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Chapter 0

Introduction

0.1 Presentation

Let G be a connected reductive complex algebraic group, let B be a Borel sub-
group and U be its unipotent radical. In this thesis, we study modular perverse
monodromic sheaves over the basic affine space 2" := G/U. Slightly more pre-
cisely, we obtain a “Soergel type” description of the category of monodromic
perverse sheaves on 2, as an explicitly determined subcategory of the category
of finitely generated modules over an explicitly determined algebra. This subcat-
egory is given by a monodromic variation of the category of Soergel bimodules
appearing in [Sol

0.1.1 Context

Let us settle some notation: as above, let G be a complex connected reductive
algebraic group, choose a Borel subgroup B and a decomposition B = U x T
with T a maximal torus and U the unipotent radical of B. We consider the Weyl
group W := Ng(T)/T; this is a finite group and our choice of Borel subgroup
gives us a family of simple reflections S C W such that the pair (W,S) is a
Coxeter system. The group W is then endowed with a partial order called the
Bruhat order, denoted <. Let k be the algebraic closure of a finite field of
characteristic £ > 0; this will be our field of coefficients. Finally, we consider
the associated root datum (X*(T'), @, X,.(T'), ®V); the cocharacter lattice X, (T),
that is the (finite rank) abelian group Hom(C*,T) will be of great importance;
we set k[X,(T)] for the group algebra of X, (T) over k.

One can construct the category of B-constructible perverse sheaves on the
flag variety of G (that is, on the quotient G/B). We denote it by Ogeom =
P()(G/B,k). This category is interesting because it has a representation theo-
retic interpretation: in case / is sufficiently large, it is a geometric incarnation of
Soergel’s modular category & for representations of Gy (the reductive algebraic
goup over k with root datum isomorphic to the one of G); in case £ = 0 and G



semisimple, it is equivalent to the principal block &y of the BGG-category & of
the Lie algebra Lie(G).

In other words, Ogcom gives a geometric incarnation of representation-theoretic
(i.e, of algebraic) categories, and as such, it has been extensively studied in the
literature.

0.1.2 Work of Bezrukavnikov—Riche

In [BeR], Bezrukavnikov and Riche gave a completely general “Soergel-type”
description of Ogeom as a full subcategory of the category of modules over an
explicit ring. Slightly more precisely, it is well known that the category Ogecom
admits a highest weight structure with (W, <) as weight poset; as such, this
category has enough projective objects, and indecomposable projective objects
are parametrized by the Weyl group W. Understanding the whole category then
reduces to understanding the subcategory of projective objects. However, as nice
as projective objects can be, it is somehow easier to work with another class of
objects, namely tilting objects. The existence of tilting objects is ensured by
the highest weight structure; any tilting is a direct sum of indecomposable such
objects, and the indecomposables are also parametrized by W. Moreover, the
geometric Ringel duality states that the subcategories of projective and tilting
objects are equivalent, thus to get a full understanding of the former, it suffices
to consider the latter. The authors of loc. cit. then obtain a description of the
category of tilting perverse objects in Ogeom as a full subcategory of the category
of finitely generated modules over the endomorphism ring of the indecomposable
tilting object associated to the longest element w, of W. Standard homological
considerations then allow them to derive from this a complete description of
Ogeom-

The strategy they used is the starting point of the present work. Let us give
a bit more details. Via the (pullback along) the quotient map G/U — G/B,
one can get a copy of Ogeom in the derived category Dé’B)(G/U7 k) of k-sheaves
constructible with respect to the B-orbits on £ . This means that we can see the
objects in geom as geometric objects on 2. In fact, one can get a description
of the category Ogeom as a full subcategory of D?B)(ﬁt” ,k) considering actions
of the cocharacter group X, (7T), which we explain now.

We note that the variety G/U is naturally a left and right T-variety for
the actions induced by multiplication in G. Using a construction of Verdier
[Ve], one can use these two actions to define canonical monodromy actions
on D?B)(% ,k). For any .#, this is defined as a pair of group morphism
ez, 07 s ¢ Xe(T) = Aut(F) where Aut(#) denotes the group of automor-
phisms of the object .% in DE’B)(% , k). We extend these maps to algebra mor-
phisms ¢z 1,0z r : kK[Xi(T)] — End(.%). One then checks that the category
Ogeom identifies in a natural way with the full subcategory of D?B)(G/ U, k)
whose objects are those perverse sheaves % on G/U such that the right mon-
odromy map ¢z, factors through the quotient of k[X,.(7')] by the natural (max-
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imal) augmentation ideal of k[X, (T)]:
oz KX (T)] = k[X(T)]/{e* = 1| X\ € Xu(T)) — End(F). (0.1.1)

The above considerations have the advantage of allowing the authors of loc.cit.
to use Yun’s completed category. This is defined as an appropriate subcategory
of the category of pro-objects in D’(’B)(G/U, k); since we will also consider (a
variation of) Yun’s completed category below, we do not extend on this topic
right now. The point is, going to G/U allowed them to get new tools (namely,
a monodromy action and a completed category formalism), crucial in order to
obtain their description of the category Ogeom-

0.1.3 Generalization
A natural question at this point is the following:

Question 1: What do we get if we replace the augmentation ideal in ((0.1.1)
by some other maximal ideal ?

The answer is: monodromic perverse sheaves.

One can show that the maximal ideals in k[X,(T)] are parametrized by the
dual k-torus 7} (for now, let us say that if we choose an identification T 2 (C*)",
then we have an identification 7,” = (k*)"). Then one can define the category
P_ 4 as the full subcategory of the category of B-constructible perverse sheaves
on 2" whose right monodromy map factors through the quotient of k[X..(T)] by
the maximal ideal corresponding to t € T,. For t = 1, we get P_ 1) = Ogeon;
we can thus see the various P[_,ﬂ as deformations of Oyeom along a parameter
varying in the dual k-torus. By abuse, we will say that an object in P_ 4 has
exact monodromy t (there will be later a notion of generalised monodromy t).

0.1.4 Difficulties and strategy
Another reasonable question is then:
Question 2: What can we say about P|_ ; in general ?

A slightly more precise question would be: does P|_ ; for t # 1 share some of
the known properties of Ogeom? Can we obtain, in analogy with the work of
Bezrukavnikov-Riche, a description of P|_ ; as some category of modules over
some appropriate ring? The answer to both questions is yes, and the strategy we
use to prove this is quite similar in flavour to the one used for Oyeom. However,
there are, at least a priori, quite some differences between P_; and Ogeom-
Let us give two examples: the first one is that P_ 4 does not identifies directly
with the heart of a t-structure, thus common tools of homological algebra are
no more available; in particular, the proof of the existence of a highest weight
structure on Ogeom cannot be copied straightforwardly. Another convenient
feature of Ogeom that we lack for P_ ; is the ability to project on, or pull back
from, (partial) flag varieties: for example, if IC(s)k denotes the simple perverse

11



sheaf of Oyeom associated to a simple reflection s € W, then it is well known
that IC(s)k can be obtained by pulling back the (perverse) skyscraper sheaf
on stratum Ps/Ps in the partial flag variety G/Ps, where Py is the standard
minimal parabolic subgroup associated with s. For a monodromy ¢ # 1, this is
not available: the right action of 7" on any (partial) flag variety is trivial, hence
there are no objects with nontrivial monodromy (i.e. whith monodromy ¢ # 1)
on any (partial) flag variety of G.

However, we can overcome these difficulties by adopting a slightly different
point of view on P[_ 4; let us roughly explain this, we will detail below in this
introduction. Once again, let us start with Ogeom. By definition, the objects
in this category (viewed here as a full subcategory of D?B)(% ,k)) are those
perverse sheaves on 2 that “coms from” G/B = (G/U)/T, meaning, that are
pullbacks of perverse sheaves on G/B along the morphism 2~ — G/B. The
latter morphism is the quotient morphism by the free (right) action of T' on
2 = G/U. Now, the category Dy B)(G /B, k) identifies naturally with the T-
equivariant bounded derived category of B-constructible k-sheaves on 27, and
the subcategory of perverse sheaves in D( B),T(% ,k) in turn identifies naturally
with Ogeom. Using this point of view, the functor of pullback along 2" — G/B
identifies with the natural forgetful functor D?B)’T(%,k) — D?B)(%,k). To
come back to a monodromy ¢ # 1, we saw that we cannot identify P_; with
the pullback from a (partial) flag variety of any appropriate category (again,
because there is nothing that we can pull back from), but there may be a way
to identify it with some category of “equivariant monodromic perverse sheaves”.
This is indeed possible, and the correct equivariant category was introduced in
[LY].

0.1.5 Work of Lusztig—Yun

In their recent article [LY], Lusztig and Yun define monodromic Hecke cate-
gories, using a notion of equivariance “with respect to a local system” on T.
The authors of loc. cit. consider varieties over a field of positive characteristic
and Q, for field of coefficients. To any character sheaf .Z on T (see e.g. [Y]
Appendix A] for a definition of character sheaves), they construct a derived cat-
egory on 2, equivariant with respect to .#; in particular, if £ = ky, the right
Lusztig Yun equivariant category associated to £ is canonically equivalent to
( B& (G/B,k). This equivariant category is exactly what we were looking for.
opying the constructions in loc.cit. to our setting of complex varieties and
coefficients of positive characteristic, we can define a Lusztig—Yun equivariant
monodromic category, and a subcategory of perverse objects there. Our first
key result is that the latter category is equivalent to P_ ;; this notion of equiv-
ariance is the correct one to consider for our purposes, in particular, it gives
natural solutions to the two problems mentioned above, as we will explain below.
In fact, numerous ideas from [LY] will be fundamental in the present work,
and will be detailed below in this introduction.
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0.1.6 Results

Let us roughly state our main results here. As suggested by the previous sub-
section, most of this thesis is written using the language of the Lusztig—Yun
monodromic categories. With this at hand, we are able to derive almost all of
the properties of Ogeom We were wishing for P_  to possess (or, in fact, its
Lusztig—Yun-equivariant counterpart). The key point is always to find the cor-
rect translation to fit the monodromic (equivariant) setting; the results then fol-
low from (often) standard considerations. In particular, we are able to show that
monodromic perverse sheaves admit a natural highest weight structure; then we
can define a tilting perverse monodromic subcategory, and we can relate it via a
variant of the geometric Ringel duality to the subcategory of projective perverse
monodromic sheaves. What remains to be done is then to describe the category
of tilting objects as a category of modules over some explicitly determined ring.
This is eventually achieved, using a “Soergel type” functor, providing an answer
to our original question. Once the category of tilting objects is described explic-
itly, we can deduce a description of the whole category of perverse monodromic
sheaves, and finally, following [LY], of the whole derived monodromic category:
the latter is equivalent to the usual category of Borel-constructible k-sheaves on
the flag variety of some appropriate, endoscopic, group.

A last point: the description of the category of tilting objects as modules
will be, as stated above, obtained via the use of an appropriately defined Soergel
functor. Here, this means that we will consider a functor of the form Hom(.7, —)
with .7 a nice tilting object. Such a functor takes its value in the category of
right End(.7)-modules, thus one of our main missions will be (once we have
identified a potential 7) to describe this endomorphism space. This can be
seen as a geometric and monodromic version of Soergel’s Endomorphismensatz
in [So], and a direct variation of the analogous result in [BeR].

We review below the different chapters of this thesis, detailing for each one
what is concretely done in order to obtain these results.

0.2 Overview of the chapters

This thesis is divided in two parts: the first one deals with general constructions
on two different notions of monodromy, which we will detail below, and studies
monodromic perverse sheaves following the pattern of [BGS| §3]; this is the con-
tent of the preprint [G1]. The second part focuses on the study of monodromic
categories on the variety G/U, and will be published in [G2].

0.2.1 Topological monodromy

The first chapter is an exposition of the monodromy action evoked above, fol-
lowing Verdier’s construction from [Ve]. Considering a complex algebraically
stratified variety (X,S) acted on by a complex algebraic torus A, we present
the definition of the canonical monodromy action on the derived constructible
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category Dg(X ,k). This chapter is essentially a gathering of definitions and
elementary, although essential for the following, properties of monodromy.

0.2.2 Lusztig—Yun monodromy

The second chapter has for goal the presentation of another definition of mon-
odromic categories. This is entirely based on [LY]; the considerations in loc. cit.
are done on schemes defined over some finite field, endowed with the étale
topology, and with coefficients a field of characteristic zero (more precisely,
with @Q,-complexes of sheaves). Here, we consider a complex variety X acted
on by a complex algebraic group H, and positive-characteristic coefficients, but
the definitions and results of loc. cit. we will need for most part adapt quite
straightforwardly.

The definition of the Lusztig—Yun monodromic category is roughly as follows:
we consider a rank one multiplicative local system .Z on the algebraic group H
(multiplicative meaning here that the pullback of £ along the multiplication
map H x H — H is given by £ K.¥). Say that we have a surjective morphism
of algebraic groups with finite kernel K whose order |K| is prime to ¢, central
in H (that is, a finite central isogeny) H < H. The kernel K also acts on the
pushforward v, kz; assume that we have a character x : K — k* such that .#
identifies with the x-isotypic component v, kz.

One can consider the equivariant bounded derived category D%(X ,k), where

the action of H is via v. The kernel K acts on this category, meaning that for
any object .% we have a group morphism K — Aut(.%) from K to the auto-
morphisms group of .%# in the equivariant category, and this action is functorial.
Then one can consider the full subcategory of D% (X, k) whose objects are those
F for which the action of K is via the character x. This yields the (equivariant)
Lusztig—Yun monodromic category. A major part of the chapter is devoted to
the following: the description just given requires choices, namely for the isogeny
v and the character x. In order for this category to be manageable and conve-
nient to work with, one wishes that in fact, it does not depend on these choices.
This is indeed the case, as shown in sections through consequently, we
obtain a “well defined” category denoted ®(X JH)

0.2.3 Monodromic categories

Our third chapter studies the following situation: assume that we have an alge-
bra R acting on a category C. We show here that, under suitable assumptions,
our category splits according to the generalised eigenvalues of the action. This
is general and does not rely on the previous chapters, however, it applies to
the categories that were introduced in these chapters: as we explain above, for
(X,S8) a complex stratified variety acted on by a complex torus A, we have an
action of k[X.(A)] on the category D%(X, k), given by monodromy. Our general
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results imply that we have a direct sum decomposition

D%(X,k) = €P D5(X, k),
teAY

where ¢ is in the dual k-torus and where we let D%(X, k), be the full subcat-
egory of Dg(X ,k) whose objects are those % whose right monodromy map
factors through the quotient k[X.(7)]/(e* — A(¢))" for some n > 0 (note that
for t = 1, this means that the monodromy is unipotent; this subcategory was
the one studied in [BeR]). We say that an object in D%(X,k); has generalized
monodromy t. In particular, if two objects #,%4 on £  do not share a common
generalized monodromy, then there are no nonzero morphism between them.

The category D% (X, k), admits a perverse t-structure, and we let Ps(X,k);
be its heart. It is clear that an object .# € D%(X, k) that has exact monodromy
t has in particular generalized monodromy ¢, in particular we have a full sub-
category Ps(X,k); C Ps(X,k);. Note that this subcategory is not stable by
extensions (that was partly the cause of our preceding problems).

We then study monodromic categories in case X = A and S has only
one stratum given by the whole variety A. This reduces to the study of the
monodromy of indecomposable local systems on A. We remark that a k-
representation of X, (A) defines a k-local system on A, moreover an irreducible
local system always corresponds to a one dimensional representation of the form

k[X.(A)]/(e* = A1), teAY; (0.2.1)

in particular, isomorphism classes of irreducible k-local systems on A are in
bijection with the elements of 4. We then show that the monodromy of lo-
cal systems is closely related to their structure of X, (A)-representation, which
allows us to describe the monodromic categories on A.

Finally, we consider Lusztig—Yun categories, and show that a direct sum
splitting holds again in this setting, as in the case of monodromic constructible
sheaves.

0.2.4 Perverse monodromic sheaves

In the fourth chapter, we focus on algebraically stratified A-varieties (X,S),
where A is an algebraic (complex) torus. The fact that we restrict ourselves
to the case of a torus has the following consequence: as above, we are able to
classify the one-dimensional k-local systems on A, and these are parametrized
by elements ¢ of the dual k-torus Ay, we let 27 be the local system on A cor-
responding to t, i.e. associated to the X, (A)-representation . We show in
section [A.1] that for any ¢, this local system allows us to consider a Lusztig-Yun
category on X (that is, we construct an isogeny A — A and a character x;
as in subsection . In this setting, we show that the perverse t-structure
on the equivariant derived category Df’s Z(X ,k) restricts to a t-structure on the
Lusztig—Yun subcategory D (X JA) gf,,thus defining a subcategory of equivari-
ant Lusztig-Yun perverse sheaves, which we denote PB(X JA) oa.
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Now, our interest is in perverse monodromic sheaves on X with fixed mon-
odromy t. The first step is to actually give a precise sense to “perverse mon-
odromic sheaves”: for now, we have two a priori distinct definitions, namely the
category P(X, k) of perverse sheaves on (X, S) with a fixed (topological) mon-
odromy ¢ (with ¢ being an element in the dual k-torus A)), and the subcategory
P(X JA) za of perverse objects in a Lusztig—Yun equivariant category associ-

ated to the local system % ;4 on A. Considering the equivariant point of view,
we can add two more reasonable definitions. Let us for a moment think about
the (usual) constructible equivariant derived category on some stratified vari-
ety Y acted on by a connected algebraic group H, as defined e.g. in [BL]. The
equivariant category is not a subcategory of the constructible category, however,
it is well known that this is the case of the perverse subcategory. In fact, the
subcategory of perverse objects in the equivariant category identifies with a full
subcategory of the perverse subcategory in the constructible category; and an
object % in the latter “is” equivariant if and only if it admits a descent datum
with respect to the action of H on Y, meaning here that the pullbacks of %
along the projection, resp. action map, H x Y — Y are isomorphic.

Now in our monodromic setting, in analogy with this description of equiv-
ariant perverse sheaves, we can consider two new subcategories of the perverse
subcategory in D%(X,k), whose objects are required to satisfy compatibility
conditions on pullbacks analogous to those just evoked. This is done in section
4.2

We then proceed to show our main results for this first part: first, all the def-
initions of monodromic perverse sheaves yield canonically equivalent categories.
We thus have four equivalent categories, and we then show that under suitable
assumptions on the strata of X, they share a natural highest weight structure,
with finite weight poset; natural meaning here that this highest weight struc-
ture mimics precisely the case of Oyeom: standard objects are shifted !-extension
of appropriate local systems on the strata, whereas costandard objects are the
x-extension of the same local systems; and the poset is given by the set of strata
ordered by the closure inclusion.

In particular these categories have enough projective objects, as well as
enough injective objects, and it makes sense to consider tilting objects. In
the end of the thesis, we will work essentially with the Lusztig—Yun category
PB(X JA) o4 for X = G/U, as it is much more manageable than the category of
perverse sheaves with fixed monodromy (though not forgetting the monodromic
categories D%(X,k); and Ps(X,k);, which will still be quite useful). The sub-
category T(X JJA) 4 of tilting objects in P(X JA) ,a will become our primary
interest in (the/res)‘gg of this thesis HEd )gt

0.2.5 Flag varieties

Chapter [5| is mainly a gathering of definitions and notation; we describe the
constructions of part in the particular case where X = 2" = G/U and the torus
A is chosen to be the maximal torus T' of G. There is a particularity however:
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this variety, being both a left and right T-variety, allows us to define both left
and right monodromy actions, as well as left and right Lusztig—Yun equivariant
categories (now associated to a local system denoted .i”tT on T'). In particular,
from now on, our categories will be written with two indices: D?B)(%, k)27,
where ? can be either an element of the dual torus or the symbol —, the latter
meaning that we make no assumption on the corresponding monodromy. For
example, D?B)(% , ]k)[,yt] denotes the category whose objects are those .# with
right generalized monodromy ¢ and no assumption on left monodromy. A similar
notation will be used for Lusztig—Yun category, in this case we can even “mix
monodromies”: for ¢,#' € Ty/, we set D(2/T)y o) for the full subcategory of
D(ZJT) (- ) (the usual Lusztig-Yun equivariant category for the right action
of T') whose objects are those % for which, once viewed as constructible objects
on % via an appropriate forgetful functor, the left generalized monodromy is
given by t'.

The Bruhat stratification on G descends to a stratification on 2, indexed
by the Weyl group W. The strata then admit a nice description in term of
unipotent subgroups of U and lifts of elements of the Weyl group W of G.
These descriptions allow us to see that the left and right monodromy actions
on 2 are not independent but rather interconnected.

We also introduce what will be for us the replacement of the partial flag va-
rieties G/Ps. As suggested earlier, a quotient in the usual (i.e. with monodromy
1) setting ought to correspond to an appropriate equivariance condition. For s
a simple reflection in W, we consider the standard parabolic subgroup B C Ps;
write Py = Ls x U® where Ly is the Levi factor containing T, and U? is the
unipotent radical of P, and let B, = B N Ls. We can consider the natural
quotient 2% := G/U?; this is naturally a left and right Bs-variety, as well as
a left and right Lg-variety. If s = s, with a € ® such that aV(t) = 1 (we
will comeback to this condition later), the local system th extends to a lo-
cal system ,ZtLS on Ly and hence to By as well. Then one can define L, and
B,-Lusztig—Yun equivariant categories on 2 °. We will later consider various
forgetful and averaging funcors between these categories, and these will serve
as analogues of constructible categories on quotients of the form G/P;.

Finally, our preceding results apply on £7; in particular, we obtain a high-
est weight category of right Lusztig—Yun equivariant perverse sheaves P(2 /]
T )[_7 27T) with weight poset given by W endowed with the Bruhat order. We
then get standard and costandard objects, that we will denote A(w)gr and
V(w) o7 respectively, as well as tilting perverse objects denoted 7 (w) &7

Let T(2JJT) |- or) denote the full subcategory of tilting objects in P(2" ]
T)(—, 7). This is the category we want to describe: in the end, this will allow
us to give a description of the whole category of perverse sheaves. Following the
strategy used for Ogeom, our objective is to define a “Soergel functor” on this
category, which will eventually lead to the wished-for description. This functor
will be defined by evaluating the morphisms from a maximal tilting object (in
a sense to be precised). The rest of the thesis is now a successive presentation
of results which will allow us to define rigorously this functor and derive the
properties we want.
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0.2.6 Convolution

Chapter [] is devoted to the construction of bifunctors on our monodromic cate-
gories, yielding a “convolution product”. The thing is that G being a group, the
action of G on variety 2" = G/U is induced by the natural multiplication on the
left. This multiplication sort of upgrades to the derived categories to define a bi-
functor (our convolution product) (—)*(—) : D?B)(%) X D?B)(%) — D?B)(%).
We then study the behavior of this convolution product with respect to left and
right monodromy.

The next step is to define a similar convolution product on the Lusztig—Yun
equivariant categories; the definition needs a slight adjustment in comparison
to the constructible case; this is done in section [6.3

0.2.7 Completed categories

In chapter [} we present one of our main tools for the final understanding of
(2 [JJT)~ o7, namely Yun’s completed (monodromic) category. This con-
struction is adapted from [BYL Appendix A].

Recall that for a category C, a pro-object in C is a functor on C°P isomor-
phic (as a functor) to a functor of the form X — lim Hom(X,, X) for some
projective system (X, ), of objects in C; such a functor is denoted “lim” X,.
Note that any object X of C can be viewed in a natural way as a pro—orject, in
particular, C identifies as a full subcategory of the category of pro-objects in C.

The completed category we consider is a full subcategory of the category of
pro-objects in D?B)(%,]k). In the case of unipotent monodromy (i.e. t = 1),
the definition of the completed category uses the pushforward functor along
2 — G/B. As we mentioned above, this is not available for non-unipotent mon-
odromies; instead, we should consider a “projection functor” D?B)(%, k)—4q —
D(Z [JT)- r)- We define such a functor 71'% using the convolution product
defined in chapter [6} and study some of its elementary properties in

Now, the functor 77? extends to a functor between the categories of pro-
objects over D?B)(%,k)[_)t] and D(2" [JT)_ 7). Let us, for the duration
of this introduction, denote by ﬂ this extended functor. The completed cat-
egory is then defined as the full subcategory of pro-objects “lim” ¥, over
DE’B)(% , k)[4 such that the ¢, have bounded cohomological amplitude and
such that %]f(“]gl” %n) is a representable functor on D(2" JT)_ gr). For the

duration of this introduction, we denote it by E(B)(%, k)— -

Once this is defined, we can start to derive properties of this completed
category: first, the convolution product on D?B) (2, k) extends to a convolution
bifunctor (—)*(—) at the completed level. Then the completed category is a
triangulated category, and we can define a “perverse” t-structure on it, obtaining
thus a category of completed perverse sheaves. We can then define pro-standard
and pro-costandard perverse sheaves, denoted A, ; and V,,; for any w € W,
in analogy with the objects A(w)gr and V(w)gr. In fact, the pro-standard
and pro-costandard give lifts of the non-completed standard and costandard,
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meaning that ﬂ(ﬁw’t) = A(w) or, and similarly for the V’s (note that here,
the identification should rigorously be meant as an isomorphism of representable
functors, but as explained above, we can and will directly identify ﬁ of objects
in the completed category as objects in the Lusztig—Yun category). We will see
later that the objects in T(Z" JT) or also lift to the completed category.

Importantly, these lifts admit two non trivial monodromy morphisms: more
or less by definition, the objects of D(Z" JT)_ or) have a fixed trivial right
monodromy, meaning here that for such an object .#, the right monodromy
morphism

.z k[X.(T)] = End(F)

factors through the quotient k[X.(7T)]/(e* — A(t)) = k. (We made an abuse of
notation here, as monodromy is defined for constructible objects, and not really
for equivariant objects, but for the purpose of this introduction, this seemed
clearer). In contrast, completed objects can be thought as limits of objects %,
whose right and left monodromy factors through the quotient k[X,(7)]/(e* —
A(t))™, with m getting larger as n does so. In particular, for % in the com-
pleted category, the monodromy morphisms extends to a morphism from the
completion Ry := lim k[X.(T)]/{e* — A(t))™ to the endomorphisms of .%.

In certain aspects, working in the completed setting is simpler that working
with non-completed objects. For example, one can show that there are no
nonzero morphisms between pro-standard associated to distinct elements v, w.
We are also able to describe the morphisms between a pro-standard and a pro-
costandard; usual arguments then allow us to see that the completed category is
more manageable that one may a priori think: in particular, it is Krull-Schmidt
and the morphism spaces are finitely generated R;-modules (where the action
is induced by monodromy).

In fact, the completed category will be particularly useful when we will study
the endomorphism space of tilting objects: our version of the Endomorphismen-
satz will actually be a consequence of an analogous result for an appropriate
object in the completed category.

0.2.8 Standard and costandard objects
Generalities

Chapter |8 deals with an extensive study of standard and costandard objects in
D(Z JT)- 7). In the case t = 1, that is to say, in the B-constructible
derived category of sheaves on the flag variety G/B, the standard and co-
standard objects are given by Ay, 1= (ju )i kg, p/pldim(BwB/B)| and V,, =
(Jw)« Kpwp/pldim(BwB/B)] respectively; it is well known that they possess
nice properties: for example, the convolution of A, and A, is isomorphic to
Ay if the lengths of w and v add up; we have A, x*V,,—-1 = A; we know how
to describe the socle of A,, and the cosocle of V,, (see [BBM] for an exposition
of these results). Chapter [8|is devoted to the proofs that these facts are still
valid in the category ® (2 ]T)[jgﬂ. For the flag-variety-case, a key tool is a
bunch of exact sequences relating standard objects and simple objects. These
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exact sequences are obtained via a push-pull to a partial flag variety operation,
and once again, this is not available in our setting. However, we already found
the replacement for such a process, via Lusztig—Yun equivariant categories for
Levi factors of minimal parabolic subgroups. Then, a little work is needed to
identify the objects involved, and we are able to derive exact sequences quite
similar to those one is used to work with on flag varieties.

Convolution

The second step in the study of standards and costandards is the behavior
of these objects with respect to convolution. Checking the analogue of the
isomorphism A, *A, = A,, (and the similar one for costandards) is quite
standard; the difficult part is to show that standard and costandard objects
“cancel” each other. In order to show this fact, it suffices to consider a simple
reflection s in W: the convolution of the standard associated to s with the
costandard associated to the same s gives the standard object associated to
e € W. But, as briefly evoked above in subsection the elements of W, in
particular the simple reflections in this group, do not behave all in the same way
with respect to the element ¢ defining our monodromy (or, equivalently, with
respect to the local system .,?tT defining our equivariance). For example, some
elements may fix ¢, and some others may not. In fact the correct distinction
to be made is the following (this is taken from [LY], and quickly appeared in
subsection: let W be the subgroup of W generated by the subset S; C S
whose elements are those reflections s = s, such that oV (t) = 1 (note that if
t =1, we have W = W). This subgroup will be fundamental in the following;
let us say for now that the pair (Wy, S;) defines a Coxeter system, in particular,
this group has its own Bruhat order <;, its own length function ¢; and admits
a unique maximal element wy ..

With a little work, we already see quite a difference: for s a simple reflection
in W such that s ¢ Wy, the standard object coincides with the costandard
object and hence with the simple object associated to s; this is definitely not
the case for s € W°. Thus from now on, we should always distinguish the cases
s € WP and s ¢ W (the latter being often quite simpler than the former).
To come back to our A-V convolution problem, when s ¢ Wy, the argument
is topological, whereas the case s € W,° requires more care, and more involved
(although quite standard) arguments. Once the case of objects is done, we can
derive analogous results for pro-objects; all of this is done through sections [8:2]

to R4l

Socle

We finally turn to the determination of the socle of A’s. In the case t = 1, all
the standard objects share the same socle, namely, the simple object IC(e).
If t # 1, however, it is clear that this will not be the case: for example, if
s ¢ WP, then A(s) o7 is already simple. The thing is that "the Weyl group
does not fix arbitrary element ¢t € T, the way it fixes 17, i.e. the orbit of ¢
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under W may contain more than just t. It is then plausible that we have to
distinguish, in an appropriate way, a standard object from another one according
to the elements of W that index them. Once again, the answer came from
ILY]: as mentioned above, the left and right monodromy of an indecomposable
object on 2" cannot be completely arbitrary. For example, an indecomposable
object % concentrated on some stratum 2, with a fixed right monodromy ¢
(e.g. A(w)r) will automatically have a left monodromy given by w(t). So if
w(t) # v(t), the standard associated to w and v are really different, and in
particular, cannot share a common socle. Note however that if v is such that
v(t) = w(t), then it is reasonable to hope for our standards to be more “alike”.
We thus may be tempted to consider classes in some sort of quotient Wy / W,
where (W, := {w € W | w(b) = a} for a,b € T,. It turns out that this is not
exactly what we should consider, but instead the quotient W, := W, /W7
(note that W2 C ;). Elements in this quotient are called blocks, and they
are fundamental in what follows. Blocks possess numerous nice properties, for
example, a block § in W, is a subset of W and as such it inherits the partial
order of the Weyl group; one can show that there exists then a unique maximal
element and a unique minimal element in 5. For now, they give the distinction
we were looking for: set

9(%/1—‘)@/7‘3?] = <A(w)$;r | w e ﬁ>triang.a

we also call these subcategories “blocks”. Adapting arguments from [LY], we
are able to show that the category D(2" JT)y o1 is a direct sum of its block
subcategories:

LT or = P @(%ﬂ)ﬁ,ﬂ], (0.2.2)
56 uﬂt

in particular, there are no nonzero morphisms from an object in one block to
an object in another one.

Now it is really reasonable to hope for standard objects indexed by elements
in a given block to behave well, for instance, to share a common socle. This
is indeed the case, as shown in section [B.6] and this concludes our study of
standard objects.

0.2.9 Tilting objects, Ringel duality and Soergel functors

The next chapter focuses on tilting objects, first those in the Lusztig—Yun cat-
egories, then their completed counterparts.

The block decomposition induces a similar splitting of categories
on the subcategories of perverse sheaves. We can thus consider categories of
the type P(Z iT)ﬁgth]; this is the Serre subcategory of B(Z™ [Ty o1
generated by the simple objects IC(w) o7 with w € . These categories are
still highest weight, the corresponding projective and tilting objects are those of
B(Z JT)r, ) lying in our block ‘B(%iT)[Bt',th]' This is the categories we are
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really interested in. Our first goal is to show that the subcategories of projective
and tilting perverse sheaves are related, (in fact, equivalent) via a monodromic
version of Ringel duality. This is done in section [0.2] and it then follows from
standard arguments that, as in Ogeom, the projective cover of the minimal IC-
sheaf (i.e. associated to the unique minimal element of 3) in PB(2Z" iT)[ﬁt,’ 27 is
isomorphic to the maximal tilting object (i.e. associated to the unique maximal
element of 3).

The subcategory of perverse objects in the completed category also posses
“tilting objects”; they can be characterized as those pro-objects 7 in the
completed category whose projection ﬂ (/9\) is a tilting perverse object in the
Lusztig—Yun category; let us set f( B) (27, k)[— 4 this subcategory of tilting ob-
jects. We show that for any w € W, there exists an indecomposable completed
tilting object /y\w,t such that W%(/y\w’t) & 7 (w)gr, and that any pro-tilting

perverse object is a direct sum of these ?w,t’s.

From now on, until the end of this introduction, we will focus on the class
of the neutral element in ;W,, i.e. the subgroup Wy (this is legitimate: it turns
out that all blocks are equivalent, thus it suffices to consider this particular
block). We call it the neutral block. In this case, we write 9(‘%iT)Ft,$tT] for

the corresponding block subcategory (and similarly for neutral blocks in some
other subcategories).

We study in more details the (pro)-tilting objects associated to reflection
s € W7, simple in this group. Quite standard features on convolution of tilting
objects enable us to show that the convolution of tilting objects yields a tilting
object, and that the categories of (pro)-tilting objects admit a “Bott—Samelson”
type description, i.e. any indecomposable tilting object appears as a (ii\rect sum-
mand in an appropriate convolution product of objects of the form .7, ;. This
fact will later be put at use in order to describe our categories of tilting objects
as modules.

The final section of this chapter is devoted to the introduction and first
properties of another central players in our game, namely the functors Vi and
V3. They are defined respectively as

V(=) = Hom(Z w, .0, ) : Pipy (2, K)5, ) — Mod®(End (T, . )
and

Vi (=) =Hom (T (wio) g7, =) : B(ZJT)], or) — Modfg(End(y(UJt’o)g?)),

where for a ring A, we set Modfg(A) for the category of finitely generated right-
A-modules. The main result of this section is an adaptation of a result from
[BY]: these functors, once restricted to the subcategories of tilting objects, are
fully faithful. Thus, in order to obtain a full description of the latter categories,

—

we must determine first End(Z w, ,+) and End(7 (w¢0) o7 ), and then the es-

sential images of %A/? and V7. In fact, it suffices to consider the completed case:
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one of the most convenient features of tilting objects in the completed category

—_
is the following: for any such objects Z,.7 , we have an isomorphism

Hom(w(7),7/(7)) = Hom(7, 7 ) @5 k. (0.2.3)

t

In particular, by definition, we get

o~

End(7 (wi0) or) = End(Tw, 1) ®p, k. (0.2.4)

This partly justifies the importance of the completed category. Moreover, the
pro-tilting objects are convenient objects to work with, notably because of the
particularly simple description of morphisms between pro-standard objects in
the completed category. We can then consider an associated graded functor

gr: Ty (2, K) g = D) (2 K) g0

—~

and we show that this functor is faithful. Noticing that we have gr(.7 ., ,.+) =

o~

@D.cwo Aw,t, we obtain an injective map
t

End(Z u, ,0) = €D End(Ay).
weWwy

It turns out that the right hand side is simply a direct sum of copies of the com-
pletion R;. Thus, in order to determine End(.7 y, ), it suffices to determine
the image of the above map; this will be done in the next chapter.

0.2.10 Completed Endomorphismensatz
Pittie-Steinberg theorem

Chapter [I0]is devoted to the proof of one of our main result, namely, a variation
of Soergel’s Endomorphismensatz: we describe the endomorphism ring of the
(pro)-tilting object associated to the element w; .. The strategy here is quite
closely inspired by the arguments of [BeRl §8], themselves derived from results
of [KK|] and [AJS|]. In the end, we will show that the monodromy morphism
induces an isomorphism of algebras

Rt ®(1§t)wto Rt l) End(ywhmt). (025)
Let us detail the strategy we will use; basically, the arguments are based on the
Pittie-Steinberg theorem. Let H be a reductive semisimple simply-connected
algebraic group over the algebraically closed field k, and denote by Ty a maximal
torus and Wy its Weyl group. This theorem (theorem here) describes
the Z-algebra Z[X*(Ty)] of the abelian group X*(TH) as a module over the
algebra Z[X*(Tg )" of fixed points under the natural Wg-action. Our first
step is to obtain a variant of the Pittie-Steinberg theorem: the assumption that
H is semisimple simply-connected is too restrictive for our purposes, but we
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show, using verbatim the argument of [St], that the Pittie-Steinberg theorem
still holds under the assumption that the quotient Z[X.(Ty)]/®"V is free as a
Z-module, where ®V is the system of coroots of Ty (or, equivalently, that the
derived subgroup of H is simply connected).

Completed version

Now, note that we want to prove the isomorphism : ultimately, we are
interested in }Ait, and not simply in Z[X,(T)]; in fact our goal is not to obtain
an exact analogue of the Pittie-Steinberg theorem, but rather a “completed
version”, using completions of the algebra k[X*(Ty)] along some maximal ideal
associated to an element ¢ € Ty . But following [BeR], once the Pittie-Steinberg
theorem is known, if ¢ is central in H, one can derive such a completed version
(thus here, maintaining our assumption on the derived subgroup of H). At this
point, we should make a comment: the assumption that the derived subgroup
of H is simply connected is still too restrictive: we would like to simply assume
H to be any reductive group. Unfortunately, the price to pay for this generality
is an assumption on the characteristic £ of k: we assume that ¢ does not divide
the order of the finite quotient Z[X,(Ty(m))]/ Z-®" (here Ty gy denotes the
maximal torus of the derived subgroup of H contained in Ty, and X.(Tym))
its cocharacter lattice).

The fact that we want to consider only a completed version will actually be
crucial in the proof of the isomorphism . The point is that for a general
H reductive, there exists a reductive algebraic group H with simply connected
derived subgroup and a morphism H — H whose restriction to maximal tori
Ty — Ty is an étale map (with Tz being a maximal torus of H above Tjr).
Factually, the group H will be constructed by expliciting a root datum derived
from the one of H, and the morphism H — H will be obtain from a natural
morphism of root data. Anyway, our variant of the Pittie-Steinberg theorem is
true for H, and we also obtain a completed version, for any element t central in
H. We now have to deduce from this fact for H the corresponding fact for H.
The solution comes here from basic algebraic geometry: if t € H maps tot € H,
the map Tz — T4y, being an étale group morphism, induces an isomorphism
between the completions of the local rings of the complex varieties T and Ty
at ¢ and t, respectively. But now, it is standard that in the case of algebraic
complex tori, one can describe these local rings using the character lattices.
Eventually, this allows us to derive the wished for result for H.

The endoscopic group

We come back to . In order to prove our isomorphism, we will apply
the preceding considerations for a particular H, namely, the endoscopic group
attached to t. Once again, we should make an assumption on the characteristic
¢ of k: assume that ¢ is not a torsion prime for the Langlands dual group G}/.
Let ®; C ® be the subset of roots a such that s, € Si; let HY be the
connected reductive algebraic group over k defined as the connected component
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of the neutral element in the centralizer in G} of the element ¢. The complex
Langlands dual H; of HY is then the reductive group over C whose maximal
torus identifies with 7" and whose root system is given by ®;; the Weyl group
of Hy is then given by Wy. Since t is central in H,' by definition, we can apply
our completed version of the Pittie-Steinberg theorem to this group. More
or less by the definition of Langlands duals, this will imply that R; is a free
(R:)" -module of rank [W¢|.

To deduce the isomorphism , we then adapt the strategy of [BeRl,
itself inspired by arguments from [KK| and [AJS|]. The arguments are algebraic
in nature.

0.2.11 Monoidality

Once we have obtained our monodromic version of the Endomorphismensatz,
we need to describe the essential images of the functors V§ and V;. As was
rapidly evoked above, we are able to obtain a “Bott—Samelson” description of
(pro)-tilting block subcategories (recall that the convolution of two pro-tilting
object is still a tilting object). In particular, in the completed case, the neutral
block tilting subcategory is a monoidal category, and our description can be
stated as an equivalence of categories (see corollary

Tip) (2 K)o = (T s | s € Si) o; (0.2.6)

* @, C

(recall that * denotes the extension of the convolution functor to the completed

category). The Luztig—Yun case is deduced from the above equivalence, using

the functor 7¢; we may thus once again focus on the completed category.
From 7 we deduce an isomorphism

~ ~

Vf(ys,t) = ﬁt ®(§t)s Ry

for any s € S; (where (R;)* denotes the elements of R, invariant under the
action of s € Wy; see lemma [10.4.9)). Combining this isomorphism and (0.2.6)),
one sees that it is possible to describe the essential image of V7 if one knows

that our functor @;’ respects the monoidal structure on both (f( B) (2, ]k)ft t],i)

and (Modfg(]:’,t ®(Ry"e ﬁt), ®p,). Showing that there exists such a monoidal
structure on @? is the goal of Chapter |11 and Chapter

Comparison results

Our proof will need a change of setting: we will consider schemes of finite type
defined over an algebraically closed field F of positive characteristic endowed
with the étale topology. Let us explain why this will be useful. The quotient
2 = G/U can be defined already over Z: by general results of [SGA3]|, there
exist a split reductive group scheme Gz over Z whose root datum is the root
datum of G, and such that (the C-points of) Spec(C) Xgpec(z) Gz identify with
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G. We can moreover choose a maximal torus Tz and a Borel subgroup By
that yield, after base change to C, our torus T and Borel B. If Uy denotes
the unipotent radical of Bz, then 27 := Gz/Uz gives a Z-version of 2. Now,
we can consider the base change of 27 to any ring; in particular, we obtain a
F-version of our variety 2". The point of these considerations is that there are
tools available only over schemes over fields of positive characteristic, in our case,
the primary tool will be given by a Whittaker-category, on which we will return
below in this introduction. In any case, our proof requires a transition step “over
F”. Our main interest, however, is not étale categories, but rather the categories
introduced before, defined over complex varieties endowed with their classical,
“analytic”, topology. Chapter [L1] provides results that allow one to relate these
two different settings. The general idea is to follows arguments of [BBD] §6]
and [SGA4]. This will require some (somehow tedious) adaptations, or rather
translations, of the constructions of our first chapters in the different setting of
schemes over more general rings, and may involve quite heavy notation; but once
these preliminaries are done, our results essentially follow from the big general
machinery of [BBD] and [SGA4]. The main result is the following commutative
diagram of categories and functors, where the horizontal arrows are equivalences
of categories:

b,e
Dty (2, K)- Dywom (20 K- g

W;l lﬂ;vet (0.2.7)
D(XYT) - gr) <D wom(2F JTr)_

Tp,ety.
L

In this diagram, K is a finite field, and the objects in the right column, whose
precise definition is irrelevant here, give analogues of the various objects ap-
pearing in the left column; analogues defined on schemes over an algebraically
closed field of positive characteristic IF, endowed with the étale topology.

Etale constructions

Now that we have the comparison result of chapter at hand, we can start
to effectively work in the étale setting; this is done in chapter We consider
the scheme ZF := Gp/Up (the notation are as in the previous paragraph),
endowed with the étale topology. We will consider the derived category of
étale sheaves on Zr. In fact, we need a last piece of preliminary: the de-
rived category of étale sheaves is well-behaved only for finite coefficients, but
the complex-analytic-categories we are ultimately interested in are categories
with algebraically closed coefficients. To solve this problem, we will “force”
algebraically closed coefficients, by mimicking the construction of étale ¢-adic
categories. Once this is done, we obtain a version of diagram with now
algebraically closed coefficients. Then again, the beautiful machinery of Yun’s
completed category can now be performed on both sides of the diagram, and
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we ultimately obtain a equivalence of categories (see corollary [12.5.4)
Ty (2,0 ¢ T4(20, O

One more time, the precise definition of the right hand side is not necessary at
this point; let us just state that it is an étale analogue of the left hand side. Both
of these categories are monoidal, and this equivalence preserves the monoidal

—et
structure on both sides. In particular, we obtain an étale version 7 of

—

T w0t and an isomorphism of algebras

Wi, o,t

— —et

End(7 w, 1) = End(ﬂwt’mt).

The monoidality of WA/,? is then essentially equivalent to the monoidality of
~ —et

Voot = Hom(ﬂit ..t»—)- The proof of the latter property will be a conse-

—et

quence of an explicit construction of the object .7 zt ..t~ More precisely, as we
stated above, the main point for us of working over F is the possibility to de-
fine an Artin—Schreier sheaf, and a Whittaker-equivariant category associated
to it. We formally obtain a Whittaker-completed category, and we have av-
eraging functors relating our (étale) completed monodromic category and this
Whittaker completed version. Adapting arguments from [BYl §4] to our mon-

odromic setting, we then show that /ﬂ\:no’t appears as a direct summand in a
“double-averaging” of the (étale version) of the minimal pro-standard, i.e. the
pro-standard associated to the element e € W. With this key result at hand,
the monoidality of V{*** follows from (monodromic counterparts of ) arguments
from [BY]. We finally deduce the monoidality of the functor

Vi (T() (2, k)7, 4, %) — (Mod®®(R; @

(ﬁt)wﬁo Rt)’ ®§t)

0.2.12 Main theorems

Tilting categories

At this point, we can obtain the wished for descriptions of our tilting categories:
we identify the tilting category to a (variation of the usual) category of Soergel
bimodules. The Lusztig—Yun case more or less follows from the description of the
completed tilting category (using notably the identifications and )
This description is a rather immediate consequence of the results obtained in
previous chapters, and goes as follows:

Theorem 0.2.1. There is a monoidal equivalence of categories

T(B)(%ak)ﬁf,t] :—) SMOdfg(Rt ®(§t)wf Rt),

where SModfg(ﬁt ®(§ ywe ﬁt) 18 the full subcategory of the category of finitely
Wi
generated left Rt@(ﬁt)wf Ri-modules generated under tensor product, direct sums

t
~
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and direct summand by the objects ﬁt and 1/%,5 ®(§t)s ]3% for s € S (where (ﬁt)s

denotes the s-invariants).
There exists an equivalence of categories

UL YT, oy > SMod®(R,/(R)"),

where SModfg(ﬁt/(Et)Yf) is the full subcategory of the category of finitely gen-

erated left ﬁt ®(§,)Wf k-modules generated under direct sums, direct summands

and successive application of the functors ﬁt (R, (=) to the object k, for
s € S;.

Once we have this result at hand, we can formally derive a description of

the category B(Z/ T)B5 o) B8 the category of left modules over the endomor-
=Lt

phism algebra of an explicitly constructed projective generator of this category.

Variants of these results still hold for any block.

Relation with the endoscopic group

Following one more time ideas from [LY], we can go further in our description of
the neutral block. Between all the blocks, the neutral one Wy has the particular-
ity of admitting a group structure, in fact, we saw that W;? identifies naturally
with the Weyl group of the endoscopic group H;. Moreover, the behavior of
standard and tilting objects in m(%/T>[ot,$?] suggests that this category is
“governed by the group W7, in particular, it is reasonnable to hope that this
category is somehow related to the category of Bruhat-constructible perverse
sheaves on the flag variety of H;. This is indeed the case: an exact analogue
of theorem [0.2.1] holds for H;, replacing the element ¢ by the neutral element
1 and the local system ftT by the constant local sheaf k;. The categories we
obtain in this case are those studied in [BeR], in particular, the Lusztig—Yun
equivariant category on the basic affine space of H; is canonically equivalent to
the usual derived category Dl(’Bt)(Ht /Bt, k) of Bruhat constructible k-sheaves
on a flag variety of Hy.

Then, basic homological algebra arguments allow us to obtain a perverse
t-exact equivalence

D(LYT), 1) = Dis,)(He/ B k)

preserving standard, costandard, simple and tilting objects. This amounts to
saying that, indeed, for an element ¢t € T}’, the neutral block in the right
Lusztig—Yun equivariant monodromic category is controlled by the Coxeter sys-
tem (Wto, Sf)

Description of maximal IC-sheaves

As a corollary of our preceding results, we obtain a description of monodromic
IC-sheaves associated to elements w maximal in the block of ;) W, they belong
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to. In the case w = w;, this description is as follows. Recall our local system
2T onT. For any w € W, we derive local systems .2 on the strata Bwp /U :=
Zw C 2 associated to w. Set IC,, _ ¢ := IC(Zy, ,,-Z;"°). Finally, recall that
¢, denotes the length function of the Coxeter system (W2, S¢). Then, for any

w € WY, we have (see corollary [13.3.1])
Ju 1Cw, o0 = LY [dIm(Z) + Le(w,0) — Le(w)],

Ju 1Cuw, o = LY [dim(Z0) — ly(wy,0) + Le(w)].

0.3 Future Directions

Koszul duality The notion of Koszul duality was studied in [BGS], where it was
described as an auto equivalence of the derived category of (a “graded version”
of) the principal block of a semisimple complex Lie algebra. This result was
later generalised by R. Bezrukavnikov and Z. Yun in [BY]. There, the authors
worked with varieties over algebraic closure of finite fields and characteristic
zero coefficients and constructed an equivalence of categories D%ym(G /B,Q,) =
ﬁ,ij’m(Gv JUVY, @e)[l,l], relating left B-equivariant mixed complexes on the flag
variety of G' to the completion along unipotent monodromy of UY-equivariant
mixed complexes on the basic affine space for the dual group (we will roughly
explain what the term “mixed” means below). Moreover, the latter equivalence
switches semisimple complexes and pro-tilting objects. Here, the term “mixed”
refers to a feature due to Deligne, and requires to work on varieties over fields of
positive characteristic, on which one can consider the Frobenius automorphism.
The mixed condition is then given by technical assumptions on the eigenvalues
of the Frobenius map on the stalks of a complex. The point is that with this
framework, these categories are graded, in the sense that there exists on both
sides an auto equivalence of categories (1), called Tate twist (coming from the
Frobenius map); these auto equivalences actually reveal the hidden duality pat-
tern stated above. One can rephrase this result with notation similar to those
used above. We will consider the ’Dﬁz,ﬂg, where the left “k” means that we im-
pose an equivariance condition on the left as well (before, we only considered
a right Lusztig—Yun equivariance condition). The equivalence of [BY] is then a
monoidal equivalence of categories

Dy = Dty (0.3.1)

inducing an equivalence between the subcategory of mixed semisimple (k, ks )-
bi-equivariant complexes and the subcategory of mixed perverse tilting sheaves.
In this setting (characteristic zero coefficients with schemes over positive char-
acteristic fields), a huge step towards an analogous result with arbitrary mon-
odromy was obtained in [LY].

One now wonders if such a duality may be obtained in our setting of complex
varieties and coefficients of positive characteristic, and for general monodromy.
In this case, it is known that the correct replacement for semisimple complexes
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is given by the parity complexes of [JMW]. In fact, such an equivalence had
already been obtained in the case of positive characteristic coefficients in [AR2],
and even generalised (with a completely different proof) to the case of Kac—
Moody groups in [AMRW], though only in the case of unipotent monodromy
(that is, the exact analogue of ) The main problem here is that Deligne’s
theory of weights does not make sense anymore, so that we do not have clear
auto-equivalences analogue to Tate twist; in other words, we do not have a mixed
structure on our categories. This is an issue because parity complexes form a
graded category, whereas tilting objects do not have any graded structure. Thus
the two sides of the picture have different structure, and finding an equivalence
is then hopeless. This difficulty was overcome in [AR2] where a new, more
elementary, notion of mixed categories was introduced. This works well in the
parity side, but it is not clear how to deal with the pro-tilting side. One may
hope for an equivalence of monoidal categories of the form

(i, %) = (PaxityDlly; 2,1,

for t/,t € T,Y. A first step in this direction would be to actually define the
categories above: a mixed version of pro-tilting monodromic perverse sheaves
(once again, this is already done in the case of unipotent monodromy), and
Lusztig—Yun equivariant parity sheaves. Before that, one can hope to get a
weaker result, namely obtain a degrading functor from the mixed parity side to
the tilting category, as in [AR1]. These results would be an encouraging debut
for proving the existence of a more general Koszul duality phenomenon.
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Part 1

Monodromy
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Chapter 1

The topological
monodromic category

In this chapter, we recall the monodromy constructions made by Verdier in [Vel,
as well as some properties of the monodromy action.

1.1 Preliminaries

In all this document, unless stated otherwise, we will assume that k is the
algebraic closure of a finite field. We let £ > 0 denote the characteristic of k.

We consider A a complex algebraic torus of rank » > 1. We will use several
times the fact that we can choose a trivialisation A = (C*)" so we fix such a
trivialization once and for all.

For any topological space Y, denote by D?(Y,k) the bounded derived cat-
egory of sheaves of k-vector spaces on Y. Also, let Loc(Y,k) be the abelian
category of finite dimensional k-local systems on Y (i.e. k-local systems on Y’
with finite dimensional stalks).

For a morphism f between two algebraic varieties, the associated functors of
pullback and (proper) pushforward will almost always be understood as derived
functors. Thus, we will write f. instead of Rf, (and similarly for f; and f*).
In some places, we will have to consider usual, non-derived pushforward; the
notation will then be f; and f° for the non-derived version.

Lemma 1.1.1. LetY be a connected, locally path-connected and locally simply
connected topological space.
Take 4, N in Loc(Y,k). Then, the natural morphism

EXtioc(Y,]k) (M, N) — EthDb(Y,]k)('///af/V)
is an isomorphism.

Proof. Recall that the left-hand side is defined to be the Hom-space in the
derived category D®(Y,k) between .# and .4[1]. Denote by C the heart of the
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natural t-structure on D®(Y,k) (C is an abelian category). It is a known fact
that C is equivalent to the category Sh(Y,k) of sheaves of k-modules on Y. It
follows from general theory of t-structure (see for example [BBD], Remark 3.1.17
(ii)]) that the natural morphism

= Exte (M, N ) — Extip iy (A, N)

is an isomorphism.
For .4,/ two local systems on Y, the inclusion Loc(Y,k) < Sh(Y, k)
induces a map

EXtioc(Y,]k) (A, N) — EXtéh(Y,Jk) (A, N) = EXt}:Jb(Y,k) (A, N).

This map is injective: if an exact sequence of local systems splits in Sh(Y, k),
then it splits already in Loc(Y,k). For the surjectivity, see [Ac, Lemma 1.8.6].
O

Lemma 1.1.2. Let V be a finite dimensional k-vector space. Then any ¢ €
GLx(V) is of finite order.

Proof. Fixing a basis in V, we obtain an isomorphism GLy (V') = G Lgimv) (k).
Now, k is the union of its finite subfields. This implies that G Lqjm(v)(k) is the
union of its finite subgroups. The result follows. O

We recall below a well-known theorem that we will use many times. A space
X is said semi-locally simply connected if each point x € X has a neighborhood
U, such that any loop in U, is homotopic to a point when viewed as a path in
X. Any complex algebraic variety is semi-locally simply connected, in fact it is
even locally contractible (see for instance [Hi] and [Hatl Proposition A.4]).

Theorem 1.1.3. Let Z be a connected, locally path connected, semi-locally
simply connected topological space. Let zg € Z be any base-point. There is a
canonical equivalence of categories

Loc(Z, k) = Mod™ (k[m (Z, z)])

where the right-hand side denotes the category of finite-dimensional k-represen-
tations of m1(Z, z9). Consider (Y, yo) another connected, locally path connected,
semi-locally simply connected pointed topological space and f : (Z,z0) = (Y, yo)
a continuous map of pointed spaces. The map [ induces a group morphism

m(f) : m(Z, 20) = (Y, %0)

and the functor f* : Loc(Y,k) — Loc(Z,k) corresponds to the restriction of
scalars along this map at the level of representations: we have a commutative
diagram

I

Loc(Y, k) Loc(Z,k)

| |

Mod™ (k[ (Y, yo)]) ——— Mod™ (k[r1(Z, 20)]).

Resry (1)
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This theorem allows us to prove the following useful lemma. In this paper,
unless stated otherwise, the fundamental group of any (topological) group will
be considered with 1 as base point.

Lemma 1.1.4. Let £ be a k-local system on A. Then there exists an integer
n such that el (L) is a constant sheaf.

Proof. Thanks to theorem the local system % corresponds to a k-represen-

tation V of 1 (A) = Z". This representation is entirely determined by the action

of the elements f; = (0,...,0,1,0,...,0) € Z"; this action is thus given by a
1

family {g; }i=1,...» of commuting elements in GLy(V'). According to lemmal|l.1.2]
the g;’s are all of finite order; let n the least common multiple of these orders.
For any k-representation W of Z" (equivalently, for any k[z;, z; Yi=1,...,7)-
module) denote by W, the representation defined in the following way: as k-
vector spaces, W = W,,, and the action “-"” is given by

for any i. The functor e, : Loc(A,k) — Loc(A,k) corresponds to the functor
Mod™ (k[ (Y, 40)]) — Mod™ (k[xy (Y, 50)]), W +— W, via the equivalence of
theorem [L.I1.3] Thus the action of f; on V;, is given by the matrix ¢ = 1 €
GLg (V). We get that V,, is trivial and so e}, (.Z) is a constant local system. O

In this document, we will mostly be interested in several derived categories
of constructible sheaves: let X be a complex algebraic variety endowed with
an (algebraic) action of A. We fix a finite algebraic stratification S (see [CG|
Definition 3.2.23]) such that each S € S is A-stable.

Let Dg(X ,k) denote the S-constructible bounded derived category of sheaves
of k-vector spaces on X.

We denote by pry : A x X — X the projection and a : A x X — X the
action morphism. Let e, : A — A be the morphism ¢ — ¢". Finally, denote by
a(n) the composition a o (e, x id).

Remark 1.1.5. Take .# in D%(X, k). By definition, the restriction to a stratum S
of any cohomology object of .% is locally constant. By assumption, each A-orbit
is contained in one of the strata ; each cohomology object of .% is then locally

constant on the A-orbits. This remark is in particular valid for a constructible
sheaf.

Lemma 1.1.6. Let F be an S-constructible sheaf on X. There exists an integer
n such that a(n)*(F) is constant on each fiber of pry.

Proof. Since S is finite, it suffices to show the lemma for .75 for any S €
S. We can therefore assume that .# is a local system on X. Then a*(%)
is a local system on A x X and thus corresponds to a k-representation V' of
m(A x X, (1,29)) &2 Z" x (X, z0) (for any base-point o € X). Thanks to
theorem[I.1.3] the sheaf a(n)*(F) corresponds under the equivalence of theorem

to the representation V' of Z" x m (X, z¢), with V =V as k-vector space
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and (m, [a]) acting as (nm, [a]). If we view V as a representation of Z" (via the
canonical injection Z" — Z" x 71(X,x0)), we get the restriction of scalars of
the representation associated to .%# along the group morphism 7 (A4) — w1 (A4) x
m1(20, X ) induced by the map

A= Ax{zg} = Ax X, t — (t", x0).

We deduce from lemma [I.1.4] that for n sufficiently divisible, this corresponds
to the trivial representation of Z"; the morphism defining the representation V'
of Z" x 71(X, xo) hence factors through the projection to 71 (X, zg). This says
exactly that a(n)*(.%) is of the form pr3(¥) for ¢ a local system on X. O

Lemma 1.1.7. Let % be a constructible sheaf on A x X that is constant on
each fiber of pry. Then there exists a sheaf 9 on X such that

F = pri(9).

Proof. Consider the object pry (#). For any z € X, we have an isomor-
phism pry,(F),; = RI'S(F|ax{s}) in the bounded derived category of k-vector
spaces. Since #| 4y} is constant by hypothesis, this cohomology lives in de-
grees 7,...,2r. We consider the non-zero truncation morphism pry (%) —
A" (pryy (F))[—2r]. We use adjunction to obtain a (nonzero) morphism

F — pry A (proy(F)[=20] = prs A7 (pryy (). (111)

(We used here the fact that pr, is a smooth morphism, so pry = pr3[27].)
We check that this is an isomorphism by looking at the stalks. For a point
(z,2) € A x X, we have a morphism

F o) — A (pro)(F))e X HZ (A x {2}, F). (1.1.2)

We can then assume that X is a one-point space and hence that .# is a constant
sheaf. It therefore suffices to check the isomorphism for .%# constant of rank 1;
in this case, both sides are just k (thanks to Kiinneth’s formula applied to
A= (C*)"). As our morphism is nonzero, there exists a point (z, x) such
that is nonzero, and thus an isomorphism. Since .% is assumed to be
constant, the (global) morphism is nonzero, whence an isomorphism. [J

1.2 Verdier’s proposition

Proposition 1.2.1. Let . be an object in D%(X,k). There exists n € Zg
and a morphism
u(n) : pry(F) — a(n)"(F)

such that {1y« x identifies with the identity of F. Any such morphism is an
isomorphism. If ni, no are two strictly positive integers and if

un1) s pro(F) — a(m)™(F),  u(ng) : pry(F) — a(n2)"(F)
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are two such morphisms, then there exists a strictly positive integer ng, multiple
of both n1 and ns, such that

(e23  id)*((m)) = (ezs x id)" (1(n2)).

Finally, let G be another complex in Df’g(X7 k) and u : F — & be any morphism.
There exists n € Zso and two morphisms t1(n) : pry(F) — a(n)*(F) and
to(n) : pry(9) — a(n)*(¥) as above such that the following diagram commutes:

prs(7) — s a(n)*(F)

pr;(u)l la(n)*(u) (1.2.1)
. t2(n) "
pr3(9) —————a(n)"(¥).

Before giving the proof of the proposition, we need an preliminary result.
We have
(en x id)* pry = pr3,
so the inverse image functor of (e, X id) induces an endomorphism
pn s Hompy (45 x 1y (3 (F), pr3 () — Hompy (45 x ) (P13 (F), pr3(9)).

(Here, with a slight abuse of notation, we denote again by S the stratification
of A x X whose strata are the A x S for S € §.) We clearly have p,, 0 p, = prm.
Moreover, the following diagram commutes:

Hong(X,k) (#.,9)

* prs
pry

Hong(AxX,k) (pr3(F),pr5(9)) g Hong(Axx,k) (pr3(F), pr5(94)).

Lemma 1.2.2. For any f € Hompy 45 x ) (pr3(F),pr5(¥)), there exists an
integer n > 0 such that p,(f) := e} f = pry g for some g € Hong(X,k)(y,g).
Moreover, such a g is unique.

Proof. Let us fix a f as in the statement. We begin by showing the existence of
g. First, note that pr, is a smooth morphism since A is smooth. Thus we have
prh = pri[2dim(A)] = pr3[2r]. Now, thanks to [KSI, (2.6.4)], we can write

RHom(pry(F), pra(¥)) = RT(A x X, R Hom(prs(F), pry(¥)).

Using [KS1l, Proposition 3.1.13], we get the following isomorphisms in the cate-
gory D%(A x X,k):

prs (R Hom(F ,9)) = pry (R Hom(F ,9)) [—2r]
>~ R Hom(pry (%), pr!2 (@))[—2r]
= R Hom (pry(F ), pry(9)[2r]) [—2r]
= R Hom(pry(F),pra(¥)).
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Using Kiinneth’s formula, we obtain a chain of isomorphisms, in the derived
category DP Vecty, of k-vector spaces:

1%

RHom(pry (%), pr§(#)) = RT(A x X, R #tom(pr(F), pri(¥))
RT(A x X, prs R Hom(F,9))
RT'(A x X, kXR Hom(F,9))
RI(

A, k) @ RHom(.7,9).

1R

1

Since we work over a field k, we know that the tensor product functor over k is an
exact functor, so taking 0-th cohomology on both sides, we get an isomorphism
of vector spaces

Hong(AxX,k) (pr3(F),pr5(¥)) = @ H'(A, k) ®x Hong(ka)(ﬁ,%[—i])
i€Z
(1.2.2)

where H'(A, k) is the i-th cohomology of A. Under these isomorphisms, the
morphism p,, identifies with p, (k) ® id, where p,(k) denote the morphism
H*(A,k) — H*(A,k) induced by ef.

Assume that A is of rank 1, i.e. that A = G,, = C*. Recall that the
cohomology of G, is non-zero only in degree 0 and in degree 1.

We know that H* (G, k) = Exth g, w0 (kg,,,Kg,, ). Using lemma and
theorem [1.1.3] we have

H* (G, k) = H° (G, k) ® H' (G, k)
= Hompi (g, 1 (ke Kg,,) ® Bxtpg, 1 ke, Ks,,)
= Hompoe(g,, 0 (kg,, Kg,,) @ EXtioc(Gm wke, kg, )
= Hompep(z ) (Keriv, Keriv) @ Extiopz i) Kerivs Keriv)-
We can thus work in the category of k-representations of Z. We determine the
action of p, (k) on each of these summands.

It is obvious that Keriv,n = Keriv (see the proof of the lemma-for the nota-
tion), so the action of p, (k) on ExtRep(Z k) (Keriv, Keriv) = Homgep(z k) (Keriv, Keriv)

is simply the identity. Now, we know that the space Extll;{ep(z,k) (Kerivs Keriv) s
one-dimensional; an isomorphism k — EXtﬁep(Z,k) (Keriv, Keriv) 18 given by

x— V(x)
where V() &2 k@k as a vector space and the action of 1 € Z is given by the

matrix <(1) gf) The action of 1 € Z on V(x), is then given by the matrix

<é glc> = (é nlx). The endomorphism of k induced by p,, (k) is thus multi-
plication by n. We have determined the action of p, (k) on each of the summands
of H* (G, k); since k is a finite field of characteristic ¢, multiplication by n is
zero as soon as ¢ divides n. Thus for n >> 0, the map p, (k) kills all but the
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zero-th degree component of H®(A k). In view of ([1.2.2)), this readily implies
the existence of g as in the statement.
We now deal with the general case (still for the existence): we have a com-

mutative diagram
| | 12

*\ *\
) ey (©)

(we made a little abuse of notation, denoting by the same symbol “e,,” the maps

A — A and C* — C* sending an element on its n-th power). Using Kiinneth’s

formula one more time, we get

H"(Ak = P (@ HP: (C*, k)) . (1.2.4)
i=1

pitetpr=m

Thanks to the diagram (1.2.3), the induced map p,, (k) : H"(A4,k) — H" (A, k)
decomposes in a direct sum of tensor products of maps, each of which corre-
sponding to the map already studied in the case A = Gy,. Thanks to ,
the cohomology of A is in degrees 0,...,r. From the case A = G,, we deduce
immediately that the induced map p,, (k) is the identity on H°(A, k) = k. Now
for H™(A, k) with m > 1, there is in each summand at least one p; = 1. On
this summand, the map induced by p,, (k) is zero if n is divisible by £. We can
conclude as above.

We finally show the unicity: assume that we have two integers ni,ngy > 0
and two morphisms g1, g2 : F — ¢ such that p,,(f) = pr g:.

Let {i,j} = {1,2}. Since p,(pr3 g) = pr} g for any n and g, pulling back the
equality p,, (f) = pr3 g; along e, for i = 1,2 leads to

Prs g1 = Prs go.

Restricting to {1} x X, we find g1 = g2 and the proof is complete. O

1.3 Proof of Verdier’s proposition

Proof of proposition[1.2.1. Let # € D%(X,k). We prove the existence of an
isomorphism between a(n)*(.%) and an object of the form pri(2) with 2 €
D%(X,k) (for some n € Z~g) by induction on the minimal length of an interval
containing {i € Z | #*(F) # 0}.

Assume that % has a unique non-zero cohomology object. We can use lemma
and lemma [1.1.7] We get an integer n such that a(n)*(#) is constant on
the fibers of pry. Since a(n)* is an exact functor, we obtain an isomorphism
a(n)*(F) = pry(L2) for a certain sheaf 2 on X. This settles this case. Now for
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a general .7, denote by N the largest integer such that s#(.7) # 0. We have
a truncation triangle

HN(F)-N -1 L rey 17— 7 U
Denote ¢ = 7<y_1.% and X = #N(F)-N —1]. Both ¥ and ¥ have a
smaller amplitude than .% so by induction, there exists an n such that a(n)*(¥)
and a(n)*(J) are of the form pri(¥) and pri(%).

The morphism a(n)*(f) defines a morphism pr(%) — pr5(¥'), and thus,
by lemma E an element in lim Hom(prs (%), pr5(?)) (say in the copy of
Hom(pri (%), pry(?)) indexed bﬁ in the inductive limit). With lemma
replacing n by a multiple if necessary, the morphism a(n)*(f) is of the form
pri(g) for some g : Z — ¥ hence a(n)*(%) identifies with the cone of pr3(g)
and is of the form pr}(2).

So far, we have obtained an isomorphism

pr3(2) — a(n)"(F)

for a certain integer n and an object 2 € D%(X,k). To identify 2, we can
restrict to the subset {1} x X to see that .# = 2. We have thus obtained an
isomorphism

t(n) : pry(F) = a(n)*(F).

It is also clear that ¢(n) restricts to the identity on {1} x X.

We now prove the second statement. We know that there exists an iso-
morphism ¢(n) : pry(F#) — a(n)*(F) whose restriction to {1} x X is the
identity of %#. Assume that there exists an integer n’ > 0 and a morphism
v:pry(F) — a(n/)*(F) is such that (13 x = idg; we want to show that ¢ is
an isomorphism. We start by noticing the following: to check that a morphism
of (complexes of) sheaves is an isomorphism, it suffices to verify that it is so on
the stalk at any point. Thus if g is a surjective map and g*¢ is an isomorphism,
¢ is an isomorphism itself in the first place. Now consider a integer m which is
a common multiple of n and n’. The composition

(em xid)* 1o (em x id)*¢(n) "t
is an endomorphism of prj(.%). It then defines an element in
limy Hom (pr3 (), pr (7).

(Once again, we choose this element in the first copy of Hom(prs(.%#), pra(.%))
appearing in the limit.) With lemma and replacing m by a multiple
if necessary, we can assume that this element is of the form pri(f) for f an
endomorphism of #. Restricting again to {1} x X, we obtain f = idgz. We
deduce that, for m sufficiently divisible, (em x id)*(¢) o (em x id)*(v(n)~t) =
idprg ; then ! "

(em xid)"t = (e= x id)"(n). (1.3.1)
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noticing that em is a surjective map, we get that ¢ is an isomorphism on the
stalks and hence an isomorphism thanks to the comment above.

Now, assume that n; and ny are integers and consider morphisms ¢(n;) and
t(ng) as in the proposition. We know from the second statement, just proved
above, that ¢(n;) is an isomorphism for ¢ = 1,2. Then the exact same argument
as before shows that there exists an integer ng sufficiently large, such that
(ena xid)"¢(n1) = (ens x id)"e(n2).

1Finally, consider a second complex 4 and a morphism u : . % — 4. Choose
n sufficiently divisible to have two isomorphisms

t1(n) : pry(F) — a(n)*(F), ta(n) : pry(¥) — a(n)*(9).

The composition t2(n)~! o a(n)*(u) o t1(n) is a morphism prj(F) — pri(¥).
Using again lemma and replacing n by a multiple if necessary, we can
assume that this morphism is of the form prj(v) for v : . — ¥. Restricting to
{1} x X, we obtain v = u which finishes the proof. O

1.4 Definition

We define here the monodromy of a constructible complex. For any cocharacter
A € X, (A) and any integer n, we set A(e”") = \,. Let also

g {f}x X =2 AxX and 7:X S {f} xX

denote the inclusion and the canonical map respectively, for any § € A.
Consider an object .# € D%(X,k) and a cocharacter A € X, (A4). Thanks to
proposition [1.2.1] there exists n € Z~ and an isomorphism

un) : pry(F) = a(n)*(F)
whose restriction to {1} x X identifies with the identity of .. We set
ez n(A) =715 7%, (t(n): F = F.

Our first task is to show that in fact the isomorphism ¢z ,(\) does not depend
on the integer n.

Proposition 1.4.1. Consider two integers ny,no such that there exist two mor-
phisms

11 :pry(F) = a(ng)*(F) and 19 :pra(F) = a(ng)*(F)
as in proposition m Then for any A € X, (A), we have

Pz (N) = @70, (N).
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Proof. We thus consider two morphisms ¢; and o as in the statement of the
lemma; t1)1yx x and t2|(1)x x identify with idg. We want to show that

w5 i, () = 75,5, (),

We know that there exists a multiple m of both n; and ny such that (e% X
id)*(bl) = (6% X id)*(LQ), Thus

T, (e xid)* (1) = 53, (ez x id)* (c2).

In the following diagrams, we consider ¢ € {1,2}. We will need some more
notation: let (em x id) be the map

A} x X — D} x X

induced by (e% x id). The following diagram is clearly commutative:

X— 2 i x X — P s T X

(em xid) (e% xid)

X—Dr O X — D axx,

We deduce that the following diagram is also commutative. (To gain some space,
we omit the labels in the notation for Hom-spaces.)

Hom(pr3(F), a(ni)*(F)) ——————— Hom(pr3(F),a(m)"(F))

(Eﬂ Xid)*

- %

Ixn, Ixm

Hom (3, (), 3, 0(m)" (%)) == Hom (i3, pr3(#). 3, a(m)" (%))
N em Xi
S 1 U T

Hom(%#,.%) Hom(%#,.%).

As we have the equality jy (e% x id)*(u1) = jx,, (e% x 1d)*(t2), we deduce
that 73 j3 (¢1) and TRy I, (12) are already equal in Hom (%, .%). O

Thanks to proposition we now can get rid of the n in the notation
07 n(N). For any .# € D%(X, k) have obtained an application

¢z : Xu(A) = Autpy x 1 (F), A= oz (A).

We state now a useful lemma.
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Lemma 1.4.2. Fiz an object F € D%(X,k). The application pz is a group
morphism X, (A) = Autpy x 1) (F)-

Proof. Consider A, € X,(A4) and an integer n such that there exists a mor-
phism
L:iprs F —a(n)" F

whose restriction to {1} x X identifies with id .
Let f: Ax X — A x X denote the map

(t,x) — (pnt, ).
As we have a(n) o f = a(n) and pryof = pry, the functor f* induces a map
Hong(AxX)(Pr§ F,a(n)* F) — Hong(AxX)(pr; F,a(n)" F).
We consider f*(¢): this is a morphism a(n)*.# — prj.# whose restriction to

{1} x X has no reason to be idg. So we cannot define pg(\) from this map.
To palliate that, we rather consider the composition

pry F ———=pry F ——————a(n)* Z. (1.4.1)

We check that this morphism has the correct restriction to {1} x X. What we
consider is in fact

g7 (F () o pr3((pz(w)™) -

On the one hand, considering the following commutative diagram

X ok X L AxXx
fiiyxx f

X— " o x X S Ax X

~

we have 7777 (f*(¢)) = vz (). On the other hand, we have pryoj; o = idx

so 71 1 (pr3((pz (1) ™1)) = (p.# ()~ 1. The restriction of the morphism (1.4.1))
to {1} x X is then idg. Thanks to proposition we can define ¢ () by

restricting (L.4.1)) to {\,} x X (and then applying 75 ). We do so:

pr(\) =735, (f (1) oprs((pr (1))
= 73,05, (F (W) o (7 (1) "
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To conclude the proof, we must show that 735 7% (f*(¢)) = @z (\u). But this is
clear from the following commutative diagram:

A

XD kX P axx

Flianyxx f

X — 2 O} x X A X

~

The proof is now complete. O

Thanks to lemma for any %, we can extend the morphism vz to a
k-algebra morphism:

¢z k[Xi(A)] — Endpy (x 1) (F).

Definition 1.4.3. The morphism of algebras p.z : k[X,(A)] — Endpp (x 1) (F)
is called the canonical monodromy morphism of F. The action of X,(A) on F
defined by pz is the canonical monodromy action on F .

Remark 1.4.4. In our definition of monodromy, we considered, for any n, the
simplest primitive root of unity e’ Although convenient, this is not strictly
necessary: if £ is a primitive n-th root of unity and m divides n, the complex
number ¢ is a primitive m-th root of unity. Then, the exact same definitions
as above would still be valid replacing the family {ehTﬁ}n>0 by an appropriate
family of n-th roots of unity.

1.5 Properties

We study some basic properties of the monodromy morphism defined in the
previous section.
The following result is a key feature:

Lemma 1.5.1. Consider any A € X.(A). For any #,% in D%(X,k) and any
morphism f : F — 94, we have f ooz (N\) = pg(N)o f.

Proof. This is an immediate consequence of the commutativity of diagram
(1.2:1)) of proposition [T.2.1} with the notation therein, the lemma follows from
applying the functor 75 j§ to the diagram. O

Consider any algebraic group morphism ¢ : A” — A where A’ is another
torus. Via ¢, the group A’ acts on X. It is quite clear that each stratum of
the stratification S is A’-stable. For any .# € D%(X,k), we can thus define a
monodromy application ¢’z : X, (A’) = Autpe x i)(F). The following lemma
relates the two applications ¢ # and ¢/s.
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Lemma 1.5.2. For any X' € X, (A"), we have the equality

P'z(N) =pz(poXN).

Proof. Denote a’ : A’ x X — X the application defining the action of A’
at',x)=a(e(t'),z).
Then we define a/(n) to be a’ o (e, x id). Since ¢ is a group morphism, we have
a'(n) = a(n) o (¢ x id).
Now consider a morphism
v:pry(F) — a(n)"(F)

as in proposition [1.2.1] We apply the functor (¢ x id)* to this morphism to
obtain a map

Vo (pry)"(F) = a'(n)"(F)
(where pr}, denotes the projection A" x X — X). We have ¢y, x = {[{1}xx =
ide. Weset 74, : X 5 {N(e%")} x X = {)\,} x X for the obvious isomorphism.
We then get

Pz(N) = (T:\;ﬁy)*(bi{,\;}xx)- (1.5.1)
We remark that the following diagram is commutative:

’

X I XC e A X X

T(qbox/)ni l(wid)

{p(A))} x XC Ax X.

J(gor)n

The vertical arrow on the left is in fact 7(40x), i.e. is given by:
2 (po N (™), 2).

Recalling that «/ = (¢ x id)*¢, we obtain the result from equality (1.5.1)). O

We now consider the behaviour of monodromy with respect to functors con-
structed from a morphism. We begin with the following definition:

Definition 1.5.3. Let (X,S) and (X', S") be two varieties endowed with alge-
braic stratifications and f : X — X' a morphism. We say that [ is stratified if
for any stratum S € S the image f(S) is a union of strata of S'. We say that
f is locally trivial if it is stratified and if for any pair (S’,S) € S’ x S such that
S" C f(S), the map SN f~1(S") — S’ induced by f is a Zariski locally trivial
fibration.
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The point of this definition is that the pushforward and proper pushforward
of an S-constructible complex along a locally trivial f are S’-constructible (see
[BaRl Proposition 6.1] for the proper pushforward; a “Verdier dual” argument
applies in fact also for the usual one). Before the next result, we make a remark
on some morphisms of functors.

Remark 1.5.4. Consider any cartesian square of algebraic varieties and contin-

uous maps:
E B
’Yl i,@
C

——D.
We have natural morphisms of functors:

«
N,

5

7*5! — ofﬁ* and B¥ 0. — ™. (1.5.2)

Indeed, by adjunction, to give a morphism of functors v*§' — «a'B* is the
same as giving a morphism &' — y,a'8*. With the base change theorem, this
amounts to giving a morphism &' — §'5,3*. We then take the image under §'
of the adjunction morphism id — S.£*. Similar considerations give the second
morphism of . Now assume that the diagram we consider is of the form

ExXx— _pyx

j)(idxl inidX/

BxX B x X'

idp x f
We have the same kind of morphisms as above. We consider an object in
DB x X' k) of the form .F XY (with .# € D?(B,k) and ¥ € D*(X',k)). It
is quite clear that the morphism

(j x idx)*(idp x ) (FRYG) — (idg x f)'(j x idx/)* (FRY) (1.5.3)
is an isomorphism. Moreover, if .#' € D*(B,k) and ¢ € D*(X’ k), and if

0: FRY — F' KXY
is any morphism, the two morphisms
(idg xf)'(j x idx)*¢  and  (j xidx)*(idg xf)'¢

identify (under the isomorphism for both objects .# X% and .7’ X¥'). A
similar statement can be made using the second morphism of , considering
this time an object on B x X. Finally, if 57 = % K¥, then one still has the
isomorphism , replacing .# K'Y with 7.

45



Lemma 1.5.5. Let (X,S) and (X', 8’) be two stratified A-varieties. Consider
f X — X' an A-equivariant morphism of algebraic varieties. Take .F €
D%(X,k), 4 € D% (X', k) and any A € X,(A).

(1) Assume that f is a locally trivial morphism of algebraic varieties (for S

and S’). We have:

filez(N) = @5 7)(AN) and f(oz (V) = ¢y, (7)(A)-

(2) Assume that for any stratum S € S, the image f(S) is a stratum of S’.
Then

F g (V) = @5 @) (N) and f'(0z(N) = @5 a)(N).

Proof. We start by noticing that the lemma makes sense: f*¥¢, f'9% and
fi #, f..F are respectively S-constructible and S’-constructible. We “prime”
all the morphisms relative to X’: a’ denotes the action morphism A x X’ — X’
for example; the same will apply for pry, 7/, ... 'We keep the notation of the
proof of lemma [1.4.2

We fix once and for all an n € Z~ such that there exist two morphisms

L:pry(F) — a(n)* (F)
and
Jpry(4) — d (n)*(9)

whose restriction to {1} x X (resp. {1} x X’) is idg (resp. idg). Thanks
to proposition [1.4.1] we can always find such an n, that is, an n that works
for both .# and ¢. The arguments for both points are based on the following
commutative diagram:

X X’
Unlz zlfgn
D x X ——{ P x X’ (1.5.4)
(id x f)
Jkni\ Vﬁ;n
TxX - Tx X'.
(id x )

Note that both the upper and lower square are cartesian. Note also that the
vertical arrows are all proper morphisms: the top ones because they are isomor-
phisms, the bottom ones because they are closed embeddings.

Now we prove the first equality of (2). By definition, we have pg(\) =
(T/’\”L)*(LT{/\n}XX,). Using the top square in the diagram, we get

g (V) = (73, (a,yxxr))

= 7y, (id x f) (LT{AW,}XX/)-
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Now we use the bottom square to get

GAXF) () = (Gd X)) o -

Using the fact that f is A-equivariant and the equality prh o(id X f) = f o pr,,
we see that this identifies with a morphism

a(n)*(f*9) — pra(f*9).

Now, if we show that the restriction of (id x f)*/ to {1} x X identifies with the
identity of f* ¥, we will be done. But we have:

() = P W)
= f*(id(g>

The first equality is thus proved.
We deal with the second equality of (2). The beginning is similar to the
preceding case, noticing first that 7 and 7/ are isomorphisms and so 7* 22 7' and

1* ~ !

77 = 77", Then, we remark that a(n), a’(n) and the projections pr,, pry are

~

smooth morphisms, thus a(n)*[2dim(A)] 2 a(n)' (and similarly for the other
maps a’(n), pry and pry). These remarks allow one to see that

f!(w(ﬁ()\)) = f!(Tﬁ*n(Lf{,\,,L}xx'»
!
=73, (d X f) (x5 x7)
and that (id x f)"¢/ identifies with a morphism

pr3(f'9) — a(n) (f'9).

Let us evaluate (id xf)!(LT{/\n}XX,). To do so, one can apply remark |1.5.4] pre-
ceding the lemma to the bottom square of : we are precisely in the case
described there. Indeed, all spaces involved are clearly products of spaces, and
all the maps that appear can be written as the product of two maps, one of
which is the identity (as an example, jx, = j, X idx where j, : {A\,} — A is
the inclusion). We get that

—

(id X f) (¢[{a,yxxr) = ((id Xf)!bl)\{xn}xx :

Now, once again, if we can show that the restriction to {1} x X of (id x f)'//
identifies with the identity of f'.#, we will be done. This follows from the next
equalities:
TG x ) = firiid
= f'(idz)
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This settles this case.
Now consider the first equality in (7). We have to evaluate

N (= x))-

Using the base change theorem on the top square of diagram ((1.5.4)) first, and
then on the bottom square, we get

ST @y xx)) =77 (G X< i) oy <xe -
By definition, (id x f)i¢ is a morphism
(id > f)r pry(F) — (id x fha(n)"(F).

Another application of the base change theorem shows that (id x f),. identifies
with a morphism
pry’ (fi(F)) — a'(n)” (A(F)).

To evaluate its restriction to {1} x X', one must apply one more time the base
change theorem; we see that this restriction is idy, &#. Finally, we get

ST (panyxx)) = o dv (id X e = @p 7 (A)

and the proof is complete. The case of f, follows from similar considerations as
above, using the second morphism in (1.5.2). O

Lemma 1.5.6. Consider two stratified A-varieties (X,Sx) and (Y,Sy) and
F.9 € D% (Xk), # € D% (Y,k). We consider X x Y as an A-variety
under the action

t-(z,y)=(t x,t-y).

Then, we have pzgy = Pz Q@ pg and pgr» = ez W @, where these
applications are defined by

A= pzN)@eg(A) and A= pz(A) K ope(N).
Proof. The equality po g9 = p7 ® pg follows from the fact that we have
[(Fe9) =279

for any map f whose codomain is X.

The second equality is clear if we look at X x Y as an A x A variety (under
the action ((¢,t') - (z,y) = (t-x,t - y)). The reader should note that for the last
sentence to make sense, we view ¢ o K¢ as a map from k[X, (A)] @k k[X.(A4)].
Now, what we consider in the lemma is this action pre-composed with the
diagonal embedding Ay : A — A x A. Thanks to lemma we obtain the
desired result. O
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Chapter 2

The Lusztig—Yun
monodromic category

2.1 Preliminaries

Consider a complex algebraic group H and a (complex) H-variety X. We denote
the H-equivariant constructible bounded derived category of sheaves of k-vector
spaces on X by D% (X, k).

Assume that there exists a finite subgroup K of H, contained in the center
of H, which acts trivially on X. Recall that the center Z(C) of an additive
category C is the endomorphism ring of the identity functor ide. If C is k-linear,
then Z(C) is a commutative k-algebra.

Lemma 2.1.1. The finite abelian group K acts functorially on the identity
functor of Dl}{(X, k). In other words, we have a k-algebra morphism

k(K] — Z(D% (X, k)).

The lemma means that for any .# € D% (X,k) and any a € K, we have an
automorphism ¥4 , of #, and moreover these automorphisms are compatible
with the group structure of K.

Proof. We recall one of the incarnations of the equivariant derived category as
fibered category (see [BLL §2.4.3]). One can view an object .# € D% (X, k) as
a collection of objects .#(P) € D*(P/H) for every resolution P — X, together
with isomorphisms 7* .% (Q) = .% (P) for any morphism P 2 Q — X of resolu-
tions (where p is the induced morphism on quotients); this data is required to
satisfy some usual compatibility conditions. To obtain such a collection from
an object .7 in D% (X, k), one proceeds in the following way: for any resolution
p: P — X, we have an object p* % in D?{(P7 k) since p is H-equivariant; this
in turn defines an object .#(P) € D’(P/H,k) since P is a free H-space. The
definition of the isomorphisms p* .7 (Q) = .#(P) is obvious.
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Now, consider two resolutions p : P — X and ¢ : @ — X and a mor-
phism of resolutions p : P — Q. We assume that we have a group L act-
ing on P and ), commuting to the H-action, making p an L-equivariant map
and p,q two L-invariant maps. Then the objects ¢* .# and p* % define ob-
jects in DY, (P k). Similarly, the isomorphism p*q* # = p*.Z lies in the
category D%, (P,k). As stated above, in order to get p* . #(Q) = Z(P),
we identify D% (P, k) with D*(P/H,k). Using the equivalence D% ; (P, k) =
D?IXMHX“}(P/(H x {1}),k) = D% (P/H, k), we thus see that this is actually
an isomorphism in DY} (P/H, k).

Consider M = H x X % X and M’ = H x H x X % X with o'(h, k,z) =
hk-x. We have the following action of H x H on M’ and M, respectively given
by:

(h1,h2)-(a,b,z) = (hiahy ', habhy ', ho ), (h1,h2)-(a,x) = (hyahy ', ho-2).

The maps a and o’ define two H = H x {1}-resolutions of X. We also have
two H-resolution morphisms M’ <222 T given by o1 (h, k,2) = (hk,x) and
pa(h,k,z) = (h,k-x). The induced maps on quotients are given respectively
by pry and a : H x X — X. Thus we obtain isomorphisms

pry F(M) = F(M') 2a* F(M).
By definition, this can be written as
Yz : pry(For(F)) = a*(For(.F)). (2.1.1)

It is clear by construction that this isomorphism is functorial and satisfies the
usual cocycle condition.

The maps @; for i = 1,2 are H x H-equivariant for these actions, moreover,
the maps @ and @’ are {1} x H-invariant. We deduce from the discussion above
that the isomorphisms %;* For(.#) — For(.%) define isomorphisms in D% (H x
X, k), where the latter category is defined with respect to the action of H on
H x X given by h - (a,z) = (hah™', h - z).

If k belongs to K C Z(H), then the map X — {k} x X < H x X is H-
equivariant, thus the pullback 92 j of ¥ along this map gives an automorphism
of & in D?{(X, k). The cocycle condition for ¥ &, ensures that the ¥ & j’s respect
the group structure of K, i.e. that 92, 0 0z p» = Uz g for k, k' € K. This
concludes the proof of the lemma. O

2.2 Equivariant categories

Consider a finite central isogeny H <> H with kernel K and x : K — k* any
character of K. We can look at X as a H-variety via v. We obtain in this way
an equivariant bounded derived category DZI’;{ (X, k). Thanks to lemma the
finite abelian group K acts on the identity functor of this category. We can thus
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consider the full subcategory consisting of objects .# such that ¥z , = x(a)id#
for all a € K. We denote this subcategory Di’f] X(X, k).

We consider now a (fixed) multiplicative rank-one k-local system . on H.
This means that the pullback of £ along the multiplication map H x H — H
is ZNK.Z. Assume that there exists a finite central isogeny v with kernel K of
cardinality prime to ¢ and a character x of K such that

Z = (vekpg)x]-

Let us explain a bit what this equality means. The isogeny v is a K-equivariant
map (for H endowed with the trivial K-action). We can then define an action of
K on the pushforward v, kz; then (v, kz)[x] denotes the x-isotypic component.
We will consider the category D%’X(X ,k). For now, the reader has probably

noticed that the definition of D% X(X ,k) requires some choices, for v and .
We will prove that under suitable assumptions on the characteristic of k, this
category in fact does not depend on the choices made.

To finish this section, let us remark the following facts. Lemma [2.1.1] states
that the action of K on the equivariant derived category gives an algebra mor-
phism k[K] — Z(D%(X, k)). Since the cardinality of K is prime to ¢, we have
a decomposition k[K] = P, L¢ indexed by the irreducible k-representations
of the finite group K; and since k is algebraically closed, these irreducible k-
representations are given by characters. Moreover, for each factor L¢, we have an
idempotent e¢ and a decomposition idy[x) = Zg e¢. The identity I of ile;I(X,k)
is the image of idy[x] so we obtain a decomposition (of functors) I =, E¢ with
each E¢ idempotent. Since DY (X, k) is Karoubian (see e.g. [LC| §1, Theorem)),
any object .# decomposes as a direct sum # = @5 F¢. The image of E¢ is

precisely D% 5(X, k), and K acts via the character £ on #,. This direct sum
splitting is obviously functorial, thus D% §(X ,k) is a direct factor subcategory
. b ’

in D7 (X, k).

Remark 2.2.1. The above comment tells us that if there exists a nonzero mor-
phism between two indecomposable objects of D%(X ,k), then these two objects
are in the same factor subcategory; in particular each factor inherits the struc-
ture of triangulated category from D%(X ,k). This also implies the following
important result: if we have a t-structure on D% (X, k) and if .# belongs to

the factor subcategory associated to a character x of K, then the cohomology
objects of .# belong to the same factor.

2.3 Well-definiteness: first step

We start by making some general comments. Consider a connected algebraic
group H acting on a variety X and a multiplicative rank-one local system .Z
on H. Assume that we have two finite central isogenies H; — H with kernels
K; satisfying ged(]K;|,¢) = 1 for i = 1,2 and characters x1, x2 of K; and K>
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respectively such that ((v;)«(kz))[x:] = 2. We can then define the x; and x»
equivariant categories
. nb b ._ nb b
Dy = fol,m(X’k) C DIZ(X’H() and Dy := DITz,XQ(X’k) C DE(X’k)'

The question is: are these categories (canonically) equivalent? We begin by
reducing to a somehow simpler case: the canonical map vyopr; : Hy xg Hy — H
is again a finite central isogeny (here the fibered product has the group structure
inherited from the one of the direct product Hy x Hy), and its kernel is ker () x
ker(v) so its cardinality is prime to £. If we can show that the “character-
equivariant” category defined with respect to (v4 o pry, x1 © pr1|pr1_1(ker(l/1))) is
canonically equivalent to D; then we will get D1 = Dy (canonically). Indeed, by
definition we have v; opr; = vy0pry; one can check that xi OPT pe ! (ker(11)) and
X2 © PT2ne1 (ker (1)) coincide because they define the same isotypic component
% in (vq o pry)« k. Therefore we can reduce to the following situation:

vy

with v and vy two finite central isogenies and X1 = X2 © Vjker(s,) With kernel
of cardinality coprime to ¢. (Note that vy is then itself a finite central isogeny,
and that its kernel has cardinality coprime to ¢.) The identity of X is a v-map
in the sense of [BL, §0.1]. We can thus consider the equivariant pullback and
pushforward functors between the Hvl and HZ equivariant derived categories on
X (these functors are denoted Qfy and Qiq, in [BLL Part 6]). Set (p,)* := Q5.
What we finally want to show is that (p,)* induces an equivalence of categories
Dy — D;. For the proof, we will need an assumption on the characteristic £ of k.
The proof goes in two steps: first fully-faithfulness, then essential surjectivity;
the essential surjectivity will be proved without hypothesis on £ but we will need
an assumption for the fully-faithfulness.

2.4 Equivariant cohomology for algebraic groups

In the following lemma, we consider the notion of torsion primes for a reductive
group; we refer to [SS, 1.4.3, 1.4.4] for the definition. Let us just recall that for
a reductive group L, the torsion primes are the torsion primes of the simply-
connected cover of its derived subgroup Z(L), together with the primes dividing
the order of the fundamental group of Z(L).

Any connected algebraic group H over C can be written as a semidirect
product H = R,(H) x L with R, (H) the unipotent radical of H and L a
connected reductive subgroup (see e.g. [Hol §VIIL.1, Theorem 4.3]). We call L
a Levi factor of H; we have an isomorphism L = H/R,(H).

Lemma 2.4.1. Consider H a connected complex algebraic group, and fix a Levi
decomposition H = R, (H) x L. We fiz a mazimal torus T of L and we let W

92



denote the Weyl group of (L,T). Finally assume that the characteristic £ of k is
not a torsion prime for L. Then the natural morphism H$; (pt, k) — H$ (pt, k)
is an isomorphism, and the natural morphism

Hj (pt, k) — Hf(pt, k)

induces an isomorphism H$ (pt,k) — H%(pt, k)W'. Moreover, we have an iso-
morphism HY-(pt) = Sym (X*(T') @z k)

Proof sketch. The H-equivariant cohomology of the point can be computed as
the total cohomology of the space BH = EH/H where FH is any contractible
free H-space. Note that we have a split surjection

£ ~
H—— L.

Thus the space EH can be viewed as a (contractible and free) L-space and then
chosen as EL, i.e. we have BL = EH/L. We then obtain a locally trivial map

q:BL—- BH

whose fibers are isomorphic to the unipotent radical of H, so in particular,
isomorphic to an affine space. Thus we have H¥ (pt,k) = HY (pt,k). The
last statement of the lemma is proved in [Tol Theorem 1.3]; this is where the
assumption on char(k) is necessary. The last isomorphism is well-known. [

2.5 Isogenies and equivariant cohomology

We start by an easy general lemma:

Lemma 2.5.1. Consider fI,H two algebraic tori. Assume that H Y H is an
isogeny with kernel K of order k, and let k = p{* - - - p%~ be its decomposition as
a product of prime numbers. Then the cokernel A of the induced map

v# X*(H) — X*(H)

1s finite and its order is of the form pll’1 -.pbr for some non-negative integers
b;.

Proof. The map v identifies with the quotient map H — H /K = H. An
element A € X*(H) pulls back to an element of X*(H) if and only if we have
AMK) = {1}. Now K is a finite group so any of its elements is of finite order,
moreover this order must divide k. If we take the lowest common multiple of
all the orders of the elements of K and denote it &', then we have A¥ (K) = {1}
for any A € X*(H), or in others terms A\¥" € v#(X*(H)). So any element in the
cokernel of v# is of finite order, and this order divides k’. It follows that A is
a finitely generated abelian group (since it is an homomorphic image of such a
group) and all its elements are of finite order, thus A is finite. Now assume that
there is a prime p such that p divides the order of A. According to Cauchy’s
theorem, there must be an element in A whose order is p. So p must divides k'
and thus be one of the p;’s. O
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Consider now two complex algebraic groups H and H and a finite central
isogeny v : H — H; denote its kernel by K. We can find a Levi decomposition
H = Ry,(H) » L (see the discussion before lemma [2.4.1)).

Lemma 2.5.2. Any finite subgroup of the center Z(ﬁ) is contained in L. In
particular, K C L.

Proof. In fact, we will show that any element of finite order in Z(H) is in L.
Consider such an z, and let n be its order. We can write z = rs with r € Ru(ﬁ)
and s € L. Since 7 is central, we have in particular z = sxs~! = sr, so r and
s commute. We then have 1 = 2™ = r"s". These equalities imply that 7™ is in
R, (H)N L, thus is trivial. So r is of finite order, and then semisimple. We then

obtain r =1 (as r is both unipotent and semisimple) and = = s € L. O

We deduce from lemma [2.5.2] that the map v identifies with the natural
projection ~ _ _ _
R,(H)xL— R,(H)xL/K.

We see in particular that two connected isogeneous groups over C have iso-
morphic unipotent radicals. We now would like to link the torsion primes
for Levi factors of H and H; in fact we show that the torsion primes for L
are_already torsion primes for L. We start by choosing a maximal torus T’
in L; this torus contains the central subgroup K and we obtain in this way
a maximal torus T = T/K in L. As we saw above, the isogeny v induces
an isogeny at the level of Levi factors. Moreover, the restriction Via(E) of v

to the derived (semi-simple) subgroup of L lands in Z(L). We have an in-
duced map on maximal tori T — T/K = T; in turn this gives an injective

group morphism X*(7) < X*(T). We finally obtain a surjection of groups
m(D(L)) = A/ X*(T) » A/ X*(T) = 71(2(L)), where A is the abstract weight

lattice of the root system of Z(L) and Z(L). Thus the prime numbers dividing
the order of the fundamental group of m1(2(L)) divide the order of 71 (2(L)).

Lemma 2.5.3. Take two algebraic groups H and H and a finite central isogeny
v:H — H; denote its kernel by K. Assume

e the order of K is prime to char(k) = ¢,
o ( is not a torsion prime for the reductive group H/R,(H).

Then the natural morphism
HYy (pt, k) — H (pt, k)
s an isomorphism.

Proof. According to lemmas and , we can assume that H and H are
reductive. As above we consider a maximal torus 7" in H and the maximal torus
T =T/K under T in H. The isogeny v induces an identification of the Weyl
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groups W and W of H and H. The induced map T — T is still an isogeny
whose kernel has order prime to £. The map v induces an injective morphism of
abelian group X*(T') — X*(T') whose cokernel is a finite group of order prime
to £ according to lemma Taking tensor product with k, we obtain an
isomorphism X*(T) ®z k — X*(T) ®z k and then an isomorphism

Sym (X*(T') ®z k) = Sym(X*(T) @z k). (2.5.1)

Using the isomorphism HY.(pt) = Sym (X*(T') ®z k) stated in lemma [2.4.1} we
obtain
H7 (pt) = H%(pt). (2.5.2)

The groups W and W act on the corresponding characters groups X* (T) and
X*(T). Moreover, the map X*(T) — X*(T) induced by the isogeny commutes
with the W and W actions. The action of W on Sym(X*(T') ®z k) induces the
W-action on HY.(pt, k) (and similarly for T). As discussed above the statement
of the lemma, since char(k) is not a torsion prime H, it is not torsion for
H. Thanks to lemma we have H% (pt,k) = Sym(X*(T) ®z k)" and

H}I(pt’k) = Sym(X*(T) ®z k). Thus the isomorphism (2.5.1)) induces an
isomorphism
HY (pt, k) = Hy (pt, k).

This concludes the proof of the lemma. O

2.6 A spectral sequence for equivariant coho-
mology

Lemma 2.6.1. Consider a G-variety X, for G a connected algebraic group.
For an object # € DY(X,k) we have a converging spectral sequence

E?? = HY (pt, k) @ HY(X, #) = HLM(X, 7).

Proof. Fix a contractible free G-space EG. The projectionmapp : EGxX — X
gives an oo-acyclic resolution of X in the sense of [BLL Definition 1.9.1] for the
action g - (e,x) = (eg™', gx). The quotient is BG := EG x& X, the classifying
space of G since G is connected, BG is simply connected (this can be seen as
follows: the natural map EG — BG is a locally trivial fibration with fibers G;
one then uses the exact sequence of homotopy groups, since G is connected and
EG simply-connected, the result follows). Denote by ¢ : EG x X — EG x% X
the quotient map. Thanks to [BLL Lemma 2.3.2] we can consider our object in
the equivariant derived category as an object .# in DY(EG x© X, k) such that
there exists a .# x € D’(X,k) and an isomorphism p*(F x) = ¢*(F).
Consider the following diagram

EG x% X B BG4 {pt},
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with pr([e, z]) = [e]. We have a Grothendieck spectral sequence R%a,oRP (pr), =
RPT4(aopr).. We apply it to .#. The object RP(pr).(.%) has constant stalks
isomorphic to HP(X, % x). We thus obtain a local system on BG; the latter
space being simply connected, we have in fact a constant local system iso-
morphic to k- ®xHP(X,.%#). When we apply R%a. to this object, we obtain
HY(pt, k) ®x HI(X, F). Since RP*4(a o pr).(F) = HL'Y(X,.7), we get the
result. O

2.7 Full faithfulness of p;

We keep the notation of the beginning of section We show here that under
suitable assumptions, the functor p}, is fully faithful.

Lemma 2.7.1. With the notation of section[2.3, assume that ¢ is not a torsion
prime for H/R,(H). Then the functor (p,)* is fully faithful.
Proof. Consider .#,% two objects in D% (X,k); applying lemma to the

H;
derived internal Hom R Hom(.% , %) one obtains the following converging spectral

sequence:

By = H%i (pt, k) @x Hom pox 10y (F,9[q]) = HOYHD%(X)(Q,%[P +q]).

On the morphism spaces, the functor p}, comes from a morphism of spectral
sequences induced by the map

HE- (pt, k) — HE- (pt, k). (2.7.1)

According to lemma the morphism ([2.7.1)) is an isomorphism (recall that
the cardinality of the kernels of v, vo and v are prime to ¢). This allows us to
conclude that p} is fully faithful, and thus lemma [2.7.1] is proved. O

2.8 Essential surjectivity of p

We now show the essential surjectivity of p}. We keep the notation of
We also keep the assumptions of lemma [2.5.3| on ¢; thanks to lemma the
functor p}, : Dy — Dy is fully faithful. Since any object in D; is an extension
of its perverse cohomology objects, using lemma [2.7.1] in order to show that p},
is essentially surjective, we only need to check that the perverse sheaves in Dy
are in the essential image, thanks to the following well known fact:

“Assume that F': C — D is a functor between triangulated categories which is
full, and that the essential image of F' contains a family of objects generating
D (as a triangulated category), then F is essentially surjective.”

Set K := ker(v). In order for a perverse sheaf .% on X to define a E—equivariant
object, we just need the existence of an isomorphism between the pullbacks
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along the projection map and the action map (see [BaR] §A.1, 3rd “reasonable
definition”]). Now if .% is a perverse sheaf in Dy, then by definition it carries a
H 1-equivariant structure such that K acts trivially (via the map of lemma.
Indeed, by definition, we have that the group K; = ker(v1) = v~ (ker(1»)) acts
on .# via the character X1 = X2 © Vjker(,)- But K C ker(x1), so K acts trivially
on .%.

One then remarks that the isomorphism 9 between the two pullbacks of .7 to
H1 x X along the action map and the projection H1 x X — X is the identity map
of (prQ‘ xx)Z when restricted to K x X, hence it descends to an isomorphism
on E[Q xX = ﬁl/K x X . Let us elaborate on this fact: the perverse sheaves form
a stack for the étale topology (see [BBD) §2.2.19]). Therefore to see that our
isomorphism descends to an isomorphism on j 2 X X, we have to show that its
pullbacks under the two projections 7y, my : (Hy X X) X fox X (HixX)— HixX
coincide.

Lemma 2.8.1. We have nv¥ = 73

Proof. The different maps that we will consider are depicted in the following
(non commutative) diagram.

idg{ Xa
e e pra 3 g a
H1><H1><X mxidx H1><X 5 =X
T2
J\T J\L //
—~ pPra 3
Hi x K xX K x X

(the two maps from K x X to X are given by aot and pry ot). The isomorphism
U satisfies the cocycle condition (m x idx)*0 = (idz; xa)* o prj 39. We want
to show that the following diagram commutes:

mia*(F) mya*(F)
lﬂ'fﬁ J{w;ﬂ
7} pray F 5 pra F .

We consider the diagram

(Hi % X) %z, x (1 x X) Hy x K x X
= / e
m i Xid x
H1><X

where the horizontal map is given by (p, k,x) — ((p, z), (pk, x)).



Thanks to diagram (2.8.1)), we are reduced to the commutativity of

priza*(F) == (mg x idx)*a*(F)
iprf,sﬂ \L(mk xidx )" (282)
pri 3 pry F == (m x idx)" pr3 & .

But now, we use the isomorphism (my xidx)* = 7*o(m xidx)* and the cocycle
condition to find that
(mr x idx)"d =" (idg; xa)*d o " prj 39
=prigtopryz v
——
id

by the assumption that ¥|x x = id. Thus the diagram (2.8.2)) commutes and
we are done. O

We see that .7 is a ﬁg—equivariant perverse sheaf, thus it defines an object
in the Hs-equivariant bounded derived category. Moreover, the isomorphism

ay F — pry . F (2.8.3)

(where ag is the action map for ﬁQ acting on X) on fIg x X comes from the
one on f[l x X (i.e. is the descent of ¥ to ﬁg x X). Since v : ﬁl — ﬁg is an
isogeny and hence is surjective, it is easy to see that the action of Ky on .# via
comes from the action of Ky on .%. So in particular, one deduces that
K5 acts via xo on .%. Thus our functor is essentially surjective.

2.9 Definition

Consider a finite central isogeny H < H with kernels K satisfying ged(| K|, ) =
1 and characters x & of K such that ((v).(kz))[x«] = 2.

Definition 2.9.1. In the situation of lemma|2.7.1, we set
b
D(X[H)z =Dl _(X.K)

and call this category the Lusztig—Yun monodromic equivariant category of mon-
odromy L. This category does not depend on the choice made for H and x ¢ .

Remark 2.9.2. In the case where X admits a stratification S, we can pro-
ceed all the preceding construction replacing the category D%(X, k) by the

S-constructible derived equivariant category D% S(X, k). We obtain the S-
constructible Lusztig—Yun equivariant monodromic category Ds(X/H) ..
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Let us fix an isogeny H % H and a character x of its kernel such that we
can view D(X//H) as a full subcategory of D% (X,k). One can consider the
restriction of the forgetful functor For : D% (X,k) — D®(X,k) to the subcate-
gory ©(X/JH). Moreover, this functor does not depend of the choices made
for v and Y, in the following sense. With the notation of we have an
isomorphism For; o(p,)* 2 Fory of functors Dy — DY(X,k) (where For; is the
forgetful functor D; — D®(X k) for i = 1,2).

Lemma 2.9.3. For any % in©(XJJH) , there is an isomorphism a*(For(%)) =
ZXFor(F) on H x X.

Proof. As % is H-equivariant we have an isomorphism prj For(.#) 2 a, For(.%)
(with a, = ag o (v x idx)). Applying the functor (v x idx). = (v x idx): to
this isomorphism and using the projection formula, we get an isomorphism

a*(For(F)) ®f (v kg BEky) = viky BE For(F).

We have a decomposition in direct sum indexed by the irreducible representa-
tions £ of K (see the end of section vikg = @¢ Le. Here L¢ is the irre-
ducible local system on H corresponding to the representation £ of K; note that
by assumption £ appears in this direct sum, associated to the one-dimensional
representation £ = x¢ of K. Moreover, the action of K on .Z¢ is induced by
the action of K on £. We deduce a decomposition

P a* (For(F)) &f (LB ky) = @D L R For(F).
3 3

Moreover, the action of K on v, kz ®E For(.#) comes from the action of K on
v, k7. The direct summand % ®E For(.F) corresponds to the character x #; the
group K acts via this character on .%. We have to identify the direct summand
in a*(For(Z)) ®f (vikz W ky) for which the action of K is via the same
character x . We investigate the action of K on a* For(.#). The map a is a H-
morphism for the action of H on H x X on the left factor uniquely. This implies
that the action of K on a*(For(.%#)) is given by the pullback along a of the action
of K on .%; this action is then given by the character y.¢. We deduce that the
direct summand that we are looking for is a*(For(.%)) ®L k. x = a*(For(.%)).
The isomorphism of the statement then follows. O

2.10 Verdier duality

We conclude this chapter by general considerations about Verdier duality in
the equivariant category. This section will not be used before part II. Let
H be a connected algebraic group. Consider a H-variety X and two rank-
one multiplicative k-local systems .Z and £ on H. Assume that there exists
isogenies Hy — H and H_, — H, with kernels K¢ and K » of order prime to
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¢, and characters Yo : Ko — k™ and x.¢ : K — k™ that allow us to define
the categories
D(X[JH)y and D(X[JH).x.

Note that the tensor product . ® £ is again a rank one multiplicative local
system. Moreover, if we let xo - x» be the character of K¢ X K given by
(z,2") = xoz@)xx(z'), then £ is the x» - xx-isotypic component of
the pushforward of the constant sheaf along the natural isogeny H o X g H » —
H. Note also that £ and £ appear naturally as direct summands in this
pushforward. Finally, we will denote by 2 ~* the dual local system (i.e. the
inverse local system under tensor product).

Consider the subcategory © (X JH) ¢ of qug (X, k). Via the natural isogeny
Hy xpy Hy — Hg, we can view D (X JH) o as a full subcategory in the equiv-
ariant category D?L&)XH 1, (X, k). In fact, if we identify x ¢ with a character of
K4 x K via the above map, we can view ©(X//H) ¢ as the x g-equivariant
direct summand subcategory in DII)'IZXH Hoy (X,k). A similar consideration al-
lows us to see D(X/H).» as a full subcategory in D?IQXHH.%/ (X,k). These
facts will be useful for the next lemma.

Lemma 2.10.1. Consider # € D(X[JH)y and 9 € D(XJJH). . Then we have

Proof. Recall that the actions of the kernel K on .# is defined via a natural
isomorphism
Vg :pr* F = a* F,

see the proof of lemma [2.1.1]

Now, according to the discussion above, we can (and will) view the objects
Z,%9 in the category DlﬁszH% (X,k). Using the same argument as the one
used at the beginning of the proof of lemma we see that the natural map

pr* R Hom(.F,9) = a* R Hom(.F,9) (2.10.1)

is induced by the maps ¥ & and ¢ . More precisely, the smoothness of the action
and projection maps provides isomorphisms

pr* (R Hom(F,9)) = R Hom(pr* F,pr* ¥)

and
a* (R Hom(F,9)) =2 R Hom(a* F,a*9).

Then the map (2.10.1)) is given by
R Hom (95", Veg).

This fact allows us to conclude the proof of the lemma. O
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We can consider the dualizing complex complex Dy as an H-equivariant
object (see [BLL §3.4.2 Example 1]). Said otherwise, we look at D as an object
of ®(X/H)y,,- Lemma [2.10.1| then gives us a functor

Dy : (D(X[JH) %)™ = D(XJH) p-r, F s RHom(F Dy).

This is an equivalence of categories satisfying Dx oD x 22 id.
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Chapter 3

Monodromic categories

3.1 General considerations

Lemma 3.1.1. Let C be an additive Karoubian K-linear category with K a field.
Choose an object X of C. Set End¢(X) := Home (X, X). Let f € Ende(X) and
{P,;}i=1,..n. be a family of pairwise coprime polynomials in Klx] such that

n

[1P:() =0 € Ende(X).

i=1

Then for each i the morphism P;(f) has a kernel X; and we have a decomposition

=
=1

In particular, the morphism induced by P;(f) on X; is zero.

Proof. We proceed by induction on n. The case n =1 is clear; let us show the
inductive step considering n = 2. We have two polynomials P, and P such
that Py(f)P2(f) = 0. By assumption, these P; are coprime, so with Bézout’s
identity, we can find two polynomials A; and A, such that the equality

AP, + APy =1
holds in K[z]. We deduce immediately that
AL(f)PL(f) + Ax(f) Po(f) = idx .
Moreover, for {i,j} = {1,2}, we have
(Ai(H)P(1)? = Ai(£)Pi(f) (idx —A;(F)P;(f)) = Ai(f) Pi(f)
since by assumption P;(f)P;(f) = 0. Both A;(f)Pi(f) and Ay(f)Pa(f) are

idempotents in Ende(X); since C is Karoubian, each of these idempotents has
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a kernel. In the following, we fix {4,j} = {1,2}. Let ¢; : X; — X be the kernel
of A;(f)P;(f). We show that in fact ¢; is the kernel of P;(f). This amounts to
the following verification. First, we must show that P;(f) o¢; = 0. Then, if we
have a commutative diagram

X, L X Pi(f) X
QT /
0
Y

we have to show that there exists a unique g : Y — X such that t;09 = ¢g. The
first point is easy: as idx = A1 (f)P1(f) + A2(f)Pa(f) and A;(f)P;(f)ot; =0
by definition, we have

vi = A;(f)F;(f) o vi-
Since P;(f)o Pj(f) =0, we are done. Now, assume that we have a commutative
diagram as above. Since P;(f)og = 0, we have A;(f)P;(f)og = 0. By definition
of a kernel, there exists a unique map ¢ : Y — X, satisfying ¢; o ¢ = ¢, which
proves the assertion. Taking Y = X and g = A;(f)P;(f) in the above diagram,
we obtain a map m; : X — X; such that ¢, o m; = A;(f)P;(f). Moreover, we

have
{ T; Ol = ldX,”

7T1‘OL]‘:0.

Indeed, as ¢; is a kernel, it is in particular a monomorphism (i.e. ¢; 0 f =09
implies f = g). One the one hand, we have

viomiov; = A;j(f)Pi(f)or; =0
which gives the second equality. On the other hand, as above we have
v =A;(f)Pj(f)owi=tiomiou
and we deduce the first equality. In summary, we have
e X = X, mr X — X, L X; = X, i X; =+ X
satisfying the following equalities:
1. m 0 =idx;,
2. mou; =0,
3. yom =A;(f)P;(f).

Since we have
idX =11 071 + L2 O T

we deduce that we have a decomposition X = X; & Xo.
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Now assume that the lemma is true for any family of n polynomials (sat-
isfying the correct assumptions) and consider a family {P;};=1, .. n+1 as in the
statement of the lemma. Denote by @ the product of the first n elements
of this family: @ = H?:l P;. Now @ and P,4; are still coprime and we
clearly have Q(f)P,+1(f) = 0. With the case n = 2, we find a decomposi-
tion X = X @ X,41 such that X is the kernel of Q(f) and X,,41 is the kernel
of P,y1(f). In particular, (the restriction of) Q(f) = [T, P;(f) is the zero
morphism of Xg. We can thus apply the induction hypothesis to the data Xgq,
{P,}i=1,...n to conclude the proof. O

Remark 3.1.2. The equality m; o ¢; = idx implies easily that the 7;’s are epi-
morphisms.

Recall that the center Z(C) of an additive category C is defined to be the
endomorphism ring of the identity functor ide. If C is an additive K-linear
category, then Z(C) is clearly a commutative K-algebra. For any objects X,Y
in C and any morphism f: X — Y, an element ¢ € Z(C) satisfies

e(Y)o f=fop(X).

Lemma 3.1.3. Consider a family {f;}i=1,... »n of pairwise commuting elements
in a K-algebra E. Assume that there exists elements {a;}i=1, .. n in K such that

(fi — a;) is nilpotent for any i.

Then for any family of integers {m;}i=1,..n C Zso, the element

18 nilpotent in E.

Proof. We proceed by induction on n. For the case n = 1, one remarks that for
any a,b € E such that ab = ba and ¢ > 0 we have

(% —b7) = (a—Db) (a9t 4 -+ a9 FpF L 4. 4 p17 L),
If the statement of the lemma is true for an integer n > 1, we write

n+1 n+1 n+1 n n n+1
my my my my Mn41 my Mn41 my
Hfi’—Hai’ Hfz'z_ Hff api1 + Hff Oy _Haz’l
i=1 i=1

i=1 i=1 i=1 i=1
n n n

m; Mp+1 Mp4+1 m; m; Mp4+1
Hfi (fn+1 T Optq )"‘ (Hfz _Ha’i )an+1
i=1 i=1 i=1

and we apply the induction hypothesis on the last term and the case n = 1 to
conclude the proof. O

We give a specific lemma that we will use in the proof of the proposition
below.
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Lemma 3.1.4. Let R be a finitely generated, commutative K-algebra with K a
field. Let {ry,...,r,} be a generating family of R. Assume that we are given
the following data: a K-algebra morphism f : R — E and scalars {a,...,an}
such that f(r;) — a; is nilpotent on E for any i € {1,...,n}. Then,

R/(Ti—ai|i=1,...,n>’£K

and f({ri —a; | i =1,...,n)) acts nipotently on E (i.e. multiplication by the
image of any element of this ideal under f is a nilpotent endomorphism of E).

Proof. Let J = (r; —a; | ¢ = 1,...,n) C R. Note that the last assertion
of the lemma is clear from the commutativity of R and the fact that a sum
of commuting nilpotent elements is nilpotent. We have a surjective morphism
K[z1,...,2,] = R defined by z; — r;. Consider the ideal I := (z; —a; | ¢ =
1,...,n)inK[zq,...,z,]. Theimage of I in R is clearly J and R/J is a quotient
of

Klzy,...,x,)/] 2 K.

Assume that R/J = {0}. This means that R = J, but then 15 = f(1g) € f(J)
would act in a nilpotent way on E. This is absurd, so R/J # {0} and so is
equal to K. O

Remark 3.1.5. It is immediate that the assignment r; — a; extends to an algebra
morphism R — K, which is in fact the projection

R— R/J=K.

For a K-algebra R, we denote Specm(R) := {m C R | m maximal ideal}. If
K is algebraically closed and R finitely generated, the Nullstellensatz tells us
that there is a bijection between Specm(R) and some subset of K" (for a certain
n). More precisely, if R = K[z, ...,x,]/I for some ideal I, we have a bijection

V(I):={zeXK"|Vfel, f(x) =0} +— Specm(R).
In particular, we can identify a maximal ideal in R with an n-tuple of scalars.

Proposition 3.1.6. Let C be an additive Karoubian K-linear category with K
an algebraically closed field and let R be a finitely generated commutative K-
algebra. Assume that Ende(Y) is finite dimensional over K for any object Y of
C. Assume moreover that we are given a nonzero K-algebra morphism

¢:R— Z(C).

Consider an object X of C. Then we have a canonical functorial decomposition
X = ®m€Specm(R) X where the sum is finite and such that m acts nilpotently

on Xm (i.e. o(m™)(Xw) C {0} for a certain n) for all m € Specm(R).

Before the proof, we introduce a notation: for any m € Specm(R), let Cy
be the full subcategory of C whose objects are those X such that ¢(m)(X) C
End¢(X) acts in a nilpotent way on X.
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Proof. Consider a finite generating set {r1,...,r,} of R. Foranyi € {1,...,n},
set @; = ¢(r;)(X). As R is a commutative algebra, we have [p;, ;] := ¢; o
w;j —p;op; = 0for all i, 7. We treat in detail the case n = 2. We thus consider
1 and @9, two commuting endomorphisms of X.

Since ¢ generates a finite dimensional algebra in End¢(X), we can consider
the minimal polynomial P! € K[xz] of ¢ (with ¢; viewed as an endomorphism
of X). As K is algebraically closed, we can certainly write

P! = H (x — a})ml1

iEAT

with A a finite index set and aj # aj for i # j. The P!(z) := (z — a})mrl are
pairwise coprime, so we can apply lemma to obtain a decomposition

x=x/ (3.1.1)

iEAT

where X is the kernel of P!(¢;1). Note that this implies that (o1 — a}) acts
nilpotently on X}. A bit more precisely, for any i, € A!, we have maps
m} o X — X} and ¢} : X] — X such that 7} ot} =idx1 and 7jos; = 0if i # j.
Now for i # j in A' we have

mhogs o = o o p(rs)(X}) =0.

This tells us that ¢, preserves the decomposition (3.1.1]). Since the endomor-
phism (p2)x: induced by ¢; on X' generates a finite dimensional K-algebra in

End¢(X}), we can apply the same reasoning to it to find a decomposition

X! =P x;7? (3.1.2)

JEA?

and scalars ai’f such that ((¢2)x1 — al{f) acts nilpotently on Xil) ]2 We then
glue the various decompositions for all i € A! to obtain a decomposition
X @i’j X;,; and scalars {a; ;};; such that (o1 — a; ;) and (p2 — a; ;) act in
a nilpotent way on Xj ;. Now, tanks to lemma [3.1.4] and remark we see
that the the assignment

T a;, To > aj

for any (i, 7) defines an algebra morphism R — K; moreover the maximal ideal
(r1— a4, 2 —a;) acts nilpotently on X, ; (via ¢). Now for n > 2, the preceding
reasoning extends in a straightforward way to give a finite decomposition

X @ Xm
meSpecm(R)

such that each m acts nilpotently on X,,.
‘We show that this decomposition is canonical and functorial, i.e. that it does
not depend on the choice of the generating set {ry,...,r,} and that it behaves
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well with morphisms (in a sense to be precised). Note first that if m # m’, then
m’ does not act in a nilpotent way on X,. Indeed, we know that m and m’
corresponds uniquely to some points (ai,...,a,) and (by,...,b,) of K" (i.e. we
have m = (r;—a;) and m’ = (r;—b;)). Since m # m’, we can assume that a; # b;.
For any r € {ry,...,r,}, we have (p(r)(Xm)—b1) = (a1 —b1) + (o(r)(Xm) —a1).
On Xy, the second term of the right-hand-side is nilpotent whereas the first is
invertible. As they commute, we deduce that (¢(r)(Xm) — b1) is invertible on
X (and so, in particular, non-nilpotent).

Consider another object Y of C such that the vector space End¢(Y) is finite
dimensional and any map f : X — Y. As above, we have a decomposition
Y = @,, Y, but we don’t assume that this decomposition is obtained from the
same generating set {r1,...,7,}. Anyway, m acts in a nilpotent way on Yy,. Let
X+ X = Xy and ¢ : X;n — X be the epimorphisms and monomorphisms
respectively that define the decomposition X = @ Xp,; we will use the exact
analogous (and obvious) notation for Y.

We show that wg, o fou1X is zero form’ #m. Set m = (r| —ay,...,r, —a,)
and m’' = (ry —by,...,r, —b,). We can assume that a; # b;. Since Xy, is in Cyy,
there exists a n; > 0 such that (¢(r1)(Xm) — a1)™ is the zero endomorphism
of Xy We get:

T 0 f 0t © (9(r1)(Xim) — a1)™ = (p(r1) Yo — a1)™ om0 f o1y = 0.

But (¢(r1)(Ym/) — a1) is an invertible endomorphism of Yy, as noticed above.
We deduce that 7Y, o f ouX = 0. This tells us that f(Xm) C Yu. We also
deduce that

Home (X, Ym) =0

if m # m’ (and more generally, that there is no morphism between an object of
Cwm and an object of Cyy/). This shows that our decomposition is indeed canonical
(i.e. does not depend on the generating set of R chosen) and functorial. O

Corollary 3.1.7. Consider the situation of proposition[3.1.6 Assume moreover
that for any object X in C, the K-vector space End¢(X) is finite dimensional.
Then we have a direct sum of categories

c= P cn

méeSpecm(R)

3.2 Decomposition in the topological monodromic
category

In this section, we will use freely the notation of chapter |1} we apply the results
of the preceding section to the category D%(X,k). Consider an object .# €
D%(X,k). We have the monodromy morphism of .#

05+ K[X.(4)] — Bndpy (x.(%).
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This map defines an action of k[X.(A)] on .#. For any A € X,.(A), we denote
the corresponding basis element of k[X. (A)] by e*. We consider the dual k-torus
AY of A. By definition, this is the algebraic torus over k whose character lattice
is the cocharacter lattice of A i.e. X, (A) = X*(AY). It is a standard fact that
the algebra of regular functions on a torus is isomorphic to the group algebra
of the characters of the torus. We get

k[X.(4)] = k[X"(4))] = O(4)).

Thus we want to determine the algebra morphisms 0(A)/) — k. It is well know
that these morphisms correspond to closed points of the affine variety Ay. For
any t € A, let m; denote the ideal

my = (e* — A(t) | A € X.(T)).
We have an bijective map
AY <= Specm(k[X.(4)])

where ¢t € A is sent to my.
We then define D%(X k) to be the full subcategory of D%(X,k) whose
objects are given by

D%(X,k)y = {Z € D%(X,k) | m; acts in a nilpotent way via ¢z }.

We also let D%(X, k) be the full subcategory of D%(X,k) whose object are
those .# such that the monodromy morphism ¢z : k[X.(A)] — Aut(F) fac-
tors through the quotient k[X.(A)]/m;. Note that this is not a triangulated
subcategory.

Now thanks to [LC], the category D%(X,k) is Karoubian; it is a standard
fact that the Hom-spaces are finite dimensional k-vector spaces in this category.
Finally, thanks to lemma the monodromy defines an algebra map

p kX (A)] = Z(D5(X,K), A= (0(N) : F = oz (V).

We deduce from proposition and the discussion above that we have a
direct sum of subcategories

P Ds(X. k) = DE(X, k) (3.2.1)
te Ay

We can now give an auxiliary lemma that will be useful latter:

Lemma 3.2.1. Let (X,Sx) and (Y,Sy) be two stratified A-varieties and f :
X — Y an A-equivariant morphism.

1. Assume that f is locally trivial (see definition . Then the functors
f« and fi map Dgx (X, k) to Df’sy (Y, k).
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2. Assume that for any S € Sx, we have f(S) € Sy. Then the functors f*
and f' map Dgy (Y, k) to Dgx (X, k).

In particular, assume that A acts trivially on'Y and that f is locally trivial.
If F is in D% (X, k) fort € AY \ {1}, then fiI(F) 0.

Proof. The first two points follow directly from lemma and the functorial
decomposition [3.2.1]

To deduce the last statement, one should first remark that we have Dgy (Y)k) =
Dgy (Y, k)[y, as follows immediately from the definition of monodromy, using
proposition and our hypothesis on the A-space Y (in fact, for any ¥ €
D% (Y.k) and r € k[X,(A)], we have pg(r) = e(r)idy where € : k[X,(4)] — k
is the augmentation morphism). Point (1) allows us to conlcude. O

3.3 Monodromic local systems on A

The decomposition obtained in the last section allows us to study local systems
on A. If we let D?A)(A,]k) be the full category of D’(A, k) whose objects are
those .Z such that #(.F) is a local system on A for any i € Z (morally, the
A-constructible complexes), we can naturally view the category Loc(A4,k) as a
full subcategory of Dé’ 4)(A,k). This allows us to define monodromy for local
systems.

We need first some observation: denote by v the application [0,1] — C*
which maps ¢ to €™, It is a classical fact that the application A\ — X o~y
gives a group isomorphism X, (A) — 71 (A). Using theorem we obtain an
equivalence Loc(A, k) = k[X,(A)]-mod, where the latter category is the cate-
gory of finite dimensional k[X,(A)]-modules (or equivalently, finite dimensional
k-representations of the abelian group X, (A)).

Finally, the discussion at the beginning of section [3.2] tells us that to give an
element of the dual torus 4y amounts to giving an irreducible finite dimensional
representation of X, (A) (equivalently an irreducible finite dimensional k[X, (A4)]-
module): more precisely, we have a bijective map

AY = Trr (k[X,(A4)] -mod)

where Irr (k[X,(A)]-mod) denotes the set of isomorphism classes of irreducible
finite dimensional k[X, (A4)]-modules.

Remark 3.3.1. Considering a trivialisation A = (k*)”, an element of 4} can
be viewed as an r-tuple (¢1,...,t,) of elements of k*. Since k is the union of its
finite subfields, each of these t; can be viewed as an element in a finite field, so
each of these is of finite order in k™. We deduce easily that the element t € A}
is of finite order in the torus. Note also that, k being the algebraic closure of
a finite field, it is a perfect field of positive characteristic. Thus the morphism
z — 2% is a field automorphism and so the orders of z and z‘ are the same.
Thus ¢ does not divide the order of any ¢ € 4.
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For t € AY, we denote by . f the rank-one local system on A corresponding
to the X, (A)-representation L; := k[X.(A)]/{e* — A\(t) | A € X.(T)). More
generally, denote by .,2”:? ,, the local system on A associated to the k[X.(A)]-
module

kXL (A)]/(e* = A1) | A € X (A)",
so that we have f{:l =78

Remark 3.3.2. If m: A x A — A denotes the usual multiplication, we have that
for any t € AY we have m*(£7) = 2 K24, that is to say, that .Z2 is a
multiplicative local system. Indeed, the pullback of a local system is again a
local system, and so we can rephrase the question in terms of representations.
The map

Xu(A) x Xy (A) 2 m (A1) x (A, 1) = m(A4,1) 2 X, (A)

induced by m is just the addition. What is left to do is to identify the following
X4 (A) x X, (A)-representations: on the one hand,

k[X.(A)]/(e* — A(t)) with action (\, p) - 2 = e*
and on the other hand
(k[X.(A))/(e* — )\(t)>)®2 with action (\, i) - 2 @ y = e’z @ ely.

The multiplication map (k[X.(A)]/(e* — A(t)))®2 — k[X.(T)]/{e — \(t)) gives

such an isomorphism.

Consider a local system . on A and denote by L its associated X.(A)-
representation. The canonical monodromy action on .Z gives under the equiv-
alence of theorem an action of X, (A) on L defined by a morphism

Yy X* (A) — Endx*(A) (L)

Lemma 3.3.3. With the above notation, we have p.o () = (e*)- (=), the right-
hand side being the action of X\ on L given by the structure of X, (A)-module.

Proof. The monodromy is defined by (the appropriate restriction of) an isomor-
phism ¢ : pry & — m(n)* &£ satisfying ¢{13x4 = ide. In view of theorem
this amounts to ¢(;,1) = idg. What we want to determine is ¢|(y, 1) for any
A € X, (A). In the following, we will denote by pr L and m(n)*L the X, (A)-
representations associated to pri 2 and m(n)* £ respectively. The action of a
pair (A, ) on prs L (resp. a(n)*L) is given by the action of u (resp. n\ + )
on L. We start by some general considerations. Consider a topological space X
satisfying the condition of theorem and a loop 7 : [0,1] — X. The pull-
back of any local system .# on X under v gives a local system on [0, 1], which is
trivial since [0, 1] is simply connected. We know that we then have a canonical
identification T'([0,1],7*(%)) & (v*(F)), for any x € [0,1]. Moreover, if
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is another local system on X and f : . % — J# is an isomorphism, we have a
commutative diagram (for any z,y € [0, 1])

) (v (F))a
(v (F))e —>

([0, 1],7*(#)) Lo, 1,*(2¢))  (33.1)

(v (H))a

J
\g/

V(FNy = (7 ()

Now, for any n > 1, let 7, be the path [0,1] = C*, ¢ — X and 7 the
loop in A given by Ao ~,. We consider the diagram with X = A x A,
F = pry(L), # = m(n)* (&), the isomorphism f = ¢ and v = 4, x Y.
Remark that +¢ is just a fancy notation for the constant path at 1 € A. Also
we choose z = (0 and y = 1. We get

(7" prﬁl(-i”))o (V*W(Hj*(f))o
(v pr3 (L)) = (y'm(n)* (L))

We then remark that pry, = pryo(e, x ida) and that we have (e, x ids) o
v = (77 x 79). The left (resp. right) vertical arrow is given (at the level of
representations) by the action of (77 x 4¥) on prj L (resp. m(n)*L), which is
by definition the action of 0 (resp. A) on L. We can rewrite this diagram in the
following form

Pr3(2)) 11y —— o (1m(n)* (L))
(P13 (L)) 1) ——22 s () (L)) -

and we can then conclude the proof.
O

We let D?_ (A, k) denote the full subcategory of the bounded derived cat-
egory of sheaves of k-modules on A whose objects are complexes .’ such that
H'(F) € Loc(A, k) for all i € Z. By definition, this category is the same as the
category D? A)(A7 k) of A-constructible complexes of sheaves on A. We deduce
immediately from lemma [3.3-3] the following result.

Loc

Corollary 3.3.4. The object £3 is in D? (A, k).

In fact we can say a bit more. First, let us determine the full subcategory
generated by .2 in Loc(4, k). Let Mod™! (k[X,(A)]) denote the category of
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finite dimensional k[X, (A)]-modules on which
my = () = \(t) | A € X, (A))
acts nilpotently.

Lemma 3.3.5. The full subcategory of Loc(A, k) whose objects are local systems
that are extension of copies of L3 is equivalent to the category Mod™ (K[X., (A)]).

If a local system .Z is an extension of copies of .Z tA , then the associated
representation will clearly be annihilated by a power of m;. In the other direc-
tion, start by noticing that if L is a finite dimensional k[X,(T)]-module such
that my- L = {0}, then L & @ L; with L; := k[X.(T")]/m;. Now if a power of m,
annihilates L, we have a filtration L D m; - L D mf -L--- (as the action of my is
nilpotent, this sequence eventually ends). The module L is a successive exten-
sion of the m} - L/mi™ - L, and each of these satisfy m; - (mi-L/m.*- L) = {0}.
The equivalence is thus proved. O

Proof. The equivalence is given by the restriction of the equivalence of theorem
‘

The preceding result allows us to give a more precise description of the
category Dé’A)(A7 k)4

Lemma 3.3.6. The full subcategory D?A)(/L k)i of Dl(’A)(A, k) is generated (as
a triangulated category) by the object .i”tA.

Proof. We want to show that any .# € DJ(A, k) can be obtained as successive
extensions of ff. By a use of truncation triangles and a standard induction
argument, it suffices to do so for . = Z[k] a shifted local system on A. Tt
is harmless to assume that & = 0, and we do so. Any local system is of finite
length; this means that we have a finite filtration

0=%yC%1C---C&L,=Y¢

of £ with simple local systems as successive quotients. We show by induction
on the length n of such a filtration that if .2 has monodromy ¢, then it is an
successive extension of Xf. If n = 0, there is nothing to prove; note that if .Z
is simple (i.e. if n = 1) then it is of the form .2 for a certain t' € AY (any
simple object in Loc(A4, k) is of this type). By lemma we have necessarily
t' =t and thus ¥ =2 . f and we have the result. Now assume that the result
is known for local systems of length n and take £ of length n + 1. We have an
exact sequence
O—>,§€n—>$—>$ﬁ—>0.

Now the arrows in this sequence are obviously nonzero and .Z has monodromy
t; proposition tells us that the objects .Z,, and .Z f} also have monodromy
t and we can conclude by applying the induction hypothesis to ., and the case
n=1to %5 =<2 O
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3.4 Decomposition in the equivariant category

We now consider the setting of section H is an algebraic group acting on a
variety X, and we assume that we have a finite central isogeny v : H — H from
a group H such that the kernel K is finite and of cardinality coprime to the
characteristic of k. We saw in that these data allow us to define an algebra
morphism

0 :k[K] = Z(D%(X,k)), z (F—dz(x)).

The maximal ideals of k[K] correspond bijectively to characters x of K. More-

over, we saw that we have a direct sum decomposition v, kz = @X Z, where

Z, is the x-isotypic component of the pushforward for the natural action of K.
Thus we obtain a direct sum decomposition

DL(Xk)= P DLX.k),,
x€Hom (K k*)

where D%(X ,k), is the full subcategory whose objects are those .# for which
m, := (e* — x(k) | k € K) acts nilpotently via 9 4.

Let us discuss this splitting of categories. In this particular case, thanks to
our assumption on the cardinality of the finite group K, we get that the algebra
k[K] is semisimple, hence we can write k[K] = k! (as algebras). The maximal
ideals m,, are now identified with subspaces of the form {(x,...,%,0,%,...,%)}
and they are generated by idempotent elements, say e, . Since ¥ is a morphism
of algebras, we see that for any & € D%(X, k), U#(ey) is both idempotent
and nilpotent, thus is zero. We then immediately deduce that we have in fact
D% (X, k), = D(X/H)y,. We can now restate our result: we have a splitting
of categories

Dh(Xk)= P DX[H)g

x€Hom (K k*)

and for any object % we have a canonical functorial decomposition # =
D, i F (where F, lies in D(XJH)z, ).
In the following corollary7 we consider the action morphism apg : Hx X — X.

Corollary 3.4.1. Assume that F € D%(X, k). Then F satisfies af;(F) =
L R.Z if and only if we have F € D*(X,k), = D(XJH)

Proof. The “if” part has been done in lemma [2.9.3] We deal with the other
direction. Thanks to the above proposition, we have a decomposition in direct
sum F = P, Fy, with Fy € D(XJH) ¢ ,, the sum being taken over the
characters of K. Now lemma“ 2.9.3|tells us that we have a H(Fy) =2 LYy BRI

Our assumption on .% thus implies that @ ZLvRF, = .,2” &ﬁ Since
Z, is invertible, we must have #, =0 unless X/ =X, Which concludes the
proof. O
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Chapter 4

Perverse monodromic
sheaves on stratified
A-varieties

4.1 Perverse equivariant monodromic sheaves

According to the isomorphism classes of irreducible local systems on A
(which correspond to irreducible representations of X, (A)) are in bijection with
elements of AY. For t € AY, we denoted by Z;" the rank-one local system on
A corresponding to the X, (A)-representation L; := k[X.(A)]/(e* — A(t) | A €
X, (A)). Recall that £; is multiplicative thanks to remark [3.3.2

Lemma 4.1.1. For any simple local system ,,2”,‘54 on A there exists a finite central
isogeny v : A — A and a character x of K :=ker(v) such that

1. the cardinality of K is prime to £,

2. 21 = (v, (k4)), » the isotypic component of vi(k,) on which K acts via
X-

Proof. Denote by n the order of ¢ (recall that t is of finite order thanks to
remark and that this order n is prime to the characteristic ¢ of k). We
consider the map e, : A — A, x — z™; this is a finite central isogeny with
kernel K, := ker(e,) of order n™(4) which is prime to ¢. The pushforward
of the constant local system along e, is still a local system, thus we can make
all our calculations in the representation-theoretic world; (e,)«(k,) identifies
with k[X.(A)] ®y[x. 4y k where the structure of k[X,(A)]-module on itself in
the tensor product is given by e* - P = ¢™ P. One easily checks that this tensor
product identifies with
K[X. (4)/eft (X, (A))]
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(e : X,(A) = X,(A),\ = n) is the application induced by e,). Since
X, (A)/e# (X.(A)) is a finite abelian group of order n'™(4) (so in particular
prime to the characteristic £ of k), its category of k-representations is semisim-
ple and we can decompose k[X,(A4)/e# (X.(A))] as a direct sum of simple, one-
dimensional, representations, each one associated to a character of this quotient.
Thus the associated local system decomposes as a direct sum of rank one local
systems according to the characters of X, (A)/e# (X, (A)).

We have a non-zero adjunction morphism £3 — (e, )4 (en)* £ . Using the
diagram in the statement of theorem it is easy to see that e (Z4) =
£ ;4 =~ k,. With the preceding discussion, this adjunction morphism has to
be the inclusion of a direct summand and this direct summand is obviously
associated to the character of evaluation at ¢

ev(t) : X, (A) /e (Xo(A)) > k*, [\ = A(t).

This character is well defined precisely because ¢ is of order n.

One easily checks that evaluation at e gives a (well-defined) isomorphism
0 X, (A)/eff (X, (A)) = K, (recall that K, is the kernel of e,,). The morphism
ev(t) o o=t gives the wished-for character x of K. O

According to the results of chapter [2| (using lemma , for any A-variety
X, we can consider without any ambiguity the category (X /] A) 24 for any
te AY.

Let us fix an isogeny v : A — A and a character x of ker(v) that allow us to
define D s(XJ/A) »a (note that we impose constructibility with respect to S here)
as a full direct factor in D%’ (X, k). The restriction of the perverse ¢-structure
on D%,S(X, k) as defined in [BL, 85.1] to Ds(X/A)4a gives a t-structure on
this category. (This is true essentially because the category Ds(X/[]A)pa is
a full direct-factor-subcategory of D% 5(X).) Note that, by the definition of
the perverse t-structure on the equivafiant bounded derived category and the
discussion before lemma this t-structure does not depend on the choices
of v and x. We consider the t-structure obtained as the shift on the right by the
rank of A of this perverse t-structure. We obtain in this way a new t-structure

on Ds(X/JA) »a, called the perverse t-structure. Stated otherwise, we have the
following definition:

Definition 4.1.2. We say that an object F € Ds(X[JA)pa lies in PDs(X/]]

A)éOA if and only if For(F)[r] lies in PD%(X,k)=<C. The positive part of the
t-str;jcture is defined similarly; in particular, % is perverse if and only if the
object For(F)[r] is perverse in D%(X,k). The category of perverse monodromic
sheaves in the Lusztig-Yun category will be denoted Bs(X[JA) pa. Its objects

are called the Lusztig—Yun monodromic perverse sheaves.

The restriction of For[r] to Ds(X/A)a then yields a t-exact functor (by
definition) to the constructible category, which we will denote by For,.
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4.2 Perverse monodromic sheaves

In this section, we give four “reasonable definitions” of monodromic perverse
sheaves, and show that they actually coincide.

Fix t € AY. Here are the different possibilities for the category of mon-
odromic perverse sheaves with “monodromy t”:

1. the heart Ps(X /] A) o of the perverse ¢-structure in the Lusztig—Yun
equivariant monodromic category,

2. the full subcategory Ps(X,k)py of Ps(X,k) whose objects are those com-
plexes in D% (X, k) NPs(X, k),

3. the category P! (X, k) whose objects are pairs (%1 #) with .Z a perverse
sheaf in D%(X,k) and 9. an isomorphism

LERT o (F)
satisfying
(mxidx)* (V) = (ida xa)* (05) o (L7 Kiz) and (92)1)xx = ids

and whose morphisms f : (%,9%) — (¥4,9«) are given by morphisms
f:F — % in D%(X,k) such that

YAR
R R Y - 17
ﬁgll Zlﬁg
(F (4
@(F) 0" (9)

is a commutative diagram,

4. the full subcategory P! (X, k) of perverse sheaves in D%(X, k) such that

1s0

there exists an isomorphism a* (%) =~ 2 K.Z.

Our aim is to show that these four definitions agree, in other words, that the four
above categories are canonically equivalent. The proof of this fact will be given
in a succession of lemmas; we will construct several natural functors between
these categories. More precisely, we have the following natural functors:

1. the (restriction to perverse sheaves of the) functor For, : Ps(XJA) pa —
Ps(X,k), defined in the end of subsection /

2. the functor Fore, : P! (X,k) — P! (X,k) that maps a pair (F,9z) to
% and a morphism f to itself,

3. the functor Forpen : Ps(X, k) — Ps(X, k) that maps an object to itself
and a morphism to itself.
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Note that, according to the definition of Ps(X/JA)ya (see definition [4.1.2)),
the functor For; indeed maps perverse sheaves to perverse sheaves. We will
show that these functors induce equivalences between our different monodromic
perverse categories.

Remark that the stalk of the local system f at {1} is k. For m divisible by
the order of ¢, we have a canonical isomorphism can,, : k4 —> e (L A) In the
next proof we will consider A = G,,, and restriction of can to e . The reasoning
of the proof of lemma allows one to see that we have Can|62$f =t-id. More

generally, for a cocharacter A € X, (A), one has can|y, = A(t) - id.

Lemma 4.2.1. Consider # € Ps(X,k). Then # € Ps(X,k)y if and only if
there exists an tsomorphism

(P2 LART
whose restriction to {1} x X identifies with id g .

Proof. To show the “only if” part, we assume that we have an object % in
Ps(X,k);y and we will construct locally an isomorphism as in the statement
of the lemma (i.e. on an open covering). Now a*(.%) is a shifted perverse
sheaf (since a is smooth with connected fibers, cf. [BBD] Proposition 4.2.5])
and .2 R.Z as well (cf. [BBDL Proposition 4.2.8]), so according to [BBD
Corollaire 2.1.23], we will obtain a global isomorphism.

Consider the case A = C*. For .# € Ps(X,k)y, there exists an integer

m € Z~g such that we have an isomorphism ¢ : pr3(F) = a(m)*(F) satisfying
t{1yxx = idgz. We can assume that m is divisible by the order of ¢, so that we

have the isomorphism can,, : k = e (Z;"). Thus we obtain an isomorphism
Hom(el, (£ R .F,a(m)*(F)) = Hom(prs(.F), a(m)*(F)),

defined by f — f o (can,, Xid). Now since % is perverse, the isomorphism ¢ is
unique. More precisely, for a given n, if there exists an isomorphism pri(.#) =
a(n)* (%) whose restriction to {1} x X is the identity, then this isomorphism is
unique (this is essentially because the functor prj is fully faithful on perverse
sheaves, see [BBD| Proposition 4.2.5]). This implies that there exists a unique
isomorphism I := ¢ o (can;,' ®id) in Hom(eX, (7)) K .Z, a(m)*(.F)) whose
restriction to {1} x X identifies with the identity of .# (note that by definition
the restriction of can to {1} C A is id). Consider now the automorphism of
C* x X given by ,

,T) —> (ze% x).

= (em x X) and similarly, a(m)o& = a(m). The

~

F — a(m)*(F) satisfies

A

We clearly have (e, x id X)
isomorphism &*(I) : e, (£

E(D){1yxiax = (vo (cang, ' &1d))|{e{if}xx
= (t-id#) o ((can;,}! )62;: X id)
= (t idz)o (t7!-id#)

£:
=




(Note that we forgot the canonical isomorphism e, (ZAR.Z = ¢*((ef, (LMK
Z) in the computation above, because its restriction to {1} x X is the identity;
similarly for the identification *a(m)* F = a(m)* #.) Thus we deduce that
&*(I) coincides with I = ¢ o (can K id).

We will need a bit more of notation. Set

- 2
O1={zeC*|z=re", T€R>o,96(07—ﬂ-)}
m
and . R
Oy ={2eC*|z=re" reRsg e (——,—)}.
m’m

Then let U; = C*\ R and Uy = C* \ Ro. The application e,, induces home-
omorphisms
01 l) U1 and 02 l) U2.

We thus obtain isomorphisms

Hom(pr3(F) |0, xx,a(m)*(F)0,xx)
=~ Hom((e, (Z7) B .F)10,xx a(m)* (F)|0,x x)
~ Hom((.Z] K710, x x» " (F) v x x)-

The first isomorphism is given by (—)o(can;} Xid)|o, x x and the second one by
(((em x id)|0i><X)*)_1~ We denote by I; the image of (|0, x obtained following
these isomorphisms. By construction the restriction of the isomorphisms I; and
I to {z € C* | ¥(2) > 0} coincide. (Note that this is a connected component
of U; NUs.) For the other component

{zeC"| 3(2) < 0}

we use the fact that £*(I) coincides with I to see that there again the restriction
of I; and Is coincide. We thus have “constructed locally”, i.e. on an open
cover of C* x X, an isomorphism between a*(.%) and .Z: )K.%. Moreover these
isomorphisms coincide on the intersection of the open subsets. We can then
glue these “local isomorphisms” to obtain a global isomorphism

LERTF S o (F). (4.2.1)

To determine the restriction of this isomorphism to {1} x X, one can first restrict
to Uz x X (since 1 € Us). One then considers the pullback of along the
homeomorphism Oy x X = Us x X. We obtain in this way the restriction of ¢
to Oz x X. It is then easy to see that the restriction of to {1} x X gives
the identity of .%.

To deal with the general case, one chooses a trivialisation A & (C*)" and uses
ky 2 ke M- -Rke. and £ = 8 K---RLE (fort = (t,...,t,) under the
induced trivialisation Ay = (k*)"). We write a; : (C*)* x X — (C*)*~! x X for
i=1,...,r with a;(t1,...,t;, ) = (t1,..., ti1,a((1,..., 1, 1,...,1),2)), so

?
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that a((t1,...,¢),2) =ajo---o0a.(t1,...,t, ). Applying the above reasoning
successively to the a;’s, we can conclude.

Now we prove the converse. Assume that we have an isomorphism a* (%) &
2L K.Z whose restriction to {1} x X is the identity of .# (under the identifi-
cation (Z7'); = k). Then, for n the order of ¢, we obtain an isomorphism

Liel(ZRF D aln) (F).
We again have a canonical isomorphism can,, : k = e (7). We can consider

[ kg LnBdr, o oAy 2 L a(n) (F);
the restriction of this isomorphism to {1} x X identifies with the identity of .%#.
Thus the monodromy of .% is given by the restriction of i to various A,, = A(e s )
for A € X, (A). From the argument above, one sees that this restriction coincides
with the restriction of can, Kidg to {\,} x X, which identifies with A(¢)-id.& .
This concludes the proof. O

In the following lemma we fix an isogeny A < A in order to realize D (X
A)gtA as a full subcategory of D%S(X, k). Namely, we choose the map e, :

A — A, x— z", for n prime to £ and divisible by the order of ¢. Recall that
we have a forgetful functor For; : Ds(X[]A) ga — D%(X,k), as introduced at
the end of section

Lemma 4.2.2. The functor For, is fully faithful and has essential image in-
cluded in Ps(X, k).

Proof. The equivariant derived category is defined with respect to the action
t-x =t"x witht € A and x € X. This action morphism A x X — X is denoted
a(n) = ao (e, x idx). We will also consider the projection pry : A x X — X.
It is well know (see e.g. [BaRl Proposition A.2]) that the forgetful functor
For : D% _(X,k) — D%(X,k) induces an equivalence between the category of
equivariaht perverse sheaves and the full subcategory of constructible perverse
sheaves whose objects are those .# such that there exists an isomorphism

pry(F) = a(n)"(F).

The functor For; is, up to a shift, the restriction to a direct summand sub-
category of a fully faithful functor, we thus know that it is fully faithful. We
need to show that its essential image is included in the category Ps(X,k)r.
We will show that the restriction of For to Ds(X/A) 4 has essential image in
Df’s(X ,k)[g. As For maps perverse objects to perverse objects, this fact implies
the lemma. B

Consider .# € Ds(X//A)pa. As this is a A-equivariant sheaf, we have a
canonical isomorphism (in the constructible category)

Yz : pra(For(F)) = a(n)*(For(F))
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and this isomorphism satisfies the usual cocycle condition. We have two uses of
this isomorphism: on the one hand, the condition (£ ){13xx = id# allows us
to define the canonical monodromy morphism of .# from 9 &: using the notation
of section we have gaf‘g =Yz ,-

On the other hand, the kernel K = ker(e,,) acts on .% via the automorphisms
Uz o for a € K (see the proof of lemma [2.1.1)). One should remark that for any
A € X, (A), we have )\, € K. Thus we have a commutative diagram

X, (A) cole ) K
K %
Aut(F).

By definition of the category s (X/A)gf the map 9z () factors through
the character y P K — k¥, and it is clear that the horizontal map factors
through the canonical projection X, (A) — X, (A)/e# (X.(A)). Using the proof
of lemma we get that the composition

X, (A) = X, (A)/e# (X.(A) - K — k*

coincides with the evaluation at ¢t € A). This tells us that the canonical mor-
phism of monodromy of .% is given by

pr = A1t)ids
for any A € X,(A). In others words, we have Fori(.#) € D%(X,k)}. O

Corollary 4.2.3. We keep the setting and notation of the proof of lemmal[].2.3
For any & € Df}l (X, k) and any A € X.(A), we have V.7 5, = W?ort(y)'

Lemma 4.2.4. The functor Fory : mS(X/A):ZZA — Ps(X, k) is an equivalence
of categories.

Proof. We consider once again the isogeny A = A < A and view D (X/JA) 24 a8
a full subcategory of D%’ S(X ,k). Thanks to lemma , we just have to show

that the functor in the statement is essentially surjective. Consider an object
Z € Ps(X k). By lemma we have an isomorphism .27 K.Z =5 a*(.%)
whose restriction to {1} x X is the identity of .%. Pulling back along (e, x idx)
we obtain (as in the end of the proof of lemma an isomorphism

pry(F) = a(n)* Z .

Thanks to [BaR, Proposition A.2], we know that there exists a perverse object
4 in DY _(X,k) such that For(¢) = .#. The main problem is to determine the

action of K = ker(e,,) on ¢. But thanks to corollary the action of K on
@& gives (after applying For) the monodromy of .%#. This tells us that K acts
via the character of evaluation at ¢t and concludes the proof. O
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Lemma 4.2.5. Consider . € Ps(X,k) such that there exists an isomorphism
LEIRGF 5 a* (F).

Then there exists a unique isomorphism ¥ : L R.F = a*(F) such that
V|q1yxx identifies with the identity of 7.

Proof. We first show that F' = £ K(.) : D%(X,k) — D%(A x X, k) induces
a fully faithful functor when restricted to perverse sheaves. (Here, S is the
induced stratification {4 x S | S € §} on A x X.) Tensoring on the left with
an invertible local system on A x X gives an auto-equivalence of category of
D%(A x X,k). Thus the functor (pr.Z{11 ®x(—)) o F is fully faithful if and
only if F'is. This composition is clearly isomorphic to prj, and the latter functor
is fully faithful on perverse sheaves thanks to [BBD) Proposition 4.2.5]. Thus
the restriction of F' to perverse sheaves is fully faithful. The inverse equivalence
is induced by the functor i* where ¢ : X — A x X is the map that sends z to
(1,z).

Now assume that 8 : £ K.Z =5 a*(.%) is any isomorphism, with .% per-
verse. Then, it is easy to see that ¥ := F(i*(8)7!) o B is an isomorphism
ZLHRF S a*(F) such that i*(9) = idy. If 91,0, are two such isomor-
phisms, then 9, o 1951 gives an automorphism of .,2”24 X.Z. Denote it by F(g)
(we can do that since F' is full). We have i*F(g) = g = idg. This readily
implies that 1, = 9 and concludes the proof of unicity, and hence the proof of
the lemma. O

Lemma 4.2.6. Consider . € Ps(X,k). Assume that there exists an isomor-
phism
Vg : LERTF S o (F)

such that (V.z)1yxx s idg. Then we have
(m x idx)*(¥7) = (ida xa)* (7)o (L KO z). (4.2.2)

Moreover for (4,04) another pair (perverse sheaf, isomorphism restricting to
id) and any map f : F — &, we have a commutative diagram

LARf

LEART LRy

19;:;\Ll Ziﬁfg
*( o *
a*(F) =0 a*(&).

Proof. Rewrite the equality as u = v. We consider v o v~!. This is an
automorphism of Xf &f{l X.%#. Denote by j the map X — A x A x X that
sends z to (1,1,z). Using the same argument as in the proof of lemma
we see that since .% is perverse, the maps

EndDg(X,k)(ya F) EndDg(AxAxX,k)((gtA)m X7, ("gtA)®2 X.7)
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induced by the functors

LIRLIR(G) and 5
are mutually inverse isomorphisms. This implies in particular that uov™! =
id( g a2 z. Thus we have u = v.
t
The proof of the statement about morphisms is similar to the end of the
proof of lemma [£:2.5] and left to the reader. O

4.3 The equivalences

We can refine the definition of the functors For; and For,on. Lemma tells
us that Forp,o, has essential image in P!, (X, k). According to lemma For,

induces a functor Ps(XJA) g4 — Ps(X k). In fact, the results of section
give us a bit more: we have the following announced result.

Proposition 4.3.1. The four categories Ps(X[JA) g, Ps(X, k)1, Po(X, k)
and PfSO(X k) are canonically equivalent: the functors Fory, For., and Formyen

are equivalences of categories.

Proof. All the work is already done: by lemma and lemma we have
a canonical equivalence Ps(X, k) = Pl (X, k) (in fact these two categories
are the same as full subcategories of D%(X,k)). From lemma and lemma
4.2.5 the categories P! (X,k) and P! (X,k) are equivalent. Finally, lemma

4.2.4 gives the equivalence Ps(XJA) »a = Ps(X, k). O

4.4 Standard, costandard and intersection coho-
mology complexes

We consider the following setting: 2" = (J,c £a is an algebraically stratified
A-variety with A-stable strata. In particular, A is finite. We assume that there
exist isomorphisms 2, = A x A" for any « (and we fix such isomorphisms
once and for all) and that the action of A on £, corresponds to the action of
multiplication of A on itself. We let d,, := n, + r be the dimension of 2. Let
also jo, : Zo — Z be the inclusion map.

The isomorphism classes of irreducible local systems on 2, are in bijection
with elements of AY: more precisely, the pullback along the map 2, — A x
A" P4 A gives an equivalence Loc(A,k) & Loc(Zy,k). For any t € AY, we
obtain an irreducible local system £y ..

We also denote

AY = (Jo) L [da] and  V§ = (jo )« L5 [da].
Note that the j,’s are affine maps (indeed, the 2,’s are affine and 2 is a

separated scheme), so that A and Vi are perverse. Note also that thanks
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to lemma and lemma these objects are in P (2", k). Finally, let
ICY := (ju)1x £ [da] be the intermediate extension of £y

The A{’s and Vs for various o and t are called standard and costandard
objects respectively. (The justification for these names will be given in the next
section.)

Note that the pullback under the isomorphism 2, = A x A™* of the local
system 2% on 2, is the local system .27 Kk,... Then the pullback of £
under the action map A x 2, — 2 is £ R .27 Kkyn., . Since for n divisible
by the order of ¢t we have e}, .ZtA =k, it follows easily that £ is A-equivariant
for the action “twisted” by e,,. It is then immediate that £} defines an object in
DA(ZafJA) g It follows that, Af', Vi and IC;' define objects in DA (2//A) oa.
We set

Al) gp = Af[=r], V(a)gp = Vi[-r], 1C(a)gp = IC[-7]
when we consider these objects in DA (27//A) »a. The forgetful functor
FOI‘t : mA(gLViA)g{x — PA(%,H{)[Q

maps A(a) 4 to AY and similarly for the V’s and IC’s.

4.5 The case of a single stratum

If we apply the equivalence of proposition to the case where 2" = Z, (i.e.
a stratified space with only one stratum), we obtain an equivalence

m/\(vg{aiA)ff > PA(%a,k)[ﬂ.

Once again, the shifted pullback along the map 2, — A x A" — A gives an
equivalence Pp(Z2,,k) = Loc(A4,k) (since Loc(Z4,k) = Loc(A,k)) and obvi-
ously

PA(%a,k)[ﬂ = LOC(A,k)m.

We showed previously (see lemma that for local systems the canonical
morphism of monodromy (which defines an action of k[X,(A)]) coincides with
the action of k[X,(A)] on the associated k[X.(A)]-module. In particular, we
have an equivalence

Loc(A, k) 2 k[X.(4)]/(e* — A(t)) -mod = k-mod.
As k is a field, this last category is semi-simple, and we deduce that the category
Pa(ZafJA) 4 is semi-simple as well.
4.6 Highest weight structure

This section and the arguments that follow are faithfully inspired from [BGS|
§3.2 and 3.3]. For the results and definitions we will use about highest weight
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categories, we refer to appendix [A| (and references mentioned there). The set A
is a poset for the order < defined by

(@ <d) & (o C Zu).

Theorem 4.6.1. The category Po(2",k)[y together with the natural morphisms
Ay — ICY — Vi and with weight poset the pair (A, <) is a highest-weight
category.

Proof. For the sake of simplicity (of notation) we will set, for the duration of
this proof, PA(%", k)i = C. For I an ideal in A, we let C; be the Serre subcat-
egory generated by simple objects indexed by elements of I; this identifies with
the image of the fully faithful pushforward functor along the closed inclusion
User Zo — Z.

According to definition[A.0.1] we have 5 points to check. The first one is clear
(since A itself is finite). Using the fact that (ja )i : Loc(Z4,k) = Pa (27, k) is
fully faithful and the equivalence Loc(Z4, k) = Loc(A4, k), one gets

Home (IC{, ICY) = Homp, (9 1) (ICS, IC) = Homypeea ) (Z5, £7) = k.

Now consider an ideal I C A. Assume that « is a maximal element in 1. We
have to show that the canonical morphism Ay — IC{ is the projective cover of
ICY in the category C;. We must show that

o k ifa=p
Home, (A%, 1CY) = { 0 othermise (4.6.1)
and that
Extg, (A, IC]) = 0 (4.6.2)

for any 8 € I. We use the equivalence
PA(Z, k) Z Pa(ZJA) 2a
of lemma In the latter category, we have
Eth}pA(%yA)ZtA (A(a) 24, 1C(B) pa) = HomgA(%iA)gf, (A(a) 2a,IC(B) 2a[1])

(see [BBD, Remarque 3.1.17 (ii)], this is a standard feature of ¢-structure). We
can then use adjunction and we deduce (4.6.1) and (4.6.2)) in the case a # .

We treat the case a = 5. Using the equivalence above two times and adjunction,
we obtain an isomorphism:

o « ~ A A
EthlﬂA(&Va,k)m (Z7da], 27 da]) = EXtioc(A,]k)[ﬂ (L0, 27).
Now the category Loc(A, k)p is semisimple as we saw in so this Ext space

vanishes. This concludes the verification of (4.6.2). We check similarly that
ICY — V7§ is an injective hull in C;.
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The fact that the kernel (resp. the cokernel) of Ay — IC{ (resp. of ICY —
V) lies in C~,, comes from the facts that these objects are supported on Z;, =
Ug<a £ and that this morphism is an isomorphism once restricted to 2.

We check that Ext2(A%, V) = 0 for any a, 3 € A. We have

EXtPA(EKk (AL, V) = EX‘D%A(%/A)E,{,(A(a)xf7v(3)$g*)-

Now we know Pa(2 ] A)pa is the heart of the perverse t-structure on the
category D (2] A) pa. Thanks to [BBD) Remarque 3.1.17 (ii)], we have an
injection /

EXt%A(%iA)g{i (Ala) g, V(B)ga) = Homo, (2p4) ,.4 (A(a) 22, V(B) 2al2]).

We use adjunction; the only case that still needs work is the case « = 8. What
we need to consider is now

HomgA(%aiA):gtA (gtaa gta [2])

Recall that we denoted K, the kernel of the n-th power map A — A. We have
an isomorphism A = A/K,, = A x%» {pt} where the last space is the quotient
under the action of K, by multiplication on A. We also denote by Rep, (K,,) the
category of finite dimensional k-representations of K,,. Using [BLL §6.6, item 6]
and [BI §8.0 and §0.2, Remark], one has the following sequence of equivalences
of categories:

D% (A k) = D% (A x" {pt},k) = D} ({pt},k) = D*(Repy(K,)).

and this last category is the derived category of a semisimple abelian category
(since the cardinality of K, is prime to £). Now Da(Zo [ A)»a is a full sub-

category of Db 1(Za, k) and the pullback functor Db A(A k) — Db A(Za k)

is fully falthful so we see that the above Hom-space Vamshes and we get the
result. O

Corollary 4.6.2. The realization functor Db’BA(%/A)gf — DA(ZJA) pp is
an equivalence of categories.

Proof. This can be proved using the arguments of [BGS| Corollaries 3.2.2 and
3.3.2). O
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Part 11

The case of flag varieties
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Chapter 5

Flag varieties

From now on, we assume that k is the algebraic closure of a finite
field of characteristic ¢ different from 2.

5.1 Setting and notation
5.1.1 G/U

Consider now a complex reductive algebraic group G. Fix a Borel subgroup B
and a maximal torus T" C B. Associated to these subgroups, we have a root
datum (X*(T), ®, X, (T), ®V) where X*(T') denotes the character lattice, X, (T)
the cocharacter lattice and ® and ®V the roots and coroots respectively. The
group B determines a subset of positive roots ®* (our convention will be that
the positive roots are those a such that Lie(B) = ®,co+Lie(G)q, with standard
notation). For any root a € ®, we have the root subgroup U,; this subgroup
is isomorphic to A' and we can choose such an isomorphism (non uniquely)
U - AY 5 U, satisfying tug(a)t™" = uq(a(t)a) for any a € A' and t € T
(see [J, §II. 1.2]). [Jl, §II. 1.3] tells us that for any « there exists a morphism
pa @ SLy — G such that, under suitable normalization of the isomorphism

A' =5 U,, we have for any a € A' the image of is given by u,(a);

similarly, the image of ((11 (1]> is u_q(a) and (8 bol) is mapped to «¥ (b) for
any b € A" ~{0}.

We thus choose once and for all u,, and u_, (for any positive root a) nor-
malized so that we have the above relations with ¢,,.

We denote by W the Weyl group Ng(T')/T. For all the rest of this document,
we fix a section W — Ng(T), that is, we choose a lifting w in Ng(T) for any
w € W as follows. For a simple reflection s associated to a root «, we take

5= @q ((_01 é)) According to [Spl Proposition 9.3.2], the elements $ (for

1 a
0 1
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s simple) satisfy the braid relations; for (sq,...,s;) a reduced expression of an
element w € W, [Sp, §9.3.3] ensures that we can set w = $jy---5, without
any ambiguity, that is to say, the element w does not depends on the chosen
reduced expression. Finally, note that the definition implies that wv is equal to
the lifting of the element wv for £(wv) = £(w) + £(v).

We have the Bruhat stratification of the flag variety

G/B= | | BuB/B.
weWw

Denote by U C B the unipotent radical of B. We have a natural map
m:G/U - G/B.

We obtain a stratification of G/U by pulling back the Bruhat stratification on
G/B along m. We set 2" := G/U, and let @ be the natural quotient map
G — Z. For any w € W, let 2, = 7~ *(BwB/B). Then (2°,{Zw}wew) is
a stratified space; moreover, this stratification is algebraic is the sense of [CG|
Definition 3.2.23]. Note also that these strata are T' x T-stable for the action

(tl,tg) 'gU = tlgth

(for g an arbitrary element in G). The bounded derived category of sheaves
constructible with respect to this stratification will be denoted

D) (2, K).

For any w € W, let j,, : Zw — Z be the inclusion. Let U, be the product,
in any fixed order, of the root subgroups U, with a € w(—®*) N ®* (thanks
to e.g. [Sp, 8.3.5 Lemmal, the group we obtain does not depend on the chosen
order). Then, the following map is an isomorphism (see e.g. [Sp, Lemma 8.3.6,
(ii)])

Up XT — Zw, (u,t) — wwtU.

We will consider the map
Dot Zw 3 Uy xT 22T

where the first map in the composition is the inverse of the above fixed isomor-
phism.

5.1.2 G/U*

Consider a simple reflection s € W and the associated Levi subgroup L. We
also denote B; = BN L. We have the minimal parabolic subgroup Ps = Ly xU?,
with U® the unipotent radical of P;. We will denote the variety G/U® by 2*.
It inherits a stratification

2= || 2

weWw
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where 2.5 is the inverse image of 2, under the projection G/U®* — G/U.
We fix w € W. According to [Spl §8.3.1 and 8.3.6], we have an isomorphism
of varieties
Uy X By = 2.5, (u,b) — wibU*.

In particular, the composition of the inverse isomorphism with the projection
U, x Bs — By gives a map pZs : 2.5 — B,.

Now assume that w is such that w < ws. It is standard to show that the
map

Up X Ly = 2%, (u,l) = wlU?

gives an isomorphism U,, x Ly = 25 U Z.5,.
In particular, we have a natural map

Ls
AR Ay

given by the composition of the inverse of the previous isomorphism with the
projection on the last factor U,, x Ly — L.

5.1.3 Weyl group

We set several notation concerning roots and Weyl groups. Start by fixing an
element ¢t € 7. The natural action of W on 7}/ translates in the world of
local systems: if we set w-.% = (w™1)*.% for any w € W and any local
system £ on T, it is easy to see that w - .£T = fg(t). (Here, we denoted
by w™! the application T — T that maps ¢t to w~'(¢).) For t,t’ € T}/, we
set v Wy := {w € W | w(t) = t'}. According to the above remark, we have
oWy ={weW |w- - ZT = 2L}, It/ = t, we abbreviate (W, = Stabyy(t) by
Wt.

Consider the subgroup W2 of W defined as follows. Recall that, by defini-
tion, any coroot in ®¥ C X, (T) defines a character of T}Y. Set

o/ :={a’ € ®” | a’(t) =1}

Note that ®) = {a¥ € ®V | (a¥)* L] = k- }. With the dual ®; of ®) (namely
those roots a of G such that o € ®;) we get a subroot system of ®. We set

WY = (sa | @ € D).

The subset <I>;r = &t N &, gives a positive subset in ®;. If we let S; be the
set {sq | @ € ®;, aindecomposable in ®;"}, then the pair (Wy,S;) is a Coxeter
system. Since for a reflection s, we have s, (t) = ta(aV(t))™!, we see that
W C Wy. In fact W2 is a normal subgroup of W;.

Remark 5.1.1. In [LY], from which the previous definitions are borrowed, the
authors consider f-adic local systems instead of elements of the dual torus (their
definition then being ®7, = {a¥ € @V | (a¥)*Z = k¢-} for such a local
system). Though our setting is slightly different, all the proofs of loc. cit. apply
with the exact same arguments, thus we will often use [LY] as reference for facts
concerning these groups.
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Note that the restriction of the Bruhat order of W to W;> endows the latter
group with a poset structure. On the other hand, being a Coxeter group, Wy
has its own Bruhat order, denoted <;, and its own length function denoted ¢;.
Let us compare these orders:

By definition (see [H3, §5.9] and [H3, §5.7, Proposition]), this order is gen-
erated by the relations w <; ws for w € W? and s € W a reflection associated
to a root a € ®; such that w(a) € ®;. Since &/ C ®T, we see, using the
analogous description of the Bruhat order in W, that

Yo,we Wy, (v<iw)= (v<w). (5.1.1)

Denote
t/wt = t/Wt/WO - Wt?\ t/Wt'

Note that the converse is false: for two elements v, w € W such that v < w, it
is not true that v <; w. We will give an explicit example below.

Elements in W, are called blocks. Consider a block 8 € ¢W,; the restric-
tion of the Bruhat order of W to 8 allows us to view it as a poset; it can be
shown as in [LY] Lemma 4.2] that for there exists a unique minimal element
denoted wg‘i“ and a unique maximal element wz** in B (for the poset struc-
ture explicited above). This element can be characterized as follows (see [LY]
Lemma 4.2]): wg** is the unique element sending all the positive roots in ®; to

negative roots in ® (in fact, it then maps <I>t+ to —dT . We have a similar

nginu))
characterisation of the minimal element wg‘i“: it is the only element in § such
that wii™(®;) € ®* (once again, this element in fact map T to (bq—:;;“i"(t))'

In the case where the block § is actually the neutral block Wy we set
Weo 1= wg‘ax.

This element is the longest element of Wy in the Coxeter system (W, S;) (this
follows either from the above characterization of maximal elements or from
(5.1.1))); in particular, we have

Wto - Wt o = €.

The following lemma gives some properties of blocks, it is a restatement of
ILY] §4.1 to §4.4].

Lemma 5.1.2. Consider three elements t,t',t" € T,/ in the same W -orbit. Fix
two blocks € v W, and v € ++wW,,. Then the set

VB = {wiws | wy €7, wy € 5}

is equal to wwa W = wiWiwe = Wwiwy for any wi € f and we € v. In
particular, vB is a block in W ,. Moreover, we have

min, min __ _ min min _, max __ ,, max
Wy Wg = Wy s Wy Wg =Wy
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max,, min __ max max,, max __ min
Wy " Wg " = Wyg s Wy W = Wypg -

Finally, multiplication on the left (resp. right) by wfynin (resp. by by wg‘i“) is an
order-preserving map (We,<;) — (W, <).

Proof. The first statement is obvious; for the first three equalities, see [LY],
Corollary 4.3]. The last equality then follows: with the second and third equal-

ities above, we can write Wy = witwy o and Wi = wy owi™" so that we
get
max, max __ ., . min min __ ,, min,, min __ min
w,), wﬁ — w,.y U/t/7owt/70w5 — w,.y wﬁ - w,yﬁ .

This concludes the proof of the equalities. Let us prove the last statement, for
left multiplication only; the other case being similar. We have to show that
if v,w € WP, then (v <4 w) = (wg‘inv < wgﬂ“w). To do so, we once again
consider the definition of the orders <; and <. We can assume that w = vt
with ¢ a reflection associated to a root a € ®; satisfying v(a) € ®;". Then
we have wi™w = (w§™v)t and wiv(a) € wg‘i“(q)j) = &% thanks to the

characterization of wgli“ stated above. This concludes the proof. O

Ezample 5.1.3. Assume that ¢ = char(k) # 2. Let us give two examples to show
that it may happen that W # W;. First, consider G = SLs, so that the dual k-
1 0
0 -1
torus of PGLgy. The Weyl group has order 2 with nontrivial element given
by the simple reflection s that exchanges the diagonal entries. The associated

group is PG Ly ). Consider the element ¢ = < in the diagonal maximal

coroot ) is given by (g 2) + 2y~ ! (on the maximal torus of PG Ly ). Thus

ay(t) # 1 and W2 = {e}. On the other hand, however, we have W; = {e, s} =
w.

We now give a slightly more interesting example. We place ourselves in
the case G = SLy4; the dual is PGL4k. The common Weyl group is now the
symmetric group W = &4. Let 1 := (12), s := (23) and s3 := (34) so that

(51,580,853 | 52 =1 = (5182)% = (5283)% = (5153)%)

is a Coxeter presentation of W.
Let ¢ be the diagonal matrix given by diag(&, &, —¢, —¢) (with € # 0). Then
obviously, we have W = (s1, s3). Now simple computations shows that

W, = {e, s1, 53, 5183 = 5351, 52515352, 5251535251, 5152515352, 515251535251 }.

We have two blocks in ;WW,: there is the subgroup W, and the coset s2515355W.
Set t' := so(t) = diag(€, —§, &, —£); we have

v Wi = {82, 8251, S283, S15352, S25183, S1535251, S3515253, S152538281 }.
This time, the two blocks in W, are given respectively by
B = {52, 5251, 5253, 525153} and v = {15352, 51535251, 51535253, 5152535251}

min max min __ ax

Then one has wg™ = s and wg ™ = S98183; WM = 518359 and w;n =
5182838251
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Let us give an example which shows that the converse to is not true.
We consider the group Sp,(C) (whose root system is of type C2) and its usual
maximal torus; its k-dual is SO5(k) and has root system of type Bs. Let W
be the Weyl group of Sp,(C). The element ¢t = diag(—1,—1,1,—1,—1) (where
diag(z1,...,zs5) denotes the diagonal matrix whose terms are the x;’s) defines a
semisimple element in SO5(k). The roots of SO5(k) mapping ¢ to 1 are exactly
the long roots. Consequently, the reflections of W' lying in Wy are those two
reflections associated to the short roots of Sp,(C), say s1, s2, and both are simple
in W. In particular, s; and sp cannot be compared in W;; on the other hand,
they are comparable in W.

We conclude this subsection by two lemmas that describe the simple reflec-
tions in Wy .

Lemma 5.1.4. Consider an elementt € T,) and x € We. Let w be any element
of W. Then wzw™" belongs to W@(Z(t)'

Proof. Of course it suffices to show the lemma for x = s a simple reflection in
W?. By definition we have s = s,v with a¥ a coroot such that oV () = 1. But
then wsw™! = s,(,v) and w(a")(w(t)) = aV(t) = 1. Thus wsw™' belongs to
W .

Lemma 5.1.5. Consider an element t € T, and a reflection s € Wy, simple
in this group. Then s can be written as a product wrw™" with

e w a minimal element in the block B € W, it belongs to (i.e. w = w%“i“)’
e 1 a reflection of W, simple in W and lying in Wi(t).

Proof. We note first that the element s is of length 1 in the Coxeter system
(We,Sy). Thanks to [LY, Lemma 4.6, (3) and (4)], if ry---71 is a reduced
decomposition in W of s, then all but one of the r;’s are minimal in the block
they belong to. More precisely, if we let tg := ¢ and ¢; := 711 ---r1(t) for
i > 1, then there exists an ¢ such that r; ¢ Wti;l for1 < j < N,j#i
and r; € Wy_ . Note that this implies the equality ¢; = t;_1; we also have
to = ty. Let us write s = ur;v, so withu =ry---r;51 and v =7r;,_1---r1. The
preceding discussion implies that for j # ¢, the reflection r; is minimal in the
block of tjEtFl it belongs to; thanks to lemma this is also the case of
the element u (resp. v) in the block of W, (resp.,_, W, ) it belongs to; we
denote this block by 8 (resp. 7). We thus have

min min

s=wg " 1wy

Multiply both sides by (w%“in’_lriw;“i“) on the right to obtain

min,—1,, min)_ min , min

s(wy

According to lemma [5.1.4) the element (wZ"™~!'r;wI™) belongs to Wy, and

. . ’y
so does s. Thus the product wg"wi™ also belongs to Wy . Finally, lemma
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tells us that the product wg‘i“wf‘/‘i“ is the minimal element in the block it

min,,min

belongs to, that is, the minimal element of W . We obtain wgMwit™ = e and

. in.—1
s = ’Ll)gnn’I’i’u}gnn7 .

The proof is now complete. O

5.1.4 Pro-objects and pro-complexes of sheaves

Later on, we will use pro-objects. We recall here some definitions and results
from [KS1] §1.11]. We will only consider pro-objects indexed by the directed set
(Z0, <), that we can view as a category in the usual way. A projective system
in C indexed by this set is a functor

P (Zo0, ) - C.

(Here, (Z~0, <)°PP denotes the opposite category of (Z~¢, <).) Thus a projective
system is a diagram of the form

"-Fn—>Fn_1—>'~'FQ—>F1.

For a projective system F' in C indexed by Z~(, denote by “lim” " F the functor
C — Set given by
X—lim Home (F,, X).

If this functor is representable (in C), one denotes “lim” F,, a representative.
Any functor from C to Set isomorphic to a functor of the form @”Z F will
>0

be called a pro-object. We set ProC for the category of pro-objects in C (this is
a subcategory of the category of functors from C to the category of sets). Note
that any object in C defines a projective system, where F;,, = X for any n and
all the applications Fj,yr — F;, are the identity for n,k > 0. We obtain in
this way a fully faithful embedding C — ProC ; one can in fact show that this
coincides the Yoneda embedding.

For two pro-objects “lim” F;, and “lim” G,,, the morphisms between these

. . —

two objects can be described as

Homproc(“im” F, “lim” Gy) = limlim, Home(Fy, Go).

If D is another category and H : C — D is a functor, we can extend H to the
pro-categories in the “natural way”. Namely there exists a unique functor Hp,,
such that the restriction of Hyy, to C (under the Yoneda embedding C — Pro(C)
is H, and it is given by what one may expect:

Hyyo : ProC — ProD, “lim” F,, = “Um” H(F,).

We will always forget the subscript “pro” in the following. We can apply this
to the case of (complexes) of sheaves: if .F = “%iin” Z,, is a pro-object in any

of the usual categories Loc(X, k), D%(X,k), ... , we can treat . (almost) like
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a usual object. In particular, we can consider its restriction, its stalks or its
cohomology. As an example, for a point x € X, we have

F o= “l.&n” ((Fn)a) -

We end this paragraph with the notion of monodromy for a pro-complex of
sheaves (we keep the notation introduced in chapter . Consider as above such
an object .7 = “yLn” F . We have

Endp,, D% (X k) (7) = yllm liﬂn Hompy (x k) (Fn, Fm)-
We define the monodromy of .% to be the morphism given by
vz k[X.(A)] = Endp,, DY (X k) (F), r= (g, (1), -

Let us fix any element ¢ € Tkv. For any n € Z>(, we have a module L; ,, over
k[X.(T")], given by

Lin =KX (T)]/ (e} = A\1t) | X € Xo(T))™.

We then get an associated local system on 7', denoted .ZtTn The families

{Ltn}nez, -, and {ffn}neznzo naturally form projective systems. We can
thus form the associated projective limit, resp. pro-object:

Ry :=lim Ly,

and

The object Ry is a k[X,(T)]-module; whereas the pro-object g? lies in the
category of pro-local systems on T (i.e. the category ProLoc(T,k)).

5.2 Topological constructions

5.2.1 Right and left monodromy

As we said above, each %, is stable under right and left multiplication by T.
With the arguments of chapter [I| and section (see in particular proposi-
tion and definition , for any & € D?B)(%,]k) we can define two

morphisms of monodromy

o7y o1 KX ()] — Endpy (9 10(F);

according to the action of T on 2" we consider (for the multiplication on the
right, we obtain ¢, &; for multiplication on the left, we get ¢; &). Said other-
wise, we can make 7" x T act on 2" as in subsection and for any object
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Z in D?B)(%, k) we can define a monodromy morphism ¢, & with respect to
this action. One easily sees that this morphism identifies with

0,7 © or,z  KXL(T)] O K[XL(T)] — Bndpy (4 19(F):

In fact, by definition and with lemma the left monodromy morphism can
be described as ¢ & o (; where ¢; is the morphism

k[X.(T)] = k[X.(T)] @ k[X.(T)]

induced by T'> t — (¢,1) € T x T. Similarly, and with obvious notation, we
have ¢, # = ¢z o(,. Notice also that the right and left monodromy commute
with each other. Then we obtain a map

K[X. (T)] @ KX ()] = Endpy_ (10 F).

c®cd = o z(c)oprz(c) = erz(d) oz (c),
which is ¢ 7. As in section [3.2] one can define the full subcategories

D?B)(‘%ak)[t,t/] ={7 ¢ D?B)(%»k)é
o,z (my) and ¢; 2 (m;) act nilpotently on .#}.
For any & € Dé’B)(%, k), we have a decomposition
r= @ 5
t,t’ €Ty

with Fp € Dé’B)(%,k)[t’tq. Again as in sectionﬁ we set

Dy (2, k)1 = {F € Dip) (2 ,k);
¢r.#(my) and ¢y z(my) act trivially on .F}.

Quite often, we will just need a fixed right (or left) monodromy, but we won’t
need the monodromy on the other side to be fixed. In this case, we will denote

D?B)(%,k)[_7t/] ={Z € D?B)(%,k) | ©r 2 (my) acts nilpotently on .Z},

and similarly for a fixed left monodromy. Similar (and obvious) notation holds
for ¢’ instead of ¢’. In order to simplify notation, and when no confusion is likely
to occur, we will almost always write Df)—,t’] for D%’B)(%, k)— ¢ and similarly
for other monodromies. In particular, we will use these abbreviations only when
we consider objects on Z". We can consider the subcategories of perverse sheaves
in these various categories; we denote them as P_ 4 (and accordingly for other
monodromies). To conclude this section, we set the notation for standard and
costandard objects in the above setting. For any ¢ € 7Y and w € W, set

Ly =ph L1
We then have
Ayt = (Ju) LY [dim(Zy)] and Vi = (Ju)« Z5 [dim(25)].
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5.2.2 Monodromic category over 2~

For a topological space X, recall from section that we denote by DIE:OC(X L k)
the full triangulated subcategory of D’(X,k) whose objects are those com-
plexes .Z such that J#" (&) is a k-local system on X for any k € Z. Thanks to
[Ac, Theorem 1.9.7], remarking that the connected, locally contractible space
T = (C*)" admits a contractible universal cover, we get an equivalence of cate-
gories D® Loc(T, k) = DI(’T)(T, k) induced by the inclusion functor Loc(T, k) —
Sh(T,k) (where the last category is the category of sheaves of k-modules on T').
The arguments of subsection [3.3] then give a natural equivalence

D" Loc(T, k) — DfT)(T, ISIOF (5.2.1)

Using the equivalence Loc(T', k) = Loc(Zw, k) given by the exact pullback
functor pj,, the exact same argument as above gives an equivalence of triangu-
lated categories

U, : D° Loc(T, k) = DY (Zw, k) (5.2.2)

(given by D?Loc(T,k) 2% D Loc( 2, k) < Db, (2, k).

Lemma 5.2.1. Let 4 be in D?

Loc

(Zw, k). Then we have

—1
P9 = Prg OW

where w™! denotes here the k-linear map k[X.(T)] — k[X.(T)] induced by e*
wt(\)
e .

Proof. The decomposition ([3.2.1) implies that monodromy is preserved under
isomorphisms; we can assume that ¢ = pi % for a certain % € D?_(T,k).

The map p,, : Zw — T is T-equivariant for the actions on 2, and T given by:
t-gU=tgU and t'-t=w ()t

It is also clearly equivariant for the action of T' on 2, by multiplication on the
right and the usual action of T" on itself. For the duration of this proof, we will
denote ¢'5® (resp. @%*) for the monodromy of .# given by the usual (resp.
twisted by w™1) action of T on itself. For both actions on 2, described above,
as p,, is T-equivariant, using lemma we get

twist )

1.9 = Po(©F )

and g = p,(p

With lemma we see that the twisted monodromy of .# is actually given

by ¢'5 ow™!. We thus get

. twist . reg —1 . —1 . —1
019 = P (PF ) = Pr(Pg OW ") = Qrpe (FyOW T = Prgow .

This concludes the proof. O
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Assume moreover that .# has a fixed monodromy, i.e. that # € Dl(’T) (T, k)
for a certain t € T,/. We deduce that p} (%) has right monodromy given
by t and left monodromy given by w(t); said otherwise, we have pf (%) €
D} o(Zow, K)[w(t),q- Indeed, by definition the ideal m; = (e* — A(t) | A) acts
in a nilpotent way on .%#. Thanks to lemma we get that the ideal w(my)
acts in a nilpotent way on pf (%) through P1.px (7). But it is easily seen that
w(m;) = m,,(): since w acts as an algebra morphism on k[X, (7')], we get

w(my) = (N = \(t) | A € X, (T)).

With the change of variable ¢ = w(A) and by definition of the action on W on
the character and cocharacter lattices, we obtain

w(my) = (e — p(w(t)) | p € X(T))
and so we deduce the result.

Lemma 5.2.2. If the category Df’t,t,] is non-zero, then we have
W-t=Ww-t.

Moreover, we have
Doy = (Bt | v € wWy)

and
wa(t%t] =(Vy | vewy)

(as triangulated categories).

Proof. By definition, for any .% € D?B)(%,]k), we have

J(F) € Dloe Zuw, k).

Now consider a non-zero & € Df)t/,tﬁ there exists w € W such that j;: (%) # 0.
From the discussion following lemma we deduce that ¢ = w(t). This
implies in particular that Dﬁ',t] =0 if ¢ is not in the W-orbit of ¢ in 7;’.

We show the second statement of the lemma. Note that the essential image of
Db Loc(T, k) = D, (T, k) under W, is certainly equal to DY (2w, K) () 4
We know from lemma that the former category is generated as a tri-
angulated category by .Z;. We get that D} (2w, k)4 is generated (as
a triangulated category) by the object W, (%7) = p*(£7T). Take an ob-
ject F € D?B)(%,k)[w(w’t]. We proceed by induction on the integer N =
#{v e W | j5(F) # 0}. If N = 0, we have nothing to prove. Assume
that N = 1; we have # = (j,)i(jy)* & for a certain (unique) v € W. Us-
ing the preceding argument, we see that v belongs to the coset wW;. Since
(Gu)*(F) is in DY (2o, K)w(e),) = Dioc(Zo, K0, we get (u)i(Gn)* F €
(G )T (ZLT)[n] | n € Z) and thus .Z can be written as a successive extension
of shifts of (j,)ip5(Z7) = Ay
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Assume now that N > 1. Consider a v € W such that 2, is open in the
support Sg of .%. We have inclusions

%;453459\%;

with j open and 7 closed. We can consider the extension by zero of the distin-
guished triangle

j!j*fﬁyﬁi*i*fi%
(which originally takes place in D*(S.#,k)) to all of 2. We apply the case N = 1
to the left term and the induction hypothesis to the right one to conclude. The
proof that the V’s generate the category is similar. O

5.3 Lusztig—Yun constructions

5.3.1 The case of G/U

We again consider 2" = G/U as a right and left stratified T-variety, with T-
stable strata. According to section for any t € T/, we can consider the
Lusztig—Yun category over 2 associated to the local system .Z ?, for the right
or the left action. These categories will be denoted respectively

We can consider perverse sheaves in these categories; one then obtains two
categories P(2" [JT)_ o7 and P(T'\ ) or _- The results of chapter
apply and thus these two categories are respectively equivalent to P_ ; and
P, —1; they both admit highest-weight structures.

We may occasionally have to consider the category D(T'\ 2" JT) o1 o7
defined to be the category D(T' x T'\\ 2); o7 7], Where T' x T' acts via
(tl,tg) . gU = tlgth.

This category can be thought as “the full subcategory of DI(’B) TXT(%,]]&)
whose objects are those . that define objects in both ©(Z iT)’[iyfz"] and
D(T Y\ 3&”)[3;77]”. More precisely, choose a finite central isogeny T — T asin
section so that (T \\ 2 [ T) 1 o) and D(Z" [JT)[ o1 or| are viewed

respectively as full subcategory in D?B),Txf(%’ k) and D?B),f('%’ k). We view

T as a subgroup in T x T via the natural inclusion
i T={1}xT—>TxT.

Then the identity of 2 is an i-map is the sense of [BLL I, §0.1], and we can
consider the equivariant pullback @7, (as defined in [BIj Definition 6.5]).
We obviously have an analogous functor @;kd .- corresponding to the inclusion
i:T =2Tx{1} = T xT. If a T x T-equivariant object .Z is in the bi-
Lusztig-Yun equivariant category, then Qjy, (%) (resp. Qi o (F)) lies in the
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right (resp. left) Lusztig—Yun equivariant category. The (restriction to the direct
summand subcategory D(T'\\ Z°//T)or o7) of the) functor Qj,, [r] defines a
forgetful functor

@(T\%/T)[gg“,g?] %@(%/T)[_,gz"] (5.3.1)

sending a complex .Z to itself (shifted by r) but forgetting the left equivariance
(and similarly for Q,, o)

We can obviously consider the subcategory of perverse objects in the bi-
equivariant category which will be denoted by P(T'\\ 2" /1)1 o). The
functor is clearly t-exact for the perverse t-structure (this is the reason
for the shift [r]), and induces a fully faithful functor

BTN Z)T) 17 211 = B(ZJT) [ 211 (5.3.2)

5.3.2 The case of G/U": settings

Let s = s, be a simple reflection in W. By [, §1.18] there exists a surjective
map
Z°(Ls) x P(Ls) — Ly

whose kernel is isomorphic to a subgroup of Z(Z(Ls)), so is at most of order
two since the derived group is either isomorphic to SLy or PGLy. Now 2(Ly)
is a semisimple group of rank one; we have a surjective map ¢, : SLa — Z(Ls),
where ¢, is as defined in section [5.1.1] and the kernel is either of order one or
two. The map Z°(Ls) x SLy — L, we obtain defines a finite central isogeny
whose kernel is either of order one (in which case we have an isomorphism) or
of order two. We can precompose this map with the endomorphism e,, x idsyz,
of Z°(Ls) x SLy (where, with a slight abuse of notation, we still denote by e,
the n-th power map on the torus Z°(Ls)). In this way we obtain an isogeny

vy, : Lg:=Z°(Ls) x SLy — L.

s

The kernel K of v has then cardinality n**(#"(Ls)) or 2p7(Z°(Le)) - (This is
one reason for which we assumed that the characteristic ¢ of k is not 2.)
We will also consider the following isogenies

VBS:EJS:BSXLS./L:%BS
and ~ N
VT:T:TXLSLS%T.

Note that we have embeddings K — fj ,Bvs
The above description tells us that B; is the product Z°(Ls) x Bgr,, with
Bgr,, the Borel subgroup of upper triangular matrices in SLo. Similarly, T is

the product Z°(Ls) x Tsr, with Tsz, the maximal torus of diagonal matrices
in SL2
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The groups B, and L, act naturally on the left and on the right on the
variety 2° = G/U® (but note that the strata 2% are not stable under the
Lgs-action). Thus we have actions of By and L, on Z°® via vg, and vy, and we
can consider the equivariant categories, either for the right or left action (the
context should make clear what action we will actually consider)

b s b s
D(B),E(% 7]1{) and D(B),Z:(% ,]k).
Remark 5.3.1. As stated above, the strata 2.7 are not stable under the actions

of L (and so of E) on the right and the left. Thus the objects in DE’B) I (Z2°#¢,k)

are actually constructible for the stratification on 2" ¢ obtained as the pullback of
the Bruhat stratification on the quotient G/ Ps via the natural map 2™ — G/ Ps.
However, in analogy with the other categories we consider, we keep the subscript
“(B)” in the notation.

Lemma 5.3.2. Take t € T,Y and s a simple reflection of W that lies in Wy .
Then there exists a unique local system L+ on L, such that (ﬁfs)w ~ T

Proof. Tt is well known (see e.g. [BED] Theorem (7.1)]) that 1 (Ls) = X.(T)/ Z - .
More precisely, the inclusion T < Ly induces a quotient map X.(T") = w1 (T) —
m1(Ls) & X (T)/Z-a). Thus the isomorphism classes of simple local systems
on L are in bijection with irreducible representations of X, (T)/Z-«!, that is
to say, with characters of this abelian group. Using the discussion at the begin-
ning of section these characters corresponds to elements ¢ € T, such that
oY (t) = 1. Now for such a t, let £ be the associated local system on L,. The
restriction of this sheaf to T corresponds to the character of X.(T) obtained
by composition with the quotient map X, (T') — X.(T)/Z -« on fundamental
groups. This is the same as the character of X, (T') associated to ¢, thus we
deduce the result. O

5.3.3 The case of G/U®: Lusztig—Yun categories

In this section, we apply the Lusztig—Yun construction to the above setting: we
consider the variety 2°® and the groups Ly and Bs. Choose t € T,/ such that
s € W¢ and fix, for the rest of this section, n to be the smallest positive integer
such that ¢ = 1, that is, the order of t. Recall that this n is then coprime
to ¢, see remark m By lemma we can extend f{ to Ls to obtain a
local system .ZF*. We will denote the restriction of .Z%* to B, by .ZF*. Note
that st is also the pullback of .,%;‘F along the natural map B, & T x Us — T.
Our aim is to define Lusztig—Yun categories associated to these data. We must
show that there exists a character y; of K such that .,ftLS is the y¢-isotypic
component of (v, )« k. (Recall that we denoted K the kernel of vz, and that
the cardinality of K is prime to the characteristic £ of k.)

The pushforward of k- along the proper map vy, identifies with the local
system associated with the m (Ls)-representation

k[my (Ls)/m1 (Ls)].
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Now a finite central isogeny is a covering map. Note that the finite group K
acts transitively and freely on the fibers of vz . This implies that we have an
isomorphism

K =~ Aut(L,/L,),

where Aut(ivS /Ls) denotes the deck tranformation group of the covering L, /Ls.
In particular, the action of this automorphism group is transitive on the fibers
of the covering, so this covering is Galois and we have an exact sequence of
abelian groups

0— 7T1(L ) —>7T1(Ls) — K — 0.

The pushforward of lk~ then identifies with the local system associated to the
71 (Ls)-representation k[ ]. Since K has order prime to ¢, this representation
splits as a direct sum of simple subrepresentation of rank one according to the
characters of K; the corresponding local system then splits as a direct sum of
rank one local systems.

Lemma 5.3.3. We have a nonzero morphism L&+ — (vr,)« kg This mor-
phism corresponds to the inclusion of a direct summand associated to a character
x¢ of K. Moreover, this morphism induces a morphism

L7 = (v kg,

corresponding to the inclusion of the (st)-isotypic component in the second

term (where x2* is x, viewed as a character of K < By).

Proof. To prove the first part of the lemma, it suffices to show that (v )* .Z tL s =
k;—. We can then take our morphism to be the nonzero adjunction map

Li = (v )ev,) L1

This map will automatically be the inclusion of a rank-one local system, cor-
responding to a certain character y; of K. Recall that we defined vz, in two
steps: first we consider (e, X idgy,,) and then we compose with the natural map
Z(Ls)° x SLy — Lg. If we pullback ftL along this last map, we obtain

(L1120 Bk,

since S Lo is simply connected (as a (C—variety). Now (gth)\Z(LS)O = (E?)M(Ls)o
and we know that the pullback of Z along e, is the trivial local system. We
thus have (v, )* L5 = = k. This concludes the proof of the first statement.

The second part of the lemma ‘then follows easily from the following facts:
first we have an embedding K — BS7 then the following square is cartesian by
construction:

BSC—) Ls

VBS\L ll/[,s

B,——~ 1L

S S
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A simple application of the base change theorem (recall that vy is proper)
allows us to conclude the proof. O

Sitting in our equivariant derived categories defined above DI(’B) 5 (G/U*.k)

and D’()B) o —(G/U* k), we can thus define Lusztig—Yun categories

@(%5/35)[_’3555] and @(%S/Ls)[_)ffs].

(We could and will also consider the left monodromic categories.) Later on,
we will use these categories in order to deduce informations on the structure of
the category of perverse sheaves in Df’i’t] and 33(%”/7“)[_73;]7 thanks to the
following discussion.

We have a natural map p* : G/U® — G/U given by the quotient by the free
%'t) action of Us. According to the discussion following the proof of lemma

- 2, the unipotent radicals of the isogeneous groups B, and B are isomorphic,
so we have a copy of Uy inside B (in fact glven by the upper triangular unipotent

subgroup of SLj in the decomposition B, = > Z(Ls)° X Bsr,). We then easily
get B, s /Us & T. The map p° is a B T- map, and so we can consider the functor

Qe D(B)T(% k) — D?B)B (2°%,k) (5.3.3)

defined in [BL, §6]; according to [BLl §6.6, item 5], this functor is an equivalence
of categories.

Lemma 5.3.4. The functor Q). preserves the Lusztig-Yun categories, i.e. it
induces an equivalence

D(XYIT) - zr) = DX Bs) _ g5a-

Proof. Recall that we set T=T XL, Z; It is clear that we have K < T
and that the character x of K such that &7 = ((vr)«kg)y is the same that

defines ff ° as an isotypic component of (vp,). kg . Moreover the projection

p: B; —» B;/US >~ T does not affect K, that is to say, we have a commutative
diagram

By——L—T

\ / (5.4

K.
We consider D (2" JT)_ or) and D(27°/ Bs ) v+ as full subcategories of
(B) #(Z k) and DE’B) 5 (27.k) respectlvely For an object .# in ©(Z'/
T)(_ g7}, We have to determine the action of K on Qrs(F). Note first that

Forg C@;s = (p°)* Forg (here For; is the usual, non-shifted, forgetful functor
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from the ?-equivariant category to the constructible category). We use the
following commutative square:

G/US><’BVS rxp G/Uxf
as,prl a,prl
G/U* v G/U

where ag stands for the action map. We deduce that the isomorphism

a; Forg- Qp: (F) = pr* Forg Q. (F)

is the pullback under p* x p of the isomorphism a* Forz(.#) = pr* Forz(%).
Using diagram (5.3.4)), one deduces that the restriction of this isomorphism to
G/U?® x {k} =2 G/U? is the pullback along p® of the corresponding isomorphism
on G/U. In particular, K acts on Q.(%) via the same character as it does for
Z.

Since Q. is an equivalence, it is automatically fully faithful; its restriction
to a Lusztig-Yun factor induces an equivalence (2] T)_ o1 = (2]
Bs)[_ P thanks to the above considerations. O
Lt

We end this section by an immediate, but nice property of the functor @
First, a few definitions:

*
p-

Definition 5.3.5. For any w € W, set
Aw) g1 = ()l L1 Ww)],  V(w)gr = (ju)py Z7 [((w)).
Similarly, set
Aw) o, = (G50 ph) L7 W), V(w) g = (Go)(pas)" L7 [0(w)).
From the definition of section [4.2] it is clear that the image under the for-
getful functor For; : (2 JT)_ or] — D?B)(%,]k)[_’t] of A(w)gr (respec-
tively V(w) or) is Ay ¢ (respectively Vy,¢). In particular, the objects A(w) o7

and V(w) T are perverse. We define a perverse t-structure on the category
D(Z¢[] B) 2P similarly as in definition Recall from the proof of

lemma [5.3.4| that we have a forgetful functor Forz on DE’B) 5 (27°.k). In the

following definition, we consider the restriction of this functor to the direct factor
subcategory D(Z %/ BS)[_ ps); we keep the same notation for this restriction.
Lt

Definition 5.3.6. Define the perverse t-structure on @(%SﬂBS)[_ P to be
the shift by (r + 1) of the usual perverse t-structure on D?B)(%s,k). That is,

F P @(%S/Bs)ﬁo’gfs] if and only if Forg (F)[r + 1] is in pD?bS)O(%S,k).

Define p@(%S/Bs)iOzBS] similarly. We set ‘B(%S/Bs)[_’gfs] for the heart

of this t-structure, the subcategory of perverse sheaves.
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The objects A(w) 5. and V(w) 5. are then perverse, moreover, the neg-
t t

ative subcategory P@(%S/Bs)[ﬁ_Ong] is generated by the objects A(w) g 5. [n]
with w € W and n > 0, and p@(%S/BS)[Z_OZBS] by the objects V(U})gtBs [n]
with w € W and n < 0. o

Lemma 5.3.7. For any w € W, one has
Qpr (Aw) g7) = Aw) yo.,  and Qu(V(w)zr) = V(w) ys..

In particular, Q). induces an equivalence

%(%/T)[_,g;] = &B(%S/BS)[_’gfs]7
and maps IC(w) 1 to IC(w)gfﬁ for any w.

Proof. The isomorphisms are an immediate consequence of the smooth base
change theorem. The second statement follows directly from these isomor-
phisms. O

5.3.4 Verdier duality

Recall that we defined a Verdier duality functor in section We have such
a functor on 2", but we will normalize it so that it preserves perverse objects.

Definition 5.3.8. For any t,t' € T,/, we set

Q% DTN\ 2T gr o) = D(TN %/T)E;;fl,xjﬁlp

F =R Hom(F, Dy [—2r]).

This functor satisfies D oD = 1id and is t-exact for the perverse t-structures.
“x Ta
Similarly, we define Q% to be the functor F — R Hom(F Dy [—2(r+1)])
for any F in D(Bs \ %S/Bs)[gﬁs’gfs] or ©(Ls \ %SﬂLs)[gtL/s e

The proof of the following lemma is omitted; the result follows easily from
usual considerations. The reader should note that the normalization of D  is
X

the correct one in order for the lemma to be true.

Lemma 5.3.9. We have Q5. OQ% = Q% 0Qys (for Qs the functor of (5.3.3)).
For anyw € W and t € T}, we have

D (Aw)egr)=V(w)gr, and D (V(w)gr)= Alw)er

and



Note that for ¢,t' € TV, we have yW; = y—1W;-1. Similarly, we have
Wg =W2,, and thus 4+ W, = -1 W,_.. The previous lemma then implies the
following (obvious) corollary.

Corollary 5.3.10. For any block 5 € Wy the Verdier duality D restricts to
—Z

a t-exact equivalence of categories

DTN L))y o) > DTN LITEE | or
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Chapter 6

Convolution

6.1 Convolution in the topological case

Let G xY 2 be the coset space of G x 2~ under the action of U given by
u-(9,hU) = (gu™ ", uhl)

(for g,h € G and u € U). The quotient map is denoted gy : G x 2~ — G xY 2.
Let my be the natural multiplication map G xV 2" — 2

my ([g; hU]) = ghU.

Also, recall that we let @ denotes the quotient map G — G/U. Since the above
antidiagonal action of U on G x % is free, for any .%#,¥9 € D?B)(%k), there

exists a unique object . XY ¢ in D*(G xY 27 k) such that
G FRVY) =" (F)RY .

We then set
FxV g .= (my ) (F =Y @) |dim(T))

and call this object the convolution product of % and ¥.
We have obtained in this way a bifunctor

(=) *” (=) : D{py(Z k) x D{py (2, k) — Dipy (X, K).

It is well known that convolution is associative i.e. that we have natural
isomorphisms (# xV 4) «V # = F+«UV(GxVU #) for any .#, 4 and A in
D?B)(%, k).

6.2 Convolution and monodromy

We study the behavior of convolution and monodromy. Let mp : GxB.2 — 2
be the map induced by the action of G on 2.
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Lemma 6.2.1. Let #,9 € D?B)(%,k). We have

1. ¢ 7w0g =o' idy and o, 7.9 =idz xV ¢, g,
2. if F e fot] and 4 € Df’t, ) with t # t', then F+xV 4 =0,

3. Or.z *Vidy =id g *Ugol)g.

Proof. (1) We prove the first equality, the second one being absolutely similar.
We view 2, G x 2 and G xV 2 as T-varieties under left multiplication (on
the left factor uniquely for the two products). Note that both gy and my are T-
equivariant for these actions. By virtue of the definition of convolution product
and lemma if we show that the equality

pLzrvy = oLz B idy
holds, we will be done. Since the functor gf; is fully faithful, it suffices to show
that the pullback along gy of these two morphisms coincide. But the functor
0 ((-) BV ) : D) (2, k) = D{py(G x 2, k)
is by definition isomorphic to the functor @*(—)X¥. Using twice lemma [1.5.5]

we see that ¢f; (01,7 Y idg) = 0 o (5)Ry = @i (01,700 9).
Assume now that we are in the situation of (2). We see G x 2" and G xY 2
as T-varieties under the action

(Here (g, hU) could be an element of G x 2" or an equivalence class in G xY 27.)
We also view &2~ as a T-variety for the trivial T-action. In this way, qu and my
are still T-equivariant morphisms. Using lemma and lemma we see
that .# XY ¢ is monodromic with monodromy given by ¢z gv ¢ = <pr_1§j XY 4
(for the considered antidiagonal action of T'). By hypothesis, this monodromy
is non trivial; now an application of lemma [3.2.1] allows us to conclude that the
convolution is zero.
The proof of (3) is borrowed from [BeRl Lemma 7.3]. We write

my:GxY 2 G xB M g

Consider again the action of T on G xY 27 given by t - (g, hU) = (gt =1, thU).
The object .% MY ¢ is monodromic for this action and we have

—1 U
prrvy =¢. 7z X oLy

i.e. we have pzxu (€)= ¢,z (e ) KY ¢, ¢ (e*) for any A € X, (T). Now the
map m’ realizes the quotient G' xY 2" — (G xY 27)/T, in particular the action
of T on G xB % is trivial and we have (m/)i(¢.#xv ) = id thanks to lemma

Since one has gof}g XY g = (gp:}ﬁf XY idy) o (id# ®Y ¢, &), this implies
that

(M )1(r,7 BV idg) = (m )i (ids BV ).
Applying (mp); to this equality, we get the desired result. 0
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6.3 Convolution in the equivariant case

6.3.1 Convolution over Z°

Consider an element ¢t € T,'. Recall the quotient maps w : G — £ and
qu:GxZ —-GxYZ.

Consider F € D(ZJT')|_ gr)and ¥ € D(T\2") o7 _j. Consider the action
of T on G xY 2 given by t-[g, hU] = [gt~1,thU]. There exists a unique object
FRYVYG on G xY 2 such that ¢, (F RV ¥) = w*(F) KW¥Y. Now choosing an
isogeny T—T allowing us to see the above Lusztig—Yun equivariant categories
as full subcategories of T-equivariant categories, the object .# KV & is in the
category D%(G xU 2 k) for the action of T prescribed above. Since .7 is
ff—equivariant for the action of T" by multiplication on the right and ¢ is
2T _equivariant for the action of 7' by multiplication on the left, using lemma
one easily checks that the pullback of .# XY & along the action morphism
TxGxYZ —GxY Z is given by k; M. KV &, Thus, using corollary
one deduces that the object .# KV ¢ lies in the category

D(G XY Z[T, k) = Dy (G xV 2, k).

Thus it defines a unique object .# X2 ¥ on (G xY 2)/T = G xB 27, that is
to say, in the category DE’B)(G xB 2 k).

Definition 6.3.1. Consider two objects F € D(Z" [JT)_ 1) and G € D(T \
2 )igr - We set l
FANG = (mp).(FRPY).

This object is called the convolution product of F and 4. This defines a bifunc-
tor
D(Z)T) - o) X DT\ X ) g7 -} = Dip) (L, K).

Note that we could have defined convolution using the proper pushforward
functor (mp), since the map mpg is proper.

Finally, consider t' in the W-orbit of ¢. It is clear that the exact same
definition as above allows us to consider a convolution product

DZYT) - ) x DTN ZYT) g7 1) = D(ZLYT)(- 27

6.3.2 Convolution over 2°°: B;-equivariance

We can consider the variety 2% as a right Bs-space as well as a left B;-space;
moreover these actions commute with each other. We can thus define the
Lusztig—Yun categories D (B; \\ %s)[zfs —yand 9(%‘“]35)[_73195], respectively
for the left and right action.

Take .Z € 9(%5/35)[7,3?] and ¥ € CD(BS\%S)[gfsﬁ]. The object ¢ lies
in the U®-equivariant derived category (for the left multiplication of U® on 2°%)
since it is left B-constructible. Similarly, (w®)*(.#) is in the U®-equivariant
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derived category on G, for multiplication on the right. Thus (@w®)*(%) X ¢
descends to an object F KUV & on G xU" 2%, Using arguments similar to
those appearing befor definition we see that the latter object defines an
object in the category D?B),BS (G xY" 2% k), for the antidiagonal action of By

on G xY" 2%, and thus defines a object .Z KE & in D*(G xB G/U* k). We set
F*5 G = (my)(FRTY).

Here, m?% is the natural map G xP 2% — 2°%.) We define in this way a
B
convolution product

()% () s DL By ¥ DB\ 27) . — Dl (2°,).

Here again, as in the very end of subsection [6.3.1] we have a variant of the
convolution product where we impose a right equivariange for the object ¢; in
the following lemma, we consider such a variant, that is, the functor

(=) *]éf (=) Q(%S/Bs)[_73fs] x D(Bs \\ %S/Bs)[‘gfs,gfﬁs]
— @(%S/Bs)[_,gﬁs].

We consider the setting of lemma [5.3.4

Lemma 6.3.2. The equivalence Q. : D(Z[JT)_ o1 = 9(%5ﬂ33)[7_3t35]
of (5.3.3) commutes with (=) *5" (=): for two objects F € D(ZYT)(-, 7| and

G € DT\ Z[T) o1 1) we have Qpu(F Y G) = Q5. (F) ¥ Q. (%),

Proof. Consider .%,% as in the statement. Observe that the square

’

p

GxBGUs —2  ~GxBG/U

mgl lmB

G/U* G/U

is cartesian. (Here, the horizontal maps are given by the quotient by the action

of U on the right of the right factor). The maps m$% and mpg being smooth, [BLL

Theorem 7.1] tells us that we have Q5. (mp) = (mp)iQy,. Thus we must show

that Q7 (F WP 9) = Qr. (F)REF Q5. (4). To do so, we use the characterisation

of Qi (F) WP Qr.(4): it is the only object such that the pullback under the

quotient map ¢ : G x G/U* — G xB G/U* is (w*)*Q}- (F) K Q5 ().
Consider the following commutative diagram:

idg Xp

G x G/U*® GxG/U

q};i QB\L
/

p

GxBGUus —2 G xBG/U.
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We deduce that (forgetting all the equivariance) we have (¢%)*(p')*(F KB ¢)
w*(F) K p*(¥4). Now w = pow?*. Taking the equivariance into account, what
we get is

(0h) Qy(F B 9) = (") Qju(F) R Q) (4).
This concludes the proof. O
Corollary 6.3.3. For any w,v € W, we have

Qps (A(w) gt Y V(0) gr) = A(w)gf(st) B V(v) g5 -

Proof. This follows directly from lemma [5.3.7] and lemma [6.3.2] above. O
Let us conclude by describing the effect of duality on convolution:
Lemma 6.3.4. Considert € T, and consider two objects F € D(Z[T)_ o)
and 9 € D(T\ X)o7 ). Then one hasD (FAYG) =D (F)«'D (¥).
v A A A
Proof. In the following proof, a double-underline will always mean a shift by —2r
in a duality functor (this is the definition for D but we use this notation also for

other varieties). Let us first note that the statement of the lemma makes sense:
@%(ﬁ) lies in ©(T'\\ %‘iT)[i’gz"_l] and @%(9) lies in ©(T'\\ %/T)[fz"_l’i].
Thus the convolution of D (%) and QJ (¢) indeed makes sense.

By definition, we have .# Y & = (mp),(# KB &). Since mp is proper, we
haveD o(mp) = (mpg)oD . We then have to show D (F RBG) =~
—Z TGxBY T GxBXY

D (Z)XPD (¥). Apply the functor ¢} to the object D (FRP9), one
—Z & TGxBY

then obtains:

GR , (FEPG) =D  gp(FRY)
=D (45(F B ) dim(B))
=D (&"(#)BY)[-2din(B)

> Do(w*(F)) XDy (4)[—2dim(B) — 2r]
(we used the smoothness of the maps ¢ and @)
Now we have Dg(w*(F)) = @' Dg(F) = o Dg(F)[2dim(U)], so we fi-
nally get

D, (FRPY) =" De(F) Dy () ~4r] 2 =D (F)RD_(¥).

xBY G A
This concludes the proof. O
Remark 6.3.5. In the statement of lemma [6.3.4] one may want to impose a left
equivariance on the object %, or a right equivariance on the object ¢, or both;

obviously, Verdier duality still makes sense and “preserve” this equivariance.
Say, for example, that .F is in D(T'\\ 2 J7T) g1 or) for some . Then the
t/’

resulting object D (F A Z) =D (F)x"D (9) lies in D(T\ 2) ]
=z = =z =1

110



6.3.3 Convolution over 2°°: L ,-equivariance

We now proceed to define convolution over 2% in the case of L, Lusztig—

Yun equivariance. Namely, consider 7 € D(2[/ L), or.) and & € D(Ls \
’ t

%S)[gfs,i]. ; As in subse:ction the object (w?®)*.# XY descends to an

object ZF XY & on G xY" 2%, Exactly as for the case of B,s-equivariance, but

with L instead, this twisted external product defines an object in D?B) I (GXUS

s

2%, k) for the antidiagonal action of L, and hence we obtain an object .# K ¢
in D*(G xP» 27 k). We then set

T+ G = (mp )(F R 9),

where mp : G xPs 275 — 2% is induced by the action map.
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Chapter 7

Completed monodromic
category

7.1 The functor 7T$

Throughout this section we consider any fixed t € T}Y. We begin by showing that
there is an action, given by a convolution product, of the category D?B)(% k)
on the category @(%/T)[ﬁg?]. We need, for the proof of the next result, a few
observations. The following new notation will be used only in the next proof.
Consider 2" x T' as a G-variety for the action of GG on the left of the first factor
uniquely, i.e. h- (gU,t) = (hgU,t). An object on Z X T constructible for the

stratification {25, X T}yew is U-equivariant for the U-action induced by the

one of G. For any objects .# € D?B)(%,k) and 4 € D*(2 x T,k), the external

tensor product @*(.Z) R ¥ on G x (2 x T) is U-equivariant for the action
u- (g, (hU, 1)) = (gu™", (ugU, 1)),

thus it defines an object .% XY ¢ on the quotient G xV (2" x T). We can then
define a convolution product

F+UT(G) = (my x ids)(F RY 9).

Lemma 7.1.1. For any F € D?B)(.%”,k), and any 9 € D(Z[JT)_ o1, the
convolution product F xV 4 defines an object in D(ZJT) -, »r)-

Proof. Consider an isogeny T — T with kernel K (of cardinality coprime to ¢)

and a character x of K such that we have D(27/T)_ o1 = DE’B) (2 k)y as

full subcategory of DE’B) T(‘%/ ,k). The convolution product .# +V ¢ lies obvi-

ously in the category Dz 7#(Z,k) (for the action of T on the right). We must
show that the action of K on this object is via the character x. To determine
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this action, what we have to consider is the canonical isomorphism
*( g U ~ * (g U
pri(Fx" b)) — ax(F* 9b),
where az,pry 1 27 x T — % are the action map and the projection on the first
factor.

Denote by ¢ the analogous isomorphism pri(¥4) — az(¥) for ¢. Now,
consider the following commutative diagrams

GxU 2 xT-1saxVa

mUXidi:\L J{m

X xT Z

ar

and
GxU 2 xT-2gxU o

my Xid;l lm

X xT Z

pry

(with n([g, (zU,t)]) = [g,2tU]). Two applications of the base change theorem
yield isomorphisms

ai(F+V9) = FxUTas(4) and pri(F AV G) = 7+ pri(9).

We then deduce that the isomorphism that we are looking for is given by
F *Y Ty, The result then follows. O

Lemma allows us to define a “projection functor” from the constructible
derived category to the Lusztig—Yun equivariant category.

Definition 7.1.2. For any t € T/, we denote by T# the functor
w% = ()Y A(e) g1 - D?B)(%,k) — @(%/T)[i’zz“].

Even though we defined the functor 7T]€ on the category D?B)(ﬁ” k), we
will mainly consider its restriction to the full subcategory D?B)(ﬁt” k)= 4; the
notation will be the same however.

Lemma 7.1.3. Let Fory be the forgetful functor
D(Z[T) -, or) = Dipy (X, K) [y

of the end of subsection . The pair (w?,Fort) is an adjoint pair.
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Proof. Fix an isogeny v : T — T with kernel K of cardinality prime to ¢ such
that we can view D (px1)(2 X T//T)|_ or) as a full summand subcategory in

2 x T,k) (the action of T being on the right factor uniquely, via v/)
(). #(Z k).

Let e : 2 — 2 x T be the map zU ~ (2U,1). If we make T act trivially
on 4, then e is a {1}-T-equivariant map. We claim that the functor

Db —(
(BXT),T
and similarly, © (2 /JT)[_ o1 as a full summand subcategory in Db

Q: D xr) (2 X TJT) - 1) = D{py(2 k)

is an equivalence of categories and that its quasi-inverse is given by the functor
av defined by
av(F) = FRLT.

To see that, we remark that taking the tensor product with the object k 4- X gz—l
induces an equivalence of categories

D1y (X X TT) = 27 = D(Bxr) (2 X TT) - k] = Digrr) (2 x T,K).
Then the composition (kg K27 1) ® (—) o av is isomorphic to the functor
Qpr, : D{py (2, k) = Digypy (2 x T, k).

The latter functor is well known to be an equivalence of categories (see |[BLI
§6.6, item 5]). Thus

av ™ (ky RZT) @ (=) 0 Q%

pra

is isomorphic to a composition of equivalences, and so is itself an equivalence.
Since we clearly have e* o av 22 id, the functor e* is indeed a quasi-inverse.

Now, we can identify 7f with the functor ai((—) X.27)[r]. From the discus-
sion above, we deduce that this functor admits a right adjoint, given by

F e od (F)[—r].

. . . . . . !
Since the action map a is smooth of relative dimension r, we have a’ = a*[2r].
Moreover, the composition e* o a* is isomorphic to Qf;, with idg viewed as a

{1}—Tv—map. This is just the (usual) forgetful functor, so finally, the right adjoint
to 7} is given by (the restriction to D(2/T)_ gr; of) the functor

For[r] : D/ (2", ]k)—>Db (2 k).

(B
This is indeed For; and thus the proof of the lemma is complete. O

The following result is just a restatement of the fact that 7r$ lands in the
category @(%/T)[_,gg‘]; we make the monodromy of the objects in the image
of this functor explicit. Denote by ¢; the natural map

K[X.(T)] = k[Xo(T)]/{e* = A(t) | A € Xu(T)).
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Lemma 7.1.4. Let .% be an object of D?B)(%,k)[_’t] and let Fory be the for-
getful functor D(Z[JT) - ) — D?B)(%,k)[_,t]. Then, for any r € k[X.(T)],
we have

Pror, (nt(#)) (1) = €¢(r) - idpor, (1 ()) -

Proof. We know that the object m} () lies in D(ZJT)—,or)- The state-
ment of the lemma is then equivalent to saying that For; actually lands in
Dé’B)(ﬁﬁf7 k);— 4. This was established during the proof of lemmam O

We will consider the following analogue of the functor For,: we set For!, for
the natural forgetful functor

D(T\ %/T)[zf,gg] - D?B)(%vk)&7ﬂ]'

If we just consider equivariance on the left, the forgetful functor will be denoted
just For’.

Lemma 7.1.5. For % € D?B)(,%”,k)[,’t], G € DTN\ 2)gr ) and 9" e
D(T\ %/T)[gzvfﬂ we have isomorphisms

1. F+U For'(9) = l(F) £ & in Dby (2,K),

2. F Y Forl,(9') = Fory (l(F) K G) in D?B)(%,k)[_7t/].

Proof. We prove the isomorphism (1), the proof of the second case being similar.
By definition, we have 7} () Y ¢ = mf (7} (F) ®P &) and .7 +V For'(¢) =
m (F K For' (9))[r] with

mp:GxB ¥ > 2, my:GxY 2 = 2.

If we denote by 0 : G xU 2 — G xB 2 the natural quotient map, we have
my = mp o . We then have to show

o(Z BY For(9))[r] = T (F) xE .

By definition, the right-hand side is the unique object on G x® 2" such that
qp(ri(F)RP G) = w*(xl(F)) BY. If we show that

a(e/(F Y For'(9)))[r] = w*(n}(F)) R Y

we will be done. Now, we use the identification 7} (.F) = af (F X.27)[r], where

a : X x T — Z is the (right) action map. In order to prove the lemma, one
has to show that there exists an isomorphism

¢5(0(F RV For'(9))) 2 w*(al (ZFRLT)RY. (7.1.1)
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We use the following cartesian squares

GxTxZ 7 GxUa
Gx X o GxBy

and
wxid x id

GXT XX ———"— I xTxX

ai iaTXid

Gx X X x Z.

w Xid

Here we have

e a(g,t,hU) = (gt,hU),

e ¥(g,t,hU) = [g,thU].
Using the base change theorem, becomes
ay* (F RY For' (%)) = (@™ (F) R LT RG).
In order to conclude, it suffices to see that
7 (F RY For'(¥9)) = o*(F) R LT R . (7.1.2)
We then remark that v = ¢y o (id xar) with ar : T x 2" — 2 the left action
map. By definition, we obtain

7 (F ®Y For' (4)) = @o*(F) K aX For' (¢).
According to lemma we have aX For'(4) = £ K%, so we have an iso-

morphism as in ((7.1.2)) and the proof is complete. O

7.2 The completed monodromic category

In this section, we construct a “completed” monodromic category. All the con-
structions are copied from [BY| Appendix A]; we follow very closely the treat-
ment of this appendix.

For the duration of this section, we consider a fixed locally closed union of
strata Z of 2 (Z is then T-stable). For % € D?B)(%,]k)[,’t], we have an

identification of Q*UA(e)gtT with a(.Z X.ZT7)[r] where a : 2 x T — % is
the action map and .Z tT is viewed as a T-Lusztig—Yun-equivariant object on T'.

This has the following advantage: for our locally closed T-stable subset Z of
Z, we can consider the restriction of 7r$ (which we will still denote by 71'%) to

the category and Dé’B)(Z7 k)¢, with values in D(Z]T)_ o7 (note that this
last category indeed makes sense because Z is a T-variety).
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Definition 7.2.1. We denote by ﬁ(B)(Z ]k)[_ ¢ the full subcategory of the cate-
gory ProD (Z,k)_ 4 of pro-objects on D(B)(Z k)(_ ¢ whose objects are those
= “L }n such that

1. F is “rt-constant”: “L 7TT( F ) is isomorphic to an object in the cat-
egory D(Z[T),- T

2. F is uniformly bounded: there exist a,b € Z such that F is isomorphic
to a “lim” F' with F', € CD[“’I’](Z/T)[_’ftT] for any n € Z>o.

By definition, we obtain a functor 7 : ﬁ(B)(Z, K)—.q = D(Z]T) - 7}

We show that the category ﬁ( B)(Z, k)[4 admits a triangulated category
structure. More precisely, we start by considering the family of triangles of
objects of D(p)(Z,k)— 4 of the form

1R H » o “L” fn 1R 7 13 ” ‘L hn 1R H » g
hm”.7, ——— “lim” ¢, ——— “lim” ", ——— “lim” 7, [l]

with (Z, Iy g, B o, L — F,[1])n a projective system of distinguished
triangles in D°(Z,k)[_ 4. Let 6(Pro D(B)(Z k);— ) be the family of such “dis-
tinguished triangles”, and let TI'I(D(B) (Z, k)[,_,t]) be the family of such triangles
with vertices in B( B)(Z k)(— - Also we denote by [1] the obvious shift functor
on the category ProD )(Z k)— 4

Lemma 7.2.2. The triple (E(B)(Z, k)[,’t],’I‘ri(f)(B)(Z, k)i—4),[1]) is a trian-
gulated category.

We will need the notion of a triangle-complete subcategory: consider a cat-
egory D endowed with a family §(D) of “distinguished” triangles and a shift
functor [1] (note that we do not impose that D is triangulated); a strictly full
subcategory D’ of D is said to be triangle complete if it is stable by [1] and if

for every triangle X - Y — Z i 4(D), if two vertices are in D', then so is
the third one.

Proof. According to [BY], Theorem A.2.2], we must show:

1. ﬁ( B)(Z,k)|_ 4 is triangle complete (with respect to the family of triangles
0(Pro D?B)(Z, k);—4) and [1]),

2. for any object “921” Fo € ﬁ(B)(Z,k)[it] and ¥ € Db(Z,]k)[f’t], the
k-vector space
hﬂm HomD?B)(ﬁ”,k)[,,t] (ym, %)

is finite dimensional.
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The proof is copied from the one of [BY] Theorem A.3.2]. To show the
first point, we must show that if “1'&1” (ﬁn &i%n ™ A, LN 37“[1]) is a
triangleAWith “@” Z, and “@” 9, in Dpy(Z,k)[ 4, then “@” Iy, is
also in D(py(Z,k)[— 4. First, since the .#,, and ¥,, are uniformly bounded, so

are the J2,,.

To show the 7¢-constancy, we fix o, Z € D(ZT)_ 7 and isomorphisms
oo = “lim” mt Fp and B : B = “lim” 7t 4, These isomorphisms define
map oy, : & — 71']{ F p, for any n (similarly for 8). Also, let a : &7 — % be the
map corresponding to “lim” f,, via the isomorphisms o and 8. We denote by
% the cone of a. We have diagrams

% a % b (f c M[l]
|
a"l lﬂn w ia"u (7.2.1)
wt(fn) wt(gn) ¥V wl(ha)
w F, ey, Dt e, D 7).

The subset M,, of maps in Hom@(%ﬂ)[_ T (¢, 7r]€ A y) making this diagram

commutative is nonempty (this is one of the axioms in a triangulated category).
We choose two such maps 7. and +2, the difference v} — 2 fits in the diagram
(7.2.1) with «,, and f, replaced by the zero maps. Thus, if we denote by
Hom@(m)[i’fﬂ (€, 7r$ ) the finite dimensional k-subspace of

Hon’l@(%ﬁ)[i,g?] (%, 7T$ %n)

whose elements are the maps that make the diagram (7.2.1]) commute with a,
and 3, replaced by zero, we have
1 0
M, =7, + Hom@(gﬂ)[ﬁg?] (¥, 71'% Hn)".
In other words, M,, is a finite dimensional affine space lying in the vector space
Hom@(ggﬁ)[ﬂip?](‘g,ﬂfr ). This fact implies that the spaces M, form a
projective system satisying the Mittag—Leffler condition, thus the limit of this
system is nonempty. Consequently, we have a morphism v : ¢ — @” mtr Hn
that fits in diagram (7.2.1)). We must show that this is in fact an isomor-
phism (since we do not know that “lim” 7T]€ I, is representable, this is not
automatic). Consider any object 2 € D(Z" JT)_ or). We apply the functor
Hom@(ggﬁ)[ T (=, 2) to the morphism of triangles («, 8,v). The long exact
7t

sequences of Hom and the five lemma show that v is indeed an isomorphism.
We now check the point (2). For “lim” Fm € Dy(Z,k)[— 4, the functor

liﬂ Homplgm(z,k)[,,t] (Fm,—)

is exact, thus we only need to verify (2) for ¢4 in some generating family of
Dé’B)(Z7 k);_ 4. We can then assume that & is of the form For;(#) for some
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H € D(ZT )=, 277 (Indeed, any object is a successive extension of its perverse
cohomology objects, so it suffices to see that the objects For; () generate the
category of perverse sheaves, which in turn is clear since simple perverse sheaves
lie in the image of For;.) Using the adjunction of lemma we then have

li_r)nHomD?B)(Z,k)[it] (F m, For () = lim Home (zr) (T (F ), )

= HOmProﬁ(Zﬁ‘)[77$I] (“@77 ﬂ_’)if‘(tgzm), %>

t

By assumption, “lim” 7t (F ) is isomorphic to an object of D(ZJT)(-, 1), sO
the last Hom-space above is actually an Hom-space in ©(Z/] ), 27), hence
finite dimensional.

In the constructions above, we imposed a fixed monodromy on the right,
i.e. the category lA)(B)(Z, k);_ 4 is a subcategory in the category of pro-objects
on the right monodromic category D’(’B) (Z,k)[— - We can however consider the
exact same construction considering the category D?B) (Z,K) 4 (for some ¢’ in

the W-orbit of t) instead of DE’B) (Z,k)[— 4. More precisely, we set the following
definition:

Definition 7.2.3. Lett’ be in the W-orbit of t. We denote by lA)(B) (Z,K)pr 4 the
full subcategory of the category Pro Dl(’B) (Z,k) 41 of pro-objects on D?B) (Z,K)i 4
whose objects are those F = “@” F . such that:

1. “lim” Tt (F ) is isomorphic to an object in the category D(Z]T)_ o1y,

2. there exist a,b € Z such that F is isomorphic to a “lim” F', with F|, €
©[a7b](Z/T)[7’ng} for any n € Z>o.

Remark 7.2.4. 1. It is clear from the definitions that ZA)(B)(Z, k) 4 is a full
triangulated subcategory of D(p)(Z,k)|_ 4 (essentially because D?B) (Z, k)1 4

is a triangulated subcategory of D((’B)(Z, k)r— 4.
2. It could have been possible to define a completed category using an “op-

posite picture”, that is to say, using the functor of convolution on the
left with A(e) 7 and considering a subcategory of the category of pro-

objects in Dé’B) (Z,k)(t,—]- We then obtain a triangulated category “above”
D(T\ Z')gr, ). However, we emphasise that this is not what we did

here, in particular, the definition of ﬁ(B)(Z, k){z 4 is not symmetric.
3. In the case where Z = 27, we will denote

ﬁ[—,t] = E(B)(%,k)[_ﬂg] and B[t’,t] = ﬁ(B)(gbr,]k)[t/,t]
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7.3 Convolution in the completed category

We show that the convolution (-)xY (-) extends to a bifunctor ﬁ[t//,t/] X ﬁ[t/,t] —

~

D[t”,t]'
Lemma 7.3.1. Consider an object F = “lim” %, € ﬁ[_ﬂ and a 9 €
Dé’B)(f%”7 k)¢, —). Then “lim” (F nxY 4) is isomorphic to an object ofDé’B)(%, k).

Proof. Assume that the result is true when ¥ is a perverse sheaf. We then
proceed by induction on the length of the interval

Iy :={i € Z|P H(Y) # 0}

(we will use similar notation for other complexes). Since any object is a succes-
sive extension of its perverse cohomology objects, for a general ¢, we can write
a distinguished triangle

g 5 g" g

with &’ a (possibly shifted) perverse sheaf and I~ has a strictly smaller length
than Iy. We obtain a projective system of distinguished triangles

(FurV G = FosV G = 7,5V G 1),

By induction hypothesis, “lim” (ZoxY9') and “lim”(F,+Y 4") are repre-
sentable; using arguments similar to those in the proof of point 1) of lemma
we see that this implies that “lim” (F oY 4) is representable too.

We must treat the case ¢ perverse. Since the objects of the form For'’ (“")
generate the perverse subcategory in D?B)(%,k)[t/’,], the same kind of argu-

ments as above tell us that it suffices to consider the case & = For’ (¢4"). In this
case, using lemma we have

Fon VG = F, %" For' (@) = 7l (7,) <Y &'
Thus “I'&n”(ﬁn *V @) =~ (“yLn” Wfrl(ﬂ\n)) *Y &' is isomorphic to an object of
D?B)(%, k) since .Z is assumed to be W%l—constant. O

Before going on with the extension of convolution to the completed category,
we derive from the preceding lemma an immediate corollary:

Corollary 7.3.2. Consider t,t’ € T, in the same W-orbit. Then the convolu-
tion product ¥V extends to two bifunctors, triangulated in both entries

D[,’t] X D?B)(%‘ak)[t,t’] — D?B)(’%Jk)[f,t’]
D4 % D(LYT) - g7y = DX)T) - 7).

We denote these two functors by *.
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Consider now two pro-objects .% = “@1” Fn,and ¥ = “I.&H” 4, respec-
tively in ﬁ[,yt/] and [A)[t/_’t]. According to the lemma for any m, the
pro-object “@1” (Z,xY 4,,) is representable by an object of Dl(’B)(%,k)[_7t].

n
We can thus consider the pro-object

“&Ln”(“l'&n” (gn*U gm))

Lemma 7.3.3. The pro-object “I'&H”(“l'&n” (FnxY G 0)) is in ﬁ[_,t],
Proof. We must verify two things: first, this pro-object is uniformly bounded;
then it is 7{-constant.

The %,’s and ¢,,’s are uniformly bounded by assumption; for any m € Z,
the family (@*(%#,) ¥ ¥ )nez is uniformly bounded, thus this is also the case
for (7, 8Y 9, )nez. Now the spaces 2 = G/U and G xY G/U are finite
dimensional, thus, using [Iv, IIT, Definition 9.5 and X, Proposition 1.4], one sees
that (mi(ZF, XY 4,,))nez is a uniformly bounded family, which concludes the
verification of this point.

Now we have to consider

umn (Tr%f_(uyﬂln(gzn*Ugm))> o~ “l'&n”(“l'&n”ﬂ?(ﬁzn*U%m))

m n

= “lim” (F % (@)
~ O EA TSI
= 73 (] ()

(To get the second line from the first one, we used the obvious fact that
T+ G ) = FpkUml(Y), thanks to the associativity of convolution.)
Since by definition “L "m{ (9 ) is representable by an object, lemmal|7.3.1|tells

us that & * (“ # K t( m)) is representable. This concludes the proof. O

We keep the notation used in lemma Assume that .# lies in ﬁ[t//7t/]; one
can show that “@”(“]'&1” (ZF,+xY4,,)) is in ZA)[,J/] and, using [KS2, Proposi-
m

tion 2.1.7], that the latter is isomorphic to “l# (“L (FnxY 90)) (as pro-
objects). We deduce immediately the followmg propoutlon from lemma

Proposition 7.3.4. The convolution product (—)*V (=) extends to a functor,
triangulated in both entries,

(—);;(—) : B[t”,t’] X ﬁ[t/,t] — ﬁ[t”,t]'
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7.4 The single-stratum case

We are now interested in the case D?T) (T, k): the construction of section
(and in particular definition still make sense here, and we can consider a
completed monodromic category on the torus, denoted E(T) (T, k)[t]. Note that
one can view T as B /U, and thus as a T-stable suvariety of Z . We obviously
have D(B) (B/U, k)[,’t] = D(T) (T, ]k) [t]-

From now on, we set k; = L; := k[X.(T)]/{e* = A(t) | A € X.(T)). We
also let Ry := lim k[X.(T)]/{e* = A(t) | A € X.(T))" be the completion of R
inth respect to the ideal m;. We then let m; = mtét. In particular we have
Ri/m; 2 k.

We have an equivalence of categories between the finitely generated R-
modules annihilated by a power of m; and the finitely generated R;-modules
annihilated by a power of m;. This last category will be denoted Modnﬂ(ﬁt).

For any L € Modnﬂ(ﬁt) we can associate a local system % on T'. According to
corollary we have . € Dl(’T)(T, k)(;. We thus obtain a functor

o : D" Mod™!(R;) — D{py (T, k).

We denote ®f, the composition [r] o ®L..

Lemma 7.4.1. The functor ®k. is a t-ezact equivalence of categories for the
natural t-structure on D® Mod™ (R;) and the perverse t-structure on D(T, k)4,
and we have % (k;) = Z7 [r].

Proof. The functor ®%. is isomorphic to the following composition of equiva-
lences
nil, o\ ~ ~
D’ Mod™(R;) = D" Loc(T, k) = Dipy(T, k),

where the second arrow is given by the equivalence (5.2.1)). Moreover, we clearly
have ®%.(k;) = .2/ [r]. The fact about the t-exactness is also clear. O

We once again fix a finite central isogeny T % T whose kernel K is of order
coprime to ¢ and a character x of K such that we can view D(T JT) o7 as a

—(T,k). We then have

b
full subcategory of D(T)’T

D(T.,k) = D%(T x*¥ {pt}) = D"(Rep’ (K)) = D"(Mod™® (k[K])).

This last category is semisimple because the order of K is prime to £. The full
factor subcategory D(T JT) or identifies with the full subcategory

DP(k[K]/(e" — xi(k) | k € K)) = D*(Vect;}).
We can consider the change of scalars functor (associated to the map Ry — ky)

7 (=) : D*(Vect(?) — D" Mod"™" (R,).
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This functor admits a left adjoint, namely
ki @% (=) : D" Mod™(Ry) — D"(Vectis).

Considering the equivalences D?T) (T,k)iy) = D? Loc(T, k) and D(T JJT) o7 =

D® Vectﬂfg (respectively from (5.2.1)) and justified above), we obtain an identifi-
cation
o ®f = k®F (-). (7.4.1)

Indeed the composition

~ Af,(i) nil; @5
D(T [JT)or) = D*Vectis ~— D" Mod"™(R;) — Dl (T, k)py

is easily seen to correspond to the (shifted by r) forgetful functor D(T'JI") ) —
D?T) (T,k)p. Since the latter is right adjoint to m} according to lemma [7.1.3}

we deduce our identification from the adjunction (k; ®%t(7), z,(—)). Thus

the category ﬁ[,)t] is equivalent to the full subcategory IA)(}A‘Bt) of pro-objects
“lim” M,, in D’ Mod"™!(R;) which are uniformly bounded and such that

73 FS ] L
lim” k, @& M,

is isomorphic to an object in D® Vectﬂfg.

We then have the following result, which is copied from [BeR] §4.2, 4.3]
(though the authors of loc. cit. work with unipotent monodromy, that is, with
t =1, their arguments in §84.2, 4.3 are entirely based on algebraic properties of
the algebra Ry; since we have an algebra isomorphism R; = Ry for any ¢t € T}/,
their arguments apply in our setting, with the same proofs):

Proposition 7.4.2. There exists a canonical equivalence of triangulated cate-
gories R R
D" Mod™®(Ry) = D1)(T, k)

sending Ry to .,?:f[r} In particular, we have

Extl o, (LT, ZT]) =0 fori> 0.

Remark 7.4.3. Let us try to (roughly) describe the equivalence of the preceding
lemma. First, the natural extension to the categories of pro-objects of the
functor ®% of lemma induces an equivalence D(R;) = D7) (T, k) (that
is, this equivalence maps a pro-object “lim” M, to '&n” ®L.(M,,). Then, since
ﬁt is local, noetherian and of finite global dimension, any object in D® Mod'® (Et)

is isomorphic in this category to a bounded complex of free R;-modules. For
such a complex (M?%);cz, the functor of proposition is then given by

(Mi)iEZ - @u? (Mi/m?+1)iEZ~
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7.5 Perverse t-structure

In this section we define a “perverse t-structure” on the category ﬁ[,yt following
ideas of [BY] and [BeR]. Recall from the very begining of section [7.2] that the
functor ﬂfr “restricts” to locally closed union of strata, meaning that if Z is
such a subspace, 7r$ induces functors from lA)(B)(Z, k)— 4 and D?B)(Z, k)4 to
’D(Z/T)[ig?].

Lemma 7.5.1. Consider Z C 2 any T-stable locally closed subset. Denote
by h : Z — Z the inclusion map. Then we have isomorphisms of functors
DI()B) (AXV7 k)[f,t] — @(Z /T)[_7$z“] (resp. D?B) (Z, k)[*vt] — @(% /T)[_7$’t1“])

h'orl=nlo b, (7.5.1)
h7 o 7T]€ = 71'; o h? (752)

for 7 e {!,x}.

Proof. We look at 7¢ as the functor aj(— X ZT)[r]. The isomorphisms (7.5.1)
for ? = x and (7.5.2)) for ? =! follow from standard arguments, using the com-
mutative cartesian square

ZxT 9T g

ZC Z
h

and the fact that a and a|z are smooth maps.

We prove in the case ? = . Let us first show that we have a natural
map

71'.? ohy, — hyo 7r$. (7.5.3)

It is clear that h, commutes with the forgetful functor; recall from lemma [7.1.3]
that (W?,Fort) forms an adjoint pair. First, we apply h, to the adjunction
morphism id — Fory o7r$. Then, use the isomorphism h, o For; = For; oh, to get
a map h, — Foryoh, o 7r$. We then apply the functor wa to this map and use
the adjunction 7} o For; — id to obtain the whished-for map.

Now it is enough to verify that this is an isomorphism of functors on a family
of objects generating DE’B) (Z,k)[—,4; we can thus consider an object of the form

For,(#) with F € D(2'JT)_ or). Lemma tells us that there is an
isomorphism aj, For;(.#) = For,(F) X 27, Thus we can identify o Fory (F)
with (a)z)iaf, Fory(F)[r] = For,(#) @HZ " (T), the last identification following
from the projection formula. Thus, the morphism applied to For,(.F) is
given by the natural map

Fory(he(F)) @ HYT(T) — hy Fory(F) @ HYT(T) = Fory (h. (%)) @ HOT(T).

This is an isomorphism, and settles the proof of the case h,. The case h' is
proved similarly. O
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Remark 7.5.2. Lemma allows us to apply [BY, Proposition A.3.3]: for
h:Z — %2 alocally closed embedding, we have a extensions to the completed
categories of the usual functors h*, k', h, and h;. We will denote the functors in
the completed case and the usual case the same way. Moreover, these functors
still satisfy the usual adjunction properties, and lemma still holds for these
“extended functors”.

If i : Z — % is now a closed inclusion (with Z still a union of strata) and

j:U < Z is its complement, we obtain a recollement diagram in the sense of
[BBD, §1.4.3]:

i Jt
Dp)(ZK)[— g — Di_ D) (UK)_y.  (7.5.4)
\_/ \_/
i Jx

As we saw in corollary we have an equivalence of categories
D*Mod™®(R;) = Dry(T,k)4- (7.5.5)

Now for a stratum 2, in 2, we have a map p, : Z, — 1. The pullback
functor p% [¢(w)] = pl,[~¢(w)] induces an equivalence of categories

Dry(T, k)1 = Dipy(Zw. k) 0- (7.5.6)
Composing the equivalences ([7.5.5) and (7.5.6)), we finally obtain an equivalence

D®Mod"®(R,) =5 Dpy(Zw, k)[4 (7.5.7)

for any w € W. We can then transport the usual ¢-structure on D Mod™ (Rg)
to the category D(p)(Zw,k)[— . This new t-structure, denoted by

(pﬁ(B)(‘%/'uH k)[S_O’t ’ pl/j(B)(%wa k)[z_oﬂg])a

]

will be called the perverse t¢-structure. Using diagram (7.5.4), we can glue
together the perverse t-structure on the %£,,’s to obtain a perverse t-structure

(pﬁgjt]’ pﬁ[%o’t]) on ﬁ[,yt]: we have

(7 € "D")) <= (327 € "Dip) (20, W) forallw e W)
and

(9" € pﬁ[zjt]) = (jq'ﬂﬁ € pﬁ(B)(%w,k)[th] for all w € W)

The heart of this ¢-structure will be denoted 13( B) (27, k)[— 4 or simply ﬁ[,’t].

The objects in 13[,,,5] are called monodromic perverse pro-objects. The trunca-
tion functors for this ¢-structure are denoted by P7<,, and ?7>,; the cohomology
functors P H" (—).
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Remark 7.5.3. In complete analogy with [BY, Remark A.4.8], one can describe
the perverse ¢-structure ﬁ( B)(Zw, k)[4 is a more concrete way (already know-
ing that such a t-structure exists). More precisely, let .# be an object in
E(B)(%w,k)[,’t]. Then for a < b in Z (and with obvious notation), .# €
P D5 (Zuw, ) (g if and only if F = “lim” F, with F,, € ?D{ (22, k) g
for any n. This is a direct consequence of remark [7.4.3]

We can restate in our current setting [BY, Lemma A.6.2]:

Lemma 7.5.4. The natural inclusions

Pro ("Dp) (2, K)) ND_ < D[ =
PI‘O(pD(B)(gf/V k) )QD[_ ] = D[ n
are equivalences of categories.

Proof sketch. We prove only the first equivalence, the second one being similar.
The proof relies on the general [BY] Claim, Lemma A.6.2] (which we do not
prove here, and restate in our current setting): if # — ¥ — s a
distinguished triangle in ﬁ[—,tb with .% and ¢ in Pro(PD 5y (2, k)=°), then
¢ is isomorphic to an object in Pro(* D (2", k)=").

Once this is known, the proof of the lemma is by induction on the number
N of strata in the support of .#. If N = 0, there is nothing to prove; the case
N =1 is a direct consequence of remark Now assume that the result is
true for some N > 1, and consider .# € D|_ ) containing N + 1 strata in its
support S. Let 23, be an open stratum in S, and j : S\ 2, < Z be the
inclusion map.

By induction hypothesis (resp. the case N = 1), we can find a pro-object
“lim” F3 (vesp. “lim” .Z ") in Pro(PDp)(Z, k)got]) N ﬁ[,’t] such that
Jug* F = “lim” F5 and () (ju)* F = = “lim” 7 F Y. We then get a dis-
tinguished triangle

- ek +
(Juw)(u)* F = F = juj* F —
which can be written as
“@77 Jggzwﬁyé “@n dgg;w il_)

We then use the claim stated at the beginning of the proof in order to conclude
that .7 is isomorphic to an object in Pro (?D(p) (%, k) ) N D[_ 4 O

This lemma has the following nice consequence: in order to show that a
functor defined on the completed category is t-exact for the perverse t-structure,
it suffices to check that its restriction to the non-completed category is exact.
Lemma 7.5.5. Let M be in D’Mod®(R,) and assume that k; ®L M is con-

centrated in non-negative degrees. Then M is isomorphic to a complex of free
Ri-modules with nonzero terms in non-negative degrees only.
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Proof. See [BeR, Lemma 5.1]; once again, the authors consider only the case
t =1, but their argument is entirely based on agebraic properties of the algebra
R;. Since we have an algebra isomorphism R; = R;, the same proof actually
works in our current setting. O

Lemma 7.5.6. Let & be in ﬁ[_yt].
1. If 71'%(9) is perverse, then % is perverse itself.
2. If mi(F) =0 then F = 0.
3. If F is perverse and PH°(n}(F)) = 0, then F = 0.

Proof. We prove (1). By definition, .# is perverse if and only if the restriction
e F € pﬁ(B)(%w, k)[g_[)’t] for all w € W, and a similar condition for corestric-
tion. According to lemma we can focus on these restrictions (resp. core-
strictions), and thus assume that & € E(B)(%w,k)[_,t]. More explicitly, we
need to show that if 7} (.F) lies in p@(%w/T)[S_O’gtT], then already .# lies in
pﬁ(B)(%w, k)[g_()’t] (and similarly for the > 0 part of the t-structures).

Now we have the commutative diagram of categories

DY Mod®(Ry) — = D(p)(Zw, k)[4

ﬂ«®f§t()l J,ﬁ

D Vectf, ——= D (2w T)[- 7]

(i.e. the two compositions D® Mod™®(R;) — D(ZufJT)|-, 1) are isomorphic, see
(741))). Thus what we have to see is that if M € D?Mod™®(R,) satisfies

i L _
H (k, ®% M) =0

for any i > 0 (resp. i < 0) then already H*(M) = 0 for any i > 0 (resp. i < 0).

The case i > 0 follows from Nakayama’s lemma: denote by d the largest integer

such that H"(M) # 0. Then we have H*(M) ® 5 k, = H(M ®1L§ k). If the
t t

latter module is zero, then Nakayama’s lemma tell us that Hd(M ) is already
zero. The case i < 0 is an immediate consequence of lemma [7.5.5

The proof of (2) can be copied verbatim from [BY] Lemma A.3.5].

The proof of (3) is similar: it amounts to showing that if M € Mod™(R,)
and H°(k; ®IL§1M) =0, then M is zero. But in this situation, we have

H (k, ®IL§1M) =M &g, ki,

and Nakayama’s lemma allows one to conclude the proof. O
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Remark 7.5.7. Assume that 2" is a locally closed union of strata in 2, and
consider a union of strata Z C 27, closed in Z”; let U := 2"\ Z be the
complementary open in 2’ . Then we can consider a recollement diagram similar
to but with Dy (2", k)|_ 4 instead of D|_ 4. This allows us to consider
a perverse t-structure on lA)(B) (2", k)[4, and the above results hold for lA)[it]
replaced by ﬁ(B)(%',k)[_,t].

7.6 Pro-standard and pro-costandard

We define two new objects of the category Pro D (%” k). Recall that we have
a pro-local system ,,é? , defined in section Set

L= pz@[dim%n;

then define
Buei=(uh " and Vo= (Gu)-L"
Similarly, let Z? = p .ZT n[dim (27, )] and denote by Ay ; the object (jiu ) Z?n
and by VJ, , the object (]w)*fg:n (so that we have .,2”“’ = “lim” XT
Aw ;= “yLn” Ag’t). For n = 1, we find the objects of the end of subsection

i

B2
vw,t = V11u,t and Aw,t = Al

w,t -

The objects (resp. pro-objects) A, ; and V.. (resp. ﬁwi and ﬁwyt)
are called monodromic standard and costandard (resp. pro-standard and pro-
costandard) sheaves.

Recall the notation W, from subsection

Lemma 7.6.1. Take t € T,) and s € W a simple reflection. Assume that
s¢ W,

Then, the natural morphism Agt - VI st is an isomorphism for any n. In

particular, the natural morphism AS t — VS + obtained as the limit of the above
morphisms is an isomorphism.

Proof. Tt suffices to show that the restriction to 2% of (js)«- L5, is zero. As

everything takes place on 25, we can replace G by its Levi subgroup that
contains T as maximal torus and with roots +a (and thus assume that G is of
semisimple rank 1). There exists a central isogeny

N

SLQXZ—)G

with Z the identity component of the center of G (see the beginning of subsection
5.3.2)). This induces a map

f:SLy/Usp, x Z — GJU
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that preserves the Bruhat stratification on both sides (here Ug,, is the unipotent
upper-triangular subgroup). Let O and C be the open and closed stratum
respectively on SLy/Ugr,. We have a commutative diagram

ﬂOxZ

OxZ Zs (7.6.1)

jxid\[ jjs

SLQ/USL2 X Z

iXi(iJ\ J\]e
ﬂCxZ

CxZ s

where i and j are the inclusion maps. Since the horizontal maps are sur-
jective, in order to show that (j.)*(js)«-Z7,, is zero, it suffices to show that
(fiexz)*(Je) (Js)s Zi , is zero. But now we have isomorphisms

(floxz)™(e)" (Js)« Lin = (0 x1d)" f*(Js)« L
= (i x id)"(j x id)«(floxz)" L ns

where the last isomorphism comes from the smooth base change.
Thus we need to understand the object (fioxz)* £ ,,- Weidentify SLs/Usr,
with A2\ {0}, so that we have O = (A! x A\ {0}) and C = (A \ {0}) x {0}.
The pullback of £ ,, along fioxz is thus of the form

LY V(L ) (7.6.2)

with .,?to a local system on the open stratum O of SLs/Ugr,. In fact, we can
identify .Z ? more precisely. Recall that (up to a shift by r+1, which we suppress
for commodity of notation) we have .3, = pj .i”tTn where p, : &5 — T is the
map defined in the end of subsection[5.1.1] We can construct an analog of p,: let
po : OxZ — A" \{0} be defined as the projection A' x (A'\{0})xZ — A'\{0}.
Now we have a commutative diagram

OXZ#%

NN

AN{O}—~T

and one deduces that £ is in fact (po)*(a¥)* 2} - We can identify the latter
object with k1 R(aV)* Z5, B(ZL7,)1z on O x Z = A x(A"\{0}) x Z. We
can focus on what is happening on the left hand side of this product (that is to
say we can “forget the factor that lives on Z”). In other terms, it suffices to see
that

i*ju(ky B(a¥)* 27

t,n

) =0.
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Consider the following commutative diagram (where all arrows are inclusions)

AQ

u

(A" x AT \{0}) —— A®\{0} <"— A"\ {0} x {0}

Note that w is an open inclusion; the adjunction map u*u, — id induces an
isomorphism of functors (7 x i1)*(j X j1)s = i*u*usjx — i*j.. Thus we see that

it suffices to show that the stalk i (j1)«((a¥)* .ftTn)) is zero (where A\ {0} TN

A' X {0} are the inclusions). The hypothesis s ¢ W amounts to aV(t) # 1,
and means that (aV)* f?n is a non trivial local system; in particular, it has a
non trivial monodromy on A*\{0} (for the natural action of A \{0} = G, on
itself). But on the A'\{0}-stable one-point space {0}, the action is of course
trivial and we only have objects with trivial monodromy, so this stalk is zero
(see also lemma [3.2.1)). The proof is complete. O

Remark 7.6.2. Note that since Ay and V ; are perverse objects in the category
D?B)(%, k) [s(t),1]> Using lemma we see that under the hypothesis s ¢ W7,

we also have

7.7 Averaging by a pro-local system

is the

n

Recall the local systems .,2” », defined in section by definition, ,,2”
local system on T' associated with the 71 (T) = X, T) module

Lo = k[XL(T)]/ (€} = A(t) | A € Xu(T))",

and we have L; := L; ;. For n > m, we have a natural morphism of local systems
.,SftT — .i” +m induced by the natural quotient map between the associated
X, (T)—representations.

Remark 7.7.1. Consider a trivialisation T' 2 (C*)"; this induces a trivialisation

T, = (k™)" under which the element ¢ corresponds to a r-tuple (¢1,...,t,). The

group X, (7T') identifies with Z"; in turn, k[X, (7] identifies with ]k[x{d, ooyl

>~ k[zF!] @y - - - @k[zF!], the indeterminate z; corresponding to (0,...,1,...,0).
7

Recall the ideal m; = (e* — A(t) | A € X.(T)) of k[X.(T)]; let mg = (z; — t;),

an ideal of k[z']. With the above identifications, it is easy to see that we have

my mtl " R ®k il [ ]®]k th "k ( ®]k il
+"'+((®k[$f1])® (mf)") Cm
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all the tensor products being taken over k. One then deduces an isomorphism

LTS “lim” (L5, B RLE ).

t1,n

In the next lemma (whose proof is left to the reader), we assume that 7" =
Gu; we then fix a generator A of X, (T). For L a Ri-module, set L*®) := {ve
L|e*v = A(t)v} and Lyy) = L/{e* = \(t)) - L.

Lemma 7.7.2. For any n > 0, the natural map of X.(T)-representations
Lin — Ly induces an isomorphism (Lin)x) = (Li)rw); and (Lt’n))‘(t) —
(L)*® s the zero map.

Lemma 7.7.3. We have m(@ K27y = 2T —2r).

Proof. We will freely use the notation of section in the proof. We begin by
assuming that 7" has rank one, that is, that we have T = G,,. In this case, we
fix a generator A of X, (T'). Also, for n > m > 0 two integers, we let f* be the
natural map of ﬁt—modules Ly — Lt ; remark that Ly = Ly.

Now note that (for any n > 0) the object m (X?n X .27 naturally identifies
with 7} (in)[—l]; in particular mg(fzn X.27) naturally defines an object in
D(T [IT) g7, (see lemma. Now, since by definition ,ftTn = ®L(Ly ) (1],
using the identification (7.4.1]), we see that the object mg(iﬂzn X.27T) identifies
with the object Ly, ®1L§, k¢[—2] of DbVectufS.

We can compute this complex using the fact that we know a projective (in
fact, a free) ﬁt—resolution of k¢, namely

~ A ~
0o R, 22D p Lk o, (7.7.1)

Here the map on the right is the augmentation morphism e* + A(t). Thus
Ly ®f§ k¢[—2] is given by the complex
t

Cn =0— Lt,n ®§t ﬁt — Lt,n ®ﬁt ﬁt — 0,
1 2

the middle map being induced by the one in ((7.7.1). One readily sees that

the degree —1-cohomology of this complex computes (Lt#n)k(t)7 and that the
degree —2-cohomology computes (L n)x)- Since any complex in DbVect]fS is

isomorphic, in this category, to the direct sum of its shifted cohomology objects,
we get that Cp, = (Ly) > [=1] @ (Ly o) [~2].

Now, for n > m, the map mg(.ﬂzn X.27) — mg(.i,”zm X .27 identifies with

(L) [=2r + 1] @ (Len ) acr) [-27]
(MO [—2r+1] @ (FI) (e [—27]

(L) MO (=27 + 1] © (Lo ey [—27],

where (f7)y@) and (f)*® are the maps induced by f. Thanks to lemma
we get that (1)) (resp. (f1)*®) is an isomorphism (resp. is zero) for

n
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any n > 0. We readily deduce that the pro-object “lim” C,, is in fact an object
(i.e. isomorphic to a constant pro-object), given by (L¢)x)[—2r] = L¢[—27].
Using the equivalence ®% once again, we get that the pro-object

“Um” (L7, RLL) =mi(ZT ®LT)

is constant, with value .27 [—2]. This concludes the proof in the case T' = Gy,.
To deduce the general case from the former one, one uses remark (we keep
the notation used in the remark): considering a fixed trivialisation 7" = (C*)",
we get isomorphisms 3? = “lim” (.,Sﬂfl 2 &.,%;C:’n) (as pro-objects) and
L] =~ (.,%g K- XK(Z ;C:). Moreover, the multiplication map m identifies with
the componentwise multiplication on (C*)". Thus m;(.,i/’”? X.27) identifies with
(fg*)[—2] XX (‘,iﬂifc:)[—2]7 which in turns, corresponds to £} [—2r]. We are
done. O

We deduce the image of the pro-standard and pro-costandard objects under
t

i
g?r())llary 7.7.4. For anyw € W, we have (A1) = A(w) 7 and 74(Vi,i) =
z7

Proof. Thanks to lemma we have 7} (Apy) = (Juw (.,5/,’?”). It is easy to
see that 7} (.i/’?“) =~ ptmy(ZF R ZT)[r]. Lemma then directly implies the
O

result.

Lemma 7.7.5. We have an isomorphism of functors
al(ZF K —) = id[-2r]
fromD (2K, to D ) (2 K) e,

Proof. We recall some ingredients that we will use in the proof. First, recall
that if 4 € Db (2 K) () for ' # t, we have Home (% (¥, 7) =0 (this

is a consequence of - Also recall from lemma 1| (and its proof) that
for n the order of ¢ in T, the local system f appears as a direct summand in
(en)sx kp = (en)1 kp, (e, is proper, being ﬁnlte) moreover, it is the only direct
summand with monodromy ¢ (that is, it is the only direct summand in (e, ). kp
lying in D?B)(ﬁi”, k)t,—7). Note that ¢ is defined over a finite subfield of k. Thus
we can find an integer s > 0 such that t" = t; we then have " =t for any b > 0.
We deduce that for b > 0, we have (eps); L7 = ff@bs and that the latter also
lies in D?B)(%,]k)[t’,]. A final consideration: the map e is an isomorphism
T — T, in particular, the functor (ep.). preserve monodromy (this follows for
example from the decomposition ). This has the following consequence: for any

b > 0 and any direct summands & # .,?T appearing in (ey).kp, the object
(egvs )« -Z does not belong to D ) (2 K) e,
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Consider .¥ € D (3&” k)jt,—); we construct a morphism ag(é? X.Z) —

F|[-2r]. By adJunctlon, this is the same as a morphism ,,2/”? X.Z — a' F[-2r].
We know from proposition [[.2.1] that there exists an integer m > 0 such that we
have an isomorphism ¢(m) : pry .# — a(m)*.% (the notation being the same as
the ones used in proposition . Moreover, we showed that this isomorphism
is essentially unique and functorial. Then we obtain an element ¢(m) in

Hom(prs .7, a(m)* %) = Hom(prs .Z, a(m)' F[-2r])
>~ Hom((e,, x id), pry.Z,a' F[-2r]).
Consider m of the form af** for b > 0 so that we have . T@bﬁ as a direct summand

in (e )1 kp; this is the only direct summand there that lies in D 5y (2 K) -

Since we assumed that .# lies in D(B)(%,k) 4, we have

Hom((e,, x id), pry.Z,a' F[—2r]) = Hom(,,ffebs X.Z,ad .Z[-2r])

and ¢(m) defines an element in the latter space. The fact that these ¢(m)’s are
essentially unique implies that they define an element in

lim, Hom (&7 . M., a*' F[~2r]) = Hom(“lim” £} 5. R F,a' F[-2r])

= Hom(.,i/”;T X.Z,d' . F|-2r]),

(the limit being taken over b > 0). This gives us the morphism we were looking
for.

We must check that this is an isomorphism. By dévissage, it suffices to do so
on a generating family of D 5y (2, K)[,—); thus we can assume that .7 = For'(4)
fOI‘ g (S CD(T\ %>[$?7_]

Remarking that a;(i/’? X.Z7) = ﬁeﬂg?ﬁz[—r], the morphism ag(.i/’? X.7)—
F[—2r] comes in the following way (and in particular, is an isomorphism):

o~

(LT RF) = A, 1 x F[—r]
~ A, *%For' (94)[—7]
= ( HAL) Y g)[-2r] (1)

)

= For' (A(e) g7 ™ 9)[-2r]  (2)

>~ For'(¥9) = 7 [—2r] (3).
We used lemma [7.1.5) - 5|for the isomorphism (1), corollary - 7.7.4)for (2) and lemma
B-3.1] for (3). This concludes the proof of the lemma O

7.8 Consequence for the completed category

For any w,v € W, using adjunction and proposition [7.4.2] we get

A gh o B fw=vandk=0
HomD[‘*‘] (Bt Voalk]) = { 0 otherwise. (7.8.1)
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Lemma 7.8.1. The triangulated category ﬁ[_ﬁt] is generated as a triangulated

category by the objects ﬁu,,t for w € W, as well as by the objects ﬁw,t for
wewWw.
For any w € W, the monodromy morphism ¢z . induces an isomorphism

o~ ~

Ry = Homp (A, Aus), (7.8.2)

[-t]
and any nonzero element in this Hom-space is injective.

Proof. The fact that the A’s generate the completed category can be proved as
in the proof of 1emma

Now consider .,% ; thls object corresponds to Rt under the eqmvalence
- Moreover the monodromy morphism ¢ Zw is given by the Rt action

on the Rt—module Rt. Thus we obtain

Ry = Homp (Ri, Ry) & Homp |y o (L, L.

The statement about ﬁmt then follows because (j, )i is fully faithful.

Finally we prove the last statement. According to what is above, we need to
show that for any nonzero z € R;, the endomorphism YR, (z) is injective. If C'
denotes the cone of this endomorphism, we need to show that C' is concentrated
in non-negative perverse degrees. Indeed, since A, ; is perverse, the long exact
sequence of perverse cohomology associated to the triangle

Ay —2 5 Ryy — C 1

will yield the result. By definition, this amounts to showing that

7,C € Dip) (2, k)",
for any v € W. Consider v € W. Let M, be the object in D® Mod®®(R;) cor-
responding to j, ﬁw’t under the equivalence . The inverse image of j. C
under this equivalence is then the cone of the endomorphism of M, given by
the action of 2. We have that (G A, 1) = Aw )t is concentrated in
non-negative perverse degree, so k; ®A M, is also concentrated in non-negative

degrees. According to lemma [7.5.9) ‘ the complex M is then isomorphic in
D Mod®®(R;) to a complex N of free Ri-module such that N* = 0 for i < 0. The
action of x on M, induces then an endomorphism of N, whose cone is obviously
concentrated in non-negative degrees. We deduce that the cone of the action of
x in M, also has cohomology in non-negative degrees. This in turn implies that
C lives in non-negative perverse degrees and concludes the proof. O

Remark 7.8.2. Let us discuss a bit point 2. of remark[7.2.4] Let us, for the du-
ration of this remark only, denote by D B (Z.k)f} ¢ the category D( ) (Z, k) 4
considered above (that is to say, the factor with fixed left monodromy ¢’ in the

134



completed category ﬁ( B)(Z, k)fi constructed as above, with respect to right

1]
convolution with A(e) ). We also denote by D p)(Z, k)[lt’, 4 the “symmetric”
construction, i.e. the same construction as above, but switching right convolu-

tion with A(e) »r by left convolution by A(e) », as well as the role of ¢ and

t’. The categories E(B)(Z, k)ff,7t] and lA)(B)(Z, ]k)[Lt,’t] are both full subcategory

of the category of pro-objects above DE’B)(%, k).
Now, it is clear that for w € W, the object Ew’t € E(B)(Z, k)ff,’t], define

an object in E(B)(Z, ]k.)[Lt/ y» and it is easily seen that the family {ﬁw,t}wet,wt

R

generates the latter triangulated category. Since it also generates lA)( B)(Z,k) [t.4]"

we deduce that in fact these two categories coincide.

Corollary 7.8.3. For any .%,9 € ﬁ[_ﬂg] and k € Z, the Ry-module
Homﬁl_vt] (7, 9[k])

is finitely generated.
The category D_ 4 is Krull-Schmidt.

Proof. The fact on the Hom-space is a direct consequence of ((7.8.1)) and lemma
The Krull-Schmidt assertion can be proved exactly as in [BeRl, Corollary
5.4]. O

Lemma 7.8.4. The subcategory plA)[S_Ot

objects of the form ﬁw,t[n] with w € W and n > 0.

| is generated under extensions by the

Proof. Consider # € pﬁf—j % Using recollement triangles and induction on
the number r of strata contained in the support of .%, it suffices to treat the
case 7 = 1. Denote by %, the stratum on which % is nonzero. We then have
F = ()i F. Now D? Mod™®(R,)<? is generated under extensions by {R;[n] |
n > 0}. Indeed, any object M in D’ Mod™®(R,)<® admits a finite projective,
hence free, resolution (recall that R, is local of finite global dimension). The
result then follows. O

Corollary 7.8.5. The functor 7r§ is right t-exact for the perverse t-structures.

Proof. Recall from corollary that we have w%(ﬁw,t) = A(w) gr for any
w € W. Moreover, since A(w) o7 is perverse, A(w) o7 [n] lies p@(%/T)[S_?jtT]
for any n > 0. The result then follows from lemma O

We conclude this section by two technical results that will be used for the
study of tilting objects.
Definition 7.8.6. 1. Let F be an object in ﬁ[_yt], We say that F admits

a ﬁ—ﬁltmtion, _or a pro-standard filtration if it has a_filtration with sub-
quotients in {Ay, | w € W}, Similarly, & has a V-filtration, or pro-

costandard filtration, if it admits a filtration with subquotients in {ﬁwi |
we W}
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2. Let F be an object of D(ZYT)_ gr1. We say that F has a A-filtration or
a standard filtration if it has a filtration with subquotients in {A(w) o7 |
w € W}, Similarly, F has a V-filtration, or costandard filtration if it
admits a filtration with subquotients in {V(w) yr | w € W}.

Lemma 7.8.7. Consider & € ﬁ[,,t]. Then

(F has a A-filtration) < (for any w € W, ji .F is a direct sum of gt\w)
For 7 € D(Z[JT) - 1), we have

(F has a A-filtration) < (for any w € W, ji F is a direct sums of L 1[—7])
& (for any w € W, j* F is perverse).

Proof. The proofs of the two statements are very similar, so we prove only the
second one. It is clear that “.# has a A-filtration” implies that the restrictions
to each stratum are direct sums of .2, ¢[—r]. In turn this fact implies that
these restrictions are perverse. Assume that % is such that for any w € W, the
object j! Z is perverse. We will prove that % has a A-filtration by induction
of the number of strata in the support S of .%. Since the perverse sheaves on a
single stratum are given by direct sums of .Z,, ;[—7], the initialisation is clear.
Now choose a closed filtration S 2 51 2 --- 2 S;, 2 Sp4+1 = @ of S such that
Si \ Si+1 1s a single stratum. Denote by j : S\ S,, < S the open inclusion map,
and by i the closed inclusion S,, < S. By induction, the object jj* .% is a
successive extension of A(w) o, for some w € W. The case of a single stratum
and the triangle

Gt F = F =it F

allow us to conclude that .# is a successive extension of standard sheaves. [

Remark 7.8.8. Similarly, .# admits a V-filtration if and only if its corestriction
to each stratum is a direct sum of Z*. Similar statements hold for .# in

Assume that .# in ﬁ[_yt] (vesp. in D(2JT)_ 1)) admits a A (resp. a A)

filtration. Then, it is a standard fact that the number of occurrences of Ew,t
(resp. of A(w) ) as a subquotient does not depends on the chosen filtration.

This number is then denoted (.7 : gw,t) (resp. (F : A(w) or).)

Lemma 7.8.9. Consider F € lA)[,,t] such that ﬂ%(ﬁ) is perverse and admits

a A-filtration. Then .F is already perverse and admits a E-ﬁltmtion. More
precisely, for the considered filtrations, we have

(Z : Auy) = (TH(F) : Alw) or).

Similar considerations apply to costandard filtrations.
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Proof. We saw in lemmathat 7 has a A-filtration if and only if the restric-
tions j # are direct sums of 92/’”;’“ for any w € W. This is clearly equivalent to
the fact that the inverse image of these restrictions under the equivalence
(say, denoted M) are free ﬁt—modules. In turn, this condition is equivalent to

w

the fact that k¢ ®% M is concentrated in degree zero in D° Vectﬁ. Thus .# has
t

a A-filtration if and only if the W?j; Z’s are perverse. Since ji o 77% = 77% ok,

using lemma we see that .# has a A-filtration if and only if 77% (Z) does.

The statement about multiplicities is obvious, and the proof in the costan-
dard case is similar. O

Remark_7.8.10. Using remark [7.8.2] one can see that a “left-sided” analogue of
lemma [7.8.9| holds: consider ¢, € T}/ in the same W-orbit and .7 € Dy 4.
Then Ale 7% F defines an object in D(T'\\ Z7) & _j, and if it is perverse

and admits a standard filtration in P(T'\\ 27) oz _;, then the same is true of
cgz in B[t’,t]'
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Chapter 8

Study of standard and
costandard objects

The aim of this chapter is to study various properties of standard (and co-
standard) objects in the Lusztig—Yun categories previously introduced. We
start by constructing forgetful and averaging functors between the categories
@(%S/Bs)[,,gfs] and @(%S/Ls)[iffs], and we study the effect of these
functors on standard objects. We continue by studying convolution between
these objects. We then obtain the main result of this section: we get a de-
scription of the socle of standard objects and cosocle of costandard objects.
Our proof is deeply inspired by ideas in [BBM|, §2.1]. The obtained results will
eventually allow us to study tilting objects, in particular to compare them to
projective covers of minimal IC sheaves, as will be done in the next chapter.

8.1 Forgetful and averaging functors

For the duration of this section, we fix a complex algebraic group L and a closed
subgroup B. Consider a right L-variety X. Let .Z;, be a rank one multiplicative
k-local system on L (recall that by multiplicative, we mean that the pullback
of Z1, under the multiplication map L x L — L is given by £ X.Z;). Let
ZLp = (ZL)p; this is again a rank one multiplicative k-local system. In
particular, we have a canonical trivialisation (Z1). = k of the stalks at the
neutral element e of L of the local system .Z;, and the same is true for the
local system Zp. B

Assume that we have a finite central isogeny vy : L — L with kernel K, of
order prime to £ = char(k). Assume moreover that we have a k-character x, of
K such that £ is the xr, isotypic component of (vz). k5. These data give us
analogues for the group B: let vp : E = B Xy, L — B and x B the character x,
viewed as a character of K < B xp L. Then .Z g identifies with the x g-isotypic
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component of (vp).kz. We can define the Lusztig-Yun categories
P&[B)zs  and  DX[L)zs

We warn the reader that the notation to appear in subsections [B:1.1] and
8.1.2| are only temporary: our main point of interest is the case L = L, and
B = B;, and we will settle more convenient notation later in subsection [8.1.3

Remark 8.1.1. We consider here a right L-variety; this is arbitrary, the same
arguments and results having exact analogues for a left action.

8.1.1 The functor For

We first define a natural “forgetful functor”
For: ®(X//L) ¢, = D(X/]B).,.

Consider an object .Z in ®(X//L),, this is an L-equivariant object on
X, and the natural action of K (see lemma [2.1.1) is via a character xz. Now

consider the object For% (&), where Forg is the natural forgetful functor (which

is denoted Resg 7 in [BLL §2.6.1]); this is a B-equivariant object on X and we
still have an action of K on this object. This action is once again via the
character y, (but viewed as a character of K < B X, L, so in fact, x5) so we

have Forg (F) € 9(X/|B)#,- In this way, we obtain the wished-for forgetful
functor; we will denote it ForIZTB.

8.1.2 Averaging functors

Consider the variety X x® L. We obtain an L-variety, for the action of L on
itself by multiplication on the right. We have a natural map u, induced by the
action of L on X, from X xZ L to X.

Lemma 8.1.2. Denote by qp the quotient map X x L — X xB L for the
antidiagonal action of B. For # € ®(X[/B)y,, there exists a unique object
F KRB L1 in DY(X xB L,k) whose pullback under qp is X .ZL.

Proof. Since the action of B on X x L is free, it suffices to show that # K .2 is
in the B-equivariant derived category D% (X x L, k) for this action. This follows
from arguments similar to those introduced for the definition of convolution in
the equivariant case, see lemma [2.9.3| and section |6.3.2) O

We define two functors Ave, . and Ave,
D(X/B) ¢, — D*(X,k).
Definition 8.1.3. Take F € D(X//B) ., . Set
Avg, (F)=pu(FRP L) and Avg, (F)=wm(FRP Z1)2dim(L/B)].

The functors Ave, . and Ave, 1 are called averaging functors.
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Lemma 8.1.4. The averaging functors Ave, . and Ave, 1 canonically factor
through ©(X//L) ¢, .

Proof. We show the lemma for the functor Avg, ., the proof for Avg, | is
similar. First, let us show that for any .# € D%(X, K)yp, we have F RP £ €
D%(X xB L,Kk),,. The object F KB £ lies in the L-equivariant derived cat-

egory since £y, is z—equivariant. We use the following commutative square

gp Xidr,

XXLXxL———= s XxBLxL

idx Xle J{E

X x L ks X xB L.

Here, a is the action map given by ([z,1],1’) — [z, l']. We investigate the object
a*(F XP Z1). We have a commutative square

gp Xidpr,

XxLxL——""" s XxBLxL

id x Xle \LE

XxL——% _XxBL.

We deduce that (¢p x idg)*a*(F KP £1) = (idx xmyp)*¢5(F KE ). Since
£, is multiplicative, the latter object is isomorphic to ¥ K. K 2. We
then obtain that

(FREZ) =2 IR R, (8.1.1)

Thanks to corollary we then see that # RP #; is indeed in the yp-
equivariant subcategory.
Now note that the following square is cartesian:

(XxBL)xL—% s XxB[
pXidLl lli
X xL a X,

with a([z,1],1") = [x,1lI'] and a(z,l) = x-1. The morphisms a and @ are smooth,
so an application of the smooth base-change theorem leads to

a* Avg, (F) = (u xid),a" (F KB 2. (8.1.2)

Combining (8.1.1)) and (8.1.2)), we finally get

A" Avy, (F)Z2Avey, (FI)R L.

Since .7 KB £} is E—equivariant and p is E—equivariant, the object Avy, .(F)
is itself L-equivariant. Thanks to corollary this implies that Ave, (F)
belongs to ®(X//L), . O
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Consider the embedding e : X < X xB L given by z + [r,e]. This map
makes the following into a commutative diagram:

XxB— X xBLxL

?l ?l (8.1.3)

X z X xB L.

(Here 4 denotes the inclusion B < L, and ? is either the action maps or the
projection on the first factor.) This diagram implies that e is compatible with
the B-action on X and the L-action on X x® L. Thus we obtain a functor
Q: : DL(XxPL,k) — D%(X, k). Using diagram (8.1.3)), it is easy to see that the
functor @} preserves the character-equivariant subcategories D% (X xB LK)y,
and D%(X, k)ys =D(X/B)e,. In fact we can say a bit more:

Lemma 8.1.5. The pullback functor Q)% induces an equivalence of categories
D%(X xB LK)y, — D%(X7 K)yp, with quasi-inverse F — FXB £ .

Proof. According to the discussion above the statement of the lemma, the func-
tor @} indeed maps the category D% (X x” L,k),, to the category D% (X, k).
Also we clearly have QF o ((—) KP 1) = id. Now remark that the following
diagram is commutative

XL>X><

X xBL

BT

Here, the map € is given by  — [z,e] and ¥ maps [z,l] to [z,vp(])]. Tt is
easy to see that v is an isomorphism of L-varieties. Moreover, the map ¢ is a
B-L morphism of varieties. Then we clearly have Q; = Q% o (5. Now Q% is an
equivalence thanks to [BLL §6.6, item 6], and so is Q% since v is an isomorphism.

We deduce that )} is an equivalence D?B),Z(X xB L k) — D?B),E(X’ k), and

this fact readily implies that the restriction of @} to D%(X xB L,k),, is fully
faithful. It is moreover essentially surjective thanks to the begining of this proof.
Thus, it is an equivalence, and has the prescribed quasi-inverse. O

Lemma 8.1.6. We have adjoint pairs (Fory g, Ave, ) and (Avg, ), For]iTB),
where ForEKB is the functor defined in .

Proof. We prove that (ForIEYB,AV #..+) 1s an adjoint pair, the other case can
be proved with similar arguments. From lemma 8I.5] we know that Q} o u*
is right adjoint to Avg, .. Indeed, Q} is adjoint to F +— FKP £ and p*
is right adjoint to g, : D%(X xB L, k) — D%(X, k) (recall that the character
equivariant categories, and in particular the Lusztig—Yun categories, are full
subcategories of these L-equivariant categories, so that the adjunction holds by
standard considerations).
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Now, the composition poe is the identity; one deduces that the composition
Q% op* just forgets the L-equivariant structure only to retain the B-equivariant
structure, hence is isomorphic to For. This concludes the proof. O

8.1.3 Forgetful and averaging functors over 2°°

This section has for only goal to fix the notation that we will use in future
chapters.

Our main point of interest when we defined the forgetful and averaging
functors in the previous subsections was to apply these constructions to the
groups L = L, and B = B, and the variety X = 2°°. More precisely, let
t € T,/ be an element and s € W a simple reflection such that s € W;?. Then
we can consider the local systems .Z{* and £+ and the isogenies v, and vz,
introduced in subsections 5.3.21and 533l The constructions of subsection [B.1.1]
and subsection [8.1.2] can be made in this setting. However, we can consider 2
as a right or left By- or Lg-variety. We introduce different notation for these
different cases.

For the right action: we set

Forj := ForIif,Bs : 9(%5/115)[,7355] — 9(3{5/33)[7,355],
and

Avy = Avgth o AV = AV:ffs e
@(%sﬂBs)[_7$fss] — @(%SILS)[_7$tLS].
For the left action: we set
Fory := Forp) g : D(Ls \ 27°) 1. | = D(B\ 27°)yn.
and

Av?

o t .
sx 1= AVEtLS,*7 AVS’! = AviﬂtLS,I :

V(BN 2 yre = DL\ 27 iy

Note that in these cases, the (analogue of the) map u is proper since it is a
Ly/B; = P!-fibration, so the %- and l-averaging functors just differ by a shift by
2dim(Ls/Bs) = 2.

The following result relates the averaging functors and Verdier duality in-
troduced in subsection [(£.3.4]

Lemma 8.1.7. Consider t € T, and s € W a simple reflection with s € Wy .
For any Z in @(%SﬂBS)F Bs), We have
=Lt

D (AVi.(#) =A@ () andD  (AV}(F) = Avia (@ ().
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Proof. We clearly have D oy, =2 oDy yp.gs[—2(r+1)] and D o =
A - s

ps © Dp_yBs - [—2(r + 1)]. Moreover, as in the proof of lemma [6.3.4] one can
easily see that

Dy xongre (F R ZEN-200 + 1] 2D (F) R Dy, (ZE)-20+ D).
We must determine Dy, (ﬁtL) The group Ls is smooth and has dimension
7 + 2. The duality functor applied to £ yields Dy (£F*) = ,Zthl [2(r + 2)]
and so

D (F)R™ D (2020 + DI 2D (F) 85 20 [

Thus we indeed have D (Avi ,(F)) 2 Avi (D (F)).
= ’ e

s

Now consider the preceding isomorphism for D (&) instead of # and

s

t~! instead of t. An application of D to the obtained isomorphism leads to
=,
D (Avi(F))=Avia (B (F)). O

Remark 8.1.8. An analogue of the previous lemma would hold in the general-
ity of subsection but we preferred to state it in the particular situation
considered above: the main reason is that the Verdier duality functor on 2%
is not the standard one (it is a shift of it), because we want this functor to
preserve perverse sheaves in the Lusztig—Yun category over 2 °. Thus to avoid
any confusion in the various shifts that may appear in the general case, we stick
to the above version.

The exact arguments of lemma|7.1.5|allow one to prove the following lemma:

Lemma 8.1.9. For any F € @(%WBS)[_ ppey and G € D(Ls \ %s)[i”fs
we have an isomorphism

-]
F LY Forl(¥) = Avi(F) #Y 9.

8.2 Averaging of standards

In this section, unless otherwise stated, we consider £ ¢ a right B or Ls-variety.
To simplify slightly the notation, we set Z,; s == Z,, U Z5;.
8.2.1 Averaging

We choose w € W such that ws > w. We have an induced map

‘%-us),ws XBS LS - ‘%.us;,ws;
this is a Bs\Ls 2 P!-fibration. It is a simple computation to see that the
restriction

,uw:%u‘fstLs—)&VS

w,ws
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of u is an isomorphism.
We will also have to consider the restriction

s+ 2o xPe Ly — 28

w,ws*

We claim that g, is an A'-fibration, thus a smooth map (with fibers all iso-
morphic to A'). To see this, we consider the identification oo ws = BwPs JU®.
With this point of view, we have

2.2 = BwB/U?, 2.5 = BwsB/U® = BwBsB/U?®.

If U, is as in subsection the we have an isomorphism U, x Py = BwP;
given by (u,p) — wip. Now the twisted product 275 ,,, x 7+ L, identifies with
Uy x Py xB P, and its subvariety 2.5, xBs L, identifies with U,, x BsB xZ P,.
These considerations show that it suffices to see that the map

BsB xP P, - P, (8.2.1)

induced by multiplication is an A'-fibration. In turn, this can be seen as follows:
we have an isomorphism

A' xP, = BsB xB P, (x,p) — [us(x)$; $ tug(—2)p]

where $ and us are as in Under this identification, the map is
given by the projection A' x P, — Py; this proves our claim.

Let d := dim(Z;3); we have dim(Z,5,) = d + 1. The next commutative
diagram gives a summary for the notation that we will use:

s Cw s  Bs ~ s
R P pp— L5 e
j J 1
s s B, P* fibr. s
L wserm Fws X7 Ls — > X s (8.2.2)

j\ j\ fibers Al
_—

s s Bs
D3 Dy XBe Ly 2 s

We want to determine the averaging of A(w).5.. Recall that this object
t

is the l-extension of the (shifted) local system Z(s)¥ := (pB+)* £P+ on 2.5 to
the variety 2°°. We have the following diagram:

X s xBe [ ~ 2s

w,ws

£ £ £ (8.2.3)

X —s 25 x B L FAS
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It is easily seen that in order to determine Avf’*(A(w)ipth ), we can just stick to
the top line of the diagram i.e. start with the shifted local system Z(s)} [¢(w)],
consider the local system .2 (s)* KB ZF« on 2,5 xPBs Ly, then apply (fw)s =
()1 and finally extend by zero via the inclusion given by the right vertical
arrow. Doing so, we obtain (j3, , )1 Z1[{(w)] for £ a local system on 25 U
25,

Now we do the exact same thing for Avf’,(A(ws)gfs). We have the same
kind of diagram

s ( Gws s B s
X5 25 x P L Lo ws

T e

X —s 25 x B L VA

Let us show that (ps)i (L (s)25KPB LE) on 2% . is a shifted local system;

w,ws
more precisely, that there exists a local system 5 on 2.7, such that

(Hwsh (L (5)p* P> L) = Lo[-2); (8.2.5)

moreover, we have ji% | %5 = £ (s)@5KB» £ B+ We showed earlier that i, is an
A'-fibration. Thus, j, is just a projection along an A': Z o s X Al — P ws-
Now, our local system .Z(s)"* {5+ £L+ identifies with a product .5 Rk, for
£ alocal system on 2.7, .. But now the projection formula readily implies
our result since the cohomology with compact support of A' is given by k[—2].

Now we have a nonzero adjunction map
L(s)” D gth - (NwS)!(UwS)! L(s)” =P ths = (.Uum)! Z[-2].

Since fiys is smooth with relative dimension 1, we have (fws)' = (fws)*[2], S0
this adjunction map can be rewritten

L(s) WP Ll (1,)* Lo

Now one can easily check on stalks that this is in fact an isomorphism (this again
basically amounts to the calculation of the cohomology with compact support
for A'). Thus we indeed have

(ftws)* L2 = L(s)Vs RBs pke (8.2.6)

We readily deduce that the averaging Av (A(ws) o5, ) is isomorphic to the
l-extension of the shifted local system .Z5[¢(w) + 1] on 275 5 to 2%,

We would like to see that 1 = %5; this is the subject of the following
subsection.
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8.2.2 Identification of the local systems

We start by showing that the restriction of Z; to Z,; and the restriction of
Z9 to 5, are what one expects:

Lemma 8.2.1. The restriction of £ to 2.5 is ZL(s)y. Similarly, the restric-
tion of Lo to 25, is ZL(s)y° (i.e. the local systems we started with).

Proof. To consider the first restriction, it suffices to pull back along the top
line of diagram (8.2.3)); said otherwise, to apply e’ o u¥. As u,, is an isomor-
phism, and e} is the inverse of the induction equivalence (see subsection [8.1.2]

particularly lemma and lemma [8.1.5)), we clearly end up with .Z(s)}.

For the second restriction, we will use the exact same argument: once again
to obtain this restriction, it suffices to pull back Avy,(Z(s)}"®) along the top
row of diagram (8.2.4)). The isomorphism (8.2.6]) and the above discussion allow

us to conclude. O

w,ws

We can consider the local system Z(s); = (pLs)* £F< on the union of
the two strata (the map pLs has been defined in subsection . We will
eventually show that this local system is the averaging of both local systems
Z(s)y and Z(s)y’, and that its restrictions to both of the strata are given by
what one might expect, that is to say Z(s)}’ and .Z(s)y’°.

Note that the pullback along the map Ls — 2, ¢ defined by [ — wlU®
induces an equivalence

Loc(Z.;

w,ws?

k) = Loc(Lg, k).

Similarly, the map By — 2,5 (resp. Bs — Z.5,) given by b — wbU? (resp. b —
wsb) gives an equivalence Loc(2;¢) = Loc(Bs) (resp. Loc(.2.2,) = Loc(Bs)).

We will need a few intermediary results. We start with general lemmas
about fundamental groups of topological groups. For any path i (parametrized
by [0,1]) in a topological space, denote by h the path defined by h(t) = h(1 —t)
(which is h “followed in the other direction”).

Lemma 8.2.2. Let H be a path-connected topological group. Let g € H. Choose
a path o : [0,1] — H with a(0) = 1y and o(l) = g. We obtain a group
isomorphism

P 7T1(H,g) — 7T1(H’ 1)7
] = @y -af.
This isomorphism does not depend on the path «.

Remark 8.2.3. Here, v - a denotes the usual composition of paths, with the
following convention:

a(2t) ift €[0,1/2
(v-a)(t) = { y(2t—1) ift 6][1/2’ 1]]~

146



Proof. The proof is based on the known fact that the fundamental group of a
topological group (at the identity element) is an abelian group (see e.g. [Hatl
Chapter 3, Section 3.C, Exercise 5]). Choose another path o/ with o/(0) = 1y
and /(1) = g. We obtain an isomorphism

Z/J : ’/Tl(Hv 1) — Wl(Hag)a
] = oy o).
The composition ¢ o ¢ is thus an automorphism of 71 (H, 1) given by

Mo a-y-a-d

Now, a - o’ is a loop based in 1z and ¢ o ¥([4]) = [a - &/][y][a - /] = [7] since
the fundamental group is abelian. Finally, we get

[@ v -d]=[ a- o -

O

We keep the notation of the previous lemma: H is a path-connected topo-
logical group and g any element of H; consider any fixed path « in H satisfying
a(0) =1 and «(1) = g. We have a natural map 71 (H,1) — 71 (H, g) that maps
a class [5] to the class of [3,], with

By :[0,1] = H, tw— gB(t).
(Here, g5(t) denotes the multiplication in H of the elements g and §(t).)

Lemma 8.2.4. For any path v in H based in 1, the paths v and @ -7y, - o are
homotopic. In particular, the functor of pullback along the map h — gh induces
the identity functor Loc(H,k) — Loc(H, k).

Proof. For any s € [0,1], let a5 be the path given by ¢t — a(ts) and @ be the
path given by ¢ — @((1—¢)(1—s)+t). One can check that the following formula
defines a homotopy between the two considered paths:

(s, 1) = (@ - (a(s)7) - as)().

The second point of the lemma is a consequence of the first, by virtue of theorem
Indeed, we have equivalences

k[my (H,1)]-mod <— Loc(H, k) = k[r1(H,g)]-mod.

Thus we can reason entirely in terms of modules. The functor Loc(H, k) —
Loc(H, k) given by pullback along the map h +— gh corresponds under the
above equivalences to the functor g* : k[m (H, g)] -mod — k[m1 (H, 1)]-mod that
maps a k[m (H, g)]-module V to the k[m(H, 1)]-module V, with action defined
by

[a] -g v = [ag] - v.
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Now for any path a : [0,1] = H with «(0) =1 and «(1) = g, we have a natural
isomorphism 1 (H,g) — w1 (H, 1) described in the statement of lemma
the same lemma tells us that this isomorphism is canonical in the sense that
it does not depends on the chosen a. This gives us a canonical equivalence
® : k[r(H,g)]-mod = k[my(H,1)]-mod. The first part of the lemma implies
that the composition

k[m (H, g)] -mod ;Nj k[m (H,1)]-mod —(N; k[m1 (H, g)]-mod

is the identity. This concludes the proof. O
Lemma 8.2.5. 1) A local system £ on Z,; s is uniquely determined by its
restriction to 2.5, i.e. if & and &' are local systems on L5 s, then

Loy =L gs in Loo( 2, k) = £ =L in Loc(Z,; s, k).

2) A local system &£ on 2.2 ., s uniquely determined by its restriction to

w,ws
ie. if & and L' are local systems on Z.° then

w,ws’

E%'S

ws’

Lgs = XT% in Loc(Z,

ws w,ws?

k) = ¥~ ¢ in Loc(Z}

w,ws?

k).

3) The local system £ (s)" = (pLk)*(LF) on 28 . satisfies

Las = Z(s)y and L. = Z(s)y°.

Proof. 1) Let i : Bs < L be the natural inclusion. The morphism induced by
this map on the fundamental groups is then given by the natural quotient map

m1(By) 2 1(T) 2 Xo(T) — X (T)/ Z - 2 my(Ly). (8.2.7)

This quotient morphism in turn induces a natural functor k[X,(7)/ Z -a;] -mod —
k[X.(T")] -mod, the restriction of scalar, which corresponds under theorem [L.1.3]
to the functor i*. Now the following diagram is commutative

s 5

w,ws

5BT HT (8.2.8)
B 5 L,

where 35: is defined to be the (right) action of B on the element wU® and
BEs the action of Ly on the same element. The pullbacks along these maps give
equivalences between the categories of local systems, thus it suffices to show that
if two local systems .Z and £’ on L have isomorphic restrictions to B, then
they are isomorphic in the first place. Using the discussion at the beginning of
this proof, this amounts to showing that if two k[X,(T")/ Z -a]-modules coincide
after restriction of scalars via the map 7 then these representations were
isomorphic in the category of k[X.(T)/Z -as]-modules. This is obvious and
concludes the proof of this point.
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2) We use the same kind of arguments as in 1), but there is a slight difference.
The analogue of diagram (8.2.8) with 2.5, does not commute. Instead we must
consider

-
‘%;js ‘%-uf,ws
Bas T Bt T (8.2.9)
is

Bs bis b Ls-
As for 1), it suffices to show that if two local systems .Z and .’ on Ly satisfy
it L = it #' then we have ¥ = #’. We note that the map i,1 : Ly —
L, I — $71'1 is an isomorphism, so gives an auto-equivalence of category iyt
Loc(Ls,k) = Loc(Ls, k). Moreover, we have i1 0, = i. Now we can write

~ ~ — —
L =it .2 and L= i*_,Z for unique (up to isomorphism) local systems .#
—~
and . . We thus obtain

—~ ~ — ~ —~/ —~/
VL= LR LR 2L =L

The proof of 1) tells us that we must have &~ §/7 and so . = .. Point 2)
is now proved.
We prove 3). Firstly, we claim that the local system (pke)*(ZLE<) on 22

w,ws
coincides with the local system corresponding to .2 tL ° via the equivalence in-
duced by the map BLs. This is a direct consequence of the commutativity of
the following diagram
BLe
L,——=%°

w,ws

L

L.

To determine the restriction of this local system to 2.5, or %5, we use the

commutative diagrams (8.2.8) and (8.2.9). Using diagram (8.2.8)), we see that

the restriction of Z(s);""” to 2.5 is Z(s)¥. To determine the restriction of

this local system to Z.5,, we remark that i = i, 09, where is denotes the map

ws?

Ls — Lg of multiplication by s. We invoke lemma to see that pulling
back along the bottom line of diagram (8.2.9) amounts to pulling back along
the inclusion map Bs < Lg for a local system. The lemma is proved. O

Corollary 8.2.6. We have isomorphisms
AV?,*(A(U});Z?S [1]) = AV?,!(A(wS);{fS) = (jw,ws)! g(s);v,wsw(w) + 1}
In particular, these objects are perverse.

Proof. This is just putting lemma and lemma together. The assertion

about perversity follows from the fact that (jy, ws)1 -Z(s); " [¢(w)+1] is perverse
(2 ws being smooth). O
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Corollary 8.2.7. We have isomorphisms
AV (V(w) . [1]) 2 AV L (V(wS) 5.) 2 (e )s L()8 " [6w) + 1,
In particular, these objects are perverse.

Proof. These isomorphisms are obtained by an application of the Verdier duality
functor (using lemma [8.1.7) to the isomorphisms of corollary [8.2.6| (with ¢~*
instead of t). O

Remark 8.2.8. Since Avj, and Av;, differ just by a shift by definition, one
casily gets (for example) Av} (V(w)gs.) = (Juwws)«(Z ()7 %) [l(w)]. The
other possible cases can be determined in the same way.

8.2.3 Canonical triangle for standards

For the rest of this section, consider the following maps

XL sy g, J

w closed open

s
Z5s

Also let juy ws 1 ZgUZps — Z° be the inclusion. According to corollary [8.2.6]
we can identify the object (ju,ws)1 £ (s);"” [€(w)+1] with For; Av{, (A(ws) p5.)
and with For} Avf’*(A(w)gfs 1]).

Lemma 8.2.9. There exists a distinguished triangle

A(ws) g = (Guyws)r Z(8)1 [((w) +1] = A(w) o, [1] L (8.2.10)
where the first arrow is given by the morphism

Alws) s, “B5 Forj Avi (A(wS) g5.) 2 ()t Z(5) " [0(w) + 1
and the second arrow by the morphism

()t Z () [0(w) + 1] 2 Forf Av ,(Aw) . [1]) 225 Aw) . [1].

Proof. We apply the distinguished triangle jij* — id — d.i* 2L to the local
system £ (s);"*[(w)+1]. Using the third point of lemma and considering
its l-extension along the inclusion j,, ,,s we obtain a distinguished triangle

A(ws) 5 = (Guws)t Z(8)) " [0(w) +1] = Aw) s [1] 5 .

If one applies the functor j*ojj ¢ to this triangle, the first morphism becomes

an isomorphism, so it is in particular non-zero. The exact same argument with
1" ensures that the second morphism is non-zero too. In the following sequence
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of isomorphisms, a subscript Bs (resp. Ls) on a Hom-space means that we are
in the Bs—ffs (resp. Ls-ftL*“’) Lusztig—Yun category. We have

Homp, (A(ws)fiss , For} Avf,!(A(ws)gfs )
> Homy, (AV] (A(ws) ys. ), AV (Aws) 5.))
= HomLs((jw,ws)! 2(5):}@5’ (jw,ws)! j(s)zu,um).

Consider the last Hom-space. The functor (j, ws)1 is fully faithful and (pZs)*
is an equivalence between the categories of local systems on Ls and 27 .,
so this Hom-space is actually isomorphic to the endomorphism space of .Z tL s
in the category of local systems on L, which is one dimensional. Thus we
can assume that the first morphism in , which is non-zero, is given by
the adjunction map A(ws)g(sws — Fory Avf’,(A(ws)g(s)fs). Similarly, one
can assume that the second map in the triangle is given by the adjunction
For] Avfy*(A(w)ngS 1) — A(w)zfs [1]. O

By Verdier duality, we obtain a distinguished triangle

V(W) o [~1] = Guws)e Z(8)17 " [(w) +1] = V(ws) o, . (8:2.11)

8.3 Convolution

8.3.1 Generalities

We study in this section the convolution, as defined in subsection [6.3.1] of
standard and costandard objects in the Lusztig—Yun category.

Our first lemma in this study shows that the object A(e) or = 1C(e) o7 =
V(e) o is a unit for convolution.

Lemma 8.3.1. For any F € D(I'\\ Z')gr ), we have an isomorphism
A(e) g7 *Y T = F in the category D(T \ 2 )igr .-y Similarly, for F' €
D(Z[T)|- ¢r), we have T Y Ae) pr = F'in D(ZJT) -, om)-

Proof. We prove only the first isomorphism, the other one is very similar. It
is easy to see that the object A(e) o1 KB .Z on G xP G/U identifies with the
l-extension of the object £y KB .Z on B xB 27 to all of G xB 2. In turn,
under the isomorphism 2~ = B x8 2" given by zU + [e, 2U], the latter object
identifies simply with .# and the action map B xZ 2" — 2" identifies with the
identity of 2". Thus indeed the objects A(e) or *Y Z and # are isomorphic
in DT\ Z)gr ) is clear. O

Lemma 8.3.2. Assume that w,v € W are such that {(wv) = L(w) + £(v).
Consider .ZtT a simple local system on T'. Then we have canonical isomorphisms

A(w)iw(t) *Y A(v) g7 = Awv) or
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and

V(w)gfm xY V(v) gr = V(wv) g7

Proof. Tn this proof, we set . = Z7 and &' = .,?Z(t). Let Y denote

p: ZL[0(v)] with p, : BuB/U = U, x T 225 T is the map defined in subsection
We will use a similar notation for other w € W or other local systems
on T. By definition, we have A(w) ¢ *Y A(v).g = (mp)i(A(w)e BE A(v) &)
with ¢ (A(w) e KB A(v)g) = @w* A(w)e ®A(v) . Using the base change
theorem, one can show that we have in fact

A(w).gr B7 Av).z = (Juxm (L) RE 27),

where j,x5, : BwB x® BuB/U < G xP G/U is the inclusion map. Let
My : BuB xB BuB/U — BwvB/U be the restriction of mpg; this map is an
isomorphism. Using the commutative diagram

Mw,v

BwB xB BuB/U BwvB/U

j\ijBv i\jwv

G xBG/U e G/U,

we need to determine (my, ,)i1((£)¥ KB £7).
We use the following commutative diagram

BwB x BvB/U BwB xB ByB/U — 2"~ BuwB/U
| | |
UpyxUxTxU, xT Uy, xU, xT Upo X T.

(8.3.1)
The vertical isomorphisms are given, from left to right, respectively by

o (u,u t,u’ ") — (vu't,u"ot'U)
o (u,u,t) — [uw,wvtl]
o (u,t) = uwitlU.
The bottom horizontal arrows are given, from left to right, respectively by
o (u,u' t,u ") = (u,p(u, t,u”), v (t)t)
o (u,u/,t) — (wu'w=1t,t).

Here, ¢ : U x T x U, — U, is a certain morphism of algebraic varieties. Let
us give some more details: the product morphism U = U, x Uy, gives an
isomorphism (see [Sp, Lemma 8.3.5]). We would like to write that the considered
map sends (u, v, t,u” ") to (u,uw'tu”t=1,v=1(t)t), but v'tu”t~! has no reason
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to be in U,. Instead, this is an element of U, but thanks to our isomorphism
U = U, x Uyy,, we can write it uniquely as a product wdut with «3 € U, and
u* € Uyy,. Then ¢ is given by the (algebraic) association (v, t,u”) — u®.

Let quxo denote the restriction of gg to BwB x BvB/U. It is easy to
see from the definitions that (guwx.)* (L") KB £") identifies with the object
ky Xk, K2 Kk, K.Z[0(wv)] on the bottom left product. We must then find
the unique object on U, x U, x T whose pullback under the left bottom horizontal
map is this external product. But using remark and the definition of
L' =v(Z) = (v71)* &L, we get that this object is ky; Kky K.Z[¢(wv)]. Thus,
using the right square in the diagram, we obtain that (m., ) ((£")* KB £7)
corresponds to ky; X .Z[¢(wv)] under the right vertical isomorphism, i.e. is in
fact Z" (here we use our convention on liftings 1, see §5.1.1). This concludes
the proof of the first isomorphism. The second isomorphism follows by similar
arguments. U

The following is an immediate consequence:

Corollary 8.3.3. Consider w € W and (s1,...,5,) a reduced expression of w.
For all1 <i <, let Z% be the local system s;isit1 -+~ Sr—1(ZL7 ). Then one has

A(w) gr = A(s1) gz # --Y A(sr) o7
and
V(w) g1 = V(s1) g2 ALY LY V(sr)gr.

Another usual feature that we would like the A’s and V’s to satisfy is the
following:

V(w ) gr +V A(w)gr = Ale)gr = Aw™ ) gr Y V(w)gr.

w(t) w(t)

Thanks to corollary [8:3:3] in order to prove this, we just need to treat the case
w = s, a simple reflection in W. This is the object of the following sections. We
will need to distinguish the cases s € W and s ¢ W}.

8.3.2 The case s ¢ W}
We prove the following result.

Lemma 8.3.4. Assume that s ¢ W. Then we have canonical ismorphisms

V(s)gr, KV A(s) g1 =2 Ale) gr = Als)er, KV (s) gt
Proof. Some remarks first: we may replace G by its Levi subgroup L with roots
+as, thus we assume that G has semisimple rank one (from now on, we will
just write « for ). In particular, we have U = U, = U, & A, We will use
the following identifications: we have an isomorphism A' x A xT x A! xT =
BsB x BsB/U given by

(z,a,t,9,t") = (ua(x)suq(a)t, uqs(y)st'U). (8.3.2)
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Similarly, A' x A’ xT = BsB x® BsB/U via
(z,y,t) = [ua(x)s, ua(y)stU]. (8.3.3)

The strategy is to determine the stalk of V(S)fT(t) *Y A(s)g? at each point
¢ of G/U. By definition, the stalk at £ of this object is given by

H? (mp' (€); (V(s) gr

B8 A(s)7)

mgt(6)):

We use the fact that under our assumption, we have V(s)ng = A(s)_g)Tm

thanks to remark (and lemma [7.6.1); similarly to the pfoof of lemma
we find that

V(s)er, R A(s) pr = (Joxn (L BP L5,
where j, 5, : BsB xB BsB/U — G xB G/U is the inclusion map. Thus we
need only consider the fibers of m; s ;== mp o jou5,.

Our first step is to determine the m;;(ﬁ)’s. We consider the morphism
Yo : SLe — G introduced in subsection This allows us to make our
computation in SLo: using the Bruhat decomposition in this group, one can
determine the action of the map ms s on [uq(x)$; ua(y)stU]. If y # 0, then we
get

uo(z —y~1)saY (y)§%tU.
If y = 0, then we just get
o (2)5%tU = §%tU.
We can now give m;é(f) for £ a point in G/U. We distinguish two cases.
Assume first that £ € B/U. Consider an element t' € T, representing . We

see then that under the isomorphism ([8.3.3)), we need y to be zero and t = $72¢'.
There are no conditions on x however. Thus

my (€)= {(2,0,57%) |z € A} = A, (8.3.4)

s,s

Assume now that £ € BsB/U. We can write uniquely & = u,(a)st’U with
a € A' and ¢’ € T. Using the preceding discussion, we obtain

mi &) = {(a+y Ly, a'(y )s?) [y e ATN{0}} = AT {0}, (8.3.5)

The next step is to identify the sheaf £, XE Z¢ that lives on BsB xB
BsB/U with something on A x A' xT' (using the isomorphism (8.3.3)). To do
so, we use the definition of 75, XPB #7: it is the only object whose pullback

along the projection BsBx BsB/U — BsBx”BsB/U is w; £,y M2} (where
@, is the restriction of w : G — G/U to BsB). Now the latter object identifies
clearly with k: Rk, K275 Kk, K.27[2], by definition of .#;. Thus we
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need to determine two things: first, the map f that fits in the left column of
the following diagram:

~

Al x A xT x At xT BsB x BsB/U

| |

Al x Al xT ~ BsB x® BsB/U;

then, an object (in fact the unique object) on A' x A' xT whose pullback along
fis ko Kkys &fsT(t) Kk, K27 [2]. The map f is a particular case (using
the isomorphism A = U) of the map given by the left bottom arrow of dia-
gram , but it is this time explicitly computable; it maps (z,a,t,y,t') to
(z,a+a(t)y, s(t)t'). Consider the object ki Mk, K.27[2] on At x A' xT'. Tts
pullback under f is

ky Rk, Kk, K(s x idp)*mi 27 [2).

Using the fact that & ,T is multiplicative (see remark , we finally get that
this object is the one we were looking for.

We reduced our problem to the one of calculating cohomology with compact
support of an explicit object on explicit subspaces of Al x Al xT'.

We deal first with the case £ € BsB/U. If we pull back the restriction
to m 1(€) of ky Kk, X.27[2] to A ~{0} along the isomorphism (8:35), we
obtain (up to a translation by §~2t' and to a shift) the local system (aY)* .ZT =
.ZZX(,:). By hypothesis, this local system is nontrivial, so using lemma we
see that its cohomology with compact support vanishes.

Now using the same ideas for £ € B/U, what we get is clearly HS (A", k,1[2]) =
k. We deduce that V(S)gz‘(t) *Y A(s) o is supported on B/U, in fact it is
the extension by zero of some object 2 in D(Ze [T)_ or) = D(T [JT) 7).
Moreover, the preceding arguments tell us that 2 is the image of k under the

equivalence
D(T)T)yr) = D® Vecty,

so we get 2 =% ;F We finally proved that we have isomorphisms

*LY A(S)g;l" = A(e)fT = A(S)EZT *LY V(S)gz‘

t

V(S)zf(t)

O

Corollary 8.3.5. Fizt € T,'. Assume that s ¢ W;. Then:
1) convolution on the left with V(s) o7 = 1C(s) o1 = A(s) o7 induces an
equivalence /
DTN 2)gr ) = DTN 2)er,
of triangulated categories, and is t-exact for the perverse t-structure. For any
t' e W-t and any w € Wy, this equivalence sends A(w) o1 to A(sw) g,
t/ t/

V(w)ftT, to V(sw)ftT, and IC(w)_g; to IC(sw)gtT,.
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2) convolution on the right with V(s) yr = 1C(s) o1 = A(s) o7 induces an
equivalence

DL I z) = D2 [T 27,

of triangulated categories, and is t-exact for the perverse t-structure. For any
w € W, this equivalence sends A(w) 1 to A(ws)fT(t), V(w) gr to V(U/S)g’l"(t)

and IC(w) 1 to IC(ws)ng.

Proof. We prove only 1); the proof of 2) is similar. The fact that our functor
gives an equivalence D (T\ %)[iﬁo?ﬁ] = D(T\ %)[gg}t)’i] follows directly from
lemma (and the fact that A(e) o7 is neutral for convolution). Corollary
tells us that the image of standard and costandard are the prescribed
ones. It then follows that this equivalence is exact for the perverse t-structures.
Finally, since this equivalence preserves the standard and costandard objects, it
preserves the IC sheaves as in the statement of the lemma. O

Before giving and proving the analogue of lemma in the case s € W7,
we need some preliminaries, given in the next subsection.

8.3.3 The case s €¢ Wy

According to corollary we can prove the case s € Wy of lemma in
the slightly different setting of the Bs-equivariant Lusztig—Yun category on 2.
We give a key-result:

Lemma 8.3.6. Assume that s € Wy and take F € D(27° [ By),_ ey Then
IC(5) 5. = (Je,s)« Z(5)7°[1] and we have a functorial isomorphism '

F i 1C(s) 45, = Forf (Av; (F))[1].

Moreover, this isomorphisms fits in the following commutative diagram

F *Ijsy adj.
F A IC(s) . T F 10 g 1] (8.3.6)
Z\L ?
For} (Av} , (Z))[1] el Z1]

where the right vertical isomorphism follows from the fact that 1C(e) o 5. is the
t
unit for convolution, and the top horizontal map comes from the adjunction

IC(S)gtBs = (Je)«(Je)* IC(S)gfs = Ic(e)gfs .

Proof. The first statement is clear since 2% is a smooth variety.

By definition, we have .# xY IC(s) oo = (m)u(F KB (je.s)x L(5)5°[1])
(note that m$ is a proper map, so that (m%), = (m%):). Using usual arguments,
one can show that this is in fact equal to

(M Gxop, jve)(F B L ()71,
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where .# KB £ (s);* is viewed as an object on G xP P,/U?®. We consider the
natural isomorphism of varieties 2% x5 L, = Gx B P, /U* given by [gU?,1] —
[9,lU®] (note that this is well defined since Ls normalizes U®). The pullback
of Z KB £ (s)¢* along this isomorphism is clearly given by . KPs £L<. Thus,
our convolution product identifies with the pushforward of .# XBs ¥ tL ° along
the map induced by the action of L, on the right of 27%; this is exactly the
definition of the averaging functor. If we only remember the B;-equivariant
structure, we obtain the result.

We proceed to obtain the commutative square. Under the isomorphisms
ZexBs Ly 5 Z xB P, and 2% xBs By = 2% xB B, the map

F RP1C(s) 5. — F K 1C(e) . [1]
induced by adjunction identifies with (a shift of) the adjunction morphism
FRE L = Qu Qi (F RP 21,
where h is the natural inclusion 2% xBs B, — 2% xBs L,. Now,
QTR 2p) = FRE L7,

and with arguments similar to those used in the proof of lemma the
pushforward of the latter object along the natural map 2° xB B, — 2
identifies canonically with .%#. This concludes the proof of the lemma. O

Lemma 8.3.7. Assume that s € W?. Then we have canonical isomorphisms
V(S)gfs *If}; A(S)gfs = A(e)gfs = A(S)gfs *IEZ V(S)gfs-
Proof. We consider the triangle (8.2.10)) for w = e:

A(s) ge = 1C(5) o = Ale) . [1] RENy

Note that the second morphism is induced by the adjunction id — (je).j*.
Apply the functor V(s) ;5. *I,;}: (—) to this triangle to get, using lemma 8.3.6

V(s)ffs *L:( A(S)xfs — Forf(sz*(V(s)ng))[l} — V(S)gfs 1] RN

The second morphism is nonzero thanks to lemma[8.3.6|again and we can assume
that it is induced by adjunction. Comparing this triangle with (8.2.11)) (and

using lemma [8.2.7)), we get
V(s) g5 x5 A(8) yn. 2= Ae) .-

The first isomorphism can be proven similarly, or can be obtained by an appli-
cation of Verdier duality. O

Using the fact that the equivalence (|5.3.3) is monoidal for convolution on
both sides thanks to lemma [6.3.2] we finally get the following.
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Corollary 8.3.8. Assume that s € W2. Then we have canonical isomorphisms
V(s)r #Y A(s) gr = Ale) gr = A(s) gr £ V(5) g1

Putting together lemma [8:3:2] lemma [8:3.4] and corollary R:3.8] we get im-
mediately the announced result:

Lemma 8.3.9. Fizt € T]kV and w € W. Then we have

V(U}_l)gT

w(t)

Y A(w) g7 = Ale) g7 = A(w_l)_f?m KX V(W) g7

8.4 The case of pro-standard and pro-costandard
objects

Lemma 8.4.1. For any ¥ € D?B)(%,k)[t7.], we have

Ae,t *U F

1

F.
Proof. We easily obtain
Ay 7 2= (LT[0 .2)[r]

where a : T'x 2" — Z is the action morphism (¢, gU) — tgU. Using arguments
as in [BeRl Lemma 7.6] and lemma [7.7.5] we obtain an isomorphism

Ae’t*Uﬁgg.

Lemma 8.4.2. Take w any element in W. Then we have

o~ o~

Aw*l,w(t) jk\ﬁwﬂf = e,t = 6w*l,u)(t) fk\ﬁw,t .
If v € W is such that {(wv) = £(w) 4+ £(v), then

o~

1. Aw,v(t);;Av,t = va,t:

<

2. w,v(t) *vv,t = Vw'u,if-

Proof. We prove (arbitrarily) only the isomorphism (1), the other ones being
similar. According to lemma and lemma [7.7.4] we have the following
sequence of isomorphisms

~

71—; (Aw,v(t) * Av, )

1%
l>>

w,v(t) ;ﬂ$(£ )
= Aw 'U(t) * A(

)t
= m/ (B ) #Y AW) g7
= A(w)‘ime ALY A(v) gr

= A(wv) gr.
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We then use lemma [7.8.9| to conclude that Aw (1) *A .+ is perverse, admits a

A-filtration with just one subquotient equal to Awe t, S0 is isomorphic to the
latter object. O

Lemma 8.4.3. Consider w,v € W and an element t € TY. Assume that we
have £(w) + £(v) = L(wv), and let t' be v=1(t). Then we have:

1. Aw,t; Av,t' = va,t’ and Vw,t; Vv,t’ = vwv,tU
2. Aw,t* Vw*l,w(t) = Ae,w(iﬁ) = vw,t* Awfl,w(t) .

Proof. We prove the first isomorphism, the other ones can be proved similarly.
We use the fact that for any w € W and t € T}/, we have A, ; = For(A(w) 47),
where For denotes the forgetful functor (see lemma [4.2.2))

DTN\ Z[T) g7 o) = Dig)(Z k) [w(#),]-

(f)7

Thus lemma [7.1.5] gives us

8.5 Blocks

We use the notion of block from subsection [5.1.3} we keep the notation intro-
duced there. Consider g€ ¢+ W,. We define a full subcategory of D?B) (2, k) .4
by

Divy

Similarly, one sets

DN 2Ty 4y = (D) gzl | n €2, we B).

§ = Db (2, k)2, = (Awsln] | n € Z, we B).

[, °

Recall from lemma that we can consider the product of two blocks.

Lemma 8.5.1. Take t,t',t" € T, in the same W-orbit, and two blocks 8 €
W, and v € ¢W,.. Then for any objects F € D(T \ 2 [T)"

G eD(T\ 2)T)"

[T 27 and

(2T, 2T, we have

F+9 DTN\ LIy -
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Proof. By definition of a block ©(T Y\ %iT)[‘i%T oy it suffices to show that
t t/

A(wn) g+ A(wz) g7, € D(TY %/T)E;M;/]
for any wy € 8 and wy € 7. As in [LY] Proposition 4.9], we proceed by
induction on £(w;) + ¢(wsz) (thus allowing the elements ¢,¢',¢” and the blocks
B and «y to vary). If {(wy) + f(w2) = 0, then w; = wy = e and the result
is clear. Now assume that the lemma is true for all elements w; € 8 and
wy € v satisfying £(wq) + ¢(wz) < n. Consider such a pair of elements, but with
Lwy) + L(we) = n+ 1. If £(wy) + l(wz) = £(wiwsy) then lemma tells us
that A(wy) r *¥Y A(wsy) v = A(wiws) or , and thus the result is clear. Now
t/ t” t’l
assume that £(wq) 4+ €(ws) > f(wiwsz). We can assume that there exists a simple
reflection s € W such that w; = w}s and wy = swh, with w] < wy and wh < ws.
Indeed, consider a reduced expression wy = $71 - - - S;-; we can consider the largest
n < r such that £(wysy -+ s,) = (wy) + n, then replace wy by wysy -+ s, and
wy by spq1 -+ sy Thus the product A(wy) o x*Y A(ws) o7 is isomorphic to
A(wi)iﬂ?( "
If s ¢ W2, lemmalg.3.4]and corollary imply that A(s) g x-Y A(S)ZT( : =
L ! s(t!
Ae) 2T, and this fact together with the induction hypothesis settle the prob-
lem, since £(w}) + L(wh) = n—1. If s € Wy, then A(s) oz &MY A(S)gT( . =
A(s) g7 #Y A(s) o lies in the subcategory generated by A(e) gr and A(s) o7 .
(Indeed, the distinguished triangle (8.2.10) and lemma implies that the ob-
ject 1C(s) o7 lies in this subcategory, now convolve the triangle (8.2.10) with

A(S)g;l: and use lemma again). Therefore, A(w; )‘ff,T/ LY A(w2)$$, lies

*LY A(S)g;l; *LY A(S)g:(tl) *LY A(wg)gg/ .

in the subcategory generated by the objects

A(w)) gr | Y A(s) g Y A(wy) gr = A(w)s) pr

LY /
* A(w T
T T (w3) 27,

and

Afwy)gr |+ Ae) g K Alwy) gr, = A(wy) gr |+ Alws) g1,

s(t") t! t! s(t')
to which we can apply the induction hypothesis to conclude the proof. O

Proposition 8.5.2. Take t,t' in the same W-orbit in T, and choose B € (W, .
Then the canonical maps

A(w;anin)gf, - Ic(w?in)zg - V(wia‘““)x;
are isomorphisms. Moreover, for t” another element in the W-orbit of t and

v € vW, a bloc, A(wg‘i“)gT LY (=) defines a t-exact (for the perverse t-
t/
structure) equivalence of categories

DTN LTy ) > DTN LJTN r

T.27,] (27 .27,)
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This equivalence maps A(w) g7 to A(wg™w) or , V(w) g to V(wh™w) o
. ! 1 1 !
and 1C(w) o1 to IC(wE™w) o1 , for any w.
! !

Proof. To prove the first assertion, we proceed by induction on E(wgli“) (thus

min

allowing ¢, and 8 to vary). The case f(wg™) = 0 is obvious and the case
E(wg‘in) =1is remark Assume that the statement is true for é(wgﬂ“)‘: n.
For wi* of length n+1, consider s € W a simple reflection such that £(swj™) =
{(wp™) — 1. Note that we must have s ¢ Wy. Indeed, otherwise, swj'™ would
be an element of 8 strictly smaller than wj"", which by definition is not possible.
Denote by 7 the block in g Wy to which swi™ belongs. According to lemma
5.1.2* we have wg‘i“ = swin,

ow we know that A(s) or =2 IC(s) 7 =2 V(s) r and corollary [8.3.5| tells
us that convolution with t(hi)sng ject is(ailzetquivale(nzitwhich preserveysdard,
costandard and IC-complexes. By induction hypothesis, we obtain the following

sequence of isomorphisms:

A(w™) g 2 1C(s) g7+ Awy™) g7

2 IC(8) o ALY IC(wmin)gtT,

n

Since we have dimHOm@(%ﬂ)F zT](A(wgﬁn)xzj;lc(wgﬂn)f;) = 1, the

above isomorphism identifies (up to a scalar) with the canonical morphism
A(wgﬁn)zg — IC(wg‘in)zz. The proof that the morphism Ic(wgﬂn)z; -
V(wg™) 7 is an isomorphism is similar.

The fact that we have an equivalence follows from lemma B39 and the
t-exactness will follow once we know that the images of the standard and co-
standard are the prescribed ones. This in turn can be proved again by induction
on ((w§™), exactly as in [LY] Proposition 5.2]. O

Recall that for ¢ € T/, we denoted wy o the longest element of the Coxeter
system (W, S;) and that this element is also the maximal element in the neutral

bloc of ;W, (see subsection [5.1.3)).

Corollary 8.5.3. Consider t € T,Y. For any v € W, we have isomorphisms

A(we,o) o1 KLY V(v) gr = Alwe,0v) 7, V(v) * Y A(wo) g1 = A(vweo) o1
Proof. We consider the longest element w, of the Coxeter system (W, S). Let
t' := wo(t) and denote by 8 the block in W, to which w, belongs. Usual
features of w, together with lemma imply that for any = € W, we have

A(wo)gtT *Y ¥ (z) por = A(wox) gr o We can write w, = wgi“wt7o ac-
=1t 2=1(t)

l(t
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cording to lemma [5.1.2] Using the associativity of convolution, we have

AWE™) g+ (Awro) g7 #Y V(0) 1)

> (AWE™) gr +Y Alwyo) or) Y V(0) 1

t

= A(U/o)gz“ * Y V(v)gtr

= Awov) g7

= A(wgﬁnwtov)iﬂr

= A(wg‘i“) rx " A(wiov) o

According to proposition convolution with A(wgﬁn) 27T gives an equiva-
lence
DTN\ ZJT) gr ) = DT\ %/T)ﬁg?ﬂ].
Thus we obtain an isomorphism
A(wio) g1 #Y V(0) 7 = Awrov) g

The proof of the other isomorphism is similar, and is left to the reader. O
Remark 8.5.4. Corollary readily implies that we have an isomorphism
Awroz™h) gr #Y Alz) gr = Awro) o7
for any x € Wy.
We can derive an analogous result for pro-objects:

Corollary 8.5.5. Take t,t',t" in the same W-orbit in T, and choose 8 € W,
and v € v W .. Then the canonical map

-~

Awg)in’t/ — vngin,t/
s an isomorphism. Moreover, for any w € v, we have

Awgﬁn7t/ * Ay g =2 Awﬁminw7t// and Awglixl7t/ * Vo g1 = ngli;1w7t// .
Similar considerations hold for convolution on the right.

Proof. This is an immediate consequence of the preceding proposition. The
isomorphism follows from the analogue result of proposition [8.5.2] in view of
lemma [Z.89 The statements about convolution follow from the exact same
results. O

We have the following lemma, that finally gives a justification for the name
“blocks” for elements of ;+JW,. This is a direct adaptation of [LY] §4].
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Lemma 8.5.6. We have direct sums decomposition

b _ B
Dhy= @ Dy
Be f,/ﬂt

and

DTN 2T gs.2r1= B DENZID yr oy
Be W, /

Proof. We prove the first statement. By lemma the subcategories
D€/7t]’ /B € t/wt
generate th, % It remains to show that we have no nonzero morphism between
two subcategories corresponding to different blocks. For this it suffices to show
that
Hompy (2 1) (Buw,ts Doe[r]) = 0

for w,v two elements of W, that are in different blocks and any r € Z. We
follow [LYL Proposition 4.7] and proceed by induction on £(v). In the rest of
this proof, we will omit the “D%B)(% ,k)” for the Hom-spaces, but the reader
should keep in mind that we consider the Hom in this category.

Consider two distinct blocks 5,7 € W, and w € § and v € . Assume that
£(v) = 0 i.e. that v = e. Note that this implies that w # e. Using adjunction
we have

Hom (A, Ac gln]) = Hom((o)* Aus, Z1 [1),

which is zero as w # e. Assume that we have the wished-for vanishing for any
v of length n. Consider_a v of length n + 1 and a simple reflection s such that
£(sv) < ¢(v). Lemmas and imply that convolution with V, , gives
an equivalence of categories, so we have

Hom (A 1, Ay 4[r]) = Hom (Vi pr % Ay, Vi % Ayt [r])

= Hom(V&t/ ;Aw,ta Asv,t[r})'

The second isomorphism here is a consequence of lemma [8.4.3} the same lemma
allows us to conclude by induction hypothesis in the case ¢(sw) < ¢(w). Using
also corollary we get the case {(sw) > f(w) and s ¢ W (remark that sw
and sv do not belong to the same block; if s € W this is obvious, otherwise
this is a consequence of lemma [5.1.2). We deal with the case {(sw) > ¢(w) and

s € W5. Using lemmas and [7.7.4} one has
Ve * Dyy = VY For(A(w) or)
2 For(rt (Vo) %Y A(w) 1)

= For(V(s) gt *Y A(w) gr).
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Now V(s) o7 lies in the subcategory generated by A(e) o7 and A(s) o7, so that

%S,t/ *V A, lies in the subcategory generated by
Fort(A(w)gtT) = Ay and Fort(A(sw)gtT) = Agwt -

Since w, sw are in the block 8 and sv is in 7, we can conclude by induction
hypothesis.

The proof of the second statement of the lemma is very similar, in fact the
original proof is in [LYl Proposition 4.7]. O

By adjunction we have a nonzero morphism A, ; — V,, ;. With the above
lemma, we deduce that V,, ; lies in the same block as A, ¢, and so does IC,, ;.
Similarly, A(w) &7, V(w) &r and IC(w) &r all belong to the same block. For
any t € T/, one deduces from the preceding lemma the following decomposition:

ot,=h | D o, (8.5.1)

tvew-t \pe W,

We can consider the (right) Lusztig—Yun category (2 JT)_ or); and we
can in particular focus on the full subcategory ® (2 /T) 7| consisting of
objects .7 that are in D(2'JT)_ or) and such that For;(F), which is just 7
viewed as an object in D?B)(%, k), is in Dﬁe',—]' Of course, we can also consider
the full subcategory of perverse sheaves

BT, 7y

An object % in the latter category is a perverse object .# € ‘B(%ﬁ)[f’gﬂ such
that For;(#) € Py _). We have a natural notion of blocks in these “hybrid”
monodromic categories, and we have a decomposition

LT _en= P | P @(%/T)ﬁ/ﬂ] . (8.5.2)

teW-t \Be W,

These decompositions induce decompositions on perverse sheaves:

PLa=B | D Puy|. (8.5.3)

teW -t \BE W,

and similarly

PZIT)_zr= B | B B2ID, 4 |- (8.5.4)

t'eW-t \Be W,

Moreover, we can describe the simple objects in each block: for g € +W,, the
simple objects in Pﬁ, 1 (resp. in P(T'\ %/T)ﬁgﬁ AL ‘B(%ﬂT)ﬁ, gT]) are the
ICy,t (resp. IC(w) &r) with w € 3.
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8.6 Socle of standards and cosocle of costan-
dards

Proposition 8.6.1. Consider t,t’ € T,) and f € yW,. Recall that there exists
a unique minimal element wglin € B. For any w € B:

1. the socle of A(w) gy is IC(wgﬁn)gtT. Moreover the cokernel of
Ic(wfanin).z)f = A(w) g7

has composition factors indexed by v € B such that v > wg‘i“,

2. the cosocle of V(w) o is IC(w/‘B“i“)gtT. Moreover the kernel of

V(w) gz — IC(w5™) o1

min

has composition factors indexed by v € B such that v > wy

Proof. We will show (1), then (2) follows by Verdier duality applied to

IC(U)EHH)EZ;I — A(u))_gz:l .
The proof is by induction on ¢(w) (we will allow ¢, ¢’ and 8 to vary). The case
{(w) = 0 is clear since we have A(e) yr = IC(e) or for any ¢t and e is clearly
minimal in W?. Assume that the statement of the lemma is true for a w € W
(for the block of ;) W, to which it belongs). Consider s € W a simple reflection
such that £(w) > £(ws). We have to distinguish two cases. Assume first that
s ¢ W and set t/ = s(t). Then s is minimal in the block v € W, to which it
belongs. By remark [7.6.2] we have

A(s) gz, =1C(s) g7, = V(s) 27,

and we know thanks to corollary that convolution on the right with this
object gives an equivalence of category

BT 2r) = B(ZJT) (- 7,)-

min

Moreover this convolution sends A(w)gr to A(ws) oz and IC(wp'™)or to

IC(wgﬁns)iﬂz/. To end this case, we invoke lemma to see that w‘ﬂnins is
minimal in its block. In both of these cases, the fact about the composition
factors of the cokernel is clear.

Now we deal with the case s € W?. We use the equivalence of lemma
(and lemma to go from the T-equivariant Lusztig—Yun category to the Bs-
equivariant one. This will allow us to use the forgetful and averaging functors.
According to lemma [8:2.9] we have an exact sequence

0— A(ws)zfss — A(w)_g,tBs — Fory Avf,!(A(w)gtBS) — 0.
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(This is indeed an exact sequence since For Avi (A(w) . 5. ) is a perverse object:
J !
For} preserves the perverse objects and Avy,(A(w) o5, ) is perverse thanks to
‘ ” t
corollary 8.2.61) Consider an injective map I — A(w) 5. with I a simple
t

perverse object. Assume that the composition

I— A(w)gfas — For} Avfy,(A(w)fst)

is nonzero. The object Av} (A(w)s5.) is a L-equivariant perverse object,
’ t

thus all of its composition factors are i:—equivariant IC-complexes. The func-

tor Forj preserves simple perverse sheaves, hence the images of the compo-

sition factors of Av},(A(w)n5.) under Forj give all the composition factors
" t

of Forj Av} (A(w) ,5.). Consequently, I is of the form Fori(I’) for I' a L,-
" t
equivariant simple perverse sheaf. We know that these objects are IC-complexes

constructed from local systems on Z°, ., for v € W such that with v < vs. In

particular, all composition factors of Fbrf AV} (A(w) o5, ) are IC,’s with v € 3
E t

min

such that vs < v, so different from wg'™. We can now write:

Homp, (I, A(w) ,2.) = Homp, (Forf([’)7 A(w)ztas)
= Homy, (1, AV, (A(w) 5.))
>~ Hom;, (1’, AV} (A(w) . )[_2})
—0.

The last equality follows from the fact that Avy,(A(w) fias) and I’ are per-
verse. Thus the composition I — A(w) o5, — Fory Avi (A(w) o5.) is zero,
and we have I — A(ws)ffs. We can conciude by induction that fis actually
isomorphic to IC(w?) B Finally, by induction hypothesis, the cokernel of

IC(wﬁ)szS — A(ws)ffss

has composition factors indexed by v € g such that v > wgﬂ“; the previous
argument tells us that this is also the case of the object For} Avy (A(w) 5. ).
" t

Since the inclusion IC(w?) 5. < A(w) 5. is the composition
t t
IC(w”) . — A(ws) o, — A(w) ys.,
t t t

these facts imply that the cokernel of IC(w?) 5. < A(w) 5. has also compo-
t <t
sition factors indexed by elements v € § such that v > wg"". O
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Chapter 9

Tilting objects

9.1 Definition

Our main objective is the study of the various categories P|_ ;. According to
proposition [£.3.1] we have an equivalence

Py =BT 27 (9.1.1)

and both of these categories are endowed with highest weight structures. More-
over, the equivalence preserves these highest weight structures, i.e. it
maps standards to standards, costandards to costandards and simples to sim-
ples. Thanks to [BGS, Theorem 3.2.1], our categories P[_ 4 have enough pro-
jective objects and these projective objects admit standard filtrations. In par-
ticular, each simple object has a projective cover.

Definition 9.1.1. Consider t € TY and w € W. We denote by

1. Py ¢ the projective cover of IC,, ¢ in the category Pi_ 4,

2. P(w)gr the projective cover of IC(w) gr in P(ZJT)_ o1y.

Remark 9.1.2. We also have enough injective objects in these categories; the
injective envelope of 1C, ¢ in P_ 4 (resp. IC(w) or in P(2/T)(_ 1)) is de-
noted £, ; (resp. & (w) gtT). In fact, we will almost always work with projective
objects rather than injective ones.

There is another kind of objects (in any general highest weight category)
that is of interest, namely the tilting objects.

Definition 9.1.3. Define an object in a highest weight category (A, (S, <)) to
be tilting if it admits both a standard filtration and a costandard filtration.

We restate below, and in our setting of perverse monodromic sheaves, a
general statement about tilting objects, whose proof in the general setting can
be found e.g. in [R] §7.5, Theorem 7.14].
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Proposition 9.1.4. For any w € W and t € T}/, there exists a unique (up
to isomorphism) indecomposable tilting object T ., ¢ in the monodromic category
P[_ 4 such that

[ywﬁ, : Icwﬂg] =1 and ([9w,t : ICv,t] 7& 0) = v < w. (912)

Moreover, there exists an embedding A,y — Tt whose cokernel admits a
standard filtration, and a surjection Ty — Vi whose kernel admits a co-
standard filtration. Any indecomposable tilting in P_ 4 is isomorphic to one
of the Tyt for a unique w € W, and any tilting object is a direct sum of
indecomposable tilting objects.

The exact analogue of course holds in the category PB(2°)T)_ o1):

Proposition 9.1.5. For any w € W and t € T/, there exists a unique (up to
isomorphism) indecomposable tilting object 7 (w) oz in the monodromic cate-

gory B(Z'[JT)(— 1) such that

[7(w) gr 1 IC(w) gr] =1 and ([T (w)gr 1 IC(v) or] #0) = v < w.
(9.1.3)
Moreover, there exists an embedding A(w) v — 7 (w) 7 whose cokernel ad-
mits a standard filtration, and a surjection f( ) g —> V( ) whose kernel
admits a costandard filtration. Any indecomposable tzltmg n ‘B(%/T) T 1S
isomorphic to one of the I (w )xT for a unique w € W, and any tzltmg object
s a direct sum of mdecomposable tilting objects.

We set T2 [ T)_ o7 for the subcategory of tilting objects in P(2Z /[
)[7 2T)- Since the equlvalence preserves standard, simple and costan-
dard objects, it also preserves tlltlng obJects i.e. it maps 9( )g’tl" to Tt

9.2 Ringel duality

Fix t,t’ € T} in the same W-orbit. We consider the hybrid categories P(2Z"/
1)y 1 introduced after lemma and its decomposition into blocks, stated
as . Any indecomposable object, in particular any indecomposable pro-
jective or tilting object, belongs to some block. Fix § € W, and a w € 5. The
objects 7 (w) or and P (w)4r are indecomposable and admit nonzero maps
respectively to V(w) o7 and IC(w) or. Thus these two objects are in

P2, .
Now, the direct sum decomposition of lemma [8.5.6] implies that this block is
itself a highest weight category. We then have enough projective objects in this
subcategory, and a subcategory of tilting objects. Clearly, the objects in the
subactegory T(2JT)? 1,27 are those tilting objects .7 in P(2JT) s 1) such
that the standards appearing as suquotients in a standard filtration of .7 are
A(w) gr with w € 3.
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Lemma 9.2.1. Let 2 to be an object in B(2 JT)? .27 If

Ext xsr) (Z,A(w) ) =0

1w,y

for any i >0 and w € B, then & is a projective object in S13(5{/T)[t, 27

Proof. Since P (2 [T)=’ .27
form A(w) or[n] with w € W and n > 0, any perverse object .# is a successive
v .,%T]) of such objects. If .F
lies in ‘B(%ﬁ") t, 2T then the w that may occur in such a filtration by standard

objects can be chosen in S (this is a direct consequence of the decomposition
(18.5.2))).

Now, using corollary to show that &2 is projective in m(%ﬂT) (v, 2T]
it suffices to show that Ext@(ggﬂ) s (Z,A(w) r(n]) = 0 for any w € f,

1> 0 and n > 0. This concludes the proof O

] is generated under extension by objects of the

extension (in the triangulated category © (2 [T)?

Proposition 9.2.2. Fiz t,¢',t" € T, in the same W-orbit and consider two
blocks B € vW, and v € 1wW,,. Then we have a “Ringel duality”

Ry« D(Z TN pry = DT

[t” [t” =‘?T]

This is an equivalence of triangulated category and we have
RY(Z (w) 1) = P(ww™) o7
and
RY(V(w)27) = A(ww}™) o7
for any w € . In particular, Rg restrict to an equivalence T(Z [JT)? =

t” jT]
PrOJ‘B(%/T)[t// jT]
Similarly, we have an equivalence of triangulated categories

Rﬁ @(X/T)[t, =S/ﬂT] _> Q(XiT)[t// =_gT]
such that
RI(T (w) g1) & P (wi™w) o1
and

for any w € 5.

Proof. We copy the proof of [BBM|, Proposition 2.3]. We abbreviate the notation
D(X)JT)? % by D}, and similarly for (2 JT)7" Define R} to be

the functor

[t” t’] [t" =‘?T]

R} = (=) #™ A§™) 45 : D}, ) = DY) .
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Note that the target category is the right one thanks to lemma (in fact,
lemma [8.5.1] involves categories of sheaves equivariant on the right and the left,

which is not what we consider here; the same proof works however, since Da,, Y]
is generated by standard objects A(w) r with w € 7). According to lemma
tl

B-3:9] this is an equivalence with quasi-inverse given by
(=)%Y V(B ) .

Now fix a w € « and consider 7 (w)gr. This object admits a V-filtration
t! i
by objects V(v) g7 with v € . We can write uniquely v = wi'"z with = €
t/
Wy (recall that a « is just a coset in Wy /W), Similarly, we have wg®* =

min

wy oW, where wy  is the maximal element in the neutral block in + W, and
S0 wy o is the longest element in the Coxeter group Wy (the discussion above
lemma ensures that these two notions are indeed the same). Now with
proposition we have

A(w;nin)z{, = V(w?in)zg and  V(wi™) gr = A(wh™) o7

The same proposition [8.5.2] allows us to deduce
RY(V() o1) = V(0) o+ Awi™) oy

\%

\%

Il

(wryninx)xf, Y A(wt’,owgﬂn)x{
w

(W) gr +Y V() g+ Awy o) gr £ A(w)™) g7

Thanks to corollary we have V() gr Y A(wy o) v = Alzwy o) or.

¢

Hence
RY(V(v) 1) 2 AW™) gr +™Y A(zwy o) g7+ A(wp™) or
= A(wfyninxwt/,owgﬂn)_gf.

We have finally obtained Rj}(V(v) o7) =2 A(vwj®) or. We deduce that the
object R}(7 (w) &7 ) admits a A-filtration and thus is perverse. To check that
this object is projective, using lemma it suffices to show that Exti(Rg(f(w)gtT, ), A(x) gr) =

0 for any ¢ > 0 and = € v( Note that such an x can be written as z’wg‘ax with
x’ € v. We now write

Ext! (R}(7 (w) g1), Ax) 1) = Bxt! (RY(F (w) 1), RY(V(2') 1))
> Bxt! (7 (w) 41, V(a') 1)
=0.
The last equality follows from the fact that 7 (w)yr has a A-filtration. We

deduce that Rj(7 (w)gr) is a projective perverse sheaf, it is moreover inde-
t,
composable since .7 (w) o7 is.
t/
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We now have to determine this projective object. By proposition there
exists a surjective map from 7 (w) o to V(w) 7, whose kernel K admits a
t! t/

costandard filtration. If we apply Rg to the associated distinguished triangle

K — T (w)gr — V(w)gr 5,

then we obtain a distinguished triangle
max +1
Rg(K)%Rg(ﬁ(w)th,)%A(wwﬁ )T — .

The three terms in this triangle are perverse (we use the costandard filtration of

K here), and thus this triangle gives a short exact sequence in (% /T)Ef, PZas

Consequently, we have a surjective map

Ry (T (w) o) = Alwwp™) o7,

+/

from which we get a surjective map R}(7 (w)gr) — IC(wwj®™)yr. Being
t/
projective and indecomposable, R} (.7 (w) o7 ) has to be the projective cover of
t//
this IC-sheaf; said otherwise, we have

RY(T (W) g7) = P (wwp™) o7
The proof of the existence and properties of ﬁf are similar: one sets

ﬁg = ﬁqvgmx,t ;(7)

The verifications are left to the reader. O

Corollary 9.2.3. We keep the notation of proposition [9.2.3. For any w € ~
and v € v, we have

(P (wwg™) gr : A(v) gr) = (T (w) gz V(0(w™) ™) 1)

t t, t/
In particular, we have

(PRP) g7 = AW)27) = (T (™) g V™) gr). (9:21)

Proof. The first statement is an immediate consequence of proposition [0.2.2]
The equality (9.2.1)) is just a particular case, using lemma O
9.3 Comparison of tilting and projective objects
In this section we use the exact arguments as in [AR1l Section 5.11]. For the

duration of this paragraph, we fix arbitrary ¢,¢' € T,/ in the same W-orbit and
B a block in ¢ W,.
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Corollary 9.3.1. For any w € 3, we have (y(wg‘i“)gz PA(w) gr) = 1.

Proof. This follows immediately from the point (2) of proposition and the
reciprocity formula in a highest weight category. O

The proof of the following lemma can be copied from [AR1] Lemma 5.24]:
Lemma 9.3.2. For any w €  we have
1. dim Hom(A(w) o1, A(wg™) or) = 1 and every nonzero map
A(w) g7 — A(wg™) o7

18 injective;

2. dim Hom(V (w§**) o1, V(w) 1) = 1 and every nonzero map
V(W) g5 = V(w) gr
18 surjective.

min

Proof. We prove only |1} the proof of [2[is similar. Write (uniquely) w = wg'
with v € W2. According to proposition [8.6.1] the space

Hom(A(e) g1, Al wr,0) o7)

is one dimensional since A(e) &r is the socle of A(’U_lﬂhj’o)g’tf, and any map
there is injective. Since convolution on the left with A(v) &z (in fact, with any
standard or costandard object) yields an equivalence of categories; remark
tells us that the space

Hom(A(U).xtTa A(wt,o):f{)

is also one dimensional. Finally, using proposition and convolving with
A(wg‘“.‘).gg we get that dim Hom.(A(w)g{, A(wg‘ax)zz) = 1.. Now thanks to
proposition [8:6.1} any map f in this space induces an isomorphism on socles; in
particular, the kernel of f has a trivial socle and is zero, i.e. f is injective. [

Lemma 9.3.3. For any w € 3, we have
(TWE™) gr: V() gr) =1 = (T (WI™) gr : Aw) gr).

Proof. The first equality is a direct consequence of corollaries and

max

The second one follows from Verdier duality applied to 7 (wg®*) s =~ (which
makes sense thanks to the comment above corollary [5.3.10]). O

The proof of the next proposition is exactly as in [AR1] Proposition 5.26].

Proposition 9.3.4. We have T (w™) gr = P (wi™) 47

172



Proof. First, we have
dim Hom(7 (w3'™) 7, V(w) gr) =1 (9.3.1)

for any w € . This follows from lemma [9.3.3] Then any nonzero map is the
latter space is surjective: the case w = wi** is just a property of .7 (w max)gtT.
For other w this follows from lemma and the case w = wg™*. The next
step is to see that

Hom(.7 (wg™*) o, 1C(w)) = 0 for w # wi™. (9.3.2)

Indeed, if there were a nonzero map 7 (wg'™) or — IC(w) for w # wg'™, this
would yield a nonzero, non-surjective map

T (wg™) g — IC(w) g7 = V(W) g1,

contradicting what is stated above (note that the injection IC(w) g7 — V(w) o1
is not an isomorphism, e.g. because the cosocle of V(w)&r is IC(w mm), and
wgﬂn #+ w).

Now from and proposition we have

dim Hom(ﬂ(wgla")f;,IC(w}?i”)g;) =1

Moreover, implies that IC(w g‘i“) 7 is the unique simple quotient of
y(wrﬁna")gT Thus the object 9( max)gT must be (isomorphic to) a quotient
of P(wh™)yr. But corollary [9.3.1] and lemma imply that these two
objects have the same length, and thus they must be 1som0rphic. This concludes
the proof. O

Remark 9 3.5. In complete analogy, and considering injective objects (see re-

mark [9 , one can show that 7 (wg™) or = ﬂ(wg“n)g;.

9.4 Tilting perverse sheaves in the completed
category

Definition 9.4.1. We say that a perverse object F € lA)[_ﬂ is tilting if it
admits a A-filtration and a V-filtration (that is, a filtration in P gy (2, k)[_ 4

with subquotients in {ﬁw’t | w e W} and a filtration with subquotients in {ﬁw,t |
weW}).

If % is tilting, one easily sees that the number of occurrence of 3 +in a
A filtration does not depend on the filtration; this is equal to the rank over

~

Rt of HomD ](55 V). Similarly, the number of occurence of V wt il a V-

filtration is equal to the rank of Homﬁ[i . (ﬁwt,ﬁ ) (in fact this is standard

in highest weight category, but the same proof applies here, using (7.8.1)). We
will denote these multiplicities respectively by (% A ) and (Z : Vu,7t).
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Lemma 9.4.2. (1) If F € ﬁ[_’t], then % is tilting if and only if mt((ﬁ) is
perverse and tilting in B(Z[T)— o).

(2) If #,9 € lA)[,,t] are tilting, then:

e the functor 7r$ induces an isomorphism

ke ®p, Homﬁ[i,t] (#,9) > Homg(m)[jy% (i (F), 71 (9)),
o Homp,_(Z.9[K) =0 if k0,

e the R;-module Homf)[_ ; (F,9) is free of finite rank.

Proof. (1) is just a particular case of lemma [7.8.9

(2) Any tilting admits both a standard and costandard filtration, that is, is
a successive finite extension of such objects in the perverse completed category.
The fact that the Hom-space is free of finite rank is then a consequence of the
equalities . The same equalities imply the second point above. Finally,
according to lemma the natural map

Homﬁ[,,t] (%\7 g) — Homg(%ﬁ')[ﬁy% (7‘(’%(3‘\), 71'4? (g))

factors through the quotient k; ®z Homsp (o pr) _ 27,](71’%(9),7‘(}; (¢4)). We use
the fact that the R;-module Homf)[_ ; (Z,9) is free; thanks to the five lemma

it then suffices to consider the case % = ﬁw,t and ¥ = @v,t for w,v € W. But
the first point is then obvious from the equalities (|7.8.1)). O

9.5 Classification of tilting perverse sheaves

Lemma 9.5.1. Fiz an element w € W and consider any open sy\bset ocCZ,
that is a union of strata. Then there exists a tilting sheaf F € Dy (O, k)[— 4

whose restriction to X, is L.

Proof. The proof is by induction on the number n of strata in O C Zw. We will
have to consider standard objects in D(p)(O, k), we will denote them with a
superscript O. R R

If n =1, then one takes Ay, ¢+ =V, ¢.

For a general O, consider a closed stratum 2, in O and let V = O\ Z;
we denote by ] V < O the open embedding. By mductlon we have a tlltmg
sheaf ﬁv in D(B)(V k);_ 4 whose restriction to 2, is Z“’ The object ]u?v

~0
admits a A -filtration in D(B)(O,]k) [¢]> S0 it is perverse. Moreover, thanks to
corollary the space

— NN AO 7
E.—Homﬁ(B)(O)k)[_J](Am,j;ﬂv[l]) ExtPB)(Ok)[ (v’t,]!yv)
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is finitely generated as a Et-module. We can choose a surjection ﬁ?m — K.
This map defines an element in

HOHlﬁt _mod(E?m,E) >~ Homﬁt —mod(ﬁtaE)@m ~ pom
= EthlS(B)(O»k)[f,t]((Agt)@m’jlyV)~ (9.5.1)

We thus obtain an extension in IS(B)(O, k)4
0= i Tv =7 — (A2,)®™ 0. (9.5.2)

— ~0 ~
The object .7 clearly admits a A~ -filtration in D gy (O, k)[_ 4, so it is perverse.
Applying the functor j7 to (9.5.2), we see that 7 has the correct restriction

~0
to Zw._We now have to show that it admits a V -filtration, or, according to

lemma 7.8.9|7 that 7} (/9\) admits a VO-filtration. According to [R], Proposition
7.10], this 1s equivalent to

EXt%(Oﬁ)[,ygT] (A(U)%zﬁﬂ’?(y)) = O
for any u with %2, C O. We will consider the exact sequence
0= 7l (1T v) = TH(T) = (A@)Sr)®™ =0 (9.5.3)

in ‘I.?(O/T)[_,g;] obtained by an application of 7'('% to the exact sequence ((9.5.2))
(we indeed obtain an exact sequence since each term remains perverse after the
application of m';) We begin with the case u # v. We will use remark [7.5.2
in what follows, we consider alternatively usual topological functors (such as

41, 3'...) and their extension to the completed category; but we will not have

different notation. It should be clear, however, what version is used in each case.
Since 7t o ji = jionl and 2, CV, we have j,nt(j17v) = j,7i(Tv). Since

W;E (/ﬁ\v) is tilting, according to lemmw and remark this corestriction
953

perverse. Using the exact sequence .3)), one obtains

EXt%s(oyr)[igtT](A(U)noggyﬁ(y)) = Homg(%ﬂ)[,,y;] (‘Z?,jﬁi(y)m)

= Homp (2 pr)_ (L1 gt (T v)[A])
= EXt%s(vyr)[igtT] (A(w) G, T (T v))
=0.

The last equality follows from the fact that 773; (/ﬂ\v) is tilting in P(V /1) _ o1y
We deal with the case u = v. Applying the functor

Homysopr) _ ) (A(v)gr,—)
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to the exact sequence (9.5.3]), we see that in order to show that
EXt%(oyr)[ixtT] (A(v) gr, 74 (T)) = 0,
we have to show that the map
k" 2= Homgyopr) o, (A(v) 27, A(v)7)

— EXt%:z(oir)[ﬁth] (A(v) g7, 7 (1T v))

-2

is surjective. A first step in order to see that is to show that
Ext?ﬁ(oﬁ)[_ﬁ?] (A(’U)g;l"yﬂ-%(j!yV)) =0 for any i > 2.
Consider the following exact sequences in PB(O JT)_ &)
N < jim(Tv) = jumni(Tv) and jumi(Tv) = juni(Tv) - M (9.5.4)

where the objects N and M are given by N := ker(w%(/ﬂ\v) —» jy*ﬂ'%(/ﬂ\v)) and
M := coker(jr.m} (/y\v) > Jurt (7v)). We note the following facts:

1. N and M are supported on %, and are perverse, so they are direct sums
of A(“)x{ in ‘B(O/T)[—,x,%

2. the object j. 7} (7 v) admits a VO-filtration in PB(OJI)- o1 since mtr(/f\v)
does, /

3. we have EXti(A(U)zz‘,A(’U)zz‘) =0 and EXti(A(U)g;I‘7v(x)$;l‘) =0in
PB(OJT)—, o7, for any i > 0 and any « € W such that 2, C V.
We apply the functor Homm(oﬂ)[_)g,{](A(U)gz“,—) to the second exact se-
quence in (9.5.4)). According to the three points above, we obtain

EXt‘il?(OiT)[,,gtT] (A(v)g)?,j!*ﬂ(ﬂv)) =0 fori>1.

Then apply the same functor to the first exact sequence in ([9.5.4)) to obtain the
wished-for vanishing.

Using adjunction, we get Homo(vyr) _ ,r, (.i”?,jl!,jgﬂ (/y\v)[z]) =0fori> 1.
Tt

If we let 7 be the object of D? Modfg(ﬁt) corresponding to jfjjg/ﬂ\v under the
equivalence ((7.5.6)) , then we obtain that

Hom o veqsa (e, ke @ TTil) = H' (ke ®F, T) = 0
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for ¢ > 1. This in turn implies that 7 is concentrated in degrees < 1, so we have

an isomorphism k; ®z HY(T) = H' (k, ®% T). Using adjunction once again,
t

this isomorphism can be rewritten as

ki @, B = Homo o),z (M) gr,iimi(7v)[L])

- Ext‘llg(vﬂ)[_i;] (AW) gr, T (T V).

This finally shows that our chosen surjection ﬁ?m — F induces a surjection
1 . - . . .

k®™ EXtm(Oﬁ)[—,th] (A(’U)g?,][ﬂ'?(yv)). This finishes the demonstration.

O

Proposition 9.5.2. For any w € W, there exists a unique (up to isomorphism)
indecomposable tilting object 3 +in D[, 1 such that

—

e T (w) pr.

Any indecomposable tilting object in ﬁ[,’t] is isomorphic to some %,t for a
weW.

Proof. According to lemma there exists a tilting 7 in ﬁ[_yt] whose sup-

port is 2, and such that j¥.7 = .5,’?“. We can obviously choose 7 to be
indecomposable since each object in the completed category splits as a direct
sum of indecomposable objects, as stated in corollary According to lemma,

the endomorphism ring of ﬂ%(ﬂ ) is a quotient of End(.7), hence is local
(a quotient of a local ring being local). We deduce that 7} (/j) is an indecom-
posable tilting perverse bheaf with support Z,,, so it must be isomorphic to

T (w) gr. We set 7, t:—ﬂ.

—/
It remains to show that any indecomposable tilting perverse sheaf .7 in
D|_ 4 is isomorphic to one of the 7, ;. The above arguments tell us that

—/
7 () is an indecomposable tilting perverse sheaf in P(2"/T)_ 7 and thus
is isomorphic to a 7 (v ) o for a certain v € W. Now according to lemma
the map induced by 7rT

—/

—~
Homf) (f 7%,1:) ®Et k; — Hom@(xﬁ)[_)gz,](ﬂ'i(y ), y(v)gz)

[=»1]

—/ —
is an isomorphism. Thus there exists a map f : .7 — 7, such that 7r]€ (f) is
an isomorphism. If C' denotes the cone of f, we then have 7r]€ (C) =0. Lemma
7.5.6| allows us to conclude that C' = 0 so f is already an isomorphism. O

Remark 9.5.3. Assume that w belongs to »W; for some t' € T,Y. Echoing

remarks |7.8.2| and |7.8.10|7 we see that /ﬂ\wyt admits another characterisation:
the category P(T \ 2 )[ o7 1 Is a highest weight category, and thus we have
!
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indecomposable tilting objects o7 Z(v) for v € W in this category. Then
t/
T wy is the unique (up to isomorphism) indecomposable tilting object in the
completed category such that
Ae) 13T w1 2 o1 T(v).
t! t/

Note that even if, for v € W, the standard and costandard objects A(v) g1, V(v) o1
define both left and right equivariant objects, this is not the case in general for
tilting objects: there is no reason for oz 7 (v) to belong P(Z" JT)_ o).

9.6 Associated graded functor
We fix a total order < on W that refines the Bruhat order. Let

Jew: || 20— 2

v<w

be the natural (closed) inclusion. For any w € W and any tilting sheaf 7 €
D|_ 4, we have an adjunction morphism

T = (j<w)s(<w) 7. (9.6.1)

This morphism fits in a functorial distinguished triangle whose terms are all
perverse (we use the fact that T is tilting here), therefore it is actually an exact
sequence in ﬁ[,,t]. The morphism is thus surjective, and we let /jtw be
its kernel. Note that for w < v, the map factors as a composition

T = (J<0)x(J=<0)"T = (Jz0)x(T=w)x(G<w) (<0)* T = (<w)s(zw)" T
Both maps in this diagram are induced by adjunction, and we abusively keep
the notation j~,, for the map | | 2w = | .., Zz. From the definition of
/jiw and /jiv as kernels, we get that the natural inclusion /ﬂ\tv > /ﬂ\ factors

via the inclusion /ﬂ\tw < 7. Thus (/jtw)wew gives a filtration of /9\, indexed
by W endowed with the order opposite to <.

r<w x<v

Definition 9.6.1. For 7 a tilting in ﬁ[,ﬁt] and a pair (w,w’) with w' the
successor of w for X (i.e. the element of W such that w < w’ and w < v < w’
implies v = w), we consider the quotient

&0, (7) = T ) T

We then set . .
er(7) = @ e, (7).

weW

Lemma 9.6.2. The assignment T gr(/ﬂ\) defines an additive functor

Tﬁ,i]—%fﬁfiy
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Proof. We must show that for any morphism f : 77 ' we have f (/jtw) C

T+ . This follows from the fact that the exact sequence
0= Trw—= T = (j<w)elizw) 7 =0

comes from a functorial distinguished triangle in ﬁ[_ﬂ. This readily implies
— — —/ — —/ —/

that the composition T »,, — 7 1.7 tactors as T ww ER T vy = 7, which

is exactly what we want. O

We show that the functor gr is faithful. To do so, we proceed exactly as in
[BeR] §6.3].

Lemma 9.6.3. For any v,w € W, with w # v, we have

Homf)[i)ﬂ (Aw,t, A'U,t) =0.

Proof. The proof is copied on [BeR] proof of lemma 6.2]. Let f : Ew,t — ﬁvi
be a nonzero morphism. We denote by .# the image of f and we write f as

oo o~ f ~ . .
a composition A, ¢ 3 F £> Ay ¢, with fo and f; the natural surjection and
embedding respectively. According to lemma for any ¢ € k[X.(T)], we
have a commutative diagram

ﬁw,t f2 T f1 ﬁvyt
‘Pl,w(c)f )/S"'r'-,w(c) Sal,.@(c)( >‘Pr,.‘¥(c) Lpl,v(C)f )(pmv(c) (962)
Ew,t f2 y f1 Evyt

where we abbreviated ¢;.., for ¢, Rt (and similarly for ¢, Rt and for the

monodromy of ﬁv,t). Thanks to lemma if ¢ is nonzero, the map ¢ ,(c) is
injective. Since fi is injective and ¢y, (c) o f1 = f1 0 ¢, (c), the map ¢; #(c)
is injective if ¢ # 0, in particular it is nonzero. Now using lemma we have
SDI,U(C) = Pro (U(C)) We then get

froerz(c) = erolc) o fi = pru(v(c)) o fr = fi o7 (v(c)).
Since f1 is injective, one deduces that ¢; & (v(c)) = ¢r,#(c). Similarly, we have
pr.7(c) 0 fa = f200ru(c) = f20prw(w(c)) = 1z (w(c)) o fa,
which implies that ¢; o (w(c)) = ¢ 2 (c) since fa is surjective. We then obtain
pr.z(v(c)) = or.z(c) = 1.z (w(c))-
These equalities give, replacing ¢ by w~(c), the equality
o5 (c— w1 (0)) =0

for any ¢ € k[X.(T)]. Since ¢;,#(d) # 0 if d # 0, we get ¢ = vw~!(c), and thus
v(c) = w(e) for any c¢, so that w = v. This concludes the proof. O
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Corollary 9.6.4. The functor gr is faithful.

Proof. The proof can literally be copied from [BeRl, Corollary 6.3], so we only

— —/
sketch it. We want to show that if f : .9 — 7 1is a nonzero map between
pro-tilting objects, then gr(f) is nonzero. Let w € W be the largest element

— —/
such that f(J~,) € I+, is nonzero. The maximality assumption on w gives
- — —/ —/
us a nonzero map fy, : gr,(7) - . Since ., admits a pro-standard

filtration, it follows from lemma that the map Hom(gr,, (?),?;w) —
—~ — N

Hom(gr,, (), gr,, (7 )) induced by the quotient /9\;__“) —» grw(/y\,) is injective.
In particular, the image of f,,, which is gr,, (f), is nonzero, whence gr(f) is also

nonzero. We are done.
O

Recall now from subsection that for any monodromic pro-object /1/5, we
have a monodromy morphism ¢y, 5, with respect to the natural left and right
actions of T on G/U.

Lemma 9.6.5. Consider t,t' € T,, and f € vW,. We make ﬁt/ a right
(R)WY -module via = -1 = xwg‘in(r). For any 7 € Tﬁ,’t], the morphism ¢,
factors through an algebra morphism

Rtl ®(ﬁt)wt° Rt — End(f)

Proof. Let us remark the following: by definition of +W,, for any w € 3 there

~

exists a unique v € Wy such that w = wgﬂ“v. Now, we know that gr(J) &

Dowew ﬁi‘ifgw for certain n, € Zs>o. If we have 7 e Tﬁ, " then n,, = 0

for w ¢ [. Using lemma we see that for any r € (R,)"*, we have
gr(v;x, (1) = er(e. &, t(wg‘i“(r))). The result then follows from corollary
064 ’ O

9.7 Convolution of tilting objects

We study in this subsection the convolution of tilting and pro-tilting objects.
First we state a result about convolution with a standard object associated to an
element minimal in its block (such a standard is isomorphic to the costandard
object associated to this minimal element, and is thus tilting). To address
the convolution of tilting objects in general, we then study a bit further the
convolution of standard and costandard objects in the Lusztig—Yun category.

Lemma 9.7.1. Consider t,t',t" € T, in the same W-orbit and fiz two blocks
Be W, ve pW,. _

1. Convolution on the right with A(wg™) o1 induces an equivalence of cat-
eqgories
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For w € v, this equivalence sends 7 (w) o to ﬂ(wwgﬁ“)g?.
t!

2. Conwvolution on the left with the pro-object ﬁw,wnm’t/ induces an equivalence
of categories

Do % (=) s S(ZPTV, gy = SEPTN oy

min

For w € B, this equivalence sends 7 (w) o1 to T (wy"w) 1.
3. Convolution on the left (resp. right) with the pro-object Ew;nm’t, (resp. the

pro-object Aw;;]in7t induces an equivalence of categories

Avyin 1% (=) : Ty (20 = Ty (K)o
(resp.
(—)?Awgnn’t:T(B)(%,k)ﬁ = Ty (2 K )

[t”,t/] [t”,t]

Proof. The proofs of the three points are similar. Let us show the first one.
Accorqing to lemma the functor (—)*MY A(wj™) o7 is an equivalence
of categories

BLIT)E gy = BLID]

which maps standard objects to standard objects and costandard objects to
costandard objects. Thus, this functor preserves standard and costandard fil-
trations, so it indeed induces an equivalence on the subcategories of tilting
objects.

The image of 7 (w) 27 under this equivalence is an indecomposable tilting
object. The standard filtration on .7 (w) 27 induces a standard filtration on its
image under (—)"Y A(wg‘in)zz, with quotients of the form A(vwrﬁnin)gz (with
v € ). In particular, we deduce an injective map

A(wwg‘in)gg = 7 (w) *Y A(wlﬁnin)gz

whose cokernel admits a A-filtration. Thanks to [R} Remark 7.16] (and propo-
sition [9.1.5), this implies that the convolution .7 (w) ¥ A(wg]in)g;l“ must be

isomorphic to ﬂ(wwgli“)ip?. O

Lemma 9.7.2. Considert,t',t" € T,Y in the same W-orbit. For anyw € Wy
and v € Wy, the object A(w>$§ *LY A(v) gr lies in the subcategory generated
by the objects A(z) pr[—n] with x € W and n > 0. Similarly, the object
V(w)zz *LYV(U)fz" lies in the subcategory generated by the objects V(x) o [n]
with x € 1w Wy and n > 0.

Proof. We prove only the statement about the convolution of standard, the
case of costandard being similar. First note that using lemma [8.4.2] it suffices

to consider the case where v is a simple reflection s in W. If ws > w, then
A(w)xz *LY A(s") g7 = A(ws’) 7, which settles this case. If s ¢ Wy, then the

181



convolution is again isomorphic to A(ws) o7 according to lemma Thus it
remains to consider A(w) o7 *LYA(S)ng with s € W and ws < w. Convolvmg
the triangle l

+1

on the left with A(s)gr we see that A(w)gr *LY A(s)gr is in the cate-
gory generated by A(w)gr and A(w)gr Y IC(s) or. We claim that the
latter object belongs to the category generated by the obJects A(w) gr[—1] and
A(ws) r[—1], which would conclude the proof. In order to show that we use
lemma to switch to the Bgs-equivariant equivalent setting using the equivalence
of lemma lm'; namely, we consider the object A(w)gfs *LY IC(S)ng (lemma
[5.3.7 and lemma |6.3.2insure that this is indeed the correct object to consider).
Now, we have isomorphisms

A(w) . xV1C(s) . = For] Avy  (A(w) yo. )[1] = Forj Avy (A(w) ,5.)[~1].

Here, the first isomorphism comes from lemma [8.3.6] and the second one from
the definition of the averaging functors (see subsection [8.1.3). With the triangle

A(ws) g, = A(w) g, — For] Av; (A(w) g5.) =

from lemma, 9} and going back to the T-equivariant setting using lemma
one more tlme we see that A(w) o1 KLY 1C(s) 7 indeed lies in the category
generated by A( w) or[—1] and A(ws) r(—1]. This allows us to conclude the
proof. O

Lemma 9.7.3. Considert,t',t" € T,Y in the same W -orbit. For anyw € Wy
and v € ¢ W;
(1) the functors

Aw) g £ (=) : DT\ ZJT) g7 o) = DTN\ Z[T) 47, =

//7 ]

and
(=)« A(”);f{ DT\ %/T)[fg/,zg] —D(T'\ %/T)[zg,,zf]

are left t-exact for the perverse t-structure,
(2) the functors

V(w) gz £ (=) : DTN\ Z[T) 27, 27) = DT\ Z[T) 27, 27)
and
(=)%Y V(v) gr : DTN\ ZJT) g1, o1y = DTN\ Z[T) 27, 27)

are right t-exact for the perverse t-structure.
In particular, for any w € Wy and v € Wy, the objects A(w) or

!

LY

V(v)gr and V(w) o *LY A(v) o7 are perverse.
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Proof. We show only the first case of the first point, the other proofs are similar.
We consider the functor A(w) ,r. *“¥ (—). As a composition of left t-exact

functors is t-exact it suffices to consider the case w = s a simple reflection in
W. Moreover, since

PD(T Y\ %iT)[iStTH 1)
is generated by the objects V(z)yr[—n] with z € W} and n > 0, we can
restrict ourselves to the computation of A(s)gg *LY V(z)gr. If s ¢ Wy or

sz < x then this convolution is isomorphic to V(sz) 7, (using corollaries
and so this settles these cases.
Assume now that s € W and sz > x. We use the equivalence of lemma
and place ourselves in the monodromic categories D (Bs\ 27 JT) 4. o1
where ? could be either ¢’ or t”). '
We start by applying the functor (—) +2Y V(x) ps to the triangle

V(e) g [-1] = IC(s) yo. — V(5) go. .

One obtains a distinguished triangle
V(@) 5. [-1] = 1C(5) yo 2Y V() y5. = V(s) 5. -,

which implies that IC(s)gﬁs *LY V(x)gfs lies in PO (B, \ Z°° /BS)E;)?S Py
We finally apply (—) LY V(z) P 1O the distinguished triangle
A(e) yme — A(s) gn. = 1C(s) .

to get

V(@) yre = A(5) g 5 V() yoo = 1C(5) g, 1Y V() g5 .

The above consideration on IC(s) o 5. *5¥ V() &P tells us that the convolution
t!

A(s)fﬁs *(I;YV(x)g,;ss is indeed in PO (B, \ ‘%siBs)iggf,s,gfs]’ which concludes
the proof.

The fact that the objects A(w) g, KLY V(v)gtT and V(w) g KLY A(U)g’tf
are perverse is an immediate consequence of (1) and (2). O

Remark 9.7.4. The statements of lemma [0.7.3] are obviously still true if one
forgets one side of the equivariance: for example, the functor A(w) gr ™Y (=) :
t!

DTN X)igr,) = DTN\ X)o7, ) is still left t-exact for the perverse -
structure. ' '

The following result is copied from [BY] Proposition 4.3.4].

Lemma 9.7.5. Consider t,t',t" € T,/ in the same W-orbit. For T € ]A)[t//,t,]
and T’ € lA)[t/’t] two tilting objects, the convolution T %7’ is again a tilting
object.
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Proof. First, thanks to lemma it suffices to show that W%(??ﬂ') =
y?ﬁ(ﬂ’) is tilting in D (2 /1)y o). The object w]’i(ﬂ’) ii tilting in ©(Z/]
T) [t/,27], SO it admits a A-filtration. Similarly, 7 admits a V-filtration. Con-
sider  and y two elements of W such that A(z) o appears in a A-filtration

of ﬁ(f’) and ﬁy’y appears in a A-filtration of 7. One has the following
isomorphisms:

e

Ay *A(@) gr = Ny p *For' (A(z) 1)
7l (By) %Y A(
A(y) g xLY A(x)gr. (Lemmal7.7.4)

Il

x)g;l‘ (Lemma |7.1.5))

Il

According to lemma the object 71'?(9 %.7') lies in the subcategory gener-
ated by the objects A{w) r[—n] with W € +W; and n > 0. Similar consid-
erations for (pro-) costandard filtrations imply that 7f(.7 % ') also lies in the
subcategory generated by V(w) or[n] with w €, Wy and n > 0. This readily
implies that (j,)*7i(7 % 7) and (jw)lﬂ(ﬂ;ﬂ) are perverse for any w € W.
Thanks to lemma m this tells us that .7 % .7 is tilting, and hence concludes
the proof. O

Proposition 9.7.6. Consider four elements t1,ta,t3,ts € T, in the same W-
orbit. Fix three blocks

6 € t4wt3) B € tgwt2? 0 € tzwtl'

Finally, let o be the block 63y € W, . Then for any w € § and any v € v, we
have an isomorphism

Aw,tg * 9wglax7t2* Av,tl = ngax,ty

~

Proof. Of course it suffices to show that we have isomorphisms ﬁwgﬂa’zb; Av,tl =
§w2‘3x7t1 and Ew,m;?wg‘a",tz e ?wgnﬁaxh. We start by showing the first iso-
morphism. It is enough to show that

T (w§™) gr % AW) g1 = T (WE) 7 - (9.7.1)

Indeed, we have ﬁl (/ﬁ\wgnax,tﬁ Ev,tl) = ﬂ(wg‘a")gtg *LY A(/U)g’il‘l. If we can
show isomorphism (9.7.1)), then lemma m will tell us that ngxax,tz;\ ﬁv’tl is
tilting, and proposition will give us ng'“,tz; ﬁv’tl = /y\wg‘j",tl-
We will show thaF y(w‘é’ax)gg *LY A(v)gtT1 is the projective cover of the
simple object IC(wg,") in the category P(2" JT), 7). Thanks to lemma
’ 1

.3.4] this will prove the existence of the wished-for isomorphism. First, since

9.3.4] this will the exist f the wished-for i hi First, si

T (wg*™) o7 admits a V-filtration, lemma tells us that the convolution
2
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ﬂ(wglax)_gzz *LY A(v) 1 is a perverse object. Let us show that it is projective.

As explained in lemma it suffices to show that
Bxthory,, e (75 g« A@) oz, A)er)
X7

(7 (Wg™) gz ¥ Av) gz, Ax) o1 [i]) = 0

= Hom
DXy, 27 )

for any A(z)gr in P(2 JT)y, o7 and any i > 0. We use the fact that
t1 =zt

(=) *¥Y V(v71) yr gives an equivalence
t2
DX Ty, 2m) = DXJT) 11y 07}
with quasi-inverse (=) Y A(v) or (see lemma . Thus we have to consider
t1

Homz)(xyr)[ 7(w?ax)$g7A(m)$tTl Y V(U_l)zg [4])-

1,3,33"2] (
The latter Hom-space is isomorphic to
‘ LY -1
EXt%(Xﬁ)[tS,gg;](y(wg]ax)fz;»A(T/)thl * V(v )3{2)»

which is zero since 7 (wj®™)r is projective in PB(2" JT)y, or ;. Finally,
2 ’ 2
T (wg™) o1 * Y A(v) g7 is a projective perverse object.
2 1
We now proceed to show that this object is indeed the projective cover of

the IC-sheaf with minimal support in the block (2 /T)[Bt;’ At Fix z € 8.
) tl

We have to show the following;:

max

Homg(arpry, o (T (WE™) gz £ A(v) o7 1C(x) 27)
t1

k if 2 = wiin
= By
{ 0 otherwise. (9.72)
We will abbreviate Homm(‘%ﬁ)[tsyi”gl by Homm(t&h) and Homg(xﬁ)[t&y?l] by

Homg 4, 4,) (and similarly for other monodromies). Once again we use the
equivalence (—) «¥¥ V(v~1) o7 . We want to determine
2

Homg(ts_’til)(y(’wglax)gz; , IC(m)gz"l LY V(’l}_l)gz"z), (9.7.3)

first in the case z # wg‘,;n We proceed by induction on ¢(x). Precisely, we show
by induction on ¢(z) the following property:

“For any block 3 € ,W, , any block v € ¢,W, and any elements v € 7,
x € By with x # wﬁm;“, the space (9.7.3)) is zero.”
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We will allow the block § to vary during the induction. If £(z) = 1, then 2 must
be a simple reflection s of W lying in W (since z is not minimal in its block by
assumption). In this case, taking into account the equivalence of lemma
the object Ic(l')g’tfl is the image of IC(S)gtLlS under the forgetful functor

FOT? :‘B(Ls x Qs /T)[gfl‘f"ztﬁ] — m(BS x A /T)[gﬁb’gz“l]
=PI JT) 127 27

In particular, this perverse sheaf is _2” »-equivariant on the left. Then, this is
also the case for the composition factors of the perverse cohomology objects
of IC(x) 2T *Y v (v 27 (since the above forgetful functor preserves simple
perverse sheaves). In particular, these composition factors, which are indexed by
elements lying in the block 3, are constructible for the L¢-orbits, so in particular
indexed by element y of W satisfying sy < y. This readily implies that none
of these factors is isomorphic to IC(w m‘“) 27 since wgli“ is minimal in 5 and
sw m”‘ belongs to 6, we necessarlly have swg‘i“ > wg‘i“

Assume that ( is true for any z of length n > 1, with = # wmln and
consider an element T of length n + 1 in B. There exists s a simple reﬂectlon
in W satisfying sz < x. If s € W, then the exact same argument as in the
case £(z) = 1 allows us to conclude that is true for our «.

If s ¢ W¢, then s is minimal in the block it belongs to. Since x is not
minimal in its block the product sz cannot be minimal in its own block, by
virtue of lemma Convolution on the left with the object Ag 4y = Vg s 1S
an equivalence

P2 [Ty 271 = B2 T (503,27 )
Applying this functor to (9.7.3)), we get the space
Homsp(s(tg),ﬁ)(y(swg“ax)gg,IC(sx)gtTl KLY V(v_l)fg).

The element swj'®* is maximal in its block (again thanks to lemma |5.1.2) and
so we can conclude that this Hom-space is zero by induction hypothesis. We
proved the case “otherwise” of .

It remains to show the case £ = w%i". Since z is assumed to be minimal,
convolution on the left with IC(JC)Q%T1 maps IC(y)gz; to IC(.’L‘y)gZ‘Z for any

y € ¢, W;,. Lemma implies that there is only one composition factor of
the perverse object IC(x )ipT *Y v (p~1 )gT which is isomorphic to IC(w mln)g;];
(namely, IC(z) 2T *Y 10(w m‘“) 27, ). Lemma implies that the Hom-space
(19.7.3) is one d1mens10nal and thus we ﬁnally proved -

To prove the isomorphism Aw tg x 9 max f = 3 wmpx gy, ONE can use the ex-
act same argument, replacing 7} by the functor Ale) 27 %(—) and using remark
@53l The details are left to the reader. O
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We deduce from the preceding proposition the following.

Corollary 9.7.7. Consider three elements t,t',t" € T,/ in the same W -orbit.
Let v € t/Wt and B € W, be any fized blocks. Consider T a tilting object in
p?

4] Then the convolutions

and 9 a tilting object in P[t,, e

— — — —/
y * wa{ﬂax7t and ngnax)t/ * y

are isomorphic to direct sums of copies of ngm,t.
y

Proof. Let us prove only the first isomorphism the other one can be proved
similarly. Being tilting, the object 9 admits a A- filtration, that is, we have
exact sequences of the form 9 — 71+1 —» Aw ¢ for {f}l 1,...n a family of
subobjects (and as such, tilting obJectS) of 7 and w; € . Convolving these
exact sequences on the right with 7 wma ¢ and using lemmas 9 .5 and 9

we obtaln an exact sequence whose terms are all tilting obJects the thlr

being 9 max . Now one remark that any extension between tilting obJects is
split (usmg the equalities ([7.8.1)) for example). The lemma then follows by an
easy induction argument. O

9.8 The objects /f\syt and 7 (s) gr

t

We finish this chapter with a study of (pro-) tilting objects associated to simple
reflections of Wy. In particular, we show that these objects are “constructed as
in the classical case”, that is to say, have the correct standard and costandard
filtrations. We then proceed to describe the monodromy of these tilting objects.
Finally, the results obtained allow us to describe quite explicitly the effect of
convolution with such an object, and we obtain as a corollary a “Bott—Samelson”
type description of tilting objects in the neutral block.

9.8.1 Standard and costandard filtrations

We begin by the description of the object 7 (s) % for s a reflection in W, simple
in Wy. We show that the objects A(s) »r and A(e) o7 appear with multiplicity
one (and are the only standards that appear) in a standard filtration of 7 (s) 1
and similarly for the objects V(e) 7 and V(s)r in a costandard filtration.

Together with lemma m this will imply a similar claim for the object /ﬂ\s,t.
Assume first that s is simple in W (and so s is also simple in Wy). From
lemma [8.2.9] we get an exact sequence

IC(e)fz" — A(S)g’tf —» IC(S)gT

h 3

and this sequence is non split, because A(s) T does not admit any nonzero
map to IC(e) Pz Similarly, we have a non split exact sequence

IC(S)Ef — V(S)th — IC(e)gT
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Lemma implies that 7 (s) or admits a standard filtration with subquo-
tients given by A(s)gr and A(e) or, as well as a costandard filtration with
subquotients given by V(e) o7 and V(s) 1.

The case s simple in W

We now treat the case s simple in W but not simple in W. According to lemma

we have _ .
s = w}jmn ap wgmn,fl’
with 8 a block in (say) W, and r € Wy a reflection, simple in W. Now we
N ~ min,—1 .
use lemma to get that the functor Awgﬂi”, * (=) #LY A(wg )r is an

equivalence of categories
UL w27 = UL [T, 27)-

We deduce (using proposition and lemma and its proof) from the
case s simple in W that 7 (s) v admits a standard filtration with two subquo-
tients, given by A(s)er and A(e)g’tl", as well as a costandard filtration with
subquotients given by V(e) o7 and V(s) »r.

9.8.2 Monodromy
As explained in subsection we have a fully faithful functor

PTN Z)T) 27 211 = B2 [JT) - 277

In fact, lemma [0.8.1] easily implies that this functor induces an equivalence

PN\ 2)T) g7 7] — B(Z [T),27)- (9.8.1)

Lemma 9.8.1. Consider t € T,Y and s a simple reflection in W7. Then
T (s)gr does not belong to the category B(T' \ 2" [ T) o7 o1, i-e. this ob-
ject does not belong to the essential image of the above functor.

Before giving the proof, let us recall a few standard facts: first, on the
equivariant cohomology HY, ({pt}, k), for H a complex algebraic torus: we have
HE ({pt}, k) = 0 and H% ({pt},k) = k®zX*(H). An isomorphism can be
constructed in the following way. For a character A € X*(H), consider the H-
space Cy, where the action of h € H is given by multiplication by A(h). The
closed subvariety {0} is H-stable for this action; let ifg) : {0} < Cx be the
inclusion. The adjunction morphisms

(igoy)i(i0}) ke, —= ke, = (ioy)«(i0})" ke,

define an element in Hom pe (10} 1) (Ko, ko3 [2]) = H?, ({0}, k), which is defined
to be the image of .

Then, for « the root associated to s as in the statement of the lemma, we
have (a,a") = 2. Since for any character A € X*(T'), we have (\,a") € Z, this
implies that @ = pA with A a character and p € Z a prime number is possible
only for p = 2.
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Proof. We know that the object 7 (s) o7 is a non-split extension of A(e) o by
A(s) o7 in the category PB(Z" JT)_ 7). The proof consists in showing that

EX%(T\MD%W;] (A(e) g1, A(s) o) = 0.

We use the isomorphism

Extyyry o),y r (B(€) 27 M) 27)
= Hompry o)z (B(€) 27, A(8) 7 [1]).
Let us first show that it suffices to consider the case where s € Wy is simple

in W. In fact, as in the end of subsection [9.8.1} for s simple in W¢, we can
write s = wg'™ - - wg‘ln’_l for some block 8 € W, and r € W;. The functor

A(wg™) 27 KLY (=) %Y A(wgﬁn’_l) <7, then induces an isomorphism

Hotss (1,211, 7, (A(€) 27, AW (1))
o Homm(T\%yr)[zﬁth] (A(e) g1, A(s) 27 [1]).

From now on, we assume that s is simple in W; let us abbreviate (7' \ 2"/
T) g1 1) = D(t,t). From the short exact sequence IC(e) o7 — A(s) pr —
C(s) 2T, We obtain the following long exact sequence:

Homg ) (IC(e) &1, 1C(e) 7 [1]) = Homp ¢ 1) (IC(e) 1, A(s) &r[1])
— Homp ¢,)(IC(€) 27, 1C(s) &1 [1]) = Homp ¢ 1) (IC(e) 1, IC(€) 27 [2]).
We will evaluate these four terms. We start with the first and fourth ones.

Using adjunction, we have to evaluate

Homa 7y 21, (27 21

2T 2T
with ¢ = 1,2. With the isomorphism T' & 2, this amounts to evaluating

Homo 1y 1m), : 7, 27 ).

T T
_Z’t ,Zt

Now let us fix a finite central isogeny v : T — T asin 94.1.1] Recall the following
facts: the pushforward v, ks splits as a direct sum of simple local systems, and

2T is a direct summand there; the category (T \\ T [JT) g7 o7 is a full

subcategory in Dbfxf(T .k). Moreover, there is no nonzero morphism from .£7
to any other direct summand in v, kf. We thus have

HOIH@(T\T/T)[%TV%T] (gtTa ftT [i]) = HomD%X%(T,k) (gtTa Vi kf [4]).

Using adjunction and the isomorphism v* £7 = k7, we now have to evaluate

HomD%X%(f,k) (kg ki) = H%({Pt}a k).
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This is well known to be zero if i = 1 and (isomorphic to) k @z X*(T) for i = 2,
as stated before the proof of the lemma.

We now deal with the term Homg4,¢)(IC(e) o7,1C(s) o7 [1]). Since s € Wy,
we have IC(s) 1 = (Je,s) £ °[1] (see for the notation). The Hom-space
we wish to understand is then isomorphic to

Hompy (g 0((Je) £5, Z77°(2]).
(B),TxT
(Here we used the same considerations as above on equivariant categories.) Let
20 = Z,~{5tU, | t € T}; this variety is T x T-stable. The map Uy xT — 2°
given by (u 9) — ubU is easily seen to be an isomorphism of varieties. It is
moreover T’ x T—equlvarlant if we let this group act via

(tl,tz) . (U, 9) = (l/(t1)u1/(t1)71, V(tl)olj(tg)).

Note that U_ is an affine space of dimension 1; considering the isomorphism
U_qo + Al — U; (see subsection 7 we get that the action of the element
(t1,t2) on U is given by multiplication by the element —a(t).

Restriction along the map i§ : 2 — Z; then gives an isomorphism

Homp, gy ((Ge) £7, 277°(2])

(B),TXT
= Homps (00((09)" () 25, (1) 27 [2).
We have
Hompe (o (05)" () 25, 2" 27 2)

gHomD%ﬁ(Us’ xT'k) <k{e} &gtT’kUJ ggtT[Z])
=Hompy - r (kgey @ 27 ky- B, kz[2)
gHomD%X%(U.:xT,k) (ke Mk, kpy - Kkz[2])

= Homef(U;,lk) (Key- ky-[2]).

(The last isomorphism follows from the induction equivalence). The latter space
is one-dimensional over k, a basis being given by the adjunction map induced
by the inclusion i, : {e} — U .

Finally, the morphism

Homg 1) (IC(e) o7, 1C(s) o7 [1]) = Homg 1,4)(IC(e) o7, 1C(e) £7[2])

considered above identifies with the map
HOYHD%(U;,E() (Keey- ky-[2]) = Hompp (e} 1) (ke kiey [2]) (9.8.2)
induced by the adjunction morphism

by (102 () by =Dy
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From the fact recalled before the proof of the lemma, we see that the mor-
phism identifies with the morphism k — k®y X*(T) induced by the
inclusion {a} < X*(T) (a being viewed as a character of T via the isogeny
v). This map is injective (see the facts above the proof, and recall that the
characteristic of k is assumed to be different from 2), so that finally the space
Homg4,¢)(IC(e) 1, A(s) o7 [1]) is zero and the proof is complete. O

Proposition 9.8.2. Consider t € T, and s a simple reflection in W¢. Then

the map
R; ®(§t)wr0 R; — End(gs,t)

of lemmal[9.6.5 is a surjective morphism of algebras.
Proof. According to lemma item (2), we have an isomorphism

—

End(7(s) or) 2 End(J ) ®p, ke .
Thanks to Nakayama’s lemma, it suffices to show that the induced map
Ry ® g, wp ke = End(7 (s) o7)
is surjective. Now this map fits in a commutative diagram

N Wl,ﬂ(s)gT
t

Ry End(7 (s) or)

~ 7

Rt ®(13bt)wt0 kt

where the left map is the natural quotient morphism. Thus is suffices to see that
©1,7(s) ,r 18 surjective. The description of ﬁ(s)gtr given in subsection
t

allows us to see that End(.7 (s) r) is two-dimensional over k. Thus we must
show that the image of ; 7(y), is not reduced to k -id. But according to lemma
if this were the case, then the object 7 (s)4r would lie in the category
BT\ 2 [JT);gr 7). This is not true according to 1emma|&| (and (9.8.1))).
This fact concludes our proof. O

9.9 Bott—Samelson description of tilting cate-
gories

We use here the results of the preceding subsection to derive useful descriptions
of the categories of pro-tilting and tilting objects.
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Lemma 9.9.1. Lett,t' € T, be two elements in the same W -orbit and consider
s a simple reflection of W¢. For any tilting perverse sheaf & € Ty, the
convolution T s %7 1is a tilting perverse sheaf and we have

— — o~ —

(7657 : D) = (T : Ry) + (7 : Ayuopr)
for any w € Wy

Proof. The proof is (very closely) inspired by [BeR) Lemme 7.8]. There is a
slight difference however, due to the fact that the length functions on W and
W do not match. The strategy is nonetheless the same: we claim that for any
w € Wy, the object /jsiiﬁw,y admits a standard filtration, in which the

(o)

multiplicity of Av)t/ (for v € W) is one if v € {w,sw} and zero otherwise.
According to lemma [5.1.5] there exists a t” in the W-orbit of ¢ such that we can

min

write s = w rw%ﬂn with 8 a block of ;W ,,, and /3 the “opposite” corresponding
block in W, (that is, 8 = {w € W, | w™ € 8}), and r € W, simple in

min min,

W. (Of course, we have wg™ = wp 71, but we choose the former notation to
emphasize the fact that this element is minimal in its block.) Using the results
of subsection we have two distinguished triangles

As,t — yw — Ae,t —

and

~

— ~ +1
Ve,t — ys,t — Vs,t —_— .

Assume that rw@ityw > w%‘inw (for the Bruhat order on W). Then, using
corollary we have

1

Bot® B 2 Byppin 0¥ Bypr Ry B

1

Awg‘i“'rw%‘i“w,t’
= Asw,t’ .
Convolving the first distinguished triangle above with Ew,t/ on the right, we get

~ —~ -~ ~ +1
Asw,t’ — ysﬁt* Au),t’ — Aw,t/ — .

We now consider the case rw%’mw < w%’m

distinguished triangle; the same kind of arguments as those used above allow us
to get a distinguished triangle

w. We apply (—)* ﬁwt/ to the second

—~ — __~ ~ +1
Aw,t/ — gs,t*Aw,t’ — Asw,t/ .

These triangles readily imply our claim; together with lemma they give
the lemma. (Alternatively, one could use a similar reasoning to show that

g 87,5?@“,7,5/ admits a costandard filtration for any w € W2.) O
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We deduce from lemma [9.9.]] - the following corollary, that provides a “Bott—

Samelson” description of T; [t o

Corollary 9.9.2. Let t,t' € T} be two elements in the same W-orbit, and let
B € vW, be any block.

1. The objects in T[t, 4

form A wiin g *95 ax(- );/«7\51,15 for any family {s;}; of simple reflections

are direct sums of direct summands of objects of the

in W2. In particular, for 8 =W¢, we have

Tﬁ,t]—< at|555t> c 0 8

2. The objects of (X [JT)?
objects of the form

.27 4Te direct sums of direct summands of

Awg‘i“,t * T 5ok (- )% T sy % A(e) o
for any family {s;}; of simple reflections in Wy .

Proof. Thanks to lemma the functor ﬁwg)m’t *(—) induces an equivalence
on tilting categories thus it suffices to prove the corollary for 8 = W;°. Lemma

9.9.1| implies that ( st | 8 €8Sy o is a full subcategory of T

(one could
%*,6,C

[t,t]

y Uy =

alternatively use lemma m to see this fact). Indeed, consider an object 7€
(T st ]s€8:) o given as a successive convolution product of object of the
*,®,C

form /j&t. The description of the standard filtrations of /ﬁ\s,t given in subsection
[0:871] together with lemma [9.9.1] imply that the only standard objects that can
appear in standard filtration of 7 are indexed by element of W. Now /j/ is a
direct summand of /ﬁ\, it is tilting too and the standard appearing in a standard
filtration have to be chosen in the standard appearing in a standard filtration
of 7. By definition of the neutral block, we get our assertion.

Now to prove the Corollaury7 it suffices to show that any indecomposable

tilting perverse sheaf in [t 4 is a direct summand in an object of the form

§Sr7t*(' .- )*ﬂsl,t. Recall that these indecomposable objects are parametrized
by elements in W;?. For w in this group, choose a reduced expression w =
(Sry...,81) in W (that is, with s; € Sy for all 7). Set

T(w) = T s, a5 (- 5T 5115
it readily follows from lemma 1| that the object ﬁwt appears in a pro-
standard filtration of J (w) with multlphmty one, and that w is the unique

maximal element in the set {v € Wy | ( (w) - A, t) ;é 0} (for the Bruhat order
of W¢, hence also for the Bruhat order of W, see ) These considerations

imply that /ﬂ\w,t appears as a direct summand in f (Q) This settles the proof
of the first assertion, and the second one immediately follows. O
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Corollary 9.9.3. For anyw € WS, the objects Ev,t appearing in a pro-standard
filtration of /jmt are indexed by elements v € W satisfying v <; w. A similar
statement holds for 7 (w) o1

Proof. Let us fix a reduced expression w = (sm ...,s1) of win WY. As in the
proof of corollary. we see that the object 7 w,t appears as a direct summand
in (7(7) = /ﬁ\smt*( )*ﬂsl,t. It follows that the pro-standard appearing in a
A-filtration of /ﬂ\mt already appear in a standard filtration of ?(M) Lemma
9.9.1| ensures that the latter objects are of the form ﬁv,t with v <; w. This
concludes the proof.

The fact that the lemma is true for 7 (w)yr can be seen using the exact
same kind of arguments, or as a direct consequence of lemma [7.8.9] O

Corollary 9.9.4. Let w € W and (s;,...,s1) any reduced expression of w
in (W?,S¢). The object /jw,t s characterized as the only direct summand in
/ﬂ\s ke Q/g\sl ¢+ that does not appear as a direct summand in any product of
the form 95 ke */7\8/ + with s, € Sy and j <.
A similar statement holds for T (w) gr.

Proof. The arguments used in the proof of corollary imply that /ﬁw,t
cannot appear as a direct summand in a convolution product /y\s;,t;\' . ~3§§5/1 t
with j < r, because ﬁw,t cannot appear in a standard filtration of this object.

Since for any v € Wy and any reduced expression (s;, ..., 81) of v in WY the

object /y\v,t does occur as a direct summand in /9\591,532- . ~§<\/§\S/17t, the unicity of
the statement is clear.
The proof in the Lusztig—Yun case is similar. O

9.10 The functors V

We introduce here our Soergel functors on tilting objects Fix t,¢ € T, in the
same W-orbit and choose a block 8 € yW,. Let A? := End(7 (w wg™) or) and

AB = End(ﬂ max ;). According to lemma we have an isomorphism
A] = A 95 k. (9.10.1)
We define two functors:
PLIT) g — Mod(47),

F = Homgapryy . (T W5 2p, 7)

and
¥, : Y, — Mod(A})%,
/Jo: — Homlgf ](? max t,f}’)
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Here, Mod(AtB )& denotes the category of finitely generated right Af -modules
(and similarly for Mod(A?)®). In the case t = ¢ and 8 = Wy, we denote V¢
and @: the corresponding functors.

We aim to show that the various functors V are fully faithful. We can define
functors Ttﬁ and '/ff in the other direction. We detail the construction of Tf
below.

Let Free(AY) be the full subcategory of Mod®®(A”) whose objects are finite-
type free Af -modules. Note that this category is equivalent to the category Z§0
whose objects are the integers in Zx>, and with morphisms given by B

Homyr (m,n) := Matpxm (A7),

the nxm matrices with coefficients in Af . By definition of Af , we have a natural
additive functor Free(AY) — B(2° /T)[B_yg?] sending A? to T (wg'™) or. This
functor upgrades to

K~ Free(A}) — K~ P(2[T)] 4r

o = DTR(ZYT)]

2P

where K~ (—) denotes the (bounded below) homotopy category. Now one can
check that the natural functor K ~Free(4Y) — D~ Mod™(A?) is an equivalence
For M € Mod®(A?), we then let T (wg™) 1 @ 46 M be the image of M under
the composition

Mod® (A7) — D~ Mod®(A?) = K~ Free(A}) — K*‘B(%iT)f_ P

¢
8 P (-)

= D™R(ZYT)] yr) = B(ZIT)] ).

This defines a functor denoted Y7 (M) : Mod®(AP) — ‘B(%/T)[B_ At In a

completely analogous way, we define a functor 'Y"f : Mod'® (gf ) — ﬁﬁ g by
setting Y7 (M) := /f\ngax,t ® 78 M' for M’ an AP-module.

Note that for a finitely generated Af -module M, since Af is noetherian, we
can find two finite dimensional k;-vector spaces V1, V5 and an exact sequence in
Mod(A?)fe

Af@ktV1—>Af®ktV2—>M—>O.

This yields a map

T (wg™) g1 ®k, Vi — T (Wg™) 1 Rk, Va;

and Tf (M) can be described as the cokernel of this map. A similar description

holds for ’Yf ; moreover, one can check that this description does not depend on
the choices of V4 and V3, see [KS2| §8.5] for more details.

Lemma 9.10.1. 1) The couples of functors (Y5, V?) and (?E,@f) form adjoint
pairs.
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2) The adjunction morphism id — Vf OTf s an isomorphism.
3) For any finitely generated right Atﬁ -module M, we have

P A (x5 (M) = TY (M @ 35 ko).

Proof. We prove 1) in the case (T7,V?), the other one is similar. We must
show that for any M € Mod(AY)® and .7 € P(2 /T)?_ o) We have an

isomorphism HomAf(M7 VP (7)) = Homgy, 4y (TP (M), 7). As above,

B
-.2T
we can identify M with the cokernel of some map Af Rk, Vi — Atﬁ ®k, Va, so
that we have an exact sequence

T (W§™) gr ®u, Vi — T (WE™) por @, Vo — T (M) =0

for some finite dimensional k;-vector spaces Vi, V5. Apply the Hom-functor

Homgy, 4, (—,.%) to obtain an exact sequence

B
-7
0= Homy o rrs (Y] (M),.F) = VI (F) @, Vs = Vi (F) @, V7.

[-.2T]
(9.10.2)
(where V;* denotes the dual vector space). Thus to conclude, we must show that
Hom 5 (M, V?(F)) identifies with the kernel of the above map V? (%) @y, Vo —

Vf (F) ®k, V1. Start from the exact sequence
Af@ktvl—)Af@ktVQ%M—)O

and apply the functor Hom ;s (—, VP(F)). We obtain an exact sequence
t

Hom ;5 (M, V(F)) < Hom 45 (A} @y, Vo, V(F)) — Hom s (A} @, Vi, V(F)).

' ' ' (9.10.3)
Under the canonical identifications Hom AP (Af Rk, Vi, Vf (F)) = Vf @y, Vi for
1 = 1,2, the second map in identifies with the second map in

and thus we have an isomorphism

(Y[ (M), F);

Hom 45 (M, V(7)) = Hom,,
¢ ]

CY

this concludes the proof.

Point 2) is clear from the description of Tf using cokernels and the fact that

V? is exact since T (wg'™) o7 is a projective object.

Finally, we prove 3). For M as in the statement, we find V1, V two k;-vector
spaces yielding an exact sequence

AP @, Vi —» AP @y, Vo = M — 0. (9.10.4)

We deduce an exact sequence in 13[5_ 4

ng‘ax,t Rk, Vi — nglax,t Rk, Vo — Tf — 0.
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Apply P57 OOﬂ to this exact sequence; this functor is right-exact for the perverse
t-structure (see corollary [7.8.5]) and by definition, we have

P o W%(ngﬂa",t) = W%(yw;“"yt) = T(wi™) gt

B

Thus we get an exact sequence in P(2" iT)[* 7]

T (™) pr @k, Vi — T (WE™) g1 @y, Vo — P (7t (T7)) — 0.

Now, as stated above, we have Af &~ ﬁf ®p, ki, and using (9.10.4), we see that
P (rt(Y})) indeed identifies with Y7 (M @ g5 ky). O

Proposition 9.10.2. Fiz t,t' € T, in the same W-orbit and choose a block
B € v Wy. Then the functors Vf and @f are fully faithful on tilting objects.
Said otherwise, for any 7,7 € T(X /T)f_ 2T the functor Vf induces
=Lt
an isomorphism

Homy g prys ](97 7") = Hom 45 (V] (7), V(7).

-7
—_ ~ ~
Similarly, for any 7,7 € Tf_7t], the functor Vf induces an isomorphism
— -~ ~B =~ ~B —/
Homﬁf_,t] (7,7 )= Homgf (V. (9),V, (7).

Proof. The proof given here is similar to the one in [BY] §4.7]. We prove
first the case of the functor Vf . Consider thus two tilting objects .7, .7’ €
%(%/T)[B_ o7 We have an adjunction map

V(T — 7. (9.10.5)

Since Vf on 2 id, one can see that the image of this map under Vf identifies
with the identity of V?(.7). Thus the kernel and cokernel of are killed
by Vf . By virtue of proposition this means that this kernel and cokernel
do not admit IC(wg‘in) o7 as composition factor. This already tells us that
the cokernel is zero: as 7 is a direct sum of indecomposable tilting in T(Z" /
DL gy
7 to an IC(w) or with w # wg‘i“, and thus similarly for an object that is an
extension of such simples.

Let 2# denote the kernel of . To conclude, it suffices to show that

we have

proposition implies that there is no nonzero morphisms from

Homyy g5y (X, T =0

-271

for any tilting object .7”. But this follows directly from proposition again.
Thus we have

Homg gy (7,T") = Homm(%mfﬁ,% (Y7 (V) (7)), 7

-7
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and we conclude by adjunction.
—/

We follow the same strategy for %A’f consider two tilting objects /9\, T .
Once again, we have an adjunction morphism

V(7)) — 7. (9.10.6)

Let # and € be respectively the kernel and cokernel of this map, so that we
have an exact sequence

0 X V(TN T =% >0 (9.10.7)
in ﬁ[_yt]. This time we cannot say that the kernel and cokernel are killed by the

functor V, directly. Instead, we apply the functor P AP orrt to the central map

of (9.10.7). Using the point 3) of lemma [9.10.1 and point 2) of lemma [9.4.2}

what we get is the adjunction map
(VI (rL(T))) — 7i(T) (9.10.8)

(since 7 is tilting, m} (/9\) is already perverse, so no need for ? 7#° on the right
side). Thanks to the first part of this proof, we know that this map is surjective.
Thus the (perverse) cokernel % is killed by ? #° ow%‘; and is thus zero according
to lemma Once again, in order to conclude our proof, it suffices to show
that there are no non-zero map from X to any tilting object in ﬁ[_, " Since
any tilting .7’ admits a pro-standard filtration, it suffices to show that

Homf)[,,,,] (A, ﬁw,t) =0

for any w € B. By definition of the morphism-spaces between pro-objects, we
have L
Homﬁh (A Apr) = lim Homp

% n
t] [—,t] (’%/7 Aw,t)'
We can then reduce our calculation to Homf)[_ . (f//”‘?7 AL ¢) = 0 for any n > 0.
Even more, recall that Ay, , is the (shifted) extension by zero of the local system

Ly, on 2y, and the latter local system is a successive extension of .Z’. We

can finally just show that
Homﬁ[_ﬂ (%, Aqll;,t) = Homﬁ[_ﬂ (L%/, Aw,t) = 0.

But now A, ¢ = Fort(A(w)gtT); using the adjunction (w?, For;) proved in lemma
[(-1.3] we get
Homp, (A, Aws) = Homo (agry_p (7H(H), Alw) £7)-

Since ﬂ'fr is right t-exact (and A(w) o7 is perverse), the later space is isomorphic
to

Homm(%ﬁ)[ﬁj?](zo) (Pr=0(mi (H)), A(w) )

= Homy (2 ) p, ("H°(7H(H)), Alw) 7).

T
L]
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The exact sequence (9.10.7) can be written as a distinguished triangle
7SV (7)) T

Applying P57 007r$ to this triangle and using the long exact sequence for perverse
cohomology, we get

< AN T (T) = 2w () = XL (V] (e (T)) =
The first term is zero, so that P70 (mt (J/i\/)) identifies with the kernel of (9.10.8)).
From the first part of this proof, we then know that this kernel does not admits
IC(wg‘in) 7 as composition factor. We can finally conclude that

Homss(argry, g, (" (THH)), Alw) g7) =0,

which finishes the proof. O
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Chapter 10

Constructions on modules
and Endomorphismensatz

10.1 Variations on the Pittie—Steinberg theorem

10.1.1 General setting

Let H be a semisimple simply-connected algebraic group over an algebraically
closed field K. Fix a maximal torus Ty in H and let X*(Ty) be the character
lattice of Ty. We also denote by Wy the Weyl group of the pair (H,Ty). The
algebra Z[X* (T )] admits a natural action of Wy by algebra automorphisms; we
set Z[X*(Ty)]"W# for the subalgebra of Wy-invariants elements (more generally,
for algebras endowed with an action of Wy, a superscript Wy will denote Wg-
invariants). In this setting we have the following result (see [St, Theorems 1.1
and 1.3]), known as the Pittie-Steinberg theorem:

Theorem 10.1.1. The Z[X*(Tx)]|"# -module Z[X* (T4 )] is free of rank |Wg|.

In [BeR], Bezrukavnikov and Riche consider a variation of theorem
They start with a complex semisimple adjoint algebraic group G and a fixed
maximal torus T; the K-dual of such a group is then a semisimple simply-
connected K-group. Denote by K[X,(T)]; the completion of K[X,(T)] with
respect to the maximal augmentation ideal (e’ — 1 | A € X, (T)). This com-
pletion admits a natural action of the Weyl group Wg of G. From theorem
the authors of loc. cit. then deduce the following consequence (see [BeR|,
Theorem 8.1]):

Theorem 10.1.2. The (K[X.(T)]1)"¢ -module K[X.(T)]} is free of rank |Wg|.

We aim to show that theorem [10.1.2]is in fact true in a different setting,
namely for any complex reductive group for which the characteristic £ of K is
good, and instead of 1, any central element.
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We start by giving a slightly different version of the (usual) Pittie-Steinberg
theorem. The following arguments are almost verbatim those of Steinberg; we
give a detailed exposition essentially because we consider only a particular case
(namely W’ = {1} with the notation of [St], §2]). Let us first set some notation:
as above, let H be a reductive algebraic group over an algebraically closed
field K and fix a maximal torus T' C H; we have an associated root datum
(X*(T), ®,X,(T),®Y). Let W denote the Weyl group of (H,T); @ be a subset
of positive roots and let II C @, be the subset of simple roots. Recall that
X*(T) identifies with the dual of the cocharacter lattice Homy (X, (T),Z) via
the usual duality pairing (-,-) : X*(T') x X, (T') — Z. We will consider the usual
partial order on X*(7T'): recall that we say that A > p if A — u is a sum of simple
roots.

Assume that the quotient

X,(T)) Z®Y

is free as a Z-module, i.e. that the derived subgroup of H is simply connected.
(It follows from the definition of “simply connected”, see [Jl II, §1.6, (4)], and
from the description of the cocharacter lattice of the derived subgroup, given
e.g. in [Jl I, §, 1.18] that the two conditions are indeed equivalent.) Then there
exists a complement F to Z®Y in X,(T). For any simple root a, we define a
“fundamental weight” ¢, € X*(T) by

<§a76v> :6(1,57 (§a)‘E:O

for 8V any simple coroot; note that this character is dominant. For any v € W,
define an element A, € X*(T') as

Ay 1= E Sa - (10.1.1)
a€ell
v (a)<0

Set ¢ := Y cmSa and p := 23 4. . Note that p is not a character in
general; it is only defined in Q ®z X*(T).

Theorem 10.1.3. In the above setting, Z[X*(T)] is a free Z[X*(T)]" -module,
of rank |W|. Moreover, there exists a basis (cy)wew of Z[X*(T)] over Z|X*(T)|W
such that

det((v(cw))vwew) = (e<)|W|/2( H (1- e—a>>\W|/2.

acd

Before the proof of the theorem, we will give some intermediary results
concerning Z[X*(T')].

Lemma 10.1.4. We use the above notation. For any w € W, we have

w(c—p)=<—p.
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Proof. We know that W = (s, | @ € II). If we show that the statement of the
lemma is true for any s, with « simple, then the lemma will be proved. For
any A € Q®z X*(T), the action of s, on A is by definition

sa(N) =X — (N aY)a.

Thus it is enough to show that (¢ — p,a") = 0 for any simple root a. But it is
immediate by definition of the element ¢ that {(¢c,a") = 1 and it is well known
that (p,@¥) = 1. This concludes the proof. O

A

For an element Y, zxe* € Z[X*(T)], we say that the term zye” is maximal

in this expression if A is maximal in the set
A e XA (T) | 2x # 0}

(which we view as a poset with the restriction of <). We will also consider
minimal terms; the definition is the exact analogue of the above one. Consider
z,y € Z[X*(T)]. Write z = Y, zxe* and y = >, Yue!" (where the sums are
finite and where each x) or y, appearing is non-zero). Assume that there is a
unique maximal term in the above expression of x corresponding to a character
Ao and fix a character p such that y,,e/° is a maximal term in the expression
of y.

Lemma 10.1.5. In the above setting, the term xx,y,,e H is mazimal in the
expression of xy.
Proof. We write
zy=3_ | 2 o |
v Apu=v
We show that there is no pair (A, u) # (Ao, o) with A appearing in the
expression of  and p in the expression of y such that

A+ p > Ao+ Ho- (10.1.2)

Consider (A, ) satisfying (10.1.2)). As Ao is the unique maximal term in the
expression of x, Ag — A is a sum of positive roots so we get that

p> po + (Ao — A) > po.

Since p is maximal, this is possible only if u = pg, and then A = A\g. Thus
(Mo, o) is the only pair of characters (A, p) such that x5y, contributes to the
coefficient of e*o#o. This shows at once that this coefficient is non-zero and
that the term zy,y,,e* "0 is maximal in the above expression of zy. O

Corollary 10.1.6. Consider two non-zero elements x, z € Z[X*(T)] such that x
divides z in this algebra. Assume that both x and z have a unique mazimal term
and a unique minimal term, and assume moreover that the mazximal and minimal
terms of x and z coincide up to a scalar. Then x = yoz with yo € Z~{0}.
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Proof. By assumption, there exists y € Z[X*(T)] such that zy = z. Thanks
to lemma we see that any maximal element in an expression of y gives
rise to a maximal element in z. But there is a unique maximal element in z, so
there must be a unique maximal element in y. Moreover, we deduce immediately
from the lemma that this maximal element of y can only be of the form yge® for
some yo € Z\{0}. With the same kind of reasoning, but replacing everywhere
“maximal” by “minimal”, we get that y = yo € Z\{0} and hence conclude the
proof. O

For any v € W, set ¢, := v~!(e*v) € Z[X*(T)], where ), is as in (10.1.1)).

Lemma 10.1.7. Let A := (ucy)ywew- For any family F = {f, vew of el-
ements in Z[X*(T)], we set By = (ufy)uvew. Let D = det(A) and Ex =
det(Bx). Then,

W] W]

1. D=(e) 7 (H(x6<1>+(1 - eia))T #0,
2. D divides Ex in Z[X*(T)] and the quotient belongs to Z[X*(T)]".

Before the proof, let us choose a total order < on W which refines the Bruhat
order and for which the length function is increasing, that is to say £(u) < £(u')
when v < u'. We order the rows and columns of A according to this order, saying
that row w is above row «’ if u < «’ (and similarly for the columns). Note that
this implies in particular that row u is above row «’ as soon as £(u) < £(u').

Remark 10.1.8. Since for any root o the element e® is invertible, e} — s, (e*)
is divisible by (e® — 1) and (1 — e~®). Indeed, we have s,(e*) = e*e™"® with
n=(\ a"). We now write

et — sq(et) = e (1 - e_"a)

e/\ (ea o 1) (1 N e(nfl)oz) e e

Proof. We show that D admits a unique maximal term, which is (eg)%
W] W]

unique minimal term which is 4(e*) 2 (e~2?) 2 . Consider the column (ucy ),
of A. For any u € W, we have

and a

Ay > uv A, (10.1.3)

since A, is dominant (see [HIl 13.2, Lemma A]); in particular, any diagonal
element is maximal in the column it belongs to.

We claim that if £(u) < £(v), we have equality in only for u = v.
Assume that equality holds, i.e. that uv ™! lies in the stabilizer of \,; it is well
known that this element is then in the subgroup of W generated by the subset
I={sq|a€cll (\,av) = 0}. By definition, this is the parabolic subgroup
Wi = (sq | @ € II, v"a > 0). [H3, 5.7, Proposition] tells us that s,v > v for
any s, € I. Hence with [H3] 5.12], we know that v is minimal (for the Bruhat
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order) in the coset Wrv and that for any w € W, we have {(wv) = £(w) + £(v).
We thus deduce that

((u) = L(uv™ ) = Lluv™) + £(v).

Under the assumption ¢(u) < £(v), this is only possible for ¢(u) = £(v), so
l(uv™t) =0 and u = v.
Now we have (for € the signature character)

det(A) = Z (5(0) H U(u)cu> .

ceS(W) ueWw

Consider a o # idy. Then there exists an element v € W such that o(u) < w,
so the above discussion implies o(u)u™tA, < A,. Since for any v € W, we have
o(v)v™t Ay < Ay, one sees that Y-, oy o(w)u™ Ay < 3, o Aus this exactly says
that [T, e ucu = [Luew € is the unique maximal term in det(A4) = D.

Now we need to determine how many times e*» appears in this product. By
definition of the elements ), the term e« makes a contribution in e* for any
v € W satisfying v 'a < 0. It is easy to see that the cardinality of the set
fveW|vla<0}is |2M for any simple root «. Thus, the maximal term of
D is

W]

(H e“’) :(e‘)%.

Now note that each w € W permutes the rows of A and hence fixes D up
to sign. We deduce that there is a unique lowest term, and that this term is
two(]] ega)ﬂz‘ where wy is the longest element of W. To determine this term
more explicitly, we must understand the action of wg on ) <o. But with
lemma we have

wo(s) = ¢ —2p.
We deduce that the lowest term of D is
W] W]

+(e5) T (e2) T

Set W

Dy = () F ( ITa —e-%) .

acdt

We show that D; divides Ex and that D = D;. Consider the |2M rows of Br
indexed by elements u € W such that v~'a < 0. If we subtract, for such a w,
row S, u from row u, each entry is divisible by (e — 1) (see remark [10.1.8). We

deduce that (e* — 1)% divides Ex. Since Z[X*(T)] is a unique factorization

domain, ], cx+(e* — 1)‘%| divides E'r too. Since (e°) is an invertible element,
FEr is divisible by D;, and so is D. It is quite clear that D; has a unique
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highest term and that this term coincides with the highest term of D, as well as
a unique lowest term which coincides up to a sign, with the lowest terms of D.
We deduce easily that D = Dy, thanks to corollary [I0.1.6] Finally, any element
of W permutes the rows of A and Bz in the same way, so that the quotient %”
is W-invariant. O

Proof of Theorem[10.1.5 Take f € Z[X*(T)]. If we can show that the system

() : (Z ) = (ufJuew

veW

admits a unique solution (a,),ew with a, € Z[X*(T)]" for any v, then the
theorem will be proved. We place ourselves in the field of fractions F :=
Frac(Z[X*(T)]). The matrix A is invertible in F' since its determinant is non-
zero (see lemma, hence, we know that in F' the system S admits a unique
solution (ay)yew -

For any v € W, denote by A, the matrix A where the column indexed by v
is replaced by (uf)uew. Using Cramer’s rule, we also know that

_ det(A,)
T et (A)

With lemma we get that in fact a, is in Z[X*(T)]", and thus we obtain
the theorem. O

10.1.2 Completed version

Let H be a reductive algebraic k-group, fix a maximal torus Ty in H and let
Wy denote the Weyl group of the pair (H, Tx). For any element ¢t € Ty, we set

R(H), := I'&nk[X*(TH)]Me’\ —At) | A e X*(Tu))™.

If ¢ is stable under the action of Wy, e.g. if ¢ is a central element, the ideal
(e* = A(t) | A € X*(Txg)) is Wi-stable, so that we have a natural action of Wg

on }A%(H)t In this case, let }A%(H)};VH be the subalgebra of W-invariants in this
algebra.

Lemma 10.1.9. Assume that X.(Ty)/ Z-®V is free as a Z-module. Then, for
any element t central in H, R(H); is free of rank |Wg| as a R(H){"™ -module.
There exists a basis (¢y)wewy of R(H); over R(H)"™ such that

det((v(cw))zw,eWH) — (6<)|WH|/2( H (1 _ efa))\WH|/2.

acd

Proof. The proof can be copied from [BeR, Theorem 8.1]; we do not reproduce
it here. Let us however explain rapidly how the it goes: the first step is to show
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that theorem holds after extension of scalars to k, which is easy. We
obtain a basis (¢,),ew, of k|X*(Ts)] over k[X*(Tx)]"# satisfying the equality
in the statement. To deal with completions, the strategy is to come back to the
definition, and view elements in R(H); as sequences (ay, ), with a, an element
in k[X*(Tx)]/(e* — A(t))". For any n, we can express a, as a linear combi-
nation of ¢,’s with coefficients in k[X*(7)]"#. One obtains sequences (bY),
in k[X*(T)]"W# for any v € Wy, and it remains to show that for each v, the
sequence (b?), converges to an element in R(H)!"# in order to show that the
elements (¢, )yew,, generate the R(H)V#-module R(H);. This in turn is done
with the help of the matrix A of lemma and the Artin-Rees lemma. [

Now we prove an analogue of lemma[I0.1.9} but with no other assumption on
H that it is reductive and some mild condition on the characteristic of k (that is
to say, we want to drop the assumption that X, (Ty)/Z ®" is free). The strategy
is to construct a finite central isogeny from a reductive group Hg. satisfying the
hypothesis of lemma to H, and deduce the wished-for property from the
one for Hy. and some standard tools of algebraic geometry.

Thus we consider again a general reductive group H over k, we fix a maximal
torus Ty. We keep the notation used above: we have the associated root datum
(X*(Ty), ®, X, (Ty),®V); we denote by (-,-) : X*(Ty) x X.(Ty) — Z the usual
perfect pairing, as well as its extension to R®z X*(Ty) X R®z X, (TH). Let
Z(H) be the derived subgroup of H, and consider the maximal torus Ty
of (H) contained in Ty. Throughout this section, we make the following
assumption:

The group X.(Ty(my)/ Z-®" does not have (-torsion.

Recall that £ denotes the characteristic of k. Here, X, (T%f)) is the cocharacter
lattice of the derived subgroup of H; this is given by (see e.g. [J| §1.18])

X (Toumn) = {z € Xo(T) | Z-2NZ-3" # 0}. (10.1.4)

Since Z(H) is a semisimple group, the above quotient is finite and our statement
amounts to saying that ¢ does not divide the order of this finite group.

We now proceed to construct effectively our group Hg.. Consider the quo-
tient X, (Tg)/Z-®V: this is a finitely generated Z-module, so it can be written
as a direct sum L @ M where L is a free (of finite rank) Z-module and M is
a finitely generated torsion (hence finite) Z-module. The inverse image of L
by the natural map X, (Ty) - X.(Tg)/Z-®V is a submodule L’ of X,(Tx).
Clearly, we have L' N Z-®¥ = {0}. We set

—_~—

X, (Ty) =27V @ L'

—_~

This is a Z-submodule of X, (T ); by construction, the quotient X, (Tx)/X.(Tx)
is finite. Let X*(Ty) C R®z X*(Ty) be its dual for the perfect paring (-, -).
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—_~— —_~—

Note that we have @V C X, (Ty) and ® C X*(Ty) C X*(Tg). Define Hy. to be
the reductive group over k whose root datum is given by

—_~—

(X*(TH)v (va*(TH)a (I)v)

—_~

By definition, the quotient X, (Tx)/Z-®V is free; in other words, the derived
group 2(Hy.) is simply connected.

Lemma 10.1.10. The natural inclusion map X.(Tomy) — Xu(ThH) induces an
isomorphism of Z-module

—~—
~

X*(TQ(H))/Z _(I)V — X*(TH)/X*(TH)

Proof. We prove first the injectivity. Consider z,2" € X, (Tyg)); from (10.1.4),
one sees that there exists a n € Z such that n(z —2’) is in Z-®Y. Thus, if z — 2’

lies in X, (Ty) = L' ®Z-9V, we get that x — 2’ lies in Z-®" and our map is
injective.

Now for the surjectivity, choose z € X.(Tx). Recall that X.(Tx)/Z @Y
splits as a direct sum L& M with L a free Z-module and M a torsion module. We
can then write the image of = in the quotient X, (Ty)/Z -®" as a sum [+ ¢ with

—_~—

l € L and c € M (note that ¢ identifies with the image of x in X, (Tw)/X«(TH)).
For any element I’ € L' whose image in X.(Ty)/Z-®" is [, the cocharacter
z — 1" € X.(Ty) maps to ¢ under the quotient map X.(Ty) - X.(Th)/Z-®Y;
since ¢ is of finite order, there exists n > 0 such that n(z — ') belongs to
Z-®". In particular z — I’ belongs to X, (Ty(g)). This concludes the proof of
the lemma. O

Thanks to the assumption made at the beginning of this section, ¢ is prime
to the order of the quotient X.(Tx)/X«(TH).

—~—

Now the inclusion X*(Ty) < X*(Ty) defines a morphism of root data (in
the sense of [J}, II, 1.13]). According to [J, II, 1.14, 1.15 and 1.17], this in turn
defines a central isogeny

vy Hye - H.

In fact, Hy. is exactly what is called a covering group in [J| §1.17]. Let T, be
the maximal torus v5;' (Tx), so that we have

—~ P

Note that we have a canonical identification of the Weyl groups of Hy. and H:
Wi, =2 Wy, We claim that the induced map

Vi THsc - TH
is an étale map. To see this, we have to show that the induced morphism

on tangent spaces at all points is an isomorphism; since we work with group
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schemes, it suffices to consider the tangent space at the neutral element, that it
to say, the Lie algebras ty,. and ty. It is well known that we have

tHsC >~k Xz X* (THSC) and tH =~k X7z X* (TH),
moreover the map tg,, — ty is induced by the natural morphism

v X (Tw,) = Xe(Th); = v o9
By construction, the map Vﬁ is injective. Our assumption on the characteristic
¢ of k implies that it does not divide the order of the cokernel X..(Ty)/ Xy (Tr..)

(see lemma [10.1.10)), so the map

k ® i
tn, 2 kX, (Th,) — k®z X, (Th) = tg

is an isomorphism and the restriction

(I/I_I)|THSC : THSC — TH

is an étale morphism.
We will need a standard result of commutative algebra during the proof of
the next proposition:

Lemma 10.1.11. Let A be a noetherian commutative ring and m be a mazimal
ideal. Let A := @n A/m™ be the completion of A with respect to m, Ay, be the

localization of A with respect to m and finally //1:1 =1lim Ayn/(m-An)" be the
n

completion of An with respect to the maximal ideal m - An. Then we have a

canonical isomorphism of rings

A=A,
Proof. We use the well known fact that localization is an exact functor, so that
Aw/(m - An)" = (A/m" ), ,

where m,, is the image of m in A/m™. Now any element in A/m™ which lies
outside of m,, is invertible. (This can be justified as follows: if the image of 2 € A
in A/m™ does not belong to m,,, then it is invertible in A/m, i.e. there exists y in
A such that xy—1 € m. Then (zy—1)" € m™; using the commutativity of A, we
see that the image of x in A/m™ is invertible). Hence we get (A/m™)y,, = A/m™,
and it is not difficult to check that the following square is commutative for any
n>r:

A/m" A/m”

{ |

An/(m-Ap)" ———— An/(m- Ap)".
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(The horizontal arrows being the natural transition functions, and the verti-
cal ones are given by the identification justified above.) Finally, we have the
following sequence of isomorphisms

A lim A /(- Ap)" = lim Afm" = 4,
which concludes the proof. O

Proposition 10.1.12. Assume that t € Ty is central in H. Assume moreover
that ¢ does not divide the order of the finite group X.(Togm))/Z-®Y. Then

R(H), is free of rank |Wy| as a }AE(H)ZVH -module. There exists a basis (Cy)wewy
of R(H); over R(H)}"" such that

det((v(cw))owews) = a( JT (1 —em)WIr2

acd

with x € R(H); is an invertible element.

Proof. As we noted above, there exists a reductive algebraic group Hg. such
that Xu(Ty.,)/Z-®V is free, and a finite central isogeny

vy : Hye > H

such that the restriction of this map to the maximal torus above Ty is an étale
map. Now any element ¢’ in the inverse image of ¢ under vy is also central in

Hg., so lemma [10.1.9 tells us that the statement of the proposition is true for
this group: R(Hsc)y is free of rank |Wy__| as a module over R(HSC)E/H“.

We have a natural Wy__-equivariant algebra morphism
ﬁ(TH)t — ﬁ(THsc)t/-

Let k(¢) be the residue field of the local ring @(Ty);. Denote by &(Ty); the
completion of the algebra & (Ty); with respect to the kernel of the natural map

O(Ty)e — k(1) (10.1.5)

and similarly for &(Ty. )y. Thanks to [Har, Chapter III, Exercice 10.4], the
latter map induces an algebra isomorphism

O(Tu)e = O(Tu, v (10.1.6)

(We used here the fact that k is algebraically closed.) It is a standard fact that
for a torus, we have

O(Ty) 2 Kk[X*(Th)).
Let m; be the maximal ideal (e* — \(t) | A € X*(Ty)) C k[X*(Tx)]. We have

O(Th): = k[X"(Th)]m,
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and the map (|10.1.5) identifies with the natural quotient

kX (Tr)]m, = KX (Ta)lm, /o - KX (Ter) Jm, = KX (T)]/my.

Using lemma [TI0.1.11} we get an isomorphism
k(X" (Tr)ln, = kX" (Th)] ™™

where the left hand side denotes the completion of the local ring k[X*(Tx)]|m,
with respect to its maximal ideal, and the right hand side is the completion of
the ring k[X*(Ty)] with respect to its maximal ideal m,. Thus we can write the

isomorphism (|10.1.6)) as R R
R(H); — R(Hge)v, (10.1.7)

and this map commutes with the action of Wy = Wy on both sides. We
readily deduce from the analogous result for Hg. that ]TB(H )¢ is free of rank
|Wy| as a module over R(H)V* .

For the basis, note first that there exists a basis (¢}, )wew,;,, of R(Hy.)y over

E(HSC)Z,VH“ as in lemma [10.1.90 Consider the basis (cy)wew, of R(H); over

R(H)"# defined to be the inverse image of (¢i)wews,, under the isomorphism
(10.1.7). Since this algebra isomorphism commutes with the actions of the
Weyl groups, the determinant of the matrix (v(cy))wew,, is the inverse image

under ([10.1.7) of the determinant of the matrix (v(c;,))wewy,. . Now (10.1.7)

is induced by the isogeny vp, which is itself constructed from a morphism of
root data. In particular, e* € R(H); is mapped to e* € R(Hgc)y. The element

x is just the inverse image of the invertible element (e‘)'WV2 € E(Hsc)t/ in
R(H);. O

10.2 The endoscopic group

We now come back to the framework of subsection[5.1.1} so that G is a complex
reductive connected algebraic group. From now on, and until the end of
this chapter, we make the following assumption:

The characteristic £ of the field k is not a torsion prime for the dual group G}/
(equivalently, for the derived subgroup 2(G}))).

Remark 10.2.1. This assumption implies the following: for any sub-root system
®, integrally closed in @5, the quotient X, (Ty)/ Z -®; is l-torsion free (see [SS|
1.4.3, 1.4.4] for more details).

Let us fix an element ¢ € T}'; recall the group W} defined in subsection
We have associated sets of roots ®; and coroots ®}.

Definition 10.2.2. Consider the reductive k-group H;{k defined as the identity
component of the centralizer in G of t:

HY = Cau (1)°.
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Define the endoscopic group H; associated to t to be the (complex) Langlands
dual to H)'.

According to [H4, Theorem 2.2], H) is generated by 7,” and the root sub-
groups U,v with a € ®;. The root datum of H,' is then given by

The Weyl group of H,' identifies canonically with W, (and so does the Weyl
group of Hy). Finally, recall the ring R; defined in subsection

Proposition 10.2.3. R, is free of rank |W2| over (R)W< . There exists a basis

(ch)wewe such that

det((v(ch,))vwewy ) = z( H 1- efav))lwm’

agdy

with x an invertible element in ﬁt.

Proof. Using the identification k[X.(T)] = k[X*(7})], the statement of the
proposition is exactly proposition applied to the reductive group H)
and the central element t. Note that we can indeed apply this theorem because
remark tells us that X*(T@(Htv,lk))/ Z -9, is f-torsion free. O

Remark 10.2.4. Tt will be convenient later on to notice the following: we have
an equality

H (176*06\/):(71)|‘1>tv’+‘( H (]-*eav))em)tv’

agdy aedy

with py = %Za%@h oY, and 2py is in X, (T).
The preceding proposition immediately implies the following:

1. the Ry-module Ry ® we Ry is free of rank [W¢|,

(Ro)

2. if (}A%t)yto denotes the kernel of the map (Et)Wf < R, — k where the
second map is induced by e* — A(t), then the k-vector space R, / (]?Bt)z_vf

has dimension |[W¢|.

10.3 Modules

In this section, we follow very closely [BeR] §8], itself derived from the results
of [KK].

Recall that S, denotes a subset of simple reflections in Wy (see subsection
and that this subset defines a Bruhat order <, and a length function ¢;
on W7. Denote by @t the fraction field of }A%t. Let Qwp be a @t—vector space
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of dimension |[W¢| and let (d%,)wewe be a basis. We define a multiplication on
Qwy: for a,b € Q; and w,v € Wy, set

(ady,) - (b0y) = aw(b)d,.
We also define an anti-involution ¢ of Qe by
ta)=a and L(8) =6 1.
For any s € S; set

gho= ol = L (5 e,

IL—e @ 1—e o

These elements satisfy the braid relations of W;?, so we can set

Yl =yl (o) ol

where (s1,...,$,) is any reduced expression of w in Wy (see [KK| Proposition
2.4], and references therein). The family (y!,)wewe is a Q¢-basis of Qwre, so

- D t
Yive = @ Re-uly
weWy

is a free ﬁt—module. One can show that Yo is a subring of Qw,e (see [KK]
Corollary 2.5]).

Proposition 10.3.1. For any w € W2, we can write (in a unique way)

Yl = Z b 0%

veWy
Then we have by, = 0 unless v < w and
Vv —
bu,w = ( 11 (T—e*))™h
a€<I>,>/y+ﬁw(f<I>X+)

Proof. Let us choose a reduced expression s1 --- s, of w in W2, We can write
Y, ==yL - (--+)-yL . For brevity, we set, in this proof, ay. = a;. We use the

expression y. = - L (88 — e~ gt).

‘We prove the first fact: it follows from the definition of the multiplication
in @ that the only elements v such that b, , is nonzero are those that can be
written as products

Siy - (+00) " 8i,
with 1 <i; < -+ <1, <r. Such a v obviously satisfies v <; w, so this concludes
the proof of this assertion. Now for b, ,,: this coefficient is the one appearing
before the product

et —e—ar
,v581'( ) ,v(ssr-
1—e 91 1 —e



Set w; := s1 - -+ s;; the above product is then equal to

—670‘1/ —efwl(a;/) _efwrfl(a:) 5
ool T ew@n ) T mmmmn dw
ﬂui(aiv ) . .
Write =¢— -~ = ——1——: we now have to identify the set of coroots
e wilo 1%t

{af,wi(ad),...,wr—1(a))}. But according to [H3| §5.6, Exercice 1], we pre-
cisely have

‘1)2/& N w(—fl)x_i_) ={af,wi(ay),...,we_1(a))}.
The lemma is now proved. O

Consider
Qwe = Homg, (Qwe, Qr)
where Qwy is viewed as a @t—vector space via right multiplication. We put a
structure of Q;-vector space on Qe by (a-v)(b) = ¢ (ba). It will be convenient
to identify the Q;-vector space Qyye with the Qs-vector space Fun(Wy, Q) of

functions from Wy to Qy, via the map ¥ — (w — ¥(6%)). We have an action
of Qwp on Qe defined by

(y- ) (@) = ¢(u(y) - =)
for any ¢ € Qwe and y,z € Qwp. This formula in particular gives:

Y(Oh) — e P (3hy)

1—e wtey

(yi ) (6w) =

Finally, set R

Uyye = {1 € Qwe | Vy € Y, ¢(u(y)) € Ry}
Remark that this is a ]TZt—submodule of QWto (for the action of ﬁt induced by the
one of Q;). It is also stable by the action of Ywe € Qwe. Let 7, == o(yl 1),
clearly (7L,)wewy is a basis of +(Yiye) as a right R,-module. This implies in
particular that Wy is free as a Rg—module7 with a basis (¢fu)wewt° uniquely

determined by
1 ifw=w
Yu(¥y) = { 0 otherwise.

Proposition 10.3.2. (1) For any v,w € W}, the element ! (8%,) belongs to
R; and vanishes unless v <; w.
(2) For any w € W, we have

Lo = J] a-e).

a’ed/
w(a¥)e—@) |

(8) For any w € W2 and s € Sy, we have
t t
w T Vs Y SW <gw
Yl by = { g v / !

- otherwise.
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Proof. We prove statements (1) and (2) by induction on ;(w). The case £;(w) =
0, that is, w = e, is clear since §% = yt.

Consider w € W7 and assume that the statements are true for all u € Wy
such that ¢;(u) < ¢;(w). Consider v € W} such that v £; w. By induction
hypothesis, we have 9% (%) = 0 for any u <; w: remark that v <; w implies
le(u) < ly(w) and v £ u, for otherwise we would have v <; w.

Thanks to proposition we can write

o= I a=e bt D

av€®x+ u<lgw=!
w(av)G—(I:'XJr

for some ¢, € @t. Apply ¢ to this equality to get an equality

Y
o= JI  a=egh+ > a.dl
ave.:p;/d_ u<sw

w(aV)e—®) |

(for some ¢/, € Q;). Apply % to this new equality to get ¥!(5L) = 0; then
apply ¢!, to finally get (2).

One can prove (3) exactly as in [KK| proposition 2.22, (d)]. O

Point (1) in proposition [10.3.2| implies in particular that under the identifi-
cation Qe = Fun(Wy, Q¢), the subset Uy C Qe is contained in the subset
Fun(Wy, R,) of functions whose image lies in R;.

The following lemma is proved in [BeR) Lemma 8.3]; the proof of loc. cit. can
be copied verbatim.

Lemma 10.3.3. Let f € Ry and oV, BY two distinct positive coroots in Y. If
(1—e™") . f is divisible by (1 — ") in Ry, then so is f.

Theorem 10.3.4. The map

T Et ®(§t)w;’] I%t — Fun(Wto,ﬁt)

sending a ® b to w > a-w~L(b) is injective. Its image consists of the functions
f such that y
f(w) = f(wsev) mod (1 —e™ )

for any w € W¢ and any coroot o in @) .
We will need an intermediary result in the proof of the theorem:

Lemma 10.3.5. Consider f € Fun(W?, ]/%t) such that f(w) = f(wsev) mod(1—
e“") for any coroot ¥ in ®Y. Then f is a linear combination of the elements

{¥L Ywewe with coefficients in R..
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Proof. Choose a total order < on Wy that extends the Bruhat order. We use an
induction argument on the smallest w € Wy satisfying f(w) # 0. If ¥ € &Y,
is such that w(a") € =@}, then we have ws, < w (see [H3] §5.7 PI‘OpObitiODD
so that f(wsy) = 0. Now cons1der1ng our choice of f, this implies that (1 —e® )
divides f(w). Using lemma we see that there exists an element a € R,

such that y
fwy=a( [ (=) =avl(sh),
aVE®Z+
w(ozv)E—(I%X+
where the second equality follows from proposition (2). The function
J — ayt, still satisfies the condition of our theorem, and vanishes on w and on
all the elements v < w: this follows from proposition [10.3.2] m (1). By induction
hypothesis, we get that f —ai!, is a Rt linear combination of ¢! with v € Wp.
The proof is now complete. O

Proof of theorem [10.54. We consider the basis {c, }wewy of R, (as a (Ry)W:-
module) of proposition [10.2.3] The family {1 ® cf,},ewe is then a basis of the

Ry-module R; ®(B)We R;. The function 7(1 @ c!,) is the function defined by
v v (). Thanks to proposition [10.2.3] we have det((v='(cl,))v.w) # 0 so
that the functions {7(1 ® c!,))},, are linearly independent over Ry; hence 7 is
injective.

Let us show that wfm’o lies in the image of 7. This amounts to showing that

there exists a family {pf,}wewe in R, such that T(3 0, Ply ® cly) = Y, o5 or in
other terms, such that

1— oV o= .
e
w

0 otherwise.

We can reformulate the problem: we have to solve the system
A . pt — qt

where A is the matrix (v(c,))wvewe, ¢' is the vector indexed by Wy with
Gy = 0 for w # wy o and ¢f, . = [[(1 - e*”). Since the matrix A is invertible in
@t (its determinant being nonzero, as stated above), there exist such a family
{pL,}, unique, in Q;. The inverse of A is given by ﬁ(A)C(A)tr where C(A)'r
is the transpose of the cofactor matrix of A. Thus, if we show that det(A)
divides each entry of the vector C(A4)"¢" in Rt, we will get that p' has its
entries in R;. Let m A(w,v) be the determinant of the matrix obtained from A

by removing the row w and the column v. Using remark [10.2:4] it suffices to
see that ], veay, (1 — e )WI/2-1 divides m 4 (w, v) in R,. Now, fix a positive

coroot aV; let s be the associated reflection in W, We can write W~ {sv,v} as
the dlSJOlnt union of |W|/2—1 s-orbits {sw,w} (for w € W). For any z,y € W7,

the element sz (e} ) —x(e!) is divisible in R; by (1 —e®"); subtracting the column
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x to the column sz for any s-orbit in W N\ {sv,v} we get that (1 — eo‘v)|WV2_1
divides m 4 (w,v) for any positive coroot V. Finally, using lemma we
deduce the wished-for divisibility. R

We note the following: for any a,b € R; and any s € S;, we have

b—e 2 s(b

Ys - Te(a®@b) =1 <a® av()> .
1—e 9

Thus the image of 7; is stable under the action of the ys (remark that the

quotient on the right is an element of R;). Since wat , belongs to this image,

so do the various y, - fui,o for s € S;. Thanks to proposition (3), this
implies that 1, € im(r;) for any w € W¢. Thus we have Wyye C im(7;).

We finally prove the asserted fact about the image. Using lemma [10.3.5]
is f satisfies the condition of the theorem, then it belongs to the image of 7;.
Reciprocally, as b— sqv (b) (for ¥ a coroot in ®)) is divisible by 1 —e® in Ry,
we get that any f in the image of 7; satisfies the condition of the theorem; this
concludes the proof. O

10.4 Completed Endomorphismensatz

Theorem 10.4.1. Consider t in T,Y. The morphism of lemma is an
algebra isomorphism for T, |+

ﬁt ®(§t)w§ Et = End(F w, o.t)-

Before discussing the proof of the theorem, we state a similar description for
the endomorphisms of pro-tilting objects associated to maximal elements in all
blocks, as well as endomorphisms of maximal tilting objects in the Lusztig—Yun
category:

Corollary 10.4.2. Consider t,t' € T, in the same W-orbit and 3 € pW,.
The morphism of lemma s an algebra isomorphism for ngxax,t:

Rt/ ®(§t)wt0 Rt l> End(ﬁngax’t),

The proof of corollary [10.4.2] will directly follow from the proof of theorem
10.4.1} particularly from diagram (10.4.4) and lemma |10.4.5| below.

Corollary 10.4.3. Consider t,t' € T, in the same W-orbit and B € pW,.
The left monodromy morphism CT (W) ot is an algebra isomorphism
t

Rt’ ®(§t)wto Rt ®§r kt l) End(f(wg‘ax)f?)

Proof. This is a direct consequence of corollary and point 2. in lemma
9.4.2) U
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Let us now establish the proof of the theorem. According to lemma [9.3.3]
we have an isomorphism

weWy

In view of lemma, and lemma [9.6.3] we obtain

End(gr(7 w, . 1)) ~ (P . (10.4.1)
weWy

We will consider the following composition

Et 024 wo ét l) ﬁt R, we Rt — El’ld Wi o, t — @ Rt (1042)

weWy

(Re) (R+)

Here the first map is given by = ® y — y ® x, the second one is the morphism
of theorem [10.4.1} and the third map is induced by the functor gr and ((10.4.1| m

Under the natural indentification EBweWo Ry = Fun(Wy ,Rt) the map (10.4.2))
is the morphism of theorem [10.3.4} this comp031t10n maps a ® b to the vector

(P, 000, R, ,(@)wewy € @wewo End(A +)- Now, lemma tells us
that the endomorphism ¢, 3 (b)oy, zx  (a)of Aw,t corresponds to the element

aw~1(b) under the isomorphism of lemma (induced by right monodromy).
Thus we indeed find the morphism of theorem which is injective. In
particular the morphism of theorem is also injective. Note that according
to lemma the functor gr is faithful, so that the third map is also an
injection. Moreover, the above discussion implies that the image of this third
morphism in contains the subset of vectors (a.)wewp such that

Aws, v = Gw mOd(l - eav) (1043)

for &V any coroot in ®).
We will prove the converse: if (a.)wewe belongs to the image of the third

map in (10.4.2), then holds for any coroot a¥ € ®).

We first need a few preliminary results. Assume that s := s,v is simple in
W, that is to say, s is a reflection of Wy associated to a coroot a simple in
OV, Let 7, : 2o U Zs — 2 be the inclusion map; this is a closed embedding.

Lemma 10.4.4. We have f;(?wt’o,t) & /ﬂ\w; forw € W2, the morphism

o~ o~

grw(ywt,oi) — grw(y‘%t)
induced by adjunction is an isomorphism if w = e or s and is zero otherwise.

Proof. To prove the first point, we use lemma and proposition [0.5.2} it
suffices to show that 75 (7 (wt,0) 1)) = T () 1. Now J5(F (w,0) o7)) has a A-
filtration, and so is perverse; moreover the standard objects in this filtration are
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A(e) 7 and A(s) o1, each with multiplicity 1 (this follows from lemma .
o (A7 ATy ).
Now, as explained in subsection it follows from lemma that this
Ext space is 1-dimensional, with only nontrivial object given by 7 (s) 7. The
object 7;(7 (wt,0) 7)) is then either isomorphic to 7 (s),r or to the direct
sum A(e) o1 © A(s) r. The latter is impossible however, since by adjunction,
we have

Thus J;(7 (wt0) 7)) is an extension in Ext%(%ﬁ)

Homg(ar)_ g (7:(7 (weo) 27)),1C(s).¢7)
= Homp(ayr)_ ,r (T (Who) 27, 10(s) 27) =0

according to proposition
The fact about the graded functor is an easy consequence of the above rea-
soning. O

Consider two elements ¢,t" € T, in the same W-orbit. Fix a block 8 € ,W,.
For any v, w in 8 we define four morphisms /@iﬁ(v,w) (i =1,2,3,4) making the
following a commutative diagram, where the rows are given by ((10.4.2):

gt

~ ~ ~ ~ fi —~ ~
Rt ®(§t)wt° Rt E—— Rt ®(§t)wt0 Rt —_— End(ﬂwtyo) I zEWY Rt

lln};(v,w) Zifi%(v,w) lJ{n%(v,w) Ilmé(v,w)
~ =~ =~ o~ ! - g =
By O By Ry —— Ry B )i Ry ——End(Zw, ) — @yeWﬁ Ry
(10.4.4)
The definitions are easy for i = 1,2, 4:

Ké(v, w)(a®@b) =v(a) @ w(b) H%(U, w)(a®@b) =w(a)@v(b)

K50, w)((ex)wewp) = (V(Cw1uv)uews -

Let us define x3(v, w). According to proposition [9.7.6] we have an isomo-
morphism

o~ —

Rt 7Ty FDyr 2T, (10.4.5)

t/,0"
We then set

K3 (0,w)  End( T, ) > End(By 37 0, F A1) 5 End(T o, ).
Here the first arrow is induced by the functor Aw,t *(—)* ﬁv—l’t/ and the second
one by a choice of an isomorphism as in (10.4.5). If 8 = W} then we set

[ X2
Kjz = Kio-

Lemma 10.4.5. The isomorphism /s% (v,w) does not depend on the choice made

for the isomorphism as in (10.4.5). We have

H%(U,w) oft=fro H;Qa(%w)a mé(v,w) gt =gy © H%(va)
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Proof. Let us fix a choice of n% (v,w) (that is, choose and fix an isomorphism

as in (10.4.5)). It is easy to see that we have
H%(U,w) ogiofy=gpo fyo 5%(1}711;).

We ihow that I/i\%(’(),w) ofy = ft/Ao /@%(v,w).AThe map f; (resp. fi) maps
a®b S Rt ®(§t)wt0 Rt (resp, a’@b/ S Rt/ ®(§t)WtO' Rt’) to QOZ:?\wt’o (a)O()OT_:y\wt,o (b)
(resp. ¢, (a)op, 5  (b)). We then have

Ry —1 ¢/

= (,Dng (a);\ id/j\wt.o fk\(pl A
(

Here the equalities are respectively justified by lemma (1), lemma and
lemma (3). Since monodromy commutes with any morphism (see lemma
1.5.1)), conjugation of the above morphism with any choice of isomorphism

Aw,t *ﬂwm* Av—l)t/ = ywt/,o

ields ¢, 5, (w(@) 00,5, (0(0) = fulw(v.uw)lae b)),

Now to prove that K‘é(v, w)ogy = gy om‘g (v, w), we remark that all the spaces
involved in the top row of are free of rank |[W7| = [Wg| over R;, and all
the spaces on the bottom row are free of rank |W?| = |W;| over Ry. Moreover,
we can make Et/ into a Et—module, as in lemma via the map

~ win(o)

Ry — Ry;

this is an algebra isomorphism and thus ﬁt/ is free of rank one as a Et—module.
We apply the functor @t ®p, (=) to diagram . One obtains a diagram
where all the spaces are @t—vector spaces of dimension |W;|. Since all the mor-
phisms on the top row of diagram are injective and @t is flat over ﬁt,
we obtain injective morphisms between @t—vector spaces of the same dimen-
sion, thus isomorphisms. Similarly, the maps in the bottom row also become
isomorphisms after tensoring with ¢ over R;. For any map 1 appearing in this
diagram, we let 1@ := id@t ®§t1/). Now thanks to the beginning of this proof,
we have N R R N N N

K, w) 0 gt o f2 = g7 o f7 0 kG (v, )%

and R . _ N
K3 (0,w) % o f2 = fF o K3 (v, w) .

219



This readily implies that

né(v,w)@i 0gt = g?t o /{%(v,w)@t.

Using the natural injections
End(Zw,,) = R @ End(Ty,,) < Qr @5 End(7 4, )

and

P rR=Rreg (P R)—Qeg (P R)

TEW? WY TEWY
(and similarly for ') we get r3(v,w) 0 g = g o k}(v,w). Finally, as g, is
injective (and as n%(v,w) does not require any choice), we see that nz(v,w)
does not depend on the chosen isomorphism as in ((10.4.5)). O

Lemma 10.4.6. Assume that t,t',t" € T, are three elements in the same W -
orbit and fiz two blocks B € v W, and vy € W, Takev,w € 5 and v',w' € 4.
Fori=1,2,3,4, we have

KL, w') o Kl (v, w) = K5 (Vv w'w).

In particular, the family (k} (v, w))vwews defines an action of W x Wy on
the corresponding space in (10.4.4)).

Proof. The cases i = 1,2, 4 are immediate. For i = 3, we use lemma and
the case i = 4: we have
gy © ﬁz(vl,wl) o /‘L%(an) = ﬁ‘é(v/, w') o n‘é(v,w) o gy
= k(v w'w) o g
= gy © KJ% (’UIU7 wlw).
Here g; is the morphism appearing in diagram ((10.4.4) and and g~ is the ana-

logue for t”. Since gy is an injective map, we get s3(v',w’) o K3 (v, w) =
K3 (0", w'w). O

We can now give a proof of a partial version of the announced result, namely:

Lemma 10.4.7. Consider any t € T)/. If (aw)wewe belongs to the image of

the third morphism in (10.4.2)), then (10.4.3) holds for w = e and any coroot

a¥ € @Y simple in @Y.

Proof. In this proof, we will use freely the notation of diagram . Once
again, the first step is to consider the case s € Wy simple in W, associated
to a simple coroot «¥. The proof is exactly the one of [BeRl] Proposition 9.3]
(exposed in §9.2 in loc.cit.). Lemma implies that the composition

End(?wt70>—> @ ﬁt (aw)wr(ae,as) Et@ﬁt
weWy
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factors as .
End( 7, ) 2 End(7 ) 25 Ry @ Ry. (10.4.6)
Thanks to proposition [0.8.2] the map

Et ®(§t)wt0 Et — End(?svt)

induced by monodromy is surjective; moreover its composition with the last

map in is given by
a®b— (ab, s(a)b).
Now, we have ab = s(a)b mod (1 —e®"), thus we can conclude that
e =c¢s mod (1-— eav)

for any (cy)wewp in the image of the map .

Assume now that s is simple in W} but not in W. Thanks to lemma [5.1.5]
we can write s = w3 .r-wi™ " with 7 a simple reflection in W (¢ an element
in the same W-orbit of ¢) and 8 a block in ¢ W,. Let a¥ be the coroot associated
to s; the reflection r is then associated to the coroot wrﬁnin’_l(av). We claim
that the latter coroot is simple (and not the opposite of a simple coroot, as it
could a priori be): the coroot o¥ lies in ®), = ®{ N®y and wgﬁn’*l is minimal
in its block; according to [LY], Lemma 4.2], this element maps @X+ into ®Y
and so maps oV to a simple coroot. Note that conjugation with wﬁmi“ gives a
bijection W5 — Wy. We let 3 be the block of ;WW,, whose elements are given
by the inverses of the elements in 8. Its minimal element is then Wt

The first part of the proof tells us that if a [W;|-tuple (c;,)wews belongs to
the image of the morphism gy, then we have

min, —

c,=c. mod(l—e"s 1(O‘v)).
Now any (¢, )vewy in the image of g; is of the form

H%(’wﬁ. awg. )((C;u)wewﬁ)

ce =wi™(c,) and ¢, = wi(c).

min, —1

Since ¢, = ¢l mod(1 — e"s (o‘v))7 one deduces that

min,—1

ce =¢s mod (wg‘in(l —e¥s (av))),

i.e. that we have .
ce =c¢s mod(l—e* ).

The lemma is proved. U
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Proposition 10.4.8. If (cy)wewe belongs to the image of the third map in
(10.4.2)), then (10.4.3) holds for any w € W7 and any coroot a¥ € @ .

Proof. Once again, we follow [BeR] §9.3]: we use the morphisms ni,o(v,w) for
v,w € W7. According to lemma these maps define actions of Wy x Wy
on the various spaces in 7 and all the arrows involved in this diagram
are equivariant with respect to these actions. In particular, the image of the
third morphism (which is denoted by g; in ) is stable under the action
of Wy x W¢, that is to say under the various «} (v, w) with v,w € W¢.

Now assume that o is a simple coroot in ®. For any w € Wy and any
(cw)wewp € im(gy), the [Wp|-tuple £} (e, w™")((cw)w) still belongs to this im-
age. From lemma we deduce that

(Ktole;w™ ) ((cw)w)), = (fii",o(a7~v_1)((6w)w))sav mod (1 —e® );
this can be rewritten as
Cw = Cus,, mod (1— eav)

and deals with the case oV simple.
If @V is not simple, choose v € W such that 0¥ := v(a") is a simple coroot
in ®/. If we prove that

v(cw) =v(cws,,) mod (1— e"v),

we will be done (it then suffices to apply v~! to this equality). We have ws,v =
wv~tsevo and k¢, (v,€)((cw)w) belongs to the image of g; from the simple
coroot case treated above, we have

Cwp—1 = Cyp-1s,, mod (1— e"v)
and thus
(’%?,o(eaw_l)«cw)w))wv—l = (H?’O(e’w_l)((cw)w))wv—lsav mod (1 —e? );

which is the same as
Cy = Cus,y mod (1— e”v).
The proposition is proved. O

Proof of theorem [10.4.1. We know from the discussion below the statement of
the theorem that the considered morphism is injective, as is the third arrow in
(10.4.2). From proposition[10.4.8] we also know that the image of this third map
coincides with the image of the whole diagram , which is the morphism
of theorem This implies that the composition of the first two maps in
is surjective, which in turn implies that the second map (i.e. the map
of the theorem) is surjective. Being both surjective and injective, this map is
an isomorphism and the theorem is proved. O
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Assume that s € W is a simple reflection of W?. Copying [BeRl, Lemma
11.4], we derive the following description of V¢ (9 s1):

Lemma 10.4.9. We have an isomorphism
Vi)(ys,t) = Rt ®(§t)s Rt
where (Et)s denotes the elements of Ry invariant under the action of s € Wp.

Proof. We only sketch the proof. If s is simple in W, using lemma [T and
adjunctlon we get V2 (9 £) 2 End(ﬂ +). We can then conclude using theorem
1] applied to the Levi subgroup L, associated to the simple reflection s.

T s s snnple in W but not in W, thanks to lemma .15 we can write
5= wg’mrwg“n , with 8 a block in (W, and r € W} a reflection simple in .
Then we use lemma .71l to see that

—

9 = A mm A * 97~ t/fk\ Awmin,fl
B

,t

for 5 some block in +W,, and r a reflection simple in W. Thanks to proposition
we have a commutative diagram (see the proof of lemma [10.4.5))

—~ Yo

Vg’(gr,t/) Ry @ Ry

Bumin g HFA min, -1, lz zlw;:‘“()@owg““()
L ¢z ~
V(T srt) R: ® Ry.

Moreover, the right vertical arrow clearly induces an isomorphism
Rt’ ®(§t/)r Rt’ — Rt ®(§t)g Rt.

The lemma follows. O
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Chapter 11

Comparison results

11.1 Rough strategy

Our ultimate goal in this thesis is to understand (say, for now, the neutral
block in the category of) monodromic tilting (pro-)perverse objects, with an
arbitrary fixed monodromy. For a fixed t, we already constructed functors Vy
and @;’ in section and showed that they are fully faithful on tilting objects
(see proposition[9.10.2). We now have to understand the essential image of these
two functors. Corollary and lemma imply that we will be able to
determine this essential image if we know that our functor Vy admits a monoidal
structure. This chapter is a first step in this direction. Below, we present the
strategy that we will follow in order to obtain the wished-for monoidality. Our
proof will be based on “Whittaker-type” constructions, a feature that is only
available in the different setting of schemes over fields of positive characteristic,
on which we have to consider the étale topology. Thus we have to relate in
a way or another our current complex-analytic setting to an appropriate étale
framework. We will use a strategy similar to the ones in [BBD| §6.1.2] and
[BBD, §6.1.7, 6.1.8]: the former will allow us to switch between the complex-
analytic world (i.e. what we have done so far, and what we are interested in) and
the complex-étale setting; the latter provides tools to relate the complex-étale
case to the setting of F-schemes endowed with the étale topology, where F is
algebraically closed of positive characteristic. Let us give some more details.

From C-analytic to C-étale

Results from [SGA4] and [BBD] provide a natural way to transfer information
from C-schemes endowed with the étale topology to C-varieties endowed with
their classical topology. The point is that we have a natural way of comparing
the categories of sheaves for the étale topology and the analytic topology (that
is to say, a morphism of topoi); and we can very formally transfer from the
analytic setting to the étale one the constructions made previously. In fact,
we will adapt the constructions made in earlier chapters, such as monodromic
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and equivariant Lusztig—Yun categories over 2", but now considering complex
schemes endowed with the étale topology. We will show that these constructions
transfer to the correct objects in the complex-analytic world.

From C-étale to F-étale: overview

This step is slightly more involved but essentially follows from general results
from [BBD] Chapitre 6]. The schemes we are interested in admit Z-versions,
meaning here that we there exist Z-schemes of finite type whose base change to
C yield the complex schemes we consider: for example, the basic affine space 2
(viewed as a scheme over C) can be “defined over Z as a Z-scheme 27 such that
Spec(C) Xgpec(zy £z = £ . In particular, this allows us to consider versions of
our schemes over various fields. Roughly, the results from loc. cit. then ensures
that we can relate some subcategories of the derived categories of étale sheaves
on a scheme over C and its analogue over an algebraically closed field of positive
characteristic. To do so, a transition step on schemes defined over the spectrum
of a strictly henselian discrete valuation local ring is necessary. This will force
us to adapt some of our constructions on schemes defined over rings.

Constructions of local systems

The schemes we will consider are obviously 2" (viewed as a C-scheme endowed
with its étale topology) and its locally closed subsets that are union of £5,’s.
For each stratum, we have to define a finite family of irreducible (étale) local
systems. These will be given by the étale analogue of the local systems Z}’. In
fact, we will construct such analogues in a quite general setting: the scheme 2~
can be defined already over Z, thus we can consider its base change to any ring.
We consider an appropriate subring A of finite type over Z on which we will be
able to construct “by hand” the local systems we wish for.

Monodromic étale categories

Once the above constructions are fulfilled, we obtain an equivalence between
appropriate subcategories of the derived categories of étale sheaves, for one side
defined over complex schemes, on the other side, defined over F-schemes. In
these two settings, we can define a monodromy action in a way similar to the
constructions of chapter [T} which, fortunately, coincide, in an appropriate sense.

Equivariant considerations

Above, we explain how one can find a way to relate (some subcategories of the
étale) constructible categories on the algebraic closure I of a finite field and C.
Obtaining such a comparison result for equivariant categories is less immediate,
mainly because the general results from [BBD] (notably [BBD, Lemme 6.1.9])
require an intermediary step on schemes defined over a ring. The definition of
étale equivariant categories and their Lusztig—Yun subcategories is more or less
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straightforward for schemes over algebraically closed fields, it is far less clear
(for the author at least) that one can make the same constructions over a ring.
However, we will only have to consider such a result for objects equivariant
for the action of a split algebraic torus 7T'. The advantage here is that con-
structions can then be made quite explicitly, and some “equivariant category”
can be defined already over Z. Once this is done, there is still some difficulty
to overcome: the definition of the equivariant category is as an inductive limit
of categories, and as such requires considering an infinite family of schemes.
We thus need to show that “[BBD] style” arguments can be applied. Then,
the equivalence between the complex T-equivariant category and the one de-
fined over F is formal. Once this is obtained, we can consider the Lusztig—Yun
subcategories on both sides and we show that these are also equivalent.

11.2 From C étale to C analytic

11.2.1 Exposition

So far, we have considered only the setting (which is our main interest) which
involves complex algebraic groups and complex varieties endowed with their
usual, “analytic”, topology. We will now also consider an étale setting, involving
C-schemes endowed with the étale topology. In this section, we present a way
to relate these two settings. The arguments there are general, and come from
[SGA4| Exposés XI et XVI] and [BBD], §6.1.2]. Let X be a C-scheme of finite
type.

Very roughly, the main tool here is a morphism of topoi relating the category
of sheaves on the étale site of the C-scheme X and the category of sheaves on
the complex variety X (C) with its analytic topology. We recall here the content
of [SGA4l Exposé XI, §4]. We refer to loc. cit. and references therein for more
details.

By abuse of notation, we will use X(C) to denote both the site of open
subsets of X (C) (that is, of open immersions to X (C) in the analytic topology)
and the underlying complex variety.

We can consider more generally the category whose objects are morphisms
f:U — X(C) where U is a C-variety and f is a local homeomorphism, meaning
that for any point € U, there exists an open neighbourhood U, of x in U that
is mapped homeomorphically to an open neighbourhood of f(z) in X(C). The
definition of morphisms in this category is obvious.

For V. — X(C), say that a family of morphisms {U, — V} is a covering if
V' is the union of the images of the U,. This defines a Grothendieck topology
on this category and we let X (C)c denote the obtained site.

Since an open immersion is in particular a local homeomorphism, a sheaf
for this new Grothendieck topology induces (by restriction to open immersions)
a sheaf in the usual analytic topology. Moreover, if U — X(C) is a local
homeomorphism, by definition, for any y = f(x) in the image of U, we can find
an open subset V,, of X(C) and a section V,, — U such that the composition

226



Vy, = U — X(C) is an open immersion: we can “cover U by open subsets
of X(C)”. Then a sheaf for the analytic topology defines a sheaf on the site
X (C)q, and in fact, it follows from [SGA4, Exposé XI, §4] that this procedure
yields an equivalence of categories between the categories of sheaves on these
sites.

Now consider an étale morphism f : Y — X of C-schemes. Then the
morphism f(C) : Y(C) — X(C) induced on complex points is a local home-
omorphism. Thus ¥ — Y (C) defines a functor from the étale site X¢p of X
(that is, the category whose objects are étale morphisms of C-schemes to X
and with natural morphisms and the usual Grothendieck topology) to the site
X (C)e1, meaning that we have a natural way to associate a covering in X (C)q
to a covering in X¢;. Thus, we have a functor e, that associates an étale sheaf
on Xt to a sheaf on X (C). We also have an adjoint functor e* from the étale
site to the classical one (we keep the notation of [SGA4] and [BBD]). With the
above identification of the sites X (C) and X (C)q, this latter functor is the one
considered in [BBDL §6.1.2, (A)].

The following result is [BBD] §6.1.2, (A’), (B’)]; see also [SGA4, Exposé XI,
Théoreme 4.4, (i)]. For R a finite ring, we let D2*(X, R) be the constructible
derived category of étale sheaves of R-modules on X and D%(X(C), R) be the
usual constructible derived category of sheaves of R-modules on X (C).

Theorem 11.2.1. Let R be a finite ring. The functors €* and e, induce inverse
equivalences between the categories of étale constructible sheaves of R-modules
on X and constructible sheaves of R-modules on X (C). Moreover, these equiv-
alences upgrade to the derived categories: D%**(X, R) = Db(X(C), R).

[BBD, §6.1.2, (C")] (see also [SGA4l Exposé XVI, Théoreme 4.1]) implies
that if f : Y — X is a morphism between C-schemes of finite type, the
equivalences of theorem commutes with the various (derived) functors
flv.f*af!vf*, & and Hom.

Combining this fact with theorem [11.2.1] one sees that the equivalences of
the theorem preserve sheaves (or complexes of sheaves) constructible for a fized
stratification, as well as perverse sheaves.

11.2.2 Local systems

Let R be a finite ring, and consider a connected C-scheme X, endowed with the
étale topology. We consider the étale fundamental group 7§*(X) := 7¢*(X, 7),
where Tg is any geometric point of X. Let Loc®*(X, R) be the category of étale
local systems of R-modules on X. This category is equivalent to the category
of finite R-modules endowed with a continuous action of 7§*(X), i.e. with the
category Mod! (R[x$"(X)]) of R[x¢"(X)]-modules, finite over R.

Consider an étale R-local system .Z°* on X; there exists a C-scheme sp(.Z°")

et
and a finite étale morphism of C-schemes sp(.Z°") ", X such that the sections
of £ over any étale open subset u : U — X in X are given by commutative
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diagrams

sp(.£°")

1
s 7 et
v lf
-

U X,

i.e. by sections of fet.

Now by definition, if we let Aut(f°*) be the finite group of automorphisms
of f* in the category of étale coverings of X, we have Aut(f*) = Aut(.Z°")
and there is a natural group morphism 7§*(X) — Aut(f") (this is the action of
the étale fundamental group actually defining the local system .#°*). Applying
the functor £*, we obtain an analytic local system .Z := ¢* . Z°*, corresponding
to the local homeomorphism

) @)=

sp(Z°")(C) =: sp(&L X(C).

Let m1(X(C)) = m(X(C), zg) (where now z( denotes the complex point as-

sociated to Tg) be the topological fundamental group of X (C), and set ﬂlm»
for its profinite completion. It is well known that we have a natural identifi-

cation Wlm)) ~ 79%(X) (see e.g. [Mi, I, Remark 5.1, (c¢)]). The action of
m1(X(C)) on sp(.¥) ER X(C) is then given by the natural map

—

71 (X(C)) = m (X(C)) = 75 (X) — Aut(f°") = Aut(f).
We deduce the following result:

Lemma 11.2.2. Let p: m(X(C)) — Wl(/)(-(TC)) = 7m$%(X) be the natural map.
We have a commutative diagram of functors

Ex

Loc(X(C), R) - Loc® (X, R)
Mod' (R[m (X (C)))) —> Mod' (R[7$t(X.t)])

where p* is the restriction of scalars functor along the map p and p. is the
extension of scalars functor.

11.3 From F-étale to C-étale

This is a brief exposition of the results from [BBDI §6.1.8, 6.1.9, 6.1.10]; we refer
to loc. cit. for more details. We keep our C-scheme X of finite type from the
preceding subsection, and consider a finite field K. We want to relate (some full
subcategory of) the derived constructible category of étale sheaves of K-vector
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spaces on X with analogous objects defined over the algebraic closure F of a
finite field.

The strategy is as follows: assume that X is endowed with an algebraic strat-
ification Sx (in particular, the stratification is finite) with smooth connected
strata. Consider given, for each stratum 7' € Sy, a finite family of irreducible
K-local systems Lx(T"). Assume that the triple (X, Sx, Lx) descends to a ring
of finite type over Z: there exists a ring Z C A C C, of finite type over Z and
a scheme Xg of finite type over S := Spec(A), endowed with a stratification
Sx4 with strata smooth over § with connected geometric fibers, and for each
T € Sxg, a finite family Lx,(T) of irreducible K-local systems on T such that
the base change of (Xg,Sxg, Lxy) to C yields (X,Sx, Lx).

For any finite residue field I of A (i.e. quotient of A by some maximal
ideal), we can find a strictly henselian discrete valuation ring A C V' C C whose
residue field is an algebraic closure IF of IL (see the discussion in [BBD), §6.1.8]).
We obtain a diagram of schemes

X = Xy + Xy

where X denotes the base change Xg x g Spec(?).

Let Dg’i 1, (X, K) be the full subcategory of the derived category D***(X,K)
of étale K-sheaves whose objects are those complexes .# such that the cohomol-
ogy sheaves of .7 | are finite successive extension of objects in Lx (T') for any
T in Sx; similar (and obvious) notation apply on Xy and Xp. Considering the
pullbacks along the above morphisms, we obtain functors

D%, (XK) Df;’jjv)L (X, K) = D% (Xg,K).

X Sxp,Lxp

Choosing an appropriate V' (see [BBD| Lemme 6.1.9]), one can show that these
functors then define equivalences of categories.

11.4 Monodromic categories

11.4.1 Preliminaries on coefficients

The category of étale sheaves is well behaved only for certain coeflicients rings.
We fix here an appropriate field of coefficient for our purposes; recall that k is
a fixed algebraic closure of a finite field of characteristic £ > 0.

Consider a W-orbit o in 7. As mentionned in remark the elements
of o share a common finite order, which we denote n(0), and this order satisfies
ged(4,n(0)) = 1.

Now any element ¢ in o is defined over some finite subfield of k (this follows
from the fact that k is the union of its finite subfields). We can then find a finite
subfield K = K(o) of k such that any element in o is defined over K. This will
be our field of coefficients for the duration of this chapter.
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11.4.2 Preliminaries on schemes and groups

For a scheme X7z over Z, of finite type, we will set Xoz := Spec(R) Xgpec(z) Xz
for the base change of Xz, where R is any commutative ring. We will denote
by Db¢t(Xg,K) the derived category of étale sheaves of K-vector spaces on the
scheme Xgx.

Recall that we are interested in a complex connected reductive algebraic
group G, and that we fixed a (positive) Borel subgroup B and a maximal torus
T C B.

We can find a split connected reductive group Gz over Z and choose a Borel
subgroup By and a maximal torus Ty, C By of Gy such that extension of scalars
to C yields the triplet T'C B C G. Let Uz be the unipotent radical of By and
set 27 := Gz/Uy. For R a commutative ring, we have Zix = Go/Umx. This
scheme admits a stratification indexed by the Weyl group W, induced by the
Bruhat stratification on G; we denote the strata 2, s for w € W.

Finally, if X.(Tyz) is the cocharacter group of the Z-torus Ty, as soon as R
is an integral domain, we have an isomorphism X, (T7) = X.(Tx) (see e.g. [}
I, §2.5, (1)]; see also [J, II, §1.1]). Thus we will simply denote this group as
X, (T) without mentioning the base ring.

11.4.3 Preliminaries on local systems

From now on, we let A C C be any fixed ring of finite type over Z containing a
primitive n(0)-th root of unity £ and such that n(o) € Z is invertible in A (for ex-
ample, one could take A = Z[ﬁ, €]). In what follows, we will have to consider
two different settings: schemes over rings and schemes over algebraically closed
fields; unless specified otherwise, R will denote either any ring A C R C C or an
algebraically closed field of characteristic exponent p satisfying ged(p, n(o)) = 1.
In any case, R contains a primitive n(0)-th root of unity &: if R is algebraically
closed, this is clear thanks to our assumption on p and n(o); if R is a subring
of C containing A, then it follows from the existence of such a ¢ in A.

Our assumption implies that the application e,,(4) 5 mapping an element to
its n(0)-th power is a finite étale map Tgy — Tx. Let us justify this fact in the
case T = Gy,. The morphism of affine JR-schemes e, (,) 9 corresponds to the
algebra map

Rz, 27 — Rz, 271, z— 2",
One can then write R[z, 1] = R[z™®), =] [0] / (u™(®) — () where u is an
indeterminate. Moreover, the formal derivative of u™®) — z(®) is n(0)u™(®)~1,
which is invertible in R[z"(®), z="(0)][u]/(u™®) — 2™(°)). Thus [Mi, I, Example
3.4] tells us that R[z"(®), 2=()][u]/(u™(®) — £7(?)) is étale over R[z™(), x="(0)],
which implies our claim. Choosing a trivialisation T = (G ,)”, the general
case follows from the preceding discussion.

Now our assumption of the existence of a primitive n(o)-th root of unity
in R implies that ker(ey(o)n) is a constant group scheme. Then the finite
group ker(e,(o),m) (M) identifies with the Galois group of the finite étale covering
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€n(o), R

Tx
Moreover, if we let eg’a)’m denote the n(o0)-th power map on Gy, i, ker(ega)ﬁ)(%)

T, so we have a natural surjective map 7§*(Tgp) — ker(e,o)n)(R)-

is the finite abelian group of n(0)-th roots of unity in %* (which is a cyclic group
of order n(0) by hypothesis) and we have a natural isomorphism of finite abelian
groups

ker(epm) o) (R) @z Xo(T) = ker(en (o) 1) (R)

induced by x ® A — A(z). For any ¢ € 0, we can then construct an étale K-local
system Z?‘“’Et on Ty mimicking the construction of section Namely, we
consider the K-vector space

K[X.(T)]/(e* = A(t) | A € X.(T)).

Since t is of order n(o0), there is an action of ker(e, (o) ) () = ker(egz‘;)ym) (R)®z
X, (T) on this vector space induced by the natural action of X,(T): any element
in ker(eg’(“;)m) can be written as £” for some (non-unique) integer n > 0. Then,
& @ A will act as A"(t) = A(t"). We deduce a natural continuous action of
7§ (Tw,). In view of [FK| Proposition A.I.7], this defines an étale local system
on Tyx. Note that by construction, the kernel ker(e, o) 0)(?R) acts on et
via a character x; m, induced by A — A(t) for A € X, (T).
We will need later a little technical lemma:

Lemma 11.4.1. Consider a group morphism between split R-tori T’ 2 T,

71'(¢)

The map ¢ induces a morphism w$*('T’) 7 (T) (resp. a morphism

X (T RiSIoN X«(T)). Then for any integer n > 0 such that n is invertible

in R, the following diagram is commutative

(@)
it (T) i (T)

| i

X« (9)®zid
X, (T') @z ker(e; 5, ) (R) ————— X.(T) @z ker(e, 5, ) (R).

Proof. First, remark that our assumption on n implies that the power-n map
enm on T (resp. ei%m on T') is a finite étale covering, with Galois group
X.(T) @z ker(e, 5, ) (R) (vesp. X, (T') @z ker(e} s ) (R)).

By definition, the morphism at the fundamental groups level is constructed
as follows: for an étale cover L — T of T, the base change of L along ¢ yields
an étale cover L’ of T/, and we have then a natural map from the Galois group
of L' above T’ to the Galois group of L above T. This construction then passes
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to the limit and gives 7$*(¢). Now, we have a commutative diagram

T T.

Here, f is the base change of e, 53 and ¢ is the map obtained from the universal
property of the fiber product. By definition, the map

7§ () T 72(T) - X(T) @ ker(el,)()

factors as
m$(T') = Gal(f) = X.(T) ®z ker(ey ) (R).

But now the natural surjection 7§*(T’) — Gal(f) itself factors as
™' (T) = Gal(e;, o) —~ Gal(f);

the composition

X (T') @z ker(e,%5,)(R) = Gal(e}, ) — Gal(f)
— Gal(en ;) 2 X.(T) @ ker(e},5,) (R)

is clearly induced by the morphism X.(¢). This concludes the proof of the
lemma. O

Remark 11.4.2. We keep the notation of lemma [11.4.1] This lemma has a
nice consequence: assume that £ is a local system on T whose associated
75t (T)-representation factors through the natural quotient 7$*(T) — ker(e,, ;).
Then if ¢ : T — T is a group morphism between tori, the pullback ¢* & is a
local system on T’ whose associated 7$'('T’)-representation factors through the
natural quotient 7§*(T") — ker(e;, 1)

For us, this has two immediate implications: for any ¢ € o, the pullback
of f?mm along €,(,) 0 is the constant K-local system K _; the pullback of
f;r”"et along the multiplication map m : Ty X T,y — Tg is isomorphic to

T o ,et T o ,et
PTnct g gTuet

11.4.4 Constructible categories

Recall that we considered natural morphisms of C-varieties p,, : £ — T, see
subsection these morphisms are induced by isomorphisms 2, = U, x T
According to [J, II, §§13.1, 13.2], the same identifications hold already over any
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principal ideal domain. In practice, we fix such a morphism over Z, and we
derive morphisms of JR-schemes p,, ; : Zw.m — T by base change. We set

L(w,0,%) = { L} = plyou LT | 1 € 0},
This is a finite family of local systems on the stratum 23, ». Then, consider

L(W,0,R) := | J L(w,0,M) ={L}"" |weW,teo}.
weWw

Finally, we set

b,et
DL(Wm,SR)(‘%ER’K)

for the full subcategory of the derived category of étale sheaves of K-vector
spaces on 2y whose objects are those complexes .# such that for any ¢ € Z and
any w € W, the sheaf (% )| 2., 18 & successive finite extension of objects

in L(w,0,9). Note that by definition, the category D%’?&," m)(‘%%K) is a
triangulated subcategory of D"¢*(Zx, K).

11.4.5 Standard and costandard objects

For any w € W, we set jym @ Zwn — Zn for the natural embedding. Then,

we set
AN = (Gus )1 (L) [dim( 2o )]

and
Vm,et — (jw’m)*(gzu,et)[dim(%w,fﬁ‘)].

w,t

We will call the Ai”ft’s standard objects and the Vi’ft’s costandard objects.

We have a version of lemma in this new setting, with essentially the same

proof:
{AN [we W, teol

generates D%at/v U)(%m, K) as a triangulated category. We will justify later that
for any w € W and t € o, the object Vo' belongs to D%f;v,a)(%%K), and

w,t
that shifts of costandard objects also generate this category.

11.4.6 Monodromy

In this section, we assume that R is an algebraically closed field; we let p be
its characteristic exponent. Assume moreover that ged(¢,p) = 1. We expose
briefly here how one can define monodromy in the étale setting. We freely use
the notation of section What follows is written considering the right action
of Ty on Zn, i.e. for right monodromy, but the exact same arguments work as
well for the left action.

We want to show that proposition holds in D%?;V,o,%)(%m’ K), that is

to say, the following: for any % € DL’(Q;VU m)(%m,K) there exists an integer
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n > 0 such that a(n)*.# = pry % on Zx X Tk, moreover, the restriction of
this isomorphism to {1} x Zx is the identity of .#. The strategy is quite the
same as in chapter [l As in the proof of proposition one reduces first
to the case where .7 is a (possibly shifted) sheaf on Z%. Analogues of lemma
[[.1.6] and lemma [I.1.7] still hold in our current setting, although lemma [1.1.6
needs a slight adaptation (mainly because, what we need to consider now is the
étale fundamental group; which is a slightly more complicated object than the
topological one; for example, the étale fundamental group does not “commute
with product” the way the topological one does).

Lemma 11.4.3. The endomorphism of H* (T, K) = EXH(KTWKT%) induced
by e} is given by multiplication by ¢, hence is zero (where the Ext-space is taken
in the category of étale sheaves on T ).

Proof. First, we can reduce to the case r = 1, that is to say, Ty = G ;. This
is a consequence of Kiinneth’s formula; the arguments being essentially the same
as those used in the end of the proof of lemma[1.2.2] Now, if » = 1, the space

H'(Tw,K) = Ext' (Kr,, . Kr,,)

is isomorphic to K.

Consider for a moment a non-split extension L in Extll(er(e (K, K) (the latter
space being a space of extensions in the category of representations of the finite
abelian group ker(ey)). This representation is then 2 dimensional, each element

. 1 . . e
of ker(ey) acts as a matrix of the form (O ;), in particular, multiplication by

£ is zero on this space. Now, via the natural surjective morphism 7$*(Tx) —
ker(eg), L defines a non-split representation of 7$*(Tg), which in turn defines
an étale local system .# on Tg. Moreover, lemma implies that e} .
is trivial. The sheaf Z then defines a nonzero element in the one-dimensional
K-vector space Extl(KTm,KTm), and as such, it generates this space. Since
e; Z is trivial, the lemma follows. O

Lemma 11.4.4. Let .F be a sheaf on Zx whose restriction to each Zyn is a
finite extension of successive objects in L(W,0,R). Then there exists an integer
n such that a(n)* .Z is constant on any fiber of pry. Moreover, n can be chosen
of the form n = n(0)¢* for s > 0.

Proof sketch. Since we only have a finite number of strata on Zx, one easily
sees that it suffices to prove the lemma with Zx replaced by 2, » for any
w. We can thus assume that .# lives on some stratum 2, g1, and that it is a
successive finite extension of objects of L(w,0,9R). Consider an exact sequence
L — F — £ of local systems on Zwm. If the result is known for both &
and ', then there exists n > 0 sufficiently divisible such that the restriction of
a(n)*.Z to any fiber of pr, identifies with an extension between two copies of
a constant sheaf on Ty. Then lemma readily implies that our statement
is true for .% too. We can thus further reduce to the case . = Z}"" for some
t € 0. The definition of .Z}"** together with remark easily imply that
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a(n)* Lyt = e, LT 2 For n = n(o) using remark [11.4.2] one
more time, one sees that the latter object is isomorphic to pry(Z;**). The fact
about n is clear from the above arguments. O

Lemma [11.4.3] also readily implies that an étale version of lemma [1.2.2] also
holds. Then one can copy the proof of proposition to see that this result
is true in D%S&V,a,m)(%m’ K).

Now, for any n such that ged(n, p) = 1, let Gy, = [n] denotes (the R-points of)
the kernel of the power n map on the multiplicative group. This is a finite abelian
group; for n > m such that m divides n, the map e,/ induces a natural mor-
phism Gy, s[n] = Gmn,[m]. We will consider the object yﬂlszo Gm,m[n(0)f®];
let {zs}s>0 be any fixed topological generator of this profinite group (we can
construct one as follows: let &y be a primitive n(0)-root of unity, then choose &;
in Gy m[n(0)f] such that & = & so & is a primitive n(0)¢-th root of unity, and
so on). We are ready to define monodromy for objects of D%(extzv,o,m)(‘%%K)'
For .# there, consider n = n(0)¢® such that we have an isomorphism

t(n) : pry.F — a(n)* F
as in proposition For any A € X, (T), we then set

07 (A) = 1(N)|{A(we)} x Zn -

The results of section [1.5]still hold for this definition, with essentially the same
proofs.

Remark 11.4.5. Any choice of topological generator {z}s>0 as above will yield
a monodromy action, a priori different. Later on, we will choose a topological
generator in a slightly more specific way, but the definition and notation are
somehow independent of this choice.

In analogy with the analytic case, we define

b,et
DL(W,a,m)(‘%% K)[—ﬂf]

€

to be the full subcategory of D%(;V 0.9%) (Zm, K) whose objects are those & whose
right monodromy action factors through a quotient

K[X.(T)]/(e* = A(t) | A € X, (T))"

for some n; one can check that this identifies with the full subcategory of
D%?rtzv,o,m)(%%K) with objects those complexes . such that J(.F) g, ,, is
a finite successive extension of 2" for any i € Z and w € W. We could obvi-
ously define similarly categories Dli’(e‘t/v 0.9%) (Zx,K)[_ 4 or D%F‘tV 0.9%) (Zr, K)p,

as well; see subsection [5.2.1] for the definition in the analytic case.
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11.4.7 Convolution

We address convolution in our étale category; here again, R is either a subring
of C containing our fixed ring A, or an algebraically closed field of characteristic
exponent p, with ged(p, n(0)) = 1. We set gg for the natural quotient morphism
Gy X Ly 2 Gogy xUn Zx, and ws for the quotient morphism Gy — 2.
Finally, let mgq be the morphism Ggz x Y% 25 — 2% induced by the action of
Gm on %m

For two complexes .#,¥ € D%E;V’om)(g%”m,K), we then define the (“Up,-
equivariant”) convolution product to be

F K0 G = (ma )i (gn) ()" (F) K G)[r].

Remark 11.4.6. It is clear that, in the analytic setting, the above description
of convolution coincides with the one given in section [6.1} using the notation
introduced there, the point is that we have an identification g.(w*(.#) X ¥) =
F WY G (where ¢ and @ are here defined between the corresponding complex
algebraic varieties).

11.4.8 Equivalences

Let us come back for a moment to the complex analytic world of the first

chapters. We let Dy, (2", K) denote the full subcategory of D{p (2", K)

whose objects are those complex .# such that (% )| 2, is a successive finite
extension of shifted local systems of the form .Z}” with ¢ € o, for any 7 € Z and
weWw.

Lemma 11.4.7. The category D’(JB) (27, K)_ 4 is a full triangulated subcategory
of D%(Wm)(ﬁé”,K).

Proof. This follows immediately from lemma |5.2.2 O

One then easily deduces that the category DZ(W a)(&‘” ,K) decomposes as
the direct sum over ¢ € o of the subcategories D?B)(E&”, K)— -

We start by noticing that the local system .f? behaves as expected under
the equivalence of theorem [11.2.1

Corollary 11.4.8. The analytic local system ,,S,”;F on T = T(C) corresponds to
the étale local system .f;rc’et on T¢ via the equivalences of theorem|11.2.1].

Proof. This is a direct consequence of the construction of £} <" in subsection
11.4.3l and lemma [11.2.2) 0

As stated in remark [[1.4.5] for any topological generator of the profinite
group @00 Gm,c[n(0)€®], we obtain a monodromy action on the category

2i7
D%frtzv,o,C)('%C’K)' We fix such a generator by (25)s>0 = (€707 )s>0.
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Proposition 11.4.9. We have an equivalences of categories

DY .oy (2 K) < Di’fﬁv’o)c)(%c,]l{).

This equivalence swaps Ay ¢ and AE’? for any w € W and t € 0. Moreover,

for F € D%(W o (2, K), if we let ZC be the object of D%FIEVO o) (Zc,K) corre-
sponding to it via the above equivalence, we have a commutative diagram

End

End(?c)

(F) =
KX, (T)] = K[X«(T)].

Proof. Theorem [11.2.1] gives us an equivalence of constructible derived cate-
gories D%(2",K) <~ D%°*(2¢,K). Combining the discussion that follows
theorem [11.2.1] and corollary we get that this equivalence restricts to an
equivalence
b ~  nbet
Drw,o) (2, K) «— DL?W,(:,(C)(‘%C’K)'

The facts about standard objects follows from the commutation of this equiva-
lence with various pushforward functors (see the discussion after theorem
and corollary The fact about monodromy is clear by construction, and
our choice of (zs)s>0 made above. O

It follows readily from the previous proposition and lemma that the
subcategory with monodromy ¢ is preserved via our equivalences:

Corollary 11.4.10. The equivalence of proposition restricts to an equiv-
alence
b ~ b,et
D(B) (%, K)[*J] — DL(W,U,C)(E%‘C’ K)[,J]. (1141)

We can now deduce information about costandard objects:

Corollary 11.4.11. For any t € o and any w € W, the object vﬁf? belongs
to D%F;V,o,C)(%C’K)[—J]' Moreover, the family {Vg”it[n] | w e Wyn € Z}

generates the triangulated category Di’;’f‘tyo (C)(’%Cv K)— -

Proof. This follows directly from corollary and the analogous facts in
D?B)(%, K)— 4 (see lemma . .

According to [BBD) item (c) on page 70], corollary [11.4.11| allows us to
consider a perverse t-structure on D%f&, o C)(%@, K)[—,y (which is then defined
in the usual way). We get the following immediate corollary:

Corollary 11.4.12. For anyt € 0 and any w € W, the object A%ﬁt and Vﬁ’f
are perverse in D%gjvu C)(%C,K)[,’t]. The < 0 part of the perverse t-structure
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is generated under extension by the family {Aﬁff [n] | w € W,n > 0}, and the
> 0 part of the perverse t-structure is generated under extension by the family
(VS ] | w e W,n < 0},

The equivalence of corollary[I1.7.10) is perverse t-ezact.

The next step is to compare the different étale settings. The following equiv-
alence follows from arguments similar to those of [BBDI, §6.1.8, 6.1.9], and briefly
recalled in section The arguments involve a step on schemes defined over
a strictly henselian discrete valuation ring S8 C C whose residue field is F, and
are consequences of a comparison of cohomology of the strata over C, F and fR.
We refer to loc. cit for more details. As in proposition [I1.4.9] we wish to ob-
tain a commutative diagram relating monodromy in the two different settings
involved (i.e. over C and over F), and as for proposition the commu-
tativity of our diagram (see below) will be ensured by a particular choice of
topological generator. Let us explain a bit: as we said above, the monodromy
actions on the categories D%f&,’mc)(%@,K) and D;(E;Vo r (2¥, K) depend on
the choice of a topological generator of the profinite group Ls>0 Gm,c[n(0)e?],

resp. lim _ Gy, p[n(0)¢°]. We fixed such a generator for the complex category,

50

setting (:cs)s>0 = (e"(zmg )s>0. We claim that we can fix a topological generator
of L >0 (0)¢7] such that diagram ([11.4.2)) below is commutative. This
is a consequence of the following fact: the polynomlals (0 _1 for s > 0 split

in a product of coprime monic polynomials over I since the latter field is alge-
braically closed of characteristic coprime to n(0)¢®. Since F is the residue field
of the henselian (discrete valuation) ring R, we can lift this splitting of polyno-
mials in M[z]. This implies that R C C contains all the n(0)¢*-th roots of unity,
for s > 0, and we have natural 1dent1ﬁcat10n Gmm[n(0)0°] = Gy p[n(o)ff]. In

particular, letting 2% be the image of eI in G p[n(0)e?] for any s > 0,

we obtain a topological generator (z¥)s>o of Jim >0G r[n(0)¢?]. This is the
generator we use for defining the monodromy action on Db L(Wo, F)('%F’ K), and

such a choice clearly makes the diagram (11.4.2]) commutative.

Proposition 11.4.13. The categories D%E’;VO o) (Zc, K) and Di?&,o ) (ZF, K)

are equivalent. Moreover, this equivalence commutes with convolution and swaps
AC’Et nd A]F’Et as well as VC “* and V]F “ for any w € W and t € o. In

particular, the objects VF o belong to the category DL(WU]F (2r,K) for any
w € W and t € 0. For & J\C e DY (2¢,K), if we let F° be the object

L(W,0,C)
of Db e‘t/VU]F (Zr,K) corresponding to it via the above equivalence, we have a
commutatwe diagram
End(.Z%) ~ End(.Z") (11.4.2)
¥ zC P gF
K[X.(T)]



An immediate consequence of proposition [11.4.13|is that we can define a
perverse t-structure on the category Di?;v oF) (Z2r,K), and that the equivalence

of the proposition is t-exact for the perverse t-structure.
Putting proposition and proposition [L1.4.13| together, we finally get:

Proposition 11.4.14. We have a perverse t-exact equivalence of categories

D} o) (27 K) & Dy o ) (2, K).

This equivalence swaps Ay, + and A]E;it as well as V4 and Vi’? foranyw e W

and t € 0 and commutes with convolution. Moreover, it restricts to an equiv-
~ b,et .
alence D?B)(%,K)[_,t] — DL(W&’F)(:%,K)[_M. For € D%(W,o)(%,K), if

we let F¥ be the object of D%F‘t,m F)(%]F,K) corresponding to it via the above

equivalence, we have a commutative diagram

End(%) ~ End(#")

11.5 Lusztig—Yun equivariant categories

11.5.1 Tori-equivariant categories

In this section, we detail the construction of a torus-equivariant derived category
(meaning, for the action of a split algebraic torus). Though our definition is the
one originally introduced in [BL], we follow quite closely [RW] §3.4] for the
details.

As above, we make all of our construction on R for A € R C C or an
algebraically closed field. Fix a fR-split torus Hg, and a fR-scheme X of finite
type endowed with an action of Hy. Finally, let us fix once and for all a
trivialisation Hy = (Gy, 0 )", where r denotes the rank of H.

For any n € Zxq, set V,, = A \ {0}. We have a canonical map V;, — P,
which is known to be a Zariski locally trivial principal Gy, s3-bundle. Taking a
product of r copies of V,,, we get a scheme V., endowed with a natural action
of Hg (we use our trivialisation of Hy here). Consider PX := VI x X with

. . =X
the diagonal action of Hgp. One can construct a scheme P, and a natural
. X . o
morphism ¢ : PX — P, making P:X a principal Hyx-bundle: we have an open
cover of P&‘l by affine n — 1-spaces; over such an open, the map V,, — ]P’g;t_l
identifies with the projection A&71 X G, — Ag‘gl. In fact, this is the well
known construction of the projective n-space, by gluing copies of Ag{l along
the usual transition functions, defined on nice open subsets Agﬁ;l A Ag{l.
These identifications upgrade to transition functions (Ap )" x (G )" x X =
_ X . . . .
(A 1" x Hpy x X; the scheme P;, is then obtained by gluing, using these new
data.
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For a given map Z Ly X of R-schemes of finite type; for any X-scheme
Y — X of finite type, let fy : Z xx Y — Y be the induced map. Consider
n > 0. We say that f is n-acyclic if for any X-scheme Y étale of finite type over
X, and any K-sheaf .# on Y, the morphism induced by adjunction

F TPy )fy F

is an isomorphism in D”**(Y,K) (here, 7=" is the truncation functor for the

natural t-structure on D¢*(Y, K)).

Lemma 11.5.1. The projection pX : PX := V" x X — X is (2n — 2)-acyclic
for any n > 2.

Proof. We treat first the case r = 1. We need to show that for any K-sheaf .# on
X, the canonical map F — 727"72(pX), (pX)* .7 is an isomorphism. We use
the fact that the projection p : A" xX — X is acyclic (see [Mil VI, Corollary
4.20]). We have the following commutative diagram

{0} x X o A" x X <L O(A"\{0}) x X

where ¢ and j denotes the complementary closed and open inclusion, respec-
tively. We apply the distinguished triangle i,i' — id — j,j* FL to the sheaf
p* Z: since p is smooth of relative dimension n, we have p* 2 p'[—2n]. Identi-
fying {0} x X and X via poi, we get i, .#[—2n] — p*.F — j.(pX)* .Z. Finally,
apply p. to this triangle to obtain

* * +1
F[=2n] = pp* T = (03 )0 ) F — .
Applying the truncation functor 7<2"~2 to this triangle, we get an isomorphism
T == gt F S =R ) ()

which allows us to conclude in the case r = 1. The general case r > 1 follows
from the case r = 1, remarking that we can decompose p;X as a composition

VXX 5V iIxX 55 VIxX =X
and that a composition of m-acyclic maps is still m-acyclic for m > 0. O

For m > n > 2, the space me = PX xx PX =V x V" x X is a scheme
endowed with a Hy-action; the map pf’ o PX. — X is again 2n — 2-acyclic

n,m
. =X
and we can as above construct a quotient scheme ¢X, : PX — P, .
We now define our Hz-equivariant derived category on X. For any n > 0,
set

D (X, n,Hx, K)
for the category whose objects are triples (.%,.Z, 3) where
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e .7 is an object in D***(X,K),

e .7 is an object in Dbt (Ff, K),

e (3 is an isomorphism (¢X)*.F = (pX)* Z.
9,

A morphism (ZF,%,8) — (4,9,3) in D**(X,n,Hx,K) is given by a pair
(¢, ) of morphisms, with ¢ : . — ¢ in D**(X,K) and % : # — 9 in
Dbt (Pi, K), satisfying an obvious compatibility condition with respect to the
isomorphisms 3 and 3’.
For two integers n,m > 2, one can exactly as above define a category
D (X,n x m, Hyx,K), replacing n in the definition above by the pair (n,m).
For any interval I C 7Z, set

DX n, Hy, K)

for the full subcategory of D (X, n,Hg, K) whose objects are those triples
(F,7,p) such that /#(F) vanishes unless i € I. If n is such that 2n — 2
is bigger than the length of I then D7°*(X n,Hx, K) does not depend on the
choice of n: for two integer n,m such that both (2n — 2) and (2m — 2) are
larger than the length of I, the exact same arguments as in [BL, §2.3.4] show
that the categories D/**( X, n, Hyx, K) and D’°*(X, m, Hx, K) are equivalent.
In fact, the pullback functors D¥°*(X,? Hx,K) — D!°Y(X,n x m, Hyx,K)
induced by the natural projections P,fm — P?X for 7 € {n,m} are equivalences
of categories.
Now for two bounded intervals I C J, we have a functor

DX, Hy, K) — D7 X, Hy, K),

(identifying both as subcategories of D (X, n, Hx, K) for n > 0). Thus we can
finally set
DX, K) = lim, D't X, Hy, K)

where the limit is taken over the bounded intervals I C Z. Note that we
have a natural forgetful functor Forg Di’l';: (X,K) — D¥»*(X,K) defined in
the following way: an object in the equivariant category is given by a triple
(Z,Z,8) € D'*Y(X,n,Hx,K) for some n > 0; Forg is then defined by
(Z,ZF,B) — Z. Its action on morphisms is obvious.

In the following, we will sometimes consider the equivariant category with
X = Zx endowed with a twisted action: we will consider the Tw-equivariance
with respect to the natural action of Ty twisted by the morphism e, (,) 5. We
will then denote our equivariant category with a T (i.e. D%‘:(%WK) will
denote, for example, the Tg-equivariant derived category as defined above,
where Ty acts on 2 via t -z = e,(0) x(t)r).
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11.5.2 Constructible Tyx-equivariant derived category

In fact, we are not interested in the full category D%Bt(ﬁfm, K), but rather in a
R
constructible version of it. We use the notation of subsection [[1.4.4] here: let

b,et
D3 Law,om (29 K)

be the full triangulated subcategory of D%et(%m,K) whose objects are those
R

(F,Z,B) such that .Z € D%fiv,o,m(%% K).

11.5.3 Lusztig—Yun equivariant category

Let Ty — Ty be an étale morphism of algebraic SR-tori with finite central
kernel K, and assume that we have a character x of K. In a way similar to
the arguments of section one can see that the finite group K(R) acts on
any object .F € Dbf(;t LW, 9%)('%3’ K), and that this action is functorial, in the
sense of lemma ) We can thus consider the full subcategory whose objects
are those .# for which this action factors through the character x.
In the particular case where v is chosen to be e,,(o 0 s0 that K = ker(ep(0),m)(R),

and x is chosen to be x: 9, we denote the so obtained category as

Qeit(w,a,m) (Zn /Tm)[f’ffm,ec] )

Once again, we have a forgetful functor from this category to the con-
structible category For?{ := Forg [r], where Forg  is defined as above. We
can define standard and costandard objects in this context too: for any w € W,
set

Aw) D o = (ugth (L) [dim( Zop,:) — 1]
and
V() e = Guwsn)o (L7 dim( Z ) — 7]

We then have Fortm(A(w)i);et )= Aift~

T et
t

Remark 11.5.2. We will call the latter category an (étale) Lusztig—Yun cate-
gory associated to the local system & ;rm’et. However, so far, and contrary to
the complex analytic case of chapter [2} we did not prove that this category is
independent of the choice made for the isogeny T9 — To and for the charac-
ter (here x;r). Thus it may be more appropriate to speak of x; p-equivariant
category; however, to mimic the complex analytic case, which is our primary in-
terest, we stick to the former denomination. We will justify a “well-definiteness”
of our category later, at the very end of subsection

The arguments of section show that D°*(2» /T%)[_,gtTm,et] is a direct
summand subcategory in the equivariant category Dbet (Zx,K). In

To,L(W,0,%)
particular, the Lusztig—Yun category is a full triangulated subcategory of the
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full equivariant category. Exactly as in lemma [5.2.2] one can then show that
the objects
(AW [n]|weW,neZ}

T et
Z,

belong to D°(Zn JTo)_
triangulated category).

Tt and in fact, generate this category (as a
t

11.5.4 Equivalences
We keep the notation introduced so far in section We want to show that

we have an equivalence of categories
D(ZJT) - = @et(%FiTF)[_7$’tI‘W,et].
As a first step, we need once again to define the appropriate objects in the
analytic world: let us define the category Dbf . (Wo)(ﬁt” ,K) as the full subcate-

gory of D%(% , K) whose objects are those equivariant complexes .% such that
Forz(.7) lies in DZ(W 0y (2, K).

Remark that D(27/T)_ &) is a full subcategory of D%L(W,a)(‘%’K)' In
fact, we prove first an analogue result considering the whole tori-equivariant
categories. The strategy is the same as in the monodromic case; and proceeds

in two steps: first we relate the complex-analytic setting to the complex étale

. . b b,et .
case that is, the categories DT,L(W,U)(%7K) and DTC,L(W,a,C)(‘%C’K) using
essentially theorem [11.2.1} then we relate the étale categories over C and F,

using the general principles of section [11.3

Analytic-étale

Below, we identify 2~ with the C-points of Z¢, that is, we write Z¢(C) instead
of 2 (this is just in order to make notation more consistent). The first step in
given by direct applications of theorem [11.2.1

Recall the C-schemes P*¢ and P,?‘;% from subsection For any n,m >

2, these are of finite type over C; moreover, it is clear that the C-points P*<(C)

s
are given by P c© = V7(C) x 2¢c(C). In particular, P;*¢(C) LN Zc
is a smooth T' = T¢(C)-resolution of 2Z¢(C), which is 2n — 2-acyclic (similar
considerations apply for Pf}”h) The point there is that the construction of
subsection [IL.5.1} performed replacing “schemes” with “C-points” everywhere,
yields the usual T-equivariant category D%(%@((C), K). Thus what we need to
check is (quite roughly) that the functor * of theorem commutes with
any step in the constructions of This is the object of the following lemma.

Lemma 11.5.3. We have an equivalence of triangulated categories

b,et ~ b
DTC,L(W,U,C)(%C’K) - DT,L(W,U)(‘%C(C%K)-
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For any t € o, this equivalence restricts to an equivalence of categories

Qet(%c/Tc)[,yftTc,et] = D(2e(C)fT) -, 2m); (11.5.1)
swapping A(w) o and A(w)f;?rtcyet for any w e W.

In the following proof, we will use the notation of subsection in the
étale and in the analytic settings; though we did not formally introduce any
notation for the latter, by similarity, it should be clear what objects and category
we consider.

Proof. Let X be any of the schemes Z¢, P*¢ or P,ffffn for n,m > 2; then

n
X is of finite type over C, and theorem [11.2.1| gives us an equivalence of

categories €% : DY'(X,K) = D% X(C),K), where the “c” stands for “con-
structible”. Moreover, these equivalences commute in a natural sense to the
pullback functors (¢;7°)*, (¢;7,)* and (p;?°)*, (p;’%,)*: for example, we have an
isomorphism of functors (Ejpfac)(p;?c)* >~ (pZc (C))*(e%..) from D" (2, K) —

Db(P7¢(C),K). We readily deduce, for all n > 2, an equivalence of categories:
D*(2¢,n, T¢,K) = D(2¢:(C),n, T,K). (11.5.2)

Since the functor €%, is exact, for n > 0 and any bounded interval I C Z, the
equivalence (|11.5.2)) restricts to an equivalence

DI 26, Te, K) = DI(2¢(C), T, K).

For another bounded interval I C J C Z, the latter equivalence clearly com-
mutes with the naturals functors D**(2¢, T, K) — D7¢(2¢, Te,K). By
definition, we then obtain an equivalence of triangulated categories

Dy (2, K) = DY (22(C),K).

C

The t-exactness is a formal consequence of the fact that &%, is perverse t-exact.
Finally, proposition [L1.4.9| readily implies that this equivalence restricts to

b,et ~ b
DTC,L(W,O,C) (Zc,K) = DT,L(W,O) (Zc(C),K). (11.5.3)

Now for the restriction to the Lusztig—Yun subcategories, we remark that
(11.5.3) clearly swaps the objects A(w)gg and A(w)i(;?ﬁc,et, for any w € W and

t
t € 0. Since these objects generate their respective Lusztig—Yun subcategories,

(11.5.1)) is a consequence of (|11.5.3]). O

Let us define a perverse t-structure on ©°(2¢//T¢c) [ Teety 88 the transport
? t
along the equivalence (11.5.1)) of the perverse t-structure on ©(Z¢(C) /1) 7).

The standard objects A(w)zeTtNt are then perverse for any t € 0 and w €
t
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W. Arguments similar to those used in subsection [11.4.8] allow us to de-
rive informations on costandard objects, in particular, that V(w)(c’et be-

pTeet
longs to CD‘“(%@/TC)P P

one can show that the latter objects generate the whole Lusztig—Yun cate-

gory, and that moreover the family {A(w)iﬁtwt [n] |t € o,w € Wyn > 0}
t

Teaet)s and are perverse in this category. Once again,

(resp. {V(w)©5 . [n] |t € o0,we W,n<0}) generates the < 0 (resp. > 0) part

g;rc,et
of the t-structure. The following is then clear:

Corollary 11.5.4. The equivalence (11.5.1) swaps the objects A(w)g)tT and

A(w)geﬁwt and V(w) o and V(w)gfrtc,ct foranyw e W and t € o.
t t

C-étale—F-étale

We want to compare the étale Lusztig—Yun category over C and over F. As for
proposition [11.4.13} one needs to consider a strictly Henselian discrete valuation
ring B C C whose residue field is F. We start by considering the T-equivariant
categories. Consider n > 0. The resolutions P:X behave nicely with respect
to base change: for 8 — R’ a ring morphism, the base change to Spec(R’)

73{ . ’ ’ 7% ’
of PZ» = 2 and PZ» — P, yields P — 2o and Py — P, .

Similarly, the base change to R” of the action morphism Zx x To — I yields
the action morphism Zg X Ty — Zmr. We obtain equivalences

Db,et(P;l%c’K) o Db,et(Pf{m’K) e Db’et(pT;%,K) (11.5.4)

and
DU(P, ¢ K) < DVY(P " K) & DYY(P, T K). (11.5.5)
Now, the equivalences (11.5.4)) and (11.5.5)) commute with the various pull-
back functors constructed from the projection and quotient morphisms p;? and
q7 . Tt follows from this fact that we have equivalences of categories

Det(%c,n, T([j,K) (—: Det(%m,n,Tm,K) :) DEt(%F,n,TF,K),

and one can then deduce equivalences
DY (2, K) << D2 (2w, K) = D225, K). (11.5.6)
T¢ Tx T

To derive the Lusztig-Yun case from this one, we remark that the base
change along a ring morphism R — R’ of ey,(0),m, ker(ep(o),m) and x;, yields
the corresponding objects on R'.

From the definition of the action of ker(eq s) on D%:(%m,K), we finally

get that the equivalences ((11.5.6) commute with the action of this kernel. We
can then conclude that there are equivalences of categories

@?(W,O,(C)(%C iTC)[,’gf‘Cﬁt] (l @?(W’U’m)(%m /Tm)[,,g;rf){’ec]
= DFwoom (25 [ T8) __gmwery. (11.5.7)
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Quite similarly as in section [11.4.8] and as in the end of the analytic-to-étale
case treated above, one can show that the costandard objects V(w)zef-wt belong

to the category C‘DeLt(Wo ) (ZF /TF)[i T and that the equivalences ([11.5.7))
C, F, C, F, .
swap V(w)é;rtc,et and V(w)‘;TtF,et as well as A(w)x(?@et and A(w)xeTtF)et. This

t t t
implies in particular that these equivalences preserve the perverse t-structures
on both sides.
Finally, as in the monodromic case, combining lemma [T1.5.3] and the equiv-

alences ([11.5.6)), we get the following:

Proposition 11.5.5. We have a perverse t-ezxact equivalence of triangulated
categories

9(%/71)[—,2?] = g?(W,U,F)('%F /TIF)[_,g;fere“y

This equivalence swaps the objects A(w) o7 and A(’LU)];C;F,“ as well as the ob-
. t

jects V(w) gr and V(w)]f;?%et for any w e W.
) t

Remark 11.5.6. The equivalence of proposition[11.5.5|restricts to an equivalence
between perverse subcategories, so we deduce that the heart ‘ﬁit(m mF)(ﬁth Vi
To)(_, 7o
dard objects given by the A’s and costandard objects given by the V’s. In
particular, we can define tilting objects, and our equivalence clearly restricts to
tilting subcategories. If we let .7 (w)]F’et be the indecomposable tilting object

gTF,ct
associated to the element w € W, then our equivalence maps 7 (w) o7 to this

ﬂ(w)i’gmyet for any w e W.

Finally, let us note that the general results from [BBDL §6.1.8, 6.1.10] imply
that the monodromic equivalence commutes with convolution; the same kind
of results then also implies that that our equivalences intertwine the projection
functors from the monodromic to the Lusztig—Yun categories, i.e. we have a
commutative diagram of categories and functors

admits a highest weight structure with weight poset (W, <), stan-

b,et
Dy (2, K)[-1 Dy w0 m (25 K- g
ﬂ;l iw;v“ (11.5.8)

D(ZYT) - 21y <= Do (Lr [ Tr) _

Tp,etq.
T
2, ]

(The top and bottom horizontal arrows are respectively the equivalences of
proposition and proposition )

We conclude this chapter by an observation. Assume that you have a finite
central isogeny T' < T from a complex torus T to T'; let K be its kernel. Assume
moreover that there exists a character x : K — K* of K such that .7 identifies
with the x-isotypic component v, K=[x]. from these data, we can construct the
(usual, complex analytic) Lusztig—Yun categoy, as explained in chapter
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Now, it follows from [SGA4 Exposé 11, Théoréme 4.3] that the above data
define a finite étale covering T¢c —» T¢ between C-schemes. The scheme T¢ is a
complex group scheme, in fact, a torus, and the kernel K¢ of v¢ identifies with K
(remarking that the group K identifies with the automorphism group of v in the
category of finite étale covering of T, this follows from loc. cit.). In particular,
X defines a character xc¢ of K¢. We can consider a the yc-equivariant category.
Once again, our general results from [BBD] tell us that there exist analogous
objects over R and FF, and that all the resulting categories are equivalent. In
particular, and with obvious notation, we obtain an equivalence

~ b,et
@(% /T)[*,ff] — DTF,L(W,O,F),XF(%F’K)'

Taking into account proposition [I1.5.5] we get an equivalence of categories

DL wo.p) (L /TW[—,x?”W = D%gmw,a,m,m(%’ K).
Thus, in case of tori-equivariant categories on 2, the Lusztig—Yun category
does not depend on the choices one can make for the isogeny v and the character
X- In particular, later in chapter [12] we will have to perform the Lusztig—Yun
constructions for some isogeny Tr — T which is not a priori given by some n-
th power map. The above discussion ensures that we will still obtain a category
canonically equivalent to the one constructed in subsection
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Chapter 12

Etale setting

In this chapter, we keep the setting of chapter schemes over algebraically
closed fields endowed with the étale topology. From now on and until the
end of the chapter, unless stated explicitly otherwise, we assume that
our varieties are defined over an algebraically closed field F of char-
acteristic p > 0. Let also K be the finite field of characteristic ¢ constructed
in subsection We then have ged(¢, p) = 1.

12.1 Coefficients

The theory of étale sheaves is well-behaved only for finite rings of coefficients,
however, we would like to consider étale categories with an algebraically closed
field of coefficients. In order to do so, we mimic the construction of constructible
l-adic complexes.

Let X be any F-scheme of finite type. By assumption, we have K = k, our
fixed algebraic closure of K. To emphasize the fact that we consider algebraically
closed coefficients (which is non-standard for étale sheaves) we keep the notation
K in this chapter. This field is the inductive limit of its finite subfields, for such
a subfield K', we set D%°*(X,K’) for the usual constructible derived category of
sheaves of K'-vector spaces on X. If K’ C K” is a field extension between two
finite subfields of K, we have a natural t-exact functor of extension of scalars

K" @x: (—) : DX, K') — Db*(X,K").

The category D2°*(X,K) is then defined as the inductive limit of the categories
D%et(X,K'), where the limit is taken over the finite subfields of K:

Definition 12.1.1. Set D%*(X,K) for the category defined as follows:

1. the objects are given by pairs F = (K', Zx:) where K is a finite subfield
of K and Fx: is an object in DY (X, K');

248



2. the morphisms are defined as follows: for F = (K',Fg) and 4 =
(K", G two objects, set

Hom oot x 7)(F.9) =

hﬂ HOsz,et (X,]L) (]L ®K' §K17L ®]K” gKu)
K/, K" CL

where the limit is taken over the finite subfields L of K containing both K
and K.

We will call this category the constructible derived category of K-étale sheaves
on X.

Remark 12.1.2. 1. The Hom-spaces in D%¢*(X K) are naturally K vector
spaces. If # = (K', Zx/) and 4 = (K", %) are as in the definition, the
inductive limit appearing in the Hom-space between .% and ¥ is superflu-
ous: it suffices to find a finite subfield L of K containing both K’ and K"
and we have

HOng,et(X,K)(ﬁ, 9) = (HOlez,et(XJL) (L g Frr, L @kr %K”)) oL K.

2. Note that the description of morphisms implies the following: .7 is iden-
tified with (K", K" ®g /) for any finite subfield K” of K such that
K C K"

3. We will also consider equivariant categories below; we also have functors
of extension of scalars on equivariant categories, and these commute in
a natural sense with forgetful functors. We can then define, exactly as
above, equivariant derived categories of étale sheaves, with algebraically
closed coefficients.

4. In what follows, we will use the somehow abusive denomination of étale
K-sheaf, étale K-local system, étale K-equivariant sheaf: this is to be
understood as objects in the corresponding categories with algebraically
closed coefficients as defined above.

The functors of extension of scalars also commute with all usual six opera-
tions f', f*, fi, f«, ® and Hom; one gets that these six operations will preserve
(in an obvious sense) our K-étale categories.

We will denote objects in D%*(X,K) as usual complexes (that is to say,
with letters like .#,%...) and forget about the notion of pairs introduced in
the above definition. Finally, if we have a stratification S on X, we can define
the S-constructible category D%(X,K) as the full subcategory of D% (X, K)
whose objects are given by the complexes % whose cohomology sheaves are
constructible with respect to S.
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12.2 Notation

We will use similar notation to that of the previous chapter: we can find a split
connected reductive group Gz over Z and choose a Borel subgroup Bz and a
maximal torus Ty C By of Gz such that extension of scalars to C yields the
triplet T C B C G. Let Uy be the unipotent radical of Bz. We consider the
base change to F of these groups, we obtain a connected reductive algebraic
group G over IF, a Borel subgroup B and a maximal torus T contained in B.
We also have U, the unipotent radical of B; W denote the Weyl group of the
pair (G, T). We will consider the root datum (X*(T),®,X,(T),®") of the
reductive group G, and the dual K-torus T%, defined to be the K-torus with
characters given by X, (T) and cocharacters given by X*(T). Note that, as in
remark any element in T% is defined over some finite subfield of K. We
will also consider the Borel subgroup B™, opposite to B with respect to T.
We set 2 := G/U, this scheme admits a natural stratification

Ak = |_| Zw F
weWw
induced by the Bruhat decomposition of G; forw € W, we let ju, 5 : Zwr — ¥
be the inclusion map. Set D?g;(%F,K) for the constructible (with respect to
this stratification) derived category of étale K-sheaves on 2.

We consider a W-orbit o in T%; all the elements of 0 are defined over some
finite subfield K’ of K and share a common finite order n(o), coprime to £. Then,
exactly as in subsecﬁon m we can construct an object ftT’et’Kl over any
finite subfield K’ C K, containing a primitive n(o0)-th root of unity. Moreover,
we clearly have K" @/ & ;r’et’K/ > ;r’et’K” for any extension K’ C K" of finite
subfields in K. Thus the collection of the {.ZT ’et’KI}Kr defines an object in the
category of étale K-local systems on T, which we denote % ;T’Et.

_ Starting from the étale local systems £ ?’et on T for any t € 0, we obtain
K-local systems .2} on 2,y for any w € W, as in subsection [11.4.4

12.3 Monodromy and Lusztig—Yun category

(eév . F)(%F,K) for the full subcategory

of D%*(2%,K) whose objects are those .# for which the restriction of the
cohomology objects to any 23, r are finite successive extensions of the local
systems % ;”’et for t € 0. In this chapter, we abbreviate the notation for this
category by Diﬁt(%p, K), where the M stands for “monodromic”. Let us detail
a bit the monodromy action on Dﬁ\ft(%p,K). We showed in subsection
that it is possible to define a canonical monodromy action on Diﬁt(%F,K’),
where K’ is finite. For an object # = (K, Zy/) € Df\ft(%y,K), we then have
left and right monodromy morphisms

K'[X.(T)] — EHle;\,/lct(%—[hK/) (Fx ).

As in subsection |11.4.4] we consider Dlz’
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Extending the scalars to K, the above monodromy morphisms induce morphisms

K[X,(T)] — End (7).

Dy (23.K)
This is the monodromy action we will consider on the category Df\ft(,%g,K).

We let Dlj\ft(%p,K)[,,t] for the full subcategory of Diﬁt(%y,K) whose ob-
jects are those complexes .# with generalized right monodromy given by ¢. This
coincides with the full subcategory with objects the complexes .% for which the
restriction of the cohomology objects to any 2, r are finite successive exten-
sions of the local system ;" (with ¢ fixed). Note that for an object in this
category, the right monodromy map factors through the completion

R, — EndD?\;t(%F,K)(ﬁ);

recall that N o
Ry = 1im K[X.(T)]/(e* — () | A € X.(T))"

(we have k =2 K by definition).

The monodromic category splits as a direct sum of subcategories with mon-

odromy t € o:

b et :%’ @Db et %F7 [—,t]~
teo

One can replace ZF by any locally closed subscheme Z C 2% union of strata
to obtain a monodromic category D}/’(jt(Z, K)[,’t]. We will also consider left
monodromy, and hence categories of the form Dﬁft(%F,Kht/‘t] for t,t' € o.
This is defined as the full subcategory of Dlj\ft(%y,K)[,’t] whose objects have
generalized left monodromy ¢'.

The arguments of subsections [I1.4.6] and [I1.5.3] allow us to also define a
Lusztig—Yun %Z ;r’et—equivariant category for any ¢ € 0. Recall that we can fix
a finite subfield K’ of K and consider that £} is represented by the K'-
étale local system XtT’et’Kl. Then, there exists a finite central isogeny TS
T (given by the power n(o) map) and a character x; of the kernel of this
isogeny as in subsection the local system .Z; TetK jdentifies with the Xt~
isotypic component of the pushforward v, K ~ 7- Moreover, note that the above
description is valid for any finite subfield K'. Thus we in fact have

20 = v Kyl

where K+ denote the K-local system on T represented by the family Kb cr
We will consider the category B

De) (2F [T)_ grey = D - (2, K);

(B),T,x¢

(’%]F»K%

this is a full subcategory of the usual T—equlvarlant category D (g) p

once again we have a natural forgetful functor

Dk (2 [T)_ yrey = Dy (25, K).
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We set A(e) e = (Je,p)t Z9°[r], an object in the Lusztig—Yun étale category.
t

We will also consider the category D5 (Zr iT)[* Ty defined to be the
full subcategory of @'(3}3)(,%% /T)[_ T whose objects are the complexes . %

whose image under the above forgetful functor is in D" (2, K).

The various convolution products introduced in earlier chapters have ana-

logues in this étale setting: we have a convolution (—)*“Y (=) on the Lusztig—Yun
category and a “U-equivariant” convolution product (—)«Y (—) as in chapter
[6] note that the U-equivariant convolution product defined in subsection
coincides with this (=) Y (—).
Remark 12.3.1. As explained in the very end of subsection[I1.5.4] once we know
that we can define a T-equivariant Lusztig—Yun category as above, then this
category actually does not depend on the isogeny chosen nor on the character
of its kernel. In fact, later, in section[I2.8] we will implicitly consider a Lusztig—
Yun category constructed from an isogeny different from the n(o)-th power map.
This will then yield a category canonically equivalent to the one constructed in
the current section; and thus we do not (and will not) need to specify what
isogeny we consider in order to define the category ’D‘(*g)(%p /T)[_7$;r,et].

12.4 An analytic interlude

Later on, we will need to compare our current étale setting to our previous
analytic framework. There is a problem, a priori: our étale monodromic cate-
gory with algebraically closed coefficient is not defined exactly as our analytic
monodromic category (on the analytic side, no inductive limit of categories is
required). It turns out that this is not an issue.

Let us define an analytic monodromic category the way we did in the étale
setting above: for K’ C K a finite subfield, let D’}Vl(%,K’)[,)t] be the full
subcategory of D?B)(% ,K') whose objects are those complexes .%# such that
%i(9)|%w is a successive finite extension of Z}’, for any i € Z and any w € W.

Then, let Dﬂ’w(% ,K)[_yt] be the triangulated category whose objects are
pairs (K', #), with K’ a finite subfield of K and .#x an object in D4 (2", K')_ 4.
The morphisms in this category are described as in point 2. of definition [I2.1.1]

Completely similarly, we can define a Lusztig—Yun category following the
same pattern, denoted D (2 ,K)h 2T, We have a projection functor

M D2 By = D2 K -

Once again, we can define a completed category with these data, denoted
Dp(Z,K) - -

Lemma 12.4.1. We have an equivalence of categories
D%(%»K)[—,t] = D?B)(%aK)[—,t];

this equivalence commutes with convolution.
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Proof. For any finite subfield K’ C K, we have standard and costandard objects

Agt and Vﬁ,f,:t (with w € W), moreover, these objects generate the category

D%(ﬂ?f , K')[,’t] as a triangulated category. For an extension of finite subfields
K C K” in K, we clearly have

’ "
K"’ @ AL, =2 A]E,t

w,t —

and similarly for costandard. We deduce that the category Dl}\,l(% ,K)[_yﬂ is
generated by the objects AEJ and VEJ for w € W, where AEJ is the object
represented by any of the object Aﬁ't with K’ C K finite. On the other hand, the

objects A, ; and V,, ; of subsection generate the category D?B) (2, K)- g
Now, we have a natural triangulated functor

D,l/)\/((f%-aK)[—,t] — D?B)(%7K)[—,t]7

defined by .# = (K', Fx/) — K @k .Z on objects, and with obvious action on

morphisms. This functor maps Agt to A+ and VEt to Vo for any w € W.
We will evaluate morphisms from A’s to V’s in our two categories; in both cases,
using adjunction, it suffices to consider the morphisms between A;,t and VZM

(? being either K or (}): in any other case, the morphism-space will be zero. We
have the following sequence of isomorphisms
Hompy (g 70y (Al Vina) = Hompy (o ey - (A5 Vi) © K
o K gk o
= Hompy (2, x0_ (L1 LY ) @ K
~H*(T,K') ox K
~ H*(T,K)
= HOIHD?B) (%7k)[77t] (Aw,t» vw7t).

Here, the second and last isomorphisms follow from the fact that .Z f is invertible
on T, and the isomorphism

Hom(#}, 2}) = Hom(pl, £1 ,p}, £7) = Hom(Z] , £7),

(see subsection for the notation). We deduce first that our functor is
fully faithful, and then essentially surjective, that is to say, an equivalence of
categories.

The commutation with convolution is immediate from the definition of our
equivalence and the commutation of the extension of scalars functor K @ (—)
with all six usual operations. O

The same kind of arguments gives us an equivalence of categories

(using obvious notation).
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Moreover, the equivalences of lemma [12.4.1{and (12.4.1]) intertwine the pro-
jection functors 7r$ on the usual and monodromic categories.
We finally deduce the following result:

Lemma 12.4.2. We have a monoidal equivalence of categories
(Dam( 2 K)_ 4, %) =5 (D g1, %),

swapping the pro-standard objects associated to w on both sides, and swapping
the pro-costandard objects associated to w on both sides, for any w € W.
This equivalence restricts to a a monoidal equivalence

(T:m( 2 K) -, %) = (Tiy (2. K) -5 %)

et
between the tilting subcategories, preserves block subcategories, and swaps ﬁzm

—et
and gfm for any w e W.

Proof. The lemma follows readily from the previous statements; the fact about
the restriction to tilting objects is formal consequence of the fact that our equiva-
lence maps pro-standard to pro-standard and pro