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Abstract

Component based systems ease programming, thanks to the ability to com-
pose multiples small and independent atoms into bigger aggregates, reducing
the individual complexity of each atom. The counterpart of this programming
paradigm is the emergence of new kinds of errors related to the very compo-
sition of those elements. Multiple approaches have been proposed in order to
certify the correctness of the composition with respect to a chosen policy.

The location graphs framework make the choice to authorise or forbid each
component transition, according the topology of the component graph at the
time of the transition. This model offers a wide range of policies that can be
implemented.

This thesis is formed of two parts: first, we study the notion of encapsula-
tion, inherited from object oriented programming, in the context of component
based programming, taking the location graph framework as a substrate; sec-
ond, we propose an implementation, given as a Rust library, of the location
graph framework.

The study of the notion of encapsulation leads us to three main contribu-
tions: (i) a new notion of strong bisimulation for location graphs, allowing the
comparison of heterogeneous location graph instances; (ii) the exhibition of a
strong notion of encapsulation for that model, characterised with a behavioural
equivalence; and (iii) the instantiation, for illustration purposes, of multiple en-
capsulation policies, highlighting both the precision and the diversity of policies
available in the location graph framework. Aside the contribution of the im-
plementation itself, we implemented multiple non-trivial examples showing, in
practice, how the original framework can be used.

Résumé

Les systèmes informatiques fondés sur des composants facilitent la program-
mation grâce à la possibilité de composer différents petits atomes indépendants
en aggrégats plus gros, réduisant la complexité individuelle de chaque atome. La
contrepartie à ce modèle de programmation est l’apparition de nouvelles erreurs
liés à la composition de ces élements. Plusieurs approches ont été proposées afin
de garantir la correction de la composition par rapport à une politique choisie.

L’approche du modèle des graphes de localités consiste à autoriser ou
d’interdire chaque transition de composant, en fonction de la topologie du
graphe de composants au moment de la transition. Ce modèle s’illustre par
la diversité des politiques qui peuvent être implémentées.

Cette thèse est composée de deux parties : dans un premier temps, nous
étudions la notion de d’encapsulation, héritée de la programmation orientée
objet, dans le contexte de la programmation par composant, en prenant pour
support le modèle des graphes de localités; dans un second temps, nous pro-
posons une implémentation, sous la forme d’une bibliothèque logicielle pour le
langage Rust, du modèle de graphes de localités.

L’étude de la notion d’encapsulation nous a conduit à trois contri-
butions principaux : (i) une nouvelle notion de bisimulation forte pour
les graphes de localités, permettant la mise en relation d’instances de
graphes de localités hétérogènes; (ii) la mise en évidence d’une notion forte
d’encapsulation dans ce modèle, caractérisée par une equivalence comporte-
mentale; et (iii) l’instanciation, à titre d’exemple, de plusieurs politiques
d’encapsulation, illustrant à la fois la finesse et la diversité des politiques
disponibles avec les graphes de localités. Au-delà de la contribution que con-
stitue en elle-même l’implémentation, nous avons implémenté plusieurs exem-
ples non triviaux, illustrant, en pratique, une utilisation possible du modèle
original.
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Chapter 1

Introduction

Programming is difficult. While I could not find a paper to cite to emphasize this statement, I think
every programmer would agree with me. The difficulty of programming is a bit peculiar, compared to
other fields. Think of civil engineering: it is a hard job because it requires working with heavy tools, on
unfriendly environment, with external constraints. Think of astronomy: it is hard since it deals with a lot
of unknown, about objects one can only observe. Programming is different: none of the above difficulties
apply to us. Instead, the essence of the difficulty of programming comes from the complex nature of our
task, with the original meaning of “complex”: “made up of multiple parts; composite; not simple”1.

Yet, even as programmers, we often forget the difficulty of programming, thanks to decades of work to
create tools to ease this job. For a second, let us forget about those tools and consider this basic statement
about programming: when we are programming, we are manipulating thousands, if not millions, of
elements of various nature. Even programming such a simple thing (compared to other systems) as the
font of this document (computer modern) involve more than 60 parameters2, just to tune the style of the
letters (i.e. not including the skeletons of the letters).

As programmers, to tackle this difficulty the two best tools we have are first abstraction, that is the
possibility to forget details of both what we are using and what we are building; and, second, semantics3,
that is the fact that we forbid ourself to do nonsense.

As such, programming tools are mechanisms, concepts, or anything that helps toward those two
directions. Think, for instance, of typing: giving an object a type allows us to forget, most of the time,
its actual representation, and type analysis prevent the programmer to mix tomatoes and carrots, except
when they intend to make soup.

This thesis is about an other tool: encapsulation. This introductory chapter shows that, while the
concept of encapsulation is well-known among programmers, it is a notion hard to define properly, and we
usually intend to add exceptions to its very nature. In the end, the goal of this thesis is to provide a tool
better suited to handle this moving nature of encapsulation, and, by transitivity, to make programming
less difficult.

Contents

1.1 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 A bestiary of policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Context, goals and scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Encapsulation
The intuition of encapsulation is to partition a program into multiple components, with the hope that
each individual component is easier to program (since smaller), and then less error-prone. With the
assumption that correctness is preserved under composition, we conclude that the overall program shall
be correct.

Historical context. Such approach is not new. In 1972, Parnas published a short paper on the criteria
to be used to split a program into modules [44]. This paper shows two possible decompositions for the
same system, and emphasize that, among those two decompositions, we should prefer the one that hides
information, instead of one that focuses on technical aspects (typically based on a flowchart of the system).

1https://en.wiktionary.org/wiki/complex, on October 21st, 2020.
2https://en.wikipedia.org/wiki/Computer_Modern
3In its common sense, not as in language theory.
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1 System simple_cs = {

2 Component client = {

3 Port sendRequest;

4 Properties { ... }}

5 Component server = {

6 Port receiveRequest;

7 Properties { ...

8 maxConcurrentClients : integer = 1;

9 multithreaded : boolean = false;

10 ... }}

11 Connector rpc = {

12 Role caller;

13 Role callee;

14 Properties { synchronous : boolean = true;

15 maxRoles : integer = 2;

16 protocol : WrightSpec = "..." }}

17 Attachments {

18 client.send-request to rpc.caller ;

19 server.receive-request to rpc.callee }

20 }

Figure 1.1: Example of an Acme system. This excerpt describe a simple client-server system: there is one component for
the client and for the server, and a connector to link them. The attachment rule specifies that the ports of the component
must be attached to the connector. Extract from Figure 3.7 in [25].

The Actor model (which we will explain in more details below), which is often used today, dates from
1973 [31].

Despite being quite an old subject, some questions are still opened, and a consensus on their resolution
has not been reached yet, for instance: Is there a general splitting policy? Should the modules boundaries
be completely opaque, or could we allow some information to go through? How to achieve non-hierarchical
structures?

We shall note that even if each individual component is correct, new errors can appear due to a bad
composition. For instance, problems can arise due to an unexpected topology of the graph of components
(a component expects to communicate with an other component while it actually communicates with
a third one). Therefore, there is a need to express properties on the graph itself, and not only on
the individual components. The literature contains various example of such (software) architectures
description languages: the Acme framework [25] allows the description of systems based on an ontology
of components, connectors, attachments and properties.

As an example, consider the Acme framework. Acme focuses on providing a language for architecture
description. Systems are a graphs whose nodes are components and edges are connectors. In addition,
one can describe properties of systems and components, which may include some constraints (topological,
values, etc.). Systems can be nested: a component can actually be a system. Figure 1.1 shows an example
of the description of a system architecture. Notice that the actual behaviour of each component (the
program which is run) is not described by Acme, but it uses external languages (e.g. C code, in the
example this excerpt is taken).

Encapsulation. Nowadays, software engineers work on complex projects. In order to reduce the in-
herent difficulty to manage such systems, an approach is to split a given system into multiple modules.
In order to reason about such system composed of modules, without having to reason about the imple-
mentation details of each individual module, we need to abstract those details away and to characterise
the (observable) behaviour of such modules: what is relevant to know for a user of the module, and what
is not.

Therefore, with modularity comes the question of encapsulation: modularity is the question of dividing
a system into sub systems; and encapsulation is the question of how do these sub systems relate, what
is publicly available and what should remain private to a module. We can also approach the question of
encapsulation by asking the dual question: some information must be hidden (e.g. sensitive data), as a
designer, how can I ensure that it will not leak?

When we describe component based system, we often implicitly have a notion of encapsulation: we
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assume that the modules we describe are formed of smaller modules, that are enclosed and behave
according to an (often) informal specification. For instance, in the introduction of [25]:

[Figure 3.1 of [25]] depicts a system containing a client and server component connected by a
RPC connector. The server itself might be represented by a subarchitecture (not shown).

In that example, we assume that the client and the server indeed communicate only via the RPC con-
nector. This is an assumption that, except for the explicitly mentioned communication channels, the
modules are opaque.

While they all refer (at least implicitly) to an intuition of encapsulation, none of the papers mentioned
above actually study the relation between component based systems and encapsulation, the fact that a
sub module is actually equivalent to a single module. Said otherwise, in the quote above, nothing but
intuition justifies that the server can actually be “represented by a subarchitecture”.

The first part of this thesis is a formal analysis of the notion of encapsulation for component based
systems. We adapt a notion of bisimulation to formally characterise the behavioural relation between a
system and its encapsulated counterpart.

Encapsulation policy. Depending on the program to be written, some accesses are considered correct
and some are not. For instance, consider a login library: at some point, a password is stored in memory,
and this storage should not be directly accessible outside the library, to avoid leaking the passwords.
Therefore, not all accesses are suitable. In theory, a careful programmer can make a correct system
without help from the language. In practice, for large systems, careful enough programmers do not exist,
and there is a need for the language to check that all accesses are intended.

Considering again Acme, one can enforce some isolation policies thanks to constraints. Acme provides
an expressive language to express those constraints, this small language allows, in particular, the usage
of universal and existential quantifiers and it provides primitives to access roles, ports, connectors, etc.
of the system. For instance, to express that all connectors should have two and only two roles, one can
write the following property4: Forall conn : connector insystemInstance.Connectors @ size(conn.roles) =
2 . As a consequence, we could express strong isolation properties (such as the one based on ownership
types), at a high level.

It seems, reading from [25], that Acme focuses more on being a practical tool and less on providing
strong formal semantics. In Chapter 5 of this thesis, we chose to implement location graphs as
a library. If we had chosen to write language from scratch, our language for expressing isolation
policies would probably have been quite close to those of Acme, which illustrate that both are close
to each other.
Notice, however, a limitation of Acme, which is that it is not possible to share components. Com-
ponents can be implemented as subsystems, which enforces a tree-like structure of components.

Naturally, this raises two questions: (i) which accesses are correct and which are not?; and (ii) how
to ensure unwanted accesses are prevented?.

There are (at least) two ways to answer the first question: (i) find some classes of accesses that are
usually unwanted; and (ii) dodge the question and let the programmer define itself which accesses they
want or not.

The result of the choice changes the approach that can be taken. By selecting a class of allowed
accesses, one can optimize its implementation, at the cost of the risk that the chosen policy might not
suit the user.

We call this partition of authorised and forbidden accesses an isolation or encapsulation policy5.
In the case considered in this thesis, the theoretical framework of location graphs takes the second

choice. By being very expressive in terms of possible policies, we have a cost of potentially synchronising
every transition.

For the second question, there have been proposals for both static analysis (with type systems) or
dynamic analysis (with automatic code instrumentation). Of course, there is a trade-off between the
two questions: the more precise the policy, the harder it is to have static analysis; and similarly for
the programmer’s choice: the more choice they have to define a policy, the harder it is to ensure that
policy. When starting this thesis, we did not know which policies would be useful6. Therefore, we wanted

4Excerpt from paragraph 3.3.3 in [25].
5Or simply policy for short.
6As a matter of fact, we still do not know. As shown in the following section, we know which policies are used in practice,

but we also know that those policies are heavily constraint by technical aspects. We first need to have a system which
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to remain very generic and to allow as many policies as possible, which implied not to focus on static
verification. Therefore, in the context of this thesis, the verification is dynamic.

Dynamic aspects of component-based systems. Dynamic reconfiguration of systems matters. The
ability to change the architecture of a given system is appealing. Informally, typical use case are the
following:

Updates: one has to prove that replacing a component with an updated version does not change the
overall behaviour of the system; or, on the other way, that such replacement fixes a bug

Fault tolerance: one has to model a component that fails, for instance by removing the component
from the system

Scaling: one has to create new components to scale up the performances of the overall system.

Therefore, as designers of components based systems, we have to satisfy that need. For instance, the
Ctrl-F framework [5, 4] was developed to provide a language for such dynamic reconfiguration.

Naturally, dynamic reconfiguration is much more challenging than just configuration checking, as
one needs to assert that the properties hold at any time. In such context, we analyse the behaviour of
components, in order to show, for instance, that two components have the same behaviour, or that one
refines an other, etc. . Therefore, an important part of this thesis is to devise theoretical tools (a form of
bisimulation) which allow us to perform this behavioural study.

Conclusion. As a conclusion, there is quite a lot of frameworks to build modular systems. A lot of work
has been done to have expressive composition operators, dynamic behaviour of the component graph, and
to allow sharing components. However, there is no study on the notion of encapsulation with freedom in
the choice of the isolation policy.

The following section illustrates that there is no consensus on a single isolation policy which would
fit all needs. Such observation motivates the work of this thesis.

1.2 A bestiary of policies

In this section, we introduce a set of examples of policies we are dealing with. Throughout this thesis,
we will take these examples to illustrate the behaviour of our work.

Examples are presented informally. The formalisation of these examples is sometimes subtle, as we
will see later. Prior to the presentation of those policies, we have a word about whether encapsulation
shall be achieved by constraints on aliases or on accesses.

Access or alias control. A preliminary note is that there are two ways to enforce the policies hereafter.
To enforce isolation, one can constraint accesses or aliases.

By access control, we mean that we control the messages that are exchanged, while alias control means
that we control which channels exist between components. Each method has its advantages, but, during
this thesis, we found that access control was easier to work with than alias control.

In the case of control accesses, the main benefit is that components can freely move across encapsu-
lation boundaries. Indeed, even if, after moving, a component is not allowed to communicate with an
other, it can keep existing channels. If the same move happens with an alias control approach, one need
to either forbid the move, or remove the channel first7. The drawback is, of course, that each message
shall be checked individually at exchange.

This duality is yet an other example to illustrate that the very notions of encapsulation and isolation
are not well understood, or at least not consensual.

The actor model ([31]). The actor model is a model in which the main entities are actors which run
concurrently and communicate using messages. Being a locus of computation, actors have access to some
memory, which is not shared among actors (i.e. message passing is the exclusive way of communication).
An example of an actor system is provided in Figure 1.2.

In practice, actors may be on different machines (in which case memory isolation is ensured by
construction), but it is not necessary. Typically, a library can provide an actor model to a language8, in
which case one of the job of that library is to ensure memory isolation; or the actor model can be the
computational model of the language9, in which case the compiler must ensure memory isolation.

allows a wide range of policies, so that users can actually choose the one that suits their need; so that we can observe which
patterns emerge.

7Notice that, in the general case, this notion of revoking channel can also happen for other reasons than object moves.
8e.g. Akka for Scala ([1]), Actix for Rust ([48]) or the C++ Actor Framework (CAF: [14]).
9e.g. Erlang
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Object 1 Object 2 Object 3 Object 4 Object 5 Object 6

Actor 1 Actor 2 Actor 3

Figure 1.2: Example of an actor system with three actors. Each actor has a private stack of objects used for local
computation. Each actor can communicate with objects in its stack or with other actors. Objects can communicate with
other objects within the stack they belong to, as well as with their respective actor.

Nested actors. An intuitive extension of the actor model is to nest actors. Said otherwise, objects of
an actor are actors themself. Nesting actor comes naturally, for instance to model a cluster of computers
running concurrent programs. One may want to have a hierarchy of actors: outer actors to represent
distinct computers, and inner actors to represent the concurrent programs. See Figure 1.3 for an example
of such system. We consider an arbitrary number of nesting levels.

Object 1 Object 2 Object 3 Object 4 Object 5 Object 6

Actor 1 Actor 2 Actor 3

Outer actor 1 Outer actor 2

Figure 1.3: Example of nested actors (two levels of nesting). Actors belonging to the same memory domain (e.g. Actor 2
and Actor 3) can communicate as previously, and to their respective higher level actor (Outer actor 2 here). Actors that do
not belong (e.g. Actor 1 and Actor 3) to the same domain can not communicate directly (same than objects). Also, notice
that an outer actor does not necessarily have a direct link to all inner actors that are in its domain (for instance, in this
example, Outer Actor 2 is not directly linked to Actor 3).

A bank management system with shared accounts.

Remark. The two examples discussed originate from [43]. /

This example extends the actor model with the possibility to locally break the isolation. Intuitively,
we model a bank system in which both Alice and Bob each have a separate account, and in addition they
share a third account (see Figure 1.4).

In this example, Alice should be able to communicate with her account and with the shared account,
but not with Bob’s account (and vice-versa for Bob).

Therefore, this example can not be modeled using the actor model presented before: since Alice
should be allowed to modified her account, she must either be an object in the memory of the actor
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implementing her account, or an actor at the same level than her account. Since she should also be
allowed to modify the shared bank account, she must either be an object in the memory of the actor
implementing the shared account, or an actor at the same level of the shared account. Therefore, she can
only be implemented as an actor at the same level than both her account and the shared account; and
the situation is similar for Bob. All elements are implemented as actors and Alice ends up being able to
modify Bob’s account10.

There is a need to have a mechanism to allow relaxing the constraints: to allow objects to belong to
multiple actor’s memories at the same time.

Bank

Alice’s Account Shared Account Bob’s Account

Alice Bob

Figure 1.4: An example of a system which requires some notion of sharing.

An other example which illustrates the need for sharing is the example of an iterator for linked
lists. Consider a simple linked list, such as the one presented in Figure 1.5. We have a chain of nodes
N1, . . . , Nn, each of them having a reference to their content D1, . . . , Dn. The user may want to have
an iterator to browse the list. In order to be efficient (accesses in constant time), the iterator must have
access to the Nis; yet, to be useful, it should not be contained in the list aggregate, as it would, in that
case, be unavailable from outside the aggregate.

Head

N1 N2 N3

D1 D2 D3Iter

Figure 1.5: A linked list with an iterator. The aggregate of the list is in blue. The iterator object should have an access to
the internal details of the aggregates, while remaining outside that aggregate.

A logging system. Consider a software system composed of two parts: the main system S which
performs the operations on n subsystems S1, . . . , Sn; and a logging component L, which offers to access
points L1, . . . , Ln for S1, . . . , Sn respectively (see Figure 1.6 for an example with n = 2).

In this system, we want to allow S and L to communicate with their subcomponents, yet we do not
want S to be able to communicate with L, nor Si with Lj and vice-versa, if i 6= j.

10We do not explore the possibility that Alice and Bob are actors, and the accounts are objects of the actors. This
implementation would result in the same situation in which the bank account should lie simultaneously in Alice’s and Bob’s
memories. In addition, with such an implementation, all accounts would not be able to communicate together, which we
may, intuitively, want, for instance to implement transfers.
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Such systems are useful in practice: logging systems typically write to a single file (or even to the
standard or error output). In such cases, L typically implements a queue of logs to be written.

This system does not exhibit any relevant hierarchy. S and L can exist independently, while each Li
exists because of Si (said otherwise, if S1 is removed, then Li should also be removed) and of L (if L is
removed, all Lis should be removed too).

S

S1

S2

L1

L

L2

Figure 1.6: An example of the logging system with n = 2. Filled areas group nodes that are allowed to communicate
together. Channels (i.e. arrows) in black are allowed, since they remain in the same filled area: e.g. the arrow from S to S1

remains in the blue area. However, channels in red are not allowed, since they do not lie in a single area: e.g. there is not
a common area to both S and L, therefore the arrow from S to L is not allowed.

1.3 Context, goals and scope

Context. The starting point of the thesis is the Location graph framework11 (see [57] for an introduc-
tion). This framework is explained in further details in Section 3.1; but, in a nutshell, it is a framework
for component-based systems which allows the user to define some properties that should be maintained
during the execution of an instance. In particular, the policy is not coupled to a given instance, mean-
ing that both part can be written by different groups, and that the policy can be reused across teams,
projects, etc.

Goals. As with most component based systems, we want the location graph framework to be suitable
to build large software infrastructures. As we saw in the previous sections, to achieve our goal, the
notion of encapsulation is of prime interest. In addition, we want it to accommodate various component
graph topologies. Therefore, the first goal of this thesis is to study encapsulation in the location graph
framework, and to show that the characterisation we will develop can describe all the policies shown in
the previous section.

Concerning this first goal, our contribution is a characterisation of encapsulation with a behavioural
equivalence between a plain location graph, and a location graph in which aggregates are implemented as
a single location. To the best of our knowledge, this is the first time encapsulation is described with such
characterisation. Morally, such approach is interesting as it formally proves that thinking of aggregates
of objects as unique composite object is sound. In a second step, we implement the isolation policies
described in the previous section, which shows that the framework is flexible enough to accommodate
various policies.

The second part of this thesis is devoted to the actual implementation of the location graph framework.
Having a actual prototype of the framework is of prime importance, as it allows us to confront our formal
framework with actual use cases. It is also a first step to disseminate our (so far) theoretical work to other
communities, such as developers or other research teams, and gather feedback from them. Therefore, the
second goal of this thesis is to provide a prototype implementation of the framework.

11Also called Hypercell.
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Our second contribution is this prototype. Of course, a fully optimised implementation would be the
subject of a full thesis, if not more, so we did not intend to optimise the implementation. Yet, it is
complete enough to implement the isolation policies we showed. We actually implement two examples
which uses those policies.

Outline. Chapter 2 reviews the current techniques and methods that are related to our study. In a
first section, we present various formal approaches to the notion of encapsulation in process calculi. In
a second section, we review how programming languages currently implement isolation constraints. We
conclude this chapter with a small section on a system approach.

Chapter 3 is composed of three parts, in the first one, we introduce the location graph framework,
its syntax and semantics. The following section is about the notion of comparison for location graphs.
In that second section, we introduce the notion of heterogeneous simulation and partial bisimulation, in
order to provide behavioural equivalence among instances of location graphs. Finally, the closing section
of that chapter introduces a notion of encapsulation for location graph. This notion is based on nesting
graphs, and we show that this notion is consistent with our behavioural equivalence: flat and nested
graphs are similar.

Chapter 4 applies the result of the previous chapter to well-known isolation policies. For each policy,
we show how to implement it using location graphs, and we formally describe the isolation invariants they
ensure. In the first section, we study hierarchical policies, including hierarchical policies with sharing.
In the second section, we show an example of non-hierarchical policy: the logging system we presented
above.

Chapter 5 presents an implementation of the location graph framework, as a library for Rust. In
the first section, we introduce informally the choice we made to implement the framework, in particular
the divergences from the theoretical framework. The second section presents an abstract machine, which
formally describes our implementation. Section 5.3 presents the library, from a user’s perspective. It
shows the API provided, and describe informally each component of our library. Section 5.4 is the
developer’s counterpart to Section 5.3: it presents the internal details of the library and explains how
we implemented the abstract machine in Rust. The last two sections of this chapter shows some actual
programs we wrote using our library. In Section 5.5, we present some utilities that makes the framework
usable in practice. This typically includes an implementation of TCP sockets as locations, etc. Finally,
Section 5.6 shows how our running examples can be implemented in our library. This section contains
two examples: (i) the example of a simple bank system with clients and (shared) account, to illustrate
hierarchical policies with sharing; and (ii) a Publish/Subscribe server, which internally uses a logging
system such as the one presented above, to illustrate that our framework can accommodate ad-hoc
systems.

For the unfamiliar programmer, a suggested reading order could be, after reading this introduction,
to read the introduction of Section 3.1 to get familiar with the ontology of the framework, and then to
jump directly to Section 5.3 and play with the library to get familiar with the notions developed in this
document. Once familiar, they can have a quick look at remaining of Section 3.1 to have a more formal
presentation of the framework and get use to the terminology. They can finish with the remaining parts of
Chapter 5. Chapters 3 and 4 are not necessary to understand the implementation and the programming
aspects of the thesis.

For the theorist, this thesis can be read in the written order.

Scope. Our goal is mainly to offer the possibility to write as many different policies as possible; more
than to optimise the efficiency of the resulting program. Said otherwise, we do not aim to restrict the
possibilities of the location graph framework in the name of performance.



Chapter 2

State of the Art

The question of isolation is ubiquitous when modelling complex systems. Consider, for instance the
context of (formal) process calculi, where processes should not be allowed to communicate freely, object
oriented languages, where aliasing has to be controlled, and software systems, for instance with package
managers or complex distributed systems (e.g. servers). This chapter presents, in order, the isolation
mechanisms that exist for those various contexts.

We review briefly those different contexts. While a lot of approaches have been proposed, we can not
find a proposal which has both a strong formal basis for reasoning; a possibility, for the user, to write its
own isolation policies; and which isolation properties are stated globally, and not at the component level.

Contents

2.1 Isolation in process calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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2.3.1 Law-Governed Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Isolation in process calculi

The question of isolation and encapsulation in process calculi is both ubiquitous, yet rarely explicit.
Consider, for instance, Milner’s Space and motion of communicating agents [38]: in the introduction, he
mentions a list of important concepts to characterise the behaviour of ubiquitous systems, and “encap-
sulation” is one of them. The very notion of digraph, the model introduced in that book is, in essence, a
model of graphs which nodes are digraphs themself, i.e. a form of nesting.

Yet, that occurrence of “encapsulation” in the introduction is the only in the whole book: while
the notion of nesting is intuitive and that encapsulation is cited as an important concept, the study of
isolation (the other component of encapsulation) is not done1.

In this section, we will see various proposals of a notion of encapsulation in process algebras. Most
often, this notion of encapsulation is quite weak and informal, and is, essentially, a notion of located and
moving processes.

We begin our presentation with the π-calculus (which only has a notion of name restriction), and a
distributed variant, the Dπ-calculus, which is probably the simplest calculus with a notion of location.
We continue with mobile agents, which formalise the notion of boundary, which can be nested to create
hierarchical structures. We continue with Klaim, which takes an other approach, with a extension of
Linda, which is a model for concurrency based on a shared memory. Finally, we present the Kell calculus,
which is an attempt to subsume all previous calculi.

Name restriction in the π-calculus. The standard π-calculus ([39, 40]) includes a construct (νx.P )
for name restriction, which allows to bind a channel (here x) only in some processes (here P ). For
instance, in the term P ‖ (νx.(Q ‖ R)), the name x is bound only in processes Q and R, and appears free
in P . Such construct already provide some form of isolation. However, this is quite limited in that only

1This is, of course, not an attack to Milner’s work. To be fair, the book claim to present the general model of bigraphs,
and to study its pure version, i.e. without additional constraint.

9
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tree structures can be achieved: it is not possible to have three names x, y and z such that x is shared
by P and Q; y by Q and R; and z by R and P .

Distributed π-calculus. The distributed π-calculus [29] ([30] for a short intro, [28] for a fully detailed
description), called Dπ is a proposal to introduce the notion of location in process algebras, namely to
the π-calculus (the exact variant of the π calculus is a polyadic π calculus, but the results can probably
be transposed to other variants). The paper comes with a typing system for capabilities, which we do
not present here, for the sake of remaining simple.

In a nutshell, the Dπ calculus binds regular π processes to location, to form nets such as: `[[P ]] ‖ k[[Q]]
which denotes a net with to processes P and Q, which are respectively located at ` and k.

The Dπ-calculus adds new primitives to account for the newly added locations: a primitive go`.P ,
which moves the process to ` and continues with P , and ν`c, which replace channel creation with located
channel creation: the new channel c is created at location `.

An important point with respect to the semantics is that the rule for communication requires both
processes to be located at the same location. However, with the primitive to move processes, it is possible
to implement an asynchronous communication across locations.

Finally, the usual structural equivalence is adapted to take into account locations: for instance,
`[[P ‖ Q]] ≡ `[[P ]] ‖ `[[Q]] or `[[νe.P ]] ≡ ν`e.`[[P ]] (if e 6= `).

An informal note on the type system that comes with Dπ: the main idea is to attach capabilities to
location and channels, such as the capability to read or write on a channel, to create channels, etc. With
such typesystem, it is possible to prevent some processes to have undesired behaviour.

As a conclusion, Dπ is a simple way to introduce the notion of location to process calculi. It allows
the characterisation of simple systems, but not more complex systems, with e.g. nested localities.

Mobile Ambients. Mobile Ambients [12] introduces the notion of Ambients, which formalise the notion
of domain or boundary. In this calculus, processes are enclosed in ambients, e.g. n[!P ], where n[. . . ] is the
ambient and !P a process (in this case a replication, similar to other process calculi). This calculus adds,
in addition, some capabilities, i.e. actions to control the ambients. There are three kinds of capabilities:
in n, out n, and open n. Informally, the first moves the enclosing ambient into n, the second moves the
enclosing ambient outside n, and the last removes the ambient n2.

For instance, the term n[in m.P ]|m[Q] contains two ambients, n and m, and the process in n begins
with a capability that moves n into m. Such term reduces into m[n[P ]|Q]. The capability out n is
the dual: suppose P = out m.P ′, then m[n[out m.P ′]|Q] reduces to n[P ′]|m[Q]. Finally, the capability
open n removes an ambient n (at the same nesting level). For instance, a term open n.P |n[Q] reduces
to P |Q. Notice that, similarly to the distributed π-calculus, communications are expected to be taken
within a common ambient, but the calculus allows to move communicating agents across ambients to
have a form of asynchronous communication.

This allows the description of hierarchical structures. Notice that, for all three capabilities, the am-
bient on which the action is applied has no control. For instance, in the open example in the previous
paragraph, the ambient n has no control over the capability. A variant, call Mobile Safe Ambient [35],
introduces such kind of control. There exist a number of other variants, typically to add typesystems [11],
to limit the capabilities [10] (which removes the open capability, and replace it by primitives for commu-
nication across ambients).

As a conclusion, Mobile Ambients include a mechanism to control modules’ boundaries. With such
mechanisms, one can create or remove domains, and move processes across domains. Yet, it does not
allow shared modules: syntax constraint hierarchical structures (even though the hierarchy can change
dynamically).

Klaim. An other approach is the one of Klaim [19] (see [20] for a brief introduction), a calculus inspired
by Linda [26]. In Linda, the basis is a collection of tuples (the tuple space), each field of each tuple being
an expression or a value. The calculus includes primitives to create and add new tuples to the tuple
space, and to retrieve some tuples and use them as parameters.

Klaim adds a notion of locality to Linda’s constructs3. In Klaim, processes are attached to a
(physical) locality, such as s ::ρ P , to form nodes. Such term indicates that the process P takes place at
the location s. In addition, processes can manipulate location in an abstract way, via logical localities,
i.e. location variables. The ρ in the term is a (partial) mapping from logical to physical localities. A
Klaim net is a parallel composition of multiple nodes.

2There are some subtleties on the nesting of the n in each case, but we shall keep it simple and ignore those formal
aspects in this presentation.

3There are other small changes, but not important for this presentation.
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Primitives of the calculus are those from Linda, with locality indications. For instance, the term
out(t)@` adds the tuple t in the tuple space at location `.

Remark. Notice an important difference between Mobile Agents and Klaim: the later allows non-
hierarchical structures, such as one including forms of sharing. Actually, the authors of [19] remark
(Remark 2.1) that it is quite easy to add nesting to Klaim nets. /

In a nutshell, Klaim is completely different from the previous calculi. First, it is less influenced by
the π-calculus. Also, it allows some forms of sharing, with e.g. shared tuple space, although it does
not (formally) allow nesting. Finally, the framework does not include a mechanism to enforce a chosen
sharing/isolation policy, meaning that the correctness of such sharing policy rely on the skill of the user.

The Kell calculus. The Kell calculus [8, 54] intends to subsume most previous calculi. It is an
higher-order process calculus, with localities.

Terms of the calculus are quite similar to those of any other higher-order process calculi, with two
differences: (i) the syntax to receive messages is ξ . P , where ξ is a pattern that should match an actual
name (the language and the matching rules of patterns are parameters of the language); and (ii) there
are kell messages, used for passivation, which have the form a[Q].R4.

The addition of those two elements allows a variety of constructions such as forbidding communication
across modules, intercepting messages at a boundary, etc. Yet, even tho the Kell calculus unifies previous
calculi, it lacks a method to specify the isolation policy that should be enforced.

2.2 Language approach
The second domain where encapsulation takes an important part is, naturally, programming languages,
and in particular object-oriented languages. The main approach consists in static verification of some
isolation properties, to prevent uncontrolled object aliasing. This static verification is typically ensured
by the type system of the language, and lies on ownership domains, which is a class of properties which
capture the intuitive notion of encapsulation.

An other approach is the instrumentation of a host language with tools to express some policies, which
are then ensured (most often dynamically). To illustrate this approach, we will consider Voigt’s access
contracts.

2.2.1 Ownership based approaches

We first present various approaches that are all based on the notion of ownership. This notion aims
to formalise the notion of encapsulation used in object-oriented languages. This approach was first
introduced by Clarke, Potter and Noble in [17], and then modified and extended many times. A survey [16]
written by Clarke et al. covers in detail the variants we expose in this section.

In object-oriented languages, an object (e.g. a Car) can be composed of other objects (e.g. four Wheels).
The intuition of encapsulation is that, in this situation, no external object (e.g. a Driver) should be able
to access any Wheel. Indeed, if the Driver wants to speed up, for instance, it should not be able to
call the method increaseRotationSpeed of the Wheels, but they should call the method speedUp of
the Car, which will call the required methods, be it the increaseRotationSpeed of the Wheels, but also
checkGasLevel.

Ownership based approaches are characterised by an ownership relation among objects, and an access
policy described according to this relation. Two kinds of accesses are distinguished: reads and writes.

We explore extensively a lot of policy variants of this approach. All those variants are interesting,
and there is not a single one that supersedes the other. This illustrates the intrinsic difficulty to formally
capture our intuition of encapsulation, and the need to let the user choose the actual policy they want.

For each policy, we have a word about the implementation, even though we are more interested in
which policies are implemented than in how they are actually implemented.

Owners-as-dominators. The most basic ownership policy is owners-as-dominators. In this policy,
each object is possibly owned by an other (unique) object, creating a hierarchy of objects5. Each owned
object has a single owner, and an owner can have multiple owned objects. Objects that belong to the
same owner are called siblings. We call the ownership domain of an owner the set of all objects it owns,
in addition to itself.

On access policy, owned objects are not visible outside their ownership domain, i.e. they are not
accessible in any way (see Figure 2.1).

4Passivation removes a Kell (i.e. a location) and uses the process it contained in an other process: a[Q].R|a(x).P reduces
to R|P{Q/x}.

5Objects that are not owned being at the top of the hierarchy.
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Figure 2.1: Representation of an owner-as-dominator policy: owners (A and B) own A1, A2 and A3 (resp. B1, B2 and
B3). Both ownership domains are dashed. Communication between ownership domains are restricted to owner nodes.
Communications between owned nodes belonging to different ownership domains (such as A3 and B1 in the figure) are
forbidden (shown in red in the figure).

This policy was proposed in Clarke et al. seminal paper ([17]) on ownership types. In their paper, the
owners-as-dominators policy is statically ensured by extending the Pizza’s type system and adding types
annotations. Each type is annotated with rep or norep to indicates whether it belongs to the objects
representation or not. An example (taken from [17]) is given in Figure 2.2.

The actor model [31], in which actors, with isolated internal states, execute concurrently and
communicate with asynchronous message-passing primitives is an example of such isolation policy.
Sabah’s thesis [50] formally proves this fact, by showing that no information can leak from an actor,
except by a message sent by the actor.
Actually, there have been proposals to extend the actor model with shared states. An example
is [18]. In this paper, the authors add domains, which are special entities which offer two primitives
(whenShared and whenExclusive) to access the state, in a shared or exclusive way. Even though
not explicitly said, the authors implement a owner-as-ombudsmen (see below).

Owners-as-modifiers. Ownership-as-modifiers is a relaxed version of ownership-as-dominators in which
ownership constraints apply only to write (i.e. modifying) accesses; read accesses are free.

This policy is interesting as it distinguishes the reference and the usage: objects are allowed to
have any references, only using the references is constrained. Despite being quite close to owners-
as-dominators, the approach is totally different.

Figure 2.3 shows an example of possible accesses in an owners-as-modifiers context.

Owners-as-ombudsmen ([43]). By design, neither owners-as-dominators nor owners-as-modifiers can
be used when some data must be shared, e.g. in the bank example (see Figure 2.4). The owners-as-
ombudsmen policy relaxes this constraint by allowing the programmer to explicitly allow some objects
to belong to multiple ownership-domains simultaneously.

The owners-as-ombudsmen policy was implemented in a modified Joëlle compiler, a Java based lan-
guage. In this language, classes are annotated with ownership domains (e.g. class MyClass<owner, a

, b> has a reference to the ownership domain of its owner, and two other ownership domains a and b).
To share some ownership domains, objects can use the special domain bridge to refer to an other object
belonging to the same aggregate, and the special domain aggregate, which is the domain accessible by
all objects refered by bridge.

Notice that it does not seem possible for an object to belong to two different aggregates simultaneously.
Figure 2.5 shows an example of the class Person used to implement the shared bank account example

using Joëlle.

Flexible dynamic ownership. An other approach to relax ownership is Flexible dynamic owner-
ship [36, 62]. This is a variant of a dynamically verified owners-as-dominators policy, where the authors
add Filters and crossing handlers.

Intuitively, for each ownership boundary, we can define in or out filters, which define whose messages
can be sent to (resp. from) objects in the ownership domain.
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1 class Car {

2 rep Engine engine;

3 norep Driver driver;

4

5 // ...

6

7 rep Engine getEngine() { return engine; }

8 void setEngine(rep Engine e) { engine = e; }

9 }

10

11 class Main {

12 void main() {

13 norep Car car = new norep Car();

14 rep Engine e = new rep Engine();

15 norep Driver driver = new norep Driver();

16

17 car.driver = driver; // Allowed

18 car.getEngine().stop(); // Forbidden

19 car.setEngine(e); // Forbidden

20 }

21 }

Figure 2.2: Example of the modified Pizza language which implements the owners-as-dominators policy. This example
shows the implementation of a Car which has two fields: an Engine and a Driver. The Engine is part of the representation
of the car (i.e. each instance of Car owns its respective Engine) while the Driver is outside the representation of the Car.
The Engine class (not shown) offers a method void stop(). The main function instanciates a Car, and successively tries
to access its fields. Line 17 is allowed, since the Driver is not part of the ownership domain of the Car, and is therefore
accessible. On the other hand, both lines 18 and 19 fail: the former because the getEngine method leaks the representation
reference (notice that accessing directly the engine with car.engine.stop() would also fail); and the latter because the rep

Engine e belongs to the Main representation (rep in Main and in Car do not bind the same ownership domain). Extracted
from Figure 1, in [17].
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Figure 2.3: Representation of an owner-as-modifiers policy: compared to Figure 2.1, objects can cross ownership domains
boundaries to perform read accesses; write accesses remain forbidden. Also, accesses between A and B are possible (both
reads and writes) since they do not cross boundary.
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Figure 2.4: Example of a memory layout that can be achieved with the owners-as-ombudsmen policy. The shared object S
belongs to the ownership domains of both A (dashed) and B (dotted).

1 class Person<owner> {

2 Account<aggregate> account;

3 Person<bridge> spouse;

4 void share() {

5 accout = spouse.getAccount();

6 }

7 Account<aggregate> getAccount() {

8 return account;

9 }

10 }

Figure 2.5: Example of an implementation of the bank example using Joëlle implementation of the owners-as-ombudsmen
policy. In this example, the Account of a Person does not lie in the Person’s representation, but in a special domain
indicated by aggregate. This domain is shared among all objects which owner is bridge (e.g. the field spouse). Extracted
from Figure 4, in [43].
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On the other hand, crossing handlers dynamically check (when a new reference that crosses an own-
ership domain is created) that object aliases are controlled. By default, no aliasing is allowed, but the
user can customise this behaviour.

Ownership domains. In [2], Aldritch et al. improve ownership policies by allowing the programmer
to create and name various ownership domains (even multiple domains per object) and defining access
constraints between domains.

This extension separate the definition of ownership domains, which were previously inferred from the
structure of the layout of the memory, and access rights from the mechanism which enforce domains
isolation. Notice that ownership domains are types annotations, and are therefore checked statically by
the typer.

Figure 2.6 shows an example of a linked list implemented using ownership domains. Figure 2.7 shows
which objects belong to which ownership domains in that example.

Variations of ownership policies. Ownership-based policies state which accesses to the representa-
tion of a given aggregate are allowed. However, there is no constraint on how aggregates can be referenced,
nor on whether there can be outgoing arrows from inside an aggregate to the outer world.

External Uniqueness. Some papers suggested coping with aliasing using the notion of unique
references6 (e.g. the unique type modifier in [32], unsharable objects in [41]). As shown above, these
approaches are to restricted for what we intend to do. However, in [15], Clarke and Wrigstad suggested
External Uniqueness as a good candidate for the manipulation of aggregates. This policy states that
there can be a unique reference to an aggregate from the outer world. Combined with ownership based
policies (e.g. owner-as-dominator), this reference can only be toward the owner of the aggregate.

The authors claim that External Uniqueness allows simpler object borrowing and software updates.

Definition of aggregate and outgoing accesses. Ownership policies provide statements on which
external objects are allowed to access the internal representation of aggregate objects; they state nothing
about accesses from within the aggregate toward the outer world. A simple way to elude the question is
to ensure that there can not be outgoing accesses.

For instance, in Island, aggregates are formed as the transitive closure of objects accessible from the
aggregate entry point (called the bridge).

“An island is the transitive closure of a set of objects accessible from a bridge object. A bridge is thus
the sole access point to a set of instances that make up an island; no object that is not a member of the
island holds any reference to an object within the island apart from the bridge.” ([32])

Therefore, by definition, there are no outgoing arrows from the aggregate to the outer world7.

Balloon types ([3]) follows the same principle, but adds static analysis in order to statically infer and
check aggregate isolation.

Notice, in these cases, that the absence of outgoing reference is a direct consequence of the definition
of aggregate, written as such to simplify (or even perhaps to make possible) the analysis.

2.2.2 Access contracts

The other possibility to introduce isolation control in programming languages is to let the user specify
which accesses they allows. We illustrate such choice with access contracts.

Presentation. Access contract is a mechanism introduced by Voigt [60, 61] in her Ph.D. thesis. Voigt
implemented the mechanism in JavaCon, a modified OpenJDK compiler which rewrite contracts as
regular java code.

When a variable is declared, a contract is attached to the variable which restricts how the content
of the variable can be accessed. Hence, if multiple variables point to the same object (i.e. the object is
aliased), multiple contracts exist, each restricting the object access. Notice that aliasing is not prevented,
only accesses.

Figure 2.8 shows an example of java with contracts. On line 3, an object o is declared with the
contracts true and true (there are two contracts: the first one for read accesses and the last one for
write accesses8).

6There can be at most a unique static reference (class field, heap stored) to each object, yet the reference can be borrowed
(i.e. there can exist copies of the reference on the stack, for instance to use it as a method argument).

7To be precise, there are no static outgoing references (class fields). Dynamic references (i.e. references on the stack) are
allowed.

8When both contracts are the same, it is possible to write it only once.
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1 class Sequence<T> assumes owner -> T.owner {

2 domain owned;

3 link owned -> T.owner;

4 owned Cons<T> head;

5 void add(T o) {

6 head = new Cons<T>(o, head)

7 }

8

9 public domain iters;

10 link iters -> T.owner, iters -> owned;

11 iters Iterator<T> getIter() {

12 return new SequenceIterator<T, owned>(head);

13 }

14 }

15

16 class Cons<T> assumes owner -> T.owner {

17 Cons(T obj, owner Cons<T> next) {

18 this.obj = obj;

19 this.next = next;

20 }

21 T obj;

22 owner Cons<T> next;

23 }

24

25 // ...

26

27 class SequenceIterator<T, domain list>

28 implements Iterator<T>

29 assumes list -> T.owner {

30 list Cons<T> current;

31 // ...

32 T next() {

33 T obj = current.obj;

34 current = current.next;

35 return obj;

36 }

37 }

Figure 2.6: Example of a linked list with ownership domains. The corresponding memory layout is shown in Figure 2.7.
In this example, the class Sequence declares two domains: owned (line 2) and iters (line 9). On line 3, the programmer
allows the ownership domain owned to access the owner of the type T. Similarly, the ownership domain iter is allowed
to access T.owner and owned (line 10). One can get an iterator over the sequence by calling the method getIter. This
iterator belongs to the domain iter and can therefore access the elements of the sequence. The iter domain being public,
Iterators are accessibles outside their owner’s domain. The Iterator class, on its side, requires the cells of the list to be
allowed to access their content (line 29). Extracted from Figures 3 and 4, in [2].
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Figure 2.7: Representation of memory layout and ownership domains corresponding to an instance of a linked list presented
in 2.6. Initially, we are given the domains S.owner (the domain the sequence belongs to) and T.owner (the domain the Ts
belong to), and S.owner has access to T.owner, by assumption (the dotted green arrow represent this assumed clearance).
Since owned and iters are created by S which belongs to S.owner, S.owner has access to both those domains (the dotted
red arrows). Finally, owned is explicitly allowed to access T.owner and iters to access owned and T.owner (the dotted blue
arrows).

1 class Main {

2 public static void main(String[] args) {

3 Object o {true, true} = new Object();

4 MyObject o1 {true, true} = new MyObject(o);

5 Object alias {accessor == this ||

6 accessor == accessed} = o;

7 alias.hashCode();

8 }

9 }

Figure 2.8: JavaCon: java with contracts. In this example, two objects o and o1 are created, with o1 referencing o. A
reference alias aliases o, and adds new contracts which then forbid o1 to access o.

Contracts are side-effect free expressions which evaluate to boolean. If the expression evaluates to
true, the access is granted; otherwise it is not. Hence, the contracts of the variable o allow any access
to the referenced object.

On line 4, o is given as an argument to construct o1, of type MyObject. The reference to o is possibly
aliased by o1. However, the contract described above does not prevent accesses to o by o1.

When a reference is aliased (such as in line 5), the new contracts are additional constraints: all
contracts must be satisfied to grant the access. In the example, the contracts of the alias is more
restricted than the contracts of o: they specify that only this or the object can perform the accesses
(the accessor (resp. accessed) keyword is an extension of the language and binds, at the evaluation of
the contract, to the object that performs the access (resp. is accessed)). Thus, as soon as the alias is
created, o1 can no longer access o, as it would violate the new contracts specified by the alias reference.

In addition, there is the possibility to aggregate different references in groups, and to use group
inclusion to define the contracts. Groups can be manipulated as regular references, and thus allow to
manage accesses that are not statically known. The example Voigt present is the case of a linked list,
reproduced in Figure 2.9.

In this example, each node of the linked list creates a group nextNodes that contains itself (this) and
all the nodes –transitively– referenced by next. This is possible by recursively including next.nextNodes

in this.nextNodes. Groups can then be used in contracts, using the in keyword (to check if a reference
belongs to a group), such as in line 3; or the canread (resp. canwrite) (to check if a reference can read
(resp. write) an other reference), such as in line 9.

The contracts mechanism also adds several constructs such as contracts parameters (to manipulate
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1 class LinkedList {

2 group allNodes = {this, head.nextNodes};

3 Node head {accessor == this || accessor in allNodes};

4 // ...

5 }

6

7 class Node {

8 group nextNodes {this, next.nextNodes};

9 Node next {accessor canread this, accessor canwrite this};

10 // ...

11 }

12

Figure 2.9: Linked list in JavaCon. All elements which belong to the list are grouped together in the group allNodes,
which can be used as a regular identifier is contracts. Extracted from [61], p. 49.

1 class MyObject {

2 Object ref {false, false};

3 public MyObject(Object ref {true, true}) {

4 this.ref = ref;

5 }

6 }

7

Figure 2.10: Implementation of the class MyObject used in Figure 2.8. At instanciation, the constructor aliases the object
received in argument, with non satisfiable contracts. This prevents any reference to the object to be used.

contracts like parameters), contract suspension (to temporary disable contract verification), distinction
between pure and impure methods (to distinguish whether methods are read-only, or read/write).

Finally, notice that a static analysis is provided to decide whether some contracts are valid or not.
However, not all contracts can be statically verified.

Limitations. Although access contracts provide a very fine grained control over accesses, it is not easily
possible to implement system wide invariants. In addition, it is not possible to predict the outcome of a
program without a knowledge of the whole program.

Consider again the example in Figure 2.8. At line 7, the main method in the Main object calls the
(pure) method hashCode() on the reference alias. From the perspective of the Main object, such an
access should be allowed, as the two known contracts (the one attached to the o reference and the alias

reference) allows it.
However, consider the implementation of the MyObject class in Figure 2.10 below. The reference

received at instantiation is copied in the variable this.ref which both contracts are false, forbidding
all accesses. Assuming that the object referenced by o1 is not garbage collected (which would happen
in more involved examples), the contracts can not be satisfied and, overall, the program can not make
forward progress.

Finally, the behaviour of JavaCon is not well described in presence of concurrency.
“Although not described in detail here, our contract library implementation can handle programs

with multiple threads. Its methods and data structures are synchronised in such a way that addition,
remove and evaluation of contracts work correctly, even when there are concurrent accesses from different
threads.” ([61], p. 148.)

However, even if methods are synchronised, it is not clear whether contracts checks are not atomic
with fields accesses. For instance, consider a program which contains the method in Figure 2.11 which
contains a variable i; and, concurrently, o1 executes i = 3; and o2 executes i = 4;.

After the two assignments in o1 and o2, i should be 4: if o1 perform the assignment first, then o2,
i is trivially 4; if o2 modifies i first, then o1 can no longer modify i, since the contract is equivalent to
i == 0 when accessor is o1.

However, contracts verification are not atomic with the access. Hence it can be the case that i end
up being 3.
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1 void m(Object o1, Object o2) {

2 int i = 0 {(accessor == o1 && i == 0) || accessor == o2};

3 // o1 tries to assign 3 to i and o2 tries to assign 4 to i concurrently.

4 }

Figure 2.11: Method in JavaCon containing a variable concurrently accessed.

1 def makeCaretaker(target) {

2 var enabled := true

3 def caretaker {

4 match [verb, args] {

5 if (enabled) {

6 E.call(target, verb, args)

7 } else {

8 throw("disabled")

9 }

10 }

11 }

12 def gate {

13 to enable() { enabled := true }

14 to disable() { enabled := false }

15 }

16 return [caretaker, gate]

17 }

Figure 2.12: Example of the Redell’s caretaker pattern in E, from Figure 9.2 in [37]. When the user calls makeCaretaker,
it instanciates an object with a single field enabled and returns a caretaker and a gate. The gate is an object with two
methods: enable and disable which switch enabled accordingly. The caretaker object forward each calls to the target, is
enabled is true.

2.2.3 Programming languages

In this last subsection, we present two programming languages which include a notion of access control
in their paradigm. First, we present the E programming language, and then Mezzo.

E. Miller’s E programming language [37] aims to be secure. Among multiple aspects, we are interested
on the capability aspects of the language.

The base model of E is the object-capability model, which differs from the traditional object model in
that it explicitly prohibit some aspects: forged pointers, direct access to (another) object’s private stack,
mutable static states. Objects communicate together using messages. The idea behind those prohibited
primitives is that access to another object can only be granted, not forged.

Notice that the model does not explicitly provide a mechanism to revoke a granted access: if Alice
gives Bob a reference to Carol, Alice can not revoke that access after. However, using proxies, one can
achieve such revocation: Alice gives Bob a reference to a proxy, that forward messages to Carol. Alice can
eventually invalidate the proxy, which stops to forward the messages (called Redell’s Caretaker Pattern).

Unfortunately, Miller’s thesis is quite vague on the techniques used to enforce those mechanisms. In
particular, it does not provide algorithms used to verify, e.g. , ∗-properties.

As of today, the interest of object capabilities increases, in particular for web applications (due to
the untrusted nature of such applications). For instance, in [58], Swasey et al. develop a logic for object
capability patterns, and formally prove the expected properties, in the context of a concurrent language
with closures and mutable states. In [22], Devriese et al. present a similar work, although not formally
proved, but on an actual language: Javascript (or at least on λJS , and already existing core calculus for
Javascript).

Mezzo. Mezzo [45] is a programming language, based on the ML language family, with an improved
typesytem, compared to other ML languages. The typesystem is based on permissions. For instance, the
user can declare mutable references, which then behave like linear types, or duplicable data, which (as
the name suggest) means that the data can be copied.
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1 data list a =

2 | Nil

3 | Cons { head: a; tail: list a }

4

5 val rec append [a] (consumes (xs: list a, ys: list a)) : list a =

6 match xs with

7 | Nil -> ys

8 | Cons { head = head; tail = tail } ->

9 Cons{ head; tail = append (tail, ys) }

10 end

Figure 2.13: Example of Mezzo, adapted from Figure 3.8 of [45]. This example shows the implementation of a list and a
function to append two lists. As usual, a list is a sum type, with two variants: an empty list or a concatenation of a head
element and a tail list; and the append function recursively matches the first list.

The main aspect of Mezzo is that the types are statically checked, even though they are quite expres-
sive. Of course, the trade off is that it is not possible to have guards such as those provided by access
contracts.

To give a taste of Mezzo, let show an example, in Figure 2.13, taken from Protzenko’s thesis, which
illustrate the capabilities of the language. In this example, the append consumes the two lists. This
enforces the type checker to assert that each time the function is called, the two lists passed as parameters
can be consumed. To perform this verification, internally, the type checker assign tokens to variables,
which keep track of the capabilities of each of the variables. When a function is consumed, the type
checker ensures that it is not used anymore. In our example, when append is called, the arguments are
not available in the caller’s scope anymore, and, of course, become available in the callee’s scope.

2.3 System approach

In the context of software systems, isolation is also a property that is important. For instance, in the
context of security, we are interested in showing the absence of interference between some components,
or some topologic invariants.

Law-Governed Interaction is a framework for distributed component systems, which introduces some
guards, to filter the messages exchanged.

2.3.1 Law-Governed Interactions

Minsky and Ungureanu introduced the Law-Governed Interactions framework (LGI for short) in [42].
This framework is (originally) made to build asynchronous message-passing distributed infrastructures,
whose messages are governed by some user-specified rules.

Presentation. An LGI is a set of agents A = {a1, . . . , an}, each exhibiting a control state C =
{s1, . . . , sn} which exchange messages taken from a set M according to a law L. The tuple 〈L,A,C,M〉
is called an L-group and is an instance of a LGI.

How a law is written is not important (the authors themself take a Prolog-like language). The
important part is that a law is a partial function on event9 which returns ruling, which are actions to be
performed on the local control state when the corresponding event is taken.

To implement LGI, each actor ai is guarded by a controller, which is a trusted agent that intercepts
messages (and forward them if allowed) and maintain the control state of ai. Figure 2.14 shows a very
simple system with two agents a1 and a2, guarded by c1 and c2.

The law is a set of rules. Upon event trigger, the associated rule is locally checked, and its effects (if
any) are applied to the control state of the actor. An example of law is given in Figure 2.15.

Since rules are locally checked and do not depend on a shared state, the system remains concurrent.

Variants. Over time, variants of the original LGI framework were proposed:

— In [55], Serban and Minsky adapt LGI to synchronous systems;
— In [56], they propose a way to change the law at runtime

9The nature of events is not specified, except that messages exchanges (sending and delivering) are events.
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(a) A message m sent by a1 is inter-
cepted by c1.
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(b) The controller c1 updates the con-
trol states and forwards the message to
the controller of the receiver.
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(c) The controller c2 updates the con-
trol state of the receiver and forwards
the message.

Figure 2.14: Example of a Law-Governed system with two actors a1 and a2 guarded by two controllers c1 and c2, which
maintain the control states s1 and s2. If a1 sends a message m to a2, this message is intercepted by c1 (Figure 2.14a). If the
emission is allowed, the message is forwarded to c2, and c1 updates the control state s1 to s′1 according to the system law
(Figure 2.14b). When c2 receives the message, it checks whether the reception is allowed, and if it is the case, the message
is forwarded to a2 and the control state s2 is updated to s′2 according to the system law (Figure 2.14c).

1 R1. arrived(x, m, y) :- amount(A)@CS,

2 do(incr(amount(A))),

3 do(deliver).

4

5 R2. sent(x, m, y) :- do(forward).

Figure 2.15: Example of the law of a system. Each control state has a field amount(n), which counts the number of message
received. Rule R1 states that upon reception of a message m, this counter shall be increased (at the control place), and the
message delivered. Rule R2 simply states that message emission is free (the message is just forwarded by the controller).

Limitations. Similarly to Access Contracts, rules which compose the law of a system are local. Con-
sidering the user wants to enforce a global invariant, they have to find the local rules suitable for the
global invariant to hold as a emerging behaviour.

A second limitation is that rules control events (mainly messages, although no exhaustive list of
event is presented). We can not, natively, write rules such as: if x can communicate with y, then x can
communicate with z. Of course, it should be possible, to some extend, to emulate such a behaviour by
maintaining an actor graph in the control state shared among all controllers. However, such an emulation
would limit the concurrency of the system.

Finally, there is no possibility to bundle multiple events so that all of them succeed or fail. For
instance, it is not possible to attempt the sending of two messages at once.

Summary – State of the art comparison

We presented various approaches to isolation and encapsulation. As a conclusion, we show how
they relate to each other on various aspects.

Encapsulation. Does the mechanism focuses on the specific problem of encapsulation, or is it
a side effect of a generic isolation mechanism? Among the approaches we presented, Ownership
types and Acme tackle that problem. The generic approach of Access contracts makes it possible
to provide encapsulation, although it is not necessarily the prime goal. On the other hand, LGI is
simply a mechanism of access control among agents.

Genericity of the policy. Whether a given mechanism enforces a fixed isolation policy, or
whether that policy can be chosen? Variants of Ownership types each enforce a fixed policy,
whereas other approach allows the user to chose the policy they want.

Global or local invariants. Whether the isolation invariant is specified for each individual
object, or whether it is a global invariant. In Access contract, contracts have to be defined for each
object. Similarly, in LGI, rules are local to each agent. On the other hand, in Ownership types
and Acme approaches, the invariant is expressed in a global way.
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Static or dynamic analysis. Whether the policy is verified statically or dynamically. Ownership
types variants are the only one that are verified statically.

Concurrent setting. Whether each mechanism works in a concurrent setting. Ownership types
and Acme allow concurrent implementation, although the specification is independent. LGI is a
mechanism for concurrent settings. Finally, Access contracts claim to remain correct in concurrent
settings, but the thesis does not emphasize this aspects, and the few explanation given makes this
claim unclear.

Location graph positioning. With respect to the previous comparison points, the location
graph framework takes place as follow. Encapsulation is a problem intended to be addressed. The
framework includes specific mechanisms to allow a wide range of encapsulation policies, which can
be expressed at the object graph level, not at the boundary of every node, while preserving the
capacity to express fine grained policies. The counterpart of this is that the analysis required to
enforce the chosen policy is performed dynamically. Finally, being design for component-based
systems, the framework was made for concurrent settings.



Chapter 3

Theoretical aspects of Location Graphs

In this chapter, we present the theoretical framework used in this thesis, called the Location Graph
framework. This framework, first presented as a short paper in [57] and studied more deeply in the
draft [33] provides a model to study computations such as the one presented in the previous chapters.

Our goal is to be able to formalise a notion of encapsulation using these location graphs. More
precisely, we are trying to develop a systematic method to transform an initial graph G into a graph G′

whose nodes contain subgraphs of G, while preserving the semantics of G.
This model has a classical notion of bisimulation, which allows to compare graphs. Unfortunately, its

definition is too restrictive, since we intend to compare graphs that are not directly comparable (we have
a graph of processes on one side and a graph of subgraphs on the other side). We hence need to define a
more general notion of bisimulation.

In section 3.1, we present the location graph model. In section 3.2, we present our notion of bisim-
ulation. We present two ways to extend regular bisimulations, and we show that they are equivalent.
Finally, in section 3.3, we present our nesting method and we show, using our notion of bisimulation,
that it preserves the semantics of the original graph.
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3.1 The location graphs model and semantics
Remark. Parts of this section are presented for the context but were done prior to the thesis. /

Motivation. The location graph framework is an attempt of to unify various component-based systems,
i.e. the framework should be expressive enough so that we can implement various component-based
systems.

Our calculus should accommodate mechanisms developed to adapt process calculi to distributed sys-
tems. This includes, for instance, localities, a notion introduced to represent the physical machines or
logical units which host processes [13], or Cardelli and Gordon’s Mobile Ambients ([12], subsequent pa-
pers [10, 35] are also relevant with respect to this thesis), which introduces a notion of boundary, that
processes may or may not cross, according to capabilities (such as “can enter” and “can exit”).

We want to provide a formal component model. A lot of component models are quite informal, which
causes problems when one has to reason about them. That being said, formal models do exist. For

23
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Figure 3.1: Ontology of location graphs. Notice that, graphically, we do not distinguish role directions.

instance, frameworks like Ptolemy ([23, 46]) or BIP (see [7, 9] for a gentle introduction to BIP). Ptolemy
focuses on the heterogeneity of the components (typically, in a single system, a component can have
discrete semantics, and an other continuous semantics), through a hierarchical structure. BIP focuses on
the notion of glues, which are operators to glue components together; various behaviours can be achieved
with different glues.

Finally, we are interested in dynamic component models, that is we should include a way to change
the topology of the graph at runtime. Various example exists. As one of many instances, let cite graph
rewriting systems (e.g. [21] or more recently [34]), which describe the relations among components and
their evolution in time.

Therefore, in this first section, we present the location graph framework, which covers all the aspects
of component-based systems we mentioned above.

Informal presentation. The location graph framework is a model of computation for component
based systems. As with most framework for component based systems, the basic ontology contains the
two following entities: (i) components, which we call locations in the context of location graphs, and
which are places of computation; and (ii) roles, which are endpoints of communication mediums, that
locations can bind to communicate together.

Locations are composed of a process, a sort, and of (bound or unbound) roles. A given role can be
bound by (at most) two locations at any time. To prevent more than two locations to bind the same role,
we use role directions, either required or provided, and we require that each role is bound at most once
in a given direction. The direction of the binding have no effect, in particular, it does not constrain the
direction of communications. In addition, communication are performed on channels, for a given role.
In this thesis, we do not use channels extensively, and therefore, we do not develop further their usage.
Figure 3.1 shows the various elements of a simple location graph.

The dynamic aspects of location graphs are governed by three elements: (i) an unconstrained se-
mantics, defined according to reduction rules which define how a single location can reduce; (ii) an
authorisation function, which acts as an oracle which, given the shape of the graph, allows individual
location to perform their transition; and (iii) a global semantics, which uses the two above elements and
defines a rule for composition. Except for the authorisation function, the two other elements are quite
usual for component based systems.

As its name suggest, the authorisation function of a location graph instance authorises (or forbids)
each individual location transitions. This function rely on the topology of the graph, i.e. the location
graph, without the processes, which we call the skeleton of the graph. In the skeleton, the roles and
the sorts of locations are still visible, and, with the attempted transition, are the only information the
authorisation function can use.

As such, each authorisation function defines a policy. For the same unconstrained semantics, two
authorisation functions can yields different results.

This section introduces formally the elements developped above. Section 3.1.1 defines the static
aspects of location graphs. Static properties (such as “there are not two locations that bind the same
role in the same direction”) are introduced thanks to predicates to ensure well-formedness. The dynamic
aspects are presented in Section 3.1.2. Prior to the definition of the semantic per se, we introduce a few
elements, such as the skeleton of a graph, or the labels of the transitions of our semantics. Finally, in
Section 3.1.3, we can show various straightforward, but useful, operations and results on graphs.
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3.1.1 Elements of location graphs

In this section, we recap the main definitions. The location graph framework uses various elements which
are more or less independent. We try to clarify the distinction between a location graph (more or less a
set of locations), an instance (the transitions locations can fire and the authorisation function), a policy
(characterised by the authorisation function)

We first define what are locations and location graphs; then we recap the semantics of location graphs
(unconstrained transitions and authorisation function).

We are given the following sets:
— P a set of processes;
— S a set of sorts;
— R a set of roles;
— C a set of channels, which contains a special element rmv
— V a set of values.

Definition 2 (Atom). Roles and channels are called atoms and form a set A = R ∪ C.

Prelocations and locations. We first define locations, which are the nodes of our location graphs.
Locations are defined from well-formed prelocations, which are a tuple of (i) a process; (ii) a sort (a
dynamic type); (iii) provided roles; and (iv) required roles (we distinguish two directions for the roles, to
emphasize that they can be bound by at most two locations at any time, see below).

Definition 3 (Prelocation). A prelocation is a element of Lp = P× S× P(R)× P(R).

The elements are accessible via four functions:

Definition 4 (Elements of a prelocation). Given a prelocation L = 〈P, σ, p, r〉, we define:

L.proc
∆
= P L.sort

∆
= σ L.provided

∆
= p L.required

∆
= r

Not all prelocations are interesting. In the following, we only consider prelocations which do not bind
the same role in both required and provided positions. We call those prelocations well-formed and we
define the predicate WF(·) which characterise them.

Definition 5 (Well-formed prelocations). WF(L)⇔ L.provided ∩ L.required = ∅

Locations are well-formed prelocations.

Definition 6 (Location). A location L is a prelocation such that WF(L). The set of well-formed

prelocations is noted L
∆
= {L ∈ Lp|WF(L)}.

Notation. A location L = 〈P, σ, p, r〉 is written [P : σ C p • r].

Pregraphs and graphs.

Definition 7 (Location pregraph). The set Gp of location pregraphs is the

set of terms obtained with the grammar G ::= ∅ | L | G ‖ G
where ∅ is the empty pregraph and L ∈ Lp.

Remark. The fact that elements of location pregraphs are taken from Lp and not from L is arbitrary. We
chose to enforce the well-formedness of locations at the same place than the well-formedness of overall
graphs (see Definition 10 below). /

Elements of a location pregraph can be accessed via various functions:

Definition 8 (Elements of a location graph).

∅.prov ∆
= ∅ L.prov

∆
= L.provided G1 ‖ G2.prov

∆
= G1.prov ∪G2.prov

∅.req ∆
= ∅ L.req

∆
= L.required G1 ‖ G2.req

∆
= G1.req ∪G2.req
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G.roles
∆
= G.prov ∪G.req G.bound

∆
= G.prov ∩G.req G.unbound

∆
= G.roles \G.bound

G.pbound
∆
= G.bound ∩G.prov G.punbound

∆
= G.unbound ∩G.prov

G.rbound
∆
= G.bound ∩G.req G.runbound

∆
= G.unbound ∩G.req

Remark. Distinguish the elements L.provided of a location and G.prov of a location graph. If G = L,
then L.provided = G.prov (resp. for required roles). /

Locations belonging to the same pregraph shall not bind a role twice in the same direction. To ensure
that, we define the predicate separate(·, ·) which ensure two pregraphs do not have roles in common for
each direction.

Definition 9 (Separated location pregraphs).

separate(G,G′)
∆
= (G.prov ∩G′.prov = ∅) ∧ (G.req ∩G′.req = ∅)

Finally, we only consider pregraphs that are separated and which locations are all well-formed. We
call those pregraphs well-formed and we define the predicate WFG(·) to characterise them.

Definition 10 (Well-formed location pregraph).

WFG(∅) WFG(L)⇔ WF(L) WFG(G ‖ G′)⇔ WFG(G) ∧ WFG(G′) ∧ separate(G,G′)

Definition 11 (Location pregraph structural equivalence). Let ≡⊆ Lp×Lp be the smallest equiv-
alence relation which includes the following rules:

0 ‖ G ≡ G G1 ‖ G2 ≡ G2 ‖ G1 G1 ‖ (G2 ‖ G3) ≡ (G1 ‖ G2) ‖ G3

G1 ≡ G2

G1 ‖ G ≡ G2 ‖ G

Imported Lemma 1 (Structural equivalence preserves well-formness (Lemma 1 of [33])).

∀G,G′ ∈ Gp · (WFG(G) ∧G ≡ G′)⇒ WFG(G′)

We can now state that Location Graphs are just well-formed pregraphs, i.e. graphs in which no two
locations by the same role in the same direction and in which locations do not bind a role in both required
and provided direction.

Definition 12 (Location graph). Location graphs are well-formed location pregraphs.

The set of location graphs is noted G
∆
= {G ∈ Gp|WFG(G)}.

Remark. Since location graph composition is commutative and associative w.r.t. ≡, we often ignore
parenthesis. In addition, we define a notation to note the parallel composition of multiple graphs:

Notation (Parallel composition of location graphs). Given a set of location graphs {G1, . . . , Gn},∏
Gi∈{G1,...,Gn}

Gi = G1 ‖ . . . ‖ Gn

/

Remark. We should remember that L and G depend on P× S× P(R)× P(R). Below, we will work with
locations and graphs of different kinds at the same time, i.e. we will compare locations and graphs that
are not defined using the same sets P, S, R, C and V. Hence, for such different kinds of locations and
graphs, we can have two L and G that are not the same. We define the function lgraph(P,S,R) which
returns the set G of location graphs defined as above, using P, S, R. /

Finally, we define the support of a location graph, which simply is the set of all atoms that exist in
the graph.
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Definition 13 (Support).

supp(∅) ∆
= ∅

supp([P : s C p • r]) ∆
= suppp(P ) ∪ p ∪ r

supp(G1 ‖ G2)
∆
= supp(G1) ∪ supp(G2)

where suppp(P ) is a function which returns all atoms known by P .

Remark. Notice that suppp(P ) depends on the actual definition of the set of processes. This is to be
defined carefully for each instance; for the rest of this thesis, we suppose it contains all channels and role
names contained in the process. /

3.1.2 Semantics of location graphs

In this subsection, we give a semantic for location graphs. The semantics relates an environment and an
(initial) location graph with a label and a (final) location graph.

Our notion of environment relies on skeleton location graphs, which merely are location graphs with
erased processes. First, we define such skeleton location graphs; and after environments.

Transitions of our semantics include labels1 which are, more or less, exchanges of messages and prior-
ities. We define such labels in a third step.

When those elements are properly defined, we can explain the semantics of location graphs. This is
done in three steps: (i) we explain the semantics of individual locations; (ii) our graph semantics depends
on authorisation functions, our second step is to define those; and (iii) we define the location graph
semantics. These three steps are described one after each other in the last paragraphs of this section.

Skeleton location graphs. Skeleton location graphs are constructed similarly to location graphs,
except that skeleton locations (the counterpart of locations) do not include a process.

Definition 14 (Skeleton location graph). The set of skeleton location graphs is

the set of terms obtained with the grammar G ::= ∅ | [s C p • r] | G ‖ G
where ∅ is the empty skeleton location graph, and s ∈ S, p ⊂ R and r ⊂ R.

Remark. The precise reader will, of course, note that the graph ∅ and the skeleton graph ∅ are not the
same. Similarly, the graph composition · ‖ · and the skeleton graph composition · ‖ · are not the same
constructors.

We made the choice to overload the notations to make reading and getting the intuition easier, at the
cost of ambiguity. /

Naturally, we are interested in skeletons of given location graphs.

Definition 15 (Skeleton of a location graph).

Σ(∅) ∆
= ∅ Σ([P : s C p • r]) ∆

= [s C p • r] Σ(G1 ‖ G2)
∆
= Σ(G1) ‖ Σ(G2)

The set of skeleton locations is Ls ∆
= {Σ(L)|L ∈ L} and the set of skeleton graphs is Gs ∆

= {Σ(G)|G ∈
G}.

We define the same accessors for skeleton location graphs than for location graphs.

Definition 16 (Elements of a skeleton location graph).

∅.prov ∆
= ∅ [s C p • r].prov ∆

= p G1 ‖ G2.prov
∆
= G1.prov ∪G2.prov

∅.req ∆
= ∅ [s C p • r].req ∆

= r G1 ‖ G2.req
∆
= G1.req ∪G2.req

1Notice that, stricto-sensu, our system is not a labelled transition system, since we also have a notion of environment:
our transitions are not a subset of S × L × S as usual (where S would be our set of states and L our set of labels).
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G.roles
∆
= G.prov ∪G.req G.bound

∆
= G.prov ∩G.req G.unbound

∆
= G.roles \G.bound

G.pbound
∆
= G.bound ∩G.prov G.punbound

∆
= G.unbound ∩G.prov

G.rbound
∆
= G.bound ∩G.req G.runbound

∆
= G.unbound ∩G.req

[s C p • r].sort ∆
= r

These definitions are, of course, consistent with their graph counterparts.

Lemma 1 (Elements of graph and skeleton graph consistency). For all location graphs G:
(i) G.prov = Σ(G).prov

(ii) G.req = Σ(G).req
(iii) G.roles = Σ(G).roles
(iv) G.bound = Σ(G).bound
(v) G.unbound = Σ(G).unbound

(vi) G.pbound = Σ(G).pbound
(vii) G.punbound = Σ(G).punbound
(viii) G.rbound = Σ(G).rbound
(ix) G.runbound = Σ(G).runbound

Proof. Items (i) and (ii) are proven directly, by induction on G:
Case G = ∅: For provided roles: ∅.prov = ∅ and Σ(∅).prov = ∅.prov = ∅. For required roles:

∅.req = ∅ and Σ(∅).req = ∅.req = ∅.
Case G = [P : s C p • r]: For provided roles: [P : s C p• r].prov = p and Σ([P : s C p• r]).prov =

[s C p • r].prov = p. For required roles: [P : s C p • r].req = r and Σ([P : s C p • r]).req =
[s C p • r].req = r.

Case G = G1 ‖ G2: Our induction hypothesis is that: G1.prov = Σ(G1).prov, G2.prov =
Σ(G2).prov, G1.req = Σ(G1).req, and G2.req = Σ(G2).req.
For provided roles: G1 ‖ G2.prov = G1.prov ∪ G2.prov and Σ(G1 ‖ G2).prov = (Σ(G1) ‖
Σ(G2)).prov = Σ(G1).prov ∪ Σ(G2).prov = G1.prov ∪G2.prov.
For required roles: G1 ‖ G2.req = G1.req ∪ G2.req and Σ(G1 ‖ G2).req = (Σ(G1) ‖
Σ(G2)).req = Σ(G1).req ∪ Σ(G2).req = G1.req ∪G2.req.

The following items depend on their the previous ones.

Item (iii): Σ(G).roles = Σ(G).prov ∪ Σ(G).req
(i), (ii)

= G.prov ∪G.req = G.roles.

Item (iv): Σ(G).bound = Σ(G).prov ∩ Σ(G).req
(i), (ii)

= G.prov ∩G.req = G.bound.

Item (v): Σ(G).unbound = Σ(G).roles \ Σ(G).bound
(iii), (iv)

= G.prov \G.req = G.unbound.

Item (vi): Σ(G).pbound = Σ(G).bound ∩ Σ(G).prov
(i), (iv)

= G.bound ∩G.prov = G.pbound.

Item (vii): Σ(G).punbound = Σ(G).unbound ∩ Σ(G).prov
(i), (v)

= G.unbound ∩ G.prov =
G.punbound.

Item (viii): Σ(G).rbound = Σ(G).bound ∩ Σ(G).req
(ii), (iv)

= G.bound ∩G.req = G.rbound.

Item (ix): Σ(G).runbound = Σ(G).unbound∩Σ(G).req
(ii), (v)

= G.unbound∩G.req = G.runbound.

We equip the skeleton graphs with a structural equivalence similar to the one of location (pre)graphs.

Definition 17 (Skeleton graph structural equivalence). Let ≡⊆ Gs×Gs be the smallest equivalence
relation which includes the following rules:

0 ‖ G ≡ G G1 ‖ G2 ≡ G2 ‖ G1 G1 ‖ (G2 ‖ G3) ≡ (G1 ‖ G2) ‖ G3

G1 ≡ G2

G1 ‖ G ≡ G2 ‖ G



29

Lemma 2 (Composition of skeleton locations).

∀G ∈ G,
∏
Li∈G

Σ(Li) ≡ Σ(G)

Proof. By structural induction on G:
Case G = ∅: Vacuously holds.

Case G = [P : s C r • p]: Trivially holds.

Case G = G1 ‖ G2:

Induction Hypothesis (IH).
∏
Li∈G1

Σ(Li) ≡ Σ(G1) and
∏
Li∈G2

Σ(Li) ≡ Σ(G2)

∏
Li∈G

Σ(Li) ≡
∏

Li∈G1‖G2

Σ(Li) ≡
∏

Li∈G1

Σ(Li) ‖
∏

Li∈G2

Σ(Li)
IH≡ Σ(G1) ‖ Σ(G2)

Def 15≡ Σ(G)

Lemma 3 (Composition of skeleton locations graphs). Let Gf be a set of location graphs such that
G =

∏
Gi∈Gf

Gi is a location graph.∏
Gi∈Gf

Σ(Gi) ≡ Σ(
∏

Gi∈Gf

Gi)

Proof. ∏
Gi∈Gf

Σ(Gi)
Lem 2≡

∏
Gi∈Gf

∏
Li∈Gi

Σ(Li)

Def 17≡
∏

Li∈
∏

Gi∈Gf
Gi

Σ(Li)

Hypothesis
≡

∏
Li∈G

Σ(Li)

Lem 2≡ Σ(
∏
Li∈G

Li) ≡ Σ(G)

Finally, we define the notion of inclusion and union for skeleton locations graphs.

Definition 18 (Inclusion (Skeleton Location Graph)). A skeleton location graph G1 is included in
G2 (noted G1 ⊆ G2) if and only if:

(i) If G1 ≡ L ‖ G′1, then G2 ≡ L ‖ G′2 and G′1 ⊆ G′2; or
(ii) G1 ≡ ∅.

Definition 19 (Union (Skeleton Location Graph)). The union of two skeleton location graphs G1

and G2, noted G1∪G2, is the least skeleton location graph G, unique up-to · ≡ ·, such that G1 ⊆ G
and G2 ⊆ G.

Remark. The skeleton location graph resulting of the union of two skeleton location graphs is not nec-
essarily the skeleton location graph of a location graph (there might exists roles that are not properly
bound). /

Environment. Transitions of our semantics relate environments with other elements. Environments
are formed of two components: (i) skeleton location graph; and (ii) a set of atoms.
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Definition 20 (Environment). An environment Γ is an element of A × Gs. We write Γ = ∆ ·Gs.
The set of all environments is noted E.

Definition 21 (Elements of an environment). Given an environment Γ = ∆ ·Gs, we define:

Γ.names
∆
= ∆ Γ.graph

∆
= Gs

Definition 22 (Environment union). The union of two environments Γ1 and Γ2, noted Γ1 ∪Γ2, is
defined as: Γ1.names ∪ Γ2.names · Γ1.graph ∪ Γ2.graph.

Labels. The transitions of our semantics encompass labels. Labels expose two kinds of informations:
(i) priority constraints, to temporarily block a transition depending on the neighbours of the location
taking the transition; and (ii) interactions, which represent messages exchanged.

Remark. In this thesis, we do not use priority constraints. However, we still include them in this presen-
tation for the sake of preciseness. /

The intuition behind an interaction, e.g. r : a〈V 〉, in a label of a transition t is that t can be fired
if and only if there is, simultaneously, a location l which takes a transition with a label containing an
interaction r : a〈V 〉. Essentially, it is an early binding message exchange.

Remark. Arbitrarily, we can say that the location taking the transition with the label r : a〈V 〉 receives
the message and that the one with r : a〈V 〉 sends the message. Notice that, in such labels, the r or r
refers to the role that is bound in the location ( respectively in provided or required direction), regardless
of the emission or reception of the message: a label r : a〈V 〉 corresponds to the sending of a message on
a role bound in the provided direction; and r : a〈V 〉 corresponds to the reception of a message on a role
bound in the required direction. /

The intuition behind a priority constraint, e.g. r : a〈V 〉, in a label of a transition t, is that t can be
fired if and only if there is, in the rest of the graph, a location l binding r and which can take a transition
with an interaction r : â〈V 〉 in the label. Similarly, a priority r : ¬a〈V 〉 enforce that there is no such
location l. Since the location which takes the transition can bind r in two directions (r and r), there are
four variants of priorities.

Definition 23 (Priority constraint). Given R a set of roles, C a set of channels and V a set of
values, a priority constraint is an element of the set:

� = {1, 2, 3, 4} × R× C× V

Notation (Priority constraint). We note:

(i) r : a〈V 〉 for 〈1, r, a, V 〉;
(ii) r : a〈V 〉 for 〈2, r, a, V 〉;

(iii) r : ¬a〈V 〉 for 〈3, r, a, V 〉; and
(iv) r : ¬a〈V 〉 for 〈4, r, a, V 〉.

In addition, we note r̂ : a〈V 〉 for either r : a〈V 〉 or r : a〈V 〉2; and, given a r̂ : a〈V 〉, we note r̂ : a〈V 〉
for the complement3.

Notice that priority constraints are constraints on the fact that there exists a location that can (or
can not) have transitions with messages on the given role, regardless of whether the message is sent or
received; therefore, a priority constraint like r : a〈V 〉 does not exist.

We define some accessors for elements of sets of priority constraints.

2r̂ : a〈V 〉 is a variable in {r : a〈V 〉, r : a〈V 〉}.
3r̂ : a〈V 〉 ∆

= r : a〈V 〉 if r : a〈V 〉 = r : a〈V 〉, and r : a〈V 〉 otherwise.
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Definition 24 (Elements of priority constraints). Let π be a set of priority constraints. We define:

∅.required = ∅ {r : a〈V 〉}.required = {r} {r : ¬a〈V 〉}.required = {r}

{r : a〈V 〉}.required = ∅ {r : ¬a〈V 〉}.required = ∅

(π1 ∪ π2).required = π1.required ∪ π2.required

∅.provided = ∅ {r : a〈V 〉}.provided = ∅ {r : ¬a〈V 〉}.provided = ∅

{r : a〈V 〉}.provided = {r} {r : ¬a〈V 〉}.provided = {r}

(π1 ∪ π2).provided = π1.provided ∪ π2.provided

π.roles
∆
= π.provided ∪ π.required

Definition 25 (Interaction). Given R a set of roles, C a set of channels and V a set of values, an
interaction is an element of the set:

I = {1, 2, 3, 4} × R× C× V

Notation (Interaction). We note:

(i) r : a〈V 〉 for 〈1, r, a, V 〉;
(ii) r : a〈V 〉 for 〈2, r, a, V 〉;

(iii) r : a〈V 〉 for 〈3, r, a, V 〉; and
(iv) r : a〈V 〉 for 〈4, r, a, V 〉.

We also define some accessors for the elements of sets of interactions.

Definition 26 (Elements of interactions). Let ι be a set of interactions. Let ι.required be:

∅.required = ∅ {r : a〈V 〉}.required = {r} {r : a〈V 〉}.required = {r}

{r : a〈V 〉}.required = ∅ {r : a〈V 〉}.required = ∅

(ι1 ∪ ι2).required = ι1.required ∪ ι2.required

∅.provided = ∅ {r : a〈V 〉}.provided = ∅ {r : a〈V 〉}.provided = ∅

{r : a〈V 〉}.provided = {r} {r : a〈V 〉}.provided = {r}

(ι1 ∪ ι2).provided = ι1.provided ∪ ι2.provided

ι.roles
∆
= ι.provided ∪ ι.required

Finally, a label contains both priority constraints and interactions.

Definition 27 (Label). A label is an element of P(�)× P(I).

Notice that � and I insidiously hide R, C and V. To make those appear more clearly, we define
sLabel(·, ·, ·) which describes the set of label based on given basic sets.

Notation (Set of labels). The set of labels over R, C and V is noted sLabel(R,C,V). Said otherwise, we
note sLabel(R,C,V) for {{1, 2, 3, 4} × R× C× V}2

Definition 28 (Elements of a label). Given a label Λ = 〈π, ι〉, we define:

Λ.prior = π Λ.sync = ι Λ.roles
∆
= Λ.sync.roles ∪ Λ.prior.roles
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Unconstrained location transitions. The starting point of location graph semantics is the definition
of a set Tu of unconstrained location transitions. These transitions describe the behaviour of individual
locations.

Definition 29 (Unconstrained location transition). An unconstrained transition is a quadruplet

(noted Γ B L
Λ−→ C) composed of the following elements:

1. An environment Γ = ∆ · ∅;
2. A location L ∈ L such that supp(L) ⊆ ∆;
3. A label Λ = 〈π, ι〉, such that (i) π.required ⊆ L.required; (ii) π.provided ⊆ L.provided;

(iii) ι.required ⊆ L.required; and (iv) ι.provided ⊆ L.provided;
4. A location graph C ∈ G.

In addition, we require Tu to include special transitions:

∀L ∈ L, r ∈ L.roles,∆ · supp(L) ⊆ ∆⇒ ∆ · ∅ B L
〈ε,{r:rmvL}〉−−−−−−−−→ ∅ ∈ Tu

Such transitions make public (on the special channel rmv) the fact that a location L is removed.
Notice that the locations, location graphs and the skeletons in the transition are independents of the

channels and the values (except for messages on rmv, which contain locations). Let trans(G,�) be the
set of all unconstrained location transitions sets (all Tu) over graphs in G with labels in �.

Authorisation function. An important aspect of the location graph framework is the authorisation
function of a graph, used for graph transitions (see below). An authorisation function is used to authorise
or forbid unconstrained location transitions.

Definition 30 (Authorisation function). An authorisation function is a predicate over skeleton
graphs and unconstrained location transitions.

Notation (Authorisation function). Authorisation functions are noted Auth(Gs, t) (and decorated vari-
ants) where Gs ∈ Gs and t ∈ Tu.

Let sAuth(G,Tu) be the set of all authorisation functions over Gs and Tu.

Definition 31 (Trivial authorisation function). We call trivial the authorisation function which
always holds.

Graph transitions. We now define the semantics of location graphs. We first define a rule that lift
unconstrained location transitions to transitions for individual locations (rule (Trans)), then we define
the rules of composed graphs (rules (Comp) and (Ctx)).

The semantics of location graphs are expressed as a transition system where transitions have the form

Γ `Tu
G1

Λ−→ G2.
The first step is to define a few relations used hereafter in the reduction rules.
First, a priority is satisfied if there is (or is not) a location that can take a transition with an adequate

interaction.

Definition 32 (Priority satisfaction). A location graph G, in an environment Γ, satisfies a priority
ρ = r : a〈V 〉 ∈ � (noted G |= Γρ) if and only if:

G |= Γρ
∆
= Σ(G) ⊆ Γ.graph

∧ r ∈ G.unbound

∧ ∃G′ ∈ G · Γ `Tu G
Λ−→ G′ ∧ r : a〈V 〉 ∈ Λ.sync

Likewise, if ρ = r : a〈V 〉:

G |= Γρ
∆
= Σ(G) ⊆ Γ.graph

∧ r ∈ G.unbound

∧ ∃G′ ∈ G · Γ `Tu
G

Λ−→ G′ ∧ r : a〈V 〉 ∈ Λ.sync
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If ρ = r : ¬a〈V 〉, L satisfies ρ if and only if:

G |= Γρ
∆
= Σ(G) ⊆ Γ.graph

∧ r ∈ G.unbound

∧ ¬∃G′ ∈ G · Γ `Tu
G

Λ−→ G′ ∧ r : a〈V 〉 ∈ Λ.sync

And, likewise, if ρ = r : ¬a〈V 〉:

G |= Γρ
∆
= Σ(G) ⊆ Γ.graph

∧ r ∈ G.unbound

∧ ¬∃G′ ∈ G · Γ `Tu G
Λ−→ G′ ∧ r : a〈V 〉 ∈ Λ.sync

We want to state that all priority constraints which concern bound roles are enforced. In partic-
ular, when composing two graphs G1 and G2 which take a transition simultaneously, we want to ex-
tract priorities in the label of G1 which concerns G2, and verify that G2 satisfies them. The predicate
CondP (·, ·, ·, ·, ·, ·, ·) states does that.

Definition 33 (Priority satisfaction of composed graphs).

CondP (s, π, π1, π2,Γ, G1, G2)
∆
= π = {ρ ∈ π1 ∪ π2|ρ.roles ∈ (G1 ‖ G2).unbound}

∧
∧

ρ∈π1\π

G2 |= Γρ

∧
∧

ρ∈π2\π

G1 |= Γρ

Similarly, for interactions, we define a function seval(·) which removes matching interactions of a set
of interactions, and we then define a predicate CondI(·, ·, ·, ·) which asserts that interactions that should
be matched are matched.

Definition 34 (Evaluation of matching interactions).

seval(σ)
∆
=


seval(σ′) if σ = (σ′ ∪ {r : a〈V 〉, r : a〈V 〉}) ∧ ∅ = (σ′ ∩ {r : a〈V 〉, r : a〈V 〉})
seval(σ′) if σ = (σ′ ∪ {r : a〈V 〉, r : a〈V 〉}) ∧ ∅ = (σ′ ∩ {r : a〈V 〉, r : a〈V 〉})
σ otherwise

The predicate CondI(·, ·, ·, ·) states that interactions are either matched; or on unbound roles.

Definition 35 (Correct matching of a union of interaction sets). CondI(ι, ι1, ι2, G)
∆
= ι = seval(ι1∪

ι2) ∧ ι.roles ⊆ G.unbound

The predicate Cond(·, ·) states that the graph should be taken into account in the environment.

Definition 36 (Correct environment). Cond(Γ, G)
∆
= supp(G) ⊆ Γ.names ∧ Σ(G) ⊆ Γ.graph

We also define IndP (·, ·, ·, ·, ·, ·) and IndI(·, ·) which are analogous, but for when only one side of the
graph reduces.

Definition 37 (Priority satisfaction of composed graphs (2)).

IndP (s, π,$,Γ, G,E)
∆
= π = {ρ ∈ $|ρ.roles ∈ (G ‖ E).unbound}

∧
∧

ρ∈$\π

E |=Γ ρ
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Definition 38 (Independent interaction set). IndI(ι, G)
∆
= ι.roles ⊆ G.unbound

(Trans)
Γ.names · ∅ B L

Λ−→ C ∈ Tu Σ(L) ∈ Γ.graph Auth(Γ.graph,Γ.names · ∅ B L
Λ−→ C)

Γ `Tu
L

Λ−→ C

(Comp)

Γ `Tu
G1

〈π1,ι1〉−−−−→ G′1 Γ `Tu
G2

〈π2,ι2〉−−−−→ G′2
CondP (s, π, π1, π2,Γ, G1, G2) CondI(ι, ι1, ι2, G1 ‖ G2) Cond(Γ, G1 ‖ G2)

Γ `Tu
G1 ‖ G2

〈π,ι〉−−−→ G′1 ‖ G′2

(Ctx)
Γ `Tu

G
〈$,ι〉−−−→ G′ IndP (s, π,$,Γ, G,E) IndI(ι, G ‖ E) Cond(Γ, G ‖ E)

Γ `Tu
G ‖ E 〈π,ι〉−−−→ G′ ‖ E

Priority constraints of unbound roles always hold (see rule (Comp) and Definition 33). Thus it is
possible to allow a transition if a role r is unbound having a priority constraint π for the rule that
includes both r : a〈?〉 and r : ¬a〈?〉.

We show that if a graph takes a transition, then the roles that appear in the interactions are necessarily
unbound. Intuitively, to take the transition, all interactions on bound roles should be matched, and
therefore removed by seval(·).

Lemma 4.

∀G ∈ G ·∆ ·Gs `Tu
G

Λ−→ G′ ∧ r̂ : â〈V 〉 ∈ Λ.sync⇒ r ∈ G.unbound

Proof. By induction on G:

Case G = ∅: Only the rule (Trans) can apply. From the premisses of (Trans), ∆ · ∅ B G
Λ−→ G′.

From the conditions on unconstrained location transitions, Λ.sync.provided ⊆ G.prov and
Λ.sync.required ⊆ G.req.
Yet, since G = ∅, from Definition 8, G.prov = ∅ and G.req = ∅. Therefore,
Λ.sync.provided = ∅ and Λ.sync.required = ∅.
Therefore, Λ.sync = ∅ and r̂ : â〈V 〉 ∈ Λ.sync is a vacuous statement. Therefore, the result
holds.

Case G = [P : s C p • r]: Only the rule (Trans) can apply. From the premisses of (Trans),

∆ · ∅ B G
Λ−→ G′.

From Definition 8, G.unbound = G.roles \G.bound = (G.prov∪G.req) \ (G.prov∩G.req).
Since G = [P : s C p • r], from Definition 6, WF([P : s C p • r]) holds and, from Definition 8,
G.prov = [P : s C p • r].provided and G.req = [P : s C p • r].required.
By Definition 5, WF([P : s C p • r])⇔ [P : s C p • r].provided ∩ [P : s C p • r].required = ∅.
Therefore, G.unbound = G.prov ∪G.req.
In addition, from the conditions on unconstrained location transitions, Λ.sync.provided ⊆
G.prov ⊆ G.unbound and Λ.sync.required ⊆ G.req ⊆ G.unbound.
Finally, for each r̂ : â〈V 〉 ∈ Λ.sync, r ∈ Λ.sync.provided or r ∈ Λ.sync.required. In both
cases, r ∈ G.unbound.

Case G = G1 ‖ G2: Two rules can apply: (Ctx) and (Comp).

Case (Ctx): By symmetry, suppose that G1 is the subgraph reducing: ∆·Gs `Tu G1
Λ1−−→ G′1

and G′ = G′1 ‖ G2.
From the premisses of (Ctx), IndI(Λ.sync, G1 ‖ G2).
By definition of IndI(σ,G), Λ.sync.roles ⊆ G.unbound.

Case (Comp): From the premisses of (Comp), CondI(Λ.sync, σ1, σ2, G). By definition of
CondI(σ, σ1, σ2, G), Λ.sync.roles ⊆ G.unbound.
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Example 3 (Ping-pong locations). We consider a very simple example, in which two locations
exchange a token ?.
For this example, our processes can have two forms: one to indicate the location expects to receive
the ?, and the other to indicate the location attempts to send the ?. Therefore, we simply choose
P = {>,⊥}. We do not need sorts in this example, therefore we consider that S = { }. We need a
single role r, thus we set R = {r}. Similarly, we only use a single channel, so we define C = {a, rmv}
(notice that, to fulfil the definition, we have to include rmv nonetheless). Finally, of course our
unique value is ?, therefore V = {?}.
An example of location, using these base sets, is [> : C {r} • ∅]. An example of location graph is
[> : C {r} • ∅] ‖ [⊥ : C ∅ • {r}].
However, for the sake of the example, notice that [> : C {r} • ∅] ‖ [⊥ : C {r} • ∅], in which
both locations bind r in the same direction, is a location pregraph, but not a location graph, since
WFG([> : C {r} • ∅] ‖ [⊥ : C {r} • ∅]) holds only if separate([> : C {r} • ∅], [⊥ : C {r} • ∅])
holds, which itself requires that [> : C {r} • ∅].prov ∩ [⊥ : C {r} • ∅].prov = {r} = ∅, which, of
course, does not hold.
Our set of unconstrained location transitions, which we note Tp in this example, can be defined as
follow:

Tp = {∆ · ∅ B [> : C {r} • ∅] 〈∅,r:a〈?〉〉−−−−−−→ [⊥ : C {r} • ∅],

∆ · ∅ B [⊥ : C {r} • ∅] 〈∅,r:a〈?〉〉−−−−−−→ [> : C {r} • ∅],

∆ · ∅ B [> : C ∅ • {r}] 〈∅,r:a〈?〉〉−−−−−−→ [⊥ : C ∅ • {r}],

∆ · ∅ B [⊥ : C ∅ • {r}] 〈∅,r:a〈?〉〉−−−−−−→ [> : C ∅ • {r}]}

And, for our authorisation function, we take the trivial one function A which always holds.
If we consider again the location graph G = [> : C {r} • ∅] ‖ [⊥ : C ∅ • {r}] we see that it can
reduce to G′ = [⊥ : C {r} • ∅] ‖ [> : C ∅ • {r}], with a ? exchanged (the derivation tree is given
at the end of this example).
We note Gs for Σ(G) = Σ([> : C {r} • ∅] ‖ [⊥ : C ∅ • {r}]) = [ C {r} • ∅] ‖ [ C ∅ • {r}]
Of course, CondP (s, ∅, ∅, ∅,∆ · Gs, [> : C {r} • ∅], [⊥ : C ∅ • {r}]) vacuously holds. Concerning
CondI(∅, {r : a〈?〉}, {r : a〈?〉}, [> : C {r} • ∅] ‖ [⊥ : C ∅ • {r}]), by definition, seval({r :
a〈?〉} ∪ {r : a〈?〉}) = ∅, and ∅.roles = ∅, and therefore the predicate holds. Finally, by choosing

∆
∆
= R ∪ C, we have that Cond(∆ ·Gs, G) holds.



36

(C
o
m
p
)

(T
r
a
n
s)

∆
·G

s
B

[>
:

C
{r
}
•
∅]
〈∅
,{
r
:a
〈?
〉}
〉

−−
−−
−−
−→

[⊥
:

C
{r
}
•
∅]
∈
T
p

Σ
([
>

:
C
{r
}
•
∅]

)
∈
G
s

A
(G

s
,∆
·G

s
B

[>
:

C
{r
}
•
∅]
〈∅
,{
r
:a
〈?
〉}
〉

−−
−−
−−
−→

[⊥
:

C
{r
}
•
∅]

)

∆
·G

s
` T

p
[>

:
C
{r
}
•
∅]
〈∅
,{
r
:a
〈?
〉}
〉

−−
−−
−−
−→

[⊥
:

C
{r
}
•
∅]

(T
r
a
n
s)

∆
·G

s
B

[⊥
:

C
∅
•
{r
}]
〈∅
,{
r
:a
〈?
〉}
〉

−−
−−
−−
−→

[⊥
:

C
∅
•
{r
}]
∈
T
p

Σ
([
⊥

:
C
∅
•
{r
}]

)
∈
G
s

A
(G

s
,∆
·G

s
B

[⊥
:

C
∅
•
{r
}]
〈∅
,{
r
:a
〈?
〉}
〉

−−
−−
−−
−→

[⊥
:

C
∅
•
{r
}]

)

∆
·G

s
` T

p
[⊥

:
C
∅
•
{r
}]
〈∅
,{
r
:a
〈?
〉}
〉

−−
−−
−−
−→

[⊥
:

C
∅
•
{r
}]

C
o
n
d
P

(s
,∅
,∅
,∅
,∆
·G

s
,[
>

:
C
{r
}
•
∅]
,[
⊥

:
C
∅
•
{r
}]

)
C
o
n
d
I
(∅
,{
r

:
a
〈?
〉}
,{
r

:
a
〈?
〉}
,[
>

:
C
{r
}
•
∅]
‖

[⊥
:

C
∅
•
{r
}]

)
C
o
n
d
(∆
·G

s
,[
>

:
C
{r
}
•
∅]
‖

[⊥
:

C
∅
•
{r
}]

)

∆
·G

s
` T

p
[>

:
C
{r
}
•
∅]
‖

[⊥
:

C
∅
•
{r
}]
〈∅
,∅
〉

−−
−→

[⊥
:

C
{r
}
•
∅]
‖

[>
:

C
∅
•
{r
}]



37

3.1.3 Additional operations

We conclude this section with the definition of additional functions and lemmas that are not part of the
original draft [33], but which proved useful.

Size of a location graph. Our first addition is to formally define the size of a location graph, which
follows the intuition and counts, by structural induction, the number of locations in the graph.

Definition 39 (Location graph size). The size of a location graph is define inductively as follow:

size(∅) ∆
= 0 size(L)

∆
= 1 size(G1 ‖ G2)

∆
= size(G1) + size(G2)

Of course, this notion of size is consistent with our structural equivalence, i.e. two equivalent graphs
have the same size.

Lemma 5.

∀G1, G2 ∈ G ·G1 ≡ G2 ⇒ size(G1) = size(G2)

Proof. By induction on the rules of structural equivalence:
G1 = ∅ ‖ G2 ≡ G2: size(G1) = size(∅) + size(G2) = 0 + size(G2) = size(G2)

G1 = Ga ‖ Gb and G2 = Gb ‖ Ga: size(G1) = size(Ga) + size(Gb) = size(G2)

G1 = Ga ‖ (Gb ‖ Gc) and G2 = (Ga ‖ Gb) ‖ Gc: size(G1) = size(Ga) + (size(Gb) + size(Gc)) =
(size(Ga) + size(Gb)) + size(Gc) = size(G2)

G1 = Ga ‖ G, G2 = Gb ‖ G and Ga ≡ Gb: From the induction hypothesis, size(Ga) = size(Gb).
Therefore, size(G1) = size(Ga) + size(G) = size(Gb) + size(G) = size(G2)

We also prove a small additional lemma which allows us to deduce that a graph is empty or contains
a single location when its size is 0 or 1.

Lemma 6. ∀G ∈ G · size(G) = 0⇔ G ≡ ∅ and ∀G ∈ G · size(G) = 1⇔ (∃L ∈ L ·G ≡ L).

Proof. We analyse separately the two statements.
Statement size(G) = 0⇔ G ≡ ∅: We prove separately the cases ⇒ and ⇐:

⇒: By induction on G:
Case G = ∅: Direct, by reflexivity of ≡.

Case G = L ∈ L: By hypothesis, size(G) = 0, and, G = L ∈ L. From Definition 39,
size(L) = 1.
Therefore size(L) = 0 = 1. Contradiction.

Case G = G1 ‖ G2: size(G1 ‖ G2) = size(G1) + size(G2) = 0. Therefore, size(G1) =
size(G2) = 0. From the induction hypothesis, G1 ≡ G2 ≡ ∅. Finally, G = G1 ‖
G2 ≡ ∅ ‖ ∅ ≡ ∅.

⇐: Follows directly from Lemma 5.

Statement size(G) = 1⇔ (∃L ∈ L ·G ≡ L): We prove separately the cases ⇒ and ⇐:
⇒: By induction on G:

Case G = ∅: 1 = size(G) = size(∅) = 0. Contradiction.

Case G = L′ ∈ L: Trivial, L = L′.

Case G = G1 ‖ G2: size(G1 ‖ G2) = size(G1) + size(G2) = 1. Therefore, either (i)
size(G1) = 0 and size(G2) = 1; or size(G1) = 1 and size(G2) = 0.
By symmetry, we consider that size(G1) = 0 and size(G2) = 1. From the induction
hypothesis, G1 ≡ ∅ and ∃L ∈ L · G2 ≡ L. Therefore, ∃L ∈ L · G = G1 ‖ G2 ≡ ∅ ‖
L ≡ L.

⇐: Direct.
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Multiset of locations. Our second helper function maps a location graph to a multiset of its locations.

Definition 40 (Locations of a graph). The multiset of locations of a location graphs is defined as
follow:

locations(∅) ∆
= ∅ locations(L)

∆
= {{L}} locations(G1 ‖ G2)

∆
= locations(G1) ∪ locations(G2)

Location graph inclusion. Finally, we introduce a notion of graph inclusion. Again, it follows the
intuition: a graph is included in an other if the other contains all locations of the first.

Definition 41 (Inclusion). A location graph G1 is included in G2 (noted G1 ⊆ G2) if and only if:
(i) If G1 ≡ L ‖ G′1, then G2 ≡ L ‖ G′2 and G′1 ⊆ G′2; or

(ii) G1 ≡ ∅.

With this definition comes some lemmas. The first states that the subgraphs of a graph are included
in the graph.

Lemma 7.

∀G,G1, G2 ·G1 ‖ G2 ≡ G⇒ G1 ⊆ G

Proof. By induction on size(G1):
Case size(G1) = 0: From Lemma 6, G1 = ∅. The result is then direct, from case (ii) of the

definition.

Case size(G1) = 1: From Lemma 6, G1 = L for some location L. The result is then direct, from
case (i) of the definition.

Case size(G1) = n+ 1 (n ≥ 1):

Induction Hypothesis. ∀G′1 · size(G′1) ≤ n⇒ ∀G′ ·G′1 ‖ G2 ≡ G′ ⇒ G′1 ⊆ G′.
Since size(G1) = n + 1, with n ≥ 1, then from Lemma 6, G1 ≡ L ‖ G′1, for some location L
and some location graph G′1. Therefore, from the case (i) of the definition, we have to prove
that there exists G′ such that: (i) G ≡ L ‖ G′; and (ii) G′1 ⊆ G′.
From the hypothesis, since G1 ‖ G2 ≡ G, then (L ‖ G′1) ‖ G2 ≡ G. Therefore, from the
rules of structural equivalence: L ‖ (G′1 ‖ G2) ≡ G. We therefore take G′ = G′1 ‖ G2, which
conclude the first point.
From Definition 39, size(G1) = n+1 = size(L)+size(G′1) = 1+size(G′1), therefore size(G′1) =
n. Therefore, from the induction hypothesis: ∀G′ ·G′1 ‖ G2 ≡ G′ ⇒ G′1 ⊆ G′. In particular,
this applies to the G′ we chose above, therefore G′1 ⊆ G′, which conclude the second point.

The second states that the size of a graph included in an other is at most the size of the other.

Lemma 8. ∀G1, G2 ·G1 ⊆ G2 ⇒ size(G1) ≤ size(G2)

Proof. Direct, by induction on G1.

Finally, we show that if a graph is included in an other and both have the same size, then they are
equivalent.

Lemma 9.

∀G1, G2 ·G1 ⊆ G2 ∧ size(G1) = size(G2)⇒ G1 ≡ G2

Proof. By induction on G1:
Case G1 = ∅: By definition of size([·]), size(G1) = 0. By hypothesis, size(G1) = size(G2) = 0.

From Lemma 6, G2 ≡ ∅, and, by transitivity of ≡, G2 ≡ G1.

Case G1 = L ∈ L: By definition of size([·]), size(G1) = 1. By hypothesis, size(G1) = size(G2) = 1.
From Lemma 6, G2 ≡ L2 ≡ L2 ‖ ∅ for some location L2.
By definition of graph inclusion (Definition 41, case (i)), since G1 ≡ L ‖ ∅, we have G2 ≡ L ‖
G′2 (with ∅ ⊆ G′2).
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In conclusion, we have G2 ≡ L2 ‖ ∅ ≡ L ‖ G′2, therefore G2 ≡ L ≡ G1.

Case G1 = G1a ‖ G1b: If G1a ≡ ∅ and G1b ≡ ∅, the result holds directly from the induction
hypothesis.
Otherwise, G1 ≡ L ‖ G′1, for L a location from either G1a or G1b.
By hypothesis, G1 ⊆ G2. By definition of ⊆, since G1 ≡ L ‖ G′1, G2 ≡ L ‖ G′2 and G′1 ⊆ G′2.
By definition of size(·), size(G1) = 1 + size(G′1) and size(G2) = 1 + size(G′2). By hypothesis,
size(G1) = size(G2). Therefore, size(G′1) = size(G′2).
From our induction hypothesis, G′1 ≡ G′2.
Therefore, G1 ≡ L ‖ G′1 ≡ L ‖ G′2 ≡ G2.

Location invariant. We show a useful helper lemma which states, informally, that if a property on
locations is preserved under unconstrained location transitions, then it is also preserved under full graph
reduction.

Remark. This lemma is the only one in this whole work which uses second order logic. /

Lemma 10 (Location invariant). For any predicate P(L) on locations, if

∀Tu · ∀Γ B L
Λ−→ C ∈ Tu · P(L)⇒ (∀L′ ∈ C · P(L′))

then

∀G,G′ ∈ G · Γ `Tu
G

Λ−→ G′ ⇒ (∀L ∈ G · P(L))⇒ (∀L ∈ G′ · P(L))

Proof. By induction on the graph G:
Case G = ∅: Vacuously holds.

Case G = L = [P : s C p • r]: Only the rule (Trans) can apply. From the premisses of the rule,

Γ B L
Λ−→ G′ ∈ Tu.

By hypothesis, ∀Γ B L
Λ−→ C ∈ Tu · P(L)⇒ (∀L′ ∈ C · P(L′)) and ∀L ∈ G · P(L).

Therefore, since G ≡ L, ∀L′ ∈ G′ · P(L′).

Case G = G1 ‖ G2: G either takes a (Comp) transition or a (Ctx) transition. In both cases, the
reasoning is the same. We detail the case (Comp).
By hypothesis, ∀L ∈ G · P(L), therefore, since G = G1 ‖ G2, ∀L ∈ G1 · P(L) and ∀L ∈
G2 · P(L).

By definition of (Comp): Γ `Tu
G1

Λ1−−→ G′1, Γ `Tu
G2

Λ2−−→ G′2, and G′ = G′1 ‖ G′2.
By induction hypothesis, ∀L ∈ G′1 · P(L) and ∀L ∈ G′2 · P(L).
Therefore, ∀L ∈ G′1 ‖ G′2 · P(L), i.e. ∀L ∈ G′ · P(L).

3.2 Comparing Location Graphs

As in process calculi, we are interested in comparing location graphs. Such comparison is appealing for
various purposes, for instance to develop programs in a modular way: if we are able to prove that a
module behave the same way as an other, one can replace the other in a bigger system, without changing
the global behaviour of the system. An other example (which is our main motivation in this thesis) is that
it can simplify the analysis of a location graph: if some properties are shown on a particular instance, an
adequate comparison tool would directly prove that property for all equivalent instances.

This is traditionally done using an adequate relation of (bi)simulation between systems. Simulations
and bisimulations are a class of relation of prime importance in the domain of process calculi (see for
instance [51, 53], the most complete work on simulations). The initial presentation paper of the location
graph framework [57, 33] introduced a notion of simulation for location graphs. However, this initial
notion was defined as a relation on location graphs belonging to the same model (i.e. the simulation
relation is a subset of G×G, for a given G). We can already anticipate that such constraint is problematic
for our goal: we work on encapsulation and we will attempt to relate a graph and its encapsulated
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counterpart: both will not be defined using the same basic sets4. We therefore need a way to compare
heterogeneous instances of location graphs, which is the goal of this section.

We propose a method to overcome this issue, which consists in a (conservative) extension of location
graph simulations, in which simulations are relations over G1×G2, for two location graph models G1 and
G2.

We could be tempted to take an other approach in which we would define the product of location
graphs, allowing us to create a third model G, which embeds both models G1 and G2, with the hope
to fall back on the original definition of simulation. We explored that possibility, which we saw the
early developments in Appendix B.
Unfortunately, this approach is less trivial than what one could expect at first, as we show in the
appendix, and we could not find an adequate result. This failure motivates an analysis of the
location graph framework, from a categoric viewpoint, with a sound notion of product.

In the first subsection, we recall the original definition of a simulation relation for location graphs.
Then, we introduce our new definition. Finally, we extend a bit further by presenting partial bisimulations,
directly inspired by Rutten (in [49]), which is a slight modification allowing to ignore some labels of the
simulations.

3.2.1 Simulation relations for location graphs

Remark. The content of this section (Definitions 42, 43, and 44) was previously introduced in [33]. /

In this first subsection, we present (without details) the definition of simulation as presented in the
original paper. This definition is based on a notion of environment equivalence, which we present first5.
Intuitively, two environments are equivalent if they allow and forbid the same transitions.

This notion is mandatory to take into account the fact that two different graphs change the environ-
ment of the rule, yet they can have the same behaviour (the same observed labels).

Definition 42 (Environment equivalence). Environment equivalence, noted Γ m Γ′, is defined as:

Γ m Γ′
∆
= ∀Υ ∈ E · Γ ∪Υ ∈ E ∧ Γ′ ∪Υ ∈ E⇒ ∀t · Auth(Γ ∪Υ, t) = Auth(Γ′ ∪Υ, t)

We extend that definition to the location graphs themself.

Definition 43.

G m H
∆
= supp(G) · Σ(G) m supp(H) · Σ(H)

With this definition of environment equivalent, we can now define similar graphs. Finally, a relation
R over graphs is a (strong) simulation if and only if:

Definition 44 (Location graph simulation). A relation R ⊆ G × G is a strong simulation if and
only if, for all 〈G,F 〉 ∈ R, for all graph G′ and for all label Λ, the following properties hold:

(i) G m F ; and
(ii) G.punbound = F .punbound; and
(iii) G.runbound = F .runbound; and
(iv) Transitions of G are matched by F , i.e.

∀Γ ∈ E · (Γ ∪ supp(G) · Σ(G) ∈ E) ∧ (Γ ∪ supp(F ) · Σ(F ) ∈ E)

⇒ Γ ∪ supp(G) · Σ(G) `Tu
G

Λ−→ G′

⇒ ∃F ′ · Γ ∪ supp(F ) · Σ(F ) `Tu
F

Λ−→ F ′ ∧ 〈G′, F ′〉 ∈ R

This definition has an important limitation: it relates graphs from the same model (i.e. with the
same sets for processes, messages, etc. .). Our goal is to formalise a notion of encapsulation for location
graphs. Said otherwise, ultimately, we want to have a simulation relation between a plain graph and its

4We tried an approach in which we built a common instance for both flat and encapsulated graphs. This approach is
presented in Appendix B. However this approach was not successful, and we therefore stuck to an heterogenenous approach.

5Note that this notion of environment equivalence is not satisfying either. We use it only in this section. We will later
(in Definition 45) define a more suitable environment equivalence. Therefore, it should not be used elsewhere.
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encapsulated counterpart. We can already expect that processes and sorts will not be the same. Similarly,
we will probably need some additional messages.

This implies that we need a more general notion of simulation, which accommodate different models.
We qualify such simulation heterogeneous.

3.2.2 Heterogeneous simulations

In this section, we improve the definition of simulation (and the dependent definition) to fit relations R
over G1 × G2, for G1 = lgraph(P1,S1,R1) and G2 = lgraph(P2,S2,R2).

In this section, we are given P1 and P2 two sets of processes; S1 and S2 two sets of sorts; R1 and R2

two sets of roles; C1 and C2 two sets of channels; and V1 and V2 two sets of values.
Let G1 = lgraph(P1,S1,R1); �1 = sLabel(R1,C1,V1); T1 ∈ trans(G1,�1); and Auth1 ∈ sAuth(G1,�1).
Let G2 = lgraph(P2,S2,R2); �2 = sLabel(R2,C2,V2); T2 ∈ trans(G2,�2); and Auth2 ∈ sAuth(G2,�2).

Equivalence relations. We are given relations between elements of the first model and elements of
the second model. These relations are parameters of the simulation.

We are given a relation PE over environments and a relation Pλ over labels.

Definition 45 (Environment equivalence). An environment equivalence relation is a relation PE⊆
(A1 × Gs

1)× (A2 × Gs
2) such that ∀(Γ1,Γ2), (Γ′1,Γ

′
2) ∈PE ·Γ1 ∪ Γ′1 PE Γ2 ∪ Γ′2

Remark. We draw the reader’s attention to the fact that our definition of PE is not exactly the same
than the one used for the original simulation. /

Remark. Notice that, contrary to the original definition of simulation, in our definition the environment
equivalence relation is a parameter of the simulation. This let the user have a finer touch on how to relate
two location graphs. /

Simulation, bisimulation.

Definition 46 (Heterogenous simulation). Given an environment equivalence relation PE and a
relation Pλ⊆ �1 × �2,
A relation R ⊆ G1 × G2 is a 〈PE ,Pλ〉-strong simulation if and only if, for all 〈G1, G2〉 ∈ R, for all

environment ∆1 ·Gs1, for all G′1 such that ∆1 ·Gs1 ∪ Σ(G1) `T1
G1

Λ1−−→ G′1,
(i) ∃(∆2 ·Gs2) ·∆1 ·Gs1 PE ∆2 ·Gs2 ∧ supp(G2) ⊆ ∆2 ∧ Σ(G2) ⊆ Gs2
(ii) ∃Λ2 · Λ1 Pλ Λ2

(iii) ∀(∆2 · Gs2) · (∆1 · Gs1) PE (∆2 · Gs2) ∧ (supp(G2) ⊆ ∆2) ∧ (Σ(G2) ⊆ Gs2) ⇒ ∃G′2 ·∆2 · (Gs2 ∪
Σ(G2)) `T2 G2

Λ2−−→ G′2
(iv) 〈G′1, G′2〉 ∈ R
(v) supp(G′1) · Σ(G′1) PE supp(G′2) · Σ(G′2)

This definition of simulation is a bit more involved than usual. This is due to the fact that we
want to compare location graphs of different models. For that, we require a notion of equivalent
environments (given by the PE relation), but this relation is not necessary one-to-one.
Actually, we are fine if an environment of the first model does not have an equivalent environment
in the second model, as long as we do not use that environment in our reductions. Therefore, we
only need that ∃(∆2 ·Gs2) ·∆1 ·Gs1 P ∆2 ·Gs2 in the condition, and not as a general requirement for
PE .
The second question that may arise could be: why do we have the existential constraint in (i), and
then a universal quantifier in (iii)? Why could not we write directly a constraint like:

∃(∆2 ·Gs2) · (∆1 ·Gs1) PE (∆2 ·Gs2) ∧∆2 · (Gs2 ∪ Σ(G2)) `T2
G2

Λ2−−→ G′2

The answer is not trivial, and stands in two steps: (i) the goal of simulations is to relate location
graphs that behave alike, and therefore, the intuition we want to catch is that if two graphs are
similar, and if the first takes a transition, the second must be able to take a similar transition,
and both new location graphs should be similar; and (ii) one can not freely choose the skeleton
location graphs involved in the environment, this skeleton graph should contain, by definition of
the reduction rules, the skeleton of the overall location graph.

The consequence of the first point is that, if we have ∆1 · Gs1 `T1
G1

Λ1−−→ G′1 and ∆′1 · Gs′1 `T1
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G′1
Λ1−−→ G′′1 , we want to show the existence of the two following transitions: ∆2 ·Gs2 `T2

G2
Λ2−−→ G′2

and ∆′2 · Gs′2 `T2
G′2

Λ2−−→ G′′2 . The point is that, at the point where we have G′1 and G′2, we have
to remember that they are potentially part of a bigger graph, say G′1 ‖ Gr1 and G′2 ‖ Gr2, and by
definition of the reduction rules, Σ(G′1 ‖ Gr1) (resp. Σ(G′2 ‖ Gr2)) are in Gs′1 (resp. Gs′2 ): we can not
freely choose those two environments (the second point); and therefore, we have to find a way to
enforce that we can always find such environment.
Intuitively, we want to state that “after each transition taken, the new environments we arrive in
are in PE”.
Without such convoluted definition, it is hard to compare two different location graph instances.
For instance, as stated above, in Appendix B, we tried to compare two location graph instances by
constructing a common third instance, which could implement both instances, and then analysing
the relationship between the two instances with the regular simulation on location graphs. Such
approach was not successful since, for instance, the standard simulation definition compares location
graphs in the same environment, which is not our case; hence our approach which introduces a
comparison up-to a chosen relation on environments.

Definition 47 (Strong bisimulation). A relation R is a strong 〈PE ,Pλ〉-bisimulation if and only
if R is a strong 〈PE ,Pλ〉-simulation and R−1 is a strong 〈P−1

E ,P−1
λ 〉-simulation.

One can clearly see that, with a careful definition of PE , and by taking the equality for Pλ our
new definition of heterogeneous simulation is conservative with the original definition.

Our simulation is not to be confused with the notion of environmental bisimulation developed by
Sangiorgi et al. in [52].
In their paper, they present a new kind of simulation, called environmental simulation. The idea
is to take an additional relation over values, which are then considered equivalent (i.e. two terms
do not necessarily reduce to the same value, but to equivalent values). In addition, they put some
constraint on equivalent value: informally, the set of equivalent values should be closed under
substitution (if λx.P and λx.Q are equivalent, and M and N too, then P{M/x} and Q{N/x}
should be equivalent).

3.2.3 Partial bisimulation

The notion of partial bisimulation was first6 introduced by Rutten in [49]. This variant of bisimulation
lays inbetween a simulation and a bisimulation: for each 〈a, b〉 in the relation, a simulates b but, as
opposed to the usual bisimulation, b simulates a only for some labels.

Here, we define partial bisimulation for graphs of different models (external approach). The same
could be done for internal simulations.

Definition 48 (Partial bisimulation). A R ⊆ G1 × G2 is a partial bisimulation with respect to
U ⊂ �2 if and only if, for any 〈G1, G2〉 ∈ R:

(i) ∀G′1,Γ1,Λ1 if Γ1 `T1
G1

Λ1−−→ G′1 then ∃G′2,Γ2,Λ2 such that:
(i) ∃(∆2 ·Gs2) ·∆1 ·Gs1 PE ∆2 ·Gs2 ∧ supp(G2) ⊆ ∆2 ∧ Σ(G2) ⊆ Gs2
(ii) ∃Λ2 · Λ1 Pλ Λ2

(iii) ∀(∆2 · Gs2) · (∆1 · Gs1) PE (∆2 · Gs2) ∧ (supp(G2) ⊆ ∆2) ∧ (Σ(G2) ⊆ Gs2) ⇒ ∃G′2 · ∆2 ·
(Gs2 ∪ Σ(G2)) `T2

G2
Λ2−−→ G′2

(iv) 〈G′1, G′2〉 ∈ R
(v) supp(G′1) · Σ(G′1) PE supp(G′2) · Σ(G′2)

(ii) ∀G′2,Γ2,Λ2 if Λ2 ∈ U and Γ2 `T2 G2
Λ2−−→ G′2, then ∃G′1,Γ1,Λ1 such that:

(i) ∃(∆1 ·Gs1) ·∆1 ·Gs1 PE ∆2 ·Gs2 ∧ supp(G1) ⊆ ∆1 ∧ Σ(G1) ⊆ Gs1
(ii) ∃Λ1 · Λ1 Pλ Λ2

(iii) ∀(∆1 · Gs1) · (∆1 · Gs1) PE (∆2 · Gs2) ∧ (supp(G1) ⊆ ∆1) ∧ (Σ(G1) ⊆ Gs1) ⇒ ∃G′1 · ∆1 ·

6To the best of my knowledge.
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(Gs1 ∪ Σ(G1)) `T1
G1

Λ1−−→ G′1
(iv) 〈G′1, G′2〉 ∈ R
(v) supp(G′1) · Σ(G′1) PE supp(G′2) · Σ(G′2)

Summary – Location Graph Simulations

In this section, we introduced different notions of bisimulation. To better illustrate the differences
between those notions, this summary shows the diagrams of each of the bisimulation.
A location graph H1 is similar to G1 if, for any environment Γ, they can reduce to similar graphs
G2 and H2, with the same label Λ: we can close the square.

Γ ∪ Σ(G1) : G1 G2

Γ ∪ Σ(H1) : H1

Λ

R Simulation
======⇒

Γ ∪ Σ(G1) : G1 G2

Γ ∪ Σ(H1) : H1 H2

Λ

Λ

R RPR

We saw that the regular simulation is to restrictive. The external simulation, on the other hand,
allows us to close the square when the environement and the label are related (by PE and PΛ).

Γ1 : G1 G2

Γ2 : H1

Λ

RPE
External Simulation
============⇒

Γ1 : G1 G2

Γ2 : H1 H2

Λ

Λ

R RPλPE

Finally, we want to be able to ignore some messages (typically administrative messages). Therefore,
partial simulation requires that only some messages (those in U) are concerned by the simulation.

Γ1 : G1 G2

Γ2 : H1

Λ ∈ U

RPE
Partial Simulation
===========⇒

Γ1 : G1 G2

Γ2 : H1 H2

Λ ∈ U

Λ

R RPλPE

3.3 Nested Location Graphs

Our main goal is to study encapsulation policies, and to show that our policies behave correctly. The
difficulty, of course, is that there is not a unique notion of behaving correctly, as we have already shown.
Therefore, we take an other approach, which consists in exhibiting, for each policy, an equivalent graph
where encapsulation aggregates are grouped in a single location: said otherwise, we switch from a location
graph which represent a graph of objects to a location graph which represent a graph of aggregates. Such
procedure allows the analysis of communications at the aggregate level.

Our approach is to build location graphs whose processes are location graphs themself (i.e. nested
location graphs). With such a definition, we can simply split a location graph into subgraphs, one per
aggregate, and to nest those subgraphs into individual locations.

In the previous section, we introduced a notion of partial bisimulation. The goal of this section is two
fold: (i) presenting a generic mechanism for nesting location graphs; and (ii) proving that this mechanism
is faithful, with respect to the (partial) bisimulation we defined previously.

The nesting mechanism we introduce has to be generic to accommodate any encapsulation policy.
We therefore make no assumption about the underlying graph. The notion of encapsulation being quite
informal, so is the nesting mechanism: it does not provide any isolation guarantee by itself: instead, it
gives an new view of a system, where some details are abstracted away.

For the sake of clarity, we call 1st order graph the original graph, and 2nd order graph a graph that
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nests the original graph. In the last subsection of this section, we informally draw some perspectives to
extend our work to allow an arbitrary number of nesting levels.

Informal presentation. To understand the intuition of our method of nesting, let us forget, for one
second, everything we learnt so far about location graphs, and let us start again our initial presentation
of location graphs, from a graphical point of view: we have circles, which we call locations, and dots and
lines on those circles, which we call unbound and bound role. Nesting is, essentially, grouping together
some of those circles. Graphically, we can circle groups of circles, report to the outer circle all dots that
are on inner circles, and finally blur the internal details of each outer circle. Lines that do not cross outer
circles are entirely blurred, and lines that do cross outer circles are (partially) visible.

We would result with a new set of circles with dots and lines, i.e. a location graph. Also, no matter
how the internal parts of each outer circle evolve, we can always draw those outer circles. The essence of
nesting, such as presented in this section, is a matter of drawing circles.

Of course, we do not want to draw those circles at random: we want an instruction that tells us how
to split the graph: we call this instruction the partition function.

The two important results of this section can also be stated informally. The first one is that the way
we draw the circles does not really matter: from the same original graph you may draw some circles, I
may draw them differently, but the underlying graph still evolves in the same way. We do not blur the
same area, we may not see the same lines between outer circles, yet, the underlying graph is the same.
The second important result is that, fundamentally, we are not doing much: with or without outer circles,
the behaviour is essentially the same, we are just ignoring some parts of it.

In Figure 3.2, a 1st order location graph is shown, as well as a possible corresponding 2nd order graph.

A B

C D

a b

a2b

a
2c

a2d

b2
d

(a) G

A B

C D

a b

a b

b2
d

a
2c

a2b
a2ba2b

a2d

a2d

a2d

(b) G nested

Figure 3.2: A 1st order graph G (Subfigure 3.2a) and a 2nd order graph that embeds G (Subfigure 3.2b). Notice how bound
roles of a subgraph (e.g. a2c) do not appear in the roles of the outer location. Unbound roles, however, are also unbound
in the 2nd order graph, that is role bindings between outer locations are preserved (e.g. a2b).

This section contains three main parts: (i) in Section 3.3.1, we describe how to nest a graph into a
location. In that section, we are not interested in the dynamic aspects of location graphs, we simply
explain the structure of 2nd order graphs. Intuitively, our 2nd order locations encompass a subgraph of
the 1st order graph. Therefore, we have two things to do: building a location which contains an arbitrary
graph; and splitting a graph into multiple pieces.; (ii) in Section 3.3.2, we now study the dynamic aspects
of 2nd order graphs, i.e. we describe their semantics. According to the location graph framework, we
proceed in two steps: we first describe the set of unconstrained (2nd order) location transitions; and then,
we describe the authorisation function for the 2nd order graph. We conclude this section with one of
most important result7 of this work: Lemma 23, which states that our semantics allows us to change the
way the 1st order graph is split and nested at will.; and (iii) the first two sections give us a method to
build a 2nd order graph and its semantics, but they do not say anything about the relation between the
1st and 2nd order graphs. In Section 3.3.3, we actually show that the two previous section make sense,
in the sense that the 1st and 2nd order graphs are in a partial bisimulation relation.

The conclusion of all this work is that the location graph framework is general enough to describe
nesting. The three sections laid out above can easily be extended to a finite number of layers, provided

7Actually, I personally think this result is even more important than the bisimulation result that follows; for two reasons:
(i) the proof bisimulation result heavily relies on that lemma; and (ii) the proof of this lemma is actually much nicer and
more readable than that of the bisimulation result.
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that we do not mix (sub)graphs which are nested at different levels. In the last section (Section 3.3.4),
we discuss informally the possibility of actually mixing graphs nested at different levels.

3.3.1 Nesting functions

In the introduction of this section, we informally presented our notion of nesting, as drawing circles
around some locations of a given graph. We now focus on the formal aspects of this procedure.

In a first step, we explain how a (sub)graph can be nested in a single location. We also show that our
method allows to retrieve the original graph from its nested counterpart.

In a second step, we explore graph partitions, which we use to split a location graph into pieces. This
part is similar to defining partitions on multisets. Yet, even if the theory exists for multisets, it does not
for location graph. The most important result of this paragraph is that partitions form a lattice. This
is, of course, not surprising, but it is an important point, latter, for the proof of Lemma 23. Finally, we
merge these two steps, to present the overall graph nesting function, which basically partitions a graph
and nests the elements of the partition.

Location nesting. Let begin with the nesting of a graph G. We construct a (single) location, whose
process is G and whose sort is the skeleton of G. The roles of the location are the unbound roles of G,
plus some administrative roles.

The intuition behind the reason why we need to keep the skeleton of G in the sort is that the
semantics of the 2nd order graph, which we will detail below, are based on the semantics of the
1st order graph, which requires the skeleton of 1st order graph (e.g. , to evaluate the authorisation
function).
By putting the skeleton of nested graph in the sort, it also appears in the skeleton of the 2nd order
graph (the skeleton only drops the processes), which allows us to recover the 1st order skeleton
graph, and then evaluate its reductions, to find the reduction of the 2nd order graph.

Definition 49 (Location nesting function). Given a location graph G, we define the function

n(G)
∆
= {[G : Σ(G) C p• r]|p = G.punbound∪P ∧ r = G.runbound∪R∧P,R ⊂ R2∧P ∩R = ∅}

Remark (Process and sort equality). Processes are now 1st order graphs and sorts are 1st order skeleton
graphs. Hence, stricto sensu, if G1 ≡ G2 with G1 6= G2, then n(G1) 6= n(G2). To avoid that, we take the
location graph structural congruence (≡) as processus equality and skeleton graph structural congruence
(≡) as sort equality.

Said otherwise, stricto sensu, the process (resp. the sort) of a second order location is the equivalence
class of a first order graph (resp. first order skeleton).

An other possible approach, which we do not take, could be to define an equivalence relation over 2nd

order locations L ∆
= {〈L1, L2〉|L1.proc ≡ L2.proc}, and to define n([·]) to be the equivalence class of the

nested graph. This would however be less practical, morally, as we would have to think of the semantics
as the semantics of an equivalence class of location graphs instead of the semantics of a location graph.

It turns out that, in the following of this thesis, we are never bothered by these details, and we just
mention them here to be pedantic. Of course, a (computer assisted) verification of this work could not
make that (abusive) simplification. /

Remark. Naturally, all thusly formed location are well formed: ∀L ∈ n(G), WF(L) /

Remark (Administrative roles of nested graphs). In the definition, P and R are additional administrative
(provided and required) roles. Here, we do not specify exactly the number and the names of those roles.
In the following of this thesis, we assume we always have enough of those roles and we use them at will.
Therefore, when we note n(G), we implicitly mean an actual element of n(G), instead of the set itself.
We assume this element always have enough administrative roles to do what we intend to do (the worst
case being one administrative role toward and from any other location of the graph). /

The correspondence between the elements of G and G2 ∈ n(G) is shown in Table 3.1. We assume
R2 is disjoint of R (it contains fresh role names which are used for administrative communications, see
below).

An interesting property is that, from any element of n(G), we can recover the original G. We note
the function that does that n−1([·]), defined as:
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G G2 = n(G)

Processes P G

Sorts S Gs

Roles R R ∪ R2

Channels C C

Values V V ∪ {n(L)} for L ∈ L

Locations L L2

Location graphs G G2

Table 3.1: Relation between components of a location graph before and after nesting.

Definition 50 (Inverse of location nesting).

n−1(L)
∆
= L.proc

Lemma 11 (Soundness of the inverse of location nesting).

∀G ∈ G ·G = n−1(n(G))

Proof. The proof follows directly from Definitions 49 and 50:

n−1(n(G)) = [G : Σ(G) C p • r].proc = G

Graph partitions. As stated in the introduction, the second point to nest graphs is to find a way
to split graphs into subgraphs. To do so, we define graph partitions and graph partitioning functions,
inspired from (multi)set partitions. In the second part of this paragraph, we define a partial order relation
on partitions, and we show that the partitions of a graph form a lattice.

First, a partition of a graph is a multiset of subgraphs: it is a multiset of location graphs, such that
when we compose all elements of the partition, we fall back on (an equivalent of) the initial graph.

Definition 51 (Graph partition). Let G ∈ G be a location graph. Let Gi be a multiset of elements
(location graphs) of G. Gi is a partition of G if and only if

(i) G ≡
∏
Gi∈Gi

Gi; and
(ii) ∀Gi ∈ Gi, Gi 6≡ ∅.

The set of partitions of a graph G is noted PG.

Remark (Partition equivalence). Strico sensus, given a graph G = G1 ‖ G2 and a G′1 ≡ G1, the partitions
{G1, G2} and {G′1, G2} are distinct.

To overcome this, we implicitly distinguish partitions up to the equivalence of their elements. /

In general, we want to describe a way to have a partition from any graph. Therefore, we define graph
partitioning functions which are functions that take a location graph and return a partition of that graph.

Definition 52 (Graph partitioning function). A function p : G → P(G) is a partitioning function
over G if and only if:

∀G ∈ G, p(G) ∈ PG

The set of graph partitioning functions over G is noted PG.



47

Remark. In the following, we only consider partitioning functions that are invariant under structural
equivalence, that is, we only consider partitioning functions p such that, for all graphs G1 and G2,
G1 ≡ G2 ⇒ p(G1) = p(G2).

Notice that, in general, this is not necessary the case. /

Now that we have definitions for partitions and partitioning functions, we anticipate the future a bit8

and we present a notion of finer and coarser partitions.
Intuitively, we say that a partition p1 is finer than p2 (or that p2 is coarser) if it is possible to recover

p2 by merging some elements of p1. Said otherwise, elements of p2 are aggregates of elements of p1.

Defining what is a finer or coarser partition of a location graph with respect to an other partition
is not as easy as it may seem at first glance. Intuitively, we would define this relation as:

Example 4 (Bad definition of finer). Given a location graph G and G1 and G2 two partitions
of G, G1 is finer than G2 (noted G1 � G2) if and only if:

∀Gi ∈ G1 · ∃G′i ∈ G2 ·Gi ⊆ G′i

However, this definition is not sufficient since it is possible to have duplicate locations. An example
which illustrate the problem is the following: consider the graph G = L1 ‖ L2 ‖ L1 ‖ L2 and the
partitions G1 = {L1 ‖ L2;L1 ‖ L2} and G2 = {L1 ‖ L2;L1;L2}.
Here, we would intuitively say that G2 is finer than G1 (which is true) but we would not say that
G1 is finer than G2. Unfortunately, this does not hold here: both L1 ‖ L2 in G1 are subsets of the
unique L1 ‖ L2. The individual L1 and L2 of G2 are not used in the mapping.
Therefore, we say that G1 is finer than G2 if G1 is obtained by partitioning the subgraphs in G2.
However, the intuitive formalisation of this is to say that

G1 =
⋃

Gi∈G2

p(Gi)

for some partition function p. This is not satisfying because two equivalent subgraphs in G2 should
not necessarily be partitioned similarly. Therefore, in the following definition, we use a different
partitioning function pi for each Gi in G2.

Definition 53 (Finer graph partition). Given a location graph G and two partitions G1 and G2 of
G, G1 is finer than G2 (noted G1 � G2) if and only ifa there exists a set of partition functions pi
such that:

G1 =
⋃

Gi∈G2

pi(Gi)

If G1 � G2, then G2 is a coarser graph partition than G1 (noted G2 ≺ G1).

aNotice the union used is the union of multisets.

This definition implies the intuitive view of partition we have:

Lemma 12.

G1 � G2 ⇒ ∀Gj ∈ G1 · ∃Gi ∈ G2 ·Gj ⊆ Gi

Proof. From Definition 53, G1 =
⋃
Gi∈G2

pi(Gi) for some partition functions pi.
For any element Gj of G1, ∃Gi ∈ G2 ·Gj ∈ pi(Gi). By definition of partition function (Definition 52)
and partition (Definition 51), Gi ≡

∏
Gk∈pi(Gi)

Gk, i.e. Gi ≡ Gj ‖ Gk for Gk ≡
∏
Gk∈pi(Gi)\Gj

Gk.
Therefore, from Lemma 7, Gj ⊆ Gi.

An other important property about p1 � p2 is that if p1 and p2 share a common element, then we
can remove that element on both partitions, and they remain related.

8Thanks to the very nature of manuscripts, the puzzled reader can actually see the future, by having a look at the proofs
of Lemmas 21 and 22, which are the two sides of Lemma 23.
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Lemma 13. Given a graph G and two partitions G1 and G2 of G such that G1 � G2.

∀G0 ·G0 ∈ G1 ∧G0 ∈ G2 ⇒ G1 \G0 � G2 \G0

Proof. From Definition 53, G1 =
⋃
Gi∈G2

pi(Gi) for some partition functions pi.
Since G0 ∈ G1, there exists a Gj ∈ G2 such that G0 ∈ pj(Gj). Also, since G0 ∈ G2, there exists a
Gk ≡ G0 ∈ G2.
Therefore,

G1 =
⋃

Gi∈G2

pi(Gi) =
⋃

Gi∈G2
i 6=j,k

pi(Gi) ∪ (pj(Gj) \G0) ∪ pk(Gk) ∪G0

We have pj(Gj) = G0 ∪ (pj(Gj) \ G0), since pj is a partition function, Gj ≡
∏
G∈pj(Gj)G. In

addition, since pk is a partition function, G0 ≡
∏
G∈pk(G0)G.

Therefore, Gj ≡
∏
G∈pj(Gj)\G0

G ∪
∏
G∈pk(G0)G. Thus pj(Gj) \ G0 ∪ pk(G0) is a partition of Gj .

Let pjk(G) be a function that returns pj if G 6= Gj and pj(Gj) \G0 ∪ pk(G0) if G = Gj .
Let p′1, . . . be a family of partition function such that p′i = pi if i 6= j and p′j = pjk.
Finallya,

G1 \G0 =
⋃

Gi∈G2\G0

i 6=j

pi(Gi) ∪ (pj(Gj) \G0 ∪ pk(Gk)) =
⋃

Gi∈G2\G0

p′i(Gi)

Therefore G1 \G0 � G2 \G0.

aNotice that, since G0 is removed, the index k in the union is removed also.

We can now show that � is a partial order. The only non-trivial part is antisymmetry, as it is possible
to have the same subgraph multiple times in the partition (for instance if the original graph has multiple
copies of the same location).

Lemma 14. The finer relation is a partial order.

Proof. Reflexivity: Trivial.

Antisymmetry: We have G1 and G2 with G1 � G2 and G2 � G1. We show that ∀Gi ∈ G1,∃Gi ∈
G2, the other direction holds by symmetry. Since a location graph contains a finite number of
location and since location graph partitions do not contain empty graphs elements, G1 and G2

have a finite number of elements. By induction on the number of elements of G1 (induction
hypothesis: ∀G1,G2 · G1 � G2 ∧ G2 � G1 ⇒ G1 = G2):
Base case (|G1| = 0): Vacuously holds.

Inductive case (|G1| = n+ 1): Let G0 ∈ G1 be such that ∀Gi ∈ G1 · size(G0) ≥ size(Gi).
Since G1 � G2, there exists G′0 ∈ G2 such that G0 ⊆ G′0. Since G2 � G1, there exists
G1 ∈ G1 such that G′0 ⊆ G1. By hypothesis, size(G0) ≥ size(G1), and G0 ⊆ G′0 and
G′0 ⊆ G1. Hence, from Lemma 8, size(G0) = size(G′0) = size(G1). Hence, from Lemma 9
G0 ≡ G′0 ≡ G1.
From Lemma 13, G1 \G0 � G2 \G0 and G2 \G0 � G1 \G0. Hence, from the induction
hypothesis: G1 \G0 = G2 \G0. Therefore, G1 = G2.

Transitivity: Follows directly from the definition and the transitivity of location graph inclusion.

The last step toward to prove that partitions of a graph equipped with · � · form a lattice is to show
that we have a biggest and a smallest element. This is trivial, the finest partition of a graph separates
each individual locations, while the coarsest partitions the graph into a single element: the graph itself.

Lemma 15. For any location graph G, there is a smallest and biggest partition Gmin and Gmax in
PG, i.e. ∀G ∈ PG · Gmax � G ∧ G � Gmin.

Proof. Smallest partition: Take the partition Gmin = {G}.
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Biggest partition: Take Gmax = locations(G).

Corollary 1 (of Lemma 14 and 15). (PG,�) form a lattice.

Example 5 (Lattice of partitions). Given a location graph G = L1 ‖ L2 ‖ L3 ‖ L4, the following
figure shows the lattice of the partitions of G.

{L1, L2, L3, L4}

{L3 ‖ L4, L1, L2}

{L1 ‖ L2, L3, L4}

{L2 ‖ L4, L1, L3}

{L1 ‖ L3, L2, L4}

{L1 ‖ L4, L2, L3}

{L2 ‖ L3, L1, L4}

{L1 ‖ L2, L3 ‖ L4}

{L1 ‖ L2 ‖ L4, L3}

{L2 ‖ L3 ‖ L4, L1}

{L1 ‖ L3, L2 ‖ L4}

{L1 ‖ L3 ‖ L4, L2}

{L1 ‖ L2 ‖ L3, L4}

{L1 ‖ L4, L2 ‖ L3}

{L1 ‖ L2 ‖ L3 ‖ L4}

Colours added to improve readability.

We previously defined finer and coarser graph partitions. One could extend this definition to
partitioning functions, although we do not need that definition for the rest of the work.

Definition 54 (Finer/Coarser partitioning functions). Given p1 and p2 two partitioning
functions over G, p1 is finer than p2 (noteda p1 � p2) if and only if:

∀G ∈ G,∀Gi ∈ p1(G),∃G′ ∈ p2, Gi ⊆ G′

If p1 � p2, then p2 is coarser than p1 (noted p2 ≺ p1).

aIntuitively, a subgraph of p2(G) can be split into multiple subgraphs in p1(G).

Graph nesting. Finally, we can define graph nesting. From the above material, our approach should
be very intuitive: we partition a graph, and we nest the elements of the partition in individual locations.
Notice that, as with n(), the function returns a set of possible nested graphs. The variants differ only by
the chosen administrative roles and by equivalent graphs, we therefore ignore those differences.

Definition 55 (Graph nesting function). A nesting function N[·]([·]) is a function that takes a
graph partitioning function p and a graph G and returns:

Np(G)
∆
=

 ∏
Gi∈p(G)

G′i|G′i ∈ n(Gi)


Remark. Similarly to the remarks on n([·]), by Np(G), we actually mean a particular element of Np(G),
where we implicitly assume we have all the administrative roles we need. /

From any element G2 ∈ Np(G), we can recover the original graph: each (2nd order) location allows
to recover the underlying element of the partition. By composing all elements of the partition recovered
thusly, we can reconstruct the full 1st order graph. We note the function that does that N−1

[·] ([·])
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Definition 56 (Inverse of graph nesting).

N−1
p (G)

∆
=

∏
Li∈G

n−1(Li)

In that definition, all Li are 2nd order locations, i.e. locations that nest a subgraph of the original 1st

order graph.

Remark. ∀p, p′ ∈ PG, N
−1
p (G) ≡ N−1

p′ (G). /

Lemma 16 (Soundness of N−1
[·] ([·])).

∀G · ∀p ·N−1
p (Np(G)) ≡ G

Proof.

N−1
p (Np(G))

Def 56
=

∏
Li∈Np(G)

n−1(Li)

Def 55
=

∏
Li∈

∏
Gi∈p(G) n(Gi)

n−1(Li)

=
∏

Gi∈p(G)

n−1(n(Gi))

Lem 11
=

∏
Gi∈p(G)

Gi

Def 52≡ G

We relate nested graph with the partitioning function used. We show that if we use two different
partitioning function, we result in different 2nd order graphs, and vice-versa.

Lemma 17. For all G in G, Np(G) = Np′(G)⇔ p(G) = p′(G).

Proof. The direction p(G) = p′(G)⇒ Np(G) = Np′(G) is trivial.
To prove Np(G) = Np′(G)⇒ p(G) = p′(G), we prove p(G) 6= p′(G)⇒ Np(G) 6= Np′(G).
If p(G) 6= p′(G), then ∃Gi ∈ p(G) · Gi 6∈ p′(G) ∨ ∃Gi ∈ p′(G) · Gi 6∈ p(G). By symmetry, we only
consider the case ∃Gi ∈ p(G) ·Gi 6∈ p′(G).
The location nesting function n([·]) is injective, hence n(Gi) 6∈ {n(Gj)|Gj ∈ p′(G)}, which implies
n(Gi) 6∈

∏
Gj∈p′(G) n(Gj).

Thus
∏
Gi∈p(G) n(Gi) = Np(G) 6= Np′(G) =

∏
Gj∈p′(G) n(Gj).

Corollary 2. If G1 ≡ G2, then, for any partition function p, Np(G1) ≡ Np(G2).

Proof. This follows directly from the fact that we consider only partition functions that are invariant
under structural equivalence and from Lemma 17.

Finally, a last trivial lemma, which states that we do not lose unbound roles while nesting.

Lemma 18.

∀G, p ·G.unbound ⊆ Np(G).unbound

Proof. Trivial.

As a conclusion, we now have a mechanism to build nested variants of any location graph. Aggregates
are formed using partitioning functions. 2nd order locations are locations which contain a full 1st order
graph as their process, and the skeleton of that graph as their sort.
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If G −→

G1

G2

, then G −→

G1

G2

Figure 3.3: Intuition of the first candidate for Tu: if a graph G can take a transition to become G′, then n(G) can take a
transition to become n(G′). Notice that, in the 1st order graph, the transition is a location graph transition (from a graph
to an other graph, with authorisation checking), while the transition in the 2nd order graph is an unconstrained location
transition (from a location to a graph, without any authorisation checks).

We showed that nesting is reversible, in the sense that we can extract the original graph out of its
location, and this scales to full graphs.

Finally, we also showed that the different ways to partition a graph form a lattice, which is an
important point to remember for latter work.

3.3.2 Semantics of the 2nd order graph

We now focus on the dynamic aspects of nested location graphs. In this section, we present the semantics
of 2nd order graphs. To define the semantics of the 2nd order graphs, we have to built a set T2 of
unconstrained location transitions, and to define an authorisation function Auth2. Our final goal is, of
course, to show that the behaviour of the 1st order graph is preserved, via the exhibition of a partial
bisimulation relation between the two.

Therefore, intuitively, the semantics of the 2nd order graph should mimic as much as possible the
semantics of the 1st order graph. In the first part of this section, we aim to find a suitable candidate for
unconstrained location transitions of the 2nd order graph. We illustrate problems that may occur with
trivial candidates and we end up with a set of unconstrained location transition which is both easy to
understand (as it is built on top of the most intuitive candidate), yet suitable for our future work.

In the second paragraph, we study the authorisation function of the 2nd order graph. The main idea
is to use the authorisation function of the 1st order graph. The only difficulty of this part is to recover
the 1st order skeleton graph which is used by that authorisation function. With that skeleton recovered,
we can define the 2nd order authorisation function as a predicates which holds if and only if the nested
1st order graph can perform an analogous transition.

Unconstrained location transitions. Locations of the 2nd order graph are [G : Σ(G) C p • r]
where G is a 1st order graph. In order to study the semantics of 2nd order graphs, we first define their
unconstrained transitions T2. We propose three candidates for T2, from the most intuitive to one that
allows a bisimulation relation between the 1st and 2nd order graphs.

In the following T1 is the set of unconstrained location transition of the 1st order graph and T2 is the
set of unconstrained location transition of the 2nd order graph.

First candidate. The most intuitive candidate for the set T2 of unconstrained transitions of the
2nd order graph would be to map each transition of the nested subgraph to a transition of the nesting
location. Figure 3.3 shows the intuition of the first candidate set of T2. Formally, the set T2 is defined as
follow:

T2
∆
= {∆2 · ∅ B n(G)

Λ−→ Np(G
′)|∆ · Σ `T1 G

Λ−→ G′ ∧ p ∈ P}

Remark. We do not go into further details of what is ∆2, as the limitations developped below do not
depend on it. /

However, as such, the transition relation of the 2nd order graph is not that interesting, as a transition
can split the graph, but location can never merge on their own9. Therefore, using that semantics, in

the general case, Γ `T1
G

Λ−→ G′ does not necessarily implies Γ2 `T2
Np(G)

Λ2−−→ Np(G
′) (for Γ2 and Λ2

properly adjusted10 from Γ and Λ). The best achievement we could guarantee with such semantics would

9We would rely on semantics of the 1st order graph to remove and recreate all locations of one side to perform some
kind of merging.

10According to dictionaries, I could write ”suitably suitable” instead of ”properly adjusted” here, which would be much
funnier, though less understandable.
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G
rmv(n(H))−−−−−−→

G

H

and G
rmv(n(G))−−−−−−→ ∅

Figure 3.4: Intuition of the two administrative rules of the second candidate set. Notice that these two rules can only fire
in parallel (due to the rmv(n(H))-rmv(n(H)) tokens that should match). When fired, a location graph n(G) ‖ n(H) reduces
to n(G ‖ H).

be that, for each Γ `T1
G

Λ−→ G′, we would have Γ2 `T2
Np(G)

Λ2−−→ Np′(G
′), with p′ a finer partitioning

function than p.
Intuitively, this candidate characterise systems in which new encapsulation scopes can be created (by

splitting a agglomerate into multiple ones), but in which a location can not be exchanged among already
existing encapsulation scopes.

Example 6 (Transition not captured). Suppose we have a system with green and blue locations,
and we separate them according to their color. In addition, suppose that location can change their
color dynamically (i.e. they change the group they belong to).

At this point, if a location changes its color, the color change is also captured in the nested graph,
but the aggregates remain unchanged: the first candidate rule does not allow the move of location
across aggregates.

The goal of the second and third candidate rules is to provide a mechanism to allow such movements.

Second candidate. To overcome this problem, we could add two rules to allow the merging of
locations. We call these rules administrative, as they are added only for problem solving, compared to
the proper rule that does the actual work to mimic transitions of the 1st order graph. Intuitively, we
want to merge two aggregates (in the case we would like to merge only part of an aggregate, we can
already split it, then merge only the part we are interested in). We could therefore introduce two (sets
of) synchronized rules: the first would capture an aggregate n(H), and merge it with its already nested
graph G, and therefore, n(G) would become n(G ‖ H); the second rule would simply be to allow a
location n(H) to remove itself. The intuition shows that, when firing both simultaneously, we would not
loose any 1st order locations, and we could merge aggregates. Figure 3.4 shows the intuition for the two
new administrative rules.

Formally, these two new administrative (sets of) rules would be the following:

— ∆ · ∅ B n(G)
〈ε,{r̂:rmv〈n(H)〉}〉−−−−−−−−−−−→ n(G ‖ H)

— ∆ · ∅ B n(G)
〈ε,{r̂:rmv〈n(G)〉}〉−−−−−−−−−−−→ ∅

for any r ∈ R2, and adequates ∆. The new set T2 would be the union of the first candidate and these
two (sets of) rules.

The goal of these transitions is to manage the administrative transitions of the graph. However, we
can anticipate a new problem that arises when adding these transitions: our (future) goal is to find a
strong bisimulation between the 1st and 2nd order graphs —which means that each transition of one
location graph should be matched by one and only one transition of the other location graph—, and such
administrative transitions would not be matched (in the general case) by any transition of the 1st order
graph. We can foresee that this second candidate will make our life11 harder when it comes to prove the

11Well, mine at least.
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If G −→
H

I

J
, then G

rmv(n(K)), rmv(n(I))−−−−−−−−−−−−−→
H

K

J

Figure 3.5: Intuition of the rule for the third candidate for the set of unconstrained location transitions of the 2nd order
graph. In this rule, a 2nd order location n(G) embedding a graph G (which reduces to G′) can reduce to any location graph
K, as long as (i) if a subgraph of G′ is not nested in a location of K, then an appropriate rmv token should be put in the
label (e.g. I in the figure); (ii) if K embeds locations that are not in G′, then an appropriate rmv token should be put in
the label (e.g. K in the figure).

bisimulation.

Third candidate. The problem of the second candidate T2 is that administrative and proper rules
are not taken in the same transition. An intuitive solution to the problem of the second candidate would
therefore be to embed the administrative transitions with the proper transition. For that, we merge the
behaviour of administrative rules within the rule of the first candidate candidate. Figure 3.5 shows the
intuition of the rule.

Before actually writing down the set of rules, let first define what the new label should look like.
Intuitively, we want to add (administrative) interactions: an r̂ : rmv〈n(L)〉 for each new L merged, and
an r̂ : rmv〈n(L)〉 for each L removed.

We define the predicate inter2([·], [·], [·], [·]) which is used to characterise correct interactions on
2nd order labels. Notice that this is not a function: we have the choice of r ∈ R2 when we add new
administrative interactions. The semantics rules of location graphs constraint those roles to be unbound
by the 2nd order location on which the transition applies.

Definition 57 (Second order interactions). The predicate inter2(ι,H,G, ιc) is defined according
to the following inference rules.

ι = ιc H ≡ G
inter2(ι,H,G, ιc)

inter2(ι ∪ {r̂ : rmv〈n(L)〉}, H,G′, ιc) G ≡ G′ ‖ L L 6∈ H r ∈ R2

inter2(ι,H,G, ιc)

inter2(ι ∪ {r̂ : rmv〈n(L)〉}, H ′, G, ιc) H ≡ H ′ ‖ L L 6∈ G r ∈ R2

inter2(ι,H,G, ιc)

Finally, unconstrained location transitions are those of the form: Γ2 B n(G)
Λ2−−→ Np(H) such that

Γ `T1 G
Λ−→ G′; Λ2.prior = Λ.prior; and inter2(Λ.sync, H,G′,Λ2.sync), where Γ2 = ∆2 · ∅ is an

environment such that: (i) Γ.names ⊆ ∆2; and (ii) ∆2 − Γ.names ⊂ R2. That is, the names should be
the same than in the 1st order graph reduction, up to roles in R2.

We keep the second administrative rule of the second candidate, to allow some locations to merge
even though they do not reduce:

Γ B n(G)
〈ε,{r̂:rmv〈n(L)〉|L∈G∧r∈R2}〉−−−−−−−−−−−−−−−−−−−→ ∅

Why shall we keep that administrative rule? Suppose that we have a graph G = Ga ‖ Gb, and
the partitioning function we want is p. Suppose, in addition, that p(G) = {Ga, Gb}. In that case,

Np(G) = n(Ga) ‖ n(Gb). Of course, if Γ `T1
G

Λ−→ G′, we want Γ2 `T2
Np(G)

Λ2−−→ Np(G
′).

Now suppose the only transition is a (Ctx) transition, where Γ `T1 Ga
Λa−−→ G′a and (therefore)

Γ `T1
Ga ‖ Gb

Λ−→ G′a ‖ Gb, and that there is no transition for Gb.

In that case, we seek a 2nd order transition such that Γ2 `T2
n(Ga) ‖ n(Gb)

Λ2−−→ Np(G
′
a ‖ Gb).

Finally, suppose that p(G′a ‖ Gb) = {G′a ‖ Gb}. In that case, our 2nd order transition should yield
n(G′a ‖ Gb).
Of course, Γ2 B n(Ga)

Λ2a−−→ n(G′a ‖ Gb) is in T2 (for an adequate Λ2a). But without that additional
administrative rule, n(Gb) can not self remove, since there is no 1st order reduction for Gb, and
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therefore, there is no possibility to remove the n(Gb) so that n(Ga) can capture it.

With that additional administrative rule, it is completely different: with Γ2 B Gb
Λ2b−−→ ∅, the 2nd

order graph can take a (Comp) transition (assuming all other premisses are satisfied)a:

Γ2 `T2
n(Ga) ‖ n(Gb)

Λ−→ n(G′a ‖ Gb)

Notice that, when such things happens, a (Ctx) transition of the 1st order graph is matched by a
(Comp) transition.

aThe label of that transition is indeed the original Λ: all added interactions are matched. We will give further
details on that in the bisimulation proof.

Finally, our transition set T2 is the union of these rules:

Definition 58 (2nd order unconstrained location transitions).

T2
∆
= {∆2 · ∅ B n(G)

〈π,ι2〉−−−−→ Np(H)|∆ ·Gs `Tu G
〈π,ι1〉−−−−→ G′ ∧ inter2(ι1, H,G

′, ι2)

∧∆2 = ∆ ∪∆r ∧∆r ⊂ R2}

∪ {Γ B n(G)
〈ε,{r̂:rmv〈n(L)〉|L∈G∧r∈R2}〉−−−−−−−−−−−−−−−−−−−→ ∅}

Authorisation function. We now need to build the authorisation function of the 2nd order graph.
The idea is to recover the underlying 1st order transition, and to check (using the 1st order authorisation
function) if it is allowed.

To achieve that, we need three steps: (i) we need to extract the 1st order skeleton graph corresponding
to the current graph; (ii) we need to retrieve the 1st order label of the underlying transition; and (iii) we
need to find the 1st order destination graph (since locations can be added or removed, according to the
unconstrained location transitions set).

Let e : Σ(G2) → Σ(G) be a function that extracts the original 1st order skeleton graph from a 2nd

order skeleton graph:

Definition 59 (Skeleton extraction).

e(Gs) =
∏

Ls∈Gs

Ls.sort

This extraction process is sound, in the sens that it indeed returns the skeleton of the underlying 1st

order graph.

Lemma 19 (Extraction soundness).

∀G ∈ G · ∀p ∈ PG · e(Σ(Np(G))) = Σ(G)

Proof.

e(Σ(Np(G))) =
∏

Ls∈Σ(Np(G))

Ls.sort

Lem 2
=

∏
Ls∈

∏
L∈Np(G) Σ(L)

Ls.sort =
∏

L∈Np(G)

Σ(L).sort

Def 55
=

∏
L∈

∏
Gi∈p(G) n(Gi)

Σ(L).sort =
∏

Gi∈p(G)

Σ(n(Gi)).sort

Def 49
=

∏
Gi∈p(G)

Σ([Gi : Σ(Gi) C p • r]).sort

Def 15
=

∏
Gi∈p(G)

[Σ(Gi) C p • r].sort =
∏

Gi∈p(G)

Σ(Gi)

Lem 3, Def 51
= Σ(G)
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Our second step is to retrieve the 1st order label corresponding to the 2nd order transition we are
authorizing. Fortunately, we introduced roles in R2 specifically for administrative purposes. Therefore,
to retrieve the original label, we can simply prune our label of all elements on roles in R2. We define a
pruning function that removes roles in R2.

Definition 60 (Label pruning).

prune(Λ) = 〈{r̂ : ∗a〈V 〉|r̂ : ∗a〈V 〉 ∈ Λ.prior ∧ r ∈ R}, {r̂ : â〈V 〉|r̂ : â〈V 〉 ∈ Λ.sync ∧ r ∈ R}〉

Lemma 20 (Pruned label lemma). For any ∆, G2, Λ and G′2, if prune(Λ) = Λ and ∆ · ∅ B G2
Λ−→

G′2 ∈ T2, then there exists Gs1, G1, G′1 such that

(i) ∆ ·Gs1 `T1
G1

Λ−→ G′1; and
(ii) G2 = n(G1); and
(iii) G′2 = Np(G

′
1).

Proof. By hypothesis, ∆ · ∅ B G2
Λ−→ G′2 ∈ T2. By definition of T2, either: (i) G2 = n(G1),

G′2 = Np(H) for some G1 and H two first order graphs such that Γ `T1 G1
Λ1−−→ G′1, with

inter2(Λ1.sync, H,G
′,Λ.sync) ; or (ii) G′2 = ∅ and Λ = 〈ε, {r̂ : rmv(n(G))}〉 with r ∈ R2 Since

prune(Λ) = Λ, (ii) is not possible.
Concerning the possibility (i), since inter2(Λ1.sync, H,G

′,Λ.sync), and prune(Λ) = Λ, then
Λ1.sync = Λ.sync (hence Λ1 = Λ) and H = G′.

Thus, Γ `T1
G1

Λ−→ G′1, for an adequate Γ.

The third step is to retrieve the original 1st order destination graph of the underlying 1st order

transition. If to authorize a transition ∆ · ∅ B L2
Λ2−−→ C, we would like to know the G1 such that

C = Np(G). However, Λ2 can possibly contains r̂ : rmv〈n(L1)〉 or r̂ : rmv〈n(L1)〉, corresponding to added
or removed locations of G. Therefore, to recover the original 1st order G, we have to revert those actions
of Λ2.

Definition 61 (Graph recovery).

recover(Λ, G2) =


recover(Λ′, Np(N

−1
p (G2) ‖ L)) if Λ = 〈Λ′.prior,Λ′.sync ∪ {r̂ : rmv〈L〉}〉

recover(Λ′, Np(G1)) if G2 = Np(G1 ‖ L)

∧ Λ = 〈Λ′.prior,Λ′.sync ∪ {r̂ : rmv〈L〉}〉
G2 otherwise

Finally, the authorisation function of the 2nd order graph allows transitions which correspond to 1st

order allowed transitions, given the right environment:

Definition 62 (2nd order authorisation function).

Auth(G2
s,∆ · ∅ B L2

Λ2−−→ C)⇔ ∆′ · e(G2
s) `T1

n−1(L2)
prune(Λ2)−−−−−−→ N−1

p (recover(Λ2, C))

with ∆′ = ∆ ∩ R (i.e. ∆ without out-of-band roles).

Remark. The authorisation function of the 2nd order graph does not depend on the chosen partition
function. /

2nd order semantic lemmas. In this paragraph, we introduce an important result on the 2nd order
semantics. This result states that the partition function is not that relevant, in that we can change from
one to the other during reduction.

The proof of this statement is done in two steps: (i) in a first step, we show in Lemma 21 that when we
perform a transition with a partitionning function p1, we can also perform a transition to reach a coarser
partition p2 (intuitively, during a transition, we can merge together some nested aggregates); then (ii) we
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Np1(G) Np1(G′)

G G′

Np2(G′)

Λ

Λ

Np1 Np1

Np2

Figure 3.6: Illustration of Lemma 23. Given a 2nd order graph Np1 (G) which reduces to Np1 (G′) (the blue arrow), we show
that Np1 (G) also reduces to Np2 (G′) (the red arrow) for any p2.

show the reverse in Lemma 22, that is, we can always reach a p2 which is finer than p1 (intuitively, during
a transition, we can split some aggregates), and from that, it follows that we can reach any partition
(Lemma 23).

Figure 3.6 gives a graphical interpretation of this lemma.

Lemma 21. For any graphs G and G′, for all partition functions p, p1 and p2 such that p1(G′) �
p2(G′), for any environment Γ, if Γ ` Np(G)

Λ−→ Np1(G′), then

Γ ` Np(G)
Λ−→ Np2(G′)

Proof. By hypothesis, p1(G′) � p2(G′). Therefore, from Lemma 12, ∀Gi ∈ p1(G′),∃G′i ∈
p2(G′), Gi ⊆ G′i. Without loss of generality, consider there are only two elements of p1(G′) (named
Gi and Gj hereafter) such that Gi ∈ p1(G′), Gj ∈ p1(G′) and Gi ‖ Gj ∈ p2(G′). For all other
elements Gk ∈ (p1(G′)−{Gi, Gj}), Gk ∈ p2(G′). Let G2

k =
∏
Gk∈p1(G′)−{Gi,Gj} n(Gk), G2

i = n(Gi),

G2
j = n(Gj) and G2

ij = n(Gi ‖ Gj).
The goal of the proof is to show that, given Γ ` Np(G)

Λ−→ G2
i ‖ G2

j ‖ G2
k, then Γ ` Np(G)

Λ−→ G2
ij ‖

G2
k.

By case analysis of p(G):

Case |p(G)| = 1: In this case Np(G) = n(G), and Γ ` n(G)
Λ−→ n(Gi) ‖ n(Gj) ‖ Gk, using

(Trans). From the premisses of (Trans), Γ B n(G)
Λ−→ n(Gi) ‖ n(Gj) ‖ Gk and the

authorisation function holds. Since the authorisation function does not depend on the chosen

partition function, we only need to show that Γ B n(G)
Λ−→ n(Gi ‖ Gj) ‖ Gk, which holds

directly from the definition of the unconstrained location transitions of the 2nd order graph.

Case |p(G)| = n+ 1: To clarify the proof, we distinguish the case |p(G)| = 2 (proven using the
case |p(G)| = 1) and the case |p(G)| > 2 (proven using the cases |p(G)| = 1 and |p(G)| = 2).
Case |p(G)| = 2: We have Np(G) ≡ Ga ‖ Gb and either rule (i) (Comp); or (ii) (Ctx)

applies.

Case (Comp): We have Γ ` Ga
Λ−→ G′a and Γ ` Gb

Λ−→ G′b.
Case G′a ≡ G2

i ‖ Gka and G′b ≡ G2
j ‖ Gkb (resp. vice-versa): We have Γ B

Ga
Λa−−→ G′a and Γ B Gb

Λb−→ G′b with seval(Λa ∪ Λb) = Λ. Thus, the rules

Γ B Ga
Λa∪〈ε,r̂:rmv〈G2

j〉〉−−−−−−−−−−−→ G2
ij ‖ Gka and Γ B Gb

Λb∪〈ε,r̂:rmv〈G2
j〉〉−−−−−−−−−−−→ Gkb hold.

Finally, with rule (Comp), Γ ` Ga ‖ Gb
Λ−→ G2

ij ‖ Gk.

Case G′a ≡ G2
i ‖ G2

j ‖ Gka (resp. for G′b): The result holds directly from the in-
duction hypothesis on Ga (resp. Gb).

Case (Ctx): By symmetry, suppose that Γ ` Ga
Λ−→ G′a and Gb does not reduce.
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Case Gb = G2
j (resp. Gb = G2

i ): Gb can take the transition Γ ` Gb
〈ε,r̂:rmv〈Gb〉〉−−−−−−−−→

∅. In addition, G′a ≡ G2
i ‖ Gk (resp Ga′ ≡ G2

j ‖ Gk). Thus, Ga can take

the transition Γ ` Ga
Λ∪〈ε,r̂:rmv〈Gb〉〉−−−−−−−−−−→ G2

ij ‖ Gk. Finally, with rule (Comp),

Γ ` Ga ‖ Gb
Λ−→ G2

ij ‖ Gk.

Case Gb 6= G2
i and Gb 6= G2

j : The result holds directly from the induction hypoth-
esis on Ga.

Case |p(G)| > 2: We have to cases to distinguish the case in which (i) both G2
i and G2

j exist
in Np(G); or (ii) every other possibilities.
Case Np(G) ≡ (G2

i ‖ G2
j ) ‖ Np′(G′) and rule (Ctx) applies: We have Γ `

Np′(G
′)

Λ−→ G2
k. Let Gr ∈ Np′(G

′) be a location that takes a (Trans) re-

duction. Hence, Γ B Gr
Λr−−→ G′r, therefore Γ B Gr

Λr−−→ G′r ‖ G2
ij is a valid

unconstrained location reduction. In addition, from the definition of the uncon-

strained location transitions, both G2
i and G2

j can reduce: Γ B G2
i

〈ε,r̂1:rmv〈G2
i 〉〉−−−−−−−−−→ ∅

and Γ B G2
j

〈ε,r̂2:rmv〈G2
j〉〉−−−−−−−−−→ ∅. Thus, Γ ` G2

i ‖ G2
j ‖ Gr

Λr−−→ G′r ‖ G2
ij . Therefore,

finally, Γ ` Np(G)
Λ−→ G2

ij ‖ G2
k.

Otherwise: The result follows directly from the cases |p(G)| = 1 or |p(G)| = 2.

Lemma 22. For any graphs G and G′, for all partition functions p1 and p2 such that p2(G′) �
p1(G′), for any environment Γ, if Γ ` Np(G)

Λ−→ Np1(G′), then

Γ ` Np(G)
Λ−→ Np2(G′)

Proof. Without loss of generality, consider there are a two elements of p2(G′) (named Gi and Gj
hereafter) such that Gi ∈ p2(G′), Gj ∈ p2(G′) and Gi ‖ Gj ∈ p1(G). For all other elements
Gk ∈ p2(G′), Gk ∈ p2(G′)− {Gi, Gj}.
By induction on |p(G)|:
Case |p(G)| = 1: Np(G) = n(G) and Γ B n(G)

Λ−→ Np1(G′). We have Np1(G′) = Gij ‖ Gk. We

have, from the definition of the unconstrained location transitions, that Γ B n(G)
Λ−→ Np2(G′)

is also a valid unconstrained location transitions, which ends this case.

Case |p(G)| = n+ 1: In this case, either (i) (Comp); or (ii) (Ctx) applies.
Case (Comp): The results follows directly from the induction hypothesis.

Case (Ctx): We have Np(G) ≡ Ga ‖ Gb. By symmetry, consider that Γ ` Ga
Λ−→ G′a and

that Gb does not reduce. We have Np1(G′) ≡ G′a ‖ Gb.
We distinguish two cases:
Case Gij ∈ G′a: The result follows directly from the induction hypothesis.

Case Gij ∈ Gb: In this case, Gb ≡ Gij ‖ G′b, which reduces (using (Trans) on Gb

and (Ctx)) as Γ ` Gb
〈ε,r̂:rmv〈Gij〉〉−−−−−−−−−→ G′b. Also, since Γ ` Ga

Λ−→ G′a, there is at

least one location Gr ∈ Ga such that Γ ` Gr
Λr−−→ G′r using (Trans). Thus, Gr

also reduces as Γ ` Gr
Λ∪〈ε,r̂:rmv〈Gij〉〉−−−−−−−−−−−→ Gi ‖ Gj ‖ G′r. Finally, using (Comp),

Γ ` Ga ‖ Gb
Λ−→ G′a ‖ Gi ‖ Gj ‖ G′b.

Lemma 23 (2nd order semantic lemma). For all partition functions p, p1 and p2, for any environ-

ment Γ, for any graphs G and G′, if Γ ` Np(G)
Λ−→ Np1(G′), then

Γ ` Np(G)
Λ−→ Np2(G′)
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Proof. From Corollary 1, the partitions of G′ form a lattice with respect to �. Let pinf =
inf(p1, p2)a. By definition of inf, p1 � pinf and p2 � pinf .

From Lemma 21, Γ ` Np(G)
Λ−→ Npinf (G

′).

From Lemma 22, Γ ` Np(G)
Λ−→ Np2(G′).

aThe partition pinf is guaranteed to exist since 〈PG′ ,�〉 is a lattice.

An other formulation of this lemma is the following:

Corollary 3 (Interchangeable partition functions). For any partition functions p1 and p2, for any
label Λ,

Γ `T2
G

Λ−→ Np1(C)⇔ Γ `Tu
G

Λ−→ Np2(C)

Corollary 4 (of 2nd order semantic lemma). For any partition function p, for any environment Γ

and for any graphs G, G′, if Γ ` Np(G)
Λ−→ Np(G1) ‖ Np(G2), then

Γ `T2
Np(G)

Λ−→ Np(G1 ‖ G2)

3.3.3 Partial bisimulation

In this subsection, we show that our nesting preserves the behaviour of the location graph. We use the
notion of P-bisimulation we defined above. In the first paragraph, we define the equivalence (the relation
P) we will be using. Then, in the second paragraph, we show the bisimulation result.

Environment & label equivalences. Intuitively, if λ1 is a 1st order label and λ2 a 2nd order label,
λ1 is equivalent to λ2 if actions of λ2 are either out-of-band, or in λ1.

Definition 63 (Label equivalence for nested location graphs).

Pλ
∆
= {〈λ1, λ2〉|∀a ∈ λ2.sync · (a ∈ λ1.sync ∨ a.role ∈ R2) ∧ (λ1.prior = λ2.prior)}

Concerning environments, a 1st order environment ∆1 · Gs1 is equivalent to a 2nd order environment
∆2 ·Gs2 if the 1st order skeleton graph embedded in the sorts of the skeleton locations of Gs2 forms Gs1.

Definition 64 (Skeleton graph equivalence for nested location graphs).

Ps
∆
= {〈Gs1, Gs2〉|Gs1 = e(Gs2)}

Concerning atoms, we consider that two sets of names are equivalent if the second one contains some
additionnal roles from R2.

Definition 65 (Atom equivalence for nested location graphs).

P∆
∆
= {〈∆1,∆2〉|∆2 = ∆1 ∪∆r ∧∆r ⊆ R2}

Finally, two environments are equivalent if their atoms and their skeleton graphs are equivalent.

Definition 66.

PE
∆
= {〈∆1 ·Gs1,∆2 ·Gs2〉|∆1 P∆ ∆2 ∧Gs1 Ps G

s
2}

In this very case, an interesting point to note is that for all G, supp(G) · Σ(G) PE supp(Np(G)) ·
Σ(Np(G)).

Lemma 24.

∀G · ∀p · supp(G) · Σ(G) PE supp(Np(G)) · Σ(Np(G))
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Proof. There are two points to prove: (i) supp(G) P∆ supp(Np(G)) ; and (ii) Σ(G) Ps Σ(Np(G)) .
Item (i): By induction on p(G):

Case G = ∅ (p(G) = ∅): Trivial, supp(G) = supp(Np(G)) = ∅.
Case p(G) = {G}: Np(G) = n(G) = [G : Σ(G) C p ∪ p2 • r ∪ r2], with p2 ⊂ R2 and r2 ⊂ R2.

Therefore, supp(Np(G)) = supp(G) ∪ supp(Σ(G)) ∪ supp(p) ∪ supp(p2) ∪ supp(r) ∪
supp(r2) = supp(G) ∪ supp(p2) ∪ supp(r2); and supp(p2) ∪ supp(r2) ⊂ R2.

Case |p(G)| > 1: supp(Np(G)) = supp(
∏
Gi∈p(G) n(Gi)) =

⋃
Gi∈p(G) supp(n(Gi)).

From our induction hypothesis, we know that, for each Gi, supp(n(Gi)) = supp(Gi)∪∆i
r,

with ∆i
r ⊂ R2.

Therefore,
⋃
Gi∈p(G) supp(n(Gi)) =

⋃
Gi∈p(G) supp(Gi) ∪∆i

r = (
⋃
Gi∈p(G) supp(Gi)) ∪

(
⋃
Gi∈p(G) ∆i

r) = supp(G) ∪
⋃
Gi∈p(G) ∆i

r; and, of course,
⋃
Gi∈p(G) ∆i

r ⊂ R2.
Therefore,

∀G ∈ G · supp(G) P∆ supp(Np(G))

Item (ii): The proposition is a direct consequence of Lemma 19: e(Σ(Np(G))) = Σ(G).

Simulations. We now show that there is a simulation relation between G and Np(G). Let S ∆
=

{〈G,Np(G)〉|p ∈ PG1}.

Theorem 2 (The 2nd order graph simulates the 1st order graph). S is a 〈PE ,Pλ〉-simulation.

Proof. We have two show the five items of Definition 46.

Item (i) is proved directly: for each 〈G,Np(G)〉 ∈ S, if ∆1 · Gs1 `Tu
G

Λ−→ G′ then Σ(G) ⊆ Gs1.
Therefore Gs1 ≡ Σ(G) ‖ Σ(G′) for some G′. Then, we have that e(Σ(Np(G)) ‖ Σ(Np(G

′))) =
Σ(G) ‖ Σ(G′) = Gs1, therefore Gs1 Ps Σ(Np(G)) ‖ Σ(Np(G

′)).
From lemma 24, item (iv) implies item (v).
We show by induction that, for any 1st order graph G, for any partitioning function p, for any

environment Γ, if Γ `T1 G
Λ−→ C, then for any Γ2 such that Γ1 PE Γ2, Σ(Np(G)) ⊂ π2(Γ2),

and supp(Np(G)) ⊂ π1(Γ2), we have: Γ2 `T2 Np(G)
Λ−→ Np(C). This statement shows items (iii)

and (iv). In addition, since Λ Pλ Λ, it also shows item (ii).
By induction on |p(G)|a:
Base case (|p(G)| = 1): Since |p(G)| = 1, Np(G) = n(G).

We have, by hypothesis Γ1 PE Γ2. Let Γ1 = ∆1 ·Gs1 and Γ2 = ∆2 ·Gs2.
By definition of PE , ∆2 = ∆1 ∪∆′2 with ∆′2 ⊂ R2, and Gs1 = e(Gs2).

Thus, according to the definition of the 2nd order semantics, ∆2 · ∅ B n(G)
Λ−→ Np(C) ∈ T2.

In addition, by hypothesis:

Γ1 `T1
G

Λ−→ C

Therefore, for all Λ2 such that prune(Λ2) = Λ

∆1 ·Gs1 `T1 G
prune(Λ2)−−−−−−→ C

⇔∆1 · e(Gs2) `T1 n
−1(n(G))

prune(Λ2)−−−−−−→ N−1
p (Np(C))

Since ∆1 = (∆1 ∪∆′2)∩ R = ∆2 ∩ R, by definition of the authorisation function for 2nd order

graphs: Auth2(Gs2,∆2 · ∅ B n(G)
Λ2−−→ Np(C)) holds. In particular, it holds for Λ2 = Λ. Hence,

∆2 ·Np(G1
s) `T2

Np(G)
Λ−→ Np(C) with rule (Trans).

Inductive case (|p(G)| = n+ 1): Without loss of generality, consider that the partition p(G)
contains only two elements Ga and Gb. By definitionb of p(G), we have that G ≡ Ga ‖ Gb,
i.e. Np(G) contains only two locations n(Ga) ‖ n(Gb). Also, we assume that G reduces using
the rule (Comp). It can reduce using (Ctx) and the proof is similar.

By hypothesis, Γ1 `T1 G
Λ−→ C. Hence, after Lemma 10 in [33], Γ1 `T1 Ga ‖

Gb
Λ−→ G′a ‖ G′b with C ≡ G′a ‖ G′b. From the premisses of (Comp):
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(i) Γ1 `T1
Ga

Λa−−→ G′a; (ii) Γ1 `T1
Gb

Λb−→ G′b; (iii) Λ.sync = seval(Λa.sync,Λb.sync);
and (iv) Λ.sync.roles ⊆ G.unbound.
Since Σ(Np(G)) ⊆ π2(Γ2), Σ(n(Ga)) ∈ π2(Γ2) and Σ(n(Gb)) ∈ π2(Γ2).

Using the base casec, we know that Γ2 `T2
n(Ga)

Λa−−→ Np′(G
′
a) (resp. for Gb), for a given p′d.

We have to show that CondI(Λ.sync,Λa.sync,Λb.sync, Np′(Ga) ‖ Np′(Gb)) and
Cond(Γ2, Np′(Ga) ‖ Np′(Gb)) hold, so that we can deduce that Np(G) can take a (Comp)
transition.
We know that Λ.sync = seval(Λa.sync)Λb.sync. Also, G.unbound ⊆ Np(G).unbound, from
Lemma 18. Therefore, CondI(Λ.sync,Λa.sync,Λb.sync, Np′(Ga) ‖ Np′(Gb)) holds.
By hypothesis, Σ(Np(G)) ⊂ π2(Γ2) and supp(Np(G)) ⊂ π1(Γ2).
Also, from the induction hypothesis, we can directly deduce that
CondP (s,Λ.prior,Λa.prior,Λb.prior,Γ2, Np′(Ga), Np′(Gb)).

Hence, Γ2 `T2 Np(G)
Λ−→ Np′(G

′
a) ‖ Np′(G′b) using (Comp).

After Lemma 23, Γ2 `T2 Np(G)
Λ−→ Np(G

′
a ‖ G′b). and finally , since G′a ‖ G′b ≡ C:

Γ2 `T2
Np(G)

Λ−→ Np(C)

aNotice that we can not do an inducation on the depth of the graph as usual, since we use the structural congruence
in the inductive case, which can create deeper subgraphs, on which we could not apply our induction hypothesis;
using the number of location instead does not suffer this problem.

bDefinition 52.
cSince G = Ga ‖ Gb, then the number of location in Ga and Gb is at most n.
dNotice that p′ is not necessarily the same than p, but it does not matter since Lemma 23 allows us to target any

partitioning function.

The other direction is a bit more involved. We first prove two helpful lemmas, which allows us to
relate actions on R2 and the addition and removal of locations. Essentially, the first lemma say that, if
a transition absorb a new location L (via the synchronisation of an interaction i = r̂ : rmv〈n(L)〉), then
there exist a similar transition, which does not synchronise on i, and which does not absorb L.

The second lemma is the complement: it provides a similar result, for interactions r̂ : rmv〈n(L)〉.

Lemma 25. For any Γ, 2nd order graph G2 = Np(G1) and G′2 = Np(G
′
1), L ∈ L, Λ if r̂ :

rmv〈n(L)〉 ∈ Λ.sync, Γ `T2
G2

Λ−→ G′2 and r ∈ R2 is in G2.unbound, then:

Γ `T2
G2

〈Λ.prior,Λ.sync\{r̂:rmv〈n(L)〉}〉−−−−−−−−−−−−−−−−−−−−→ Np(G
′′
1)

with G′1 ≡ G′′1 ‖ L.

Proof. By induction on the reduction rule of Γ `T2
G2

Λ−→ G′2.
Case (Trans): In that case, G2 = Np(G1) = n(G1). From the premisses of (Trans):

(i) Γ.names · ∅ B G2
Λ−→ G′2 ∈ T2

(ii) Σ(G2) ∈ Γ.graph

(iii) Auth2(Γ.graph,Γ.names B G2
Λ−→ G′2)

By definition of T2, since r̂ : rmv〈n(L)〉 ∈ Λ.sync, G′1 ≡ G′′1 ‖ L, and Γ B

G2
〈Λ.prior,Λ.sync\{r̂:rmv〈n(L)〉}〉−−−−−−−−−−−−−−−−−−−−→ Np(G

′′
1) ∈ T2.

By definition of Auth2,

Auth2(Γ.graph,Γ.names · ∅ B G2
〈Λ.prior,Λ.sync\{r̂:rmv〈n(L)〉}〉−−−−−−−−−−−−−−−−−−−−→ Np(G

′′
1))

⇔(Γ.names ∩ R) · e(Γ.graph) `T1
n−1(G2)

prune(〈Λ.prior,Λ.sync\{r̂:rmv〈n(L)〉}〉)−−−−−−−−−−−−−−−−−−−−−−−−→
N−1
p (recover(〈Λ.prior,Λ.sync \ {r̂ : rmv〈n(L)〉}〉, Np(G′′1)))

⇔(Γ.names ∩ R) · e(Γ.graph) `T1
n−1(G2)

prune(Λ)−−−−−→ N−1
p (recover(Λ, Np(G

′′
1 ‖ L)))

⇔Auth2(Γ.graph,Γ.names · ∅ B G2
Λ−→ G′2)
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since prune(Λ2) = prune(〈Λ.prior,Λ.sync \ {r̂ : rmv〈n(L)〉}〉).
Therefore Auth2(Γ.graph,Γ.names B G2

〈Λ.prior,Λ.sync\{r̂:rmv〈n(L)〉}〉−−−−−−−−−−−−−−−−−−−−→ Np(G
′′
1)) holds.

Therefore,

Γ `T2
G2

〈Λ.prior,Λ.sync\{r̂:rmv〈n(L)〉}〉−−−−−−−−−−−−−−−−−−−−→ Np(G
′′
1)

Case (Comp): In that case, G2 = G2a ‖ G2b, G
′
2 = G′2a ‖ G′2b and we have, from the premisses of

(Comp):

(i) Γ `Tu
G2a

Λa−−→ G′2a for some Λa

(ii) Γ `Tu
G2b

Λb−→ G′2b for some Λb
(iii) CondI(Λ.sync,Λa.sync,Λb.sync, G2)
(iv) Cond(Γ, G2)
(v) CondP (,Λ.prior,Λa.prior,Λb.prior,Γ, G2a, G2b)

Since CondI(Λ,Λa,Λb, G
′
2), seval(Λa ∪ Λb) = Λ.

Since r ∈ G2.unbound, r ∈ G2a.unbound (exclusive) or r ∈ G2b.unbound. Without loss of
generality, suppose r ∈ G2a.unbound, and therefore r̂ : rmv〈L〉 ∈ Λa.sync.
Let G′2a = Npa(G′1a); G′2b = Npb(G′1b); we can then rewrite G′2 as G′2 = G′2a ‖ G′2b =
Np′(G

′
1a) ‖ Npb(G′1b).

From our induction hypothesis:

Γ `T2
G2a

〈Λa.prior,Λa.sync\{r̂:rmv〈n(L)〉}〉−−−−−−−−−−−−−−−−−−−−−→ Npa(G′′1a)

with G′1a ≡ G′′1a ‖ L.
In addition, CondI(〈Λ.prior,Λ.sync \ {r̂ : rmv〈n(L)〉}〉, 〈Λa.prior,Λa.sync \ {r̂ :
rmv〈n(L)〉}〉,Λb, G2) holds (notice that the removed interaction could not be matched by
Λb, since r ∈ G2.unbound and r ∈ G2a.unbound, therefore r 6∈ G2b.roles, and by hypothesis,
r ∈ G2.unbound). Cond(Γ, G2) and CondP (,Λ.prior,Λa.prior,Λb.prior,Γ, G2a, G2b) still
hold.
Therefore (Comp) can apply, and

Γ `T2 G2a ‖ G2b
〈Λ.prior,Λ.sync\{r̂:rmv〈n(L)〉}〉−−−−−−−−−−−−−−−−−−−−→ Npa(G′′1a) ‖ Npb(G′1b)

From Lemma 23,

Γ `T2
G2

〈Λ.prior,Λ.sync\{r̂:rmv〈n(L)〉}〉−−−−−−−−−−−−−−−−−−−−→ Np(G
′′
1a ‖ G′1b)

Case (Ctx): In that case, G2 = G2a ‖ G2b, G
′
2 = G′2a ‖ G2b and we have, from the premisses of

(Ctx):

(i) Γ `Tu G2a
Λa−−→ G′2a for some Λa

(ii) IndI(Λ.sync, G2)
(iii) Cond(Γ, G2)
(iv) IndP (,Λ.prior,Λa.prior,Γ2, G2a, G2b)
Let G′2a = Npa(G′1a); G2b = Npb(G1b). Therefore, we can rewrite G′2 as G′2 = G′2a ‖ G2b =
Npa(G′1a) ‖ Npb(G1b) = Np(G

′
1a ‖ G1b).

From our induction hypothesis:

Γ `T2
G2a

〈Λa.prior,Λa.sync\{r̂:rmv〈n(L)〉}〉−−−−−−−−−−−−−−−−−−−−−→ Npa(G′′1a)

with G′1a ≡ G′′1a ‖ L, therefore G2′ = Np(G
′′
1a ‖ L ‖ G1b).

In addition, IndI(〈Λ.prior,Λ.sync ∪ {r̂ : rmv〈n(L)〉}〉.sync, G2) holds (by hypothesis, r ∈
G2.unbound). Also, Cond(Γ, G2) holds after (iii) and

IndP (, 〈Λ.prior,Λ.sync \ {r̂ : rmv〈n(L)〉}〉.prior,
〈Λa.prior,Λa.sync \ {r̂ : rmv〈n(L)〉}〉.prior,Γ2, G2a, G2b)

⇔IndP (,Λ.prior,Λa.prior,Γ2, G2a, G2b)

which holds, from (iv) above.
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Therefore (Ctx) can apply, and

Γ `T2
G2a ‖ G2b

〈Λ.prior,Λ.sync\{r̂:rmv〈n(L)〉}〉−−−−−−−−−−−−−−−−−−−−→ Npa(G′′1a) ‖ Npb(G1b)

From Lemma 23,

Γ `T2
G2

〈Λ.prior,Λ.sync\{r̂:rmv〈n(L)〉}〉−−−−−−−−−−−−−−−−−−−−→ Np(G
′′
1a ‖ G1b)

Lemma 26. For any Γ2, any second order graph G2 = Np(G1) and G′2 = Np(G
′
1) with L ∈ L,

L 6∈ G2, Λ; if r̂ : rmv〈n(L)〉 ∈ Λ.sync and Γ2 `T2 G2
Λ−→ G′2, then, either

(i) Γ2 `T2 G2
〈Λ.prior,Λ.sync\{r̂:rmv〈n(L)〉}〉−−−−−−−−−−−−−−−−−−−−→ Np(G

′
1 ‖ L); or

(ii) G2 = Np(G
′
1 ‖ L) and Λ = 〈∅, {r̂ : rmv〈n(L)〉}〉.

Proof. By induction on the reduction rule of Γ2 `T2 G2
Λ−→ G′2.

Case (Trans): In that case, G2 is a single location, therefore G2 = Np(G1) = n(G1).
From the premisses of (Trans):

(i) Γ.names · ∅ B G2
Λ−→ Np(G

′
1) ∈ T2

(ii) Σ(G2) ∈ Γ2.graph

(iii) Auth2(Γ2.graph,Γ2.names · ∅ B G2
Λ−→ Np(G

′
1 ‖ L))

By definition of T2, Γ1 `T1
G1

Λ1−−→ H1 and L ∈ H1 (for a given H1) and L 6∈ G′1. In that

case, the rule Γ2.names · ∅ B G2
〈Λ.prior,Λ.sync\{r̂:rmv〈n(L)〉}〉−−−−−−−−−−−−−−−−−−−−→ Np(G

′
1 ‖ L) is also in T2.

An other possibility is that Γ2.names · ∅ B n(G1)
Λ−→ n(H1) with H1 ( G1, and, for each

Li ∈ G1 such that Li 6∈ H1, r̂i : rmv〈n(L)〉 ∈ Λ.sync. In that case, if L is the only location
that is not in H1, then G1 = H1 ‖ L, and the proof is finished here, as item (ii) holds.
Otherwise, G1 = Hr ‖ L ‖ H1, with Hr 6= ∅ containing all other locations that are removed.

Therefore, Γ2.names · ∅ B G2
〈Λ.prior,Λ.sync\{r̂:rmv〈n(L)〉}〉−−−−−−−−−−−−−−−−−−−−→ Np(H1 ‖ L) is also in T2.

In any cases, the authorisation function still holdsa. Therefore,

Γ2 `T2
G2

〈Λ.prior,Λ.sync∪{r̂:rmv〈n(L)〉}〉−−−−−−−−−−−−−−−−−−−−→ Np(G
′
1)

Case (Comp): In that case, G2 = G2a ‖ G2b, G
′
2 = G′2a ‖ G′2b and we have, from the premisses of

(Comp):

(i) Γ2 `T2
G2a

Λa−−→ G′2a for some Λa

(ii) Γ2 `T2
G2b

Λb−→ G′2b for some Λb
(iii) CondI(Λ.sync,Λa.sync,Λb.sync, G2)
(iv) Cond(Γ2, G2)
(v) CondP (,Λ.prior,Λa.prior,Λb.prior,Γ2, G2a, G2b)

Since CondI(Λ,Λa,Λb, G
′
2), seval(Λa ∪ Λb) = Λ.

Since r ∈ G2.unbound, r ∈ G2a.unbound (exclusive) or r ∈ G2b.unbound. Without loss of
generality, suppose r ∈ G2a.unbound and G′2a = Npa(G′1a).
Let G′2b = Npb(G′1b); we can rewrite G′2 as G′2 = G′2a ‖ G′2b = Npa(G′1a) ‖ Npb(G′1b).
From our induction hypothesis, either:

(i) Γ2 `T2
G2a

〈Λa.prior,Λa.sync\{r̂:rmv〈n(L)〉}〉−−−−−−−−−−−−−−−−−−−−−→ Npa(G′1a ‖ L); or
(ii) G2a = Npa(G′1a ‖ L).

In the first case: CondI(〈Λ.prior,Λ.sync \ {r̂ : rmv〈n(L)〉}〉, 〈Λa.prior,Λa.sync \ {r :
rmv〈n(L)〉}〉,Λb, G2) holds (notice that the removed interaction could not be matched
by Λb, since it appears in Λ; and by hypothesis, r ∈ G2.unbound). Cond(Γ2, G2) and
CondP (,Λ.prior,Λa.prior,Λb.prior,Γ2, G2a, G2b) still hold.
Therefore (Comp) can apply, and

Γ2 `T2 G2a ‖ G2b
〈Λa.prior,Λa.sync∪{r̂:rmv〈n(L)〉}〉−−−−−−−−−−−−−−−−−−−−−−→ Npa(G′1a ‖ L) ‖ Npb(G′1b)
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From Lemma 23,

Γ2 `T2
G2

〈Λa.prior,Λa.sync∪{r̂:rmv〈n(L)〉}〉−−−−−−−−−−−−−−−−−−−−−−→ Np(G
′
1a ‖ L ‖ G′1b) = Np(G

′
1 ‖ L)

which ends the proof.
If G2a = Npa(G′1a ‖ L), then 〈Λa.prior,Λa.sync \ {r̂ : rmv〈n(L)〉}〉 = 〈∅, ∅〉.
In that case, we can apply (Ctx): IndP (,Λ.prior,Λb.prior,Γ2, Gb, Ga) holds, since
CondP (,Λ.prior,Λa.prior,Λb.prior,Γ2, Ga, Gb) holds. IndI(Λb.sync, G2a ‖ G2b) holds
since CondI(Λ,Λa,Λb, G2a ‖ G2b) holds and Λa = 〈∅, {r̂ : rmv〈n(L)〉}〉. Cond(Γ2, G2a ‖ G2b)
still holds.
We then have

Γ2 `T2
G2

〈Λ.prior,Λ.sync\{r̂:rmv〈n(L)〉}〉−−−−−−−−−−−−−−−−−−−−→ Npa(G′1a ‖ L) ‖ G′1b

with 〈Λ.prior,Λ.sync \ {r̂ : rmv〈n(L)〉}〉 = Λb

Case (Ctx): In that case, G2 = G2a ‖ G2b, G
′
2 = G′2a ‖ G2b and we have, from the premisses of

(Ctx):

(i) Γ2 `T2
G2a

Λa−−→ G′2a for some Λa such that Λa.sync = Λ.sync
(ii) IndI(Λ.sync, G2)
(iii) Cond(Γ2, G2)
(iv) IndP (,Λ.prior,Λa.prior,Γ2, G2a, G2b)
Let G′2a = Npa(G′1a).
From our induction hypothesis, either:

(i) Γ2 `T2
G2a

〈Λa.prior,Λa.sync\{r̂:rmv〈n(L)〉}〉−−−−−−−−−−−−−−−−−−−−−→ Npa(G′1a ‖ L); or
(ii) G2 = Npa(G′1a ‖ L).

In the first case, IndI(〈Λa.prior,Λa.sync \ {r̂ : rmv〈n(L)〉}〉.sync, G2) holds (by
hypothesis, r ∈ G2.unbound). Cond(Γ2, G2) and IndP (, 〈Λ.prior,Λ.sync \ {r̂ :
rmv〈n(L)〉}〉.prior, 〈Λa.prior,Λa.sync ∪ {r̂ : rmv〈n(L)〉}〉.prior,Γ2, G2a, G2b) still hold.
Therefore (Ctx) can apply, and

Γ2 `T2
G2a ‖ G2b

〈Λ.prior,Λ.sync\{r̂:rmv〈n(L)〉}〉−−−−−−−−−−−−−−−−−−−−→ Npa(G′1a ‖ L) ‖ Npb(G1b)

From Lemma 23,

Γ2 `T2
G2

〈Λ.prior,Λ.sync∪{r̂:rmv〈n(L)〉}〉−−−−−−−−−−−−−−−−−−−−→ Np(G
′
1a ‖ L ‖ G1b) = Np(G

′
1 ‖ L)

In the second case, we have G2a = Npa(G′1a ‖ L), therefore G2 = Npa(G′1a ‖ L) ‖ Npb(G1b) =
Np(G

′
1 ‖ L), which ends the proof.

aThe argument is the same than case (Trans) in the proof of Lemma 25.

Theorem 3 (The 1st order graph simulates the 2nd order graph). S−1 is a partial 〈P−1
E ,P−1

λ 〉-
simulation, with respect to {Λ|prune(Λ) = Λ}.

Proof. We have to show the five items of Definition 46.
We show directly item (i). Let 〈G2, G1〉 ∈ S−1. By definition of S−1, G2 = Np(G1).
We are given a 2nd order environment Γ2 = ∆2 ·Gs2. We have to show that there exists Γ1 = ∆1 ·Gs1.

Since Γ2 `T2
G2

Λ2−−→ G′2, Σ(G2) ∈ Gs2. Since 〈G2, G2〉 ∈ S−1, G2 = Np(G1), therefore Σ(Np(G1)) ⊆
Gs2. Therefore, e(Σ(Np(G1))) = Σ(G1) ⊆ e(Gs2), and, by definition, Gs2 P−1

s e(Gs2).
Concerning ∆1, if ∆1 = ∆2 ∩ R, then supp(G1) = supp(G2) ∩ R ⊆ ∆2 ∩ R.

Item (ii) is trivial, since Γ2 `T2
G2

Λ2−−→ G′2, and Λ2 = Λ2, then Λ2 Pλ prune(Λ2).
Therefore, we still have to show that, for all Γ1 such that Γ2 P−1

E Γ1, supp(G1) ⊆ Γ1.names and

Σ(G1) ⊆ Γ1.graph, Γ1 `T1 G1
Λ2−−→ G′1 (item (iii)), with G′2 P−1

E G′1 (item (iv)). From Lemma 24,
item (iv) implies item (v); we therefore only prove item (iv).
We prove those two items by induction on the depth of G2

a:
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Base case (depth 1): We have Γ2 `T2
G2

Λ2−−→ C2 and G2 is a single location, so the rule

(Trans) applies. Hence, from the premisses of the rule, we have Γ2 B G2
Λ2−−→ C2 and

Auth2(Γ2,Σ(G2),Λ2, C2) holds.

Since Γ2 B G2
Λ2−−→ C2 and Λ2 = prune(Λ2), after Lemma 20, then there exists G1, C1, Γ1

and Λ1 such that G2 = n(G1) = Np(G1), C2 = Np(C1), Λ1 = Λ2 and Γ1 `T1
G1

Λ1−−→ C1.

Inductive case (n+ 1):

Induction Hypothesis (IH1). For all G2 with a depth of at most n, for all Γ2, G′2 and Λ such

that Γ2 `T2
G2

Λ−→ G′2, for G1 = N−1
p (G2), for all Γ1 such that Γ1 PE Γ2, supp(G1) ⊆

Γ1.names and Σ(G1) ⊆ Γ1.graph, there exists G′1 such that Γ1 `T1 G1
Λ−→ G′1. .

We have Γ2 `T2 G2a ‖ G2b
Λ2−−→ C2. Two rules can apply, (Comp) or (Ctx):

Case (Comp): In this case, we have Γ2 `T2 G2a ‖ G2b
Λ2−−→ C2a ‖ C2b with Γ2 `T2 G2a

Λ2a−−→
C2a, Γ2 `T2 G2b

Λ2b−−→ C2b, and such that Λ2 = seval(Λ2a ∪ Λ2b) = prune(Λ2)b.
By hypothesis, C2a = Npa(C1a) and C2b = Npb(C1b) such that C1 = C1a ‖ C1b.
Since seval(Λ2a ∪Λ2b) = prune(Λ2), then any action with role in R2 in Λ2a is matched
in Λ2b (and vice-versa). We show items (iii) and (iv) by induction on the number na of
action with role in R2 in Λ2a (and also in Λ2b, since all are matched).
Base case (na = 0): Since na = 0, then prune(Λ2a) = Λ2a and prune(Λ2b) = Λ2b.

From the induction hypothesis (IH1), for all G1a such that 〈G2a, G1a〉 ∈ S−1, Γ1 `T1

G1a
Λ2a−−→ C1a such that 〈C2a, C1a〉 ∈ S−1, and similarly for G2b.

Since Λ2.sync.roles ⊂ R, G1.unbound = G2.unbound ∩ R, and Λ2.sync.roles ⊆
G2.unbound, then Λ2.sync.roles ⊂ G1.unbound. And, as stated above, Λ =
seval(Λ2a ∪ Λ2b). Therefore CondI(Λ2,Λ2a,Λ2b, G1) holds.
By hypothesis, Cond(Γ, G1) holds.

Therefore, Γ1 `T1
G1a ‖ G1b

Λ2−−→ C1a ‖ C1b, which proves item (iii).
In addition, C2 = C2a ‖ C2b = Np(C1a) ‖ Np(C1b) = Np′(C1). Therefore 〈C2, C1〉 ∈
S−1 (item (iv)).

Inductive case (na > 0):

Induction Hypothesis (IH2). For all ΛIHa, ΛIHb such that ΛIHa and ΛIHb contain at
most na actions with role in R2, and such that seval(ΛIHa∪ΛIHb) = Λ = prune(Λ);

if Γ2 `T2 G2a
ΛIHa−−−→ Npa(C1a) and Γ2 `T2 G2b

ΛIHb−−−→ Npb(C1b) then Γ1 `T1 G1
ΛIH−−−→

C1a ‖ C1b and 〈C1a ‖ C1b, Npa(C1a) ‖ Npb(C1b)〉 ∈ S. .
Our goal is to show that the above statement also holds if Λ2a and Λ2b have na + 1
actions with roles in R2. Intuitively, in that case, we show that we can remove an
action a of Λ2a and its conjugate a from Λ2b. Without loss of generality, suppose
a = r : rmv〈n(L)〉 and a = r : rmv〈n(L)〉.
Let Λ−2a = 〈Λ2a.prior,Λ2a.sync \ {a}〉 (resp. for Λ−2b and a).

We have Γ2 `T2
G2a

Λ2a−−→ Npa(C1a). From Lemma 25, Γ2 `T2

G2a
〈Λ2a.prior,Λ2a.sync\{a}〉−−−−−−−−−−−−−−−−→ Npa(C ′1a) with C1a ≡ C ′1a ‖ L.

Similarly for G2b, we have Γ2 `T2
G2b

Λ2b−−→ Npb(C1b). Therefore, from Lemma 26,

either (i) Γ2 `T2
G2b

〈Λ2b.prior,Λ2b.sync\{a}〉−−−−−−−−−−−−−−−−→ Npb(C ′1b) with C ′1b ≡ C1b ‖ L ; or
(ii) G2b = Npb(C1b ‖ L) .
Case (i): Notice that seval(Λ2a ∪ Λ2b) = seval(〈Λ2a.prior,Λ2a.sync \ {a}〉 ∪
〈Λ2b.prior,Λ2b.sync \ {a}〉).
Therefore, if

Γ2 `T2 G2a ‖ G2b
seval(Λ2a∪Λ2b)−−−−−−−−−−→ Npa(C ′1a ‖ L) ‖ Npb(C1b)

then, using (Comp)

Γ2 `T2
G2a ‖ G2b

seval(Λ−2a∪Λ−2b)
−−−−−−−−−−→ Npa(C ′1a) ‖ Npb(C1b ‖ L)

We have that C2 = Npa(C ′1a ‖ L) ‖ Npb(C1b) = Np(C
′
1a ‖ C1b ‖ L) = Np(C1),

and Npa(C ′1a) ‖ Npb(C1b ‖ L) = Np′(C
′
1a ‖ C1b ‖ L) = Np′(C1) for a p′ 6= p
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Therefore, from (IH2), Γ1 `T1 G1
Λ=seval(Λ−2a∪Λ−2b)
−−−−−−−−−−−−→ C ′1a ‖ L ‖ C1b = C1 and

〈C1, Np′(C1)〉 ∈ S.

Therefore, Γ1 `T1 G1
Λ=seval(Λ2a∪Λ2b)−−−−−−−−−−−−→ C ′1a ‖ L ‖ C1b = C1 and 〈C1, Np(C1)〉 ∈

S.

Case (ii): In that case, a (resp. a) is the only interaction with its role in R2 in Λ2a

(resp. Λ2b). Therefore Λ−2a contains no interaction with its role in R2.
Rule (Ctx) applies, and

Γ2 `T2 G2a ‖ G2b
Λ−→ Npa(C ′1a) ‖ Npb(C1b ‖ L)

Notice that, here, we can not apply our (outer) induction hypothesis and con-
clude, since the depth of the reduction tree is the same.
However, we can apply the case for rule (Ctx) below.

Case (Ctx): By symmetry, consider that G2a reduces and G2b remains the same. We have

Γ2 `T2 G2a ‖ G2b
Λ−→ C2a ‖ G2b, with G2a ‖ G2b = G2 = Np(G1). We have that

G2a = Npa(G1a) and G2b = Npb(G1b) for some partition function p′.

From the premisses of (Ctx), we know that Γ2 `T2 G2a
Λ−→ C2a. From the induction

hypothesis (IH1), we know that Γ1 `T1
G1a

Λ−→ C1a with C2a = Npa(C1a).

Thus, using rule (Ctx) with the first order graph: Γ1 `T1
G1a ‖ G1b

Λ−→ C1a ‖ G1b.

Finally, using Corollary 3, Γ2 `T2
G2

Λ−→ Npa(C1a) ‖ Npb(G1b) if and only if Γ2 `T2

G2
Λ2−−→ Np(C1a ‖ G1b).

aNotice that it is not possible to do a proof by case analysis of the reduction rule used, as we need to use the
cases recursively.

bNotice that, here, we have no guarantee that Λ2a and Λ2b are pruned (typically, a location can be exchanged
from G2a to G2b, for instance), therefore, we can not apply the induction hypothesis on G2a and G2b. Our goal here
is first to show that there is, however, a similar reduction without exchange, on which we could apply the induction
hypothesis.

Theorem 4 (Partial bisimulation). Let p ∈ PG
c . Let Np(G) be equipped with the semantics of 2nd

order graph. Let R = {〈G,Np(G)〉|G ∈ G}.
R is a partial bisimulation with respect to {Λ|Λ ∈ Λ2 ∧ prune(Λ) = Λ}.

Proof. The proof follows directly from Theorem 2 and Theorem 3.

Interpretation of the bisimulation result. We claim the partial bisimulation result above is a
fundamental result in our work. In the context of isolation, it can be used in various ways: analysing the
isolation property of a system, having different views of the same system, etc.. This paragraph highlight
these various approaches.

As a preliminary, we should temper the content below, as the partial bisimulation result gives us
a relation between a location graph and its nested counterpart. The second order graph may not be
easy to work with. We suggest that the workflow should be the following: given a location graph G,
take any partition function p based on our intuition; use our result to support that G and Np(G) are
partially bisimilar; find a location graph G2 that highlights an interesting execution, and show that
Np(G) simulates G2; deduce that G can take this execution. Conversely, if we are interested in showing
an execution is not possible, we have to take a G2 in which this transition is not possible, and show that
G2 simulates Np(G). Figure 3.7 illustrate the two strategies explained here.

This workflow is not proofless: we have to prove Np(G) simulates G2. Hopefully, this proof would be
easy in most cases (taking a subset of Np(G) transitions, etc.).

First, the bisimulation between a graph and it nested counterpart can be used to analyse isolation
policies. Consider we are given a system S represented as a location graph GS , for which we would like
to analyse the isolation policy. Usually, we have a good intuition of which locations should be allowed to
interact and which should not. That is, we have an idea of the partition function, and the objective is to
assert that no unallowed interaction occurs. In order to analyse the isolation property, one could abstract
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G G′

Np1(G) Np1(G′)

G1 G′1
Λ′

Λ

Λ = prune(Λ)

Pλ

R1 R1

R2 R2

(a) Workflow to show the existence of a transition.

G G′

Np1(G) Np1(G′)

G1 G′1
¬∃Λ′

¬∃Λ

¬∃Λ = prune(Λ)

Pλ

R1 R1

R2 R2

(b) Workflow to show the absence of a transition.

Figure 3.7: Illustration of the workflow to work with nested graphs. In Subfigure 3.7a, we are interested in showing the
existence of the red transition. Given a location graph G, if we prove that Np1 (G) simulates G1 (the green arrows), then
for any transition of G1 (the blue arrow), the original graph G can take a similar transition. In Subfigure 3.7b, we are
interested in showing the absence of of the red transition. Given a location graph G, if we prove that G1 simulates Np1 (G)
(the green arrows), then if there is no transitions in G1 with a label equivalent to Λ, then G can not reduce with Λ.

Np1(G1) Np1(G2)

G1 G2 G3

Np2(G2) Np2(G3)

Λa Λb

Λa = prune(Λa)

Λb = prune(Λb)

R1 R1

R2 R2

Figure 3.8: Illustration of using different views of the same system. Given the blue arrows, the partial simulation shows
that the original system can take the transitions: we show the existence of the red arrows.

away details, which is done by nesting GS to obtain a new location graph G′S . Our partial bisimulation
result means that G′S also represent S. An example of such approach is shown in the following chapter, in
Section 4.1.1. In this section, we analyse the actor model example, where we aggregate all owned objects
into a nested location, and we show this aggregate location only communicates with its owner.

A second way the bisimulation can be used is to have multiple different views of a single system. Con-
sider that we want to reason about multiple different ways to encapsulate a single system S (represented
as a location graph GS). An example of such a reasoning happens when a system implements a policy
(e.g. owner-as-dominator) with a monitoring device (which is allowed to overcome the policy). In such
cases, there are multiple possible partition functions (e.g. p1 and p2). Our result highlights that these
multiple views (e.g. Np1(GS) and Np2(GS)) are equivalent. In addition, it provides evidence that we
can freely switch between views (e.g. consider a partial execution Np1(GS) to Np1(G′S), then Np2(G′S) to
Np2(G′′S)). Figure 3.8 shows an example of this approach.

3.3.4 Multiple levels of nesting

So far, we discussed how to create a single level of nesting. To conclude this section, we propose ideas
to nest a graph on multiple layers. Of course, being general, our method could be applied to 2nd order
graphs to create 3rd order graph, etc.. Unfortunately, our method does not provide any mechanism to
change the layer of a location (e.g. so that a 2nd order location becomes a 3rd order location). Even
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worse: by essence, the 3rd order graph would not even know that it is a 3rd order graph; for instance,
administrative roles of one layer are not the same than those of the other layers.

In this section, we first explain a bit more precisely the intuition developed above. Secondly, we
propose, informally, a more suitable mechanism for higher order nesting. The intuition for this mecha-
nism is to use a common set of administrative role across layers, and let one layer of nesting intercept
administrative interactions of an other layer.

The failure of naive recursive nesting. It is possible to extend the definitions of location nesting
function (Definition 49) and graph nesting function (Definition 55) to have multiple levels of nesting. The
extended definitions are mutually recursive.

Definition 67 (Recursive location nesting function).

np(G) =

{
n(Np(G)) if p(G) 6= {G}
n(G) otherwise

Definition 68 (Recursive graph nesting function). Np(G) =
∏
Gi∈p(G) np(Gi)

Remark. The two definitions 67 and 68 are conservative extensions of Definitions 49 and 55: if we
have p such that, ∀Gi ∈ p(G), p(Gi) = Gi, we have np(Gi) = n(Gi), hence we fall back on Np(G) =∏
Gi∈p(G) n(Gi) = Np(G). /

Remember Table 3.1 on page 46, we have that roles of the 2nd order graphs are taken in R∪R2, where
roles in R2 are used for out-of-band communications (communications that are added for the simulation,
such as the removal of a part of the nested graph, in order to perform change of part of the graph).

Now, if we have n(n(A) ‖ n(B)) with RA the set of roles of A and RB those of B. Thus, the set of
roles of n(A) is RA ∪R2A (for a suitable R2A), and RB ∪R2B for n(B). With the same reasoning, the set
of roles of n(n(A) ‖ n(B)) is RA ∪ R2A ∪ RB ∪ R2B ∪ R′.

For this reason, we can not change the level of nesting of a given location. Therefore, this simple idea
is not adequate.

One could be tempted to define higher-order semantics such as how we defined 2nd order semantics.
The set of unconstrained location transitions (called THO) would be defined as follow:

THO = {Γ2 B np(G)
Λ−→ Np(H)|Γ `Tu

G
Λ−→ G′} ∪ {Γ B np(G)

〈ε,r̂:rmv〈np(G)〉〉−−−−−−−−−−→ ∅}

Such an approach is, however, very different from the one taken, even tho the difference is subtle and

could be unnoticed at first glance. Consider a 1st order graph A ‖ B ‖ C such that Γ `Tu
A

ΛA−−→ A′

and Γ `Tu B
ΛB−−→ B′ (we do not need to detail further the environment, the labels and the

locations). We hence have Γ `Tu A ‖ B ‖ C Λ−→ A′ ‖ B′ ‖ C. Finally, let p be a partition
function such that p(A ‖ B ‖ C) = {A,B ‖ C} and p(B ‖ C) = {B,C}. Therefore, we have
Np(A ‖ B ‖ C) = np(A) ‖ np(B ‖ C) = n(A) ‖ n(Np(B ‖ C)).
The derivation tree of the higher-order graph is then:

(Comp)

(Trans)

Def of THO

Hypothesis
Γ `Tu A

ΛA−−→ A′

Γ′ B np(A)
Λ′A−−→ Np(A

′)

Γ′ `THO
np(A)

Λ′A−−→ Np(A
′)

(Trans)

Def of THO

Hypothesis
Γ `Tu B ‖ C

ΛB−−→ B′ ‖ C

Γ′ B np(B ‖ C)
Λ′B−−→ Np(B

′ ‖ C)

Γ′ `THO
np(B ‖ C)

Λ′B−−→ Np(B
′ ‖ C)

Γ′ `THO
np(A) ‖ np(B ‖ C)

Λ′−→ np(A
′) ‖ Np(B′ ‖ C)

If we only use the 2nd order semantics, we have np(B ‖ C) = n(Np(B ‖ C)) = n(n(B) ‖ n(C)), and
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the derivation tree is:

(Comp)

(Trans)

Def of Tu

Hypothesis
Γ `Tu

A
ΛA−−→ A′

Γ′ B n(A)
Λ′A−−→ n(A′)

Γ′ `Tu n(A)
Λ′A−−→ n(A′)

(Trans)

Def of Tu

(Ctx)

(Trans)

Def of Tu

Hypothesis
Γ `Tu

B
ΛB−−→ B′

Γ′ B n(B)
Λ′B−−→ n(B′)

Γ′ `Tu
n(B)

Λ′B−−→ n(B′)

Γ′ `Tu
n(B) ‖ n(C)

Λ′B−−→ n(B′) ‖ n(C)

Γ′′ B n(n(B) ‖ n(C))
Λ′′B−−→ n(n(B′) ‖ n(C))

Γ′′ `Tu n(n(B) ‖ n(C))
Λ′′B−−→ n(n(B′) ‖ n(C))

Γ′′ `THO
np(A) ‖ np(B ‖ C)

Λ′−→ np(A
′) ‖ Np(B′ ‖ C)

Two points motivate that we do not use such semantics in the work:
— It is not necessary. As shown in the example above, the 2nd order semantics remains usable

even with higher-order graphs.
— From an intuitive point of view, THO changes the way to think about nesting locations: it

allows to inspect across multiple levels of nesting. If n(A) reduces to n(B), it is not because
A reduces to B anymore.

Nonetheless, the two semantics being equivalent would not be a surprisea. The difference lies more
on how to think of higher-level graphs than on the real differences of expressivity.

aThe proof is probably short, but not formally done.

Higher-order nesting. This last paragraph discuss some directions for future work for higher order
nesting. The very nature of such discussion implies that expectations developed here are not proven.
Therefore, propositions and conjectures introduced here should be taken as educated guesses, not results.

In the previous paragraph, we showed that the problem with a naive recursive nesting is that admin-
istrative roles of one level is considered a regular role in the next level. An intuitive solution would be
to allow one layer to capture and analyse administrative messages of the graph it nests, and to possibly
intercept those messages.

We slightly adapt the intuition behind the nesting functions np(G) and Np(G) defined in Definitions 67
and 68, into a new nesting function νp(G) to take into account the fact that administrative roles should
be the same across nesting levels.

Definition 69 (Higher-order nesting function).

νp(G) =

{∏
Gi∈p(G)[νp(Gi) : Σ(Gi) C pi • ri] if p(G) 6= {G}

[Gi : Σ(Gi) C pi • ri] otherwise

where pi (resp. ri) is such that pi\Gi.punbound ⊂ R2 (resp. ri\Gi.runbound ⊂ R2), and pi∩ri = ∅.

We propose the following the unconstrained location transitions for a location [G : Σ(G) C p • r] :

∆ · ∅ B [G : Gs C p • r] 〈π,ι∪ι
′
2〉−−−−−→ νp(H) if Γ `T?

G
〈π,ι∪ι2〉−−−−−→ G′, where ι contains actions on first-order

roles, and ι2 and ι′2 contains actions on administrative roles, such that the four following propositions
hold:

(i) ∀r̂ : rmv〈L〉 ∈ ι2 · r̂ : rmv〈L〉 ∈ ι′2 ⇒ L ∈ H
(ii) ∀r̂ : rmv〈L〉 ∈ ι2 · r̂ : rmv〈L〉 ∈ ι′2

(iii) ∀r̂ : rmv〈L〉 ∈ ι′2 · r̂ : rmv〈L〉 ∈ ι2
(iv) ∀r̂ : rmv〈L〉 ∈ ι′2 · r̂ : rmv〈L〉 ∈ ι′2 ⇒ L ∈ H

Remark. In the rule above, whether G is a first order subgraph or an higher-order graph is irrelevant,
which is what we intend to do. However, the semantics of first-order is not the same as those of higher-
order (T1 or TH). In this informal introduction, we note T? to highlight that this does not really matter.

Formally, we would probably devise two rules, one if the nested graph takes a T1, and the other is the
nested graph takes a TH transition. Since, in this section, we focus only on informal presentation, and
we have nothing but intuition to support our claims, we leave actual details for future work. /
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A
Σ(A)

B
Σ(B)

C
Σ(C) →

A′

Σ(A′)
B′

Σ(B′)
C

Σ(C)

Figure 3.9: Example of a transition in which locations have to change their levels of nesting. In this example, A reduces to
A′ and B to B′. The overall starting graph is partitionned with A on one side, and B and C on the other side, while the
resulting graph has A′ and B′ on one side, and C on the other.

The main difference with the nesting presented previously is that the nested graph takes a transition
with some interactions on R2 (i.e. some administrative interactions), in ι2. The outer location can add
and remove some of those administrative interactions, and compensate properly the modifications. For
instance, the condition (i) of the list above states that if the nested graph G gets rid of a location L
(shown as the emission of the r̂ : rmv〈L〉), the nesting location νp(G) can hide this removal to the rest of
the graph (the action is not propagated to lower levels), if it adds the location L on its own. The case (iv)
is analoguous, but for locations that are removed in other locations of the graph: even if the nested graph
does not catch L, the nesting on can catch and create it. Cases (ii) and (iii) are a bit different; take for
instance case (ii): if the nested graph G captures an L (removed by an other location), then the nesting
graph has to forward the interaction.

Example 7 (Semantics of higher-order nesting). Let reconsider the simple graph A ‖ B ‖ C of the
sidebox above with the same partition function p, with the addition that p(A′ ‖ B′ ‖ C) = {A′ ‖
B′, C} and p(A′ ‖ B′) = {A′, B′}.

νp(A ‖ B ‖ C) = [A : Σ(A) C pA • rA]

‖ [[B : Σ(B) C pB • rB ] ‖ [C : Σ(C) C pC • rC ] : Σ(B) ‖ Σ(C) C pBC • rBC ]

where pABC and rABC are the set of unbound provided (resp. required) roles of A′ ‖ B′ ‖ C, with
the addition of roles in R2 (an respectively for other indices).
Let illustrate how the nesting level of a location can change, thanks to the proposed semantics. So
far, in νp(A ‖ B ‖ C), A is nested at depth 1 and B and C are nested at level 2. When A ‖ B ‖ C
reduces to A′ ‖ B′ ‖ C, A′ and B′ should belong to the same sub-aggregate, at depth 2, while C is
alone at level 1. Figure 3.9 shows the transition considered in this example.
We show how both A and C have to change their depth. Notice that, as with regular nesting, there
are multiple ways to remove and add locations to achieve the partitioning. We show one of those
possibilities. For the sake of simplicity, we ignore all sanity checks (the conditions on the well form
of the newly created graph, the conditions on the priorities and interactions, on the environment)
as well as the authorisation function in the premisses of the rules, and the details of Γ and ΓH .
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Chapter 4

Encapsulation policies in Location Graphs

In the introduction (Chapter 1), we showed that the notion of encapsulation and isolation was more
subtle than what one can think first, and we showed that by highlighting multiple isolation schemes,
which all made sense for a given context.

We propose the location graph framework and we state that it is suitable to implement various
schemes. To support this proposition, this chapter shows how the policies presented in the introduction
can be implemented in the location graph framework.

The example we follow in this thesis where not chosen at random, we intentionally selected policies
that where quite similar (such as the variations around strict encapsulation), in order to show that the
capabilities of the framework are fine grained: the small subtleties of each policies are reflected in the
authorisation function. We also selected very distinct policies (such as the logging system, which is very
ad-hoc, compared to the encapsulation schemes).

In the first section of this chapter, we show how the three variants of the encapsulation policy can be
implemented using the location graphs. We begin with the basic strict encapsulation, used e.g. in actor
models, for which we prove in details that it is correct and indeed correspond to a notion of encapsulation.
We then show how, by modifying slightly the definitions, we can fall back on the variants of that policy.

In a second section, we implement our logging system example. To illustrate the flexibility of the
framework, we intentionally use a very different approach. For the encapsulation based policies, we rely
on the authorisation function, i.e. runtime verification, while the implementation of the logging-system
rely on a careful definition of the unconstrained semantics, i.e. without runtime verification.

Contents

4.1 Hierarchical policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1 Actor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.2 Shared Encapsulation Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1.3 Multi-Level Encapsulation Policy . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Logging system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1 Hierarchical policies
In this first section, we will present the three hierarchical policies we are interested in. First, we will take
a deep look at the actor model, i.e. one level of nesting with a strict communication policy. From this
in-depth explanation, we will extrapolate the variants (multiple levels of nesting and sharing), which can
be achieved with some minimal adjustments.

4.1.1 Actor Model

Presentation. To provide strict encapsulation, we will mark each location as being an owner or being
owned. We use the sort for this marking. Therefore, we will have two kinds of sorts. In order to identify
the ownership relation, we will (i) identify each location with a special identity role; and (ii) require each
owner to store in its sort the identity of the locations it owns. To avoid double ownership, the owner
also binds the identity role of locations it owns. Thanks to location graph semantics, there can not be to
different owners of the same location.

In this section, we use the index [·]se (for strict encapsulation) to annotate elements.

Model. Given a set of processes Pse, a set of roles Rse, a set of value Vse and a set of channel Cse, we
define our set of sorts Sse. We have two variants of sorts: for owned locations, we have 〈r〉, which is a
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A
〈idA, {idA1

, idA2
, idA3

}〉
idA3idA1 idA2

idA

Figure 4.1: Representation of a single owner location. This location (formally written L = [A : 〈idA, {idA1
, idA2

, idA3
}〉 C

{idA}•{idA1 , idA2 , idA3}]) is identified by its role idA (L.id = idA) and owns three locations, identified by idA1 , idA2 and
idA3

(L.owned = {idA1
, idA2

, idA3
}). Notice that, according to Definition 73 above, idA is bound in the provided direction

and idA1 , idA2 , and idA3 are bound in the required direction.

1-tuple which contains only the identifier of the location; and for owner locations, we have 〈r, σ〉 which
contains, in addition, the set of owned identifiers.

Definition 70 (Strict encapsulation sort).

Sse = {〈r〉|r ∈ R} ∪ {〈r, σ〉|r ∈ R, σ ⊂ R}

We have the two functions [·].id and [·].owned which allow to access, for each location, its identifier
and the set of owned locations (∅ for owned locations).

Definition 71 (Identifier of a strict encapsulation sort).

∀s ∈ Sse · s.id
∆
=

{
r if s = 〈r〉
r if s = 〈r, σ〉

Definition 72 (Owned locations of a strict encapsulation sort).

∀s ∈ Sse · s.owned
∆
=

{
∅ if s = 〈r〉
σ if s = 〈r, σ〉

We want to enforce locations to bind their identifier (in provided direction) and, for owner locations,
all owned identifier (in required direction). Therefore, we say that locations are well-formed (w.r.t. strict
encapsulation) if the following predicate holds:

Definition 73 (Well-formed locations (w.r.t. strict encapsulation)).

∀P ∈ Pse, s ∈ Sse, p ⊂ Rse, r ⊂ Rse · WFse([P : s C p • r]) ∆
= s.id ∈ p ∧ s.owned ⊆ r

We call Lse the set of all locations L such that WFse(L) holds. We call Gse the set of all location
graphs G such that ∀L ∈ G · WFse(L).

In this section, we will only consider well-formed locations, according to this predicate. This will be
easily ensured by the authorisation function. Figure 4.1 shows a representation of a well-formed location
of a single owner node (say L).

Finally, we define the predicate [·].is owner which holds if and only if the given (skeleton) location is
an owner (skeleton) location.

Definition 74 (Owner predicate).

∀L ∈ L · L.is owner
∆
= ∃r ∈ Rse, σ ⊂ Rse · L.sort = 〈r, σ〉

∀Ls ∈ Ls · Ls.is owner
∆
= ∃r ∈ Rse, σ ⊂ Rse · Ls.sort = 〈r, σ〉
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Remark. The function [·].owned is a function from sorts (Sse) to sets of roles P(Rse). We extends the
notation to locations and location graphs:

∀L ∈ Lse · L.owned
∆
= L.sort.owned ∀G ∈ Gse ·G.owned

∆
=

⋃
L∈G

L.owned

Similarly, we extend [·].id to locations.

∀L ∈ Lse · L.id
∆
= L.sort.id

/

Remark. By construction, each location L is either an owner (if the predicate L.is owner holds) or owned
(otherwise). /

Remark. For each location L, L.owned ⊆ L.required. Hence, by construction, for any two locations L1

and L2 in a graph, L1.owned and L2.owned are disjoints. /

Semantics. The semantics of the strict encapsulation policy is not defined using the unconstrained
location transitions: we only need to specify the authorisation function.

To define the authorisation function, we first formalise the notion of ownership domain. Then, we
show how we can infer, from a (Trans) rule, which location are reached. Finally, the authorisation
function is defined such that it holds if and only if all location reached are within the ownership domain.

We say that L1 owns L2 (written L1 ( L2) when L2.id is in L1.owned.

Definition 75 (Strict ownership relation). Let [·] ( [·] be the smallest relation over locations such
that:

L1 ( L2 ⇔ L1.sort = 〈 , σ〉 ∧ L2.sort = 〈id2〉 ∧ id2 ∈ σ

Lemma 27 (Owner uniqueness).

∀G ∈ Gse, Lo, L
′
o, L ∈ G · Lo ( L ∧ L′o ( L⇒ Lo = L′o

Proof. Suppose there exists Lo ∈ G and L′o ∈ G such that Lo 6= L′o and Lo ( L and L′o ( L.
Since Lo ( L, then Lo.sort = 〈 , σ〉 ∧ L.sort = 〈id〉 ∧ id ∈ σ. In addition, from Definition 73,
Lo.owned = σ ⊆ Lo.required. Therefore, id ∈ Lo.required.
Similarly for L′o: id ∈ L′o.required.
Therefore, Lo.required ∩ L′o.required 6= ∅. Thus WFG(G) does not hold, i.e. G 6∈ Gse. Contradic-
tion.

The ownership domain of L is the set of all locations that are owned by L if L is an owner or that
are owned by the same owner if L is an owned location.

Definition 76 (Strict ownership domain). Given a graph G and a location L of G, the strict
ownership domaina of L, noted G#L, is defined as:

G#L
∆
=

{
{Li ∈ G|L( Li ∨ L = Li} if L.is owner

{Li ∈ G|Li ( L ∨ (∃Lo ∈ G · Lo ( L ∧ Lo ( Li)} otherwise

aWe specify that the ownership domain is strict to avoid confusion with the notion of ownership domain of relaxed
policies below.

Remark. Stricto sensus, G#L is a set of locations. When the context is clear, we extends the notation
such that G#L also represent the location graph formed by the composition of all locations in the set:
G#L =

∏
L′∈G#L L

′ /

Remark. Similarly, we extend the concept to skeleton graphs and skeleton locations. /

Definition 77 (Strict ownership domain (excluding owner)). Given a graph G and a location L



76

of G, the strict ownership domain excluding the owner of L, noted G ? L, is defined as:

G ? L
∆
=

{
{Li ∈ G|L( Li} if L.is owner

{Li ∈ G|∃Lo ∈ G · Lo ( L ∧ Lo ( Li} otherwise

Remark. Similarly, we extend the notation such that G ? L also denotes the location graph formed by
the composition of all locations in the set: G ? L =

∏
L′∈G?L L

′ /

Remark (Ownership domains of skeleton graphs). Similarly, we extend the concept to skeleton graphs
and skeleton locations. Given a skeleton graph Gs and a skeleton location Ls, we note Gs#sLs for the
ownership domain of Ls in Gs and Gs ?s Ls for the ownership domain of Ls in Gs, excluding the owner.

Since the definition of ownership domains does not depend on the processes of locations, everything
works rights (i.e. ∀G ∈ Gse, L ∈ G · Σ(G#L) = Σ(G)#sΣ(L) — resp. for ownership domain excluding
the owner). /

Remark. If L is an owner role, then L 6∈ G ? L. /

Lemma 28.

∀G,L,Lo · Lo ( L⇒ G#L = G ? L ∪ {Lo}

Proof. Since Lo ( L, then ¬L.is owner. Therefore:

G#L
Def 76

= {Li ∈ G|Li ( L ∨ (∃Lo ∈ G · Lo ( L ∧ Lo ( Li)}
= {Li ∈ G|Li ( L} ∪ {Li ∈ G|∃Lo ∈ G · Lo ( L ∧ Lo ( Li}
Def 77

= {Li ∈ G|Li ( L} ∪G ? L

Lem 27
= {Lo} ∪G ? L

We now define the range of a transition label, which is the set of all (skeleton) locations that are
affected by the label.

Definition 78 (Label range). Given a skeleton graph Gs ∈ Gse and a label Λ, the range of Λ is a
set of skeleton locations defined as:

range(Λ, Gs) = {Ls|Ls ∈ Gs ∧ (Ls.roles ∩ Λ.roles 6= ∅)}

Finally, we show that our notion of range follows the intuition: all roles affected by a label are either
bound to a location1 in the range or are unbound.

Lemma 29.

∀Λ, Gs,∆, L, C, r·∆ ·Gs B L
Λ−→ C ⇒

r ∈ Λ.roles⇒
r ∈ Gs.unbound ∨ ∃Lr ∈ (range(Λ, Gs) \ Σ(L)) · r ∈ Lr.bound

Proof. By definition of label range (Definition 78), we have to prove that r ∈ Gs.unbound ∨ ∃Lr ∈
({Ls|Ls ∈ Gs ∧ Ls.roles ∩ Λ.roles 6= ∅} \ Σ(L)) · r ∈ Lr.bound.
By hypothesis, r ∈ Λ.roles. By definition of the unconstrained location transition, in particular
the constraints on the label, since r ∈ Λ.roles, r ∈ L.provided or r ∈ L.required, and therefore,
r ∈ Gs.roles in both cases.
If a skeleton location L′ 6= L of Gs also binds r, then L′ ∈ range(Λ, Gs).
Otherwise, Gs ≡ Σ(L) ‖ G′s and r 6∈ G′s.roles. Therefore, r ∈ Gs.unbound.

1Strictly speaking, to a skeleton location.
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Authorisation function. Our authorisation function ensures two aspects of the strict encapsulation
policy: (i) preventing communications between owned locations that do not belong to the same ownership
domains; and (ii) preserving the ownership structure (i.e. prevent orphans and exchanges of locations
between ownership domains).

Concerning communications, a transition Γ B L
Λ−→ C is allowed (in the context of a skeleton graph

Gs) if and only if messages are exchanged (i) between locations belonging to the same ownership domain;
or (ii) between owner locations. Hence, for owned locations, we require that:

L.is owner⇒ ∀Lr ∈ range(Λ, Gs) · Lr ∈ Gs#sΣ(L) ∨ Lr.is owner

and, for owned location:

¬L.is owner⇒ range(Λ, Gs) ⊆ Gs#sΣ(L)

Concerning node creation, for the same transition Γ B L
Λ−→ C, if L is an owned location, it should

be allowed to create locations only within the same ownership domain. However, it is not possible to
ensure that a transition in which the starting location is owned creates only nodes in the same ownership
domain2. Thus, we forbid such creation: the resulting graph should contain a single location which
identifier is the same than the starting location.

¬L.is owner⇒ size(C) ≤ 1 ∧ ∀Lc ∈ C,Lc.id = L.id

Owner locations can create new locations in their ownership domain. Also, they can get rid of locations
they own, and create orphan locations. Such orphan locations can subsequently be caught by other owner
location, hence allowing some sort of exchange. Therefore, we do not impose additional constraints on
owner locations.

Finally, the authorisation function is the following:

Authse(Gs,Γ B L
Λ−→ C) = L.is owner⇒ ∀Lr ∈ range(Λ, Gs) · Lr ∈ Gs#sΣ(L) ∨ Lr.is owner

∧ ¬L.is owner⇒ range(Λ, Gs) ⊆ Gs#sΣ(L)

∧ ¬L.is owner⇒ size(C) ≤ 1 ∧ ∀Lc ∈ C,Lc.id = L.id

There is an interesting remark about this authorisation functiona: its value depend only on a small
subset of the skeleton graph. Informally, to decide whether an unconstrained location transition is
allowed, it only needs to look at the ownership domain the location belongs to.
More formally, for any location L, there exists a skeleton graph Gs such that for any G′s which

contains Gs, Auth(Gs,Γ `Tu
L

Λ−→ C), if and only if Auth(G′s,Γ `Tu
L

Λ−→ C) for any unconstrained
location transitionb. We call the smallest Gs the decision subgraph of L. For instance, for the
presented strict encapsulation, the smallest decision graph of each L is G#L.
This means that if a transition is taken by a graph G1, then this same transition can also be taken
whatever graph G2 we compose G1 with.
We say such authorisation functions are composable.
In addition, if we can partition the graph into subgraphs Gi such that the decision subgraph of
each location Lji of each Gi is Gi, we call this authorisation function independently composable.
Finally, we say an authorisation function is local if it does not depend on the skeleton graph (and
environment).
Intuitively, those notions are related (for instance, intuitively, an instance of a location graph with
an independently composable authorisation function can be nested such that the authorisation
function of the resulting 2nd order graph is local. Also, those notions may prove useful in terms of
analysis (which can be performed statically), optimisation (via distributing independent subgraphs,
evaluating authorisation and transition concurrently), etc. Finally, we could intuitively think that
the class of local authorisation functions has some correspondence with the class of laws in the
Law-Governed Interactions framework ([42]). If this is the case, then (i) our framework would
be strictly more expressive than LGI; and (ii) all local authorisation functions (and therefore all

2More precisely, in order for L to create other owned locations, it would require the cooperation of its owner Lo so that
both synchronise when L creates a location, and Lo modifies its sort in order to reflect the new ownership. Since it requires
the cooperation of the owner, and for the sake of simplicity, we choose to forbid these location creation.
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〈idA, {idA1
, idA2

, idA3
}〉

〈idA2〉〈idA1〉 〈idA3〉

〈idB , {idB1
, idB2

, idB3
}〉

〈idB2〉〈idB1〉 〈idB3〉
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Figure 4.2: Representation of what Figure 2.1 would look like using our implementation of strict encapsulation in location
graphs. Role in green represent regular roles, and those in black represent those used for identification and ownership
purposes. Notice that, in our implementation, only the usage of roles (i.e. their presence in the label of a transition) is
constrained, not the binding; e.g. a role from A3 to B1 would be allowed, but could not be used. The four areas in red
shows the four elements of the partition of the graph using the partitioning function pse.

composable authorisation functions, after proper nesting) could be efficiently implemented using
methods developed for LGI.

aIf we modify it slightly so that communication on unbound roles is forbidden.
bWith an adequate Γ.

Isolation. We want to show that owned locations can not send messages to other ownership domains.
We nest all owned locations belonging to the same ownership domain together, and we show that this
nested ownership domain can only send messages to the owner.

We do not include the owner in the nested ownership domain, as the owner has more rights than
owned locations: owner locations are allowed to exchange messages. We intent to group together
locations that have the same access rights.

Definition 79 (Strict encapsulation partitioning function).

pse(G) = {L ∈ G|L.is owner} ∪ {G ? L|L ∈ G ∧ L.is owner} ∪ {L|L is an orphan}

Remark. pse is a graph partitioning function. Therefore, it returns a multiset of graphs3. /

To illustrate the partitioning function pse, Figure 4.2 shows a location graph implementing the case
presented in Figure 2.1, and how it would be partitionned using pse

4.
For any graph G, Npse(G) is a second order graph. In these second order graphs, nodes nest either:

(i) a single owner; (ii) the ownership domain of a node, excluding the owner; or (iii) a single orphan owned
node. Depending on the inner subgraph, we call each 2nd order location (i) owner location; (ii) ownership
domain location; and (iii) orphan location.

Informally, our goal is to prove that messages from or to an ownership domain location are from (or
go to) their respective owner location. Said otherwise, we only allow communication on roles (i) between
owner locations; and (ii) between an owner role and its respective ownership domain.

Theorem 5. For any graph G, any owner location Lo in G, if ∆ ·Σ(Npse(G)) `Tu
n(G?Lo)

Λ−→ G′,
then for all actions r̂ : â〈V 〉 in Λ such that r̂ ∈ R, r ∈ n(Lo).roles or r ∈ Npse(G).unbound.

Proof. First, from Lemma 4, since r̂ : â〈V 〉 ∈ Λ, r ∈ n(G ? Lo).unbound, i.e. r ∈ n(G ? Lo).roles.

Since ∆ ·Σ(Npse(G)) `Tu
n(G?Lo)

Λ−→ G′, we have that Auth(Σ(Npse(G)),∆ · ∅ B n(G?Lo)
Λ−→ G′)

3In this context, it actually returns a set of graph, since all locations bind at least their identifier role, and therefore,
there can not be duplicates.

4Figure 4.3, described later, shows the corresponding second order graph.
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holds. From Definition 62, we have ∆′ ·e(Σ(Npse(G))) `T1
n−1(n(G?Lo))

prune(Λ)−−−−−→ N−1
p (G′). From

Lemma 19, e(Σ(Npse(G))) ≡ Σ(G). Also, from Lemma 11, n−1(n(G ? Lo)) ≡ G ? Lo. Thus:

∆′ · Σ(G) `T1
G ? Lo

prune(Λ)−−−−−→ N−1
p (G′)

for an adequatea ∆′ ⊆ ∆.
Since r̂ ∈ R, r̂ : â〈V 〉 ∈ prune(Λ). Thus, there exists an L ∈ G ? Lo such that ∆′ · Σ(G) `T1

L
Λ′−→ C ′ with r̂ : â〈V 〉 ∈ Λ′ (which implies, after Definition 29, that r ∈ L.roles). In addition,

the strict encapsulation authorisation function holds: Authse(Σ(G),∆′ · ∅ B L
Λ′−→ C ′). From

the remark on Definition 77, since L ∈ G ? Lo, ¬L.is owner; which implies L 6= Lo. Hence,
range(Λ′,Σ(G)) ⊆ Σ(G)#sΣ(L). Since L ∈ G ? Lo, then Lo ( L. Therefore, from Lemma 28b,
Σ(G)#sΣ(L) = (Σ(G) ?s Σ(L)) ∪ {Σ(Lo)}, thus range(Λ′,Σ(G)) ⊆ (Σ(G) ?s Σ(L)) ∪ {Σ(Lo)}.
From Lemma 29, either (a) ∃Lr ∈ ((Σ(G) ?s Σ(L)) ∪ {Σ(Lo)}) \ Σ(L) · r ∈ Lr.roles; or (b)
r ∈ Σ(G).unbound.
If (b) r ∈ Σ(G).unbound, then r ∈ G.unbound, then r ∈ Npse(G).unbound and the conclusion
follows directly.
We consider the case (a): ∃Lr ∈ ((Σ(G) ?s Σ(L)) ∪ {Σ(Lo)}) \ Σ(L) · r ∈ Lr.roles.
Since L 6= Lo

c, ((Σ(G) ?s Σ(L))∪{Σ(Lo)}) \Σ(L) = ((Σ(G) ?s Σ(L)) \Σ(L))∪{Σ(Lo)}. Therefore,
∃Lr ∈ ((Σ(G) ?s Σ(L)) \ Σ(L)) ∪ {Σ(Lo)} · r ∈ Lr.roles.
There are two possibilities: (i) ∃Lr ∈ ((Σ(G)?sΣ(L))\Σ(L))·r ∈ Lr.roles; or (ii) r ∈ Σ(Lo).roles.
Case (ii) leads directly to the conclusion of the proof. We show that case (i) leads to a contradiction.
Case (i): ∃Lr ∈ ((Σ(G)?sΣ(L))\Σ(L)) ·r ∈ Lr.roles. Therefore, since r ∈ L.roles, r 6∈ (Σ(G)?s

Σ(L)).unbound, thus r 6∈ (G?L).unbound. Therefore, from Definition 49, r 6∈ (n(G?L)).roles,
hence, r 6∈ (n(G ? L)).unbound. Contradiction.

Case (ii): r ∈ Σ(Lo).roles, thus r ∈ Lo.roles, thus r ∈ n(Lo).roles.

aFrom the definition of the 2nd order unconstrained location transitions, ∆′ = ∆ ∩ R where R is the set of roles
of the 1st order graph (i.e. we remove out-of-band roles added when nesting the graph).

bThe fact that we use skeleton ownership domains and not graph ownership domains has no influence on the
result of Lemma 28.

cNotice that here, from L 6= Lo we deduce Σ(L) 6= Σ(Lo). This is true only if at least one of the sorts, the
required roles or the provided roles of both locations are not equal. In our case, it is the case since each location has
an identifier role bound in the provided direction (reminder: Definition 73).

Nesting. The partial bisimulation result (Theorem 4) applies in two ways: (i) first, it allows us to
prove that the original (flat) graph also implement the strict encapsulation policy; and (ii) it is possible
to consider each ownership domain (including the owner) as a single location, in which communications
are allowed only via some roles.

Corollary 5. For any graph G, any owned location L, any location Lo such that Lo ( L, if

∆ · Σ(G) `Tu
L

Λ−→ C, then for all actions r̂ : â〈V 〉 in Λ, either (i) r ∈ Lo.roles; (ii) ∃L′ · Lo (
L′ ∧ r ∈ L′.roles; or (iii) r ∈ G.unbound.

Proof. Suppose none of the three possibilities hold. We show that, when nesting G with the
partition function above, this leads to a contradiction. We have a location L2 = n(G ? L) in
Npse(G). Since the subgraph G?L reduces, and from Theorem 4, n(G?L) takes a similar transition

Γ `Tu n(G ? L)
Λ′−→ G′2. Since (ii) does not hold, the action r̂ : â〈V 〉 in Λ is not an internal action

of n(G ? L). Thus, Λ′ contains the action r̂ : â〈V 〉.
From Lemma 5, we deduce that either r ∈ n(Lo).roles (hence would (i) hold), or r ∈
Npse(G).unbound (hence would (iii) hold). Contradiction.

Corollary 6. Let po(G) = {G#Lo|Lo.is owner} ∪ {L|L is an orphan}. Npo(G) simulates G.

Proof. Direct from Theorem 4.

To conclude this section, we show in Figure 4.3 and Figure 4.4 two nestings of Figure 4.2. In Figure 4.3,
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〈idA, {idA1 , idA2 , idA3}〉

〈idA2
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Figure 4.3: Skeleton graph of a nested location graph which implements the strict encapsulation policy using the partitioning
function pse. Being a skeleton graph and not the full graph, only sorts are shown in nodes and not the processes. Compare
this figure with Figure 4.2: the sort of each location is the skeleton of the corresponding element of the partition (in red)
formed by pse. The process of each location (not shown in the skeleton graph) would be the actual subgraph.
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Figure 4.4: Skeleton graph of a nested location graph which implements the strict encapsulation policy using the partitioning
function po. This partitioning function corresponds to the intuitive notion of encapsulation better than pse (Figure 4.3).
Nonetheless, our results show that both are equivalent, and that isolation is properly achieved.

the partitioning function used for the nesting in pse which we used to show our isolation result. We see
that the owner and its ownership domain are not in the same location. In Figure 4.4, we show the more
intuitive nesting, in which ownership domains are nested separately together with their owner. Thank to
Theorem 2, both second order graphs are similar to the original one.

4.1.2 Shared Encapsulation Policy

In Section 4.1.1, sorts are elements of the set S = {〈r〉|r ∈ R} ∪ {〈r, σ〉|r ∈ R, σ ⊂ R}. When the sort has
the form 〈r〉, the location is owned by the location that binds r.

We achieve shared encapsulation by relaxing the sort of owned location: the idea remains the same,
but the sort of owned locations is now a set of roles (bound to owner locations). Hence we have S =
{〈σ〉|σ ⊂ R} ∪ {〈r, σ〉|r ∈ R, σ ⊂ R}. Figure 4.5 shows a representation of an owned location. Naturally,
we also have to adapt Definition 71 to take into account that, with shared encapsulation, owned locations
have multiple identifiers. For the sake of simplicity, we do not explicit the new definition.

Semantics. The semantics of the shared encapsulation policy is quite similar to those of the strict
encapsulation policy. The difference lies in that a location can belong to multiple ownership domains at
the same time.

The owns relation (() should be adapted to take into account the new sort of owned locations:
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L
〈{idL1

, idL2
}〉

L1

〈id1, {idL1
}〉

L2

〈id2, {idL2
}〉

idL1 idL2

id1 id2

Figure 4.5: Representation of a location graph which implements the shared ownership policy. Roles idL1 are idL2 are
bound in L and in L1 (resp. L2): both L1 and L2 own L. Notice that it is possible that a single owner location owns a
owned location via multiple roles.

Definition 80 (Shared ownership relation). Let ( be the smallest relation over locations such
that:

L1 ( L2 ⇔ L1.sort = 〈 , σ1〉 ∧ L2.sort = 〈σ2〉 ∧ σ1 ∩ σ2 6= ∅

Notice that our definition of strict ownership domain (Definition 76) is, unexpectedly, suitable for the
shared ownership case: if a location L has two owners (say Lo and L′o), then all locations owned by Lo
and L′o are in G#L.

Remark. Contrary to the strict encapsulation policy, two locations in a given ownership domain do not
necessary have the same ownership domain. More formally: the following no longer holds:

∀G ∈ G · ∀L ∈ G · ∀L′ ∈ G#L ·G#L = G#L′

/

As a consequence, the authorisation function Authse is also suitable to ensure the shared ownership
policy.

Remark. The similarities between the strict ownership policy and the shared ownership policy emphasize
that strict ownership is just a special case of shared ownership, in which locations have a single owner;
yet, there is no fundamental differences between the two policies. /

Example 8. Consider the following graph, which contains three locations with processes A, B,
and C. The first two share the ownership of the last one.

[A : 〈idA, {id1
C}〉 C {idA} • {id1

C}] ‖ [B : 〈idB , {id2
C}〉 C {idB} • {id2

C}]

‖ [C : 〈{id1
C , id

2
C}〉 C {id1

C , id
2
C} • ∅]

Location B can create a new location D, and take ownership of that new location. Notice, in this
example, that this new location is created directly with two identifiers.

Γ B [B : 〈idB , {id2
C}〉 C {idB} • {id2

C}]
〈∅,∅〉−−−→

[B : 〈idB , {id2
C , id

2
D}〉 C {idB} • {id2

C , id
2
D}] ‖ [D : 〈{id1

D, id
2
D}〉 C {id1

D, id
2
D} • ∅]

Simultaneously, location A can take a shared ownership of D, using id1
D:

Γ B [A : 〈idA, {id1
C}〉 C {idA} • {id1

C}]
〈∅,∅〉−−−→ [A : 〈idA, {id1

C , id
1
D}〉 C {idA} • {id1

C , id
1
D}]

These two transitions result in a new graph in which D is added and owned by A and B:

[A : 〈idA, {id1
C , id

1
D}〉 C {idA} • {id1

C , id
1
D}] ‖ [B : 〈idB , {id2

C , id
2
D}〉 C {idB} • {id2

C , id
2
D}]

‖ [C : 〈{id1
C , id

2
C}〉 C {id1

C , id
2
C} • ∅] ‖ [D : 〈{id1

D, id
2
D}〉 C {id1

D, id
2
D} • ∅]
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4.1.3 Multi-Level Encapsulation Policy

An other extension of the strict encapsulation policy is to allow multiple levels of encapsulation. The
implementation presented in Section 4.1.1 provides a suitable starting point for this policy. Two points are
to be considered: (i) there shall not be differences between owner and owned locations5, as any location
can be both owner and owned at the same time; and (ii) cycles in the hierarchy shall be prevented.

To tackle these two issues, we propose the following: the set of sort is S = {〈r, σ〉|r ∈ R, σ ⊂ R} and
the set R of role is equipped with a partial order relation ≤R

6. In addition, the following invariant on
sorts is maintained:

Imle(〈r, σ〉)⇔ ∀r′ ∈ σ · r ≤R r
′

The ownership relation (() is similar to the one of strict encapsulation7:

Definition 81 (Multi-level ownership relation). Let ( be the smallest relation over locations such
that:

L1 ( L2 ⇔ L1.sort = 〈 , σ〉 ∧ L2.sort = 〈id2, 〉 ∧ id2 ∈ σ

The notions of ownership domain remains suitable for the multi-level encapsulation policy. As a
consequence, the authorisation function Authse is also suitable to ensure the multi-level encapsulation
policy.

We see that for the three encapsulation variants we presented, the authorisation function is the
same, up to the definition of (.
Future work could study further this class of authorisation function, abstracting away the relation
( (as a parameter of the authorisation function).

4.2 Logging system
This section aims to show that the location graph framework is suitable to implement ad-hoc systems.
We show how a system such as the logging system presented in the introduction (Section 1.2).

In order to illustrate the capabilities of the framework, we take a different approach than when
implementing ownership systems. For ownership systems, the authorisation function dynamically checked
that everything was correct, while the set of unconstrained location transition was not specified8. Here,
on the other hand, we let the authorisation function as unspecified as possible9, while we work on the set
of unconstrained location transitions.

The choice to use the set of unconstrained location transitions instead of the authorisation function
to enforce our policy is not a change in the framework. Instead, it shows the our framework can
implement (at least some) policies in various ways.
More generally, if a policy can be enforced using only the set of unconstrained location transitions
(say Tp), then it is possible to perform the verification that a given transition is in the authorisation

function (i.e. we define Auth(Gs, t)
∆
= t ∈ Tp) and to relax the set of uncontrained location transitions

used (i.e. use a greater T′p instead of Tp).
We would trivially have the following property:

Conjecture 2. For all graphs G1 and G2, for all labels Λ, the two following statements are
equivalent:

1. Γ `Tp G1
Λ−→ G2 using a trivial authorisation function; and

2. Γ `T′p G1
Λ−→ G2 using Auth(Gs, t)

∆
= t ∈ Tp as the authorisation function.

5As explained below, we can reuse the owner sorts 〈r, σ〉 of the strict encapsulation policy, which are composed of an
identifier r and a set of owned locations σ.

6One can annotate roles with integer.
7We only need to adapt the sort of the owned location, which now has the form 〈r, σ〉.
8More precisely, the set of unconstrained location transitions in ownership based approaches is the set of all possible

transitions.
9That is, we do as few runtime check as possible.
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Figure 4.6: Representation of the system presented in Figure 1.6 implemented using our location graph model. Notice that
there is no requirement for a locations 〈S, i〉 and 〈L, i〉 to bind i (e.g. between 〈S, 2〉 and 〈L, 2〉 here), nor for 〈L, i〉 and L to
bind Li. Our invariant is that only these locations can bind it, and that it is the only role they can bind together. The role
r is taken arbitrarily from Rb.

As a matter of fact, one should try to define the set of unconstrained location transition as small
as possible. By doing so, it might be possible to make additional assumptions and therefore reduce
the amount of verifications the authorisation function has to do (which, in a software engineering
perspective) are most expensive to perform, since it requires to freeze the global skeleton graph.

Graph model. Locations either belong to the main system or to the logging part of the whole system.
Also, for each subcomponent of the main system, there is a corresponding logger. We use two symbols (L
and S) in the sort to specify in which part each location belongs. Also, each location has an integer, which
is used to associate each subcomponent of the main subsystem with its logging component. Finally, we
distinguish two sorts without integer (i.e. just S and L) for the locations that implement each subsystem
entrypoint.

Definition 82 (Logging system sorts).

Sls
∆
= {〈t, n〉|t ∈ {S, L} ∧ n ∈ N} ∪ {S, L}

Components of the main subsystem can freely communicate together (and with the main component
entry point). In addition, each component is allowed to send messages to its corresponding logger, which
can transfer it to the logger entrypoint. We ensure that by constraining which roles each location can
bind. We consider a set Rb of basic role names. Those are used among components of the main subsystem.

For communication between main components and their respective logging subcomponent, we use role
names taken among N, where each component can only bind the role which correspond to the index in
its sort10.

For the communication between logger components and the logger entrypoint, logging subsystem 〈L, i〉
can bind a role Li toward the logger entrypoint. We call Li the set of all Li for i ∈ N.

Notice that, a logger component with sort 〈L, i〉 can only bind the roles Li and i (and their identifier
role 〈L, i〉). This prevent two logger components to interact, as long as they do not have the same
identifier.

To prevent duplicate identifiers, and similarly to identifier roles in ownership systems, we require each
location to bind its sort as a special identifier role.

Definition 83 (Logging system roles).

Rls
∆
= Rb ∪ N ∪ {Li|i ∈ N} ∪ Sls

Let Gls be the set of location graphs formed with the above mentioned sorts and roles.

10Note, as a side effect, that neither the logging and the main system entrypoints can bind such roles.
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Semantics. Concerning messages, we suppose we are given a set M of messages that components intend
to exchange. To those messages, we add a set of administrative messages for the synchronisation of
component deletion11; which we suppose distinct from messages in M. This family of messages is the set
{remove(i)|i ∈ N}.

When a main subsystem component 〈S, i〉 is removed, it emits remove(i) toward its respective logger
component 〈L, i〉, which is matched only if the logger is also removed during the same transition.

We can now define our set of unconstrained location transitions.

Definition 84 (Unconstrained transitions of the logging system).

Tls
∆
= {Γ B L

Λ−→ C|∀L′ ∈ C·L′.sort ∈ L′.provided
∧ L′.sort = L⇒ L′.roles ⊂ {〈L, i〉} ∪ {L}
∧ L′.sort = S⇒ L′.roles ⊂ Rb ∪ {S}
∧ L′.sort = 〈S, i〉 ⇒ L′.roles ⊂ Rb ∪ {i} ∪ {〈S, i〉} ∧ i ∈ L.provided
∧ L′.sort = 〈L, i〉 ⇒ L′.roles ⊆ {i} ∪ {〈L, i〉} ∪ {Li} ∧ i ∈ L.required

∧ L.sort = L⇒ ¬C ≡ ∅
∧ L.sort = S⇒ ¬C ≡ ∅
∧ L.sort = 〈S, i〉 ⇒ (C ≡ ∅ ⇔ Λ.sync = {i : rmv〈remove(i)〉})
∧ L.sort = 〈L, i〉 ⇒ (C ≡ ∅ ⇔ Λ.sync = {i : rmv〈remove(i)〉})
∧ ¬C ≡ ∅ ⇒ (∃L′ ∈ C · L.sort = L′.sort)

∧ ∀L′ ∈ C·(L′.sort 6= L.sort)⇒
(L′.sort = 〈S, i〉 ⇒ ∃L′′ ∈ C · L′′.sort = 〈L, i〉)
∧ (L′.sort = 〈L, i〉 ⇒ ∃L′′ ∈ C · L′′.sort = 〈S, i〉)

}

Correctness. We have a notion of well-formness for our system: intuitively, a location graph imple-
menting this logging system pattern is well-formed if and only if: (i) there is a one-to-one mapping
between components of the main system and logger components; and (ii) there is no exchange between
unmatched component/logger, nor among logger components.

Definition 85 (Well-formed logging system).

WF(G)
∆
=∀i ∈ N · (∃Ls ∈ G · Ls.sort = 〈S, i〉)⇔ (∃Ls ∈ G · Ll.sort = 〈L, i〉)
∧ ∀L ∈ G · L.sort ∈ L.provided
∧∀L ∈ G·(L.sort = L⇒ L.roles ⊂ {〈L, i〉}

∧ L.sort = S⇒ L.roles ⊂ Rls
∧ L.sort = 〈S, i〉 ⇒ L.roles ⊂ Rls ∪ {i} ∧ i ∈ L.provided
∧ L.sort = 〈L, i〉 ⇒ L.roles ⊆ {i} ∪ {〈L, i〉} ∧ i ∈ L.required)

This definition has three independent clauses: (i) the first line states that subcomponents and logger
components are one-to-one mapped; (ii) the second states that each sort is used at most once; and
(iii) finally, the third does the hard work: it regulates communications via role constraints.

To show our implementation is correct, we simply show that, using our unconstrained location tran-
sitions, the set of well-formed graph is closed under location graph reduction. We prove this by proving
the three conditions of well-formness, in three separate lemmas.

Lemma 30.

∀G ∈ Gls · ∀i ∈ N · WF(G)⇒ i 6∈ G.unbound

Proof. Since WF(G), then (∃Ls ∈ G · Ls.sort = 〈S, i〉) ⇔ (∃Ll ∈ G · Ll.sort = 〈L, i〉). Also, again

11Remember that, when a subcomponent of the main subsystem is remove, we want to simultaneously remove the
associated logger component.
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from the definition of WF(G), for all L ∈ G: L.sort = 〈S, i〉 ⇒ i ∈ L.provided and L.sort =
〈L, i〉 ⇒ i ∈ L.required).
Also, only locations with sort 〈S, i〉 and 〈L, i〉 can bind i.
Therefore (∃Ls ∈ G · i ∈ L.provided)⇔ (∃Ll ∈ G · i ∈ L.required), i.e. i 6∈ G.unbound.

Lemma 31.

∀G ∈ Gls·WF(G)∧Γ `Tls
G

Λ−→ G′ ⇒ ∀i ∈ N·(∃Ls ∈ G′·Ls.sort = 〈S, i〉)⇔ (∃Ls ∈ G′·Ll.sort = 〈L, i〉)

Proof. By contradiction: suppose there is an i ∈ N such that ∃Ls ∈ G′ · Ls.sort = 〈S, i〉 and such
that ¬∃Ll ∈ G′ · Ll.sort = 〈L, i〉a.
Two cases are possibles: (i) there are locations Ls and Ll with sorts 〈S, i〉 and 〈L, i〉 in G ; or
(ii) there are no two locations with sorts 〈S, i〉 and 〈L, i〉 in G . Notice that, since WF(G), it is not
possible to have one of the two.
We analyse the two cases separately:
Case (i): Since ¬∃Ll ∈ G′ · Ll.sort = 〈L, i〉, we have that G ≡ Ll ‖ Gl and, necessarily, Γ `Tls

Ll
Λl−→ Cl such that ¬∃L′l ∈ Cl · L′l.sort = 〈L, i〉.

From the premisses of (Trans), Γ.names · ∅ B Ll
Λl−→ Cl ∈ Tls. Suppose Cl 6= ∅, by definition

of Tls, ∃L′ ∈ Cl ·Ll.sort = L′.sort, which contradicts the statement above. Therefore Cl = ∅.
Since Ll.sort = 〈L, i〉 and Cl = ∅, by definition of Tls, Λl.sync = {i : rmv〈remove(i)〉}.
Since i 6∈ G.unbound, then i : rmv〈remove(i)〉 6∈ Λ.sync, according to Lemma 4. Therefore,

by definition of seval(·), there is a location L ∈ Gl that takes a transition Γ′ B L
Λ−→ L′ with

an action i : rmv〈remove(i)〉 ∈ Λ. Since Ls binds i, L = Ls.

According to the definition of Tls, and since Ls.sort = 〈Si〉, for all Γ′ B Ls
Λs−−→ Cs, i :

rmv〈remove(i)〉 ∈ Λs.sync⇒ Cs ≡ ∅.
Since WF(G), then sorts are uniquely used (from the requirement that ∀L ∈ G · L.sort ∈
L.provided). Also, since Ls is also removed from G, then there must be a newly created
location in G′ with sort 〈S, i〉, while no location with sort 〈L, i〉 is created. We fall back on
the case (ii).

Case (ii): We show that it is not possible that a location with sort 〈S, i〉 is created while no location
with sort 〈L, i〉 is.
Since a location Ls with sort 〈S, i〉 is created, there is a location Lc which takes a transition

Γc B Lc
Λc−−→ Cc ∈ Tls with Ls ∈ Cc.

According to the definition of Tls, ∀L′ ∈ Cc · (L′.sort 6= Lc.sort) ⇒ (L′.sort = 〈S, i〉 ⇒
∃L′′ ∈ Cc · L′′.sort = 〈L, i〉). Therefore, ∃Ll ∈ Cc · Ll.sort = 〈L, i〉.

aBy symmetry, the same reasoning applies if 〈L, i〉 exists and 〈S, i〉 does not.

Lemma 32.

∀G ∈ Gls · WF(G) ∧ Γ `Tls
G

Λ−→ G′ ⇒ ∀L ∈ G′ · L.sort ∈ L.provided

Proof. By definition of Tls, ∀Γ B L
Λ−→ C ∈ Tls · ∀L′ ∈ C · L′.sort ∈ L′.provided. In particular if

L.sort ∈ L.provided.

After Lemma 10 with P(L)
∆
= L.sort ∈ L.provided, we have that:

∀G,G′ ∈ Gls ·Γ `Tu
G

Λ−→ G′ ⇒ (∀L ∈ G·L.sort ∈ L.provided)⇒ ∀L ∈ G′ ·L.sort ∈ L.provided

By hypothesis, ∀G,G′ ∈ Gls · Γ `Tu G
Λ−→ G′ holds. Also, since WF(G), ∀L ∈ G · L.sort ∈

L.provided.
Therefore, ∀L ∈ G′ · L.sort ∈ L.provided.
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Lemma 33. For all graph G ∈ Gls, if WF(G) and Γ `Tls
G

Λ−→ G′, then

∀L ∈ G′·(L.sort = L⇒ L.roles ⊂ {〈L, i〉}
∧ L.sort = S⇒ L.roles ⊂ Rls
∧ L.sort = 〈S, i〉 ⇒ L.roles ⊂ Rls ∪ {i} ∧ i ∈ L.provided
∧ L.sort = 〈L, i〉 ⇒ L.roles ⊆ {i} ∪ {〈L, i〉 ∧ i ∈ L.required})

Proof. To improve readability, we write

Q(L)
∆
=L.sort = L⇒ L.roles ⊂ {〈L, i〉}
∧ L.sort = S⇒ L.roles ⊂ Rls
∧ L.sort = 〈S, i〉 ⇒ L.roles ⊂ Rls ∪ {i} ∧ i ∈ L.provided
∧ L.sort = 〈L, i〉 ⇒ L.roles ⊆ {i} ∪ {〈L, i〉} ∧ i ∈ L.required)

By definition of Tls, ∀Γ B L
Λ−→ C ∈ Tls · ∀L′ ∈ C · Q(L′). Therefore, we can introduce an

application: ∀Γ B L
Λ−→ C ∈ Tls · ∀L′ ∈ C · Q(L) ⇒ Q(L′). Therefore, after Lemma 10, ∀G,G′ ∈

Gls · Γ `Tls
G

Λ−→ G′ ⇒ (∀L ∈ G · Q(L))⇒ (∀L ∈ G′ · Q(L)).

By hypothesis, both G `Tls
Λ

G′−→ and ∀L ∈ G · Q(L) hold, therefore ∀L ∈ G′ · Q(L).

Theorem 6.

∀G ∈ Gls · WF(G) ∧ Γ `Tls
G

Λ−→ G′ ⇒ WF(G′)

Proof. We prove separately the three conditions of the well-form predicate in Lemmas 31, 32 and
33.

Remark. Notice that the definition of well-formed graphs does not explicitely state that there are not
unwanted communications. However, it is a direct consequence of the roles each location can bind. /

Summary – Encapsulation policies

In this chapter, we showed, in practice, how the location graph framework can be used to implement
various encapsulation policies, as well as a proof method.
For ownership-based approaches, we chosed to rely on the authorisation function, which allow very
few modifications on the graph (with respect to the intuitive object graph).
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For our ad-hoc example, we chose to rely on the set of unconstrained location transitions. We put
more structure on the sorts and on the role identifiers.
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Chapter 5

Rust implementation of the location graph
framework

The location graph framework presents a convenient theoretical basis to think about complex and dis-
tributed systems. In this chapter, we show that location graph are not only a theoretical framework, but
also a practical way to build actual software. To achieve this objective, we implemented a library for the
Rust programming language [47] which provides a location graph framework to Rust.

Rust was chosen for convenience: its type system, based on the very ownership concepts presented in
the introduction, makes both concurrent programming easy ; and prevent accidental sharing of references,
which is useful to write such a library which claims to ensure isolation.

In the first section of this chapter, we informally present the programming model (i.e. the assumptions
about Rust and the main lines of the design of our implementation). Then, we present an abstract machine
for this library, which provides a formal basis to reason about the library.

With the abstract machine in mind, we continue by presenting the library from the user perspective:
Section 5.3 presents the programmers API, using a small example. Once familiar with the different
elements of the library, the fourth section shows the internal details of the implementation of this abstract
machine.

We conclude with two ancillary sections: the first shows the implementation of various utilities that
can be implemented using the library, but which proved generic enough to be included within the library
itself; the second shows the implementation of two of the examples taken from our bestiary.
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5.1 Programming model
In this section, we detail the choices we had to make in order to implement the location graph framework.
For this implementation, we basically had the choice among two possibilities: write an ad-hoc location
graph language; or integrate the location graph notions into an already existing language.

Of course, write a brand new language is appealing, since it allows one to design it to perfectly suit
their needs. However, if one intend to write a useful language, they would need to reimplement a lot of
unrelated stuff, from e.g. a basic parser to a full standard library, via a concurrent programming model.
Without all those unrelated components, the created language would stay at the state of toy language,
and would not show how the location graph framework could be used in practice.

On the other hand, by integrating the location graph framework into an existing language, all the
unrelated elements come for free, but one has to find a way to tune the framework so it can be interfaced
with the host language.

We chose the second approach, in which we integrate the location graph as a Rust library. This library
offers structures and functions that anyone can use to program with a location graph approach in mind.

The first subsection is a general overview in which we explain the design choices we made to im-
plement the various components of the framework. The second subsection shows the limitations of the
implementation with respect to the theoretical framework.

5.1.1 Design choices

An object for locations. In the study of the theoretical framework, we considered locations as a
whole. In practice, such approach is not practical: we have to let the user program the locations, while
managing all the underlying mechanism. Therefore, some parts of the locations have to be provided by
the user, and some other by us; which highlights the fact that we can not consider locations as a unique
entity.

The design choice we made is to provide a location handle which provides a bridge between user code
and the underlying location system. More precisely, we have a structure that provides primitives the user
can call to, e.g. , change its sort, perform a transition, etc..

Roles. In the theoretical framework, roles are simply identifiers that can be bound by locations, and
which implicitly create a communication medium between locations that bind the same identifier. In our
implementation, we therefore have to take those two aspects (identifier and communication medium) into
account.

On the first hand, on the implementation of the role identifiers, the main point is that we can not
provide a unique implementation, for some systems may rely on a precise structure on role identifiers (e.g.
some systems may require that identifiers are integers, some other that they are strings, etc..). Therefore,
we only provide a trait1 the user shall implement.

Communication channels, such as in the theoretical framework, are not directly accessible to the user.
Instead, the location system stores used identifier, and each time a location binds a new identifier, a
communication channel from the standard library (std::sync::mpsc) is instantiated, associated with
that new identifier, and used for communications on that role.

Transitions. The theoretical framework does not specify how transitions are built: it only assumes
that there is a set of transitions, and that, without specifying how, locations can take transitions. Of
course, we need to adapt and refine this for an actual implementation.

First, while there is an infinite number of possible transitions, all can be described as the combination
of a few atomic elements, such as, e.g., binding a role or creating a location. In our library, transitions are
implemented with this approach. Locations can incrementally build up transitions (via some primitive
functions), which are then fired.

In the theoretical framework, if no transition can be taken by a location, the location is locked. In
practice, this is not suitable, as the user should (at least) get some feedback that no progress is possible.
Therefore, we adopt a strategy similar to transactions in transactional memory models: when a location
attempt to take a transition, there is no guarantee of success, but the transition is atomic (i.e. if it fails,
then the state of the location does not changes, except for the feedback elements).

1An interface, in the Rust jargon.
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Locations are threads. In our library, we assume each location runs on an independent thread.
Rust offers multiple ways to implement concurrent systems, e.g. using lightweight threads or using async
functions. Of course, we make the assumption that the underlying scheduler is fair, in the sense that no
thread suffers starvation.

Among the four elements of locations (the process, the sort, the provided and required roles), we
mentioned above that the location handle stores the sort and the provided and required roles. The
process, on the other hand, is the function that is run on the thread (and which has access, in principle
— but not necessarily, to a location handler structure).

The current implementation internally uses std::thread::yield_now at some places, i.e. the as-
sumed model of concurrency is the std::thread library.
Of course, ideally, we would like to decouple as much as possible the location graph and the
concurrency aspects of the system. This is absolutely possible in theory: the call to yield_now is
simply here to improve performance, and all other concurrent aspects are directly managed by the
user (e.g. the creation of new threads to instantiate new locations).
We could absolutely define a trait to have a generic method to yield processes, and provide a
default implementation the user could use or redefine. Nevertheless, this would imply an increased
verbosity of (almost) all types used to take into account this new parameter, and I am not sure
such trade-off is worth. I am curious to see some real use cases from third parties to make this
choice.

Skeleton locations and skeleton graphs. While the location graph is implicit (there is no structure
that holds the whole state of the location graph, it is implicitly formed by the different location threads
and the bound roles), the skeleton location has a dedicated structure, shared among locations, that is
transparently updated to reflect the current state of the graph. Of course, locations do not have access
to that skeleton graph structure. Instead, only an immutable reference to that structure is provided as
an argument of the authorisation function.

Skeleton graphs (and skeleton locations) are black boxes to the user. Instead, they can manipulate
those elements via iterators and accessors. For instance, the programmer can filter skeleton locations of
a skeleton graph to find all skeleton locations that have a certain sort.

Unconstrained location transition set and authorisation function. In the previous paragraph,
we explained that attempting a transition can return an error. According to the theoretical framework,
transitions must belong to the set of unconstrained location transitions of the instance, and they should
satisfy the authorisation function, at the time the transition is taken. Therefore, we should give the user
a way to model those two concepts.

While those two elements are different in the theoretical framework (one is a set, the other is a
predicate), we implement them similarly. Since they must be specified by the user, and since the very
base elements of a given instance are not known, we can not provide an implementation. Instead, we
define two traits (one for the set of unconstrained location transitions, the other for the authorisation
function), which both require a single function: for the set of unconstrained location transitions, the
function indicates whether a given transition belongs to that set, and for the authorisation function,
given a skeleton graph, a location and a transition, whether it is allowed.

Said otherwise, the user defines the set of unconstrained location transitions thanks to a predicate
which states which transitions belongs to that state.

Remark. In the theoretical framework, the authorisation is stateless: it is a predicate over an environment
and an unconstrained location transition.

In the implementation, having stateful authorisation transition came for free, we therefore adopt this
possibility. /

Memory and sharing. The location graph framework assumes that there are no communication
channel, of any kind, between locations, except for roles. We therefore have to enforce this isolation in
order to correctly use the library.

This is a point where the choice of the host language helps: for instance, consider Java and the
problem of shared memory (i.e. object aliases). Java does not provide any guarantee about references to
objects, and would either require the programmer to be very careful about their memory management,
or it would require us to take measures to detect and forbid unwanted aliases2.

2In fact, an early implementation of the location graph framework was done in Java, and I can testify that this is a
nightmare.
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Kind of error Policy implemented

Not in the unconstrained location transition set Error reported

Authorisation function not satisfied Error reported

Message exchanged on unbound role Deadlocks

Failed expected value Deadlocks

Binding error Panic

Figure 5.1: Transition failure policies.

On the other hand, the Rust programming language provides, thanks to its typesystem, a mechanism
for alias control (aliases are not possible, except when explicitly declared). Therefore, with the choice
of Rust, and a programming discipline easy to ensure3, we can enforce the required isolation between
locations.

Remark. We require the user not to share memory. However, the code of the library uses, at some
places, some shared constructs (e.g. a unique shared skeleton graph). This usage is scarce, controlled,
and it correspond to some shared structures of the abstract machine we will develop below. Therefore,
we assume the shared memory used internally is correct (i.e. it does not leak information). /

In case of failure. In the theoretical framework, if no transition is possible, the instance is locked.
How does this behaviour translate in the actual implementation?

Three approaches are possible, from the most to the least suitable, from the user perspective:

— When committing a transition, the function may return a success or failure value (using usual Error
types). In case of failure, nothing happened for the location (i.e. its state is the same than before
the (failed) commit), whatever state means. This allows recovery.

— The system deadlocks.
— The system panics.

Also, depending on the kind of failure, we may adopt a different policy: e.g. we may not necessary
expect the same behaviour if we try to send a value on a role we did not bind beforehand than when the
authorisation function fails.

Typically, if the authorisation function fails, we expect, at least, to lock the system, if not just rejecting
the transition with a causal explanation of the rejection. The failure policies, as of September 25th, 2020,
are shown in Figure 5.1.

5.1.2 Divergences from the theoretical framework

In the discussion above, we presented the main design choices for our implementation, and how we
managed to stay close to the theoretical framework. For the sake of completeness, however, we have to
mention a few aspects in which the implementation differs from the theory.

One can distinguish various reasons for the existence of those differences. First, the theoretical model
might not be suitable for practical use (see e.g. the following paragraph on early and late binding); second,
the language chosen for the implementation (Rust) has its semantics and we have to deal with it (see
e.g. the paragraph on the constraints on the basic types); finally, the implementation development was
constrained by time and some aspects of the library were less a priority than others, with respects to the
objectives and the originality of the work (e.g. the discussion above about failure; the notion of failure
is not present in the theoretical work, and we have to introduce it, yet, we chose, for the sake of time
saving, to panic in cases where it is possible, with more time, to simply report the error).

Fundamentally, the differences are not that important, and we claim that they are reasonable with
respect to our goals. However, it might be important, for a future work of stronger formalisation (e.g. for a
Coq implementation) to consider what can be done to reduce the gap between theory and implementation.
On this subject, my opinion is that: (i) it would be interesting to have a study of the model using late
binding semantics4; (ii) the question of priorities is probably the hardest one, as they are essential for

3Since aliasing must be explicit, it is much less likely to accidentally share memory.
4Whether switching from early binding to late binding semantics causes problems on the already existing theory is a

good question. I can not think of a fundamental problem that would appear by this change in the work presented in this
thesis. However, I do not know for the other results.
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some key aspects of the theory developed5, yet it is really hard to think of a good way to implement them;
(iii) differences induced by the underlying programming language are, in my opinion, less important: one
should take care of aliases (since our work is, fundamentally, to prevent unwanted aliases), and a language
like Rust really helps with that6; except the question of aliases, the language mostly imposes additional
constraints, meaning it does not affect the safety of the library, but it (potentially) prevents the possibility
to write some instances, or imposes a discipline; and (iv) finally, differences due to the lack of time are
more annoying than really dangerous: they prevent to have some comfort when writing applications with
our framework; but, in the meantime, they are problems that are known and that could be easily tackled
provided enough time.

Early binding and late binding. Strictly speaking, the semantics of the theoretical framework is an
early binding semantics, that is, the receiver should guess the value it will receive, and if the guess is
correct, then both locations synchronise and the transition is taken.

This is appealing since it allows transitions of the kind if I receive value V on role r, then do ...
(which we call the expect kind below), and receive value X on role r (called the receive kind hereafter).
In particular, those two kinds of transitions can be performed during the same transition: think of set

of unconstrained location transitions ∆ · ∅ B L
Λ−→ L′, with Λ.sync = {r̂ : a〈V 〉, r̂ : a〈x〉} for any possible

value of x.
This is possible in theory because we can allow the receiver to take a transition for any possible value

for x, and the semantics performs the selection of which value is indeed received.
In practice, this would be much less convenient: the location would have to propose a transition

for each possible value, and the underlying system would have to decide which one should be taken,
depending on the other locations. While we have the possibility to propose multiple transitions at
once, the complexity explodes with respect to the number of proposed transition, therefore taking the
theoretical approach is not suitable in practice. Also, in practice, the user knows whether they want a
expects or receives kind of action.

Therefore, we chose the following approach, which allows both kinds of messages.
— We assume we can determine which messages correspond to an expects and which correspond to

a receive action. More specifically, we have three primitive to exchange messages: send, receive
and expect. The send and expect primitives require a message. A send primitive matches a require
primitive (and the message is exchanged). An expect primitive is matched by an other expect on
the other side of the role, if both expect the same value.

— We reduce the complexity of finding a possible matching by enforcing an order relation on expected
values.

Constraints on messages. The theoretical framework does not consider practical constraints on value
exchanged: the set of values is given. When implementing the framework, some questions arise. It is
quite natural to have a data type for messages, and to let the user define this type. Therefore, in the
library, the type of messages is generic (generic type M in our implementation).

The goal is to impose as few constraints on M as possible, such that the user has a lot of freedom in
the messages it can send. These constraints are expressed as which traits must be implemented by the
type of messages.

In the library, we therefore make the following choices, while trying to stick to Rust standard com-
munication protocols. Rust channels7 requires messages to implement the Send trait8.

Therefore, we also require messages to have the Send marker.
Concerning expect messages, we need to be able to compare to messages. Therefore, these messages

need to implement the Eq trait.
This choice implies some limitations. For most use cases, the constraints are not problematic, as

most types we think of at first implement the required traits. However, some types do not. Typically,
std::io::Stdin does not implement Clone.

While it could be possible not to require that exchanged messages implement Eq, and that expected
messages implement Send, we chose to unify both kinds of messages in a single trait (i.e. to put unnecessary

5Once again, in this work, we did not use priorities that much, but they are mandatory for other results.
6Actually, a first implementation was attempted in Java, which basically lead to rewriting all objects in order to keep

track of aliases and caused a much more complex library, even though it was much less advanced than the one presented
here.

7See the std::sync::mpsc module.
8Strictly speaking, Send is a marker. As the name suggest, markers use the trait mechanism to expose some properties,

here the fact that the data can be safely send. Markers traits do not require to implement any methods, and they are
inferred by the compiler.
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constraints on messages), in order to simplify the framework.

5.2 An abstract machine for location graphs

Before presenting the implementation of the library, we describe an abstract machine, which is an inter-
mediate step between the theoretical framework and the actual implementation presented below.

This abstract machine is introduced in two steps: first, we focus on a single location: we describe
how we implement locations and what we call the local semantics, i.e. the semantics of that locations,
ignoring all surrounding elements. Of course, such semantic is highly non-deterministic, for instance when
receiving messages: the value of the message is not specified.

In a second step, we describe location graphs and their global semantics. As in the theoretical
framework, location graphs are just a composition of locations. The global semantics is defined, at first
approximation, as a concurrent composition of local transitions.

In Section 5.2.2 we describe the local behaviour; then, in Section 5.2.3 we explain the global aspects
of the abstract machine.

5.2.1 Preliminary definitions

Sets. Let (i) R be the set of role identifiers; (ii) D = {provided, required} the set of role directions;
(iii) M the set of messages; and (iv) S the set of sorts. We assume R, M, and S are provided (by the user).

Endpoints. We will see below that, in order to get closer to the actual implementation, locations in
the abstract machine have a single set of endpoints, instead of the separate set of provided and required
roles presented in the theoretical part of this work. Endpoints are basically a role name with a direction:

Definition 86 (Endpoint). Endpoints are elements of the set E = R× D.

Skeleton locations and skeleton graphs. A skeleton location is a tuple containing a sort and a set
of endpoints.

Definition 87 (Skeleton locations (Abstract machine)). The set of skeleton locations is:

�l
∆
= S× P(E)

A skeleton graph is a multiset of such skeleton locations9.

Definition 88 (Skeleton location graphs (Abstract machine)). The set of skeleton graphs is:

�
∆
= P?(�l)

5.2.2 Transitions, locations and local semantics

The goal of this first subsection is to explore the behaviour of a single location. Writing an abstract
machine presents new challenges we did not face in the theoretical part. The main one is the nature of
transitions: in the theoretical framework, we simply assume transitions existed, and where defined thank
to the unconstrained location transition. Now, we have to actually define a structure which represent
the changes of a transition, so that our location structure can instantiate such structure and provide it
to the underlying system.

Once we have this transition structure, we define our locations. We will base our semantics on the
notion of primitive functions, which are to be used by the programmer to change the internal state of
our locations, and therefore form an interface between the user space and the underlying system. In that
section, we therefore define those primitives.

The third part of this section is the definition of the local semantics, based on the elements described
previously, which we illustrate in depth with an example.

Through this section, we also define some helper functions that will be needed latter, related to the
elements mentioned above.

9It is possible to have multiple occurrence of locations that have no bound roles.
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Transition items and transitions. Our goal is to define a structure the user can manipulate to
represent transitions, which they can then provide to the system in order to fire the represented transition.
We choose to take an incremental approach where the transition is built in steps from basic blocks which
we call transition items, and which represent atomic10 changes that can be performed on a location during
a transition. Notice that transition items are not functions, but records of elements.

Transition items are elements of:

Definition 89 (Transition item).

Bind(sk, r, d) Create(s) Expect(r,m, d) Receive(r, d) Release(sk, r, d)

Send(r,m, d) Sort(sk, s) Remove(sk)

where r ∈ R, m ∈ M, d ∈ D, s ∈ S and sk ∈ �l. The set of transition items is noted Ti.

The intuition behind each of those items is the following: (i) Bind(sk, r, d) binds a role r in the
direction d; (ii) Create(s) instantiates a new location which initial sort is s; (iii) Expect(r,m, d) attempts
to synchronise on role r (bound in direction d) with the value m; (iv) Receive(r, d) receives a value on
role r (bound in direction d); (v) Release(sk, r, d) releases the role r which is currently bound in direction
d; (vi) Send(r,m, d) sends a message m on the role r (bound in direction d); (vii) Sort(sk, s) changes the
sort to s; and (viii) Remove(sk) removes the current location. In each of those items, sk is the skeleton
of the current location, and serves an administrative purpose in the underlying machinery.

Then, it becomes easy to define a transition: it is a multiset of transition items11.

Definition 90 (Transition (Abstract machine)). Let T be the set of transitions:

T
∆
= P?(Ti)

Also, we define the operation ⊕ which merges two transitions and removes matching transition items.
It is typically used to collect unmatched transition items.

Definition 91 (Transition item sum). Given two transition items ti and t′i, ti⊕ t′i is defined as the
least commutative operation such that:

ti ⊕ t′i
∆
=


∅ if ti = Expect(r, v, d) ∧ t′i = Expect(r, v, d′) ∧ d 6= d′

∅ if ti = Receive(r, d) ∧ t′i = Send(r,m, d′) ∧ d 6= d′

∅ if ti = Bind(ski, r, d) ∧ t′i = Release(sk′i, r, d)

{{ti, t′i}} otherwise

Notice that the operation returns a multiset, since it is possible that ti = t′i, typically if a message is
sent multiple times; and we want to keep track of those multiple items.

We can now define our sum of full transition using individual item sums:

Definition 92 (Transition sum). Given two transitions t1 and t2, t1 ⊕ t2 is defined as:

t1 ⊕ t2
∆
=

{
t′1 ⊕ t′2 if ∃t1i , t2i · t1 = {{t1i }} ∪ t′1 ∧ t2 = {{t2i }} ∪ t′2 ∧ t1i ⊕ t2i = ∅
t1 ∪ t2 otherwise

Naturally, ⊕ is associative, commutative and ∅ is a neutral element12.

Notation. We note
⊕∑
t∈{t1,...,tn}

t for t1 ⊕ . . .⊕ tn.

Example 9 (Transition sum). Consider the two transitions

t1 = {{Receive(r1, provided), Sort(sk1, s1)}}

10Note that here, we use atomic in its original sense: which can not be split ; and not in its concurrency theory meaning.
11It is possible to have multiple occurrence of the same transition item, e.g. to send multiple times the same message.
12It is an addition on transitions, hence the symbol ⊕.
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and

t2 = {{Send(r1,m, required), Create(s2)}}

We have:

t1 ⊕ t2 = {{Sort(sk1, s1), Create(s2)}}

An other helper function for transitions is skli(ti). It is used to retrieve the skeleton locations embed-
ded in transition items.

Notice it returns a set of skeleton location. Indeed, for transition items that don’t have local effects
on the skeleton graph, there is no need to identify to which skeleton location it applies.

Definition 93 (Skeleton of a transition item).

skli(t) =

{
{skl} if t ∈ {Bind(skl, , ), Release(skl, , ), Sort(skl, )}
∅ otherwise

We extend this function from transition items to transitions:

Definition 94 (Skeleton of a transition).

skl(t) =
⋃
ti∈t

skli(ti)

Remark. For a transition t, if skl(t) contains more than one element, it means that the transition contains
items that apply to multiple skeleton location.

This kind of transition are avoided: in practice, a transition is emitted by a single location and all
skeleton location embedded in transition items are the skeleton of the current location, and are therefore
all equal.

However, it is possible that skl(t) is empty: this means that t has no local effect on the skeleton
graph. For instance, this happen if t contains Create( ) or Remove( )13 (which have global effects), or
Send( , , ), Receive( , ) or Expect( , , ) (which have no effects on the skeleton graph). /

In order to characterize our intuitive notion of transition, we define the following predicate, which
defines what we call well-formed transitions. We remove unsound transitions, such as changing twice the
sort or binding and releasing in the same transition.

Definition 95 (Well-formed transition (Abstract machine)). We say a transition is well formed if
and only if the following predicate holds:

WFt(t)⇔∀sk, r, d · ¬(Bind(sk, r, d) ∈ t ∧ Release(sk, r, d) ∈ t)
∧∀s1, s2 · Sort( , s1) ∈ t ∧ Sort( , s2) ∈ t⇒ s1 = s2

∧ |skl(t)| ≤ 1

We now specify the possible results of a given transition. A transition can either succeed or fail. In
case of success, a set of side effects is returned. In case of failure, an error is returned which can either
be: (i) a not allowed error, meaning that the transition is not allowed in the current policy; (ii) a not in
transition set error, meaning that the transition is not in the set of unconstrained location transitions;
(iii) a not selected alert, meaning that the transition is valid, but an other valid transition was selected
instead; and (iv) a no match error, meaning that there was an error in matching some expected values.

Remark. Detecting no match errors is not covered in this thesis. This does not break safety: if there is
a matching error, the concerned transition simply hang indefinitively, deadlocking the locations.

We still introduce the error so that we can, in the future, simply plug the detection mechanism, and
location programs are suppose to manage this error (even tho it can not occur in the current implemen-
tation). /

13One could argue that Remove( ) is a local effect, or at least should be reflected in skl. The fact is that we treat it like
the location creation, and we don’t need to gather this information.
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A success simply indicates which values are received on which roles. Finally, results are either a failure
or a success.

Definition 96 (Transition result). An error is an element of the set Er
∆
=

{Not In Trans Set, Not Selected, Not allowed, No match}.
A success is an element of the set Sr

∆
= P?({{〈m, r〉|m ∈ M ∧ r ∈ R}})

A result is an element of Rt
∆
= Er ∪ Sr.

Remark. Note that Er and Sr are disjoints. /

Notation. We note r = bsc if r is a success s, and r = dee if r is an error e.

Notice that the set Rt defines all possible results of all transitions. To get the set of possible results of
a given transition, we define the helper function msg(t) which returns the set of all possible multisets of
messages received (associated with the role the message is received on) when firing t. The definition may
seem a bit odd, but is easily explained: msg(t) returns a set of multiset of messages received. Therefore,
if t contains a Receive(r, ) item (i.e. a successful firing of t receives a message on r) and we call t′ the
remaining of t, then one can receive any value on r: any 〈r,m〉 can be received, for any m ∈ M. On the
other hand, msg(t′) returns, by recursivity, the set of all multisets of messages received in the remaining
of t. Therefore, to get the all possible multisets of messages received in t, we simply have to add each
possible 〈r,m〉 to each possible m′ of msg(t′)14.

Definition 97 (Messages of a transition).

msg(t) =

{
{{{〈r,m〉}}+? m′|m ∈ M ∧m′ ∈ msg(t′)} if t = Receive(r, ) ∪ t′

∅ otherwise

Similarly, we want to retrieve the effect of a transition t on the sort of a location. We define sort(s, t)
which returns a new sort modified by t if any, or the default s otherwise. Fortunately, it is much easier
to define than msg(t):

Definition 98 (New sort in a transition).

sort(s, t) =

{
s′ if Sort( , s′) ∈ t
s otherwise

Remark. Notice this is not a function: without further constraints on the transition, sort(s, t) may relate
to multiple sorts, e.g. if the transition contains different Sort( , s) items.

In our case, we will always consider well-formed transitions, in which case sort(s, t) is a function. /

Finally, we also want to track the changes in the endpoints that are done when a transition t is fired.
The relation endpoints(e, t) returns the effect of t on the initial set of endpoints e:

Definition 99 (Endpoints effects of a transition).

endpoints(e, t) =


endpoints(e ∪ {〈r, d〉}, t′) if t = {Bind( , r, d)} ∪ t′

endpoints(e\{〈r, d〉}, t′) if t = {Release(sk, r, d)} ∪ t′

e otherwise

Remark. This is not a function too because the order in which endpoints are added or removed mat-
ters: consider endpoints(∅, {{Bind(sk, r, d), Release(sk, r, d)}}); if Bind(sk, r, d) is evaluated first, it overall
evaluates to ∅; however, if Release(sk, r, d) is evaluated first, the overall evaluation is {〈r, d〉}.

Again, if the transition t is well formed, this can not happen and endpoints(e, t) is a function. /

14This is actually easier to understand if one think of (nested) tuples instead of multisets: at each step, we would do the
cross product of {〈r,m〉|m ∈ M} and msg(t′). We use multiset to flatten the tuples and because order is not relevant.
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Location primitives, location handles and locations. We now have all the infrastructure to define
locations of the abstract machine. We begin by defining the primitives we will be using. Then we continue
with the location handles, i.e. the structure the user manipulates to interact with underlying system.
Finally, we define the locations per se.

We intend to build locations with a semantics that allows multiple transitions to be proposed at once
by a single location, and where a single one of those transitions is selected and fired.

To define the behaviour of locations, we abstract away the details of location programs15. We only
keep a minimal set of primitives that programs use to interact with the location system. Primitives are
the basic building block used to set up a transition and fire it. Most of the primitives are used to build
incrementaly a transition. Two additionnal primitives are provided to control the set of primitives of a
location: one to reset that set, and the other to add a new transition. Notice that we have a notion of
transition being built : our primitives that add new transition items modify the last transition added to
the set, the previous one being considered finished.

Definition 100 (Primitives of the abstract machine).

silent bind(rid, dir) release(rid) create(sort) newSort(s) receive(rid)

send(rid, addr) expect(rid, addr) reset next transition end commit

The set of primitives is the set P.

Intuitively, those primitives do the following: (i) the primitive silent denotes an internal com-
putation that has no effect on the elements of the location (typically, some arbitrary computation);
(ii) the primitives bind(rid, dir), release(rid), create(sort), newSort(s), receive(rid), send(rid, addr)
and expect(rid, addr) are primitives used to build up transition, each of them enqueues the correspond-
ing transition item to the transition being built; (iii) the primitive reset is used to reset the set of
transitions that are currently being built; (iv) by calling the primitive next transition, the user indicates
it terminates the current transition and begins a new one (note that the transition that terminates is not
committed: this primitive is there to allow the location to propose multiple transitions at once); (v) the
primitive end terminates the current location (it inserts a Remove(sk) transition item); and (vi) the
primitive commit commits all transitions, i.e. it let the underlying system select and fire one of the built
transitions.

Similarly, we abstract away memory details. We suppose programs have a state σ, and we define some
functions to manipulate the states. Let St be the set of states. We suppose there exists a special initial
state σi ∈ St, and we are given a function memory(·) : St → A 9 M, which returns a map from adresses
to objects, where addresses are taken from a set A which include a special adress ret used for returned
values.

Notation. In practice, and to stay closer to the usual definition of memory, we use the usual squared
bracket notation used for maps: if mσ = memory(σ), then mσ[a] denotes mσ(a).

Notation (Memory update). Let mσ = memory(σ) be the memory of a state σ.

m[a 7→ o](a′)
∆
=

{
o if a = a′

m(a′) otherwise

m[×a](a′)
∆
= m(a′) if a 6= a′

In order to stay close to the implementation, we distinguish locations and location handles (See
Section 5.3.2).

Locations are similar to actors in an actor system: it is a thread of computation, with a private stack,
which interacts, via some primitives, with the rest of the system.

To interact with the system, each location has a location handle. A location handle is a placeholder
which stores the data required to perform the transitions (the sort, the transitions being built, the roles,
and the result of the last transition committed).

Definition 101 (Location handle). A location handle is an element of LH
∆
= S×P+(T)×P(E)×Rt.

15Typically, in our case, the program of a location is a Rust program.
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The set of transitions of a location handle is well formed with respect to that handle if (i) each
transition in the set is a well formed transition; and (ii) for each transition, for each item of that transition
that embeds a skeleton location, the skeleton location is the skeleton of the given location.

Definition 102 (Well-formed handle).

WFh(〈s, tl, e, r〉)⇔ ∀t ∈ tl·∀Bind(sk, r, d) ∈ t · sk = 〈s, e〉
∧∀Release(sk, r, d) ∈ t · sk = 〈s, e〉
∧∀Remove(sk) ∈ t · sk = 〈s, e〉
∧WFt(t)

Then, a location is simply the aggregate of a state and a location handle.

Definition 103 (Location (Abstract machine)). A location is an element of L
∆
= St × LH .

Notice that the location handle of a location does not lies in its state. It illustrates the fact that
the program does not have (a direct) access to the handle’s fields. This is reflected below, in the local
semantics, in which the handle is modified in a controlled way.

Notice also that we assume (i) that the state is private, i.e. there is no shared memory between
locations, and (ii) that locations are isolated (there is no communication channel between two locations),
except for the communication primitives provided by the location handle.

As we saw previously (Section 5.1.1), these two hypothesis are reasonable in the actual implementation,
thanks to the very nature of Rust.

In addition, we define a function which enqueues a new transition item in the list of transitions (notice
that this function creates a new transition if the current list is empty).

Definition 104 (Transition item enqueuing).

enqueue(ts, ti)
∆
=

{
[{{ti}}] if ts = []

(t ∪ {{ti}}) :: tl otherwise, if ts = t :: tl

Remark. With such a list, the primitive next transition can be implemented naively: one just need to
add a new ∅ at the head of the list. This is done in the (New Transition) rule below. /

Finally, we want to know the possible results a location can get, given a provided list of transitions.

Definition 105 (Possible results of a list of transitions). Given ts ∈ P+(T), rs ∈ P+(Rt) and
e ∈ {>,⊥}, the set of possible results of tl is:

possible result(ts, rs, e)
∆
=



true if ts = [] ∧ rl = [] ∧ e = ⊥
possible result(tl, rl,⊥) if ts = hd t :: tl ∧ rs = hd r :: rl

∧ hd r ∈ msg(hd t) ∧ e = >
possible result(tl, rl, e) if ts = hd t :: tl ∧ rs = hd r :: rl ∧ hd r ∈ Er
false otherwise

Remark. The role of the argument e is to ensure that there is one and only one msg(t) in the list of
results; meaning that only one transition was selected, and that the other where not, due to the reason
given in the error. /

Local semantics. To conclude this first subsection, we put all the above together, in order to define
the local semantics of locations of the abstract machine.

First, we suppose we are given a partial function next(·) : L 9 (P×St) which returns the next primitive
of the program with the updated program state, given the current state and the current elements of the
location handle16.

We begin by the rules used to build up a transition. Those rules relate primitives with the transition
items.

16Intuitively, to define next(·), we can lookup elements from the location handle, but not modify them.
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(Silent)
next(〈σ, 〈s, t, e, r〉〉) = 〈silent, σ′〉
〈σ, 〈s, t, e, r〉〉 → 〈σ′, 〈s, t, e, r〉〉

(Reset)
next(〈σ, 〈s, t, e, r〉〉) = 〈reset, σ′〉
〈σ, 〈s, t, e, r〉〉 → 〈σ′, 〈s, [], e, r〉〉

(New Transition)
next(〈σ, 〈s, t, e, r〉〉) = 〈next transition, σ′〉

〈σ, 〈s, t, e, r〉〉 → 〈σ′, 〈s, ∅ :: t, e, r〉〉

(Send)

next(〈σ, 〈s, t, e, r〉〉) = 〈send(rid, a), σ′〉 ∃d ∈ D · 〈rid, d〉 ∈ e
memory(σ′) = memory(σ)[×a] WFh(〈s, enqueue(t, Send(rid,memory(σ)[a], d)), e, r〉)

〈σ, 〈s, t, e, r〉〉 → 〈σ′, 〈s, enqueue(t, Send(rid,memory(σ)[a], d)), e, r〉〉

(Expect)

next(〈σ, 〈s, t, e, r〉〉) = 〈expect(rid, a), σ′〉 ∃d ∈ D · 〈rid, d〉 ∈ e
memory(σ′) = memory(σ)[×a] WFh(〈s, enqueue(t, Expect(rid,memory(σ)[a], d)), e, r〉)

〈σ, 〈s, t, e, r〉〉 → 〈σ′, 〈s, enqueue(t, Expect(rid,memory(σ)[a], d)), e, r〉〉

(Sort)
next(〈σ, 〈s, t, e, r〉〉) = 〈newSort(s′), σ′〉 WFh(〈s, enqueue(t, Sort(〈s, e〉, s′)), e, r〉)

〈σ, 〈s, t, e, r〉〉 → 〈σ′, 〈s, enqueue(t, Sort(〈s, e〉, s′)), e, r〉〉

(Bind)
next(〈σ, 〈s, t, e, r〉〉) = 〈bind(rid, dir), σ

′〉 WFh(〈s, enqueue(t, Bind(〈s, e〉, rid, dir)), e, r〉)
〈σ, 〈s, t, e, r〉〉 → 〈σ′, 〈s, enqueue(t, Bind(〈s, e〉, rid, dir)), e, r〉〉

(Release)

next(〈σ, 〈s, t, e, r〉〉) = 〈release(rid), σ′〉
〈rid, d〉 ∈ e WFh(〈s, enqueue(t, Release(〈s, e〉, rid, d)), e, r〉)
〈σ, 〈s, t, e, r〉〉 → 〈σ′, 〈s, enqueue(t, Release(〈s, e〉, rid, d)), e, r〉〉

(Create)
next(〈σ, 〈s, t, e, r〉〉) = 〈create(ns), σ′〉 WFh(〈s, enqueue(t, Create(ns)), e, r〉)

〈σ, 〈s, t, e, r〉〉 → 〈σ′, 〈s, enqueue(t, Create(ns)), e, r〉〉

(End)
next(〈σ, 〈s, t, e, r〉〉) = 〈end, σ′〉 WFh(〈s, enqueue(t, Remove(〈s, e〉)), e, r〉)

〈σ, 〈s, t, e, r〉〉 → 〈σ′, 〈s, enqueue(t, Remove(〈s, e〉)), e, r〉〉

Remark. The rule (Silent) is very liberal and allows almost any transition. We let the user define
next([·]) properly to have a smaller relation adequate to their needs. /

Remark. Even in case of (Expect), the message is removed from the stack. If the user wants to keep
the value, it should be copied beforehand. /

Finally, when a transition is ready, it is committed. This is triggered using the primitive commit

(Commit)

next(〈σ, 〈s, t, e, r〉〉) = 〈commit, σ′〉
possible result(t, r′,>) s′ = sort(s, t) e′ = endpoints(e, t)

〈σ, 〈s, t, e, r〉〉 t→ 〈σ′, 〈s′, ∅, e′, r′〉〉

The semantics of locations shows that transitions are built incrementally (with rules (Send), (Expect),
(Sort), (Sort), (Bind), (Release), (Create) and (End)). When a list of transitions is ready, the
location can take a commit its transitions with rule (Commit). At the local level, all commit transitions
can be taken (the actual result is not specified). The effective choice is constrained by the global seman-
tics (see below). Notice the rules (Silent) and (Reset) which are used to model local modifications of
the state and the reset of the pending transition.

Finally, notice that the (Commit) rule only describes local modifications of the location: creation
of new locations or the deletion of the location are not taken into account in the rule. The function
applyl(·, ·, ·), defined and used below (Definition 116 and in the global semantics), describes the full
effects of a transition.

Example 10 (Synchronous integer counters). We want to implement a system with two locations
that synchronously count integers. For that, our state includes an integer n ∈ N.
To synchronously count, each location successively perform transitions in which it both receives
the current value and send the next onea.
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Therefore, for each location, we will: (i) add a (Send) transition item, with an incremented copy
of the local counter; (ii) add a (Receive) transition item; (iii) commit the transition; and (iv) up-
date the local counter in the state and loop. This procedure is easily implemented using a small
automaton with 4 states. For convenience, our set of (automaton) states is: S = {(i), (ii), (iii), (iv)}.
In addition, we identify each location with an integer taken in {0, 1}. Therefore, our set of location
states is St = {0, 1} × N× S.
We will have two roles: R = {r0, r1}. Our messages are integers (M = N). We do not use sorts, so
we use the trivial S = {>} set.
Our set of addresses contains a single address: A = {a}, and our memory function is simply returns
our incremented counter: memory(〈n, s〉) = a 7→ (n+1) if s = (i). Notice that our memory function
has to comply with the fact that the value is not accessible after sending it, hence the condition.
Finally, our next(·) function is defined as follow:

next(〈〈i, n, s〉, 〈s, t, e, r〉〉) ∆
=


〈send(ri, a), 〈i, n, (ii)〉〉 if s = (i)

〈receive(r1−i), 〈i, n, (iii)〉〉 if s = (ii)

〈commit, 〈i, n, (iv)〉〉 if s = (iii)

〈silent, 〈i, n+ 1, (i)〉〉 if s = (iv) and r = [b{{〈r1−i, n+ 1〉}}c]

For the sake of simplicity, we assume the roles r0 and r1 are properly bound initially, therefore we
do not need to add the initialisation in the automaton.
Using our local semantics, such a location could run as follow:

〈〈0, 1, (i)〉, 〈>, [], {〈r0, provided〉, 〈r1, required〉}, 〉〉
→ (Send)

〈〈0, 1, (ii)〉, 〈>, [{{Send(r0, 1, provided)}}], {〈r0, provided〉, 〈r1, required〉}, 〉〉
→ (Receive)

〈〈0, 1, (iii)〉, 〈>, [{{Send(r0, 1, provided), Receive(r1, required)}}], {〈r0, provided〉, 〈r1, required〉}, 〉〉
→ (Commit Success)

〈〈0, 1, (iv)〉, 〈>, [], {〈r0, provided〉, 〈r1, required〉}, [b{{〈r1, 2〉}}c]〉〉
→ (Silent)

〈〈0, 2, (i)〉, 〈>, [], {〈r0, provided〉, 〈r1, required〉}, 〉〉
...

Notice that, when performing the (Commit Success) rule, we assume the value received is 2. If
it is something else, or a failure, the location deadlocks.

aThis is, of course, not the smartest way to implement such a counter, but we take this approach to illustrate
how messages are exchanged.

5.2.3 Graphs and global semantics

In this section, we describe how locations interact with each other, in order to allow the intuition presented
above. To achieve that, we define a global semantics. This semantics is such that, when looking at a
single location of the location graph, the behaviour of that location is consistent with the local semantics,
even though it evolves within a whole location graph.

Informal presentation. The global semantics is not as intuitive as the local one. Before diving into
its formal presentation, we present the underlying intuition.

The intended behaviour is the following: a location builds a list of possible transitions and, at some
point, submits this list. After some time, when one of the possible transition is matched, the transition
is selected and fired, and the other are forgotten.

In the meantime, we adopt a lock mechanism, which can temporarily freeze a location which attempts
transitions until we are sure one of the transitions is allowed.

Aside, multiple (potentially independent) lists of transitions may be attempted by other locations,
leading to multiple frozen locations simultaneously. In order to keep track of which list is related to which
location, we use some identifiers which we associate to both the list and the (frozen) location which is
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waiting for it.
Now, we have to identify when a list of pending transitions can be unfrozen. We define complete sets

of transitions, which are, intuitively sets where all effects are matched (e.g. all expect(·, ·), send(·, ·), etc.).
Then, we have to pick at most one transition of each list of possible transitions submitted, and see if it
forms a complete set.

When we have selected a set of transitions to fire, we have to perform them (or at least, perform
their effects on the skeleton location graph) before we can enqueue new pending transition: indeed,
since the skeleton location may change, then the authorisation function may forbid previously allowed
transitions, which then have to be cancelled. Therefore, when we discover a complete set of pending
transitions, we split the set of pending transition into selected transitions (those in the complete set) and
unselected transitions. For unselected transition, we (re)evaluate the authorisation function (with the
updated skeleton location graph) and depending on the result, we abort or propose them again.

Preliminary definitions. Let begin by defining our notion of identified transitions. From the previous
section, let remember that each location builds a list of transitions, which are then submitted to the
system. When they are submitted, the system associate that list an identifier, which is just an integer.
We call identified list of transition a tuple formed of that identifier and that list.

Definition 106 (Identified list of transitions). An identified list of transitions is a tuple 〈i, l〉 where
i ∈ N and l ∈ P+(T).

Remark. In our case, two transitions never have the same identifier. Therefore, even if the two locations
submit the same transition (e.g. both locations change their sort to the same sort), they will have different
identifiers. This is the reason why, in the following, we only deal with sets of identified transitions and
not with multisets. /

Similarly, an identified transition is an identifier associated with a (single) transition:

Definition 107 (Identified transition). An identified transition is a tuple 〈i, t〉 ∈ N× T.

A second preliminary definition is the notion of complete multiset of transition. This notion will
be used below to evaluate, after picking one transition of each proposed list, whether each Send( , , ),
Expect( , , ), or Receive( , ) transition item of each transition we picked is matched by an other tran-
sition item.

Since ⊕ removes those matching transition items, checking if a multiset of transitions is complete is
easy: we simply have to sum all items and verify that no such item remains.

Definition 108 (Complete set of transition). Given a multiset of transitions T ∈ P?(T), the
predicate complete(T ) is defined as:

complete(T )
∆
= ¬∃i ∈

⊕∑
t∈T

t · i = Expect( , , ) ∨ i = Receive( , ) ∨ i = Send( , , )

We continue with a predicate used to pick some transitions out of a set of identified lists of transitions.
The motivation is that we will have multiple locations, each of them submitting an identified list of
transition, and we want to pick zero or one transition from each of these lists. Instead of writing a function
that compute an actual selection, we define the following predicate, which, given a set of identified lists
of transitions and a set of transitions, holds if and only if the given set of transitions is a correct selection
of transitions from the identified lists.

Definition 109 (Picking relation). Given a set of identified lists of transitions l ∈ P(N × P+(T))
and a set of identified transitions s ∈ P(N× T):

pick(l, s)
∆
=


true if s = ∅
pick(tl, ts) if (l = {〈i, `〉} ∪ tl) ∧ (s = {〈i, t〉} ∪ ts) ∧ (t ∈ `)
false otherwise

This definition might look a bit convoluted but is in fact quite simple: if the set of selected transitions
s is empty, then, of course, it is indeed a selection of zero or one transition from each list of proposed
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transitions in l (actually, we pick zero transition from each list). Otherwise, we look for a transition t ∈ s
which is also in the corresponding set (i.e. the set with the same identifier i). If such t exists, then we
have picked the transition for the i, and we continue for all other transitions in the remaining of l and s.

Remark. Assuming that identifiers are distincts, no two elements of l can refer to the same element of s
and vice-versa. /

Remark. There is a possibility that no transition is picked from a given list: in that case, l 6= ∅ when we
reach s = ∅. /

Example 11 (Picking transitions). Consider that we have two proposed lists of transitions, each
containing a single transition (note that those transitions are based on the synchronous counters of
the previous examples):

l = {〈0, [{{Send(r0, 1, provided), Receive(r1, required)}}]〉,
〈1, [{{Send(r1, 1, provided), Receive(r0, required)}}]〉}

We want to verify that it is possible to select both transitions:

s = {〈0, {{Send(r0, 1, provided), Receive(r1, required)}}〉,
〈1, {{Send(r1, 1, provided), Receive(r0, required)}}〉}

In that case, the predicate holds:

pick(l, s) = pick({〈1, [{{Send(r1, 1, provided), Receive(r0, required)}}]〉},
〈1, {{Send(r1, 1, provided), Receive(r0, required)}}〉)

= pick(∅, ∅)

We define the function exchange(T ) which takes a set of (selected) identified transitions (i.e. transition
with their counter), and returns a set of tuples 〈i, t, v〉, where t is a transition, i its identifier, and v a
multiset of tuples 〈r,m〉 with r a role identifier and m a message.

Definition 110 (Exchange function). Given a set of identified transitions T ∈ P(N× T):

exchange(T )
∆
=

⋃
〈i,t〉∈T

〈i, t, exchanget(〈i, t〉, T )〉

with

exchanget(〈i, t〉, T )
∆
=

{{〈r,m〉|(∃ti ∈ t · ti = Receive(r, )) ∧ (∃t′ ∈ T \ {〈i, t〉} · ∃t′i ∈ t′ · ti = Send(r,m, ))}}

The predicate roles ok(·, ·) ensures that roles bindings and releasings in the selected transition are
allowed, that is it ensures the absence of double binding or releasing.

Definition 111 (Role predicate). Given a set of identified transitions T and a skeleton location
graph sk:

roles ok(T, sk)
∆
={{ti|ti ∈ items(T ) ∧ ti = Bind( , , )}} is a set

∧ ∀Bind(〈s, e〉, r, d) ∈ items(T ) · ¬∃〈r, d〉 ∈ e
∧ ∀Release(〈s, e〉, r, d) ∈ items(T ) · ∃〈r, d〉 ∈ e

∧ ∀Bind(s, r, d) ∈
⊕∑

〈i,t〉∈T

t · ¬∃〈s′, e′〉 ∈ sk · 〈r, d〉 ∈ e

Where items(T )
∆
= {{ti|∃〈 , t〉 ∈ T · ti ∈ t}} is the multiset of transition items in transitions of the

identified transition set T .
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Remark. The first condition states that no two transitions can bind simultaneously the same role in the
same direction. The second states that a location can not bind a role it has already bound. The third
condition is the dual: a location can only only release roles it has bound. Finally, the last one states that
each Bind(s, r, d) must either bind a role which is simultaneously released; or a role that is not currently
bound. /

Applying transitions on a skeleton location graph. Now that we have all the helper functions
we need, we can define the effects of a transition on a skeleton location graph. First, we define the
local effects on a single skeleton location (i.e. how the transition modifies the sort and the roles of the
skeleton location), then we consider the global effects (i.e. we consider the creation and removal effects of
that given transition). Finally, we consider the effects of a set of (identified) transitions on the skeleton
location graph.

Let start with a function to evaluate the effects of a transition on a skeleton location. By reusing
sort(·, ·) and endpoints(·, ·) defined above, such function is easily defined.

Definition 112 (Transition application to a skeleton location). Given a transition t ∈ T and a
skeleton location sk ∈ �l:

applyt(〈s, e〉, t)
∆
= 〈sort(s, t), endpoints(e, t)〉

To consider the creation and removal of skeleton location (i.e. to apply Remove(·) and Create(·)
transition items of a transition), we define the function apply(·, ·) which takes a skeleton graph and a
single transition and returns the modified skeleton graph and the remaining transitions items.

Definition 113 (Transition application to a skeleton location graph). Given a transition t ∈ T
and a skeleton location sk in �l, the function apply(sk, t) returns a skeleton location graph in �
according to:

apply(sk, t) =


{〈s, ∅〉} ∪ apply(sk, t′) if t = {Create(s)} ∪ t′

∅ otherwise, if Remove(sk) ∈ t
applyt(sk, t) otherwise

Remark. Notice that the evaluation order is important: if t contains both Create(·) and Remove(·) items,
we want to perform the removal at the last (i.e. deepest) recursive call. /

This function allows to evaluate the effects of a transition on the related skeleton location. Our
last step is to apply the effect of all selected transitions on the (global) skeleton location. We define
the function applyf (·, ·, ·) which applies the full set of (identified and selected) transitions to the global
location graph. Notice that we need the set of frozen locations in order to lookup the right skeleton
location for each transition.

Definition 114 (Full transition application to a skeleton location graph). Given a skeleton graph
sk ∈ �, a set of identified transitions T ∈ P(N × T), and l a set of (potentially frozen) locations
such that ∀〈i, t〉 ∈ T · ∃li ∈ l and such that ∀〈σ, 〈s, t, e, r〉〉i ∈ l · ∃〈s, e〉 ∈ sk.

applyf (sk, T, l) =


(applyf (sk, T ′, l) \ 〈s, e〉) ∪ {apply(〈s, e〉, ti)} if T = {〈i, ti〉} ∪ T ′

and 〈σ, 〈s, t, e, r〉〉i ∈ l
sk if T = ∅

Remark. The two constraints on sk, l, and T are here to ensure that each transition in the selected set is
associated with a frozen location, which itself has an adequate skeleton location in the skeleton location
graph.

In our case, these conditions are always verified. /

Notice that for each ti, we perform the recursive call to applyf (·, ·, ·) prior to applying ti. This
is maybe a bit less intuitive than first applying ti, then doing the recursive call on the modified
skeleton graph, but it offers an advantage:after applying ti to sk (to get say sk′), it may not be
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the case anymore that ∀〈σ, 〈s, t, e, r〉〉i ∈ l · 〈s, e〉 ∈ sk′: indeed, the sort or the endpoints may have
change; to solve that, we would need to remove li from l in the recursive call, which is doable but
cumbersome.

Applying a transition on a location. Since locations can submit multiple transitions, we have to
give a feedback for each transition. For each transition, the feedback can be that: (i) the transition is
not in the set of unconstrained location transitions; (ii) the transition does not satisfy the authorisation
function; (iii) the transition could be accepted, but was not (because an other proposed transition was
selected instead); and (iv) the transition was selected, in which case the result is given.

We define the function result(ts, ts, af, t, res, sk, l), which takes (among other things) a list of transi-
tions ts, among which one (t) is selected; and returns a list of results.

Definition 115 (Results of a list of transitions).

result(ls, ts(·, ·), af(·, ·, ·), t, res, sk, l) ∆
=

dNot In Trans Sete :: result(tl, ts, af, t, res, sk, l) if hd :: tl = ls ∧ ¬ts(hd, l)
dNot allowede :: result(tl, ts, af, t, res, sk, l) otherwise, if hd :: tl = ls ∧ ¬af(sk, l, hd)

res :: result(tl, ts, af, t, dNot Selectede, sk, l) otherwise, if t :: tl = ls

dNot Selectede :: result(tl, ts, af, t, res, sk, l) otherwise, if hd :: tl = ls

[] otherwise

Remark. The seven parameters of the function are, in order: (i) the list of proposed transitions; (ii) the
predicate that state whether a transition is in the set of unconstrained location transitions; (iii) the
authorisation function predicate; (iv) the selected transition; (v) the result of the selected transition;
(vi) the current skeleton graph of the system; and (vii) the location that takes the transition. Notice
that, since a transition can appear twice in the list, and in particular the selected transition t, we only
want to return res for the first one. Therefore, when the selected transition is found for the first time in
the list, we then replace res by dNot Selectede, for eventual subsequent equal transitions.

Also, sk and l are present because they are required to evaluate the two predicates ts and af , but
they are not modified. /

Remark. The order of the result matches the order of transitions. We rely on that for the user to find
the result of each transition they proposed. /

One the other hand, we want to compute the effects of a transition on the (non-skeleton) location.

Definition 116 (Application of a transition to a location). Given a location l = 〈s, t, e, r〉 and res
is a set of 〈r,m〉 with r a role identifier and m a message.

applyl(l, res, σ
′) =


{〈σi, 〈s, ∅, ∅, b∅c〉〉} ∪ applyl(`, 〈t′, res〉, σ′) if t = {Create(s)} ∪ t′

∅ otherwise, if Remove( ) ∈ t
{〈σ′, 〈sort(s, t), ∅, endpoints(e, t), res〉〉} otherwise

This function takes a result res and a new state σ′, and apply the global effects, of the transition of
the location, sets its result, and updates its state.

Remark. Notice that, by convention, the initial value in the return field of a new location is b∅c. /

Notice that the above function allows transitions that contains Remove( ) items mixed with other
items. In practice, in the implementation, location removal will always be on a separate transition.
This choice is arbitrary.

Location graph structure. The graph is a global state which is a tuple 〈p, c, sk, l, i〉 where p is a set
of pending lists of transitions (associated with an identifier, formally, it is an element of P(N× P+(T))),
c is a tuple of selected transitions and unselected transition lists (more formally, it is an element of
P(N×T×P?(R,M))×P(N×P+(T))), sk is a skeleton graph (an element of �), l is a multiset of (potentially
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frozen) locations and i ∈ N is a counter, used to avoid duplicated identifiers. We also assume we are
given an authorisation function af(sk, l, t) which is a predicate over skeleton location graphs, locations,
and transitions and a predicate ts(l, t) which states whether a transition t applied to the location l is in
the set of unconstrained location transitions.

In the global view of the abstract machine, we decorate locations with an unique transition identifier
to represent frozen locations associated with the used identifier (e.g. 〈s, t, e, r〉id for a frozen location that
waits for the decision about the transition id).

A location graph is well formed if all its locations are well-formed, according to Definition 102, and if
no two locations bind the same role in the same direction.

Definition 117 (Well-formed location graph).

WFg(〈p, c, sk, l, i〉)
∆
= ∀〈σ, h〉 ∈ l · WFh(h)

∧ ∀〈σ1, 〈s1, t1, e1, r1〉〉, 〈σ2, 〈s2, t2, e2, r2〉〉 ∈ l · ∀e ∈ E · e ∈ e1 ⇒ e 6∈ e2

Semantics. The first rule of our global semantics simply maps the local changes of locations. Said oth-
erwise, it simply lift the local rules (Send), (Expect), (Sort), (Sort), (Bind), (Release), (Create),
(End), (Silent), and (Reset) to the global semantics.

(GSilent)
`→ `′

〈p, c, sk, {`} ∪ l, i〉 → 〈p, c, sk, {`′} ∪ l, i〉

Now, we implement the mechanism that performs location transitions. As stated in the informal
presentation, the first step is to add the transition to the set of pending transitions and to freeze the
appropriate location.

(Add)
`
t→ `′

〈p, 〈∅, ∅〉, sk, {`} ∪ l, i〉 → 〈p ∪ {〈i, t〉}, 〈∅, ∅〉, sk, {`i} ∪ l, i+ 1〉

In (Add), notice that the location ` does not take its transition. Informally, the rule says: ”If a
location ` can take a transition t, then t is proposed and ` locks”. Notice also that it is possible to fire
(Add) only if the chosen transitions is 〈∅, ∅〉17.

Once it is possible to pick a complete set of transition from the set of lists of transitions, we can select
it. During this selection, message are also exchanged (function exchange).

(Select)
pick(p, s) T = {t|〈i, t〉 ∈ s} complete(T ) roles ok(T, sk)

〈p, 〈∅, ∅〉, sk, l, i〉 → 〈∅, 〈exchange(s), p\s〉, applyf (sk, p, l), l, i〉

Finally, once transitions are selected, each location can perform it, and mirror the effects on the
skeleton graph:

(Perform)
next(〈σ, 〈s, t, e, r〉〉) = 〈 , σ′〉

〈p, 〈s ∪ {〈i, t,m〉}, r〉, sk, l ∪ {〈σ, 〈s, t, e, r〉〉i}, j〉 →
〈p, 〈s, r〉, sk, l ∪ applyl(〈σ, 〈s, t, e, r〉〉, result(t, ts(·, ·), af(·, ·, ·), t, bmc, sk, 〈σ, 〈s, t, e, r〉〉), σ′), j〉

For transitions that were not selected, the transition is retried. Notice that rule (Select) requires
the set of selected and unselected transitions to be 〈∅, ∅〉. This prevents it to fire to early.

(Retry)
〈p, 〈s, r ∪ {〈i, t〉}〉, sk, l ∪ {`i}, j〉 → 〈p ∪ {〈j, t〉}, 〈s, r〉, sk, l ∪ {`j}, j + 1〉

Example 12 (Synchronous integer counters (continued)). We consider the location graph with two
locations such as presented in Example 10, with i = 0 and i = 1. Initially, the location graph is the
following (with the transition counter starting arbitrarily at 0, and the initial n being arbitrarily

17If there are some transitions in the chosen set, it means the previous transition is not resolved yet.
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chosen to be n = 1):

〈∅, 〈∅, ∅〉, {{〈>, {〈r0, provided〉, 〈r1, required〉}〉, 〈>, {〈r1, provided〉, 〈r0, required〉}〉}},
{{〈〈0, 1, (i)〉, 〈>, [], {〈r0, provided〉, 〈r1, required〉}, 〉〉,
〈〈1, 1, (i)〉, 〈>, [], {〈r1, provided〉, 〈r0, required〉}, 〉〉}}, 0〉

For the sake of readability, we write sk for

{{〈>, {〈r0, provided〉, 〈r1, required〉}〉, 〈>, {〈r1, provided〉, 〈r0, required〉}〉}}

e0 for

{〈r0, provided〉, 〈r1, required〉}

and e1 for

{〈r1, provided〉, 〈r0, required〉}

These two locations can build up their transitions. From a global perspective, it is a sequence of
(GSilent) rules. Notice that the order we choose in this example is a possibility among others.
First, the location with i = 0 can take a (Send) transition, which is allowed with the (GSilent)
rule of the global semantics. Its local state changes:

〈∅, 〈∅, ∅〉, sk,
{{〈〈0, 1, (ii)〉, 〈>, [{{Send(r0, 1, provided)}}], e0, 〉〉,
〈〈1, 1, (i)〉, 〈>, [], e1, 〉〉}},

0〉

The second location can do the analog change:

〈∅, 〈∅, ∅〉, sk,
{{〈〈0, 1, (ii)〉, 〈>, [{{Send(r0, 1, provided)}}], e0, 〉〉,
〈〈1, 1, (ii)〉, 〈>, [{{Send(r1, 1, provided)}}], e1, 〉〉}},

0〉

The local semantics allow the first location to do a (Receive) transition. This can be lifted to the
global semantics, resulting in the following graph:

〈∅, 〈∅, ∅〉, sk,
{{〈〈0, 1, (iii)〉, 〈>, [{{Send(r0, 1, provided), Receive(r1, required)}}], e0, 〉〉,
〈〈1, 1, (ii)〉, 〈>, [{{Send(r1, 1, provided)}}], e1, 〉〉}},

0〉

And finally, the second location can perform the analog change:

〈∅, 〈∅, ∅〉, sk,
{{〈〈0, 1, (iii)〉, 〈>, [{{Send(r0, 1, provided), Receive(r1, required)}}], e0, 〉〉,
〈〈1, 1, (iii)〉, 〈>, [{{Send(r1, 1, provided), Receive(r0, required)}}], e1, 〉〉}},

0〉

Then, two global (Add) rules can be taken (we assume the authorisation function holds). The
order is arbitrary. In particular, the (Add) transition of one of the two locations can be interleaved
with the (GSilent) transition (above) of the other.
The first transition gives the following graph:

〈{〈0, [{{Send(r0, 1, provided), Receive(r1, required)}}]〉}, 〈∅, ∅〉, sk,
{{〈〈0, 1, (iii)〉, 〈>, [{{Send(r0, 1, provided), Receive(r1, required)}}], e0, 〉〉0,
〈〈1, 1, (iii)〉, 〈>, [{{Send(r1, 1, provided), Receive(r0, required)}}], e1, 〉〉}},

1〉
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And after the second transition:

〈{〈0, [{{Send(r0, 1, provided), Receive(r1, required)}}]〉,
〈1, [{{Send(r1, 1, provided), Receive(r0, required)}}]〉},
〈∅, ∅〉, sk,
{{〈〈0, 1, (iii)〉, 〈>, [{{Send(r0, 1, provided), Receive(r1, required)}}], e0, 〉〉0,
〈〈1, 1, (iii)〉, 〈>, [{{Send(r1, 1, provided), Receive(r0, required)}}], e1, 〉〉1}},

2〉

At this point, note that
⊕∑
t∈T

t = ∅, for

T = {{{Send(r0, 1, provided), Receive(r1, required)}},
{{Send(r1, 1, provided), Receive(r0, required)}}}

Therefore complete(T ) holds. Also, there is no Bind( , , ) nor Release( , , ) in T , therefore
roles ok(T, sk) trivially holds. Finally, from Example 11, pick(l, s) holds.
Therefore, a (Select) transition can be taken. Notice that, if the skeleton graph had to be changed,
it would be done atomically in this transition.

〈∅, 〈{〈0, {{Send(r0, 1, provided), Receive(r1, required)}}, {{〈r1, 1〉}}〉,
〈1, {{Send(r1, 1, provided), Receive(r0, required)}}, {{〈r0, 1〉}}〉},
∅〉,

sk,

{{〈〈0, 1, (iii)〉, 〈>, [{{Send(r0, 1, provided), Receive(r1, required)}}], e0, 〉〉0,
〈〈1, 1, (iii)〉, 〈>, [{{Send(r1, 1, provided), Receive(r0, required)}}], e1, 〉〉1}},

2〉

Now, each location can perform its (Perform) transition. Again, the order is arbitrary. For
instance, if the location with i = 0 does it first, it leads to the following graph:

〈∅,
〈{〈1, {{Send(r1, 1, provided), Receive(r0, required)}}, {{〈r0, 1〉}}〉}, ∅〉,
sk,

{{〈〈0, 1, (iv)〉, 〈>, [], e0, b{{〈r1, 1〉}}c〉〉,
〈〈1, 1, (iii)〉, 〈>, [{{Send(r1, 1, provided), Receive(r0, required)}}], e1, 〉〉1}},

2〉

And after the second (Perform):

〈∅, 〈∅, ∅〉, sk, {{〈〈0, 1, (iv)〉, 〈>, [], e0, b{{〈r1, 1〉}}c〉〉, 〈〈1, 1, (iv)〉, 〈>, [], e1, b{{〈r0, 1〉}}c〉〉}}, 2〉

Finally, we arrive at a point where locations can take over with their local transitions. Thus, by
firing (GSilent) twice, we arrive at the initial point, with n increased on both locations.
The first (GSilent) leads to:

〈∅, 〈∅, ∅〉, sk, {{〈〈0, 2, (i)〉, 〈>, [], e0, b{{〈r1, 1〉}}c〉〉, 〈〈1, 1, (iii)〉, 〈>, [], e1, b{{〈r0, 1〉}}c〉〉}}, 2〉

And the second to:

〈∅, 〈∅, ∅〉, sk, {{〈〈0, 2, (i)〉, 〈>, [], e0, b{{〈r1, 1〉}}c〉〉, 〈〈1, 2, (i)〉, 〈>, [], e1, b{{〈r0, 1〉}}c〉〉}}, 2〉

At this point, we have to establish a correspondance between the calculus presented in Chapter 3
and the abstract machine we have presented in this section.



109

Two main difficulties have to be resolved in order to achieve this correspondance: (i) managing the
fact that transitions in the abstract machine are not atomic; and (ii) studying the newly introduced
errors of the abstract machine.
The first difficulty is that, in the abstract machine, transitions are not taken at a single point:
each location has to perform an individual (Perform) transition, and possibly some (GSilent)
transitions. Therefore, there are some points in the execution of the abstract machine, where the
states of individual locations are not consistent with each other.
Fortunatelly, we know that, to select a set of transitions, all transitions selected previously must be
performed. Therefore, the starting state of a (Select) transition must be consistent. Therefore,
we must be able to find a correspondance at these points.
Therefore, I think the correspondance can be done in two steps: (i) we show that, for each (initially
correct) execution of the abstract machine, at each starting state of a (Select) transition, the stored
skeleton graph is consistent with the locations; and (ii) we show that there is a correspondance
between the skeleton graph of the theoretical framework and the skeleton graph stored in the
abstract machine.
The second difficulty concerns the errors that are introduced (Definition 96): the theoretical frame-
work does not have this notion of error, they either take a transition or hang if no transition is
possiblea; while, in the abstract machine, a location can attempt a transition, which fails.
The question is: how do that behaviour of the abstract machine relate to the theoretical framework?
Fortunatelly, a failed transition has no impact on the stored skeleton graph, and the failure is decided
at the time of the selection of the transitions to fire. Therefore, if a location fails a transition in
the abstract machine, it can simply be a (local) transition of the theoretical framework, where only
the process state changes. Therefore, in the theoretical framework, we could probably extend the
set of transition to simulate failed attempts.
All in all, one could expect to show that the abstract machine simulates the theoretical framework,
and that for all instance of the abstract machine, it is possible to find a theoretical instance which
simulates that instance of the abstract machine.
The work to formalise the two intuitions to accomodate those two differences is left to do. We
suppose that the intuition we developed are correct.

aSaid otherwise, locations in the theoretical framework follow Yoda’s advice: “Do, or do not. There is no try”.
(The empire stricks back, George Lucas, 1980)

5.3 Rust API

In this section, we explain informally the API of our library, from the programmer’s perspective.

The location graph framework is such that location behaviour can be written independently from
the authorisation function specification. Therefore, this section is organised as follows: Subsection 5.3.2
and 5.3.3 respectively describe how to program locations and authorisation functions and are independent.

In order to illustrate this section, we follow up on the synchronous counter example presented in the
previous section.

For the user, the location framework comes as a Rust library18: rust locations. It is intended to be
used as a replacement for standard actor systems, such as the Scala library Akka [1, 59]. In Akka, the user
instanciates an ActorSystem which manages the different Actors. Similarly, in our implementation, the
user instanciates an LocationSystem, which manages the Locations. To take into account the specifities
of locations over actors, as well as differences between Scala and Rust, our library has a few differences:

— In Location Graphs, transitions are synchronous, while Actor communications are not.
— Locations have sorts, therefore, most structures have a generic type S which is the type of Sorts.

Similarly, the library is generic over messages (type M) and role identifiers (type R).
— Transitions are allowed or forbidden according to an authorisation function. The user must provide

a structure that implements the AuthorisationFunction trait19.
— The instanciation of a LocationSystem requires an instance of a structure that implements the

AuthorisationFunction trait.
— Rust favors composition over inheritance20. Therefore, while, in Akka, the user implements classes

18A Rust crate, using Rust terminology.
19The Rust language uses traits which are more or less equivalent to interfaces in other languages.
20There is no notion of structure/class inheritance in Rust. In practice, we tend to compose structures (i.e. include a

structure as a field of an other structure). A notion of inheritance exists for traits.
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send(&mut self, r: R, msg: M) Sends the message msg on role r during the next transi-
tion.

receive(&mut self, r: R) Receives a message on role r during the next transition.

expect(&mut self, r: R, msg: M) During the next transition, performs a synchronisation
with message msg on role r.

bind(&mut self, r: R, d:

RoleDirection)

Binds the role r in direction d during the next transition.

release(&mut self, r: R) Releases the role r during the next transition.

change_sort(&mut self, s: S) Changes the sort to s during the next transition.

create(&mut self, s: S) During the next transition, create a new Location with s

as initial sort.

commit_changes(&mut self) Attempt to perform the transition. This primitive returns
the result of the transition or an error.

Figure 5.2: Primitives of locations provided by the Location structure.

that inherits the Actor class, in our Rust library, the user manipulates locations which provide
primitives to take transitions.

5.3.1 Preliminary steps

We first have to choose the basic types of our instance. The library impose very few constraints on the
basic types used for sorts, messages, and role names.

In our example, sorts are not used, so we can use the () type. Messages are integers, we will use
the Rust primitive type i32. Finally, we need some type for role names, since we need to create some
roles. However, role names do not serve any purpose. Therefore, we use the opaque type DefaultRole

provided by the library. This type is opaque, but we are provided a generator to instantiate as many
such role names as required on the fly.

5.3.2 Locations

On one side of the library stands the Location structure. This structure is not well named: it does not
represent a location of a location graph instance; it is rather a handle which provides the primitives to
work with the library (it is the equivalent of location handles of the abstract machine, see Definition 101).

Since each instance of Location is a handle to access location primitives, each part21 of a program
that has a reference to such handle can be viewed as a location. Using the handle, locations can build
a transition by accumulating items, and then fire this transition. The table in Figure 5.2 shows the
primitives provided by the Location structure.

The only primitive that returns a value is commit_changes. The other are used to incrementally build
a transition which is then fired by commit_changes. Each of the primitives presented correspond to the
one of the abstract machine (see Definition 100). Firing a transition can fail for various reasons (e.g. if
the transition is not allowed). If it succeed, then some values can be returned (e.g. some value received
during a communication, or some instances of Location if a new locations are created).

Writing a single location is straightforward, it consists in a sequence of calls to primitives to build a
transition, then firing and analysing the result.

Example 13 (Synchronous integer counters (continued)). The example in Figure 5.3 shows a
simple location. This example illustrates the implementation of one of location of our running
example: the structure PingPongLocation contains the state of the location, as well as the location
handle. Notice that the state does not exactly correspond to its abstract machine counterpart: the
automaton state is not explicit, since the automaton is not explicitly implemented using a state
machine, but with the program flow of the location. Also, the identifier is not explicitly given: it is
only used to break location symmetry to disambiguate the role names. Here, locations are directly

21We are intentionally vague about what is a part of a program. It can be a thread, a structure, etc. .
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given the role names they use, and therefore they do not need to store an identifier. However, we
introduce a name field, for printing purposes. Finally, the structure also contains a Location field,
to access the location primitives.
Consider the method run of the figure. This method implements the main loop of the location, i.e.
it is the implementation of the automaton described in the previous parts of this example. In that
method, the structure instanciates a new message (let msg = self.i + 1), and sends it to the
other location via the roles with identifier id1 (self.l.send(id1, msg)). In the meantime, it also
adds the receive of the value from the other side on the role with identifier id2 (self.l.receive(
id2)). The transition is then ready, it is fired (self.l.commit_changes()).
The method commit_changes returns a list of results, one for each of the proposed transition. In
this case, since the location proposed only one transition, only one result is expected. Therefore the
first element of the list of result is taken (pop().expect(...)) and matched against the possible
returned value (the match block). The value is either a success (Ok(v)) or a failure (Err(e)).
In case of a success, v contains the set of results of the selected transition (in our case, we are only
expecting a single received value but, in general, this set contains one element per value received,
and one per location created). For each element of this set (i.e. for the only element of this set), if
that element is a message reception (the if let TransitionResult::RECEIVED(_, msg) = res

line), then we consider the integer received and the local counter self.i is updated accordingly.
In case of failure, the error e is simply printed and the location ends.

5.3.3 Authorisation functions and unconstrained location transitions

The other side of the library is used to specify our set of unconstrained location transitions and to write
our authorisation function. Notice that, except for the basic types that must be consistent with the one
chosen above, this is independent from writing the location code.

Specifying the set of unconstrained location transitions is done using a predicate over locations and
transitions which states whether the transition is in the set. We have a trait TransitionSet which
requires a single method contains which implements this predicate.

Example 14 (Synchronous integer counters (continued)). In our example, the set of unconstrained
location transitions can be as relaxed as possible; we therefore use the TrivialTS structure which
accepts all transitions.
This set of unconstrained location transitions is provided by the library, and implements the biggest
set of unconstrained location transitions (according to the chosen base types), i.e. the set that
contains all unconstrained locations transitions. More details on this provided set is given in
Section 5.5.1.

Writing an authorisation function is actually quite close to the theory: in the theoretical model, an au-
thorisation function is a predicate on the skeleton graph and the transition to be taken. In the library, writ-
ing an authorisation function is simply writing a structure which implements the AuthorisationFunction
trait. This traits requires a single function, which takes a skeleton graph, a location and a transition
and returns a boolean. Notice that, in this context, a transition is a set of atomic modifications that the
location built up before committing the transition.

Example 15 (Synchronous integer counters (continued)). In our case, to illustrate the concept,
we want to allow a few transitions (say n = 12), and then forbid all transitions, except location
removal.
In Figure 5.4, we implement the authorisation function that corresponds to such a policy. The
authorisation function is stateful, to be able to count the transitions, and contains a single synchro-
nised shared counter (the field i: Arc<AtomicU64>). This counter needs to be synchronised since
there is an instance of the authorisation function structure per location, and each location is on a
separate thread.
The authorisation function in itself is very simple: the method authorise checks whether the tran-
sition is the removal of the location (the function authorise_removal, provided by the library). If it
is the case, the transition is accepted. Otherwise, the counter is incremented and the authorisation
function returns true if its value is less 12 (the line self.i.fetch_add(1, ...) <= 12).
Note that the evaluation is lazy, and therefore, if authorise_removal returns true, the counter is
not modified.
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1 struct PingPongLocation {

2 l: Location<DummySort, PingPongAF, i32, DefaultRole, TS>,

3 i: i32,

4 name: &’static str,

5 }

6

7 impl PingPongLocation {

8 fn new(l: Location<DummySort, PingPongAF, i32, DefaultRole, TS>, name: &’static

↪→ str) -> Self {

9 PingPongLocation { l, i: 0, name }

10 }

11

12 fn run(&mut self, id1: DefaultRole, id2: DefaultRole) {

13 self.initialise(id1, id2);

14 loop {

15 let msg = self.i + 1;

16 self.l.receive(id2);

17 self.l.send(id1, msg);

18 match self.l.commit_changes()

19 .pop()

20 .expect("Could not find the result of the transition.")

21 {

22 Ok(v) => {

23 println!("[{}] Sent {}, received {}", self.name, self.i + 1,

↪→ self.i);

24 for res in v {

25 if let TransitionResult::RECEIVED(_, msg) = res {

26 if self.i < *msg {

27 self.i = *msg

28 }

29 }

30 }

31 }

32 Err(e) => {

33 println!("[{}] Could not commit changes: {:?}", self.name, e);

34 return;

35 }

36 }

37 }

38 }

39

40 fn initialise(&mut self, id1: DefaultRole, id2: DefaultRole) {

41 self.l.bind(id1, RoleDirection::PROVIDED);

42 self.l.bind(id2, RoleDirection::REQUIRED);

43 if let Err(_) = self.l.commit_changes()

44 .pop()

45 .expect("Could not find the result of the transition.")

46 {

47 panic!("Couldn’t bind");

48 }

49 }

50 }

Figure 5.3: Example of a simple location. This location loops indefinitely and, at each iteration, it sends a value a stored
value (incremented by 1), receives an other one, and stores the new one if it is greater than the currently stored one. Notice
that the structure PingPongLocation holds a structure l with type Location which provides access to the primitives, e.g.
receive, send, bind and commit_changes. This Location structure is generic over some types, namely the sort used (here
DummySort, which is just an alias for ()), the authorisation function (here PingPongAF, explained below), the type of the
messages (here i32) and the types of the role names (here DefaultRole, which is just a generic role identifier provided by
the library).
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1 struct PingPongAF {

2 i: Arc<AtomicU64>,

3 }

4

5 impl AuthorisationFunction for PingPongAF {

6 type Sort = DummySort;

7 type Msg = i32;

8 type RoleID = DefaultRole;

9 type TransitionSet = TS;

10

11 fn authorise(

12 &mut self,

13 _s: &SkeletonGraph<DummySort, DefaultRole>,

14 t: &Transition<Self::Sort, Self::Msg, Self::RoleID>,

15 _: &Location<DummySort, PingPongAF, i32, DefaultRole, TS>,

16 ) -> bool {

17 authorise_removal(t) || self.i.fetch_add(1, Ordering::Relaxed) <= 12

18 }

19 }

Figure 5.4: Example of a simple authorisation function. This authorisation function simply has a counter i which is
incremented each time the authorisation function is polled. When this counter is more than 12, transitions are forbidden.
Notice that we exclude removal transition from this count. Notice also that the counter is a shared variable, indeed, there is
one instance of the authorisation function per location, therefore shared variables should be explicit. Notice that, in theory,
authorisation functions do not have a state, be it shared or not. In this implementation, it actually comes for free.

Browsing the skeleton graph. In the presented example, we did not need to explore the skeleton
graph. In order to provide a more complete introduction to programming with location graphs, we will
conclude this subsection by a word on those.

The SkeletonGraph structure is simply a set of SkeletonLoc. It provides methods to easily filter
locations. In addition, we provide helper functions to walk on the graph, which is particularly useful in
the case of the policies shown in previous chapters, where one has to express properties on paths.

To even ease the expression of path related conditions, we also implemented graph formulas, which
allow to express simple formulas of modal logic. Graph formulas are built up from location formulas and
role formulas. The former is basically a predicate on roles and the sort of a location, and the latter is
a predicate on role names. Graph formulas are then formed using those predicate to express properties
such as: the location has a role named a which reaches a location with sort s and a bound role r22.

5.3.4 Final steps

On one side, we have our locations, and on the other side, we have our authorisation function. We now
want to put it all together and run the instance.

In order to run the instance, the user has to instantiate manually the initial locations of the instance,
and run them on separate threads. They also have to create an initial instance of the authorisation
function.

Notice that the user shall not (and can not) instantiate locations by themself, since locations should
also be registered by the system to construct the initial skeleton location. To create the first locations,
the user creates an array23 of sorts and gives this array at initialisation. In exchange, they receive an
array of Locations structures, which can then be used.

Notice that locations have to be run on separate threads. We do not specify further the concurrency
model (be it lightweight threads, async, etc.) we are talking about here, since we only make the assump-
tion of an underlying concurrency model. In practice, this question should be addressed for performance
issues.

Remark. All Rust examples presented are run using the standard lightweight threads of the std::

thread library. /

22Graph formulas are not used in the following of this thesis, we only provide them as utilities for users. Therefore, we
do not present them in more detail here.

23Actually, the user only needs to give an Iterator over sorts.
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1 fn pingpong_test() {

2 let af = PingPongAF::new();

3

4 let initial_sorts = vec![(), ()];

5 let mut locs = LocationSystem::new(af, TS::new(), initial_sorts.into_iter());

6

7 let mut idg = DefaultRoleGenerator::new();

8 let id1 = idg.new_id();

9 let id2 = idg.new_id();

10

11 let mut p1 = PingPongLocation::new(locs.pop().unwrap(), "ID1");

12 let mut p2 = PingPongLocation::new(locs.pop().unwrap(), "ID2");

13

14 let j1 = thread::spawn(move || p1.run(id1, id2));

15 let j2 = thread::spawn(move || p2.run(id2, id1));

16

17 j1.join().expect("j1 crashed");

18 j2.join().expect("j2 crashed");

19 }

Figure 5.5: Example of the initialisation and run of our example. We first instantiate an authorisation function. We then
create an array of which contains the sorts of the initial locations, and instantiate the overall LocationSystem, which returns
the initial location handlers. These location handlers are used to instantiate our PingPongLocations, which are finally run
on separate threads, and we wait until the threads terminate.

Example 16 (Synchronous integer counters (last)). The initialisation of our running example is
shown in Figure 5.5. First, we have to instantiate a first instance of our authorisation function, and
an array which contains the sorts of the initial locations (the line let initial_sorts = vec![()

, ()], in our case, we use () for our sorts). We can then instantiate the location system, using
the above objects as parameters, and an instance of the trivial unconstrained location transition
set. Instantiating the location system returns a list containing the initial locations handles (one
per initial sort provided, in the same order).
With the location handles, we can instantiate the locations, and run them on two threads.
The output of a typical run is given in Figure 5.6. Since we allow only the 12 first transitions, only
10 integers are exchanged, plus two initial transitions for binding roles. The subsequent transition
are rejected, with the NotAuthorised error.

1 [ID2] Sent 1, received 0

2 [ID1] Sent 1, received 0

3 [ID1] Sent 2, received 1

4 [ID2] Sent 2, received 1

5 [ID2] Sent 3, received 2

6 [ID1] Sent 3, received 2

7 [ID1] Sent 4, received 3

8 [ID2] Sent 4, received 3

9 [ID2] Sent 5, received 4

10 [ID1] Sent 5, received 4

11 [ID1] Could not commit changes: NotAuthorised

12 [ID2] Could not commit changes: NotAuthorised

Figure 5.6: Typical output of our running example. Notice that there are 10 lines of output (corresponding to 10 transitions)
before the unauthorised transitions, instead of the n = 12. This is due to the two (one for each location) silent initial
transitions used to bind the roles.
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5.4 Implementation

Section 5.3 should already give a good hint of the behaviour of our crate. In this section, we explore in
depth the internal details of the implementation of the library.

To better understand this section, let us analyse a typical execution of a program using the location
library.

We have a few threads, each running the function of a location (i.e. its process). To interact with
other locations, the different functions must have access to the primitives highlighted in the previous
section. Therefore, the first components of the library we will explain are Locations, which provide
various methods to build and commit a Transition, the second element of the library.

When a transition is committed, the Location takes over the running function and cooperates with
other locations to resolve the transition. To resolve the transition, an other structure is used: the
Sevaluator24. Notice that each Location has a local instance of a Sevaluator. This structure evaluates
if the transition is allowed and interacts with a shared memory area used to centralise all pending
transitions. The Sevaluator selects a set of resolvable transitions, or waits until such a set is selected by
an other Sevaluator. When a set of transitions is selected, the SkeletonGraph is updated accordingly;
and each waiting Sevaluator checks whether its transition is selected, and, depending on the result,
retries or resolve the transition.

Resolving the transition consists not only in creating new locations, but mostly in binding and re-
leasing roles, as well as exchanging messages. These last two things are performed by the Roles and the
RoleManager structures.

To evaluate if a transition is allowed, an AuthorisationFunction is provided to the system, which
uses the current SkeletonGraph.

To wrap up this introduction, and to have a clear understanding of the library, let examine it from a
memory viewpoint. The shared memory contains five objects: (i) the set of pending transitions; (ii) the
set of selected transitions; (iii) the skeleton graph; (iv) the transition counter; and (v) the role manager.
Each of these memory areas is protected by a mutex25. These objects are the only one that are shared26.

Outline. As a first step, we will look at Locations and Transitions (Section 5.4.1). Our second step
will be to study the implementation of SkeletonGraphs (Section 5.4.2). Then, we will explain the selection
of Transitions performed by the Sevaluators (Section 5.4.4), followed by the resolution of the selected
Transitions; which requires a digression to Roles and the RoleManager beforehand (Section 5.4.3).
Finally, we will explain is the AuthorisationFunction and TransitionSet traits in Section 5.4.5.

Remark (Non-trivial aspects of the implementation). Most of the implementation is a trivial transposition
of what have been explained about the abstract machine into Rust. The main non-trivial point is
Section 5.4.4 about transition selection and resolution. /

Through this section, we will highlight our discourse with excerpts from the library code. However,
we will not cover every single line of code.

Remark. In the remaining of this section, the interested reader is encouraged to build the documentation
with private items. In the root directory, run:

1 > cargo doc --document -private -items

/

5.4.1 Locations and Transitions

Locations. Locations are the main aspect of location graphs. As in the abstract machine, in the
implementation, we distinguish locations and location handles: a location is a structure to be implemented
by the user. It works with an handle, which provides the primitives of the location framework.

Therefore, our library only offers location handles, via a structure (improperly) named Location.
The structure is shown in Figure 5.7. This structure is a black box from the user standpoint27.

Locations primitives. Locations have several methods. Most of them are self explanatory. The only
non trivial detail, for programmers not used to Rust, is how exchange primitives interact with the Rust
typesystem.

24Fundamentally, it performs the seval() function, hence its name.
25See the Appendix A on shared memory in Rust.
26The Rust typesystem ensures that it is not possible to accidentally share some memory: each object that is aliased

must be explicitly aliased: using a Arc (if aliased among concurrent threads) or an Rc (if aliased in a single thread).
27Without documenting private items, the documentation contains only the primitives.
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1 pub struct Location<S, A, M, R, T>

2 where

3 S: Clone + Eq,

4 A: AuthorisationFunction<Sort = S, Msg = M, RoleID = R, TransitionSet = T>,

5 M: Send + Eq + Clone,

6 R: RoleID,

7 T: TransitionSet<Sort = S, AF = A, Msg = M, RoleID = R>,

8 {

9 ls: LocationSystem<S, A, M, R, T>,

10 roles: Vec<RoleEndpoint<M, R>>,

11 sort: S,

12 t: Vec<Transition<S, M, R>>,

13 }

Figure 5.7: The structure Location of the Rust library. Notice that all the fields are private (i.e. they are not annotated
with pub), therefore they are not visible outside the library (e.g. by the user).

1 /// A trait for role identifier.

2 pub trait RoleID: Clone + Ord + Hash {}

Figure 5.8: The definition of the trait RoleID.

Take the example of send (expect is similar). Its signature is pub fn send(&mut self, r: R,

msg: M), with R the type of role identifiers and M the type of messages. This signature means that we
borrow (take a mutable reference) to self (the Location), and that we acquire (we claim ownership of
the memory area) both the role identifier and the message. That is, when calling the method send, the
caller can not use the message after the call. This mechanism prevents aliases28, and therefore ensures
the message is indeed sent to the new location.

Notice that it does not prevent the message to be copiable29, but even in this case, the message must
be duplicated, which ensure that there is no aliases: the receiver would receive an other instance of the
message.

Concerning the role identifier r, the definition of the trait RoleID requires that identifiers are copyable
(see Figure 5.8). Therefore, the user can use multiple time the same role identifier.

Such mechanism, implemented in the Rust typesystem, allows us not to implement by ourself, such
as what Sabah did in its thesis (see [50]).

Transitions and Transition items. Locations are structures that provide the user the primitives of
the location graph framework. Via methods such as send, bind, etc., it is possible to build a transition,
which is then taken using the method commit_changes.

Transitions (type Transition) are sets of transition items (type TransitionItemType); itself an
enumerated type with eight variants, corresponding to the transition items of the abstract machine.

A transition describes all the changes that happen during the transition.
— BIND(R, RoleDirection), to bind a new role in a given direction.
— CREATE(Box<S>), to create a new location with a given initial sort. Notice that the location is

created without bound roles. It is intended to be given to a new thread.
— EXPECT(R, Box<M>), try to synchronise on the given role with the given value.
— RECEIVE(R, RoleDirection), to wait to receive a value on the given role.
— RELEASE(R), to release the given role.
— SEND(R, Box<M>, RoleDirection), to send the given message on the given role.
— SORT(Box<S>), to change the sort.
— REMOVE<SkeletonLoc<S>>, to remove a skeleton location from the skeleton graph30.
Also, to evaluate the seval(·) predicate, in order to select a complete subset of transitions, we only

need to consider transition items that correspond to message exchanges, in order to rebuild the label of

28Notice that the type M possibly contains references. This is taken into account by the Rust typesystem and even those
cases are safe.

29In Rust terms, messages can implement the traits Clone or Copy.
30This transition item is not directly controlled by the user, instead, it is used internally when deallocating the location

to enforce it suppression from the global location graph.
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1 pub fn send(&mut self, r: R, msg: M) {

2 if let Some(d) = self.get_endpoint(r.clone()).map(|e| e.direction()) {

3 if self.t

4 .last_mut()

5 .is_none() {

6 self.t.push(Transition::new());

7 };

8 self.t.last_mut().unwrap()

9 .add_item(TransitionItem::SEND(r, Box::new(msg), d))

10 }

11 }

Figure 5.9: The method send of the structure Location of the Rust library. This method, as well as the other methods to
build transitions, works in two steps: first, if the current list of transition is empty, it creates a new empty transition; and
then, it adds a SEND transition item in the last transition of the list.

a transition.

Therefore, we sometime use a second structure: Labels, which basically contains only the SEND,
RECEIVE, and EXPECT items of transitions.

Also, according to the abstract machine, transitions need to be identified by a counter. Therefore, we
also sometime use IdentifiedLabel, which are basically a tuple of an integer and a label.

To ease the explanation of the framework, we do not distinguish Labels and IdentifiedLabels in the
following: we will explain the behaviour the library using only Transitions. If one look into the source
code and see a Label, one can understand it as a transition, and IdentifiedLabels can be understood
as indexed Transitions.

Building transitions. In the abstract machine, a location handler 〈s, t, e, r〉 accumulates transition
items in t with the rules (Send), (Expect), etc..

The Location structure of the Rust library contains a field t which corresponds to the field t of the
location above (See Figure 5.7).

In the Rust implementation (except for location removal, see below) the location structure implements
a method for each transition item (see, for instance, the method send in Figure 5.9), which simply adds
a new transition item in the transition being built.

If a skeleton location is required (e.g. to implement the (End) rule which adds a Remove(·) transition
item to the transition being built), it is retrieved from the current location.

The case of location removal. To avoid inconsistencies such as having a location allocated, but
considered removed by the location system, or being deallocated without being removed from the location
system, location are not explicitly removable.

Remark. The Rust typesystem allows to statically compute object deallocation. Therefore, there is
no garbage collection at runtime, yet there is no explicit deallocation neither.

An implicit call to the fn drop(&mut self) method of the Drop trait is automatically performed
before deallocation31.

This method is similar to destructor methods found in other languages, except that it is not explicitly
called. /

We use the Drop trait to perform the removal when the location object is about to be deallocated.
The implementation of Drop for Locations is given in Figure 5.10. From a programming standpoint, the
main implication is that dropping a location takes time.

Committing the transaction. When all transitions are ready, the user calls commit_changes. This
method takes over and propose the transitions to the rest of the system and wait until it is accepted or
rejected. Then, it returns the result of each of the transactions32.

Before we explain in detail how this method works, we need to have a look at the internal details of
the library. This method is studied below, in Section 5.4.4.

31See https://doc.rust-lang.org/std/ops/trait.Drop.html and Appendix A.
32At most one is accepted and fired, but the other may be unselected for various reasons: because they are not allowed,

or simply because an other was selected, etc.

https://doc.rust-lang.org/std/ops/trait.Drop.html
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1 fn drop(&mut self) {

2 // Ignore all previous transitions item pushed.

3 self.t = Vec::new();

4 self.remove();

5 while self.commit_changes()

6 .iter()

7 .filter(|res| res.is_ok())

8 .next()

9 .is_none() {}

10 }

Figure 5.10: The structure Location implements the trait Drop. The method drop resets the current transition, adds a
removal token, and tries to commit the transition.

1 pub struct SkeletonLoc<S, R>

2 where

3 R: RoleID,

4 {

5 sort: S,

6 prov: HashSet<R>,

7 req: HashSet<R>,

8 }

Figure 5.11: Declaration of the SkeletonLoc structure.

5.4.2 Skeleton graphs

The module skeletons exports structures that implement skeleton locations and skeleton graphs.
These structures are public to the user, since it is an argument of the authorisation function.
During a location graph run, a single instance of SkeletonGraph is instanciated and it is shared

among all locations.

Skeleton locations. Skeleton locations (structure SkeletonLoc, Figure 5.11) are a direct implementa-
tion of their theoretical counterparts: they simply record a sort and to sets of role identifiers. SkeletonLoc
implements methods to apply a transition.

Skeleton graphs. Skeleton graphs (structure SkeletonGraph, Figure 5.12) are a set of SkeletonLoc.
The main interest of this structure is that it implements a method apply_transition which applies a
Transition to a given SkeletonLoc of the skeleton graph. This method is called for each transition
which is selected.

Finding the skeleton location that correspond to a location. To change a skeleton location (e.g.
when we apply a transition), we first need to find the right skeleton location.

If the location contains some bound roles, this task is easy, since bound roles identify locations.
Otherwise, it is possible to have two skeleton locations that correspond to a single location (if multiple
locations have the same sort and no bound roles).

In this case, we can actually take any of the suitable skeleton location. Therefore, when we search for
a skeleton location, we take the first suitable one we find (see Figure 5.13).

1 pub struct SkeletonGraph<S, R>

2 where

3 S: Clone + Eq,

4 R: RoleID,

5 {

6 locs: Vec<SkeletonLoc<S, R>>,

7 }

Figure 5.12: Declaration of the SkeletonGraph structure. A SkeletonGraph is just a list of SkeletonLocs.
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1 fn search_skeleton_loc(

2 &mut self,

3 template: SkeletonLoc<S, R>,

4 ) -> Option<&mut SkeletonLoc<S, R>> {

5 self.locs.iter_mut().filter(|sk| template == **sk).next()

6 }

Figure 5.13: The method search_skeleton_loc which finds a skeleton location in a skeleton graph which suits a provided
template. Notice that the method iterates over the skeleton locations and filters them, and then takes the first one (the call
to next).

Also, notice that we return a mutable reference, i.e. the skeleton location is not removed from the
skeleton graph.

When a transition is taken. Suppose we are given a set of transitions (for instance a set of transitions
that have been selected for being run), it can be easily applied to the skeleton graph to get an updated
skeleton graph. Each transition of the set can be applied independently: when a Location l takes a
Transition t, we search for the SkeletonLoc that corresponds to l, and, for each item that has an effect
on that location, we modify the SkeletonLoc accordingly. If CREATE(_) items appear in t, we simply
add a new SkeletonLoc to the SkeletonGraph (see Figure 5.14).

5.4.3 Roles management and message exchanges

To resolve transition items SEND(RoleID, Box<M>, RoleDirection) and RECEIVE(RoleID, RoleDirection

), the library uses the mpsc channels of the standard library (see Appendix A). Channels are embedded
into Endpoints, which encompass two channels (one for each direction) and a role identifier. The user
has only access to role identifiers. In this section, we explain how roles are managed and used.

Roles endpoints. Locations manipulate role endpoints (see the field roles of the structure Location

in Figure 5.7). A role endpoint (structure RoleEndpoint, see 5.15) is a simple structure that records the
identifier (the field id) and the direction being manipulated (the field d), as well as two channel endpoints
(the fields s and r), one to send messages, and the other to receive messages.

Remark. A Box<V> is a special pointer (to a value of type V) from the standard library. As opposed
to a &V pointer, a Box<V> is allocated on the heap.

In C, both would be represented as a pointer, but a Box<V> corresponds to a malloc-ed area, while
a &V correspond to pointer to a local variable33. /

The identifier (field id) is generic. This allows the user to define its own role identifiers, if they want
to piggyback informations. The RoleEndpoint type is not visible outside the crate.

Role management. The abstract machine hides some implementation details. One of them is role
management. As we have seen previously, locations have a set of RoleEndpoints, each of them contains
the Sender and the Receiver to exchange messages. This paragraph explains the mechanism which
allows locations to resolve Bind and Release transition items.

We have seen previously that location work with RoleEndpoints only, we call Role the structure that
gathers both endpoints of a role, together with the corresponding RoleID (see Figure 5.16).

Locations have access, via their LocationSystem to a shared RoleManager (Figure 5.17), which
collects and distribute RoleEndpoints for the whole instance. Fundamentally, a RoleManager is just a
set of Roles. Therefore, it contains a single field available_roles which has type Vec<Role<M, R>>.

The two roles of the RoleManager is to provide and get back endpoints upon request. Therefore, it
offers two methods: get_endpoint and release_endpoint.

The method get_endpoint search for the suitable endpoint in the available_roles field. If not
found, the role is created34. If found, the function returns the requested endpoint. Notice that the role
contains Options of RoleEndpoints. If the role is already bound35, the corresponding Option in the Role
is None, which is returned.

The method release_endpoint is naively implemented36. Given a r: RoleEndpoint, it searches the

33This presentation is simplified, for instance, a pointer to a local variable of a calling function (i.e., in a lower stack
frame) is still a &V in Rust (it points to a variable on the stack).

34Therefore, roles are created upon request.
35In the provided implementation, this case can not happen. To take a transition, the Sevaluator checks that all Bind

transition items bind free endpoints.
36The function panics if we try to release a RoleEndpoint that was not created.
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1 pub fn apply_transition<A, M, T>(&mut self, t: &Transition<S, M, R>, l: &Location<S

↪→ , A, M, R, T>)

2 where

3 A: AuthorisationFunction<Sort = S, Msg = M, RoleID = R, TransitionSet = T>,

4 M: Send + Eq + Clone,

5 T: TransitionSet<Sort = S, AF = A, Msg = M, RoleID = R>,

6 {

7 self.search_skeleton_loc(SkeletonLoc::from(l))

8 .expect("Couldn’t find the skeleton location corresponding to the provided 

↪→ location.")

9 .apply_transition(t);

10

11 // Effects on the graph should be echoed *after* local effects (in case of

↪→ removal).

12 for item in t {

13 self.apply_transition_item(item);

14 }

15 }

16

17 fn apply_transition_item<M>(&mut self, item: &TransitionItem<S, M, R>)

18 where

19 M: Send,

20 {

21 match item {

22 TransitionItem::CREATE(s) => self.locs.push(SkeletonLoc::new(*s.clone())),

23 TransitionItem::REMOVE(s) => {

24 let mut index = self.locs.len();

25 // Notice we can not use ‘retain‘ here because there might be multiple

↪→ skeleton

26 // locations corresponding to the given one.

27 for i in 0..index {

28 if self.locs[i] == *s {

29 index = i;

30 break;

31 }

32 }

33 self.locs.remove(index);

34 }

35 _ => (),

36 }

37 }

Figure 5.14: The two methods apply_transition and apply_transition_items of SkeletonGraph. The method
apply_transition of SkeletonLoc (not shown) naively echoes the effects of a transition on a SkeletonLoc.

1 pub (in super) struct RoleEndpoint<M, R> {

2 pub id: R,

3 pub d: RoleDirection,

4 s: Sender<Box<M>>,

5 r: Receiver<Box<M>>,

6 }

Figure 5.15: The structure RoleEndpoint.
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1 struct Role<M: Send, R: RoleID> {

2 id: R,

3 provided: Option<Box<RoleEndpoint<M, R>>>, // Endpoint of the location that ‘

↪→ provides‘ the role

4 required: Option<Box<RoleEndpoint<M, R>>>, // Endpoint of the location that ‘

↪→ requires‘ the role

5 }

Figure 5.16: Declaration of the Role structure.

1 pub (in super) struct RoleManager<M: Send, R: RoleID> {

2 available_roles: Vec<Role<M, R>>,

3 }

Figure 5.17: Declaration of the RoleManager structure.

corresponding Role in available_roles, and replaces the None by Some(r)37.

5.4.4 Transition selection and resolution

In this section, we explore how transitions are taken. The main structure used to take a transition is
the Sevaluator. It is the structure that interacts with shared memory areas in order to synchronise
transitions of different locations.

In this section, we will follow a transition, from the point it is committed by its location to the point
it is resolved.

Transition authorisation. Before any attempt to enqueue a set of transitions (be it a normal attempt
or a retry for a postponed transition), the Sevaluator checks for which transitions of the set the autho-
risation function holds. All transitions that do not verify the authorisation function are put aside, only
the correct ones are considered. The behaviour of the authorisation function is presented in a separate
section below.

Selection of a complete subset of pending transitions. Locations can submit multiple transitions
at once and the system has to find which one will be taken.

In the abstract machine, the rule (Select) of the abstract machine selects a complete set s of
transitions among the set p of submitted lists of transitions. However, the predicate pick(·, ·) does not
give an actual way to find such a set, it only verifies that s is consistent with p; our implementation, on
the other hand, has to find such a set: it can not guess the set and verify the consistency.

We present this process of selection in three steps: (i) we explain how to find if a set of transitions is
complete; (ii) we show how we can keep a set of independent sets of transitions; and (iii) we present how
we can explore all possible combinations of transitions.

We have a structure LabelCombination which represent a set of (identified) transitions38, together
with a summary of that set of transitions, i.e. the transition items that are not matched.

Example 17. A LabelCombination can be presented as a tuple 〈l, s〉 where l is a set of labels
and s is the summary, i.e. a label. For instance, if the combination contains two transitions t1 =
{Send(r1,m1, provided), Send(r2,m2, provided)} and t2 = {Receive(r1, required)}, we can see
that one of the two message in t1 is matched by t2 but not the other.
In that case the corresponding LabelCombination would be 〈{t1, t2}, {Send(r2,m2, provided)}〉,
and the summary contains the item Send(r2,m2, provided).

The important point of this structure is that it is easy to add new transitions to the combination,
while maintaining the summary correct: if we have a combination 〈{t1, . . . , ti}, s〉 and we want to take

37In case we try to release an endpoint that was free (which is not possible in the implementation, since there is no double
binds), the corresponding endpoint in the Role is not None but Some(_), which is nonetheless replaced by the new Some(r).

38In the implementation, we introduce Labels in addition to Transitions. A Label contains only the elements of the transi-
tion that enforce synchronisation, i.e. the equivalent of Send(·, ·, ·), Expect(·, ·, ·), Receive(·, ·), Bind(·, ·, ·) and Release(··, ·,)
tokens. For the sake of fidelity w.r.t. the actual implementation, we distinguish them in this document, but one can
think of Labels as Transitions. Notice that we define an addition on labels, which removes matching items. The type
IdentifiedLabel<R, M> is an alias for (Label<R, M>, u64), where the integer is an identifier.



122

1 struct LabelCombination<R, M>

2 where

3 R: RoleID,

4 M: Eq + Clone,

5 {

6 labels: Vec<IdentifiedLabel<R, M>>,

7 synthesis: Label<R, M>,

8 }

Figure 5.18: The structure LabelCombination.

1 impl<R, M> AddAssign<IdentifiedLabel<R, M>> for LabelCombination<R, M>

2 where

3 R: RoleID,

4 M: Eq + Clone,

5 {

6 fn add_assign(&mut self, rhs: IdentifiedLabel<R, M>) {

7 self.synthesis += rhs.0.clone();

8 self.labels.push(rhs);

9 }

10 }

Figure 5.19: The structure LabelCombination implements the trait AddAssign<IdentifiedLabel<R, M>>, which adds a new
label into the combination. The trait AddAssign is used to define the += operator and allows to write expressions such as
combination += label. The trait is generic, and the generic type is the type used for the right-hand side of the operator
(here, a label).

an additional transition t into account, then the combination becomes {t, t1, . . . , ti}, s ⊕ t (using the
definitions of the abstract machine), and similarly, to merge two combinations 〈l1, s1〉 and 〈l2, s2〉, the
result is 〈l1∪ l2, s1⊕ s2〉. The LabelCombination structure defines those two operations (See Figure 5.19
and Figure 5.20).

Such a structure provides a direct way to check whether the set of transitions it contains is complete:
we simply have to check the summary, if it does not contains SEND(_, _), RECEIVE(_, _) or EXPECT(_,
_), then the transition is complete.

Similarly, it is easy to check for binding issues: the summary field may contain BIND(_, _) and
RELEASE(_, _) items. From the current skeleton graph, it is possible to create what we call a label
equivalent to the graph (by convention, we store such label in a variable sk_eq_label), i.e. a fake label
which contains only BIND(r, d) items, for each role r bound in direction d in the current skeleton
graph. Since our definition of label addition removes matching BINDs and RELEASEs, then if summary +

sk_eq_label contains a RELEASE item, then there is a location that tries to release an unbound role39;

39Note that this may also happen if no RELEASE are in the sum, but there are other ways to detect such errors.

1 impl<R, M> AddAssign<LabelCombination<R, M>> for LabelCombination<R, M>

2 where

3 R: RoleID,

4 M: Eq + Clone,

5 {

6 fn add_assign(&mut self, mut rhs: LabelCombination<R, M>) {

7 self.labels.append(&mut rhs.labels);

8 self.synthesis += rhs.synthesis;

9 }

10 }

Figure 5.20: The structure LabelCombination implements the trait AddAssign<LabelCombination<R, M>>, which merges
two combinations.
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1 struct IndependentLabelSet<R, M>

2 where

3 R: RoleID,

4 M: Eq + Clone,

5 {

6 subsets: Vec<LabelCombination<R, M>>,

7 }

Figure 5.21: Declaration of IndependentLabelSet, which implements a set of (independent) subsets of transitions, using a
Vec<LabelCombination>.

and, more importantly, if two (or more) identical BIND(r, d) items are found, then necessarily, there
is a location that attempts to bind a role already bound. The latter point is important, because the
presence of a double BIND is a necessary and sufficient condition to detect such errors, and postpone the
candidate label combination40

Now that we know how to keep sets of transitions, and how to evaluate whether such set is complete
or not, we look for a way to find an complete subset out of a set of transitions. The intuition is the
following: if two transitions are related (e.g. one is sending on a role, and the other is receiving on that
role), then, if one is in the subset we (will) choose, then the other must also be in that subset; therefore,
we can keep those two transitions together. Based on that idea, we want to keep together all related
transitions, and keep separate unrelated transitions41. Finally, if we have a set of independent subsets
of transitions, adding a new transition is easy: if the new transition is independent from all current
transitions, we create a new subset, otherwise, we put it in the subset it depends on, and if the new
transition is related to two (previously unrelated) subsets, we merge those two subsets.

We introduce a structure called IndependentLabelSet (Figure 5.21). This structure implements a
set of LabelCombination presented above.

This structure implements a method add_label (see Figure 5.22), which adds a new transitions into
the current ones.

Remark. Notice that transitions are proposed by locations one after the other. Therefore, we do not need
to initialise the IndependentLabelSet: our add_label method preserves the property we are intereted
in, and we begins with an empty set of subsets of transitions. /

Notice that, so far, we only considered that each location proposes a unique transition. In practice,
we want to let a location propose multiple transtions at once, and we choose which one is actually fired.
Therefore, we have to compute all possible combinations of transitions (e.g. if a location l1 propose
transitions t11 and t12 and a location l2 the transitions t21 and t22, the combinations are {t11, t21}, {t12, t21},
{t11, t22} and {t12, t22}). Then, for each of these combination, we can apply what has been described above
to identify a potential combination that contains a complete subset.

The good news is that, as with the two previous points, given a set of combinations, it is really easy to
add a new set of transitions submitted by a location: for each existing combination Ci, for each transition
tj , we create a new combination Ci ∪ {tj}42.

This scheme is actually quite independent from the fact that we deal with transitions: more generally,
suppose we have elements from two different sets S and T with an operation ? : S× T→ S, what we are

doing is defining an operation ∗ : P(S)× P(T)→ P(S) as S ∗ T ∆
= {si ? ti|si ∈ S ∧ ti ∈ T}, for S ⊂ S and

T ⊂ T.

We define a structure CombinationSelector (see Figure 5.23) which we use to compute all combina-
tions of transitions, and which (mainly) implements two operations: the first one, shown in Figure 5.24,
is the one described above (which we implement as a multiplication using the trait MulAssign so that we
can write combinations *= transitions43), and the second is simply a filter which, given a predicate,
returns a combination that satisfies the predicate, if any (this filter is later used to find a combination
that contains a complete subset).

40We can not, however, simply reject the candidate: a future label addition might release a bound role, and make the
combination acceptable.

41Actually, the subset we may want to choose can contain unrelated transitions. However, that would mean delaying the
choice until two subsets are complete.

42Notice, however, the exponential explosion, of course.
43We use the MulAssign trait although our operation is not, strictly speaking, a multiplication.
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1 fn add_label(&mut self, l: IdentifiedLabel<R, M>) {

2 let mut independents: Vec<LabelCombination<R, M>> = Vec::new();

3 let mut dependents: Vec<LabelCombination<R, M>> = Vec::new();

4

5 for combination in self.subsets.iter_mut() {

6 let mut is_independent = true;

7 for (label, _) in combination.into_iter() {

8 if !label.is_independent(&l.0) {

9 is_independent = false;

10 }

11 }

12

13 if is_independent {

14 independents.push(combination.clone());

15 } else {

16 dependents.push(combination.clone());

17 }

18 }

19

20 let merged_dependent = dependents

21 .into_iter()

22 .fold(LabelCombination::new(vec![l]), |acc, combination| acc + combination)

↪→ ;

23

24 independents.push(merged_dependent);

25

26 self.subsets = independents;

27 }

Figure 5.22: The add_label method of the IndependentLabelSet structure. Given a new transition (the IdentifiedLabel

l), we separate the current subsets into two groups, the group of subsets that do not contain transition related to l (stored in
independent), and the group of subsets that do contain at least one transition related to the new one (stored in dependent).
Once separated, we merge all subsets stored in dependent, and we add the new transition.

1 struct CombinationSelector<C>

2 {

3 combinations: Vec<C>,

4 }

Figure 5.23: The structure CombinationSelector, which simply contains a set of elements of type C.
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1 impl <C, E, F, I> MulAssign<F> for CombinationSelector<C>

2 where

3 C: Add<E, Output=C> + Clone,

4 F: IntoIterator<Item=E, IntoIter=I>,

5 I: Iterator<Item=E>,

6 E: Clone,

7 {

8 fn mul_assign(&mut self, rhs: F) {

9 let mut new_combinations = Vec::new();

10 for e in rhs {

11 for c in &self.combinations {

12 new_combinations.push(c.clone()+e.clone())

13 }

14 }

15

16 self.combinations = new_combinations;

17 }

18 }

Figure 5.24: The method mul_assign, which is used to add a new set of transitions to a set of possible combinations.
Notice the constraints put on the generic types used: we require a type E (that must be clonable) and that the type C (of
combinations) implements an addition with elements of type E and returns a element of type C (our operation ? above).
Finally, our multiplication is defined with the right-hand side being any type F from which we can get an iterator over
elements of type E.

Transition resolution. In the abstract machine, if we look at the local semantics, a transition is taken
by firing the rule (Commit), the global semantics constraints whether the result is a success or a failure.

In the Rust implementation, the same mechanism appears: the method commit_changes (Figure 5.25)
attempts to commit a list of transition, and returns a list of results (among which at most one is a success).

This method proceeds in two steps: first, the list of transitions is given to the Sevaluator, which
decides whether one of the transitions is accepted or not, according to the previous paragraph (this
corresponds to the rule (Select) of the global semantics). This is performed using the method add_label

of the Sevaluator structure.

Remark. The method add_label is blocking. It loops until a result (either a success or a failure) for the
submitted list is available, then it returns it. /

Remark. Notice the while loop which transparently retries the transition until add_label returns only
Err(SevaluatorError::NotSelected) or Err(SevaluatorError::RetryPostponed).

Err(SevaluatorError::RetryPostponed) happens when an other transition is selected, but the
current one can not be rejected neither. This correspond to the rule (Retry) of the abstract machine.
/

Then, the SevaluatorResults are converted in TransitionResults: for error, the conversion is
simply a mapping, and if a transition among the proposed one is selected, then it is resolved44; and the
results of that transition are then returned.

Let now see how that selected transition is resolved. We simply apply each of the TransitionItems
that compose the transition, using a method apply_transition_item in a loop.

We will only look at message sending (receiving is quite similar) and role binding (releasing is quite
similar). Location creation and changing the sort are intuitively implemented, location removal should be
intuitive after reading the paragraph on removal in Section 5.4.1, and expect transition items are already
checked by the Sevaluator, and therefore do not need to be checked again.

From the selection, we know that, for each role, each SEND(r, m, d) is matched by a RECEIVE(r, d

). To send a message, we first get the endpoint of the location from its field roles, and from the right
endpoint, we simply send the message using the underlying channel (see Figure 5.26).

To bind (or release) a role, we interact with the role manager as explained above: we request a new
role, and we add it to the endpoints of the location (see Figure 5.27).

44See the loop in which the method apply_transition_item is called.
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1 pub fn commit_changes(&mut self) -> Vec<Result<Vec<TransitionResult<S, A, M, R, T

↪→ >>, TransitionError>> {

2 let mut seval = self.ls.seval.clone().add_label(&self.t, &self);

3

4 // While this label is postponed, check authorisation and retry.

5 while seval.iter().fold(true, |acc, res|

6 acc && (*res == Err(SevaluatorError::RetryPostponed)

7 || *res == Err(SevaluatorError::NotSelected))

8 ) {

9 seval = self.ls.seval.clone().add_label(&self.t, self);

10 }

11

12 let mut transitions: Vec<Transition<_, _, _>> = self.t.drain(..).collect();

13 for t in &mut transitions {

14 t.sort();

15 }

16

17 let zipped = seval.iter().zip(transitions);

18 let result_per_transition = zipped.map(|(res, t)|

19 match res {

20 Err(SevaluatorError::NotAuthorised) => Err(TransitionError::

↪→ NotAuthorised),

21 Err(SevaluatorError::ExpectedNoMatch) => Err(TransitionError::

↪→ ExpectedNoMatch),

22 Err(SevaluatorError::BindNotAvailable) => Err(TransitionError::

↪→ BindNotAvailable),

23 Err(SevaluatorError::NotSelected) => Err(TransitionError::NotSelected),

24 Err(SevaluatorError::NotInTransSet) => Err(TransitionError::

↪→ NotInTransSet),

25 Err(SevaluatorError::RetryPostponed) => {

26 panic!("Found SevaluatorError::RetryPostponed outside the retry 

↪→ loop.")

27 }

28 Ok(_) => {

29 let mut ret = Vec::new();

30 for item in t {

31 if let Some(result) = self.apply_transition_item(item) {

32 ret.push(result)

33 }

34 }

35 Ok(ret)

36 }

37 }

38 );

39 result_per_transition.collect()

40 }

Figure 5.25: The method commit_changes of the structure Location of the Rust library.
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1 TransitionItem::SEND(r, msg, _) => {

2 if let Some(ep) = self.get_endpoint(r) {

3 ep.get_sender()

4 .send(msg)

5 .expect(&"Could not send.");

6 } else {

7 panic!("Try to send to a role that is not bound.")

8 }

9 }

Figure 5.26: Extract of the method apply_transition_item. This extract correspond to the application of a
TransitionItemType::SEND(r, m, d) transition item.

1 TransitionItem::BIND(r, d) => {

2 if let Some(ep) = self.ls.rm.lock().unwrap().get_endpoint(r, d) {

3 self.roles.push(ep)

4 } else {

5 panic!("Try to bind a role which is not available.")

6 }

7 }

Figure 5.27: Extract of the method apply_transition_item. This extract correspond to the application of a
TransitionItemType::BIND(r, d) transition item.

5.4.5 Authorisation functions and unconstrained location transitions set

In the presentation above, we mentioned the authorisation function without explaining it. In this last
section, we present it. It is implemented as a simple trait to be implemented by the user.

Authorisation functions. Our goal is to let the user provide an authorisation function. This autho-
risation function should take a location (i.e. an instance of Location), a skeleton graph (i.e. an instance
of SkeletonGraph), and a transition (i.e. an instance of Transition).

We define a trait AuthorisationFunction (see Figure 5.28) which contains a function authorise

which shall take the argument presented above, and shall return a boolean (i.e. a bool). Notice that, in
order to prevent the user to modify any of the provided argument (typically, we do not want to allow
it to modify the skeleton location), the authorise function actually takes (immutable) references to the
mentioned arguments.

Finally, notice that the trait requires its implementations to be clonable45, so that each (local) instance
of Sevaluator has a copy of the authorisation function.

Unconstrained location transitions set. Similarly, we define a trait TransitionSet (Figure 5.29)
which defines a method contains, used to state whether a given transition is in the set of unconstrained
location transitions of the instance.

This is quite similar to the AuthorisationFunction trait, except that, as in the theoretical definition,
contains does not depend on the skeleton graph. Therefore, it can be evaluated without locking the
shared variables.

5.5 Utilities

While implementing various examples using the rust_locations framework, we had to develop some
pieces of code that could be useful in other location graph instances. Although these pieces do not extend
the expressive power of the library46, we found useful to extract those pieces in a rust_locations::utils

module.
In this section, we present those utilities. First, we will present an implementation of a trivial autho-

risation function and a trivial set of unconstrained location transitions. Those two structures implement
respectively an authorisation function and a set of unconstrained location transitions without constraints.

45A clone is a deep copy, see the Appendix A.
46These pieces of code do not require any access to internal details of the library, and are therefore implementable by any

user using only the provided API.
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1 pub trait AuthorisationFunction: Sized + Clone {

2 /// The type of sorts for this instance of location graphs.

3 type Sort: Clone + Eq;

4 /// The type of messages that are exchanged in this instance.

5 type Msg: Send + Eq + Clone;

6 /// The type of roles names.

7 type RoleID: RoleID;

8 /// The type of the unconstrained location transition set.

9 type TransitionSet: TransitionSet<Sort=Self::Sort, Msg = Self::Msg, RoleID =

↪→ Self::RoleID, AF = Self>;

10

11 /// Returns true if the transition (i.e. the set of message exchange, role

↪→ binds/releases and

12 /// sort changes) is allowed.

13 ///

14 /// The parameter ‘t‘ is the ‘Transition‘ to be allowed; ‘s‘ is the ‘

↪→ SkeletonGraph‘ of the

15 /// location graph at the instant the transition is taken; and ‘l‘ is the

↪→ location that takes

16 /// the transition.

17 ///

18 /// Notice that, contrarily to the paper, the authorisation function is *

↪→ stateful*, i.e. the

19 /// authorisation function takes a *mutable* reference to ‘self‘.

20 ///

21 /// The default implementation is always true.

22 // The arguments are not used in the default implementation, but may be used in

↪→ dedicated

23 // implementations.

24 #[allow(unused_variables)]

25 fn authorise(

26 &mut self,

27 s: &SkeletonGraph<Self::Sort, Self::RoleID>,

28 t: &Transition<Self::Sort, Self::Msg, Self::RoleID>,

29 l: &Location<Self::Sort, Self, Self::Msg, Self::RoleID, Self::TransitionSet

↪→ >,

30 ) -> bool {

31 true

32 }

33 }

Figure 5.28: The definition of the trait AuthorisationFunction. Notice that a default implementation is provided, which
is always true.
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1 pub trait TransitionSet: Sized + Clone {

2 /// The type of sorts for this instance of location graphs.

3 type Sort: Clone + Eq;

4 /// The type of messages that are exchanged in this instance.

5 type Msg: Send + Eq + Clone;

6 /// The type of roles names.

7 type RoleID: RoleID;

8 /// The authorisation function used for this location system.

9 type AF: AuthorisationFunction<Sort=Self::Sort, Msg=Self::Msg, RoleID=Self::

↪→ RoleID, TransitionSet=Self>;

10

11 /// Returns ‘true‘ if the given transition is in the set of unconstrained

↪→ transition

12 /// transitions.

13 ///

14 /// It may seem similar to the ‘AuthorisationFunction‘ trait. Actually, it is

↪→ possible to

15 /// verify in the authorisation function that the transition is correct.

↪→ However, one should

16 /// prefer to use this trait as much as possible, for performance reasons:

↪→ checking the

17 /// authorisation function requires to have an view of the location graph,

↪→ which have to be

18 /// atomic with respect to the effect of the transition, this requires, at some

↪→ point, locking

19 /// a mutex on the location graph.

20 ///

21 /// Since evaluating whether a transition is in the set of unconstrained

↪→ location transitions,

22 /// there is no need to perform this global lock, and this test can be

↪→ performed only once even

23 /// if the transition is tried multiple times.

24 ///

25 /// The default implementation is always true.

26 // The arguments are not used in the default implementation, but may be used in

↪→ dedicated

27 // implementations.

28 #[allow(unused_variables)]

29 fn contains(

30 &self,

31 t: &Transition<Self::Sort, Self::Msg, Self::RoleID>,

32 l: &Location<Self::Sort, Self::AF, Self::Msg, Self::RoleID, Self>,

33 ) -> bool {

34 true

35 }

36 }

Figure 5.29: The definition of the trait TransitionSet. This trait requires a method contains, used to indicate which
transitions are in the set of unconstrained location transition of the model. A default implementation includes all transitions.
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The second utility we introduce is a structure for generic role names. While some systems require
a particular structure for role names (for instance, to implement ownership-based systems, where sorts
are used as role names to ensure uniqueness), we often do not care about the structure of those names.
Therefore, we implemented the DefaultRole structure, which is a blackbox structure for role names.

Then, we introduce locations to interact with TCP sockets. From the examples we will detail below,
we realised that interacting via TCP would be useful in a lot of cases. We therefore implemented such
locations and introduced them in the crate.

5.5.1 Trivial authorisation function and transition set

In this section, we present the TrivialAF and TrivialTS structures, which respectively implement the
trivial authorisation function and the trivial set of unconstrained location transitions.

In addition, in a second paragraph, we also present three helper functions that can be used to ease
writing authorisation functions.

Trivial authorisation function and set of unconstrained location transitions. If, for any reason,
the user does not need to use either the authorisation function or if they want to have the biggest set
of unconstrained location transitions, then the AuthorisationFunction and the TransitionSet can
be trivially implemented. Since any of both situation happens quite often, we provide those trivial
implementations.

The AuthorisationFunction trait already provides a default implementation for authorise, there-
fore, we just have to implement a dummy structure which we call TrivialAF (resp. for TrivialTS).
Figure 5.30 shows this trivial implementation.

Remark. The only subtlety of this implementation comes from Rust. The compiler does not accept
generic types for a structure, if those generic types do not appear in the types of fields of the structure.
In our case, our structure does not need any field, and this would prevent us from using generic types.

Fortunately, Rust provides a special structure PhantomData<T>, which is a zero-sized structure used
to fake fields.

In our case, the TrivialAF structure is generic over four types (the four associated types of the
AuthorisationFunction trait), and therefore contains four PhantomData fields. /

The traits AuthorisationFunction and TransitionSet being very similar, the implementation of
the trivial set of unconstrained location transitions (TrivialTS) is quite similar, and therefore not shown.

Helper functions. In this paragraph, we present three helper functions that can be used to write
authorisation functions and transition sets. The first function is authorise_removal, which takes a
transition and accepts it if it contains a location removal. The second function is binds_only which
takes a transition and a predicate over roles and role directions, and ensures that all roles that are bound
during the transition respect the predicate. Finally, the third function is forbid_self_removal which
takes a location and a transition, and ensures that the transition does not removes the provided location.

First, about authorise_removal. We usually want to allow locations to get removed. Therefore,
we might often want our authorisation functions and our transition sets to allow transitions if they
contains a TransitionItem::REMOVE(_) item. Since this is a common pattern, we provide the function
fn authorise_removal(t: &Transition<S, M, R>) which takes a transition and returns true in that
case. This function, simply implemented by iterating over all elements of a transition and returning early
when a REMOVE item is found, is shown in Figure 5.31.

Second, the function binds_only. We often want to restrict some location to bind only some role
names in some direction (typically, if locations should bind their sort, we want to prevent them from
binding other sorts, or if we have a main component that binds in a given direction, and its subcomponents
that bind in the other direction, etc.). The function binds_only takes a predicate over roles and directions
(an instance of Fn(&R, &RoleDirection) -> bool, where R is the type of roles), and verifies, by iterating
over all transition items of a transition, that all BIND items respect the predicate. The implementation
of this function is shown in Figure 5.32.

Finally, the function forbid_self_removal. When some locations should be present during the whole
execution (consider for instance a location that listen for connections on a network socket), we may want
to forbid their removal. This function perform that task. Following the same iterator pattern than the
two previous helper functions, it checks for all transition items of a given transition that none is a REMOVE

of a given location. The implementation is shown in Figure 5.33
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1 #[derive(Clone, Copy)]

2 /// A trivial authorisation function: allow any transition.

3 pub struct TrivialAF<S, M, R, T> {

4 s: PhantomData<S>,

5 m: PhantomData<M>,

6 r: PhantomData<R>,

7 t: PhantomData<T>,

8 }

9

10 impl<S, M, R, T> TrivialAF<S, M, R, T> {

11 /// Creates a new ‘TrivialAF‘.

12 pub fn new() -> Self {

13 TrivialAF {

14 s: PhantomData,

15 m: PhantomData,

16 r: PhantomData,

17 t: PhantomData,

18 }

19 }

20 }

21

22 impl<S, M, R, T> AuthorisationFunction for TrivialAF<S, M, R, T>

23 where

24 S: Clone + Eq,

25 M: Send + Eq + Clone,

26 R: RoleID,

27 T: TransitionSet<Sort = S, AF = Self, Msg = M, RoleID = R>,

28 {

29 type Msg = M;

30 type Sort = S;

31 type RoleID = R;

32 type TransitionSet = T;

33 }

Figure 5.30: Implementation of the structure TrivialAF. The PhantomData is a marker to indicate that we do not use a
provided generic type (it is a 0 size placeholder provided in the standard library to make the analyser happy). Notice that,
in the implementation of AuthorisationFunction, we only need to define the associated types, as the function authorise

has a default implementation.

1 pub fn authorise_removal<S, M: Send + Eq + Clone, R: RoleID>(t: &Transition<S, M, R

↪→ >) -> bool {

2 t.into_iter().fold(false, |acc, item| {

3 if let TransitionItem::REMOVE(_) = item {

4 true

5 } else {

6 acc

7 }

8 })

9 }

Figure 5.31: The helper function authorise_removal of the utils sub-module. The function takes a transition and returns
true if it contains a TransitionItemType::REMOVE transition item.
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1 pub fn binds_only<S, M, R>(

2 t: &Transition<S, M, R>,

3 p: impl Fn(&R, &RoleDirection) -> bool,

4 ) -> bool

5 where

6 M: Send + Eq + Clone,

7 R: RoleID

8 {

9 for t_item in t {

10 if let TransitionItem::BIND(r, d) = t_item {

11 if !p(r, d) {

12 return false;

13 }

14 }

15 }

16 true

17 }

Figure 5.32: Implementation of the binds_only helper function. This function verifies that a predicate p over roles and
directions holds for all newly bound roles.

1 pub fn forbid_self_removal<S, A, M, R, T>(

2 t: &Transition<S, M, R>,

3 l: &Location<S, A, M, R, T>,

4 ) -> bool

5 where

6 S: Clone + Eq,

7 A: AuthorisationFunction<Sort = S, Msg = M, RoleID = R, TransitionSet = T>,

8 M: Send + Eq + Clone,

9 R: RoleID,

10 T: TransitionSet<Sort = S, AF = A, Msg = M, RoleID = R>,

11 {

12 t.into_iter().fold(true, |acc, item| {

13 if let TransitionItem::REMOVE(s) = item {

14 let sl = SkeletonLoc::from(l);

15 if &sl == s {

16 false

17 } else {

18 acc

19 }

20 } else {

21 acc

22 }

23 })

24 }

Figure 5.33: Implementation of the forbid_self_removal helper function. This function verifies that no transition item of
a transition attempt to remove a given location, based on the skeleton of that location.
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1 #[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]

2 pub struct DefaultRole {

3 id: i32,

4 }

5

6 impl RoleID for DefaultRole {}

7

8 impl Display for DefaultRole {

9 fn fmt(&self, f: &mut Formatter<’_>) -> std::fmt::Result {

10 write!(f, "id {}", self.id)

11 }

12 }

Figure 5.34: Implementation of the structure DefaultRole.

5.5.2 Generic role names

Some location graph instances require the role names to have a structure, typically to statically guarantee
that some property hold. For instance, our implementation of the owners-as-dominators policy (see 4.1.1)
required roles to have a special shape to guarantee the property. However, we quite often do not need
such structure: role names can been plain integers, or even black boxes.

We therefore implemented the DefaultRole structure, which implements the RoleID trait and that
can therefore be used as a black box type for roles of a given instance. In order to instantiate new roles,
we provide a DefaultRoleGenerator which provides a method new_id(&mut self) -> DefaultRole.

Internally, the DefaultRole structure is just a wrapper over Rust integers (type u32), as shown in
Figure 5.34.

Concerning the generator, we intentionally implemented this wrapper naively (see Figure 5.35): two
DefaultRoleGenerators can create two roles that are equals; and the only ensured guarantee is that
two roles created by the same DefaultRoleGenerator are distinct. This behaviour is particularly useful
when two distinct locations have to bind a certain amount of roles: both can have distinct instances of
DefaultRoleGenerator and pull roles names from these instances: the roles will match.

Implementing a generator of DefaultRoles such that two generators yield distinct role would be
quite straightforward to implement. Two possibilities could be: (i) each generator shall be initialised
with a (distinct) prime integer p and would yield the roles pn for n ≥ 1.; and (ii) each generator
shall be initialised with a distinct integer i and would yield 〈i, n〉 for n ≥ 1 (and two roles 〈i1, n1〉
and 〈i2, n2〉 are equals if and only if i1 = i2∧n1 = n2). The first possibility is a bit more convoluted
but is compatible with our current DefaultRoles.

5.5.3 TCP connections

General approach. In the following section (Section 5.6.2), we will show, as an example, how to
implement a Publish-Subscribe server. To implement that, we needed to establish TCP connections in
order to exchange with the clients. It turned out that implementing such TCP connections is not that
straightforward: we have to poll the connection for any data received and, in the meantime, wait for
some data to send, provided by some other parts of the location graph.

Both polling are blocking and, even if they were not, implementing some kind of timeout would be
inefficient. We therefore took an other strategy: we implemented two kinds of locations: TcpLocation and
TcpReader which wrap the TCP connection: i.e. at any time, we can either send data to the TcpLocation,
which will manage to forward it on the TCP connection without delay47; or we can attempt to receive
data from the TcpReader, and read the data received, if any48.

While we can not poll simultaneously a role and a TCP connection, we can, however, poll two roles
simultaneously: we simply attempt two transitions, and the first possible will be selected (or any of the
two if both are possible).

47Well, there are always some delay, at least due to the connection, but the point is that the data will be sent without
being blocked by an attempt to receive data from the TCP connection.

48If no data is to be read, the TcpReader does not propose the complementary send and, therefore, the transition can not
fire.
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1 #[derive(Copy, Clone)]

2 pub struct DefaultRoleGenerator {

3 i: i32,

4 }

5

6 impl DefaultRoleGenerator {

7 /// Returns a new ‘DefaultRoleGenerator‘.

8 pub fn new() -> Self {

9 DefaultRoleGenerator { i: 0 }

10 }

11

12 /// Generates a new ‘RoleID‘.

13 pub fn new_id(&mut self) -> DefaultRole {

14 self.next().unwrap()

15 }

16 }

17

18 impl Iterator for DefaultRoleGenerator {

19 type Item = DefaultRole;

20 fn next(&mut self) -> Option<Self::Item> {

21 let r = DefaultRole { id: self.i };

22 self.i += 1;

23 Some(r)

24 }

25 }

Figure 5.35: Implementation of the generator of DefaultRole. Notice that it implements the Iterator trait almost for free.

Remark. Rust handles TCP connections with the TcpStream structure of the standard library. In
particular, this structure implements the method try_clone which attempts to create an independant
duplicate of the stream. Therefore, it is possible to have both a TcpLocation and a TcpReader for a
single connection. /

The TcpLocation performs a simple loop in which it proposes the following transition: it receives
some data from the write role. Upon performing that transition, the TcpLocation forward the data on
the TCP connection and the loop starts again.

The TcpReader performs the opposite loop: it polls continuously the TCP connection and, upon
reception of a line of data49, attempt to send it on a role which we call the read role. Notice that until
the data is not forwarded (i.e. until an other location receives from the read role), the TcpReader location
is blocked, and further data received on the TCP connection is buffered.

From this side, the naming convention may be unintuitive: the TcpLocation reads from the role
self.write, and vice-versa for TcpReader. We name the role from the outer world perspective: the
outer world writes on the role write and reads from read.

Finally, we also add a third structure: TcpListenerLocation which listens for new TCP connections
and, when such a new connection is established, evaluates a function.

Types for TCP locations. In order to interact with wider graphs, our two locations shall be able to
interact with various kinds of messages, sorts, and roles. For sorts and roles, they can be implemented
as generic types without restriction. Messages, however, need a bit more work: we need an local type
for messages (which we call TcpMessage), which contains two variants: (i) one which contains data (a
wrapper over Strings); and (ii) the other for administrative content (currently, we only report that the
connection shut down) (see Figure 5.36). When operating on a wider graph which uses a generic type
M for messages, we require that M can be converted to TcpMessage and the other way around, using the
From and TryInto traits of the standard library50.

49For the sake of simplicity, we assume the data received is always an UTF8 string, which we buffer by line using BufReader

from the standard library.
50Notice that we require the TryInto trait and not Into. The difference is that TryInto can fail, as its name suggests.

We choose this option because it may be the case that the user does not want to convert all M into TcpMessages. From a
more abstract point of view, we want the conversion to be a surjective partial function.
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1 #[derive(Debug, Clone)]

2 pub enum TcpMessage {

3 /// A variant which contains a line of text received or to be sent.

4 Data(String),

5 /// A generic error. In case of failure, such message is propagated and

↪→ locations are removed.

6 Shutdown,

7 }

Figure 5.36: The type TcpMessage used by the TcpLocation and TcpReader locations.

1 pub struct TcpLocation<S, A, M, R, T>

2 where

3 S: Clone + Eq,

4 A: AuthorisationFunction<Sort = S, Msg = M, RoleID = R, TransitionSet = T>,

5 M: Send + Eq + Clone + From<TcpMessage> + TryInto<TcpMessage>,

6 R: RoleID,

7 T: TransitionSet<Sort = S, AF = A, Msg = M, RoleID = R>,

8 {

9 l: Location<S, A, M, R, T>,

10 stream: TcpStream,

11 write: R,

12 }

Figure 5.37: The declaration of TcpLocation. Notice the constraint M: From<TcpMessage> + TryInto<TcpMessage>, which
means that the user of the TcpLocation has to implement the From<TcpMessage> and TryInto<TcpMessage> traits for M.

The TcpLocation structure. The declaration of TcpLocation is shown in Figure 5.37. The initiali-
sation of that location simply consists in binding the write role (the field self.write of the structure)
and creating the TcpReader location, and is therefore not shown here. The main loop is implemented in
the method TcpLocation::run which is called after initialisation (see Figure 5.38). It consists in a loop
in which the location attempts to receive from the role self.write. When the transition is performed,
the result is checked and, in case of success of the transition, two cases may occurs: (i) the message can
be converted into TcpMessage::Data(s), which is written on the TCP connection; and (ii) the message
can be converted into TcpMessage::Shutdown, in which case the TcpLocation quits. If the transition is
not successful or if the conversion from M to TcpMessage fails, then the error is ignored and we proceed
to the next iteration of the loop.

The TcpReader structure. Finally, TcpReader is even simpler. Its declaration is quite similar to
TcpLocation and its initialisation consists only in binding the read role. Therefore, we do not show these
two sections of the code. Its main loop simply reads a line from the TcpStream51 and upon reading,
performs a transition in which the data is sent. The result of the transition is ignored. If reading is not
possible, for any reason (the main one being that the connection was shut down), then the location sends
a TcpMessage::Shutdown to the outer world and quits. This main loop is shown in Figure 5.39.

The TcpListenerLocation structure. The TcpListenerLocation structure is quite simple: it uses
the TcpListener structure from the standard library to continuously listen for new connections. The
structure also has a field state: St which is a state of generic type St the programmer can use (for
instance to increment a counter everytime a new connection is established).

The action to perform upon new connection is given as a function with type Fn(&mut St, &mut

Location<S, A, M, R, T>, TcpStream). Additionnaly, the user can provide an other function to
perform additionnal actions at initialisation (e.g. binding some roles).

As shown in Figure 5.40, this location simply creates a TcpListener binding the given address. The
incoming method returns an iterator over new connections, which is blocking when no new connection
is available, which we use to call the given function f_connect on each new stream.

51To read data lines by line, the TcpStream is embedded in a BufReader<TcpStream>, which buffers the data received and
allows to access it by lines.
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1 self.l.receive(self.write.clone());

2 for transition_result in self.l.commit_changes() {

3 match transition_result {

4 Ok(item_results) => {

5 for item_res in item_results {

6 match item_res {

7 TransitionResult::RECEIVED(_, m) => {

8 match (*m).try_into() {

9 Ok(TcpMessage::Data(line)) => {

10 self.stream.write(line.as_bytes()).unwrap();

11 }

12 Ok(TcpMessage::Shutdown) => {

13 return;

14 }

15 Err(_) => {

16 eprintln!("Could not convert a message (type M) to 

↪→ a TcpMessage.");

17 }

18 }

19 }

20 TransitionResult::CREATED(_) => {

21 eprintln!("TcpLocation unexpected created location.");

22 }

23 }

24 }

25 }

26 Err(e) => {

27 eprintln!("TcpLocation error while committing a transition: {:?}.", e);

28 }

29 }

30 }

Figure 5.38: The main loop of TcpLocations. Although quite long, it is actually pretty simple: it begins by creating and
performing a simple reception on self.write. Then, most of the lines are just here for opening the result. The innermost
match performs the actual work: if some data is received, then it is written to the TCP connection; if a TcpMessage::

Shutdown is received, the function returns, and the location ends. It is then removed as usual, in the drop method (see the
paragraph on location removal in Section 5.4.1).

1 for line in reader.lines() {

2 if let Ok(line) = line {

3 self.l

4 .send(self.read.clone(), TcpMessage::Data(line).into());

5 self.l.commit_changes();

6 } else {

7 self.quit();

8 return;

9 }

10 }

11 self.quit();

Figure 5.39: The main loop of the TcpReader structure. It simply get lines from the given TcpStream and forward them on
the role self.read. The method self.quit(), not shown, simply sends a TcpMessage::Shutdown on self.read.
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1 pub fn run(mut self,

2 f_init: impl FnOnce(&St, &mut Location<S, A, M, R, T>) -> (),

3 f_connect: impl Fn(&mut St, &mut Location<S, A, M, R, T>, TcpStream) -> ()

4 ) {

5 println!("Run TCPListenerLocation.");

6 let listener =

7 TcpListener::bind(self.addr).expect("Could not bind the given address.");

8

9 f_init(&self.state, &mut self.l);

10

11 for res_stream in listener.incoming() {

12 let stream = res_stream.expect("Could not establish stream.");

13 f_connect(&mut self.state, &mut self.l, stream);

14 }

15 }

Figure 5.40: The run method of TcpListenerLocation, which implements the main loop of that location. This method
takes two arguments f_init and f_connect which are both functions: the former is called once before begining to listen
for new connections; and the latter is called each time a new connection is established.

1 create

2 Created account 1

3 share 1 1

4 Successfully shared

5 credit 1 100

6 Credited

(a) Client 0

1 New shared account 1

2 withdraw 1 100

3 Withdraw success

(b) Client 1

Figure 5.41: A run of our bank system. In this run, a client (Client 0) creates an account and shares it with an other client
(Client 1). Client 1 is notified of the sharing. Both clients can access the account, e.g. Client 0 credits 100 units on the
account, which are withdrawn by Client 1.

5.6 Encapsulation policies in Rust using Location Graphs
In this section, we implement two examples of location graph based programs. Those two examples
implement two encapsulation policies presented previously. The first example is the implementation of
a bank system, such as presented in Section 1.2. The policy implemented by this system is a (slightly
modified) owners-as-ombudsmen policy. The second example is an implementation of Publish-Subscribe
server which internally uses a logging system such as the one presented in the introduction.

5.6.1 An application of the owners-as-ombudsmen: a bank system

Bank system. We want to create a simple bank system, in which clients can create and share accounts,
and credit and withdraw units from their accounts. Clients interact with the bank using TCP connections.
They are offered a few commands: (i) create which creates a account (the number of the account is
printed back); (ii) credit i j which credits j units on account i; (iii) withdraw i j which attempt to
withdraw j units from account i; and (iv) share i j which allow client j to access account i. A run is
shown in Figure 5.41. Notice that account numbers are local to a client (i.e. Account 1 of Client 1 is not
necessary the same account than Account 1 of Client 2), also a shared account does not necessarily have
the same number for all clients.

Remark. For the sake of simplicity, we do not manage the addition or removal of clients: our bank
contains a fixed number of clients, statically chosen. Also, the ports clients use are statically assigned. In
the example presented, we only use two clients, which listen respectively on ports 10000 and 10001. /

General overview. To implement our system, we have three kinds of components: (i) an Bank com-
ponent, which coordinates actions performed by the other components (in particular the creation of
names); (ii) Client components, which perform operations on accounts according to orders received on
TCP connections; and (iii) Account components, which hold the state of all accounts. As stated in the
introduction (Section 1.2), Accounts can be shared among multiple Clients, and Clients should be able
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Client 1

Account 1 Account 2

Client 2

Account 3

Bank

Figure 5.42: Ownership relations in an instance of the bank system. In that example, three accounts are owned by two
clients: two of them are exclusive and one is shared. The Bank component is considered as an owner of the two Client
components.
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Figure 5.43: Overview of the bank system. The bank component establishes links with all clients. To create an account,
a client sends the bank a message to get a new role, which is used by the client and the (newly created) account. When
sharing an account, the current owner (or one of the current owner) tells the Bank to share the account with an other client.
To do so, the Bank creates a new role name which it forward to both the new shared owner of the account; and the client
which preforms the sharing request. The clients which performs the request forward the new role to the account, so that
both the new shared owner and the account can use the new role.

to access each of their accounts (and only those). For the sake of simplicity, we keep the specification
of Bank accesses very loose. It turned out, during the implementation, that the bank only needs to
access the client components52 to share role names. Therefore, we enforce the following policy, which is
an slight extension of the owners-as-ombudsmen policy, in order to take into account the Bank compo-
nent: except for the Bank, we have a owners-as-ombudsmen policy, where accounts are owned by one or
multiple clients; the Bank component is, in addition, considered as the owner of all Client components.
Figure 5.42 shows an example of ownership relations in a particular instance of the bank system.

This system is easily implemented using the location graph framework. We follow the procedure
explained in Section 4.1.2: Client locations expose, in their sort, an identifier and the identifier of all
Account locations they own. Account locations, on their side, expose on their sort a set of identifiers.
In addition, to take into account the additional Bank location, we consider that the Bank has a special
sort, and it binds all Client locations’ identifiers.

In addition, not addressed in this introduction, we have TCP locations. For the sake of simplicity,
all TCP related location have a special sort TCP. To focus on the owners-as-ombudsmen aspects of the
example, we do not constraint their communications. Figure 5.43 shows the location graph instance
which correspond to the example shown in Figure 5.42.

Types. In addition to TCP related locations53, we have three kinds of locations: (i) BankLocation

which implements the main Bank component; (ii) ClientLocation which implements individual clients,
and uses additional TCP locations for interactions with the user(s); and (iii) AccountLocation which
implements individual accounts.

52It is also very easy to imagine an implementation where the Bank component is not even needed, provided Clients can
generate distinct role names. We did not choose this solution for the sake of simplicity.

53See Section 5.5.3.
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1 Messages::Shared(r) => {

2 let mut rid = self.l.sort().account().unwrap().clone();

3 rid.push(r);

4 self.l.change_sort(BankSort::Account(rid));

5 self.l.bind(r, RoleDirection::REQUIRED);

6 self.l.commit_changes().pop().unwrap().unwrap();

7 }

Figure 5.44: Extract of the main loop of the AccountLocation structure. This extract shows the actions the account
performs when it receives a Shared(r) message from an owner. In that case, the location changes its sort and binds the
new role.

We use DefaultRole54 as roles.

We have four kinds of sorts: (i) Bank, for the Bank location; (ii) Client(Role, Vec<Role>), for
clients; (iii) Account(Vec<Role>), for accounts; and (iv) TCP, for TCP related locations. Notice that
both Client(Role, Vec<Role>) and Account(Vec<Role>) expose some roles, according to the imple-
mentation of owners-as-ombudsmen presented in Section 4.1.2.

Remark. For the sake of simplicity, since TCP locations and the Bank location are addition to the
owners-as-ombudsmen, we do not bother constraining their accesses. /

Finally, messages range over ten variants: (i) NewAccountReq, sent from a client to the Bank upon
the creation of a new account, to retrieve a fresh role; (ii) NewAccount(Role), the answer from the Bank,
with the fresh role piggybacked; (iii) Credit(u32), sent from a client to an account, to credit that account
of a given amount; (iv) Withdraw(u32), sent from a client to an account, to attempt to withdraw a given
amount from that account; (v) Close sent from a client to an account, to attempt to close that account;
(vi) Success; (vii) Failure, both used as response from the account to the client; (viii) Share(usize),
sent from a client to the Bank, to inform the bank that the client whishes to share an account with an
other client (with the given index); (ix) Shared(Role), the answer from the Bank, sent to the initial client
(which forwards that message to the relevant account) and the new shared owner; and (x) Tcp(String),
for all communications between a client and its TCP locations.

Locations. AccountLocations implement Account components. The structure has two fields: (i) the
underlying Location; and (ii) the current amount of units stored in the account. The sort of accounts,
which is the variant Account(Vec<Role>) of BankSort keeps the set of roles to owners. Their behaviour
is quite straightforward: they wait for messages incoming from one of their owner and react accordingly
(if the message is one of Credit; Withdraw; Close; or Shared), or ignore them otherwise. The only
non-trivial action is if a Shared(r) message is received, indicating that the account has a new shared
owner. In that case, the location has to perform an additional transtion to bind the role r (the line
self.l.bind(r, RoleDirection::REQUIRED)) and update its sort to reflect that it has a new owner
(the line rid.push(r) adds the role name r to the list of role names currently in the sort, then self.l.

change_sort(BankSort::Account(rid)) updates the sort). This case is shown in Figure 5.44.

The Bank location (structure BankLocation) manages the creation and the sharing of accounts. In
addition, it also generates all role names used in the system. That structure has three fields: (i) the
underlying Location; (ii) a DefaultRoleGenerator, presented in Section 5.5.2; and (iii) a set of roles55,
named clients, to communicate with the clients. The behaviour of the Bank location is simply to
listen to all clients (using all roles in the field clients). The Bank expects two kinds of messages: (i) a
request to create a new account (a NewAccountReq); and (ii) a request to share an existing account (a
Share(index)). In both cases, a new role r is created using the DefaultRoleGenerator. In the first
case, this role is simply send using a NewAccount(r) message; in the second case, this new role is set
to both the new client and to the original owner (which forwards it to the account to share), using a
Shared(r). The second case fails (the Bank sends back a Failure message) if the owner tries to share
an account with itself. Figure 5.45 shows the extract of the implementation which performs this reply
mechanism. The location distinguishes two cases: first, if the message msg is a NewAccountReq, and,
second, if it is a Share(client_index), where client_index is the index of the client to share the
account with. In the first case, the Bank location simply replies with a new role name (it commits a

54See Section 5.5.2.
55This field is implemented as a Vec<Role>, which makes it accessible by index. Also, since the set of clients is statically

set, each role to a client in that set can be accessed by an integer which does not change during the program execution.
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1 TransitionResult::RECEIVED(rid, msg) => {

2 if let Messages::NewAccountReq = *msg {

3 self.l.send(rid, Messages::NewAccount(self.rg.new_id()));

4 self.l.commit_changes().pop().unwrap().unwrap();

5 } else if let Messages::Share(client_index) = *msg {

6 if let Some(role) = self.clients.get(client_index) {

7 if *role != rid {

8 let new_role = self.rg.new_id();

9 self.l.send(*role, Messages::Shared(new_role));

10 self.l.send(rid, Messages::Shared(new_role));

11 self.l.commit_changes().pop().unwrap().unwrap();

12 break ’main_loop;

13 }

14 }

15 self.l.send(rid, Messages::Failure);

16 self.l.commit_changes().pop().unwrap().unwrap();

17 }

18 }

Figure 5.45: Extract of the main loop of the BankLocation. This extract shows the management of a message msg received
from a role rid: if msg is a NewAccountReq, then the location simply commits a transition which sends a new role back to
rid; otherwise, if msg is a Share(client_index), and if the role at the given index is distinct from rid56, the BankLocation

instantiates a new role and sends it back to both the original and the new client, and fail otherwise. Other kinds of messages
are simply ignored.

transition, built with a single item with the line self.l.send(rid, Messages::NewAccount(self.rg

.new_id()))). In the second case, the Bank location first retrieve the role it shares with the future
shared owner (the line self.clients.get(client_index)). If the index is not correct (the call to get
does not return Some(role)) or if the role to the new shared owner is the role on which we received the
request (i.e. if the client attempts to share the account with itself), the Bank replies with a failure (the
transition built with self.l.send(rid, Messages::Failure)); otherwise, the Bank creates a new role
name (self.rg.new_id()) and sends it to both the requester and the new shared owner.

Remark. The break ’main_loop; in the extract can be ignored. /

Client locations (structure ClientLocation) have seven fields, among which we find: (i) the underly-
ing Location; (ii) a role rid to the Bank location; (iii) two roles, write and read, to communicate with
the associated TCP locations; and (iv) a associative map account which maps integers to roles toward
accounts (of type HashMap<u32, Role>). The behaviour of client location is longer to describe (but not
harder) than those of the BankLocation and the AccountLocations: it can receive messages from both
the TCP connection (commands from the user) and from the Bank component (in case an other client
shares an account with this client). Therefore, clients continuously attempt to receive from read and
from rid. Upon reception of a message, if it comes from the TCP connection57, the (text) line is parsed
and the client reacts accordingly58; and if the message is from the Bank59, the client binds the new role
and updates it sort accordingly.

Policy enforcement. We use exclusively the authorisation function to enforce the (variant of) owners-
as-ombudsmen policy. Therefore, we do not specify the set of unconstrained location transition (we take
the greatest possible set). In the actual implementation, we use the TrivialTS (see Section 5.5.1)
transition set, and we implement a dedicated authorisation function.

Our authorisation function has to verify two points: (i) communications should only happened between
authorised locations; and (ii) sort updates shall be done properly.

Communications should be allowed only between locations belonging in the same ownership domain.
To verify this is the case, for each message sent (i.e. for each TransitionItem::SEND(role, msg, dir)

in the transition), we have to verify that the recipient of the message belongs in the same ownership

57If the message is Tcp(text).
58The only two non-trivial cases are when the command is (i) an account creation, in which case the client has to ask a

new role name to the Bank, bind that role, and create a new account with the received role; or (ii) a request to share an
account with an other client, in which case the client informs the Bank thusly, which replies with Shared(r) (r being a new
role name) that the client forward to the account

59If it is Shared(r).
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1 let send_to_child_or_parent: bool = s

2 .get_locations_binding(&rid)

3 .iter()

4 .filter(|sk_l| **sk_l != SkeletonLoc::from(l))

5 .next()

6 .map(|sk_l| sk_l.sort())

7 .map(|sort| {

8 BankAF::owns(l.sort(), &sort)

9 || BankAF::owns(&sort, l.sort())

10 || sort.is_tcp()

11 })

12 .unwrap_or(false);

13

14 if !send_to_child_or_parent && !l.sort().is_tcp() {

15 return false;

16 }

Figure 5.46: Extract of the authorise method of the authorisation function used in the Bank system. This extract is the
section of the function which searches for the recipient of a message sent on the role rid in the skeleton location graph s,
and verifies, using the function owns (shown in Figure 5.47) that the sender l is the owner of the receiver, or vice-versa. It
also authorises communications with TCP locations.
To find the receiver, the authorisation function browses the skeleton graph and search for the skeleton locations that bind
the role on which the communication occurs. There are, at most, two such skeleton locations (the sender and the receiver).
The sender is removed, by retaining skeleton locations that are different from the skeleton of the location that takes the
transition. Then, using the sort of the sender and of the receiver, we check if one is owned by the other, and store the result
of this verification in send_to_child_or_parent. If no receiver is found (the role is unbound), then we are conservative and
assume that the sender sends to a role it does not own.

domain than the emitter. As a matter of fact, in our actual case, siblings never need to communicate
together (no two accounts or two clients have a need to exchange messages). Therefore, we implement an
even stricter policy, in which messages can only be exchanged between a parent location and one of its
child locations60. This is done in two steps, for each message: (i) search, in the skeleton location graph,
the recipient of the message (Figure 5.46); and (ii) verify that the sender is the owner of the receiver, or
vice-versa61 (Figure 5.47).

Sorts can be modified, but not all modifications are allowed. In particular, the Bank and TCP
locations can not change their sort, and Client and Account locations can change their sort, under the
condition that: (i) the new sort is the same variant than the old one (i.e. Account locations remain
Account locations, and Client locations remain Client locations); (ii) they bind the identifier they expose,
according to the owners-as-ombudsmen policy; and (iii) for Client location, the sort modification does
not change the identifier. The authorisation function simulates the transition and verifies that the new
sort is consistent with the old one and with the role bound. An extract of the function check_sort,
which performs this verification, is shown in Figure 5.48.

5.6.2 An application of the logger system: a Publish-Subscribe server

In the introduction (see Section 1.2 p. 6), we presented a generic logging system where a main component
needed multiple subcomponent and where each subcomponent can log its action using a logger component.
In this section, we show how such system can be implemented in Rust using our library. To better illustrate
this system, as well as to show the capabilities of the library, we implemented a Publish-Subscribe Server
over TCP, which activity is logged using the presented logging system.

Publish-Subscribe Server. A Publish-Subscribe server is a server used for broadcasting messages.
Messages are associated with topics. Clients can connect to the server and subscribe to some topics to
receive messages broadcasted for these topics. On the other hand, clients can also publish messages for
given topics, which are then forwarded to the clients that subscribe to the respective topic62. Figure 5.49

60We chose to implement this stricter policy because it is simpler, since there is no need to find a common parent in
the graph when two siblings communicate. Finding a common parent using the framework is straightforward since the
implementation provides functions to filter and find locations from the skeleton graph.

61To take into account TCP locations, that are not constrained, we also authorise messages toward/from locations with
sort TCP.

62In our case, clients are allowed to send messages on topics they are not subscribed to.
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1 fn owns(owner: &BankSort, owned: &BankSort) -> bool {

2 match (owner, owned) {

3 (BankSort::Client(_, v1), BankSort::Account(v2)) => {

4 for r in v1 {

5 if v2.contains(&r) {

6 return true;

7 }

8 }

9 false

10 }

11 (BankSort::Bank, BankSort::Client(_, _)) => true,

12 _ => false,

13 }

14 }

Figure 5.47: The function owns which returns true if the provided owner sort is indeed an owner of the owned sort. As
stated above, our ownership relation is close from the owners-as-ombudsmen one (A owns B if the sort of A contains an
identifier exposed in the sort of B), except that, in addition, we consider that the Bank component is an owner of all Client
locations.

1 BankSort::Client(new_id, new_owned) => {

2 if let BankSort::Client(old_id, _) = old_sort {

3 if new_id != old_id {

4 return false;

5 }

6 for owned in new_owned {

7 if !new_provided.contains(&owned) {

8 return false;

9 }

10 }

11 if !new_provided.contains(&new_id) {

12 return false;

13 }

14 true

15 } else {

16 false

17 }

18 }

Figure 5.48: Extract of the function check_sort which verify that a new sort (the BankSort::Client(new_id, new_owned)

matched) is consistent with an old sort (called old_sort) and with the new sets of provided roles (called new_provided)
of the location. This extract shows the case in which the new sort is the variant BankSort::Client(_, _). The function
successively verifies that: (i) the identifier of the client does not change; (ii) all owned identifier roles are bound in the
provided direction, in the new set of provided roles; and (iii) the identifier of the client is also bound in provided direction.
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1 /topic1

2 topic1: message 1.1

3 [topic1] message 1.1

4 [topic1] message 1.2

5 \topic1

(a) Client 1

1 /topic1

2 /topic2

3 [topic1] message 1.1

4 topic1: message 1.2

5 [topic1] message 1.2

6 topic2: message 2.1

7 [topic2] message 2.1

8 topic1: message 1.3

9 [topic1] message 1.3

10 \topic1

11 \topic2

(b) Client 2

Figure 5.49: A run of a Publish-Subscribe server with two clients. In this run, the command to subscribe to a topic is
/topic; the one to unsubscribe is \topic; and the one to publish a message on a topic is topic:message (no leading space is
inserted nor removed, for both the topic and the message). Messages received are printed as [topic]message. In this run,
both clients initially register to topic1 and Client 2 additionally register to topic2. Messages sent on topic1 (message 1.1

and message 1.2) are received by both peers (notice that clients receives all messages for the topics they subscribed to, even
if they are the publisher). The message message 2.1 sent on topic2 is not received by Client 1, since it did not subscribe
to that topic. After Client 1 unsubscribed from topic1, it does not receive messages on that channel (e.g. message 1.3).

shows an example of two clients exchanging messages using a Publish-Subscribe Server.

General overview. The server contains three main components: (i) a component (called Main) to
receive interactions from clients, whether they are (un)subscriptions to some topics or message publica-
tion; (ii) a component (called TCP Listener), created by the Main component at initialisation, to listen
for connections from new clients and which manage those new connections; and (iii) a logger component
(called Logger), which receives logs from clients and display them. The server interacts with clients using
TCP connections. The TCP Listener component listen for new connections on port 12345. Upon new
connection, the TCP Listener creates three components for the new client: (i) a component (called TCP
connection), which handles interactions with the TCP connection as explained in Section 5.5.3; (ii) a
component (called Client), which parses commands received on the TCP connections and forward them
to the Main component and which receives publications from the main component to send on the TCP
connection; and (iii) a logger subcomponent (called Logger for Client), which is an entry point for the
Client component to the Logger component. Figure 5.50 shows the overall architecture of the server.

One can clearly see that this architecture suits the logging example presented in the introduction63.
Let alone, for the sake of simplicity, the TCP Listener and the TCP connection components, and the
component graph is exactly an instance of the example presented in the introduction. Therefore, as
shown in Figure 5.51, we can easily apply the method explained in Section 4.2 and the location graph
for TCP connection presented in Section 5.5.3 to implement such a server in location graph. We simply
have to add additional sorts and roles for the TCP related connections.

Types. Sorts of our Publish-Subscribe server are of three variants: (i) Main sorts, for main components,
i.e. the S and L sorts presented above; (ii) Sub sorts, for subcomponents, i.e. the client and their logger
entrypoints, which correspond to the sorts 〈S, i〉 and 〈L, i〉; and (iii) TCP sorts, used for the additionnal
locations required for the TCP connections. As explained in Definition 82, we have two sides for sorts,
S for the system side of the location graph, and L for the logger side of location graph. We therefore
have an enumerated type Side which contains those two variants, as shown in Figure 5.52. To take into
account the additionnal TCP locations, we add a type TCPSide to distinguish the TCP locations, the
TCP readers and the TCP listener, as shown in Figure 5.53. Finally, the type of sorts is an enumerated
type which uses both Side and TCPSide to implement our Sort type, as shown in Figure 5.54.

Roles are directly implemented from Definition 83, using DefaultRole presented in Section 5.5.2
as Rb. We add two kinds of roles: TcpToSub and SubToTcp which are used between a Client and its
associated TCP locations. The type of roles is shown in Figure 5.55.

The type of messages is shown in Figure 5.56. It contains a lot of variants, but it is not necessary to
understand closely the meaning of each of these variants, since the policy does not inspect the messages.

63As a matter of fact, we identified the logging example as an interesting pattern independently from the idea of im-
plementing a Publish-Subscribe server. The fact that the chosen architecture for the server suits the logging pattern was
unexpected, which emphasises the relevance of the pattern.
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Figure 5.50: Overview of the Publish-Subscribe server. The goal of the Main component is to manage subscriptions and
publications. At initialisation, it creates a TCP Listener component which waits for incoming TCP connections. When a
new connection is established, it creates three subsystems: (i) a component to read and write from/to the connection (the
TCP connection component); (ii) a component which both parses data received from the TCP connection and interprets it,
and which listen for any broadcast from the Main component (the Client i component); and (iii) a component which logs
the execution of the Client i component, and forward it to the main logger (the Logger for Client i). Finally, the Logger
component aggregates and print all data received from any Logger subcomponent.
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〈TCPLoc, i〉 〈TCPRead, i〉

L1, . . . , Ln

Figure 5.51: Location Graph instance for the Publish-Subscribe server. We apply directly the Location Graph explained in
Figure 4.6 for the Main, Clients, Loggers for Clients and Logger components. In addition, we introduce additional sorts and
roles for the TCP related components. First, the TCP connection component is implemented as explained in Section 5.5.3,
which uses two locations. We introduce the additional sorts Listener, 〈TCPLoc, i〉 and 〈TCPRead, i〉 for, respectively, the
TCP Listener, the TCP Location (for client i) and the TCP Reader (for client i). As usual, those location bind their sorts
as provided roles to prevent duplicates. Finally, we add the role names 〈S2T, i〉 and 〈T2S, i〉 for the communication between
the location for client i and its two TCP locations. Finally, notice that, for the sake of simplicity, the location L used for
the main component of the logger has a fixed capacity n and binds roles {L1, . . . , Ln} for its whole lifetime. This choice is
consistent with respect to Section 4.2.

1 #[derive(Ord, PartialOrd, Eq, PartialEq, Clone, Copy, Hash, Debug)]

2 enum Side {

3 S,

4 L,

5 }

Figure 5.52: The enumerated type Side, which implements the two elements S and L presented in Definition 82.
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1 #[derive(Ord, PartialOrd, Eq, PartialEq, Clone, Copy, Hash, Debug)]

2 enum TCPSide {

3 Loc(u32),

4 Reader(u32),

5 Listener,

6 }

Figure 5.53: The enumerated type TCPSide, which is used for the sorts of TCP related locations. The integer in the Loc

and Reader variants is the identifier of the client which uses the given connection.

1 #[derive(Ord, PartialOrd, Eq, PartialEq, Clone, Copy, Hash, Debug)]

2 enum Sort {

3 Main(Side),

4 Sub(Side, u32),

5 TCP(TCPSide),

6 }

Figure 5.54: The type Sort used in our Publish-Subscribe server.

1 #[derive(Ord, PartialOrd, Eq, PartialEq, Clone, Copy, Hash, Debug)]

2 enum Role {

3 Base(DefaultRole),

4 Int(u32),

5 L(u32),

6 Sort(Sort),

7 TcpToSub(u32),

8 SubToTcp(u32),

9 }

Figure 5.55: The type of roles used in the Publish-Subscribe server. Except for the additionnal TcpToSub and SubToTcp used
for the interactions between a Client and its TCP locations, the four variants correspond to the four sets which compose
Rls in Definition 83.
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1 #[derive(Clone, Eq, PartialEq, Ord, PartialOrd, Debug)]

2 enum Message {

3 S(String),

4 Administrative(String),

5 Shutdown,

6 Pub(String, String),

7 NewSub(Role),

8 Sub(String),

9 Unsub(String),

10 }

Figure 5.56: The type of messages used in the Publish-Subscribe server. The variants are used as follow: (i) S(String),
which is either an arbitrary message emitted by a client to be logged or a message received over the TCP connection, sent
by the TCP location to the Client; (ii) Administrative(String), which is an administrative message emitted by a logger
subcomponent to be logged; (iii) Shutdown, which is propagated among locations related to a particular Client when the
connection is closed; (iv) Pub(String, String), which is exchanged between Clients and the Main component to indicate a
message is published on a given topic; (v) NewSub(Role), which is sent from the TCP listener to the Main component when
a new Client is created, in order to provide the Main component a role toward this new Client; (vi) Sub(String), which is
sent from a Client to the Main to indicate that the Client subscribes to the given topic; and (vii) Unsub(String), which,
on the contrary, indicates that a Client unsubscribes from a given topic.

Locations. Locations are split among four structures, with the addition of the three TCP locations
presented in Section 5.5.3. The four structures are, in the order we will present them:

1. SubComp, which implements a Client component
2. Main, the main system component
3. LoggerComp, which implements the logger entrypoint of a Client component
4. Logger, the main logger component
The SubComp (see Figure 5.57) location continuously attempt to receive messages from either the Main

location or the associated TcpReader location. Upon reception of a message, (i) if the message comes
from the associated TcpReader location, if that message is a S(String), the message is parsed into the
corresponding command message (a Pub(String, String), a Sub(String), or a Unsub(String)) and is
forwarded to the Main location, or if it is a Shutdown, the loop breaks and the client terminates; or (ii) if
the message is from the Main location, and that message is a Pub(topic, message), then a corresponding
String is formatted and sent to the corresponding TcpLoc. In any case, the action is logged: an adequate
message is sent to corresponding LoggerComp location. The SubComp location has a method local_log

used to send a message to the corresponding logger (see Figure 5.58).
The goal of the Main location is to keep track of client subscriptions and to broadcast messages

accordingly. The Main structure (shown in Figure 5.59) contains a field roles which has type HashMap<

Role, Vec<String>>. This structure holds, for each role from the Main location to a SubComp location,
the set of topic the SubComp has registered too. In addition, it has a separate role toward the TcpListener
(the field to_listener in order to receive updates when a connection is establish to a new client. In its
main loop, this location (see Figure 5.60) listens for messages from all known client (i.e. from all roles in
the HashMap<Role, Vec<String>> maintained) and from the listener. Upon reception of a message, the
location updates its hashtable, in the case of a Sub, Unsub, NewSub, or Shutdown message; or publish it,
in case of a Pub message. To publish a message, it simply sends it to all roles in the hashtable that have
the relevant topic in the associated set of topics.

Each SubComp is associated to a LoggerComp. The LoggerComp (see Figure 5.61) continuously listens
on the role Int(i), where i is the integer in its sort. Upon reception of a message from the associated
SubComp, the message is forwarded to the Logger.

The Logger structure (see Figure 5.62) has an initial capacity used to indicate the number of roles
the logger listens to. The Logger initially binds all roles L(i) with i smaller than the capacity and
then continuously waits to receive logs from any of those roles. Messages received are either S(msg) (for
regular logs) or Administrative(msg) (for logging LoggerComp activity itself). Upon reception of any
of those two messages, the Logger formats it accordingly and displays it on stderr. Figure 5.63 shows
the main loop of the logger.

Remark. When we described the behaviour of the TcpListenerLocation location in Section 5.5.3, we
saw that it is implemented as a location with holes, where the real work is left empty so that the user can
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1 for trans_result in result.unwrap() {

2 match trans_result {

3 TransitionResult::CREATED(_) => {}

4 TransitionResult::RECEIVED(rid, m) => {

5 if rid == self.tcp_to_sub {

6 match *m {

7 Message::Shutdown => {

8 self.local_log("Shutdown.".to_string());

9 break ’main;

10 }

11 Message::S(topic) => {

12 self.local_log(format!(

13 "Received \"{}\" from TCP.",

14 &topic

15 ));

16 let msg = string_to_msg(topic);

17 if let Some(m) = msg {

18 self.l.send(self.sub_to_main, m);

19 self.l.commit_changes();

20 }

21 }

22 _ => {}

23 }

24 } else {

25 // Received from sub_to_main

26 match *m {

27 Message::Pub(topic, message) => {

28 self.local_log(format!("[{}]{}", topic, message));

29 self.l.send(

30 self.sub_to_tcp,

31 Message::S(format!("[{}]{}\n", topic, message)),

32 );

33 self.l.commit_changes();

34 }

35 _ => {}

36 }

37 }

38 }

39 }

40 }

Figure 5.57: The part of the main loop of the SubComp location structure which evaluates the result of the transitions
attempted. No location creation is attempted, and therefore no CREATED transition result can be received: thus we simply
ignore any of those. In case a RECEIVED(rid, m) is in the result of a transition, we look at rid which indicates which
location sent the message: if the message comes from the TcpReader, it can takes two forms: either a Shutdown, in which
case we break the loop; or a S(msg), in which case we parse (using the method string_to_msg, which we do not show here)
the string msg to obtain a command to send to the Main; otherwise, rid is the role toward de Main location, and the message
can only be a Pub(topic, message), which is then formatted and sent to the TcpLoc location.
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1 fn local_log(&mut self, s: String) {

2 if let Sort::Sub(Side::S, i) = *self.l.sort() {

3 self.l.send(Role::Int(i), Message::S(s));

4 self.l

5 .commit_changes()

6 .pop()

7 .expect("Could not find the result of the transition.")

8 .expect("Could not find the result of the transition.");

9 }

10 }

Figure 5.58: The local_log method of the SubComp structure. This method simply embeds a given string in a S message
and sends it (blindly) to the associated logger location, using the role Int(i). Notice the two expect lines: the method
commit_changes returns a vector of results, from which we take the first value (method pop()); the method pop() possibly
fails if the vector is empty (which never happens in our case): it therefore returns an Option<T>, where T is the type of
values in the vector, in our case Result<_, _>. The first expect opens the Option, the second the Result<_, _>.

1 struct Main {

2 l: Location<Sort, LoggerAF, Message, Role, LoggerTS>,

3 roles: HashMap<Role, Vec<String>>,

4 to_listener: Role,

5 rg: Option<DefaultRoleGenerator>, // Kept only between instantiation and

↪→ initialisation.

6 }

Figure 5.59: The Main structure, used to implement the Main location of our system. The field roles associates each known
role toward a SubComp the set of topic the corresponding client subscribed to. The field to_listener is used to receive, from
the TcpListenerLocation, the roles to the new client upon connection.

specify it. In this example, and for the sake of conciseness64, we do not show this part in detail: one just
need to know that, upon new connection, the TcpListenerLocation creates the four locations for the
new client: the SubComp, the LoggerComp, and the two TCP locations TcpReader and TcpLocation. /

As it is right know, there is no guarantee of forward progress. Actually, there is a possibility of
deadlock if: (i) a SubComp sends a command to the Main; and (ii) the Main broadcasts a message
to multiple client, including the one above. This is due to the fact that, when broadcasting a
message, the Main component proposes a transition in which it tries to send the message to all
relevant clients. Also, a when a SubComp sends a command to the Main component, it proposes
a transition which sends a (command) message to the Main component. Therefore, if both events
happen simultaneously, the system ends up in a state in which both the Main and the SubComp

components propose a transition which is not matched. Therefore, the system deadlocks.
For the sake of simplicity, we ignore this possibility, since we are more concerned about safety
than liveness. Also, fixing such problem would not be technically hard, but is not relevant for the
purpose of demonstrating the safety of the policy.

Policy enforcement. To enforce the logging policy, we take the same approach as presented previously
(see Section 4.2): with a carefully specified set of unconstrained location transitions, it is possible not to
use the authorisation function. Of course, we have to adapt this set of unconstrained location transitions
to take into account the additional locations required for the managment of TCP connection. All in all,
specifying this set (i.e. writing a structure and implementing the TransitionSet trait) took around one
or two hour(s)65 and the result take around 200 lines of code (the code was not optimised for conciseness,
but for clarity instead, which yields longer code).

Remark. Our adaptations to take into account TCP related locations are the following: (i) locations with
sort 〈TCPLoc, i〉 are allowed to bind 〈S2T, i〉, in addition to their sort; (ii) locations with sort 〈TCPRead, i〉

64And also because there is no hidden black magic.
65Excluding the time to write the binds_only and forbid_self_removal utility functions, which are now available in the

utils module.
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1 for r in res {

2 match r {

3 TransitionResult::RECEIVED(rid, m) => match *m {

4 Message::Pub(topic, message) => {

5 self.submit(topic, message);

6 }

7 Message::Sub(topic) => {

8 self.roles.get_mut(&rid).unwrap().push(topic);

9 }

10 Message::Unsub(topic) => {

11 self.roles.get_mut(&rid).unwrap().retain(|t| *t != topic);

12 }

13 Message::NewSub(r) => {

14 self.l.bind(r, RoleDirection::PROVIDED);

15 match self.l.commit_changes().pop().unwrap() {

16 Ok(_) => {

17 self.roles.insert(r, Vec::new());

18 }

19 _ => {}

20 }

21 }

22 Message::Shutdown => {

23 self.roles.retain(|r, _| *r != rid);

24 }

25 _ => {}

26 },

27 _ => {}

28 }

29 }

Figure 5.60: Extract of the body of the loop of Main. This location attempts to receive commands from all known roles (not
shown) and, when a transition is taken, the extract presented here is executed. Depending on the kind of the command,
the HashMap self.roles is updated (in the case of Sub, Unsub, NewSub and Shutdown); or, in the case of Pub, the message is
broadcasted using the method submit (not shown).
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1 self.l.receive(Role::Int(i));

2 match self

3 .l

4 .commit_changes()

5 .pop()

6 .expect("Could not find the result of the transition.")

7 {

8 Ok(msgs) => {

9 for msg in msgs {

10 match msg {

11 TransitionResult::RECEIVED(_, m) => match *m {

12 Message::Shutdown => {

13 self.local_log("Shutdown.".to_string());

14 return;

15 }

16 _ => {

17 self.l.send(Role::L(i), *m);

18 self.l.commit_changes();

19 }

20 },

21 TransitionResult::CREATED(_) => {

22 self.local_log(String::from(format!(

23 "Received an unexpected location creation transition result"

24 )))

25 }

26 }

27 }

28 }

29 Err(e) => self.local_log(String::from(format!(

30 "Trying to receive from {:?} failed: {:?}",

31 Role::Int(i),

32 e

33 ))),

34 }

Figure 5.61: The body of the loop of the LoggerComp location. This location continuously waits for a message on role Int(i)

and, upon reception performs one of the following: (i) if the message is Shutdown, then the location quits; and (ii) otherwise,
the message is simply forwarded to the Logger location.

1 struct Logger {

2 l: Location<Sort, LoggerAF, Message, Role, LoggerTS>,

3 capacity: u32,

4 }

Figure 5.62: The Logger structure which includes a field capacity to represent the maximum number of logger subcompo-
nents it can manage.
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1 for i in 0..self.capacity {

2 self.l.new_transition();

3 self.l.receive(Role::L(i));

4 }

5

6 let mut i = 0;

7 for transition_result in self.l.commit_changes() {

8 match transition_result {

9 Ok(msgs) => {

10 for msg in msgs {

11 match msg {

12 TransitionResult::RECEIVED(_, m) => match *m {

13 Message::S(s) => self.log(format!("[Component {}]: {}", i,

↪→ s)),

14 Message::Administrative(s) => {

15 self.log(format!("[Logger {}]: {}", i, s))

16 }

17 _ => self.log(format!(

18 "[Logger]: Received unexpected {:?} from {}",

19 m, i

20 )),

21 },

22 TransitionResult::CREATED(_) => {

23 self.log("[Logger]: Received unexpected CREATED".to_string

↪→ ())

24 }

25 }

26 }

27 }

28 Err(TransitionError::NotSelected) => {}

29 Err(e) => {

30 self.log(format!("Can not receive from {}: {:?}", i, e));

31 }

32 }

33 i += 1;

34 }

Figure 5.63: The main loop of the Logger location. The first step consists in proposing the reception of a message for any
role L(i), each time on a different transition. Only one of those transitions can be selected at a time. Once a transition
is taken, the result is deconstructed to access the content of the message: an Administrative message is generated by the
LoggerComp, while a S message is generated by the SubComp and the LoggerComp is just a proxy. Depending on the message,
the Logger formats the string accordingly and displays it on stderr (in the function log, not shown).
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1 fn contains(

2 &self,

3 t: &Transition<Sort, Message, Role>,

4 l: &Location<Sort, LoggerAF, Message, Role, LoggerTS>,

5 ) -> bool {

6 if !LoggerTS::common_constraint(t, l) {

7 return false;

8 }

9

10 match *l.sort() {

11 Sort::Main(Side::L) => {

12 return LoggerTS::l_constraint(t, l);

13 }

14 Sort::Main(Side::S) => {

15 return LoggerTS::s_constraint(t, l);

16 }

17 Sort::Sub(Side::L, i) => {

18 return LoggerTS::sub_l_constraint(t, l, i);

19 }

20 Sort::Sub(Side::S, i) => {

21 return LoggerTS::sub_s_constraint(t, l, i);

22 }

23 Sort::TCP(TCPSide::Loc(i)) => {

24 return LoggerTS::tcp_loc_constraint(t, l, i);

25 }

26 Sort::TCP(TCPSide::Reader(i)) => {

27 return LoggerTS::tcp_read_constraint(t, l, i);

28 }

29 Sort::TCP(TCPSide::Listener) => {

30 return LoggerTS::listener_constraint(t, l);

31 }

32 }

33 }

Figure 5.64: The contains method of the LoggerTS structure. This method first calls common_constraint, and if no violation
of the common constraints are found, it then proceeds to the verification of constraints based on the sort of the location
taking the transition.

are allowed to bind 〈T2S, i〉, in addition to their sort; and (iii) the location with sort Listener is allowed
to bind roles in Rb, in addition to its sort. /

Our structure (called LoggerTS) is trivial, as it does not need any field. Concerning the contains

method (required by the TransitionSet trait), there are two kinds of requirements for the set of
unconstrained location transitions: those which depends on the location (e.g. which role bindings are
allowed for a given location) and those which apply to all locations (e.g. all locations have to binds
their sort to ensure sort uniqueness); therefore the contains method is split in two parts, as shown in
Figure 5.64: (i) a call to a function common_constraint, independently of the location; and then (ii) a
call to a specific function, depending on the sort of the location (e.g. sub_s_constraint for the location
with sorts Sub(S, _)).

The function common_constraint, shown in Figure 5.65, simply loops over all transition items
of the transition, and verifies that it is consistent with the constraints we want to enforce (eg, if a
TransitionItem::Sort(s) is found, with an s different from the current sort of the location taking the
transition, then it forbids the transition; this particular example ensures that locations can not change
their sort).

Finally, concerning specific functions we have to check that they bind only the roles they are allowed
(e.g. , locations with sort Sub(L, i) are only allowed to bind Int(i), Sort(Sub(L, i)), and L(i)) and,
for the Main component and the Logger, that they do not terminate. All specific functions look alike,
and an example is shown in Figure 5.66.
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1 TransitionItem::SORT(s) => {

2 if **s != *l.sort() {

3 return false;

4 }

5 }

6 TransitionItem::CREATE(s) => {

7 // Be sure that each new <S, i> is matched by a <L, i> and vice-versa

8 let new_sorts = t.into_iter().filter_map(|t_item| {

9 if let TransitionItem::CREATE(s2) = t_item {

10 Some(s2)

11 } else {

12 None

13 }

14 });

15

16 if let Sort::Sub(Side::S, i) = **s {

17 if new_sorts

18 .filter(|s2| ***s2 == Sort::Sub(Side::L, i))

19 .next()

20 .is_none()

21 {

22 return false;

23 }

24 } else {

25 if let Sort::Sub(Side::L, i) = **s {

26 if new_sorts

27 .filter(|s2| ***s2 == Sort::Sub(Side::S, i))

28 .next()

29 .is_none()

30 {

31 return false;

32 }

33 }

34 }

35 }

36 TransitionItem::RELEASE(Role::Sort(_), _) => {

37 return false;

38 }

39 TransitionItem::BIND(Role::Sort(s), RoleDirection::PROVIDED) => {

40 if s != l.sort() {

41 return false;

42 } else {

43 // If l binds its sort, remember it

44 bind_sort = true;

45 }

46 }

47

48 _ => {}

Figure 5.65: Extract of the common_constraint function. This extract is the body of the pattern matching over transition
items of the transition. In turn, we can see that: (i) sorts can not be modified; (ii) creation of a location with sort Sub(S, i)

must be matched by the creation of Sub(L, i), and vice-versa; (iii) locations can not release the role that contains their
sort; and (iv) locations can bind role with a sort, as long as it is the sort they carry.
Outside this loop (not shown) we additionally check that locations do bind their sort, if not bound already. This is required
because, contrary to the theoretical framework, new locations in our implementation can not be created with roles already
bound; we therefore have to check that each location binds their sort during their initial transition.
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1 fn l_constraint(

2 t: &Transition<Sort, Message, Role>,

3 l: &Location<Sort, LoggerAF, Message, Role, LoggerTS>,

4 ) -> bool {

5 forbid_self_removal(t, l)

6 && binds_only(t, |r, d| match r {

7 Role::Sort(Sort::Main(Side::L)) if *d == RoleDirection::PROVIDED =>

↪→ true,

8 Role::L(_) => true,

9 _ => false,

10 })

11 }

Figure 5.66: The function l_constraint which checks the specific constraints for locations with role Main(L). This function
uses the functions forbid_self_removal and binds_only of the utils module to prevent the removal of the location and
the binding of unwanted roles. In this case, this location is allowed to bind its sort (to preserve uniqueness) and roles toward
logger subcomponent, i.e. those with name L(_).



Chapter 6

Conclusion

6.1 General conclusion
In this thesis, we studied two aspects of location graphs.

First we studied various notions of encapsulation for location graphs. We showed that the framework
can accommodate a wide range of different forms of encapsulation. To emphasize that those notions of
encapsulation indeed relate to a form of information hiding, we developed a generic method to nest some
parts of the graph into bigger aggregates. Our main result of this first part is that the nested version of
the graph behave correctly with respect to the original version. In addition, we showed that, even with
notions of encapsulation that do not have a unique intuitive partitioning of objects (typically in the case
of sharing), our method is such that the multiple possible views of the encapsulation can co-exists, and
that we can easily switch from one to another, even during the run.

To perform this analysis, we had to introduce a new notion of (bi)simulation, to relate instances from
different models of location graphs.

In the second part of this thesis, we implemented the location graph framework as a Rust library. We
first defined an abstract machine for location graphs, to detail the primitives available to the user, as well
as their behaviour. This abstract machine is then implemented as a Rust library, and allows any user
to program with the location graph paradigm, such as one can program with the actor model paradigm
using e.g. Akka in Scala.

We illustrate the usage of this library with various examples, two of which being presented in this
manuscript.

On the notion of encapsulation. To achieve the first part of our work, which is to characterize the
notion of encapsulation, we had to proceed in two steps. We wanted to characterize encapsulation with a
behavioural equivalence, therefore our first step was to formalise the notion of behavioural equivalence; our
second step was to characterise the notion of encapsulation; and finally, we had to prove that this notion
of encapsulation was indeed correct, with respect to the behavioural equivalence. To our knowledge, the
characterisation of encapsulation as a behavioural equivalence is original. Traditionnally, encapsulation
is characterised with a notion of information hiding/absence of information leaks. I think a behavioural
approach is more flexible, in that it does not assume anything on the component graph.

Our notion of behavioural equivalence is characterised as a simulation relation. More precisely, we
introduced the notion of heterogeneous simulation and we adapted the notion of partial bisimulation,
to end up with a notion of partial heterogeneous bisimulation. Heterogeneous simulation allows us to
compare location graphs with different basic types, thanks to equivalence relations between environments
and labels each instance. On the other hand, partial bisimulation is a weaker form of bisimulation, in
which some labels can be ignored. Finally, a partial heterogeneous bisimulation is a relation which is an
heterogeneous simulation and which inverse is also an heterogeneous simulation, up to some labels.

We defined encapsulation with a notion of nesting: we split a location graph into multiple subgraphs,
and we nest each subgraph in individual locations. This forms a new location graph, which processes
are graphs. We gave a formal description of this process. In addition, we had to specify the semantics
of such nested location graphs, which are expressed as location graph semantics; which emphasize that
nested location graphs are location graphs.

Finally, we showed that nested location graphs are bisimilar to their flat counterpart, using our notion
of bisimulation.

The proof is not trivial, but we can summarise it intuitively. The most important step is to show
that the way we split the graph does not matter, and that when reducing, we can exchange location at
will. Proving the bisimulation result in itself is quite classic: we show separately that the nested graph
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simulates the flat graph (which is easy, since we constructed the nested graph with that in mind), and
that the flat graph simulates the nested graph, if no administrative labels are found. The difficult part
is that, even if no administrative labels are found at the base level, we can not deduce that no such label
appears at all: in particular, if two matching labels are present, they are erased. Therefore, we can not
perform a standard proof by structural induction. Fortunately, even if such administrative labels appears
internally, we show that we can remove them, until no such label are found (said otherwise, we can always
find an other way to split the graph which generates no administrative labels, at any level). With that,
concluding the proof is quite mechanical.

With our new notion of encapsulation, we studied how classic isolation policies would apply.
First we studied the family of ownership-based type systems, used to implement hierarchical struc-

tures (with sharing). In this first set of example, we implemented location graphs which guarantee the
same isolation invariants than the ownership type systems. We showed that this is indeed a form of
encapsulation. In addition, we showed that those invariant are indeed close to each other, and slight
variation on the ownership relation are sufficient to switch from one to an other. In those first examples,
we ensured our invariants thanks to the authorisation function.

Second, we implemented an ad-hoc policy, in the form of a simple logging service. This policy is not
hierarchical, and there are multiple ways to encapsulate its components. We showed that the location
graph framework is expressive enough to accommodate such non-hierarchical structures. In this second
example, we enforced the invariant with a careful specification of the location reduction rules, contrary
to the first example. Therefore, for that example, there is no need for the authorisation function. This
illustrate the trade-off one designer faces: putting the complexity in the semantics or in the dynamic
verification.

On the implementation. The second part of our work is the implementation of the location graph
framework in Rust, and the implementation of some of the examples we presented in this thesis.

Rust was chosen for convenience. The isolation guarantees provided by its type system proved useful;
in particular, a first attempt of implementation in Java, which was much more limited than the current
one, was much longer, in terms of lines of code, and of higher complexity. The Rust programming
language allows the current implementation to be less than 3000 lines of code long (including utilities,
including inline documentation, excluding examples), which is quite small.

The library is composed of two main part, following the location graph spirit: an authorisation
function part, and a location part. The authorisation function simply is a trait (an interface), than one
has to implement, which decides whether a transition is authorised or not. The location part, on the other
hand, provides a few primitives to allow a location to take transitions. In our library, a location transition
is an aggregate of transition items, such as message exchanges or graph modification. When a transition
is fired, all or none of the items are performed, in a transaction style. In addition, a single location can
propose multiple alternative transitions at once, only one of those being chosen by the system.

Internally, the operation is quite simple, yet computationally expensive: since locations can propose
multiple alternative transitions, we compute all possible combinations to find a suitable one (i.e. a com-
plete combination, correct with respect to the chosen authorisation function). In addition, we maintain
a skeleton of the location graph, which is used to evaluate the authorisation function.

Even if our implementation is not optimised, I want to emphasize that it is not just a demonstration
example nor a research artifact. In particular, it assumes almost nothing about the basic types (for
instance the types of messages can be anything, and not just integer or such), and the constraints are
forced by technical reasons: typically, when two locations synchronise on a value, the type of that value
must provide a notion of equality.

Finally, we produced two examples which illustrate two isolation policies that we followed through
this manuscript. The first example is an example of a bank system, which illustrate a form of shared
ownership. The second example is a Publish-Subscribe server, which illustrate an ad-hoc isolation policy.
Those two examples are quite short (respectively 680 and 830 lines, all included). Implementing those two
examples showed that, even for distinct examples, some construct would be common, such as locations
to establish TCP connections, which are to be used in servers. We grouped those common constructs in
a utility module, so that it can be used by others.

6.2 Future work

6.2.1 Short term

Along this manuscript, we left opened some problems as future work. In this section, we review all those
problems, which I expect to be easily solvable (for instance, during an internship or a master thesis).
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Higher-order nesting. As a conclusion of the section on nesting 3.3.4, we informally presented an
intuition for higher-order nested graphs. An important step forward would be to extend our partial
bisimulation result (Theorem 4) to such nesting. Of all the presented short term goals, this one is
probably the most uncertain (and also the more interesting).

Improving the confidence in our results. Mechanisms and results on location graphs presented in
Chapter 3 are quite intuitive, but their formalisation, which introduce tens of definitions and lemmas,
is quite hard to follow and is prone to error. While I am quite confident in the overall correctness of
the theorem shown, the complexity of the framework makes me almost sure that some errors (or some
unintended shortcuts) are present in the proofs, despite all the care put in proofreading the manuscript.

As a consequence, formalising the theoretical work presented would greatly increase the confidence
we can have in the result presented. While proving the elements of this work, I always kept in mind this
future step, detailing every step so that the proof could (hopefully) be easily ported into a proof assistant
such as Coq.

Concerning formal verification, the other side of the coin is proving that our implementation is actually
correct. There are two steps to do achieve this goal: proving a correspondence between the formal model of
location graphs and our abstract machine, and then proving that our implementation indeed implements
the abstract machine.

The main problem of this is that, as of today, the infrastructure to verify Rust code is at its very early
stages (remember that Rust was first released in 2015). Promising tools include, for instance, Prusti [6],
however the results are quite recent (the initial commit of the Prusti project dates from December 2017,
their presentation paper dates from October 2019).

That being said, the correspondence between the framework and the abstract machine can already
be conducted using more traditional, such as Coq.

Improving the usability of our implementation. I do not claim that our implementation is the
fastest, nor the smartest. I only claim it is the first one, and as such, I intend it to be more a prototype
than a production ready product. While I will discuss in the following section the long term vision I have
for that implementation, I can present here some possible improvements that are directly accessible.

First, a useful tool would be the ability to merge different LocationSystems. This can be achieved
in different ways. For instance, we could develop some ad-hoc locations (like the ad-hoc TCP locations
we presented) so that different instances could communicate together. An other approach could be to
actually reuse our theoretical work on nesting, and to explore how could such a system be implemented1.

Second, with the development of more examples, one could try to figure out some common patterns
and integrate them in our utility library. Location graphs present a novel way to program, and I am
very curious of which patterns will emerge. Similarly to TCP locations, which addition to the utility
library was driven by the needs we had to implement our examples, I expect that more generic locations,
authorisation functions, transition sets, etc. can be added in a short term future.

Finally, we anticipated the usage of matching errors in Section 5.2.2, but we did not implement a
detection mechanism. The implementation of that mechanism will surely prove useful in practice.

6.2.2 Perspectives

To conclude this thesis, let us have a word about long term perspectives of this work.

Encapsulation as a locality property. Considering encapsulation policies and isolation, this work
exhibits a direct relation between the two notions, by relating a policy, implemented with an authorisation
function and a notion of nesting.

Here, we can have a philosophical debate about whether all forms of nesting should be understood
as encapsulation. With our method, we can create a similar graph with any partitioning of the graph,
whether or not this partitioning makes sense. Think, for instance, of a chaotic location graph instance:
even with such instance, without apparent notion of encapsulation, we can group arbitrary locations
together and find a similar nested graph. Of course, there is no hierarchy, and such nesting would not be
very useful.

However, when we talk about encapsulation (even in relaxed policies), we usually have more than just
grouping arbitrary objects together. I think that the additional notion we informally think of is a notion
of locality : we have the mental image that actions of an object are only constrained by objects in the
same group and with objects it interacts with. Of course, the very introduction of this thesis intended
to show that there is not a single good notion of encapsulation.

1We actually showed that this can be achieved naively: our problem here should focus on practical concerns, a naive
implementation would surely be unusable in practice.
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I think a good way to pursue this work would be to search for some classes of authorisation function
that would correspond to usual notion of encapsulation. Typically, we would be interested in a class
of authorisation functions which depends on a subset of the skeleton graph. This would characterise
locations where we can abstract away some knowledge of the graph, and this would give us an obvious
partitioning function.

The practical implication of local authorisation functions. In addition to its theoretical utility,
such a class of authorisation function would also be useful in practice: if we remember our implementation,
we have to lock the whole skeleton graph each time a transition is proposed, so that the evaluation of
the authorisation function is atomic with the evaluation of the transition. With a local authorisation
function, all of a sudden, we are not forced to lock the whole skeleton graph: we can simply lock the area
of the skeleton graph the authorisation function depends on.

This is of prime importance, since this would mean that we can find a local partitioning function: that
is we nest together locations that depend on each other. With such property, I would not be surprised if
we could implement a lock-free evaluation of the authorisation function.

Also, an other view of such approach is that, if we aim at distributing the location graph, we have a
very natural view of which locations should be on the same node.

Of course, all this is just an extension of the nesting method developed in this thesis, but specialising
on a function would allow us to do more assumptions about the instance, and therefore, a dedicated
implementation would be more efficient.

A distributed implementation. So far, the implementation we presented in Chapter 5 is only a
library for Rust. While behind motivated by encapsulation problems, typically in object oriented lan-
guages, I think the framework is also suitable to think about distributed systems.

Therefore, it would be an interesting direction to implement a distributed virtual machine for the
framework. For instance, such virtual machine could be based on Beam, the Erlang virtual machine [24].
Of course, such endeavour requires an effort to provide a distributed algorithm for the verification of the
authorisation function, which relates to the points above.

As we showed in Chapter 4, some policies can be implemented using either the authorisation function
or the set of unconstrained location transition. Since the unconstrained location transition does static
verification, in the sense that the verification does not need an view on the current state of the graph (i.e.
the set of unconstrained location transition is provided, and we just have to verify if the transition is in that
set), it would be very interesting to have an automated way to take some of the verifications performed
by the authorisation off, and to perform them using the set on unconstrained location transition. Such
verifications could require modifications on the graph (e.g. the addition of new roles to exchange new
administrative messages related to the verification). More formally, given an instance G, the goal would
be to find a new instance G′, such that both models are bisimilar and such that the authorisation function
of G′ puts less constraints.

A word on bisimulation. In the introduction of the location graph framework, we showed that the
notion of bisimulation we had was not suitable to compare heterogeneous instances of location graphs,
and we therefore introduced a new notion of external bisimulation.

While I have a good intuition of what behaviour I wanted for this bisimulation, and I am quite
confident this new notion is useful, we lack some ground theory of the bisimulation itself, even in the
context of other languages. Said otherwise, the definition we have right now is very ad-hoc, but I think it
could be generalised and useful in other languages. We also mentioned a notion of internal (bi)simulation
we started (see Appendix B), which is not satisfying right now, even though it takes an interesting
approach.

The domain of (bi)simulations is quite dense, with a lot of subtle variants, and I definitively do not
have an understanding of the field deep enough to be able to confidently relate our new notion with
existing ones, even tho this question is of prime importance. To be honest, I have the feeling that a
major part of this thesis (if not the whole thesis) could have been on the study of our new bisimulation
and its relation with other kinds of bisimulations and its applications on other languages.



Appendix A

Rust in a nutshell

At first sight, Rust programs may be hard to read. With a few notes on what is important and what
can be safely ignored, a non-Rust programmer should be able to get the essence of programs. The goal
of this appendix is to give such programmer the minimal set of tools to understand the examples given
in the thesis.

A.1 Quick introduction to Rust

We first introduce the main concepts of Rust.

Types. In Rust, for each type T, there are four variants:

— T an immutable value of type T;
— mut T a mutable value of type T;
— &’a T a pointer to an immutable value of type T, defined in the scope (a.k.a. lifetime) ’a;
— &mut ’a T, idem, except that the value is mutable.

For references, there might not be, at the same time, multiple mutable references, or a mutable
reference and immutable references.

Remark. Some obvious lifetimes can be inferred by the compiler, in which case they can be elided. /

Furthermore, when using generic types, it is possible to specify some trait constraints – see below – on
the generic, e.g. writing e.g. T: Copy + Send, meaning that we accept any type T as long as it implement
Copy and Send.

Structures and objects. As usual, Rust allows to write structures, which are aggregates of values.
The object aspect of structures comes with implementation blocks, which allows to write methods and
associated functions (see Figure A.1).

Traits. Rust traits are mostly like interfaces in Java: their goal is to define a common behaviour to
multiple structures, via collecting methods together.

Among the differences with Java interfaces, some differences are:

— Anyone can implement a new trait for a structure.
— Trait can include constants or associated types.
— The return type of methods may depends on the implementation.

For instance, in Figure A.2, we define a trait MyTrait. One of the differences with Java interfaces is
that structures and traits are less tightly coupled: the writer of a structure can implement a trait written
by someone else (as in Java), and the writer of a trait can implement its trait for structures written by
someone else (See Figure A.3).

Associated types are quite complementary to generic types. One can read more informations about
the similitudes and differences in the following documents:

— The first paragraph of https://doc.rust-lang.org/book/ch19-03-advanced-traits.html
— The answer, which gives an intuition of when to use generics and associated types: https://

stackoverflow.com/a/32065644/6022274

Copying with Copy and Clone. The two standard traits Copy and Clone indicate two ways of copying
memory: to indicate that a structure can be copied by copying bits (like using memcpy), the trait Copy is
used; when copy requires a special special procedure (e.g. incrementing the counter of a reference counting
pointer), the trait Clone is used. The compiler implicitly calls Copy, while cloning is explicit.

Remark. Copy implies Clone. /
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1 struct MyStruct<T> {

2 x: T,

3 y: Vec<T>,

4 }

5

6 impl<’a, T> MyStruct<T> {

7 fn push(&mut self, mut t: T) {

8 std::mem::swap(&mut t, &mut self.x);

9 self.y.push(t);

10 }

11 fn head(&’a self) -> &’a T {

12 &self.x

13 }

14 }

Figure A.1: Example of a structure MyStruct and two methods push and head. Notice that the structure is generic over
type T. Also, notice the usage of lifetimes (in this case, lifetime could be elided, as the compiler would be able to infer
them).

1 trait MyTrait: SubTrait {

2 type AssociatedType;

3 const CONST: &’static str = "Hello, World";

4

5 fn trait_method(self) -> Self::AssociatedType;

6

7 fn default_implementation(&self) -> () {

8 println!("Default implementation.");

9 }

10 }

Figure A.2: Definition of a Rust trait. This trait MyTrait depends on an other trait SubTrait: all implementors of MyTrait
must implement SubTrait. The definition includes an associated type AssociatedType, and two methods, among which one
has a default implementation. Notice that the return type of trait_method depends on the associated type, and therefore
on the implementation.

1 impl SubTrait for std::vec::Vec<T> {}

2

3 impl<T> MyTrait for std::vec::Vec<T> {

4 type AssociatedType = T;

5

6 fn trait_method(mut self) -> Self::AssociatedType {

7 // ... returns a T

8 }

9 }

Figure A.3: Writers of traits can implement them for already existing structures, allowing them to extends their capabilities.
Notice that one does not need to implement default_implementation.
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1 let a: MyType = MyType {...};

2 f(a); // the compiler expands to f(a.copy())

3 f(a); // the compiler expands to f(a.copy())

Figure A.4: An example of implicit call to copy inferred by the compiler. Notice that this happens not only in function
calls, but also in aliases, etc..

Therefore, for a new programmer, the difficulty is not to understand the difference between copying
and cloning, but to be able, at places where nothing is written, to know whether an implicit copy is
performed, or if a transfer of ownership is done.

Consider, for instance, the example in Figure A.4. The programmer instantiate an object a which
has type MyType, and then calls the function f twice, giving each time the object a. If MyType does not
implement Copy, then the first call f(a) take ownership of a, and the second call causes an error, since
the current block does not own a anymore. Therefore, such example requires that MyType implements
Copy, and the object a is implicitly copied. An other possibility is to implement Clone and to explicitly
call f(a.clone) instead of the first f(a).

Destructors with Drop. It is possible to implement destructors by implementing the trait Drop. This
trait requires a unique method (drop), and the compiler automatically adds a call to that method when
the corresponding value is about to be destroyed.

A.2 Concurrency
The ownership-based approach of Rust makes it very suitable to write concurrent programs.

Shared memory. According to the rules for pointers, in Rust, memory can not be shared. However,
the standard library provides ways to allow sharing.

First, the Mutex object protects concurrent accesses to the same memory area. This object provides
a method fn lock(&self) -> LockResult<MutexGuard<T>>. In a nutshell, the returned value (of type
LockResult<MutexGuard<T>>) gives a mutable access to the embedded value (of type T). The important
point is that the function takes a &self reference, i.e. it converts a immutable reference to a mutex to
the mutable data it contains1.

The second point is that multiple threads need to share ownership of the mutex. This can be done
using regular &Mutex<T> references, but is quite unusual, due to the constraints on &-references. Instead,
we usually use reference counted pointers, which dynamically verifies that no two pointers attempt to
mutate the inner value. In our case, we want to exchange those references across threads, and therefore,
we use Arc<T>, where Arc stands for Atomically Reference Counted2.

Notice that Mutex and Arc do not serve the same purpose: Arc allows to share ownership, and Mutex

provides thread safety. Therefore, to make a type T thread safe, we often use Arc<Mutex<T>>.
A final note on Mutex<T>: if the lock is explicit (the method lock explained above), the release is

implicit. As explained above, lock returns a LockResult<MutexGuard<T>>. Hence, if a call to lock

succeeds, the programmer has access to a MutexGuard. To release the lock, the programmer simply
drops that guard (MutexGuard has an ad-hoc implementation of Drop, which transparently releases the
lock). With such mechanism, and the ownership rules, there can not be accidental accesses to the object
protected by the mutex (if there is an access, it means that the guard has not been dropped, i.e. the
mutex was not released).

Message-passing in Rust. To have a message passing model of concurrency in Rust, the standard
library provides communication channels, in the std::sync::mpsc library. In particular, it provides
the function channel<T>() -> (Sender<T>, Receiver<T>), which is used to instantiate Sender and
Receiver structures, which implement multiple producer, single consumer message passing primitives.

Sender<T> is clonable (hence the multiple producers) and provides a method send(&self, t: T)

used to send data across threads. It counterpart, Receiver<T> implements recv(&self) -> Result<T

, RecvError> which is used to receive data.

1This seems undoable, and actually it is in plain Rust. However, Rust provides a mechanism to temporarily suspend
ownership checking, called unsafe Rust. In unsafe Rust, the compiler does not provide the usual guarantees, and it is
the programmer’s job to ensure that what is performed is correct. In the case of a mutex, the overall invariant (no-two
simultaneous mutable accesses) is preserved, and checked at runtime.

2Again, this behaviour is not doable using only safe Rust. However, with a careful mix of unsafe, Clone, and Drop, we
can achieve the result.
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Not all values can be exchanged on such channels. There is a special trait Send, inferred by the
compiler, which states that a type can safely be exchanged across threads3.

3Almost all normal types implement Send. The reader can consider that this is not a problem for us, it only requires us
to specify it.
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Internal Simulation

In this appendix, we illustrate why the second approach to compare location graphs belonging to different
models G1 and G2 does not work, at least naively. Our goal is to exhibit a systematic method to find a
common model G which is analogous to both G1 and G2.

Notice here that our goal is to compare two different models, not to have a location graph that includes
locations of both the first and the second model.

We are given two location graphs models G1 = lgraph(P1,S1,R1) and G2 = lgraph(P2,S2,R2), two
sets of unconstrained location transitions T1 = trans(G1,�1) and T2 = trans(G2,�2) (for �1 and �2 two
sets of labels suitable, using values in V1 and V2).

We are given a set � = {>,⊥} of special symbols.

The merge operator [·] ? [·]. We now define the operation that merge location graph models, noted
G1 ? G2: G1 ? G2 = lgraph(P1 ∪ P2,�× (S1 ∪ S2),R1 ∪ R2).

Before describing the unconstrained transitions, we define a function that lift locations of G1 (resp.
G2) to locations of G1 ? G2:

Definition 118 (Location lifting function). Given a location L = [P : s C p • r] of a model G, the
location L> is:

[P : 〈>, s〉 C p • r]

We define L⊥ in an analogous manner.

By extension, we also define the lifting of location graphs, skeleton locations and skeleton location
graphs.

Definition 119 (Graph lifting function). Given a graph G,

G> =


∅ if G = ∅
L> if G = L

G>1 ‖ G>2 if G = G1 ‖ G2

We define G⊥ in an analogous manner.

Definition 120 (Skeleton location lifting function). Given a skeleton location Ls = [s C p • r] of
a model G, the skeleton location L>s is:

[〈>, s〉 C p • r]

We define L⊥s in an analogous manner.
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Definition 121 (Skeleton graph lifting function). Given a skeleton graph Gs,

G>s =


∅ if Gs = ∅
L>s if Gs = Ls

G>s1 ‖ G>s2 if Gs = Gs1 ‖ Gs2

We define G⊥s in an analogous manner.

Notice, of course, that the two lifting functions (for locations and graphs) are sound with respect to
the skeleton variants:

Σ(G)> = Σ(G>) Σ(L)> = Σ(L>)

Well formedness of a merged graph. We now have a location graph model that unite both G1 and
G2 models. However, we don’t want an instance of this model to be composed of instances of both models
at the same time. We hence define a well formedness property which asserts that we have only > or ⊥
in the graph. This property uses a computation of the side of a graph, that is whether the merge graph
is built from a graph in G1 or G2.

Definition 122 (Side of a merged graph).

side(G)
∆
=


{>,⊥} if G = ∅
{>} if G = [P : 〈>, s〉 C p • r]
{⊥} if G = [P : 〈⊥, s〉 C p • r]
side(G1) ∩ side(G2) if G = G1 ‖ G2

Definition 123 (Well-formed merged graph).

WF?(G)⇔ side(G) 6= ∅

Lemma 34. ∀G1, G2 ∈ G1 ? G2 · WF?(G1 ‖ G2)⇒ (WF?(G1) ∧ WF?(G2))

Proof.

WF?(G1 ‖ G2)
Def 123⇔ side(G1 ‖ G2) 6= ∅
Def 122⇔ side(G1) ∩ side(G2) 6= ∅
Set theory⇒ side(G1) 6= ∅ ∧ side(G2) 6= ∅
Def 123⇔ WF?(G1) ∧ WF?(G2)

Semantics of merged graphs.

Definition 124 (Unconstrained transitions of a merged location graph). The unconstrained tran-
sitions set TG1?G2 of a merged location graph model G1 ? G2 is the smallest set such that:

(i) if ∆ · ∅ B L
Λ−→ G ∈ T1, then ∆ · ∅ B L>

Λ−→ G> ∈ TG1?G2

(ii) if ∆ · ∅ B L
Λ−→ G ∈ T2, then ∆ · ∅ B L⊥

Λ−→ G⊥ ∈ TG1?G2

where T1 (resp. T2) is the set of unconstrained transition of G1 (resp. G2).

Notice that, for any rule Γ B L
Λ−→ G ∈ TG1?G2

, side(L) = side(G). Thus, the well-formness is
preserved through reduction:

The authorisation function Auth? lifts Auth1 and Auth2:
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Definition 125 (Lifted authorisation function).

Auth?(G
>
s ,∆ · ∅ B L>

Λ−→ C>)
∆
= Auth1(Gs,∆ · ∅ B L

Λ−→ C)

Auth?(G
⊥
s ,∆ · ∅ B L⊥

Λ−→ C⊥)
∆
= Auth2(Gs,∆ · ∅ B L

Λ−→ C)

and Auth? is not defined when mixing > and ⊥.

Unfortunatelly, with such naive approach, we can not apply the standard definition of simulation
directly. Indeed, the standard definition requires a simulation R that:

∀Γ ∈ A× Gs · Γ ∪ Σ(C) `Tu C
Λ−→ C ′ ⇒ Γ ∪ Σ(D) `Tu D

Λ′−→ D′

with 〈C ′, D′〉 ∈ R and Λ ≡ Λ′. However, Γ ∪ Σ(C) and Γ ∪ Σ(D) do not have the same side (at least
one of them mixes two sides), and therefore, one of them can not reduce, according to our authorisation
function.
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[43] Johan Östlund and Tobias Wrigstad. “Multiple Aggregate Entry Points for Ownership Types”. In:
ECOOP 2012 – Object-Oriented Programming. Ed. by David Hutchison et al. Vol. 7313. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2012, pp. 156–180. isbn: 978-3-642-31056-0 978-3-642-31057-7.
url: http://link.springer.com/10.1007/978-3-642-31057-7_8 (visited on 03/09/2017)
(cit. on pp. 5, 12, 14).

[44] D. L. Parnas. “On the criteria to be used in decomposing systems into modules”. In: Communica-
tions of the ACM 15.12 (Dec. 1972), pp. 1053–1058. issn: 0001-0782. doi: 10.1145/361598.361623.
url: https://doi.org/10.1145/361598.361623 (visited on 01/25/2021) (cit. on p. 1).

[45] Jonathan Protzenko. “Mezzo: a typed language for safe effectful concurrent programs”. en. PhD
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and Systems. Ed. by Jorge A. Pérez and Nobuko Yoshida. Springer International Publishing, 2019,
pp. 242–260. isbn: 978-3-030-21759-4 (cit. on pp. 7, 23, 39).

[58] David Swasey, Deepak Garg, and Derek Dreyer. “Robust and Compositional Verification of Object
Capability Patterns”. en. In: Proceedings of the ACM on Programming Languages 1 (), p. 26 (cit. on
p. 19).

[59] The Scala Programming Language. Library Catalog: scala-lang.org. url: https://www.scala-
lang.org/ (visited on 03/09/2020) (cit. on p. 109).

[60] Janina Voigt. “Access contracts: a dynamic approach to object-oriented access protection”. PhD
Thesis. University of Cambridge, UK, 2015. url: http://ethos.bl.uk/OrderDetails.do?uin=
uk.bl.ethos.708888 (cit. on p. 15).

[61] Janina Voigt. Access contracts: a dynamic approach to object-oriented access protection. Tech. rep.
UCAM-CL-TR-880. University of Cambridge, Computer Laboratory, Feb. 2016. url: https://
www.cl.cam.ac.uk/techreports/UCAM-CL-TR-880.pdf (cit. on pp. 15, 18).

[62] Erwann Wernli, Pascal Maerki, and Oscar Nierstrasz. “Ownership, Filters and Crossing Handlers:
Flexible Ownership in Dynamic Languages”. In: SIGPLAN Not. 48.2 (Oct. 2012), pp. 83–94. issn:
0362-1340. doi: 10.1145/2480360.2384589. url: http://doi.acm.org/10.1145/2480360.
2384589 (cit. on p. 12).

https://www.scala-lang.org/
https://www.scala-lang.org/
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708888
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708888
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-880.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-880.pdf
https://doi.org/10.1145/2480360.2384589
http://doi.acm.org/10.1145/2480360.2384589
http://doi.acm.org/10.1145/2480360.2384589


Index

Abstract Machine
List of Transitions

Identified, 102
Location, 99
Location Graph

Well-Formed, 106
Picking, 102
Primitives, 98
Role predicate, 103
Transition, 95

Complete Set, 102
Endpoint Effects, 97
Identified, 102
Messages, 97
New Sort, 97
Result, 97
Skeleton, 96
Sum, 95
Well-formed, 96

Transition Application
Location, 105

Transition application
Full, 104
Skeleton Location, 104
Skeleton Location Graph, 104

Authorisation function, 32
2nd order, 55

Bisimulation
Partial, 42

Encapsulation Policy, 3
Endpoint, 94
Environment, 30

Correct, 33
Elements, 30
Union, 30

Exchange, 103

Graph partition
Coarser, 47
Finer, 47

Interaction, 31
2nd order, 53
Independent, 34
Matching, 33

Union, 33
Isolation Policy, 3

Label, 31

Elements, 31
Graph Recovery, 55
Interactions

Elements, 31
Priority constraint

Elements, 31
Pruning, 55

Label range, 76
Lifting function

Graph, 163
Location, 163
Skeleton graph, 164
Skeleton location, 163

Location, 25
Handle, 98

Well-formed, 99
Nesting, 45

Inverse, 46
Location Graph, 26

Σ, 27
Elements, 25
Inclusion, 38
Locations, 38
Nesting, 49

Inverse, 50
Partition, 46
Partitioning Function, 46
Size, 37

Location Pregraph, 25
Separated, 26
Structural Equivalence, 26
Well formed, 26

Nesting function
Graph

Recursive, 67
Higher-order, 68
Location

Recursive, 67

Ownership domain
Strict, 75

Excluding owner, 75

Partitioning function
Finer, 49

Prelocation, 25
Elements, 25
Well formed, 25

Priority

172



173

Satisfaction, 32
Composition, 33

Priority Constraint, 30

Simulation
Heterogenous, 41
Strong, 40

Skeleton
Extraction, 54

Skeleton Location Graph, 27
Elements, 27
Inclusion, 29
Structural Equivalence, 28
Union, 29

Skeleton location graphs(Abstract machine), 94
Skeleton locations (Abstract machine), 94
Strict encapsulation

Partitioning function, 78
Support, 27

Transition
Item, 95

Skeleton, 96
Sum, 95

List
Result, 105

Transition item
Enqueuing, 99

Unconstrained location transition, 32



174


	Conventions
	Introduction
	Encapsulation
	A bestiary of policies
	Context, goals and scope

	State of the Art
	Isolation in process calculi
	Language approach
	Ownership based approaches
	Access contracts
	Programming languages

	System approach
	Law-Governed Interactions


	Theoretical aspects of Location Graphs
	The location graphs model and semantics
	Elements of location graphs
	Semantics of location graphs
	Additional operations

	Comparing Location Graphs
	Simulation relations for location graphs
	Heterogeneous simulations
	Partial bisimulation

	Nested Location Graphs
	Nesting functions
	Semantics of the 2nd order graph
	Partial bisimulation
	Multiple levels of nesting


	Encapsulation policies in Location Graphs
	Hierarchical policies
	Actor Model
	Shared Encapsulation Policy
	Multi-Level Encapsulation Policy

	Logging system

	Rust implementation of the location graph framework
	Programming model
	Design choices
	Divergences from the theoretical framework

	An abstract machine for location graphs
	Preliminary definitions
	Transitions, locations and local semantics
	Graphs and global semantics

	Rust API
	Preliminary steps
	Locations
	Authorisation functions and unconstrained location transitions
	Final steps

	Implementation
	Locations and Transitions
	Skeleton graphs
	Roles management and message exchanges
	Transition selection and resolution
	Authorisation functions and unconstrained location transitions set

	Utilities
	Trivial authorisation function and transition set
	Generic role names
	TCP connections

	Encapsulation policies in Rust using Location Graphs
	An application of the owners-as-ombudsmen: a bank system
	An application of the logger system: a Publish-Subscribe server


	Conclusion
	General conclusion
	Future work
	Short term
	Perspectives


	Rust in a nutshell
	Quick introduction to Rust
	Concurrency

	Internal Simulation

