrable et donc sur lequel il est simple de définir des mesures de probabilité et, d'autre part, que les cartes planaires peuvent être interprétées comme des espaces métriques compacts. Expliquons ce deuxième point plus précisément. Soit m une carte, alors pour chaque couple de points pu, vq P Vpmq 2 , on peut définir sa distance de graphe d m pu, vq comme le nombre minimal d'arêtes à emprunter pour aller de u à v. L'espace pVpmq, d m q est un espace métrique compact et pour simplifier nous utiliserons parfois la notation pm, d m q pour celui-ci. Les cartes planaires sont donc des modèles discrets de géométrie planaire nous permettant désormais de considérer des modèles de géométrie aléatoire. Une manière naturelle de faire cela est de fixer un modèle M de cartes puis, pour tout entier n ě 1, de définir une carte uniforme m n dans l'ensemble des cartes à n faces dans M (pourvu que cet ensemble soit fini et non vide). Les physiciens considèrent de tels modèles comme des modèles discrets de gravité quantique en dimension 2 et comme un moyen de donner sens à un analogue des intégrales de chemin de Feynman portant sur des surfaces (au lieu de l'intégrale de chemin plus "classique" portant sur des trajectoires).

La sphère brownienne

Un des aspects les plus remarquables de la théorie des cartes aléatoires est le fait que pour une grande variété de modèles, la suite m n admet une limite d'échelle universelle appelée la sphère brownienne, un espace continu ayant la topologie de la sphère et qui peut être construit en utilisant le mouvement brownien indexé par l'arbre brownien. Nous expliquerons plus précisément ce que nous entendons par limite d'échelle (voir paragraphes 1.2 et 1.3). Mais de manière informelle le¨a lecteur¨rice pourra rapprocher naturellement ce résultat de la convergence des marches aléatoires sur Z (avec variance finie) vers le mouvement brownien. Parmi les modèles admettant la sphère brownienne comme limite d'échelle se trouvent les cartes uniformes, les triangulations et toutes p-angulations. Ce résultat constitue l'un des principaux accomplissements de la théorie et fut obtenu par Jean-François Le Gall [START_REF] Gall | Uniqueness and universality of the Brownian map[END_REF] dans le cas des triangulations et des p-angulations pour p pair et de manière indépendante par Grégory Miermont [START_REF] Miermont | The Brownian map is the scaling limit of uniform random plane quadrangulations[END_REF] dans le cas des quadrangulations. Le cas des cartes uniformes sera traité postérieurement dans [START_REF] Bettinelli | The scaling limit of uniform random plane maps, via the Ambjørn-Budd bijection[END_REF] et la convergence vers la carte brownienne des p-angulations pour p impair a été établi très récemment dans [START_REF] Addario-Berry | Convergence of odd-angulations via symmetrization of labeled trees[END_REF] par Louigi Addario-Berry et Marie Albenque. En fait, pourvu que le modèle considéré ne fasse pas intervenir de grandes faces, la sphère brownienne devrait apparaître comme limite d'échelle. Ceci peut être rendu rigoureux pour un grand nombre de modèles (voir [START_REF] Abraham | Rescaled bipartite planar maps converge to the Brownian map[END_REF][START_REF] Addario-Berry | The scaling limit of random simple triangulations and random simple quadrangulations[END_REF][START_REF] Gall | Uniqueness and universality of the Brownian map[END_REF][START_REF] Marzouk | Scaling limits of random bipartite planar maps with a prescribed degree sequence[END_REF][START_REF] Miermont | The Brownian map is the scaling limit of uniform random plane quadrangulations[END_REF] pour plus de détails).

Par contre, dans le cas où le modèle présenterait de grandes faces nous sortirions du domaine d'universalité de la sphère brownienne. Nous renvoyons à [START_REF] Gall | Scaling limits of random planar maps with large faces[END_REF] pour le cas "stable" qui reste encore très mystérieux. Les preuves de Jean-François Le Gall et de Grégory Miermont reposent toutes deux sur des bijections entre des cartes et des arbres planaires étiquetés. Cette étude permet de construire la sphère brownienne grâce au mouvement brownien indexé par l'arbre brownien.

Gravité quantique de Liouville

Il existe aussi une approche directement dans le continu pour aborder la sphère brownienne en utilisant le champ libre gaussien. Cette construction conçoit la sphère brownienne comme un objet muni d'une structure conforme, appartenant à la gravité quantique de Liouville. La gravité quantique de Liouville est une famille à un paramètre γ P p0, 2q, et la sphère brownienne est apparentée avec le paramètre special γ " a 8{3, ce dernier étant associé au modèle de gravité dit pure. Elle fut définie en toute rigueur par François David, Anti Kupiainen, Rémi Rhodes et Vincent Vargas [START_REF] David | Liouville quantum gravity on the Riemann sphere[END_REF]. Associer une métrique à cette structure conforme a constitué l'un des grands problèmes de la théorie et a été résolu récemment dans [START_REF] Ding | Tightness of Liouville first passage percolation for γ P p0, 2q[END_REF][START_REF] Dubédat | Weak LQG metrics and Liouville first passage percolation[END_REF][START_REF] Gwynne | Existence and uniqueness of the Liouville quantum gravity metric for γ P p0, 2q[END_REF][START_REF] Gwynne | Confluence of geodesics in Liouville quantum gravity for γ P p0, 2q[END_REF] en utilisant une procédure de régularisation. Malgré cela, le fait que la gravité quantique de Liouville pour γ " a 8{3 et la sphère brownienne soient bien le même objet est un résultat extrêmement délicat et profond. Jason Miller et Scott Sheffield ont fait le rapprochement de ces deux constructions dans une série d'articles [START_REF] Miller | An axiomatic characterization of the Brownian map[END_REF][START_REF] Miller | Liouville quantum gravity and the Brownian map I: The QLE(8/3,0) metric[END_REF][START_REF] Miller | Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding[END_REF][START_REF] Miller | Liouville quantum gravity and the Brownian map III: the conformal structure is determined[END_REF] mais ce lien demeure assez mal compris. L'approche de Jason Miller et de Scott Sheffield est de parvenir à encoder les boules métriques à l'aide d'une exploration markovienne du GFF: la Quantum Loewner evolution ou QLE. Le QLE commençant en un point z du plan complexe peut être approché par un processus SLE 6 commençant en z qu'on laisse évoluer une courte durée de temps δ (encodé par la a 8{3-gravité quantique de Liouville) puis en réechantillonnant le point de départ du SLE 6 au hasard sur la zone découverte. Le QLE apparaît alors lorsque l'on considère la limite δ Ñ 0. Le lien entre cette métrique et celle obtenu par des procedures de régularisation est rendu possible par une caractérisation axiomatique de ces deux distances établit dans [START_REF] Gwynne | Existence and uniqueness of the Liouville quantum gravity metric for γ P p0, 2q[END_REF].

Dans la suite de ce chapitre, nous décrirons le lien entre les quadrangulations et les arbres étiquetés. Nous définirons ensuite l'analogue continu des arbres étiquetés : le mouvement brownien indexé par l'arbre brownien. Nous donnerons aussi la construction de la sphère brownienne à partir de cet objet. Une fois ce contexte établi nous présenterons, dans les deux chapitres suivants, nos contributions à cette théorie.

Bijection de Cori-Vauquelin-Schaeffer

Les nombres de Catalan 1 n`1

`2n

n ˘apparaissent de manière naturelle dans de nombreux problèmes de comptage; en particulier 1 n`1

`2n

n ˘désigne le nombre d'arbres planaires à n arêtes. De ce fait, la formule (1.2) suggère qu'il existe une liaison dangereuse entre quadrangulations et arbres planaires. Trouver une telle relation a été le sujet d'une grande activité de recherche, en particulier puisque les arbres planaires sont beaucoup plus simples à étudier. Robert Cori et Bernard Vauquelin donneront la première interprétation dans ce sens en montrant que les quadrangulations peuvent être encodées par une classe d'arbres planaires étiquetés (voir [START_REF] Cori | Planar maps are well labeled trees[END_REF]). Gilles Schaeffer popularisera et approfondira ces bijections en donnant surtout une interprétation métrique des étiquettes [START_REF] Schaeffer | Conjugaison d'arbres et cartes combinatoires aléatoires[END_REF].

Le but de cette section est de présenter la bijection de Cori-Vauquelin-Schaeffer ou bijection CVS. Un arbre planaire est une carte planaire à une seule face ou, de manière équivalente, sans cycles. Nous enrichissons cette structure avec des étiquettes et appelons coin d'un arbre n'importe quel secteur angulaire entre deux arêtes adjacentes. Un étiquetage d'un arbre planaire T est une fonction : VpT q Þ Ñ Z. Nous dirons qu'un arbre planaire étiqueté pT , q est bien étiqueté si la fonction vérifie les propriétés suivantes: ' L'étiquette de la racine est 0 ; ' Pour tout u, v P T voisins, on a puq ´ pvq P t´1, 0, 1u.

Fixons T " pT , q, un arbre bien étiqueté et un entier ε P t´1, 1u. Nous pouvons alors construire une carte planaire SpT , εq de la manière suivante. Commençons par introduire un nouveau sommet v ˚ne touchant pas T . Ensuite, pour chaque coin c avec étiquette i, dessinons une arête reliant ce coin avec le premier coin d'étiquette i ´1 rencontré en suivant le contour de T (dans le sens des aiguilles d'une montre) à partir du coin c. S'il n'y a pas de tel coin, relions c avec v ˚. Ces nouvelles arêtes peuvent être dessinées sans croisement. Nous distinguons alors l'arête tracée à partir du coin gauche de l'arête racine de T : si ε " 1, nous l'orientons vers la racine de T , et si ε " ´1, nous l'orientons dans le sens inverse. En effaçant les arêtes de l'arbre T nous obtenons alors une quadrangulation à #VpT q `1 sommets avec un point marqué v ˚. De plus, les étiquettes sur les sommets encodent les distances vers v ˚dans la quadrangulation SpT , εq i.e. on a: d gr pv, v ˚q " pvq ´min `1, (

pour tout sommet v de T . L'application S définit une bijection entre les paires consistant en un arbre planaire bien étiqueté et un entier dans t´1, 1u, et les quadrangulations avec un point marqué. En particulier, nous pouvons obtenir une quadrangulation aléatoire uniforme avec n `1 sommets en considérant une variable uniforme ε dans t´1, 1u, un arbre planaire uniforme à n sommets, puis en tirant une variable uniforme dans l'ensemble t´1, 0, 1u sur chaque arête de l'arbre. L'étiquette d'un sommet est alors la somme des étiquettes des arêtes sur la branche allant de la racine au sommet en question. Le¨a lecteur¨rice peut alors retrouver la formule 1.2.

Autres bijections

Depuis les travaux de Robert Cori, Bernard Vauquelin et Schaeffer, d'autres bijections ont été trouvées entre des modèles de cartes et des modèles d'arbres étiquetés. Citons quelques-unes des plus importantes. Jérémie Bouttier, Philippe Di Francesco et Emmanuel Guitter ont établi dans [START_REF] Bouttier | Planar maps as labeled mobiles[END_REF] une bijection de même nature pour toutes les cartes planaires sans restrictions. Cette bijection met en jeu des arbres avec quatre types de sommets mais elle prend une forme plus simple lorsque toutes les faces sont de degré pair. Grégory Miermont a établi une autre bijection entre les quadrangulations avec k points distingués et retards et les cartes planaires étiquetées à k faces [START_REF] Miermont | Tessellations of random maps of arbitrary genus[END_REF]. Dans cette bijection les étiquettes permettent d'encoder des "cellules de Voronoï" par rapport aux k points distingués. Mentionnons finalement que Guillaume Chapuy, Michel Marcus et Gilles Schaeffer ont élargi la bijection CVS pour des topologies de genre supérieur [START_REF] Chapuy | A bijection for rooted maps on orientable surfaces[END_REF].

Le mouvement brownien indexé par l'arbre brownien

Introduisons désormais l'analogue continu des arbres bien étiquetés. Dans ce travail nous considérerons des limites d'échelle d'espaces métriques compacts avec un point distingué. Pour ce faire il est nécessaire d'introduire une bonne notion de distance entre de tels espaces. Nous utiliserons ici la distance de Gromov-Hausdorff.

Distance de Gromov-Hausdorff

Un espace métrique compact pointé pE, d, xq est la donnée d'un espace métrique compact pE, dq et d'un point x sur E. Le point distingué x est aussi interprété comme la racine de E. On appelle isométrie entre deux espaces métriques compacts pointés pE, d, xq et pE 1 , d 1 , x 1 q toute isométrie φ : pE, dq Þ Ñ pE 1 , d 1 q vérifiant φpxq " x 1 , et on note K l'ensemble des espaces métriques compacts pointés à isométrie près. Afin de munir l'ensemble K d'une structure d'espace métrique nous introduisons maintenant la distance de Gromov-Hausdorff. Commençons par considérer pF , dq, un espace métrique, et E, E 1 deux sous-ensembles compacts de F . La distance de Hausdorff entre E et E 1 est la quantité:

d F H pE, E 1 q :" inftε ą 0 : E Ă E 1,ε et E 1 Ă E ε u,
où pour un sous-ensemble A de F , nous notons A ε le ε-voisinage de A dans F . Nous pouvons désormais définir la distance de Gromov-Hausdorff comme suit: Definition 2. Soient E :" pE, d, xq et E 1 " pE 1 , d 1 , x 1 q deux espaces métriques compacts pointés. La distance de Gromov-Hausdorff entre E et E 1 est la quantité:

d GH `E, E 1 ˘:" inf ´dF H pφpEq, φ 1 pE 1 qq _ δ `φpxq, φ 1 px 1 q ˘¯, où l'infimum est pris sur l'ensemble des espaces métriques pF , δq et des plongements isométriques φ :

E Ñ F et φ 1 : E 1 Ñ F .
Une des propriétés intéressantes de la distance de Gromov-Hausdorff est qu'on a d GH `E, E 1 ˘" 0 si et seulement si il existe une isométrie entre E et E 1 . L'espace pK, d GH q est donc un espace métrique et il peut être démontré qu'il est même polonais. C'est donc un bon espace sur lequel définir des variables aléatoires. Nous avons aussi besoin d'élargir la distance de Gromov-Hausdorff au cas non-compact et pour cela nous restreignons notre attention aux espaces géodésiques localement compacts et complets. Pour fixer les notations, posons K 8 l'ensemble des espaces géodésiques localement compacts, complets et pointés à isométrie près. Pour tout r ą 0 et E :" pE, d, xq élément de K 8 , notons B r pEq :" ty P E : dpx, yq ď ru. Munissons l'ensemble B r pEq de la restriction de la distance d et pointons-le en x. Comme E est localement compact et complet, l'ensemble B r pEq est un ensemble compact et B r pEq est donc un élément de K. Nous pouvons maintenant équiper K 8 de la distance:

d loc GH `E, E 1 ˘" 8 ÿ n"1 2 ´n ^dGH `Bn pEq, B n pE 1 q ˘.

Le mouvement brownien indexé par l'arbre brownien

Introduisons maintenant formellement l'analogue continu des arbres bien étiquetés: le mouvement brownien indexé par l'arbre brownien. Commençons par la structure d'arbre. Soit T n une variable aléatoire uniforme dans l'ensemble des arbres planaires à n sommets. Notons respectivement ρ n et d Tn sa racine et sa distance de graphe. L'espace pT n , d Tn , ρ n q peut alors être conçu comme un élément de K. La distance typique entre deux points de T n est d'ordre ? n et de manière suprenante l'espace pT n , n ´1 2 ¨dTn , ρ n q converge en distribution vers un objet continu nommé arbre brownien. L'arbre brownien est aussi connu sous le nom d'arbre d'Aldous, du nom de David Aldous qui l'introduisit et l'étudia [START_REF] Aldous | The continuum random tree I[END_REF][START_REF] Aldous | The continuum random tree III[END_REF]. Donnons une construction de cet objet à l'aide de l'excursion brownienne. Soit e une excursion brownienne de durée de vie 1. Nous pouvons alors utiliser l'excursion brownienne pour introduire la pseudo-distance: En notant s " de t lorsque d e ps, tq " 0, on obtient une relation d'équivalence sur r0, 1s. De manière imagée, deux points s et t sont équivalents pour " de si e s " e t et si le segment connectant ps, e s q et pt, e t q est entièrement sous le graphe de e (sauf évidemment à ses extrémités). Pour simplifier les notations, nous notons 0 la classe d'équivalence de 0 P R. L'espace pr0, 1s{ " de , d e , 0q est l'arbre brownien; il jouera le rôle d'analogue continu de la structure d'arbre apparaissant dans la bijection CVS. L'arbre brownien peut-être obtenu comme limite d'arbre uniforme, mais aussi comme limite d'arbre de Galton-Watson plus génériques. Ces convergences peuvent être étudier à l'aide de certaines propriétés de branchement Markovienne [START_REF] Haas | Scaling limits of Markov branching trees with applications to Galton-Watson and random unordered trees[END_REF]. Intéressons-nous maintenant aux étiquettes. Dans le monde discret, les étiquettes le long d'une branche décrivent une marche aléatoire à incréments uniformes dans t´1, 0, 1u. De plus lorsqu'une branche fourche pour donner deux branches, la marche aléatoire se divise en deux marches indépendantes. Dans le monde continu on peut imiter cette dynamique en remplaçant les marches aléatoires par des mouvements browniens. Une manière de le faire est de remarquer que la fonction ps, tq Þ Ñ min rs^t,s_ts e est symétrique et définie positive. On peut alors introduire pΛ s q sPr0,1s un processus gaussien vérifiant Λ 0 " 0 et avec fonction de covariance ps, tq Þ Ñ min rs^t,s_ts e. La construction même de ce processus entraîne que si s " de t alors Λ s " Λ t , ce qui permet de factoriser le processus Λ par rapport à la relation d'équivalence " de . Nous obtenons ainsi un analogue continu des étiquettes. Cet objet est aussi connu sous le nom de mouvement brownien indexé par l'arbre brownien. Mentionnons qu'il est aussi possible de définir cet objet continu à l'aide d'un processus Markovien nommé le serpent brownien. Nous n'aurons pas besoin du serpent brownien dans cette introduction pour présenter nos résultats et nous ne l'introduisons pas ici pour ne pas alourdir la présentation. Mais il jouera un rôle fondamental dans les preuves de nos résultats. Au début de chaque article nous donnerons les préliminaires du serpent brownien nécessaires pour l'article en question. Pour le¨a lecteur¨rice intéressé¨e nous renvoyons à [START_REF] Duquesne | Random trees, Lévy processes and Spatial branching processes[END_REF][START_REF] Gall | Spatial Branching Processes, Random Snakes and Partial Differential Equations[END_REF] pour plus d'informations concernant le serpent brownien. 

Construction de la sphère brownienne

Nous allons construire la sphère brownienne à l'aide du mouvement brownien indexé par l'arbre brownien. Pour cela nous utilisons les mêmes notations que dans la section précédente. Pour tout s, t P r0, 1s, introduisons la quantité: D ˝ps, tq :" Λ s `Λt ´2 max `min une pseudo-distance sur l'arbre brownien. C'est cette interprétation sur l'arbre brownien qui est souvent présentée. Il peut être montré qu'il existe un unique t ˚, tel que Λ t˚" min r0,1s Λ, voir [START_REF] Gall | Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere[END_REF]. Nous notons ρ ˚la classe d'équivalence pour " D ˚de t ˚. L'espace pr0, 1s{ " D ˚, D ˚, ρ ˚q est connu sous le nom de sphère brownienne. Il est aussi courant de pointer la sphère brownienne sur la classe d'équivalence de 0, mais ces deux constructions sont équivalentes. Nous verrons plus tard pourquoi nous préférons faire ce choix de racine. Comme expliqué précédemment, Jean-François Le Gall et Grégory Miermont ont montré indépendamment que la sphère brownienne apparaît comme limite d'échelle de modèles de cartes. Plus précisément si pm n , d mn q est une quadrangulation uniforme à n faces, et ρ mn désigne la racine de m n , alors la distance typique dans m n est d'ordre n 1 4 et on a la convergence en loi suivante: pm n , n ´1 4 d mn , ρ mn q pdq ÝÑ pr0, 1s{ " D ˚, c ¨D˚, ρ ˚q (1.6) où c est simplement une constante positive. Le même résultat est vrai dans le cas des triangulations ou des p-angulations pourvu qu'on change la constante c.

En utilisant (1.7), Jean-François Le Gall et Frédéric Paulin ont montré dans [START_REF] Gall | Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere[END_REF] que la sphère brownienne est presque sûrement homéomorphe à S 2 (ils ont aussi établi que les deux conditions D ˝ps, tq " 0 et d e ps, tq " 0 sont mutuellement exclusives dès lors que s ‰ t). Mais la sphère brownienne est aussi un objet fractal et sa dimension de Hausdorff est presque sûrement égale à 4, voir [START_REF] Gall | The topological structure of scaling limits of large planar maps[END_REF]. Souvenons-nous maintenant que dans la bijection CVS les étiquettes encodent les distances au point d'étiquette minimale, voir (1.3). On montre alors facilement que pour tout t P r0, 1s nous avons D ˚pt ˚, tq " Λ t ´Λt˚. Cette relation montre de plus que les étiquettes Λ peuvent aussi être factorisées par rapport à " D ˚et donc définies sur la sphère brownienne. Les étiquettes représentent, à une translation près, les distances à ρ ˚. C'est pour cette raison que nous avons choisi de pointer la sphère brownienne en ρ ˚. Mentionnons aussi que la sphère brownienne est munie d'une mesure volume qui peut être définie comme la mesure image de la mesure de Lebesgue sur r0, 1s par la projection canonique associée à " D ˚. Cette mesure joue le rôle d'analogue continu de la mesure uniforme sur les sommets d'une carte aléatoire. Notons d'ailleurs que le volume total de la sphère brownienne est 1.

Figure 1.5 -Approximation de la sphère brownienne. Les couleurs représentent les distances au point racine, ce dernier est colorié en rouge.

Autres modèles de géométrie brownienne

Les dernières années ont vu apparaître plusieurs variantes de la sphère brownienne comme limite d'échelle de modèles discrets. Faisons un très rapide récapitulatif des modèles de géométrie brownienne qui apparaîtront dans cette thèse. Rappelons d'abord que le facteur de changement d'échelle n ´1 4 dans (1.6) correspond au fait que la distance typique dans une quadrangulation à n faces est d'ordre n 1 4 . Si nous choisissons un facteur tendant vers 0 plus lentement que n ´1 4 , nous sortons du domaine d'universalité de la sphère brownienne. Il y a encore une limite d'échelle mais qui est cette fois un espace géodésique aléatoire localement compact et complet appelé le plan brownien [START_REF] Curien | The Brownian plane[END_REF][START_REF] Curien | The hull process of the Brownian plane[END_REF]. D'autre part, nous pouvons aussi nous intéresser à des quadrangulations avec bord [START_REF] Albenque | Scaling limit of large triangulations of polygons[END_REF][START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF][START_REF] Bettinelli | Scaling limit of random planar quadrangulations with a boundary[END_REF][START_REF] Bettinelli | Compact Brownian surfaces I. Brownian disks[END_REF][START_REF] Gwynne | Convergence of the free Boltzmann quadrangulation with simple boundary to the Brownian disk[END_REF][START_REF] Marzouk | Brownian limits of planar maps with a prescribed degree sequence[END_REF]. Une quadrangulation avec bord est une carte planaire dont toutes les faces sont de degré 4 sauf éventuellement la face racine. Le bord est alors défini comme les arêtes adjacentes à cette face distinguée. Dans ce cas la limite d'échelle de ces objets dépend de la longueur du bord et du nombre total de faces. Plus précisément, si la longueur du bord est d'ordre n et le nombre de faces d'ordre n 2 , nous pouvons diviser les distances dans la carte par le facteur d'échelle n ´1 2 pour trouver une nouvelle famille d'espaces compacts limite appelés disques browniens. Comme leurs noms le laissent deviner, ces objets ont la topologie du disque fermé du plan complexe. Le bord d'un disque brownien est alors défini comme l'ensemble de points sans voisinage homéomorphe au disque ouvert. De plus le disque brownien est équipé d'une mesure volume. La famille des disques browniens est une famille à deux paramètres pz, vq, où z correspond à une notion de "périmètre" du bord et v correspond au volume total. Mentionnons aussi que les disques browniens peuvent être obtenus comme des sous-ensembles spéciaux de la sphère brownienne [START_REF] Gall | Brownian disks and the Brownian snake[END_REF]. Par contre, si le nombre de faces est d'ordre supérieur à n 2 , on obtient une famille d'espaces géodésiques localement compacts et complets appelées disques browniens de volume infini. Ces objets sont munis aussi d'une mesure volume mais le volume de chacun d'entre eux est infini. Leurs topologie est aussi déterminée, ils sont homéomorphes au complémentaire du disque unité ouvert dans le plan complexe, et en particulier nous pouvons définir leurs bords. Les disques browniens de volume infini sont une famille à un paramètre correspondant au périmètre du bord. Finalement, si le facteur de changement d'échelle tend vers 0 plus lentement que n ´1 2 , nous obtenons le demi-plan brownien qui est un espace géodésique localement compact et complet ayant la topologie du demi-plan. Il faut noter que lorsque l'espace limite n'est pas compact les convergences ont lieu dans K 8 . Nous renvoyons enfin à [START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF] où Erich Baur, Grégory Miermont et Gourab Ray étudient toutes les limites d'échelle possibles de quadrangulations à bord.

Changement d'échelle

Soit pE, D, ρ E q un élément de K ou K 8 muni d'une mesure volume V E . Pour tout λ ą 0, nous notons λ ¨E l'espace pE, λD, ρ E q muni de la mesure volume λ 4 V E . Nous voyons cette opération comme une opération de changement d'échelle. Les modèles de géométrie brownienne sont stables par rapport à cette opération. Plus précisément, les lois du plan brownien et du demi-plan brownien sont invariantes par rapport à cette opération. Si E est un disque brownien de périmètre z et volume v, alors λ ¨E est un disque brownien de périmètre λ 2 z et volume λ 4 v. Similairement, si E est un disque brownien de volume infini de périmètre z alors λ ¨E est un disque brownien de volume infini de périmètre λ 2 z. Enfin, si E est une sphère brownienne alors l'espace λ ¨E est appelé sphère brownienne de volume λ 4 . Ce dernier espace peut être construit exactement comme la sphère brownienne en utilisant le mouvement brownien indexé par l'arbre brownien mais en prenant une excursion brownienne de durée de vie λ 4 .

Processus de croissance-fragmentation et triangulations à bords simples

Soit X un processus de Markov prenant des valeurs positives. On suppose aussi que X t Ñ 0 lorsque t Ñ 8 et que tous les sauts de X sont négatifs. Le processus de croissance-fragmentation induit par X commençant en x ą 0 peut être imagé comme suit :

x t 1 t 2 t 1 t 1
Commençons avec une particule de masse initiale

x et dont la masse évolue suivant la dynamique de X. Cette particule est appelée la particule Eve. Lorsque la masse de cette particule a un saut de taille ´∆, une nouvelle particule, de masse initiale ∆, est produite. La masse de la nouvelle particule évolue alors de manière indépendante suivant la dynamique de X et commençant en ∆. Nous raisonnons alors par induction : chaque nouvelle particule a des enfants à ses instants de saut et nous réitérons la même construction (voir figure à gauche).

CHAPITRE 2. PROPRIÉTÉS DE MARKOV SPATIALES

Pour tout t ě 0, posons:

Xptq :" Collection des masses à l'instant t dans l'ordre décroissant.

Le processus X est le processus de croissance-fragmentation induit par X (commençant en x).

Il est important de souligner que la loi de X ne caractérise pas la dynamique du processus de Markov X. En d'autres mots, deux processus de Markov peuvent induire le même processus de croissance-fragmentation [START_REF] Shi | Growth-fragmentation processes and bifurcators[END_REF]. Nous mentionnons aussi qu'il est possible de définir des processus de croissance-fragmentation dans un cadre plus large, voir [START_REF] Bertoin | Markovian growth-fragmentation processes[END_REF]. En particulier les cartes duales stables sont reliées à des processus de croissance-fragmentation induits par des processus de Markov avec sauts positifs et négatifs [START_REF] Bertoin | Martingales in self-similar growthfragmentations and their connections with random planar maps[END_REF].

Nos objets d'étude ont des propriétés d'autosimilarité. C'est pour cette raison que nous sommes particulièrement intéressés par le cas où X est un processus de Markov autosimilaire. Dans ce cas il existe un nombre α P R appelé l'indice d'autosimilarité de X et un unique processus de Lévy ξ commençant en 0 tel que:

pX t q tě0
pdq " `x exppξ γptx ´αq q ˘tě0 où γptq :" inftr ě 0 : ş r 0 exppαξ s qds ě tu. En particulier, un processus de Markov autosimilaire est caractérisé par son indice d'autosimilarité α et par l'exposant de Laplace de ξ que l'on note ψ (il est bien défini puisque ξ ne peut pas avoir de saut positifs). Pour simplifier les notations, nous dirons que X est un processus de Markov pα, ψq-autosimilaire et de manière analogue que X est un processus de croissance-fragmentation pα, ψq-autosimilaire. Expliquons maintenant, en suivant [START_REF] Bertoin | Random planar maps and growth-fragmentations[END_REF], le lien entre des processus de croissance-fragmentation et des modèles de cartes.

Triangulations du p-gone

Une triangulation du p-gone est une carte planaire telle que toutes ses faces sont des triangles à l'exception de la face racine qui peut avoir un périmètre arbitraire mais dont le bord est simple. 3q n , où C p est simplement une constante dépendant de p. Introduisons la mesure de probabilité sur l'espace des triangulations du p-gone définie par: @m P ď ně0 T ppq n , P p pmq :" p12 ? 3q

´#Vpmq Z p où Z p est la constante de normalisation (elle est bien finie grâce au terme n 5 2 ). Cette mesure de probabilité est connue sous le nom de mesure de Boltzmann sur les triangulations du p-gone. Une triangulation aléatoire de loi P p est naturellement appelée triangulation de Boltzmann (du p-gone). Nous nous intéressons ici à des explorations métriques. Pour cela, il sera très utile de concevoir une triangulation du p-gone à l'aide de sa représentation en cactus, c'est-à-dire en représentant chaque sommet par sa distance au bord (voir Figure 2.2). Soit M p une triangulation de Boltzmann de périmètre p et notons B r pM p q l'ensemble des sommets à distance inférieure ou égale à r. En enlevant l'ensemble B r pM p q, on obtient une suite de composantes connexes pC i prqq iě1 . Evidemment il n'y a qu'un nombre fini de telles composantes, mais il est possible de compléter cette suite par un point cimetière H. Chacune de ces composantes connexes a un bord simple BC i prq, dont nous notons |BC i prq| la longueur. Pour des raisons de cohérence pour chaque C i prq nous distinguons une arête orientée sur BC i prq par un algorithme déterministe et nous écrivons ClpC i prqq pour la carte reposant sur le cycle BC i prq. La carte ClpC i prqq peut être interprétée comme "l'adhérence" de C i prq et remarquons que ClpC i prqq est en particulier une triangulation du |BC i prq|-gone. Par la définition même de la mesure de Boltzmann, et conditionnellement à la suite des périmètres L p prq :" p|BC i prq|q iě1 , les cartes pClpC i prqqq iě1 sont indépendantes et ClpC i prqq est une triangulation de Boltzmann de périmètre |BC i prq|. Les triangulations du p-gone vérifient alors une belle propriété markovienne lorsque l'on explore les triangulations en suivant les distances au bord.

Un processus de croissance-fragmentation comme limite d'échelle de L p

Toute la difficulté est alors de comprendre l'évolution de L p prq quand r augmente. C'est cette question qui est abordée en [START_REF] Bertoin | Random planar maps and growth-fragmentations[END_REF] où les auteurs montrent la convergence en loi suivante `p´1 L p p ? prq ˘rě0 pdq ÝÑ pÑ8 `Xpcrqq rě0 (2.1) où c est une constante positive et X un processus de croissance-fragmentation p 1 2 , ψq-autosimilaire commençant en 1 avec ψpλq :"

c 3 2π ´´8 3 λ `ż 0 ´log 2
pe λy ´1 ´λpe y ´1qq e ´3y{2 p1 ´ey q ´5{2 dy ¯.

La constante c rend compte du modèle étudié; ce résultat devrait être vrai pour d'autres modèles discrets (modifiant la constante c). D'autre part, les triangulations de Boltzmann du p-gone convergent (lorsqu'on fait un changement d'échelle de p ´1 2 et qu'on fait tendre p vers l'infini) vers une version du disque brownien libre de périmètre 1 où l'on distingue le bord (voir [START_REF] Albenque | Scaling limit of large triangulations of polygons[END_REF]). Il est donc naturel de se demander s'il est possible de retrouver le processus de croissance-fragmentation X directement sur le disque brownien libre. C'est l'un des buts de notre travail [START_REF] Gall | Growth-fragmentation processes in Brownian motion indexed by the Brownian tree[END_REF]. Il serait envisageable d'essayer d'obtenir une convergence jointe des triangulations de Boltzmann et de la limite d'échelle (2.1), mais cela serait très délicat et nécessiterait des contrôles très fins sur les longueurs de tous les bords de manière simultanée tout en gardant trace de toute la géométrie de la triangulation de Boltzmann. C'est pour cette raison que dans [START_REF] Gall | Growth-fragmentation processes in Brownian motion indexed by the Brownian tree[END_REF] nous raisonnons exclusivement sur le modèle continu du disque brownien libre.

Exploration du disque brownien libre depuis son bord

Dans cette section nous présentons les résultats de [START_REF] Gall | Growth-fragmentation processes in Brownian motion indexed by the Brownian tree[END_REF]. Ce travail est le fruit d'une collaboration avec Jean-François Le Gall. Considérons un disque brownien libre de périmètre z que nous notons pD z , ∆, V q. Ici ∆ dénote la distance dans D z , et V la mesure volume sur D z . Rappelons que le disque brownien libre n'est pas pointé. Nous allons essayer de mimer ce qui se passe pour les triangulations du p-gone. Rappelons aussi que le bord du disque brownien libre est l'ensemble des points sans voisinage homéomorphe au disque ouvert que nous notons BD z . Nous pouvons alors considérer la représentation en cactus de D z et nous écrivons B r pD z q pour l'ensemble des points à distance inférieure ou égale à r du bord. L'espace D z zB r pD z q est composé de plusieurs composantes connexes pC i prqq iě1 et on note BC i prq la frontière de C i prq. Dans le cas des triangulations, nous utilisions la notion de périmètre pour définir les longueurs des bords. Nous ne pouvons pas étendre directement cette définition au cas du disque brownien libre puisque les frontières pBC i prqq iě1 sont des objets fractals (de dimension de Hausdorff égale à 2) et en particulier leur longueur, par rapport à la distance ∆, est infinie. Il convient donc d'utiliser une autre notion pour généraliser le concept de périmètre. Pour cela nous considérons, pour toute composante connexe C i prq, la couronne C i prq X B r`ε pD z q. Cette couronne est constituée des points de C i prq à distance inférieure ou égale à ε de sa frontière et son volume est d'ordre ε 2 . Nous montrons le résultat suivant Proposition 1

Presque sûrement, pour tout i ě 1 et r ě 0, la limite

|BC i prq| :" lim εÑ0 ε ´2V `Ci prq X B r`ε pD z q ȇxiste.
Nous appelons la quantité |BC i prq| le périmètre (au sens généralisé) de BC i prq. Des résultats semblables à ceux de la proposition 1 était bien connus pour un r fixe (voir [START_REF] Gall | Brownian disks and the Brownian snake[END_REF]). Toute la difficulté était de montrer qu'on peut considérer ces limites simultanément pour tout r ě 0. On peut d'ailleurs retrouver le périmètre de D z grâce à la proposition 1 en prenant i " 1 et r " 0. Nous pouvons maintenant énoncer notre résultat principal dans [START_REF] Gall | Growth-fragmentation processes in Brownian motion indexed by the Brownian tree[END_REF].

Théorème 1

Le processus Lprq :" `|BC i prq| ˘iě1 est un processus de croissance-fragmentation d'indice p 1 2 , ψq commençant en z. De plus, conditionnellement à Lprq, pour tout i ě 1, la distance intrinsèque sur C i prq se prolonge par continuité sur l'adhérence ClpC i prqq. On munit alors ClpC i prqq de cette distance et de la restriction de V sur ClpC i prqq. Conditionnellement à Lprq, les espaces métriques ClpC i prqq sont indépendants et ClpC i prqq est un disque brownien libre de périmètre |BC i prq|.

Il est important de souligner que l'analogue discret de la deuxième partie du théorème était une conséquence directe de la définition de la mesure de Boltzmann. Cela n'est plus du tout le cas pour le disque brownien. Pour l'obtenir nous utilisons un résultat analogue connu pour la sphère brownienne [START_REF] Gall | Brownian disks and the Brownian snake[END_REF] et un couplage entre la sphère brownienne et le disque brownien. Ce théorème a des conséquences géométriques, par exemple, si on note M la distance maximale d'un point au bord. On obtient pour tout r ą 1:

c 1 r ´6 ď PpM ą rq ď c 2 r ´6 où c 1 ă c 2 sont deux constantes positives.

Illustration de la méthode utilisée pour démontrer le théorème 1

Nous donnons maintenant un aperçu de la méthode utilisée pour obtenir le théorème 1. Cette méthode est assez robuste et a été utilisée pour relier l'excursion brownienne bi-dimensionelle du demi-plan supérieur à un processus de croissance-fragmentation [START_REF] Aïdékon | Growth-fragmentation process embedded in a planar Brownian excursion[END_REF].

Soit r 1 ě 0 et BC i 1 pr 1 q un bord au niveau r 1 . Nous disons qu'un bord BC i 2 pr 2 q, avec r 2 ě r 1 , est un descendant de BC i 1 pr 1 q si tout chemin connectant BC i 2 pr 2 q et BD z touche BC i 1 pr 1 q, ou de manière équivalente si C i 1 pr 1 q contient C i 2 pr 2 q. Comme le disque brownien libre a la topologie du disque fermé, cette notion de descendance est bien définie et donne une notion de généalogie pour les bords du disque brownien libre (voir figure 2.3 pour une illustration). L'idée est alors d'explorer depuis le bord BD z , qui va jouer le rôle de particule Eve du processus de croissance-fragmentation, en faisant augmenter les distances. Lorsque l'on croise un col notre bord se divise en deux, correspondant à un saut de la particule Eve, et on se retrouve avec deux bords à explorer. Il faut à ce moment-là un algorithme pour décider quel bord explorer en premier, et montrer une propriété d'indépendance entre les parties non découvertes. Dans le cas des triangulations on peut l'explorer triangle après triangle, mais dans le cas du disque brownien il n'y a pas de notion a priori naturelle d'exploration. Pour contourner cette difficulté, nous commençons par marquer le disque brownien libre en prenant un point uniforme ρ ' selon la mesure volume V . Il faut remarquer qu'en marquant un point nous biaisons la loi du disque brownien libre par la masse totale de V ; cet objet est le disque brownien libre marqué. Il jouera un rôle important aussi dans notre travail [START_REF] Gall | Spine representations for non-compact models of random geometry[END_REF] (voir section suivante). Pour le disque brownien libre marqué, il existe une manière naturelle de l'explorer; il suffit de suivre les bords menant vers ρ ' , voir figure 2.4. Expliquons cela plus précisément. Notons D ' z le disque brownien libre marqué et H ' la distance de ρ ' au bord. Alors pour tout r ď H ' , on peut considérer BC ' prq l'unique bord au niveau r qui déconnecte ρ ' du bord du disque. Posons X ' r :" |BC ' prq|. Nous montrons qu'il est possible de coupler D ' z à la sphère brownienne, ce qui permet d'utiliser des résultats bien établis pour cette dernière [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF][START_REF] Gall | Brownian disks and the Brownian snake[END_REF], et ainsi obtenir que:

• X ' est un processus de Markov p 1 2 , ψ ' q-autosimilaire, avec ψ ' pλq :"

c 3 2π
ż 0 ´8pe λy ´1 ´λpe y ´1qq e y{2 p1 ´ey q ´5{2 dy;

• les composantes connexes du complémentaire de Ť rďH ' BC ' prq sont en bijection avec les sauts de X ' . De plus conditionnellement à X ' , les adhérences de ces composantes connexes sont des disques browniens (libres) de périmètre le saut de X ' associé.

Dans le deuxième point (quand nous parlons d'adhérence des composantes connexes), nous considérons chaque espace muni de la restriction de la mesure volume et de l'extension continue de la distance intrinsèque sur son intérieur (voir [START_REF] Gall | Brownian disks and the Brownian snake[END_REF] pour l'existence de cet objet). Nous obtenons alors une décomposition similaire à celle du processus de croissance-fragmentation avec néanmoins pour défaut que le processus d'exploration dépend du point marqué ρ ' . Pour surmonter cette difficulté, nous devons introduire un algorithme d'exploration déterministe ou du moins qui ne dépende pas des parties non découvertes. L'idée est de toujours explorer le bord le plus long lorsque l'on croise un col. Lorsque l'on explore le disque brownien libre de cette manière, par un argument de compacité, on tombe fatalement sur un point ρ P D z qui est défini de manière unique. Nous pouvons dès lors procéder comme pour le disque brownien libre marqué. Notons H la distance entre ρ et le bord BD z et, pour tout r ě 0, nous écrivons BC prq pour désigner l'unique bord au niveau r qui déconnecte ρ du bord du disque. Enfin posons X r :" |BC prq|. De manière informelle, et par des raisonnements d'absolue continuité, X est distribué comme X ' sous le conditionnement |∆X ' t | ď X ' t pour tout t ě 0. Ceci peut être rendu formel et nous parvenons de ce fait à montrer que:

• X est un processus de Markov p 1 2 , ψq-autosimilaire, avec ψpλq :"

c 3 2π ´´8 3 λ `ż 0 ´log 2
pe λy ´1 ´λpe y ´1qq e ´3y{2 p1 ´ey q ´5{2 dy ¯;

• les composantes connexes du complémentaire de Ť rďH BC prq sont en bijection avec les sauts de X. De plus conditionnellement à X, les adhérences de ces composantes connexes sont des disques browniens (libres) dont le périmètre est le saut de X associé. Le théorème 1 peut alors être obtenu en appliquant le même argument à l'adhérence de chaque composante connexe du complémentaire de Ť rďH BC prq.

Quelques conséquences

Grâce à nos résultats de couplage, nous pouvons déduire un résultat similaire pour la sphère brownienne. Pour cela nous considérons la sphère brownienne libre. Rappelons que ρ ˚désigne la racine de la sphère brownienne libre. Remarquons aussi que la sphère brownienne contient un deuxième point distingué: le point correspondant à la racine de l'arbre brownien. Nous notons ρ ' ce deuxième point. Il peut être montré que conditionnellement au volume total de la sphère brownienne, le point ρ ' est un point uniforme pour la mesure V . Nous pouvons dès lors considérer ρ ' comme un point marqué. Dans le cas de la sphère brownienne nous explorons en suivant les distances par rapport à la racine ρ ˚. Nous pouvons adapter simplement notre étude précédente concernant les composantes connexes du complémentaire des boules et les longueurs des bords de ces composantes connexes. Nous montrons que les longueurs des bords partant de ρ ˚et allant vers ρ ' suivent un processus de Markov p 1 2 , ψ ' q-autosimilaire partant de 0. Utilisons la notation X ' pour désigner ce processus. Les composantes connexes non découvertes sont alors en bijection avec les sauts de X ' et leurs adhérences sont, conditionnellement à X ' , des disques browniens libres avec pour périmètre le saut associé. Il est alors possible d'encoder les longueurs des bords comme suit: on part du processus X ' et chacun de ses sauts produit un processus de croissance-fragmentation p 1 2 , ψq-autosimilaire commençant en le saut en question. Nous mentionnons aussi que notre travail a des conséquences sur les temps locaux du mouvement brownien indexé par l'arbre brownien.

Une question concernant le plan brownien

Dans [START_REF] Gall | Growth-fragmentation processes in Brownian motion indexed by the Brownian tree[END_REF], nous montrons aussi, que dans le plan brownien, les bords des boules centrées en la racine sont encodés par un processus de croissance-fragmentation. Expliquons cela plus précisément. Introduisons dans un premier temps quelques notations qui seront aussi utiles dans les sections à venir. Soit M 8 un plan brownien. Comme il va être souvent question du plan brownien dans cette introduction, nous utilisons la notation B r pour désigner la boule fermée de rayon r centrée en la racine de M 8 . Comme le plan brownien a la topologie du plan complexe, le complémentaire de B r possède une unique composante connexe non bornée, Br . Nous écrivons B ' r pour le complémentaire de Br -cet espace est connu sous le nom de hull de rayon r -et B' r pour l'adhérence de Br . À nouveau nous pouvons donner un sens à la longueur des bords des composantes connexes de M 8 zB r . Ici l'infini joue le rôle de point marqué et les bords distingués sont les bords pB B' r q rě0 . Nous prouvons que le processus des longueurs des bords p|B B' r |q rě0 est distribué comme le processus X ' de la sphère brownienne, conditionné à survivre. Ce processus est d'ailleurs étudié en profondeur dans [START_REF] Curien | The hull process of the Brownian plane[END_REF]. Il est alors possible d'encoder les longueurs des bords comme suit: on part du processus p|B B' r |q rě0 et chacun de ses sauts produit un processus de croissance-fragmentation p 1 2 , ψq-autosimilaire commençant au saut en question. Plus précisément nous montrons que chaque saut de `|B B' r | ˘rě0 produit un disque brownien libre dont le périmètre est le saut associé. Cependant une question subsiste dans [START_REF] Gall | Growth-fragmentation processes in Brownian motion indexed by the Brownian tree[END_REF]:

Quelle est la loi de B' r pour r ą 0 ?

Répondre à cette question est l'une des motivations de notre travail [START_REF] Gall | Spine representations for non-compact models of random geometry[END_REF], que nous présentons dans la section suivante, et joue un rôle central dans notre article [START_REF] Riera | Isoperimetric inequalities in the Brownian map and the Brownian plane[END_REF] concernant les inégalités isopérimétriques du plan brownien.

Construction de modèles non-compacts

Dans [START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF], Erich Baur, Grégory Miermont et Gourab Ray caractérisent toutes les limites possibles de quadrangulations aléatoires avec bord. Ici nous nous intéresserons aux trois modèles principaux de géométrie brownienne non-compacts: le plan brownien, le disque brownien de volume infini et le demi-plan brownien. Nous présenterons notre travail [START_REF] Gall | Spine representations for non-compact models of random geometry[END_REF] en collaboration avec Jean-François Le Gall et donnerons une approche unifiée pour construire ces objets en adaptant la construction de la sphère brownienne présentée dans la section 1.3. De plus, nos constructions permettent de contrôler les distances au bord dans le cas du disque brownien de volume infini et du demi-plan brownien et à la racine dans le cas du plan brownien. Par souci de simplification du vocabulaire employé, nous dirons que le bord du plan brownien est sa racine. Nos constructions diffèrent de celles apparaissant dans [START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF] où l'on contrôle les distances à l'infini. En particulier nos résultats nous permettront de répondre à la question posée à la fin de la section précédente, c'est-à-dire de donner la loi de B' r dans le plan brownien.

Une construction unifiée

Nos constructions reposent sur l'arbre brownien infini. Cet objet peut être construit à l'aide de deux mesures ponctuelles de Poisson 

T e i .
Ici nous interprétons r0, 8q comme une ligne verticale infinie que nous appelons épine. Pour i P I (resp. j P J) nous recollons l'arbre T e i à gauche (resp. à droite) de r0, 8q à hauteur t i . L'espace obtenu est l'arbre brownien infini, que nous notons T 8 . Il peut aussi être obtenu comme un arbre brownien de durée de vie infinie. Nous assignons maintenant des étiquettes sur T 8 de la manière suivante:

• Les étiquettes le long de l'épine r0, 8q suivent un processus de Bessel de dimension 3;

• Pour i P I Y J, les étiquettes le long de T e i suivent un mouvement brownien indexé par l'arbre T e i (commençant à l'étiquette du point de l'épine t i ).

Coupons alors, pour tout i P I Y J, les branches de T e i au premier point d'étiquette 0. Après cet élagage subsiste une structure d'arbre, mais les arbres recollés sur l'épine ne sont plus des arbres browniens. Notons r T 8 l'arbre ainsi obtenu. Il y a un nombre infini de points d'étiquette 0 sur r T 8 mais il est possible de définir une variable aléatoire Z rendant compte de la quantité de points d'étiquette 0. Dans [START_REF] Gall | Spine representations for non-compact models of random geometry[END_REF] nous montrons qu'adapter la construction de la sphère brownienne à partir du mouvement brownien indexé par l'arbre brownien permet d'obtenir:

• Le plan brownien sous le conditionnement Z " 0;

• Le disque brownien de volume infini et de périmètre z ą 0 sous le conditionnement Z " z;

• Le demi-plan brownien sous le conditionnement Z " 8. De plus, dans ces constructions, les étiquettes correspondent aux distances au bord, celui-ci étant encodé à son tour par les points d'étiquette 0. Mentionnons qu'il faut adapter la construction de la sphère brownienne avec soin, puisqu'une adaptation directe recollerait tout le bord en un seul point (l'idée est de définir dans un premier temps la distance entre points d'étiquettes positives puis dans un deuxième temps de prolonger cette distance sur le bord par continuité). Les deux nouvelles contributions de ce travail sont celles du disque brownien de volume infini et du demi-plan brownien. Le cas du plan brownien correspond à la construction introduite dans [START_REF] Curien | The hull process of the Brownian plane[END_REF]. Dans ce cas les étiquettes le long de l'épine évoluent comme un processus de Bessel de dimension 9, et les arbres recollés sur celle-ci sont des arbres browniens avec des étiquettes browniennes conditionnées à rester positives. Cependant, donner un sens au conditionnement du disque brownien de volume infini se révèle difficile puisqu'on a Z " 8 presque sûrement. Cela rend le conditionnement pour le demi-plan brownien superflu et celui du disque brownien de volume infini dégénéré.

Le conditionnement du disque brownien de volume infini

Expliquons informellement comment nous parvenons à définir le conditionnement Z " z ą 0. Pour ce faire, considérons un second arbre infini étiqueté en prenant un processus de Bessel de dimension 9 sur l'épine et en recollant sur celle-ci des arbres browniens avec des étiquettes conditionnées à rester strictement positives. Notons T 1 8 cet arbre étiqueté (qui est l'arbre associé au plan brownien, i.e. le conditionnement Z " 0). Dans ce cas la frontière est réduite à un seul point qui est la racine de T 1 8 . Fixons maintenant 0 ă r 1 ă r 2 et notons T 1 8 pr 1 , r 2 q le sous-arbre de T 1 8 correspondant à:

• Garder la partie de l'épine après le dernier temps de passage au niveau r 1 jusqu'au dernier temps de passage au niveau r 2 (du processus de Bessel de dimension 9);

• Garder les arbres collés sur cette partie de l'épine et couper les branches de ces arbres au premier point dont l'étiquette est égale à r 1 . 

L'épine est coloriée en doré

Il est à nouveau possible de donner un sens à la quantité de points au niveau r 1 que nous notons

Z 1 r 1 ,r 2 .
Contrairement au cas avec épine étiquetée par un processus de Bessel de dimension 3, le support de la loi de Z 1 r 1 ,r 2 est R `pour tout r 2 ą r 1 (même pour r 2 " 8). De plus, l'arbre T 1 8 pr 1 , 8q bénéficie d'une propriété de changement d'échelle provenant de celle du mouvement brownien et du processus de Bessel. Nous pouvons dès lors définir aisément la loi de T 1 8 pr 1 , 8q conditionnellement à Z 1 r 1 ,8 " z ą 0. Nous montrons alors que, pour tout r 2 ą r 1 , il est possible de donner sens à la loi de T 1 8 pr 1 , r 2 q, conditionnellement à Z 1 r 1 ,r 2 " z ą 0, en coupant l'épine au dernier passage de ses étiquettes au niveau r 2 . Il nous faut maintenant expliquer le lien entre cet objet et l'arbre initial r T 8 . Pour cela, pour tout r ą 0, définissons r T 8 prq le sous-arbre de r T 8 correspondant à :

• Garder la partie de l'épine avant le dernier temps de passage au niveau r ;

• Garder les arbres collés sur cette partie de l'épine sans modification.

La quantité totale de points d'étiquette 0 dans r T 8 prq est finie. Nous montrons, par des relations d'absolue continuité entre les processus de Bessel, que si l'on conditionne cette quantité à être égale à z ą 0, alors r T 8 prq est distribué comme l'arbre T 1 8 pr 1 , r 1 `rq, conditionné à Z 1 r 1 ,r 1 `r " z, pourvu que l'on translate les étiquettes de ´r1 . Ce résultat a un double intérêt: il permet d'une part de définir la loi de r T 8 prq conditionnellement à la quantité de points d'étiquette 0 et, d'autre part, il montre que la loi de T 1 8 pr 1 , r 1 `rq, conditionnellement à Z 1 r 1 ,r 1 `r, ne dépend pas de r 1 (pourvu évidemment que l'on translate les étiquettes par ´r1 ). Afin de définir la loi de r T 8 conditionnellement à Z " z ą 0, nous procédons à prendre la limite de la loi de r T 8 prq lorsque r Ñ 8. Cela permet de définir la loi de r T 8 , conditionnellement à Z " z ą 0, comme étant la loi de T 1 8 pr 1 , 8q sous le conditionnement Z 1 r 1 ,8 " z. Expliquons maintenant comment relier les différents conditionnements de r T 8 aux différents modèles de géométrie brownienne. Pour cela, introduisons comme dans la section précédente le disque brownien libre marqué de périmètre z, que l'on note D ' z . Rappelons aussi que H ' désigne la distance entre le point marqué et le bord dans D ' z . Nous prouvons que la loi de r T 8 prq conditionnellement à avoir une quantité de points d'étiquette 0 égale à z permet d'encoder l'espace D ' z sous le conditionnement H ' " r. Nous baptisons cet espace sous le nom de disque brownien libre de périmètre z et marqué à hauteur r. Ce dernier nous permet alors d'obtenir les liens entre r T 8 , le disque brownien de volume infini et le demi-plan brownien, par des passages à la limite s'appuyant sur [START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF]. En passant nous obtenons aussi le résultat suivant:

Proposition 2

Dans D ' 1 , la distance entre le point marqué et le bord est une variable aléatoire de distribution:

p 1 prq :" 9 r ´6´r `2 3 r 3 ´´3 2 
¯1{2 ? π p1 `r2 q exp ´3 2r 2 ¯erfc ´c 3 2r 2 ¯¯.
Concluons cette section en donnant quelques applications de nos constructions.

Etude des hulls dans le plan brownien

Rappelons la notation M 8 pour le plan brownien et supposons qu'il est construit à partir de l'arbre T 

|B B' r | " lim εÑ0 ε ´2V `B ' r X B r`ε ˘.
Il se trouve que cette quantité est exactement Z 1 r,8 . Une des applications les plus importantes de nos constructions est le théorème suivant qui répond à la question posée à la fin de la section 2.2. Ceci nous permet en particulier de calculer la transformée de Laplace du couple p|BB ' r |, V pB ' r qq. Plus précisément nous obtenons pour tous r, λ, µ ě 0 :

E " exp `´λ|BB ' r | ´µV pB ' r q ˘ı " p 2 3 `λ 3 a 2{µ q ´1{2 sinhpp2µq 1{4 rq `coshpp2µq 1{4 rq ´p 2 3 `λ 3 a 2{µ q 1{2 sinhpp2µq 1{4 rq `coshpp2µq 1{4 rq ¯3 .
Cette formule apparaît déjà dans [START_REF] Curien | The skeleton of the UIPT, seen from infinity[END_REF], où les auteurs considérent des limites d'échelle de longueurs de bords et de volumes des horohulls discrets dans la quadrangulation infinie uniforme. Ceci n'est pas surprenant puisque la limite d'échelle de la quadrangulation infinie uniforme est le plan brownien. Il faut cependant mentionner qu'il ne serait pas facile de déduire notre résultat sur le plan brownien en utilisant le résultat analogue de la quadrangulation infinie uniforme. Nous parvenons aussi à déterminer la loi du processus p|BB ' r |, V pB ' r qq rě0 .

Inégalités isopérimétriques

Intéressons-nous maintenant à nos résultats de [START_REF] Riera | Isoperimetric inequalities in the Brownian map and the Brownian plane[END_REF]. " λ ¨M8 , pour tout λ ą 0. Ceci entraîne, pour tout r ą 0, l'égalité en loi suivante:

L r pdq " rL 1 .
(2.2)

En particulier, nous déduisons que pour A P K, les bonnes quantités à comparer sont ∆pBAq et V pAq 1 4 . Dans [START_REF] Riera | Isoperimetric inequalities in the Brownian map and the Brownian plane[END_REF] nous établissons le résultat suivant Par conséquent, PpL 1 ą uq décroît exponentiellement vite quand u tend vers l'infini.

piiq Il existe deux constantes 0 ă c 1 ď c 2 ă 8 telles que pour tout ε ą 0:

c 1 pε 2 ^1q ď PpL 1 ă εq ď c 2 ε 2 .
Les résultats du théorème 4 s'étendent sans difficulté pour L r avec r ą 0 en utilisant (2.2). La preuve du théorème 4 repose sur le fait que l'écriture du plan brownien à l'aide d'un arbre étiqueté (voir section 2.3) permet de comprendre et de très bien contrôler les géodésiques vers la racine ainsi que les propriétés de confluence de ces géodésiques. Rappelons la notation B ' r pour le hull de rayon r et B' r pour l'adhérence de son complémentaire. Une application du théorème de Jordan montre que tout cycle séparant B r de l'infini doit aussi séparer B ' r de l'infini. Rappelons que pour tout r ą 0 nous avons:

|B B' r | :" lim εÑ0 ε ´2V `B ' r X B r`ε ˘, p.s. , (2.3) 
mais il peut être montrer en utilisant nos résultats dans [START_REF] Gall | Some explicit distributions for Brownian motion indexed by the Brownian tree[END_REF] que cette limite a lieu p.s. pour tout r ą 0 simultanément. Afin d'étudier les propriétés isopérimétriques de M 8 , nous établissons une propriété de Markov "forte" pour M 8 . Plus précisément, nous notons F r la tribu engendrée par B ' r (vue comme un élément de K lorsqu'on le pointe à la racine et qu'on le munit de la restriction de la mesure V et de l'extension continue de la distance intrinsèque sur son intérieur, voir section précédente).

Théorème 5

Soit T un temps d'arrêt pour la filtration pF r`qrě0 tel que 0 ă T ă 8 p.s. La distance intrinsèque sur l'intérieur de B' T a une unique extension continue sur B' T . De plus, conditionnellement à |B B' T | " z, l'espace B' T muni de cette extension continue et de la restriction de la mesure volume est un disque brownien de volume infini de périmètre z, indépendant de B ' T .

En toute rigueur il faudrait aussi préciser le point distingué de B' T . Pour le faire il faut considérer l'écriture du plan brownien avec l'arbre T f p| logpV pAqq|q ą 0 , P-p.s. , si

ř mPN f pmq ´2 ă 8.
Ce résultat s'étend aisément pour le disque brownien de volume infini ainsi que pour la sphère brownienne. Mentionnons que dans [START_REF] Gall | Separating cycles and isoperimetric inequalities in the uniform infinite planar quadrangulation[END_REF], Jean-François Le Gall et Thomas Lehéricy obtiennent un analogue pour le modèle discret de la quadrangulation infinie uniforme du théorème 6 dans le cas particulier f pxq :" x 4{3`δ pour tout δ ą 0.

Stratégie pour démontrer l'inégalité isopérimétrique

Donnons ci-après les grandes lignes de la preuve du théorème 6. Commençons par le point piq.

Pour z ą 1, et pour tout n P N, écrivons B ' T z n ,T z n`1 pour l'adhérence de la couronne B ' T z n`1 zB ' T z n , et L T z n ,T z n`1
pour l'infimum des longueurs des cycles séparant la racine de l'infini tout en restant dans l'intérieur de B ' T z n ,T z n`1 . Par un argument de compacité, l'infimum L T z n ,T z n`1 est réalisé par un cycle injectif restant dans B ' T z n ,T z n`1 . Grâce au théorème de Jordan on sait alors que ce cycle délimite un élément de K contenant le hull B ' T z n et contenu dans le hull B ' T z n`1 . De ce fait, nous obtenons inf

APK ∆pBAq V pAq 1 4 f `| logpV pAqq| ˘ď inf nPN L T z n ,T z n`1 V pB ' T z n q 1 4 f `| logpV pB ' T z n`1 qq| ď lim inf nÑ8 L T z 2n`1 ,T z 2n`2 V pB ' T z 2n ,T z 2n`1 q 1 4 f `| logpV pB ' T z 2n`2 qq| ˘.
Nous montrons alors que cette limite inférieure est égale à 0. Pour cela remarquons qu'une application du théorème 5 montre que les couronnes `B' T z n ,T z n`1 ˘ně0 sont indépendantes et que l'invariance par changement d'échelle du plan brownien entraîne que B ' T z n ,T z n`1 a la même loi que z n{2 ¨B' T 1 ,Tz . Nous obtenons donc que les variables L T z 2n`1 ,T z 2n`2 ¨V pB ' T z 2n ,T z 2n`1 q ´1 4 , pour n ě 0, sont indépendantes et identiquement distribuées. Nos méthodes pour étudier les variables L r nous permettent aussi de montrer qu'il existe une constante c telle que:

P `LT z 2n`1 ,T z 2n`2 V pB ' T z 2n ,T z 2n`1 q 1 4
ď x ˘ě c ¨x2 , pour tout x ă 1. Pour conclure la preuve de piq, nous prouvons qu'il existe h ą 0, tel que f plogpV pB ' T z 2n`2 qq ă f phnq pour tout n suffisamment grand. Une application du lemme de Borel-Cantelli montre alors que si ř mě1 f pmq ´2 " 8 on a pour tout ε ą 0:

L T z 2n`1 ,T z 2n`2 V pB ' T z 2n ,T z 2n`1 q 1 4
f phnq ď ε infiniment souvent. Ce qui permet d'obtenir piq. Expliquons maintenant comment démontrer piiq. Pour prouver piiq il suffit alors de montrer que p.s.: 

Soit A P K et m l'unique élément de Z tel que V pB ' 2 m q ă V pAq ď V pB ' 2 m`1 q, en
´inf mPZ 2 m´1 V pB ' 2 m`1 q 1 4 f `| logpV pB ' 2 m qq| ˘¯^´inf mPZ L 2 m´1 V pB ' 2 m`1 q 1 4 f `| logpV pB ' 2 m qq| ˘¯. 0 2 m+1 2 m-1 2 m A ∂A Distances à 0 0 2 m+1 2 m-1
inf mPZ 2 m´1 V pB ' 2 m`1 q 1 4 f `| logpV pB ' 2 m qq| ˘ą 0 et inf mPZ L 2 m´1 V pB ' 2 m`1 q 1 4 f `| logpV pB ' 2 m qq| ˘ą 0. ( 2 

Calculs explicites concernant des longueurs de bords et des volumes

Dans ce chapitre nous chercherons à établir des formules explicites d'interprétation géométrique. Les résultats présentés reposeront encore une fois sur le mouvement brownien indexé par l'arbre brownien. Nous décrirons notre travail [START_REF] Gall | Some explicit distributions for Brownian motion indexed by the Brownian tree[END_REF] ainsi que des résultats issus d'un article en préparation adaptant les techniques précédemment développées à l'étude du disque brownien.

Temps local et temps de vie

Dans cette section nous présenterons le travail [START_REF] Gall | Some explicit distributions for Brownian motion indexed by the Brownian tree[END_REF] effectué en collaboration avec Jean-François Le Gall et nous travaillerons sous la mesure N 0 (mesure encodant la sphère brownienne libre en utilisant la mesure d'Itô de l'excursion brownienne). Rappelons que le temps de vie σ de l'excursion e est une quantité aléatoire sous N 0 . Souvenons-nous aussi que pΛ s q sPr0,σs désigne le processus des étiquettes et qu'il peut être factorisé par rapport à la relation d'équivalence " de de l'arbre brownien ou par rapport à la relation d'équivalence " D ˚de la sphère brownienne. De plus, dans l'écriture de la sphère brownienne, les étiquettes (après avoir été translatées par ´min Z) représentent les distances à la racine. Nous nous intéressons ici au temps local du mouvement brownien indexé par l'arbre brownien, pL r q rPR , défini par la relation :

ż σ 0 ds F pΛ s q " ż R dr F prqL r ,
voir [START_REF] Bousquet-Mélou | Limit laws for embedded trees: applications to the integrated super-Brownian excursion[END_REF][START_REF] Bousquet-Mélou | The density of the ISE and local limit laws for embedded trees[END_REF] pour l'existence de ce processus. Sous le conditionnement σ " 1, la mesure L r dr est souvent appelée ISE (pour Integrated Super-Brownian Excursion [START_REF] Aldous | Tree-based models for random distribution of mass[END_REF]). L'ISE apparaît dans de multiples théorèmes limite de modèles de probabilités discrètes mais aussi dans une variété de modèles de physique statistique [START_REF] Derbez | The scaling limit of lattice trees in high dimensions[END_REF][START_REF] Hara | The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion[END_REF][START_REF] Van Der Hofstad | Convergence of critical oriented percolation to super-Brownian motion above 4+1 dimensions[END_REF]. Dans [START_REF] Bousquet-Mélou | Limit laws for embedded trees: applications to the integrated super-Brownian excursion[END_REF][START_REF] Bousquet-Mélou | The density of the ISE and local limit laws for embedded trees[END_REF] Mireille Bousquet-Mélou et Svante Janson montrent que conditionnellement au temps de vie σ on a :

L 0 pdq " 2
où T est une variable positive stable d'indice p2{3q de transformée de Laplace Erexpp´λT qs " expp´λ 2 3 q. Leur preuve repose sur des passages à la limite en utilisant des modèles discrets d'arbres étiquetés. Une des motivations de notre travail [START_REF] Gall | Some explicit distributions for Brownian motion indexed by the Brownian tree[END_REF] est de trouver un argument purement continu pour obtenir cette relation en loi.

Présentation de nos résultats

Comme expliqué précédemment, nous raisonnons sous la mesure N 0 et posons σ `:" ş σ 0 dr1 Λrą0 ainsi que σ ´:" ş σ 0 dr1 Λră0 . Nous étudierons ici le triplet pL 0 , σ `, σ ´q. En quelques mots, σ represente les points d'étiquettes positives et σ ´ceux avec étiquettes négatives; nous avons en particulier σ " σ ``σ ´puisque la masse de points d'étiquette nulle est négligeable. Nous renvoyons à la Figure 3.1 pour une représentation visuelle de ces quantités. L'un des résultats principaux de notre travail [START_REF] Gall | Some explicit distributions for Brownian motion indexed by the Brownian tree[END_REF] est de caractériser la transformée de Laplace du triplet pL 0 , σ `, σ ´q i.e. N 0 p1 ´expp´λL 0 ´µ1 σ `´µ 2 σ ´qq , λ, µ 1 , µ 2 ą 0. Plus précisément nous montrons le résultat suivant:

Proposition 3

Pour tous λ, µ 1 , µ 2 ą 0, la quantité N 0 p1 ´expp´λL 0 ´µ1 σ `´µ 2 σ ´qq est l'unique solution positive de l'équation h µ 1 ,µ 2 pvq " ? 6 λ, où, pour tout v ě 0,

h µ 1 ,µ 2 pvq " b a 2µ 1 `v ´2v ´a2µ 1 ¯`b a 2µ 2 `v ´2v ´a2µ 2 ¯.
Lorsque µ 1 " µ 2 , cette équation peut être résolue de manière explicite. On obtient la formule suivante:

N 0 ´1 ´expp´λL 0 ´µσq ¯" $ & % ? 2µ cos ´2 3 arccos ´?3 λ 2p2µq 3{4 ¯¯si ? 3 λ 2p2µq 3{4 ď 1, ? 2µ cosh ´2 3 arcosh ´?3 λ 2p2µq 3{4 ¯¯si ? 3 λ 2p2µq 3{4 ě 1. (3.1)
Mentionnons que nous pouvons retrouver la loi conditionnelle de L 0 sachant σ " σ ``σ ´en utilisant (3.1). Il est cependant plus simple d'utiliser la proposition 3 pour retrouver le résultat de Mireille Bousquet-Mélou et Svante Janson à l'aide d'une inversion de Lagrange. Un autre cas qui peut être étudié avec nos méthodes est celui où µ 2 " 0. Dans ce cas, en faisant appel à des méthodes combinatoires telles que l'inversion de Lagrange et la recherche de bonne paramétrisation rationnelle, nous montrons que:

Théorème 7

Conditionnellement à σ `, le temps local L 0 est distribué comme p2 9{4 {3q D T ´1{2 ¨σ3 `où D est une variable aléatoire de densité 2x 1 r0,1s pxq indépendante de T .

Interprétation en géométrie brownienne

Expliquons brièvement l'interprétation de ces résultats pour la sphère brownienne (libre). Comme rappelé plus haut, les étiquettes représentent les distances à la racine de la sphère brownienne. Souvenons-nous aussi que la sphère brownienne a un point marqué, correspondant à la racine de l'arbre brownien. Ce point est uniforme dans la sphère brownienne et a pour étiquette 0. La quantité L 0 peut alors être interprétée comme une bonne notion de la taille des points d'étiquettes 0, i.e. de la sphère centrée en la racine et de rayon ´min Λ, qui correspond à la distance entre les deux points distingués de la sphère brownienne. D'autre part, σ ´est exactement le volume de la boule centrée en la racine et de rayon ´min Λ, et σ ´est le volume du complémentaire de cette boule. Le résultat de Mireille Bousquet-Mélou et Svante Janson, que nous retrouvons, donne donc la loi de la taille de la sphère de rayon ´min Λ conditionnellement au volume total. Similairement, le théorème 7 donne la loi de la taille de la sphère de rayon ´min Λ conditionnellement au volume de la boule qu'elle délimite.

Illustration de la méthode pour obtenir la proposition 3

Concluons en donnant l'idée de la démonstration de la proposition 3. Prenons l'arbre brownien et enlevons tous les points d'étiquette 0. Nous obtenons ainsi une famille dénombrable pC i q iPN de composantes connexes. Sur la figure 3.1, ces composantes connexes sont les zones monochromatiques bleues ou oranges. D'après les résultats de [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF], nous pouvons définir une notion de longueur pour chaque bord de C i que l'on note ZpC i q. Nous montrons alors qu'il existe un processus pY r q rě0 , pouvant être interprété comme l'excursion d'un processus de branchement avec mécanisme 8 3 λ 3 2 , tel que, N 0 ´presque partout, les sauts de Y coïncident exactement avec les quantités `ZpC i q ˘iPN et:

L 0 " ż 8 0 dr Y r .
Rappelons que le long des branches de l'arbre brownien, les étiquettes décrivent un mouvement brownien. Intuitivement, Y r correspond au nombre de points v d'étiquette 0 sur l'arbre tels que le mouvement brownien partant de la racine jusqu'à v a accumulé un temps local en 0 égal à r. Pour faire le lien avec la section 2.2, Y est distribué exactement comme le processus X ' de la sphère brownienne. Toujours d'après [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF], conditionnellement à Y nous avons les propriétés suivantes • Les variables pC i q iPN sont indépendantes;

• Pour tout i P N, les étiquettes sur C i sont positives avec probabilité 1 2 et négatives sinon;

• Pour tout i P N, le volume de C i est distribué comme ZpC i q 2 ¨U où U est une variable indépendante de tout le reste et de transformée de Laplace: @µ ą 0, Erexpp´µU qs " p1 `a2µq expp´a2µq.

Nous obtenons ainsi, pour tout λ, µ 1 , µ 2 ą 0, l'équation:

N 0 `1 ´expp´λL 0 ´µ1 σ `´µ 2 σ ´q˘" N 0 ´1 ´exp ´´λ ż 8 0 dr Y r ¯8 ź i"0 F pµ 1 , µ 2 , p∆Y r i q 2 q ¯,
où pr i q iě0 est la collection des instants de saut de Y et F est la fonction définie pour tout µ 1 , µ 2 , x ą 0 par:

F pµ 1 , µ 2 , xq :" 1 2 ´p1 `a2µ 1 xq expp´a2µ 1 xq `p1 `a2µ 2 xq expp´a2µ 2 xq ¯.
Le processus Y est bien connu et le reste de la preuve repose sur des procédures classiques de théorie des processus.

Calculs concernant le disque brownien

Présentons finalement un projet en cours -que nous avons décidé d'intégrer à ce manuscrit dans une forme très préliminaire -afin de rendre compte de la flexibilité des méthodes présentées dans les sections précédentes. Cette section peut être conçue comme une présentation de prolongements à venir. [START_REF] Gall | Brownian disks and the Brownian snake[END_REF][START_REF] Gall | The Brownian disk viewed from a boundary point[END_REF]. Notons D b,'' z la loi du disque brownien libre à périmètre z après avoir pris deux points aléatoires -l'un après l'autre -selon la mesure uniforme du bord du disque brownien. Dans cette introduction, le symbole b fait référence au fait que les points distingués appartiennent au bord et non pas à l'intérieur du disque brownien comme dans les sections 2.2 et 2.3. Nous notons alors D b,'' pour un disque brownien libre bi-pointé (sur son bord) mais dont le périmètre est distribué selon la mesure a 3{p2πqz ´3{2 dz, pour z ą 0. Par analogie avec la sphère brownienne, nous appelons le premier point la racine (noté ρ ˚) et le second point le point marqué (noté ρ ' ). La raison pour laquelle nous considérons cette version bi-pointée est qu'il est désormais possible de définir une notion de hull par rapport à la racine. Afin d'éviter certaines complications dues à des conditionnements, nous avons de plus décidé de considérer un périmètre aléatoire. De manière un peu étonnante, nos méthodes nous permettent aussi d'étudier des cellules de Voronoï dans D b,'' . Mentionnons que l'étude des cellules de Voronoï dans des modèles aléatoires tels que les arbres de Lévy ou les modèles de géométrie brownienne reste un sujet mal compris. Dans [START_REF] Chapuy | On tessellations of random maps and the tg-recurrence[END_REF], Guillaume Chapuy conjecture qu'en prenant n points uniformes sur la sphère brownienne, les volumes de ces cellules de Voronoï suivent une loi de Dirichletp1, . . . , 1q. Il conjecture également ce résultat pour d'autres modèles, et l'unique modèle à ce jour résolu est celui de l'arbre brownien [5]. Le cas n " 2 pour la sphère brownienne a été établi par Emmanuel Guitter [START_REF] Guitter | On a conjecture by Chapuy about Voronoï cells in large maps[END_REF] en considérant de grandes quadrangulations et en passant à la limite à l'aide de la bijection avec retard de Grégory Miermont [START_REF] Miermont | Tessellations of random maps of arbitrary genus[END_REF]. Nos méthodes permettent d'obtenir certains résultats concernant les cellules de Voronoï sur le disque brownien et pourraient amener à retrouver les résultats d'Emmanuel Guitter. Donnons ci-après un aperçu de nos résultats préliminaires.

Constructions d'espaces métriques en utilisant une épine finie

Nos résultats reposent sur des constructions de modèles de géométrie brownienne à partir d'arbres étiquetés. Le cadre dans lequel nous travaillons est particulièrement inspiré de notre travail sur les modèles non-compacts ainsi que de l'article [START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF]. À toute fonction continue g : r0, ζ g s Þ Ñ R restant strictement positive sur s0, ζ g r et vérifiant gp0q " gpζ g q " 0, nous associons un arbre étiqueté comme suit. Commençons par introduire une mesure ponctuelle de Poisson: épine. Pour i P I, "nous recollons l'arbre T e i à gauche de r0, ζ g s sur le point t i " et notons H g l'arbre ainsi obtenu. Nous rajoutons des étiquettes sur H g de la manière suivante:

P g " ÿ iPI δ t i ,e i ,
• Les étiquettes le long de l'épine r0, ζ g s suivent la fonction g;

• Pour i P I, les étiquettes le long de T e i suivent un mouvement brownien indexé par l'arbre T e i (et commençant à l'étiquette du point de l'épine t i i.e. gpt i q). Comme dans la section 2.3, nous coupons, pour tout i P I, les branches de T e i au premier point d'étiquette 0. Nous écrivons r H g pour la structure d'arbre étiqueté ainsi obtenue. Si la fonction g vérifie de bonnes conditions, nous pouvons adapter la construction de la sphère brownienne à l'aide du mouvement brownien indexé par l'arbre brownien. Cela nous permet d'associer à r H g un élément (aléatoire) de K noté Θp r H g q. La racine correspond au point 0 de l'épine r0, ζ g s. Exactement comme dans la section 2.3 nous devons adapter la construction de la sphère brownienne avec soin pour éviter de recoller ensemble tous les points d'étiquette 0. Il est à nouveau possible de définir une variable aléatoire ZpP g q rendant compte de la quantité de points d'étiquette 0. 

Études des hulls

Nous allons maintenant montrer comment les espaces r H g , pour des choix convenables de fonctions g aléatoires, interviennent dans la description de certains sous-ensembles remarquables de D b,'' . Commençons par fixer quelques notations. Pour tout r ě 0, nous écrivons B r pD b,'' q pour la boule fermée de rayon r centrée en ρ ˚. Rappelons que D b,'' est muni d'une distance et d'une mesure volume que l'on note respectivement ∆ et V pour simplifier les notations. Fixons r ą 0 et raisonnons, dans le reste de ce paragraphe, sous l'événement t∆pρ ˚, ρ ' q ą ru. Le hull de rayon r (noté B ' r pD b,'' q) est l'ensemble des points v de D b,'' tel que tout chemin connectant v et ρ ' touche la boule B r pD b,'' q. Nous écrivons aussi B' r pD b,'' q pour l'adhérence du complémentaire de B ' r pD b,'' q. Il peut être montré, en utilisant le théorème de Jordan, que les deux espaces B ' r pD b,'' q et B' r pD b,'' q ont la topologie du disque unité fermé du plan complexe. Comme pour le disque brownien, nous notons BB ' r pD b,'' q (resp. B B' r pD b,'' q) l'ensemble des points de B ' r pD b,'' q (resp. B' r pD b,'' q) n'ayant pas de voisinage homéomorphe au disque ouvert. Nous voyons alors BB ' r pD b,'' q et B B' r pD b,'' q comme les bords respectifs de B ' r pD b,'' q et B' r pD b,'' q, et posons:

B r (D b,•• ) B• r (D b,•• ) ρ * ρ • ∂ 2 B • r (D b,•• ) ∂ 1 B • r (D b,•• ) ∂ 2 B• r (D b,•• ) = B• r (D b,•• ) ∩ ∂D b,•• . ∂ 1 B • r (D b,•• ) = B • r (D b,•• )∩ B• r (D b,•• ), ∂ 1 B• r (D b,•• ) = B • r (D b,•• )∩ B• r (D b,•• ), ∂ 2 B • r (D b,•• ) = B • r (D b,•• ) ∩ ∂D b,•• ∂ 2 B• r (D b,•• ) ∂ 1 B• r (D b,•• )
Nous pouvons définir une bonne notion de longueur pour tous ces bords de manière analogue aux sections précédentes et nous utiliserons la notation | ¨| pour nous référer à ces longueurs. Notre objectif est de comprendre la loi des espaces B ' r pD b,'' q et B' r pD b,'' q, et de savoir comment ils dépendent l'un de l'autre. Pour donner un énoncé formel, nous devons voir B ' r pD b,'' q et B' r pD b,'' q comme des éléments de K. Des méthodes semblables à celles employées pour étudier les hulls dans le plan brownien permettent de montrer qu'on peut munir B ' r pD b,'' q (resp. B' r pD b,'' q) de l'extension continue de la distance intrinsèque sur son intérieur. Nous équipons aussi B ' r pD b,'' q et B' r pD b,'' q de la restriction de la mesure volume. Nous enracinons B ' r pD b,'' q au point racine ρ ˚.

Le choix du point distingué pour B' r pD b,'' q est moins évident, et nous décidons de l'enraciner dans un des points de B 1 B' r pD b,'' q X B 2 B' r pD b,'' q (par planarité, il peut être montré que cet espace est réduit à deux points). Nous montrons alors la propriété d'indépendance suivante:

Théorème 8 Conditionnellement à |B 1
B' r pD b,'' q| " z, le hull B ' r pD b,'' q et l'adhérence de son complémentaire B' r pD b,'' q sont indépendants et B' r pD b,'' q est distribué comme Θp r H ? 3e q sous la mesure n ' `¨| Zp r H ? 3e q " z ˘.

Nous observons notamment le même phénomène que pour le plan brownien: conditionnellement à la longueur de |B 1 B' r pD b,'' q|, la loi de B' r pD b,'' q ne dépend pas de r. Posons c 1 " 4{ ? 3. Nous conjecturons in fine le résultat suivant:

Conjecture 1

Sous c 1 n, l'espace Θp r H ? 3e q, avec deux points distingués correspondant aux deux extrémités de l'épine, est distribué comme un disque brownien libre à périmètre libre bi-pointé.

En particulier, sous c 1 n et conditionnellement à σ `Zp r H e q " z, l'espace Θp r H e q devrait être un disque brownien libre de périmètre z (après oubli de ses points distingués). Nous donnons quelques résultats dans la direction de cette conjecture. Nous montrons par exemple que sous le conditionnement σ `Zp r H e q " z, le volume total de Θp r H e q est distribué selon z 3 p2πv 5 q ´1{2 expp´z 2 {2vq dv (comme pour le disque brownien libre) et que les deux points distingués sont bien distribués de manière uniforme sur le bord. Observons que c'est la mesure n ' et non pas n qui intervient dans le théorème 8, ce qui s'explique par le fait que l'espace B' r pD b,'' q vient avec un point distingué supplémentaire, le point ρ ' , qui appartient à la partie de la frontière correspondant à l'épine de r H ?

3e . Ce point distingué supplémentaire correspond au temps t ' apparaissant dans la définition de n ' . Dans le chapitre 8 nous montrons aussi que le hull B ' r pD b,'' q peut être encodé par un arbre étiqueté. Ces codages permettent d'obtenir toute une variété de formules explicites, nous donnons ici l'une d'entre elles:

Proposition 4

Pour tous γ, µ ě 0 et z ą 0, on a:

n ' `exp `´γ|B 2 B ' r pD b,'' q| ´µV pB ' r pD b,'' qq ˘ˇ| B 1 B ' r pD b,'' q| " z " 2 3 r 2 ¨´b γ `a2µ `c 3 2 ¨p2µq 1 4 coth ´p2µq 1 4 r ¯¯2 ¨exp ´´c 8 3 ¨bγ `a2µ ¨rē xp ´´z ´c µ 2 ´3 coth 2 `p2µq 1 4 r ˘´2 ¯´3 2r 2 ¯¯.
La preuve de la conjecture 1 est un travail en cours.

Cellules de Voronoï

Présentons maintenant nos résultats concernant les cellules de Voronoï. Si nous enlevons les deux points distingués ρ ˚et ρ ' , le bord BD b,'' est divisé en deux composantes connexes L 1 et L 2, toutes deux homéomorphes à l'intervalle ouvert p0, 1q. Écrivons L 1 et L 2 pour désigner l'adhérence de ces ensembles. Nous pouvons utiliser la mesure uniforme sur le bord (ou des méthodes semblables à celles introduites dans les sections précédentes) pour définir les longueurs de

L 1 et de L 2 , notées respectivement |L 1 | et |L 2 |. Rappelons que D b,'' est muni d'une distance ∆. Introduisons maintenant V 1 (resp. V 2 )
, l'ensemble des points x P D b,'' tels que ∆px, L 1 q " ∆px, BD b,'' q (resp. ∆px, L 2 q " ∆px, BD b,'' q). En d'autres termes, V 1 est la cellule de Voronoï de L 1 par rapport à L 2 et inversement. Nous notons V 1 l'intérieur de V 1 zBD b,'' . Nous montrons alors que la distance intrinsèque sur V 1 se prolonge par continuité en une distance sur V 1 . Nous pouvons donc munir V 1 de cette extension ainsi que de la restriction de la mesure volume, et le pointer sur la racine ρ ˚.

Le même raisonnement peut être appliqué à V 2 , ce qui nous permet de voir

V 1 et V 2 comme deux éléments aléatoires de K. V 1 V 2 ρ * ρ • L 1 L 2 Figure 3.3 -Représentation des cellules de Voronoï V 1 et V 2 .
Nous colorons en doré l'interface entre les deux cellules.

Le couple pV 1 , V 2 q ainsi obtenu peut être encodé par deux arbres étiquetés comme suit. Prenons l'excursion brownienne e et, conditionnellement à e, considérons l'arbre étiqueté H e ainsi qu'une copie indépendante de H e notée H 1 e . Nous démontrons le résultat suivant: Théorème 9

Le couple pV 1 , V 2 q est distribué comme `Θp r H e q, Θp r H 1 e q ˘sous 2n.

Nous pouvons de plus retrouver la loi de D b,'' en recollant de manière métrique les cellules Θp r H e q et Θp r H 1 e q le long des points correspondants à l'épine de telle sorte à ce que Θp r H e q devienne la première cellule de Voronoï et Θp r H 1 e q la seconde cellule de Voronoï. L'épine joue ici le rôle d'interface entre les deux cellules de Voronoï. En effectuant cette identification, la variable aléatoire σ donne une bonne notion de longueur de l'interface entre ces deux cellules. Nous obtenons aussi que Zp r H e q (resp. Zp r

H 1 e q) est égale à |L 1 | (resp. |L 2 |) et que Yp r
H e q (resp. Yp r H 1 e q) correspond au volume total de la première (resp. seconde) cellule de Voronoï. La transformée de Laplace de pσ, Zp r H e q, Yp r H e qq peut être caractérisée de la manière suivante:

Proposition 5

Pour touq λ, γ, µ P R `, on a :

n ´1 ´exp `´pγ ´?µqσ ´pλ ´?µqZp r H e q ´µ{2Yp r H e q ˘" c 2 3 ¨2λ 3 2 
`2? 3pλ ´?µq ? γ `3pγ ´?µq ? λ `?3γ Nous donnerons dans le chapitre 8 quelques conséquences directes de la proposition 5. Nous parviendrons aussi à déterminer une formule explicite pour la transformée de Laplace du quadruplet pZp r H e q, Yp r H e q, Zp r H 1 e q, Yp r H 1 e qq. Soulignons enfin que ces transformées de Laplace sont malheureusement difficiles à interpréter bien qu'il semblerait possible de retrouver les résultats d'Emmanuel Guitter concernant les cellules de Voronoï de la sphère brownienne directement dans le continu grâce à notre formule pour la transformée de Laplace de pZp r H e q, Yp r H e q, Zp r H 1 e q, Yp r H 1 e qq. Pour rendre ce rapprochement rigoureux, il faudrait démontrer la conjecture 1. 

Introduction

The main goal of the present work is to prove that the collection of boundary sizes of excursions of Brownian motion indexed by the Brownian tree above a fixed level evolves according to a wellidentified growth-fragmentation process when the level increases. Because of the close connections between Brownian motion indexed by the Brownian tree and the Brownian map or the Brownian disk, this result also implies that the collection of boundary sizes of the connected components of the set of points of a Brownian disk whose distance from the boundary is greater than r evolves according to the same growth-fragmentation process. The latter fact may be viewed as a continuous analog of a recent result of Bertoin, Curien and Kortchemski [START_REF] Bertoin | Random planar maps and growth-fragmentations[END_REF] identifying the growth-fragmentation process arising as the scaling limit for the collection of lengths of cycles obtained by slicing random Boltzmann triangulations with a boundary at a given height, when the size of the boundary grows to infinity. In fact, the growth-fragmentation process of [START_REF] Bertoin | Random planar maps and growth-fragmentations[END_REF] is the same as in our main results, and this strongly suggests that the results of [START_REF] Bertoin | Random planar maps and growth-fragmentations[END_REF] could be extended to more general planar maps with a boundary (see also [START_REF] Bertoin | Martingales in self-similar growthfragmentations and their connections with random planar maps[END_REF] for related results).

In order to give a more precise description of our main results, we first need to recall the notion of Brownian motion indexed by the Brownian tree. The Brownian tree of interest here is a variant of Aldous' continuum random tree, which is also called the CRT. This tree is conveniently defined as the tree T ζ coded by a Brownian excursion pζ s q 0ďsďσ under the σ-finite Itô measure of positive excursions (see e.g. [START_REF] Gall | Scaling limits of random trees and planar maps[END_REF], or Section 5.2.1 below for the definition of this coding). We write ρ for the root of T ζ , and we note that T ζ is canonically equipped with a volume measure volp¨q. We then consider Brownian motion indexed by T ζ , which we denote by pV a q aPT ζ -we sometimes also say that V a is a Brownian label assigned to a. Informally, conditionally on T ζ , pV a q aPT ζ is just the centered Gaussian process such that V ρ " 0, and ErpV a ´Vb q 2 s " d ζ pa, bq for every a, b P T ζ , where d ζ is the distance on T ζ . A formal definition leads to certain technical difficulties because the indexing set is random, but these difficulties can be overcome easily using the formalism of snake trajectories as recalled in Section 5.2.1. Within this formalism, the Brownian tree T ζ , and the Brownian motion pV a q aPT ζ are defined under a σ-finite measure N 0 -see Section 5.2.2 for more details. We note that both the CRT and Brownian motion indexed by the Brownian tree are important probabilistic objects that appear as scaling limits for several combinatorial models, interacting particle systems and statistical physics models (see the introduction of [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF] for a few related references). Furthermore, Brownian motion indexed by the Brownian tree is very closely related to the measure-valued process called super-Brownian motion (see in particular [START_REF] Gall | Spatial Branching Processes, Random Snakes and Partial Differential Equations[END_REF]).

Let us now discuss growth-fragmentation processes, referring to [START_REF] Bertoin | Markovian growth-fragmentation processes[END_REF] and [START_REF] Bertoin | Martingales in self-similar growthfragmentations and their connections with random planar maps[END_REF] for additional details. The basic ingredient in the construction of a (self-similar) growth-fragmentation process is a self-similar Markov process pX t q tě0 with values in r0, 8q and only negative jumps, which is stopped upon hitting 0. Suppose that X 0 " z ą 0, and view pX t q tě0 as the evolution in time of the mass of an initial particle called the Eve particle. At each time t where the process X has a jump, we consider that a new particle with mass ´∆X t (a child of the Eve particle) is born, and the mass of this new particle evolves (from time t) again according to the law of the process X, independently of the evolution of the mass of the Eve particle. Then each child of the Eve particle has children at discontinuity times of its mass process, and so on. We consider that a particle dies when its mass vanishes. Under suitable assumptions (see [START_REF] Bertoin | Markovian growth-fragmentation processes[END_REF]), we can make sense of the process pXptqq tě0 giving for every time t the sequence (in nonincreasing order) of masses of all particles alive at that time (if there are only finitely many such particles, the sequence is completed by adding terms all equal to 0). The process X is Markovian and is called the growth-fragmentation process with Eve particle process X. In the preceding description, the process starts from pz, 0, 0, . . .q, but we can get a more general initial value by considering several or countably many Eve particles that evolve independently -some assumption is needed on the initial values of these Eve particles so that at every time t the masses of the particles alive can be ranked in a nonincreasing sequence. Theorem 4.1. Almost everywhere under the measure N 0 , for every r ě 0 and for every connected component C of the open set ta P T ζ : V a ą ru, the limit |BC| :" lim εÑ0 ε ´2volpta P C : V a ă r `εuq exists in p0, 8q and is called the boundary size of C. For every r ě 0, let Xprq denote the sequence of boundary sizes of all connected components of ta P T ζ : V a ą ru ranked in nonincreasing order. Then, under N 0 , the process pXprqq rě0 is a growth-fragmentation process whose Eve particle process pX t q tě0 can be described as follows. The process pX t q tě0 is the self-similar Markov process with index 1 2 which in the case X 0 " 1 can be represented as

X t " exppξpχptqqq,
where pξpsqq sě0 is the Lévy process with only negative jumps and Laplace exponent

ψpλq " c 3 2π ´´8 3 λ `ż 0 ´log 2
pe λy ´1 ´λpe y ´1qq e ´3y{2 p1 ´ey q ´5{2 dy ¯, (4.1) and pχptqq tě0 is the time change

χptq " inf ! s ě 0 : ż s 0 e ξpvq{2 dv ą t ) . (4.2)
In the setting of Theorem 4.1, we consider the infinite measure N 0 , but the statement still makes sense by conditioning on the initial value Xp0q. The representation of the self-similar Markov process X in terms of the Lévy process ξ is the classical Lamperti representation of self-similar Markov processes [START_REF] Lamperti | Semi-stable Markov processes[END_REF]. We note that the process ξ drifs to ´8 and χptq " 8 for t ě H 0 :" ş 8 0 e ξpvq{2 dv, which simply means that X t is absorbed at 0 at time H 0 . It is interesting to relate the growth-fragmentation process of Theorem 4.1 to the local times of the process pV a q aPT ζ . It is known [START_REF] Bousquet-Mélou | The density of the ISE and local limit laws for embedded trees[END_REF] (see also [START_REF] Sugitani | Some properties for the measure-valued branching diffusion processes[END_REF] for closely related results concerning super-Brownian motion) that there exists, N 0 pdωq a.e., a continuous function pL x , x P Rq such that, for every nonnegative measurable function f on R,

ż T ζ volpdaq f pV a q " ż R dx f pxq L x ,
and we call L x the local time at level x. Then, for every r ą 0, if N r ε denotes the number of connected components of ta P T ζ : V a ą ru with boundary size greater than ε, Proposition 4.11 below gives

ε 3{2 N r ε ÝÑ εÑ0 1 ? 6π L r , N 0 a.e.
In other words the suitably rescaled number of fragments of Xprq with size greater than ε converges to L r . As a side remark, one might expect the process pL r q rě0 to be Markovian under N 0 , by analogy with the classical Ray-Knight theorems for local times of linear Brownian motion. This is not the case, but the previous display shows that L r is a function of the Markov process Xprq which obviously contains more information than the local time.

Thanks to the excursion theory developed in [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF], we can in fact deduce Theorem 4.1 from a simpler statement valid under the "positive Brownian snake excursion measure" N 0 introduced and studied in [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF]. We refer to Section 5.2.2 for more details, but note that we can still make sense of the "genealogical tree" T ζ and the "labels" V a , a P T ζ under N 0 . However, we now have V a ě 0 for every a P T ζ , and more precisely the labels V b are positive along the ancestral line of a, except at the root and possibly at a. Informally the measure N 0 describes the subtree and the labels corresponding under N 0 to a connected component of the set of points with positive labels. One can make sense under N 0 of the boundary size

Z 0 :" lim εÑ0 ε ´2volpta P T ζ : V a ă εuq , N 0 a.e.
and define the conditional probability measures N ˚,z 0 p¨q " N 0 p¨| Z 0 " zq for every z ą 0.

Theorem 4.2. Let z ą 0. Almost surely under the measure N ˚,z 0 , for every r ě 0 and for every connected component C of the open set ta P T ζ : V a ą ru, the limit lim εÑ0 ε ´2volpta P C : V a ă r `εuq exists in p0, 8q and is called the boundary size of C. For every r ě 0, let Yprq denote the sequence of boundary sizes of all connected components of ta P T ζ : V a ą ru ranked in nonincreasing order. Then, under N ˚,z 0 , the process pYprqq rě0 is distributed as the growth-fragmentation process of Theorem 4.1 with initial value Yp0q " pz, 0, 0, . . .q. Theorem 4.1 will be derived as a straightforward consequence of Theorem 4.2 and the excursion theory of [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF]. Both Theorems 4.1 and 4.2 have direct applications to the models of random geometry known as the Brownian map and the Brownian disk. Recall that the Brownian map is a random compact metric space homeomorphic to the sphere S 2 , which is the scaling limit of various classes of random planar maps equipped with the graph distance (see in particular [START_REF] Gall | Uniqueness and universality of the Brownian map[END_REF][START_REF] Miermont | The Brownian map is the scaling limit of uniform random plane quadrangulations[END_REF]). Similarly, the Brownian disk is a random compact metric space homeomorphic to the closed unit disk of the plane, which appears as the scaling limit of rescaled Boltzmann quadrangulations with a boundary, when the size of the boundary grows to infinity (see [START_REF] Bettinelli | Scaling limit of random planar quadrangulations with a boundary[END_REF][START_REF] Bettinelli | Compact Brownian surfaces I. Brownian disks[END_REF][START_REF] Gwynne | Convergence of the free Boltzmann quadrangulation with simple boundary to the Brownian disk[END_REF]). We note that the papers [START_REF] Bettinelli | Scaling limit of random planar quadrangulations with a boundary[END_REF][START_REF] Bettinelli | Compact Brownian surfaces I. Brownian disks[END_REF] consider Brownian disks with fixed boundary size and volume, but in the present work we will be interested in the free Brownian disk [22, Section 1.5] which has a fixed boundary size but a random volume. Let us write D z for the free Brownian disk with boundary size z ą 0. The space D z is equipped with a volume measure denoted by Vpdxq. The boundary BD z may be defined as the set of all points of D z that have no neighborhood homeomorphic to the open unit disk, and for every x P D z , we write Hpxq for the "height" of x, meaning the distance from x to the boundary BD z . Then, the process pZprqq rě0 is distributed as the growth-fragmentation process of Theorem 4.1 with initial value Zp0q " pz, 0, 0, . . .q.

As the similarity between the two statements suggests, Theorem 4.3 is closely related to Theorem 4.2, and in fact can be derived from the latter result thanks to the construction of the free Brownian disk (with boundary size z) from a snake trajectory distributed according to N ˚,z 0 , which is developed in [START_REF] Gall | Brownian disks and the Brownian snake[END_REF]. Similarly, we could use Theorem 4.1 to derive a result analogous to Theorem 4.3 for the free Brownian map, thanks to the construction of the latter metric space from a snake trajectory distributed according to N 0 (see e.g. [START_REF] Gall | Brownian disks and the Brownian snake[END_REF]Section 3]). Rather than writing down this statement about the free Brownian map, we give in Section 4.11 an analog of Theorem 4.3 for the Brownian plane, which is an infinite-volume version of the Brownian map that has been shown [START_REF] Budzinski | The hyperbolic Brownian plane[END_REF][START_REF] Curien | The Brownian plane[END_REF] to be the universal scaling limit of infinite random lattices such as the UIPT or the UIPQ. Theorem 4.7 below shows that the collection of boundary sizes of the connected components of the complement of the ball of radius r centered at the root of the Brownian plane evolves like the same growth-fragmentation process with indefinite growth starting from 0 (see [START_REF] Bertoin | Martingales in self-similar growthfragmentations and their connections with random planar maps[END_REF]Section 4.2] for a thorough discussion of this process).

We next state another result for the Brownian disk, which is closely related to Theorem 4. In the same way as Theorem 4.3 follows from Theorem 4.2, Theorem 4.4 is a consequence of a statement (Theorem 4.6 below) that describes the conditional distribution of the snake trajectories corresponding to the "excursions above level h" under N ˚,z 0 , conditionally on the boundary sizes of these excursions. One might expect that Theorem 4.6, which essentially corresponds to the branching property of growth-fragmentation processes, would be a basic tool for the proof of Theorem 4.2, but in fact our proof of Theorem 4.2 does not use this branching property. We also note that Theorem 4.4 is a Brownian disk analog of a result of [START_REF] Gall | Brownian disks and the Brownian snake[END_REF] showing that the connected components of the complement of a ball in the Brownian map are independent Brownian disks conditionally on their volumes and boundary sizes.

Let us finally mention an interesting corollary to our results.

Corollary 4.1.

There exist positive constants c 1 and c 2 such that, for every r ě 1,

c 1 r ´6 ď N ˚,1 0 ´sup aPT ζ V a ą r ¯" P ´sup xPD 1
Hpxq ą r ¯ď c 2 r ´6.

Corollary 4.1 immediately follows from Theorem 4.2 and Theorem 4.3, by using the asymptotics for the extinction time of growth-fragmentation processes found in [START_REF] Bertoin | Martingales in self-similar growthfragmentations and their connections with random planar maps[END_REF]Corollary 4.5].

The proof of Theorem 4.2 occupies much of the remaining part of the paper. Let us briefly outline the main steps of this proof. For every a P T ζ such that V a ą 0, one can define a function pZ paq r q 0ďrăVa such that, for every r P r0, V a q, Z paq r is the boundary size of the connected component of tb P T ζ : V b ą ru that contains a (see Proposition 4.5 below). The function r Þ Ñ Z paq r is càdlàg (right-continuous with left limits) with only negative jumps, and every discontinuity time r 0 of this function corresponds to a "splitting" of the connected component containing a into two components, namely the one containing a, which has boundary size Z paq r 0 , and another one with boundary size |∆Z paq r 0 |. It is not a priori obvious that a splitting cannot yield more than two components, but this follows from the fact that local minima of the process V are distinct, see Section 4.3.1 below. It turns out (Proposition 4.6) that there exists a unique a ' P T ζ , called the terminal point of the locally largest evolution, such that, for every discontinuity time r 0 of r Þ Ñ Z pa ' q r , we have Z pa ' q r 0 ą |∆Z pa ' q r 0 | (meaning that a ' "stays" in the component with the larger boundary size) and V a ' is maximal among the labels of points satisfying the latter property. Furthermore, the distribution of pZ pa ' q r q 0ďrăV a ' is the law of the process X of Theorem 4.1 up to its hitting time of 0 (Proposition 4.7). The process pZ pa ' q r q 0ďrăV a ' thus plays the role of the evolution of the mass of the Eve particle. Furthermore, one verifies that, conditionally on pZ pa ' q r q 0ďrăV a ' , for every discontinuity time r 0 , the connected component that splits off the one containing a ' at time r 0 is represented by a snake trajectory distributed according to N ˚,|∆Z paq r 0 | 0 (Proposition 4.8). This provides the recursive structure needed to identify the process Yprq of Theorem 4.2 as a growth-fragmentation process.

We finally mention a few recent papers that are related to the present work. We refer to [START_REF] Bertoin | Markovian growth-fragmentation processes[END_REF][START_REF] Bertoin | Martingales in self-similar growthfragmentations and their connections with random planar maps[END_REF][START_REF] Shi | Growth-fragmentation processes and bifurcators[END_REF] for the theory of growth-fragmentation processes. As we already mentioned, Theorem 4.3 can be viewed as a continuous version of the main result of [START_REF] Bertoin | Random planar maps and growth-fragmentations[END_REF]. In addition to [START_REF] Bettinelli | Scaling limit of random planar quadrangulations with a boundary[END_REF][START_REF] Bettinelli | Compact Brownian surfaces I. Brownian disks[END_REF][START_REF] Gwynne | Convergence of the free Boltzmann quadrangulation with simple boundary to the Brownian disk[END_REF], free Brownian disks are discussed in the paper [START_REF] Miller | An axiomatic characterization of the Brownian map[END_REF], which develops an axiomatic characterization of the Brownian map as part of a program aiming to equip the Brownian map with a canonical conformal structure. Brownian disks also play an important role in the recent papers [START_REF] Gwynne | Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov-Hausdorff-Prokhorov-uniform topology[END_REF][START_REF] Gwynne | Convergence of percolation on uniform quadrangulations with boundary to SLE 6 on a 8{3-Liouville quantum gravity[END_REF] of Gwynne and Miller motivated by the study of statistical physics models on random planar maps. Finally we observe that there is an interesting analogy between Theorem 4.1 and the fragmentation process occurring when cutting the CRT at a fixed height. According to [START_REF] Bertoin | Self-similar fragmentations[END_REF], the sequence of volumes of the connected components of the complement of the ball of radius r centered at the root in the CRT is a self-similar fragmentation process whose dislocation measure has the form p2πq ´1{2 pxp1 ´xqq ´3{2 dx. Notice that the Lévy measure of the process ξ of Theorem 4.1 is the push forward of the measure 1 r1{2,1s pxq a 3{2π pxp1 ´xqq ´5{2 dx under the mapping x Þ Ñ log x.

The paper is organized as follows. Section 5.2 gives a number of preliminaries. In particular, we recall the formalism of snake trajectories, which provides a convenient set-up for the study of Brownian motion indexed by the Brownian tree. We also give a "re-rooting" representation of the measure N ˚,z 0 , which is a key tool in several subsequent proofs. Section 4.3 discusses the connected components of the tree T ζ above a fixed level and also the components "above the minimum": the independence and distributional properties of the latter have been studied already in the paper [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF] and play a basic role in the proof of Theorem 4.2. Section 4.4 is devoted to the existence and properties of the boundary size processes pZ paq r q 0ďrăVa . In this section, we rely on the theory of exit measures for the Brownian snake [START_REF] Gall | Spatial Branching Processes, Random Snakes and Partial Differential Equations[END_REF]. Section 4.5 introduces the locally largest evolution, and Section 4.6 identifies the law of the associated boundary size process (Proposition 4.7). A key tool for this identification is Proposition 4.4, which gives the distribution under N 0 of the exit measure process time-reversed at its last visit to z ą 0. Section 4.7 studies the excursions from the locally largest evolution. Roughly speaking, this study provides the recursive structure that shows that the "children" of the Eve particle evolve according to the same Markov process. Theorems 4.1 and 4.2 are then proved in Section 4.8, and Theorem 4.3 is derived from Theorem 4.2 in Section 4.9. Section 4.10 gives the proof of Theorem 4.4. Finally, Section 4.11 contains some complements. In particular, we provide a direct derivation of the cumulant function associated with our growth-fragmentation processes, which is independent of the proof of the main results. We also discuss the analog of Theorem 4.3 for the Brownian plane, and we investigate the relations between local times of pV a q aPT ζ and the growth-fragmentation process of Theorem 4.1. The Appendix gives the proof of two technical results.

Preliminaries

Snake trajectories

Most of this work is devoted to the study of random processes indexed by continuous random trees. The formalism of snake trajectories, which has been introduced in [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF], provides a convenient framework for this study, and we recall the main definitions that will be needed below.

A (one-dimensional) finite path w is a continuous mapping w : r0, ζs ÝÑ R, where the number ζ " ζ pwq is called the lifetime of w. We let W denote the space of all finite paths, which is a Polish space when equipped with the distance d W pw, w 1 q " |ζ pwq ´ζpw 1 q | `sup tě0 |wpt ^ζpwq q ´w1 pt ^ζpw 1 q q|.

The endpoint or tip of the path w is denoted by p w " wpζ pwq q. We set W 0 " tw P W : wp0q " 0u. The trivial element of W 0 with zero lifetime is identified with the point 0 of R. Occasionally we will use the notation w " mintwptq : 0 ď t ď ζ pwq u. Definition 4.1. A snake trajectory (with initial point 0) is a continuous mapping s Þ Ñ ω s from R `into W 0 which satisfies the following two properties:

(i) We have ω 0 " 0 and the number σpωq :" supts ě 0 : ω s " 0u, called the duration of the snake trajectory ω, is finite (by convention σpωq " 0 if ω s " 0 for every s ě 0).

(ii) For every 0 ď s ď s 1 , we have ω s ptq " ω s 1 ptq for every t P r0, min sďrďs 1 ζ pωrq s.

We will write S 0 for the set of all snake trajectories. If ω P S 0 , we often write W s pωq " ω s and ζ s pωq " ζ pωsq for every s ě 0. The set S 0 is equipped with the distance

d S 0 pω, ω 1 q " |σpωq ´σpω 1 q| `sup sě0 d W pW s pωq, W s pω 1 qq.
A snake trajectory ω is completely determined by the knowledge of the lifetime function s Þ Ñ ζ s pωq and of the tip function s Þ Ñ x W s pωq: See [2, Proposition 8]. Let ω P S 0 be a snake trajectory and σ " σpωq. The lifetime function s Þ Ñ ζ s pωq codes a compact R-tree, which will be denoted by T ζ and called the genealogical tree of the snake trajectory. This R-tree is the quotient space T ζ :" r0, σs{ " of the interval r0, σs for the equivalence relation

s " s 1 if and only if ζ s " ζ s 1 " min s^s 1 ďrďs_s 1 ζ r ,
and T ζ is equipped with the distance induced by

d ζ ps, s 1 q " ζ s `ζs 1 ´2 min s^s 1 ďrďs_s 1 ζ r .
(notice that d ζ ps, s 1 q " 0 if and only if s " s 1 , and see e.g. [START_REF] Gall | Scaling limits of random trees and planar maps[END_REF]Section 3] for more information about the coding of R-trees by continuous functions). Let p ζ : r0, σs ÝÑ T ζ stand for the canonical projection. By convention, T ζ is rooted at the point ρ :" p ζ p0q " p ζ pσq, and the volume measure volp¨q on T ζ is defined as the push forward of Lebesgue measure on r0, σs under p ζ . For every a, b P T ζ , rra, bss denotes the line segment from a to b, and the ancestral line of a is the segment rrρ, ass (a point b of rrρ, ass is called an ancestor of a, and we also say that a is a descendant of b). We use the notation ssa, brr or ssa, bss with an obvious meaning. Branching points of T ζ are points c such that T ζ ztcu has at least 3 connected components.

Let us now make a crucial observation: By property (ii) in the definition of a snake trajectory, the condition p ζ psq " p ζ ps 1 q implies that W s pωq " W s 1 pωq. So the mapping s Þ Ñ W s pωq can be viewed as defined on the quotient space T ζ (this is indeed the main motivation for introducing snake trajectories: replacing mappings defined on trees, which later will be random trees, by mappings defined on intervals of the real line). For a P T ζ , we set V a pωq :" x W s pωq whenever s P r0, σs is such that a " p ζ psq -by the previous observation this does not depend on the choice of s. We interpret V a as a "label" assigned to the "vertex" a of T ζ . Notice that the mapping

a Þ Ñ V a is continuous on T ζ .
We will use the notation W ˚:" mintW s ptq : s ě 0, t P r0, ζ s su " mintV a : a P T ζ u, W ˚:" maxtW s ptq : s ě 0, t P r0, ζ s su " maxtV a : a P T ζ u.

Finally, we will use the notion of a subtrajectory. Let ω P S 0 and assume that the mapping s Þ Ñ ζ s pωq is not constant on any nontrivial subinterval of r0, σs (this will always hold in our applications). Let a P T ζ ztρu such that a has strict descendants and a is not a branching point.

Then there exist two times s 1 ă s 2 in p0, σq such that p ζ ps 1 q " p ζ ps 2 q " a, and the set p ζ prs 1 , s 2 sq consists of all descendants of a in T ζ . We define a new snake trajectory ω 1 with duration s 2 ´s1 by setting, for every s ě 0,

ω 1 s ptq :" ω ps 1 `sq^s 2 pζ s 1 `tq ´p ω s 1 , for 0 ď t ď ζ 1 s :" ζ ps 1 `sq^s 2 ´ζs 1 .
We call ω 1 the subtrajectory of ω rooted at a. Informally, ω 1 represents the subtree of descendants of a and the associated labels.

Re-rooting and truncation of snake trajectories

We now introduce two important operations on snake trajectories in S 0 . The first one is the re-rooting operation on S 0 (see [2, Section 2.2]). Let ω P S 0 and r P r0, σpωqs. Then ω rrs is the snake trajectory in S 0 such that σpω rrs q " σpωq and for every s P r0, σpωqs,

ζ s pω rrs q " d ζ pr, r ' sq, x W s pω rrs q " x W r's ´x W r ,
where we use the notation r ' s " r `s if r `s ď σ, and r ' s " r `s ´σ otherwise. By a remark following the definition of snake trajectories, these prescriptions completely determine ω rrs .

We will write ζ rrs s pωq " ζ s pω rrs q and W rrs s pωq " W s pω rrs q. The tree T ζ rrs is then interpreted as the tree T ζ re-rooted at the vertex p ζ prq: More precisely, the mapping s Þ Ñ r ' s induces an isometry from T ζ rrs onto T ζ , which maps the root of T ζ rrs to p ζ prq. Furthermore, the vertices of T ζ rrs receive the "same" labels as in T ζ , shifted so that the label of the root is still 0.

The second operation is the truncation of snake trajectories. For any w P W 0 and y P R, we set τ y pwq :" inftt P r0, ζ pwq s : wptq " yu , τ ẙ pwq :" inftt P p0, ζ pwq s : wptq " yu with the usual convention inf ∅ " 8 (this convention will be in force throughout this work unless otherwise indicated). Notice that τ y pwq " τ ẙ pwq except possibly if y " 0.

Let ω P S 0 and y P R. We set, for every s ě 0,

η s pωq " inf ! t ě 0 : ż t 0 du 1 tζ pωuq ďτ ẙ pωuqu ą s )
(note that the condition ζ pωuq ď τ ẙ pω u q holds if and only if τ ẙ pω u q " 8 or τ ẙ pω u q " ζ pωuq ). Then, setting ω 1 s " ω ηspωq for every s ě 0 defines an element ω 1 of S 0 , which will be denoted by tr y pωq and called the truncation of ω at y (see [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF]Proposition 10]). The effect of the time change η s pωq is to "eliminate" those paths ω s that hit y (at a positive time when y " 0) and then survive for a positive amount of time. The genealogical tree of tr y pωq is canonically and isometrically identified with the closed subset of T ζ consisting of all a such that V b pωq " y for every strict ancestor b of a (excluding the root when y " 0). By abuse of notation, we often write tr y pW q instead of tr y pωq.

Measures on snake trajectories

We will be interested in two important measures on S 0 . First the Brownian snake excursion measure N 0 is the σ-finite measure on S 0 that satisfies the following two properties: Under N 0 , (i) the distribution of the lifetime function pζ s q sě0 is the Itô measure of positive excursions of linear Brownian motion, normalized so that, for every ε ą 0,

N 0 ´sup sě0 ζ s ą ε ¯" 1 2ε ; 
(ii) conditionally on pζ s q sě0 , the tip function p x W s q sě0 is a centered Gaussian process with covariance function

Kps, s 1 q " min s^s 1 ďrďs_s 1 ζ r .
Informally, the lifetime process pζ s q sě0 evolves under N 0 like a Brownian excursion, and conditionally on pζ s q sě0 , each path W s is a linear Brownian path started from 0, which is "erased" from its tip when ζ s decreases and is "extended" when ζ s increases. The measure N 0 can be interpreted as the excursion measure away from 0 for the Markov process in W 0 called the Brownian snake. We refer to [START_REF] Gall | Spatial Branching Processes, Random Snakes and Partial Differential Equations[END_REF] for a detailed study of the Brownian snake. For every r ą 0, we have N 0 pW ˚ą rq " N 0 pW ˚ă ´rq " 3 2r 2

(see e.g. [65, Section VI.1]).

The following scaling property is often useful. For λ ą 0, for every ω P S 0 , we define θ λ pωq P S 0 by θ λ pωq " ω 1 , with ω 1 s ptq :"

? λ ω s{λ 2 pt{λq , for s ě 0, 0 ď t ď ζ 1 s :" λζ s{λ 2 .
Then θ λ pN 0 q " λ N 0 .

Under N 0 , the paths W s , 0 ă s ă σ, take both positive and negative values, simply because they behave like one-dimensional Brownian paths started from 0. We will now introduce another important measure on S 0 , which is supported on snake trajectories taking only nonnegative values. For δ ě 0, let S pδq 0 be the set of all ω P S 0 such that sup sě0 psup tPr0,ζspωqs |ω s ptq|q ą δ. Also set S 0 " tω P S 0 : ω s ptq ě 0 for every s ě 0, t P r0, ζ s pωqsu X S p0q 0 .

There exists a σ-finite measure N 0 on S 0 , which is supported on S 0 , and gives finite mass to the sets S pδq 0 for every δ ą 0, such that

N 0 pGq " lim εÑ0 1 ε N 0 pGptr ´εpW qqq,
for every bounded continuous function G on S 0 that vanishes on S 0 zS pδq 0 for some δ ą 0 (see [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF]Theorem 23]). Under N 0 , each of the paths W s , 0 ă s ă σ, starts from 0, then stays positive during some time interval p0, αq, and is stopped immediately when it returns to 0, if it does return to 0.

One can in fact make sense of the "quantity" of paths W s that return to 0 under N 0 . To this end, one proves that the limit

Z 0 :" lim εÑ0 1 ε 2 ż σ 0 ds 1 t x Wsăεu (4.3)
exists N 0 a.e. See [2, Proposition 30] for a slightly weaker result -the stronger form stated above follows from the results of [START_REF] Gall | Brownian disks and the Brownian snake[END_REF]Section 10]. Notice that replacing the limit by a liminf in (5.6) allows us to make sense of Z 0 pωq for every ω P S 0 . The following conditional versions of the measure N 0 play a fundamental role in the present work. According to [2, Proposition 33], there exists a unique collection pN ˚,z 0 q zą0 of probability measures on S 0 such that:

(i) We have

N 0 " c 3 2π ż 8 0 dz z ´5{2 N ˚,z 0 .
(ii) For every z ą 0, N ˚,z 0 is supported on tZ 0 " zu.

(iii) For every z, z 1 ą 0, N ˚,z 1 0 " θ z 1 {z pN ˚,z 0 q.

Informally, N ˚,z 0 " N 0 p¨| Z 0 " zq.

Exit measures

Let r P R, r " 0. In a way similar to the definition of Z 0 above, one can make sense of a quantity that measures the number of paths W s that hit level r under N 0 . Precisely, the limit

Z r :" lim εÑ0 1 ε ż σ 0 ds 1 tτrpWsqďζsăτrpWsq`εu (4.4)
exists N 0 a.e. Furthermore, Z r ą 0 if and only if r P rW ˚, W ˚s, N 0 a.e. This definition of Z r is a particular case of the theory of exit measures, see [START_REF] Gall | Spatial Branching Processes, Random Snakes and Partial Differential Equations[END_REF]Chapter V]. We note that Z r is N 0 a.e. equal to a measurable function of the truncated snake tr r pW q: When r ă 0, this can be seen by observing that Z r is the a.e. limit of the quantities Zε r introduced in Remark (ii) after Proposition 7.5 below.

We now recall the special Markov property of the Brownian snake under N 0 (see in particular the appendix of [START_REF] Gall | Subordination of trees and the Brownian map[END_REF]). Proposition 4.1 (Special Markov property). Let ps i , s 1 i q, i P I be the connected components of the open set ts P r0, σs : τ r pW s q ă ζ s u. For every i P I, set a i :" p ζ ps i q " p ζ ps 1 i q and let ω i be the subtrajectory of ω rooted at a i . Then, under the probability measure N 0 p¨| r P rW ˚, W ˚sq, conditionally on tr r pW q, the point measure ř iPI δ ω i is Poisson with intensity Z r N 0 p¨q.

Let us now explain the relations between exit measures and a certain continuous-state branching process. For λ ą 0, we set φpλq :"

c 8 3 λ 3{2 .
This notation will be used throughout this work. The continuous-state branching process with branching mechanism φ, or in short the φ-CSBP, is the Feller Markov process X in R `whose transition kernels are given by the following Laplace transform,

Erexpp´λX t q | X 0 " xs " exp ´´x ´λ´1{2 `ta 2{3 ¯´2 ¯, (4.5) 
for every x, t ě 0 and λ ą 0. See e.g. [START_REF] Gall | Spatial Branching Processes, Random Snakes and Partial Differential Equations[END_REF]Chapter II] for basic facts about continuous-state branching processses.

For reasons that will appear later, we now concentrate on the variables Z r with r ă 0. According to [40, formula (6)], we have, for every t ą 0,

N 0 p1 ´e´λZ ´t q " ´λ´1{2 `ta 2{3 ¯´2 . (4.6)
Using both the latter formula and the special Markov property, we get that the process pZ ´rq rą0 is Markovian under N 0 with the transition kernels of the φ-CSBP, with respect to the filtration pG r q rą0 , where G r denotes the σ-field generated by tr ´rpW q and the N 0 -negligible sets (see [2, Section 2.5], for more details). Although N 0 is an infinite measure, the preceding statement makes sense by considering the process pZ ´δ´r q rě0 under the probability measure N 0 p¨| W ˚ď ´δq, for every δ ą 0. As a consequence, the process pZ ´rq rą0 has a càdlàg modification under N 0 , which we consider from now on.

The distribution of pZ ´rq rą0 under N 0 can be interpreted as an excursion measure for the φ-CSBP, in the following sense. Let α ą 0, and let ÿ iPI δ ω i be a Poisson measure with intensity α N 0 . Set Y 0 " α and for every t ą 0,

Y t " ÿ iPI Z ´tpω i q
(note that this is a finite sum since N 0 pW ˚ď rq ă 8 if r ă 0). Then the process pY t q tě0 is a φ-CSBP started from α. It is enough to verify that Y has the desired one-dimensional marginals and to this end we write, for every t ą 0, Erexpp´λY t qs " expp´αN 0 p1 ´e´λZ ´t qq and we use (7.8). We note that, for every z ą 0,

lim εÑ0 Ó N 0 ´sup 0ătďε Z ´t ě z ¯" 0. (4.7)
Indeed, assuming that this convergence does not hold, the preceding Poisson representation with α " z{2 would imply that the probability of the event tsuptY t : 0 ă t ď εu ě zu is bounded below by a positive constant independent of ε, which contradicts the right-continuity of paths of Y at time 0. It follows from (4.7) that Z ´t ÝÑ 0 as t Ó 0, N 0 a.e. Exit measures allow us to state the following formula, which relates the measures N 0 and N 0 via a re-rooting procedure. Let G be a nonnegative measurable function on S 0 . Then,

N 0 ´ż σ 0 dr GpW rrs q ¯" 2 ż 0 ´8 db N 0 ´Zb Gptr b pW qq ¯. (4.8)
See [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF]Theorem 28].

In view of the subsequent developments, it will be important to have a uniform approximation of the exit measure process pZ r q ră0 under N 0 . This is the goal of the next proposition. For w P W 0 and r P R, we use the notation T r pwq :" inftt P r0, ζ pwq s : wptq ă ru. Proposition 4.2. For r ă 0 and ε ą 0, set

Z ε r :" ε ´2 ż σ 0 ds 1 tTrpWsq"8, x Wsăr`εu .
Then, for every β ą 0, sup rPp´8,´βs

|Z ε r ´Zr | ÝÑ εÑ0 0 , N 0 a.e.
Remarks. (i) The process pZ r q ră0 is càglàd (left-continuous with right limits), and the same is true for the process pZ ε r q ră0 for every ε ą 0: If r n Ò r ă 0, we have 1 tTr n pWsq"8u Ó 1 tTrpWsq"8u and 1 t x Wsărn`εu Ò 1 t x Wsăr`εu . The right limits of the process pZ ε r q ră0 are given by

Z ε r`" ε ´2 ż σ 0 ds 1 tW s ąr, x Wsďr`εu . ( 4.9) 
(ii) The reader may notice that a slightly different approximation is used in [2, Lemma 14] or in [START_REF] Gall | Brownian disks and the Brownian snake[END_REF]Proposition 34], where the quantities

r Z ε r :" ε ´2 ż σ 0 ds 1 tζsďτrpWsq, x
Wsăr`εu are considered. If r is fixed, this makes no difference since r Z ε r " Z ε r for every ε ą 0, N 0 a.e. (we may have r Z ε r " Z ε r only if r is a local minimum of one of the paths W s , and this occurs with zero N 0 -measure). The point in using Z ε r rather than r Z ε r is the fact that we want a uniform approximation of pZ r q ră0 and to this end we are looking for càglàd approximating processes, which is the case for r Þ Ñ Z ε r but not for r Þ Ñ r Z ε r . We postpone the proof of Proposition 7.5 to the Appendix below. We note that, for every fixed value of r ă 0, the convergence Z ε r ÝÑ Z r , N 0 a.e., follows from [71, Proposition 34]. Unfortunately, the uniform convergence stated in the proposition requires more work.

4.2.5

A representation for the measure N ˚,z 0 For every z ą 0, set L z :" inftr ă 0 : Z r " zu if tr ă 0 : Z r " zu is not empty, and L z " 0 otherwise. Proof. The fact that N 0 pL z ă 0q " C{z for some positive constant C is easy by a scaling argument, but we need another argument to get the value of C. Let ε ą 0. We have

N 0 pL z ă 0q " N 0 ´sup tą0 Z ´t ě z " N 0 ´sup 0ătďε Z ´t ě z ¯`N 0 ´1tsup 0ătďε Z ´tăzu P Z ´ε ´sup tě0 Y t ě z ¯¯,
where we use the notation pY t q tě0 for a φ-CSBP that starts from x under the probability measure P x , for every x ě 0. By the classical Lamperti representation for CSBPs [START_REF] Lamperti | Continuous state branching processes[END_REF][START_REF] Caballero | Proof(s) of the Lamperti representation of continuous-state branching processes[END_REF], pY t q tě0 can be written as a time change of a stable Lévy process with index 3{2 and no negative jumps. The explicit solution of the two-sided exit problem for such Lévy processes (see [START_REF] Bertoin | Lévy Processes[END_REF]Theorem VII.8]) now gives

P Z ´ε ´sup tě0 Y t ě z ¯" 1 ´c´1 ´Z´ε z ¯`.
Using also (4.7), we get that

N 0 pL z ă 0q " N 0 ˜1 ´c´1 ´Z´ε z ¯`¸`o p1q , as ε Ñ 0.
For every δ ą 0, N 0 p1 tZ ´εąδu Z ´εq " op1q as ε Ñ 0. Indeed, this follows from the formula N 0 pZ ε p1 ´e´λZ ´ε qq " 1 ´p1 `a2{3 ελ 1{2 q ´3, which is a consequence of (7.8). Thanks to this observation and to the fact that ? 1 ´x " 1 ´x 2 `opxq when x Ñ 0, we find that

N 0 pL z ă 0q " 1 2 N 0 ´Z´ε z ¯`op1q
as ε Ñ 0. The lemma follows since N 0 pZ ´εq " 1 for every ε ą 0.

The following proposition, which will play an important role, provides an analog of formula (4.8) where N 0 is replaced by the conditional measure N ˚,z 0 .

Proposition 4.3. For any nonnegative measurable function G on S 0 , for every z ą 0,

z ´2 N ˚,z 0 ´ż σ 0 ds GpW rss q ¯" N 0 ´Gptr Lz pW qq ˇˇL z ă 0 ¯.
Remark. When G " 1, one recovers the known formula N ˚,z 0 pσq " z 2 , see the remark following Proposition 15 in [START_REF] Gall | Brownian disks and the Brownian snake[END_REF].

Proof. We may and will assume that G is bounded and continuous. We use the same notation pY t , P x q as in the previous proof and we also set Λ z :" suptt ě 0 : Y t " zu with the convention sup ∅ " 0.

As a consequence of (4.8), the formula

N 0 ´ż σ 0 dr ϕpZ 0 q GpW rrs q ¯" 2 ż 0 ´8 db N 0 ´Zb ϕpZ b q Gptr b pW qq ¯, (4.11) 
holds for any nonnegative measurable function ϕ on r0, 8q. To derive (4.11) from (4.8), notice that (5.6) and Proposition 7.5 allow us to write Z 0 " ΓpW rrs q, N 0 a.e., and Z b " Γptr b pW qq, N 0 a.e., with the same measurable function Γ on S 0 . Let us fix z 0 ą 0 and a continuous function ϕ on R `which is supported on a compact subset of p0, 8q and such that ϕpz 0 q ą 0. We observe that, for any b ă 0, we have

N 0 ´1tb´εďLz 0 ăbu Z b ϕpZ b q Gptr b pW qq ¯" N 0 ´hε pZ b , z 0 q Z b ϕpZ b q Gptr b pW qq ¯, (4.12) 
where the function h ε is defined for every z ą 0 by h ε pz, z 0 q " P z p0 ă Λ z 0 ď εq.

To get (4.12), we use the Markov property of the process pZ ´rq rą0 (with respect to the filtration pG r q rą0 introduced in Section 4.2.4) at time ´b. By combining (4.11) (with ϕpzq replaced by h ε pz, z 0 q ϕpzq) and (4.12), we get N 0 ´ż σ 0 dr h ε pZ 0 , z 0 q ϕpZ 0 q GpW rrs q ¯(4.13)

" 2 ż 0 ´8 db N 0 ´1tb´εďLz 0 ăbu Z b ϕpZ b q Gptr b pW qq " 2 N 0 ´ż pLz 0 `εq^0 Lz 0 db Z b ϕpZ b q Gptr b pW qq

¯

Let us multiply the right-hand side of (4.13) by ε ´1 and study its limit as ε Ñ 0. By Lemma 11 in [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF] we know that tr b pW q ÝÑ tr Lz 0 pW q as b Ó L z 0 , N 0 a.e. on tL z 0 ă 0u. It follows that lim

εÑ0 2 ε N 0 ´ż pLz 0 `εq^0 Lz 0 db Z b ϕpZ b q Gptr b pW qq ¯(4.14)
" 2z 0 ϕpz 0 q N 0 ´Gptr Lz 0 pW qq

1 tLz 0 ă0u ¯,
where dominated convergence is easily justified thanks to our assumptions on ϕ and the property N 0 pL z 0 ă 0q ă 8. On the other hand, properties (i) and (ii) stated at the end of Section 5.2.2 allow us to rewrite the left-hand side of (4.13) as N 0 ´ż σ 0 dr h ε pZ 0 , z 0 q ϕpZ 0 q GpW rrs q ¯(4.15)

" c 3 2π ż 8 0 dz z 5{2 h ε pz, z 0 q ϕpzq N ˚,z 0 ´ż σ 0 dr GpW rrs q ¯.
Consider the special case G " 1. We deduce from the convergence (4.14), using also the formula N ˚,z 0 pσq " z 2 and the identities (4.13) and (4.15), that lim εÑ0

1 ε c 3 2π ż 8 0 dz z 1{2 h ε pz, z 0 q ϕpzq " 2z 0 ϕpz 0 qN 0 pL z 0 ă 0q. (4.16) 
For a general (bounded and continuous) function G, a simple scaling argument shows that the function z Þ Ñ z ´2 N ˚,z 0 p ş σ 0 dr GpW rrs qq is also bounded and continuous on p0, 8q. We may thus apply (4.16) with ϕpzq replaced by the function

z Þ Ñ ϕpzq z ´2N ˚,z 0 ´ż σ 0 dr GpW rrs q ānd we get lim εÑ0 1 ε c 3 2π ż 8 0 dz z 5{2 h ε pz, z 0 qϕpzqN ˚,z 0 ´ż σ 0
dr GpW rrs q ¯(4.17)

" 2ϕpz 0 q z 0 N ˚,z 0 0 ´ż σ 0 dr GpW rrs q ¯N0 pL z 0 ă 8q
From the identities (4.13) and (4.15), the right-hand sides of (4.14) and (4.17) are equal, which gives the desired result.

The exit measure process time-reversed at L z

The goal of this section is to prove the following proposition. Recall that for a Lévy process ξ with only negative jumps we define its Laplace exponent ψpλq by Erexppλξptqqs " expptψpλqq , λ ě 0.

We use the notation Z r`f or the right limit of u Þ Ñ Z u at r. Proposition 4.4. Set Z r " 0 for r ě 0. Under N 0 p¨| L z ă 0q, the process pZ pLz`rq`qrě0 is distributed as a self-similar Markov process pX r q rě0 with index 1 2 starting from z, which can be represented as

X t " z exppξ ˝pχ ˝pz ´1{2 tqqq,
where pξ ˝psqq sě0 is the Lévy process with only negative jumps and Laplace exponent

ψ ˝pλq " c 3 2π
ż 0 ´8pe λy ´1 ´λpe y ´1qq e y{2 p1 ´ey q ´5{2 dy, and pχ ˝ptqq tě0 is the time change

χ ˝ptq " inf ! s ě 0 : ż s 0 e ξ ˝pvq{2 dv ą t
) .

We note that the Lévy process ξ ˝drifts to ´8, and the quantity

H 0 :" z 1{2 ż 8 0 e ξ ˝pvq{2 dv
is finite a.s. For t ě H 0 , we have χ ˝pz ´1{2 tq " 8 and ξ ˝pχ ˝pz ´1{2 tqq " ´8. Thus H 0 is the hitting time of 0 by X ˝, and X ˝is absorbed at 0.

Proof. Let pU t q tě0 denote a stable Lévy process with index 3{2 and no negative jumps, whose distribution is characterized by the formula Erexpp´λU t qs " expptφpλqq , λ ą 0, t ě 0 where φpλq " a 8{3 λ 3{2 as previously. If U t :" mintU s : 0 ď s ď tu, the process U t ´U t is a strong Markov process for which 0 is a regular point. Furthermore, ´U t serves as a local time at 0 for U ´U . We refer to [START_REF] Bertoin | Lévy Processes[END_REF], especially Chapters VII and VIII, for these standard facts about Lévy processes. We denote the excursion measure of U ´U away from 0, corresponding to the local time ´U , by n. Then n is a σ-finite measure on the Skorokhod space DpR `, R `q.

For notational convenience, we write Zx " Z ´x for x ą 0 and Z0 " 0. Notice that Z has càdlàg sample paths. We also set Lz " ´Lz " suptx ą 0 : Zx " zu with the convention sup ∅ " 0. Lemma 4.2. For every x ě 0, set ηpxq :" infty ą 0 :

ż y 0 Zu du ą xu.
Let Y x " Zηpxq if ηpxq ă 8 and Y x " 0 otherwise. Then the distribution of pY x q xě0 under N 0 is n.

This lemma is basically a version for excursion measures of the Lamperti representation [START_REF] Lamperti | Continuous state branching processes[END_REF][START_REF] Caballero | Proof(s) of the Lamperti representation of continuous-state branching processes[END_REF] connecting continuous-state branching processes with Lévy processes. As we were unable to find a precise reference, we provide a proof in the Appendix below.

On the event t Lz ą 0u, set

Λ z :" suptx ě 0 : Y x " zu " ż Lz 0 Zs ds.
Still on the event t Lz ą 0u, we then introduce the time-reversed processes

Žu "

# Zp Lz´uq´i f 0 ď u ă Lz , 0 if u ě Lz , and 
Yu " # Y pΛz´uq´i f 0 ď u ă Λ z , 0 if u ě Λ z .
We note that we have again the Lamperti representation

Žt " Yγptq , with γptq " inftu ě 0 :

ż u 0 dv Yv ą tu. (4.18)
Next as a consequence of Lemma 4.2 and Theorem 4 in [START_REF] Chaumont | Conditionings and path decompositions for Lévy processes[END_REF], we know that the process p Yu q uě0 is distributed under N 0 p¨| L z ă 0q as the Lévy process ´U started from z and conditioned to hit zero continuously before hitting p´8, 0q, and stopped at that hitting time. We refer to Section 4 of [START_REF] Chaumont | Conditionings and path decompositions for Lévy processes[END_REF] for a discussion of the latter process. Furthermore we can then use Corollary 3 of Caballero and Chaumont [START_REF] Caballero | Conditioned stable Lévy processes and the Lamperti representation[END_REF] to obtain that the process p Yu q uě0 under N 0 p¨| L z ă 0q has the distribution of a self-similar Markov process pX 1 u q uě0 which can be represented in the form

X 1 u " z exppξ ˝pχ 1 pz ´3{2 uqqq,
where ξ ˝is the Lévy process in the statement of the proposition 1 , and pχ 1 ptqq tě0 is the time change

χ 1 ptq " inf ! s ě 0 : ż s 0 e 3ξ ˝pvq{2 dv ą t
) .

(Note that the self-similarity index of X 1 is 3{2 as the one for U .) Recalling (4.18), we see that p Žt q tě0 has the same distribution as pX 1 γ 1 ptqq q tě0 where γ 1 ptq " inftu ě 0 :

ż u 0 dv X 1 v ą tu
and X 1 8 " 0 by convention. Let H 1 0 :" inftt ě 0 : X 1 t " 0u and K 1 0 :"

ş H 1 0 0 pX 1 v q ´1 dv, so that γ 1 ptq ă H 1 0 if t ă K 1 0 and γ 1 ptq " 8 if t ě K 1 0 . Simple manipulations show that χ 1 pz ´3{2 γ 1 ptqq " ż t 0 ds b X 1 γ 1 psq " inftu ě 0 : z 1{2 ż u 0 expp 1 2 ξ ˝pvqq dv ą tu
" χ ˝pz ´1{2 tq 1 In order for the reader to recover the exact form of the Laplace exponent ψ ˝in the proposition, we mention the following minor inaccuracy in [START_REF] Caballero | Conditioned stable Lévy processes and the Lamperti representation[END_REF]: In formula (23) of the latter paper, `c´s hould be replaced by ´c´.

if t ă K 1 0 " z 1{2 ş 8 0 e ξ ˝puq{2 du, whereas χ 1 pz ´3{2 γ 1 ptqq " 8 if t ě K 1 0 . In both cases we get X 1 γ 1 ptq " z exppξ ˝pχ ˝pz ´1{2 tqqq " X t , with the notation of the proposition. We conclude that p Žt q tě0 has the same distribution as pX t q tě0 . This is the desired result since by construction

Žt " Z Lz`t .

Special connected components of the genealogical tree

Components above a level

In this section and the next one, we formulate certain definitions and facts that make sense for a deterministic snake trajectory satisfying some regularity properties. We fix ω P S 0 and consider the associated genealogical tree T ζ .

Definition 4.2. We say that x P R is a local minimum of ω if there exist two distinct points a 1 , a 2 P T ζ and a point b Pssa 1 , a 2 rr such that

V b " min cPrra 1 ,a 2 ss V c " x.
We then also say that b is a point of local minimum.

Clearly the set of all local minima is countable.

We will assume the following regularity properties: (ii) no branching point is a point of local minimum;

(iii) for every x P R, volptc P T ζ : V c " xuq " 0.

All these properties hold N 0 a.e. and N ˚,z 0 a.e. For (i) under N 0 , one just uses the fact that the increments of V along disjoint segments of the tree T ζ are independent. As for (iii), the case of N 0 follows from the fact that the push forward of volpdaq under the mapping a Þ Ñ V a has a continuous density [START_REF] Bousquet-Mélou | The density of the ISE and local limit laws for embedded trees[END_REF], and one can then use Proposition 4.3 to deal with N ˚,z 0 . Notice that (i) implies that the mapping c Þ Ñ V c cannot be constant on a nontrivial line segment of T ζ .

In the remaining part of this section, we assume in addition that ω P S 0 . We set

T ζ :" ta P T ζ : V a ą 0u.
Let us fix a P T ζ . For every r P r0, V a q, let C Note that D paq is a subset of the set of all local minima.

If r P D paq and b " a is such that V b ą r and min cPrra,bss V c " r, then there exists a unique c 0 Pssa, brr such that V c 0 " r, and c 0 does not depend on the choice of b (because local minima are distinct by (i) above). Note that c 0 cannot be a branching point of the tree T ζ , by (ii 

Excursions above the minimum

Let us consider ω P S 0 , and assume that the conditions (i)-(iii) of the previous section hold. Recall our notation ρ for the root of T ζ and note that V ρ " 0. In a way very similar to the definition of D paq above we now set

Dpωq " tr ă 0 : Da P T ζ , V a ą r and min cPrrρ,ass V c " ru.

Let us fix r P D. Then r is a local minimum and we let c 0 be the uniquely determined point of local minimum such that V c 0 " r. The same arguments as in the previous section allow us to single out a particular component of tc P T ζ : V c ą ru by setting

Čr " ta P T ζ : c 0 P rrρ, arr and V c ą r for every c Pssc 0 , assu.

Note that this definition of Čr would correspond to Čpρq r in the notation of the preceding section, but we are now considering negative values of r, instead of r ą 0 in Section 4.3.1. It is convenient to represent Čr and the labels on this component by a snake trajectory ω r , which may be defined as follows. Since the point c 0 has strict descendants in the tree T ζ and is not a branching point, we can make sense of the subtrajectory rooted at c 0 , which we denote by ωr (see Section 5.2.1). We are in fact only interested in those descendants of c 0 that lie in Čr , and for this reason, we consider the truncation ω r " tr 0 p ωr q.

Write T ζ pω r q for the genealogical tree of ω r and, as previously, let T ζ pω r q denote the subset of T ζ pω r q consisting of points with positive labels. Then Čr is identified with T ζ pω r q via a volume preserving isometry, in such a way that, for every a P Čr , we have V a pωq " r `Vã pω r q if ã is the point of T ζ pω r q corresponding to a. Consequently, for every δ ě 0, connected components of ta P T ζ : V a pωq ą r `δu contained in Čr are in one-to-one correspondence with connected components of ta P T ζ pω r q : V a pωq ą δu. The latter fact will be important for our applications in Section 4.8 below.

We call ω r , r P D, the excursions of ω above the minimum. We refer to [2, Section 3] for a (slightly different) more detailed presentation.

The following theorem, which is one of the main results of [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF], identifies the conditional distribution of the excursions ω r , r P D, under N 0 and conditionally on the exit measure process pZ r q ră0 . Theorem 4.5. [2, Proposition 36, Theorem 40] N 0 pdωq a.e., D coincides with the set of all discontinuity times of the process pZ r q ră0 . We can thus write D " tr 1 , r 2 , . . .u where r 1 , r 2 , . . . is the sequence of these discontinuity times ordered so that |∆Z r 1 | ą |∆Z r 2 | ą ¨¨¨. Then, under N 0 and conditionally on pZ r q ră0 , the random snake trajectories ω r 1 , ω r 2 , . . . are independent, and for every i ě 1 the conditional distribution of

ω r i is N ˚,|∆Zr i | 0 .

Measuring the boundary size of components above a level

We will now argue under N ˚,z 0 for a fixed z ą 0. The measure N ˚,z 0 is supported on S 0 , and so we may use the notation introduced in Section 4.3.1. Recall in particular that T ζ :" ta P T ζ : V a ą 0u.

For a P T ζ , r P r0, V a q and ε ą 0, we set

Z paq,ε r :" ε ´2 volptb P C paq r : V b ď r `εuq.
Proposition 4.5. The following properties hold N ˚,z 0 a.e. (i) For every a P T ζ , pZ paq,ε r q rPr0,Vaq converges as ε Ñ 0, uniformly on r0, V a ´βs for every β ą 0, to a limiting càdlàg function pZ paq r q rPr0,Vaq with only negative jumps, which takes positive values on r0, V a q and is such that Z paq 0 " z. (ii) If a, a 1 P T ζ , we have Z paq r " Z pa 1 q r for every r P r0, min cPrra,a 1 ss V c q. Proof. Recall from Proposition 7.5 the notation Z ε r pωq for ω P S 0 and r ă 0, and the fact that r Þ Ñ Z ε r pωq is càglàd. We let Θ z be the set of all snake trajectories ω P S 0 such that W ˚pωq ă 0 and:

(a) pZ ε r pωqq rPrW˚pωq,0q converges as ε Ñ 0 to a limiting càglàd function pZ r pωqq rPrW˚pωq,0q , uniformly on rW ˚pωq, ´βs for every β P p0, ´W˚p ωqq;

(b) the set of discontinuity times of this limiting function is Dpωq X pW ˚pωq, 0q;

(c) the function pZ r pωqq rPrW˚pωq,0q takes positive values on rW ˚pωq, 0q, and takes the value z for r " W ˚pωq;

(d) Z r pωq " |∆Z r pωq| for every r P Dpωq X pW ˚pωq, 0q.

It follows from Proposition 7.5 and the first assertion of Theorem 4.5 that tr Lz pW q belongs to Θ z , N 0 a.e. on the event tL z ă 0u. We also use the fact that the process pZ ´rpωqq rą0 evolves under N 0 as a φ-CSBP (and therefore as the time change of a stable Lévy process) to obtain the property Z r pωq " |∆Z r pωq| when r P Dpωq.

Taking G " 1 Θz in Proposition 4.3, we also get that, N ˚,z 0 pdωq a.s., for ds a.e. s P r0, σs, the re-rooted snake trajectory W rss belongs to Θ z . So let us fix ω P S 0 such that the preceding assertion holds. We can then take a sequence s 1 , s 2 , . . . dense in r0, σs such that ω rs i s belongs to Θ z for every i " 1, 2, . . .. Setting a i " p ζ ps i q, we also know that a 1 , a 2 , . . . all belong to T ζ (otherwise W ˚pω rs i s q " 0). We now observe that W ˚pω rs i s q " ´Va i pωq, and, for every r P r0, V a i pωqq,

Z pa i q,ε r pωq " Z ε pr´Va i pωqq`p ω rs i s q.
This is a simple consequence of our definitions and formula (4.9) for the right limits Z ε r`.

Since ω rs i s belongs to Θ z , we deduce from the last display and assertion (a) above that the convergence stated in part (i) of the proposition holds when a " a i , and that, for every r P r0, V a i pωqq, Z pa i q r pωq " Z pr´Va i pωqq`p ω rs i s q.

The function r Þ Ñ Z pa i q r pωq then satisfies the properties stated in (i). Moreover it is immediate that the set of discontinuity times of this function is tV a i `r : r P Dpω rs i s qu " D pa i q pωq where the last equality is again a consequence of our definitions. Futhermore, if r P D pa i q pωq and if j is an index such that a j P Čpa i q r , the fact that C pa i q r´i s the closure of the union C pa i q r Y Čpa i q r implies that Z pa i q,ε r´p ωq " Z pa i q,ε r pωq `Zpa j q,ε r pωq and by passing to the limit ε Ñ 0, Z pa i q r´p ωq " Z pa i q r pωq `Zpa j q r pωq.

Finally property (d) gives Z pa i q r pωq " Z pa j q r pωq. The preceding discussion shows that properties (i) and (iii) of the proposition hold if we restrict our attention to points in the dense sequence a 1 , a 2 , . . .. However, it readily follows from our definitions that we have C paq r " C pa i q r , and thus also Z paq,ε r " Z pa i q,ε r as soon as r ă min cPrra,a i ss V c . We infer that we can define pZ paq r q rPr0,Vaq in a unique way so that Z paq r " Z pa i q r , for every r ă min cPrra,a i ss V c , for every i ě 1.

It is then a simple matter to verify that assertions (i) and (iii) hold in the stated form, and assertion (ii) is also immediate.

The locally largest evolution

We say that a point a P T ζ is regular if

č rPr0,Vaq
C paq r " tau.

Proposition 4.6. There exists N ˚,z 0 a.e. a unique point a ' of T ζ such that the following two properties hold:

(i) We have Z pa ' q r ą |∆Z pa ' q r
| , for every r P r0, V a q.

(ii) The point a ' is regular.

We will call a ' the terminal point of the locally largest evolution. Note that condition (i) is relevant only for r P D pa ' q since Z pa ' q takes positive values.

Proof. We first establish uniqueness. Suppose that a 1 and a 2 are two distinct points of T ζ that satisfy the properties stated in (i) and (ii). We notice that we must have min

cPrra 1 ,a 2 ss V c ă V a 1 ^Va 2
because if the latter minimum is equal say to V a 1 the whole segment rra 1 , a 2 ss is contained in č rPr0,Va 1 q C pa 1 q t contradicting the regularity of a 1 . Set u " min cPrra 1 ,a 2 ss V c . By definition, we have then u P D pa 1 q X D pa 2 q and, by property (iii) in Proposition 4.5, we get

Z pa 1 q u´" Z pa 2 q u´" Z pa 1 q u `Zpa 2 q u and thus |∆Z pa 1 q u | " Z pa 2 q u , |∆Z pa 2 q u | " Z pa 1 q
u . This shows that property (i) in Proposition 4.6 cannot hold simultaneously for a 1 and for a 2 .

Let us turn to existence. We let r 8 be the supremum of the set of all reals r ě 0 such that there exists a P T ζ with V a ě r and Z paq s ą |∆Z paq s | for every s ă r. By the definition of r 8 , we can then find a nondecreasing sequence pr n q ně1 in R `and a corresponding sequence pa n q ně1 in would lead to a contradiction by using Proposition 4.5 (iii) with r " min cPrra ' ,ass V c ď u.

T ζ such that V an ě

The law of the locally largest evolution

Our next goal is to compute the distribution of pZ pa ' q t q 0ďtăV a ' under N ˚,z 0 .

Proposition 4.7. The process pZ pa ' q t q 0ďtăV a ' is distributed under N ˚,z 0 as pX t q 0ďtăH 0 , where pX t q tě0 is the self-similar Markov process with index 1 2 starting from z, which can be represented as X t " z exppξpχpz ´1{2 tqqq, where pξpsqq sě0 is the Lévy process with only negative jumps whose Laplace exponent ψ is given by formula (4.1) and pχptqq tě0 is the time change defined in (4.2), and H 0 " inftt ě 0 : X t " 0u.

Proof. We fix u ą 0 and consider a bounded measurable function F on the Skorokhod space Dpr0, us, Rq. We observe that

F `pZ pa ' q t q 0ďtďu ˘1tV a ' ąuu " ż volpdaq F `pZ paq t q 0ďtďu ˘1taPC pa ' q u u 1 volpC paq u q , simply because if a P C pa ' q u we have Z paq t " Z pa ' q t for 0 ď t ď u and C paq u " C pa ' q u .
From the definition of volp¨q and a previous observation, the right-hand side can also be written as 

ż σ 0 ds F `pZ psq t q 0ďtďu ˘1t
N ˚,z 0 ´F `pZ pa ' q t q 0ďtďu ˘1tV a ' ąuu " N ˚,z 0 ´ż σ 0 ds F `pZ psq t q 0ďtďu ˘1t x Wsąu; Z psq t ą|∆Z psq t |,@tďuu 1 volpC pp ζ psqq u q " z 2 N 0 ´F `ZpLz`tq`q0ďtďu 1tLză´u; Z pLz `tq`ą |∆Z Lz `t|,@tďuu 1 volpC Lz`u q ˇˇL z ă 0 ¯,
where for r ă 0, we use (under N 0 ) the notation C r for the connected component of ta P T ζ : V a ą ru containing the "root" p ζ p0q. The second equality of the last display is a consequence of Proposition 4.3 and the way the functions Z paq t

were constructed in Section 4.4. In the terminology of [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF], C Lz`u is (up to a set of zero volume) the union of the subsets of T ζ corresponding to the excursions above the minimum that start at a level greater than L z `u. Using Theorem 4.5 and [2, Proposition 31], we obtain that the conditional distribution of volpC Lz`u q under N 0 p¨| L z ă 0q and knowing pZ r q ră0 is the law of

8 ÿ i"1 |∆Z r i | 2 ν i
where r 1 , r 2 , . . . is an enumeration of the jumps of Z on pL z `u, 0q, and the random variables ν 1 , ν 2 , . . . are independent and distributed according to the density

1 ? 2π x ´5{2 expp´1 2x q 1 txą0u .
Writing E pνq r¨s for the expectation with respect to the variables ν 1 , ν 2 , . . ., we can thus also write

N ˚,z 0 ´F `pZ pa ' q t q 0ďtďu ˘1tV a ' ąuu ¯(4.19)
" z 2 N 0 ´F `pZ Lz`t q 0ďtďu 1tLză´u;

Z pLz `tq`ą |∆Z Lz `t|,@tďuu E pνq " 1 ř |∆Z r i | 2 ν i ı ˇˇL z ă 0 ¯,
and the right-hand side is an integral under N 0 of a quantity depending only on the exit measure process pZ r q ră0 . Thanks to Proposition 4.4, we can replace the right-hand side of (4.19) by

z 2 E " F `pX t q 0ďtďu q 1 tH 0 ąu; X t ą|∆X t |,@tďuu E pνq " 1 ř |∆X si | 2 ν i ıı , (4.20) 
where s 1 , s 2 , . . . is an enumeration of the jump times of X ˝over ru, H 0 q. Then, by the Markov property and the self-similarity of X ˝, the conditional expectation of the quantity Then pM v q vě0 is a martingale with respect to the canonical filtration of the process ξ ˝. Let ξ be as in Proposition 4.7. Then, for every fixed v ą 0 the process pξ ˝ptqq 0ďtďv is distributed under the probability measure M v ¨P as pξptqq 0ďtďv under P.

E pνq " 1 ř |∆X si | 2 ν i ı given pX t q 0ďtďu is C{pX űq 2 ,
Proof. To simplify notation, we write α " a 3{2π. Thanks to the properties of Lévy processes, in order to verify that pM v q vě0 is a martingale, it suffices to prove that ErM v s " 1 for every v ą 0. It is convenient to set ξ 2 ptq " ÿ 0ďsďt ∆ξ ˝psq 1 t∆ξ ˝psqď´log 2u , so that we can write ξ ˝ptq " ξ 1 ptq `ξ2 ptq, where ξ 1 and ξ 2 are two independent Lévy processes. The Laplace exponent of ξ 2 is

ψ 2 pλq " α ż ´log 2 ´8
pe λy ´1q e y{2 p1 ´ey q ´5{2 dy, and the Laplace exponent of ξ 1 is

ψ 1 pλq " ψ ˝pλq ´ψ2 pλq (4.23) " α ˜ż 0 ´log 2
pe λy ´1 ´λpe y ´1qq e y{2 p1 ´ey q ´5{2 dy ´λ ż ´log 2

´8

pe y ´1q e y{2 p1 ´ey q ´5{2 dy " α ˜ż 0 ´log 2 pe λy ´1 ´λpe y ´1qq e y{2 p1 ´ey q ´5{2 dy `2λ ¸ using the simple calculation

ż ´log 2 ´8
e y{2 p1 ´ey q ´3{2 dy "

ż 1{2 0 p1 ´xq ´3{2 dx ? x " 2.
Note that ξ 1 has bounded jumps and therefore exponential moments of any order, so that ψ 1 pλq makes sense for every λ P R and not only λ ě 0.

We have then ErM v s " Ppξ 2 pvq " 0q Ere ´2ξ 1 pvq s.

On one hand, Ere ´2ξ 1 pvq s " exppαKvq, where

K " ´4 `ż 0 ´log 2
pe ´2y ´1 `2pe y ´1qq e y{2 p1 ´ey q ´5{2 dy

" ´4 `ż 1 1{2 px ´2 ´1 `2px ´1qq p1 ´xq ´5{2 dx ? x " ´4 `2 ż 1 1{2 x ´3{2 p1 ´xq ´1{2 dx `ż 1 1{2 x ´5{2 p1 ´xq ´1{2 dx " 8 3
where the last equality follows from classical formulas for incomplete Beta functions. On the other hand, Ppξ 2 pvq " 0q " exp ´´αv ż ´log 2

´8

e y{2 p1 ´ey q ´5{2 dy ¯" expp´8 3 αvq.

By combining the last two displays, we get the desired result ErM v s " 1.

Then, let us fix v ą 0. It is straightforward to verify that the properties of stationarity and independence of the increments of ξ ˝are preserved under the probability measure M v ¨P, so that pξ ˝ptqq 0ďtďv remains a Lévy process under this probability measure. To evaluate the Laplace exponent of this Lévy process, we write

ErM v e λξ ˝pvq s " expp´8 3 αvq Ere pλ´2qξ 1 pvqq s " expppψ 1 pλ ´2q ´8 3 αqvq " exppvψpλqq,
where ψ is as in (4.1). The last equality follows from formula (4.23) for ψ 1 and simple calculations left to the reader. This completes the proof of the lemma.

Let us come back to (4.22). We first observe that, for every v ą 0,

E " F ´`exppξ ˝pχ ˝ptqqq ˘0ďtďu ¯1tχ ˝puqďvu M χ ˝puq ı (4.24) " E " F ´`exppξ ˝pχ ˝ptqqq ˘0ďtďu ¯1tχ ˝puqďvu M v ı " E " F ´`exppξpχptqqq ˘0ďtďu ¯1tχpuqďvu ı ,
where χptq is as in formula (4.2). As v Ñ 8, the right-hand side of (4.24) converges to ErF pexppξpχptqqqq 0ďtďu q 1 tχpuqă8u s. Similarly the left-hand side of (4.24) converges to the quantity (4.22): Dominated convergence is easily justified by noting that

ErM χ ˝puq 1 tχ ˝puqă8u s ď lim inf tÑ8 ErM χ ˝puq^t 1 tχ ˝puqďtu s
and ErM χ ˝puq^t s " ErM t s " 1 by the optional stopping theorem.

Hence the quantity (4.22) is equal to ErF `pexppξpχptqqqq 0ďtďu ˘1tχpuqă8u s. We conclude that

N ˚,1 0 ´F `pZ pa ' q t q 0ďtďu ˘1tV a ' ąuu ¯" C E " F `pexppξpχptqqqq 0ďtďu ˘1tχpuqă8u ı .
At this stage, we can take F " 1 and let u tend to 0, and we find that C " 1. This gives the statement of Proposition 4.7 for z " 1, and it is easily extended by self-similarity.

Excursions from the locally largest evolution

If ω P S 0 satisfies the regularity properties stated in Section 4.3.1, we can define the excursions above the minimum ω r , r P D in the way described in Section 4.3.2.

Let us now argue under N ˚,z 0 pdωq and for u P r0, σs, consider the re-rooted snake trajectory ω rus . Let a " p ζ puq and recall that D paq is the set of the discontinuity times of pZ paq r q rPr0,Vaq . As we already noticed in the proof of Proposition 4.5, we have D paq pωq " tV a `r : r P Dpω rus qu. If r P D paq pωq we can thus associate with r ´Va P Dpω rus q an excursion of ω rus above the minimum, which we denote by ω a,r (it is easy to see that this excursion only depends on a and not on u such that a " p ζ puq). We already noticed that, if a, a 1 P T ζ are such that V a ^Va 1 ą u and C paq u " C pa 1 q u , we have D paq X r0, us " D pa 1 q X r0, us, and it is also true that ω a,r " ω a 1 ,r for r P D paq X r0, us.

We will now apply the preceding considerations to a " a ' . We write D pa ' q " tr 1 , r 2 , . . .u, where |∆Z

pa ' q r 1 | ą |∆Z pa ' q r 2 | ą ¨¨¨. Proposition 4.8. Under N ˚,z 0 , conditionally on pZ pa ' q r q 0ďrăV a ' , the excursions ω a ' ,r i , i " 1, 2, . . .

are independent, and for every fixed

i ě 1 the conditional distribution of ω a ' ,r i is N ˚,|∆Z pa ' q r i | 0 .
Proof. We proceed in a way similar to the one used above to determine the law of pZ pa ' q r , 0 ď r ď V a ' q. We fix u ą 0 and consider a bounded measurable function F on the Skorokhod space Dpr0, us, R `q, and a bounded measurable function H on R `ˆS 0 such that H " 1 on R `ˆpS 0 zS pδq 0 q for some δ ą 0. The latter condition ensures that Hpr, ω a ' ,r q " 1 except for finitely many values of r P D. Then,

N ˚,z 0 ´F `pZ pa ' q t q 0ďtďu ˘1tV a ' ąuu ź rPD pa ' q Xr0,us
Hpr, ω a ' ,r q ¯(4.25)

" N ˚,z 0 ´ż σ 0 ds F `pZ psq t q 0ďtďu ˘1t x Wsąu; Z psq t ą|∆Z psq t |,@tďuu ˆ1 volpC pp ζ psqq u q ź rPD pp ζ psqq Xr0,us Hpr, ω p ζ psq,r q " z 2 N 0 ´F `pZ pLz`tq`q0ďtďu ˘1tLză´u; Z pLz `tq`ą |∆Z Lz `t|,@tďuu ˆ1 volpC Lz`u q ź rPDXrLz,Lz`us Hpr ´Lz , ω r q ¯.
We used the remarks preceding the statement of the proposition in the first equality, and Proposition 4.3 in the second one. At this stage, we use Theorem 4.5, which shows that conditionally on the exit measure process pZ r q ră0 (whose set of discontinuities is D) the excursions ω r , r P D, are independent and the conditional distribution of ω r is N ˚,|∆Zr| 0

. Since the quantity volpC Lz`u q only depends on the excursions ω r with r ą L z `u, we can rewrite the last line of the preceding display as

z 2 N 0 ´F `pZ pLz`tq`q0ďtďu ˘1tLză´u; Z pLz `tq`ą |∆Z Lz `t|,@tďuu ˆ1 volpC Lz`u q ź rPDXrLz,Lz`us N ˚,|∆Zr| 0 
pHpr ´Lz , ¨qq but then, we can re-use the same arguments "backwards" to see that the latter quantity is also equal to

N ˚,z 0 ´F `pZ pa ' q t q 0ďtďu ˘1tV a ' ąuu ź rPD pa ' q Xr0,us N ˚,|∆Z pa ' q r | 0 pHpr, ¨qq ¯. (4.26)
The quantity (4.26) is thus equal to the left-hand-side of (4.25). Simple arguments show that this also implies that, for any bounded measurable function G on the appropriate space of càdlàg paths,

N ˚,z 0 ´G`p Z pa ' q t q 0ďtăV a ' ˘ź rPD pa ' q Hpr, ω a ' ,r q " N ˚,z 0 ´G`p Z pa ' q t q 0ďtăV a ' ˘ź rPD pa ' q N ˚,|∆Z pa ' q r | 0 pHpr, ¨qq ¯.
This gives the statement of the proposition.

We will call ω a ' ,r i , i " 1, 2, . . . the excursions of ω from the locally largest evolution. The number r i is called the starting level of ω a ' ,r i . As previously, these excursions will always be listed in decreasing order of their "boundary sizes" |∆Z pa ' q r i |. To simplify notation, we set ω piq " ω a ' ,r i .

The growth-fragmentation process

In this section, we argue again under N ˚,z 0 pdωq. Recall that ω p1q , ω p2q , . . . are the excursions of ω from the locally largest evolution and r 1 , r 2 , . . . stand for the respective starting levels of these excursions.

Next, for every i ě 1, since the conditional distribution of ω piq knowing pZ

pa ' q r q 0ďrăV a ' is N ˚,|∆Z pa ' q r i | 0
, we can also define a point a ' i as the terminal point of the locally largest evolution in ω piq , and the excursions ω pi,1q , ω pi,2q , . . . from the locally largest evolution in ω piq (ranked as explained at the end of the previous section). We write r i,j for the starting level of ω pi,jq .

Obviously we can continue the construction by induction. Assuming that we have defined ω pi 1 ,...,i k q , we let a ' i 1 ,...,i k be the terminal point of the locally largest evolution in ω pi 1 ,...,i k q , and we denote the excursions from the locally largest evolution in ω pi 1 ,...,i k q by ω pi 1 ,...,i k ,1q , ω pi 1 ,...,i k ,2q , . . .. For every j ě 1, we let r i 1 ,...,i k ,j be the starting level of ω pi 1 ,...,i k ,jq .

We also set, for every pi 1 , . . . , i k q,

h i 1 ,...,i k " r i 1 `ri 1 ,i 2 `¨¨¨`r i 1 ,...,i k , and we let β i 1 ,...,i k be the label of a ' i 1 ,...,i k (in ω pi 1 ,...,i k q ). Note that h i 1 ,...,i k `βi 1 ,...,i k is the label of the point corresponding to a ' i 1 ,...,i k in ω. Let r P rh i 1 ,...,i k , h i 1 ,...,i k `βi 1 ,...,i k q,
and consider the connected component

C pa ' i 1 ,...,i k q r´h i 1 ,...,i k pω pi 1 ,...,i k q q.
As in Section 4.3.1, this is the connected component of ta P T ζ pω pi 1 ,...,i k q q : V a pω pi 1 ,...,i k q q ą r ´hi 1 ,...,i k u that contains a ' i 1 ,...,i k ). As explained in Section 4.3.2, this connected component corresponds (via a volume-preserving isometry) to a connected component of ta P T ζ pω pi 1 ,...,i k´1 q q : V a pω pi 1 ,...,i k´1 q q ą r ´hi 1 ,...,i k´1 u and inductively to a connected component of ta P T ζ pωq : V a pωq ą ru. The latter component is denoted by

D pi 1 ,...,i k q r
. Recall that this definition makes sense only if r , for all pi 1 , . . . , i k q P U such that h i 1 ,...,i k ď r ă h i 1 ,...,i k `βi 1 ,...,i k , are exactly the connected components of ta P T ζ : V a ą ru.

P rh i 1 ,...,i k , h i 1 ,...,i k `βi 1 ,...,i k q (otherwise we may take D pi 1 ,...,i k q r " ∅). We set U " 8 ď k"0 N k with the convention N 0 " t∅u. We define h ∅ " 0, β ∅ " V a ' pωq and D ∅ r " C pa ' q r if 0 ď r ă V a ' pωq.
Proof. We already know that any of the sets D pi 1 ,...,i k q r , pi 1 , . . . , i k q P U, is a connected component of ta P T ζ : V a ą ru, and we need to show that any connected component is of this type. Let C be a connected component of ta P T ζ : V a ą ru, and choose any a P C. The process pZ paq t q 0ďtďr has only finitely many jump times s P r0, rs such that |∆Z paq s | ą Z paq s (note that Z paq is bounded below by a positive constant on r0, rs). We denote these jump times by 0 ă t 1 ă t 2 ă ¨¨¨ă t k ď r, where k ě 0.

' If k " 0, this means that |∆Z paq s | ă Z paq s
for every s P r0, rs, and we have already seen that this implies that a P C pa ' q r . We have thus C " C pa ' q r " D ∅ r in that case.

' Suppose that k ě 1. We have

Z paq s " Z pa ' q s
if and only if 0 ď s ă t 1 . In particular a P C pa ' q s if and only if 0 ď s ă t 1 , so that a belongs to a P C

pa ' q t 1 ´, which is the closure of C pa ' q t 1 Y Čpa ' q t 1 . Since points of the boundary of C pa ' q t 1 Y Čpa ' q t 1 have label t 1 whereas V a ą t ě t 1 , it follows that a P Čpa ' q t 1 , and C Ă Čpa ' q t 1 . Furthermore t 1 is a jump time of Z pa ' q , so that we have t 1 " r i 1 for some i 1 ě 1. As explained in Section 4.3.2, Čpa ' q t 1
is identified to T ζ pω pi 1 q q, and through this identification C is identified to a connected component C 1 of tb P T ζ pω pi 1 q q : V b pω pi 1 q q ą r ´ri 1 u and a is identified to a point a 1 of C 1 . We have then pZ pa 1 q t pω pi 1 q q, 0 ď t ď r ´t1 q " pZ paq r 1 `t, 0 ď t ď r ´t1 q.

In particular, if k " 1, there are no jump times s P r0, r ´t1 s such that |∆Z pa 1 q s pω pi 1 q q| ą Z pa 1 q s pω pi 1 q q, and we conclude that

C 1 " C pa ' i 1 q r´r i 1 pω pi 1 q q, which means that C " D pi 1 q r . ' Suppose k ě 2. Then t 2 ´t1 is the first jump time of pZ pa 1 q t pω pi 1 q qq 0ďtďr´t 1 such that |∆Z pa 1 q s pω pi 1 q q| ą Z pa 1 q s pω pi 1 q q, we have Z pa ' i 1
q s pω pi 1 q q " Z pa 1 q s pω pi 1 q q for 0 ď s ă t 2 ´t1 , and there exists i 2 ě 1 such that t 2 ´t1 " r i 1 ,i 2 . We have then

C 1 Ă Čpa ' i 1 q t 2 ´t1 pω pi 1 q q. It follows that C 1 is identified to a connected component C 2 of tb P T ζ pω pi 1 ,i 2 q q : V b pω pi 1 ,i 2 q q ą r ´ri 1 ´ri 1 ,i 2 u. If k " 2,
we conclude as in the preceding step that C 2 " C

pa ' i 1 ,i 2 q r´h i 1 ,i 2 pω pi 1 ,i 2 q q, which means that C " D pi 1 ,i 2 q r .
The proof is easily completed by induction, and we omit the details.

Proof of Theorem 4.2. The first part of Theorem 4.2 (concerning the definition and approximation of boundary sizes) is a consequence of Proposition 4.5, which in fact gives a stronger result. So we only need to prove the second part of the statement.

If C is a connected component of ta P T ζ : V a ą ru, we write Z pCq " Z paq r
where a is any point of C (this does not depend on the choice of a). To simplify notation, for every pi 1 , . . . , i k q P U and every j ě 1, we write ∆ pi 1 ,...,i k ,jq for the jump at time

h i 1 ,...,i k ,j of the function r Þ Ñ Z pD pi 1 ,...,i k q r q -from our construction this is also the jump at time r i 1 ,...,i k ,j of the function r Þ Ñ Z pa ' i 1 ,...,i k q r
pω pi 1 ,...,i k q q. From the preceding lemma, we get that Yprq is obtained as the (reordered) collection of the quantities Z pD pi 1 ,...,i k q r q for all pi 1 , . . .

, i k q P U such that h i 1 ,...,i k ď r ă h i 1 ,...,i k `βi 1 ,...,i k .
We know that the process pZ pD ∅ r q q 0ďrăβ∅ " pZ pa ' q r q 0ďrăV a ' is distributed as the self-similar Markov process X of Proposition 4.7 started from z and killed when it hits 0. Thanks to Proposition 4.8, we then get that, conditionally on pZ pD ∅ r q q 0ďrăβ∅ , the excursions ω piq , i " 1, 2, . . ., are independent and for every fixed j the conditional distribution of ω pjq is N ˚,|∆ pjq | 0 . Consequently, under the same conditioning, the processes pZ pD piq h i `r q q 0ďrďβ i , i " 1, 2, . . ., are independent copies of X started respectively at |∆ piq |, i " 1, 2, . . . We can continue by induction, using Proposition 4.8 at every step. We obtain that, conditionally on the processes ´ZpD pi 1 ,...,i q r q ¯hpi 1 ,...,i q ďrăh pi 1 ,...,i q `βpi 1 ,...,i q , 0 ď ď k, pi 1 , . . . , i q P N , the excursions ω pi 1 ,...,i k ,jq , pi 1 , . . . , i k , jq P N k`1 , are independent and for every fixed pi 1 , . . .

, i k , jq the conditional distribution of ω pi 1 ,...,i k ,jq is N ˚,|∆ pi 1 ,...,i k ,jq | 0
. Hence, under the same conditioning, the processes ´ZpD pi 1 ,...,i k ,jq

h pi 1 ,...,i k ,jq `r q ¯0ďrďβ pi 1 ,...,i k ,jq , pi 1 , . . . , i k , jq P N k`1
are independent copies of X started respectively at |∆ pi 1 ,...,i k ,jq |.

From these observations, we conclude that pYprqq rě0 is a growth fragmentation process whose Eve particle process is the self-similar Markov process X and with initial value Yp0q " pz, 0, 0, . . .q.

Proof of Theorem 4.1. Under N 0 , the connected components C 1 , C 2 , . . . of ta P T ζ : V a ą 0u, and the labels on these components can be represented by snake trajectories ω 1 , ω 2 , . . . defined in a way very similar to the excursions above the minimum in Section 4.3.2 (see also the introduction of [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF]). By [2, Theorem 4], conditionally on the boundary sizes

p|BC 1 |, |BC 2 |, . . .q, ω 1 , ω 2 , . . . are independent and the conditional distribution of ω i is N ˚,|BC i s 0
. In the notation of Theorem 4.1, Xp0q is just the (ranked) sequence p|BC 1 |, |BC 2 |, . . .q, and we get that, conditionally on Xp0q, the process pXprqq rě0 is obtained by superimposing independent processes pY i prqq rě0 such that, for every i ě 1, Y i is a growth-fragmentation process started from p|BC i |, 0, 0, . . .q (by Theorem 4.2). The desired result follows.

Slicing the Brownian disk at heights

In this section, we prove Theorem 4.3. We rely on the construction of the free Brownian disk D z from a random snake trajectory distributed according to N ˚,z 0 . This construction is given in [START_REF] Gall | Brownian disks and the Brownian snake[END_REF], to which we refer for additional details. Throughout this section, we argue under N ˚,z 0 , and the following statements hold N ˚,z 0 a.s. The free Brownian disk D z is a random geodesic compact metric space, which is constructed (under N ˚,z 0 ) as a quotient space of T ζ . The canonical projection, which is a continuous mapping from T ζ onto D z , is denoted by Π. We note that the push forward of the volume measure vol on

T ζ is the volume measure V on D z .
Recall the notation Hpxq, for the "height" of x P D z (the distance from x to the boundary BD z ). We will not need the details of the construction of D z , but we record the following two facts:

(a) If a P T ζ and x " Πpaq, we have Hpxq " V a .

(b) For every a, b P T ζ such that Πpaq " Πpbq, we have

V a " V b " min cPrra,bss V c .
The following lemma is an analog for the Brownian disk of Proposition 3.1 of [START_REF] Gall | Geodesics in large planar maps and in the Brownian map[END_REF] for the Brownian map. The proof is similar, but we provide details because this result is the key to the derivation of Theorem 4.3. Proof. We may assume that

V a ^Vb ą min cPrra,bss V c
since the result is trivial otherwise. Then we can find c 0 Pssa, brr such that

V c 0 " min cPrra,bss V c .
The points a and b are in different connected components of

T ζ ztc 0 u. Let C 1 be the connected component of T ζ ztc 0 u that contains a, and let C 2 " T ζ zC 1 , so that b P C 2 . Set t 0 :" inftt P r0, T s : γptq P ΠpC 2 qu.
Since ΠpC 2 q is closed, we have γpt 0 q P ΠpC 2 q. Furthermore, t 0 ą 0 because otherwise this would mean that Πpaq P ΠpC 2 q, and thus that there would exist a 1 P C 2 such that Πpaq " Πpa 1 q: Noting that c 0 P rra, a 1 ss, property (b) above would imply that V a ď V c 0 , which is a contradiction. We can then choose a sequence ps n q ně1 in r0, t 0 q such that s n Ò t 0 as n Ò 8. Since γps n q P ΠpC 1 q, there exists a n P C 1 such that γps n q " Πpa n q. Up to extracting a subsequence, we can assume that a n ÝÑ a 8 P C 1 . Then necessarily Πpa 8 q " γpt 0 q " Πpb 1 q for some b 1 P C 2 . By properties (a) and (b), we must have

Hpγpt 0 qq " V b 1 " V a8 " min cPrra8,b 1 ss V c ď V c 0 .
This completes the proof. Proof of Theorem 4.3. By Proposition 4.9, for every r ě 0, the projection Π induces a one-to-one correspondence between connected components of tc P T ζ : V c ą ru and connected components of tx P D z : Hpxq ą ru. Furthermore, let D be a connected component of tx P D z : Hpxq ą ru, and let C be the associated connected component of tc P T ζ : V c ą ru (such that ΠpCq " D). Together with property (a) above, the fact that Π maps the volume measure vol to V immediately shows that the boundary size |BD| can be defined by the approximation in Theorem 4.3, and that |BD| " |BC|. Theorem 4.3 is now a direct consequence of Theorem 4.2.

The law of components above a fixed level

Our goal in this section is to prove Theorem 4.4. To this end, we will first state and prove a theorem about excursions "above a fixed height" for a snake trajectory distributed according to

N ˚,z 0 .
Let us fix r ě 0. Let ω P S 0 be chosen according to N 0 , or to N ˚,z 0 , and consider all connected components of ta P T ζ : V a ą ru. If C is one of these connected components, we can represent C and the labels on C by a snake trajectory ω, which is defined as follows. First we observe that there is a unique a 0 P T ζ such that a 0 P BC and every point of C is a descendant of a 0 . Note that V a 0 " r, and that the point a 0 cannot be a branching point (no branching point can have label r, N 0 a.e. or N ˚,z 0 a.s.). Hence we can make sense of the subtrajectory rooted at a 0 , which we denote by ω. Finally, we let r ω " tr 0 p ωq. We can define the boundary size Z 0 p ωq of r ω, using Proposition 4.5 (setting Z 0 p ωq " Z paq r , where a is an arbitrary point of C) if ω is chosen according to N ˚,z 0 , or the excursion theory of [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF] if ω is chosen according to N 0 . We call the snake trajectories r ω obtained when varying C among the connected components of ta P T ζ : V a ą ru the excursions of ω above level r. Theorem 4.6. Let r ą 0. On the event tW ˚pωq ą ru, let r ω 1 , r ω 2 , . . . be the excursions of ω above level r, ranked in decreasing order of their boundary sizes. Write r z 1 ą r z 2 ą ¨¨¨for these boundary sizes. Then, under N ˚,z 0 p¨| W ˚ą rq, conditionally on the collection pr z i q iě1 , the snake trajectories r ω 1 , r ω 2 , . . . are independent with respective distributions N ˚, z1 0 , N ˚, z2 0 , . . ..

Remark.

It is not immediately obvious that the boundary sizes r z 1 , r z 2 , . . . are distinct a.s. This can however be deduced from the arguments of the proof below.

Proof. We will derive the theorem from the excursion theory of [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF], and to this end we first need to argue under N 0 pdωq. We write ω 1 , ω 2 , . . . for the excursions above 0 ranked in decreasing order of their boundary sizes Z 0 pω 1 q, Z 0 pω 2 q, . . .. Theorem 4 in [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF] then implies that, under N 0 and conditionally on Z 0 pω 1 q " z 1 , Z 0 pω 2 q " z 2 , . . ., the excursions ω 1 , ω 2 , . . . are independent and the conditional distribution of ω i is N ˚,z i 0 . Let A be the event where exactly one excursion above 0 hits r, and let ω i 0 be this excursion. It follows from the preceding observations that, under N 0 p¨| Aq, the conditional distribution of

ω i 0 knowing Z 0 pω i 0 q " z is N ˚,z 0 p¨| W ˚ą rq.
Hence, if ϕ is a bounded nonnegative measurable function on R `, and h is a nonnegative measurable function on S 0 , we have

N 0 ´1A ϕpZ 0 pω i 0 qq exp ´´8 ÿ i"1
hpr ω i q ¯¯(4.27)

" N 0 ´1A ϕpZ 0 pω i 0 qq N ˚,Z 0 pω i 0 q 0 ´exp ´´8 ÿ i"1 hpr ω i q ¯¯¯,
where we use the notation r ω 1 , r ω 2 , . . . introduced in the theorem for the excursions above level r (notice that this makes sense both under N 0 and under N ˚,z 0 and that, on the event A, the excursions of ω and of ω i 0 above level r are the same).

We will now rewrite the left-hand side of (4.27) in a different form. To this end (arguing under N 0 pdω | W ˚ą rq), it is convenient to introduce all excursions of ω away from r: each such excursion ω i , i " 1, 2, . . ., corresponds to one connected component of ta P T ζ : V a " ru, but we exclude the connected component containing the root ρ (which may be represented by tr r pωq), and, apart from this fact, the definition of these excursions is exactly the same as that of excursions above level r. As previously, the excursions ω i , i " 1, 2, . . . are listed in decreasing order of their boundary sizes z i :" Z 0 pω i q, i " 1, 2, . . .. For every i ě 1, we also let ε i be the sign of ω i : ε i " 1 if the values of V on the corresponding connected component are greater than r and ε i " ´1 otherwise. The sequence r ω 1 , r ω 2 , . . . is obtained by keeping only the excursions ω i with ε i " 1 in the sequence ω i , i " 1, 2, . . .. Let B be the σ-field generated by tr r pωq, the sequence pε i , z i q i"1,2... and the excursions ω i for all i such that ε i " ´1 (in other words the excursions below level r). By combining the special Markov property with [2, Theorem 4], we get that conditionally on B the excursions r ω i , i " 1, 2, . . . are independent and the conditional distribution of r ω i is N ˚, zi 0 , where we write r z i " Z 0 pr ω i q as in the statement of the theorem -notice that the quantities r z i are B-measurable.

The point is now that the event A (and the variable 1 A ϕpZ 0 pω i 0 qq) is B-measurable. In fact it is not hard to check that A is determined by the knowledge of tr r pωq and of the excursions below level r (for A to hold, no such excursion is allowed to contain a path that comes back to 0 and then visits r again). Thanks to this observation, we can rewrite the left-hand side of (4.27) as

N 0 ´1A ϕpZ 0 pω i 0 qq 8 ź i"1 N ˚, zi 0 pe ´hq ¯.
By the same argument that led us to (4.27), this is also equal to

N 0 ´1A ϕpZ 0 pω i 0 qq N ˚,Z 0 pω i 0 q 0 ´8 ź i"1 N ˚, zi 0 pe ´hq ¯¯. (4.28)
Notice that the law of Z 0 pω i 0 q under N 0 p¨| Aq has a positive density with respect to Lebesgue measure (under N 0 , the boundary sizes of excursions away from 0 are the jumps of a φ-CSBP under its excursion measure, see [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF]Theorem 4]). The equality between the quantity (4.28) and the right-hand side of (4.27) for every function ϕ implies that we have

N ˚,z 0 ´exp ´´8 ÿ i"1 hpr ω i q ¯¯" N ˚,z 0 ´8 ź i"1 N ˚, zi 0 pe ´hq ¯(4.29)
for Lebesgue a.a. z ą 0. We claim that (4.29) in fact holds for every z ą 0. To see this, we need a continuity argument. We restrict our attention to functions h of the type hpωq " h 1 pZ 0 pωqqh 2 pωq, where h 1 and h 2 are both (nonnegative and) bounded and continuous on R `and S 0 respectively, and there exists δ ą 0 such that h 1 pxq " 0 if x ď δ and h 2 pωq " 0 if W ˚pωq ď δ. Under these assumptions on h, one can verify that both sides of (4.29) are left-continuous functions of z, which will yield our claim. Let us briefly explain this. We write g 1 pzq and g 2 pzq for the left-hand side and the right-hand side of (4.29) respectively. We use the scaling transformation θ z{z 1 that maps N ˚,z 1 0 to N ˚,z 0 (see Section 5.2.2) to check that g i pz 1 q ÝÑ g i pzq as z 1 Ò z, for i " 1 or 2. We note that this scaling transformation maps excursions above level r to excursions above level r a z{z 1 , and, for the function g 2 , we observe that the collection pr z i q iě1 is the value at time r of the growth-fragmentation process X of Theorem 4.2, and we use the continuity properties of this growth-fragmentation process (see in particular Corollary 4 in [START_REF] Bertoin | Markovian growth-fragmentation processes[END_REF]). We omit a few details that are left to the reader.

Once we know that (4.29) holds for a fixed z ą 0 and for a sufficiently large class of functions h, we obtain that the conditional distribution of the random point measure

8 ÿ i"1 δ ωi
given pr z i q iě1 is as prescribed in the statement of the theorem. This completes the proof.

Proof of Theorem 4.4. We can derive Theorem 4.4 from Theorem 4.6 by arguments very similar to those of the proof of Theorem 38 in [START_REF] Gall | Brownian disks and the Brownian snake[END_REF] and, for this reason we only sketch the main steps of the proof. As we already noticed in the proof of Theorem 4.3 in the previous section, the connected components C 1 , C 2 , . . . (in the notation of Theorem 4.4) are in one-to-one correspondence with the excursions r ω 1 , r ω 2 , . . ., in such a way that the boundary size of C i is equal to the boundary size r z i of r ω i . Following [71, Section 8], we can associate a random compact metric space Θpr ω i q with each excursion r ω i , and we know, by Theorem 4.6 and the main result of [START_REF] Gall | Brownian disks and the Brownian snake[END_REF], that conditionally on pr z i q iě1 , the random metric spaces Θpr ω i q, i ě 1, are independent free Brownian disks with respective perimeters r z i , i ě 1. So, all that remains is to show that, for every i ě 1, the random metric space pC i , d i q can be constructed in the way explained in the statement of Theorem 4.4 and is isometric to Θpr ω i q. This is exactly similar to the proof of the identity [START_REF] Kyprianou | Continuous-state branching processes and self-similarity[END_REF] in [START_REF] Gall | Brownian disks and the Brownian snake[END_REF], to which we refer for additional details.

Complements

The cumulant function.

It is known [START_REF] Shi | Growth-fragmentation processes and bifurcators[END_REF] that a (self-similar) growth-fragmentation process is characterized by a pair consisting of the self-similarity index (here α " ´1{2) and a cumulant function κ, which is a convex function defined on p0, 8q possibly taking the values `8. The cumulant function κ is given explicity in terms of the Laplace exponent ψ and the Lévy measure πpdyq of the Lévy process ξ appearing in the Lamperti representation of the self-similar process describing the evolution of the Eve particle, via the formula κppq " ψppq `żp´8,0q p1 ´ey q p πpdyq, p ą 0.

This identity is used in [START_REF] Bertoin | Random planar maps and growth-fragmentations[END_REF] to give an explicit formula for κppq (see formula [START_REF] Chapuy | On tessellations of random maps and the tg-recurrence[END_REF] in [START_REF] Bertoin | Random planar maps and growth-fragmentations[END_REF]). We will now describe a different approach to the formula for κ, which is independent of the derivation of the Laplace exponent. This suggests that another proof of Theorem 4.2 should be possible without the identification of the law of the locally largest evolution, provided one knows a priori that the process pYprqq rě0 is a growth-fragmentation process -note that Theorem 4.6 does not provide enough information for this.

In view of recovering the expression of κ, we observe that the negative values of the cumulant function are given by the following formula [START_REF] Bertoin | Martingales in self-similar growthfragmentations and their connections with random planar maps[END_REF]Section 3]. We consider the growthfragmentation process pYprqq rě0 of Theorem 4.2 started at p1, 0, 0, . . .q. For every r ě 0, write Yprq " pY 1 r , Y 2 r , . . .q, and, for every p P R,

}Yprq} p " 8 ÿ i"1 |Y i r | p .
Then, for every p ą 1{2, the quantity

N ˚,1 0 ´ż 8 0 dr }Yprq} p´1{2 ¯(4.30)
is finite if and only if κppq ă 0, and is then equal to ´1{κppq [18, Formula ( 16)].

For every i ě 1, let σ i r be the volume of the i-th connected component of ta P T ζ : V a ą ru (for our purposes here the way the connected components are ordered is irrelevant). Let q P p´1, 1q. As a consequence of (4.11), we have, for r ą 0,

N 0 ´8 ÿ i"1 σ i r pY i r q q e ´Z0 ¯" 2 N 0 ´ż ´r ´8 db Z b pZ b`r q q e ´Zb ¯. (4.31) 
Let us consider first the left-hand side of (4.31). Using Theorem 4.6 and the identity N ˚,z 0 pσq " z 2 in the second equality, we get

N 0 ´8 ÿ i"1 σ i r pY i r q q e ´Z0 ¯" c 3 2π ż 8 0 dz z ´5{2 e ´z N ˚,z 0 ´8 ÿ i"1 σ i r pY i r q q " c 3 2π ż 8 0 dz z ´5{2 e ´z N ˚,z 0 ´8 ÿ i"1 pY i r q q`2 " c 3 2π ż 8 0 dz z q´1{2 e ´z N ˚,1 0 p}Yprz ´1{2 q} q`2 q,
by scaling. If we integrate with respect to dr, we arrive at

ż 8 0 drN 0 ´8 ÿ i"1 σ i r pY i r q q e ´Z0 ¯" c 3 2π Γpq `1q N ˚,1 0 ´ż 8 0 dr }Yprq} q`2 ¯. (4.32)
Consider then the right-hand side of (4.31). Recalling formula (4.5) and the fact that the process pZ ´rq rą0 is Markovian under N 0 with the transition kernels of the φ-CSBP, we get

N 0 ´ż ´r ´8 db Z b pZ b`r q q e ´Zb " ż ´r ´8 db N 0 ´pZ b`r q q`1 ˆp1 `rc 2 3 q ´3 expp´Z b`r p1 `rc 2 3 q ´2q " N 0 ´ż 0 ´8 db pZ b q q`1 ˆp1 `rc 2 3 q ´3 expp´Z b p1 `rc 2 3 q ´2q ¯.
Integrating with respect to dr, we find

ż 8 0 dr N 0 ´ż ´r ´8 db Z b pZ b`r q q e ´Zb ¯" 1 2 a 2{3 N 0 ´ż 0 ´8 db pZ b q q p1 ´e´Z b q ¯. (4.33)
To compute the right-hand side, write x q´1 " Γp1 ´qq ´1 ş 8 0 dλ λ ´q e ´λx (for x ą 0), and recall (7.8), which gives N 0 pZ b e ´λZ b q " λ ´3{2 pλ ´1{2 ´ba 2{3q ´3 for b ă 0. It follows that

N 0 ´ż 0 ´8 db pZ b q q p1 ´e´Z b q " 1 Γp1 ´qq ż 8 0 dλ λ ´q N 0 ´ż 0 ´8 db Z b pe ´λZ b ´e´pλ`1qZ b q " 1 Γp1 ´qq ż 8 0 dλ λ ´q ż 0 ´8 db ´λ´3{2 pλ ´1{2 ´ba 2{3q ´3 ´pλ `1q ´3{2 ppλ `1q ´1{2 ´ba 2{3q ´3" 1 2 a 2{3 Γp1 ´qq ż 8 0 dλ λ ´q pλ ´1{2 ´pλ `1q ´1{2 q.
The right-hand side is finite if and only if ´1{2 ă q ă 1{2, and then an elementary calculation gives ż 8

0 dλ λ ´q pλ ´1{2 ´pλ `1q ´1{2 q " ´1 ? π Γp1 ´qqΓpq ´1 2 q.
Coming back to (4.33), we see that

ż 8 0 dr N 0 ´ż ´r ´8 db Z b pZ b`r q q e ´Zb ¯" ´3 8 ? π Γpq ´1 2 q.
Combining this equality with (4.31) and (4.32) leads to

N ˚,1 0 ´ż 8 0 dr }Yprq} q`2 ¯" ´c 3 8
Γpq ´1 2 q Γpq `1q .

Replacing q by p " q `5{2, we finally obtain that, for 2 ă p ă 3, the quantity (4.30) is finite, and

κppq " c 8 3 
Γpp ´3 2 q Γpp ´3q ,
which is in agreement with formula [START_REF] Chapuy | On tessellations of random maps and the tg-recurrence[END_REF] in [START_REF] Bertoin | Random planar maps and growth-fragmentations[END_REF] -note that the value of κ in the latter formula should be multiplied by the factor a 3{2π that appears in the formula for ψ in Theorem 4.1. Finally, an argument of analytic continuation shows that the preceding formula for κppq holds for every p ą 3{2, whereas κppq " `8 for p P p0, 3{2s. The function p Þ Ñ κppq is (finite and) convex on p3{2, 8q, and vanishes at p " 2 and p " 3 (with the notation of [START_REF] Bertoin | Martingales in self-similar growthfragmentations and their connections with random planar maps[END_REF], we have ω ´" 2 and ω `" 3).

A growth-fragmentation process in the Brownian plane

In this section, we consider the random pointed metric space pP 8 , d 8 q called the Brownian plane, which has been introduced and studied in [START_REF] Curien | The Brownian plane[END_REF]. The space P 8 has a distinguished point ρ 8 , and, for every r ą 0, we may define the boundary sizes of the connected components of tx P P 8 : dpρ 8 , xq ą ru, via the same approximation as used above in Section 4.4: To see that this definition makes sense, one may argue that there exists a coupling of the Brownian plane and the Brownian map such that small balls centered at the distinguished point in the two spaces are isometric [START_REF] Curien | The Brownian plane[END_REF], then rely on Proposition 7.5 to treat the case when r is small enough, and finally use the scale invariance of the Brownian plane. Notice that there is exactly one unbounded component, whose boundary is also the boundary of the so-called hull of radius r in P 8 (see in particular [START_REF] Curien | The hull process of the Brownian plane[END_REF]).

We will relate this collection of boundary sizes to the growth-fragmentation process of Theorem 4.1 subject to a special conditioning. Precisely, we consider this growth-fragmentation process starting from 0 and conditioned to have indefinite growth (see [START_REF] Bertoin | Martingales in self-similar growthfragmentations and their connections with random planar maps[END_REF]Section 4.2]). Let us briefly describe this process, referring to [START_REF] Bertoin | Martingales in self-similar growthfragmentations and their connections with random planar maps[END_REF] for more details. We start with one Eve particle, whose mass process p p X t q tě0 evolves as the process X of Theorem 4.1 conditioned to start from 0 and to stay positive for all times. To be specific, the process p X is a self-similar Markov process with index 1{2, which can be obtained via the Lamperti representation from a Lévy process p ξ with no positive jumps and Laplace exponent

p ψpλq :" κp3 `λq " c 8 3 
Γpλ `3 2 q Γpλq , λ ą 0. (4.34)
See [START_REF] Bertoin | Martingales in self-similar growthfragmentations and their connections with random planar maps[END_REF]Lemma 2.1] for the fact that the function p ψpλq corresponds to the Laplace exponent of a Lévy process without positive jumps. Then, as previously, each jump time t of p X corresponds to the birth of a new particle (child of the Eve particle) with mass |∆ p X t |, but the masses of these new particles evolve independently according to the distribution of the process X, and similarly for the children of these particles, and so on. We emphasize that only the mass process of the Eve particle evolves according to a different Markov process p X, while the masses of its children, grandchildren, etc., evolve according to the law of the process X. As previously, we write p Xprq for the collection of masses of all particles present at time r. Theorem 4.7. As a process indexed by the variable r ą 0, the collection of the boundary sizes of all connected components of tx P P 8 : d 8 pρ 8 , xq ą ru is distributed as the process p p Xprqq rą0 .

Proof. We first explain that the role of the Eve particle (for the process p X) is played by the evolution of the unbounded component of tx P P 8 : d 8 pρ 8 , xq ą ru. Let p Z r be the boundary size of this component, with the convention that p Z 0 " 0. The distribution of the process p p Z r q rě0 is described in [START_REF] Curien | The hull process of the Brownian plane[END_REF]Proposition 1.2]. From this description, using also the arguments of [START_REF] Curien | Scaling limits for the peeling process on random maps[END_REF]Section 4.4], one gets that p Z r can be written as

p Z r " U Ò ηr
where pU Ò t q tě0 is the Lévy process with no positive jumps and Laplace exponent φpλq " a 8{3 λ 3{2 conditioned to start from 0 and to stay positive for all times t ą 0 -see [15, Chapter VII] for a rigorous definition of this process -and η r is the time change η r " inftt ě 0 :

ż t 0 ds U Ò s ą ru.
It follows from this representation that p p Z r q rě0 is a self-similar Markov process with index 1{2 with values in r0, 8q. We will now verify that the Laplace exponent of the Lévy process arising in the Lamperti representation of this self-similar Markov process is equal to p ψpλq, which will imply that the process p p Z t q tě0 has the same distribution as the mass process of the Eve particle in the description of the process p p Xptqq tě0 . We slightly abuse notation by introducing, for every x ě 0, a probability measure P x under which the Markov process p Z starts from x. By self-similarity, for every a ą 0, the law of pa ´2 p Z at q tě0 under P x coincides with the law of p p Z t q tě0 under P a ´2x . We recall from [40, Proposition 1.2] that, for every r ą 0, p Z r follows (under P 0 ) a Gamma distribution with parameter 3{2 and mean r 2 .

Let q P p´3 2 , ´1 2 q. Then,

E 0 " ż 8 1 p Z q t dt ı " ż 8 1 t 2q E 0 r p Z q 1 s dt " ´E0 r p Z q 1 s 2q `1 " ´ˆ2 3 
˙q 1 2q `1 Γpq `3 2 q Γp 3 2 q . (4.35)
We may compute the left-hand side of (4.35) in a different manner by applying the Markov property at time 1. We get

E 0 " ż 8 1 p Z q t dt ı " E 0 " E p Z 1 " ż 8 0 p Z q t dt ıı " E 0 " p Z q`1{2 1 ı ˆE1 " ż 8 0 p Z q t dt ı (4.36)
using the self-similarity of p Z. Then E 0 r p Z q`1{2 1

s " p2{3q q`1{2 Γpq `2q{Γp3{2q and, on the other hand, if p ξ denotes the Lévy process (started from 0) arising in the Lamperti representation of the self-similar process p Z, we have

E 1 " ż 8 0 p Z q t dt ı " E " ż 8 0 e pq`1 2 q ξptq dt ı .
The quantity in the right-hand side must be finite, which implies that Ere pq`1 2 q ξptq s ă 8 for every t ą 0, and Ere pq`1 2 q ξptq s " expptψ ˚pq `1 2 qq with ψ ˚pq `1 2 q ă 0. From (4.35) and (4.36), we get

1 ψ ˚pq `1 2 q " 1 2 ˆ2 3 ˙´1{2 Γpq `1 2 q Γpq `2q . 
Finally, we find that, for ´1 ă q ă 0, we have

ψ ˚pqq " c 8 3 
Γpq `3 2 q Γpqq " p ψpqq.

An argument of analytic continuation now allows us to obtain that the Laplace exponent of the Lévy process p ξ is equal to p ψpλq as desired. Once we have identified p p Z t q tě0 as the mass process of the Eve particle in the description of p p Xptqq tě0 , the remaining steps of the proof are very similar to those of the proof of Theorem 4.2, and we will only sketch the main ingredients. We first recall the relevant features of the construction of the Brownian plane pP 8 , d 8 q which is developed in [40, Section 3.2], to which we refer for further details. The random metric space P 8 is obtained as a quotient space of a (non-compact) random tree T 8 , which itself is constructed by grafting a Poisson collection of (compact) R-trees to an infinite spine isometric to r0, 8q. The point 0 of the spine corresponds to the distinguished point ρ 8 of P 8 . Furthermore, every point a of T 8 is assigned a nonnegative label Λ a , and this label coincides with d 8 pρ 8 , xq, if x is the point of P 8 corresponding to a. Then, as in the proof of Theorem 4.3, it is not hard to check that connected components of tx P P 8 : d 8 pρ 8 , xq ą ru are in one-to-one correspondence with connected components of ta P T 8 : Λ a ą ru, for every fixed r ą 0.

For every a P T 8 , let rra, 8rr stand for the range of the unique geodesic path from a to 8 in T 8 , and set Λ a " mintΛ b : b P rra, 8rru. If C is a (necessarily bounded) connected component of ta P T 8 : Λ a ´Λa ą 0u, then both C and the labels pΛ a q aPC can be represented by a snake trajectory ω C , in a way very similar to what we did for Čr in Section 4.3.2.

Proposition 4.10. Setting inftΛ a : a P Cu " r yields a one-to-one correspondence between connected components C of ta P T 8 : Λ a ´Λa ą 0u and jump times r of the process p p Z t q tě0 . Let r 1 , r 2 , . . . be an enumeration of these jump times, which is measurable with respect to the σ-field generated by p p Z r q rě0 , and for every i " 1, 2, . . ., let C i be the connected component associated with r i . Then, conditionally on the process p p Z r q rě0 , the snake trajectories ω C i , i " 1, 2, . . ., are independent, and the conditional distribution of

ω C i is N ˚,|∆ p Zr i | 0 .
Proposition 4.10 is obviously an analog of Theorem 4.5, and can be derived from the latter result using the relations between the labeled tree pT 8 , pΛ a q aPT8 q and the pair pT ζ , pV a q aPT ζ q under N 0 (compare the decomposition of the Brownian snake at the minimum found in [40, Theorem 2.1] with the construction of pT 8 , pΛ a q aPT8 q in the same reference).

Given Proposition 4.10, the end of the proof of Theorem 4.7 follows the same general pattern as that of Theorem 4.2 in Section 4.8, and we leave the details to the reader.

Remark. We could have used Corollary 2 of [START_REF] Caballero | Conditioned stable Lévy processes and the Lamperti representation[END_REF] to identify the Laplace exponent of the Lévy process p ξ in the preceding proof. This would still have required some calculations, and for this reason we preferred the more direct approach presented above.

Local times

In this section, we argue under N 0 pdωq, but similar results hold under N 0 pdωq. Recall from the introduction the definition of the local times pL x , x P Rq of the process pV a q aPT ζ . In this section, we relate the values of L x for x ą 0 to the growth-fragmentation process of Theorem 4.1 or equivalently to the connected components of ta P T ζ : V a ą xu.

We fix h ą 0. It is convenient to introduce the "local time exit process" pX h r q rě0 , which roughly speaking measures for every r ě 0 the "quantity" of paths W s that have hit level h and accumulated a local time equal to r at level h. The precise definition of this process fits in the general framework of exit measures [65, Chapter V] and we refer to the introduction of [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF] for more details (only the case h " 0 is considered there, but the extension to the case h ą 0 is straightforward). Note that X h 0 " Z h is just the usual exit measure from p´8, rq, which can be defined by formula (8.7). Furthermore, under N 0 p¨| W ˚ą hq, the process pX h r q rě0 is a φ-CSBP started from Z h -see again the introduction of [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF]. Of course, on the event tW ˚ă hu, the process

pX h r q rě0 is identically equal to zero. Let C h 1 , C h 2 , . . . be the connected components of ta P T ζ : V a ą hu, ranked in decreasing order of their boundary sizes |BC h 1 | ą |BC h 2 | ą ¨¨¨.
For every i " 1, 2, . . ., let H i be the height of C h i , defined by

H i :" sup aPC h i V a ´h. Proposition 4.11. We have N 0 a.e. L h " ż 8 0 dr X h r . (4.37)
Moreover, N 0 a.e.,

δ 3{2 #ti : |BC h i | ą δu ÝÑ δÑ0 1 ? 6π L h (4.38)
and

δ 3 #ti : H i ą δu ÝÑ δÑ0 c L h (4.39)
where c " 3 2 π ´3{2 Γp1{3q 3 Γp7{6q 3 .

Remark. The proposition also holds for h " 0, but the proof of (4.37) requires a different argument in that case, see [START_REF] Gall | Growth-fragmentation processes in Brownian motion indexed by the Brownian tree[END_REF]Proposition 3].

Proof. The convergence (4.39) is already established in [START_REF] Gall | The Brownian cactus II. Upcrossings and local times of super-Brownian motion[END_REF], in the slightly weaker form of convergence in measure (note that "upcrossings" from h to h `δ, as defined in [START_REF] Gall | The Brownian cactus II. Upcrossings and local times of super-Brownian motion[END_REF], exactly correspond to connected components of ta P T ζ : V a ą hu with height greater than δ). We will use this fact to prove the identity (4.37). To simplify notation, we set

L h " ż 8 0 dr X h r .
As in the proof of Theorem 4.6, we consider all excursions away from h. It follows from [2, Proposition 3, Theorem 4] (and an application of the special Markov property) that these excursions are in one-to-one correspondence with the jumps of the process pX h r q rě0 , and that conditionally on the latter process, they are independent and the conditional distribution of the excursion corresponding to the jump

∆X h r is 1 2 N ˚,∆X h r 0 `1 2 Ň˚,∆X h r 0 ,
where we use the notation Ň˚,z 0 for the push forward of N ˚,z 0 under the symmetry ω Þ Ñ ´ω. We recall that the connected components of ta P T ζ : V a ą hu are in one-to-one correspondence with the excursions above level h, in such a way that the boundary size of a component is equal to the corresponding jump of pX h r q rě0 . Write U for the (stopped) Lévy process obtained from the φ-CSBP X h by the Lamperti transformation (note that U is stopped upon hitting 0 and that U 0 " Z h ). Notice that the hitting time of 0 by U is L h. Since the jumps of pX h r , q rě0 are also the jumps of U , we obtain the identity in distribution ´Lh ,

8 ÿ i"1 δ |BC h i | ¯pdq " ´Lh , 8 ÿ i"1 1 tε i "1u δ ∆Ur i
where r 1 , r 2 , . . . are the jump times of U , and ε 1 , ε 2 , . . . is a sequence of independent Bernoulli variables with parameter 1{2, which is independent of U . Since the Lévy measure of U is πpdzq "

c 3 2π z ´5{2 dz, so that πppδ, 8qq " a 2{3π δ ´3{2 , it easily follows that, N 0 a.e., δ 3{2 #ti : ε i " 1 and ∆U r i ą δu ÝÑ δÑ0 1 ? 6π L h.
This gives the convergence (4.38), except that we have not yet verified that L h " L h.

To this end, using again the conditional distribution of the excursions away from h given the process pX h r q rě0 , we observe that we have also ´Lh ,

8 ÿ i"1 δ H i ¯pdq " ´Lh , 8 ÿ i"1 1 tε i "1u δ ? ∆Ur i M i ¯
where M 1 , M 2 , . . . is a sequence of independent random variables distributed according to the law of W ˚under N ˚,1 0 , which is also independent of pU , pε i q iě1 q. Now observe that, if z is chosen according to πpdzq and M according to the law of W ˚under N ˚,1 0 , ? z M is distributed according to the "law" of W ˚under N 0 , which satisfies Lemma 25]. It follows that, N 0 a.e.,

N 0 pW ˚ą δq " 2c δ ´3 by [2,
δ 3 #ti : H i ą δu ÝÑ δÑ0 c L h.
By comparing this convergence with [68, Theorem 6], we get that L h " L h, which completes the proof.

Appendix

This appendix is devoted to the proofs of Lemma 4.2 and Proposition 7.5.

Proof of Lemma 4.2. It is convenient to write N for the distribution of pZ ´tq tě0 under N 0 (we agree that Z 0 " 0). Then N is a σ-finite measure on the Skorokhod space Dpr0, 8q, Rq. For

ε ą 0, let ÿ iPIε δ w ε i pdwq
be a Poisson point measure on Dpr0, 8q, Rq with intensity εN. As already noticed in Section 4.2.4, we can construct a φ-CSBP started from ε by setting, for t ą 0,

Y ε t " ÿ iPIε w ε i ptq and Y ε 0 " ε. Set T ε 0 :" inftt ě 0 : Y ε t " 0u.
The classical Lamperti transformation [START_REF] Lamperti | Continuous state branching processes[END_REF][START_REF] Caballero | Proof(s) of the Lamperti representation of continuous-state branching processes[END_REF] allows us to relate Y ε to another process X ε distributed as a stable Lévy process with no negative jumps and index 3{2, started from ε and stopped at the first time when it hits 0, via the formula

X ε t " Y ε γ ε t where γ ε t :" infts ě 0 : ş s 0 Y ε u du ą tu if t ă ş 8 0 Y ε u du and γ ε t " T ε 0 otherwise.
Let us fix δ ą 0 and assume from now on that ε P p0, δq. Let B ε stand for the event

tsup tě0 Y ε t ě δu " tsup tě0 X ε t ě δu.
By the solution of the two-sided exit problem already used in the proof of Lemma 4.1, we have

PpB ε q " 1 ´c δ ´ε δ " ε 2δ `Opε 2 q , as ε Ñ 0.
On the other hand, let A ε Ă B ε be the event where there is exactly one i P I ε such that sup tě0 w ε i ptq ě δ. By Lemma 4.1,

PpA ε q " ε 2δ exp ´´ε 2δ ¯" ε 2δ `Opε 2 q , as ε Ñ 0.
If F is a bounded measurable function on the space Dpr0, 8q, Rq, we deduce from the last two displays that

ErF ppX ε t q tě0 q | B ε s " ErF ppX ε t q tě0 q | A ε s `Opεq , as ε Ñ 0. (4.40)
We can associate with X ε the process "reflected above the minimum" defined by

Xε t :" X ε t ´inftX ε s : 0 ď s ď tu.
We have obviously 0 ď X ε t ´X ε t ď ε for every t ě 0. If Bε Ă B ε stands for the event tsup tě0 Xε t ě δu, it is easily checked that PpB ε z Bε q " Opε 2 q, so that we can replace B ε by Bε in (4.40). Furthermore, on the event Bε we can introduce the first excursion of Xε away from 0 that hits δ and denote this excursion by pX ε t q tě0 . Notice that the distribution of pX ε t q tě0 is n δ pdeq :" npde | supteptq : t ě 0u ě δq. Let d Sk be a distance on Dpr0, 8q, Rq that induces the Skorokhod topology. It is a simple matter to verify that, for every α ą 0,

Ppd Sk pp Xε t q tě0 , pX ε t q tě0 q ą α | Bε q ÝÑ εÑ0 0.
Assume from now on that F is (bounded and) Lipschitz with respect to d Sk . We deduce from (4.40) (with B ε replaced by Bε ) and the last display that

ErF ppX ε t q tě0 q | A ε s ´ErF ppX ε t q tě0 q | Bε s ÝÑ εÑ0 0. (4.41) 
Note that ErF ppX ε t q tě0 q | Bε s does not depend on ε and is equal to ş n δ pdeq F peq. On the other hand, conditionally on the event A ε there is a unique index i 0 P I ε such that sup tě0 w ε i 0 ptq ě δ, and the distribution of w ε i 0 is N δ pdwq :" Npdw | sup tě0 wptq ě δq. We then set Y ε t " w ε i 0 ptq, and η ε t " infts ě 0 :

ż s 0 du Y ε u ą tu if t ă ş 8 0 du Y ε u , and η ε t " infts ě 0 : Y ε s " 0u otherwise.
Observing that the conditional distribution of Y ε ´Yε given A ε is dominated by the law of a Φ-continuous state branching process started from ε, one verifies that, for every α ą 0,

Ppd Sk ppY ε γ ε t q tě0 , pY ε η ε t q tě0 q ą α | A ε q ÝÑ εÑ0 0.
(Here we omit a few details that are left to the reader.) Recalling that Y ε γ ε t " X ε t and using (4.41), we get

ErF ppY ε η ε t q tě0 q | A ε s ´ż n δ pdeq F peq ÝÑ εÑ0 0.
Since the conditional distribution of pY ε η ε t q tě0 given A ε is N δ (independently of ε), using the equalities Nptw : sup tě0 wptq ě δuq " 1 2δ " npte : sup tě0 eptq ě δuq (the first one by Lemma 4.1 and the second one as an easy consequence of the two-sided exit problem), we arrive at the result of the lemma.

Proof of Proposition 7.5. First step. Recall that, for every t ą 0, G t denotes the σ-field on S 0 generated by the mapping ω Þ Ñ tr ´tpωq and completed by the collection of all N 0 -negligible sets. We also define G 0 as the σ-field generated by the N 0 -negligible sets. For every η ą 0, the process pZ ´tq těη is Markov with respect to the filtration pG t q těη under the probability measure N rηs 0 :" N 0 p¨| W ˚ď ´ηq. By the Feller property of the semigroup, the strong Markov property holds even for stopping times of the filtration pG t`qtěη .

We fix two reals η P p0, 1q and M ą 1. Let ε P p0, ηq. From the proof of Proposition 34 in the appendix of [START_REF] Gall | Brownian disks and the Brownian snake[END_REF], we have, for every r ď ´η,

N 0 ´pZ ε r ´Zr q 2 ¯ď 4ε 2 .
We note that [START_REF] Gall | Brownian disks and the Brownian snake[END_REF] deals with the quantity Zε r defined in Remark (ii) after Proposition 7.5, rather than with Z ε r , but as explained in this remark, this makes no difference for a fixed value of r. Furthermore, [START_REF] Gall | Brownian disks and the Brownian snake[END_REF] gives the latter bound only for "truncated versions" of Zε r and Z r , but an application of Fatou's lemma then yields the preceding display.

Let δ P p0, 1q. By Markov's inequality, for r ď ´η,

N 0 p|Z ε r ´Zr | ą δq ď δ ´2 ˆ4ε 2 .
We apply this to r " ´j ε 3{2 for all integers j such that η ď j ε 3{2 ď M `1. It follows that

N 0 ´|Z ε ´jε 3{2 ´Z´jε 3{2 | ą δ 2 , for some j s.t. η ď j ε 3{2 ď M `1¯( 4.42) ď 16pM `1qδ ´2 ε 1{2 .
Fix a real K ą 0, and consider the random time

S :" inftt ě η : Z ´t ă K and |Z ε ´t ´Z´t | ą δu.
Note that S is a stopping time of the filtration pG t`qtěη (because both processes pZ ε ´tq těη and pZ ´tq těη have càdlàg paths and are adapted to the filtration pG t q těη q. On the event tS ă 8u, we have |Z ε ´S ´Z´S | ě δ and Z ´S ď K. Our goal is now to bound N 0 pS ď M q. To this end, we will use (4.42). On the event tS ă 8u write r´Ss ε for the greatest number of the form ´jε 3{2 in the interval p´8, ´Sq. Then,

tS ď M u " tS ď M , |Z ε r´Ssε ´Zr´Ssε | ą δ{2u Y tS ď M , |Z ε r´Ssε ´Zr´Ssε | ď δ{2u.
By (4.42), the N 0 -measure of the first set in the right-hand side is bounded above by c 1 ε 1{2 for some constant c 1 depending on M and δ. On the other hand, recalling that |Z ε ´S ´Z´S | ě δ on tS ă 8u, we obtain that the second set is contained in

tS ď M , |Z r´Ssε ´Z´S | ě δ{4u Y tS ď M , |Z ε r´Ssε ´Zε ´S | ě δ{4u.
Using the strong Markov property of pZ ´tq těη at time S, the bound Z ´S ď K on tS ă 8u, and the fact that a φ-CSBP can be written as a time change of a Lévy process, it is easy to verify that

N 0 pS ď M , |Z r´Ssε ´Z´S | ě δ{4q ď c 2 ε 3{2 (4.43)
for some constant c 2 depending on δ and K.

In the second and the third step below, we will get similar estimates for the N 0 -measure of (appropriate subsets of) the event tS ď M , |Z ε r´Ssε ´Zε ´S | ě δ{4u. We will explain in the fourth step how the proof of the proposition is completed by combining all these estimates.

Second step. We first study the quantity

N 0 pS ď M , Z ε r´Ssε ´Zε ´S ě δ{4q.
From our definitions, on the event tS ă 8u, the quantity Z ε r´Ssε ´Zε ´S is bounded above by

F ε :" ε ´2 ż σ 0 ds 1 tT ´S pWsqă8,T ´S´ε 3{2 pWsq"8u 1 t x Wsăr´Ssε`εu .
For every integer n ě 1, write r´Ss pnq for the greatest number of the form ´j2 ´n in p´8, ´Sq, and set, still on the event tS ă 8u,

F ε,n :" ε ´2 ż σ 0
ds 1 tT r´Ss pnq pWsqă8,T r´Ss pnq ´ε3{2 pWsq"8u 1 t x Wsăr´Ss pnq `εu .

Observing that 1 tT ´S pWsqă8u " lim nÑ8 1 tT r´Ss pnq pWsqă8u and using Fatou's lemma, we have

N 0 p1 tSă8u F ε q ď lim inf nÑ8 N 0 p1 tSă8u F ε,n q.
Then,

N 0 p1 tSă8u F ε,n q " ε ´2 8 ÿ k"1 N 0 ´1tpk´1q2 ´nďSăk2 ´nu ˆż σ 0 ds 1 tT ´k2 ´n pWsqă8,T ´k2 ´n´ε 3{2 pWsq"8u 1 t x Wsă´k2 ´n`εu ¯.
We can apply the special Markov property (Proposition 4.1) to each term of the sum in the right-hand side. Note that the variable 1 tpk´1q2 ´nďSăk2 ´nu is measurable with respect to G k2 ´n , whereas the subsequent integral is a function of the snake trajectories ω i introduced in Proposition 4.1 when r " ´k2 ´n). We obtain

N 0 p1 tSă8u F ε,n q " ε ´2 8 ÿ k"1 N 0 ´1tpk´1q2 ´nďSăk2 ´nu Z k2 ´n N0 ´ż σ 0 ds 1 tT ´ε3{2 pWsq"8u 1 t x Wsăεu ¯.
By the first-moment formula for the Brownian snake [65, Proposition 4.2], we have

N 0 ´ż σ 0 ds 1 tT ´ε3{2 pWsq"8u 1 t x Wsăεu ¯" E 0 " ż t ´ε3{2 0 dt 1 tBtăεu ı ď c 3 ε 5{2 ,
where pB t q tě0 is a standard linear Brownian motion starting from x under the probability measure P x , t r " inftt ě 0 : B t " ru for every r P R, and c 3 is a constant. We conclude that N 0 p1 tSă8u F ε,n q ď c 3 ε 1{2 N 0 p1 tSă8u Z rSs pnq q ď c 3 ε 1{2 , and the same bound holds for N 0 p1 tSă8u F ε q. Finally, Markov's inequality gives

N 0 pS ď M , Z ε r´Ssε ´Zε ´S ě δ{4q ď N 0 pS ă 8, F ε ě δ{4q ď 4 δ c 3 ε 1{2 .
Third step. We now consider the event tS ď M , Z ε ´S ´Zε r´Ssε ě δ{4qu. We observe that, if S ă 8,

Z ε ´S ´Zε r´Ssε ď ε ´2 ż σ 0 ds 1 tT ´S pWsq"8, x WsPrr´Ssε`ε,´S`εqu .
Notice that T ´S pW s q " 8 implies T r´Ssε pW s q " 8 and that ´S `ε ď r´Ss ε `ε `ε3{2 . Hence, on the event where S ď M and Z ε ´S ´Zε r´Ssε ě δ{4, we can find a real r P r´M ´1, ´ηs of the form r " jε 3{2 with j P Z, such that

ε ´2 ż σ 0 ds 1 tTrpWsq"8, x WsPrr`ε,r`ε`ε 3{2 su ě δ 4 .
Let us fix r P r´M ´1, ´ηs in the following lines, and bound the probability of the event in the last display. From the first-moment formula for the Brownian snake, we have, with the same notation as in the second step,

N 0 ´ε´2 ż σ 0 ds 1 tTrpWsq"8, x WsPrr`ε,r`ε`ε 3{2 su " ε ´2E 0 " ż tr 0 dt 1 tBtPrr`ε,r`ε`ε 3{2 su ı ď c 4 ε 1{2 ,
with some constant c 4 . To get a better estimate, we use higher moments, but to this end we need to perform a suitable truncation. We fix A ą 0, and we observe that, for every integer k ě 1, for any nonnegative measurable function f on R, we have

N 0 ´´ż σ 0 ds 1 tTrpWsq"8,τ A pWsq"8u f p x W s q ¯kď C k,A,M ´sup xPrr,As E x " ż tr^t A 0 dt f pB t q ı¯k ,
where C k,A,M is a constant depending only on k, A and M . The bound in the previous display can be derived in a straightforward way from the k-th moment formula for the Brownian snake [65, Proposition IV.2]. We omit the details. We apply this bound with f " 1 rr`ε,r`ε`ε 3{2 s , and we arrive at the estimate

N 0 ´´ε ´2 ż σ 0 ds 1 tTrpWsq"8,τ A pWsq"8u 1 t x WsPrr`ε,r`ε`ε 3{2 su ¯k¯ď C k,A,M pc 5 ε 1{2 q k ,
with a constant c 5 depending on A and M . From Markov's inequality, we then get

N 0 ´W ˚ă A, ε ´2 ż σ 0 ds 1 tTrpWsq"8, x WsPrr`ε,r`ε`ε 3{2 su ě δ 4 ď ˆδ 4 ˙´k N 0 ´´ε ´2 ż σ 0 ds 1 tTrpWsq"8,τ A pWsq"8u 1 t x WsPrr`ε,r`ε`ε 3{2 su ¯kď C k,A,M ˆδ 4 ˙´k pc 5 ε 1{2 q k .
We take k " 4 and sum the preceding estimate over possible values of r " ´jε 3{2 in r´M ´1, ´ηs, and we arrive at the estimate

N 0 pW ˚ă A, S ď M , Z ε ´S ´Zε r´Ssε ě δ{4q ď c 6 ε 1{2
with a constant c 6 depending on A, M and δ.

Fourth step. We deduce from the second and third steps that we have

N 0 pW ˚ă A, S ď M , |Z ε r´Ssε ´Zε ´S | ě δ{4q| ď c 7 ε 1{2 , (4.44) 
with a constant c 7 depending on δ, A, M , K. Combining (4.43) and (4.44) and recalling the considerations of the end of the first step, we arrive at the bound

N 0 pW ˚ă A, S ď M q ď pc 1 `c2 `c7 q ε 1{2 . (4.45)
Let us write S " S pεq to recall the dependence on ε. Let n 0 be the first integer such that pn 0 q ´3 ă η.

The bound (4.45) gives

8 ÿ n"n 0 N 0 pW ˚ă A, S pn ´3q ď M q ă 8.
Hence, N 0 a.e. on the event W ˚ă A, we have S pn ´3q ą M for all large enough n. This means that, N 0 a.e. on the event where suptZ ´t : t ą 0u ă K and W ˚ă A, we have for all large enough n, sup 

Spine representations for non-compact models of random geometry

Les resultats de ce chapitre sont issus de l'article [START_REF] Gall | Spine representations for non-compact models of random geometry[END_REF], écrit en collaboration avec Jean-François Le Gall et accepté pour publication dans Probability Theory and Related Fields.

We provide a unified approach to the three main non-compact models of random geometry, namely the Brownian plane, the infinite-volume Brownian disk, and the Brownian half-plane. This approach allows us to investigate relations between these models, and in particular to prove that complements of hulls in the Brownian plane are infinite-volume Brownian disks. 

Introduction

In the recent years, much work has been devoted to the continuous models of random geometry that arise as scaling limits of planar maps, which are discrete graphs embedded in the sphere.

The most famous model is the Brownian map or Brownian sphere, which is the limit in the Gromov-Hausdorff sense of large planar maps with n faces chosen uniformly at random in a suitable class and viewed as metric spaces for the graph distance rescaled by the factor n ´1{4 , when n Ñ 8 (see in particular [1, 4, ?, 21, 67, 82, 85]). The rescaling factor n ´1{4 is relevant because the typical diameter of a random planar map with n faces is of order n 1{4 when n is large, and thus the rescaling leads to a compact limit. However, choosing a rescaling factor that tends to 0 at a slower rate than n ´1{4 yields a different limiting space, which can be interpreted as an infinite-volume version of the Brownian sphere and is called the Brownian plane [START_REF] Curien | The Brownian plane[END_REF][START_REF] Curien | The hull process of the Brownian plane[END_REF]. On the other hand, scaling limits of random planar maps with a boundary have also been investigated [START_REF] Albenque | Scaling limit of large triangulations of polygons[END_REF][START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF][START_REF] Bettinelli | Scaling limit of random planar quadrangulations with a boundary[END_REF][START_REF] Bettinelli | Compact Brownian surfaces I. Brownian disks[END_REF][START_REF] Gwynne | Convergence of the free Boltzmann quadrangulation with simple boundary to the Brownian disk[END_REF][START_REF] Marzouk | Brownian limits of planar maps with a prescribed degree sequence[END_REF]. In that case, assuming that the planar map has a fixed boundary size equal to n and a volume (number of faces) of order n 2 , rescaling the graph distance by the factor n ´1{2 again leads to a compact limiting space called the Brownian disk. If however the volume grows faster than n 2 , the same rescaling yields a non-compact limit which is the infinite-volume Brownian disk. The so-called Brownian half-plane arises when choosing a rescaling factor that tends to 0 at a slower rate than n ´1{2 . A comprehensive discussion of all possible scaling limits of large random quadrangulations with a boundary, including the cases mentioned above, is given in the recent paper of Baur, Miermont and Ray [START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF]. In this discussion, the Brownian disk and the infinite-volume Brownian disk, the Brownian plane and the Brownian half-plane play a central role. It is worth noting that the Brownian plane is also the scaling limit [START_REF] Curien | The Brownian plane[END_REF][START_REF] Budzinski | The hyperbolic Brownian plane[END_REF] in the local Gromov-Hausdorff sense of the random lattices called the uniform infinite planar triangulation (UIPT) and the uniform infinite planar quadrangulation (UIPQ), which have been studied extensively since the introduction of the UIPT by Angel and Schramm [START_REF] Angel | Uniform infinite planar triangulations[END_REF]. Similarly, the Brownian half-plane arises as the scaling limit [START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF][START_REF] Gwynne | Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov-Hausdorff-Prokhorov-uniform topology[END_REF] of the uniform half-plane quadrangulation, which has been introduced and studied in [START_REF] Caraceni | Geometry of the Uniform Infinite Half-Planar Quadrangulation[END_REF][START_REF] Curien | Uniform infinite planar quadrangulations with a boundary[END_REF]. We finally mention that the preceding models of random geometry are closely related to Liouville quantum gravity surfaces, and the Brownian disk, the Brownian plane and the Brownian half-plane correspond respectively to the quantum disk, the quantum cone and the quantum wedge, see [START_REF] Miller | An axiomatic characterization of the Brownian map[END_REF]Corollary 1.5], and [START_REF] Gwynne | Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov-Hausdorff-Prokhorov-uniform topology[END_REF] for the case of the Brownian half-plane.

The main goal of the present article is to provide a unified approach to the three most important non-compact models of random geometry, namely the Brownian plane, the infinitevolume Brownian disk and the Brownian half-plane. As we will discuss below, it is remarkable that these three models can all be constructed in a similar manner from the same infinite Brownian tree equipped with Brownian labels, subject to different conditionings -the precise definition of these conditionings however requires some care especially in the case of the infinite-volume Brownian disk. As an application of these constructions, we are able to get new relations between the different models of random geometry. In particular, we prove that the complement of a hull in the Brownian plane, equipped with its intrinsic metric, is an infinite-volume Brownian disk (this may be viewed as an infinite-volume counterpart of a property derived in [START_REF] Gall | Brownian disks and the Brownian snake[END_REF] for the Brownian sphere). The latter property was in fact a strong motivation for the present study, as it plays a very important role in the forthcoming work [START_REF] Riera | Isoperimetric inequalities in the Brownian map and the Brownian plane[END_REF] concerning isoperimetric bounds in the Brownian plane. We also prove that the "horohull" of radius r in the Brownian plane, corresponding to the connected component containing the root of the set of points whose "relative distance" to infinity is greater than ´r, is a Brownian disk with height r (here, a Brownian disk with height r is obtained by conditioning a free pointed Brownian disk on the event that the distinguished point is at distance exactly r from the boundary).

Let us now explain our approach in more precise terms. The starting point of our construction is an infinite "Brownian tree" T ˚that consists of a spine isometric to r0, 8q and two Poisson collections of subtrees grafted respectively to the left side and to the right side of the spine. For our purposes, it is very important to distinguish the left side and the right side because we later need an order structure on the tree. The trees branching off the spine can be obtained as compact R-trees coded by Brownian excursions (so they are scaled versions of Aldous' celebrated CRT). To be specific, in order to define the subtrees branching off the left side of the tree, one may consider a Poisson point measure

ÿ iPI δ pt i ,e i q ,
with intensity 2 1 r0,8q ptq dt npdeq, where npdeq stands for the Itô measure of positive Brownian excursions, and then declare that, for every i P I, the tree T i coded by e i is grafted to the left side of the spine at level t i . For subtrees branching off the right side, we proceed in the same way, with an independent Poisson point measure. We equip T ˚with the obvious choice of a distance (see Section 5.2.4 below). Then T ˚is a non-compact R-tree, and, for every v P T ˚, we can define the geodesic line segment rrρ, vss between the root ρ (bottom of the spine) and v, and we use the notation ssρ, vrr" rrρ, vssztρ, vu. The tree T ˚may be viewed as an "infinite Brownian tree" corresponding to process 2 in Aldous [START_REF] Aldous | The continuum random tree I[END_REF].

We then introduce labels on T ˚, that is, to each point v of T ˚we assign a real label Λ v . We let the labels on the spine be given by a three-dimensional Bessel process R " pR t q tě0 started from 0. Then, conditionally on R, the labels on the different subtrees are independent, and the labels on a given subtree T i branching off the spine at level t i are given by Brownian motion indexed by T i and started from R t i at the root of T i (which is the point of the spine at level t i ). In other words, labels evolve like linear Brownian motion when moving along a segment of a subtree branching off the spine.

We finally need a last operation, which ensures that we have only nonnegative labels. We let T be the subset of T ˚that consists of all v P T ˚such that labels do not vanish along ssρ, vrr. So the spine is contained in T, but some of the subtrees branching off the spine in T ˚are truncated at points where labels vanish. For each subtree T i , the theory of exit measures gives a way to define a quantity Z 0 pT i q measuring the "number" of branches of T i that are cut in the truncation procedure (or in a more precise manner, the "number" of points v of T i such that Λ v " 0 but Λ w ą 0 for every w Pssρ, vrr), and we write Z 0 for the sum of the quantities Z 0 pT i q for all subtrees T i branching off the spine. We have in fact Z 0 " 8 a.s., but a key point of the subsequent discussion is to discuss conditionings of the labeled tree T that ensure that Z 0 ă 8.

We are now in a position to define the random metric that will be used in the construction of the non-compact models of random geometry of interest in this work. Set T ˝" tv P T : Λ v ą 0u, and for v, w P T

˝, D ˝pv, wq " Λ v `Λw ´2 max ´inf uPrv,ws Λ u , inf uPrw,vs Λ u ¯,
where rv, ws stands for the set of points visited when going from v to w clockwise around the tree (see Section 5.2.4 for a more precise definition). We slightly modify D ˝pv, wq by setting ∆ ˝pv, wq " D ˝pv, wq if the maximum in the last display is positive, and ∆ ˝pv, wq " 8 otherwise. Finally, we let p∆pv, wq; v, w P T ˝q be the maximal symmetric function of pv, wq P T ˝ˆT ˝that is bounded above by ∆ ˝and satisfies the triangle inequality. It turns out that the function pv, wq Þ Ñ ∆pv, wq takes finite values and can be extended by continuity to a pseudo-metric on T, and we may thus consider the quotient space of T for the equivalence relation defined by setting v » w if and only if ∆pv, wq " 0. The quotient space T{ » equipped with the metric induced by ∆ is:

1. the Brownian plane under the special conditioning Z 0 " 0; 2. the infinite-volume Brownian disk with perimeter z ą 0 under the special conditioning Z 0 " z; 3. the Brownian half-plane under no conditioning (then Z 0 " 8 a.s.).

The really new contributions of the present work are cases 2 and 3, because case 1 corresponds to the construction of the Brownian plane in [START_REF] Curien | The hull process of the Brownian plane[END_REF] (which is different from the one in [START_REF] Curien | The Brownian plane[END_REF]): in that case, the conditioning on Z 0 " 0 turns the process of labels on the spine into a nine-dimensional Bessel process X " pX t q tě0 started from 0, and the subtrees branching off the spine are conditioned to have positive labels (see Section 5.4.2 below).

A remarkable feature of the preceding constructions is the fact that labels on T have a nice geometric interpretation in terms of the associated random metric spaces T{ ». Precisely, the label Λ v of a point v of T is equal to the distance from (the equivalence class of) v to the set of (equivalence classes of) points of zero label in T{ ». The latter set is either a single point in case 1, or a boundary homeomorphic to the circle in case 2, or a boundary homeomorphic to the line in case 3. Amongst other applications, this interpretation of labels allows us to prove the above-mentioned result about the complement of hulls in the Brownian plane. Write BP 8 for the Brownian plane, and recall that the hull B ' prq is defined by saying that its complement B' prq :" BP 8 zB ' prq is the unbounded component of the complement of the closed ball of radius r centered at the distinguished point (bottom of the spine) of BP 8 . Then Theorem 29 below states that (the closure of) B' prq equipped with its intrinsic metric is an infinite-volume Brownian disk whose perimeter is the boundary size |BB ' prq| (see [START_REF] Curien | The hull process of the Brownian plane[END_REF] for the definition of this boundary size).

Much of the technical work in the present paper is devoted to making sense of the conditioning Z 0 " z in case 2, which is not a trivial matter because Z 0 " 8 a.s. Our approach is motivated by the previously mentioned result concerning the distribution of B' prq. At first, it would seem that our construction of the Brownian plane from an infinite tree T made of a spine equipped with labels pX t q tě0 (given by a nine-dimensional Bessel process), and labeled subtrees conditioned to have positive labels, would be suited perfectly to analyse the distribution of a hull or of its complement. In fact, it is observed in [START_REF] Curien | The hull process of the Brownian plane[END_REF] that the set B' prq exactly corresponds to a subtree T prq consisting of the part of the spine of T above level L r :" suptt ě 0 : X t " ru and of the subtrees branching off the spine of T above level L r and truncated at points where labels hit r -furthermore the boundary size |BB ' prq| is just the sum of the exit measures at level r of all these subtrees. However, this representation of B' prq seems to depend heavily on r, even if labels are shifted by ´r: in particular, the distribution of the process pX Lr`t ´rq tě0 depends on r. Nevertheless, and perhaps surprisingly, it turns out that, if we condition the boundary size |BB ' prq| to be equal to a fixed z ą 0, the conditional distribution of the labeled tree T prq (with labels shifted by ´r) does not depend on r, and this leads to the probability measure Θ z which is used in our construction of the infinite-volume Brownian disk. The precise construction of the measures Θ z , which involves an appropriate truncation procedure, is given in Section 5.3.3, where we also explain in which sense these measures correspond to the conditioning of case 2 above.

As the reader will have guessed from the preceding discussion, some of the technicalities in our proofs are made necessary by the problem of conditioning on events of zero probability. For instance, in order to define the free pointed Brownian disk with perimeter z and a given height r ą 0, it is relevant to condition the Brownian snake excursion measure N r (see Section 5.2 for a definition) on the event that the exit measure at 0 is equal to z. It is not immediately obvious how to make a canonical choice of these conditional distributions, so that they depend continuously on the pair pr, zq. We deal carefully with these questions in Section 5.3.

Our proofs also rely on certain explicit distributions, which are of independent interest. In particular, we prove that, in a free pointed Brownian disk of perimeter 1, the density of the distribution of the distance from the distinguished point to the boundary is given by the function

p 1 prq :" 9 r ´6´r `2 3 r 3 ´´3 2 ¯1{2 ? π p1 `r2 q exp ´3 2r 2 ¯erfc ´c 3 2r 2 ¯¯,
with the usual notation erfcp¨q for the complementary error function. See Propositions 3 and 14 below for a short proof, which uses the representation of Brownian disks found in [START_REF] Gall | Brownian disks and the Brownian snake[END_REF] (with some more work, the same formula could also be derived from the representation in [START_REF] Bettinelli | Scaling limit of random planar quadrangulations with a boundary[END_REF][START_REF] Bettinelli | Compact Brownian surfaces I. Brownian disks[END_REF]).

The paper is organized as follows. Section 5.2 contains a number of preliminaries, and in particular we introduce the formalism of snake trajectories [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF], and the associated Brownian snake excursion measures, to code compact continuous random trees equipped with real labels. We also introduce the notion of a "coding triple" for a non-compact continuous random tree. Such a coding triple consists of a random process representing the labels on the spine, and two random point measures on the space of all pairs pt, ωq, where t ě 0 and ω is a snake trajectory (the idea is that, for every such pair, the labeled tree coded by ω will be grafted to the left or to the right of the spine at level t). The main goal of Section 5.3 is to define the coding triple associated with the infinite-volume Brownian disk or, in other words, to make sense of the conditioning appearing in case 2 above. Section 5.4 then gives the construction of the random metric spaces of interest from the corresponding coding triples, starting from the construction of the Brownian plane in [START_REF] Curien | The hull process of the Brownian plane[END_REF]. As an important ingredient of our discussion, we consider the free pointed Brownian disk D paq z with perimeter z and height a (recall that the height refers to the distance from the distinguished point to the boundary). The infinite-volume Brownian disk with perimeter z is then obtained as the local limit of D paq z in the Gromov-Hausdorff sense when a Ñ 8. In an analogous manner, we construct the Brownian half-plane and we verify that it is the tangent cone in distribution of the free Brownian disk at a point chosen uniformly on its boundary. Finally, Section 5.5 is devoted to our applications to the complement of hulls and to horohulls in the Brownian plane, and Section 5.6 shows that our definitions of the infinite-volume Brownian disk and of the Brownian half-plane are consistent with previous work.
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Preliminaries

Snake trajectories

Continuous random trees whose vertices are assigned real labels play a fundamental role in this work. The formalism of snake trajectories, which has been introduced in [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF], provides a convenient framework to deal with such labeled trees.

A (one-dimensional) finite path w is a continuous mapping w : r0, ζs ÝÑ R, where the number ζ " ζ pwq ě 0 is called the lifetime of w. We let W denote the space of all finite paths, which is a Polish space when equipped with the distance d W pw, w 1 q " |ζ pwq ´ζpw 1 q | `sup tě0 |wpt ^ζpwq q ´w1 pt ^ζpw 1 q q|.

The endpoint or tip of the path w is denoted by p w " wpζ pwq q. For x P R, we set W x " tw P W : wp0q " xu. The trivial element of W x with zero lifetime is identified with the point x of R. We also use the notation W 8 , resp. W 8

x , for the space of all continuous functions w : r0, 8q ÝÑ R, resp. the set of all such functions with wp0q " x. Définition 1. Let x P R. A snake trajectory with initial point x is a continuous mapping s Þ Ñ ω s from R `into W x which satisfies the following two properties:

(i) We have ω 0 " x and the number σpωq :" supts ě 0 : ω s " xu, called the duration of the snake trajectory ω, is finite (by convention σpωq " 0 if ω s " x for every s ě 0).

(ii) (Snake property) For every 0 ď s ď s 1 , we have ω s ptq " ω s 1 ptq for every t P r0, min sďrďs 1 ζ pωrq s. We will write S x for the set of all snake trajectories with initial point x and S " Ť xPR S x for the set of all snake trajectories. If ω P S, we often write W s pωq " ω s and ζ s pωq " ζ pωsq for every s ě 0. The set S is a Polish space for the distance

d S pω, ω 1 q " |σpωq ´σpω 1 q| `sup sě0 d W pW s pωq, W s pω 1 qq.
A snake trajectory ω is completely determined by the knowledge of the lifetime function s Þ Ñ ζ s pωq and of the tip function

s Þ Ñ x W s pωq: See [2, Proposition 8].
If ω is a snake trajectory, its time reversal ω defined by ωs " ω pσpωq´sq `is also a snake trajectory.

Let ω P S be a snake trajectory and σ " σpωq. The lifetime function s Þ Ñ ζ s pωq codes a compact R-tree, which will be denoted by T pωq and called the genealogical tree of the snake trajectory. This R-tree is the quotient space T pωq :" r0, σs{ " of the interval r0, σs for the equivalence relation (notice that d pωq ps, s 1 q " 0 if and only if s " s 1 , and see e.g. [START_REF] Gall | Scaling limits of random trees and planar maps[END_REF]Section 3] for more information about the coding of R-trees by continuous functions). We write p pωq : r0, σs ÝÑ T pωq for the canonical projection. By convention, T pωq is rooted at the point ρ pωq :" p pωq p0q, and the volume measure on T pωq is defined as the pushforward of Lebesgue measure on r0, σs under p pωq . If u, v P T pωq , rru, vss denotes the geodesic segment between u and v in T pωq , and we also use the notation rru, vrr or ssu, vrr with an obvious meaning.

It will be useful to define also intervals on the tree T pωq . For s, s 1 P r0, σs, we use the convention rs, s 1 s " rs, σs Y r0, s 1 s if s ą s 1 (and of course, rs, s 1 s is the usual interval if s ď s 1 ). If u, v P T pωq are distinct, then we can find s, s 1 P r0, σs in a unique way so that p pωq psq " u and p pωq ps 1 q " v and the interval rs, s 1 s is as small as possible, and we define ru, vs :" p pωq prs, s 1 sq. Informally, ru, vs is the set of all points that are visited when going from u to v in "clockwise order" around the tree. We take ru, us " tuu.

By property (ii) in the definition of a snake trajectory, the condition p pωq psq " p pωq ps 1 q implies that W s pωq " W s 1 pωq. So the mapping s Þ Ñ W s pωq can be viewed as defined on the quotient space T pωq . For u P T pωq , we set u pωq :" x W s pωq whenever s P r0, σs is such that u " p pωq psq (by the previous observation, this does not depend on the choice of s). We can interpret u pωq as a "label" assigned to the "vertex" u of T pωq . Notice that the mapping u Þ Ñ u pωq is continuous on T pωq , and that, for every s ě 0, the path W s pωq records the labels u pωq along the "ancestral line" rrρ pωq , p pωq psqss. We will use the notation W ˚pωq :" mint u pωq : u P T pωq u.

We now introduce two important operations on snake trajectories in S. The first one is the re-rooting operation (see [2, Section 2.2]). Let ω P S and r P r0, σpωqs. Then ω rrs is the snake trajectory in S

x Wrpωq such that σpω rrs q " σpωq and for every s P r0, σpωqs,

ζ s pω rrs q " d pωq pr, r ' sq, x W s pω rrs q " x W r's pωq,
where we use the notation r ' s " r `s if r `s ď σpωq, and r ' s " r `s ´σpωq otherwise. By a remark following the definition of snake trajectories, these prescriptions completely determine ω rrs . The genealogical tree T pω rrs q may be interpreted as the tree T pωq re-rooted at the vertex p pωq prq (see [51, Lemma 2.2] for a precise statement) and vertices of the re-rooted tree receive the same labels as in T pωq . We sometimes write W rts pωq instead of ω rts .

The second operation is the truncation of snake trajectories. Let x, y P R with y ă x. For every w P W x , set τ y pwq :" inftt P r0, ζ pwq s : wptq " yu with the usual convention inf ∅ " 8 (this convention will be in force throughout this work unless otherwise indicated). Then, if ω P S x , we set, for every s ě 0,

η s pωq " inf ! t ě 0 : ż t 0 du 1 tζ pωuq ďτypωuqu ą s ) .
Note that the condition ζ pωuq ď τ y pω u q holds if and only if τ y pω u q " 8 or τ y pω u q " ζ pωuq . Then, setting ω 1 s " ω ηspωq for every s ě 0 defines an element ω 1 of S x , which will be denoted by tr y pωq and called the truncation of ω at y (see [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF]Proposition 10]). The effect of the time change η s pωq is to "eliminate" those paths ω s that hit y and then survive for a positive amount of time. We leave it as an exercise for the reader to check that the genealogical tree T ptrypωqq is canonically and isometrically identified to the closed set tv P T pωq : u pωq ą y for every u P rrρ pωq , vrru, and this identification preserves labels.

The Brownian snake excursion measure on snake trajectories

Let x P R. The Brownian snake excursion measure N x is the σ-finite measure on S x that satisfies the following two properties: Under N x , (i) the distribution of the lifetime function pζ s q sě0 is the Itô measure of positive excursions of linear Brownian motion, normalized so that, for every ε ą 0,

N x ´sup sě0 ζ s ą ε ¯" 1 2ε ;
(ii) conditionally on pζ s q sě0 , the tip function p x W s q sě0 is a Gaussian process with mean x and covariance function Kps, s 1 q :" min s^s 1 ďrďs_s 1 ζ r .

Informally, the lifetime process pζ s q sě0 evolves under N x like a Brownian excursion, and conditionally on pζ s q sě0 , each path W s is a linear Brownian path started from x with lifetime ζ s , which is "erased" from its tip when ζ s decreases and is "extended" when ζ s increases. The measure N x can be interpreted as the excursion measure away from x for the Markov process in W x called the Brownian snake. We refer to [START_REF] Gall | Spatial Branching Processes, Random Snakes and Partial Differential Equations[END_REF] for a detailed study of the Brownian snake. For every y ă x, we have

N x pW ˚ď yq " 3 2px ´yq 2 .
(

See e.g. [65, Section VI.1] for a proof.

The measure N x is invariant under the time-reversal operation ω Þ Ñ ω. Furthermore, the following scaling property is often useful. For λ ą 0, for every ω P S x , we define θ λ pωq P S x ? λ by θ λ pωq " ω 1 , with ω 1 s ptq :" ? λ ω s{λ 2 pt{λq , for s ě 0 and 0

ď t ď ζ 1 s :" λζ s{λ 2 .
Then it is a simple exercise to verify that θ λ pN x q " λ N x ? λ .

Exit measures. Let x, y P R, with y ă x. Under the measure N x , one can make sense of a quantity that "measures the quantity" of paths W s that hit level y. One shows [71, Proposition 34] that the limit

L y t :" lim εÓ0 1 ε 2 ż t 0 ds 1 tτypWsq"8, x Wsăy`εu (5.2)
exists uniformly for t ě 0, N x a.e., and defines a continuous nondecreasing function, which is obviously constant on rσ, 8q. The process pL y t q tě0 is called the exit local time at level y, and the exit measure Z y is defined by Z y " L y 8 " L y σ . Then, N x a.e., the topological support of the measure dL y t is exactly the set ts P r0, σs : τ y pW s q " ζ s u, and, in particular, Z y ą 0 if and only if one of the paths W s hits y. The definition of Z y is a special case of the theory of exit measures (see [65, Chapter V] for this general theory). We will use the formula for the Laplace transform of Z y : For λ ą 0,

N x ´1 ´expp´λZ y q ¯" ´px ´yq a 2{3 `λ´1{2 ¯´2 . ( 5.3) 
See formula [START_REF] Addario-Berry | Convergence of odd-angulations via symmetrization of labeled trees[END_REF] in [START_REF] Curien | The hull process of the Brownian plane[END_REF] for a brief justification.

It will be useful to observe that Z y can be defined in terms of the truncated snake tr y pωq. To this end, recall the time change pη s pωqq sě0 used to define tr y pωq at the end of Section 5.2.1, and set r L y t " L y ηt for every t ě 0. Then r L y 8 " L y 8 " Z y , whereas formula (8.7) implies that

r L y t " lim εÓ0 1 ε 2 ż t 0 ds 1 t x
Wsptrypωqqăy`εu (5.4) uniformly for t ě 0, N x a.e.

The positive excursion measure

We now introduce another σ-finite measure on S 0 , which is supported on snake trajectories taking only nonnegative values. For δ ě 0, let S pδq be the set of all ω P S such that sup sě0 psup tPr0,ζspωqs |ω s ptq|q ą δ. Also set S 0 " tω P S 0 : ω s ptq ě 0 for every s ě 0, t P r0, ζ s pωqsu X S p0q .

By [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF]Theorem 23], there exists a σ-finite measure N ˚on S, which is supported on S 0 and gives finite mass to the sets S pδq for every δ ą 0, such that

N ˚pGq " lim εÓ0 1 ε N ε pGptr 0 pωqqq,
for every bounded continuous function G on S that vanishes on SzS pδq for some δ ą 0. Under N ˚, each of the paths W s , 0 ă s ă σ, starts from 0, then stays positive during some time interval p0, αq, and is stopped immediately when it returns to 0, if it does return to 0.

The re-rooting formula. We can relate the measure N ˚to the excursion measures N x of the preceding section via a re-rooting formula which we now state [2, Theorem 28]. Recall the notation ω rts for the snake trajectory ω re-rooted at t. For any nonnegative measurable function G on S, we have

N ˚´ż σ 0 dt Gpω rts q ¯" 2 ż 8 0 dx N x ´Z0 Gptr 0 pωqq ¯. (5.5)
Conditioning on the exit measure at 0. In a way analogous to the definition of exit measures, one can make sense of the "quantity" of paths W s that return to 0 under N ˚. To this end, one observes that the limit

Z 0 :" lim εÓ0 1 ε 2 ż σ 0 ds 1 t x Wsăεu (5.6)
exists N ˚a.e. (this indeed follows from (5.4), using (5.5) to relate N ˚to the distribution of tr 0 pωq under N x , x ą 0).

According to [2, Proposition 33], there exists a unique collection pN ˚,z q zą0 of probability measures on S 0 such that:

(i) We have N ˚" c 3 2π ż 8 0 dz z ´5{2 N ˚,z .
(ii) For every z ą 0, N ˚,z is supported on tZ 0 " zu.

(iii) For every z, z 1 ą 0, N ˚,z 1 " θ z 1 {z pN ˚,z q.

Informally, N ˚,z " N ˚p¨| Z 0 " zq.

It will be convenient to have a "pointed version" of the measures N ˚,z . We note that N ˚,z pσq " z 2 (see the remark after [71, Proposition 15]) and define a probability measure on S 0 ˆR`b y setting

N ˚,z
pdωdtq " z ´2 N ˚,z pdωq 1 r0,σpωqs ptq dt.

Coding finite or infinite labeled trees

Many of the random compact (resp. non-compact) metric spaces that we discuss in the present work are coded by triples pZ, M, M 1 q where Z " pZ t q tPr0,hs (resp. Z " pZ t q tPr0,8q ) is a finite (resp. infinite) random path, and M and M 1 are random point measures on r0, hs ˆS (resp. on r0, 8q ˆS). Such a triple is called a coding triple, and we interpret it as coding a labeled tree, having a spine isometric to r0, hs or to r0, 8q, in such a way that the path Z corresponds to labels along the spine, and, for each atom pt i , ω i q of M (resp. of M 1 ), the genealogical tree of ω i corresponds a subtree branching off the left side (resp. off the right side) of the spine at level t i .

The random metric spaces of interest are then obtained via some identification of vertices in the labeled trees, and equipped with a metric which is determined from the labels.

In this section we explain how coding triples are used to construct labeled trees. We follow closely the presentation given in [START_REF] Curien | The hull process of the Brownian plane[END_REF] for a special case.

The infinite spine case. We consider a (deterministic) triple pw, P, P 1 q such that:

(i) w P W 8 ;

(ii) P " ř iPI δ pt i ,ω i q and P 1 " ř iPJ δ pt i ,ω i q are point measures on p0, 8q ˆS (the indexing sets I and J are disjoint), and, for every i P I Y J, ω i P S wpt i q and σpω i q ą 0;

(iii) all numbers t i , i P I Y J, are distinct;

(iv) the functions u Þ Ñ β u :" ÿ iPI 1 tt i ďuu σpω i q , u Þ Ñ β 1 u :" ÿ iPJ 1 tt i ďuu σpω i q .
take finite values and are monotone increasing on R `, and tend to 8 at 8 (in particular, the sets tt i : i P Iu and tt i : i P Ju are dense in p0, 8q);

(v) for every t ą 0 and ε ą 0, # ! i P I Y J : t i ď t and sup

0ďsďσpω i q | x W s pω i q ´wpt i q| ą ε ) ă 8.
(5.7) Such a triple pw, P, P 1 q will be called an infinite spine coding triple. Recall the notation T pωq for the genealogical tree of the snake trajectory ω and ρ pωq for the root of T pωq . The tree T 8 associated with the coding triple pw, P, P 1 q is obtained from the disjoint union r0, 8q Y ˜ď iPIYJ T pω i q by identifying the point t i of r0, 8q with the root ρ pω i q of T pω i q , for every i P I Y J. The metric d T8 on T 8 is determined as follows. The restriction of d T8 to each tree T pω i q is the metric d pω i q on T pω i q , and the restriction of d T8 to the spine r0, 8q is the usual Euclidean distance. If x P T pω i q and t P r0, 8q, we take d T8 px, tq " d pω i q px, ρ pω i q q `|t i ´t|. If x P T pω i q and y P T pω j q , with i " j, we take d T8 px, yq " d pω i q px, ρ pω i q q `|t i ´tj | `dpω j q pρ pω j q , yq. We note that T 8 is a non-compact R-tree. By convention, T 8 is rooted at 0. The tree T 8 is equipped with a volume measure, which is defined as the sum of the volume measures on the trees T pω i q , i P I Y J.

We can also define labels on T 8 . The label Λ x of x P T 8 is defined by Λ x " wptq if x " t belongs to the spine r0, 8q, and Λ x " x pω i q if x belongs to T pω i q , for some i P I Y J. Note that the mapping x Þ Ñ Λ x is continuous (use property (5.7) to check continuity at points of the spine).

For our purposes, it is important to define an order structure on T 8 . To this end, we introduce a "clockwise exploration" of T 8 , which is defined as follows. Write β u´a nd β 1 u´f or the respective left limits at u of the functions u Þ Ñ β u and u Þ Ñ β 1 u introduced in (iv) above, with the convention β 0´" β 1 0´" 0. Then, for every s ě 0, there is a unique u ě 0 such that β u´ď s ď β u , and:

' Either we have u " t i for some i P I (then σpω i q " β t i ´βt i ´), and we set E s :" p pω i q ps ´βt i ´q.

' Or there is no such i and we set E s " u.

We define similarly pE ś q sě0 . For every s ě 0, there is a unique u ě 0 such that β 1 u´ď s ď β 1 u , and: ' Either we have u " t i for some i P J, and we set E ś :" p pω i q pβ 1 t i ´sqp " p p ωi q ps ´β1 t i ´qq.

' Or there is no such i and we set E ś " u.

Informally, pE s q sě0 and pE ś q sě0 correspond to the exploration of the left and right side of the tree T 8 respectively. Noting that E 0 " E 0 " 0, we define pE s q sPR by setting

E s :" # E s if s ě 0, E ´s if s ď 0.
It is straightforward to verify that the mapping s Þ Ñ E s from R onto T 8 is continuous. We also note that the volume measure on T 8 is the pushforward of Lebesgue measure on R under the mapping s Þ Ñ E s .

rs, ts " rs, 8q Y p´8, ts. Then, for every x, y P T 8 , such that x " y, there is a smallest interval rs, ts, with s, t P R, such that E s " x and E t " y, and we define rx, ys :" tE r : r P rs, tsu.

Note that we have typically rx, ys " ry, xs. Of course, we take rx, xs " txu. We sometimes also use the self-evident notation sx, yr. For x P T 8 , we finally define rx, 8q " tE r : r P rs, 8qu, where s is the largest real such that E s " x, and we define p´8, xs in a similar manner. Note that rx, 8q X p´8, xs " rrx, 8rr is the range of the geodesic ray starting from x in T 8 .

The finite spine case. It will also be useful to consider the case where w " pwptqq 0ďtďζ is a finite path in W with positive lifetime ζ, and P and P 1 are now point measures supported on p0, ζs ˆS.

We then assume that the obvious adaptations of properties (i)-(v) hold, and in particular (iv) is replaced by

(iv)' the functions u Þ Ñ β u :" ř iPI 1 tt i ďuu σpω i q , u Þ Ñ β 1 u :"
ř iPJ 1 tt i ďuu σpω i q take finite values and are monotone increasing on r0, ζs.

The same construction yields a (labeled) compact R-tree pT , pΛ v q vPT q, with a spine represented by the interval r0, ζs. The distance on T is denoted by d T and the labels are defined in exactly the same way as in the infinite spine case. The tree T has a cyclic order structure induced by a clockwise exploration function E s , which is conveniently defined on the interval r0, β ζ `β1 ζ s: Informally pE s , s P r0, β ζ sq is obtained by concatenating the mappings p pω i q for all atoms pt i , ω i q of P, in the increasing order of the t i 's, and pE s ,

s P rβ ζ , β ζ `β1
ζ sq is obtained by concatenating the mappings p pω j q for all atoms pt j , ω j q of P 1 , in the decreasing order of the t j 's (in particular,

E 0 " E β ζ `β1
ζ is the root or bottom of the spine and E β ζ is the top of the spine). In order to define "intervals" on the tree T , we now make the convention that, if s, t P r0, β ζ `β1 ζ s and t ă s, rs, ts " rs, β ζ `β1 ζ s Y r0, ts. In that setting, we again refer to pw, P, P 1 q as a (finite spine) coding triple.

Here, in contrast with the infinite spine case, we can also represent the labeled tree pT , pΛ v q vPT q by a snake trajectory ω P S wp0q such that T pωq " T , which is defined as follows. The duration σpωq is equal to β ζ `β1 ζ , and, for every s P r0, β ζ `β1 ζ s, the finite path ω s is such that ζ pωsq " d T pE 0 , E s q and p ω s " Λ Es (by a remark in Section 5.2.1, this completely determines ω). The snake trajectory ω obtained in this way will be denoted by ω " Ωpw, P, P 1 q. We note that the triple pw, P, P 1 q contains more information than ω: Roughly speaking, in order to recover this triple from ω, we need to know s 0 P p0, σpωqq, such that the ancestral line of p pωq ps 0 q in the genealogical tree of ω corresponds to the spine.

It will be useful to consider the spine reversal operation on (finite spine) coding triples satisfying our assumptions, which is defined by

SR ´pwptqq 0ďtďζ , ÿ iPI δ pt i ,ω i q , ÿ jPJ δ pt 1 j ,ω 1 j q ¯:" ´pwpζ ´tqq 0ďtďζ , ÿ jPJ δ pζ´t 1 j ,ω 1 j q , ÿ iPI δ pζ´t i ,ω i q ¯. (5.8)
We note that the labeled trees associated with the coding triples in the left and right sides of (5.8) are identified via an isometry that preserves labels and intervals, but the roles of the top and the bottom of the spine are interchanged. Informally, the spine reversal operation corresponds to a re-rooting at the other end of the spine.

In Section 5.3 below we investigate relations between different distributions on coding triples, and in Section 5.4 we explain how to go from (random) coding triples to the random metric spaces of interest in this work.

Important remark. Later, when we speak about the tree associated with a coding triple (as we just defined both in the finite and in the infinite spine case), it will always be understood that this includes the labeling on the tree and the clockwise exploration, which is needed to make sense of intervals on the tree.

Spine decomposition under N a . Let a ą 0. We conclude this section with a result connecting the measure N a with a (finite spine) coding triple. Arguing under N a pdωq, for every r P p0, σq, we can define two point measures P prq and P 1 prq that account for the (labeled) subtrees branching off the ancestral line of p pωq prq in the genealogical tree T pωq . Precisely, if r is fixed, we consider all connected components pu i , v i q, i P I, of the open set ts P r0, rs : ζ s pωq ą min tPrs,rs ζ t pωqu, and for each i P I, we define a snake trajectory ω i by setting σpω i q " v i ´ui and, for every s P r0, σpω i qs, ω i s ptq :" ω u i `spζ u i pωq `tq , for 0 ď t ď ζ pω i s q :" ζ u i `spωq ´ζu i pωq. Note that ω i P S p ωu i , and p ω u i " ω r pζ u i q by the snake property. We then set P prq " ř iPI δ pζu i ,ω i q . To define P 1 prq , we proceed in a very similar manner, replacing the interval r0, rs by rr, σs. Recall our notation pL 0 s q sPr0,σs for the exit local time at level 0. Let M p pR `ˆS q stand for the set of all point measures on R `ˆS . Proposition 2. Let a ą 0 and let Y " pY t q 0ďtďT Y stand for a linear Brownian motion started from a and stopped at its first hitting time of 0. Conditionally given Y , let M and M 1 be two independent Poisson point measures on R `ˆS with intensity

2 1 r0,T Y s ptq dt N Yt pdωq.
Then, for any nonnegative measurable function F on W ˆMp pR `ˆS q 2 , we have

N a ´ż σ 0 dL 0 r F pW r , P prq , P 1 prq q ¯" E " F pY , M, M 1 q ı .
It is straightforward to verify that N a pdωq a.e., for every r P p0, σq, pW r , P prq , P 1 prq q is a coding triple in the sense of the previous discussion (finite spine case), and ΩpW r , P prq , P 1 prq q " ω.

Proof. We may assume that F pW r , P prq , P 1 prq q " F 1 pW r qF 2 pP prq qF 3 pP 1 prq q where F 1 is defined on W and F 2 and F 3 are defined on M p pR `ˆS q. Let pτ 0 r q rě0 be the inverse local time defined by τ 0 r " infts ě 0 : L 0 s ě ru. Then,

N a ´ż σ 0 dL 0 r F 1 pW r qF 2 pP prq qF 3 pP 1 prq q ¯" ż 8 0 dr N a ´1tτ 0 r ă8u F 1 pW τ 0 r qF 2 pP pτ 0 r q qF 3 pP 1 pτ 0 r q q ¯.
We may now apply the strong Markov property of the Brownian snake [65, Theorem IV.6], noting that F 1 pW τ 0 r qF 2 pP τ 0 r q is measurable with respect to the past up to time τ 0 r . Using also [65, Lemma V.5], we get, for every r ą 0, N a ´1tτ 0 r ă8u F 1 pW τ 0 r qF 2 pP pτ 0 r q qF 3 pP 1 pτ 0 r q q ¯" N a ´1tτ 0 r ă8u F 1 pW τ 0 r qF 2 pP pτ 0 r q q P pW τ 0

r q pF 3 q ¯,
where, for any finite path w, we write P pwq for the distribution of a Poisson point measure on R `ˆM p pSq with intensity 2 1 r0,ζ pwq s ptq dt N wptq pdωq. From the preceding two displays, we arrive at

N a ´ż σ 0 dL 0 r F 1 pW r qF 2 pP prq qF 3 pP 1 prq q ¯" N a ´ż σ 0 dL 0 r F 1 pW r qF 2 pP prq q P pWrq pF 3 q ¯.
By the invariance of the excursion measure N a under time-reversal, the right-hand side of the last display is also equal to

N a ´ż σ 0 dL 0 r F 1 pW r qF 2 p P1 prq q P pWrq pF 3 q ¯,
where we write P1 prq pdsdωq for the image of P 1 prq pdsdωq under the mapping ps, ωq Þ Ñ ps, ωq. Then the same application of the strong Markov property shows that this equals

N a ´ż σ 0 dL 0 r F 1 pW r q P pWrq pF 2 q P pWrq pF 3 q ¯.
Finally, the first-moment formula in [START_REF] Gall | Spatial Branching Processes, Random Snakes and Partial Differential Equations[END_REF]Proposition V.3] shows that this quantity is also equal to E " F 1 pY q P pY q pF 2 q P pY q pF 3 q ı with the notation of the proposition. This completes the proof.

Proposition 2 will allow us to relate properties valid under N a to similar properties for the triple pY , M, M 1 q. Let us illustrate this on an example that will be useful later. Recall from (8.7) that the exit measure Z 0 satisfies

Z 0 " lim εÓ0 1 ε 2 ż σ 0 ds 1 tτ 0 pWsq"8, x
Wsăεu , N a a.e.

Replacing the limit by a liminf, we may assume that Z 0 pωq is defined for every ω P W. It is a simple matter to verify that, N a a.e. for every r such that ζ r " τ 0 pW r q, we have Z 0 " ż P prq pdtd q Z 0 p q `ż P 1 prq pdtd q Z 0 p q.

(5.9)

Then, if we define Z Y :" ş Mpdtd q Z 0 p q `ş M 1 pdtd q Z 0 p q, we deduce from Proposition 2 that, for any nonnegative measurable function ϕ on R `, we have N a pZ 0 ϕpZ 0 qq "

ErϕpZ Y qs. More generally, set τ Y u " inftt ě 0 : Y t " uu and Z Y u :" ş Mpdtd q 1 ttăτ Y u u Z u p q ş M 1 pdtd q 1 ttăτ Y u u Z 0 p q,
for every u P p0, aq. Then we have

N a pZ 0 ϕpZ 0 , Z u 1 , . . . Z up qq " ErϕpZ Y , Z Y u 1 , . . . , Z Y up qs, (5.10) 
for every 0 ă u 1 ă ¨¨¨ă u p ă a and any nonnegative measurable function ϕ on R p`1 `.

Distributional relations between coding processes

Some explicit distributions

Let us introduce the function

ψpxq " 2 ? π px 1{2 `x´1{2 q ´2px `3 2 q e x erfcp ? xq, x ą 0.
Note that ψpxq " x ´1χ 3 pxq in the notation of the Appendix below, and thus, by formula (A.3) there, ż 8 0 e ´λx xψpxq dx " p1 `?λq ´3, λ ě 0.

(5.11)

Furthermore one checks from the explicit formula for ψ that ψpxq " 2 ? π x ´1{2 `Op1q as x Ñ 0, and ψpxq " 3 2 ?

π x ´5{2 `Opx ´7{2 q as x Ñ 8. Proposition 3. (i) Let a ą 0. The density of Z 0 under N a p¨X tZ 0 " 0uq is h a pzq :" ´3 2a 2 ¯2 ψp 3z 2a 2 q, z ą 0. (5.12) 
(ii) For every z ą 0 and a ą 0, set

p z paq :" 2 ´3 2 ¯3{2 ? π z 3{2 a ´4 ψp 3z 2a 2 q.
Then, a Þ Ñ p z paq defines a probability density on p0, 8q, and for every nonnegative measurable function g on r0, 8q,

z ´2N ˚,z ´ż σ 0 ds gp x W s q ¯" ż 8 0 da p z paq gpaq.
Remark. The construction of Brownian disks in [START_REF] Gall | Brownian disks and the Brownian snake[END_REF] allows us to interpret (ii) by saying that p z is the density of the distribution of the distance from the distinguished point to the boundary in a free pointed Brownian disk with perimeter z. See Proposition 14 below.

Proof. (i) From (5.3), we have for λ ě 0,

N a ´1 ´expp´λZ 0 q ¯" ´aa 2{3 `λ´1{2 ¯´2 " 3 2a 2 ´1 `´2a 2 λ 3 ¯´1{2 ¯´2 ,
and in particular N a pZ 0 " 0q " 3 2a 2 in agreement with (5.1). On the other hand, by formula (A.4) in the Appendix, ż 8 0 p1 ´e´λx q ψpxq dx " p1 `λ´1{2 q ´2.

Part (i) follows by comparing the last two displays.

(ii) From (8.7) and (5.6), we get the existence of a measurable function Γ on S such that Z 0 " Γptr 0 pωqq, N a pdωq a.e., for any a ą 0, and also Z 0 " Γpωq " Γpω rts q for every t P r0, σpωqs, N ˚pdωq a.e. By applying the re-rooting formula (5.5) with Gpωq " f pΓpωqqgpω 0 q, where f and g are nonnegative real functions, we get

N ˚´f pZ 0 q ż σ 0 ds gp x W s q ¯" 2 ż 8 0 da gpaq N a ´Z0 f pZ 0 q ¯.
The left-hand side can be written as

c 3 2π ż 8 0 dz z ´5{2 f pzq N ˚,z ´ż σ 0 ds gp x W s q ¯.
On the other hand, part (i) allows us to rewrite the right-hand side as 2

ż 8 0 da gpaq ż 8 0 dz h a pzq z f pzq " 2 ż 8 0 dz z f pzq ż 8 0 da h a pzq gpaq.
By comparing the last two displays, we get, dz a.e.,

z ´2N ˚,z ´ż σ 0 ds gp x W s q ¯" 2 c 2π 3 z 3{2 ż 8 0 da h a pzq gpaq " ż 8 0 da p z paq gpaq,
where p z paq is as in the proposition. A scaling argument shows that this identity indeed holds for every z ą 0. Since z ´2N ˚,z pσq " 1, p z is a probability density, which may also be checked directly.

A distributional identity for coding triples

As we already explained, coding triples will be used to construct the random metric spaces of interest in this work. The relevant case for the forthcoming construction of the infinite-volume Brownian disk with perimeter z ą 0 may be described as follows: we let R " pR t q tPr0,8q be a three-dimensional Bessel process started from 0, we assume that, conditionally on R, P and P 1 are independent Poisson measures with intensity 2 dt N Rt pdωq, and finally we condition on the event Z " z, where Z denotes the total exit measure at 0 of the atoms of P and P 1 . In Section 5.3.3, we will give a precise meaning to this conditioning and obtain a conditional distribution Θ z on coding triples, which plays an important role in the next sections. Before doing that, we need to develop certain preliminary tools, and we first recall special cases of a well-known time-reversal property for Bessel processes. Let R be as above and let X be a Bessel process of dimension 9 started from 0. Then, for every a ą 0, (a) If L a :" suptt ě 0 : R t " au, the process pR La´t , 0 ď t ď L a q is distributed as a linear Brownian motion started from a and stopped upon hitting 0.

(b) If L a :" suptt ě 0 : X t " au, the process pX La´t , 0 ď t ď L a q is distributed as a Bessel process of dimension ´5 started from a and stopped upon hitting 0.

Both (a) and (b) are special cases of a more general result for Bessel processes, which is itself a consequence of Nagasawa's time-reversal theorem (see [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF]Theorem VII.4.5], and [92, Exercise XI. 1.23] for the case of interest here, and note that part (a) is due to Williams [START_REF] Williams | Path decomposition and continuity of local time for one-dimensional diffusions[END_REF]). If 0 ă a ă b, an application of the strong Markov property of the process X L b ´t at the first time it hits a shows that pX La´t , 0 ď t ď L a q, or equivalently pX t , 0 ď t ď L a q, is independent of pX pLa`tq^L b , t ě 0q. Letting b tend to infinity we get that pX La`t , t ě 0q is independent of pX t , 0 ď t ď L a q, and similarly the process pR La`t , t ě 0q is independent of pR t , 0 ď t ď L a q. These properties are used implicitly in what follows.

Let us introduce some notation needed for the technical results that follow. We fix a ą 0 and consider a triple pY , M, M 1 q distributed as in Proposition 2: Y " pY t , 0 ď t ď T Y q is a linear Brownian motion started from a and stopped at the first time it hits 0, and, conditionally on Y , M and M 1 are independent Poisson point measures on R `ˆS with intensity 2 1 r0,T Y s ptq dt N Yt pdωq. We also introduce the point measures Ă M and Ă M 1 obtained by truncating the atoms of M and M 1 at level 0. More precisely, for any nonnegative measurable function Φ on R `ˆS , we set ż Ă Mpdtdωq Φpt, ωq :" ż Mpdtdωq Φpt, tr 0 pωqq and Ă M 1 is defined similarly from M 1 . We will be interested in the triple pY , Ă M, Ă M 1 q, which we may view as a coding triple in the sense of Section 5.2.4.

We define

Z Y " ż MpdtdωqZ 0 pωq `ż M 1 pdtdωqZ 0 pωq
in agreement with the end of Section 5.2.4. We saw that, for any nonnegative measurable function ϕ on R `, we have ErϕpZ Y qs " N a pZ 0 ϕpZ 0 qq. It then follows from Proposition 3 (i) that the distribution of Z Y has density z h a pzq. In particular, we have

Ere ´λZ Y s " ż 8 0 z h a pzq e ´λz dz " ´1 `aa 2λ{3 ¯´3 , (5.13) 
by (5.11) and (5.12). We write p Θpaq z q zą0 for a regular version of the conditional distributions of the triple pY , Ă M, Ă M 1 q knowing that Z Y " z. The collection p Θpaq z q zą0 is well defined only up to a set of values of z of zero Lebesgue measure, but we will see later how to make a canonical choice of this collection.

Let us also fix r ą 0. We next consider a triple pV , N , N 1 q, where ' V " pV t , 0 ď t ď T V q is distributed as a Bessel process of dimension ´5 started from r `a and stopped at the first time it hits r. ' Conditionally on V , N and N 1 are independent Poisson point measures on R `ˆS with intensity 2 1 r0,T V s ptq dt N Vt pdω X tW ˚ą 0uq, where we recall the notation W ˚pωq " mint x W s pωq : 0 ď s ď σpωqu.

We write r N and r N 1 for the point measures obtained by truncating the atoms of N and N 1 at level r, in the same way as Ă M was defined above from M by truncation at level 0. We also introduce the exit measure

Z V " ż N pdtdωqZ r pωq `ż N 1 pdtdωqZ r pωq.
As we will see in the next proof, the distributions of Z V and Z Y are related by the formula

ErhpZ V qs " ´r `a r ¯3 ErhpZ Y q e ´3 2r 2 Z Y s. (5.14)
In particular, the distribution of Z V also has a positive density on p0, 8q.

We let ϑ r stand for the obvious shift that maps snake trajectories with initial point x to snake trajectories with initial point x ´r. If µ " ř iPI δ pt i ,ω i q is a point measure on R `ˆS , we also write ϑ r µ " ř iPI δ pt i ,ϑrω i q , by abuse of notation.

Proposition 4. The collection p Θpaq z q zą0 is a regular version of the conditional distributions of pV ´r, ϑ r r N , ϑ r r N 1 q knowing that Z V " z.

In other words, the conditional distribution of pV ´r, ϑ r r N , ϑ r r N 1 q knowing that Z V " z coincides with the conditional distribution of pY , Ă M, Ă M 1 q knowing that Z Y " z. In particular, the conditional distribution of pV ´r, ϑ r r N , ϑ r r N 1 q knowing that Z V " z does not depend on r, which is by no means an obvious fact. This fact can be extended to Bessel processes of other dimensions, provided that the intensity measure of the Poisson measures N and N 1 is changed accordingly, but we shall leave this extension to the reader.

Proof. Recall our notation M p pR `ˆS q for the set of all point measures on R `ˆS . As in the proof of Proposition 2, if w is a finite path taking nonnegative values, we write P pwq pdµq for the probability measure on M p pR `ˆS q which is the distribution of a Poisson point measure on R `ˆS with intensity 2 1 r0,ζ pwq s ptq dt N wptq pdωq. Denoting the generic element of M p pR `ˆS q ˆMp pR `ˆS q by pµ, µ 1 q, we have the formula

P pwq b P pwq pµpW ˚ď 0q " µ 1 pW ˚ď 0q " 0q " exp ´´4 ż ζ pwq 0 dt N wptq pW ˚ď 0q ¯" exp ´´6 ż ζ pwq 0 dt wptq 2 ¯,
(5.15) where in the left-hand side we abuse notation by writing µpW ˚ď 0q instead of µptpt, ωq P R `ˆS :

W ˚pωq ď 0uq.
We then introduce a random finite path pU t q 0ďtďT U , which is distributed as a linear Brownian motion started from r `a and stopped when hitting r (so U ´r has the same distribution as Y ). Let P and P 1 be random elements of M p pR `ˆS q such that the conditional distribution of the pair pP, P 1 q given U is P pU q b P pU q pdµdµ 1 q. Define Z U " ż PpdtdωqZ r pωq `ż P 1 pdtdωqZ r pωq, and also write r P, resp. r P 1 , for the point measure P, resp. P 1 , truncated at level r. Then, the statement of the proposition reduces to showing that the conditional distribution of pV , r N , r N 1 q knowing that Z V " z coincides dz a.e. with the conditional distribution of pU , r P, r P 1 q knowing that Z U " z (an obvious translation argument yields that pU ´r, ϑ r r P, ϑ r r P 1 , Z U q has the same law as pY , Ă M, Ă M 1 , Z Y q above). The first step of the proof is to verify that, for any nonnegative measurable functions F and G defined on W and on M p pR `ˆS q 2 respectively, E " F pU qGpP, P 1 q ˇˇPpW ˚ď 0q " P 1 pW ˚ď 0q " 0 ı " E " F pV q P pV q b P pV q rGpµ, µ 1 q | µpW ˚ď 0q " µ 1 pW ˚ď 0q " 0s ı .

(5.16)

To prove (5.16), we first apply (5.15) to get

P ´PpW ˚ď 0q " P 1 pW ˚ď 0q " 0 ¯" E " exp ´´6 ż T U 0 dt U 2 t ¯ı " ´r r `a ¯3
where the last equality is easily derived by using Itô's formula to verify that U ´3 t^T U expp´6

ş t^T U 0 U ´2 s dsq is a martingale. So we have ´r r `a ¯3E
" F pU qGpP, P 1 q ˇˇPpW ˚ď 0q " P 1 pW ˚ď 0q " 0 ı " E " F pU qGpP, P 1 q 1 tPpW˚ď0q"P 1 pW˚ď0q"0u

ı " E " F pU q P pU q b P pU q rGpµ, µ 1 q 1 tµpW˚ď0q"µ 1 pW˚ď0q"0u s

ı

" E " F pU q exp ´´6 ż T U 0 dt U 2 t
¯PpUq b P pU q rGpµ, µ 1 q | µpW ˚ď 0q " µ 1 pW ˚ď 0q " 0s ı using (5.15) in the last equality. To complete the proof of (5.16), we just observe that, by classical absolute continuity relations between Brownian motion and Bessel processes, the law of U under the probability measure

´r `a r ¯3 exp ´´6 ż T U 0 dt U 2 t ¯¨P
coincides with the law of V under P (see [69, Lemma 1] for a short proof). Let us complete the proof of the proposition. By a standard property of Poisson measures and the definition of the pair pN , N 1 q, we have ErGpN , N 1 q | V s " P pV q b P pV q rGpµ, µ 1 q | µpW ˚ď 0q " µ 1 pW ˚ď 0q " 0s.

It thus follows from (5.16) that E " F pU qGpP, P 1 q ˇˇPpW ˚ď 0q " P 1 pW ˚ď 0q " 0 ı " ErF pV q ErGpN , N 1 q | V ss " ErF pV q GpN , N 1 qs.

In particular, for any nonnegative measurable function h on r0, 8q, we have E " F pU qGp r P, r P 1 qhpZ U q ˇˇPpW ˚ď 0q " P 1 pW ˚ď 0q " 0 ı " ErF pV q Gp r N , r N 1 q hpZ V qs.

The left-hand side of the last display is equal to ´r `a r ¯3 E " F pU qGp r P, r P 1 qhpZ U q expp´3 2r 2 Z U q ı because, on one hand, we saw that PpPpW ˚ď 0q " P 1 pW ˚ď 0q " 0q " p r r`a q 3 and, on the other hand, the special Markov property (see e.g. the appendix of [START_REF] Gall | Subordination of trees and the Brownian map[END_REF]) and (5.1) show that PpPpW ˚ď 0q " P 1 pW ˚ď 0q " 0 | U , r P, r P 1 q " expp´3 2r 2 Z U q.

We can find nonnegative measurable functions ϕ 1 and ϕ 2 on r0, 8q such that

E " F pU qGp r P, r P 1 q | Z U s " ϕ 1 pZ U q , ErF pV q Gp r N , r N 1 q | Z V s " ϕ 2 pZ V q ,
and it follows from the preceding considerations that, for any function h,

´r `a r ¯3 Erϕ 1 pZ U q hpZ U q expp´3 2r 2 Z U qs " Erϕ 2 pZ V qhpZ V qs.
(5.17)

By specializing this identity to the case F " 1, G " 1, we get the relation (5.14) between the distributions of Z V and Z Y (recall that Z U has the same distribution as Z Y ). It then also follows from (5.17) that (for arbitrary F and G) we have Erϕ 1 pZ V qhpZ V qs " Erϕ 2 pZ V qhpZ V qs for any test function h, so that ϕ 1 pZ V q " ϕ 2 pZ V q a.s. and ϕ 1 pzq " ϕ 2 pzq, dz a.e., which completes the proof.

For every z ą 0, we let Θ paq z denote the image of Θpaq z under the spine reversal transformation SR in (5.8). Since the process pY t , 0 ď t ď T Y q is mapped by time-reversal to a three-dimensional Bessel process started from 0 and stopped at its last passage at a (by property (a) stated at the beginning of the section), we could have defined Θ paq z directly in terms of conditioning a coding triple whose first component is a three-dimensional Bessel process up to a last passage time. The connection with the discussion at the beginning of this section should then be clear: Θ paq z is the analog of the probability measure Θ z we are aiming at, when the three-dimensional Bessel process is truncated at a last passage time.

The coding triple of the infinite-volume Brownian disk

In this section, we define the probability measures Θ z , z ą 0, which were introduced informally at the beginning of the preceding section. Roughly speaking, the idea is to get Θ z as the limit of Θ paq z as a Ñ 8. Proposition 6 below will also show that, for every r ą 0, the collection pΘ z q zą0 corresponds to conditional distributions of a coding triple whose first component is a ninedimensional Bessel process considered after its last passage time at r (compare with Proposition 4). The latter fact is the key to the identification as infinite-volume Brownian disks of the complement of hulls in the Brownian plane.

We consider a triple pX, L, Rq such that X " pX t q tě0 is a nine-dimensional Bessel process started from 0 and, conditionally on X, L and R are two independent Poisson measures on R `ˆS with intensity 2 dt N Xt pdω X tW ˚ą 0uq.

As previously, we set, for every r ą 0, L r :" suptt ě 0 : X t " ru. (5.18) In what follows, we fix r ą 0, and we shall be interested in atoms pt, ωq of L or R such that t ą L r . More precisely, we introduce a point measure L prq as the image of 1 pLr,8q ptq Lpdt dωq under the mapping pt, ωq Þ Ñ pt ´Lr , ϑ r ωq (where ϑ r is the shift operator already used in Proposition 4). In a way similar to the previous section, we define r L prq by truncating the atoms of L prq at level 0 (more precisely, r L prq is the image of L prq under the mapping pt, ωq Þ Ñ pt, tr 0 pωqq). We define similarly R prq and r R prq from the point measure R. Finally, we set

Z prq " ż L prq pdtdωq Z 0 pωq `ż R prq pdtdωq Z 0 pωq " ż Lpdtdωq 1 pLr,8q ptq Z r pωq `ż Rpdtdωq 1 pLr,8q ptq Z r pωq (5.19)
and we also consider the process pX prq t q tě0 defined by

X prq t " X Lr`t ´r.
By [40, Proposition 1.2], Z prq is a finite random variable, with a density given by k r pzq :"

1 ? π 3 3{2 2 ´1{2 r ´3 z 1{2 e ´3z 2r 2 . 
(5.20)

Our first goal is to verify that the conditional distribution of the triple pX prq , r L prq , r R prq q knowing that Z prq " z does not depend on r. Note that, for instance, the unconditional distribution of X prq depends on r.

We will deduce the preceding assertion from Proposition 4, but to this end a truncation argument is needed. So we consider a ą 0, and we set L prq a :" L r`a ´Lr " suptt ě 0 : X prq t " au.

We then set1 

L pr,r`aq pdtdωq " 1 r0,L prq a s ptq L prq pdtdωq, L pr`a,8q pdtdωq " 1 pL prq a ,8q ptq L prq pdtdωq, and we define R pr,r`aq and R pr`a,8q in a similar way from R prq . As previously, we let r L pr,r`aq , r L pr`a,8q , r R pr,r`aq , r R pr`a,8q stand for these point measures truncated at level 0. We finally set Z pr,r`aq " ż L pr,r`aq pdtdωq Z 0 pωq `ż R pr,r`aq pdtdωq Z 0 pωq Z pr`a,8q " ż L pr`a,8q pdtdωq Z 0 pωq `ż R pr`a,8q pdtdωq Z 0 pωq.

Obviously Z prq " Z pr,r`aq `Zpr`a,8q . Also, the random variables Z pr,r`aq and Z pr`a,8q are independent, as a consequence of the independence properties stated at the beginning of Section 5.3.2 after properties (a) and (b).

Lemma 5. The collection pΘ paq z q zą0 is a regular version of the conditional distributions of the triple ´pX prq t q 0ďtďL prq a , r L pr,r`aq , r R pr,r`aq knowing that Z pr,r`aq " z.

This lemma is merely a reformulation of Proposition 4. The point is that the time-reversed process pX L r`a ´tq 0ďtďL prq a is distributed as a Bessel process of dimension ´5 started from r `a and stopped upon hitting r (by property (b) stated at the beginning of Section 5.3.2). Recalling our notation SR for the spine reversal operation defined in (5.8), it follows that ´SR ´pX prq t q 0ďtďL prq a , r L pr,r`aq , r R pr,r`aq ¯, Z pr,r`aq has the same distribution as ppV ´r, ϑ r r N , ϑ r r N 1 q, Z V q, with the notation introduced before Proposition 4. The result of the lemma now follows from Proposition 4.

Since the distribution of Z pr,r`aq is the same as the distribution of Z V in the preceding section, it has a positive density with respect to Lebesgue measure, which we denote by g r,a pzq. Recalling that Z Y has density zh a pzq, (5.14) gives the explicit expression g r,a pzq "

´r `a r ¯3 e ´3z 2r 2 z h a pzq (5.21) 
where h a is defined in (5.12). On the other hand, the distribution of Z pr`a,8q may be written in the form p1 ´εr,a q δ 0 pdzq `Υr,a pdzq where ε r,a P r0, 1s and the measure Υ r,a is supported on p0, 8q. Note that ε r,a " Υ r,a pp0, 8qq " PpZ pr`a,8q ą 0q " 1 ´´a r `a ¯3

where the last equality follows from Lemma 4.2 in [START_REF] Curien | The hull process of the Brownian plane[END_REF], using the fact that N x p0 ă W ˚ď rq " 3 2 ppx ´rq ´2 ´x´2 q for x ą r. In particular, ε r,a ÝÑ 0 as a Ñ 8.

Recall that k r pzq denotes the density of Z prq (cf. (5.20)). Since Z prq " Z pr,r`aq `Zpr`a,8q , and Z pr,r`aq and Z pr`a,8q are independent, the conditional distributions of Z pr`a,8q knowing that Z prq " z are defined in a canonical manner by

ν r,a pdz 1 | zq " 1 k r pzq
´p1 ´εr,a qg r,a pzq δ 0 pdz 1 q `gr,a pz ´z1 q Υ r,a pdz 1 q ¯.

In particular, we have for every z ą 0, ν r,a pt0u | zq " p1 ´εr,a qg r,a pzq k r pzq , and the explicit expression (5.21) can be used to verify that g r,a pzq ÝÑ k r pzq as a Ñ 8. It follows that ν r,a pt0u | zq ÝÑ aÑ8 1.

(5.22)

Recall the scaling transformations θ λ on snake trajectories defined in Section 5.2.2. It will also be useful to consider restriction operators which are defined as follows. For every a ą 0, R a acts both on W 8 0 ˆMp pR `ˆS q 2 and on W 0 ˆMp pR `ˆS q 2 by R a : ´w,

ÿ iPI δ pt i ,ω i q , ÿ jPJ δ pt 1 j ,ω 1 j q ¯Þ Ñ ´pwptqq tďλ paq pwq , ÿ iPI,t i ďλ paq pwq δ pt i ,ω i q , ÿ jPJ,t 1 j ďλ paq pwq δ pt j ,ω 1 j q ¯,
(5.23) where λ paq pwq " suptt ě 0 : wptq ď au for w P W 8 0 or w P W 0 .

Proposition 6. We can find a collection pΘ z q zą0 of probability measures on W 8 ˆMp pR `ˆS q 2 that does not depend on r and is such that, for every r ą 0, pΘ z q zą0 is a regular version of the conditional distributions of the triple

pX prq , r L prq , r R prq q
knowing that Z prq " z. This collection is unique if we impose the additional scaling invariance property: for every λ ą 0 and z ą 0, Θ λz is the image of Θ z under the scaling transformation

Σ λ : ´w, ÿ iPI δ pt i ,ω i q , ÿ jPJ δ pt 1 j ,ω 1 j q ¯Þ Ñ ´?λwp¨{λq, ÿ iPI δ pλt i ,θ λ pω i qq , ÿ jPJ δ pλt 1 j ,θ λ pω 1 j qq ¯.
Proof. Let r ą 0, and let pΘ z,r q zą0 be a regular version of the conditional distributions of pX prq , r L prq , r R prq q knowing Z prq " z. Our first goal is to verify that pΘ z,r q zą0 does not depend on r, except possibly on a values of z of zero Lebesgue measure. To this end, let c ą 0 and let G be a measurable function on W ˆMp pR `ˆS q 2 such that 0 ď G ď 1. Then, for every a ě c, and for every nonnegative measurable function f on p0, 8q, ż dz k r pzq f pzqΘ z,r pG ˝Rc q " ErGppX prq t q 0ďtďL prq c , r L pr,r`cq , r R pr,r`cq q f pZ prq qs " E " ErGppX prq t q 0ďtďL prq c , r L pr,r`cq , r R pr,r`cq q | Z pr,r`aq s f pZ pr,r`aq `Zpr`a,8q q ı where we use the fact that Z pr`a,8q is independent of ppX prq t q 0ďtďL prq c , r L pr,r`cq , r R pr,r`cq q, Z pr,r`aq q to write the last equality. By Lemma 5, we have

ErGppX prq t q 0ďtďL prq c , r L pr,r`cq , r
R pr,r`cq q | Z pr,r`aq s " ΦpZ pr,r`aq q

where Φpzq " Θ paq z pG ˝Rc q. Using the explicit distribution of Z pr,r`aq and Z pr`a,8q , we thus get ż dz k r pzq f pzqΘ z,r pG ˝Rc q " ż dy g r,a pyq ż pp1 ´εr,a qδ 0 `Υr,a qpdy 1 q f py `y1 q Θ paq y pG ˝Rc q "

ż dz k r pzq f pzq ż ν r,a pdz 1 | zq Θ paq z´z 1 pG ˝Rc q.
It follows that we have, dz a.e., Θ z,r pG ˝Rc q " ż ν r,a pdz 1 | zq Θ paq z´z 1 pG ˝Rc q " ν r,a pt0u | zq Θ paq z pF q `κr,a pzq where the "remainder" κ r,a pzq is nonnegative and bounded above by 1 ´νr,a pt0u | zq. Specializing to integer values of a and using (5.22), we get, dz a.e., lim

NQkÑ8

Θ pkq z pG ˝Rc q " Θ z,r pG ˝Rc q.

Since the left-hand side does not depend on r, we conclude that, for every r, r 1 ą 0, we must have Θ z,r pG ˝Rc q " Θ z,r 1 pG ˝Rc q, dz a.e., and since this holds for any c ą 0 and any function G, we conclude that Θ z,r " Θ z,r 1 , dz a.e. So, if we take Θz " Θ z,1 , the collection p Θz q zą0 satisfies the first part of the statement. It remains to obtain the scaling invariance property. To this end, we first observe that the process

X tλu t :" ? λ X t{λ
remains a nine-dimensional Bessel process started from 0. Furthermore, with an obvious notation, we have L tλu r ?

λ " λL r for every r ą 0. Then, it is straightforward to verify that the image of L under the transformation

ÿ iPI δ pt i ,ω i q Þ Ñ ÿ iPI δ pλt i ,θ λ pω i qq (5.24)
is, conditionally on X tλu , a Poisson point measure with intensity

2 dt N X tλu t pdω X tW ˚ą 0uq.
It follows that the image of L prq under the scaling transformation (5.24) has the same distribution as L pr ? λq .

We also note that, for every x ą 0, we have Z 0 pθ λ pωqq " λ Z 0 pωq, N x pdωq a.e. By combining the preceding observations, we get that, for every r ą 0, the image of the triple pX prq , r L prq , r R prq q under the scaling transformation Σ λ has the same distribution as pX pr ? λq , r L pr ? λq , r R pr ? λq q, and moreover the exit measure at 0 associated with Σ λ pX prq , r L prq , r R prq q is λZ prq . By considering conditional distributions with respect to Z prq and using the first part of the proof, we obtain that Σ λ p Θz q " Θλz for a.e. z ą 0. A Fubini type argument allows us to single out a real z 0 ą 0 such that the equality Θλz 0 " Σ λ p Θz 0 q holds for a.e. λ ą 0. We then define, for every z ą 0,

Θ z " Σ z{z 0 p Θz 0 q.
Clearly the collection pΘ z q zą0 is also a regular version of the conditional distributions of the triple pX prq , r L prq , r R prq q knowing that Z prq " z (for any r ą 0). Furthermore, by construction, the equality Σ λ pΘ z q " Θ λz holds for every z ą 0 and λ ą 0. This completes the proof, except for the uniqueness statement, which is easy and left to the reader.

From now on, pΘ z q zą0 is the unique collection satisfying the properties stated in Proposition 6. Thanks to the scaling invariance property, we can in fact define this collection without appealing to any conditioning. We consider the triple pX prq , r L prq , r R prq q as defined at the beginning of the section, and recall the notation Z prq and the scaling operators Σ λ in Proposition 6. Proposition 7. Let r ą 0 and z ą 0. Then Θ z is the distribution of Σ z{Z prq pX prq , r L prq , r R prq q.

Proof. Let F be a nonnegative measurable function on W 8 ˆMp pR `ˆS q 2 , and recall that the distribution of Z prq has density k r pzq. Then, using Proposition 6, E " F ´Σz{Z prq pX prq , r L prq , r R prq q ¯ı " ż 8 0 dy k r pyq Θ y pF ˝Σz{y q " Θ z pF q, since the image of Θ y under Σ z{y is Θ z .

Proposition 7 is useful to derive almost sure properties of coding triples distributed according to Θ z . We give an important example.

Corollary 8. Let z ą 0, and let T be the labeled tree associated with a coding triple distributed according to Θ z . Write pΛ v q vPT for the labels on T and pE s q sPR for the clockwise exploration of T . Then,

lim |s|Ñ8 Λ Es " 8 , a.s.
Proof. By Proposition 7, it suffices to prove the similar statement for the labeled tree associated with pX prq , r L prq , r R prq q, or even for the labeled tree associated with pX, L, Rq. In the latter case this follows from [40, Lemma 3.3].

The coding triple of the Brownian disk with a given height

The fact that the collection pΘ z q zą0 has been uniquely defined will now allow us to make a canonical choice for the conditional distributions pΘ paq z q zą0 (until now, these conditional distributions were only defined up to a set of values of z of zero Lebesgue measure). This will be important later as we use Θ paq z to construct the free pointed Brownian disk with perimeter z and height a. Recall the restriction operator R a introduced in (5.23), and the notation λ paq pwq " suptt ě 0 : wptq ď au for w P W 8 0 or w P W 0 .

Proposition 9. Let a ą 0, and define a function W ˚,paq :

W 8 0 ˆMp pR `ˆS q 2 ÝÑ R `Y t8u by W ˚,paq ´w, ÿ iPI δ pt i ,ω i q , ÿ jPJ δ pt 1 j ,ω 1 j q ¯" min ´inf iPI,t i ąλ paq pwq W ˚pω i q, inf jPJ,t 1 j ąλ paq pwq W ˚pω 1 j q ¯.
Then, we have Θ z pW ˚,paq ą 0q " ? π 2 1{2 3 ´3{2 a 3 z 1{2 h a pzq and Θ z pW ˚,paq ą 0q ÝÑ 1 as a Ñ 8. Furthermore, we can choose the collection pΘ paq z q zą0 so that, for every z ą 0,

Θ paq z is the pushforward of Θ z p¨| W ˚,paq ą 0q under R a .
Proof. Let r ą 0 and a ą 0. For test functions f and F defined on R `and on W ˆMp pR `ˆW q 2 respectively, we have from Proposition 6,

ż dz k r pzq f pzq Θ z ´F ˝Ra 1 tW ˚,paq ą0u " E " f pZ prq q F ´pX prq t q 0ďtďL prq a , r
L pr,r`aq , r R pr,r`aq ¯1tZ pr`a,8q "0u ı " E " f pZ pr,r`aq q F ´pX prq t q 0ďtďL prq a , r L pr,r`aq , r R pr,r`aq ¯ı ˆPpZ pr`a,8q " 0q " ż dz g r,a pzq f pzq Θ paq z pF q ˆPpZ pr`a,8q " 0q, using Lemma 5 in the last equality. It follows that we have dz a.e., k r pzq Θ z ´F ˝Ra 1 tW ˚,paq ą0u ¯" g r,a pzq PpZ pr`a,8q " 0q Θ paq z pF q.

For F " 1, we get that the equality k r pzq Θ z pW ˚,paq ą 0q " g r,a pzq PpZ pr`a,8q " 0q " g r,a pzq p a r`a q 3 holds dz a.e., but then, by a scaling argument using also the monotonicity of Θ z pW ˚,paq ą 0q in the variable a, it must hold for every z ą 0 and a ą 0. It follows that Θ z pW ˚,paq ą 0q " pk r pzqq ´1g r,a pzq p a r`a q 3 , and the explicit formulas for k r pzq and g r,a pzq give the first assertion of the proposition. Furthermore, the previous display gives

Θ paq z pF q " Θ z ´F ˝Ra 1 tW ˚,paq ą0u
Θz pW ˚,paq ą 0q , dz a.e. The second assertion follows.

In what follows, we assume that, for every a ą 0, the collection pΘ paq z q zą0 is chosen as in the preceding proposition, and that the collection p Θpaq z q zą0 is then derived from pΘ paq z q zą0 via the spine reversal operation. From the scaling properties of pΘ z q zą0 , one checks that, for every λ ą 0, the pushforward of Θ paq z under the scaling operator Σ λ is Θ p ? λaq λz . The following corollary, which relates the measures Θ paq z when a varies (and z is fixed) is an immediate consequence of Proposition 9. Before stating this corollary, we note that both R a and W ˚,paq still make sense as mappings defined on W 0 ˆMp pR `ˆS q 2 . Corollary 10. Let 0 ă a ă a 1 . Then we have

Θ pa 1 q z pW ˚,paq ą 0q " a 3 h a pzq a 13 h a 1 pzq , and 
Θ paq z is the pushforward of Θ pa 1 q z p¨| W ˚,paq ą 0q under R a .
We now use the collection p Θpaq z q zą0 to construct a regular version of the conditional distributions of tr 0 pωq under N a knowing Z 0 " z, for every a ą 0 and z ą 0. This regular version is a priori unique up to sets of values of z of zero Lebesgue measure, but for our purposes it is important that the conditional distribution is defined for every z ą 0.

We fix a ą 0 and consider a triple pY pzq , Ă M pzq , Ă M 1pzq q distributed according to Θpaq z . As explained at the end of Section 5.2.4 (finite spine case), we can use this triple to construct a snake trajectory, which belongs to S a and is denoted by ΩpY pzq , Ă M pzq , Ă M 1pzq q. We write N pzq a for the distribution of the snake trajectory ΩpY pzq , Ă M pzq , Ă M 1pzq q.

Proposition 11. The collection pN pzq a q zą0 forms a regular version of the conditional distributions of tr 0 pωq under N a knowing that Z 0 " z.

Proof. Recall the notation introduced before Proposition 2: Under the measure N a pdωq, we can consider, for every s P p0, σpωqq, the point measure P psq (resp. P 1 psq ) that gives the snake trajectories associated with the subtrees branching off the left side (resp. off the right side) of the ancestral line of the vertex p pωq psq in the genealogical tree of ω. Also use the notation r P psq (resp. r P 1 psq ) for the point measure P psq (resp. P 1 psq ) "truncated at level 0". This makes sense if s is such that W s ptq ą 0 for 0 ď t ă ζ s , which is the case we will consider. From Proposition 2, and using also (5.9), we have, for every nonnegative measurable functions f and F defined on R `and on W ˆMp pR `ˆS q 2 respectively,

N a ´ż σ 0 dL 0 s f pZ 0 q F pW s , r P psq , r P 1 psq q ¯" E " f pZ Y q F pY , Ă M, Ă M 1 q ı , (5.25) 
where pY , Ă M, Ă M 1 q and Z Y are as in Section 5.3.2. Notice that, N a pdωqdL 0 s pωq a.e., we have tr 0 pωq " ΩpW s , r P psq , r P 1 psq q. Hence the previous identity also gives, for every nonnegative measurable function H on S,

N a pZ 0 f pZ 0 q Hptr 0 pωqqq " Erf pZ Y q HpΩpY , Ă M, Ă M 1 qqs. (5.26) 
Since the density of Z Y is zh a pzq and Θpaq z is the conditional distribution of pY , M, M 1 q given Z Y " z, the right-hand side can be written as From the scaling properties of the measures Θ paq z , we immediately get that, for every λ ą 0, the pushforward of N pzq a under the scaling transformation θ λ is N pλzq a ? λ . In view of further applications, we also note that the definition of the exit local time at 0 makes sense under N pzq a . Precisely, one gets that, N pzq a pdωq a.e., the limit

r L 0 t :" lim εÓ0 1 ε 2 ż t 0 ds 1 t x Wspωqăεu (5.27)
exists uniformly for t ě 0, and r L 0 8 " r L 0 σ " z. If N pzq a is replaced by N a (and x W s pωq by x W s ptr 0 pωqq) this is just formula (5.4) in Section 5.2.2. So (5.27) is a conditional version of (5.4), which must therefore hold N pzq a a.e., at least for a.e. value of z. Then a scaling argument, using also the way we have defined the conditional distributions N pzq a and Corollary 10, shows that (5.27) indeed holds for every z ą 0. We omit the details.

From coding triples to random metric spaces

The pseudo-metric functions associated with a coding triple

Let pw, P, P 1 q be a coding triple satisfying the assumptions of Section 5.2.4 in the infinite spine case, and let pT , pΛ v q vPT q be the associated labeled tree. We suppose here that labels take nonnegative values, Λ v ě 0 for every v P T , and we set T ˝:" tv P T : Λ v ą 0u and BT " T zT ˝.

We assume that BT is not empty and that all points of BT are leaves (points whose removal does not disconnect T ). In particular, T ˝is dense in T . We denote the clockwise exploration of T by pE t q tPR , and we assume that either Λ Et ÝÑ 8 as |t| Ñ 8, or the set tt P R : Λ Et " 0u intersects both intervals rK, 8q and p´8, ´Ks, for every K ą 0. This ensures that inf wPru,vs Λ w is attained for every "interval" ru, vs of T .

We define, for every u, v P T ˝, ∆ ˝pu, vq :"

$ & % Λ u `Λv ´2 max ´inf wPru,vs Λ w , inf wPrv,us Λ w ¯if max ´inf wPru,vs Λ w , inf wPrv,us Λ w ¯ą 0, ` 8 
otherwise.

(5.28) We then let ∆pu, vq, u, v P T ˝be the maximal symmetric function on T ˝ˆT ˝that is bounded above by ∆ ˝and satisfies the triangle inequality:

∆pu, vq " inf u 0 "u,u 1 ,...,up"v p ÿ i"1 ∆ ˝pu i´1 , u i q (5.29)
where the infimum is over all choices of the integer p ě 1 and of the finite sequence u 0 , u 1 , . . . , u p in T such that u 0 " u and u p " v. Then ∆pu, vq ă 8 for every u, v P T ˝. Indeed, a compactness argument shows that we can find finitely many points u 0 " u, u 1 , . . . , u p´1 , u p " v belonging to the geodesic segment rru, vss of T and such that ∆ ˝pu i´1 , u i q ă 8 for every 1 ď i ď p.

Furthermore, the mapping pu, vq Þ Ñ ∆pu, vq is continuous on T ˝ˆT ˝(observe that ∆ ˝pu n , uq ÝÑ 0 if u n Ñ u in T ˝, and use the triangle inequality). We note the trivial bound ∆ ˝pu, vq ě |Λ u ´Λv |, which also implies ∆pu, vq ě |Λ u ´Λv |.

(5.30)

We will call ∆ ˝pu, vq and ∆pu, vq the pseudo-metric functions associated with the triple pw, P, P 1 q. From now on, let us assume that the function pu, vq Þ Ñ ∆pu, vq has a continuous extension to T ˆT , which is therefore a pseudo-metric on T . We will be interested in the resulting quotient metric space T { « where the equivalence relation « is defined by saying that u « v if and only if ∆pu, vq " 0. By abuse of notation, we will write T {t∆ " 0u instead of T { «. We write Π for the canonical projection from T onto T {t∆ " 0u. We also write Λ x " Λ u when x P T {t∆ " 0u and u P T are such that x " Πpuq (this is unambiguous by (5.30)).

If x P T {t∆ " 0u is such that Λ x ą 0, we can define a geodesic path starting from x in the following way. We pick u P T such that Πpuq " x and then s P R such that E s " u. We then define γ psq " pγ psq r q 0ďrďΛx by setting γ psq r " ΠpE η psq r q, with η psq r :"

# inftt ě s : Λ Et " Λ x ´ru if inftΛ Et : t ě su ď Λ x ´r, inftt ď s : Λ Et " Λ x ´ru if inftΛ Et : t ě su ą Λ x ´r.
It is then a simple matter to verify that γ psq is a geodesic path in pT {t∆ " 0u, ∆q, which starts from x and ends at a point belonging to ΠpBT q. On the other hand, the bound (5.30) shows that ∆px, yq ě Λ x if y P ΠpBT q. It follows that ∆px, ΠpBT qq " Λ x for every x P T {t∆ " 0u. The path γ psq is called a simple geodesic (see e.g. [67, Section 2.6] for the analogous definition in the Brownian map).

We finally note that T {t∆ " 0u is a length space, meaning that the distance between two points is equal to the infimum of the lengths of paths connecting these two points. To get this property, just notice that, if u, v P T ˝and ∆ ˝pu, vq ă 8, then ∆ ˝pu, vq coincides with the length of a path from Πpuq to Πpvq, that is obtained by concatenating two simple geodesics starting from Πpuq and Πpvq respectively, up to the time when they merge. More explicitly, if ∆ ˝pu, vq " Λ u `Λv ´inf wPru,vs Λ w , and if the reals s 1 and s 2 are such that E s 1 " u, E s 2 " v and ru, vs " tE r : r P rs 1 , s 2 su, then the concatenation of pΠpγ ps 1 q r q, 0 ď r ď Λ u ´inf wPru,vs Λ w q and pΠpγ ps 2 q r q, 0 ď r ď Λ v ´inf wPru,vs Λ w q gives a continuous path from Πpuq to Πpvq with length ∆ ˝pu, vq, which furthermore is contained in Πpru, vsq.

The Brownian plane

As an illustration of the procedure described in the previous section, and in view of further developments, we briefly recall the construction of the Brownian plane given in [START_REF] Curien | The hull process of the Brownian plane[END_REF]. We consider a (random) coding triple pX, L, Rq distributed as in Section 5.3.3: ' X " pX t q tě0 is a nine-dimensional Bessel process started from 0.

' Conditionally on X, L and R are independent Poisson point measures on R `ˆS with intensity 2 dt N Xt pdω X tW ˚ą 0uq.

It is easy to verify that the assumptions of Section 5.2.4 hold a.s. for pX, L, Rq, and thus we can associate an infinite labeled tree pT p 8 , pΛ v q vPT p 8 q with this coding triple. The assumptions of the beginning of Section 5.4.1 also hold (notice that the condition lim |s|Ñ8 Λ Es " 8 holds by [START_REF] Curien | The hull process of the Brownian plane[END_REF]Lemma 3.3]), and we introduce the two pseudo-metric functions ∆ p,˝p u, vq and ∆ p pu, vq defined for u, v P T p,8 :" tv P T p 8 : Λ v ą 0u via formulas (8.15) and (5.29). In that case, since the root of T p 8 is the only point with zero label, it is easy to see that at least one of the two infima inf wPru,vs Λ w and inf wPrv,us Λ w is positive, for any u, v P T p,8 . Furthermore, it is immediate to obtain that ∆ p,˝p u, vq and ∆ p pu, vq can be extended continuously to T p 8 -in fact in that case we can define ∆ p,˝p u, vq for every u, v P T p 8 by the quantity in the first line of (8.15), and use formula (5.29) to define ∆ p pu, vq for every u, v P T p 8 . One can prove [40, Section 3.2] that, for any u, v P T p 8 , ∆ p pu, vq " 0 if and only if ∆ p,˝p u, vq " 0.

The Brownian plane BP 8 is defined as the quotient space T p 8 {t∆ p " 0u equipped with the distance induced by ∆ p (for which we keep the same notation ∆ p ) and with the volume measure which is the pushforward of the volume measure on T p 8 under the canonical projection. We note that BP 8 comes with a distinguished point ρ, which is the image of the root of T p 8 under the canonical projection. Furthermore, we have ∆ p pρ, xq " Λ x for every x P BP 8 .

The Brownian plane is scale invariant in the following sense. If E is a pointed measure metric space and λ ą 0, we write λ ¨E for the same space E with the metric multiplied by the factor λ and the volume measure multiplied by the factor λ 4 (and the same distinguished point). Then, for every λ ą 0, λ ¨BP 8 has the same distribution as BP 8 .

The pointed Brownian disk with given perimeter and height

In this section, we explain how a free pointed Brownian disk with perimeter z and height a is constructed from the measure N pzq a defined in Section 5.3.4. This is basically an adaptation of [START_REF] Gall | Brownian disks and the Brownian snake[END_REF], but we provide some details in view of further developments.

We start with a preliminary result. Recall the notation h a pzq and p z paq in Proposition 3.

Proposition 12. For any nonnegative measurable functions G and f defined respectively on S and on R `, for every z ą 0, we have

z ´2N ˚,z ´ż σ 0 dt GpW rts q f p x W t q ¯" ż 8 0 da p z paq f paq N pzq a pGq.
Proof. We may assume that both G and f are bounded and continuous. Then the argument is very similar to the proof of Proposition 3 (ii) (which we recover when G " 1). Let g be a nonnegative measurable function on R `. We use the re-rooting formula (5.5), and then Proposition 3 (i), to get

N ˚´ż σ 0 dt GpW rts q f p x W t qgpZ 0 q ¯" 2 ż 8 0 da N a ´Z0 Gptr 0 pωqq f paq gpZ 0 q " 2 ż 8 0 da f paq ż 8 0 dz h a pzq zgpzq N a pGptr 0 pωqq | Z 0 " zq " 2 ż 8 0 dz zgpzq ż 8 0 da h a pzq f paq N pzq a pGq.
On the other hand, the left-hand side is also equal to

c 3 2π ż 8 0 dz z ´5{2 gpzq N ˚,z ´ż σ 0 dt GpW rts q f p x W t q ¯.
Since this holds for any function g, we must have, dz a.e.,

z ´2N ˚,z ´ż σ 0 dt GpW rts q f p x W t q ¯" c 8π 3 z 3{2 ż 8 0 da h a pzq f paq N pzq a pGq.
This is the identity of the proposition, except that we get it only dz a.e. However, a scaling argument shows that both sides of the preceding display are continuous functions of z, which gives the desired result for every z ą 0.

Recall from Section 8.2.1 the definition of the probability measure N ˚,z pdωdtq on S ˆR`, and, for pω, tq P S ˆR`, write U pω, tq " t. We can then rewrite the identity of Proposition 12 in the form N ˚,z pf pp ω U qGpω rU s qq "

ż 8 0 da p z paq f paq N pzq a pGq. (5.31) 
Let us now come to Brownian disks. We write K, resp. K ' , for the space of all compact measure metric spaces, resp. pointed compact measure metric spaces, equipped with the Gromov-Hausdorff-Prokhorov topology. Theorem 1 in [START_REF] Gall | Brownian disks and the Brownian snake[END_REF] provides a measurable mapping Ξ : S ÝÑ K such that the distribution of Ξpωq under N ˚,z pdωq is the law of the free Brownian disk with perimeter z. Let us briefly recall the construction of this mapping, which is essentially an adaptation of the procedure of Section 5.4.1 to the finite spine case. Under N ˚,z pdωq, each vertex u of the the genealogical tree T pωq receives a nonnegative label u pωq, and we define the "boundary" BT pωq :" tu P T pωq : u pωq " 0u. We also set T p ωq :" T pωq zBT pωq , and for every u, v P T p ωq , we define ∆ d,˝p u, vq and ∆ d pu, vq by the exact analogs of formulas (8.15) and (5.29), where T and T ˝are replaced by T pωq and T p ωq respectively, and the labels pΛ u q uPT are replaced by p u q uPT pωq (recall the definition of intervals on T pωq in Section 5.2.1).

A key technical point (Proposition 31 in [START_REF] Gall | Brownian disks and the Brownian snake[END_REF]) is to verify that the mapping pu, vq Þ Ñ ∆ d pu, vq can be extended continuously (in a unique way) to T pωq ˆTpωq , N ˚,z pdωq a.s. We then define Ξpωq as the quotient space T pωq {t∆ d " 0u, which is equipped with the metric induced by ∆ d and with a volume measure which is the pushforward of the volume measure on T pωq under the canonical projection. In the next definition, we use the notation p ω for the composition of the canonical projection p pωq from r0, σpωqs onto T pωq with the canonical projection from T pωq onto Ξpωq. Définition 13. The distribution of the free pointed Brownian disk with perimeter z is the law of the random measure metric space pΞpωq, ∆ d q pointed at the point p ω ptq, under the probability measure N ˚,z pdω dtq.

The consistency of this definition of the free pointed Brownian disk with the one in [START_REF] Bettinelli | Compact Brownian surfaces I. Brownian disks[END_REF] follows from the results in [START_REF] Gall | Brownian disks and the Brownian snake[END_REF] (to be specific, [71, Theorem 1] identifies the law of Ξpωq under N ˚,z as the distribution of the free Brownian disk of perimeter z, and one can then use formula [START_REF] Curien | The skeleton of the UIPT, seen from infinity[END_REF] in [START_REF] Gall | The Brownian disk viewed from a boundary point[END_REF] to see that Definition 13 is consistent with the definition of the free pointed Brownian disk in [START_REF] Bettinelli | Compact Brownian surfaces I. Brownian disks[END_REF]). From [START_REF] Bettinelli | Scaling limit of random planar quadrangulations with a boundary[END_REF][START_REF] Bettinelli | Compact Brownian surfaces I. Brownian disks[END_REF] one knows that, N ˚,z pdωq a.s., Ξpωq is homeomorphic to the unit disk. This makes it possible to define the boundary BΞpωq of Ξpωq, and this boundary is identified in [START_REF] Gall | Brownian disks and the Brownian snake[END_REF] with the image of BT pωq under the canonical projection. Furthermore, a.s. for every u P T pωq , the label u pωq is equal to the distance in Ξpωq from (the equivalence class of) u to the boundary

BΞpωq.

We note that the random measure metric space Ξpωq pointed at p ω ptq is in fact a function of the re-rooted snake trajectory ω rts , because Ξpωq is canonically identified to Ξpω rts q, and p ω ptq is mapped to p ω rts p0q in this identification. To simplify notation, we may thus write Ξ ' pω rts q for the random metric space Ξpωq pointed at p ω ptq, or equivalently for Ξpω rts q pointed at p ω rts p0q.

In the following developments, it will be convenient to write D ' z for a free pointed Brownian disk with perimeter z and BD ' z for the boundary of D ' z . With a slight abuse of notation, we keep the notation ∆ d for the distance on D ' z . By definition, the height H z of D ' z is the distance from the distinguished point to the boundary. From the preceding interpretation of Ξpωq pointed at p ω ptq as a function of the re-rooted snake trajectory ω rts , we get that, for any nonnegative measurable function Φ on K ' , for any nonnegative measurable function h on R `,

ErΦpD ' z q hpH z qs " N ˚,z
´ΦpΞ ' pω rU s qq hpp ω U q ūsing the same notation as in (5.31) and noting that p pωq pU q pωq " p ω U by definition. By (5.31), we can rewrite this as

ErΦpD ' z q hpH z qs " ż 8 
0
da p z paq hpaq N pzq a pΦ ˝Ξ' q.

(5.32)

The next proposition readily follows from (5.32).

Proposition 14.

The height H z of D ' z is distributed according to the density p z paq. Furthermore, the conditional distribution of D ' z knowing that H z " a is the law of Ξ ' pωq under N pzq a . By definition, this is the distribution of the free pointed Brownian disk with perimeter z and height a.

At this point, we should note that the definition of Ξ ' pωq requires the continuous extension of the mapping pu, vq Þ Ñ ∆ d pu, vq from T p ωq ˆT p ωq to T pωq ˆTpωq . Proposition 31 in [START_REF] Gall | Brownian disks and the Brownian snake[END_REF] and Proposition 11 above give the existence of this continuous extension N pzq a pdωq a.s. for a.a. z ą 0, for every fixed a ą 0, and then one can use scaling arguments and Corollary 10 to get the same result for every z ą 0 and a ą 0 (this is used in Proposition 14). Similar considerations allow us to deduce the following property from Proposition 32 (iii) in [START_REF] Gall | Brownian disks and the Brownian snake[END_REF]: N pzq a pdωq a.s., for every u, v P BT pωq , we have ∆ d pu, vq " 0 if and only if w pωq ą 0 for every w Psu, vr, or for every w Psv, ur. Finally, from [71, Proposition 30 (iv)], we also get that, N pzq a pdωq a.s. for every u, v P T p ωq , we have ∆ d pu, vq " 0 if and only if ∆ d,˝p u, vq " 0.

It will be useful to introduce the uniform measure on the boundary BD ' z . There exists a measure µ z on BD ' z with total mass equal to z, such that, a.s. for any continuous function ϕ on

D ' z , we have xµ z , ϕy " lim εÑ0 1 ε 2 ż D ' z Volpdxq 1 t∆ d px,BD ' z qăεu ϕpxq
where Volpdxq denotes the volume measure on BD ' z (see [START_REF] Gall | Brownian disks and the Brownian snake[END_REF]Corollary 37]). The preceding approximation and the definition of µ z are also valid for the free pointed Brownian disk with perimeter z and height a: In fact, if this Brownian disk is constructed as Ξ ' pωq under N pzq a (as in Proposition 14), we define µ z by setting xµ z , ϕy "

ż 8 0 d r L 0 s ϕpp ω psqq, (5.33) 
where the exit local time r L 0 s is defined under N pzq a as explained at the end of Section 5.3.4. Note that the approximation formula for µ z then reduces to formula (5.27), thanks to the interpretation of labels as distances to the boundary.

For our purposes in the next sections, it will be important to consider a free Brownian disk (with perimeter z and height a) equipped with a distinguished point chosen uniformly on the boundary. To this end, we proceed as follows. We start from a triple pY pzq , Ă M pzq , Ă M 1pzq q distributed according to Θpaq z . As explained before Proposition 11, the random snake trajectory ΩpY pzq , Ă M pzq , Ă M 1pzq q is then distributed according to N pzq a , and (Proposition 14) we obtain a free pointed Brownian disk D ',a z with perimeter z and height a by setting

D ',a z :" Ξ ' ´ΩpY pzq , Ă M pzq , Ă M 1pzq q ¯. (5.34) 
In this construction, D ',a z comes with a distinguished vertex of its boundary, namely the one corresponding to the top of the spine of the tree coded by pY pzq , Ă M pzq , Ă M 1pzq q. We denote this special point by α.

In the next proposition, we verify that α is (in a certain sense) uniformly distributed over BD ',a z . To give a precise statement of this property, it is convenient to introduce the doubly pointed measure metric space D '',a z which is obtained by viewing α as a second distinguished point of D ',a z .

Proposition 15. Let F be a nonnegative measurable function on the space of all doubly pointed compact measure metric spaces, which is equipped with the Gromov-Hausdorff-Prokhorov topology. Then, ErF pD '',a z qs "

1 z E " ż µ z pdxq F ´rD ',a z , xs ¯ı,
where µ z is the uniform measure on BD ',a z , and we use the notation rD ',a z , xs for the doubly pointed space obtained by equipping D ',a z with the second distinguished point x.

Proof. Let pY , M, M 1 q be distributed as in Proposition 2 (or in Section 5.3.2). As previously, let Ă M and Ă M 1 be obtained by truncating the atoms of M and M 1 at level 0. Let us introduce the notation } Ă M} for the sum of the quantities σpω i q over all atoms pt i , ω i q of Ă M. Note that } Ă M} is the time at which the clockwise exploration of the tree associated with the triple pY , Ă M, Ă M 1 q (which coincides with the genealogical tree of ΩpY , Ă M, Ă M 1 q) visits the top of the spine. We start by observing that, for any nonnegative measurable function G on S ˆR`, for any nonnegative measurable function

h on R `, E " G ´ΩpY , Ă M, Ă M 1 q, } Ă M} ¯hpZ Y q ı " N a ´ż 8 0 dL 0 r G ´tr 0 pωq, ż r 0 ds1 tζ pωsq ďτ 0 pωsqu ¯hpZ 0 q " N a ´ż 8 0 d r L 0
r Gptr 0 pωq, rq hpZ 0 q where r L 0 r is defined under N a as in formula (5.4). The first equality follows from Proposition 2 as in the derivation of (5.25) and (5.26) above, and the second equality is just a time change formula. By conditioning on Z Y " z in the left-hand side and on Z 0 " z in the right-hand side, we get

E " GpΩpY pzq , Ă M pzq , Ă M 1pzq q, } Ă M pzq }q ı " 1 z N pzq a ´ż 8 0 d r L 0 r Gpω, rq ¯.
Now recall that D ',a z " Ξ ' pΩpY pzq , Ă M pzq , Ă M 1pzq qq and that D '',a z is obtained by assigning to D ',a z a second distinguished point equal to α " p Ω p} Ă M pzq }q, where p Ω denotes the composition of the canonical projection onto the genealogical tree of ΩpY , Ă M, Ă M 1 q with the projection from this genealogical tree onto Ξ ' pΩpY pzq , Ă M pzq , Ă M 1pzq qq. Thanks to these observations, we obtain that ErF pD '',a z qs "

1 z N pzq a ´ż 8 0 d r L 0 r F ´rΞ ' pωq, p ω prqs ¯¯,
and the desired result follows since (5.33) shows that µ z is the pushforward of the measure d r L 0 r under the mapping r Þ Ñ p ω prq.

In view of forthcoming limit results where the distinguished point of D ',a z is "sent to infinity", it will be convenient to introduce the random pointed measure metric space D',a z defined from the doubly pointed space D '',a z by forgetting the first distinguished point. So D',a

z is pointed at a point which is uniformly distributed over its boundary.

Infinite-volume Brownian disks

For every z ą 0 and a ą 0, we keep the notation D ',a z for a pointed Brownian disk with perimeter z and height a. We may and will assume that D ',a z is constructed from a coding triple distributed according to Θpaq z as in formula (5.34), or equivalently, using the spine reversal operation, from a coding triple distributed according to Θ paq z . The idea is now to let a Ñ 8 and to use the "convergence" of Θ paq z to Θ z in order to get the convergence of D ',a z as a Ñ 8. As we already mentioned, for a precise statement of this convergence, it will be more convenient to replace D ',a z by D',a z . The limit, which will be denoted by D 8 z , is a random pointed locally compact measure metric space, which we call the infinite-volume Brownian disk with perimeter z.

Let us start by explaining the construction of D 8 z , which follows the general pattern of Section 5.4.1. We consider a coding triple ppρ t q tě0 , Q, Q 1 q with distribution Θ z . From ppρ t q tě0 , Q, Q 1 q, Section 5.2.4 allows us to construct an infinite tree T i 8 equipped with nonnegative labels pΛ v q vPT i 8 , such that labels on the spine are given by the process pρ t q tě0 . Note that the assumptions in Section 5.4.1 hold in particular thanks to Corollary 8.

We set T i,8 :" tv P T i 8 : Λ v ą 0u and BT i 8 :" T i 8 zT i,8 " tv P T i 8 : Λ v " 0u. We define the pseudo-metric functions ∆ i,˝p u, vq and ∆ i pu, vq on T i,8 ˆT i,8 as explained in Section 5.4.1.

Lemma 16. (i)

The mapping pu, vq Þ Ñ ∆ i pu, vq has a.s. a continuous extension to T i 8 ˆT i 8 . (ii) A.s., for every u, v P T i,8 , the property ∆ i pu, vq " 0 holds if and only if ∆ i,˝p u, vq " 0. (iii) A.s., for every u, v P BT i 8 , the property ∆ i pu, vq " 0 holds if and only if Λ w ą 0 for every w Psu, vr, or for every w Psv, ur.

Proof. Thanks to Proposition 9 and Corollary 8, it is enough to verify that properties analogous to (i),(ii),(iii) hold when T i 8 is replaced by the labeled tree associated with a coding triple distributed according to Θ paq z , for some fixed a ą 0. But then this is a consequence of the similar results in [START_REF] Gall | Brownian disks and the Brownian snake[END_REF], as it was explained in the discussion after the statement of Proposition 14.

We let D 8 z denote the quotient space T i 8 {t∆ i " 0u, which is equipped with the metric induced by ∆ i . The volume measure on D 8 z is (as usual) the pushforward of the volume measure on T i 8 . We also distinguish a special point α 8 of D 8 z , which is the equivalence class of the root of T i 8 .

Définition 17. The random pointed measure metric space pD 8 z , ∆ i q is the infinite-volume Brownian disk with perimeter z.

As in Section 5.4.1, labels Λ x make sense for x P D 8 z , and Λ x is equal to the distance from x to the "boundary" BD 8 z , which is defined as the set of all points of D 8 z with zero label. From the scaling properties of the collection pΘ z q zą0 , one also gets that λ ¨D8 z is distributed as D 8 λ 2 z , for every λ ą 0.

In Section 5.6 below, we will verify that this definition of the infinite-volume Brownian disk is consistent with [START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF]. It then follows from [START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF]Corollary 3.13] that D 8 z is homeomorphic to the complement of the open unit disk of the plane, so that the boundary BD 8 z can be understood in a topological sense. We will not use this result, which may also be derived from our interpretation of complements of hulls of the Brownian plane as infinite-volume Brownian disks in Section 5.5.1.

Remark. We could have defined the infinite-volume Brownian disk without distinguishing a special point of the boundary. The reason for distinguishing α 8 comes from the use of the local Gromov-Hausdorff convergence in Theorem 21 below, which requires dealing with pointed spaces.

For the convergence result to follow, it is convenient to deal with the following definition of "balls": for every h ą 0, B h pD 8 z q " tv P D 8 z : ∆ i pv, BD 8 z q ď hu, and B h p D',a z q " tv P D',a z : ∆ paq pv, B D',a z q ď hu, where we use the notation ∆ paq for the metric on D ',a z . We view both B h pD 8 z q and B h p D',a z q as compact measure metric spaces, which are pointed at α 8 and α respectively. The compactness of B h pD 8 z q is a consequence of the fact that the set tu P T i 8 : Λ u ď hu is compact, by Corollary 8.

Proposition 18. Let z ą 0 and h ą 0. There exists a function pεpaq, a ą 0q with εpaq ÝÑ 0 as a Ñ 8, such that, for every a ą 0, we can define on the same probability space both the infinite-volume Brownian disk D 8 z and the pointed Brownian disk D',a z , in such a way that PpB h 1 p D',a z q " B h 1 pD 8 z q, for every 0 ď h 1 ď hq ě 1 ´εpaq.

In other words, when a large, one can couple the spaces D',a z and D 8 z so that their tubular neighborhoods of the boundary (of any fixed radius h) are isometric except on a set of small probability.

Proof. Let a ą 0, and consider a triple ppρ paq t q 0ďtďL paq , Q paq , Q 1paq q with distribution Θ paq z . As it was explained before Proposition 15, this triple allows us to construct the Brownian disk D',a z of perimeter z and height a pointed at a boundary point. To be specific, the triple ppρ paq t q 0ďtďL paq , Q paq , Q 1paq q codes a random compact tree T paq equipped with labels pΛ paq v q vPT paq .

The pseudo-metric functions ∆ paq,˝p u, vq and ∆ paq pu, vq are then defined as in Section 5.4.1 for u, v P T paq such that Λ paq u ą 0 and Λ paq v ą 0. The function pu, vq Þ Ñ ∆ paq is extended by continuity to T paq ˆT paq , and the resulting quotient metric space pointed at the root of T paq is the pointed Brownian disk D',a z -here we observe that the distinguished point α corresponds to the root and not to the top of the spine of T paq , because the effect of dealing with the triple ppρ paq t q 0ďtďL paq , Q paq , Q 1paq q instead of its image under the spine reversal transformation (5.8) interchanges the roles of the root and the top of the spine (see the comments after (5.8)).

Recall the restriction operator R a in (5.23).

Lemma 19.

We can couple the triple ppρ paq t q 0ďtďL paq , Q paq , Q 1paq q distributed according to Θ paq z and the triple ppρ t q tě0 , Q, Q 1 q distributed according to Θ z so that the property

´pρ paq t q 0ďtďL paq , Q paq , Q 1paq ¯" R a ´pρ t q tě0 , Q, Q 1 ¯(5.35)
holds with probability tending to 1 as a Ñ 8.

Proof. It suffices to verify that the variation distance between Θ paq z and R a pΘ z q tends to 0 as a Ñ 8. This is an easy consequence of Proposition 9. Indeed, let A be a measurable subset of W ˆMp pR `ˆS q 2 . Then, Θ z pR ´1 a pAqq " Θ z pR ´1 a pAq X tW ˚,paq ą 0uq `Θz pR ´1 a pAq X tW ˚,paq " 0uq " Θ z pW ˚,paq ą 0q Θ paq z pAq `Θz pR ´1 a pAq X tW ˚,paq " 0uq, by Proposition 9. It follows that the variation distance between Θ paq z and R a pΘ z q is bounded above by 1 ´Θz pW ˚,paq ą 0q, which tends to 0 as a Ñ 8.

It will be convenient to write T i,paq 8

for the (labeled) compact tree derived from T i 8 by removing the part of the spine above height λ paq 8 :" suptt ě 0 : ρ t " au (and of course the subtrees branching off this part of the spine). We can also view T i,paq 8 as the labeled tree coded by R a ppρ t q tě0 , Q, Q 1 q. On the event where (5.35) holds, we can therefore also identify T i,paq 8 with the labeled tree T paq coded by ppρ paq t q 0ďtďL paq , Q paq , Q 1paq q, and this identification is used in the next lemma and its proof.

From now on, we assume that the triples ppρ paq t q 0ďtďL paq , Q paq , Q 1paq q and ppρ t q tě0 , Q, Q 1 q are coupled as in Lemma 19, and that D ',a z and D 8 z are constructed from these triples as explained above.

Lemma 20. Let h ą 0. Set

A " maxt∆ i px, yq : x, y P D 8 z , Λ x ď h, Λ y ď hu.

On the intersection of the event where (5.35) holds with the event where

inftΛ v : v P T i 8 zT i,paq 8 u ě A `h `1 (5.36)
we have ∆ i pv, wq " ∆ paq pv, wq for every v, w P T paq such that Λ v ď h and Λ w ď h.

Remark. The statement of the lemma makes sense because on the event where (5.35) holds, the trees T paq and T i,paq 8

are identified (as explained before the statement of the lemma), and so ∆ paq pv, wq and ∆ i pv, wq both make sense when v, w P T paq " T , and so the "boundary" (set of points with zero label) of T i 8 is identified with the boundary of T paq . When (5.35) and (5.36) both hold, the conclusion of Lemma 20 shows that B h 1 pD 8 z q and B h 1 p D',a z q are isometric, for every 0 ď h 1 ď h.

Proof of Lemma 20. Throughout the proof we assume that both (5.35) : Λ u ą 0u. We first observe that, if u, v P T i,paq,8

, we have ∆ paq,˝p u, vq ď ∆ i,˝p u, vq.

(5.37)

Let us explain this bound. Since labels do not vanish on T i 8 zT i,paq 8

, it is immediate that ∆ paq,˝p u, vq " 8 if and only if ∆ i,˝p u, vq " 8. So we may assume that both are finite and then (5.37) directely follows from the definition of these quantities and the fact that we have always ru, vs T paq Ă ru, vs T i 8 (and labels are the same on T paq and T i,paq 8

).

Next suppose that u, v P T i,paq,8

satisfy also Λ u ď h and Λ v ď h. Recall the definition (5.29) of ∆ i pu, vq as an infimum involving all possible choices of u 0 , u 1 , . . . , u p in T i,8 such that u 0 " u and u p " v. We claim that in this definition we can restrict our attention to the case when u 0 , u 1 , . . . , u p satisfy Λ u j ă A `h `1 for every 1 ď j ď p, and therefore u 0 , u 1 , . . . , u p P T i,paq 8

, by (5.36). To see this, suppose that Λ u k ě A `h `1, for some k P t1, . . . , p ´1u. Then, from the definition of A, we have also Λ u k ě ∆ i pu, vq `h `1. Hence, using the bound (5.30), we get

p ÿ j"1 ∆ i,˝p u j´1 , u j q ě |Λ u k ´Λu | ě p∆ i pu, vq `h `1q ´h " ∆ i pu, vq `1,
so that we may disregard the sequence u 0 , u 1 , . . . , u p in the infimum defining ∆ i pu, vq.

By the previous considerations and (5.37), we get, for u, v P T i,paq,8 such that Λ u ď h and Λ v ď h,

∆ i pu, vq " inf u 0 "u,u 1 ,...,up"v u 1 ,...,u p´1 PT i,paq 8 p ÿ j"1 ∆ i,˝p u j´1 , u j q ě inf u 0 "u,u 1 ,...,up"v u 1 ,...,u p´1 PT paq p ÿ j"1
∆ paq,˝p u j´1 , u j q " ∆ paq pu, vq.

(5.38) We now want to argue that we have indeed the equality ∆ paq pu, vq " ∆ i pu, vq. To this end it is enough to show that, for any sequence u 0 " u, u 1 , . . . , u p " v in T paq such that p ÿ j"1 ∆ paq,˝p u j´1 , u j q ă ∆ paq pu, vq `1,

(5.39)

we have in fact ∆ paq,˝p u j´1 , u j q " ∆ i,˝p u j´1 , u j q for every j P t1, . . . , pu (this will entail that the two infima in (5.38) are equal). We argue by contradiction and suppose that ∆ paq,˝p u j´1 , u j q ă ∆ i,˝p u j´1 , u j q for some j P t1, . . . , pu. This means that we have inf

wPru j´1 ,u j s T i 8 Λ w ă inf wPru j´1 ,u j s T paq Λ w ,
or the same with ru j´1 , u j s replaced by ru j , u j´1 s. However, ru j´1 , u j s T i 8 can be different from ru j´1 , u j s T paq only if ru j´1 , u j s T i 8 is the union of ru j´1 , u j s T paq and T i 8 zT i,paq 8

, and we get inf wPru j´1 ,u j s T paq Λ w ě inf

wPT i 8 zT i,paq 8 Λ w ě A `h `1.
This implies in particular that Λ u j ě A `h `1, and by the same argument as above this gives a contradiction with (5.39). This completes the proof of the lemma.

In the next statement, we use the local Gromov-Hausdorff-Prokhorov convergence for pointed locally compact measure length spaces, as defined in [START_REF] Abraham | A note on Gromov-Hausdorff-Prokhorov distance between (locally) compact measure spaces[END_REF]. Proof. The statement of the theorem is an immediate consequence of Proposition 18. In fact, it is enough to verify that, for every h ą 0, the closed ball of radius h centered at the distinguished point α of D',a z converges in distribution to the corresponding ball in D 8 z as a Ñ 8, in the sense of the Gromov-Hausdorff-Prokhorov convergence for pointed compact measure metric spaces. However, this readily follows from the coupling obtained in Proposition 18, since the closed ball of radius h centered at α is obviously contained in B h p D',a z q and similarly in the limiting space.

We conclude this section with a couple of almost sure properties of the infinite-volume Brownian disk D 8 z that can be derived from our approach. First, from the analogous result for the disk D ',a z (see the remarks after Proposition 14) and the coupling in Proposition 18, one easily obtains the existence of the uniform measure µ 8 z on BD 8 z , which is a measure of total mass z satisfying

xµ 8 z , ϕy " lim εÑ0 1 ε 2 ż D 8 z Volpdxq 1 t∆ i px,BD 8 z qăεu ϕpxq,
for any continuous function ϕ on D 8 z , a.s. In particular the volume of the tubular neighborhhood of radius ε of BD 8 z behaves like zε 2 when ε Ñ 0. Our construction of D 8 z is well suited to the analysis of geodesics to the boundary. Write pE i s q sPR for the clockwise exploration of the tree T i 8 , and set

s 0 :" mints P R : Λ E i s " 0u , s 1 :" maxts P R : Λ E i s " 0u.
Also set x 0 :" Π i pE s 0 q " Π i pE s 1 q.

Proposition 22. Almost surely, there exists h 0 ą 0 such that, for every x P D 8 z with ∆ i px, BD 8 z q ą h 0 , any geodesic from x to BD 8 z hits BD 8 z at x 0 .

The proof shows more precisely that all geodesics to BD 8 z starting outside a sufficiently large ball coalesce before hitting the boundary.

Proof. Recall the notation T i,paq 8

in the proof of Proposition 18. By Corollary 8, we may choose a large enough so that labels Λ v do not vanish on T i 8 zT

i,paq 8

. Then we may take h 0 " maxtΛ v : v P T i,paq 8 u. To verify this, fix x P D 8 z such that ∆ i px, BD 8 z q ą h 0 , then we may write x " Π i pvq with v P T i 8 zT i,paq 8

, and we have ∆ i px, BD 8 z q " Λ v . Consider a simple geodesic γ " pγ r q 0ďrďΛv from x to BD 8 z constructed as in Section 5.4.1. Then it is straightforward to verify that γ Λv " x 0 . To complete the proof, we just need the fact that any geodesic from x to BD 8 z is a simple geodesic. This follows via Theorem 29 below from the analogous result in the Brownian plane, which is itself a consequence of the study of geodesics in the Brownian map [START_REF] Gall | Geodesics in large planar maps and in the Brownian map[END_REF]. We omit the details.

One may also consider geodesic rays in the infinite Brownian disk (a geodesic ray γ " pγ t q tě0 is an infinite geodesic path). In a way analogous to the case of the Brownian plane (see [START_REF] Curien | The Brownian plane[END_REF]Theorem 18]) one obtains that any two geodesic rays in D 8 z coalesce in finite time. Again this can be deduced from the Brownian plane result via Theorem 29, but this also follows, with some more work, from the alternative construction of the infinite Brownian disk presented in Section 5.6 below.

The Brownian half-plane

In this section, we define the Brownian half-plane and show that it is the tangent cone in distribution of the free pointed Brownian disk at a point chosen uniformly on its boundary. Let us start with the definition. We consider a coding triple pR, P, P 1 q, where R " pR t q tPr0,8q is a three-dimensional Bessel process started from 0, and, conditionally on R, P and P 1 are independent Poisson point measures on R `ˆS with intensity 2 dt N Rt pdωq. For every r ą 0, we set L r :" suptt ě 0 : R t " ru (as in Section 5.3.2), and we let r P and r P 1 stand for the point measures P and P 1 truncated at level 0. Following Section 5.2.4, we can use the coding triple pR, r P, r P 1 q to construct a tree T hp 8 equipped with nonnegative labels pΛ v q vPT hp 8 . In contrast with the measures Θ z used to define the infinitevolume Brownian disk, there is no conditioning on the total exit measure at 0, which is here infinite a.s., as it can be seen from a scaling argument. There are subtrees carrying zero labels that branch off the right side or the left side of the spine at arbitrary high levels, so that labels along the clockwise exploration of T hp 8 vanish in both intervals p´8, ´Ks and rK, 8q, for any K ą 0.

We then follow the general procedure of Section 5.4.1. We set T hp,8 :" tv P T hp 8 : Λ v ą 0u and BT hp 8 :" T hp 8 zT hp,8 , and we let ∆ hp,˝p u, vq and ∆ hp pu, vq, for u, v P T hp,8 , be the pseudo-metric functions associated with the triple pR, r P, r P 1 q as in Section 5.4.1.

Lemma 23. (i)

The mapping pu, vq Þ Ñ ∆ hp pu, vq has a.s. a continuous extension to T hp 8 ˆT hp 8 . (ii) A.s., for every u, v P T hp,8 , the property ∆ hp pu, vq " 0 holds if and only if ∆ hp,˝p u, vq " 0.

(iii) A.s., for every u, v P BT hp 8 , the property ∆ hp pu, vq " 0 holds if and only if Λ w ą 0 for every w Psu, vr, or for every w Psv, ur.

Proof. Property (i) can be derived by minor modifications of the proof of [71, Proposition 31], noting that we may restrict our attention to the bounded subtree obtained by truncating T hp 8 at height L r for some r ą 0. We omit the details. As for (ii) and (iii), there is an additional complication due to the fact that it is not immediately clear why we can restrict our attention to a bounded subtree. Let us explain the argument for (iii), which is the property we use below. The fact that Λ w ą 0 for every w Psu, vr implies ∆ hp pu, vq " 0 is easy and left to the reader. Suppose then that u, v are distinct points of BT hp 8 are such that ∆ hp pu, vq " 0. Without loss of generality we can assume that ru, vs is compact, and we then have to check that Λ w ą 0 for every w Psu, vr. Recall the notation rru, 8rr for the unique geodesic ray from u in the tree T hp 8 , and ssu, 8rr" rru, 8rrztuu. We claim that, for every δ ą 0, we can find points u 1 Pssu, 8rr and v 1 Pssv, 8rr such that Λ u 1 ă δ and Λ v 1 ă δ and there exist w 0 " u 1 , w 1 , . . . , w p " v 1 P ru, vs such that

p ÿ i"1
∆ hp,˝p w i´1 , w i q ă δ.

(5.40)

If the claim holds, we can use [71, Proposition 32 (ii)] to see that necessarily Λ w ą 0 for every w Psu, vr (the point is the fact that all w i 's belong to ru, vs, and thus we are dealing with a compact subtree of T hp 8 ). So it remains to prove our claim. First note that we can find u 1 Pssu, 8rr and v 1 Pssv, 8rr such that Λ u 1 ă δ{2, Λ v 1 ă δ{2 and ∆ hp pu 1 , v 1 q ă δ{2 and in particular there exist w 0 , w 1 , . . . , w p P T hp,8 such that (5.40) holds with δ replaced by δ{2. It may happen that some of the w i 's do not belong to ru, 8q, but then we can replace u 1 by w j`1 , where j " maxti : w i R ru, 8qu, noting that necessarily w j`1 Pssu, 8rr (otherwise ∆ hp,˝p w j , w j`1 q would be 8) and Λ w j`1 ă δ by the bound |Λ w i ´Λw i´1 | ď ∆ hp,˝p w i´1 , w i q for 1 ď i ď j `1. Therefore we can assume that all w i 's belong to ru, 8q, and then a symmetric argument shows that we can assume that they all belong to ru, vs as desired.

We set H 8 " T hp 8 {t∆ hp " 0u, and we let Π hp denote the canonical projection from T hp 8 onto H 8 . We equip H 8 with the distance induced by ∆ hp and the volume measure which is the pushforward of the volume measure on T hp 8 under the canonical projection. We observe that H 8 has a distinguished vertex, namely the root ρ of T hp 8 (or bottom of the spine). By Lemma 23 (iii), the equivalence class of ρ in the quotient T hp 8 {t∆ hp " 0u must be a singleton, since there are points of T hp 8 with zero label arbitrarily close to ρ, both on the left side and on the right side of the spine.

Définition 24. The random pointed locally compact measure metric space H 8 is called the Brownian half-plane.

At the end of Section 5.6, we will explain why this definition is consistent with the one found in [START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF] or in [START_REF] Gwynne | Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov-Hausdorff-Prokhorov-uniform topology[END_REF]. The Brownian half-plane enjoys the same scale invariance property as the Brownian plane: Recalling the notation λ ¨E introduced in Section 5.4.2, λ ¨H8 has the same distribution as H 8 , for every λ ą 0. The boundary BH 8 is defined by BH 8 :" Π hp pBT hp 8 q (one can prove that H 8 is homeomorphic to the usual half-plane and then BH 8 is also the set of all points of H 8 that have no neighborhood homeomorphic to an open disk, but we do not need these facts here). As noted in Section 5.4.1, for any v P T hp 8 , Λ v is equal to the distance from Π hp pvq to the boundary BH 8 .

Let r ą 0 and let T hp 8,r be the closed subset of T hp 8 consisting of the part r0, L r s of the spine and the subtrees branching off r0, L r s.

Lemma 25. We have inf vRT hp

8,r

∆ hp pρ, vq ą 0 , a.s.

Proof. We argue by contradiction and assume that there is a sequence pu n q ně1 in the complement of T hp 8,r such that ∆ hp pρ, u n q ÝÑ 0 as n Ñ 8. Suppose that infinitely many points of this sequence belong to rρ, 8q. Let v prq be the last point of T hp 8,r X BT hp 8 visited by the exploration of T hp 8 , and note that Π hp pρq " Π hp pv prq q, by Lemma 23 (iii). Then an argument very similar to the proof of Lemma 23 (iii) shows that we can find another sequence pv n q ně1 with v n P rrv prq , 8rr and such that we still have ∆ hp pρ, v n q ÝÑ 0 as n Ñ 8. In particular, Λ vn ÝÑ 0, and this implies that

v n ÝÑ v prq in T hp
8 , and thus ∆ hp pv prq , v n q ÝÑ 0 as n Ñ 8. Finally we get ∆ hp pρ, v prq q " 0, which is a contradiction. The case when infinitely many points of this sequence belong to p8, ρs is treated in a symmetric manner.

It follows from Lemma 25 that Π hp pT hp 8,r q contains a ball of positive radius centered at ρ in H 8 . Then, by scale invariance, we have a.s.

lim rÑ8 ´inf vRT hp 8,r ∆ hp pρ, vq ¯" `8.
This implies in particular that H 8 is boundedly compact (any ball centered at ρ is contained in the image of a compact subtree of T hp 8 under Π hp ). Our next goal is to prove that H 8 is the tangent cone in distribution of the pointed Brownian disk at a point chosen uniformly on its boundary -this will eventually allow us to make the connection with previous definitions of the Brownian half-plane. Recall from the end of Section 5.4.3 the notation D',a z for the pointed measure metric space obtained from D '',a z by "forgetting" the first distinguished point (so D',a

z is pointed at a point chosen uniformly on its boundary).

Theorem 26. Let z ą 0 and a ą 0. We have

λ ¨D ',a z pdq ÝÑ λÑ8 H 8 ,
in distribution in the sense of the local Gromov-Hausdorff-Prokhorov convergence.

We give below the proof of Theorem 26 for a " 1, but a scaling argument yields the general case. Before we proceed to the proof of Theorem 26, we start with some preliminary estimates. We consider again a triple pY , Ă M, Ă M 1 q distributed as explained at the beginning of Section 5.3.2 with a " 1. Recall that the random path Y is defined on the interval r0, T Y s, that Y 0 " 1 and T Y " inftt ě 0 : Y t " 0u. For every ε P p0, 1q, we also set

T ε :" inftt ě 0 : Y t " εu.
We let Ă M ε pdtdωq, resp. Ă M 1ε pdtdωq, be the image of 1 rTε,T Y s ptq Ă Mpdtdωq, resp. of 1 rTε,T Y s ptq Ă M 1 pdtdωq, under the mapping pt, ωq Þ Ñ pt ´Tε , ωq. We also set Y ε t :" Y Tε`t for 0 ď t ď T Y ´Tε . Recall that

Z Y " ż Ă MpdtdωqZ 0 pωq `ż Ă M 1 pdtdωqZ 0 pωq,
and also set

Z Y ,ε :" ż Ă M ε pdtdωqZ 0 pωq `ż Ă M 1ε pdtdωqZ 0 pωq. Set Γ ε :" pY ε , Ă M ε , Ă M 1ε
q, and observe that Γ ε is a coding triple in the sense of Section 5.2.4. Moreover, the conditional distribution of Γ ε knowing Z Y ,ε " z is Θpεq z . Our first goal is to show that the conditional distribution of Γ ε given Z Y " z is close to its unconditional distribution when ε Ñ 0.

From (5.13), we have

Ere ´λZ Y s " ´1 `a2λ{3 ¯´3 , Ere ´λZ Y ,ε s " ´1 `εa 2λ{3 ¯´3 .
Furthermore, we may write

Z Y " Z Y ,ε `p Z Y ,ε , where Z Y ,ε and p Z Y ,ε are independent (more precisely, p Z Y ,ε is independent of Γ ε ). Hence Ere ´λ p Z Y ,ε s " ˜1 `εa 2λ{3 1 `a2λ{3 ¸3.
(5.41)

The distribution of p Z Y ,ε can be written in the form

ε 3 δ 0 pdyq `p Υ ε pdyq,
where the measure p Υ ε pdyq is supported on p0, 8q. To simplify notation, we also write ϕpyq " y h 1 pyq for the density of Z Y and ϕ ε pyq " y h ε pyq for the density of Z Y ,ε . Lemma 27. We have p Υ ε pdyq " p ϕ ε pyq dy, where the functions p ϕ ε pyq satisfy lim εÑ0 p ϕ ε pyq " ϕpyq uniformly on every interval of the form rδ, 8q, δ ą 0.

Proof. From (5.41), we have, for every λ ą 0,

ż 8 0 p Υ ε pdyq e ´λy " ˜1 `εa 2λ{3 1 `a2λ{3 ¸3 ´ε3 .

Now observe that

˜1

`ε? λ 1 `?λ ¸3 ´ε3 " p1 ´εq 3 `3εp1 ´εq 2 p1 `?λq `3ε 2 p1 ´εqp1 `?λq 2 p1 `?λq 3 (5.42)

where we have expanded p1 `ε? λq 3 " pp1 ´εq `εp1 `?λqq 3 . It follows from formulas (A.1), (A.2), (A.3) in the Appendix that the Laplace transform of the function χ pεq defined by χ pεq pyq " p1 ´εq 3 χ 3 pyq `3εp1 ´εq 2 χ 2 pyq `3ε 2 p1 ´εqχ 1 pyq.

is the quantity in (5.42). Consequently, we have p Υ ε pdyq " p ϕ ε pyq dy with p ϕ ε pyq " 3 2 χ pεq p 3y 2 q. Furthermore, the explicit formulas for χ 1 , χ 2 , χ 3 show that χ pεq pyq converge to χ 3 pyq as ε Ñ 0, uniformly on every interval of the form rδ, 8q, δ ą 0. The result of the proposition follows since ϕpyq " 3 2 χ 3 p 3y 2 q by definition.

Lemma 28. Let z ą 0. The total variation distance between the conditional distribution of Γ ε knowing that Z Y " z and the unconditional distribution of Γ ε converges to 0 as ε Ñ 0.

Remark. We have made a canonical choice for the conditional distribution Θp1q z of pY , Ă M, Ă M 1 q knowing Z Y " z, and so the conditional distribution of Γ ε knowing that Z Y " z is also well defined for every z.

Proof. The equality Z

Y " Z Y ,ε `p Z Y ,ε gives ϕpxq " ε 3 ϕ ε pxq `ż x 0 ϕ ε pyq p ϕ ε px ´yq dy (5.43)
for every x ą 0. Let G and g be measurable functions defined respectively on W ˆMp pR `ˆS q 2 and on R `, such that 0 ď G ď 1 and 0 ď g ď 1. Then,

ErGpΓ ε qgpZ Y qs " ErGpΓ ε qgpZ Y ,ε `p Z Y ,ε qs " ż dz p ϕ ε pzq ErGpΓ ε qgpZ Y ,ε `zqs `ε3 ErGpΓ ε qgpZ Y ,ε qs " E " GpΓ ε q ż 8 Z Y ,ε dz gpzq p ϕ ε pz ´ZY ,ε q ı `ε3 ż dz gpzq ϕ ε pzq ErGpΓ ε q | Z Y ,ε " zs " ż dz gpzq ´ErGpΓ ε q1 tZ Y ,ε ăzu p ϕ ε pz ´ZY ,ε qs `ε3 ϕ ε pzq ErGpΓ ε q | Z Y ,ε " zs ¯.
Recalling that the density of Z Y is ϕ, it follows that we have dz a.e.,

ErGpΓ ε q | Z Y " zs " E « GpΓ ε q1 tZ Y ,ε ăzu p ϕ ε pz ´ZY ,ε q ϕpzq ff `ε3 ErGpΓ ε q | Z Y ,ε " zs ϕ ε pzq ϕpzq , (5.44) 
where we observe that ErGpΓ ε q | Z Y ,ε " zs " Θpεq z pGq is well defined for every z. We now want to argue that (5.44) holds for every z ą 0 and not only dz a.e. To this end, it is enough to consider the special case Gpw, µ, µ 1 q " expp´f pwq ´xµ, hy ´xµ 1 , h 1 yq where, f , h, h 1 are nonnegative functions, f is bounded and continuous on W, h and h 1 are bounded and continuous on R `ˆS and both h and h 1 vanish on tpt, ωq : σpωq ď δu for some δ ą 0. In that case, using a scaling argument and Corollary 10, one checks that both sides of (5.44) are continuous functions of z, so that they must be equal for every z ą 0.

From (5.12), we have ϕ ε pzq " Opεq as ε Ñ 0, hence, for every fixed z ą 0,

lim εÑ0 ε 3 ErGpΓ ε q | Z Y ,ε " zs ϕ ε pzq ϕpzq " 0, (5.45) 
uniformly in the choice of G. On the other hand, using Lemma 27 and the fact that Z Y ,ε ÝÑ 0 as ε Ñ 0, we have

lim εÑ0 1 tZ Y ,ε ăzu p ϕ ε pz ´ZY ,ε q ϕpzq " 1 (5.46)
almost surely. Moreover, using (5.43), we have

E « 1 tZ Y ,ε ăzu p ϕ ε pz ´ZY ,ε q ϕpzq ff " 1 ϕpzq ż z 0 dy ϕ ε pyq p ϕ ε pz ´yq " 1 ϕpzq pϕpzq ´ε3 ϕ ε pzqq,
which tends to 1 as ε Ñ 0. By Scheffé's lemma, the convergence (5.46) also holds in L 1 . The statement of the lemma then follows from (5.44) and (5.45).

Proof of Theorem 26. The proof is based on a coupling argument relying on Lemma 28. If E is a pointed metric space, we use the notation B r pEq for the closed ball of radius r centered at the distinguished point. The theorem will follow if we can prove that, for every K ą 0 and every δ ą 0, if λ is large enough we can couple H 8 and D',1 z in such a way that the balls B K pλ ¨D ',1 z q and B K pH 8 q are isometric with probability at least 1 ´δ (with an isometry preserving the volume measure and the distinguished point). Equivalently, recalling that λ ¨H8 has the same distribution as H 8 , it suffices to prove that, for η ą 0 small enough, H 8 and D',1 z can be coupled so that B η p D',1 z q and B η pH 8 q are isometric with probability at least 1 ´δ (again with an isometry preserving the volume measure and the distinguished point).

As explained at the end of Section 5.4.3, we may and will assume that D',1 z is constructed from a coding triple pY pzq , Ă M pzq , Ă M 1pzq q distributed according to Θp1q z . The labeled tree associated with pY pzq , Ă M pzq , Ă M 1pzq q is denoted by T pzq , and we write ∆ pzq,˝a nd ∆ pzq for the pseudo-distance functions on T pzq , so that ∆ pzq induces the metric on D',1

z . The set of all points of T pzq with positive label is denoted by T pzq,˝.

For ε P p0, 1q, let Γ pzq,ε be defined as Γ ε but replacing the triple pY , Ă M, Ă M 1 q by pY pzq , Ă M pzq , Ă M 1pzq q (so Γ pzq,ε is distributed as Γ ε conditioned on Z Y " z). Let Γpzq,ε , resp. Γε , denote the image of Γ pzq,ε , resp. Γ ε , under the time reversal operation SR in (5.8). We fix δ ą 0 and claim that:

1. For ε P p0, 1q small enough, the triples pY pzq , Ă M pzq , Ă M 1pzq q and pR, P, P 1 q can be coupled in such a way that the equality Γpzq,ε " ´pR t q 0ďtďLε , 1 r0,Lεs ptq r Ppdtdωq, 1 r0,Lεs ptq r P 1 pdtdωq ¯(5.47)

holds with probability at least 1 ´δ 2 .

2. For ε P p0, 1q small enough, we can choose η 0 ą 0 so that for every 0 ă η ď η 0 , we have

B η p D',1 z q " B η pH 8 q
on the event where (5.47) holds, except possibly on an event of probability at most δ 2 .

Clearly the theorem follows from Properties 1 and 2. Property 1 is a consequence of Lemma 28: just note that the distribution of the coding triple in the right-hand side of (5.47) is the (unconditional) distribution of Γε .

It remains to verify Property 2. We fix ε ą 0 small enough so that we can apply Property 1. We then assume that the triples pY pzq , Ă M pzq , Ă M 1pzq q and pR, P, P 1 q have been coupled in such a way that the event where (5.47) holds has probability greater than 1 ´δ 2 , and we denote the latter event by F. We argue on the intersection F X F 1 , where F 1 denotes the event where W ˚pω i q " 0 for at least one atom pt i ,

ω i q of Ă M pzq or of Ă M 1pzq such that t i ă T pzq ε :" inftt ě 0 : Y pzq t
" εu. Clearly we can also assume that F 1 has probability greater than 1 ´δ 6 by choosing ε even smaller if necessary.

Recall the notation T hp 8,r introduced before Lemma 25. From this lemma, we know that, for η ą 0 small enough, the set tv P T hp 8 : ∆ hp pρ, vq ď 4ηu will be contained in T hp 8,ε , except on an event of probability at most δ 6 . Moreover, if the latter property holds, we claim that we have also, for every u, v P T hp,8 such that ∆ hp pρ, uq ď η and ∆ hp pρ, vq ď η,

∆ hp pu, vq " inf u 0 "u,u 1 ,...,up"v u 1 ,...,u p´1 PT hp 8,ε XT hp,8 p ÿ i"1
∆ hp,˝p u i´1 , u i q.

(5.48)

In other words, in formula (5.29) applied to ∆ hp pu, vq, we may restrict the infimum to the case where all u i 's belong to T hp 8,ε . Let us justify (5.48). Assume that ∆ hp pρ, uq ď η and ∆ hp pρ, vq ď η (so that in particular ∆ hp pu, vq ď 2η) and u 0 " u, u 1 , . . . , u q P T hp,8 are such that q ÿ i"1 ∆ hp,˝p u i´1 , u i q ă ∆ hp pu, vq `η.

It then follows that ∆ hp pu, u q q ă 3η and ∆ hp pρ, u q q ă 4η which implies u q P T hp 8,ε . Furthermore, when applying formula (8.15) to compute the quantities ∆ hp,˝p u i´1 , u i q in the right-hand side of (5.48), it is enough to consider the case when the interval ru i´1 , u i s (resp. ru i , u i´1 s) is contained in T hp 8,ε , because otherwise this interval contains T hp 8 zT hp 8,ε and then the infimum of labels on ru i´1 , u i s is 0. To summarize, on the event where (5.48) holds for every u, v P T hp,8 such that ∆ hp pρ, uq ď η and ∆ hp pρ, vq ď η, we get that the value of ∆ hp pu, vq for such points u and v is determined by the tree T hp 8,ε and the labels on this tree. On the event where (5.48) holds, we thus get that the ball B η pH 8 q can be written as a function of the coding triple ´pR t q 0ďtďLε , 1 r0,Lεs ptq r Ppdtdωq, 1 r0,Lεs ptq r P 1 pdtdωq since the tree T hp 8,ε and the labels on this tree are functions of this triple (and also the distinguished point of B η pH 8 q corresponds to the root of this coding triple). To complete the argument (recalling that we assume (5.47)), we need to justify that B η p D',1 z q is given by the same function applied to the triple Γpzq,ε , except possibly on a set of small probability. To get this, recall that

D ',1
z is obtained by applying Ξ ' to the snake trajectory ΩpY pzq , Ă M pzq , Ă M 1pzq q. With the coding triple Γpzq,ε we associate a labeled tree T pzq ε , which is identified to a subtree of the labeled tree T pzq , and, modulo this identification, T pzq ε is rooted at the top of the spine of the tree T pzq , which corresponds to the distinguished point α of D',1 z . We claim that the image of T pzq ε (viewed as a subset of T pzq ) under the canonical projection from T pzq onto D',1 z must contain a neighborhood of α. As in the proof of Lemma 25, this property holds because the equivalence class of α in T pzq {t∆ pzq " 0u is a singleton, which is a consequence of the fact that two points u and v of T pzq with zero label are identified in D',1 z if and only if labels stay positive on the interval su, vr, or on the interval sv, ur (see the discussion after Proposition 14).

It follows from the preceding claim that, for η small enough, we have ∆ pzq pα, vq ą 4η whenever v R T pzq ε , except on an event of probability at most δ 6 . Discarding the latter event of small probability, the same argument as above shows that the analog of (5.48) holds for every u, v P T pzq,s uch that ∆ pzq pα, uq ă η and ∆ pzq pα, vq ă η, provided we replace ∆ hp by ∆ pzq , T hp,8 by T pzq,˝, and T hp 8,ε by T pzq ε . Furthermore, the quantities ∆ pzq,˝p u i´1 , u i q appearing in this analog can be computed from the labeled tree T pzq ε (here we use our definition of F 1 , which implies that T pzq zT pzq ε contains points with zero label).

It follows from the preceding discussion that, on the event F that has probability at least 1 ´δ 2 , and except on an event of probability at most δ 2 , the ball B η p D',1 z q is obtained from the triple Γpzq,ε by applying the same function that can be used to get the ball B η pH 8 q from the triple in the right-hand side of (5.47). The desired result follows. 5.5

Applications

Infinite-volume Brownian disks in the Brownian plane

Recall the construction of the Brownian plane pBP 8 , ∆ p q from the coding triple pX, L, Rq in Section 5.4.2 and note that the same triple was also considered in Section 5.3.3. We use the notation pT p 8 , pΛ v q vPT p 8 q for the labeled tree associated with the triple pX, L, Rq, and we write Π p for the canonical projection from T p 8 onto BP 8 . The distinguished point ρ of BP 8 is the image of the root of T p 8 under Π p . To simplify notation, for every r ą 0, we write Bprq " B r pBP 8 q for the closed ball of radius r centered at ρ in BP 8 . The hull B ' prq is then the subset of BP 8 defined by saying that BP 8 zB ' prq is the unique unbounded connected component of BP 8 zBprq (this component is unique since BP 8 is homeomorphic to the plane [START_REF] Curien | The Brownian plane[END_REF]). Informally, B ' prq is obtained by filling in the (bounded) holes in Bprq. As in the introduction, it will be convenient to use the notation B' prq " BP 8 zB ' prq.

One can give an explicit description of B' prq in terms of the labeled tree pT p 8 , pΛ v q vPT p 8 q. For v P T p 8 , we recall that rrv, 8rr is the geodesic ray from v in T p 8 . Then, B' prq " Π p pF r q, where F r :" tv P T p 8 : Λ w ą r for every w P rrv, 8rru.

(5.49)

Similarly, the topological boundary of B' prq (or of B ' prq) is B B' prq " BB ' prq " Π p pBF r q, with BF r " tv P T p 8 : Λ w " r and Λ w ą r for every w Pssv, 8rru, (

with the obvious notation ssv, 8rr. See formulas ( 16) and ( 17) in [START_REF] Curien | The hull process of the Brownian plane[END_REF]. We note that the intersection of the set F r with the spine of T p 8 is just the interval pL r , 8q, where we recall the notation L r in (5.18) (as in Section 5.2.4, the spine is identified to R `). Following [START_REF] Curien | The hull process of the Brownian plane[END_REF], we define the boundary size of B ' prq to be |BB ' prq| " Z prq , where the quantity Z prq is defined in (5.19): Z prq is the sum over all atoms pt, ωq of L and R such that t ą L r of the exit measures Z r pωq at level r -see formula [START_REF] Bertoin | Martingales in self-similar growthfragmentations and their connections with random planar maps[END_REF] in [START_REF] Curien | The hull process of the Brownian plane[END_REF]. We write clp B' prqq " B' prq Y BB ' prq for the closure of B' prq, and similarly clpF r q " F r Y BF r .

Recall that the intrinsic metric on an open subset O of BP 8 is defined by declaring that the distance between two points x and y of O is the infimum of the lengths of all continuous curves γ : r0, 1s ÝÑ O such that γp0q " x and γp1q " y. Here the lengths are of course computed with respect to the metric ∆ p of BP 8 . Theorem 29. Let r ą 0. Then a.s. the intrinsic metric on B' prq has a unique continuous extension to clp B' prqq, which is a metric on this set. We write pD 8,prq , ∆ 8,prq q for the resulting random locally compact metric space, which is equipped with the restriction of the volume measure on BP 8 and pointed at Π p pL r q. Then, conditionally on |BB ' prq|, pD 8,prq , ∆ 8,prq q is an infinitevolume Brownian disk with perimeter |BB ' prq|.

Proof. Recall the notation pX prq , r L prq , r R prq q introduced in Section 5.3.3, and the fact that, conditionally on Z prq " z, this coding triple is distributed according to Θ z (Proposition 6). The construction of Section 5.4.4 produces, from the triple pX prq , r L prq , r R prq q, a random measure metric space pD 8,prq , ∆ 8,prq q such that, conditionally on Z prq " z, pD 8,prq , ∆ 8,prq q is an infinite-volume Brownian disk with perimeter z. Furthermore, D 8,prq is obtained as a quotient space of the labeled tree T i 8 coded by the triple pX prq , r L prq , r R prq q. Here we use the same notation T i 8 as in Section 5.4.4, where we were dealing with a different triple distributed according to Θ z , but this should create no confusion. We write Π i for the canonical projection from T i 8 onto D 8,prq . It is easy to verify that the tree T i 8 can be identified with clpF r q. The spine of T i 8 is identified with the part rL r , 8q of the spine of T p 8 , and we observe that, for each atom pt i , ω i q of L or R such that t i ą L r (so that tr r pω i q shifted by ´r corresponds to an atom of r L prq or r R prq ), the genealogical tree T ptrrpω i qq is identified with tv P T pω i q : Λ w ą r for every w P rrρ pω i q , vrru (see the end of Section 5.2.1). The identification of T i 8 with clpF r q preserves labels, provided labels on clpF r q are shifted by ´r. With a slight abuse of notation, if u P T i 8 , we will also write Λ u for the label of the point of clpF r q corresponding to u in the identification of T i 8 with clpF r q (so the label of u in T i 8 is Λ u ´r). Furthermore, two vertices of clpF r q are identified in the quotient space BP 8 if and only if the corresponding vertices of T i 8 are identified in the quotient D 8,prq : to check this property in the case where the vertices belong to the boundary (the other case is immediate) we use the fact that two vertices u and v of T i 8 with zero label are identified if and only if labels remain positive on one of the two intervals su, vr and sv, ur of the tree T i 8 (Lemma 16 (iii)). Thus we can identify D 8,prq with the set Π p pclpF r qq " clp B' prqq, in such a way that BD 8,prq is identified with B B' prq, and this identification preserves the volume measures.

Modulo the preceding identification, both assertions of the theorem follow from the next lemma.

Lemma 30. Let x and y be two points of D 8,prq zBD 8,prq , and let x 1 and y 1 be the corresponding points in B' prq. Then the intrinsic distance (relative to the open set B' prq) between x 1 and y 1 coincides with ∆ 8,prq px, yq.

Proof. Let ∆ 8,prq,˝p v, wq be defined as in (8.15) for the labeled tree pT i 8 , pΛ u ´rq uPT i 8 q (recall that the label in T i 8 of a point u P T i 8 is equal to Λ u ´r), so that ∆ 8,prq pv, wq is then given from ∆ 8,prq,˝p v, wq by formula (5.29).

We first prove that the intrinsic distance between x 1 and y 1 is bounded above by ∆ 8,prq px, yq. To this end, let v and w be points of T i 8 such that Π i pvq " x and Π i pwq " y. We claim that, if ∆ 8,prq,˝p v, wq ă 8, then ∆ 8,prq,˝p v, wq is the length of a continuous curve in B' prq that connects x 1 to y 1 . Let us explain this. Without loss of generality, we may assume that ∆ 8,prq,˝p v, wq " Λ v `Λw ´2 inf uPrv,ws Λ u , with inf uPrv,ws Λ u ą r. We let v 1 and w 1 be the points of F r corresponding to v and w in the identification of T i 8 with clpF r q (in particular Λ u 1 " Λ u and Λ v 1 " Λ v ). We note that the condition inf uPrv,ws Λ u ą r implies that the interval rv, ws of T i 8 is also identified with the interval rv 1 , w 1 s of T p 8 (in particular we have ∆ p,˝p v 1 , w 1 q " ∆ 8,prq,˝p v, wq), and furthermore Π p prv 1 , w 1 sq is contained in B' prq. By concatenating two simple geodesics starting from Π p pv 1 q " x 1 and Π p pw 1 q " y 1 respectively up to their merging time, as explained at the end of Section 5.4.1, we construct a path from x 1 to y 1 whose length is equal to ∆ p,˝p v 1 , w 1 q, and which stays in Π p prv 1 , w 1 sq Ă B' prq. This gives our claim.

From the definition of ∆ 8,prq as an infimum, we now get that ∆ 8,prq px, yq is bounded below by the infimum of lengths of continuous curves connecting x 1 and y 1 that stay in B' prq. We thus obtain that the intrinsic distance between x 1 and y 1 (with respect to the open set B' prq) is bounded above by ∆ 8,prq px, yq.

It remains to prove the reverse bound. To this end, we need to verify that, if γ : r0, 1s Ñ B' prq is a continuous curve such that γp0q " x 1 and γp1q " y 1 , then the length of γ is bounded below by ∆ 8,prq px, yq. We write γptq for the point of D 8,prq corresponding to γptq in the identification of clp B' prqq with D 8,prq . We may find δ ą 0 such that Λ γptq ą r `δ for every t P r0, 1s (recall that Λ z " ∆ p pρ, zq for every z P BP 8 ). Then, we may choose n large enough so that ∆ p pγp i´1 n q, γp i n qq ă δ{2 for every 1 ď i ď n. The length of γ is bounded below by ř n i"1 ∆ p pγp i´1 n q, γp i n qq, and so to get the desired result it suffices to verify that, for every 1 ď i ď n,

∆ p ´γ´i ´1 n ¯, γ ´i n ¯¯ě ∆ 8,prq ´γ´i ´1 n ¯, γ ´i n ¯¯.
Fix 1 ď i ď n, and recall the definition (5.29) of ∆ p pγp i´1 n q, γp i n qq as an infimum over possible choices of u 0 " γp i´1 n q, u 1 , . . . , u p " γp i n q in T p 8 , where we may restrict our attention to choices of u 0 , u 1 , . . . , u p such that Λ u j ą r `δ{2 (use ∆ p pu, vq ě |Λ v ´Λu |) and ∆ p,˝p u j´1 , u j q ă δ{2 for every 1 ď j ď p. It suffices to consider one such choice and to prove that

p ÿ j"1 ∆ p,˝p u j´1 , u j q ě ∆ 8,prq ´γ´i ´1 n ¯, γ ´i n ¯¯.
(5.51)

For every 1 ď j ď p, the properties Λ u j ą r `δ{2 and ∆ p,˝p u j´1 , u j q ă δ{2 imply that the minimal label on ru j´1 , u j s is greater than r (or the same holds with ru j´1 , u j s replaced by ru j , u j´1 s). This shows in particular that there is a continuous curve from γp i n q to Π p pu j q that stays in the complement of Bprq, so that Π p pu j q belongs to B' prq and u j must belong to F r , which allows us to define u j as the point of T i 8 corresponding to u j . Furthermore the fact that the minimal label on ru j´1 , u j s is greater than r also implies that the interval ru j´1 , u j s in T p 8 is identified to the interval ru j´1 , u j s in T i 8 , and then that ∆ p,˝p u j´1 , u j q " ∆ 8,prq,˝p u j´1 , u j q. The bound (5.51) follows, which completes the proof of the lemma and of Theorem 5.5.1.

In view of applications to isoperimetric inequalities in the Brownian plane [START_REF] Riera | Isoperimetric inequalities in the Brownian map and the Brownian plane[END_REF], we state another result which complements Theorem 29 by showing that, in some sense, the exterior of the hull B ' prq is independent of this hull, conditionally on its boundary size. We keep the notation introduced at the beginning of this section, and in particular, we recall that the Brownian plane BP 8 is constructed from the labeled tree pT p 8 , pΛ v q vPT p 8 q associated with the coding triple pX, L, Rq. We fix r ą 0 and write K r for the complement of the set F r defined in (5.49), K r :" tv P T p 8 : Λ w ď r for some w P rrv, 8rru.

We have then B ' prq " Π p pK r q (cf. formulas ( 16) and ( 17) in [START_REF] Curien | The hull process of the Brownian plane[END_REF]). Recall that, for every

u, v P BP 8 , ∆ p,˝p u, vq " Λ u `Λv ´2 max ´inf wPru,vs Λ w , inf wPrv,us Λ w ¯.
(5.52)

We then set, for every u, v P K r , ∆ p,prq pu, vq " inf u 0 "u,u 1 ,...,up"v u 0 ,u 1 ,...,upPKr

p ÿ i"1 ∆ p,˝p u i´1 , u i q (5.53)
where the infimum is over all choices of the integer p ě 1 and of the finite sequence u 0 , u 1 , . . . , u p in K r such that u 0 " u and u p " v. For every u, v P K r , we have ∆ p pu, vq ď ∆ p,prq pu, vq (just note that ∆ p pu, vq is defined by the same formula (8.42) without the restriction to u 0 , . . . , u p P K r ) and we also know that ∆ p pu, vq " 0 implies ∆ p,˝p u, vq " 0 and a fortiori ∆ p,prq pu, vq " 0. It follows that ∆ p,prq induces a metric on Π p pK r q " B ' prq, and we keep the notation ∆ p,prq for this metric.

For future use, we also observe that, in the right-hand side of formula (5.52) applied to u, v P K r , we may replace the infimum over w P ru, vs by an infimum over w P ru, vs X K r : The point is that, if the clockwise exploration going from u to v (or from v to u) intersects F r , then it necessarily visits a point with label at most r, because otherwise u and v would have to be in F r .

Theorem 31. Conditionally on |BB ' prq|, the random compact measure metric space pB ' prq, ∆ p,prq q and the space pD 8,prq , ∆ 8,prq q in Theorem 29 are independent. Furthermore, the restriction of the metric ∆ p,prq to the interior of B ' prq coincides with the intrinsic metric induced by ∆ p on this open set.

Proof. The general idea is to show that the space pB ' prq, ∆ p,prq q can be constructed from random quantities that are independent of pD 8,prq , ∆ 8,prq q conditionally on |BB ' prq|. We start by introducing the labeled tree T p,prq which consists of the part r0, L r s of the spine of T p 8 , and of the subtrees branching off r0, L r s. Equivalently, T p,prq is associated with the finite spine coding triple X prq :" ´pX t q 0ďtďLr , 1 r0,Lrs ptq Lpdtdωq, 1 r0,Lrs ptq Rpdtdωq ¯.

(5.54)

Clearly, T p,prq viewed as a subset of T p 8 is contained in K r . If pE s q sPR is the clockwise exploration of T p 8 , T p,prq corresponds to the points visited by pE s q sPR during an interval of the form r´σ r , σ 1 r s, with σ r , σ 1 r ą 0. We also let Xprq be the image of X prq under the spine reversal operation (5.8) and denote the associated labeled tree by Ť p,prq (replacing T p,prq by Ť p,prq just amounts to interchanging the roles of the root and the top of the spine).

We then consider all subtrees branching off the spine of T p 8 at a level higher than L r , and, for each such subtree whose labels hit r0, rs, the "excursions outside" pr, 8q. To make this precise, write

L " ÿ iPI δ pt i ,ω i q , R " ÿ iPJ δ pt i ,ω i q ,
where the indexing sets I and J are disjoint. In the time scale of the clockwise exploration, each ω i corresponds to an interval rα i , β i s contained in p´8, 0q if i P J, or in p0, 8q if i P I, and σpω i q " β i ´αi . Set I r :" ti P I : t i ą L r and W ˚pω i q ď ru and J r :" ti P J : t i ą L r and W ˚pω i q ď ru. For each i P I r Y J r , we can make sense of the exit local time of ω i at level r, as defined in Section 5.2.2, and we denote this local time by pL i,r t q tPr0,σpω i qs . We then set, for every t P R,

L ˚,r t " ÿ iPIrYJr L i,r t^β i ´t^α i ,
so that, in some sense, L ˚,r t represents the total exit local time accumulated at r by the clockwise exploration up to time t. We note that

L ˚,r 8 " ÿ iPIrYJr L i,r σpω i q " Z prq ,
and |BB ' prq| " Z prq by definition. Then, for every i P I r Y J r , we consider the excursions pω i,k q kPN of ω i outside pr, 8q (we refer to [2, Section 2.4] for more information about such excursions). These excursions ω i,k , k P N are in one-to-one correspondence with the connected components pa i,k , b i,k q, k P N, of the open set ts P r0, σpω i qs : τ r pω i s q ă ζ s pω i qu, in such a way that, for every s ě 0, ω i,k s ptq :" ω i pa i,k `sq^b i,k pζ a i,k pω i q `tq, for 0 ď t ď ζ s pω i,k q :" ζ pa i,k `sq^b i,k pω i q ´ζa i,k pω i q.

In the time scale of the clockwise exploration, ω i,k corresponds to the interval rα i,k , β i,k s, where α i,k " α i `ai,k and β i,k " α i `bi,k . In particular, the (labeled) tree T pω i,k q coincides with the subtree of T p 8 consisting of the descendants of

E α i,k " E β i,k (this set of descendants is tE s : s P rα i,k , β i,k su).
Recall the coding triple pX prq , r L prq , r R prq q which is used to construct the space pD 8,prq , ∆ 8,prq q. An application of the special Markov property, in the form given in the appendix of [START_REF] Gall | Subordination of trees and the Brownian map[END_REF], shows that, conditionally on Z prq , the point measure

N prq pdtdωq :" ÿ iPIrYJr ÿ kPN δ pL ˚,r α i,k ,ω i,k q pdtdωq
is Poisson with intensity 1 r0,Z prq s ptq dt N r pdωq, and is independent of pX prq , r L prq , r R prq q. Note in particular that Z prq is a measurable function of N prq . On the other hand, the coding triple X prq in (5.54) is clearly independent of the pair pN prq , pX prq , r L prq , r R prq qq. So the first assertion of the theorem would follow if we could prove that the space pB ' prq, ∆ p,prq q is a function of N prq and X prq . This is not correct, but we will see that pB ' prq, ∆ p,prq q is a function of pN prq , L ˚,r 0 , X prq q. Informally, the information given by L ˚,r 0 is required to locate the root of the tree Ť p,r associated with X prq among the (roots of the) trees T pω i,k q corresponding to the atoms of N prq . Once we have written pB ' prq, ∆ p,prq q as a function of pN prq , L ˚,r 0 , X prq q, we will verify that the conditional distribution of pB ' prq, ∆ p,prq q knowing pZ prq , L ˚,r 0 q only depends on Z prq . This will suffice to get the first assertion of Theorem 31.

Let us explain how the space pB ' prq, ∆ p,prq q can be written as a function of pN prq , L ˚,r 0 q and X prq . To begin with, we introduce the right-continuous inverse of the process pL ˚,r t q tPR : for every s P r0, Z prq q, τ ˚,r s :" inftt P R : L ˚,r t ą su, and we also make the convention that τ ˚,r Z prq is the left limit of s Þ Ñ τ ˚,r s at s " Z prq . Then one verifies that pΠ p pE τ ˚,r s qq 0ďtďZ prq is an injective loop whose range is precisely BB ' prq. Let us briefly justify this. Recall that BB ' prq " Π p pBF r q, with BF r given by (5.50). We first observe that the mapping s Þ Ñ Π p pE τ ˚,r s q is continuous. Indeed, we already know that the function s Þ Ñ Π p pE s q is continuous. Furthermore, if τ ˚,r s´ă τ ˚,r s , the support property of the exit local time (see the discussion following (8.7) in Section 5.2.2) implies that either all points of the form E u with u P pτ ˚,r s´, τ ˚,r s q are descendants of

E τ ˚,r s´a nd necessarily E τ ˚,r
s´"

E τ ˚,r s
, or the labels of all such points E u are greater than r. In both cases, we have Π p pE τ ˚,r s´q " Π p pE τ ˚,r s q. Then one easily deduces from the same support property that any point of the form Π p pE τ ˚,r s q belongs to BB ' prq. Conversely, using (5.50), any point x of BB ' prq, with the exception of the point L r of the spine, must be of the form Π p pvq where v belongs to a subtree T pω i q with i P I r Y J r , and labels along the line segment between v and the root of T pω i q are greater than r except at v. From the support property of the exit local time, it follows that v " E τ ˚,r s for some s P rα i , β i s. The formula v " E τ ˚,r s also holds for v " L r with s " L ˚,r 0 . Finally, from the description of the distribution of N prq and the fact that ∆ p pu, vq " 0 holds if and only if ∆ p,˝p u, vq " 0, one checks that, for every 0 ď s ă s 1 ď Z prq , the points Π p pE τ ˚,r s q and Π p pE τ ˚,r s 1 q are distinct, except in the case s " 0 and s 1 " Z prq . We let H be derived from the disjoint union r0, Z prq s Y ´ď iPIrYJr kPN T pω i,k q ¯Y Ť p,prq by identifying 0 with Z prq , the root of Ť p,prq with the point L ˚,r 0 of r0, Z prq s, and, for every i P I r Y J r and k P N, the root of T pω i,k q with the point L ˚,r α i,k of r0, Z prq s. We assign labels pΛ prq x q xPH to the points of H: the label of any point of r0, Z prq s is equal to r, and points of the labeled trees T pω i,k q and Ť p,prq keep their labels. We also define a volume measure on H by summing the volume measures of the trees T pω i,k q and of Ť p,prq . The total volume of H is

Σ prq :" | Ť p,prq | `ÿ iPIrYJr ÿ kPN σpω i,k q,
using the notation | Ť p,prq | for the total volume of Ť p,prq .

We need to define a cyclic clockwise exploration of H, which will be denoted by pE prq s q sPr0,Σ prq s . Roughly speaking this exploration corresponds to concatenating the clockwise explorations of the trees T pω i,k q and Ť p,prq in the order prescribed by the exploration of T p 8 . To give a more precise definition, we first observe that we can write K r " K r Y BF r , where BF r is as in (5.50), and K r :" tv P T p 8 : Λ w ď r for some w Pssv, 8rru.

If v P BF r , we know that Π p pvq P BB ' prq, so that, by previous observations, there is a unique s P r0, Z prq q such that v " Π p pE τ ˚,r s q, and we set Φ prq pvq :" s. We then define, for every s P R,

A prq s :" ż s ´8 dt 1 tEtPKru .
Note that A prq 8 " Σ prq . We set η prq t :" infts P R : A prq s ą tu for every t P r0, Σ prq q. Then, for every t P r0, Σ prq q, either E η prq t belongs to K r , which implies that E η prq t is a point of one of the trees T pω i,k q or of Ť p,prq , and we let E prq t be the "same" point in H, or E η prq t belongs to BF r , and we set E prq t " Φ prq pE η prq t q P r0, Z prq q. Finally we take E prq Σ prq " E prq 0 " 0. Although this is not apparent in the preceding presentation, the reader will easily check that this exploration process E prq only depends on pN prq , L ˚,r 0 q and X prq (the reason why we need L ˚,r 0 is because we have to rank the tree T p,prq among the trees T pω i,k q -of course the order between the different trees T pω i,k q is prescribed by the point measure N prq ).

The clockwise exploration of H allows us to make sense of intervals on H. In turn, we can then define the function D 1prq,˝p u, vq, for u, v P H, by the right-hand side of (5.52), where we simply replace Λ by Λ prq . Similarly, we define D 1prq pu, vq, for u, v P H, by replacing ∆ p,˝w ith D 1prq,˝i n the right-hand side of (8.42) (and of course replacing u 0 , u 1 , . . . , u p P K r by u 0 , u 1 , . . . , u p P H). We now claim that the quotient space H{tD 1prq " 0u, equipped with the metric induced by D 1prq and with the volume measure which is the pushforward of the volume measure on H, coincides with pB ' prq, ∆ p,prq q. This is a straightforward consequence of our construction (using the fact that one can replace ru, vs by ru, vs X K r in the right-hand side of (5.52) when u, v P K r ), and we omit the details.

We also observe that the conditional distribution of the space H{tD 1prq " 0u given pZ prq , L ˚,r 0 q does not depend on L ˚,r 0 . This follows from the fact that the law of a Poisson point measure on r0, zs ˆS with intensity dt N r pdωq is invariant under the shift t Þ Ñ t `a mod. z, for any fixed a P r0, zs.

Finally, we can write pB ' prq, ∆ p,prq q " pH{tD 1prq " 0u, D 1prq q " ΨpN prq , L ˚,r 0 , X prq q with a K-valued function Ψ, and we have for every nonnegative measurable function F on K, ErF pΨpN prq , L ˚,r 0 , X prq qq | pX prq , r L prq , r R prq qs " ErF pΨpN prq , L ˚,r 0 , X prq qq | pZ prq , L ˚,r 0 qs " ErF pΨpN prq , L ˚,r 0 , X prq qq | Z prq s.

The second equality follows from the preceding observation, and the first one holds because N prq and pX prq , r L prq , r R prq q are conditionally independent given Z prq (and L ˚,r 0 is a measurable function of pX prq , r L prq , r R prq q). Since pD 8,prq , ∆ 8,prq q is a function of pX prq , r L prq , r R prq q, this gives the first assertion of Theorem 31.

The proof of the second assertion of Theorem 31 is very similar to the proof of Lemma 30, and we leave the details to the reader.

Remark. The preceding proof gives a description of the distribution of the hull B ' prq equipped with its intrinsic metric in terms of the space H. We note that the labeled tree Ť p,prq has the same distribution as the tree T pωq under N r pdω | W ˚pωq " 0q (see [START_REF] Gall | Bessel processes, the Brownian snake and super-Brownian motion[END_REF]). So the conditional distribution of B ' prq knowing Z prq " z could as well be defined from a Poisson point measure ř iPI δ pt i ,ω i q with intensity 1 r0,zs ptq dt N r pdωq conditioned on the event tinf iPI W ˚pω i q " 0u. In this form, there is a striking analogy with the construction of the (free) Brownian disk with perimeter z found in [START_REF] Bettinelli | Scaling limit of random planar quadrangulations with a boundary[END_REF] or [START_REF] Bettinelli | Compact Brownian surfaces I. Brownian disks[END_REF] -see Section 5.6 below for a presentation within the formalism of the present work. The essential difference comes from the fact that the construction of the hull assigns constant labels equal to r to points of H that belong to r0, zs, whereas, in the construction of the Brownian disk, labels along r0, zs evolve like a scaled Brownian bridge.

Horohulls in the Brownian plane

In this section, we explain how pointed Brownian disks with a given height appear as horohulls in the Brownian plane. Let us first recall the definition of these horohulls. We consider the Brownian plane pBP 8 , ∆ p q, with the distinguished point ρ. One can prove [START_REF] Curien | The Brownian plane[END_REF] that, a.s. for every a, b P BP 8 , the limit lim xÑ8 p∆ p pa, xq ´∆p pb, xqq exists in R. Here the limit as x Ñ 8 means that x tends to the point at infinity in the Alexandroff compactification of BP 8 . Clearly, the limit in the preceding display can be written in the form H a ´Hb , where the "horofunction" a Þ Ñ H a is uniquely defined if we impose H ρ " 0. We interpret H a as a (relative) distance from a to 8, and call H a the horodistance from a. Note the bound

|H a ´Hb | ď ∆ p pa, bq.
For every r ą 0, let B ˝prq be the connected component of the open set tx P BP 8 : H x ą ´ru that contains ρ. So a point x belongs to B ˝prq if and only if there is a continuous path from ρ to r that stays at horodistance greater than ´r. The horohull B ' prq is defined as the closure of B ˝prq. We view B ' prq as a pointed compact measure metric space with distinguished point ρ. Note that the compactness of B ' prq is not obvious a priori, but will follow from the description that we give in the proof of the next statements.

We write Volp¨q for the volume measure on BP 8 . In the following two statements, we fix r ą 0. . Then conditionally on |BB ' prq| " z, the pointed measure metric space pB ' prq, ∆ horo,r 8 q is a pointed Brownian disk with perimeter z and height r.

Remark. In a way similar to Theorem 31, we could have stated an independence property: The closure of the horohull complement BP 8 zB ' prq equipped with its (extended) intrinsic distance is independent of the horohull pB ' prq, ∆ horo,r q conditionally on the boundary size |BB ' prq|. The distribution of this horohull complement can also be described, but it is not that of an infinite volume Brownian disk (all points of the boundary must be at the same horodistance). We shall leave these extensions to the reader.

The proof of both Proposition 32 and Theorem 33 relies on the construction of the Brownian plane found in [START_REF] Curien | The Brownian plane[END_REF], which is different from the one given in Section 5.4.2. Let us recall the construction of [START_REF] Curien | The Brownian plane[END_REF] using our formalism of coding triples (the presentation therefore seems to differ from the one in [START_REF] Curien | The Brownian plane[END_REF], but the relevant random objects are the same). We consider a coding triple pB, P, P 1 q, such that: ' B " pB t q tě0 is a linear Brownian motion started from 0. ' Conditionally on B, P and P 1 are independent Poisson point measures on R `ˆS with intensity 2 dt N Bt pdωq.

Following Section 5.2.4, we then consider the infinite labeled tree pT 1p 8 , pΛ 1 v q vPT 1p 8 q associated with this coding triple. We define the functions D 8,˝p u, vq and D 8 pu, vq, for u, v P T 1p 8 , in a way similar to Section 5.4.1 (note however that labels are here of arbitrary sign):

D 8,˝p u, vq " Λ 1 u `Λ1 v ´2 max ´inf wPru,vs Λ 1 w , inf wPrv,us Λ 1 w ¯, (5.55) 
and

D 8 pu, vq " inf u 0 "u,u 1 ,...,up"v p ÿ i"1 D 8,˝p u i´1 , u i q (5.56)
where the infimum is over all choices of the integer p ě 1 and of the finite sequence u 0 , u 1 , . . . , u p in T 1p 8 such that u 0 " u and u p " v. We have D 8 pu, vq " 0 if and only if D 8,˝p u, vq " 0 [39, Proposition 11].

We let BP 1 8 be the quotient space T 1p 8 {tD 8 " 0u, which is equipped with the distance induced by D 8 pu, vq and the volume measure which is the pushforward of the volume measure on T 1p 8 , and with the distinguished point which is the equivalence class of the root of T 1p 8 . We also let Π 1p stand for the canonical projection from T 1p 8 onto BP 1 8 . Then the pointed measure metric space BP 1 8 is a Brownian plane, that is, it has the same distribution as BP 8 (see [START_REF] Curien | The hull process of the Brownian plane[END_REF]Theorem 3.4]). Therefore, we can replace BP 8 by BP 1 8 in the proof of both Proposition 32 and Theorem 33. The point of this replacement is the fact that the horodistance from a point a of BP 1 8 is now equal to its label Λ 1 a [40, Proposition 17]. Indeed, we can summarize the difference between the two constructions of the Brownian plane by saying that labels correspond to distances from the distinguished point in the first construction, and to horodistances in the second one. In the proofs below, we assume that B ˝prq and B ' prq are defined in BP 1 8 , and without risk of confusion we use the notation ρ both for the root of T 1p 8 and for the distinguished point of BP 1 8 . Proof of Proposition 32 and Theorem 33. The first step is to observe that we have B ˝prq " Π 1p pG r q, where G r :" tv P T 1p 8 : Λ 1 w ą ´r for every w P rrρ, vssu, (

and B ' prq " B ˝prq Y BB ˝prq, with BB ˝prq " Π 1p pBG r q, and BG r " tv P T 1p 8 : Λ 1 v " ´r and Λ 1 w ą ´r for every w P rrρ, vrru.

(5.58)

Notice the similarity with (5.49) and (5.50). Let us justify the equality B ˝prq " Π 1p pG r q. The inclusion B ˝prq Ą Π 1p pG r q is easy, because, if v P G r , the image under Π 1p of the geodesic segment rrρ, vss yields a continuous path from Π 1p pvq to Π 1p pρq along which labels (horodistances) stay greater than ´r. The reverse inclusion comes from the so-called "cactus bound" which says than any continuous path between Π 1p pρq and Π 1p pvq must visit a point whose label is smaller than or equal to min uPrrρ,vss Λ 1 u (see formula ( 4) in [START_REF] Curien | The Brownian plane[END_REF] for a short proof in the case of the Brownian map, which is immediately extended to the present setting). Once the equality B ˝prq " Π 1p pG r q is established, the property BB ˝prq " Π 1p pBG r q is easy and we omit the details.

Write clpG r q " G r Y BG r , which we can view as a (compact) subtree of the tree T 1p 8 . In a way very similar to the proof of Theorem 29, we may interpret clpG r q as the (labeled) tree associated with a coding triple derived from the triple pB, P, P 1 q. To this end, we set T r :" inftt ě 0 : B t " ´ru, and we note that clpG r q consists of the union of the part r0, T r s of the spine of T 1p 8 with the subtrees branching off the spine between levels 0 and T r and truncated at label ´r. To make this more precise, if

P " ÿ iPI δ pt i ,ω i q ,
we define P prq " ÿ iPI,t i ăTr δ pt i ,tr ´r pω i qq and we similarly define P 1prq from P 1 . Let B prq stand for the stopped path pB t q 0ďtďTr . Then clpG r q is canonically and isometrically identified with the (labeled) tree coded by the triple pB prq , P prq , P 1prq q. This identification preserves the labels and the volume measures. The fact that the limit in Proposition 32 exists, and is in fact given by |BB ' prq| " ż Z ´rpωq P prq pdωq `ż Z ´rpωq P 1prq pdωq now follows from the approximation formula (8.7) for exit measures, using also Proposition 2 and (5.9).

Recall the notation ϑ r introduced before Proposition 4. In order to derive the statement of Theorem 33, we now notice that the triple T prq :" pB prq `r, ϑ ´rP prq , ϑ ´rP 1prq q has the same distribution as the coding triple pY , Ă M, Ă M 1 q considered at the beginning of Section 5.3.2, provided we take a " r. It follows that the conditional distribution of T prq knowing that |BB ' prq| " z is Θr z . Recall the mapping Ω defined in Section 5.2.4. Then ΩpT prq q is a random snake trajectory which, conditionally on |BB ' prq| " z, is distributed according to N pzq r . Furthermore, by Proposition 14, the random metric space D ',r :" Ξ ' pΩpT prq qq is a pointed Brownian disk with perimeter z and height r, conditionally on |BB ' prq| " z. To complete the proof, we just need to identify B ' prq (equipped with the intrinsic distance) with D ',r . By a preceding observation, clpG r q is identified to the genealogical tree of ΩpT prq q (which is the labeled tree associated with T prq ) and this identification preserves labels, provided labels on clpG r q are shifted by r. One then verifies that two points of clpG r q are identified in Π 1p pclpG r qq " B ' prq if and only if the corresponding points of the genealogical tree of ΩpT prq q are identified in D ',r . It follows that B ' prq and D ',r can be identified as sets. To complete the proof of Theorem 33, it then remains to show that the intrinsic distance between two points of B ˝prq coincides with the distance between the corresponding points of the interior of D ',r (from the discussion in Section 5.4.3, this will imply first that the intrinsic distance on B ˝prq can be extended to the boundary, and then that B ' prq is isometric to D ',r as desired). This is derived by arguments very similar to the end of the proof of Theorem 29, and we omit the details.

We conclude this section with some explicit distributional properties of the process of horohulls. It will be convenient to use the Skorokhod space DpR `, Rq of càdlàg functions from R `into R. We write pZ t q tě0 for the canonical process on DpR `, Rq, and pF t q tě0 for the canonical filtration. We then introduce, for every x ě 0, the probability measure P x which is the law of the continuous-state branching process with branching mechanism Φ (in short, the Φ-CSBP), where Φpλq " a 8{3 λ 3{2 . We refer to [START_REF] Curien | The hull process of the Brownian plane[END_REF]Section 2.1] for the definition and some properties of the Φ-CSBP.

The Φ-CSBP is critical, meaning that E x rZ t s " x for every t ě 0 and x ě 0. Then, for every x ą 0, we can define the law P Ò

x of the Φ-CSBP started from x and conditioned on non-extinction via the h-transform dP Ò

x

dP x ˇˇFt " Z t x .
(5.59)

See [START_REF] Lamperti | Semi-stable Markov processes[END_REF]Section 4.1] for a discussion of continuous-state branching processes conditioned on non-extinction. The preceding formula does not make sense for x " 0. However, [60, Theorem 2] shows that the laws P Ò x converge weakly as x Ó 0 to a limiting law denoted by P Ò 0 , which is characterized by the following two properties: (i) for every t ą 0, the law of Z t under P Ò 0 is given by

E Ò 0 re ´λZt s " ´1 `t a 2λ{3 ¯´3 
, λ ě 0, so that in particular Z t ą 0, P Ò 0 a.s.;

(ii) for every t ą 0, under P Ò 0 , conditionally on pZ u q 0ďuďt , the process pZ t`s q sě0 is distributed according to P Ò Zt .

From (5.13), property (i) is equivalent to saying that the density of Z t is z h t pzq.

In the next proposition, we take |BB ' p0q| " 0 by convention.

Proposition 34. The process p|BB ' prq|q rě0 has a càdlàg modification, which is distributed according to P Ò 0 .

Proof. As a preliminary observation, we recall from [40, Section 2.2] that the exit measure process pZ ´rq rą0 is Markovian under N 0 , with the transition kernels of the Φ-CSBP. In other words, we can find a càdlàg modification of pZ ´rq rą0 such that, for every t ą 0, the conditional distribution of pZ ´t´r q rě0 under N 0 and knowing pZ ´uq 0ăuďt is P Z ´t .

In order to get the statement of the proposition, it suffices to verify that the finite-dimensional distributions of the process p|BB ' prq|q rě0 coincide with the finite-dimensional marginals under P Ò 0 . So we need to verify that, for every 0 ă t 1 ă ¨¨¨ă t p , for every nonnegative measurable functions ϕ 1 , . . . , ϕ p on R `, we have

E " ϕ 1 p|BB ' pr 1 q|q ¨¨¨ϕ 1 p|BB ' pr p q|q ı " E Ò
0 rϕ 1 pZ r 1 q ¨¨¨ϕ p pZ rp qs.

(5.60)

Now recall from the preceding proof that, for every j " 1, . . . , p, |BB ' pr j q| " ż 1 ttăTr j u Z ´rj pωq Ppdt dωq `ż 1 ttăTr j u Z ´rj pωq P 1 pdt dωq.

It then follows from (5.10) that E " ϕ 1 p|BB ' pr 1 q|q ¨¨¨ϕ 1 p|BB ' pr p q|q ı " N 0 ´Z´rp ϕ 1 pZ ´r1 q ¨¨¨ϕ p pZ ´rp q

" N 0 ´ϕ1 pZ ´r1 q E Z ´r1 " Z rp´r 1 ϕ 2 pZ r 2 ´r1 q ¨¨¨ϕ p pZ rp´r 1 q ı¯,
where we use the first observation of the proof in the last equality. Thanks to the h-transform relation (5.59), the right-hand side is also equal to

N 0 ´ϕ1 pZ ´r1 qZ ´r1 E Ò Z ´r1 " ϕ 2 pZ r 2 ´r1 q ¨¨¨ϕ p pZ rp´r 1 q ı¯" ż 8 0 dz zh r 1 pzqϕ 1 pzqE Ò z " ϕ 2 pZ r 2 ´r1
q ¨¨¨ϕ p pZ rp´r 1 q ı since the density of Z ´r1 under N 0 p¨X tZ ´r1 " 0uq is h r 1 (Proposition 3). Finally, properties (i) and (ii) above show that the right-hand side of the last display equals E Ò 0 rϕ 1 pZ r 1 q ¨¨¨ϕ p pZ rp qs, which completes the proof.

In the next proposition, we compute the joint distribution of the boundary size and the volume of the horohull B ' prq. Proposition 35. Let r ą 0. We have, for every λ ě 0 and µ ą 0,

E " exp ´´λ|BB ' prq| ´µVolpB ' prqq ¯ı " p 2 3 `λ 3 a 2{µ q ´1{2 sinhpp2µq 1{4 rq `coshpp2µq 1{4 rq ´p 2 3 `λ 3 a 2{µ q 1{2 sinhpp2µq 1{4 rq `coshpp2µq 1{4 rq ¯3 .
Proof. From the fact that B ' prq " Π 1p pG r Y BG r q, with G r and BG r given by (5.57) and (5.58), we easily obtain that VolpB ' prqqq " ż 1 ttăTru σptr ´rpωqq Ppdt dωq `ż 1 ttăTru σptr ´rpωqq P 1 pdt dωq.

Thanks to the similar formula for |BB ' prq|, and to Proposition 2, we get

E " expp´λ|BB ' prq| ´µVolpB ' prqqq ı " N 0 ´Z´r expp´λZ ´r ´µY ´rq ¯,
where Y ´r " ş σ 0 ds 1 tτ ´r pWsq"8u . By Lemma 4.5 in [START_REF] Curien | The hull process of the Brownian plane[END_REF], we have, for λ ą ? 2µ,

N 0 ´1 ´expp´λZ ´r ´µY ´rq ¯" c µ 2 ˜3˜c oth ´p2µq 1{4 r `coth ´1 ´b 2 3 `λ 3 a 2{µ ¯¯¸2 ´2¸.
By differentiating with respect to λ, we get the formula of the proposition. The restriction to λ ą ? 2µ can be removed by an argument of analytic continuation.

Remark. Up to unimportant scaling constants, the formula of Proposition 35 already appears in [42, Proposition 4], which deals with asymptotics for the boundary size and volume of the (discrete) horohulls in the UIPT. This should not come as a surprise since the Brownian plane is known to be the scaling limit of the UIPT [START_REF] Budzinski | The hyperbolic Brownian plane[END_REF]. Note however that it would not be easy to deduce Proposition 35 from the corresponding discrete result.

Our last proposition characterizes the distribution of the process p|BB ' prq|, VolpB ' prqqq rą0 . This is an analog of [START_REF] Curien | The hull process of the Brownian plane[END_REF]Theorem 1.3], which is concerned with the usual hulls in the Brownian plane.

Proposition 36. Let U " pU t q tě0 be a random process distributed according to P Ò 0 , and let s 1 , s 2 , . . . be a measurable enumeration of jump times of U . Let ξ 1 , ξ 2 , . . . be an independent sequence of positive random variables distributed according to the density p2πx 5 q ´1{2 expp´1{2xq. Assume that the sequence pξ 1 , ξ 2 , . . .q is independent of the process U . Then,

´|BB ' prq|, VolpB ' prqq ¯rą0 pdq " ˜Ur , ÿ i:s i ďr ξ i p∆U s i q 2 ¸rą0 .
From our presentation of the Brownian plane in terms of the triple pB, P, P 1 q, and using Proposition 2 to relate this triple to the Brownian snake excursion measure, Proposition 36 follows as a straightforward application of the excursion theory developed in [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF] (see in particular Theorem 40 and Proposition 32 in [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF]). We omit the details of the proof.

Removing a strip from the Brownian half-plane

In this section, we give an analog of Theorem 29 showing that, if one removes a strip of width r from the Brownian half-plane, the resulting space equipped with its intrinsic metric is again a Brownian half-plane. We let pH 8 , ∆ hp q stand for the Brownian half-plane constructed from a coding triple pR, r P, r P 1 q as explained in Section 5.4.5. Recall that H 8 is obtained as a quotient space of the labeled tree T hp 8 associated with pR, r P, r P 1 q, and that every x P H 8 thus has a label Λ x , which is equal to the distance from x to the boundary BH 8 .

We fix r ą 0 and set , which is a metric on this space. Furthermore, the resulting random measure metric space pointed at x prq is a Brownian half-plane.

H
Proof. This is very similar to the proof of Theorem 29, and we only sketch the arguments. We first introduce the process pR prq t q tě0 defined by R prq t :" R Lr`t ´r, and we note that pR prq t q tě0 is also a three-dimensional Bessel process started at 0. Recalling the point measures r P and r P 1 used in the construction of H 8 , we define two other point measures r P prq and r P 1prq on R `ˆS by setting, for every nonnegative measurable function Φ on R `ˆS ,

x r P prq , Φy " ż Ppdtdωq 1 pLr,8q ptq Φpt ´Lr , ϑ r ptr r ωqq, and similarly for r P 1 , where we recall the notation ϑ r for the shift on snake trajectories. Then it is straightforward to verify that the coding triples pR, r P, r P 1 q and pR prq , r P prq , r P 1prq q have the same distribution.

Consequently, the construction of Section 5.4.5 applied to the triple pR prq , r P prq , r P 1prq q yields a pointed measure metric space pH 1prq 8 , ∆ 1hp,prq q which is a Brownian half-plane. To complete the proof we just have to identify pH 1prq 8 , ∆ 1hp,prq q with the space H prq 8 equipped with its intrinsic metric. This is done in the same way as in the proof of Theorem 29 and we omit the details.

Remark.

We could also have derived an analog of Theorem 31 showing that the space H prq 8 in Theorem 37 is independent of the strip H 8 zH prq 8 equipped with its intrinsic metric. We leave the precise formulation and proof of this result to the reader.

Consistency with previous definitions

In this section, we show that our definitions of the infinite-volume Brownian disk and of the Brownian half-plane are consistent with the previous definitions in [START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF] and [START_REF] Gwynne | Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov-Hausdorff-Prokhorov-uniform topology[END_REF]. This is relatively easy for the Brownian half-plane but somewhat more delicate for the infinite-volume Brownian disk.

We start by recalling the definition of the free pointed Brownian disk that can be found in [START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF][START_REF] Bettinelli | Scaling limit of random planar quadrangulations with a boundary[END_REF][START_REF] Bettinelli | Compact Brownian surfaces I. Brownian disks[END_REF]. Our presentation uses the notation introduced in the preceding sections and is therefore slightly different from the one in the previous papers.

We fix z ą 0 and consider a Poisson point measure N " ř iPI δ pt i ,ω i q on R `ˆS with intensity 2 1 r0,zs ptq dt N 0 pdωq.

We then introduce the compact metric space T 1 , which is obtained from the disjoint union r0, zs Y ´ď iPI T pω i q ¯(5.61)

by identifying 0 with z and, for every i P I, the root ρ pω i q of T pω i q with the point t i of r0, zs. The metric on T 1 is defined in a very similar manner to Section 5.2.4. For instance, if v P T pω i q and w P T pω j q , with j " i, the distance between v and w is d pω i q pv, ρ pω i q q `mintpt i _ t j q ´pt i ^tj q, z ´pt i _ t j q `pt i ^tj qu `dpω j q pρ pω j q , wq, and the reader will easily guess the formula in other cases. The volume measure on T 1 is just the sum of the volume measures on the trees T pω i q , i P I.

Set σ 1 :" ř iPI σpω i q. We can define a clockwise exploration pE 1 t q 0ďtďσ 1 of T 1 , basically by concatenating the mappings p pω i q : r0, σpω i qs ÝÑ T pω i q in the order prescribed by the t i 's. Note that, as in the finite spine case of Section 5.2.4, this exploration is cyclic (because 0 and z have been identified in T 1 ). The clockwise exploration allows us to define intervals in the space T 1 , exactly as in Section 5.2.4.

We next assign real labels to the points of T 1 . To this end we let pβ t q 0ďtďz be a standard Brownian bridge (starting and ending at 0) over the time interval r0, zs, which is independent of N . For t P r0, zs, we set 1 t " ? 3 β t , and for v P T pω i q , i P I,

1 v " ? 3 β t i ` v pω i q,
where v pω i q denotes the label of v in T pω i q , as in Section 5.2.1. Then, mint

1 v : v P T 1 u is attained at a unique point v ˚of T 1 .
We may now define the pseudo-metric functions D 1˝a nd D 1 exactly as in (5.55) and (5.56),

D 1˝p u, vq " 1 u ` 1 v ´2 max ´inf wPru,vs 1 w , inf wPrv,us 1 w ¯, (5.62) 
and

D 1 pu, vq " inf u 0 "u,u 1 ,...,up"v p ÿ i"1 D 1˝p u i´1 , u i q (5.63)
where the infimum is over all choices of the integer p ě 1 and of the finite sequence u 0 , u 1 , . . . , u p in T 1 such that u 0 " u and u p " v. It is immediate to verify that, for every u P T 1 , D 1˝p u, v ˚q "

D 1 pu, v ˚q " 1 u ´ 1 v˚.
Let D 1' z denote the space T 1 {tD 1 " 0u, which is equipped with the metric induced by D 1 , with the pushforward of the volume measure on T 1 , and with the distinguished point which is the equivalence class of v ˚(without risk of confusion, we will also write v ˚for this equivalence class). Then D 1' z is a free pointed Brownian disk with perimeter z whose boundary BD 1' z is the image of r0, zs under the canonical projection. This construction is basically the one in [START_REF] Bettinelli | Compact Brownian surfaces I. Brownian disks[END_REF]Section 2.3], and it is consistent with Definition 13 as we already noted after this definition. We set

H 1 z " D 1 pv ˚, BD 1' z q " mint 1 v : v P r0, zsu ´ 1 v˚.
(5.64)

A variant of the preceding construction yields the infinite-volume Brownian disk with perimeter z as considered 2 in [START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF]. We keep the same notation as before, and we introduce an infinite labeled tree T 1 8 which has the same distribution as the tree T 1p 8 of Section 5.5.2 (so this is the labeled tree associated with a triple pB, P, P 1 q whose distribution is specified in Section 5.5.2). We assume that N and T 1 8 are independent, and we also consider a random variable U uniformly distributed over r0, zs and independent of the pair pN , T 1 8 q. Then we let T 1p8q be derived from the disjoint union r0, zs Y ´ď iPI T pω i q ¯Y T 1 8

(5.65) by the same identifications as in (5.61), and furthermore by identifying the root of T 1 8 with the point U of r0, zs. The metric on T 1p8q is defined as in the case of T 1 . The clockwise exploration pE 1p8q t q tPR of T 1p8q is then defined in much the same way as in the infinite spine case of Section 5.2.4: We have E 1p8q 0 " 0 " z, and the points pE 1p8q t q tă0 now correspond to the right side of the tree T 1 8 , to the trees T pω i q with t i ą U and to the interval rU , zq, and similarly for the points pE 1p8q t q tą0 . The labels 1p8q v on T 1p8q are obtained exactly as in the case of T 1 , using the same Brownian bridge β and taking

1p8q v " ? 3 β U `Λ1 v when v P T 1 8
, where Λ 1 v stands for the label of v in T 1 8 . We may now define the pseudo-metric functions D 1˝p8q pu, vq and D 1p8q pu, vq on T 1p8q by the very same formulas as in (5.62) and (5.63), just replacing the labels 1 v by 1p8q v (and noting that the clockwise exploration pE 1p8q t q tPR allows us to define intervals on T 1p8q , exactly as in Section 5.2.4).

We then define D 18 z as the quotient space T 1p8q {tD 1p8q " 0u, which is equipped with the metric induced by D 1p8q , with the volume measure which is the pushforward of the volume measure on T 1p8q and with the distinguished point which is the equivalence class of 0. In the terminology of [START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF], D 18 z is an infinite-volume Brownian disk with perimeter z. The next proposition shows that this is consistent with Definition 17.

Proposition 38. The pointed locally compact measure metric spaces D 8

z and D 18 z have the same distribution. 2 Unfortunately, it seems that the definition given in [START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF] is slightly incorrect. We believe that the construction below is the correct way to define the infinite-volume Brownian disk as it appears in the limit theorems proved in [START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF].

We will deduce Proposition 38 from Proposition 39 below, which shows that D 18 z is a limit of conditioned Brownian disks, in a way similar to Theorem 21 for D 8 z . We note that [START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF] proves that the space D 18 is the limit in distribution of Brownian disks with perimeter z conditioned to have a large volume, but it is not so easy to verify that this conditioning has the same effect as the one in Theorem 21, which involves the height of the distinguished point.

Let us start with some preliminary observations. Since D 1' z has the same distribution as D ' z , we know from the discussion after Proposition 14 that there exists a measure µ 1 z on BD 1' z with total mass z, such that, a.s. for any continuous function ϕ on D 1' z , we have

xµ 1 z , ϕy " lim εÑ0 1 ε 2 ż D 1' z Volpdxq 1 tDpx,BD 1' z qăεu ϕpxq
where Volpdxq denotes the volume measure on BD 1' z . For our purposes, it is important to know that µ 1 z is also the pushforward of Lebesgue measure on r0, zs under the canonical projection from

T 1 onto D 1'
z . This is proved in [START_REF] Gall | The Brownian disk viewed from a boundary point[END_REF]Theorem 9]. We now note that, in addition to v ˚, D 1' z has another distinguished point (belonging to its boundary) namely the point v B which is the equivalence class of 0 in the quotient T 1 {tD 1 " 0u. We note that v B is uniformly distributed over BD 1' z , in the following sense. Similarly as in Proposition 15, we introduce the the doubly pointed measure metric space D 1'' z which is obtained by viewing v B as a second distinguished point of D 1' z . We have then, for any nonnegative measurable function F on the space of all doubly pointed compact measure metric spaces,

ErF pD 1''

z qs "

1 z E " ż µ 1 z pdxq F ´rD 1' z , xs ¯ı, (5.66) 
with the same notation as in Proposition 15. The proof of (5.66) is straightforward: For r, t P r0, zs use the notation t ' r " t `r if t `r ď z and t ' r " t `r ´z if t `r ą z, and note that, for every r P r0, zs, the point measure ř iPI δ pt i 'r,ω i q has the same distribution as N , whereas pβ r't ´βr q 0ďtďz has the same distribution as pβ t q 0ďtďz . Consider a random doubly pointed space D '' z whose distribution is obtained by integrating the distribution of D '',a z with respect to the probability density p z paq in Proposition 3. By integrating the formula of Proposition 15 with respect to p z paq da, we get ErF pD '' z qs "

1 z E " ż µ z pdxq F ´rD ' z , xs ¯ı. (5.67)
Since the pairs pD 1' z , µ 1 z q and pD ' z , µ z q have the same distribution, we obtain by comparing (5.66) and ( 5 Proof of Proposition 39. Let E a stand for the event tH 1 z ě au. The idea of the proof is to study the effect on the pair pβ, N q (which determines D 1'' z ) of conditioning on E a . To this end, it will be useful to replace E a by another event for which the conditioning will be easier to study. We first note that, by (5.64) and the definition of labels on T 1 , we have

H 1 z " min 0ďtďz p ? 3 β t q ´inf iPI ´?3 β t i `W˚p ω i q ¯.
(5.68)

Set }β} " supt|β t | : 0 ď t ď zu, and consider the events r E a :"

! inf iPI W ˚pω i q ď ´a) , E 1 a :" ! inf iPI W ˚pω i q ď ´a ´2? 3}β} 
) , E 2 a :"

! inf iPI W ˚pω i q ď ´a `2? 3}β} 
) .

From (5.68), we have

E 1 a Ă E a Ă E 2 a .
On the other hand, it is an easy exercise to check that the ratio PpE 1 a q{PpE 2 a q tends to 1 as a Ñ 8 (in fact, it follows from (5.1) that both PpE 1 a q and PpE 2 a q are asymptotic to 3z{a 2 ). Since we have also

E 1 a Ă r E a Ă E 2
a , we may condition on r E a instead of conditioning on E a " tH 1 z ě au in order to get the convergence of the proposition. Conditioning on r E a does not affect β. On the other hand, when a is large, the conditional distribution of N knowing r E a is close in total variation to the law of

N 1paq `δp r U ,ω paq q ,
where N 1paq is a Poisson point measure with intensity 2 1 r0,zs ptq 1 tW˚pωqą´au dt N 0 pdωq, ω paq is distributed according to N 0 p¨| W ˚ď ´aq, and r U is uniformly distributed over r0, zs (and N 1 , ω paq and r U are independent). When a is large, N and N 1paq can be coupled so that they are equal with high probability.

We then want to argue that, when a is large, we can couple ω paq and the labeled tree T 1 8 used to define D 1 8 so that T pω paq q and T 1 8 , both viewed as labeled trees, are close in some appropriate sense. Recall that T 1 8 was constructed from a coding triple pB, P, P 1 q such that B " pB t q tě0 is a linear Brownian motion started from 0 and, conditionally on B, P and P 1 are independent Poisson point measures on R `ˆS with intensity 2 dt N Bt pdωq. On the other hand, the main results of [START_REF] Gall | Bessel processes, the Brownian snake and super-Brownian motion[END_REF] give the distribution of ω paq . If b P ra, 8q, the conditional distribution of ω paq knowing that W ˚pω paq q " ´b is that of the snake trajectory corresponding to a coding triple pV , M, M 1 q such that V " pV 1 t ´bq 0ďtďT V 1 , where pV 1 t q 0ďtďT V 1 is a Bessel process of dimension ´5 started from b and stopped when it hits 0, and, conditionally on V , M and M 1 are independent Poisson measures on R `ˆS with intensity

2 1 r0,T V 1 s ptq 1 tW˚pωqą´bu dt N Vt pdωq.
From this description, we easily get that, for every h ą 0 and ε P p0, 1q, we can for a large enough couple the coding triples pB, P, P 1 q and pV , M, M 1 q in such a way that the following two properties hold except on a set of probability smaller than ε:

• V t " B t for 0 ď t ď h;
• the restriction of P, resp. of P 1 , to r0, hs ˆS coincides with the restriction of M, resp. of M 1 , to r0, hs ˆS. Now recall that the construction of D 1 8 relies on the 4-tuple pβ, N , U , T 1 8 q, whereas, up to an event of small probability when a is large, the space D1',paq z (which is D1' z conditioned on tH z ě au) may be obtained from the 4-tuple pβ, N 1paq , r U , T pω paq q q. It follows from the preceding considerations that, up to a set of small probability when a is large, we can couple these two 4-tuples in such a way that their first three components coincide and moreover the labeled trees T 1 8 and T pω paq q with their spines "truncated at height h" also coincide (in the case of T pω paq q , the spine corresponds to the line segment between the root and the vertex with minimal label). Given r ą 0, we deduce from the preceding observation (by choosing h large enough) that we can couple the spaces D 18 z and D1',paq z so that the balls of radius r centered at the distinguished point are the same in both spaces, except on an event of small probability when a is large. We omit the detailed verification of this last coupling, which is very similar to the proof of Proposition 18 above or Theorem 1 in [START_REF] Curien | The Brownian plane[END_REF]. The convergence in distribution stated in Proposition 39 follows.

Remark.

The quantities H z and H 1 z have the same distribution, and thus the density of the random variable in the right-hand side of (5.68) is equal to p z paq. The reader is invited to give a direct proof of this fact, as a verification of the consistency of our definition of the free pointed Brownian disk with the one in [START_REF] Bettinelli | Compact Brownian surfaces I. Brownian disks[END_REF].

To conclude this section, we explain why our definition of the Brownian half-plane H 8 is consistent with the one given in [START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF] or [START_REF] Gwynne | Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov-Hausdorff-Prokhorov-uniform topology[END_REF]. We use the notation H 1 8 for the Brownian half-plane as defined in [START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF]. Then, from [14, Corollary 3.9], we get that H 1 8 is the tangent cone in distribution of the Brownian disk with perimeter z and volume r at a point uniformly distributed over its boundary -here "uniformly distributed" refers to the analog of the measure µ 1 z (the construction of D1' z given above also works for the Brownian disk with fixed volume r, just by conditioning ř iPI σpω i q to be equal to r). By randomizing the volume r, we infer that we have also 

λ ¨D 1' z pdq ÝÑ λÑ8 H 1 
χ 3 pxq " 2 ? π px 3{2 `x1{2 q ´2xpx `3 2 q e x erfcp ? xq.
We observe that χ 1 pxq ą 0 for every x ą 0 (this is obvious from (A.0)) and thus we have also χ 3 pxq ą 0 for every x ą 0. Finally, we note that

ż 8 0 1 ´e´λx x χ 3 pxq dx " ż λ 0 dµ ż 8 0 e ´µx χ 3 pxq dx " ż λ 0 dµp1 `?µq ´3 " p1 `λ´1{2 q ´2. pA.4q
Chapitre 6

Isoperimetric inequalities in the Brownian plane

Les resultats de ce chapitre sont issus de la pré-publication [START_REF] Riera | Isoperimetric inequalities in the Brownian map and the Brownian plane[END_REF].

We consider the model of the Brownian plane, which is a pointed non-compact random metric space with the topology of the complex plane. The Brownian plane can be obtained as the scaling limit in distribution of the uniform infinite planar triangulation or the uniform infinite planar quadrangulation and is conjectured to be the universal scaling limit of many others random planar lattices. We establish sharp bounds on the probability of having a short cycle separating the ball of radius r centered at the distinguished point from infinity. Then we prove a strong version of the spatial Markov property of the Brownian plane. Combining our study of short cycles with this strong spatial Markov property we obtain sharp isoperimetric bounds for the Brownian plane. 

Contents

Introduction

In recent years, much work and energy have been devoted to the study of discrete and continuous random geometry in dimension 2. In this paper we will study the Brownian plane M 8 , which appears as the scaling limit in distribution of the uniform infinite planar quadrangulation Q 8 , in the local Gromov-Hausdorff sense and can also be interpreted as a Brownian map with infinite volume, see [START_REF] Curien | The Brownian plane[END_REF]. The Brownian plane is a random pointed and weighted boundedly compact length space homeomorphic to C and is conjectured to be the universal scaling limit of other discrete models. The case of the uniform infinite planar triangulation of type I has been treated in [START_REF] Budzinski | The hyperbolic Brownian plane[END_REF]. We also mention that the Brownian plane is closely related to the Liouville quantum gravity surface called the quantum cone, see [START_REF] Miller | An axiomatic characterization of the Brownian map[END_REF]Corollary 1.5].

The spaces Q 8 and M 8 have a distinguished point, also called the root. Our first goal is to understand the probability of having a short injective cycle separating the ball of radius r centered at the root in M 8 from infinity. This will allow us to deduce isoperimetric inequalities for the Brownian plane. These results can then be extended to other models such as the Brownian sphere and the infinite Brownian disk. The study of short separating cycles starts in random planar geometry with the paper [START_REF] Krikun | Local structure of random quadrangulations[END_REF], where Krikun gave a construction of Q 8 as the local limit of large finite planar quadrangulations. He also proved the existence, for every r P N ˚, of cycles separating the ball of radius r of Q 8 from infinity having length of order r. Krikun conjectured that it is not possible to find separating cycles with length of order smaller than r. In [START_REF] Gall | Separating cycles and isoperimetric inequalities in the uniform infinite planar quadrangulation[END_REF], Le Gall and Lehéricy confirmed Krikun's conjecture by proving that for every δ ą 0, there exists a constant c δ ą 0 such that for every r P N ˚:

PpL r pQ 8 q ă εrq ă c δ ε 2´δ

where L r pQ 8 q stands for the infimum of the lengths of injective cycles disconnecting the ball of radius r of Q 8 from infinity. They also proved that the probability PpL r pQ 8 q ą urq decreases exponentially fast when u goes to infinity.

This work can be seen as a continuous counterpart of this study. We are aiming at similar results for the Brownian plane. Thanks to the geometric properties of M 8 we get optimal results in the continuous setting. Since the Brownian plane is expected to be the universal scaling limit of random lattices such as the UIPQ and the UIPT, it is likely that these sharper results also have analogs for discrete models. Let us present our results more precisely. It should also be possible to adapt some of our techniques to the case of the UIPQ.

The Brownian plane M 8 is equipped with a root, which we denote by 0, a distance ∆ and a volume measure | ¨|. The construction of M 8 on a probability space pΩ, F, Θ 0 q is recalled in Section 6.2.4. For every r ą 0, let B r pM 8 q denote the closed ball of radius r centered at 0 in M 8 . For every path γ : rt, t 1 s Ñ M 8 , we denote its length by ∆pγq i.e.:

∆pγq :" sup t"t 1 ďt 2 ,...ďtn"t 1 n´1 ÿ i"1 ∆ `γpt i q, γpt i`1 q ˘(6.1)
where the supremum is over all choices of the integer n ě 1 and the finite sequence t 1 ď t 2 ď . . . ď t n satisfying pt 1 , t n q " pt, t 1 q. In this work a path has to be a continuous function. Moreover we say that a path γ : rt, t 1 s Ñ M 8 is a separating cycle if:

' for every t ď s ă s 1 ď t 1 we have γpsq " γps 1 q if and only if ps, s 1 q " pt, t 1 q;

' the distinguished point 0 does not belong to the range of γ and there exists r ą 0 such that for any path γ : rs, s 1 s Ñ M 8 with γpsq " 0 and γps 1 q R B r pM 8 q we have: γprt, t 1 sq X γprs, s 1 sq ‰ H.

We will say that a separating cycle γ separates B r pM 8 q from infinity if it takes values in the complement of B r pM 8 q. Recall that M 8 has a.s. the topology of C and consequently it has only one end. So for every r ą 0, we can consider the hull of radius r, i.e. the complement of the unique unbounded connected component of the complement of the closed ball of radius r centered at the distinguished point. We denote the hull of radius r by B ' r pM 8 q. For every r ą 0 and any separating cycle γ that separates B r pM 8 q from infinity, an application of Jordan's theorem shows that the path γ has to take values in the complement of B ' r pM 8 q. We say that such a path γ separates B ' r pM 8 q from infinity and we introduce the set C r of all cycles separating B ' r pM 8 q from infinity, which is not empty since B ' r pM 8 q is bounded. Remark that any separating cycle γ is in C r for r small enough and set:

L r :" inft∆pγq : γ P C r u.
One of the benefits of working in the continuous setting is the fact that the Brownian plane is scale invariant in distribution, i.e. for every r ą 0, pM 8 , 0, ∆, | ¨|q pdq " pM 8 , 0, r∆, r 4 | ¨|q (see Section 6.2.4). In particular, the scaling invariance implies that:

L r pdq " rL 1 .
Therefore we will focus on the variable L 1 . We will prove the following result: Consequently, Θ 0 pL 1 ą uq decreases at least exponentially fast when u goes to 8.

piiq There exist two constants 0 ă c 1 ď c 2 such that for every ε ą 0:

c 1 pε 2 ^1q ď Θ 0 pL 1 ă εq ď c 2 ε 2 .
It may be possible to get a discrete version of Theorem 6.1 for the UIPQ by adapting our methods using the tree decomposition given in [START_REF] Chassaing | Local limit of labeled trees and expected volume growth in a random quadrangulation[END_REF]. This decomposition is the discrete analog of the construction of the Brownian plane that we will present in the preliminaries. Let us mention that our methods also allow us to obtain upper and lower bounds on the probability of the event tL 1 ă εu under various conditionings.

In Section 6. We say that a closed subset A of M 8 is a (closed) Jordan domain if it is homeomorphic to the closed disk of the complex plane C. Let K be the set of all Jordan domains of M 8 whose interior contains the distinguished point of M 8 . For every A P K, we can define the length ∆pBAq of its boundary, as follows. We consider an injective cycle g : r0, 1s Ñ M 8 such that gpr0, 1sq " BA and we set: ∆pBAq :" ∆pgq.

This definition does not depend on the parameterization g. We can now state our result concerning isoperimetric inequalities in the Brownian plane. We will prove in Section 6.4 that: Theorem 6.2. For any nondecreasing function f : R `Ñ p0, 8q:

piq We have inf APK ∆ `BA |A| 1 4 f p| logp|A|q|q " 0 , Θ 0 -a.s. , if ÿ mPN 1 f pmq 2 " 8. piiq We have inf APK ∆ `BA |A| 1 4 f p| logp|A|q|q ą 0 , Θ 0 -a.s. , if ÿ mPN 1 f pmq 2 ă 8.
Theorem 6.2 can be extended to the infinite volume Brownian disk (see Corollary 6.4) and the Brownian map (since the Brownian map and the Brownian Plane are locally isometric [START_REF] Curien | The Brownian plane[END_REF]Theorem 1]). In [START_REF] Gall | Separating cycles and isoperimetric inequalities in the uniform infinite planar quadrangulation[END_REF], Le Gall and Lehéricy use their study of short cycles to get an analog for the UIPQ of Theorem 6.2 for the special case f pxq :" x 3 4 `δ for any δ ą 0. We conclude this introduction by pointing out that the study of separating cycles appears naturally in other problems of random geometry; in the recent work [START_REF] Bouttier | Bijective enumeration of planar bipartite maps with three tight boundaries, or how to slice pairs of pants[END_REF] the authors use a class of separating cycles to obtain bijective enumerations of planar maps with three boundaries. They also discuss the statistics of the lengths of minimal separating loops in different discret models.

Preliminaries

The preliminaries are divided as follows. Section 8.2.1 gives a quick presentation of snake trajectories and the associated compact trees, we refer to [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF][START_REF] Duquesne | Random trees, Lévy processes and Spatial branching processes[END_REF] for a more detailed description of these objects. Section 8.2.1 presents the Brownian snake excursion, which is the building block of the theory of Brownian geometry, and the special Markov property. Finally in Section 6.2.3 and 6.2.4 we introduce the notion of a coding triple and give the construction of the Brownian plane and the infinite volume Brownian disk; these last sections follow [START_REF] Gall | Spine representations for non-compact models of random geometry[END_REF]. Before starting the preliminaries, let us introduce some standard notation.

Let pE, dq be a metric space.

' For A Ă E, we denote the closure (resp. the interior) of A in E by ClpAq (resp. IntpAq). Set BA :" ClpAqzIntpAq.

' A path γ on E is a continuous function defined on an interval I of R taking values in E. We say that the path γ separates two subsets A and B of E if the range of γ does not intersect A Y B and if any path starting at A and ending at B intersects the range of γ. The path γ is a geodesic on E if for every s, t P I, dpγpsq, γptqq " |s ´t|.

' We denote the length of a path γ by dpγq. The definition of dpγq is the same as defined in (6.1) replacing ∆ by d. We say that pE, dq is a length space if, for every x, y P E, the distance dpx, yq is the infimum of the quantities dpγq over all the paths γ on E starting at x and ending at y. ' If pE, dq is a length space and U is a path-connected subset of E, the intrinsic distance induced by d on U is the distance d U on U defined as follows: @x, y P U , d U px, yq :" inf dpγq : γ : r0, 1s Ñ U path with pγp0q, γp1qq " px, yq ( .

Remark that d U may take infinite values if U is not an open subset of E.

' We say that a compact (resp. boundedly compact) metric space is weighted if it is given with a finite (resp. finite on compact sets) measure, which is often called the volume measure. We denote by K (resp. K 8 ) the set of all isometry classes of pointed and weighted compact (resp. boundedly compact) metric spaces equipped with the Gromov-Hausdorff-Prokhorov distance (resp.

the local Gromov-Hausdorff-Prokhorov distance). Both K and K 8 are Polish spaces.

Finally, we write s _ t :" maxps, tq, s ^t :" minps, tq and by convention inf H :" 8.

Snake trajectories and labeled trees

Let W be the set of all continuous mappings w : r0, ζ w s Ñ R, where ζ w ě 0 is called the lifetime of w. We will write p w " wpζ w q for the endpoint of w. For every x P R, we identify x with the map starting from x with 0 lifetime. Set W x :" tw P W : wp0q " xu and equip W with the distance:

d W pw, w 1 q " |ζ w ´ζw 1 | `sup tě0
|wpt ^ζw q ´w1 pt ^ζw 1 q|.

Let x P R. A snake trajectory with initial point x is a continuous mapping ω : s Þ Ñ ω s from R ìnto W x satisfying the following properties:

' ω 0 " x and the quantity σpωq :" supts ě 0 : ω s ‰ xu is finite. The quantity σpωq is called the lifetime of ω. By convention σpωq :" 0 if ω s " x for every s ě 0; ' For every s, s 1 P R `with s ď s 1 , we have ω s ptq " ω s 1 ptq for every t ď min rPrs,s 1 s ζ ωr . This property is called the snake property.

We denote the set of all snake trajectories starting at x by S x , and write S " Y xPR S x for the set of all snake trajectories. For every ω P S and s ě 0, introduce the notation W s pωq :" ω s . The set S is equipped with the distance:

d S pω, ω 1 q :" |σpωq ´σpω 1 q| `sup sě0 d W `Ws pωq, W s pω 1 q ˘.
It is straightforward to verify that the space pS, d S q is a Polish space. To simplify notation, for every ω P S, we set ω ˚:" inftp ω s : s ě 0u.

It will be important for our study to associate a compact R-tree T ω with every snake trajectory ω.

Let ω P S and define:

d ω ps, tq :" ζ ωs `ζωt ´2 inf rPrs^t,s_ts
ζ ωr for every s, t P r0, σpωqs. Since s Þ Ñ ζ ωs is continuous, d ω is a continuous pseudo-distance on r0, σpωqs. We define an equivalence relation « dω by setting s « dω t if d ω ps, tq " 0. The space T ω :" r0, σpωqs{ « dω equipped with the distance induced by d ω is a compact R-tree. Let p ω : r0, σpωqs Ñ T ω be the canonical projection and let V ω be the pushforward of Lebesgue measure on r0, σpωqs under p ω . We view the tree T ω as a pointed and weighted compact metric space, for which the volume measure is V ω and the distinguished point is ρ ω :" p ω p0q, which is called the root of T ω . For every u P T ω , set Λ ω u :" p ω t where t is any element of p ´1 ω puq. The quantity Λ ω u is well defined by the snake property and we interpret Λ ω u as a label assigned to u. The pair `Tω , pΛ ω u q uPTω ˘is the labeled tree associated with the snake trajectory ω.

We will use the following standard nomenclature. Let T be a compact tree. The multiplicity of a point a P T is the number of connected components of T ztau. If the multiplicity of a is 1 (resp. ą 2), a is called a leaf (resp. a branching point).

The Brownian snake excursion

To simplify notation, set x W s pωq " p ω s and W ˚pωq " ω ˚for every ω P S. Fix x P R. The Brownian snake excursion measure N x is the unique σ-finite measure on S x that satisfies the following properties:

' The distribution of s Þ Ñ ζ ωs is the Itô measure of positive excursions of linear Brownian motion, with the normalization:

@ε ą 0, N x p sup sPr0,σpωqs ζ ωs ą εq " 1 2ε ; 
' Conditionally on pζ ωs q sě0 , p x W s pωqq sě0 is a Gaussian process with mean x and covariance function: @s, s 1 P r0, σpωqs, Kps, s 1 q :" min

rPrs^s 1 ,s_s 1 s ζ ωr .
Roughly speaking, conditionally on pζ s q sě0 , the process pW s q sě0 evolves as follows. If ζ s decreases, the path W s is shortened from its tip, while if ζ s increases, the path W s is extended by adding "little pieces of linear Brownian motion" at its tip. We refer to [START_REF] Gall | Spatial Branching Processes, Random Snakes and Partial Differential Equations[END_REF] for a rigorous presentation. For every x, y P R with x ă y we have:

N y `W˚ă x ˘" 3 2py ´xq 2 (6.2)
see [START_REF] Gall | Spatial Branching Processes, Random Snakes and Partial Differential Equations[END_REF]Chapter 6] for more details. To simplify notation, under N x pdωq we will write σ for σpωq and W s ptq for ω s ptq.

Operations. We introduce a collection of elementary operations on S.

' Translation:

For every snake trajectory ω and every λ P R, we will write ω `λ for the snake trajectory pω `λq s ptq :" ω s ptq `λ , 0 ď t ď ζ pω`λqs :" ζ ωs .

By construction for every x P R the pushforward measure of

N x under ω Þ Ñ ω `λ is N x`λ .
' Scaling:

For every snake trajectory ω and every λ P R ˚, we will write hom λ pωq for the snake trajectory defined by hom λ pωq s ptq :" λω sλ ´4 ptλ ´2q , 0 ď t ď ζ hom λ pωqs :"

λ 2 ζ ω sλ ´4 .
It is also easy to deduce from the scaling property of Brownian motion that for every x P R the pushforward measure of N x under ω Þ Ñ hom λ pωq is λ 2 N λx . We will call this property the scaling property of the Brownian snake excursion.

' Truncation: Let px, rq P R 2 with x ą r. For every w P W x , let: hit r pwq :" inftt P r0, ζ w s : wptq " ru with the usual convention inf H " 8. Consider ω P S x , and for every s ě 0 set:

η prq s pωq :" inf ! t ě 0 : ż t 0 1 ζω u ďhitrpωuq du ą s
) .

The snake trajectory tr r pωq defined by @s ě 0, `tr r pωq ˘s :" ω η prq s pωq is called the truncation of ω at level r. See [2, Proposition 10]. Roughly speaking, tr r pωq is obtained by removing those paths ω that hit r and then survive for a positive amount of time. Let Y r pωq :" σptr r pωqq which can be interpreted as the time spent by ω before hitting r and write H x r for the σ-field on S x generated by tr r pW q and the class of all N x -negligible sets. We now discuss the special Markov property of the Brownian snake excursion, which will be crucial in our study. The set:

ts ě 0 : hit r pW s q ă ζ s u
is open so it can be written as a union of disjoint open intervals pa i , b i q iPI with I an indexing set that may be empty. For every i P I, let W piq be the snake trajectory defined by:

W piq s ptq :" W pa i `sq^b i pζ a i `tq for 0 ď t ď ζ pa i `sq_b i ´ζa i
for every s ě 0. By definition the snake trajectories pW piq q iPI are the excursions of W below r.

Note that the information about the paths W s before hitting r is contained in the sigma-field H x r . The exit measure at level r is the quantity:

Z r pωq :" lim inf εÓ0 1 ε 2 ż σ 0 ds1 hitrpωsq"8, p ωsăr`ε .
The previous lim inf is a well defined finite limit N x -a.e. (we refer to [71, Proposition 28] for a proof) and it is H x r -measurable by [START_REF] Gall | The Brownian snake and solutions of ∆u " u 2 in a domain[END_REF]Proposition 2.3]. We now can give a formal statement of the special Markov property. and satisfying µ `r0, ts ˆtω P S : σpωq ą δu ˘ă 8, for every t ě 0 and δ ą 0. We equip the space M pSq with the distance:

d M pSq pµ, µ 1 q :" ÿ ně0
d Pro `µp¨X S pnq q, µ 1 p¨X S pnq qq ^2´n , where S pnq " r0, 2 n s ˆtω P S : σpωq ą 2 ´nu, and d Pro stands for the Prokhorov metric inducing the weak topology on finite measures on R `ˆS . We also equip CpR `, Rq ˆM pSq ˆM pSq with the product metric and the associated Borel sigmafield.

Let pw, N `, N ´q be an infinite spine coding triple. We now introduce the infinite tree T 8 associated with pw, N `, N ´q. For every i P I Y J, let pζ i s q be the lifetime process associated with ω i and σ i :" σpω i q. We write T i for the tree coded by ζ i , i.e. T i " T ω i , and p ζ i for the canonical projection from r0, σ i s onto T i . The tree T 8 can be defined from the disjoint union: r0, 8q Y ´ď iPIYJ T i by identifying the point t i of r0, 8q with p ω i p0q (that is, the root of T i ) for every i P I Y J. The set r0, 8q is called the spine of T 8 .

0 L R E ∞ u v [u, v] T ∞ Figure 6.1 -A representation of the tree T 8 .
We equip T 8 with a natural distance d T8 as follows. The restriction of d T8 to the spine is the Euclidean distance in r0, 8q and the restriction on each tree T i is the tree distance d ω i . If u P T i and t P r0, 8q, we take d T8 pu, tq " d ω i pu, p ω i p0qq `|t i ´t|. If u P T i and v P T j with i ‰ j, we take d T8 pu, vq " d ω i pu, p ω i p0qq `|t i ´tj | `dω j pv, p ω j p0qq. Then pT 8 , d 8 q is a (non-compact) R-tree. We can also assign a label Λ u , to each u in T 8 as follows. If t P r0, 8q, we take Λ t :" wptq.

If u P T i , we take Λ u :" Λ ω i u . In particular, we have `T i , pΛ u q uPT i ˘" `Tω i , pΛ ω i u q uPT ω i ˘for every i P I Y J. Moreover using property (v), one checks that the mapping u Þ Ñ Λ u is continuous on T 8 . Finally, we can define a natural volume measure V T8 on T 8 as follows, V T8 gives no mass to the spine and its restriction to

T i is V ω i .
Roughly speaking, T 8 is obtained by gluing the trees T i along the spine and keeping their labels. It will be important for our purposes to equip T 8 also with an order structure inherited from the coding triple. We define the left side of T 8 as the subset:

L :" r0, 8q Y ´ď iPI T i
where again the point t i is identified with p ω i p0q for i P I, and we define the right side R in the same way by replacing I by J. Remark that L X R " r0, 8q. We write β ù´a nd β ú´f or the left limits of β `and β ´at u (and we take β 0´" β 0´" 0 as convention). Note that if u is a discontinuity point of β `then there is a unique i P I such that t i " u and β ù ´βù

´" σ i (and the same property is true for β ´replacing I by J).

We define the exploration process E `of the left side of T 8 as follows.

For every s ě 0, there is a unique u such that β ù´ď s ď β ù . Then if there is an index i P I such that t i " u, set E s :" p ω i ps ´βt i ´q and if there is no such i, simply set E s :" u. We define similarly the exploration of the right side E ´by replacing β `by β ´and I by J. Finally, let E be the function from R onto T 8 defined by:

E s :" $ & % E s if s ě 0 E ´s if s ď 0
Remark that E is continuous and the volume measure on T 8 is the pushforward of Lebesgue measure on R under the mapping s Þ Ñ E s . Moreover the left side of T 8 is tE s : s ě 0u and the right side is tE s : s ď 0u. This exploration process allows us to define a notion of interval on T 8 . By convention, for every s, t P R with s ă t we set rt, ss :" p´8, ss Y rt, 8q. For every u, v P T 8 with u ‰ v, let rs, ts be the smallest interval such that E s " u and E t " v. It is easy to check from the definition that there is always a smallest such interval. We put: ru, vs T8 :" tE r : r P rs, tsu.

If u " v, take ru, vs T8 " tuu. Note that ru, vs T8 ‰ rv, us T8 as long as u ‰ v. See Figure 6.1 for an illustration.

By analogy with the case of compact trees, for every u P T 8 , the multiplicity of u is the number of connected components of T 8 ztuu. We will say that u is a leaf (resp. a branching point) if its multiplicity is 1 (resp. greater than 2). Remark that:

' 0 is the only leaf belonging to the spine. ' The branching points belonging to the spine are the points pt i q iPIYJ . ' For every i P I Y J, the multiplicity of a P T i ztt i u in T 8 is its multiplicity in T i .

Finally, for every u, v P T 8 , we denote the unique geodesic segment of T 8 connecting u and v by rru, vss T8 . We write u ĺ v for u, v P T 8 if and only if u P rr0, vss T8 . In this case we say that u is an ancestor of v. We also write rru, 8rr T8 for the range of the unique geodesic from u to 8 in T 8 .

From coding triples to metric spaces. Let pw, N `, N ´q be a coding triple and let `T8 , pΛ v q vPT8 be the associated labeled tree. We make the following assumption:

pH 1 q : $ ' ' ' ' ' ' & ' ' ' ' ' ' % for every v P T 8 , Λ v ě 0; if Λ v " 0 then v is a leaf; Λ 0 " 0; Λ Et Ñ 8 as |t| Ñ 8.
Set T 8 :" tv P T 8 : Λ v ą 0u and BT 8 :" T 8 zT 8. Remark that T 8 is path connected and dense in T 8 by pH 1 q. The last assumption in pH 1 q implies that inf ru,vs T8

Λ is attained for every interval ru, vs T8 of T 8 .

For every u, v P T 8 set:

∆ ˝pu, vq :" $ ' & ' % Λ u `Λv ´2 max `inf ru,vs T8 Λ, inf rv,us T8 Λ ˘if max `inf ru,vs T8 Λ, inf rv,us T8 Λ ˘ą 0 8 otherwise.
We then let @u, v P T 8, ∆pu, vq :" inf

u 1 "u,u 2 ,...,un"v n´1 ÿ i"1 ∆ ˝pu i , u i`1 q (6.4)
where the infimum is over all choices of the integer n ě 1 and of the finite sequence u 1 , . . . , u n of elements of T 8 verifying u 1 " u and u n " v. Using the continuity of u Þ Ñ Λ u one verifies that the mapping pu, vq Þ Ñ ∆pu, vq takes finite values and is continuous on T 8 ˆT 8. Since ∆ ˝pu, vq ě |Λ u ´Λv |, we have for every u, v P T It is important to remark that ∆ defines a pseudo-distance on T 8. From now on we make the extra assumption that:

pH 2 q: The map pu, vq Þ Ñ ∆pu, vq has a continuous extension to T 8 ˆT8

and we consider this continuous extension in what follows. For simplicity we keep the notation ∆ for this continuous extension, which defines a pseudo-distance on T 8 . The associated equivalence relation is defined by u « v iff ∆pu, vq " 0. By abuse of notation, we write T 8 {∆ for T 8 { «. Note that the definition of u « v makes sense for u, v P T 8 even if pH 2 q does not hold and so we can still consider the space T 8{ « in that case. We denote the canonical projection by Π : T 8 Ñ T 8 {∆ and, for every x P T 8 {∆, we set Λ x :" Λ u where u is any preimage of x under Π (remark that the definition is unambiguous by (8.17)). We write | ¨| for the pushforward of V under Π, which defines a volume measure on T 8 {∆, and for simplicity we write 0 for the equivalence class of 0 in T 8 {∆. The metric space pT 8 {∆, 0, ∆, | ¨|q is a weighted locally compact length space which is pointed at 0, and we have:

∆px, ΠpBT 8 qq " Λ x (6.6)
for every x P T 8 {∆. We refer [79, Subsection 4.1] for a proof of these two facts. For every r ě 0, we write B r pT 8 {∆q for the set of all points x P T 8 {∆ with ∆px, ΠpBT 8 qq ď r. By (8.19):

B r pT 8 {∆q " tx P T 8 {∆ : Λ x ď ru.

It will also be useful to introduce for every r ą 0, the set T r 8 of all points u P T 8 such that Λ u ě r and Λ v ą r for every v P rru, 8rr T8 ztuu. Remark that T r 8 is an R-tree. We define:

T r,8 :" u P T 8 : inf rru,8rr T8 Λ ą r ( and we let the "boundary" BT r 8 be the set of all points u P T 8 such that Λ u " r and Λ v ą r for every v P rru, 8rr T8 ztuu. Set B' r pT 8 {∆q :" ΠpT r 8 q, Br pT 8 {∆q :" ΠpT r,8 q and:

B ' r pT 8 {∆q :" Π ´ u P T 8 : inf rru,8rr T8 Λ ď r ( ¯" Π ´T8 zT r,8 ¯. (6.7) 
When there is no ambiguity, we will remove T 8 {∆ from the notation and write B ' r , B' r and Br instead. In the next section we explain the geometric meaning of these sets and we will see that the notation B ' r is consistent with the one used in the introduction to designate the hull of the Brownian plane.

The Brownian plane and the infinite volume Brownian disk

In this section we give the construction of the Brownian plane and the infinite volume Brownian disk from random infinite spine coding triples. We also list some useful geometric properties of the Brownian plane.

The Brownian plane

We now consider a triple pX, L, Rq such that: ' X " pX t q tě0 is a nine-dimensional Bessel process started from 0; ' Conditionally on X, L and R are independent Poisson point measures on R `ˆS with intensity: 2dtN Xt pdω X tω ˚ą 0uq.

It is easy to verify that pX, L, Rq is a.s. a coding triple in the sense of Section 6.2.3, and the root of T 8 is the only point with zero label. We may assume that pX, L, Rq is defined on the canonical space CpR `, Rq ˆM pSq ˆM pSq under the probability measure Θ 0 . As previously, we write pT 8 , pΛ v q vPT8 q for the associated infinite labeled tree. We note that pX, L, Rq satisfies assumptions pH 1 , H 2 q, see [79, Section 4.2] . In fact, since the root of T 8 is the only point with zero label, it is possible to define directly the continuous extension of ∆ to T 8 ˆT8 , just replacing ∆ ˝in formula (6.4) by

∆ ˝,1 pu, vq :" Λ u `Λv ´2 max `inf ru,vs T8 Λ, inf rv,us T8 Λ ˘.
See [79, Section 4.2] for more details. The Brownian plane is the space pT 8 {∆, 0, ∆, | ¨|q under Θ 0 .

To simplify notation, we denote this space, which is an element of K 8 , by M 8 . Remark that since BT 8 " t0u we have Λ x " ∆p0, xq for every x P M 8 . Moreover, for every λ ą 0, the pushforward of Θ 0 under hom λ is Θ 0 . Consequently, the space pT 8 {∆, 0, λ∆, λ 4 | ¨|q is also distributed as a Brownian plane. Another important property is that , Θ 0 -a.s., we have pF q: For every u, v P T 8 , with u ‰ v, we have ∆pu, vq " 0 if and only if ∆ ˝pu, vq " ∆ ˝,1 pu, vq " 0. Moreover if u ‰ v and ∆pu, vq " 0 then u and v must be leaves.

This fact is a classical result in Brownian geometry. The first part of pF q is derived in [START_REF] Curien | The hull process of the Brownian plane[END_REF]Section 3.2]. The second part follows from the first part and the known results for the Brownian map (see [START_REF] Gall | Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere[END_REF]Lemma 3.2]). By formulas ( 16) and ( 17) in [START_REF] Curien | The hull process of the Brownian plane[END_REF] , the set B ' r " B ' r pT 8 {∆q defined in (6.7) coincides with the hull of radius r of M 8 as defined in the introduction (Section 6.1), Br is the complement of the hull, and B' r is the closure of Br . We also have

BB ' r " B B' r " Π `BT r 8 ˘(6.8)
which is the range of an injective cycle (see the proof of [START_REF] Gall | Spine representations for non-compact models of random geometry[END_REF]Theorem 31] for more details). We will equip the hull B ' r " Π `T8 zT r,8 ˘with the distance ∆ prq defined as follows. First set @u, v P T 8 zT r,8 , ∆ prq pu, vq :"

inf u"u 1 ,u 2 ,...un"v u 2 ,...,u n´1 PT8zT r,8 n´1 ÿ i"1 ∆ ˝,1 pu i , u i`1 q. ( 6.9) 
By pF q, we see that for every u, v P T 8 zT r,8 we have ∆pu, vq " 0 iff ∆ prq pu, vq " 0. In particular, we can define ∆ prq on the hull B ' r taking for every x, y P B ' r , ∆ prq px, yq :" ∆ prq pu, vq where u, v P T 8 zT r,8 are any elements such that pΠpuq, Πpvqq " px, yq. By definition ∆ prq is a distance on B ' r and it is not hard to verify that the restriction of ∆ prq on IntpB ' r q coincides with the intrinsic metric on IntpB ' r q viewed as a subset of the metric space pT 8 {∆, ∆q (one can directly adapt the proof of [79, Lemma 30] ). In other words, ∆ prq is the continuous extension to B ' r of the intrinsic metric on IntpB ' r q. In what follows, we will always view B ' r as a (random) pointed and weighted compact metric space for the metric ∆ prq (the volume measure is obviously the restriction of the volume measure on M 8 and the distinguished point is the same as in M 8 ).

Exit measures. We now introduce the exit measures of the infinite tree T 8 . For every a ě 0, set τ a :" suptt ě 0 : X t ď au (6.10)

which is Θ 0 -a.s. finite since X t Ñ 8, Θ 0 -a.s., when t Ñ 8. We take τ 8 :" 8 by convention. For every 0 ď s ď t ď 8, introduce the point measures L s,t and R s,t on R `ˆS defined as follows:

ż Φp , ωqL s,t pd dωq :"

ż τt τs
Φp ´τs , ωqLpd dωq and ż Φp , ωqR s,t pd dωq :"

ż τt τs
Φp ´τs , ωqRpd dωq.

By the time reversal property of Bessel processes the process pX pτt´ q_0 q ě0 is a Bessel process of dimension ´5 started from t stopped when it hits 0 (see [START_REF] Williams | Path decomposition and continuity of local time for one-dimensional diffusions[END_REF]Theorem 2.5]). Applying this property with t replaced by t 1 ą t, we get that pX pτt´ q_0 q ě0 and pX pτt` q q ě0 are independent. Consequently, for every 0 ă t ă 8:

`pX pτt` q q ě0 , L t,8 , R t,8 ˘and `pX pτt´ q_0 q ě0 q, L 0,t , R 0,t ˘are independent.

We call this property the spine independence property of T 8 . For every 0 ă r ď s ď t set:

Z s,t r :" ż Z r pωqR s,t pd dωq `ż Z r pωqL s,t pd dωq which is the total exit measure at level r accumulated by the snakes glued on rτ s , τ t s. To simplify notation, write Z r :" Z r,8 r . The proof of [START_REF] Curien | The hull process of the Brownian plane[END_REF]Lemma 4.2] gives the following formula, for every λ ě 0:

Θ 0 `expp´λZ s,t r q ˘" ´t s ¯3 ¨´s ´r `pr ´2 `2 3 λq ´1 2 t ´r `pr ´2 `2 3 λq ´1 2 ¯3. (6.11) 
Consequently, computing the limit when λ goes to infinity, we obtain: Proposition 6.1. For every 0 ď r ď s ď t ă 8:

Θ 0 pZ s,t r " 0q " `t s ˘3 ¨`s ´r t ´r ˘3.
(6.12)

The special Markov property of the Brownian snake excursion implies that conditionally on Z s,t r the excursions outside r of the snake trajectories ω i with t i P rτ s , τ t s are distributed as the atoms of a Poisson point measure with intensity: Z s,t r N r p dω X tω ˚ą 0uq.

We will use this property throughout the article. It will be also useful to note that the Laplace transform of Z r can be deduced from formula (6.11) taking the limit when t goes to infinity with s " r. More precisely, for every r ą 0 and λ ě 0 we get:

Θ 0 `expp´λZ r q ˘" `1 `2λr 2 3 ˘´3 2 . ( 6.13) 
Equivalently Z r follows a Gamma distribution with parameter 3 2 and mean r 2 . The previous formula appears already in [40, Proposition 1.2], which also shows that Z :" pZ r q rě0 has a càdlàg modification, with only negative jumps, and from now on we consider this modification. Furthermore, [START_REF] Curien | The hull process of the Brownian plane[END_REF]Proposition 4.3] states that, for every 0 ď r ď s and λ ě 0, we have

Θ 0 `expp´λZ r q |Z s ˘"´s r `ps ´rqp1 `2λr 2 3 q 1 2 ¯3 (6.14) ¨exp ´´3 2 Z s p 1 ps ´r `p 2λ 3 `r´2 q ´1 2 q 2 ´1 s 2 q ¯.
We conclude this Subsection by giving a geometric interpretation of Z r . One can derive from [77, Proposition 8] that Lemma 6.1. Θ 0 -a.s. , for every r ą 0 we have:

Z r " lim εÓ0 1 ε 2 | Br X B r`ε |. (6.15) 
For the sake of completeness we give a proof of Lemma 6.1, but we postpone it to the Appendix below to avoid to weigh down the preliminaries. It will be important for us to know that the convergence holds simultaneously for every r ą 0. Roughly speaking, Z r represents the length or perimeter (in a generalized sense) of BB ' r .

The infinite volume Brownian disk

We keep the assumptions and notation of the preceding Subsection. Let r ą 0 and set r X prq t

:" X τr`t ´r. Let us also introduce the point measures r R r and r L r on R `ˆS defined by: ż Φpt, ωq r L r pdtdωq :" ż Φpt, tr 0 pω ´rqqL r,8 pdt dωq and ż Φpt, ωq r R r pdtdωq :" ż Φpt, tr 0 pω ´rqqR r,8 pdt dωq.

One easily checks that the triple p r X prq , r L r , r R r q is a random infinite spine coding triple satisfying pH 1 q. Moreover [79, Proposition 6] shows that there exists a unique collection of probability measures pΘ z q zą0 on the space of coding triples such that for every r ą 0:

Θ 0 `gpZ r qF p r X prq , r L r , r R r q ˘" 3 3 2 
? 2πr

ż 8 0 dzz 1 2 expp´3 2r 2 zqgpzqΘ z pF q. (6.16)
and the pushforward of Θ z by hom λ is Θ λ 2 z (for every z, λ ą 0). In other words, conditionally on Z r " z, the distribution of p r X prq , r L r , r R r q is Θ z . It is crucial that the preceding conditional distribution does not depend on r. Furthermore by [START_REF] Gall | Spine representations for non-compact models of random geometry[END_REF]Lemma 16] an infinite coding triple distributed according to Θ z satisfies a.s. pH 1 , H 2 q. Consequently we can consider the associated metric space and according to [START_REF] Gall | Spine representations for non-compact models of random geometry[END_REF]Proposition 38] this space is the infinite volume Brownian disk with perimeter z. The infinite volume Brownian disk is a random element of K 8 and is a.s. homeomorphic to the complement of the open unit disk in the complex plane. It can also be obtained as scaling limit of random planar lattices with a boundary (see [START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF]). The boundary of the infinite volume Brownian disk is the set of points that have no neighborhood homeomorphic to the (open) disk. The infinite volume Brownian disk also satisfies a scale invariance property. More precisely since the pushforward of Θ z by hom λ is Θ λ 2 z , if pE, ρ E , ∆ E , | ¨|E q is an infinite volume Brownian disk with perimeter z, then pE, ρ E , λ∆ E , λ 4 | ¨|E q is an infinite volume Brownian disk with perimeter λ 2 z.

We now explain the geometric interpretation of p r X prq , r L r , r R r q and the implications of (6.16) for the Brownian plane. First observe that the labeled tree associated with p r X prq , r L r , r R r q can be identified with `T r 8 , pΛ v ´rq vPT r 8 ˘, see the beginning of the proof of Theorem 29 in [START_REF] Gall | Spine representations for non-compact models of random geometry[END_REF]. For every r ą 0, let ∆prq be the intrinsic distance induced by ∆ on Br and also write | ¨| ∆prq for the restriction of the volume measure | ¨| to B' r . The following lemma is then a consequence of [79, Lemma 30] and the identification of `T r 8 , pΛ v ´rq vPT r 8 ˘with the labeled tree associated with p r X prq , r L r , r R r q. Lemma 6.2. Θ 0 -a.s., for every r ą 0 such that p r X prq , r L r , r R r q satisfies pH 2 q the following properties hold:

piq The intrinsic distance ∆prq has a unique continuous extension to B' r ;

piiq The space B' r equipped with this continuous extension of ∆prq , the measure | ¨| ∆prq and the distinguished point Πpτ r q coincides as an element of K 8 with the metric space associated with p r X prq , r L r , r R r q.

By (6.16), the coding triple p r X prq , r L r , r R r q satisfies pH 2 q, Θ 0 -a.s., for every fixed r ą 0, and thus properties piq and piiq hold Θ 0 -a.s. when r ą 0 is fixed. However, we point out that we do not claim that p r X prq , r L r , r R r q satisfies pH 2 q simultaneously for every r ą 0. Consequently it is not clear whether ∆prq has a unique continuous extension to B' r simultaneously for every r ą 0, a.s.

On the other hand, we saw in Section 6.2.4 that the hull B ' r (equipped with the distance ∆ prq defined in (6.9)) can be viewed as a random element of the space K. In the next statement, we also view B' r as an element of K 8 as explained in property piiq of Lemma 6.2. The following theorem is essentially a reformulation of Theorems 29 and 31 in [START_REF] Gall | Spine representations for non-compact models of random geometry[END_REF]. Theorem 6.3. Let r ą 0. Then, conditionally on Z r " z, the coding triple p r X prq , r L r , r R r q is distributed according to Θ z and is independent of B ' r . Consequently, conditionally on Z r " z, the space B' r is an infinite Brownian disk with perimeter z and is independent of B ' r .

The fact that conditionally on Z r " z the coding triple p r X prq , r L r , r R r q is distributed according to Θ z is just a reformulation of (6.16). Using property (ii) of Lemma 6.2, it follows that the conditional distribution of B' r knowing that Z r " z is the law of the infinite volume Brownian disk with perimeter z. The conditional independence of B' r and B ' r given Z r is stated in [79, Theorem 31] , and the slightly stronger conditional independence of p r X prq , r L r , r R r q and B ' r is also established at the end of the proof of this result.

We will refer to the last assertion of Theorem 6.3 as the spatial Markov property of M 8 . In Section 6.3.4 below, we will extend this property to the case of a random level r.

Separating cycles

In most of this section, we argue under Θ 0 and we use the following notation: B r,s :" IntpB ' s zB ' r q and B ' r,s :" ClpB r,s q.

for every r, s P p0, 8q with r ă s. Our first goal is to study the quantity:

L r,s " inft∆pgq : g : r0, 1s Ñ B r,s cycle separating B ' r from 8u. (6.17) 
Since M 8 has the topology of the complex plane C, the quantity L r,s is well defined. Actually by construction it only depends on B r,s and the intrinsic distance induced by ∆ on B r,s . Let us briefly justify the measurability of the random variable L r,s . We consider a dense sequence pa n : n P Nq in M 8 . Given α ą 0, we observe that L r,s ă α if and only if, for some δ ą 0, the following holds for every ε ą 0: There exists a finite sequence a n 1 , a n 2 , . . . , a np , a n p`1 " a n 1 such that ∆pa n i , pB r,s q c q ě δ, ∆pa n i , a n i`1 q ă ε for every 1 ď i ď p, and

p ÿ i"1 ∆pa n i , a n i`1 q ă α ´δ,
and such that for any other sequence a m 1 , . . . , a mq with a m 1 P B ' r , a mq P B' s , and ∆pa m j , a m j`1 q ă ε for every 1 ď j ď q ´1, there exist i P t1, . . . , pu and j P t1, . . . , qu such that ∆pa n i , a m j q ă ε.

Geometric properties

We argue under Θ 0 and use the notation introduced in Section 6.2.3. In particular, pE s q sPR is the exploration function of the tree T 8 . Our goal here is to identify a subclass of separating cycles and then to show that we can restrict our study to this collection of paths which is easier to study.

For every t ě 0, set p p q 8 ptq :" E suptsPR: Λs"tu and p prq 8 ptq :" E inftsPR: Λs"tu . Remark that p p q 8 (resp. p for every s, t ą 0. Moreover knowing that for every t ě 0 and u P rp p q 8 ptq, p prq 8 ptqs T8 we have Λ u ě t, we get that ∆ ˝pp p q 8 ptq, p prq 8 ptqq " 0 for every t ą 0. We write γ 8 ptq :" Π `pp q 8 ptq ˘" Π `pprq 8 ptq ˘, t P r0, 8q.

By (8.17) and (6.18), γ 8 is a geodesic path connecting 0 and 8. It can be shown that this geodesic path is the unique geodesic path connecting 0 and 8 (see [START_REF] Curien | The Brownian plane[END_REF]Proposition 15]) but we will not use this result in this work. To simplify notation set P p q :" p p q 8 pR `q, P prq :" p prq 8 pR `q

and P :" P p q Y P prq . Remark that ΠpP q is the range of γ 8 .

We define the left (resp. right) side of M 8 as the subset ΠpLq (resp. ΠpRq).

Lemma 6.3. The following properties hold Θ 0 -a.s.

piq The maps R `Q t Þ Ñ Πptq and R `Q t Þ Ñ γ 8 ptq are injective. Moreover Πpr0, 8qq X ΠpP q " t0u.

piiq The sets IntpΠpLqq and IntpΠpRqq are the connected components of the complement of Πpr0, 8qq Y ΠpP q.

Proof.

piq Since R `Q t Þ Ñ γ 8 ptq is a geodesic path it has to be injective. Moreover, as the only leaf on the spine r0, 8q is 0, we can apply pF q to deduce that t P R `Þ Ñ Πptq is also injective and that Πpr0, 8qq X ΠpP q Ă t0u.

piiq As a simple consequence of pF q, a point x belongs to the boundary of ΠpLq iff it belongs to Πpr0, 8qq or to ΠpP p q q " ΠpP q, and similarly if L is replaced by R. Consequently:

Int `ΠpLq ˘" ΠpLqz `Πpr0, 8qq Y ΠpP q ˘, Int `ΠpRq ˘" ΠpRqz `Πpr0, 8qq Y ΠpP q ˘.
Thanks again to pF q we have Int `ΠpLq ˘X Int `ΠpRq ˘" H. Since M 8 has the topology of the complex plane and M 8 z `Πpr0, 8qq Y ΠpP q ˘is the union of Int `ΠpLq ˘and Int `ΠpRq ˘the desired result follows.

Let us introduce the subclass of separating cycles that will play an important role. We define the set A of all paths γ : rt, t 1 s Þ Ñ M 8 such that:

' γptq " γpt 1 q is in ΠpP q and γ does not hit 0;

' For every t ď s ă s 1 ď t 1 , we have γpsq " γps 1 q if and only if ps, s 1 q " pt, t 1 q; ' There exist two times t 1 ď t 2 in rt, t 1 s, such that γpt 1 q, γpt 2 q P Πpr0, 8qq, pγptqq tPrt 1 ,t 2 s does not intersect ΠpP q, and γpsq P ΠpRq (resp. γpsq P ΠpLq) for every s P rt, t 1 s (resp. for every s P rt 2 , t 1 s).

Π(R) Π([0, ∞)) Π(P ) 0 s r B • r,s Π(L)
Distances to 0 Using Lemma 6.3 and the fact that M 8 is homeomorphic to C, one easily verifies that any path γ in A is a separating cycle. So to give an upper bound for L r,s for r ă s, it is sufficient to construct a path γ P A taking values in B r,s . See Figure 6.2 for an illustration. In the next lemma we explain why we can restrict our attention to the subclass A. Lemma 6.4. Θ 0 -a.s. for every separating cycle γ there exists a path γ 1 in A such that ∆pγ 1 q ď ∆pγq. Moreover if γ takes values in B r,s then the path γ 1 also takes values in B r,s .

Proof. Let pγptqq tPr0,1s be a separating cycle. Since γ does not hit 0, there exist r ă s such that γ takes values in B r,s . In what follows we fix r ă s such that γ stays in B r,s . Our goal is to show that there exists γ 1 P A taking values in B r,s such that ∆pγ 1 q ď ∆pγq. First notice that since the path pγ 8 ptqq tě0 connects 0 and 8, the range of γ has to intersect ΠpP q " γ 8 `R`˘. Without loss of generality we may and will assume that γp0q " γp1q P ΠpP q. Let pt i , t 1 i q iPI be the connected components of tt P r0, 1s : γptq R ΠpP qu and to simplify notation set γ i :" γ rt i ,t 1 i s . Remark that γ i hits ΠpP q only at times t i and t 1 i . In particular, since γ does not hit 0 we can use Lemma 6.3 to obtain that for every i P I there exists ε ą 0 such that: @t P r0, εs, γ i pt i `tq P ΠpRq or @t P r0, εs, γ i pt i `tq P ΠpLq.

In the first case we say that γ i starts in ΠpRq and in the second case that γ i starts in ΠpLq.

Similarly by Lemma 6.3 there exists ε ą 0 such that: @t P r0, εs, γ i pt 1 i ´tq P ΠpRq or @t P r0, εs, γ i pt 1 i ´tq P ΠpLq.

In the first case we say that γ i ends in ΠpRq and in the second case that γ i ends in ΠpLq. Then since γ is a separating cycle we claim that pCq: there exists i P I such that γ i starts in ΠpRq and ends in ΠpLq, or starts in ΠpLq and ends in ΠpRq.

Let us explain why pCq holds. Thanks to Lemma 6.3, we can find a homeomorphism h : M 8 Ñ C such that hpΠpR `qq " R ´, hpγ 8 pR `qq " R `, and hpΠpLqq and hpΠpRqq are the upper and lower half-planes. In particular, since hp0q " 0, the injective cycle h ˝γ separates 0 from infinity in the complex plane C. Let pρptq, θptqq tPr0,1s be two continuous functions from r0, 1s into R `such that hpγptqq " ρptq exppiθptqq. Since γp0q P γ 8 pR `q, we can take θp0q " 0 which determines in a unique way the pair pρptq, θptqq tPr0,1s . Since h ˝γ separates 0 from infinity in C, an application of Jordan's theorem shows that we must have θp1q P t2π, ´2πu. Suppose that θp1q " 2π for definiteness and set s 0 :" suptt P r0, 1s : θp0q " 0u and s 1 " inftt P rs 0 , 1s : θptq " 2πu. Necessarily there exists i such that γ i " pγprqq rPrs 0 ,s 1 s , and the "excursion" γ i starts in ΠpRq and ends in ΠpLq or conversely.

Let us derive the lemma from the claim pCq. Up to replacing γ by pγp1 ´tqq tPr0,1s , we can assume that there exists i P I such that γ i starts in ΠpRq and ends in ΠpLq. Since γp0q, γ i pt i q, γ i pt 1 i q P ΠpP q, we can consider the geodesic path g (resp. g 1 ) taking values in ΠpP q starting at γp0q and ending at γpt i q (resp. starting at γpt 1 i q and ending at γp1q " γp0q). The concatenation of g 1 , γ i and g gives a path γ 1 in A, which is shorter than γ. Moreover as γ takes values in B r,s we have γp0q, γ i pt i q, γ i pt 1 i q P γ 8 `pr, sq ˘and consequently g and g 1 takes values in γ 8 `pr, sq ˘. We conclude that the concatenation of g 1 , γ i and g takes values in B r,s .

Lower bound for the tail of L 1 near 0

In this section, for every 0 ă r ă s, we construct an explicit path in A taking values in B r,s . This gives an upper bound for L r,s . We will use this bound to obtain Theorem 6.1 piq and the lower bound for point piiq of Theorem 6.1.

We start with some notation. Let u, v P T 8 and let t, t 1 P R be chosen in a unique way so that E t " u, E t 1 " v and rt, t 1 s is as small as possible (recall our special convention for rt, t 1 s when t ą t 1 ). Suppose that t ď t 1 . Recall that ru, vs T8 " tE r : r P rt, t 1 su. Let M u,v :" inf ru,vs T8 Λ and, for every 0 ď r ď Λ u ´Mu,v , set

γ u,v prq :" Π ´Einf r 1 Prt,t 1 s: Λ r 1 "Λu´r ( ¯ and for every Λ u ´Mu,v ă r ď Λ u `Λv ´2M u,v γ u,v prq :" Π ´Esup r 1 Prt,t 1 s: Λ r 1 "r`2Mu,v´Λu ( ¯.
By construction ∆ ˝pγ u,v pr 1 q, γ u,v pr 2 qq " |r 1 ´r2 | as soon as r 1 , r 2 P p0, Λ u ´Mu,v q or r 1 , r 2 P pΛ u ´Mu,v , Λ u `Λv ´2M u,v q. In particular, applying (8.17), we deduce that the restriction of γ u,v to r0, Λ u ´Mu,v s or rΛ u ´Mu,v , Λ u `Λv ´2M u,v s is a geodesic. Hence γ u,v is a path with length Λ u `Λv ´2 inf ru,vs T8 Λ. Remark that the range of γ u,v is contained in Πpru, vs T8 q. In particular, if u, v P R (resp. u, v P L) the range of γ u,v is contained in ΠpRq (resp. ΠpLq) since ru, vs T8 " tE r : r P rt, t 1 su.

Finally, for r ă s set:

K s r :" tu P BT s 8 : there exists v P T 8 such that u P rrv, 8rr T8 and Λ v ď ru.

The continuity of the label function u Þ Ñ Λ u from T 8 into R and the last assumption in pH 1 q imply that the set K s r is finite Θ 0 -a.s. Recall the definition (6.10) of pτ a q aě0 and remark that τ s is the unique element of K s r belonging to the spine r0, 8q. Write N s r :" #K s r ´1 for the number of elements of K s r not belonging to the spine. Proposition 6.2. For every r ă s, Θ 0 -a.s., we have:

L r,s ď 2pN s r `1qps ´rq. (6.19) 
Proof. Denote the elements of K s r by u 1 , . . . , u N s r `1 in such a way that inftt P R : E s " u i u ă inftt P R : E s " u j u if i ă j. Recall that τ s is the only point of the spine in K s r . Let 1 ď k ď N s r `1 be the unique index such that u k " τ s . Fix i P t1, . . . , N s r `1u with i ‰ k. Next set, for every i P t1, . . . , N s r `1u,

f i :" inftt P R : E t " u i u and i :" suptt P R : E t " u i u.
Since u i cannot be a leaf we have f i ă i . Moreover, the sequence pf i q 1ďiďn is increasing. Remark that, for every 1 ď i ď N s r , we have i ă f i`1 and r i , f i`1 s is the smallest interval such that E i " u i and E f i`1 " u i`1 . Therefore we can consider the path γ u i ,u i`1 as defined before the proposition. By construction, labels of points of the form E t with t P r i , f i`1 s are greater than r, and it follows that the length of the path γ u i ,u i`1 is smaller than 2ps ´rq. Finally set

R " min `inf p´8,f 1 s Λ; inf r N s r `1,8q
Λ which is greater than r by construction. Set u 0 :" p prq 8 pRq and u N r s `2 :" p p q 8 pRq. Note in particular that Πpu 0 q " Πpu N r s `2q. Again we can consider the paths γ u 0 ,u 1 and γ u N s r `1,u N s r `2 . Let γ be the cycle obtained by concatenating the paths pγ u i ,u i`1 q 0ďiďN s r `1. It is straightforward to verify using property pF q that γ is an injective cycle. The paths γ u 0 ,u 1 and γ u N s r `1,u N s r `2 have length s ´R ď s ´r and the paths pγ u i ,u i`1 q 1ďiďN s r have length smaller than 2ps ´rq. Hence the length of γ is smaller than 2pN s r `1qps ´rq. Moreover, by a preceding remark, the range of γ u i ,u i`1 is contained in ΠpRq when i ă k and contained in ΠpLq when i ě k. Consequently, if t 0 is the time at which γ visits the point Πpu k q, we have γptq P ΠpRq when t ď t 0 and γptq P ΠpLq when t ě t 0 . We conclude that the path γ is in A and in particular γ is a separating path. Finally, by construction the path γ visits only points v such that Λ v P pr, ss. Since γp0q " γ 8 pRq does not belong to B ' r , it follows that γ takes values in B s zB ' r . Now remark that γ hits the boundary BB s only at the times at which it visits Πpu 1 q, . . . , Πpu N s r `1q. Since N s r is, Θ 0 -a.s., finite we deduce that γ hits the boundary BB s a finite number of times. Consequently, by an approximation procedure, for every ε ą 0 we can find γ 1 P A taking values in IntpB ' s qzB ' r Ă B r,s such that ∆pγ 1 q ă ∆pγq `ε. Consequently by the definition of L r,s as an infimum (6.17) we deduce that L r,s ď ∆pγq ď 2pN s r `1qps ´rq.

The proposition shows that it is enough to control N s r in order to get an upper bound for L r,s . Moreover since the Brownian plane is scale invariant we have:

N s r pdq " N s r 1 .
So we consider only N s 1 with s ą 1. Thanks to (6.13), the law of N s 1 can be easily determined: Proposition 6.3. For s ą 1 and λ ě 0 we have

Θ 0 `expp´λN s 1 q ˘" ´1 `p1 ´expp´λqq 2s ´1 ps ´1q 2 ¯´3 2
Proof. Let s ą 1, and write L s,8 :" ř iPIs δ s i ,ω i ; R s,8 :" ř iPJs δ s i ,ω i . Let Ĩs (resp. Js ) be the set of all indices i P I s (resp. j P J s ) such that ω i ˚ă s. For every i P Ĩs Y Js , write pω i,k q kPN for the excursions of ω i below s. By the special Markov property, conditionally on Z s ,

ÿ iP ĨsY Js ÿ kPN δ ω i,k
is a Poisson point measure with intensity Z s N s p¨X tW ˚ą 0uq. Moreover by definition:

N s 1 " #tpi, kq P p Ĩs Y Js q ˆN : ω i,k ˚ď 1u.
So conditionally on Z s , N s 1 is distributed as a Poisson variable with intensity Z s N s p0 ă W ˚ď 1q. We can then apply (8.6) to obtain:

N s p0 ă W ˚ď 1q " 3 2 p 1 ps ´1q 2 ´1 s 2 q " 3 2 2s ´1 s 2 ps ´1q 2 . ( 6.20) 
Using (6.13) we get that for λ ě 0:

Θ 0 `expp´λN s 1 q ˘" Erexpp´p1 ´expp´λqqZ s N s p0 ă W ˚ď 1qq " ´1 `p1 ´expp´λqq 2s ´1 ps ´1q 2 ¯´3 2 .
Let us list some immediate properties of N s 1 .

Lemma 6.5.

piq For every s ą 1 we have Θ 0 pN s 1 " 0q " p s´1 s q 3 . piiq The law of ps ´1q 2 N s 1 under Θ 0 converges weakly to a Gamma distribution with parameter 3 2 and mean 3{2 when s Ó 1. Furthermore, N s 1 tends to 0 as s Ñ 8, Θ 0 -a.s. piiiq For every s ą 1 and q ă logp s 2 2s´1 q there exists a constant C q such that for all r ą 0:

Θ 0 pN s 1 ą rq ă C q expp´qrq.
Furthermore:

lim sup uÑ8 log `Θ0 pN s 1 ą uq ȗ " ´logp s 2 2s ´1 q. pivq For every s ą 1 we have Θ 0 `N s 1 ˘" 3 2 2s´1 ps´1q 2 .
Proof.

piq By Proposition 6.3, we have

Θ 0 pN s 1 " 0q " lim λÑ8 Θ 0 `expp´λN s 1 q ˘" `s ´1 s ˘3
(we can also use the fact that Θ 0 pN s 1 " 0q " Θ 0 pZ s,8

1 " 0q and Proposition 6.1).

piiq Again using Proposition 6.3, we obtain:

Θ 0 `expp´λps ´1q 2 N s 1 q ˘" ´1 `p1 ´expp´λps ´1q 2 qq 2s ´1 ps ´1q 2 ¯´3 2 .
When s goes to 1 the Laplace transform converges to λ Þ Ñ p1 `λq ´3 2 which is the Laplace transform of a Gamma distribution with parameter 3{2 and mean 3{2. The fact that N s 1 tends to 0 as s Ñ 8, Θ 0 a.s., immediately follows from the property Λ Et ÝÑ 8 as |t| Ñ 8. piiiq For every λ ą 0 we have:

Θ 0 ´exppλN s 1 q ¯" Θ 0 ´exp `Zs pexppλq ´1qN s p0 ă W ˚ď 1q
˘because, conditionally on Z s , the variable N s 1 is distributed as a Poisson random variable with intensity Z s N s p0 ă W ˚ď 1q. But Z s is a Gamma random variable with parameter 3{2 and mean s 2 so the previous expectation is finite if and only if pexpp´λq ´1qN s p0 ă W ˚ă 1q ă 3{p2s 2 q or equivalently λ ă logp s 2 2s´1 q. The first part of piiiq then follows from the Markov inequality. On the other hand if we had:

lim sup uÑ8 log `Θ0 pN s 1 ą uq ȗ ď α ă ´logp s 2 2s
´1 q this would contradict Erexpplogp s 2 2s´1 qN s 1 qs " 8. This gives the second assertion of piiiq.

pivq We use again the fact that, under Θ 0 , conditionally on Z s , N s 1 is distributed as a Poisson random variable with intensity Z s N s p0 ă W ˚ď 1q. We have:

Θ 0 `N s 1 ˘" N s p0 ă W ˚ď 1qΘ 0 `Zs ˘" 3 2 2s ´1 s 2 ps ´1q 2 Θ 0 `Zs ˘" 3 2 2s ´1 ps ´1q 2
where in the second equality we use (6.20) and in the last equality we use the fact that Z s has mean s 2 .

As a direct consequence we derive Theorem 6.1 piq from Lemma 6.5.

Proof of Theorem 6.1 (i). By (6.19), for every s ą 1 we have L 1 ď 2ps ´1qpN s 1 `1q Θ 0 -a.s. Let s ą 1. Lemma 6.5 gives that :

lim sup uÑ8 log `Θ0 pL 1 ą uq ȗ ď lim sup uÑ8 log `Θ0 pN s 1 ą u 2ps´1q ´1q ȗ ď ´1 2ps ´1q logp s 2 2s
´1 q.

Since this holds for every s ą 1, we obtain:

lim sup uÑ8 log `Θ0 pL 1 ą uq ȗ ď ´sup są1 1 2ps ´1q logp s 2 2s ´1 q.
The rest of this section is devoted to the proof of the lower bound appearing in Theorem 6.1

piiq. The proof relies again in (6. [START_REF] Bertoin | Random planar maps and growth-fragmentations[END_REF]) but in a more technical way. We state the following slightly stronger result: Proposition 6.4. There exists a positive constant, c 1 , such that for every ε P r0, 1s and r ą 0:

Θ 0 `Lr,3r ă εrq ě c 1 ε 2 .
The factor 3 is arbitrary and we will see in the proof that it can be replaced by any constant greater than 1. It will be useful in what follows to note that for every 0 ă r ă t, we have tN t r " 0u " tZ t,8 r " 0u Θ 0 -a.s. We are going to deduce Proposition 6.4 from (6.19) and the following result: Lemma 6.6. There exists a positive constant c 1 such that for every r ą 0 and m P N ˚:

Θ 0 ´m´1 ď i"0 tN pm`i`1qr pm`iqr " 0u ¯ě c 1 m 2
Proof. By the scaling invariance of M 8 we can take r " 1. For m ě 2, we have:

Θ 0 ´m´1 ď i"0 tN m`i`1 m`i " 0u ¯" Θ 0 pN m`1 m " 0q (6.21) `m´2 ÿ k"0 Θ 0 ´tN m`k`2 m`k`1 " 0u X k č i"0 tN m`i`1 m`i ą 0u ¯.
Moreover, for every k P t0, . . . m ´2u:

Θ 0 ´tN m`k`2 m`k`1 " 0u X k č i"0 tN m`i`1 m`i ą 0u ¯(6.22) " Θ 0 ´tZ m`k`2,8 m`k`1 " 0u X k č i"0 tZ m`i`1,m`k`2 m`i ą 0u " Θ 0 `Zm`k`2,8 m`k`1 " 0 ˘Θ0 ´k č i"0 tZ m`i`1,m`k`2 m`i ą 0u
where the first equality comes from the fact that

N m`k`2 m`k`1 " 0, which is equivalent to Z m`k`2,8 m`k`1
" 0, implies Z m`k`2,8 t " 0 for every t ď m `k `1, so that, on the event tN m`k`2 m`k`1 " 0u, we have

Z m`i`1,8 m`i " Z m`i`1,m`k`2 m`i
for every 0 ď i ď k. The second equality in (6.22) is a consequence of the spine independence property of T 8 (see Section 6.2.4). The idea now is to prove that for every integer k ě 0:

Θ 0 `k č i"0 tZ m`i`1,m`k`2 m`i ą 0u ˘ě k ź i"0 Θ 0 `Zm`i`1,m`k`2 m`i ą 0 ˘. (6.23) 
Let us explain how to obtain this inequality. Let k ą 0, then:

Θ 0 ´k č i"0 tZ m`i`1,m`k`2 m`i ą 0u ¯" Θ 0 ´k´1 č i"0 tZ m`i`1,m`k`2 m`i ą 0u Θ0 ´tZ m`k`1,m`k`2 m`k " 0u X k´1 č i"0 tZ m`i`1,m`k`2 m`i ą 0u " Θ 0 ´k´1 č i"0 tZ m`i`1,m`k`2 m`i ą 0u Θ0 ´tZ m`k`1,m`k`2 m`k " 0u X k´1 č i"0 tZ m`i`1,m`k`1 m`i ą 0u
where the second equality is a consequence of the fact that

Z m`k`1,m`k`2 m`k " 0 implies that for every i ă k Z m`i`1,m`k`2 m`i " Z m`i`1,m`k`1 m`i
. We now can apply the spine independence property

to obtain that Θ 0 ´k Ş i"0 tZ m`i`1,m`k`2 m`i ą 0u ¯is equal to Θ 0 ´k´1 č i"0 tZ m`i`1,m`k`2 m`i ą 0u ¯´Θ 0 `Zm`k`1,m`k`2 m`k " 0 ˘Θ0 ´k´1 č i"0 tZ m`i`1,m`k`1 m`i ą 0u
¯.

Now using the property tZ

m`i`1,m`k`1 m`i ą 0u Ă tZ m`i`1,m`k`2 m`i ą 0u for i " 0, . . . , k ´1, we derive Θ 0 ´k č i"0 tZ m`i`1,m`k`2 m`i ą 0u ¯ě Θ 0 ´k´1 č i"0 tZ m`i`1,m`k`2 m`i ą 0u ¯Θ0 `Zm`k`1,m`k`2 m`k ą 0 ˘.
We can then iterate this argument to obtain (6.23). By combining (6.22) and (6.23) we deduce that:

Θ 0 ´tN m`k`2 m`k`1 " 0u X k č i"0 tN m`i`1 m`i ą 0u ¯ě Θ 0 `Zm`k`2,8 m`k`1 " 0 ˘k ź i"0 Θ 0 `Zm`i`1,m`k`2 m`i ą 0 ˘.
On the other hand, Proposition 6.1 states that for 0 ă r ă t ă s,

Θ 0 pZ t,s r " 0q " `s t ˘3`t ´r s ´r ˘3
and taking the limit when s goes to 8, we obtain Θ 0 pZ t,8 r " 0q " `t´r t ˘3. It follows that:

Θ 0 `tN m`k`2 m`k`1 " 0u X k č i"0 tN m`i`1 m`i ą 0u ˘ě 1 pm `k `2q 3 k ź i"0 ´1 ´`m `k `2 m `i `1 ˘3 1 pk `2 ´iq 3 ¯.
Then, for m ě 3 and k P t0, . . . , m ´2u :

k ź i"0 ´1 ´p m `k `2 m `i `1 q 3 1 pk `2 ´iq 3 ¯ě ´1 ´1 8 `m `k `2 m `k `1 ˘3¯k´1 ź i"0 ´1 ´p 2m m q 3 1 pk `2 ´iq 3 ě ´1 ´1 8 ´5 4 ¯3¯8 ź i"3 `1 ´8 i 3 which
is a positive constant not depending on m. Let c1 denote this constant. By applying the previous inequality to (6.21), we obtain that for every m ě 3:

Θ 0 ´m´1 ď i"0 tN m`i`1 m`i " 0u ¯ě m´2 ÿ k"0 Θ 0 ´tN m`k`2 m`k`1 " 0u X k č i"0 tN m`i`1 m`i ą 0u ě m´2 ÿ k"0 c1 pm `k `2q 3
which gives us the lower bound in the lemma. Proposition 6.4 follows now easily. and γ p1q u p0q " γ p2q u `Λu ´min vPT puq 8 Λ v ˘. From property pF q, we get that the concatenation of γ p1q u and γ p2q u is an injective cycle with length 2Λ u ´2 min vPT puq 8 Λ v . We denote this path by γ u . It will be useful to remark that γ 1 u and γ 2 u are also geodesic paths for r ∆ u . Recall the notation ∆ Au for the intrinsic distance induced by ∆ on A u . Lemma 6.7. Θ 0 -a.s. for every u P T 8 zr0, 8q such that u is not a leaf, the set A u is homeomorphic to the closed unit disk of C and its boundary is the range of γ u . Moreover we have:

∆ Au " r ∆ u . (6.25) 
The main interest of (6.25) is the fact that the function r ∆ u only depends on `T puq 8 , pΛ v q vPT puq 8 ˘.

Recall the definition of ∆ ˝above (6.4), and remark that ∆ ˝on T puq 8 does not change if we shift all the labels by any a ą ´min T puq 8 Λ. This gives that r ∆ u can also be defined from the labeled tree `T puq 8 , pΛ v q vPT puq 8

`a˘f or any a ą ´min T puq 8 Λ.

Proof. Let u P T 8 zr0, 8q such that u is not a leaf. Since γ u is an injective cycle, Jordan's theorem implies that the complement of the range of γ u has two connected components, namely a bounded connected component U 1 and an unbounded connected component U 2 . Moreover, the closure of U 1 is homeomorphic to the closed unit disk. The first assertion of the lemma then follows from the fact that ClpU 1 q " A u , which is easy and left to the reader. Let us turn to the second part of the lemma. We start by showing that ∆ Au pv, wq ď r ∆ u pv, wq for every v, w P T and v " E s , w " E t with s ď t and ru, ws T8 " tE r : s ď r ď tu. We can then consider the path γ v,w introduce at the beginning of Section 6.3.2. The length of γ v,w is ∆ ˝pv, wq and its range is a subset of Πprv, ws T8 q. Since rv, ws T8 Ă T puq 8 , we deduce that γ v,w takes values in A u . From the definition (6.24) we obtain that ∆ Au pv, wq ď r ∆ u pv, wq for every v, w P T puq 8 .

Let us prove the reverse inequality. Let γ : r0, 1s Ñ A u be a path. It is enough to show that ∆pγq ě r ∆ u pγp0q, γp1qq. We deal with two separate cases.

' Case 1: We assume that, for every t P p0, 1q, γptq R BA u . Let us start by showing that γ is also continuous for r ∆ u . In order to prove this, remark that the identity function pA u , r ∆ u q Þ Ñ pA u , ∆q is a bijection and that it is also continuous, since ∆ ď r ∆ u . Moreover, as T puq 8 is compact, the continuity of Π implies that A u is compact for the quotient topology. Since ∆ and r ∆ u are continuous on

T puq 8
ˆT puq 8

we derive that pA u , r ∆ u q and pA u , ∆q are both compact. So the identity function pA u , r ∆ u q Þ Ñ pA u , ∆q is a continuous bijection between compact spaces which implies that it is also an homeomorphism. We deduce that γ is continuous for r ∆ u . In particular, we have ∆pγq " lim εÑ0 ∆pγ| rε,1´εs q and r ∆ u `γp0q, γp1q ˘" lim εÑ0 r ∆ u `γpεq, γp1 ´εq ˘.

Π(P) Π(P) r r + δ r + 2δ Π(τ r+2δ ) u 1 u 2 u 3 u 4 u 5 u 6 D 1 D 2 D 3 D 4 D 5 D 6 Figure 6.3 -Illustration of the inequality L r,r`δ ě Ñ r`2δ r ř k"1 D k . The red path is an element of A
taking values in B r,r`δ and here Ñ r`2δ r " 6.

To conclude we use the following claim: pCq: Conditionally on pZ r`2δ , Ñ r`2δ r q, the variables pD k q 1ďkď Ñ r`2δ r are independent and identically distributed according to a distribution µ δ that does not depend on r and is supported on p0, 8q.

Before proving pCq, let us explain why Proposition 6.5 follows. We set χ δ :" ş µ δ pdxq e ´x P p0, 1q, and then we have

Θ 0 pL r,r`δ ă 1 | Z r`2δ q ď Θ 0 `Ñ r`2δ r ÿ k"1 D k ă 1 | Z r`2δ ď e Θ 0 `expp´Ñ r`2δ r ÿ k"1 D k q | Z r`2δ " e Θ `χ Ñ r`2δ r δ
| Z r`2δ by our claim pCq. By the special Markov property, conditionally on Z r`2δ , the variable Ñ r`2δ r is distributed as a Poisson variable with parameter Z r`2δ N r`2δ pr ´1{2 ă W ˚ď rq. It follows that

Θ 0 pL r,r`δ ă 1 | Z r`2δ q ď e exp `´Z r`2δ N r`2δ pr ´1{2 ă W ˚ď rqp1 ´χδ q ȃnd
we obtain the desired result with

α δ :" N r`2δ pr ´1{2 ă W ˚ď rqp1 ´χq " N 2δ p1{2 ă W ˚ď 1qp1 ´χδ q.
Let us explain why pCq holds in order to complete the proof. Let pω i q iPI r`2δ YJ r`2δ be the atoms of L r`2δ,8 and R r`2δ,8 . Let Ĩr`2δ Y Jr`2δ be the set of indices i P I r`2δ Y J r`2δ such that ω i ˚ă r `2δ. For every i P Ĩr`2δ Y Jr`2δ we write pω i,n q nPN for the excursions of ω i outside r `2δ.

By construction:

Ñ r`2δ r :" # pi, nq P p Ĩr`2δ Y Jr`2δ q ˆN : r ´1{2 ă ω i,n ˚ă r ( .

For every 1 ď k ď Ñ r`2δ r , there exists a unique pi, nq with r ´1{2 ă ω i,n ˚ă r such that the labeled trees T ω i,n and T pu k q 8 can be identified and we write ω k instead of ω i,n to simplify notation. By the special Markov property, conditionally on Z r`2δ , the point measure:

Ñ r`2δ r ÿ k"1 δ ω k is a Poisson measure with intensity: Z r`2δ N r`2δ `¨Xtr ´1 2 ă W ˚ă ru ˘.
So conditionally on pZ r`2δ , Ñ r`2δ r q, the sequence pω k ´r `1q 1ďkď Ñ r`2δ r is an i.i.d. sequence with common distribution N δ p¨X t 1 2 ă W ˚ă 1uq. In particular, this distribution does not depend on r. Moreover ∆u k depends only on the labeled tree T pu k q 8 " T ω k and the definition (6.24) shows that ∆u k is not affected if labels are shifted by p´r `1q. So ∆u k is also a function of ω k ´r `1. Our claim pCq follows since by Lemma 6.7, we have ∆ Au k " ∆u k for every 1 ď k ď Ñ r`2δ r .

We conclude this section with the proof of part piiq of Theorem 6.1.

Proof of Theorem 6.1 piiq. We want to show that there exists c 2 , such that for every ε ě 0:

Θ 0 pL 1 ă εq ď c 2 ε 2 .
To do so fix ε P p0, 1{2q and remark that:

tL 1 ă εu Ă 8 ď m"t 1 ε u´1
tL mε,pm`3qε ă εu (6.26)

Let us explain why (6.26) holds. On the event tL 1 ă εu, let γ be a separating cycle in B1 such that ∆pγq ă ε. Since the sets B ' pm`1qε zB ' mε , for m ě t 1 ε u, cover B1 , we can find m 0 ě t 1 ε u such that γp0q P B ' pm 0 `1qε zB ' m 0 ε . Then notice that ∆pγp0q, B ' pm 0 ´1qε q ě ε and ∆pγp0q, B' pm 0 `2qε q ě ε. Since the length of γ is smaller than ε, it follows that the path γ stays inside B pm 0 ´1qε,pm 0 `2qε , and consequently ∆pγq ď L pm 0 ´1qε,pm 0 `2qε . (6.26) implies that:

Θ 0 pL 1 ă εq ď 8 ÿ m"t 1 ε u´1 Θ 0 `Lmε,pm`3qε ă ε ˘" 8 ÿ m"t 1 ε u´1
Θ 0 `Lm,m`3 ă 1 where to obtain the right equality we use the scale invariance of M 8 . We now can apply Proposition 6.5 to obtain that there exists α ą 0 such that :

Θ 0 pL 1 ă εq ď e 8 ÿ m"t 1 ε u´1 Θ 0 `expp´αZ m`4 q ˘" e 8 ÿ m"t 1 ε u´1 p1 `2 3 αpm `4q 2 q ´3 2
where we used (6.13) in the last equality. The desired result follows.

Application to the infinite volume Brownian disk

The goal of this section is to extend Theorem 6.3 to random levels and then to derive some properties of injective cycles separating the boundary from infinity in the infinite volume Brownian disk. Let us recall the notation of Subsection 6.2.4, and in particular, the definition of the coding triple p r X prq , r L r , r R r q for every r ě 0. On the canonical space CpR `, Rq ˆM pSq ˆM pSq, for every r ě 0, let F r be the σ-field generated by B ' r (view as a random variable with values in K as explained in Section 6.2.4) and the class of all Θ 0 -negligible sets. The approximation property (6.15) implies that Z r is F r`-measurable, for every r ě 0. We write ρ r :" Πpτ r q for every r ě 0, where pτ r q rě0 is defined in (6.10). Theorem 6.4. Let T be a stopping time of the filtration pF r`qrě0 such that we have 0 ă T ă 8, Θ 0 -a.s. Then conditionally on Z T " z, the coding triple p r X pT q , r L T , r R T q is distributed according to Θ z and is independent of B ' T . Furthermore, the intrinsic distance ∆pT q on BT has a unique continuous extension to B' T . The space B' T equipped with this continuous extension of ∆pT q , with the restriction of the volume measure and with the distinguished point ρ T coincides (as an element of K 8 ) with the metric space associated with p r X pT q , r L T , r R T q. In particular, conditionally on Z T " z, the space B' T is an infinite Brownian disk with perimeter z and is independent of B ' T .

Proof. Let T be as in the statement of the theorem. Recall the notation M pSq and the distance d M pSq introduced in Section 6.2.3. Let F 1 and F 2 be two bounded nonnegative measurable functions on the canonical space CpR `, Rq ˆM pSq ˆM pSq. Assume that F 1 is F T `-measurable and that F 2 is continuous. We will show that

Θ 0 `F1 ˆF2 `XpT q , r L T , r R T ˘˘" Θ 0 `F1 Θ Z T `F2 ˘˘. (6.27) 
Remark that (6.27) implies that, conditionally on Z T " z, the coding triple p r X pT q , r L T , r R T q is distributed according to Θ z and is independent of

B ' T (the hull B ' T is F T `measurable, since the process t Þ Ñ B '
t is adapted to pF t`qtě0 and T is a stopping time). In particular, p r X pT q , r L T , r R T q will a.s. verify pH 2 q. Then the different assertions of the theorem follow from Lemma 6.2. It remains to establish (6.27). For every integer n ě 1 we have:

Θ 0 `F1 ˆF2 `Xp rnT s n q , r L rnT s n , r R rnT s n ˘˘" 8 ÿ k"0 Θ 0 `F1 1 k n ďT ă k`1 n F 2 `Xp k`1 n q , r L k`1 n , r R k`1 n ˘˘(6.28)
For every atom p , ωq of R or L such that ą τ T , an application of [2, Lemma 11] shows that tr rnT s n pωq Ñ tr T pωq as n Ñ 8. Using also the fact that r Ñ τ r is càdlàg, we easily obtain that

r L rnT s n Ñ r L T and r R rnT s n Ñ r R T when n Ñ 8
, with respect to the topology on M pSq. Since F 2 is bounded and continuous, we can take the limit when n goes to 8 to obtain:

lim nÑ8 Θ 0 `F1 ˆF2 `Xp rnT s n q , r L rnT s n , r R rnT s n ˘˘" Θ 0 `F1 ˆF2 `XpT q , r L T , r R T ˘˘. (6.29) 
On the other hand, for every k ě 0,

F 1 1 k n ďT ă k`1 n is F k`1 n
-measurable and is thus equal, Θ 0 -a.s. , to a measurable function of B ' k`1 n . Hence we can apply the spatial Markov property of Theorem Corollary 6.2. Fix z ą 0. Then, for every r ě 0,

Z r :" lim εÑ0 ε ´2| B' r X B r`ε |
exists Θ z -a.s. Moreover the process pZ r q rě0 has a càdlàg modification under Θ z , which is distributed as a p 1 2 , ψq-self-similar Markov process started at z, i.e. pZ r q rě0 pdq " ´z exp `ξκpz ´1 2 rq ˘¯rě0 (6.32

)
where ξ is distributed according to P.

Let M pzq 8 be the infinite volume Brownian disk with perimeter z defined under the probability measure Θ z as explained in Section 6.2.4. We say that γ : rs, ts Ñ M pzq 8 is a separating cycle if it is an injective continuous cycle that does not hit the boundary of M pzq 8 and if any path connecting this boundary to 8 has to cross the range of γ. We are going to use the "strong" spatial Markov property (Theorem 6.4) to study the separating cycles of the infinite volume Brownian disk. As in the previous sections, we consider B r,s " IntpB ' s zB ' r q and L r,s " inft∆pgq : g : r0, 1s Ñ B r,s separating cycleu, for every 0 ď r ă s, and we will now study L r,s under Θ z . To simplify notation we write L r :" L r,8 for every r ě 0. Note that L 0 is the infimum of lengths of paths separating the boundary of M pzq 8

from infinity. We have the following analog of Theorem 6.1 for the infinite volume Brownian disk: Proposition 6.6. Fix z a positive real number.

piq We have

lim sup uÑ8 log `Θz pL 0 ą uq ȗ ď ´sup są1 1 2ps ´1q logp s 2 2s ´1 q.
Consequently, Θ z pL 0 ą uq decreases at least exponentially fast when u goes to 8.

piiq There exist two constants 0 ă c1 ď c2 such that:

@ε ě 0, c1 p1 ^ε2 q ď Θ z pL 0 ă εq ď c2 ε 2 .
Proof. By scaling, it is enough to consider z " 1. The spatial Markov property (Theorem 6.3) and again a scaling argument show that the distribution of Z ´1 2 1 L 1 under Θ 0 coincides with the distribution of L 0 under Θ 1 and moreover Z ´1 2 1 L 1 is independent of Z 1 under Θ 0 . We obtain:

Θ 1 pL 0 ą uqΘ 0 pZ 1 ą 1q " Θ 0 pL 1 ą Z 1 2 1 u, Z 1 ą 1q ď Θ 0 pL 1 ą uq.
Part piq of the proposition then follows from Theorem 6.1 .

Let us prove piiq. The upper bound is a direct consequence of the beginning of the proof, noting that for every ε ě 0:

Θ 1 pL 0 ă εqΘ 0 pZ 1 ă 1q " Θ 0 pZ ´1 2 1 L 1 ă ε, Z 1 ă 1q ď Θ 0 pL 1 ă εq
so that, by Theorem 6.1 , if c2 :" c 2 {Θ 0 pZ 1 ă 1q P p0, 8q we have:

Θ 1 pL 0 ă εq ď c2 ε 2 (6.33)
for every ε ą 0. We argue in a similar way to obtain the lower bound. Let ε ď 1 and let m 0 ě 1 be an integer. We have similarly:

Θ 0 pL 1 ď εq " Θ 0 pZ 1 2 1 Z ´1 2 1 L 1 ď εq ď Θ 0 pZ ´1 2 1 L 1 ď m 0 ε, Z 1 2 1 ą 1 m 0 q `8 ÿ m"m 0 Θ 0 `Z 1 2 1 P r 1 m `1 , 1 m s , Z ´1 2 1 L 1 ď pm `1qε ˘.
Now we can use the first observations of the proof and (6.33) to get:

Θ 0 pL 1 ď εq ď Θ 0 pZ ´1 2 1 L 1 ď m 0 εq `c 2 ε 2 8 ÿ m"m 0 pm `1q 2 Θ 0 pZ 1 P rpm `1q ´2, m ´2sq " Θ 1 pL 0 ď m 0 εq `c 2 ε 2 8 ÿ m"m 0 pm `1q 2 Θ 0 pZ 1 P rpm `1q ´2, m ´2sq
Under Θ 0 , the density of Z 1 is 3

3 2 ? 2π ?
x expp´3 2 xq dx, so for every 0 ă a ă b:

Θ 0 pZ 1 P ra, bsq ď c 6 π pb 3 2 ´a 3 2 q.
Hence we can find a constant c 3 ą 0, which does not depend on the choice of m 0 , such that

Θ 0 pL 1 ď εq ď Θ 1 pL 0 ď m 0 εq `c3 ε 2 8 ÿ m"m 0 1 m 2 .
Then using Theorem 6.1 , we get for every ε P r0, 1s:

pc 1 ´c3 8 ÿ m"m 0 1 m 2 q ε 2 ď Θ 1 pL 0 ď m 0 εq.
We obtain the lower bound in piiq by choosing m 0 such that

8 ř m"m 0 m ´2 ă c 1 c 3 .
Recall that 0 ă c1 ă c2 are the constants appearing in Proposition 6.6. The end of this section is devoted to the proof of the following result which will be crucial for the proof of Theorem 6.2 piq. Before stating the result, observe that the definition (6.31) of T r for r ą 0 also makes sense under Θ z by Corollary 6.2.

Proposition 6.7.

There exists c3 ą 0 such that, for every r ą 2 c2 { c1 and ε ą 0,

Θ 1 `L0,T 2r ď ε ˘ě c3 p1 ^ε2 q.
The proof of Proposition 6.7 is based on the next lemma: Lemma 6.8. Let z ą 0. Then, for every A ą z and β ă 3 we have:

Θ z `sup r0,εs Z ě A ˘" opε β q as ε Ñ 0.
Proof. By a scaling argument, it is enough to prove the lemma with z " 1. Fix A ą 1. Introduce the stopping time T :" inftt ě 0 : ξ t ě logpAqu which is finite P-a.s. By Corollary 6.2 for every ε ą 0:

Θ 1 `sup tPr0,εs Z t ě A ˘" P `T ď κpεq ˘" P `ż T 0 expp 1 2 ξ r q dr ď ε ˘.
Let α P p0, 1q, we split Pp ş T 0 expp 1 2 ξ r q dr ď εq as follows:

P `ż T 0 expp 1 2 ξ r q dr ď ε ˘ď PpT ď ε α q `P`ż ε α 0 expp 1 2 ξ r q dr ď ε ˘(6.34)
and we study each term separately. We need to estimate PpT ă δq for δ ą 0. As ξ is a Lévy process without positive jumps which drifts to 8, we have by standard properties of Lévy processes

Erexpp´ψpλqT qs " expp´λ logpAqq for every λ ą 0. See for example [15, Chapter VII] for a proof. Remark that there exists c ą 0 such that, for every λ ą 1, we have ψpλq ă cλ 3 2 and that an application of Markov's inequality gives:

PpT ă δq " Pp´ψpλqT ą ´ψpλqδq ď exppψpλqδ ´λ logpAqq. So taking λ " δ ´2 3 in the previous bound we obtain:

PpT ă δq " O δÓ0 `expp´δ ´2 3 logpAqq ˘.
Consequently, for every q ą 0, PpT ă δq " opδ q q as δ Ó 0. Let us study the other term appearing in (6.34). Fix β P p0, 3q. Again by using Markov's inequality we have:

P `ż ε α 0 expp 1 2 ξ r q dr ď ε ˘ď ε β E " `ż ε α 0 expp 1 2 ξ r q dr ˘´β ı .
But then an application of Jensen inequality gives

P `ż ε α 0 expp 1 2 ξ r q dr ď ε ˘ď ε p1´αqβ´α E " ż ε α 0 expp´β 2 ξ r q dr ‰ " ε p1´αqβ´α exppψp´β 2 qε α q ´1 ψp´β 2 q
.

We obtain that P `şε α 0 expp 1 2 ξ r q dr ď ε ˘" Opε p1´αqβ q as ε Ó 0. Since this is true for every β P p0, 3q and α P p0, 1q, the lemma follows.

Let us deduce Proposition 6.7 from Lemma 6.8.

Proof of Proposition 6.7. Fix r ą 2 c2 { c1 ě 2. Let γ be a path separating the boundary of M L 0 ě L 0,T 2r ^LTr ^pT 2r ´Tr q Θ 1 -a.s.

Consequently, for every ε ą 0:

Θ 1 pL 0 ď εq ď Θ 1 `L0,T 2r ď ε ˘`Θ 1 `LTr ď ε ˘`Θ 1 `T2r ´Tr ď ε ˘.
By Theorem 6.4 and Corollary 6.1 , the distribution of L Tr under Θ 1 is the distribution of L 0 under Θ r . Using a scaling argument, we obtain:

Θ 1 `LTr ď ε ˘" Θ r `L0 ď ε ˘" Θ 1 `L0 ď ε ? r ˘ď c2 ε 2 r and Θ 1 `T2r ´Tr ď ε ˘" Θ r pT 2r ď εq " Θ 1 `T2 ď ε ? r ˘" Θ 1 `sup tPr0, ε ? r s Z t ě 2 ˘" o εÓ0 pε 2 q
where the last equality comes from Lemma 6.8 (taking A " 2). We finally derive that:

Θ 1 `L0,T 2r ď ε ˘ě Θ 1 `L0 ď ε ˘´c 2 ε 2 r `opε 2 q ě c1 p1 ^ε2 q ´c 2 ε 2 r `opε 2 q
where in the second line we use Proposition 6.6 . Since r ą 2 c2 { c1 we obtain the desired result.

Isoperimetric inequalities

Preliminary results on the volume of the hulls

This section is devoted to preliminary results about the volume of hulls. This will simplify some arguments in the derivation of Theorem 6.2. We are going to use the following result [40, Theorem

Θ 0 `expp´λ|B ' r |q | Z r " l ˘"r 3 p2λq 3 4 coshpp2λq 1 4 rq sinh 3 pp2λq 1 4 rq ¨exp ´´l `c λ 2 p3 coth 2 pp2λq 1 4 rq ´2q ´3 2r 2 ˘¯(6.35) 1.4] 
for every λ ą 0. In particular, using (6.13), we obtain that for every λ ě 0:

Θ 0 `expp´λ|B ' r |q ˘" 3 3 2 coshpp2λq 1 4 rq pcosh 2 pp2λq 1 4 rq `2q ´3 2 (6.36) 
(this formula also appears in [START_REF] Curien | The hull process of the Brownian plane[END_REF] ).

Proof. Fix β 1 and β 2 as in the statement. By Lemma 6.9, the quantities Θ 0 p|B ' 1 | ´1{β 1 q and Θ 0 p|B ' 1 | 1{β 2 q are finite. This implies by the scaling invariance of M 8 :

ÿ mPZ Θ 0 p|B ' 2 m | ´1 ą |m| β 1 2 ´4m q ď 2 8 ÿ m"0 Θ 0 p|B ' 1 | ´1 β 1 ą mq ă 8
and

ÿ mPZ Θ 0 p|B ' 2 m | ą |m| β 2 2 4m q ď 2 8 ÿ m"0 Θ 0 p|B ' 1 | 1 β 2 ą mq ă 8 .
The result then follows by the Borel-Cantelli lemma.

Proof of Part piq of Theorem 6.2

The goal of this section is to prove the following slightly more precise form of Theorem 6.2 (ii). f p| logp|A|q|q " 0, Θ 0 -a.s. (6.38) Proof. Fix r ą 2 c2 { c1 ě 2, where c1 and c2 are as in Proposition 6.6, and let f : R `Ñ R ˚be a positive nondecreasing function such that ř mPN f pmq ´2 " 8 . We give a detailed proof of the (6.38) since (6.37) can be obtained, mutatis mutandis, by the same method. Recall the notation T r :" inftt ě 0 : Z t ě ru. Since Z does not have positive jumps, we have Z Tr " r. For every n ě 1, a separating cycle taking values in B ' T r n ,T r n`1 bounds a Jordan domain A P K such that B ' T r n Ă A and for n large enough we also have

B ' 1 Ă A. Hence, inf APK B ' 1 ĂA ∆pBAq |A| 1 4 f p| logp|A|q|q ď lim inf nÑ8 L T r 2n`1 ,T r 2n`2 |B ' T r 2n`1 | 1 4 f plogp|B ' T r 2n`2 |qq, Θ 0 -a.s.
So to obtain (6.38) it is enough to show that:

lim inf nÑ8 L T r 2n`1 ,T r 2n`2 |B ' T r 2n`1 | 1 4
f plogp|B ' T r 2n`2 |qq " 0, Θ 0 -a.s. (6.39) Let us study the growth of the sequence pT r n q nPN . First note that:

Θ 0 pT 1 ě uq ď Θ 0 pZ u ď 1q " Θ 0 pZ 1 ď u ´2q " 3 3 2 ? 2π ż u ´2 0 ? x expp´3 2 xq dx ď c 6 π u ´3
where in the first equality we apply the scaling invariance of the Brownian plane and in the second one we use the density of Z 1 (see (6.13)). In particular, we have Θ 0 pT 1 q ă 8. So by scaling invariance we obtain:

ÿ nPN ˚Θ0 pT r n ą nr n 2 q " ÿ nPN ˚Θ0 pT 1 ą nq ă 8.
The Borel-Cantelli lemma then implies that lim sup nÑ8 pnr n{2 q ´1T r n ď 1, Θ 0 -a.s. 

|B ' T r 2n`1 | 1 4 f plogp|B ' T r 2n`2 |qq ď lim inf nÑ8 L T r 2n`1 ,T r 2n`2 |B ' T r 2n ,T r 2n`1 | 1 4
f phnq. (6.40)

We will use the Borel-Cantelli lemma to conclude. By Theorem 6.4, under Θ 0 :

´1 r 4n |B ' T r 2n ,T r 2n`1 |, 1 r n`1 2 L T r 2n`1 ,T r 2n`2 ¯nPN .
is an i.i.d. sequence of random variables and for every n ě 0 the variables: L T r 2n`1 ,T r 2n`2 ) is distributed under Θ 0 as B ' Tr (resp. L 0,Tr ) under Θ 1 . Fix δ ą 0, such that Θ 1 pB ' Tr ą δq ą 0 and let ε ą 0. By the previous remark we have:

8 ÿ n"0 Θ 0 ´|B ' T r 2n ,T r 2n`1 | ą δr 4n , L T r 2n`1 ,T r 2n`2 ă ε f phnq r n`1 2 " 8 ÿ n"0 Θ 1 p|B ' Tr | ą δq Θ 1 `L0,Tr ă ε f phnq ˘.
By Proposition 6.7 the right-hand side of the last display is greater than

c3 Θ 1 p|B ' Tr | ą δq 8 ÿ n"0 ˆε2 f phnq 2 ^1ẇ
hich is infinite since ř mPN f pmq ´2 " 8. The Borel-Cantelli lemma then implies that:

lim inf nÑ8 L T r 2n`1 ,T r 2n`2 |B ' T r 2n ,T r 2n`1 | 1 4
f phnq ď εδ ´1 4 ? r, Θ 0 -a.s.

This holds for every ε ą 0, which together with (6.40) gives (6.39).

Proof of Part piiq of Theorem 6.2

We need to show that for any positive nondecreasing function f , the condition

ř mPN f pmq ´2 ă 8 implies inf APK ∆pBAq |A| 1 4
f p| logp|A|q|q ą 0, Θ 0 -a.s.

We begin with a technical lemma.

Lemma 6.11. Let β P r0, 1q. There exists a constant C β ą 0, which only depends on β, such that for every r ą 0 and ε ą 0:

Θ 0 `1L 1 ăε |B ' r | β ˘ď C β r 4β ε 2 .
The reason for taking β ă 1 is just technical and one can extend the result to β ă 3 2 but the proof will be more tedious. At an intuitive level, Lemma 6.11 states that if we know that there exists a small cycle separating the hull of radius 1 then the expected volume of the hull of radius r stays at most of order r 4 (with a uniform control).

Proof. Fix β P p0, 1q and let r ą 0 and ε ą 0.

To simplify notation, set m :" 1 ε , q :" 1 β and p :" q q´1 " 1 1´β . By the scaling property of

M 8 : Θ 0 `1L 1 ăε |B ' r | β ˘" 1 m 4β Θ 0 `1Lmă1 |B ' mr | β ˘.
If L m ă 1, there is a separating cycle of length smaller than 1 that is contained in Bm , and necessarily this separating cycle is contained in B ' m`k,m`k`2 for some integer k ě 0. Hence,

Θ 0 `1Lmă1 |B ' mr | β ˘ď 8 ÿ k"0 Θ 0 `1L m`k,m`k`2 ă1 |B ' mr | β ˘.
Applying the conditional version of the Hölder inequality with respect to Z m`k`4 we obtain:

Θ 0 `1L m`k,m`k`2 ă1 |B ' mr | β ˘ď Θ 0 ´Θ0 `Lm`k,m`k`2 ă 1 ˇˇZ m`k`4 ˘1 p Θ 0 `|B ' mr | ˇˇZ m`k`4 ˘1 q ¯.
By Proposition 6.5, there exists α 1 ą 0 such that

Θ 0 `Lm`k,m`k`2 ă 1 ˇˇZ m`k`4 ˘ď e ¨expp´α 1 Z m`k`4 q
for every k ě 0 and thus we get :

Θ 0 `1Lmă1 |B ' mr | β ˘ď e 8 ÿ k"0 Θ 0 ´expp´αZ m`k`4 q Θ 0 `|B ' mr | ˇˇZ m`k`4 ˘1 q ¯(6.41)
where α :" α 1 {p. Then again by the Hölder inequality: 

Θ 0 ´expp´αZ m`k`4 q Θ 0 `|B ' mr | ˇˇZ m`k`4 ˘1 q " Θ 0 ´expp´α p Z m`k`4 q expp´α q Z m`k`4 qΘ 0 `|B ' mr | ˇˇZ m`k`4 ˘1 q ď Θ 0 `expp´αZ m`k`4 q ˘1 p Θ 0 `expp´αZ m`k`4 q|B ' mr | ˘1 q . ( 6 
Θ 0 ´|B ' s 1 | ˇˇZ s 2 ¯" Θ 0 ´Θ0 `|B ' s 1 | ˇˇZ s 1 ˘ˇZ s 2 ¯. (6.44)
By differentiating the right-hand side of (6.35) at λ " 0 we get

Θ 0 `|B ' s 1 | ˇˇZ s 1 ˘" 2 15 s 4 1 `1 5 s 2 1 Z s 1
similarly we have from (6.14):

Θ 0 pZ s 1 ˇˇZ s 2 q " s 3 1 s 3 2 Z s 2 `s2 ´s1 s 2 s 2 1 .
So by (6.44), for every 0 ă s 1 ď s 2

Θ 0 ´|B ' s 1 | ˇˇZ s 2 ¯" 1 3 s 4 1 ´s5 1 5s 2 `s5 1 5s 3 2 Z s 2 .
Taking s 1 " pm `k `4q ^pmrq and s 2 " m `k `4, we deduce from the last two formulas and (6.43) that there exists d 2 pαq ą 0 independent of m and k such that:

Θ 0 `expp´αZ m`k`4 q|B ' pm`k`4q ^mr | ˘ď d 2 pαq pm `k `4q 3 r 4 m 4 .
Suppose that m `k `4 ă mr. Then by the spatial Markov property and Corollary 6.3,

Θ 0 p expp´αZ m`k`4 q|B ' m`k`4,mr | q " Θ 0 ´expp´αZ m`k`4 q Θ Z m`k`4 `|B ' mr´m´k´4 | ˘ď C 1 Θ 0 pexpp´αZ m`k`4 qpm 4 r 4 `Z2 m`k`4 qq.
where C 1 " 16C, if C is the constant appearing in Corollary 6. Coming back to (6.41) and (6.42), using (6.43) once again, and recalling that q " 1{β and m " 1{ε, we can find a constant dpαq ą 0 such that:

Θ 0 `1L 1 ăε |B ' r | β ˘" 1 m 4β Θ 0 p1 Lmă1 |B ' mr | β q ď c m 4β 8 ÿ k"0 Θ 0 `expp´αZ m`k`4 q ˘1 p Θ 0 `expp´αZ m`k`4 q|B ' mr | ˘1 q ď 8 ÿ k"0 dpαq pm `k `4q 3 r 4β
and the lemma follows since m " ε ´1.

We now use Lemma 6.11 to prove that for any nondecreasing positive function f :

ÿ mPN 1 f pmq 2 ă 8 ùñ inf APK ∆pBAq |A| 1 4
f p| logp|A|q|q ą 0 , Θ 0 -a.s. (6.45) Proof. Fix a nondecreasing function f : R `Ñ R ˚such that ř mPN f pmq ´2 ă 8. We begin by showing that for every A P K we have:

∆pBAq |A| 1 4 f p| logp|A|q|q ě ´inf mPZ 2 m´1 |B ' 2 m`1 | 1 4 f `| logp|B ' 2 m |q| ˘¯^´inf mPZ L 2 m´1 |B ' 2 m`1 | 1 4 f `| logp|B ' 2 m |q| ˘¯.
(6.46) Let A P K and let m be the unique element of Z such that:

|B ' 2 m | ă |A| ď |B ' 2 m`1 |.
We divide the proof of (6.46) 

f p| logp|A|q|q ě L 2 m´1 |B ' 2 m`1 | 1 4 f p| logp|B ' 2 m |q|q
and this completes the proof of (6.46). Thanks to (6.46), the proof of (6.45) will be complete if we can verify that:

inf mPZ 2 m´1 |B ' 2 m`1 | 1 4
f `| logp|B ' 2 m |q| ˘ą 0, Θ 0 -a.s. (6.47) and

inf mPZ L 2 m´1 |B ' 2 m`1 | 1 4 f `| logp|B ' 2 m |q| ˘ą 0, Θ 0 -a.s. ( 6.48) 
Let us start by proving (6.47). By Lemma 6.10, Θ 0 -a.s., there is a positive integer M such that for every m P Z with |m| ě M :

1 |m| 2 4m ď |B ' 2 m | ď |m|2 4m (6.49)
In particular, we have:

inf mPZ |m|ąM 2 m´1 |B ' 2 m`1 | 1 4 f p| logp|B ' 2 m |q|q ě 1 4 inf mPZ |m|ąM f `|4 logp2qm ´logp|m|q| p|m| `1q 1 4 
Θ 0 -a.s.

On the other hand, by the Cauchy-Schwarz inequality:

1 f pnq ď 1 n n ÿ k"1 1 f pkq ď 1 n 1 2 `n ÿ k"1 1 f pkq 2 ˘1 2 ď 1 n 1 2 `8 ÿ k"1 1 f pkq 2 ˘1 2 .
Under Apsq, all the labels appearing after the point τ s of the spine are greater than r 2 . This implies that, under Apsq, the quantity ε 2 Z r,s r pεq is exactly | Br X B r`ε | (since | ¨| is the pushforward of Lebesgue measure under Π ˝E). To conclude, we are going to use [START_REF] Gall | Growth-fragmentation processes in Brownian motion indexed by the Brownian tree[END_REF]Proposition 8], which states that, for every s ą 0 and β ą 0, we have To translate (6.50) in terms of Z r,s r and Z r,s r pεq, we recall that pX pτs´ q_0 q ě0 is a Bessel process of dimension ´5 started from s, and that, conditionally on pX pτs´ q_0 q ě0 , the measures R 0,s and L 0,s are two independent Poisson point measures on R `ˆS with intensity: 21 r0,τss p q d N X pdω X tω ˚ą 0uq.

In particular, the distribution pX pτs´ q_0 q 0ď ďτs´τr 1 is absolute continuous with respect to the distribution of a Brownian motion started from s and stopped when it hits r 1 . We can now apply [START_REF] Gall | Spine representations for non-compact models of random geometry[END_REF]Proposition 2] to deduce that the distribution of pZ r,s r , Z r,s r pεqq rPrr 1 ,r 2 s is absolute continuous with respect to the distribution pZ r´r 1 , Z ε r´r 1 q rPrr 1 ,r 2 s under N s´r 1 . Consequently (6.50) gives that: sup

rPrr 1 ,r 2 s |Z r,s r pεq ´Zr,s r | ÝÑ εÑ0 0 , Θ 0 -a.s.
which completes the proof.

Introduction

The main purpose of the present work is to derive certain explicit distributions for the random process which we call Brownian motion indexed by the Brownian tree, which has appeared in a variety of different contexts. As a key tool for the derivation of our main results we use the excursion theory developed in [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF] for Brownian motion indexed by the Brownian tree. In many respects, this excursion theory is similar to the classical Itô theory, which applies in particular to linear Brownian motion and has proved a powerful tool for the calculation of exact distributions of Brownian functionals.

Let us briefly describe the objects of interest in this work. We define the Brownian tree T ζ as the random compact R-tree coded by a Brownian excursion ζ " pζ s q sě0 distributed according to the (infinite) Itô measure of positive excursions of linear Brownian motion. If σ stands for the duration of the excursion ζ, this coding means that T ζ is the quotient space of r0, σs for the equivalence relation defined by s " s 1 if and only if ζ s " ζ s 1 " m ζ ps, s 1 q, where m ζ ps, s 1 q :" mintζ r : s ^s1 ď r ď s _ s 1 u, and this quotient space is equipped with the metric induced by d ζ ps, s 1 q " ζ s `ζs 1 ´2m ζ ps, s 1 q. The volume measure volpdaq on T ζ is defined as the push forward of Lebesgue measure on r0, σs under the canonical projection, and the root ρ of T ζ is the equivalence class of 0. We note that under the conditioning by σ " 1 (equivalently the total volume is equal to 1) the tree T ζ is Aldous' Brownian Continuum Random Tree (also called the CRT, see [START_REF] Aldous | The continuum random tree I[END_REF][START_REF] Aldous | The continuum random tree III[END_REF]), up to an unimportant scaling factor 2.

Let us turn to Brownian motion indexed by T ζ . Informally, given T ζ , this is the centered Gaussian process pV a q aPT ζ such that V ρ " 0 and VarpV a ´Vb q " d ζ pa, bq for every a, b P T ζ . This definition is a bit informal since we are dealing with a random process indexed by a random set. These difficulties can be overcome easily by using the Brownian snake approach. We let pW s q sě0 be the Brownian snake (whose spatial motion is linear Brownian motion started at 0) driven by the Brownian excursion pζ s q sě0 . Then, for every s ě 0, W s is a finite path started at 0 and with lifetime ζ s , and for every a P T ζ we may define V a as the terminal point x W s of the path W s , for any s P r0, σs such that a is the equivalence class of s in T ζ . The Brownian snake approach thus reduces the study of a tree-indexed Brownian motion to that of a process indexed by the positive half-line, and we systematically use this approach in the next sections.

The total occupation measure Θpdxq of pV a q aPT ζ is the push forward of volpdaq under the mapping a Þ Ñ V a , or equivalently the push forward of Lebesgue measure on r0, σs under s Þ Ñ x W s . Under the special conditioning σ " 1, this random measure is known as ISE for Integrated Super-Brownian Excursion [START_REF] Aldous | Tree-based models for random distribution of mass[END_REF] (note that our normalization is different from the one in [START_REF] Aldous | Tree-based models for random distribution of mass[END_REF]).

At this point, we observe that both the Brownian tree (often under special conditionings) and Brownian motion indexed by the Brownian tree have appeared in different areas of probability theory. The Brownian snake is very closely related to the measure-valued process called super-Brownian motion and has proved an efficient tool to study this process (see [START_REF] Gall | Spatial Branching Processes, Random Snakes and Partial Differential Equations[END_REF] and the references therein). Super-Brownian motion and ISE arise in a number of limit theorems for discrete probability models, but also in the theory of interacting particle systems [START_REF] Bramson | Super-Brownian limits of voter model clusters[END_REF][START_REF] Cox | Rescaled voter models converge to super-Brownian motion[END_REF][START_REF] Durrett | Rescaled contact processes converge to super-Brownian motion in two or more dimensions[END_REF] and in a variety of models of statistical physics [START_REF] Derbez | The scaling limit of lattice trees in high dimensions[END_REF][START_REF] Hara | The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion[END_REF][START_REF] Van Der Hofstad | Convergence of critical oriented percolation to super-Brownian motion above 4+1 dimensions[END_REF]. More recently, Brownian motion indexed by the Brownian tree has served as the essential building block in the construction of the universal model of random geometry called the Brownian map (see in particular [START_REF] Gall | Uniqueness and universality of the Brownian map[END_REF][START_REF] Gall | Brownian disks and the Brownian snake[END_REF][START_REF] Gall | Scaling limits of random trees and planar maps[END_REF][START_REF] Miermont | The Brownian map is the scaling limit of uniform random plane quadrangulations[END_REF]). In this connection, we note that the distribution of certain functionals of Brownian motion indexed by the Brownian tree is investigated in the article [START_REF] Delmas | Computation of moments for the length of the one dimensional ISE support[END_REF], which was already motivated by asymptotics for random planar maps.

Let us now explain our main results more in detail. In agreement with the usual notation for the Brownian snake, we write N 0 for the (infinite) measure under which pζ s q sě0 and pV a q aPT ζ are defined in the way we just explained -see Section 7.2 for more details. We are primarily interested in local times, which are the densities of the random measure Θpdxq. It follows from the work of Bousquet-Mélou and Janson [START_REF] Bousquet-Mélou | Limit laws for embedded trees: applications to the integrated super-Brownian excursion[END_REF][START_REF] Bousquet-Mélou | The density of the ISE and local limit laws for embedded trees[END_REF] that Θpdxq has a continuous density pL x q xPR with respect to Lebesgue measure on R, N 0 a.e. (this fact could also be derived from the earlier work of Sugitani [START_REF] Sugitani | Some properties for the measure-valued branching diffusion processes[END_REF] dealing with super-Brownian motion, see in particular the introduction of [START_REF] Mytnik | The dimension of the boundary of super-Brownian motion[END_REF]). We also consider the quantity σ `" Θpr0, 8qq (resp. σ ´" Θpp´8, 0sq) corresponding to the volume of the set of all points a P T ζ such that V a ě 0 (resp. V a ď 0). One of our main technical results (Proposition 7.2) identifies the joint Laplace transform N 0 p1 ´expp´λL 0 ´µ1 σ `´µ 2 σ ´qq , λ, µ 1 , µ 2 ą 0, as the solution of the equation h µ 1 ,µ 2 pvq " ? 6 λ, where, for every v ě 0,

h µ 1 ,µ 2 pvq " b a 2µ 1 `v ´2v ´a2µ 1 ¯`b a 2µ 2 `v ´2v ´a2µ 2 ¯.
In the special case µ 1 " µ 2 , this equation can be solved explicitly and leads to the formula

N 0 ´1 ´expp´λL 0 ´µσq ¯" $ & % ? 2µ cos ´2 3 arccos ´?3 λ 2p2µq 3{4 ¯¯if ? 3 λ 2p2µq 3{4 ď 1, ? 2µ cosh ´2 3 arcosh ´?3 λ 2p2µq 3{4 ¯¯if ? 3 λ 2p2µq 3{4 ě 1. (7.1) 
We can extract the conditional distribution of L 0 knowing σ from the preceding formula. In this way we obtain a short direct proof of a remarkable result of Bousquet-Mélou and Janson [START_REF] Bousquet-Mélou | The density of the ISE and local limit laws for embedded trees[END_REF] stating that the local time L 0 under N 0 p¨| σ " 1q (equivalently the density of ISE at 0) is distributed as p2 3{4 {3q T ´1{2 , where T is a positive stable variable with index 2{3, whose Laplace transform is Erexpp´λT qs " expp´λ 2{3 q (Theorem 7.1). The original proof of Bousquet-Mélou and Janson relied on limit theorems for approximations of ISE by discrete labeled trees. Somewhat surprisingly, we are also able to obtain an analog of the latter result when instead of conditioning on σ " 1 we condition on σ `" 1. Precisely, we get that the local time L 0 under N 0 p¨| σ `" 1q is distributed as p2 9{4 {3q D T ´1{2 , where T is as previously and the random variable D is independent of T and has density 2x 1 r0,1s pxq (Theorem 7.2). Our proofs are computational and rely on explicit formulas for moments derived via the Lagrange inversion theorem. It would be interesting to have more probabilistic proofs and a better understanding of the reason why such simple distributions occur.

Because of the connections between the Brownian snake and super-Brownian motion, several of our results can be restated in terms of distributions of (one-dimensional) super-Brownian motion pX t q tě0 started from the Dirac measure δ 0 . In particular, we get that the total local time at 0 (defined as the density at 0 of the measure ş 8 0 dt X t ) is distributed as 3 1{2 2 ´2{3 T where T is as previously a positive stable variable with index 2{3 (Corollary 7.2). This is by no means a difficult result (as pointed out to the authors by Edwin Perkins [91], the fact that the total local time is a stable variable with index 2{3 can also be derived by a scaling argument, see formula (2.13) in [START_REF] Mytnik | The dimension of the boundary of super-Brownian motion[END_REF]), but it seems to have remained unnoticed by the specialists of super-Brownian motion. The fact that the same variable T occurs in the Bousquet-Mélou-Janson result suggests the existence of a direct connection between the two results, but we have been unable to find such a connection.

The present article is organized as follows. Section 7.2 gives a number of preliminaries concerning the Brownian snake. We have chosen to discuss the Brownian snake with a general spatial motion because it turns out to be useful to consider also the case where this spatial motion is the pair consisting of a linear Brownian motion and its local time at 0. In fact, Section 7.3 starts with a formula expressing the local time L 0 in terms of certain exit measures of this twodimensional Brownian snake (Proposition 7.1). This expression then leads to an easy calculation of the Laplace transform of L 0 , or more generally of L x for any x P R, under N 0 (Corollary 7.1). Section 7.4 gives the key Proposition 7.2 characterizing the joint Laplace transform of the triple pL 0 , σ `, σ ´q and establishes (7.1) as a consequence. Finally, Section 7.5 derives conditional distributions of the local time L 0 , and also discusses the interpretation of these distributions in continuous models of random geometry.

Preliminaries

The Brownian snake

In this section, we recall some basic facts about the Brownian snake with a general spatial motion. We let ξ stand for a Markov process with values in R d , which starts from x P R d under the probability measure P x . We assume that ξ has continuous sample paths, and moreover we require the following bound on the increments of ξ. There exist three positive constants C, q ą 2 and χ ą 0 such that for every t P r0, 1s and x P R d ,

E x " sup 0ďsďt |ξ s ´x| q ı ď C t 2`χ . (7.2)
Under this moment assumption, we may define the Brownian snake with spatial motion ξ as a strong Markov process with values in the space of d-dimensional finite paths (see [START_REF] Gall | Spatial Branching Processes, Random Snakes and Partial Differential Equations[END_REF]Section IV.4]). In this work, we will only need the Brownian snake excursion measures, which we now introduce within the formalism of snake trajectories [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF]. First recall that a (d-dimensional) finite path w is a continuous mapping w : r0, ζs ÝÑ R d , where the number ζ " ζ pwq ě 0 is called the lifetime of w. We let W denote the space of all finite paths, which is a Polish space when equipped with the distance d W pw, w 1 q " |ζ pwq ´ζpw 1 q | `sup tě0 |wpt ^ζpwq q ´w1 pt ^ζpw 1 q q|. The endpoint or tip of the path w is denoted by p w " wpζ pwq q. For every x P R d , we set W x " tw P W : wp0q " xu. The trivial element of W x with zero lifetime is identified with the point x of R d .

Definition 7.1. Let x P R d . A snake trajectory with initial point x is a continuous mapping s Þ Ñ ω s from R `into W x which satisfies the following two properties:

(i) We have ω 0 " x and the number σpωq :" supts ě 0 : ω s " xu, called the duration of the snake trajectory ω, is finite (by convention σpωq " 0 if ω s " x for every s ě 0).

(ii) For every 0 ď s ď s 1 , we have ω s ptq " ω s 1 ptq for every t P r0, min sďrďs 1 ζ pωrq s.

If ω is a snake trajectory, we will write W s pωq " ω s and ζ s pωq " ζ pωsq . We denote the set of all snake trajectories with initial point x by S x . The set S x is equipped with the distance d Sx pω, ω 1 q " |σpωq ´σpω 1 q| `sup sě0 d W pW s pωq, W s pω 1 qq and the associated Borel σ-field.

Let npdeq denote the classical Itô measure of positive excursions of linear Brownian motion (see e.g. [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF]Chapter XII]). Then npdeq is a σ-finite measure on the space of all continuous functions s Þ Ñ e s from R `into R `, and without risk of confusion, we will write σpeq " supts ě 0 : e s " 0u, in such a way that we have 0 ă σpeq ă 8 and epsq ą 0 for every 0 ă s ă σpeq, npdeq a.e. We consider the usual normalization of npdeq, so that, for every ε ą 0,

n ´supte s : s ě 0u ą ε ¯" 1 2ε .
We have then also, for every λ ą 0, np1 ´expp´λσpeqqq " a λ{2, (

and equivalently the distribution of σpeq under npdeq is p2 ? 2πq ´1 s ´3{2 ds.

Definition 7.2. For every x P R d , the Brownian snake excursion measure N x is the σ-finite measure on S x characterized by the following two properties:

(i) The distribution of pζ s q sě0 under N x is n;

(ii) Under N x and conditionally on pζ s q sě0 , pW s q sě0 is a time-inhomogeneous Markov process whose transition kernels can be described as follows: For every 0 ď s ď s 1 , ' W s 1 ptq " W s ptq for all 0 ď t ď m ζ ps, s 1 q :" mintζ r : s ď r ď s 1 u;

' conditionally on W s , the random path pW s 1 pm ζ ps, s 1 q `tq, 0 ď t ď ζ s 1 ´mζ ps, s 1 qq is distributed as the Markov process ξ started at W s pm ζ ps, s 1 qq.

See again [65, Chapter IV] for more information about the measures N x . If F is a nonnegative function on W x , we have the first-moment formula 

N x ´ż σ 0 F pW s q ds ¯" E x " ż 8 0 F ´pξ r q 0ďrďt ¯dt ı . ( 7 
N x pxZ O , ϕyq " E x rϕpξ τ O q 1 tτ O ă8u s, (7.6) 
where in the right-hand side τ O " inftt ě 0 : ξ t R Ou.

Let us now recall the special Markov property of the Brownian snake, referring to the appendix of [START_REF] Gall | Subordination of trees and the Brownian map[END_REF] for the proof of a slightly more precise statement. To this end we consider again the open set O such that x P O, and fix a snake trajectory ω P W x . We observe that the set ts ě 0 : τ O pW s q ă 8u is open and thus can be written as a disjoint union of open intervals pa i , b i q, i P I (the indexing set I may be empty if none of the paths W s exits O). For every i P I, we may define a new snake trajectory ω piq by setting for every s ě 0, ω piq s ptq :" ω pa i `sq^b i pζ a i `tq , for every 0 ď t ď ζ pω piq s q :" ζ pa i `sq^b i ´ζa i .

The snake trajectories ω piq represent the excursions of ω outside O (the word "outside" is somewhat misleading since these excursions typically come back into O though they start on BO). We also introduce a σ-field E O corresponding informally to the information given by the paths W s before they exit O (see [START_REF] Gall | Subordination of trees and the Brownian map[END_REF] 

Specific properties when ξ is linear Brownian motion

We finally mention a few more specific properties that hold in the special case where d " 1 and ξ is standard linear Brownian motion. In that case, we have the following scaling property. If λ ą 0 and

W 1 s ptq " λ W s{λ 4 pt{λ 2 q , for every 0 ď t ď ζ 1 s :" λ 2 ζ s{λ 4 , (7.7) 
then the distribution of pW 1 s q sě0 under N x is λ 2 N λx . Suppose that the open set O is the interval p´8, yq with y ą x, or the interval py, 8q with y ă x. In both cases, the exit measure Z O can be written as Z y δ y , where Z y ě 0 and δ y denotes the Dirac measure at y, and we have, for every λ ą 0,

N x ´1 ´expp´λZ y q ¯" ´λ´1{2 `|y ´x| a 2{3 ¯´2 . ( 7.8) 
See formula [START_REF] Addario-Berry | Convergence of odd-angulations via symmetrization of labeled trees[END_REF] in [START_REF] Curien | The hull process of the Brownian plane[END_REF].

Let R :" t x W s : s ě 0u " tW s ptq : s ě 0, 0 ď t ď ζ s u denote the range of the Brownian snake. Then, for every y P R, y " x, N x py P Rq " 3 2py ´xq 2 " N x pZ y ą 0q.

(7.9)

See [START_REF] Gall | Spatial Branching Processes, Random Snakes and Partial Differential Equations[END_REF]Section VI.1] for the first equality, and note that the second one follows from (7.8).

Finally, it follows from the results of [START_REF] Bousquet-Mélou | The density of the ISE and local limit laws for embedded trees[END_REF] that there exists N 0 a.e. a continuous function pL y q yPR , which is supported on R, such that, for every nonnegative measurable function ϕ on R,

ż σ 0 ds ϕp x W s q " ż R dy ϕpyq L y .
We call L y the Brownian snake local time at y. Note that [START_REF] Bousquet-Mélou | The density of the ISE and local limit laws for embedded trees[END_REF] deals with the case of ISE, that is, with the conditional measure N 0 p¨| σ " 1q, but then a scaling argument gives the desired result under N 0 . Next suppose that, for a given λ ą 0, W 1 is defined from W as in (7.7). Then, with an obvious notation, we have σ 1 " λ 4 σ and L 1x " λ 3 L x{λ for every x P R, N 0 a.e. As a consequence, for every s ą 0, the distribution of L 0 under N 0 p¨| σ " sq is equal to the distribution of s 3{4 L 0 under N 0 p¨| σ " 1q.

The scaling property also implies the existence of a constant C such that, for every s ą 0 and

x P R, we have N 0 pL x | σ " sq ď C s 3{4 (the case s " 1 follows from [START_REF] Bousquet-Mélou | The density of the ISE and local limit laws for embedded trees[END_REF]Corollary 11.3], or from a simple argument using Fatou's lemma and the approximation of L x by p2εq ´1 ş σ 0 dr 1 t| x Wr´x|ăεu ).

The local time at 0

In this section and the next ones, we consider the Brownian snake excursion measure N 0 in the case where ξ " B is linear Brownian motion. For every a P R and t ě 0, we use the notation L a t pBq for the local time of the Brownian motion B at level a and at time t. For every fixed s ě 0, the path W s is distributed under N 0 and conditionally on ζ s as a linear Brownian path started at 0 with lifetime ζ s , and we can define its local time process at 0, L 0 t pW s q " lim εÑ0 1 ε ż t 0 1 r0,εs pW s prqq dr , 0 ď t ď ζ s , a.s.

We may view L 0 pW s q " pL 0 t pW s qq 0ďtďζs as a random element of W 0 with lifetime ζ s . Simple moment estimates show that we can choose a continuous modification of pL 0 pW s qq sě0 (as a random process with values in W 0 ). Moreover, the distribution under N 0 of the two-dimensional process pW s , L 0 pW s qq sě0 is the Brownian snake excursion measure (from the point p0, 0q of R 2 ) for the Markov process ξ 1 t " pB t , L 0 t pBqq (note that ξ 1 may be viewed as a Markov process with values in R 2 , which satisfies (7.2)).

The point of the preceding discussion is that, under N 0 , we can define exit measures for the process pW s , L 0 pW s qq sě0 from open subsets O of R 2 containing p0, 0q, in the way explained in Section 7.2 (e.g. from the approximation formula (7.5)). For every r ą 0, we consider the exit measure from the open set O " R ˆp´8, rq and denote its mass by X r (as an application of the first-moment formula (7.6), this exit measure is a random multiple of the Dirac measure at p0, rq). By convention we also take X 0 " 0.

On the other hand, as explained in Section 8 of [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF], we can use a famous theorem of Lévy [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF]Theorem VI.2.3] to give a different presentation of the process p|W s |, L 0 pW s qq. To this end, for every s ě 0, write W ' s ptq :" W s ptq ´mintW s prq : 0 ď r ď tu , L ' s ptq " ´mintW s prq : 0 ď r ď tu , for 0 ď t ď ζ s .

Then the distribution of the pair pW ' s , L ' s q sě0 under N 0 is equal to the distribution of p|W s |, L 0 pW s qq sě0 under the same measure.

Using the preceding identity in distribution of two-dimensional snake trajectories, and the approximation (7.5) of exit measures, we get that the process pX r q rą0 has the same distribution under N 0 as the process pZ ´rq rą0 , where we recall that, for every x P Rzt0u, Z x denotes the (total mass of the) exit measure of pW s q sě0 from the open interval px, 8q if x ă 0 , or p´8, xq if x ą 0 -of course, by symmetry, pZ ´rq rą0 has the same distribution as pZ r q rą0 . In particular N 0 pX r ą 0q " N 0 pZ r ą 0q ă 8 by (7.9). The discussion in [START_REF] Gall | Growth-fragmentation processes in Brownian motion indexed by the Brownian tree[END_REF]Section 2.4] now shows that the process pX r q rą0 has a càdlàg modification under N 0 , which we consider from now on. Furthermore the distribution of this càdlàg modification under N 0 can be interpreted as the excursion measure of the continuous-state branching process with branching mechanism φpuq " a 8{3 u 3{2 (the φ-CSBP in short, see [65, Chapter II] for a brief presentation of continuous-state branching processes). This means that, if α ą 0, and ř iPI δ ω i is a Poisson point measure with intensity α N 0 , the process Y defined by Y 0 " α and Y r " ÿ iPI X r pω i q for every r ą 0, is a φ-CSBP started from α. Note that the right-hand side of the last display is a finite sum since N 0 pX r ą 0q ă 8.

Recall our notation L 0 for the Brownian snake local time at 0. Proposition 7.1. We have

L 0 " ż 8 0 dr X r , N 0 a.e.
This proposition is obviously related to the identity [START_REF] Cori | Planar maps are well labeled trees[END_REF] in [77, Proposition 25], which is however concerned with the local time L x at a level x ą 0. Unfortunately, the case x " 0 seems to require a different argument.

Proof. It will be convenient to write p LpW s q " L 0 ζs pW s q and L ˚" maxt p LpW s q : 0 ď s ď σu.

For every ε ą 0, set

L 0,ε :" ε ´1 ż σ 0 ds 1 t0ă x Wsăεu .
Then L 0,ε ÝÑ L 0 as ε Ñ 0, N 0 a.e. We also introduce, for every fixed δ ą 0,

L 0,ε,pδq :" ε ´1 ż σ 0 ds 1 t0ă x Wsăε, p LpWsqąδu .
We observe that, for every ε, δ ą 0, we can use the first-moment formula (7.4) to compute Let γ ą 0. We can fix δ ą 0 small enough so that, for every ε ą 0, the second and the fourth term in the right-hand side of (7.11) are smaller than γ{4 (we use (7.10) for the second term). Then, if ε ą 0 is small enough, the first and the third term are also smaller than γ{4 (using Lemma 7.1 for the third term). We conclude that N paq 0 p|L 0 ´r L 0 | ą αq ď γ and since α and γ were arbitrary this gives the desired result r L 0 " L 0 .

N 0 pL 0,ε ´L0,ε,pδq q " N 0 ´ε´1 ż σ 0 ds 1 t0ă x Wsăε, p LpWsqďδu " ε ´1E 0 " ż 8 0 dt 1 t0ăBtăε,L 0 t pBqďδu ı " δ, ( 7 
Proof of Lemma 7.1. We keep the notation r L 0,pδq introduced in the previous proof. We first observe that r L 0,pδq " lim εÑ0 ε 8 ÿ k"0 X δ`kε , N 0 a.e. (7.12) and on the other hand, has the distribution of U ε a , where pU ε t q tě0 is the subordinator whose Lévy measure is the distribution of U ε under N 0 . Note that ErU ε 1 s " N 0 pU ε q " ε 2 by (7.10).

L 0,ε,pδq " ε ´1 8 ÿ k"0 H ε,pδq k , ( 7 
By a scaling argument, we get that pU ε t q tě0 has the same distribution as pε Erε 2 |U 1 s ´s|s, which tends to 0 as ε Ñ 0, by (7.14). The statement of the lemma follows, recalling (7.12) and (7.13).

Corollary 7.1. For every λ ą 0,

N 0 p1 ´e´λL 0 q " 3 1{3 2 λ 2{3 . (7.15)
The distribution of L 0 under N 0 has density hp q " 3 ´2{3 Γp1{3q

´5{3

with respect to Lebesgue measure on p0, 8q.

Proof. Let pX r q rě0 denote a φ-CSBP started from 1, where we recall that φpuq " a 8{3 u 3{2 . Using the interpretation of the distribution of pX r q rą0 under N 0 and the exponential formula for Poisson measures, we have

E " exp ´´λ ż 8 0 dr X r ¯ı " exp ´´N 0 ´1 ´exp ´´λ ż 8 0 dr X r ¯¯¯.
It then follows from Proposition 7.1 that

N 0 p1 ´e´λL 0 q " ´log E " exp ´´λ ż 8 0 dr X r ¯ı.
The classical Lamperti transformation [START_REF] Caballero | Proof(s) of the Lamperti representation of continuous-state branching processes[END_REF][START_REF] Lamperti | Continuous state branching processes[END_REF] shows that ş 8 0 dr X r has the same distribution as T 0 :" inftt ě 0 : Y t " 0u, where pY t q tě0 denotes a stable Lévy process with no negative jumps started from 1, whose distribution is characterized by the Laplace transform Erexpp´λpY t ´1qqs " exppt φpλqq. It is then classical (see e.g. [START_REF] Bertoin | Lévy Processes[END_REF]Chapter VII]) that Ere ´λT 0 s " e ´φ´1 pλq , where φ ´1pλq " p3{8q 1{3 λ 2{3 is the inverse function of φ. This completes the proof of the first assertion. The density of L 0 is then obtained by inverting the Laplace transform.

In the next corollary, we consider a one-dimensional super-Brownian motion pX t q tě0 with quadratic branching mechanism ψpuq " 2u 2 (the choice of the constant 2 is only for convenience, since a scaling argument will give a similar result with a general quadratic branching mechanism). Then it is well known that we can define the associated (total) local times as the unique (random) continuous function pL a q aPR such that

ż 8 0 dt xX t , f y " ż R da f paq L a ,
for every Borel function f : R ÝÑ R `. See in particular Sugitani [START_REF] Sugitani | Some properties for the measure-valued branching diffusion processes[END_REF].

Corollary 7.2. Suppose that X 0 " α δ 0 for some α ą 0. Then, for every a P R and λ ą 0,

Ere ´λL a s " exp ˜´α 3 1{3 2 ´λ´1{3 `3´1{3 |a| ¯´2 ¸. (7.16)
In particular, so that L 0 is a positive stable variable with index 2{3.

Ere ´λL 0 s " exp ˜´α 3 1{3 2 λ 2{3 ¸, (7.17 
Proof. We rely on the Brownian snake construction of super-Brownian motion (see in particular [START_REF] Gall | Spatial Branching Processes, Random Snakes and Partial Differential Equations[END_REF]Chapter 4]). We may assume that pX t q tě0 is constructed in such a way that there exists a Poisson point measure N " ř iPI δ ω i with intensity αN 0 , such that, for every Borel function

f : R ÝÑ R `, ż R da f paq L a " ż 8 0 dt xX t , f y " ÿ iPI ż σpω i q 0 ds f p x W s pω i qq " ÿ iPI ż R da f paq L a pω i q.
It follows that we have

L a " ÿ iPI L a pω i q (7.18)
for Lebesgue a.e. a P R. The left-hand side is continuous in a, and the right-hand side is continuous on Rzt0u since, for every δ ą 0, there are only finitely many i P I such that L a pω i q is nonzero for some a with |a| ą δ. So (7.18) holds for every a P Rzt0u. In fact it is easy to see that (7.18) also holds for a " 0. First note that, by Fatou's lemma, L 0 ě ř iPI L 0 pω i q, so that it suffices to check that

Ere ´L0 s " E " exp ´´ÿ iPI L 0 pω i q ¯ı.
The left-hand side is the limit when a Ñ 0 of Ere ´La s " expp´N 0 p1 ´e´L a qq and the righthand side is equal to expp´N 0 p1 ´e´L 0 qq. So we only need to verify that N 0 p1 ´e´L a q tends to N 0 p1 ´e´L 0 q as a Ñ 0, which is easy by conditioning on σ and then using the bound N 0 p1 ´e´L a | σ " sq ď Cps 3{4 ^1q to justify dominated convergence. Formula (7.17) follows from the case a " 0 of (7.18) as an immediate application of (7.15) and the exponential formula for Poisson measures. As for formula (7.16), it is enough to verify that

N 0 p1 ´e´λL a q " 3 1{3 2 ´λ´1{3 `3´1{3 |a| ¯´2 . (7.19)
Fix a ą 0 for definiteness, and recall our notation Z a for the total mass of the exit measure from p´8, aq. Write pω 1 j q jPJ for the excursions of the Brownian snake outside p´8, aq. By the special Markov property, under N 0 and conditionally on Z a , the point measure ř jPJ δ ω 1 j is Poisson with intensity Z a N a . Moreover, the first part of the proof shows that we have L a " ř jPJ L a pω 1 j q, N 0 a.e., and therefore N 0 p1 ´e´λL a q " N 0 ´1 ´exp ´´Z a N 0 p1 ´expp´λL 0 q ¯¯. Then (7.19) follows from (7.15) and (7.8).

Remark. An alternative way to derive the previous two corollaries would be to use the known connections between super-Brownian motion or the Brownian snake and partial differential equations. See formula (1.13) in [START_REF] Mytnik | The dimension of the boundary of super-Brownian motion[END_REF], and note that, as a function of a, the right-hand side of (7.19) solves the differential equation 1 2 u 2 " 2u 2 ´λδ 0 in the sense of distributions. On the other hand, our method provides a better probabilistic understanding of the results and the derivation of (7.15) in particular relies on Proposition 7.1 which is of independent interest and will play a significant role in the proofs of the next section.

The joint distribution of the local time and the time spent above and below 0

Our next goal is to discuss the joint distribution of pL 0 , σ `, σ ´q under N 0 , where we write

σ `:" ż σ 0 1 t x Wsą0u ds , σ ´:" ż σ 0 1 t x Wsă0u ds.
Proposition 7.2. Let λ, µ 1 , µ 2 ě 0, and consider the function h µ 1 ,µ 2 : r0, 8q ÝÑ R defined by

h µ 1 ,µ 2 pvq " b a 2µ 1 `v ´2v ´a2µ 1 ¯`b a 2µ 2 `v ´2v ´a2µ 2 ¯.
Then the quantity vpλ, µ 1 , µ 2 q :" N 0 p1 ´expp´λL 0 ´µ1 σ `´µ 2 σ ´qq is the unique solution of the equation h µ 1 ,µ 2 pvq " ? 6 λ.

Proof. First note that the quantities vpλ, µ 1 , µ 2 q are finite, since vpλ, µ, µq ď N 0 p1 ´expp´λL 0 qq Ǹ0 p1 ´expp´µσqq ă 8 by (7.3) and (7.15). Then, suppose that, under the probability measure P, we are given a sequence pη i q iě0 of independent Bernoulli variables with parameter 1{2, and a sequence pU i q iě0 of i.i.d. nonnegative random variables with density p2πu 5 q ´1{2 expp´1{2uq for u ą 0. We note that, for every β ą 0, we have Erexpp´βU 1 qs " p1 `a2βq expp´a2βq.

(7.20)

The reason for introducing these two sequences is the following fact. If pt i q iě0 is a measurable enumeration of the jump times of the process pX t q tě0 (under N 0 ), the conditional distribution of the pair pσ `, σ ´q under N 0 and knowing pX t q tě0 is the law of

´8 ÿ i"0 η i U i p∆X t i q 2 , 8 ÿ i"0 p1 ´ηi q U i p∆X t i q 2 ¯.
This fact is a consequence of the excursion theory developed in [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF] (in particular Theorem 4 and Proposition 31 of [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF]). In this theory, excursions away from 0 are in one-to-one correspondence with the jumps of pX t q tě0 , so that in the preceding display η i gives the sign of the associated excursion (η i " 1 for a positive excursion and η i " 0 for a negative one), and U i p∆X t i q 2 corresponds to the duration of this excursion. We refer to [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF] for more details. Using also Proposition 7.1 and (7.20), it follows that

N 0 ´expp´λL 0 ´µ1 σ `´µ 2 σ ´q ˇˇpX t q tě0 ¯" exp ´´λ ż 8 0 dt X t ¯8 ź i"0 F pµ 1 , µ 2 , p∆X t i q 2 q,
where we have set, for every x ą 0,

F pµ 1 , µ 2 , xq :" 1 2 ´p1 `a2µ 1 xq expp´a2µ 1 xq `p1 `a2µ 2 xq expp´a2µ 2 xq ¯.
Hence, with the notation of the theorem, we have

vpλ, µ 1 , µ 2 q " N 0 ´1 ´exp ´´λ ż 8 0 dt X t ¯8 ź i"0 F pµ 1 , µ 2 , p∆X t i q 2 q ¯.
We now recall that the distribution of pX t q tě0 is the excursion measure of the φ-CSBP in order to rewrite this equality in a slightly different form. Suppose that ř kPK δ ω k is a Poisson point measure with intensity N 0 . The process pX t q tě0 defined by X 0 " 1 and X t " ř kPK X t pω k q if t ą 0 is then a φ-CSBP started at 1. Furthermore, the exponential formula for Poisson measures and the last display immediately give

E " exp ´´λ ż 8 0 dt X t ¯8 ź j"0 F pµ 1 , µ 2 , p∆X s j q 2 q ı " expp´vpλ, µ 1 , µ 2 qq (7.21)
where we have written ps j q jě0 for a measurable enumeration of the jumps of X.

Let t ě 0. Using the Markov property of X at time t, the left-hand side of (7.21) is also equal to

E "´e xp ´´λ ż t 0 ds X s ¯ź j:s j ďt F pµ 1 , µ 2 , p∆X s j q 2 q ¯expp´vpλ, µ 1 , µ 2 qX t q ı . ( 7.22) 
To simplify notation, we write v " vpλ, µ 1 , µ 2 q in the following calculations, which are very similar to the proof of Proposition 4.8 in [START_REF] Curien | The hull process of the Brownian plane[END_REF]. We also set, for every s ě 0,

V s :" exp ´´λ ż s 0 du X u ¯ź j:s j ďs F pµ 1 , µ 2 , p∆X s j q 2 q.
From the form of the generator of the φ-CSBP, we have e ´vXt " e ´v `Mt `φpvq

ż t 0 X s e ´vXs ds,
where pM s q sě0 is a martingale, which is bounded on every compact time interval. By using the integration by parts formula as in [40, V s X s e ´vXs ds `ÿ j:s j ďt e ´vXs j V s j ´pF pµ 1 , µ 2 , p∆X s j q 2 q ´1q, and so we get pφpvq ´λq E " ż t 0 V s X s e ´vXs ds ı " ´E" ÿ j:s j ďt e ´vXs j V s j ´pF pµ 1 , µ 2 , p∆X s j q 2 q ´1q ı .

We multiply both sides of this identity by 1{t and let t Ó 0. We have first lim

tÓ0 1 t E " ż t 0 V s X s e ´vXs ds ı " e ´v.
On the other hand, as a consequence of the classical Lamperti representation of continuous-state branching processes [START_REF] Lamperti | Continuous state branching processes[END_REF][START_REF] Caballero | Proof(s) of the Lamperti representation of continuous-state branching processes[END_REF], we know that the dual predictable projection of the random measure 8 ÿ i"0 δ ps j ,∆Xs j q pds, dxq is the measure X s ds κpdxq, where κpdxq " a 3{2π x ´5{2 1 txą0u dx is the Lévy measure of the Lévy process appearing in the Lamperti representation of X. This implies that E " ÿ j:s j ďt e ´vXs j V s j ´pF pµ 1 , µ 2 , p∆X s j q 2 q ´1q

ı " E " ż t 0 ds e ´vXs V s X s ż κpdxq e ´vx pF pµ 1 , µ 2 , x 2 q ´1q ı .

Consequently, lim tÓ0 1 t E " ÿ j:s j ďt e ´vXs j V s j ´pF pµ 1 , µ 2 , p∆X s j q 2 q ´1q

ı " e ´v ż κpdxq e ´vx pF pµ 1 , µ 2 , x 2 q ´1q.

Finally, we have obtained φpvq ´λ " ´ż κpdxq e ´vx pF pµ 1 , µ 2 , x 2 q ´1q.

Using the equality φpvq " ş κpdxqpe ´vx ´1 `vxq, straightforward calculations left to the reader show that φpvq `ż κpdxq e ´vx pF pµ 1 , µ 2 , x 2 q ´1q " 1 ?

6 h µ 1 ,µ 2 pvq,
where h µ 1 ,µ 2 is as in the statement. This proves that v " vpλ, µ 1 , µ 2 q solves h µ 1 ,µ 2 pvq " ? 6 λ. Uniqueness is clear since the function h µ 1 ,µ 2 is monotone increasing over r0, 8q.

Corollary 7.3. For every λ ě 0 and µ ą 0, we have

N 0 ´1 ´expp´λL 0 ´µσq ¯" $ & % ? 2µ cos ´2 3 arccos ´?3 λ 2p2µq 3{4 ¯¯if ? 3 λ 2p2µq 3{4 ď 1, ? 2µ cosh ´2 3 arcosh ´?3 λ 2p2µq 3{4 ¯¯if ? 3 λ 2p2µq 3{4 ě 1.
Proof. Set wpλ, µq " N 0 p1 ´expp´λL 0 ´µσqq. Note that wpλ, µq ě N 0 p1 ´expp´µσqq " a µ{2 by (7.3). It follows from Proposition 7.2 applied with µ 1 " µ 2 " µ that wpλ, µq is the unique solution of the equation

4w 3 ´6µw `p2µq 3{2 " 3 2 λ 2
in r a µ{2, 8q (note that the left-hand side is a monotone increasing function of w on r a µ{2, 8q). Set r wpλ, µq " wpλ, µq{ ? 2µ and a " ? 3 λ{p2p2µq 3{4 q. We immediately get that r wpλ, µq is the unique solution of 4 r w 3 ´3 r w `1 " 2a 2 in r1{2, 8q. A simple calculation now shows that r w "

# cosp 2 3 arccospaqq if a ď 1, coshp 2 
3 arcoshpaqq if a ě 1, solves the preceding equation. This completes the proof.

We can also derive an explicit formula for N x p1 ´expp´λL 0 ´µσqq, for every x P R, from Corollary 7.3. Fix x ą 0 for definiteness and argue under the measure N x . Write T 0 pwq " inftt P r0, ζ pwq s : wptq " 0u for any finite path w and define Y 0 " ż σ 0 ds 1 tT 0 pWsq"8u . Also let pω i q iPI be the excursions outside p0, 8q defined as in Section 7.2. Then, we have N x a.e.

σ " Y 0 `ÿ iPI σpω i q , L 0 " ÿ iPI L 0 pω i q
where the second equality follows from the proof of Corollary 7.2. Using the special Markov property (with the fact that Y 0 is E p0,8q -measurable), we get N x ´1 ´expp´λL 0 ´µσq ¯" N x ´1 ´exp ´´µY 0 ´Z0 N 0 p1 ´expp´λL 0 ´µσqq ¯. (7.23) On the other hand, Lemma 4.5 in [START_REF] Curien | The hull process of the Brownian plane[END_REF] shows that, for every µ, θ ą 0 such that θ ě a µ{2,

N x p1 ´expp´µY 0 ´θZ 0 qq " c µ 2 ˜3˜c oth ˜p2µq 1{4 x `coth ´1 d 2 3 `1 3 c 2 µ θ ¸¸2 ´2¸( 7.24)
with the convention that the right-hand side equals a µ{2 if θ " a µ{2. Taking θ " N 0 p1 ´expp´λL 0 ´µσqq ě a µ{2 in (7.24), using the formula of Corollary 7.3, then yields a (complicated but explicit) expression for N x p1 ´expp´λL 0 ´µσqq. Corollary 7.4. For every µ 1 , µ 2 ě 0, we have

N 0 p1 ´expp´µ 1 σ `´µ 2 σ ´qq " ? 2 3 µ 3{2 1 ´µ3{2 2 µ 1 ´µ2 ,
with the convention that the right-hand side equals a µ 1 {2 if µ 1 " µ 2 . The distribution of the pair pσ `, σ ´q under N 0 has density

gps 1 , s 2 q :" 1 2 ? 2π ps 1 `s2 q ´5{2
with respect to Lebesgue measure on p0, 8q 2 . In particular, the distribution of σ `(or of σ ´) under N 0 has density p3 ? 2πq ´1 s ´3{2 on p0, 8q.

Proof. From the scaling properties of the end of Section 7.2, it is enough to treat the case s " 1.

Recall the notation vpλ, µ 1 , µ 2 q in Proposition 7.2. For every λ ě 0, set

F pλq :" 2 N 0 ´e´σ{2 p1 ´e´λL 0 q ¯" 2 vpλ, 1 2 , 1 2 q ´1,
where the second equality holds because N 0 p1 ´expp´σ{2qq " 1{2. The function F is continuous and vanishes at 0. As a straightforward consequence of Proposition 7.2, we have for every λ ě 0,

F pλq " λ d 3 3 `F pλq . (7.25)
In particular, the right derivative of F at 0 is 1, and consequently N 0 pL 0 expp´σ{2qq " 1{2. The fact that N 0 pL 0 expp´σ{2qq is finite allows us to make sense of F pλq for every λ P C such that Repλq ě 0, and the restriction of F to tλ P C : Repλq ą 0u is analytic.

Set ψpzq " a 3{p3 `zq so that ψ is analytic on a neighborhood of 0 in C. Since ψp0q " 0, we can find an analytic function G defined on a neighborhood of 0 such that zψpGpzqq " Gpzq for |z| small enough. By (7.25), we must have F pzq " Gpzq for Repzq ą 0 and |z| small, and this means that F can be extended to an analytic function on a neighborhood of 0. By the Lagrange inversion theorem, we have then, for every integer n ě 1,

rz n sF pzq " 1 n rz n´1 sψpzq n " 3 n{2 n! d n´1 p3 `zq ´n{2 dz n´1 ˇˇz " 0 " p´1q n´1 3 1´n n! Γp 3n 2 ´1q
Γp n 2 q , using the standard notation rz n sF pzq for the coefficient of z n in the series expansion of F pzq near 0. On the other hand, the fact that the function z Þ Ñ F pzq is analytic in a neighborhood of 0 implies that all moments N 0 ppL 0 q n e ´σ{2 q, n ě 1, are finite and given by N 0 ppL 0 q n e ´σ{2 q " 1 2 p´1q n´1 n! ˆrz n sF pzq " 1 2 3 1´n Γp 3n 2 ´1q

Γp n 2 q . (7.26)

To complete the proof, we use a scaling argument. We recall that the distribution of L 0 under N 0 p¨| σ " sq coincides with the distribution of s 3{4 L 0 under N 0 p¨| σ " 1q. It follows that N 0 ppL 0 q n e ´σ{2 q " ż 8 0 ds 2 ? 2πs 3 e ´s{2 N 0 ´s3n{4 pL 0 q n ˇˇσ " 1 "

2 3n 4 ´2 ? π Γp 3n 4 ´1 2 q ˆN0 ´pL 0 q n ˇˇσ " 1 ¯.
By combining the last two displays and using the duplication formula for the Gamma function, we arrive at

N 0 ´pL 0 q n ˇˇσ " 1 ¯" ? π 3 1´n 2 3n 4 ´1 Γp 3n 2 ´1q Γp n 2 qΓp 3n 4 ´1 2 q " 2 3n 4 3 n Γp 3n 4 `1q Γp n 2 `1q " ´23{4 3 ¯nErT ´n{2 s,
where T is as in the theorem. To check the last equality, the reader can write

T ´n{2 " pΓpn{2qq ´1ż 8 0 ds s n{2´1 e ´sT .
The growth of the moments of the distribution of T ´1{2 ensures that this distribution is characterized by its moments, which completes the proof.

Remark. Rather than using the Lagrange inversion theorem, we could have derived formula (7.26) for the moments N 0 ppL 0 q n e ´σ{2 q from a series expansion of the quantity N 0 p1 ´expp´λL 0 ´σ{2qq as given in Corollary 7.3. This would still have required some calculations. We preferred to use the previous method because it also serves as a prototype for the proof of the (more delicate) Theorem 7.2 below.

Proposition 7.2 can also be used to derive the conditional distribution of L 0 given σ `. Perhaps surprisingly, this distribution turns out again to be remarkably simple. Theorem 7.2. Let s ą 0. Under the probability measure N 0 p¨| σ `" sq, the local time L 0 is distributed as p2 9{4 {3q s 3{4 D T ´1{2 , where the random variables D and T are independent, T is a positive stable variable with index 2{3, whose Laplace transform is Erexpp´λT qs " expp´λ 2{3 q, and D has density 2x 1 r0,1s pxq with respect to Lebesgue measure on R `.

Proof. It is enough to treat the case s " 1. For every λ ě 0, set

F `pλq :" N 0 ´1 ´expp´λL 0 ´1 2 σ `q¯" vpλ, 1 2 , 0q
with the notation of Proposition 7.2. As for Theorem 7.1, the strategy of the proof is to compute the coefficient rλ n sF `pλq in two different ways. Unfortunately, the details of the argument are more involved than in the proof of Theorem 7.1. By Proposition 7.2, we have p2F `pλq ´1q a F `pλq `1 `2 F `pλq 3{2 " ? 6 λ.

We cannot apply directly the Lagrange inversion theorem, but the idea will be to find a rational parametrization of the preceding equation (see e.g. [START_REF] Bettinelli | Compact Brownian surfaces I. Brownian disks[END_REF]Section 3]). It follows from the last display that we have P pF `pλq, λq " 0, where P py, zq " 96 y 3 z 2 ´36 z 4 ´36 yz 2 `12 z 2 ´9 y 2 `6 y ´1, y, z P C.

We now introduce 1 the rational functions

Qpzq " ´1 124416 z 3 `1 48 z, Rpzq " 1 3456 z 2 ´1 2 `216 z 2 ,
which satisfy P pRpzq, Qpzqq " 0 for every z P Czt0u. We have Q ´1p0q " t´36 ? 2, 0, 36 ? 2u, and the derivative Q 1 does not vanish on Q ´1p0q. It follows that we can find r 0 ą 0 and three analytic functions γ 1 , γ 2 , γ 3 defined on the disk D r 0 " tz P C : |z| ă r 0 u and with disjoint ranges, such that γ 1 p0q " ´36 ? 2, γ 2 p0q " 0, γ 3 p0q " 36 ? 2 and for every z P D r 0 , Q ´1pzq " tγ 1 pzq, γ 2 pzq, γ 3 pzqu. Note that Rpγ 1 p0qq " 1{3 " Rpγ 3 p0qq and R 1 pγ 1 p0qq " ´?2{54 " ´R1 pγ 3 p0qq. Also the fact that Qpγ i pzqq " z readily implies that γ 1 1 p0q " γ 1 2 p0q " ´24. Since P pRpzq, Qpzqq " 0 for every z P Czt0u, we get that P pRpγ i pzqq, zq " 0 for every i P t1, 2, 3u and z P D r 0 zt0u. We claim that F `pλq " Rpγ 1 pλqq for λ ą 0 small enough. To 1 The functions Q and ψ have been found using the Maple package algcurve see this, observe that for z " 0 and |z| small enough, then the quantities Rpγ i pzqq, i P t1, 2, 3u, are distinct. Indeed, since |Rpyq| ÝÑ 8 as |y| Ñ 0 it is clear that Rpγ 2 pzqq is distinct from Rpγ 1 pzqq and Rpγ 3 pzqq when |z| is small, and on the other hand, the properties γ 1 1 p0q " γ 1 3 p0q " 0 and R 1 pγ 1 p0qq " ´R1 pγ 3 p0qq " 0 imply that Rpγ 1 pzqq " Rpγ 3 pzqq when |z| is small. Hence, for z " 0 and |z| small enough, the numbers Rpγ i pzqq, i P t1, 2, 3u, are three distinct roots of P py, zq viewed as a polynomial of degree 3 in y. Since we know that P pF `pλq, λq " 0, it follows that F `pλq P tRpγ 1 pλqq, Rpγ 2 pλqq, Rpγ 3 pλqqu for λ ą 0 small. The case F `pλq " Rpγ 2 pλqq is clearly excluded for λ small, and since F `pλq is a monotone increasing function of λ, noting that γ 1 1 p0qR 1 pγ 1 p0qq ą 0 whereas γ 1 3 p0qR 1 pγ 3 p0qq ă 0, we get our claim F `pλq " Rpγ 1 pλqq for λ ą 0 small.

In particular, we can extend F `to an analytic function in the neighborhood of 0, and we will then use the Lagrange inversion theorem to determine the coefficients of the Taylor expansion of F `. Fortunately, Bailey's theorem (see [12, Theorem 3.5.4 (ii)]) gives an explicit formula for 2 F 1 pa, 1 á; b; 1 2 q in terms of a ratio of products of values of the Gamma function, which we can apply here. Using also Euler's reflection formula ΓpzqΓp1 ´zq " π{ sinpπzq to eliminate the poles of the Gamma function, we arrive at 2 F 1 p´n `1, n; ´2n `3;

1 2 q " Γp n 2 ´1 2 q Γp 3n 2 ´1q Γpn ´1 2 q Γpn ´1q " 2 2n´3 ? π Γp n 2 ´1 2 q Γp 3n 2 ´1q Γp2n ´2q 2 F 1 p´n `1, n; ´2n ´1; 1 2
q " Γp n 2 `3 2 q Γp 3n 2 `1q Γpn `3 2 q Γpn `1q " 2 2n`1 ? π

Γp n 2 `3 2 q Γp 3n 2 `1q Γp2n `2q , where we applied the duplication formula for the Gamma function, and we recall that we assume n ě 2. Using (7.30) and (7.31), we get from (7.29) that

rλ n sF `pλq " p´1q n`1 n! p3 ? 2q ´n 2 3n ? π ´3 16 Γp n 2 ´1 2 q Γp 3n 2 ´1q Γpn ´1q ´1 3 Γp n 2 `3 2 q Γp 3n 2 `1q Γpn `3q " p´1q n`1 n! p3 ? 2q ´n 2 3n ? π Γp n 2 `1 2 q Γp 3n 2 ´1q Γpnq ´3 8 ´1 3 ˆp 3n 2 ´1qp n 2 `1 2 q 3n 2 pn `2qpn `1qn " p´1q n`1 n! p3 ? 2q ´n 2 3n ? π 1 n `2 Γp n 2 `1 2 q Γp 3n 2 ´1q Γpnq " p´1q n`1 n! p3 ? 2q ´n 2 2n`1 1 n `2 Γp 3n 2 ´1q
Γp n 2 q

.

We have assumed n ě 2, but a direct calculation from (7.29) shows that the last line of the preceding display also gives the correct value rλsF `pλq " 4 ? 2{9 for n " 1. Similarly as in the proof of Theorem 7.1, we conclude that, for every n ě 1,

N 0 ´pL 0 q n e ´σ`{ 2 ¯" ´2? 2 3 ¯n 2 n `2 Γp 3n 2 ´1q
Γp n 2 q .

On the other hand, the same scaling argument as in the proof of Theorem 7.1 (using now the fact that the density of σ `under N 0 is p3 ? 2πq ´1s ´3{2 ) gives N 0 ppL 0 q n e ´σ`{ 2 q " ż 8 0 ds 3 ? 2πs 3 e ´s{2 N 0 ´s3n{4 pL 0 q n ˇˇσ `" 1 "

2 3n 4 ´1 3 ? π Γp 3n 4 ´1 2 q N 0 ´pL 0 q n ˇˇσ `" 1 ¯.
It follows that

N 0 ´pL 0 q n ˇˇσ `" 1 ¯" 3 ? π ´2? 2 3 ¯n2 ´3n 4 `1 2 n `2 Γp 3n 2 ´1q Γp n 2 qΓp 3n 4 ´1 2 q " ´29{4 3 
¯n 2 n `2 Γp 3n 4 `1q Γp n 2 `1q
.

The right-hand side is the n-th moment of p2 9{4 {3q D T ´1{2 , where the pair pD, T q is as in the theorem. This completes the proof.

Interpretation in random geometry. We now explain briefly how both theorems of this section can be interpreted in the setting of continuous models of random geometry. It is best to start with the discrete picture of planar quadrangulations. For every integer n ě 1, let Q n be a uniformly distributed rooted and pointed quadrangulation with n faces. The fact that Q n is pointed means that (in addition to the root edge) there is a distinguished vertex denoted by B. Write dg for the graph distance on the vertex set V pQ n q of Q n . The Schaeffer bijection (see e.g. [74, Section 5]) allows us to code Q n by a uniformly distributed labeled tree with n edges, which we denote by T n , and a sign ε n P t´1, 1u. Here a labeled tree is a (rooted) plane tree whose vertices are assigned integer labels v , in such a way that the label of the root vertex ρ of the tree is ρ " 0 and the labels of two adjacent vertices differ by at most 1 in absolute value. Furthermore the set V pQ n qztBu is canonically identified with V pT n q, where V pT n q denotes the vertex set of T n . Through this identification, the graph distance dgpB, vq between B and another vertex v of Q n can be expressed as v ´mint w : w P V pT n qu `1. Now consider the set S n " tv P V pQ n q : dgpB, vq " dgpB, ρqu of all vertices v of Q n that are at the same distance as ρ from the distinguished vertex B (here we view ρ as a vertex of Q n thanks to the preceding identification). From the previous observations, S n is identified to tv P V pT n q : v " 0u. It then follows from [START_REF] Bousquet-Mélou | The density of the ISE and local limit laws for embedded trees[END_REF]Theorem 3.6] that the distribution of n ´3{4 #S n converges as n Ñ 8 to the distribution of 2 ´1{4 3 ´1{2 L 0 under N 0 p¨| σ " 1q, which is given in Theorem 7.1. Consider then the (standard) Brownian map pm, Dq. This is a random compact metric space that can be constructed from Brownian motion indexed by the Brownian tree, which we denote here by pV a q aPT ζ as in Section 7.1 above, under the probability measure N 0 p¨| σ " 1q -see e.g. the introduction of [START_REF] Gall | Uniqueness and universality of the Brownian map[END_REF] for details. In this construction, the space m is obtained as a quotient space of T ζ , and comes with two distinguished points, namely the point ρ corresponding to the root of T ζ , and another point denoted by x ˚in [START_REF] Gall | Uniqueness and universality of the Brownian map[END_REF], which corresponds to the point of T ζ where V a achieves its minimum. Note that ρ and x ˚can be viewed as independently and uniformly distributed on m. The "sphere" tx P m : Dpx ˚, xq " Dpx ˚, ρqu then corresponds to ta P T ζ : V a " 0u, and so the local time L 0 is naturally interpreted as the "measure" of this sphere (here the word measure should refer to a suitable Hausdorff measure, although this has not been justified rigorously). This interpretation is made very plausible by the discrete result for quadrangulations described above.

To get a similar interpretation for Theorem 7.2, we consider the free Brownian map pM , ∆q, which is the scaling limit of quadrangulations distributed according to Boltzmann weights and can again be constructed from Brownian motion indexed by the Brownian tree, but now under the σ-finite measure N 0 (see e.g. [START_REF] Gall | Brownian disks and the Brownian snake[END_REF]Section 3]). As in the case of the standard Brownian map, the space M is defined as a quotient space of T ζ and comes with two distinguished points denoted by ρ and x ˚. Furthermore, the sphere tx P M : ∆px ˚, xq " ∆px ˚, ρqu corresponds to ta P T ζ : V a " 0u, and the ball tx P M : ∆px ˚, xq ď ∆px ˚, ρqu corresponds to ta P T ζ : V a ď 0u. So Theorem 7.2 can be viewed as providing the conditional distribution of the measure of the sphere tx P M : ∆px ˚, xq " ∆px ˚, ρqu given the volume of the ball it encloses.

Introduction

In recent years, the theory of scaling limits of random planar maps has seen many spectacular developments. The central object of this theory is the Brownian sphere [START_REF] Abraham | Rescaled bipartite planar maps converge to the Brownian map[END_REF][START_REF] Addario-Berry | The scaling limit of random simple triangulations and random simple quadrangulations[END_REF][START_REF] Bettinelli | The scaling limit of uniform random plane maps, via the Ambjørn-Budd bijection[END_REF][START_REF] Gall | Uniqueness and universality of the Brownian map[END_REF][START_REF] Marzouk | Scaling limits of random bipartite planar maps with a prescribed degree sequence[END_REF][START_REF] Miermont | The Brownian map is the scaling limit of uniform random plane quadrangulations[END_REF] which can be obtained as the scaling limit of random planar maps with small faces and without boundaries. Other models of random geometry related to the Brownian sphere have appeared recently [START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF][START_REF] Curien | The Brownian plane[END_REF][START_REF] Curien | The hull process of the Brownian plane[END_REF][START_REF] Gall | Spine representations for non-compact models of random geometry[END_REF]. In this work we will focus on Brownian disks, which are random metric spaces homeomorphic to the closed disk of the complex plane. In particular, we can define the boundary of a Brownian disk as the set of all points that do not have a neighborhood homeomorphic to the open disk. Brownian disks can be constructed as scaling limits of random planar maps with small faces and with one boundary (see in particular [START_REF] Baur | Classification of scaling limits of uniform quadrangulations with a boundary[END_REF][START_REF] Bettinelli | Compact Brownian surfaces I. Brownian disks[END_REF]), but they can also be obtained as special subsets of the Brownian sphere [START_REF] Gall | Brownian disks and the Brownian snake[END_REF]. The goal of this work is to study special subsets of Brownian disks, using constructions related to labeled trees. More precisely, we are interested in Voronoï cells and hulls of Brownian disks. In particular, we will prove a special Markov property for Brownian disks when one explores them in a metric way from a point of the boundary. We will also obtain explicit formulas concerning these special subsets. We chose to gather these two questions since the techniques used to study them are very similar. Let us now give an overview of our results.

We are interested in the model of free Brownian disks rooted on the boundary. This is a version of the classical free Brownian disks [START_REF] Bettinelli | Compact Brownian surfaces I. Brownian disks[END_REF][START_REF] Gall | Brownian disks and the Brownian snake[END_REF] but pointed at a uniform point of the boundary (as in [START_REF] Gall | The Brownian disk viewed from a boundary point[END_REF]). Free Brownian disks rooted on the boundary form a one parameter family indexed by a positive number z P p0, 8q, which represents the boundary length or perimeter. The free Brownian disk rooted on the boundary with perimeter z ą 0 is written in the form pD z , ρ, ∆ d , Vol d q, where pD z , ∆ d q is a compact metric space, ρ is a distinguished point of the boundary of D z called the root and Vol d is a measure of finite mass supported on D z called the volume measure. To simplify notation, we will write D z for pD z , ρ, ∆ d , Vol d q and we see it as a random element of K, which is the set of all isometry classes of weighted pointed metric compact spaces equipped with the Gromov-Hausdorff-Prokhorov distance. The construction of D z on a probability space pΩ, F, Pq is recalled in Section 8.2.2. The total mass of Vol d i.e. the quantity Vol d pD z q is a random variable and its distribution is: 

1 vě0 1 ? 2π z 3 v ´5 2 expp´z 2v qdv , ( 8 
ă m D z , φ ą:" lim εÑ0 ε ´2 ż D z Vol d pdxq φpxq1 ∆ d px,BD z qăε , (8.2) 
where the limit holds, a.s., simultaneously for every continuous function φ : D z Ñ R `. One can recover the boundary length by the formula ă m D z , 1 ą" z a.s. We refer to [START_REF] Gall | Brownian disks and the Brownian snake[END_REF]Corollary 37] for more details. Furthermore, the root ρ is a uniform point for the measure m D z . If we forget the root ρ, the space D z is distributed as a free Brownian disk. These models benefit from the following scale invariance property: for every λ ą 0, the space pD z , ρ, λ∆ d , λ 4 Vol d q is a free Brownian disk rooted on the boundary with perimeter λ 2 z. It will be useful to introduce the measure N ˚defined by the following relation: 

N ˚pF pDqq :" c 3 
N ˚,' pF pD ' qq :" N ˚`ż BD m D pdxqF pD, xq ˘" c 3 2π ż 8 0 dz z ´5 2 E " ż BD z m D z pdxqF pD z , xq ‰ ,
for every measurable function F : K ' Þ Ñ R `. Under N ˚,' , the variable D ' can be understood as a Brownian disk D, biased by the boundary length |BD| and with a uniform marked point ρ ' on the boundary BD. To simplify notation, we write D ' :" pD, ρ ' q and BD ' " BD. In particular, we can see that the distribution of |BD ' |, under N ˚,' , is a 3{2π ¨z´3 2 dz. We call ρ ' the marked point of D ' . Remark that the two distinguished points ρ and ρ ' are in BD ' .

Let us describe the two classes of subsets of D ' that we are interested in: Voronoï cells. First, we will study Voronoï cells with respect to the boundary of D ' . More precisely, by removing the two distinguished points ρ and ρ ' , the boundary BD ' becomes the disjoint union of two sets, L 1 and L 2, both homeomorphic to the open interval p0, 1q. Write L 1 and L 2 to denote the respective closures of L 1 and L 2. Let V 1 (resp. V 2 ) be the set of points

x P D ' such that ∆ d px, L 1 q " ∆ d px, BD ' q (resp. ∆ d px, L 2 q " ∆ d px, BD ' q). In other words, V 1 is the Voronoï cell of L 1 with respect to L 2 and conversely with V 1 replaced by V 2 .
Hulls and their complements. The second goal of this work is to study hulls centered at ρ with respect to ρ ' . For every r ą 0, we write B r :" tx P D ' : ∆pρ, xq ď ru. The set of all points x P D ' -such that any path connecting x and ρ ' has to hit the closed ball B r -is called the hull of radius r. We denote this space by B ' r . Equivalently, if ∆pρ, ρ ' q ď r, we have B ' r " D ' and if ∆pρ, ρ ' q ą r, the complement of B ' r is the unique connected component of D ' zB r containing ρ ' .

Under the event t∆pρ, ρ ' q ą ru, we denote the closure of D ' zB ' r by B' r .

This work aims at the study of the pairs pV 1 , V 2 q and pB ' r , B' r q. In particular, we will see that we can interpret all these spaces as elements of K, and we will obtain explicit formulas concerning their volumes and their boundaries lengths. To this end, we will encode these spaces using labeled trees. Let us now give an informal presentation of this coding, which is highly inspired by [START_REF] Bettinelli | Compact Brownian surfaces I. Brownian disks[END_REF][START_REF] Gall | Spine representations for non-compact models of random geometry[END_REF].

From labeled trees to metric spaces Let w : r0, ζ w s Þ Ñ R `be a continuous function such that wptq ą 0, for every t P p0, ζ w q. Under some assumptions, we can associate w with a labeled R-tree as follows. We start from the segment r0, ζ w s that we call the spine and we assign the label Λ t :" wptq to every point t P r0, ζ w s. Then, we consider a Poisson collection of continuous random trees (scaled versions of the celebrated Aldous Brownian CRT). The root of each tree is glued uniformly at random on the segment r0, ζ w s. For every tree T and every point u P T , we assign a label Λ u to u. The labels pΛ u q uPT along the tree T are distributed according to a Brownian motion indexed by T and starting from the label of the root of T . We then prune branches of T whenever they hit a label zero (if they do). Let H w be the geodesic metric space consisting in the union of the segment r0, ζ w s and the forest of trees (after cutting their branches). In particular, every point u P H w has a nonnegative label Λ u . Even if there generally are infinitely many points with zero label, we can introduce a random variable ZpH w q accounting for the "quantity" of points with zero label. Let us set B 1 H w :" tu P H w : Λ u " 0u and B 2 H w :" r0, ζ w s. We interpret the set BH w :" B 1 H w Y B 2 H w as the "boundary" of H w and we write H w :" H w zBH w . We will interpret the quantity ζ w as the length of the boundary B 2 H w and ZpH w q as the length of B 1 H w . We will also introduce a quantity YpH w q, representing the total volume of points of H w . The quantities `ζw , ZpH w q, YpH w q ˘are defined this way to have nice geometric interpretations in terms of D ' .

Let us now explain how to construct an element of K from H w . For every u, v P H w set: 

∆ wpu, vq :" $ ' & ' % Λ u `Λv ´2 max `inf
for every ε ą 0. We also introduce the marked version of n defined by the relation:

n ' pF pt ' , eqq :" n `ż σ 0 dt F pt, eq ˘.
Under n and n ' , and conditionally on e, we write H e (resp. H ? 3e ) for the tree associated with e (resp. ? 3e).

Voronoï cells on D ' with respect to the boundary

Let us now present our results concerning the Voronoï cells V 1 and V 2 . We write V 1 and V 2 for the interior of V 1 zBD ' and V 2 zBD ' respectively. In Section 8.3.1, we will show that the intrinsic distance ∆

d 1 (resp. ∆ d 2 ) on V 1 (resp. V 2 ) has a continuous extension to V 1 (resp. V 2
). We will then equip the space V 1 (resp. V 2 ) with this continuous extension, the restriction of the volume measure Vol d and the distinguished point ρ, leading us to see V 1 and V 2 as elements of K. The main goal of Section 8.3.1 will be to show that we can encode spaces V 1 and V 2 with two labeled trees as follows. Conditionally on the excursion e, consider the tree H e (associated with e) and H 1 e an independent copy of H e . We denote by ∆ e and ∆ 1 e the pseudo-distances respectively associated with H e and H 1 e . We will show that pV 1 , V 2 q is distributed as pH e {∆ e , H e {∆ 1 e q under 2n. We will also prove that if we glue the spaces H e {∆ e and H e {∆ 1 e along their spine in a metric manner, we recover the distribution of D ' , in such a way that H e {∆ e (resp. H 1 e {∆ 1 e ) becomes the Voronoï cell V 1 (resp. V 2 ). In this identification, the spine is the interface between the two cells V 1 and V 2 . In particular, we can use the variable ζ e to quantify the length of this interface. We also get that ZpH e q (resp. ZpH 1 e q) is equal to the length ă m D , L 1 ą (resp. ă m D , L 2 ą) and that YpH e q (resp. YpH 1 e q) is the volume of V 1 (resp. V 2 ). In Sections 8.3.2 and 8.3.3, we will study these random variables and we will obtain some explicit formulas for their Laplace transforms.

Hulls of D '

Let us now present our results concerning the hulls. We fix r ą 0, and in the rest of the introduction we argue under t∆pρ, ρ ' q ą ru. Recall that B ' r stands for the hull of radius r and B' r for the closure of the complement of B ' r . One can deduce from Jordan's theorem that B ' r and B' r are homeomorphic to the closed unit disk of the complex plane. As we did for the Brownian disk, we write BB ' r (resp. ). We equip this space B' r with this continuous extension and the restriction of the volume measure and we point it at one of the two points of B 1 B' r X B 2 B' r , uniformly at random. In Proposition 8.9, we will show that the limit:

|B 1 B' r | " lim εÑ0 ε ´2Vol d `B ' r X B ' r`ε ˘,
exists in probability under N ˚,' `¨| ∆pρ, ρ ' q ą r ˘. B' r |, does not depend on r. We can perform the same kind of construction to encode the hull B ' r with a labeled tree (see Proposition 8.6 ). In particular, we can equip B ' r with the continuous extension of the intrinsic distance on the interior of B ' r (see (8.42) and the discussion below regarding the existence of this object) and with the restriction of the measure Vol d . We also point B ' r at ρ. We will then show that, under N ˚,' `¨| |B 1 B' r | ˘, the two spaces B ' r and B' r are independent. Moreover, these identifications will be used to obtain explicit formulas concerning the volume and the perimeter of B ' r and B' r .

Finally, let us conclude by conjecturing that, under the measure 4{ ? 3 ¨n, the space H ? 3e {∆ ? 3e , marked at the two extremities of the spine, is distributed as a free brownian disk -with free volume, free perimeter, and two distinguished boundary points. In other words, under n, the space H ? 3e {∆ ? 3e should be distributed as D ' . The proof of this conjecture is a work in progress. Moreover, we will give some results supporting this conjecture in Section 8.4.2. Proving this conjecture will also allow us to extend our results concerning Voronoï cells to the Brownian sphere. In particular, it should be possible to show that if we take two uniform points on the Brownian sphere (with volume 1), then the volume of the Voronoï cell of the first point with respect to the second one is a uniform random variable on r0, 1s. This will give a direct proof in the continuous of the simplest case of Chapuy's conjecture [START_REF] Chapuy | On tessellations of random maps and the tg-recurrence[END_REF]. This special case was proved in [START_REF] Guitter | On a conjecture by Chapuy about Voronoï cells in large maps[END_REF] by Guitter using Miermont's bijection with delays [START_REF] Miermont | Tessellations of random maps of arbitrary genus[END_REF] and taking the limit from the discrete.

Preliminaries

Snake trajectories and labeled trees

Framework A (one-dimensional) finite path w is a continuous mapping w : r0, ζ w s Ñ R, where ζ w ě 0 is called the lifetime of w. We denote the set of all finite paths by W. We write p w " wpζ w q for the endpoint of w. The time reversal of w is the finite path w _ : r0, ζ w s Ñ R defined by the relation w _ ptq " wpζ w ´tq. For every x P R, we identify x with the finite path starting from x with 0 lifetime. Set W x :" tw P W : wp0q " xu and equip W with the distance: d W pw, w 1 q " |ζ w ´ζw 1 | `sup tě0 |wpt ^ζw q ´w1 pt ^ζw 1 q|.

Let x P R. A snake trajectory with initial point x is a continuous mapping ω : s Þ Ñ ω s from R ìnto W satisfying the following properties:

' ω 0 " x and the quantity σpωq :" supts ě 0, ω s ‰ xu is finite. The quantity σpωq is called the lifetime of ω. By convention σpωq :" 0 if ω s " x for every s ě 0; ' For every s, s 1 P R `with s ď s 1 , we have ω s ptq " ω s 1 ptq for every t ď min rPrs,s 1 s ζ ωr . This property is called the snake property.

The set of all snake trajectories is denoted by S, and the set of snake trajectories starting at x is denoted by S x . For every ω P S and s ě 0, introduce the notation W s pωq :" ω s . The set S is equipped with the distance:

d S pω, ω 1 q :" |σpωq ´σpω 1 q| `sup sě0 d W `Ws pωq, W s pω 1 q ˘.
It is straightforward to verify that the space pS, d S q is a Polish space. To simplify notation, for every ω P S, we set ω ˚:" inftp ω s : s ě 0u. We now introduce a collection of elementary operations on S. For every snake trajectory ω and every λ P R, we will write ω `λ for the snake trajectory pω `λq s ptq :" ω s ptq `λ , 0 ď t ď ζ pω`λqs :" ζ ωs and if λ ą 0 we write hom λ pωq for the snake trajectory defined by hom λ pωq s ptq :" λω sλ ´4 ptλ ´2q , 0 ď t ď ζ hom λ pωqs :" λ 2 ζ ω sλ ´4 .

The snake trajectory ω `λ (resp. hom λ pωq) is called the snake trajectory ω translated (resp. scaled) by λ. If ω P S, we can define its time reversal as the snake trajectory ω _ s " ω pσpωq´sq `. Remark that ω _ only reverse time and not the trajectories i.e. in general we do not have ω _ s " pω s q _ . It will be also useful to introduce the truncation operation. Let px, rq P R 2 with x ą r, for every w P W x , let hit r pwq :" inftt P p0, ζ w s : wptq " ru. If ω P S x then for every s ě 0 set:

η prq s pωq :" inf ! t ě 0 : ż t 0 1 ζω u ďhitrpωuq du ą s ) .
The snake trajectory tr r pωq defined by @s ě 0, `tr r pωq ˘s :" ω η prq s pωq is called the truncation of ω at level r. Let Y r pωq :" σptr r pωqq which can be interpreted as the time spent by ω before hitting r. In this work we are also interested in the set M pSq of all point measures on R `ˆS . We equip the space M pSq with the distance: where the second measure is defined for λ ą 0. If P P M pSq is a point measure on ra, bs ˆS we can also defined its time reversal by the relation:

d M pSq pµ, µ 1 q :" ÿ ně0 d Pro `µp¨X S pnq q, µ
ż F pt, ωq P _ pdtdωq :" ż F pa `b ´t, ω _ q Ppdtdωq.
Finally we define a truncation operation on M pSq. Let r P R and P P M pSq. If for every atom pt, ωq of P we have ω 0 ą r , we set: ż F pt, ωq tr r pPqpdtdωq :" ż F pt, tr r pωqq Ppdtdωq.

To simplify notation we will write r ω :" tr 0 pωq and r P :" tr 0 pPq,

for any ω P S and P P M pSq (when the operation tr 0 is well defined). For every P :" ř iPI δ t i ,ω i element of M pSq set P ˚:" inftω i ˚: i P Iu.

Snake trajectories and labeled R-trees.

It will be important for our study to associate a compact R-tree, T ω , with every snake trajectory 

, ρ ω , d ω , V ω ˘,
where ρ ω is the equivalence class of 0, by T ω . The point ρ ω is called the root of T ω . For every u P T ω , set Λ ω u :" p ω t where t is any element of p ´1 ω puq. The quantity Λ ω u is well defined by the snake property and we interpret Λ ω u as a label assigned to u. The pair `Tω , pΛ ω u q uPTω ˘is the labeled tree associated with the snake trajectory ω.

We will use the following standard nomenclature. For every compact tree T and every point a P T , the multiplicity of a in T is the number of connected components of T ztau. A point with multiplicity 1 (resp. bigger than 2) is called a leaf (resp. a branching point).

The Brownian snake excursion

To simplify notation, set x W s pωq " p ω s and W ˚pωq " ω ˚for every ω P S. Fix x P R. The Brownian snake excursion measure N x is the unique σ-finite measure on S x that satisfies the following properties: ' The process s Þ Ñ ζ ωs is distributed according to the Itô measure of the Brownian excursion with the normalization

N x psup sě0 ζ ωs ą 1q " 1 2 ; 
' Conditionally on pζ ωs q sPr0,σpωqs , the process x W s pωq is a Gaussian process with mean x and covariance function: @s, s 1 P r0, σpωqs, Kps, s 1 q :" min

rPrs^s 1 ,s_s 1 s ζ ωr .
Roughly speaking, conditionally on pζ s q sě0 , the process pW s q sě0 evolves as follows. If ζ s decreases, the path W s is shortened from its tip, while if ζ s increases, the path W s is extended by adding "little pieces of linear Brownian motion" at its tip. We refer to [START_REF] Gall | Spatial Branching Processes, Random Snakes and Partial Differential Equations[END_REF] for a rigorous presentation. By construction for every x P R the pushforward measure of

N x under ω Þ Ñ ω `λ is N x`λ .
It is also easy to deduce from the scaling property of the Brownian motion that for every x P R the pushforward measure of N x under ω Þ Ñ hom λ pωq is λ 2 N λx . We will call this property the scaling property of the Brownian snake excursion. For every x, y P R with x ă y we have:

N y `W˚ă x ˘" 3 2py ´xq 2 (8.6)
see [START_REF] Gall | Spatial Branching Processes, Random Snakes and Partial Differential Equations[END_REF]Chapter 6] for more details. To simplify notation, under N x pdωq we will write σ for σpW pωqq and W s ptq for ω s ptq. Our goal now is to state the special Markov property of the Brownian snake excursion, which will be crucial in Section 8.4. First introduce for every x ą r, the σ-field H r x generated by the process tr r pW q and the class of all N x -negligible sets. The set:

ts ě 0, hit r pW s q ă ζ s u
is open so it can be written as a union of disjoint open intervals pa i , b i q iPI with I an indexing set that may be empty. For every i P I, let W piq be the snake trajectory defined by:

W piq s ptq :" W pa i `sq^b i pζ a i `tq , 0 ď t ď ζ pa i `sq^b i ´ζa i
for every s ě 0. By definition the snakes pW piq q iPI are the excursions of W outside r. Note that the information about the paths W s before hitting r is contained in the sigma-field H r x . The exit local time at level r is the process, pL r t q tě0 , defined by the relation:

L r t pωq :" lim inf εÓ0 1 ε 2 ż t 0 ds1 hitrpωsq"8, p ωsăr`ε , 0 ď t ď σ. (8.7)
The previous lim inf is a well defined finite limit N x -a.e. (see [START_REF] Gall | Brownian disks and the Brownian snake[END_REF]Proposition 34]). The process L r is a continuous nondecreasing process. To simplify notation set Z r :" L r σ which is called the exit measure at level r. Then, N x a.e., the topological support of the measure dL r is exactly the set ts P r0, σs : hit r pW s q " ζ s u, and, in particular, Z r ą 0 if and only if one of the paths W s hits r.

We can now give a formal statement of the special Markov property:

Special Markov property: Let x, r P R, such that x ą r. Under N x conditionally on H r x , the point measure:

ÿ iPI δ L r a i ,W piq pdωq
is Poisson with intensity 1 r0,Zrs ptqdtN r pdωq.

We refer to [70, Corollary 21] for a proof. It will be useful to note that for r 1 ă r ă x, if we replace N x pdωq by N x pdω | W ˚ą r 1 q the last statement remains valid up to the replacement of 1 r0,Zrs N r pdωq by 1 r0,Zrs N r pdω X tW ˚ą r 1 uq.

Recall now that Y 0 pW q stands for the lifetime of tr 0 pW q. The Laplace transform of pY 0 , Z 0 q, i.e. the function u λ,µ pxq :" N x p1 ´expp´λZ 0 ´µY 0 qq, is given, for x ą 0, by

u λ,µ pxq " c µ 2 ´3 g 2 λ,µ ´p2µq 1 4 x `gp´1q λ,µ `d 2 3 `2 3 λ ? 2µ ˘¯´2 ¯(8.8)
where g λ,µ is the function defined as follows:

g λ,µ pxq :" $ ' ' ' & ' ' ' % cothpxq if λ ą a µ 2 1 if λ " a µ 2 tanhpxq if λ ă a µ 2
and g p´1q λ,µ stands for the inverse of g λ,µ with the convention g p´1q ? µ{2,µ pxq :" 0 for every µ ě 0 and

x P R. We refer to [40, Lemma 4.5.] for a proof.

In particular taking the limit when µ goes to 0, one obtain that u λ,0 pxq " N x `1 ´expp´λZ r q ˘" ´λ´1 2 `c 2 3 px ´rq ¯´2 (8.9)

for every λ ě 0. Remark that the limit when λ goes to 8 gives formula (8.6). It will be useful for every w : ra, bs Þ Ñ R `to introduce a probability measure P pwq on M pSq and a random point measures P on R `ˆS such that under P pωq , P is Poisson with intensity:

21 ra,bs ptqdt N wptq pdωq.

If P P M pSq such that all the atoms pt, ωq of P verify ω 0 ą 0 we set:

ZpPq :" ż Z 0 pωqPpdtdωq ; YpPq :" ż Y 0 pωqPpdtdωq.
Moreover by the definition of tr 0 we have ZpPq " Zp r Pq and YpPq " Yp r Pq. It will be useful to remark that for every w : ra, bs Þ Ñ R `we have:

P pwq `expp´λZpPq ´µYpPqq ˘" exp `´ż b a dt u λ,µ pwptqq ˘. (8.10) 
We write P w for a random element distributed as P under P pwq . We will also write P 1 w for an independent copy of P w under P pwq .

The positive excursion measure

As in the introduction, consider a σ-finite measure n and under this measure a process pe t q tPr0,ζes distributed as a Brownian excursion with normalization (8.3). We also introduce for every h ą 0, a probability measure P h and a process B such that under P h the process B is Brownian motion started at h stopped when it hits 0 for the first time. We see the processes e and B as random elements of W. In particular, we have ζ B " infts ě 0 : B s " 0u.

The Brownian snake.

We now introduce another σ-finite measure on S 0 , which is supported on snake trajectories taking only nonnegative values. For δ ě 0, let S pδq be the set of all ω P S such that sup sě0 psup tPr0,ζspωqs |ω s ptq|q ą δ. Also set S 0 " tω P S 0 : ω s ptq ě 0 for every s ě 0, t P r0, ζ s pωqsu X S p0q .

By [START_REF] Abraham | Excursion theory for Brownian motion indexed by the Brownian tree[END_REF]Theorem 23], there exists a σ-finite measure N ˚on S, which is supported on S 0 and gives finite mass to the sets S pδq for every δ ą 0, such that N ˚pGq " lim εÓ0 1 ε N ε pGptr 0 pωqqq, for every bounded continuous function G on S that vanishes on SzS pδq for some δ ą 0. Under N ˚, each of the paths W s , 0 ă s ă σ, starts from 0, then stays positive during some time interval, and is stopped immediately when it returns to 0, if it does return to 0.

A re-rooting formula. Arguing under N 0 pdωq, for every t P p0, σq, we can define two point measures N ptq and N 1 ptq that account for the labeled subtrees branching off the ancestral line of p ω ptq in the genealogical tree T ω . More precisely, if t is fixed, we consider the connected components tpu i , v i q : i P Iu of the open set ts P r0, ts : ζ s pωq ą min rPrs,ts ζ r pωqu, and for each i P I, we define a snake trajectory ω i by setting σpω i q " v i ´ui and, for every s P r0, σpω i qs, ω i s ptq :" ω u i `spζ u i pωq `tq , for 0 ď t ď ζ pω i s q :" ζ u i `spωq ´ζu i pωq.

Note that ω i P S p ωu i , and p ω u i " ω t pζ u i q by the snake property. We then set N ptq " ř iPI δ pζu i ,ω i q . To define N 1 ptq , we proceed in a very similar manner, replacing the interval r0, ts by rt, σs. One can extend the proof of [START_REF] Gall | Spine representations for non-compact models of random geometry[END_REF]Proposition 2] to derive the following re-rooting formula: 8.11) for any nonnegative measurable function F on W ˆM pSq 2 . In this preliminary version, we leave this point to the reader.

N ˚´ż σ 0 dtF `W _ t , N _ ptq , N 1,_ ptq ˘¯" 2 ż 8 0 dr E r " F `B, r P B , r P 1 B ˘‰ ( 
Conditioning on the exit measure at 0. Recall the notation hit r pwq :" inftt P p0, ζ w s : wptq " ru.

Under N ˚formula we extend the definition of Z 0 by setting

Z 0 :" lim inf εÓ0 1 ε 2 ż σ 0 ds 1 t x

Wsăεu

and the previous lim inf is a well defined finite limit N ˚-a.e. (this follows from the result under N x for x ą 0 using (8.11)). Under N ˚, the quantity Z 0 can be interpreted as the "number" of paths W s that return to 0 and the distribution of pZ 0 , σq under N ˚is: ? there exists a unique collection pN ˚,z q zą0 of probability measures on S 0 such that: .13) and for every z ą 0, N ˚,z is supported on tZ 0 " zu. One can use the scaling invariance of N 0 to derive that for every z, z 1 ą 0, the pushforward of N ˚,z under hom z 1 {z is N ˚,z 1 .

N ˚" c 3 2π ż 8 0 dz z ´5{2 N ˚,z . ( 8 

Coding pairs and the Brownian disk.

From coding pairs to metric spaces

Coding pairs

A coding pair is a pair pw, Pq such that: piq w : ra, bs Ñ R is a continuous function;

piiq P " ř iPI δ pt i ,ω i q is a point measure on ra, bs ˆS such that for every i P I, ω i P S wpt i q ;

piiiq the numbers pt i q iPI are distinct;

pivq the function u Þ Ñ β u :" ř iPI 1 t i ďu σpω i q takes finite values and is monotone increasing on ra, bs;

pvq for every ε ą 0 we have # i P I :

sup sPr0,σpω i qs | ωi s ´wpt i q| ą ε ( ă 8.
We also define a scaling operation as follows:

@λ ą 0, hom λ ´w, ÿ iPI δ pt i ,ω i q ¯:" ´λwp¨{λ 2 q, ÿ iPI δ pλ 2 t i ,hom λ pω i qq ¯.
Let pw, Pq be a coding pair. Let us introduce the compact R-tree T associated with pw, Pq . For every i P I, let pζ i s q be the lifetime process associated with ω i and set σ i :" σpω i q. We write T i for the tree coded by ζ i , i.e. T ω i , and p ζ i for the canonical projection from r0, σ i s onto T i . The tree T can be defined from the disjoint union: ra, bs Y ´ď iPI T i by identifying the point t i with p ζ i p0q (the root of T i ). The subset ra, bs Ă T is called the spine of T . We can equip T with a natural distance d T as follows. The restriction of d T to the spine is the Euclidean distance in ra, bs and the restriction of d T to each tree T i is the tree distance d ω i . If x P T i and t P ra, bs, we take d T px, tq " d ω i px, p ζ i p0qq `|t i ´t|. If x P T i and y P T j with i ‰ j, we take d T px, yq " d ω i px, p ζ i p0qq `|t i ´tj | `dpω j q py, p ζ j p0qq. We can also assign a label, Λ x , to each x in T taking Λ x :" wpxq if x P ra, bs and Λ x :" Λ ω i x if x P T i . Finally, set V T the measure on T which gives no mass to the spine and such that its restriction to T i is V ω i .

The trees T i are grafted on the spine of T . It will be important for our purposes to equip T also with an order structure inherited from the coding triple. We write β u´f or the left limits of β and we take β 0´" 0 by convention. Note that if u is a discontinuity point of β then there is a unique i P I such that t i " u and β u ´βu´" σ i . For every s P r0, β b s there exists a unique u such that β u´ď s ď β u . Then if there exists an i P I such that t i " u we set E s :" p ζ i ps ´βt i ´q and if it is not the case, we set E s :" u. The process E is called the contour exploration of T . Remark also that E is continuous and the volume measure on T is the pushforward of Lebesgue measure on r0, β b s under the mapping s Þ Ñ E s . This exploration process allows us to define a notion of interval on T . By convention, for every s, t P r0, β b s with s ă t we write rt, ss T " r0, ss Y rt, β b s (and rs, ts T " rs, ts). For every u, v P T with u ‰ v, let rs, ts T be the smallest interval such that E s " u and E t " v. It is easy to check from the definition that there is always a unique smallest interval. We put: ru, vs T :" E r : r P rs, ts T ( .

By convention if u " v, take ru, vs T " tuu. Note that ru, vs T ‰ rv, us T if u ‰ v. For every u, v P T , we denote the geodesic segment connecting u and v in T by rru, vss T .

Let us close this subsection with a remark concerning notation. For w : r0, ζ w s Þ Ñ R, we will write H w for the tree associated with pw, r P w q.

The associated metric space

Consider a coding pair pw, Pq and let `T , pΛ v q vPT ˘be the associated labeled tree. Let ra, bs be the interval of definition of w. We make the following assumption: 

pH 1 q : $ ' ' ' & ' ' ' % mintΛ v : v P T u " 0; if Λ v " 0 then v is a leaf; if v
and we will interpret these quantities respectively as the boundary length of B 1 T and B 2 T . We will also write T ˝:" T zBT and remark that pH 1 q implies that T ˝is dense in T . For every u, v P T , introduce the quantity:

∆ ˝pu, vq :" $ & % Λ u `Λv ´2 max `inf ru,vs T Λ, inf rv,us T Λ ˘if max `inf ru,vs T Λ, inf rv,us T Λ ˘ą 0, 8 otherwise. 
(8.15)

We then let @u, v P T ˝, ∆pu, vq :" inf

u 0 "u,u 1 ,...un"v n ÿ i"1 ∆ ˝pu i´1 , u i q (8.16)
where the infimum is over all choices of the integer n ě 1 and all the finite sequences u 0 , ..., u n of elements of T verifying u 0 " u and u n " v. The mapping pu, vq Þ Ñ ∆pu, vq takes finite values and is continuous on T ˝ˆT ˝. Indeed, a compactness argument shows that we can find finitely many points u 0 " u, u 1 , . . . , u n´1 , u n " v belonging to the geodesic segment rru, vss T and such that ∆ ˝pu i , u i`1 q ă 8 for every 0 ď i ď n ´1.

Since ∆ ˝pu, vq ě |Λ u ´Λv |, we have:

@u, v P T ˝, ∆pu, vq ě |Λ u ´Λv |. (8.17) 
The function ∆ is a pseudo-distance on T ˝. We write Π ˝for the canonical projection and we set Θ ˝pw, Pq :" pT ˝{∆, ∆, Volq where Vol is the pushforward of V T under the map Π ˝. For every x P T ˝{∆ set Λ x :" Λ u where u is any preimage of x by Π ˝(remark that the definition is unambiguous by (8.17)). Let us introduce the following extra assumption:

pH 2 q : $ & % pu, vq Þ Ñ ∆pu, vq has a continuous extension on T ˆT ;
we have V T pBT q " 0.

Actually it is easy to see that if we replace the condition u, v P T ˝in (8.16) by u, v P T ˝Y B 2 T we obtain a continuous extension of ∆ to `T ˝Y B 2 T ˘ˆ`T ˝Y B 2 T ˘. So the important point in the first statement of pH 2 q is that ∆ can be extended by continuity to B 1 T . Assume in the rest of this section that pH 2 q holds and keep the notation ∆ for the continuous extension to T ˆT ,

The coding pair associated with D

We end the preliminaries by explaining how to construct D as the metric space associated with a coding pair. Under N ˚, the pair p0, W q is a coding pair, if we see 0 as the constant path equal to 0 with 0 lifetime and we identified W with the point measure δ 0,W . The coding pair p0, W q clearly satisfies the two first assumptions of pH 1 q. It also satisfies the last assumption of pH 1 q by [71, Proposition 32 (iii)]. So Section 8.2.2 allows us to construct the labeled tree T d associated to p0, W q and we denote its labels by pΛ d v q vPT d . We define the sets T d,˝, BT d and the pseudo-metric functions ∆ d,˝p u, vq, ∆ d pu, vq on T d,˝ˆT d,˝a s explained in Section 8.2.2. We also introduce the exploration process E d and the label process Λ d of T d . It can be shown that p0, W q satisfies pH 2 q (we refer to [71, Proposition 28] for a proof) and consequently we can consider the continuous extension of ∆ d to T d ˆT d and the associated metric space Θp0, W q. The space Θp0, W q is a Brownian disk rooted on the boundary with free volume and free perimeter, we refer to [START_REF] Gall | Brownian disks and the Brownian snake[END_REF] for the connection with lattices models. To simplify notation we write D :" Θp0, W q and Π d (resp. Vol d ) for the canonical projection from T d to D (resp. the volume measure of D). As explained in the introduction, the space D is a.e. homeomorphic to the closed unit disk of the complex plane and we can define its boundary as the set of all points of D which does not have a neighborhood homeomorphic to the open disk. We denote this set by BD and we have ΠpBT d q " BD. In particular remark that the root Π d p0q belongs to BD. The main interest of this construction of D is that the labels correspond to the distances to the boundary BD. Thus we can rewrite the definition of Z 0 under N ˚as follows:

Z 0 " lim εÑ0 ε ´2Vol d `tx P D : ∆ d px, BDq ď εu ˘.
With the notation of the introduction one has Z 0 " |BD|. The quantity Z 0 is called the perimeter (in a generalized sense) of BD. One can fix the perimeter Z 0 by disintegration using the measures pN ˚,z q zą0 and (8.13). Under N ˚,z , the space D is the free Brownian disk with perimeter z. We present now the uniform measure on BD. Under N ˚, for every s ą 0 the limit

L s :" lim εÑ0 ε ´2 ż s 0 dt1
x Wtďε (8.20) is well defined and we have L σ " Z 0 . We refer to [71, Corollary 37] for a proof. Set Γptq :" infts P r0, σs : L s ą tu for every t P r0, zq and Γ `Z0 ˘:" σ. It is shown in [START_REF] Gall | Brownian disks and the Brownian snake[END_REF]Corollary 37] that the function t P r0, Z 0 s Þ Ñ Π d pE d Γptq q is a continuous loop whose range is the boundary BD. We have Γp0q " 0 and ΓpZ 0 q " σ and they are both continuity times of Γ. Let m D be the random measure on BD defined by: ż BD m D pdxq F pxq :"

ż Z 0 0 dt F pΠ d pE d Γptq qq. (8.21)
The measure m D is called the uniform measure on BD. It is shown in [START_REF] Gall | Brownian disks and the Brownian snake[END_REF]Corollary 37] that this measure coincides with the one defined in the introduction i.e. we have:

ż BD m D pdxq F pxq :" lim εÑ0 ε ´2 ż D Vol d pdxqF pxq1 ∆ d px,BDqăε (8.22) 
where the limits holds N ˚-a.e. for every bounded continuous function F : D Þ Ñ R `. It will be useful to introduce the measure N ˚,' pdωdtq " N ˚pdωq 1 r0,Z 0 pωqs ptqdt (8.23) which can be interpreted as a "pointed" version of N ˚. For every pω, tq P S ˆR`, set W pω, tq " ω and t ' pω, tq " t. Remark that we have

N ˚,' `F pW , t ' q ˘:" N ˚`ż Z 0 0 dt F pW , tq ˘. (8.24)
The space D ' " `Θp0, W q, Π d pE d Γpt ' q q ˘is a metric space with two distinguished points; namely the root ρ :" Π d p0q and the marked point ρ ' :" Π d pE d

Γpt ' q q. The distribution of D ' is characterized by the relation:

N ˚,' `F pD ' q ˘" N ˚´ż m D pdxq F pD, xq ¯.
Under the σ-finite measure N ˚,' , the space D ' is a marked version of D as defined in the introduction.

Voronoï cells

Arguing under N

˚, the function t Þ Ñ Π d pE d
Γptq q gives an orientation of BD. We fix this orientation in the rest of this work. For every s, t P r0, Z 0 s, we write Lps, tq :" Π d pΓprs, tsqq, and let Vps, tq be the set of all points x verifying ∆ d px, Lps, tqq " Λ d

x . As the label function Λ d encodes the distances to BD, the set Vps, tq is the collection of all the points that are closer to Lps, tq than to BDzLps, tq. We call Vps, tq the Voronoï cell of Lps, tq, with respect to the rest of the boundary. We write V ˝ps, tq to denote the interior of Vps, tqzBD and set BVps, tq " Vps, tqzV ˝ps, tq. In a coherent manner with the notation used in the introduction, under N ˚,' , we may and will set V 1 :" Vp0, t ' q and V 2 :" Vpt ' , Z 0 q.

Before to go into matter, let us prove the following lemma which will be useful throughout this work: Lemma 8.1. Let f : R `Ñ R `be a continuous function and suppose that there exists a bounded twice differentiable function H f solving the following differential equation:

B 2 Bx 2 H f pxq " 2f pxqH f pxq,
and taking values on s0, 8r. We then have:

E h " exp `´ż ζ B 0 dtf pB t q ˘‰ " H f phq H f p0q , ( 8 

.25)

for every h ą 0, and: We can now apply (8.25) to get:

n `1 ´exp `´ż ζe 0 dtf pe t q ˘˘" ´1 2H f p0q ¨B Bx H f pxq ˇˇx"0 . ( 8 
n `1 ´exp `´ż ζe 0 dtf pe t q ˘˘" lim εÑ0 npsup e ą εq ¨`1 ´Hf pεq H f p0q ˘" 1 2 lim εÑ0 ε ´1 ¨`1 ´Hf pεq H f p0q ˘.
This gives:

n `1 ´exp `´ż ζe 0 dtf pe t q ˘˘" ´1 2H f p0q ¨B Bx H f pxq ˇˇx"0
where in the second equality we used (8.3).

The coding pair of Voronoï cells

Recall that ∆ d 1 (resp. ∆ d 2 ) stands for the intrinsic distance on the interior of V 1 zBD (resp. V 2 zBD) and the notation of (8.5). The goal of this section is to prove the following result: Theorem 8.1.

piq n-a.e., the coding pair pe, r P e q satisfies pH 2 , H 3 q. In particular, we can consider the associated metric space Θpe, r P e q.

piiq N ˚,' -a.e., the intrinsic distance

∆ d 1 (resp. ∆ d 2 ) has a continuous extension to V 1 (resp. V 2 ). Equip the space V 1 (resp. V 2 ) with the continuous extension of ∆ d 1 (resp. ∆ d 2 )
, the restriction of Vol d to V 1 (resp. V 2 ) and the distinguished point ρ. Then the pair pV 1 , V 2 q, under N ˚,' , is distributed as pΘpe, r P e q, Θpe, r P 1 e qq, under 2n.

We will also show in Lemma that one can recover the Brownian disk by gluing V 1 and V 2 along their common boundary in a metric way.

Let us start by identifying, under N ˚, the points of Vps, tq as the image by Π d of a subtree of T d . Recall that Γptq :" infts P r0, σs : L s ą tu, where L is defined in (8.20). Lemma 8.2. Under N ˚, the following property holds: Let 0 ď s ď t ď Z 0 , such that the mapping r Þ Ñ Γprq is continuous both at s and at t. We have Vps, tq " Π d `rE d

Γpsq , E d Γptq s T d ˘and the intersection between Vps, tq and Vp0, sq Y Vpt, Z 0 q is the set

Π d prrE d
Γpsq , E d Γptq ss T d q.

Proof. For every P r0, σs, recall the notation γ , introduced in (8.18) and defined for the labeled tree T d , and the fact that the map r Þ Ñ Π d pγ prqq is a geodesic path from Π d pE d q to the boundary BD. Moreover by pH 3 q, any geodesic path to the boundary can be obtained as Π d ˝γ for some P r0, σs. Fix 0 ď s ď t ď Z 0 such that r Þ Ñ Γprq is continuous both at s and at t. The measure dL s is supported on ts : x W s " 0u, and so by continuity we have Λ d Γpsq " Λ d Γptq " 0. We deduce that for every P rΓpsq, Γptqs: Let us now explain why this inclusion is in fact an equality. Since s, t are continuity times of Γ, for every 1 R rΓpsq, Γptqs there exists s 1 ă s ă t ă t 1 such that 1 P r0, Γps 1 qs Y rΓpt 1 q, σs. We can then apply the exact same argument used above to see that, for every such 1 , the geodesic path Π d ˝γ 1 has to hit the boundary outside Lps, tq. Knowing that all the geodesics to the boundary are simple geodesics, we deduce that Vps, tq " Π d `rE d

Γpsq ď inf r ě : Λ d E d s " 0 ( ď 
Γpsq , E d Γptq s T d ˘and that the intersection between Vps, tq and Vp0, sq Y Vpt, Z 0 q is precisely the image by Π d ˝Ed of the set: ! P rΓpsq, Γptqs : D 1 R rΓpsq, Γptqs such that E d " E d ) .

This concludes the proof of the lemma, since the set above is exactly rrE d Γpsq , E d Γptq ss T d .

Arguing under N 0 pdωq, for every P p0, σq, recall the notation N p q and N 1 p q , standing for the two point measures that account for the labeled subtrees branching off the ancestral line of p pωq p q in the genealogical tree T pωq (see 8.2.1). The pairs pW , N p q q and pW t , N 1 p q q verify the assumptions made at the beginning of Section 8.2.2. Thus we can consider the labeled R-trees T d p q and T d,1 p q associated with pW , N p q q and pW , N 1 p q q respectively. Remark that we can identify T d p q (resp. T d,1 p q ) with tE d r : r ď u (resp. tE d r : r ě u). We will make this identification in what follows. We now introduce the pseudo-distances ∆ d p q and ∆ d,1 p q associated with pW , N p q q and pW , N 1 p q q respectively. If Λ d " 0, then it is straightforward to verify from the fact that p0, W q verifies pH 2 , H 3 q, that the two pairs pW , N p q q and pW , N 1 p q q also verify pH 2 , H 3 q. Suppose from now on that Λ d " 0 and keep the notation ∆ d p q and ∆ d,1 p q for the continuous extensions of ∆ d p q and ∆ d,1 p q , respectively on T d p q and T d,1 p q . By convention we take ∆ d p q pu, vq " 8 (resp. ∆ d,1 p q pu, vq " 8) if u or v are not both elements of T d p q (resp. of T d,1 p q ). Lemma 8.3. Under N ˚the following properties hold: Let t P p0, Z 0 q, such that t is a continuous time of Γ and write r ∆ d pΓptqq and r ∆ d,1 pΓptqq for the intrinsic distances on V ˝p0, tq and V ˝pt, Z 0 q respectively. Then the intrinsic distances r ∆ d pΓptqq and r ∆ d,1 pΓptqq have (respectively) a continuous extension on Vp0, tq and on Vpt, Z 0 q. We point the spaces Vp0, tq and Vpt, Z 0 q at ρ :" Π d p0q and we equip the set Vp0, tq (resp. Vpt, Z 0 q ) with the continuous extension of r ∆ d pΓptqq (resp. r ∆ d,1 pΓptqq ) and also with the restriction of Vol d to Vp0, tq (resp. Vpt, Z 0 q ). We then have Vp0, tq " ΘpW Γptq , N pΓptqq q ; Vpt, Z 0 q " ΘpW Γptq , N 1 pΓptqq q, (8.27) and ∆ d px, yq :" inf

x 0 "u,x 1 ,...xn"v n ÿ i"1 r ∆ d pΓptqq px i´1 , x i q ^r ∆ d,1 pΓptqq px i´1 , x i q.

(8.28)

where the infimum is over all choices of the integer n ě 1 and all the finite sequences x 0 , ..., x n of elements of D verifying x 0 " x and x n " y.

Equation (8.28) shows that one can recover D from the two Voronoï cells Vp0, tq and Vpt, Z 0 qprovided that r Þ Ñ Γprq is continuous at t -gluing these two spaces along their common boundary Vp0, tq X Vpt, Z 0 q. We will explain this point in more details in a future version of this work.

Proof. Fix a time t P p0, Z 0 q of continuity of Γ. By Lemma 8.2, we have Vp0, tq " Π d prE d

Γp0q , E d Γptq s T d q, Vpt, Z 0 q " Π d prE d

Γptq , E d ΓpZ 0 q s T d q and it is easy to see that:

BVp0, tq " Lp0, tq Y Π d prr0, E d Γptq ss T d q and BVpt, Z 0 q " Lpt, Z 0 q Y Π d prr0, E d Γptq ss T d q.

Now recall that T d pΓptqq (resp. T d,1 pΓptqq ) is identified with tE d r : r ď Γptqu (resp. tE d r : r ě Γptqu). As explained in the discussion above, the pairs pW Γptq , N pΓptqq q and pW Γptq , N 1 pΓptqq q verify pH 2 , H 3 q. Consider v, w P T d pΓptqq no belonging to the spine rrE d 0 , E d Γptq ss T d . Now recall that Λ 0 " Λ Γptq " 0, which implies that if Λ d a ą 0 for every a Psv, wr T d , then the interval rv, ws T d is identified with the interval rv, ws T d pΓptqq . We deduce by pH 3 q that, for every v, w P T pΓptqq . Consequently, we may and will identify the set of all points of ΘpW Γptq , N pΓptqq q (resp. ΘpW Γptq , N 1 pΓptqq q) with the set of all points of Vp0, tq (resp. Vpt, Z 0 q). Moreover, by performing this identification, the set Θ ˝pW Γptq , N pΓptqq q is identified with V ˝pr0, tsq, and BΘpW Γptq , N pΓptqq q with BVp0, tq. The same results hold if we replace N pΓptqq by N 1 pΓptqq and Vp0, tq by Vpt, Z 0 q. In particular we may and will interpret ∆ d pΓptqq (resp. ∆ d,1 pΓptqq ) as a distance on Vp0, tq (resp. Vpt, Z 0 q). To obtain the first part of the lemma and (8.27) we need to show that the restriction of ∆ d pΓptqq to Θ ˝pW Γptq , N pΓptqq q coincides with the intrinsic distance r ∆ d pΓptqq on V ˝p0, tq and that the same result for ∆ d pΓptqq replaced by ∆ d,1 pΓptqq and r ∆ d,1 pΓptqq replaced by Θ ˝pW Γptq , N pΓptqq q. Let us deal with the case of ∆ d pΓptqq , since the exact same argument works for ∆ d,1 pΓptqq .

We first prove that the intrinsic distance between two points, x and y, of V Λ d ą 0.

In particular the interval rv, ws T d Γptq is identified with the interval rv, ws T d . Now consider rr 1 , r 2 s Ă r0, σs, the smallest interval verifying pΠ d pr 1 q, Π d pr 2 qq " pv, wq, and set M u,w :" inf rv,ws T d Λ d . By construction, we have M u,w ą 0 and so by concatenating the two geodesics `Πd pγ r 1 prqq ˘rďMu,v and `Πd pγ r 2 pM u,v ´rqq ˘rďMu,v we construct a path from Π d puq to Π d pvq whose length with respect to ∆ d is equal to

Λ d v `Λd w ´2 inf rv,ws T d pΓptqq Λ d .
Moreover this path stays in Π d prv, ws T d q Ă Vp0, tq (the inclusion comes from Lemma 8.2) and does not hit BVp0, tq by the remark below pH 3 q. This gives our claim.

Let us now prove the reverse bound. To this end, we need to verify that, if γ : r0, 1s Ñ V ˝pr0, tsq is a path such that γp0q " x and γp1q " y, then the length of γ (with respect to ∆ d ) is bounded below by ∆ d pΓptqq px, yq. First let δ ą 0 such that the distance between the range of γ and BVp0, tq, with respect to ∆ d , is bigger than 2δ. We also introduce an integer n ě 1 such that ∆ d pγpsq, γptqq ă δ for every s, t such that |s ´t| ă n ´1. Remark that the length of γ is bounded below by ř n i"1 ∆ d pγp i n q, γp i`1 n qq, meaning that, in order to get the desired result, it is enough to verify that:

∆ d `γ`i n ˘, γ `i `1 n ˘˘ě ∆ d pΓptqq `γ`i n ˘, γ `i `1 n ˘˘,
for every 0 ď i ď n ´1. Fix 0 ď i ď n ´1 and recall the definition (8.16) of ∆ d pγp i n q, γp i`1 n qq as an infimum over possible choices of u 0 " γp i n q, u 1 , . . . , u p " γp i`1 n q in T d . Remark that, by the definition of δ, we may restrict our attention to the choices of u 0 , u 1 , . . . , u p such that: ' for every 0 ď j ď p the distance -with respect to ∆ d -between Π d pu j q and the boundary BVp0, tq is bigger than δ;

' for every 0 ď j ď p ´1, we have ∆ d,˝p u j´1 , u j q ă δ.

But, since ∆ d,˝p w, w 1 q " 8 for every w P T d,p Γptqq and w 1 P T d,1,p Γptqq , we deduce that for any such choice u 0 , u 1 , . . . , u p we have: Formula (8.28) then follows directly by the definition of the pseudo-distance ∆ d as an infimum (8.16) and triangle inequality.

p´1 ÿ j"0 ∆ d,
We now apply Lemma 8.3 to the study of V 1 and V 2 under N ˚,' . First remark that the mapping t Þ Ñ Γptq only has countably many discontinuity times and consequently, N ˚,' -a.e., the map Γ is continuous at t ' . We can now apply Lemma 8.3 at Γpt ' q to deduce that the intrinsic distances ∆ d 1 and ∆ d 2 (with the notation of Lemma 8.3: r ∆ d pΓpt ' qq and r ∆ d,1 pΓpt ' qq ) have respectively a continuous extension on V 1 and on V 2 . This gives the first part of Theorem 8.1 piiq. As in the statement of Theorem 8.1, we point V 1 and V 2 at Π d p0q and we equip the set V 1 (resp. V 2 ) with the continuous extension of ∆ d 1 (resp. ∆ d 2 ) and with the restriction of Vol d to V 1 (resp. V 2 ). By Lemma 8.3 we have V 1 " Θ `WΓpt ' q , N pΓpt ' qq ˘; V 2 " Θ `WΓpt ' q , N 1 pΓpt ' qq ˘. (8.29) We are going to deduce Theorem 8.1 from the following result: Proposition 8.1. For every nonnegative measurable function F : W ˆM pSq ˆM pSq Ñ R `, we have: N ˚,' `F pW Γpt ' q , N pΓpt ' qq , N 1 pΓpt ' qq q ˘" 2npF pe, r P e , r P 1 e qq. Before giving the proof of Proposition 8.1, let us explain why Theorem 8.1 follows from (8.29) and Proposition 8.1. First, by Proposition 8.1, the distribution of `e, r P e , r P 1 e ˘under 2n is the same as the distribution of `WΓpt ' q , N pΓpt ' qq , N 1 pΓpt ' qq ˘under N ˚,' . In particular, the coding pairs `e, r P e ˘and `e, r P 1 e ˘verify pH 2 , H 3 q and we obtain Theorem 8.1 piq. Then, an application of (8.29) gives us Theorem 8.1 piiq.

Proof of Proposition 8.1. We want to show that, for every nonnegative measurable function F on W ˆM pSq ˆM pSq, we have: N ˚`ż Z 0 0 dtF pW Γptq , N pΓptqq , N 1 pΓptqq q ˘" 2npF pe, r P e , r P 1 e qq. (8.30) We are going to show (8.30), for F of the form F pW Γptq , N pΓptqq ,N 1 pΓptqq q " ´1 ´exp `´λ `ZpN _ pΓptqq q `ZpN 1,_ pΓptqq q ˘˘¯F 1 pW _ Γptq qF 2 pN _ pΓptqq qF 3 pN 1,_ pΓptqq q, where λ ą 0 and the functions F 1 : W Þ Ñ R `and F 2 , F 3 : M pSq Þ Ñ R `are all continuous and bounded above by 1 (recall that the topology on M pSq is defined by the distance (8.4)). We also assume that there exists δ ą 0 such that, for every w P W, F 1 `w˘" 0 if sup w ă δ. An application of monotone convergence, taking the limit when λ Ñ 8, gives (8.30) for F of the form F 1 ¨F2 ¨F3 satisfying the previous assumptions. The general case follows using standard approximation procedures. Fix λ ą 0 and three functions F 1 : W Þ Ñ R `and F 2 , F 3 : M pSq Þ Ñ R às above and, to simplify notation, set GpN _ , N 1,_ q " 1 ´exp `´λZpN _ pΓptqq q ´λZpN 1,_ pΓptqq q ˘. The reason why we introduce the function G is the fact that the quantities N ˚,' 0 pGq and npGq are finite even though the measures N ˚,' 0 and n have infinite mass. Let us start by showing that we have: N ˚,' 0 pGq " 2npGq " ? 6λ. (8.31) First remark that under N ˚, we have Z 0 " ZpN _ pΓptqq q `ZpN 1,_ pΓptqq q for every t P r0, Z 0 s and that, in particular, an application of (8.13) gives: But we have the same inequality if we replace F 1 , F 2 and F 3 by p1 ´F1 q, p1 ´F2 q and p1 ´F3 q. Then (8.31) implies that the previous inequality is an equality and gives the desired result. Let us now focus on the proof of (8.32). An application of the re-rooting formula (8.11) to the right term of (8.32) gives: 

N ˚`Z 0 p1 ´expp´λZ 0 qq ˘" c 3 
N ˚`ż σ 0 dt GpN _ t , N

Perimeter and volume of the Brownian Voronoï cell

In this section we study the Brownian Voronoï cell i.e. the space Θpe, r P e q under the measure n. As previously seen we denote the tree associated with pe, r P e q by H e . Recall that the "boundary" BH e is divide in two parts, namely the set B 1 H e of all points with zero label and the spine B 2 H e :" r0, ζ e s. By Lemmas 8.2 and 8.3 and Proposition 8.1, the space Θpe, r P e q is a.e. homeomorphic to the open disk and its boundary is the image of BT e under the canonical projection from H e onto Θpe, r P e q. We interpret ZpP e q as the boundary length of the projection of B 1 H e and ζ e as the boundary length of the projection of B 2 H e . Actually, by (8.19) and (8.20), the last assumption of pH 3 q gives that the quantity ZpP e q has the following nice geometric interpretation: ZpP e q :" lim εÑ0 ε ´2 ¨Vol e `tx P Θpe, r P e q : ∆ e px, B 1 H e {∆ e q ď εu where the distance (resp. the volume measure) of Θpe, r P e q is denoted by ∆ e (resp. by Vol e ). Remark that the total volume of Vol e is YpP e q. The goal of this section is to study the triplet `ζe , ZpP e q, YpP e q ˘. Let us start by determining its Laplace transform Lemma 8.4. For every λ, γ, µ P R `, we have: n ´1 ´exp `´pγ ´?µqζ e ´pλ´?µqZpP e q ´µ{2YpP e q ˘" c 2 3 ¨2λ 3 2

`2? 3pλ ´?µq ? γ `3pγ ´?µq ? λ `?3γ

3 2
2λ `2γ ´?µ `2? 3 ? γλ .

Proof. By a scaling argument, for every r ą 0, the distribution of `rζ e , rZpP e q, r 2 YpP e q ˘under n is the same as the distribution of `ζe , ZpP e q, YpP e q ˘under ? rn. So it is sufficient to prove the lemma for µ " 1. Fix λ, γ ą 0. By (8.10) Using the fact that g 1 pxq " 1 ´g2 pxq and performing some tedious calculations one can verify that we can take Hpxq " p3g 2 pxq `3a 2γgpxq `2γ ´1q ¨expp´a2γ ¨xq.

The lemma then follows from (8.26) and a straightforward computation.

We now give some consequences of Lemma 8.4, starting by the study of the boundary lengths `ZpP e q, ζ e ˘.

Lemma 8.5. The distribution of pZpP e q, ζ e q is: We can then use formula (A.3) in the Appendix -and the remark below this formula -to obtain:

c 3 8π ¨´exp `i π 3 ˘`x
n `1 ´expp´λZpP e q ´γζ e q ˘" c 3 8π ¨żR 2 `dxdy px `yq In this preliminary version, we have not been able to determine the density of pζ e , ZpP e q, YpP e qq. For the time being we give some explicit conditional Laplace transform. Proposition 8.2. For every ą 0 and µ ą 0, we have: n `exp `´µYpP e q ˘ˇZ pP e q `ζe " " expp´a2µ q ¨´1 `a2µ ¨ `c π 2p2 `?3q p2µq ¯Proof.

An application of the scaling property shows that it is sufficient to prove the proposition for µ " 1 2 . To simplify notation, we set K e :" ZpP e q `ζe and we note that, for every λ ą 0, we have: n ´1 ´exp `´pλ ´1qK e ´1 2 ¨YpP e q ˘¯´n ´1 ´exp `´λK e ˘" n ´exp `´λK e ˘¨´1 ´exp `Ke ´1 2 ¨YpP e q ˘¯¯.

To simplify notation set Gp q :" n `1 ´exp ` ´1{2 ¨YpP e q ˘| K e " ˘. Remark that by an application of the scaling property the function Þ Ñ Gp q is continuous. We can now use Lemma 8.4 to derive the following formulas: n `1 ´expp´λK e q ˘:" 1 `?3 ? 6 λ 1 2 and n `expp´λK e qGpK e q ˘" ´5 `3? 3 ? 6 ¨λ 1 2 2p2 `?3qλ ´1 .

The left formula gives that the distribution of K e under n is Proof. The proof is similar as the one of Proposition 8.2. We focus on the computation of n `exp `´µYpP e q ˘ˇZ pP e q " since the same method works to compute n `exp `´µYpP e q ˘ˇζ e " ˘. By an application of the scaling property, it is enough to compute the quantity n `exp `´µYpP e q ˘ˇZ pP e q " ˘for µ " 1{2. To simplify notation, introduce the function Gp q :" n `1 ´expp ´Ye q | ZpP e q " ˘(which is a continuous function by scaling). Let us now take λ ą 0 and remark that, by Lemma 8.4, we have: n `1 ´exp `´λZpP e q ˘˘" c 2 3 ¨λ and n `exp `´λZpP e q ˘GpZpP e qq ˘˘" ´c 2 3 ¨?λ `?3 2λ `2? 3λ `1

The left formula gives that the distribution of ZpP e q under n is p ? 6πq 

Explicit computations of Voronoï cells of D

For simplicity we introduce the notation: α λ,µ :" g for every λ, µ ě 0. We argue under n and the goal of this section is to compute the Laplace transform of pZpP e q, ZpP 1 e q, YpP e q, YpP 1 e qq i.e. to give a formula for the function:

pλ 1 , λ 2 , µ 1 , µ 2 q P R 4 `Þ Ñ n ´1 ´exp ´´λ 1 ZpP e q ´λ2 ZpP 1 e q ´µ1 YpP e q ´µ2 YpP 1 e q ¯¯.

Let us introduce some notation: The verification of (8.36) is straightforward (but tedious) using the fact that g 1 λ,µ pxq " 1 ´g2 λ,µ pxq for every λ, µ ě 0. It is important to note that x Þ Ñ Hpλ 1 , µ 1 , λ 2 , µ 2 , xq is bounded. So combining this with (8.25) and n ´1 ´exp `´λ 1 ZpP e q ´λ2 ZpP 1 e q ´µ1 YpP e q ´µ2 YpP 1 e q ˘¯" ´1 2

Apaq :" 1 2a 2 `1 ¨1 3 pa 2 ´1q

B

Bx Hpλ 1 , µ 1 , λ 2 , µ 2 , xq| x"0 Hpλ 1 , µ 1 , λ 2 , µ 2 , 0q .

Besides we can consider another natural measure on BD `by taking the pushforward of the Lebesgue measure on r0, ζ R s by Π `. Formula p42q in [START_REF] Gall | The Brownian disk viewed from a boundary point[END_REF] shows that this measure coincides with m D `. Let us now introduce a uniform marked version of n. Let n ' be the σ-finite measure defined by: n ' pF pe, R, t ' qq :" n `ż ζe 0 dt F pe, R, tq ˘.

The measure n ' is a version of n biased by ζ e " ζ R . The quantity t ' can be interpreted as a uniform point on r0, ζ e s. Under n ' , the doubly marked space D ' `:" `ΘpR, P R q, Π `pt ' q ˘is distributed as D ' . Recall that the spine r0, ζ R s is a subset of T `. We write ρ ' `:" Π `pt ' q and |BD `| for the total mass of m D `i.e. |BD `| " ζ R . One can derive from Lemmas 12 and 18 in [START_REF] Bettinelli | Compact Brownian surfaces I. Brownian disks[END_REF], using classical absolute continuity properties, that the pair pR, P R q also satisfies pH 3 q. In this preliminary version we leave the details to the reader.

For every r ą 0, B r stands for the closed ball of radius r and centered at ρ `i.e. B r " tx P D `: ∆ `pρ `, xq ď ru. In the rest of this section we argue under the event tr ă ∆ `pρ `, ρ ' `qu.

The notation B ' r stands for the hull of radius r centered at ρ `with respect to ρ ' `. The closure of D ' `zB ' r is denoted by B' r . As explained in the introduction, the sets B ' r and B' r are homeomorphic to the closed unit disk of the complex plane. We define the boundary B B' r , resp. BB ' r , as the set of all points of B' r , resp. B ' r , that have no neighborhood homeomorphic to the open unit disk of the complex plane. We finally introduce the set Br :" B' r zB B' r . Let us explain how to identify these sets in the labeled tree T `. First, by using the interpretation of labels as distances from ρ `, we see that B r is the image by Π `of the points of u P T `with Λ ù ď r. Now write: T `,r " tu P T `: inf rru,t ' ss T `Λ`ą ru, where we recall that the notation rru, t ' ss T `stands for the geodesic segment in T `connecting u and t ' . Let T `,r :" T `,r X T `,˝w hich is the set of all points of T `,r that do not belong to the spine r0, ζ R s. Finally we also introduce the set T r of all points u P T `such that for every v P rru, t ' ss T `ztuu we have Λ v ą r. Remark T r is the closure of the set T `,r in T `.

Lemma 8.6. Fix r ą 0, under n ' `¨| R t ' ą r ˘, we have the following relation:

Br " Π ``T `,r ˘; B' r " Π ``T r ˘and B ' r " Π `pT `zT `,r q. (8.39)

Proof. Let us show that Π ``T `,r ˘" D ' `zB ' r and B ' r " Π `pT `zT `,r q. First consider u P T `,r and note that Π `prru, t ' ss T `q is the range of a path connecting Π `puq and ρ ' `. Moreover, since u P T `,r , all the points in the geodesic segment rru, t ' ss T `have a label greater than r. Consequently, the set Π ``T `,r ˘is contained in D ' `zB ' r . On the other hand, D ' `satisfies the so-called cactusbound stating that, for every path γ : r0, 1s Þ Ñ D ' `, we have:

inf tPr0,1s
Λ γptq ď inf rrγp0q,γp1qss T `Λ`.

(8.40)

The cactus-bound is a classical bound in Brownian geometry. We refer to [63, Proposition 3.1] for a proof of (8.40) in the context of the Brownian Sphere that is easily extended to our setting. An application of the cactus bound (8.40) gives that, for every u R T `,r , and every path γ : r0, 1s Þ Ñ D ' `with `γp0q, γp1q ˘" `Π`p uq, ρ ' `˘, we have: inf tPr0,1s

Λ γptq ď inf rrγp0q,γp1qss T `Λ`ď r. This implies that the image of the complement of T `,r is inside B ' r , and consequently we deduce that D ' `zB ' r " Π ``T `,r ˘and B ' r " Π `pT `zT `,r q. It then takes a simple verification to complete the proof of (8.39).

We can divide the boundary B B' r in two parts. On one hand, we have B ' r X B' r Ă B B' r which is the image by Π `of : B 1 T r :" u P T R : Λ ù " r and Λ v ą r for every v P rru, t ' ss T `ztuu ( .

We denote this set by B 1 B' r . On the other hand, we also have BD ' `X B' r Ă B B' r , and (8.39) gives that BD ' `X B' r is the image by Π `of:

B 2 T r :" rτ r , τ 1 r s,
where we write τ r :" supts P r0, t ' s : R s " ru and τ 1 r :" infts ě t ' : R s " ru. To simplify notation, we will now write B 2 B' r for the set BD ' `X B' r . Remark that B B' r is the union of B 1 B' r and B 2 B' r (and that this notation is consistent with the notation used in the introduction). Moreover, the intersection of the boundaries B 1 B' r and B 2 B' r consists in the points Π `pτ r q and Π `pτ 1 r q.

Let us now introduce the following process R prq t :" R t`τr ´r , 0 ď t ď τ 1 r ´τr (8.41)

and the point measure P `,r R on R `ˆS , defined by: ż Φpt, ωq P `,r R pdtdωq :"

ż τ 1 r τr
Φpt ´τr , ω ´rq P R pdtdωq.

The pair pR prq , r P `,r R q is clearly a coding pair verifying pH 1 q. We can now remark that, by the very construction of pR prq , r P `,r R q, the tree associated with pR prq , r P `,r R q is directly identified with T r as a metric space and that this identification preserves the labels -provided that the labels of T r are shifted by ´r. From now on we will make this identification. We will later show that pR prq , r P `,r R q also verifies pH 2 , H 3 q. We equip the space Br with the intrinsic distance, denoted by ∆ `,r and the restriction of Vol `, denoted by Vol `,r . Proposition 8.5. Fix r ą 0. Under n ' p¨| R t ' ą rq, there exists an isometry Φ : Θ ˝`R prq , r P `,r R ˘Ñ Br , such that the pushforward of the volume measure of Θ ˝`R prq , r P `,r R ˘under Φ is Vol `,r .

we write X prq :" ř jPJ δ t j ,ω j where J is an indexing set disjoint of I. We can then write T X prq as the disjoint union

r0, ζ X prq s Y ´ď jPJ T ω j ¯,
where the point t j is glued with the root of T ω j . Let us now identify the subset r0, τ r s (resp.

rτ r `Zr , ζ X prq s) of the spine of T X prq with the subset r0, τ r s (resp. rτ 1 r , ζ R s) of the spine of T `, which are also subsets of K r . By the very definition of X prq , this identification preserves the labels. Now remark that, as the point measures X ), we can identify every tree T ω j for t j P r0, τ r s (resp. t j P rτ r `Zr , ζ X prq s) with a subtree of T `glued to a point of the spine r0, τ r s (resp. rτ 1 r , ζ R s) of T `. This identification also preserves the labels. We now need to identify the set:

rτ r , τ r `Zr s Y ´ď jPJr T ω j ¯,
where J r :" tj P J : t j P rτ r , τ r `Zr su, with a subset of K r . To this end let us introduce the right-continuous inverse of the process L ˚,r i.e. for every s P r0, Z r q set: η ˚,r s :" inftt P R : L ˚,r t ą su, where, by convention, η ˚,r Zr is the left limit of s Þ Ñ η ˚,r s at s " Z r . We now use the process η ˚,r to identify rτ r , τ r `Zr s Ă T X prq with a subset of K r X T r . First remark that: K r X T r " u P T `: Λ ù " r and Λ v ą r for every v P rru, t ' ss T `ztuu ( .

It is then straightforward to verify from standard properties of the support of the exit local time, that: . Knowing that all the points of K r X T r have label r and that X prq s " r for every s P rτ r , τ r `Zr s, we see that this identification preserves the labels. It remains to identify the trees `Tω j ˘jPJr . Recall the notation pω i,k q pi,kqPIrˆN , introduced above for the excursion outside pr, 8q of the snakes trajectories ω i with t i P rτ r , τ 1 r s, and also that, in the time scale of the clockwise exploration E `of T `, the snake trajectory ω i,k corresponds to the interval rα i,k , β i,k s. Remark that T ω i,k coincides with the subtree tE s : s P rα i,k , β i,k su of T `. By construction, for j P J r , there exists ω i,k such that ω i,k " ω j and L ˚,r α i,k " t j ´τr . Moreover, by the support property of the exit local time, this identification is a bijection between pω i,k q pi,kqPIrˆN and pω j q jPJr . This way we have identified T X prq with a subset of K r . To fix notation, let us write φ : T X prq Þ Ñ K r for the injective function induced by this identification. The complement of φpT X prq q in K r is the set: here we write Λ X prq for the labels on T X prq . Consequently by the definition of ∆ X prq and ∆ `,prq as an infimum, we deduce that we have ∆ X pu, vq " ∆ `,prq pφpuq, φpvqq, for every u, v P T X prq . In particular φ induces an isometry between Θ `Xprq , X prq ˘and Π ``φpT X prq q ˘. To conclude remark that if τ ˚,r s´ă τ ˚,r s , by the support property of the exit local time implies that either all points of the form E ù with u P pτ ˚,r s´, τ ˚,r s q are descendants of E τ ˚,r s´a nd necessarily E τ ˚,r

K r X T r " E ὴ˚,
E ὴ˚,
s´"

E τ ˚,r s
, or the labels of all such points E ù are greater than r. In both cases we have Π `pE ὴ˚,r s´q " Π `pE ὴ˚,r s q and consequently Π ``φpT X prq q ˘" B ' r . Finally, since Vol `pB 1 B ' r q " 0, it is easy to see, from the definition of φ, that the pushforward of the volume measure of Θ `Xprq , X prq ˘under Π `˝φ is Vol `,prq . This completes the proof of the proposition.

A technical result

The goal of this section is to give an explicit formula for the Laplace transform of `ζe , ZpP e q, YpP e q ȗnder n and the Laplace transform of `ζB , ZpP B q, YpP B q ˘under P h . These formulas will be helpful to obtain the spatial Markov property of the Brownian disk and to derive explicit computations. Recall the notation α λ,µ defined in (8.35). Proposition 8.7. For every γ, λ, µ ě 0 we have: E h " exp `´γζ B ´λZpP B q ´µYpP B q ˘‰ " a γ `?2µ `a3{2 ¨p2µq We then observe that for every γ, λ ą 0 we have: dzd pz ` q ´3 2 expp´γz ´λ q " 3 2 ? 2 ? γ `2? 2 ? λ and consequently, recalling that the distribution of `ZpP e q, ζ e ˘is 3{4 ¨p2πq ´1 2 pz ` q ´5 2 dzd , we derive that:

n `expp´µYpP e qq | ZpP e q " z, ζ e " ˘" `1 `a2µpz ` q ˘expp´a2µpz ` qq for Lebesgue almost every pz, q P R 2 `. But the right term is the Laplace transform of 1 ? 2π pz ` q 3 v 5 2 expp´p z ` q 2 2v q dv, and the desired result follows.

piiq The distribution of R t ' under n ' is 3 ¨h´2 dh. Moreover, conditionally on R t ' " h, the processes pR t ' ´tq tPr0,t ' s and pR t ' `tq tPr0,σ´t ' s are independent and distributed as Y under P h .

Proof. The first point is a classical result and we refer to [START_REF] Bismut | Last exit decompositions and regularity at the boundary of transition probabilities[END_REF]. Let us derive piiq form piq. First remark that it is enough to show that, for any bounded continuous functions g : R Þ Ñ R `, dt gpR t qF 1 `pR t´s q sPr0,ts ˘F2 `pR t`s q sPr0,ζ R ´ts ˘¯" 3

F 1 : W Þ Ñ R `and
ż 8 0 dh h ´2gphqE h " F 1 `Y ˘‰E h " F 2 `Y ˘‰.
Without loss of generality we may assume that ş 8 0 dh h ´2gphq ă 8 and that there exists δ ą 0 such that F 1 pwq " 0 for every w P W with ζ w ă δ. Then since npζ e ą δq ă 8, by (8.37) q ¨Ph`ε coincides with the law of pY t q sďTεpY q under P h`ε , with the notation T ε pY q :" infts ě 0 : Y s " εu. Consequently n ´ż ζe 0 dt gpe t qF 1 `pe t´s q sPr0,ts ˘F2 `pe t`s q sPr0,ζe´ts ˘¨exp `´ż ζe 0 ds pe s `εq 2 ˘" ε 2 ż 8 0 dh ph `εq ´2gphqE h`ε " F 1 `pY s ´εq sďTεpY q q ‰ E h`ε " F 2 `pY s ´εq sďTεpY q q ‰ .

The desired result follows then by dominated convergence, using ş 8 0 dh h ´2gphq ă 8 and taking the limit when ε goes to 0. Now remark that, by the special Markov property, the distribution of the point measure P `,r R conditionally on R prq is P pR prq q `¨| P ˚ą ´r˘. The following result gives an identity between coding pairs with a p´1q-dimensional Bessel spine (with some label constraints) and coding pairs with a Brownian spine (without label constraints). For every h, r ą 0 with h ą 3 ´1{2 r, we set under P h , with h ą 3 ´1{2 r: We are going to apply the identify in distribution between coding pairs in Proposition 8.8 to obtain the following Lemma Lemma 8.9.

Y
piq For h ą 0, the distribution of ZpP e q under n ' p¨| e t ' " hq is:

3 2 h ´2χ 2 p 3z 2h 2 qdz.
piiq For every h, r ą 0, the distribution of ZpP `,prq R q under n ' p¨| R t ' " h `rq is: By Proposition 8.7, taking the limit when µ Ñ 0 and using cothpxq " xÑ0 x ´1, we have:

3 2 ph `
E h ? 3
rexpp´λZpP B qqs " p1 `a2{3λ ¨hq ´1, and so we derive the formula:

n ' ´expp´λZpP e qq ˇˇe t ' " h ¯" `1 `a2{3λ ¨h˘´2 .

Point piq is then a consequence of formula (A.2).

Let us prove point piiq, which is a consequence of piq and the identity between coding pairs given in Proposition 8.8. First recall that, conditionally on R prq , the distribution of the point measure P `,r R is P pR prq q `¨ˇˇP ˚ą ´r˘. G 2 ) be two nonnegative measurable functions defined on W (resp. M pSq). We can find nonnegative measurable functions ϕ 1 and ϕ 2 on r0, 8q ˆr0, 8q, such that:

n ' ´F1 pR prq,1 qF 2 pR prq,2 qG 1 pH 1 R qG 2 pH 2 R q ˇˇZpP `,prq R q, R prq t ' ´τr ¯" ϕ `ZpP `,prq R q, R prq t ' ´τr ˘,
and n ' ´F1 pe 1 qF 2 pe 2 qG 1 pH 1 e qG 2 pH 2 e q ˇˇZpP e q, e t ' ¯" ϕ 1 `ZpP e q, e t ' ˘.

We point out that the scaling property does not give directly a canonical choice of ϕ and ϕ 1 . Let us show that ϕpz, hq " ϕ 1 pz, hq, dzdh-a.e. In order to proof this equality fix h ą 0 and remark that, by Lemma 8.8 piiq, we have: q " z, is the same as the conditional distribution of e t ' , knowing ZpP e q " z, and this distribution is precisely:

n ' ´F1 pR prq,
Cpzqh ´2χ 2 p 3z 2h 2 q dh
where Cpzq is a constant only depending on z. We get:

n ' `F1 pR prq,1 qF 2 pR prq,2 qG 1 pH 1 R qG 2 pH 2 R q ˇˇZpP `,prq R q " z ˘" Cpzq ż 8 0 h ´2χ 2 p 3z 2h 2 qϕpz, hq dh;

and n ' `F1 pe 1 qF 2 pe 2 qG 1 pH 1 e qG 2 pH 2 e q ˇˇZpP e q " z ˘" Cpzq ż 8 0 h ´2χ 2 p 3z 2h 2 qϕ 1 pz, hq dh for Lebesgue almost every z ą 0. Using the equality ϕpz, hq " ϕ 1 pz, hq, dzdh-a.e. We finally deduce :

n ' `F1 pR prq,1 qF 2 pR prq,2 qG 1 pH 1 R qG 2 pH 2 R q ˇˇZpP `,prq R q " z " n ' `F1 pe 1 qF 2 pe 2 qG 1 pH 1 e qG 2 pH 2 e q ˇˇZpP e q " z where the equality holds dz-a.e. The theorem follows since the previous equality can be extended to every z ą 0 by using the scaling property.

Proof. Fix h ą 0 and µ, γ ě 0. It is a standard verification to see that χ 1 pxq ą 0 for every x ą 0 and consequently we also have χ 2 pxq ą 0 for every x ą 0. This remark is useful to define some conditionings. Finally note that It is useful to remark that formula pA.3q can be extended to CzR ´using the complex logarithm, log, defined on CzR ´, and verifying logp1q " 0.

Titre: Géométrie brownienne

Mots clés: Cartes, géométrie aléatoire, serpent brownien, processus de Bessel, inégalités isopérimétriques, théorie des excursions Résumé: Cette thèse porte sur l'étude des modèles continus de surfaces aléatoires, émergeant comme limites d'échelle de modèles de cartes planaires aléatoires. Par analogie avec le mouvement brownien, nous parlerons de géométrie brownienne.

Nous commençons par explorer métriquement le disque brownien en suivant les distances par rapport à son bord. Nous montrons en particulier que le disque brownien bénéficie d'une propriété de Markov spatiale encodée par un processus de croissancefragmentation explicite. Nous dérivons ensuite des résultats similaires pour la sphère brownienne et le plan brownien.

Dans un deuxième temps, nous donnons une construction unifiée pour les trois principaux modèles non-compacts de géométrie brownienne. Cette con-struction permet de contrôler finement les distances de ces modèles à leurs bords. Ces contrôles nous aident à obtenir plusieurs résultats géométriques et, en particulier, à montrer que les complémentaires des hulls dans le plan brownien sont des disques browniens de volume infini. Cette identification nous amène finalement à établir une propriété de Markov spatiale forte pour le plan brownien et à donner le profil isopérimétrique optimal de ce dernier.

Enfin, nous nous intéressons à des résultats plus quantitatifs en établissant des formules explicites concernant des objets géométriques. Ainsi, nous étudions certaines masses de sphères, et établissons -pour des cellules de Voronoï ou des hullsdes formules explicites concernant leurs volumes et périmètres dans le disque brownien.

Title: Brownian geometry

Keywords: Maps, random geometry, brownien snake, Bessel processes, isoperimetric inequalities, excursion theory Abstract: This thesis is devoted to the study of continuous models arising as the scaling limit of different models of random planar maps. By analogy with Brownian motion, this theory is called Brownian geometry.

We start by exploring the Brownian disk in a metric way, by following the distances to its boundary. In particular, we establish that the Brownian disk satisfies a spatial Markov property encoded by an explicit growth-fragmentation process. We then extend our results to the Brownian sphere and to the Brownian plane.

We also provide a unified construction of the three main non-compact models of Brownian geome-try. This construction allows us to control precisely the distances to the boundary in these models. We then derive several geometric results and we manage to prove that the complements of hulls in the Brownian plane are infinite volume Brownian disks. This identification leads us to determine a strong spatial Markov property for the Brownian plane and to obtain its optimal isoperimetric profile.

Finally, we focus on quantitative results by establishing explicit formulas concerning geometric objects. In particular, we study some sphere masses and give explicit computations concerning the volumes and perimeters of Voronoï cells and hulls in the Brownian disk.
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 12 Figure 1.2 -Illustration de la bijection CVS. Ici on a ε " 1
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  e ps, tq " e s `et ´2 min rs^t,s_ts e.
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 13 Figure 1.3 -La figure de gauche est une approximation d'une excursion brownienne obtenue en utilisant une marche aléatoire. La figure de droite représente l'approximation de l'arbre brownien en utilisant l'excursion de gauche.
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 14 Figure 1.4 -Approximation du mouvement brownien indexé par l'arbre brownien (ici nous utilisons l'arbre de la figure 1.3). Les couleurs représentent les étiquettes: les couleurs jaune et verte correspondent à des étiquettes négatives alors que les couleurs bleue et violette correspondent à des étiquettes positives. La couleur rouge correspond aux valeurs extrêmes.
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 21 Figure 2.1 -Une triangulation du 6-gone.
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 22 Figure 2.2 -représentation en Cactus.
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 23 Figure 2.3 -Représentation en cactus du disque brownien libre.
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 24 Figure 2.4 -Exploration du disque brownien libre en suivant les bords vers ρ ' à gauche et vers ρ à droite.
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 25 Figure 2.5 -Illustration de l'arbre r T 8 . La hauteur représente les distances à 0 des étiquettes. L'épine est coloriée en jaune et les points d'étiquette nulle sont coloriés en rouge.
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 126 Figure 2.6 -Illustration de l'arbre T 1 8 avant et après l'avoir coupé au niveau r 1 avec r 2 " 8. L'épine est coloriée en doré

Figure 3 . 1 -

 31 Figure 3.1 -Nous réutilisons l'approximation du mouvement brownien indexé par l'arbre brownien de la figure 1.4 et nous colorions les points en fonction du signe des étiquettes. En bleu sont représentés les points d'étiquette positive et en orange les points d'étiquette négative. En vert sont représentés les points d'étiquette (presque) nulle.

  d'intensité 21 r0,ζgs ptqdt npdeq. Nous considérons alors l'union disjointe: r0, ζ g s Y ď iPI T e i , et nous interprèterons ici le segment r0, ζ g s comme une ligne horizontale que nous nommerons

Figure 3 . 2 -

 32 Figure 3.2 -Illustration de l'arbre étiqueté r H g . Nous représentons en rouge le niveau 0 et en doré l'épine. Par soucis de clarté de l'image nous avons représenté les arbres presque exclusivement sous l'épine. En réalité les arbres croissent l'épine infiniment souvent.
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Theorem 4 . 3 .

 43 Almost surely, for every r ě 0, for every connected component C of tx P D z : Hpxq ą ru, the limit |BC| :" lim εÑ0 ε ´2 Vptx P C : Hpxq ă r `εuq exists and is called the boundary size of C. For every r ě 0, let Zprq denote the sequence of boundary sizes of all connected components of tx P D z : Hpxq ą ru ranked in nonincreasing order.

Lemma 4 . 1 .

 41 We have N 0 pL z ă 0q "

  (i) local minima are distinct: if b, b 1 are two distinct points of local minimum, V b " V b 1 ;

paqr 1 1 .

 11 denote the connected component of tb P T ζ : V b ą ru that contains a. We note that C paq r 1 Ă C paq r if r ă r 1 ă V a . Let C paq r stand for the closure of C paq r and, if r P p0, V a q, set C paq r´: " č r Pr0,rq C paq r We always have C paq r Ă C paq r´a nd equality holds if and only if r R D paq , where the set D paq is defined by D paq :" tr P p0, V a q : Db P T ζ ztau, V b ą r and min cPrra,bss V c " ru.

(

  iii) Let a P T ζ . The set of discontinuities of r Þ Ñ Z paq r is D paq . If r P D paq we have Z paq r´" Z paq r `Zpbq r where b is an arbitrary point of Čpaq r . Moreover Z paq r " Z pbq r .

Lemma 4 . 4 .

 44 Let r ě 0. The sets D pi 1 ,...,i k q r

Lemma 4 . 5 .

 45 Let a, b P T ζ and let pγptqq 0ďtďT be a continuous path in D z such that γp0q " Πpaq and γpT q " Πpbq. Then min 0ďtďT Hpγptqq ď min cPrra,bss V c .

Proposition 4 . 9 .

 49 Let r ą 0 and a, b P T ζ . Then Πpaq and Πpbq belong to the same connected component of tx P D z : Hpxq ą ru if and only if a and b belong to the same connected component of tc P T ζ : V c ą ru. Proof. If a and b belong to the same connected component of tc P T ζ : V c ą ru, then the line segment rra, bss is contained in tc P T ζ : V c ą ru, and Πprra, bssq provides a path going from Πpaq to Πpbq that stays in tx P D z : Hpxq ą ru, by property (a). Conversely, if a and b belong to different connected components of tc P T ζ : V c ą ru, then min cPrra,bss V c ď r, and, by Lemma 8.40, any continuous path from Πpaq to Πpbq must visit a point x with Hpxq ď r. It follows that Πpaq and Πpbq belong to different connected components of tx P D z : Hpxq ą ru.

  ´Z´u | ď δ. Since δ, K and A are arbitrary, we obtain that, N 0 a.e., lim nÑ8 ´sup ηďuďM |Z pn ´3q ´u ´Z´u | ¯" 0. We can replace η ď u ď M by η ď u ă 8 since Z pεq ´u ´Z´u " 0 for u ą ´W˚`ε . The statement of the proposition then follows by a monotonicity argument. Chapitre 5
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ż

  dz zh a pzq f pzq Θpaq z pH ˝Ωq " ż dz zh a pzq f pzq N pzq a pHq, by the very definition of N pzq a . The statement of the proposition follows.

8 z

 8 in distribution in the sense of the local Gromov-Hausdorff-Prokhorov convergence.

Theorem 6. 1 .

 1 piq We have lim sup uÑ8 log `Θ0 pL 1 ą uq ȗ

8 ∆pu,

 8 vq ě |Λ u ´Λv |.(6.5) 

prq 8 )

 8 takes values in L (resp. R) since E 0 " 0. By definition for every s ď t, we have inf

Figure 6 . 2 -

 62 Figure 6.2 -Cactus representation of the Brownian plane. The vertical distances represent the distances to the root 0. In red a path of A taking values in B r,s .

puq 8 . 8 .

 88 Let v, w P T puq Up to interchanging v and w, we can suppose that ∆ ˝pv, wq " Λ v `Λw ´2 min rv,ws T8 Λ,

p1q 8

 8 from infinity. If γ does not stay inside B ' T 2r then it has to stay outside B ' Tr or to connect B ' Tr and B' T 2r . Since the distance between B ' Tr and B' T 2r is T 2r ´Tr we have:

1 r 1 r n`1 2 L

 112 4n |B ' T r 2n ,T r 2n`1 |, and T r 2n`1 ,T r 2n`2 are independent. Moreover 1 r 4n |B ' T r 2n ,T r 2n`1 | (resp. 1 r n`1 2

3 .

 3 Using again the distribution of Z m`k`4 , we get that there exists a constant d 3 pαq ą 0 independent of m and k such that, if m `k `4 ă mr, Θ 0 pexpp´αZ m`k`4 q |B ' m`k`4,mr | q ď d 3 pαq pm `k `4q 3 r 4 m 4 . Summarizing, we get in both cases m `k `4 ă mr and m `k `4 ě mr, Θ 0 `expp´αZ m`k`4 q|B ' mr | ˘ď d 2 pαq `d3 pαq pm `k `4q 3 r 4 m 4 .

Figure 6 . 4 -

 64 Figure 6.4 -Illustration of(6.46). In red we represent the boundary of A. On the left we are in case 1 and we have ∆pBAq ě 2 m´1 . On the right we are in case 2 and we have ∆pBAq ě L 2 m´1 .

. 10 )Lemma 7 . 1 . 8 δ

 10718 where the last equality follows from a standard Ray-Knight theorem for Brownian local times[START_REF] Revuz | Continuous martingales and Brownian motion[END_REF] Theorem IX.2.3]. We then need the following lemma. For every δ ą 0, we havelim εÑ0 L 0,ε,pδq " ż dr X r , in probability under N 0 p¨| L ˚ě δq.Let us postpone the proof of this lemma and complete that of Proposition 7.1. Write r L 0 " ş 8 0 dr X r and r L 0,pδq " ş 8 δ dr X r to simplify notation, and for a ą 0 set N paq 0 " N 0 p¨| L ˚ě aq. Then, for every α ą 0,N paq 0 p|L 0 ´r L 0 | ą αq ď N paq 0 p|L 0 ´L0,ε | ą α{4q `Npaq 0 p|L 0,ε ´L0,ε,pδq | ą α{4q`Npaq 0 p|L 0,ε,pδq ´r L 0,pδq | ą α{4q `Npaq 0 p| r L 0,pδq ´r L 0 | ą α{4q.(7.11) 

  )

1

 1 

  desired result by a simple change of variables.

1

 1 are defined by keeping parts of the point measure P R (after performing a time translation for X prq,1 1

F 2 :

 2 W Þ Ñ R `, we have n ´ż ζ R 0

ż 8 0 ż 8 0

 8 dxdy px `yq ´5 2 p1 ´expp´λx ´γyqq "

  où l'on note ru, vs " r0, vs Y ru, 1s si v ď u. Définissons ensuite pour tout s, t P r0, 1s: infimum porte sur tous les entiers n ě 1 et sur toutes les suites s 1 , . . . , s n telles que ps 1 , t n q "

					Λ, min	Λ ˘(1.4)
			rs,ts	rt,ss
			n		
	D ˚ps, tq :"	inf s"s 1 ,t 1 ...,sn,tn"t	i"1 ÿ	D ˝ps i , t i q	(1.5)
	où l'				

ps, tq et t i " de s i`1 pour tout 1 ď i ď n ´1. La fonction D ˚est une pseudo-distance sur r0, 1s et, comme dans le cas de l'arbre brownien, nous pouvons introduire la relation d'équivalence " D ˚en notant s " D ˚t si et seulement si D ˚ps, tq " 0. En particulier, il est important de remarquer que si s " de t alors nous avons aussi s " D ˚t. Il peut d'ailleurs être montré en utilisant (1.5) que D ˚se factorise à travers la relation d'équivalence " de et nous pouvons donc directement interpréter D comme

  montrons que la distance intrinsèque sur B r admet p.s. une extension continue sur B ' r . On munit le horohull B ' r de cette distance, de la restriction de la mesure volume et nous pointons cet espace sur la racine de M 8 . Nous démontrons le résultat suivant

	Théorème 2
	Conditionnellement à |B B' r |, le hull B ' r et l'adhérence de son complementaire B' r sont
	indépendants et B'
	Théorème 3
	Conditionnellement à |BB '

r est un disque brownien de volume infini de périmètre |B B' r |.

Ce résultat est crucial pour notre étude sur les propriétés isopérimétriques

[START_REF] Riera | Isoperimetric inequalities in the Brownian map and the Brownian plane[END_REF]

.

Etude des horohulls dans le plan brownien

Notre construction du disque brownien avec un point marqué à une hauteur donnée s'avère aussi utile pour l'étude des horohulls. Rappelons rapidement la définition des horohulls du plan brownien M 8 . Notons ∆ la distance de M 8 et ρ 8 la racine. Il peut être prouvé que, presque sûrement, pour tous a, b P M 8 la limite lim xÑ8 p∆pa, xq ´∆pb, xqq existe dans R. Ici la limite x Ñ 8 doit être prise dans le sens où x tend vers le point 8 de la compactification d'Alexandroff du plan brownien. Nous pouvons alors écrire la limite précédente sous la forme H a ´Hb , où "l'horofonction" a Þ Ñ H a est définie de manière unique en imposant H ρ8 " 0. L'horofonction H est interprétée comme donnant les distances relatives à l'infini. Pour tout r ą 0, écrivons B r pour la composante connexe de l'ouvert tx P M 8 : H x ą ´ru contenant ρ 8 . Le horohull de rayon r est alors l'adhérence de B r que nous notons B ' r . Nous montrons que la limite: lim εÓ0 ε ´2V `tx P B ' r : H x ă ´r `εu ȇxiste presque sûrement. Ceci donne une bonne notion de longueur du bord de B ' r que l'on note |BB ' r |. En utilisant la construction du disque brownien marqué à l'aide d'un arbre étiqueté nous r | " z, le horohull B ' r est un disque brownien libre de périmètre z et marqué à hauteur r.

  1 8 et pointer B' T au point de M 8 correspondant au dernier temps de passage du processus des étiquettes de l'épine au niveau T . En utilisant (2.3), nous obtenons que T Grâce à ce résultat, nous prouvons un analogue du théorème 4 pour le disque brownien infini, concernant les cycles injectifs séparant la frontière de l'infini. En combinant enfin notre étude des cycles séparants avec le théorème 5 nous établissons la propriété isopérimétrique suivante:

	Théorème 6			
	Pour toute fonction croissante f : R `Þ Ñ p0, 8q:	
	piq On a inf APK	∆pBAq 4 V pAq 1	f p| logpV pAqq|q " 0 , P-p.s. , si	mPN ř	f pmq ´2 " 8.
	piiq On a inf APK	∆pBAq 1 V pAq 4	

z :" inftr ě 0 : |B B' r | " zu est un temps d'arrêt pour la filtration pF r`qrě0 . De plus, `|B B' r | ˘rě0 n'a pas de saut positif et tend vers l'infini lorsque r Ñ 8, ce qui entraîne que |BB ' Tz | " z p.s. Nous pouvons désormais appliquer le théorème 5, pour voir que B' Tz est un disque brownien de volume infini de périmètre z.

  particulier A ne peut pas être contenu dans B ' 2 m . Il y a deux cas possibles, comme le montre la figure 2.7. Si BA touche le bord BB ' 2 m´1 , alors BA connecte BB ' 2 m´1 et BB ' 2 m ce qui implique ∆pBAq ě 2 m´1 . Par contre si BA n'intersecte pas BB ' 2 m´1 alors BA doit séparer B ' 2 m´1 de l'infini, entraînant ∆pBAq ě L 2 m´1 . Donc on obtient pour tout A P K que la quantité ∆pBAq

	V pAq	4 1	f p| logpV pAqq|q est
	bornée inférieurement par		

  Commençons par rappeler que D z désigne le disque brownien libre de périmètre z. Cet espace n'est pas pointé, a un volume aléatoire et son périmètre est fixe. Dans la section 2.2, nous nous sommes intéressés à l'exploration du disque brownien libre en suivant les distances par rapport au bord. Il nous a semblé naturel de nous demander s'il était aussi possible d'étudier une exploration métrique depuis un point du bord. L'une des motivations du chapitre 8 sera de donner quelques réponses dans cette direction. Pour ce faire nous introduirons une version à périmètre aléatoire du disque brownien libre avec deux points distingués sur le bord. Expliquons cela plus en détail. Le disque brownien libre est muni d'une mesure volume mais aussi d'une mesure uniforme sur son bord, voir

  Pour fixer les notations, nous désignerons par B 1 r H g l'ensemble des points d'étiquette 0 et par B 2 r H g l'épine; nous verrons B 1 r H g Y B 2 r H g comme le bord de r H g . Nous interpréterons alors la variable ζ g comme la longueur de B 2 r H g et Zp r H g q comme la longueur de B 1 r H g . Finalement nous introduirons une variable Yp r H g q donnant sens au volume total de points de l'arbre r H

g . Les quantités pζ g , Zp r H g q, Yp r H g qq auront des interprétations géométriques naturelles quand nous relierons l'espace Θp r H g q au disque brownien D b,'' . De plus dans l'espace Θp r H g q, les étiquettes correspondent aux distances à la partie encodée par B 1 r H g . Avant de présenter les applications de cette construction à l'étude des hulls et des cellules de Voronoï de D b,'' , nous rappelons que n désigne la mesure d'Itô de l'excursion Brownienne (avec normalisation npsup e ą 1q " 1{2). Nous introduisons aussi la mesure σ-finie n ' définie par:

n ' pF pt ' , eqq :" n `ż σ 0 dt F pt,

eq ˘, qui est une version biaisée par le temps de vie σ de la mesure n. Sous les mesures n et n ' , nous considérons aussi, conditionnellement à e, les deux arbres étiquetés H e et H ? 3e .

3. Theorem 4.4. Let

  r ą 0. On the event tsuptHpxq : x P D z u ą ru, let C 1 , C 2 , C 3 , . . . be the connected components of tx P D z : Hpxq ą ru ranked in nonincreasing order of their boundary sizes, and for every j " 1, 2, . . ., let d j denote the intrinsic metric induced by the Brownian disk metric on the open set C j . Then, a.s. on the event tsuptHpxq : x P D z u ą ru, for every j " 1, 2, . . . the metric d j has a continuous extension to the closure C j of C j in D z , and this extension is a metric on C j . Furthermore, conditionally on the sequence of boundary sizes p|BC 1 |, |BC 2 |, . . .q, the metric spaces pC 1 , d 1 q, pC 2 , d 2 q, . . . are independent free Brownian disks with respective boundary sizes |BC 1 |, |BC 2 |, . . ..

  ). We can then set Čpaq r " tb P T ζ : c 0 P rra, brr and V c ą r for every c Pssc 0 , bssu,

	and C	paq r´i s the closure of the union C	paq r Y	Čpaq r . Notice that	Čpaq r " C	pbq r for any b P	Čpaq r . For future
	use, we note that the boundary of C	paq r , or of	Čpaq r , has zero volume (by (iii)).

  r n , Z | for every s ă r n , and r n Ò r 8 as n Ò 8. By compactness, we may assume that a n ÝÑ a 8 P T ζ as n Ò 8, and it is clear that a 8 P T ζ (the case V a8 " 0 is excluded since it would imply that r 8 " 0). V a ' q. For future use, we note that, for every a P T ζ , we have a P C

	(the last inequality because V an ě r n for every n), it follows that
					Z pa8q s	ą |∆Z pa8q s	| , for every s ă r 8 .
	We next claim that r 8 " V a8 . Otherwise, we would have r 8 ă V a8 and then either r 8 would be
	a continuity time of Z pa8q , which immediately gives a contradiction with the definition of r 8 , or
	r 8 would be a discontinuity time of Z pa8q , and, by taking a " a 8 or a P	Čpa8q r8 , we would again
	get a contradiction with the definition of r 8 .
	It remains to verify that a 8 is regular. If a 8 is not regular, then we can choose
					b P	č	C pa8q r
					rPr0,Va 8 q
	with V b ą V a8 " r 8 . If r 8 is a continuity point of r Þ Ñ Z	pbq r , we get a contradiction with the
	definition of r 8 . If r 8 is a discontinuity point of r Þ Ñ Z	pbq r , then, by taking a " b or a P	Čpbq r8 , we
	again get a contradiction. This completes the proof.
	Let u P p0, pa ' q u	if and only if
	V a ą u and Z	paq r ą |∆Z	paq r | for every r ď u. The "only if" part is trivial. Conversely, assuming that
	V a ą u and Z	paq r ą |∆Z	paq r | for every r ď u, the property a R C	pa ' q u
					panq s	ą |∆Z	panq s
	Using property (ii) in Proposition 4.5, we have, for every n,
			Z pa8q s	ą |∆Z pa8q s	| , for every s ă r n ^min cPrran,a8ss	V c .
	Since			
					min cPrran,a8ss	V c ÝÑ nÑ8	V a8 ě r 8

  x 

	where we have written Z	psq t " Z	paq t	if a " p ζ psq to simplify notation.
	The preceding considerations show that	
				Wsąu; Z t ą|∆Z psq t |,@tďuu psq	volpC	1 u pp ζ psqq	q	,

  for some constant C ą 0 (the cases C " 0 and C " 8 are excluded since the preceding equalities would give an absurd statement). So the quantity (4.20) is also equal to C times

	" z 2 E F `pX t q 0ďtďu ˘1tH 0 ąu; X t ą|∆X t |,@tďuu pX űq ´2ı .	(4.21)
	We will rewrite this quantity in a different form. In the remaining part of the proof, we take
	z " 1 for the sake of simplicity (of course the self-similarity of X ˝will then allow us to get a
	similar result for an arbitrary value of z). Using the representation in Proposition 4.4, we obtain
	that the quantity (4.21) is equal for z " 1 to	
	E " F ´`exppξ ˝pχ ˝ptqqq ˘0ďtďu ¯1tχ ˝puqă8u	(4.22)
	ı
	ˆ1t∆ξ ˝psqą´log 2, @sPr0,χ ˝puqsu expp´2ξ ˝pχ ˝puqqq	.
	Lemma 4.3. For every v ě 0, set	
	M v " 1 t∆ξ ˝psqą´log 2,@sPr0,vsu expp´2ξ ˝pvqq.	

  min s^s 1 ďrďs_s 1 ζ r pωq, and T pωq is equipped with the distance induced by d pωq ps, s 1 q " ζ s pωq `ζs 1 pωq ´2 min s^s 1 ďrďs_s 1 ζ r pωq.

s " s 1 if and only if ζ s pωq " ζ s 1 pωq "

  so, when a is large, the property (5.36) will hold except on a set of small probability. Also, by Lemma 19, we know that the property (5.35) holds outside an event of small probability. Note that, when (5.36) holds, labels do not vanish on T i 8 zT

			i,paq 8	.
	The statement of the proposition follows from Lemma 20. Indeed, by Corollary 8,
	inftΛ u : u P T i 8 zT 8 i,paq	u ÝÑ aÑ8	`8 , a.s.
		i,paq
		8	

and

  and (5.36) hold, so that T paq and T " T paq , we use the notation ru, vs T i 8 for the interval from u to v in T i 8 , and similarly ru, vs T paq for the same interval in T paq . We note that either ru, vs T i 8 Ă T

	i,paq 8	are identified. If u, v P T	i,paq 8
	i,paq 8			i,paq 8	, and then ru, vs T i 8 is the union
	of ru, vs T paq and T i 8 zT 8 i,paq	.	
	We use the notation T	i,paq,8	" tu P T	i,paq 8

, and then ru, vs T i 8 " ru, vs T paq , or ru, vs T i 8 Ć T

  The intrinsic metric on B ˝prq has a.s. a continuous extension to B ' prq, which is denoted by ∆ horo,r

	8
	Proposition 32. The limit
	lim

εÓ0 ε ´2 Volptx P B ' prq : H x ă ´r `εuq exists a.s. This limit is called the boundary size of B ' prq and denoted by |BB ' prq|. Theorem 33.

  is tx P H 8 : Λ x ą ru. We distinguish a special point x prq of the boundary of H prq 8 , which corresponds to the point of the spine of T hp 8 at height L r " suptt ě 0 : R t " ru.

	The interior H	prq,8	
	Theorem 37. The intrinsic metric on H prq,8	has a unique continuous extension to H	prq 8

prq 8 :" tx P H 8 : Λ x ě ru.

  Before proving Proposition 39, let us explain why the statement of Proposition 38 follows from this proposition. Recall from Section 5.4.3 that H z denotes the distance from the distinguished point of D ' z to the boundary. Since p D' z , H z q and p D1' z , H 1 z q have the same distribution, D1',paq z has the same distribution as D' z conditioned on H z ě a, whereas the pointed space D',a z in Theorem 21 has the distribution of D' z conditioned on H z " a. Hence, by comparing the convergences in Theorem 21 and in Proposition 39, we conclude that D 8 z and D 18 z have the same distribution.

	.67) that D 1'' z and D '' z have the same distribution. Let D' z , resp. D1' z , be the pointed space
	obtained from D '' z , resp. from D 1'' z , by forgetting the first distinguished point. Then p D' z , H z q
	and p D1' z , H 1 z q also have the same distribution.	
	Proposition 39. For every a ą 0, let	D1',paq z	be distributed as D1' z conditioned on the event
	tH 1 z ě au. Then		
		D1',paq z	pdq ÝÑ aÑ8	D 18

z in distribution in the sense of the local Gromov-Hausdorff-Prokhorov convergence.

Some Laplace transforms

  

	Recall the standard notation				erfcpxq "	2 ? π	ż 8 x	e	´t2 dt.
	Then the function χ 1 defined for x ą 0 by			
	χ 1 pxq "	1 ? π	x ´1{2 ´ex erfcp ?	xq "	1 ? π	e x	ż 8 ? x	1 t 2 e ´t2 dt,	pA.0q
	satisfies, for every λ ą 0,		ż 8				
					dx e ´λx χ 1 pxq " p1 `?λq ´1.	pA.1q
				0				
	This is easily verified via an integration by parts which gives for λ ą 0,
		ż 8 0	erfcp	? xqe x e ´λx dx "	?	1 λp1 `?λq	.
	From the last two displays and an integration by parts, one checks that the function χ 2 " χ 1 ˚χ1 ,
	which satisfies		ż 8				
					dx e ´λx χ 2 pxq " p1 `?λq ´2,	pA.2q
				0				
	is given for x ą 0 by								
	χ 2 pxq " e x erfcp ?	xq ´2x χ 1 pxq " p2x `1qe x erfcp	? xq ´2 ? π	x 1{2 .
	Similar manipulations show that the function χ 3 " χ 1 ˚χ1 ˚χ1 satisfying
			ż 8				
					dx e ´λx χ 3 pxq " p1 `?λq ´3.	pA.3q
				0				
	is given by								
										8 ,
	in distribution in the sense of the local Gromov-Hausdorff-Prokhorov convergence. On the other
	hand, it follows from Theorem 26 that we have	
						λ ¨D ' z	pdq ÝÑ λÑ8	H 8 .

Since D ' z and D 1' z have the same distribution, we conclude that H 8 and H 1 8 also have the same distribution as desired.
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  3.4 we prove a strong version of the spatial Markov property of the Brownian plane, which has been first derived in[START_REF] Gall | Spine representations for non-compact models of random geometry[END_REF] Section 5.1]. The statement of this property requires some notation and we give the precise formulation of this property in Section 6.3.4. Combining Theorem 6.1 with this strong spatial Markov property we are able to study isoperimetric properties of the Brownian plane. Let us be more precise about this point.

  Proposition 6.8. Let f : R `Ñ R ˚be a positive nondecreasing function such that ř

					f pmq ´2 "
	8 . Then,			mPN
		inf AĂB ' 1 APK	|A| ∆pBAq 4 1	f p| logp|A|q|q " 0, Θ 0 -a.s.	(6.37)
	and	inf APK B ' 1 ĂA	∆pBAq 1 |A| 4	

  .[START_REF] Curien | The skeleton of the UIPT, seen from infinity[END_REF] By(6.13), Z m`k`4 follows the Gamma distribution with parameter3 2 and mean pm `k `4q 2 . So we can find d 1 pαq ą 0 independent of m and k such that:,s 2 | " 0 if s 2 ď s 1 . Let 0 ă s 1 ď s 2 . We observe that |B ' s 1 | is independent of Z s 2 conditionally on Z s 1 .This follows from the special Markov property and the spine independence property, using the fact that |B ' s 1 | is determined by the excursions of ω below s 1 for all atoms of L and R such that t ě τ s 1 , and by the atoms pt, ωq such that t ď τ s 1 . Thanks to this conditional independence property, we have

	Θ 0 pexpp´αZ m`k`4 qq ď	d 1 pαq pm `k `4q 3 , Θ 0 pZ m`k`4 expp´αZ m`k`4 qq ď	d 1 pαq pm `k `4q 3 . (6.43)
	Moreover, noting that |BB ' m`k`4 | " 0, Θ 0 -a.s. , we obtain:	
	Θ 0 `expp´αZ m`k`4 q|B ' mr | ˘" Θ 0 `expp´αZ m`k`4 q|B ' pm`k`4q ^mr | Θ0
		`expp´αZ m`k`4 q|B ' m`k`4,mr |	where
	by convention |B ' s 1		

  in two cases: ' Case 1: Assume that BA intersects BB ' 2 m´1 . As |B ' 2 m | ă |A|, there exists x P AzB ' 2 m . Consider a path p 8 connecting x to 8 that does not hit B ' 2 m and let y be the last point of p 8 that belongs to A. By construction we have y P BA and y R B ' 2 m . Finally let z P BA X BB ' 2 m´1 . Since BA connects y and z we have ∆pBAq ě ∆py, zq ě 2 m´1 . Case 2: Assume BA does not intersect BB ' 2 m´1 . Since |A| ą |B ' 2 m´1 |, the set A is not contained in B ' 2 m´1 . This implies that BA separates B ' 2 m´1 from infinity, and consequently ∆pBAq ě L 2 m´1 .

	' It follows that:	∆pBAq	
			1		
		|A|	4		
	This implies that:				
		∆pBAq |A| 1 4	f p| logp|A|q|q ě	2 m´1 |B ' 2 m`1 |	4 1	f p| logp|B ' 2 m |q|q.

  .4) We now turn to exit measures. Let O be an open set in R d such that x P O. For every w P W x , set τ O pwq " inftt P r0, ζ pwq s : wptq R Ou with the usual convention inf ∅ " `8. Then N x a.e. there exists a random finite measure Z O supported on BO such that, for every bounded continuous function ϕ on BO, we have xZ O , ϕy " lim tτ O pWsqďζsďτ O pWsq`εu ϕpW s pτ O pW s qqq.

	εÑ0	1 ε	ż σ 0	ds 1 (7.5)
	See [65, Chapter V]. Then, for every nonnegative measurable function ϕ on R d ,

  for a more precise definition), and note that Z O is measurable with respect to E O . Then the special Markov property states that, under N x and conditionally on E O , the point measure ÿ

			δ ω piq
		iPI
	is a Poisson random measure with intensity	ş	Z O pdyq N y p¨q.

  |q, for every fixed k ě 0. To this end, we apply the special Markov property to the Brownian snake with spatial motion pB t , L 0 t pBqq and the open set O " R ˆp´8, δ `kεq, noting that the event tL ˚ě δu is then E O -measurable. It follows that, under N 0 p¨| L ˚ě δq and conditionally on X δ`kε " a, the quantity H

							ε,pδq k	is distributed as
							ż
							N pdωq U ε pωq
	where N pdωq is a Poisson point measure with intensity a N 0 , and the random variable U ε is
	defined under N 0 by					
						ż σ
				U ε "	0	ds 1 t0ă x Wsăε,0ă p LpWsqďεu .
	Hence, conditionally on X δ`kε " a, H	ε,pδq k
							.13)
	where	H	ε,pδq k	"	ż σ 0	ds 1 t0ă x Wsăε, δ`kεă p LpWsqďδ`pk`1qεu .
	The idea of the proof is to bound N 0 p|εX δ`kε	´ε´1 H	ε,pδq k

  Fix A ą 0 and consider the event E A :" tL ˚ď Au X tsuptX r : r ě 0u ď Au. Notice that on this event we have X δ`kε " 0 and H

										4 U 1 ε ´2t q tě0 . Next
	the law of large numbers shows that				
				lim tÑ8	sup sďt	E	" |U 1 s ´s| t	ı	" 0.	(7.14)
			ε,pδq k	" 0 as soon as δ `kε ą A. It follows that
	N 0 ´1E A |ε	8 ÿ	X δ`kε	´ε´1	8 ÿ	H	ε,pδq k	| ˇˇL ˚ě δ	ď
		k"0				k"0		
	εptA{εu `1q sup 0ďkďtA{εu	N 0 ´1tX δ`kε ďAu |X δ`kε	´ε´2 H k ε,pδq	| ˇˇL ˚ě δ	ď
	εptA{εu `1q sup 0ďaďA	Er|ε ´2U ε a ´a|s
	" εptA{εu `1q sup					
			0ďsďA{ε 2				

  To simplify notation, we set r F `pλq " F `pλq ´1{3, r F 1 stands for the Gauss hypergeometric function. This equality is easily checked by a direct calculation, noting that the hypergeometric series reduces to a finite sum in the case we are considering It follows that, for every n ě 2,

	and finally							
			rλ n sF `pλq "	p´1q n n	p3	?	2q	´n ´´3rλ n´1 s ´p1 ´2λq ´n`1 p1 ´λq ´n1
								3	rλ n´1 s ´p1 ´2λq ´n´3 p1 ´λq ´n¯¯.	(7.29)
	To compute the right-hand side, we observe that, for every integers m ě 0, k ě 1 and ě 1, we
	have	rλ m sp1 ´2λq ´kp1 ´λq ´ " 2 m ˆm `k m	´1 ˙2F 1 p´m, ; ´m ´k `1;	1 2	q,
	where 2 rλ n´1 s ´p1 ´2λq ´n`1 p1 ´λq	´n¯"	γpzq " γ 1 pzq `36 ´1 ˙2F 1 p´n `1, n; ´2n `3; ? 2 and for every λ ě 0, 2 n´1 ˆ2n ´3 n 1 2 q (7.30)
	r Rpλq " Rpλ ´36 ? rλ n´1 s ´p1 ´2λq ´n´3 p1 ´λq ´n¯" 2 n´1 ˆ2n `1 2q ´1{3. n ´1 ˙2F 1 p´n `1, n; ´2n ´1;	1 2	q.	(7.31)
	Then, for λ ą 0 small, we have
					r F `pλq " F `pλq	´1 3	" Rpγ 1 pλqq	´1 3	" r Rpr γpλqq.	(7.27)
									r γpλq " λ r ψpr γpλqq,	(7.28)
	with							
									r ψpλq "	´124416 p36 ? 2 ´λqp72 ?	2 ´λq	.
	By (7.27), (7.28) and the Lagrange inversion theorem, we get for every n ě 1,
					rλ n sF `pλq " rλ n s r F `pλq "	1 n	rλ n´1 sp r R 1 pλq r ψpλq n q.
	Note that							
			r R 1 p72 ?	2λq " R 1 p72 ? 2pλ ´1qq "	´?2 48	p1 ´2λq	`1 216 ?	2	p1 ´2λq	´3
			r ψp72 ? 2λq "	´24 p1 ´λqp1 ´2λq	,
	from which it follows that		
	rλ n´1 sp r R 1 p72 ?	2λq r ψp72 ?	2λq n q
	" p´24q n ˆ˜´´? 2 48	rλ n´1 s ´p1 ´2λq ´n`1 p1 ´λq ´n¯`1 216 ?	2	rλ n´1 s ´p1 ´2λq ´n´3 p1 ´λq ´n¯¸,

On the other hand, the property Qpγ 1 pzqq " z for |z| ă r 0 shows that

  .1) see [71, Theorem 1] and [2, Proposition 31]. We denote the boundary of D z by BD z . In [71, Section 10] the volume measure Vol d is used to define a natural "uniform" measure m D z supported on BD z as follows:

  ErF pD z qs , for every measurable function F : K Þ Ñ R `. Note that the measure N ˚is no longer a finite measure but a σ-finite measure. Furthermore, formula (8.2) allows us to extend the definition of the uniform measure under N ˚and we denote it by m D . To simplify notation we write:|BD| "ă m D , 1 ąfor the boundary length of D. Under N ˚, since the boundary length is no longer fixed, we will call the space D : Brownian disk rooted on the boundary with free volume and free perimeter. The variable D lives in the set K

		ż 8	
	2π	0	dz z ´5 2

' :" tpM, xq : M P K and x P Mu, which we equip with the associated Gromov-Hausdorff-Prokhorov distance (see [71, Section 2.1] for more details). We now define a marked version of N ˚by the relation:

  Hw is the interval of H w consisting in all the points visited by going from u to v in "clockwise direction" along H w . Finally, we define ∆ w as the largest function on H w ˆHw bounded above by ∆ w and verifying the triangle inequality. In the considered cases of this work, ∆ w will have a unique continuous extension to H w , which will define a pseudo-distance on H w . In the rest of this introduction assume that ∆ w has a continuous extension and, to simplify notation, write H P r0, ζ w s. We will show in Section 8.2.2 that there exists a natural notion of volume measure on H w {∆ w and we will also equip H w {∆ w with this measure. Let us now apply this construction to random functions w, mainly to different variations of the Brownian excursion. To fix notation, we introduce e, a Brownian excursion under the Itô measure n, and denote its lifetime by ζ e . The normalization is taken such that:

	ru,vs Hw where rv, us npsup e ą εq " Λ, inf rv,us Hw 8	Λ ˘if max `inf ru,vs Hw otherwise, 1 2ε ,	Λ, inf rv,us Hw	Λ ˘ą 0

w {∆ w for the quotient of H w by the equivalence relation « defined by u « v if and only if ∆ w pu, vq " 0. By definition, the pseudo-distance ∆ w factorizes through « and defines a distance on H w {∆ w . We equip the space H w {∆ w with the distance ∆ w and we point it at the equivalence class of 0

  B B' r ) for the set of all points of B ' r (resp. B' r ) that do not have a neighborhood homeomorphic to the open disk. We interpret BB ' . As previously seen for Voronoï cells, the intrinsic distance on Br has a continuous extension to B' r (seeTheorem 8.3

r and B B' r as the boundaries of B ' r and B' r respectively. Now remark that B B' r is the union of B 1 B' r :" B ' r X B' r and B 2 B' r :" BD ' X B' r . By planarity, the intersection of B 1 B' r and B 2 B' r is reduced to two points. We finally introduce the set Br :" B' r zB B' r

  1 p¨X S pnq qq ^2´n ,(8.4) where S pnq " r0, 2 n s ˆtω P S : σpωq ą 2 ´nu, and d Pro stands for the Prokhorov metric inducing the weak topology on finite measures on R `ˆS . Let us extend the previous operations to the set M pSq. Now for every λ P R and P P M pSq we define two elements P `λ and hom λ Ppdtdωq of M pSq by the relations

	ż	ż
	F pt, ωq pP `λqpdtdωq :"	F pt, ω `λq Ppdtdωq;
	ż	ż
	F pt, ωq hom λ Ppdtdωq :"	F pλt, hom λ ωq Ppdtdωq.

  We define an equivalence relation by setting s « dω t if d ω ps, tq " 0 and we denote the associated canonical projection by p ω : r0, σpωqs Ñ r0, σpωqs{ « dω . The space pr0, σpωqs{ « dω , d ω q is an R-tree. The volume measure V ω on r0, σpωqs{ « dω is the pushforward of Lebesgue measure on r0, σpωqs under p ω . We denote the pointed weighted compact space `r0, σpωqs{ « dω

ω. Let ω P S and define: d ω ps, tq :" ζ ωs `ζωt ´2 inf rPrs^t,s_ts ζ ωr for every s, t P r0, σpωqs. Since s Þ Ñ ζ ωs is continuous, d ω is a continuous pseudo-distance on r0, σpωqs.

  is not a leaf then for every w P T ztvu we have max ´inf T :" tv P T : Λ v " 0u and B 2 T :" ra, bs. We interpret B 1 T and B 2 T as the "boundaries" of T and we write BT for the union B 1 T Y B 2 T . The set B 2 T is also called the spine of T . From now on, set |B 1 T | :" ZpPq and |B 2 T | :" b ´a,

	rw,vs T	Λ, inf wPrv,ws T	Λ ¯ă Λ v .
	Set B 1		

  .[START_REF] Bouttier | Planar maps as labeled mobiles[END_REF] Proof. Fix f and H f as in the statement. Formula (8.25) is a particular case of the Feynman-Kac formula. Let us explain how to obtain(8.26). First, under n, set τ ε :" infts ě 0 : e s ě εu with the convention inf H " ζ e . Then by monotone convergence we have

	n `1 ´exp	`´ż ζe 0	dtf pe t q ˘˘" lim εÑ0	n `1 ´exp	τε `´ż ζe	dtf pe t q ˘˘.
	We can then apply the Markov property to obtain that:		
	n `1 ´exp	`´ż ζe 0	dtf pe t q ˘˘" lim εÑ0	n `sup e ą ε	˘¨`1	´Eε	"	0 expp´ż ζ B	dtf pB t qq	‰˘.

  Γptq. Moreover, since Π d pΓpsqq and Π d pΓptqq are leaves (by pH 1 q), we have Π d prΓpsq, Γptqsq " rE d Γpsq , E d Γptq s T d . We get that, for every P rΓpsq, Γptqs, we must have γ pΛ q P rE d Γpsq , E d Γptq s T d . Consequently, for every P rΓpsq, Γptqs, the simple geodesic Π d ˝γ hits the boundary in Lps, tq. In particular, we deduce that: Π d `rE d Γpsq , E d Γptq s T d ˘Ă Vps, tq.

  d pΓptqq no belonging to the spine rrE d 0 , E d Γptq ss T d , we have ∆ d pv, wq " 0 iff ∆ d pΓptqq pv, wq " 0. Moreover by the first assumption of pH 3 q, the only points of rrE d 0 , E d Γptq ss T d that can be identify by ∆ d or ∆ d pΓptqq with another point of the tree T d are the extremities E d 0 and E d Γptq . But since 0 and t are continuity times of Γ, we see by the third assumption of pH 3 q, that either E d 0 nor E d Γptq are identify with others points of T d (by ∆ d or ∆ d pΓptqq ). So we deduce the following fact: For every v, w P T d pΓptqq , we have ∆ d pv, wq " 0 if and only if ∆ d pΓptqq pv, wq " 0. The same argument works for T d pΓptqq replaced by T d,1 pΓptqq and ∆ d pΓptqq replaced by ∆ d,1

  ˝pr0, tsq is bounded above by ∆ d pΓptqq px, yq. To this end, write BT d pΓptqq for the boundary of T d pΓptqq and set T d,p Γptqq " T d pΓptqq zBT d pΓptqq . We claim that, for every v, w P T d,p Γptqq with inf rv,ws T d , is the length of a path taking values in V ˝pr0, tsq and connecting Π d pvq to Π d pwq. This impliesby the previous display and the definition of ∆ d pΓptqq as an infimum (8.16) -that r ∆ d pΓptqq is bounded above by ∆ d pΓptqq on V ˝pr0, tsq. Let us explain why this claim holds. Start by fixing v, w P T d,p Γptqq , such that inf rv,ws pT d

		Λ d ą 0, the quantity	
		Γptq		
	Λ d v	`Λd w ´2 inf rv,ws T d pΓptqq	Λ d Γptq	q

  and we get the reverse bound r ∆ d pΓptqq px, yq ě ∆ d pΓptqq px, yq. Finally it remains to prove (8.28) in order to conclude the proof of the lemma. To this end remark that for every v, w P T d if inf rv,ws T d Λ d ą 0, then the interval rv, ws T d is identified with an interval of T d pΓptqq or an interval of T d,1 pΓptqq . This implies that for every v, w P T d :∆ d,˝p v, wq ě ∆ d pΓptqq pv, wq ^∆d,1 pΓptqq pv, wq " r ∆ d pΓptqq pv, wq ^r ∆ d,1 pΓptqq pv, wq.

	˝`u j , u j`1	˘" p´1 ÿ j"0	∆ d,p	Γptqq `uj , u j`1 ˘ě ∆ d pΓptqq	`γ`i n	˘, γ	`i	`1 n	˘˘,

  Now remark that the function Hpxq " `a3{2λ ´1 2 `x˘´2 is bounded and solves the differential equation H 2 pxq " 6p a 3{2λ ´1 2 `xq ´2H pxq so by (8.26) we get: Let us now turn to the case p˚q. First remark that, by (8.20) and an application of Fatou's lemma, we have: N 1,_ ptq qF 1 pW _ t qF 2 pN _ ptq qF 3 pN 1,_ ptq q1 W _ We are going to conclude by showing that: 2n `GpP e , P 1 e qF 1 peqF 2 p r P e qF 3 p r N 1,_ ptq qF 1 pW _ t qF 2 pN _ ptq qF 3 pN 1,_ ptq q1 W _ t p0qďε ˘. (8.32)Let us explain why the proposition follows from(8.32). First(8.32) gives: Γptq qF 2 pN _ pΓptqq qF 3 pN 1,_ pΓptqq q ˘ď 2n `GpP e , P 1 e qF 1 peqF 2 p r P e qF 2 p r

	P 1 e q	"		
	lim inf εÑ0 ptq , N ε ´2N ˚`ż σ 0 dt GpN _ ˚`ż Z 0 0 dt GpN _ pΓptqq , N 1,_ pΓptqq qqF 1 pW _				P 1 e q	˘.
					2π	0 ż 8	dz z ´3 2 p1 ´expp´λzqq "	?	6λ.
									ż ζe
									dt u λ,0 pe t q	˘"
									0
					n `1 ´exp `´3	ż ζe 0	dt	`c 3 2	λ ´1 2 `et	˘´2 ˘˘.
	n `1 ´expp´ZpP e q ´ZpP 1 e qq ˘"	´1 2	H 1 p0q Hp0q	"	c	3 2	λ	1 2 ,
	which gives (8.31). N ˚`ż Z 0 0 dt GpN _ pΓptqq ,N 1,_ pΓptqq qqF 1 pW _ Γptq qF 2 pN _ pΓptqq qF 3 pN 1,_ pΓptqq q	"
	N ˚`ż σ 0	dL s expp´λZ 0 qF 1 pW _ Γptq qF 2 pN _ pΓptqq qF 3 pN 1,_ pΓptqq q ď
	lim inf εÑ0	ε ´2N ˚`ż σ 0	dt GpN _ ptq , t p0qďε	˘.

On the other hand, recalling the notation u λ,µ from (8.8) , we have: n `1 ´expp´ZpP e q ´ZpP 1 e qq ˘" n `1 ´exp `´2

  1,_ t qF 1 pW _ t qF 2 pN _ ptq qF 3 pN 1,_ ptq q1 W _ By standard properties of the Itô measure, we have:

										"
							t p0qďε
						ż ε			
						2	dr E r	"	Gp r P B , r P 1 B qF 1 pBqF 2 p r P B qF 3 p r P 1 B q ‰	,
						0			
	ż ε									ż ε
	2	dr E r	"	Gp r P B , r P 1 B qF 1 pBqF 2 p r P B qF 3 p r P 1 B q ‰	" 2	dr E r	"	F 1 pBq ‰	,
	0									0
				lim rÑ0	1 2r	E			

or every ε ą 0. Since conditionally on B, the distribution of `PB , P 1 B ˘is P pBq b P pBq , we obtain:

with

F 1 pBq :" F 1 pBqE pBq b E pBq " Gp r P, r P 1 qF 2 p r PqF 3 p r P 1 q ‰ .

The functions F 1 is continuous on W ànd there exists δ ą 0 such that F 1 pwq " 0 if sup w ă δ. r rF 1 pBqs " n `F 1 peq ˘.

  we have:n `1 ´exp `´pγ ´1qζ e ´pλ ´1qZpP e q ´1{2 YpP e q ˘"Recall the definition of g λ,µ after (8.8), and observe that u λ´1, 1 So by(8.26) to compute the quantity above we need to find a two times differentiable bounded function H solving the differential equation:

			n `1 ´exp	`´ż ζe 0	dtpγ ´1 `2u λ´1, 1 2	pe t qq ˘˘.
					2	pxq " 3{2 ¨g2 `x˘´1	with the
			b		
	notation gpxq :" g λ´1, 1 2	px	`gp´1q λ´1, 1 2 3 λqq. B 2 p 2 Bx 2 Hpxq " `6g 2 pxq `2γ	´6˘¨H pxq.	(8.33)

  Although it is achievable, it remains very technical. To bypass this issue, remark that we also have:

	Consequently we can rewrite (8.34) as follows:		
	n `1 ´expp´λZpP e q ´γζ e q "			
	c	2 3	¨´λ `exp `´i π 6 ˘?λγ `exp `´i π 3 ˘γ ? λ `exp `´i π 6 ˘?γ	`λ `exp `i π 6 ˘?λγ `exp `i π λ `exp `i π 6 ˘?γ ? 3 ˘γ	¯.
			`exp	`i π 3	˘¨y	˘´5 2 `exp `´i	π 3	˘`x `exp `´i	3 π	˘¨y	˘´5 2 ¯dxdy.
	Proof. By Lemma (8.4) taking µ " 0 we obtain:	
	n `1 ´expp´λZpP e q ´γζ e q	˘" c	2 3	¨2λ	3 2	`2? 3λ 2λ `2γ ? γ `3γ `2? 3 ? ? λ `?3γ γλ	3 2	.	(8.34)
	One can then make two Laplace inversions using the partial fraction decomposition of (8.34) noting that λ `?3γλ `γ " p ? λ `exp `i π 6 ˘?γq ¨p? λ `exp `´i π 6 ˘?γq. 2λ 3 2 `2a 3γλ `3γ ? λ `?3γ 3 2 " `?λ `exp `i π 6 ˘?γ ˘¨pλ `exp `´i π 6 π ˘γq ˘aλγ `exp `´i 3 `p? λ `exp `´i π 6 ˘?γq ¨pλ `exp `i π 6 3 ˘aλγ `exp `i π ˘γq.

  for Lebesgue almost every ą 0. By continuity the previous equation holds for every ą 0 and allows us to obtain the desired result.We can give a similar result when conditioning on the boundary length ZpP e q or on ζ e . Using the notation of the Appendix: For every ą 0 and µ ą 0, we have: n `exp `´µYpP e q ˘ˇZ pP e q " "

						χ 1 pxq :"	1 ? π	x ´1{2 ´erfcp ?	xq exppxq,
	we have:										
	Proposition 8.3. expp´a2µ q ¨´1	`?π 2	¨p2µq	3 4	3 2 ¨´χ 1	´2 ´?3 2	a 2µ ¯´χ 1	´2 `?3 2	2µ a	¯¯ā
	nd										
	n `exp `´µYpP e q ˘ˇζ e "	"		
			expp´a2µ q ¨´1	`?π 2 ? 3	¨p2µq	3 4	3 2 ¨´χ 1	´2 ´?3 2	a	2µ ¯`χ 1	´2 `?3 2	2µ a	¯¯¯.
												1`?3 2 ? 6π	´3 2 d . We derive that:
	1 `?3 2 ? 6π	ż 8 0	d expp´λ q ´3 2 Gp q "	´1 `?3 2 ? 6	λ ´1 2 `1 `?3 2 ? 6 ¨1 λ 1 2 `2p2 `?3qλ	´1˘,
	and by performing a Laplace inversion, we get:
	1 `?3 2 ? 6π	´3 2 Gp q "	´1 `?3 2 ? 6π	4 ¨a6 ´1 2 `1 `?3 `3? 3	exp	`	2p2 `?3q	˘erf	¨´d	2p2 `?3q	¯

  A i,j paqx i´1 y j´1 .The polynomial P a is constructed so that the functionHpλ 1 , µ 1 , λ 2 , µ 2 , xq :"P µ 1 ´1 4 µ 2 1 4 ´gλ 1 ,µ 1 `p2µ 1 q 1 4 x `αλ 1 ,µ 1 ˘, g λ 2 ,µ 2 `p2µ 2 q , µ 1 , λ 2 , µ 2 , xq P R 5 `is a solution of the differential equation: B 2 Bx 2 Hpλ 1 , µ 1 , λ 2 , µ 2 , xq " 4 ´uλ 1 ,µ 1 pxq `uλ 2 ,µ 2 pxq ¯Hpλ 1 , µ 1 , λ 2 , µ 2 , xq. (8.36) 

	2 2a 2 `2 2a 2 `1 2 pa 2 `2q 1 ?	1 2 ap2a 2 `1q 3apa 2 `1q ? 2a 2 `2 a 2 pa 2 `2q 3 2 a 2 ? 2a 2 `2 3 2 a 2a 2 `2 0 ? ‹ '
	and			
		3	3
		ÿ	ÿ
	P a px, yq :"		
		i"1	j"1
					1 4 x `αλ 2 ,µ 2	˘ēxp
	`´b 2	a 2µ 1	`2a 2µ 2	¨xd
	efined for pλ 1			

  and (8.26) we get: For every pλ 1 , µ 1 , λ 2 , µ 2 , hq P R 5 `we haveE h " expp´λ 1 ZpP B q ´λ2 ZpP 1 B q ´µ1 YpP B q ´µ2 YpP 1 B qq ‰ " Hpλ 1 , µ 1 , λ 2 , µ 2 , hq Hpλ 1 , µ 1 , λ 2 , µ 2 , 0q

	Proposition 8.4.

  If s P rτ r , τ r `Zr s Ă T X prq , we identify the point s with the point E ὴ˚,r

	s´τr

r s : s P r0, Z r s ( Y E ὴ˚,r s´: s P r0, Z r s ( .

  Ă K r X T r .It is then an easy verification to show that, for every u, v P T X prq , we have:

	inf ru,vs T X prq	Λ X prq	"	inf rφpuq,φpvqs T	`Λ`a nd	inf rv,us T X prq	Λ X prq	"	inf rφpvq,φpuqs T	`Λẁ

r s´: s P r0, Z r s such that E ὴ˚,r s ‰ E ὴ˚,r s´(

  Bx 2 F pγ, λ, µ, xq " ´2γ `4u λ,µ p ? 3xq ¯¨F pγ, λ, µ, xq. Thanks to Proposition 8.7, we can determine the distribution of the triplet `ζe , ZpP e q, YpP e q ȗnder Under n the density of `ζe , Z `Pe ˘, Y `Pe ˘˘is: Proof. By Proposition 8.7 the quantity: n ´1 ´exp ´´pγ ´a2µqζ e ´pλ ´a2µqZ `Pe ˘´µYpP e qWe can now apply formula pA.3q to derive that the distribution of `ZpP e q, ζ e ˘is 3{4 ¨p2πq ´1 2 pz ` q ´5 2 dzd . Let us now come back to the case µ ą 0. First remark that: n ´exp `´γζ e ´λZ `Pe ˘˘¨`1 ´exp ´a2µζ e `a2µZ `Pe ˘´µY `Pe ˘¯ī

	n.								
	Lemma 8.7. 1 p ,z,vqPR 3 `3 8π	pz ` q v 5 2	1 2	exp	`´pz ` q 2 2v	˘d	dzdv.
										¯īs
	equal to								
	p2γ	´3? 2µq 2 ? ? γ ´p2λ 2γ ´2? 2λ ´3? 2µq	? λ	"	γ ? 2γ ´?2λ 3 2 ´λ 3 2	´a2µ	¨3? γ 2 ? 2γ	`3? λ ´2? 2λ	.
										?	3 2 2γ ´?2λ ´λ 3 2	"	1 ? 2	γ `λ `?γλ ? γ `?λ	.
										1 4 ¨gλ,µ `?3p2µq	1 4 h `αλ,µ	ȃγ
										`?2µ `aλ `?2µ
	s equal to	´a2µ	¨3? γ 2 ? 2γ	¨exp p2γ´?2µq ´´b 2γ `a8µ ? γ`?2µ´p2λ´?2µq ¨hā ? λ`?2µ 2 ? 2γ´2 ? 2λ . ´2? 2λ `3? λ " ´a2µ ¨3 2 ? 2 ? γ `2? 2 ? λ .
	Proof. Set								
	F pγ, λ, µ, xq :" ´bγ `a2µ `a3{2 ¨p2µq	1 4 g λ,µ `?3p2µq	1 4 x `αλ,µ ˘¯¨exp	´´b 2γ	`2a 2µ	¨x¯.
	A direct computation shows that F solves the differential equation:
		B 2						
	We can now apply Lemma 8.1 to obtain		
		E h	"	exp `´γζ B ´λZpP B q ´µYpP B q ˘‰ "	F pγ, λ, µ, hq F pγ, λ, µ, 0q

nd n `1 ´exp `´γζ e ´λZpP e q ´µYpP e q ˘˘" and n `1 ´expp´γζ e ´λZpP e q ´µYpP e qq ˘"

´1 2 1 F pγ, λ, µ, 0q ¨B Bx F pγ, λ, µ, xq ˇˇx"0 .

It is then a standard computation to derive the proposition.

for every µ, γ, λ P R `. Taking µ " 0 we obtain: n ´1 ´exp `´γζ e ´λZ `Pe ˘˘¯" γ

  and an application of dominated convergence we get: dt gpR t qF 1 `pR t´s q sPr0,ts ˘F2 `pR t`s q sPr0,σ´ts ˘" dt gpe t qF 1 `pe t´s q sPr0,ts ˘F2 `pe t`s q sPr0,ζe´ts ˘¨exp `´ż ζe 0 ds pe s `εq 2 ˘¯. dt gpe t qF 1 `pe t´s q sPr0,ts ˘F2 `pe t`s q sPr0,σ´ts ˘¨exp `´ż ζe `pB s ´εq sďTεpBq q expp´ż The formula above also holds with F 1 replaced by F 2 . By classical absolute continuity relations between Brownian motion and Bessel processes, the law of pB s q sďTεpBq under the probability measure

	´ż ζ R								
	n									
		0								
					´ż ζe					
			3 lim εÑ0	ε ´2n	0					
	Moreover using piq we derive that:			
	n	0 ´ż ζe									0	pe s `εq 2 ds	˘"
			ż 8 0	dh gphqE h	"	F 1 `Bq expp´ż 0 ζ B	ds pB s `εq 2 q ‰	¨Eh	"	F 2 `Bq expp´ż 0 ζ B	ds pB s `εq 2 q ‰	.
	Now remark that:							
		E h	" F 1 `Bq expp´ż 0 ζ B	ds pB s `εq 2 q ‰	" E h`ε	"	F 1 TεpBq 0	ds s B 2	q ‰	,
	where T h	`ε ε	TεpBq 0 ¨expp´ż	ds B 2 s

ε pBq :" infts ě 0 : B s " εu.

  prq t :" Y t ´r , 0 ď t ď ζ Y infts ě 0 : Y s " ru. For every nonnegative measurable functions F , G defined respectively on W and on M pSq, we have : infts ě 0 : Y t " ru. Now remark that for every w P W, such that inf w ě ´3´1 2 r, an application of the special Markov property combined with equation (8.6) gives ´1 2 ru. As in the previous proof, we use the fact that the law of pB s `r ? 3 q sďζ B under the probability measure:Finally by the special Markov property and (8.6) we have:P pBq `Gp r Pq1 P˚ą´r ˘" P pBq `Gp rWe need one last result to be able to prove Theorem 8.2. Let us use the notation of the Appendix:

	Proposition 8.8. E h`r ? 3 " F `Y prq ˘PpY prq	q `Gp r Pq | P ˚ą	´r˘ı "	`h	`r r	˘¨E h ? 3	" F pBqGp r P B q expp´3 2r 2 ZpP B qq	ı .
							P pwq `P˚ą	´r˘" exp	`´ż ζw	dt pwptq `3´1{2 rq	´2˘.
														0
	Consequently we derive:					
	E h`r ? 3	" F	`Y prq ˘PpY prq	q `Gp r Pq | P ˚ą	´r˘ı " E h`r ? 3	" F	`Y prq ˘PpY prq	q ´Gp r Pq1 P˚ą´r ¯exp	0 `ż ζ	Y	prq	t Y 2 dt	˘ı.
	Remark that we have ζ						
								h	`r r	¨exp	`´ż ζ B 0	B s	ds `3´1 2 r	˘¨P h 3 ?	,
	coincides with the law of pY s q sďζ	Y	3 prq under P h`r ?	, to deduce that:
	E h`r ? 3	" F	`Y prq ˘PpY prq	q `Gp r Pq1 P˚ą´r ˘exp	`ż ζ Y 0	prq	dt Y 2 t	˘ı "	h	`r r	E h 3 ?	" F	`B˘P pBq `Gp r Pq1 P˚ą´r ˘ı.
														Pq expp´3 2r 2 ZpPqq ˘,
	and the proposition follows.					
								χ 2 pxq " p2x `1qe x erfcp ?	xq ´2 ? π	x 1{2 .

Proof. Fix F : W Ñ R `and G : MpSq Ñ R `, two measurable functions. Recall that ζ Y prq :" Y prq " infts ě 0 : Y s ą 3

  rq 2 h 2 r 2 χ 2 pProof. Let λ ą 0. By Lemma 8.8 piq, we have:n ' ´exp `´λZpP e q ˘ˇˇe t ' " h ¯" n ' ´exp `´λZpP pe t ' ´sq sďt ' q ´λZpP pe t ' `sq sďζe´t ' q

		3z 2h 2 q expp´3 2r 2 zqdz.	
			˘ˇˇe t ' "	3 h ?	"
	"			
	E h ? 3	exp `´λZpP B q ˘ı2	.	(8.46)

  Thus we can apply Lemma 8.8 piiq to obtain: We now can give a proof of Theorem 8.2. Proof of Theorem 8.2. We argue under n ' . Let us introduce the point measures H 1 ' ´τr´t for t P r0, t ' ´τr s and R F pt ´t' , ωq P e pdtdωq, and we set e 1 t :" e t ' ´t for t P r0, t ' s and e 2 t :" e t ' `t for t P r0, ζ e ´t' s. Let F 1 , F 2 (resp. G 1 ,

												R and
	H 2 R defined by:								
				ż	F pt, ωq H 1 R pdtdωq :"	ż t ' ´τr 0	F pt, ωq P R `,prq	pdtdωq ;
				ż	F pt, ωq H 2 R pdtdωq :"	ż τ 1 r ´τr t ' ´τr	F pt ´t' `τr , ωq P R `,prq	pdtdωq.
	We also introduce the processes R t prq,1	:" R	prq,2 t	:" R	prq t ' ´τr`t for
	t P r0, τ 1 r	´t' s. Similarly we also write H 1 e and H 2 e for the point measures:
					ż						ż t '
							F pt, ωq H 1 e pdtdωq :"	F pt, ωq P e pdtdωq ;
												0
					ż						ż ζe
							F pt, ωq H 2 e pdtdωq :"	t '
	n ' ´expp´λZpP R `,prq	qq ˇˇR t ' " h	3 `r¯" E h`r ?	"	P pY prq	q `expp´λZpPqq ˇˇP ˚ą	´r˘‰ 2 .
	But by Proposition 8.8, we have :		
	E h`r ? 3	" P pY prq	q ´exp `´λZpPq ˘ˇˇP ˚ą	´r¯ı	"	`h	`r r	˘¨E h ? 3	"	exp `´pλ	`3 2r 2 qZpP B q ˘ı.
	Consequently, by (8.46):						
	n ' ´exp `´λZpP R `,prq	q	˘ˇˇR	t ' " h	`r¯" `h	`r r	˘2 ¨n' ´exp `´pλ	`3 2r 2 qZpP e q	˘ˇˇe t ' " h ¯,
	and we derive piiq from piq.				

prq t

  1 qF 2 pR prq,2 qG 1 pH 1 R qG 2 pH 2 R q ˇˇR t ' " h Pq | P ˚ą ´r˘‰ .Then, by an application of the identity between coding pairs given in Proposition 8.8 we get: ZpP B q ˘‰, and the same holds with pF 1 , G 1 q replaced by pF 2 , G 2 q. Putting all together we obtain that:ZpP B q ˘‰ ¨E h ZpP B q ˘‰.We can now apply Lemma 8.8 piq to deduce the following relation:n ' ´F1 pR prq,1 qF 2 pR prq,2 qG 1 pH 1 R qG 2 pH 2 R q ˇˇR t ' " h `r" ´F1 pe 1 qF 2 pe 2 qG 1 pH 1 e qG 2 pH 2 e q exp `´3 2r 2 ZpP e q ˘ˇe t ' " h ZpP e q) is a nonnegative measurable function of pH 1 R , H 2 R q (resp. pH 1 e , H2e )). It follows from (8.47) that, for any nonnegative measurable function φ defined on R `, we have: n ' ´F1 pR prq,1 qF 2 pR prq,2 qG 1 pH 1 R qG 2 pH 2 R qφ `ZpP ´F1 pe 1 qF 2 pe 2 qG 1 pH 1 e qG 2 pH 2 e qφ `ZpP e q ˘exp `´3 2r 2 ZpP e q ˘ˇe t ' " h ¯. By Lemma 8.8, the distribution e t ' and R t ' are equivalent to the Lebesgue measure on R `. We can now apply Lemma 8.9 to obtain that, for Lebesgue almost every h ą 0: Consequently, we deduce that ϕpz, hq " ϕ 1 pz, hq, for Lebesgue almost every z, h P R `. To conclude, we can now remark that, by Lemmas 8.8 and 8.9, the conditional distribution of R t ' ´r, knowing

	`r" ´r˘‰ ¨E h`r ? 3 " F 2 pY h `r r ¨E h ? 3 " F 1 pBqG 1 p r Pq exp `´3 2r 2 n ' F 1 pY " prq qP pY prq q `G1 p r Pq | P ˚ą prq qP pY prq E h`r ? 3 F 1 pY " q `G1 p r Pq | P ˚ą ´r˘‰ " ´F1 pR prq,1 qF 2 pR prq,2 qG 1 pH 1 R qG 2 pH 2 R q ˇˇR t ' " h `rī s equal to E h`r ? 3 `h `r r ˘2 ¨E h ? 3 " F 1 pBqG 1 p r Pq exp `´3 2r 2 ? 3 " F 2 pBqG 2 p r Pq exp `´3 ¯. `r r ˘2n ' (8.47) Since we can recover P `,prq R from pH 1 R , H 2 R q and P e from pH 1 e , H 2 e q, we can use definition (8.7) to see that ZpP `,prq R q (resp. `,prq R q ˘ˇR t ' " h `r" `h `r r ˘2n ' ż 8 0 dz ϕpz, hqφpzqχ 2 p 3z 2h 2 q expp´3 2r 2 zq " ż 8 0 dz ϕ 1 pz, hqφpzqχ 2 p 3z 2h 2 q expp´3 2r 2 zq. 2r 2 `h `,prq ZpP R

prq qP pY prq q `G2 p r

  The boundary length |BD ' `| is ζ R . So using the notation above and Lemma 8.8 piiq, we get:F pt, ω ´εq P Ỳ pdtdωq.and set ψpxq :" erfcpxq ¨exppxq. An application of an integration by parts gives the formula: dx e ´λx χ 1 pxq " p1 `?λq ´1.pA.1qFrom the last two displays and an integration by parts, one checks that the function χ 2 " χ 1 ˚χ1 , which satisfies ż 8

	Recall the standard notation		
		n ' `exp `´γ|BD ' `| ´µVol ``D ' `˘˘ˇR erfpxq " 1 ´erfcpxq " t ' " h ˘" E h ? 3 ż x 2 ? 0 π e ´t2 dt, " exp `´γζ Y ´µYpP Ỳ q	˘‰2 .
	Now recall for every ε ą 0 the notation
	Y `,pεq the point measure defined by the relation: pεq t " Y t ´ε , 0 ď t ď ζ Y ż 8 0 erfcp ? xqe x e ´λx dx " 1 ? , λ ą 0. λp1 `?λq Y and introduce P ż F pt, ωq P `,pεq Y pdtdωq :" We introduce now the function χ 1 defined for x ą 0 by ż ζ pεq Y 0 χ 1 pxq :" 1 ? π x ´1{2 ´ψpxq,
	Then the point measure P Y `,pεq and remark that χ 1 satisfies, for every λ ą 0, is distributed, conditionally on Y	pεq , as a Poisson point measure
	with intensity 21 r0,ζ			ż 8	
								0	
										εÑ0	E h ? 3	"	exp `´γζ Y	pεq ´µYpP Y `,pεq	q	˘‰2
	and then, applying the coding identity of Proposition 8.8, we deduce that the previous display is
	equal to								
								"	
					lim εÑ0 `h ε	˘2 ¨E h´ε ? 3	exp `´γζ B	´3 2ε 2 ZpP B q ´µYpP B q ˘ı2	.
	We can now apply Proposition 8.7 to derive:
			"					
	lim εÑ0	ε ´1E h´ε ? 3	exp `´γζ B	´3 2ε 2 ZpP B q ´µYpP B q ˘ı
		"	c	2 3	`bγ `a2µ `a3{2 ¨p2µq	1 4 coth `p2µq	1 4 h ˘˘¨exp	´´c 2 3	b γ `a2µ	¨h¯.
	and the desired result follows.		
	As we did for the boundary of B' r , we divide the boundary of the hull B ' r in two parts, noting
	that BB ' r " `B' r X B' r	˘Y `B' r X BD `˘and taking:
							B 1 B ' r :" B ' r X B' r ; B 2 B ' r :" B ' r X BD	`.

pεq :" inftt ě 0 : Y t " εu, Y pεq s ptqdt N Y pεq p¨X tW ˚ą ´εuq. In other words, conditionally on Y pεq , the law of P `,pεq Y is P pY pεq q p¨| P ˚ą ´εq. Moroever since ζ Y " infts ě 0 : Y s " 0u, we have:

ζ Y pεq Ñ ζ Y and YpP `,pεq Y q Ñ YpP Ỳ q

when ε tends to 0. We can now apply monotone convergence, to get

n ' `exp `´γ|BD ' `| ´µVol ``D ' `˘˘ˇR t ' " h ˘" lim

We have a natural notion of boundary length for B 1 B' r and B 2 B' r ; indeed we can set

|B 1 B ' r | " |B 1 B' r | " Z r and |B 2 B' r | " m D `pB ' r X BD `q " ζ R ´pτ 1 r ´τr q.

Appendix: Some Laplace transforms 0 dx e ´λx χ 2 pxq " p1 `?λq ´2, pA.2q is given for x ą 0 by χ 2 pxq " e x erfcp ? xq ´2x χ 1 pxq " p2x `1qe x erfcp ? xq ´2 ? π x 1{2 .

This exploration process allows us to define intervals on T 8 , in a way similar to what we did in Section 5.2.1. Let us make the convention that, if s ą t, the "interval" rs, ts is defined by

Our notation is somewhat misleading since L pr`a,8q and R pr`a,8q both depend on r and not only on r `a.Since r is fixed in most of this section, this should not be confusing.
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Special Markov property. Let x, r P R, such that x ą r. Under N x , conditionally on H x r , the point measure:

is Poisson with intensity Z r N r pdωq.

We refer to [START_REF] Gall | Subordination of trees and the Brownian map[END_REF]Corollary 21] for a proof. It will be useful to note that for r 1 ă r ă x, if we replace N x pdωq by N x pdω | W ˚ą r 1 q, the last statement remains valid up to the replacement of Z r N r pdωq by Z r N r pdω X tW ˚ą r 1 uq. The Laplace transform of Z r is given by:

for every λ ě 0. See e.g. formula [START_REF] Addario-Berry | Convergence of odd-angulations via symmetrization of labeled trees[END_REF] in [START_REF] Curien | The hull process of the Brownian plane[END_REF] . Remark that the limit when λ goes to 8 gives formula (8.6).

Coding triples and metric spaces

Infinite spine coding triples. An infinite spine coding triple is a triple pw, N `, N ´q such that:

(i) w : R `Ñ R is a continuous function;

(ii) N `" ř iPI δ pt i ,ω i q and N

´" ř iPJ δ pt i ,ω i q are point measures on p0, 8q ˆS (I and J are two disjoint indexing sets) and for every i P I Y J, ω i P S wpt i q ;

(iii) the numbers pt i q iPIYJ are distinct;

(iv) the functions u Þ Ñ β ù :"

take finite values, are monotone increasing on R `, and tend to 8 at 8;

(v) for every t ą 0 and ε ą 0:

# i P I Y J : t i ď t and sup sPr0,σpω i qs

We define a scaling operation for coding triples as follows; for every λ ą 0 hom λ ´w, ÿ iPI δ pt i ,ω i q , ÿ iPJ δ pt i ,ω i q ¯:" ´λwp¨{λ 2 q, ÿ iPI δ pλ 2 t i ,hom λ pω i qq , ÿ iPJ δ pλ 2 t i ,hom λ pω i qq

¯.

An infinite spine coding triple belongs to the space CpR `, Rq ˆM pSq ˆM pSq, where M pSq stands for the space of all σ-finite measures µ on p0, 8q ˆS putting no mass on the set tpt, ωq : σpωq " 0u

Proof of Proposition 6.4. By scaling we only need to prove the proposition for r " 1. Let ε P r0, 1q and set s " ε 2 and m " r 2 ε s. Then the bound (6. [START_REF] Bertoin | Random planar maps and growth-fragmentations[END_REF]) and the fact that L u 1 ,v 1 ď L u,v if ru 1 , v 1 s Ă ru, vs give: L 1,3 ď 2 `1 `min iPt0,...,m´1u N pm`i`1qs pm`iqs ˘s Θ 0 -a.s.. Consequently Θ 0 pL 1,3 ď εq ě Θ 0 ´m´1 Ť i"0 tN pm`i`1qs pm`iqs " 0u ¯. The desired result follows directly from Lemma 6.4.

Upper bound for the tail of L 1 near 0

We are going to deduce the upper bound for Theorem 6.1 piiq from the following result Proposition 6.5. For every δ ą 0, there exists a constant α δ such that for every r ě 1:

Θ 0 pL r,r`δ ă 1 | Z r`2δ q ď expp1 ´αδ Z r`2δ q.

We need to introduce some notation in order to prove Proposition 6.5 . Let u P T 8 zr0, 8q such that u is not a leaf. Set f u :" inftt P R `: E t " uu and u :" suptt P R `: E t " uu. We consider the subtree T puq 8 :" tE t : t P rf u , u su which is also equal to the set of all points v P T 8 such that u ĺ v. Remark that for every v 1 , v 2 P T puq 8 there are two possibilities, either rv 1 , v 2 s T8 Ă T puq 8 and in this case 0 R rv 1 , v 2 s T8 or 0 P rv 1 , v 2 s T8 . Consequently ∆ ˝pv 1 , v 2 q only depends on the subtree `T puq 8 , pΛ v q vPT puq 8

˘. For every v, w P T ∆ ˝pv i , v i`1 q (6. [START_REF] Bousquet-Mélou | Limit laws for embedded trees: applications to the integrated super-Brownian excursion[END_REF] where the infimum is over all choices of the integer n ě 1 and all the finite sequences u 0 , . . . , u n of elements of T puq 8 verifying v 1 " v and v n " w. Remark that r ∆ u defines a continuous pseudodistance on T puq 8 (since v Þ Ñ Λ v is continuous) and that ∆pv, wq ď r ∆ u pv, wq for every v, w P T puq 8 . By the previous remark and since by pF q, for every v, w P T puq 8 , we have ∆pv, wq " 0 if and only if ∆ ˝pv, wq " 0, we see that r ∆ u defines a distance on ΠpT puq 8 q (and we keep the notation r ∆ u for this distance). To simplify notation, we introduce the set A u :" ΠpT puq 8 q and the paths γ Λ v , take:

u ptq :" Π `inftr P rf u , u s : Λ r " Λ u ´tu ȃnd γ p2q u ptq :" Π `suptr P rf u , u s : Λ r " min vPT puq 8

Λ v `tu ˘.

By construction and (8.17), γ p1q u and γ p2q u are two geodesic paths. We also observe that min vPT puq 8 Λ v ă Λ u as a consequence of [START_REF] Gall | Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere[END_REF]Lemma 3.2] (it is important to notice that this holds simultaneously for all u P T 8 zr0, 8q such that u is not a leaf). Moreover, we have γ

By the previous display, we may and will restrict our attention to the case when γptq R A u for every t P r0, 1s. By compactness, the quantity δ :" inf pt,vqPr0,1sˆBAu ∆pγptq, vq is positive. Let n ą 1 be an integer such that for every 0 ď i ď n ´1:

We are going to show that ∆ `γp i n q, γp i`1 n q ˘ě r ∆ u `γp i n q, γp i`1 n q ˘for every 0 ď i ď n ´1. By the triangle inequality this will imply that ∆pγq ě r ∆ u pγp0q, γp1qq. Fix 0 ď i ď n ´1 and consider

and recall that:

where the infimum is over all choices of the integer m ě 1 and all finite sequence u i,1 , . . . , u i,m P T 8 with pu i,1 , u i,m q " pu i , v i q. Since ∆pu i , v i q ă δ{3 we can restrict the previous infimum to finite sequence u i,1 , . . . , u i,m P T 8 with pu i,1 , u i,m q " pu i , v i q such that:

Consider such a sequence u i,1 , . . . , u i,m P T 8 and remark that ∆pu i,1 , u i,k q ă δ 2 for every 1 ď k ď m by triangle inequality. This implies by the definition of δ that u i,k P T puq 8 for every 1 ď k ď m. We conclude from the definition of r ∆ u that:

Consequently, ∆ `γp i n q, γp i`1 n q ˘ě r ∆ u `γp i n q, γp i`1 n q ˘for every 0 ď i ď n ´1 and thus ∆pγq ě r ∆ u `γp0q, γp1q ˘.

' Case 2: We now assume that γ hits BA u . Let s :" inftr P r0, 1s : γprq P BA u u. Without loss of generality, we may assume that γpsq belongs to the range of γ p1q u . Let s 1 be the largest element of r0, 1s such that γps 1 q is in the range of γ p1q u . If s 1 " 1 or if γptq R BA u for every s 1 ă t ď 1, we have: ∆pγq " ∆pγ| r0,ss q `∆pγ| rs,s 1 s q `∆pγ| rs 1 ,1s q ě r ∆ u pγp0q, γpsqq `∆pγ| rs,s 1 s q `r ∆ u pγps 1 q, γp1qq since case 1 can be applied to γ| r0,ss and γ| rs 1 ,1s . Moreover, since γ p1q u is also a geodesic for r ∆ u , we have ∆pγ| rs,s 1 s q ě ∆pγpsq, γps 1 qq " r ∆ u pγpsq, γps 1 qq and by the triangle inequality we obtain ∆pγq ě r ∆ u pγp0q, γp1qq.

It remains to consider the case where s 1 ă 1 and tt P ps 1 , 1s : γptq P BA u u is not empty. Let t be the smallest element of rs 1 , 1s such that γptq P BA u . Then γptq belongs to the range of γ p2q u . Let t 1 be the largest element of rt, 1s such that γpt 1 q belongs to the range of γ p2q u . Then we get that:

∆pγq " ∆pγ| r0,ss q `∆pγ| rs,s 1 s q `∆pγ| rs 1 ,ts q `∆pγ| rt,t 1 s q `∆pγ| rt 1 ,1s q.

Since γ p1q u and γ p2q u are two geodesics paths for r ∆ u we have:

On the other hand, γ| r0,ss , γ| rs 1 ,ts and γ| rt 1 ,1s belong to case 1. Consequently, we obtain ∆pγq ě r ∆ u pγp0q, γp1qq.

Let us deduce Proposition 6.5 from Lemma 6.7.

Proof of Proposition 6.5. Fix δ ą 0 and r ě 1. We want to give a lower bound for L r,r`δ . By Lemma 6.4 it is enough to give a lower bound for ∆pγq for every γ P A taking values in B r,r`δ .

Recall the notation of Section 6.3.2 and for every u P K r`2δ r not belonging to the spine r0, 8q set:

Let u 1 , . . . , u Ñ r`2δ r be the elements of K r`2δ r that do not belong to the spine r0, 8q and such that M u ą r ´1{2. By Lemma 6.7, for every 1 ď k ď Ñ r`2δ r the set A u k is homeomorphic to the closed unit disk. Since BB ' r and BB ' r`δ are injective cycles (see Section 6.2.4), it is straightforward to verify (using Jordan's theorem) that A u k X B ' r,r`δ is homeomorphic to the unit disk and its boundary is:

u k prr ´Mu , r `δ ´Mu sq. This implies that any separating cycle γ P A taking values in B r,r`δ has to connect γ p1q u k prδ, 2δsq and γ p2q u k prr ´Mu , r `δ ´Mu sq while staying in A u k see figure 6.3 for an illustration. In other words, for every 1 ď k ď Ñ r`2δ r , there exist t k ă t 1 k such that γ| rt k ,t 1 k s takes values in A u k X B r,r`δ , γpt k q P γ p1q u k prδ, 2δsq and γpt 1 k q P γ p2q u k prr ´Mu , r `δ ´Mu sq. In particular:

and note that D k ą 0 by property pF q (no point of γ p1q u k prδ, 2δsq can be identified with a point of γ p2q u k prr ´Mu , r `δ ´Mu sq). With this notation we have ∆pγq ě ř Ñ r`2δ r k"1 D k for every γ P A taking values in B r,r`δ . Consequently, we obtain that:

Since the process Z is càdlàg, we have Z rnT s n Ñ Z T as n Ñ 8. Moreover, the fact that F 2 is bounded and continuous and the scaling property of pΘ l q lą0 imply that the mapping l Þ Ñ Θ l pF 2 q is also bounded and continuous. It follows that lim

The identity (6.27) then follows by passing to the limit n Ñ 8 in (6.28), using (6.29) and (6.30).

Let us state some direct consequences of Theorem 6.4 . For every z ą 0, set

which is a stopping time of the filtration pF r`qrě0 . Note that 0 ă T z ă 8, Θ 0 -a.s. Moreover since Z does not have positive jumps we have Z Tz " z. Applying Theorem 6.4 with T " T z , we obtain the following result.

Corollary 6.1. Let z ą 0. Under Θ 0 , p B' Tz , ρ Tz , ∆Tz , | ¨| ∆Tz q is an infinite volume Brownian disk with perimeter z and is independent of pB ' Tz , 0, ∆ Tz , | ¨|∆ Tz q.

The next goal is to extend the definition of process Z under Θ z . It will be useful to consider the Skorokhod space DpR `, Rq of càdlàg functions from R `into R. We write pξ t q tě0 for the canonical process on DpR `, Rq and pD t q tě0 for the canonical filtration. We introduce a probability measure P on `DpR `, Rq, D ˘such that under P, the process ξ is distributed as a Lévy process without positive jumps with Laplace exponent ψpλq :" b 8 3

Γpλ`3 2 q Γpλq , i.e.:

where E stands for the expectation with respect to P. We refer to [START_REF] Bertoin | Martingales in self-similar growthfragmentations and their connections with random planar maps[END_REF]Lemma 2.1] for the existence of this Lévy process. Since ψ 1 p0`q ą 0, standard properties of Levy processes imply that ξ drifts to 8 (see for example [START_REF] Bertoin | Lévy Processes[END_REF]Chapter VII]). We also introduce the time change:

κprq :" inf s ě 0 :

Theorem 24 in [START_REF] Gall | Growth-fragmentation processes in Brownian motion indexed by the Brownian tree[END_REF] states that the process Z under Θ 0 is a self-similar Markov process started at 0 with index 1 2 and Laplace exponent ψ. In particular, the process pZ Tz`t q tě0 is distributed under Θ 0 as: ´z exp `ξκpz ´1 2 rq ˘¯rě0 under P. As a consequence of (6.15) and Corollary 6.1 we obtain: Corollary 6.3. There exists a constant C ą 0 such that for every z ą 0 and r ą 0:

Proof. Fix z ą 0 and r ą 0. First remark that, under Θ 0 p¨| T z ď ? zq, the hull B ' Tz`r is contained in B ' ? z`r . So an application of Corollary 6.1 gives:

On the other hand, we have tZ ? z ą zu Ă tT z ď ? zu. By scaling we also have Θ 0 pZ ? z ą zq " Θ 0 pZ 1 ą 1q ą 0 and Θ 0 `|B ' r`?z | ˘" pr `?zq 4 Θ 0 `|B ' 1 | ˘. Finally, it is easy to deduce from (6.36) that Θ 0 `|B ' 1 | ˘is finite. This gives the statement of the corollary with C " Θ 0 p|B ' 1 |q{Θ 0 pZ 1 ą 1q.

We now give two lemmas that will be useful to control the fluctuations of the volume of hulls in the Brownian plane. Lemma 6.9. For every β P R, we have

Proof. To simplify notation write F pλq :" Θ 0 pexpp´λ|B ' 1 |qq for every λ ě 0. Remark that for every λ ą 0, we have

From the explicit expression of F given in (6.36) we get:

as λ Ó 0, and

We conclude this section with the following consequence of Lemma 6.9: Lemma 6.10. For every β 1 ą 0 and β 2 ą 2{3 we have Θ 0 -a.s.

Consequently inf

nPN n ´1 2 f pnq ą 0 and we obtain (6.47). Actually here it will be enough to have

Let us prove (6.48). By (6.49), if we can verify that

we will conclude by an application of the Borel-Cantelli lemma. Fix β P p 3 4 , 1q. For every m P Z, by scaling we have:

Consequently, we get :

Now remark that the right term of the above display is bounded above by

We deduce by an application of Markov inequality that

f p|m|q q Lemma 6.11 and Theorem 6.1 imply that there exist two constants c 2 P p0, 8q and C P p0, 8q such that:

This completes the proof.

We observe that the same proof will work mutatis mutandis if we replace |A| by ∆pBAq inside the logarithm in theorem 6.2. f p| logp|A|q|q " 0 , Θ z -a.s. , if

Recall that M

Appendix

This appendix is devoted to the proof of Lemma 6.1, which relies on [77, Proposition 8]. We use the notation of Subsection 6.2.4.

Proof of Lemma 6.1. First fix 0 ă r 1 ă r 2 ă 8. The lemma will follow if we prove that, Θ 0 -a.s. , for every r 1 ď r ď r 2 , we have:

In order to prove this, we introduce the event Apsq :" tZ s,8 r 2 " 0u, for every s ą r 2 . In particular, under the event Apsq, we have Z r " Z r,s r for every r ď r 2 . Moreover, by Proposition 6.1 (taking the limit when t Ñ 8) we also have:

which converges to 1 when s Ñ 8. Consequently, to obtain the desired result it is sufficient to show that, for every s ą r 2 , under Apsq we have:

for every r P rr 1 , r 2 s. Let us now introduce, for every r P R and ω P S with ω 0 ą r, the quantity:

In particular, note that Z r pωq " lim inf εÑ0 Z ε r pωq. We set: Z r,s r pεq :" ż Z ε r pωqR r,s pd dωq `ż Z ε r pωqL r,s pd dωq.

Chapitre 7

Explicit distributions for Brownian motion indexed by the Brownian tree

Les resultats de ce chapitre sont issus de l'article [START_REF] Gall | Some explicit distributions for Brownian motion indexed by the Brownian tree[END_REF], écrit en collaboration avec Jean-François Le Gall et publié dans Markov Processes and Related Fields.

We derive several explicit distributions of functionals of Brownian motion indexed by the Brownian tree. In particular, we give a direct proof of a result of Bousquet-Mélou and Janson identifying the distribution of the density at 0 of the integrated super-Brownian excursion.

The form of the density gps 1 , s 2 q shows that the conditional distribution of σ `knowing that σ " s is uniform over r0, ss. This is a well-known fact, which can be derived from the invariance of the CRT under uniform re-rooting (see e.g. [10, Section 3.2]).

Proof. The formula for N 0 p1 ´expp´µ 1 σ `´µ 2 σ ´qq is obtained by solving the equation h µ 1 ,µ 2 pvq " 0. We can then verify that the function g satisfies

which gives the second assertion.

We finally give an application to super-Brownian motion in the spirit of Corollary 7.2.

Corollary 7.5. Let X be a one-dimensional super-Brownian motion with branching mechanism ψpuq " 2u 2 , such that X 0 " αδ 0 . Set

Then, for every µ 1 , µ 2 ą 0,

Given Corollary 7.4, the proof of Corollary 7.5 is an immediate application of the Brownian snake construction of super-Brownian motion along the lines of the proof of Corollary 7.2.

Conditional distributions of the local time at 0

We will now use the preceding results to recover the conditional distribution of L 0 given σ, which was first obtained by Bousquet-Mélou and Janson [START_REF] Bousquet-Mélou | The density of the ISE and local limit laws for embedded trees[END_REF] with a very different method.

Theorem 7.1. Let s ą 0. Under the probability measure N 0 p¨| σ " sq, the local time L 0 is distributed as p2 3{4 {3q s 3{4 T ´1{2 , where T is a positive stable variable with index 2{3, whose Laplace transform is Erexpp´λT qs " expp´λ 2{3 q.

Remark. In Corollary 3.4 of [START_REF] Bousquet-Mélou | The density of the ISE and local limit laws for embedded trees[END_REF], the constant 2 3{4 {3 is replaced by 2 1{4 {3. This is due to a different normalization: In [START_REF] Bousquet-Mélou | The density of the ISE and local limit laws for embedded trees[END_REF] (as in [START_REF] Aldous | Tree-based models for random distribution of mass[END_REF]) the random function coding the genealogy of ISE is twice the Brownian excursion, and it follows that our random variable L 0 is distributed under N 0 p¨| σ " 1q as ? 2 times the quantity f ISE p0q considered in [START_REF] Bousquet-Mélou | The density of the ISE and local limit laws for embedded trees[END_REF].

The occurence of a stable variable with index 2{3 in Theorem 7.1 is of course reminiscent of Corollary 7.2 above. It would be very interesting to establish a direct connection between this corollary and Theorem 7.1.

Chapitre 8

The free Brownian disk with two distinguished boundary points 249 which defines a pseudo-distance on T . Now we can consider the space pT {∆, ∆q and we denote the canonical projection from T onto T {∆ by Π. We indentify Θ ˝pw, Pq with ΠpT ˝q and we extend the definition of Λ to T {∆ taking Λ x :" Λ u where u is any preimage of x by Π (again the definition is unambiguous by continuity and (8.17)). Finally by the last assumption of pH 2 q we may and will identify Vol with the pushforward of V T under the map Π. The measure Vol is called the volume measure of pw, Pq. Set Θpw, Pq :" pT {∆, Πpaq, ∆, Volq which is an element of K. We claim that the labels pΛ x q xPT {∆ correspond to the distances to ΠpB 1 T q. Let us explain this last point. Recall that E : r0, T s Þ Ñ T is the exploration of T and for every t P r0, T s and r ď Λ Et introduce the quantity:

By construction we have ∆ ˝pγ t prq, γ t pr 1 qq " |r ´r1 | for every r, r 1 P r0, Λ t q. Combining this with (8.17), we obtain that the path Π ˝γt verifies ∆pΠpγ t prqq, Πpγ t pr 1 qqq " |r ´r1 | for every r, r 1 P r0, Λ t q. Moreover Πpγ t pΛ Et qq P ΠpB 1 T q and consequently Π ˝γt is a geodesic path connecting ΠpE t q and ΠpB 1 T q with length Λ Et . Combining this with the bound (8.17) we get

A path of the form Π ˝γt for some t P r0, T s is called a simple geodesic. One can also use the simple geodesics and the definition of ∆ as an infimum given in (8.16) to show that the metric space Θpw, Pq is also a length space. We refer to [79, Section 4.1] for a proof of this fact (a slightly different framework is considered in [START_REF] Gall | Spine representations for non-compact models of random geometry[END_REF] but exactly the same argument works in our case without modifications). For every r ě 0, we write B r pT {∆q for the set of all points x P T {∆ such that ∆px, ΠpB 1 T qq ď r and note that by (8.19) we have:

B r pT {∆q " tx P T {∆ : Λ x ď ru.

We introduce one last assumption that will be satisfied in all spaces considered in this work:

´for every u, v P T , if u ‰ v and ∆pu, vq " 0 then u and v must be leaves;

´for every u, v P T ˝, the property ∆pu, vq " 0 holds if and only if ∆ ˝pu, vq " 0;

´for every u, v P B 1 T , the property ∆pu, vq " 0 holds if and only if Λ w ą 0 for every w Psu, vr T , or for every w Psv, ur T ;

´all the geodesics from a point ΠpT zB 1 T q to the boundary ΠpB 1 T q are simple geodesics.

In particular remark that the only points of the spine B 2 T :" ra, bs that can be identified by ∆ with another point are the extremities a and b since the other points of ra, bs have at least multiplicity 2 in T . By the first assumption of pH 3 q, we also deduce that under this assumption the simple geodesics can only hit a point Πpuq, where u is a point with multiplicity bigger than 1, at its extremities. In particular, a simple geodesic can only hit ΠpBT q at its extremities.

The distribution of hulls 8.4.1 Geometric properties

In this section, we will use the construction of the free Brownian disk introduced in [START_REF] Gall | Brownian disks and the Brownian snake[END_REF]. This construction is different from the one we used in Section 8.3.1 but it also involves the metric space associated with a coding pair. To simplify notation, for every a P R, we write a :" ? 3a and, for every w P W, we set: wptq :" ? 3 ¨wptq , 0 ď t ď ζ w .

We also write P ẁ for a Poisson measure with intensity:

under the probability measure P pwq . Let us now recall the construction of the Brownian disk given in [START_REF] Gall | The Brownian disk viewed from a boundary point[END_REF]. Let z ą 0 and, under np¨| ζ e " zq, consider R a 5-dimensional Bessel excursion of duration z. The distribution of R can be characterizes by the relation:

where the limit holds for every bounded continuous function F : Cpr0, zs, R `q Ñ R `(see [START_REF] Gall | The Brownian disk viewed from a boundary point[END_REF]Proposition 4]). It will be convenient to assume that, under n and conditionally on ζ e , the processes e and R are independent, and also to remark that ζ e " ζ R . Let us now consider conditionally on R, the point measure P R . It is easy to verify that the assumptions at the beginning of Subsection 8.2.2 hold n-a.e. for the pair pR, P R q, and thus, that we can associate a labeled tree pT `, pΛ v q vPT `q with this pair. The only points with zero label in T `are the two extremities of its spine i.e. B 1 T `" t0, ζ R u. Thus, pR, P R q also verifies pH 1 q, and we can consider the two pseudo-metric functions ∆ `,˝p u, vq and ∆ `pu, vq, defined on T `,˝ˆT `,˝, by using formulas (8.15) and (8.16). Since 0 and ζ R are the only points of zero label in T `, for any u, v P T `at least one of the two infima inf ru,vs T `Λ`a nd inf rv,us T `Λ`i s positive. We can then extend ∆ `pu, vq continuously to T `ˆT `by replacing ∆ ˝in formula (8.16) by

In particular, pR, P R q is a coding pair satisfying pH 1 , H 2 q. Therefore we can consider the space D `:" Θ `R, P R ˘under the measure n and denote the canonical projection from T `onto D by Π `. The main result of [START_REF] Gall | The Brownian disk viewed from a boundary point[END_REF] is that, under the measure n `¨|ζ R " z ˘, the space D `has the distribution of a free Brownian disk with perimeter z. Moreover, we clearly have ∆ `p0, ζ R q " 0. Labels in this construction correspond to distances from the root ρ `:" Π `p0q. The set Π `pBT `q is the boundary of D `and we denote it by BD `. Recall that in Subsection 8.2.2 we defined the uniform measure on BD `by the relation:

Proof. Fix r ą 0. In this proof we argue under n ' p¨| R t ' ą rq and we denote the labeled tree associated with `Rprq , r P `,r R ˘by T R prq . We add the index R prq to the quantities associated with the coding pair `Rprq , r P `,r R ˘. In particular, we denote the pseudo-distances associated with `Rprq , r P `,r R ˘, defined in (8.15) and (8.16), by ∆ Rprq and ∆ R prq . We also write Λ R prq for the label function on T R prq . Now recall that T R prq is identified with T r (after shifting the labels of T r by ´r). For every u P T R prq , we write u 1 for the point of T r that is identified with u. In particular, for every u P T R prq we have Λ R prq u " Λ ù1 ´r. We are going to show that this identification induces an isometry from Θ ˝`R prq , r P `,r R ˘onto Br such that the pushforward of the volume measure of Θ ˝`R prq , r P `,r R ˘under this isometry is Vol `,r . We start by observing that, for every u, v P T Rprq such that inf 

Using definition (8.15), this implies that, for every u, v P T Rprq , we have ∆ Rprq pu, vq " ∆ `,˝p u, vq or ∆ Rprq pu, vq " 8. Consequently, by the definition of ∆ R prq and ∆ `as an infimum (8.16), we deduce that ∆ R prq pu, vq ě ∆ `pu 1 , v 1 q for every u, v P T Rprq . This bound gives that if ∆ R prq pu, vq " 0 then, by the previous bound, we also have ∆ `pu 1 , v 1 q " 0. Moreover since pR, P R q satisfies pH 3 q, we know that for every u, v P T Rprq , the condition ∆ `pu 1 , v 1 q " 0 holds only if ∆ `,˝p u 1 , v 1 q " 0. Moreover ∆ `,˝p u 1 , v 1 q " 0 implies that

In both cases we note that we must have ∆ Rprq pu, vq " 0. We have obtained that, for every u, v P T Rprq , the condition ∆ R prq pu, vq " 0 is equivalent to ∆ `pu 1 , v 1 q " 0. Consequently the identification between T R prq and T r induces an identification between the points of Θ ˝`R prq , r P `,r R ȃnd the points of Br . To simplify notation, for every x P Θ ˝`R prq , r P `,r R ˘, we write x 1 to denote the point identified with x in Br . Let us now show that this identification satisfies the properties of the proposition. The fact that Vol `,r is the pushforward of the volume measure of Θ ˝`R prq , r P `,r R ȗnder this identification is a direct consequence of the construction. In order to complete the proof, we need to show that ∆ R prq px, yq " ∆ `,r px 1 , y 1 q for every points x and y of Θ ˝`R prq , r P `,r R ˘. To this end, we fix x and y in Θ ˝`R prq , r P `,r R ˘and we start by explaining why ∆ R prq px, yq is bounded above by ∆ `,r px 1 , y 1 q. By the definition of ∆ R prq px, yq as an infimum (8.16), it is sufficient to show that, for every u, v P T R prq with ∆ Rprq pu, vq ă 8, there exists a path γ 1 taking values in Br , starting at Π `pu 1 q and ending at Π `pv 1 q, such that the length of γ 1 with respect to ∆ `is ∆ Rprq pu, vq. We now use the same argument as above. First remark that, without loss of generality, we may assume that:

Λ R prq ą 0, we note that the interval ru, vs T R prq is identified with the interval ru 1 , v 1 s T `. In particular, the condition inf ru,vs T R prq Λ R prq ą 0 implies that the interval ru 1 , v 1 s T `is contained in T `,r . So by concatenating two simple geodesics starting respectively from Π `pu 1 q and Π `pv 1 q up to their merging time, as in the proof of Lemma 8.3, we can construct a path from Π `pu 1 q to Π `pv 1 q whose length equal to ∆ Rprq pu, vq, and that stays in Π `,r pru 1 , v 1 s T `q Ă B' r . Moreover, since inf ru,vs T R prq Λ R prq ą 0 we can apply pCq to see that the path γ 1 does not hit B ' r . Finally, since pR, P R q satisfies pH 3 q -and more precisely the remark below assumption pH 3 q -we deduce that γ 1 does not hit Π `pr0, ζ R sq and we obtain that ∆ R prq px, yq is bounded above by ∆ `,r px 1 , y 1 q.

Let us conclude by showing the reverse bound. The proof is similar to the end of the proof of Lemma 8.3. We want to show that if γ 1 : r0, 1s Ñ Br is a path such that γ 1 p0q " x 1 and γ 1 p1q " y 1 , then the length of γ 1 is bounded below by ∆ R prq px, yq. To simplify notation, set γptq for the point of Θ ˝`R prq , r P `,r R ˘corresponding to γ 1 ptq in the identification of Θ ˝`R prq , r P `,r R ˘with Br . Recall that the boundary of Br is the image by Π `of BT r . By compactness we may find δ ą 0 such that, for every t P r0, 1s, the point γ 1 ptq is at least at distance 2δ from Π ``BT r ˘with respect to the metric ∆ `. In particular, we have Λ γ1 ptq ą r `2δ for every t P r0, 1s. Then, we may choose n large enough so that ∆ `pγ 1 p i´1 n q, γ 1 p i n qq ă δ for every 1 ď i ď n. The length of γ 1 is bounded below by ř n i"1 ∆ `pγ 1 p i´1 n q, γ 1 p i n qq. Thus, to get the desired result, we only have to verify that, for every 0 ď i ď n ´1:

Fix 0 ď i ď n ´1. In the definition (8.16) of ∆ `pγ 1 p i´1 n q, γ 1 p i n qq as an infimum, we can restrict to the choices of u 1 0 " γp i´1 n q, u 1 1 , . . . , u 1 p " γ 1 p i n q in T `, such that u 1 j is at ∆ `-distance at least δ from BT `,r and ∆ `,˝p u 1 j , u 1 j`1 q ă δ. In particular the infimum of the labels over ru 1 j , u 1 j`1 s T must be bigger than r `δ, meaning that ru 1 j , u 1 j`1 s T `is contained in T r . We then note that the interval ru 1 j , u 1 j`1 s T `is identified with an interval ru j , u j`1 s T R prq of T R prq . We deduce that ∆ `,˝p u 1 j , u 1 j`1 q " ∆ Rprq pu j , u j`1 q and we obtain the desired bound using the triangle inequality.

We will later show that ∆ `,r has a continuous extension to B' r and that the space B' r -equipped with this distance, the restriction of the volume measure, and pointed at Π `pτ r q -is equal to Θ `Rprq , r P `,r R ˘(we will show that `Rprq , r P `,r R ˘satisfies pH 2 , H 3 qq.

Let us now explain how to encode the hull B ' r with a coding pair. Fix r ą 0 and write K r for the complement of the set T `,r on T `. Equivalently, K r is defined by the relation: K r :" tv P T `: Λ ẁ ď r for some w P rrv, t ' ss T `u.

By (8.39), the hull B ' r is the image of K r by Π `. We are going to consider B ' r as an element of K. To do so, we point B ' r at ρ `" Π `p0q and we equip B ' r with the restriction of the volume measure Vol `, that we denote by Vol `,prq . We now introduce a good distance on B ' r . First recall the definition of D `,˝a nd note that, for every u, v P K r , we have

In other words, we only need to know the set K r and the labels on K r to be able to compute the quantities D `,˝p u, vq for every u, v P K r . We set:

∆ `,prq pu, vq " inf u 0 ,u 1 ,...,upPKr pu 0 ,upq"pu,vq

where the infimum is over all choices of the integer p ě 1 and of the finite sequence u 0 , u 1 , . . . , u p in K r such that u 0 " u and u p " v. Of course, since the inf is the same as the one appearing in the formula of ∆ `but with the restriction u 0 , . . . , u p P K r , we get that ∆ `pu, vq ď ∆ `,prq pu, vq ď D `,˝p u, vq for every u, v P K r . As by pH 3 q, the condition ∆ `pu, vq " 0 only holds if D `,˝p u, vq " 0 we deduce that for every u, v P K r we have ∆ `pu, vq " 0 if and only if ∆ `,prq pu, vq " 0. This equivalence implies that ∆ `,prq induces a metric on Π `pK r q " B ' r . We keep the notation ∆ `,prq for this metric. One can use the family of simple geodesics and the definition of ∆ `as an infimum (8.16) to obtain that the restriction of ∆ `,prq coincides with the intrinsic distance induced by ∆ ìn the interior of B ' r . This can be derived by adapting the proof of Proposition 8.5 (we leave the details to the reader). We equip the space B ' r with the distance ∆ `,prq and the restriction of the volume measure Vol `, denoted by Vol `,prq . We also point B ' r at ρ `" Π `p0q. Let us now explain how to obtain this space as the metric space associated with a coding pair. This is a similar construction as the one appearing in the proof of [START_REF] Gall | Spine representations for non-compact models of random geometry[END_REF]Theorem 31] concerning the hull of the Brownian plane and we follow the presentation therein. First set Z r :" ZpP `,r R q (we will give a geometric interpretation of Z r in Proposition 8.9) and introduce the following process:

and the point measures X defined by the relation:

pdtdωq :"

) Let us consider all the subtrees branching off the subset rτ r , τ 1 r s of the spine and for each such subtree whose labels hit r0, rs we consider the "excursions outside" pr, 8q. More precisely, we write P R " ř iPI δ pt i ,ω i q . In the time scale of the contour exploration E `of T `, each snake trajectory ω i corresponds to an interval rα i , β i s and we have σpω i q " β i ´αi . Set I r :" ti P I :

r s and W ˚pω i q ď ru. For each i P I r , we can consider the exit local time of ω i at level r, as defined in (8.7), and denote it by pL i,r t q tPr0,σpω i qs . We then set, for every t P R:

so that L ˚,r t can be understood as the total exit local time accumulated at r by the contour exploration up to time t (by the subtrees glued to the subset rτ r , τ 1 r s of the spine of T `). Note that the total exit local time L ˚,r 8 is exactly the quantity Z r . Now, for every i P I r , consider the excursions pω i,k q kPN of ω i outside pr, 8q. Every ω i,k with pi, kq P I r ˆN corresponds to a connected component pa i,k , b i,k q of ts P r0, σpω i qs : hit r pω i s q ă ζ s pω i qu, in such a way that, for every s ě 0:

Set α i,k :" α i `ai,k and β i,k :" β i `ai,k and introduce the point measure:

By the special Markov property, conditionally on Z r , X prq 2 is a Poisson point measure with intensity:

and is independent of pX prq , X prq 1 , X prq,1 1

q and `Rprq , r P `,r R ˘. We write X prq for the point measure defined by: ż F pt, ωq X prq pdtdωq :"

pdtdωq.

It is easy to verify from the construction that the pair pX prq , X prq q is a coding pair. Let T X prq denote the labeled tree associated with pX prq , X prq q. The only points of T X prq with zero label are the extremities of the spine of T X prq i.e. the points 0 and ζ X prq " τ r `Zr `ζR ´τ 1 r . The same arguments we used for the pair `R, P R ˘can then be applied to deduce that pX prq , X prq q satisfies pH 1 , H 2 q. We can now assert that the space Θ `Xprq , X prq ˘is well defined.

Proposition 8.6. Fix r ą 0. Under n ' `¨| R t ' ą r ˘, the spaces Θ `Xprq , X prq ˘and B ' r , viewed as random elements of K are equal a.s.

Proof. In this proof we argue under n ' `¨| R t ' ą r ˘. To show that we can identify T X prq with a subset of K r . We use the notation P R " ř iPI δ pt i ,ω i q introduced above and, to simplify notation,

We conclude this section with a remark and a conjecture. Lemma 8.7 gives that the distribution of `ζe , Z `Pe ˘, Y `Pe ˘˘under 4{ ? 3 ¨n is the same as the distribution of `L1 , L 2 , Vol d pDq ˘under N ˚,' (use (8.12) and the fact that, conditionally on σ, the variable L 1 is uniform on r0, σs).

We claim that the pair pe, r P e q is a coding pair verifying pH 1 , H 2 q under n. Let us explain why pe, r P e q satisfies pH 2 q. Introduce under n and conditionally on e, a Poisson point measure N with intensity 2{31 r0,ζes ptqdt N et pdωq. By a scaling argument it is enough to show that pe, N q satisfies pH 2 q. Recall now that the coding pair pe, r P e q satisfies pH 2 q (refer to Proposition 8.1 and the discussion below) and note, that without loss of generality, we may assume that P e is of the form P e " N `N 1 , where N 1 is conditionally on e a Poisson point measure independent of N and intensity 4{31 r0,ζes ptqdt N et pdωq. We denote the tree associated with pe, N q by G e and we write G e for the set of all points in G e with positive label that do not belong to the spine. We may and will see G e as a subtree of H e (the tree associated with pe, r P e q). We write ∆ e for the pseudo-distance associated with pe, r P e q and D e for the pseudo-distance associated with pe, N q. Then, for every u, v P G e Ă H e , we have D e pu, vq ď ∆ e pu, vq. Since the pseudo-distance ∆ e has a continuous extension to H e , it is easy to derive that D e has a continuous extension to G e . Consequently pe, N q satisfies pH 2 q. We conjecture that Conjecture. Under 4{ ? 3 ¨n, the space Θpe, r P e q, rooted at the equivalence class of 0 and market at the equivalence class of ζ e , has the same distribution as D ' .

The proof of this conjecture is a work in progress.

The distribution of

`Rprq , r P `,r R ˘under n '

In this section we consider different conditionings. The definition of a canonical choice of these conditionings is straightforward imposing the scaling property and using a Fubini type argument (in this preliminary version we leave the details to the reader). The goal of this section is to show the following result: Theorem 8.2. Fix z ą 0. Under n ' , the distribution of `Rprq , r P `,r R ˘conditionally on Zp r P `,r R q " z is the same as the distribution of `e, r P e ˘conditionally on ZpP e q " z.

In particular, Theorem 8.2 gives that the distribution of R prq conditionally on ZpP Rprq q " z does not depend on r. Recall that under P h the process B is a Brownian motion started at h and stopped when it hits 0 for the first time. Also suppose that we are given a process Y distributed under P h as a p´1q-dimensional Bessel process started at h and stopped when reaching 0 for the first time. In order to obtain Theorem 8.2 we start with the following lemma: Lemma 8.8.

piq The distribution of e t ' under n ' is dh. Moreover, conditionally on e t ' " h, the processes pe t ' ´tq tPr0,t ' s and pe t ' `tq tPr0,σ´t ' s are independent and distributed as B under P h .

Spatial Markov property and explicit formulas

Let us explain why pR prq , r P `,r R q verifies assumptions pH 2 , H 3 q. The fact that it verifies pH 2 q comes from Theorem 8.2 since pe, P e q verifies pH 2 q. On the other hand, using that the pair `R, r P R verifies pH 3 q and the identification of the tree encoded by pR prq , r P `,r R q with the tree T r , one can easily deduce that pR prq , r P `,r R q also verifies pH 3 q.

Recall now the definition Z r :" Zp r P `,r R q. Proposition 8.9.

piiq The distribution of Z r under n ' p¨| R t ' ą rq is :

Proof. Point piq can be obtained by a direct adaptation of [40, Proposition 1.1] (we leave the details to the reader). Let us explain why piiq holds. First remark that, by Lemma 8.8 piiq, the distribution of R t ' is 3h ´2dh. In particular, we have n ' pR t ' ą rq " 3 3 2 r ´1. Applying Lemma 8.9 we obtain:

˘.

We can now perform a change of variables to get:

where Cprq is a positive constant. Since n ' p¨| R t ' ą rq is a probability measure and taking F " 1, we derive that Cprq " b 3 2π r ´1.

Recall that B ' r is an element of K. It will be useful to remark that Proposition 8.9 shows that the quantity Z r can be obtained as measurable function of B' r (since B' r X B r`ε is the set of all the points x P B' r at distance smaller than ε from the boundary B 1 B' r ). For this reason we will interpret Z r as the boundary length of B 1 B' r and we set |B 1 B' r | :" Z r .

Theorem 8.3. Under n ' p¨| R t ' ą rq, the intrinsic distance on Br has a continuous extension to B' r . Equip the space B' r with this continuous extension and the restriction of the volume measure and point it at Π `pτ r q. Then, conditionally on |B 1 B ' r |, the spaces B' r and B ' r are independent. Furthermore, for every z ą 0, the distribution of B' r , under n ' p¨| |B 1 B' r | " zq, is the distribution of Θ `e, P e ˘, under n ' p¨| ZpP e q " zq.

Proof. In this proof we argue under n ' p¨| R t ' ą rq. Lemma 8.8 piiq gives that, conditionally on |B 1 B ' r |, the processes R prq and X prq are independent. We can now apply the special Markov property to deduce that, conditionally on |B 1 B ' r |, the pairs pX prq , X prq q and pR prq , r P `,r R q are independent. Recall that, by Proposition 8.6, the hull B ' r coincides -as an element of K -with ΘpX, X prq q. Moroever the labeled tree T r is identified with T R prq , the tree associated with the coding pair pR prq , r P `,r R q. In Proposition 8.5, we showed that this identification induces an isometry Φ from Θ ˝pR prq , r P `,r R q to Br and that the pushforward of the volume measure of Θ ˝pR prq , r P `,r R q under Φ is Vol `,r (the restriction of Vol `to Br ). Since pR prq , r P `,r R q satisfies pH 2 q, the space ΘpR prq , r P `,r R q is well defined. Write ∆ R prq for the metric of ΘpR prq , r P `,r R q and remark that ∆ R prq is the continuous extension of the metric of Θ ˝pR prq , r P `,r R q. To conclude, it is sufficient to show that the isometry Φ can be extended to a bijection from ΘpR prq , r P `,r R q to the set of all points of B' r . Let us explain how to extend Φ. For every u P T R prq , write u 1 P T r for the point associated with u in the identification between T R prq and T r . Note that by construction we have:

Let us conclude. The boundary B 2 T R prq is identified with B 2 T r and we have Π `pB 2 T r q " B 2 B' r . Since pR, P R q satisfies pH 3 q, we have ∆ `pu 1 , v 1 q ą 0 for every pu 1 , v 1 q P B 2 T r ˆT r with u 1 ‰ v 1 . In particular, the projection Π `realizes a bijection between B 2 T r and B 2 B' r . We also deduce by pC 1 q that the canonical projection from B 2 T R prq onto B 2 ΘpR prq , r P `,r R q is a bijection. Furthermore since pR, P R q satisfies pH 3 q, and by standard properties of the exit local time L ˚,r defined on (8.44), it is easy to see that for every u 1 , v 1 P B 1 T r we have ∆ `pu 1 , v 1 q " 0 iff Λ ẁ1 ą r for every w 1 Psu 1 , v 1 r T òr for every w 1 Psv 1 , u 1 r T `. Then by applying pC 1 q we obtain that, for every u 1 , v 1 P B 1 T r , if we have ∆ `pu 1 , v 1 q " 0 then ∆ R prq pu, vq " 0. This gives that the identification between T R prq and T r induces a bijection between ΘpR prq , r P `,r R q and B ' r .

We conclude this work by giving some explicit formulas for the D ' . Recall that, under n ' , the quantity R t ' stands for the distance between the root ρ `and the marked point ρ ' `.

We start with the Laplace transform of p|BD ' `|, Vol `pD ' `qq under n ' p¨| R t ' " hq, for every h ą 0. We also recall that under P 3 ´1 2 h the notation Y stands for a p´1q-dimensional Bessel process started at 3 ´1 2 h and stopped when it hits 0. We write P Ỳ to denote a point measure which is distributed conditionally on Y as a Poisson point measure with intensity 21 | ˘´µ ´YpX prq 1 q `YpX p1q1 r q `YpX p2q r q

As we already noted below (8.45), an application of the special Markov property gives that, conditionally on |B 1 B ' r |, the point measure X We can now apply [START_REF] Delmas | Computation of moments for the length of the one dimensional ISE support[END_REF]Lemma 7] to get:

Finally, to obtain the desired formula, remark that by Lemma 8.8 piiq, the processes pR τr´t q tďτr and pR τ 1 r `tq tďζ R ´τ 1 r are independent of |B 1 B ' r | and are distributed as two independent copies of Y under P

. This implies that: