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Marco DI FELICE
Associate Professor, University of Bologna, Italy Invité
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1 Introduction

L’un des attributs largement connus de l’Internet des objets (IoT) est qu’il en-
globe un vaste réseau de ”Things” (objets) hétérogènes, allant des appareils
à ressources limitées utilisés dans les batteries à faible puissance Réseaux
d’actionneurs de capteurs sans fil vers des appareils plus puissants utilisés
dans les passerelles et autres applications gourmandes en calcul comme les
véhicules autonomes, les robots connectés, les drones, etc. De plus, la
présence de l’IoT dans divers domaines d’application énergie intelligente,
santé intelligente, bâtiments intelligents, intelligent transports, industrie in-
telligente et ville intelligente - en fait un domaine diversifié et multidisci-
plinaire, où chaque domaine d’application a ses propres caractéristiques et
exigences diverses.
L’hétérogénéité de l’IoT peut être observée dans de nombreuses disciplines de
l’IoT telles que l’application, l’architecture de l’appareil, le réseau et le proto-
cole de communication. Cette hétérogénéité pose de sérieux problèmes pour
le contrôle de l’interopérabilité et aussi pour l’uniformité dans le développement
de solutions logicielles et matérielles sur le large gamme d’appareils IoT
hétérogènes - unités de traitement, capteurs, actionneurs, émetteurs-récepteurs,
etc.

Prototypage de l’Internet des objets : perspective logicielle - Le
succès de l’IoT est attribué à l’avancement de diverses technologies telles que
- la communication, Internet, réseau, microélectronique, capteur, sécurité,
systèmes d’exploitation, stockage de données, etc. ainsi qu’aux applica-
tions pilotes éprouvées déployées dans divers domaines d’application sus-
mentionnés. Mais l’implication de diverses technologies nologies et la relation
complexe entre eux et la présence inhérente de dispositifs hétérogènes ont fait
du développement, du déploiement et de la maintenance des applications IoT
une tâche fastidieuse et chronophage. En conséquence c’est très difficile à at-
teindre pour les experts du domaine (agriculteur, médecin, ingénieur, etc.)
connaissance de toutes les technologies derrière l’IoT. Construire une solu-
tion IoT de bout en bout réussie implique une approche systématique pour
gérer différentes vies IoT phases du cycle - phase de développement, phase
de déploiement et phase de maintenance.
Dans la phase de développement, la logique applicative est cadrée et séparée
en un grand nombre de tâches distribuées pour un réseau de terminaux IoT
hétérogènes, puis la logique applicative est implémentée, vérifiée et validée
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sur de nombreuses plates-formes matérielles composées d’un grand nombre
d’IoT hétérogènes dispositifs. Dans la phase de déploiement - le micro-
logiciel de l’appareil IoT qui remplit les le scénario d’application ciblé est
chargé sur un réseau de système final IoT et est vérifié et validé à nouveau
en environnement réel. En phase d’entretien, les périphériques hérités sont
remplacés en raison, par exemple, d’un changement dans les exigences des
applications imposant de nouvelles fonctionnalités matérielles ou une mise
à niveau du système. Le principal la préoccupation dans toutes ces trois
phases est l’hétérogénéité des appareils IoT qui fait de l’interopérabilité,
de l’évolutivité et de la flexibilité un défi en particulier pour les grands
déploiement à grande échelle de systèmes basés sur l’IoT. Les industries sont
obligées d’embaucher des développeurs de systèmes embarqués expérimentés
pour mettre en œuvre et maintenir base de code logiciel pour divers four-
nisseurs de matériel faisant du prototypage et Preuve de concept (PoC) tâches
difficiles et chronophages. Cela fait aussi la solution IoT déployée est difficile
à mettre à jour en cas de remplacement des appareils IoT d’un autre fabricant
de matériel. Le développement d’applications embarquées dépend du four-
nisseur de matériel, de sorte que tout changement de fabricant d’appareils
IoT déclenchera le redéveloppement de la même application déployée sur
les appareils IoT précédents. De plus, il n’y a toujours pas de commune
adoptée standards pour ces appareils hétérogènes et la plupart des différents
fournisseurs de matériel proposent leurs propres outils de développement.
Cela rend l’industrialisation des services IoT difficile car la phase PoC est
coûteuse en raison de cette l’hétérogénéité et l’absence de normes communes
partagées. Par conséquent, pour une adoption généralisée des systèmes et
services basés sur l’IoT, un une couche intermédiaire de logiciel/service est
nécessaire pour masquer les détails de divers technologies hétérogènes sous-
jacentes à l’écosystème des appareils IoT.

Prototypage de l’Internet des objets : point de vue matériel - Du
point de vue de la conception de systèmes embarqués, un objet IoT est une
fusion de plusieurs technologies habilitantes en évolution (processeurs em-
barqués basse consommation, capteurs, actionneurs, émetteurs-récepteurs,
récupérateurs d’énergie, etc.), ce qui nécessite concepteurs de systèmes pour
tester et évaluer en permanence les nouvelles technologies et mettre à niveau
le système final de manière appropriée. De plus, il est difficile de généraliser
l’architecture matérielle d’un objet IoT en raison de diverses applications
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IoT exigences telles que le débit de données, la mémoire, le traitement, la
fiabilité, la puissance, la portée, coût, sécurité, évolutivité, etc.
Néanmoins, une architecture typique d’un objet IoT et est composé de divers
blocs fonctionnels matériels hétérogènes - l’unité de traitement qui représente
le ”cerveau” sous la forme d’un microcontrôleur ultra-basse consommation,
d’un microprocesseur, d’un système sur puce (SoC), etc. ressources de cal-
cul nécessaires (CPU, mémoire et accélérateurs algorithmiques, etc.) pour
exécuter des applications IoT. La connectivité sans fil telle que RFID, BLE,
WiFi, LTE, ZigBee et LoRa pour n’en nommer que quelques-uns, fournissent
le lien de communication nécessaire pour établir un réseau distribué d’objets
IoT.
L’unité de traitement (PU) intègre une grande variété de périphériques hétérogènes
(interfaces de communication). Cette large intégration périphérique hétérogène
est destinée à faciliter la communication avec différents blocs fonctionnels
extérieurs à l’unité de traitement. Les périphériques sont utiles car ils permet-
tent aux unités de traitement de se décharger des tâches de calcul (échange de
données entre Unité de traitement et ressources IoT) à eux, économisant ainsi
de précieux calculs ressources pour d’autres tâches importantes. Le nombre et
le type de périphériques pris en charge par le PU et leur mappage de broches
varient d’un PU à l’autre, donc cette hétérogénéité d’interface périphérique
peut conduire à différents et incompatibles conception matérielle. De plus,
le manque d’interface cohérente oblige souvent les intégrateurs de systèmes à
créer les connexions électriques requises qui dépendent du type de PU utilisé.
De plus, en raison de l’avancement des technologies matérielles IoT il faut
reconcevoir ou remplacer le système existant pendant le cycle de vie d’un
Objet IoT, même si seule une sous-partie doit être remplacée.
En conséquence, il existe un fort besoin et une forte demande pour une in-
terface périphérique standard homogène pour gérer la configuration système
avancée des blocs fonctionnels susmentionnés et la fonctionnalité plug-and-
play pour la conception de systèmes embarqués adaptés au prototypage
d’applications Internet des objets.
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Abstract

Nahit PAWAR

On Interoperability and Network Architecture Bottom-Up
Heterogeneity Control in Internet of Things

Internet of Things (IoT) combines many technologies and it has spanned
across diverse and multidisciplinary application domains. Each domain has
its own set of application requirements in terms of hardware, communica-
tion, software, source of energy, etc. This inhibits the use of conventional
programming models of distributed computing which assumes that the sys-
tems are always connected, having abundant computational resources and
access to infinite electric energy. Additionally, IoT encompasses a wide range
of heterogeneous embedded IoT devices (processing units, sensors, actua-
tors, transceivers, etc.) provided by various manufacturers each with dif-
ferent device architecture, as a result the application software developed for
these devices are not compatible with each other. This device heterogeneity
poses serious problems for device interoperability and also for harmonized
IoT development tools over a wide range of heterogeneous IoT devices. An
important challenge not only for domain experts but also for professionals
is to realize proof-of-concept (PoC) during industrialization of IoT services,
that involves - development, deployment and maintenance of end-to-end IoT
application services requiring different types and levels of expertise.
The main contribution of this thesis is to introduce a new framework named
PrIoT (Prototyping Internet of Things) that allows easy and rapid IoT device
programming from design to deployment that better handles the heterogene-
ity of IoT device architecture. More specifically, the PrIoT framework is based
on the concept that IoT applications possess various invariant characteristics
that we studied and gathered from various IoT architectures and applications
presented in the literature. We then developed a minimalist high level pro-
gramming language and APIs to show the easy composability of our invari-
ant functionalities in the development of IoT applications. We validate our
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PrIoT framework through reference implementation and also the develop-
ment of prototype implementation of various IoT scenarios using our frame-
work and comparing it against various existing solutions.
From a hardware perspective, in order to control better the device hetero-
geneity, we propose two novel modular systems named R-Bus and P-Bus
for designing embedded systems as a set of hardware modules that can be
mounted and dismounted based on the IoT applications needs. This re-
solves device interface heterogeneity and accommodates various classes of
constraint devices along with advance system configuration and plug-&-play
functionalities to ease IoT hardware prototyping. We validate our modular
system using two metrics - suitability and coverage ratio that measure the com-
patibility of embedded modular systems with respect to processing units. We
used these metrics to compare our solution with existing modular systems.
This approach complements our proposed PrIoT framework as it offers a
new way to build end-to-end IoT application prototypes with flexibility in
both hardware and software of the IoT devices.
In fact, our objective is to enable rapid end-to-end IoT prototyping by im-
plementing a high level abstraction layer that hides the details of various
technologies underlying IoT and implementing modular systems for flexi-
ble device integration targeted for IoT system design. This work has pro-
vided a step forward in controlling device heterogeneity from both hardware
and software perspective, but it still lacks the standardization among the IoT
community to foster its continuous development.
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Chapter 1

Introduction

1.1 Research Context and Problem Statement

One of the widely known attribute of Internet of Things (IoT) is that it encom-
passes a large network of heterogeneous “Things” (objects) [1, 2, 3, 4, 5], rang-
ing from resource constrained devices used in battery operated low power
Wireless Sensor Actuator Networks (WSANs) to more powerful devices used
in gateways and other compute intensive applications like autonomous vehi-
cles, connected robots, drones, etc. Moreover, the presence of IoT in various
application domains [1, 3] smart energy, smart health, smart buildings, smart
transport, smart industry and smart city - makes it a diverse and multidisci-
plinary field, where each application domain has its own diverse character-
istics & requirements [2].
Heterogeneity in IoT can be seen in many disciplines of IoT like application,
device architecture, network and communication protocol. This heterogene-
ity poses serious problems for interoperability control and also for the uni-
formity in the development of software and hardware solutions over the wide
range of heterogeneous IoT devices - processing units, sensors, actuators,
transceivers, etc.

Prototyping the Internet of Things : Software Perspective - The success
of IoT is credited to the advancement in various technologies [4] (depicted
in Figure 1.1 as infinite branches of a tree) like - communication, Internet,
network, microelectronics, sensor, security, operating systems, data storage,
etc. and also to the proven deployed pilot applications [6, 7, 8] in various
aforementioned application domains. But the involvement of various tech-
nologies & intricate relationship between them and the inherent presence of
heterogeneous devices has made IoT application development, deployment
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and maintenance a cumbersome and time consuming task. As a result it is
very difficult for the domain experts (farmer, doctor, engineer, etc.) to attain
knowledge in all the technologies behind IoT. Building a successful end-to-
end IoT solution involves systematic approach to handle different IoT life
cycle phases - development phase, deployment phase and maintenance phase.

FIGURE 1.1: IoT Ecosystem

In the development phase, the application logic is framed and separated into
a large number of distributed tasks for a network of heterogeneous IoT end-
devices, then the application logic is implemented, verified & validated on
many hardware platforms consisting of large number of heterogeneous IoT
devices. In the deployment phase - the IoT device firmware that fulfills the
targeted application scenario is loaded on a network of IoT end-system and
is verified & validated again in real environment. In the maintenance phase,
the legacy devices are replaced due to, for instance, change in application re-
quirements imposing new hardware features or system upgrade. The major
concern in all these three phases is IoT device heterogeneity which makes
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interoperability, scalability and flexibility a challenge in particular for large
scale deployment of IoT-based systems. Industries are forced to hire experi-
enced embedded systems developers to implement and maintain embedded
software codebase for various hardware vendors making prototyping and
Proof-of-Concepts (PoC) difficult and time consuming tasks. It also makes
the deployed IoT solution hard to update in case the IoT devices are replaced
from a different hardware manufacturer. The development of embedded ap-
plications are hardware vendor dependent, so any change in IoT device man-
ufacturer will trigger the re-development of the same application deployed
on the previous IoT devices. Moreover, there is still no adopted common
standards for these heterogeneous devices and most of the different hard-
ware vendors offer their own development tools. This makes the industrial-
ization of the IoT services difficult as the PoC phase is expensive due to this
heterogeneity and the lack of common shared standards.
As a result, for widespread adoption of IoT based systems and services an
intermediate software/service layer is needed to hide the details of various
heterogeneous technologies underlying the IoT device ecosystem [9, 10, 11,
12].

Prototyping the Internet of Things : Hardware Perspective - From an em-
bedded system design perspective, an IoT object is a fusion of various ever
evolving enabling technologies (low-power embedded processors, sensors,
actuators, transceivers, energy harvesters, etc.) [4, 2, 9, 13], which requires
systems designers to constantly test and evaluate new technologies and up-
grade the final system appropriately. Moreover, it is difficult to generalize
the hardware architecture of an IoT object because of diverse IoT application
requirements such as data rate, memory, processing, reliability, power, range,
cost, security, scalability, etc.
Nevertheless, Figure 1.2 shows a typical architecture of an IoT object and
is composed of various heterogeneous hardware functional blocks - the pro-
cessing unit [2] that represent the “brain” in the form of ultra-low power mi-
crocontroller, microprocessor, system-on-chip (SoC), etc. and provides the
necessary compute resources (CPU, memory and algorithmic accelerators,
etc.) to execute IoT applications. The wireless connectivity such as RFID, BLE,
WiFi, LTE, ZigBee and LoRa to name a few, provides the necessary commu-
nication link to establish a distributed network of IoT objects. Depending on
the application’s power budget, the power unit provides various options such
as energy harvester, battery management system (BMS) for battery powered
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devices, voltage regulators (Low-dropout (LDO)) & converters (DC-to-DC),
etc. On the other hand an IoT object can also have various connectors for off-
board sensors & actuators - for example environment sensors which require
their placement outside the IoT object.

FIGURE 1.2: IoT Object Architecture

The processing unit (PU) integrates a wide variety of heterogeneous peripher-
als (communication interfaces) [14, 15, 16]. This wide heterogeneous periph-
eral integration is intended to facilitate communication with various func-
tional blocks outside of the processing unit. Peripherals are useful as they al-
low processing units to offload computational tasks (data exchange between
Processing Unit & IoT resources) to them, thereby saving valuable compute
resources for other important tasks. The number and type of peripherals
supported by PU and their pin mapping vary from one PU to another, there-
fore this peripheral interface heterogeneity can lead to different and incompatible
hardware design. Also the lack of consistent interface often requires system in-
tegrators to create the required electrical connections that depend on the type
of PU used. Moreover, due to the advancement in IoT hardware technologies
one has to redesign or replace the existing system during the life cycle of an
IoT object, even though only sub-part needs to be replaced.
As a result, there is a strong need and demand for a homogeneous standard
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peripheral interface to address advanced system configuration of aforemen-
tioned functional blocks and plug-&-play functionality for designing embed-
ded systems that are suitable for prototyping internet of things applications.

1.2 Aims and objectives

In the context of heterogeneous IoT device heterogeneity, different research
problems are addressed. First, how to maintain the IoT service continuity
when the IoT devices have to be replaced with different ones? Then, how
to ensure that the IoT devices components replacement such as storage, pro-
cessing, connectivity and energy modules is optimal? and how to reduce
the complexity of re-configuring IoT devices built by different manufacturers
with different hardware and software components? and most importantly
how to ensure the end to end interoperability of an IoT application and ser-
vice that crosses different layers from the IoT devices, the gateway to the IoT
cloud platform.
The aim of this thesis is to address the aforementioned research problems
and provide the necessary solutions and their evaluation and compare them
to the related research state of the art. The research contributions presented in
this thesis provides also a set of tools both in terms of software and hardware
for easy and rapid prototyping Internet of Things (IoT) applications. In or-
der to accomplish this, many challenges have to be addressed including - di-
verse IoT application characteristics, heterogeneous IoT system architecture,
device and protocol heterogeneity, energy constraints and more importantly
interoperability due to these heterogeneity. To address these challenges, this
thesis provides three main contributions that are :

1. IoT application invariant functionality and programming patterns :
To achieve this we did systematic study and understanding of IoT ar-
chitecture and IoT application characteristics is needed. We proposed
a 4-layer (Device Layer, Edge Layer, Cloud Layer and Cross-Layer) ar-
chitecture to systematically study the various heterogeneity problems
and IoT application characteristics at each layer. This allowed us to
extract various functionalities and programming patterns that are IoT
applications invariant that forms the underlying basis of our proposed
framework in Chapter 4.

2. IoT application lifecycle management on heterogeneous devices : To
achieve this we proposed and developed a framework in Chapter 4 that
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exposes an intermediate abstraction layer to hide various technologies
underlying IoT devices in terms of device architecture and communica-
tion protocols. The main building block of the intermediate abstraction
layer is based on the invariant functionality and programming patterns
proposed in 1st contribution (Chapter 3). This framework recommends
an optimal bill of material and allows easy integration and configu-
ration of IoT device components from various manufacturers without
affecting the IoT service continuity.

3. Modular system for designing interoperable embedded systems : To
achieve this we proposed two new modular systems named R-Bus (Re-
source Bus) and P-Bus (Power Bus) for controlling IoT device periph-
eral heterogeneity. The two modular systems presented in this the-
sis (Chapter 5) reduce the complexity of integrating, replacing and re-
configuring IoT devices from various manufacturers that require differ-
ent hardware and software components.

1.3 Research Methodology

In order to tackle the research problem an iterative research methodology
was adopted to systematically reach the aims and objectives of the thesis.
The iterative research methodology has 4 main steps. 1) Identify the require-
ments through literature survey 2) Research and development of the pro-
posed solution 3) Design and implementation 4) Test, Evaluate and Validate.
We followed these steps in both our proposed software and hardware based
research contributions.
A comprehensive literature review was carried out in order to identify the
various heterogeneous technologies underlying the IoT ecosystem that hin-
ders the prototyping of Internet of Things (IoT) both from software and hard-
ware perspective. The outcome came to the conclusion that new approaches
were needed to address this problem. Based on this, a new framework for
prototyping IoT applications is proposed that better handles the IoT device
heterogeneity control problem. This framework is based on our high level ab-
straction in terms of application invariant functionalities and programming
patterns that we found by systematic study of various IoT architecture and
IoT application characteristics. To validate our work, the proposed frame-
work is implemented using the available open source tools & languages. To
this end, different IoT application scenario use cases are implemented using
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our framework. The framework is iteratively improved and updated during
the thesis.
From a hardware perspective, a new modular system for designing interop-
erable embedded systems is proposed that better handles the IoT device pe-
ripheral interface heterogeneity. The requirements of the proposed solution
are identified based on the limitations of existing solutions to cater diverse
IoT application requirements. The proposed solution is implemented and
evaluated both qualitatively & quantitatively against existing solutions. We
validated the system by implementing various IoT application use cases.

1.4 Thesis Scientific Contributions and Thesis Out-

line

The structure of this thesis is depicted in Figure 1.3 and the major contribu-
tions of the thesis are presented as follows:

• Chapter 2: We present the state of the art of interoperability and het-
erogeneity in the IoT ecosystem. This serves as a background of our
research and also for common understanding of proposed solutions.
We briefly discuss the various types of heterogeneity in the IoT ecosys-
tem: 1) device heterogeneity. 2) network heterogeneity. 3) protocol het-
erogeneity. 4) IoT system architecture and 5) IoT platform. This allows
us to better understand the various interoperability issues. We aim to
expose various technologies that are responsible for interoperability in
IoT devices networks. We also highlight the presence of heterogeneous
domain dependent system architecture in IoT and review various IoT
architectures from academia, industry and standards organizations. In
addition, we also state the requirement of various IoT platforms in the
IoT for implementing solutions.
We introduce the notion of interoperability in IoT and briefly define
various types of interoperability present in the IoT ecosystem, start-
ing with 1) Semantic Interoperability. 2) Syntactic Interoperability. 3)
Network Interoperability. 4) Platform Interoperability. 5) Device In-
teroperability. We present and review the state of the art of interoper-
ability solutions from academia, standards organizations and industrial
alliances.
In addition, we introduce the notion of IoT device modularity and pro-
pose a complementary hardware based approach to handle some parts
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of the IoT device heterogeneity, thus easing the interoperability. We de-
scribe the modular architecture in general and discuss the role of modu-
lar systems in hardware heterogeneity control when designing embed-
ded systems for IoT. We present various existing modular systems and
their limitations. We also state the importance of energy aware embed-
ded systems in IoT and present the importance of modular systems in
dealing with heterogeneous energy sources and energy constrained IoT
devices.

• Chapter 3: We introduce our 4-layer IoT architecture that allows us to
systematically map various IoT scenarios and identify various IoT ap-
plication characteristics and associated research problems at each layer.
This helps us to extract and identify high level abstraction in the form of
invariant functionalities and programming patterns to cover most IoT
application scenarios. This method provides a lightweight approach
when designing software abstraction layers with minimalistic program-
ming functionalities that are IoT application invariant. We used this de-
sign philosophy in implementing our proposed framework in Chapter
4. The results of this contribution are presented in [17] and [18].

• Chapter 4: We present our framework named PrIoT for easy and fast
IoT prototyping. We describe the main components of PrIoT that aims
to leverage IoT adoption and usage from design to deployment and bet-
ter handle the heterogeneity property of IoT devices, services and ap-
plications. This framework introduces the design philosophy of "code
once and port anywhere". In addition, we validate our framework by
implementing PrIoT using various open source software & tools. We
also showcase the advantage of PrIoT by implementing an example IoT
scenario use case. The results of this contribution is presented in [19].

• Chapter 5: We present our two modular systems named R-Bus (Re-
source Bus) and P-Bus (Power Bus) for easy and fast prototyping of
embedded systems that enhances system integration by providing suf-
ficient resource integration. The modular approach for implementing
hardware systems for IoT objects allows for better handling of IoT hard-
ware requirements, addresses advanced system configuration, features
for plug-n-play functionalities, can handle various power sources, pro-
vides features for optimizing energy consumption and is usable across
diverse IoT applications. In addition, we analytically evaluate our sys-
tem with existing modular systems using two metrics - coverage and
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suitability ratios. We also showcase the advantage of our modular sys-
tem with example use cases. The results of this contribution are pre-
sented in [20], [21], [22] and [23].

• Chapter 6: We conclude our dissertation by summarizing all the work
achieved during this thesis and we present the future directions that
will follow this research work.

FIGURE 1.3: Thesis Structure
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Chapter 2

Literature Review

2.1 IoT Heterogeneity and Interoperability

Interoperability issues in IoT is a consequence of various heterogeneities in
the IoT ecosystem [24]. Therefore in this section, we begin by understanding
and listing the various heterogeneities that are present in the IoT ecosystem
(Section 2.1.1). Then in Section 2.1.2, we describe various interoperability lev-
els in the IoT ecosystem to better understand various interoperability solu-
tions as discussed in Section 2.2. This section lays the groundwork for Section
2.2 and Section 2.3.

2.1.1 Understanding Heterogeneous IoT Ecosystem

Interoperability related issues in IoT arise due to a lack of common stan-
dards and vast heterogeneity in the IoT ecosystem which is mainly a conse-
quence of the variety of IoT applications requirements. In this section, we
describe various types of heterogeneity categories present in the IoT ecosys-
tem such as - device heterogeneity (Section 2.1.1.1), network heterogeneity
(Section 2.1.1.2), protocol heterogeneity (Section 2.1.1.3).
We then describe the existing IoT system architectures (Section 2.1.1.4) and
IoT platforms (Section 2.1.1.5) that are adopted without consensus and com-
mon IoT standards by different IoT services and applications, but a joint in-
dustrial framework for each IoT vertical domain.

2.1.1.1 IoT Device Heterogeneity : Hardware and Power Constraints

Hardware devices that are used in the Internet of Things (IoT) come with
certain requirements and constraints. It is well known as shown in Figure
1.2 that IoT encompasses a wide range of heterogeneous hardware devices
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[1] ranging from 8-bit microcontrollers used in low power wireless sensor
nodes to 64-bit processors used in gateways of other compute intensive ap-
plications. These devices are available from various vendors that differ in
CPU (Central Processing Unit) architecture, power consumption, memory
(RAM & ROM), peripherals, documentations, development tools and soft-
ware. Also there is a huge price difference between lower end 8-bit microcon-
trollers and higher end 64-bit processors with cheaper devices being inferior
to their more expensive counterparts in terms of processing speed, memory,
power, etc. Moreover, the devices that are used in wireless sensor networks
are expected to operate on a limited energy budget for a very long time with-
out human intervention. This requires devices to be powered by battery or
extract energy from the environment (energy harvesting). More details on
power requirements are presented in Section 2.3.1.2.
Bormann et al. [25] (IETF RFC7228) categorizes energy constrained devices
into various classes (Table 2.1) according to energy limitations. As shown
in Table 2.1, class E9 represents devices in the extreme end of the spectrum
where the device has no limitations with respect to available energy, whereas
E0 represents devices in the lower end of the spectrum where the device has
no storage element and relies on external events to extract energy for doing
useful work.

Class Type of energy limitation Example Power Source

E0 Event energy-limited Event-based harvesting

E1 Period energy-limited Battery that is periodically
recharged or replaced

E2 Lifetime energy-limited Non-replaceable primary battery

E9 No direct quantitative lim-
itations to available energy

Mains-powered

TABLE 2.1: Class of Energy Limitations (Source - [25])

Based on these economical, physical and power constraints, the IoT devices
exhibit certain limitations in terms of slow processing speed, small mem-
ory and lack of constant energy source. Such devices are referred to as con-
strained IoT devices [25, 26].
Also, Bormann et al. [25] categorizes the constrained devices into different
hardware classes (Table 2.2) based on available resources in terms of maxi-
mum code complexity and processing capabilities. As shown in Table 2.2,
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Class Data Size (e.g. RAM) Code Size (e.g. Flash)
C0 � 10KB � 100KB
C1 ∼ 10KB ∼ 100KB
C2 ∼ 50KB ∼ 250KB

KB - Kilobyte = 1024 bytes

TABLE 2.2: Class of Constrained Devices (Source - [25])

Class 0 devices are very constrained sensor-like motes and do not have re-
sources to communicate directly with the Internet in a secure manner. Class
1 devices on the other hand do not have enough resources to support full
IETF Internet protocol suite [27] but can support constrained node proto-
cols for example CoAP (Constrained Application Protocol) over UDP (User
Datagram Protocol). Whereas Class 2 devices are less constrained and can
support most protocol stack that are otherwise not possible in Class 0 and
Class 1 devices. The boundaries of these classes (Table 2.1 and 2.2) are ex-
pected to shift over time based on the improvement in technology to reduce
cost, power and the development of new constrained protocol stack.
The presence of so many IoT devices1 with different capabilities in terms of
processing, memory and power requirements, creates a problem when devel-
oping IoT applications using various software components such as commu-
nication protocol libraries, embedded operating systems, etc. that requires
considerable resources making it difficult to cater full range of constrained
devices from class 0 to class 2 without optimizing existing software compo-
nents. In order to tackle this problem in Chapter 4 we propose our new devel-
opment framework named PrIoT that provides a lightweight and minimalis-
tic approach to IoT application development on heterogeneous IoT devices.
Moreover in Chapter 5 we propose a new hardware approach named P-Bus
(Power Bus) that helps in the development of power aware IoT applications
that better caters the power requirements of IoT devices.

2.1.1.2 IoT Network Heterogeneity: Network Constraints

According to Bormann et al. [25], the constrained network has the following
attributes - low bit rate and throughput with limits on both duty cycle and
transmission power, high packet loss with unpredictable packet loss rate,
asymmetrical up-link and down-link characteristics, limits on reachability
and lack of advanced services.

129.3 billion networked devices by 2023, Cisco Annual Internet Report (2018–2023) White
Paper, [Online]

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
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On the other hand, the network formed by constrained nodes is defined as
a constrained node network because the network constraints are coming from
the constrained nodes rather than the network itself. A typical example of a
constrained node network as defined by IETF is Low-Power Lossy-Network
(LLN) that consists of many constrained nodes over constrained networks
like IEEE 802.15.4 or low power Wifi.
Whereas, Low Power Wide Area Networks (LPWANs) [28] such as LoRa,
Sigfox, Weightless, etc. are considered as constrained networks that oper-
ate on ISM bands. Another example of a constrained network as defined by
IEEE 802.15 working group is LoWPAN (Low-Power Wireless Personal Area
Network) described in the IETF RFC 4919 [29] that consist of devices using
IEEE 802.15.4 standard radios.

2.1.1.3 IoT Protocol Heterogeneity

IoT communication protocols and technologies enable heterogeneous devices
to communicate together over lossy and noisy networks. There are a num-
ber of heterogeneous protocols that exist in IoT due to different hardware &
power requirements of constrained devices (Section 2.1.1.1) and also to cater
various requirements of the IoT market. This section presents various proto-
cols and communication technologies that exist in the physical & link layer,
network & transport layer and application layer.

Physical and Link Layer : Physical and link layer of the network proto-
col stack defines the network interface between IoT objects. The physical
layer defines the way in which data is transmitted on the network medium
(wired or wireless) and the link layer determines how the streams of bits
are put into manageable frames of data [30]. There are a number of pro-
tocols and technologies defined by various organizations and standards for
both physical and link layer protocols. The reason for such a large variety
of protocols is due to different requirements (bandwidth, range, energy con-
sumption, coverage, reliability, spectrum availability, etc.) of the IoT mar-
ket [31]. For example, LPWAN (Low-Power Wide-Area Network) protocols
such as LoRa, Sigfox, NB-IoT, Ingenu, etc. are designed for wireless sen-
sor networks that require long range communication at a low bit rate. Blue-
tooth and BLE that are based on IEEE 802.15.1 standard are used in smart-
phones, wearable & medical devices, etc. LR-WPAN (Low-Rate Wireless
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Personal Area Network) protocols like Zigbee, Thread, 6LoWPAN, Wire-
lessHART, etc. are based on IEEE 802.15.4 standard and are used for ad-
hoc wireless sensor actuator nodes, mesh network, machine to machine, etc.
Wifi (based on IEEE 802.15.11) is used in smartTVs, home appliances, smart-
phones, edge devices, etc. Whereas, Near-field-Communication (NFC) and
Radio-Frequency Identification (RFID) uses a short range communication
technology and are mostly used in logistics & supply chain, inventory and
access tracking, access control, etc. On the other hand technologies like 2G,
3G, LTE (Long-Term Evolution), 4G, 5G, future 6G [32] etc. and that are
based on the standards defined by 3GPP are used in applications that require
long range and high bandwidth such as video surveillance, edge devices,
autonomous vehicles, etc. In addition, to respond to the IoT needs, cellular
networks also introduced new standards such as 4G NB-IoT, 5G mMTC [33]
that are covering constraint devices and networks.

Network and Transport Layer : In Internet applications end-to-end con-
nectivity is made available using TCP/UDP (Transmission Control Proto-
col)/(User Datagram Protocol) and IP (Internet Protocol - IPv4 and IPv6) as
the fundamental protocols in the Internet protocol suite [27]. The device con-
nected to the Internet is capable of processing IP packets irrespective of the
physical and link layer protocol used. In the context of constrained devices,
to allow end-to-end IP connectivity an adaptation of IPv6 is proposed (6LoW-
PAN RFC4919 [34]) over IEEE 802.15.4 that allows communication with other
devices on an IP network like Wifi. Zigbee protocol defines its own network-
ing layer on top of IEEE 802.15.4 standard and cannot easily communicate
with other protocols. On the other hand, their are other proprietary protocols
(Z-Wave, ANT+, enoCEAN,etc.) [35] that also defines its own networking
layer for its mesh network over the ISM (Industrial, Scientific and Medical)
frequency band.

Application Layer : The application layer is the final layer of the OSI model
of computer networks and it ensures effective communication between two
or more application programs in a network [30]. There are several appli-
cation protocols that can be used in IoT applications and each one of them
uses different technology and has its own benefits and drawbacks [36]. The
most popular application layer protocols in the IoT community are RESTful
HTTP (Hypertext Transfer Protocol ) [37], Constrained Application Protocol
(CoAP) [38], Message Queuing Telemetry Transport (MQTT) [39], Extensible
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Messaging and Presence Protocol (XMPP) [40], Advanced Message Queuing
Protocol (AMQP) [41], etc.
Selecting the most appropriate application protocols depends on specific use
cases and application requirements such as security, reliability, performance,
etc. For example, Nastase et al. [42] compares various application layer pro-
tocols based on security requirements, Safaei et al. [43] compares the relia-
bility of both MQTT and CoAP. Whereas, Pohl et al. [44] evaluates the per-
formance of AMQP, MQTT and AMQP based on bandwidth usage, latency,
throughput and reliability.
Finally, the application layer protocols require TCP-UDP/IP stack to com-
municate and therefore are only effective between IoT cloud servers up to
IoT devices that run full IP stack. The devices that do not run IP stack are
required to go through gateways to communicate with IoT applications in
the cloud.

2.1.1.4 IoT System Architectures

Architecture of Internet of Things (IoT) is defined as a layered structure in
which each layer represents a well defined set of services. It allows mapping
of IoT application domains onto more structured and well defined building
blocks that share the same terminologies.
The presence of IoT in multiple heterogeneous domains and its various do-
main requirements has resulted in multiple IoT architectures making it diffi-
cult to select which architectural style or protocol suit is suitable for realizing
applications. Moreover, no one can predict which architectural style will pre-
vail, the chances are that they all will be used. The presence of multiple IoT
architectures has resulted in limited interoperability, where IoT solutions are
operating in silos. An ideal IoT architecture that is agnostic to a particu-
lar domain is far from reality but research efforts in academia, industry and
standards organization continue to define a wide variety of architectures.
In the context of architecture design guidelines, IoT-A (IoT-Architecture) [45,
46] is a EU FP7-ICT project worth mentioning, although IoT-A is not an archi-
tecture but provides the architectural reference model in the form of building
blocks, design guidelines for protocols, interface, algorithm and models of
interoperability for designing future IoT architectures. The IoT-A does not
impose any restrictions on the underlying technology. The architecture of
IoT6 [47] is one such example that is designed using IoT-A architectural ref-
erence model that implements 6LoWPAN and CoAP as its underlying proto-
col stack.
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oneM2M [48] standard for M2M & IoT defines a horizontal architecture that
provides common services (IoT service layer) that enables applications in
multiple domains. This IoT Service Layer is like a distributed operating sys-
tem for IoT providing uniform APIs to IoT applications that hides the under-
lying network technologies, transport protocols and data serialization.
The Open Connectivity Foundation (OCF) [49] is an industry organization
that develops standards, interoperability guidelines and provides certifica-
tion guidelines. It defines an architecture that is based on Resource Oriented
Architecture (RSO) design principles, where each entity (e.g. wired or wire-
less sensor actuator devices) is represented as Resources. Interactions with
an entity are achieved through its Resource representations using operations
that adhere to REST (Representational State Transfer) architectural style. The
OCF architecture defines the framework of the information system and the
interrelationship between entities. IoTivity [50] is an open source implemen-
tation of OCF specification developed by various members of OCF.
While each industrial alliance such as, Thread Group [51], LoRa [52], Zig-
bee [53], Z-Wave [54], Wi-SUN [55], NFC Forum [56], etc. - promotes their
own "in-alliance industrial standard" with their protocol (Section 2.1.1.3) &
architecture and there are no real successful attempts to cover a cross do-
main standard for the IoT ecosystem as a whole. Meanwhile, international
standardization bodies such as International Standardization Union (ITU),
European Telecommunications Standards Institute (ETSI), Internet Engineer-
ing Task Force (IETF), World Wide Web Consortium (W3C) are all providing
their specifications for standardized connected IoT architecture and proto-
cols. The architecture from IETF is based on their protocol suite [57] -
CoAP, RPL (Routing Protocol for Low Power and Lossy Networks), 6LoW-
PAN, IEEE 802.15.4 - to allow easy integration of resource constrained IoT
devices in IP networks.
Research community also actively participates in defining and comparing
the requirements for the future IoT architecture. Wu et al. [58] introduces
a 5-layer (business management layer, service management layer, network
management layer, element management layer and network element layer)
IoT architecture by improving the traditional 3-layer (application layer, net-
work layer and perception layer) IoT architecture that lacks network man-
agement and business models. The 5-layer architecture includes the qualities
of both the architectures - Internet and Telecommunication management net-
work.
The architecture of most publicly available IoT experimental testbeds follow
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either a two-tier (IoT device tier and Server tier) or three-tier (IoT device tier,
gateway device tier and server tier) structure [59], where the structure refers
to the organization of testbed hardware components. Although these archi-
tectural structures are suitable for experimentation and prototyping but do
not cover IoT system management features.
Peña et al. [60] defines an IoT architecture centered around Fog/Edge com-
puting and proposes an extension to IoT-A architectural reference model in
terms of computing location transparency & topology management and in-
tegration & automation of IoT visualization systems.
Misra et al. [61] proposes a 4-layer (things layer, sensor/network as a service
layer, data management layer, analytics layer) architecture by extracting the
requirements and characteristics from various IoT application domains that
are desired in practical architecture. Yelamarthi et al.
[62] proposes a simpler device oriented modular view of IoT where bound-
aries between various architectural layers are defined between sensor & actu-
ator, low power embedded processor, wireless transceivers, Internet gateway
and cloud.
Yashiro et al. [63] also proposes a device oriented architecture based on two
existing technologies - CoAP and uID (Ubiquitous ID) along with RESTful
IoT services to implement practical IoT applications.
In summary, the study and research for new and existing architecture and
reference models for IoT will continue to grow as we are still far away from
an ideal architecture. Our analysis of this state of the art showed a conver-
gence of the approaches to control the heterogeneity from the IoT gateways
to the IoT cloud servers using the standard Internet protocol based suite.
However the heterogeneity due to the IoT end device technologies is hidden
by the IoT gateways and there is no standard framework to control this part
which makes IoT end to end interoperability difficult to achieve. In our work,
we addressed exactly this IoT device related heterogeneity control, and we
propose to adopt a 4-layer architecture (Chapter 3) to study the various IoT
characteristics for extracting invariant functionalities and programming pat-
terns at each layer.

2.1.1.5 IoT Platforms

Mineraud et al. [64] defines the IoT platform as the middleware and the
infrastructure that enables the end-users to interact with smart objects. Pliat-
sios et al. [65] defines an IoT platform as a comprehensive suite of services
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that facilitates services, such as development, maintenance, analysis, visu-
alization and intelligent decision-making capabilities in an IoT application.
There are a number of diverse IoT platforms that exist in the IoT ecosystem
that we propose to gather in two major categories: IoT cloud service plat-
forms and IoT development platforms & Operating systems.
First, in IoT cloud service platform there are a number of IoT service providers
- Amazon AWS IoT, Microsoft Azure IoT, Google IoT, IBM Watson IoT, Oracle IoT
Cloud, to name a few - that provide cloud based scalable commercial IoT
platform across wide range of application domains, with ultimate goal to
help businesses in - making critical decisions, improving efficiency, resource
planning, customer interaction, etc. From our study all service providers
implements a 3-layer (device - edge - cloud) architecture and expose more
or less similar functionalities in terms of cloud micro services [66]. They also
provide Software Development Kit (SDK) for easy integration of devices into
the platform, but the connectivity is limited to IP enabled devices with non-IP
devices enabled using protocol adapter. Ray et al. [67] provide a detailed sur-
vey of various IoT cloud platforms and compare their suitability in the wide
context of heterogeneity management, device management, deployment, vi-
sualization, system management, tool & analysis to name a few.
Second, the IoT development platforms and operating systems are required
for the application development on heterogeneous devices. There are a num-
ber of IoT development platforms such as Arduino [68], ARM mbed [69] and
Energia [70] to name a few and also vendor specific platforms that targets
the vendor specific device architecture. IoT applications built using one plat-
form are not easily portable to another architecture. Moreover, there are cur-
rently many operating systems (OSes) for constrained devices such as RIoT
[71], Zephyr [72], Contiki [73] and TinyOS [74] to name a few. These OSes
are equipped with the necessary building blocks - communication protocols,
network stack, device drivers and hardware abstraction layer - for develop-
ing embedded IoT applications and support multiple device architectures.
Our analysis of the IoT platforms state of the art shows a clear need to under-
stand the IoT heterogeneity due to the IoT device hardware and Operating
systems which accounts for a lot of industrial non open interfaces, but also
open source based interfaces that are mainly used for fast prototyping such
as Arduino, RIOT OS, Zephyr OS, etc.
Regarding our analysis of the IoT cloud service platforms, the existing in-
dustrial solutions show a common standard based on Internet protocol suite
that solves the heterogeneity related to the protocol communication between
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the edge/gateway to the IoT service in the cloud, however there is no joint
standard on the IoT data management and processing used in each IoT cloud
platform, thus making it complex to move from one IoT service cloud plat-
form to another. This type of high level heterogeneity related to the IoT data
processing and management is not handled in this thesis. Later, in Section
2.2.2 we review in detail the various IoT development platforms and operat-
ing system platforms.

2.1.2 Interoperability in the IoT

There are a number of interoperability definitions available in the literature
in various contexts. The IEEE defines interoperability as "the ability of two
or more systems or components to exchange information and to use the information
that has been exchanged" [75]. The ISO/IEC 2382:2015 information technical
- vocabulary defines interoperability as the capability to communicate, execute
programs, or transfer data among various functional units in a manner that requires
the user to have little or no knowledge of the unique characteristics of those units
[76]. According to these definitions, interoperability is needed to enable plat-
forms that are communicable, operable, and programmable across devices,
regardless of their make, model, manufacturer, industry or organization [77].
In the context of IoT, Noura et al. [24] classified IoT interoperability into four
categories. 1) Network Interoperability. 2) Syntactic Interoperability. 3) Se-
mantic Interoperability. and 4) Device Interoperability.
In this section, we briefly explain each of the four interoperability dimensions
to better understand the research and development efforts in IoT heterogene-
ity control and the various interoperability solutions presented in Section 2.2.

2.1.2.1 Syntactic Interoperability

Syntactic Interoperability in IoT is associated with the data formats, encod-
ing and decoding schemes used in the exchange of information or services
between heterogeneous systems [78]. The syntactic interoperability issues
arise from the great variety of formats that are used to encode information
such as XML, JSON, RDF, etc. In case of format incompatibility the receiver
will not have the syntactic rules (defined in the format’s grammar) to decode
the information which hinders the exchange of data or services between sys-
tems. The use of common standard formats can provide syntactic structure
to the exchanged information that allows syntactic interoperability between
systems.
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2.1.2.2 Semantic Interoperability

The World Wide Web Consortium (W3C) defines semantic interoperability as
"enabling different agents, services, and applications to exchange information, data
and knowledge in a meaningful way, on and off the web" [79]. Semantic interoper-
ability is achieved when the exchange of data is made consistent between the
interacting systems irrespective of the original data format [80]. This con-
sistency is achieved by use of existing standards, formats, metadata or it can
be achieved dynamically using shared vocabularies either in schema form or
ontology driven approach.
The semantic technologies - RDF Schema, Web Ontology Language (OWL),
Web Services Description Language (WSDL), etc. - that are used for the web
services to enable interoperability are also commonly adopted in IoT [81]. In
this context, Murdock et al. [80] provides a comprehensive survey on en-
abling technologies for semantic interoperability for the web of things.
Towards this goal, the Web of Things (WoT) working group [82] from W3C
are trying to resolve fragmentation in IoT and enable interoperable IoT de-
vices and services through APIs. On the other hand, the Semantic Sensor
Network (SSN) ontology [83] by W3C is a set of ontologies for describing
observed properties, features of interest, sampling strategies for both sensors
and actuators. It allows for proper interpretation and utilization of data gen-
erated by sensors.
Finally, the syntactic and semantic interoperability is related to systematic ex-
change of information between various IoT cloud service platforms thereby
enabling cross domain IoT applications. This type of interoperability is not
handled in this thesis.

2.1.2.3 Network Interoperability

According to Noura et al. [24] Network interoperability allows seamless mes-
sage exchange between IoT devices operating on heterogeneous networks.
Due to the variety and heterogeneity of IoT communication protocols (Sec-
tion 2.1.1.3) the end-to-end communication link (M2M and between IoT de-
vices & IoT cloud server) is not compatible and hinders the direct exchange
of messages between IoT devices. Network interopability is associated with
the network, transport, session and application layer of the OSI model and
addresses issues related to addressing, routing, resource optimization, secu-
rity, QoS and mobility support [84, 85].
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2.1.2.4 Platform Interoperability

According to Bröring et al. [86] platform interoperability enables the emer-
gence of cross-platform, cross-standard, and cross domain IoT services and
applications. This will allow developers to create applications by combining
data from multiple platforms and also platforms from multiple domains.
In this section, we describe IoT platforms related to IoT cloud service plat-
forms, IoT device hardware and operating system platforms. Platform in-
teroperability issues, in IoT arises due to the availability of diverse IoT plat-
forms (Section 2.1.1.5) that are rarely interconnected. All platforms are ver-
tically oriented and closed system that provide their own domain specific
APIs, services, programming language, operating systems, protocol suite,
and target hardware architecture. This results in fragmentation of the IoT
ecosystem into many vertical IoT silos that hinders application developers to
develop cross-platform and cross-domain IoT applications.
In our work (Chapter 4), we propose a framework that combines various
hardware platforms and allows application developers to develop applica-
tions in a hardware agnostic way. Finally, in Chapter 5 we propose a new
modular hardware platform for designing interoperable embedded systems.

2.1.2.5 Device Interoperability

Noura Et al. [24] defines device interoperability as enabling the integration
and interoperability of heterogeneous devices with various communication
protocols and standards supported by heterogeneous IoT devices. It allows
the exchange of information between heterogeneous devices (Section 2.1.1.1)
that uses heterogeneous IoT communication protocols (Section 2.1.1.3). In the
absence of shared common communication protocols and also the continu-
ous evolution of wireless technologies is hindering the advancement of inter-
operable communication between devices. Also due to the presence of het-
erogeneous IoT devices there are still no adopted common standards for pro-
gramming these heterogeneous devices and most of the different hardware
vendors offer their own development tools and solutions. This makes the
industrialization of the IoT services difficult as the Proof-of-Concept (PoC)
phase is expensive due to this heterogeneity and lack of common shared
standards. In our work (Chapter 4), we propose a framework that aims to
leverage IoT adoption and usage from design to deployment and better han-
dle the heterogeneity property of the IoT device, services and applications.
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2.2 Interoperability and IoT Device Management

Solutions

In this section, we review various interoperability and device management
solutions from Industrial Alliances, Standards Organizations, Industries and
Academia.

2.2.1 Industrial Alliances and IoT Standards

There are many industrial alliances and standards organizations in the IoT
and Machine-to-Machine/M2M community whose sole purpose is to define
and deliver specifications for IoT and M2M so that the connected devices are
able to communicate with one another and with IoT application server in
the cloud regardless of manufacturer, operating systems, silicon vendor and
physical transport.

These specifications are defined in the form framework which provides in-
teroperability guidelines for the industries to develop platforms or tools that
complies with the specifications defined by the framework. In the context
of IoT heterogeneity control, different industrial alliances define different
frameworks. Additionally international standardization bodies are actively
working on the best standard framework for IoT communication protocols
and APIs. In this section we review a selection of most used frameworks de-
fined by standards organization and industrial alliances such as - oneM2M,
OCF, IETF, ETSI, Thread group and Zigbee Alliances.
Industrial alliances such as - oneM2M [87] and OCF [88], define an IoT archi-
tecture in the form of reference framework to overcome the interoperability
problem.
oneM2M [87] defines a horizontal architecture using a common framework
and uniform APIs that enables application across multiple domains. It de-
fines an IoT service layer in the form of software middleware between IoT
applications and sensor nodes. This IoT service layer is like a distributed op-
erating system that provides uniform APIs to IoT applications. The uniform
APIs help to cope with complex and heterogeneous connectivity choices and
abstracts the details of the underlying network technologies, transport pro-
tocols and data serialization. The list of common services defined by the IoT
service layer includes - secure end-to-end data/control exchange between
IoT devices, authentication, authorization, encryption, remote provisioning
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& activation, connectivity setup, buffering, scheduling, synchronization, ag-
gregation, group communication, device management, etc. It also defines
service layer messages as oneM2M primitives that are generic with respect to
underlying network transport protocols. These primitives are binded to un-
derlying transport layer protocol such as HTTP, CoAP, MQTT or Websocket
and reuses existing IP-based protocols and non-IP nodes are supported via
interworking proxies.
On the other hand the architecture defined by OCF [88] is based on Resource
Oriented Architecture design principle, where each entity (e.g. wired or
wireless sensor actuator device) are represented as Resources. Interaction
between entities are achieved using operations that adhere to REST archi-
tectural style. The OCF architecture defines the framework of information
system and the interrelationship between entities. The entities expose them-
selves as Resources with unique identifiers (URIs) and support RESTful op-
erations on Resources. Any device acting as a client can initiate a RESTful
operation on a device acting as a server. The architecture is organized us-
ing three aspects - Resource model, RESTful operation and Abstraction. The Re-
source model is similar to oneM2M primitives and provides the abstractions
and concepts required to model the entity. The entity is represented by a
Resource and encapsulates the state of an entity. The resource model is in-
dependent of any specific application domain and provides communication
protocol interoperability by mapping the resource to the transport protocol
to enable communication between the entities. RESTful operations provides
five generic operations - CREATE, RETRIEVE, UPDATE, DELETE and NO-
TIFY (CRUDN) - defined using RESTful paradigm to model the interaction
with a Resource. These operations are independent of any protocol & tech-
nology, like oneM2M these operations are also mapped onto the underlying
transport layer thus using existing IP-based protocol. Abstraction contains
two abstraction primitives. The first is the entity handler which maps an en-
tity to a Resource and second is the connectivity abstraction primitives used
to map CRUDN RESTful operations to data connectivity protocols or tech-
nology.
Similar to oneM2M, OCF also defines semantics for common service/func-
tions needed across multiple domains and leaves the development, network
and application specifics to others thus creating an IoT ecosystem which is
open to collaboration and provides interoperability among various IoT orga-
nizations and industries.
Both oneM2M and OCF framework handle the interoperability up to the
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nodes that are IP enabled, which mainly includes IoT gateways like devices.
There are a number of IoT end devices that are not IP-capable and are widely
used in IoT related industrial and home automation applications.
There are number of implementations that exist for both oneM2M and OCF,
for example OpenMTC [89] is a backend and gateway side implementation
of oneM2M with limited number of supported protocol adapters, whereas
OS-IoT [90] is device-side library that implements oneM2M defined network
& protocol functions and therefore reduces the effort needed to hook IoT de-
vices into oneM2M ecosystem but requires considerable device resources to
run effectively. On the other hand IoTivity-Lite [91] is a light-weight imple-
mentation of OCF but still requires resources at least that of class 2 devices
(Table 2.2).
Furthermore, some industrial alliances are pushing dedicated frameworks
based on their protocol stack to respond to specific industrial vertical needs.
In this regard, the Thread Group alliance [51] promotes specific standards for
the home automation industry that uses 6LoWPAN over IEEE 802.15.4 wire-
less protocol with mesh network for communication. Zigbee Alliance [53]
on the other hand uses its own networking protocol over IEEE 802.15.4 and
supports star, tree and mesh networking that is not compatible with IP en-
abled devices. IP connectivity on the other hand is supported by Zigbee IP
that provides support for full IPv6-based mesh networking. Zigbee proto-
col is widely used in many verticals such as home automation, industrial
control and building automation to name a few. Wi-SUN (Wireless Smart
Ubiquitous Network) [55] alliance promote technology that are based on
UDP/TCP and IPv6/RPL/6LoWPAN over IEEE 802.15.4g/802.15.4e with
mesh network topology for wireless smart utility and smart city applications
such as advance metering, distributed automation, municipal lighting, smart
parking, environmental sensing, etc.
While each industrial alliance promotes their own protocol, there are no real
successful attempts to cover a cross domain standard for the IoT ecosystem.
Meanwhile, international standardization bodies such as ITU, ETSI, IETF are
all providing their specifications for standardized connected IoT architecture
and protocols. The IETF focuses mainly around IP compliant approach for in-
teroperability. For this, it has developed a protocol suite and open standards
for accessing applications and services for resources constrained devices and
networks. Sheng et al. [57] provides a detailed survey on IETF protocol suite
for the IoT. Despite the IETF IoT standards such as CoAP, 6LOWPAN, RPL,
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6Tisch, etc. the real IoT services deployment is following more industrial al-
liances as mentioned above than a universal standard. This is due mainly to
the lack of memory, processing and energy resources in most of the IoT elec-
tronic devices such as monitoring sensors that are lacking resources to run for
instance the IETF 6LoWPAN. On the other hand, ETSI-M2M [92] framework
by ETSI provides a RESTful horizontal functional architecture for applica-
tions to share common infrastructure, environments and network elements.
The ETSI-M2M architecture has three domains - device & gateway domain,
network domain and application domain - with a generic set of service ca-
pabilities for M2M on top of connectivity layers deployed in M2M networks,
gateways, and devices. The standards defined by ETSI-M2M are adopted by
oneM2M as discussed above.

2.2.2 IoT Frameworks and Platforms Survey

In the context of IoT application lifecycle management (development, de-
ployment and maintenance), Atzori et al. [1] explains the need of the soft-
ware layer between application and technology to simplify application de-
velopment and integration of new technologies with legacy ones. Also for
widespread adoption of IoT-based system and services an intermediate soft-
ware abstraction layer is required to hide the details of various technologies
underlying IoT [93, 9, 11]. Towards this goal as described in Section 2.1.1.5
there are several solutions in the market in the form of - development plat-
forms, operating systems, middleware, etc. which results in a heterogeneous
IoT ecosystem. All these solutions try to hide the vast variety of the underly-
ing IoT hardware technologies and enable easy application development by
utilizing hardware abstraction layers, APIs, libraries, runtime systems, etc.
These solutions lack IoT friendly interface and functionalities for scenarios
description, device deployment and maintenance. In this section, we briefly
describes some of the published and commercial solutions for IoT applica-
tion life cycle management and their limiting factor.
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2.2.2.1 Programming Frameworks

In the context of IoT application development on embedded IoT devices one
can mention the Wiring programming-framework [94]. The Wiring frame-
work is the underlying framework for embedded IDEs (Integrated Develop-
ment Environment(s)) such as Arduino [68] for AVR, ARM, ESP, stc based de-
vice architecture and Energia [70] for TI (Texas Instruments) MSP based de-
vice architecture. The Wiring framework allows easy interaction with hard-
ware by exposing a set of high level functionalities in the form of Wiring-
APIs, which abstracts various hardware peripherals like - UART, SPI, I2C,
PWM, GPIO, etc. The device drivers are offered as libraries that are built
using Wiring-APIs. Commercial embedded IDEs (listed in Table 2.4) are
also available from various semiconductor vendors and software companies
which offer similar kinds of hardware abstraction. Although embedded IDEs
are famous for developing device software and firmware, they still require
knowledge of various wireless technologies, hardware & peripheral config-
uration, electronic systems, etc.
Persson et al. [95] propose a framework named Calvin for application de-
velopment and a platform for deploying and managing applications. The
framework inherits the idea from Actor model and Flow Based Computing
(IFTTT [96], NoFlo [97], etc.) that divides the application into four well de-
fined parts - describe, connect, deploy and manage. Describe - Actors commu-
nicate through in/out ports, data is consumed on in port and the results are
sent on out port. Calvin defines the concept of Actor as a usable software
component representing anything from a device, a service or a computation
The actors run on a Calvin runtime environment which provides an agnostic
view of the underlying system to the developers. Connect - it forms a directed
graph between actors in/out port and CalvinScript is used to implement this
connection. Deploy - For deployment it is assumed that the Calvin runtime
is running on all the devices in the scenario and have access to this runtime.
Calvin runtime forms a mesh network and the application script is passed
to one runtime and it migrates to the destination node. The distribution of
application script depends on the deployment algorithm. Manage - once the
application is running it enters the managed phase and the execution envi-
ronment monitors various states of actors, resources and does update and er-
ror recovery. The Calvin runtime architecture - starting from bottom there is a
hardware followed by an OS layer than a platform dependent runtime envi-
ronment and finally on top there is one more platform independent runtime
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environment on which actors of the applications run. The platform depen-
dent runtime handles the communication between runtime and other high
level abstraction. The proposed solution requires an OS and two runtime en-
vironments that make it difficult to run on constrained devices.
Soursos et al. [98] takes on platform interoperability and describes the prob-
lems associated with highly specialized IoT vertical solutions that are af-
fecting the sustainability of IoT. The author presented his views towards an
ecosystem where IoT platforms cooperate to jointly address cross-domain
challenges. They presented their approach in the H2020 project - symbIoTe.
It highlights the requirement of cross-domain solutions as IoT platform feder-
ation, domain enabler, cooperation and collaboration by sharing of resources
and new business models in the IoT value chain. The project enables var-
ious IoT platforms to collaborate at various levels - device domain, smart
space domain, cloud domain and applications domain. It uses the exist-
ing IoT reference architecture (IoT-A ARM, oneM2M, WoT, etc.) and defines
the compatibility of symbolIoTe requirements with them, thereby creating
an ecosystem of existing IoT platforms that is interoperable. The symbIoTe
architecture is divided into four layers - 1) Device Domain - where devices
will have symbolIoTe clients which helps in the initial introduction of the
devices within a smart space and other things. 2) Smart Space Domain - It
defines symbIoTe middleware that exposes a standardized API for resource
discovery and configuration and implements sensor discovery protocol for a
simplified integration of sensors with platforms. 3) Cloud Domain - It defines
an interworking interface to exchange information between IoT platforms at
cloud level apart from platform specific building blocks. 4) Application Do-
main - it offers an high level API for a unified view on different platforms to
enable cooperation and support cross-platform discovery and management
of IoT resources.
Blackstock et al. [99] presents an hub based approach for interoperability that
uses web technologies (HTTP, JSON, REST architecture) to expose things to
the web. The hub provides facilities for search, (meta) data storage and inter-
action between things and applications. They provide the specification for
exposing a diverse set of IoT resources - real time sensor data feeds, meta-
data, static data sets for describing things. The specification is based on
a lightweight hypermedia catalogue for querying and representing IoT re-
sources (URIs) on the web. The exposed resources are described by a list of
RDF-like triple statements. Every hub exposes a top level catalogue to ap-
plications, this catalogue represents an unordered list of items that refers to
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a single URI. It specifies how to insert, update and delete these catalogues.
They used their own web centric IoT toolkit - WoTKit for managing real-time
data and external open source tool CKAN to support static data and meta-
data. They also build a proxy that provides an application with a unified
interface to access these tools, a third party search engine - Apache Solr - to
both store and search catalogues. To deal with heterogeneous data from a set
of disparate sources they developed a tool called Harvester which is based on
CKAN Harvester plug-in. Their approach is similar to the hub based projects
like - Xively and ThingsSpeak.
Chatzigiannakis et al. [100] introduces the term “true self-configuration” that
refers to the capability of a node to automatically identify nearby devices,
query information from the web, combine local and remote data to generate
meaningful new information. They extended the Semantic Web technology
to form a semantic IoT, such as for the machine-understandable and domain-
independent representation of data they used Resource Description Format
(RDF), the data are linked with Linked Open Data (LOD) and to query the
IoT and data sources from the internet, SPARQL and data from LOD cloud
are used. Their system is built around their two core contributions - "Se-
mantic Data" and "Smart Self-Annotation". For semantic data they used ex-
isting semantic web technologies such as RDF and Linked Data (LD). For
smart self-annotation instead of using existing work such as SensorML [101],
Transducer Electronic Data Sheets (TEDS) [102] and Semantic Sensor Net-
work (SSN) Ontology [83], they compared the output of new sensor to al-
ready deployed sensor with known metadata and with the assumption that
sensors with similar metadata will output similar stream of sensor data. They
used fuzzy-based methods to associate membership with already deployed
sensors. Another feature of their project is "Semantic Actuation" - which uses
"Semantic Web Rule Language" (SWRL) [103] from "W3C" to formulate com-
plex rules over RDF data. These rules are evaluated to trigger actuation and
is similar to IFTTT.
The existing approaches presented in this section still require considerable
resources to run effectively on constrained devices or at least require knowl-
edge of various underlying technologies such as communication protocols,
device architecture, etc. In Chapter 4, we propose our development frame-
work named PrIoT that provides a lightweight approach for implementing
IoT applications on heterogeneous IoT devices, including resource constrained
(Class 0) IoT devices. In addition, it also provides a high level application
interface (PrIoT-API) and programming language (PrIoT-Lang) that are IoT
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devices and communication protocol technology agnostic.

2.2.2.2 Development Platforms and Tools for IoT Devices

In IoT platforms, one can refer to the well known platforms - Arduino [68],
Energia [70] and mbed [69] that combine the embedded system boards and
components with their programmation language and design tools. Arduino
platform is based on an open-source wiring programming-framework [94]
and supports a variety of microcontroller architectures such as AVR, ARM,
ESP, etc. that can be programmed using a C-like programming language with
easy to use integrated development environment (IDE). In terms of hard-
ware, Arduino boards have an interface to connect "Shields" - add-on circuit
boards to enhance the capability of Arduino boards (See Section 2.3.1.1 for
more details). Arduino boards together with Shields are designed for easy to
use and include all the necessary circuitry for quick and rapid prototyping.
On the software side, Arduino provides an extensive set of libraries and a lot
of example codes for effortless learning. Furthermore, Arduino is backed by
a large community of hobbyists, engineers and professionals to create, share
and support libraries and examples online. Although Arduino is the most fa-
vorite platform for IoT proof-of-concept it has many disadvantages making it
not suitable for commercial and industrial use. In fact Arduino is restricted to
a small number of architecture and is not portable to other microcontrollers,
its libraries are very inefficient in terms of resource usage (RAM, ROM, CPU
cycles, etc) and therefore has low performance as compared to bare-metal
implementation. In addition, Arduino boards are expensive and are not suit-
able for large scale deployment. In addition, Arduino boards are expensive
and are not suitable for large scale deployment.
Inspired by Arduino, Energia platform is also based on the Wiring programming-
framework and provides an IDE similar to Arduino. Energia supports only
Texas Instruments (TI) development boards and device architecture. Since
Energia is based on the same wiring framework as Arduino, it has the same
limitations - programs written in Energia are not portable to other microcon-
trollers. On the other hand, The mbed platform [69] is an initiative from ARM
and provides an online IDE and operating systems (mbed OS) for the devel-
opment of embedded applications. The platform supports microcontrollers
based on ARM Cortex-M architecture. In ARM mbed the development and
contribution is supported at two levels. The first level - Core Platform, in-
cludes all the generic software components and the HAL which allows mbed
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to transparently run on different ARM cortex-M based microcontroller man-
ufacturers. At second level - Component Database, the open community is
involved in the development of libraries to support peripheral components,
sensors and protocols that are needed to build applications on the IoT-end
devices. As of now, mbed IDE is restricted to online code editor & compiler
and is not available for offline use, which brings in the question of code pri-
vacy and security.
Also depending on the amount of resources available on embedded hard-
ware such as processing power, memory size, etc, only a limited set of func-
tionalities can be realized. Table 2.3 shows the list of various hardware ar-
chitecture and the type of functionality they can support based on available
resources. For example a gateway needs to be powerful enough to pro-
vide functionalities like - encryption, device orchestration, protocol trans-
lation, database hosting, sensor data post processing and high level applica-
tion packages. These functionalities require an embedded OS which can only
be run on more powerful embedded systems (MPUs) compared to simple
connected objects that rely only on lightweight MCUs. On the other hand,
small devices can’t host an embedded OS and need to be programmed by
vendor specific language that is not portable to other devices thus reducing
code reuse. This requires a common platform to integrate the development
of hardware applications for both MPUs and MCUs.

Architecture Functionalities
Name MCU MPU IPv6 AES Gateway
ARM Cortex-Mx 3 7 3 7 7

Atmel AVR 3 7 7 3 7

TI-MSP430 3 7 7 7 7

Intel x86 7 3 3 3 3

ARC 7 3 3 7 3

NIOS II 7 3 3 7 3

Tensilica Xtensa 7 3 7 7 3

RISC-V 7 3 7 7 3

Nordic 3 7 7 3 7

TABLE 2.3: Embedded System Functionalities

In the context of tools for device programming, there are numerous semi-
conductor vendors that provide microcontrollers for IoT hardware develop-
ment and different vendors have different development tools as shown in
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Table 2.4. Embedded firmware developers are forced to procure, learn and
install new tools for every time they switch to different vendors. Also find-
ing proper libraries and sample code for sensor, actuator and communication
devices is time consuming which makes hardware testing and prototyping
more difficult. PlatformIO [104] is one such tool that overcomes this prob-
lem. It is an open source IDE with a collection of cross platform tools for IoT
device programming and provides a unified ecosystem for embedded code
development for various hardware platforms and is equipped with a code
editor, library manager, toolchain and debugger that supports more than 400
development boards.
On the other hand, Eclpise IoT [105] from Eclipse foundation provides a col-
lection of open source software that is divided into three independent IoT
software stack namely - IoT device stack, IoT gateway stack and IoT cloud
stack. IoT device stack includes projects like - Eclipse edje [106] (Hardware as-
btraction layer, JAVA APIs for MCUs - "Android for IoT"), Eclipse paho [107]
(C implementation of MQTT), Eclipse Wakaama [108] (C implementation of
OMA LWM2M). IoT gateway stack includes Eclipse Kura [109] project and
IoT cloud stack include Eclipse KAPUA [110] project.
Bröring et al. [86] presents the architecture of platform interoperability through
the H2020 project "BIG IoT". The aim of the project is to enable cross-platform,
cross-standard and cross-domain IoT service and application by building an
IoT ecosystem of interoperable IoT platforms. It provides key functionalities
like - advertising, dynamic discovery, automated orchestration and negotia-
tion of services. They explained their architecture of interoperability through
"BIG IoT" APIs that offer seven well defined functionalities - 1) Identity Man-
agement - for resource registration. 2) Discovery of resources. 3) Access to
(meta) data. 4) Tasking - to forward commands to things. 5) Vocabulary man-
agement - for semantic description of concept 6) Security management and 7)
Charging - to allow monetization of assets. They also suggest the five inter-
operability patterns that need to be supported by IoT platforms for interop-
erability among platforms.These patterns are based on a well defined syntax
and semantics of the interfaces and categorized as - 1) Cross-platform access.
2) Cross-application domain access. 3) Platform independence. 4) Platform
scale independence. 5) Higher-level service facades. The BIG IoT APIs are
designed to enable these patterns. Although the interoperability architecture
introduces the concept to enable platform interoperability but fails to explain
the implementation details and how it can be adapted to constrained IoT de-
vices.
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In our work (Chapter 4) we propose our development tool that implements
the features provided by our PrIoT framework. It provides a lightweight
development of embedded application across diverse hardware platforms.

2.2.2.3 Embedded Operating Systems

There are currently many embedded operating systems (OSes) such as Riot [71],
Zephyr [72], TinyOS [74] and Contiki [73]. They are designed to hide the
heterogeneity of underlying IoT hardware platforms and hence provide a
solution for device interoperability. They clearly need more hardware re-
sources than an application built using platforms such as Arduino, Energia
and mbed. OSes are designed to provide much higher level of hardware ab-
straction by dividing software components into two parts - hardware-dependent
(peripheral drivers, CPU & Board related codes, etc.) and hardware-independent
(kernel, libraries & network code, etc.). Each embedded OSes have their own
APIs, data structure, libraries and supported list of hardware platforms thus
creating many vertical silos of operating systems that are not compatible with
each other. We focus on three open source OSes - RIOT [111], Zephyr [72] and
contiki [73] - to show the advantages and disadvantages of using embedded
OSes for prototyping connected-devices.
RIOT [71] is a free and open source real-time microkernel-based OS devel-
oped to adapt to the network of constrained IoT devices. It leverages the ca-
pabilities of hardware with both constrained as well as abundant resources
and provides support for network protocols like the standard IETF 6LoW-
PAN and RPL for constrained devices and also full support for IPv6, UDP
and TCP. Because of the RIOT hardware abstraction layer (RIOT-HAL) be-
tween RIOT kernel and hardware, it is possible to build complete embedded
software which can be easily ported to any hardware supported by RIOT.
The RIOT-HAL avoids redundant code development and reduced applica-
tion maintenance cost. Although RIOT provides hardware independent ap-
proach for application development which is beneficial for rapid and flexible
prototyping, as of now it supports a certain number of hardware boards but
provides the necessary resources to add new boards.
Zephyr [72] is a linux foundation hosted collaboration project. Like RIOT,
Zephyr is a small, scalable and open source real-time operating system which
is driven by community to support new hardware, developer tools, sensor
and device drivers. It supports standards like IETF 6LoWPAN, CoAP, IPv4,
IPv6, NFC, bluetooth, bluetooth low energy (BLE), Wi-Fi and IEEE-802.15.4.
Like RIOT and Zephyr, Contiki is another tiny operating system for resource
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constrained microcontrollers. Unlike RIOT and Zephyr, the contiki kernel
is by default designed as event driven, that means kernel processes are im-
plemented as event handlers which run to completion. The event-driven
kernel design simplifies the design of OS. Contiki implements preemptive
multithreading as an application library and is not a part of OS-kernel. Con-
tiki supports fully standard IPv6 and IPv4 along with low power wireless
standards like - IETF 6LoWPAN, RPL, CoAP, UDP, TCP and HTTP. RIOT,
Zephyr and Contiki support multiple hardware architectures as shown in
Table 2.4 and covers an extensive set of hardware architectures for gateway
and constrained devices. Although these embedded OSes are equipped with
the necessary building blocks (communication protocol, network stack, de-
vice drivers and hardware abstraction layer) for developing embedded ap-
plications, they still lack the IoT friendly interface to develop applications on
distributed networks IoT nodes. Also there is a plethora of embedded de-
vices (Class 0, see Table 2.2) that do not have enough resources to support
embedded OSes but they are still widely used. In Chapter 4 we propose high
level interface in the form of PrIoT-Lang and PrIoT-API that not only hides
the underlying device heterogeneity but also ease IoT device application de-
velopment.

OSes Non-OS
Name RIOT Zephyr contiki mbed [69] Arduino [68] Energia [70] Vendor Specific Tools
ARM Cortex-Mx 3 3 7 3 3 7 ARM Mbed
Atmel AVR 3 7 7 7 3 7 Atmel Studio
TI-MSP430 3 7 7 7 7 3 Code Composer Studio
Intel x86 3 3 3 7 7 7 Intel System Studio
ARC 7 3 7 7 7 7 DesignWare ARC
NIOS II 7 3 7 7 7 7 Nios II Embedded Design Suite
Tensilica Xtensa 7 3 7 7 7 7 Xtensa Xplorer IDE
RISC-V 7 3 7 7 7 7 RISC-V GCC
Nordic 3 3 3 7 7 7 nRF5 SDK

TABLE 2.4: Embedded system programming diversity from
bare metal (non-OS) to OS approaches

2.2.2.4 Language-based Approaches

IoT application development complexity is also regarded by language-based
approaches that are gaining popularity, for example [112] proposes a language-
based approach for interoperability between heterogeneous isolated IoT plat-
forms (IoT islands) at both transport and application level. Their approach
is based on the service-oriented language - Jolie [113]. It allows the reuse of
the same logic over disparate communication stacks (HTTP-TCP, CoAP-UDP,
MQTT, etc.) thereby maintaining interoperability among protocols. This in-
teroperability is achieved by dividing the description of collectors (gateway
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interface that send and receives data to and from devices of different IoT
islands) into two parts : behaviour (logic) and deployment (how communi-
cation is performed), as a result the behaviour of the program can take any
communication method described in the deployment part. As of now their
approach is limited to hardware (Class 2 devices - See Table 2.2) that can
support JVM (Java Virtual Machine). Eclipse mita [114] is another program-
ming based approach that allows easier programming of IoT applications for
developers without embedded development background. Mita syntax and
APIs provide hardware platform agnostic view to developers allowing easy
programming of connectivity modules, sensor, actuators, etc. The Eclipse
mita is new project and only support limited number of hardware platforms.
It is also important to mention the role of Domain Specific Language (DSL)
in projects like - IoTLink [115] and IoTSuit [116]. In IoTLink inherits the con-
cept of IoT-A. It allows developers to compose software representation of
physical objects through model-driven approach. The application is defined
in a platform-independent model through visual notations, which is then
transformed in a platform specific model based on Java programming lan-
guage. The implementation of IoTLink is based on various eclipse plugins
- Eclipse Modeling Framework (EMF), Eclipse Graphical Modeling Frame-
work (GMF), Extended Editing Framework (EEF) and Acceleo. But the tool
assumes that the IoT hardware (sensor node) is available off the shelf and
that it can be accessed through any one of the popular communication pro-
tocols.
On the other hand, the IoTSuit toolkit divides an application into different
concerns and integrates a set of high level languages to specify them. IoTSuit
still requires experts or at least expert knowledge at various stages of IoT ap-
plication development. The domain expert generates a domain vocabulary
which contains domain-specific concepts specific to target IoT application.
The domain vocabulary is then made available to experts at various stages
of IoT application development, like - network manager, software designer,
device developer and application developer. The tool generates a vocabulary
framework to aid device developers in developing embedded device drivers,
although they integrated an open-source sensing frameworks for android de-
vices leaving device developers to only implement interfaces. But this will
greatly restrict IoT scenario designers to limited number of sensors, actuators
and communication devices.
In our approach we also follow similar language based approach not only for
IoT application logic development but also for IoT scenario configuration as
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explained in Chapter 4.

2.2.3 IoT Device Management

IoT device management (DM) plays an important role in IoT lifecycle man-
agement. Provisioning for DM helps in the deployment and maintenance of
IoT end-systems as well as edge-systems. Sheng et al. [117] defines DM as
integration of network, system and application managements. It includes
functionalities, but not limited to, device & service provisioning, configura-
tion & control of device behavior and network parameters, firmware update,
registration & management of services, performance monitoring, etc.
It is clear that in case if all IoT devices were IP enabled, they will inherit from
Internet based device management frameworks such as SNMP [118], TR-069
[119] and other cloud based internet management frameworks. IoT archi-
tecture as explained in previous section having the Internet protocol stack
available only between the IoT gateways to the IoT application servers in the
cloud, the Internet based management protocols can be used up to the IoT
gateways that are running IP protocol stack and this can be extended and
adapted to the IP-like IoT end devices.
Due to this IoT device heterogeneity there are number of device management
solutions and standards available for both constrained and non-constrained
devices with IP and non-IP networks. DM solutions over non-IP networks
such as LoRaWAN, Sigfox, WirelessHART, Zigbee, Z-Wave, etc. are isolated
within their own vertical silos that hinders their usability across heteroge-
neous communication network. On the other hand DM solutions and their
associated problems over IP networks are extensively studied and proposed
in the literature, standards and industrial organizations. Some of these solu-
tions - [48, 49, 89, 90, 91, 95] - have already been covered in Section 2.2.1 and
2.2.2.
One of the promising device management architecture is OMA (Open Mo-
bile Alliance) LWM2M [120]. It defines a lightweight weight M2M device
management protocol for managing constrained (memory and power) de-
vices. The specification includes both client and server side architecture. The
LWM2M protocol is based on REST architecture that is built on top of CoAP
and follows protocol & security standards from IETF. There are a number of
implementations and performance evaluation of OMA LWM2M available in
the literature for example, Rao et al. [121] showcase the implementation of
client side architecture of OMA LWM2M specification on contiki based IoT



Chapter 2. Literature Review 40

nodes and evaluated the performance in terms of memory footprint.
Similar to OMA LWM2M, Sheng et al. [117] also proposed a framework for
CoAP-based DM over IPv6 network and includes five DM functions - Reg-
isteration, Provisioning, Management Services, Observing and Application
data transmission. These functionalities share common resources on sensor
devices and are abstracted as parameters, status and data. Interaction with
IoT client (cloud application) can be directly triggered with these resources
via CoAP methods.
On the other hand, there are number of application specific DM solutions
such as, TR-069 (CPE WAN Management Protocol) [119] that defines specifi-
cation for remote management of CPE (customer-premises equipment) such
as, set-top box, router, etc. over IP network, Field Device Integration (FDI) for
the management of field devices in control system applications [122]. SNMP
(Simple Network Management Protocol) that defines a network management
protocol architecture for IP-based networks [118]. Similar to SNMP, NET-
CONF (Network Configuration Protocol) [123] is another network manage-
ment protocol maintained and standarized by IETF is used for monitoring
and configuration of IP based networks. All these application specific solu-
tions require considerable device resources making them unsuitable for re-
source constrained devices used in the IoT.
IoT cloud platforms (Section 2.1.1.5) also support proprietary DM solutions
mostly over IP based networks and includes services like registration, orga-
nization, monitoring, status, over-the-air (OTA) update, etc. all accessible via
web applications. DM solutions from cloud platforms are vendor specific
and operates independently within their own verticals.

2.3 IoT Hardware Heterogeneity Control in Em-

bedded Systems

In this section, we investigate the various hardware approaches for hetero-
geneity control in embedded systems especially for designing Internet of
Things (IoT) based systems. The hardware solutions presented in this sec-
tion tries to control the IoT device peripheral interface heterogeneity as dis-
cussed in Section 2.1.1.1. To tackle the device heterogeneity, in our research
we decided to investigate the hardware approach to control IoT device het-
erogeneity due to the diversity of its hardware components. In our work we
argued that solving the IoT device heterogeneity control and building end to
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end interoperability also requires another design approach in the IoT hard-
ware part. In Chapter 5 we propose our contribution based on a modular
approach for designing embedded systems that provides a uniform homo-
geneous standard interface to better meet IoT device requirements.
The section is organized as follows, in subsection 2.3.1, we briefly introduce
the concept of modular architecture and systems from engineering design
perspective and its importance. Then in subsection 2.3.1.1, various existing
modular systems are explained in details along with their limitations. Fi-
nally, in subsection 2.3.1.2 we review various power optimization techniques
in IoT and state the importance of energy aware IoT applications. In addi-
tion, we state the requirement of intelligent modular systems that can cater
to various energy limitations of IoT device and applications.

2.3.1 Modular Architecture and Systems

Modularity in [124] is described as the use of common units to create prod-
uct variants. The use of modular architecture [125, 126] requires identifica-
tion of independent, standardized, or interchangeable units to create a va-
riety of functions. There are three categories of modularity as described in
[125] - Component-swapping modularity, Component-sharing modularity and Bus
modularity. For our work, we focused on Bus modularity because existing em-
bedded systems uses this approach to partition the system into independent
units and is suitable for designing practical modular embedded systems.
In bus modularity, all modules are connected to a single common module
through an interface bus. For example, in embedded systems various mod-
ules such as sensors, actuators, transceivers, memory, etc. are connected to a
common processing unit through various peripheral interface buses [15, 14]
The concept of modular architecture [126] is not new in the embedded world,
for example modular smartphones [127, 128] where the essential elements
like camera, display, battery and processor can be replaced easily due to dam-
age or an improvement in current technologies without replacing the entire
phone.
In the research community the modular architecture been studied in many
contexts for example, modular sensor network [129, 130, 131, 132], applica-
tion specific modular IoT systems [133, 134, 62], modular hardware platform
for edge computing [135], educational learning & teaching [136], plug & play
interface for modular systems [137, 138].
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Another advantage of modular systems apart from controlling device pe-
ripheral heterogeneity is that it allows to replace part of the system without
replacing or removing the complete system. This is important because elec-
tronic devices are not designed to last, this makes electronic waste (e-waste)
one of the biggest waste stream contributors [139] and IoT related hardware
will become one of the main sources of e-waste.

2.3.1.1 Existing Modular Systems and their Limitations

In this subsection we investigate some of the popular design choices for
building modular embedded systems for prototyping IoT applications and
also their shortcomings.
Before presenting the rest of the section, we define few terminologies to
maintain uniformity in understanding the existing work and our contribu-
tion that follows in Chapter 5.

• IoT Resources : With respect to processing unit an IoT resource is an
auxiliary circuitry that provides capabilities in the form of sensors, ac-
tuators, wired or wireless transceivers, HMIs, or any other similar ca-
pabilities that help in the realization of IoT based nodes.

• Main-Board : An embedded board that contains at least one primary
processing unit, companion circuits such as - power unit, debug inter-
face, etc. and optional IoT resources.

• Auxiliary-Board - An embedded board that contains one or more IoT
resource or optional secondary processing unit.

In the context of modular system design there are a number of design choices.
Each of them differs in form factor, number of supported peripherals along
simultaneously access to these peripherals, demo boards and the way the
main-board is connected with auxiliary-board(s).

M2.COM : The M2.COM [140] platform module is a main-board standard
based on 2230 M.2 form factor with 75 pin host interface connector, the mod-
ule measures 30× 20 mm. The platform specification combines wireless con-
nectivity with processing unit onto a single host module (main-board) and
the auxiliary board is developed separately from main-module that carries
an equivalent 2230 M.2 key-E socket for connecting the main board. Figure
2.1 depicts an M2.COM system along with example board in Figure 2.2. The
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idea behind M2.COM modular design is to allow sensor integrators and sen-
sor makers to select most efficient way to transmit data. The 75-pin connector
exposes various embedded peripherals listed in Table 2.5.

FIGURE 2.1: M2.COM : Main-Board and Auxiliary-Board

FIGURE 2.2: M2.COM - Main Board

Micro Bit : Micro Bit [141] (main-board) is an open source ARM-based em-
bedded system designed by the BBC (British Broadcasting Corporation) for
its use in computer education. The size of the board is 43× 52 mm and carries
an ARM Cortex-M0 based processor, sensors, buttons, LEDs, Bluetooth, USB
and external battery connector. Micro Bit uses 25 pin edge connector to inter-
face with external auxiliary-board that carries either a 90◦ or 180◦ compatible
female edge socket. The 25 pin edge connector exposes various peripherals
listed in Table 2.5. The main disadvantage of Micro Bit is that it is designed
for ARM based processor and is mainly used for computer education.

mikroBUSTM : The mikroBUSTM [142] is an auxiliary-board standard cre-
ated by MikroElectronika [143] that defines the specification for sockets on
the main-board and add-on boards (auxiliary-boards). The standard specifies
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FIGURE 2.3: Micro Bit : Main-Board and Auxiliary-Board

FIGURE 2.4: Micro Bit - Main Board

the physical layout of the mikroBUSTM pinout, the size & shape of auxiliary-
boards and the positioning of the mikroBUSTM socket on the main-board and
finally the silk screen marking conventions for both sockets and auxiliary-
boards. Figure 2.5 depicts mikroBUSTM system and along with example
board in Figure 2.6. The mikroBUSTM socket comprises a pair of 1x8 fe-
male header on the main-board with proprietary pin configuration that offers
various peripherals listed in Table 2.5. The auxiliary-boards are known as
mikroBUSTM add-on boards and each such boards provide additional func-
tionalities - wireless connectivity, sensing, actuation, HMI, etc. - to the sys-
tem. The size of the auxiliary-boards are limited to three sizes S (25.4× 28.6
mm), M (25.4 × 42.9 mm) and L (25.4 × 57.15 mm) and because of this it is
difficult to provide multiple IoT resources on a single auxiliary-board and as
a result the main-board may require multiple mikroBUSTM auxiliary boards.
This creates variability in main-board size (form factor) from one IoT appli-
cation to another.

Pmod Standard : Pmod (Peripheral Module) standard [144] is an open stan-
dard defined by Digilent Inc. [145]. Interface boards that adhere to Pmod
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FIGURE 2.5: mikroBUSTM : Main and auxiliary-boards

FIGURE 2.6: MikroBUS - Auxiliary Board

standard are known as pmod modules (auxiliary-boards). These modules
communicate with the main-board using 1x6, 2x4, or 2x6-pin right angle fe-
male socket that carry standard peripherals and digital control signals. Pmod
standard is a guideline for - form factor, peripheral pin mapping, reference
manual, example code, user guides and technical support.
Figure 2.7 depicts a pmod based system. The connectors on the pmod mod-
ules are standard male pin-header style connectors, these connectors are gen-
erally right angle at the edge of the boards for direct connection to the main-
boards. Similarly the main-board carries an equivalent female socket connec-
tor on the edge of the board. Although the width of the pmod module is
not prescribed in the standard and due to this some modules might interfere
mechanically with the adjacent boards, but when multiple female sockets are
used on the main-board then the width of the module is restricted to 20.32
mm in order to avoid mechanical interference.
Like mikroBUSTM the limitation of Pmod is that it only supports SPI, I2C,
and UART protocols and standard digital control signals. Most pmod mod-
ules provide single peripheral due to a limited number of pins, for example
a 1 x 6-pin female socket provides either SPI or UART or I2C, but a pair of 2 x
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6-pin can provide SPI or UART or I2C on each 1 x 6-pin separately. Table 2.5
lists various peripherals supported by pmod along with size specification.
Figure 2.8 shows an example of Pmod board.
The drawback of both mikroBUSTM and Pmod system is that multiple auxiliary-
boards are needed if an IoT application requires multiple IoT resources, which
can effect the design of main-boards from one application to another.

FIGURE 2.7: PMOD : Main-Board and Auxiliary-Boards

FIGURE 2.8: PMOD - Auxiliary Board

Grove System : Grove system [146] is another building block approach
to assemble electronics using standardized grove connectors. Both main
and auxiliary-boards (grove modules) carries similar grove connectors and
are connected together using a grove cable. The grove connectors are 4-pin
standardized size connectors and are keyed to prevent plugging them back-
wards. There are four different kinds of connectors based on the type of
embedded peripherals, Grove Digital - provides two general purpose input
output, Grove Analog - with two analog input, Grove UART and Grove I2C for
UART and I2C respectively. The drawback of grove system is that it only
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supports four types of embedded peripherals and not all peripherals are si-
multaneously available on a single board. Figure 2.9 shows an example of
Grove auxiliary board.

FIGURE 2.9: Grove System - Auxiliary Board

Arduino Shields : Shields are one of the older and widely used pluggable
board architecture for Arduino based systems. Shields (auxiliary-board) mounted
on the Arduino board (main-board) gives extra capabilities in terms of IoT
resources. The nominal size of shield is 68.58 × 53.34 mm, which provides
standard male pin-header style connectors (known as “shield connectors”) for
mounting directly onto the main board that has an equivalent female socket.
The 32 pin connector exposes various standard peripherals like - SPI, UART,
I2C, upto 6 PWM & Analog each, 2 interrupts and upto 20 GPIOs. Due to
its popularity with Arduino based system these boards has been adopted for
other non-Arduino based boards, like STM Nucleo [147], NXP LPCXpresso
[148]. Figure 2.10 shows an example of Arduino Shield.

FIGURE 2.10: Arduino Shield - Auxiliary Board

Raspberry Pi HATs : It is important to mention modular systems based
on single board computers that allows prototyping of IoT gateways, access
points, routers, proxies and edge devices due to the support of full operating
systems like Linux.
In this category, HAT (Hardware Attached on Top) [149] is an add-on board
(auxiliary-board) for Raspberry Pi (RPi) [150] family of low-cost single-board
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computers (main-board). Figure 2.11, shows an example of HAT on top of
RPi board. A HAT that confirms to HAT-specifications allows RPi to identify
the connected HAT and automatically configures the kernel (Linux) device
tree [151] using an external EEPROM (Electrically Erasable Programmable
Read-Only Memory) that holds various device meta-data. This helps kernel
to setup the physical interface and load the specific HAT drivers at boot time.
In order to facilitate this all official HAT has an EEPROM that hold apart from
meta-data, information about interface setup and a fragment of device tree
known as device tree overlay. During boot the overlay is merged with the
device tree and directs the kernel to load the relevant drivers. In order to ac-
cess the HAT correctly, this assumes that the drivers are pre-installed in the
kernel or provided by the manufacturer of the HAT. The 40 pin HAT inter-
face exposes various peripherals listed in Table 2.5. Finally, there are several
disadvantages of using HATs, first the official HAT-specification is not de-
signed to allow the use of multiple HATs on a single main-board because the
EEPROM specification does not have meta-data that can distinguish between
various attached HATs and therefore the last read EEPROM will override the
previous device tree overlay hence only one HAT will be recognized, which
might introduce shared pin conflicts with other HATs. Second, the HAT is
specifically designed to be compatible with RPi based main-board that hin-
ders its use with other main-boards.

FIGURE 2.11: Raspberry Pi HAT - Auxiliary Board

BeagleBoard Capes Similar to RPi HATs, BeagleBoard (BB) capes are daugh-
ter boards for single board computers based on BeagleBone and PocketBea-
gle family of boards. Capes also has an EEPROM which fulfills a similar
function to that of HAT-EEPROM (interface & driver setup), but the data for-
mat is not compatible, unlike RPi the BB has the ability to accept up to four
capes that can be stacked on top of the BB. The information about which pins
and features used by capes are stored in the EEPROM on each cape. The
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processor used in BB supports multiple features (peripherals) via pin multi-
plexing and therefore each pin can be configured for various features allowed
by each pin. Figure 2.12, shows an example of BeagleBoard Cape auxiliary
board.

FIGURE 2.12: BeagleBoard Cape - Auxiliary Board

Table 2.5 summarizes various peripherals supported by individual modular
systems along with form factor (size).
In order to complement our proposed software oriented approach in Chapter
4, we proposed in Chapter 5 a hardware oriented approach where we design
a new modular system for designing interoperable embedded systems that
better caters the IoT device peripheral heterogeneity in comparison with ex-
isting modular systems. We also showed using quantitative analysis that our
system is better suited for implementing embedded systems for IoT scenar-
ios.

Name Size (w× l mm) Embedded Peripherals
SPI UART I2C I2S SDIO PWM Analog Interrupt GPIO

M2.COM◦ 22× 30 2? 1 2 1 1 upto 2 upto 6 ∗ upto 16
Micro Bit◦ 43× 52 1 1 1 0 0 upto 3 upto 6 ∗ upto 3
mikroBUSTM• 25.4× 57.15 1 1 1 0 0 1 1 1 0
pmod†• 20.32× l‡ 1 1 1 1 0 upto 2 0 upto 1 upto 8
Grove
System†•

No Standard 0 1 1 0 0 0 2 0 2

Arduino
Shield•

68.58× 53.34 1 1 1 0 0 upto 6 upto 6 2 upto 20

RPi HAT• 65× 56.5 2 1 1 1 1 upto 4 0 upto 28 upto 28
†Not all supported embedded peripherals are available on a single board, ◦main-board standard
•auxiliary-board standard, ‡no prescribed standard length, ∗no explicit mention of dedicated interrupt lines

TABLE 2.5: Comparison Between Various Modular Systems

2.3.1.2 Power Requirements in Embedded Systems for IoT

A lot of IoT applications are relying on IoT devices with limited resources of
processing, storage, communication but also energy. Certain IoT applications
are using other IoT devices with enough resources such as connected vehi-
cles, connected sensors in home automation with sensors energised from the
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mains electricity. In this work we are interested in the power constrained IoT
devices as it is for the moment widely used for different sensing and moni-
toring IoT applications. Moreover, the true power of IoT lies in the fact that
in the real world scenario the network (wired and wireless) of IoT devices are
expected to be operated in energy constrained environment with multi year
of lifetime. This requires IoT devices to better cope with various external
power and energy sources. Garg et al. [152] provide a comprehensive survey
on various energy sources available that are used in energy harvesting ap-
plications. In order to understand the energy limitations of IoT devices, Bor-
mann et al. [25] introduced the terminology for energy constrained devices
and partition the devices into various classes according to energy limitations
as shown in Table 2.1.
Arshad et al. [13] discusses and evaluates the best strategies for minimizing
the energy consumption for their vision of Green IoT 2020. To maximize the
wireless node’s lifetime the node has to exploit energy aware techniques in
circuits, architecture, algorithm and protocols [153]. One method to under-
stand energy consumption of protocols is to model the wireless power con-
sumption of IoT devices [154], although it is not an easy task as it requires
many technology dependent parameters, nevertheless the power models are
good for comparing various wireless technologies at an early stage of tech-
nology selection. For example, Casals et al. [155] presents analytical models
of LoRaWAN nodes’s current consumption that is derived from the mea-
surements performed on existing prevalent LoRaWAN hardware platform,
these models are useful to study the impact of various LoRaWAN physical
and Medium Access Control (MAC) parameters (data rates, acknowledge
transmission, payload size and bit error rate) on power consumption and ul-
timately to have a rough estimate of battery life.
There are also other techniques to reduce power at the protocol level, for
example Adame et al. [156] proposes an energy efficient protocol stack for
multi-hop communication for LPWANs technology.
Sinha et al. [153] has developed an energy aware embedded operating sys-
tem (OS) that uses dynamic power management techniques such as shutting
down sensor nodes if no event occurs and wake them up when necessary.
Raghunathan et al. [157] explains the various design considerations at circuit
level for designing energy harvesting sensor nodes. From a hardware design
perspective, an energy efficient ultra low power wake-up receivers (WURx)
[158, 159, 160] are gaining a lot of attentions for reducing power consump-
tion by relieving the main radio from continuously monitoring the channel
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for incoming messages. The WURx acts as an auxiliary receiver and wake-up
the wireless node from sleep using interrupt, only after detecting a potential
incoming message.
Finally, we have studied that in order to implement the above power man-
agement techniques ([153, 157, 158, 159, 160, 156]) a wireless node should
be capable of dynamically monitoring the available energy source (light in-
tensity, wind speed, vibration, temperature, etc.) & consumption (voltage,
current, charge, etc.) and also taking appropriate action to manage power
consumption both in software and hardware. In this context, Georgiou et al.
[161] discusses the role of software in controlling the energy consumption of
IoT devices that requires constant feedback from the hardware on the state
of energy consumption. This requires an intelligent modular power supply
unit that is usable across diverse classes of energy limitations and can pro-
vide the necessary features to the device software to better optimize power
utilization during runtime. The existing modular systems as discussed in
Subsection 2.3.1.1 does not take into account the energy requirements of IoT
application and hence does not provide any power management features.
In summary, our contribution work presented in Chapter 5 is built on the
previous research that are presented in this section to identify the various
power requirements & management techniques of IoT devices. As a result of
which we propose a modular system named Power-Bus (Chapter 5 - Section
5.3) that provides the necessary features required for better power optimiza-
tion and exposes an intelligent homogeneous interface that is usable across
various power requirements of IoT applications.
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Chapter 3

IoT Application Characteristics and
Its Common Invariant
Functionalities

3.1 Introduction

This chapter introduces our first contribution that describes the underlying
design philosophy of our proposed framework (Chapter 4). We propose 4-
layer IoT architecture and most importantly we identified the common in-
variant functionalities (IFs) and the corresponding programming patterns
(PPs) present in most IoT scenarios. These IFs and PPs are needed to re-
duce the complexity of managing IoT scenarios on heterogeneous IoT de-
vices. These high level abstractions are needed to systematically understand
the high level description of IoT scenarios and also for designing software
abstraction layer (SAL) that is agnostic to the underlying IoT device and pro-
tocol heterogeneity. For validating the IFs and PPs, we incorporated these
abstractions in our PrIoT framework (Chapter 4) to manage IoT life cycle on
heterogeneous IoT devices.
The chapter is organized as follows, we begin (Section 3.2) with our pro-
posed 4-layer IoT Architecture that will allow us to systematically structure
an IoT application scenario, its characteristics and identify the underlying
problems associated with each layer. Next, in Section 3.4 we introduce a
high level abstraction in the form of programming concepts that captures the
most common IoT applications invariant functionalities (IFs) and program-
ming patterns (PPs) that we identified and gathered in a limited and simple
list of commands. We identified these abstraction from our study (Chapter 2)
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of various IoT architectures used by commercial IoT service providers, indus-
try alliances, industrial standardized bodies and in research community and
also in various IoT applications mentioned in the literature as well as com-
mercially deployed successful IoT applications. In Section 3.5, we evaluate
our proposed high level abstraction with existing IoT development platforms
along with example use cases before concluding the chapter in Section 3.6.

3.2 High Level-Description of IoT Application Sce-

narios

3.2.1 A proposed 4-Layer IoT Architecture

In this section, we use an IoT architecture approach to understand the struc-
ture of IoT application and the problems encountered at various stages of
IoT application development. The main idea behind IoT architecture is to
help IoT application developers to map application problem statements onto
more structured and well defined building blocks, which makes it easier for
an application developer to go from a concept to a real world realization. An
ideal IoT architecture that has the ability to capture all the characteristics of
IoT scenarios is far from reality, mostly due to the multi and interdisciplinary
nature of IoT. Although the concept of architecture in IoT is not new [98,
58, 86, 46, 45], the architecture presented here focuses mainly to define and
capture the IoT characteristics which forms the basis for IoT application in-
variant functionalities and programming patterns proposed in (Section 3.4).
The architecture illustrated in Figure 3.1 consist of 4 layers, namely Layer-1
(L1) : Device-Layer, Layer-2 (L2) : Edge-Layer, Layer-3 (L3) : Cloud-Layer and
finally a Layer-4 (L4) : Cross-Layer. A brief description of each layer is given
as follows:

3.2.1.1 Layer-1 : Device-Layer

This layer is responsible to measure physical quantity, detect an event or control
in the environment of interest. One of the characteristic of this layer is that it
consist of (large) network of heterogeneous IoT end-devices and to go further
in the heterogeneity components considered in this layer compared to the ar-
chitectures described in the related work, we also consider fine grained hard-
ware components of the IoT devices such as like sensor, actuator, transceiver
and processing unit - which together perform the desired application task.
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FIGURE 3.1: Proposed IoT System Architecture

These devices are available with varying degrees of capabilities and are pro-
vided by various OEMs (Original Equipment Manufacturers). Selecting a
particular device for a given application is not trivial, as the application re-
quirements are generally domain dependent [162] and application develop-
ers do not have much freedom in defining them. For example a monitoring
application in the smart-city domain has a firm requirement of high reliabil-
ity, low cost and scalability apart from others.
From a given application requirements selecting the right device/hardware
is a daunting task because of the following reasons listed below and is a
trade-off between interlinked "selection criteria" mentioned in Table 3.1 :

1. There are numerous devices available in the market from various hard-
ware vendors therefore selecting a particular hardware is a trade off
between many "hardware requirements" listed in Table 3.1.
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2. The hardware vendors do not have a shared common standard to pro-
gram these devices, one has to look for the available software develop-
ment tools both proprietary and open source, software libraries, avail-
able operating systems (OSes), technical and open community support
before selecting a suitable hardware. This further complicates the de-
vice selection process because a suitable hardware for a particular ap-
plication does not guarantee the availability of suitable software sup-
port and vice versa.

3. During maintenance phase the legacy devices are replaced due to, for
instance a change in application requirements may impose new hard-
ware features to be added or system upgrade. In this situation the de-
ployed hardware is difficult to upgrade in case the devices are replaced
from different hardware vendors, as this will enforce to hire experi-
enced embedded system developers to implement and maintain em-
bedded software codebase from various hardware vendors.

Selection Criteria Requirements
Application data rate, reliability, battery powered, cover-

age(range), cost, security, scalability, etc.
Hardware power, memory, peripherals, MIPS, customer

support, open community support, develop-
ment, evaluation kits, etc.

Software development tools, networking and commu-
nication driver library, sensor-actuator-HMI li-
brary, open community support, etc.

TABLE 3.1: IoT Architecture Layer-1 Device Selection Criteria

Another important characteristic of this layer is the availability of a large
number of communication and networking protocols (LR-WPANs vs LP-
WAN) to choose from. The reason for such a large selection is that these
protocols are specifically designed to satisfy application requirements listed
in Table 3.1 and there is no one fit protocol that satisfies all applications re-
quirements from various IoT domains. Although this might be reconsidered
in the future 5G specifications [163]. There are a number of possible ways
a network of IoT end-systems in layer-1 can communicate with the rest of
the IoT system as shown in Table 3.2 along with example application and
technologies.
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Inter/Intra-
Layer Commu-
nication

Example Application and Technology

L1↔ L1 M2M, Mesh network, Infrastructure network, Au-
tonomous deployment

L1→ L2→ L3 Monitoring, Data acquisition, Geolocation, etc.

L1← L2← L3 Command & Control, Diagnostic, Firmware upgrade,
etc.

L1↔ L3 GSM/GPRS/3G/4G - Monitoring, Data acquisition,
Geolocation, etc.

L1↔ L2 M2M, Edge Computing, Intranet, Access Network,
etc.

L3↔ L3 Cross-domain

TABLE 3.2: Inter/Intra-Layer Communication

In conclusion this layer has the highest degree of heterogeneity in terms of
both hardware devices, software support, communication and network pro-
tocols. It is very difficult for the IoT application developers to escape this
heterogeneity and has to rely on intermediate software abstraction layer [19]
for device independent IoT hardware programming. In our research we fo-
cused precisely on how to handle this complex device heterogeneity to com-
plete the state of the art with our proposed heterogeneity control up to the
hardware circuits component of the IoT devices and hide it from the upper
layers to ease IoT applications development and maintenance regardless of
the IoT devices used and allow fast prototyping.

3.2.1.2 Layer-2 : Edge-Layer

At the very least this layer acts as a bridge to exchange data between bottom-
layer and upper-layer. The hardware system used in this layer are known as
gateway and are made up of high performance processing unit with abun-
dant resources to support state of the art operating systems, for example the
famous Raspberry Pi with Raspbian OS (a linux based OS). The presence of
such operating systems at this layer hides the hardware heterogeneity for
gateway-like devices, thereby relieving application developers from know-
ing the underlying hardware details. The gateway exchanges data to and
from the top-layer using well know standard protocols (also known as Inter-
net backhaul) from the application layer of the Internet protocol suite - like
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HTTP, MQTT, CoAP, etc. - over wireless/wired Internet technologies like
4G/5G, LTE, IETF IEEE 802.11 (WiFi, Ethernet), etc. In the simplest case
a gateway can be a relay that transfers data received from layer-1 directly
to layer-3 without any data manipulation (for example - Sigfox, LoRaWAN,
etc), but in other cases a gateway might implement some complex cloud ser-
vices which also referred to as “Fog Computing” or “Edge Computing” this
includes functionalities like - sensor data filtering, security, firmware update,
network diagnosis, facilitate local data storage & analysis, sensor fusion, start
and stop service, protocol interoperability algorithm, Machine learning algo-
rithm, M2M interface, etc. The facility to port complex cloud services closer
to layer-1 allows reduce bandwidth utilization and latency for critical appli-
cations for example, the well known cloud service providers AWS and Azure
extends their cloud services using solution like AWS Greengrass and Azure
IoT Edge respectively for the Edge devices. In conclusion all these compute
intensive functionalities facilitate the use of high performance devices and
operating systems (Linux, Windows, Unix).

3.2.1.3 Layer-3 : Cloud-Layer

Bulk data received from the previous layer are stored in the cloud for further
processing. This layer exposes the required tools to help in the development
of various cloud applications, such as visualization, analytics, cross-domain
data exchange, cognitive computing, big data, machine learning algorithm,
artificial intelligence (AI) and so on. Also this layer exposes close to no hard-
ware heterogeneity as IoT application developers take advantage of avail-
able cloud services like SaaS (Software as a Service), PaaS (Platform as a Ser-
vice) and IaaS (Infrastructure as a Service) from various cloud based service
providers (Amazon, Google, Microsoft, IBM, Oracle, etc.). In general the ser-
vices at this layer are accessed through secure publish/subscribe (pub/sub)
protocols such as MQTT, AMQP and RabbitMQ and request/response pro-
tocols like HTTP.

3.2.1.4 Layer-4 : Cross-layer

The IoT device management (DM) plays a very important role in the scala-
bility and sustainability of IoT systems by ensuring maximum uptime, pre-
emptive security vulnerabilities & greater customer experience and can be
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considered as a backbone of an IoT system. Provisioning for system manage-
ment helps in the deployment and maintenance of IoT devices and is also con-
sidered an important requirement from business point of view. As a result,
there are number of DM solution that exist such as TR-069 [119], LWM2M
[117, 121], Field Device Integration (FDI) [122].
Irrespective of application domain an IoT device management possesses the
following four functions across all three layers (L1, L2 & L3) :

• Authentication & Provisioning - It consists of securely establishing the
identity of IoT devices (both at L1 and L2) and the process of adding
(registration) it into the system.

• Configuration & Control - It provides the capability to remotely configure
and control IoT devices (both at L1 and L2) by end users. This capabil-
ity also spans to L3 for example, configuring the cloud architecture in
terms of number of virtual machines, types of database, the selection of
machine learning algorithms, etc and configuring the building blocks of
an Edge (L2) container or the type of network access to forward data,
etc.

• Monitoring & Diagnosis - It provides the capability to remotely monitor
the various parameters of IoT devices at layer L1 and L2 without affect-
ing the normal operation and also the capability to remotely diagnose
if required.

• Software maintenance - It provides the ability to remotely update and up-
grade IoT end-system application software, firmware, patches, etc. For
such cases, devices should embed a bootloader/firmware that has the
ability to receive and run updates over the air such as Mender [164].

In general, due to resource (compute & memory) limitations at L1 & L2, IoT
system management functions listed above are implemented and executed
as cloud services by various "IoT platform" solution providers [165], notable
examples are Amazon AWS, Google IoT, Microsoft Azure, IBM Watson IoT,
Oracle IoT Cloud Enterprise, etc. In certain scenarios where the latency is of
prime importance the optimized version of cloud services are also exported
to edge devices (L2), also known as fog computing or edge computing.
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3.3 Terminology of IoT Scenarios

In this section, we try to label various disparate elements at each layer - L1,
L2, L3 and L4, that makes up an IoT system. This allows us to better organize
the IoT scenario understanding and construction, which also forms the basis
for Chapter 4 and Chapter 5. As Figure 3.2 shows, an IoT system as a whole
is made up of four systems corresponding to each layer namely, End-System
(L1), Edge-System (L2) and Cloud-System (L3) and CrossLayer-System (L4).
The system is further composed of various Resources and Connectors and
are explained hereafter.

FIGURE 3.2: IoT Scenario - Vocabulary and Concepts
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Resources : As shown in Figure 3.3, Resources are of two types Hardware
and Software. For example, Hardware-Resources includes various hardware
devices that makes up a working End-System or Edge-System such as pro-
cessing unit, sensors, actuators, transceivers, hmi, etc and on the other hand
Software-Resources includes hardware independent libraries, APIs, drivers,
application software, etc. More details pertaining to Software Resources and
Hardware Resources will be dealt in Chapter 4 and 5 respectively.

... ...

FIGURE 3.3: Resource Hierarchy

Connector : The interaction between and within various systems - (End-
System, Edge-System, Cloud-System and CrossLayer-System) - is made possible
using an abstract interface known as Connectors, for this we have defined
three types of Connectors :

1. External-Connector - It defines a communication interface between End-
System, Edge-System, Cloud-System and CrossLayer-System. A pictorial
representation of an external-connector is shown in Figure 3.4.

2. Hardware-Connector - It defines a communication interface between var-
ious Hardware-Resources, i.e. between processing unit and various other
resources such as sensor, actuator, actuators, transceivers, hmi, etc. A
pictorial representation of a hardware-connector is shown in Figure 3.5.
This interaction is made possible by using various embedded periph-
eral inside the processing unit of the device by exposing its features
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to the API. More details about embedded peripherals are discussed in
Chapter 5.

3. Software-Connector - It defines an interface between various Software Re-
sources.

Connector

External
Connector

FIGURE 3.4: External Connector

Connector

FIGURE 3.5: Hardware Connector

From an application developers point of view, an IoT scenario is structured
into three entities - Cross-Layer Management, Configuration and Application Logic.

• Cross-Layer Management - The cross-layer management is the front end
of an IoT application scenario that allows application developers to de-
scribe IoT scenarios using the vocabulary defined above. This acts as
a starting point to describe a high level description/view of a scenario
without going into technical or implementation details of the scenario.
It also handles the IoT device management functions as described in
Section 3.2.1.4.

• Configuration - The configuration as the name implies defines the con-
figuration parameters of each system. It allows application developers
to select various resources and configure their associated connectors.

• Application Logic - It describes the application behavior independent of
the underlying resources and connector used.
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In summary, for an IoT application scenario the cross-layer management al-
lows application developers to manage various systems at L1, L2 and L3.
Whereas, the configuration allows application developers to select and con-
figure various technologies in terms of resources and connectors. On the other
hand, application logic allows developers to write application behavior inde-
pendent of configuration. These three entities are discussed in detail in Chap-
ter 4.

3.4 IoT Applications Invariant Functions (IFs) and

Programming Patterns (PPs)

In this section we examine that within each layer of IoT architecture an IoT
application performs various invariant functions (IFs) and follows certain
programming patterns (PPs). In our work, we consider invariant functional-
ities as well defined functions associated with IoT applications that do not
change from one application to another. It provides a useful concept in our
work to implement high level abstraction for hiding the underlying hetero-
geneous device technology and communication protocols. Whereas, pro-
gramming patterns are execution flow of an IoT application that are reusable
across applications, thereby reducing the development time of IoT applica-
tions.
The similar IFs have been studied in the past - [166], [167], [168] - for design-
ing programming and domain models for IoT applications, but they didn’t
examine the programming patterns observed in IoT.
In order to understand, if there exist any functions and programming pat-
terns that are common across IoT scenarios. We analysed different IoT sce-
narios, and observed variety of common functions and programming pat-
terns found in various IoT applications published in the literature as well as
some of the successful FP7-ICT experimental research projects deployed in
the real world like SmartSantander [6], TEFIS [8] and ELLIOT [7]. We de-
scribe in the following the identified IFs and PPs in each layer of Figure 3.1.

3.4.1 Layer-1 : IFs and PPs

As defined in Section 3.3, L1 is composed of one or more heterogeneous
wired or wireless networks of IoT End-System and each IoT End-System is
further composed of Hardware-Resources (processing unit, sensor, actuator,
transceiver, HMI, etc.) as shown in Figure 3.6. Irrespective of IoT application
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domain and its requirements an IoT End-System performs some basic high-
level invariant functions as explained hereafter and is also summarized in
Table 3.3.

execute/timer

FIGURE 3.6: IoT end-system

Function Name Description

configure configure IoT end-devices

read read data from sensor, memory or HMI

write write data to actuator, memory, or HMI

send send data using transceiver

receive receive data using transceiver

execute execute user defined function

timer delay, wait and sleep

TABLE 3.3: Layer-1 - Invariant Functionalities

These functions are programmed in the memory of the processing unit (PU)
and are responsible for controlling the behavior of other IoT Hardware-Resources.
One of the control functions issued from PU is to configure (configure) the
end-system into desired functional state depending on the type of Hardware-
Resources. For example the sampling rate of the sensor needs to be configured
before using it and also after transmission a transceiver can be configured in
low power mode.
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Other control functions perform operations that are based on the type of
Hardware-Resources they are associated with. For example, a read function
associated with a sensor is used for reading sensor data, while the similar
read function for memory is used for reading stored data. Similarly a write
function is used for controlling the action of actuators and also it can be used
to display information on HMI devices like display.
Also based on the underlying network protocol and configuration a PU can
issue send and receive control function for transmitting and receiving data
to and from layer above (layer-2 and layer-3) or directly to another IoT End-
System in layer-1.
A PU can also perform some auxiliary functions for example, an execute
command can call library functions or user defined custom functions (for
eg. an algorithm for local sensor data processing before transmitting).
Finally the timer command can execute three low level functionalities based
on the application requirements - first is the standard delay operation where
a PU waits for a defined time interval, second allows PU to wait for an exter-
nal event to occur and third is a sleep operation that allows PU to initiate a
safe system level power down sequence to save power in a battery operated
scenario.
In our work the collection of these invariant constructs forms the basis for an
PU to interact with other Hardware-Resources in a technology agnostic way.
We also observed [4, 169] that an application code for IoT End-System (device
element) follow some basic programming patterns listed in Table 3.4 along
with example applications. Although these patterns are limited in scope but
can be used to program highly practical IoT scenarios.

Layer-1 Programming Pattern Example Application
read→ send→ timer Monitoring without post-processing, etc.

read→ execute→ send→ timer Monitoring with post-processing, etc.

receive→ execute→ read→ send→ timer Monitoring with post-processing, Actuation, Diagnosis, etc.

receive→ execute→ write→ timer
Actuation, Post-processing, Configuration, Control, Diagnosis, etc.

receive→ write→ timer

TABLE 3.4: Layer-1 : Programming Patterns

As Figure 3.7 shows, these programming patterns can be easily visualized
as a finite-state machine, where each state is one of the basic functions (Ta-
ble 3.3) performed by the processing unit. Figure 3.7 also shows the various
inter-layer communication that are possible using these programming pat-
terns. Similar types of PPs for layer-1 devices have been recognized in [4] for



Chapter 3. IoT Application Characteristics and Its Common Invariant
Functionalities

65

FIGURE 3.7: Layer-1 PP State Machine

general stages of IoT applications that includes - data acquisition, data pro-
cessing, data storage and data transmission. They are designed specifically
according to real-time requirements of an application and whether the data
is processed locally or not.
Here we also argue that the device management functions are also covered by
these programming patterns which requires systematic exchange of invariant
commands between IoT end-system and cross-layer management controller,
which will be discussed in Section 3.4.4.

3.4.2 Layer-2 : IFs and PPs

The gateways at this layer consist of two sets of send & receive commands,
the first set of commands is used to exchange data from layer-1 using the
available low power wireless communication (LR-WPAN or LPWAN, for ex-
ample) and the second set of commands is used to interconnect the IoT de-
vices to the cloud by exchanging data from layer-3 via Internet backhaul us-
ing standard wired or wireless communication technologies such as cellular
(LTE, 5G, NB-IoT, etc.), WLAN, etc. One of the important feature of this
layer is the capability to execute relevant cloud services closer to layer-1 as
discussed in Section 3.2.1.4, therefore a gateway can expose a high level exe-
cute command that a user can bind to one or more cloud services or micro-
services [170, 66].

We have observed that a gateway follows a very simple programming pat-
tern to communicate with layer-1 and layer-3 as shown in Table 3.6 and Fig-
ure 3.8.
There are number of solutions exist at this layer and Table 3.5, lists various
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open source and proprietary home automation (but not restricted to) solu-
tions, for IoT edge-system to integrate and connect IoT end-systems to IoT cloud-
system or it can also be used as decentralized standalone controller for appli-
cations that require low latency and privacy. All these solutions provide al-
most equal capabilities but differ in terms of supported device, protocol and
visualization features.
The presence of so many solutions indicates the fact that one needs to adapt
and learn new solutions every time there is a decision to switch between var-
ious solutions. Here we argue that the high level invariant functions - send
& receive that are visible to application developers can be attached to any
device and communication protocols using a configuration file that hides
the underlying device details. More details about binding communication
protocols with invariant functions using configuration files are discussed in
Chapter 4.

Home Automation Controllers
Ago Control [171] Calaos [172]
Domoticz [173] FHEM [174]
Homebridge [175] Home Assistant [176]
HomeGenie [177] HomeSeer [178]
Homey [179] HoMIDoM [180]
Indigo Domotics [181] ioBroker [182]
Jeedom [183] nodeRed [184]
MyController.org [185] Misterhouse [186]
MyNodes.NET [187] MajorDoMo [188]
OpenHAB 2.x [189] PiDome [190]
pimatic [191] XTension [192]
smarthomatic [193] EventGhost [194]

TABLE 3.5: Layer-2 : Platforms for Implementing IoT edge-
system Solutions.

Layer-2 Programming Pattern Example Application
receive→ execute→ send Edge Computing, Control, Configuration, Diagnosis, etc.
receive→ send Gateway, Packet-forwarding, etc.

TABLE 3.6: Layer-2 : Programming Patterns
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FIGURE 3.8: Layer-2 PP State Machine

3.4.3 Layer-3 : IFs and PPs

Similar to layer-1 and layer-2 this layer also consists of send & receive com-
mands to exchange data with layer-2 or directly with layer-1 bypassing IoT
edge-systems. The most important feature is to execute various cloud services.
There are a number of cloud solution providers that compete [165] at this
layer, Table 3.7 lists various cloud based IoT platforms, each of them differs
in the number and type of micro-services, tools, supported devices, pricing
model, etc.
Figure 3.9 shows PP for layer-3 and the state machine along with inter and
intra layer communication. The Table 3.8 summarizes the PP along with ex-
ample applications.

Cloud based IoT Platforms
Amazon AWS IoT [195] Google IoT [196]
Microsoft Azure IoT [197] IBM Watson IoT [198]
Oracle IoT Cloud Enterprise [199] ThingSpeak [200]
IFTTT [96] Eclipse Kapua [110]
Bosch IoT Suite [201] nodeRed [184]
OpenRemote [202] CISCO IoT Control Center [203]
Kaa [204] Predix [205]

TABLE 3.7: Layer-3 : Cloud based IoT Platforms

Layer-3 Programming Pattern Example Application
receive→ execute Visualization, Status, Storage, Monitoring, etc.
execute→ send Control, Configure, Actuation, etc.

TABLE 3.8: Layer-3 : Programming Patterns
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FIGURE 3.9: Layer-3 PP State Machine

3.4.4 Layer-4 : IFs and PPs

As shown in Figure 3.1 the Cross-layer will be in charge of management and
control of all the functionalities of the previously described three layers. We
recognized four fundamental (atomic) invariant functions (commands) listed
in Table 3.9 to accommodate the cross-layer functionalities mentioned in Sub-
Section 3.2.1.4. The partition of these cross-layer functionalities into funda-
mental functions depends on the similar programming pattern it uses, for
example configure, control and diagnosis all follows a similar execution se-
quence : receive → execute → write, where as upgrade uses the same exe-
cution sequence multiple times until the upgrade is completed as shown in
Figure 3.10a. On the other hand status follows : receive→ execute→ read→
send as shown in Figure 3.10b, finally register which follows the program-
ming pattern : send → timer → receive → execute as shown in Figure 3.11
where an IoT object sends an authentication request followed by waiting for a
response to be received and finally decoding the response using execute.

Function Name Description
update configure, control and diagnosis an IoT end-system.
upgrade Over-The-Air (OTA) firmware & application software

upgrade and patch fixing.
register IoT end-system or edge-system provisioning after suc-

cessful authentication.
status Pull current status and device information.

TABLE 3.9: Layer-4 - Invariant Functionalities
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(A) Update and Upgrade PP (B) Status PP

FIGURE 3.10: Programming Patterns for update, upgrade and
status IFs

FIGURE 3.11: Programming Pattern for register

In summary, the IFs and PPs presented in this section provides a high level
abstraction for IoT application development that are usable across a variety
of IoT application domains. These high level abstractions are designed to
hide the underlying IoT device heterogeneity in terms of device architecture
and communication protocol.

3.5 Evaluation and Analysis

One can realize the effectiveness of any IoT development platform, OSes and
framework for implementing end-to-end IoT scenarios by analyzing how
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rapid and easy is to implement any IoT scenario (vertical scaling) in various
application domains (horizontal scaling) [168]. One factor that is important
to consider while comparing is the extent of high level abstraction exposed at
various layers of IoT Architecture. In our work we proposed two high level
abstractions in the form of IFs that are technology and IoT device agnostic
and PPs. For example some of the well known development platforms (Ar-
duino, Energia and mbed and embedded OSes) for embedded applications
does not provide application invariant functionalities to aid application de-
velopers, whereas PPs can be considered as a subset of any programming
language in this case C/C++.
Implementing these IFs using the aforementioned development platforms
can be time consuming as the IFs needs to be independent of underlying tech-
nology and IoT devices to hide extreme heterogeneity at layer-1 and layer-2,
whereas embedded OSes solves this issue by exposing a HAL (Hardware Ab-
straction Layer) for implementing IFs, but as far as we know till date there
are no OSes that exposes these functionalities. On the other hand commer-
cial IoT service providers take the advantage of minimum heterogeneity at
layer-3 and provide IFs in the form of cloud services.
In Chapter 4 we explain the implementation of IFs and PPs by separating
application logic from IoT scenario configuration. The application logic in an
application file that contains IFs and PPs is independent of underlying IoT
device hardware and technology, whereas the configuration contains details
pertaining to communication protocol, network devices, sensor, actuators,
MCU, etc. This separation is helpful in two cases, first when the same ap-
plication scenario requires for example the use of different communication
protocols then only the configuration file is changed and therefore maintain-
ing the integrity of the application logic and second is the reusability of the
application logic (IF and PP) for different IoT scenarios. Both these cases
help in rapid development of IoT application scenarios. Table 3.10 shows
various types of high level abstractions exposed by development platforms,
OSes and commercial IoT service providers.
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Extent of High Level Abstraction
Layer-1 Layer-2 Layer-3 Cross-Layer

Arduino
Hardware Dependent
Standard Libraries

- -
Energia - -
mbed - -

RIOT
OS HAL

- -
Zephyr - -
Contiki - -

IoT cloud ser-
vice providers

- Edge Com-
puting
Services

Cloud Services

TABLE 3.10: Extent of High Level Abstraction Exposed by Var-
ious Development Platforms

We validate the usefulness of IFs and PPs by mapping IoT scenarios submit-
ted in IEEE IoT - IoT Scenarios [169] onto IFs and PPs. Without loss of gener-
ality we selected two IoT scenarios to showcase the mapping from dissimilar
application categories. This allows us to show the similarity in IFs and PPs
across dissimilar IoT applications. We also extended the original scenarios
requirements to accommodate the device management features. The IoT sce-
narios are listed in Table 3.11, the detailed description of these scenarios can
be found in [169]. The first scenario is sense only IoT application describing
the one way IoT connectivity and second scenario is sense and actuate IoT
application describing two way IoT connectivity.

Scenario Name Description
Pollution Monitoring 2 [206] Distributed sensor on public transport to

monitor pollution

GreenIQ [207] Smart HUB for garden irrigation

TABLE 3.11: IoT Scenarios

3.5.1 Scenario 1 : Pollution Monitoring

This scenario uses distributed sensors on public transport to generate spa-
tial and temporal pollution levels in the city. Let us assume the sensor node
on each public transport has two sensors one for pollution level and other
for location (GNSS module), also the sensor node communicates with a gate-
way using LPWAN like LoRaWAN, Sigfox, etc. The LPWAN gateways are
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distributed across the city in such a way to have a city wide coverage. The
gateway relays data back to the cloud where an application server generates
the map of pollution levels. Figure 3.12 depicts the scenario diagram.

Layer-3

Layer-2

Layer-1

FIGURE 3.12: Pollution Monitoring 2

The sensor node is programmed to transmit sensor data at a time interval
governed by regional ISM radio regulation. Figure 3.13a shows the mapping
of sensor node functionalities and program execution onto the IF and PP of
layer-1. The sensor node reads data (pollution level and location) from the
sensors followed by data transmission using send IF and finally the sensor
node goes into sleep and respecting the duty cycle limitation of LPWAN net-
work using timer IF.
On the other hand, the LPWAN gateway follows the programming pattern of
layer-2 (Section 3.4.2). As shown in Figure 3.13b the LPWAN gateway receives
data from sensor node followed by optional data processing using execute IF
and finally sending data to application server in the cloud at layer-3 using
send IF. The application server at cloud follows the programming pattern of
layer-3 (Section 3.4.3). As shown in Figure 3.13c the application server in the
cloud receives data for further post-processing of sensor data using execute IF.
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(A) Pollution Monitoring 2 : Sensor Node PP (B) Pollution Monitoring 2 : Gateway PP

(C) Pollution Monitoring 2 : Cloud PP (D) Pollution Monitoring 2 : DM PP

FIGURE 3.13: Pollution Monitoring 2 : Programming Patterns

The sensor node also accepts device management (DM) commands from the
application server that includes - configuration parameters such as unique ID
of the vehicle (license plate number), driver’s name, sensor sampling time,
sending interval, etc. Moreover the sensor node accepts certain control com-
mands such as - remote reset, switch to factory default configuration, etc.
The application server can also issue over-the-air software updates during
maintenance. On the other hand, the process of authentication and provisioning
of sensor nodes are governed by LoRaWAN protocol specifications.
Figure 3.13d shows the mapping of DM functionalities (Layer-4) onto IFs and
PPs of layer-4. The configuration and control follows the PP of update (Section
3.4.4), whereas the software maintenance follows the PP of upgrade (Section
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3.4.4). The sensor node receives the configuration parameters, control com-
mands, software maintenance using receive IF, followed by processing of DM
commands using execute IF and then finally wiring the configuration param-
eters, control command and software updates in the memory using write IF.

3.5.2 Scenario 2 : GreenIQ - Smart Irrigation

The GreenIQ is a smart HUB (gateway) for garden irrigation. The HUB con-
nects to the Internet via Wi-Fi or 3G/4G. The irrigation scheduling algorithm
is based on the data received from the sensors and also on current & fore-
casted weather data received from the Internet. The HUB can be configured
and controlled using mobile application (restart HUB, change address, revert
back to factory settings etc.) and is connected to various off-the-shelf irriga-
tion sensors and actuators. For simplicity let’s assume the sensors & actua-
tor communicates with HUB using MQTT over 6LoWPAN (LR-WPANs) and
mobile devices communicate with HUB via cloud. The user can also moni-
tor the status of irrigation sensors and actuators, for example - battery level,
etc. It is also possible for users to initiate device (HUB, sensor and actuator)
firmware upgrade from a mobile phone. The scenarios description is shown
in Figure 3.14.

FIGURE 3.14: GreenIQ

There are three distinct devices - sensors, actuators and a mobile phone - at
layer-1. As shown in Figure 3.15a, the sensor executes the same IF and fol-
lows the same PP of that of the previous example scenario in Section 3.5.1.
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The actuator follows the programming pattern of layer-1 (Section 3.4.1). As
shown in Figure 3.15b, it receives the command from Smart Garden HUB at
layer-2 followed by controlling the actuator using write IF and finally the ac-
tuator goes into sleep using timer IF.
On the other hand the mobile phone also follows the PP of layer-1 (Section
3.4.1). As shown in Figure 3.15c, it can receive data from cloud using receive
IF, followed by data post processing using execute and then finally reading
the user input using read IF.
The gateway follows the programming pattern of layer-2 (Section 3.4.2). As
shown in Figure 3.15d, it can receives data from the network of sensors at
layer-1 as well as from cloud application at layer-3. It then processes (irriga-
tion scheduling algorithm) the data locally using execute IF and if required it
can send data back to the network sensor and actuator or to cloud applica-
tion.
The cloud on the other hand follows the programming pattern of layer-3 (Sec-
tion 3.4.3). As shown in Figure 3.16a it receives the data either from gateway
or directly from mobile phone using receive IF, then the received data is pro-
cessed using execute IF and if required it can send data back to gateway or
mobile phone using send IF.
Finally, for device management (DM) the sensor & actuator follows the pro-
gramming pattern of layer-4 (Section 3.4.4). In this scenario use case, the
configuration parameters and control commands (restart HUB, change ad-
dress, revert back to factory settings, etc.) follows the programming pattern
of update (Section 3.4.4), whereas the firmware update follows the program-
ming pattern of upgrade (Section 3.4.4) and the status request (battery sta-
tus) follows the programming pattern of status (Section 3.4.4). As shown in
Figure 3.16b, for configuration parameters, control commands and firmware
update, the sensor and actuator receives the device management commands
using receive IF followed by processing of DM commands using execute, then
finally writing the data in the memory using write IF before doing into sleep
using timer IF.
On the other hand, for status request the sensor and actuator receive request
for status command via receive IF followed by processing of DM commands
using execute IF, then reading battery status using read IF and finally sending
the battery status using send IF before going into sleep using timer IF.
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(A) GreenIQ : Sensor PP

2

3

(B) GreenIQ : Actuator PP

2

3

5

(C) GreenIQ : Mobile Phone PP (D) GreenIQ : Gateway PP

FIGURE 3.15: GreenIQ : Programming Patterns
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(A) GreenIQ : Cloud PP
(B) GreenIQ : Device Management

PP

FIGURE 3.16: GreenIQ : Programming Patterns

3.5.3 Discussion and Analysis

It is interesting to see that both scenarios described above share some similar
programming patterns at their respective layers even though both scenarios
belong to different application categories. For example, the sensor devices
in both the scenarios follow the same programming pattern of layer-1 and
they execute the same invariant functions - read → send → timer, similarly
the gateways also follow the same programming pattern of layer-2 and exe-
cute the same invariant functions - receive→ execute→ send.
The cloud also follows the same programming pattern of layer-3, except that
in the first scenario (Section 3.5.1) which is sense only application (one way
communication) the cloud application does not send data back to layer-1 or
layer-2.
Moreover, the programming pattern related to device management also shows
similar program execution flow of layer-4 in both the scenarios - receive→ ex-
ecute→ write→ timer for update and upgrade DM functionalities.
In conclusion, the invariant functionalities and programming patterns pro-
vide a useful means to ease programming of IoT devices that allows reusabil-
ity of application logic and functionalities across IoT applications irrespective
of application domain.
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3.6 Concluding Remarks

In this chapter, we described the requirement of a software abstraction layer
(SAL) for easy and rapid IoT application lifecycle management that hides the
underlying IoT device heterogeneity. For this, we systematically presented
using an IoT architecture the common IoT characteristics - starting from the
network of low power devices to gateways then to cloud infrastructure and
finally the device orchestration. Following this we presented two types of
abstractions in the form of IoT application’s invariant functionalities (IFs)
and programming patterns (PPs) at each layer of IoT architecture. We also
showcased the usefulness of IFs and PPs in implementing IoT application
use cases.
In summary, this chapter lays the groundwork for implementing our frame-
work in Chapter 4 that implements these high level abstractions (IFs and
PPs).
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Chapter 4

PrIoT - A Framework for
Prototyping IoT Applications on
Heterogeneous Hardware Devices

4.1 Introduction

In this chapter, we introduce PrIoT [19], an open source1 framework for rapid
and easy IoT prototyping that helps to hide the IoT device manufacturers
heterogeneity from the application developers, thus solving the identified
research problem of complexity related to the IoT device heterogeneity ex-
plained in Chapter 3. This is our software oriented approach that will be
followed in Chapter 5 with the hardware oriented approach. Also PrIoT will
be useful in different phases of the IoT service definition and development.
The main design philosophy behind PrIoT framework is - "code once port
everywhere" allowing IoT application developers to develop hardware inde-
pendent embedded code which can be ported to any hardware supported by
PrIoT. After the design of PrIoT framework, we also validated its proposed
concept with an implementation using an open source approach. As shown
in Figure 4.1, PrIoT proposes to stitch together the different components that
makes an IoT system namely the hardware consisting of sensors, actuators,
transceiver and Human-Machine Interface, the embedded systems that are
used to program the IoT devices, the components that serves at providing the
higher level libraries for Network and Cloud functionalities. Finally, PrIoT
leverages IoT device programming by exposing a service element with a high
level language for heterogeneous device programming and an orchestrator

1The PrIoT framework is under GPL-v3 license. For more information please visit - http:
//www.priot.org/

http://www.priot.org/
http://www.priot.org/
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FIGURE 4.1: PrIoT Components

to synchronize all devices together and easily upgrading the entire system.
We propose in PrIoT to achieve this design goal by maintaining a separation
between application logic and scenario configuration. PrIoT exposes devel-
opers with a device independent application programming interface (API)
specially designed to cover most IoT scenarios and yet concise enough for
easy application development. In fact, PrIoT is tailored to better manage IoT
device heterogeneity and fasten the IoT prototyping phase by introducing
an intelligent intermediate software layer over the IoT physical device that
allows service developers to easily and quickly program IoT devices inde-
pendently of the hardware manufacturer. Also this PrIoT intelligence is able
to understand the commands of the IoT device firmware and uses a hard-
ware abstraction layer (HAL) that can translate the high level IoT service
functionalities into hardware specific commands. In addition, PrIoT aggre-
gates different acknowledged and accepted tools under a common umbrella
to foster and ease IoT prototyping. We also gather in the same framework the
best tools together to enhance and ease user action. As stated earlier, PrIoT
will mainly stitch together tools, frameworks and libraries to ease prototyp-
ing, our intelligence and own programs is more as a scheduler and translator
to other tools that are not functioning together.
The chapter comprises the following sections. Section 4.2 introduces PrIoT
design objectives, followed by overview of PrIoT framework building blocks
in Section 4.3, then in Section 4.4 we describe the conventional method for
implementing IoT application on embedded hardware. Next, in Section 4.5,
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we validate the PrIoT design philosophy "code once port everywhere" by
implementing PrIoT framework using various open source tools and pro-
gramming language. Then in Section 4.6, we describe the steps required in
order to implement IoT scenarios using the PrIoT framework along with an
example use case that will illustrate the different PrIoT concepts and provide
an example of its usage. Finally, Section 4.7 contains conclusion and provides
the perspective and orientation of PrIoT framework.

4.2 Framework Design Objectives

The main design goal of PrIoT is to allow not only inexperienced personnel
(domain experts like - doctor, farmer, engineer, etc.) but also professionals
to develop, deploy and maintain IoT application on a distributed network
of IoT end-systems. It also allows well experienced personnel to develop
applications on new IoT devices different from their previous IoT devices
knowledge. PrIoT achieves this design goal by satisfying three important
requirements of prototyping applications for IoT end-systems as described
below.

4.2.1 Rapid Prototyping

PrIoT hides the low level details of programming IoT hardware resources
(sensors, actuators, processing unit, Human Machine Interfaces, communi-
cation devices, etc.) and allows developers to build IoT application logic
independent of any IoT devices. PrIoT also hides the implementation de-
tails of standard IoT communication protocols (HTTP, CoAP, MQTT, IETF
6LoWPAN, etc) and provides users with protocol independent abstract func-
tions to communicate with gateways and other IoT devices. This high level
of abstraction is achieved by exposing developers with device independent
PrIoT-API (Subsection 4.3.1). Once the application logic is framed it can be
deployed largely on different kinds of IoT hardware resources that can be
selected through PrIoT database - PrIoT-DB (Subsection 4.3.7).

4.2.2 Hardware Configuration

PrIoT provides an interface for the community to add and maintain a reposi-
tory of IoT hardware resources that includes resource metadata (cost, power
consumption, memory, peripherals, operating voltage, technology, etc.) and
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recommends an optimum bill of materials (BOM) based on user defined ap-
plication requirements for example, cost, power budget, connectivity, secu-
rity, cloud interface, data acquisition, physical design, etc. PrIoT also delivers
a hardware configuration template in accordance to user requirements and
IoT application.

4.2.3 Scenario Deployment

PrIoT helps in the deployment of IoT scenarios on a distributed network of
IoT end-systems, whether they are linked to the same logic or if they are dis-
tributed and connected to different gateways. Thus it is possible to manage,
monitor, update and upgrade complex IoT scenarios during deployment and
maintenance phases. This is achieved by using a specific PrIoT tool that in-
terprets the high level IoT application required functionalities into specific
hardware commands. Table 4.1 qualitatively compares the shortcomings of
existing work (Section 2.2) with respect to PrIoT design goals.

PrIoT Design Goals Platform OS Framework PrIoT
Rapid Prototyping X 3 X 3

Scenario Deployment 7 7 7 3

Hardware Configuration 7 7 7 3

3 - Full Support, 7 - No Support, X - Partial Support

TABLE 4.1: PrIoT Design Goal Comparison

4.3 PrIoT Framework Overview

This section explains the main building blocks of PrIoT Framework. The
overall framework workflow is shown in Figure 4.2. In PrIoT the applica-
tion logic is independent of any IoT hardware resources, this implies that the
same application logic can be ported to any hardware supported by PrIoT,
thus solving the IoT device heterogeneity problem introduced in Chapter 3.

4.3.1 PrIoT Language and Application Programming Inter-

face : PrIoT-Lang & PrIoT-API

PrIoT is equipped with a high level programming language - PrIoT-Lang,
which exposes users with device independent high level programming in-
terface - PrIoT-API. The set of PrIoT-APIs is kept limited but captures most
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FIGURE 4.2: PrIoT Framework Block Diagram

practical invariant functionalities (Section 3.4) of IoT application scenarios,
the set includes functions like - read, write, execute, send, receive and wait as
shown in Table 4.2.
There are a number of existing solutions (Arduino [68], Energia [70] and
Mbed [69]) which uses the similar API approach combined with C-like pro-
gramming language to expose device specific features and to program device
side application logic. Another approach for the implementation of APIs &
languages is Domain Specific Language (DSL) and is heavily used and de-
scribed in academic research - [208], [209], [210], [112], [211], [212], [213],
[214]. In PrIoT, we also used the DSL approach to implement our PrIoT-
Config as will be discussed in Section 4.5.
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List of PrIoT-APIs
configure Configure hardware resources.
read Read data from sensor, memory, etc.
write Write data to actuator, memory, etc.
send Send data using transceiver.
receive Receive data from transceiver.
execute Execute user defined operations.
timer Delay, wait or sleep.

TABLE 4.2: PrIoT-API - Device Independent Programming In-
terface

4.3.2 PrIoT Application Debugging : PrIoT-Test

The PrIoT-Test allows specifying metrics to be tested as output results. Such
metrics can be described in terms of power consumption, communication
latency, memory usage, processing unit performance, etc.

4.3.3 PrIoT Generic Interface : PrIoT-GI

PrIoT-GenericInterface (PrIoT-GI) is an abstract interface layer that provides
an uniform interface for the development of PrIoT-Lang and PrIoT-API, hard-
ware & software resource libraries, etc. The generic interface is a concept
which is designed in such a way that the application written with PrIoT-GI
can be mapped easily on existing embedded OSes like - RIOT [111], Zephyr
[72], Contiki [73], etc. This abstract interface gives users the freedom to com-
pare and experiment with different OSes without rewriting the application
code. The concept of generic interface is not new, for example CMSIS-RTOS
[215] that provides a standard programming interface that is portable across
various RTOS.
Note that, the generic interface in general allows standard interface over ex-
isting software library, operating system APIs, etc. thereby allowing uniform
interface across various software solutions.

4.3.4 PrIoT Hardware Abstraction Layer : PrIoT-HAL

PrIoT-HAL is a hardware abstraction layer (HAL) which consist of high level
functions for interfacing peripherals using standard peripheral communica-
tion such as SPI, I2C, UART, 1-wire, etc. This layer also contains a device in-
dependent interface for input-output operations such as - sleep, delay, mem-
ory access, etc. In PrIoT, the HAL is inherited from the Wiring framework,
as discussed in subsection 4.5.6. The concept of HAL is not new, for example
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CMSIS (Cortex Microcontroller Software Interface Standard) [216] that pro-
vides an abstraction layer for ARM based architectures.
Note that, the HAL in general allows common standard interface over vari-
ous hardware peripherals that exist inside heterogeneous IoT devices. This
makes it possible to maintain a uniform interface for accessing hardware pe-
ripherals irrespective of IoT device architecture. Various device manufactur-
ers define their own HAL for their respective device architecture. In PrIoT,
we propose to integrate these HALs under PrIoT-HAL to allow common in-
terface for device peripherals across heterogeneous device architecture.

4.3.5 PrIoT Configuration : PrIoT-Config

PrIoT-Config provides users with the interface to add information about the
type & configuration of hardware resources, cloud service and communi-
cation protocols, etc. and is parsed using PrIoT-Parser. The configuration
information is independent of application logic and therefore any change in
configuration parameters does not affect the application logic. Further de-
tails regarding the use case of PrIoT-Config are discussed in Section 4.5.

4.3.6 PrIoT Parser

The PrIoT-Parser parses the configuration file generated by PrIoT-Config to
determine the type of hardware resources, communication protocol, network
stack used by application logic. The output of PrIoT-Parser together with
IoT application logic is passed to PrIoT-HAL which generates the necessary
device dependent code.

4.3.7 PrIoT Database : PrIoT-DB

PrIoT maintains a database of IoT hardware resources ranging from - sensors,
actuators, transceivers, Human Machine Interface (HMI), etc. to processing
units such as microcontroller, microprocessor, SoC, etc. The primary goal of
this database is to provide users with a large set of hardware components
that can be programmed using PrIoT-Lang with a high level abstract set of
functionalities and parameters that can be accessed through the PrIoT-APIs.
Second, this database can also target specific device vendor items while keep-
ing the device programming transparent. For example, we will see in Section
4.6.1 an example of using PrIoT-DB where a specific family of component,
namely an RFID reader can be used as a default hardware component or it
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can be defined as a vendor specific component when needed. The implemen-
tation of PrIoT-DB is discussed in more detail in subsection 4.5.2.
Also, the BOM (Bill of Material) generator uses PrIoT-DB to provide appli-
cation developers with a list of hardware resources based on application re-
quirements and scenario configuration.

4.3.8 PrIoT User Interface : PrIoT-UI

To increase the productivity of application development, PrIoT encapsulates
the building blocks (PrIoT-GI, PrIoT-HAL, PrIoT-Config, PrIoT-Parser) with
graphical interface (PrIoT-UI) which helps developers to build application
without dealing directly with the underlying building blocks. There are a
number of tools available such as Node-Red [184] and Blockly [217], that
uses graphical interface for implementing application logic. In PrIoT, the
PrIoT-CLI provides a user friendly command line interface (CLI) to access
the underlying building blocks and is discussed in more detail in subsection
4.5.7. Moreover, the advantage of CLI is that it is possible to create a graph-
ical interface on top of PrIoT-CLI without making significant changes in the
existing implementation.

4.3.9 PrIoT Firmware Builder and Uploader

The final PrIoT application code can be built using available open-source
or proprietary vendor specific tools. Regarding the device firmware upload,
there are many existing solutions and depending on the type of target hard-
ware one can use proprietary vendor specific tools as listed in Table 2.4. Also
there are a number of open-source tools to upload device firmware and one
such tool is PlatformIO [104], which is a collection of vendor specific open-
source tools for building and uploading device firmware.
Due to the scale of IoT, firmware over-the-air (FOTA) is getting a lot of at-
tention [218]. In FOTA a wireless communication interface, such as WiFi,
Bluetooth, ZigBee, etc. is used to receive firmware from the host.
At this stage of our work we have selected PlatformIO as our underlying
block for firmware upload and build tool. The reason for choosing PlatformIO
is that it covers most vendor specific tools that allows for testing various het-
erogeneous hardware platforms.



Chapter 4. PrIoT - A Framework for Prototyping IoT Applications on
Heterogeneous Hardware Devices

87

4.3.10 PrIoT Scenario

The PrIoT Scenario acts as a starting point to describe a high level view of
a scenario without going into technical or implementation details of the sce-
nario. The scenario is defined in a file to expose the various elements used in
an IoT scenario such as those discussed in Section 3.3. This file is further pro-
cessed by PrIoT Orchestrator (Section 4.3.11) to generate template for each
end-system, edge-system, controler-system and cloud-system which makes it eas-
ier for application developers to work with. In this work we limit our im-
plementation that does not require PrIoT scenario description and is left for
future work.

4.3.11 PrIoT Orchestrator

PrIoT Orchestrator implements the cross-layer management proposed in our
4-layer architecture in Chapter 3. It is in charge of different functionalities
such as authentication & provisioning, configuration & control, monitoring
& diagnosis and software maintenance of all the elements needed by the IoT
application and services in the 3 layers - Device layer, Edge layer and Cloud
layer.
In our work, in addition to above functionalities we also propose new func-
tionality of the PrIoT Orchestrator that allows it to use machine readable de-
scription defined by PrIoT Scenario and generate automatically the corre-
sponding configuration of the heterogeneous devices. It helps in the deploy-
ment of IoT scenarios onto the network of IoT end-systems & edge-systems
and also provides provision for executing IoT cross-layer (L4) management
functionalities (Section 3.4.4). More details about PrIoT orchestrator is de-
scribed in Section 4.5.8.
Finally, Table 4.3 summarizes the available solutions against various compo-
nents comprising PrIoT. As we can see PrIoT takes the best of IoT develop-
ment techniques proposed by available solutions and integrates it into one
platform for end-to-end IoT application development.

In summary, apart from integrating best of the available IoT development
techniques, PrIoT also introduces a new way to handle device heterogeneity
by exposing IoT application invariant functionalities (IFs) and Programming
Patterns (PPs) in the form of PrIoT-API and PrIoT-Lang. Moreover it can also
suggest from its database (PrIoT-DB) optimum bill of material (BoM) based
on application scenario requirements. At last, thanks to PrIoT-Orchestrator,
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PrIoT also helps developers in the deployment and maintenance of IoT de-
vices.

IoT development Techniques PrIoT Block Existing Solution

High level language and API PrIoT-Lang Arduino, Energia, mbed and Embedded OSesPrIoT-API

Hardware abstraction PrIoT-GI Embedded OSesPrIoT-HAL

Device Configuration PrIoT-Config PlatformIOPrIoT-Parser
User Interface PrIoT-UI Node-Red, Blockly
IoT service and device management PrIoT-Orchestrator Kubernetes

TABLE 4.3: IoT Development Techniques Integration in PrIoT

4.4 Conventional Method for Implementing IoT Ap-

plications on Embedded Hardware

The conventional methods for designing embedded systems follows a top
down approach as shown in Figure 4.3. As per application scenario require-
ments there are two options (Step-1A and Step-1B) for deciding target hard-
ware. In Step-1A, the hardware resources (sensor, actuator, transceiver and
processing, etc) are selected to design and build (Step-2) the required applica-
tion specific embedded board, but this option is only possible if the necessary
engineering resources are available. Instead, it is possible to select (Step-
1B) off-the-shelf embedded boards such as Arduino, Raspberry Pi, STM32
Nucleo, etc. In Step-3 IoT application is designed and implemented, that
is specific to the hardware resources selected in Step-1A or Step-1B. Finally
in Step-4, the application is tested and validated on the target hardware, any
discrepancy in test results or change in IoT scenario requirements might force
embedded designers to either select a new embedded board (Step-1B) or re-
iterate the hardware design (Step-1A & Step-2). Conventional methods for
implementing IoT applications suffer from the problem of hardware hetero-
geneity, which hinders its use for rapid prototyping because of the following
reasons:

1. Very limited freedom to experiment with multiple hardware architectures -
There are a number of embedded hardware available from various sil-
icon manufacturers and not all hardware are similar with respect to
technology, architecture, cost, power consumption, performance, pe-
ripherals, etc. Therefore the initial selection (Step-1A & Step-1B) of
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FIGURE 4.3: Conventional Steps to Design Embedded Systems

hardware determines the functionality and performance of IoT applica-
tion software. Since the software design is heavily tied with the choice
of hardware, so any change in hardware requirements might force ap-
plication developers to rewrite or port the existing software on a dif-
ferent hardware. This increases the software development, testing and
validation time thereby inhibiting application developers to experiment
with multiple hardware from various vendors.

2. Vendor lock-in - Depending on IoT application requirements, there are
multitude of embedded hardware to choose from various silicon ven-
dors. Moreover, each silicon vendor provides its own set of tools, Inte-
grated Development Environment (IDE), compilers, reference designs
& documentations, etc. which requires a learning phase in order to
rewrite or port the existing software thus making IoT prototyping dif-
ficult and slow process.
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4.5 PrIoT Framework Implementation and Evalu-

ation

In this section, we describe the high level implementation details of the PrIoT
framework that is used for IoT device application development. In order
to implement the framework, we have used various open source tools and
programming languages that allows us to achieve the design philosophy of
"code once port everywhere".
The implementation described in this section is not the only way to imple-
ment the PrIoT framework, there might exist other solutions from a software
engineering perspective. Here our objective is to validate the PrIoT design
philosophy via implementation without going into details about our choices
with respect to tools, programming language, implementation methodology,
etc, but for interested readers these details are mentioned in Appendix ??.
Note that PrIoT Scenario and PrIoT-Orchestrator are still under develop-
ment, but in Section 4.5.8 we introduce the building blocks of PrIoT-Orchestrator
that are part of the future development.
Figure 4.4 shows the overall block diagram of PrIoT framework implemen-
tation used for device application development and we briefly explain each
individual block hereafter.
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FIGURE 4.4: PrIoT Framework Workflow for IoT Device Appli-
cation Development
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4.5.1 PrIoT Application and Configuration Entities

In order to implement IoT applications on heterogeneous hardware devices,
PrIoT requires only two entities first is in the form of application file (*.app)
that contains the application logic using PrIoT-Lang (Section 4.3.1) and sec-
ond is the configuration file (*.cfig) that contains scenario configuration written
using PrIoT-Configuration DSL (Section 4.5.3). Further details about the con-
tent and the structure of application and configuration files are discussed in
Section 4.6.

4.5.2 IoT Resources Database

The "IoT Resource database" is a database maintained by PrIoT for all hard-
ware and software resources. As listed below, each resource is made up of
three types of database files that allows IoT Resource Header Generator (Section
4.5.3) to generate the necessary resource headers (*.hpp). These database files
are transparent to the application developers and are only maintained by de-
velopers of PrIoT framework.

1. Resource Template (*.hpp_temp) - A template for a resource header file
written using Jinja [219] templating programming language. It pro-
vides various placeholders that are filled by IoT Resource Header Gen-
erator based scenario configuration along with resource metadata and
resource configuration.

2. Resource Metadata (*.json) - The resource metadata contains information
like peripheral (I2C, UART, SPI, etc.), interface (number and location of
physical pins), library, etc. This is required by the processing unit to
correctly interface with resources.

3. Resource Configuration (*.json) - In general, a resource can be config-
ured in various operating modes which requires different configura-
tion settings. Therefore, for every operating mode there exist a re-
source configuration file. For example, a hardware resource of type
WiFi (Transceiver-IEEE 802.11) in HTTP client mode requires various
configuration settings such as - port, request page, method, host name,
etc.
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4.5.3 Resource Header Generator

As shown in Figure 4.5, the resource header generator for both hardware and
software resources generates "C Standard" header files (resource header) from
scenario configuration and IoT resource database (Section 4.5.2) . The resource
header contains configuration settings and options that are required to pro-
gram resources in a knows initial state as indicated in scenario configuration.
The user inputs the scenario configuration in a configuration file (*.cfig) using
a domain specific language of PrIoT configuration named PrIoT-Config-DSL
and without going into details, listing 4.1 shows an example of how a typ-
ical configuration file looks like. The PrIoT-Config-DSL grammar is written
using EBNF (Extended Backus–Naur form) format and is described in Ap-
pendix B.1.
The configuration file is parsed using lark-parsee [220] that checks the in-
tegrity of configuration file and also provides tools for efficient processing of
configuration files.

FIGURE 4.5: IoT Resource Header Files Generator

1 # File name - example.cfig

2

3 # select hardware resources

4 Select Sensor.Temp as s_temp
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5 Select Transceiver.IEEE80211 as t_esp8266

6

7 # select embedded system

8 Select Hardware.MCU.Family as AVR -8bit

9

10 # import communication protocol

11 Import Communication .80211 as wc

12 Import Gateway.HTTP.client as http_c

LISTING 4.1: Example Scenario Configuration File

4.5.4 Scenario Header Generator

The "scenario header generator" generates "C Standard" header file for scenario
configuration (*.hpp). As shown in Figure 4.6 it requires both "resource head-
ers" and "scenario configuration template" to generate the overall scenario con-
figuration that contains the initialization code for all the resources used in the
scenario. The "scenario configuration template" is similar to "resource template"
(Section 4.5.2) in the sense that it uses the same templating programming lan-
guage - Jinja and provides the necessary placeholder to include the required
resource libraries, initialization code, etc.

FIGURE 4.6: Scenario Header Generator
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4.5.5 PrIoT IoT Resource Library

The IoT Resource Library is the database of software libraries to use & access
all the Connectors (External, Hardware & Software) (Section 3.3). It is equiv-
alent to communication libraries for external-connectors, device drivers for
hardware-connectors and standard libraries (such as - algorithms, math, string
processing, etc.) for software-connectors. These libraries are implemented in
C++ taking advantage of object oriented features and exposes various invari-
ant functions (IFs) as described in Section 3.4 in the form of PrIoT-APIs. The
developers of PrIoT can implement new libraries to extend the database and
thus allow continuous evolution of PrIoT with the growing number of hard-
ware resources.

4.5.6 PrIoT Embedded Toolchain and Hardware Abstraction

Layer

An embedded toolchain is a set of compiler, linker, debugger, standard li-
brary and other tools and is required to compile source code (application
software or firmware) into an executable that can run on target hardware de-
vices. In general, there exist many open source and proprietary toolchains for
various processing unit architecture and for our work we used PlatformIO
[104] to build, upload and debug PrIoT projects. As shown in Figure 4.4, Plat-
formIO provides in one place a collection of open source cross-compiler for
various architectures such as ARM, Atmel-AVR, TI-MSP, etc. along with de-
bugger and library manager. It is possible to interact with PlatformIO inde-
pendently from PrIoT but to make things easier we create a wrapper around
PlatformIO that allows developer to interface with PlatformIO using PrIoT
command line interface (PrIoT-CLI) 4.5.7.
Hardware Abstraction Layer (HAL) provides an abstraction layer between
hardware devices and high level application software it includes apart from
device drivers, any other software that directly interacts with hardware. For
our work we used an open source framework named Wiring [94] as our HAL
(PrIoT-HAL). As shown in Figure 4.4, we used one implementation of the
Wiring framework for each target hardware architecture and is transparent
to application developers.
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4.5.7 PrIoT Command Line Interface (PrIoT-CLI)

The PrIoT-CLI is the command line interface for the PrIoT framework and
is written in python programming language. Through its command line op-
tions it allows application developers to execute various behaviors listed be-
low.

• create project - Generate project directories in the workspace along with
scenario application file (*.app) and configuration file (*.cfig) templates
for application developer.

• create configuration - Triggers "resource header generator" (Section 4.5.3)
and "scenario header generator" (Section 4.5.4) to generate various header
files required for successful compilation of scenario project.

• build - It builds and compiles the scenario project for the target board
specified in the configuration file using PlatformIO.

• upload - It uploads the project binary on the target board using Plat-
formIO.

• create database - Create PrIoT IoT resource database (Section 4.5.2).

• add resources - Add metadata, configuration and header template (Sec-
tion 4.5.2) for various IoT resources such as processing units, sensors,
actuators, transceivers, etc. in the PrIoT database. It is used by PrIoT
framework developers to add new resources or update the existing
ones.

4.5.8 PrIoT Orchestrator

The PrIoT Orchestrator is responsible for handling the execution of cross
layer invariant functionalities as described in Chapter 3 (Section 3.4.4). We
define the implementation of PrIoT Orchestrator as our cross-layer manage-
ment (CLM). The CLM is further divided into four main subsystems - 1) De-
vice meta-data. 2) Controller-Application. 3) Rule-Engine. 4) Controller-
Core. Figure 4.7 shows the architecture of our CLM. The internal functioning
of the CLM and detailed description of the four main parts are described
hereafter.
The four main subsystems perform a dedicated function that are required for
the proper functioning of the controller and interact with each other via com-
mon message bus. As Figure 4.7 shows, the edge interface which is responsi-
ble for communication with downstream devices (end-systems & edge-systems)
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and can support multiple protocol via protocol-translators/adapters. The mes-
sage broker & router (for example, MQTT for message broker) combines the
data in a unified manner and may induce more contextual information which
may be useful to other modules. Whereas, device meta-data storage maintains
the most recent end-system and edge-system meta-data. For each system the
meta-data consist of, for example - unique ID, firmware version, last status,
last updated, authentication policy, etc. The rule engine monitors the message
bus and performs action based on the rules and the content of the message.
The cross-layer controller can resides inside the edge-system or cloud-system
and is responsible to execute cross-layer functionalities in response to com-
mands received from the cloud-system.

1. Device meta-data - For each IoT scenario, this contains the database of all
the physical devices present at L-1 (device layer) and L-2 (edge layer).
For each device the meta-data consist of, for example - unique ID, firmware
version, last status, last updated, authentication policy, etc. The meta-
data can be created automatically during device provisioning or manu-
ally during the life cycle of IoT scenario. The repository is dynamic and
maintains the current status of all the devices at L1 and L2. Any queries
to the database are initiated via controller-core. The control-application
can use this information to monitor the status of devices.

2. Controller-Application - It consists of a sequence of control commands ex-
posed by various cross-layer management functionalities. It can com-
bine commands from distinct cross-layer functionalities, for example
batch update of device firmware, send device configuration parame-
ters, periodically check the availability of device, execute network re-
organization algorithm, etc. It is also possible to define rules within
a control application, for example rules that execute weekly network
monitoring, a rule to execute network wide device availability after
modifying the network configuration.
The control-applications are stored in a buffer and are executed auto-
matically by controller-core based on the defined rules or sequentially.

3. Rule-Engine - The rule-engine monitors the message bus and can in-
struct controller-core to execute predefined actions based on the mes-
sage content. For example, monitoring sensor data for abnormality,
initiating provisioning and authentication sequence after detecting re-
quest message from new device. The rule-engine can also instruct controller-
core to execute control applications.
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4. Controller-Core - It processes the control-application and based on the
control commands it issues the standard communication command based
on the underlying network protocol using a protocol adapter. The in-
herent task of the controller-core is to periodically maintain the reposi-
tory of device meta-data and also to execute control applications issued
by the user or triggered by the rule-engine.

FIGURE 4.7: Cross-Layer Management

4.6 IoT scenario implementation with PrIoT Frame-

work

In this section we describe the steps required to implement an IoT scenario
with the PrIoT framework along with an example use case in Section 4.6.1.

As mentioned in Section 4.2, PrIoT main design goal is to allow inexperi-
enced IoT service provider to quickly develop, deploy and maintain end-
to-end IoT system from different hardware manufacturers that normally re-
quires specific programming skills per manufacturer.
PrIoT follows a bottom-up approach for implementing IoT applications. As
shown in Figure 4.8, based on the application requirements - application
scenario orchestration (for simple scenarios with small number of IoT de-
vices, scenario orchestration can be omitted), application logic (PrIoT-Lang &
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PrIoT-API), scenario configuration (PrIoT-Config-DSL) and scenario orches-
tration is designed and implemented first (Step-1). Since PrIoT provides a
uniform access interface (PrIoT-APIs) across all hardware components, so
at this point the components selected from PrIoT-DB represent high level
hardware elements with default outcomes which is independent of hard-
ware manufacturer. Once the application logic is created in Step-1, then in
Step-2A, the hardware resources are selected to design and build (Step-3) the
required application specific embedded board. Instead, it is also possible to
select (Step-2B) off-the-shelf embedded boards such R-Bus (Section 5), Ar-
duino, Raspberry Pi, STM32 Nucleo, etc. In Step-4 application logic is tested
and validated on the target board and hardware selected in Step-2. At this
point, it is possible to gather test information (power consumption, CPU &
memory usage, etc) using PrIoT-Test and can easily replace hardware re-
sources (update scenario configuration) from any vendor without rewriting
the application logic.
The IoT application developer defines the application logic in application
files (*.app) and hardware configuration as per application requirements in
configuration files (*.cfig) as it will be shown in Section 4.6.1 using an exam-
ple use case. The configuration file includes - selecting hardware resources,
standard communication protocol (external-connectors Section 3.3), interface
between hardware resources (hardware-connectors Section 3.3) and software
libraries (software-connectors Section 3.3). The configuration file(s) have all
the necessary information required by PrIoT to automatically configure and
compile the whole IoT application onto the selected hardware resources.

4.6.1 Use Case : Security Access System in Smart Building

In order to show the added value of our PrIoT framework, in this section we
explain with an IoT service use case what are the components to be devel-
oped and the design steps used with our PrIoT framework.

Scenario Description : Consider an IoT scenario where we have to design
a smart security access system in a building entrance where only authorized
personnel are allowed to enter. For simplicity, we assume that the scenarios
consist of a single object where all the requests for access are made.
The object consists of RFID reader for unique identification and human ma-
chine interface (display and keyboard) to enter personal code. For enhanced
security the personal code is matched against the database which resides in
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FIGURE 4.8: PrIoT Steps to Implement IoT Application

the cloud instead of the object’s local storage. The object also has a relay (ac-
tuator) to actuate Motor which controls the entrance door. To access cloud
services the object goes through a gateway. The object uses IEEE 802.11
and MQTT (Message Queuing Telemetry Transport) protocol to communi-
cate with the gateway. Such scenarios can be enhanced after deployment
for example in the context of smart building where spaces are scheduled at
a daily granularity by analyzing the personnel agenda (meetings, develop-
ment zone, team work, etc.) stored in the cloud and assisting them finding a
workstation that suits their daily needs.

Implementation using PrIoT : As Figure 4.8 shows, the first step before de-
signing the IoT application logic is to select the high level description of IoT
resources used in the target deployment using PrIoT-DB. This step doesn’t
require to know the specific hardware vendor components but rather define
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what are the high level hardware components that are selected to be manip-
ulated by the application and configured using configuration file (*.cfig).
In our example scenario, the configuration file for the object and gateway is
shown in Listing 4.2 and 4.3 respectively. In configuration file, the Select key-
word allows the user to select hardware from the repository of IoT hardware
resources maintained by PrIoT-DB, this also includes any relevant device li-
braries used by the application. The Import keyword is used to inform PrIoT
which library to include in the project, in this example we included standard
communication library for IEEE 802.11 and PubSub.
At this stage, the selected elements are defined as default elements from the
PrIoT-DB and are not linked to a specific hardware vendor. Thus for the ob-
ject, a generic RFID reader, a relay, a WiFi transceiver, an LCD display and a
keyboard have been selected as electronic components and communication
protocols such as a Wifi Station mode and PubSub Client have been selected
as communication libraries.
For the gateway, we have exposed in the configuration file the usage of a
WiFi transceiver and a PubSub library used as a server. However, as we will
see in 4.7 and 4.6 we also have the ability to specify dedicated hardware and
configuration at this stage by using the Define keyword allowing users to
define precise hardware vendors for IoT devices. In case where no specific
hardware vendor is specify, a default component is provided and used in the
application logic.
After having defined the IoT components to be used, we can program the
targeted scenario through the application file that consist of application logic
written using device independent PrIoT-APIs and PrIoT-Lang. The applica-
tion logic file (*.app) for the object and gateway is shown in Listing 4.4 and
4.5 respectively. The high level language uses a procedural c-like structure
with conditional operators. To be coherent with the hardware components
selected, we have to use the Import keyword and specify the related config-
uration file to be imported. In Listing 4.4 we see that the object senses the
ID collected by the RFID reader and sends to the PubSub server channel the
information that is executed back by the object to allow the user to access
the premises if it has been identified. The application programmed for the
gateway is shown in Listing 4.5, where information sent from the objects are
collected through the PubSub channel and compared to the access database
located in the cloud service. If the user identity is detected then the access is
granted for the user.
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1 # File name - config_sa_object.cfig

2

3 Select Sensor.RFID as s_rfid

4 Select Actuator.RELAY as a_relay

5 Select Transceiver.IEEE80211 as t_wifi

6 Select HMI.DISPLAY.LCD as h_display

7 Select HMI.KEYBOARD as h_keyboard

8

9 # Embeded System

10 Select Hardware.MCU.Family as AVR -8bit

11

12 # Communication Protocol

13 Import Communication .80211 as wc

14 Import Gateway.PubSub.client as pbs

LISTING 4.2: Configuration file : Security Access - Object

1 # File name - config_sa_gateway.cfig

2

3 Select Transceiver.IEEE80211 as t_wifi

4 Select Hardware.MCU.Family as ARM

5

6 # Communication Protocol

7 Import Communication .80211. Station as wc

8 Import Gateway.PubSub.server as pbs

9 Import Cloud.Registry.AccessID as aid

10 Define Cloud.Address.Name as dns1

LISTING 4.3: Configuration file : Security Access - Gateway

1 Import config_sa_object.cfig

2

3 void loop()

4 {

5 payload = s_rfid.sense("ID")

6 t_wifi.send(wc, pbs , tcp , "channel", payload)

7 t_wifi.receive(wc,pbs ,tcp ,"channel",payload)

8 if payload == OK

9 {

10 a_relay.execute(actuate ,"HIGH")

11 h_display.execute(display ,"Access approved")

12 }

13 else
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14 h_display.execute(display ,"Access denied")

15 }

LISTING 4.4: Application Logic : Security Access - Object

1 Import config_sa_gateway.cfig

2

3 void loop()

4 {

5 t_wifi.receive(wc,pbs ,tcp ,"channel",payload)

6 NewPayload = aid.execute(dns1 ,compare ,payload)

7 t_wifi.send(wc,tcp ,"cloud_address", \\

8 "HTTP_REQUEST",payload)

9 t_wifi.send(wc,pbs ,tcp ,"channel",NewPayload)

10 }

LISTING 4.5: Application Logic : Security Access - Gateway

Following this approach, we have the ability to program a distributed sce-
nario with default hardware specification. As not all hardware are similar,
there are many factors - like technology, cost, power consumption, MIPS
(Million Instruction Per Seconds) and number of peripherals - which influ-
ence the initial selection of hardware and ultimately determines the function-
ality and performance of embedded software. Thus, when the scenario are
defined and validated, it is possible to target a more precise hardware com-
ponents as shown in Listing 4.7 and 4.6 where first the former configuration
file is imported with the Import keyword and the specific hardware compo-
nents are selected and configured with the Define keyword.

1 import config_sa_object.cfig

2 Define Transceiver.IEEE80211 as ESP8266

3 Define Hardware.MCU.Type as rpi2

4

5 Define rpi2.GPIO.RX2 as t_wifi.TX

6 Define rpi2.GPIO.TX3 as t_wifi.RX

7 Define Cloud.Address.Name as mycloud.com

LISTING 4.6: Configuration file : Detailed Gateway Hardware

1 import config_sa_object.cfig

2

3 Define Sensor.RFID as NXP -Explore

4 Define Actuator.RELAY as Grove -Motor

5 Define HMI.DISPLAY.LCD as Adafruit
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6 Define HMI.KEYBOARD as Logitec_K780

7

8 Define Transceiver.IEEE80211 as ESP8266

9

10 Define Hardware.MCU.Family AVR

11 Define Hardware.MCU.Type ATmega328p

12

13 Define ATmega328p.GPIO.RX4 as t_wifi.TX

14 Define ATmega328p.GPIO.TX5 as t_wifi.RX

15

16 Define ATmega328p.GPIO.OUT9 as a_relay.IN

LISTING 4.7: Configuration file : Detailed Object Hardware

In conclusion, prototyping IoT scenarios requires various heterogeneous hard-
ware resources for implementing & testing application logic, this requires do-
main knowledge to understand heterogeneous device architecture and com-
munication protocols. As a result the proof-of-concept takes considerable
time thereby hindering the early adoption of IoT technology and services. In
PrIoT, we rectified this problem by separating the dependency of application
logic from scenario configuration. It also exposes high level abstraction in the
form of PrIoT-API and PrIoT-Lang that hides the underlying heterogeneity
of IoT devices and communication protocol.

4.7 Summary

In this chapter we introduced a new approach to tackle IoT device hetero-
geneity issues associated with device architecture, device peripheral diver-
sity and protocol heterogeneity. and proposed a framework called PrIoT, for
IoT application lifecycle management (development, deployment and main-
tenance). PrIoT introduces an intermediate intelligence between the IoT de-
vice hardware and the IoT application that usually resides in a cloud infras-
tructure. We provided the three design objectives of the PrIoT framework i.e.
Rapid Prototyping, Hardware Configuration and Scenario Deployment. We
described the various PrIoT framework’s building blocks (PrIoT-Lang, PrIoT-
API, PrIoT-Test, PrIoT-GI, PrIoT-HAL, PrIoT-Config, PrIoT-Parser, PrIoT-DB,
PrIoT-UI, PrIoT firmware builder & uploader and PrIoT Orchestrator) along
with implementation details. In addition, we described the steps needed to
implement an IoT application scenario using PrIoT along with an example
use case.
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Finally, in PrIoT we integrated the best of available techniques (high level
programming, hardware abstraction, hardware configuration, hardware database,
user interface) proposed by existing solutions (IoT development platforms,
embedded OSes, etc.) under one framework. More importantly, we imple-
mented the IoT application invariant functionalities and programming pat-
terns (Chapter 3) in PrIoT-API and PrIoT-Lang that provides minimalist pro-
gramming APIs and language for IoT life cycle management. .
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Chapter 5

R-Bus and P-Bus : Modular
Systems for Designing
Interoperable and Energy Aware
Embedded Systems

5.1 Introduction

In this chapter, we address the challenge of easy and rapid prototyping of
IoT hardware systems (IoT objects) by introducing a two new open hard-
ware1 specification named R-Bus (Resource Bus) and P-Bus (Power Bus) to
design modular systems that better meet IoT hardware requirements and are
usable across diverse IoT applications & also takes into account their dis-
parate power requirements. Note that this approach is complementary to
the software oriented approach (PrIoT) that we proposed in Chapter 4.
From an embedded system perspective, the difficulty in prototyping IoT ob-
ject arises from the fact that an IoT object incorporates various disparate en-
abling technologies (processing unit, sensors, actuators, transceivers, power
supply, human machine interfaces, etc.) [4, 2, 9], which requires systems
designers to constantly test and evaluate new technologies and upgrade the
final system appropriately. For our work, we adopted a simplified view of an
IoT Object architecture centered around processing unit (PU) and peripher-
als [2]. The PU represents the “brain” in the form of ultra-low power micro-
controller, microprocessor, system-on-chip (SoC), etc. and integrates a wide
variety of heterogeneous peripherals (communication interfaces). This wide

1R-Bus and P-Bus are under creative commons share alike license, for more information
on the specification please visit http://www.rbus.io

http://www.rbus.io
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heterogeneous peripheral integration is intended to facilitate communication
with systems outside of the processing unit. The number and type of periph-
erals supported by PU and their pin mapping vary from one PU to another,
therefore this peripheral interface heterogeneity can lead to different and in-
compatible hardware design that we showed in previous chapters as being
challenging for IoT developers.
Furthermore, from the power consumption perspective of an IoT object [25],
little has been done to consider the power management system (PMS) in ex-
isting hardware platforms including modular systems as discussed in Section
2.3.1. As an integral part of the R-Bus system we also proposed and analysed
a power reduction technique for incorporating in the future R-Bus revisions
that will allow battery powered operation for testing the final system in the
field.
Note that the power technique proposed can also be used with other IoT sys-
tem designs and is not restricted to R-bus based modular systems.

This chapter comprises the following sections. In Section 5.2 we introduce a
new modular system named R-Bus for designing embedded systems based
on the shortcoming of existing solutions discussed in Section 2.3.1. In Sec-
tion 5.2.4, we systematically evaluate R-Bus along with existing solutions and
thereby compare the advantages of R-Bus in designing modular embedded
systems. In Section 5.2.5, we validate R-Bus by implementing the require-
ments of a real IoT application scenario and its assessment against existing
solutions. In Section 5.3, we introduce R-Bus power-board (PB) that caters
the need for disparate power requirements of various IoT applications and
exposes various features for runtime power optimization. Moreover in or-
der to better understand the application use case of R-Bus power module,
in Section 5.3.5, we proposed and implemented two power reduction tech-
nique named Power Gating and Wake-Up Radio using R-Bus power module
along with detailed analysis. Finally, we conclude (Section 5.4) and highlight
key improvements offered by the R-Bus system compared to the other stan-
dard approaches and provide important future directions to meet further IoT
requirements.
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5.2 R-Bus - A Resource Bus for Modular System

Design

The goal of R-Bus is to allow easy integration of IoT resources by using a ho-
mogeneous interface and facilitate configuration of R-Bus interface based on
available IoT resources. In order to accomplish this goal, we utilize a modular
architecture [125, 126] approach to partition the system based on the concept
of bus modularity [124], which is common in computer based system where all
modules (IoT resources) are connected to a single common module (Process-
ing Unit). In the R-Bus system, a collection of various peripherals (buses and
channels) (see Table 5.1) forms a single bus that we named as R-Bus. The ad-

IoT Resources Example Applications
Peripherals

Buses Channels
UART I2C SPI I2S SDIO Analog Interrupt PWM GPIO

Sensors Temperature, Humidity, Pressure, etc. X X X X X X
Actuators Relay, Led, Motors, etc. X X X X X
Transcievers WiFi, Ethernet, LoRa, SigFox, etc. X X X X
HMI Display, Keyboard, Joystick, etc. X X X X
Memories Flash, EEPROM, etc. X X X X X
Audio Audio Codec, Speaker, Mic X X X X
Data Convert-
ers

ADCs and DACs X X X X

Miscellaneous Real-time clocks, debugging, etc. X X X X
UART : Universal Asynchronous Receiver-Transmitter, I2C : Inter-Integrated Circuit, SPI : Serial Peripheral Interface, I2S : Inter-IC Sound

SDIO : Secure Digital Input Output, PWM : Pulse-Width Modulation, GPIO : General Purpose Input Output

TABLE 5.1: Main peripherals used in IoT applications

vantage of modular systems using bus modularity is that a product variant
can be generated using the same bus, for example in computer systems using
the same data bus and combining different types of CPUs & memory units it
is possible to create systems with different processing power and memory ca-
pacity. Likewise in IoT due to diversity in IoT applications, the IoT resource
requirements varies from one application to another therefore a modular sys-
tem like R-Bus allows to easily generate an application specific product vari-
ant by interchanging R-Bus modules named R-Bus auxiliary-board and R-Bus
main-board without redesigning the whole system.
By introducing an auxiliary-board that will contain the most changing com-
ponents (such as sensors, actuators, transceiver, human machine interface,
etc.) of an IoT device, and maintaining the most stable components (such as
processing unit, debug circuit, etc.) of IoT devices on the main-board, a run-
ning IoT device will then be used longer and only some of its components
that are in the auxiliary-board can easily be changed. This will allow from
IoT application point of view, easy prototyping with heterogeneous IoT de-
vices. On the other hand it will reduce the IoT devices related e-waste.
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In order to accomplish this goal we propose to use for R-Bus the existing
PCI-e x1 connector & socket specifications [221] for homogeneous interface
and an on board memory to access the information related to IoT resource
peripheral usage and that can be used for implementing plug & play archi-
tecture.

5.2.1 R-Bus Components

The system based on R-Bus is divided into two parts - R-Bus main-board
and R-Bus auxiliary-board - as illustrated in Figure 5.1 & Figure 5.2 and are
explained in detail hereafter.

FIGURE 5.1: R-Bus : Main-Board and Auxiliary-Board

5.2.1.1 R-Bus Main-Board

The main-board contains at most one PU that communicates with IoT re-
sources via R-Bus interface and is categorized into three classes based on the
type of PU used. The different class borrows from the IETF RFC7228[25]
that classify constrained devices based on PU capabilities in terms of mem-
ory, such as code size (ROM/Flash) and data size (RAM). The three different
R-bus main-board classes and their characteristics are given below.

1. Class 0 - Bare Metal : The PUs with small memory capacity (RAM
� 10 KB & Flash� 100 KB), limited functionalities through low level
programming languages and reduced communication features.

2. Class 1 - RTOS : PUs with medium size memory capacity (RAM ∼ 10
KB & Flash ∼ 100 KB ), enhanced functionalities through Real Time
OSes [222] (RioT, contiki) including communication protocol stacks (CoAP,
6LowPAN, etc. ) for constraint networks.
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FIGURE 5.2: R-Bus : Main-Board and Auxiliary-Board

3. Class 2 - OSes : PUs with sufficient memory capacity (RAM < 1 MB &
Flash < 10 MB) to host a light embedded Operating System (LINUX,
BSD, etc) with access to advanced service packages (IP stack, Programs)
and high level programming language.

This class designation allows users to easily identify the board capabilities
and possible application use cases. Table 5.2 shows a non exhaustive list
of commercially available processing units and their corresponding R-Bus
class along with supported peripherals. Interestingly the number of PU’s
peripherals and cost increases with higher classes providing boundaries on
available resources and relative cost per classes. The main-board can also
contain additional peripherals that are not supported by R-Bus such as CAN
(Controller Area Network), Ethernet, USB, etc. It can also contain additional
one or more secondary processing unit for housekeeping purpose and com-
plementary circuitries like - power, debug, etc. R-Bus system does not en-
force any special design specification and specific component requirements
on the main-board thus allowing various manufacturers to create a variety
of application dependent main-board along with R-Bus interface to add IoT
resources.
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Processing Unit
Device
Class
?

Peripherals
Buses Channels

Name Architecture UART I2C SPI I2S SDIO ADC Interrupt PWM

ATtiny25 AVR 0 0 0 0 0 0 4 1 2
MSP430FR2000 MSP430 0 1 0 1 0 0 0 8 2
Atmega328P AVR 0 1 1 1 0 0 8 2 6
STM32L011x3 ARM Cortex-M0+ 0 2 1 1 0 0 10 16 7
STM32F042K6 ARM Cortex-M0 0 2 1 2 1 0 10 16 17
STM32L010RB ARM Cortex-M0+ 1 2 1 1 0 0 16 16 7
Atmega1284P AVR 1 2 1 1 0 0 8 3 6
STM32F722ZE ARM Cortex-M7 2 8 3 5 5 2 24 16 37
MSP430F6659 MSP430 2 3 3 6 0 1 12 32 18
AM3351 ARM Cortex-A8 2 6 3 2 2 3 8 8 3
?Class of constraint devices - RFC7228 [25]

TABLE 5.2: Commercially available processing units with cor-
responding device class

5.2.1.2 R-Bus Auxiliary-Board

The second part of the R-Bus system consists of one or more R-Bus auxiliary-
boards that carries various IoT resources such as transceivers, sensors, actu-
ators, HMI, various connectors for remote IoT resources, etc. The auxiliary-
board is designed separately from the main-board and has a PCI-e x1 con-
nector that plugs into the main-board which carries an equivalent PCI-e x1
socket.
R-Bus defines two types of auxiliary-boards based on the presence or ab-
sence of R-Bus memory on the board. This R-Bus memory holds additional
board information stored in an EEPROM and reachable from the main-board
through I2C with known addresses and attributes.

1. Type 0 : When no R-Bus memory is detected on the board, a fixed pin
mapping is considered as the default pin connection between the main
and auxiliary-boards.

2. Type 1 : When an R-Bus memory is detected on the board, it provides
additional information for flexible interface configuration either as al-
ternate pin-mapping or with full plug and play features for Class 2 de-
vices using device tree.

5.2.2 R-Bus Pin-Mapping and Interface Configuration

The R-Bus connector has 36 pins (18 on each side), enough to simultaneously
accommodate 5 (SPI, UART, I2C, I2S and SDIO) widely used peripherals,
upto 2 PWM (output), upto 3 Analog (output) and upto 3 Interrupt signals.
We propose in Table 5.3 the pin mapping of peripherals on R-Bus connector.
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The pin mapping is carefully done in such a way that most widely used pe-
ripherals like UART, I2C, SPI, Interrupt and Analog, are on one side (Side-B)
which makes PCB layout an easy task. As Table 5.3 shows, there are 20 pins

PCI-e
Side-B
Pin
Name

Peripheral
Pin Map-
ping

Peripheral
Name

Alternate
Func-
tion

PCI-e
Side-A
Pin
Name

Peripheral
Pin Map-
ping

Peripheral
Name

Alternate
Func-
tion

B1 +3.3V Power - A1 +3.3V Power -
B2 GND Ground - A2 GND Ground -
B3 I2C_SDA

I2C

None

A3 PWM0
PWM

GPIO6
B4 I2C_SCL A4 PWM1 GPIO7
B5 SPI_MOSI

SPI

A5 UART1_TX
UART1

GPIO8
B6 SPI_MISO A6 UART1_RX GPIO9
B7 SPI_CLK A7 I2S_SCK

I2S

GPIO10
B8 SPI_CS0 A8 I2S_WS GPIO11
B9 SPI_CS1 A9 I2S_SD_OUT GPIO12
B10 UART0_TX

UART0
A10 I2S_SD_IN GPIO13

B11 UART0_RX A11 GND Ground -
B12 GND Ground - A12 SDIO_CLK

SDIO

GPIO14
B13 INT0

Interrupt
GPIO0 A13 SDIO_CMD GPIO15

B14 INT1 GPIO1 A14 SDIO_DATA0 GPIO16
B15 INT2 GPIO2 A15 SDIO_DATA1 GPIO17
B16 AN0

Analog
GPIO3 A16 SDIO_DATA2 GPIO18

B17 AN1 GPIO4 A17 SDIO_DATA3 GPIO19
B18 AN2 GPIO5 A18 GND Ground -

TABLE 5.3: R-Bus: Pin Mapping

(B13-B18, A3-A10 and A12-A17) with alternate functions (marked as GPIO).
This allows users to add those IoT resources that require GPIOs and can be
reprogrammed for custom applications, for example - control signals, leds,
push buttons, etc. To facilitate automatic configuration of R-Bus interface
and to properly configure alternate function, each type-1 R-Bus auxiliary-
board must include its own I2C compatible R-Bus memory in the form of
EEPROM that holds a machine readable description of the board. In this way
the descriptor becomes part of the board rather than available as separate file
and provides a crucial building block in realizing plug & play architecture
and resource discovery protocols. The R-bus memory specification inherits
partly from Raspberry PI HAT [150] specifications by assigning known I2C
addresses to reach R-Bus memory and define a specific memory structure in
the form of memory blocks of meta-data.
Following is the list of memory blocks meta-data stored in R-Bus memory
where each block represents a certain type of data information. Although the
detailed discussion of EEPROM requirements and memory blocks structure
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and data are beyond the scope of this work, interested readers are invited to
follow the project website for detailed information [223].

• Header: Provides memory access validation for the master board with
a signature, a version number and information about the total number
of blocks and their size in memory.

• Board Information: Presents specific board information such as a Uni-
versally Unique Identifier (UUID), Board Version, Board Name, Vendor Name
and Serial Number.

• GPIO Map: It defines an alternate pin-mapping layout for R-bus mas-
ter board (Class 0-1) that can only assign a default GPIO peripheral as
alternate pins. Generally, a software based peripheral implementation
can be set on the master PU to transform standard GPIO into virtual
peripherals (UART, I2C, SPI, etc.) but with less performance compared
to hardware defined peripherals.

• Device Tree Blob: The Device Tree provides a way to describe non-
discoverable hardware to the Linux kernel as a textual representation
of the tree data structure of the hardware. This feature allows flexi-
ble assignments of different peripherals per pin but is only available to
Class 2 devices that have an embedded Linux kernel and bootloader.

• Custom Data: These information presents the board configuration (IoT
resources name, vendors, data format, etc.), options (Additional board
configuration options) and board function API (When a MCU is active
on the auxiliary-board and expose extra functionalities through a serial
communication).

• Bootcode: This block allows to define a driver implementation writ-
ten in a meta Language that the master board can include and exe-
cute. Domain-specific language (DSL) are becoming a suitable option
for meta languages and proposal such as IoT-Link [115], ThingML [224]
or PrIoT-LANG [19] are example of existing approaches.

• Board Version : Hardware version code to identify board revision and
can also be used to locate compatible test software as recommended by
the board developer.

• Future Use: This block is a reserved memory space for future usage
such as new specification for additional hardware requirements, spec-
ification for plug & play capabilities such as the IEEE 1451.4 standard
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for analog transducers, etc.

5.2.3 R-Bus Form Factor

R-Bus does not follow the standard PCI-e x1 form factor specification, nonethe-
less it provides some restrictions based on the type of (90◦ or 180◦) of PCI-e
x1 socket used on the main-board. A main-board with 90◦ socket provides
a vertical approach to mount auxiliary-boards (see Figure 5.2), in this ap-
proach, there are no restrictions in the form factor as long as it does not inter-
fere with components and connectors on the main-board. This allows board
designers to customize auxiliary-boards based on application requirements
or electronic enclosures, similar to “expansion cards” on desktop computers.
On the other hand a main-board with 180◦ socket provides a horizontal ap-
proach, similar to mikroBUSTM , Pmod, Arduino Shield and M2.COM. But
this approach requires carefully defining the form factor for auxiliary-board
as it might affect the form factor of the main-board, which requires thorough
understanding and investigation into existing - modular systems, various
components (RF modules, sensor, actuators, connectors etc.) packaging &
form factor, feedback from industries, etc.

5.2.4 Evaluation

In this section we evaluate the R-Bus approach for modular system design,
first by analyzing various qualitative design features of R-Bus with existing
standards and finally by quantitative analysis using two metrics - coverage
and suitability (defined later) - to measure the extent of compatibility of vari-
ous modular systems for a given processing unit.

5.2.4.1 Qualitative Analysis

In contrast with existing standards (Section 2.3.1.1), the R-Bus offers follow-
ing advantages to system designers some of them are summarized in Table
5.4 :

• Peripheral Diversity: The total number of peripherals offered by R-
Bus is more than any other competing auxiliary-board standards (see
Table 5.4), it exposes 5 peripheral (SPI, UART, I2C, I2S, SDIO) and up to
10 pins for general purpose interfaces (Interrupt, Analog, PWM, GPIO,
AF).
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• Peripheral Density : It provides the possibility to realize a complete
IoT solution on a single board, which is otherwise impossible in auxiliary-
board standards like Pmod and Grove because not all peripherals are
simultaneously accessible on a single Pmod & Grove connector and is
restricted in mikroBUSTM because of the form factor.

• Peripheral Access : It offers simultaneous use of all 5 peripherals and
8 pins for general purpose interface, which is not possible with Pmod,
Grove and restricted in mikroBUSTM because of the form factor.

• Cost : Since R-Bus borrows its connector and socket from PCI-e x1
standard, which is maintained by PCI-SIG (PCI Special Interest Group)
[225] and has a proven commercial success history in personal com-
puters, therefore there are many vendors with existing manufacturing
capabilities to provide inexpensive sockets and the abundance of avail-
able CAD (Computer Aided Design) references for both connector and
socket. This makes R-Bus an easy and inexpensive solution for modular
design and is comparable with other auxiliary-board standards.

In summary as shown in Table 5.4, R-Bus provides an extensive set of pe-
ripherals on a single module in comparison with other modular systems. In
the next Section 5.2.4.2, we mathematically evaluate this benefit using two
metrics - coverage and suitability.

Name Size (w× l mm) Embedded Peripherals
SPI UART I2C I2S SDIO PWM Analog Interrupt GPIO

R-Bus• Flexible⊗ 2? 2 1 1 1 upto 2 upto 3 upto 3 upto 10
mikroBUSTM• 25.4× 57.15 1 1 1 0 0 1 1 1 0
pmod†• 20.32× l‡ 1 1 1 1 0 upto 2 0 upto 1 upto 8
Grove
System†•

No Standard 0 1 1 0 0 0 2 0 2

Arduino
Shield•

68.58× 53.34 1 1 1 0 0 upto 6 upto 6 2 upto 20

RPi HAT• 65× 56.5 2 1 1 1 1 upto 4 0 upto 28 upto 28
†Not all supported embedded peripherals are available on a single board, ?One SPI with two chip select signals
•auxiliary-board standard, ‡no prescribed standard length, ∗no explicit mention of dedicated interrupt lines

TABLE 5.4: Comparison between various auxiliary-boards

5.2.4.2 Quantitative Analysis

In order to systematically evaluate R-Bus with other similar modular systems
we define two metrics that allow us to measure the extent of compatibility of
auxiliary-boards for a given processing unit on the main-board. The first
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metric is called coverage denoted by Cn and is defined in Equation 5.1 as per-
centage ratio.

Cn =
αn

β
× 100, n ∈N (5.1)

where n is the "total number of auxiliary-boards", αn is the “total number
of peripherals occupied on n auxiliary-boards” and β is the “total number
of peripherals supported by processing unit”. The second metric is called
suitability denoted by Sn and is defined in Equation 5.2 as percentage ratio.

Sn =
αn

n× γ
× 100, n ∈N (5.2)

where n and αn is same as in Equation 5.1 and γ is the “total number of pe-
ripherals supported by auxiliary-board”.
The coverage is used to indicate how many peripherals can be covered if one
or more auxiliary-boards are used, whereas suitability is used to indicate if
the combined set of one or more auxiliary-boards are under utilized or not.
Both Cn & Sn are dependent on each other through αn and are used together
to assess various auxiliary-boards. An auxiliary-board has high compatibil-
ity with PU when it has high Cn and Sn relative to other auxiliary-boards.
In general, since β is constant for a given processing unit, one can increase
the coverage by adding more auxiliary-boards on the main-board but this also
decreases suitability by factor n.
In order to showcase the usefulness of coverage and suitability, we assume a
worst case scenario where an application requires the use of all the periph-
erals available on PU, this condition allows us to evaluate various auxiliary-
boards for worst case compatibility.
For this we selected one processing unit from each class of constraint devices
listed in Table 5.2 and plot Cn and Sn as we increase n (number of auxiliary-
boards). Without loss of generality of Equation 5.1 & 5.2 we decided to ac-
count for all the peripherals listed in Table 5.2 except interrupt. Figures 5.3,
5.4 and 5.5 shows Cn and Sn for AM3351 (class 2), STM32F042K6 (class 1) and
Atmega328P (class 0) devices respectively.

As Figures 5.3, 5.4 and 5.5 shows, R-Bus provides a suitable balance be-
tween coverage and suitability as compared to other auxiliary-boards when
used across three distinct class of processing units. Cn in R-Bus tends to
reaches 100% coverage more sharply for each subsequent addition of auxiliary-
board, for example it requires only 3 R-Bus auxiliary-boards to reach 100%
coverage, i.e. C3 = 100 in Figure 5.3 and 5.5. This sharp increase is due to the
fact that R-Bus supports more peripherals than any other auxiliary-boards.
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Cn Sn Cn Sn Cn Sn Cn Sn Cn Sn

n n n n n

FIGURE 5.3: Cn and Sn vs n for AM3351 class 2 device for vari-
ous auxiliary board based modular systems

Cn Sn Cn Sn Cn Sn Cn Sn Cn Sn

n n n n n

FIGURE 5.4: Cn and Sn vs n for STM32F042K6 class 1 device for
various auxiliary board based modular systems

Cn Sn Cn Sn Cn Sn Cn Sn Cn Sn

n n n n n

FIGURE 5.5: Cn and Sn vs n for Atmega328P class 0 device for
various auxiliary board based modular systems

In Figure 5.5, R-Bus has relatively low suitability of S1 = 72.7% because it
supports some advance peripherals like I2S and SDIO which are not com-
monly found in class 0 PUs and hence are never used.
In mikroBUS system, as shown in Figure 5.3, 5.4 and 5.5, the initial suitability
S1 & S2 is relatively very high but at the expense of low coverage C1 & C2 and
therefore requires more auxiliary-board to reach comparable coverage to that
of R-Bus. For example, in Figure 5.4 mikroBUS require 5 auxiliary-board to
reach C5 = 46.8% with S5 = 60% whereas R-Bus requires only 2 auxiliary-
boards to reach comparable C2 = 48.48% with better suitability of S2 = 72.7%
even though mikroBUS show high initial suitability.
On the other hand Arduino shield uses a stackable approach (on top of each
other) to add auxiliary-boards which hinders its use to add more than one
auxiliary-board without pin conflict once all the peripheral pins are exhausted
on the shield. Due to this, shields are not useful when a processing unit ex-
poses mores peripherals than those supported by shields. This situation is
clearly visible in Figure 5.3, 5.4 and 5.5 where the first shield exhausted all its
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peripherals (high S1), indicating that the addition of another shield does not
change Cn, and therefore Sn tends to decreases sharply towards 0. Similar
behaviour in Cn and Sn is observed in RPi HAT which uses similar stacking
approach for adding auxiliary boards.
Finally, for auxiliary-boards like pmod and grove that supports one periph-
eral per board, in order to reach 100% coverage it requires as many auxiliary-
boards as there are peripherals on the processing unit and hence the linear
rise of Cn for pmod and grove in Figure 5.3, 5.4 and 5.5. Moreover since
pmod does not support SDIO and grove does not support SPI, I2S and SDIO,
therefore Cn cannot reach 100% while Sn remains at 100% till all the periph-
erals supported by pmod and grove are exhausted from PU. In general, this
trend in Cn and Sn is expected from system that supports one peripheral per
board.
The extent to which a main-board can support multiple auxiliary-boards are
not only driven by the number of peripherals supported by the processing
unit used, but more importantly an application requirement can also limit
the requirement of multiple auxiliary-boards even though a processing unit
can accommodate more. Although having multiple auxiliary-boards is not
a requirement, but it can increase the usability of main-board across diverse
IoT applications that requires more peripherals than those provided by the
single auxiliary-board.
Both coverage and suitability provide the necessary tools to do a preliminary
analysis of modular systems for designing application specific IoT based em-
bedded systems.

5.2.5 Validation : Implementation & Assessment

In this section, we showcase the practical advantage and proof-of-concept of
R-Bus (Type-0) by implementing a practical wireless sensor node. We also
compared the sensor node implementation with other auxiliary-board stan-
dards for implementing the similar node.

5.2.5.1 A LoRaWAN enabled Environmental Sensor Node

For this validation, we decided to implement an environmental sensor node
that records barometric pressure and temperature. In order to actualize this
sensor node, the IoT resource requirements is as follows : we decided to
use LoRaWAN [226] technology for communication using SPI based RFM95
transceiver module. There is also an external memory (SPI based W25X40CL
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4-MB flash) for data logging and sending measurements in batches to save
transmission power. An external I2C based battery backed RTC (Real Time
Clock) is used to timestamp measurements and to wake-up MCU from sleep.
Moreover an external I2C based secure element (ATECC608A) is used to run
AES encryption algorithm in hardware to save on chip MCU memory (ROM
+ RAM) and processing time associated with encryption algorithms. Finally,
for the sensor we decided to use an I2C based barometric pressure sensor
BMP280, that also has an inbuilt temperature sensor. Table 5.5 summarizes
the list of various components used along with respective standard interface.

IoT Resource Description Standard Interface

Transceiver RFM95W LoRaWAN module SPI

Sensor BMP280 Barometric Pressure I2C

RTC PCF8523 with backup battery I2C

Security ATECC608A Crypto-Authentication I2C

Memory W25X40CL 4-MB Flash SPI

TABLE 5.5: IoT Scenario : List of IoT Resources & Standard
Interface

Figure 5.6 shows our auxiliary-board prototype based on R-Bus standard.
For the main-board prototype we decided to use ATmega328P MCU, the
bootloader inside the MCU is same as Arduino Pro Mini 3.3V-8MHz therefore
it is possible to use Arduino IDE to create and debug applications. Figure
5.7 shows auxiliary-board plugged into the main-board using 90◦ PCI-e x1
socket.

FIGURE 5.6: R-Bus : Auxiliary board Prototype
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FIGURE 5.7: R-Bus : Main and Auxiliary board Prototype

In comparison with other auxiliary-board standards to implement the sim-
ilar sensor node using the same IoT resources. For example - PMOD will
require at least 3 auxiliary-boards - two SPI boards one for transceiver & one
for memory and one I2C board for sensor, RTC and secure element, it may
require an additional I2C board if it is difficult to accommodate the three IoT
resources on a single board due to form factor restriction. On the other hand
it is impossible to realize the sensor node using Grove System as it does not
support SPI. Although MikroBUSTM supports simultaneous use of SPI and
I2C, considering the maximum size of 25.4× 57.15 mm it may still require 2
auxiliary-boards to accommodate all the IoT resources. Finally the Arduino
Shield can easily accommodate all the IoT resources to implement the sensor
node.
Although in this scenario we only used two embedded peripherals - SPI and
I2C, but because of the number of IoT resources required (5 in this case) we
need more than one auxiliary-boards for PMOD and MikroBUSTM based so-
lutions. One can easily interpolate, when the requirement of distinct periph-
erals increases the number of auxiliary-boards for PMOD, MikroBUSTM and
Grove System also increases. Also the size of the main-board increases with
the number of auxiliary-boards.

5.3 P-Bus - A Power Bus for Modular System De-

sign

The benefits of IoT can only be realized when the devices (for example, Wire-
less Sensor and Actuator Networks) are capable of battery-operated or work-
ing under extreme energy limitations. This requires careful consideration
(Section 2.3.1.2) into designing low-power systems that are energy aware.
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In this section we introduce a P-Bus module that is designed to satisfy the
IoT power requirements (energy harvesting, battery operated, wall powered,
etc.) and more importantly provides an intelligent homogeneous interface to
capture or inquire the necessary features to better optimize power utilization
during runtime. We also show in Section 5.3.5 using two power optimization
application use cases (Power Gating and Wake-Up Radio) that it is possible to
implement different power optimization techniques thanks to its intelligent
homogeneous interface.

5.3.1 P-Bus : Overview

The P-bus modular system consists of three parts, 1) P-Bus Module. 2) P-Bus
Interface. 3) P-Bus Connector. as illustrated in Figure 5.8. The P-Bus module
is an electronic board that provides the necessary power required for proper
functioning of an IoT object (main-board). More importantly, it also includes
a smart power management block that can expose various features that are
accessible to via P-Bus interface (Section 5.3.2). The P-Bus module is con-
nected to the main-board via P-Bus connector.

FIGURE 5.8: P-Bus : P-Bus Module, P-Bus Connector and P-Bus
Interface

The list of non-exhaustive features that are considered important for better
power optimization are listed in Table 5.6. The features mentioned in the
table are implemented directly on P-Bus module using existing integrated cir-
cuit solutions in order to consume less power or it can be implemented as
a firmware on a low power microcontroller. These design options will be
considered in more detail in Section 5.3.3.
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Feature Name Description

Battery Voltage Monitoring voltage level.

Battery Current Monitoring current consumption.

Battery State of Charge (SoC) Level of charge remaining relative to battery capacity.

Battery Temperature Monitoring battery temperature.

Status and Alerts Alerts for under and over voltage & current protection

Power Good Indicates when the system voltage is at an acceptable level.

Disable Power Allows host to disable power for energy conservation.

TABLE 5.6: P-Bus Module Feature List

5.3.2 P-Bus : Interface

In order to interface with external boards (for example, R-Bus main-board),
the P-Bus module exposes various signals that allows the main-board to send
and receive features necessary for runtime power optimization. Table 5.7 lists
various signals supported by the P-Bus module along with a short descrip-
tion. The selection decision of signals are based on the usefulness of these sig-

Signal Name Description Signal Direction
VCC Regulated Output for R-Bus system PB→MB
GND Common Ground -
PG Power Good signal indicating the VCC has reached a pre-

defined upper threshold
PB→MB

DIS PWR Disable Power PB←MB
DIS SR Disable Switching Regulator PB←MB
ALR Alert - Inform host MCU for abnormal behavior or status

information
PB→MB

I2C SCL I2C clock signal PB←MB
I2C SDA I2C data signal PB↔MB
PB : R-Bus Power-Board, MB : R-Bus Main-Board

TABLE 5.7: P-Bus Module Interface signals

nals in various energy aware IoT applications as mentioned in Section 2.3.1.2.
The importance of each signal is explained hereafter.

1. VCC - VCC is the regulated output voltage (3.3V or 5.5V) generated by
the P-Bus module for the R-Bus system. The regulated supply voltage
is needed for proper functioning of various sub-systems within R-Bus.

2. GND - Common ground between P-Bus module and R-Bus main-board.

3. PG - In a battery powered application, the battery voltage is not always
at an acceptable level. If not taken into account, the host can experience
abrupt power failure. The Power Good (PG) signal can indicate to the
host module that the supply voltage has reached an acceptable level.
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Normally, the main-board can stay in sleep to conserve power and use
PG signal as a wake-up source and perform the necessary power hun-
gry tasks like transmission, etc.

4. Disable Power - The main-board can use this signal to disable supply
voltage (VCC) to conserve leakage power in energy sensitive applica-
tions. This operation is also known as power gating and is one of the
power optimization techniques discussed in detail in Section 5.3.5.1 as
an application of the P-Bus module.

5. Disable Switching Regulator - The switching regulators are widely
used in many energy harvesting circuits for charging batteries or super
capacitors. But in noise or EMI (Electromagnetic Interference) sensitive
applications, the switching regular can interfere with proper function-
ing of RF circuits. Therefore using this signal, the host can temporarily
disable switching regulators during transmission.

6. Alert & Status - This signal can indicate abnormal behavior such as, un-
der & over voltage and current protection for battery powered devices,
charging status, high temperature for battery protection, etc.

7. I2C - The I2C [15] can be used to access a programmable power man-
agement integrated circuits in the form of battery gauge, battery man-
agement unit, etc. The processing unit on the main-board can use this
interface to access power management features directly from the inte-
grated circuit available on the P-Bus module. The I2C can also be used
to access a low power slave microcontroller if available on the P-Bus
module to implement, access & configure customized power manage-
ment features that are not available directly from existing integrated so-
lutions. The importance of I2C interface is discussed in Section 5.3.5.2
using an example application.

5.3.3 P-Bus Module : Class Distinction

The R-Bus power modules are divided into three classes based on the avail-
ability and usage of various interface signals.

1. Class P0 - The P0 is the most basic power-board with only VCC and
GND signals. The is useful in those applications that are wall powered
and the application does not utilize or need any power optimization
features. Example use case - Wall powered edge devices or gateways,
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it can also be battery powered devices that does not expose any power
optimization features back to the host MCU.

2. Class P1 - The P1 is more advanced than the P0. It contains a low
power EEPROM that holds a feature descriptor. The feature descrip-
tor contains the detailed information about each signal and list of fea-
tures that are available from the power-board. The main-module can
use this feature descriptor to configure its peripheral interface to access
the available features and use the appropriate libraries to access power
management ICs over I2C to collect features. The behavior of other
signals are the same as described in previous Section 5.3.2.

3. Class P2 - It contains a dedicated low-power power management slave
MCU that allows the user to implement customized power optimiza-
tion algorithms directly inside the MCU. The host MCU can access the
algorithm features directly from slave MCU via I2C. In the P2 module,
the Alert signal is used by the slave MCU to inform any abnormal be-
havior, the host MCU can use this signal to wake up from sleep and
ask for relevant information from the slave via I2C that caused the ab-
normal behavior. It also contains an EEPROM similar to Class P1 that
holds the feature descriptor. The behavior of other signals are the same
as described in previous Section 5.3.2.

5.3.4 P-Bus Module : Application Class

In this section we will describe and map various application use cases that
are possible using various classes of P-Bus Modules. For this we have parti-
tioned applications into various classes, designated by PACx (P-Bus Application
Class), where x is class number. The partition is based on the source of power,
type of energy storage and the requirements of power optimization features.
The various application classes are explained below along with Table 5.8 that
shows the mapping of application class with P-Bus module class.
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Application

Class

Energy Source Energy Storage
P-Bus Class

Wall Powered Renewable Non-Rechargeable Rechargeable

PAC0 3 7 7 7 P0

PAC1 3 7 7 3 P0

PAC2 3 7 7 3 P1

PAC3 7 7 3 7 P1

PAC4 7 3 7 3 P1

PAC5 3 3 7 3 P2

Non-Rechargeable - AA, AAA, etc.

Rechargeable - Lithium-ion, Lithium-polymer, Supercapacitor, etc.

Renewable - Solar, Wind, Vibration, etc.

TABLE 5.8: P-Bus Module Application Class

• PAC0 : This is the most basic application class, the system is wall pow-
ered with no energy storage element and does not utilize any external
features for optimizing power consumption. Typical examples for this
application class are - gateways or edge devices that are based on pow-
erful hardware such as Raspberry Pi, BeagleBoard, etc. The devices
used in this application class have energy limitation class of type E9 as
shown in Table 2.1.

• PAC1 : In this class, the system is wall powered backed with recharge-
able storage in case of power outage and does not utilize any external
features for optimizing power consumption similar to PAC0.

• PAC2 : This application class is similar to PAC0 and PAC1, but can also
utilize external features for better power optimization.

• PAC3 : In this class, the application uses non-rechargeable batteries as
input power source and uses various P-Bus signals to optimize power
consumption to extend the end of life period. The devices used in this
application class have energy limitation class of type E2 as shown in
Table 2.1.

• PAC4 : The application uses renewable energy as a power source with
energy storage element in terms of rechargeable battery or super ca-
pacitor. It uses various P-Bus signals to optimize energy consumption
and manage charging and recharging of storage elements. The devices
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used in this application class have energy limitation class of type E1 as
shown in Table 2.1.

• PAC5 : This is the most advanced application class, in this class the
application uses a low power microcontroller for implementing intelli-
gent power optimization algorithms. The features of the algorithm are
available to the main processing unit via I2C interface. The system can
have any type of power input source such as wall powered, wall pow-
ered with battery backup, non-rechargeable battery, energy harvesting
with rechargeable battery or super capacitor storage. The application
can also use other P-Bus signals for power optimization.

5.3.5 P-Bus : Validation

In order to validate the P-Bus module we first propose and evaluate in detail
two power optimization techniques namely - Power Gating [227] and Wake-
Up Radio (WUR) [158], that are used in a variety of energy aware wireless
sensor nodes. The reason for this detailed discussion is not only to showcase
the benefits of energy awareness in IoT objects but also to state the require-
ments of extra interface to implement such techniques that are not available
in existing 2.3.1.1 development boards. Also, more importantly we showcase
how these techniques can be implemented using the P-Bus module in order
to take advantage of the homogeneous interface that allows easy integration
of these power optimization features across a wide variety of wireless sensor
nodes, etc.

5.3.5.1 Application-1 : Power Gating

In this application use case we implement and evaluate a power optimization
strategy known as Power Gating [227] to reduce leakage power between two
consecutive transmits - when the microcontroller (MCU) is in inactive state.
We showcase using this technique and the measurement results presented in
[155] the significant increase in battery life, when the inactive period is large
and inactive current starts to dominate. The power gating technique pre-
sented here is independent of any wireless technology and other hardware
components. On a side note, our solution can also be used to complement
the technique presented in [156], where [156] reduces active state current and
our solution reduces inactive state current. Finally, we showcase how power
gating can be implemented using class P1 of P-Bus module.
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Power gating brief description : Power gating [227, 228] is a technique
to reduce power consumption by temporarily and selectively shutting down
current from the circuits/subcircuits that are not in use. This allows reduc-
ing overall system standby current during inactive (sleep) state. The goal
of power gating is to minimize leakage current [228] (inactive/sleep cur-
rent). Figure 5.9 illustrates a generalized block diagram of a typical system
utilizing power gating. The power gating controller generates the required
power gating signals to selectively and temporarily disable power from var-
ious subcircuits/sub-systems using electronic switches.

FIGURE 5.9: Illustrative block diagram of power gating

Evaluation : It is possible to generalize the average current (Iavg) consump-
tion of any hardware platform, let us consider that the platform is programmed
for periodic message transmission (IoT monitoring application) with period
TNoti f (notification period), than Iavg can be calculated as :

Iavg =
1

TNoti f

∫ TNoti f

0
i(t)dt =

1
TNoti f

(∫ Tactive

0
iactive(t)

+
∫ TNoti f

Tactive

iinactive(t)
)

dt
(5.3)

Tactive is the total time spent in active state (wake-up, read sensor, transmit,
etc.), where iactive(t) and iinactive(t) are current consumption profile in active
and inactive state respectively. Also Tinactive can be obtained as :

Tinactive = TNoti f − Tactive (5.4)
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It is important to note that, iactive(t) depends on numerous factors such as
processing unit, operating voltage & frequency, transceiver, application al-
gorithm, wireless network & technology, temperature, etc. and therefore it
is difficult to model the behavior accurately which requires careful measure-
ment setup & methods [229], nevertheless [154] presents analytical models
of energy consumption for various operations in wireless sensor device like
- data acquisition (regular and event driven), data processing (hardware de-
pendent), data communication (point-to-point - SIGFOX & LoRa and time
synchronized network - TSCH ) and also [155] presents analytical models for
both acknowledged and unacknowledged LoRaWAN transmission for var-
ious spreading factors (SF) based on the measured current consumption on
an actual hardware platform.
On the other hand iinactive(t) can be considered constant throughout Tinactive

and is equivalent to the summation of all the sleep currents of various com-
ponents available on the platform and active currents of always-On compo-
nents (for example, Equation (5.10)). Therefore Equation (5.3) can be sim-
plified as shown in Equation (5.5), where Iinactive is total sleep current of the
platform and Tactive

TNoti f
is duty cycle.

Iavg =
1

TNoti f

(∫ Tactive

0
iactive(t)dt + Iinactive. Tinactive

)
=

1
TNoti f

∫ Tactive

0
iactive(t)dt + Iinactive

(
1− Tactive

TNoti f

) (5.5)

Further using Equation 5.5, we can calculate the theoretical lifetime, denoted
by Tli f etime, of a battery-operated end-device as shown in Equation (5.6), where
Cbat is battery capacity expressed in mAh (milliampere hour)

Tli f etime =
Cbat
Iavg

(5.6)

One of the main goal of IoT embedded designers and application developers
is to increase Tli f etime by systematically modifying the factors that influence
Iavg. It is easy to visualize from Equation (5.5) the factors - TNoti f , Tactive, iactive

and Iinactive - that determines Tli f etime for a given Cbat. We consider the impact
of TNoti f and Isleep on Tli f etime.
We can calculate the asymptotic theoretical upper bound of Tli f etime denoted
by T̂li f etime, using Equation (5.5) & (5.6) and taking the limit TNoti f → ∞,
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T̂li f etime is given by :

T̂li f etime =
Cbat

Iinactive

Iinactive = lim
TNoti f→∞

Iavg
(5.7)

The implication of Equation (5.5) & (5.7) is that, the contribution of Iinactive

in Iavg starts to dominate as TNoti f becomes large as compared to Tactive i.e
Tactive
TNoti f

� 1. Furthermore, while designing an IoT end-device one can easily
gather sleep currents (Iinactive) of various components from manufacturer’s
datasheet and can easily predict T̂li f etime early in design phase. Also it is rel-
atively easy to measure Iinactive accurately using inexpensive equipment.
Now we illustrate the effect of iactive(t), Tactive and TNoti f on Tli f etime for a
given Iinactive. Without loss of generality and for realistic assumption of iactive(t)
and Tactive, we decided to reuse the measurement data of LoRaWAN trans-
mission from [155] and is summarized in Table 5.9, where Cactive =

∫ Tactive
0 iactive(t)dt.

We also assumed a battery capacity of 2400 mAh, which is equivalent to AA
battery capacity.

Parameters
Cactive Tactive IinactiveSF Payload

7 242 bytes 95.93 mA.s 2.934 sec 40µA
12 51 bytes 304.15 mA.s 5.577 sec 40µA
Common Parameters - Class A protocol, Bandwidth
BW = 125 KHz, 8-symbol preamble length

TABLE 5.9: LoRaWAN Transmission Measurements

As illustrated in Figure 5.10, for relatively lower values of iactive(t) and Tactive

(i.e SF7) 50 percent of T̂li f etime (1000 days) is achieved earlier as we increase
TNoti f (TNoti f ≈ 27 min for SF7 and TNoti f ≈ 85 min for SF12).
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T̂li f etime(40µA)

FIGURE 5.10: Tli f etime for LoRaWAN SF7 & SF12 transmission
as a function of TNoti f

Next, we illustrate the effect of Iinactive on Tli f etime as a function of TNoti f for a
given iactive(t) and Tactive, again for realistic assumption and without loss of
generality we use the data of Table 5.9. Figure 5.11 illustrates Tli f etime for var-
ious Iinactive as a function of TNoti f for LoRaWAN SF7 & SF12 transmission.
Note that Iinactive = 50nA (Equation 5.9) corresponds to the situation, where
power gating is used to reduce inactive current and Iinactive = 40µA as used
in [155].

It is interesting to note that for lower values of TNoti f , ≤ 9 min for SF7
and ≤ 20 min for SF12 there is not much difference in Tli f etime because Cactive

dominates Iavg and hence Tli f etime. The implication of this result is that in
an application where there is a requirement of frequent transmission which
corresponds to short TNoti f , one should try to reduce iactive(t) & Tactive rather
than inactive current in order to obtain the desired Tli f etime.
Furthermore, the effect of Iinactive starts to dominate early for lower values
of iactive(t) & Tactive as we increase TNoti f ( ≥ 9 min for SF7 and ≥ 20 min
for SF12). Interestingly in an application with infrequent transmission which
corresponds to large TNoti f , where Iinactive dominates, one can try to incorpo-
rate techniques (for example - power gating) to reduce inactive current rather
than iactive(t) & Tactive to obtain better end-device lifetime.
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FIGURE 5.11: Battery life vs notification period for various in-
active currents - LoRaWAN : SF7 (Top) and SF12 (Bottom)

Validation : We validated the importance of power gating technique by im-
plementing a battery operated Arduino compatible LoRaWAN enabled wire-
less sensor node. As a byproduct of our work, the proposed platform enables
easy, cost effective, battery operated and low power solution for experimen-
tal LoRaWAN [226] field studies and can also be used to validate the power
models [154] of LoRaWAN technology and better estimate battery life. Al-
though our platform uses LoRaWAN radio, the power gating technique is
independent of any wireless technology and other hardware components.
Moreover, our solution can also be used to complement the technique pre-
sented in [156], where [156] reduces active state current and our solution
reduces inactive state current.
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Hardware Platform Details : The platform consists of two boards that to-
gether form a battery operated wireless node. As shown in Figure 5.12, the
first board (referred to as B1) combines on a single board an Arduino com-
patible MCU (Atmega328p) with LoRaWAN radio (RFM95W module). The
bootloader inside the MCU is the same as Arduino Pro Mini 3.3V-8MHz there-
fore it is possible to use the Arduino IDE to create applications and debug via
external FTDI serial adapter, similar to Arduino Pro Mini. The second board
(referred to as B2) is a power-supply and power-management board for B1. It
uses nanoPower boost converter (MAX17223 [230]) to convert voltage from
two 1.5V AAA batteries (3.0V in series) into regulated 3.3V output voltage
for B1. The value of the boost converter inductor is carefully selected to reli-
ably convert input voltage ranging from 2.0V to 3.0V into regulated 3.3V at
200 mA output current. For the power gating controller, a nano-power sys-
tem timer (TPL5111 [231]) is used to temporarily disable power from B1, the
timer’s time interval is programmable using an external resistor.

FIGURE 5.12: Platform block diagram

Power Management & Operation : The power management is purely in
hardware and is independent of wireless technology. As illustrated in Fig-
ure 5.13, the B2 has two important components - boost converter (electronic
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switch) and system timer (power gating controller). The boost converter gen-
erates the regulated 3.3V for the proper functioning of B1 and the system
timer. The system timer waits for the MCU (B1) to generate power disable
signal and after receiving the signal, the timer disables the boost converter,
thereby removing power from B1, this process is called “self destruction”.
Since the system timer is continuously powered, therefore it is still ticking
and after a predefined time interval it enables the boost converter and the
power is back again. Before disabling the power the MCU performs the nec-
essary IoT application task as programmed by the user.

FIGURE 5.13: Block diagram of B2

Figure 5.14 shows the timing diagram of platform operation. This technique
is useful for star networks like LPWAN (LoRaWAN, Sigfox, etc.) and for
applications with infrequent transmission, for example - Smart Cities, Smart
Agriculture, etc.
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FIGURE 5.14: Platform Operation - Timing Diagram

Platform Power Consumption : The advantage of technique mentioned
in Section 5.3.5.1 is that between two consecutive transmit/receive the to-
tal shutdown current drawn ITSD from the batteries is effectively reduced to
the current consumed by the system timer IST, shutdown current of boost
converter IBCSD and an unknown platform dependent leakage current δleakage

- see Equation (5.8). The δleakage is calculated as the difference between an-
alytical and measured current consumption of the platform, this allows to
take into account the quality of overall platform circuit design and is usually
very small. After obtaining the values of IST and IBCSD from their respective
device datasheet, the ITSD is approximately equal to Equation (5.9).

ITSD = IST + IBCSD + δleakage (5.8)

ITSD = 35nA + 0.5nA + δleakage (5.9)

In contrast with other techniques, where we utilize various power down
modes of the components to reduce the effective power during sleep, the to-
tal power down (sleep) current (ITPD) consumed is given by Equation (5.10).
Where IBCA is boost converter active current (always on to supply sleep cur-
rent) and IMCUPD & IRPD are MCU & Radio power down currents respectively.
In this case the system timer (IST) is used to wake up MCU from sleep. After
obtaining the values of IST, IBCA , IMCUPD & IRPD from their respective device



Chapter 5. R-Bus and P-Bus : Modular Systems for Designing Interoperable
and Energy Aware Embedded Systems

135

datasheet, the ITPD is approx. equal to Equation (5.11).

ITPD = IST + IBCA + IMCUPD + IRPD + δleakage (5.10)

ITPD = 35nA + 500nA + 100nA + 200nA + δleakage (5.11)

It is important to note that Equation (5.10) does not include current con-
sumed by external components attached to B2 such as sensors, actuators,
etc. as they are application dependent. One can imagine the addition of
more sleep currents if these external components are attached to the plat-
form, where as Equation (5.8) is independent of various sub-system sleep
and leakage currents. Also in general the total platform’s sleep current de-
pends on the type of components used and the overall circuit design, there-
fore Equation (5.10) varies from one platform to another. Table 5.10 lists sleep
currents for few popular hardware platforms. Note from Table 5.10 that sleep
current of [232] and [233] differs considerably even though they have same
MCU and Transceiver, this is because [232] is a module and requires addi-
tional hardware components (power supply, debug circuit, etc.) before it can
be used.

Device Name MCU Transceiver Sleep Current
MultiTech mDot [234] ? STM32F411 ? SX1272 [235] 40µA
iM880B-L [232] ? STM32L151 • SX1272 1.85µA
NetBlocks XRange [233] † STM32L151 SX1272 70µA
iM222A [236] ? CC2530 ◦ 1µA
? Module, † Platform, ? [237], • [238], ◦ [239]

TABLE 5.10: Sleep Current for various IoT Devices

P-Bus Module - Power Gating : Figure 5.15 shows the proposed implemen-
tation of wireless node architecture using Class P1 module of the P-Bus. The
wireless node takes advantage of the power optimization technique (power
gating) using the available P-Bus interface signal (DIS_PWR). The same P-
Bus module can be easily used with other wireless nodes that have the similar
P-Bus connector and can take advantage of power gating technique provided
by this module.
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FIGURE 5.15: P-Bus : Power Gating

5.3.5.2 Application-2 : Power Gating & Wake-up Radio

In this subsection, we demonstrate the use of P-Bus (Class P2) by implement-
ing Power Gating along with Wake-up Radio on the same board.
The wake-up radio (WUR) is a technique to reduce communication power of
wireless nodes whereby an auxiliary receiver circuit known as WUR receiver
relieves main radio from continuous listening of transmission medium for
an incoming messages [158, 160]. Wake-up radios employ an asynchronous
wake-up mechanism to notify the main processing unit for a potential in-
coming message. In contrast with wireless node without wake-up radio the
idle listening of main radio receiver consumes more energy, therefore one of
the main goal in wake-up radio is to design an ultra low power (also, low
latency and high sensitivity) receiver circuit that consumes significantly low
power in comparison with idle listening of main radio.
Figure 5.16 illustrates the block diagram of wireless node that takes advan-
tage of both WUR and power gating as a power optimization technique. For
simplicity Figure 5.16 shows only relevant signals and system blocks. The
power gating circuit comprises an ultra low power system timer that acts as
power gating controller and a boost converter that acts as an electronic switch
to enable or disable power in response to the signal generated by the timer.
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FIGURE 5.16: P-Bus : Power Gating & Wake-up Radio (WUR)

The timer waits for the processing unit on the R-Bus main board to generate
the power disable signal (DIS_PWR) and in response to this signal the timer
turns off the electronic switch (boost converter), thereby removing power
from the main radio (R-Bus Auxiliary-Board) and processing unit. After a
predefined time interval the timer enables the boost converter, thereby restor-
ing the power.
On the other hand, the WUR consists of in addition to wake-up receiver an
ultra low power microcontroller (ULPµC) for address matching, similar to
the one presented in [160]. On successful address matching the ULPµC is-
sues a power enable signal which also acts as level-interrupt (ALR) to the
main processing unit (PU) to distinguish WUR wake-up from timer wake-
up, this allows processing of incoming messages. The main PU can instruct
ULPµC to disable power through I2C interface. The OR gate allows elec-
tronic switch to receive power enable/disable signal from both timer and
WUR.
As shown in Figure 5.16, the proposed wireless node architecture can be im-
plemented using P-Bus system. The wireless node can take advantage of the
power optimization techniques (Power Gating and WUR) offered by the P-Bus
module using a homogeneous interface that is usable across various wireless
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node that requires similar power optimization techniques.
In summary, we showed using two IoT scenarios the benefits of P-Bus mod-
ular systems. The P-Bus exposes an intelligent interface that better caters the
power requirements of an IoT object. The P-Bus module can be used with
any IoT object that has a P-Bus connector for interfacing with a P-Bus module
and is not just limited to R-Bus modular systems. Finally it is also possible to
complement P-Bus with our software oriented approach (PrIoT - Chapter 4)
by using PrIoT-API for accessing features (Table 5.6) supported by the P-Bus
module.

5.4 Concluding Remarks

In this chapter, we addressed the IoT device heterogeneity with a hardware
oriented approach, where we have proposed two new modular systems named
R-Bus (Resource Bus) and P-Bus (Power Bus) to cater the requirements of IoT
application while designing an embedded system (wireless sensor actuator
node, edge node, etc.). We provided a detailed description of both modular
systems and how they satisfy the peripheral heterogeneity control problem
by exposing a homogeneous intelligent interface. We provided a detailed
evaluation of R-Bus against existing modular systems and showed that R-
bus poses many advantages over existing modular approaches in terms of
the number of supported peripherals, simultaneous access to peripherals,
compatibility across a diverse class of constraint devices, form factor, inter-
face configuration, etc. We also implemented a R-Bus based hardware proto-
type of an environmental wireless sensor node and compared its advantages
if the similar node is realized using existing modular approaches.
For P-Bus, we provided a description of its usability across various energy
requirements of IoT applications. We also provided a detailed validation by
implementing two distinct energy aware IoT applications.
Finally, more work is needed in order to facilitate the widespread use and
evolution of both modular systems and also to ensure compatibility of boards
across other modular ecosystems.
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Chapter 6

Conclusions and Future Work

In the context of generalised Internet of Things for enabling and accelerat-
ing digital transformation in different domains, we identified that IoT end
device heterogeneity is slowing down this process. We argue that IoT in-
teroperability implemented in the industry today is actually handling only
the heterogeneity from the IoT gateways up to the IoT applications and ser-
vices in the IoT cloud platforms, thus the end to end interoperability up to
the heterogeneous IoT end devices is still a big research and development
challenge. In this thesis we identified different aspects of heterogeneous IoT
ecosystem and its corresponding efforts to handle it in order to build this end
to end interoperability and ease IoT applications and services development,
deployment, and maintenance regardless of the IoT end devices heterogene-
ity.
This chapter summarises the contributions of this thesis, in Section 6.1 we
address the problem of IoT device heterogeneity from both hardware and
software perspective. Then potential future research directions are presented
in Section 6.2.

6.1 Summary of Contributions

The research proposed to solve the heterogeneity control problem of the IoT
devices, this will bring solutions that will reduce the IoT prototyping and
development complexity, it will thus enable inexperienced personnel to de-
velop, deploy and maintain IoT applications on the network of heterogeneous
IoT devices. The development and the design of our solutions are guided
by the challenges and problems presented in Chapter 1. Having identified
the shortcomings of various solutions in the form of framework, develop-
ment platforms & tools, embedded operating systems, etc. in Chapter 2, the
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requirements to implement the proposed solutions were established in Chap-
ter 3. The contributions associated with this research work are as follows:

• We realized the importance of the software abstraction layer (SAL) for
hiding various heterogeneous technologies underlying IoT devices for
allowing easy and rapid IoT adoption. For implementing this SAL, in
Chapter 3 we studied the IoT application characteristics using an IoT
architecture approach and extracted most common functionalities and
programming patterns that are IoT applications invariant [17, 18]. We
proposed the requirements of high level abstraction based on these in-
variant characteristics that are necessary for implementing software ab-
straction layers. Our objective is to lay the foundation for our proposed
framework (Chapter 4) for IoT application lifecycle management that
utilizes this abstraction layer.

• We proposed a new Open Source framework named PrIoT [19] in Chap-
ter 4 that hides the IoT device manufacturer heterogeneity from the ap-
plication developer. The main design philosophy behind the frame-
work is "code once port everywhere". We defined the three objectives
of the framework i.e. rapid prototyping - by utilizing high level abstrac-
tion as described in Chapter 3 in the form of PrIoT-API and PrIoT-Lang,
hardware configuration - that provides configuration template and opti-
mum bill of material in accordance with IoT application requirements
and finally scenario deployment - that is achieved using an orchestrator
that interprets high level IoT application functionalities into hardware
specific commands. We also explained the main building blocks that
make up the entire PrIoT framework.

• We described in detail the reference implementation of the PrIoT frame-
work as a proof of concept. In order to implement our framework we
used various open source languages and tools. We showed the benefit
of the framework by implementing an example IoT use case.

• From a hardware perspective, we defined the problems associated with
IoT device peripheral heterogeneity while designing hardware solu-
tions for prototyping IoT applications. In order to systematically tackle
this problem we studied various requirements of IoT applications in
terms of - peripherals usage, types of IoT hardware and their associated
peripherals, memory, processing and energy constraints of IoT devices.
Based on this study, we proposed two new Open Hardware modular
systems named R-Bus (Resource Bus) [20, 21, 223] and P-Bus (Power
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Bus) for designing interoperable embedded systems. The full details of
the proposed solutions are provided in Chapter 5.
We systematically evaluated the R-Bus with existing modular systems
using two metrics - coverage & suitability ratios and showed the advan-
tage of our system in implementing IoT scenarios along with an exam-
ple implementation of practical wireless sensor node. For P-Bus, we
validated our solution by systematically analysing and implementing
two practical power optimization techniques - power gating and wake-
up radio - that are widely used in energy aware IoT applications [22,
23].

6.2 Future Directions

In this section we discuss the potential extension to our work and future
directions. This research demonstrated the importance of intelligently de-
signed software and hardware solutions in implementing IoT use cases by re-
ducing the complexity due to IoT devices heterogeneity. To extend our work,
we have identified the future related work to follow up, some of which we
already started to explore. Based on that, we have identified the following
potential future research directions.

Software Perspective : From a software perspective, we proposed a new
framework for rapid prototyping of IoT applications along with its reference
implementation. However, we have planned to extend our framework along
the following lines.

• A key challenge for its wide adoption will be to design HAL (Hardware
Abstraction Layer) with a generalized API to accommodate a larger
number of heterogeneous IoT devices and also to support a developer
friendly environment for device driver development.

• In order to facilitate its widespread adoption and also its continuous
evolution in the IoT community, we plan to continue the development
and foster it’s community through PrIoT website (http://www.priot.
org), repository of example scenario, extensive documentation, soft-
ware design guidelines for implementing device drivers that adhere to
the specification of PrIoT-API, etc.

http://www.priot.org
http://www.priot.org
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• It is interesting to analyze the best methodology to connect our frame-
work with the IoT interoperability layer that allows communication
protocol homogenization and service deployment.

• It is also interesting to analyze the performance of the firmware gen-
erated by the reference implementation of our framework on various
heterogeneous hardware devices and also a qualitative and quantita-
tive comparison with different frameworks available.

• In order to tackle the problem of massive firmware update due to the
scale of IoT, it is interesting to investigate firmware over-the-air (FOTA)
in our framework, to remotely update the firmware. For this we plan
to analyze the limitations and merits of various existing FOTA projects
such as Mender [164].

• We plan to study and make use of semantic interoperability technolo-
gies such as SSN (Semantic Sensor Network) by W3C (World Wide Web
Consortium), OWL (Web Ontology Language), WSDL (Web Services
Description Language), etc. in our framework to allow interoperability
among other frameworks and platforms.

• We also plan to continue the development of the device management
feature (PrIoT Orchestrator) of our framework with the ability to design
and control a complete IoT scenario. As orchestration in the cloud has
been extensively covered by solutions such as kubernetes, we are inter-
ested to follow the ongoing efforts of the community to adapt it to the
edge with approaches such as Cloud4IoT and K3S [240, 241]. Further-
more, to bridge the gap of orchestrating the end-systems at Layer-1,
we will extend our PrIoT proposal to separate configuration and ap-
plication logic to be harmonized with the orchestrator solutions stated
before.

Hardware Perspective : From a hardware perspective, we proposed two
new modular systems named R-Bus and P-Bus. It constitutes a step forward
in building an interoperable modular embedded system that hides under-
lying peripheral heterogeneity of IoT hardware resources. More work is
needed to adapt R-Bus and P-Bus based systems to meet further require-
ments of IoT and also for the widespread adoption in the IoT community.
For this we see the following important directions :
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• In order to facilitate the widespread use and evolution of R-Bus & P-bus
in the educational, research & industrial community and also to ensure
compatibility of boards across our modular ecosystem we will create
a hardware design guidelines for implementing R-Bus & P-Bus based
systems. This will include but is not limited to - Form factor, connector
selection, reference PCB design files, supporting documents, example
boards, learning guide, etc. To strengthen our community around R-
Bus & P-bus proposals and promote our open hardware specification,
we will also maintain a website and repository (http://www.rbus.io).

• The success of any IoT hardware is based on the availability of software
development tools and example applications, although R-Bus & P-Bus
systems does not have any restriction on the use of particular devel-
opment tools but the requirement of sample application accompanying
both systems is important therefore a repository of example code and
demonstration is required for rapid prototyping and experimentation.

• Machine readable description of IoT hardware resources is another im-
portant aspect that is not available by default in existing systems. It
plays a crucial role in designing plug & play architecture, resource dis-
covery, universal resource interface, etc. To accomplish this, one of
the options is to extend/reuse the existing similar standards such as
“IEEE 1451.4 Transducer Electronic Data Sheets (TEDS)” [102] and Sen-
sorML [101] for IoT. Both R-Bus & P-Bus support on-board non-volatile
memory to add machine readable description. It is then interesting to
investigate the merits of both TEDS and SensorML along with other
standards and adopt the one that is best suitable for our modular sys-
tem. This will also facilitate easy sharing of both systems among indus-
tries, researchers and open communities.

• The ability to uniquely identify an IoT object plays an important role
in authentication, provisioning and security. One solution is to attach
a globally unique node address using IEEE EUI-48 or IEEE EUI-64 (Ex-
tended Unique Identifier) global identifier [242], interestingly these iden-
tifiers are available pre-programmed in EEPROMs from various ven-
dors. Therefore a single EEPROM on the system will serve two impor-
tant functions - machine readable board description and unique node
address. Apart from this, it is interesting to investigate other standards
comparing their merits for unique identification of hardware devices.

http://www.rbus.io
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The future work presented in this section requires considerable support from
the open community to support its continuous development and foster its us-
age in the education, research and industry. Therefore, for our PrIoT frame-
work we decided to use an open license based on GPL-v3 and our two mod-
ular systems R-Bus and P-Bus are under Creative Commons ShareAlike li-
cense.
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Appendix B

Code Listings

B.1 PrIoT Configuration DSL Grammar

1 start: cfig+

2

3 cfig: select_instruction | config_instruction

4

5 ?select_instruction: "select" cname"."cname"."cname "as"

cname -> select_resource

6 ?config_instruction: "config" cname"."cname parameter

-> config_resource

7

8 ?parameter: dict

9 | list

10 | string

11 | INT -> integer

12 | NUMBER -> number

13 | "true" -> true

14 | "false" -> false

15 | "null" -> null

16

17 list : "[" [parameter ("," parameter)*] "]"

18 dict : "{" [pair ("," pair)*] "}"

19 pair : string ":" parameter

20

21 string : ESCAPED_STRING

22 cname : CNAME

23

24 COMMENT: "//" /[^\n]/*

25
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26 %import common.LETTER

27 %import common.DIGIT

28 %import common.CNAME

29 %import common.WORD

30 %import common.ESCAPED_STRING

31 %import common.NUMBER

32 %import common.INT

33 %import common.WS

34 %import common.WS_INLINE

35 %ignore WS

36 %ignore WS_INLINE

37 %ignore COMMENT

LISTING B.1: PrIoT Configuration DSL Grammar



Titre : Conception d’une architecture complete pour l’interopérabilité des objets connectes heterogenes et
des services de l’Internet des Objets

Mots clés : Objets connectés, Hétérogénéité, Interopérabilité

Résumé : L’Internet des objets (IoT) combine de
nombreuses technologies et s’est étendu à des
domaines d’application divers et multidisciplinaires.
Chaque domaine a son propre ensemble d’exigences
d’application en termes de matériel, de communi-
cation, de logiciel, de source d’énergie, etc. Cela
empêche l’utilisation de modèles de programmation
conventionnels de l’informatique distribuée qui sup-
pose que les systèmes sont toujours connectés,
disposant de ressources de calcul abondantes et
d’accès à l’énergie électrique infinie. De plus, l’IoT en-
globe une large gamme d’appareils IoT embarqués
hétérogènes (unités de traitement, capteurs, action-
neurs, émetteurs-récepteurs, etc.) fournis par divers
fabricants, chacun avec une architecture d’appareil
différente, par conséquent, les logiciels d’applica-
tion développés pour ces appareils ne sont pas
compatibles avec chacun. autre. Cette hétérogénéité
des appareils pose de sérieux problèmes pour l’in-
teropérabilité des appareils et également pour les ou-
tils de développement IoT harmonisés sur une large
gamme d’appareils IoT hétérogènes. Un défi impor-
tant non seulement pour les experts du domaine,
mais aussi pour les professionnels est de réaliser une
preuve de concept (PoC) lors de l’industrialisation des
services IoT, ce qui implique - le développement, le
déploiement et la maintenance de services d’applica-
tion IoT de bout en bout nécessitant différents types
et niveaux d’expertise.
La principale contribution de cette thèse est d’in-
troduire un nouveau framework nommé PrIoT (Pro-
totyping Internet of Things) qui permet une pro-
grammation simple et rapide des appareils IoT,
de la conception au déploiement, qui gère mieux
l’hétérogénéité de l’architecture des appareils IoT.
Plus spécifiquement, le framework PrIoT est basé
sur le concept que les applications IoT possèdent di-
verses caractéristiques invariantes que nous avons
étudiées et rassemblées à partir de diverses ar-
chitectures et applications IoT présentées dans la
littérature. Nous avons ensuite développé un lan-
gage de programmation minimaliste de haut niveau et
des API pour montrer la composabilité facile de nos

fonctionnalités invariantes dans le développement
d’applications IoT. Nous validons notre framework
PrIoT à travers l’implémentation de référence et
également le développement d’implémentation proto-
type de différents scénarios IoT en utilisant notre fra-
mework et en le comparant à diverses solutions exis-
tantes.
D’un point de vue matériel, afin de mieux contrôler
l’hétérogénéité des appareils, nous proposons deux
nouveaux systèmes modulaires nommés R-Bus et P-
Bus pour concevoir des systèmes embarqués sous
la forme d’un ensemble de modules matériels pou-
vant être montés et démontés en fonction des be-
soins des applications IoT. Cela résout l’hétérogénéité
de l’interface des appareils et prend en charge di-
verses classes d’appareils de contrainte, ainsi qu’une
configuration système avancée et des fonctionnalités
plug-and-play pour faciliter le prototypage matériel
IoT. Nous validons notre système modulaire à l’aide
de deux mesures - l’adéquation et le taux de couver-
ture qui mesurent la compatibilité des systèmes mo-
dulaires embarqués par rapport aux unités de traite-
ment. Nous avons utilisé ces métriques pour compa-
rer notre solution avec les systèmes modulaires exis-
tants.
Cette approche complète notre proposition de cadre
PrIoT car elle offre une nouvelle façon de créer des
prototypes d’applications IoT de bout en bout avec
une flexibilité à la fois matérielle et logicielle des ap-
pareils IoT.
En fait, notre objectif est de permettre un prototypage
rapide de l’IoT de bout en bout en mettant en œuvre
une couche d’abstraction de haut niveau qui cache
les détails de diverses technologies sous-jacentes à
l’IoT et en mettant en œuvre des systèmes modu-
laires pour une intégration flexible des appareils ciblés
pour la conception de systèmes IoT. Ce travail a per-
mis de faire un pas en avant dans le contrôle de
l’hétérogénéité des appareils du point de vue matériel
et logiciel, mais il manque toujours la normalisation
au sein de la communauté IoT pour favoriser son
développement continu.



Title : On Interoperability and Network Architecture Bottom-Up Heterogeneity Control in Internet of Things

Keywords : Internet of Things, Heterogeneity, Interoperability

Abstract : Internet of Things (IoT) combines many
technologies and it has spanned across diverse and
multidisciplinary application domains. Each domain
has its own set of application requirements in terms
of hardware, communication, software, source of
energy, etc. This inhibits the use of conventional pro-
gramming models of distributed computing which as-
sumes that the systems are always connected, having
abundant computational resources and access to infi-
nite electric energy. Additionally, IoT encompasses a
wide range of heterogeneous embedded IoT devices
(processing units, sensors, actuators, transceivers,
etc.) provided by various manufacturers each with dif-
ferent device architecture, as a result the application
software developed for these devices are not compa-
tible with each other. This device heterogeneity poses
serious problems for device interoperability and also
for harmonized IoT development tools over a wide
range of heterogeneous IoT devices. An important
challenge not only for domain experts but also for pro-
fessionals is to realize proof-of-concept (PoC) during
industrialization of IoT services, that involves - deve-
lopment, deployment and maintenance of end-to-end
IoT application services requiring different types and
levels of expertise.
The main contribution of this thesis is to introduce
a new framework named PrIoT (Prototyping Inter-
net of Things) that allows easy and rapid IoT device
programming from design to deployment that better
handles the heterogeneity of IoT device architecture.
More specifically, the PrIoT framework is based on
the concept that IoT applications possess various
invariant characteristics that we studied and gathe-
red from various IoT architectures and applications
presented in the literature. We then developed a mi-
nimalist high level programming language and APIs
to show the easy composability of our invariant func-

tionalities in the development of IoT applications. We
validate our PrIoT framework through reference im-
plementation and also the development of prototype
implementation of various IoT scenarios using our
framework and comparing it against various existing
solutions.
From a hardware perspective, in order to control better
the device heterogeneity, we propose two novel mo-
dular systems named R-Bus and P-Bus for designing
embedded systems as a set of hardware modules
that can be mounted and dismounted based on the
IoT applications needs. This resolves device interface
heterogeneity and accommodates various classes of
constraint devices along with advance system confi-
guration and plug-&-play functionalities to ease IoT
hardware prototyping. We validate our modular sys-
tem using two metrics - suitability and coverage ratio
that measure the compatibility of embedded modular
systems with respect to processing units. We used
these metrics to compare our solution with existing
modular systems.
This approach complements our proposed PrIoT fra-
mework as it offers a new way to build end-to-end IoT
application prototypes with flexibility in both hardware
and software of the IoT devices.
In fact, our objective is to enable rapid end-to-end IoT
prototyping by implementing a high level abstraction
layer that hides the details of various technologies
underlying IoT and implementing modular systems
for flexible device integration targeted for IoT sys-
tem design. This work has provided a step forward
in controlling device heterogeneity from both hard-
ware and software perspective, but it still lacks the
standardization among the IoT community to foster its
continuous development.

Institut Polytechnique de Paris
91120 Palaiseau, France


	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Research Context and Problem Statement 
	Aims and objectives 
	Research Methodology 
	Thesis Scientific Contributions and Thesis Outline 

	Literature Review
	IoT Heterogeneity and Interoperability 
	Understanding Heterogeneous IoT Ecosystem
	IoT Device Heterogeneity : Hardware and Power Constraints 
	IoT Network Heterogeneity: Network Constraints 
	IoT Protocol Heterogeneity 
	IoT System Architectures 
	IoT Platforms 

	Interoperability in the IoT 
	Syntactic Interoperability 
	Semantic Interoperability 
	Network Interoperability 
	Platform Interoperability 
	Device Interoperability 


	Interoperability and IoT Device Management Solutions 
	Industrial Alliances and IoT Standards 
	IoT Frameworks and Platforms Survey 
	Programming Frameworks 
	Development Platforms and Tools for IoT Devices
	Embedded Operating Systems 
	Language-based Approaches 

	IoT Device Management 

	IoT Hardware Heterogeneity Control in Embedded Systems 
	Modular Architecture and Systems
	Existing Modular Systems and their Limitations 
	Power Requirements in Embedded Systems for IoT 



	IoT Application Characteristics and Its Common Invariant Functionalities 
	Introduction
	High Level-Description of IoT Application Scenarios
	 A proposed 4-Layer IoT Architecture
	 Layer-1 : Device-Layer
	 Layer-2 : Edge-Layer
	Layer-3 : Cloud-Layer
	 Layer-4 : Cross-layer


	Terminology of IoT Scenarios
	IoT Applications Invariant Functions (IFs) and Programming Patterns (PPs) 
	Layer-1 : IFs and PPs
	Layer-2 : IFs and PPs
	Layer-3 : IFs and PPs
	Layer-4 : IFs and PPs

	Evaluation and Analysis 
	Scenario 1 : Pollution Monitoring
	Scenario 2 : GreenIQ - Smart Irrigation
	Discussion and Analysis

	Concluding Remarks 

	PrIoT - A Framework for Prototyping IoT Applications on Heterogeneous Hardware Devices 
	Introduction 
	Framework Design Objectives 
	 Rapid Prototyping
	Hardware Configuration 
	Scenario Deployment

	PrIoT Framework Overview 
	PrIoT Language and Application Programming Interface : PrIoT-Lang & PrIoT-API 
	PrIoT Application Debugging : PrIoT-Test 
	PrIoT Generic Interface : PrIoT-GI
	PrIoT Hardware Abstraction Layer : PrIoT-HAL 
	PrIoT Configuration : PrIoT-Config 
	PrIoT Parser
	PrIoT Database : PrIoT-DB 
	PrIoT User Interface : PrIoT-UI 
	PrIoT Firmware Builder and Uploader 
	PrIoT Scenario
	PrIoT Orchestrator

	Conventional Method for Implementing IoT Applications on Embedded Hardware 
	PrIoT Framework Implementation and Evaluation
	PrIoT Application and Configuration Entities 
	IoT Resources Database 
	Resource Header Generator 
	Scenario Header Generator 
	PrIoT IoT Resource Library 
	PrIoT Embedded Toolchain and Hardware Abstraction Layer 
	PrIoT Command Line Interface (PrIoT-CLI) 
	PrIoT Orchestrator 

	IoT scenario implementation with PrIoT Framework
	Use Case : Security Access System in Smart Building 

	Summary

	R-Bus and P-Bus : Modular Systems for Designing Interoperable and Energy Aware Embedded Systems 
	Introduction 
	R-Bus - A Resource Bus for Modular System Design 
	R-Bus Components
	R-Bus Main-Board
	R-Bus Auxiliary-Board 

	R-Bus Pin-Mapping and Interface Configuration 
	R-Bus Form Factor 
	Evaluation 
	Qualitative Analysis 
	Quantitative Analysis 

	Validation : Implementation & Assessment 
	A LoRaWAN enabled Environmental Sensor Node 


	P-Bus - A Power Bus for Modular System Design 
	P-Bus : Overview 
	P-Bus : Interface 
	P-Bus Module : Class Distinction 
	P-Bus Module : Application Class 
	P-Bus : Validation 
	Application-1 : Power Gating 
	Application-2 : Power Gating & Wake-up Radio 


	Concluding Remarks 

	Conclusions and Future Work 
	Summary of Contributions
	Future Directions

	Bibliography
	Appendix List of Publications
	International Conferences
	Posters
	Demos

	Appendix Code Listings
	PrIoT Configuration DSL Grammar


