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1 Formal definitions 

1.1 Definition of errors and interval lengths 
We will first define one-sided conditional errors as actual probabilities that the confidence interval is 

completely below (or above) the true proportion 𝑝 when the sample size and 𝑝 are constant from 

one experiment to another. Second, we will define one-sided local average errors as actual errors 

that the confidence interval is completely below (or above) the true proportion 𝑃 when the sample 

size is constant from one experiment to another but the true proportion 𝑃 is a random variable 

fluctuating around an expected true proportion 𝑝
0
. Third, we will define one-sided random sample 

errors as actual errors that the confidence is strictly below (or above) the true proportion 𝑝 when the 

true proportion 𝑝 is constant from one experiment to another but the sample size 𝑁 is a random 

variable fluctuating around an average sample size 𝑛0. Similarly, we define three different expected 

interval half-widths (conditional, local average and random sample). 

Let 𝑥 be the realization of a variable 𝑋𝑛,𝑝~ℬ(𝑛; 𝑝) where 𝑛 represents the sample size, 𝑥 the 

observed number of successes and 𝑝̂ = 𝑥/𝑛 the observed proportion of successes. Let  

 𝐼𝐶1−𝛼(𝑥, 𝑛) = [𝐿1−𝛼(𝑥, 𝑛); 𝑈1−𝛼(𝑥, 𝑛)] (1) 

denote the confidence interval at the nominal error 𝛼 for 𝑥 successes in  𝑛 trials. For constant 𝑛 and 

𝑝, we denote 

 𝛼𝐿
′ (𝑝, 𝑛, 𝛼) = 𝑃𝑟(𝐿1−𝛼(𝑋𝑛,𝑝, 𝑛) > 𝑝|𝑛, 𝑝) (2) 

the actual error that the interval is completely above 𝑝. Similarly, we denote 

 𝛼𝑈
′ (𝑝, 𝑛, 𝛼) = 𝑃𝑟(𝑈1−𝛼(𝑋𝑛,𝑝, 𝑛) < 𝑝|𝑛, 𝑝) (3) 

the actual error that the interval is completely below 𝑝. We denote 

 𝛼′(𝑝, 𝑛, 𝛼) = 𝛼𝑈
′ (𝑝, 𝑛, 𝛼) + 𝛼𝐿

′ (𝑝, 𝑛, 𝛼) (4) 

the actual error that the interval does not contain 𝑝. These three errors (𝛼𝐿
′ , 𝛼𝑈

′  and 𝛼′) are called the 

conditional errors. 

Let us define the conditional expected lower half-width 

 𝑤𝐿
′ (𝑝, 𝑛, 𝛼) = 𝐸 [

𝑋𝑛,𝑝

𝑛
− 𝐿1−𝛼(𝑋𝑛,𝑝, 𝑛)|𝑛, 𝑝] 

(5) 

equal to the expected distance between the point estimate and the confidence interval lower bound. 

Similarly, we define the conditional expected upper half-width 

 𝑤𝑈
′ (𝑝, 𝑛, 𝛼) = 𝐸 [𝑈1−𝛼(𝑋𝑛,𝑝, 𝑛) −

𝑋𝑛,𝑝

𝑛
|𝑛, 𝑝] (6) 

Let us note 𝑃 a random proportion whose logit is normally distributed with a log(𝑂𝑅𝑆) standard 

deviation. Let 𝑝
0
= 𝐸[𝑃] be the expected proportion. We define the right local average error 

 𝛼𝑢
′′(𝑝

0
, 𝑛, 𝛼) = 𝐸[𝛼𝑢

′ (𝑃, 𝑛, 𝛼)|𝑛] (7) 

the left local average error 

 𝛼𝑙
′′(𝑝

0
, 𝑛, 𝛼) = 𝐸[𝛼𝑙

′(𝑃, 𝑛, 𝛼)|𝑛] (8) 

and the two-sided local average error 



 𝛼′′(𝑝
0
, 𝑛, 𝛼) = 𝛼𝐿

′′(𝑝
0
, 𝑛, 𝛼) + 𝛼𝑈

′′ (𝑝
0
, 𝑛, 𝛼) (9) 

It is the probability that a confidence interval around 𝑝̂ does not contain 𝑝 in a two steps experiment. 

In the first step, a 𝑝 proportion is realized from the 𝑃 random variable. In the second step, a 𝑝̂ 

proportion of successes is realized in a random sample of size 𝑛 with an actual proportion of 

successes 𝑝. The sample size 𝑛 is held constant in all experiments. Similarly, we define 𝑤𝐿
′′(𝑝, 𝑛, 𝛼) 

and 𝑤𝑈
′′ (𝑝, 𝑛, 𝛼) the local average half-widths. The constant 𝑂𝑅𝑆 will be set at 1.20, except in 

sensitivity analyses (𝑂𝑅𝑆 = 1.10 and 𝑂𝑅𝑆 = 1.05). 

We define a random 𝑁 variable having a discrete distribution. This distribution is defined from a 

latent log-normal variable rounded to the nearest integer. Let us denote 𝑛0 = 𝐸[𝑁] the expectancy 

of the same size 𝑁 and 𝑆𝑅𝑆 the geometric standard deviation of the latent log-normal variable. The 

geometric standard deviation 𝑆𝑅𝑆 will be set at 1.20. We define the random sample right average 

error as 

 𝛼𝑈
′′′(𝑝, 𝑛0, 𝛼) = 𝐸[𝛼𝑈

′ (𝑝, 𝑁, 𝛼)|𝑝] (10) 

the actual error that the confidence interval is completely below 𝑝, and the random sample left 

average error as 

 𝛼𝐿
′′′(𝑝, 𝑛0, 𝛼) = 𝐸[𝛼𝐿

′ (𝑝, 𝑁, 𝛼)|𝑝]. (11) 

Let the relative conditional expected left half-width 𝑣𝐿
′ (𝑝, 𝑛, 𝛼) be the ratio between the expected 

lower half-width of an interval estimator and the expected lower half-width of the Clopper-Pearson 

mid-P confidence interval for the same set of parameters 𝑝, 𝑛 and 𝛼. Similarly, we define 𝑣𝑈
′ , 𝑣𝐿

′′, 𝑣𝑈
′′  

taking the Clopper-Pearson mid-P reference. 

The nominal 𝛼 error will be set at 0.05. The conditional errors and conditional expected half-widths 

will be computed from the exact binomial distribution ℬ(𝑛, 𝑝). The local average errors and local 

average half-widths will be approximated by numerical integration from 512 values the conditional 

errors or conditional expected half-widths. These 512 values will be uniformly spaced on the logistic 

scale. 

2 Additional interval definitions 
Many intervals described below have a slight modification when the proportion of successes is close 

to zero or one. Any confidence limit below zero is set to zero. Any confidence limit above one is set 

to one. The lower confidence limit for zero success is set to zero. The upper confidence limit for 𝑛 

successes is set to one. Before publication, the statistician would probably fix intervals that do not 

contain the point estimate or that exceed zero or one. 

The original idea of each interval is briefly described and then formulas are given in tables. 

2.1 General notations 
These notations may be used anywhere in this appendix. 



We denote 𝑥 the number of successes and 𝑛 the sample size, 𝑝̂ =
𝑥

𝑛
 the observed proportion and 𝑃̂ 

the proportion estimator for a binomial experiment ℬ(𝑛, 𝑝) and 𝛼 the nominal two-sided error rate 

of the confidence interval. 

Let us denote 𝐵𝑃𝐹(𝑥; 𝑛, 𝑝) the probability mass function of the binomial distribution, 𝐵𝐶𝐷𝐹(𝑘; 𝑛, 𝑝) 

the cumulative distribution function and 𝐵𝑖𝐶𝐷𝐹(𝑞; 𝑛, 𝑝) the inverse cumulative distribution function 

(or quantiles function) of the binomial distribution. 

𝐵𝑃𝐹(𝑥; 𝑛, 𝑝) = (
𝑛

𝑥
)𝑝𝑥(1 − 𝑝)𝑛−𝑥 (12) 

𝐵𝐶𝐷𝐹(𝑘; 𝑛, 𝑝) = ∑𝐵𝑃𝐹(𝑥; 𝑛, 𝑝)

𝑘

𝑥=0

 (13) 

𝐵𝑖𝐶𝐷𝐹(𝑞; 𝑛, 𝑝) = min⁡{𝑘|𝐵𝐶𝐷𝐹(𝑘; 𝑛, 𝑝) ≥ 𝑞} (14) 

 

Let us denote 𝛽𝑃𝐹(𝑥; 𝛼, 𝛽) the probability density function, 𝛽𝐶𝐷𝐹(𝑥; 𝛼; 𝛽) the cumulative density 

function and 𝛽𝑖𝐶𝐷𝐹(𝑞;𝛼, 𝛽) the inverse cumulative density function of the beta distribution with 𝛼 

and 𝛽 shape parameters. 

𝛽𝑃𝐹(𝑥; 𝛼, 𝛽) =
Γ(α + β)𝑥𝛼−1(1 − 𝑥)𝛽−1

Γ(𝛼)Γ(β)
 (15) 

𝛽𝐶𝐷𝐹(𝑥; 𝛼, 𝛽) = ∫ 𝛽𝑃𝐹(𝑡; 𝑛, 𝑝)d𝑡
𝑥

0

 (16) 

𝛽𝑖𝐶𝐷𝐹(𝑞; 𝛼, 𝛽) = 𝛽𝐶𝐷𝐹−1(𝑞; 𝛼; 𝛽) (17) 

where the gamma function is defined as 

Γ(𝑧) = ∫ 𝑥𝑧−1𝑒−𝑥d𝑥
+∞

0

 (18) 

Let us denote 𝜒𝑞,𝑑𝑓
2  the 𝑞 quantile of the 𝜒2 distribution with 𝑑𝑓 degrees of freedom. 

Let us denote 𝑡𝑞,𝑑𝑓 the 𝑞 quantile of the Student 𝑡 distribution with 𝑑𝑓 degrees of freedom. 

Let us denote 𝑁𝑃𝐷𝐹(𝑥) the probability density function of the 𝒩(0,1) normal distribution: 

𝑁𝑃𝐷𝐹(𝑥) =
1

√2𝜋
𝑒−

𝑥2

2  (19) 

Let us denote 𝑁𝐶𝐷𝐹(𝑥) the cumulative distribution function of the 𝒩(0,1) normal distribution: 

𝑁𝐶𝐷𝐹(𝑥) = ∫ 𝑁𝑃𝐷𝐹(𝑡)d𝑡
𝑥

−∞

 (20) 

Let us denote 𝑁𝑖𝐶𝐷𝐹(𝑞) or 𝑧𝑞 the quantile function of the 𝒩(0,1) normal distribution: 

𝑁𝑖𝐶𝐷𝐹(𝑥) = 𝑧𝑥 = 𝑁𝐶𝐷𝐹
−1(𝑥) (21) 

and 𝜅 the quantile 1 − 𝛼/2 of the normal distribution 

𝜅 = 𝑧1−𝛼/2 (22) 



2.2 Normal and Student approximate confidence intervals 
Normal and student approximate confidence intervals are defined in Table 1. Auxiliary functions are 

defined in Table 2. 

2.2.1 Pan and kurto-match intervals 

The Student 𝑡 with 𝑛 − 1 degrees of freedom is based on the pivot statistic 𝑇 =
𝑀̂

√𝑉𝐴𝑅̂
 where 𝑀̂ is the 

mean estimator and 𝑉𝐴𝑅̂ is the variance estimator. The Student distribution assumes normality of 𝑀̂ 

and independence between the 𝑀̂ and 𝑉𝐴𝑅̂ estimators. Pan 1 tried to compute the degrees of 

freedom of the Student distribution that best fits the following pivot statistic distribution 

 

𝑇 =
𝑃̂ − 𝑝

√𝑃̂(1 − 𝑃̂)
𝑛

 
(23) 

Pan made the assumption that 𝑃̂ and 𝑉(𝑃̂, 𝑛) =
𝑃̂(1−𝑃̂)

𝑛
 are approximately independent (page 145). 

That assumption is always wrong, especially when 𝑝 is small, in which case 𝑃̂ ≈
1

𝑛
𝑉(𝑃̂, 𝑛). Degrees of 

freedom computed with Pan’s formula leads to a Student distribution with a kurtosis that don’t 

match the binomial distribution kurtosis. The skewness doesn’t match either, as it’s always zero for 

all Student distributions. For instance, the excess kurtosis of a binomial distribution ℬ(100, 0.08) 

computed from the exact probability mass function is 3.08, which matches a 𝑡 distribution with 5.95 

degrees of freedom. For the same binomial distribution, the Pan approximate 𝑡 distribution has an 

excess kurtosis equal to 0.348 with 21.24 degrees of freedom. That’s why a kurto-match 𝑡 interval 

has been inferred from the binomial probability mass function for ℬ(𝑛, 𝑝̂), excluding occurrences of 

zero successes or zero failures. When min(𝑥, 𝑛 − 𝑥) ≤ 3, the excess kurtosis of the binomial 

distribution is negative and no Student distribution can match it. Therefore, when min(𝑥, 𝑛 − 𝑥) ≤

3, the Clopper-Pearson interval has been used. 

Pan proposes to apply his procedure to the Agresti-Coull interval, also known as the adjusted Wald’s 

interval. The add4 Pan interval is obtained in the same way as the Pan interval but, 
𝜅2

2
 successes and 

𝜅2

2
 failures are added before computation where 𝜅 is the 1 − 𝛼 quantile of the 𝒩(0,1) distribution, 

equal to 1,96 for 𝛼 = 0,05. The kurtosis of the kurto-match add4 t interval is based on the exact 

computation of the studentized pivot variable obtained by adding 
𝜅2

2
 successes and failures. 

All those Student approximations are dubious: The pivot statistic is undefined for zero successes and 

zero failures and matching the kurtosis while ignoring the skewness may not get the best Student 

approximation. 

2.2.2 Wald’s and Wilson’s intervals 

Wald’s and Wilson’s intervals rely on normality of the 𝑃̂ estimator but Wald’s interval approximates 

variance of ℬ(𝑛, 𝑝) to variance of ℬ(𝑛, 𝑝̂) while Wilson’s interval does not. Indeed, Wilson’s interval 

can be built by observed to theoretical 𝜒2 test inversion. The second degree equation can be solved 

so that Wilson’s formula is closed form. Unlike Wald’s interval, Wilson’s interval is not symmetrical 

around the estimated proportion 𝑝̂. Wilson’s interval is also known as the score interval. 



Wilson’s interval has been modified by Brown 2 in 2001. When the number of successes or failures is 

too small, the binomial distribution is approximated to a Poisson distribution. It substitutes 

Garwood’s interval 3 for extreme values. 

2.2.3 Agresti-Coull interval 

Agresti-Coull interval also known as the adjusted Wald interval 4,5 is an approximation of Wilson’s 

interval by a simpler formula. Agresti-Coull interval has the same center as Wilson’s interval but is 

always longer 2 making it more conservative. It may be calculated by Wald’s formula after adding 
𝜅2

2
 

successes and 
𝜅2

2
 failures to the sample where 𝜅 is the 1 − 𝛼 quantile of the 𝒩(0,1) distribution. For 

a 95% confidence interval, 𝜅2 = 3,84 may be rounded to four. Agresti-Coull formula can be obtained 

by adding two successes and two failures before using Wald’s formula. The formula shown in Table 1 

keeps the full precision 𝜅2 = 3,84. 

2.2.4 Recentered Wald intervals 

Brown 6 noticed that Wald’s interval bias is mainly due to the fact that it has the “wrong” center. He 

proposed to recenter Wald’s interval to Wilson’s interval center without changing Wald’s interval 

length. 

2.2.5 Borkowf SAIFS interval 

Borkowf 7 described his method in 2006. It always contains Wald’s interval and so, is strictly more 

conservative. Indeed, the lower boundary of Borkowf’s interval is obtained by adding one imaginary 

failure before using Wald’s formula. Consequently, the lower boundary is always lower than Wald’s 

lower boundary. The upper boundary is obtained by adding one imaginary success before using 

Wald’s formula. The upper boundary is always above Wald’s upper boundary. 

2.2.6 Continuity corrected intervals 

For a binomial variable 𝑋~ℬ(𝑛, 𝑝), the cumulative distribution function 𝑋𝐵𝐶𝐷𝐹(𝑥) = 𝑃𝑟(𝑋 ≤ 𝑥) 

may be approximated by a normal cumulative distribution function 𝑋𝑁𝐶𝐷𝐹(𝑥) = 𝑃𝑟(𝑌 ≤ 𝑥) where 

𝑌~𝒩(𝑛𝑝, 𝑛𝑝(1 − 𝑝)) is a normal variable having the same expectancy and variance as 𝑋. Continuity 

corrected intervals are based on the approximation of 𝑋𝐵𝐶𝐷𝐹(𝑥) to 𝑋𝐶𝐶𝐷𝐹(𝑥) = 𝑃𝑟 (𝑌 ≤ 𝑥 +
1

2
). 

The 𝑋𝐶𝐶𝐷𝐹 is a better approximation of 𝑋𝐵𝐶𝐷𝐹 than 𝑋𝑁𝐶𝐷𝐹 but is a worse approximation of 

𝑋𝑀𝐶𝐷𝐹(𝑥) = 𝑃𝑟(𝑋 < 𝑥) +
1

2
𝑃𝑟(𝑋 = 𝑥). Basically, continuity corrected interval are more 

conservative in the same way that the Clopper-Pearson confidence interval is more conservative than 

the Clopper-Pearson mid-P confidence interval. 

  



Table 1 : Definition of the lower bounds of approximate normal and Student confidence intervals, the upper bounds 
being defined by equivariance 𝑼𝟏−𝜶(𝒙, 𝒏) = 𝟏 − 𝑳𝟏−𝜶(𝒏 − 𝒙,𝒏). 

Name 

Depends 
on 

equation Lower bound 𝑳𝟏−𝜶(𝒙, 𝒏) 

 

2,4,8–10 Wald (22) max(0, 𝑝̂ − 𝜅√
𝑝̂(1 − 𝑝̂)

n
) (24) 

11 Student 𝑡 with 
𝑛 − 1 df 

 max(0, 𝑝̂ − 𝑡
1−
𝛼
2
,𝑛−1

√
𝑝̂(1 − 𝑝̂)

𝑛 − 1
) (25) 

8,12 Wald with cc (22) max(0, 𝑝̂ − 𝜅√
𝑝̂(1 − 𝑝̂)

𝑛
−
1

2𝑛
) (26) 

6 Recentered 
Wald 

(22)(38) min(𝑝̂,max (0, 𝑝 − 𝜅√
𝑝̂(1 − 𝑝̂)

𝑛
)) (27) 

10 Recentered 
Wald with cc 

(22) (38) min(𝑝̂,max(0, 𝑝 − 𝜅√
𝑝̂(1 − 𝑝̂)

𝑛
−
1

2𝑛
)) (28) 

1,10 Pan 2002 
Wald 𝑡 interval 

(39) 

{
 
 

 
 
max(0, 𝑝̂ − 𝑡1−𝛼/2,𝑑𝑓𝑝√

𝑝̂(1 − 𝑝̂)

𝑛
) ⁡𝑖𝑓⁡𝑥 > 0

𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑⁡𝑖𝑓⁡𝑥 = 0

 (29) 

Kurto-match 𝑡 (41) {𝑝̂ − 𝑡1−𝛼/2,𝑑𝑓𝑔(0)
√
𝑝̂(1 − 𝑝̂)

𝑛 − 1

𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑⁡𝑖𝑓⁡𝑥 ≤ 3

 (30) 

4Agresti-Coull (22) (38) max(0, 𝑝 − 𝜅√
𝑝(1 − 𝑝)

𝑛 + 𝜅2
) (31) 

1 Pan 2002 add4 𝑡 
interval 

(22) (44) max(0, 𝑝 − 𝑡
1−
𝛼
2
,𝑑𝑓𝑝

√
𝑝̃(1 − 𝑝)

𝑛 + 𝜅2
) (32) 

Add4 kurto-
match 𝑡 

(22) (41) {𝑝 − 𝑡1−𝛼/2,𝑑𝑓𝑔(𝜅
2

2
)
√
𝑝(1 − 𝑝)

𝑛 + 𝜅2 − 1

𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑⁡𝑖𝑓⁡𝑥 ≤ 5

 (33) 

13 Wilson (22) 𝑥 +
𝜅²
2
− 𝜅√

𝑥(𝑛 − 𝑥)
𝑛

+
𝜅²
4

𝑛 + 𝜅²
 

(34) 

2 Modified 
Wilson 

(22) 

{
 
 

 
 

1

2𝑛
𝜒𝛼,2𝑥
2 ⁡𝑖𝑓⁡1 ≤ 𝑥 ≤ 𝑥∗

⁡
𝑥 +

𝜅²
2
− 𝜅√

𝑥(𝑛 − 𝑥)
𝑛

+
𝜅²
4

𝑛 + 𝜅²
⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (35) 

8 Wilson with cc (22) 

{
 

 1

2(𝑛 + 𝜅2)
(2𝑥 + 𝜅2 − 1 − 𝜅√𝜅2 − 2 −

1

𝑛
+
4𝑥

𝑛
(𝑛 − 𝑥 + 1)) ⁡𝑖𝑓⁡𝑥 > 0

𝑖𝑓⁡𝑥 = 0

 (36) 

7 Borkowf SAIFS (22) max(0, 𝑝′ − 𝜅√
𝑝′(1 − 𝑝′)

𝑛
) ⁡𝑤ℎ𝑒𝑟𝑒⁡𝑝′ =

𝑥

𝑛 + 1
 (37) 

 



Table 2: auxiliary functions used in Table 1. 

Function description 
Depends on 

equation Function definition 
 

Wilson’s interval center (22) 𝑝 =
𝑥 +

1
2
𝜅²

𝑛 + 𝜅²
 (38) 

Pan 2002 1 degrees of 
freedom with exponents of 
𝑝̂ fixed by Pires 2008 10 

(40) 
𝑑𝑓𝑝 =

2⁡ (
𝑝̂(1 − 𝑝̂)

𝑛
)
2

Ω(𝑝̂, 𝑛)
 

(39) 

Pan 2002 1 Ω function 

 Ω(𝑝̂, 𝑛)

=
𝑝̂ − 𝑝̂2

𝑛3
− 2

𝑝̂ + (2𝑛 − 3)𝑝̂2 − 2(𝑛 − 1)𝑝̂3

𝑛4

+
𝑝̂ + (6𝑛 − 7)𝑝̂² + 4(𝑛 − 1)(𝑛 − 3)𝑝̂3 − 2(𝑛 − 1)(2𝑛 − 3)𝑝̂4

𝑛5
 

(40) 

Degree of freedom of a 
Student 𝑡 distribution 
whose kurtosis matches 
the studentized binomial 
distribution with 𝑐 
successes and 𝑐 failures 
added 

(42) 𝑑𝑓𝑔(𝑐) = 4
6

𝑘𝑢𝑟(𝑥, 𝑛, 𝑐) − 3
 (41) 

Kurtosis of the studentized 
binomial distribution 

ℬ (𝑛,
𝑥

𝑛
) with 𝑐 successes 

and 𝑐 failures added 

(13)(43) 𝑘𝑢𝑟(𝑥, 𝑛, 𝑐) =
∑ 𝐵𝑃𝐹(𝑖; 𝑛, 𝑥)(𝑦𝑖 − 𝑦)

4𝑛−1
𝑖=1

(∑ 𝐵𝑃𝐹(𝑖; 𝑛, 𝑥)(𝑦𝑖 − 𝑦)
2𝑛−1

𝑖=1 )
2 (42) 

Studentized proportion for 
𝑖 success in a binomial 

distribution ℬ (𝑛,
𝑥

𝑛
) with 𝑐 

successes and 𝑐 failures 
added 

 
𝑦𝑖 =

𝑖 − 𝑥

√(𝑖 + 𝑐)(𝑛 − 𝑖 + 𝑐)
𝑛 + 2𝑐

 
(43) 

Like 𝑑𝑓𝑝 but 𝑝 substitutes 
𝑝̂ and 𝑛̃ = 𝑛 + 𝜅2 
substitutes 𝑛. 

(22)(40) 
𝑑𝑓𝑝 =

2⁡ (
𝑝(1 − 𝑝̂)
𝑛 + 𝜅2

)
2

Ω(𝑝, 𝑛 + 𝜅2)
 

(44) 

Poisson approximation 
threshold of Wilson’s 
interval modified by Brown 
2 

 𝑥∗ = {
2⁡𝑤ℎ𝑒𝑛⁡𝑛 ≤ 50
3⁡𝑤ℎ𝑒𝑛⁡𝑛 > 50

 (45) 

 

  



2.3 Intervals based on normal approximation after transformation 
Table 3 shows intervals based on normal approximations after transformations stabilizing variance or 

improving the normal approximation. 

The logit transformation and its reciprocal logitinv are defined below 

logit(𝑝̂) = log (
𝑝̂

1 − 𝑝̂
) (46) 

logitinv(𝑡) =
exp⁡(𝑡)

1 + exp⁡(𝑡)
 (47) 

The logistic Anscombe transformation la and its reciprocal lainv are defined below 

la(𝑝̂, 𝑛) = log(
𝑛𝑝̂ +

1
2

𝑛(1 − 𝑝̂) +
1
2

) (48) 

lainv(𝑡, 𝑛) =
(𝑛 +

1
2) exp

(𝑡) −
1
2

𝑛(1 + exp(𝑡))
 (49) 

The Arc-Sine variance stabilizing transformation, and a slight modification, adding a half success and 

half failure have been described by Bartlett 14. Improved Arc-Sine transformations that better 

stabilize variance have been described by Anscombe in 1948 15, Freeman and Tukey in 1950 16 and 

have been reviewed by Yu in 2009 17. The modified Wald logit interval is equivalent to Wald’s interval 

of a logistic regression except when min(𝑥, 𝑛 − 𝑥) = 0 where the Clopper-Pearson interval has been 

substituted. Rubin logit+0.5 interval is equivalent to adding a half success and a half failure before 

computing the Wald logit interval.  



Table 3 : Definition of the lower bounds of confidence intervals based on normal approximation after variance-stabilizing 
transformation, the upper bounds being defined by equivariance 𝑼𝟏−𝜶(𝒙, 𝒏) = 𝟏 − 𝑳𝟏−𝜶(𝒏 − 𝒙, 𝒏). 

Name 

Depends 
on 

equation Lower bound 𝐋𝟏−𝛂(𝐱, 𝐧) 

 

14 Arc-Sine (22) {
sin2 (asin (√

𝑥

𝑛
) −

𝜅

2√𝑛
) ⁡𝑖𝑓⁡𝑥 > 0

0⁡𝑖𝑓⁡𝑥 = 0

 (50) 

14,15 Bartlett Arc-
sine 

(22) sin²

(

 max

(

 0, asin(√
𝑥 +

1
2

𝑛 + 1
) −

𝜅

2√𝑛 +
1
2)

 

)

  (51) 

18,19 Anscombe 
Arc-Sine 

(22) sin2

(

 max

(

 0, 𝑎𝑠𝑖𝑛(√
𝑥 +

3
8

𝑛 +
3
4

) −
𝜅

2√𝑛 +
1
2)

 

)

  (52) 

10 Anscombe Arc-
Sine with cc 

(22) sin2

(

 asin(√max(0,
𝑥 −

1
8

𝑛 +
3
4

))−
𝜅

2√𝑛 +
1
2)

  (53) 

16Freeman-Tukey 
Arc-Sine 

(22) 

{
 
 

 
 

sin2

(

 
 1

2

(

 asin (√
𝑥

𝑛 + 1
) + asin(√

𝑥 + 1

𝑛 + 1
) −

𝜅

√𝑛 +
1
2)

 

)

 
 
⁡𝑖𝑓⁡𝑥 > 0

0⁡𝑖𝑓⁡𝑥 = 0

 (54) 

2 Modified Wald 
logit 

(22)(51)  

{
 
 

 
 
logitinv (log (

𝑥

𝑛 − 𝑥
) − 𝜅√

𝑛

𝑥(𝑛 − 𝑥)
) ⁡𝑖𝑓⁡0 < 𝑥 < 𝑛

√𝛼/2
𝑛 ⁡𝑖𝑓⁡𝑥 = 𝑛

0⁡𝑖𝑓⁡𝑥 = 0

 (55) 

2,18 Anscombe logit (22)(52)(53) max(0, lainv(la (
𝑥

𝑛
, 𝑛) − 𝜅√

(𝑛 + 1)⁡(𝑛 + 2)

𝑛(𝑥 + 1)(𝑛 − 𝑥 + 1)
, 𝑛)) (56) 

2,20 Rubin logit+0.5 (22)(51)(52) 

{
 
 

 
 

logitinv

(

 
 
la (

𝑥

𝑛
, 𝑛) − 𝜅√

𝑛 + 1

(𝑥 +
1
2
)⁡(𝑛 − 𝑥 +

1
2
)

)

 
 
⁡𝑖𝑓⁡𝑥 > 0

0⁡𝑖𝑓⁡𝑥 = 0

 (57) 

  



2.4 Bayesian intervals 
These Bayesian confidence intervals are slightly modified Bayesian credible intervals and are 

analyzed as frequentist confidence intervals. We denote  

𝛽𝑄𝐽(𝑞) = 𝛽𝑖𝐶𝐷𝐹 (𝑞;𝑥 +
1

2
, 𝑛 − 𝑥+

1

2
) (58) 

the 𝑞 quantile of the posterior distribution for a beta Jeffreys prior. Table 4 shows Bayesian 

confidence intervals based on these definitions. 

For zero successes or zero failures, Bayesian credible intervals would not contain the observed 

proportion of successes: therefore, the boundary is set to 0 or 1 in order to get good frequentist 

properties. Brown made an ad hoc modification of the equal-tailed Jeffreys interval in order to 

remove low coverage spikes. Brown modification is based on the Clopper-Pearson confidence 

interval for zero successes or zero failures. The shortest Bayesian confidence interval with Jeffreys 

prior is based on the same beta distribution as the equal-tailed Jeffreys interval but the confidence 

interval used different quantiles of the beta distribution in order to reduce the interval length as 

much as possible while keeping the two-sided Bayesian credibility level.  

Table 4 : Definition of the lower bounds of Bayesian confidence intervals, the upper bounds being defined by 
equivariance 𝑼𝟏−𝜶(𝒙, 𝒏) = 𝟏 − 𝑳𝟏−𝜶(𝒏 − 𝒙, 𝒏). 

Name 

Depends 
on 

equation Lower bound 𝑳𝟏−𝜶(𝒙, 𝒏) 

 

2Equal-tailed Jeffreys (17) {
𝛽𝑖𝐶𝐷𝐹 (

𝛼

2
; 𝑥 +

1

2
, 𝑛 − 𝑥 +

1

2
) ⁡𝑖𝑓⁡𝑥 > 0

0⁡𝑖𝑓⁡𝑥 = 0
 (59) 

2Modified equal-tailed 
Jeffreys 

(17) {

𝛽𝑖𝐶𝐷𝐹(𝛼/2; 𝑥 + 1/2, 𝑛 − 𝑥 + 1/2)⁡𝑖𝑓⁡2 ≤ 𝑥 < 𝑛

√𝛼/2
𝑛 ⁡𝑖𝑓⁡𝑥 = 𝑛

0⁡𝑖𝑓⁡𝑥 ≤ 1

 (60) 

10Equal-tailed, uniform 
prior 

(17) 𝛽𝑖𝐶𝐷𝐹 (
𝛼

2
; 𝑥 + 1, 𝑛 − 𝑥 + 1) (61) 

Shortest, Jeffreys prior (58) {
𝛽𝑄𝐽(inf{𝛽𝑄𝐽(1 − 𝛼 + 𝑟) − 𝛽𝑄𝐽(𝑟)|𝑟 ∈ [0, 𝛼]})⁡𝑖𝑓⁡𝑥 > 0

0⁡𝑖𝑓⁡𝑥 = 0
 (62) 

  



2.5 Bootstrap intervals 
Bootstrap confidence intervals shown in Table 5, with auxiliary functions defined in Table 6, are 

computed from the exact binomial distribution so that, they are equivalent to the non-parametric 

bootstrap intervals with an infinite number of resampling. 

The bootstrap distribution is the binomial distribution ℬ (𝑛,
𝑥

𝑛
), so the percentile and basic bootstrap 

intervals can be computed from the binomial cumulative distribution function. Studentization is a 

monotonous transformation for the binomial distribution, making it possible to compute the pivot 

statistic quantiles from the binomial quantiles function. The studentized proportions are undefined 

for zero successes or zero failures, making the studentized interval impossible to compute when 

max (𝐵𝑃𝐹 (0; 𝑛,
𝑥

𝑛
) , 𝐵𝑃𝐹 (𝑛; 𝑛,

𝑥

𝑛
)) >

𝛼

2
. For 95% confidence interval, the condition is min(𝑥, 𝑛 −

𝑥) ≥ 5. 

The bias corrected and accelerated (BCa) bootstrap interval as computed from Efron 21 method, is not 

equivariant. This is due to the definition of the empirical cumulative distribution function 𝐺(𝑠) =

𝑃𝑟𝜃̂(𝜃
∗ < 𝑠) shown in equation 3.2 of Efron’s article. This 𝐺(𝑠) function is based on an inequality 

𝜃∗ < 𝑠 which is equivalent to 𝜃∗ ≤ 𝑠 for continuous bootstrap distributions. The binomial 

distribution being discrete, this should be changed to 𝐺(𝑠) = 𝑃𝑟𝜃̂(𝜃
∗ < 𝑠) +

1

2
𝑃𝑟𝜃̂(𝜃

∗ = 𝑠). This 

modification gives the equivariance property 𝐿1−𝛼(𝑥, 𝑛) = 1 − 𝑈1−𝛼(𝑛 − 𝑥, 𝑛). 

As for percentile, basic and studentized bootstrap intervals, the BCa bootstrap interval is computed 

from the exact binomial distribution, getting an exact 𝜃∗ distribution as if an infinite number of 

bootstrap samples had been drawn. 

It should be noted that the bounds of the basic, percentiles, BCa and modified BCa intervals, are 

always integer multiples of 
1

𝑛
. 

The normal bootstrap interval computed from the exact binomial distribution as if an infinite number 

of samples had been drawn, is equal to Wald’s interval. 

In order to check these simplified formulae, calculations of the exact binomial bootstrap intervals 

were compared to the approximate R ‘boot’ package computations on a finite number of bootstrap 

samples. Results were identical on the significant decimal places. 

  



Table 5 : Definition of bootstrap confidence intervals 

Name 

Depends 
on 

equation Lower bound 𝑳𝟏−𝜶(𝒙, 𝒏) Upper bound 𝑼𝟏−𝜶(𝒙, 𝒏) 

22Percentile 
bootstrap 

(14) 
𝐵𝑖𝐶𝐷𝐹 (

𝛼
2
; 𝑛,

𝑥
𝑛
)

𝑛
 (63) equivariant 

22Basic boostrap (14) max(0,
2𝑥 − 𝐵𝑖𝐶𝐷𝐹 (1 −

𝛼
2
; 𝑛,

𝑥
𝑛
)

𝑛
) (64) equivariant 

22Studentized 
boostrap 

(14) 
𝑝̂ − (𝑙 − 𝑝̂)√

𝑝̂(1−𝑝̂)

𝑙(1−𝑙)
 with 𝑙 =

1

𝑛
𝐵𝑖𝐶𝐷𝐹(1 −

𝛼

2
) 

𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑⁡𝑓𝑜𝑟min(𝑥, 𝑛 − 𝑥) ≤ 4⁡𝑖𝑓⁡𝛼 = 0.05 
(65) equivariant 

21 BCa boostrap (69) 
𝐸𝐹 (

𝛼

2
, 𝑛, 𝑥, 0) 

𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑⁡𝑖𝑓⁡𝑥 = 0⁡𝑜𝑟⁡𝑥 = 𝑛 
(66) 

𝐸𝐹 (1 −
𝛼

2
, 𝑛, 𝑥, 0) 

𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑⁡𝑖𝑓⁡𝑥
= 0⁡𝑜𝑟⁡𝑥 = 𝑛 

(67) 

21 Modified BCa 
boostrap 

(69) 
𝐸𝐹 (

𝛼

2
, 𝑛, 𝑥, 1) 

𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑⁡𝑖𝑓⁡𝑥 = 0⁡𝑜𝑟⁡𝑥 = 𝑛 
(68) equivariant 

Smoothed BCa 
bootstrap 

 
Non parametric BCa bootstrap with random 𝒩(0, (

1

2
)
2
) normal noise added to 𝑋.  The 

acceleration constant is computed on the distribution without noise. 
𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑⁡𝑖𝑓⁡𝑥 = 0⁡𝑜𝑟⁡𝑥 = 𝑛 

 

Table 6 : Auxiliary functions for Table 5. 

Function 
description 

Depends 
on 

equation Function definition 

 

BCa boundary 
based on Efron 
21 

(20)(70) 

𝐸𝐹(𝑞, 𝑛, 𝑥, 𝑑) =
1

𝑛
𝐵𝑖𝐶𝐷𝐹 (𝑁𝐶𝐷𝐹 (𝑏𝑖𝑎𝑠(𝑥, 𝑛, 𝑑)

+
𝑏𝑖𝑎𝑠(𝑥, 𝑛, 𝑑) + 𝑁𝑖𝐶𝐷𝐹(𝑞)

1 − 𝑎𝑐𝑐(𝑥, 𝑛) × (𝑏𝑖𝑎𝑠(𝑥, 𝑛, 𝑑) + 𝑁𝑖𝐶𝐷𝐹(𝑞))
) ; 𝑛,

𝑥

𝑛
) 

 

(69) 

Based on 
equation 4.1 
page 174 Efron 
21 

(12)(13)(2
1)  

𝑏𝑖𝑎𝑠(𝑥, 𝑛, 𝑑) = 𝑁𝑖𝐶𝐷𝐹 (𝐵𝐶𝐷𝐹 (𝑥 − 1; 𝑛,
𝑥

𝑛
) +

𝑑

2
𝐵𝑃𝐹 (𝑥; 𝑛,

𝑥

𝑛
)) (70) 

Based on 
equation 4.4 
page 174 Efron 

 𝑎𝑐𝑐(𝑥, 𝑛) =
𝑛 − 2𝑥

6√𝑛𝑥(𝑛 − 𝑥)
 (71) 

 

  



2.6 Exact binomial confidence intervals 
These intervals are based on the exact binomial distribution. Like any deterministic interval, they 

have coverage oscillations. They are described in Table 7 with auxiliary functions defined in Table 8. 

The Sterne and Blaker intervals are based on non-contiguous confidence regions. The intervals are 

defined as the shortest interval containing the confidence region (convex hull). The Clopper-Pearson 

interval can be defined as 

{𝑞|min(𝐵𝐶𝐷𝐹(𝑥; 𝑛, 𝑞), 1 − 𝐵𝐶𝐷𝐹(𝑥 − 1; 𝑛, 𝑞)) ≥
𝛼

2
} (72) 

which is equal to 𝛽𝑖𝐶𝐷𝐹 (
𝛼

2
; 𝑥, 𝑛 − 𝑥 + 1). The interval described by Blaker 23 in 2000 had been 

previously proposed by Cox and Hinkley in 1974 24. It is a two-sided unequal tailed interval that is 

always containing the Clopper-Pearson interval, unlike Sterne’s interval that is sometimes longer. 

Sterne’s interval, like Blaker’s interval is nested: the 90% confidence interval is always contained in 

the 95% confidence interval. 

The Schilling-Doi 25 interval is a two-sided unequal-tailed interval based on Sterne acceptance 

regions. Acceptance regions can be interpreted as prediction intervals. For a theoretical 𝑝 

proportion, an acceptance region 𝐴𝑅 is an interval of 𝑥 values so that 𝑃(𝑋 ∈ 𝐴𝑅) ≥ 1 − 𝛼 where 

𝑋~ℬ(𝑛, 𝑝). Sterne acceptance regions optimize the following criteria from most important to least 

important: Minimal extent, highest coverage probability and highest lower bound. Schilling-Doi 

modified Sterne acceptance regions when an acceptance region bound (lower or upper) is not 

monotonous along 𝑝. Schilling-Doi algorithm memory usage and computing time is exponential with 

the number of requested decimal places. When analyzing the expected number of successes 𝜆 = 𝑛𝑝, 

the precision required on 𝑝 is proportional to the sample size. This makes Schilling-Doi algorithm 

unpractical to compute on sample sizes of a few thousands observations. Based on the knowledge 

that Sterne acceptance regions, analyzed as functions of the theoretical proportion 𝑝, may only 

change (along 𝑝) when likelihood curves (one being defined for each 𝑥 value between 0 and 𝑛) cross 

the confidence level or cross one another, an updated algorithm based on finding those hot points 

has been written. 

The Wang interval is based on sequential squeezing of Clopper-Pearson intervals 26 while keeping the 

confidence interval set strictly conservative. Like Sterne, Schilling-Doi and Blaker, it’s a strictly 

conservative unequal-tailed interval. Wang’s algorithm is slow. It moves interval boundaries at small 

steps proportional to the decimal precision requested. At each step, it computes the actual coverage 

for 𝑛 theoretical values while only one confidence interval has changed. The algorithm has been 

modified to update only coverage values that may change between two steps. Numerical results are 

identical. Both Wang and Shilling-Doi intervals, for a specified sample size, tend to shorten the 

arithmetic mean of all confidence interval lengths but not necessarily the geometric mean. 

The Blyth-Still-Casella interval has been defined by Blyth and Still with a fixed decimal precision 

algorithm 27. Casella improved the algorithm to get better decimal precision 28. Winstein’s 

implementation in the C++ programming language has been used 29. 

The Zieliński interval 30 defined in 2009, is based on changes of the Clopper-Pearson formula, adding 

a bias in the beta distribution quantiles. It’s not strictly conservative as Zieliński acknowledged in 

2017  31. This is due to the dependence of the 𝛾 bias to the number of successes 𝑥. Zieliński proposed 



a randomized unequal-tailed shortest confidence interval in 2017  31. This randomized interval is not 

presented here. 

The exact likelihood ratio confidence set 32 is defined by inversion of an exact likelihood ratio test. 

The confidence set is not always contiguous, as the test p-value is not bi-monotonous. The 

confidence interval is the convex hull of the confidence set 33. 

The exact score interval defined by Sakakibara or  Thulin 32,33 is equivalent to the alternative exact 

confidence interval defined by Cai and Krishnamoorthy in equation 2 34. Indeed 

𝑃𝑟 (
(𝑋 − 𝑛𝑝)2

𝑛𝑝(1 − 𝑝)
≥
(𝑘 − 𝑛𝑝)2

𝑛𝑝(1 − 𝑝)
|𝑝) = 𝑃𝑟((𝑋 − 𝑛𝑝)2 ≥ (𝑘 − 𝑛𝑝)2|𝑝) (73) 

where 𝑋~ℬ(𝑛, 𝑝). The confidence set is not always contiguous. The confidence interval is the convex 

hull of the confidence set. The Cai-Krishnamoorthy combined interval is based on inversion of the 

more liberal of the Clopper-Pearson or exact-score tests 34. The confidence interval is the convex hull 

of the confidence set. The procedure is not strictly conservative but is mostly conservative. 

The Pratt interval was described by Blyth 12 in 1986 as the Paulson-Camp-Pratt approximation 

(Equation D); this is an approximation of the Clopper-Pearson interval. The mean Pratt interval was 

proposed by Vollset 8 in 1993 as an approximation of the Clopper-Pearson mid-P interval. It is based 

on the average of two Pratt intervals, for 𝑥 and for 𝑥⁡ + ⁡1. It is not based on the exact binomial 

distribution but it approximates an interval constructed as such. Minimal adjustments to the Vollset 

formula have been applied to avoid aberrant behaviors when 𝑥⁡ = ⁡0 or 𝑥⁡ = ⁡𝑛. Rather than 

evaluating the Pratt interval at 𝑥 and 𝑥⁡ + ⁡1, it is evaluated at 𝑥 and 𝑚𝑖𝑛(𝑥 + 1, 𝑛). Moreover, when 

𝑥 = 0, the lower bound is replaced by 0 and conversely, the upper bound is replaced by 1 when 𝑥 =

𝑛. 

Let us define the absolute odds ratio between two values 𝑎 and 𝑏 both between 0 and 1 as 

exp(|logit(𝑎) − logit(𝑏)|). That is, if the odds ratio 𝑂𝑅 between 𝑎 and 𝑏 is greater than 1, the 

absolute odds ratio is equal to 𝑂𝑅, otherwise it is equal to its inverse 1⁡/⁡𝑂𝑅. The Clopper-Pearson 

mid-P approximation by the mean Pratt interval is fairly good since for 𝑛⁡ = ⁡32 and 𝑥 = 0,… ,32, the 

mean absolute odds ratio between the lower bounds of the Clopper-Pearson mid-P and mean Pratt 

intervals is 1.08. The approximation was poor for 𝑥 = 1 (Absolute odds ratio = 2.41) and middling for 

x = 2 (Odds absolute ratio = 1.25) and for 𝑥⁡ = ⁡32 (Absolute odds ratio = 1.24). Two modifications 

improve these approximations. The first modification is the use of the logistic mean between Pratt’s 

bounds for 𝑥 and min(𝑥 + 1, 𝑛), that is, 

logitinv (
logit(⁡𝐿𝑃𝑟𝑎𝑡𝑡1−𝛼(𝑥, 𝑛)) + logit(𝐿𝑃𝑟𝑎𝑡𝑡1−𝛼(min(𝑛, 𝑥 + 1) , 𝑛))

2
) (74) 

where logitinv is the reciprocal of the logit function. The second modification is the use of the 

⁡𝐿𝑃𝑟𝑎𝑡𝑡1−2𝛼(𝑥, 𝑛) lower boundary when 𝑥 = 𝑛 rather than ⁡𝐿𝑃𝑟𝑎𝑡𝑡1−𝛼(𝑥, 𝑛). This modified mean 

Pratt interval, for 𝑛 = 32, had a mean absolute odds ratio of the lower bound equal to 1.027 

compared to the Clopper-Pearson mid-P interval with a maximal absolute odds ratio equal to 1.11. 

This modified mean Pratt interval is not shown in the results, but its behavior would be very similar 

to that of Clopper-Pearson mid-P. 

Problems of the two-sided unequal-tailed intervals have been described by Vos and Hudson in 2008, 

then Thulin and Zwanzig in 2017 33,35. 



Table 7 : Definition of the lower bounds of exact binomial confidence intervals, the upper bounds being defined by 
equivariance 𝑼𝟏−𝜶(𝒙, 𝒏) = 𝟏 − 𝑳𝟏−𝜶(𝒏 − 𝒙, 𝒏). 

Name 

Depends 
on 

equation Lower bound 𝑳𝟏−𝜶(𝒙, 𝒏) 

 

36Sterne (12) 
inf{𝑞|stpval(𝑥, 𝑛, 𝑞) > 𝛼} 

 
(75) 

23Blaker (88) inf{𝑞|bpval(𝑞, 𝑥, 𝑛) > 𝛼} (76) 

2,37Clopper-
Pearson 

(17) 𝛽𝑖𝐶𝐷𝐹 (
𝛼

2
; 𝑥, 𝑛 − 𝑥 + 1) (77) 

38,39 Clopper-
Pearson mid-P 

(12)(89) 
inf{𝑞|cpval(𝑥, 𝑛, 𝑞) − 𝐵𝑃𝐹(𝑥; 𝑛, 𝑞) > α} 

(78) 

8 mean Pratt 
(Vollset 1993) 

(90) {

𝐿𝑃𝑟𝑎𝑡𝑡1−𝛼(𝑥, 𝑛) + 𝐿𝑃𝑟𝑎𝑡𝑡1−𝛼(min(𝑛, 𝑥 + 1) , 𝑛)

2
⁡𝑖𝑓⁡𝑥 > 0

0⁡𝑖𝑓⁡𝑥 = 0
 (79) 

25 Schilling-Doi  
Inversion of Sterne acceptance regions updated to get monotonous 
acceptance boundaries along the theoretical proportion 𝑝 

(80) 

26 Wang 2014  

Squeezing Clopper-Pearson intervals step down from 𝑥 =
𝑛

2
 to 𝑥 = 0 while 

keeping the two-sided interval strictly conservative while using 

equivariance to complete the interval definition for  𝑥 =
𝑛

2
+ 1 to 𝑥 = 𝑛. 

(81) 

27–29 Blyth-Still-
Casella 

 
Based on a set of shortest-length acceptance regions of 𝑋 for every 
theoretical proportion 

(82) 

30 Zieliński (91)(92) {
𝛽𝑄𝐶𝐿(inf{𝛽𝑄𝐶𝑈(1 − 𝛼 + 𝛾) − 𝛽𝑄𝐶𝐿(𝛾)|𝛾 ∈ [0, 𝛼]})⁡𝑖𝑓⁡𝑥 > 0

0⁡𝑖𝑓⁡𝑥 = 0
 (83) 

32 Exact 
likelihood ratio 

(93) inf{𝑞|lrpval(𝑥, 𝑛, 𝑞) > 𝛼} (84) 

32,40 Exact score 
test 

(95) inf{𝑞|spval(𝑥, 𝑛, 𝑞) > 𝛼} (85) 

34 Cai-
Krishnamoorthy 
combined 

(89) inf{𝑞|min(cpval(𝑥, 𝑛, 𝑞), spval(𝑥, 𝑛, 𝑞)) > 𝛼} (86) 

a 𝛽𝑖𝐶𝐷𝐹(𝑞; 𝛼, 𝛽) is the 𝑞 quantile of the beta distribution with 𝛼 and 𝛽 shape parameters. 

 

  



Table 8 : Auxiliary functions for Table 7 

Function 
description 

Depends 
on 

equation Function definition 

 

Sterne’s P-value (12) 
stpval(𝑥, 𝑛, 𝑝) = ∑ BPF(𝑘; 𝑛, 𝑝)

𝑘∈{𝑖|𝐵𝑃𝐹(𝑖; 𝑛, q) ≤ 𝐵𝑃𝐹(𝑥; 𝑛, q)}

 
(87) 

Blaker’s P-value (13)(14) 

bpval(𝑞, 𝑥, 𝑛)

= {
min (

1, 𝐵𝐶𝐷𝐹(𝑥; 𝑛, 𝑞) +

1 − 𝐵𝐶𝐷𝐹(𝐵𝑖𝐶𝐷𝐹(1 − 𝐵𝐶𝐷𝐹(𝑥; 𝑛, 𝑞); 𝑛, 𝑞); 𝑛, 𝑞)
) 𝑖𝑓⁡𝑞 ≥ 𝑥/𝑛

bpval(1 − 𝑞, 𝑛 − 𝑥, 𝑛)⁡𝑖𝑓𝑞 < 𝑥/𝑛

 
(88) 

Clopper-Pearson 
P-value 

(13) cpval(𝑥, 𝑛, 𝑝) = 2 ×min (
1

2
, 𝐵𝐶𝐷𝐹(𝑥; 𝑛, 𝑝), 1 − 𝐵𝐶𝐷𝐹(𝑥 − 1, 𝑛, 𝑝)) (89) 

Pratt’s lower 
bound 

 

𝐿𝑃𝑟𝑎𝑡𝑡1−𝛼(𝑥, 𝑛) = 

1 −

(

 
 

1 + (
𝑛 − 𝑥 + 1

𝑥
)
2

× (
81𝑥(𝑛 − 𝑥 + 1) − 9𝑛 − 8 − 3𝜅√9𝑥(𝑛 − 𝑥 + 1)(9𝑛 + 5 − 𝜅2) + 𝑛 + 1

81(𝑛 − 𝑥 + 1)2 − 9(𝑛 − 𝑥 + 1)(2 + 𝜅2) + 1
)

3

)

 
 

−1

 
(90) 

Clopper-Pearson 
like lower bound 

(17) 𝛽𝑄𝐶𝐿(𝑞) = 𝛽𝑖𝐶𝐷𝐹(𝑞; 𝑥, 𝑛 − 𝑥 + 1) (91) 

Clopper-Pearson 
like upper bound 

(17) 𝛽𝑄𝐶𝑈(𝑞) = 𝛽𝑖𝐶𝐷𝐹(𝑞; 𝑥 + 1, 𝑛 − 𝑥) (92) 

Exact likelihood 
ratio P-value 

(12) 
lrpval(𝑥, 𝑛, 𝑝) = ∑ BPF(𝑘; 𝑛, 𝑝)

𝑘∈{𝑖|𝐿𝐼𝐾𝑅(𝑖, 𝑛, 𝑝) ≥ 𝐿𝐼𝐾𝑅(𝑥, 𝑛, 𝑝)}

 
(93) 

Likelihood ratio 
statistic 

(12) 𝐿𝐼𝐾𝑅(𝑥, 𝑛, 𝑝) =
BPF (𝑥, 𝑛,

𝑥
𝑛
)

BPF(𝑝, 𝑛, 𝑝)
 (94) 

Exact score 
P-value 

(12) 
spval(𝑥, 𝑛, 𝑝) = ∑ BPF(𝑘; 𝑛, 𝑝)

𝑘∈{𝑖|(𝑖 − 𝑛𝑝)2 ≥ (𝑥 − 𝑛𝑝)2}

 
(95) 

 

  



2.7 Skewness corrected normal approximation intervals 
These intervals are based on normal approximations with skewness bias corrections making them 

equal-tailed two-sided intervals. Table 9 defines these intervals and Table 10 contains auxiliary 

functions. 

Kott-Liu interval 41 updates Hall’s interval variance but doesn’t change its center. 

Cai’s interval is similar to Hall’s interval but keeps terms of smaller asymptotic orders. 

Table 9 : Definition of the lower bounds of skewness corrected closed-from confidence intervals, the upper bounds being 
defined by equivariance 𝑼𝟏−𝜶(𝒙, 𝒏) = 𝟏 − 𝑳𝟏−𝜶(𝒏 − 𝒙, 𝒏). 

Name 
Depends on 

equation Lower bound 𝑳𝟏−𝜶(𝒙, 𝒏) 
 

42 Hall 1982 (22)(99) 

{
 
 

 
 
max(0, 𝑝̂ + 𝛿 − 𝜅√

𝑝̂(1 − 𝑝̂)

𝑛
)

0⁡𝑖𝑓⁡𝑥 = 0

⁡𝑖𝑓⁡𝑥 > 0 (96) 

43 Cai 2005 (22)(100)(101) 

{
 
 

 
 
max(0, 𝑝 − 𝜅√

𝑝̂(1 − 𝑝̂) + γ

𝑛
) ⁡𝑖𝑓⁡𝑥 > 0

0⁡𝑖𝑓⁡𝑥 = 0

 (97) 

41 Kott-Liu (22)(99) max(0, 𝑝̂ + 𝛿 − √𝜅2
𝑝̂(1 − 𝑝̂)

𝑛 − 1
+ 𝛿2) (98) 

 

Table 10 : Auxiliary functions for Table 7 

Function 
description 

Depends 
on 

equation Function definition 

 

Hall center 
adjustment 

(22) 
𝛿 =

(
𝜅2

3 +
1
6)
(1 − 2𝑝̂)

𝑛
 

(99) 

Cai adjusted 
center 

(22)  𝑝̆ =
𝑛𝑝̂ + (

𝜅2

3 +
1
6)

𝑛 + 2 (
𝜅2

3 +
1
6)

 
(10

0) 

Cai variance 
adjustment 

(22) 𝛾 =
2𝜅2 + 7 − 𝑝̂(1 − 𝑝̂)(26𝜅2 + 34)

36𝑛
 

(10
1) 

 

  



2.8 Generalized linear model intervals 
Logistic, Poisson and log-binomial regressions are generalized linear models (GLM). These may be 

multivariate, bivariate or univariate. Two estimation methods are widely used. The first is Wald’s 

method, B ± 𝑧1−𝛼/2 × 𝑆𝐸 where 𝐵 is the raw model coefficient, such as log(𝑜𝑑𝑑𝑠⁡𝑟𝑎𝑡𝑖𝑜) for a 

logistic regression and 𝑆𝐸 is the standard error, got from the variance-covariance model matrix. It’s 

based on normal approximation of the regression coefficient. The second method is inversion of a 𝜒2 

likelihood-ratio test. Likelihood-ratio test inversion may be performed by the profile-likelihood 

algorithm 44. The R and SAS statistical software use the profile-likelihood confidence intervals by 

default for generalized linear model. The R software has been used to compute confidence intervals 

of a proportion through intercept-only GLMs. Both Wald’s and likelihood-ratio (LR) intervals have 

been computed. The interval estimators presented in Table 11 have been analyzed. Since the 

intervals were not calculable for zero successes, the Clopper-Pearson interval was used in this case. 

When the upper bound of the confidence interval exceeded 100%, for the Poisson regression or the 

log-binomial regression, it was replaced by 100%. The log-binomial and Poisson intervals are not 

equivariant. 

Table 11 : Definition of generalized linear models confidence interval estimators computed in the R statistical software.  

Name Description R software command 

LR logit GLM 
Logistic regression profile-
likelihood interval 

confint(glm(family=binomial, 

        cbind(x,n-x)~1)) 

LR Poisson GLM 
Poisson regression profile-
likelihood interval 

confint(glm(family=poisson, 

        x~offset(log(n)))) 

Wald logit GLM 
Logistic regression Wald’s 
interval 

confint.default( 

   glm(family=binomial, 

       cbind(x,n-x)~1)) 

Wald log binom GLM 
Log-binomial regression 
Wald’s interval 

confint.default( 

   glm(family=binomial(log), 

       cbind(x,n-x)~1)) 

Wald Poisson GLM 
Poisson regression Wald’s 
interval 

confint.default( 

   glm(family=poisson, 

       x~offset(log(n)))) 

The likelihood ratio interval of a logistic regression “LR logit GLM, CP if k = 0” provided identical 

results to the “modified likelihood ratio” method that had been defined in the main analysis by the 

following formula: 

𝐿1−𝛼 = {
inf {𝑞| log ((

𝑥
𝑛𝑞)

𝑥
(
𝑛 − 𝑥
𝑛(1 − 𝑞)

)
𝑛−𝑥

) ≤
1
2𝜅²} ⁡𝑖𝑓⁡𝑥 < 𝑛

√𝛼/2
𝑛

⁡𝑖𝑓⁡𝑥 = 𝑛⁡(𝑖. 𝑒. 𝐶𝑙𝑜𝑝𝑝𝑒𝑟 − 𝑃𝑒𝑎𝑟𝑠𝑜𝑛)

 (102) 

Moreover, the unmodified likelihood ratio method is presented too: 

𝐿1−𝛼 = inf {𝑞| log ((
𝑥
𝑛𝑞)

𝑥
(
𝑛 − 𝑥
𝑛(1 − 𝑞)

)
𝑛−𝑥

) ≤
1
2𝜅²} 

(103) 

It’s defined for all 𝑥 even for 𝑥 = 0 or 𝑥 = 𝑛. 



3 Wald’s validity condition 
New validity conditions of Wald’s interval have been sought. When Wald’s interval validity threshold 

is not reached, the statistician is assumed to compute a less approximate interval such as Clopper-

Pearson mid-P. Indeed, not reporting the interval at all when the validity threshold is not reached, 

would overestimate proportions when they are shown (statistical inference bias). Consequently, we 

need to evaluate the two steps procedure: if the number of successes is above a threshold, Wald’s 

confidence interval is computed; otherwise, Clopper-Pearson mid-P interval (or Clopper-Pearson for 

conditional errors) is computed. 

3.1 Informal description of the method 
The validity conditions of the Wald interval estimator will be defined to control that one-sided local 

average errors, do not exceed 1.50 times the nominal error, i.e. 0.0375 for a nominal one-sided 

error at 0.025. The conditions will apply to the observed number of successes and failures as validity 

conditions applying to the actual proportion cannot be used in practice because the actual 

proportion is unknown. In order to define a validity condition, it is necessary to specify the procedure 

to be applied when the condition is not verified. Therefore, it will be assumed that the Clopper-

Pearson mid-P interval will be used when Wald’s interval validity conditions are not satisfied. The 

evaluation will focus on a hybrid estimator consisting of the use of one or the other of the interval 

estimators according to whether a threshold is exceeded or not. For a given sample size 𝑛, the 

validity threshold 𝜉′′ will be defined as the smallest threshold of the hybrid procedure which 

guarantees one-sided local average errors less than 0.0375 for a nominal one-sided error equal to 

0.025. An empirical table of validity thresholds 𝜉′′ will be built for various sample sizes from 25 to 

211 and the limit case where 𝑛 → +∞. Actual errors will be computed for hybrid estimators and a 

dichotomy algorithm will find the smallest threshold keeping the actual errors below 0.0375. 

The table of validity thresholds being impractical to memorize in practice, a formula approximating 

the values of this table will be sought. The approximate formula will be sought empirically in order to 

get thresholds as close as possible to the values of the table. If there is a discrepancy between the 

values, a conservative formula will be preferred, that is, a formula providing slightly higher validity 

thresholds. The elaboration of this formula will not necessarily be based on a mathematical theory 

since it is only a matter of getting close to the values of the table. Simplified formulas will be sought 

in order to make their teaching possible in practice. Although the maximum tolerable error threshold 

0.0375 will serve as a reference, other thresholds will also be analyzed: 0.030, 0.035 and 0.05. By 

expressing these thresholds in the form of equal-tailed two-sided errors they will be equal to 0.060, 

0.070 and 0.10. Although the main analysis will focus on local average errors, a secondary analysis 

will be carried out on the validity thresholds controlling the maximum conditional errors for a 

Wald/Clopper-Pearson hybrid interval. Hybridization of Wald’s interval with the Clopper-Pearson 

mid-P interval, for one-sided local average errors control, and with the Clopper-Pearson interval, for 

one-sided conditional errors, has been chosen for the good behavior of these two intervals on the 

judgment criteria involved in the analysis. 

3.2 Formal description of the method 
Let 𝐼𝐶𝑊1−𝛼 be Wald’s confidence interval estimator and 𝐼𝐶𝑀1−𝛼 the Clopper-Pearson mid-P 

confidence interval estimator. For an integer threshold 𝜒, we define the hybrid confidence interval 

estimator 𝐼𝐶𝑀𝑊1−𝛼(𝜒) equal to 𝐼𝐶𝑀1−𝛼 if min⁡(𝑥, 𝑛 − 𝑥) < 𝜒 and 𝐼𝐶𝑊1−𝛼 if min⁡(𝑥, 𝑛 − 𝑥) ≥ 𝜒. 

For a nominal controlled local average error 𝛼𝑚𝑎𝑥
′′ , we define the validity threshold 𝜉′′(𝛼𝑚𝑎𝑥

′′ , 𝑛) as 



the smallest 𝜒 such as for all 𝑝0, the errors 𝛼𝑙
′′(𝑛, 𝑝0, 𝛼) and 𝛼𝑢

′′(𝑛, 𝑝0, 𝛼) of the 𝐼𝐶𝑀𝑊1−𝛼(𝜒) 

estimator are smaller or equal to 𝛼𝑚𝑎𝑥
′′ /2. For this analysis, 𝑂𝑅𝑆 will be set to 1.10, so that the logit 

of the actual proportion logit(𝑃) is a normal distribution with a standard deviation log(𝑂𝑅𝑆) and the 

expectation of 𝑃 is 𝑝0. 

𝜉′′(𝛼𝑚𝑎𝑥
′′ , 𝑛) = ⁡min{𝜒|

∀𝑝0 ∈ [0; 1]⁡𝑃𝑟(𝐼𝐶𝑀𝑊1−𝛼(𝜒) < 𝑃) ≤ 𝛼𝑚𝑎𝑥
′′ /2⁡𝑎𝑛𝑑

⁡𝑃𝑟(𝐼𝐶𝑀𝑊1−𝛼(𝜒) > 𝑃) ≤ 𝛼𝑚𝑎𝑥
′′ /2

where⁡logit(𝑃)~𝒩(µ, (log(𝑂𝑅𝑆))
2)⁡𝑎𝑛𝑑⁡𝐸(𝑃) = 𝑝0

} (104) 

Similarly, we define the 𝐼𝐶𝐶𝑊(𝜒) hybrid estimator between the Clopper-Pearson estimator and 

Wald’s estimator at threshold 𝜒. The conditional validity threshold 𝜉′(𝛼𝑚𝑎𝑥
′ , 𝑛) of the 𝐼𝐶𝐶𝑊(𝜒) 

hybrid estimator is defined as the smallest 𝜒 threshold such that, for all theoretical proportions 𝑝, 

the one-sided conditional errors 𝛼𝑙
′(𝑛, 𝑝, 𝛼) and 𝛼𝑢

′ (𝑛, 𝑝, 𝛼) are both less than or equal to 𝛼𝑚𝑎𝑥
′ /2. 

𝜉′(𝛼𝑚𝑎𝑥
′ , 𝑛) = ⁡min {𝜒|

∀𝑝 ∈ [0; 1]⁡𝑃𝑟(𝐼𝐶𝐶𝑊1−𝛼(𝜒) > 𝑝) ≤ 𝛼𝑚𝑎𝑥
′ /2⁡𝑎𝑛𝑑

𝑃𝑟(𝐼𝐶𝐶𝑊1−𝛼(𝜒) < 𝑝) ≤ 𝛼𝑚𝑎𝑥
′ /2

} (105) 

Firstly, a table of validity 𝜉′ and 𝜉′′ thresholds will be numerically computed according to the sample 

size 𝑛 and the maximum 𝛼𝑚𝑎𝑥
′′  and 𝛼𝑚𝑎𝑥

′  tolerance. These thresholds will be find by a dichotomy 

algorithm. Secondly, two empirical validity formulas will be determined in order to approximate the 

𝜉′ and 𝜉′′ thresholds by 𝜉 ′̌ and 𝜉′′̌ thresholds. These empirical formulas will be built to fit the table 

data as well as possible while keeping them as simple as possible.  

3.3 Results 

3.3.1 Local average errors control 

Table 11 presents the validity thresholds 𝜉′′ and their approximations 𝜉′′̌ obtained by an empirical 

formula specifically constructed to best fit the 𝜉′′ numerical values  observed in the table. For 

instance, the fourth column of this table (𝛼𝑚𝑎𝑥
′′ = 0.075) corresponds to a one-sided local average 

errors that do not exceed 1.50 times the nominal error, i.e. 0.0375 for the lower boundary and 

0.0375 for the upper boundary. Thus, for a sample of 512 observations 𝜉′′ = 31. This means that at 

least 31 successes and 31 failures are required to apply the Wald interval estimator for a sample size 

512 in order to keep the actual one-sided local average errors below 1.50 times the nominal error. 

When either the number of successes or the number of failures is less than this threshold, the 

Clopper-Pearson mid-P interval estimator must be used. For the limit case 𝑛 → +∞ corresponding to 

Poisson distributions, a number of successes or failures greater or equal to 41 is needed to keep 

Wald’s interval actual one-sided local average errors below 1.50 times the nominal one-sided error. 

Applying the following validity condition: 

𝑛𝑥(𝑛 − 𝑥) ≥ 𝜉′′(𝛼𝑚𝑎𝑥
′′ ,∞) × (𝑛 − 2𝑥)2 (106) 

we find all the thresholds in parentheses in Table 12. If 1.50 times the nominal error is accepted 

(fourth column of the table), the threshold 𝜉′′(𝛼𝑚𝑎𝑥
′′ ,∞) is equal to 41 and the formula becomes: 

𝑛𝑥(𝑛 − 𝑥) ≥ 41(𝑛 − 2𝑥)2 (107) 

This formula is a threshold of the absolute value of the skewness which is equal to |
1−2𝑝

√𝑛𝑝(1−𝑝)
| for a 

binomial proportion, estimated as |
𝑛−2𝑥

√𝑛𝑥(𝑛−𝑥)
| on the sample. By squaring this skewness, we can find a 



condition of the form 
(𝑛−2𝑥)2

𝑛𝑥(𝑛−𝑥)
≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ; that translates to 𝑛𝑥(𝑛 − 𝑥) ≥

1

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
× (𝑛 − 2𝑥)2. 

Finally, the threshold is chosen such that 𝜉′′ and its approximation 𝜉′′̌ converge when 𝑛 → +∞. This 

condition, requires 7 mathematical operations (function application, multiplication, addition, 

division, subtraction), which is also equal to the number of operations required to compute Wald’s 

interval itself [𝑝 − 1,96√
𝑝(1−𝑝)

𝑛
⁡ ; ⁡𝑝 + 1,96√

𝑝(1−𝑝̂)

𝑛
]. This complex condition can be simplified by 

applying the worst case scenario where 𝑛 → +∞: 

min(𝑥, 𝑛 − 𝑥) > 40 (108) 

In a less formal form, the number of successes and failures must both be strictly greater than 40. 

The choice not to exceed 1.50 times the nominal error presented in the fourth column of Table 12 is 

arbitrary. The other columns of Table 12, based on other tolerance thresholds, serve as a sensitivity 

analysis. This sensitivity analysis shows a great influence of the choice of 𝛼𝑚𝑎𝑥
′′  on the validity 

thresholds, especially when 𝑛 → +∞ (last row in the table). Another way of presenting the 𝛼𝑚𝑎𝑥
′′  

thresholds is to express them as a ratio between the maximum one-sided local average error 

tolerated and the nominal one-sided local average error. These ratios are, for columns 2 to 5 of Table 

12, equal respectively to 1.20, 1.40, 1.50 and 2.00. 

A sensitivity analysis was applied for the selection of the substitution confidence interval estimator 

when the validity threshold is not reached. Replacing the Clopper-Pearson mid-P interval by Bartlett’s 

Arc-Sine interval did not change any of the 𝜉′′ thresholds presented in Table 12 suggesting that the 

substitution interval does not matter as long as it has a low bias. 

Table 14 summarizes validity conditions guaranteeing the control of one-sided conditional errors 

(𝛼𝑚𝑎𝑥
′ ) or one-sided local average errors (𝛼𝑚𝑎𝑥

′′ ) for several error rate bias tolerance limits. In our 

opinion, the condition min(𝑥, 𝑛 − 𝑥) > 40 is a good compromise between simplicity and quality of 

control and usefulness, but this choice is subjective. 

  



Table 12 : Validity thresholds 𝝃′′ of Wald’s 95% confidence interval expressed as the number of successes and failures 
required for the application of Wald’s estimator, based on the maximum tolerated two-sided equal-tailed local average 

error 𝜶𝒎𝒂𝒙
′′  specified in column and the sample size 𝒏 specified in row. The thresholds 𝝃′′̌ specified in parentheses are 

approximations of the thresholds 𝝃′′ obtained from the empirical condition 𝒏𝒙(𝒏 − 𝒙) ≥ 𝝃′′(𝜶𝒎𝒂𝒙
′′ , ∞) × (𝒏 − 𝟐𝒙)𝟐. 

Actual errors are calculated for a random proportion 𝑷 for which the typical odds ratio is 𝑶𝑹𝑺 = 𝟏, 𝟏𝟎. Below these 
thresholds, the Clopper-Pearson mid-P confidence interval estimator must be used. 

𝑛 

𝛼𝑚𝑎𝑥
′′ = 0.060 

𝜉′′⁡(𝜉′′̌) 

𝛼𝑚𝑎𝑥
′′ = 0.070 

𝜉′′⁡(𝜉′′̌) 

𝛼𝑚𝑎𝑥
′′ = 0.075 

𝜉′′⁡(𝜉′′̌) 

𝛼𝑚𝑎𝑥
′′ = 0.10 

𝜉′′⁡(𝜉′′̌) 

32 11 (14) 9 (11) 8 (10) 5 (6) 

64 21 (25) 15 (18) 13 (16) 7 (8) 

128 37 (43) 24 (27) 19 (22) 8 (9) 

256 62 (70) 34 (38) 26 (29) 9 (10) 

512 96 (107) 44 (47) 31 (34) 10 (11) 

1024 136 (147) 51 (54) 36 (37) 10 (11) 

2048 174 (182) 57 (58) 38 (39) 11 (11) 

∞ 245 (245) 63 (63) 41 (41) 11 (11) 

3.3.2 Conditional errors control 

Table 13 presents the validity thresholds of Wald’s interval to control one-sided conditional errors. 

The interpretation is the same as in Table 12, but conditional errors rather than local average errors 

are controlled, and when the threshold is not reached, the substitution interval is the Clopper-

Pearson interval (strictly conservative) rather than the Clopper-Pearson mid-P interval. It is assumed 

that the theoretical proportion and the sample size are constant among experiments. For instance, 

for a sample size 512, applying Wald’s method when the number of successes and the number of 

failures are both above 70 (fourth column of the table) and the Clopper-Pearson method otherwise, 

keeps the actual one-sided conditional errors below 1.50 the nominal error rate. The empirical 

formula provides a slightly different threshold 𝜉′′ = 72 in place of  𝜉′ = 70 for the same sample size. 

The empirical condition ensuring the control of the conditional error is 

min(𝑥, 𝑛 − 𝑥) ≥ 𝑐(𝛼𝑚𝑎𝑥
′ ) +

𝑛

2𝜉′(𝛼𝑚𝑎𝑥
′ ,∞) + 𝑛

 (109) 

where 

𝑐(𝛼𝑚𝑎𝑥
′ ) = {

6⁡𝑠𝑖⁡𝛼𝑚𝑎𝑥
′ = 0,060

1⁡𝑠𝑖⁡𝛼𝑚𝑎𝑥
′ = 0,070

0⁡𝑠𝑖⁡𝛼𝑚𝑎𝑥
′ ≥ 0,075

 (110) 

 

and 𝜉′(𝛼𝑚𝑎𝑥
′ ,∞) is given by the last line of Table 13. The value 𝑐(𝛼𝑚𝑎𝑥

′ ) is an empirical adjustment 

constant dependent on 𝛼𝑚𝑎𝑥
′ , the maximum error tolerance. This empirical adjustment function 

𝑐(𝛼𝑚𝑎𝑥
′ ) is only applicable to the nominal error 𝛼 = 0.05. In the case where the 𝛼𝑚𝑎𝑥

′  tolerance is 

0.075, the condition is 

min(𝑥, 𝑛 − 𝑥) ≥
𝑛

198 + 𝑛
 (111) 

If an error tolerance 𝛼𝑚𝑎𝑥
′  slightly exceeding 0.075 is tolerated, this condition may be rounded to 

min(𝑥, 𝑛 − 𝑥) ≥
𝑛

200 + 𝑛
 (112) 

 



The following simplified condition is always sufficient and is easier to teach 

min(𝑥, 𝑛 − 𝑥) ≥ 100 (113) 

The other maximum conditional tolerated errors 𝛼𝑚𝑎𝑥
′  presented in columns 2, 3 and 5 of Table 13 

give different results. The maximum conditional error that one is willing to tolerate has a strong 

influence on the validity threshold of Wald’s interval. 

Table 13 : Validity thresholds 𝝃′ of Wald’s 95% confidence interval expressed as the number of successes and failures 
required for the application of Wald’s estimator, based on the maximum tolerated two-sided equal-tailed conditional 

error 𝜶𝒎𝒂𝒙
′  specified in column and the sample size 𝒏 specified in row. The thresholds 𝝃′̌ specified in parentheses are 

approximations of the thresholds 𝝃′ obtained from the empirical condition 𝐦𝐢𝐧(𝒙, 𝒏 − 𝒙) > 𝒄 +
𝒏

𝟐𝝃′⁡(𝜶𝒎𝒂𝒙
′ ,∞)+𝒏

 where 𝒄 =

𝟔 for 𝜶𝒎𝒂𝒙
′ = 𝟎.𝟎𝟔𝟎, 𝒄 = 𝟏 for 𝜶𝒎𝒂𝒙

′ = 𝟎.𝟎𝟕𝟎 and 𝒄 = 𝟎 for 𝜶𝒎𝒂𝒙
′ ≥ 𝟎. 𝟎𝟕𝟓. Actual errors are calculated for a constant 

proportion 𝒑. Below these thresholds, the Clopper-Pearson confidence interval estimator must be used. 

𝑛 

𝛼𝑚𝑎𝑥
′ = 0.060 

𝜉′⁡(𝜉 ′̌) 

𝛼𝑚𝑎𝑥
′ = 0.070 

𝜉′⁡(𝜉 ′̌) 

𝛼𝑚𝑎𝑥
′ = 0.075 

𝜉′⁡(𝜉 ′̌) 

𝛼𝑚𝑎𝑥
′ = 0.10 

𝜉′⁡(𝜉 ′̌) 

32 Never (Never) 15 (16) 14 (14) 10 (11) 

64 Never (Never) 27 (28) 25 (25) 14 (15) 

128 62 (64) 46 (46) 39 (39) 19 (20) 

256 110 (111) 69 (70) 54 (56) 22 (23) 

512 181 (182) 93 (96) 70 (72) 25 (26) 

1024 271 (274) 115 (117) 82 (83) 26 (27) 

2048 362 (369) 130 (132) 89 (91) 27 (28) 

∞ 560 (566) 149 (150) 99 (99) 28 (28) 

 

Table 14: Simplified validity conditions of Wald’s 95% confidence interval according to the maximum tolerated two-sided 
equal-tailed conditional error 𝜶𝒎𝒂𝒙

′  for a constant theoretical proportion, or the maximum tolerated two-sided equal-
tailed local average error 𝜶𝒎𝒂𝒙

′′  for a random theoretical proportion 𝑷 for which the typical odds ratio is 𝑶𝑹𝑺 = 𝟏. 𝟏𝟎. 

Control Validity for 𝑛 → ∞ Validity for any 𝑛 

𝛼𝑚𝑎𝑥
′ ≤ 0.060 min(𝑥, 𝑛 − 𝑥) ≥ 560 

min(𝑥, 𝑛 − 𝑥) ≥ 𝟔 +
𝑛

1120 + 𝑛
 

𝛼𝑚𝑎𝑥
′ ≤ 0.070 min(𝑥, 𝑛 − 𝑥) ≥ 149 

min(𝑥, 𝑛 − 𝑥) ≥ 𝟏 +
𝑛

298 + 𝑛
 

𝛼𝑚𝑎𝑥
′ ≤ 0.075 min(𝑥, 𝑛 − 𝑥) ≥ 99 

min(𝑥, 𝑛 − 𝑥) ≥
𝑛

198 + 𝑛
 

𝛼𝑚𝑎𝑥
′ ≤ 0.100 min(𝑥, 𝑛 − 𝑥) ≥ 28 

min(𝑥, 𝑛 − 𝑥) ≥
𝑛

56 + 𝑛
 

𝛼𝑚𝑎𝑥
′′ ≤ 0.060 min(𝑥, 𝑛 − 𝑥) ≥ 245 𝑛𝑥(𝑛 − 𝑥) ≥ 245(𝑛 − 2𝑥)2 

𝛼𝑚𝑎𝑥
′′ ≤ 0.070 min(𝑥, 𝑛 − 𝑥) ≥ 63 𝑛𝑥(𝑛 − 𝑥) ≥ 63(𝑛 − 2𝑥)2 

𝛼𝑚𝑎𝑥
′′ ≤ 0.075 min(𝑥, 𝑛 − 𝑥) ≥ 41 𝑛𝑥(𝑛 − 𝑥) ≥ 41(𝑛 − 2𝑥)2 

𝛼𝑚𝑎𝑥
′′ ≤ 0.100 min(𝑥, 𝑛 − 𝑥) ≥ 11 𝑛𝑥(𝑛 − 𝑥) ≥ 11(𝑛 − 2𝑥)2 

 

4 Figures of the nine main confidence intervals 
 



 

Figure 1 : One-sided local average errors of nine 95% confidence interval estimators according to different sample sizes 
(red for 𝒏 = 𝟑𝟐, green for 𝒏 = 𝟔𝟒 and blue for 𝒏 = 𝟐𝟎𝟒𝟖), with a random true 𝑷 proportion following a logit-normal 
distribution with a typical odds ratio of the true proportion between two experiments equal to 𝑶𝑹𝑺 = 𝟏. 𝟏𝟎. The 
abscissa is the expected number of successes 𝒏𝒑𝟎 and the ordinate is the probability that the lower bound of the 
confidence interval is greater than the true proportion 𝒑 (left local average error: dashed lines) or the probability that 
the upper bound of the confidence interval is lower than the true proportion 𝒑 (right local average error: solid line). This 
figure is the same as Figure I in the main article except that 𝑶𝑹𝑺 = 𝟏.𝟏𝟎 rather than 𝟏. 𝟐𝟎. 

 



 

Figure 2 : One-sided local average errors of nine 95% confidence interval estimators according to different sample sizes 
(red for 𝒏 = 𝟑𝟐, green for 𝒏 = 𝟔𝟒 and blue for 𝒏 = 𝟐𝟎𝟒𝟖), with a random true 𝑷 proportion following a logit-normal 
distribution with a typical odds ratio of the true proportion between two experiments equal to 𝑶𝑹𝑺 = 𝟏. 𝟎𝟓. The 
abscissa is the expected number of successes 𝒏𝒑𝟎 and the ordinate is the probability that the lower bound of the 
confidence interval is greater than the true proportion 𝒑 (left local average error: dashed lines) or the probability that 
the upper bound of the confidence interval is lower than the true proportion 𝒑 (right local average error: solid line). This 
figure is the same as Figure I in the main article except that 𝑶𝑹𝑺 = 𝟏.𝟎𝟓 rather than 𝟏. 𝟐𝟎. 



 

Figure 3 : One-sided local average errors of nine 90% confidence interval estimators according to different sample sizes 
(red for 𝒏 = 𝟑𝟐, green for 𝒏 = 𝟔𝟒 and blue for 𝒏 = 𝟐𝟎𝟒𝟖), with a random true 𝑷 proportion following a logit-normal 
distribution with a typical odds ratio of the true proportion between two experiments equal to 𝑶𝑹𝑺 = 𝟏. 𝟐𝟎. The 
abscissa is the expected number of successes 𝒏𝒑𝟎 and the ordinate is the probability that the lower bound of the 
confidence interval is greater than the true proportion 𝒑 (left local average error: dashed lines) or the probability that 
the upper bound of the confidence interval is lower than the true proportion 𝒑 (right local average error: solid line). This 
figure is the same as Figure I in the main article except that the confidence level is 𝟎. 𝟗𝟎 rather than 𝟎. 𝟗𝟓 and the 
ordinate scale is doubled making relative biases easy to compare between figures. 

 



 

Figure 4 : One-sided local average errors of nine 95% confidence interval estimators according for a finite sample size 𝒏 =
𝟐𝟎𝟒𝟖 (red) and an infinite sample size 𝒏 → +∞ (blue) for which the binomial distribution becomes a Poisson 
distribution. The true 𝑷 proportion follows a logit-normal distribution with a typical odds ratio of the true proportion 
between two experiments equal to 𝑶𝑹𝑺 = 𝟏.𝟐𝟎. The abscissa is the expected number of successes 𝒏𝒑𝟎 and the ordinate 
is the probability that the lower bound of the confidence interval is greater than the true proportion 𝒑 (left local average 
error: dashed lines) or the probability that the upper bound of the confidence interval is lower than the true proportion 
𝒑 (right local average error: solid line). 



 

Figure 5 : One-sided and two-sided conditional errors of nine 95% confidence interval estimators for an infinite sample 
size (Poisson distribution) and a constant theoretical 𝒑 proportion. The abscissa is the expected number of successes 𝒏𝒑 
and the ordinate is the probability that the lower bound of the confidence interval is greater than the true proportion 𝒑 
(left conditional error: red), the probability that the upper bound of the confidence interval is lower than the true 
proportion 𝒑 (right conditional error: green) or the probability that the confidence interval does not contain the true 
proportion 𝒑 (two-sided error: blue). This figure is the same as Figure II of the main article except that 𝒏 → +∞ rather 
than 𝒏 = 𝟐𝟎𝟒𝟖. 

 

  



 

Figure 6 : One-sided local average errors of the 95% Bartlett Arc-Sine interval estimator assuming a constant theoretical 
proportion 𝒑 and a random sample size 𝑵 following a log-normal distribution with expectancy 𝒏𝟎 and a geometric 
standard deviation 𝑺𝑹𝑺 = 𝟏.𝟐𝟎, rounded to the nearest whole number. The abscissa is the expected number of 
successes 𝒏𝟎𝒑 and the ordinate is the probability that the lower bound of the confidence interval is greater than the true 
proportion 𝒑 (random sample left one-sided error: dashed lines) or the probability that the upper bound of the 
confidence interval is lower than the true proportion 𝒑 (random sample right one-sided error: solid line).  



5 Figures of additional intervals 

 

Figure 7 : Local-average 𝜶𝒍
′′ and 𝜶𝒖

′′ errors for 27 two-sided 95% confidence interval estimators, according to the expected 
number of successes and sample size. The value 𝒌 equals 𝒎𝒊𝒏(𝒙, 𝒏 − 𝒙). CP means “Clopper-Pearson”. 



 

Figure 8 : Local-average 𝜶𝒍
′′ and 𝜶𝒖

′′ errors for 28 two-sided 95% confidence interval estimators, according to the expected 
number of successes and sample size. The value 𝒌 equals 𝒎𝒊𝒏(𝒙, 𝒏 − 𝒙). CP means “Clopper-Pearson”. 

  



 

Figure 9 : Conditional 𝜶𝒍
′ and 𝜶𝒖

′  errors for 27 two-sided 95% confidence interval estimators, according to the expected 
number of successes for a sample size n=2048. The value 𝒌 equals 𝒎𝒊𝒏(𝒙, 𝒏 − 𝒙). CP means “Clopper-Pearson”. 

  



 

Figure 10 : Conditional 𝜶𝒍
′ and 𝜶𝒖

′  errors for 28 two-sided 95% confidence interval estimators, according to the expected 
number of successes for a sample size n=2048. The value 𝒌 equals 𝒎𝒊𝒏(𝒙, 𝒏 − 𝒙). CP means “Clopper-Pearson”. 

  



 

Figure 11 : Local average half-lengths ratio 𝒗𝒍
′′ and 𝒗𝒖

′′ of twenty-seven 95% confidence intervals relative to the Clopper-
Pearson mid-P interval, according to the expected number of successes 𝝀 = 𝒏𝒑 and the sample size 𝒏. 



 

Figure 12 : Local average half-lengths ratio 𝒗𝒍
′′ and 𝒗𝒖

′′ of twenty-eight 95% confidence intervals relative to the Clopper-
Pearson mid-P interval, according to the expected number of successes 𝝀 = 𝒏𝒑 and the sample size 𝒏. 

 



6 Comparison of strictly conservative exact intervals 
Unequal tailed strictly conservative exact intervals tend to be as short as possible. The most recent, 

Wang 26 and Schilling-Doi 25 requires heavy computation but are designed to be shorter on average. 

They have been compared to each other on samples of 174 observations. The sample size 174 has 

been selected because it’s large enough to show a difference between Schilling-Doi and Sterne 

intervals, but otherwise, is not special. Wang and Schilling-Doi intervals optimize the interval length 

arithmetic mean, but the geometric mean may be more relevant. Squeezing [0⁡; ⁡0.036] to 

[0⁡; ⁡0.034] (5.6% relative length reduction) is more interesting than squeezing [0.398⁡; ⁡0.602] to 

[0.398⁡; ⁡⁡0.600] (0.98% relative length reduction) while the absolute reduction is equal. The ratio of 

geometric means is the geometric mean of ratios. 

The arithmetic and geometric mean lengths of intervals are shown in Table 15. The Clopper-Pearson 

interval length geometric mean is 2.6% higher than that of the shortest interval (Blaker). All unequal 

tailed interval lengths are very close to each other. The Schilling-Doi interval is almost equal to 

Sterne’s interval for all values (Figure 13-A). There are a few spikes where they differ, otherwise, the 

intervals are equal. The difference is negligible for practical use. Blaker’s interval is slightly longer 

than Schilling-Doi in arithmetic mean and shorter in geometric mean (Table 15), thanks to shorter 

lengths for proportions close to 0 and 1 (Figure 13-B). Wang’s interval has arithmetic and geometric 

mean lengths almost equal to those of the Schilling-Doi interval (Table 15), but it’s shorter for 

proportions close to 0.50, and longer for most proportions between 0.20 and 0.40 (Figure 13-C). This 

can be explained by Wang’s algorithm, sequentially squeezing intervals from⁡𝑥 = 𝑛/2 down to 𝑥 =

0. Intervals that are squeezed first have more space to be. 

The analysis of half lengths show that for small proportions, the Schilling-Doi interval and Wang’s 

interval have upper bounds close to Clopper-Pearson’s interval (Figure 14, panels A and B). These 

intervals have greater lower bounds for small proportions. For instance, the Clopper-Pearson 95% 

confidence interval for 6 successes out of 174 draws is [0.0128⁡; 0.0735] while the Schilling-Doi 

interval is [0.0151; 0.0738]. Both boundaries are higher in the Schilling-Doi interval, increasing 𝛼𝑙
′ 

and decreasing 𝛼𝑢
′ . Blaker’s intervals are always contained in Clopper-Pearson intervals 23.  

Consequently, Blaker’s intervals half lengths are smaller or equal for all proportions. For 6 successes 

out of 174 draws, Blaker’s interval is [0.0151⁡; 0.0725]. 

Table 15 : Mean interval lengths of strictly conservative exact 95% confidence intervals for sample size 𝒏 = 𝟏𝟕𝟒. 

Interval name Arithmetic mean of length Geometric mean of length 

Clopper-Pearson 0.12137 0.11470 
Blaker 0.11855 0.11182 
Wang 0.11848 0.11196 
Sterne 0.11852 0.11216 
Schilling-Doi 0.11846 0.11199 
Exact score 0.11804 0.11192 
Exact likelihood ratio (LR) 0.11882 0.11185 

 



 

Figure 13 : Relative lengths of 95% unequal-tailed confidence intervals for sample size 𝒏 = 𝟏𝟕𝟒, for any integer number 
of successes from 𝟎 to 𝟏𝟕𝟒. It is not a random experiment; it is a representation of the 𝟏𝟕𝟓 confidence intervals for 𝒙 =
𝟎,… , 𝟏𝟕𝟒 and 𝒏 = 𝟏𝟕𝟒. 



 

Figure 14 : Relative half-lengths of 95% unequal-tailed confidence intervals (Schilling-Doi Wang, Blaker) compared to the 
Clopper-Pearson interval, for sample size 𝒏 = 𝟏𝟕𝟒, for any integer number of successes from 𝟎 to 𝟏𝟕𝟒. It is not a 
random experiment; it is a representation of the 𝟏𝟕𝟓 confidence intervals for 𝒙 = 𝟎,… , 𝟏𝟕𝟒 and 𝒏 = 𝟏𝟕𝟒. 



 

Figure 15 : Relative half-lengths of 95% unequal-tailed confidence intervals (Exact score, Exact LR and Blyth-Still-Casella) 
compared to the Clopper-Pearson interval, for sample size 𝒏 = 𝟏𝟕𝟒, for any integer number of successes from 𝟎 to 𝟏𝟕𝟒. 
It is not a random experiment; it is a representation of the 𝟏𝟕𝟓 confidence intervals for 𝒙 = 𝟎,… , 𝟏𝟕𝟒 and 𝒏 = 𝟏𝟕𝟒. 

  



 

Figure 16 : Relative half-lengths of 95% unequal-tailed confidence intervals (Blaker, Schilling-Doi, Blyth-Still-Casella, 
Wang) compared to each other, for sample size 𝒏 = 𝟏𝟕𝟒, for any integer number of successes from 𝟎 to 𝟏𝟕𝟒. It is not a 
random experiment; it is a representation of the 𝟏𝟕𝟓 confidence intervals for 𝒙 = 𝟎,… , 𝟏𝟕𝟒 and 𝒏 = 𝟏𝟕𝟒. 

  



7 References 
1.  Pan W. Approximate confidence intervals for one proportion and difference of two proportions. 

Computational statistics & data analysis 2002; 40:143–157. 

2.  Brown LD, Cai TT, DasGupta A. Interval estimation for a binomial proportion. Statistical science 
2001; 16:101–117. 

3.  Garwood F. Fiducial limits for the Poisson distribution. Biometrika 1936; 28:437-442. 

4.  Agresti A, Coull BA. Approximate is better than “exact” for interval estimation of binomial 
proportions. The American Statistician 1998; 52:119–126. 

5.  Agresti A, Caffo B. Simple and Effective Confidence Intervals for Proportions and Differences of 
Proportions Result from Adding Two Successes and Two Failures. The American Statistician 
2000; 54:280-288. 

6.  Brown LD, Cai TT, DasGupta A. Confidence Intervals for a binomial proportion and asymptotic 
expansions. The Annals of Statistics 2002; 30:160-201. 

7.  Borkowf CB. Constructing binomial confidence intervals with near nominal coverage by adding 
a single imaginary failure or success. Statistics in Medicine 2006; 25:3679-3695. 

8.  Vollset SE. Confidence intervals for a binomial proportion. Statistics in Medicine 1993; 12:809-
824. 

9.  Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven 
methods. Statistics in medicine 1998; 17:857–872. 

10.  Pires AM, Amado C. Interval estimators for a binomial proportion: Comparison of twenty 
methods. REVSTAT–Statistical Journal 2008; 6:165–197. 

11.  Student. The probable error of a mean. Biometrika 1908; 6:1-25. 

12.  Blyth CR. Approximate Binomial Confidence Limits. Journal of the American Statistical 
Association 1986; 81:843-855. 

13.  Wilson EB. Probable Inference, the Law of Succession, and Statistical Inference. Journal of the 
American Statistical Association 1927; 22:209-212. 

14.  Bartlett MS. The Square Root Transformation in Analysis of Variance. Supplement to the Journal 
of the Royal Statistical Society 1936; 3:68-78. 

15.  Anscombe FJ. The transformation of poisson, binomial and negative-binomial data. Biometrika 
1948; 35:246-254. 

16.  Freeman MF, Tukey JW. Transformations Related to the Angular and the Square Root. The 
Annals of Mathematical Statistics 1950; 21:607-611. 

17.  Yu G. Variance stabilizing transformations of Poisson, binomial and negative binomial 
distributions. Statistics & Probability Letters 2009; 79:1621-1629. 

18.  Anscombe FJ. On Estimating Binomial Response Relations. Biometrika 1956; 43:461-464. 



19.  Matuszewski A, Sotres D. A basic statistical problem: Confidence interval for the Bernoulli 
parameter. Computational Statistics & Data Analysis 1985; 3:103-114. 

20.  Rubin DB, Schenker N. Logit-based interval estimation for binomial data using the Jeffreys prior. 
Sociological methodology 1987; 17:131–144. 

21.  Efron B. Better bootstrap confidence intervals. Journal of the American statistical Association 
1987; 82:171–185. 

22.  Carpenter J, Bithell J. Bootstrap confidence intervals: when, which, what? A practical guide for 
medical statisticians. Statistics in Medicine 2000; 19:1141-1164. 

23.  Blaker H. Confidence curves and improved exact confidence intervals for discrete distributions. 
Canadian Journal of Statistics 2000; 28:783–798. 

24.  Cox DR, Hinkley DV. Theoretical Statistics. Chapman & Hall.; 1974. 

25.  Schilling MF, Doi JA. A Coverage Probability Approach to Finding an Optimal Binomial 
Confidence Procedure. The American Statistician 2014; 68:133-145. 

26.  Wang W. AN ITERATIVE CONSTRUCTION OF CONFIDENCE INTERVALS FOR A PROPORTION. 
Statistica Sinica 2014; 24:1389-1410. 

27.  Blyth CR, Still HA. Binomial Confidence Intervals. Journal of the American Statistical Association 
1983; 78:108-116. 

28.  Casella G. Refining binomial confidence intervals. Canadian Journal of Statistics 1986; 14:113–
129. 

29.  Winstein K. Efficient routines for biostatistics. URL https://github.com/keithw/biostatPublished 
September 30, 2016 (accessed July 26, 2017). 

30.  Zieliński W. The Shortest Clopper–Pearson Confidence Interval for Binomial Probability. 
Communications in Statistics - Simulation and Computation 2009; 39:188-193. 

31.  Zieliński W. The Shortest Clopper-Pearson Randomized Confidence Interval. REVSTAT–
Statistical Journal 2017; 15:141–153. 

32.  Sakakibara I, Haramo E, Muto A, Miyajima I, Kawasaki Y. Comparison of five exact confidence 
intervals for the binomial proportion. American Journal of Biostatistics 2014; 4:11. 

33.  Thulin M, Zwanzig S. Exact confidence intervals and hypothesis tests for parameters of discrete 
distributions. Bernoulli 2017; 23:479-502. 

34.  Cai Y, Krishnamoorthy K. A simple improved inferential method for some discrete distributions. 
Computational statistics & data analysis 2005; 48:605–621. 

35.  Vos PW, Hudson S. PROBLEMS WITH BINOMIAL TWO-SIDED TESTS AND THE ASSOCIATED 
CONFIDENCE INTERVALS. Australian & New Zealand Journal of Statistics 2008; 50:81–89. 

36.  Sterne TE. Some remarks on confidence or fiducial limits. Biometrika 1954; 41:275-278. 

37.  Clopper CJ, Pearson ES. The use of confidence or fiducial limits illustrated in the case of the 
binomial. Biometrika 1934; 26:404-413. 



38.  Lancaster HO. The combination of probabilities arising from data in discrete distributions. 
Biometrika 1949; 36:370-382. 

39.  Berry G, Armitage P. Mid-P confidence intervals: a brief review. The Statistician 1995; 44:417–
423. 

40.  Krishnamoorthy K, Thomson J, Cai Y. An exact method of testing equality of several binomial 
proportions to a specified standard. Computational statistics & data analysis 2004; 45:697–707. 

41.  Liu YK, Kott PS. Evaluating alternative one-sided coverage intervals for a proportion. Journal of 
Official Statistics 2009; 25:569. 

42.  Hall P. Improving the Normal Approximation when Constructing One-Sided Confidence Intervals 
for Binomial or Poisson Parameters. Biometrika 1982; 69:647-652. 

43.  Cai TT. One-sided confidence intervals in discrete distributions. Journal of Statistical planning 
and inference 2005; 131:63–88. 

44.  Venzon DJ, Moolgavkar SH. A method for computing profile-likelihood-based confidence 
intervals. Applied statistics 1988:87–94. 

 


