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Résumé Cette thèse est consacrée à l'étude de l'identi�abilité et de l'estimation
des paramètres d'une classe de modèles SIR et se divise en deux parties.

Dans la première partie (chapitre 1) nous tentons à estimer les paramètres de
modèles SIR simples à partir des données réelles. Dans le chapitre 1, nous constru-
isons un schéma qui permet de retrouver tous les paramètres des modèles SIR sous
l'hypothèse que nous avons la connaissance des données des cas déclarés chaque se-
maine lors d'une épidémie. Ce schéma a été utilisé pendant des épidémies qui ont
eu lieu en Amérique, en France et en Inde.

Dans la deuxième partie (chapitre 2, chapitre 3) nous étudions l'identi�abilité
d'une classe de modèles SIR avec un taux d'incidence non linéaire. Dans le chapitre
2, nous fournissons quelques préliminaires d'algèbre di�érentielle, et une méthode
pour trouver les paramètres identi�ables d'un système dynamique. Dans le chapitre
3, nous appliquons la méthode du chapitre 2 pour certains modèles SIR à taux
d'incidence non linéaire.

Abstract This thesis is devoted to the identi�ability and parameter estimation of
a class of SIR models and divided into two parts.

The �rst part (Chapter 1) aims to estimate the parameters of simple SIR models
from the real data. In Chapter 1, we build a scheme that we can �nd all the param-
eters of SIR models if we know the weekly reported case data of an epidemic. This
scheme is applied to some real epidemics in America, France, and India.

The second part (Chapter 2, Chapter 3) aims to study the identi�ability of a
class of SIR models with nonlinear incidence rate. Chapter 2 provides some prelim-
inaries of di�erential algebra, and a method to �nd the identi�able parameters of a
dynamical system. In Chapter 3, we applied the method in Chapter 2 for some SIR
models with nonlinear incidence rate.

Keywords Identi�ability, SIR models, Epidemic, SIR models with nonlinear inci-
dent rate, Parameter Estimation.

Mots-clés Identi�abilité, Les modèles de SIR, Epidémie, Les modèles SIR avec un
taux d'incident non linéaire, Estimation des paramètres.
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Résume

Tout au long de l'histoire de l'humanité, on a été témoin de tant d'épidémies qui
ont causé beaucoup de décès. Dans une petite maison datant de 5000 ans découverte
dans un village préhistorique en Chine [77], se trouve les os des 97 corps étant
entassés et ensuite brûlés et comprenant de tout âge : des adultes, des adolescents
et des enfants. C'est très probalement une trace d'une épidemie, constatent les
anthropologues. Autres exemples : la peste bubonique (connue au monde comme
"Black Deaths"), entre 1346 et 1350, qui bouleversait l'Occident et retirait environ un
tier de la population; la pandémie grippale (également appelée "Grippe espagnole"
[14]), pour la période 1918-1919, qui a causé plus de 50 millions de décès dans le
monde entier; et plus récemment, la pandémie de coronavirus, le Covid-19 (SARS-
CoV-2) d'origine Wuhan, en Chine (identi�é pour la première fois en décembre 2019),
répands rapidemment dans le monde entier et a causé 1 160 416 décès au total compté
jusqu'au 25 octobre 2020 [76].

Pour comprendre la mécanisme d'une épidemie et pour y faire face, l'épidémiologie
mathématique a été née et devenue un domaine de recherche très actif, et typique-
ment, dans la situation sanitaire récente dans le monde. L'épidémiologie mathéma-
tique, par son nom, joue le rôle essentiel dans la mise en place des modèles math-
ématiques qui permettent de clari�er et expliquer les mécanismes de transmission
et de propagation des maladies. Depuis les travaux de Daniel Bernoulli en 1760,
en mettant en ouvre un modèle mathématique sous forme d'équations di�érentielles
ordinaires [5], jusqu'à près d'un siècle et demi, en 1906 Hamer proposa un modèle
à temps discret [32], qui peut être considéré comme l'idée pionnière des modèles
compartimentaux, où il supposa que le nombre de nouveaux cas par unité de temps
d'une épidémie dépend du nombre d'individus sensibles et du nombre d'individus
infectés. Aujourd'hui, la plupart des modèles compartimentaux développés pour les
systèmes déterministes ainsi que les systèmes stochastiques se basent au modèle SIR
très connue de Kermack et McKendrick introduit en 1927 [36], [37]. Dans ce modèle,
une population est divisée en trois compartiments (ceux qui donnent le nom SIR du
modèle) : les individus sensibles, abrégés par le symbole S, les individus infectés,
abrégés par le symbole I, les individus retirés, abrégés par le symbole R.
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Figure 1: William Kermack et Anderson McKendrick

Dans cette thèse, nous étudions l'identi�abilité des modèles SIR et des modèles
SIR à taux d'incidence non linéaire et leurs applications. Nous rappellons que le
modèle SIR introduit par Kermack et McKendrick s'écrit :


S′(t) = −τS(t)I(t),

I ′(t) = τS(t)I(t)− νI(t), t ≥ 0

R′(t) = νI(t)

(0.0.1)

avec la condition initiale S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0 > 0.

Ici, S(t), I(t) et R(t) indiquent respectivement le nombre de personnes sen-
sibles, infectées et retirées, au moment t > 0. Le paramètre τ > 0 correspond
au taux de transmission de la maladie et le paramètre ν > 0 correspond au taux
d'élimination des individus infectés. Tous les paramètres et le conditions initiales

considérées comme inconnues.

En réalité, pour étudier une épidémie, nous ne disposons que des données fournies
par un tableau contenant le nombre d'individus infectés déclarés. Pour comprendre
les causes d'une épidémie et estimer sa taille, nous devons trouver un modèle appro-
prié qui correspond aux données dans un certain sens. Cela se pose naturellement l'un
des problèmes les plus importants de l'épidémiologie mathématique : l'ajustement
des données au modèle.

Supposons que nous disposions des données sur les cas signalés chaque semaine
lors d'une épidémie, comme le montre le tableau suivant
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Résume

Semaine (t) Les cas signalés

1 N1

2 N2

... ...
k Nk

Table 1: Données sur les cas signalés chaque semaine pour une épidémie de la se-

maine 1 à la semaine k.

A�n d'ajuster les données, nous déterminons d'abord les paramètres τ, ν, S0, I0, R0

de (0.0.1) pour que nous puissions obtenir un modèle SIR approprié. Certains travaux
tentent d'estimer ces paramètres par la méthode des moindres carrés, la méthode des
vraisemblances,...tels que [38], [48], [16], [28], [18], [29]. L'inconvénient de ces méth-
odes est qu'elles ne peuvent pas fournir une vue générale des paramètres de (0.0.1).
Cela signi�e que l'on ne peut pas trouver tous les paramètres de (0.0.1) et qu'elles ne
mentionnent pas l'identi�abilité des paramètres de (0.0.1). En 2018, Pierre Magal
et Glenn Webb [46] ont fourni une nouvelle approche pour estimer les paramètres de
(0.0.1) en utilisant le point tournant. Dans leur travail, ils considèrent les cas non
signalés en ajoutant le nouveau paramètre ν1, le taux retiré des personnes infectées
en raison des données sur les cas signalés. Le paramètre ν est considéré comme le
taux retiré de personnes infectées de tous cas, y compris les cas déclarés et les cas
non déclarés, puis un autre nouveau paramètre apparaît ν2 = ν − ν1, le taux re-
tiré de personnes infectées en raison des cas non déclarés. La deuxième colonne du
tableau de données ci-dessus contient maintenant les valeurs de la fonction ν1I(t),

et en construisant la fonction CR(t) =
t∫
0

ν1I(s)ds, le nombre cumulé de cas signalés

au moment t, Pierre Magal et et Glenn Webb ont fourni un algorithme pour calculer
les paramètres numériquement. Cependant, le calcul numérique dans leurs travaux
nécessite de connaître les valeurs de S0 et I0, et une fois de plus, l'identi�abilité des
paramètres est négligée.

L'identi�abilité des paramètres des systèmes dynamiques est un domaine actif
étudié par de nombreux mathématiciens, par exemple [24], [25], [7], [43],[47],[49], [66],
[67],[68], [69]. A�n de comprendre le rôle important de l'identi�abilité d'un système
dynamique pour l'estimation des paramètres, nous présentons ici la dé�nition pour
(0.0.1).

De�nition 0.0.1. Considérons le système (0.0.1) avec la fonction de sortie CR(t) =
t∫
0

ν1I(s)ds. Les paramètres τ ,ν, ν1, S0, I0, R0 sont supposés être positifs et nous

désignons p = (τ, ν, ν1, S0, I0, R0), p = (τ , ν, ν1, S0, I0, R0). Si nous avons p = p de
la condition CR(t, p) = CR(t, p) pour chaque t ≥ 0, le (0.0.1) est appelé pour être
identi�able à partir de la fonction de sortie CR(t).

À partir des données sur les cas déclarés chaque semaine, on considère que la
fonction de sortie CR(t) est déterminée. Si le système (0.0.1) est identi�able, on
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peut alors a�rmer que les paramètres peuvent être déterminés de manière unique
à partir de la fonction de sortie CR(t). Malheureusement, d'après le résultat que
nous présentons au Chapitre 1, (0.0.1) n'est pas identi�able . De plus, nous avons la
relation

ν = ν̄,
τ

ν1
=

τ̄

ν̄1
, τS0 = τ̄S0, τI0 = τ̄ I0. (0.0.2)

si CR(t, p) = CR(t, p) pour chaque t ≥ 0. Cela signi�e qu'à partir des données
des cas déclarés chaque semaine, il y a tant de vecteurs de paramètres p donnant la
même fonction de sortie CR(t). Cette analyse nous montre l'importance de prendre
en compte l'identi�abilité avant d'essayer d'estimer les paramètres à partir des don-
nées. Dans le Chapitre 1, du point de vue de [46] et en considérant l'identi�abilité
de (0.0.1), nous construisons un schéma qui nous permet de trouver un modèle ap-
proprié à partir des données réelles d'une épidémie. Ce schéma est appliqué pour
certaines épidémies réelles survenues à New York, Bombay et en France. La clé de
la construction de ce schéma est l'équation du tournant, les valeurs du tournant tp,
CR(tp), limt→∞CR(t), et CR′(tp). Ces valeurs peuvent certainement être tirées
des données sur les cas déclarés chaque semaine. Ensuite, nous pouvons déterminer
toutes les valeurs des paramètres p si nous ne faisons varier que la valeur de S0, et
estimer la taille �nale de l'épidémie en fonction de S0.

Depuis que Kermack et McKendrick ont publié leurs travaux sur les modèles
d'épidémie, un grand nombre de publications tentent d'étendre ce modèle pour
étudier l'épidémiologie. En 1978, après avoir étudié la propagation de l'épidémie
de choléra à Bari, Capasso et Serio [17] ont généralisé le modèle (0.0.1) comme suit

S′(t) = −S(t)g(I(t)),

I ′(t) = S(t)g(I(t))− νI(t),

R′(t) = νI(t)

(0.0.3)

avec la même condition initiale de (0.0.1). La fonction g : [0,+∞) → [0,+∞) est
supposé remplir les conditions suivantes

i. g(0) = 0.

ii. Il existe c > 0 tel que g(x) ≤ c pour tous les x ∈ [0,+∞).

iii. La dérivée de g existe et est bornée sur tout intervalle compact de [0,+∞), avec
g′(0) > 0.

La fonction g(x) ci-dessus est considérée d'inclure le phénomène de saturation.

Capasso et Serio [17] ont également mentionné g(x) =
τx

1 + κx
comme un exemple

de leurs recherches.
A�n d'étudier le comportement dynamique du modèle épidémique (0.0.3), de

nombreux auteurs ont modi�é (0.0.3) d'une certaine manière. En 1986, Liu et al.

[42] a brièvement examiné l'un des modèles modi�és de (0.0.3) en utilisant la fonction
spéci�que

g(x) =
τxα

1 + κxβ
(0.0.4)
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Résume

dans laquelle α = β > 0.
D'autres études utilisant la fonction (0.0.4) sont Ruan et al. [60] avec α = β = 2

et Xiao et al. [71] avec α = 1, β = 2.
Au Chapitre 3, nous considérons le système (0.0.3) discuté dansMagal et al.[45]

avec la fonction (0.0.4) comme suit
S′(t) = −τS(t)Iα(t)

1 + κIβ(t)
,

I ′(t) =
τS(t)Iα(t)

1 + κIβ(t)
− νI(t), t ≥ 0

R′(t) = νI(t)

(0.0.5)

avec la condition initiale S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0 ≥ 0 , α, β sont
donnés et β + 1 ≥ α ≥ 1.

On voit que la troisième équation de (0.0.5) est juste une conséquence des deux
premières équations de (0.0.5), alors (0.0.5) peut être lu comme suit

S′(t) = −τS(t)Iα(t)

1 + κIβ(t)
,

I ′(t) =
τS(t)Iα(t)

1 + κIβ(t)
− νI(t), t ≥ 0

(0.0.6)

où
τS(t)Iα(t)

1 + κIβ(t)
est appelé un taux d'incidence non linéaire, ν est le taux d'élimination

de tous les individus infectieux d'une maladie. En réalité, ce taux ne peut pas
être connu car de nombreux individus retirent la maladie sans le signaler. Nous ne
pouvons avoir que le nombre d'individus infectieux y(t) = µI(t) avec 0 < µ < ν
déclarés par les responsables de la santé publique (voir [46], [23]). Supposons que τ ,
κ, ν, µ, S0, I0 soient les paramètres inconnus de (0.0.6). L'un des problèmes les plus
importants concernant le modèle (0.0.6) est le suivant

Problem 0.0.2. Considérons le système (0.0.6), si nous avons les données réelles des
cas déclarés comme une fonction y(t) = µI(t), peuvent-ils les paramètres de (0.0.6)
être déterminés de manière unique à partir de celle-ci ?

Considérons le système (0.0.6), le nombre R0 =
τIα−10 S0

ν(1 + κIβ0 )
est appelé le nombre

de reproduction de base de (0.0.6) [45]. Si le R0 < 1, alors I(t) tombe à zéro,
et l'épidémie s'atténue. Désormais, nous considérerons (0.0.6) seulement lorsque
l'épidémie se déclenchera avec R0 > 1. Une autre question est la suivante :

Problem 0.0.3. Le nombre de reproduction de base de (0.0.6) est-il déterminé unique-
ment à partir de la fonction y(t) = µI(t) lorsque l'épidémie se déclanche ?

Les deux problèmes 0.0.2, et 0.0.3 peuvent être compris comme une sorte de
problème concernant l'identi�abilité de (0.0.6). Comme nous l'avons mentionné ci-
dessus, il est très important de comprendre l'identi�abilité d'un système dynamique
pour l'estimation des paramètres à partir des données réelles. Il existe certaines ap-
proches pour tester l'identi�abilité d'un système dynamique, telles que l'approche des
séries de Taylor, l'approche de la transformation de similitude, l'approche de l'algèbre
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di�érentielle, ... [4], [7], [8], [10], [23], [24], [25], [43], [47], [49], [52], [56], [61], [64],
[66], [67], [68], [69], [70], [72]. Dans chaque approche, nous pouvons obtenir certains
avantages ou inconvénients pour certains systèmes dynamiques spéci�ques. A�n de
résoudre les problèmes 0.0.2, et 0.0.3, nous choisissons l'approche de l'algèbre dif-
férentielle. L'avantage de cette approche est que nous pouvons extraire une équation
ne concernant aucun état du système mais seulement la fonction de sortie que nous
connaissons dans la réalité. En combinant d'autres hypothèses du problème, nous
pouvons obtenir la relation entre deux paramètres lorsque le système dynamique a
la même sortie. Ainsi, nous pouvons tester l'identi�abilité du système à partir de la
sortie et également obtenir la relation entre les paramètres. Cette relation nous aide
à déterminer les combinaisons identi�ables de paramètres, il est donc très important
d'estimer les paramètres. Le Chapitre 2 de cette thèse fournit une méthode pour
trouver les combinaisons identi�ables de paramètres. Dans ce chapitre, nous présen-
tons quelques préliminaires en algèbre di�érentielle et fournissons un schéma pour
trouver des combinaisons identi�ables de paramètres, puis nous appliquons ce schéma
pour le modèle SIR. Le Chapitre 3 vise à trouver les combinaisons de paramètres
de (0.0.6) qui peuvent être déterminées de manière unique à partir de la fonction
y(t) = µI(t) dans laquelle µ est le taux de retrait des personnes infectées déclarées.
La première section du Chapitre 3 fournit la condition su�sante pour deviner que les
combinaisons de paramètres peuvent être déterminées de manière unique à partir de
la fonction y(t) = µI(t). Les sections suivantes sont les réponses aux problèmes 0.0.2,
0.0.3 dans certains cas particuliers {α = 1, β = 2}, {α = 1, β = 1}, {α = 2, β = 2},
{α = 2, β = 1}, {α = 1, β = 3}. Ces réponses sont réalisées en appliquant l'approche
de l'algèbre di�érentielle présentée dans les Sections 2.2 et 2.3 du Chapitre 2.
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Introduction

An epidemic is understood as an infectious disease that a�ects a large number
of people during a certain period of time. Along with the history of human beings,
people witnessed so many epidemics that caused a lot of deaths. About 5000 years
ago, an epidemic swept a prehistoric village in China. The bodies were piled up in
a house and then burned down. The epidemic does not rule out anyone. The bones
found included adults, teenagers and children [77]. Up to now, when mankind's
knowledge of epidemic is increasing, there have been still new epidemics that spread
worldwide. These epidemics are called pandemics, for instance, COVID-19 pan-
demic. The COVID-19 also called the coronavirus pandemic, is a pandemic by the
transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [76].
The COVID-19 was �rst identi�ed in Wuhan, China in December 2019 and up to
the 25th of October 2020, COVID-19 has caused 1,160,416 deaths all over the world
[78]. In the past, the bubonic plague that is called Black Deaths caused about one-
third of the population of Europe from 1346 to 1350. Another epidemic that caused
more than 50,000,000 deaths all over the world in the period 1918-1919 is "Spanish"
in�uenza [14].

Since epidemic is the cause of so many deaths, it becomes a problem that humans
should concern carefully. Epidemics should be investigated in various ways, from the
infectious mechanisms to their in�uences. One of the ways that mathematicians
have been trying is modeling the epidemic by mathematical dynamical systems.
This can explain why mathematical epidemiology has become a very active �eld
of research. The goal of mathematical epidemiology is setting up mathematical
models giving us an understanding of the mechanisms of disease transmission and
spread. Mathematical models also help us determine the main factors of the disease
transmission process, give us suggestions for e�ectively controlling and methods of
prevention, and provide an estimation for the severity and the size of an epidemic.
Roughly speaking, mathematical models can be a part of the toolbox of public health
research and decision making [26]. One of the �rst mathematical models of epidemics
is the work entitled An attempt at a new analysis of the mortality caused by smallpox

and of the advantages of inoculation to prevent it of Daniel Bernoulli (1700-1782)
[5]. In his work, Daniel Bernoulli tried to �nd a comparison between the bene�t of
inoculation and the immediate risk of dying by setting up a model under the form
of ordinary di�erential equations. After that, he applied this model with Halley's

life table. This life table is introduced in a book "Natural and Political Observations

Made upon the Bills of Mortality", published in 1662 in London, and known as a kind
of table of data. Nowadays, combining mathematical models and data for studying
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epidemics is a common way in mathematical epidemiology [5].
From the work in 1760 of Daniel Bernoulli to the late nineteenth century, math-

ematical models for epidemics didn't have any signi�cant development. In 1906,
for studying the measles epidemics, Hamer suggested using the mass action law
to formulate a discrete-time model [32]. Hamer supposes that the number of new
cases per unit time of an epidemic depends on the number of susceptible individuals
and the number of infected individuals. Hamer's model can be considered as the
�rst idea of compartmental models, and then so many studies about mathematical
models of epidemics also were carried out this way [5]. One of the most famous
compartmental models describing the spread of the epidemic is the SIR model that
is �rstly introduced by Kermack and McKendrick in 1927 [36], [37]. Both Kermack
and McKendrick were public health physicians but they spent a lot of time studying
mathematics in epidemiology. The model introduced by them is now extended in
di�erent ways for the deterministic systems and stochastic systems. In Kermack and
McKendrick's model, a population is divided into three compartments: susceptible
individuals abbreviated by the symbol S, the infected individuals abbreviated by the
symbol I, the removed individuals abbreviated by the symbol R. Accordingly, some
assumptions should be made to set up this model [26].

• The number of population is always a constant. New births or deaths from other
reasons can be neglected.

• All the individuals can be susceptible individuals equally. Every infected individ-
uals can transmit disease to susceptible individuals.

• Removed individuals cannot become infected individuals and transmit the disease.

Figure 2: Flow diagram of SIR model

Denote by S(t), I(t), and R(t) are the number of susceptible individuals, the number
of infected individuals, and the removed individuals at time t respectively. Suppose
that τ is the transmission rate and ν is the removed rate of reported infected in-
dividuals per unit of time. Kermack and McKendrick's model can be written as
follows 

S′(t) = −τS(t)I(t),

I ′(t) = τS(t)I(t)− νI(t), t ≥ 0

R′(t) = νI(t)

(0.0.7)

with the initial S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0 > 0.
Considering (0.0.7) as a dynamical system, there are so many problems from the
qualitative properties to computations. In reality, for studying an epidemic, we have
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Introduction

only the data given by a table containing the number of reported infected individuals.
To understand the causes of an epidemic and estimate its size, we have to �nd an
appropriate model that matches the data in some sense. It is naturally derived one
of the most important problems in mathematical epidemiology: �tting data with the
model.

Suppose that we have the weekly reported case data from an epidemic as the
following table

Week (t) Reported Cases

1 N1

2 N2

... ...
k Nk

Table 2: Weekly reported case data for an epidemic from the week 1 to the week k.

To �t the data, we �rst determine the parameters τ, ν, S0, I0, R0 of (0.0.7) so that
we can have the appropriate SIR model. There are some works trying to estimate
these parameters by least square method, likelihood method,...such as [38], [48],
[16], [28], [18], [29]. The disadvantage of these methods is that they cannot provide
a general view of the parameters of (0.0.7). It means that neither we can �nd
all the parameters of (0.0.7) nor they mention the identi�ability of parameters of
(0.0.7). In 2018, Pierre Magal and Glenn Webb [46] provided a new approach to
estimate the parameters of (0.0.7) by using the turning point. In their work, they
consider the unreported cases by adding the new parameter ν1, the removed rate of
infected individuals due to the reported case data. The parameter ν is considered
as a removed rate of infected individuals of all cases including reported cases and
unreported cases, then another new parameter appears ν2 = ν − ν1, the removed
rate of infected individuals due to unreported cases. The second column of the table
of data above is now the values of the function ν1I(t), and by building the function

CR(t) =
t∫
0

ν1I(s)ds, the cumulative number of reported cases at time t, Pierre Magal

and Glenn Webb provided an algorithm to compute the parameters numerically.
However, the numerical computation in their works requires to know the values of
S0 and I0, and once again the identi�ability of the parameters is neglected.
The identiability of parameters of dynamical systems is an active �eld studied by
many mathematicians, for instance [24], [25], [7], [43],[47],[49], [66], [67],[68], [69].
For understanding the important role of identi�ability of a dynamical system to the
parameter estimation we present here the de�nition for (0.0.7).

De�nition 0.0.4. Consider the system (0.0.7) with the output function CR(t) =
t∫
0

ν1I(s)ds. The parameters τ ,ν, ν1, S0, I0, R0 are supposed to be positive and let

p = (τ, ν, ν1, S0, I0, R0), p = (τ , ν, ν1, S0, I0, R0). If we have p = p from the condition
CR(t, p) = CR(t, p) for every t ≥ 0, the (0.0.7) is called to be identi�able from the
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output function CR(t).

From the weekly reported case data, the output function CR(t) is considered
to be determined. If the system (0.0.7) is identi�able, then we can a�rm that
the parameters can be uniquely determined from the the output function CR(t).
Unfortunately, by the result that we present in Chapter 1, (0.0.7) is not identi�able
. Moreover, we have the relationship

ν = ν̄,
τ

ν1
=

τ̄

ν̄1
, τS0 = τ̄S0, τI0 = τ̄ I0. (0.0.8)

if CR(t, p) = CR(t, p) for every t ≥ 0. It means that from the weekly reported case
data, there are so many parameter vectors p giving the same output function CR(t).
This analysis let us see the important role of considering the identi�ability before
trying to estimate the parameters from the data. In Chapter 1, by the view point
of [46] and considering the identi�ability of (0.0.7), we construct a scheme that we
�nd an appropriate model from the real data of an epidemic. This scheme is applied
for some real epidemics happened in New York, Bombay, and France. The key of
constructing this scheme is the turning point equation, the values of the turning point
tp, CR(tp), limt→∞CR(t), and CR′(tp). Certainly, these values can be taken from
the weekly reported case data. After that we can determine all the values of the
parameters p if we vary just only the value of S0, and estimate the �nal size of the
epidemic depending on S0.

Since Kermack and McKendrick published their works on epidemic models, there
is a large number of publications trying to extend this model for studying epidemi-
ology. In 1978, after studying cholera epidemic spread in Bari, Capasso and Serio
[17] generalized the model (0.0.7) as follows

S′(t) = −S(t)g(I(t)),

I ′(t) = S(t)g(I(t))− νI(t),

R′(t) = νI(t)

(0.0.9)

with the same initial condition of (0.0.7). The function g : [0,+∞) → [0,+∞) is
assumed to satisfy the following conditions

i. g(0) = 0.

ii. There exists c > 0 such that g(x) ≤ c for all x ∈ [0,+∞).

iii. The derivative of g exists and is bounded on any compact interval of [0,+∞),
with g′(0) > 0.

The function g(x) above is considered to include the saturation phenomenon. Ca-

passo and Serio [17] also mentioned g(x) =
τx

1 + κx
as an example of their researches.

To study the dynamical behavior of epidemic model (0.0.9), many authors modi-
�ed (0.0.9) in some ways. In 1986, Liu et al. [42] brie�y discussed one of the modi�ed
models of (0.0.9) using the speci�c function

g(x) =
τxα

1 + κxβ
(0.0.10)
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in which α = β > 0.
Some other studies using the function (0.0.11) are Ruan et al. [60] with α = β = 2

and Xiao et al. [71] with α = 1, β = 2.
In Chapter 3, we consider the system (0.0.9) discussed in Magal et al.[45] with

the function (0.0.10) as follows
S′(t) = −τS(t)Iα(t)

1 + κIβ(t)
,

I ′(t) =
τS(t)Iα(t)

1 + κIβ(t)
− νI(t), t ≥ 0

R′(t) = νI(t)

(0.0.11)

with the initial condition S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0 ≥ 0 , α, β are
given and β + 1 ≥ α ≥ 1.

It is seen that the third equation of (0.0.11) is just a consequence of the �rst two
equations of (0.0.11), then (0.0.11) can be read as follows

S′(t) = −τS(t)Iα(t)

1 + κIβ(t)
,

I ′(t) =
τS(t)Iα(t)

1 + κIβ(t)
− νI(t), t ≥ 0

(0.0.12)

where
τS(t)Iα(t)

1 + κIβ(t)
is called a nonlinear incidence rate, ν is the removed rate of all

infectious individuals of a disease. In reality, this rate cannot be known because
many individuals remove the disease without report. We can only have the number
of infectious individuals y(t) = µI(t) with 0 < µ < ν reported from the public health
o�cials (see [46], [23]). Suppose that τ , κ, ν, µ, S0, I0 are the unknown parameters
of (0.0.12). One of the most important problems concerning the model (0.0.12) is
the following

Problem 0.0.5. Consider the system (0.0.12), if we know the real reported case data
as a function y(t) = µI(t), is the parameter of (0.0.12) uniquely determined?

Consider the system (0.0.12), the number R0 =
τIα−10 S0

ν(1 + κIβ0 )
is called the basic

reproduction number of (0.0.12) [45]. If the R0 < 1, then I(t) decreases to zero,
and the epidemic subsides. From now on, we will only consider (0.0.12) when the
epidemic outbreaks with R0 > 1. Another question is the folowing

Problem 0.0.6. Is the basic reproduction number of (0.0.12) uniquely determined
from the function y(t) = µI(t) when the epidemic outbreaks?

The two problems 0.0.5, and 0.0.6 can be understood as a kind of the problem
about the identi�ability of (0.0.12). As we mentioned above, understanding the
identi�ability of a dynamical system is very important for parameter estimation
from the real data. There are some approaches in testing the identi�ability of a
dynamical system such as Taylor series approach, similarity transformation approach,
di�erential algebra approach, ... [4], [7], [8], [10], [23], [24], [25], [43], [47],[49], [52],
[56], [61], [64], [66], [67], [68], [69], [70], [72]. In each approach, we can obtain
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some advantages or disadvantages for some speci�c dynamical systems. To solve
the problems 0.0.5, and 0.0.6, we choose the di�erential algebra approach. The
advantage of this approach is that we can extract one equation not concerning any
state of the system but only the output function that we know in reality. Combining
other assumptions from the problem, we can obtain the relationship between two
parameters when the dynamical system has the same output. Hence, we can test
the identi�ability of the system from the output and also obtain the relationship
between parameters. This relationship helps us determine identi�able combinations
of parameters so it is very important to estimate parameters. Chapter 2 of this
thesis is providing a method for �nding the identi�able combinations of parameters.
In this chapter, we present some preliminaries in di�erential algebra and provide a
scheme to �nd identi�able combinations of parameters, then we apply this scheme
for SIR model. Chapter 3 aims to �nd the combinations of the parameters of (0.0.12)
that can be uniquely determined from the function y(t) = µI(t) in which µ is the
removed rate of reported infected individuals. The �rst section of Chapter 3 provides
the su�cient condition to guess the combinations of parameters that can be uniquely
determined from the function y(t) = µI(t). The next sections are the answers for
the problems 0.0.5, 0.0.6 in some particular cases {α = 1, β = 2}, {α = 1, β = 1},
{α = 2, β = 2}, {α = 2, β = 1}, {α = 1, β = 3}. These answers are performed
by applying the di�erential algebra approach presented in sections 2.2 and 2.3 of
Chapter 2.
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Chapter 1

Identifying the number of
unreported cases in SIR epidemic
models

In this chapter, we consider the classical SIR epidemic model with its parame-
ters and initial values, based upon reported case data from public health sources.
The objective of this chapter is to provide a method for numerical computing the
parameters of the SIR model from the real reported case data. The method here
is based on the fact that the unreported cases are counted in the model. In many
epidemic diseases, the reported cases are a small fraction of the unreported cases.
We compute this fraction numerically by determining identi�able combinations of
parameters of the model from reported case data. The numerical calculations in this
chapter are applied to the Hong Kong seasonal in�uenza epidemic in New York City
in 1968-1969, the in�uenza epidemic in France for the six consecutive years from
1988-1989 to 1993-1994, and some other epidemics.

1.1 Introduction

Mathematical models of epidemics have a long history [1, 6, 12, 13, 15, 21, 30,
32, 35, 51, 63]. One of the most important considerations of epidemic models is the
identi�cation of parameters needed for applications. The parameter identi�cation
problem for the SIR model has been investigated by many researchers, including
[2, 3, 18, 19, 20, 22, 25, 27, 28, 29, 31, 33, 34, 40, 41, 44, 50, 55, 57, 58, 65]. Our
objective here is to continue the investigation in [46] of the parameter identi�cation
problem for the standard SIR ordinary di�erential equations model of an outbreak
epidemic: {

S′(t) = −τS(t)I(t),

I ′(t) = τS(t)I(t)− νI(t).
(1.1.1)

Here S(t) and I(t) denote the number of susceptible and infected individuals, respec-
tively, at time t > 0. The parameter τ > 0 corresponds to the disease transmission
rate and the parameter ν > 0 corresponds to the removal rate of infected individuals.
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1.1. Introduction

The initial conditions of the model are

S(0) = S0 > 0 and I(0) = I0 > 0. (1.1.2)

For speci�c applications, the parameters τ , ν, as well as the initial conditions, S0, I0,
are usually unknown. Our objective here is to determine these values from speci�c
time data of reported infected cases.

Typically, the reported cases are only a small fraction of the total number of
cases, since only the most severe symptomatic cases are reported. Our approach is
based on knowledge of the data of newly reported cases (typically weekly) over the
time course of the epidemic. This known data consists of the cumulative reported
cases at time t, denoted by CR(t), that correspond to the total number of reported
infected cases up to time t. To handle these data we assume that the removal rate ν
takes the following form ν = ν1+ν2, where ν1 is the removal rate of reported infected
individuals, and ν2 is the removal rate of infected individuals due to all other causes,
such as mortality, recovery, or other reasons. With this assumption and notation,
the cumulative reported cases are related to the number of infected by the following
formula

CR(t) = ν1

t∫
0

I(s)ds, (1.1.3)

where ν1 > 0 is an unknown parameter. We formulate our problem as follows

Problem 1.1.1. How can we identify the parameter set Θ = {(τ, ν, ν1, S0, I0)} ⊂
(0,∞)5 if we know the cumulative reported cases CR(t) for all time t > 0?

We will show that the knowledge of the cumulative reported cases CR(t) is not
su�cient to recover the parameter set Θ. Roughly speaking, this set is de�ned up to
one degree of freedom. More precisely, under suitable hypotheses on the cumulative
reported case data CR(t), t ≥ 0, only the following combination of parameters and
initial values can be reconstructed

I0
S0
, S0τ, S0ν1 and ν. (1.1.4)

As a consequence, the knowledge about the value of S0, the number of susceptible
people in the population before the epidemic outbreak, allows us to obtain precise
information about the values I0, τ , and ν1. Then the basic reproduction number of
the epidemic

R0 =
S0τ

ν
, (1.1.5)

can be obtained from (1.1.4). The interpretation of R0 is that if R0 < 1, then the
epidemic subsides, and if R0 > 1, then the epidemic outbreaks. We will describe a
simple method to compute the parameter set in (1.1.4), and apply this method to
speci�c epidemic data.
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1. Identifying the number of unreported cases in SIR epidemic models

1.2 Identi�ability of SIR model

In this section we show that the parameter set Θ is not identi�able from the
reported case data CR(t), t ≥ 0. We refer to Evans et al. [25] for more results on
this topic. Here we perform a simple proof for the SIR model.

Consider the parameter p := (τ, ν, ν1, S0, I0) ∈ (0,+∞)5. De�ne (S(t, p), I(t, p)),
as the unique solution of (1.1.1)-(1.1.2), and CR(t, p) as the output function (1.1.3),
for a given value of the parameter set p ∈ (0,+∞)5. We have the following proposi-
tion

Proposition 1.2.1. Suppose that (S(t, p), I(t, p)) and (S(t, p), I(t, p)) are the two

solutions of (1.1.1)-(1.1.2) for the parameter p = (τ, ν, ν1, S0, I0) and the parameter

p =
(
τ , ν, ν1, S0, I0

)
, respectively. Then

CR(t, p) = CR(t, p) (1.2.1)

for every t ≥ 0, if and only if

ν = ν̄,
τ

ν1
=

τ̄

ν̄1
, τS0 = τ̄S0, τI0 = τ̄ I0. (1.2.2)

Proof. (⇒) Assume �rst that (1.2.1) holds and di�erentiate both sides for t to obtain

CR′(t, p) = CR′(t, p), ∀t ≥ 0,

which is equivalent to
ν1I(t, p) = ν̄1I(t, p), ∀t ≥ 0. (1.2.3)

Di�erentiate both sides of (1.2.3) with respect to t, to obtain

ν1I
′(t, p) = ν̄1I

′(t, p), ∀t ≥ 0.

Replacing I ′(t) by its formula in (1.1.1) on both sides of the above equality, we obtain

ν1I
′(t, p) = ν̄1I

′(t, p)

⇔ ν1

(
τS(t, p)I(t, p)− νI(t, p)

)
= ν̄1

(
τ̄S(t, p)I(t, p)− ν̄I(t, p)

)
⇔ ν1I(t, p)

(
τS(t, p)− ν

)
= ν̄1I(t, p)

(
τ̄S(t, p)− ν̄

)
,

and (1.2.3) implies that

τS(t, p)− ν = τ̄S(t, p)− ν̄,∀t ≥ 0. (1.2.4)

Di�erentiating both side of (1.2.4) with respect to t, we obtain

τS′(t, p) = τ̄S′(t, p)

⇔ τ
(
− τS(t, p)I(t, p)

)
= τ̄

(
− τ̄S(t, p)I(t, p)

)
⇔ τ2S(t, p)I(t, p) = τ̄2S(t, p)I(t, p)
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1.2. Identi�ability of SIR model

and by using again (1.2.3), we obtain

ν̄1
ν1
τ2S(t, p) = τ̄2S(t, p),∀t ≥ 0. (1.2.5)

Then, by using (1.2.4), and replacing S(t, p) in (2.4.1), we obtain

ν̄1
ν1
τ2S(t, p) = τ̄2(

ν̄ − ν + τS(t, p)

τ̄
).

Therefore,

(
ν̄1
ν1
τ − τ̄)S(t, p) =

τ̄

τ
(ν̄ − ν),∀t ≥ 0. (1.2.6)

Di�erentiating both sides of equation (1.2.3) with respect to t, we obtain

(
ν̄1
ν1
τ − τ̄)S′(t, p) = 0,

which implies that

(
ν̄1
ν1
τ − τ̄)(−τS(t, p)I(t, p)) = 0, ∀t ≥ 0. (1.2.7)

Setting t = 0 in equations (1.2.3), (1.2.4), (1.2.6) and (1.2.7) we obtain the following
system of equations 

I0ν1 = I0ν̄1

τS0 − ν = τ̄S0 − ν̄
(
ν̄1
ν1
τ − τ̄)S0 =

τ̄

τ
(ν̄ − ν)

−τS0I0(
ν̄1
ν1
τ − τ̄) = 0

(1.2.8)

and (1.2.2) follows.
(⇐) To prove the converse implication, let (S(t), I(t)) be a solution of (1.1.1)-(1.1.2).
Let S0 > 0, I0 > 0, and set

S(t) :=
S0

S0
S(t) and I(t) :=

I0
I0
I(t).

Since (S(t), I(t)) satis�es (1.1.1)-(1.1.2), we obtain by replacing S(t) and I(t) with
the above formulas, 

S0

S0

S
′
(t) = −τ S0

S0

S(t)
I0

I0
I(t)

I0

I0
I
′
(t) = τ

S0

S0

S(t)
I0

I0
I(t)− ν I0

I0
I(t)

S(0) = S0

I(0) = I0.
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1. Identifying the number of unreported cases in SIR epidemic models

After simplifying, 

S
′
(t) = −τ I0

I0
S(t)I(t)

I
′
(t) = τ

S0

S0

S(t)I(t)− νI(t)

S(0) = S0

I(0) = I0

(1.2.9)

and by using (1.2.2) we deduce that τ
I0

I0
= τ

S0
S̄0

= τ̄ and ν = ν̄. Therefore,

(S(t), I(t)) satis�es (1.1.1)-(1.1.2) with the new parameter set p. By the uniqueness of
the solution of (1.1.1)-(1.1.2) with the parameter set p, (S(t), I(t)) = (S(t, p), I(t, p)).
It means that

CR(t, p) := ν̄1

t∫
0

I(s, p) ds = ν̄1

t∫
0

I(s) ds = ν̄1
I0
I0

t∫
0

I(s) ds, ∀t ≥ 0,

and by using (1.2.2) we deduce that
τ

ν1
=
τ̄

ν̄ 1
, τI0 = τ̄ I0. Therefore,

CR(t, p) = CR(t, p), ∀t ≥ 0.

Remark 1.2.2. Suppose that p = (τ, ν, ν1, S0, I0) ∈ (0,+∞)5 is parameter of the
system (1.1.1)-(1.1.3), then the cumulative reported cases function CR(t) in (1.1.3)
retains the same value if we replace p by a new parameter as follows

q =
(τ
a
, ν,

ν1
a
, aS0, aI0

)
for every a > 0.

1.3 Computation the combinations of the parameters of
SIR model

1.3.1 System of equations to identify the parameters

In this section, we consider the SIR model (1.1.1)-(1.1.2) when the epidemic
outbreaks with the basic reproduction number R0 = τS0/ν > 1. The cumulative
reported case function CR(t) := ν1

∫ t
0 I(s)ds, t ≥ 0 is assumed to be known. We aim

to provide a simple method to identify the parameters (1.1.4).
Recall that, since R0 > 1, the solutions of (1.1.1)-(1.1.2) have a typical outbreak

behavior [46] as follows

(i) The function t 7→ S(t) is not increasing on [0,∞) with S(0) = S0 and S(∞) >
0.

17



1.3. Computation the combinations of the parameters of SIR model

(ii) There exists a unique turning point tp > 0 such that I ′(tp) = 0, and I(t) is
not decreasing on [0, tp] and not increasing on [tp,∞). Moreover I(∞) = 0 and
t 7→ I(t) is integrable on [0,∞).

In addition to the turning point tp, the above properties allow us to de�ne several
important quantities related to the function CR:

CR(tp), CR
′(tp) and CR(∞). (1.3.1)

As it will be seen later, these quantities will be su�cient to compute the combinations
of parameters in (1.1.4). To compute these four combined parameters we will provide
four independent equations. Three of them is derived in [46]. Following the notations
introduced in [46], we set

c := CR(∞), r :=
CR(tp)

CR(∞)
.

Next, by setting

X := c
τ

ν1
, (1.3.2)

and then by multiplying both sides by S0ν1 we deduce that

X × (S0ν1) = cS0τ. (1.3.3)

Moreover, by using respectively, equations (3.3), (3.7) and (3.9) in [46], we derive
the three following independent equations

e−X +Xe−rX = 1 +
I0
S0
, (1.3.4)

(S0ν1)×
[
1 +

I0
S0
− e−rX (1 + rX)

]
= CR′(tp) (1.3.5)

and
ν = (S0τ)× e−rX . (1.3.6)

We recall �rst, that by Proposition 3.1 in [46], equation (1.3.4) implies the fol-
lowing compatibility condition with the data: r ∈ (0, 1/2) . Thus, for the model
(1.1.1)-(1.1.2) more than half of all cases occur after the turning point tp. As noted
in [46], some outbreak epidemics have more than half of all cases occurring before
the turning point, and the model (1.1.1)-(1.1.2) does not apply these examples.

1.3.2 Derivation of the equation for the turning point

To de�ne an equation for the turning point, we �rst introduce the function

F (X) := e−X +Xe−rX − 1.

Lemma 1.3.1. Suppose that 1 > r ≥ 1

2
⇒ F (X) < 0,∀X > 0.

18



1. Identifying the number of unreported cases in SIR epidemic models

Proof. We have F (0) = 0 and F ′(X) = e−rXG(x), with

G(X) := 1− rX − e−(1−r)X .

Then G(0) = 0 and G′(X) = −r + (1− r)e−(1−r)X . So if 1 > r ≥ 1/2 we have

G′(X) < 0,∀X > 0.

The result follows.

Lemma 1.3.2. Assume that r ∈ (0,
1

2
). There exists a unique strictly positive solu-

tion X(r) > 0 of equation

F (X) = 0⇔ e−X +Xe−rX − 1 = 0. (1.3.7)

Moreover, there exists Xmax ∈ (0, X(r)), such that the function F (X) is strictly

increasing on (0, Xmax) and strictly decreasing on (Xmax, X(r)).
Furthermore, {

F (X) > 0, if X ∈ (0, X(r)),
F (X) < 0, if X ∈ (X(r),∞).

(1.3.8)

Proof. We have F (0) = 0 and F ′(X) = e−rXG(x), with

G(X) := 1− rX − e−(1−r)X .

Then G(0) = 0 and G′(X) = −r + (1− r)e−(1−r)X . Moreover, we have

G′(X) = 0⇔ X =
1

1− r
ln

(
1

r
− 1

)
:= X∗ > 0.

Thus, G′(X) > 0 for X ∈ (0, X∗) and G′(X) < 0 for X > X∗. We also have

lim
X→∞

G(X) = −∞.

Let Xmax > X∗ be the unique value in (0,+∞) such that G(Xmax) = 0. Moreover,
F ′(X) > 0 on (0, Xmax), F ′(X) < 0 on (Xmax,∞), and F ′(0) = F ′(Xmax) = 0.
Hence, F (Xmax) > 0 is the maximum of F . Next, we observe that

lim
X→∞

F (X) = −1

Therefore there exists a unique X(r) ∈ (Xmax,∞) such that F (X(r)) = 0.

The above results are summarized in Figure 1.1.
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1.3. Computation the combinations of the parameters of SIR model

Figure 1.1: The function X → F (X) when r = 0.1, 0.2, 0.3, 0.4 and 0.49 respectively

in red, green, blue, orange, black.

Next, we derive an additional independent equation involving the turning point
tp. To that aim, recall that

CR′(t) = ν1I(t), ∀t > 0 and CR(0) = 0.

As a consequence, we obtain from (1.1.1)-(1.1.2),

d

dt

(
S(t) + I(t) +

ν

ν1
CR(t)

)
= 0, ∀t > 0,

so that
S(t) + I(t) +

ν

ν1
CR(t) = S0 + I0, ∀t ≥ 0.

Hence, we obtain

CR′(t) = ν1I(t) = ν1

[
S0 + I0 − S(t)− ν

ν1
CR(t)

]
, ∀t ≥ 0.

However, by using (1.1.1), we may eliminate S(t), since S(t) = S0e
− τ
ν1
CR(t)

. As a
consequence, CR(t) satis�es the equation

CR′(t) = ν1I(t) = S0ν1

[
1 +

I0
S0
− e−τCR(t) − ν

S0ν1
CR(t)

]
, ∀t ≥ 0.

Now note that since CR′(t) = ν1I(t) > 0, the function t→ CR(t) must be increasing
on (0,∞). We thus have

1 +
I0
S0
− e−

τ
ν1
y − ν

S0ν1
y > 0, ∀y ∈ [0, CR(∞)).

20



1. Identifying the number of unreported cases in SIR epidemic models

Remark 1.3.3. The above inequality gives a condition on the �nal number of cumu-
lative reported cases c = CR(∞).

Integration of the di�erential equation for CR(t) above, from t = 0 to t = tp,
yields ∫ tp

0

CR′(t)

1 + I0
S0
− e−

τ
ν1
CR(t) − ν

S0ν1
CR(t)

dt = (S0ν1)tp.

Set s = CR(t) and we obtain∫ CR(tp)

0

1

1 + I0
S0
− e−

τ
ν1
s − ν

S0ν1
s

ds = (S0ν1)tp.

Now recalling that CR(tp) = rc, the change of variable s = cσ yields∫ r

0

1

1 + I0
S0
− e−

cτ
ν1
σ − cν

S0ν1
σ

dσ = (S0ν1)
tp
c
.

By (1.3.2), that is X = cτ
ν1
, we deduce that∫ r

0

1

1 + I0
S0
− e−Xσ − ν

τS0
Xσ

dσ = (S0ν1)
tp
c
.

By (1.3.6), that is ν = S0τe
−rX , we have∫ r

0

dσ

1 + I0
S0
− e−Xσ −Xe−rXσ

= (S0ν1)
tp
c
.

By (1.3.5), that is S0ν1
[
1 + I0

S0
− e−rX (1 + rX)

]
= CR′(tp), we obtain

[
1 +

I0
S0
− e−rX (1 + rX)

]
×
∫ r

0

dσ

1 + I0
S0
− e−Xσ −Xe−rXσ

= CR′(tp)
tp
c
.

Finally, by (1.3.4), that is e−X +Xe−rX = 1 + I0
S0

and Lemma 1.3.2, we deduce that

0 < X < X(r) (1.3.9)

and that X must satisfy the turning point equation

T (X, r) =
CR′(tp)tp

c
, (1.3.10)

where the mapping T is de�ned by

T (X, r) :=

∫ r

0

H(X, r)

H(X,σ)
dσ, (1.3.11)

where the right hand side is an improper integral and the function H is de�ned by

H(X,σ) := e−X +Xe−rX − e−Xσ −Xe−rXσ. (1.3.12)

Remark 1.3.4. We observe that H(X, 0) = e−X +Xe−rX − 1 = F (X).

21



1.3. Computation the combinations of the parameters of SIR model

1.3.3 Analysis of the turning point equation

Lemma 1.3.5. If r ∈ (0,
1

2
), and X ∈ (0, X(r)), then

0 < F (X) = H(X, 0) 6 H(X,σ) 6 H(X, r)

for every σ ∈ [0, r].

Proof. Suppose that r ∈ (0,
1

2
), X ∈ (0, X(r)), and consider

∂σH(X,σ) = X(e−σX − e−rX) > 0, ∀σ ∈ [0, r],

which means that H(X,σ) is increasing with respect to σ.

Lemma 1.3.6. The function X → T (X, r) is well-de�ned on the open interval

(0, X(r)). Moreover,

lim
X→X(r)−

T (X, r) =∞, (1.3.13)

and

lim
X→0+

T (X, r) =
r − 1

2
ln(1− 2r). (1.3.14)

Proof. Proof of (1.3.13): By Lemma 1.3.5, T (X, r) is well-de�ned on the interval
(0, X(r)). Since X(r) is the unique positive solution of the equation (1.3.7), we have
H(X(r), σ) = 1 − e−σX(r) − σ(1 − e−σX(r)). Let k(x, σ) = 1 − e−σx − σ(1 − e−x)
on [0,∞). Then, ∂xk(x, σ) = σ(e−σx − e−x) > 0 for every x ∈ [0,∞), and σ ∈
(0,

1

2
). This means that k(x, σ) > k(0, σ) = 0 for every x ∈ (0,∞), and σ ∈ (0,

1

2
).

Therefore, H(X(r), σ) = 1− e−σX(r) − σ(1− e−σX(r)) > 0 for every σ ∈ (0,
1

2
).

Moreover,

lim
σ→0+

H(X(r), σ)

σ
= lim
σ→0+

1− e−σX(r) − rX(r)e−rX(r)σ

σ

= lim
σ→0+

1− e−σX(r)

σ
− rX(r)e−rX(r)

=X(r)−X(r)e−rX(r) = X(r)(1− e−rX(r)) > 0.

This means that

r∫
0

lim
X→X(r)−

H(X, r)

H(X,σ)
dσ =

r∫
0

H(X(r), r)

H(X(r), σ)
dσ = ∞, and by Fatou's

Lemma, we have lim
X→X(r)−

T (X, r) =∞.

Proof of (1.3.14): Next, taking the Taylor's expansions of the functions e−X , e−rX , e−hX

at X = 0, and σ ∈ [0, r] ⊂ (0, 12), we obtain

e−σX = 1− σX +
1

2
σ2X2 + o((σX)3) = 1− σX +

1

2
σ2X2 + o(X3),

e−rX = 1− rX +
1

2
r2X2 + o(X3), and e−X = 1−X +

1

2
X2 + o(X3),
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1. Identifying the number of unreported cases in SIR epidemic models

where o(X3) does not depend on σ. Thus,

H(X,σ) =
1− 2r − σ2 + 2rσ

2
X2 + o(X3), H(X, r) =

(1− r)2

2
X2 + o(X3).

Hence,

H(X, r)

H(X,σ)
=

(1− r)2

2
X2 + o(X3)

1− 2r − σ2 + 2rσ

2
X2 + o(X3)

=
(1− r)2 + o(X)

1− 2r − σ2 + 2rσ + o(X)
.

Since o(X) does not depend on σ, when X tends to 0+ the function
H(X, r)

H(X,σ)
is

uniformly convergent to h(σ) =
(1− r)2

1− 2r − σ2 + 2rσ
on [0, r]. Thus,

lim
X→0+

T (X, r) =

r∫
0

(1− r)2

1− 2r − σ2 + 2rσ
dσ

= (1− r)2
r∫

0

1

(2r − 1− σ)(σ − 1)
dσ =

(1− r)
2

ln(
1

1− 2r
).

In Figure 1.2 we plot the mapping r → X(r), where X = X(r) is the solution
of (1.3.7), as r varies in (0, 12). In Figure 1.3 we plot the mapping x→ T (xX(r), r),
where T is de�ned by (1.3.11), as x varies in (0, 1), for di�erent values of r. From
Figure 1.3 we observe that numerically, the mappings X → T (X, r) are all monotone
increasing for each value of r. As a consequence we can conclude (numerically) that
equation (1.3.10) has a unique solution X ∈ (0, X(r)).

Remark 1.3.7. From Figure 1.3 we can also visualize the minimum value for T (X, r),
which is given by (1.3.14). By using (1.3.10) we deduce that we must have

CR′(tp)tp
CR(∞)

>
r − 1

2
ln(1− 2r).

where r =
CR(tp)

CR(∞)
. Therefore, we obtain a new relationship between the values

tp, CR(tp), CR
′(tp), CR(∞).
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Figure 1.2: The mapping r → X(r) where r varies in (0, 12).

Figure 1.3: The mapping x→ T (xX(r), r) where x varies in (0, 1). The red, green,

blue, orange, black curves correspond (from the bottom to the top) to r = 0.1, r = 0.2,
r = 0.3, r = 0.4 and r = 0.49, respectively.
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1. Identifying the number of unreported cases in SIR epidemic models

As a consequence of Proposition 1.2.1, we have the following theorem.

Theorem 1.3.8. Assume that the equation (1.3.10) has a unique solution X in

(0, X(r)). Then the function t → CR(t, p) is uniquely determined by the turning

point tp, CR(tp), CR
′(tp) and CR(∞) in which p = (τ, ν, ν1, S0, I0) is the arbitrary

parameter of (1.1.1)-(1.1.3).

Remark 1.3.9. Assume that the equation (1.3.10) has a unique solutionX in (0, X(r)).
Then the basic reproduction number R0 is uniquely determined by the turning point
tp, CR(tp), CR′(tp) and CR(∞).

Note that, if the function T (X, r) is strictly decreasing on (0, X(r)) then the
equation (1.3.10) has a unique solution on (0, X(r)). About the monotony of the
function T (X, r) on (0, X(r)), we have the following theorem

Theorem 1.3.10. Suppose that r ∈ (0,
1

2
), and X(r) is the unique positive solution

of the equation e−X + Xe−rX − 1 = 0, then there exists
1

2
> α > 0 such that for

every r ∈ (
1

2
− α, 1

2
) the function T (X, r) =

r∫
0

H(X, r)

H(X,σ)
dσ is strictly increasing on

(0, X(r)).

Firstly, the derivative of T (X, r) is computed as follows

T ′X(X, r) =

r∫
0

H ′X(X, r)H(X,σ)−H ′X(X,σ)H(X, r)

H2(X,σ)
dσ.

It is seen that T ′X(X, r) is a complicated expression, then we hope we can prove that
H ′X(X, r)H(X,σ) − H ′X(X,σ)H(X, r) > 0 for every X ∈ (0, X(r)), σ ∈ (0, r) for
concluding the monotony of T (X, r). However, taking some computations by Maple,

the result is not as our expectation. For instance, if r =
25

54
, and σ = 0.01, there

is an interval so that T ′X(X, r) is negative. It is the reason why the study of the
monotony of T (X, r) becomes di�cult.
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1.3. Computation the combinations of the parameters of SIR model

Figure 1.4: The graph of H ′X(X, r)H(X,σ) −H ′X(X,σ)H(X, r) where r =
25

54
, and

σ = 0.01 and X varies in (0, X(r)).

Now we study the monotony of T (X, r) when r is closed enough to
1

2
. Suppose

that X(r) is the unique positive solution of the equation F (X) = e−X+Xe−rX−1 =

0 as Lemma 1.3.2, it is seen thatX(r) is a positive function of the variable r on (0,
1

2
).

We have the following lemma

Lemma 1.3.11. lim
r→ 1

2

−
X(r) = 0.

Proof. Let f(X) =
1

X
ln(

XeX

eX − 1
). It is seen that

X2(eX − 1)f ′(X) = (1− eX)
(

ln
( X

eX − 1

)
+ x
)

+ eX − 1−X.

We have 1− eX = −X − X2

2
− X3

6
+ o(X4) and

ln
( X

eX − 1

)
= −X

2
− X2

24
+ o(X4).

Therefore

X2(eX − 1)f ′(X) =(−X − X2

2
− X3

6
+ o(X4))(−X

2
− X2

24
+ o(X4))

+ (
X2

2
+
X3

6
+ o(X4))

=− X3

24
+ o(X4)
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1. Identifying the number of unreported cases in SIR epidemic models

It means that
eX − 1

X
f ′(X) = − 1

24
+ o(X) for X > 0. Since lim

X→0+
o(X) = 0,

there exists η > 0 such that |o(X)| < 1

24
for every X ∈ (0, η). It implies that

X2(eX − 1)f ′(X) < 0 for every X ∈ (0, η). Then f ′(X) < 0 for every X ∈ (0, η), so
f is strictly decreasing on X ∈ (0, η).

It is clear that e−X +Xe−rX−1 = 0⇔ f(X) = r. So X(r) is the unique positive
solution of the equation f(X) = r. Since f is strictly decreasing on X ∈ (0, η), f is

continuous and lim
r→ 1

2

−
X(r) = 0 then f is a bijection from (0, η) to (f(η),

1

2
). It can

be rewritten X(r) = f−1(r), and X(r) = f−1(r) is strictly decreasing on (f(η),
1

2
).

Moreover, X(r) > 0 for every r ∈ (f(η),
1

2
), then there exists the limit lim

r→ 1
2

−
X(r) =

X̃ > 0. Since X(r) is the unique positive solution of e−X +Xe−rX − 1 = 0, we have

lim
r→ 1

2

−
e−X(r) +X(r)e−rX(r) − 1 = 0. It implies that e−X̃ + X̃e−

1
2
X̃ − 1 = 0.

Let p(X) = e−X + Xe−
1
2
X − 1 for every X ∈ [0, η). We have p′(X) = −e−X +

e−
1
2
X − X

2 e
− 1

2
X = e−

1
2
X(1 − X

2 − e−
1
2
X). De�ne q(X) = 1 − X

2 − e−
1
2
X , then

q′(X) = 1
2(e−

X
2 − 1) < 0 for every X ∈ [0, η). It means that q(X) is decreasing on

[0, η), so q(X) < 0 for every X ∈ (0, η). It follows that p′(X) < 0, therefore p is
strictly decreasing on (0, η). Moreover p(X) < 0 for every X ∈ (0, η), and p(0) = 0.
It means that X = 0 is the unique solution of the equation p(X) = 0, so X̃ = 0, and
lim
r→ 1

2

−
X(r) = 0.

To conclude the monotony of T (X, r). We need the following lemmas

Lemma 1.3.12. Taylor's expansion of N(X) = H ′X(X, r)H(X,σ)−H ′X(X,σ)H(X, r)

at X = 0 is
(1− σ)(σ − r)2(1− r)2

12
X4 + o(X5).

Proof. We have

H(X,σ) = e−X +Xe−rX − e−Xσ −Xe−rXσ
and H(X, r) = e−X +Xe−rX − e−rX −Xe−rXr.
So H ′X(X,σ) = −e−X + e−rX − rXe−Xr + σe−σX − σe−rX + rσXe−rX

and H ′X(X, r) = −e−X + e−rX − rXe−Xr + r2Xe−rX .
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We take the Taylor's expansion of the functions e−X , e−rX , e−σX at X = 0

e−σX = 1− σX +
1

2
σ2X2 − 1

6
σ3X3 +

1

24
σ4X4 − 1

120
σ5X5 + o(X6)

so e−rX = 1− rX +
1

2
r2X2 − 1

6
r3X3 +

1

24
r4X4 − 1

120
r5X5 + o(X6)

and e−X = 1−X +
1

2
X2 − 1

6
X3 +

1

24
X4 − 1

120
X5 + o(X6)

.

Replacing these above Taylor's expansion to the expression H(X,σ), we have

H(X,σ) =
(1− σ)(σ − 2r + 1)

2
X2 +

((1− σ)

2
r2 +

σ3 − 1

6

)
X3

+
((σ − 1)

6
r3 − σ4 − 1

24

)
X4 +

((1− σ)

24
r4 +

σ5 − 1

120

)
X5 + o(X6)

and H(X, r) =
(1− r)2

2
X2 +

(
− 1

6
+

1

2
r2 − 1

3
r3
)
X3

+
( 1

24
− 1

6
r3 +

1

8
r4
)
X4 +

(
− 1

120
+

1

24
r4 − 1

30
r5
)
X5 + o(X6).

So H ′X(X,σ) =(1− σ)(σ − 2r + 1)X +
(3(1− σ)

2
r2 +

σ3 − 1

2

)
X2

+
(2(σ − 1)

3
r3 − σ4 − 1

6

)
X3 +

(5(1− σ)

24
r4 +

σ5 − 1

24

)
X4 + o(X5)

and H ′X(X, r) =(1− r)2X +
(
− 1

2
+

3

2
r2 − r3

)
X2

+
(1

6
− 2

3
r3 +

1

2
r4
)
X3 +

(
− 1

24
+

5

24
r4 − 1

6
r5
)
X4 + o(X5).

Finally,

H ′X(X, r)H(X,σ)−H ′X(X,σ)H(X, r) =
(1− σ)(σ − r)2(1− r)2

12
X4 + o(X5).

Lemma 1.3.13. M(r) =

r∫
0

(1−h)(h− r)2(1− r)2dh > 0.0069 for every r ∈ [
2

5
,
1

2
] .
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Proof. We have

M(r) =

r∫
0

(r − 1)2(1− h)(h− r)2dh

= (r − 1)2
r∫

0

(1− h)(h− r)2dh

= (r − 1)2
r∫

0

(1− r + r − h)(h− r)2dh

= (r − 1)2
(

(1− r)
r∫

0

(h− r)2dh+

r∫
0

(h− r)3dh
)

= (r − 1)2
(
− (1− r)(−r)3

3
+
r4

4

)
=

(r − 1)2r3(4− r)
12

.

It implies that I ′(r) =
(1− r)r2(r2 − 4r + 2)

12
. Note that (r2− 4r+ 2)′ = 2r− 2 < 0

for every r ∈ [
2

5
,
1

2
], so r2 − 4r + 2 >

1

2

2

− 4
1

2
+ 2 > 0 for every r ∈ [

2

5
,
1

2
]. It shows

that I ′(r) > 0 for every r ∈ [
2

5
,
1

2
], and M(r) > I(25) > 0.0069.

Now we show the Proof of Theorem 1.3.10:

Proof. (Proof of Theorem 1.3.10)
By Lemma 1.3.12 and Lemma 1.3.5, we have

T ′X(X, r) =

r∫
0

H ′X(X, r)H(X,σ)−H ′X(X,σ)H(X, r)

H2(X,σ)
dσ

=

r∫
0

(1− σ)(σ − r)2(1− r)2

12
X4 + o(X5)

H2(X,σ)
dσ

=
X4

12

r∫
0

(1− σ)(σ − r)2(1− r)2 + o(X)

H2(X,σ)
dσ

>
X4

12H2(X, r)

r∫
0

(
(1− σ)(σ − r)2(1− r)2 + o(X)

)
dσ
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Using Lemma 1.3.13, we also have

r∫
0

(
(1− σ)(σ − r)2(1− r)2 + o(X)

)
dσ =

r∫
0

(1− σ)(σ − r)2(1− r)2dσ +

r∫
0

o(X)dσ

>0.0069 +

r∫
0

o(X)dσ

for every r ∈ [
2

5
,
1

2
], X ∈ (0, X(r)).

By Lemma 1.3.11, there exists α > 0 such that if r ∈ (
1

2
− α, 1

2
), then |o(X)| <

0.12 (note that, we can choose α 6
1

10
so that (

1

2
− α, 1

2
) ⊂ [

2

5
,
1

2
]). It implies that

|
r∫

0

o(X)dσ| 6
r∫

0

|o(X)|dσ 6

r∫
0

0.12dσ = 0.12r 6 0.006. It follows that

r∫
0

(
(1− σ)(σ − r)2(1− r)2 + o(X)

)
dσ > 0.0069− 0.006 > 0.

Therefore T ′X(X, r) > 0 for every X ∈ (0, X(r)), and T (X, r) =

r∫
0

H(X, r)

H(X,σ)
dσ is

strictly increasing on (0, X(r)).

Remark 1.3.14. Suppose that r ∈ (0,
1

2
), and X(r) is the unique positive solution

of the equation e−X + Xe−rX − 1 = 0, then there exists
1

2
> α > 0 such that for

every r ∈ (
1

2
− α, 1

2
) the function T (X, r) =

r∫
0

H(X, r)

H(X,σ)
dσ is strictly increasing on

(0, X(r)). It implies the uniqueness of solution of (1.3.10), and then the function
CR(t, p) is uniquely determined by the turning point tp, CR(tp), CR′(tp) and CR(∞)
in which p = (τ, ν, ν1, S0, I0) is the arbitrary parameter of 1.1.1-1.1.3.

1.4 An identi�cation method and applications to some
outbreak epidemics

1.4.1 Description of the method

By Proposition 1.2.1, the combination of parameters
I0
S0

, ν1S0, S0τ , ν1I0, and ν

from the system (1.1.1)-(1.1.2) are uniquely determined by the cumulative reported
cases function CR(t) for the parameter p = (τ, ν, ν1, S0, I0). Moreover, the analysis
in Section 1.3 allows us to derive a method to compute this combination by the
following three steps:
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1. Identifying the number of unreported cases in SIR epidemic models

Assume that the values of tp, CR(tp), CR′(tp), and CR(∞) are known, and set

c = CR(∞) and r =
CR(tp)

CR(∞)
.

Step 1: Solve the equation (1.3.7), e−X + Xe−rX − 1 = 0, to obtain the unique
positive solution X(r).
Step 2: Solve the turning point equation (1.3.10)

r∫
0

e−X +Xe−rX − e−rX − rXe−rX

e−X +Xe−rX − e−σX − σXe−rX
dσ =

CR′(tp)tp
c

,

with the condition (1.3.9), 0 < X < X(r), to obtain the value X = c
τ

ν1
.

Step 3:

i. Compute the value of a1 :=
τ

ν1
=
X

c
by the formula (1.3.2);

ii. Compute the value of a2 :=
I0
S0

= e−X +Xe−rX − 1 by the formula (1.3.4);

iii. Compute the value of a3 := ν1S0 =
CR′(tp)

1 + a2 − e−rX (1 + rX)
by the formula

(1.3.5);

iv. Compute the value of a4 := τS0 = a1a3;

v. Compute the value of a5 := ν1I0 = a2a3;

vi. Compute the value of a6 := ν = a4e
−rX by the formula (1.3.6).

Remark 1.4.1. By the fact that ν1 < ν, we obtain the following evaluations:

S0 > S0
ν1
ν

=
a3
a6

I0 > I0
ν1
ν

=
a5
a6

τ < ν
τ

ν1
= a1a6.

(1.4.1)

Moreover, the basic reproduction number is

R0 =
τS0
ν

=
a4
a6
. (1.4.2)

Remark 1.4.2. Recall from [46] that

CU(t) = ν2

t∫
0

I(s) ds
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is the cumulative unreported infected cases at time t > 0, and

C(t) = ν

t∫
0

I(s) ds

is the cumulative total cases at time t > 0. If S0 is known, the epidemic �nal size of
the epidemic is written as follows:

C(∞) = CR(∞) + CU(∞) = CR(∞) +
ν2
ν1
CR(∞)

=
ν

ν1
CR(∞) = ν

S0
ν1S0

CR(∞) = a6
c

a3
S0.

(1.4.3)

Denote by N = S0+I0, the number of the individuals involved in the epidemic,which
is typically smaller than the total number of the population, since some people have
immunity. Then S0 satis�es

a3
a6

< S0 ≤ N − I0 = N − S0
I0
S0
,

which implies

a3
a6

< S0 ≤
N

1 + I0
S0

=
N

1 + a2
. (1.4.4)

Moreover, the number of susceptible individuals at the end of epidemic can be com-
puted by the following formula

S(∞) = S0 + I0 − C(∞) = S0

(
1 + a2 − a6

c

a3

)
. (1.4.5)

1.4.2 Application to Hong-Kong in�uenza in New York City in

1968-1969

To illustrate the method we performed in the previous section, we compute the
parameters of SIR model for Hong-Kong in�uenza in New York City during 13 weeks
of the winter of 1968-1969. The data of this epidemic given in the following table
are weekly reported numbers of in�uenza deaths (see [62]).
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Week (t) Reported Cases (ν1I(t))

1 14
2 28
3 50
4 66
5 156
6 190
7 156
8 108
9 68
10 77
11 33
12 65
13 24

Table 1.1: Reported cases data for Hong-Kong in�uenza in New York in 1968-1969.

In this application, we have the values CR(∞) = 1080, CR(tp) = 500, tp =
6.15, CR′(tp) = 190 (see [46]). The total population of New York City in 1968 is
7, 900, 000. Consider the equation

500
1080∫
0

e−X +Xe−
500
1080

X − e−
500
1080

X + 500
1080Xe

− 500
1080

X

e−X +Xe−
500
1080

X − e−σX − σXe−
500
1080

X
dσ =

11685

10800
. (1.4.6)

for X ∈ (0, X(r)) where X(r) = 0.89478 is the positive solution of the equation

e−X +Xe−
500
1080

X − 1 = 0. (1.4.7)

First, solve the equation (1.4.7), and obtain the value of X(r) = 0.89478. This value
corresponds to the positive zero of the function in Figure 1.5 - left side.
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Figure 1.5: Left side: The graph of Y = e−X + Xe−
500
1080

X − 1. Right side: The

intersection of Y = T (X, 500
1080) and Y =

tpCR′(tp)
CR(∞) . When r = 500

1080 we obtain

X(r) = 0.89478, X = 0.7869 and
I0
S0

= e−X +Xe−
500
1080

X − 1 = 0.0019 .

Finally, by applying Step 3 of the method described above we obtain the following
table of values

Variable Description Estimated value

X cτ/ν1 0.79
a1 τ/ν1 7.3× 10−4

a2 I0/S0 0.002
a3 ν1S0 3509.1
a4 τS0 2.56
a5 ν1I0 6.65
a6 ν 1.78

Table 1.2: List of a combination of parameters obtained for Hong-Kong in�uenza in

New York in 1968-1969.

Remark 1.4.3. From the reported case data for the Hong Kong in�uenza in New
York City in 1968-1969, there are at least three infected individuals at the beginning
of the epidemic.

If the value of the initial susceptible individuals S0 is given, then all the param-
eters can be obtained. The following table gives these values when S0 = 1, 976,
S0 = 4, 000, 000, and S0 = 7, 885, 047
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1. Identifying the number of unreported cases in SIR epidemic models

Variable Estimated value 1 Estimated value 2 Estimated value 3

S0 1976 4, 000, 000 7, 885, 047
I0 3.7472 7, 586 14, 953
τ 1.3× 10−3 6.4× 10−7 3.2× 10−7

ν1 1.78 0.88× 10−3 4.5× 10−4

ν2 3.1× 10−4 1.78 1.78
C(∞) 1080 2.19× 106 4.31× 106

S(∞) 899 1.82× 106 3.59× 106

Table 1.3: List of parameters obtained for Hong-Kong in�uenza in New York in

1968-1969. In this table we vary the value of S0 between the minimal value 1976 up

to the maximal value 7, 885, 047 and compute the corresponding estimated parameters

values.

In Figures 1.6, 1.7, and 1.8 we provide model (1.1.1)-(1.1.2) output for the Hong
Kong in�uenza epidemic in New York City in 1968-1968 for the parameters in Table
1.4.2 and the values under S0 = 4, 000, 000 in Table 1.3 (see [46]). In Figure 1.6 we
compare the model output to the reported case data (see [46]). In Figure 1.7 we
illustrate the epidemic �nal size as a function of the initial number of susceptibles
S0. In Figure 1.8 we illustrate the epidemic �nal size as a function of the turning
point of the epidemic.
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Figure 1.6: Hong Kong in�uenza epidemic in New York City in 1968-1969. The

weekly reported mortality case data and cumulative reported case data , and the model

output graph CR′(t). To run this simulation we �x S0 = 4, 000, 000.

Moreover, the basic reproduction number is

R0 =
τS0
ν

=
a4
a6

= 1.4. (1.4.8)

From Remark 1.4.2 whenever S0 is known the �nal size of the epidemic C(∞) is
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1.4. An identi�cation method and applications to some outbreak epidemics

expressed linearly in function of S0

C(∞) =
a6CR(∞)

a3
S0, (1.4.9)

and we have the following upper and lower bounded for S0

a3
a6

< S0 ≤
N

1 + a2
. (1.4.10)

Figure 1.7: The relationship between the total case number at the end of epidemic

C(∞) and S0. Here S0 varies from 1, 976 (which is strictly larger than the minimal

value a3
a6

= 1, 975) up to the maximal value S0 = N
1+a2

= 7, 885, 047 which corresponds

to I0 = 14, 953.
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1. Identifying the number of unreported cases in SIR epidemic models

Figure 1.8: In this �gure we �x S0 = 4, 000, 000, vary the turning point tp and plot

the �nal size C(∞) of the epidemic as a function of the turning point.

1.4.3 Application to the plague epidemic in Bombay, India in 1906

The weekly reported case data of the plague epidemic in Bombay, India in 1906
is obtained from the website [75]. The data is taken from the �rst 30 weeks of the
year 1906 when the plague epidemic broke out in Bombay. We have the table of data
as follows
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Week (t) Reported Cases (ν1I(t))

01 16
02 24
03 48
04 51
05 92
06 124
07 178
08 280
09 387
10 442
11 644
12 779
13 702
14 695
15 870
16 925
17 802
18 578
19 404
20 296
21 162
22 106
23 64
24 46
25 35
26 27
27 28
28 24
29 26
30 29

Table 1.4: Reported cases data for the plague in Bombay, India in 1906.

In this application, we get from the data the values (see [46]) CR∞ = 8840,
CR(tp) = 4330, tp = 13.5, CR′(tp) = 770. The total population of Bombay in 1906
is approximately 1, 000, 000.

Consider the equation
4330
8840∫
0

e−X +Xe−
4330
8840

X − e−
4330
8840

X + 4330
8840Xe

− 4330
8840

X

e−X +Xe−
4330
8840

X − e−σX − σXe−
4330
8840

X
dσ = 1.175904977. (1.4.11)

where X ∈ (0, X(r)) with X(r) is the unique positive solution of the equation

e−X +Xe−
4330
8840

X − 1 = 0. (1.4.12)
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Solving the equation (1.4.12), we obtain the value of X(r) = 0.2444655268. This
value corresponds to the positive zero of the function in the following �gure 1.9 - left
side.

Figure 1.9: Left side: The graph of Y = e−X + Xe−
4330
8840

X − 1. Right side: The

intersection of Y = T (X, 43308840) and Y =
tpCR′(tp)
CR(∞) where X(r) = 0.2444655268,

X = 0.1398251831.

Next, applying Step 3 of the method described in Section 1.4.1 we obtain the
following table of values

Variable Description Estimated value

X cτ/ν1 .1398251831
a1 τ/ν1 0.1581732840× 10−4

a2 I0/S0 0.79501× 10−4

a3 ν1S0 331826.8395
a4 τS0 5.248614094
a5 ν1I0 26.38056557
a6 ν 4.901175271

Table 1.5: List of a combination of parameters obtained for the plague epidemmic in

Bombay in 1906.

The value of the initial susceptible individuals S0 = 100, 000 is taken as the paper
[46], and then all the parameters can be obtained in the following table.
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Variable Estimated value 1

S0 100, 000
I0 7.950100000
τ 0.5248614094× 10−4

ν1 3.318268395
ν2 1.582906876

C(∞) 13056.92736
S(∞) 86951.02274

Table 1.6: List of parameters obtained for the plague epidemmic in Bombay in 1906.

In this table, we take S0 = 100, 000 and compute all other parameters' values.

In Figures 1.10, 1.11, and 1.12 we provide model (1.1.1)-(1.1.2) output for the
plague epidemic in Bombay, India in 1906 for the parameters in Table 1.4.3 and the
values under S0 = 100, 000 in Table 1.6 (see [46]). In Figure 1.10 we compare the
model output to the reported case data (see [46]). In Figure 1.11 we illustrate the
epidemic �nal size as a function of the initial number of susceptibles S0. In Figure
1.12 we illustrate the epidemic �nal size as a function of the turning point of the
epidemic.
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Figure 1.10: The plague epidemic in Bombay, India in 1906. The weekly reported

mortality case data and cumulative reported case data , and the model output graph

CR′(t). To run this simulation we �x S0 = 100, 000.
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1. Identifying the number of unreported cases in SIR epidemic models

Figure 1.11: The relationship between the total case number at the end of epidemic

C(∞) and S0. Here S0 varies from 1, 976 (which is strictly larger than the minimal

value a3
a6

= 1, 975) up to the maximal value S0 = N
1+a2

= 7, 885, 047 which corresponds

to I0 = 14, 953.

Figure 1.12: In this �gure we �x S0 = 4, 000, 000, vary the turning point tp and plot

the �nal size C(∞) of the epidemic as a function of the turning point.

1.4.4 Application to the in�uenza epidemic in France in the con-

secutive six years 1988-1994

In this part, we study the in�uenza epidemics in France in the consecutive six
years from week 37 of the year 1988 to week 15 of the year 1994 with the data from

41



1.4. An identi�cation method and applications to some outbreak epidemics

[73].
We have the following �gure 1.13 from [73]

Figure 1.13: This �gure indicates the outbreak of the in�uenza epidemics from 1985

to 2020 (This �gure is from [73])

According to the �gure 1.13, it is seen that in the period from 1988 to 1994
there are three times the reported infected cases over 1500 individuals over 100, 000
inhabitants. It means that the three highest peaks of these in�uenza epidemics in
France took place from 1988 to 1994. That is why we study the in�uenza epidemics
in France in this period.

Figure 1.14: This �gure indicates the outbreak of the epidemics during the period

1988-1994(This �gure is from [73])

What we do next is choosing the starting point and the endpoint of each in�uenza
epidemic in France for every year according to the data from [73], and applying the
method in section 1.4.1 to investigate the epidemics. Note that the incidence rate
from the data is the reported case per 100, 000 inhabitants for each epidemic.

I. Period from week 43 of the year 1988 to week 8 of the year 1989

From the data in [73](see Figure 1.15), we obtain the values CR∞ = 9000,
CR(tp) = 4400, tp = 7.8, CR′(tp) = 1810.
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1. Identifying the number of unreported cases in SIR epidemic models

Figure 1.15: This �gure indicates the outbreak of the epidemics during the period

from week 43 of the year 1988 to week 8 of the year 1989 (This �gure is from [73])

Next, applying the method described in section 1.4.1 we obtain the following
table with S0 = 89200

Variable Estimated value

S0 89200
I0 3.756390400
τ 0.8185035674× 10−4

ν1 2.967019577
ν2 3.499492216
C∞ 19615.17429
S∞ 69588.58210

Table 1.7: List of parameters obtained for the in�uenza-like illness in France in 1988w43-

1989w8.

In Figures 1.16, 1.17, 1.18, and 1.19 we provide model (1.1.1)-(1.1.2) output
for the in�uenza epidemic in France during the period from week 43 of the
year 1988 to the week 8 of the year 1989 for the parameters in Table 1.4.4.
In Figure 1.16, 1.17 we compare the model output to the reported case data.
In Figure 1.18 we illustrate the epidemic �nal size as a function of the initial
number of susceptibles S0. In Figure 1.19 we illustrate the epidemic �nal size
as a function of the turning point of the epidemic.
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Figure 1.16: The weekly reported case data(blue dots) and model output graph of

ν1I(t) for the in�uenza-like illness in France in 1988w43-1989w8
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Figure 1.17: The weekly reported cumulative case data(blue dots) and model output

graph of CR(t) for the in�uenza-like illness in France in 1988w43-1989w8
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Figure 1.18: The relationship between the total case number at the end of epidemic

C(∞) and S0 for the in�uenza-like illness in France in 1988w43-1989w8

Figure 1.19: The relationship between the total case number at the end of epidemic

C(∞) and the turning point tp for the in�uenza-like illness in France in 1988w43-

1989w8

II. Period from week 45 of the year 1989 to week 10 of the year 1990

From the data in [73](see Figure 1.20), we obtain the values CR∞ = 8585,
CR(tp) = 3802, tp = 7, CR′(tp) = 1463.
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Figure 1.20: This �gure indicates the outbreak of the epidemics during the period

from week 45 of the year 1989 to week 10 of the year 1990 (This �gure is from [73])

Next, applying the method described in section 1.4.1 we obtain the following
table with S0 = 89200

Variable Estimated value

S0 89200
I0 153.8498408
τ 0.2098327123× 10−4

ν1 0.1334583415
ν2 0.8960421725
C∞ 66224.87447
S∞ 23128.97537

Table 1.8: List of parameters obtained for the in�uenza-like illness in France in 1989w45-

1990w10.

In Figures 1.21, 1.22, 1.23, and 1.24 we provide model (1.1.1)-(1.1.2) output
for the in�uenza epidemic in France during the period from week 45 of the year
1989 to week 10 of the year 1990 for the parameters in Table 1.4.4. In Figure
1.21, 1.22 we compare the model output to the reported case data. In Figure
1.23 we illustrate the epidemic �nal size as a function of the initial number
of susceptibles S0. In Figure 1.24 we illustrate the epidemic �nal size as a
function of the turning point of the epidemic.
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Figure 1.21: The weekly reported case data(blue dots) and model output graph of

ν1I(t) for the in�uenza-like illness in France in 1989w45-1990w10
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Figure 1.22: The weekly reported cumulative case data(blue dots) and model output

graph of CR(t) for the in�uenza-like illness in France in 1989w45-1990w10
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Figure 1.23: The relationship between the total case number at the end of epidemic

C(∞) and S0 for the in�uenza-like illness in France in 1989w45-1990w10

Figure 1.24: The relationship between the total case number at the end of epidemic

C(∞) and the turning point tp for the in�uenza-like illness in France in 1989w45-

1990w10

III. Period from week 2 of the year 1991 to week 15 of the year 1991

From the data in [73](see Figure 1.25), we obtain the values CR∞ = 1970,
CR(tp) = 970, tp = 6.15, CR′(tp) = 385.
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Figure 1.25: This �gure indicates the outbreak of the epidemics during the period

from week 2 of the year 1991 to week 15 of the year 1991 (This �gure is from [73])

Next, applying the method described in section 1.4.1 we obtain the following
table with S0 = 89200

Variable Estimated value

S0 89200
I0 2.545054400
τ 0.2095686786× 10−3

ν1 4.806980959
ν2 13.11249984
C∞ 7343.773041
S∞ 81858.77201

Table 1.9: List of parameters obtained for the in�uenza-like illness in France in 1991w2-

1991w15.

In Figures 1.26, 1.27, 1.28, and 1.29 we provide model (1.1.1)-(1.1.2) output
for the in�uenza epidemic in France during the period from week 2 of the year
1991 to week 15 of the year 1991 for the parameters in Table 1.4.4. In Figure
1.26, 1.27 we compare the model output to the reported case data. In Figure
1.28 we illustrate the epidemic �nal size as a function of the initial number
of susceptibles S0. In Figure 1.29 we illustrate the epidemic �nal size as a
function of the turning point of the epidemic.
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Figure 1.26: The weekly reported case data(blue dots) and model output graph of

ν1I(t) for the in�uenza-like illness in France in 1991w2-1991w15
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Figure 1.27: The weekly reported cumulative case data(blue dots) and model output

graph of CR(t) for the in�uenza-like illness in France in 1991w2-1991w15
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Figure 1.28: The relationship between the total case number at the end of epidemic

C(∞) and S0 for the in�uenza-like illness in France in 1991w2-1991w15

Figure 1.29: The relationship between the total case number at the end of epidemic

C(∞) and the turning point tp for the in�uenza-like illness in France in 1991w2-

1991w15

IV. Period from week 45 of the year 1991 to week 10 of the year 1992

From the data in [73](see Figure 1.30), we obtain the values CR∞ = 4007,
CR(tp) = 1745, tp = 7.6, CR′(tp) = 680.
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Figure 1.30: This �gure indicates the outbreak of the epidemics during the period

from week 45 of the year 1991 to week 10 of the year 1992 (This �gure is from [73])

Next, applying the method described in section 1.4.1 we obtain the following
table with S0 = 89200

Variable Estimated value

S0 89200
I0 96.62144000
τ 0.1983750434× 10−4

ν1 0.05103676158
ν2 0.8469815172
C∞ 70505.24235
S∞ 18791.37909

Table 1.10: List of parameters obtained for the in�uenza-like illness in France in 1991w45-

1992w10.

In Figures 1.31, 1.32, 1.33, and 1.34 we provide model (1.1.1)-(1.1.2) output
for the in�uenza epidemic in France during the period from week 45 of the year
1991 to week 10 of the year 1992 for the parameters in Table 1.4.4. In Figure
1.31, 1.32 we compare the model output to the reported case data. In Figure
1.33 we illustrate the epidemic �nal size as a function of the initial number
of susceptibles S0. In Figure 1.34 we illustrate the epidemic �nal size as a
function of the turning point of the epidemic.
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Figure 1.31: The weekly reported case data(blue dots) and model output graph of

ν1I(t) for the in�uenza-like illness in France in 1991w45-1992w10
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Figure 1.32: The weekly reported cumulative case data(blue dots) and model output

graph of CR(t) for the in�uenza-like illness in France in 1991w45-1992w10
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Figure 1.33: The relationship between the total case number at the end of epidemic

C(∞) and S0 for the in�uenza-like illness in France in 1991w45-1992w10

Figure 1.34: The relationship between the total case number at the end of epidemic

C(∞) and the turning point tp for the in�uenza-like illness in France in 1991w45-

1992w10

V. Period from week 51 of the year 1992 to week 17 of the year 1993

From the data in [73](see Figure 1.35), we obtain the values CR∞ = 3980,
CR(tp) = 1920, tp = 8.7, CR′(tp) = 502.
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Figure 1.35: This �gure indicates the outbreak of the epidemics during the period

from week 51 of the year 1992 to week 17 of the year 1993 (This �gure is from [73])

Next, applying the method described in section 1.4.1 we obtain the following
table with S0 = 89200

Variable Estimated value

S0 89200
I0 35.99505440
τ 0.4420270591× 10−4

ν1 0.6102895730
ν2 2.820697355
C∞ 22375.16185
S∞ 66860.83320

Table 1.11: List of parameters obtained for the in�uenza-like illness in France in 1992w51-

1993w17.

In Figures 1.36, 1.37, 1.38, and 1.39 we provide model (1.1.1)-(1.1.2) output
for the in�uenza epidemic in France during the period from week 51 of the year
1992 to week 17 of the year 1993 for the parameters in Table 1.4.4. In Figure
1.36, 1.37 we compare the model output to the reported case data. In Figure
1.38 we illustrate the epidemic �nal size as a function of the initial number
of susceptibles S0. In Figure 1.39 we illustrate the epidemic �nal size as a
function of the turning point of the epidemic.
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Figure 1.36: The weekly reported case data(blue dots) and model output graph of

ν1I(t) for the in�uenza-like illness in France in 1992w51-1993w17

0 2 4 6 8 10 12 14 16 18 20

week

0

500

1000

1500

2000

2500

3000

3500

4000

C
R

(t
)

Figure 1.37: The weekly reported cumulative case data(blue dots) and model output

graph of CR(t) for the in�uenza-like illness in France in 1992w51-1993w17
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Figure 1.38: The relationship between the total case number at the end of epidemic

C(∞) and S0 for the in�uenza-like illness in France in 1992w51-1993w17

Figure 1.39: The relationship between the total case number at the end of epidemic

C(∞) and the turning point tp for the in�uenza-like illness in France in 1992w51-

1993w17

VI. Period from week 45 of the year 1993 to week 5 of the year 1994

From the data in [73](see Figure 1.40), we obtain the values CR∞ = 5760,
CR(tp) = 2730, tp = 5.2, CR′(tp) = 1568.
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Figure 1.40: This �gure indicates the outbreak of the epidemics during the period

from week 45 of the year 1993 to week 5 of the year 1994 (This �gure is from [73])

Next, applying the method described in section 1.4.1 we obtain the following
table with S0 = 89200

Variable Estimated value

S0 89200
I0 14.80889480
τ 0.7255641309× 10−4

ν1 0.9864734585
ν2 4.308166928
C∞ 30432.25414
S∞ 58782.55475

Table 1.12: List of parameters obtained for the in�uenza-like illness in France in 1993w45-

1994w5.

In Figures 1.41, 1.42, 1.43, and 1.44 we provide model (1.1.1)-(1.1.2) output
for the in�uenza epidemic in France during the period from week 45 of the year
1993 to week 5 of the year 1994 for the parameters in Table 1.4.4. In Figure
1.41, 1.42 we compare the model output to the reported case data. In Figure
1.43 we illustrate the epidemic �nal size as a function of the initial number
of susceptibles S0. In Figure 1.44 we illustrate the epidemic �nal size as a
function of the turning point of the epidemic.

58



1. Identifying the number of unreported cases in SIR epidemic models

0 2 4 6 8 10 12 14

week

0

200

400

600

800

1000

1200

1400

1600

C
R

'(
t)

Figure 1.41: The weekly reported case data(blue dots) and model output graph of

ν1I(t) for the in�uenza-like illness in France in 1993w45-1994w5
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Figure 1.42: The weekly reported cumulative case data(blue dots) and model output

graph of CR(t) for the in�uenza-like illness in France in 1993w45-1994w5
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Figure 1.43: The relationship between the total case number at the end of epidemic

C(∞) and S0 for the in�uenza-like illness in France in 1993w45-1994w5

Figure 1.44: The relationship between the total case number at the end of epidemic

C(∞) and the turning point tp for the in�uenza-like illness in France in 1993w45-

1994w5

60



Chapter 2

Some preliminaries of di�erential
algebra and application to system
identi�ability

In this chapter we present some necessary preliminaries of di�erential algebra and
di�erential elimination for our work. What we present here is based on the input-
output approach from the papers [43], [66], [67], [7], [47], [8] [9], [11], [10], [49],[53],
[61], [69], [54].

2.1 Some basic de�nitions of di�erential algebra

The de�nitions below are based on the papers [9], [11], [10], the books [59], [39],
the lecture [54], and Maple Help [74].

De�nition 2.1.1. Let R be a commutative ring with identity. R is called a dif-
ferential ring if there exists a �nite set of maps {∂1, ..., ∂n} in which ∂i : R → R,
i ∈ {1, 2, ..n}, satis�ed

i. ∂i(a+ b) = ∂i(a) + ∂i(b) for all a, b ∈ R,

ii. ∂i(ab) = b∂i(a) + a∂i(b) for all a, b ∈ R,

iii. ∂i∂j(a) = ∂j∂i(a) for all a ∈ R, 1 ≤ i, j ≤ n.

The map ∂i here is called a derivation of the ring R. If a set of all derivations of a
di�erential ring R has only one element, we call R an ordinary di�erential ring.

From now on, for simplicity the term ring R is always understood as a commu-
tative ring with identity.

De�nition 2.1.2. If a di�erential ring R is a �eld, it is called a di�erential �eld.

Let K be a �eld of characteristic zero, we denote by K[X] the ring of all poly-
nomials that X is the set of all variables and the coe�cients are in K.
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De�nition 2.1.3. Suppose that {∂1, ..., ∂n} is the set of all the derivations of the
di�erential �eld R, and X := {x1, x2, ..., xk}, K is a �eld �eld of characteristic zero.
Let D = {∂i11 ∂

i2
2 ...∂

in
n : i1, ..., in ∈ N}, then K[D(X)] is called the ring of di�erential

polynomials with coe�cients in K where D(X) = {θxi|θ ∈ D, xi ∈ X, i = 1, 2..., k}.
We denote K[D(X)] by K{X}. Every element of K{X} is called a di�erential
polynomial and x1, x2, ..., xk are called the indeterminates of K{X}.

Example 2.1.4. Consider C∞[0,∞) with the derivation ∂(x) := x′ for every x ∈
C∞[0,∞). Suppose that x1, x2, ..., xn are the elements of C∞[0,∞) and K is a
sub�eld of R. The ring K[x1, x2, ..., xn, x

′
1, ..., x

′
n, ..., x

”
1, ...] is a ring of di�eren-

tial polynomial in indeterminates x1, ..., xn with coe�cients in K and denoted by
K{x1, x2, ..., xn}. Every element of K{x1, x2, ..., xn} is a di�erential polynomial. For
instance, a3x′1+a1x

′
1x

2
2x

2
3−a2x31(x′2)2x′′3 is a di�erential polynomial ofK{x1, x2, ..., xn}

with a1, a2, a3 ∈ K.

De�nition 2.1.5. Given a di�erential ring R, an ideal I of R is called the di�erential
ideal of R if ∂(a) ∈ I for all the derivations ∂ of R and a ∈ I.

Let R be a commutative ring and S ⊂ R, the smallest ideal containing S denoted
by (S) is called an ideal generated by S. The smallest di�erential ideal containing S
denoted by [S] is called a di�erential ideal generated by S

Remark 2.1.6. Suppose that {∂1, ..., ∂n} is the set of all the derivations of the ring
R. Let D = {∂i11 ∂

i2
2 ...∂

in
n : i1, ..., in ∈ N}, then [S] is the ideal generated by θ(S)

with θ ∈ D.

De�nition 2.1.7. Let R be a commutative ring and I is an ideal of R. The radical
of I denoted by

√
I is the set {a ∈ R : an ∈ I for some n ∈ N}.

An ideal I of R is said to be radical if it coincides with its radical.
An ideal I of a di�erential ring R is called a radical di�erential ideal if I is a di�er-
ential ideal and is also radical.

Let R be a di�erential ring, and S ⊂ R, the smallest radical di�erential ideal
containing S denoted by {S} is called a radical di�erential ideal generated by S.

De�nition 2.1.8. Let R be a di�erential ring, the di�erential ideal P of R is called
a prime di�erential ideal if ab ∈ P then a ∈ P or b ∈ P

A relation ≤ over a set A is called a total order over A if the following conditions
hold

i. a ≤ a for every a ∈ A.

ii. If a ≤ b and b ≤ a then a = b for every a, b ∈ A.

iii. If a ≤ b and b ≤ c then a ≤ c for every a, b, c ∈ A

iv. a ≤ b or b ≤ a for every a, b ∈ A.

Suppose that ≤ is a total order over A. A strict total order < over A is a relation
over A such that for every a, b ∈ A, a < b if a ≤ b and a 6= b.
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De�nition 2.1.9. Suppose that {∂1, ..., ∂n} is the set of all the derivations of the
di�erential �eld R, and X := {x1, x2, ..., xk} . Let D = {∂i11 ∂

i2
2 ...∂

in
n : i1, ..., in ∈ N}.

A strict total order < over the set of the derivatives D(X) = {θxi|θ ∈ D, xi ∈ X, i =
1, 2..., k} is called to be a ranking if for every δ ∈ {∂1, ..., ∂n}

i. u < δu,

ii. u < v then δu < δv,

for all u, v ∈ D(X).
A ranking such that u < v implies δu < φv for all δ, φ ∈ D is said to be an

elimination ranking and written [u] < [v].

De�nition 2.1.10. Let q be a polynomial of K{x1, ..., xk} and < is a ranking on
the D(X). The leader u of q is the largest derivative ∂i11 ∂

i2
2 ...∂

in
n xj of D(X) with

respect to the ranking < which appear in q.
Let d be the degree of u in q, then the coe�cient of ud is called the initial of q,
denoted by Iq. The derivative Sq = ∂q

∂u is called the separant of q, and ud is called
the rank of q.

Example 2.1.11. We consider again the example 2.1.4, suppose that < is the elim-
ination ranking on K{x1, x2, ..., xn} such that x1 < x2 < ... < xn. It means that
x1 < x′1 < x1” < ... < x2 < x′2 < ... < xn < x′n < .... It is clear that x1” is the
leader of the di�erential polynomial a1x1x22x

3
3−a2(x1”)2+a3x1x

′
2. The initial of this

polynomial is −a2 and the separant of this polynomial is −2a2x1” where the rank is
(x1”)2.

De�nition 2.1.12. Let q1 and q2 be two polynomials of K{u1, ..., uk}, and ud is the
rank of q1. q2 is said to be partially reduced w.r.t (with respect to) q1 if q2 does not
contain any proper derivative of u.
q2 is said to be reduced w.r.t q1 if it is partially reduced w.r.t q1 and its degree in u
is less than d.
A set of polynomials A is called an autoreduced set if its elements are pairwise
reduced.

De�nition 2.1.13. An autoreduced set C of a di�erential ideal I is said to be a
characteristic set if I does not contain any non-zero element reduced w.r.t all the
elements of C.

De�nition 2.1.14. A set of polynomials A is called an orthonomic set if the initial
and separants of its elements are in K.

For an ordinary di�erential ringK{u1, ..., uk}, an ideal ofK{u1, ..., uk} generated
by an autoreduced and orthonomic set is a prime ideal (see Boulier et al. [9]).

Example 2.1.15. LetQ(p) be the �eld of the rational expressions of p1, ..., p4 ∈ R, con-
sider the ring Q(p){x1, x2, x3} of di�erential polynomials in indeterminates x1, x2, x3
with the coe�cients in Q(p). We equip on Q(p){x1, x2, x3} the elimination ranking
such that

x1 < x′1 < ...x
(n)
1 < ... < x2 < x′2 < ... < x3 < x′3 < ...
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Let A be the set of three di�erential polynomials q1 = p4x
′
1 + p1x1x2x3, q2 =

x′2−p1x1x2x3 +p3x2, q3 = p24x
′
3 +2p1p2x1x

2
2x

3
3−2p2p3x

2
2x

2
3 of Q(p){x1, x2, x3}. The

leaders of q1, q2, q3 are respectively x′1, x
′
2, x
′
3. q1 does not contain any derivative of

x′2, x
′
3 so that q1 is partial reduced w.r.t q2, q3, and then q1 is reduced w.r.t q2, q3.

The initials and separants of q1, q2, q3 are (respectively p4, 1, p4) in Q(p), then A is
an autoreduced and orthonomic set.

2.2 Introduction to Rosenfeld-Gröbner algorithm imple-
mented in Maple

What we present in this section is based on the papers [9], [11], [10], and [74]
Rosenfeld-Gröbner algorithm works with a list of di�erential polynomials and a

ranking on a di�erential ring of di�erential polynomials that is understood as input.
Suppose that we have a system of di�erential equations in which every left-hand side
of each equation can be considered as a di�erential polynomial when the right-hand
side is zero. Rosenfeld-Gröbner algorithm splits the system into cases and in each
case, there is no one equation that is the consequence of the others. To understand
precisely, we present here the Ritt's reduction with pseudodivision of the di�erential
polynomials that is a generalization of the Euclidean division.

Let f and g be two polynomials in one variable x with coe�cients in a ring.
Denote by deg(f, x) the degree of f in x. The pseudodivision of f by g is given
by the formula cdf = gq + r in which c is the coe�cient of the leader x of g,
d = deg(f, x) − deg(g, x) + 1, and deg(r, x) < deg(g, x). We call the polynomial r
pseudoremainder of f by g, and denote r := prem(f, g, x).

Let A = {f1, f2, ..., fn} be the set of di�erential polynomials of K{X}\K in
which K is a �eld and X is a set of indeterminates , and g be a di�erential poly-
nomial of K{X}\K. Suppose that xi is the leader of fi for i ∈ {1, 2, ..n}. Now
we perform a procedure reducing g w.r.t every element of A that we it denote by
Rittreduction(g,A). This procedure generate a sequence g0, g1, ..., gs as follows

- First step, we set g0 = g.
- Next steps, we compute gk+1 from gk in the following cases

Case 1. If gk does not depend on any proper derivative of xi and the deg(gk, xi) <
deg(fi, xi) for every i ∈ {1, 2..., n} then we stop the procedure and assign
gs := gk.

Case 2. If deg(gk, xi) ≥ deg(fi, xi) for some index i ∈ {1, 2..., n} then we assign
gk+1 := prem(gk, fi, xi).

Case 3. If there is some index i ∈ 1, 2..., n such that gk depends on some proper
derivative x(m)

i of xi then we assign gk+1 := prem(gk, f
(m)
i , x

(m)
i ) .

- Last step, when the procedure �nishes we obtain the di�erential polynomial gs
and we de�ne Rittreduction(g,A) to be gs.

The Rosenfeld-Gröbner algorithm

-The input of the algorithm is a list P of di�erential polynomials and a ranking.
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2. Some preliminaries of di�erential algebra and application to system identi�ability

-The output of the algorithm is a �nite family A1, A2, ..., As of �nite subsets of
K{X}\K in which K is a �eld and X is a set of indeterminates. Denote by Ai

the di�erential radical ideal for every i ∈ {1, 2..., s} such that for any di�erential
polynomial p ∈ K{X},

p ∈Ai if and only if Rittreduction(p,Ai) = 0.
Denote by P the radical ideal generated by P , Rosenfeld-Gröbner algorithm gives

us the relationship between P and Ai as follows

P = ∩si=1Ai.

We have P = K{X} when s = 0. Moreover, an algorithm for testing membership
problem in P is obtained as follows:

Given a di�erential polynomial p ∈ K{X}, we have p ∈ P if and only if
Rittreduction(p,Ai) = 0 for every i ∈ {1, 2..., s}.
Example 2.2.1. Let Q(p) be the �eld of the rational expressions of p1, p2, p3 ∈ R,
consider the ring Q(p){x1, y} of di�erential polynomials in indeterminates x1, y with
the coe�cients in Q(p). We equip on Q(p){x1, y} the elimination ranking such that

y < y′ < ... < y(n) < ... < x1 < x′1 < ...x
(n)
1 < ...

Let P be the list of two di�erential polynomials p3x′1 + p1x1y, y′ − p1x1y +
p2y. Applying Rosenfeld-Gröbner algorithm with the elimination ranking above, we
obtain a family of two lists A1 = {x′1, y} and A2 = {p1x1y−y′−p2y, p3yy”−p3(y′)2+
p1y

2y′ + p1p2y
3}. We conduct the procedure Rittreduction(y + 1, A1) as follows:

- Firstly, we assign g0 := y + 1.
- Secondly, we see that the leaders of f1 := x′1 and f2 := y are respectively x′1

and y. Since deg(g0, y) = deg(f2, y) then we assign g1 := prem(g0, f2, y) = 1.
- Finally, Rittreduction(y + 1, A1) := g1 = 1.
Since Rittreduction(y + 1, A1) 6= 0 then y + 1 6∈ A1, then y + 1 6∈ P where P is

the di�erential radical ideal generated by P .

The Rosenfeld-Gröbner algorithm is implemented in Maple. To use Rosenfeld-
Gröbner algorithm we have to call the package " Di�erantialAlgebra" in Maple.
Suppose that we have a list of di�erential polynomials and a ranking on them.

Firstly, we have to build the di�erential ring of polynomials specifying the vari-
ables and a ranking for these polynomials by calling the function Di�erentialRing
(derivations = ..., blocks = ..., arbitrary = ...) in which "derivations = ..." is a list
of independent variables specifying the possible dependency of the dependent vari-
ables, "blocks = ..." is a list of the dependent variables, possibly including sublists
of them; only one level of nested sublists is allowed, and "arbitrary = [...]" is a list of
algebraically independent arbitrary objects; these can be dependent variables (func-
tions of one or many variables speci�ed in derivations) or other variables (not those
speci�ed in derivations)( see [74]).

Secondly, after we have R = Di�erentialRing(derivations = ..., blocks = ..., ar-
bitrary = ...), we can call Rosenfeld-Gröbner algorithm by the function Rosenfeld-
Groebner(sys, R) where "sys" is a list or a set of di�erential equations or inequations;
all rational in the independent and dependent variables and their derivatives. Rosen-
feldGroebner(sys, R) splits the given system sys into cases, each one speci�ed by their
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Equations and Inequations. One and only one of these cases is the general case, and
the rest are singular cases that may exist only when sys is nonlinear. In each of the
cases returned, each equation is not the consequence of the other equations and all
the integrability conditions are taken into account. The relation between the system
sys and the systems of each of these cases is the solutions, general and singular, of
sys, are given by the union of the general solutions of each of the returned systems
(see [74]).

Finally, after calling the function I=RosenfeldGroebner(sys, R), we can test if
a di�erential polynomial p of the di�erential ring R belongs to the radical ideals
generated by the lists of I or not by calling the function BelongsTo(p, I). This function
returns true if p belongs to the di�erential ideals represented by I, else it returns false
( see [74]).

2.3 Di�erential algebra approach for system identi�abil-
ity

Consider the system as follows
x′(t, p) = f(x(t, p), p),

x(0, p) = x0(p), t ≥ 0

y(t, p) = h(x(t, p), p).

(2.3.1)

where p ∈ Ω, with Ω is open subset of Rs, is a parameter vector, x(t, p) ∈ Rn is a
state variable and y(t, p) ∈ Rr is the output function.

Assuming that, for each p ∈ Ω, (2.3.1) has a unique solution, and there exists an
open connected subsetM(p) of Rn such that x(t, p) ∈M(p) for all t ≥ 0 and f(•, p),
h(•, p) are analytic on M(p).

The problem that we want to solve is the following

Problem 2.3.1. Consider the system (2.3.1), then what is the relationship between
p, p ∈ Ω from the condition y(t, p) = y(t, p)?

The following proposition gives us an easy way to predict the relation between
p, p ∈ Ω from the condition y(t, p) = y(t, p), and we can have similar results from
the papers of Evans et al. [24], [25].

Proposition 2.3.2. Given a system (2.3.1), and parameters p, p ∈ Ω. Suppose that
there exists ε 6= 0 such that

εx ∈M(p), (2.3.2)

εx0(p) = x0(p), (2.3.3)

f(εx, p) = εf(x, p), (2.3.4)

h(εx, p) = h(x, p), (2.3.5)

for all x ∈M(p), then y(t, p) = y(t, p) for all t ≥ 0.
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Proof. De�ne that z(t) = εx(t, p) for all t ≥ 0. Since x(t, p) ∈ M(p) then z(t) =
εx(t, p) ∈M(p) for all t ≥ 0.

z′(t) = εx′(t, p)

= εf(x(t, p), p) (since (2.3.1))

= f(εx(t, p), p) (since (2.3.4))

= f(z(t), p).

Moreover, z(0) = εx0(p) = x0(p) (since (2.3.3)). It means that z(t) is a solution of
(2.3.1) with respect to p. By the uniqueness of solution of (2.3.1), z(t) = x(t, p) for
all t ≥ 0. Therefore,

y(t, p) = h(x(t, p), p)

= h(z(t), p)

= h(εx(t, p), p)

= h(x(t, p), p) (since (2.3.5))

= y(t, p).

Consider the system (2.3.1) in which fi is a rational function for all i = 1, ..., n
and hj is a polynomial function for all j = 1, ..., r . Now we consider Problem 2.3.1
with r = 1.

If there is some i ∈ {1, ..., n} such that fi(x, p) = qi(x,p)
q(x,p) where qi(x, p), q(x, p) are

polynomials, by introducing new variable xn+1(t, p) = 1
q(x,p) , we have x′n+1(t, p) =

− 1
q2(x,p)

n∑
i=1

∂q
∂xi
x′i(t). It derives that

x′n+1(t, p) = −x3n+1(x, p)
n∑
i=1

∂q

∂xi
qi(x(t, p), p)

in which the right hand side is a polynomial function in x1, ..., xn, xn+1 (see [47])
Hence we can assume that from (2.3.1), by introducing a new state variable

z = (x1, ..., xn, xn+1) we can obtain a new system
z′(t, p) = F (z(t, p), p),

z(0, p) = z0(p), t ≥ 0

y(t, p) = H(z(t, p), p).

(2.3.6)

where Fi, H are polynomial functions for all i = 1, ..., n, n+ 1.
Next, we present an approach by using di�erential algebra and di�erential elim-

ination for �nding identi�able parameters for the system (2.3.1). This part is based
on the input-output approach from the papers [43], [66], [67], [7], [47], [8] [9], [11],
[10], [49],[53], [61], [69].
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Step 1. The system (2.3.1) is rewritten as follows{
z′(t, p)− F (z(t, p), p) = 0, t ≥ 0

y(t, p)−H(z(t, p), p) = 0.
(2.3.7)

Here we ignore the initial condition for simplicity. However, the initial condition
will be used later for another analysis of the method.

Consider the di�erential ring Q(p){z1, ..., zn+1, y} where Q(p) is the �eld of the
rational expressions of p1, ..., ps. From (2.3.7), we make some arrangements on the
polynomials of the left hand side of (2.3.7) to obtain new polynomials such that they
form an autoreduced and orthonomic set, and we call P the prime di�erential ideal
generated by this set. We use the ranking in Q(p){z1, ..., zn+1, y} to eliminate the
state variable z that is described as follows

y < y′ < ... < y(n) < ... < z1 < ... < z
(n)
1 < ... < z2 < ...

or simply

[y] < [z1] < ... < [zn+1].

Step 2. Using the Rosenfeld-Gröbner algorithm implemented in Maple (see
[9], [11]) to decompose the prime ideal P. Rosenfeld-Gröbner algorithm with the
elimination ranking above decomposes P as an intersection of radical di�erential
ideals. Concretely, Rosenfeld-Gröbner algorithm splits (2.3.7) into cases, each one
speci�ed by their equations and inequations. In each of the cases returned, no one
equation is the consequence of the others (see [74]). Among these cases, only one is
the general solution and others are singular solutions of (2.3.7). Consider the initial
condition given in (2.3.6) for analyzing the singular cases. If these cases cannot
describe the complete system, the system (2.3.7) with the initial condition, then the
general case is corresponding to (2.3.7).

Assume that (2.3.7) is corresponding to the general case. It means that in the
decomposition of P, all the singular cases are redundant. Note that the Rosenfeld-
Gröbner algorithm is implemented in Maple, and the general case after using Rosenfeld-
Gröbner algorithm is just a list of the generators of a di�erential ideal. This set of
generators is called a characteristic presentation of PG (see [11]). One of the gener-
ators of this characteristic presentation is a di�erential polynomial concerning only
the indeterminate y with the ranking we used above, and it can be written by the

form φγ+1(y) +
γ∑
i=1

ci(p)φi(y) where φi(y) is the di�erential polynomial w.r.t the in-

determinate y for all i = 1, ..., γ, γ + 1, and ci(p) is the rational function of p1, ..., ps
for all i = 1, ..., γ. We call this polynomial an output polynomial of (2.3.7). We have

φγ+1(y(t, p)) +

γ∑
i=1

ci(p)φi(y(t, p)) = 0. (2.3.8)

It is called an output equation of (2.3.7) ( see [67], [7],[49], [61] [69]).
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Consider the Wronskian of the polynomials φi(y), ..., φγ(y) as follows

∣∣∣∣∣∣∣∣
φ1(y) φ2(y) ... φγ(y)

φ
′
1(y) φ

′
2(y) ... φ

′
γ(y)

... ... ... ...

φ
(γ−1)
1 (y) φ

(γ−1)
2 (y) ... φ

(γ−1)
γ (y)

∣∣∣∣∣∣∣∣ . (2.3.9)

We have the following proposition that mentioned in [67], [7], [69]

Proposition 2.3.3. Assume that p, p are the parameters of the system (2.3.7). If the

Wronskian (2.3.9) does not belong to the ideal P, then from the condition y(t, p) =
y(t, p) we have ci(p) = ci(p) for all i = 1, ..., γ.

Proof. The Wronskian does not belong to the ideal P implies that this determinant
is not identically zero. It means that if y(t) is the solution of (2.3.7) such that the
Wronskian at this solution is not identically zero. It derives the linear independence
of the functions φ1(y(t, p)), ..., φγ(y(t, p)).

If we have y(t, p) = y(t, p) for all t ≥ 0, then y(i)(t, p) = y(i)(t, p) for all i ∈ N
and for all t ≥ 0. It implies that φj(y(t, p)) = φj(y(t, p)) since φj is a di�erential
polynomial w.r.t the indeterminate y for all j = 1, ..., γ, γ + 1.

From (2.3.8), substituting p by p we have

φγ+1(y(t, p)) +

γ∑
i=1

ci(p)φi(y(t, p)) = 0.

Then, substituting φ(y(t, p)) by φ(y(t, p)), we have

φγ+1(y(t, p)) +

γ∑
i=1

ci(p)φi(y(t, p)) = 0.

Subtracting this equation by (2.3.8), we obtain

γ∑
i=1

(ci(p)− ci(p))φi(y(t, p)) = 0.

By the linear independence of φ1(y(t, p)), ..., φγ(y(t, p)), we obtain ci(p) = ci(p)
for all i = 1, ..., γ.

Now the set {c1(p), c2(p), ..., cγ(p)} is called an exhaustive summary of the output
equation (2.3.8). (Ollivier [53]).

Step 3. Solving the equations ci(p) = ci(p) for i = 1, ..., γ, we obtain the relation-
ships between p and p. Note that the initial values are concerning the parameters so
that we take the initial conditions and other generators of the general case to obtain
the remaining relations between p and p.
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2.4. Finding identi�able combinations of parameters of SIR model by di�erential
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2.4 Finding identi�able combinations of parameters of
SIR model by di�erential approach

Consider the system (1.1.1) including the output function as mentioned in Chap-
ter 1 

S′(t) = −τS(t)I(t),

I ′(t) = τS(t)I(t)− νI(t), t ≥ 0

y(t) = ν1I(t)

with the initials S(0) = S0 > 0, I(0) = I0 > 0, and the basic production number

R0 =
τS0
ν

> 1.

Denote by p = (τ, ν, ν1, S0, I0), p = (τ , ν, ν1, S0, I0) the unknown parameter
vectors, and the set of possible p is given by Ω = {p ∈ R5 : pi > 0, i = 1..5}.

Let x(t, p) =

(
x1(t, p)
x2(t, p)

)
=

(
S(t)
I(t)

)
then

x′(t, p) =

(
−τS(t)I(t)

τS(t)I(t)− νI(t)

)
=

(
−τx1(t)x2(t)

τx1(t)x2(t)− νx2(t)

)
= f(x(t, p), p),

x0(p) =

(
x1(0)
x2(0)

)
=

(
S0
I0

)
=

(
p4
p5

)
, and y(t, p) = ν1I(t) = p3x2(t) = h(x(t, p), p).

As we know from Chapter 1 and [46], S(t), I(t) > 0 for all t ≥ 0, so we choose
M(p) = R2

+ for every p ∈ Ω. It means that x(t, p) ∈M(p) for all p ∈ Ω.

De�nition 2.4.1. Consider the system (1.1.1) with the parameters

p = (τ, ν, ν1, S0, I0)

and
p = (τ , ν, ν1, S0, I0).

If the condition y(t, p) = y(t, p) for all t > 0 implies p = p then (1.1.1) is called to
be identi�able.

By Proposition 2.3.2 we obtain the following proposition

Proposition 2.4.2. The SIR model (1.1.1) is not identi�able from the output func-

tion y(t) = ν1I(t), and if

ν = ν̄,
τ

ν1
=

τ̄

ν̄1
, τS0 = τ̄S0, τI0 = τ̄ I0, (2.4.1)

then y(t, p) = y(t, p) for all t ≥ 0.

Proof. For every x ∈ M(p) = R2
+, let f(x) =

(
−τx1x2

τx1x2 − νx2

)
, and h(x) = p3x2.

Choose ε =
S0

S0
> 0, by the condition (2.4.1) we easily check that (2.3.2)-(2.3.5) from

Proposition 2.3.2 hold for all x ∈M(p) = R2
+. It implies that y(t, p) = y(t, p) for all

t ≥ 0. It means that SIR model (1.1.1) is not identi�able.
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To show the necessary condition of the above proposition we will apply the tools
of di�erential algebra approach presented in the previous section.

The system (1.1.1) now can be rewritten as follows
x′1(t) = −p1x1(t)x2(t),
x′2(t) = p1x1(t)x2(t)− p2x2(t), t ≥ 0

y(t) = p3x2(t)

(2.4.2)

with x1(0) = p4, x2(0) = p5.

Substituting x2(t) =
y(t)

p3
into (2.4.1) we obtain

{
p3x
′
1(t) + p1x1(t)y(t) = 0,

y′(t)− p1x1(t)y(t) + p2y(t) = 0, t ≥ 0,
(2.4.3)

with x1(0) = p4, x2(0) = p5, y(0) = p3p5.
Consider the di�erential polynomials on the left hand sides of (2.4.3) f1 = p3x

′
1+

p1x1y and f2 = y′− p1x1y+ p2y of di�erential ring Q(p){x1, y} with the elimination
ranking

y < y′ < ... < y(n) < ... < x1 < x′1 < ...x
(n)
1 < ...

The leaders of f1, f2 are respectively x′1, y
′. Since f1, f2 do not contain any derivatives

of the leaders of each other then f1 is reduced w.r.t f2. It means the set A = {f1, f2}
is an autoreduced set in the di�erential ring Q(p){x1, y} . Moreover, the initials and
separants of these polynomials are respectively p3, 1 in Q(p), then A is an orthonomic
set of Q(p){x1, y}. Let P is a di�erential ideal generated these polynomials.

Next, we decompose the ideal P by using Rosenfeld-Gröbner algorithm imple-
mented in Maple. This decomposition returns two lists of di�erential polynomials.
Each list forms the set of generators of a radical ideal corresponding to either the
singular solutions or general solution of (2.4.3). We show here the lists

[x′1(t), y(t)],

[p1x1(t)y(t)− y′(t)− p2y(t), p3y(t)y”(t)− p3(y′(t))2 + p1y
2(t)y′(t) + p1p2y

3(t)].

The meaning of the lists is that (2.4.3) is equivalent to{
x′1(t) = 0,

y(t) = 0, t ≥ 0,

or {
p1x1(t)y(t)− y′(t)− p2y(t) = 0,

p3y(t)y”(t)− p3(y′(t))2 + p1y
2(t)y′(t) + p1p2y

3(t) = 0, t ≥ 0,

It can be seen that the �rst of the lists above are not corresponding to the
complete system including (2.4.3) and the initial condition since the �rst list requires
y(t) = 0 for all t ≥ 0, contradicting to y(0) = p3p5 > 0.

In the second list (the general case), there is an expression concerning only the
indeterminate y, and it is called the output polynomial of (2.4.3)
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p3y(t)y”(t)− p3(y′(t))2 + p1y
2(t)y′(t) + p1p2y

3(t)

We rewrite this di�erential polynomial, then the output equation is obtained as
follows

p3
(
y(t)y”(t)− (y′(t))2

)
+ p1y

2(t)y′(t) + p1p2y
3(t) = 0, t ≥ 0, (2.4.4)

Dividing (2.4.4) by p3 we obtain

(
y(t)y”(t)− (y′(t))2

)
+
p1
p3
y2(t)y′(t) +

p1p2
p3

y3(t) = 0, t ≥ 0, (2.4.5)

Now we check the linear independence of two polynomials

q1 = y2(t)y′(t),

q2 = y3(t).

Next, we compute the Wronskian W of q1, q2 and the result is that

W = −y5(t)y”(t)− y4(t)(y′(t))2.

By proposition 2.3.3 we have to justify that W is not in the ideal P. This is a
testing membership problem of an ideal in Di�erential Algebra and we can conduct
to check if W is not in the ideal P by the function called BelongsTo in the package
Di�erentialAlgebra of Maple. The result in Maple returned is "false". It means that
W 6∈ P.
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Figure 2.1: Maple code for decomposing the ideal generated by the left hand side of

(2.4.3) and checking if W is not in the ideal P

By proposition 2.3.3 and (2.4.5), if y(t, p) = y(t, p), then{
p1p2
p3

= p1p2
p3
,

p1
p3

= p1
p3

(2.4.6)

Now, consider the initial condition of (2.4.3), we have y(0, p) = y(0, p) then

p3p5 = p3p5. (2.4.7)

Next, we consider another equation of the second list
p1x1(t)y(t) − y′(t) − p2y(t) = 0. We show that y(t) are not generically zeros.

Indeed, by the result in [23](Chapter 1) and the condition R0 > 1, the function x2(t)
is �rstly increasing and then decreasing on the interval [0,+∞). It implies that y(t)
are not generically zeros. Therefore, we can rewrite the above equation as follows

p1x1(t, p) =
y′(t, p)

y(t, p)
+ p2

By (2.4.6) and y(i)(t, p) = y(i)(t, p) for all i ∈ N , we have

p1x1(0, p) = p1x1(0, p).
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It implies that
p1p4 = p1p4. (2.4.8)

Solving algebraic system (2.4.6)-(2.4.8), we have the relationships between p and

p as follows p2 = p2,
p1
p3

=
p1
p3
, p1p4 = p1p4, p1p5 = p1p5. Together with Proposition

2.4.2, we obtain Proposition 1.2.1 as a consequence. It means that ν,
τ

ν1
, τS0, τI0

are the identi�able combinations of parameters of (1.1.1) from the output function
y(t) = ν1I(t).

The following is a consequence of proposition 1.2.1

Proposition 2.4.3. The basic production number of the SIR model (1.1.1) is uniquely

determined from the output function y(t) = ν1I(t).

Proof. From the output function y(t) = ν1I(t) we have ν, τS0 are uniquely deter-

mined. It implies that R0 =
τS0
ν

is uniquely determined.
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Chapter 3

Determining the identi�able
combinations of parameters of SIR
model with nonlinear incidence
rate from the reported case data

In parameter estimation of a given system model from real experimental data, the
identi�ability analysis is the most important prerequisite. There are so many papers
mentioning the criterion for testing the identi�ability, however, when a given system
is not identi�able there is not a general way for showing the combinations of param-
eters that are identi�able. Thank to di�erential algebra and di�erential elimination,
the output equation of a system model can be given easier for approaching the identi-
�able combinations of parameters. This chapter uses the tools of di�erential algebra
for studying the identi�ability of the SIR model with a nonlinear incidence rate. The
approach here can be easily applied for some other biological models because some
of the tools of di�erential algebra were implemented in Maple.

3.1 The su�cient condition of identi�ability of SIR model
with nonlinear incidence rate

Consider the SIR model with nonlinear incidence rate as follows
S′(t) = −τS(t)Iα(t)

1 + κIβ(t)
,

I ′(t) =
τS(t)Iα(t)

1 + κIβ(t)
− νI(t), t ≥ 0

y(t) = µI(t)

(3.1.1)

with S(0) = S0 > 0, I(0) = I0 > 0, and β + 1 ≥ α ≥ 1.

Denote by p = (τ, κ, ν, µ, S0, I0), p = (τ , κ, ν, µ, S0, I0) the unknown parameter
vectors, and the set of possible p is given by Ω = {p ∈ R6 : pi > 0, i = 1..6}.
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rate

Let x(t, p) =

(
x1(t, p)
x2(t, p)

)
=

(
S(t)
I(t)

)
, f(x(t, p), p) =

 −−τS(t)Iα(t)

1 + κIβ(t)
τS(t)Iα(t)

1 + κIβ(t)
− νI(t)

, x0(p) =

(
x1(0)
x2(0)

)
=

(
S0
I0

)
, and y(t, p) = h(x(t, p), p) = µI(t).

By the Theorem 1 of the paper [45], we have S(t), I(t) > 0 for all t ≥ 0.

For every p ∈ Ω, we choose M(p) = R2
+, then x(t, p) =

(
x1(t, p)
x2(t, p)

)
=

(
S(t)
I(t)

)
∈

M(p).
we will look for ε > 0 satis�ed (2.3.2)-(2.3.5) of Proposition 2.3.2 of Chapter 2.

Since ε > 0, it can be seen that (2.3.2) holds.
Then (2.3.3) is read as follows

εx0(p) = x0(p)

⇔
(
εS0

εI0

)
=

(
S0
I0

)
⇔

{
εS0 = S0 (3.1.a)

εI0 = I0 (3.1.b)

Next, (2.3.4) is read as follows
f(εx, p) = εf(x, p) for all x ∈M(p) = R2

+

⇔


−τε

α+1x1x
α
2

1 + εβκxβ2
τεα+1x1x

α
2

1 + εβκxβ2
− ενx2

 =


−ετx1xα2
1 + κxβ2

ετx1x
α
2

1 + κxβ2
− ενx2



⇔


−τεα+1x1x

α
2

1 + εβκxβ2
=
−ετx1xα2
1 + κxβ2

τεα+1x1x
α
2

1 + εβκxβ2
− ενx2 =

ετx1x
α
2

1 + κxβ2
− ενx2

⇔

{
τεα + τεακxβ2 = τ + τεβκxβ2 (3.1.c)

ενx2 = ενx2 (3.1.d)

Since (3.1.c)−(3.1.d) hold for all x ∈M(p) = R2
+ , then (3.1.c)−(3.1.d) is equivalent

to 
τεα = τ (3.1.e)

τεακ = τεβκ (3.1.f)

εν = εν (3.1.g)

Finally, the equation (2.3.5) is equivalent to h(εx, p) = h(x, p) for all x ∈M(p) =
R2
+. It implies that (2.3.5) is equivalent to

µεx2 = µx2

76
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⇔ εµ = µ (3.1.h)

Since (3.1.a)− (3.1.b), and (3.1.e)− (3.1.h), we obtain ν = ν,
(τ
τ

)β
=
(κ
κ

)α
,
τ

τ
=(µ

µ

)α
,
µ

µ
=
S0

S0

=
I0

I0
= ε.

Hence, for each p ∈ Ω, there are in�nite parameters p ∈ Ω such that y(t, p) =
y(t, p) for all t ≥ 0.

As a consequence of Proposition 2.3.2, we obtain the following proposition

Proposition 3.1.1. The SIR model with nonlinear incidence rate (3.1.1) is not

identi�able, and if ν = ν,
(τ
τ

)β
=
(κ
κ

)α
,
τ

τ
=
(µ
µ

)α
,
µ

µ
=

S0

S0

=
I0

I0
, we have

µI(t, p) = µI(t, p).

3.2 SIR model with nonlinear incidence rate (3.1.1) in
the case α = 1, β = 2

Consider the system
S′(t) = − τS(t)I(t)

1 + κI2(t)
,

I ′(t) =
τS(t)I(t)

1 + κI2(t)
− νI(t), t ≥ 0

y(t) = µI(t)

(3.2.1)

with S(0) = S0 > 0, I(0) = I0 > 0, and R0 =
τS0

ν(1 + κI20 )
> 1.

Denote by p = (τ, κ, ν, µ, S0, I0), p = (τ , κ, ν, µ, S0, I0, µ) the unknown parameter
vectors, and the set of possible p is given by Ω = {p ∈ R6 : pi > 0, i = 1..6}.

Let x(t, p) =

(
x1(t, p)
x2(t, p)

)
=

(
S(t)
I(t)

)
, f(x(t, p), p) =

 −−τS(t)I(t)

1 + κI2(t)
−τS(t)I(t)

1 + κI2(t)
− νI(t)

,

x0(p) =

(
x1(0)
x2(0)

)
=

(
S0
I0

)
=

(
p4
p5

)
, and y(t, p) = h(x(t, p), p) = µI(t) = p6x2(t).

the system (3.2.1) can be rewritten as follows
x′1(t) = −p1x1(t)x2(t)

1 + p2x22(t)
,

x′2(t) =
p1x1(t)x2(t)

1 + p2x22(t)
− p3x2(t), t ≥ 0

y(t) = p4x2(t)

(3.2.2)

with x1(0) = p5, x2(0) = p6.

We introduce here a new state variable x3(t) =
1

1 + p2x22(t)
, then x′3(t) =

− 2p2x2(t)x
′
2(t)

(1 + p2x22(t))
2

= −2p2x2(t)x
2
3(t) (p1x1(t)x2(t)x3(t)− p3x2(t)), and (3.2.2) can be
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written as follows
x′1(t) = −p1x1(t)x2(t)x3(t),
x′2(t) = p1x1(t)x2(t)x3(t)− p3x2(t), t ≥ 0

x′3(t) = −2p1p2x1(t)x
2
2(t)x

3
3(t) + 2p2p3x

2
2(t)x

2
3(t),

y(t) = p4x2(t)

(3.2.3)

with x1(0) = p5, x2(0) = p6, x3(0) =
1

1 + p2p26
.

Substituting x2(t) =
y(t)

p4
into (3.2.3) we obtain


p4x
′
1(t) + p1x1(t)y(t)x3(t) = 0,

y′(t)− p1x1(t)y(t)x3(t) + p3y(t) = 0, t ≥ 0

p24x
′
3(t) + 2p1p2x1(t)y(t)2x33(t)− 2p2p3y

2(t)x23(t) = 0

(3.2.4)

with x1(0) = p5, y(0) = p4p6, x3(0) =
1

1 + p2p26
.

Consider the di�erential polynomials on the left-hand sides of (3.2.4). These
polynomials form an autoreduced set in the di�erential ring Q(p){x1, x3, y} with the
elimination ranking (that we mentioned in Chapter 2) [y] < [x1] < [x3]. Moreover,
the initials and separants of these polynomials are in Q(p), then these polynomi-
als form an orthonomic set of Q(p){x1, x3, y}. Let P is a prime di�erential ideal
generated by these polynomials.

Next, the ideal P is decomposed by using Rosenfeld-Gröbner algorithm imple-
mented in Maple. The result is the four lists of di�erential polynomials. Each list
forms the set of generators of a radical ideal corresponding to either the singular
solutions or general solution of (3.2.4). We show here the lists

[x3(t), x
′
1(t), y

′(t) + p3y(t)],

[x′3(t), x
′
1(t), y(t)],

[p24x
′
3(t)− 2p2p3y

2(t)x23(t), x1(t), y
′(t) + p3y(t)],

[2x3(t)(y
′)2(t)p2 + 2x3(t)y

′(t)y3(t)p2p3 + x3(t)y
′(t)y2(t)p1p4

+x3(t)y
3(t)p1p3p4 + y”(t)y(t)p24 − (y′)2(t)p24,

x1(t)y”(t)y(t)p1p
2
4 − x1(t)(y′)2(t)p1p24 − x1(t)(y′)2(t)p1p24 + 2(y′)3(t)y(t)p2

+4(y′)2(t)y2(t)p2p3 + 2y′(t)y3(t)p2p
2
3 + 2y′(t)y2(t)p1p3p4 + y3(t)p1p

2
3p4,

2y(3)(t)(y′)2(t)y2(t)p2 + 2y(3)(t)y′(t)y3(t)p2p3 + y(3)(t)y′(t)y2(t)p1p4

+y(3)(t)y3(t)p1p3p4 − 6y”(t)(y′)3(t)y2(t)p2 − 2(y”)2(t)y3(t)p2p3

−(y”)2(t)y2(t)p1p4 + 2y”(t)(y′)3(t)y(t)p2 − 6y”(t)(y′)2(t)y2(t)p2p3

−2y”(t)(y′)2(t)y(t)p1p4 − 4y”(t)y′(t)y2(t)p1p3p4 + 2(y′)5(t)p2 + 6(y′)4(t)y(t)p2p3

+2(y′)4(t)p1p4 + 3(y′)3(t)y(t)p1p3p4].
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Figure 3.1: Maple code for decomposing the ideal generated by the left hand side of

(3.2.4)

It can be seen that the �rst three lists above are not corresponding to the complete
system including (3.2.3) and the initial condition. For instance, the third list requires
x1(t) = 0 for all t ≥ 0, contradicting to x1(0) = p5 > 0.

In the fourth list, there is an expression that concerning only the indeterminate
y, and it is written as follows
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3.2. SIR model with nonlinear incidence rate (3.1.1) in the case α = 1, β = 2

2y(3)(t)(y′)2(t)y2(t)p2 + 2y(3)(t)y′(t)y3(t)p2p3 + y(3)(t)y′(t)y2(t)p1p4

+ y(3)(t)y3(t)p1p3p4 − 6y”(t)(y′)3(t)y2(t)p2 − 2(y”)2(t)y3(t)p2p3 − (y”)2(t)y2(t)p1p4

+ 2y”(t)(y′)3(t)y(t)p2 − 6y”(t)(y′)2(t)y2(t)p2p3 − 2y”(t)(y′)2(t)y(t)p1p4

− 4y”(t)y′(t)y2(t)p1p3p4 + 2(y′)5(t)p2 + 6(y′)4(t)y(t)p2p3

+ 2(y′)4(t)p1p4 + 3(y′)3(t)y(t)p1p3p4.

Then the output equation is obtained as follows

p2

(
2y(3)(t)(y′)2(t)y2(t)− 6y”(t)(y′)3(t)y2(t) + 2y”(t)(y′)3(t)y(t) + 2(y′)5(t)

)
− 2p2p3

(
3(y′)4(t)y(t)− 3y”(t)(y′)2(t)y2(t)− y(3)(t)y′(t)y3(t) + (y”)2(t)y3(t)

)
+ p1p4

(
y(3)(t)y′(t)y2(t)− (y”)2(t)y2(t)− 2y”(t)(y′)2(t)y(t) + 2(y′)4(t)

)
− p1p3p4

(
4y”(t)y′(t)y2(t)− y(3)(t)y3(t)− 3(y′)3(t)y(t)

)
= 0

(3.2.5)

Dividing both side of (3.2.5) by p2 we obtain

(
2y(3)(t)(y′)2(t)y2(t)− 6y”(t)(y′)3(t)y2(t) + 2y”(t)(y′)3(t)y(t) + 2(y′)5(t)

)
− 2p3

(
3(y′)4(t)y(t)− 3y”(t)(y′)2(t)y2(t)− y(3)(t)y′(t)y3(t) + (y”)2(t)y3(t)

)
+
p1p4
p2

(
y(3)(t)y′(t)y2(t)− (y”)2(t)y2(t)− 2y”(t)(y′)2(t)y(t) + 2(y′)4(t)

)
−p1p3p4

p2

(
4y”(t)y′(t)y2(t)− y(3)(t)y3(t)− 3(y′)3(t)y(t)

)
= 0

(3.2.6)

Now we check the linear independence of three polynomials

q1 = 2y(t)
(

3(y′)4(t)− 3y”(t)(y′)2(t)y(t)− y(3)(t)y′(t)y2(t) + (y”)2(t)y2(t)
)
,

q2 = −y(3)(t)y′(t)y2(t) + (y”)2(t)y2(t) + 2y”(t)(y′)2(t)y(t)− 2(y′)4(t),

q3 = −
(

4y”(t)y′(t)y2(t)− y(3)(t)y3(t)− 3(y′)3(t)y(t)
)

In order to check that, we compute the Wronskian W of q1, q2, q3. It is easy to
obtain this evaluation by the package VectorCalculus in Maple( see �gures 3.2, 3.3).
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Figure 3.2: Maple code for computing the Wronskian W of q1, q2, q3.
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3.2. SIR model with nonlinear incidence rate (3.1.1) in the case α = 1, β = 2

Figure 3.3: Maple code for justifying that W is not in the ideal P. This code must

be added at the end of the code of Figure 3.1.

By Proposition 2.3.3 we have to justify that W is not in the ideal P. This is a
testing membership problem of an ideal in Di�erential Algebra and we can conduct
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to check if W is not in the ideal P by the function called BelongsTo in the package
Di�erentialAlgebra of Maple. The result in Maple returned is "false". It means that
W 6∈ P. By Proposition 2.3.3 and (3.2.6), if y(t, p) = y(t, p), then

−2p3 = −2p3,
p1p4
p2

=
p1p4
p2

,

−p1p3p4
p2

=
−p1p3p4

p2

(3.2.7)

Now, consider the initial condition of (3.2.3), (3.2.4), we have y(0, p) = y(0, p) then

p4p6 = p4p6 (3.2.8)

Next, we consider the two other equations of the fourth list

y2(t)
(
2p2y

′(t) + p1p4
) (
y′(t) + p3y(t)

)
x3(t) = p24

(
y(t)y”(t)− (y′)2(t)

)
, (3.2.9)

and

p1p
2
4

(
y(t)y”(t)− (y′)2(t)

)
x1(t) = y(t)

(
2p2y

′(t) + p1p4
) (
y′(t) + p3y(t)

)2
. (3.2.10)

We show that y(t), 2p2y
′(t) + p1p4, y′(t) + p3y(t), and y(t)y”(t) − (y′)2(t) are not

generically zeros. Indeed, by the Theorem 1 in [45] and the condition R0 > 1,
the function x2(t) is �rstly increasing and then decreasing on the interval [0,+∞).
It implies that y(t), 2p2y

′(t) + p1p4, y′(t) + p3y(t) are not generically zeros. If
y(t)y”(t)− (y′)2(t) is generically zero then x3(t) is generically zero. This contradicts

the fact x3(t) =
1

1 + p2x22(t)
. Therefore, we can rewrite the two above equations as

follows

p2
p24
x3(t, p) =

(
y(t, p)y”(t, p)− (y′)2(t, p)

)
y2(t, p)

(
2y′(t, p) +

p1p4
p2

)
(y′(t, p) + p3y(t, p))

, (3.2.11)

and

p4x1(t, p) =

y(t, p)

(
2y′(t, p) +

p1p4
p2

)
(y′(t, p) + p3y(t, p))

p1p4
p2

(y(t, p)y”(t, p)− (y′)2(t, p))
. (3.2.12)

By (3.2.7) and y(i)(t, p) = y(i)(t, p) for all i ∈ N, we havep4x1(0, p) = p4x1(0, p),
p2
p24
x3(0, p) =

p2
p24
x3(0, p),

. (3.2.13)

It implies that p4p5 = p4p5,
p2
p24

1

1 + p2p26
=
p2
p24

1

1 + p2p
2
6

,
. (3.2.14)
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3.3. SIR model with nonlinear incidence rate (3.1.1) in the case α = 1, β = 1

Solving the algebraic system (3.2.7), (3.2.8), and (3.2.14) we have the relation-

ships between p and p as follows p3 = p3,
p4
p4

=
p5
p5

=
p6
p6
,
p4
p4

=
p1
p1
,

(
p4
p4

)2

=
p2
p2
.

Together with Proposition 3.1.1, we have the following theorem

Theorem 3.2.1. The SIR model with nonlinear incidence rate (3.2.1) is not iden-

ti�able, and we have µI(t, p) = µI(t, p) if and only if ν = ν,
(τ
τ

)2
=
κ

κ
,
τ

τ
=
µ

µ
,

µ

µ
=
S0

S0

=
I0

I0
.

The following is the consequence of Theorem 3.2.1

Theorem 3.2.2. The basic production number of the SIR model with nonlinear

incidence rate (3.2.1) is uniquely determined from the output function y(t) = µI(t).

Proof. By theorem 3.2.1, from the output function y(t) = µI(t) we have ν, τS0, κI20

are uniquely determined. It derives that R0 =
τS0

ν(1 + κI20 )
is uniquely determined.

3.3 SIR model with nonlinear incidence rate (3.1.1) in
the case α = 1, β = 1

The model system (3.1.1) in which α = 1, β = 1 can be read as follows
S′(t) = −τS(t)I(t)

1 + κI(t)
,

I ′(t) =
τS(t)I(t)

1 + κI(t)
− νI(t), t ≥ 0

y(t) = µI(t)

(3.3.1)

with S(0) = S0 > 0, I(0) = I0 > 0, and R0 =
τS0

ν(1 + κI0)
> 1.

With the same notations as in Section 3.2, (3.3.1) can be read as follows
x′1(t) = −p1x1(t)x2(t)

1 + p2x2(t)
,

x′2(t) =
p1x1(t)x2(t)

1 + p2x2(t)
− p3x2(t), t ≥ 0

y(t) = p4x2(t)

(3.3.2)

with x1(0) = p5, x2(0) = p6.

Let x3(t) =
1

1 + p2x2(t)
, then

x′3(t) = − p2x
′
2(t)

(1 + p2x2(t))2

= −p2x23(t) (p1x1(t)x2(t)x3(t)− p3x2(t)) .
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We write (3.3.2) as follows
p4x
′
1(t) + p1x1(t)y(t)x3(t) = 0,

y′(t)− p1x1(t)y(t)x3(t) + p3y(t) = 0, t ≥ 0

p4x
′
3(t) + p1p2x1(t)y(t)x33(t)− p2p3y(t)x23(t) = 0

(3.3.3)

with x1(0) = p5, y(0) = p4p6, x3(0) =
1

1 + p2p6
.

The di�erential polynomials on the left hand sides of (3.3.3) form an autoreduced
set in the di�erential ring Q(p){x1, x3, y} with the elimination ranking (that we
mentioned in Chapter 2) [y] < [x1] < [x3]. Moreover, the initials and separants of
these polynomials are in Q(p), then these polynomials form an orthonomic set of
Q(p){x1, x3, y}. Let P is a prime di�erential ideal generated by these polynomials.

Next, using Rosenfeld-Gröbner algorithm implemented in Maple to decompose
the ideal P. This decomposition returns �ve lists of di�erential polynomials. Each
list forms the set of generators of a radical ideal corresponding to either the singular
solutions or general solution of (3.3.3). We show here the �rst four lists

[x3(t), x
′
1(t), y

′(t) + p3y(t)],

[x′3(t), x
′
1(t), y(t)],

[p4x
′
3(t)− p2p3y(t)x23(t), x1(t), y

′(t) + p3y(t)],

[p1p2x1(t)x3(t) + p1 − p2p3, p2p4x′1(t)− p1y(t) + p2p3y(t), p2y
′(t) + p1y(t)],

It is clear that the �rst three lists above are not corresponding to the complete
system including (3.3.3) and the initial condition. For instance, the third list requires
x1(t) = 0 for all t ≥ 0, contradicting to x1(0) = p5 > 0.

The fourth list requires p2y′(t) + p1y(t) = 0 for all t > 0. It means that y′(t) =

−p1
p2
y(t) or x2(t) =

y(t)

p4
is decreasing for all t ≥ 0. However, by the Theorem 1

from the paper of Pierre Magal et al. [45] and the condition R0 =
τS0

ν(1 + κI0)
> 1,

the function x2(t) is �rstly increasing and then decreasing on the interval [0,+∞).
It derives that the fourth list is not corresponding to the complete system (3.3.3).

The �fth list is now corresponding to the general case, and we obtain the output
equation of (3.3.3) as follows

2(y′)3(t)y”(t) + y(t)(y′)2(t)y′′′(t)− 3y(t)y′(t)(y”)2(t)

+ (
p1
p2

+ p3)
(
y2(t)y′(t)y′′′(t) + 2(y′)4(t)− 2y(t)(y′)2(t)y”(t)− y2(t)(y”)2(t)

)
+
p1p3
p2

(
y3(t)y′′′(t) + 3y(t)(y′)3(t)− 4y2(t)y′(t)y”(t)

)
= 0

(3.3.4)

Now we check the linear independence of two polynomials

q1 = y2(t)y′(t)y′′′(t) + 2(y′)4(t)− 2y(t)(y′)2(t)y”(t)− y2(t)(y”)2(t), (3.3.5)
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and
q2 = y3(t)y′′′(t) + 3y(t)(y′)3(t)− 4y2(t)y′(t)y”(t). (3.3.6)

The Wronskian W of q1, q2 is computed by the package VectorCalculus in Maple.
Next, the function BelongsTo in the package Di�erentialAlgebra of Maple shows that
W 6∈ P.( see Figure 3.4).

Figure 3.4: The Wronskian W of q1, q2.

By Proposition 2.3.3 and (3.3.4), if y(t, p) = y(t, p), then
p1p3
p2

=
p1p3
p2

,

p1
p2

+ p3 =
p1
p2

+ p3

(3.3.7)

(3.3.7) is equivalent to 
p1
p2

=
p1
p2
,

p3 = p3

(3.3.8)

or 
p1
p2

= p3,

p3 =
p1
p2

(3.3.9)

By the initial condition of (3.3.3), y(0, p) = y(0, p) if

p4p6 = p4p6 (3.3.10)

Next, by the similar arguments as in the section 3.2, we obtain the two other
equations from the �fth list

p2
p4
x3(t, p) =

y(t)y”(t)− (y′)2(t)

y(t) (y′(t) + p3y(t))

(
y′(t) +

p1
p2
y(t)

) , (3.3.11)
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p1x1(t, p)x3(t, p) + p3 =
y′(t)

y(t)
(3.3.12)

By (3.3.8), (3.3.9) and y(i)(t, p) = y(i)(t, p) for all i ∈ N, we have
p2
p4
x3(0, p) =

p2
p4
x3(0, p),

p1x1(0, p)x3(0, p)− p3 = p1x1(0, p)x3(0, p)− p3,
. (3.3.13)

It implies that 
p2
p4

1

1 + p2p6
=
p2
p4

1

1 + p2p6
,

p1p5
1 + p2p6

− p3 =
p1p5

1 + p2p6
− p3

. (3.3.14)

(3.3.7), (3.3.10), (3.3.14) give us the relationships between p and p as follows

p3 = p3,
p1
p1

=
p2
p2

=
p4
p4

=
p5
p5

=
p6
p6
. Together with Proposition 3.1.1, we have the

following

Theorem 3.3.1. The SIR model with nonlinear incidence rate (3.3.1) is not identi-

�able, and we have µI(t, p) = µI(t, p) if and only if ν = ν,
τ

τ
=
κ

κ
=
µ

µ
=
S0

S0

=
I0

I0
.

The following is the consequence of Theorem 3.3.1

Theorem 3.3.2. The basic production number R0 of the SIR model with nonlinear

incidence rate (3.3.1) is uniquely determined from the output function y(t) = µI(t).

Proof. By Theorem 3.3.1, from the output function y(t) = µI(t) we have ν, τS0, κI0

are uniquely determined. It derives that R0 =
τS0

ν(1 + κI0)
is uniquely determined.

3.4 SIR model with nonlinear incidence rate (3.1.1) in
the case α = 2, β = 1

In the case α = 2, β = 1 we rewrite (3.1.1) as follows
S′(t) = −τS(t)I2(t)

1 + κI(t)
,

I ′(t) =
τS(t)I2(t)

1 + κI(t)
− νI(t), t ≥ 0

y(t) = µI(t)

(3.4.1)

with S(0) = S0 > 0, I(0) = I0 > 0, and R0 =
τS0I0

ν(1 + κI0)
> 1.

Using the same notations as in Section 3.2, (3.4.1) can be rewritten as follows
x′1(t) = −p1x1(t)x

2
2(t)

1 + p2x2(t)
,

x′2(t) =
p1x1(t)x

2
2(t)

1 + p2x2(t)
− p3x2(t), t ≥ 0

y(t) = p4x2(t)

(3.4.2)
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with x1(0) = p5, x2(0) = p6.

Introducing a new variable x3(t) =
1

1 + p2x2(t)
, then x′3(t) = − p2x

′
2(t)

(1 + p2x2(t))2
=

−p2x23(t)
(
p1x1(t)x

2
2(t)x3(t)− p3x2(t)

)
, and (3.4.2) can be written as follows

p24x
′
1(t) + p1x1(t)y

2(t)x3(t) = 0,

p4y
′(t)− p1x1(t)y2(t)x3(t) + p3p4y(t) = 0, t ≥ 0

p24x
′
3(t) + p1p2x1(t)y

2(t)x33(t)− p2p3p4y(t)x23(t) = 0

(3.4.3)

with x1(0) = p5, y(0) = p4p6, x3(0) =
1

1 + p2p6
.

Consider the di�erential polynomials on the left-hand sides of (3.4.3). It is
seen that the set of these polynomials is an autoreduced set in the di�erential ring
Q(p){x1, x3, y} with the elimination ranking [y] < [x1] < [x3]. Moreover, the ini-
tials and separants of these polynomials are in Q(p), then these polynomials form an
orthonomic set of Q(p){x1, x3, y}. Let P is a prime di�erential ideal generated by
these polynomials.

Next, we use Rosenfeld-Gröbner algorithm implemented in Maple for decompos-
ing the ideal P, and obtain four lists of di�erential polynomials. Each list is the set
of generators of a radical ideal corresponding to the solution of (3.4.3). The lists are
shown as follows

[x3(t), x
′
1(t), y

′(t) + p3y(t)],

[x′3(t), x
′
1(t), y(t)],

[p4x
′
3(t)− p2p3y(t)x23(t), x1(t), y

′(t) + p3y(t)],

[p2p4x3(t)y(t)(y′)2(t) + p1x3(t)y
3(t)y′(t) + p2p3p4x3(t)y

2(t)y′(t)

+p1p3x3(t)y
4(t) + p24y(t)y′(t)− 2p24(y”)2(t)− p3p24y(t)y′(t),

p1p4x1(t)y
2(t)y”(t)− 2p1p4x1(t)y(t)(y′)2(t)− p1p3p4x1(t)y2(t)y′(t) + p2p4(y

′)3(t)

+2p2p3p4y(t)(y′)2(t) + 2p1p3y
3(t)y′(t) + p2p

2
3p4y

2(t)y′(t) + p1p
2
3y

4(t),

p2p4y
2(t)(y′)2(t)y(3)(t) + p1y

4(t)y′(t)y(3)(t) + p2p3p4y
3(t)y′(t)y(3)(t)

+p1p3y
5(t)y(3)(t)− 3p2p4y

2(t)y′(t)(y”)2(t)− p1y4(t)(y”)2(t)

−p2p3p4y3(t)(y”)2(t) + 4p2p4y(t)(y′)3(t)y”(t)− 4p1y
3(t)(y′)2(t)y”(t)

−7p1p3y
4(t)y′(t)y”(t)− p1p23y5(t)y”(t)− 2p2p4(y

′)5(t) + 6p1y
2(t)(y′)4(t)

+10p1p3y
3(t)(y′)3(t) + 3p1p

2
3p4y

4(t)(y′)2(t)].

The �rst three lists above are not corresponding to the complete system including
(3.4.3) and the initial condition. For instance, the third list requires x1(t) = 0 for
all t ≥ 0, contradicting to x1(0) = p5 > 0.
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3. Determining the identi�able combinations of parameters of SIR model with

nonlinear incidence rate from the reported case data

The fourth list is now corresponding to the general case, and the last polynomial
in the fourth list forms the output equation of (3.4.3) as follows

y2(t)(y′)2(t)y(3)(t)− 3y2(t)y′(t)(y”)2(t) + 4y(t)(y′)3(t)y”(t)− 2(y′)5(t)

+
p1
p2p4

(y4(t)y′(t)y(3)(t) + 6y2(t)(y′)4(t)− 4y3(t)(y′)2(t)y”(t)− y4(t)(y”)2(t))

+ p3(y
3(t)y′(t)y(3)(t)− y3(t)(y”)2(t))

+
p1p3
p2p4

(y5(t)y(3)(t) + 10y3(t)(y′)3(t)− 7y4(t)y′(t)y”2(t))

+
p1p

2
3

p2p4
(3y4(t)(y′)2(t)− y5(t)y”(t)) = 0

(3.4.4)

Next, we check the linear independence of four polynomials

q1 = y4(t)y′(t)y(3)(t) + 6y2(t)(y′)4(t)− 4y3(t)(y′)2(t)y”(t)− y4(t)(y”)2(t), (3.4.5)

q2 = y3(t)y′(t)y(3)(t)− y3(t)(y”)2(t) (3.4.6)

q3 = y5(t)y(3)(t) + 10y3(t)(y′)3(t)− 7y4(t)y′(t)y”2(t), (3.4.7)

q4 = 3y4(t)(y′)2(t)− y5(t)y”(t). (3.4.8)

The Wronskian W of q1, q2, q3, q4 is computed by the package VectorCalculus in
Maple. Next, the the function BelongsTo in the package Di�erentialAlgebra of Maple
shows that W 6∈ P.( see �gures 3.5, 3.6, 3.7, 3.8)
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3.4. SIR model with nonlinear incidence rate (3.1.1) in the case α = 2, β = 1

Figure 3.5: The �rst part of Wronskian W of q1, q2, q3, q4.
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3. Determining the identi�able combinations of parameters of SIR model with

nonlinear incidence rate from the reported case data

Figure 3.6: The second part of Wronskian W of q1, q2, q3, q4.
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3.4. SIR model with nonlinear incidence rate (3.1.1) in the case α = 2, β = 1

Figure 3.7: The third part of Wronskian W of q1, q2, q3, q4.
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3. Determining the identi�able combinations of parameters of SIR model with

nonlinear incidence rate from the reported case data

Figure 3.8: The fourth part of Wronskian W of q1, q2, q3, q4.

By Proposition 2.3.3 and (3.4.4), if y(t, p) = y(t, p), then

p1
p2p4

=
p1
p2p4

,

p3 = p3,
p1p3
p2p4

=
p1p3
p2p4

,

p1p
2
3

p2p4
=
p1p

2
3

p2p4
.

(3.4.9)

(3.4.9) is equivalent to 
p1
p2p4

=
p1
p2p4

,

p3 = p3

(3.4.10)

By the initial condition of (3.4.3), y(0, p) = y(0, p) if

p4p6 = p4p6. (3.4.11)

Next, by the similar arguments of section 3.2 we obtain the two other equations
of the fourth list

p2
p4
x3(t, p) =

p3y(t)y′(t)− y(t)y”(t) + 2(y′)2(t)

y(t) (y′(t) + p3y(t))

(
p1
p2p4

y′(t) + y(t)

) , (3.4.12)

93



3.5. SIR model with nonlinear incidence rate (3.1.1) in the case α = 2, β = 2

and
p1
p4
x1(t, p)x3(t, p) =

y′(t) + p3y(t)

y2(t)
(3.4.13)

By (3.4.10) and y(i)(t, p) = y(i)(t, p) for all i ∈ N, we have
p2
p4
x3(0, p) =

p2
p4
x3(0, p),

p1
p4
x1(0, p)x3(0, p) =

p1
p4
x1(0, p)x3(0, p),

. (3.4.14)

It implies that 
p2
p4

1

1 + p2p6
=
p2
p4

1

1 + p2p6
,

p1
p4

p5
1 + p2p6

=
p1
p4

p5
1 + p2p6

. (3.4.15)

The algebraic system (3.4.10), (3.4.11), (3.4.15) derives the relationships between

p and p as follows p3 = p3,
p1
p1

=

(
p4
p4

)2

,
p2
p2

=
p4
p4

=
p5
p5

=
p6
p6
. By Proposition 3.1.1,

we have the following

Theorem 3.4.1. The SIR model with nonlinear incidence rate (3.4.1) is not identi-

�able, and we have µI(t, p) = µI(t, p) if and only if ν = ν,
τ

τ
=
µ2

µ2
,
κ

κ
=
µ

µ
=
S0

S0

=

I0

I0
.

The following is the corollary of the above theorem

Theorem 3.4.2. The basic production number R0 of the SIR model with nonlinear

incidence rate (3.4.1) is uniquely determined from the output function y(t) = µI(t).

Proof. By Theorem 3.4.1, from the output function y(t) = µI(t) we have ν, τS0I0,

κI0 are uniquely determined. It derives that R0 =
τS0I0

ν(1 + κI0)
is uniquely deter-

mined.

3.5 SIR model with nonlinear incidence rate (3.1.1) in
the case α = 2, β = 2

Consider the system
S′(t) = −τS(t)I2(t)

1 + κI2(t)
,

I ′(t) =
τS(t)I2(t)

1 + κI2(t)
− νI(t), t ≥ 0

y(t) = µI(t)

(3.5.1)

with S(0) = S0 > 0, I(0) = I0 > 0, and R0 =
τS0

ν(1 + κI20 )
> 1.
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3. Determining the identi�able combinations of parameters of SIR model with

nonlinear incidence rate from the reported case data

While the same notations are using as in Section 3.2, (3.5.1) can be rewritten as
follows 

x′1(t) = −p1x1(t)x
2
2(t)

1 + p2x22(t)
,

x′2(t) =
p1x1(t)x

2
2(t)

1 + p2x22(t)
− p3x2(t), t ≥ 0

y(t) = p4x2(t)

(3.5.2)

with x1(0) = p5, x2(0) = p6.

As mentioned in Chapter 2, we let x3(t) =
1

1 + p2x22(t)
, then

x′3(t) = − 2p2x2(t)x
′
2(t)

(1 + p2x22(t))
2

= −2p2x2(t)x
2
3(t)(p1x1(t)x

2
2(t)x3(t)− p3x2(t)).

Therefore, (3.5.2) can be written as follows
p24x
′
1(t) + p1x1(t)y

2(t)x3(t) = 0,

p4y
′(t)− p1x1(t)y2(t)x3(t) + p3p4y(t) = 0, t ≥ 0

p34x
′
3(t) + 2p1p2x1(t)y

3(t)x33(t)− 2p2p3p4y
2(t)x23(t) = 0

(3.5.3)

with x1(0) = p5, y(0) = p4p6, x3(0) =
1

1 + p2p26
.

The set of all di�erential polynomials on the left hand sides of (3.5.3) is an
autoreduced set in the di�erential ring Q(p){x1, x3, y} with the elimination ranking
[y] < [x1] < [x3]. Moreover, the initials and separants of these polynomials are in
Q(p), then these polynomials form an orthonomic set of Q(p){x1, x3, y}. Let P is a
prime di�erential ideal generated by these polynomials.

Next, we decompose the ideal P by using Rosenfeld-Gröbner algorithm imple-
mented in Maple. The four lists of di�erential polynomials is returned by this de-
composition. Each list forms the set of generators of a radical ideal corresponding
to either the singular solutions or general solution of (3.5.3). We show here the lists

[x3(t), x
′
1(t), y

′(t) + p3y(t)],

[x′3(t), x
′
1(t), y(t)],

[p24x
′
3(t)− 2p2p3y

2(t)x23(t), x1(t), y
′(t) + p3y(t)],

[2p3x3(t)y
2(t)(y′)2(t) + p1x3(t)y

3(t)y′(t) + 2p2p3x3(t)y
3(t)y′(t)

+p1p3x3(t)y
4(t) + p24y(t)(y”)2(t)− 2p24(y

′)2(t)− p3p24y(t)y′(t),

p1p4x1(t)y(t)y”(t)− 2p1p4x1(t)(y
′)2(t)− p1p3p4x1(t)y(t)y′(t) + 2p2(y

′)3(t)

+p1y(t)(y′)2(t) + 4p2p3y(t)(y′)2(t) + 2p1p3y
2(t)y′(t) + 2p2p

2
3y

2(t)y′(t) + p1p
2
3y

3(t),

2p2y(t)(y′)2(t)y(3)(t) + p1y
2(t)y′(t)y(3)(t) + 2p2p3y

2(t)y′(t)y(3)(t)

+p1p3y
3(t)y(3)(t)− 6p2y(t)y′(t)(y”)2(t)− p1y2(t)(y”)2(t)− 2p2p3y

2(t)(y”)2(t)
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3.5. SIR model with nonlinear incidence rate (3.1.1) in the case α = 2, β = 2

+6p2(y
′)3(t)y”(t)− 4p1y(t)(y′)2(t)y”(t)− 2p2p3y(t)(y′)2(t)y”(t)

−7p1p3y
2(t)y′(t)y”(t)− p1p23y3(t)y”(t) + 6p1(y

′)4(t) + 6p2p3(y
′)4(t)

+10p1p3y(t)(y′)3(t) + 2p2p
2
3y(t)(y′)3(t) + 3p1p

2
3y

2(t)(y′)2(t)].

It is seen that the �rst three lists above are not corresponding to the complete
system including (3.5.3) and the initial condition. For instance, the third list requires
x1(t) = 0 for all t ≥ 0, contradicting to x1(0) = p5 > 0.

The fourth list is now corresponding to the general case, and the last polynomial
in the fourth list forms the output equation of (3.5.3) as follows

6(y′)3(t)y”(t) + 2y(t)(y′)2(t)y(3)(t)− 6y(t)y′(t)(y”)2(t)

+
p1
p2

(
6(y′)4(t)− 4y(t)(y′)2(t)y”(t) + y2(t)y′(t)y(3)(t)− y2(t)(y”)2(t)

)
+ 2p3

(
3(y′)4(t)− y(t)(y′)2(t)y”(t) + y2(t)y′(t)y(3)(t)− y2(t)(y”)2(t)

)
+
p1p3
p2

(
10y(t)(y′)3(t) + y3(t)y(3)(t)− 7y2(t)y′(t)y”(t)

)
+
p1p

2
3

p2

(
3y2(t)(y′)2(t)− y3(t)y”(t)

)
+ 2p23y(t)(y′)3(t) = 0

(3.5.4)

Next, we check the linear independence of �ve polynomials

q1 = 6(y′)4(t)− 4y(t)(y′)2(t)y”(t) + y2(t)y′(t)y(3)(t)− y2(t)(y”)2(t), (3.5.5)

q2 = 3(y′)4(t)− y(t)(y′)2(t)y”(t) + y2(t)y′(t)y(3)(t)− y2(t)(y”)2(t), (3.5.6)

q3 = 10y(t)(y′)3(t) + y3(t)y(3)(t)− 7y2(t)y′(t)y”(t), (3.5.7)

q4 = 3y2(t)(y′)2(t)− y3(t)y”(t), (3.5.8)

q5 = y(t)(y′)3(t). (3.5.9)

We compute the Wronskian W of q1, q2, q3, q4, q5 by the package VectorCalculus
in Maple. Next, the function BelongsTo in the package Di�erentialAlgebra of Maple
is used to show that W 6∈ P. ( see �gures from Figure 3.9 to Figure 3.23)
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3. Determining the identi�able combinations of parameters of SIR model with

nonlinear incidence rate from the reported case data

Figure 3.9: The �rst part of Wronskian W of q1, q2, q3, q4, q5.
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3.5. SIR model with nonlinear incidence rate (3.1.1) in the case α = 2, β = 2

Figure 3.10: The second part of Wronskian W of q1, q2, q3, q4, q5.
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3. Determining the identi�able combinations of parameters of SIR model with

nonlinear incidence rate from the reported case data

Figure 3.11: The third part of Wronskian W of q1, q2, q3, q4, q5.
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3.5. SIR model with nonlinear incidence rate (3.1.1) in the case α = 2, β = 2

Figure 3.12: The fourth part of Wronskian W of q1, q2, q3, q4, q5.
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3. Determining the identi�able combinations of parameters of SIR model with

nonlinear incidence rate from the reported case data

Figure 3.13: The �fth part of Wronskian W of q1, q2, q3, q4, q5.
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3.5. SIR model with nonlinear incidence rate (3.1.1) in the case α = 2, β = 2

Figure 3.14: The sixth part of Wronskian W of q1, q2, q3, q4, q5.
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3. Determining the identi�able combinations of parameters of SIR model with

nonlinear incidence rate from the reported case data

Figure 3.15: The seventh part of Wronskian W of q1, q2, q3, q4, q5.
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3.5. SIR model with nonlinear incidence rate (3.1.1) in the case α = 2, β = 2

Figure 3.16: The eighth part of Wronskian W of q1, q2, q3, q4, q5.
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3. Determining the identi�able combinations of parameters of SIR model with

nonlinear incidence rate from the reported case data

Figure 3.17: The ninth part of Wronskian W of q1, q2, q3, q4, q5.
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3.5. SIR model with nonlinear incidence rate (3.1.1) in the case α = 2, β = 2

Figure 3.18: The tenth part of Wronskian W of q1, q2, q3, q4, q5.
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3. Determining the identi�able combinations of parameters of SIR model with

nonlinear incidence rate from the reported case data

Figure 3.19: The fourth part of Wronskian W of q1, q2, q3, q4, q5.
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3.5. SIR model with nonlinear incidence rate (3.1.1) in the case α = 2, β = 2

Figure 3.20: The eleventh part of Wronskian W of q1, q2, q3, q4, q5.
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3. Determining the identi�able combinations of parameters of SIR model with

nonlinear incidence rate from the reported case data

Figure 3.21: The twelfth part of Wronskian W of q1, q2, q3, q4, q5.
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3.5. SIR model with nonlinear incidence rate (3.1.1) in the case α = 2, β = 2

Figure 3.22: The thirteenth part of Wronskian W of q1, q2, q3, q4, q5.
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3. Determining the identi�able combinations of parameters of SIR model with

nonlinear incidence rate from the reported case data

Figure 3.23: The fourteenth part of Wronskian W of q1, q2, q3, q4, q5.

By Proposition 2.3.3 and (3.5.4), if y(t, p) = y(t, p), then

p1
p2

=
p1
p2
,

2p3 = 2p3,
p1p3
p2

=
p1p3
p2

,

p1p
2
3

p2
=
p1p

2
3

p2
,

2p23 = 2p23.

(3.5.10)

(3.5.10) is equivalent to 
p1
p2

=
p1
p2
,

p3 = p3

(3.5.11)

By the initial condition of (3.5.3), y(0, p) = y(0, p) if

p4p6 = p4p6. (3.5.12)

By the similar arguments from Section 3.2, we obtain the two other equations of
the fourth list

p2
p24
x3(t, p) =

p3y(t)y′(t)− y(t)y”(t) + 2(y′)2(t)

y(t) (y′(t) + p3y(t))

(
p1
p2
y(t) + 2y′(t)

) , (3.5.13)
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3.6. SIR model with nonlinear incidence rate (3.1.1) in the case α = 1, β = 3

and
p1
p4
x1(t, p)x3(t, p) =

y′(t) + p3y(t)

y2(t)
. (3.5.14)

By (3.5.11) and y(i)(t, p) = y(i)(t, p) for all i ∈ N, we have
p2
p24
x3(0, p) =

p2
p24
x3(0, p),

p1
p4
x1(0, p)x3(0, p) =

p1
p4
x1(0, p)x3(0, p),

. (3.5.15)

It implies that 
p2
p24

1

1 + p2p26
=
p2
p24

1

1 + p2p
2
6

,

p1
p4

p5
1 + p2p26

=
p1
p4

p5
1 + p2p

2
6

. (3.5.16)

we solve the algebraic system (3.5.11), (3.5.12), (3.5.16), and obtain the rela-

tionships between p and p as follows p3 = p3,
p1
p1

=
p2
p2

=

(
p4
p4

)2

,
p4
p4

=
p5
p5

=
p6
p6
.

Together with Proposition 3.1.1, we have the following

Theorem 3.5.1. The SIR model with nonlinear incidence rate (3.5.1) is not iden-

ti�able, and we have µI(t, p) = µI(t, p) if and only if ν = ν,
τ

τ
=

κ

κ
=

µ2

µ2
,

µ

µ
=
S0

S0

=
I0

I0
.

Moreover, we also have the following theorem

Theorem 3.5.2. The basic production number R0 of the SIR model with nonlinear

incidence rate (3.5.1) is uniquely determined from the output function y(t) = µI(t).

Proof. By Theorem 3.5.1, from the output function y(t) = µI(t) we have ν, τS0I0,

κI20 are uniquely determined. It derives that R0 =
τS0I0

ν(1 + κI20 )
is uniquely deter-

mined.

3.6 SIR model with nonlinear incidence rate (3.1.1) in
the case α = 1, β = 3

Consider the system
S′(t) = − τS(t)I(t)

1 + κI3(t)
,

I ′(t) =
τS(t)I(t)

1 + κI3(t)
− νI(t), t ≥ 0

y(t) = µI(t)

(3.6.1)

with S(0) = S0 > 0, I(0) = I0 > 0, and R0 =
τS0

ν(1 + κI30 )
> 1.
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3. Determining the identi�able combinations of parameters of SIR model with

nonlinear incidence rate from the reported case data

Using the same notation as in Section 3.2, then (3.5.1) can be rewritten as follows
x′1(t) = −p1x1(t)x2(t)

1 + p2x32(t)
,

x′2(t) =
p1x1(t)x2(t)

1 + p2x32(t)
− p3x2(t), t ≥ 0

y(t) = p4x2(t)

(3.6.2)

with x1(0) = p5, x2(0) = p6.

Let x3(t) =
1

1 + p2x32(t)
, then

x′3(t) = − 3p2x
2
2(t)x

′
2(t)

(1 + p2x22(t))
2

= −2p2x
2
2(t)x

2
3(t)(p1x1(t)x2(t)x3(t)− p3x2(t)).

(3.6.2) can be written as follows
p24x
′
1(t) + p1x1(t)y

2(t)x3(t) = 0,

p4y
′(t)− p1x1(t)y2(t)x3(t) + p3p4y(t) = 0, t ≥ 0

p34x
′
3(t) + 2p1p2x1(t)y

3(t)x33(t)− 2p2p3p4y
2(t)x23(t) = 0

(3.6.3)

with x1(0) = p5, y(0) = p4p6, x3(0) =
1

1 + p2p36
.

Consider the di�erential polynomials on the left-hand sides of (3.6.3). These
polynomials form an autoreduced set in the di�erential ring Q(p){x1, x3, y} with
the elimination ranking [y] < [x1] < [x3]. Moreover, the initials and separants of
these polynomials are in Q(p), then these polynomials form an orthonomic set of
Q(p){x1, x3, y}. Let P is a prime di�erential ideal generated by these polynomials.

Next, using Rosenfeld-Gröbner algorithm implemented in Maple to decompose
the ideal P. This decomposition returns four lists of di�erential polynomials. Each
list forms the set of generators of a radical ideal corresponding to either the singular
solutions or general solution of (3.6.3). We show here the lists

[x3(t), x
′
1(t), y

′(t) + p3y(t)],

[x′3(t), x
′
1(t), y(t)],

[p34x
′
3(t)− 3p2p3y

3(t)x23(t), x1(t), y
′(t) + p3y(t)],

[3p2x3(t)y
3(t)(y′)2(t) + 3p2p3x3(t)y

4(t)y′(t) + p1p
2
4x3(t)y

2(t)y′(t)

+p1p3p
2
4x3(t)y

3(t) + p34y(t)y”(t)− p34(y′)2(t),

p1p
3
4x1(t)y(t)y”(t)− p1p34x1(t)(y′)2(t) + 3p2y

2(t)(y′)3(t) + 6p2p3y
3(t)(y′)2(t)

+p1p
2
4y(t)(y′)2(t) + 3p2p

2
3y

4(t)y′(t) + 2p1p3p
2
4y

2(t)y′(t) + p1p
2
3p

2
4y

3(t),
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3.6. SIR model with nonlinear incidence rate (3.1.1) in the case α = 1, β = 3

3p2y
3(t)(y′)2(t)y(3)(t) + 3p2p3y

4(t)y′(t)y(3)(t) + p1p
2
4y

2(t)y′(t)y(3)(t)

+p1p3p
2
4y

3(t)y(3)(t)− 9p2y
3(t)y′(t)(y”)2(t)− 3p2p3y

4(t)(y”)2(t)− p1p24y2(t)(y”)2(t)

−12p2p3y
3(t)(y′)2(t)y”(t)− 2p1p

2
4y(t)(y′)2(t)y”(t)− 4p1p3p

2
4y

2(t)y′(t)y”(t)

+6p2y(t)(y′)5(t) + 12p2p3y
2(t)(y′)4(t) + 2p1p

2
4(y
′)4(t) + 3p1p3p

2
4y(t)(y′)3(t)].

It can be seen that the �rst three lists above are not corresponding to the complete
system including (3.6.3) and the initial condition. For instance, the third list requires
x1(t) = 0 for all t ≥ 0, contradicting to x1(0) = p5 > 0.

The fourth list is now corresponding to the general case, and the last polynomial
in the fourth list forms the output equation of (3.6.3) as follows

3y(t)y′(t)
(

2(y′)4(t) + y2(t)y′(t)y(3)(t)− 3y2(t)(y”)2(t)
)

+ 3p3y
2(t)

(
4(y′)4(t)− 4y(t)(y′)2(t)y”(t) + y2(t)y′(t)y(3)(t)− y2(t)(y”)2(t)

)
+
p1p

2
4

p2

(
2(y′)4(t)− 2y(t)(y′)2(t)y”(t) + y2(t)y′(t)y(3)(t)− y2(t)(y”)2(t)

)
+
p1p3p

2
4

p2
y(t)

(
3(y′)3(t)− 4y(t)y′(t)y”(t) + y2(t)y(3)(t)

)
= 0

(3.6.4)

Next, we check the linear independence of three polynomials

q1 = 3y2(t)
(

4(y′)4(t)− 4y(t)(y′)2(t)y”(t) + y2(t)y′(t)y(3)(t)− y2(t)(y”)2(t)
)
,

(3.6.5)

q2 = 2(y′)4(t)− 2y(t)(y′)2(t)y”(t) + y2(t)y′(t)y(3)(t)− y2(t)(y”)2(t), (3.6.6)

q3 = y(t)
(

3(y′)3(t)− 4y(t)y′(t)y”(t) + y2(t)y(3)(t)
)
. (3.6.7)

Using the package VectorCalculus in Maple to compute the Wronskian W of
q1, q2, q3 and the function BelongsTo in the package Di�erentialAlgebra of Maple
shows that W 6∈ P.( see Figure 3.24)
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3. Determining the identi�able combinations of parameters of SIR model with

nonlinear incidence rate from the reported case data

Figure 3.24: The Wronskian W of q1, q2, q3.

By Proposition 2.3.3 and (3.6.4), if y(t, p) = y(t, p), then


3p3 = 3p3,

p1p
2
4

p2
=
p1p

2
4

p2
,

p1p3p
2
4

p2
=
p1p3p

2
4

p2
.

(3.6.8)

(3.6.8) is equivalent to 
p1p

2
4

p2
=
p1p

2
4

p2
,

p3 = p3

(3.6.9)
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3.6. SIR model with nonlinear incidence rate (3.1.1) in the case α = 1, β = 3

By the initial condition of (3.6.3), y(0, p) = y(0, p) if

p4p6 = p4p6. (3.6.10)

By the similar arguments from Section 3.2, we obtain the two other equations of
the fourth list

p2
p34
x3(t, p) =

y(t)y”(t)− (y′)2(t)

y2(t) (y′(t) + p3y(t))

(
3y(t)y′(t) +

p1p
2
4

p2

) , (3.6.11)

and

p1p
3
4

p2
x1(t, p) =

y(t) (y′(t) + p3y(t))2
(

3y(t)y′(t) +
p1p

2
4

p2

)
y(t)y”(t)− (y′)2(t)

. (3.6.12)

Multiply (3.6.11) and (3.6.12), we obtain

p1x1(t, p)x3(t, p) =
y′(t) + p3y(t)

y(t)
. (3.6.13)

By (3.6.11),(3.6.13) and y(i)(t, p) = y(i)(t, p) for all i ∈ N, we have
p2
p34
x3(0, p) =

p2
p34
x3(0, p),

p1x1(0, p)x3(0, p) = p1x1(0, p)x3(0, p),
. (3.6.14)

It implies that 
p2
p34

1

1 + p2p36
=
p2
p34

1

1 + p2p
3
6

,

p1p5
1 + p2p36

=
p1p5

1 + p2p
3
6

. (3.6.15)

Solving the algebraic system (3.6.9), (3.6.10), (3.6.15), we have the relationships

between p and p as follows p3 = p3,
p2
p2

=

(
p4
p4

)3

,
p1
p1

=
p4
p4

=
p5
p5

=
p6
p6
. Together

with Proposition 3.1.1, we have the following

Theorem 3.6.1. The SIR model with nonlinear incidence rate (3.6.1) is not identi-

�able, and we have µI(t, p) = µI(t, p) if and only if ν = ν,
κ

κ
=
µ3

µ3
,
τ

τ
=
µ

µ
=
S0

S0

=

I0

I0
.

Moreover, we also have the following theorem

Theorem 3.6.2. The basic production number R0 of the SIR model with nonlinear

incidence rate (3.6.1) is uniquely determined from the output function y(t) = µI(t).

Proof. By Theorem 3.6.1, from the output function y(t) = µI(t) we have ν, τS0, κI30

are uniquely determined. It derives that R0 =
τS0

ν(1 + κI30 )
is uniquely determined.
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Conclusion

In this thesis, we consider the identi�ability of SIR model and SIR model with
nonlinear incidence rate. There are so many problems concerning these models and
one of the most important problems is the study of identi�ability and its applications.
The identi�ability analysis of these systems is the most prerequisite for parameter
estimation from the real data of an epidemic. However, parameter estimation from
the real data of an epidemic is one kind of converse problem and there is not a com-
plete answer. This work aims to continue the ideas about the turning point of Pierre
Magal and Glenn Webb in the paper [46], and �nd the identi�able combinations of
parameters of SIR model with nonlinear incidence rate.

In chapter one, we use the ideas about the turning point of the model from the
real data of an epidemic and the identi�ability of SIR model for providing a scheme
to estimate the parameters of SIR model. Using this scheme we apply for some
real epidemics in New York, Bombay, and France. The results that we obtain can
be divided into two parts. The �rst part includes the analysis of SIR models, the
identi�ability analysis of SIR model, and the scheme to compute the parameters of
SIR model. The second part is the applications of the �rst part for the epidemics in
New York, Bombay, and France. The �rst part and the application to Hong Kong
in�uenza in New York in 1968-1969 is published in [23]. Moreover, while we analyze
the SIR model with the turning point for building the above scheme we obtain the
result about the uniqueness of the solution of the turning point equation (1.3.10)(
Theorem 1.3.10). It indicates that when r is closed to 1

2 enough, the identi�able
combination of parameters is uniquely determined from the value tp, CR(tp), CR′(tp)
and CR(∞). It helps us ensure the uniqueness of the combinations of parameters
that we compute in the applications. What we obtain in this chapter is providing the
complete scheme to recover the parameters of SIR models from the weekly reported
case data by �nding the identi�able combinations of parameters and parameters
estimation.

In chapter two and chapter three, we continue the idea about the scheme in chap-
ter one by studying SIR model with nonlinear incidence rate. The problem becomes
more complicated and di�cult with the nonlinear incidence rate. Firstly, we provide
the method for �nding identi�able combinations of parameters for general nonlinear
models in chapter two and apply for the simple SIR model. The method in chapter
two is based on the results in di�erential algebra and the package implemented in
Maple. Some parts of the computations for �nding the identi�able combinations
of parameters of SIR model with nonlinear incidence rate in chapter three that we
conduct are based on the codes we write in Maple. The next part is �nding the
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method to calculate numerically the identi�able combinations of parameters from
the real data but it is a very di�cult part, and we do not have any answer until now
after a lot of experiments. Maybe, it is the next direction for this study. In chapter
three, the following problem holds for the cases {α = 1, β = 2}, {α = 1, β = 1},
{α = 2, β = 2}, {α = 2, β = 1}, {α = 1, β = 3}. We can even compute for the case
{α = 2, β = 3} but the general case is still not answered.

Problem. Consider the SIR model with nonlinear incidence rate (3.1.1) with

the condition µI(t, p) = µI(t, p). Can we have ν = ν,
(τ
τ

)β
=
(κ
κ

)α
,
τ

τ
=
(µ
µ

)α
,

µ

µ
=
S0

S0

=
I0

I0
?

The answer for the above problem for the general case α, β ∈ N such that β+1 ≥
α ≥ 1 is also another work of this study.
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