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Introduction

Favoured by climate change, the global mean sea level rose eleven to sixteen centimeters in
the twentieth-century, C. Hay et al. 2015 [1]. Predictions for the actual century are more
alarming, with an estimation of half a meter rise if immediate cuts to carbon emissions are
adopted, see L. Jackson et al. 2016 [2], A. Nauels et al. 2017 [3], D. Le Bars et al. 2017 [4]
or R. Kopp et al. 2017 [5]. For higher emissions scenarios, this century sea rise may exceed
two meters. This critical situation will expose a dramatic portion of the population to
unprecedented conditions. On the other hand, the maritime commerce is growing fast
and is forcing a tendency to increase the ships size. Consequently, a bast numbers of
international ports are facing difficulties to accomodate the largest vessels. Therefore,
actual sea-side infrastructures will need a close eye revision and a rising governmental
interest for defensive coastal construction is to be expected. A major question to answer
for port planners is rather to expand the infrastructures in deeper waters or to improve
existing ones. Such kinds of structures have a long life expectancy design and the cost
for those projects may exceed the order of billions. The structural design has to be, then,
precise and effective.

Coastal structures range from dikes, breakwater, jetties, docks, artificial beaches and
reefs, among others. Each of them has its own purpose, but they all have in common
a sheltering objective against the sea. However, near-shore as well as off-shore conditions
are still at a certain point unpredictable and occurrence of certain conditions may lead to
severe damages on the infrastructures. For example, the cyclone Xynthia in 2010, see P.
Quevauviller et al. 2017 [6], or the stormy winter season of 2013-2014, see M. Priestley et
al. 2017 [7], caused dramatic social and economic losses on the western coast of Europe.
Among all the environmental forces acting on coastal or ocean structures, those resulting
from breaking waves impact are most likely the cause of the highest local pressures.

Oscillating water column

The necessity of reinforcing and constructing new coastal defensive structures, together
with the global emissions objectives to increase the renewable energy sources, has moti-
vated the present study to evaluate the performance of an oscillating water column (OWC)
device facing extreme sea states. An oscillating water column is a wave energy converter
(WEC) which makes use of the potential energy of waves for controlling a piston type
mechanism within a chamber and cause a turbine rotation producing clean energy, see
Fig. 1. It can be integrated within a breakwater caisson, see G.E. Jarlan et al. 1961 [8],
S. Takahashi et al. 1985 and 1988 [9, 10], F. He et al. 2016 [11] or D. Vicinanza et al.
2019 [12], allowing some cost sharing between the harbor protection and energy generation
functions. This engineering structure has been already tested in Toftestallen (Norway),
Sakata harbour (Japan), Pico Island in Açores (Portugal) (F. Neumann et al. 2011 [13],
A. Falcão et al. 2020 [14]), Mutriku (Spain) (Y. Torre-Enciso et al 2009 [15]) or in Limpet,
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Islay (UK), among others.

Figure 1: Sketch of an oscillating water column with axial turbine, extracted from [16]

From Fig. 1 it is easy to see the exposition of the front curtain wall making it a
"fragile" part of such a massive structure. Experience from OWC prototypes deployments
has shown that often the wave loads are underestimated on this kind of devices. And,
this can lead to severe structural damages. For example: the disaster occurred on the
PICO terminal in the Açores (see Fig. 2a) or the severe damage to four of the 16 OWC
chambers, including the loss of the entire front wall of one chamber in Mutriku, Fig. 2b,
see E. Medina-Lopez et al. 2015 [17]. These arise the necessity of revisiting the existing
wave loads formulas for a proper assessment of the structure survivability. Moreover, there
is a lack of quantitative experience when it comes to considering in-chamber loads which
are most likely to occur during sloshing type situations.

(a) OWC PICO, Portugal, extracted
from F. Neumann et al. 2011 [13].

(b) OWC Mutriku, Spain, extracted
from K. Pawitan et al. 2020 [18].

Figure 2: Examples of oscillating water column curtain wall damage

Breaking waves loads: an historical review

The prediction of wave loads has been a matter of interest for long time now. One of
the first documentation of wave loading on caisson breakwaters dates from 1840 by T.
Stevenson 1840 [19], where spring dynamometers and visual observation was employed on
site at Dunbar, a UK harbour. At this time, it was already perceived the fact that when
a water wave is not breaking, it will deflect upwards the vertical wall producing relatively
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small pressure. It was G. Saintflou in 1928 [20] who proposed a first mathematical theory
to calculate such kind of wave loads, which, at the time, were referred as clapoti. This
kind of wave load rarely exceeds the intensity of the hydrostatic pressure corresponding
to the wave height, i.e., ρgH being ρ the water density, g the gravitational acceleration
and H the wave height. It wasn’t until 1938, when stepped wave gauges and piezo-electric
transducers were used by A. de Rouville et al. 1938 [21] in the port of Dieppe, France.
During these in-situ experimental records, they verified the theoretical work presented by
G. Saintflou. However, they also reported very large scale impact pressures attributed to
violent waves impingement and they highlighted the localised and pulsating nature of this
phenomenon.

The solid-fluid impact

In parallel, the study of a solid-fluid impact was also investigated from other perspectives,
e.g. ditching or sloshing, and it is worth mentioning one of the first relevant studies by
T. von Karmann in 1929 [22]. In his work he studied the water entry problem of a solid
cone, see Fig. 3, and presented a theoretical description of the pressures related.

Figure 3: Original sketch of the water entry problem proposed by T. von Karmann in
1929 [22]

Continuing with the investigation carried out in Dieppe, these motivated to do con-
trolled laboratory experiments and an initial attempt to calibrate an empirical model by
R. A. Bagnold in 1939 [23]. In this work, the presence of air during a breaking wave impact
was attributed as the major counterpoint for calculating the pressures related by using the
water-hammer shock pressure theory. Bagnold made use of a piston type model to propose
a first description of the air compression dynamics, Fig. 4a. During these experiments, it
was also reported the difficult repeatability of apparently similar wave impacts, leading to
wide number of different pressure records.

(a) Air compression model
proposed by R. A. Bagnold

(b) In-situ wave impact pressure records in
Dieppe, 1938

Figure 4: Images extracted from the report published by R. A. Bagnold in 1939 [23].
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This was also reported by T. Hayashi et al. in 1958 [24] while in their work they also
explored theoretically and experimentally the second pressure rebound of longer period
after the "shock pressure", see Fig. 4b. More laboratory experimental investigations were
carried out by D.F. Denny in 1951 [25] and J.R. Weggel et al. in 1970 [26] attempting to
relate a fluid momentum length scale with the wave steepness to calculate the pressures
exerted. The later, proposed a general rought relationship between the rise time (tr) of
the impulsive force and its magnitude (Fimp) reading

Fimp = a · tbr (1)

where a is an empirical coefficient and b en empirical exponent based on the experimental
impact force. In 1966, H. Mitsuyasu [27] further developed the theory proposed by R.A.
Bagnold to describe the dynamics of the air compression giving analytic solutions for the
different conditions such as: small or finite compression of air.

General formulation for wave pressure on a caisson breakwater

In 1977, Yoshimi Goda published the first edition of Random seas and design of maritime
structures in Japanese and it was translated in 1985 [28] with several re-editions. In this
book, a revision of the relevant formulation for wave pressures exerted on upright sections
of vertical breakwater was presented and it is still used as a guideline nowadays. The
book also presented a general clarification of the types of failures modes for a vertical
breakwater due to the waves action, Fig. 5.

SLIDING OVERTURNING FAILURE OF FOUNDATION

Figure 5: Modes of major failure of vertical breakwater

He pointed out the fact that impulsive breaking wave pressure of high intensity do not
threaten the stability of the breakwater. However, in more recent editions, references to
the work of Takahashi et al. 1993 [29] reported cases of steady sliding caissons, see Fig. 6,
or breakage of a part of the front wall of caisson when unfavourable breaking conditions.
These conditions are attributed to long berms or sea bottoms with steep slopes, which
consequently may lead to plunging breakers. Takahashi extended the formulation proposed
by Goda to take into account breaking waves effects.

Deep water breaking waves

The work of M.S. Longuet-Higgins et al. in 1976 [30] set a remarkable initial attempt
to describe analytically the breaking process based on the potential flow. The increasing
interest in off-shore structures inspired some authors to study the breaking wave loads
phenomenon in deep water conditions. For example, S.S. Kjeldsen et al. in 1979 [31]
studied experimentally deep water breaking waves loads on a suspended vertical plane.
W.J. Easson et al. in 1984 [32] first employed laser-doppler anemometry to correlate the
breaking wave fluid velocities with the impact force on an horizontal cylinder. Similarly,

4



Contents

Figure 6: Slided caissons in Sakata Port. Image extracted from Takahashi et al. 1993 [29]
giving courtesy to the 1st District Port Construction Bureau, MOT.

M.K. Ochi et al. 1984 [33] studied the deep water breaking wave impact on a vertical
cylinder, proposing an empirical coefficient which related the pressure fields with the wave
crest speed. These motivated the experiments of E.S. Chan et al. in 1988 [34] following
similar techniques now using a vertical wall. The pressure records were much higher than
the two previous studies and in the same order of magnitude with the experiments on
shallow water conditions. In 1984, P.A. Blackmore et al. [35] published a report of field
measurements of sea wave impact, where pressure values up to 10 times the hydrostatic
head where recorded. Whereas, R.A. Bagnold [23] recorded much higher values up to 30
times the pressure head. This questioned the possibility to scale the laboratory results
with prototypes.

Wave breaking air entrapment and classification of wave loads

In parallel with the physical experiments; theoretical and numerical studies to understand
and model the wave-impact process started to flourish. Particularly, the computations
by M.J. Cooker et al. in 1990 [36] using a potential boundary-integral code revealed
that the most intense impacts in terms of pressure, similarly as it was measured by E.S.
Chan et al. in 1988 [34], were generated by a breaking type enclosing small amount of
air. This particular situation may occur when the wave front is almost flat and parallel to
the wall. The model was further developed using the impulse theory by M.J. Cooker et
al. in 1990 [37] and presented a semi-analytical solution for the impulse distribution for
different relevant configurations. M. Hattori et al. in 1994 [38] used high-speed video to
study the wave impact, putting special interest on the aforementioned wave impact with
low air entrapment, see Fig. 7.

He attributed the reduction of pressure maximum value and the increase on the peak
pressure rise time when large amounts of air are entrapped and highlighted the severity
of the impact with low-aeration or air bubbles entrapment. His work also pointed out the
lower pressure oscillations frequencies for large amount of air relating it to the resonant
frequencies of the pulsating air pockets. According to H. Oumeraci et al. 1993 [39], the
wave breaking shape was found to depend on three relevant parameters such as: the ratio
of water depth breaking to the still water depth at the wall, the ratio of the horizontal
velocity of the breaking wave to the vertical upward velocity of the water surface at the
wall and the distance between the breaking point and the vertical wall boundary. Field
measurements, reported by A.R. Crawford in 1999 [40] at the Alderney Breakwater, in the
Channel Islands, used new measurement techniques and the experimental work of M.J.A.
Walkden in 1999 [41] studied the effect of the water salinity as well as the presence of
controlled aeration mixture.
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(a) Fully developed plunging breaker
with a thick air pocket

(b) Plunging breaker with a thin air
pocket

Figure 7: Images extracted from the experiments of M. Hattori et al. in 1994 [38]

Probabilistic design tools for vertical breakwaters

To the best of the author’s knowledge, in 1996 the Probabilistic design tools for vertical
breakwaters (PROVERS) project, started and ended up in 1999 by publishing a final
report [42]. In this work, experimental analysis lead to a vastly known classification of the
wave loads based on the force values rather than on the visual study, see Fig. 8.

Figure 8: Distinction between "impact" and "pulsating" loads, extracted from [42]

This classification, distinguishes between the "pulsating" loads related to forces of lower
magnitude than approximately 2 times the hydrostatic pressure head, and impact loads
for which the duration/time history is most relevant for the dynamic response (vibrations)
of the structure and which need the be handled with special care. Moreover, a description
of the impact loads physics based on multiple experiments was presented, see Fig. 9. In
this piece of work, it was also described a scaling procedure based on the separation of
different components of the impact loads history, see upper right corner in Fig. 9. It was
also remarked the importance of the amount of aeration and air entrapment to determine
the compressibility of the impact fluid mixture.

After investigation by Bullock et al. of laboratory experiments [43,44] and large scale
experiments [45] a new classification was made for wave loads such as; slightly-breaking,
low-aeration or flip-through, high-aeration or air-pocket and broken, see Fig. 10. This
slightly differs from the one presented in PROVERS merging now together the so called
standing wave and slightly breaking. Bullock reported very localised maximum pressure
values for the impact close to the still water level and recorded pressure magnitudes up to
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Figure 9: Physical processes involved in the wave impact load history and associated
scaling problems, extracted from PROVERS [42]

150 times the wave height pressure head during a low-aerated impact.

Figure 10: Classification of maximal pressures recorded during the experiments in the
GWK by G.N. Bullock et al. in 2007 [45]. The pressure values are adimensionalised
by the wave height hydrostatic component Pymax/ρgH, where Pymax is the maximum
pressure at each elevation y. (Note the different horizontal scales)

Breaking wave particle image velocimetry and recent work

The use of Particle Image Velocimetry (PIV) on the laboratory experimental work of O.
Kimmoun et al. in 2009 [46] presented results of the phenomenon kinematics. In his
work, it was reported quantitatively the surge of acceleration during a low aerated im-
pact. According to C. Lugni et al. [47, 48], who used a sloshing depressurised tank, the
flow evolution stages during an aerated impact are: the closure of the cavity onto the wall,

7



Contents

an isotropic compression/expansion of the cavity, an anisotropic compression/expansion
and the rise of the air cavity up the wall. The ullage pressure demonstrated to be some-
how proportional to the amount of air entrapped and the oscillations dampening largely
dependant by the air leakage out of the cavity. More experimental work was carried out
and reviewed by G. Cuomo et al. in 2010 [49] where existing formulae was revisited for
calculating the impulsive force on the vertical wall. This new formula was based on the
wave length and a parameter relating the water depth at the structure and the depth at
breaking. Back in 2011, B. Hofland et al. [50] measured with relatively high spatial and
temporal resolution large scale experiments of pressure fields on a vertical wall under wave
impacts. A. Jensen in 2018 [51] made use of a solitary wave to study the flip-through im-
pact utilising PIV in laboratory small scale experiments. Recent studies by T. Mai et al.
in 2019 [52] using controlled aeration of the liquid using air injection reported a reduction
of the pressure peak for impact cases, however, it was also reported the conservation of
the impulse.

Computational coastal hydrodynamics

The last section presented a great historical effort for a proper evaluation of the wave loads,
however, most of this experience was obtained on-site or experimentally. Recently, the
workstations computational performance has grown exponentially allowing a new numeri-
cal perspective of the problematic. The water waves propagation and structure interaction
initial progress was mainly developed using numerical algorithms based on the potential
codes. For example, the Boundary Element Method (BEM) became specially popular
due to its low computational requirements and is still of great use nowadays. Potential
flows based models are extremely useful when dealing with wave propagation, involving
refraction, diffraction and shoaling, and some popular examples are: FUNWAVE [53],
COULWAVE [54], SWASH [55] among others. However, they present limitations derived
from the assumption of the uniform (or piecewise linear) velocity profile along the water
column, and, consequently, the modelling of vorticity, viscosity or two-phase effects is not
recommended. This makes them a weak candidate for fluid-structure interaction prob-
lems, specially for plunging waves. Nevertheless, the wave overturning process is plausible
and some authors explored new procedures to include the impact phenomenon, e.g. S.
Zhang et al. 1996 [56] or B. Song et al. 2018 [57], among others. The fluid-solid impact
process was also investigated using potential flows from other perspective, e.g. using the
wedge entry configuration (N. de Divitiis et al. 2002 [58], G.D. Xu et al. 2010 [59]) or, as
mentioned before, by simplifying the configuration similarly as M. Cooker [37] did.

Nonetheless, models based in the Navier-Stokes equations have demonstrated better
capabilities for fluid structure interactions and, specifically, for breaking waves modelling.
That is to say, by using much higher computational costs. This models make use of two
main approaches depending on how the flow is treated, namely: Eulerian if the fluids are
considered continuous in space. Or, Lagrangian, if the fluids are considered as an ensemble
of different particles.

Eulerian Navier-Stokes models

The Reynolds Average Navier-Stokes (RANS) models consider the fluid as a continuous
medium using highly nonlinear equations. This method makes use of a fixed mesh to
solve and describe the fluid properties. In conjunction with the volume of fluid (VoF)
method (see E. Berberovic et al. 2009 [60]) it can be easily extended for two-phase flows
and many authors use it for marine hydrodynamics. Some of the most renown codes are:
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Reef3D, Fluent, Star-CCM+, Neptune, ComFLOW or OpenFOAM (see H.G. Weller et
al. 1998 [61]).

Wave generation in OpenFOAM

In the present work the open source CFD software OpenFOAM is used to model the numeri-
cal wave tank (NWT). This software have had a considerable effort by different authors to
investigate most of the relevant process in coastal hydrodynamics. Firstly, the wave gen-
eration process has been developed by multiple perspectives and a recent general overview
of the existing ones has been reported by C. Windt et al. in 2019 [62]. For example, N.G.
Jacobsen et al. 2012 [63] in his work studied the relaxation zone technique where the
waves are generated over a partition of the domain and can be absorbed using numerical
"sponge layers". That said, P. Higuera et al. 2013 [64] introduced the static boundary
condition for wave generation and absorption and also developed a "moving" boundary
using a morphing mesh mimicking the experimental wave makers.

Wave propagation in OpenFOAM

On the other hand, some authors have focused on the propagation stage of water waves, for
example, P.A. Wroniszewski et al. in 2014 [65] benchmarked the progression of a solitary
wave using different navier-stokes codes. The work of B.T. Paulsen et al. 2014 [66] reported
difficulties to maintain the wave heights for long propagation due to the numerical diffusion
on the free surface. In his work, it was also reported the presence of spurious velocities
near the interface which exacerbated the diffusion. Other authors out from the waves
context, also reported the presence of these spurious velocities, e.g. S. Hysing 2006 [67]
and this received considerably attention. More recent studies demonstrated developments
on this direction, e.g. V. Vukčević et al. 2016 [68] pointing a momentum imbalance as
the source. The wave propagation was also investigated, putting special interest on the
different relevant numeric schemes, in the work of B.E. Larsen et al. 2018 [69]. Most of the
aforementioned authors were also interested on the breaking process and their studies are
extended on investigating the phenomenon, e.g. P. Higuera et al. 2013 [64], N. Jacobsen et
al. 2014 [70] or G. Lupieri et al. 2015 [71]. Moreover, the turbulence mechanism have
also been investigated by the community and recent studies apparently solved older issues
related to the overproduction of turbulence near the interface B. Devolder 2017 [72] and
B.E. Larsen et al. 2018 [73].

Breaking waves fluid-structure interaction using Eulerian Navier-Stokes
codes

The breaking waves fluid-structure interaction has also been investigated before using
Eulerian approaches. For example, Z.H. Ma et al. 2014 [74] used a compressible two-
phase model to study a wide variety of impulsive configurations such as, a gravity-induced
liquid piston, a free drop of a two-dimensional water column, water-air mixture shock
tubes and also a plunging wave impact. According to his work, the air dynamics where
out of the fluid incompressible assumption and remarked the necessity of a compressible
solver. However, in this work, the simulated plunging wave induced pressures were not
validated by experimental data. On the other hand, R. Wemmenhove et al. in 2015 [75]
used the ComFLOW package using a two-phase compressible solver to study the sloshing
internal loads with a newly gravity-consistent density averaging method. More recent
studies further investigated in this direction and were of great interest for the present
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work. For example, the work of I. Gatin et al. in 2020 [76] investigated the compressibility
assumption for green sea loads using the newly developed Ghost Fluid Method to account
for the interface jump. This was also employed for plunging waves interaction with a
vertical wall by S. Liu et al. in 2019 [77] comparing the results with the experimental data
of G.N. Bullock et al. 2007 [45].

Lagrangian Navier-Stokes models

This section introduces the Navier-Stokes models so-called Smooth Particle Hydrodynam-
ics (SPH). These models do not depend on a mesh, eliminating certain numerical errors.
The SPH methods were first developed for astronomical applications, such as galaxy col-
lisions, and they present an inherent compressibility behaviour. On top of that, they are
capable of handling high deformations of the interface which make them a great candidate
for plunging waves modelling. However, they are high computational time consuming and
not as developed as the previously introduced types for marine hydrodynamics.

The aforementioned advantages has pushed different authors to use them specially for
breaking waves inducing impulsive loads. For example, P.M. Guilcher et al. 2010 [78]
extended their previous work using a single fluid with SPH-flow enabling the treatment
of interactions between several fluids. In his work several configurations where tested,
such as: the gravity-induced liquid piston, which was compared with theoretical results
J.F. Braeunig et al. 2009 [79]. Other authors compared incompressible and compressible
models using Eulerian and Lagrangian methods during fluid impacts S. Marrone et al.
2015 [80]. However, their approach only accounted for one phase making it less relevant
from a breaking waves perspective. Thus, the model was then extended to account for
air dynamics and specifically compared with the single phase model S. Marrone et al. in
2016 [81]. More recently, X. Lu et al. 2021 [82] further studied the wave impact using
single and two-phase phase model and coincided on the necessity to account for the light
phase for aerated impacts.

Thesis outline

The rest of this thesis is organised as follows.
Ch. 1 present the governing equations for a general compressible two-phase flow. Two

interface capturing methodologies, namely geometric and algebraic, are briefly described.
The equations of state employed in the present work are introduced. A general presentation
of two wave generation methods, namely the static boundary method and the relaxation
zone method, closes this chapter.

Ch. 2 presents an analytic perspective of a fluid impact on a rigid body. First a pure
fluid impact is described and utilised to validate the stability and convergence of both
incompressible and compressible two-phase solvers against analytic solutions. Secondly, a
confined air cavity undergoing a compression and expansion process is evaluated using a
1D liquid piston simulation and the results are compared with a semi-analytic solution.
The last part of this chapter investigates an idealised aerated fluid impact and the effects
of air on the exerted loads.

Ch. 3 presents computations of a solitary breaking wave impact on a vertical. First, a
brief description of the Boussinesq solitary wave theory is presented and a 2D configura-
tion of a solitary wave propagation is employed to perform a sensitivity analysis. Next, a
Boussinesq solitary wave propagating over a sloped plane is used to reproduce two types of
breaking waves namely: air-pocket and flip-through. Using the a 2D air-pocket breaking
wave, the incompressible and compressible solvers are compared. Moreover, the simulated
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2D compressible results are compared with the experimental data for both breaking con-
ditions. The last section of this Chapter, compares the numerical and experimental results
of an air-pocket impact using a 3D configuration.

Ch. 4 presents a validation of a large scale numerical wave flume generating waves
and their interaction with an OWC. First, a brief description of the irregular wave theory
is introduced and a rectangular 2D domain is employed to evaluate the relaxation zone
method for generating random waves following a JONSWAP calibration. Next, the chapter
focuses on comparative study of numerical and experimental data of waves interacting with
an OWC. First, an OWC facing regular waves is validated by putting special interest on
the chamber behaviour and a PTO modelling by using a porous medium. Finally, the
interaction of irregular waves with an OWC is validated and the extreme wave loads on
the structure front wall are analysed.

A closure chapter presents the summary and conclusion regarding this study and sug-
gestions for future research are briefly discussed.
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Chapter 1

Governing equations

In this chapter, the general Navier-Stokes equations are briefly introduced. Next, the nu-
merical methodology employed in the present work is described focusing on some relevant
aspects selected by the author such as; the interface treatment in multiphase problems. A
compressible multiphase pressure-based solver within the OpenFOAM toolbox. And, finally,
an overview of two different boundary conditions for wave generation.
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1.1. Navier-Stokes equations

1.1 Navier-Stokes equations
Regarding the fluid as a continuous medium where only macroscopic length scales ( say
1µm or larger) are studied. Molecular structure of matter and molecular motion may
be then ignored. The fluid behaviour is described in terms of macroscopic properties:
velocity, pressure, density and temperature, as well as their respective space and time
derivatives. These properties may be though of as averages over a suitable large number
of molecules. A fluid particle or point in a fluid is then the smallest possible element of
fluid whose macroscopic properties are not influenced by individual molecules. Here, the
fluid particle will be represented in a two-dimension perspective and shaped as a square
(Fig. 1.1) for geometric simplicity reasons.

P (x,z)

x

z

𝛿z

𝛿x

Figure 1.1: Fluid element

The element under consideration is so small that the fluid properties at the faces can
be expressed accurately enough using the first two terms of a Taylor series expansion. For
example, for a generic field ϕ at a face distancing δx/2 from the fluid element centre can
be expressed as,

ϕ(x+ δx

2 ) = ϕ(x) + δx

2
∂ϕ(x)
∂x

+O(x) .

1.1.1 Mass conservation

The mass of fluid is conserved in the fluid element. Consequently, the rate of increase of
mass equals the net rate of flow of mass into the fluid element. The rate of increase of
mass in the fluid element is:

∂ρ

∂t
δxδz ,

where ρ introduces the fluid density and assuming the fluid element volume (δxδz) remains
constant over time. The net rate of flow of mass into the fluid element is the summation
of volume flux through the element surface. This volume flux, Fig. 1.2, corresponds to the
product of density, surface area and the velocity component normal to the surface. Then
the flux is positive when entering the fluid element or negative when leaving.

∂ρ

∂t
δxδz = −∂(ρu)

∂x
δxδz − ∂(ρw)

∂z
δxδz (1.1)

Balancing the net rate of flow of mass with the rate of increase of mass and dividing
all by the element volume yields

∂ρ

∂t
+∇ · (ρu) = 0 . (1.2)
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1.1. Navier-Stokes equations

x

z

Figure 1.2: Mass conservation of a 2D fluid element

Equation (1.2) is the unsteady, three-dimensional mass conservation or continuity
equation at a point in a compressible fluid. Here bold u represents a vector. For an
incompressible fluid the density ρ is constant and eq. (1.2) becomes:

∇ · u = 0 . (1.3)

1.1.2 Momentum equation

The momentum conservation law make statements regarding changes of properties of a
fluid particle. This is referred to as the Lagrangian approach. These properties are
then functions of the position (x, z) of the particle and time (t). The total derivative
Dϕ/Dt of a generic field ϕ with respect to time of a fluid particle following the flow
(dx/dt = u, dz/dt = w) is

Dϕ

Dt
= ∂ϕ

∂t
+ u · ∇ϕ .

This defines the rate of change of property ϕ per unit mass. However, the equations
developed in this work evaluate the rates of change per unit volume. And, more precisely,
the laws are concerned with changes in flow properties for a fluid element that is stationary
in space, namely the Eulerian approach. Hence, the total or substantive derivative takes
the form,

ρ
Dϕ

Dt
= ∂(ρϕ)

∂t
+∇ · (ρϕu) . (1.4)

The rate of increase of momentum of the fluid particle, ρDu/Dt will then be obtained
by substituting the field ϕ with the particle velocity vector u. By taking advantage of
Newton’s second law, the fluid particle rate of increase of momentum must be balanced
by the sum of forces on the fluid particle. Expressing this relation using the Lagrangian
form,

ρ
Du
Dt

= ∇ · σ + S . (1.5)

The first term on the right-hand side of the equation refers to the Cauchy stress tensor
∇·σσσ. Next a source term takes into account the body and the surface forces S = Sb+Ss.
Here, the body forces are reduced to the gravity ρg and the surface force introduces the
surface tension. The later has a little if any effect on the present work and, thus, will be
neglected if not specified. The state of stress of an isotropic Newtonian fluid element is
defined as,

σ = −pI + τ = −pI + λ(∇ · u)I + 2µS . (1.6)
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1.2. Numerical method

Here p is the thermodynamic pressure, I the identity tensor and τ the viscous stress
tensor. The viscous stresses of a compressible Newtonian fluid involve two constants of
proportionality: the first (dynamic) viscosity, µ, to relate stresses to linear deformations,
and the bulk viscosity, λ, to relate stresses to volumetric deformation. The strain-rate
tensor can be expressed as S = 1/2[∇u + (∇u)T ]. The viscous stress τ is typically
decomposed into the isotropic and deviatoric parts:

τ =
(
λ+ 2

3µ
)

(∇ · u)I + µ

(
∇u+ (∇u)T − 2

3(∇ · u)I
)
, (1.7)

introducing the second viscosity ζ ≡ λ + 2µ/3 which is usually neglected by explicitly
assuming ζ = 0. Not much is known about the second viscosity ζ which is supposed to have
a small effect in practice. Recent studies signalled that may be relevant in specific processes
such as shock waves or sound waves attenuation, e.g. [83]. Finally, introducing these terms
into the momentum equation (1.5) leads to the so-called Navier-Stokes equation in the
convective form,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ ·

[
µ

(
∇u+ (∇u)T − 2

3(∇ · u)I
)]

+ S . (1.8)

Moreover, by assuming the fluid as incompressible, this last equation takes the general
form,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u+ S , (1.9)

appropriate for a wide range of situations.

1.2 Numerical method
This section describes the numeric methodology employed in the present work to model
multiphase, i.e. air and water, problems. First, the finite volume method and important
related notation is briefly introduced. One of the major difficulties of this method relies
on the fluids interface and here an attempt to clarify two major approaches is introduced
in Sec. 1.2.2. Finally, the core equations of a pressure-based two-phase compressible solver
are described with a final overview of the solving procedure.

1.2.1 Finite volume method

The basis of the finite volume method is the integral conservation law. The essential idea is
to divide the numerical domain D into many control volumes and approximate the integral
conservation law on each of the control volumes. Similarly, the time is also divided into
many time steps ∆t. By denoting a control volume Ω, its boundary by ∂Ω and its volume
by V . The momentum conservation integral equation takes the form,

∫ t+∆t

t

[∫
Ω

∂(ρu)
∂t

dV +
∫

Ω
∇ · (ρu⊗ u)dV

]
dt

=
∫ t+∆t

t

[
−
∫

Ω
∇pdV +

∫
Ω
∇ · (µ∇u)dV +

∫
Ω
∇ ·

(
µ(∇u)T − 2

3(∇ · u)I
)
dV +

∫
Ω
SdV

]
dt ,

(1.10)

where ⊗ is the outer product. By making use of the Gauss theorem for the divergence
terms,
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1.2. Numerical method

∫ t+∆t

t

[∫
Ω

∂(ρu)
∂t

dV +
∫
∂Ω

(
∇ · (ρu⊗ u)

)
· dS

]
dt

=
∫ t+∆t

t

[
−
∫

Ω
∇pdV +

∫
∂Ω

(µ∇u) · dS +
∫
∂Ω
∇ ·

(
µ(∇u)T − 2

3(∇ · u)I
)
· dS +

∫
Ω
SdV

]
dt .

(1.11)
The objective is to follow a discretisation practice on the above equation, as well as the

integral form of the continuity equation, to obtain a system of algebraic equations. The
solution of the system produces a set of values which correspond to the solution of the
original equation at some pre-determined locations in space and time. The discretisation
can be divided into two separate procedures: the discretisation of the solution domain
using the aforementioned control volumes, and the equation discretisation.

The notation that will follow denotes the physical domain D which is divided into a
large number of control volumes, Ωi, for i = 1, .., NΩ. For instance, if D ∈ R3 it seems
appropriate to call Ωi as a control volume, and, if D ∈ R2 to call it control cell. If two
cells i and j are adjacent, their shared boundary, ∂Ωi ∩ ∂Ωj is called an internal face. If
cell i touches the domain boundary, the shared surface ∂Ωi ∩ ∂D, will consist of one or
more boundary faces. All faces in the domain D are labelled with integers, j = 1, .., Nf ,
and the surface of face j is denoted Fj . Then the boundary of cell i, may be represented
by a list, Bi, of all the labels of faces belonging to its boundary, ∂Ωi.

Figure 1.3: Sketch of control volume Ωi

1.2.1.1 Spatial equation discretisation

Regarding eq. (1.9) it is clear that a series of volume and surface integrals need to be
evaluated. The accuracy of the discretisation method depends on the assumed variation
of the generic function ϕ(x, t) as it was introduced in eq. (1.1). The most relevant is the
representation of the generic field in terms of cell averaged values∫

Ωi
ϕ(x, t)dV = ϕi(t)Vi . (1.12)

Considering the terms under the divergence operator. It is important to notice that
the control volume is bounded by a series of flat faces. Then the surface integrals can be
expressed, using the vector generic field ϕ(x, t), as
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1.2. Numerical method

∫
∂Ωi

(
∇ ·ϕ(x, t)

)
· dS =

∑
j∈∂Ωi

ϕj(t) · Sj . (1.13)

where Sj is the face j area vector pointing outwards from the control volume. In the
above equation, the face field ϕj(t) is required and should be calculated from the values in
the cell centres. This interpolation is a key point when looking for accurate solutions and
has been for long a matter of research. For further information on available interpolation
schemes and spatial discretisation procedure, the reader is referred to [84].

1.2.1.2 Temporal equation discretisation

Assuming that the control volumes do not change in time. The temporal integrals and
the time derivative, using a forward Euler scheme, can be calculated as,∫ t+∆t

t
ϕ(t)dt = 1

2(ϕn+1 + ϕn)∆t (1.14)

and

∂ϕ

∂t
= ϕn+1 − ϕn

∆t , (1.15)

where

ϕn+1 = ϕ(t+ ∆t) (1.16)
ϕn = ϕ(t) (1.17)

More complex discretisation schemes are available and the reader is again referred
to [84] for further information.

1.2.2 The two phase problem

Considering the numerical domain, D, composed of two immiscible phases A and B, e.g.
air and water. There is necessary condition of a surface, S, assumed negligible thick acting
as an interface between both regions. Consequently, the union of these two phases will
be the entire domain, A ∪ B = D, and their intersection the surface, A ∩ B = S. Each
phase has its properties, on the one hand, the phase A has a density ρA and the phase
B a density ρB. Then the density field ρ(x, t) has a discontinuity at the surface S. One
could use an interpolation procedure to obtain the density at the surface, for example,
ρ = 1/2(ρA + ρB), however, under the negligible thickness assumption, this has a zero
volume and the density value on S is then immaterial.

Let us then define an indicator field I(x, t),

I(x, t) ≡ ρ(x, t)− ρB
ρA − ρB

, (1.18)

which is independent of the properties of the phases and can be used to describe the
density field as,

ρ(x, t) = ρAI(x, t) + ρB(1− I(x, t)) . (1.19)
This artificial field I captures the nature of the interface and results in a discontinuity

function,
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1.2. Numerical method

Figure 1.4: Volume of fluid sketch

I(x, t) =
{

1 for x ∈ A(t)
0 for x ∈ B(t)

. (1.20)

The integration of this quantity over a control volume Ωi, similarly as eq. (1.12), yields
the volume fraction α,

αi ≡
1
Vi

∫
Ωi

I(x, t)dV , (1.21)

Now making use of the conservation of mass, eq. (1.2), and substituting the yet defined
density field in terms of the indicator field eq. (1.19),

∂

∂t

[
ρAI(x, t) + ρB(1− I(x, t))

]
= −∇ ·

[(
ρAI(x, t) + ρB(1− I(x, t))

)
· u(x, t)

]
. (1.22)

Integrating the above equation over Ωi and assuming a constant value of ρA and ρB in
each respective phase within the control volume results in

∫
Ωi

∂

∂t

[
(ρA − ρB)I(x, t) + ρB

]
dV = −

∫
Ωi
∇ ·

[
(ρA − ρB)I(x, t)u(x, t)

]
+ ρB∇ · u(x, t)dV .

(1.23)
Finally, adopting the fluids as incompressible and the control volume to be constant

in time, without mesh deformation, results

∂

∂t

∫
Ωi

I(x, t)dV = −
∫

Ωi
∇ ·

[
I(x, t)u(x, t)

]
dV . (1.24)

The left side term can now be substituted using the volume fraction definition eq. (1.21)
and making use of the Gauss theorem for the divergence term. Yields to the fundamental
equation from which one can derive any consistent interface advection method

∂αi
∂t

= − 1
Vi

∫
∂Ωi

I(x, t)u(x, t) · dS . (1.25)

We stress that this equation is exact with no numerical approximations introduced
yet. Different solution methodologies focus now specifically on the right-hand side term
and here two of them, namely algebraic and geometric, will be briefly introduced.
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1.2. Numerical method

1.2.2.1 The algebraic method

The algebraic method (see [85, 86]) does not attempt to keep the singular nature of the
indicator field within the control volume for phase transport. Instead, it relies on the
control volume averaged value of it using the liquid volume fraction field. Going back to
the transport term (right hand side) in eq. (1.24). Making use of the Leibniz integral rule
and the definitions from eq. (1.12) and (1.21) the divergence term can be expressed as∫

Ωi
∇ ·

[
I(x, t)u(x, t)

]
dV = ∇ ·

[
ui
∫

Ωi
I(x, t)dV

]
= ∇ · (αiui) . (1.26)

However, there is a necessity to modify this term due to serious numerical diffusion
issues which are opposed to the discontinuous nature of indicator field I(x, t). Now the
liquid volume fraction transport equation can be rewritten in the integral form as∫

Ωi

∂αi
∂t

dV +
∫
∂Ωi

αiui · dS = 0 , (1.27)

or its discrete counterpart

αi(t+ ∆t)− αi(t)
∆t = − 1

Vi

∑
j∈∂Ωi

(Fu + λMFc)(t) (1.28)

where the unsteady term is discretised using the forward Euler scheme for simplicity
and the advection term appears as a summation over all the cells faces. Here the term
λM takes the role of a delimiter implemented in the MULES solver (Multidimensional
Universal Limiter with Explicit Solution). It will take a value of one in the transition
region (interface) and zero elsewhere. The terms Fu and Fc represent liquid fraction
volume fluxes and are expressed by

Fu = φjαj (1.29)

Fc = φjαj + φrjαj(1− αj)− Fu (1.30)

where φj (volume flux) is assigned by

φj = uj · Sj , (1.31)

and the subscript j, as noted before, means that the quantity is being evaluated at the
faces. Away from the interface, λM = 0, the advective term is equal to Fu and the face
interpolation of the liquid volume fraction, αj , will use low order schemes. However,
surrounding the fluids interface, λM = 1, the term takes the following form

(Fu + λMFc) = φjαj + φrjαj(1− αj) . (1.32)

The right side term is commonly known as the interfacial compression flux. Here the
volume flux, φrf , is given by

φrf = min

(
Cα
|φj |
|Sj |

,max

[
|φj |
|Sj |

])
(nj · Sj) (1.33)

where the max operation is performed over the entire domain, while the min operation
only locally at each face j ∈ ∂Ωi. The constant Cα is a user-specified value to restrict
interface smearing. And nj is the face-centered interface normal vector given by
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1.2. Numerical method

nj = (∇α)j
|(∇α)j |

=
[(∇α)P + (∇α)N

2

]/∣∣∣∣(∇α)P + (∇α)N
2

∣∣∣∣ (1.34)

which points always towards the highest concentration zone of liquid fraction.

1.2.2.2 The geometric method

The geometric method (see [87]) is highly dependent on the local distribution of fluid A
and B inside the control volume i. Therefore, the method aims to come up with a subgrid
model for this "intracellular" distribution from the given volume fraction data. With this
information, the volume fluxes on the control volume faces are related to the face wet area.
The idea can be easily interpreted if eq. (1.25) is integrated from time t to time t + ∆t
obtaining the equation for the updated volume fraction of cell i

αi(t+ ∆t) = αi(t)−
1
Vi

∑
j∈∂Ωi

∫ t+∆t

t

∫
Fj

I(x, τ)u(x, τ) · dSdτ . (1.35)

The surface of face j is denoted Fj . In most of the two-phase Navier-Stokes solvers the
interface advection is resolved before the calculation of the main transport equations and
the available fields, such as the velocity, are only known up to time t. The evolution of
the velocity field is then approximated as constant (in time) during the whole time step,
u(x, τ) ≈ u(x, t). And the velocity on the face Fj can be approximated in terms of the
volumetric face flux as follows,

u(x, t) · dS ≈ φj(t)
|Sj |

dS for x ∈ Fj , (1.36)

Moreover, the time integral on the right side of eq. (1.35) is the total volume of A
transported across face j during the time interval, defined as ∆Vj(t,∆t).

∆Vj(t,∆t) ≈
φj(t)
|Sj |

∫ t+∆t

t

∫
Fj

I(x, τ)dSdτ , (1.37)

and the surface integral is then simply the instantaneous area of face j submerged in fluid
A, from now on denoted as Aj(τ)

Aj(τ) =
∫
Fj

I(x, τ)dS . (1.38)

Substituting this into the advection eq. (1.35) leads to

αi(t+ ∆t) = αi(t)−
1
Vi

∑
j∈∂Ωi

φj(t)
|Sj |

∫ t+∆t

t
Aj(τ)dτ . (1.39)

It is important to highlight that the above equation would be exact if the velocity
field is constant both in space and time. For instance, if the cells become sufficiently
small compared to the velocity gradients, and the time steps sufficiently small compared
to the temporal variations. One can extract from eq. (1.39) that the challenge here is to
estimate the time evolution within a time step of the submerged (in fluid A) area of a
face, and then integrate this area in time. For doing this, the so-called isoAdvector [87–89]
implemented in OpenFOAM makes use of the internal control volume interface, namely
isoface, in the cell upwind of the studied face j at time t, because this is the cell from
which the face receives fluid during the time step. The motion of this isoface within the
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time step [t, t+∆t] is approximated by using the velocity fields on the surrounding control
volumes. One of the main difficulties in this process relies on interface reconstruction
schemes for the definition of the orientation and centre position of the interface within the
control volume. The reconstruction techniques remain out of the scope of this work and
the reader is referred to the cited articles for further information.

1.2.3 Pressure-based segregated finite volume method

The following sections overview a pressure-based solver for transient two-phase flows using
compressible fluids undergoing isentropic processes with barotropic equations of state.
The solver makes use of three differential equations such as two independent mass phase
balance equations and one momentum equation. And, three algebraic equations such as
an algebraic constraint relating the volume fractions and two equations of state related
to each phase. By using this system, the objective is to solve the six unknown variables:
{αA, αB,u, p, ρA, ρB}. Under the isentropic process assumption the energy equation is
then neglected in the present work if not specified. A cell-centred, co-located finite volume
method will be used, which is implemented in OpenFOAM. Here only an overall solution
procedure will be explained and further details of the numerics can be found in [84,90–94].
The solver uses a segregated projection algorithm which has many similarities with the
PISO (Pressure-Implicit with Splitting of Operators) algorithm; however, here a pressure
equation will be solved rather than a pressure corrector equation. This solver adopts and
extends the incompressible two-phase algorithm [63,68,72,95] to compressible flows.

1.2.3.1 Mass balance

The mass balance (1.2) in a two-phase problem can be rewritten in terms of each phase k
volume fraction as

∂ρkαk
∂t

+∇ · (ρkαku) = 0, k = {A,B} , (1.40)

where ρk corresponds to a phase density and αk to a phase volume fraction. Due
to the homogeneous model assumption, there is a single velocity field. The total mass
balance (1.2) can be obtained by summing the phasic mass balances over both phases k.
Moreover, the volume fractions obey the algebraic relationship

αA + αB = 1 , (1.41)
and the density, similarly as in eq. (1.19), can be expressed as

ρ = ρAαA + ρBαB . (1.42)
Now the phase mass balance eq. (1.40) can be expanded as

αk

(
∂ρk
∂t

+ u · ∇ρk
)

+ αkρk∇ · u+ ρk

(
∂αk
∂t

+ u · ∇αk
)

= 0 . (1.43)

Regarding the phase density as a function of pressure ρk = ρk(p) and applying the
chain rule to the derivatives of density leads to(

∂αk
∂t

+ u · ∇αk
)

= −αk
ρk

∂ρk
∂p

(
∂p

∂t
+ u · ∇p

)
− αk∇ · u (1.44)

This last equation exist for each phase, thus, for k = A and k = B. By summing over
both phases the total mass balance takes then the form
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(
αA
ρA

∂ρA
∂p

+ αB
ρB

∂ρB
∂p

)(
∂p

∂t
+ u · ∇p

)
+∇ · u = 0 (1.45)

This is equation will be further developed in Sec. 1.2.3.4 and solved in the last instance
for pressure.

1.2.3.2 Liquid volume fraction equation

The liquid volume fraction is transported using a single equation derived from the mass
balance. First in eq.(1.45) the pressure terms are isolated as

∂p

∂t
+ u · ∇p = −

(
ρAρB

ρBαAψA + ρAαBψB

)
∇ · u , (1.46)

where ψk = ∂ρk/∂p is a compressibility factor. Next the right side term is introduced into
eq. (1.44) for phase A and after some rearrangements the following equation is obtained

∂αA
∂t

+∇ · (αAu) = αAαB

(
ψAρB − ψBρA

αAψAρB + αBψBρA

)
∇ · u (1.47)

Finally, by substituting the velocity divergence on the right side using eq. (1.45),
derived now from both phases the final equation reads

∂αA
∂t

+∇ · (αAu) = αA(1− αA)
(
ψB
ρB
− ψA
ρA

)(
∂p

∂t
+ u · ∇p

)
(1.48)

Treatment of the divergence of liquid volume fraction flux is needed using one of the
presented methods in Sec. 1.2.2.

1.2.3.3 Momentum equation

The general momentum equation is now adapted by reformulating two terms. Firstly,
a modified pressure is introduced to simplify the specification of the pressure boundary
conditions. It is defined as:

pd = p− g · xρ (1.49)
where pd stands for the modified pressure, which is obtained by removing the hydrostatic
pressure. When calculating the gradient of this new dependant variable it will introduce
a density gradient near the interface enabling an efficient treatment of the steep density
jump

∇pd = ∇p− ρg− g · x∇ρ , (1.50)
which has to be account on the momentum equation. On the other hand, the viscous tress
term is reformulated. It reads:

∇ · τ = ∇ ·
(
µ
(
∇u+ (∇u)T

)
− 2

3(∇ · u)I
)

= ∇u · ∇µ+∇ ·
(
µ(∇u− 2

3 tr(∇u)I)T
)
.

(1.51)

Here tr() represents the trace of a vector gradient which is equal to the divergence of
that vector. Being more meaningful when accounting for stresses related to volumetric
deformation. The final form of the momentum equation is assembled and it reads:

23



1.2. Numerical method

∂(ρu)
∂t

+∇·(ρu⊗u) = −∇pd−g ·x∇ρ+∇u·∇µ+∇·
(
µ(∇u− 2

3 tr(∇u)I)T
)

+S . (1.52)

The convective non-linear term is now linearized by using the last iteration values of
the velocity within an iteration loop. For notation, the iteration procedure is indexed
by superscripts m, with m = 0 corresponding to the initial iteration and of the actual
time-step tn. The new time-step is denoted using the superscript n+ 1. Time derivatives
will be approximated via forward Euler to facilitate the comprehension. The linearized
momentum equation is,

ρmun+1 − ρnun

∆t +∇ · (ρmum ⊗ un+1)

= −∇pn+1
d − g · x∇ρm +∇um · ∇µ+∇ ·

(
µ(∇um − 2

3 tr(∇u
m)I)T

)
+ S .

(1.53)

A system of linear algebraic equations will now arise from the discretisation of the
integral form of the above standard transport equation. As it was discussed in Sec. 1.2.1.1
and 1.2.1.2 there are multiple discretisation procedures, however, the cell fields will most
likely depend on the values of the neighbouring cells. Thus, the system of linear algebraic
equations will have one equation for each control volume. Following the procedure pro-
posed by [96] the pressure gradient, as well as the source terms, are not discretised at this
stage. This system of linear algebraic equations can be expressed in a matrix form as:

[A][u] = [R] , (1.54)

where [A] is a sparse square matrix. The term [R] is a source vector containing all the
terms that can be evaluated without knowing the new u, namely, the parts of the tem-
poral derivative, convection and diffusion terms corresponding to the old time-level. The
description of [u] and [R] as "vectors" comes from matrix terminology, however, they are a
list of values defined at the centres of the control volumes. The matrix [A] can now be de-
composed into two matrices containing the diagonal [D] and off-diagonal [N ] coefficients,
such that:

[A] = [D] + [N ] , (1.55)

allowing to define the "H" operator as

[H] ≡ [N ][u] + [R] . (1.56)

Finally, then the linear algebraic equation can be written using the above operator as

APu
n+1
P =

∑
∀N

ANu
m
N + EnP = H(um) , (1.57)

where the matrix coefficients AP on the diagonal of [A] and AN off the diagonal. Here the
subscripts P refer to the solving cell and N to its neighbouring cells. Now including the
neglected pressure and source terms, leads to

un+1
P = A−1

P H(um)−A−1
P g · x∇ρ

m +A−1
P S −A

−1
P ∇p

n+1
d . (1.58)

Grouping the first three terms on the right side together, the velocity reads
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un+1
P = ũr −A−1

P ∇p
n+1
d , (1.59)

and the velocity ũr is

ũr = A−1
P H(ur)−A−1

P g · x∇ρ
m +A−1

P S . (1.60)

Due to the issues with collocated variable arrangements that were observed when the
phase fractions changes abruptly and the densities of the two fluids are very different [90].
Equation (1.59) is interpolated to the cell faces j and associated with the volume fluxes
(φj = uj · Sj) as

φn+1
j = φ̃mj − (A−1

P )j |Sj |∇⊥j pn+1
d , (1.61)

where ∇⊥j refer to the face gradient. And the first term of the right side is

φ̃mj =
(
A−1
P H(um)

)
j
− (A−1

P )j |Sj |g · x∇⊥j ρm +
(
A−1
P S

)
j
· Sj . (1.62)

1.2.3.4 Pressure equation

The modified pressure fields are obtained using the mass balance derived equation (1.45).
Following a similar procedure, using now the modified pressure, the equation is linearized
and discretised first as

(
αmA
ρmA

ψmA + αmB
ρmB

ψmB

)(
pn+1
d − pnd

∆t +∇ · (pn+1
d um)− pn+1

d ∇ · um + λ

)
+∇ · un+1 = 0 ,

(1.63)
where ψk = ∂ρk/∂p and λ is given by

λ = (ρg · x)m − (ρg · x)n
∆t +∇(ρg · x)mum − (ρg · x)m∇ · um . (1.64)

It is observable how the last divergent term uses the new velocity which will be used
as a link with equation (1.59). The terms coming from the pressure gradient have a little
impact on low Mach flows and will be neglected in the present work, if not indicated. Now
following the collocated approach, the divergence term is discretised and substituted using
the volume flux as(

αmA
ρmA

ψmA + αmB
ρmB

ψmB

)(
pn+1
d − pnd

∆t + λ

)
+
∑
j∈∂Ωi

φn+1
j = 0 , (1.65)

which is subsituted using eq. (1.59). Finally, the pressure pn+1
d can be solved implicitly.

Regarding the code in compressibleInterFoam it is observable how the solving matrix
for pressure is assembled using three terms. The first term is the flux divergence in
eq. (1.65), which is defined as p_rghEqnIncomp and it reads

p_rghEqnIncomp = +
∑
j∈∂Ωi

φ̃mj

−
∑
j∈∂Ωi

(A−1
P )j |Sj |∇⊥j pn+1

d .
(1.66)
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The first term will be treated explicitly and the second implicitly. Next, the compress-
ible term in the derived continuity equation (1.65) is calculated for each phase using the
next equations

p_rghEqnComp1 = pos(αA)∗
(

+ 1
ρA

∂αA
∂t

+
∑
j∈∂Ωi

(αAρAφ)j


− ∂αA

∂t
−
∑
j∈∂Ωi

(αAφ)j

+
(
αAψA
ρA

)
j

· correction(∂pd
∂t

)

) .

(1.67)

and

p_rghEqnComp2 = pos(αB)∗
(

+ 1
ρB

∂αB
∂t

+
∑
j∈∂Ωi

(αBρBφ)j


− ∂αB

∂t
−
∑
j∈∂Ωi

(αBφ)j

+
(
αBψB
ρB

)
j

· correction(∂pd
∂t

)

) .

(1.68)

In the first part of these equations, the function pos() is introduced which activates
or desactivate the p_rghEqnComp by taking values of 1 if the argument is bigger than 0
or a value of 0 elsewhere. Thus, activating the phase compression effects only for cells
within that phase. The second term is explicit and it will reinforce the mass conservation
which has been highlighted as a major issue in similar solvers, i.e. [97]. This would be
zero if a perfect mass balance is obtained according to eq. (1.40). The third and the
fourth term together resemble eq. (1.44) for a non-transonic flow. Thus, on a perfect
conservation situation would be also zero. Essentially, the correction() function is a
correction to the general continuity equation, eq. (1.2), introduced by changes in pressure
which are neglected by the momentum equation origin of the velocity and density fields.
The term λ, eq. (1.64), should appear inside this correction however is neglected for faster
convergence solutions.

It is important to highlight the fact that the volume flux employed to calculate φn+1
j

depends on eq. (1.62) which comes from the momentum equation and, thus, it does not
necessarily fulfil the mass conservation. Then, a final correction using the newly calculated
pressure is introduced using eq. (1.59).

φn+1
j = φ̃mj − (A−1

P )j |Sj |∇⊥j pn+1
d , (1.69)

And, following a flux reconstruction process, the new velocity un+1
P .
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1.2.4 Equation of state

To close the system of equations, as mentioned previously, an equation of state is needed
to determine the fluid density based on the pressure. To model the lighter phase, air, the
ideal gas equation of state is used. To avoid the additional energy conservation equation,
the air behaviour undergoing compression and expansions is assumed to be isentropic.
Under these assumptions, the equation of state for an ideal gas undergoing an adiabatic
pressure compression/expansion reads:

p

ργ
= ac = const. , (1.70)

where γ = 1.4 denotes the ratio of (constant) specific heats and ac is the isentropic
constant. From this equation, one can derive the compressibility factor ψ:

ψ =
(
∂ρ

∂p

) ∣∣∣∣∣
s

= 1
acγ

(
p

ac

) 1−γ
γ

. (1.71)

On the other hand, the water can be modelled as incompressible in most situations
because the compressible pressure waves will not be present. Nevertheless, a weakly com-
pressible or stiffened equation of state is employed under certain conditions. This equation
of state is derived from the work initially proposed by Cole in 1948 [98] assuming a constant
entropy and is commonly used by the Smooth Particle Hydrodynamics (SPH) community.
It takes the name of Tait’s equation and it reads

ρ = ρ0

(
p+B

p0 +B

) 1
γ

, (1.72)

where γ = 7 is the adiabatic constant, p0 is the reference pressure and B = (ρ0c
2/γ)− p0

with c being the constant speed of sound. Then, the compressibility factor ψ is

ψ =
(
∂ρ

∂p

) ∣∣∣∣∣
s

= ρ0
γ(p0 +B)

(
p+B

p0 +B

) 1−γ
γ

. (1.73)

Finally, using the updated pressure one can simply resolve the algebraic relation given
by the selected equations of state ρk = ρk(p) for each phase obtaining the new phase den-
sities (ρA refers to the liquid density. And, finally, the averaged density can be calculated
using

ρ = αAρA + αBρB , (1.74)

where ρA refers to the liquid density and ρB to the gas density.

1.2.5 Solution procedure

The solution procedure employed in the present work is the PIMPLE algorithm. It consists
of an iterative method reminiscent of the PISO algorithm (Pressure-Implicit with Splitting
of Operators) [99,100] that solve each linearized equation sequentially, with the possibility
of multiple outer correctors within one time-step. For multiphase flows, the momentum
predictor step, part of the PISO algorithm, has shown not to be essential for improving
the convergence behaviour and it is left as a user decision.

It was presented in eq. (1.53) that the discrete equations are linearized by using the
solution of the previous iterations in the non-linear term of the momentum equation. This
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can lead to a large change of the velocity and, thus, a divergence. For solving this, the
Patankar’s implicit under relaxation [101] is introduced commonly used in the SIMPLE
(Semi-Implicit Method for Pressure Linked Equations) procedure. This is the main reason
to call this loop PIMPLE (PISO+SIMPLE).

The global algorithm is graphically presented in Fig. 1.5 and the pressure corrector
sub-cycle in Fig. 1.6. The workflow can be summarised as follows:

1. Set up the initial conditions for all fields values.

2. Start the calculation of the new time step.

3. Go through the PIMPLE loop for nOuterCorrectors.

(a) Start a liquid volume fraction loop for updating the α values until the tolerance
is reached, eq. (1.48). Calculate an initial value for densities.

(b) Assemble and solve the momentum predictor equation with the available face
fluxes. If this option is switched off, the velocity field from the previous time
step will be used instead. Relax the momentum equation.

(c) Go through the PISO loop until the tolerance for the pressure-velocity system
is reached
i. Calculate initial volume flux prediction, eq. (1.62).
ii. Assemble phase compressibility pressure terms p_rghEqnComp, eq. (1.67), (1.68).
iii. Go through a non-orthogonality corrector loop at least for one iteration.

• Assemble incompressible continuity term p_rghEqnIncomp, eq. (1.66).
Solve the pressure equation.

iv. Calculate a new compressibility term for alpha transport, right side eq. (1.48).
v. Correct flux, eq. (1.59), and reconstruct internal velocity field.
vi. Update densities from equations of state. Calculate the average density,

eq. (1.42).
(d) If the flow is turbulent, calculate the effective viscosity from the turbulence

variables.

4. If the final time is not reached, return to step 2.
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Figure 1.5: Global algorithm
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Figure 1.6: PISO algorithm
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1.3 Wave generation
Wave generation is a critical point regarding numerical coastal engineering simulations.
To obtain realistic representations of waves in a numerical domain, there is the necessity
of defining proper kinematic and free surface elevation conditions. Here these conditions
will be introduced by means two types of generation conditions, namely: static boundary
method [64, 95] and relaxation zone method [63].

1.3.1 Static boundary method

The static boundary method prescribes the velocity and liquid volume fraction fields as
Dirichlet (i.e. fixed value) conditions at the fixed generation boundary. These fields are
analytically calculated using a wide range of wave theories as to the particle velocities
and free surface elevation. On the other hand, the pressure has shown to present stability
problems if overspecified and is calculated using the existing fields.

The velocities will point towards the domain when generating a wave crest, thus, a
positive flux of water will be entering the domain. However, when generating a wave
through the flux will be leaving the domain. This will generate an excess of water every
wave period periodically rising the water level. Consequently, static wave generators must
be linked with active wave absorption.

The present model uses the active absorption which was initially developed by [102]. It
is based on linear shallow-water theory, thus, the velocity along the water column height
is constant. The concept consists of generating a correction velocity equal to the incident
one in the opposite direction. The correction velocity Uc which is horizontal vertically
integrated (uniform) reads

Uc h = c ηR , (1.75)

where c is the wave celerity based on the shallow water assumption and h the water
depths. These parameters are measured and the reflected wave height ηR is calculated by
subtracting the measured elevation at the wavemaker from the analytic elevation.

One of the main advantages of this technique is the possibility to handle all the pro-
cesses (i.e. generation and absorption) at the boundary. Thus, reducing the computational
costs compared to other methods which need to extend the domain or need mesh defor-
mations.

The static boundary method is used in Sec. 3 for generating and absorbing a solitary
wave using the Boussinesq theory waves. Sec. 3.1.3 describes the fundamentals of the
Boussinesq solitary wave theory.

1.3.2 Relaxation zone method

The relaxation zone method [63] uses blending functions to generate waves and dampen
reflected waves within a domain region. It can be seen as an extension of the sponge layer
technique [103] which uses damping functions for waves absorption.

The relaxation zone works as a blend between a target ϕtarget and a computed ϕcomputed
solution. This blend is applied explicitly each time step on the velocity and the liquid
volume fraction fields by using a wide variety of waves theories. The blending function
acts in the following way

ϕ(x, t) = αR(x)ϕcomputed(x, t) + (1− αR(x))ϕtarget(x, t) , (1.76)
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where the weight field, based on the work of [104], reads

αR = 1− exp(χ3.5)− 1
exp(1)− 1 . (1.77)

Then, the target solution will be fully imposed at the boundaries αR = 0. Towards
the domain interior, αR changes smoothly to 0 to force the full computed solution. In
this approach, the dynamic pressure is calculated in the usual manner from the continuity
equation.

Figure 1.7: Caption

This technique is also used for wave absorption where the target velocity will be then
set to 0 and the liquid volume fraction towards the location of the still water level.

The relaxation zone method is used in Sec. 4 for generating and absorbing regular and
irregular waves. Sec. 4.1 describes the fundamentals on these two waves conditions.
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Chapter 2

Idealised fluid impact

This chapter objective is to investigate the performance of the present numerical approach
for modelling an impulsive fluid-structure interaction and describe some of the mechanisms
involved. To do this, the next sections are intended to avoid any complexity which is not
related to the specified interest. Initially, in Sec. 2.2, a 2D pure liquid impact mimicking
the configuration presented by M. Cooker [105] is investigated. The stability and con-
vergence of the compressible compressibleInterFoam and incompressible interFoam two
phase solvers are tested using this configuration. Next, the compressible behaviour of
air compressed by water is described utilising a 1D air-liquid piston configuration (Sec-
tion 2.3). Finally, a situation involving a conceptualised aerated liquid block undergoing
an impact is studied in Section 2.4 using a 2D configuration. This work has been partly
published in the scientific Journal of Coastal Engineering, see [106].
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2.1 Objectives and impact definition

Areated liquid 
impact ( Sec. 2.4 )

Air compression and
expansion ( Sec. 2.3 )

Liquid impact
( Sec. 2.2 )

Figure 2.1: Sketch of a wave impact.

When a fluid strikes a body at rest, very large forces are generated over a very short
period of time. This situation can be observed when a wave overturns in a certain way
that a large number of the fluid particles velocity points perpendicularly to the body, see
Fig. 2.1. These particles are rapidly decelerated and the momentum is balanced by a
sudden pressure rise, see Fig. 2.2. The very short time related to a wave impact makes
the instantaneous Newton’s Second Law of little use. Instead, it looks more convenient to
use the pressure impulse I theory introduced by Lagrange in 1811 [107], defined as:

I(x) =
∫ ta

tb

p(x, t)dt , (2.1)

where tb and ta are the instants before and after the impact respectively.

Figure 2.2: Typical pressure record during wave impact

The objective of the present section is to study by simplification the mechanisms
involved in producing the observed pressure signals, Fig. 2.2, during a wave breaking
impact situation. Multiple factors intervene in this process and they can be roughly
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summarized as the wave shape, the velocities and the fluid properties. In the following
Section 2.2, the wave shape and the velocities, which are highly dependant on the wave
transformation process, are idealised by using basic geometries and constant velocities.
However, the fluid properties are kept as a relevant parameter.

In real conditions, the formation of breaking waves usually involves continuous destruc-
tion of the free surface. The "fluid" that strikes the bodies is no longer a single fluid but
a mixture of air and water. Moreover, during the wave overturning process, air cavities
are often entrapped between the water and the solid. Fig. 2.1 intends to represent this
situation. The presence of air during an impact is especially relevant due to the lower
density and higher compressibility of air compared to water. This has a great effect on
the impulsive pressure magnitudes and arises the presence of two differentiated temporal
scales during an aerated wave impact. While the phenomenons involving the compress-
ibility of water happen at the scale of microseconds (µs), for air occur in the order of
milliseconds (ms). This is further investigated in the next sections.

2.2 2D liquid impact

I = 0

I = 0

∂I/∂z = 0

∂I/∂x = 
- ρ Uo Uo

x

z

0

H

L

sensor

Figure 2.3: Boundary problem proposed by M. Cooker [105]. I refers to the pressure
impulse defined in eq. 2.1

This section has two objectives, on the one hand, to study a pure liquid impact similar
to the well known water hammer phenomenon and secondly, to analyse the stability and
convergence of the incompressible and compressible solvers in a fluid-solid impact interac-
tion. For this, a simple configuration is employed which was first presented by M. Cooker
in 1995 [105]. The test case consists of a squared liquid block impinging on a vertical wall
in a two-dimensional problem, see Fig. 2.3. The fluid is in contact with the bottom and
left-hand walls. An initial constant value of velocity U0 normal to the wall is set in all
the liquid domain and the gravity is set to zero. Under these circumstances, the change
in velocity is supposed to take place over such a short time that one can assume:

• The nonlinear convective terms in the equation of motion are negligible compared
with the time derivative

• The viscosity can be neglected

• The surface tension effects are neglected
This configuration is quite useful for multiple reasons. First, its simplicity allows to

perform high-resolution simulations. Secondly, the fact that the relevant phenomenon, the
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impact, occurs at the initialization avoids the interference of any other event. Moreover,
as is explained in the next sections, the availability of an analytic solution for the pressure
impulse under the incompressible assumption and the acoustic pressure solution for the
compressible assumption makes this configuration suitable for a complete analysis. Finally,
as the liquid phase is already in contact with the left wall from the start of the simulation;
this makes the solution independent from the interface jump.

2.2.1 Incompressible formulation

Here the configuration is simulated using the incompressible two phase solver interFoam.
The analytic solution proposed by M. Cooker in 1995 [105] is first briefly developed. The
initial liquid velocity magnitude is constrained by the assumption of a much lower impact
speed than the speed of sound, to make the incompressible assumption realistic. After all
the mentioned simplifications, the momentum equation can be reduced to

∂u

∂t
= −1

ρ
∇p . (2.2)

By integrating this equation with respect to time through the impact interval [ta, tb],
see Fig. 2.2, and using the pressure impulse definition, eq. 2.1, the resultant equation
reads,

ua − ub = −1
ρ
∇I . (2.3)

By making use of the incompressible continuity equation, taking the divergence of the
last equation state that,

∇2I = 0 , (2.4)

the pressure impulse satisfies the Laplace’s equation. Using the boundary problem pre-
sented in Fig. 2.3. The analytical solution of Laplace’s equation can be found using
separation of variables and Fourier analysis:

I(x, z) = ρH
∞∑
n=1

ansin(λnz/H)sinh[λn(b− x)/H]
cosh(λnb/H) , (2.5)

with −H 6 z 6 0 and 0 6 x 6 b, where λn = (n− 0.5)π and the constants an are:

an = 2U0
cos(λn)− 1

λ2
n

. (2.6)

This configuration is modelled with two different phases (water and air), as depicted
in Figure 2.3, with H = 0.05 m and L = 0.1 m. The boundary conditions are set to a solid
wall for left and bottom boundaries, and as open boundaries for top and right edges. The
separation between the open boundaries and the water region is chosen largely to avoid
any influence on the solution. An uniform orthogonal mesh is equally distributed in all the
domain, with mesh sizes ranging from 2.5×10−4 ≤ ∆x/H = ∆z/H ≤ 4×10−3. An initial
velocity U0 = 1m/s is set in the water region. Only the first few time steps are computed
to capture the impact phenomenon, and the wall pressure distribution is recorded in all
the cell face centres of the left boundary at each time step.

The pressure impulse, eq. (2.1), is highly dependant on the definition of tb and ta. In the
present section, the impulse area is approximated by an isosceles triangle and the rise time
as half of the triangle base (see Fig.2.2). In the present simulations, the maximum peak
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pressure is reached after the first computed time step and thus, the rise time is equal to the
initial time step. Using these definitions, the computed impulse distribution is shown in
Fig.2.4 and compared with its analytical counterpart, all divided by a characteristic linear
momentum of the liquid block. A perfect agreement is obtained in terms of magnitude and
wall distribution between the computed and the analytic solution proposed by [105] for
the mesh discretisation ∆x/H = 2 × 10−3 and a variable time discretisation constrained
by a maximum Courant number maxCo= U ·∆t/∆x = 0.01.
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Figure 2.4: Wall pressure impulse distribution compared with the analytic solution,
∆x/H = 2× 10−3 and maxCo = 0.01.

Figure 2.5 displays maps of the dimensionless pressure impulse (Fig. 2.5a) and the
velocity field (Fig. 2.5b) at the impact instant for the water phase only (α < 0.5). The
pressure gradient (Fig. 2.5a) decelerates the liquid from an initial velocity field U0 to a
new one (Fig. 2.5b), generating a strong liquid jet. This last feature was also described
analytically by Cooker and Peregrine as a velocity singularity when x → 0 at the upper
water surface.

∆x/H timp [s] p [bar] I/(ρ · U0 ·H)
4× 10−3 1× 10−6 336 0.672042
2× 10−3 4.54× 10−7 741 0.673706
1× 10−3 2.04× 10−7 1 652 0.674537
5× 10−4 9.34× 10−8 3 611 0.674954

2.5× 10−4 4.31× 10−8 7 831 0.675167

Table 2.1: Simulation results of an idealised wave impact for different spatial discretisa-
tions. Results extracted from the numerical pressure sensor presented in Fig. 2.3

In order to check convergence, different spatial (Table 2.1) and temporal (Table 2.2)
discretisations have been tested. Table 2.1 presents the results while refining the mesh,
where ∆x refers to the cell length, timp the first time step or the rise time, p the peak
pressure and I the impulse. The successive mesh refinements result in an asymptotic
behaviour of the velocities and, when the maximum Courant Number maxCo is imposed,
this results in a time step ∆t drop as observed in Table 2.1. The small domain and the very
few time steps employed for these computations allow affordable computational costs, even
when using such fine discretisations as ∆x = 0.0125 mm (∆x/H = 2.5 × 10−4). In these
simulations, the maximum Courant number was fixed at maxCo = 0.01 and, thus, when
reducing the cell size the time step decreased proportionally. Reasonably good stability
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2.2. 2D liquid impact
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(a) Adimensional pressure impulse
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Figure 2.5: Adimensional impulse and velocity magnitude in the liquid region using a cell
size ∆x/H = 2× 10−3
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Figure 2.6: Maximum peak pressure at the wall for different spatial discretisations

and convergence of the impulse towards the analytic value of 0.675314(ρU0H) is presented.
From Fig. 2.6, one can observe that the peak pressure keeps increasing, by approximately
a factor of two as the cell length decreases by a fixed factor of 0.5.
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2.2. 2D liquid impact

maxCo timp [s] p [bar] I/(ρU0H)
0.1 5× 10−6 67 0.673783
0.05 2.5× 10−6 134 0.673742
0.01 4.54× 10−7 741 0.673706
0.005 2.22× 10−7 1515 0.673702
0.001 4.45× 10−9 75588 0.673697

Table 2.2: Simulation results of an idealized wave impact for different temporal discreti-
sations
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Figure 2.7: Spatial and temporal discretization comparison regarding the dimensionless
pressure impulse

Table 2.2 presents the results while modifying the time step by limiting the maximum
Courant number and using ∆x = 0.1 mm as cell length. The pressure peak also diverges
while refining the time discretization. Finally, Fig. 2.7 presents the results of both tables
in terms of adimensional impulse and initial time step. The analytic solution is also
represented using a dashed black line. This graph depicts the fact that only lowering the
time step will not improve the pressure impulse towards the analytic solution. Although,
a combination of both spatial and temporal refinement present a tendency towards the
solution proposed by Cooker and Peregrine. It is also important to remark the fact that
fixing the time step and refining the cell length stabilises the pressure peak, although, this
will not be realistic as it would strongly depend on the selected time step. To conclude,
this analysis arises the stability of the solver dealing with an impulsive situation employing
the impulse convergence. However, the pressure fields are presented as unreliable under
the incompressible assumption for this kind of computations.

2.2.2 Compressible formulation

The idealised wave case is employed here with the same configuration and boundaries
as shown in Fig. 2.3. The main difference now is the compressibility of phases with a
time-dependant density. To the best of the author’s knowledge, similar numerical stud-
ies comparing incompressibe and compressibile fluids during impulsive events have been
studied using Lagrangian codes, e.g. [80]. As presented in Sec. 1.2.4, the liquid follows
now a Tait’s equation and the air an ideal gas equation of sate. The system temperature
is 20 ◦ C and the initial pressure is set to atmospheric p0 = 1 bar. The air properties are,
ρair = 1.2 kg/m3 for initial density and a constant specific heat ratio of γair = 1.4. For
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2.2. 2D liquid impact

water, ρwater = 1000 kg/m3, a constant specific heat ratio of γwater = 7 and a speed of
sound of Cwater = 1500 m/s. An initial velocity U0 pointing perpendicularly to the left
boundary is imposed on the water region. An implicit second-order pure Crank-Nicolson
scheme is employed for the time derivative in all the simulations. These computations
will run using a fixed time step related to the Courant number and the speed of sound,
following the relation C ·∆t < n ·∆x presented by [79], where C is the speed of sound,
∆t the time step, n a user defined value which is set as 0.1 and ∆x the cell length.
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(a) Pressure
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Figure 2.8: Pressure and velocity magnitude on the liquid region using a cell size ∆x/H =
2× 10−3 at t = 2.5× 10−5 s

In this situation, the water volume impinges the wall with an abrupt pressure rise and
an increase of water density in the vicinity of the wall. This produces a pressure wave
which propagates through the water domain similarly as a sound wave. As the pressure
wave moves away from the impacted wall, it trails a small region of the liquid that starts a
fast compression-expansion behaviour. A pressure gradient will form from the free surface
top edge advancing towards the bottom boundary as the pressure wave moves, allowing
gradually the entrapped water to gain velocity upwards. In Fig. 2.8a it is observable the
pressure wave in the water region at t = 2.5 × 10−5 s advancing symmetrically to the
bottom boundary with an approximate speed of 1100 m/s. Fig. 2.8b presents the velocity
field magnitude at the same instant. Here the region unaffected by the pressure wave still
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2.2. 2D liquid impact

has initial inertial velocity of 1 m/s pointing towards the left wall. The compressed region
has almost a null velocity, and, at the free boundary top edge the water jet is gaining
velocity upwards (top left of Fig. 2.8b).
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Figure 2.9: Different elevations (∆x/H = 2× 10−3)

Figure 2.9 depict different gauge pressure (p = pabs−p0) series from different locations
of the left wall. During the very first impact times (0 < t < 2 × 10−6 s), high pressure
oscillations with small period (≈ 1 µs) are recorded on the different locations, simulta-
neously for all the impact region. As the pressure wave moves forward it decelerates the
incoming fluid and liberates gradually the entrapped liquid behind. The liquid region close
to the bottom wall will remain under pressure until the pressure wave front is far enough.
The situation presented here, as the water domain is square shaped the pressure drop at
z/H = −1 occurs approximately at t = 4.5 × 10−5 s when the pressure wave reaches the
right liquid boundary. At this instant an expansion front moves vertically, from the bot-
tom boundary towards the free surface, dropping the pressure into subatmospheric values
which may lead to a phase change.

The second graph, Fig. 2.10, presents the pressure impact results at z/H = −1 for
different spatial discretisations and linked time steps (see Table 2.3). This study depicts
a good convergence of the results in terms of the peak pressure, which is close to the
acoustic pressure solution of p = ρ · C · u = 15 bar. On the other hand, the rise time timp
decreases as the mesh is refined with the same factor. The oscillations frequency increases
as the cell length decreases, as well as the compression-expansion trailing region becomes
smaller.

Finally, Fig. 2.11, presents the pressure impact results at z/H = −1 for different
temporal discretisations using ∆x/H = 4 × 10−3 mesh. It is observable a direct relation
between the peak pressure and the simulation time step. When the time step is reduced
the peak pressure slightly increases within an error E = (pacoustic − pnumeric)/pacoustic
lower than 10%. Time step values in the order of n · (∆x/C) present good results with an
error of 2.6% if selecting the constant n = 0.1, as in [79]. Although, a value of n = 0.0375
presents in this case a perfect agreement with the acoustic pressure prediction of 15 bar
(see Table.2.4). The simulation using ∆t = 5 × 10−10 s takes 920 steps before the peak
pressure and, thus, the numerical diffusion should be taken into account.
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Figure 2.10: Mesh convergence (z/H = −1)
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Figure 2.11: Time step convergence (z/H = −1)

∆x/H ∆t [s] timp [s] p [bar]
0.02 6.66× 10−8 2.4× 10−6 14.613

8× 10−3 2.66× 10−8 9.6× 10−7 14.614
4× 10−3 1.33× 10−8 4.8× 10−7 14.614
1× 10−3 3.33× 10−9 1.16× 10−7 14.612

Table 2.3: Spatial discretisation convergence

Table 2.3 presents a good convergence in terms of peak pressure while refining the
spatial discretisation, where, ∆x refers to the cell length, ∆t the time step, timp the
rise time and p the peak pressure. On the other hand, Table 2.4 presents the peak
pressure results while refining the temporal discretisation. This section presented the
robustness of the solver to evaluate fluid impulsive pressures when taking into account the
compressibility effects.
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2.3. 1D air-liquid piston

∆t [s] n timp [s] p [bar]
1× 10−7 0.75 5× 10−7 13.42
5× 10−8 0.375 5× 10−7 13.78
5× 10−9 0.0375 4.7× 10−7 15
5× 10−10 0.00375 4.6× 10−7 15.41

Table 2.4: Temporal discretisation convergence

2.3 1D air-liquid piston
This section introduces a configuration of a 1D water piston with an initial velocity com-
pressing and expanding an air cavity. The problem presented here is based on the configu-
ration initially proposed by Bagnold in 1939 [23]. The setup for this liquid-piston problem
is shown in Fig.2.12.

Figure 2.12: 1D liquid piston scheme

A similar problem has been used to benchmark compressibility effects by the liquid
sloshing community, see [78, 79, 108, 109]. In the present work, gravity is neglected and
the origin of motion is an initial velocity U0. This initial velocity on the liquid region
causes a compression of the air phase x1 and consequently an increase of pressure p1,
gas density and temperature. During this compression stage, certain conditions can lead
to condensation on the air region (see [108]). However, the present model does not take
into account such a phenomenon. On the other hand, the gas region x2 is being expanded
reducing pressure p2 and gas density. Both gas regions gradually reduce the liquid velocity
to zero and finally change the motion sense, inverting the process. There are no restitution
forces and, under the isentropic assumption, the system oscillates infinitely. The governing
equation of motion is obtained from basic principles, reading:

d2x

dt2
= 1
ρwaterL

(
p1(t)− p2(t)

)
(2.7)

where p1 and p2 are respectively the pressures in the left and the right gas regions, ρwater
is the liquid density and L the liquid length. This non-linear differential equation can be
solved numerically by a time-domain discretisation. The first-order explicit Euler method
is employed to calculate a semi-analytic solution. The quantities at time step n are labelled
with n and the new time-step is labelled with n+ 1. Assuming an adiabatic evolution for
the gas and using the ideal gas equation of state, the pressures can be calculated as

pn+1
1 = pn1

( xn1
xn+1

1

)γ
pn+1

2 = pn2

( xn2
LT − L− xn+1

1

)γ
(2.8)

where LT is the total length and γ the specific heat ratio. The initial conditions are
x1(0) = x0

1 and dx/dt(0) = U0. The liquid region has a density of ρwater = 1000 kg/m3.
The gas has an initial density of ρair = 1.2 kg/m3 and an specific heat ratio of γ = 1.4. The
initial velocity is set to U0 = 0.5 m/s and the geometric dimensions are LT = 0.1 m and
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2.4. 2D aerated liquid impact

L = 0.05 m. The violence of the impact can be defined using the impact number related
to the initial velocity by SB = ρwaterLU2

0
p0(x0

1+x0
2) . This is the dimensionless number of the initial

Bagnold problem (the B index stands for Bagnold). In this situation, the impact number
is SB = 2.5 × 10−3 and based on the work [109] for SB < 8 the liquid can be assumed
as incompressible. Using these conditions, the semi-analytic solution using different time
steps ∆t is calculated and a converged solution is obtained using ∆t = 1× 10−6 s.

For solving this situation numerically, the mesh used is one cell length in both per-
pendicular directions (OY and OZ) and 100 equally distributed cells in the horizontal
direction. The time discretisation is fixed at ∆t = 1 × 10−6 s and an explicit first-order
Euler scheme is used for the time derivative. The boundaries are defined as solid walls for
both, left and right. With a Dirichlet condition for the velocity of zero, a pressure gradient
of zero and an alpha gradient of zero. The OX parallel boundaries are defined as empty
to indicate a one-dimensional problem. The pressure values are recorded in all the cell
centres at every time step. The diffusion term is neglected as well as the surface tension.
It is important to notice that the liquid volume fraction transport equation is solved using
MULES and the artificial compression term is not taken into account (i.e. cAlpha = 0).
The compression of the interface has shown to increase the numeric diffusion, presenting
an important dampening of the system.

Fig. 2.13 presents the obtained results and these are compared with the semi-analytic
solution. The series presented are recorded at the extreme cells, where the red depicts the
region x1 and the blue the region x2. A good agreement is obtained between the numeric
and the semi-analytic solution which is not surprising for this simple configuration. The
oscillations periods are in the order of ≈ 10 ms. Nevertheless, slight numeric diffusion can
be observed after a few oscillations and high frequency oscillations during the initialisation,
see Fig. 2.13a, 2.13b and 2.13c .

Finally, a representation of the pressure values over time along a vertical line is pre-
sented in Fig. 2.14. The present situation can be classified as a non-impulsive interaction.
Although the air presents a compressible behaviour, the incompressible assumption for
water is appropriated as there are no visible pressure waves. Moreover, the gradient of
pressure along the water region is linear.

This section has successfully reproduced an air compression/expansion process and
presented a first idea of the time scales related. Moreover, it ensured the possibility to
appropriately model the free surface during this phenomena.

2.4 2D aerated liquid impact
The present section introduces tentative modelling of an aerated fluid impact. The gained
experience obtained from the last two Sec. 2.2 and Sec. 2.3 is used here to define the
numerical setup and analyse the obtained results. The employed configuration is similar
to the one presented in the idealised liquid impact Sec. 2.2 and it basically consists of a
gas-liquid mixture region surrounded by three walls and an air region, see Fig. 2.15 for
details. The aerated liquid is defined by uniformly distributed (49 columns × 19 rows)
circular areas of air (α = 0) over the liquid region mimicking the presence of bubbles.
The bubbles closer to the impact wall are half-split by diameter, see Fig. 2.15. The main
geometric parameters are summarised in Tab. 2.5, where D is the bubbles diameter, d the
separation between the bubbles centre, L the domains length, Lfluid the liquid length and
H the domains height. Finally, the whole aerated fluid has an initial velocity U0 pointing
perpendicularly towards the left boundary.
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Figure 2.13: Pressure values recorded at the highest and lowest cells compared with the
semi-analytic solution using ∆t = 1× 10−6 s.
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Figure 2.14: Pressure values recorded at the highest and lowest cells compared with the
semi-analytic solution using ∆t = 1× 10−6 s

The boundary conditions are defined as solid walls for the bottom, left and top edges
using a slip condition for velocity, a gradient of zero for pressure and a gradient of zero
for the liquid volume fraction. The right boundary is kept as an open boundary with a
total pressure condition where air and water can freely flow out and only air can flow in,
and the lateral sides are set to indicate a two-dimensional problem.

The mesh is orthogonal and uniform with square-shaped cells ∆x = ∆z. It consists of
800.000 cells and the bubbles are discretised using a ratio of D/∆x = 10, see Fig. 2.15.
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Figure 2.15: Detail of the liquid region initialisation.

Table 2.5: Configuration parameters

D (mm) 0.25
d (mm) 0.5
L (mm) 100
Lfluid (mm) 50
H (mm) 20
U0 (m/s) 1

These computations will run using a fixed time step ∆t = 3 × 10−9 s related to the
Courant number and the water speed of sound. Sec. 2.2.2 concluded this time step to
be small enough to capture the water compressibility effects. An implicit second-order
pure Crank-Nicolson scheme is employed for the time derivative. Similarly as in Sec. 2.3,
the compression term is not taken into account in the liquid volume fraction transport
equation cAlpha = 0.

The configuration is solved using a compressible solver. The equation of state for the
liquid region follows Tait’s equation and the air an ideal gas equation of state. The system
temperature is 20 ◦C and the initial pressure is set to atmospheric p0 = 1 bar. The air
properties are, ρair = 1.2 kg/m3 for initial density and a constant specific heat ratio of
γair = 1.4. For water, ρwater = 1000 kg/m3, a constant specific heat ratio of γwater = 7
and a speed of sound of Cwater = 1500 m/s. It is assumed that the fluid viscosity is
irrelevant in this inertial problem. Similarly, the surface tension is neglected and, as in
previous sections, the gravity is set to zero.

The objective for the following paragraphs is the description of the results obtained.
The arguments that support the following analysis are based on Figs. 2.16, 2.18a, 2.18b
and 2.17. Fig. 2.16 presents the recorded gauge pressure (p = pabs − p0) values at two
locations on the impact wall, one in the liquid region and the other in the air region, see
Fig. 2.15. Next, Fig. 2.18a represents the pressure fields related to the first pressure peaks
using a logarithmic scale for pressure and Fig. 2.18b the pressure fields with a different
scale immediately after the initial impact. Finally, Fig. 2.17 presents the evolution of the
bubbles volumes that are in contact with the impact wall.

46



2.4. 2D aerated liquid impact

0 5 10 15 20
 t ( s) 

0

2

4

6

8

10

12

14
 p

 (b
ar

) 
Pwater

Pair

(a) Liquid compressiblity scale

0 100 200 300 400 500 600 700
 t ( s) 

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

 p
 (b

ar
) 

Pwater

Pair

(b) Air compressibility scale

Figure 2.16: Pressures series at two locations referenced in Fig. 2.15. Note the different
pressure and time scales.

At t = 0.1 µs, the highest pressure value of 14 bar is observed in the liquid sensor
Pwater. This value is related to the acoustic pressure theory p = ρCu for water and agrees
with the results presented in Sec. 2.2.2. Regarding the pressure fields and the pressure
temporal series, the momentum is being fully absorbed by the liquid-solid contact and the
sensor located inside the air bubbles barely presents a pressure rise. Moreover, by looking
at Fig. 2.17 one can extract that the wall bubbles volume is unchanged at this stage.

At t = 1 µs, the liquid pressure sensor reaches the minimum value immediately after
the first peak pressure in Fig. 2.16a following a liquid expansion process. It is important
to notice that at this stage, the pressure values fall rapidly and the solver limits the value
to 0.1 bar as a minimum threshold. Trespassing this value would probably lead to a phase
change of water and this is not taken into account in the present model. On the other
hand, a pressure wave starts travelling away from the impact region through the liquid
medium and the air bubble in contact with the wall experiences a gradual pressure rise
and a volume reduction.

Following this stage, at t = 2.9 µs, the pressure wave starts a complex interaction
process of reflection and diffraction with the air bubbles. This is most likely the origin of
the forthcoming pressure peaks in Fig. 2.16a. The air bubbles in contact with the wall
only reduced their volume by less than 2% under compression at this points.

The following relevant processes are related to the air behaviour and the time scale is
approximately two orders of magnitude bigger ≈ 0.1 ms. Looking at the pressure signal
from Fig. 2.16b, the highest pressure at the air sensor Pair is 0.26 bar. Whereas, the sensor
at the liquid contact experiences a similar rebound this has a slightly lower magnitude of
approximately 0.23 bar. The pressure fields in Fig. 2.18b present a uniformly distributed
pressurisation along a vertical plane. This has a visible effect on the bubbles by reducing
their initial volume by 30%.

This new pressure wave, with an approximate period of ≈ 0.1 ms, starts travelling
away from the impact plane trailing an expansion which increases the bubbles volume, see
Fig. 2.18b at t =100 µs. Again, this expansion wave is followed by a new compression of
the impact plane.

From the complex phenomenon described in this section, one can conclude that the air
inclusion during a fluid impact has a major effect in the exerted load. The pressure signals
inside and outside the air impact area are extremely different during the first stages of the
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Figure 2.17: Air area evolution over time

impact and the compressible properties of the liquid are of great importance. After the
initial instants, the whole fluid mixture behaves similarly and the air compressibility is an
important actor at the stage. Two differentiated time scales are appreciated and these are
related to the compressibility of the different fluids. It is important to notice that this last
section is considered as a concept proof and it has not been directly taken into account in
the forthcoming chapters.
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(a) Pressure fields evolution during the
liquid impact.

(b) Pressure fields evolution during the air com-
pression/expansion phase.

Figure 2.18: Evolution of the pressure fields during an 2D aerated fluid impact.
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Chapter 3

Solitary wave impact

This chapter presents a complete validation study of local pressure fields related to a soli-
tary breaking wave impact. This work has been partly published in the scientific Journal
of Coastal Engineering, see [106]. After a short recall of the solitary wave theory, the per-
formance of the solver for generation and propagation of solitary wave over an horizontal
plane is presented. Next, an overview of the experimental setup is presented extending
the previous configuration by adding a sloped plane causing the wave overturning. Fi-
nally, making use of all the acquired experience, two main configurations of wave breaking
impacts are compared with the experiments. An air-pocket or high aerated impact is
modeled numerically comparing the results against the experiment for an incompressible
and a compressible solver. This is first evaluated in a two dimensions configuration and
the compressible simulation is finally extended to a three dimensions geometry. Then
a flip-through or low aerated impact is also compared with experimental data using a
compressible solver in a two dimensions configuration.
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3.1. Solitary wave generation and propagation

3.1 Solitary wave generation and propagation
The objectives of this section are to evaluate the performance of various relevant aspects
necessary for accurate reproduction of a numerical solitary wave based on the Boussinesq
theory. Initially, a brief description of the Boussinesq solitary wave equations is introduced.
Secondly, a test case is employed to evaluate the performance of wave generation and
propagation on a general 2D rectangular numerical wave tank.

3.1.1 Solitary wave theory

A solitary wave is classified as a gravity translational wave, meaning the horizontal velocity
over a cross-section is almost uniform on the contrary to the surface waves, where the
motion decreases from the surface downward. Solitary wave free surface and velocity
equations were first derived by Joseph Bousinnesq in 1871 [110]. The present section start
the development of these equations from the general system of equations at the free surface
elevation z = η(x, t) for incompressible and irrotational water waves in the 2D plane (x, y).
The first equation states that the surface is always made up of the same fluid particles
and may be called the kinematic boundary condition:

∂η

∂t
+
(
∂Φ
∂x

)
z=η

∂η

∂x
−
(
∂Φ
∂z

)
z=η

= 0 , (3.1)

where Φ is the velocity potential. The second equation is derived from the Bernoulli’s
equation and states that the pressure at the free surface is equal to the atmospheric
pressure. It is often referred to as the dynamic boundary condition,

∂Φ
∂t

+ 1
2

[(
∂Φ
∂x

)2
+
(
∂Φ
∂z

)2]
z=η

+ gη = 0 , (3.2)

where u = ∂Φ/∂x, v = ∂Φ/∂z are the horizontal and vertical flow velocity components
respectively and g is the gravity acceleration. The essential idea in the Boussinesq approx-
imation is the elimination of vertical coordinates from these equations, eq. (3.1) and (3.2),
by using a Taylor expansion of the velocity potential and the following three steps.

1. Consider the Taylor expansion of the velocity potential Φ(x, y, t) around the bed
level z = −h (h is the water depth) :

Φ = Φ(x,−h, t) + (z + h)
[
∂Φ
∂z

]
z=−h

+ 1
2(z + h)2

[
∂2Φ
∂z2

]
z=−h

+ 1
6(z + h)3

[
∂3Φ
∂z3

]
z=−h

+ 1
24(z + h)4

[
∂4Φ
∂z4

]
z=−h

+ ...

2. Using the incompressible continuity assumption, the vertical partial derivatives are
substituted with horizontal velocities:

Φ = Φ(x,−h, t)− 1
2(z + h)2

[
∂2Φ
∂x2

]
z=−h

+ 1
24(z + h)4

[
∂4Φ
∂x4

]
z=−h

+ ...

+ (z + h)
[
∂Φ
∂z

]
z=−h

− 1
6(z + h)3 ∂

2

∂x2

[
∂Φ
∂z

]
z=−h

+ ...
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3.1. Solitary wave generation and propagation

3. Finally, considering the vertical velocity at the bottom to be zero ∂Φ/∂z = 0:

Φ = Φb −
1
2(z + h)2

[
∂2Φ
∂x2

]
z=−h

+ 1
24(z + h)4

[
∂4Φ
∂x4

]
z=−h

+ ...

Substituting this development into the flow equations, eq. (3.1) and (3.2), leads to
Boussinesq set of equations which read,

∂η

∂t
+ ∂

∂x
[(h+ η)ub] = 1

6h
3∂

3ub
∂x3 and (3.3)

∂ub
∂t

+ ub
∂ub
∂x

+ g
∂η

∂x
= 1

2h
2 ∂

3ub
∂t∂x2 , (3.4)

where ub is the velocity at the bottom.

3.1.2 Numeric solitary wave generation

The set of equations, eq. (3.3) and (3.4), have had multiple solutions, however, the present
work uses those proposed in Lee et al. 1982 [111]. For the free surface this reads,

η = a sech2
[√

3a
4h3X

]
(in which X = −c t+ x+ ts) , (3.5)

where a is the solitary wave amplitude and c =
√
g(h+ a) is the wave celerity according

to the shallow water theory. The wave generation boundary is assumed to be at x = 0
and ts is a time lag. This last term ts is necessary to avoid initialising the solitary wave
from the highest point. The natural selection of this term is the propagation time of half
of the wavelength, however, the long wave condition assumes the solitary wave to have an
infinite wavelength. Then, an effective wavelength is defined by using a percentage of the
wave amplitude which is usually around 1%, leading to values of ts ≈ 3.5h/

√
a/h. Finally,

the velocity components are straightforward, although they involve derivatives of the free
surface. The velocity components are:

u√
gh

= η

h

[
1− 1

4
η

h
+ h2

η

(
1− 3

2
z2

h2

)
d2η

dX2

]
and (3.6)

v√
gh

= − z
h

[(
1− 1

2
η

h

)
dη

dX
+ 1

3h
2
(

1− 1
2
z2

h2

)
d3η

dX3

]
(3.7)

The present work uses a static boundary method (see Sec. 1.3.1) as a boundary condi-
tion to generate the Boussinesq solitary wave. This boundary condition mimics a piston
wave maker to impose the free surface elevation according to eq. 3.5 and the velocity
components from eq. 3.6 and 3.7.

3.1.3 Numerical performance of a solitary wave propagation

In this section, the incompressible two-phase solver interFoam is evaluated in a solitary
wave propagation process over a horizontal plane. The initial configuration is kept by de-
fault from the one proposed in tutorials. However, the length of the domain is extended
to a larger wave propagation stage. The numerical wave channel length is 20 m and has a
height of 1.5 m. The water depth is kept constant with h = 0.7 m. Fig. 3.1 presents the
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3.1. Solitary wave generation and propagation

Figure 3.1: Boussinesq solitary wave horizontal and velocity fields detail. The black line
is an isocontour of the liquid volume fraction (α = 0.5).

solution obtained at an intermediate instant with a representation of liquid fraction, hor-
izontal and vertical velocity fields. From the horizontal velocity field, it is observable the
almost constant values along the transverse planes characteristic of a translational wave.
The second relevant aspect, is the air drag effect caused by the traveling wave which is
not taken into account by the theory based on a single fluid.

The mesh is structured and uniform keeping the same cell size over the entire domain.
The cells size is directly related to the solitary wave amplitude, with an initial ratio of
a/∆z = 30. The cell are rectangular with an aspect ratio between the horizontal ∆x and
vertical ∆z cell length of ∆x/∆z = 2. Regarding the time discretisation, the time step is
limited using a maximum Courant number maxCo = 0.65 and a maxAlphaCo = 0.65 around
the interface. The boundary conditions, are kept as a static wave generation boundary for
the inlet, imposing velocities and alpha values, and an absorbing boundary for the outlet.
The top boundary is kept as an open boundary imposing a total pressure condition and
the bottom boundary is set to a solid wall with a slip condition for velocities.

Different wave amplitudes are initially tested, starting from the tutorial value of a =
0.3 m. The wave relative depth is an important parameter that has to be evaluated before
proceeding into any analysis. In the current case, using a = 0.3 m the solitary wave has
an equivalent wave length, using the aforementioned approximation of 1% of the wave
amplitude, of λ = 7.76 m and then a relative depth of h/λ = 0.09. This value remains
out of the shallow water range h/λ < 0.05 inducing a non-negligible frequency dispersion
effect, see Fig. 3.2a. In this figure, the numerical free surface elevation 10 m away from
the wave generator is compared with the analytic solution using eq. (3.5). If reducing the
solitary wave amplitude to a = 0.1 m, the equivalent wavelength is λ = 13.4 m and the
agreement with the analytical solution is greatly improved, see Fig. 3.2b.

The upcoming analysis makes use of the relative error comparing the analytical and
numerical solutions for the solitary wave amplitude and celerity:

Err(η) = |ηanaly − ηnum|
ηanaly

· 100 Err(c) = |canaly − cnum|
canaly

· 100 ,

where ηnum and cnum are calculated using the highest elevation of the free surface and
•analy represents the analytical counterparts.

Next, Fig. 3.3 presents these errors for different relative depths 10 m away from the
wave generator, similarly as in Fig. 3.2. Globally, all the relative depths tested have errors
below 10% for both amplitude and solitary wave celerity. Nevertheless, the error decreases
using smaller relative depth configurations which make sense based on the shallow water
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Figure 3.2: Free surface elevation 10m away from the wave generator for two different
relative depths.

theory. The highest relative depth appears to be out of the general trend and this is caused
by initialisation of wave breaking.
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Figure 3.3: Solitary wave amplitude and celerity errors for different relative depths 10m
away from the wave generation boundary.

Fig. 3.4 presents different free surface elevations over time captured at different dis-
tances from the wavemaker. Using this information, conservation of the solitary wave
amplitude and celerity can be studied. Thus, a spatial and temporal convergence anal-
ysis is now presented using a wave configuration with an amplitude a = 0.1 m, a depth
h = 0.7 m, an equivalent wave length λ = 13.4 m and a relative depth h/λ = 0.052.

Fig. 3.5a presents the corresponding relative errors at different locations using different
spatial discretisations. The smaller ratio of cells per wave amplitude a/∆z = 15 can keep
errors under a 5% threshold although these are doubled over a 15 m length propagation.
The higher refinements reduce the errors compared with the analytical solution and can
maintain the wave amplitude with an error smaller than 2% for the last wave gauge.
Regarding the wave celerity there is, apparently, no remarkable improvement while refining
the spatial discretisation. These results are in agreement with the literature [112], where
15 cells per wave height have shown to be sufficient to maintain the wave height over a long
propagation. Fig. 3.5b presents the horizontal velocity 10 m away from the wavemaker
when the free surface reaches its maximum elevation. Comparing the numerical results
with the analytical solution, the agreement is fairly good for all the discretisations. While
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Figure 3.4: Propagation of a Boussinesq solitary wave. Wave parameters: a = 0.1 m and
h = 0.7 m. l corresponds to the wave gauge (WG) distance from the wave maker.

refining the spatial discretisation, a slight improvement of the numerical results towards
the analytical solution is reported. Nevertheless, the horizontal velocities close to the
interface cells experience a sudden increase represented as a horizontal overshot. This
is not surprising and repeatedly observed during this whole work. However, cell sizes
reduction, which consequently refines the interface region, tends to reduce this horizontal
velocity overshot. The main cause of this phenomenon is attributed to the huge air and
water density difference which leads to a local imbalance of the momentum equation near
the interface. As mentioned in previous sections, this has been investigated by other
authors, one of the relevant study being [68].
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Figure 3.5: Spatial convergence analysis of (left) wave amplitude and celerity relative
errors at different distances from the wave maker and (right) horizontal velocities at l =
10 m when η = ηmax. Wave parameters: a = 0.1 m and h = 0.7 m.

Now, the solitary wave propagation and horizontal velocities are compared using dif-
ferent temporal discretisations in Fig. 3.6. These results are obtained using the spatial
refinement a/∆z = 15. Again, from Fig. 3.6a, one can conclude that the temporal re-
finements do not have a remarkable effect on the wave celerity. Nevertheless, a great
improvement in the wave amplitude conservation is observed when reducing the maxCo
with a relative error maintained close to 1% for the smaller time steps. Fig. 3.6b presents
a slight improvement of the horizontal velocity profile using high temporal refinements.
Regarding the horizontal velocity peak near the interface, the time step refinement does
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not seem to improve the solution.
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Figure 3.6: Temporal refinement analysis of (left) wave amplitude and celerity relative
errors at different distances from the wave maker and (right) horizontal velocities at l =
10 m when η = ηmax. Wave parameters: a = 0.1 m and h = 0.7 m.

This section presented the range of applicability for generating and propagating a
Boussinesq solitary wave using a static wave generation boundary and MULES for main-
taining a sharp interface. The following sections will make use of these results as a basis
for a more detailed study of the different aspects when simulating more complex configu-
rations.

3.2 Experimental setup
The next section focuses into a laboratory configuration wave impact phenomenon using
experimental data from [46]. The experimental setup and results are introduced here to
contextualise the numerical work. The experiments were performed in a 17 m long, 0.65
m width and 1.2 m height wave flume, with a 1/15 slope starting at 3.95 m away from the
wave generator, see Fig.3.7 and Fig.3.8.

Figure 3.7: Panoramic view of the wave tank

A Boussinesq solitary wave was generated using a flap type wave maker. This will
propagate along the wave channel and, under certain conditions, overturn by the presence
of the sloped plane. A flexible plate with an embedded base and a simple support was
located 14.5 m away from the wave generator, see Fig.3.9a. Multiple pressure gauges were
added on the plate to record pressure series with an acquisition frequency of 16 kHz. One
of the objectives during the experiments was the study of the plate deflection and, to allow
this, two backlashes of 2 mm were left between the plate and the lateral walls Fig.3.9b.
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14.50m

Figure 3.8: Experimental wave channel sketch X-Z

Furthermore, this separation allowed the air and water to flow through during the impacts.
This fact had a noticeable effect during the impact process and will be further analysed.
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Figure 3.9: Experimental wave channel sketch

Multiple breaking configurations were tested during the experiments, reproducing the
four representative types of wave loads, such as, slightly breaking, low aerated or flip-
through, high-aerated or air-pocket and broken, see Fig. 3.10. Here, two breaking types
are evaluated, using the definitions given by G.N. Bullock [45]: the air-pocket or high-
aerated configuration (see Fig. 3.10c) and the flip-through (see Fig. 3.10b). The selection of
a solitary wave facilitates the analysis of a singular impact event, without any reflected or
incoming wave train. The experimental wave parameters for the air-pocket case defined
in the flat bottom part, were set such as a = 0.0864 m for the amplitude and a water
depth of h = 0.7185 m, resulting in a wave steepness of a/h = 0.1202. Using 1% of the
maximum wave height to determine an equivalent wave length λ, a value of λ = 15 m
is obtained together with the celerity in shallow water c = 2.8 m/s and the equivalent
period T = 5.349 s. This leads to a relative depth of h/λ = 0.0479 which is relatively
well reproduced based on the previous Sec. 3.1.3. Secondly, for the flip-through case,
the amplitude is a = 0.0627 m, the water depth is h = 0.7185 m and a steepness of
a/h = 0.0872 is obtained. The calculated equivalent wave length is λ = 17.64 m and
the relative depth h/λ = 0.04. These two plunging waves have in common an impulsive
behaviour when interacting with a wall while their overturning process.

Fig.3.11 and Fig.3.12 represent the velocity field instants before the impact extracted
from Particle Image Velocimetry (PIV) and the plate pressure distribution for the two
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(a) Slightly break-
ing.

(b) Low aerated or
flip-through.

(c) High-aerated or
air-pocket.

(d) Broken.

Figure 3.10: Waves impingement classification
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Figure 3.11: Experimental high-areated or air-pocket impact

breaking at the highest peak pressure instant. In the PIV images (left picture), the red
horizontal lines on the plate indicate the location of the pressure sensors. In the air-
pocket case Fig.3.11, it is observable, on the velocity field of the left picture, how the
highest velocities are located on the jet with values around 2 m/s pointing towards the
plate. This case entraps high volumes of air between the liquid and the wall. The flip-
through configuration presents velocities of approximately 1.6 m/s pointing towards the
plate in a small localised area. In this situation, a small volume of air is entrapped.

Regarding the pressure distribution, each colour represent different width coordinates
(Fig. 3.11b, 3.12b) on the plate and the black line is the average value at each height. In the
air-pocket, the highest peak pressure is only recorded by one sensor at Z = 0.073 m in the
central section. The pressure sensors inside the air cavity, Z = 0.053 m and Z = 0.043 m,
have significant differences between sections caused by the air escape on the side of the
wall. Besides this, a general 2D assumption seems acceptable regarding the pressure
sensor in the impact point, Z = 0.063 m, which captured very similar magnitudes in
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Figure 3.12: Experimental low-areated or flip-through impact

two different sections. The flip-through impact maintains similar pressure ranges between
different transverse sections of the plate. This is normal because the time for the water
to escape is much longer than for air. Much higher peak pressure values are recorded
and seem to be more localised along the Z direction. This will be further developed and
analysed in the following sections.

3.3 Numerical configuration
This section describes the numerical setup used to model the experimental wave breaking
impacts presented in the last Sec. 3.2. The geometry is maintained as in the experiments.
A static wave generator mimicking a piston type wave maker is employed following the
Boussinesq theory. The selection of a flap or a piston type wave makers causes minor
differences on the wave propagation and a slight calibration is needed to reproduce the
experimental liquid interface instants before the impact. The right and the bottom bound-
ary conditions are set as solid walls with a no-slip condition for velocity. The top side is
modelled by an open boundary with a total pressure condition where air and water can
freely flow out and only air can flow in. Finally, the lateral sides are set to indicate a
two-dimensional problem.

The mesh has two major zones in the vertical direction: above and below the red line
in Fig.3.13. The upper part has a geometric gradation having bigger cells close to the
top boundary (upper right Fig. 3.14) and, the lower region mostly filled with liquid, the
cell height is fixed in order to accurately capture the interface. Regarding the horizontal
direction, a successive refinement by a factor of 0.5 defines 4 regions, see Fig.3.13, where
the coarser is close to the inlet and the finest keeping a cell aspect ratio of 1 on the impact
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area. Over the slope the cells are parallel to the plane (bottom left Fig. 3.14) except on the
impact region where they will keep a 90° angle with the vertical plate. Here, triangular
cells are thus needed to fit the mesh with the sloped plane (bottom right Fig. 3.14). These
bottom boundary cells will reduce the resolution of the run-up wave kinematics but allow
orthogonal cells in the overturning region and close to the impact boundary, which have
shown to produce less erratic impact results in terms of pressure on the impact wall cell
faces.

Figure 3.13: Mesh sketch

Figure 3.14: Mesh details. Notice the background mesh is only representative and the
mesh employed have a higher discretisation.

The finest mesh employed in this 2D configuration had 4.6 million cells and a cell
length at the impact region of ∆x = ∆z = 0.5 mm. A simulation of 9 s is performed,
as in the laboratory experiments with a maxCo = 0.5. It takes 23 h with 28 cores of an
Intel Broadwell (2.4 GHz) in CRIANN (Centre Régional Informatique et d’Applications
Numériques de Normandie). This calculation time is disproportionately divided between
approximately 5 h to compute the first 8 s as the wave propagates and 18h for the over-
turning and impact. The instants before the impact produce high-speed air flows that
drop the time steps drastically down to values of ∆t ≈ 10−5 s, especially when using a 2D
configuration, increasing then the computational time, see Fig. 3.15.

For these simulations, a kinematic viscosity of 1 × 10−6 m2/s was used for water and
1.48 × 10−5 m2/s for air. The density was kept as 1.2 kg/m3 for air and 1000 kg/m3 for
water. Although the problem faced here is an inertial driven flow, the surface tension
was kept with a constant value of 0.07. Following the work of Sumer et al. 2010 [113],
the Reynolds number for a solitary wave over a slopped beach (applicable in the up-rush
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Figure 3.15: Time step evolution during a generation, propagation and an air-pocket
impact of a solitary wave in a 2D compressible simulation

phase) can be defined as: Reu = A(U0m)/ν, where ν is the kinematic viscosity, A is half
of the stroke of the water particle displacement in the free-stream region and U0m is the
maximum free-stream velocity. For the present study, the maximum wave amplitude is
a = 0.0864 m and the water depth out from the slope h = 0.7185 m, thus the maximum
Reynolds number at the slope during the run-up phase is Reu = 103000 which is within
the laminar flow (Reu < 2×105) defined by [113]. It is also presented in the work of [114],
on the supplementary materials, how the SST k − ω does not have a great impact on
the dynamics and kinematics before the impact compared to the laminar model. Thus,
a laminar model has been adopted in this work for the sake of simplicity. The boundary
layer is roughly approximated using the Blasius boundary layer solution [115]. For the two
wave conditions employed in this work, it takes values around 2.3 mm on the horizontal
bottom region and decreases throughout the swash zone. This boundary layer is out of
the scope of the present work and even the finest mesh is not enough to resolve it properly.
This is expected to contribute to the discrepancies against the experiments.

3.4 Solitary wave impact onto a vertical wall - 2D incom-
pressible formulation

In this section, the incompressible assumption is tested using the two-phase solver interFoam
for impulsive impact cases. The air-pocket or high-aerated wave impact is initially tested
using a 2D configuration.

3.4.1 Air-pocket or high-areated impact

This section focuses on the wave breaking air-pocket impact under the incompressible
assumption for both phases in a two dimensions configuration. Two major numerical
challenges are faced in this kind of impact: on the one hand, the complex geometry of
a narrow jet of liquid with high curvatures of the interface, and, on the other hand, the
existence of high-pressure peaks within small-time intervals.

To begin with, a qualitative study of the impact process is presented in Fig. 3.16 with
three snapshots of the dynamics and kinematics of the phenomenon. The reference image
time is shifted so that the highest pressure peak is reached at t = 0 s. The first image shows
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the fields before the impact at the pressure rise time. The second one is at the impact
instant and the third during the splash phenomenon. The pressure fields are presented for
both air and water using the same scale, although, the pressure range is different for each
instant to be representative. On the contrary, the velocity fields have different scales for
both phases and keep the same range for the three instants. The free surface is presented
as a solid black line referenced by the contour of the liquid volume fraction field α = 0.5.

(a) Pressure evolution during the impact
with a different pressure range at the
each instants.

(b) Velocity magnitude for air and water.

Figure 3.16: Two phase air-pocket impact under the incompressibility assumption using
∆z = 0.5 mm. Solid line corresponds to the interface. Top: before the impact t =
−0.00066 s. Middle: impact instant t = 0 s. Bottom: splash after the impact t = 0.002 s.
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First from Fig. 3.16, one can observe how the incoming wave momentum is being
absorbed by the air entrapped inside the cavity before the collision occurs. Here, the
confinement process exacerbates the pressure gradient in front of the water spike increas-
ing the air velocity that flows out from the cavity. This fast air flow drags upwards a
fraction of water, leading to a transformation of the water spike into a narrow vertical jet
front. Comparing the water region before the impact with the PIV experimental images,
presented in Fig. 3.11a, acceptable similarities in terms of velocity magnitudes are pre-
sented. At the impact moment, middle Fig. 3.16, the whole cavity has a constant pressure
value due to the incompressible assumption and the most pronounced pressure gradient is
shown. This fact is not observed in any representative experiments (see [45] or [46]) where
the air cavity region exerts a lower pressure magnitude on the wall than the impinging jet
area. The highest peak pressure is reached as well as a fast deceleration of the water jet.
At this point, the air can no longer escape freely from the cavity and pushes upwards the
water front to expand the cavity volume. This is observed in the bottom Fig. 3.16 where
the highest pressure records are located on the splash jet directed upwards. As the cavity
volume increases, the inner pressure falls.

Now a mesh sensitivity analysis is presented regarding the capability of the solver and
the interface method to model such a phenomenon. Four meshes with a factor of 0.5
refinements are studied and presented in terms of free surface profile before the impact,
pressure distribution on the wall at the impact moment and maximum pressure series on
the wall. All the refinements have demonstrated in Sec. 3.1.3 to be sufficient for generating
and propagating a solitary wave, where the coarser mesh presents a ratio of a/∆z = 43
and the finest a/∆z = 173.

14.36 14.38 14.40 14.42 14.44 14.46 14.48 14.50

X [m]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Z
 [
m

]

dh = 0.5mm
dh = 1mm
dh = 1.5mm
dh = 2mm

(a) Free surface

0 1 2 3

Pressure [Bar]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Z
 [

m
]

dh = 0.5mm
dh = 1mm
dh = 1.5mm
dh = 2mm

(b) Pressure distribution
on the wall

Figure 3.17: Mesh convergence analysis. ∆z refers to the impact region cell height

First, Fig.3.17a represents the free surface instants before the impact. The grid con-
vergence is partially achieved regarding the free surface as it is part of the whole process of
generation, propagation, shoaling and overturning. During this process, a poorly resolved
boundary layer and the interface energy dissipation leads to slightly different wave shapes.
The free surface is extracted at different instants for each mesh to be comparable, as the
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celerity will also vary slightly.
Next, the wall pressure records are studied in Fig.3.17b and Fig.3.18 further detailed

in Table 3.1. The pressure distribution on the wall at the impact moment confirms the
fact that the whole cavity keep a constant pressure at the impact moment, as shown in
middle Fig.3.16.
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Figure 3.18: Mesh convergence analysis: maximum pressure serie on the wall. ∆z refers
to the impact region cell height

The selected series in Fig.3.18 belong to the cell face on the wall where the maximum
peak pressure is reached within the impact area. The series are shifted in time so that
the impact moment occurs at t = 0 s and each serie corresponds to different elevations of
the wall depending on the mesh configuration impact point. These pressure series present
abrupt rises of pressure of the order of 0.02− 0.1 bar less than 1 ms before the main peak
pressure arrives. Then, the impact event is presented as the main peak pressure with high
slopes at the rise time and lower during the fall. After the jet impact, a pressure valley is
presented just before the collapse of the cavity which will lead to the splash phenomenon as
the second pressure rebound. This second pressure rise is due to a strong jet of air trying
to escape from the cavity through the front part of the overturning wave and pushing
upwards with high velocity the liquid phase (see Fig.3.16). Depending on the violence of
this jet, a smooth rebound ∆z = 2 mm is observable which turns out to be steeper as
the mesh is being refined to ∆z = 0.5 mm. With respect to the maximum pressure value,
once again the peak pressure keeps increasing when the cell size is being reduced. On the
other hand, the rise time decreases while refining the mesh. These behaviours are similar
to what was observed in Sec. 2.2.1.

∆x = ∆z [mm] 2 1.5 1 0.5
pMax [bar] 0.344 0.537 0.93 2.656

∆t [s] 4× 104 2.3× 104 1.2× 104 7× 105

I [N · s/m2] 35.18 35.72 35.97 36.2

Table 3.1: Pressure and impulse impact study for different spatial discretisations

In this realistic wave impact, the definition of the impulse is calculated as an integral
under the pressure serie (see the impulse definition Sec. 2.1). Now, the time before the
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impact tb is the instant where the pressure slope will remain approximately constant until
the peak pressure. Consequently, this defines the rise time expressed in Table 3.1 as ∆t.
The time after the impact ta is defined here as the same point for all different meshes
as t = 0.0014 s where the function slope is approximately 45◦ with the horizontal. After
these definitions, the obtained results are presented in Table 3.1 where a good convergence
on the pressure impulse is achieved, similarly to what was obtained on the idealised wave
configuration. With such results, it turns out that the incompressible assumption in a 2D
configuration may lead to erroneous pressure peaks when studying such impulsive events.

3.5 Solitary wave impact onto a vertical wall - 2D compress-
ible formulation

Following the impossibility to obtain converged peak pressure values under the incompress-
ible assumption, a new approach using a compressible solver compressibleInterFoam is
evaluated in this section. Two realistic breaking waves are modelled and analysed focusing
on the compressibility role with a 2D configuration wave channel. A mesh sensitivity anal-
ysis is regarded for the air-pocket impact, followed by a comparison with the experimental
data in terms of pressure records on the wall for both high and low aerated impacts.

3.5.1 Air-pocket or high-areated impact

This section focuses on the air-pocket impact under the compressibility assumption for
both phases, following the ideal gas and the Tait’s equation of state (see Sec. 1.2.4) in a
two dimensions configuration.
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(a) Pressure evolution during the impact
with a different pressure range at the
each instants.

(b) Velocity magnitude for air and water.

Figure 3.19: Two phase air-pocket impact under the compressibility assumption using
∆z = 0.5 mm. Solid line corresponds to the interface. Top: before the impact t =
−0.00243 s. Middle: impact instant t = 0 s. Bottom: splash after the impact t = 0.00257 s.
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To begin with, a qualitative study of the impact process is presented in Fig.3.19. The
reference time is shifted so that the highest pressure is reached at t = 0 s. The upper
Fig.3.19 represents an instant before the impact. Here the air cavity is being rapidly
enclosed and the pressure starts increasing. The air is forced to leave the cavity through
the space between the wall and the water spike front. The air outflow speed increases as
the water spike approaches the wall and it will stop as soon as the water meets the wall.
Once this happens, the deceleration of the water spike is balanced by a fast pressure rise
to stop the moving liquid. There is only one stagnation point where the velocity is equal
to zero, on each side of this point the liquid escapes up and down. In middle Fig.3.19 the
highest peak pressure is located in the water impact area and the cavity, still pressurised,
will reach lower values. This differs from what was presented under the incompressible
assumption, see middle image in Fig.3.16, where both the air and the water region had the
same pressure value at the impact moment. Finally, the splash phenomenon occurs when
two water jets go upwards and downwards from the impact area avoiding the obstacle,
bottom image Fig.3.19. This last phenomenon are characterised by dynamic pressures in
the order of p = ρu2.
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Figure 3.20: Pressure records during a 2D air-pocket or high aerated impact

Further understanding of this process can be extracted from the pressure fields recorded
in every time step on the wall cell centres. Fig.3.20a presents a typical pressure record on
the water impact area undergoing a 2D high aerated impact (z = 0.067 m). In this region,
the fast deceleration and the higher density will lead to the highest pressure values in
these kinds of events. Three main phenomenons are presented here; first the peak pressure
related to the high density phase impact (0 < t < 0.01 s). Secondly, and until t < 0.2 s, a
process of pressure oscillations due to an anisotropic contraction and expansion behaviour
of the air cavity; this behaviour has already been reported experimentally in [39], [38]
or [45]. This process (t > 0.2 s) could be related to a spring effect of the compressibility
of the gas pocket, similarly to what was presented in Sec. 2.3. The shape and area
of the cavity will have a great effect on the magnitude and damping of these oscillations.
Moreover, this air cushioning effect evokes the necessity of a two-phase solver and has been
studied before from a different perspective using Lagrangian methods, e.g. [81]. Finally, a
tended rebound of quasi-hydrostatic pressure is presented during the run-up phase. This
has not been completely computed as it is out of the impulsive scope of this work and
involves a turbulent behaviour.

Now four numerical pressure sensors near the impact point are analysed in Fig.3.20b.
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The black continuous line is a zoom of the impact instants (−0.01 < t < 0.01 s) already
presented in Fig.3.20a. The red sensor located inside the air cavity is the first to be
pressurised with a gradual growth as the air cavity is being enclosed. It will have a cush-
ioning effect reducing the whole event violence. The black sensor simultaneously climbs
on pressure until a sudden jump presents the highest peak pressure. This happens when
the water spike meets the wall. The peak pressure is located on the water spike impact
area. However, it will move relatively between the red and the blue sensors depending
on the water spike shape and disposition. After the impact, the pressure drops and re-
bounds as the air cavity is being gradually pressurised due to the incoming wave. Before
impact (−0.0025 < t < −0.001 s), the atmospheric pressure remains constant on the blue
sensor Z = 0.073 m until a subatmospheric pressure happens just before the water meets
the wall. This subatmospheric pressure has also been reported experimentally by [38]
or [116] and is produced by the high-speed air flowing out before the entrapment. Next,
the steepest pressure rise occurs when the liquid first meets the wall and keeps increasing
levelling the air cavity pressurisation. To end with, a sensor (green dashed line) above the
impact area is also affected by the air jet depressurisation. It will not increase in pressure
until the splash phenomenon starts and then it will further be pressurised by the cavity
compression.
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Figure 3.21: Mesh convergence analysis. ∆z refers to the characteristic cell length in the
impact region denominated as 4 in Fig. 3.13.

Now a mesh sensitivity analysis is carried out, in terms of free surface and pressure
fields, with a spatial refinement factor of 0.5. These meshes are referenced by the charac-
teristic cell length ∆x = ∆z in the impact area (region 4 of Fig. 3.13). Fig.3.21a compares
the free surface profile before the impact. A partial convergence is achieved due to the
interface diffusion and a poorly boundary layer resolution during the wave: propagation,
shoaling and overturning. Therefore, the pressure record with the highest peak pressure,
being highly sensitive to the water spike, is located at different elevations and instants.
Fig.3.21b presents this highest pressure signal recorded on the wall at Z = 0.052m for the
coarser mesh (blue dashed-dotted) and Z = 0.067 m for the finest (black line). This last
configuration corresponds to the one presented on Fig.3.20. The signals were shifted so
that the highest pressure is reached at t = 0 s. The most relevant feature is the stability
of the peak pressure around 0.2 bar while refining the cell size, hence slightly modifying
the water spike geometry. Besides this fact, the pressure rise before the impact has some
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differences between the finest and the coarser mesh. This may originate from the faster
arrival of the peak pressure. To further develop this, as it was mentioned in Fig.3.20b, the
peak pressure may not occur at the very first liquid-solid contact but will depend on the
incident angle and front shape of the water spike. The pressure rise due to compression of
the air cavity, with a lower slope than the fluid impact, has two major differences between
discretisations: on the one hand, a lower maximum value of the first compression related
to smaller volume of air being entrapped by the coarser mesh ∆z = 2 mm; and on the
other hand, a sooner appearance of this compression linked to the fact that the presented
pressure record is closer to the air cavity with the coarser mesh.
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Figure 3.22: Parametrization study regarding the water depth and wave amplitude

The convergence of the results towards a stable solution while improving the mesh
resolution gives confidence to now compare the numeric results with the experimental
data. The finest mesh ∆z = 0.5 mm is employed in the forthcoming comparisons. To
achieve the better experimental-numerical comparison, it is necessary to reproduce the
kinematics and fluid geometry moments before the impact. The chosen experimental
wave parameters for this case were a soliton amplitude of 0.0864 m and a water depth
of 0.7185 m. However, as mentioned before, the wave maker during the experiments was
a flap and here a piston type is employed. This will arise slight differences during the
propagation and, thus, a parametrization study regarding the water depth and amplitude
was carried out to obtain the most comparable profile before impact, see Fig. 3.22. It
is observable how, by increasing the water depth and maintaining the wave amplitude,
the breaking points moves away from the impact plate. Or, by maintaining the same
water depth and increasing the wave amplitude this will occur similarly. The numerical
amplitude employed in this case is 0.0844m and a water depth of 0.7165 m, which produces
the interface profile shown in Fig.3.23a.

Differences can be seen in terms of surface elevation in the order of mm and lower depth
regarding the quasi static-fluid under the air cavity. The air cavity has a smaller area when
compared with the experiments and the numerical water spike is narrower. Furthermore,
very low amplitude oscillations are observable at the top part of the wave due to some
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Figure 3.23: Free surface and pressure distribution comparison at the impact moment.

parasitic currents on the low density phase near the interface. This phenomenon has been
already and largely reported in the literature, linked to the surface tension term on an
initial stage (see [67, 69, 117]) and extended to inertial flows due to an imbalance on the
pressure and the density gradient terms near the interface (see [68,75]). Here these wiggles
remain small enough not to affect the inertial driven flow during the next few seconds.
Although these discrepancies with the experiments, a fairly good agreement is achieved
and allows a fair comparison in terms of loads on the wall.

Fig.3.23b compares pressure distributions at the instant when the maximum pressure
peak is reached numerically and the averaged maximum pressure distribution from the
experiments, as it was presented in Fig.3.11. The low relative amount of pressure sensors
during the experiments and the variability between the different transverse sections enables
only an approximate comparison. But both numerically and experimentally, the peak
pressure is reached in the vicinity of the water impact region. However, the numerical
distribution reaches the highest peak pressure slightly beneath the initial contact point.
Regarding the experiments the maximal pressure is reached above the initial impact point.
Inside the air cavity, at Z = 0.053 m, the average pressure records extracted from the
different sensors (at different transverse location) have very different values ∆p = 0.14 bar
and the presented averaged value may not be completely representative. On the contrary,
the sensor at Z = 0.043 m has a more reliable value in the experiments and presents an
overestimation of the numerical results. This fact is expected from the 2D configuration
which does not allow the air from the cavity to flow out using the backlash in the transverse
OY direction. Above the impact area, the pressure values remain as atmospheric pressure
both numerically and experimentally speaking.

Fig.3.24 depicts a closer comparison to four temporal pressure series with the exper-
iments. As mentioned above, the temporal series are shifted so that the highest peak
pressure is reached at t = 0 s experimentally and numerically. Slight time lag is observed
due to the different geometries between the numerical and the experimental results. The
behaviour inside the air cavity (Z = 0.043 m) experiences a rise of pressure at the first
instant. Experimental and numerical records are initiated following a similar trend, even
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Figure 3.24: Pressure series for 4 different elevations on the plate in a compressible air-
pocket impact

though their evolution rapidly separate from each other. Sinusoidal like oscillations are
produced numerically by compression and expansion of the air entrapped with an approx-
imate initial frequency of 80 Hz. The simulation reaches a higher value of 0.14 bar during
this first compression of the cavity and a subatmospheric minimum of 0.058 bar in the first
expansion. This pressure oscillation phenomenon is not appreciable on the experiments
after the first rebound. Here the compression of the cavity, with a lower pressure range of
0.08 bar, pushes the air to flow in the transverse direction reducing the pressurisation to
normal atmospheric values. This is followed by a pressure plateau of 0.06 bar produced
by a water jet going downward from the impact point. The expansion and contraction
of the air cavity are completely damped after 0.3 s. This phenomenon will affect all the
pressure signals within the influenced area during this interval.

A focus will now be made on the region where the water spike meets the wall: between
Z = 0.063 m and Z = 0.073 m. A detail of the impact interval is shown on the left
part of Fig.3.24. At Z = 0.063 m, the highest numerical peak pressure of 0.21 bar is
reached. The presented rise in pressure has two main origins: an initial rise produced
by the air-cavity compression and a second, with higher values, by the water impact.
Approximately 1 ms after the peak, the pressure drops and is followed by a second rebound
when the air cavity if fully compressed (see bottom left graph of Fig.3.24). Similarly, the
experimental record presents a lower maximum pressure peak at 0.14 bar then followed
by the air-cavity compression lead pressure rise. Next it follows a similar trend as the
simulation, with a pressure fall and a second rebound simultaneously with the air cavity
maximum compression. The peak pressure then seems to be a superposition of water
spike momentum and the cavity pressurisation effects. Finally, the numerical results will
not capture the experimental behaviour, where the possibility for the air to flow out will
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prevent the subatmospheric oscillations. At Z = 0.073 m, the highest experimental peak
pressure of 0.17 bar is reached (see top left graph of Fig.3.24). Here the high slope on
the pressure rise is originated initially only by the water impact. Numerically the peak
pressure is underestimated due to a lower water impact region.

The pressure sensor above the water impact (Z = 0.093 m) represents the splash
phenomenon and the run-up. Here both numeric and experiment experience at the same
time a pressure rise when the splash phenomenon occurs. Small subatmospheric pressure
drops are captured experimentally and numerically at different instants before this pressure
rise. The air-cavity compression and expansion will also affect this higher part of the
wall arising a clear physical phenomenon differentiation between the experiments and the
simulation.
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Figure 3.25: Spatio-temporal representation of the wall pressure in the compressible air-
pocket impact.

Finally, a coloured map of the evolution of pressure field on the wall is presented in
Fig.3.25. The cavity compression before the water jet meets the wall is presented in lighter
blue below Z < 0.065 m. Less than 1 ms before the maximum peak pressure, the water
meets the wall and a sudden pressure rise is observed at the impact area, coloured like the
orange arrowhead. After that, the peak pressure in dark red is located beneath this point
having a downward direction as the water jet influence starts expanding. At t = 3 ms the
cavity reaches the maximal compression and starts the expansion process. From this map,
the air-cavity compression-expansion oscillating phenomenon can clearly be observed.

3.5.2 Flip-through or low-areated impact
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(a) Pressure evolution during the impact
with a different pressure range at the
each instants.

(b) Velocity magnitude for air and water.

Figure 3.26: Two phase flip-through impact under the compressibility assumption using
∆z = 0.5 mm. Solid line corresponds to the interface. Top: before the impact t = −0.001 s.
Middle: impact instant t = 0 s. Bottom: splash after the impact t = 0.008 s.
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Now the flip-through or low-areated impact is evaluated. This kind of wave breaking
impact only occurs in limited configurations, where the amount of air encapsulated between
the liquid and the wall is small. It produces higher peak pressures than the air-pocket
as well as more violent upwards water jets. Following the same procedure as in the air-
pocket impact, a first qualitative analysis is carried out regarding three snapshots during
the impact interval (see Fig. 3.26). The selected instants are: before the impact, the
instant where the highest pressure peak is reached and the initialisation of the splash. The
complete impact phenomenon occurs over a relative short time interval of 9 ms. From the
upper image in Fig.3.26 for instants before the impact happens, only the lower part of
the wave is in contact with the wall. It is already exerting a momentum pushing the fluid
upwards to avoid the obstacle, similarly as what has been referred as the slightly breaking
case in [45]. Above this point, a relatively large water front is nearly parallel to the wall.
The air is flowing out fast from the small cavity. In this computation, the upward velocity
will not be fast enough to liberate all the air before the incoming wave front meets the wall
resulting in a very small fraction of air entrapment (see middle Fig.3.26). At this moment
the superposition of the fast deceleration of the wave front and the upward jet avoiding
the obstacle lead to a highly localised pressure. Similarly as in the air-pocket situation,
a compression and expansion process happens now with much higher frequencies due to
the smaller size of air cavity. Finally, all the momentum is transferred upwards creating a
violent vertical water jet.
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Figure 3.27: Free surface comparison at the impact moment. Numeric values of α = 0.5.

This wave breaking impact type is regarded as the limit between the slightly breaking
phenomenon and the air-pocket impact, it is then highly sensitive to the wave parameters.
Figure 3.27 depicts numerical-experimental comparisons, first in terms of free-surface pro-
file before impact and second in terms of pressure distribution at different locations on
the plate. The experimental parameters employed were: a wave amplitude of 0.0627 m
and a water depth of 0.7185 m for the water depth before the sloped beach. Here, the
numerical solitary wave generation inputs are a wave amplitude of 0.076 m and a water
depth of 0.7185 m to achieve the profile presented in Fig.3.27a. A similar impact point
elevation is achieved in both cases. However, two major differences are presented in terms
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of higher air entrapment during the experiments and a lower experimental wave height,
both of which could be attributed to the different wave maker types. In Fig.3.27b, the
pressure distribution is presented at the maximum pressure instant. The pressurised area
starts both in experiments and numerics at Z = 0.07 m with a steep gradient towards
the maximal pressure. The experimental pressure sensor at 0.063 m recorded the peak
pressure in two transverse sections (see Fig. 3.12b of Sect. 3.2). This situation is also
reproduced on the simulation where a similar magnitude of this peak is reproduced and
at a slightly lower elevation of Z = 0.06 m. Next, the pressure gradient has higher values
in the experiments regarding the sensors inside the air cavity. This is attributed to the
cushioning effect of a higher fraction of air.
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Figure 3.28: Pressure series for 3 different elevations on the plate in a compressible flip-
through impact

Three relevant pressure series, referred to as black squares in Fig.3.27a, are studied
in Fig.3.28. Let us start from the highest location Z = 0.093 m above the impact point.
Experimentally, an initial noisy behaviour is attributed to the high speed air flowing
out from the cavity producing momentaneous subatmospheric values. These are also
captured on the simulation, though, in lower magnitudes of −0.005 bar compared to the
experimental minimum of −0.03 bar. After approximately 4 ms, there is an experimental
pressure rise which is well captured by the simulation on an initial stage. Numerically, at
t = 0.01 s the simulation reaches a maximum of 0.03 bar and starts a plateau of 0.01 bar
that lasts for 0.3 s. This pressure rise has two main origins: an initial rise produced by
the water jet velocities of 1−2 m/s and a second, by the hydrostatic pressure as the water
ascends the wall. After the initial pressure rise, the experiments rebound to higher values
of 0.08 bar. The main reason for this discrepancy is due to a thermal shock produced by
the difference of temperature between the sensor and the water during wetting process.

Next, the impact point is evaluated at Z = 0.063 m during the experiments and at
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Z = 0.06 m on the simulation. The top left part of Fig.3.28 presents a detail of the
impact interval. At the location where the water front strikes the wall, the pressure
rockets to 0.9 bar in less than 0.3 ms. This is accurately captured by the numerical
simulation. Although, after the impact a sudden pressure drop to a minimum of −0.08 bar
is followed by an oscillatory behaviour linked to the compression and expansion of the
cavity. Here, the obtained frequency with f ' 1000 Hz is much higher than with the air
pocket configuration due to lower volume of the cavity. These oscillations are accurately
captured numerically until the second expansion where the experiments present a faster
damping, probably due to 3D effects. After the impact, the simulation presents a stable
dynamic pressure as it happens in higher elevations on the plate. On the contrary, in
the experiments, a higher value of pressure is recorded most probably coming from the
aforementioned thermal shock on the pressure sensor.

The region below the impact point(Z = 0.043 m) is already wet and receiving pressure
gradually by the incoming liquid before the impact occurs. Approximately 2 ms before
the water front strikes the wall, the pressure starts rising gradually. This happens as the
water changes the velocity direction from being perpendicular to parallel to the wall to-
gether with a deceleration. The sensor is located in the water region during the simulation
while, presumably, it is inside the air cavity in the experiments. Regarding the pictures
extracted from the experiments, an unclear interface is defined in this stage as the cavity
is a mixture of air bubbles and water. This explains a lower peak pressure of 0.28 bar
in this area attenuated by the air on the experiments while a peak of 0.46 bar is numer-
ically captured with pure liquid. The compression and expansion of the air entrapped
are absorbed around the impact point. Here the first expansion reaches numerically a
subatmospheric pressure of −0.015 bar while in the experiments falls to a positive value
of 0.06 bar. Again the damping is underestimated under the 2D configuration as well as
the splash phenomenon which is reaching lower maximal value while getting closer to the
channel bottom. However, a fairly good agreement between the experimental and numer-
ical pressure record is presented on these graphs of Fig. 3.28 which gives confidence in the
numerical assumptions and the computations run.
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Figure 3.29: Spatio-temporal representation of the wall pressure in the compressible flip-
through impact.

Finally, a spatio-temporal representation of the pressure field over the plate is presented
on Fig.3.29. Before the impact (t ≤ 0 s), the lower parts of the plate are being slightly
and gradually pressurised as the wave arrives. At the impact moment, a very intense peak
pressure is located around the impingement point. And generally speaking, the whole area
beneath this point will reach values of ≈ 0.3 bar, that are higher than in the air-pocket
configuration. In contrast, these high loads will only last a short period of time. And
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3.6. 3D compressible solitary wave impact onto a vertical wall

then, high frequency compression-expansion oscillations start.
This section has investigated two wave breaking types using a compressible two phase

solver in a 2D configuration. First, a global convergence study has demonstrated the
possibility to obtain a reliable solution using fine discretisations conversely to what was
presented using an incompressible solver. The numeric result obtained during an air-pocket
breaking wave situation has been compared with the experiments and presented a good
agreement regarding the initial pressure impact and wave shape instants before the impact.
On the other hand, the air entrapment compression and expansion behaviour following the
impact has shown to be highly dependant on the possibility to escape and, here, the 2D
configuration has shown differences regarding the pressure temporal series. Finally, the
flip-through breaking situation has been fully validated against the experiments, capturing
the pressure impact magnitude and the air oscillations after this pressure peak.

3.6 3D compressible solitary wave impact onto a vertical
wall

In this section a three-dimension geometry is employed to model the air-pocket impact.
The motivation of this approach is to measure the influence of the lateral air outflow
from the cavity. The experimental setup allowed this phenomenon by keeping a backlash
between the impact plate and the lateral walls (see Fig. 3.9b or [46]). This is expected
to have a direct influence on the pressure oscillations inside the air cavity presented in
Sec. 3.5.1. This simulation aims to reproduce the short interval of time when the impact
occurs while keeping the refined spatial and temporal discretisations. For this purpose, the
general idea is to reproduce only the impact region for the impact duration, and not the
whole propagation stage which would have been time consuming in 3D. In other words,
the assumption is made that, during the impact process, most of the channel length is not
affected by this phenomenon and vice versa.

(a) 3D geometry sketch
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Figure 3.30: 3D air-pocket impact simulation overview

The presented simulation is an extrusion along the Y direction of the final meters of

78



3.6. 3D compressible solitary wave impact onto a vertical wall

the 2D wave channel during the overturning process. To do so, an OpenFOAM existing
tool called mapFields has been used. The cell centre fields from the source mesh are
interpolated by proximity to the target mesh cell centre at the indicated time. This time
is chosen so that the less time steps have to be computed on the 3D mesh before the impact
occurs together with that the incoming wave should not already be affecting the wall in
terms of pressure. The employed 3D geometry is presented in Fig.3.30a. The last 30 cm
of the 2D channel are extruded along the Y direction. Behind the impact plate, 10 cm
are added in the X direction, which are connected to the main channel through a 2 mm
width backlash as in the experiments. Regarding the mesh, two differentiated regions in
the vertical direction are defined. The lower, beneath the dashed grey line (Fig.3.30a),
will keep an aspect ratio of 1 between X and Z (cell length being ∆x = ∆z = 1 mm).
Above this, which will remain out of the water and the interface region until the run-
up, a geometrical gradation is employed in the vertical direction. in the Y direction, four
equidistant cells of ∆y = 0.5 mm are employed to model the backlash width. A geometrical
gradation of the plate region in the Y direction is employed where the central cells are
double size, then ∆y = 1 mm, compared to the near-wall cells. Back of the plate, the
gradation in the Y direction starts from ∆y = 0.5 mm to 1 mm. With these assumptions,
and using a channel width of B = 0.15 m, the mesh had 4.9 million cells. The simulation
of the 0.2 s impact process using a maximum Courant number of 0.5 approximately takes
41 h with 28 cores of an Intel Broadwell (2.4 GHz) at the CRIANN. Here, the computation
is highly constrained by the Courant condition around the backlash when the fast outflow
of air from the cavity drastically drops the time-step short before the impact and hence
increases the computational time.

The employed boundary conditions are set as solid walls with a no-slip condition for
the lateral wall close to the backlash and the bottom. The impact plate and the end of
the channel boundary are also defined as solid walls with a no-slip condition. However,
aiming to reduce the computational costs of the simulation by only modelling half of the
wave channel in the Y direction, a symmetric boundary condition is set to the central
plane. The computed part of the channel width is in fact Bexp = 0.32 m but this will
not have a major impact on the obtained results. The top plane is defined as an open
boundary with a total pressure condition. Finally, the most critical boundary condition
is the inlet plane where a similar inflow velocity as in the 2D configuration section is
imposed. Here, a constant value of velocity on the horizontal direction is set on each wet
cell. More precisely, a constant velocity of U = 1.1 m/s is imposed at the inlet based on an
extraction from the 2D configuration section situated 14.2 m away from the wave maker.
All the other variables such as the pressure, the liquid volume fraction are extracted from
the air-pocket configuration presented in Sec.3.5.1 at t = 8.33 s.

(a) Pressure fields (bar) (b) Water and air magnitude velocity fields
(m/s)

Figure 3.31: 3D velocity and pressure fields after the impact
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3.6. 3D compressible solitary wave impact onto a vertical wall

Fig. 3.31 presents the 3D velocity and pressure fields. Regarding the velocity fields,
the water spike decelerates fast when meeting the wall and splits into two high speed jets
with velocities up to 5 m/s. The air phase reaches high-speed velocities as it escapes from
the entrapped cavity through the aforementioned back-lash, as presented on the image
far plane. The pressure fields on the water region have a similar representation as in the
2D compressible configuration. However, the air cavity is depressurised gradually as the
air escapes. Here, the pressure gradient is very strong and spatially located close to the
back-lash at these initial moments. After running 25 ms, the free surface extracted from a
central transverse section is represented and compared to Fig.3.30b. The 2D and the 3D
simulations are almost superposed with slightly lower curvatures of the water spike on the
3D computation due to the coarser spatial discretisation on the X and Y direction. The
experimental free surface is also represented and the major differences lie in the larger air
cavity and a slightly wider water spike experimentally.
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Figure 3.32: Pressure series for 3 different elevations on the plate in a compressible air-
pocket impact 3D configuration

Now three representative pressure series, represented by the black squares on Fig.3.30b,
are analysed in Fig.3.32. A pressure sensor located above the impact point, Z = 0.093 m,
will capture principally the splash phenomenon with dynamic pressure range values. Here
the pressure rise occurs at similar instants for both experiments and numerics, approx-
imately 5 ms after the peak pressure. The pressure rise have similar slopes reaching
0.06 bar numerically and higher values of ≈ 0.1 bar experimentally, which will correspond
to velocities between 2.5 − 3 m/s. After, the loss of pressure is much faster numerically
stabilising around 0.018 bar during the run-up phase.

In the impact region, at Z = 0.063 m, two different phenomena explain the recorded
pressure series, either experimentally or numerically. The first explanation is related to
the cavity compression and overlaps with the temporal serie inside the air cavity region
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3.6. 3D compressible solitary wave impact onto a vertical wall

(Z = 0.053 m). The second one with higher temporal derivative is related to the impulsive
event, the impact of the water spike. A peak pressure of 0.14 bar is numerically obtained
and accurately compared to the experiments, although slightly shifted in time. This
delay is related to the fact that the maximum pressure peak experimentally of 0.18 bar is
reached in a gauge located at Z = 0.073 m slightly after the peak pressure at Z = 0.063 m.
Numerically the impact region has a slightly lower elevation and the maximum pressure
value is reached at Z = 0.063 m, as it happened in the 2D configuration (see Fig.3.24).

After the impact a second rebound is presented experimentally with values up to
0.12 bar simultaneously with the maximal compression of the air cavity. This second
rebound is achieved numerically with lower values of approximately ≈ 0.1 bar. However,
the time span between the peak and the rebound is much shorter numerically as the
cavity compression is happening earlier. After this rebound, the air flows out from the
cavity through the backlash as it gets compressed and a pressure drop occurs without
reaching subatmospheric values. Next, a slightly pressure rebound occurs (0.01 < t <
0.03 s) as the water splash blocks partially the backlash decelerating the air outflow and,
thus, compressing the air cavity again. Here the numeric pressure of 0.03 bar largely
underestimate the experimental 0.09 bar, which may be due to a lower blockage of the
backlash. Finally, inside the air cavity at Z = 0.053 m, a first pressure rebound is well
captured numerically in terms of magnitude at 0.08 bar together with a 2 ms time shift.
An experimental peak pressure occurs followed by fast oscillation when the cavity reaches
it maximal compression (t ≈ 0.005 s), which should be further studied. After, the pressure
falls experimentally and numerically. Although, as it has just been mentioned, the second
pressure rebound is being underestimated numerically due to the thermal shock effect on
the experimental pressure sensor.
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Figure 3.33: Spatio-temporal representation of the wall pressure in the 3D air-pocket
impact configuration.

Fig.3.33 present the spatio-temporal representation of the pressure history on the im-
pact plate. Initially a similar behaviour occurs as in the 2D configuration (see Fig. 3.25),
while the air cavity is being compressed before the impingement. Just after the water
spikes meets the wall, a localised pressure rises up to 0.14 bar is generated slightly below
the impact point. As the splash phenomenon develops, it pressurises the wet area. At
the same time, the cavity is being compressed until a maximum value is reached pushing
the air to outflow through the backlash. The pressure oscillations observed on the 2D
configuration are not observable anymore, which was expected in this 3D configuration.

The section has demonstrated the possibility to model an air-pocket wave breaking
impact using a 3D configuration and a compressible solver. An expensive high-resolution
simulation has been used and aroused the necessity of high computation resources for
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3.6. 3D compressible solitary wave impact onto a vertical wall

reproducing this kind of phenomenons. The pressures series present a fairly good agree-
ment with the experiments quantitatively and qualitatively, by capturing all the relevant
phenomenons. This study concluded the possibility to study numerically the physics be-
hind a plunging wave with high air entrapment with the necessity of using a two phase
compressible solver.
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Chapter 4

Oscillating water column facing a
nearshore irregular sea state

This chapter puts together all the experience gained from the previous chapters and adds
further complexity. Here an oscillating water column device is evaluated facing a near-
shore fully developed irregular sea state. After a short introduction of the irregular waves
theory, the performance of the relaxation zone method is evaluated attempting to gen-
erate and propagate an irregular sea state over an horizontal plane using a JONSWAP
calibration. Next, an oscillating water column device and a sloped beach are introduced
reproducing the experimental configuration used in [118]. The ability to model the OWC
chamber behavior is studied and compared with the experiments. Finally, three differ-
ent irregular sea state conditions are investigated with special interest on the front wall
pressure exerted by waves. Two of the aforementioned random sea states only produce
non-impulsive events and a final one is expected to violent breaking waves impacts on the
structure.
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4.1. Irregular waves generation and propagation

4.1 Irregular waves generation and propagation
This section is dedicated to the description of the procedure employed in the present work
to reproduce a numerical irregular sea state. The waves are generated using a relaxation
zone method, a technique that is detailed in Sec. 1.3.2. The irregular wave theory using
the summation of several monochromatic waves is derived from the same set of equations
which were presented in previous Sec. 3.1.1, namely the kinematic and dynamic boundary
condition that read:

∂η

∂t
+
(
∂Φ
∂x

)
z=η

∂η

∂x
−
(
∂Φ
∂z

)
z=η

= 0 , (4.1)

and

∂Φ
∂t

+ 1
2

[(
∂Φ
∂x

)2
+
(
∂Φ
∂z

)2]
z=η

+ gη = 0 . (4.2)

However, the case studied here is based on the deep-water wave theory. It uses the
assumption of small amplitude waves i.e. a << λ, where a is the wave amplitude and λ is
the wavelength. Under this condition, the term ∂η/∂x from eq. (4.1) is much smaller than
1 and may be neglected. Moreover, continuing with the small amplitudes assumption, the
terms (∂Φ/∂x)2 and (∂Φ/∂z)2 from eq. (4.2) can also be neglected. This consideration
can be demonstrated by using a dimensional analysis, however, this is no developed in the
present work.

Finally, the two previous equations now read:
∂η

∂t
−
(
∂Φ
∂z

)
z=η

= 0 , (4.3)

and
∂Φ
∂t

+ gη = 0 . (4.4)

The bottom boundary is assumed to be horizontal and the fluid to be incompressible.
From these equations, a solution for a propagating wave with a single frequency or a
monochromatic wave can be derived, which is commonly referred to as Airy, linear or
first-order Stokes wave theory.

The irregular waves are obtained by a linear superposition of these single Airy or first-
order Stokes waves and the solution for the free surface elevation, for N being the number
of wave components, reads:

η =
N∑
i

aicos(ωit− ki · x + ϕi) , (4.5)

where ai is the amplitude of the ith wave component, ωi the cyclic frequency, ki the
wave-number vector and ϕi the a phase. The wave-numbers and the wave frequencies are
connected by the dispersion relation,

ω2
i = g ki tanh(kih) . (4.6)

Finally, the horizontal and vertical velocities are also calculated using a linear super-
position of first-order Stokes such as:

u =
N∑
i

2π
Ti
ai
cosh(ki(z + h))

sinh(kh) cos(ωit− ki · x + ϕi) (4.7)
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and

v =
N∑
i

2π
Ti
ai
sinh(ki(z + h))

sinh(kh) sin(ωit− ki · x + ϕi) . (4.8)

The free surface elevation (eq. (4.5)), the dispersion relation (eq. (4.6)) and both
horizontal and vertical velocities (eq. (4.7) and (4.8)) are the core of the irregular wave
theory based on monochromatic waves. The obtained results from these free surface and
velocity formulas are then introduced as target solutions within the relaxation zone method
for generating the waves conditions (See Sec. 4.1.3).

4.1.1 JONSWAP wave spectrum

Real sea state conditions are characterized by random waves, whose spectral representation
can generally be represented by Pierson-Moskowitz or JONSWAP spectra. These spectral
representations of irregular sea states can be applied for fully or partly developed seas.
The present work uses the JONSWAP spectrum to calibrate the irregular sea state, which
is suitable for a fully developed sea states generated by winds blowing for a long time
over a large area of sufficient fetch length. The fetch length is defined by the distance
over which the wind blows with constant velocity. Such hypothesis are generally validated
for sites where wave energy devices, and especially OWC, are placed. This JONSWAP
spectrum was proposed after analysing data collected during the Joint North Sea Wave
Observation Project (JONSWAP) [119] and adds an extra peak enhancement factor to the
Pierson-Moskowitz spectrum. The spectrum takes the following form:

S(f) =
αH2

s f
5
p

f5 exp
[
− 5

4
(fp
f

)4]
γ
exp

(
− (f−fp)2

2σ2f2
p

)
, (4.9)

where Hs is the significant wave height and f is a wave frequency. The coefficient α is
known as the Phillips constant, empirically related to the fetch length and wind speed 10
m above the free surface. Here, α is calculated as follows:

α = 0.0624
0.23 + 0.0336γ − 0.185

1.9+γ
. (4.10)

γ is the peak enhancement factor, which takes a value of 3.3. fp is the peak frequency
and σ is a relative measure of the peak width. Here, σ takes the recommended value:

σ =
{

0.7 for f ≤ fp
0.09 for f > fp.

By selecting {Hs, Tp} the spectrum is defined relating each frequency f with a spectral
density associated S(f) and, thus, a wave amplitude. The resultant spectrum is then
discretised into independent waves obtaining a list of N components of amplitudes ai and
frequencies fi which are introduced into eq. (4.5), (4.7) and (4.8). The wave-numbers ki
are then calculated using eq. (4.6) and the wave phases ϕi are selected randomly. The
present work only imposes a limited range of spectral frequencies (fp/2 < fi < 3fp), which
is representative of the real sea state.

4.1.2 Spectral density estimation

A way to characterise a random sea state is usually by recording the free surface elevation at
given locations. However, this is not representative by itself due to the statistical properties
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of the signal. Then, a representation over the frequency domain is often envisaged and
calculated using techniques based on the fast Fourier transform algorithm. The present
work uses a slightly more sophisticated approach by taking advantage of the Welch’s
method [120].

This method has already been tested and demonstrated to be suitable for an efficient
reconstruction of the sea state parameters starting from a random wave time history by
Rossi et al. [121] for instance. The method consists of parsing the data record into smaller
segments with partial overlap. The periodogram [122], which is the square of the Fourier
transform, is calculated for each segment and the final spectrum is obtained by averaging
over them. Typically, the signal is split into 512 · n segments, where n is an even number,
and the segment overlap is set to 50%.

4.1.3 Generation and propagation of an irregular sea state

In this section, the capabilities of the relaxation zone method for generating and absorbing
irregular waves will be tested and validated. For this purpose, a simple rectangular nu-
merical wave tank (NWT) in 2D (see Fig. 4.1) is used to generate, propagate and absorb
irregular waves. The numerical wave tank geometrical characteristics are summarized in
Tab. 4.1. So far boundary conditions are concerned, the top boundary is defined as an
open boundary with a total pressure where air and water can freely flow out and only air
can flow in. The bottom boundary is defined as a solid wall with a no-slip condition; the
inlet and outlet boundaries have the prescribed velocity and free surface elevation condi-
tions given by the relaxation zone method. All over the domain, a structured grid is used
with a cell aspect ratio of ∆x/∆z = 2, where ∆z refers to the cell height. Additionally,
around the free surface, a refined region is defined where the cell sizes are divided by two.
Keeping the same mesh for the different configurations, this leads to different ratios of
the number of cells per significant wave height Hs/∆z or wavelength λp/∆z. These ratios
are presented in table 4.2. The physical cell dimensions on the free surface region are
kept as ∆x = 10 cm and ∆z = 5 cm. The time discretisation is adjustable and limited
by a maximum Courant number condition of maxCo= 0.8 ( maxCo = mag(U) · ∆t/∆x,
where mag(U) is the velocity magnitude and ∆t is the time step) in the vicinity and away
from the interface. Before a discussion of the results from the simulations, it is important
to highlight the coarse spatial and temporal discretisation of this simulation to evaluate
the limit of both accuracy and time consumption for large stochastic simulations. These
simulations consider the presence of any relevant turbulence phenomenon to be negligible
and a laminar model is selected.

Inlet relaxation 
zone

Outlet relaxation 
zone

Computational 
domain

S.W.L.
wave 
gauge

wave 
gauge

Figure 4.1: Geometrical definition of the numerical wave tank.
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Table 4.1: Numeric wave tank dimensions

LRi (m) 50
LRo (m) 20
LX (m) 130
LZ (m) 6

In the presented simulations, and more generally all over the present study, random
waves are generated using N = 100 wave components and a random phase seed ϕ. In-
creasing the number of wave components has shown to proportionally increase the com-
putational time consumption without any clear improvement of the solution. The total
physical time duration is defined as 500Tp to capture the statistical properties of the
considered irregular sea state. For this validation section, three waves conditions will be
tested. The major difference between these three sea states is the wave steepness, defined
as s = Hs/λp and presented in Table 4.2. Two numerical wave gauges are located l = 10 m
and l = 100 m away from the end of the relaxation zone inlet region and record the free
surface elevation every 0.05 s. From these temporal series, a spectrum is calculated and
compared with the input spectrum as depicted in Fig. 4.2. From these figures, the three
configurations are fairly well reproduced compared with the imposed spectrum 10 m away
from the inlet relaxation zone. The configuration with the highest steepness s = 0.03
has the worst solution when observing the peak frequency and higher frequencies related
energy. This last phenomenon is also observable, with a lower appreciation, on the second
steepness configuration s = 0.02. On the other hand, the wave gauge located l = 100 m
away from the relaxation zone is a clear indicator of the propagation stage. For the low-
est steepness, s = 0.01, the sea state energy distribution and magnitude are surprisingly
well conserved. Conversely, the higher steepness configurations present a more dissipa-
tive behaviour, which can be attributed to the coarse temporal and spatial resolution, see
Tab. 4.2. Moreover, hardly any reflection effects are appreciable on any of the computed
spectrum.
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4.1. Irregular waves generation and propagation
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Figure 4.2: Spectral analysis of different simulated irregular sea states compared with the
input spectrum following a JONSWAP calibration. The spectrum is obtained from a free
surface elevation temporal series at two locations l = 10 m and l = 100 m away from the
generation boundary, see Fig. 4.1
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4.2. Experimental setup and numerical configuration

Table 4.2: Simulation results

Hs Tp Hs/λp Hs/∆z λp/∆z Hm0 Hmax

l=10 m l=100 m l=10 m l=100 m
0.26 4.5 0.01 5 233 0.259 0.238 0.442 0.442
0.26 3 0.02 5 130 0.248 0.199 0.429 0.368
0.39 3 0.03 8 130 0.366 0.301 0.578 0.567

The results are quantified in Tab. 4.2 by making use of the wave height related to
the spectrum zeroth momentum Hm0 = 4

√
m0 together with the maximum wave height

directly extracted from the free surface temporal signal. The significant wave height
Hs is a user-defined value in this table and it can be extracted directly from the free
surface temporal serie. On the other hand, the zeroth momentum wave height Hm0 is
a statistical parameter calculated from the wave spectrum. Regarding the results of the
first configuration (s = 0.01), the previous analysis is further confirmed with errors for the
significant wave height under a 1% for the generation sensor (l = 10 m) and around 8%
for the propagation sensor (l = 100 m). Moreover, the rule of thumb typically employed
to calculate the maximum wave height (i.e. Hmax ≈ 1.8Hs) seems to be pretty accurate.
The second configuration (s = 0.02) presents a significant wave height error of 4.5% in the
vicinity of the wave generator and a non-negligible 23% for the sensor 100 m away. Again,
the maximum wave height is in line with the zeroth momentum wave height. Finally,
the last configurations (s = 0.03) have the highest errors with 6% and 22.8% for the two
sensors, whereas the maximum wave height seems to be underestimated when compared
to the rule of thumb formula.

This section has covered three different irregular sea state configurations evaluating
the generation and propagation accuracy using a certain discretisation. Affordable com-
putational times for very long simulations was one of the objectives of the present section
and this is the main reason why fairly low discretisations are employed. One may con-
clude a good performance of the generation method under these conditions. A fairly good
accuracy for propagation over reasonable length has been observed, but high dissipation
of the wave heights for longer distances (≈ 100 m). However, a lower accuracy of the
propagation stage is not surprising due to the remarkable length of the numerical wave
flume combined with the present discretisation. Finally, in the forthcoming sections the
propagation lengths are in the order of (≈ 20 m) and the previous study gives confidence
for pursuing with the methodology employed here.

4.2 Experimental setup and numerical configuration

4.2.1 Definition of the experimental configuration

The forthcoming numerical results will be compared with the experimental data-sets ob-
tained from Allsop et al. [118] dealing with Large scale tests on a generalised oscillating
water column wave energy converter. This experimental study was led by Dr. Tom Bruce
in the Grosse Wellenkanal (GWK) under the Hydralab IV project. Several authors al-
ready analyzed the obtained experimental results. On the one hand, Viviano et al. 2016,
2019 [123, 124] characterized reflection coefficients, exerted pressures on the exterior and
interior of the OWC curtain wall, and compressibility effects inside the OWC chamber.
On the other hand, and more recently, Pawitan et al. 2019, 2020 [18,125] further explored
the wave loads and pressures on the structure front wall and proposed an extension to
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4.2. Experimental setup and numerical configuration

the Goda [28]’s formulation. Dimakopoulos et al. 2015 [126] numerically reproduced the
chamber behaviour under regular waves and this piece of work has been of great help for
the current study. Nevertheless, an incompressible solver was employed at that time which
presented some limitations under certain circumstances. However, Dimakopoulos et al.’s
results will be used as a matter of comparison and further validation.

(a) (b)

Figure 4.3: Photos from the experimental setup during the installation and the OWC
undergoing a wave interaction

These experiments were designed at a nominal Froude scale of approximately 1:9 rela-
tive to a prototype. The flume was 307 m long, 7.0 m deep and 5.0 m wide and the OWC
structure (Fig. 4.4) was 97.5 m away from the piston paddle wave-maker. The structure
was composed of 3 chambers as one can see from Fig. 4.4(a) with a 1 in 6 slope rising from
the flume floor to the structure foot.

Multiple wave gauges (WG01-WG04) were located halfway between the wave-maker
and the structure and also in front of the structure (WG05-WG08). The central caisson
had five free-surface elevation gauges (WG09-WG13) inside the chamber, which can clearly
be identified from the schematic representation of Fig. 4.4. The acquisition frequency for
all wave gauges was set to 100 Hz. The central caisson was equipped with multiple pres-
sure transducers (General Electric Druck PDCR 1830) measuring air and water-induced
pressures on the front face, internal back wall and roof of the caisson. These pressure
transducers are also clearly identifiable from Fig. 4.4. The pressure transducers sampling
rate was set to 1 kHz for all test cases. Finally, a differential pressure transducer also
measured the effects of an adjustable orifice. This adjustable orifice was installed to con-
trol the air flows in and out of the caissons chambers, via the 0.5m diameter tubes or
chimneys (see Fig. 4.4 and the three of them in Fig. 4.4(a)), altogether mimicking a power
take-off (PTO) device. Various openings of the adjustable orifice were tested during the
experiments, these a referenced by using an open orifice diameter against the chimney
diameter (d0/D), where d0/D = 0 means a completely closed orifice and d0/D = 1 a
fully opened situation. This ratio is expected to have a a great effect on the chamber be-
haviour, e.g. using small ratios the air inside the chamber presents compressibility effects.
The experiments were run through a series of regular (Reg#) and random (Irr#) wave
conditions. And some of the relevant ones for the present study are detailed in Tab. 4.3.
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4.2. Experimental setup and numerical configuration

Figure 4.4: Cross section of OWC model, showing (qualitatively) the locations of pressure
transducers (red) and wave gauges (blue)

4.2.2 Data analysis

As aforementioned, all pressure transducers had a high acquisition frequency of 1 kHz.
This was necessary to accurately describe possible impulsive loads related to breaking
waves. However, this induced a non-negligible noisy signal and occurrences of some non-
physical oscillations. This issue was already addressed in Viviano et al. [123] for the
impulsive pressure series. But the lack of information has motivated the present authors
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4.2. Experimental setup and numerical configuration

Table 4.3: Summary of wave conditions

Regular waves

Ref H T h H/λ d0/D

[m] [s] [m] [-] [-]

Reg6.05 0.4 4 3.5 0.02 0.6
Reg6.10 0.4 4 3.5 0.02 0.1

Irregular waves

Ref Hs Tp h Hs/λp d0/D

Irr01.10 0.26 3 3.5 0.02 0.6
Irr13.01 0.26 4.5 3.5 0.01 0.4
Irr11.07 1.0 6.0 3.5 0.03 0.4
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Figure 4.5: Pressure signal recorded by transducer (P3), located on the front wall. Test
conditions Irr01.10 are: HS = 0.26 m, TP = 3 s and d0/D = 0.6.

to develop a new filter for a better assessment and understanding of these experimental
pressure signals.

Regarding the configurations without any impulsive event, the temporal scale of all the
relevant phenomenons is at least 0.1 s, which is two orders of magnitude larger than the
acquisition time step of 1 ms. Under this assumption, three main aspects are addressed
for filtering the original signal, as depicted in Fig. 4.5.

1. First, some scattered values can easily be identified as the one depicted at the bottom
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4.2. Experimental setup and numerical configuration

right of Fig. 4.5a for t ≈ 879 s. These scattered values are removed from the series
using a filter (eq. 4.11) based on a local variance:

(p(ti)− p(ti±1))2 > 25 ·

 1
100

i+50∑
n=i−50

(p(tn)− p(ti−50 < t < ti+50))2

 , (4.11)

where p refers to the mean value within the interval. Each pressure value p(ti) dif-
ference with the previous and the following value (ti−1, tt+1), where ti is the current
time-step, is compared against the average variance of the 50th previous and follow-
ing values. If one of the local differences is higher than 25 times the local variance,
the value is removed from the signal.

2. Secondly, a smoothing filter is used by averaging each value p(ti) over the (ti−50, tt+50)
consecutive values, see Fig. 4.5b.

3. Finally, a qualitative analysis is carried out for the two highest pressure sensors (PS
04 - 05) by observing if any wave reached that elevation. To do this, the instants
related to the highest waves are identified by looking at the pressure series (pmax)
from (PS 01 - 02 - 03). Then, the pressure series from (PS 04 - 05) are observed at
those instants and if there is any relevant pressure rebounds occurring (see Fig. 4.5c),
it is assumed that the wave did not reach that elevation. If any of the two highest
waves observed is captured by the two highest pressure sensors (PS 04 - 05), it can
be concluded that the pressure signal related to wave loads is zero at that location.

4.2.3 Mesh and time discretisation

Inlet relaxation zone (50 m)

Figure 4.6: Full mesh snapshot and a detail of the mesh in the vicinity of the OWC.

The employed numerical wave flume used to validate the experiments previously de-
tailed in Sec. 4.2.1 is 84 m long and 12 m high using a 2D configuration. The relaxation
zone, motivated by the results of Sec. 4.1.3, is 50 m long (see top of Fig. 4.6) having
the possibility to allocate more than one wavelength in the present conditions. Boundary
conditions are set to a solid wall with a no-slip condition for the flume bottom, sloping
beach and structure. While the top boundary is left as an open boundary imposing a
total pressure condition, where air and water can freely flow out and only air can flow in.
The computational domain is discretised into a structured grid (see Fig. 4.6). To optimise
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4.2. Experimental setup and numerical configuration

computational times, a variable grid is defined (see bottom of Fig. 4.6), with a higher
resolution around the free surface and close to the structure and beach boundaries. ∆x is
defined as the horizontal cell size and ∆z the vertical one. The grid cell size is selected to
maintain an aspect ratio ∆x/∆z = 1 throughout the entire computational domain with a
characteristic value of ∆x = 0.1m. In the refinement areas and at the free surface, ∆x is
reduced (divided by 2) to obtain a value of ∆x = 0.05m, keeping a low wave height/grid
size ratio of H/∆z = 8 for the regular wave cases. This allows to reduce the computational
time costs while keeping a fairly reasonable accuracy. Nevertheless, the analysis carried
out in Sec. 4.1.3 showed this range of grid size to be enough for a variety of irregular wave
configurations. Finally, the cells size surrounding the beach and the structure are even
further refined to a value of ∆x = 0.025m.

An adaptive time-stepping is employed for the time discretisation using a maximum
Courant number maxCo = 0.4. Although this is higher than the literature recommendations
to obtain stable wave profiles, it is selected for balancing accuracy and computational costs.
All the simulation that will be presented in the next sections are summarised in Tab. 4.4.

Table 4.4: Summary of simulations

Regular waves

Ref H/∆z λ/∆x maxCo Solver Turbulence
model

Physical time

[-] [-] [-] [-] [-] [s]

Reg6.05
8 400 0.4 incompressible laminar 100
8 400 0.4 compressible laminar 100

Reg6.10
8 400 0.4 incompressible laminar 100
8 400 0.4 compressible laminar 100

Irregular waves

Ref Hs/∆z λp/∆x maxCo Solver Turbulence
model

Physical time

Irr01.10
coarse 5 262 0.4 incompressible mod k − ω

SST
3000

refined 7 349 0.4 incompressible mod k − ω
SST

3000

Irr13.01
5 466 0.4 incompressible mod k − ω

SST
4500

5 466 0.4 compressible k − ω SST 4500
Irr11.07 20 657 0.4 compressible k − ω SST 2000
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4.3. OWC chamber under regular waves

4.2.4 Power take-off damping with porous material

In the present work, similarly as in previous studies [126], a porous layer is introduced
numerically to model the adjustable orifice behaviour. Firstly, when converting the 3D
experimental domain into a 2D model, the opening of the slot is redefined to keep the
same orifice area. To do this, the initially circular tube is assumed to be a rectangle and
its width can be calculated using the following formula:

w = A0
B

, (4.12)

where w is the slot width, A0 is the orifice area and B = 1.45m is the OWC chamber
transverse width. Hence, the slot width is defined here such as w = 0.14m. According
to [127], the PTO pressure damping can be consistently represented using a porous mem-
brane, which establishes a linear-quadratic relation concerning the flow rate, according
to:

P = k1q + k2q
2 , (4.13)

where k1, k2 are damping coefficients and q the flow rate. Experimentally, this flow resis-
tance is achieved by using an adjustable orifice. It is well known that impulse turbines,
commonly used for converting pneumatic power to shaft power, have a non-linear behav-
ior [128]. Thus, in the present work only the quadratic term is kept and, for an orifice
plate, the resistance coefficient can be calculated using:

k2 =

[
1− CC

(
d0
D

2)]2
C2
C

(
d0
D

4) , (4.14)

where CC is an empirical contraction coefficient as detailed in [129]. Numerically, this
resistance is modelled utilizing a porous membrane obeying the Darcy-Forchheimer law,
according to:

∇P
ρg

= au + b|u|u , (4.15)

where a, b are the Darcy and Forchheimer coefficients, respectively. This equation is
introduced in the momentum equation as a source term acting only on the porous region.

4.3 OWC chamber under regular waves
This section aims to properly characterise the behaviour of both fluids inside the OWC
chamber. For this purpose, experimental configurations using two regular wave conditions
are chosen for a sake of simplicity. Also, Dimakopoulos et al. [126]’s paper used this
precise configuration for their numerical computations, enabling interesting comparisons.
The main differences between the two considered conditions are the orifice opening within
the airflow tube (see Tab. 4.3). For this analysis, and following the methodology proposed
by Dimakopoulos et al. [126], free surface evolution inside the chamber is presented in
Fig. 4.7 by averaging over three wave gauges, WG10-WG11-WG12 of Fig. 4.4. During
the experiments, the averaging procedure was performed over 5 wave gauges to account
for 3D effects. The numerical scheme and parameters are those presented in Table. 4.4.
Fig. 4.7a presents the free surface elevation recorded by each of the numerical wave gauges
and Fig. 4.7b presents the averaged solution over 25 wave periods. Although the different
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Figure 4.7: Numerical in-chamber free surface elevation averaged over the three wave
gauges WG10-WG11-WG12 of Fig. 4.4 issuing from a compressible computation. Test
conditions Reg06.10: H = 0.4 m, T = 4 s and d0/D = 0.1.

motion of the free surface on each of the wave gauges, a fairly well conservation of the free
surface motion is observed when averaging over them.
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4.3. OWC chamber under regular waves

Figure 4.8: Snapshots of an four relevant instants of an OWC undergoing an air-chamber
compression and expansion process. Each instant presents (top left) absolute pressure for
air p (kPa), (top right) velocity magnitude for water Mag(U) (m/s) and vertical velocity
for air Uz (m/s) and (bottom) water representation α > 0.5.

Four selected snapshots are presented in Fig. 4.8 during an oscillating process caused
by regular incoming waves (test case Reg6.10 of Tab. 4.3). Results are obtained using
the compressible solver and orifice opening is defined as d0/D = 0.1. In the first image
(t/T = 11.25), the free-surface elevation is near still water level while it is going down
and an incoming wave approaches the trough. Air pressure inside the chamber has the
minimum sub-atmospheric values and air is rapidly flowing inside the chamber. Presence
of spurious velocities in the light phase (air) are observable in the vicinity of the interface.
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4.3. OWC chamber under regular waves

The imbalance in the momentum equation, which causes a vertical acceleration of the air
phase, was highlighted in previous sections to be the cause of such phenomena. It was
also the matter of study by different authors [67, 68]. Next, for t/T = 11.50, air is still
flowing into the chamber while the incoming wave approaches the structure. Free-surface
elevation approximates its minimum and in-chamber pressure is close to atmospheric value.
Free-surfaces inside and outside the chamber have the same elevation. At t/T = 11.75,
air inside the chamber is fully compressed and flows out rapidly through the tube. The
wave reaches the highest run-up on the front exterior wall and the free surface inside
the chamber is again close to the still water level. In the last snapshot (t/T = 12), air
is still flowing out from the chamber while the exterior wave is reflected away from the
structure. Free-surface elevation approximates its maximum and the pressure is close to
the atmospheric values. A vortical structure is observable close to the bottom corner of
the curtain wall.
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Figure 4.9: In-chamber free-surface elevation averaged over three wave gauges.

Based on these observations, it is now time for analysing more into detail these two
regular wave configuration using in-chamber free-surface elevation records. In the first
configuration (test case Reg6.05 of Tab. 4.3), using an orifice opening ratio of d0/D = 0.6,
very few air compressibility effects are expected. Under these conditions, Fig. 4.9a presents
different free-surface evolution. The present numerical results are compared with the
experiments and the numerical ones of [126] using an incompressible approach. Results
are just shifted in time so that the maximum elevation happens at the same instant for
all the data-sets. A good agreement between the present work, the experiments and the
previous numerical results is observable. Moreover, and as expected, differences between
results issuing from compressible or incompressible solver are negligible due to the low
resistance of the adjustable orifice. On the other hand, by reducing the orifice opening
ratio to d0/D = 0.1, air compressibility effects are now remarkable from Fig. 4.9b. For
this d0/D = 0.1 configuration, experimental and both incompressible numerical show
to have a poor agreement. The present compressible solution proved to have a much
better behaviour and tends to the experimental curve. However, some discrepancies are
still noticeable. These differences are mainly due to a low mesh resolution around the
tube and the chamber compared to the previous numerical results of M. Batlle et al.
2020 [130]. The present work aims to reduce, as much as possible, the spatial and time
discretisation for consistency with the incoming sections where highly computationally
demanding simulation will be run. Differences with the experiments may also be explained
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4.4. Irregular waves pressures on the OWC front wall

by 3D effects to some extent.
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Figure 4.10: Pressure difference across the adjustable orifice.

Figure 4.10 presents temporal series of pressure differences across the power take-off
(PTO), being a relevant parameter for measuring the power that can be extracted from the
system. Similarly as for the surface-elevation signals, these results are shifted in time with
the exact same time lag extracted earlier. A positive pressure difference indicates a greater
pressure inside the chamber that outside. For the lower resistance orifice, Reg06.05 con-
figuration with d0/D = 0.6, a fairly good agreement is obtained between both numerical
approaches and the experiments, capturing the quadratic nonlinearity of the experimental
signal near the zero-crossing. As mentioned before, the differences between the compress-
ible and the incompressible solvers are very little for this configuration. The pressure
fluctuations are caused by some instantaneous non-realistic high velocities which may ap-
pear on singular cells due to the coarse mesh and the high-speed air flowing inside or
outside the cavity. This could be solved by computing the pressure difference between
several cells above and below the porous medium. Regarding the results of the orifice
opening d0/D = 0.1 (Fig. 4.10b), the role of air compressibievel itity is now distinctive.
Experimental and compressible numerical results are shifted in time compared with the
incompressible results, both issuing from Dimakopoulos et al. [126] or with the present
approach. This effect is caused by the compressibility acting like a mechanical spring
in phase with the chamber free-surface elevation motion rather than velocity. Moreover,
quadratic non-linearity is also captured slightly after the air inside the chamber is fully
compressed, which can be observable e.g. at t/T ≈ 10.75 or t/T ≈ 11.75 on Fig. 4.10b.
The above-mentioned analysis gives the authors confidence to continue into more complex
scenarios using random waves and a logical range of applicability of the incompressible
(d0/D ≥ 0.6) and compressible (d0/D ≤ 0.1) approaches. Moreover, even if the mesh
resolution employed here was rather coarse, it can be concluded to be sufficient enough to
properly model in-chamber phenomena.

4.4 Irregular waves pressures on the OWC front wall
This section is dedicated to the numerical evaluation of wave induced loads exerted by
different irregular sea-states on the OWC exterior carapace. The pressure fields on the
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4.4. Irregular waves pressures on the OWC front wall

curtain wall are the result of complex wave interaction processes that enclose multiple
relevant phenomena, such as:

• Generation and absorption of an irregular sea-state

• Wave transformation over the sloped plane

• Wave-structure interaction

• Pneumatic chamber behaviour

480 485 490 495 500

 t / TP 

0.3

0.2

0.1

0.0

0.1

0.2

0.3

 η
 [
m

]

Figure 4.11: Representation of the free surface elevation with the wave division (red points)
one meter away from the structure (WG-08)

In a random sea environment, the assessment of a single wave event is not trivial.
However, in order to have a first level of analysis, each individual wave will be detected
and identified as depicted in Fig. 4.11. This identification is based on an extraction from
the free surface temporal series 1m in front of the structure (wave gauge WG-08). Every
time the free surface up-crosses the still water level, it marks the beginning of a new wave,
see Fig. 4.11. Therefore, the wave train is divided into several individual waves, each
wave has a related time interval. With this information, an interval of the pressure signal
is attributed to a singular wave event. Finally, the maximum value within this pressure
interval is chosen as the wave pressure value.

In order to perform a survivability analysis, the most interesting events are those
related to the most energetic waves during the whole wave train. However, experience
has demonstrated that the natural selection of the single maximal pressure Pmax is too
simplistic and not representative of the whole stochastic process. To avoid this uncertainty,
the average of the pressure maxima obtained from over two hundred fifty of the waves
pressure P1/250 is commonly used. As a matter of example and for consistency with the
experiments, the duration of the simulations is 1000TP . It means that numerical and
experimental results are obtained from 1000 wave individual events and the P1/250 is
calculated using the four highest pressure values recorded.

In order to increase even more confidence in the presented results, the present study
adds further perspective to the statistical nature of the selected irregular sea states by
computing five times the same configuration of significant wave height, peak period and
water depth (HS , TP , h). In fact, for each of the 5 identical computations, only the

100



4.4. Irregular waves pressures on the OWC front wall

wave phase seed components are changed on a random basis. The pressure values in this
section are made dimensionless by dividing them with the hydro-static component of the
significant wave height (ρgHS).

4.4.1 Non-impulsive conditions

In this section two irregular sea-states, Irr01.10 and Irr13.01 as presented in Table 4.3, are
reproduced and compared with the experiments. The studied configurations are referred
to as non-impulsive and no wave breaking is expected. Presumably, the most energetic
wave pressures on the structure will not exceed values of 2.5ρgHS . Differences between
both cases are the wave steepness and the orifice opening. The first subsection 4.4.1.1 also
introduces a global convergence analysis by modifying the mesh and keeping the Courant
number limitation. Then, the second subsection 4.4.1.2 compares the incompressible and
compressible solvers. It is important to notice the fact that the experimental pressure sig-
nals for the non-impulsive conditions are modified using the filters explained in Sec. 4.2.2.

4.4.1.1 Irr01.10 : Global convergence

The configuration evaluated in the present section has a significant wave height HS =
0.26m, a peak period TP = 3s and a water depth of h = 3.5m. Then, the physical time
simulated is 1000TP = 3000s. A global convergence study is carried out in this section
while comparing the numerical results using an incompressible solver with experiments.
In fact, two spatial discretisation are used, the initial coarse mesh already presented and
a so-called refined one. For this refined mesh, the initial spatial discretisation, presented
in Sec. 4.2.3, is further refined by a factor of 3/4 with a new characteristic cell length
∆x = 0.075m. Refined areas are modified accordingly. The temporal discretisation is also
refined by keeping the same maxCo = 0.4 as in the original setup.
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Figure 4.12: Spectrum over the horizontal slope (WG-04) and one meter in front of the
OWC front wall (WG-08). Test conditions (Irr01.10): HS = 0.26m, TP = 3s and d0/D =
0.6.

First, Fig. 4.12 depicts free surface elevation spectra, one computed far from the struc-
ture over the horizontal bottom (WG-04, Fig. 4.12a) and the other one meter in front of
the OWC front wall (WG-08, Fig. 4.12b). Fig. 4.12a compares the numerical results ob-
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tained by using the two discretisations with the experimental one and the input spectrum
for the relaxation zone.

On the one hand, the input spectrum is well captured by the numerics with a lower
sharpening and distribution of energy towards the higher frequencies. However, these
higher frequency waves are underestimated compared with the experiments. Finally, nu-
merical results show a good convergence comparing the two obtained spectra, which are
almost superposed.

On the other hand, computing the spectrum in the vicinity of the structure ( see
Fig. 4.12b), discrepancies between the peak frequency energies from the experiments and
the numerics increase.
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Figure 4.13: Convergence of wave pressure results (P1/250) on the structure front wall for
3 exact similar configurations using 3 different wave phase random seeds. Test conditions
(Irr01.10): HS = 0.26m, TP = 3s and d0/D = 0.6.

Next Fig. 4.13 presents dimensionless pressure values at five different elevations of the
OWC front wall. The location with Z − h = 0 corresponds to the still water level, having
two immersed pressure sensors (PS 01-02) and three above the water (PS 03-04-05). First,
the obtained results using two discretisations are compared. Only three tests with different
phase seeds, the same ones for both discretisations, are employed for this analysis due to
the high computational costs when using the refined mesh. A very good convergence is
observable between the coarse and the refined mesh, meaning that the coarse mesh is
enough when looking for reliable solutions. Therefore, it is employed for the upcoming
computations and analysis.

Finally, and as mentioned above, 2 additional computations were run with new seeds
for the coarse mesh. This gives an overall of five similar tests with different phase seeds
using the incompressible solver. The obtained results are compared in Fig. 4.14 with
the experiments and the prediction using Goda’s formulation [28] for caisson breakwa-
ters. The numerical results are represented using the average value as a black square,
the range corresponding to the minimum and maximum encountered over the 5 tested
configurations. Comparing the results with the predictions using the pressure formulas,
a relatively similar order of magnitude is encountered. The formulas proposed by Goda
(1977) overpredict the values remaining on the security side, suggesting them as a good
practice for design purposes. Observing the results from the experimental campaign, one
can say the computed results have a good agreement from a quantitative point of view.
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Figure 4.14: Maximal adimensional wave pressure (P1/250) ranges over 5 random seeds on
the structure front wall compared with the experimental values. Test conditions (Irr01.10):
HS = 0.26m, TP = 3s and d0/D = 0.4.

The computed results depict the stochastic nature of the random sea with a non-negligible
pressure range rather than a singular value. Furthermore, from a wider perspective, by
taking into account all the statistics and analysis procedures to obtain such extreme and
singular values, the authors are fairly optimistic about the computations.

4.4.1.2 Irr13.01 : Compressible and incompressible comparison

The configuration evaluated in the present section differs from the previous one by hav-
ing lower wave steepnesses and a smaller opening of the orifice. The diameters ratio is
d0/D = 0.4 and the effects of air compressibility are expected to have a greater effect.
In this section, the numerical results using incompressible and compressible solvers are
compared with the experiments. During this work, the modified k − ω SST turbulence
closure model is not yet implemented for the compressible solver, however, it is used in
the incompressible simulations. This may cause higher damping of the wave heights when
using the compressible solver.

From the wave gauge located over the horizontal plane (WG-04), Fig. 4.15a, the wave
reflection caused by the structure reduces the spectrum peak and spreads energy onto
smaller wave periods. The numerical differ from the experiments by keeping a sharper
spectrum and slightly underestimating the energy-related to smaller and higher wave
periods. On the other hand, the spectrum computed in the vicinity of the structure
(Fig. 4.15b) shows a remarkably good agreement with the experiments. Nevertheless, the
compressible solver slightly underestimates the energy compared with the incompressible
solution and this is more visible when computing the pressure values. Both, away and
close to the OWC, the compressible and the incompressible solver present very similar
solutions.

Fig. 4.16 presents results of wave induced pressure exerted on the structure curtain
wall using both incompressible and compressible solvers. As in the previous case, results
are represented by their averaged values combined with a range of minimum and maxi-
mum values obtained over 5 identical computations. In this context, predictions using the
Goda’s formulation again over-predict the experimental values by an offset of 0.4ρgHS .
Both the incompressible and compressible solutions have a fairly good agreement with the
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Figure 4.15: Spectrum over the horizontal slope (WG-04) and one meter in front of the
OWC front wall (WG-08). Test conditions (Irr13.01): HS = 0.26m, TP = 4.5s and
d0/D = 0.4.
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Figure 4.16: Comparison of compressible and incompressible maximal dimensionless wave
pressure results (P1/250) on the structure front wall evaluated over 5 computation with
different phase random seeds. Test conditions (Irr13.01): HS = 0.26m, TP = 4.5s and
d0/D = 0.4.

experiments. Again, it is also observable the statistical nature of the maximal pressure val-
ues related to, apparently, the same sea-state with ranges of pressure rather than a single
value. Finally, the compressible and incompressible results have a similar trend, although,
the compressible solver presents a higher diffusion, which was expected, and slightly re-
duces the pressure ranges. By to conclude, both incompressible and compressible solvers
have demonstrated stability and accuracy when solving these two non-impulsive config-
urations and handling very large stochastic processes. Also, the interface compression
method MULES has been once again validated for reproducing irregular waves interaction
with a singular structure as the OWC.
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4.4.2 Impulsive conditions

This section presents the results obtained using a new irregular sea state configuration
(Irr11.07). During the experimental campaign, this configuration produced multiple wave
breaking with highly energetic loads classified as impulsive. To study these conditions,
previous analysis using the variable P1/250 is less representative due to the high variability
of the pressure maxima related to the most energetic impacts. Then, analysis is here
limited to some selected singular events and their pressure signals. In fact, the presented
computations were computationally very expensive due to high velocities, which signif-
icantly dropped the time steps. It was also necessary to increase the size of the free
surface refinement region in order to maintain the interface within its limits owing to a
much higher Hs value. Consequently, the physical time for this simulations was limited
to 1000TP /3 = 2000 s keeping the same numbers of five different phase seeds tests as in
previous sections.
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Figure 4.17: Spectrum over the horizontal slope (WG-04) and one meter in front of the
OWC front wall (WG-08). Test conditions (Irr11.07): HS = 1m, TP = 6s and d0/D = 0.4.

Fig. 4.17 presents the spectrum over the horizontal slope (WG-04) and 1m in front
of the structure (WG-08). It is important to notice here the lower physical time of the
present simulations which may affect the sea state long term development. Hence, the
spectrum computed over the horizontal slope (WG-04) presents visible discrepancies with
the experiments. From Fig. 4.17a, a generalized overestimation of energy is noticeable from
the numerical results compared with the experiments. The experimental higher frequencies
f > fP are equally distributed compared to the numerical ones. Although these are present
in the simulations, they are grouped around some characteristic values mainly around
f/fP ≈ 1.9 and to some lower extent at f/fP ≈ 2.5. Also, some infragravitatory waves
(T > 30s) can be identified from the experimental spectrum. These are underestimated in
the numerics over the horizontal plane (WG-04, Fig. 4.17a). Regarding the spectrum in
the vicinity of the structure (WG-08, Fig. 4.17b) a fairly good agreement is obtained here
between the numerics and the experiments. Similar analyses as the ones observed for (WG-
04) can be made with a general numerical overestimation of the energy related to the peak
period and higher frequency waves. Here, the numeric presence of energy for long period
waves has increased, however, the experimental values keep being underestimated. A
preliminary observation can be extracted from this analysis, which points towards a lower
presence of breaking effects due to a smaller representation of long-period waves. Finally,
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the second peak located at f/fP ≈ 1.9 already identified for (WG-04, Fig. 4.17a) in the
numerics is still present for (WG-08, Fig. 4.17b) but with its experimental counterpart.
This gives some confidence in the fact that this is not a numerical artifact and more
generally that the presented computations accurately represent the physical encountered
phenomena.
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Figure 4.18: Numerical pressure signals recorded by wall pressure sensors (PS 01-05) on
the exterior front wall for three distinct characteristic events. Test conditions (Irr11.07):
HS = 1m, TP = 6s and d0/D = 0.4.

When looking at the wall pressure temporal series, three different characteristic types
of events are mainly detected. These are presented in Figure 4.18. The first type of
event (Fig. 4.18a) is the regular non-impulsive event, where pressure values are mostly
related to the hydro-static pressure of the run-up and run-down process. The second type
(Fig. 4.18a) can be classified as a pulsating load caused by a standing wave, identified using
the PROVERS’s [42] distinction. Although it seems very similar to the first type, here,
two rebounds are visible and attributed to kinematic and hydro-static pressure ranges.
The initial rebound is slightly more prominent compared to the second one as the wave
momentum is being absorbed gradually with a rise time in the order of tr ≈ 0.1Tp. The
last situation (Fig. 4.18c) can be classified as a slightly breaking wave. The numerical
pressure sensors, which recorded the highest values, are in the vicinity of the still water
level (PS 02-03) and, the upcoming analysis, will focus on these pressure series.

Experiments presented a fourth situation (Fig. 4.19), where the pressure peaks ex-
ceeded 10 times the significant wave height hydro-static pressure and an extreme event
where it exceeded 20 times this value (Fig. 4.19b). These impacts are typical of plunging
waves with rise time values around tr ≈ 0.001TP . Unfortunately, not a single similar event
could be numerically captured, where the maximal pressure values were always below 3
times the significant wave height pressure head. This further confirms the observation ex-
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Figure 4.19: Experimental pressure signal recorded by wall pressure transducer (PS 02)
on the exterior front wall for two impulsive events. Test conditions (Irr11.07): HS = 1m,
TP = 6s and d0/D = 0.4.

tracted from the computed spectrum meaning that not any real plunging breaker occurred
during the simulations. The reason for this non-appearance of plunging breakers is still
unknown although some ideas are plausible such as: the 3D configuration of the exper-
iments leading to different behaviour of the chamber oscillations, the low discretisation
adopted for a feasible computational costs objective, slight differences in the irregular sea
state displacing the breaking point or a coarse definition of the interface by using MULES,
instead of a geometric interface capturing method such as isoAdvector. Or a possible
combination of all these phenomena can have an impact.
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Figure 4.20: Comparison of experimental and numerical pressure signal recorded by wall
pressure transducer (PS 02) on the exterior front wall for a violent wave impact. Test
conditions (Irr11.07): HS = 1m, TP = 6s and d0/D = 0.4.

Nevertheless, some lower order of magnitude violent wave-structure impacts are also
observed on numerical pressure sensors as depicted in Figure 4.20. As presented above
in Fig. 4.18c, these are classified as slightly breaking wave. Pressure signals related to
this type of phenomenon reach values up to 2ρgHs and have an approximate rise time
of tr ≈ 0.01TP , which is one order of magnitude higher than those from the extreme
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impact loads. They present the classic double-peaked or ’church roof’ shape related to
the initial impact, deflection and reflection of the wave. Although these remain out of the
impact events classification, the sudden pressure rise indicates an important role in the
fluid deceleration in this wave interaction with the structure.
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Figure 4.21: Snapshots of (top) water representation α > 0.5, (bottom left) modified
pressure for air pd (kPa), (bottom right) velocity magnitude for water |U | (m/s) and
vertical velocity for air Uz (m/s), for four relevant instants during a wave impact, pressure
signal Fig. 4.20
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For a better understanding of the event related to the pressure signal from the last
Figure 4.20, four relevant instants are presented in Fig. 4.21. In the first image (t/T =
397.92), a reflected and an incoming waves are superposed in front of the structure. The
free surface inside the OWC chamber is falling sucking in air from the exterior. The
bottom lip of the OWC curtain wall is not submerged. This is an unexpected situation
and, in principle, should be avoided. Next (t/T = 397.97), the front wall bottom lip
is exposed to a fluid impact originating two water tips, one traveling upwards the front
wall and, a second one, towards the chamber rear wall. The velocities of these tips are
non-negligible with values up to 5m/s. Regarding the modified pressure fields pd, the
incoming wave starts loading the bottom part of the front wall further accelerating the
rising water tongue. At (t/T = 397.98), the pressure signal presented in Fig. 4.20 reaches
its maximum and the incoming wave fully charges the vertical wall. The front wall is
fully charged from the exterior side and remains only surrounded by the air from the
interior side, causing an important bending moment. The chamber is now pushing the
air outwards. In the last snapshot (t/T = 398.15), it is observable the deflection and
reflection stage of the wave where the fluid is fully projected upwards forming some water
independent small structures which are captured by the simulation. Under the front wall
bottom lip, the already mentioned vortical structure again appears. Inside the chamber,
the liquid undergoes a sloshing type situation leading to some impacts with the interior
walls and fully compressing the air. These were also observed during the experimental
campaign, see [18], and may cause unexpected damages if not addressed properly.

4.4.2.1 Identification of a possible broken wave impact case
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Figure 4.22: Numerical pressure signal recorded by a wall pressure sensor (PS 02) on the
exterior front wall during a broken wave impact. Test conditions (Irr11.07): HS = 1m,
TP = 6s and d0/D = 0.4.

Finally, a unique event occurred during the simulations which could be classified as a
broken wave. The pressure signal for this situation is presented in Fig. 4.22. Studying the
experimental pressure signal, no evidence of a similar event can be identified. This non-
appearance of such a pressure signal in the experiments does not necessarily mean that no
broken wave impact occurred. And a second perspective, e.g. imagery, would be necessary
to corroborate this assertion. To analyse the pressure signal shown in Fig. 4.22, snapshots
from the computation are presented in Fig. 4.23 and 4.24. From Fig. 4.23, observing the
instant when the first pressure rise occurs (t/Tp ≈ 303.10), it is clear that the wave has not
collapsed yet onto the wall. The cause of this initial pressure peak (Fig. 4.22) is unclear.
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However, it may be caused by a detached liquid structure that travels at abnormally high
speed towards the wall as it is appreciable in this first figure. Secondly, a more coherent
double-peaked signal is observed due to the deceleration, remount, deflection and reflection
of the wave. Nevertheless, an oscillatory behaviour is observed during this process which is
attributed to the compressibility of air-pockets, which are encapsulated between the wave
impingement and the structure. This condition would be less likely to occur in reality,
due to the possibility of air escaping through the transverse 3D direction.
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Figure 4.23: Snapshots of (top) water representation α > 0.5, (bottom left) modified
pressure for air pd (kPa), (bottom right) velocity magnitude for water |U | (m/s) and
vertical velocity for air Uz (m/s), for four relevant instants during a broken wave impact,
pressure signal Fig. 4.22

Again, in the last images of Fig. 4.23, broken wave interaction with the vertical wall
is observable. Moreover, the vortical structures are here more present below the curtain
bottom lip. Finally, Fig. 4.24 presents the whole breaking process of this wave in front
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Figure 4.24: Snapshots of water representation α > 0.5 during the breaking process from
the pressure signal presented in Fig. 4.22 and the final process presented in Fig. 4.23

of the structure. This situation presents several detachments of liquid which are poorly
represented due to a coarse spatial and temporal discretisation.
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Chapter 5

Conclusion and perspectives

This research concerns the validation and analysis through a Computational Fluid Dy-
namics methodology for simulating coastal hydrodynamics using two-phase flows with
time domain and finite volume discretisations. In this work, free surface waves generation,
propagation and overturning have been studied and validated. Contributions have been
made towards a numerical evaluation of wave loads exerted during a fluid impingement
on a structure. This last chapter concludes the thesis and is divided into two Sections.
The first section summarises the conclusions acquired from this work and the second one
proposes suggestions for future work.
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5.1 Conclusion
The results of this study have been assessed and discussed in the previous chapters. In
the following, the most relevant conclusions are summarised.

Nonetheless, let us first outline the principal objectives. The final goal of the present
work is to numerically evaluate the loads related to extreme waves impinging on an oscil-
lating water column structure. For this, a gradual validation process starting from a sim-
plistic to more complex configurations is chosen to extract robust and reliable conclusions.
These configurations are distributed over three chapters and each chapter corresponds to
a designed objective. They can be summarised as: an investigation of the mechanisms
during an idealised fluid impact, an analysis of a controlled wave breaking impact using a
solitary wave configuration and, finally, the reproduction of a realistic extreme sea-state
acting on an OWC.

Investigation of the mechanisms during an idealised fluid impact

Thanks to the two-phase solver for incompressible fluids, interFoam, which is part of
the OpenFOAM CFD library, we demonstrated in Sec. 2.2.1 the stability of the pressure
impulse results under a fluid structure impulsive situation. A global convergence analysis
has demonstrated the pressure impulse convergence towards an analytic solution proposed
by M. Cooker et al. in 1990 [37]. On the other hand, a divergence of the pressure
fields has been reported when decreasing the temporal and spatial discretisation under
the incompressible assumption.

Using two-phase compressible solver, compressibleInterFoam, we demonstrated in
Sec. 2.2.2 the ability to obtain accurate pressure solutions during an impulsive fluid-
structure impact according to acoustic pressure theory. The present numerical imple-
mentation have proven convergence and stability on the pressure results. This section
has arisen the necessity of using a CFL condition related to the fluid speed of sound to
characterise a traveling pressure wave.

In Sec. 2.3 we have proven the possibility to model water compressing and expanding
a gas phase (air) by using a 1D liquid piston configuration. Neglecting the compression
terms in the liquid volume fraction equation has demonstrated to reduce the numeric
diffusion in a compression and expansion air process. Next, in Sec. 2.4, we presented a
tentative study of an aerated fluid impact. This part of the work can be classified as
a perspective yet interesting and argumented approach. By using this configuration, we
demonstrated the high influence of air during a fluid impact by lowering the fluid loads.
Moreover, different time scales were observed during the impulsive loading process for air
and water.

Analysis of a controlled wave breaking impact using a solitary wave

We validated the static boundary method in Sec. 3.1.3 for reproducing a Boussinesq soli-
tary wave. Spatial discretisation has shown to be an important parameter for improving
the generation and propagation of the solitary wave. On the other hand, temporal dis-
cretisation has demonstrated to be especially relevant for maintaining the wave amplitude
during the propagation stage.

In Sec. 3.4 we demonstrated the pressure impulse convergence of the incompressible
solver using a 2D solitary breaking wave ending in an air pocket or high-aerated impact.
Again, this section confirmed that the pressure records are not a good measure to evaluate
the convergence when using an incompressible solver. Moreover, Sec. 3.4, demonstrated
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that in an aerated impulsive event using a 2D configuration and assuming the air as an
incompressible fluid, the obtained pressure records result in erroneous loads. This is a
consequence of the air phase not being capable of absorbing any impact energy and, thus,
acting momentaneously as a solid rigid. These results are far from the reality observed
in the literature, e.g., M. Hattori et al. in 1994 [38] and the experiments Kimmoun et al.
2009 [46], these last experiments being used as a validation cases in the present work.

From the author point of view, the incompressible assumption should be avoided when
accurate pressure measurements are expected. To be more precise, our work aroused the
necessity of a two-phase compressible model when one of these two conditions comes: the
air is playing a role and/or the fluid-structure impact has an impulsive behaviour. This is
the case for air-pocket and flip-through impacts.

In Sec. 3.5 we validated the compressible solver based on the free surface shape against
the experimental results of O. Kimmoun, for reproducing a solitary wave overturning
process using a 2D configuration. Moreover, it has demonstrated converged peak pressure
results during an air-pocket or high-aerated impact. The pressure values at the impact
moment are observed to agree with the experiments in a 2D air-pocket breaking wave
situation.

On the other hand, the compressible solver has proven its ability to reproduce air
compressibility effects by observing oscillations on the pressure signal related to the com-
pression/expansion process of the air cavity. However, these have shown not to agree
with the experiments due to the impossibility of the air to escape under the numerical 2D
configuration which is not the case in the experiments.

We successfully simulated a flip-through or low-aerated impact using a two-phase com-
pressible solver in a 2D configuration. Owing to the physics of waves impact, the pressure
records showed a high degree of spatial and temporal scattering and the highest pressure
recorded was by far on the low-aerated impact. This is in agreement with the literature
(see G.N. Bullock [45] or M. Hattori [38]) and the experiments by O. Kimmoun. The ob-
tained pressure peak magnitude is in agreement with the experimental pressure records.
Pressure oscillations related to the compression and expansion of the air cavity have been
numerically reported and are observed to agree with the experiments. Consequently, the
flip-through or low-aerated impact can be simulated using a 2D configuration.

An air-pocket solitary wave impact using a compressible solver has been simulated
using a 3D configuration, allowing the air to escape through a backlash during the com-
pression phase. When the air was able to escape, the pressure oscillations were not ap-
preciable after the impact. A good agreement with the experimental pressure records has
been reported under these circumstances quantitatively and qualitatively.

We observed, for both the 2D and the 3D configurations of breaking wave impacts, a
numerical underestimation of the quasi-hydrostatic pressure just after the impact.

For real-life configuration, a full 3D well-resolved compressible model would inevitably
give the best results but this study also showed the associated computational costs. For
the real design phase of coastal structure, a 3D well resolved model will probably not be
feasible and 2D compressible approach may reveal sufficient in most cases.

In Sec. 3, we have demonstrated the suitability of the toolbox OpenFOAM for assessing
fluid impulsive loads on a rigid solid wall. The great variability of maximum loads have
been identified and the air entrapment has demonstrated to be a key parameter, as it has
been reported before, both experimentally and numerically.
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5.1. Conclusion

Reproduction of a realistic extreme sea-state acting on an OWC

In Chapter 4, we studied and compared with experimental data a real large scale oscil-
lating water column facing nearshore sea state. Initially, the relaxation zone method has
been evaluated for generating different irregular sea states using the JONSWAP spectrum
based on various wave steepness s = Hs/λp. The results presented a good agreement
compared with the input spectrum near the wave generation boundary (10 m away). The
propagation of the sea state over 100 m was better conserved for the smaller steepness
irregular configurations. Nevertheless, we have proven the possibility to generate a fairly
accurate irregular free surface elevation time series following the linear theory using the
relaxation zone method.

In Sec. 4.3, an oscillating water column affected by regular waves has been studied.
Additionally, a Power Take-Off system mounted on the structure has been modelled using
a porous medium approach. Two different configurations have been tested by changing
the porous medium airflow resistance and a remarkable good agreement has been observed
compared with the experiments. The highest resistances have shown that taking the air
as incompressible leads to erroneous results and a compressible solver is again needed.
Regarding the pressure gradient on the porous medium, the compressible solver has been
able to accurately capture the compressibility effects observed experimentally.

In Sec. 4.4 we compared the numerical and experimental results of three different
irregular sea states acting on an oscillating water column. The free surface elevation
spectrum computed far from the structure and in front of the structure presented a fairly
good agreement for the two irregular configurations classified as non-impulsive. We carried
out a global sensitivity analysis for one irregular sea state configuration and converged
results have been observed for the spectrum, and the extreme pressures (p1/250) exerted
on the OWC front wall on this non-impulsive configuration. Moreover, using another non-
impulsive irregular sea-state configuration the compressible and the incompressible solvers
have been compared and similar results are obtained, although, the compressible solver
presented higher energy dissipation with lower extreme pressure ranges. The extreme
pressure (p1/250) exerted on the OWC front wall, highlighted the stochastic nature of
the irregular sea-state presenting a range of solutions for apparently similar conditions.
The extreme pressure experimental values have been successfully validated for two non-
impulsive irregular sea state configurations.

Sec. 4.4.2 compared the numeric and experimental free surface and extreme pressures
results during an irregular state with breaking waves. The computed spectrum have
shown resemblances, however, the numeric results underestimated the long period wave
energies. The most energetic wave impacts during the experiments were not observed in
the simulations and may be caused by different reasons such as: the slight differences on the
sea state parameters, the 3D effects during the experiments, the necessity of finer temporal
and spatial resolution or a different methodology for modelling the free surface. A broken
wave situation has been also observed numerically presenting air compressiblity effects due
to entrapped air pockets. Finally, lower energetic impacts have been recorded numerically
and are directly compared quantitatively and qualitatively to some experimental specific
events. Extracting a final positive or negative conclusion from this impulsive loads section
would need further investigation; however, promising results are observed and a general
optimistic perspective can be extracted.

All the aforementioned results from Chapter 4 confirmed the necessity of high compu-
tational efforts to accurately reproduce the most interesting extreme conditions involving
highly energetic breaking waves.
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5.1. Conclusion

In this thesis we demonstrated the capabilities of the numerical toolbox OpenFOAM and,
more specifically, the two-phase compressible solver dealing with fluid-structure impulsive
events caused by water waves. We have proven the possibility to model both, large and
small-scale phenomena, such as irregular waves, waves propagation and transformation,
high deformation of the free surface during wave breaking and pressure related to violent
wave impacts. On the other hand, the high costs of using high-fidelity models such as CFD
in certain situations is reaffirmed by the present work. Finally, new perspectives of old
problems, such as pressures related to breaking waves, have been explored and concluded
the ability to mimic complex phenomenons that are hardly appreciable experimentally
such as pressure waves, air inclusion or local pressure distribution.
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5.2. Suggestions for future work

5.2 Suggestions for future work
The present work has investigated the possibility to use a CFD code to evaluate the
most violent wave impact loads on an oscillating water column. This effort can be of
great use for the coastal engineering community and brings further confidence when using
numerical approaches. Nevertheless, further work is still needed to advance into generic
and accessible formulations, which capture the nature of breaking impacts and can be
used during a coastal protection structure design process.

The presence of spurious velocities around the free surface has been repeatedly reported
in the present work and the perspective to address this issue can also be interesting
within the OpenFOAM community. From the authors knowledge, this has already been
investigated by the naval engineering community [68] using the Ghost Fluid Method.
However, this part of the code is not accessible and still has not been fully validated for
the present situations

A great effort has been made in the present work to assess a situation close to reality.
However, the lack of wave loads data recorded in a real breakwater has limited the scalabil-
ity of these results. The possibility to carry such a campaign remains out of the numerical
perspective from the author. Nevertheless, the difficulty of recording such localised and
transient pressure records for the most violent impacts has been identified in this work.

On the one hand, the reproduction of some configurations presented in this work using a
3D geometry would give a further perspective and the possibility to limit the effects related
to this assumption. Consequently, an important topic would be to accelerate and improve
the performance of this kind of simulation. For this purpose, coupling techniques between
potential and CFD codes would be a great candidate for evaluating the interaction of
irregular sea states with coastal protection structure. Nevertheless, the time-scale related
to breaking waves (≈ µs) is small compared to the generation of irregular waves (≈ 10 s)
and it is not clear if the coupling would improve the overall performance.

On the other hand, a perspective for future work would be to search for the possibility
to include the effects of homogeneous mixtures of air and water, like foam, into a two
phase model and evaluate the role of this during a wave impact. The work presented in
Sec. 2.4 would be an interesting initial configuration for future investigations. Moreover,
the inclusion of a model that takes into account the phase change of air condensation or
water evaporation would give further insights into the mechanism acting on a fluid impact.
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Computations of extreme wave impact events on wave energy
converter attached to coastal protection structures
Keywords: Breaking waves, Fluid compressibility, Impact, Numerical simulation, Open-
FOAM, Oscillating water column, Wave hydrodynamics

Abstract The present work aims to describe and evaluate the loads exerted by severe
breaking waves onto coastal protection structures. To carry on with this investigation,
the numerical tool-box OpenFOAM is employed and the problematic is regarded from
different perspectives. First, the physics of an idealised impulsive event between a fluid
and a solid is investigated using different configurations. The associated simulations are
designed to study the role of air during these academic impact configurations. Secondly,
a solitary wave is used to evaluate the performance of the solver to reproduce realistic
wave breaking onto a vertical wall and evaluate the related impact pressure records. The
computed results are validated against experimental data previously obtained at IRPHE,
Marseille (France). Finally, an irregular sea state is simulated using large spatial and tem-
poral scales to evaluate the induced wave loads on an oscillating water column structure.
These simulations are compared and validated with experimental results obtained in the
large flume tank (GWK) at Hanover (Germany).

Résumé Ce travail a pour objectif de décrire et évaluer les impacts de vagues extrêmes
sur des structures de protection côtière. Dans le cadre de ces recherches, la suite logicielle
OpenFOAM est utilisée et la problématique est étudiée suivant différentes perspectives.
Dans un premier temps, la physique d’un événement impulsif idéalisé entre un fluide
et un solide est étudiée en utilisant différentes configurations. Les simulations associées
sont conçues pour étudier le rôle de l’air durant ces configurations d’impact académiques.
Deuxièmement, une vague solitaire est utilisée pour évaluer la performance du solveur
afin de reproduire des impacts de vague réalistes sur un mur vertical et d’évaluer les
pressions d’impact associées. Les résultats numériques sont validés à l’aide de données
expérimentales obtenues antérieurement à l’IRPHE, Marseille (France) . Enfin, un état de
mer irrégulier est simulé en utilisant une large gamme d’échelles spatiales et temporelles
afin d’évaluer les chargement induits par ces vagues sur une structure de colonne d’eau
oscillante. Ces simulations sont comparées et validées avec des résultats expérimentaux
obtenus dans le grand canal à houle GWK de Hannovre (Allemagne).
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